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This Colloquium presents recent progress in understanding constraints and consequences of close-
packing geometry of filamentous or columnar materials possessing nontrivial textures, focusing, in
particular, on the common motifs of twisted and toroidal structures. The mathematical framework is
presented that relates spacing between linelike, filamentous elements to their backbone orientations,
highlighting the explicit connection between the interfilament metric properties and the geometry of
non-Euclidean surfaces. The consequences of the hidden connection between packing in twisted
filament bundles and packing on positively curved surfaces, like the Thomson problem, are
demonstrated for the defect-riddled ground states of physical models of twisted filament bundles.
The connection between the “ideal” geometry of fibrations of curved three-dimensional space,
including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and
toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the
simultaneous twisting and folding of multifilament bundles.
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I. INTRODUCTION

Geometrical models of matter have been a cornerstone of
physical theories of materials for centuries. Like Kepler’s
hypothesis that the emergent symmetries of crystals derive
from optimal packings of hard-spherical “atoms” (Hales,
2000), such models connect the collective physical properties
of microscopic particles and molecules to principles of
packing of elementary geometrical objects. From the statis-
tical mechanics of n-body clusters in hard-sphere gases and
fluids (McQuarrie, 2000) to properties of granular and
amorphous behavior deriving from the so-called random
close-packed state (Bernal and Mason, 1960; O’Hern et al.,
2003), connections between the geometry of sphere packing
and many-body behavior of compact, isotropic particles
pervades condensed matter. By comparison, the generic
principles and emergent behavior of a parallel class of models,
what we call filamentous matter, remains largely unknown.
Filamentous matter refers to assemblies of multiple one-
dimensional or linelike elements, a geometrical motif that
appears in diverse materials and formed at a range of

dimensions spanning nearly 7 orders of magnitude in size
(Pan, 2014). Ropes, cables, and textiles are familiar examples
from macroscopic materials (Hearle, Grosberg, and Backer,
1969; Costello, 1997), and physical considerations of the role
their structure plays in emergent mechanical properties like
tensile strength date back to at least as early as Galileo’s work
on the strength of materials (Galileo, 1914). With the advent
of modern microscopy came the discovery that ropelike and
fabriclike assemblies of macromolecular filaments constitute a
crucial and broad class of structure elements of biological
matter, from the cytoskeleton to extracellular tissue.
This Colloquium reviews recent theoretical advances in

understanding the structure formation of cohesive filament
assemblies, with the particular focus on how the geometrical
interplay between orientation and interfilament spacing
shape the nontrivial structural and thermodynamic proper-
ties of assemblies. Of primary interest are an important class
of “self-twisting” assemblies of filaments or columns,
whose complex textures are driven by molecular chirality.
The interplay between chirality and long-range ordering is a
subject of long-standing interest in condensed matter, and in
liquid crystals, in particular (de Gennes and Prost, 1993).
Intermolecular forces between chiral molecules favor tex-
tures with nontrivial, and twisted, gradients in orientation
(Goodby, 1991; Harris, Kamien, and Lubensky, 1999), the
simplest example of which is cholesteric order. Crucially,
the patterns of orientation driven by chirality are not always
compatible with other types of ordering exhibited by a given
system, as in chiral smectics (de Gennes, 1972; Renn and
Lubensky, 1988; Goodby, 2012), or even with the geomet-
rical constraints of space itself (Sadoc and Mosseri, 2008)
as occurs for the double-twist textures of the liquid crystal
blue phases (Sethna, Wright, and Mermin, 1983; Wright and
Mermin, 1989).
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The interplay between chiral patterns of orientation and
long-range, 2D ordering of columns or filaments combines
these two aspects of frustration. For example, theories of chiral
columnar liquid crystals show that uniform twist of column
backbones and lattice directions, both of which are favored
by chirality, are incompatible with bulk columnar ordering
(Kamien and Nelson, 1995, 1996). Because chiral textures
are globally incompatible with long-range 2D positional
order, in sufficiently chiral bulk systems, twisted textures
can be accommodated only through the introduction of
complex networks of tilt-grain boundaries. The focus of this
Colloquium is a related, but distinct, frustration between
orientation and 2D positional order that occurs in finite
domains with nontrivial textures, in particular, within the
twisted structures shown in Fig. 1. Simply put, as one among a
broader class of such textures, twist makes it geometrically
impossible to evenly space filaments or columns, even locally,
throughout the domain cross section (Kléman, 1980;
Starostin, 2006).
In filamentous matter, frustration follows from an intrinsic

geometric coupling between the orientation and spacing of
linelike materials, a relationship which therefore has impli-
cations for the structure and thermodynamics of a broad range
of self-organized systems. These include columnar forming
liquid crystals, such as lyotropic chromonics [Fig. 1(i)], which
exhibit complex and twisted textures upon confinement
(Tortora and Lavrentovich, 2011; Jeong et al., 2014). When
columnar droplets form in a dense chromonic suspension, the
chainlike nature of columns promotes tangential anchoring
within droplets, which is known to stabilize toroidal or
spontaneously twisted topologies in even achiral chainlike
systems (Svenšek, Veble, and Podgornik, 2010; Shin and
Grason, 2011). Further examples include twisted and hex-
agonally packed wormlike assemblies of chiral (or achiral)

surfactant micelles, which have become an important and
widely studied route to chiral mesoporous silica structures
[Fig. 1(e)] and provide perhaps the most robust platforms for
multiscale imaging of twisted columnar packing (Che et al.,
2004; Yang et al., 2006).
Beyond columnar systems per se, cohesive assemblies of

two-dimensionally packed filaments constitute a basic mate-
rials architecture in both biological and synthetic systems,
relevant to a broader materials context. In living organisms,
assemblies of filamentous proteins represent a primary
structural motif, from bundles of cytoskeletal filaments to
fibers of extracellular proteins (Alberts et al., 2002).
Biological filaments are universally helical in structure,
owing to the underlying chirality of their constituent macro-
molecules, proteins, and polysaccharides (Bouligand, 2008;
Hamley, 2010). Hence, ropelike assembles of protein fila-
ments often exhibit a tendency to twist in a handed fashion
(Grason and Bruinsma, 2007; Grason, 2009; Yang, Meyer,
and Hagan, 2010; Heussinger and Grason, 2011). The chiral
textures of filamentous protein bundles and fibers have been
the subject of extensive study in numerous systems, from
fibrin (Weisel, Nagawami, and Makowski, 1987; Weisel,
2004) and fibrillar collagen (Cooper, 1969; Bouligand et al.,
1985; Ottani et al., 2002; Wess, 2008) to extracellular
chitan, cellulose fibers (Neville, 1993) and sickle hemoglobin
macrofibers (Makowski and Magdoff-Fairchild, 1986).
Beyond structural biofilaments, dsDNA is known to
exhibit columnar order at very high concentrations
(Livolant et al., 1989), as well as chirally ordered mesophases
(Livolant and Leforestier, 1996). Furthermore, upon con-
densation (Hud, Downing, and Balhorn, 1995; Hud and
Downing, 2001) or under confinement (Knobler and
Gelbart, 2009; Leforestier and Livolant, 2009, 2010), dense
states of DNA exhibit a range of complex topologies, from

(a) (b) (c) (d)

(e)

(f)

(g) (h) (i)

FIG. 1 (color online). (a)–(e) Twisted bundles (a)of filaments or columns in biological and synthetic materials [electron microscope
(EM) images in (b)–(e))]: (b) fibrin bundles (diameter ∼100 nm) (Weisel, 2004); (c) twisted collagen fibrils derived from tendon
(diameter ∼100 nm) (Ottani et al., 2002); (d) twisted fibers of chiral organogel assemblies (diameter ∼100 nm) (Foster et al., 2010); and
(e) mesoporous silica templated by twisted columnar assemblies of wormlike surfactant micelles, with schematic in the inset (diameter
∼100 nm) (Yang et al., 2006). (f)–(i) Toroidal bundles [schematic of twisted toroidal bundle in (f)] of filaments or columns from
biological and synthetic materials: (g) EM images of twisted toroidal fibers of collagen (Cooper, 1969); (h) EM images of toroidal
condensates of dsDNA (Hud and Downing, 2001); and (i) schematic and optical microscopy of faceted columnar droplets of chromonic
liquid crystals (Jeong et al., 2014).
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twisted to folded tori. Outside of the strictly biological
contexts, synthetic materials, from peptide-based biomaterial
mimics (Kouwer et al., 2013) to organogelators and supra-
molecular polymers (Douglas, 2009; Lee et al., 2009), offer
numerous further examples of the self-twisted and densely
packed filament and fibers.
The preponderance of distinct materials exhibiting twisted

and densely packed filaments or columns motivates a series
of basic questions regarding the common, underlying geo-
metric principles that constrain their structure. How does the
nontrivial geometry (e.g., twist, bend, etc.) of a columnar
assembly influence the structure and energetics of lateral
order? What are the optimal packings of filaments for
a given nontrivial assembly geometry, and what factors
(geometric, mechanical, molecular) determine these states?
In this Colloquium, recent theoretical progress in under-
standing optimal order in twisted columnar and filamentous
materials as well as the nonlinear interplay between ori-
entation and spacing in columnar systems is discussed, more
generally. In particular, this Colloquium focuses on under-
standing how certain patterns of filament orientation are
incompatible with homogeneous interfilament spacing, lead-
ing to a frustration of long-range 2D order that is quite
analogous to frustration of positional order on intrinsically
curved surfaces, such as spheres. The principal goal is to
review theoretical frameworks for analyzing constraints of
interfilament spacing deriving from nonuniform textures of
two specific types: twisted, cylindrical bundles [Fig. 1(a)]
and twisted toroidal bundles [Fig. 1(f)]. An important focus
is models that quantify the thermodynamics costs of
nonuniform filament spacing in these incompatible textures,
as well as the nature of the inhomogeneous filament
packings that constitute the ground states of these frustrated
textures.
This Colloquium is organized as follows. Section II begins

with an introduction to a notion of interfilament spacing and
metric properties of multifilament structures in the con-
tinuum limit of infinitesimal spacing. Section III focuses on
the unique metric geometry of twisted bundles, relating the
constraints of interfilament packing to those constraining
packing on a curved 2D surface, and reviews predictions for
the number, type, and distribution of defects in the lateral
packing of ground-state bundles. Section IV reviews theo-
retical approaches to the structure of twisted toroidal bundles
based on ideal properties of filament packings in S3, the
three-dimensional hypersphere. We conclude with a brief
discussion of outstanding challenges for understanding
optimal packing of filaments and columns beyond the
twisted textures considered in this Colloquium.
This Colloquium makes extensive use of concepts and

methods of classical differential geometry of curved 2D
surfaces, principally, the notion of surface metrics and their
relation to the intrinsic, or Gaussian curvature. Though this
Colloquium relies primarily on graphical descriptions where
possible, a reader unaccustomed to these elementary concepts
of different geometry may find it useful to refer to an
introductory text (Millman and Parker, 1977) or “primer”
(Kamien, 2002) on the subject.

