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The electronic phase diagrams of many highly correlated systems, and, in particular, the cuprate high
temperature superconductors, are complex, with many different phases appearing with similar
(sometimes identical) ordering temperatures even as material properties, such as dopant concen-
tration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.”
However, since the relation is intimate, and can even lead to the existence of new phases of matter
such as the putative “pair-density wave,” the general relation is better thought of in terms of
“intertwined orders.” Some of the experiments in the cuprates which suggest that essential aspects
of the physics are reflected in the intertwining of multiple orders, not just in the nature of each order
by itself, are selectively analyzed. Several theoretical ideas concerning the origin and implications
of this complexity are also summarized and critiqued.
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I. INTRODUCTION

Highly correlated electronic materials, and, in particular,
those that exhibit unconventional superconductivity (SC), have
phase diagrams that are intrinsically complex.Multiple distinct
broken-symmetry phases occur as a function of parameters
such as composition, pressure, and magnetic field. For exam-
ple, there is a proximate antiferromagnetic (AF) state in the
phase diagrams of superconductors such as cuprates, iron
pnictides and chalcogenides, organics (both the quasi-1D
TMTSF salts and the quasi-2D ET salts), and certain alkali-
dopedC60 compounds. It has become commonplace to describe
ordering tendencies such as superconductivity and antiferro-
magnetism as “competing orders” since microscopic coexist-
ence of the two broken symmetries is relatively rare, and where
they do coexist, one order manifestly suppresses the other.
The primary purpose of this Colloquium is to emphasize a

different perspective, taking the cuprates as a case study
and focusing on the cooperative character of different
orders. We note that the temperature and energy scales
associated with antiferromagnetism and SC are comparable.
Furthermore, while too much antiferromagnetism quenches
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superconductivity, experiments indicate that too little, in the
form of residual (fluctuating) antiferromagnetism, is equally
bad for superconductivity. Increasingly, it has become clear
that this is just the tip of the iceberg and that various other
orders—charge-density wave (CDW), long period spin-
density wave (SDW), nematic, and possibly other forms of
symmetry-breaking order—also occur with comparable onset
temperatures in a wide range of material parameters. We
present the case that the best way forward is to view these
phenomena in terms of the “intertwining” of multiple orders.
A continuing conundrum in the cuprates concerns the nature

of the normal state from which the superconductivity develops.
For a large range of carrier concentration, suppression of the
superconductivity with temperature or magnetic field leads to
the pseudogap regime, a state with an ambiguous name that
reflects an empirically well-defined set of electronic changes in
the electronic structure whose underlying meaning is still much
debated.1 There is evidence for various fluctuating or static
order parameters within the pseudogap regime. A consistent
theoretical description of such broad fluctuational regimes with
multiple orders is possible in 1D and quasi-1D, from which
some insight into thepseudogap canbegleaned, but no similarly
compelling theory exists in 2D or 3D.Nevertheless, some of the
essential features of the pseudogap are addressed in our second
theme, which is an exploration of a novel broken-symmetry
phase, the pair-density wave (PDW), that intertwines CDW,
SDW, and SC orders. There is increasingly compelling
(although not yet definitive) computational evidence that this
novel phase exists robustly in the phase diagrams of simple
models of strongly interacting electrons, and experimental
evidence that it occurs in at least one cuprate SC,
La2−xBaxCuO4. More speculatively, we propose that the
existence of such a “parent” phase which spontaneously breaks
a large number of symmetries can be the key to understanding
broad aspects of the phase diagram in the sense that a large
number of “daughter” phases can be viewed as partially melted
versions of the parent phase, in which “vestigial order” still
exists in the form of a smaller subset of broken symmetries.
As the PDW is a new quantum phase of matter (Himeda,

Kato, and Ogata, 2002; Berg et al., 2007), we need to define
what we mean by it. It is a state in which the superconducting
order itself is spatiallymodulated in such away that the uniform
component is zero or nearly zero, but in which an oscillatory
piece is strong.2 This phase has unprecedented properties, of
which the most readily experimentally identified are dynamical
layer decoupling and anomalous sensitivity to disorder (Berg
et al., 2009). ThePDWstate can beviewed as a “self-organized”
Larkin-Ovchinnikov state (Larkin and Ovchinnikov, 1964) but
without the accompanying net magnetization.
The rest of the paper is organized as follows: Sec. II is a

qualitative discussion of the sorts of broken-symmetry phases,
especially somewhat less familiar electronic liquid crystalline

phases, which can be expected in strongly correlated electron
fluids. In particular, based on the analogy with the liquid
crystalline phases that occur in classical complex fluids, we
offer some intuitive theoretical reasons to expect intertwined
orders to be an important generic feature of broad classes of
highly correlated electron systems. From a somewhat different
perspective, the “landscape” of possible ordered phases that
appear at low temperatures in dynamical mean-field theoretic
studies of strongly correlated systems (Kotliar, 2005) pre-
sumably reflects the same underlying physics.
In Sec. III, we discuss effective field theories of multiple

interacting orders. To give focus to the discussion, we consider
the case in which there are two fundamental orders—a
uniform (d wave) SC and a PDW. From this starting point,
other orders—notably CDW, nematic, and charge 4e SC
order—appear as composite orders. To some degree, the
choice of which orders are treated as fundamental and which
are derivative is a matter of convenience; for instance, while it
is possible to describe CDW order as a composite, in regions
of the phase diagram where no PDW condensation occurs it is
probably simpler to consider SC and CDWas the fundamental
fields. In any case, SDW order, which is clearly an important
part of the physics in portions of the cuprate phase diagram,
involves additional order parameter fields that we have not
included to simplify the discussion.
Section IV reviews the results of a variety of theoretical

studies of simple models of correlated electronic systems,
mostly one version or another of the Hubbard model. For the
most part, we confine ourselves to a discussion of problems
for which controlled analytical theory or arguably conclusive
numerical solutions can be obtained. In Secs. IV.A–IV.C we
study models that exhibit various general features of inter-
twined order. In Sec. IV.D, we focus on models which can be
shown to have PDW ground states. We also review recent,
illuminating variational results on the 2D t-J model which
exhibit an astonishing near degeneracy of a variety of different
broken-symmetry states, including a PDW phase, over a broad
range of t=J and doping concentration x. In addition, we
briefly summarize a related approach to the problem (Lee,
2014) which envisages a PDW state arising from “amperian
pairing” of spinons in an underlying fractionalized phase.
Section V is a rather compressed summary of some of the

most direct experimental evidence of the existence of a large
variety of ordering tendencies in the cuprates. The discussion
here is more descriptive than analytic.
In Sec. VI, we summarize some of the spectroscopic features

that are associated with the pseudogap, and, in particular,
highlight the conflicting evidence, some of which is highly
suggestive that the pseudogap is a fluctuational descendant of
the d-wave superconducting gap, and some of which suggests it
arises from entirely distinct correlation effects, possibly asso-
ciated with another form of order. While we certainly do not
resolve this debate, we do suggest that the existence of
two distinct forms of superconducting order and/or order
parameter fluctuations may provide a useful framework for
resolving the apparent “one-gap” versus “two-gap” dichotomy.
Section VII discusses several possible direct experimental

tests which could unambiguously verify the existence of PDW
order. A more extensive discussion of most of the same points
has appeared previously in Berg et al. (2009).

1To view the range of ideas proposed to explain the pseudogap, see
Norman, Pines, and Kallin (2005), Lee, Nagaosa, and Wen (2006),
and Rice, Yang, and Zhang (2012).

2We note that Chen et al. (2004) used PDW to describe a different
state, one of localized pairs. In terms of broken symmetries, we
classify the latter state as a CDW.
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In Sec. VIII, we consider some of the broader issues raised in
the course of this Colloquium. The issue of whether it is
reasonable to view the pseudogap scale T� as a crossover
associated with the development of a local “amplitude” of the
order parameter (or parameters) is discussed, but not resolved,
in Sec. VIII.A. Using as illustrative examples the results from
somewhat artificial model problems that are susceptible to a
controlled theoretical solution, a nontechnical physical discus-
sion of known features of the complex phase diagrams with
intertwined orders is contained in Sec. VIII.B. The role of
dimensionality is explored, and special emphasis is placed on
cases where partial melting of a highly ordered ground state can
give rise to a variety of intermediate phases with vestigial order,
and to cases (which probably, for technical reasons, are
restricted to quasi-1D models) in which the ordered phases
emerge on lowering T from non-Fermi-liquid “normal” states.
As discussed in Sec. VIII.C, various versions of an alternative
approach, in which the existence of intertwined orders is
associated with an assumed emergent higher (approximate)
symmetry [e.g., SU(2), SO(5), or SO(6)] that relates the various
distinct forms of order, have been advocated by Zhang (1997),
Efetov, Meier, and Pepin (2013), and Hayward et al. (2014).
While this approach has many attractive features, we point out
what we consider to be rather general theoretical and phenom-
enological shortcomings of these scenarios. We summarize our
conclusions in Sec. VIII.D, especially concerning the role of
PDW order as a potential origin of intertwined orders in the
cuprates.

II. ELECTRONIC LIQUID CRYSTAL PHASES

The intertwined orders observed in the cuprates appear to
emerge with relatively light doping of a strongly correlated
(Mott) insulating antiferromagnet. A generic feature of short-
range models of lightly doped Mott insulators, such as the the
t-J model, extended Hubbard models, and others, is a strong
tendency toward phase separation in which the doped holes
are expelled from locally antiferromagnetic regions (Emery,
Kivelson, and Lin, 1990; Grilli et al., 1991; Emery and
Kivelson, 1993; Vermeulen, Barford, and Gagliano, 1994;
Poilblanc, 1995; Misawa and Imada, 2014).
Motivated by these observations and by the discovery in

1995 by one of us of stripe phases in the lanthanum family of
cuprates (Tranquada et al., 1995), two of us introduced the
concept of electronic liquid crystal phases, which we argued
are a general feature of the phase diagrams of strongly
correlated systems (Kivelson, Fradkin, and Emery, 1998).3

The recent spectacular experimental discoveries of diverse
charge orders in the pseudogap phase of essentially all the
cuprates [as well as in other materials, including evidence of
electronic nematic order in iron based (Chu et al., 2010) and
heavy-fermion superconductors (Okazaki et al., 2011; Riggs
et al., 2015)] have generally validated the applicability of this
concept. (We discuss these experiments in Sec. V.)

Also associated with local phase separation is a tendency
for the spins in the hole-poor regions to form local spin
singlets, and for the holes to pair as they aggregate (White and
Scalapino, 1997). Hence, valence-bond crystals (Sachdev,
2003) and uniform resonating valence-bond (RVB) liquid
states (Anderson, 1987; Kivelson, Rokhsar, and Sethna, 1987;
Lee, Nagaosa, and Wen, 2006) are possible consequences of
the same local physics. In particular, stripe (smectic) phases
with a spin gap (which we discuss in Sec. IV.B) can be
regarded as spatially nonuniform RVB states. At an intuitive
level, the important point is that below a crossover temper-
ature (which in the cuprates we associate with the crossover
temperature to the pseudogap regime T�), the electron fluid
should be thought of in terms of a fluid of spin singlets and
small charged clusters, rather than of electron quasiparticles.
These clusters then behave in much the same way as the
molecules in complex classical fluids, and consequently all
sorts of ordering tendencies should appear in delicate balance
below T�, leading to “ineluctable complexity” (Fradkin and
Kivelson, 2012) of the phase diagram.
Electronic liquid crystals are phases that spontaneously break

translation and/or rotation symmetries; to make the analogy
with classical liquid crystalline phases complete (deGennes and
Prost, 1993; Chaikin and Lubensky, 1995), one might restrict
attention to phases that remain conducting (fluid) despite the
broken symmetries, although this condition is sometimes
overlooked in common usage (as for a spin nematic).
Examples range from multicomponent CDW phases (which
break translational symmetry in all directions), through stripe
(or smectic) phases (which break translation symmetry along
one direction and rotational symmetry), to nematic phases
(which break spontaneously only rotational invariance)
(Kivelson, Fradkin, and Emery, 1998). For the electrons in a
crystal, the symmetries available to be broken are the discrete
translation and point-group symmetries. Unlike their classical
cousins, electronic liquid crystalline phases can be strongly
quantummechanical. From this comes the added richness of an
interplay between the order parameters associated with spatial
symmetry breaking and intrinsically quantum orders, including
superconductivity and magnetism.
Much has already been written concerning the microscopic

mechanisms that lead to electronic liquid crystalline phases in
strongly correlated electron systems; for reviews, see Kivelson
et al. (2003), Vojta (2009), Fradkin et al. (2010), Fradkin
(2012), Hu and Xu (2012), and Fernandes, Chubukov, and
Schmalian (2014). What constitutes the principal focus of the
following is an analysis of the way in which the existence of
liquid crystalline phases leads to complex phase diagrams for
electronic systems, just as it does for classical complex fluids.
In particular, we explore the important ways that super-
conductivity and liquid crystalline orders are naturally inter-
twined, so that the critical temperatures of various
superconducting and charge ordered phases remain compa-
rable to each other for a wide range of conditions.

III. FIELD THEORIES OF INTERTWINED ORDERS

We now consider the effective field theories that describe a
particularly interesting set of intertwined orders. In this
context it is useful to consider both the relevant classical

3Electronic liquid crystal phases have also been studied in the
context of two-dimensional electron fluids in large magnetic fields
(Balents, 1996; Musaelian and Joynt, 1996; Fradkin and Kivelson,
1999; Fradkin et al., 2010).
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Landau-Ginzburg-Wilson (LGW) and nonlinear sigma
models; the former is an expansion in powers of the order
parameter fields and so gives a reasonable description as long
as the ordering is weak, while the latter assumes a well-
developed local amplitude of the order parameter field and
focuses on the physics of the Goldstone modes (in the ordered
phase) or the nearly Goldstone modes in the fluctuational
regime above Tc. The number of order parameters that are
potentially involved, from both theory and experiment in the
cuprates, is dauntingly large, including as it does uniform SC,
PDW, CDW, SDW, and nematic orders, at least.
To keep the analysis manageable, we ignore magnetism all

together and treat both CDW and nematic orders as parasitic,
deriving from a microscopic tendency to PDW order. Starting
with these we can describe the uniform SC, the stripe-ordered
(CDWþ SC), and the PDW states directly at mean-field level,
while a pure CDW and a nematic phase, as well as various
more exotic phases including a charge 4e SC, can be obtained
as states with vestigial order (Nie, Tarjus, and Kivelson, 2014)
(involving composite order parameters) when fluctuation
effects are treated carefully. For simplicity, we also neglect
the effects of quenched disorder (which is always a relevant
perturbation as far as at least the CDW component of the
ordering is concerned) and quantum fluctuations. Of course, it
is straightforward if tedious to include additional order
parameter fields in the analysis, which is necessary for explicit
application to some materials.

