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Active quantum error correction using qubit stabilizer codes has emerged as a promising, but
experimentally challenging, engineering program for building a universal quantum computer. In this
review the formalism of qubit stabilizer and subsystem stabilizer codes and their possible use in
protecting quantum information in a quantum memory are considered. The theory of fault tolerance
and quantum error correction is reviewed, and examples of various codes and code constructions, the
general quantum error-correction conditions, the noise threshold, the special role played by Clifford
gates, and the route toward fault-tolerant universal quantum computation are discussed. The second
part of the review is focused on providing an overview of quantum error correction using two-
dimensional (topological) codes, in particular, the surface code architecture. The complexity of
decoding and the notion of passive or self-correcting quantum memories are discussed. The review
does not focus on a particular technology but discusses topics that will be relevant for various
quantum technologies.
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I. INTRODUCTION

Physics in the past century has demonstrated the exper-
imental viability of macroscopic quantum states such as
the superconducting state or a Bose-Einstein condensate.
Quantum error correction, which strives to preserve not a
single macroscopic quantum state but the macroscopic states
in a small subspace, can be viewed as a natural but challenging
extension to this. At the same time the storage of macroscopic
quantum information is a first step toward the more ambitious
goal of manipulating quantum information for computational
purposes.
When the idea of a quantum computer took hold in the

1990s it was immediately realized that its implementation
would require some form of robustness and error correction.
Kitaev proposed a scheme in which the physical representa-
tion of quantum information and realization of logical gates
would be naturally robust due to the topological nature of the
2D physical system (Kitaev, 2003). Around the same time
Shor formulated a first quantum error-correcting (QEC) code
and proved that a quantum computer could be made fault
tolerant (Shor, 1996). Several others then established the fault-
tolerance threshold theorem (see Theorem 1, Sec. II.F) which
shows that in principle one can realize almost noise-free
quantum computation using noisy components at the cost of a
moderate overhead.
The goal of this review is to discuss the basic ideas behind

active quantum error correction with stabilizer codes for the
purpose of making a quantum memory. In this review we also
discuss how Clifford group gates (Sec. II.G) are realized on
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the stored quantum data. In this sense the review goes beyond
a pure quantum memory perspective, but for stabilizer codes
these Clifford group gates play an essential role. Clifford gates
are by themselves not sufficient for realizing universal fault-
tolerant quantum computation.
We distinguish schemes of active quantum error correction

from forms of passive quantum error correction or self-
correction. In the latter quantum information is encoded in
physical degrees of freedom which are naturally protected or
have little decoherence, either through topology (topological
order) or physical symmetries (symmetry-protected order) at
sufficiently low temperature. Even though our review focuses
on active quantum error correction, we will discuss some
aspects of passive protection of quantum information using
quantum error-correcting codes in Sec. III.E.
In an actively corrected quantum memory, quantum infor-

mation is distributed among many elementary degrees of
freedom, e.g., qubits, such that the dominant noise and
decoherence processes affect this information in a reversible
manner. This means that there exists an error-reversal pro-
cedure that allows one to undo the decoherence. The choice of
how to represent the quantum information in the state space of
many elementary qubits is made through the choice of a
quantum error-correcting code. In order to execute the error
reversal, active quantum error correction proceeds by con-
tinuously gathering information about which errors took place
(for example, by quantum measurement), classical processing
of this data, and applying a corrective quantum operation on
the quantum data. The active gathering of information takes
place, at least for stabilizer codes, via quantum measurements
which measure the parity of subsets of qubits in Pauli matrix
bases. These measurements are called parity check measure-
ments. By the active gathering of error information, entropy is
effectively removed from the computation and dumped into
ancilla degrees of freedom which are supplied in known states
to collect the error information. This active cycling of entropy
from the computation into ancillary degrees of freedom
which are further processed in a classical world makes active
quantum error correction very different from the notion of
passively storing quantum information in a low-temperature
thermal environment.
In Sec. II.A we start by discussing Shor’s code as the most

basic example of a quantum error-correction code. Using
Shor’s code we illustrate the ideas behind the general frame-
work of stabilizer codes (Gottesman, 1997), including sub-
system stabilizer codes. We then treat stabilizer and subsystem
stabilizer codes on qubits more formally in Secs. II.B and II.C.
In Sec. II.B.2 we also discuss various small examples of
quantum error-correcting codes and the construction due to
Calderbank, Steane, and Shor by which two classical codes
can be used to construct one quantum code. In Sec. II.D we
widen our perspective beyond stabilizer codes and discuss
the general quantum error-correction conditions as well as
some codes which encode qubit(s) into bosonic mode(s)
(oscillators). In Sec. II.E we define D-dimensional stabilizer
codes and give various examples of such codes. Roughly
speaking, D-dimensional stabilizer codes are quantum error-
correcting codes where the elementary qubits are laid out on a
D-dimensional lattice and all the quantum operations for

quantum error correction can be executed by coupling qubits
only locally on this lattice.
As the procedure of detecting and correcting errors itself is

subject to noise, the existence of quantum error-correcting
codes by itself does not yet show that one can store or
compute with quantum information for an arbitrarily long
time. In Sec. II.F we review how one can, through a
procedure called code concatenation, arrive at the fault-
tolerance threshold theorem. In essence, the threshold theo-
rem says that in order to combat noise and decoherence we
can add redundancy, a polylogarithmic overhead in the total
number of qubits and overall computation time, provided
that the fundamental noise rate on the elementary qubits is
below some critical value which is called the noise threshold.
Topological quantum error correction discussed in Sec. III
provides a different route for establishing such a threshold
theorem.
In Sec. II.F we also discuss various proposals for realizing

quantum error correction, including the idea of dissipative
engineering. The topic of the realization of quantum error
correction is again picked up in Sec. III.D, but in that section
the emphasis is on D-dimensional (topological) codes. In
Sec. II.G, we review constructions for obtaining a universal set
of logical gates for qubits encoded with stabilizer codes and
motivate our focus on 2D topological stabilizer codes for use
as a quantum memory.
For stationary, nonflying qubits, an important family of

codes are quantum codes in which the elementary qubits
can be laid out on a two-dimensional plane such that only
local interactions between small numbers of nearest-neighbor
qubits in the plane are required for quantum error correc-
tion. The practical advantage of such 2D geometry over an
arbitrary qubit interaction structure is that no additional
noisy operations need to be performed to move qubits around.
Elementary solid-state qubits require various electric or
magnetic control fields per qubit, for defining the qubit
subspace and/or for single- and two-qubit control and meas-
urement. The simultaneous requirement that qubits can
interact sufficiently strongly and that space is available for
these control lines imposes technological design constraints;
see, e.g., Levy et al. (2009). A two-dimensional layout can be
viewed as a compromise between the constraints coming from
the coding theory and those from control line and material
fabrication constraints: since quantum error-correcting codes
defined on one-dimensional lines have poor error-correcting
properties (Sec. II.E), it is advantageous to use a two-
dimensional or a more general nonlocal layout of qubits.
The qubits in such a layout should be individually addressable
and/or defined by local electrostatic or magnetic fields, and
thus 2D structures would be favored over 3D or general
nonlocal interaction structures.
These considerations are the reason that we focus in Sec. III

on 2D (topological) codes, in particular, the family of 2D
topological surface codes, which has many favorable proper-
ties. For the surface code we show explicitly in Sec. III.A how
many noisy elementary qubits can be used to represent one
“encoded” qubit that has a much lower noise rate, assuming
that the noise rate of the elementary qubits is below a critical
value, the noise threshold. For the surface code this threshold
turns out to be very high. We review two possible ways of
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encoding qubits in the surface code. We also discuss how
logical gates such as the controlled-NOT (CNOT) and the
Hadamard gate (see Sec. II.G for definitions of these gates)
can be realized in a resource-efficient way.
In Sec. III.C we review a few interesting alternatives to the

surface code: the nontopological Bacon-Shor code, a surface
code with harmonic oscillators, and a subsystem version of
the surface code. Section III.D discusses the physical locality
of the process of decoding as well as recent ideas on
the realization of so-called direct parity measurements.
In Sec. III.E we discuss the ideas behind passive or self-
correction and its relation with topological order.
We conclude our review with a discussion of some future

challenges for quantum error correction. We recommend Lidar
and Brun (2013) as a broad, comprehensive, reference on
quantum error correction.

A. Error mitigation

Active quantum error correction is not the only way to
improve the coherence properties of elementary physical
quantum systems, and various well-known methods of error
mitigation exist. In a wide variety of systems there is 1=f noise
affecting the parameters of the qubit with a noise power
spectral density SðωÞ ∼ 1=ωα, α ≈ 1, favoring slow fluctua-
tions of those parameters that lead to qubit dephasing
(Weissman, 1988). Standard NMR techniques (Vandersypen
and Chuang, 2005) have been adapted in such systems to
average out these fluctuations using rapid pulse sequences
(e.g., spin echo). More generally, dynamical decoupling is a
technique by which the undesired coupling of qubits to
other quantum systems can be averaged out through rapid
pulse sequences (Lidar, 2014). Aside from actively canceling
the effects of noise, one can also try to encode quantum
information in so-called decoherence-free subspaces which
are effectively decoupled from noise; a simple example is the
singlet state ð1= ffiffiffi

2
p Þðj↑;↓i − j↓;↑iÞ which is invariant under

a joint (unknown) evolution U ⊗ U. This example is not yet a
code as it encodes only one state, not a qubit. One can more
generally formulate decoherence-free subspaces in which the
encoded qubits are protected against collectively acting noise
given by a set of error operators; see Chapter 3 in Lidar and
Brun (2013).
In Sec. III.E we discuss another form of error mitigation:

the encoding of quantum information in a many-body quan-
tum system with a Hamiltonian corresponding to that of a
D-dimensional quantum (stabilizer) code.

B. Some experimental advances

Experimental efforts have not yet advanced into the domain
of scalable quantum error correction. Scalable quantum
error correction would mean (1) making encoded qubits
with decoherence rates that are genuinely below those of
the elementary qubits and (2) demonstrating how, by increas-
ing coding overhead, one can reach even lower decoherence
rates, scaling in accordance with the theory of quantum error
correction.
Several experiments exist concerning the three-qubit (or

five-qubit) repetition code in liquid NMR, ion-trap, optical,

and superconducting qubits. Four-qubit stabilizer pumping
has been realized in ion-trap qubits (Barreiro et al., 2011).
Some topological quantum error correction has been imple-
mented with eight-photon cluster states by Yao et al. (2012),
and a continuous-variable version of Shor’s nine-qubit code
was implemented with optical beams (Aoki et al., 2009).
Bell et al. (2014) implemented the [[4,1,2]] code in an all-
optical setup using a five-qubit polarization-based optical
cluster state. Nigg et al. (2014) used seven trapped-ion qubits
to represent, using Steane’s seven-qubit code (see Sec. II.B.2),
one effective, encoded, qubit, and several logical gates were
performed on this encoded qubit via the transversal execution
of gates on the seven elementary qubits.
The book by Lidar and Brun (2013) has a chapter with an

overview of experimental quantum error correction. Given the
advances in coherence times and ideas of multiqubit scalable
design, in particular, in ion-trap and superconducting qubits
(Barends et al., 2014), one can hope to see scalable error
correction, fine-tuned to experimental capabilities and con-
straints, in the years to come.

II. CONCEPTS OF QUANTUM ERROR CORRECTION

A. Shor’s code and stabilizer codes

The goal of this section is to introduce the concepts and
terminology of stabilizer codes in an informal way illustrated
by Shor’s nine-qubit code. In Sec. II.B we discuss the
formalism of stabilizer codes and give further examples.
The smallest classical code that can correct a single

bit-flip error (represented by1 Pauli X) is the three-(qu)bit
repetition code where we encode j0i ¼ j000i and
j1i ¼ j111i. A single error can be corrected by taking
the majority of the three bit values and flipping the bit
which is different from the majority. In quantum error
correction we do not want to measure the three qubits to
take a majority vote, as we would immediately lose the
quantum information. This quantum information is repre-
sented in the amplitude cosðθÞ and the phase eiϕ of an
encoded qubit state jψi ¼ cosðθÞj0i þ sinðθÞeiϕj1i. If we
measure the three qubits in the fj0i; j1ig basis, we may get
answers which depend on cosðθÞ and eiϕ, but we also
decohere the quantum state, leaving just three classical bits
and losing all information about cosðθÞ and eiϕ.
But let us imagine that we can measure the parity checks

Z1Z2 and Z2Z3 without learning the state of each individual
qubit, that is, without the measurement revealing any infor-
mation about the eigenvalues of Z1, Z2, or Z3 individually. If
the parity checks Z1Z2 and Z2Z3 have eigenvalues þ1, one
concludes that there is no error as the encoded states j000i
and j111i have eigenvalue þ1 with respect to these checks.

1The Pauli matrices are

σx ≡ X ¼
�
0 1

1 0

�
; σz ≡ Z ¼

�
1 0

0 −1
�
;

and

σy ≡ Y ¼
�
0 −i
i 0

�
¼ iXZ:
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An outcome of, say, Z1Z2 ¼ −1 and Z2Z3 ¼ 1 is consistent
with the erred state X1jψi, where jψi is any encoded state.
And Z1Z2 ¼ 1 and Z2Z3 ¼ −1 points to the error X3. But how
can we measure Z1Z2 and Z2Z3 without measuring the
individual Zi operators and destroying the encoded qubit?
Essentially, through making sure that the “signals” from
different qubits are indistinguishable and only a global
property like parity is communicated to the outside world.
One can realize this with a quantum circuit as follows.
One uses an extra “ancilla” qubit which will interact with

the three qubits such that the value of the parity check is
copied onto the ancilla qubit. A general circuit which
measures a “parity check,” represented by a multiqubit
Pauli operator P, using an ancilla is given in Fig. 1(a). One
can verify the action of the circuit by writing an arbitrary input
state as a superposition of a þ1 eigenstate ψþ1 and a −1
eigenstate ψ−1 of the Pauli operator P to be measured
(Pjψ�i ¼ �jψ�i). A concrete example for P ¼ X1X2X3X4

is given in Fig. 1(c), where we decomposed the five-qubit
controlled-P gate into four two-qubit controlled-X or CNOT

gates. In such a circuit, the parity information is collected in

steps, via several CNOT gates, so that the state of the ancilla
qubit during the execution of the gates does contain informa-
tion about the individual qubits. It is thus important that this
partial information on the ancilla qubit does not leak to the
environment as it leads to decoherence on the encoded qubits
during the parity check measurement. One can see that the
parity check measurement using an ancilla qubit initially set to
a fixed, known state is actively letting us remove entropy from
the computation by providing us information about what
errors have taken place.
It may be clear that the three-qubit repetition code does not

protect or detect Z (dephasing) errors as these parity checks
measure information only in the Z basis (MZ). More precisely,
any single-qubit Z error will harm the quantum information.
We encode the qubit state jþi≡ð1= ffiffiffi

2
p Þðj0iþj1iÞ as jþi¼

ð1= ffiffiffi
2

p Þðj000iþj111iÞ and j−i≡ ð1= ffiffiffi
2

p Þðj0i − j1iÞ as j−i ¼
ð1= ffiffiffi

2
p Þðj000i − j111iÞ. We can verify that any single-qubit Z

error, say Z1, maps jþi ↔ j−i, corrupting the quantum
information.
Having seen this simple example, we informally introduce

some of the notions used in describing a quantum (stabilizer)
code. In general we denote logical or encoded states as jψi and
logical operators as X, Z, etc., where by definition Xj0i ↔ j1i
and Zjþi ↔ j−i. The logical operators X, Z can always be
expressed in terms of their action as Pauli operators on the
elementary qubits. For a code C encoding k qubits, one
defines k pairs of logical Pauli operators ðXi; ZiÞ, i ¼ 1;…; k,
such that XiZi ¼ −ZiXi, while logical Pauli operators with
labels i and i0 mutually commute. The logical Pauli operators
simply realize the algebra of the Pauli operators acting on
k qubits. For the three-qubit code we have X ¼ X1X2X3

(flipping all the bits) and Z ¼ Z1.
The code space of a code C encoding k qubits is spanned by

code words jxi, where x is a k-bit string. In general, these code
words jxiwill be highly entangled states. All states in the code
space obey the parity checks, meaning that the parity check
operators have eigenvalue þ1 for all states in the code space
(we say that the parity checks act trivially on the code space).
The parity checks are all represented by mutually commuting
multiqubit Pauli operators. The logical operators of a quantum
error-correcting code are nonunique as we can multiply them
by the trivially acting parity check operators to obtain
equivalent operators. For example, Z for the three-qubit code
is either Z1, or Z2, or Z3, or Z1Z2Z3 as all these operators have
the same action jþi ↔ j−i.
Shor’s nine-qubit code was the first quantum error-

correcting code which encodes a single qubit and corrects
any single-qubit Pauli error, i.e., single-qubit bit-flip errors X,
phase-flip errors Z, and bitþ phase-flip errors Y. As it turns
out, if one wants to correct against any single-qubit error, it is
sufficient to be able to correct against any single-qubit Pauli
error. We thus assume for now that the only possible errors are
multiqubit or single-qubit Pauli errors and afterward we show
that correcting against such Pauli errors is indeed sufficient.
Shor’s code is obtained from the three-qubit repetition code

by concatenation. Code concatenation is a procedure in which
we take the elementary qubits of the code words of a code C
and replace them by encoded qubits of a new code C0. In
Shor’s construction we choose the first code C as a “rotated”
three-bit repetition code; that is, we take jþi ¼ jþijþijþi

FIG. 1. Measuring parity checks in the quantum-circuit way.
The meter denotes measurement in the fj0i; j1ig basis or MZ.
(a) Circuit to measure the �1 eigenvalues of a unitary multiqubit
Pauli operator P. The gate is the controlled-P gate which applies
P when the control qubit is 1 and I if the control qubit is 0.
(b) Realizing the evolution expð−iθP=2Þ itself [with
RxðθÞ ¼ expð−iθX=2Þ]. (c) Realization of circuit (a) using CNOT

gates when P ¼ X1X2X3X4. (d) Realization of circuit (a) using
CNOT gates when P ¼ Z1Z2Z2Z4.
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and j−i ¼ j−ij−ij−i with j�i ¼ ð1= ffiffiffi
2

p Þðj0i � j1iÞ. One can
verify that the parity checks of C are X1X2 and X2X3 and the
logical operators are ZC¼Z1Z2Z3 and XC¼X1. As the second
code C0 we choose the normal three-qubit repetition code,
i.e., we replace jþi by jþi ¼ ð1= ffiffiffi

2
p Þðj000i þ j111iÞ, etc.

We get all the parity checks for the concatenated nine-qubit
code by taking all the parity checks of the codes C0 and the C0-
encoded parity checks of C. For Shor’s code this will give the
Z checks Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, and Z8Z9 (from
three uses of the code C0) and the X checks X1X2X3X4X5X6,
X4X5X6X7X8X9 (from the parity checks X1X2 and X2X3,
where X is the logical operator of the code C0). The nonunique
logical operators of the encoded qubit are Z ¼ Z1Z4Z7

and X ¼ X1X2X3.
This code can clearly correct any X error as it consists of

three qubits each of which is encoded in the repetition code
which can correct an X error. What happens if a single Z error
occurs on any of the qubits? A single Z error will anticommute
with one of the parity X checks or with both. For example, the
error Z1 anticommutes with X1X2X3X4X5X6 so that the state
Z1jψi has eigenvalue −1with respect to this parity check. The
error Z2 or error Z3 would have the same syndrome: these
errors have the same effect on the code space as Z1Z2 and
Z2Z3 act trivially on the code space. The same holds for the
three qubits in the second block and the three qubits in the
third block. Thus the X parity check will tell you only whether
there is a Z error in the first, the second, or the third block but
this is acceptable, and any single error in the block applies the
proper correction on the code space. Thus the code can correct
against a single-qubit X error, or Z error and therefore also
Y error.
The eigenvalues of the parity check operators are called the

error syndrome. Aside from detecting errors (finding −1
syndrome values) the error syndrome should allow one to infer
which error occurred. How do we make this inference in
general? We could assign a probability to each possible error:
this assignment is captured by the error model. Then our
decoding procedure can simply choose an error, consistent
with the syndrome, which has highest probability given our
error model. Typically, the error model would assign a lower
probability to errors that act on many qubits, and so the
decoding could consist of simply picking a Pauli error, which
could be responsible for the given syndrome that acts on the
fewest number of qubits. This kind of decoding is called
minimum-weight decoding. It is important to note that the
decoding procedure does not necessarily have to point to a
unique error. For example, for the nine-qubit code, the errors
Z1 and Z2 have an equivalent effect on the code space as Z1Z2

is a parity check which acts trivially on the code space. The
syndromes for errors that are related by parity checks are
always identical: the syndrome of a Pauli error E is deter-
mined by the parity checks with which it anticommutes.
Multiplying E by parity checks, which are by definition all
mutually commuting operators, does not change the syn-
drome. This means that the classical algorithm which proc-
esses the syndrome to infer an error (this procedure is called
decoding) does not need to choose between such equivalent
errors.
But there is further ambiguity in the error syndrome. For

Shor’s code the errors Z1 and Z4Z7 have an identical

syndrome as Z1Z4Z7 is the Z operator which commutes with
all parity checks. If a single nontrivial (−1) syndrome is
obtained for the parity check X1X2X3X4X5X6, we could
decide that the error is Z1 or Z4Z7. But if we make a mistake
in this decision and correct with Z4Z7 while Z1 happened,
then we have effectively performed a Z without knowing it.
This means that the decoding procedure should decide
between errors, all of which are consistent with the error
syndrome that are mutually related by logical operators. We
discuss the procedure of decoding more formally in Sec. II.B.
For Shor’s code we can decode the syndrome by picking a
single-qubit error which is consistent with the syndrome. If a
two-qubit error occurred, we may thus have made a mistake.
However, for Shor’s code there are no two single-qubit errors
E1 and E2 with the same syndrome whose product E1E2 is a
logical operator as each logical operator acts on at least three
qubits. This is another way of seeing that Shor’s code can
correct any single-qubit Pauli error. It is a ½½n; k; d�� ¼
½½9; 1; 3�� code, encoding k ¼ 1 qubit into n ¼ 9 (n is called
the block size of the code) and having distance d ¼ 3. Having
seen how this works for Shor’s code, we understand the role of
the distance of a code more generally as follows.
The distance d of the code is defined as the minimum

weight of any logical operator [see the formal definition in
Eq. (1)]. The weight of a Pauli operator is the number of qubits
on which it acts nontrivially, i.e., Z4Z7 has a weight of 2. The
definition of distance refers to a minimum weight of any
logical operator as there are several logical operators, i.e., X,
Z, etc., and we want any of them to have a high weight, and
the weight of each one of them can be varied by multiplication
with parity checks.
It is simple to understand why a code with distance d ¼

2tþ 1 can correct t errors. Namely, errors of weight at most t
have the property that their products have weight at most
2t < d. Therefore the product of these errors can never be a
logical operator as those have weight d or more. Thus if one of
these errors E1 occurs and our decoding procedure picks
another error E2 of weight at most t (both giving rise to the
same syndrome) and applies E2 to the encoded qubits, then
effectively we have the state E2E1jψi. This state has a trivial
syndrome as all parity checks commute with E1E2 (they either
anticommute with both E1 and E2 or commute with both), but
E1E2 has weight 2t < d. Thus E1E2 cannot be a logical
operator but has to be some product of trivially acting parity
checks as E1E2 commutes with all parity checks.
Another direct consequence of the distance of the code is

how the code can handle so-called erasure errors. If errors
take place on only some known subset of qubits, then a code
with distance d can correct (errors on) subsets of size d − 1 as
the product of any two Pauli errors on this subset has weight at
most d − 1. In other words, if d − 1 or fewer qubits of the code
word are lost or their state completely erased by other means,
one can still recover the entire code word from the remaining
set of qubits. One could do this as follows. First one replaces
the lost d − 1 qubits by the completely mixed state I=2d−1.2

2The erasure of a qubit, i.e., the qubit state ρ is replaced by I=2, can
be written as the process of applying an I, X, Y or Z error with
probability 1=4: I=2 ¼ ðρþ XρX þ ZρZ þ YρYÞ=4.
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Then one measures the parity checks on all qubits, which
gives us a syndrome that is nontrivial only for the parity
checks which act on the d − 1 qubits that had been erased. The
syndrome points to a (nonunique) Pauli operator acting on
these d − 1 qubits or fewer and applying this Pauli operator
corrects the error.