II. CHARTING THE METRIC PROPERTIES OF
INTERFILAMENT PACKING, A CONTINUUM
PERSPECTIVE

In this section we illustrate constraints of interfilament
packing deriving from arbitrary, nonuniform textures of
filament orientation, and, in particular, the connection of
these constraints to the metric geometry of 2D curved surfaces
(Millman and Parker, 1977). Like membranes or sheets,
filaments and columns are extended objects. Hence, not
unlike multilayered or smectic materials, notions of interfila-
ment distance are intimately connected to filament orientation.
Even when interfilament forces are short ranged, the nature
of interfilament contact is fundamentally nonlocal. This is
because the relevant “distance” between a given point, say on
one filament, and another filament, say its neighbor, typically
refers to the distance of closest approach, a quantity that
depends nonlinearly on shape and orientation.
In collections of filaments, as in condensed phases of

multifilament systems or columnar assemblies, the texture
of filament orientations is intrinsically linked to metric (i.e.,
spacing) properties of interfilament packing, quite analogous
to the way the geometry, or curvature, of a 2D surface
constrains the spacing between material points upon it. To
understand this connection, we consider an ensemble of
filaments that are, on average, oriented normal to the x-y
plane (see Fig. 2). Here we focus on the continuum limit,
where density is sufficiently high so that filaments are locally
parallel and subject to only gradual variation of orientation
throughout the packing. Specifically, we assume that variations
of shape and orientation between neighboring filaments are
negligible on the scale of interfilament spacing, set by the
diameter d. The spacing between two neighboring filaments α
and β whose center lines are described by curves RαðsαÞ and
RβðsβÞ, and which intersect the plane at height z at s0α and s0β,
respectively (see Fig. 2). The distance of closest approach from
α to β is determined by optimizing the separation between
these curves over positions on the second filament, resulting in
an interfilament vector that is, by definition, perpendicular to
Rβ at the point of contact. To determine the point of contact

FIG. 2 (color online). Local distance of closest approach Δ�
between filament α at s0α to filament β, where s�β is the closest
point to R0

α.
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from R0
α ≡Rαðs0αÞ to filament β, we expand the position of

filament β off of the z plane,RβðsβÞ≃R0
β þ Tδsþ κNδs2=2,

where δs ¼ sβ − s0β, and T, N, and κ are the tangent, normal,
and curvature that approximate the local shape of filament β at
z (Kamien, 2002). Defining the in-plane separation to be
Δ≡R0

β −R0
α, the square distance between filament α at z

nearby points on β is simply

jRβðsβÞ−R0
αj2≃ jΔj2þ2δsðT ·ΔÞþδs2ð1þκN ·ΔÞþOðδs3Þ;

ð1Þ

which is easily minimized to find the point of nearest contact
on β at δs� ≃ −T · Δ=ð1þ κN · ΔÞ and the distance of closest
approach

Δ2� ¼ jΔj2 − ðT · ΔÞ2 þOðΔ3Þ: ð2Þ
Hence, the distance of closest approach between nearby
filaments is simply the separation measured perpendicular to
the local filament orientation.
In the continuum limit we take tangents to be described by

a coarse-grained, continuous field tðxÞ such that TαðsÞ ¼
t(RαðsÞ) and consider the square distance of closest approach
between infinitesimally spaced filaments dΔ ¼ dxx̂þ dyŷ,

dΔ2� ¼ gijðxÞdxidxj; ð3Þ

where i and j sum over in-plane directions and we have
defined a metric tensor to correct for the discrepancy between
the distance measured in the plane at z and the plane of
interfilament contact

gijðxÞ ¼ δij − tiðxÞtjðxÞ: ð4Þ

The tensor gij encodes the intuitive effect that interfilament
spacing may be altered in two ways: (1) by changing in-plane
distance dx2i , or (2) by tilting filaments along neighbor
directions at constant in-plane spacing, reducing true
separation.
By drawing on a formal analogy to the metric geometry of

2D surfaces, we may extend our intuition farther to understand
that certain patterns, or textures, of filament orientation
geometrically frustrate multifilament packing. Specifically,
we may relate the constraints imposed by the interfilament
metric, Eq. (4), to a dual surface Xðx; yÞ carrying the same
metric gij ¼ ∂iX · ∂jX (Millman and Parker, 1977). Here
duality implies that geodesic distances measured in this
surface are equivalent to the distance of closest approach
between corresponding filaments in the packing, and, hence,
obstructions to perfect packing of points on Xðx; yÞ imply
corresponding obstructions for filament packing at z.
In particular, it is a classical result of differential geometry,

well known to cartographers, that the Gaussian curvature of a
surface severely constrains distances between objects defined
upon them. The Gaussian, or intrinsic, curvature K of a
surface is simply the product of the two principal curvatures κ1
and κ2, which are measured along the (orthogonal) directions
of locally maximal and minimal curvature (Millman and
Parker, 1977). In general, K may be determined directly from

the metric and its derivatives, which has the simple approxi-
mate form when the deviation from a flat metric (e.g.,
gij ¼ δij) is small, K ≃ −ð1=2Þϵikϵjl∂k∂lgij, where ϵij is
the antisymmetric tensor (Millman and Parker, 1977). This
form is sufficient for analyzing the intrinsic geometry of
filament packings where tangents are weakly deflected from
the z axis.1 Defining the effective curvature Keff of filament
packing at z to be the curvature of the dual surface we find

Keff ≃ 1
2
∇⊥ × ½t⊥ð∇⊥ × t⊥Þ − ðt⊥ × ∇⊥Þt⊥�

¼ 1
2
½∂2

xðtyÞ2 þ ∂2
yðtxÞ2 − 2∂x∂yðtxtyÞ�; ð5Þ

where t⊥ is the in-plane filament tilt at z and ∇⊥ ¼ x̂∂x þ ŷ∂y.
When Keff ≠ 0 it is impossible for multifilament systems

to maintain uniform spacing throughout the packing, just as it
is generically impossible to evenly distribute points on 2D
surfaces for which K ≠ 0 (Kléman, 1989; Sadoc and Mosseri,
2008). Hence the operator Keff plays a special role in the
geometry of multifilament systems, distinguishing textures
that are compatible from those that are incompatible with
uniform interfilament spacing. To illustrate the relationship
between textures of filament orientation and the dual-surface
geometry, we consider two characteristic, radially symmetric
patterns of in-plane tilt shown in Fig. 3. A double-twist texture
ttwist⊥ ¼ Ωðyx̂ − xŷÞ corresponds to a positive effective curva-
ture Ktwist

eff ¼ 3Ω2 > 0, consistent with a locally spherical
geometry of effective radius ð ffiffiffi

3
p

ΩÞ−1. In contrast, for a
radial splay texture tsplay⊥ ¼ γðxx̂þ yŷÞ we find a negative

intrinsic curvature Ksplay
eff ¼ −γ2 < 0 consistent with a locally

hyperbolic, or saddle, geometry with principle radii of
curvature �γ−1. Notice further from Eq. (5) that Keff exhibits
a nontrivial dependence on the uniaxial versus biaxial nature
of the in-plane texture. For uniaxial (cholesteric) twist textures
of equivalent pitch the effective curvature is 1=3 of the value
obtained by a double-twist texture, while Keff ¼ 0 for uniaxial
(planar) splay.
The implications of “intrinsically curved” filament textures,

which we deem as incompatible textures, follow from an
application of the famous Gauss-Bonnet theorem (do Carmo,
1976) relating the Gaussian curvature of a surface to geometry
of an equilateral triangle connecting three evenly spaced points
on Xðx; yÞ corresponding to centers of three equally spaced
neighbor filaments in a packing (see Fig. 4). Assuming the
geodesic length of each edge is fixed to the preferred interfila-
ment spacing d the sum of the interior angles θv becomes

X
v

θv ¼ π þ
Z
tri
dAKeff ; ð6Þ

where the area integral is carried out over the dual-surface patch
enclosed by the triangle. Equation (6) shows the well-known
result that the sumof interior angles is greater than (less than) π on

1The small-tilt form for Keff in Eq. (5) is correct to second order in
t⊥, and is the analog of the small-slope approximation of a 2D
surface metric in the Monge gauge where surface geometry is
described by surface height hðxÞ above the x-y plane for which
gij ¼ δij þ ∂ih∂jh.
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surfaces of positive (negative) curvature. Assuming the simplest
case for constant Keff within a patch area of ΔAtri, this formula
shows that for close packing the interior angle between nearest
neighbors becomes θv ¼ π=3 þ ΔAtriKeff=3. A given filament
has 2π of surrounding angle available, from which we construct
the kissing number Zk, corresponding to the number of closely
packed filaments which can surround a central filament
(Rubinstein and Nelson, 1983),

Zk ¼
6

1þ ΔAtriKeff=π
: ð7Þ

Hence, incompatible textures corresponding to positive or neg-
ative effective curvature implyZk < 6 orZk > 6, respectively. In
general, for Keff ≠ 0 the close packing is incommensurate with
integer values of Zk, implying that interfilament packing must
deviate from constant spacing d and for textures where Keff ≠ 0

interfilament packing is geometrically frustrated (Sadoc and
Mosseri, 2008).

