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The current status and open challenges of large Nc QCD baryon spectroscopy are reviewed.
After introducing the 1=Nc expansion method, the latest achievements for the ground state
properties are revisited. Next the applicability of this method to excited states is presented using
two different approaches with their advantages and disadvantages. Selected results for the spectrum
and strong and electromagnetic decays are described. Also further developments for the
applicability of the method to excited states are presented, based on the qualitative compatibility
between the quark excitation picture and the meson-nucleon scattering picture. A quantitative
comparison between results obtained from the mass formula of the 1=Nc expansion method and
quark models brings convincing support to quark models and the implications of different large Nc

limits are discussed. The SU(6) spin-flavor structure of the large Nc baryon allows a convenient
classification of highly excited resonances into SU(3) multiplets and predicts mass ranges for the
missing partners.
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I. INTRODUCTION

Understanding the baryon structure directly from quantum
chromodynamics (QCD), the theory of strong interactions, is a
basic problem of hadronic physics. In 1974 two new papers
heralded a new era in low-energy QCD. One was the paper by
’t Hooft (1974) who proposed a perturbative expansion in
QCD, in powers of 1=Nc, where Nc is the number of colors.
The other was Wilson’s paper (Wilson, 1974) who discretized
the continuum Euclidean space on a grid, laying the founda-
tion of lattice calculations.
Tremendous progress has been achieved since 1974 in

lattice QCD which has reproduced the ground state
baryon masses at a few percent level and lattice results of
several groups are in agreement. However, the extraction
of resonant states remains a very difficult problem. There
are large statistical and systematic errors. Traditionally all
these states are treated as stable states but exploratory
steps have been made in the direction of resonant states.
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For a recent review see, for example, Mohler (2012) and
Lang and Verduci (2013). Also most studies are restricted
to the first positive and negative parity resonances
of total angular momentum J ¼ 1=2, namely, the Roper
Nð1440Þ1=2þ and the Nð1535Þ1=2− resonance, respectively
(Alexandrou et al., 2014). However, it was at least possible to
show that the number of each spin and flavor states in the
lowest energy bands is in agreement with the expectations
based on a weakly broken SUð6Þ × Oð3Þ symmetry
(Edwards et al., 2013), used in quark models and in the
treatment of excited states in large Nc QCD, as presented in
this paper.
On the other hand, the 1=Nc expansion of QCD, proposed

by ’t Hooft, which has been extended by Witten (1979a) and
applied to baryons (Witten, 1979b), has a clear phenomeno-
logical success. It offers the possibility of studying various
baryon properties in a more direct way. Presently it is
considered to be a model-independent, powerful, and sys-
tematic tool for baryon spectroscopy. This method is based
on the discovery that, for Nf flavors, the ground state
baryons display an exact contracted SUð2NfÞ spin-flavor
(SF) symmetry in the large Nc limit of QCD (Gervais and
Sakita, 1984a, 1984b; Dashen and Manohar, 1993a, 1993b).
Such a symmetry follows from consistency conditions on a
meson-baryon scattering amplitude which must be satisfied
for the theory to be unitary. As a consequence, at Nc → ∞
the ground state baryons are degenerate. At large, but finite
Nc, the spin-flavor symmetry is broken and the mass splitting
starts at order 1=Nc. As shown by Dashen, Jenkins, and
Manohar (Dashen and Manohar, 1993a, 1993b; Jenkins,
1993a, 1993b, 1993c; Dashen, Jenkins, and Manohar,
1994, 1995), the consistency conditions restrict the form
of subleading 1=Nc corrections, so that definite predictions
can be made. An operator reduction rule simplifies the 1=Nc
expansion.
The 1=Nc expansion method is closer to QCD than the

quark models so that it provides a deeper understanding of the
success of various quark models. This means that many results
obtained in the nonrelativistic quark model, the bag model, or
the Skyrme model can be proven in large Nc QCD to order
1=Nc or 1=N2

c, as we shall discuss. Being based on group
theory it allows one to classify baryonic states, make pre-
dictions for the not yet discovered members of SU(6)
multiplets, and study their properties.
The lattice QCD and the 1=Nc expansion can be combined

together. Lattice simulations with a varying number of colors
are extremely useful for confirming the validity of the 1=Nc
expansion. So far, one was able to demonstrate that the
results of the real world where Nc ¼ 3 are already “close” to
Nc ¼ ∞ (Teper, 1998). A summary of such recent lattice
studies and the extrapolation to the ’t Hooft limit can be
found in a recent comprehensive review paper (Lucini and
Panero, 2013).
In addition, the existing lattice simulations at Nc ¼ 3 for

ground state baryons were able to test important features of the
1=Nc expansion results, in particular, the baryon mass
relations. Lattice data display both the 1=Nc expansion and
SU(3) flavor-symmetry breaking hierarchies (Jenkins
et al., 2010).

Since 1974 large Nc QCD played an important role in
phenomenology as well as in a number of theoretical develop-
ments in gauge theories as, for example, the fundamental
problems of confinement and spontaneous symmetry breaking
(SSB). The status of large Nc QCD 30 years later after its
introduction by ’t Hooft can be found in Goity et al. (2005).
For pure fundamental aspects, as, for example, anti–de Sitter/
conformal field theory (AdS/CFT) duality, gravity, and string
theory approaches to flavor physics, phenomenology of
quark-gluon plasma, etc., one can consult the proceedings
of a workshop held in 2011 (Veneziano, 2011).
Presently there are several excellent reviews on large N

where one can see that the SUðNÞ field theories simplify when
N becomes large and the solutions to these theories possess an
expansion in 1=N. We refer the interested reader, for example,
to Manohar’s lectures (Manohar, 1998), partly based on the
treatment proposed by Coleman (1985) with examples of
theories with fields which transform according either to the
vector representation (one-index representation) or to the
adjoint representation (a two-index representation), which
can be used in the case of QCD. Manohar’s lectures also
rely on Witten’s papers, directly related to QCD (Witten,
1979a, 1979b). Also, several properties of large Nc QCD were
described by Bhaduri (1988) from general arguments, where
contact was made with the Skyrme model of the baryon,
mentioned again in Sec. XI, as equivalent to the nonrelativistic
quark model in the large Nc limit.
The adjoint representation carries two indices—the upper

one labels the basis vectors of the fundamental representation
such as for quarks, and the lower index corresponds to its
complex conjugate such as for antiquarks, as described in
Sec. XV. In this representation the gluon field therefore has
two indices. This inspired ’t Hooft to introduce the double line
notation for gluons (Fig. 1) which provides a simple way to
keep track of the color index contraction and find the
combinatoric factors in a Feynman diagram and the Nc
counting rules.
For example, consider the one-loop gluon vacuum polari-

zation diagram (Fig. 2). From the right part of Fig. 2 it is easy
to determine its combinatoric factor depending on Nc. Indeed,
the color quantum numbers of the initial and final states are
specified but not the inner index k which leads to a
combinatoric factor equal to Nc for this Feynman diagram.
At Nc → ∞ the contribution of this diagram would be infinite.
To obtain a finite limit for this process, one can renormalize

the theory by introducing a new coupling constant g=
ffiffiffiffiffiffi
Nc

p
instead of g. Then

gffiffiffiffiffiffi
Nc

p → 0 when Nc → ∞; ð1Þ

where g is fixed when Nc becomes large. In the one-loop
gluon vacuum polarization we have two vertices and one

FIG. 1. A gluon in the traditional and double line notations.
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combinatoric factorNc. With this renormalization, the order of
the Feynman diagram in Fig. 2 becomes

�
gffiffiffiffiffiffi
Nc

p
�

2

Nc ¼ g2 ð2Þ

independent of Nc as expected, and thus finite. For the
combinatoric factors of more complex Feynman diagrams
the interested reader is referred to Witten’s paper (Witten,
1979b). The main conclusion is that the leading Feynman
diagrams are planar and contain a minimum number of
quark loops.
As mentioned, the application of the 1=Nc expansion

method to baryon spectroscopy combines Witten’s develop-
ments (Witten, 1979b) and the discovery that for Nf flavors
the ground state baryons display an exact contracted SUð2NfÞ
spin-flavor symmetry in the large Nc limit of QCD (Gervais
and Sakita, 1984a, 1984b; Dashen and Manohar, 1993a,
1993b). Therefore the large Nc analysis for baryons is quite
subtle, more subtle than that for mesons. The counting rules
were studied by Witten (1979b). They were first used to study
the ground state baryon masses, described by the symmetric
representation 56 of SU(6) and other properties as, for
example, axial vector couplings, magnetic moments, heavy-
quark baryons, etc. (Dashen and Manohar, 1993a, 1993b;
Jenkins, 1993a, 1993b, 1993c; Carone, Georgi, and Osofsky,
1994; Dashen, Jenkins, and Manohar, 1994, 1995; Luty and
March-Russell, 1994; Jenkins and Lebed, 1995; Dai et al.,
1996).
The success of the 1=Nc expansion method in describing

ground state baryons raised the question of whether excited
baryons can be described as well by the same method. It is not
obvious that the consistency condition used for the ground
state is applicable to excited baryons because excited baryons
are not generically stable asymptotic states even at large Nc.
Witten has shown that the characteristic width of an excited
baryon is N0

c (Witten, 1979b). Based on the argument that for
some class of states the width goes like N−1

c , Pirjol and Yan
(1998a, 1998b) showed that a contracted SU(4) symmetry also
exists for those excited states. From requiring the pion-excited
baryon scattering amplitude to satisfy Witten’s large Nc
counting rules, they derived consistency conditions analogous
to those obtained by Dashen, Jenkins, and Manohar (Dashen
and Manohar, 1993a, 1993b; Jenkins, 1993a, 1993b, 1993c;
Dashen, Jenkins, and Manohar, 1994, 1995) for s-wave
baryons. Pirjol and Yan also showed that the solutions to
large Nc consistency conditions coincide with the predictions
of the nonrelativistic quark model for excited states.

The legitimacy of the procedure used by Pirjol and Yan was
later questioned by Cohen and Lebed (2003a, 2003b),
inasmuch as the characteristic width of an excited baryon
is N0

c according to Witten (1979b). Cohen and Lebed tried to
support the applicability of the 1=Nc expansion method by
studying the compatibility between the scattering picture and
the quark model picture, using quark operators as defined by
Dashen and Manohar (1993a, 1993b), Jenkins (1993a, 1993b,
1993c), and Dashen, Jenkins, and Manohar (1994, 1995).
They showed that the two pictures share the same pattern of
degeneracy, giving rise to degenerate sets of resonances,
identical in their quantum numbers J and I in both pictures
at fixed grand spin K, as discussed in Sec. XI. From there they
concluded that the two pictures are generically compatible.
In practice the extension of the 1=Nc expansion method to

excited states is also based on the observation that these states
can be approximately classified as SUð2NfÞ multiplets, and
that the resonances can be grouped into excitation bands,
N ¼ 1; 2;…, as in quark models, each band containing a
number of SUð6Þ × Oð3Þ multiplets.
The symmetric multiplets of these bands are similar to the

ground state from group theory point of view. Therefore they
were analyzed by analogy to the ground state. In this case the
mass splitting starts at order 1=Nc as well.
That is why this review is largely devoted to mixed

symmetric states for which, by contrast to symmetric states,
the splitting starts at order N0

c. The problem is in fact that these
states are technically more difficult to study and two distinct
procedures have been proposed so far. The first procedure was
based on the Hartree approximation, in the spirit of Witten’s
arguments (Goity, 1997). In this procedure the system of Nc
quarks is split into a ground state core which creates a mean
field and an excited quark moving in this field. Then the Pauli
principle is fulfilled by the core wave function only, but not by
the total wave function (Carlson et al., 1998, 1999). As we
shall see, the numerous applications of this procedure were
mostly restricted to the N ¼ 1 band, but concerned the study
of both the baryon spectra and their electromagnetic and
strong decays. We understand that the technical advantage of
this method was that the matrix elements of the SUð2NfÞ
generators, needed in the calculations of spectra and decays,
were known at that time for symmetric states only, but not for
mixed symmetric spin-flavor states. A disadvantage is that the
number of terms included in an operator describing an
observable becomes generally large and it is difficult to select
the dominant ones.
Later an alternative procedure, based on the identity of all

quarks in the system, was proposed by Matagne and Stancu
(2008a). There is no physical reason to separate the excited

FIG. 2. The gluon vacuum polarization diagram in the standard (left) and double line notations of ’t Hooft (right).
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quark from the rest of the system. The total wave function is
completely antisymmetric, the orbital-spin-flavor part is
symmetric, being combined with an antisymmetric color part.
The orbital and spin-flavor parts have the same mixed
symmetry. The method can straightforwardly be applied to
all bands, including more than one excited quark. The analytic
form of the matrix elements of the SUð2NfÞ generators for the
necessary mixed symmetric spin-flavor states have been
obtained as described by Matagne and Stancu (2009). A
quantitative analysis was performed for a number of
SUð2NfÞ × Oð3Þ multiplets for which data exist. They cor-
respond to the excitation bands with N ¼ 1, 2, or 3. In the
nonstrange sector it covers a resonance mass region up to
about 2.5 GeV. So far only the spectrum has been analyzed.
There is an expectation that the decays will also be considered
within this approach.
One important goal of the 1=Nc expansion method was to

understand whether the success of the nonrelativistic quark
model has a natural explanation in large Nc QCD. Various
studies presented here prove the compatibility between quark
models and the 1=Nc mass formula. An interesting outcome is
the similarity between the Regge trajectories resulting from
both the 1=Nc expansion method and the quark models.
This paper is organized as follows. In Sec. II we introduce

the definition of large Nc baryons according to ’t Hooft and
Witten. In Sec. III we sketch the derivation of the contracted
SUð2NfÞ spin-flavor symmetry and recall the resulting
suðNfÞc algebra. The baryon operator expansion method is
described in Sec. IV. The latest results on the ground state
baryons, as, for example, the magnetic moments, are the
subject of Sec. V. After introducing the formalism of the 1=Nc
expansion, Secs. VI–VIII are devoted to the study of excited
states, with a special emphasis on the two distinct approaches
to treating mixed symmetric spin-flavor states. The extension
to heavy baryon masses is considered in Sec. IX. Section X
contains considerations about the compatibility between the
1=Nc expansion and a quark model mass formula. Important
qualitative support to the 1=Nc expansion method applied to
excited states is brought in Sec. XI by a comparison between
the quark excitation picture to order N0

c and the meson-
nucleon scattering picture. The combined 1=Nc and chiral
expansions are updated in Sec. XII. The present status of the
strong and electromagnetic decays is summarized in
Secs. XIII and XIV. A short discussion of various large Nc
limits, including that of ’t Hooft, is given in Sec. XV. Some of
the appendixes are devoted to the extended Wigner-Eckart
theorem and the derivation of isoscalar factors of SU(6)
generators needed in this work. General analytic expressions
are reproduced. They could perhaps be applied to other fields,
in particular, to systems where the hypercharge is a good
quantum number.

II. LARGE Nc BARYONS

According to Witten, large Nc baryons are colorless bound
states composed of Nc valence quarks described by a
completely antisymmetric color wave function of the form

CA ¼ εi1i2i3���iNc
qi1qi2qi3 � � � qiNc : ð3Þ

Then the total wave function of such a system can be obtained
by combining CA with the orbital part ψlm, the spin part χ, and
the flavor part ϕ by using Clebsch-Gordan (CG) coefficients
of the permutation group SNc

(Stancu, 1996) to obtain a totally
antisymmetric wave function written symbolically as

Ψ ¼ ψlmχϕCA: ð4Þ

Because CA is antisymmetric the product ψlmχϕ must be
symmetric. For the ground state ψlm is symmetric, inasmuch
as all identical quarks are in an s state. Therefore the product
χϕ must be symmetric which makes the study of the ground
state rather easy. For excited states described by mixed
symmetric orbital states the product χϕ must have the same
mixed symmetry, as discussed in Sec. VII.B.
The number of quarks inside a large Nc baryon grows as

Nc. Witten proposed to describe such a system by a Hartree
approximation where each quark experiences the same aver-
age potential. In this approximation one has

Mbaryon ∼OðNcÞ: ð5Þ

On the other hand, the size of the baryon is governed by
the confinement scale Λ−1

QCD ≃ 1 fm which is fixed. Thus the
quark density must increase with Nc. Corrections to the
Hartree approximation follow from the spin-flavor structure
of baryons discussed below.

III. SPIN-FLAVOR SYMMETRY

Gervais and Sakita (1984a, 1984b) and Dashen and
Manohar (1993a, 1993b) derived a set of consistency con-
ditions for the pion-nucleon coupling constants in the largeNc
limit of QCD. The arguments were based on the large Nc
counting rules for meson-baryon scattering, analyzed by
Witten (1979b), who showed that the baryon mass, Eq. (5),
and the axial vector coupling constant gA are OðNcÞ and that
the pion decay constant fπ is OðNc

1=2Þ. Then the pion-
nucleon vertex gA~q=fπ , where ~q is the pion momentum, grows
as Nc

1=2 at fixed pion energy.
In the large Nc limit, as the baryon is infinitely heavy

compared with the pion, the time component of the baryon-
pion coupling vanishes. Then the space components of the
axial vector current matrix element can be written as

hBjq̄γiγ5TaqjBi ¼ gNchBjXiajBi; ð6Þ

with the coupling constant g factored out so that g and
hBjXiajBi are of order OðN0

cÞ, which means that in this
definition Xia is an operator defined on nucleon states which
has a finite large Nc limit.
Considering the directþ crossed diagrams, Fig. 3, the pion-

baryon scattering amplitude becomes

AðπB → πBÞ ∝ −i
N2

cg2

f2π

qiq0j

q0
½Xia; Xjb�; ð7Þ

where the initial and final baryons are on shell and Xia is the
baryon-meson vertex operator acting on the spin-flavor
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nucleon states B. WhenNf ¼ 2, for example, in the product of
X’s the sum runs over all the possible values of the spin and
isospin intermediate baryon states. According to Gervais and
Sakita (1984a, 1984b) and Dashen and Manohar (1993a,
1993b) there must be other states that cancel the order Nc of
the amplitude above so that the total amplitude is of the order
of 1 and consistent with unitarity. These states form an infinite
tower of degenerate baryon states which are the solutions of
the following consistency condition:

Nc½Xia; Xjb� ≤ Oð1Þ: ð8Þ

If one makes the expansion

Xia ¼ Xia
0 þ 1

Nc
Xia
1 þ 1

N2
c
Xia
2 þ � � � ; ð9Þ

the constraint (8) requires

½Xia
0 ; X

jb
0 � ¼ 0; ð10Þ

when Nc → ∞. In this limit, the spin operators Si (i ¼ 1; 2; 3),
the flavor operators Ta (a ¼ 1; 2;…; Nf), together with the
spin-flavor operators Xia can be identified with the generators
of a contracted spin-flavor group SUð2NfÞc, where Nf is the
number of flavors. Its algebra is

½Si; Ta� ¼ 0; ½Si; Sj� ¼ iεijkSk;

½Ta; Tb� ¼ ifabcTc; ½Si; Xja
0 � ¼ iεijkXka

0 ;

½Ta; Xib
0 � ¼ ifabcXic

0 ; ½Xia
0 ; X

jb
0 � ¼ 0:

ð11Þ

On the other hand, the suð2NfÞ algebra reads

½Si;Sj�¼ iεijkSk; ½Ta;Tb�¼ ifabcTc; ½Si;Ta�¼0;

½Si;Gja�¼ iεijkGka; ½Ta;Gjb�¼ ifabcGjc;

½Gia;Gjb�¼ i
4
δijfabcTcþ i

2
εijk

�
1

Nf
δabSkþdabcGkc

�
.