A. Landau-Ginzburg free energy

To begin with, we consider the LGW free energy density to
quartic order in the fields where Δ0 is the uniform d-wave
order parameter, Δa ¼ ðΔQa

;Δ−Qa
Þ is the complex spinor

representing the two components of the PDW with ordering
vector in the a direction,

F ¼ r0
2
jΔ0j2 þ

rQ
2
½jΔxj2 þ jΔyj2� þ

κ0
2
j∇Δ0j2

þ κ1
2
½j∂xΔxj2 þ j∂yΔyj2� þ

κ2
2
½j∂yΔxj2 þ j∂xΔyj2�

þ u
4
½jΔ0j2 þ jΔxj2 þ jΔyj2�2 þ

γ1
2
jΔxj2jΔyj2

þ γ2
2
jΔ0j2½jΔxj2 þ jΔyj2� þ

γ3
2
½jΔ†

xτ3Δxj2 þ jΔ†
yτ3Δyj2�

þ γ4
2
½ðΔ†

xτþΔyÞðΔ†
xτ−ΔyÞ þ c:c:�

þ γ5
2
½ðΔ�

0Þ2ðΔT
x τ

−Δx þ ΔT
y τ

−ΔyÞ þ c:c:�; ð3:1Þ

where τ3 and τ� ¼ ðτ1 � iτ2Þ=2 are the three 2 × 2 Pauli
matrices. [This free energy was partly given by Agterberg and
Tsunetsugu (2008) using a different notation, and it is not even
quite the most general possible form to this order.] Because
there are a total of five complex scalar fields involved, under
fine-tuned conditions κj ¼ κ, γj ¼ 0, and r0 ¼ rQ (eight
conditions), this model has a large O(10) symmetry.
Away from such fine-tuned points, the symmetries of F

represent the microscopic symmetries of the system we
consider—gauge invariance, translational symmetry in the x
and y directions, time-reversal symmetry, and various mirror

and discrete rotational symmetries that exchange the x and y
axes (and, at the same time, interchange Δx and Δy).
Even though we greatly limited the number of “primary”

order parameter fields treated explicitly, it is possible to study
a variety of other order parameters as composites of the
primary fields. For instance, the unidirectional PDW ground
state with hΔxi ≠ 0, but hΔ0i ¼ hΔyi ¼ 0, breaks gauge
symmetry (it is a superconductor), translational symmetry
(it has a CDW component), and C4 rotational symmetry (it has
a nematic component). However, there are conditions in
which, upon raising the temperature, such a PDW phase
melts by a sequence of two transitions or more, at the lower of
which gauge symmetry is restored but not translational
symmetry, resulting in an intermediate unidirectional CDW
phase which melts only at a second, higher transition temper-
ature. From this perspective, the CDW phase is viewed as a
state with vestigial order, in the sense that it breaks some but
not all of the symmetries that are broken by the fully ordered
PDW ground state. Naturally, if a set of primary fields have a
nonzero expectation value, so do all products of those fields.
However, in a state with vestigial order, the expectation values
of the primary fields vanish, while certain composite order
parameters still have nonzero expectation value (Berg et al.,
2009; Lee, 2014; Wang and Chubukov, 2014).
While many forms of vestigial spin singlet orders can be

envisaged in terms of the primary fields we have introduced,
for the present discussion, three forms of order are most
relevant (Berg, Fradkin, and Kivelson, 2009a; Berg
et al., 2009)

• Charge 4e uniform SC, with order parameters

Δ4e;a ¼ ΔQa
Δ−Qa

; ð3:2Þ
which can exist in a nematic form (jΔ4e;xj ≠ jΔ4e;yj) or in
various rotational symmetry preserving (s, d, etc.) forms.

• 2Q CDW (unidirectional or bidirectional), whose order
parameter is

ρ2Qa
¼ Δ�

−Qa
ΔQa

. ð3:3Þ

• 1Q CDW (likewise, unidirectional or bidirectional)
whose order parameter is

ρQa
¼ Δ�

0ΔQa
þ Δ�

−Qa
Δ0. ð3:4Þ

• Nematic order, whose order parameter is

N ¼ jΔxj2 − jΔyj2. ð3:5Þ

So, for example, a striped CDW phase modulated along the x
direction arises if hΔQa

i ¼ hΔ0i ¼ hρQy
i ¼ 0 but hρQx

i ≠ 0,
while a pure nematic phase arises if, in addition, hρQx

i ¼ 0

but hN i ≠ 0.

B. Nonlinear sigma model: Near multicriticality

A nonlinear sigma model description assumes the existence
of a local amplitude of the order parameter which is well
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established, but which does not strongly distinguish between
which form of superconducting correlations, uniform or
modulated, is ultimately favored at long wavelengths. This
amounts to assuming that one is in the vicinity of a multi-
critical point at which the critical temperatures of the orders
are equal.
Were we to assume that the system were fine-tuned to the

point of maximal symmetry, this would be an O(10) nonlinear
sigma model, with many interesting features, including (by
selectively breaking subsets of this symmetry) all the inter-
esting features of SO(5), SO(6), and SU(2). Instead, we
assume only the actual symmetries of the problem, but treat
the problem under the assumption that the temperature
dependence of the amplitudes of the various order parameters
can be neglected over a suitable range of temperatures; this is
an innocuous assumption for the purposes of studying critical
phenomena, but is more problematic if we are interested in the
properties of the system over an extended range of T. It is
analogous to treating spin antiferromagnetism in an approxi-
mation that assumes the existence of a fixed magnitude local
moment (Chakravarty, Halperin, and Nelson, 1988, 1989) or
the phase fluctuations of a superconductor with fixed magni-
tude local pairing strength (Carlson et al., 1999; Eckl et al.,
2002). This is a highly nontrivial assumption; it implies that
the “mean-field transition temperature” (itself an ill-defined
concept) for both the uniform SC and PDW order is higher
than the temperatures at which any of the ordering phenomena
of interest occur, and that therefore (again in a somewhat ill-
defined sense) the local magnitude of the corresponding order
parameters is well defined over a broad range of temperatures
which extends well above any observed Tc. We discuss the
issue of whether this assumption is consistent with experiment
in the cuprates in Sec. VIII.A.
Putting aside worries about the range of validity of such an

approximation, there is still an issue concerning the role of
various possible patterns of discrete symmetry breaking that
can arise. To simplify the discussion, i.e., to avoid the many
special considerations needed to be completely general, we
explicitly assume that time reversal and inversion symmetry
remain unbroken, which implies that the amplitudes at �Qa

are the same, jΔþQa
j2 ¼ jΔ−Qa

j2. We can then define five
phase fields as Δ0 ≡ jΔ0jeiθ0 and Δ�Qa

≡ jΔQa
jeiðθa�ϕaÞ, and

a real scalar field (representing possible Ising-nematic order),
N ¼ jΔQx

j2 − jΔQy
j2. In any isotropic phase (where N ¼ 0),

the effective Hamiltonian in terms of the phase fields takes the
form

H ¼ K0

2
ð∇θ0Þ2 þ

K1

2
½ð∂xθxÞ2 þ ð∂yθyÞ2�

þ K2

2
½ð∂yθxÞ2 þ ð∂xθyÞ2� þ

K3

2
½ð∂xϕxÞ2 þ ð∂yϕyÞ2�

þ K4

2
½ð∂yϕxÞ2 þ ð∂xϕyÞ2� − ~V cosð2θx − 2θyÞ

− V½cosð2θ0 − 2θxÞ þ cosð2θ0 − 2θyÞ�. ð3:6Þ

From Eq. (3.3) it is apparent that 2ϕa is the phase of the 2Q
CDW component of the order. It is important to remember that
while the CDW and SC phases seem to be totally uncoupled,

they are related through the conditions that eiðθx�ϕxÞ and
eiðθy�ϕyÞ are single valued. As we will see in Sec. VIII.B, this
controls the nature of the topological excitations (vortices). On
the other hand, the superconducting phases θ0, θx, and θy are
coupled to each other by higher order Josephson-like terms—
the cosine terms in Eq. (3.6). This leaves us with three U(1)’s
and two Z2 symmetries, the latter being the remnant of the
superconducting relative phases.
In an Ising-nematic phase, the effective phase stiffnesses are

anisotropic, Kj → KjaðN Þ, where ½KjxðN Þ − KjyðN Þ� ¼
−½Kjxð−N Þ − Kjyð−N Þ�, similarly V → VjaðN Þ with
½VxðN Þ − VyðN Þ� ¼ −½Vxð−N Þ − Vyð−N Þ�, and where H
must be augmented by an effective Hamiltonian for N . Deep
in a nematic phase, with N > 0, we simply assume that the
fluctuations of ϕy and θy are so violent that these fields
can be ignored, leaving an effective model (which we study in
Sec. VIII.B) with Uð1Þ × Uð1Þ × Z2 symmetry.

IV. INTERTWINED ORDER IN HUBBARD MODELS

A. Lightly doped antiferromagnetic insulators

The Hubbard model and the related t-J models are widely
thought to capture the essential physics of a class of highly
correlated systems. On a two-dimensional square lattice, when
the band parameters (e.g., the ratio between the first and
second neighbor hopping matrix elements t0=t) are adjusted to
reproduce the salient features of the experimentally measured
Fermi surface, these models may be sufficiently “realistic”
that their properties can be compared with experiment in the
cuprates (Emery, 1987; Varma et al., 1989; Scalapino, 2012).
In the weak-coupling limit U=t ≪ 1, an asymptotically

exact solution of the Hubbard model (Raghu, Kivelson, and
Scalapino, 2010) is possible: down to exponentially low
temperatures of order TSC ∼ 4t exp½−αðt=UÞ2�, the model
exhibits Fermi liquid (FL) behavior, α is a number of the
order of 1 which depends on details of the band structure and
the value of electron concentration per site n. Below this
temperature, the system exhibits dx2−y2 superconductivity for a
broad range of n in the neighborhood of n ¼ 1 with Tc ∼ TSC.
Although the nature of the superconducting state itself is
reminiscent of the superconducting state in the cuprates, this is
where the resemblance ends. In particular, there are no strong
fluctuation effects to give rise to pseudogap phenomena, and
no trace of competing orders of any sort. This is generic
behavior for any weakly interacting Fermi fluid in more than
one dimension.
In the strong coupling limit U=t ≫ 1 or t=J ≫ 1, recent

numerical studies confirmed (Liu et al., 2012) what was long
believed (Nagaoka, 1966), that both models exhibit fully
polarized ferromagnetic metallic phases for a broad range of n
near n ¼ 1. Again, there are no competing orders.
Thus, to the extent that intertwined or even conventional

competing orders are features of the theoretically expected
landscape, they must arise exclusively at intermediate cou-
pling. For intermediate coupling, where U is of the order of
the bandwidth U ∼ 8t or J=t ∼ 1=2, there have been many
approximate (mean-field) and numerically implemented
approaches to the problem. Various different conjectured
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phases have been found in different studies—already evidence
that no single pattern of broken symmetry is strongly
favored.
For n ¼ 1 (x ¼ 0), U of the order of the bandwidth and t0

not too large, the Hubbard model has an antiferromagnetically
ordered, insulating ground state (Lin and Hirsch, 1987;
Arovas and Auerbach, 1988; Chakravarty, Halperin, and
Nelson, 1989). In the decade following the discovery of
superconductivity in the cuprates, the issue of how the system
evolves with weak doping jxj ≪ 1was one of the most studied
problems in condensed matter physics. The problem is
complex since there is inherent frustration between the
tendency to maintain local antiferromagnetic correlations
and the doped hole itineracy. Three possible scenarios have
been considered.
One frequently occurring possibility (Emery, Kivelson, and

Lin, 1990; Emery and Kivelson, 1993) is that this evolution is
discontinuous, leading to macroscopic phase separation into
regions of an undoped antiferromagnet where the antiferro-
magnetic exchange is unfrustrated, and critically doped
regions with x ¼ xcðU=tÞ, where the zero point energy of
the doped holes is dominant. Phase separation has been shown
to occur in the limit of large spatial dimension d ≫ 1 (Carlson
et al., 1998), large spin S ≫ 1 (Auerbach and Larson, 1991b),
in certain large N generalizations of the problem (Auerbach
and Larson, 1991a), and for U=t ≫ 1 (Emery, Kivelson, and
Lin, 1990; Hellberg and Manousakis, 1997; Liu et al., 2012;
Misawa and Imada, 2014). Given that the ground state
at x ¼ 0 is a Néel state, if one assumes, consistent with an
RVB scenario, that the lightly doped system corresponds to a
doped spin liquid (Anderson, 1987; Kivelson, Rokhsar, and
Sethna, 1987; Rokhsar and Kivelson, 1988; Fradkin
and Kivelson, 1990; Anderson et al., 2004; Lee, Nagaosa,
and Wen, 2006), the transition between these two states must
be first order, and thus there must be a two-phase region for
small enough x.
Another possibility is some form of local phase separation,

especially stripe formation, which is driven by more or less the
same local energetic considerations. The earliest such pro-
posals (Machida, 1989; Zaanen and Gunnarsson, 1989;
Schulz, 1990) suggested insulating stripes, i.e., unidirectional
charge-density waves with a doping dependent period such
that xs, the density of doped holes per site perpendicular to the
charge ordering vector, is fixed at xs ¼ 1. Later proposals
(Tsunetsugu, Troyer, and Rice, 1995; Nayak and Wilczek,
1997; White and Scalapino, 1998) based on various
approaches to the 2D t-J and Hubbard models suggested
conducting stripes, with 0 < xs < 1. Some of these studies
found evidence that the doped holes in the conducting stripes
are strongly paired and possibly superconducting. Since in the
presence of long-range Coulomb interactions (not included in
Hubbard-like models) macroscopic phase separation of
charged particles is not possible, where the short-range
interactions tend to produce phase separation, Coulomb-
frustrated phase separation generically results in CDW order
of a sort that is difficult to distinguish from direct forms of
local phase separation, and similarly, where the short-range
interactions favor stripe formation, long-range Coulomb
forces will tend to shift the period, with the associated
tendency to turn insulating to conducting stripe phases.

Thus, in practice, the difference between cases 1 and 2 is
not physically significant.
The third possibility is one form or another of uniform

phase with coexisting antiferromagnetic order (Zhang, 1997;
Demler, Hanke, and Zhang, 2004). Note that a discontinuous
drop of the sublattice magnetization would necessarily imply a
first order transition and hence phase separation (Misawa and
Imada, 2014).