The consequence of this geometric frustration is the
generation of interfilament or intercolumn stresses for incom-
patible textures. A physical model for the energetics incom-
patible textures is based on the continuum elasticity theory
of columnar order (Grason, 2010, 2012). Here a free energy
functional Fcol ¼

R
dVfðuijÞ describes the elastic cost of

deformations from a stress-free reference state, where fila-
ments and columns are uniformly parallel and possess long-
range 2D lattice order transverse to their orientation, with

fðuijÞ ¼ 1
2
½λðukkÞ2 þ 2μuijuij�; ð8Þ

where uij is the 2D strain tensor describing elastic deforma-
tions of the columnar lattice (assumed here to be hexagonal)
and λ and μ are the Lamé elastic constants parametrizing the
cost of deformations of lattice order (Selinger and Bruinsma,
1991). Because columns maintain translational symmetry
along their long axis, deformations are described by a two-
component displacement field u⊥ðxÞ, which has components
in the 2D plane perpendicular to the reference filament
orientation, assumed to be the z axis. Along with 2D
positional order, columnar systems possess nematic order
associated with the orientations of the columns tðxÞ and
transverse displacements deform both types of order. Column
orientations are locked to displacement via

tðxÞ ¼ ẑþ ∂zu⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∂zu⊥j2

p ≃ ẑþ ∂zu⊥: ð9Þ

In turn, orientations are coupled to intercolumn strains
through the strain tensor,

uij ≃ 1
2
ð∂iu⊥j þ ∂ju⊥i − titjÞ; ð10Þ

where the geometrically nonlinear contribution from in-plane
tilt derives from the ability of columnar systems to reduce
spacing through pure tilt (Grason, 2012) demonstrated in
Eq. (4), and therefore, preserves the rotationally invariant
elastic energy (to fourth order in ti).
The intercolumn stress defined by σij ¼ df=duij ¼

λukkδij þ 2μuij is subject to a compatibility condition which
ensures that stresses are compatible with the definition of
strain, the geometry of tilt patterns, and the topology of the
displacement field (Grason, 2010). The condition derives
formally from evaluating antisymmetric derivatives of strain
ϵikϵjl∂k∂luij (Nelson, 2002),

Y−1∇2⊥σkk ¼ sðxÞ − ∇⊥ × bðxÞ − Keff ; ð11Þ

where Y ¼ 4μðλþ μÞ=ðλþ 2μÞ is the 2D Young’s modulus
and sðxÞ and bðxÞ are the respective densities of disclinations
and edge dislocations, respectively, in the transverse lattice
order.2 This compatibility relation shows that there are two
fundamentally distinct origins of incompatibility in columnar

(a)

(b)

FIG. 4 (color online). (a) A triplet of three twisted filaments, with
lines indicatingdistancesofclosestapproachbetweenthem. (b)The
mapping of interfilament spacing onto the geodesic separation
between three points that form vertices of a geodesic triangle on a
positively curved (spherical) surface patch. The Gauss-Bonnet
relates the sum of interior angles (labeled as θv) to the integrated
Gaussian curvature within the triangular patch; see Eq. (6).

FIG. 3 (color online). Examples of filament textures with
positive Keff > 0 and negative Keff < 0 effective curvatures,
whose equivalent surface geometry is shown schematically with
spherical and saddlelike surface patches.

2Considering only the elastic energy, the Euler-Lagrange equation
for the displacement is ∂jσij ¼ ∂z½tjσij�, which strictly speaking also
contributes a term proportional to ∂z∂i½σijtj� to the right-hand side of
Eq. (11).
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systems: topological defects described by multivalued con-
figurations of u⊥ and lattice bond angle, and incompatible
orientation textures for which Keff ≠ 0. On the one hand,
topological defects are singular sources of stress, “quantized”
according to the discrete symmetries of the underlying 2D
lattice, while the effective curvature Keff varies continuously,
in magnitude and spatial distribution, according to the
geometry of column orientation. Accordingly, much like
2D crystalline membranes (Nelson and Peliti, 1987; Seung
and Nelson, 1988), the effective curvature of columnar and
filamentous systems may be viewed as a continuous distri-
bution of disclinations of local topological charge density
−Keff (Kléman, 1989).
In the absence of defects, it is straightforward to determine

the energetic costs of incompatible textures. For example, a
bundle of lateral size R, Eq. (11) implies intercolumnar
stresses of order σ ≈ YKeffR2 whose energetic cost grows
as Fcol=V ≈ YðKeffR2Þ2 implying the elastic costs of geo-
metric frustration are strongly dependent on system size,
becoming prohibitive and potentially self-limiting for finite
Keff in the thermodynamic limit of R → ∞ (Grason and
Bruinsma, 2007; Grason, 2009). As we show in the next
section for twisted bundles, one further consequence of the
geometrically induced stresses for large jKeffR2j is the
stability of topological defects in the ground-state lateral
packing of incompatible textures.

III. TOPOLOGICAL DEFECTS IN TWISTED BUNDLES

We next consider the optimal structure and energetics of the
twisted filament bundle (Fig. 5). This texture, which for
narrow bundles might be recognized as the “double-twist”
tube that is the building block of liquid crystal blue phases
(Wright and Mermin, 1989), is the simplest example of the
nontrivial frustration of interfilament spacing by an incom-
patible texture. Here filament or column backbones are
described by the rigid rotation of in-plane positions about a

central axis, say x ¼ y ¼ 0 along the pitch axis ẑ. Filament α
in the bundle is described by the helix,

RαðzÞ ¼ R0
α þR0

α⊥½cosðΩzÞ − 1� þ ðẑ ×R0
α⊥Þ sinðΩzÞ þ zẑ;

ð12Þ

whereR0
α is the filament position at z ¼ 0,R0

α⊥ is the position
in the x-y plane at z ¼ 0 (i.e., vector separation from the
central axis), and 2π=Ω is the helical pitch of the bundle,
which is constant throughout the bundle. The orientation
profile of filaments has the simple form

tðxÞ ¼ cos θðρÞẑþ sin θðρÞϕ̂; ð13Þ

where the local tilt angle with respect to the pitch axis follows

tan θðρÞ ¼ Ωρ; ð14Þ

which goes from θ ¼ 0 at the center to θ ¼ π=2 as ρ → ∞
indicating an asymptotic approach to a circular shape for
filaments far from the central axis. The application of Eqs. (3)
and (4) yields the interfilament metric for a twisted bundle in
polar coordinates ðρ;ϕÞ,

dΔ2� ¼ dρ2 þ ρ2cos2θðρÞdϕ2: ð15Þ

This metric has a simple and familiar interpretation in terms of
an axisymmetric dual surface (Fig. 6), where ρ is the arc
distance from the “pole” of the surface and ϕ is the azimuthal
angle around that axis (Bruss and Grason, 2012). The length
of a “latitude” lðρÞ that encircles the pole a distance ρ is
simply

FIG. 5 (color online). A (double-)twisted bundle, where the color
gradient highlights the radial distance of filaments from the
central filament. A single, helical filament is shown in the upper
portion to highlight the local tilt angle θðρÞ between the filament
at radius ρ and the pitch axis.

asymptotic
cylindrical radius

spherical radius

(a) (b)

FIG. 6 (color online). (a) The packing of finite-diameter
filaments at a radial distance ρ from the bundle center. The
amount of space available for packing filaments at ρ is deter-
mined by the length lðρÞ of a curve between to two points of
“self-contact” along the same filament. (b) The 2D axisymmetric
surface that carries the interfilament metric properties of a twisted
bundle. The lines of latitude of length lðρÞ as defined by the
geometry in (a).
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lðρÞ ¼ 2πρ cos θðρÞ ¼ P sin θðρÞ; ð16Þ

where we used 2π=P ¼ Ω.
In a twisted bundle lðρÞ ¼ 2πρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩρÞ2

p
can be

understood by considering the space available for filaments
a radial distance ρ from the center. The maximum number of
filaments that can be placed at ρ is constrained by the length
of a curve that passes perpendicular to filaments between
two points of contact along the same helical filament [see
Fig. 6(a)]. In recent studies of closed-packed, n-ply geom-
etries (Neukrich and van der Heijden, 2002; Olsen and Bohr,
2010), in which n filament are packed a fixed radius ρp from
the central twist axis of a ply, the nonlinear ρ dependence
of lðρÞ has been implicated in a surprising “geometrical
jamming” behavior. The constraints on nonoverlap imply a
distance between neighbor filaments d, a condition which
we may approximate at large n by d≃ lðρpÞ=n, and,
therefore, requires that ρp increase with twist as

ρp ≃ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2π=nÞ2 − ðΩdÞ2

p
. The filament length per turn of

the ply is LtðΩÞ ¼ 2πΩ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩρpÞ2

q
, which when com-

bined with divergence of ρp at a finite twist ðΩ → 2π=ndÞ
implies that the number of turns for fixed-length filaments is a
nonmonotonic function of Ω (Olsen and Bohr, 2011). That is,
n plies achieve a maximum number of turns at a finite twist for
which dL−1

t =dΩ ¼ 0, a purely geometric phenomenon which
we may now relate to the packing of disks on an axisymmetric
curved surface.
Given the axisymmetry of the metric in Eq. (15), it is

straightforward to reconstruct an axisymmetric surface in 3D
that encodes the metric properties of the twisted bundle.
Specifically, adopting cylindrical coordinates where
r̂⊥ ¼ cosϕx̂þ sinϕŷ, the surface has the form

Xðρ;ϕÞ ¼ lðρÞ
2π

r̂⊥ þ zðρÞẑ; ð17Þ

where the function zðρÞ satisfies

∂z
∂ρ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos6θðρÞ

q
; ð18Þ

and we used ð2πÞ−1∂l=∂ρ ¼ cos3θðρÞ. This surface shown
in Fig. 6(b) has a tapered, silolike geometry characterized by
the distribution of Gaussian curvature which follows directly
from derivatives of the metric (Millman and Parker, 1977),

Keff ¼ −
1

2lðρÞ
∂2lðρÞ
∂ρ2 ¼ 3Ω2cos4θðρÞ: ð19Þ

This exact form of the curvature distribution agrees with
the “small-tilt” calculation described in the previous section
only at the center of the bundle where Keffðρ → 0Þ ¼ 3Ω2

where the geometry of the dual surface is locally well
approximated by the sphere of radius Ω−1=

ffiffiffi
3

p
. In the

large-tilt regime corresponding to points far from the bundle
center where Ωρ ≫ 1, the intrinsic curvature vanishes as
Keffðρ ≫ Ω−1Þ≃ 3Ω−2ρ−4, indicating an asymptotic
approach to a cylindrical geometry for the dual surface.