ð12Þ

Thus the contracted algebra suð2NfÞc is obtained from the
commutation relations (12) by taking the limit

Xia
0 ¼ lim

Nc→∞

Gia

Nc
: ð13Þ

The first formal notion of the operation of group or algebra
contraction was given by Segal (1951) who considered a
sequence of Lie groups. His approach was more general than
that of Inönü andWigner (1953) who introduced the definition
from the physicist’s point of view in 1953. In their paper they
investigate, in some generality, in which sense groups can be
limiting cases of other groups. The observation was that the
classical mechanics is a limiting case of relativistic mechanics
when the velocity of light becomes infinite. Inönü and Wigner
called contraction the operation of obtaining a new group by a
new singular transformation of the infinitesimal elements of
the old group. The contracted infinitesimal elements form an
Abelian invariant subgroup of the contracted group. In this
way the Lorentz group contracts to the Galilei group. In field
theory the limit can be related to coupling constants
(Hermann, 1966) as in Eq. (1). In the present case the
parameter of the singular transformation should be 1=

ffiffiffiffiffiffi
Nc

p
.

In the limit Nc → ∞ one obtains the operators (13) as
elements of an algebra nonisomorphic to the original one.
Dashen and Manohar (1993a, 1993b) solved Eq. (10) for

Nf ¼ 2 finding in this way the simplest irreducible repre-
sentations of SUð4Þc. Dashen, Jenkins, and Manohar (1994,
1995) classified all possible representations of the contracted
spin-flavor algebra using the theory of induced representations
(Mackey, 1968). This theory gives a complete classification of
all irreducible representations of a semidirect product G∧A of
a compact Lie group G and an Abelian invariant subgroup A.
In largeNc QCD G is the direct product SUð2Þ ⊗ SUðNfÞ and
the group A generates an Abelian invariant subalgebra, the
elements of which are Xia

0 defined in Eq. (10), as first pointed
out by Gervais and Sakita (1984a, 1984b).
The basis vectors of the induced representations form

infinite towers of degenerate ðS; IÞ baryon states, each tower

corresponding to a value of the grand spin ~K ¼ ~I þ ~S, like in
the Skyrme model or the nonrelativistic quark model in the
large Nc limit. The identification with physical states can be
made by assuming that K ¼ ns=2, where ns is the number of
strange quarks in a baryon. The simplest irreducible repre-
sentation for two flavors is a tower of states with K ¼ 0
and S ¼ I ¼ 1=2; 3=2; 5=2;….
Dashen and Manohar (1993a, 1993b) and Jenkins (1993a,

1993b, 1993c) found that subleading 1=Nc corrections to the
Hartree approximation, Eq. (5), are constrained by additional
large Nc conditions and they proposed a systematic expansion
in powers of 1=Nc for ground state baryons.
A diagrammatic and group-theoretical analysis of baryons

in the 1=Nc expansion had also been used by Carone, Georgi,
and Osofsky (1994) and independently by Luty and March-
Russell (1994) shortly before similar results were obtained by
Dashen, Jenkins, and Manohar (1995). Carone, Georgi, and
Osofsky (1994) and Luty and March-Russell (1994) have used
the quark representation approach which is closely tied to the
intuitive picture of baryons as quark bound states.
The connection to the nonrelativistic quark model is hinted

at from the work of Gervais and Sakita (1984a, 1984b) in the

k

(a)

k

(b)

FIG. 3. Leading-order diagrams for the scattering Bþ π →
Bþ π.
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following way. To obtain the quark representations of the
group G defined above one has to consider the symmetric state
of Nc quarks, reduce it to the representation of the direct
product SUð2Þ ⊗ SUðNfÞ, and take the limit Nc → ∞.

IV. BARYON OPERATOR EXPANSION

According to Sec. III there are two kinds of representations
of the spin-flavor algebra of baryons in large Nc. One is the
Skyrme model representation as obtained by Dashen, Jenkins,
and Manohar (1994, 1995) using the theory of induced
representations. At Nc → ∞ the spectrum consists of infinite
towers of states of given spin S and isospin I combined to a
fixed value of the grand spin K. The other is the quark
representation proposed by Carone, Georgi, and Osofsky
(1994) and Luty and March-Russell (1994) which is closely
related to the nonrelativistic quark model and is convenient to
study decays as well.
The Skyrme and the nonrelativistic quark model represen-

tations of the large Nc spin-flavor algebra for baryons are
identical in the Nc → ∞ limit. At finite Nc they differ in their
organization of 1=Nc corrections but give equivalent results at
a given order in 1=Nc. The Skyrme representations of the
contracted algebra are infinite dimensional. The quark repre-
sentations use the algebra (12) so that the representations are
finite. For the ground state it consists of a tower of states that
terminates at spin S ¼ Nc=2. The connection between the
Skyrme and quark representations is discussed by Dashen,
Jenkins, and Manohar (1995).
Next we summarize the analysis of Dashen, Jenkins, and

Manohar (1995) of the baryon operator expansion realized in
the quark representation. Quark operators can be classified as
n-body quark operatorsOðnÞ. By definition eachOðnÞ acts on n
quarks, where 0 ≤ n ≤ Nc. The SUð2NfÞ generators are one-
body operators. One can constructOðnÞ for any n starting from
the generators of SUð2NfÞ. For doing this, it is convenient to
express them in terms of the representations of the direct
product SUð2Þ × SUðNfÞ. One has

Si ¼
XNc

j¼1

q†jðSi × 1Þqj ð3; 1Þ;

Ta ¼
XNc

j¼1

q†jð1 × TaÞqj ð1; N2
f − 1Þ;

Gia ¼
XNc

j¼1

q†jðSi × TaÞqj ð3; N2
f − 1Þ;

ð14Þ

where q†j and qj are creation and annihilation quark operators

with j the quark line number. The operators q†j , qj obey the
Bose statistics because the ground state baryons of Nc quarks
are in a completely symmetric spin-flavor state, as mentioned
in Sec. II. The brackets on the right-hand side of the
definitions (14) denote the (SUð2Þ; SUðNfÞ) dimensional
notation of the spin Si, flavor Ta, and spin-flavor generators
Gia of SUð2NfÞ in the decomposition SUð2Þ × SUðNfÞ. Thus
one can see that the SU(2) baryon spin generator Si is equal to
the sum of spin generators of the Nc quarks forming the

baryon. A similar remark holds for the isospin and Gia. Note
that, for a finite Nc, in the quark representation Gia recovers
the form SiTa operator of the axial current.
The latter remark requires some useful comments. We

closely follow Jenkins (1998). From Eqs. (9) and (13) one can
see that the operators Xia

0 and Gia=Nc differ at the subleading
order 1=Nc. The ambiguity in the choice of the spin-flavor
generator arises from the fact that the contracted spin-flavor
algebra for baryons is exact only in the large Nc limit, which
means that matrix elements of the spin-flavor generators Gia

are known to leading order in 1=Nc up to a normalization
factor. When Xia

0 is used, the operator basis of the 1=Nc

expansion is the same as the operator basis of the large Nc
Skyrme model, whereas the operator basis constructed from
the algebra (12) is the same as the operator basis of the large
Nc nonrelativistic quark model. Both operator bases para-
metrize the same large Nc physics encoded in coefficients
entering the expansion formula as introduced next.
Here we deal with the quark model representation. In such a

case any QCD operator which transforms as an irreducible
representation of SUð2Þ × SUðNfÞ can be written as an
expansion in n-body quark operators OðnÞ, which transform
under the same irreducible representation. For the ground state
baryons one has (Jenkins, 1993a, 1993b, 1993c; Carone,
Georgi, and Osofsky, 1994; Dashen, Jenkins, and Manohar,
1994, 1995; Luty and March-Russell, 1994)

OQCD ¼
X
n

cðnÞ
1

Nn−1
c

OðnÞ; ð15Þ

where cðnÞ are unknown dynamical coefficients. Each OðnÞ

operator is accompanied by a factor of 1=Nn−1
c , which comes

from the fact that one needs at least n − 1 gluon exchanges at
the quark level to generate n-body effective operators in the
1=Nc expansion out of one-body QCD operators. A generic
n-body operator can be written as a homogeneous nth degree
polynomial in the generators Si, Ta, and Gia (up to an
occasionally zero-degree rescaling term). As we shall see,
the matrix elements of the baryon observables can be
calculated in terms of the matrix elements of the baryon
spin-flavor generators Si, Ta, and Gia. Quark operator
identities can be used to construct a linearly independent
complete operator basis of n-body operators. Operator reduc-
tion rules to simplify the 1=Nc expansion have also been
derived (Dashen, Jenkins, and Manohar, 1995).
The extension to strange baryons, where SU(3) is broken,

will be presented in the following, as well as the extension to
excited states.
The method has been applied to baryon masses, axial

currents, magnetic moments, etc. Comprehensive reviews can
be found, for example, in Jenkins (1998, 2001). Therefore we
shall not give details of these achievements; we shall recall
only a few basic results and mention the latest developments.

V. GROUND STATE OBSERVABLES

It was later noticed that SU(3) flavor breaking cannot be
neglected relative to 1=Nc corrections. The 1=Nc operator
expansion can be generalized to include SU(3) breaking as
shown next.
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A. Masses

As far as the masses are concerned, the original 1=Nc
expansion (15) has been combined with a perturbative flavor
breaking by Jenkins and Lebed (1995). The SU(3) symmetry
breaking was implemented to OðϵÞ, where the parameter ϵ
represents the quark mass difference divided by the chiral
symmetry breaking scale, which is of the order of 1 GeV. This
leads to a generalized form of the mass operator used currently
in calculating the spectra of both nonstrange and strange
baryons. The generalized mass operator is

M ¼
X
i

ciOi þ
X
i

diBi: ð16Þ

The first sum contains the operators Oi which are SUðNfÞ
invariants, and the operators Bi in the second sum break SU(3)
explicitly and have zero expectation values for nonstrange
baryons.
In Eq. (16) O1 is the leading SF singlet operator propor-

tional to Nc and Oi with i > 1 brings 1=Nc corrections which
estimate the amount of SF symmetry breaking.
For further purposes, the operatorsOi of Eq. (15) with i > 1

are here defined such as to be applied to orbitally excited
baryons as well, besides the ground state baryons. They are
SU(2) scalar products

Oi ¼
1

Nn−1
c

OðkÞ
l ·OðkÞ

SF ; ð17Þ

where OðkÞ
l is a k-rank tensor in SO(3) and OðkÞ

SF is a k-rank
tensor in SU(2) spin, but invariant in SUðNfÞ. For the ground
state one has k ¼ 0. The excited states also require k ¼ 1 and
k ¼ 2 terms. The rank k ¼ 1 tensor has as components the
generators Li of SO(3). The components of the k ¼ 2 tensor
operator of SO(3) are

Lð2Þij ¼ 1
2
fLi; Ljg − 1

3
δi;−j ~L · ~L; ð18Þ

which, like Li, act on the orbital wave function jlmi of the
whole system of Nc quarks. Examples will be given through-
out the paper.
Presently we illustrate Eq. (15) with the simple case of

ground state nonstrange baryons. We use the operator iden-
tities (Dashen, Jenkins, and Manohar, 1995)

fSi; Sig þ fTa; Tag þ fGia; Giag ¼ 3
2
NcðNc þ 4Þ; ð19Þ

fTa; Tag ¼ fSi; Sig; ð20Þ

where the right-hand side in the first identity is the eigenvalue
of the SU(4) Casimir operator for a spin-flavor symmetric
state described by the partition ½Nc�. Then one can reduce the
mass operator to the simple form

M ¼ c1Nc þ c3
1

Nc
S2 þO

�
1

N3
c

�
; ð21Þ

where we use a notation for ci to be consistent with the rest of
the paper. Thus the mass splitting starts at order 1=Nc. Usually

higher ordersOð1=N3
cÞ are neglected. Using the nucleon mass

mN ≃ 940 MeV and the Δð1232Þ resonance mass one can
obtain

c1 ≃ 289 MeV; c3 ≃ 292 MeV: ð22Þ

The coefficient c1 is close to the constituent mass of the quarks
u or d and c3 reproduces the hyperfine Δ − N splitting.
As already mentioned, the corrections due to the flavor-

symmetry breaking are proportional to the parameter ϵ ∼ 0.25
(Jenkins and Lebed, 1995). The 1=Nc expansion, including
flavor-symmetry breaking, predicted a hierarchy of spin and
flavor-symmetry relations for QCD baryons that is observed in
nature. It also provided a quantitative understanding of why
some SU(3) flavor-symmetry relations in the baryon sector,
as, for example, the Gell-Mann-Okubo mass formula or the
Coleman-Glashow mass relation (Coleman and Glashow,
1961), are satisfied to a greater precision than expected from
flavor-symmetry breaking suppression factors alone (Jenkins
and Lebed, 2000). A detailed updated summary, including
isospin breaking, can be found in Jenkins (2001).

B. Axial vector couplings

In the exact SU(3) symmetry limit the baryon axial vector
current operator Aia is a rank one tensor operator in SU(2) spin
and in SU(3) it transforms as a flavor adjoint. Its group
structure is of the form of Gia of Eq. (14). An extended
analysis in the 1=Nc expansion has included up to three-body
operators in Dashen, Jenkins, and Manohar (1995). The
expansion at linear order in SU(3)-flavor breaking involves
additional SU(2)-spin rank one operators in different flavor
representations (Dashen, Jenkins, and Manohar, 1995). A
comparison with the experimental data was performed by
Dai et al. (1996). The present status is summarized in
Jenkins (2001).

C. Magnetic moments

In the exact SU(3) flavor-symmetry limit the baryon
magnetic moment operator is a rank one irreducible tensor
operator in SU(2) spin and an octet in SU(3) flavor.
The 1=Nc expansion has been analyzed by several authors

(Dashen, Jenkins, and Manohar, 1994, 1995; Jenkins and
Manohar, 1994; Luty, March-Russell, and White, 1995; Dai
et al., 1996; Lebed and Martin, 2004a; Flores-Mendieta, 2009;
Jenkins, 2012; Ahuatzin et al., 2014). Using the method of
Lebed (1995) to classify static observables the complete set of
27 linearly independent operators of the octet and decuplet
ground state baryons organized in powers of 1=Nc in their
matrix elements was given in Table I of Lebed and Martin
(2004a) for the component i ¼ 3. Operator demotions have
been taken into account in the 1=Nc power dependence.
The “operator demotion” was first defined by Carlson et al.

(1999). In a demotion one identifies a linear combination of
operators whose matrix elements are a higher order in powers
of 1=Nc than those of the component operators, so that only
one of the components represents an independent operator at
the starting order. The result depends on the particular states
used for evaluating the matrix elements. The example given in
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Carlson et al. (1999) clearly clarifies the procedure, which is
possible when it happens that the matrix elements of the SU(6)
generators contain both leading and subleading orders in Nc.
A look at the tables given in Appendix B supports this
statement.
The most updated analysis can be found in Jenkins (2012)

where it was shown that the combined expansion in 1=Nc and
SU(3) flavor breaking is needed to understand the hierarchy of
baryon magnetic moments found in nature. The 27 linearly
independent operators were written in the basis ðU3; QÞ
defined by the chain SUð3Þ ⊃ SUUð2Þ, in terms of the U spin,
instead of the usual (T3; T8) basis related to the chain
SUð3Þ ⊃ SUIð2Þ, where I is the isospin. The reason is that
the magnetic moments MiQ of light baryons are proportional
to the quark charge matrix TQ ¼ diagð2=3;−1=3;−1=3Þ,
where the charge operator reads

TQ ¼ T3 þ 1ffiffiffi
3

p T8: ð23Þ

This commutes with the third component of U defined as

U3 ¼ −
1

2
T3 þ

ffiffiffi
3

p

2
T8; ð24Þ

both TQ and U3 being operators which are linear combina-
tions of SU(3) generators corresponding to vanishing roots in
Cartan’s classification; see Eqs. (8.105d) of Stancu (1996).
Instead of using the standard (I3; Y) coordinates one can draw
a weight diagram ðU3; TQÞ, where each U multiplet contains
baryons of identical charge and the TQ operator changes the
charge by one unit in passing from one U multiplet to another.
By analogy to TQ one can introduce the operator

GiQ ¼ Gi3 þ 1ffiffiffi
3

p Gi8 ð25Þ

and define the magnetic moments MiQ by the linear combi-
nation (Jenkins, 2012)

MiQ ¼ aGiQ þ b
1

Nc
SiTQ; ð26Þ

up to order 1=Nc, with coefficients a and b to fit exper-
imental data.
There are 27 magnetic moments of ground state baryons,

nine for the octet including the Σ0 → Λ transition magnetic
moment and ten magnetic moments for the decuplet plus eight
decuplet-octet transition magnetic moments. The two new
experimental results on decuplet-octet transition magnetic
moments ΛΣ�0 and ΣΣ�þ (Keller et al., 2011, 2012) were
added to the analysis made in Jenkins (2012). The conclusion
was that further progress in understanding the hierarchy of
baryon magnetic moments requires additional experimental
measurements. A significant SU(3) breaking was found and
this breaking is expected to be enhanced in the magnetic
moments relative to that of other observables, which makes
studying magnetic moments particularly useful.

D. Charge radii and quadrupole moments

Studies of baryon charge radii and quadrupole moments in
the 1=Nc expansion have been performed by Buchmann and
Lebed (2000) and Buchmann, Hester, and Lebed (2002) for
two flavors and extended in Buchmann and Lebed (2003) to
three flavors. The charge radius is the first moment of a
Coulomb monopole transition amplitude. The calculations
have been made in the simple single-photon exchange ansatz
which requires only two operators to describe both the charge
radii and quadrupole moment observables. In 2003 only the
charge radii of p, n, and Σ− were known experimentally. For
the other baryons predictions were made. On the other hand,
only the Δ → N quadrupole transition matrix element has
been measured and calculated in the above mentioned 1=Nc
expansion. An important feature is that the leading order of the
diagonal quadrupole moment is OðN0

cÞ.
The quadrupole moments and charge radii are related. In the

one-gluon exchange picture the following relation between the
quadrupole transition moment QΔþp and the neutron charge
radius r2n has been obtained (Buchmann, Hester, and Lebed,
2002):

QΔþp ¼ 1ffiffiffi
2

p r2n
Nc

Nc þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc þ 5

Nc − 1

s
; ð27Þ

which simplifies at Nc ¼ 3 and can be obtained within other
frameworks.