B. Intertwined orders in model quasi-1D systems

Powerful field theory methods (bosonization) permit an
essentially complete understanding of the long-distance proper-
ties of interacting electrons in 1D, while efficient numerical
methods [especially density-matrix renormalization group
(DMRG)] permit the short-distance microscopic physics of
specific models, even of rather complicated multileg ladders, to
be treated reliably. [For a review of bosonization and Luttinger
and Luther-Emery liquids see Fradkin (2013)]. By matching
results at intermediate length scales it is possible to obtain an
essentially complete theoretical understanding of strongly
correlated systems in 1D. Moreover, so long as interchain
couplings are sufficiently weak, various forms of interchain
mean-field theory allow these results to be extended to quasi-1D
systems. Taken literally, these models are relevant only to the
properties of quasi-1D materials, but in many cases, results in
this “solvable” limit give qualitative insight into the behavior of
fully 2D or 3D highly correlated electron systems (Kivelson,
Fradkin, and Emery, 1998; Carlson et al., 2000; Emery et al.,
2000; Granath et al., 2001; Mukhopadhyay, Kane, and
Lubensky, 2001; Vishwanath and Carpentier, 2001; Carr
and Tsvelik, 2002; Essler and Tsvelik, 2002; Jaefari, Lal,
and Fradkin, 2010; Teo and Kane, 2014). In particular, this
is the only well-understood class of problems in which various
ordered phases emerge from non-Fermi liquids.
It is known from DMRG studies (Noack et al., 1997) and

bosonization theories (Balents and Fisher, 1996; Wu, Liu,
and Fradkin, 2003; Controzzi and Tsvelik, 2005) that t-J and
Hubbard-type models on a two-leg ladder have a broad regime
in which they have a spin gap Δs ≈ J=2 and d-wave-like
superconducting correlations. DMRG studies found (Noack
et al., 1997; Siller et al., 2001; White, Affleck, and Scalapino,
2002) that the spin gap decreases monotonically with doping x
and vanishes at a critical doping xc ≈ 0.3. The upshot is that
the two-leg ladder is in a Luther-Emery (LE) liquid phase
whose effective field theory consists of a field ϕ, describing
the phase of the incommensurate CDW amplitude ρQðxÞ ∼
exp½i ffiffiffiffiffi

2π
p

ϕðxÞ� (withQ ¼ 2kF) and its dual field θ, describing
the phase of the superconducting order parameter
Δ0ðxÞ ∼ exp½i ffiffiffiffiffi

2π
p

θðxÞ�. The field theory contains two impor-
tant parameters—the charge Luttinger parameter Kc and the
charge velocity vc. Both are complicated functions of the
microscopic parameters of the ladder. DMRG studies showed
that Kc → 2 as x → 0 and decreases with increasing doping,
reaching the value Kc ¼ 1=2 at xc ≈ 0.3 (where Δs → 0). For
T ≪ Δs, the SC and CDW susceptibilities obey the scaling
laws χSC ∼ Δs=T2−K−1

c and χCDW ∼ Δs=T2−Kc .
Thus, an interesting quasi-1D model to analyze is an array

of spacing a of two-leg Hubbard ladders (Emery et al., 2000;
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Arrigoni, Fradkin, and Kivelson, 2004). At energies low
compared to the single ladder spin gap, the array is repre-
sented by a set of CDW phase fields fϕjg and their conjugate
SC phase fields fθjg. Although microscopically there are
many local couplings between neighboring two-leg ladders
which are allowed, if the couplings are weak compared to Δs,
most of these are irrelevant. In particular, electron tunneling,
that normally drives the quasi-1D system into a 2D Fermi
liquid state, is suppressed. The marginal or potentially relevant
interladder interactions are (a) J SC, the Josephson coupling
between the SC order parameters of nearest neighbor ladders
(i.e., Cooper pair tunneling) which locks θjðxÞ on neighboring
ladders, (b) J CDW, the coupling of the CDWorder parameters
of neighboring ladders which locks ϕjðxÞ on neighboring

ladders, and (c) ~V, interladder forward-scattering interactions
(which are strictly marginal operators).
Models of this type have been studied extensively using a

variety of techniques (Carlson et al., 2000; Emery et al., 2000;
Vishwanath and Carpentier, 2001; Arrigoni, Fradkin, and
Kivelson, 2004; Jaefari, Lal, and Fradkin, 2010). In the range
in which there is a spin gap, SC and CDW orders compete.
The resulting state is roughly determined by which coupling is
more relevant. The scaling dimensions of the Josephson
coupling and the CDW coupling are DSC ¼ 1=Kc and
DCDW ¼ Kc, respectively. For small x, DSC ≈ 1=2 and
DCDW ≈ 2, so the Josephson coupling is strongly relevant
while the CDW coupling is barely relevant. Conversely, for
larger values of x the CDW coupling is more relevant than the
Josephson coupling. At an intermediate value of x (corre-
sponding to xP ≃ 0.1) Kc ¼ 1 at which pointDCDW ¼ DSC ¼
1 so the two orders are equally relevant. This balance can be
affected, as well, by the marginal interactions ~V (Emery et al.,
2000; Vishwanath and Carpentier, 2001).
The generic phase diagram (Arrigoni, Fradkin, and

Kivelson, 2004; Jaefari, Lal, and Fradkin, 2010) for weakly
coupled two-leg Hubbard ladders is shown in Fig. 1 (see also
Fig. 5). One thing to note about this phase diagram is that the
ordered phases emerge from a non-Fermi-liquid normal state
which for T > Δs consists of effectively decoupled LE
liquids. For Kc not too close to Kc ¼ 1, either SC or CDW
order is dominant. The corresponding critical temperatures
can be estimated from dimensional crossover mean-field
theory and are found to have a power-law dependence on
the interladder couplings with an overall scale set by the spin
gap (Carlson et al., 2000; Arrigoni, Fradkin, and Kivelson,
2004)

TSC ∼ ΔsðJ SCÞαSC ; TCDW ∼ ΔsðJ CDWÞαCDW ; ð4:1Þ

where the exponents are αSC ¼ Kc=ð2Kc − 1Þ and αCDW ¼
1=ð2 − KcÞ, respectively. TCDW vanishes as x → xc due to the
vanishing of Δs; for larger x, the most relevant interladder
coupling is single-particle hopping which leads to a crossover
to a higher-dimensional Fermi liquid regime that is stable to
exponentially low temperatures. The vanishing of TSC in
proportion to x as x → 0 involves additional considerations
associated with the approach to the correlated (Mott) insulat-
ing state at x ¼ 0, as discussed by Arrigoni, Fradkin, and
Kivelson (2004).

For Kc ≈ 1, there is a multicritical point (shown as P in
Fig. 1) at which TSC and TCDW meet. The dimensional
crossover mean-field theory predicts that the 2D array has
a SC phase and a CDW phase, but it does not tell us if these
phases are separated by a first order transition (Emery et al.,
2000; Carr and Tsvelik, 2002) or if there is a phase in which
SC and CDW orders coexist. It is a special (and likely
nongeneric) feature of the two-leg ladder that the CDW
coupling becomes marginal for the same value xc where
the spin gap vanishes. In the phase diagram of Fig. 1 we
allowed for a tricritical point Q and a first order transition out
of the CDW state into a FL state (which has no spin gap) to
remove this accidental feature.
To address this problem, Jaefari, Lal, and Fradkin (2010)

derived an effective field theory, a nonlinear sigma model
(NLSM) in 2þ 1 dimensions that describes the fluctuations of
both the SC and the CDWorder parameters of the ladder array
under the special fine-tuned conditions that Kc ¼ 1 and
J SC ¼ J CDW. Although the microscopic model has only a
global Uð1Þ × Uð1Þ≃ Oð2Þ × Oð2Þ symmetry, they showed
that under these special circumstances there exists an enlarged
O(4) symmetry which unifies the CDW and SC orders. Thus,
for Kc close to 1 and jJ SC − J CDWj ≪ W, whereW is a high-
energy cutoff for the charge sector of the ladder (Carlson et al.,
2000), the critical fluctuations near this fine-tuned multi-
critical point (P in Fig. 1) can be described by the effective
action4 for an O(4) NLSM (Jaefari, Lal, and Fradkin, 2010):

S½n� ¼ 1

2g0
ð∂μnÞ2 þ w∂μnaOab∂μnb þ hnaOabnb; ð4:2Þ

FIG. 1 (color online). Schematic phase diagram (temperature T
vs doping x) for an array of weakly coupled two-leg Hubbard
ladders. The long-dashed curve is the spin gap, which vanishes at
xc ≈ 0.3, and which also indicates a crossover temperature to a
LE liquid regime. The short-dashed line indicates a crossover
scale to a higher-dimensional Fermi liquid (FL) regime. xP ≈ 0.1
is the point at which Kc ¼ 1 and P is the corresponding tetra-
critical point discussed in the text. C and S are quantum critical
points, between which SC and CDW orders coexist. We have
shown Q as a trictitical point, below which the transition (dark
short-dashed line) between the CDW and the FL becomes first
order, although there are other possibilities here. For details,
see text.

4Here we omitted the spatial anisotropy in the gradient terms of the
2D system since under the renormalization group (RG) the
anisotropy is a redundant operator (Affleck and Halperin, 1996).
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where na is a four-component order parameter subject
to the constraint nana ¼ 1, where n1=n2 ¼ tanðθSCÞ, n3=n4 ¼
tanðϕCDWÞ, and μ ¼ 0; 1; 2 are the space-time indices. The
first term of the action of Eq. (4.2) has an effective coupling
constant g0 ≃ ½8πðΔs=vcÞW=ðJ SC þ J CDWÞa�1=2. The last
two terms represent the breaking of Oð4Þ → Oð2Þ ×Oð2Þ.
Here Oab ¼ diagð1; 1;−1;−1Þ is a diagonal 4 × 4 matrix,
w ∝ ðKc − 1Þ and h ∝ ΔsðJ SC − J CDWÞ=2W.5

The nature of the phase diagram, and, in particular, the
existence of the tetracritical point P was obtained by Jaefari,
Lal, and Fradkin (2010) from a standard analysis of the
(quantum) NLSM in 2D (and its relation with the LGW ϕ4

field theory formulation), both at finite temperatures and at
zero temperature. Of course, in 2D at finite temperature the
designations SC and CDW refer to phases with quasi-long-
range order, while they are long range ordered in 3D. Both of
the symmetry-breaking terms w and h are perturbatively
relevant, so the tetracritical point generically has only the
Uð1Þ × Uð1Þ symmetry of the microscopic model.
Consequently, even in 2D, P occurs at finite temperature.
However, under the doubly fine-tuned circumstances
w ¼ h ¼ 0, the resulting O(4) symmetry implies that in 2D
the tetracritical point is suppressed to T ¼ 0. The emergent O
(4) symmetry at w ¼ h ¼ 0 is similar to such symmetries
that arise in the SO(5) theory of antiferromagnetism and
superconductivity of Zhang (1997) and in the O(6) of
Hayward et al. (2014) and SU(2) of Efetov, Meier, and
Pepin (2013) of CDW and SC order, which we discuss in
Sec. VIII.C.
In summary, this analysis shows that the higher symmetries

are, in general, not emergent symmetries but instead are
fragile. In spite of that, systems of this type in general have
intertwined orders with complex phase diagrams with
several quantum critical points under their dome(s)
(Kivelson, Fradkin, and Emery, 1998). On the other hand,
this analysis shows that (in this case, at least) these
quantum critical points cannot be regarded as the origin of
the SC (or the CDW) phase, contrary to what is often assumed
in the literature of high temperature superconductivity.

C. Variational results for the 2D t-J model

Recently Corboz, Rice, and Troyer (2014) found the “best,”
to date, variational solution of the 2D t-J model at inter-
mediate coupling on the square lattice, in the technical sense
that they obtained the lowest variational energy. While there is
always the danger with variational studies that the true ground
state could have properties that are incompatible with the
assumed form of the states considered, the only obvious
prejudice of the present study is that it favors states with
relatively lower “quantum entanglement.” Given this and the
large number of variational parameters involved, it is quite
plausible that the present results can be taken at face value.

Corboz et al. found that for the range of parameters studied
(i.e., J=t between 0.2 and 0.8 and doped hole concentration
x≡ 1 − n between 0 and 0.16) the states listed below all have
energies that are, to a high degree of accuracy, equal to each
other: (1) A uniform d-wave superconducting phase (SC)
corresponding to hΔ0i ≠ 0, and hΔQa

i ¼ 0. For x < xc (where
xc ¼ 0.1 for J=t ¼ 0.4) this has coexisting antiferromagnetic
Néel-type magnetic order. (2) A state with coexisting 2Qx

charge-density wave and uniform d-wave superconducting
order (CDWþ SC). This is a striped superconducting phase
with hΔ0i ≠ 0, hρ2Qx

i ≠ 0, and hρ2Qy
i ¼ 0 which spontane-

ously breaks translational and C4 lattice rotational symmetry.
(3) A unidirectional PDW phase with no uniform SC
component, i.e., with hΔ0i ¼ 0, jhΔQx

ij ¼ jhΔ−Qx
ij ≠ 0 (from

which it follows that hρ2Qx
i ≠ 0), and jhΔ�Qy

ij ¼ 0. Both the
CDWþ SC and PDW states are found to break spin-rotational
symmetry, as well, through formation of unidirectional SDW
order with a modulated amplitude such that the superconduct-
ing component of the order has its maximum amplitude at
nodes of the SDW order and is minimal (vanishes in the case
of the PDW) where the SDW amplitude is maximal. (To
describe the magnetic components of these orders, we would
need to include additional fields, which we have neglected for
simplicity elsewhere in this paper.)
Naturally, it is not true that these three distinct phases are

exactly degenerate; the CDWþ SC phase achieves the lowest
variational energy. However, the ground-state energy per site
of the CDWþ SC is lower than the PDW only by roughly
ΔE ¼ 0.001tx, and lower than the uniform SC by roughly
ΔE ¼ 0.01tx. These differences are so small that it is not clear
that they are significant (within the accuracy of the variational
ansatz), and in any case one would expect that small changes
to the model could easily tip the balance one way or the other.
At the rough intuitive level, this near degeneracy reflects the
fact that locally all three phases look pretty similar in that they
all look like a uniform d-wave superconductor, with or
without coexisting antiferromagnetism depending on the local
doped hole concentration.
A few other aspects of the results are significant as well:

(1) The periodicity of the CDW order for either of the striped
phases is not determined by Fermi-surface nesting features;
rather the preferred density of holes per unit length of stripe ns
is a function of the value of J=t (i.e., is determined by the
strength of the interactions), ranging from about ns ¼ 0.35 for
J=t ¼ 0.2 to ns ¼ 1 (corresponding to insulating stripes) for
J=t ¼ 0.8. (2) The SDW component of the order suffers a π
phase shift across the row of sites at which the CDW order is
maximal; thus, for even period CDWorder, the SDW period is
twice that of the CDW (which is the same as the period of the
SC order in the case of the PDW), while for odd period CDW
order, the SDW period is equal to that of the CDW. (3) In the
context of the cuprates, there has been considerable discussion
of whether striped states or checkerboard states (bidirectional
CDW states that preserve the C4 rotational symmetry of the
underlying lattice) are preferred; an earlier version of this
calculation (Corboz et al., 2011) indicated that the checker-
board phase is never preferred. An insulating diagonal striped
phase (with ns ¼ 1) was also found to have relatively low

5Jaefari, Lal, and Fradkin (2010) also found a topological term that
could lead to a deconfined quantum critical point, but which in this
case is inaccessible due to the presence of spatially anisotropic
perturbations (Senthil and Fisher, 2006).
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variational energy, but never competitive with the vertical
stripe phases.

D. Pair density waves in model systems

There is no material system in which we know for certain
that PDWorder occurs. Thus, it is worth addressing as a point
of principle whether this phase occurs in any theoretically
tractable microscopic model.

1. PDW phases in Hubbard-like ladders

We already noted in Sec. IV.B that DMRG studies of
Hubbard and t-J two-leg ladders revealed that these systems
have a spin gap over a significant hole doping range, and that
they exhibit strong superconducting correlations. What is less
widely recognized is that, in many cases, what is formed is a
1D version of a PDW, in which uniform SC order parameter
correlations fall exponentially with distance, while there exist
charge 2e finite momentum (2kF) superconducting correla-
tions (Δ2kF ) and uniform charge 4e (Δ4e) correlations which
exhibit power-law falloff of spatial correlations and a diver-
gent T ¼ 0 susceptibility.
To begin with, we consider a highly asymmetric ladder—

the Kondo-Heisenberg (KH) chain. Its 3D cousin is often used
as a model of heavy-fermion systems. The 1D version consists
of an interacting electron gas [a Luttinger liquid (LL) gapless
in both its spin and charge sectors] and a spin chain (with
exchange coupling JH), coupled to each other by the Kondo
exchange interaction JK . The KH chain has been studied by
many using diverse methods (Zachar, Kivelson, and Emery,
1996; Sikkema, Affleck, and White, 1997; Coleman et al.,
1999; Zachar, 2001; Zachar and Tsvelik, 2001; Berg, Fradkin,
and Kivelson, 2010). From DMRG studies (Sikkema, Affleck,
and White, 1997) it is known that there is a broad range of
parameters JH=JK and electron densities in which the KH
chain has a spin gap, corresponding to the “Kondo-singlet”
regime of the heavy-fermion literature.
However, both DMRG stimulations (Berg, Fradkin, and

Kivelson, 2010) and bosonized effective theories (Zachar,
2001; Zachar and Tsvelik, 2001; Berg, Fradkin, and Kivelson,
2010) show that in the spin-gap regime the correlators of all
fermion bilinears are short ranged, including the Néel order
parameter of the spin chain, the SDW order parameter of the
LL, all the fermionic pair fields that describe possible uniform
SC order parameters of the LL (both singlet and triplet), as
well as the particle-hole CDW order parameters of the LL.
Specifically, Berg, Fradkin, and Kivelson (2010) showed
(using both DMRG simulations and bosonization) that the
most prominent long-range SC correlations involve Δ4e and a
composite PDW order parameter of the form Δ2kF ¼ Δ · N,
where Δ is the uniform triplet SC order parameter of the LL
and N is the Néel order parameter of the spin chain. The PDW
order parameter inherits the ordering wave vector Q ¼ π=a
(where a is the lattice spacing of the spin chain) of the short-
range Néel correlations of the spin chain. Similarly, in this
phase there are four-fermion CDW order parameters with
power-law correlators. Thus, the Kondo-singlet regime of the
KH chain is a PDW that cannot be described by a conventional
condensation of Cooper pairs with finite momentum.