The concentration of Gaussian curvature at the pole of the
dual surface implies frustration of interfilament packing is
largely localized to within a radial distance of order P from the
center of the bundle, while sufficiently far from the bundle
center, metric constraints permit a nearly regular interfilament
spacing, asymptotically commensurate with hexagonal pack-
ing, i.e., Zkðρ → ∞Þ → 6 (Bruss and Grason, 2012).
It is important to recognize that the notion of metric

equivalence between twisted bundles and the dual surface
is not restricted to the limit of infinitesimally spaced filaments.
That is, the closest distance between any two helical curves in
the bundle is identical to the geodesic distance measured
between equivalent points on the surface, no matter the
separation.3 This is important because it implies that the
duality between the problems of packing in twisted bundles
and packing on the dual surfaces holds for finite-sized
elements. For example, we may consider steric, hard tube
interactions to prevent interfilament separations smaller than a
diameter d. The duality between packing in bundles and on the
dual surface implies that any nonoverlapping configurations
of (geodesic) disks of diameter d on the surface correspond
one to one to three-dimensional configurations of nonoverlap-
ping filaments of diameter d in the bundle [see, e.g., close-
packed twisted bundles in Bruss and Grason (2012)].
The equivalence between discrete packings of finite-

diameter elements provides a useful way to illustrate and
understand the metric equivalence between bundles and their
dual surfaces. Consider a horizontal section of a twisted
bundle as shown in Figs. 7(a) and 7(b) and note the apparent
“warping” of the circular cross sections of the helical tubes in
the sections: horizontal slices of filaments near the bundle
center remain circular due to the normal intersection with a
horizontal plane, while slices toward the outer edge of the
bundle stretch, or warp, azimuthally due to the increased tilt.
Consider also the equivalent disk packing on the dual surface
shown in Fig. 7(c). Because of the nonzero Gaussian curvature
of the dual surface, any projection of the disk packing to a
planar surface will distort the image of the disk packing with a
local geometry that varies throughout the projected image,
familiar from continental distortions in cartographic projec-
tions of the globe to flat maps (Bugayevsky and Snyder,
1995). See, for example, the disk packing in orthographic
projection [i.e., viewed from above in Fig. 7(d)], where disks
appear compressed along the radial directions away from the
pole at the center of the image. Viewed from another

3This follows from the fact that any curve C12 between two points
ðρ1;ϕ1Þ and ðρ2;ϕ2Þ on the dual surface maps onto a unique three-
dimensional curve C0

12 in the bundle that connects filaments at
ðρ1;ϕ1; z0Þ and ðρ2;ϕ2; z0Þ and that intersects all intervening helical
curves perpendicular to their backbones. Further, metric equivalence
between the surface bundle implies these curves share the identical
length (i.e., LC12

¼ LC0
12
). Likewise, any curve in the bundle maps

onto a unique, equal-length curve on the surface. Consider the
geodesic path G12 between two end points on the surface, which
maps to curve G0

12 in the bundle with LG12
¼ LG0

12
. Because the

length of any other curve C12 between the same end points must have
LC12

≥ LG12
, it follows that G0

12 must also be the shortest possible
path between end point filaments in the bundle (i.e., a straight line
connecting points of contact).
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projection which maintains distances measured from the
ρ ¼ 0 pole [see Fig. 7(e)] known as the azimuthal equidistant
projection, we find that the projected image of dual-surface
disk packing is identical to images of the planar section of
bundle normal to the pitch. Other planar sections of the
bundle, those not necessarily normal to the pitch axis,
correspond to azimuthal equidistant projections of the same
disk packing where the center of the image is no longer a point
of axial symmetry of the dual surface (the pole at ρ ¼ 0). The
warping of filament sections in the planar cut of a bundle has
long been recognized in the context of the so-called “contact”
problem in textiles and yarns (Hearle, Grosberg, and Backer,
1969; Pan and Brookstein, 2002), although only recently has
the connection to non-Euclidean geometry been understood.

A. Disclinations in twisted bundles

The non-Euclidean metric geometry and the associated
global and local constraints on interfilament packing implied
by the mapping have critical consequences for physical
models of cohesive filament assembly in twisted bundles.
The Gauss-Bonnet theorem and its application to triangula-
tions of disk packings on the dual surface may be exploited to
derive the relationship between bundle twist, the topology of
the nearest-neighbor bond network in the bundle, and the
deformation of ideal interfilament geometry (Bruss and

Grason, 2012). Figure 8 shows a filament bundle and its dual
representation as a curved-surface disk packing. Because the
geodesic distances measured on the surface represent the true
interfilament spacing, the triangulated network of nearest-
neighbor bonds on the surface properly encodes the topology
of nearest interfilament contact. In particular, from the
triangulation of the dual packing we may count the neighbor
statistics of filaments in the packing, and its deviation from the
sixfold packing of a parallel bundle. Denoting the number of
filaments (or disks) in the bulk of the bundle (not a surface
vertex) possessing n neighbor bonds by Vn, we define the total
topological charge of the bundle to be

Q ¼
X
n

ð6 − nÞVn: ð20Þ

This definition is consistent with the definition of topological
disclination charge where points of fivefold (sevenfold)
coordination in the bond network correspond to þ1 (−1)

horizontal cross section

orthographic
projection

azimuthal-equidistant 
projection

ho
projec

muthal-equidis
projectio

ss sectio

twisted bundle disc-packed “dome”

(a)

(b)

(c)

(e)

(d)

FIG. 7 (color online). Equivalence of finite-diameter filament
packing in twisted bundles, and finite-diameter disk packing on a
“domelike” surface carrying the metric of a twisted bundle.
(a) The side view and (b) the top view of a twisted bundle,
highlighting noncircular shapes of the filament intersections with
the plane perpendicular to the pitch axis. (c) A side view of the
equivalent disk packing on the “dome” shown in Fig. 6(b), and
(d), (e) two “polar” projections of the disk packing. The ortho-
graphic projection in (d), a view from the top down, preserves
distances along the azimuthal direction while compressing
distances along the radial direction. (e) The azimuthal equidistant
projection preserves radial distances while stretching azithumal
distances, producing the identical image of the filament inter-
sections (azimuthally stretched disks) shown in (b).

(a) (b)

(c) (degrees)

FIG. 8 (color online). A simulated ground state of an N ¼ 70
twisted bundle from Bruss and Grason (2012) is shown in side
view in (a), along with the corresponding disk packing on the
bundle-equivalent surface in (b). Triangulation of the packing
on the curved surface yields the nearest-neighbor “bond net-
work,” identifying defects in the packing as deviations from
sixfold coordination of the bond network (i.e., disclinations).
Filaments with fivefold, sixfold, and sevenfold neighbor co-
ordination are highlighted in different shades. (c) The total
topological charge of the ground-state packing Q, defined in
Eq. (20), plotted as a function of the twist angle of the outermost
filament in the bundle θ ¼ arctanðΩRÞ with the colored data
points showing results from simulated ground states and the
solid line showing the geometric prediction for the ideal
topological charge given by Eq. (24).
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contributions to Q (Nelson, 2002). Applying Eq. (6) by
summing over the triangulated faces of nearest-neighbor mesh
and using the facts that (1) each face is spanned by three edges
(or “bonds”), (2) each edge connects two vertices, and (3) each
internal (nonsurface) vertex accounts for 2π total internal
angle, we arrive at a generalized version of the Euler-Poincaré
formula (Kamien, 2002)

Q − 6χ ¼ Nbhδθbi; ð21Þ

where

χ ¼ 1

2π

Z
mesh

dAKG ð22Þ

quantifies the total integrated Gaussian curvature within the
triangulated packing and the right-hand side describes the
Nb internal angles of boundary vertices θb from equilateral
packing with

hδθbi ¼
1

Nb

X
b

ðθb − π=3Þ; ð23Þ

where θb is shown schematically in Fig. 8(b).
Typical applications of the Euler-Poincaré formula consider

triangulations without boundary (say, for crystalline packings
on surfaces of spherical topology), such that the right-hand
side is zero (Nb ¼ 0) andQ is a topological invariant, fixed by
the Euler characteristic χ (Bowick and Giomi, 2009). In the
case of a twisted bundle, the total disclination charge is not a
topological invariant,4 and the deficit between Q and 6χ will
be accommodated by packing deformation at the boundary
(i.e., hδθbi ≠ 0). Nevertheless, Eq. (21) provides a useful
heuristic for understanding the structure of low-energy pack-
ings by noting that the right-hand side a measure of the
interfilament strain in the packing. Intuitively, one expects that
interactions that favor equidistant filaments will favor equi-
lateral packing at the boundary (specifically in the limit of
d → 0 where area per face vanishes); hence, hδθbi ≠ 0

indicates a locally suboptimal geometry. More specifically,
the magnitude of interfilament strain, or the variation of
interfilament spacing, implied by hδθbi ≠ 0 can be understood
in terms of the mean geodesic curvature κg ≈ 3hδθbi=d of
lattice row in a nearly triangular packing of average spacing d.
Because of the row curvature, the change in spacing between
successive rows is roughly κgd2. For a bundle with a number
of radial rows Nr, the relative change of spacing between

filaments at the center and periphery of the bundle, respec-
tively, d0 and db, becomes db=d0 − 1 ≈ Nrhδθbi. For 2D
bundles where Nr ∝ Nb, it follows from Eq. (21) that Q − 6χ
is indeed proportional to the excess separation between
filaments at the bundle surface relative to the center.
As cohesive interactions favor uniform interfilament

spacing throughout, a simple conjecture is that in energy-
minimizing bundles the packing prefers values of topological
charge where hδθbi ¼ 0, such that the ideal topological charge
may be defined as Qid ≡ 6χ. Assuming that bundle cross
sections retain a roughly circular shape, we may calculate the
dependence of Qid on the twist and radius of bundles,