VI. EXCITED SYMMETRIC SPIN-FLAVOR STATES

In the 1=Nc expansion method the analysis of the masses of
resonances which can be assigned to the SU(6) symmetric
irreducible representation, denoted in the following by the
partition ½Nc�, can be easily performed by analogy to the
ground state. The most convenient framework is to use
Eq. (16) and SUð2NfÞ algebra with operators that act on
symmetric spin-flavor states obtained as inner products of
SU(2) and SUðNfÞ basis vectors. Applications to the ½56; 2þ�
and ½56; 4þ� have been considered by Goity, Schat, and
Scoccola (2003) and Matagne and Stancu (2005a), respec-
tively. A wave function of an orbitally symmetric state jlmi,
spin S; S3, and total angular momentum J; J3 obtained by
using CG coefficients, takes the general form

j½Nc�lS; JJ3; ðλμÞYII3i

¼
X
m;S3

�
l
m

S
S3

���� J
J3

�
jlmij½Nc�SS3; ðλμÞ; YII3i;

ð28Þ
where j½Nc�SS3; ðλμÞYII3i is a symmetric spin-flavor state
under Nc permutations, ðλμÞ labels an SU(3) irrep and the
quantum numbers Y; I; I3 stand for the hypercharge, isospin,
and its projection, labeling the basis vectors of a given ðλμÞ
irrep. For example, the states (28) of the ½56; 2þ� multiplet are
two SU(3) octets 283=2 and 285=2 and four decuplets 4101=2,
4103=2, 4105=2, and 4107=2, and for the ½56; 4þ� multiplet , they
are two SU(3) octets 287=2 and 289=2 and four decuplets 4105=2,
4107=2, 4109=2, and 41011=2.
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The operators Oi can be obtained in a straightforward
manner by using their definition (17). The operators Bi must
have zero expectation values for nonstrange baryons; see, for
example, Table I and Eq. (30).
The first corrections to the leading termO1 of order Nc start

at order 1=Nc as for the ground state. The most dominant
contributions to the mass formula given by Eq. (16) are
expected from the operators shown in Table I. Their matrix
elements are easy to calculate [for details see, for example,
Matagne and Stancu (2005a)]. The angular momentum
components Li act on the whole system so that the eigenvalue
of the spin-orbit term O2 becomes

hO2i ¼
1

2Nc
½JðJ þ 1Þ − lðlþ 1Þ − SðSþ 1Þ�; ð29Þ

in agreement with the results of Goity, Schat, and
Scoccola (2003).
The SU(3) breaking operator B2 can be rewritten as

B2 ¼ −
ffiffiffi
3

p

2Nc

~L · ~Ss; ð30Þ

where ~Ss is the spin operator acting on the strange quarks. Its
matrix elements can be calculated as indicated in Matagne and
Stancu (2005a).
The analytic form of the first term SiGi8 of B3 was derived

from the matrix elements of the SU(6) generators for totally
symmetric spin-flavor states (Matagne and Stancu, 2006a).
This is

hSiGi8i ¼ 1

4
ffiffiffi
3

p
�
3IðI þ 1Þ − SðSþ 1Þ þ 3

4
Sð2 − SÞ

�
; ð31Þ

where S is the strangeness. It can be rewritten in terms of the
number of strange quarks Ns ¼ −S in order to recover the
expression introduced in Jenkins and Lebed (1995).
It was also found (Matagne and Stancu, 2006a) that the

expectation values of O2, O3, B2, and B3 satisfy

hB2i
hB3i

¼ hO2i
hO3i

; ð32Þ

for every J, in both the octet and the decuplet. This can be used
as a check of the analytic expressions of these operators in

terms of Nc given in Goity, Schat, and Scoccola (2003) and
Matagne and Stancu (2005a).
In the numerical fit for resonances belonging to the ½56; 2þ�

multiplet (Goity, Schat, and Scoccola, 2003), ten experimen-
tally known resonances with a status of three or four stars were
used and predictions were made for another 14 resonances. At
higher energies, namely, the multiplet ½56; 4þ�, the experi-
mental situation is poorer so that in Matagne and Stancu
(2005a) only five resonances were used in the fit (with a status
of one, two, three, or four stars) and 19 masses were predicted.
From Table I one can see that the coefficient c1 of the leading
operator O1 has by far the largest value in both cases. It is
interesting to see that this coefficient is larger for ½56; 4þ� than
for ½56; 2þ�. It hints at a dependence of c1 with energy or
equivalently with the band number N. One then expects a
Regge trajectory-type behavior in terms of N (Matagne and
Stancu, 2013); for an illustration see Sec. X.
The coefficient c2 of the spin-orbit operator O2 has a small

value, which decreases with the excitation energy. The small-
ness of the spin-orbit contribution supports the quark model
calculations, where the spin-orbit term is usually neglected.
The decrease in energy is in agreement with the intuitive
picture of Glozman (2002) according to which, at high
energies, the spin dependent interactions are expected to
vanish as a consequence of the chiral symmetry restoration.
The breaking of the spin-flavor symmetry is essentially

given by the operator O3 which represents the hyperfine
interaction and turns out to be the most important after O1.
The coefficient c3 is a measure of the splitting between octets
and decuplets, as for the ground state described by the
coefficients given in Eq. (22). Although within numerical
errors the values of c3 for ½56; 2þ� and ½56; 4þ� are compatible
with each other, the central values show a decrease with the
band number N, or else with the excitation energy, as
mentioned above.
In general, the SU(3) flavor breaking is dominated by

B1 ¼ −S. It gives a mass shift of about 200 MeV per unit of
strangeness in ½56; 2þ�. The operators B2 and B3 can provide
the Λ-Σ splitting in octets and were included in the numerical
fit of Goity, Schat, and Scoccola (2003). Matagne and Stancu
(2005a) ignored them in the fit because of the lack of data.
Then, including only B1, a mass shift of about 110 MeV per
unit strangeness, with rather large error bars, has been
obtained. From Goity, Schat, and Scoccola (2003) there is
an indication that the contributions of B2 and B3 to the mass
sometimes roughly cancel mutually and sometimes they add
to an unexpected large number, so that the higher J states are
lighter, which is unexpected. In conclusion, more data are
desired for strange excited resonances, for both N ¼ 2 and
N ¼ 4 bands.
To illustrate the discussion, in Table II we reproduce the

results of Matagne and Stancu (2005a) for the partial con-
tribution and the total mass predicted by the 1=Nc expansion,
Eq. (16), for the ½56; 4þ� multiplet. As a matter of fact, the
resonance Σð2455Þ�� marked as “bumps” in the 2013 Review
of Particle Physics (Beringer et al., 2012) could possibly be
assigned to Σ5=2ð2478Þ of Table II.
Finally note that the operator B2, through its off-diagonal

matrix elements, induces a mixing between octet and decuplet

TABLE I. Operators of Eq. (16) and coefficients ci and di in MeV
resulting from numerical fits to data obtained for the symmetric
multiplets ½56; 2þ� (Goity, Schat, and Scoccola, 2003) and ½56; 4þ�
(Matagne and Stancu, 2005a).

Operator ½56; 2þ� ½56; 4þ�
O1 ¼ Nc1 541� 4 736� 30

O2 ¼ 1
Nc
LiSi 18� 16 4� 40

O3 ¼ 1
Nc
SiSi 241� 14 135� 90

B1 ¼ −S 206� 18 110� 67

B2 ¼ 1
Nc
LiGi8 − 1

2
ffiffi
3

p O2 104� 64

B3 ¼ 1
Nc
SiGi8 − 1

2
ffiffi
3

p O3 223� 68

χ2dof ≃0.7 ≃0.26
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states at fixed J. Accordingly, in Table II the states ΣJ and Σ0
J

are defined as

jΣJi ¼ jΣð8Þ
J i cos θΣJ þ jΣð10Þ

J i sin θΣJ ; ð33Þ

jΣ0
Ji ¼ −jΣð8Þ

J i sin θΣJ þ jΣð10Þ
J i cos θΣJ : ð34Þ

The masses of the physical states become

MðΣJÞ ¼ MðΣð8Þ
J Þ þ d2hΣð8Þ

J jB2jΣð10Þ
J i tan θΣJ ; ð35Þ

MðΣ0
JÞ ¼ MðΣð10Þ

J Þ − d2hΣð8Þ
J jB2jΣð10Þ

J i tan θΣJ ; ð36Þ

where MðΣð8Þ
J Þ and MðΣð10Þ

J Þ are the diagonal matrix of the
mass operator (16). The expression of the mixing angle can be
found in Matagne and Stancu (2005a) together with a
discussion about the fitting procedure. Similar relations hold
for Ξ.

VII. EXCITED MIXED SYMMETRIC SPIN-FLAVOR
STATES

In fact, the first application of the large Nc method was a
phenomenological analysis of strong decays of l ¼ 1 orbi-
tally excited baryons (Carone et al., 1994). An important
purpose was to show that the success of the nonrelativistic

quark model has a natural explanation in large Nc QCD.
It was based on the Hartree approximation suggested by
Witten (1979b).
Presently there are two procedures of applying the 1=Nc

expansion to the study of the mixed symmetric states. We
describe them shortly and consider applications in the follow-
ing sections.

A. The symmetric core + excited quark procedure

The first, called in the following the symmetric coreþ
excited quark procedure, is also inspired by the Hartree picture
and is based on the separation of the Nc-quark system into a
ground state symmetric core of Nc − 1 quarks and an excited
quark. Within this procedure, the study of the matrix elements
of the mass operators relevant at the lowest nontrivial order
(Goity, 1997) was followed by the first phenomenological
analysis of electromagnetic transitions (Carlson and Carone,
1998a, 1998b), and by an analysis of the nonstrange l ¼ 1
baryon masses of the N ¼ 1 band (Carlson et al., 1998, 1999),
later extended to strange baryons (Goity, Schat, and Scoccola,
2002; Schat, Goity, and Scoccola, 2002).
In the symmetric coreþ excited quark procedure each

SUð2NfÞ generator is split into two parts,

Si ¼ Sic þ si; Ta ¼ Ta
c þ ta; Gia ¼ Gia

c þ gia;

ð37Þ

TABLE II. The partial contribution and the total mass (MeV) predicted by Eq. (16) as compared with the empirically
known masses for resonances assigned to the ½56; 4þ� multiplet. From Matagne and Stancu, 2005a.

1=Nc expansion results
Partial contribution (MeV)

c1O1 c2O2 c3O3 b1B̄1 Total (MeV) Empirical (MeV) Name, status

N7=2 2209 −3 34 0 2240� 97

Λ7=2 110 2350� 118

Σ7=2 110 2350� 118

Ξ7=2 220 2460� 166

N9=2 2209 2 34 0 2245� 95 2245� 65 Nð2220Þ����
Λ9=2 110 2355� 116 2355� 15 Λð2350Þ���
Σ9=2 110 2355� 116

Ξ9=2 220 2465� 164

Δ5=2 2209 −9 168 0 2368� 175

Σ5=2 110 2478� 187

Ξ5=2 220 2588� 220

Ω5=2 330 2698� 266

Δ7=2 2209 −5 168 0 2372� 153 2387� 88 Δð2390Þ�
Σ0
7=2 110 2482� 167

Ξ0
7=2 220 2592� 203

Ω7=2 330 2702� 252

Δ9=2 2209 1 168 0 2378� 144 2318� 132 Δð2300Þ��
Σ0
9=2 110 2488� 159

Ξ0
9=2 220 2598� 197

Ω9=2 330 2708� 247

Δ11=2 2209 7 168 0 2385� 164 2400� 100 Δð2420Þ����
Σ11=2 110 2495� 177

Ξ11=2 220 2605� 212

Ω11=2 330 2715� 260
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where the operators carrying a lower index c act on a
symmetric ground state core and si, ta, and gia act on the
excited quark.
The procedure has the algebraic advantage that it reduces

the problem of the knowledge of the matrix elements of the
SUð2NfÞ generators Si, Ta, and Gia, acting on the whole
system, to the knowledge of the matrix elements of Sic, Ta

c , and
Gia

c , acting on symmetric states of partition ½Nc − 1�, which
are simpler to find than the matrix elements of the ½Nc − 1; 1�
mixed symmetric states. In fact, they were already derived
for SU(4) (Pirjol and Yan, 1998a, 1998b) at the time the
procedure was proposed.
Then the operator reduction rules for the ground state

(Dashen, Jenkins, and Manohar, 1995) may be used for the
core operators. However, the number of terms to be included
in operators describing observables remains usually very large
as compared to the experimental data. The list of 12 linearly
independent spin-singlet flavor-singlet operators for SU(4), in
powers of 1=Nc in their matrix elements, shown in Table III,
was constructed in Carlson et al. (1998, 1999).
Later on the method was formally supported by Pirjol and

Schat (2008) in a large Nc quark model described in a
permutation group context and an application to l ¼ 1 mixed
symmetric states was considered. Starting from an exact wave
function for the whole system of Nc quarks, Pirjol and Schat
(2008) performed a matching calculation of a general two-
body quark-quark interaction onto operators of the 1=Nc
expansion. The separation of the system into a coreþ excited
quark was made on purpose by introducing Eqs. (37). The
main result is a mass formula where the coefficients are
defined by linear combinations of radial overlap integrals
containing the form factors of the quark-quark interaction.
These definitions imply constraints on the dynamical coef-
ficients because they are expressed in terms of common
integrals. The Pauli principle is fulfilled provided these
constraints are satisfied. But in practice the coefficients are
varied independently so that the Pauli principle is fulfilled
only within the symmetric core and one recovers the Hartree
approximation.
Moreover, one should note that the symmetric coreþ

excited quark procedure is simple for mixed symmetric states
with one excited quark, i.e., those belonging to the N ¼ 1

band. For N > 1 bands, where more than one quark is excited,
the technique becomes more complicated as shown for mixed
symmetric multiplets of the N ¼ 2 band (Matagne and
Stancu, 2005b).

A simpler approach is desired. This is described in
Sec VII.B. In this approach the Pauli principle is fulfilled
for the entire system of Nc quarks, so that the orbital-spin-
flavor wave function is totally symmetric. This method
requires and provides the matrix elements of SUð2NfÞ
generators between states of mixed symmetry of partition
½Nc − 1; 1�. The procedure is valid for any number of excited
quarks which do not need to be separated from the whole
system, and it can conveniently be applied to any excitation
band having N ≥ 1.

B. The totally symmetric orbital-spin-flavor wave function
procedure

We remind the reader that we deal with a system of Nc
quarks having l units of orbital excitation. Therefore the
orbital (O) wave function must have a mixed symmetry
½Nc − 1; 1�, which describes the lowest excitations in a baryon.
If the color wave function is antisymmetric, the orbital-

spin-flavor wave part must be symmetric. Then the spin-flavor
(FS) part must have the same symmetry as the orbital part in
order to obtain a totally symmetric state in the orbital-spin-
flavor space.
Matagne and Stancu (2008a), as an alternative, proposed an

approach where the separation of the system into a symmetric
core of Nc − 1 quarks and an excited quark is neither
necessary nor desired. In that case one deals with SUð2NfÞ
generators acting on the whole system of Nc quarks and the
number of independent operators needed in the mass formula
is generally smaller than the number of the experimental data.
The resulting mass formula is therefore more physically
transparent and its simple form allows applications to mul-
tiplets belonging to any band with N ≥ 1, even in cases where
the data are more scarce. Examples will be given later on. First
we discuss the difference between the two procedures.
In the exact orbital-spin-flavor wave function both the

orbital and the spin-flavor parts of the total wave function are
described by the partition ½f� ¼ ½Nc − 1; 1�. By inner product
rules of the permutation group one can form a totally
symmetric orbital-spin-flavor wave function described by
the partition ½Nc� as

j½Nc�i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d½Nc−1;1�
p X

Y

j½Nc − 1; 1�YiOj½Nc − 1; 1�YiFS;

ð38Þ

where d½Nc−1;1� ¼ Nc − 1 is the dimension of the representa-
tion ½Nc − 1; 1� of the permutation group SNc

and Y labels a
Young tableau (or a Yamanouchi symbol). The sum is
performed over all possible standard Young tableaux. In each
term the first basis vector represents the orbital space (O) and
the second the spin-flavor space (FS). In this sum there is only
one Y (the normal Young tableau) where the Ncth particle is in
the second row and Nc − 2 terms where the Ncth particle is
in the first row. In the symmetric coreþ excited quark
procedure the latter terms are ignored. An example is given
in Appendix D.
In our approach, the system ofNc quarks is described by the

wave function (38). We therefore treat the quarks as identical,

TABLE III. The 12 linearly independent spin-singlet flavor-singlet
operators for SU(4), in powers of 1=Nc in their matrix elements. For
F > 2, and ignoring possible coherence in matrix elements of Ta

c , one
must include ð1=N2

cÞtScGc and ð1=N2
cÞligiaSjcG

ja
c in row N−1

c . From
Carlson et al., 1998, 1999.

Order Operator

N1
c Nc

N0
c ls, 1

Nc
ltGc, 1

Nc
lð2ÞgGc

N−1
c

1
Nc
tTc,

1
Nc

lSc, 1
Nc
lgTc,

1
Nc

S2c,
1
Nc
sSc,

1
Nc
lð2ÞsSc,

1
N2

c
lð2ÞtfSc; Gcg, 1

N2
c
ligjafSjc; Gia

c g
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whether they are excited or not. Assuming that the whole
system has an orbital angular momentum l we identify
the orbital part in Eq. (38) with a spherical harmonic
jlmli and the spin-flavor part in SU(6) with a basis
vector j½f�ðλμÞYII3; SS3i of SU(6) defined as adequate
inner products of spin jSS3i and SU(3)-flavor states
jðλμÞYII3i which span the invariant subspace of an SU(3)
irrep ðλμÞ.
Following Matagne and Stancu (2011a) the most general

form of such a symmetric orbital-spin-flavor wave function in
SUð6Þ × Oð3Þ, having a total angular momentum J and
projection J3, is given by

jlS; JJ3; ðλμÞYII3i

¼
X
ml;S3

�
l

ml

S

S3

���� J

J3

�
jlmlij½f�SS3; ðλμÞYII3i;

ð39Þ

where the first factor is the usual Clebsch-Gordan coefficient
of SU(2). In the present case we have ½f� ¼ ½Nc − 1; 1�which
does not need to be specified for jlmli. This form is similar
to that of symmetric states given in Eq. (28). For spectrum
calculations or other observables one needs to know the
matrix elements of the SUð2NfÞ generators, Si, Ta, and Gia,
between the states (39). They are explicitly given in
Appendix A, for both ½f� ¼ ½Nc� and ½f� ¼ ½Nc − 1; 1�,
together with some of their properties. The results for
SU(4) were derived by Hecht and Pang (1969) in the context
of nuclear physics and for SU(6) the isoscalar factors were
mostly obtained by Matagne and Stancu (2009) and com-
pleted by Matagne and Stancu (2011a).
To summarize, the relation between the two approaches is

remotely similar to that between Hartree and Hartree-Fock
approaches. The symmetric coreþ excited quark approach is
simpler, limiting the application of the Pauli principle to a
symmetric core of Nc − 1 quarks. The procedure of this
section is more complicated from a group theory point of
view, but rigorously takes into account the Pauli principle for
the entire system of Nc quarks.
The symmetric coreþ excited quark approach has the

merit of being the first proposed but the separation of the
system into a symmetric core and an excited quark leads to
an excessively large number of independent operators,
making difficult the choice of dominant operators and the
understanding of their physical meaning. Even when the fit
looks acceptable some of the contributions to the mass
cancel mutually, which may suggest that the decomposition
of the system was not necessary. As we see in Sec. VIII.A
there appear peculiar situations, as, for example, the case
of Λð1405Þ, where the entire spin-spin interaction is
removed by construction, because of the approximation
made in the wave function of the symmetric coreþ
excited quark approach. Furthermore, except for one case,
the approach has not been applied to higher mass resonances
(N > 1 band) most probably because of being cumbersome
(the core is no more in the ground state), as explained in
Sec. VIII.C.

VIII. SPECTRUM CALCULATIONS FOR MIXED
SYMMETRIC STATES

Next we present a summary of results for resonances
described as mixed symmetric states of either negative or
positive parity.

A. The lowest negative parity ½70;1−� multiplet

In the baryon spectrum, the ½70; 1−�multiplet has been most
extensively studied, being the best experimentally known
negative parity mixed symmetric multiplet. For Nf ¼ 2 there
are numerous studies as, for example, Carone et al. (1994),
Goity (1997), Carlson et al. (1998, 1999), Carlson and Carone
(1998a, 1998b), and Pirjol and Yan (1998a, 1998b).
The above studies were in the spirit of the Hartree

approximation where the system of Nc quarks was split
into a ground state core of Nc − 1 quarks and an excited
quark, as described in Sec. VII.A. This means that each
generator of SUð2NfÞ was written as a sum of two terms, one
acting on the excited quark and the other on the core, as in
Eq. (37). Then, as mentioned, the number of the coefficients
ci in the mass formula is too large compared to the available
data on resonance masses and cannot be uniquely determined
in a numerical fit, as has been done for the lowest negative
parity nonstrange baryons (Carlson et al., 1998, 1999).
Accordingly, the choice of the most dominant operators
in the mass formula (16) became out of control which implies
that important physical effects can be missed, as discussed
next.
Several fits were performed by Carlson et al. (1998, 1999)

for nonstrange baryons. From our point of view the most
interesting one is the result given in Table VII of that paper,
which is consistent with the mechanism of the Goldstone-
boson exchange (GBE) model (Glozman and Riska, 1996;
Glozman et al., 1998). In this fit the operator ð1=NcÞlð2ÞgGc
plays a crucial role and is related to a pion exchange between
the excited quark and a core quark.
To our knowledge the Nf ¼ 3 case was considered only by

Goity, Schat, and Scoccola (2002) and Schat, Goity, and
Scoccola (2002) in the symmetric coreþ excited quark
procedure, where first order corrections in SU(3) symmetry
breaking were also included. For both Nf ¼ 2 and Nf ¼ 3

cases, the conclusion was that the splitting starts at order N0
c.