Turning to the more usual (symmetric) two-leg ladder,
Jaefari and Fradkin (2012), extending the results and methods
of Wu, Liu, and Fradkin (2003), found that, in addition to d-
wave superconductivity coexisting with stripe charge order,
these ladders also have commensurate PDW phases. In the
weak-coupling regime, in which bosonization is most accu-
rate, the PDW phases arise as follows: The electronic structure
of a noninteracting two-leg ladder has a bonding and an
antibonding band. For certain values of the electron density
(and for strong enough repulsive interactions) the bonding
band is at a commensurate filling and umklapp processes open
a charge gap on that band. Except for the special case of a half-
filled bonding band, for general commensurate filling this
Mott insulator is a commensurate charge-density wave (with
ordering wave vector Q=2) that coexists with a gapless spin
sector whose low-energy behavior is that of a spin-1=2
antiferromagnetic chain with Néel quasi-long-range order
characterized by wave vector Q. In this regime, the spin
sectors of the bonding and antibonding bands are coupled by a
Kondo-type exchange coupling, which is a marginally rel-
evant perturbation that drives the ladder into a state with a full
spin gap.
Thus, in this regime the low-energy degrees of freedom of

the two-leg ladder are quite similar to those found in the KH
chain. Indeed, Jaefari and Fradkin (2012) found two distinct
SC phases: (a) a uniform d-wave SC which coexists with a
CDW wave and (b) a commensurate PDW phase whose order
parameters are composite operators of the uniform triplet
superconductor of the antibonding band and the SDW (Néel)
order parameter for the bonding band. Here, too, both bilinear
order parameters are short ranged but their product has power-
law correlations.

2. Occurrence of the PDW in mean-field theory

Inhomogeneous superconducting states closely related to
the PDW have been found in several mean-field theories of
superconducting states in strongly correlated systems
(Himeda, Kato, and Ogata, 2002; Raczkowski et al., 2007;
Yang et al., 2009; Loder, Kampf, and Kopp, 2010; Zelli,
Kallin, and Berlinsky, 2011; Lee, 2014; Soto-Garrido and
Fradkin, 2014). Loder, Kampf, and Kopp (2010) and Loder
et al. (2011) recently showed that it is possible to obtain a
PDW SC state (with and without an SDW component) using a
BCS mean-field theory. Their work uses a t − t0 tight binding
model with a realistic Fermi surface appropriate for the
cuprate superconductors and an attractive nearest neighbor
interaction V. Naturally, since no generic band structure has a
divergent PDW susceptibility, Loder and co-workers found
that this state occurs only for fairly large attractive inter-
actions. On the other hand, for such large values of the
attractive interaction, the applicability of the BCS mean-field
theory is questionable. This problem is well known in
the conventional Larkin-Ovchinnikov state (Larkin and
Ovchinnikov, 1964) and the related Fulde-Ferrell time-
reversal-breaking SC state (Fulde and Ferrell, 1964).
[Similar issues arise in spin-imbalanced Fermi gases
(Radzihovsky and Vishwanath, 2009; Radzihovsky, 2011).]
Putting these caveats aside, the results of Loder, Kampf,

and Kopp (2010) and Loder et al. (2011) are quite suggestive.
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As expected, for small V they found uniform d-wave super-
conductivity. However, in the vicinity of x ¼ 1=8 hole doping,
for a range of interactions 1≲ V ≲ 3 they found a PDW phase
which coexists with charge and spin-stripe order, while for
V ≳ 3, an intertwined charge and spin-stripe state survives
(without superconductivity). Similar results were found earlier
in variational Monte Carlo simulations of the t-J model by
Himeda, Kato, and Ogata (2002) and by Raczkowski et al.
(2007), and in a mean-field theory of the t-J model by Yang
et al. (2009).
A potentially significant feature of these mean-field results

is the nature of the quasiparticle spectrum in the PDW state. In
a PDW state without spin-stripe order, there is a “pseudo-
Fermi surface” of Bogoliubov quasiparticles with multiple
pockets of increasing complexity as the ordering period
changes (Baruch and Orgad, 2008; Berg, Fradkin, and
Kivelson, 2009b; Berg et al., 2009; Loder et al., 2011;
Zelli, Kallin, and Berlinsky, 2011; Lee, 2014). However,
the presence of even a small amount of uniform d-wave SC
component gaps out all these pockets, leaving only the usual
nodal states of a d-wave superconductor. Coexisting spin-
stripe order apparently gaps the spectrum of Bogoliubov
quasiparticles. Also interesting is the finding by Zelli,
Kallin, and Berlinsky (2011, 2012) that the pockets of
Bogoliubov quasiparticles of the PDW state can give rise
to quantum oscillations of the magnetization in the mixed state
of a PDW superconductor.

3. Amperian pairing and the PDW state

A recent mean-field theory by Lee (2014), based on the
concept of Amperian pairing (Lee, Lee, and Senthil, 2007),
found a PDW state with pockets of Bogoliubov quasiparticles.
In this RVB approach (Baskaran, Zou, and Anderson,
1987; Lee, Nagaosa, andWen, 2006), the electron is expressed
as a composite of a spinless charged boson (the holon)
and a charge neutral spin-1=2 fermion (the spinon). A
necessary accompaniment to this decomposition is that
the holons and spinons are coupled through a strongly
fluctuating gauge field, typically with a U(1) gauge
group. In the simplest version, known as the
Baskaran-Zou-Anderson (BZA) mean-field state (Baskaran,
Zou, and Anderson, 1987), this theory assumes that the
spinons form a Fermi surface while the holons Bose condense.
In this picture, the superconducting state arises once the
spinons form pairs with d-wave symmetry and themselves
condense (Kotliar, 1988). Amperian pairing refers to a pairing
of spinons triggered by singular forward-scattering inter-
actions mediated by the gauge bosons of this theory (Lee,
Lee, and Senthil, 2007). The variational wave functions used
by Himeda, Kato, and Ogata (2002) and by Raczkowski et al.
(2007) in the context of the t-J model are in fact Gutzwiller-
projected BZA mean-field states generalized to allow for
periodically modulated pairing as in the PDW state. Lee
(2014) argued that the RVB mean-field theory also allows for
a spinon-pair condensate with finite momentum tied to the
nesting wave vector of the mean-field theory spinon Fermi
surface. From the perspective of broken symmetries, this state
is identical to the PDW state. In agreement with what we
advocate here, and in our earlier papers (Berg, Fradkin, and

Kivelson, 2009a; Berg et al., 2009), in Lee’s theory the
uniform SC and the PDWare taken to be the dominant orders,
while other orders, e.g., charge-stripe order, are subdominant
(see Sec. III). In the resulting PDW state, the original BZA
Fermi surface is gapped out by the spinon condensate leaving
behind pockets of charge neutral spinons. The emerging
picture has qualitatively the same features as found in the
Bogoliubov–de Gennes mean-field theory (Baruch and
Orgad, 2008; Berg et al., 2009). Specifically, Lee (2014)
argued that this explains puzzling features of the observed
angle-resolved photoemission spectroscopy (ARPES) spectra
in Bi2Sr2CaCu2O8þδ (He et al., 2011).

4. Thermal stabilization of the PDW phase

The variational treatment of the t-J model discussed in
Sec. IV.C shows that the ground-state energy of the PDW is
very close to the true ground-state energy; no convincing
evidence has been adduced that it is the true ground state.
However, the PDW has larger low temperature entropy than
any of the competing phases (Lee, 2014). Specifically, while
any of the phases with a uniform d-wave component of the
order parameter has, at most, nodal points in k space at which
there are gapless quasiparticle excitations, the PDW supports
Fermi pockets with a nonzero density of states. This gives rise
to a contribution to the low temperature entropy of the PDWof
the form SPDW ¼ αSxkBT=

ffiffiffiffiffiffiffi
Δ0t

p þOðT2Þ, where αS is a
number of the order of 1 and Δ0 is the scale of the antinodal
gap; all other states have entropies that vanish at least in
proportion to T2. Even if the PDW phase has slightly higher
energy density than the true ground-state phase by an amount
ΔE ≈ αExt, then for small enough αE, the PDW will none-
theless be the equilibrium phase for a range of T above
T− ≈ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αE=αS

p ½t=Δ0�3=4 ∼ 0.03½t=Δ0�3=4. It is easy to envis-
age circumstances (especially whereΔ0=t is not too small), for
which this transition occurs at temperatures above but
comparable to the uniform TSC.

E. Superconductivity and nematic order

Charge nematic order has been seen in transport experi-
ments in very underdoped samples of YBa2Cu3O6þy (YBCO)
(Ando et al., 2002), in inelastic neutron scattering on under-
doped YBCO in the regime where there is no spin gap
(Hinkov et al., 2008), and above TSC for a broad range of hole
doping in Nernst effect measurements (Daou et al., 2010).
Scanning tunneling microscopy (STM) experiments docu-
mented nematic order on long length scales in underdoped
Bi2Sr2CaCu2O8þδ (Lawler et al., 2010) and provided evi-
dence for a nematic quantum critical point near optimal
doping in Bi2Sr2CaCu2O8þδ (Fujita et al., 2014), although
this interpretation has been challenged (da Silva Neto et al.,
2013). Charge nematic order was conjectured by two of us in
1998 (Kivelson, Fradkin, and Emery, 1998), including the
possible occurrence of such a nematic quantum critical point
(QCP) inside the high Tc superconducting phase. For a recent
review of electronic nematic order, see Fradkin et al. (2010).
However, the relation between charge nematic order and

high temperature superconductivity has remained unclear. Part
of the problem is that most theories of nematicity have been
formulated either in terms of a Pomeranchuk instability in a
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Fermi liquid (Oganesyan, Kivelson, and Fradkin, 2001) or in
terms of the coupling of a Fermi liquid to a somehow
preexisting nematic-order-parameter field theory (Metlitski
and Sachdev, 2010), whereas the nematic state observed in
experiments on high temperature superconductors is best
described as a system of “fluctuating stripes” (Kivelson et al.,
2003), i.e., as a state in which stripe charge order has been
melted (thermally or quantum mechanically) leaving a uni-
form nematic phase (Kivelson, Fradkin, and Emery, 1998).
Nevertheless, several theories have been proposed which
suggest that, inside the nematic phase, quantum nematic
fluctuations may give rise to a SC state (Kee and Kim,
2004), and that superconductivity which is primarily the result
of other pairing interactions (e.g., spin fluctuations) can be
enhanced in the neighborhood of a nematic QCP (Lederer
et al., 2015; Metlitski et al., 2015). The relation if any between
nematicity and PDW order is even less clear. However, it has
been shown recently that near a QCP of an (as-yet undec-
tected) spin-triplet nematic state (Wu et al., 2007) a host of SC
states arise, including PDW phases (Soto-Garrido and
Fradkin, 2014).

V. INTERTWINED ORDER IN THE CUPRATES

Here we review experimental evidence for many of the
types of order that have already been discussed. In particular,
we emphasize the close associations between various distinct
orders.

A. SDW, SC, and PDW orders

Perhaps the most striking evidence of an intimate con-
nection between SDWand SC orders is observed in the “214”
cuprates derived from La2CuO4. For example, in La2CuO4þδ

with stage-4 interstitial order (Lee et al., 2004) SDW and SC
orders both onset at 40 K in zero magnetic field. While the
application of a c-axis magnetic field causes a reduction in
TSC, it changes TSDW relatively little, although it enhances the
SDW order. The story is similar in La2−xSrxCuO4 with
x ¼ 0.10, where the application of a c-axis magnetic field
induces SDW order that onsets at the zero-field TSC (Lake
et al., 2002).
The most compelling evidence of PDW order is found in

La2−xBaxCuO4. Unlike the typical cuprate, the highest Tc ≈
32 K occurs at x ≈ 0.09, and there is a deep minimum in the
Tc vs x curve at x ¼ 1=8 [the “1=8 anomaly”; see, e.g.,
Hücker et al. (2011)]. However, even at x ¼ 1=8, quasi-2D SC
correlations onset above 40 K (Li et al., 2007; Tranquada
et al., 2008); the existence of such a 2D regime can be most
readily understood as being a consequence of the frustration of
interlayer Josephson coupling (Himeda, Kato, and Ogata,
2002; Berg et al., 2007, 2009) associated with PDW order.
Indeed, at x ¼ 1=8 La2−xBaxCuO4 (LBCO) exhibits a cascade
of phase transitions and crossovers, as shown in Fig. 2. In
order of descending temperatures, this system has a charge
order transition at TCDW ¼ 54 K where charge stripe (CDW)
order onsets (roughly coinciding with a structural transition).
At TSDW ¼ 42 K long-range SDW order onsets. As a
function of decreasing T, ρab drops by an order of magnitude
just below TSDW, then levels off before again dropping

precipitously to immeasurably small values as T approaches
TKT ¼ 16 K. Meanwhile, ρc begins to increase significantly
below TCDW, reaching a maximum value at around 30 K, and
finally dropping precipitously toward zero as T approaches
T3D ¼ 10 K. For TKT > T > T3D, LBCO behaves as if the
layers were decoupled, leaving a 2D superconductor without
detectable c-axis Josephson coupling. Moreover, the full (3D)
Meissner state is observed only below Tc ¼ 4 K.
The first evidence for layer decoupling actually

came from a study of c-axis optical conductivity in
La1.85−yNdySr0.15CuO4 (Tajima et al., 2001), where it was
observed that the Josephson plasma resonance (JPR) essen-
tially disappeared when the Nd concentration was tuned into
the stripe-ordered regime. It was later demonstrated that the
application of a c-axis magnetic field to superconducting
La1.9Sr0.1CuO4 causes a rapid reduction in the JPR frequency
(Schafgans, LaForge et al., 2010), while resulting in relatively
little change in the in-plane superfluid density (Schafgans,
Homes et al., 2010).
Further evidence for a close association between CDW,