1. Error modeling

Clearly, the usefulness of error correction is directly related
to the error model; it hinges on the assumption that low-weight
errors are more likely than high-weight errors. Error cor-
recting a code which can perfectly correct errors with weight
at most t will lead to failure with probability roughly equal to
the total probability of errors of weight larger than t. This
probability for failure of error correction is called the logical
error probability. The goal of quantum error correction is to
use redundancy and correction to realize logical qubits with
logical error rates below the error rate of the elementary
constituent qubits.
It may seem rather simplistic and limiting to use error

models which assign X, Z, and Y errors probabilistically to
qubits as in real quantum information, through the interaction
with classical or quantum systems, the amplitude and phase of
a qubit will fluctuate over time. Bare quantum information
encoded in atomic, photonic, spin, or other single quantum
systems is barely information as it is undergoing continuous
changes. It is important to note that the ideal parity check
measurement provides a discretization of the set of errors
which is not naturally present in such elementary quantum
systems.
Consider, for example, noise on a single qubit due the

fact that its time evolution (in a rotating frame) is not
completely canceled and equals expð−iδωZt=2Þ for some
probability distribution over frequencies ProbðδωÞ centered
around δω ¼ 0. If this qubit is, say, the first qubit that is
part of a multiqubit encoded state jψi, we can write
expð−iδωZ1t=2Þjψi ¼ ½cosðδωtÞI þ iZ1 sinðδωtÞ�jψi, i.e.,
we expand the small error of strength δω in a basis of
Pauli errors which occur with some amplitude related to
δω. Consider then measuring a parity X check which involves
qubit 1. One obtains eigenvalue þ1 with probability
cos2ðδωtÞ, close to 1 for small δωt, and we project onto
the error-free state jψi. We obtain eigenvalue −1 with small
probability sin2ðδωtÞ when we project onto the state with
Pauli error Z1jψi. Since any operator E on n qubits can be
expanded in a basis of Hermitian Pauli matrices, this simple
example illustrates the general principle that the correction of
Pauli errors of weight less than t suffices for the correction of
any error of weight less than t. This property holds in fact for
arbitrary quantum codes (including nonstabilizer codes for
which we may gather error information through different
means than parity check measurements), as follows from the
quantum error-correction conditions; see Sec. II.D.
Ideal parity measurement can induce such a discrete error

model stated in terms of probabilities, but as parity measure-
ments themselves will be inaccurate in a continuous fashion,
such a fully digitized picture is an oversimplification. The
theory of quantum fault tolerance (see Sec. II.F) has developed
a framework that allows one to establish the results of

quantum error correction and fault tolerance for very general
quantum dynamics obeying physical locality assumptions [see
the comprehensive results by Aliferis, Gottesman, and Preskill
(2006)]. However, for numerical studies of code performance
it is impossible to simulate such more general open-system
dynamics, and several simple error models are used to capture
the expected performance of the codes.
Two further remarks can be made with this general

framework in mind. First, errors can be correlated in space
and time arising from non-Markovian dynamics, but as long
as (a) we use the proper estimate of the strength of the noise
(which may involve using amplitudes and norms rather than
probabilities) and (b) the noise is sufficiently short ranged
[meaning that noisy interactions between distant uncoupled
qubits are sufficiently weak (Aharonov, Kitaev, and Preskill,
2006)], fault-tolerance threshold results can be established.
The second remark is that qubit coding does not directly deal
with leakage errors. As many elementary qubits are realized as
two-level subspaces of higher-dimensional systems to which
they can leak, other protective mechanisms such as cooling (or
teleporting to a fresh qubit) will need to be employed in order
to convert a leakage error into a regular error which can be
corrected. Aliferis and Terhal (2007) showed that one can
derive general fault-tolerance threshold results for leakage
errors by invoking the use of leakage reduction units (LRUs)
such as quantum teleportation.

2. Shor’s code as a subsystem code

We return to Shor’s code and imagine that the nine qubits
are laid out in a 3 × 3 square array as in Fig. 2. It looks
relatively simple to measure the parity Z checks locally, while
the weight-6 X checks would require a larger circuit using six
CNOT gates between ancilla and data qubits. But why should
there be such asymmetry between the X and Z checks?
Imagine that instead of measuring the “double row” stabilizer
operator X¼;1 ≡ X1X2X3X4X5X6, we measure (in parallel or
sequentially) the eigenvalues of X1X4, X2X5, and X3X6 and
take the product of these eigenvalues to obtain the eigenvalue
ofX¼;1. The important property of these weight-2 operators is
that they all individually commute with the logical operators X
and Z of the Shor code, and hence measuring them does not
change the expectation values of X and Z. These weight-2
X checks do not commute with the weight-2 Z checks

Z
1 2 3

4 5 6

7 8 9 X

Z

X

FIG. 2 (color online). The nine-qubit [[9,1,3]] Shor code with
black qubits on the vertices. The stabilizer of Shor’s code is
generated by the weight-2 Z checks as well as two weight-6,
double-row X checks X¼;1 ¼ X1X2X3X4X5X6 and X¼;2. An
alternative way of measuring X¼;1 and X¼;2 is by measuring the
weight-2 X checks. One can similarly define two weight-6,
double-column Z checks Z∥;1 and Z∥;2 as products of elementary
weight-2 Z checks. See also Fig. 14.
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however. If we first measure all the weight-2 X checks and
then measure the Z checks, then with the second step the
eigenvalues of individual X checks are randomized but
correlated. Namely, their product X1X2X3X4X5X6 remains
fixed as X1X2X3X4X5X6 commutes with the weight-2
Z checks. By symmetry, the weight-2 X checks commute
with the double-column operators Z∥;1 ¼ Z1Z2Z4Z5Z7Z8 and
Z∥;2 ¼ Z2Z3Z5Z6Z8Z9. By viewing the Shor code in this way
we can imagine doing error correction and decoding using
the stable commuting parity checks X¼;1, X¼;2, Z∥;1, and
Z∥;2 while we deduce their eigenvalues from measuring 12
weight-2 parity checks.
Shor’s code in this form is the smallest member in the

family of Bacon-Shor codes ½½n2; 1; n�� (Bacon, 2006; Aliferis
and Cross, 2007) whose qubits can be laid out in an n × n
array as in Fig. 14; see Sec. III.C.1. The Bacon-Shor code
family in which noncommuting (low-weight) parity checks
are measured in order to deduce the eigenvalues of commuting
parity checks is an example of a (stabilizer) subsystem code.

B. Formalism of stabilizer codes

Shor’s code and many existing codes defined on qubits are
examples of stabilizer codes3 (Gottesman, 1997). Stabilizer
codes are attractive as (i) they are the straightforward quantum
generalization of classical binary linear codes, (ii) their logical
operators and distance are easily determined, and it is
relatively simple to (iii) understand how to construct universal
sets of logical gates, and (iv) execute a numerical analysis of
the code performance.
The main idea of stabilizer codes is to encode k logical

qubits into n physical qubits using a subspace, the code space,
L ⊆ ðC2Þ⊗n spanned by states jψi that are invariant under the
action of a stabilizer group S,

L ¼ fjψi ∈ ðC2Þ⊗n∶ Pjψi ¼ jψi ∀ P ∈ Sg:

Here S is an Abelian subgroup of the Pauli group Pn ¼
hiI; X1; Z1;…; Xn; Zni such that −I ∉ S.4 For any stabilizer
group S one can always choose a set of generators
S1;…; Sm, i.e., S ¼ hS1;…; Smi, such that Sa ∈ Pn are
Hermitian Pauli operators. The advantage of this stabilizer
formalism is that instead of specifying the code space by a
basis of 2n-dimensional vectors, we specify the code space
by the generators of the stabilizer group which fix (or
stabilize) these vectors. The mutually commuting parity
checks that we considered before are the generators of the
stabilizer group. If there are n − k linearly independent
generators (parity checks) then the code space L is
2k dimensional, or encodes k qubits. This description of
the code space in a 2n-dimensional vector space is thus
highly efficient as it requires specifying at most n linearly
independent parity checks.

The weight jPj of a Pauli operator P ¼ P1 � � �Pn ∈ Pn is
the number of single-qubit Pauli operators Pi that are unequal
to I, in other words, the number of qubits on which P acts
nontrivially. If the code encodes k logical qubits, it is always
possible to find k pairs of logical operators ðXj; ZjÞj¼1;…;k.
These logical operators commute with all the parity checks,
i.e., they commute with all elements in S as they preserve
the code space. However, they should not be generated by
the parity checks themselves; otherwise their action on the
code space is trivial. Thus these logical operators are elements
of the Pauli group Pn which are not elements in S (otherwise
their action is trivial), but which commute with all
elements in S. The set of operators in Pn which commutes
with S is called the centralizer of S in Pn, defined as
CðSÞ ¼ fP ∈ Pnj∀ s ∈ S; Ps ¼ sPg. We thus have CðSÞ ¼
hS; X1; Z1;…; Xk; Zki, i.e., the logical operators of the code
are elements of CðSÞnS as they are in CðSÞ but not in S.5 The
distance d of a stabilizer code can then be defined as

d ¼ min
P∈CðSÞnS

jPj; ð1Þ

i.e., the minimum weight that any logical operator can have.
As the logical operators P ∈ CðSÞnS commute with all parity
check operators both the code state jψi and Pjψi have þ1

eigenvalues with respect to the parity checks. Measuring the
parity checks thus does not reveal whether a P has taken place
or not while the quantum information is greatly changed.
Clearly, these logical operators P should be prevented from
happening. A good stabilizer code will have high distance d so
that it is unlikely that local low-rate decoherence processes
acting on a few qubits at a time will lead to a logical operator P
that one cannot undo.

1. Decoding

Error correction proceeds by measuring the error syndrome
s which is a vector of �1 eigenvalues of the generators of S.
As mentioned in Sec. II.A this syndrome will not point to a
unique Pauli error but all E0 ¼ EP, where P ∈ CðSÞ give rise
to the same syndrome. We now describe the formal procedure
of decoding.
We define an equivalence class of errors ½E� consisting of

errors E0 ¼ EP, where P ∈ S; that is, elements in ½E� are
related to E by a (trivially acting) element in the stabilizer
group.6 If error E occurs and we decide to correct this
error by applying E0, the sequence EE0 ∈ S has been
applied to the code word, leaving it unchanged. We can
associate a total error probability with such a class,
Probð½E�Þ ¼ P

s∈SProbðEsÞ, depending on some error model
which assigns a probability ProbðPÞ to every Pauli operator
P ∈ Pn. Given an error E and a syndrome, one can similarly

3Readers less interested in this general framework can skip the
next two sections without major inconvenience.

4G ¼ hg1;…; gmi denotes a group G generated by elements
g1;…; gm ∈ G.

5In some quantum error-correction literature CðSÞnS is denoted as
CðSÞ − S. Also, the centralizer CðSÞ of S in P is sometimes referred
to as the normalizerN ðSÞ: for Pauli operators which either commute
or anticommute these groups coincide.

6½E� is a coset of the group S in Pn. Note that left and right cosets
are the same modulo trivial errors proportional to I.
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define a discrete number of classes ½EP�, where the logi-
cals P ∈ CðSÞnS.
The procedure that maximizes the success probability of

reversing the error while making no logical error is called
maximum-likelihood decoding. Given a syndrome s and
some error EðsÞ which is consistent with the syndrome, a
maximum-likelihood decoder compares the values of
Probð½EP�Þ for the various P and chooses the one with maximal
value pointing to someP. Then it applies the corrective operator
EP which is by definition the most likely correction.
If EðsÞ happens to be the error E that actually took place,

then this decoding procedure is successful when Probð½E�Þ >
Probð½EP�Þ for any nontrivial P.
It is important to consider how efficiently (in the number n

of elementary qubits) maximum-likelihood decoding can be
done since Probð½EP�Þ is a sum over the number of elements
in S, which is exponential in n. For a simple depolarizing
error model where each qubit undergoes an X, Y, or Z error
with probability p=3 and no error with probability 1 − p, one
has Probð½EP�Þ ¼ ð1 − pÞnPs∈S expð−βjEPsjÞ with inverse
“temperature” β ¼ ln½3ð1 − pÞ=p�.
We can define a classical Hamiltonian HEPðsÞ≡ jEPsj

which acts on spin variables si ∈ f−1; 1g each of which
corresponds to a generator Si of the stabilizer group S. The
Hamiltonian will be a sum of terms, each corresponding to a
single qubit in the code and contributing either 0 or 1. Each
term can be written as a function of the stabilizer generators
si ¼ �1, E, and P which act on the particular qubit, making
it trivial (weight 0) or nontrivial (weight 1). We can view
ZEP ≡P

s∈S exp½−βHEPðsÞ� as a partition function of the
Hamiltonian HEPðsÞ at a temperature related to the error
probability.
For small error rates p ≪ 1 corresponding to low temper-

atures β → ∞, the value of this partition function is dominated
by the spin configuration s that minimizes HEPðsÞ ¼ jEPsj.
Thus for sufficiently low error rates, instead of maximum-
likelihood decoding, which compares the relative values of
Probð½EP�Þ, one can also opt for minimum-weight decoding.
In minimum-weight decoding one simply picks an error EðsÞ,
consistent with the syndrome s, which has minimum weight
jEj. We discuss this decoding method for the surface code
in Sec. III.
For topological codes, the criterion for successful

maximum-likelihood decoding and the noise threshold of
the code can be related to a phase transition in a classical
statistical model with quenched disorder (Dennis et al., 2002;
Katzgraber and Andrist, 2013). This can be readily understood
as follows. A probabilistic noise model such as the depolariz-
ing noise model induces a probability distribution ProbðEÞ
over the errors E. For a given error E we can decode
successfully when ZE > ZPE, where ZE is the partition
function of the quenched-disorder Hamiltonian HEðsÞ ¼ jEsj
defined previously. We want to be able to decode successfully
for typical errors E; hence we are interested in looking at
averages over the disorder E. Assume that one has a family
of codes for which one can define a thermodynamic limit
in which the number of qubits n → ∞. One can define a
critical, say depolarizing, error rate pc by the following
condition:

p < pc → lim
n→∞

X
E

ProbðEÞ log
�
ZE

ZPE

�
¼ ∞;

p > pc → lim
n→∞

X
E

ProbðEÞ log
�
ZE

ZPE

�
¼ 0:

ð2Þ

One thus studies the behavior of the free energy of the
statistical model with quenched disorder (which is
determined by the error probability p), i.e.,
hlogZEip ¼ P

EProbðEÞ logZE, to determine the value of
pc. The temperature β and the quenched disorder are not
independent but directly depend on the same error probability
p. For this reason one identifies pc with a phase transition of
the quenched-disorder model along the so-called Nishimori
line on which β is a function of the strength of the error
probability which is also the disorder parameter. One of the
first studies of this sort was done by Wang, Harrington, and
Preskill (2003).

2. Stabilizer code examples and the Calderbank-Shor-Steane
construction

We discuss a few small examples of stabilizer codes to
illustrate the formalism. For classical error correction the
smallest code that can detect an X error is a two-bit code and
the smallest code that can correct any X error is the three-qubit
code. As a quantum error-correcting code has to correct both
X and Z errors, the smallest quantum error-correcting code
will have more qubits.
We consider first the two-qubit code. For the two-qubit

code with j0i ¼ ð1= ffiffiffi
2

p Þðj00i þ j11iÞ and j1i ¼
ð1= ffiffiffi

2
p Þðj01i þ j10iÞ we have X ¼ X1 or X ¼ X2 and

Z ¼ Z1Z2. The code can detect any single Z error as such
an error maps the two code words onto the orthogonal states
ð1= ffiffiffi

2
p Þðj00i − j11iÞ and ð1= ffiffiffi

2
p Þðj01i − j10iÞ (as Z is of

weight 2). The code cannot detect single X errors as these are
logical operators.
The smallest nontrivial quantum code is the [[4,2,2]]

error-detecting code. Its linearly independent parity
checks are X1X2X3X4 and Z1Z2Z3Z4: the code encodes
4 − 2 ¼ 2 qubits. One can verify that one can choose
X1 ¼ X1X2, Z1 ¼ Z1Z3 and X2 ¼ X2X4, Z2 ¼ Z3Z4 as the
logical operators which commute with the parity checks. The
code distance is 2, which means that the code cannot correct a
single-qubit error. The code can however still detect any
single-qubit error as any single-qubit error anticommutes
with at least one of the parity checks, which leads to a
nontrivial −1 syndrome. Alternatively, we can view this code
as a subsystem code (see Sec. II.C) which has one
logical qubit, say, qubit 1, and one gauge qubit, qubit 2.
In that case G ¼ hX1X2X3X4; Z1Z2Z3Z4; Z3Z4; X2X4i ¼
hZ1Z2; Z3Z4; X1X3; X2X4i, showing that measuring weight-
2 checks would suffice to detect single-qubit errors on the
encoded qubit 1. The smallest stabilizer code that encodes one
qubit and corrects one error is the [[5,1,3]] code; one can find
its parity checks in Nielsen and Chuang (2000).
In order to make larger codes out of small codes one can use

the idea of code concatenation which we first illustrate with an
explicit example. We take a small stabilizer code C6 [defined
in Knill (2005)] with parity checks X1X4X5X6, X1X2X3X6,
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Z1Z4Z5Z6, and Z1Z2Z3Z6 acting on six qubits. This code has
four independent parity checks; hence it encodes 6 − 4 ¼ 2

qubits with the logical operators X1 ¼ X2X3, Z1 ¼ Z3Z4Z6

and X2 ¼ X1X3X4, Z2 ¼ Z4Z5. As its distance is 2, it can
detect only single X or Z errors.
One can concatenate this code C6 with the code [[4,2,2]]

[called C4 by Knill (2005)] by replacing the three pairs of
qubits, i.e., the pairs (12), (34), and (56), in C6 by three sets of
C4-encoded qubits, to obtain a new code. This code has thus
n ¼ 12 qubits and encodes k ¼ 2 qubits. We can represent
these 12 qubits as three sets of four qubits such that the
X checks read

SðXÞ ¼

0
BBBBBBB@

X X X X I I I I I I I I

I I I I X X X X I I I I

I I I I I I I I X X X X

X X I I I X I X X I I X

X I I X X X I I I X I X

1
CCCCCCCA
.

The Z checks are

SðZÞ ¼

0
BBBBBBB@

Z Z Z Z I I I I I I I I

I I I I Z Z Z Z I I I I

I I I I I I I I Z Z Z Z

Z I Z I I I Z Z Z I I Z

Z I I Z Z I Z I I I Z Z

1
CCCCCCCA
;

and the logical operators are

X1 ¼ I X I X X X I I I I I I;

Z1 ¼ I I I I Z I I Z I I Z Z;

X2 ¼ X X I I X I I X I I I I;

Z2 ¼ I I I I I I Z Z Z I Z I.

One can verify that the minimum weight of the logical
operators of this concatenated code is 4. Thus the code is a
[[12,2,4]] code, able to correct any single error and to detect
any three errors.
One could repeat the concatenation step and recursively

concatenate C6 with itself (replacing a pair of qubits by three
pairs of qubits, etc.) as in Knill’s C4=C6 architecture (Knill,
2005) or, alternatively, recursively concatenate C4 with itself
as considered by Aliferis and Preskill (2009).
In general when we concatenate an ½½n1; 1; d1�� code with

an ½½n2; 1; d2�� code, we obtain a code which encodes one
qubit into n ¼ n1n2 qubits and has distance d ¼ d1d2. Code
concatenation is a useful way to obtain a large code from
smaller codes as the number of syndrome collections scales
linearly with the number of concatenation steps while the
number of qubits and the distance grows exponentially with
the number of concatenation steps. In addition, decoding of a
concatenated code is efficient in the block size n of the code,
and the performance of decoding can be strongly enhanced
by using message passing between concatenation layers
(Poulin, 2006).

Another way of constructing quantum error-correcting
codes is by using two classical binary codes in the
Calderbank-Shor-Steane (CSS) construction (Nielsen and
Chuang, 2000). Classical binary linear codes are fully
characterized by their parity check matrix H. The parity
check matrix H1 of a code C1 encoding k1 bits is an ðn −
k1Þ × n matrix with 0,1 entries where linearly independent
rows represent the parity checks. The binary vectors c ∈
f0; 1gn that obey the parity checks, i.e., Hc ¼ 0 (where
addition is modulo 2), are the code words. The distance d ¼
2tþ 1 of such classical code is the minimum (Hamming)
weight of any code word and the code can correct t errors.
We represent a row r of H1 of a code C1 by a parity check

operator sðZÞ such that for the bit ri ¼ 1 we take sðZÞi ¼ Z
and for bit ri ¼ 0 we set sðZÞi ¼ I. These parity checks
generate some stabilizer group S1ðZÞ. In order to make this
into a quantum code with distance larger than 1, one needs to
add X-type parity checks. These could simply be obtained
from the ðn − k2Þ × n parity check matrix H2 of another
classical code C2. We obtain the stabilizer parity checks S2ðXÞ
by replacing the 1’s in each row of this matrix by Pauli X and I
otherwise. But in order for S ¼ hS1ðZÞ;S2ðXÞi to be an
Abelian group the checks all have to commute. This implies
that every parity X check should overlap on an even number of
qubits with every parity Z check. In coding words it means
that the rows of H2 have to be orthogonal to the rows of H1.
This in turn can be expressed as C⊥

2 ⊆ C1, where C⊥
2 is the

code dual to C2 (code words of C⊥
2 are all the binary vectors

orthogonal to all code words c ∈ C2).
In total S ¼ hS1ðZÞ;S2ðXÞi will be generated by 2n − k1 −

k2 independent parity checks so that the quantum code
encodes k1 þ k2 − n qubits. The distance of the quantum
code is the minimum of the distance dðC1Þ and dðC2Þ as one
code is used to correct Z errors and the other code is used to
correct X errors.
A good example of this construction is Steane’s seven-qubit

code [[7,1,3]] which is constructed using a classical binary
code C that encodes four bits into seven bits and has a distance
of 3. Its parity check matrix is

H ¼

0
B@

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1
CA: ð3Þ

The code words c that obeyHc ¼ 0 are linear combinations of
the 7 − 3 ¼ 4 binary vectors (1,1,1,0,0,0,0), (0,0,0,1,1,1,1),
(0,1,1,0,0,1,1), and (1,0,1,0,1,0,1), where the last three are the
rows of the parity check matrix: these are also code words of
C⊥. Hence C⊥ ⊆ C, and we can use the CSS construction
with C1 ¼ C and C2 ¼ C to get a quantum code. As C⊥ (as
well as C) has a distance of 3, the quantum code will have a
distance of 3 and encodes one qubit. The parity checks are
Z4Z5Z6Z7, Z2Z3Z6Z7, and Z1Z3Z5Z7 and X4X5X6X7,
X2X3X6X7, and X1X3X5X7.
Steane’s code is the smallest example in a family of two-

dimensional color codes (Bombin and Martin-Delgado,
2006). Codes obtained using the CSS construction have some
useful properties in terms of what logical gates can be realized
easily on the encoded qubits; see Sec. II.G. Homological
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codes discussed in Sec. III.A.1 represent another interesting
class of CSS codes.