Qid ¼
3

π

Z
dρlðρÞKeffðρÞ ¼ 6½1 − cos3θðRÞ�; ð24Þ

where we use dA ¼ dρlðρÞ and Eq. (19). This simple
relationship makes three significant predictions about the
optimal (energy-minimizing) packing of twisted bundles.
First, the preferred disclination charge of bundles is indepen-
dent of filament diameter, depending only on the tilt angle θ
at the surface of the bundle, which itself is fully determined
by the ratio R=P. Second, for θ ≠ 0, Qid ≥ 0, indicating a
preference for excess fivefold coordinated (Q ¼ þ1) sites in
the bundle cross section. Third, the preferred topological
charge of the packing increases from Qid ¼ 0 at θ ¼ 0 to a
maximum of Qid ¼ 6 as θ → π=2.
These predictions for the optimal distribution of defects in

the cross section of twisted filament bundles have been tested
in the context of numerical simulations of cohesive filament
bundles (Bruss and Grason, 2012, 2013). The simulations
employ a simple stochastic algorithm to optimize the cohesive
energy of an N-filament bundle with fixed twist Ω. Here the
finite-diameter d of filaments enters as the energy minimum
of pairwise cohesive interactions, which was assumed to have
a form similar to a Leonard-Jones potential in which the
separation is the distance of closest approach between helical
center lines of filaments. Figure 8(c) compares the Qid to the
topological charge Q of numerically minimized bundle
packings for N ¼ 16 − 196, which is extracted directly from
triangulated neighbor packing that has been conformally
mapped to the plane. Notwithstanding its continuous
θ dependence as well as the simple assumption of cylindrical
bundle shape, the form of Qid in Eq. (24) does a remarkable
job of capturing the increase in the excess of fivefold defects
of numerical ground-state packings.
As shown in Fig. 9(b), which maps the minimal-energy

value of Q in terms of θ and N, these simulations confirm that
the net topological charge is solely determined by the twist
angle (or equivalently by the integrated curvature on the
dual surface) and independent of the filament number. The
evidently universal dependence of Q on θ is all the more
surprising when analyzing the dependence of other structural
measures of the packing on θ and N. For example, in Fig. 9(c)
we show the total number of disclinations per topological
charge Q (where disclination here refers to any non-six-fold
coordinated filament in the bulk packing), which unlike Q
itself exhibits a complex and nonuniversal dependence on
both filament number and bundle twist, highlighting
N-dependent transitions between multiple ground-state defect

4Equations (20)–(23) restrict the analyses to “internal” or “non-
boundary” disclinations. Although it is possible to consider discli-
nations defined on the open boundary of a 2D bond network (Bowick
and Giomi, 2009), such “defects” do not generate the far-field elastic
strains of an intervertex position favored by Gaussian curvature.
Although the sum of internal and “boundary” disclinations is always
6 for any effective curvature (twist), due to distinct geometric
influence of these two different populations, the distribution of these
defects in the ground state shifts from boundary-only defects in
untwisted bundles to predominantly or exclusively internal defects in
highly twisted bundles.
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patterns. One critical observation is the abundance of an
excess 5–7 pairs in the energy-minimizing states of large-N
bundles [Fig. 9(d)], a trend which is not unlike the formation
of “grain boundary scars” on spherical (Bowick, Nelson, and
Travesset, 2000; Bausch et al., 2003) and catenary (Irvine,
Vitelli, and Chaikin, 2010) surfaces at large N.
Despite these obvious complexities in the detailed ground-

state structure (in numbers, positions, and charge of individual
defects), optimal bundles maintain a fixed and universal value
of a net number of fivefold defects as measured by Q for a
given θ consistent with the purely geometric considerations
implied by the dual-surface mapping. The universal evolution
of Q with twist implies a corresponding universality in the
θ dependence of the energy of the bundle. Figure 10(a) shows
the plots of Ebulk=V “bulk” energy density (total surface
filament energy) versus θ for simulated ground states in the
range of N. Again, despite the differences in the detailed
packing structure, for large N the bulk energy shows a
characteristic dependence on θ that is dominated in the
underlying and universal changes in Q. At low angle, the
energy of a defect-free (Q ¼ 0) bundle exhibits a roughly
power-law increase with θ. The monotonic θ dependence
holds until a critical value of θdisc ≃ 25°, at which point the
ground state becomes unstable to an excess fivefold defect,
Q ¼ 1, marked by a cusp and secondary minimum, indicating
the mitigating effects of defects in highly twisted bundles.
Further cusps appear on the transitions to higher integer Q,
leading a characteristic “sawtooth” dependence of Ebulk=V on
θ in the defect-mediated regime. Notably, an energetic

landscape of similar structure was calculated in the context
of continuum elasticity theory calculations of twisted bundles
(Grason, 2010, 2012) possessing energy-minimizing configu-
rations of fivefold disclinations [Fig. 10(b)]. At small twist,
predictions of the continuum theory appear quantitatively
consistent for small twist [notably, continuum theory predicts
a critical angle of θdisc ¼ arctanð ffiffiffiffiffiffiffiffi

2=9
p Þ≃ 25.2° in good

agreement with simulations]. It should be noted that the
small-tilt approximation underlying this theory lead to quali-
tative failures at large twist, including an unbounded increase
in Q as θ → π=2.

B. Dislocations in large-N bundles

Fivefold disclinations are evidently favorable in sufficiently
twisted bundles, yet these topologically charged defects are
not the only means of relaxing geometrical frustration in
bundles. Indeed, for sufficiently large bundles (N ≫ 1) excess
disclinations which appear only above a critical threshold of
twist θdisc ≃ 25° are preempted by a class of topologically
neutral defects that become stable at lower twist (Azadi and
Grason, 2012). These defects, edge dislocations in the cross
section, are “bound” 5–7 pairs (Nelson, 2002), which corre-
spond to a partial row of filament positions that terminates
within the bulk of the packing. Because these defects are
energetically stable only at sufficiently large N, dislocation-
only ground states of twisted bundles have not been
characterized via the numerical methods applied for stable
disclination patterns for N ≲ 200. Nonetheless, the regime of

(a)

(c)(b) (d)(degrees) (degrees)

FIG. 9 (color online). Simulated ground states of twisted filament bundles. (a) Optimal packings of a 34-filament bundle, with
increasing twist angle showing an increase in the number of fivefold (disclination) defects. (b) The total topological charge of simulated
ground states for bundles of variable twist angle θ ¼ arctanðΩRÞ and filament number N. (c) The number of disclinations per charge
Ndisclination=Q is shown for simulated ground states, with dark lines drawn to guide the eye to regions of roughly constant value. (d) A
series of simulated ground states at fixed θ ≈ 30° (corresponding to Q ¼ 1) with increasing N, showing the transition from compact
disclinations to extended “charged scars” of alternating 5–7 defect pairs. Adapted from Bruss and Grason, 2012, 2013.
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large bundle size R=d ≫ 1 and low-twist θ ≪ 1 where
multidislocation patterns emerge as minimal-energy configu-
rations is well suited to the continuum elastic theory of 2D
ordered bundles outlined in Sec. III.A.
The stability of dislocations can be understood by consid-

ering the stress distribution in a defect-free twisted bundle
and the work done to remove a partial row of filament
positions in the bundle, to create an edge dislocation
(Azadi and Grason, 2012). The dominant contribution
to the stress derives from the tilt-induced azimuthal compres-
sion of interfilament spacing at the outer periphery of
the bundle, from which we can crudely estimate the magnitude
of this stress as σϕϕ ≈ −Yt2ϕ ¼ −YðΩρÞ2. A more careful
calculation shows that the stress profile of the defect-free state

σϕϕ ¼ 3YΩ2=128ðR2 − 3ρ2Þ is only compressive sufficiently

far from the bundle core (ρ ≥ R=
ffiffiffi
3

p
) (Grason, 2012). To

maximize the energy relaxation upon introducing a disloca-
tion, we may consider a Volterra construction (Chaikin and
Lubensky, 1995), in which dislocations correspond to the
removal of a material along a cut in the bundle cross section.
Because of the compressive stress at the bundle periphery,
stable dislocations have polarizations corresponding to a
Burgers vectors locally aligned to the azimuthal direction
and the removal of a partial row of filament positions
extending radially from the dislocation (at ρ ≲ R) to the free
edge of the bundle. Following standard arguments (Peach and
Koehler, 1950), removing a row of filament positions of width
b≃ d and of length l ≈ R corresponds to a relaxation of the
elastic energy by roughly σϕϕdR, from which we estimate the
energy of twist-dislocation coupling Etwist to be

Etwist ≈ −YbΩ2R3: ð25Þ

Comparing this to the elastic self-energy of introducing a
single dislocation in the cross section Edisc ≈ Yb2 lnðR=bÞ
(Chaikin and Lubensky, 1995), we estimate the critical degree
of bundle twist at which dislocations become stable,

ðΩRÞ2disl ≈
b
R
lnðR=bÞ: ð26Þ

Significantly, while the stability condition of isolated discli-
nations is predicted to be independent of bundle size [i.e.,
ðΩRÞdisc ¼

ffiffiffiffiffiffiffiffi
2=9

p
] the threshold twist for appropriately polar-

ized dislocations is (1) highly dependent on R=d and (2) found
to decrease with increasing bundle size, vanishing in the
R=b → ∞ limit. Notably, an essentially equivalent argument
was first developed in the context of “neutral” dislocation
patterns formed in 2D crystalline assemblies on curved
surfaces with open boundaries by Irvine, Vitelli, and
Chaikin (2010), yielding a similar increase in dislocation
stability as the ratio of crystal size to lattice spacing grows.
A more careful analysis of the position dependence of the

elastic energy of dislocations in twisted bundles yields the
defect stability diagram shown Fig. 11(a). For sufficiently,
narrow bundles R=b≲ 3 the dislocations and disclinations are
predicted to become energetically preferable at roughly the
same degree of large twist, comparable to ðΩRÞdisc ¼

ffiffiffiffiffiffiffiffi
2=9

p
.