SDW, and SC order comes from pump-probe studies.
La1.8−xEu0.2SrxCuO4 has the same low temperature structure
as La2−xBaxCuO4, exhibits CDW and SDW order, but has
more strongly suppressed SC order (Fink et al., 2011).
Nevertheless, it has been demonstrated that pumping a crystal
of x ¼ 1=8 doping with a very short burst of 80-meV photons
can induce the appearance of SC order, as indicated by
probing the c-axis infrared reflectivity, in a time as short as
1 to 2 ps after the pump (Fausti et al., 2011). In a related
experiment (Först et al., 2014) on La2−xBaxCuO4 with
x ¼ 1=8, it has now been shown that the pump causes the
CDW order to melt within ∼0.4 ps; the crystal symmetry
shows a slight response, but only on a delayed time scale of

FIG. 2. Scales and phases of La2−xBaxCuO4 near x ¼ 1=8:
PDW fluctuations begin below the onset of charge order TCDW
and become pronounced below TSDW. The presumably PDW 2D
SC phase occurs below TKT. The regime between T3D and Tc is
expected to be an XY glass, and the 3D d-wave SC lies below Tc.
See text for details.
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15 ps. The fast turn on of the bulk superconductivity in a
sample with a stripe-ordered ground state suggests that strong
superconducting correlations are also present in that ground
state. The fact that the same pump melts the charge stripes is
compatible with the idea that PDW order in the ground
state frustrates the interlayer superconducting phase
coherence. Disrupting the static CDW order also affects
the PDW, removing the frustration and resulting in bulk
superconductivity.
For the pump to be effective at inducing interlayer coher-

ence in the x ¼ 0.125 samples, the polarization must be
parallel to the CuO2 planes, within which it couples to Cu-O
bond-stretching phonons. Intriguingly, a new experiment on
La2−xBaxCuO4 with x ¼ 0.115 demonstrates that a near-
infrared pump pulse with polarization perpendicular to the
planes can induce a c-axis JPR at a temperature as high as
45 K, well above the bulk TSC of 13 K, but below TCDW
(Nicoletti et al., 2014).
Continuing with La2−xBaxCuO4 but moving to x ¼ 0.095,

bulk SC onsets together with weak SDW order at 32 K
(Wen et al., 2012a). In this case, weak CDW order appears
at the same temperature, constrained by the structural tran-
sition (Wen et al., 2012b). Enhancement of SDW and CDW
order by an applied magnetic field occurs at the expense of the
SC order (Wen et al., 2012a; Hücker et al., 2013); never-
theless, the coincident onset temperatures indicate a close
connection between these orders. In La1.6−xNd0.4SrxCuO4,
there is evidence for a similar onset of quasi-2D super-
conductivity at a temperature well above the bulk TSC
(Ding et al., 2008); however, the onset of SDW order occurs
at a temperature ∼20 K higher (Ichikawa et al., 2000).
An interesting situation occurs in electrochemically

oxygen-doped La2−xSrxCuO4þδ (Mohottala et al., 2006).
Here, for x≲ 1=8, the excess oxygen content appears to tune
itself so that the net hole concentration is approximately 1=8.
Measurements by muon spin rotation (μSR) spectroscopy
indicate that the volume is phase separated into superconduct-
ing and magnetically ordered regions (Mohottala et al., 2006).
Nevertheless, neutron diffraction measurements on crystals
with x ¼ 0.04, 0.065, and 0.09 found that SDW peaks appear
simultaneously with the SC order at ∼39 K for all samples
(Udby et al., 2013). Regardless of whether these orders
are entirely segregated, their energy scales are remarkably
similar.
Evidence of anomalous 2D superconducting fluctuations in

YBa2Cu3O6þy exist, although their association with PDW
order is far less clear than in La2−xBaxCuO4. Optical evidence
of a JPR within a bilayer persisting to temperatures well
above TSC has been presented by Dubroka et al. (2011).
Interestingly, there seems to be some correlation between the
onset temperature of the JPR and the onset of CDW and/or
nematic order. Recent magnetization studies in high fields by
Yu et al. (2014) have likewise been interpreted as evidence of
significant PDW correlations. Finally, pump-probe studies
similar to those reported in La2−xBaxCuO4 have been carried
out in YBa2Cu3O6þy, with results that, while less clear-cut in
terms of magnitude and persistence, are still reminiscent of the
former (Hu et al., 2014; Kaiser et al., 2014). It is a key issue to
determine if PDW-type correlations exist in YBCO and more

generally in hole-doped cuprates. Interestingly, the latest
experiment (Först et al., 2014) on underdoped
YBa2Cu3O6.6 indicates that the pump conditions that enhance
the coherent interlayer transport at T > TSC also depress the
CDW order of the type that will be discussed in Sec. V.E.

B. CDW and SDW orders

For a number of 214 compounds, CDWorder develops at a
temperature that is generally higher than the SDW transition.
For La2−xBaxCuO4 and La1.6−xNd0.4SrxCuO4, the CDWorder
is limited by a structural transition that breaks the effective
fourfold symmetry of the Cu-O bonds (Axe and Crawford,
1994; Ichikawa et al., 2000; Hücker et al., 2011); however, in
La1.8−xEu0.2SrxCuO4, where the structural transition takes
place at T > 120 K, the maximum TCDW is a modest 80 K
(Fink et al., 2011). The fact that TCDW > TSDW indicates that
the CDW order is not secondary to the SDW (Zachar,
Kivelson, and Emery, 1998), in contrast to the situation in
chromium (Pynn et al., 1976). This does not
mean that the SDW and CDW are not strongly correlated
with one another—neutron-scattering experiments show that
the SDW fluctuations become virtually gapless as soon as
CDW order is established (Fujita et al., 2004; Tranquada
et al., 2008).
In La2−xSrxCuO4, where the average crystal structure

makes all Cu-O bonds equivalent, relatively strong SDW
order is observed only for x ≈ 0.12 (Yamamoto et al., 1998;
Kimura et al., 2000). Nevertheless, a nuclear quadrupole
resonance (NQR) study detected a pattern of intensity loss in
the normal state of underdoped La2−xSrxCuO4 that matches
the behavior observed in CDW-ordered 214 cuprates (Hunt
et al., 1999). While the direct cause of intensity loss is likely
from SDW correlations (Julien et al., 2001), CDW order has
now been detected by x-ray diffraction for x near 0.12 and
T < 85 K (Wu et al., 2012; Christensen et al., 2014; Croft
et al., 2014; Thampy et al., 2014). Interestingly, both the SDW
and CDW wave vectors are rotated ∼3° from the Cu-O bond
directions (Kimura et al., 2000; Thampy et al., 2014). From a
symmetry perspective (Robertson et al., 2006), this rotation is
a necessary consequence of the incommensurate character of
the SDW and the orthorhombicity of La2−xSrxCuO4.
However, the magnitude of the effect surely reflects the fact
that diagonal SDW order dominates for x < 0.055, where
La2−xSrxCuO4 is insulating (Birgeneau et al., 2006).6 For
T < TSC, the application of a c-axis magnetic field enhances
both the SDW and CDW order, in much the same way as in
LBCO for dopings sufficiently far from x ¼ 1=8 that stripe
order is weak in zero field (Wen et al., 2012a; Hücker
et al., 2013).
A significant feature of the CDW order in 214 cuprates is

that the wave vector is locked to that of the SDW, with
qCDW ¼ 2qSDW. To distinguish this feature, we use the label
CDW1 to denote it in comparisons below.

6Recall that in variational studies of the t-J model, insulating
diagonal stripes were found to have energy only slightly larger than
that of vertical stripes and so could be easily stabilized in an
orthorhombic environment (Sec. IV.C).
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C. CDW and SDW quantum critical points

Several studies have documented possible signatures of
quantum critical behavior near the doping at which CDW
order disappears in 214 systems (Doiron-Leyraud and
Taillefer, 2012). In La1.8−xEu0.2SrxCuO4, μSR studies
detected SDW order over a broad range of x, ending near
xc ≳ 0.2 (Klauss et al., 2000). Oxygen-isotope effect
(Suryadijaya, Sasagawa, and Takagi, 2005), Hall effect
(Takeshita et al., 2004), and resonant soft-x-ray diffraction
(Fink et al., 2011) studies suggest that CDWorder disappears
at a similar xc. Superconductivity is observed for
0.14 < x < 0.27, with TSC forming a dome centered on x ∼
0.21 (Suryadijaya, Sasagawa, and Takagi, 2005). This looks
similar to cases of SC order appearing at a quantum critical
point, with the major difference that the magnitude of TSC
(20 K) is comparable to the maxima of TSDW ≈ 27 K
and TCDW ≈ 80 K.
In La1.6−xNd0.4SrxCuO4, neutron and x-ray diffraction

measurements suggest that there should be a similar xc where
stripe order disappears (Niemöller et al., 1999; Ichikawa et al.,
2000), and the maximum of TSC occurs at a similar position
(Daou et al., 2009b). Measurements of the in-plane resistivity
in a magnetic field sufficient to suppress the superconductivity
indicate linear-T behavior for x ¼ 0.24 down to low temper-
ature, but an upturn below 40 K for x ¼ 0.20, with a related
difference in the Hall effect (Daou et al., 2009b). These
behaviors, together with results on the thermopower, are
consistent with the presence of a quantum critical point at
x ¼ xc (Daou et al., 2009a).

D. CDW and nematic orders

Spectroscopic imaging scanning tunneling microscopy
(SI-STM) has provided evidence for short-range CDW
correlations in Bi2Sr2CaCu2O8þδ (Hoffman et al., 2002;
Howald et al., 2003; Kohsaka et al., 2007; Parker
et al., 2010; Fujita et al., 2014; da Silva Neto et al.,
2014), Bi2−yPbySr2−zLazCuO6þx (Wise et al., 2008), and
Ca2−xNaxCuO2Cl2 (Kohsaka et al., 2007). Besides having
a short correlation length, another difference from the 214
cuprates is that the CDW wave vector decreases with doping
(Wise et al., 2008; da Silva Neto et al., 2014), scaling roughly
like the antinodal 2kF measured by angle-resolved photo-
emission spectroscopy but larger in magnitude (Meng et al.,
2011; Comin et al., 2014). Because of this difference, we
denote the order as CDW2.
While the translational-symmetry breaking of the charge is

local, a long-range rotational symmetry breaking associated
with an electronic nematic state (Kivelson, Fradkin, and
Emery, 1998) has been identified at low temperature in
underdoped Bi2Sr2CaCu2O8þδ (Lawler et al., 2010;
Mesaros et al., 2011). [Note that this identification is not
without controversy (da Silva Neto et al., 2013).] With
doping, the nematic order and CDW2 correlations both
disappear at xc ≈ 0.19, the point at which the low temperature
antinodal pseudogap appears to close (Tallon and Loram,
2001; Gor’kov and Teitel’baum, 2006; Vishik et al., 2012;
Fujita et al., 2014). Studies of quantum oscillations in
YBa2Cu3O6þy found a mass divergence very nearby, at

xc ≈ 0.18, suggesting a QCP (Ramshaw et al., 2015).
Notably, TSC and Hc2 are maximized here.
While static AF order is not relevant to this behavior, there

is an interesting connection with the energy range in which
dynamic AF correlations remain strong. In the parent AF
insulator phase, the spin waves are well defined (Headings
et al., 2010) because they exist at energies (≲0.3 eV) far
below the gap for charge excitations [∼1.5 eV (Basov and
Timusk, 2005)]. This situation changes with hole doping.
Experimentally it has been observed that the momentum-
integrated magnetic spectral weight remains comparable to
that of the parent insulator for energies below the antinodal
pseudogap energy, becoming much weaker above that scale
(Stock et al., 2010; M. Fujita et al., 2012). With doping, the
magnetic spectral weight close to the AF wave vector becomes
quite weak for x ≳ 0.2 (M. Fujita et al., 2012). Thus, there is at
least a strong association between nematic order and AF
spectral weight, consistent with the idea that related electronic
textures are necessary to sustain even short-range AF corre-
lations for substantial x.
To get a measure of the temperature scale associated with

nematic order, we must turn to YBa2Cu3O6þy, where a study
of in-plane anisotropy in the Nernst effect has suggested that
nematic order develops at a temperature comparable with T�
determined from in-plane resistivity (Daou et al., 2010). Of
course, in orthorhombic YBa2Cu3O6þy, the fourfold sym-
metry of the planes is already broken by the presence of the
Cu-O chains; nevertheless, the temperature dependence of
the anisotropy in the Nernst effect is quite distinct from that
of the orthorhombic strain. The relatively sharp onset (Xia
et al., 2008; He et al., 2011; Karapetyan et al., 2012) of a Kerr
signal in multiple families of cuprates at similar temperatures
to those at which charge order begins to be detectable is
probably associated (Hosur et al., 2013; Varma, 2014; Hosur
et al., 2015) with some pattern of point-group symmetry
breaking, as well.
At the onset of the anisotropic behavior, the Nernst

coefficient is found to be negative (Daou et al., 2010). As
the temperature drops and approaches TSC, a positive con-
tribution to the Nernst coefficient develops that is associated
with superconducting fluctuations (Wang, Li, and Ong, 2006).
In 214 cuprates, a positive contribution to the Nernst
coefficient is also detected in association with CDW order
(Cyr-Choiniere et al., 2009; Hess et al., 2010; Li et al., 2011),
although the magnitude of this contribution is depressed for
x ≈ 1=8. The trend is somewhat different in YBa2Cu3O6þy

with x ¼ 0.12 (Chang et al., 2011), where suppression of the
superconductivity with a strong magnetic field leaves the
Nernst coefficient strongly negative. This occurs in the regime
where various measures of CDW order have been reported
(Wu et al., 2011; Chang et al., 2012; Ghiringhelli et al., 2012),
as we discuss next.