C. Formalism of subsystem stabilizer codes

Subsystem stabilizer codes can be viewed as stabilizer
codes in which some logical qubits, called gauge qubits, are
not used to encode information (Poulin, 2005). The state of
these extra qubits is irrelevant and is in principle left to vary.
The presence of the gauge qubits sometimes lets one simplify
the measurement of the stabilizer parity checks as the state
of the gauge qubits is allowed to freely change under these
measurements.
To define a subsystem code, one can thus takes a stabilizer

code S and split its logical operators ðXi; ZiÞ into two groups:
the gauge qubit logical operators ðXi; ZiÞ with i ¼ 1;…; m
and the remaining logical operators ðXi; ZiÞ with
i ¼ mþ 1;…; k. Then we define a new subgroup G ¼
hS; X1; Z1;…; Xm; Zmi which contains S but also the logical
operators of the irrelevant gauge qubits. We note that G is non-
Abelian as the logical X and Z operators of a gauge qubit do
not mutually commute. However, all elements in the center
of this group, defined as G∩CðGÞ ¼ fP ∈ Gj∀ g ∈ G; Pg ¼
gPg ¼ S (modulo trivial elements), will commute with all
elements in G.
One could do error correction by measuring the parity

check operators in S but imagine that instead we measure the
(noncommuting) generators of the group G. As some of these
operators are noncommuting, their �1 eigenvalues cannot
simultaneously be fixed. However, by choosing the proper
order to measure these noncommuting checks, we can
determine the eigenvalues of the generators for S since
S ⊆ G. For example, for a code G ¼ hG1ðXÞ;G2ðZÞi where
the group G1ðXÞ [G2ðZÞ] consists only of X checks (Z checks),
one can first measure all the generators of G1ðXÞ and then all
the generators of G2ðZÞ. For more general gauge groups G
which do not split up into an X and a Z part, there is a simple
condition which constrains the order in which the gauge
checks have to be measured [see, e.g., Suchara, Bravyi, and
Terhal (2011)] in order to derive stable values for the stabilizer
checks in S. Note that the k −m logical operators ðXi; ZiÞ,
i ¼ mþ 1;…; k, of the logical qubits in use commute with G
and so these logical operators are unaffected by the meas-
urement of elements in G.
A priori there is no reason why measuring the generators of

G would be simpler than measuring the generators of the
stabilizer S. In interesting constructions such as the Bacon-
Shor code and the subsystem surface code discussed in
Sec. III.C, we gain because we measure very low-weight
parity checks in G, while often we lose by allowing more qubit
overhead or declining noise threshold.
The perspective of viewing a subsystem code merely as a

partially used stabilizer code is useful for understanding the
role of G vs S. It is not in general the way one wants to
construct such a code as creating G from an arbitrary stabilizer
code S (generated by low-weight checks) by adding some
logical operators of gauge qubits gives no guarantee that G is
itself generated by low-weight parity checks.
When we measure the eigenvalues of the noncommuting

generators of G, the gauge check operators, we are affecting

the state of the gauge qubits. Consider a subsystem code
G ¼ hG1ðXÞ;G2ðZÞi. If we measure the gauge Z checks, we
fix the state of the gauge qubits to be an eigenstate of these
Z checks, and hence the gauge qubits are eigenstates of their
logical Z operators. If we then measure all the gauge X checks,
we project the gauge qubit states onto eigenstates of their
logical X operators, thus actively changing their logical state.
We can make a new stabilizer code out of a subsystem code by
“fixing the gauge” as follows. In order to fix, say, an X gauge,
we add all the logical X operators of the gauge qubits
X1;…; Xm to S; we call this the stabilizer code
SX fix ¼ hS; X1;…; Xmi. For this stabilizer code, all the gauge
qubits are prepared in their logical jþi state. Gauge fixing is a
concept that can be useful in the efficient realization of a
universal set of logical gates; see Sec. II.G.
The distance of a subsystem code is not the same as that of a

stabilizer code, Eq. (1), as we should consider only the
minimum weight of the genuine k −m logical operators.
These logical operators are not unique as they can be
multiplied by elements in S but also by the logical operators
of the irrelevant gauge qubits (which change the state of the
gauge qubits). This motivates the definition of the distance as
d ¼ minP∈CðSÞnGjPj. We can further distinguish logical oper-
ators as either so-called bare or dressed logical operators. Bare
logical operators do not change the state of the gauge qubits:
they commute with all elements in G; in other words, they are
contained in CðGÞ. Dressed logical operators can be obtained
from bare logical operators by multiplication with elements in
G, in particular, by multiplication with the gauge qubit logical
operators which are in G but not in S.
It is the distance and properties of the dressed logical

operators that define the qualities of the code. For example,
one can easily construct a “Heisenberg” subsystem code of n
qubits on a line with n odd. Let G ¼ hX1X2; Z1Z2;…;
Xn−1Xn; Zn−1Zni. The operators X ¼ X⊗n and Z⊗n mutually
anticommute and commute with all elements in G but are not
elements of G as they are of odd weight. Hence they are bare
logical operators of weight n, but multiplying these operators
by elements in G will result in dressed logical operators which
have weight 1, and hence a low-distance code.
As errors on the gauge qubits are harmless, it means that

equivalent classes of errors are those related to each other by
elements in G (instead of S for stabilizer codes). Given the
eigenvalues of the stabilizer generators, the syndrome s, the
decoding algorithm considers equivalence classes defined as
½E� ¼ fE0j∃g ∈ G; gE0 ¼ Eg. Maximum-likelihood decoding
(or minimum-weight decoding) can proceed similarly as for
stabilizer codes: one determines which class ½EP� has a
maximum value for Probð½EP�Þ ¼ P

g∈GProbðEPgÞ, where
P varies over the possible logical operators.

D. Quantum error-correction conditions and other small
codes of physical interest

One may ask what properties a general (not necessarily
stabilizer) quantum code, defined as some subspace C of a
physical state space, should have in order for a certain set of
errors to be correctable. These properties are expressed as the
quantum error-correction (QEC) conditions which can hold
exactly or only approximately.
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We encode some k qubits into a code space C which is a
subspace of an n-qubit space such that jxi are the code words
encoding the k-bit strings x. Assume there is a set of errors
E ¼ fEigIi¼1 that we want to correct. We can capture the
action of these errors by a superoperator SðρÞ ¼ P

I
i¼1 EiρE

†
i

which is not necessarily trace preserving. We are seeking a
trace-preserving reversal superoperator R such that R ·
SðρÞ ∝ ρ for any encoded density matrix ρ (which is sup-
ported only on the code space). The quantum error-correction
conditions (Bennett et al., 1996; Knill and Laflamme, 1997)
say that there exists such an error-correcting reversal operation
R if and only if the following conditions are obeyed for all
errors Ei; Ej ∈ E:

∀ x; x0; hxjE†
i Ejjx0i ¼ cijδxx0 : ð4Þ

Here cij is a constant independent of the code word jxi with
cij ¼ c�ji. The condition for x ¼ x0 informally requires that the
code words are not distinguished by the error observables. The
condition for x ≠ x0 indicates that the orthogonal code words
need to remain orthogonal after the action of the errors
(otherwise we could not undo the effect of the errors). One
can understand these conditions as arriving from the require-
ment that, in order for a reversal operation R to exist, no
quantum information should leak to the environment. These
conditions are derived in Nielsen and Chuang (2000) directly
by demanding that R · SðρÞ ∝ ρ.
If a code can correct the error set fEig, it can also correct an

error set fFjg, where each Fj is any linear combination of the
elements Ei, as one can verify that the set fFjg will also obey
the quantum error-correction conditions in Eq. (4). This means
that if a code can correct against Pauli errors on any subset of t
qubits, it can correct against any error on t qubits, as the Pauli
matrices form an operator basis in which one can expand the
errors. Stabilizer codes are generally designed such that the
code has distance d ¼ 2tþ 1, which implies that it can correct
any Pauli error on any subset of t qubits (and thus any other
error on these subsets as well).
These QEC conditions can be generalized to the unified

framework of operator quantum error correction (Kribs,
Laflamme, and Poulin, 2005; Nielsen and Poulin, 2007)
which covers both subsystem codes and error-avoidance
techniques via the use of decoherence-free subspaces and
noise-free subsystems. Another generalization of the stabilizer
framework is the formalism of code-word-stabilized quantum
codes (Cross et al., 2009) which also includes nonstabil-
izer codes.

1. Physical error models

How do we determine the set of error operators fEig for a
given set of qubits? In principle, one could start with a
Hamiltonian description of the dynamics of the qubits, the
system S, coupled to a physically relevant part of the rest of
the world, which we call the environment E.
One has a Hamiltonian HðtÞ ¼ HSðtÞ þHSEðtÞ þHEðtÞ,

where HSðtÞ [HEðtÞ] acts on S (E) and HSEðtÞ is the coupling
term. We assume that the qubits of the system and environ-
ment are initially (t ¼ 0) in some product state ρS ⊗ ρE and
then evolve together for time τ. The dynamics due to the

Uð0; τÞ ¼ T exp½−i R τ
0 dt

0Hðt0Þ� for the system alone can then
be described by the superoperator Sτ:

SτðρSÞ ¼ TrEUð0; τÞρS ⊗ ρEU†ð0; τÞ ¼
X
i

EiρSE
†
i ;

where fEig with
P

iE
†
i Ei ¼ I are the so-called Kraus oper-

ators determining the action of the superoperator. These Kraus
operators fEig are thus the error operators. The Kraus
operators of a given superoperator are not unique. One can
define a different set of error operators Fj ¼

P
iUjiEi with a

unitary matrix U which realizes the same superoperator [see,
e.g., Nielsen and Chuang (2000)], but as noted before if the set
fEig is correctable then the set fFjg is correctable as well.
This derivation of the error operators is appropriate when

the system-environment interaction is memoryless or
Markovian beyond a time scale τ so that it is warranted that
we start the evolution with an initial product state between
system and environment. For general non-Markovian noise
such a description is not directly appropriate. Instead of
finding a map describing the dynamics of the system by
itself, one can always consider the unitary dynamics of the
system and environment together and expand this in terms of
errors. One writes the joint unitary transformation between
times t1 and t2 as Uðt1; t2Þ ¼ Uidealðt1; t2Þ þ ESE with
Uidealðt1; t2Þ as the ideal faultless evolution. The operator
ESE can always be expanded as ESE ¼ P

iEi ⊗ Bi, where
fEig can be identified as a set of error operators on the system.
See Lidar and Brun (2013) for a more extensive treatment of
non-Markovian noise models.
Quite commonly one can describe the open-system dynam-

ics by a Markovian master equation of Lindblad form,

dρ
dt

¼ −i½HðtÞ; ρ� þ LðρÞ≡ LtotðρÞ; ð5Þ

where LðρÞ ¼ P
jLjρL

†
j − ð1=2ÞfL†

jLj; ρg with quantum

jump or Lindblad operators Lj.
7 Here HðtÞ is the

Hamiltonian of the quantum system which could include
some time-dependent driving terms. For short times τ we have
ρðτÞ ¼ Sτ(ρð0Þ) ¼ E0ρE

†
0 þ

P
iEiρE

†
i with E0 ≈ I − iτH −

ð1=2ÞτPiL
†
i Li ¼ I −OðτÞ and Ei ≈

ffiffiffi
τ

p
Li. Thus the error set

is given by the quantum-jump operators Li and the no-error
operator E0 which is nontrivial at order OðτÞ.
A special simple case of such a Lindblad equation leads

to the Bloch equation which is used to describe qubit
decoherence at a phenomenological level. We consider a
qubit, described by a Hamiltonian H ¼ −ðω=2ÞZ, which
exchanges energy with a large Markovian environment in
thermal equilibrium at temperature β ¼ 1=kT. One can
model such open-system dynamics using a master equation
of Lindblad form with quantum-jump operators with
L− ¼ ffiffiffiffiffi

κ−
p

σ− and Lþ ¼ ffiffiffiffiffiffi
κþ

p
σþ where σ− ¼ j0ih1j and

σþ ¼ j1ih0j. Here the rates κþ; κ− obey a detailed balance
condition κþ=κ− ¼ expð−βωÞ. The resulting Lindblad equa-
tion has the thermal state ρβ ¼ expð−βHÞ=Tr½expð−βHÞ� as

7Using the definition of the anticommutator fA;Bg ¼ ABþ BA.
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its unique stationary point for which LtotðρβÞ ¼ 0. We
can include additional physical sources of qubit dephasing
modeled by the quantum-jump operator LZ ¼ ffiffiffiffiffi

γZ
p

Z in
the Lindblad equation; this, of course, does not alter its
stationary point.
We can parametrize a qubit as ρ ¼ ð1=2ÞðI þ r · σÞ with

Bloch vector r and Pauli matrices σ ¼ ðX; Y; ZÞ and reexpress
this Lindblad equation as a differential equation for r, the
Bloch equation. Aside from the process of thermal equilibra-
tion and dephasing, one can add time-dependent driving
fields in the Bloch equation (which are assumed not to alter
the equilibration process) so that the general Hamiltonian
is HðtÞ ¼ ð1=2ÞMðtÞ · σ.
The Bloch equation then reads

dr
dt

¼ rðtÞ ×MðtÞ þR(rðtÞ − rβ); ð6Þ

where the first (second) part describes the coherent
(dissipative) dynamics. Here the equilibrium Bloch vector
rβ ¼ (0; 0; tanhðβω=2Þ) and the diagonal relaxation matrix
R ¼ diagð−1=T2;−1=T2;−1=T1Þ, where the decoherence
time T2 and relaxation time T1 characterize the basic quality
of the qubit.
We now consider two simple codes which approximately

obey the conditions in Eq. (4). The first code protects against
amplitude damping, which models T1 relaxation for qubits. In
the second code, the cat code, one encodes a qubit into a
bosonic mode so as to be partially protected against photon
loss. We continue in Sec. II.D.3 with another stabilizer code
that encodes a qubit in a bosonic mode, which demonstrates
that one can also apply the stabilizer formalism to phase space.

2. Amplitude-damping code

Even though the [[5,1,3]] code is the smallest code that can
correct against any single-qubit error, one can use four qubits
to approximately correct any amplitude-damping error which
can model energy loss (Leung et al., 1997). The noise process
for amplitude damping on a single qubit is given by the
superoperator SðρÞ ¼ P

iAiρA
†
i with

A0 ¼
�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
�
≈ I −OðκÞ

and A1 ¼
ffiffiffi
κ

p
σ−. The code words for the four-qubit amplitude-

damping code are j0i ¼ ð1= ffiffiffi
2

p Þðj0000i þ j1111iÞ
and j1i ¼ ð1= ffiffiffi

2
p Þðj0011i þ j1100iÞ.

We assume that each qubit in this code is subjected to
amplitude-damping noise. We want to approximately correct
against the error set E0 ¼ A⊗4

0 , E1 ¼ A1 ⊗ A⊗3
0 ,

E2 ¼ A0 ⊗ A1 ⊗ A⊗2
0 , E3 ¼ A⊗2

0 ⊗ A1 ⊗ A0, and
E4 ¼ A⊗3

0 ⊗ A1, corresponding to no damping and single-
qubit damping on any of the four qubits, respectively. Leung
et al. (1997) showed that this code obeys the QEC conditions
approximately, with Oðκ2Þ corrections, which is a quadratic
improvement over the basic error rate κ.
Clearly, when one uses an approximate error-correction

code, one can only approximately undo the errors.
Determining an optimal recovery (defined as optimizing a

worst-case or average-case fidelity) is more involved; see the
most recent results on this code and the general approach by
Bény and Oreshkov (2010) and Ng and Mandayam (2010).

3. Qubit-into-oscillator codes

Another interesting example is that of a single bosonic
mode (with creation and annihilation operators a† and a) that
is used to encode a qubit in two orthogonal states which are
approximately protected against photon loss. The damping
process can be modeled with the Lindblad equation, Eq. (5),
with L ¼ ffiffiffi

κ
p

a, while H ¼ ωða†aþ 1=2Þ (which we can
transform away by going to the rotating frame at frequency
ω). One can choose two Schrödinger cat states as encoded
states j0þi and j1þi with

j0�i ¼
1ffiffiffiffiffiffiffi
N�

p ðjαi � j − αiÞ;

j1�i ¼
1ffiffiffiffiffiffiffi
N�

p ðjiαi � j − iαiÞ:
ð7Þ

Here jαi is a coherent state

jαi ¼ expð−jαj2=2Þ
X∞
n¼0

αnffiffiffiffiffi
n!

p jni;

and N� ¼ 2½1� expð−2jαj2Þ� ≈ 2. For sufficiently large
photon number hni ¼ jαj2, the states j � αi and j � iαi,
and therefore j0þi and j1þi, are approximately orthogonal
[as jhαjβij2 ¼ expð−jα − βj2Þ].
The creation and manipulation of cat states has been

actively explored; see an extensive discussion on cavity-mode
cat states in microwave cavities (Haroche and Raimond,
2006). The code states are chosen such that loss of a photon
from the cavity maps the states onto (approximately) orthogo-
nal states. As ajαi ¼ αjαi, we have

aj0þi ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−=Nþ

p
j0−i; aj1þi ¼ iα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−=Nþ

p
j1−i;

ð8Þ

with j0−i and j1−i defined in Eq. (7). The preservation of
orthogonality is a prerequisite for these code states to be
correctable. More precisely, one can verify that in the
unphysical limit jαj → ∞ one obeys the QEC conditions,8

Eq. (4), for E0 ¼
ffiffiffi
κ

p
a and E1 ¼ I − ðκ=2Þa†a.

The code space (spanned by j0þi and j1þi) is distinguished
from the orthogonal erred space (spanned by j0−i and
j1−i) by the photon parity operator expðiπa†aÞ ¼P

nð−1Þnjnihnj ¼ Peven − Podd. This parity operator has þ1
eigenvalue for the even-photon-number states j0þi, j1þi, and
−1 eigenvalue for the odd-photon-number states j0−i, j1−i.
By continuously monitoring the value of the parity operator
one could track the occurrence of errors (Haroche, Brune, and
Raimond, 2007; Sun et al., 2014). Even better would be the
realization of a restoring operation which puts an erred state

8If we use two coherent states as code states, say, j0̄i ¼ jαi and
j1̄i ¼ j − αi, the QEC conditions would not be obeyed, as
hαjE†

1E0jαi ≠ h−αjE†
1E0j − αi for any α.
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with decayed amplitude αe−κt=2 back into the code space while
restoring the amplitude back to α. However, such a restorative
process will always add noise to the code words as it is
physically impossible to increase the distinguishability
between (decayed) nonorthogonal code words. Thus, starting
with cat states with finite α, after repeated cycles of errors
followed by, we assume, perfect error detection and correc-
tion, the cat states will gradually lose their intensity and thus
their approximate protection. Leghtas et al. (2013) and
Mirrahimi et al. (2013) proposed the interaction of super-
conducting qubits coupled to 2D or 3D microwave cavities
(circuit QED) to be used for encoding, correction, and
decoding of such cat states while Sun et al. (2014) showed
how this was done in an experiment.
One can generalize the stabilizer formalism to continuous-

variable systems characterized by an infinite-dimensional
Hilbert space (Braunstein, 1998; Lloyd and Slotine, 1998).
Of particular interest are codes which encode a discrete
amount of information, a qubit say, in a harmonic oscillator
(Gottesman, Kitaev, and Preskill, 2001). Harrington (2004)
constructed more general “symplectic” codes which encode
multiple qubits in multiple oscillators.
Given are two conjugate (dimensionless) variables p̂ and q̂

that represent a generalized momentum and position, obeying
½q̂; p̂� ¼ i. The idea is to encode the information such that
small shifts in position or momentum correspond to correct-
able errors while logical operators are represented as large
shifts. For a harmonic oscillator space, the Pauli group Pn can
be generalized to the Weyl-Heisenberg group generated by the
unitary shift operators expðitp̂Þ and expðisq̂Þ for real s and t.
These operators form a basis for the space of operators and
thus any error E (any operator) can be written as E ¼R
ds

R
dtcðs; tÞeitp̂eisq̂ with complex coefficients cðs; tÞ.

Small shifts in p and q may not a priori seem like a very
natural noise model, but one can show that generic errors of
low rate and low degree in p̂ and q̂ can be expanded into linear
combinations of products of these shifts. One should compare
this to the similar expansion of any low-weight error in terms
of low-weight Pauli errors.
In order to define a qubit in this infinite-dimensional space

we select a set of commuting check generators whose þ1
eigenvalue space is two dimensional. We observe that the
operators expðitp̂Þ and expðisq̂Þ commute if and only if
st ¼ 0mod 2π: this follows from the fact that eAeB ¼
e½A;B�eBeA when A and B are linear combinations of q̂ and
p̂. We consider two examples.
In our first trivial example the code space is a single state.

We choose Sq ¼ e2iq̂ and Sp ¼ e−iπp̂ as commuting check
operators and we seek the states that have eigenvalue þ1 with
respect to the Sp check operator. When Sp ¼ 1 the eigenvalues
of p̂ are even integers. We can define n̂ ¼ p̂=2 and ϕ̂ ¼ 2q̂ so
that for Sp ¼ 1 we have n̂ ¼ 0;�1;….
The eigenvalue of the commuting operator Sq can be

simultaneously fixed to be eiϕ so that we should identify
ϕ ¼ ϕmod 2π. Thus we have the state space of a quantum
rotor which is described by conjugate variables n̂ taking
integer values and a 2π-periodic phase ϕ̂ with ½ϕ̂; n̂� ¼ i.
A physical realization of these degrees of freedom is the

quantization of a superconducting circuit, where ϕ is the
superconducting phase (difference of phase across a

Josephson junction) and n̂ represents the number of Cooper
pairs (difference in the number of Cooper pairs across a
Josephson junction). Fixing the eigenvalues for both Sp and
Sq leads to a single state characterized by its superconducting
phase ϕmod 2π. Small shifts expðiϵϕ̂Þ for small ϵ do not
commute with Sp and gets one out of the “Cooper pair” code
space fixed by Sp ¼ 1. This in some sense represents the
phase stability of the superconducting state at a purely
mathematical level.
If we want to use this state space to represent a qubit, we

have to use (linear combinations of) such states characterized
by their phase. For example, the Hamiltonian of the multilevel
transmon qubit (Koch et al., 2007) is given by Htransmon ¼
4ECn̂2 − EJ cosðϕÞ, where EC (EJ) is the capacitive (induc-
tive) energy. This Hamiltonian has been interpreted as that of a
charged quantum rotor in a magnetic field by Koch et al.
(2007). The lowest two energy levels of the system can
define a qubit, the transmon qubit. If we expand
cosðϕÞ ≈ 1 − ϕ2=2þ ϕ4=4!, we obtain the Hamiltonian of
an anharmonic (Duffing) oscillator with eigenstates which are
superpositions of ϕ eigenstates. This type of qubit has thus no
intrinsic protection against dephasing, i.e., the value of the
energy-level splitting is affected by charge and flux noise
(represented as linear combinations of small shifts in p̂ and q̂).
A different choice of Sq and Sp leads to a real code that

encodes a single qubit and has built-in protection. We choose
as checks the operators Sq ¼ e2iq̂ and Sp ¼ e−2iπp̂. Fixing the
eigenvalues of these operators to be þ1 leads to the discre-
tization p̂ ¼ 0;�1;�2;… and again q̂ should have eigen-
values that are multiples of π. Now there are two operators
which commute with Sq and Sp but which mutually anti-
commute: these are Z ¼ eiq̂ and X ¼ e−iπp̂.
The state j0i (defined by Zj0i ¼ j0i and Spj0i ¼ j0i) is a

uniform superposition of states with q̂ ¼ 0;�2π;….
Similarly, j1i corresponds to a uniform superposition of
q̂ ¼ �π;�3π;…; see Fig. 3 with α ¼ π. Consider the effect
of shifts of the form eiδp̂ where jδj < π=2, which are
correctable. Such shifts map the code words outside the code
space as they do not commute with the stabilizer operator Sq.
Error correction thus takes place by measuring qmod π and
applying the smallest shift which resets q ¼ 0modπ.
Similarly jþi is a uniform superposition of states with
p̂ ¼ 0;�2;�4;…, while j−i is a uniform superposition of

FIG. 3. Amplitude of code words for the stabilizer code with
commuting checks SqðαÞ ¼ e2iπq̂=α and SpðαÞ ¼ e−2ip̂α which
encodes a qubit in an oscillator. From Gottesman, Kitaev, and
Preskill, 2001.
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states with p̂ ¼ �1;�3;…; see Fig. 3. The qubit is protected
against shifts eiϵq̂ with jϵj < 1=2.
This code space can be viewed as the state space of a

Majorana fermion qubit (Alicea, 2012), where p̂ ¼ n̂ counts
the total number of electrons while q̂ ¼ ϕ̂ is the π-periodic
conjugate phase variable. The jþi eigenstate of X with an even
number of electrons corresponds to the Majorana mode
unoccupied while j−i is the state with an odd number of
electrons as the Majorana mode is occupied. The protection of
the Majorana fermion qubit can thus also be understood from
this coding perspective although the perspective sheds no light
on how to physically realize this qubit nor on the effect of
noise which cannot be represented by shifts.
Another representation of this code space, which does not

use Majorana fermion qubits but superconducting circuits, is
the 0-π qubit (Kitaev, 2006) which is designed such that the
superconducting phase difference between terminals has
degenerate energy minima at 0 and π corresponding to the
approximate code words j0i and j1i.
More generally, we can parametrize this code by a real

number α by taking the stabilizer checks as Sq ¼ e2iπq̂=α and
Sp ¼ e−2ip̂α (previously we took α ¼ π). The logical operators
are Z ¼ eπiq̂=α and X ¼ e−ip̂α (Gottesman, Kitaev, and
Preskill, 2001); see the code words in Fig. 3. The code can
correct against shifts eiϵq̂ with jϵj < π=2α and e−iδp̂,
where jδj < α=2.
One can use this code for encoding a qubit in a bosonic

mode where q̂ and p̂ arise as quadrature variables, i.e.,
q̂ ¼ ð1= ffiffiffi

2
p Þða† þ aÞ and p̂ ¼ ði= ffiffiffi

2
p Þða† − aÞ. The free

Hamiltonian H0 ¼ ωða†aþ 1=2Þ will periodically transform
q̂ into p̂ and vice versa, so it is natural to let Sq be of the same
form as Sp and choose α ¼ ffiffiffi

π
p

.
Gottesman, Kitaev, and Preskill (2001) showed explicitly

how errors such as photon loss L− ¼ ffiffiffiffiffi
κ−

p
a, photon gain

Lþ ¼ ffiffiffiffiffiffi
κþ

p
a†, dephasing (or decay) of the oscillator eiθa

†a (or
e−κa

†a), or a nonlinearity eiKða†aÞ2 for sufficiently small
parameters κ�, θ, and K can be expanded into the small shift
operators and can thus be corrected. The level of protection
thus goes well beyond that of the cat state code.
However, the code words of this code in Fig. 3 are not

physically achievable as it requires an infinite amount of
squeezing (and thus an infinite amount of energy) to prepare
(superpositions of) quadrature eigenstates such as jqi or jpi.
Gottesman, Kitaev, and Preskill (2001) proposed using
approximate code words, e.g., the approximate code word
j~0i is a superposition of Gaussian peaks in q space, each one
centered at integer multiples of 2

ffiffiffi
π

p
with width Δ, in a total

Gaussian envelope of width 1=κ. Viewed as a superposition of
p eigenstates, such a state is a superposition of peaks with
width κ and total envelope of width Δ−1. An error analysis of
this approximate encoding was done by Glancy and Knill
(2006), while Vasconcelos, Sanz, and Glancy (2010) consid-
ered the preparation of the encoded states using cat states as in
Eq. (7), squeezing, and homodyne detection.
Menicucci (2014) showed how one can use a continuous-

variable cluster state and homodyne measurements to perform
quantum error correction on these approximate GKP
(Gottesman, Kitaev, Preskill) code words and realize a
universal set of gates assuming that the noise is due only
to the finite amount of squeezing in the preparation of the

GKP code words and the cluster state. For squeezing levels of
21 dB, Menicucci estimates that the (worst-case) effective gate
error rate is 10−6, sufficiently below the noise threshold of the
surface code discussed in Sec. III.A. In Sec. III.C.2 we
consider a version of the surface or toric code which encodes
an oscillator in a 2D coupled array of harmonic oscillators,
which can also be viewed as a way to concatenate the GKP
code with the surface code.