The list of dominant operators and the best fit coefficients in
the mass formula (16) is shown in Table IV. The fit was made
to 19 empirical quantities (17 masses and 2 mixing angles)
associated with resonances with three or more stars status and
it gives χ2dof ¼ 1.29.
There are 11 operators of type Oi and four of type Bi

included in the mass formula. One can see that the coefficients
c3 and c4 are large, consistent with the SU(4) case where it
was found that the operator ∝ ð1=NcÞlð2ÞgGc plays a crucial
role, as mentioned. The contribution of the spin operators O6

and O7 is large, as expected, but there is some mutual
cancellation. Some operators of a more complex nature such
as O9, O10, and O11 contribute also substantially, but the total
contribution somewhat cancels out. One should notice the
absence of the flavor term t · Tc, never included in the
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analyses based on the symmetric coreþ excited quark
approach in SU(6).
We remind the reader that in the symmetric coreþ excited

quark approach the total flavor operator was written as the sum
of three terms T · T ¼ Tc · Tc þ 2t · Tc þ 3=4, each thought to
be linearly independent. The first term acts on the core and its
matrix elements are identical to those of Sc · Sc when the SU(4)
spin-flavor state is symmetric. Then its contribution cannot be
distinguished from that of Sc · Sc. The last term, the constant
3=4, can be absorbed in the leading-order term but to our
understanding t · Tc cannot be ignored.
The calculated masses were compared with the quark model

results of Isgur and Karl (1978) based on an oscillator

confinement, where the oscillator parameter was fitted to
the N ¼ 1 band. In the work of Isgur and Karl the hyperfine
interaction is represented by the spin-spin and tensor parts of
the Fermi-Breit Hamiltonian derived from the one gluon
exchange (OGE) (De Rujula, Georgi, and Glashow, 1975).
The spin-orbit part is neglected. The resonance Λð1405Þ
appeared by about 100 MeV too high, as in more recent
studies, based on the more realistic linear confinement and the
flavor dependent Goldstone-boson exchange interaction
(Glozman et al., 1998), which reproduces the correct level
ordering of the Roper and the first negative parity nonstrange
baryons, impossible to obtain in models based on the one
gluon-exchange interaction.
Goity, Schat, and Scoccola (2002) and Schat, Goity, and

Scoccola (2002) explained the lightness of Λð1405Þ and
Λð1520Þ, seen as spin-orbit partners, by the fact that the
spin-spin terms ð1=NcÞSc · Sc and ð1=NcÞs · Sc do not con-
tribute to their masses because the core has Sc ¼ 0. This is the
effect of the simplicity of their wave function where the part
corresponding to the spin Sc ¼ 1 is missing, as inferred by the
arguments of Sec. VII.B. However, the spin-spin interaction
cannot be neglected, even though it is of the order of 1=Nc,
because it is the leading term that splits N and Δ. In octets and
decuplets the spin-spin interaction survives, despite the
approximate wave function. It causes their masses to rise
because there the core has a nonzero spin component.
The spin-orbit splitting is explained as the combined effect

of the operators O4, O5, O9, and O11. The large error bars of
the coefficients of the operators O8 and B3 make these
operators irrelevant in the mass formula.
The ½70; 1−� lowest multiplet was also analyzed within the

framework described in Sec. VII.B, based on the totally
symmetric orbital-spin-flavor wave function, first in SU(4)
(Matagne and Stancu, 2008a) and next in SU(6) (Matagne and
Stancu, 2011a). The list of dominant operators and the
numerical results for ci and di obtained by Matagne and
Stancu (2011a) are presented in Table V. One can see that the
number of operators used in the fit is considerably smaller
than that of Table IV. The one-body spin-orbit operator O2 is
the same as in Table IV. The spin operator O3 and the flavor

TABLE IV. The dominant operators and the best fit coefficients
for the masses of nonstrange and strange baryons belonging to the
½70; 1−�multiplet with χ2dof ¼ 1.29. From Schat, Goity, and Scoccola,
2002.

Operator Fitted coefficient (MeV)

O1 ¼ Nc1 c1 ¼ 449� 2

O2 ¼ lhsh c2 ¼ 52� 15

O3 ¼ 3
Nc
lð2Þhk ghaG

c
ka

c3 ¼ 116� 44

O4 ¼ 4
Ncþ1

lhtaGc
ha c4 ¼ 110� 16

O5 ¼ 1
Nc
lhSch c5 ¼ 74� 30

O6 ¼ 1
Nc
SchS

c
h c6 ¼ 480� 15

O7 ¼ 1
Nc
shSch c7 ¼ −159� 50

O8 ¼ 1
Nc
lð2Þhk shS

c
k

c8 ¼ 6� 110

O9 ¼ 1
N2

c
lhgkafSck; Gc

hag c9 ¼ 213� 153

O10 ¼ 1
N2

c
tafSch; Gc

hag c10 ¼ −168� 56

O11 ¼ 1
N2

c
lhghafSck; Gc

kag c11 ¼ −133� 130

B1 ¼ t8 − 1

2
ffiffi
3

p
Nc

O1 d1 ¼ −81� 36

B2 ¼ Tc
8 −

Nc−1
2
ffiffi
3

p
Nc
O1

d2 ¼ −194� 17

B3 ¼ 1
Nc
d8abghaGc

hb þ N2
c−9

16
ffiffi
3

p
N2

cðNc−1ÞO1

þ 1
4
ffiffi
3

p ðNc−1ÞO6 þ 1
12

ffiffi
3

p O7

d3 ¼ −150� 301

B4 ¼ lhgh8 − 1

2
ffiffi
3

p O2 d4 ¼ −82� 57

TABLE V. Operators and their coefficients in the mass formula (16), obtained from three distinct numerical fits. The
values of ci and di are indicated under the heading Fit n ðn ¼ 1; 2; 3Þ, in each case (Matagne and Stancu, 2011a).

Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (MeV)

O1 ¼ Nc1 489� 4 492� 4 492� 4

O2 ¼ lisi 24� 6 6� 6 6� 5

O3 ¼ 1
Nc

SiSi 129� 10 123� 10 123� 10

O4 ¼ 1
Nc

½TaTa − 1
12
NcðNc þ 6Þ� 145� 16 134� 16 135� 16

O5 ¼ 3
Nc

LiTaGia −19� 7 3� 7 4� 3

O6 ¼ 15
Nc

Lð2ÞijGiaGja 9� 1 9� 1 9� 1

O7 ¼ 1
N2

c
LiGjafSj; Giag 129� 33 6� 33

B1 ¼ −S 138� 8 138� 8 137� 8

B2 ¼ 1
Nc

P
3
i¼1 T

iTi −O4 −59� 18 −40� 18 −40� 18

χ2dof 1.7 0.9 0.84
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operator O4 are two body. The operator O4 in SU(3) was
defined in Matagne and Stancu (2011a) such as to be
applicable to flavor singlets as well. For octets and decuplets
it gives the same matrix elements as the isospin operator
ð1=NcÞTaTa in SU(4), of the order of 1=Nc. For flavor
singlets the order of the matrix elements of O4 is N0

c. The
operators O5 andO6 are two body, but Gia sums coherently in
both and introduces a factor Nc except for the 28 multiplets.
The operator O7 is three body and has a more complex form,
but it contains the generator Gia 2 times so that the order of its
matrix elements becomes N0

c. However, looking at Table V
and comparing Fit 2 and Fit 3, where O7 has been removed in
the latter from the mass formula, one can see that its role is
negligible. The SU(3) breaking operator B1 represents the
total strangeness and B2 was defined to account for the Λ-Σ
splitting. The diagonal and off-diagonal matrix elements ofOi
as a function of Nc can be found in Matagne and Stancu
(2011a). The isoscalar factors of Tables XV–XVII,

and XVIII of Appendix A were used to obtain their analytic
expressions.
The numerical fit included the 17 resonances from the

Particle Data Group 2010 (Nakamura et al., 2010), with a
status of three and four stars and two mixing angles. Fit 1 is
based on the experimental value M(Λð1405Þ) ¼ 1407 MeV
which gives χ2dof ¼ 1.7. To improve the fit we took the value
1500 MeV for the mass of Λð1405Þ, inspired by quark model
studies where usually M(Λð1405Þ) appears too high, as
mentioned. This is the result of Fit 2 where χ2dof lowers to 0.9.
The Λð1405Þ resonance is a long-standing problem. Deeper

dynamical arguments are necessary to understand its excep-
tionally low mass [for a review see, for example, Hyodo and
Jido (2012)].
Table VI reproduces the partial contribution and the total

mass obtained by using the coefficients of Fit 1. One can see
that in flavor singlets the contribution of the spin operator O3

is not particularly large but the flavor operator O4 brings an

TABLE VI. The partial contribution and the total mass (MeV) predicted by the 1=Nc expansion obtained from Fit 1. The last two columns give
the empirically known masses (Nakamura et al., 2010) and the resonance name and status. From Matagne and Stancu, 2011a.

Partial contributions (MeV)
c1O1 c2O2 c3O3 c4O4 c5O5 c6O6 c7O7 d1B1 d2B2 Total (MeV) Experiment (MeV) Name, status

N1=2 1467 −8 32 36 19 0 −31 0 0 1499� 10 1538� 18 S11ð1535Þ����
Λ1=2 138 15 1668� 9 1670� 10 S01ð1670Þ����
Σ1=2 138 −25 1628� 10

Ξ1=2 276 0 1791� 13

N3=2 1467 4 32 36 −10 0 16 0 0 1542� 10 1523� 8 D13ð1520Þ����
Λ3=2 138 15 1698� 8 1690� 5 D03ð1690Þ����
Σ3=2 138 −25 1658� 9 1675� 10 D13ð1670Þ����
Ξ3=2 276 0 1821� 11 1823� 5 D13ð1820Þ���
N0

1=2 1467 −20 162 36 48 −18 42 0 0 1648� 11 1660� 20 S11ð1650Þ����
Λ0
1=2 138 15 1784� 16 1785� 65 S01ð1800Þ���

Σ0
1=2 138 −25 1745� 17 1765� 35 S11ð1750Þ���

Ξ0
1=2 276 0 1907� 20

N0
3=2 1467 −8 162 36 19 15 −17 0 0 1675� 10 1700� 50 D13ð1700Þ���

Λ0
3=2 138 15 1826� 12

Σ0
3=2 138 −25 1787� 13

Ξ0
3=2 276 0 1949� 16

N5=2 1467 12 162 36 −29 −4 25 0 0 1669� 10 1678� 8 D15ð1675Þ����
Λ5=2 138 15 1822� 10 1820� 10 D05ð1830Þ����
Σ5=2 138 −25 1782� 11 1775� 5 D15ð1775Þ����
Ξ5=2 276 0 1945� 14

Δ1=2 1467 8 32 181 38 0 −24 0 0 1702� 18 1645� 30 S31ð1620Þ����
Σ00
1=2 138 34 1875� 16

Ξ00
1=2 276 59 2037� 22

Ω1=2 413 74 2190� 29

Δ3=2 1467 −4 32 181 −19 0 12 0 0 1668� 20 1720� 50 D33ð1700Þ����
Σ00
3=2 138 34 1841� 16

Ξ00
3=2 276 59 2003� 21

Ω3=2 413 74 2156� 27

Λ00
1=2 1467 −24 32 −108 0 0 −38 138 −44 1421� 14 1407� 4 S01ð1405Þ����

Λ00
3=2 1467 12 32 −108 0 0 19 138 −44 1515� 14 1520� 1 D03ð1520Þ����

N1=2 − N0
1=2 0 −8 0 0 −10 −55 18 0 0 −55

N3=2 − N0
3=2 0 −12 0 0 −15 17 28 0 0 18
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essential contribution in lowering the masses of Λð1405Þ and
Λð1520Þ. The spin-orbit partners NJ − N0

J (J ¼ 1=2; 3=2)
receive contributions from the operators O2, O5, O6, and
O7 via their off-diagonal matrix elements.
The global conclusion is that both the spinO3 and the flavor

operatorO4 contribute dominantly to the spin-flavor breaking.
In particular, the flavor operator contributes to the masses of
decuplets and flavor singlets with a coefficient of the same
order as that of the spin operator in octets. Thus, in the
symmetric coreþ excited quark approach, even if the con-
tribution of Tc · Tc is identified to that of Sc · Sc there is no
reason to ignore the isospin term t · Tc, as a part of T · T, as
explained earlier.

B. Highly excited negative parity states

In the approach proposed by Matagne and Stancu (2011a),
based on the exact wave function, as described in Sec. VII.B,
the number of linearly independent operators in the mass
formula is considerably reduced as compared to the ground
state coreþ excited quark procedure. Thus it was possible to
analyze highly excited states belonging to the N ¼ 3 band
(Matagne and Stancu, 2012a) where the experimental data are
still scarce.
The N ¼ 3 band contains eight SUð6Þ × Oð3Þ multiplets.

According to the notation of Stancu and Stassart (1991) these
are ½56; 1−�, ½56; 3−�, ½700; 1−�, ½7000; 1−�, ½70; 2−�, ½70; 3−�,
½20; 1−�, and ½20; 3−�, where ½700; 1−� and ½7000; 1−� correspond
to radial excitations. This classification provides 45 non-
strange states (one state N9=2− , one state Δ9=2− , five states
N7=2− , two states Δ7=2− , eight states N5=2− , four states Δ5=2− ,
nine states N3=2− , five states Δ3=2− , seven states N1=2− , and
three states Δ1=2− ). The analysis of Matagne and Stancu
(2012a) included all mixed symmetric multiplets ½70;l−�
(l ¼ 1; 2, and 3) of the band.
Experimentally in the 1900–2400 MeV mass region the

2010 Particle Data Group (Nakamura et al., 2010) provided
the following resonances: N19ð2250Þ����, N17ð2190Þ����,
Λ07ð2100Þ����, N15ð2220Þ��, N13ð2080Þ�, N11ð2090Þ�,
Δ37ð2220Þ�, and Δ35ð2350Þ�, which may be interpreted as
belonging to mixed symmetric multiples ½70;l−� (l ¼ 1; 2,
and 3), in agreement with Stancu and Stassart (1991). To them
two new ones were added, namely,N15ð2060Þ andN13ð2120Þ,
proposed by Anisovich et al. (2011, 2012), which presently
acquired a two-star status (Beringer et al., 2012). Note that to

the latter a mass of 2150 MeV was associated as initially
reported by Anisovich et al. (2012).
Four distinct numerical fits were performed by including

the operators O1;…; O6 and B1 of Table V, by analogy with
the N ¼ 1 band, from which the operator O7 has been
neglected. The results of the numerical fits are exhibited in
Table VII. One can see that the contributions of O5 and O6,
depending on the angular momentum, are negligible, but the
coefficient of the spin-orbit operator, although small, remains
important to the fit. The spin operator O3 brings a dominant
contribution to 4N resonances and the isospin operator O4

brings an even larger contribution to the masses of Δ and Λ
resonances. As Table VIII shows, in the latter case its sign is
negative and improves the agreement to the experiment.
Therefore, like in the N ¼ 1 band, one can see that the

isospin operator neglected in the symmetric coreþ excited
quark approach is important and definitely crucial in fitting the
mass of the Λ07ð2100Þ���� resonance.

C. Positive parity mixed symmetric states

Here we present results for the masses of nonstrange and
strange baryon resonances thought to belong to the ½70; 0þ�
and ½70; 2þ� multiplets of the N ¼ 2 band.
Although tedious in extending the symmetric coreþ

excited quark approach to more than one excited quark an
effort has been made to apply it to the N ¼ 2 band (Matagne
and Stancu, 2005b, 2006b), where the orbital wave function
contains a term where two quarks are excited to the p shell.
For example, using the quark model notation ρ and λ for
mixed symmetric three-quark states with the pair 1,2 in an
antisymmetric and a symmetric state, respectively, one can
write the orbital wave function for l ¼ 2 as

j½Nc − 1; 1�2þiρ;λ ¼
ffiffiffi
1

3

r
j½Nc − 1; 1�ρ;λð0sÞNc−1ð0dÞi

þ
ffiffiffi
2

3

r
j½Nc − 1; 1�ρ;λð0sÞNc−2ð0pÞ2i;

ð40Þ
where the two quarks in the p shell are coupled to l ¼ 2.
In the first term a quark is excited in the d shell so it can be
treated as in the ½70; 1−� multiplet. The second term can be
treated as an excited quark coupled to an excited core and one
can use the fractional parentage technique developed by

TABLE VII. Operators and their coefficients in the mass formula obtained from four numerical fits of highly excited negative parity
resonances of the N ¼ 3 band (Matagne and Stancu, 2012a). The values of ci and di are indicated under the heading Fit n ðn ¼ 1; 2; 3; 4Þ.
Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (MeV) Fit 4 (MeV)

O1 ¼ Nc1 c1 ¼ 672� 8 c1 ¼ 673� 7 c1 ¼ 672� 8 c1 ¼ 673� 7
O2 ¼ lisi c2 ¼ 18� 19 c2 ¼ 17� 18 c2 ¼ 19� 9 c2 ¼ 20� 9

O3 ¼ 1
Nc
SiSi c3 ¼ 121� 59 c3 ¼ 115� 46 c3 ¼ 120� 58 c3 ¼ 112� 42

O4 ¼ 1
Nc
½TaTa − 1

12
NcðNc þ 6Þ� c4 ¼ 202� 41 c4 ¼ 200� 40 c4 ¼ 205� 27 c4 ¼ 205� 27

O5 ¼ 3
Nc
LiTaGia c5 ¼ 1� 13 c5 ¼ 2� 12

O6 ¼ 15
Nc
Lð2ÞijGiaGja c6 ¼ 1� 6 c6 ¼ 1� 5

B1 ¼ −S d1 ¼ 108� 93 d1 ¼ 108� 92 d1 ¼ 109� 93 d1 ¼ 108� 92

χ2dof 1.23 0.93 0.93 0.75
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Matagne and Stancu (2005b). In this case the construction of
the orbital part of the wave function becomes rather compli-
cated which is the case for all bands with N ≥ 2. The first
application (Matagne and Stancu, 2005b) was made to non-
strange baryons using the SU(4) algebra to construct the
operators Oi in the mass formula (16). The method was
extended by Matagne and Stancu (2006b) to include strange
baryons as well. In this case the contribution of operators of
type Bi was added according to Eq. (16). There are many
linearly independent operators which can be constructed from
the excited quark and the excited core operators. To make the
method applicable the list has been restricted to those thought
to be the most dominant. This is shown in Table IX, where lq

is the angular momentum of the excited quark. The flavor
operator O6 was included. Its contribution is important,
especially for flavor singlets. Although listed and discussed
in this paper, the operator O4 was ignored in the fit because of
scarcity of data.
There are two operators Bi with one acting on the excited

quark, and the other on the core. Their contribution mutually
cancels to a large extent. The ΛΣ splitting obtained in the
sector 48 is disturbingly large such that it provides for Λ and Ξ
baryons nearly equal masses.
The ½70; lþ� baryons have been revisited (Matagne and

Stancu, 2013) by using the procedure described in Sec. VII.B,

where the operators act on the entire system. In that analysis
the wave function (39) has been used. The list of dominant
operators is given in Table X. Note that O2 is a single particle
operator, having the same matrix elements as Matagne and
Stancu (2006b). The matrix elements ofO3 andO4 are easy to
calculate. The matrix elements of O5 and O6 were obtained
from Eq. (B2) and (B4) of Matagne and Stancu (2011a) and
the corresponding isoscalar factors of Tables XV–XVII, and
XVIII of Appendix A.
The closed analytic form of the matrix elements of Oi, as a

function of Nc, are not presented here except for flavor
singlets, Table XI, needed for the discussion. Those for octets
and decuplets can be found in Tables II and III of Matagne and
Stancu (2013), respectively.
There is a single operator that generates the flavor breaking

B1 ¼ −S, the same for all sectors, where S is the strangeness.
In such a case there is no ΛΣ splitting but the mass sequence
with increasing number of strange quarks looks more natural
in octets and decuplets compared to the results of Matagne and
Stancu (2006b) based on the symmetric coreþ excited quark
approach.
This analysis was also motivated by the fact that the recent

multichannel partial wave analysis of Anisovich et al. (2012)
has revealed the existence of new positive parity resonances
presently reported by the Particle Data Group (Beringer
et al., 2012).