In contrast, for mesoscopically large bundles where R=b ≫ 1

dislocations become stable in twisted bundles at degrees of
twist far below the threshold for excess fivefold disclinations,
predicting a broad range of multidislocation ground states at
intermediate twist for large bundles. To put this into context,
we compare these thresholds with the observed size and twist
angles of self-twisting filament assemblies. For example,
fibrin bundles (Weisel, Nagawami, and Makowski, 1987)
and twisted collagen fibrils (Wess, 2008) are observed to have
twisted angles in the ranges of 8°–10° and 15°–17°, respec-
tively, which are both well below the threshold angle for
stabilization of a single fivefold disclination θdisc ≃ 25°.
For bundles of mesoscopic dimensions typical for fibrin
and collagen R ≈ 100d, the elastic theory predicts that dis-
locations become favorable above a threshold twist of
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FIG. 10 (color online). (a) The bulk energy density (total energy
minus excess energy of surface filaments) of simulated ground
states of twisted bundles vs twist angle, for large bundle sizes
N ¼ 166 − 193 as computed by Bruss and Grason (2013).
Energy curves are overlaying the results for Q, highlighting
the coincidence of multiple minima in the energy density with
stepwise transitions in an optimal value ofQ. (b) The shape of the
simulated bulk energy density is compared to continuum elas-
ticity theory calculations for twisted bundles possessing only
fivefold disclinations, calculated by Grason (2010, 2012), with
optimal arrangement of defects shown for each distinct branch
(corresponding to distinct Q values) of energy minimal. The
dashed lines show the metastable branches of defect-free and
Q ¼ 1 elastic energy density, which meet at the transition point
ðΩRÞdisc ¼

ffiffiffiffiffiffiffiffi
2=9

p
(corresponding to θdisc ≃ 25°).
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θdislðR=b ¼ 100Þ≃ 9°, below or comparable to the observed
twists of either structure. These observations suggest that
while excess disclinations may not be stable in some of the
most commonly observed twisted filament architectures,
stable dislocations and multidislocation patterns are likely
features of optimal packing of these materials.
The structure and thermodynamics of multidislocation

ground states of twisted bundles was studied using the
Green’s functions for dislocation sources of stress in cylin-
drical bundles to calculate the elastic energy of competing
defect patterns (Azadi and Grason, 2012). For a bundle
twist in excess of the critical dislocation twist ðΩRÞdisl,
the energetically preferred number of dislocations follows
a characteristic scaling with bundle twist and size
[see Fig. 12(a)]. This scaling can be understood in largely
geometric terms by balancing the length of azimuthal
compression at the free boundary on the dual surface jlðRÞ −
2πRj ≈ RðΩRÞ2 with the azimuthal length Ndb removed by
Nd radial lattice rows of width b removed from the periphery
of the bundle, yielding

Nd ∼
R
b
ðΩRÞ2: ð27Þ

The optimal symmetries of multidislocation patterns have
also been explored in the context of ground states of twisted
bundles, and, more recently, the context of the dual problem
of crystalline “caps” on spherical surfaces (Grason and
Davidovitch, 2013; Azadi and Grason, 2014). For Nd ≫ 1,
minimal-energy patterns of dislocations are shown to be radial
chains of dislocations, or “neutral scars,” extending from the
free edge and terminating the bulk of a bundle [see Fig. 11(b)].
This motif of a neutral 5–7 disclination chain, originally
dubbed “pleats” when observed in colloidal assemblies on
curved 2D surfaces (Irvine, Vitelli, and Chaikin, 2010), has
the structure along its length of a tilt-grain boundary sepa-
rating two orientationally mismatched regions by an angle
δϕ≃ b=D, whereD is the spacing between dislocations along
the scar. While an ordinary grain boundary does not terminate

in the bulk of the crystal, the “tips” of scars do, and, therefore,
act as singular, disclinationlike points around which the lattice
orientation rotates rapidly by δϕ. It was recently shown (Azadi
and Grason, 2014) that the elastic competition between these
distinct portions of scars—on the one hand, the “line tension”
of the scars which prefers to localize dislocations into a small
number of high-angle grain boundaries and, on the other hand,
the disclinationlike tips of scars which alternatively favor a
larger number of small-angle grain boundaries—selects an
optimal number of scars ns ∼ Nd which diverges in direct
proportion to the number of dislocations as R=b → ∞.
Figure 12(b) shows the linear relationship between Nd and
ns for simulated ground-state patterns of dislocations of
bundle sizes in the range of R=b ¼ 20 − 700. Remarkably,
these results predict that the ratio Nd=ns, the number of
dislocations per scar, approaches a universal value [≈6 from
the slope of Nd vs ns in Fig. 12(b)], independent of lattice
spacing, bundle twist, or other materials parameter in the
asymptotic limit R=b → ∞.

FIG. 11 (color online). (a) Stability phase diagram for defects in
twisted bundles, calculated from continuum elasticity theory
(Azadi and Grason, 2012), showing regions where dislocations
(neutral 5–7 disclination pairs) and charged defect configurations
possessing at least one excess fivefold disclination are stable
relative to the defect-free bundle. Here a is the interfilament
lattice spacing. (b) The “scarred,”multidislocation ground state at
intermediate twist for sufficiently large bundles (i.e., R=a ≫ 1),
with fivefold and sevenfold coordinated filaments.
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FIG. 12 (color online). (a) Optimal number of dislocations vs
bundle twist in a R ¼ 100a bundle, from continuum theory of
twisted bundles (Azadi and Grason, 2012). The integer pair
ðm; nÞ refers to structures with m “scars” each possessing n
dislocations. (b) The collapse of the total number of defects (from
bundles R=a ¼ 20 − 700) with parameter R=a½ðΩRÞ2 − ðΩRÞ2��
where ðΩRÞ� is the critical twist for stable dislocations. The inset
of (b) shows the proportionality between the total dislocation
number and optimal scar number, roughly predicting six dis-
locations per scar independent of R=a. Here the color scale
indicates the gradient in bundle sizes corresponding to large and
smaller R=a, respectively.
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IV. TWISTED TORI IN CURVED (AND FLAT) SPACE

In this section we review geometrical approaches to the
problem of twisted filament packing based on studies of
fibrations of the 3-sphere (S3). As was first understood in the
context of curved-spacemodels of the liquid crystal blue phases,
the ambient positive curvature of S3 admits uniform double-
twist textures which are otherwise frustrated in Euclidean space
(R3) (Sethna, Wright, and Mermin, 1983). This fact provides a
means to construct and study ideal twisted structures in curved
space whose structure becomes heterogeneous, perhaps defect
riddled, upon projection to R3.
A second important feature of the twisted fibrations of S3,

particularly their projections to R3, is that they provide a
natural means to construct twisted toroidal bundles. Similar to
the straight bundles of the previous section, in twisted toroidal
bundles filament positions rotate around a central backbone
along its contour, but unlike straight bundles, twisted toroids
have backbones that also bend around into a closed curve.
Toroidal assemblies of filaments and columns are known to
form in a variety of systems (e.g., condensed DNA, collagen,
and columnar droplets), and, therefore, a generic model of
structure and thermodynamics of interfilament packing in this
geometry has broad value. Beyond its potential application to
any of these material systems, the physical and geometric
theory of packing in twisted toroidal bundles provides a
natural way to analyze the interplay between bundle geometry
and interfilament organization, beyond straight, twisted bun-
dles. Simply put, how are the metric properties and conse-
quences thereof altered when a filament bundle is twisted and
simultaneously bent?
In the context of liquid crystalline materials, the unique

geometry of textures in S3 first drew interest as a conceptual
approach to “defrustrating” double-twist textures which are
characteristic of chiral, blue phases (Wright andMermin, 1989).
Kléman (1985)was the first to consider howmetric properties of
ideal fibrations (that is, properties beyond orientation) would be
relevant to physical models of twisted filament packing, albeit,
filaments embedded in an unphysically curved space. More
recently, Charvolin and Sadoc (2008) and Sadoc and Charvolin
(2009) expanded on this initial analysis by exploring a more
general class of fibrations and their projections to twisted
toroidal bundles in R3. In this section, we aim to provide
primarily a descriptive summary of the key properties of twisted
filament packing geometry in S3, metric features of their
projections to R3, and the connection to the twisted, straight
bundle packing problem of the previous Sec. III. An interested
reader will find considerablymore detailed analyses of 3-sphere
fibrations in Sadoc and Charvolin (2009).

A. Double-twisted filament packings in S3

S3 can be constructed as a three-dimensional submanifold
of a four-dimensional (Euclidean) space satisfying

x21 þ x22 þ x23 þ x24 ¼ Ω−2; ð28Þ
where Ω−1 is the radius of the 3-sphere, which can be related
to a twist of embedded filament packings. Critical to models
of filament packing is the structure of fibrations of S3 (Sadoc

and Mosseri, 2008), which are decompositions of this space
into a collection of nonintersecting curves, or fibers, such
that every point maps to a unique curve. Similar to the case
of the straight bundles in R3 above, the fibrations of interest
here are also equipped with an important property that every
fiber is associated with a unique point on a lower dimen-
sional manifold (a 2D surface), such that distance between
fibers in S3 (i.e., the distance of closest approach) is encoded
in metric properties of the surface, known as a base.
The topological and metric properties of the 3-sphere are

encoded in the following toroidal coordinates:

x1 ¼ Ω−1 cosϕ sinΘ;

x2 ¼ Ω−1 sinϕ sinΘ;

x3 ¼ Ω−1 cosψ cosΘ;

x4 ¼ Ω−1 sinψ cosΘ;

a parametrization that satisfies Eq. (28) by construction.
Surfaces of fixed Θ are periodic under ϕ → ϕþ 2π and
ψ → ψ þ 2π and therefore have the topology of 2D tori. In
these coordinates the metric of S3 has a simple form,

dx2i ¼ Ω−2ðsin2Θdϕ2 þ cos2Θdψ2 þ dΘ2Þ in S3; ð29Þ

which shows that the metric of fixed Θ surfaces is Euclidean
and spans a rectilinear periodic cell of dimensions 2πΩ−1 sinΘ
and 2πΩ−1 cosΘ, along the ϕ and ψ directions, respectively
[see Fig. 13(a)]. Fibers, or filament backbones, are curves
running along surfaces of constant Θ parametrized by