E. D-dimensional (stabilizer) codes

Of particular practical interest are D-dimensional stabilizer
codes. These are stabilizer code families on qubits located at
vertices of some D-dimensional cubic lattice (with or without
periodic boundary conditions). The parity checks involve
Oð1Þ qubits which are within Oð1Þ distance of each other
on this lattice, where Oð1Þ means that this quantity is a
constant independent of block size n. One can easily prove
that one-dimensional stabilizer codes have distance Oð1Þ,
independent of block size (Bravyi and Terhal, 2009), showing
that without concatenation, such codes offer little fault-
tolerant protection. Various two-dimensional topological
stabilizer codes are discussed in Sec. III, while some 3D
and 4D examples of topological codes are the Haah code
(Haah, 2011), the Chamon code (Bravyi, Leemhuis, and
Terhal, 2011), the 3D toric code (Castelnovo and Chamon,
2008), and the 4D toric code (Dennis et al., 2002), discussed
in Sec. III.A.1.
There are of course many codes which are not captured by

the stabilizer formalism. Here I briefly mention the class of
2D topological qubit codes where the stabilizer checks are
still commuting, but are no longer simple Pauli operators.
As Hamiltonians these correspond to the so-called 2D
Levin-Wen models (Levin and Wen, 2005); as codes they
are called Turaev-Viro codes (Koenig, Kuperberg, and
Reichardt, 2010). The advantage of these codes which
generalize the 2D surface code in Sec. III is that universal
quantum computation can be achieved by purely topological
means. The disadvantage from the coding perspective is that
(1) the stabilizer checks are more complicated as operators,
e.g., for the so-called Fibonacci code on a hexagonal lattice,
the stabilizer checks act on three and 12 qubits, and
(2) decoding and determining a noise threshold for these
codes has only recently begun (Brell et al., 2014; Wootton
et al., 2014).

F. Error correction and fault tolerance

We understand from the previous discussions that the
crucial element of quantum error correction for stabilizer
codes is the realization of the (parity) check measurement
as in Fig. 1. The immediate problem is that the parity
check measurement suffers from the same imperfections
and noise as any other gate or measurement that one may
want to do.
In practice a parity check measurement may arise as a

continuous weak measurement, leaving a classical stochastic
data record which hovers around the value þ1 (pointing to the
state being in the code space) while occasionally jumping to a
value centered around −1, modeled using a stochastic master
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equation. One can imagine that such a continuously acquired
record is immediately fed back to unitarily steer the qubits to
the code space (Ahn, Doherty, and Landahl, 2002). The
feedback cannot just rely on the instantaneously measured
noisy signal but should integrate over a longer measurement
record to estimate the current conditional quantum state of the
system (Wiseman and Milburn, 2010). However, tracking the
entire quantum state in real time is computationally expensive
and defeats the purpose of quantum computation. For the
realization of quantum error correction, van Handel and
Mabuchi (2005) described a filter in which one tracks only
the probability that the quantum system at time t is in a state
with particular error syndrome s given the continuous meas-
urement record in time. Chase, Landahl, and Geremia (2008)
improved on this construction by explicitly including the
effect of the feedback Hamiltonian in the stochastic analysis.
Another model of feedback is one in which no weak

measurements are performed and processed, but rather the
whole control loop is a dissipative quantum computation. One
could set up a simple local error-correction mechanism by
explicitly engineering a dissipative dynamics which drives or
corrects the qubits toward the code space as proposed by
Barreiro et al. (2011) and Müller et al. (2011). We assume that
the open-system dynamics of code qubits and environment is
described by a Lindblad equation as in Eq. (5). For simplicity,
we consider the case in which we want to pump or drive four
qubits into a state with even parity so that the four-qubit parity
Z check Z1Z2Z3Z4 has eigenvalue þ1. Imagine that we
can engineer the dissipation (in the interaction picture) such
that there is a single quantum-jump operator L ¼ ffiffiffi

κ
p

X1Podd
with Podd ¼ ð1=2ÞðI − Z1Z2Z3Z4Þ, the projector onto the
odd-parity space, and H ∝ Z1Z2Z3Z4. Integration of the
Lindblad equation gives rise to the time dynamics ρðtÞ ¼
expðtLtotÞ½ρðt ¼ 0Þ� with stationary states ρ determined by
LtotðρÞ ¼ 0. States supported on the even-parity subspace are
“dark” states with LðρÞ ¼ 0 and ½H; ρ� ¼ 0. The odd-parity
subspace is not stationary as the quantum jump operator L
flips the first qubit so that an odd-parity state becomes an
even-parity state pumping the system toward the stationary
dark subspace.
Müller et al. (2011) considered the following stroboscopic

evolution using an ancillary dissipative qubit or mode which
approximately gives rise to such Lindblad equation. The idea
is to alternate (or trotterize) the coherent evolution withH and
the dissipative evolution with L for short periods of time τ so
that expðτLtotÞ ≈ expð−iτ½H; ⋅�Þ expðτLÞ. The dynamics of H
can be obtained by a small modification of the parity check
measurement circuits in Fig. 1: for the evolution expð−iθPÞ,
where P is a multiqubit Pauli operator, we can use the circuit
in Fig. 1(b).
The dissipative evolution L could be implemented for short

times τ ≪ 1 using a circuit consisting of a dissipative ancilla
coupled to the four qubits as in Fig. 1(d). At the end of this
circuit, instead of immediately measuring the ancilla qubit, we
apply a CNOT operation with the ancilla qubit as control and
qubit 1 as target (to change the parity of the odd states to
even). This is then followed by natural dissipation of the
ancilla qubit (T1 process) so any amplitude in the j1i state is
transferred to j0i. This means that the ancilla qubit is

effectively reset and can be used for the next round of
application of expðτLÞ.
These ideas of stabilizer pumping were experimentally

tested on two and four ion-trap qubits by Barreiro et al.
(2011). The use of this kind of extremely local feedback is
limited as the dissipative evolution applies a correction
depending only on the outcome of a single parity check,
whereas classical decoding in general makes decisions on the
outcomes of many parity checks. We continue the discussion
on local decoders for the surface code in Sec. III.D.
As any realization, closed or open loop, of quantum error

correction will suffer from inaccuracies there is no guarantee
that one will improve coherence times by encoding a qubit in a
code as it may introduce more errors than it takes away. And if
coding leads to a lower logical error rate, then how does one
proceed to get an even lower logical error rate? In topological
code families such as the surface code in Sec. III, the logical
error rate decreases exponentially as some function of the
block size n, once one is below a critical error rate. This
implies that the more qubit overhead one is willing to tolerate
the smaller the logical error rate will be. Another way of
obtaining a decreasing logical error rate is through recursively
applied code concatenation of codes of a fixed block size n.
The main ideas of this mathematical theory of quantum fault-
tolerant computation by means of code concatenation are the
following.
For simplicity, we assume that every elementary gate, idling

step, or measurement (these are called locations in the circuit)
can fail independently with some error probability p (inde-
pendent stochastic noise). In a concatenation scheme every
qubit and operation in a quantum circuit is replaced by an
encoded qubit and an encoded operation, respectively, and the
process is recursively repeated. The encoded operation consists
of an error-correction step and a fault-tolerant realization of the
operation (see Fig. 4), which together constitute a rectangle.
For a code such as Steane’s [[7,1,3]] code, which can

correct a single error, the fault tolerance of the rectangle
should be such that a single error in any of the locations of the
rectangle cannot lead to two, incorrectable errors in one code

FIG. 4. Code concatenation: each qubit in the circuit on the left
is replaced by an encoded block of qubits in the circuit on the
right. The gate G in the circuit Mr−1 is replaced by a rectangle
consisting of the fault-tolerant encoded realization of the gate
(Gfault-tol) followed by error-correcting steps (E). The process
can be repeated for every elementary qubit and gate in the new
circuit Mr.
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block. Then if the elementary error rate scales as p, it follows
that the encoded error rate scales as Cp2 as two elementary
errors are required for a logical error. Here C is a constant
which roughly counts the number of pairs of locations in the
rectangle where failure can lead to a logical error. If Cp2 < p
the concatenation step helps and r steps of concatenation will
drive down the error rate to ∼p2r , while the overhead in terms
of qubits and gates increases only exponentially in r. The
equality Cp2 ¼ p sets the noise threshold pc.
If we have a code with higher distance which can, say,

correct t errors, then fault tolerance of a rectangle means that
any error of weight k ≤ t in this rectangle spreads to at most k
qubits in a block. This will ensure that the logical error rate
is Oðptþ1Þ.
It is not trivial to make sure that a single error in a rectangle

can lead to at most one error in the block for a code such as
Steane’s code. Consider the parity check circuit in Fig. 1(c)
which is used to measure the weight-4 X-check operators of
this code, where the data qubits are some subset of the seven
qubits. One needs to ensure that a single error on the ancilla
qubit cannot spread to two errors in the block. However, a
single X error on the ancilla between the first and the last two
CNOT gates will directly spread to two X errors on the data. We
can see this by commuting the Pauli X on the ancilla through
the two CNOT gates (and note that the X error on the ancilla
does not affect the outcome of the measurement). Thus the
bare parity check measurement circuit is not fault tolerant for
the Steane code and one needs to modify this. Three methods
have been devised to deal with making parity check circuits
fault tolerant. This first method is called Shor error correction;
it replaces the ancilla qubits by a k-qubit verified cat state
ð1= ffiffiffi

2
p Þðj00 � � � 0i þ j11 � � � 1iÞ, where k is the weight of the

check to be measured [see, e.g., Preskill (1998) for details].
The second method is Steane error correction for CSS codes.
In this method the ancilla is replaced by an encoded verified
ancilla j0i (or jþi) and a logical CNOT gate is executed
between the encoded data qubit and the encoded ancilla
(Steane, 1997; Cross, DiVincenzo, and Terhal, 2009). A third
method is Knill error correction which uses quantum tele-
portation into a new encoded qubit such that the logical
Bell measurement outcomes reveal the error syndrome
(Knill, 2005).
The idea of repeated code concatenation was used in the

early days of quantum error correction to prove the threshold
theorem (Aharonov and Ben-Or, 1997; Kitaev, 1997;
Knill, Laflamme, and Zurek, 1998; Aliferis, Gottesman,
and Preskill, 2006). This theorem says that fault-tolerant
computation is possible with arbitrarily small error rate if
one is willing to tolerate an overhead which scales poly-
logarithmically with the size N of the computation to be
performed (the size of a quantum circuit is the number of
locations in it).
Theorem 1: An ideal circuit of size N can be simulated

with arbitrary small error δ by a noisy quantum circuit
subjected to independent stochastic noise of strength less
than p < pc, where the noisy quantum circuit is of size
O(NðlogNÞc) with some constant c.
It should be noted that this theorem assumes that “fresh”

ancillas can be added during the quantum computation or

quantum storage for doing parity check measurements. This
means that these ancillas or qubit preparations have an error
rate similar to those of other elementary components in the
computation. The same assumption underlies the results on
the asymptotic noise threshold for topological quantum error
correction. Another assumption underlying the threshold
results for concatenated and topological codes is that qubits
can be acted upon in parallel. In practice simultaneous readout
or control of, say, multiple superconducting qubits using only
a few microwave lines can be achieved by using qubits
operating at sufficiently different microwave frequencies
and frequency division multiplexing.
Another typical assumption is that classical processing of

error information is fast and accurate, imposing no delay in
the execution of the quantum computation. We return to the
demands on classical processing in Secs. II.G.3 and III.D.
Practically relevant questions with respect to the threshold

theorem are as follows: how high is the value of the noise
threshold pc, how large is the constant c, and what is the value
of the constant in Oð⋅Þ? These numbers determine when
quantum error correction will be useful and how large an
overhead one should actually expect. The constant c in the
theorem is roughly c ≈ log2 S, where S is the number of
locations in a rectangle.
The best-performing concatenated coding scheme to date is

the C4=C6 scheme of Knill (2005). For this scheme, which
assumes nonlocal interactions between qubits, Knill has
numerically estimated a noise threshold as high as pc ≈ 3%
albeit at the cost of huge overheads. Aliferis, Gottesman, and
Preskill (2008) derived a rigorous lower bound of the noise
threshold of this scheme of 0.1%.
Gottesman (2000) showed that the threshold theorem still

holds if all interactions between elementary qubits are local on
a one-, two-, or higher-dimensional lattice. In such a scheme
nonlocal interactions between elementary qubits are assumed
to be realized via chains of noisy swap gates. This result
means that, even though a one-dimensional quantum error-
correcting code (see Sec. II.E) has a distance Oð1Þ, one can
use a small 1D code and concatenate it with itself to obtain a
fully fault-tolerant one-dimensional scheme. The additional
noisy movement via swap gates will negatively impact the
noise threshold. For example, in an entirely 2D realization of
the concatenated Steane [[7,1,3]] code in which movement of
data qubits via noisy swap gates is explicitly included (Svore,
DiVincenzo, and Terhal, 2007), the fault-tolerant CNOT gate
has S ¼ Oð103Þ so that c ≈ 10 demonstrating the potential
inefficiency of code concatenation. For this scheme, the
threshold was estimated as pc ≈ 1.85 × 10−5, while for the
same nonlocal scheme the analysis resulted in a threshold of
3.61 × 10−5. These fairly low numbers should be contrasted
with the noise threshold of about 1% for the 2D surface code
in Sec. III.A.
One may at first sight expect that the overhead incurred by

code concatenation is worse than the overhead that is incurred
with topological error correction (Sec. III). One possible
reason is that in topological quantum error correction parity
check measurements are simply made robust by repeating the
measurement needing no additional qubits. In contrast, in
code concatenation the parity check measurements are real-
ized using more complicated ancillas as in Steane error
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correction. However, this picture is too simplistic: the com-
parative study by Suchara et al. (2013) showed that for a
computational task such as factoring the number 1024,
concatenated Bacon-Shor codes perform better than the sur-
face code at low error rates below 1 × 10−7 while at high error
rates the surface code performs better. Other studies of coding
overhead for several families of codes were undertaken by
Steane (2003) and Cross, DiVincenzo, and Terhal (2009).
Fowler, Mariantoni et al. (2012) estimated that in order to
factor a 2000-bit number one needs about 104 physical qubits
per logical qubit using the double-defect encoding of the
surface code described in Sec. III.B.4.
One can ask whether it is, in principle, possible to realize

fault-tolerant computation with constant overhead, meaning
that the number of qubits of the noisy fault-tolerant circuit
scales with the number of qubits of the original circuit. This
question was analyzed and answered in the affirmative by
Gottesman (2014). The fault-tolerant construction by
Gottesman (2014) can be based upon any family of quantum
low-density parity check (LDPC) codes with constant rate
R ¼ k=n ≥ c and, loosely speaking, finite noise threshold
(when the block size n → ∞) even if parity check measure-
ments are faulty.
LDPC stabilizer qubit codes are codes such that all parity

checks (stabilizer generators) act on Oð1Þ qubits, independent
of block size. Several codes with such properties have recently
been developed (Tillich and Zémor, 2014; Freedman and
Hastings, 2013; Guth and Lubotzky, 2014) which have
distances d ¼ OðnαÞ with 0 < α ≤ 0.5. For such LDPC codes
it has been shown (Kovalev and Pryadko, 2013) that having a
distance scale as some function of n guarantees the existence
of a finite noise threshold, assuming that we can do minimum-
weight decoding. In order to be of practical interest, decoding
of such LDPC codes with constant rate should be computa-
tionally efficient. However, efficient minimum-weight decod-
ers are not known to exist for quantum LDPC codes in
general. Hastings (2013) showed how one can decode a 4D
hyperbolic code with an efficient local decoder running in
time Oðn log nÞ to get a logical error rate p ∼ pc log n with p
representing a basic error rate and c a constant, thus falling off
only polynomially (instead of exponentially) with n.
It was proven by Bravyi, Poulin, and Terhal (2010) that 2D

stabilizer codes (which are LDPC codes with qubits on a 2D
regular lattice) obey the trade-off kd2 ¼ OðnÞ. This result
demonstrates that 2D codes such as the surface codes
discussed in Sec. III do not allow for fault-tolerant compu-
tation with constant overhead. More generally, the results
by Bravyi, Poulin, and Terhal (2010) showed that any D-
dimensional stabilizer code family which has distance scaling
with lattice size will have a vanishing rate (when n → ∞),
showing that nonlocal parity checks [betweenOð1Þ but distant
qubits] on such lattices are necessary in order to achieve a
constant overhead. We note that it is an open question whether
there exist quantum LDPC stabilizer codes with constant rate
and distance scaling as n1=2þβ for some β > 0.

G. Universal quantum computation

In quantum error correction with stabilizer (subsystem)
codes a special role is played by logical gates which are

elements of the Clifford group. The Clifford group Cn is a
finite subgroup of the group of unitary transformations Uð2nÞ
on n qubits. It is defined as the normalizer of the Pauli group
Cn ¼ fU ∈ Uð2nÞj∀P ∈ Pn;∃P0;UPU† ¼ P0g, meaning that
it maps Pauli operators onto Pauli operators. An overcomplete
set of generators of the Clifford group are the two-qubit CNOT
gate, the Hadamard H gate, the phase gate S,9 and Pauli
operators X and Z. Note that S2 ¼ Z, so that S and H and
CNOT suffice to generate the whole group.
The Knill-Gottesman theorem (Gottesman, 1999b) proves

that one can efficiently classically simulate any quantum
circuit which employs gates only from the Clifford group. One
does this by tracking the stabilizer group, or more precisely its
generators, which has the input state of the quantum circuit as
its unique þ1 state. Every Clifford gate and measurement
maps the stabilizer generators, which are Pauli operators,
onto new stabilizer generators, providing an efficient repre-
sentation of the action of the quantum circuit. Thus if a
quantum circuit with Clifford gates contains additional known
Pauli errors, one can easily represent these Pauli errors by
additional updates of the stabilizer generators in the classical
simulation.
For universal quantum computation one needs additional

gates such as the T gate (π=8 rotation). Examples of universal
gate sets are {H, T, CNOT}, fH;Toffolig, and fH;ΛðSÞg,
where ΛðSÞ is the two-qubit controlled-S gate.10 Even though
Clifford group gates have no quantum computational power
they can be used to develop a quantum substrate on which to
build universal computation using stabilizer codes. This
comes about by combining the following sets of ideas.
First, note that stabilizer error correction by itself uses only

CNOT gates, preparations of jþi, j−i, j0i, j1i, and measure-
ments in the Z and X basis as is clear from Fig. 1. The T, ΛðSÞ,
and Toffoli gates, each of which can be used with Clifford
gates to get universality, are special unitary gates as they map
Pauli errors onto elements of the Clifford group. One can
define a Clifford hierarchy (Gottesman and Chuang, 1999)
CðjÞ ¼ fU ∈ Uð2nÞjUPnU† ⊆ Cðj − 1Þg such that Cð0Þ ¼
Cð1Þ ¼ Pn, Cð2Þ ¼ Cn. The T, ΛðSÞ, and Toffoli gates are
thus members of Cð3Þ. Such gates in Cð3Þ [and similarly gates
in CðjÞ for j > 3] can be realized with ancillas and Clifford
group gates using quantum teleportation ideas (Gottesman and
Chuang, 1999; Zhou, Leung, and Chuang, 2000). The idea is
illustrated in Fig. 6 for the T gate.
One teleports the qubit on which the T gate has to act, prior

to applying the gate, using the bottom one-bit teleportation
circuit in Fig. 5. We first put a T gate at the end of that
teleportation circuit so that the output is Tjψi. Now we modify
this circuit and commute the T gate backward. In the quantum
circuit we insert I ¼ TT† prior to the corrective Pauli X so that
we can use TXT† ¼ e−iπ=4SX.11 Hence the correction (in case
we measure MZ ¼ −1) is now the Clifford gate SX. As a last

9

H ¼ 1ffiffiffi
2

p
�
1 1

1 −1
�
; S ¼

�
1 0

0 i

�
; T ¼

�
1 0

0 eiπ=4

�
:

10ΛðSÞjb1; b2i ¼ jb1iSb1 jb2i for b1, b2 ¼ 0, 1.
11Note that in the quantum circuit gates are applied from the left to

the right while in equations gates are applied from the right to the left.
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step, we note that the T gate can be commuted through the
control line of the CNOT as both gates are diagonal in the
Z basis on the control qubit. In this way we obtain the circuit
in Fig. 6. Note that if we do not apply the correction, we obtain
the state XT†jψi.
We can use the same trick for the S ¼ T2 gate; that is, we

can reduce the S gate to the preparation of a j þ ii ¼
ð1= ffiffiffi

2
p Þðj0i þ ij1iÞ ancilla, a CNOT gate, and a corrective

Pauli Y. We get this from starting with the bottom circuit in
Fig. 5 to which we apply the S gate at the output. We insert
SS† in the quantum circuit before the corrective Pauli X
and use that SXS† ∝ Y. We thus need the ancilla
SHj0i ¼ ð1= ffiffiffi

2
p Þðj0i þ ij1iÞ.

1. Fault-tolerant logical gates

How do we realize a universal set of logical fault-tolerant
gates for a code? Fault tolerance means that such logical gates
do not spread errors; ideally errors of weight t remain errors of
weight t. In principle, fault-tolerant gate constructions can be
made for any stabilizer code (Gottesman, 1997). The question
is how to do computation with minimal resource requirements
and overheads, that is, as close as possible to the resources
needed for a quantum memory alone. Ideally, the computation
threshold, i.e., the performance of the code when used for
computation, is close to the memory noise threshold, the
performance of the code as a pure quantum memory.
An example of a gate which does not require additional

qubits and does not spread errors is a transversal CNOT

between two code blocks (each block encoding a single qubit
into n qubits). In such transversal CNOT operations every qubit
in the block is paired with a qubit in the other block in a CNOT

gate such that the encoded CNOT is realized by doing n two-
qubit CNOT operations in parallel. A logical CNOT gate can be
performed transversally for any CSS stabilizer code with S ¼
hS1ðXÞ;S2ðZÞi (Gottesman, 1997). One can understand this
by observing that the product of the two stabilizer groups
S × S of the encoded logical qubits is preserved by perform-
ing CNOT gates between all elementary qubits in the blocks.
Thus the code does not change by adding these gates. Second,
one can always assume that the logical X of a CSS code is only
a product of Pauli X’s and the logical Z is only a product of
Pauli Z’s. Doing CNOT gates transversally then has the same
action on these logical operators as doing the CNOTon a pair of
qubits.
In the CSS code construction when the classical codes

C2 ¼ C1 ¼ C (and thus the CSS constraint C⊥
2 ⊆ C1 implies

that C⊥ ⊆ C), the Hadamard gate H on the code block
encoding a single qubit is also transversal. For this code
the stabilizer has identical X and Z parts, S ¼ hSðXÞ;SðZÞi.
The gate H⊗n maps these stabilizers onto each other and
similarly H⊗n∶ X ↔ Z as these operators have the same
support. An example of a code with a transversal Hadamard
and CNOT gate is Steane’s [[7,1,3]] code.
Eastin and Knill (2009) showed that if a quantum code can

detect at least any error on a single qubit (meaning that it
is a nontrivial code), then it does not have a transversally
realizable universal set of gates. A somewhat weaker version
of this theorem, namely, that qubit stabilizer codes do not
allow for a universal set of gates to be realized via transversal
unitary gates, was proved by Zeng, Cross, and Chuang (2011).
Bravyi and Koenig (2013) showed for any 2D stabilizer

code that the logical gates, which can be performed by
constant-depth circuits employing only local gates (between
neighboring qubits), are members of the Clifford group. The
reason to focus on constant-depth local circuits is that such
circuits are small, naturally fault tolerant, and provide a simple
extension of the idea of a transversal gate. For a constant-
depth local circuit any number of errors that occurs in the
circuit will affect only a patch ofOð1Þ qubits on the 2D lattice,
and such Oð1Þ error patches are correctable when the code
distance scales with the lattice size. Hence we expect that such
constant-depth implementation of gates does not negatively
impact the noise threshold or qubit overhead. The result of
Bravyi and Koenig (2013) is subtle as we can realize a fault-
tolerant set of universal gates for any stabilizer code, but
apparently we cannot do this by composing a sequence of
constant-depth encoded gates.
The results of Bravyi and Koenig (2013) also hold if we

try to perform a gate by a constant-depth circuit while at the
same time altering the stabilizer code to a new stabilizer code.
Transforming one stabilizer code into a new one in a sequence
of steps is sometimes called “code deformation.” The idea is
that after the entire sequence of deformations one comes back
to the original code but with a logical operation applied to the
encoded qubits. Code deformation is a very useful concept for
topological codes. As discussed in Sec. III, one can use the
code deformation technique to implement the logical H and
CNOT gates in the 2D surface code. For the surface code it is
not clear how one can do a logical S gate in this manner, as
S⊗n maps the X checks of the surface code onto Y checks. The
stabilizer code with Z and Y checks is not simply related to

FIG. 5. The so-called one-bit teleportation circuits. The meas-
urement denoted by the meter is a measurement in the Z basis and
determines whether to do a Pauli operation on the output qubit:
for outcome MZ ¼ þ1 no correction is performed. From Zhou,
Leung, and Chuang, 2000.