TABLE VIII. Partial contributions and the total mass (MeV) predicted by the 1=Nc expansion, obtained from Fit 4 of Table VII. The last two
columns indicate the empirically known masses and the resonance name and status (whenever known).

Partial contributions (MeV)
c1O1 c2O2 c3O3 c4O4 d1B1 Total (MeV) Experiment (MeV) Name, status

4N½70; 3−�9=2 2018 29 140 51 0 2238� 46 2275� 75 G19ð2250Þ����
2N½70; 3−�7=2 2018 10 28 51 0 2107� 17 2150� 50 G17ð2190Þ����
4N½70; 3−�5=2 2018 −23 140 51 0 2186� 41 2180� 80 D15ð2200Þ��
2N½70; 3−�5=2 2018 −39 28 51 0 2058� 14 2060� 15 D15ð2060Þ
4N½70; 3−�3=2 2018 −39 140 51 0 2170� 42 2150� 60 D13ð2150Þ
2N½700; 1−�3=2 2018 3 28 51 0 2101� 14 2081� 20 D13ð2080Þ�
2N½700; 1−�1=2 2018 −7 28 51 0 2091� 12 2100� 20 S11ð2090Þ�

2Δ½70; 3−�7=2 2018 −10 28 256 0 2292� 25 2200� 80 G37ð2220Þ�
2Δ½70; 2−�5=2 2018 −7 28 256 0 2295� 25 2305� 26 D35ð2350Þ�

2Λ½70; 3−�7=2 2018 29 28 −153 108 2030� 82 2030� 82 G07ð2100Þ����

TABLE IX. List of operators and the coefficients resulting from the
fit with χ2dof ≃ 1.0, for nonstrange and strange baryons belonging
to the ½70;lþ� multiplets (l ¼ 0 and 2). From Matagne and Stancu,
2006b.

Operator Fitted coefficient (MeV)

O1 ¼ Nc1 c1 ¼ 556� 11
O2 ¼ li

qsi c2 ¼ −43� 47

O3 ¼ 3
Nc
lð2Þij
q giaGja

c
c3 ¼ −85� 72

O4 ¼ 4
Ncþ1

li
qtaGia

c

O5 ¼ 1
Nc
ðSicSic þ siSicÞ c5 ¼ 253� 57

O6 ¼ 1
Nc
taTa

c c6 ¼ −25� 86

B1 ¼ t8 − 1
2
ffiffi
3

p
Nc

O1 d1 ¼ 365� 169

B2 ¼ T8
c −

Nc−1
2
ffiffi
3

p
Nc
O1

d2 ¼ −293� 54

TABLE X. List of dominant operators and their coefficients in the
mass formula (16) obtained in three distinct numerical fits. From
Matagne and Stancu, 2013.

Operator Fit 1 Fit 2 Fit 3

O1 ¼ Nc1 616� 11 616� 11 616� 11
O2 ¼ lisi 150� 239 52� 44 243� 237

O3 ¼ 1
Nc
SiSi 149� 30 152� 29 136� 29

O4 ¼ 1
Nc
½TaTa− 1

12
NcðNcþ6Þ� 66� 55 57� 51 86� 55

O5 ¼ 3
Nc
LiTaGi −22� 5 −25� 52

O6 ¼ 15
Nc
Lð2ÞijGiaGja 14� 5 14� 5

B1 ¼ −S 23� 38 24� 38 −22� 35

χ2dof 0.61 0.52 2.27
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Like for the N ¼ 1 and 3 bands, one can see that both
the spin and flavor operators O3 and O4, respectively, acting
on the entire system, bring similar contributions to the mass,
although c4 is smaller than c3, but what matters is cihOii.
The operator O4, having negative matrix elements (see
Table XI), helps in providing a good agreement of the
mass of Λð1810Þ1=2þ��� interpreted as the flavor singlet
2Λ0½70; 0þ�1=2. Table X shows that the operator O5 is not
important for a good fit but O6 is crucial in obtaining a
good χ2dof .

IX. HEAVY BARYON MASSES IN THE COMBINED 1=Nc

AND 1=mQ EXPANSION

The heavy-quark limit was first discussed by Witten
(1979b). Later on the masses of ground state baryons con-
taining a single heavy quark Q ¼ c; b were studied in a
combined 1=mQ and 1=Nc expansion and SU(3) flavor-
symmetry breaking by Jenkins (1996b, 1997). The combined
limit mc → ∞, mb → ∞, Nc → ∞ for fixed mc=mb and
NcΛQCD=mb has led to a light quark l and a heavy quark
h spin-flavor symmetry SUð6Þl × SUð4Þh. For finite mQ and
Nc this symmetry is violated by effects of the order of 1=Nc
and 1=NcmQ. A hierarchy of mass splittings was predicted
together with the masses of all of the unknown charmed
baryons, as, for example, Σ�

c, Ξ0
c, and Ω�

c and of all unknown
bottom baryons. The masses of the bottom baryons Σb, Σ�

b,
and Ξb observed ten years later were in good agreement with
the theoretical predictions (Jenkins, 2008).
Model-independent predictions for excitation energies and

other observables of isoscalar heavy baryons were discussed
in a combined heavy quark and large Nc expansions (Aziza
Baccouche et al., 2001).
The mass spectrum of the l ¼ 1 charmed baryons was also

studied in the 1=Nc method and the heavy-quark effective
theory and certain mass relations were derived (Lee, Liu, and
Song, 2000). The simplicity of the approach stems from the
fact that the light quark system is in the ground state and the
heavy quark is orbitally excited. This is an improvement over
previous studies made by Lee, Liu, and Song (1998).

X. MASS FORMULA IN THE 1=Nc EXPANSION VERSUS
THE QUARK MODEL

It is important to see whether or not there is a compatibility
between the model-independent 1=Nc expansion and the
quark models, which successfully describe baryon spectros-
copy. As mentioned in Sec. VII, in the first application of the
large Nc method to a phenomenological analysis of strong

decays of l ¼ 1 orbitally excited baryons (Carone et al.,
1994), the basic purpose was to understand whether the
success of the nonrelativistic quark model has a natural
explanation in large Nc QCD.
The above application was based on the Hartree approxi-

mation suggested by Witten (1979b) which inspired the
symmetric coreþ excited quark procedure of Sec. VII.A.
Subsequently the validity of this procedure was formally
supported by Pirjol and Schat (2008) in a permutation group
context by trying to match a large Nc quark model
Hamiltonian with the baryon mass formula (16) of the
1=Nc expansion, including orbitally excited baryons, where
some operators Oi contain angular momentum components.
Only light baryons were considered, i.e., the su(4) algebra.
The derivation confirmed the consistency between the order
Oð1=NcÞ of the corresponding operatorsOi shown in Table III
and those resulting from large Nc quark models. Moreover, an
explicit comparison of the Hamiltonian eigenvalues was made
for both the OGE (De Rujula, Georgi, and Glashow, 1975) and
the GBE (Glozman and Riska, 1996) models.
Later on Pirjol and Schat (2010) tried to give more insight

into the spin-flavor structure of the hyperfine interaction used
in quark models. They found that both OGE and GBE quark
models are compatible with the l ¼ 1 nonstrange baryon data.
Independently, a connection between a semirelativistic

quark model and the mass formula of the 1=Nc expansion
was established for light nonstrange baryons (Semay et al.,
2007) and for light nonstrangeþ strange baryons (Semay,
Buisseret, and Stancu, 2007), extended afterward to heavy
baryons (Semay, Buisseret, and Stancu, 2008); for a detailed
review see, for example, Buisseret et al. (2008). A clear
correspondence was found between various terms of the quark
model eigenvalues and those of the 1=Nc expansion mass
formula.
The spin-independent Hamiltonian used in Semay et al.

(2007), Semay, Buisseret, and Stancu (2007, 2008), and
Buisseret et al. (2008) had a relativistic kinetic term and a
Y-junction confinement interaction potential to which a
Coulomb interaction term and a quark self-energy were added.
Using the auxiliary field technique (Silvestre-Brac, Semay,
and Buisseret, 2012) one can obtain an analytic expression for
the mass of light qqq or heavy qqQ baryons including SU(3)
breaking. A key quantity is the band number N in a harmonic
oscillator picture, shown to be a good quantum number within
the approximations considered in treating the quark model
Hamiltonian. This allowed one to compare the dependence of
various ci coefficients as a function of N resulting from the
quark model and the 1=Nc expansion results described above.
For example, for light baryons the quark model mass formula
can be shortly written as

Mqqq ¼ M0 þ nsΔMs; ð41Þ

where the first term holds for exact SU(3) flavor and the
second term represents the breaking contribution. One can
make the following identification with the mass formula (16):

c21 ¼ M2
0=9; nsΔMs ¼

X
i

diBi; ð42Þ

TABLE XI. Matrix elements of Oi for flavor-singlet resonances
included in the analysis of Matagne and Stancu (2013).

O1 O2 O3 O4 O5 O6

21½70; 2þ�5
2
þ Nc

2
3

3
4Nc

− 2Ncþ3
4Nc

− Nc−3
2Nc

0
21½70; 2þ�3

2
þ Nc −1 3

4Nc
− 2Ncþ3

4Nc

3ðNc−3Þ
4Nc

0
21½70; 0þ�1

2
þ Nc 0 3

4Nc
− 2Ncþ3

4Nc
0 0
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where the number of strange quarks is ns ¼ 0; 1; 2, or 3. The
quantities M0 and ΔMs are functions of the band number N.
Using the analytic form of M0 in terms of quark model
parameters σ, α0, and f, defined, for example, in Semay et al.
(2007), one can write

c21 ¼
2π

9
σðN þ 3Þ − 4π

9
ffiffiffi
3

p σα0 −
fσ
3
; ð43Þ

with the following choice of parameters (Buisseret et al.,
2008):

σ ¼ 0.163 GeV2; α0 ¼ 0.4; f ¼ 3.6: ð44Þ

This expression is plotted as a function of the band number N
in Fig. 4 where it is compared with large Nc results. One can
see that there is a rather good quantitative agreement between
the large Nc and the quark model results for c21. In the quark
model c21 contains the effect of the kinetic and of the
confinement parts of the spin-independent Hamiltonian and
the nonperturbative QCD at large distances becomes domi-
nated by confinement. The present agreement between the
quark model results and large Nc QCD brings further support
to quark models.
Actually the quantity c21 is linear in the band number N,

suggesting a Regge-type behavior obtained from the analytic
form of M0, which is

M2
0 ∝ 2πσðN þ 3Þ ð45Þ

containing the quark model parameter σ responsible for
the slope.
On the other hand, a Regge-type behavior of the leading

spin-flavor singlet term of the large Nc mass formula was

discussed by Goity and Matagne (2007) and Matagne and
Stancu (2013), where two distinct nearly parallel Regge
trajectories have been found, the lower one for the symmetric
56-plets and the upper one for the mixed symmetric 70-plets.
It would be interesting to understand such an effect. In
addition, one could try to see if baryons and mesons lead
to degenerate Regge slopes in agreement with the predictions
of Armoni and Patella (2009) where massive mesons and
baryons become supersymmetric partners in the large Nc
limit.

XI. THE QUARK EXCITATION VERSUS THE
MESON-NUCLEON RESONANCE PICTURE

The contracted SUð2NfÞc spin-flavor symmetry is a con-
sequence of large Nc consistency conditions imposed on the
meson-baryon scattering amplitudes (Gervais and Sakita,
1984a, 1984b; Dashen and Manohar, 1993a, 1993b).
Therefore it seems natural to inquire about the compatibility
between the quark excitation picture presented in Secs. VII
and VIII and the meson-nucleon resonance picture.
According to Gervais and Sakita (1984a, 1984b) and

Dashen and Manohar (1993a, 1993b) in large Nc QCD the
pion-baryon couplings must satisfy a set of consistency
conditions which require the existence of an infinite tower
of degenerate baryon states with I ¼ J and also determine the
ratios of the pion-baryon coupling constants, which turn out to
be identical to those given by the Skyrme model. This implies
that the large Nc QCD displays a contracted spin-flavor
symmetry SUð2NfÞc. The symmetry is a property of ground
state baryons. As a matter of fact, the meson sector does not
display such a symmetry.
There is no a priori justification of extending this symmetry

to excited states, which do not become stable at large Nc and
where, in addition, an extension to SUð2NfÞ × Oð3Þ sym-
metry is necessary for introducing angular momentum
components.
In fact, Witten (1979b) showed that the characteristic width

of an excited baryon is of the order of N0
c, while stable states

are assumed in Gervais and Sakita (1984a, 1984b) and Dashen
and Manohar (1993a, 1993b). Pirjol and Yan (1998a, 1998b)
were the first to analyze the consistency condition for excited
baryons. Their procedure is similar to that of Dashen and
Manohar (1993a, 1993b). The pions are scattered off excited
baryons and one must assume that the target is stable. The
target was described by a mixed symmetric representation of
SUð2NfÞ, where they claimed that the pion-nucleon coupling

goes asN−1=2
c to produce narrow resonances. Functional forms

of relations satisfying the consistency conditions were moti-
vated from a simple nonrelativistic quark model.
The legitimacy of this procedure was questioned by Cohen

et al. (2004a). They found that the existence of states with a
width which goes as N−1

c is an artifact of the simple quark
model used in Pirjol and Yan (1998a, 1998b).
To evade the difficulties of an extension of the techniques

from the ground state to excited states (Pirjol and Yan, 1998a,
1998b), Cohen and Lebed (2003a, 2003b, 2003c, 2005)
proposed to study the scattering process in large Nc and
compare the findings with the quark excitation picture, named

FIG. 4. Comparison between the quark model and large Nc

results for c21 (GeV2) as a function of the band number N. The
dotted line represents the quark model mass equation (43) with
the parameters (44) from Buisseret et al. (2008) and the points
with error bars indicate large Nc results: at N ¼ 0 the value of c1
was from Eq. (22), atN ¼ 1 fromMatagne and Stancu (2011a), at
N ¼ 2 from Goity, Schat, and Scoccola (2003) describing the
multiplet ½56; 2þ� (see Table I), at N ¼ 3 from Matagne and
Stancu (2012a), fit 3 corresponding to the multiplets ½70;l−�
(l ¼ 1; 2; 3), and at N ¼ 4 from Matagne and Stancu (2005a)
describing the multiplet ½56; 4þ� (see Table I).
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the quark-shell picture, and based, as mentioned, on the
extended symmetry SUð2NfÞ × Oð3Þ. For simplicity we
concentrate on the SU(4) case.
The starting point was the linear relations of the S matrices

SπLL0RR0IJ and SηLRJ of π and η scattering off a ground state
baryon. They are given by the following equations:

SπLL0RR0IJ ¼
X
K

ð−1ÞR0−R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Rþ 1Þð2R0 þ 1Þ

p
ð2K þ 1Þ

×

�
K I J

R0 L0 1

	�
K I J

R L 1

	
sπKLL0 ð46Þ

and

SηLRJ ¼
X
K

δKLδðLRJÞsηK ð47Þ

in terms of the reduced amplitudes sπKL0L and sηK , respectively.
These equations were first derived in the context of the chiral
soliton model (Hayashi et al., 1984; Mattis and Peskin, 1985;
Mattis, 19861989a, 1989b; Mattis and Mukerjee, 1988),
where the mean field breaks the rotational and isospin
symmetries, so that J and I are not conserved but the grand
spinK is conserved and excitations can be labeled byK. These
relations are exact in large Nc QCD and are independent of
any model assumption. The notation is as follows. For π
scattering R and R0 are the spin of the incoming and outgoing
baryons, respectively (R ¼ 1=2 for N and R ¼ 3=2 for Δ), L
and L0 are the partial wave angular momentum of the incident
and final π, respectively (the orbital angular momentum L of η
remains unchanged), I and J represent the total isospin and
total angular momentum associated with a given resonance,

and K is the magnitude of the grand spin ~K ¼ ~I þ ~J. The 6j
coefficients imply four triangle rules δðLRJÞ, δðR1IÞ,
δðL1KÞ, and δðIJKÞ.
Equations (46) and (47) help to relate scattering amplitudes

in various channels with K amplitudes and look for common
poles, i.e., resonances. These poles should correspond to
degenerate towers of states. The quantum numbers of the
channels are the quantum numbers of an Nc quark system
given by a large Nc quark model. Thus the quantum numbers
of an Nc quark system are the important degrees of freedom of
the quark-shell picture.
According to Cohen and Lebed, if the pattern of degeneracy

resulting from Eqs. (46) and (47) is the same as that of the
quark-shell picture it means that the two pictures are com-
patible and the extension of the 1=Nc expansion method to
excited states is justified. The compatibility is illustrated next
for Nf ¼ 2.
The quark-shell picture requires the introduction of a

Hamiltonian model with an SUð2NfÞ × Oð3Þ symmetry con-
taining operators up to order N0

c.
(1) In the symmetric coreþ excited quark procedure

(Sec. VII.A), there are three operators up to the order
of N0

c, namely,

O1¼Nc1; O2¼l ·s; O3¼
15

Nc
lð2Þ ·g ·Gc; ð48Þ

which generate the Hamiltonian

H ¼ c1Nc1þ c2l · sþ c3
15

Nc
lð2Þ · g · Gc: ð49Þ

The only three distinct eigenvalues of this Hamiltonian
can be obtained analytically. For l ¼ 1 they were
given in Cohen and Lebed (2003a, 2003b) and Pirjol
and Schat (2003). Note that the normalization of O3 is
different in Cohen and Lebed (2003a, 2003b) and
Pirjol and Schat (2003) which is reflected in the
corresponding analytic expressions of the eigenvalues.
A similar analysis based on the Hamiltonian (49) has
been extended to l ¼ 3 in Matagne and Stancu
(2011b).

(2) In the exact basis (Sec. VII.B), there are also three
operators with matrix elements up to the order of
OðN0

cÞ. Using the notation of Matagne and Stancu
(2012b)) they are

O1¼Nc1; O2¼l ·s; O6¼
15

Nc
Lð2Þ ·G ·G; ð50Þ

which generates the Hamiltonian

H ¼ c1Nc1þ c2l · sþ c6
15

Nc
Lð2Þ ·G · G: ð51Þ

The first two terms are the same as in Eq. (49) but inO6

the SO(3) tensor Lð2Þ and the SU(4) operator G act on
the whole system. Interestingly, the corresponding
Hamiltonian has analytical solutions too. These are

m0
0 ¼ c1Nc − c2 − 25

4
c6; ð52Þ

m0
1 ¼ c1Nc − 1

2
c2 þ 25

8
c6; ð53Þ

m0
2 ¼ c1Nc þ 1

2
c2 − 5

8
c6: ð54Þ

Then for l ¼ 1 the following degenerate sets of
resonances were found:

N1=2; Δ3=2; ðsη0Þ; ðm0
0Þ; ð55Þ

N1=2; Δ1=2; N3=2; Δ3=2; Δ5=2; ðsπ100;sπ122Þ; ðm0
1Þ;

ð56Þ

Δ1=2; N3=2; Δ3=2; N5=2; Δ5=2; Δ7=2; ðsπ222;sη2Þ; ðm0
2Þ;

ð57Þ
where on the right side we indicate the associated
amplitudes sπKL0L or sηK of Eq. (46) or (47) followed by
the mass of each degenerate set. Thus the degenerate
sets are identical to those obtained from the meson-
baryon picture. In addition, the degenerate sets in the
exact basis are identical to those found in Cohen and
Lebed (2003a, 2003b) and Pirjol and Schat (2003),
which means that the same quantum numbers are
involved. The masses m0

i of Eqs. (52)–(54) shown
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here are naturally different from mi of the above
references because the Hamiltonian is different in
structure and it contains different dynamical coeffi-
cients. However, it has similar large Nc properties.