E. CDW and SC orders

In YBa2Cu3O6þy, at least two CDW phase boundaries have
been detected. Starting with the case of zero magnetic field,
short-range CDW order onsets gradually below a transition
temperature that has a maximum of ∼150 K for x ∼ 0.12
(Achkar et al., 2012; Chang et al., 2012; Ghiringhelli et al.,
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2012). The onset temperature and strength of the order both
decrease as doping approaches the regime of quasistatic
magnetic order at x≲ 0.08 and the regime of optimum doping
at x ≳ 0.14 (Ghiringhelli et al., 2012; Blackburn et al., 2013b;
Blanco-Canosa et al., 2014; Hücker et al., 2014). The
intensity grows on approaching TSC from above, and then
decreases somewhat on cooling below TSC. Application of a
c-axis magnetic field enhances the CDW intensity for
T < TSC, but has no impact for T > TSC (Chang et al.,
2012; Blackburn et al., 2013b). Initially, there were some
questions as to whether the response detected by x-ray
scattering might be dynamic, with integration over the
fluctuations by coarse energy resolution; however, recent
characterizations of the inelastic spectrum (Blackburn et al.,
2013a; Le Tacon et al., 2014) and the comparative strength of
the scattering (Thampy et al., 2013) indicate that the CDW
correlations are static. The fact that a broadening of the Cu and
O NMR lines is seen (Wu et al., 2015) with similar T
dependence as the x-ray signal further corroborates the static
character of the CDW correlations.
The general doping dependence of the CDW order, with a

maximum at x ∼ 0.12, and the enhancement by a magnetic
field that also suppresses SC order, are similar to features
observed in 214 cuprates. In contrast, there is a significant
difference in the CDW wave vectors. First, there are distinct
modulations along the principal axes, q1 ¼ ðδ1; 0; 0.5Þ and
q2 ¼ ð0; δ2; 0.5Þ, with δ2 slightly greater than δ1 and both
having a magnitude close to 0.3 (Chang et al., 2012;
Ghiringhelli et al., 2012; Blackburn et al., 2013b). While
the intensities of the CDW peaks at q1 and q2 can be
comparable for a range of x, they can also be quite different,
as in the phase with Cu-O chain order characterized as ortho-II
(Blackburn et al., 2013b; Blanco-Canosa et al., 2013).
The second difference from 214 cuprates has to do

with the doping dependence of the CDW wave vectors, which
decrease with x. This behavior is similar to that seen by
STM in, for example, Bi2Sr2CaCu2O8þδ, and, in fact, x-ray
scattering experiments have demonstrated CDW peaks in
Bi2Sr2CaCu2O8þδ (Hashimoto et al., 2014; da Silva Neto
et al., 2014) and Bi2Sr2−xLaxCuO6þδ (Comin et al., 2014) at
wave vectors identical to those inferred from STM measure-
ments on the same samples. As a result, this order corresponds
to CDW2. Similar CDW2 order has also been detected
in underdoped HgBa2CuO6þδ by x-ray scattering (Tabis
et al., 2014).
Incommensurate AF correlations have a finite excitation

gap across most of the doping range where CDW order is
observed (Dai et al., 2001; Hinkov et al., 2010). In fact, the
spin gap appears to open on cooling at essentially the same
temperature as TCDW, based on nuclear magnetic resonance
(NMR) measurements of the spin-lattice relaxation rate 1=T1

(Baek et al., 2012; Hücker et al., 2014). The wave vector of
the lowest-energy AF correlations grows with x in a manner
qualitatively similar to that seen in both La2−xSrxCuO4 and
Bi2−xSr2þxCuO6þδ (Enoki et al., 2013). Substitution of Zn
into planar Cu sites in YBa2Cu3O6þy induces local, static,
short-range SDW correlations while suppressing the CDW2
intensity (Blanco-Canosa et al., 2013). Also, for
YBa2Cu3O6þy with x ≲ 0.08, where CDW2 order fades away,

the spin gap collapses, and the low-energy spin correlations
have uniaxially modulated short-ranged SDW character (Haug
et al., 2010).
Considering the similar doping ranges for CDW1 and

CDW2, together with their opposite relationships with
SDW order, as well as the universal presence of dynamic
AF correlations (of correlated-insulator character) across the
underdoped regime, it appears as if CDW1 and CDW2 are
dual characters of the same underlying electronic texture,
possibly nematic. However, only one of these aspects is
realized at a time.
The current interest in CDWorder was originally stimulated

by observations of quantum oscillations in various transport
properties measured in YBa2Cu3O6þy as a function of the
magnetic field (Doiron-Leyraud et al., 2007; LeBoeuf et al.,
2007; Sebastian et al., 2008). The low observed oscillation
frequency implies small pockets, presumably due to Fermi-
surface reconstruction (Taillefer, 2009; Sebastian, Harrison,
and Lonzarich, 2012), stimulating analyses in terms of stripe
(Millis and Norman, 2007) and CDW order (Yao, Lee, and
Kivelson, 2011); such a connection continues to influence the
interpretation of quantum oscillation studies (Sebastian et al.,
2014). The temperature dependence of transport properties
measured in high magnetic fields strongly resembles the low-
field behavior of stripe-ordered systems (Laliberté et al.,
2011). Direct evidence for CDW order (CDW3, distinct from
CDW2) at high magnetic fields and low temperature has been
obtained through NMR measurements (Wu et al., 2011,
2013b). In the CDW2 phase seen by x-ray scattering,
NMR measurements detect broadening of NMR lines from
planar O and Cu sites (Wu et al., 2015), whereas, in the
CDW3 phase, a line splitting develops above an onset field of
at least 10 T. The onset temperature for CDW3 is comparable
to the zero-field TSC. Measurements of sound velocity
(LeBoeuf et al., 2013) suggest that there is a thermodynamic
phase transition associated with CDW3; however, the tran-
sition fields determined by the sound velocity and NMR
studies differ by a significant amount (17 vs 10 T, respec-
tively). The relationship of CDW3 to CDW1 and CDW2
remains to be determined; however, the spin correlations
remain gapped in CDW3, except near x ¼ 0.08 (Wu et al.,
2011, 2013a).

VI. SUPERCONDUCTING VERSUS PSEUDOGAP

No issue in cuprate physics, it seems, has been more
intensely debated than the nature and origin of the pseudogap
Δpg. Many of the differing perspectives have been reviewed by
others (Timusk and Statt, 1999; Tallon and Loram, 2001;
Norman, Pines, and Kallin, 2005; Hüfner et al., 2008). Here
we summarize some of the empirical observations regarding
superconducting and pseudogap behavior in the cuprates and
then discuss how the concept of intertwined orders might
provide a consistent interpretation.

A. Spectroscopic characterizations

Empirically, two characteristic energy gaps have been
identified in the cuprates (Deutscher, 1999; Hüfner et al.,
2008). One of these, Δc, is a measure of the coherent
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superconducting gap, as obtained, for example, from Andreev
reflection in point-contact spectroscopy with current flowing
along an in-plane Cu-O bond direction. As a function of
doping, Δc forms a dome, with 2Δc=kBTSC ∼ 4–6 (Deutscher,
1999), as indicated schematically in Fig. 3 (top). The other
gap, the pseudogap Δpg, can be measured by tunneling along
the c axis. In the overdoped regime, Δpg ∼ Δc, but as x
decreases,Δpg grows monotonically (Deutscher, 1999; Hüfner
et al., 2008). Δc is detected only for T < TSC, whereas Δpg

can be observed up to T ∼ T� (Timusk and Statt, 1999; Hüfner
et al., 2008), as indicated in Fig. 3 (bottom).
Further information on the gaps and their relationship is

provided by ARPES (Damascelli, Shen, and Hussain, 2003;
Hashimoto, Vishik et al., 2014), much of which has been done
on Bi2Sr2CaCu2O8þδ, because of its excellent cleavability.
Spectroscopic imaging with STM provides further informa-
tion (Fischer et al., 2007; K. Fujita et al., 2012). Where
ARPES averages over a substantial surface area, STM is able
to map the microscopic variation of states.
With the possible exception of samples with x ≲ 0.08,

ARPES experiments on Bi2Sr2CaCu2O8þδ deep in the super-
conducting state (T ≪ TSC) exhibit a Fermi-surface gap with
d-wave symmetry. For nearly optimal doping, the gap has the
simple angular dependence ΔðkÞ ≈ Δ0½cosðkxÞ − cosðkyÞ� as
indicated in Fig. 4. While the near-nodal gap appears to be
approximately x independent for a broad range of doping
below optimal (Vishik et al., 2012; da Silva Neto
et al., 2013), the antinodal gap increases with decreasing x.
Sharp “quasiparticle” peaks with energy ΔðkÞ and width
small compared to the antinodal gap energy exist along the
entire Fermi surface, again with the possible exception of
highly underdoped samples (Vishik et al., 2012; Zhao et al.,
2013). Likewise, in single-layer ðBi; PbÞ2ðSr;LaÞ2CuO6þδ,
quasiparticle peaks are harder to identify, but by looking at the
difference between the spectra above and below Tc, coherent
quasi-particle-like features have been identified around the
entire Fermi surface, but only for doping above optimal
(Kondo et al., 2009). However, for x≲ 0.18 a rather different

picture emerges from an analysis of the quasiparticle inter-
ference (QPI) signal measured in STM. From this it is inferred
that there are no coherent quasiparticles in the antinodal
regime (beyond the AF Brillouin zone boundary) and, more-
over, that there is effectively a nodal arc—despite the fact that
one is deep in the superconducting state (Fujita et al., 2014;
He et al., 2014).
For underdoped and even slightly overdoped samples,

although the gap in the antinodal portion of the Fermi surface
unambiguously persists (Ding et al., 1996; Loeser et al., 1996;
Kanigel et al., 2006) for a range of temperatures above TSC
and below T�, simple measures indicate that the gap closes at
TSC along a finite “Fermi arc” (Norman et al., 1998) in the
near-nodal region, as indicated in Fig. 4. The antinodal Δ0

thus corresponds to Δpg, while the coherent gap Δc seemingly
corresponds to ΔðkÞ at the wave vectors corresponding to the
ends of the normal-state Fermi arc (Pushp et al., 2009;
Rameau et al., 2011; Reber et al., 2013). However, the arc
ends are probably not very well defined; indeed, it is unclear
whether the arcs are produced by the vanishing of the nodal
gap (Lee et al., 2007), or simply indicate the portion of the
Fermi surface in which the scattering rate is greater than the
gap (Kondo et al., 2013; Reber et al., 2013). The near-nodal
scattering rate appears to be strongly T dependent near Tc in
this analysis. Indeed, while the energy of the antinodal
quasiparticles does not change to any detectable extent upon
approach to Tc, the coherent spectral weight [i.e., the peak
in the spectral function at ΔðkÞ] vanishes at Tc or slightly
above (Fedorov et al., 1999).
As mentioned previously, there are significant differences

in aspects of the quasiparticle spectrum measured in ARPES
and those inferred from the QPI analysis of the STM
spectrum. Reconciling these, which we will not attempt here,
is a major open issue. Still, in the superconducting state, STM

FIG. 3. Schematic diagram summarizing doping dependence
of gaps and characteristic temperatures. Above optimal doping,
the experimental identification of the pseudogap can differ
depending on whether one is looking at measurements in
the normal or superconducting state; the behavior shown is
consistent temperature-dependent tunneling measurements. From
Deutscher, 1999.

FIG. 4 (color online). Schematic diagram summarizing ARPES
measurements of gaps around the Fermi surface in underdoped
cuprates. The combined gray regions indicate the d-wave gap,
with magnitude Δ0, observed at T < TSC. At TSC, the dark gray
part of the gap closes, leaving a gapless arc of states in the near-
nodal region and a pseudogap (light gray) in the antinodal region.
The pseudogap loses definition at T ∼ T�. The energy scale for
coherent pairing Δc indicated by tunneling empirically corre-
sponds to the magnitude of the d-wave gap at the wave vector
corresponding to the end of the nodal arc.
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shows that, in real space, the gap behavior is spatially uniform
for E < Δc, but inhomogeneous at higher energies, especially
near Δpg (Howald, Fournier, and Kapitulnik, 2001; Pan et al.,
2001; Pushp et al., 2009).

B. Temperature dependence and broader context

The temperature dependence of the pseudogap can be
somewhat ambiguous, so it is instructive to consider results
from a variety of experimental probes. For example,
c-axis optical conductivity provides a useful probe of Δpg,
as the contribution from quasiparticles in the nodal region is
suppressed. The temperature dependence of σcðωÞ in under-
doped YBa2Cu3O6þy suggests that Δpg does not change but
rather the states gradually fill in as the temperature approaches
T� (Homes et al., 1993). A similar impression is given by an
analysis of the temperature dependence of the Hall constant in
La2−xSrxCuO4 (Gor’kov and Teitel’baum, 2006). Fitting with
a temperature-independent term (from near-nodal carriers)
plus a thermally activated component yields a temperature-
independent gap that is quantitatively consistent with Δpg

determined by ARPES. STM measurements indicate that the
pseudogap is detectable (with a spatially varying magnitude)
in the entire field of view for a significant range of T > TSC,
but becomes confined to increasingly rare regions as the
temperature approaches T� (Gomes et al., 2007). In ARPES,
the pseudogap onsetting at T� has long been associated with
the antinodal region. [For recent references, see He et al.
(2011) and Kondo et al. (2013).]
Most of the spectroscopic measures of the pseudogap

contain no direct information on the origin of the gap. There
are a few measurements that provide evidence for pairing
correlations. One of the key features of superconducting pairs is
that they involve a mixing of particle and hole states. This
results in particle-hole symmetry near the Fermi energy.
ARPES measurements of Yang et al. (2008, 2011) on under-
doped Bi2Sr2CaCu2O8þδ found evidence of such particle-hole
symmetry for antinodal states far above TSC. The mixing of
particle and hole states also impacts the dispersion of the
particle states, and this characteristic dispersion has been seen
for antinodal states above TSC in the same system (Kanigel
et al., 2008). On the other hand, ARPES studies of single-layer
Bi1.5Pb0.55Sr1.6La0.4CuO6þδ (Hashimoto et al., 2010) found
significant particle-hole asymmetry in a similar analysis.
In underdoped YBa2Cu3O6þy, a different signature of super-
conducting correlations in the normal state has been reported.
Measurements of optical conductivity for light polarized along
the c axis found indications of a transverse Josephson plasma
resonance at temperatures as high as 180 K (Dubroka et al.,
2011), and enhanced coherent transport at T ≫ TSC has been
achieved by optically pumping apical oxygen vibrations
(Hu et al., 2014).
It is also relevant to note that there is another significant gap

in the problem. The undoped cuprate parent compounds are
charge-transfer insulators, with an optical gap (∼1.5 eV)
limited by the energy difference between Cu 3dx2−y2 and O
2pσ states rather than the larger on-site Coulomb repulsion U
that is responsible for magnetic moments on the Cu sites
(Zaanen, Sawatzky, and Allen, 1985; Emery, 1987).

On doping holes into the CuO2 planes, the optical gap does
not collapse; rather, infrared reflectivity studies demonstrate
the coexistence of the charge-transfer gap with finite optical
conductivity that is transferred into the gap. Integrating the
conductivity within the gap, the effective carrier density grows
in proportion to x (Cooper et al., 1990; Uchida et al., 1991),
rather than 1 − x as predicted by conventional band theory. At
high temperatures, the conduction electrons are completely
incoherent, as indicated by the absence of a Drude peak in the
optical conductivity (Takeya et al., 2002; Lee et al., 2005). A
Drude peak develops on cooling, with a weight that
is proportional to, but smaller than, x within the underdoped
regime (Uchida et al., 1991; Padilla et al., 2005). The Drude
peak is likely associated with near-nodal states and develops
as the pseudogap becomes apparent in the antinodal region;
hence, the region TSC < T < T� is labeled “nodal metal” in
Fig. 3 (bottom). Of course, these features are associated with
energy scales much smaller than the charge-transfer gap and,
especially, U.