ϕðψÞ ¼ ϕ0 þ αψ : ð30Þ

Here ψ plays the role of an arc coordinate, describing different
positions along the filament backbone, and α is the number
turns of the fiber around the ϕ direction per rotation around the
ψ direction [see Fig. 13(a)]. It is straightforward to show that
any two such curves sharing the same α (at different ϕ0) remain
equidistant along their entire length.
As with the case of the straight bundles in R3 the interfila-

ment metric may be deduced by considering the length lðΘÞ
of a curve separating points of self-contact along a given fiber
in S3 which defines the “perimeter” or the amount of space
available for packing fibers along the ϕ direction at fixed Θ.5

5This notion of perimeter neglects self-contact with any periodic
images of the fiber that may pass between ϕ0 and ϕ0 þ 2π. For
example, for α ¼ n=m (where n andm are relatively prime integers) a
fiber will wind n times around the ϕ direction for every m turns
around the ψ , leading to n copies of the fiber section between ϕ0 and
ϕ0 þ 2π, which clearly limit the number of filaments of a given
diameter that can be packed on the 2-torus. Because the implicit n-
fold symmetry of the fibration around ϕ has been neglected at this
stage, some care must be taken when applying this result to packings,
specifically, every filament in the packing must be associated with the
n − 1 copies spaced at intervals of 2π=n. In their analysis of metric
properties of S3, Charvolin and Sadoc retain the n-fold images of a
fiber when constructing the lðΘÞ leading to a somewhat modified
formula for the base metric.
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As shown in Fig. 13, this is easily reduced to
lðΘÞ ¼ 2πΩ−1 cos θ sinΘ, where θ ¼ arctanðα tanΘÞ is the
“tilt angle” of the fiber on the 2-torus at Θ. Hence,

lðΘÞ ¼ 2πΩ−1 sinΘ cosΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2Θþ α2sin2Θ

p . ð31Þ

Using this perimeter and noting the distance between fibers at
different Θ is simply Ω−1jdΘj, we have the interfiber metric

dΔ2�ðαÞ ¼ ð2ΩÞ−2
�
dð2ΘÞ2 þ sin2ð2ΘÞdϕ2

0

cos2Θþ α2sin2Θ

�
in S3:

ð32Þ

This metric formula shows that the geometry of the
base surface for twisted fibrations of S3, like that of the
case of straight, twisted bundles in R3, is axisymmetric, with
Ω−1Θ the arc distance from a pole at Θ ¼ 0. Again,
the independence of the interfilament metric on ψ
derives from the equidistance of any pair of curves sharing
the same α.
The particular case of α ¼ 1 corresponds to the cel-

ebrated Hopf fibration (Sadoc and Mosseri, 2008), where
each fiber is a closed geodesic of S3 (great circle) which
winds (twists) around its neighbor once every cycle from ψ
to ψ þ 2π. The interfiber metric has the remarkably simple
form dΔ2�ðα ¼ 1Þ ¼ ð2ΩÞ−2½dð2ΘÞ2 þ sin2ð2ΘÞdϕ2

0�, identi-
cal to the geodesic distance measured between points on a
2-sphere of radius ð2ΩÞ−1, with polar and azimuthal angles
2Θ and ϕ0, respectively. In this unique geometry (α ¼ 1),
packing double-twisted filaments in S3 maps identically
onto the generalized Thomson problem of packing points

on S2 (Altschuler et al., 1997; Saff and Kuijaars, 1997).
Exploiting the homogeneous metric geometry of the Hopf
fibration, Kléman constructed a class of ideal twisted
filament packings in S3, such that all nearest-neighbor
filaments are closely packed, at a center-to-center spacing
equal to the diameter d (Kléman, 1985). Evenly spaced
distributions of disks on S2 are possible only for certain
numbers of disks, or, equivalently, for certain ratios of
diameter to sphere radius 2Ωd, packings which correspond
to the vertices of the Platonic solids which possess
only a small number of disks (≤20). By mapping the
Hopf packings in S3 to their associated “Platonic” packing
on S2 (shown in Fig. 14) Kléman showed that the densest
such packing of twisted filaments has icosahedral symmetry
with each filament surrounded by five neighbors
(Kléman, 1985).
The cases of α ≠ 1 provide generalizations of the Hopf

fibration, known as Siefert fibrations (Sadoc and Charvolin,
2009). When α ≠ 1, the fibers are not geodesics of S3,
although they remain closed curves for any rational α.
Examples of the 2D base (embedded in R3) are shown in
Fig. 13(b), where we take ρ ¼ Ω−1Θ to be the arc distance
from the pole at Θ ¼ 0, and define the Euclidean distance
from the z axis of radial symmetry to be

r⊥ðρÞ ¼
sinð2ΩρÞ

2Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα2 − 1Þsin2ðΩρÞ

p : ð33Þ

From this metric, it is straightforward to show that the
Gaussian curvature at the pole has the following form:

KGðρ ¼ 0Þ ¼ Ω2ð1þ 3α2Þ in S3; ð34Þ

(b)

(a)

FIG. 13 (color online). (a) The toroidal coordinate system of
fibrations in S3, showing the dimensions of the T2 unit cell at
fixed Θ. Fibers (filament backbones) wind along the dark solid
lines at an angle θ with respect to the ψ̂ axis. The perimeter is
defined as the distance of closest contact between the fiber at ϕ
and its periodic image at ϕþ 2π. (b) Surfaces (bases) carrying the
interfilament metric of fibrations in S3.

triangular tetrahedral octahedral

cubic icosahedral dodecahedral

FIG. 14 (color online). The ideal packings of twisted and equally
spaced filaments (diameter d) in S3 whose positions correspond
to vertices of Platonic solids projected on S2, where ϕ, Ωd, and z
denote packing fraction, reduced twist, and coordination number
of the packing. From Kléman, 1985.
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which is consistent with the apparent increase of curvature
with α seen in Fig. 13(b).6 Note that for α ≠ 1, the 2D surface
is not smoothly embeddable in R3. For α < 1, the surface
cannot be extended beyond a cusp at ρm where
j∂ρr⊥ðρmÞj ¼ 1, while for α > 1 a conical singularity devel-
ops at the Θ ¼ π=2 (or ρ ¼ Ω−1π=2) pole. To date, optimal
packing geometries on these base metrics of Seifert fibrations
for α ≠ 1 have not been studied.

B. Projecting ideal packings to Euclidean space

In principle, the high symmetry of the interfiber distances of
the fibrations of S3 (all fibers are equidistant and metrics are
axisymmetric) provides a natural setting for investigating
optimal packings of twisted filaments with a more complex
topology than the straight, twisted bundle described in Sec. III.
However, exploiting the ideal properties of fibrations of S3 in
models of filament packing in Euclidean space requires
overcoming at least two critical challenges. First, for a given
filament number, α, Ω, and a model of filament interactions,
the optimal filament packing must be identified, which is the
analog of the generalized Thomson problem defined for the
broader class of base surfaces. Provided these optimized
packings can be determined for S3, an additional step is
needed to “rescue” the filament configurations from curved
space (S3), via some projection to R3, which in turn alters the
interfilament distances form their ideal geometry in R3. As it is
not possible to project from curved to a flat space while
globally preserving distance properties, one might view the
choice of projection from S3 to R3 as a second, and currently
unsolved, step of the optimization procedure.
One approach that was suggested by Charvolin and Sadoc

(2008) is based on the stereographic projection from S3 to R3.
Because it is conformal, the stereographic projection has the
advantage of preserving angular properties, including the
skew angle of neighboring filaments in the double-twisted
packing. Furthermore, the metric distortion from the optimal
geometry of S3 vanishes near the projected pole of the
stereographic image, such that appropriate choices of the
projection pole allow different (finite) regions of the S3

packing to be projected to R3 with a nominal distortion of
interfilament spacing. For example, a projection that generates
toroidal bundles and preserves the curved-space metric along
their center lines takes x1 as the projection axis so that filament
positions in Euclidean coordinates become

xðsÞ ¼ x3ðsÞ
1 − Ωx1ðsÞ

; yðsÞ ¼ x4ðsÞ
1 −Ωx1ðsÞ

;

zðsÞ ¼ x2ðsÞ
1 − Ωx1ðsÞ

:

ð35Þ

Under this projection, the filaments wind around a family of
nested tori. The central axis of the torus is the ẑ axis and
toroidal coordinates—a is the “major radius,” or the distance
of torus center from the axis and ρ is the “minor radius,” or the
radial distance of the torus surface from the torus center (as in
Fig. 15)—related to S3 coordinates by

ρðΘÞ ¼ Ω−1 tanΘ; aðΘÞ ¼ Ω−1 secΘ. ð36Þ

Hence, the pole at Θ ¼ 0 maps to the planar circle of radius
Ω−1, and the pole at Θ ¼ π=2 maps to the central (z) axis
(infinite radius circle). As the stereographic projection is
conformal, the angle θ between the axial direction
and filament tangents winding around fixed-Θ tori remains
constant, tan θ ¼ α tanΘ. The interfilament metric of the
stereographic projection has the form

dΔ2�ðαÞ ¼
ω2

ð2ΩÞ2
�
dð2ΘÞ2 þ sin2ð2ΘÞdϕ2

0

cos2Θþ α2sin2Θ

�
in R3;

ð37Þ

which is identical to the metric in S3, Eq. (32), up to the
conformal factor describing a locally isotropic scaling of
dimensions:

ω ¼ 1

1 − cosðϕ0 þ αψÞ sinΘ : ð38Þ

For filament packings, this conformal factor represents the
failure of the projected fibrations to maintain equidistance (as
ψ advances) along their length. Filament positions on the
inner (outer) side of the torus correspond to cosðϕ0 þ αψÞ > 0

(<0), and hence ω > 1 (<1) describes the measure of over-
(under)crowding in toroidal packing, an effect which increases
in magnitude for tori of large minor radius, or larger Θ [see,
for example, projections in Fig. 16(a)]. Geometrically, the
variation of interfilament spacing can be understood in terms
of the difference between inner and outer spacing between
consecutive, nonconcentric toroidal layers, as well as non-
uniform angular rotation of filament positions around the

FIG. 15 (color online). Toroidal coordinates under stereographic
projection to R3. Surfaces of constant Φ are concentric tori, and
fibers and filaments wind along these surfaces around both the
minor and major axes of the tori, where θ is the (constant) angle
between tangents and the circular axis of the torus. The circular
fiber shown here corresponds to α ¼ 1, a projection of the Hopf
fibration.