The conclusion is that any resonance that exists must fall
into multiplets that become degenerate in both mass and width
(or equivalently coupling constant) at large Nc. The pattern of
degeneracy is fully fixed by the contracted SUð2NfÞ sym-
metry. ForNf ¼ 2 each set of degenerate states is defined by a
single quantum number K ¼ 0, 1, and 2 for Eqs. (55), (56),
and (57), respectively.
For l ¼ 3, described within the symmetric core plus excited

quark procedure, we refer to our analysis (Matagne and
Stancu, 2011b) which confirms the compatibility between
the two pictures once more. In addition we supported the
triangular rule δðKl1Þ proposed in Cohen and Lebed (2003c)
according to which one can associate a common K ¼ 2 to
both l ¼ 1 and l ¼ 3. In some sense the quark-shell picture,
where l is conserved, brings an alternative information to the
resonance picture, which may be more relevant for exper-
imentalists, because it implies an energy dependence via the l
dependence which measures the orbital excitation.
The inclusion of strange quarks complicates the analysis.

One must consider only those states within a multiplet with
the same values of isospin and strangeness as for Nc ¼ 3. The
problem was discussed qualitatively by Cohen and Lebed
(2005). Analyzing the SUð3Þ × SUð2Þ content of the 70 irrep
of SU(6), 20 multiplets were found, with five distinct masses,
corresponding to K ¼ 0; 1=2; 1; 3=2, and 2. This is a model-
independent result. A simple Hamiltonian expressed in terms
of the symmetric core plus excited quark procedure containing
the operators

O1 ¼Nc1; O2 ¼l ·s; O3 ¼
3

Nc
lð2Þ ·g ·Gc;

O4 ¼l · sþ 4

Ncþ1
l · t ·Gc; O5 ¼

1

Nc

�
t ·T−

1
12

� ð58Þ

also gives five distinct masses, which suggests that the
compatibility between the quark-shell picture and the
meson-nucleon scattering picture can be achieved. Note that
the additional operator O5 acting only on flavor, usually
omitted in the symmetric coreþ excited quark procedure
(Carlson et al., 1998, 1999), is crucial in the compatibility
issue. The compatibility has not yet been studied explicitly in
the exact basis procedure for Nf ¼ 3.
Finally, we mention that, in the nonstrange sector, the

compatibility between the two pictures was claimed on a
general group-theoretical argument by Cohen and Lebed
(2003c) for completely symmetric, mixed symmetric, and
completely antisymmetric flavor-spin states of Nc quarks
having angular momentum up to l ¼ 3.
A bridge between the quark models in large Nc and the

solitonic approach of the Skyrme model was established by
Diakonov, Petrov, and Vladimirov (2013) within a relativis-
tically invariant formalism to take into account qq̄ pairs. In
this work it was pointed out that the advantage of the large Nc
limit is that the baryon physics simplifies considerably which
allows one to take into full account important relativistic and
field-theory effects which are often ignored.

XII. BARYON MASSES IN THE COMBINED 1=Nc

AND CHIRAL EXPANSIONS

Based on the idea that the combined 1=Nc expansion and
chiral perturbation theory (ChPT) can constrain the low-
energy interactions of baryons with mesons, a 1=Nc expansion
of the chiral Lagrangian was formulated by Jenkins
(1996a) quite early, for the lowest-lying baryons. The
expansion parameters are 1=Nc and mq=ΛQCD with the
double limit 1=Nc → 0 and mq=ΛQCD → 0 and the ratio
ð1=NcÞ=ðmq=ΛQCDÞ held fixed. The two limits cannot be
taken independently from each other. The chiral Lagrangian
correctly implements the pseudoscalar meson nonet symmetry
and the contracted spin-flavor symmetry introduced in
Sec. III. It describes the interaction of the spin-1=2 baryon
octet and the spin-3=2 baryon decuplet with the pseudoscalar
nonet. Strong CP violation was included.
Within the same framework the combined 1=Nc and chiral

expansions was recently considered in Cordon and Goity
(2013) based on the important conjecture that the two
expansions do not commute (Adkins and Nappi, 1984).
The dynamics underlying the noncommutativity is due to
the behavior of the Δ resonance (Cohen and Broniowski,
1992; Dashen, Jenkins, and Manohar, 1994; Cohen, 1996).
We recall that ChPT is an effective field theory that makes

use of an expansion in powers of momenta p (Leutwyler,
1995). The baryon mass splitting is taken to be OðpÞ in this
expansion, named ξ expansion in Cordon and Goity (2013).
Results for baryon masses and axial couplings were obtained
in an expansion where 1=Nc ¼ OðξÞ ¼ OðpÞ, thought to be
the most realistic for studying baryons at Nc ¼ 3.
Applications to lattice QCD were presented. It would be
interesting to extend the work from Nf ¼ 2 to Nf ¼ 3.
Results for the axial currents with three flavors, in a similar
framework, were presented in Flores-Mendieta, Hernandez-
Ruiz, and Hofmann (2012).

XIII. STRONG DECAYS

Besides the spectrum, the strong decays of baryons
represent an important field of application of the large Nc
method. As for the spectrum, one can perform an operator
analysis. So far only a few papers were devoted to the study of
strong decays within this framework. As mentioned at the
beginning of Sec. VII the first application of the large Nc
method was a phenomenological analysis of strong decays of
l ¼ 1 orbitally excited baryons (Carone et al., 1994). This
work was intended to show that the success of nonrelativistic
quark models has an explanation in large Nc QCD. For this
purpose it was enough to consider a restricted basis of
operators at subleading order in 1=Nc. This study was
followed by the analysis of strong decays of the Roper
resonance (Carlson and Carone, 2000).
A complete analysis to Oð1=NcÞ of strong decays of

nonstrange baryons belonging to the 20-plet of SU(4) was
given in Goity, Schat, and Scoccola (2005) followed by the
analysis of positive parity nonstrange resonances (Goity and
Scoccola, 2005) and nonstrangeþ strange resonances of the
56-plet of SU(6) (Goity, Jayalath, and Scoccola, 2009).
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Finally the study of negative parity baryon decays was
extended to SU(6) in Jayalath et al. (2011).
Note that all the above cited studies of strong decays of

negative parity mixed symmetric states in the framework of the
operator analysis rely on the Hartree approximation (Carone
et al., 1994), or its implementation according to Sec. VII.A.
Another framework to study strong decays is based on the

scattering amplitudes. This is the approach introduced in
Sec. XI and used in Cohen and Lebed (2003a, 2003b, 2003c,
2005) and Cohen et al. (2004a). The analytic structure of these
amplitudes was used to prove the compatibility between the
operator analysis and the meson-nucleon scattering picture. In
the operator analysis only terms of the order of N0

c have been
used and the name was the quark-shell picture. The compari-
son was therefore only qualitative. Higher order terms were
introduced by Pirjol and Schat (2003).
Below we describe a few results obtained in the operator

analysis approach for the strong decay widths.

A. Radially excited states

For historical and pedagogical purposes we first shortly
present the study of strong decay widths of the lowest-lying
radially excited baryons of Carlson and Carone (2000), with
special attention to the Roper resonance. The large Nc mass
formula was written under the form of a Gürsey-Radicati type.
The analysis was free of any assumption regarding the
interaction potential and the quark wave functions. The decay
was assumed to take place via a single quark interaction vertex
so that the transition operator can be expressed in terms of
SU(6) generators as

Heff ∝ Giakiπa; ð59Þ
where Gia is the SU(6) generator defined by Eq. (14), ki is the
meson momentum component i, and πa is the meson field
operator. The SU(6) operator acts on the excited quark. The
matrix elements of the operator (59) between the excited
baryon Bi and the final baryon Bf þmeson give the transition
amplitude

hΨðBf; πaÞjHeff jΨðBiÞi ¼ fðkÞkjhBfjGjajBii; ð60Þ
where fðkÞ is a function that parametrizes the momentum
dependence of the amplitude which encodes the baryon
structure and therefore the binding potential. For a harmonic-
type confinement this function has a simple analytic form
(Koniuk and Isgur, 1980) and the above factorization takes
place in general if recoil effects of the emitting quark are
ignored (Sartor and Stancu, 1986b). Carlson and Carone
(2000) found a simple functional form fðkÞ ¼ ð2.8�
0.2Þ=k to fit the data best while the harmonic type confine-
ment led to an exponential decrease with k (Koniuk and Isgur,
1980). The above analysis has been stimulated by the
successful large Nc study of strong decays of the 70-plet
(Carone et al., 1994) which preceded the more involved study
of strong decays of Goity, Schat, and Scoccola (2005) and
Goity and Scoccola (2005). A good choice of the profile
function fðkÞ as above can help in including the largest part of
the momentum dependence in the leading terms of the large
Nc expansion of the transition operator.

Next we present the more elaborate, rather recent
studies.

B. The 56-plet

Goity and Scoccola (2005) analyzed the multiplets ½560; 0þ�
and ½56; 2þ� in SU(4). One interprets the Roper resonance as
belonging to ½560; 0þ�.
The transition operators, classified in multiplets of the

Oð3Þ × SUð2NfÞ group (Goity and Scoccola, 2005), are
reproduced in Table XII. The list contains one-body and
two two-body operators, with the order specified in the last
column. The name O½lP;1� contains the partial wave lP of the
decay channel and 1 is the isospin of the emitted pion.
The operators ξlm are components of a tensor of rank l in

SO(3), responsible for the transition between an excited state
with orbital angular momentum l and the ground state. They
were normalized to have matrix elements of the form

h0jξlm0 jlmi ¼ ð−Þl−mδm;−m0 ; ð61Þ

consistent with the Wigner-Eckart theorem provided the
reduced matrix element on the right-hand side is
h0jjξljjli ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

. The operators S and G are SU(4)
generators. From these generators one constructs spin-flavor

tensors ðG½SP;IP�
½S3P;I3P�Þq, where SP; S3P are the spin and its

projection and IP; I3P are the isospin and its projection, the
same as the isospin and its projection for the emitted meson.
The quantity q numbers the operators generally considered in
an operator expansion study q ¼ 1; 2;…. The adequate
coupling for the partial wave lP of the meson emission
defines the operators



B½lP;IP�
½mP;I3P�

�
q
¼
X
m

hl;m;SPS3P∣lP;mPiξlm


G½SP;IP�
½S3P;I3P�

�
q
; ð62Þ

which were used to construct a transition operator in the 1=Nc
expansion as

B½lP;IP�
½mP;I3P� ¼

�
kP
Λ

�
lPX

q

C½lP;IP�
q ðkPÞðB½lP;IP�

½mP;I3P�Þq; ð63Þ

containing a desired number of terms each having a coefficient

C½lP;IP�
q ðkPÞ to be fit from data. The quantity ðkP=ΛÞlP was

designed to capture the main momentum dependence of the

dynamical coefficients C½lP;IP�
q ðkPÞ which were taken in

practice as momentum independent. The constant Λ was
chosen to be equal to 200 MeV. Another alternative would

TABLE XII. Basis operators for pion decay of ½560; 0þ� and ½56; 2þ�
resonances in SU(4). From Goity and Scoccola, 2005.

Name Operator Order

One-body O½lP;1�
1

1
Nc
ðξlGÞ½lP;1� OðN0

cÞ
Two-body O½lP;1�

2
1
N2

c
(ξlð½S;G�Þ½1;1�)½lP;1� Oð1=NcÞ

O½lP;1�
3

1
N2

c
(ξlðfS;GgÞ½2;1�)½lP;1� Oð1=NcÞ
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be to introduce a momentum dependence through a profile
function as in Carlson and Carone (2000). The two ways are
equally valid, as long as no explicit dynamics is involved.
In this notation the transition operator (59) of Carlson and

Carone (2000) corresponds to the O½lP;1�
1 operator listed in

Table XII.
Then the strong decay width in a nonrelativistic kinematics

is defined as

Γ½lP;IP� ¼ kP
8π2

MB

M�
B

jBðlP; IP; S; I; J�; I�; S�Þj2
ð2J� þ 1Þð2I� þ 1Þ ; ð64Þ

where BðlP; IP; S; I; J�; I�; S�Þ are the reduced matrix ele-

ments of the strong decay operator B½lP;IP�
½mP;I3P� defined above,

with J�; I�; S� the quantum numbers of the decaying reso-
nance of massMB� and S; I the spin and isospin of the baryon
ground state of mass MB.
The reduced matrix elements BðlP; IP; S; I; J�; I�; S�Þ are

defined by the generalized Wigner-Eckart theorem introduced
in Appendix C with notations adapted to the present case.
Goity and Scoccola (2005) calculated the decay widths in

the p; f, and h partial waves for a number of resonances with
increasing masses starting from the Roper Nð1440Þ1=2þ to
Δð2420Þ9=2þ. The decay channels were πN and πΔ. The
results of Goity and Scoccola (2005) indicate that the pion
decays are qualitatively well described at leading order

described by the operator O½lP;1�
1 , which explains why the

simple picture of the quark model works qualitatively well and
also justifies the choice of Carlson and Carone (2000).
However, the Roper resonance requires important next-to-
the-leading corrections as considered in Carlson and Carone
(2000), a result also consistent with the quark model studies,
as, e.g., Sartor and Stancu (1986b), which give too small a
width. Also the predicted suppression of the η decay is
consistent with the experimental results obtained so far.
In the extension to SU(6), Goity, Jayalath, and Scoccola

(2009) followed a similar procedure to SU(4) to construct the
spin-flavor transition operators. The SU(3) conserving oper-
ators correspond to those of Table XII but written in SU(6)
notations. The SU(6) basis contains an additional SU(3)
symmetry breaking (SB) operator

GSB ≡ 1

Nc
ðd8ab − δab=

ffiffiffi
3

p
ÞGib ð65Þ

of orderO(ðms −mu;dÞ=
ffiffiffiffiffiffi
Nc

p
)which is necessary to carefully

distinguish between the emission of pions and K mesons. The
conclusions are similar to those obtained in the SU(4) case.

C. The ½70;1−�-plet

As mentioned, the first analysis of the strong decays of the
lowest negative parity baryons was made in Goity, Schat, and
Scoccola (2005), where the multiplet belongs to the irreduc-
ible representation 20 of SU(4). Jayalath et al. (2011)
extended the study of negative parity baryon decays to
SU(6); see these papers for details. The construction of
transition operators is similar to that of the mass operator,
using operators acting on the excited quark or on the core.

This implies a larger number of transition operators than for
the 56-plet. Both studies indicate that the one-body operators
are dominant in the S- and D-partial wave decay widths,
which again support the quark model picture based on the
spectator model, where the pseudoscalar meson is emitted
from the excited quark. The two-body operators are crucial for
an overall good description. They are thought to encode the
longer range dynamics of the decay. However the calculated
widths of the Nð1535Þ → ηN and Nð1650Þ → ηN are too
small at leading order. The SU(3) breaking effects turn out to
be unnaturally large as the next-to-leading order analysis
has shown.
An exhaustive combined analysis of the masses, strong

decay widths, and photocouplings (see below) was recently
performed by de Urreta, Goity, and Scoccola (2014) for the
lowest nonstrange negative parity resonances belonging to the
½70; 1−�multiplet of SUð4Þ × Oð3Þ including an updated input
for the N1=2 baryons. The conclusion was that the composition
of the spin-1=2 and spin-3=2 states, which involve two mixing
angles, is in agreement with the nonrelativistic quark model of
Isgur and Karl obtained from the analysis of strong decays
alone (Isgur and Karl, 1978).

XIV. PHOTOPRODUCTION AMPLITUDES IN THE 1=Nc

EXPANSION

The first analysis of the helicity amplitudes in the 1=Nc
expansion was devoted to negative parity baryons by Carlson
and Carone 1998a, 1998b). Regarding positive parity baryons,
a particular case, the decay Δþ → pγ, was studied a few years
later by Jenkins, Ji, and Manohar (2002), where the ratio
of the helicity amplitudes A3=2=A1=2 was found to beffiffiffi
3

p þOð1=N2
cÞ, compatible with experiment and with quark

models where the ratio is
ffiffiffi
3

p
; see, for example, Eqs. (C49)

and (C50) of Sartor and Stancu (1986a). Therefore this study
showed that the ratio between the electric quadrupole E2 and
the magnetic momentM1 is of the order of 1=N2

c. In this work
the isovector electromagnetic current operator was expanded
in powers of the photon momentum kj:

JiaEM ∝ μia þQðijÞakj þ � � � ; ð66Þ

where i; j ¼ 1; 2; 3 are SU(2) spin and a ¼ 1; 2; 3 isospin
indices. The M1 and E2 transition amplitudes are

M1 ¼ e
ffiffiffiffiffi
k3

p
hNjμ33jΔi; E2 ¼ e

12
ðk3Þ3=2hNjQð20ÞjΔi;

ð67Þ

where, in the second equation, the quadrupole moment
operator QðijÞa has been expressed in terms of the spherical
component l ¼ 2, ml ¼ 0 for a ¼ 3. The 1=Nc expansion
was applied to μia and QðijÞa operators.
Shortly after, this study was extended to hyperon radiative

decays by Lebed and Martin (2004b) who calculated the
radiative widths.
A few years later the photoproduction amplitudes of

positive parity baryons were thoroughly studied by Goity
and Scoccola (2007). This type of analysis was extended to
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negative parity photoproduction amplitudes by Scoccola,
Goity, and Matagne (2008) by systematically building a
complete basis of current operators to subleading order in
1=Nc. The conclusion was that the one-body operators are
dominant and the subleading corrections in 1=Nc are impor-
tant and suggest evidence for the need of two-body operators.
An alternative, model-independent approach to study non-

strange resonances was based on the large Nc consistency
conditions (Gervais and Sakita, 1984a, 1984b; Dashen and
Manohar, 1993a, 1993b) to derive linear relations among
partial wave amplitudes for the elastic πN → πN and the
inelastic πN → πΔ processes (Cohen et al., 2004b). The
leading-order relations were derived in the context of chiral
soliton models in Hayashi et al. (1984), Mattis and Peskin
(1985), Mattis (1986, 1989a, 1989b) and Mattis and Mukerjee
(1988) as mentioned in Sec. XI. Their rederivation based on
group structure was obtained by Cohen and Lebed (2003a,
2003b, 2003c). Cohen et al. (2004b) introduced next-to-
leading order and the predictions made were confirmed by
experiment.
The method was extended to pion photoproduction in

Cohen et al. (2005). The corrections to order 1=Nc and
1=N2

c give a remarkable agreement with the experiment.
The approach of Cohen et al. (2005) was later modified to

provide a model-independent expansion for the electromag-
netic multipole amplitudes of the pion electroproduction
process e−N → e−πN (Lebed and Yu, 2009). The results
seem to be more ambiguous.