FIG. 6. Using the ancilla Tjþi in the dashed box, one can
realize the T gate by doing a corrective operation SX.
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the original stabilizer code by some code deformation, trans-
lation, or rotation. For the surface code one can do the logical
S in the same fashion as the logical T; see Sec. II.G.2 [for a
different logical S trick, see Aliferis (2007)]. Other stabilizer
codes, 2D color codes, have been found which do allow for an
efficient fault-tolerant realization of the full Clifford group
(Bombin and Martin-Delgado, 2006).

2. T gate

Bravyi and Koenig (2013) suggest that with 2D stabilizer
codes it is not possible to realize a T gate without large
overhead. However, for gates such as the T gate [or Toffoli
gate, also in Cð3Þ] the method of magic state distillation has
been developed (Bravyi and Kitaev, 2005). This method
shows how to realize these gates fault tolerantly by assuming
that noiseless Clifford group operations and a supply of noisy
unencoded Tjþi ancillas are available. Thus, once we have
built a low-noise Clifford computation substrate, universal
quantum computation can be bootstrapped from it. In a nut-
shell, the ideas are as follows. We implement the T gate at the
logical level using Fig. 6 which requires the preparation of
low-noise logical ancillas jAi≡ Tjþi. We can obtain such an
ancilla in a non-fault-tolerant noisy manner by, for example,
injecting several noisy unencoded ancillas into the code (Knill,
2005). From many of these noisy encoded ancillas we distill
using logical H, CNOTs, and measurements, a single low-error
encoded ancilla. The strength of the distillation scheme is that
the noise rate which one can tolerate on the unencoded Tjþi
ancillas for the scheme to work and produce very-low-noise
encoded jAi ancillas is extremely high. Distillation can succeed
if and only if the unencoded ancilla ρ has a fidelityF ¼ hAjρjAi
above approximately 0.854 (Reichardt, 2005).
The downside of this scheme is that the qubit or gate

overhead per logical T gate is orders of magnitude larger than
that of a “topological” CNOT [see, e.g., Fig. 11 in Raussendorf,
Harrington, and Goyal (2007)]. Current work is ongoing to
design alternative schemes to reach universal computation
with reduced overhead [see, e.g., Jones (2013a, 2013b) and
references therein].
It is worthwhile to mention a family of 3D color codes

introduced by Bombin and Martin-Delgado (2007) that allow
for the transversal realization of the T gate, thus requiring no
additional qubit overhead. As these codes have stabilizers
S ¼ hS1ðXÞ;S2ðZÞi one has a transversal CNOT gate. For the
Hadamard gate one can use the gate teleportation ideas above
if one can prepare an ancilla in a jþi state. In Sec. III.B.2 we
discuss how to prepare the state jþi for the surface code; such
a technique also works for these color codes.
The smallest member of this class of color codes [[15,1,3]]

is a quantum Reed-Muller code which has been known to have
a transversal T gate due to the special symmetry which is
inherent in its construction via classical Reed-Muller codes
(Steane, 1999). A possibly even more attractive family of 3D
codes are the gauge color codes (Bombin, 2013) for which the
Hadamard gate is transversal. By fixing the logical state of the
gauge qubits, one obtains a 3D color code for which the T gate
is transversal. The idea of gauge fixing as a means of getting
around the Eastin-Knill theorem was first explored by
Paetznick and Reichardt (2013).

3. The logical Pauli frame

In this section we discuss how, during a fault-tolerant
computation, one can handle the logical and elementary
Pauli operators which are inferred from the syndrome meas-
urement data. The idea is that the decoding procedure gives both
a logical and a physical Pauli error that can be interpreted as a
frame, the so-called Pauli frame (Knill, 2005) which we can
classically track during the quantum computation.
First, we note that in principle it is never necessary to

physically correct Pauli errors to map back to the þ1 eigen-
space of the stabilizer S. This is because any syndrome
eigenspace of S is a good code and we simply need to know
which code space we are using. Second, note that if the
quantum circuit consists entirely of Clifford gates, both at the
logical and at the physical level, the classical information of
the logical and physical Pauli frame does not necessarily need
to be available during the execution of the circuit as the entire
Pauli frame can be commuted through the circuit (as Clifford
gates map Pauli frames onto Pauli frames). The Pauli frame
simply alters the interpretation of the final measurement
outcome of the computation. This is different if the circuit
consists of non-Clifford gates as we will now discuss.
Imagine that syndrome data are collected and processed

and every so often it is deduced that a logical (or physical)
Pauli has happened on the coded data. It may also be that the
quantum circuit we want to realize includes some logical Pauli
operations. Consider what happens when a logical Pauli X
occurs on the data prior to doing a T gate, as in Fig. 6. The X
commutes through the CNOT gate and then effectively changes
the way we should interpret the measurement outcome MZ.
Now, in case MZ ¼ −1 we have Tjψi and we do not need to
do a correction. If MZ ¼ þ1 we need to correct with SX.
This means that the original Pauli X is mapped onto a

logical Clifford error on the data which will subsequently need
to be corrected. If we do not correct the Clifford error, it may
spread and become a more complicated multiqubit error which
is even harder to correct. This implies that it is best to know
the logical Pauli frame of the data qubit and the ancilla qubit
before we move on to the next gate after the T gate.
Once we are done determining the logical Pauli frame, we

know which Clifford error took place and we should then try
to correct it right away. Concerning knowing the logical Pauli
frame, what is important is that one needs to know only the
logical Pauli frame which influences the outcome of the
measurement MZ. For example, the results of parity check
measurements after the CNOT gate on the ancilla qubit in Fig. 6
will not influence this logical Pauli frame and hence can be
processed later. The outcome of these measurements may of
course cause a change in the logical Pauli frame, but as SX
itself (but not controlled SX) is a Clifford gate, this change can
be commuted through and remain a logical Pauli frame.
If we know the logical Pauli frame on time, that is, before

we move to the next gate, we can handle this logical Pauli
frame in the classical control software as discussed, for
example, by Fowler, Mariantoni et al. (2012). If we want
to handle any logical Pauli in the classical control software, we
just use this logical Pauli frame information to correct the
interpretation of MZ (or MX measurement), thus changing
which correction we do. In addition since we do not want to do
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any logical Pauli operations, we can replace the correction
gate SX by the correction S (using that SXT† ∝ YT so that we
have realized T modulo an additional Y).
In conclusion, one can argue that one does not need to

physically implement any logical or elementary Pauli oper-
ation, but one does need to know the logical Pauli operation
before one can proceed further with the computation. If
determining the logical Pauli frame takes some time, as,
for example, the quantum measurement is slow or the
processing of the parity checks using classical computation
is slow, one is thus required to wait before doing the
classically controlled-SX gate. This additional delay is not
problematic as was observed by DiVincenzo and Aliferis
(2007) because parity checks are collected during this delay
time and thus the qubits are protected. DiVincenzo and
Aliferis (2007) showed that a slow measurement will not
lead in general to a lower noise threshold but can be
accommodated by small modifications in the fault-tolerant
(concatenated code) architecture. Slow measurement here
means a quantum measurement with a long latency: the rate
at which parity checks are collected is not changed, but it takes
a while to measure an ancilla qubit that has been coupled to
the data (as in Fig. 1). It may be clear that acquiring syndrome
data at a slower rate will lead to a lower noise threshold as it
effectively corresponds to a higher error rate. Thus in order to
keep the rate of syndrome data acquisition high if the
measurement of the ancillas is slow (say 10 times slower
than the gate time) we have to couple ten different ancillas to
the data in sequence so that we get the measurement outcome
of one of those ten ancillas at the rate of (roughly) the inverse
gate time.
Given these considerations concerning the logical Pauli

frame, we see an important distinction between the complexity
of building a quantum memory (including only Clifford gates)
versus building a quantum fault-tolerant computer using
stabilizer codes. In a fault-tolerant computer, one may allow
for slow measurements with some latency, but the classical
processing of the syndrome data record, the decoding, should
never lead to an increasing backlog of syndrome data. Let rproc
be the rate (in bauds) at which syndrome bits are processed
and rgen be the rate at which these syndrome bits are
generated. We argue that if rgen=rproc ¼ f > 1, a small initial
backlog in processing syndrome data will lead to an expo-
nential slowdown during the computation, for the following
reasons.
Given that f > 1, there will be some time t0 at which there is

enough backlog in our syndrome record for us to have to delay
executing the corrective gate after the T gate as we do not know
whether a logical Pauli error happened, which influences what
correction we should do. Let tproc0 be the time up to which
we have processed the syndrome data at time t0, so Δgen ¼
jt0 − tproc0 j is large enough that it is likely that a logical Pauli
error has happened in the time intervalΔgen. In this time interval
we have generated an additional D1 ¼ rgenΔgen bits. We now
process this record at a rate rproc, and hence this takes time
Δproc ¼ fΔgen. The problem is that during this delay timeΔproc
a new data record is generated ofD2 ¼ Δprocrgen ¼ D1f > D1

bits. If there was a sufficient possibility for a logical Pauli error
in the original data record of sizeD1, then this also holds for data
recordD2. Hence at some next T gatewhich is impacted by this

Pauli frame information, we need to have at least processed the
D2 record. This implies again a delay in executing the gate
duringwhich one acquires a newdata recordD3 ¼ fD2, etc.We
assume that the number of T gates on a logical qubit is some
polynomial in n, polyðnÞ, e.g., for Shor’s factoring algorithm
Oðn3Þ Toffoli gates are needed on n qubits. Then the backlog
data record that we have acquired at the k ¼ polyðnÞth gate is
Dk ¼ fkD1 which is exponential inn. Hence in order to execute
the kth T gate, one has towait for a time rprocDk, an exponential
amount of time in n.
The conclusion is that the syndrome data acquisition through

quantum measurement and the classical processing should be
fast enough to let the logical Pauli frame be “retarded” by only a
constant amount of time, i.e., not increasing during the time of
the computation. In order to achieve this one needs to decode
using maximum classical parallelism, possibly using an on-
chip decoder. Whether the backlog question is a practical
problem thus depends on how fast one can decode as compared
to the physical error rate of the elementary qubits; see the
further discussion in Sec. III.D.
We should contrast this backlog issue with the case of a

quantum memory (including Clifford gates) in which the
computation never has to wait for the classical processing of
the logical Pauli frame. Such a stored qubit could be measured
at the end of its storage time Tstore: in case of slow classical
processing the outcome of the measurement may not be
immediately available (as it depends on the syndrome record),
but it would just mean that the computation, including the
processing of syndrome data, is finished in time fTstore which
is just a constant slow down.
The upshot of these considerations is that 2D and 3D

stabilizer codes will be most suitable for building a quantum
memory and performing Clifford group operations. The goal
of universal quantum computation within the same platform
can be reached using methods such as injection and distillation
or using a code with a transversal T gate, but the additional
overhead and complexity of distillation and demands for fast
decoding are considerable.

III. 2D (TOPOLOGICAL) ERROR CORRECTION

In this section we discuss several stabilizer and subsystem
codes in which the parity checks act locally on qubits laid
out on a 2D lattice. Before we discuss these codes, we make
a few comments on noise models and noise thresholds.
In numerical or analytical studies of code performance, one

uses simple error models such the independent depolarizing
noise model to assess the performance of the code.
Independent depolarizing noise assumes that every qubit
independently undergoes an X, Y, or Z error with equal
probabilities p=3 and no error with probability 1 − p.
Similarly, if qubits undergo single-, or two-qubit gates or
measurement and preparation steps, one assumes that the
procedure succeeds with probability 1 − p while with total
probability p (tensor products of) Pauli errors X, Y, and Z are
applied.
A related noise model is that of independent X and Z errors

in which a qubit can independently undergo an X error with
probability p and a Z error with probability p in each time
step. In all codes that we discuss in this section the parity
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checks are either X or Z like, detecting either Z or X errors. In
addition, the parity Z and X checks have the same form; hence
the simplest form of error correction is to correct X and Z
errors in the same fashion but independently. For depolarizing
noise, this means that we effectively neglect correlations
between X and Z errors. It is also possible to decode the
surface code taking these correlations into account; see Fowler
(2013b) and references therein.
We consider codes which encode a single qubit in a block of

n qubits with n ¼ OðL2Þwith L the linear size of the 2D array.
Several parameters can characterize the code performance.
One is the so-called pseudothreshold pcðLÞ for which
pcðLÞ ¼ pðp; LÞ, i.e., the logical error rate equals the
elementary error rate given a fixed block size. This logical
error rate pðp; LÞ could be separately split into a logical, X, Z,
or total error rate, all being functions of the block size and the
elementary error rate p. In the definition of the pseudothres-
hold we can assume that the elementary error rate is less than
50% (otherwise the qubits would be completely randomized
and no coding would help) and note that the logical error rate
is also maximally equal to 50%. When the elementary error
rate is less than the logical error rate, coding is not helpful.
When the logical error rate is less than the elementary error
rate, coding is helpful. The pseudothreshold thus captures the
crossover point. This crossover point depends on L and gives
more information than the typically stated asymptotic thresh-
old pc ¼ limL→∞pcðLÞ. Svore et al. (2006) considered the
behavior of pseudothresholds for concatenated code schemes.
For the Bacon-Shor code in Sec. III.C.1, the asymptotic

threshold pc ¼ 0; hence it is of interest to consider what is the
optimal block size for this code. Another interesting class of
2D topological stabilizer codes is the color codes (Bombin and
Martin-Delgado, 2006). The color codes offer little practical
advantage over the surface code if the goal is to build a
quantum memory as some of the parity checks involve more
than four qubits. Having higher-weight parity checks neg-
atively impacts the noise threshold as we assume each gate in
the parity check measurement circuit can fail. This is likely to
be the reason that the phenomenological threshold of the color
code obtained as approximately 0.082% in the detailed study
by Landahl, Anderson, and Rice (2011) is lower than the
surface code threshold (about 1%). The higher-dimensional
color codes may be of interest in schemes for universal
encoded computation; see the discussion in Sec. II.G.

A. Surface code

The surface code is a version of Kitaev’s toric code (Kitaev,
2003) in which the periodic boundaries of the torus have been
replaced by open boundaries (Bravyi and Kitaev, 1998;
Freedman and Meyer, 2001). Many of its properties and ideas
for its use as a quantum memory were first analyzed in the
seminal paper by Dennis et al. (2002). The topological 2D
realization of the CNOT gate (Sec. III.B.4) was first proposed
by Raussendorf and Harrington (2007) and Bombin and
Martin-Delgado (2009).
There are several different ways of encoding and represent-

ing qubits in the surface code. We start by discussing how to
encode a single logical qubit in a sheet or patch and then show
in Sec. III.B.3 how a CNOT gate can be performed between

such qubits in patches using logical Pauli measurements. In
Sec. III.B.4 we discuss encoding single qubits into the surface
code using so-called smooth and rough defects, here called
smooth and rough qubits. The performance of this encoding in
terms of logical error rate and overhead has been studied
extensively by Fowler et al. The review by Fowler, Mariantoni
et al. (2012) gives an excellent overview of methods of fault-
tolerant quantum computation using this encoding. Another
way of encoding qubits in the surface code is by means of
pairs of distant dislocations (Bombin, 2010a); the use of this
scheme for fault-tolerant quantum computation was analyzed
by Hastings and Geller (2014).
A simple continuous sheet, depicted in Fig. 7, can encode

one logical qubit. The linearly independent parity checks are
weight-4 plaquette Z checks Bp and star X checks As which
mutually commute and are modified at the boundary to act on
three qubits; see Fig. 7. Note that the star operators are just
plaquette operators on the dual lattice when also interchanging
X ↔ Z. The smallest surface code encoding one logical qubit
that can correct one error is the code [[13,1,3]].12 Z is any
Z string which connects the north and south rough boundaries;
we can deform this string by multiplication by the trivially
acting plaquette operators. X is any X string (on the dual
lattice) connecting the smooth east and west boundaries. As
these strings have to connect boundaries in order to commute

Z
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X X
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Z
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FIG. 7 (color online). Surface code on an L × L lattice. On every
edge of the (black) lattice there is a qubit, in total L2 þ ðL − 1Þ2
qubits (depicted is L ¼ 8). Two types of local parity checks As
and Bp each act on four qubits, except at the boundary where they
act on three qubits. The subspace of states which satisfy the parity
checks is two dimensional and hence represents a qubit. Z̄ is any
Z string connecting the north to the south boundary, which is
referred to as “rough”, while X̄ is any X string connecting the
east to west “smooth” boundary running through vertices of the
dual lattice.

12One can minimize the qubit overhead while keeping the distance
equal to 3 by rotating the lattice and chopping off some qubits at the
corners to get a total of nine qubits. This rotationþ chopping, while
leaving the distance unchanged, can be done for arbitrary-sized
lattices (Horsman et al., 2012).
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with the check operators, their minimum weight is L. Thus for
general L, the code parameters are ½½L2 þ ðL − 1Þ2; 1; L��.
Using 13 qubits to correct one error does not seem very

efficient, but the strength of the surface code is not fully
expressed in its distance which scales only as the square root
of the number of qubits in the block.13

Kitaev’s original toric code is defined on a 2D lattice with
periodic boundary conditions (a torus). For the toric code,
there is a linear dependency between all the Z checks (the
product of the Z checks is I) and a similar linear dependency
between all the X checks. With this linear dependency it
follows that the number of logical qubits is 2. The torus has
two nontrivial loops: the logical Z1 is one nontrivial loop of
Z’s and the logical Z2 corresponds to the other nontrivial loop
of Z̄’s. The matching logical X1 and X2 are similar loops
running over the dual lattice.
For the toric code it may be clear that the logical operators

are directly connected to the homology of the torus. One can
deform a logical Z by multiplying it with Z checks Bp but it
will remain a noncontractible loop on the torus, as products of
plaquette Bp checks correspond to trivial, contractible loops.
This holds analogously for the X loops and products of star As
checks on the dual lattice.

1. Viewing the toric code as a homological quantum code

The toric code is a simple example of a homological (CSS)
quantum code14 (Freedman and Meyer, 2001; Kitaev, 2003;
Guth and Lubotzky, 2014) in which the logical Z (X) operators
correspond to the homology (cohomology) groups of the
underlying manifold. In the surface code one can view the
homology as being relative to a boundary (Bravyi and Kitaev,
1998). In this section we discuss the framework of homo-
logical stabilizer codes and illustrate the concepts with the
toric code in two, three, and four dimensions.
For the toric code one takes a flat two-dimensional

manifold with periodic boundaries, a torus. One has to fix
a triangulation of the manifold resulting in a so-called
simplicial complex which consists of 0-simplices (vertices),
1-simplices (edges), and 2-simplices (faces), etc. The toric
code corresponds to taking a square lattice with faces which
consist of four edges.
In the general construction, with each type of object, e.g.,

vertices, edges, or faces, or generally i-simplices, one asso-
ciates a Z2-vector space Ci. Elements of C0 are thus a
collection of vertices, elements of C1 are collections of edges,
etc. In a Z2-vector space Ci, addition is mod 2. Two binary
vectors a and b are orthogonal if and only if

P
iaibi ¼

0mod 2 or the number of bits i for which ai ¼ bi ¼ 1 is even.

If one represents such binary vector a by a Pauli X operator
PXðaÞ ¼ ΠiX

ai
i and b by a Pauli Z operator PZðbÞ ¼ ΠiZ

bi
i ,

then the inner product between a and b is 0 if and only if
PXðaÞ and PZðbÞ commute.
For the toric code we associate the qubits with the

1-simplices (the edges), but for more general homological
codes in higher dimensions one can associate qubits with
i-simplices. The stabilizer generators and logical operators of
the CSS code are then constructed using subspaces of the
vector space Ci such that the required commutation relations
between these operators hold and the logical operators directly
relate to topological properties of the manifold. This comes
about as follows.
One starts by defining boundary operators ∂i∶ Ci → Ci−1

which act as the name suggests. The boundary operator ∂2

maps a face onto the collection of edges which are incident to
the face, and the boundary operator ∂1 maps a collection of
edges onto a collection of vertices, namely, the end points of
these edges. For qubits associated with 1-simplices, the
Z checks are obtained as the boundary space B1 ¼ Imð∂2Þ,
i.e., generating vectors in B1 correspond to the boundary of a
face. For the square lattice, these generators are thus the
Z plaquettes acting on the four edges of every face of the
lattice.
An important property of the boundary operator is that

the boundary of an i-simplex does not have a boundary;
mathematically this is expressed as ∂i−1∘∂i ¼ 0 applied to any
vector in Ci.
A 1-cycle is defined to be a collection of edges without a

boundary. This means that the vector space of 1-cycles is
Z1 ¼ kerð∂1Þ. Any element of B1 is a 1-cycle, or B1 ⊆ Z1;
these are the trivial cycles that correspond to products of the
Z-check operators. The first homology group H1ðT;Z2Þ ¼
Z1=B1 of the torus T is generated by 1-cycles which are not
the boundaries of plaquettes, i.e., the two nontrivial cycles
around the torus. These cycles correspond to the logical Z
operators.
In the general construction when qubits are associated with

i-simplices, the Z checks correspond to the generators of
Bi ¼ Imð∂iþ1Þ, the i-cycle space is Zi ¼ Kerð∂iÞ, and the ith
homology group HiðM;Z2Þ ¼ Zi=Bi captures the logical Z
operators.
In order to define the X checks for the quantum code one

makes the same construction on the dual lattice or, equiv-
alently, one uses cohomology. One can define the coboundary
operator δi∶ Ci → Ciþ1 which maps an i-simplex onto the set
of (iþ 1)-simplices incident to it. Thus the coboundary
operator δ1 maps an edge onto the faces which are incident
to this edge, δ0 maps a vertex onto the edges emanating from
it, etc. With the coboundary operator one can define a cocycle
space Zi ¼ KerðδiÞ and a coboundary space Bi ¼ Imðδi−1Þ.
For qubits associated with i-simplices, the generators of Bi

correspond to the X checks and the generators of the ith
cohomology group HiðM;Z2Þ ¼ Zi=Bi are the logical X
operators. For the toric code one has i ¼ 1 and so the X checks
correspond to the generators of B1, which are obtained from
taking the edges incident to a vertex; hence the star operators.
For the toric code it is easy to verify that the logical

operators and the checks are all mutually commuting. For a
general homological CSS quantum code, this essential

13One can prove that the distance of any 2D stabilizer code is at
most OðLÞ (Bravyi and Terhal, 2009). However, one can also show
(Bravyi, Poulin, and Terhal, 2010) that any block of size R × R,
where R is less than some constant times the distance, is correctable,
i.e., all errors in such an R × R patch can be corrected. These
arguments show that there are no other 2D stabilizer codes with better
distance scaling and that this scaling allows one to correct failed
blocks of size beyond the distance.