C. Interpreting the pseudogap

The extent to which this gap, especially at temperatures
above TSC, reflects “d-wave superconducting pairing without
phase coherence” versus a distinct “second gap” associated
with some other ordering phenomenon (or “Mottness”) has
been endlessly debated. This is commonly referred to in the
literature as the one gap versus two gaps dichotomy. We add to
this debate in Sec. VIII. Here we note that a key issue is
whether there exists a crossover temperature below which the
amplitude of the order parameter (or parameters) is well
defined. More specifically, can one phenomenologically
associate with an experimentally determined pseudogap tem-
perature T� in the phase diagram of the cuprates a crossover
scale below which many of the spectroscopic characteristics of
an ordered phase begin to be apparent, but without any
associated long-distance correlations, much less a broken
symmetry? In theory, it is sometimes possible to identify a
crossover temperature Tmf > TSC at which a local amplitude
of the order parameter develops; often Tmf is identified with a
mean-field transition temperature calculated in one way or
another. This is possible, for instance, in an array of weakly
Josephson coupled superconducting grains. However, it is
important to realize that in generic problems neither the notion
of a locally defined amplitude of an order parameter nor Tmf
are well defined even in theory.
From the studies of underdoped samples, there are certainly

features that suggest two distinct gaps. The near-nodal gap
seen in ARPES is undoubtedly a superconducting gap, given
its singular angle dependence and the fact that it closes, in
some sense, more or less at TSC. Conversely, therefore, it is
natural to posit that the antinodal gap, which hardly varies as T
crosses TSC, is not a superconducting gap. Moreover, the x
dependence ofΔc contrasts markedly with that ofΔpg. Finally,
from STM measurements, it appears that Δpg tends to be
largest in local regions in which evidence of CDW order is
strongest, and weakest where CDW correlations are weak
(Kohsaka et al., 2008), inviting an association between the
pseudogap and CDW order.
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In contrast, the argument for a gap with a single origin
begins at optimal doping. The simple d-wave form of the gap
at T ≪ TSC, and the fact that even the energy widths of the
quasiparticle peaks do not vary substantially as a function of
position along the Fermi surface, make a very compelling case
that it is a uniform d-wave superconducting gap. However, in
Bi2Sr2CaCu2O8þδ, even for x ¼ xopt, the antinodal gap
survives to T > TSC without any significant change in
magnitude, i.e., it becomes the pseudogap. If it is a super-
conducting gap below TSC, and its magnitude remains roughly
the same above TSC, it is difficult to imagine it is unrelated to
superconducting pairing.
Returning to low T, where the antinodal gap increases with

decreasing x, one might be tempted to associate the “extra”
gap size with the growth of a second order parameter.
Assuming the two gaps add in quadrature, this would mean
that Δpg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ0j2 þ jΔotherj2

p
, which still implies that the

largest contribution to the gap comes from superconductivity
as long as Δpg <

ffiffiffi
2

p
Δ0, as is true for all but the smallest

values of x. From a theoretical perspective, in the weak-
coupling limit the superconducting instability would be
strongly suppressed and even the dominant pairing symmetry
would be changed were Δpg entirely associated with a partial
gapping of the Fermi surface produced by a nonsuperconduct-
ing order (Cho et al., 2013; Mishra et al., 2014).
In a loose sense, an interplay between uniform d-wave

superconductivity and a PDW is precisely what is needed to
account for the one-gap, two-gap dichotomy: On the one hand,
both orders imply local d-wave-like pairing. On the other hand,
globally they produce distinct patterns of broken symmetry,
and, in particular, the PDW has an associated CDW compo-
nent. Indeed, as has been noted (Baruch andOrgad, 2008; Berg,
Chen, and Kivelson, 2008), the PDW state results in a single-
particle spectrum that resembles that seen in the pseudogap
phase immediately above TSC, with a relatively large gap in the
antinodal regions (see Fig. 4), and a Fermi pocket in the nodal
region whose back side [for reasons that were already clear in
early d-density-wave (DDW) calculations (Chakravarty and
Kee, 2008) of the same quantities] has relatively little spectral
weight, giving it the appearance of a Fermi arc.
As discussed previously, the strongest evidence of PDW

order comes from transport measurements in roughly 1=8
doped La2−xBaxCuO4, for which fortunately ARPES data are
available (Valla et al., 2006; He et al., 2009). The ARPES
measurements show a clear antinodal gap that changes little on
warming into the disordered state; however, below 40 K, there
is also a d-wave-like gap along the nodal arc (although no
coherent quasiparticle peaks are seen). In a weak-coupling
analysis, the SDWorder that is present would not cause a gap
along the near-nodal arc (Baruch and Orgad, 2008), so that
one would be led to conclude that the near-nodal gap is due to
the existence of a uniform d-wave component of the order.
This, then, creates a problem for the explanation of the
frustrated interlayer Josephson coupling. However, the
SDW order involves substantial Cu moments (Luke et al.,
1991; Hücker, Gu, and Tranquada, 2008) and so cannot be
properly described in a weak-coupling picture. Turning to
another experimental example, a d-wave-like gap (plus a
uniform energy offset) has been reported in an ARPES study

of Bi2Sr2−yLayCuO6þδ for hole concentrations x < 0.10
(Peng et al., 2013). This regime is insulating (Ono and
Ando, 2003) and a neutron-scattering study found evidence
for diagonal spin-stripe correlations for similar dopings in the
closely related Bi2þySr2−yCuO6þδ (Enoki et al., 2013). Hence,
there is circumstantial evidence that SDWorder may cause an
(incoherent) d-wave-like gap along the near-nodal arc.
However, further work is needed to resolve these issues.

VII. DETECTABLE SIGNATURES OF PDW ORDER

To date, the evidence of the existence of a PDW state, even
in La2−xBaxCuO4, is indirect. Indeed, even evidence of the
existence of conceptually similar Fulde-Ferrell-Larkin-
Ovchinnikov states in partially magnetized superconductors
has been challenging to obtain (Mayaffre et al., 2014). There
are, however, a number of clear experimental signatures
which, if observed, would constitute unambiguous evidence
of the existence of a PDW. These signatures have been
discussed previously by us in some detail in Berg et al.
(2009); here, for completeness, we briefly enumerate some of
the most promising ideas.

(1) Existence of a uniform charge 4e condensate: Since in
most geometries the coupling between the PDW order
itself and any external superconductor vanishes when
spatially averaged, the leading harmonic in the Joseph-
son effects will also vanish. However, higher order
(four-electron) tunneling processes will always produce
phase locking to the accompanying composite charge
4e components Δ4e;a of the PDW. There are several
ways this can be detected, for instance, in any sort of
experiment involving Josephson oscillations in which
the relevant Josephson relation is ℏω ¼ 4eV, or if a
sliver of La2−xBaxCuO4 is used as the weak link in a
superconducting quantum interference device (SQUID)
ring of a conventional superconductor, then the relevant
flux quantum should be hc=4e ¼ ϕ0=2.

(2) Tests of interlayer frustration: The frustration of the
interlayer Josephson coupling apparent in transport and
optics in La2−xBaxCuO4 and other candidate cuprates is
the strongest existing evidence of a PDW state. This
interpretation can be tested by purposeful perturbations
which change the symmetry of the PDW state in such a
way as to reduce the interlayer frustration. As already
mentioned, the photoinduced onset of interlayer coher-
ence observed in association with the transient melting of
the CDWorder may already be an example of such a test.
Other proposed tests involve relieving the interlayer
frustration through the application of a suitably oriented
in-plane magnetic field (Yang, 2013), or possibly by
reorienting the stripes by the applicationofuniaxial strain.

(3) Half-quantum vortices: One of the defining features of
the PDW is the intertwining of the CDW and SC
components of the order parameter. Since the pairing
field must be a single-valued function of position, the
phase of the order parameter must be single-valued
modulo 2π. As a consequence, it is easy to show that
wherever there is a dislocation in the CDWorder, there
must be an accompanying half-quantum vortex—a
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vortex that can be viewed as the fundamental vortex of
the uniform charge 4e superconducting order. This is
one of the possible topological defects in a PDW, the
one with characteristics that are a unique reflection of
the broken symmetry.

(4) CDW 1Q order: As stressed, a composite CDW order
with wave vector Ka ¼ 2Qa should be detectable by
STM and/or x-ray (or indirectly by neutron) diffraction
whenever a PDW with wave vector Qa is present.7

However, if below a critical temperature Tc a uniform
SC component develops as well (and if the PDW is not
entirely quenched at the same point, which would be
possible only if the transition were first order) then
below Tc a subharmonic component of the CDWorder
parameter with ordering vector K0

a ¼ Qa should
develop with an amplitude proportional to the uniform
SC order parameter.

VIII. DISCUSSION

Generically, a critical point is reached by varying a single
parameter T for instance in the theories we have been
discussing. A multicritical point can arise when a second
parameter is varied in such a way as to cause two lines of
second order transitions to intersect.
Competing orders generically refers to the physics close to a

multicritical point. In terms of a Landau-Ginzburg-Wilson
effective field theory, the multicritical point occurs where the
mean-field ordering temperatures T0

a of two or more orders
(labeled by an index a) are equal. That they “compete” implies
that the appropriate biquadratic terms [e.g., in Eq. (3.1), γj with
j ¼ 1–3] are positive. Under still more highly fine-tuned
circumstances, a multicritical point can exhibit a higher
symmetry. For instance, the tetracritical point at whichTCDW ¼
TSC in Fig. 1 occurs at a unique temperature and doping
concentration TP and xP; this tetracritical point could have a
larger Oð4Þ symmetry unifying the CDW and SC orders, but
this requires fine-tuning at least one additional parameter.
Intertwined orders refers to the case in which T0

SC ∼ T0
CDW

over a range of situations, i.e., in the case of the cuprates, over
a range of doping concentrations and material families. Where
this occurs, it must have its origin in a feature of the
microscopic physics as it has no natural explanation simply
in terms of robust and generic features of coupled order
parameters. Indeed, any such observation carries with it the
suggestion that the same features of the microscopic physics
that are responsible for one order also give rise to the other. In
other words, there likely exists a high-energy scale at which an
amplitude of the order develops which cannot really be
associated with one or the other order, as it is somehow a
precursor to all of them. Then, at lower scales, small energy
effects favor one or the other pattern of ordering.
In particular, we have in mind the notion that below T�, to

an extent that varies smoothly as a function of x, local pairing
correlations as well as local CDW and antiferromagnetic spin

correlations begin to grow, in much the way CDW and SC
correlations develop below T� ∼ Δs in the quasi-1D model
analyzed in Sec. VIII.B. However, as we now discuss, there
are good reasons to question the validity of this perspective.

A. Identification of T� with local pairing critiqued

That there is a degree of local CDW order over a consid-
erable portion of the pseudogap regime of the phase diagram
of the cuprates is now an established fact. Moreover, as
discussed extensively in Secs. III.B and VI, the idea that there
are local superconducting pairing correlations which are in
one way or another responsible for the d-wave character of the
pseudogap and various subtle precursor indications of super-
conductivity without long-range phase coherence is one that
has been advocated in various versions. Thus, the idea of
identifying the pseudogap temperature T� with the onset of a
generalized order parameter amplitude which has both CDW
and SC (and possibly AF) character is surely appealing. In one
way or another, it underlies most attempts to come to grips
with the phenomenology of intertwined orders.
However, there have been at least as many papers which

have critiqued this idea (or supposedly “proven” it false). For
the most part, these papers studied a property which might be
expected to exhibit a signature of local SC (or other) order;
then correcting for other contributions (which can, itself,
require a rather complicated analysis) they infer from the lack
of a clear fluctuational contribution that the conjectured local
order does not exist. For example, constraints on the existence
of pairing without phase coherence at temperatures well above
TSC have been adduced from measurements of terahertz
conductivity (Bilbro et al., 2011), Nernst effect (Wang, Li,
and Ong, 2006), and magnetoresistance (Rullier-Albenque,
Alloul, and Rikken, 2011). These constraints are serious; on
the other hand, as far as we know, there exists no reliable
microscopic theory capable of making even semiquantitative
predictions of the consequences of local pairing (or even of
sharply defining what this means). Thus, in critiquing this
idea, we instead focus on rather broad phenomenological
features of the phase diagram.
For the most part, the pseudogap temperature T� is defined

in one of several somewhat arbitrary ways to extract an
explicit number to characterize the scale of T at which the
behavior of a particular measured quantity changes from one
sort to another. There thus may be cause to question particular
values or even trends in the canonical T� curves. For the
purpose of discussion, we set aside these ambiguities and
accept the canonical curves, originally defined such that T�ðxÞ
is the local maximum of the magnetic susceptibility χ, as being
representative of the pseudogap crossover scale.
With this identification, a glaring issue is apparent. At

x ¼ 0, T� clearly reflects the local growth of antiferromag-
netic correlations; in the 2D AF Heisenberg model, χ has a
maximum at T� ∼ J=2, where the AF correlation length is
around two lattice constants (Chakravarty, Halperin, and
Nelson, 1988). Given that T� appears to be a continuous
function of x, for small x this identification must remain valid,
implying that T� has nothing to do with the onset of either SC
or CDW correlations. Conversely, in many of the hole-doped
cuprates for x ≳ 0.1, while there is still evidence of AF

7Modulations in the SC gap can be indirectly observed in STM (in
the absence of Josephson tunneling). Evidence of such modulations
was given by Fang et al. (Fang et al., 2004; Baruch and Orgad, 2008).
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tendencies (local moments) at short distances, there is an
associated spin gap which grows in magnitude as T�

decreases, making any direct association between T� and
AF order appear unnatural; on the other hand, it is in the range
of doping near x ¼ 1=8 that the best evidence exists for both
short-range CDW order and local SC correlations.
Much of the trouble may come from a naive expectation

that a state with short-range order behaves something like a
corresponding ordered phase if probed at short distances and
times. Conceptually, near a critical point, the correlations at
distances small compared to the correlation length but large
compared to the lattice constant look critical, i.e., the proper-
ties are neither those of the ordered nor of the disordered phase
(Kivelson et al., 2003). More specifically, as summarized by
example below, the issue of what is meant by a local
magnitude of an order parameter can be much more subtle
than any naive intuition would suggest. However, excuses
aside, whether or not local pairing (or singlet formation)
onsets in any well-defined sense at temperatures of order T� is
clearly one of the central unresolved issues in the field.

B. Phase diagrams of intertwined orders

The physics of strong correlations is largely solved in 1D,
and much can be said about the problem in quasi-1D. It is thus
worthwhile summarizing features of this limit. In Fig. 5, we
show the generic phase diagram for an array of weakly
coupled LE liquids—a more generic version of the phase
diagram already discussed in Fig. 1. Here Kc is the charge
Luttinger exponent within a single LE chain, which (along
with the spin gap Δs) is an appropriate long-distance measure
of the nature of the intrachain interactions. There is much here
that is reminiscent of the phase diagram of the cuprates. At
high T there is a non-Fermi-liquid normal state—in this case it
is a set of nearly decoupled LLs. There is a crossover scale
T� ∼ Δs below which a pseudogap opens in the spin fluc-
tuation spectrum. Finally, at low T, there is a complex phase
diagram in which two ordered phases compete and possibly
coexist. In this problem, the ordering temperatures are well
separated from T�, as they are proportional to a positive power
of the interchain couplings, and so are (by construction)
parametrically small.
One aspect of this problem that is worth emphasizing is that

both the SC and CDW susceptibilities are typically small
for T > T� and then begin to grow rapidly for T < T�

(as discussed in Sec. IV.B). Moreover, in this range of T,
both susceptibilities are proportional to Δs, so there is no
obvious way to more correctly identify Δs as a precursor
pairing or CDW gap. Rather, the LE liquid is a precursor state
in which the opening of the spin gap is conducive to both
CDW and SC order.
Turning from the microscopic to more phenomenological

macroscopic considerations, there is a well-defined sense in
which it is more natural to have multiple orders coexisting in
2D (or quasi-2D) than in higher dimension. For instance, the
natural minimal quasi-2D theory of a superconducting and an
unidirectional incommensurate CDW is obtained by the usual
assumption of the Kosterlitz-Thouless (KT) theory (Chaikin
and Lubensky, 1995): At low temperatures the amplitudes of
the order parameters vary smoothly as a function of param-
eters, while the phase fields θ of the SC order parameter, and ϕ
of the sliding incommensurate CDW order parameter, have
strong thermal fluctuations. In this limit the free energy
density with Uð1Þ × Uð1Þ symmetry is a quadratic functional
of the gradients of θ and ϕ. Instead of a fixed point, this system
has a fixed “plane” parametrized by T=ρs and κ=ρs. Since
gauge invariance forbids any coupling between the two phase
fields, vortices and dislocations proliferate independently
from each other and their respective Kosterlitz-Thouless
critical temperatures are TSC ≃ ð2=πÞρs and TCDW ≃ ð2=πÞκ.
An analysis of this type was done for the thermal melting of

the PDW state by Berg, Fradkin, and Kivelson (2009a). The
general setting was discussed in Sec. III.B. To simplify
matters, here we restrict ourselves to the case of unidirectional
PDW order along the x axis (i.e., in a nematic phase). The
thermal fluctuations are now controlled by the effective
NLSM in Eq. (3.6) with the terms corresponding to the y
component of the PDW (θy and ϕy) set equal to zero. There
are thus three phase fields: θ0 of the uniform d-wave SC, and
θx and ϕx for the SC and CDW components of the x directed
PDW. The corresponding stiffnesses (ignoring anisotropies)
are ρs ≡ K0, ρPDW ¼ K1 ¼ K2, and κ ¼ K3 ¼ K4. Note that
V, when relevant, locks the phase θ0 to θx (mod π).
There are now four types of topological excitations: (a) the

vortex of the d-wave SC phase θ0, (b) the vortex of the PDW
phase θx, (c) the half-vortex of θx bound to a single dislocation
of ϕx, and (d) the double dislocation of the CDW phase field
ϕx. Various sequences of vortex unbinding can lead to a
variety of complex phase diagrams; an example is sketched in
Fig. 6 for the case where ρs is assumed to be small compared
to ρPDW and κ. The considerations [which are described in
more detail in Berg, Fradkin, and Kivelson (2009a)] which
lead to this phase diagram are as follows: (a) At low
temperature, there is a fully ordered “striped SC,” in which
θ0 and θx are locked to each other, and there is coexisting
CDW order. (b) By assumption, the uniform SC order melts
above a low temperature Td, where the θ0 vortices unbind
through a KT transition. Above Td, the large fluctuations of θ0
render V irrelevant as well. The resulting phase is a pure PDW.
(c) If κ=ρPDW is large, the next transition involves the
proliferation of θx vortices, leading to a KT transition to a
pure CDW phase. Then, at still higher temperatures, the
proliferation of ϕx dislocations leads to a uniform nonsuper-
conducting nematic phase. (d) If κ=ρPDW is small, the first

FIG. 5 (color online). Sketch of the phase diagram with SC and
CDW orders in quasi-1D strongly correlated systems with a spin
gap Δs. P is a multicritical point.
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transition from the PDW phase involves the proliferation of ϕx
double dislocations, resulting in a KT transition to a uniform
superconducting phase—one, however, with the charge 4e
condensate from Eq. (3.2). Then, at higher temperatures, the
proliferation of θx half-vortices (reflecting the charge of the
condensate) leads again to the uniform nonsuperconducting
nematic phase. (e) At intermediate values of κ=ρPDW, the
lowest-energy topological excitations are the bound state of
the half-vortex and a single dislocation, the proliferation of
which results in a direct KT transition to the pure nematic
phase. In all cases, at still higher temperatures, the prolifer-
ation of disclinations (not included in the NLSM we have
discussed) will lead to an Ising transition from the nematic
phase to a uniform normal phase, as indicated by Tn in Fig. 6.
Some details of this pattern may be altered significantly by

changing parameters [i.e., the stiffnesses but also the strength
of the coupling to the lattice (Barci and Fradkin, 2011)]. The
phase diagram of Fig. 6 has several multicritical points
(denoted by P and P0) which have a larger “emergent”
[SU(3)] symmetry (Berg, Fradkin, and Kivelson, 2009a). It
is important to note that in this problem the natural U(1)
symmetries of the order parameters alone produce a phase
diagram with a complex set of phases and critical temperatures
that are comparable to each other without invoking any fine-
tuned multicritical point with a large emergent symmetry.
Finally, it is important to mention that evidence, both

theoretical and experimental, has been adduced concerning
the existence of other new phases of matter in the cuprates
including DDWorder (Chakravarty et al., 2001), intraunit cell
orbital current order (OAF) (Varma, 2006), and various forms
of topologically ordered phases. It goes without saying that
establishing which of these phases actually exists in this
family of materials is of central importance. From the present
perspective, the existence of any of these phases would
primarily serve to further emphasize the intrinsic complexity
of the phase diagram. While some of these orders, for
instance, some forms of OAF order, can be constructed as
composite orders in terms of the fields already present in our
analysis, others (such as DDW) would involve the introduc-
tion of yet further fields.

C. Critique of theories with emergent symmetries

Theories invoking large emergent symmetry groups have been
proposed in the context of high TSC superconductors, starting
with S. C. Zhang’s proposal to unify d-wave superconductivity
(which has a complex order parameter field) with Néel
antiferromagnetic order (which has a three-component real order
parameter field) in a larger SOð5Þ symmetry (Zhang, 1997;
Demler, Hanke, and Zhang, 2004). Generalizations of this
concept have since been pursued, including a model relating
nematic order to d-density wave and d-wave superconductivity
[where the larger symmetry is SO(6)] byKee, Doh, and Grzesiak
(2008) and Kee (2010), and, most germane to the present
discussion, theories of Efetov, Meier, and Pepin (2013),
Sachdev and La Placa (2013), and Hayward et al. (2014)
which envisage an SO(6) or SU(2) symmetry relating charge-
density-wave order and superconductivity.
What is very attractive about these approaches is that they

intertwine the various orders to such an extent that they
become indistinguishable at short distances. However, typi-
cally, systems are less symmetric at low energies and long
wavelengths than at the microscopic level—this observation
underlies, for example, the standard model of particle physics
that unifies the electromagnetic, weak, and strong interactions
at high energies. Nevertheless, emergent symmetries are not
unheard of. Both the Kondo impurity and the two-channel
Kondo impurity problems exhibit emergent SU(2) spin-
rotational symmetry at low energies, even if this symmetry
is strongly broken in the microscopic model. The two-leg
Hubbard ladder exhibits a fully gapped phase which, for small
U (where all the gaps are exponentially small), has an emergent
SO(8) symmetry (Lin, Balents, and Fisher, 1998).8 Several
(Fernandes and Schmalian, 2010; Davis and Lee, 2013; Efetov,
Meier, and Pepin, 2013; Sachdev and La Placa, 2013)
suggested that an emergent symmetry unifying CDW and
SC order can arise from singular induced interactions at “hot
spots” on the Fermi surface, such as occur in close proximity to
an antiferromagnetic QCP of a Fermi liquid.
The behavior of such multicritical points with enhanced

symmetries is well understood and has been studied since the
early 1970s (Aharony and Bruce, 1974; Nelson and Fisher,
1975; Kosterlitz, Nelson, and Fisher, 1976; Aharony, 2003).
The main results of these renormalization group studies is that,
except for a special case which does not concern us here, the
enhanced symmetry is fragile, since at the fixed point of such
multicritical points various symmetry-breaking operators are
relevant. In particular, at an SO(4) invariant multicritical point,
terms that break the symmetry to Oð2Þ × Oð2Þ are strongly
relevant.
Calabrese and co-workers further investigated the stability

of the multicritical points associated with breaking of a larger
symmetry group to smaller subgroups, Oðn1 þ n2Þ ↦
Oðn1Þ × Oðn2Þ, using a five-loop ϵ expansion (Calabrese
et al., 2003). They found that, for N ¼ n1 þ n2 ≥ 3, the

FIG. 6 (color online). Qualitative phase diagram for the melting
of a unidirectional PDW state coexisting with d-wave SC order.
See text for details. La2−xBaxCuO4 is presumably along the dark
broken vertical line.

8Intertwined orders in d ¼ 2 (with possibly enhanced symmetries)
have been found in weakly correlated systems with band structures
with quadratic crossings (Sun et al., 2009; Murray and Vafek, 2014;
Vafek, Murray, and Cvetkovic, 2014).
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symmetry-breaking perturbations render the OðNÞ symmetric
fixed point unstable and that, for N ≥ 5, RG flows drive the
system to a critical decoupled fixed point at which the Oðn1Þ
and Oðn2Þ symmetries are decoupled. For N ¼ 3 (and
possibly also for N ¼ 4) the actual critical behavior is
controlled by the so-called biconical fixed point.
Furthermore, the crossover away from the unstable OðNÞ
fixed point is quite rapid reflecting the fact that the symmetry-
breaking perturbations are strongly relevant. In particular (and
this is what matters to our analysis), near the multicritical
point the actual resulting Tc’s rapidly diverge from each other
as a power law of the form jTSC − TCDWj ∝ jrSC − rCDWj1=ϕ.
The crossover exponent ϕ is determined by the scaling law
ϕ ¼ νðd − Δ2Þ, where ν is the correlation length exponent at
the OðNÞ-symmetric fixed point, d is the dimension of space,
and Δ2 is the scaling dimension of the quadratic symmetry-
breaking operator jΔðxÞj2 − jρQðxÞj2. Current best estimates
(Calabrese et al., 2003) for the crossover exponent in d ¼ 3

dimensions yield ϕ≃ 1.35 for N ¼ 4 (and somewhat larger
values for N ≥ 5) which implies that the splitting of the
critical temperatures is larger than a linear function of the
quadratic symmetry-breaking field. In addition, a further
complication is that, over a significant range of parameters,
these phase transitions have a strong tendency to become
fluctuation-induced first order transitions.
Many of these issues were discussed extensively in the

context of the SO(5) theory [see, e.g., Aharony (2003)].
The upshot of this analysis is that, even if the transition is
actually continuous, the fixed point with high symmetry is
generally unstable and that for the critical temperatures of the
competing orders to be similar in magnitude requires
extremely delicate fine-tuning of the microscopically deter-
mined control parameters. This is the key message from this
analysis.
The high temperature superconductors are quasi-two-

dimensional systems. However, the fine-tuning problem, if
anything, is worse in 2D (and quasi-2D) systems with a
large continuous global symmetry, such as OðNÞ with N > 2.
In strictly 2D, such systems cannot have a phase transition at
any finite temperature. Close to d ¼ 2 they are well described
by a nonlinear σ model, which describes the long-distance
fluctuations of a classical N-component Heisenberg model,
whose order parameter is an N-component unit vector nðxÞ
(such that jjnjj2 ¼ 1). Renormalization group analysis of the
two-dimensional nonlinear σ model (Polyakov, 1975; Brézin
and Zinn-Justin, 1976) shows that thermal fluctuations are
marginally relevant (“asymptotically free”) perturbations at
the T ¼ 0 fixed point, and consequently that this system is in
its disordered (high temperature) phase for all values of the
temperature T. As a result, at low temperatures the correlation
length scales as ξðTÞ ∼ a exp½2πK=ðN − 2ÞT�, where K is the
helicity modulus and a is the lattice spacing.
This gives a broad fluctuational regime which is exponen-

tially sensitive to the magnitude of coupling parameters of the
symmetry-breaking operators and/or to three-dimensional
couplings. An important example is the case in which there
is a small symmetry-breaking term of (dimensionless) mag-
nitude h which explicitly breaks an OðNÞ symmetry (with
N > 2) down to Oð2Þ ≅ Uð1Þ. This problem was extensively

discussed by Affleck (1986) (in the context of easy-plane
symmetry breaking in quantum antiferromagnetic spin chains)
and, more recently, by Fellows et al. (2012) in the context of
competing orders. A key consequence of the marginal
relevance of temperature in the OðNÞ symmetric theory is
that the (Kosterlitz-Thouless) critical temperature of the
O(2)-invariant system has a logarithmic dependence on the
symmetry-breaking fieldh (Affleck, 1986; Fellows et al., 2012)

TKT ∼
KðN − 2Þ

4π

1

lnð1=jhjÞ . ð8:1Þ

Since the critical temperature of the OðNÞ-symmetric model is
zero, the finitevalue ofTKT reflects the significance of evenvery
small symmetry-breaking terms.
Finally, we discuss how these considerations apply to the

multiple orders considered by Hayward et al. (2014) in the
context of the cuprates, as representative of the various
proposals for emergent higher symmetries in the
cuprates introduced at the beginning of this section. The
underlying problem has a Uð1Þ × Uð1Þ × Uð1Þ × Z2 sym-
metry, where the first U(1) is associated with the super-
conducting order, and the final two U(1)’s and the Z2 are
associated with the CDW order, and correspond to transla-
tional symmetry in the x and y directions and rotation by π=2
about the z axis, respectively. Hayward et al. assumed that
there is an approximate much larger SO(6), although they do
explicitly take into account terms that differentiate the super-
conducting and CDW components of the order parameter,
which thus break the symmetry down to Uð1Þ × SOð4Þ.
However, the assumed SO(4) symmetry is still nongeneric,
and this, along with the assumption that interlayer coupling
can be neglected, allowing the system to be treated as 2D, is
what is responsible for the central feature of the scenario of
Hayward et al. (2014), resulting in a CDW correlation length
that never diverges at any nonzero temperature. Again, terms
that violate either assumption lead to a CDW ordering
temperature that is small only in proportion to the inverse
of the logarithm of the term’s magnitude.
As a possible rejoinder to this critique, several studies

(Efetov, Meier, and Pepin, 2013; Sachdev and La Placa, 2013;
Meier et al., 2014) have proposed that a near-perfect sym-
metry between CDW and SC orders can result from a higher
level organization associated with close proximity to a
metallic quantum critical point associated with large Q
antiferromagnetic order. These theories consider a metallic
Fermi liquid which is not too strongly coupled to the quantum
critical fluctuations, so that they have a strong effect only on
the electronic quasiparticles residing very close to a set of hot
spots on the Fermi surface (Abanov and Chubukov, 2000;
Vekhter and Chubukov, 2004; Chubukov, Galitski, and
Yakovenko, 2005; Tsvelik and Chubukov, 2014) [for a review,
see Wang and Chubukov (2014)]. It is unclear whether the
weak-coupling focus on hot spots is reasonable in realistic,
strongly coupled systems. Indeed, quantum Monte Carlo
studies of Berg, Metlitski, and Sachdev (2012) of a metallic
antiferromagnetic quantum critical point found clear evidence
of induced superconductivity, but no reported evidence of the
growth of CDW correlations of comparable strength.
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Nevertheless, even if induced CDW order can also arise as a
consequence of scattering by quantum critical AF fluctua-
tions, it is far from clear why the proposed emergent
symmetry should, at finite temperatures especially, be immune
to the already discussed divergent flows of the symmetry-
breaking terms associated with classical critical phenomena.
Moreover, for this scenario to apply, the system must at least
be fine-tuned to the near proximity of an antiferromagnetic
quantum critical point. In many of the hole-doped cuprates in
much of the range of dopings where SC and CDW orders
appear to be intertwined, the antiferromagnetic correlation
length measured in neutron scattering is no more than one to
two lattice constants,9 i.e., nowhere near being quantum
critical.

D. Ineluctable complexity

The intrinsic complexity of the phase diagrams of corre-
lated materials, the cuprates in particular, is by now self-
evident. At the microscopic level, this is clearly a result of the
quantum frustration of such systems: the kinetic energy favors
highly delocalized uniform density fluid states, while the
interaction energy favors localized, spatially inhomogeneous
crystalline states. Understanding each phase that occurs with
great precision is certainly a worthwhile undertaking. What is
presented here is a step toward understanding the origin of the
complexity itself. The intertwining of CDW, SDW, and SC
order in the cuprates is particularly striking and well docu-
mented and is probably (Emery and Kivelson, 1993; Dagotto,
2005; Fradkin and Kivelson, 2012) associated with a rather
general local tendency to phase separation.
We presented highly suggestive, but by no means con-

clusive, evidence for the existence of a PDW phase in the
cuprates. If confirmed, this represents the discovery of a new
phase of matter, which would be significant independent of
any other implications. More broadly, as a state that tangibly
intertwines CDW and SC (and, in some cases, SDW order as
well) in an explicit, testable fashion (i.e., associated with a
pattern of broken symmetry), it has the potential for providing
a unifying starting point for studying the broader issues of
intertwined orders in the cuprates.
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