XV. DIFFERENT LARGE Nc LIMITS

Soon after ’t Hooft’s generalization of QCD fromNc ¼ 3 to
arbitrarily large Nc (’t Hooft, 1974), it was pointed out by
Corrigan and Ramond (1979) that there is an ambiguity in the
generalization of the quark content of SUðNcÞ to Nc > 3. The
argument was that the quarks can appear in other representa-
tions than the fundamental representation of SUðNcÞ.
Therefore one can construct distinct theories that agree at
Nc ¼ 3 but differ atNc → ∞. Then each distinct extrapolation
leads to a distinct 1=Nc expansion for the observables under
study.
So far several inequivalent large Nc generalizations have

been proposed. Some of them have been discussed by
Bolognesi (2007). If the quarks are in the fundamental
representation one can construct a totally antisymmetric color
state as defined by Eq. (3), which must be combined with a
symmetric orbital-spin-flavor part, as already mentioned.
As an alternative, Corrigan and Ramond (1979) proposed a

description of baryons as formed from quarks transforming
under the fundamental representation and “larks” [antiquarks
in SU(3)] transforming under the antisymmetric NðN − 1Þ=2
representation; see Table XIII.
Actually there are three possible two-index representations

for SUðNÞ. They are called tensors of rank Nðn;mÞ (Stancu,
1996), where nþm ¼ 2 in this case. They are exhibited in
Table XIII. The superscripts refer to symmetry and subscripts
to antisymmetry. The number of linearly independent com-
ponents of each tensor gives the dimension of the correspond-
ing irrep, denoted by nq. Each tensor has a number of
constraints given by its properties. This number has to be

subtracted from N2. Then the number of independent com-
ponents is generally smaller than Nnþm. For example, the
symmetric two-index irrep has the property

Tij ¼ Tji; ð68Þ

which gives C2
N ¼ NðN − 1Þ=2 constraints. Then the dimen-

sion of the symmetric two-index irrep is N2 − NðN − 1Þ=2 ¼
NðN þ 1Þ=2. The dimension of the antisymmetric irrep is
naturally NðN − 1Þ=2. The sum of the two must be equal
to N2 to be consistent with the direct product of two
fundamental representations of SUðNÞ which can be
decomposed as

The two-index irreducible tensor Ti
j must satisfy the trace

condition (Stancu, 1996)

T1
1 þ T2

2 þ � � � þ TN
N ¼ 0: ð70Þ

From here it follows that the dimension of the representation
Ti
j is N

2 − 1. Thus Ti
j corresponds to the adjoint representa-

tion. This two-index tensor can be constructed from two one-
index tensors Ti and Tj as

Ti
j ¼ TiTj: ð71Þ

We recall that the contravariant tensor Ti can represent quarks
and the covariant tensor Tj can describe antiquarks so that one
can make the identification

Ti ¼ qi; Tj ¼ q̄j: ð72Þ

The idea of Corrigan and Ramond was extended by
Bolognesi (2007) to the two-index symmetric and antisym-
metric representations in an effective Lagrangian approach.
Independently Armoni, Shifman, and Veneziano (2003a,

2003b) used the two-index antisymmetric representation to
define a new 1=Nc expansion at a fixed number of Nf flavors.
For Nf ¼ 1, in the large Nc limit, their approach is equivalent
to the N ¼ 1 supersymmetric Yang-Mills theory. In particu-
lar, Armoni, Shifman, and Veneziano (2003a) predicted
exactly degenerate parity doublets. It would be interesting
to find out if there are useful implications for baryons within
this context. In addition, by using the equivalence to N ¼ 1
supersymmetric Yang-Mills theory, Armoni and Patella
(2009) showed that mesons and baryons become

TABLE XIII. Two-index irreducible representations of SUðNÞ
defined in terms of irreducible tensors, where nq (last column) is
the number of linearly independent components of each tensor.

Tensor Rank nq

Tij (2,0) NðNþ1Þ
2

Tij (0,2) NðN−1Þ
2

Ti
j (1,1) N2 − 1
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asymptotically superpartners, which may explain the coinci-
dence of their Regge slopes.
By using either a mean-field approach (Witten, 1979b;

Bolognesi, 2007), a diagrammatic method (Cherman and
Cohen, 2006; Cherman, Cohen, and Lebed, 2009; Cohen,
Shafer, and Lebed, 2010), or within the framework of a
semirelativistic constituent quark model (Buisseret and
Semay, 2010) it was proven that in the antisymmetric case
the mass of such baryons scales as N2

c. In the symmetric case
the mass scales as N2

c also (Buisseret, Matagne, and Semay,
2012). Then it follows that both the two-index symmetric and
antisymmetric representations lead to the same limit for the
baryon masses at Nc → ∞ and that the fundamental repre-
sentation used by ’t Hooft (1974) and the two-index anti-
symmetric representation of quarks lead to the same results
at Nc ¼ 3.
The results of Buisseret and Semay (2010) and Buisseret,

Matagne, and Semay (2012) imply that in the Corrigan-
Ramond limit, where nq ¼ 3, the baryon mass is of the order
ofOð1Þ, like for mesons, in agreement with Cherman, Cohen,
and Lebed (2009). We should stress that in the ’t Hooft limit a
large number of QCD properties have a simple understanding.
However, there are cases where the ’t Hooft limit is not
sufficient (Harada, Sannino, and Schechter, 2004). In
exchange, the Corrigan-Ramond limit has a richer structure
and is convenient to study QCD at higher matter density
(Frandsen, Kouvaris, and Sannino, 2006).
One should note that in Buisseret and Semay (2010) only

the spin-independent part of the Hamiltonian was consid-
ered. The spin contribution was analyzed in a later work
(Buisseret, Matagne, and Semay, 2012) for the ground state
of light baryons in three inequivalent large Nc limits and it
was proven that it scales as SðSþ 1Þ=nq in all cases. Then
Table XIII implies that the spin contribution to the pertur-
bative expansion resulting from one gluon exchange in the
two-index representation is of order Oð1=N2

cÞ, while in
’t Hooft’s limit, the subleading order is Oð1=NcÞ in agree-
ment with results based on the spin-flavor symmetry
(Dashen, Jenkins, and Manohar, 1994, 1995). Contrary, in
the Goldstone-boson exchange model (Glozman and Riska,
1996; Glozman et al., 1998) the contribution of the spin-
flavor hyperfine splitting requires more attention in a
perturbative expansion, when the coupling constants
of the exchanged bosons are also considered in a large Nc
limit.
The large Nc antisymmetric limit also implies the emer-

gence of an SUð2NfÞ spin-flavor symmetry and predicts
equally successful baryon mass relations as those derived in
the standard 1=Nc expansion (Dashen, Jenkins, and Manohar,
1994, 1995), but with different 1=Nc suppression factors
(Cherman, Cohen, and Lebed, 2012). Accordingly, Cherman,
Cohen, and Lebed (2012) concluded that the large Nc baryons
in the fundamental and antisymmetric two-index representa-
tions are about equally close to the Nc ¼ 3 world, at least for
the ground state baryon masses.
Studies based on the flavor adjoint representation

were performed by Bolognesi (2007), Bolognesi and
Shifman (2007), and Auzzi, Bolognesi, and Shifman
(2008).

XVI. EXOTICS

As is well known, the existing quark models, inspired by
QCD, can describe the properties of baryons as three quark
systems qqq and of mesons as quark-antiquark qq̄ pairs.
These models predict the existence of new resonances, called
exotics, which are formed from more than three quarks or
antiquarks (qmq̄n; mþ n > 3). For a review see, for example,
Stancu (2002), and references therein.
It was natural to inquire about the existence of exotics in

large Nc. To our knowledge the problem was first raised by
Cohen and Lebed (2004) in conjunction with the presently
controversial pentaquark θþ, a q4s̄ system (q ¼ u, d), of total
angular momentum J ¼ 1=2, isospin I ¼ 0, strangeness
S ¼ þ1, and a mass of about 1.5 GeV, having a narrow
width less than 15 MeV (Diakonov, Petrov, and Polyakov,
1997), the observation of which was announced by the LEPS
Collaboration in 2003 (Nakano et al., 2003). This was
followed by a number of observations with either positive
or negative results, reviewed, for example, by Stancu
(2005). Cohen and Lebed argued that a large Nc analysis
by itself cannot predict the mass of θþ, but it can predict the
existence of degenerate partners with S ¼ þ1, the quantum
numbers of which can be related to poles in the KN scattering
amplitude. They used the SU(3) extension (Mattis and
Mukerjee, 1988) of the formalism presented in Sec. XI, where
the baryons are described as resonances in the meson-nucleon
scattering. If, for example, one imposes the theoretical
assumption that θþ is a state with J ¼ 1=2 the degenerate
partners should have I ¼ 1, J ¼ 1=2; 3=2 and I ¼ 2,
J ¼ 3=2; 5=2. One does not expect the widths of these
partners to be similar to that of θþ. However, Cohen and
Lebed noted that large Nc neither implies nor precludes the
existence of exotics.
Shortly afterward Jenkins and Manohar (2004a) also

stated that large Nc spin-flavor symmetry does not predict
that exotic baryons exist. They introduced the notion of
exoticness E (Jenkins and Manohar, 2004b), as the minimal
value for which the flavor baryon representation can be
constructed from qqqðqq̄ÞE in SU(6). They derived the
quantum numbers of exotics in both the quark and Skyrme
models, the results being identical to Nc → ∞, as for ordinary
baryons. They proposed an 1=Nc mass expansion for exotic
baryons and transition operators between baryons with differ-
ent values of E.
In the quark representation described in Sec. IV the

degenerate partners predicted by Cohen and Lebed belong
to the SU(3) multiplets 27 for I ¼ 1 and to 35 for I ¼ 2,
respectively, while θþ was considered as a member of an
antidecuplet 1̄0 with spin 1=2 (Diakonov, Petrov, and
Polyakov, 1997). These three SU(3) representations have
E ¼ 1.
The work of Jenkins and Manohar was extended to one

more important irreducible representation of the contracted
spin-flavor symmetry by Pirjol and Schat (2007), who con-
structed a complete set of positive parity pentaquarks with one
unit of orbital angular momentum, which in the large Nc limit
falls into two towers with K ¼ 1=2 and K ¼ 3=2 of the
contracted SU(4) symmetry.
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After much interest for the pentaquark θþ and its charmed
partner θ0c [a uuddc̄ system belonging to an SU(3) antisextet, a
submultiplet of the 6̄0 irreducible representation of SU(4) (Wu
and Ma, 2004; Stancu, 2005)] during the period of 2003 to
2005, there followed overwhelming evidence that they do not
exist [see C. G. Wohl in the Particle Data Group (Beringer
et al., 2012)]. However, the common feature of most of the
experimental results was that they were nondedicated experi-
ments until 2004. Later on, dedicated high statistics experi-
ments were performed [for a review, see, e.g., Liu, Mao, and
Ma (2014)]. Recently a narrow peak structure at about
1.54 GeV in the missing mass of KS in the reaction γ þ p →
pKSKL was observed (Amaryan et al., 2012). In this experi-
ment one tries to exploit the quantum mechanical interference
between the channels γp → θþK̄0 → pKSKL and γp →
pϕ → pKSKL, where the latter can enhance the small
amplitude of the θþ channel.
More recently the pentaquark θþ was reconsidered in a new

theory of collective excitation as due to a Gamow-Teller
transition (as in nuclear physics) but as a transition of the s
quark from the highest filled level to excited u; d quark levels
in a mean field (Diakonov, Petrov, and Vladimirov, 2013). In
this way θþ was recovered with the same mass as was first
predicted (Diakonov, Petrov, and Polyakov, 1997).
As a consequence of Coleman’s conclusion in his Erice

lectures (Coleman, 1985) that “in the large N limit, quadri-
linears make meson pairs and nothing else” recently Weinberg
(2013) argued that exotic mesons consisting of two quarks and
two antiquarks are not ruled out in large Nc QCD. He
suggested that the real question is the decay rate of a
tetraquark. Weinberg’s suggestion was subsequently sup-
ported and analyzed by Knecht and Peris (2013), Lebed
(2013), and Cohen and Lebed (2014a, 2014b).

XVII. CONCLUSIONS

The 1=Nc expansion of QCD can provide a qualitative and,
to a large extent, a quantitative understanding of a large
number of hadronic phenomena. It has been proven to be an
appropriate tool for studying hadron spectroscopy in a model-
independent way. A great advantage is that it helps to organize
and relate the observables at each order in 1=Nc.
Previous reviews have shown that the ground state

baryons satisfy the hierarchy predicted by this expansion,
whenever necessary combined with a perturbative treatment
of SU(3)-flavor breaking. It had also successfully predicted
the masses of heavy-quark baryons and can help in the
discovery of the remaining bottom baryons. The description
of axial vector couplings, magnetic moments, charge radii,
and quadrupole moments was also successful.
Here we have mostly been concerned with the baryon

excited states. The physics of excited states gets sorted out
hierarchically in powers of 1=Nc as well (de Urreta, Goity, and
Scoccola, 2014). The presently known approaches are based
on an extension of the spin-flavor symmetry to SUð2NfÞ ×
Oð3Þ symmetry. They seem to successfully explain most of the
measured baryon masses. The quantitative calculations allow
one to group resonances in octets, decuplets, and singlets
formed of excited states. Many of these are predictions, which

may be used in the experimental discovery of unknown
baryons, in particular, of excited hyperons.
The 1=Nc mass operator has been compared to quark

models and the comparison gives strong support to quark
models and a better understanding of the coefficients of the
mass formula which encode the quark dynamics. The leading-
order term, proportional to Nc, can be understood as repre-
senting the contribution of the kinetic and of the confinement
parts of a quark model Hamiltonian. This term then naturally
increases with the excitation energy, or else, with the band
number. The deviation from spin-flavor symmetry is given by
corrections in powers of 1=Nc and a dominant part is the spin
term S · S, containing a spin-spin interaction, compatible with
the one used in one-gluon exchange models. Especially for
Nf ¼ 3 flavors, a novelty is that the contribution of the pure
flavor term T · T is as important in decuplets and flavor
singlets, as it is the spin term in octets. The rewriting of T · T
in terms of the spin and spin-flavor terms by using the Casimir
operator of SUð2NfÞ may bring more support of models
containing a Goldstone-boson exchange interaction. A quan-
titative analysis is highly desirable.
The present studies of strong decay widths and photo-

production amplitudes, made in the symmetric coreþ excited
quark approach, require subleading order corrections in order
to fit experimental data. In particular, the transition operators
include terms corresponding to the pseudoscalar meson
emission, customarily used in the quark model description
of decays, but also other higher order terms, unknown in quark
model studies, the meaning of which could perhaps give a
better insight into the transitions amplitude described by quark
models. Similar studies for mixed symmetric spin-flavor states
based on the totally antisymmetric wave function approach
described in Sec. VIII are desirable. They could help to extend
the analysis of decays to highly excited resonances belonging
to bands with N > 1.
So far all studies have been devoted to a fixed SUð6Þ ×

Oð3Þ multiplet of a given band N. On the other hand, it has
been shown that the excitation band number N could be used
to obtain Regge-type trajectories for the spin-independent part
of the mass formula in both large Nc and quark model
calculations. A global fit of resonances belonging to several
multiplets of the same band N would be interesting to
perform. It could settle the issue whether symmetric and
mixed symmetric multiplets can lead to the same trajectory or
should lead to distinct trajectories as shown in Sec. X.
The 1=Nc expansion method is receiving support from

lattice QCD calculations showing that Nc ¼ 3 is not too far
from a larger Nc. A recent study concentrates on subleading
corrections of hyperfine type (Cordon, DeGrand, and Goity,
2014). More accurate results are desired. We hope that the
interplay between large Nc QCD and lattice calculations will
further enlighten the understanding of excited baryons.
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APPENDIX A: THE GENERALIZED WIGNER-ECKART
THEOREM AND ISOSCALAR FACTORS OF SU(6)

Here we follow the derivation of the isoscalar factors of
SU(6) as given by Matagne and Stancu (2009) and completed
by Matagne and Stancu (2011a). They provide the diagonal
and off-diagonal matrix elements of the SU(6) generators
needed in calculating the spectra and transition amplitudes of
strong and electromagnetic decays.
The SU(6) generators are components of an irreducible

SU(6) tensor operator which span the invariant subspace
of the adjoint representation denoted here by the partition
½214�, or otherwise by its dimensional notation 35. As for
any other irreducible representation its matrix elements can
be expressed in terms of a generalized Wigner-Eckart
theorem, which factorizes each matrix element into products

of Clebsch-Gordan coefficients and a reduced matrix
element. To write the Wigner-Eckart theorem in its
general form we redefine the generators forming the algebra
(12) as

Ei ¼ Siffiffiffiffiffiffi
Nf

p ; Ea ¼ Taffiffiffi
2

p ; Eia ¼
ffiffiffi
2

p
Gia; ðA1Þ

where Nf ¼ 3 for SU(6) and Nf ¼ 2 for SU(4)
(Appendix C). Note that the generic name for every
generator will remain Eia (Hecht and Pang, 1969).
First we discuss the SU(6) case. An irrep of SU(6)

is denoted by the partition ½f� and the SU(3) irreps are
labeled by ðλμÞ following Elliott (1958a, 1958b), equivalent
to ðp; qÞ in particle physics (Lichtenberg, 1970). Then
one can write the matrix element of every SU(6) generator
Eia as

h½f�ðλ0μ0ÞY 0I0I03S
0S03jEiaj½f�ðλμÞYII3SS3i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½f�ðSUð6ÞÞ

q �
S

S3

Si

Si3

���� S0

S03

��
I

I3

Ia

Ia3

���� I0

I03

�

×
X
ρ¼1;2

� ðλμÞ
YI

ðλaμaÞ
YaIa

���� ðλ0μ0Þ
Y 0I0

�
ρ

� ½f�
ðλμÞS

½214�
ðλaμaÞSi

���� ½f�
ðλ0μ0ÞS0

�
ρ

;

ðA2Þ

where C½f�(SUð6Þ) is the SU(6) Casimir operator eigen-
value associated with the irreducible representation ½f�,
followed by the familiar Clebsch-Gordan coefficients of
SU(2) spin and SU(2) isospin. The sum over ρ contains
products of isoscalar factors of SU(3) and SU(6), respec-
tively. The label ρ is necessary whenever one has to
distinguish between irreps ½f0� ¼ ½f� with multiplicities
m½f� larger than 1 in the Clebsch-Gordan series (Matagne
and Stancu, 2011a)

½f� × ½214� ¼
X
½f0�

m½f0�½f0�: ðA3Þ

The two values for ρ in both SU(6) and SU(3) reflect the
multiplicity problem already appearing in the direct product
of SU(3) irreducible representations

ðλμÞ × ð11Þ ¼ ðλþ 1; μþ 1Þ þ ðλþ 2; μ − 1Þ
þ ðλμÞ1 þ ðλμÞ2 þ ðλ − 1; μþ 2Þ
þ ðλ − 2; μþ 1Þ þ ðλþ 1; μ − 2Þ
þ ðλ − 1; μ − 1Þ; ðA4Þ

where (11) labels the SU(3) adjoint representation. One can
see the representation ðλμÞ, which is one of the factors on
the left-hand side, appears twice on the right-hand side. To
distinguish between the two ðλμÞ’s one introduces the index
ρ, which then takes two values, for both the SU(3) and

SU(6) isoscalar factors. More details can be found in
Matagne and Stancu (2011a).
In Eq. (A2) the Casimir operator eigenvalue for the

symmetric representation with ½f� ¼ ½Nc� is

C½Nc�(SUð6Þ) ¼ 5NcðNc þ 6Þ
12

; ðA5Þ

and for the mixed symmetric representation with ½f� ¼
½Nc − 1; 1� is

C½Nc−1;1�(SUð6Þ) ¼ Ncð5Nc þ 18Þ
12

: ðA6Þ

The general analytic expressions of isoscalar factors of
SU(3) needed for this analysis can be taken from the nuclear
physics studies of Hecht (1965) where one has to replace λ and
μ by their definition in terms of Nc. Their properties are
summarized in Appendix C.
For convenience we reproduce our results for the isoscalar

factors of SU(6) entering the generalized Wigner-Eckart
theorem, Eq. (A2). The tables shown give the analytic
expressions of the isoscalar factors in terms of Nc and spin.
They can be used either in the calculation of masses of
baryons and decay observables from the real world (Nc ¼ 3),
of electromagnetic moment relations (Lebed, 1995), or in the
analysis of the compatibility between the 1=Nc expansion and
the pion-nucleon scattering results, where one has to include
states with Nc ≥ 3; see Sec. XI.
We separately exhibit our results for the symmetric ½Nc�

representation in Table XIV and for the mixed symmetric
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representation ½Nc − 1; 1� in Tables XV–XVII, and XVIII. In each case one can check that the isoscalar factors satisfy the
following orthogonality relation:

X
ρ;ðλμÞS;ðλaμaÞSi

� ½f�
ðλμÞS

½214�
ðλaμaÞSi

���� ½f1�
ðλ1μ1ÞS1

�
ρ

� ½f�
ðλμÞS

½214�
ðλaμaÞSi

���� ½f2�
ðλ2μ2ÞS2

�
ρ

¼ δf1f2δλ1λ2δμ1μ2δS1S2 : ðA7Þ

TABLE XIV. Isoscalar factors of SU(6) generators defined by Eq. (A2), related to the product ½Nc� × ½214� → ½Nc�.