14Readers less interested in this mathematical framework can skip
this section without major inconvenience.
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property comes about from the fact that δi ¼ ∂T
iþ1 (where T is

the matrix transposition if we view these linear maps as
matrices acting on a finite-dimensional space). Then
Bi ¼ Imðδi−1Þ ¼ Imð∂T

i Þ ¼ ½Kerð∂iÞ�⊥ ¼ Z⊥
i [and similarly

Bi ¼ ðZiÞ⊥]. As Bi ⊆ Zi, the spaces Bi and Bi are orthogonal,
so the check operators all commute and Bi ¼ Z⊥

i implies that
the X checks commute with the logical Z, etc. Thus in general
the ith homology groups HiðM;Z2Þ and cohomology groups
HiðM;Z2Þ and their dimensions dimðHiÞ ¼ dimðHiÞ deter-
mine the number of logical qubits and also the character of
the logical operators, meaning the dimensionality of their
support (one-dimensional stringlike or two-dimensional sur-
facelike, etc.).
Instead of using the coboundary operator, one can also

consider the dual of a simplicial complex of an n-dimensional
manifold. Going to the dual means that an i-simplex is
mapped onto an (n − i)-simplex, i.e., in two dimensions a
vertex becomes a face, while in three dimensions a vertex
becomes a 3-simplex. For the toric code, a face (2-simplex)
thus gets mapped onto a vertex (0-simplex) and vice versa, and
edges (1-simplices) remain the same. In order to obtain the X-
check operators and the logical X, we can define boundary
operators on the dual lattice. If we associate qubits with i-
simplices on the primal lattice, the boundary space Bdual

n−i
generates the X checks and Hdual

n−i (which is isomorphic to Hi)
is generated by the logical X operators.
We illustrate the construction with the 3D and 4D toric

codes defined on cubic lattices with periodic boundaries in all
directions so that one has a 3-torus T3 and a 4-torus T4,
respectively. For the 3D toric code (Castelnovo and Chamon,
2008) the 3D cubes are the 3-simplices, their faces are the
2-simplices, and we associate the qubits with the 1-simplices
or edges. For the 3D toric code, Imð∂2Þ is generated by the
four-qubit Z-plaquette operators in the x-y, x-z, and y-z planes.
The logical Z operators are elements in H1ðT3;Z2Þ, the three
noncontractible Z loops around the 3-torus.
If we take the boundary of the boundary of a 3D cube, i.e.,

apply the map ∂2∘∂3, on the cube, we get 0. This implies that
the product of Z plaquettes which make up the boundary of
the cube has no support on the edges; in other words the
product of these stabilizer checks is I. This is a local linear
dependency or a redundancy among the stabilizer checks
which ensures that for any X error, the Z checks that are
nontrivial form a connected string. To see this note that if one
plaquette of the cube has nontrivial eigenvalue −1, some other
plaquette of this cube must also have −1 eigenvalue as the
product of all plaquettes which make up the cube is always I.
We can also understand this property as a Gauss’s law for
Z2 charges: Z2 flux lines (lines of nontrivial syndromes) form
closed loops which have no sources and do not terminate. This
kind of redundancy is not present for the two-dimensional
toric or surface code as no set of edges is the boundary of a
boundary. We discuss in Secs. III.D and III.E how this
redundancy and the lack thereof plays a role in the complexity
of locally decoding and the question of self-correction and
finite-temperature topological order.
We consider the X checks of the 3D toric code. The

X checks can be obtained from the coboundary operator δ0
[taking Imðδ0Þ] which maps a vertex on the set of six edges
emanating from this vertex. Hence the X check is a star

operator centered on a vertex acting on six qubits. The logical
X operators are elements in H1ðT3;Z2Þ, i.e., they are xy-
oriented, yz-oriented, or xz-oriented planes of X’s on the dual
lattice.
We observe that as the edges (1-simplices) become faces

[(3–1)-simplices] on the dual lattice, one does not have a local
linear dependency for the X checks, as the faces are only the
boundary of some three-dimensional objects and never the
boundary of a boundary. One thus needs to go to four
dimensions in order for there to be a local linear dependency
for both X and Z checks. In the 4D toric code we associate
qubits with the faces of a four-dimensional cubic lattice. Each
X check is associated with an edge such that the X check acts
on the qubits on the six faces which touch the edge [elements
of Imðδ1Þ]. Similarly, the Z checks are obtained as Imð∂3Þ,
i.e., as the collections of faces which form the boundary of a
three-dimensional cube. Hence the Z check also acts on six
qubits. The logical operators are associated with (co)homol-
ogy groupsH2ðT4;Z2Þ which has rank 6, so the code encodes
six logical qubits, andH2ðT4;Z2Þ≃H2ðT4;Z2Þ. Now both X
and Z checks have a local linear dependency, as ∂3∘∂4 ¼ 0
(the boundary of a four-dimensional cube is a collection of
three-dimensional cubes which has no boundary) and
δ1∘δ0 ¼ 0. Both logical operators are surfacelike (have a
two-dimensional support) as they are elements in H2ðT4;Z2Þ.

B. Quantum error correction with the surface code

We first consider how quantum error correction can take
place for the surface code assuming that the parity check
measurements are noise free. If a single X error occurs on an
edge in the bulk of the system, then the two plaquette
operators next to it will have an eigenvalue of −1. The places
where these plaquette eigenvalues are −1 are sometimes called
defects. A connected string of X errors will produce only two
defects at its boundary. If the X error rate p per qubit is
sufficiently small, one obtains a low density of close-by
defects. Such errors are correctable as defects can be locally
paired without much ambiguity. As we know, inferring an
error E0 which differs from the real error E by only stabilizer
operators (plaquette operators in this case) is harmless. Here it
means that we decode correctly as long as E0E does not form
an X string (X) which goes from one smooth boundary to the
other smooth boundary. For a sufficiently low rate, the
operators E0E will instead form small closed loops which
are products of check operators. From this picture it may be
intuitively clear that there should be a finite asymptotic
threshold pc for noise-free error correction.
For the bulk system the error syndrome thus gives us the

location of the defects. A minimum-weight decoding algo-
rithm then corresponds to finding a minimum-weight error
string EðXÞ which has these defects as end points. This
decoding algorithm can be implemented using Edmond’s
minimum-weight matching (Blossom) algorithm (Edmonds,
1965). Open-source software AUTOTUNE has been developed
specifically for surface code decoding (Fowler, Whiteside
et al., 2012) and is available on GitHub. We note that at the
boundary of the lattice an error can produce a single defect: in
a minimum-weight matching decoder one can match these
defects with a possible ghost defect beyond the boundary.
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Fowler, Whiteside, and Hollenberg (2012) demonstrated
empirically that the number of steps in the minimum-weight
matching algorithm scales as OðL2Þ per round of error
correction.
Ideal decoding is not minimum-weight decoding, but

maximum-likelihood decoding as described in Sec. II.B.1.
As argued in Sec. II.B.1, one can estimate the maximally
achievable threshold pc with any decoder by relating the
maximum-likelihood decoding problem to a phase transition
of a classical Hamiltonian with quenched disorder. For the
surface code this Hamiltonian is the 2D random-bond Ising
model (Dennis et al., 2002; Wang, Harrington, and Preskill,
2003). Assuming noise-free parity checks and independent X
errors with probability p, the critical value has been numeri-
cally estimated as pc ≈ 11% (Dennis et al., 2002). For a
depolarizing noise model with error probability p, this thresh-
old has been shown to increase to pc ≈ 18.9% in the numerical
study by Bombin et al. (2012).
These thresholds for independent X errors or depolarizing

noise are the best one can expect with any code (within
numerical accuracy) as they saturate the so-called Hashing
bound for these error channels. The Hashing bound for,
say, a depolarizing channel says that the channel cannot
preserve or transmit any quantum information, its channel
capacity is zero, when 1 −HdepolðpÞ ≤ 0, where HdepolðpÞ
is the Shannon entropy of the depolarizing channel
HdepolðpÞ¼−ð1−pÞlog2ð1−pÞ−plog2ðp=3Þ, implying that
pc⪆18.9%. For independent X errors with probability p,
the Hashing bound 1 − 2H2ðpÞ ¼ 0 gives pc ≈ 11%
[H2ðpÞ ¼ −plog2p − ð1 − pÞlog2ð1 − pÞ].
This picture becomes modified when the parity checks are

inaccurate. A simple way to model noisy parity checks is to
assign a probability q for the parity check outcome to be
inaccurate while in between the parity checks qubits undergo
X and Z errors with probability p as before. In practice, one
would expect the parity check measurements to induce some
correlated errors between the qubits of which we take the
parity. For example, for the parity Z check one may expect
additional qubit dephasing if more information than merely
the parity is read out.
As the parity check measurements are no longer reliable,

one needs to change their use as an error record. For example,
a single isolated defect which appears for a few time steps and
then disappears for a long time is likely to be caused by a
faulty parity measurement outcome instead of an error on the
data qubits. The strength of topological codes for sufficiently
large L (as compared to using small codes and code
concatenation) is that noisy parity checks can be dealt with
by repeating their measurement as the additional noise which
the parity checks produce on the code qubits is local and, at
sufficiently low rate, correctable.
Both minimum-weight decoding and maximum-likelihood

decoding can be generalized to the noisy parity check
measurement setting. We extend the lattice into the third
(time) dimension (Dennis et al., 2002); see Fig. 8. Vertical
links, corresponding to parity check measurements, fail with
probability q while horizontal links fail with probability p. In
minimum-weight decoding the goal is now to find a mini-
mum-weight error E which has vertical defect links, where the
parity check is −1 as its boundary; see Fig. 8. When we match

the defects in 3D we obtain an inferred error E0 which can
have a vertical time component (corresponding to a meas-
urement error) as well as horizontal space components
(corresponding to qubit errors). We can visualize the differ-
ence between errors E which get properly corrected and errors
for which decoding fails by considering E0E. When error
correction succeeds, E0E is a trivial loop in the 3D lattice, but
decoding fails when E0E is some nontrivial space-time loop
which winds around the torus (or for the surface code which
connects the proper two boundaries).
If the parity check measurements are ongoing, one needs to

decide how long a time record to keep in which one matches
defects in the time direction; this length depends on the failure
probability q. In the simple case when q ¼ p the record length
is taken as L (Wang, Harrington, and Preskill, 2003).
An analytical lower bound on the noise threshold for q < p

is derived by Dennis et al. (2002) with the value pc ≥ 1.1%.
Numerical studies by Wang, Harrington, and Preskill (2003)
(using minimum-weight decoding) showed a threshold of
pc ≈ 2.9% for p ¼ q.
If we assume that the parity check measurement errors are

due to depolarizing noise on all elementary gates, measure-
ment, and preparations with depolarizing probability p,
Raussendorf, Harrington, and Goyal (2007) found a threshold
of 0.75%. Below the noise threshold the logical error rate
pðp; LÞ ∼ exp½−κðpÞL�, where κðpÞ ≈ 0.8–0.9 at p ¼ pc=3
(Wang, Harrington, and Preskill, 2003; Raussendorf,
Harrington, and Goyal, 2007). Wang et al. (2011) even
estimated the depolarizing noise threshold to be in the range
of 1.1%–1.4%. All these results have been obtained for toric
codes, assuming periodic boundary conditions: one may
expect results to be somewhat worse for surface codes
(Fowler, 2013a).
These results indicate that the surface code, even with noisy

parity check measurements, has a very high threshold as

FIG. 8. 1D cross section of the lattice in space and time. Gray
links correspond to nontrivial −1 syndromes. Errors that could
have caused such a syndrome are represented by black links.
Horizontal black links are qubit errors while vertical black
links are parity check measurement errors. Note that a possible
error E has the same boundary as the gray defect links: a likely
error E (in the bulk) can be found by looking for a minimum-
weighted matching of the end points of the gray links.
From Dennis et al., 2002.
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compared to other coding schemes; see, e.g., those studied by
Cross, DiVincenzo, and Terhal (2009).15 A practically relevant
question is how much overhead L is needed before one is in
the scaling regime where the pseudothreshold is close to the
asymptotic threshold pcðLÞ ≈ pc?
The pseudothreshold for a small code such as [[13,1,3]] is

very small, certainly no higher than 0.1%. Using the results in
Fowler (2013a), one can estimate that the [[25,1,4]] (L ¼ 4)
surface code has a pseudothreshold [defined by p ¼ ApL=2

with A ¼ AX, AZ given in Table I in Fowler (2013a)] of
approximately 0.2% and [[61,1,6]] has a pseudothreshold
of approximately 0.7%. Thus with a depolarizing error rate
p ¼ 5 × 10−4 [[25,1,4]] gives a logical X or Z error rate
pX ≈ pZ ≈ Ap2 ≈ 1 × 10−4 which is barely lower than the
bare depolarizing rate. Even though small surface codes have
worse performance than large codes they could still be used
as test beds for individual components and error scaling
behavior.
Minimum-weight decoding with Edmonds’ matching algo-

rithm is a good decoding method if our goal is to realize a
quantum memory (with or without encoded Clifford group
operations). As one never needs to physically do any
correction (see the notion of the Pauli frame discussed in
Sec. II.G), the measurement record can be stored and the data
record can be processed at leisure and used to interpret a final
MX orMZ measurement on the qubits. The realization of such
a quantum memory will require that the record of parity check
measurements is obtained at a sufficiently high rate compared
to the error rate, since a low-rate stroboscopic picture of the
defects (even if they are obtained perfectly) could potentially
miss the occurrence of a logical error. Fowler, Mariantoni
et al. (2012) proposed a 200 ns surface code cycle time (based
on a 10–100 ns elementary gate time) meaning that every
200 ns both X and Z parity check measurements over the
whole lattice are executed.
Researchers have developed potentially more efficient

renormalization-group (RG) decoders (Bravyi and Haah,
2013; Duclos-Cianci and Poulin, 2014) which process the
defects using parallel processing over the 2D or 3D lattices in
time OðlogLÞ (not taking into account a finite speed of
communication). The idea of the simple decoder in Bravyi and
Haah (2013) which works for any D-dimensional stabilizer
code is to recursively match defects locally. For a 2D surface
code with perfect parity check measurements, one starts by
dividing up the defect record into local clusters of Oð1Þ size.
In each cluster the algorithm tries to find a local error which
removes the defects. If a cluster contains a single defect, for
example, then no such local error can be found. Thus the next
step is to enlarge the linear size of the cluster by a factor of 2
and reapply the same procedure on the leftover defect record.
The decoder stops when no more defects are present or when
one has reached a certain maximum number of iterations
r ¼ OðlogLÞ. For the toric code with perfect parity checks,
Bravyi and Haah (2013) obtained a noise threshold of
pc ¼ 6.7% using this RG decoder while the RG decoder in

Duclos-Cianci and Poulin (2010) achieves 9% (minimum-
weight decoding via matching gives 10.3%).
As mentioned before, there are various ways in which we

can encode multiple qubits in the surface code and do a logical
Hadamard or CNOT gate. The simplest method is to encode
multiple qubits in multiple separate sheets (as in Fig. 7) laid
out next to each other in a 2D array as in Fig. 12. Using
operations on a single sheet one can do a logical Hadamard
gate; see Sec. III.B.2. A CNOT gate between qubits in separate
sheets can be realized using the idea of lattice surgery in
which sheets are merged and split as proposed by Horsman
et al. (2012).
The important point of doing a CNOT or Hadamard gate

using these code deformation methods is that their imple-
mentation does not affect the surface noise threshold as error
correction is continuously taking place during the implemen-
tation of the gates and the single qubit noise rate is not
substantially changed. In addition, the realization of these
gates does not require a large overhead in terms of space,
meaning additional qubits, but the gates do require some
overhead in time, as compared to transversal or constant-
depth gates.
Another method of encoding qubits is to have one sheet for

all qubits in the computation such that logical qubits are
represented by holes in the lattice; see Sec. III.B.4. Given this
encoding, it is possible to disconnect and then deform the
encoding of a single qubit so that it becomes a single
disconnected sheet [see details in Fowler, Mariantoni et al.
(2012)] on which we can do the Hadamard gate or do a
preparation or measurement step.

1. Preparation and measurement of logical qubits

How do we prepare the surface code memory in the states
j0i, j1i, or j�i? And how do we read out information, that is,
realize MX and MZ? In order to prepare j0i, we initialize all
elementary qubits in Fig. 7 to j0i and start measuring the
parity checks. The state j00 � � � 0i has Bp ¼ þ1 and Z ¼ þ1
while the star operators As have random eigenvalues �1
corresponding to the presence of many Z errors. Thus we
choose some correction E for these Z errors (we pick a Pauli
frame): the choice will not matter as E commutes with Z. If the
preparation of j0i and the parity check measurements are
noisy, one needs to measure the parity checks for a while
before deciding on a Pauli frame for both X and Z errors. The
preparation of j1i and j�i can be performed analogously
using the ability to prepare the elementary qubits in j1i and
j�i, respectively. Instead of preparing the quantummemory in
one of these four fixed states, there are also methods for
encoding a single unencoded qubit jψi into a coded state jψi;
see Dennis et al. (2002) and Horsman et al. (2012). Of course,
during this encoding procedure, the qubit to be stored is not
fully protected, as the qubit starts off in a bare, unen-
coded state.
A projective destructive measurement in, say, the j0i,

j1i basis (MZ) proceeds essentially in reverse order. One
measures all qubits in the Z basis. Using the past record of
parity Z-check measurements and this last measurement,
one infers what X errors have taken place and corrects the
outcome of Z ¼ �1 accordingly.

15One has to be careful in comparing noise-threshold values across
publications as slightly different methods, noise model, decoding
strategy, and code usage can impact the results.
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2. Hadamard gate

Consider doing a Hadamard rotation on every elementary
qubit on a sheet encoding one logical qubit. The resulting state
is a þ1 eigenstate of the Hadamard-transformed parity checks
HAsH† and HBpH† which are the plaquette Z check (respec-
tively, the star X check) of the code Sdual defined on the dual
lattice. The dual lattice is defined by placing a vertex on each
plaquette in Fig. 7 and connecting these vertices by edges on
which the qubits are defined. On the dual lattice the rough and
smooth boundaries are thus interchanged so that the lattice
(code) is effectively rotated by 90°. The Hadamard gates map
Z onto Xdual and X onto Zdual. We have thus performed a
Hadamard transformation but we have also rotated our code.
In principle one can work with this rotated code as long as we
can connect the qubits of another, say, nonrotated sheet, with
this rotated sheet via some long-range interactions. However,
it is more practical if we rotate the code back to its initial
orientation. The original procedure described by Dennis et al.
(2002) showed how by a sequence of ancilla preparations at
the boundaries and local CNOT gates one can modify the
boundaries so that a rough boundary becomes smooth again
and vice versa. In this procedure one removes qubits from the
code at the west and south boundaries and one adds qubits at
the north and east boundaries so that the lattice is effectively
shifted upward. Instead of using CNOT gates one can add
ancilla qubits and immediately measure the new plaquette and
star operators. What is important is that this rotation over 90°
can be done only gradually inOðLÞ steps as sketched in Fig. 9
so that the distance between two rough boundaries or two
smooth boundaries remains L (so as to protect the encoded
qubit). The overall shift of the lattice can be repaired either by
swapping qubits in the southwest direction or by keeping the
shifted lattice and making sure other sheets connect to qubits
on the shifted sheet. It means that some flexibility or non-
locality in the coupling structure is required at these
boundaries.
It is simple to show that the Hadamard gate for the surface

code requires a quantum circuit of depth scaling with L. For
the Hadamard gate we have HXH ¼ Z and HZH ¼ X, and
X and Z are the strings going from boundary to boundary.
ImagineH implemented by a constant-depth circuit; it implies

that HZH is a fattened (by some constant factor) string going
from the north to the south boundary in Fig. 7. The original Z
was any string going from the north to the south boundary and
hence it is simple to see that the operator HZH will commute
with the original Z and therefore HZH cannot be the logical
X operator. This argument fails only when the depth of the
circuit is of the order of L so that the string might be
completely spread over the lattice.

3. CNOT gate via lattice surgery

This construction for the logical CNOT gate is based on the
circuit in Fig. 10 which implements the CNOT gate through
two-qubit parity measurements, originally described by
Gottesman (1999a). In the dislocation encoding of Hastings
and Geller (2014) this quantum circuit is similarly used to
reduce a CNOT gate to the measurement of logical XX and ZZ
operators. For the dislocation encoding of Hastings and Geller
(2014) one also has the ability to measure the logical ZX and
YZ, that is, any product of two logical Pauli operators. One
can then observe that any single (logical) qubit Hadamard H
gate or the S gate (SXS† ¼ Y) can be absorbed into either the
following logical single-qubit Pauli measurement (if the
logical qubit is to be measured) or a modified two-qubit
logical Pauli measurement of a CNOT gate. This implies that
in such a scheme executing such gates does not cost any
additional time.
To verify the CNOT circuit one can consider the evolution of

the input jci1j0i2jti3 for bits c ¼ 0, 1 and t ¼ 0, 1 explicitly
(here 1 denotes the top qubit in Fig. 10). For MXX ¼ þ1, we
have a bit bxx ¼ 0 andMXX ¼ −1 corresponds to bxx ¼ 1, etc.
We have the overall evolution

jci1j0i2jti3 → jci1Zbx
2 jþi2Zbxx

3 Xbzz
3 jc ⊕ ti3: ð9Þ

We observe the logic of the CNOT gate on qubits 1 and 3 in
addition to corrective Pauli’s Zbxx

3 Xbzz
3 which depend on the

outcomes bxx and bzz of the measurements MXX and MZZ,
respectively. The measurement MX on the second qubit
ensures that no information leaks to that qubit so that the
CNOT gate properly works on any superposition of inputs.
This circuit identity implies that we can realize a logical

CNOT gate if we have the capability of projectively measuring
the operators X ⊗ X and Z ⊗ Z of two qubits encoded in
different sheets. The capability to prepare a sheet in j0i and the
measurement MX was discussed before. The realization of
such joint measurement, say, X ⊗ X, is possible by

FIG. 9. The Hadamard gate on a sheet which encodes a single-
logical qubit as in Fig. 7; see also Horsman et al. (2012). After
performing a Hadamard gate on each qubit, the rotated code
lattice is gradually rotated back to its original orientation by
adding and taking away qubits and stabilizer checks at the
boundaries.

FIG. 10. A CNOT gate via two-qubit quantum measurements.
HereMXX measures the operator X ⊗ X, etc. The ancilla qubit in
the middle is discarded after the measurement disentangles it
from the other two input qubits. Each measurement has equal
probability for outcome�1 and Pauli corrections [not shown, see
Eq. (9)] depending on these measurement outcomes are done on
the output target qubit.
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temporarily merging the two sheets, realizing the measure-
ment, and then splitting the sheets as follows. Consider two
sheets laid out as in Fig. 11 where a row of ancillary qubits is
prepared in j0i between the sheets. We realize a rough merge
between the sheets by including the parity checks, and
plaquette, and star operators at this boundary. If the parity
check measurements are perfect, the new weight-4 plaquette
Z checks haveþ1 eigenvalue as the ancilla qubits are prepared
in j0i. The four new star boundary checks have random �1
eigenvalues subject to the constraint that the product of these
boundary checks equals the product of Xs of the two sheets.
Hence a perfect measurement would allow us to perform a
X ⊗ X measurement. As the parity check measurements are
imperfect, one needs to repeat the procedure in the usual way
to reliably infer the sign of X ⊗ X.
We are however not yet done as we want to realize a

projective X ⊗ X measurement on the qubits encoded in two
separate sheets. This means that we should split the two sheets
again: we can do this by reversing the merge operation and
measure the ancillary qubits in the Z basis and stop measuring
the four boundary X checks. Again, if the parity check
measurements are perfect, the eigenvalues of the plaquette
Z checks at the boundary of both sheets will take random
values, but both are correlated with the outcome of the
Z measurement on the ancillary qubits. Hence the individual
X eigenvalues of the separate sheets may be randomized, but
they are correlated so that X ⊗ X remains fixed. Similarly, a
smooth merging and splitting (as between qubits C and INT
in Fig. 12) with the ancillary qubits prepared and measured in
the X basis accomplishes a Z ⊗ Z measurement.
The procedure for a CNOT gate in Fig. 12 then consists of

first a preparation of the INT qubit in j0i, then a rough merge
and split of qubits T and INT followed by a smooth merge and
split between qubits INT and C and finally an MX measure-
ment of qubit INT.

4. Topological qubits and CNOT gate via braiding

A different way of encoding multiple qubits and realizing a
CNOT gate was first proposed by Raussendorf, Harrington, and
Goyal (2007) and Bombin and Martin-Delgado (2009). In this
method one considers a single sheet for the whole computa-
tion in which holes are made which encode logical qubits.