6Equation (34) also provides a direct illustration of O’Neill’s
theorem (Berger, 2003), which equates the Gaussian curvature of the
base surface of a fibration to the sum ambient curvature of
the embedding space (here Ω−2) and 3 times the squared twist of
the fibration [here ðαΩÞ2]. Notice that the same formula holds for the
straight twisted bundle in Euclidean space (zero ambient curvature).
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central axis of the tori required to maintain constant θ around
a torus.
As a consequence of the conformal distortion of interfila-

ment spacing, the optimality of ideal packings in S3 when
projected stereographically to R3 becomes compromised,
increasingly so as Θ increases. In particular, it is unclear at
which point distortions of interfilament spacing become
sufficiently large that the ideal packings identified in S3 fail
to provide an accurate model, even at a qualitative level, of the
constraints and energetic consequence of packing in twisted
toroidal bundles.
Absent a projection from curved space that preserves

the equidistance of fibers in R3, one can nevertheless consider
the energetic costs of interfilament strains as a measure of the
excess frustration cost of bending a twisted bundle into a
torus. Setting aside the extent to which this excess cost
could be relaxed by local or global adjustments of filament
position and orientation in packing, we illustrate this cost
for the class of toroidal bundles projected from the Hopf
fibration (α ¼ 1).
The stereographic projection of the Hopf fibration has the

feature that filament trajectories, which are (great) circles in
S3, are mapped to circles in R3 (see, e.g., the filament in
Fig. 15). This fact and the formula for the closest distance
from the point to a circle of known center, orientation, and
radius7 greatly simplify calculations of interfilament distances
in a projected Hopf packing. In R3, these circular filaments
have radius pðΦÞ ¼ Ω−1 secΘ, they lie in planes tilted
(transverse to the radial direction extending from x ¼ y ¼ 0

axis) by Θ relative to ẑ, and their centers sit at xcðΦÞ ¼
ρðΦÞðsinϕ0x̂ − cosϕ0ŷÞ such that they conform to the fixed-
Θ tori. Using this geometry to compute the distance ΔijðsiÞ

between the ith filament at si along its length and the jth
filament in terms of given coordinates ðΘi;ϕiÞ and ðΘj;ϕjÞ
we consider a simple “elastic” model for the cost to interfila-
ment cohesion due to interfilament strain,

E ¼ 1

2

X
i

X
j∈hiji

Z
dsijΔijðsiÞ − dj2; ð39Þ

where the second sum runs over the nearest neighbors in a
given packing to i and d is the filament diameter. As a proxy
for the optimal packings of N cohesive disks on S2, we take
the positions of icosadeltahedral tesselations of sphere (Šiber,
2007). These tesselations, familiar to structural models of
spherical viruses (Caspar and Klug, 1962) and fullerenes
(Kroto, 1997), are constructed from triangular tilings of
icosohedra projected normally onto S2 and are parametrized
by the integer pair fm; ng that describe the vector on
separating centers of fivefold coordination (Šiber, 2007).
Figure 16(b) shows the packing energy per unit length E=L

of stereographically projected Hopf bundles possessing icosa-
deltahedral order, where L ¼ P

i

R
dsi is the total Euclidean

length of filaments in the bundle. The strain energy density
is plotted versus twist angle θ ¼ Θ of outer filaments
for icosodeltahedral tesselations, for a range of tesselations
from small twist Ωf4;2g ¼ 0.0895d−1 to large twist
Ωf1;1g ¼ 0.325d−1. Notably, the strain energy falls to zero as
θ → 0, when the width of the bundles is small compared with
the radius torus backbone, owing to the small conformal
distortion near theΦ ¼ 0 pole of the projection. The character-
istic increase in strain energy with twist in this case is not a
symptom of the imperfect packing topology of filaments, as all
θ → π=2 packings possess the topologically appropriate 12
five-coordinated sites needed for tessellations of S2. Rather, the
increase in strain with θ in these projected Hopf packings is a
reflection of the fact that filament spacings in the projection
become locally over- (under)dense on the inside (outside) of
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FIG. 16 (color online). (a) Stereographic projections of twisted filament packings in S3 to R3, based on the Hopf vibration (α ¼ 1).
Filament positions on the S2 base derive from the icosodeltahedral tesselations, where the value of Ωd is chosen based on the distance
between the central filament (at the pole in S2) and its first shell of neighbors. (a) f2; 2g packings are shown, both on S2 (top) and
projections to R3 (bottom). Left to right shows examples with increasingly larger maximum Φ, corresponding to larger polar distance on
S2, larger toroidal thickness, and larger twist angles of the outermost filaments. (b) The strain energy density defined by Eq. (39) and
calculated numerically and plotted vs the twist angle of the outer filaments for icosodeltahedral tesselations, for a range of tesselations
from small twist Ωf4;2g ¼ 0.0895d−1 to large twist Ωf1;1g ¼ 0.325d−1.

7The nearest distance Δ� of a point x0 to a circle of radius p in a
plane normal to N centered at xc is given by Δ2� ¼ Δ2

∥ þ ðp − Δ⊥Þ2,
where Δ∥ ¼ ðx0 − xcÞ · N and Δ2⊥ ¼ jx0 − xcj2 − Δ2

∥.
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toroidal packing, and that conformal strain grows with toroidal
thickness, roughly as 1 − ω ∼ sin θ for small θ. It remains an
open question how well ideal packings in S3 provide quanti-
tatively accurate pictures of twisted toroidal ground states in
Euclidean space. That is, at large θ, is it sufficient to relax elastic
strain via smooth deformations of filament positions in pro-
jected packings, or, instead, is the topological framework of the
projected packings of S3 wholly inadequate for modeling
optimal structure in large-θ bundles in R3?

V. CONCLUDING REMARKS

In conclusion, we presented an emerging theoretical per-
spective on the unique metric geometry of complex, multi-
filament or multicolumn assemblies. These studies show a
powerful connection between the geometry of interfilament
spacing and the metric geometry of non-Euclidean surfaces.
The relationship between packing problems in filamentous
assemblies with “incompatible” textures and packing prob-
lems on intrinsically curved surfaces is particularly valuable
because physical models of optimal structure in the latter class
of problems are well established, and the coupling between
Gaussian curvature and topological defects in 2D membranes
has received wide study in recent decades (Bowick and Giomi,
2009). Drawing on these familiar analogs sheds new light on
the surprising rich, and largely overlooked, questions of
optimal structure in filamentous and columnar matter.
Furthermore, the purely geometrical origin of the frustration
between patterns of orientation and spacing leads to a rich set
of nontrivial and universal predictions for long-range order in
a broad class of materials. In particular, the optimal topologi-
cal charge of the twisted packing was shown to be a universal
function of a single geometric parameter, θ the tilt angle at
the bundle surface, remarkably independent of elementary
microscopic properties like filament interactions or diameter.
Considerations of interfilament metric geometry are broadly
applicable across material systems and material scales, and we
anticipate, therefore, that the robust and geometrical origin of
these predictions will aid in their direct experimental test.
Numerous examples of twisted molecular filament assem-

blies exist in biological and synthetic materials. Yet, to date,
the specific structure of interfilament packing, particularly
topological defects in the interfilament order, in these materi-
als has received little experimental study. This is due, in part,
to extreme contrast of length scales presented by these
materials in combination with the intrinsic variation of order-
ing introduced by twisted structures. For example, collagen
fibrils are formed from triple-helical polypeptide chains,
procollagen molecules roughly 1 nm in diameter, assembled
into mesoscopically large structures, ranging in the 100s of
nanometers (Wess, 2008). Understanding small-angle scatter-
ing studies of the form factor of collagen fibrils has been
confounded by the fact that locally “crystalline” domains of
procollagen are apparently nonuniformly oriented throughout
fiber, and, further, the “best-fit” models to date imply the
coexistence of some measure of crystalline and noncrystalline
packing (Hulmes et al., 1995; Charvolin and Sadoc, 2011).
High-resolution electron microscopy has improved the “real
space” collagen packing model somewhat (Orgel et al., 2006),

resolving lateral motifs on the few-filament scale (∼3 − 5), yet
the global organization of these local motifs within hetero-
geneous (and twisted) fibrils as wide as 100s of individual
filaments across remains inadequately understood.
Notwithstanding these challenges, the expanding resolution

range offered by state of the art microscopy techniques down
to nanometer and subnanometer scale provides an exciting
opportunity to test universal predictions for geometrically
frustrated fibers and poses important, new challenges for their
theoretical understanding. For example, recent high-resolution
cryotransmission electron miscroscope (cryoTEM) studies of
DNA confined within bacteriophage capsids by Leforestier
and Livolant (2009) revealed a surprisingly detailed picture of
interstrand organization taking place within what is clearly a
highly frustrated and heterogeneous packing. DNA chains
exhibit the seemingly contradictory combination of locally
sixfold (hexagonal) packing, a high degree of order, and high
density throughout the roughly spherical volume. While
current imaging achieves substrand resolution only within
transverse 2D sections, full three-dimensional reconstruction
of the positions and orientations through such a complex
packing may soon be achievable.
Understanding the interplay between the texture induced by

spherical confinement and the complex spectrumof topological
defects in the transverse packing in a maximally dense
assemblies, what might be viewed as the filamentous analog
to the Thomson problem, introduces several key challenges.
Specifically, how are constraints of interfilament metric geom-
etry formulated under conditions where the texture itself varies
throughout? No doubt, a fully rotationally invariant formu-
lation of the elasticity of columnar structures is needed in order
tackle optimal structure where assumptions about small tilt
relative to a well-defined (and effectively Euclidean) reference
state cannot be maintained. While no fundamental obstacles
stand in the way of formulating a rotationally invariant theory
for columnar elasticity, it remains to be seen how well such a
theory may illuminate properties of optimal packing where
interfilament metric geometry cannot be reduced to a single
curved 2Dmanifold. Instead new frameworks may be required
for optimizing packing over a sequence of inequivalent surfaces
representing variation of interfilament texture throughout
structures as complex as confined, contorted, and folded chain
packings exhibited by DNA.
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