By moving holes around, or “deforming the stabilizer,” one
can execute a CNOT gate. This method is also the one that is
analyzed by Fowler, Mariantoni et al. (2012) with the goal of
giving a detailed overview of the procedures and practical
space-time overhead. One possible disadvantage of this
method is that it has an additional qubit overhead. A
distance-3 smooth hole qubit (see the description below)
costs many more than 13 physical qubits. A detailed com-
parative overhead analysis has not yet been performed
between the separate sheet layoutþ lattice surgery scheme
and this scheme.
In order to see how to encode multiple qubits, we start with

a simple square sheet with all smooth boundaries which
encodes no qubits; see Fig. 13(a).16 To encode qubits one
makes a hole in the lattice; that is, one removes some checks
from the stabilizer S. This is a change in topology which
affects the code space dimension. In stabilizer terms: when we
remove one plaquette, say, Bp� for some p� from the stabilizer
S, then Bp� is no longer an element in S but still commutes
with S; therefore Bp� is a logical operator. The matching
logical operator which anticommutes with it starts at the hole
and goes to the boundary. This encoded qubit has poor
distance, namely, d ¼ 4, as Bp� is of weight 4. We can
modify this procedure in two ways such that logical qubits
have a large distance and its logical operators do not relate to
the boundary. The particular choice of logical qubits allows
one to execute a CNOT gate by moving holes.
To get a logical qubit with large distance we simply make a

bigger hole. We remove all, say, k2, plaquette operators in a
block [and all ðk − 1Þ2 star operators acting in the interior of
this block] and modify the star operators at the boundary to be
of weight 3, no longer acting on the qubits in the interior; see

FIG. 11 (color online). Two sheets (outer) are merged at their
rough boundary by placing a row of (center) ancilla qubits in the
j0i state at their boundary and measuring the parity checks of the
entire sheet. For a similar smooth merge, the ancillary qubits in
between the two sheets are prepared in the jþi state; see the INT
and C sheets in Fig. 12. From Horsman et al., 2012.

FIG. 12 (color online). Using an ancilla (INT) qubit sheet we can
perform a CNOT gate between the control (C) and target (T) sheets
by a sequence of mergings and splittings between the sheets.
From Horsman et al., 2012.

16On an L × L lattice there are 2LðLþ 1Þ qubits, L2 þ ðLþ 1Þ2
stabilizer checks, and one linear dependency between the star
operators, and hence zero encoded qubits.
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Fig. 13(a). The qubits in the interior of the block are now
decoupled from the code qubits. The procedure creates one
qubit with Z equal to any Z loop around the hole. The X
operator is an X string which starts at the boundary and ends at
the hole. Clearly, the distance is the minimum of the perimeter
of the hole and the distance to the boundary. We call this a
smooth hole as the hole boundary is smooth. Of course, we
could do an identical procedure on the star operators,
removing a cluster of stars and a smaller subset of plaquette
operators and adapting the plaquette operators at the boun-
dary. Such a qubit will be called a rough hole and its X
operator is an X string around the hole (a string on the dual
lattice) and Z is a Z string to the boundary.
In order to be independent of the boundary, we use two

smooth holes to define one smooth or primal qubit and use
two rough holes to define one rough or dual qubit as follows.
Consider two smooth holes 1,2 and define a new smooth qubit
as j0is ¼ j0; 0i1;2 and j1is ¼ j1; 1i1;2. For this smooth qubit s
we have Zs ¼ Zi, i ¼ 1, 2 (we can deform Z1 into Z2 by
plaquette operators) and Xs ¼ X1X2 which we can deform to
an X string that connects the two holes; see Fig. 13(b). The
distance of this smooth qubit is the minimum of the distance
between the holes and the perimeter of one of the holes
(assuming the boundary is sufficiently far away). Similarly,
we can create a rough qubit by taking two rough holes and
defining

j0ir ¼
1ffiffiffi
2

p ðj0; 0i3;4 þ j1; 1i3;4Þ;

j1ir ¼
1ffiffiffi
2

p ðj0; 1i3;4 þ j1; 0i3;4Þ:

With this choice Xr is the loop X3 (or equivalently X4) while
Zr ¼ Z1Z2 is equivalent to the Z string connecting the holes.
Imagine moving one smooth hole around a rough hole as in

Fig. 13(b). After the move, the X string connecting the smooth
holes will additionally go around the rough hole enacting the
transformation Xs → Xr ⊗ Xs. This can be understood by

noting that an X string with some end points a and b that loops
around a rough hole is equivalent (modulo stabilizer oper-
ators) to an X loop around the rough hole disconnected from a
direct X string between the end points a and b. Similarly, the
Z string Zr connecting the rough holes will, after the move,
wind around the smooth hole, leading to the transformation
Zr → Zs ⊗ Zr. The loops Zs and Xr are not changed by the
move. This action precisely corresponds to the action of a
CNOT gate with a smooth qubit as control and a rough qubit as
target.17

The ability to perform a CNOT gate with a smooth qubit as
control and a rough qubit as target qubit seems limited as all
such gates commute. However, one can use the one-bit
teleportation circuits in Fig. 5 to convert a smooth qubit into
a rough qubit and a rough qubit into a smooth qubit, using
only CNOT gates with smooth qubits as controls. We have
already shown how to realize the other components in the
one-bit teleportation circuit such as MX and MZ. Thus by
composing these circuits we can execute a CNOT gate between
smooth qubits alone (or rough qubits alone).
How is the braiding done using elementary gate operations?

The advantage of realizing topological gates in stabilizer
codes (as opposed to braiding of Majorana fermions or non-
Abelian anyons in quantum Hall systems) is that braiding can
be realized by changing where we measure the parity checks,
or deforming the code. For example, one can enlarge the hole
in Fig. 13 to include, say, two more plaquettes and three more
qubits in the interior. We stop measuring those two plaquette
checks and the star checks in the interior, modify the star
boundary measurements, and measure the qubits in the
interior in the X basis. The modified weight-3 boundary
checks will have random �1 eigenvalues as their previous
eigenstates were perfectly entangled with the qubits in the
interior. This corresponds to a high Z error rate around the
modified boundary. By repeating the measurement to increase
the confidence in their outcome one can correct these Z errors,
but of course we may partially complete a Z loop this
way. The protection against a full Z loop around the hole
is thus provided by the part of the hole boundary which
remains fixed.
This implies that the hole can safely be moved and braided

in the following caterpillarmanner. One first enlarges the hole
(while keeping its “back end” fixed, providing the protection)
so that it reaches its new position (the caterpillar stretches out
the front part of its body to a new position). In terms of parity
check measurements it means that from one time step to the
next, one switches from measuring the small-hole to meas-
uring the large-hole parity checks. Because of this extension
errors will occur along the path over which the hole is
moved and if error correction is noisy we should not act
immediately to infer the new Pauli frame, but repeat the new
check measurements to make this new frame more robust.
Then, as a last step, we shrink the hole to its new position
and corroborate the new measurement record by repetition

FIG. 13 (color online). (a) A smooth hole is created by removing
a block of plaquette operators and the star operators acting on
qubits in the interior of the block. The Z loop around the hole is Z̄
while X̄ is an X string to the boundary. The qubits inside the hole
(four in the picture) are decoupled from the lattice. (b) Two
smooth holes can make one smooth qubit and two rough holes
can make one rough qubit so that moving a smooth hole around a
rough hole realizes a CNOT gate.

17The action of the CNOT gate in the Heisenberg representation is
Xc ⊗ It → Xc ⊗ Xt, Ic ⊗ Xt → Ic ⊗ Xt, Zc ⊗ It → Zc ⊗ It, and
Ic ⊗ Zt → Zc ⊗ Zt where Xc (Xt) stands for Pauli X on control qubit
c (target qubit t).
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(the caterpillar brings its rear end next to its front end again).
Figures 19–23 of Fowler, Mariantoni et al. (2012) depict the
enlargement of the hole and its subsequent shrinkage and its
effect on the logical operators.
Alternatively, one can move the hole by a sequence of small

translations, so that the hole never becomes large. The speed at
which the hole can then be safely moved is determined by the
time it takes to establish a new Pauli frame (eliminate errors)
after a small move. Details of hole moving schemes are
discussed in, e.g., Fowler, Stephens, and Groszkowski (2009)
and Fowler, Mariantoni et al. (2012).

C. Different 2D code constructions

In this section we discuss a few 2D quantum codes which
are variations of the surface code. These codes may have
advantages over the surface code depending on physical
hardware constraints. These codes are two competitive exam-
ples of 2D subsystem codes, as well as a surface code using
harmonic oscillators instead of qubits.

1. Bacon-Shor code

An interesting family of subsystem codes are the Bacon-
Shor codes (Bacon, 2006). For the ½½m2; 1; m�� Bacon-Shor
code the qubits are laid out in a 2D m ×m square array; see
Figs. 2 and 14. The stabilizer parity checks are the double-Z-
column operators Z∥;i for columns i ¼ 1;…; m − 1 and
double-X-row operators X¼;j for rows j ¼ 1;…; m − 1.
It is also possible to work with asymmetric Bacon-Shor

codes with qubits in an n ×m array. Asymmetric codes can
have better performance when, say, Z errors are more likely
than X errors (when T2 ≪ T1); see Brooks and Preskill
(2013). The gauge group G (see Sec. II.C) is generated by
weight-2 vertical XX links and horizontal ZZ links and

contains the parity checks. The bare logical operators (which
commute with G but are not in S) are the single Z column Z
and a single X row X.
Consider the correction of X errors sprinkled on the lattice,

assuming for the moment that the parity check measurement
of Z∥;i is noise free. For each column we note that an even
number of X errors is a product of the vertical XX gauge
operators and therefore does not affect the state of the logical
qubit. This means that per column only the parity of the
number of X errors is relevant. The double-column operator
Z∥;i determines whether this parity flips from column i to
column iþ 1. The interpretation of the eigenvalues of Z∥;i is
then the same as for a 1D repetition code (or 1D Ising model)
with parity checks ZiZiþ1. Double columns where Z∥;i ≡
ZiZiþ1 ¼ −1 are defects marking the end points of X strings
(domain walls in the 1D Ising model). Minimum-weight
decoding is very simple as it corresponds to choosing the
minimum weight one between two possible X-error strings: E
or the complement string Ec which both have the faulty
double-column defects as end points; see Fig. 14(b). The code
can thus correct all errors of weight at most ⌊m=2⌋ for odd m.
Higher-weight errors can also be corrected as long they induce
a low density of defects on the boundary. Note however that
the number of syndrome bits scales as m, whereas the number
of errors scales with m2. This means that in the limit m → ∞
the noise-free pseudothreshold pcðmÞ → 0 as the fraction of
uncorrectable errors will grow with m. So, how do we choose
m in order to minimize the logical error rate pðp;mÞ? Napp
and Preskill (2013) found that the optimally sized Bacon-Shor
code for equal X and Z error rates p is given bym ¼ ðln 2Þ=4p
and for that optimal choice they can bound the logical X (or Z)
error rate as pðpÞ≲ expð−0.06=pÞ.
How does one acquire the nonlocal parity check values?

One can either measure the XX and ZZ gauge operators and
use this information to get the eigenvalues ofX¼;i and Z∥;j, or
one can measure the parity checks directly. The first method
has the advantage of being fully local: the ancilla qubits for
measuring XX and ZZ can be placed in between the data
qubits; see Fig. 15(a). In the second method we prepare an

E
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Z

Z

Z

Z
Z

(b)

X XXX
X

FIG. 14 (color online). (a) [[16,1,4]] Bacon-Shor code with X̄, a
row of X’s, and Z̄, a column of Z’s. The stabilizer generators are
double columns of Z’s, Z∥;i (one is depicted) and double rows of
X’s,X¼;j. (b) Decoding for X errors (or Z errors in the orthogonal
direction). Black dots denote the places where the double-column
parity checks Z∥;i have eigenvalue −1 (defects). The X error
string E has X errors in the fattened region and no errors
elsewhere and Ec is its complement. Clearly the string E has
lower weight than Ec and is chosen as the likely error.
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FIG. 15 (color online). (a) In order to measure the XX and ZZ
operators one can place ancilla qubits (open dots) in between the
data qubits. Such an ancilla qubit interacts with the two adjacent
data qubits to collect the syndrome. (b) Alternatively, to measure
Z∥;i one can prepare a three-qubit entangled cat state
ð1= ffiffiffi

2
p Þðj000i þ j111iÞ (vertical line of dots) which interacts

locally with the adjacent system qubits. X¼;1 could be measured
by preparing a cat state for the ancilla qubits placed at, say, the
horizontal lines of dots. The ancilla qubits at the open dots can be
used to prepare the cat states.
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m-qubit cat state (Shor error correction); see, e.g., Brooks and
Preskill (2013). We could measure Z∥;1 using the circuit in
Fig. 1(a) with a single ancilla qubit in the jþi state and
controlled-phase gates (CZ). However, a single X error on the
ancilla qubit can feed back to the code qubits and cause
multiple Z errors, making the procedure non-fault-tolerant. In
addition, the interaction between the ancilla qubit and the code
qubits is nonlocal. Instead, we encode the ancilla qubit jþi
using the repetition code, i.e., we prepare the m-qubit cat
state ð1= ffiffiffi

2
p Þðj00 � � � 0i þ j11 � � � 1iÞ such that a CZ gate acts

between one cat qubit and one code qubit. The m-qubit cat
state, which itself is stabilized by ZiZiþ1 and X1 � � �Xm, can be
made by preparing jþi⊗m and measuring ZiZiþ1 using local
ancilla qubits. The ZiZiþ1 eigenvalues are recorded to provide
the Pauli frame. Brooks and Preskill (2013) have given further
details of this scheme, including estimates of the noise
threshold for asymmetric Bacon-Shor codes which shows
that the Bacon-Shor codes may be competitive, depending on
further detailed numerical analysis, with the 2D surface code.
Consider now the first method of directly measuring XX

and ZZ: what happens when the local XX and ZZ checks are
measured inaccurately? The good news is that this causes only
local errors on the system qubits. The bad news is that if the
measurement outcome of, say, XX has some probability of
error q, then the error probability for a nonlocal stabilizer
check X¼;i will approximately be mq. This is a disadvantage
of the Bacon-Shor code. Researchers (Aliferis and Cross,
2007; Brooks and Preskill, 2013) have sought to improve the
fault tolerance of the parity check measurements by replacing
the preparation of simple single-qubit ancillas by fault-tolerant
ones (methods by Steane and Knill). Aliferis and Cross (2007)
numerically obtained a best noise threshold of pc ≈ 0.02% for
the concatenated [[25,1,5]] code. Napp and Preskill (2013)
considered an alternative way of making the syndrome more
robust, namely, by simple repetition of the XX and ZZ
measurements and a collective processing of the information
(as is done for the surface code). We view the effect of
repetition as extending the 1D line of defects to a 2D lattice of
defects, as in Fig. 8, so that minimum-weight decoding
corresponds to finding a minimum-weight matching of defect
end points. The error rate for vertical (black) links represent-
ing the parity check errors scales with m while the error rate
for horizontal links (when one column has an even and the
other column has an odd number of errors) scales, for low p,
also with m.
Napp and Preskill (2013) estimated that the optimal size for

the Bacon-Shor code is then m ≈ 0.014=p and that for this
choice, the logical error rate pðpÞ≲ expð−0.0068=pÞ. Hence
for an error rate of p ¼ 5 × 10−4, we can choose m ¼ 28
giving a logical X (or Z) error rate of p ≈ 1.25 × 10−6. This
does not compare favorably with the logical error rate for the
surface code with L ¼ 28, which, using the empirical formula
p ≈ 0.03ðp=pcÞL=2 for even L in Fowler, Mariantoni et al.
(2012), is much lower than 10−6.

2. Surface code with harmonic oscillators

In this section we discuss whether it is possible to encode
quantum information in a 2D lattice of coupled harmonic
oscillators. We start by defining a continuous-variable version

of the surface code which encodes an oscillator in a 2D array
of oscillators. Then we discuss how to modify this construc-
tion so that we concatenate the qubit-into-oscillator code
described in Sec. II.D.3 with the regular surface code and
express the checks of the surface code in terms of operators on
the local oscillators. This scheme may be of interest if the
qubit encoded in the oscillator has a sufficiently low error rate
which we want to improve upon by further surface code
encoding. For example, we can imagine a set of 2D or 3D
microwave cavities each of which by itself encodes a qubit
which we couple in a 2D array.
It is possible to define a qudit stabilizer surface code [see,

e.g., Bullock and Brennen (2007)], where the elementary
constituents on the edges of the lattice are qudits with internal
dimension d and the code encodes one or several qudits. Here
we focus on the special case when we take d → ∞ and each
edge is represented by a harmonic oscillator with conjugate
variables p̂, q̂. The goal of such a continuous-variable surface
code is to encode a nonlocal oscillator into a 2D array of
oscillators such that the code states are protected against
local shifts in p̂ and q̂. In addition, one can imagine using
continuous-variable graph states to prepare such encoded
states and observe anyonic statistics (Zhang et al., 2008).
To get a surface code, we replace Pauli X by XðbÞ ¼

expð2πibp̂Þ and Pauli Z by ZðaÞ ¼ expð2πiaq̂Þ with real
parameters such that Z†ðaÞ ¼ Z−1ðaÞ ¼ Zð−aÞ, etc. It follows
that for any two oscillators 1 and 2, we have

∀ a; b; ½Z1ðaÞZ2ð−aÞ; X1ðbÞX2ðbÞ� ¼ 0: ð10Þ

In the bulk of the surface code lattice, a plaquette operator
centered at site u can be chosen as BuðaÞ ¼
Zu−x̂ðaÞZuþx̂ð−aÞZu−ŷðaÞZuþŷð−aÞ while a star operator at
site s is equal to AsðbÞ ¼ Xs−x̂ð−bÞXsþx̂ðbÞXs−ŷðbÞXsþŷð−bÞ;
see Fig. 16.
Here Zu−x̂ðaÞ ¼ expð2πiaq̂u−x̂Þ, where q̂u−x̂ is the position

variable of the oscillator at site u − x̂ (x̂ and ŷ are orthogonal
unit vectors on the lattice). One can observe from Fig. 16 and
Eq. (10) that BuðaÞ and B†

uðaÞ commute with AsðbÞ and A†
sðbÞ

for all a, b in the bulk and at the boundary.
We define Hermitian operators with real eigenvalues in the

interval ½−1; 1� as

HuðaÞ ¼ 1
2
½BuðaÞ þ B†

uðaÞ�
¼ cos½2πaðqu−x̂ − quþx̂ þ qu−ŷ − quþŷÞ�

and

HsðbÞ ¼ 1
2
½AsðbÞ þ A†

sðbÞ�
¼ cos½2πbð−ps−x̂ þ psþx̂ þ ps−ŷ − psþŷÞ�.

We now define the code space as the þ1 eigenspace of all
HpðaÞ and HsðbÞ for all a and b. It follows that a state in the
code space is a delta function in the positions of the oscillators
around all plaquettes u; that is, δðqu−x̂ − quþx̂ þ qu−ŷ − quþŷÞ
for every u, while it is a delta function in the momenta
of the oscillators δð−ps−x̂ þ psþx̂ þ ps−ŷ − psþŷÞ located at
all stars s.
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One can compare such a highly entangled code state with
its simpler cousin, the two-mode Einstein-Podolsky-Rosen
(EPR) state. In the two-mode case we have two commuting
operators, namely, Z1ðaÞZ2ð−aÞ and X1ðbÞX1ðbÞ on oscil-
lators 1 and 2. The single state which is the þ1 eigenstate
of cos½2πaðq1 − q2Þ� and cos½2πbðp1 þ p2Þ� for all a and
b is the two-mode infinitely squeezed EPR state
δðp1 þ p2Þδðq1 − q2Þ.
In contrast to the two-mode case, the oscillator surface code

space is not one dimensional, but infinite dimensional as it
encodes a nonlocal oscillator. The operators ZðcÞ ¼
expð2πicPi∈γ1 q̂iÞ where the path γ1 runs straight from north
to south commute with all HpðaÞ, HsðbÞ; see Fig. 16.
Similarly, we have XðdÞ ¼ expð2πidPj∈γ2 p̂jÞ, where γ2
runs straight from east to west. As ZðcÞXðdÞ ¼
e−ið2πcÞð2πdÞXðdÞZðcÞ, we can interpret ZðcÞ and XðdÞ as
phase-space displacements of the encoded oscillator
with logical position and momentum p ¼ P

i∈γ2pi and
q ¼ P

i∈γ1qi. We deform these nonunique logical operators
to follow deformed paths, e.g., we multiply ZðcÞ by BpðcÞ
plaquettes [note that if we multiply by Bpðc0Þ with c0 ≠ c we
get an operator with the union of supports].
How would one use such a code to encode quantum

information and what protection would it offer? As its qubit
incarnation, a sufficiently low density of independent errors
on the lattice can be corrected. For the array of oscillators or
bosonic modes, one expects that each oscillator i independ-
ently suffers from small dephasing, photon loss, etc., that is,
errors which can be expanded into small shifts ZiðeÞXiðe0Þ
with jej,je0j ≪ 1; see Sec. II.D.3. This means that the like-
lihood for logical errors of the form ZðcÞXðdÞ for small c and

d will be high, which relates of course to the fact that we are
attempting to encode a continuous variable rather than a
discrete amount of information.
However, one can imagine using only a two-dimensional

subspace, in particular, the code words of the GKP qubit-into-
oscillator code; see Sec. II.D.3 for each oscillator in the array.
One can also view this as a concatenation of the GKP code
and the surface code in which we express the surface code
plaquette and star operators in terms of the operators on the
elementary oscillators in the array. One could prepare the
encoded states j0i; j1i; jþi; j−i of the surface code by
preparing each local oscillator in the qubit-into-oscillator
logical states j0i; j1i; jþi; j−i and subsequently projecting
onto the perfectly correlated momenta and position subspace.
For example, the state j0i of a local oscillator i is an eigenstate
of SqðαÞ ¼ e2πiq̂i=α, Sp ¼ e−2ip̂iα, and the local Zi ¼ eiπq̂i=α.
This implies that after projecting onto the space with
HpðaÞ ¼ 1, HsðbÞ ¼ 1 for all a, b, it will be an eigenstate

of Z(1=ð2αÞ) ¼ e
iπ
P

i∈γ1
q̂i=α, i.e., the encoded j0i.

3. Subsystem surface code

It is clear that codes for which one has to measure high-
weight parity checks are disadvantageous: it requires that an
ancilla qubit couples to many data qubits through noisy gates,
leading to a large error rate on the syndrome and in turn to a
lower noise threshold. Can we have a 2D stabilizer code which
has weight-2 or weight-3 parity checks? The answer is no: one
can prove that 2D qubit codes defined as eigenspaces of at
most 3-local (involving at most three qubits), mutually
commuting terms are trivial [with Oð1Þ distance] as quantum
codes (Aharonov and Eldar, 2011). In addition any stabilizer
code with only weight-2 checks can be shown to be trivial.
Such results do not hold for subsystem codes: the Bacon-

Shor code shows that it is possible to have only two-qubit
noncommuting parity checks. However, the Bacon-Shor code
is not a topological subsystem code as the stabilizer checks are
nonlocal on the 2D lattice and its asymptotic noise threshold is
vanishing. Several topological subsystem codes have been
proposed in which weight-2 parity checks are measured
(Bombin, 2010b), but the asymptotic noise threshold for such
codes is typically quite a bit lower than for the surface code;
see, e.g., Suchara, Bravyi, and Terhal (2011). The question is
whether it is possible to find a 2D subsystem code with checks
of weight less than 4 that has a noise threshold that is similar to
the surface code. Such a subsystem code may be of high
interest if it is considerably easier to realize a weight-3 check
in the physical hardware than a weight-4 check.
Bravyi et al. (2013) proposed a topological subsystem

code—a subsystem surface code—–in which the noncommut-
ing parity checks are of weight 3 and the stabilizer generators
are of weight 6; see Fig. 17. More precisely, the gauge group G
is generated by the triangle operators XXX and ZZZ, includ-
ing cutoff weight-2 operators at the boundary. The stabilizer
group S ¼ G∩CðGÞ is generated by weight-6 plaquette oper-
ators (at the boundary → weight-2 operators). By measuring,
say, the Z triangles we can deduce the eigenvalues of the
Z plaquettes which are used to do error correction.
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FIG. 16 (color online). Small example of the oscillator surface
code where oscillators on the edges are locally coupled with
plaquette and star operators so as to define an encoded
oscillator with logical, nonlocal displacements X̄ðdÞ and
Z̄ðcÞ. The realization of the four-oscillator interaction will
require strong four-mode squeezing in either position
(at plaquettes) or momenta (at stars).
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For an L × L lattice one has a total of 3L2 þ 4Lþ 1 qubits
and 2L2 þ 4L independent stabilizer generators, which give
L2 þ 1 logical qubits. One of these qubits is the logical qubit
whose Z and X commute with all Z and X triangles. As in the
surface code, a vertical Z line through 2L qubits can realize Z
while a horizontal X line realizes X. The logical operators for
the L2 gauge qubits, one for each plaquette, are pairs of triangle
operators on a plaquette generating the group G. One can
multiply, say, the vertical Z line by Z triangles to become a Z
which acts only on L qubits: Bravyi et al. (2013) indeed proved
that the distance of the code is L. Note that such weight-L Z
acts on the logical qubit and the irrelevant gauge qubits.
For a code with distance L ¼ 3 one thus needs 41

elementary qubits, substantially more than for the surface
code. Multiple qubits can be encoded in this subsystem code
by making holes as for the surface code. One can expect that
braiding and lattice surgery methods for this code can be
established in the same way as for the surface code. The
interesting feature of this code is its relatively high noise
threshold obtained by reduced-weight parity checks (at the
price of a bit more overhead). Decoding of stabilizer syn-
drome information is done by interpreting the syndrome as
defects on a virtual lattice which can be processed, similar to
the surface code, by minimum-weight matching of defects or
by RG decoding. For noise-free perfect error correction and
independent X,Z noise, they report a maximum threshold of
pc ≈ 7% (compare with 11% for the surface code). For noisy
error correction the threshold depends on how single errors
with probability p in the parity check circuit affect the error
rate on the virtual lattice. Modeling this effective noise rate on
the virtual lattice, they found a noise threshold of pc ≈ 0.6%.
It is not surprising that decoding for the subsystem surface

codes can be done using the decoding method for the surface

code. Bombin, Duclos-Cianci, and Poulin (2012) proved that
any 2D topological subsystem or stabilizer code can be locally
mapped onto copies of the toric code. The upshot is that for
any such code one can find, after removing some errors by
local correction, a virtual lattice with toric code parity checks
and an underlying effective error model. An example of
another 2D topological subsystem code that can be analyzed
this way is a concatenation of the [[4,2,2]] code with the
surface code. If we use the [[4,2,2]] code as the subsystem
code then the concatenated code has weight-2 and weight-8
check operators. The scheme may be of interest if the weight-2
checks can be measured fast and with high accuracy.

D. Decoding and direct parity check measurements

One can ask whether quantum error correction for the
surface or other topological codes in D ¼ 2 or higher is
possible by purely local means. The dissipative correction
procedure of stabilizer pumping described in Sec. II.F is an
example of a purely local error-correction mechanism which
does not use any communication. We can consider what such
a mechanism does if we apply it to the toric code discussed in
Sec. III.A. Imagine that a single X error occurs. For the toric
code, such an X error is heralded by two odd-parity Z checks,
two defects. The error can be corrected by applying any small
X string that terminates at these defects. However, the
mechanism described in Sec. II.F that applies an X correction
at a fixed qubit for every defect will have the effect of moving
the single X error around or it will create more X errors. It will
utterly fail at removing errors. Dengis, König, and Pastawski
(2014) showed that it is possible to use such a very local,
but assumed to be perfect, dissipative decoder to efficiently
encode a quantum state in a toric code quantum memory. In
this decoder the corrections are chosen such that the errors are
pushed in a certain direction, where they can mutually
annihilate and a simple input state determines what state is
encoded by the dissipative evolution. In such an extremely
local form of dissipative error correction there is absolutely no
guarantee that the corrections that are applied are minimum-
weight corrections.
It is clear that an engineered dissipative dynamics for

quantum error correction should at least correlate the parities
of neighboring checks before applying any corrections. As an
error string is heralded only by its two end-point defects,
longer error strings require correlation of the parity checks in a
larger neighborhood, and hence more communication and
delay in order to annihilate the error string. Said differently,
one needs to dissipatively engineer the action of a nonlocal
minimum-weight matching or RG decoder.
One can in fact view the classical nonlocal minimum-

weight matching decoder as a source of computational power
that jump-starts our quantum memory. Note that the RG
decoder is nonlocal (even allowing for parallel processing of
clusters on the lattice by local automata) as the maximum
number of recursions r scales as OðlogLÞ leading to a
maximum cluster size proportional to the linear size of the
lattice. The lowest levels of the RG decoder are of course local
and will provide some measure of protection by local means.
Harrington (2004) devised a scheme for doing purely local

quantum error correction for the surface code by a 2D cellular

FIG. 17 (color online). Subsystem surface code on a lattice of
size L × L with L2 square plaquettes (depicted is L ¼ 3). The
qubits exist on the edges and vertices of the plaquettes and are
acted upon by weight-3 X- and Z-triangle operators (which
are modified to become weight-2 operators at the boundary). The
stabilizer checks are weight 6 except at the boundary. From
Bravyi et al., 2013.
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automaton, assuming independent local errors; the mere
existence of such a scheme is nontrivial as it has to deal
with noise and communication delays. Other examples of a
local dissipative surface code decoder are the proposals by
Fujii et al. (2014) and Herold et al. (2014), but both these
decoders assume noise-free parity check measurements and
noise-free classical processing in the cellular automaton.
Fowler (2015) claimed that one can do minimum-weight

matching in Oð1Þ parallel time on average taking into account
a finite speed of communication between processing cells.
Establishing this in full rigor is an important fundamental
question since it would be problematic to have a syndrome
processing rate rproc which fundamentally depends on L: if
this were the case, there would always be a large enough L
such that one runs into the backlog problem discussed in
Sec. II.G.3.
The advantage of a 2D local on-chip decoder over

extracting the syndrome data record to the classical world
and using standard classical processing is that such an on-chip
decoder (1) can potentially lead to faster decoding (and this is
important to avoid a syndrome record backlog), as it uses
parallelism in full with dedicated hardware, and (2) avoids a
large data stream having to come out of the quantum device. It
is of interest to explore whether one can build such a local
cellular automaton decoder out of reliable classical, and
sufficiently fast [complementary metal-oxide-semiconductor
(CMOS)] logic at low [Oð10Þ mK] temperature.
One should contrast the challenge of designing a fast

decoder for the 2D surface code with the local decoder for
the 4D toric code (Dennis et al., 2002); see the description
of the 4D toric code in Sec. III.A.1. The local redundancy
of the error syndrome of the 4D toric code has the following
consequence. A nontrivial error syndrome will form a
closed loop which is the boundary of an error cluster: this
is similar to a domain of flipped spins surrounded by a
domain wall in a 2D ferromagnetic Ising model. Then the
idea of a local decoder, which, in contrast to the 2D case,
does not require communication over lengths depending on
L is as follows. One removes an error cluster by locally
shrinking the length of the nontrivial error syndrome loop.
Thus there is a purely locally defined “defect energy”
function whose minimization leads to the shrinking of
the error cluster and thus to error correction. The local
decoder could, for example, be entirely realized as a
quantum circuit, requiring no quantum measurement. In
this local decoding quantum circuit one should also expect
errors to occur at a certain rate, which means that clusters of
errors on the data qubits can sometimes grow instead of
shrink. For sufficiently low error rates, one may expect that
more errors are locally removed rather than added, either by
decoherence or by incorrect decoding, such that a logical
error is exponentially (exponential in some function of the
block size n) rare and the quantum information is protected.
The absence of a local cost function, which a local decoder

can minimize, is a generic property of 2D stabilizer codes
and is directly related to the stringlike nature of the error
excitations which have observable defects only at their zero-
dimensional boundary. It has been proven that all 2D stabilizer
codes (Bravyi and Terhal, 2009) have stringlike logical

operators and this directly ties in with the lack of self-
correction for these models; see Sec. III.E.

1. Parity check measurements and their implementation

In a variety of physical systems (parity check) measure-
ments are implemented as weak continuous measurements in
time rather than a sequence of strong projective measure-
ments. Examples of weak continuous qubit measurements are
the measurement of a spin qubit in a semiconducting quantum
dot through a quantum point contact (Elzerman et al., 2003)
and the measurement of a superconducting transmon qubit
through homodyne measurement of a microwave cavity field
with which it interacts.
For short time scales such continuous weak measurements

suffer from inevitable shot noise as the current or voltage is
carried by low numbers of quanta (electrons or photons); this
noise averages out on longer times scales, revealing the signal.
The shot noise thus bounds the rate at which parity informa-
tion can be gathered. The effect of leakage of qubits either
appears in such measurement traces as a different output
signal (detection of leakage) or, in the worst case, leads to a
similar, and thus untrustworthy, output signal which makes the
parity check record unreliable for as long as a qubit occupies a
leaked state.
The idea of realizing the surface code in superconducting

circuit-QED systems using ancilla qubits for measurement,
laying out a possible way to couple transmon qubits and
resonators, was considered by DiVincenzo (2009). A scalable
surface code architecture was proposed and a basic unit
implemented by Barends et al. (2013) [see also Barends et al.
(2014)]. The optimal way of using superconducting transmon
qubits to realize a surface code architecture is a subject of
current ongoing research; see, e.g., Ghosh, Fowler, and Geller
(2012) for a direct comparison between three different
architectures that differ in how transmon qubits are coupled
to microwave resonators. In a transmon-qubit-based architec-
ture it is important to show how one can deal with leakage
errors since transmon qubits are weakly anharmonic multi-
level systems. An important feature of a physical parity check
measurement scheme is whether it allows leakage on data or
ancilla qubits to be detected or whether leakage goes unde-
tected. Ghosh and Fowler (2015) and Suchara, Cross, and
Gambetta (2014) recently started to consider how to handle
leakage in a surface code architecture.
In order to reduce qubit overhead and possibly make better

use of the given physical interactions, e.g., cavity-atom (in
cavity-QED) or cavity–superconducting qubit (in circuit-
QED) interactions, it is worthwhile to consider the idea of
a direct parity check measurement instead of a parity meas-
urement that is realized with several two-qubit gates and an
ancilla as in Fig. 1.
Any mechanism through which a probe pulse [modeled as a

simple coherent state jαðtÞi] picks up a π phase shift depend-
ing on a qubit state being j0i or j1i could function as the basis
for such direct parity measurement. As long as the imprint of
multiple qubits is through the addition of such phase shifts, we
have αðtÞ → αðtÞeiπP, where P is the parity of the qubits.
Homodyne detection of such a probe pulse in time, that is, the
continuous measurement of haðtÞ þ a†ðtÞi ¼ ð−1ÞP2hαðtÞi
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(assuming α ¼ α�), could then realize a weak continuous
parity measurement.
This kind of setup is natural for strong light-matter

interactions in cavity QED and circuit QED, where the state
of the qubit can alter the refractive index of the medium
(cavity) on which a probe pulse impinges. The challenge is to
obtain phase shifts as large as π and ensure that these probe
pulses do not contain more information about the qubits than
their parity as this would lead to additional dephasing inside
the odd- or even-parity subspace.
In the cavity-QED setting, Kerckhoff et al. (2009) consid-

ered the realization of a continuous weak two-qubit parity
measurement on two multilevel atoms each contained in a
different cavity [for possible improvements on this scheme,
see Nielsen (2010)]. Lalumière, Gambetta, and Blais (2010)
considered a direct two-qubit parity measurement of two
transmon qubits dispersively coupled to a single microwave
cavity (circuit-QED setting). Similarly, DiVincenzo and
Solgun (2013) and Nigg and Girvin (2013) considered
direct three or more qubit parity check measurements for
transmon qubits coupled to 2D or 3D microwave cavities.
Kerckhoff et al. (2010, 2011) developed the interesting idea

of a fully autonomous quantum memory which runs with
fixed, time-independent input driving fields. In this approach,
it was imagined that qubits are encoded in multilevel atoms
coupled to the standing electromagnetic modes of (optical)
cavities. Both Z- and X-parity checks of the qubits are
continuously obtained via probe pulses applied to these
cavities. These probe pulses are to be subsequently processed
via photonic switches to coherently perform continuous
quantum error correction.

E. Topological order and self-correction

A different route toward protecting quantum information is
based on passive Hamiltonian engineering. In this approach
quantum information is encoded in an eigenspace, typically
the ground space, of a many-body, topologically ordered
Hamiltonian. There is no completely rigorous definition of
topological order in the literature. At an intuitive level it means
that there does not exist a local order parameter or observable
which distinguishes different degenerate ground states. Such a
property is immediately obtained when the ground space is the
code space of a quantum error-correcting code with macro-
scopic (meaning scaling as some function of the system size)
distance as follows.
The quantum error-correction conditions, Eq. (4), can be

slightly reformulated; see Theorem 3 in Gottesman (2009): A
code C can correct a set of errors E ∈ E if and only if for all
states jψi in the code space C we have

hψ jE†Ejψi ¼ cðEÞ; ð11Þ

where the constant cðEÞ is independent of jψi. If the set of
errors E is a set of errors which act locally on Oð1Þ qubits not
scaling with system size, such that E†E are local observables,
then this condition precisely captures the intuitive idea of
topological order. Thus if we devise a physical system with a
Hamiltonian such that the ground space corresponds to the

code space of a code which can correct any set of local errors,
such a system would be topologically ordered.
The simplest examples of such systems are D-dimensional

stabilizer codes with macroscopic distances scaling with
system size. For such codes we can define a many-body
qubit Hamiltonian Htopo ¼ −Δ

P
iSi, where Si is a set of

(overcomplete) stabilizer generators. A consequence of topo-
logical order is that the ground-space degeneracy of the
Hamiltonian H is insensitive to weak local perturbations.
This feature has been rigorously proven for stabilizer codes
by Bravyi, Hastings, and Michalakis (2010) under a slightly
sharpened form of the quantum error-correction conditions
referred to as local topological order. It has not yet been
established whether subsystem stabilizer code Hamiltonians
of the form H ¼ −Δ

P
iGi with local generators Gi of the

gauge group G also have an eigenspace degeneracy which is
insensitive to weak perturbations.
If we store quantum information passively in a physical

system described by some effective Hamiltonian Htopo, we
assume no physical mechanism which actively removes error
excitations. Rather we invoke the argument that the presence
of a sufficiently large energy gap above the ground space in
the Hamiltonian will exponentially [as expð−Δ=TÞ] suppress
error excitations at sufficiently low temperature T. Whether
this is practically sufficient depends on the empirical value of
Δ=T (and the uniformity of this value across a physical
sample).
One may consider how to engineer a physical system such

that it has the effective, e.g., four-qubit interactions of the
surface code between nearby qubits in a 2D array (Kitaev,
2006). The strength of this approach is that the protection is
built into the hardware instead of being imposed dynamically,
negating, for example, the need for control lines for time-
dependent pulses. The challenge of this approach is that it
requires one-, two-, and three-qubit terms in the effective
Hamiltonian to be small: the elementary qubits of the many-
body system should therefore have approximately degenerate
levels j0i and j1i. However, in order to encode information in,
say, the ground space of such Hamiltonian, one will need to
lift this degeneracy to be able to address these levels. Another
challenging aspect of such Hamiltonian engineering is that the
desired, e.g., four-body, interactions will typically be arrived
at perturbatively. This means that their strength and therefore
the gap of the topologically ordered Hamiltonian compared
with the temperature T may be small, leading to inevitable
error excitations. Douçot and Ioffe (2012) reviewed several
ideas for the topological protection of quantum information in
superconducting systems, while Gladchenko et al. (2009)
demonstrated their experimental feasibility. Another example
is the proposal to realize the parity checks of the surface code
through Majorana fermion tunneling between 2D arrays of
superconducting islands, each supporting four Majorana
bound states with fixed parity (Terhal, Hassler, and
DiVincenzo, 2012).
The information stored in such passive, topologically

ordered many-body systems is, at sufficiently low temper-
ature, protected by a nonzero energy gap. Research has been
devoted to the question of whether the T ¼ 0 topological
phase can genuinely extend to nonzero temperature T > 0
(Dennis et al., 2002). The same question has also been
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approached from a dynamical perspective with the notion of a
self-correcting quantum memory (Bacon, 2006) [see also the
notion of thermal fragility discussed by Nussinov and
Ortiz (2009)].
A self-correcting quantum memory is a quantum memory

in which the accumulation of error excitations over time,
which can in turn lead to logical errors, is energetically
disfavored due to the presence of macroscopic energy barriers.
In this approach it is assumed that the quantum system is in
contact with a thermal heat bath which is a source of error
excitations as well as error correction depending on the energy
of the error excitations and the temperature of the bath. The
difference from the active quantum error-correction approach
is thus that for active quantum error correction we strive to
actively engineer part of the environment which should
perform the error correction (via parity check measurements).
For a passive thermal memory one expects the rate of logical
errors to scale empirically as an Arrhenius law as
A expð−Ebarrier=kTÞ, where Ebarrier is the height of the energy
barrier and A is an entropic prefactor. In order to achieve self-
correction, we want a logical qubit encoded in such quantum
memory to have a coherence time τðT; nÞ which grows with
the size n (the elementary qubits of the memory) for some
temperature 0 < T < Tc.
One can study the question of self-correction for

Hamiltonians Htopo ¼ −Δ
P

iSi related to D-dimensional
stabilizer (or subsystem) codes. For stabilizer codes, Pauli
errors map the ground space onto excited eigenstates with
energy at least 2Δ. The energy barrier associated with such a
Hamiltonian is defined as the minimum energy that has to be
expended in order to perform any logical operator by means of
a sequence of local Oð1Þ-weight Pauli errors (Bravyi and
Terhal, 2009). The application of each local Pauli error maps
an energy eigenstate onto a new energy eigenstate: a sequence
of such operators describes a path through the energy land-
scape. One can consider all sequences of local errors which
result in overall execution of a logical operator. The energy
barrier of the logical operator is then given by the minimum
over all paths of the maximum energy barrier on each path.
One important finding concerning self-correcting quantum

memories is that a finite-temperature “quantum memory
phase” based on macroscopic energy barriers is unlikely to
exist for genuinely local 2D quantum systems. One can
prove that any 2D stabilizer code has an energy barrier
Ebarrier ¼ Oð1Þ: this result is obtained by showing that there
always exist stringlike logical operators for a 2D stabilizer
code (Bravyi and Terhal, 2009). The surface code with its
stringlike logical X and Z operators that run between
boundaries provides a good example of this generic behavior.
The 3D toric code on a lattice of n ¼ OðL3Þ qubits, as

discussed in Sec. III.A.1, has a surfacelike logical X operator
[element inH1ðT3;Z2Þ] and thus an energy barrier Ebarrier ∼ L
for the logical X. But the logical Z [element in H1ðT3;Z2Þ] is
stringlike and has an Oð1Þ energy barrier. One can view the
3D toric code as a model for storing a classical bit passively in
a thermal environment (Castelnovo and Chamon, 2008).
The 4D toric code on a cubic lattice with linear dimension L

has been shown to be a good example of finite-temperature
topological order or a self-correcting memory with a coher-
ence time τðT < Tc; LÞ ∼ exp½OðLÞ�; see Dennis et al. (2002)

and Alicki et al. (2010). The properties of the 4D toric code
that make this possible are the facts that both logical operators
are surfacelike and error clusters are surrounded by closed
nontrivial syndrome loops as discussed in Secs. III.A.1
and III.D.
For three-dimensional stabilizer codes that are translation-

ally invariant and for which the number of encoded qubits
does not depend on the lattice size, it has been shown that
there always exist stringlike logical operators and thus the
energy barrier is againOð1Þ (Yoshida, 2011). For homological
codes defined on three-dimensional manifolds this result
can be understood by invoking (Poincaré) duality. For a
D-dimensional manifold M the kth cohomology group
HkðM;Z2Þ is isomorphic to the homology group
HD−kðM;Z2Þ [as i-simplices are mapped to (n − i)-simplices
on the dual lattice]. Thus in three dimensions, the presence of
a surfacelike logical operator in, say, H2ðM;Z2Þ also implies
the presence of a matching stringlike logical operator
in H2ðM;Z2Þ≃H1ðM;Z2Þ.
Given this duality perspective, it should be considered

surprising that it is possible to construct three-dimensional
stabilizer codes that have an energy barrier that scales as a
function of L. Such codes have to avoid Yoshida’s no-go result
by either being nontranslationally invariant or encoding a
number of qubits that depends on the lattice size (or both). The
first example of such a 3D code was the Haah code with
Ebarrier ≥ c logL (Bravyi and Haah, 2011; Haah, 2011) for
which all logical operators are fractal (instead of string- or
surfacelike). For the Haah code the number of encoded qubits
nontrivially depends on the lattice size.
Another construction is Michnicki’s welded code

(Michnicki, 2014) which breaks translational invariance and
has an energy barrier Ebarrier ¼ OðL2=3Þ for an n ¼ OðL3Þ
system. For the Haah code it was shown by Bravyi and Haah
(2013) that the existence of the energy barrier implies that
τðT; nÞ ∼ Lc=kT as long as L is below some critical temper-
ature-dependent length scale and a similar result holds for the
welded code.
It is an open question whether topological subsystem codes

in 3D behave differently from stabilizer codes in terms of their
self-correcting properties. See Wootton (2012) and references
therein for another overview of results in this area of research.

IV. DISCUSSION

The current qubit realizations seem perhaps awkwardly
suited to constitute the elementary qubits of an error-
correcting code. Most elementary qubits are realized as
nondegenerate eigenlevels (in a higher-dimensional space),
approximately described by some H0 ¼ −ðω=2ÞZ. The pres-
ence of H0 immediately gives a handle on this qubit, i.e.,
processes which exchange energy with this qubit will drive it
from j1i to j0i and vice versa (Rabi oscillations) and coupling
of the qubit to other quantum degrees of freedom can be used
for qubit readout. Passive time-independent interactions with
other quantum systems are intentionally weak and lead to
significant multiple-qubit interactions only if we supply
energy in the form of time-dependent ac or dc fields meeting
resonance conditions. To drive, keep, or project multiple
qubits via local parity checks in a code space where they
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are highly entangled, active control at the elementary qubit
level will thus be continuously needed, making the macro-
scopic coding overhead look daunting.
For such nondegenerate qubits typically all gates and

preparation steps are realized in the rotating frame: the frame
of reference in which the qubit state is no longer precessing
around the z axis on the Bloch sphere due to the presence of
H0. Any code word jψi is then only a fixed quantum state in
this rotating frame while it is dynamically rotating under
single-qubit Z rotations in the laboratory frame. As measure-
ments are done only in the laboratory frame, it is only
Z measurements that can be done directly while X measure-
ments typically require an active rotation (e.g., Hadamard)
followed by a Z measurement.
Once elementary qubits are used for times much longer than

their coherence time, i.e., when they are used together in a
quantum memory, the question of stability of this laboratory
reference frame or the stability of the qubit frequency ω
becomes important. Because of 1=f noise and aging of
materials from which qubits are constructed, the qubit
frequency ω can systematically drift over longer times and
average to new values which are different from short time
averages. This has two consequences: First, one needs to
determine the qubit frequency periodically, for example, by
taking qubits periodically offline and measuring them. In this
manner one can recalibrate gates whose implementation
depends on knowing the rotating frame. Second, shifts in
qubit frequency also induce shifts in coherence times as these
times depend on the noise power spectral density SðωÞ at the
qubit frequency. Such fluctuations of coherence times over
longer time scales have been observed. As an example we can
take the results of Metcalfe et al. (2007) which report that the
T1 time of a superconducting “quantronium” qubit is chang-
ing every few seconds over a range of 1.4–1.8 μs. It is clear
that if elementary qubits are to be successfully used in a
quantum memory, then fluctuations of the noise rate have to
be such that one remains below the noise threshold of the code
that is employed in the memory at all times.
We conclude by listing some issues on which we expect to

see more progress from the perspective of coding theory. One
question is the issue of minimizing qubit and computational
overhead in a fault-tolerant computer. It is not clear that the
surface code is the ideal platform for this because of its large
overhead. It may be advantageous to consider architectures
with nonlocal connects so that one can use a quantum LDPC
code which does not make reference to spatial locality and
which can escape the no-go results for low-dimensional
stabilizer codes in allowing for, say, a transversal T gate.
In addition, quantum LDPC codes which are not restricted to
D dimensions allow for a constant encoding rate k=n. How
much they can reduce overhead also depends on the numerical
value of this rate which for various quantum LDPC codes has
not yet been determined.
We illustrate the issue of overhead due to the nontransver-

sality of the T gate by the following consideration. An
efficient quantum algorithm on N qubits takes polyðNÞ gates,
where polyðNÞ is typically not linear in N. For example, for
Shor’s factoring algorithm the bulk of the algorithm uses
OðN3Þ Toffoli gates which are non-Clifford gates. If one uses
ancillas to create such Toffoli gates (or T gates for that matter,

which can be used to make Toffoli gates), it means that one
needs at least OðN3Þ þ N qubits. The size of the original
quantum circuit in non-Clifford gates is thus converted to the
number of logical qubits. As a concrete example, Fowler,
Mariantoni et al. (2012) estimated that, in order to factor a
2000-bit number with the surface code architecture, using
magic state distillation, only 6% of the logical qubits are data
qubits; all others are logical ancillas for the T gates. For this
architecture, each logical qubit is already comprised of 14 500
physical qubits, leading to a total of about 1 × 109 physical
qubits.
One possible approach to reduce overhead is to choose the

surface code as a bottom code and a code with a transversal T
gate and a high rate as a top code, as suggested by Cross,
DiVincenzo, and Terhal (2009). In principle the choice of a
top code is not restricted by physical locality as one can
implement a SWAP gate between the logical qubits of the
bottom code using three CNOT gates, so any quantum LDPC
code could be used. This SWAP gate will take a time which
scales at least with L [as one has to repeat syndrome
measurements OðLÞ times]; hence more nonlocality would
lead to a slower computation.
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