ðλ1μ1ÞS1 ðλ2μ2ÞS2 ρ

� ½Nc�
ðλ1μ1ÞS1

½214�
ðλ2μ2ÞS2

��� ½Nc�
ðλμÞS

�
ρ

ðλþ 2; μ − 1ÞSþ 1 (11)1 / −
ffiffi
3
2

q ffiffiffiffiffiffiffiffi
2Sþ3
2Sþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc−2SÞðNcþ2Sþ6Þ

5NcðNcþ6Þ
q

ðλμÞS (11)1 1
4ðNc þ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðSþ1Þ

5NcðNcþ6Þ½NcðNcþ6Þþ12SðSþ1Þ�
q

ðλμÞS (11)1 2 −
ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc−2SÞðNcþ4−2SÞðNcþ2þ2SÞðNcþ6þ2SÞ

5NcðNcþ6Þ½NcðNcþ6Þþ12SðSþ1Þ�
q

ðλ − 2; μþ 1ÞS − 1 (11)1 / −
ffiffi
3
2

q ffiffiffiffiffiffiffiffi
2S−1
2Sþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNcþ4−2SÞðNcþ2þ2SÞ

5NcðNcþ6Þ
q

ðλμÞS (00)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðSþ1Þ

5NcðNcþ6Þ
q

ðλμÞS (11)0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNcþ6Þþ12SðSþ1Þ

10NcðNcþ6Þ
q

ðλμÞS (11)0 2 0

TABLE XV. Isoscalar factors of the SU(6) generators [Eqs. (A1) and (A2)], corresponding to the 28 multiplet of Nc ¼ 3.

ðλ1μ1ÞS1 ðλ2μ2ÞS2 ρ

� ½Nc − 1; 1�
ðλ1μ1ÞS1

½214�
ðλ2μ2ÞS2

���� ½Nc − 1; 1�
ðλμÞS

�
ρ

ðλμÞSþ 1 (11)1 1 − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sð2Sþ3ÞðNcþ2Sþ2Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ1Þð2Sþ1Þ½NcðNcþ6Þþ12SðSþ1Þ�ð5Ncþ18Þ

p
ðλμÞSþ 1 (11)1 2 Nc

Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ3ÞðNc−2Sþ4ÞðNcþ2Sþ6Þ

2ð2Sþ1ÞðNc−2SÞ½NcðNcþ6Þþ12SðSþ1Þ�ð5Ncþ18Þ
q

ðλμÞS (11)1 1 f12SðSþ 1Þ þ Nc½4SðSþ 1Þ − 3�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
SðSþ1Þ½NcðNcþ6Þþ12SðSþ1Þ�Ncð5Ncþ18Þ

q
ðλμÞS (11)1 2 4S2ðSþ1Þ2−2NcSðSþ1Þ−ðS2þS−1ÞN2

c
2SðSþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðNc−2Sþ4ÞðNcþ2Sþ6Þ

ðNc−2SÞðNcþ2Sþ2Þ½NcðNcþ6Þþ12SðSþ1Þ�Ncð5Ncþ18Þ
q

ðλμÞS − 1 (11)1 1 −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ1Þð2S−1ÞðNc−2SÞ
Sð2Sþ1ÞðNcðNcþ6Þþ12SðSþ1ÞÞð5Ncþ18Þ

q
ðλμÞS − 1 (11)1 2 Nc

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2S−1ÞðNc−2Sþ4ÞðNcþ2Sþ6Þ

2ð2Sþ1ÞðNcþ2Sþ2ÞðNcðNcþ6Þþ12SðSþ1ÞÞð5Ncþ18Þ
q

ðλþ 2; μ − 1ÞSþ 1 (11)1 / − 1
Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SðSþ2Þð2Sþ3ÞðNc−2S−2ÞðNcþ2Sþ2ÞðNcþ2Sþ6Þ

2ð2Sþ1ÞðNcþ2Sþ4ÞNcð5Ncþ18Þ
q

ðλþ 2; μ − 1ÞS (11)1 / 1
Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ3ÞðNcþ2Sþ2ÞðNcþ2Sþ6Þ
2ð2Sþ1ÞðNcþ2Sþ4Þð5Ncþ18Þ

q
ðλþ 1; μ − 2ÞSþ 1 (11)1 / −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Sð2Sþ3ÞðNc−2S−2Þ

ðSþ1Þð2Sþ1ÞðNc−2SÞðNcþ2Sþ4Þð5Ncþ18Þ
q

ðλþ 1; μ − 2ÞS (11)1 / −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðNc−2S−2Þ
ðSþ1Þð2Sþ1ÞðNc−2SÞðNcþ2Sþ4Þð5Ncþ18Þ

q
ðλ − 1; μ − 1ÞS (11)1 /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðNcþ2SÞ

Sð2Sþ1ÞðNc−2Sþ2ÞðNcþ2Sþ2Þð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS − 1 (11)1 / −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðSþ1ÞðNcþ2SÞð2S−1Þ
Sð2Sþ1ÞðNc−2Sþ2ÞðNcþ2Sþ2Þð5Ncþ18Þ

q
ðλ − 2; μþ 1ÞS (11)1 / 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2S−1ÞðNc−2SÞðNc−2Sþ4Þ
2ð2Sþ1ÞðNc−2Sþ2Þð5Ncþ18Þ

q
ðλ − 2; μþ 1ÞS − 1 (11)1 / − 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðS−1ÞðSþ1Þð2S−1ÞðNc−2SÞðNcþ2SÞðNc−2Sþ4Þ

2ð2Sþ1ÞðNc−2Sþ2ÞNcð5Ncþ18Þ
q

ðλμÞS (11)0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNcþ6Þþ12SðSþ1Þ

2Ncð5Ncþ18Þ
q

ðλμÞS (11)0 2 0

ðλμÞS (00)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðSþ1Þ

Ncð5Ncþ18Þ
q
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TABLE XVII. Isoscalar factors of the SU(6) generators, corresponding to the 210 multiplet of Nc ¼ 3.

ðλ1μ1ÞS1 ðλ2μ2ÞS2 ρ

� ½Nc − 1; 1�
ðλ1μ1ÞS1

½214�
ðλ2μ2ÞS2

���� ½Nc − 1; 1�
ðλþ 2; μ − 1ÞS

�
ρ

ðλþ 4; μ − 2ÞSþ 1 (11)1 / −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ5ÞðNcþ2Sþ4ÞðNcþ2Sþ8ÞðNc−2S−2Þ

2ð2Sþ3ÞðNcþ2Sþ6ÞNcð5Ncþ18Þ
q

ðλþ 3; μ − 3ÞSþ 1 (11)1 /
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðSþ2ÞðNc−2S−4Þ

ð2Sþ3ÞðNcþ2Sþ6ÞNcð5Ncþ18Þ
q

ðλþ 1; μ − 2ÞSþ 1 (11)1 / −2ðSþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðNcþ2Sþ2ÞðNc−2S−2Þ
ðSþ1Þð2Sþ3ÞðNc−2SÞðNcþ2Sþ4ÞNcð5Ncþ18Þ

q
ðλþ 2; μ − 1ÞSþ 1 (11)1 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ2ÞðNc−2S−2Þ
ðSþ1ÞðNcðNcþ6Þþ12ðSþ1ÞðSþ2ÞÞð5Ncþ18Þ

q
ðλþ 2; μ − 1ÞSþ 1 (11)1 2 − Nc

Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc−2Sþ2ÞðNcþ2Sþ8Þ

2ðNcþ2Sþ4ÞðNcðNcþ6Þþ12ðSþ1ÞðSþ2ÞÞð5Ncþ18Þ
q

ðλþ 2; μ − 1ÞS (11)1 1 ½Ncð4Sþ 7Þ þ 6ðSþ 1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S
ðSþ1Þ½NcðNcþ6Þþ12ðSþ1ÞðSþ2Þ�Ncð5Ncþ18Þ

q
ðλþ 2; μ − 1ÞS (11)1 2 − Ncþ2Sþ2

Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SðSþ2ÞðNc−2S−2ÞðNc−2Sþ2ÞðNcþ2Sþ8Þ

2ðNcþ2Sþ4Þ½NcðNcþ6Þþ12ðSþ1ÞðSþ2Þ�Ncð5Ncþ18Þ
q

ðλþ 1; μ − 2ÞS (11)1 /
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SðNcþ2Sþ2ÞðNc−2S−2Þ

ðSþ1ÞðNc−2SÞðNcþ2Sþ4ÞNcð5Ncþ18Þ
q

ðλμÞSþ 1 (11)1 / Ncþ4ðSþ1Þ2
Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc−2Sþ2Þ

2ð2Sþ1Þð2Sþ3ÞðNc−2SÞNcð5Ncþ18Þ
q

ðλμÞS (11)1 / − 1
Sþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNcþ2Sþ2ÞðNc−2Sþ2Þ

2ðNc−2SÞð5Ncþ18Þ
q

ðλμÞS − 1 (11)1 / −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2S−1ÞðNcþ2Sþ2ÞðNc−2Sþ2Þ

2ð2Sþ1ÞNcð5Ncþ18Þ
q

ðλþ 2; μ − 1ÞS (11)0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNcþ6Þþ12ðSþ1ÞðSþ2Þ

2Ncð5Ncþ18Þ
q

ðλþ 2; μ − 1ÞS (11)0 2 0

ðλþ 2; μ − 1ÞS (00)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðSþ1Þ

Ncð5Ncþ18Þ
q

TABLE XVI. Isoscalar factors of the SU(6) generators, corresponding to the 48 multiplet of Nc ¼ 3.

ðλ1μ1ÞS1 ðλ2μ2ÞS2 ρ

� ½Nc − 1; 1�
ðλ1μ1ÞS1

½214�
ðλ2μ2ÞS2

���� ½Nc − 1; 1�
ðλ − 2; μþ 1ÞS

�
ρ

ðλ − 2; μþ 1ÞS (11)1 1 ½Ncð4S − 3Þ þ 6S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ1Þ
S½NcðNcþ6Þþ12ðS−1ÞS�Ncð5Ncþ18Þ

q
ðλ − 2; μþ 1ÞS (11)1 2 − Nc−2S

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðS−1ÞðSþ1ÞðNc−2Sþ6ÞðNcþ2SÞðNcþ2Sþ4Þ

2ðNc−2Sþ2Þ½NcðNcþ6Þþ12ðS−1ÞS�Ncð5Ncþ18Þ
q

ðλμÞSþ 1 (11)1 / −
ffiffi
3
2

q ffiffiffiffiffiffiffiffi
2Sþ3
2Sþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc−2SÞðNcþ2Sþ4Þ

Ncð5Ncþ18Þ
q

ðλμÞS (11)1 / − 1
S

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc−2SÞðNcþ2Sþ4Þ
ðNcþ2Sþ2Þð5Ncþ18Þ

q
ðλμÞS − 1 (11)1 / Ncþ4S2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNcþ2Sþ4Þ

2ð2S−1Þð2Sþ1ÞðNcþ2Sþ2ÞNcð5Ncþ18Þ
q

ðλ − 2; μþ 1ÞS − 1 (11)1 1 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðS−1ÞðNcþ2SÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½NcðNcþ6Þþ12ðS−1ÞS�ð5Ncþ18Þ

p
ðλ − 2; μþ 1ÞS − 1 (11)1 2 − Nc

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc−2Sþ6ÞðNcþ2Sþ4Þ

2ðNc−2Sþ2Þ½NcðNcþ6Þþ12ðS−1ÞS�ð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS (11)1 / −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðSþ1ÞðNc−2SÞðNcþ2SÞ
SðNc−2Sþ2ÞðNcþ2Sþ2ÞNcð5Ncþ18Þ

q
ðλ − 1; μ − 1ÞS − 1 (11)1 /

2ðS − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðNc−2SÞðNcþ2SÞ
Sð2S−1ÞðNc−2Sþ2ÞðNcþ2Sþ2ÞNcð5Ncþ18Þ

q
ðλ − 3; μÞS − 1 (11)1 / −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðS−1ÞðNcþ2S−2Þ

ð2S−1ÞðNc−2Sþ4ÞNcð5Ncþ18Þ
q

ðλ − 4; μþ 2ÞS − 1 (11)1 / −
ffiffi
3
2

q ffiffiffiffiffiffiffiffi
2S−3
2S−1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNcþ2SÞðNc−2Sþ2ÞðNc−2Sþ6Þ

ðNc−2Sþ4ÞNcð5Ncþ18Þ
q

ðλ − 2; μþ 1ÞS (11)0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNcþ6Þþ12ðS−1ÞS

2Ncð5Ncþ18Þ
q

ðλ − 2; μþ 1ÞS (11)0 2 0

ðλ − 2; μþ 1ÞS (00)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðSþ1Þ

Ncð5Ncþ18Þ
q
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We note that the analytic expressions obtained for the isoscalar factors of the symmetric representation ½Nc� were obtained by
Matagne and Stancu (2006a).

APPENDIX B: SYMMETRY PROPERTIES OF ISOSCALAR FACTORS

In Table XIX we indicate the values of λ and μ for various physical sectors as a function of Nc. The flavor singlet case 21J is
discussed in more detail in Matagne and Stancu (2009).
We recall that the isoscalar factors of SU(3) obey the following orthogonality relation:

X
Y 00I00YaIa

� ðλ00μ00Þ
Y 00I00

ð11Þ
YaIa

���� ðλ0μ0Þ
YI

�
ρ

� ðλ00μ00Þ
Y 00I00

ð11Þ
YaIa

���� ðλμÞ
Y 0I0

�
ρ

¼ δλ0λδμ0μδY 0YδI0I; ðB1Þ

which can be easily checked. For completeness also note that the isoscalar factors obey the following symmetry property:

� ðλμÞ
YI

ð11Þ
−YaIa

���� ðλ0μ0Þ
Y 0I0

�
¼ð−Þ1=3½μ0−μ−λ0þλþð3=2ÞYa�þI0−I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðλ0μ0Þð2Iþ1Þ
dimðλμÞð2I0 þ1Þ

s � ðλ0μ0Þ
Y 0I0

ð11Þ
YaIa

���� ðλμÞ
YI

�
; ðB2Þ

where dimðλμÞ ¼ ð1=2Þðλþ 1Þðμþ 1Þðλþ μþ 2Þ is the dimension of the irrep ðλμÞ of SU(3).

TABLE XVIII. Isoscalar factors of the SU(6) generators, corresponding to the 21 multiplet of Nc ¼ 3.

ðλ1μ1ÞS1 ðλ2μ2ÞS2 ρ

� ½Nc − 1; 1�
ðλ1μ1ÞS1

½214�
ðλ2μ2ÞS2

���� ½Nc − 1; 1�
ðλ − 1; μ − 1ÞS

�
ρ

ðλþ 1; μ − 2ÞSþ 1 (11)1 / −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ3ÞðNc−2S−2ÞðNc−2Sþ2ÞðNcþ2Sþ4Þ

2ðNc−2SÞð2Sþ1ÞNcð5Ncþ18Þ
q

ðλþ 1; μ − 2ÞS (11)1 / −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc−2S−2ÞðNc−2Sþ2ÞðNcþ2Sþ4Þ

2Sð2Sþ1ÞðNc−2SÞNcð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS (11)1 1 ½Ncð4S − 3Þ þ 6S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ1Þ
S½N2

cþ12ðS2−1Þ�Ncð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS (11)1 2 −fNcðNc þ 6Þ − 4½SðS − 1Þ − 3�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð2S−1ÞðSþ1ÞðNc−2S−2ÞðNcþ2S−2Þ
2Sð2Sþ1ÞðNc−2Sþ2ÞðNcþ2Sþ2Þ½N2

cþ12ðS2−1Þ�Ncð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS − 1 (11)1 1 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ncð2S−1Þ
S½N2

cþ12ðS2−1Þ�ð5Ncþ18Þ
q

ðλ − 1; μ − 1ÞS − 1 (11)1 2 0 if S ¼ 1=2

ðλ − 1; μ − 1ÞS − 1 (11)1 2 −½NcðNc þ 6Þ − 12ðS2 − 1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðNc−2S−2ÞðNcþ2S−2Þ
2Sð2Sþ1ÞðNc−2Sþ2ÞðNcþ2Sþ2Þ½N2

cþ12ðS2−1Þ�Ncð5Ncþ18Þ
q

if S ≥ 1

ðλμÞSþ 1 (11)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð2Sþ3ÞðNcþ2Sþ4Þ
ð2Sþ1ÞðNc−2SÞNcð5Ncþ18Þ

q
ðλμÞS (11)1 / 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðNcþ2Sþ4Þ

ðNc−2SÞðNcþ2Sþ2Þð5Ncþ18Þ
q

ðλμÞS − 1 (11)1 / Sþ1
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð2S−1ÞðNcþ2Sþ4Þ

ð2Sþ1ÞðNcþ2Sþ2ÞNcð5Ncþ18Þ
q

ðλ − 2; μþ 1ÞS (11)1 / 1
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðSþ1ÞðNc−2Sþ4Þð2S−1Þ
ðNc−2Sþ2ÞNcð5Ncþ18Þ

q
ðλ − 2; μþ 1ÞS − 1 (11)1 / 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðNc−2Sþ4ÞðS−1Þð2S−1Þ

ðNc−2Sþ2ÞðNcþ2SÞð5Ncþ18Þ
q

ðλ − 3; μÞS − 1 (11)1 / 0 if S ¼ 1=2

ðλ − 3; μÞS − 1 (11)1 / −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNcþ2S−2ÞðNcþ2Sþ2ÞðNc−2Sþ4ÞðS−1Þ

2SðNcþ2SÞNcð5Ncþ18Þ
q

if S ≥ 1

ðλ − 1; μ − 1ÞS (11)0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

cþ12ðS2−1Þ
2Ncð5Ncþ18Þ

q
ðλ − 1; μ − 1ÞS (11)0 2 0

ðλ − 1; μ − 1ÞS (00)1 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðSþ1Þ

Ncð5Ncþ18Þ
q
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The SU(6) isoscalar factors satisfy to the following sym-
metry property:� ½f�

ðλ1μ1ÞS1
½214�

ðλ2μ2ÞS2

���� ½f�
ðλμÞS

�

¼ ð−1Þ1=3ðμ1−μ−λ1þλÞð−1ÞS1−S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðλ1μ1Þð2S1 þ 1Þ
dimðλμÞð2Sþ 1Þ

s

×

� ½f�
ðλμÞS

½214�
ðλ2μ2ÞS2

���� ½f�
ðλ1μ1ÞS1

�
: ðB3Þ

APPENDIX C: MATRIX ELEMENTS OF SU(4)
GENERATORS

Here we reproduce the matrix elements of the SU(4)
generators for the symmetric irrep ½Nc�. In Matagne and
Stancu (2006a) they were written as a particular case of
Eq. (A2). The form presented below is entirely compatible
with that given in Hecht and Pang (1969). Thus in the case of
SUð4Þ ⊃ SUð2Þ × SUð2Þ the analog of Eq. (A2) becomes

h½Nc�I0I03S0S03jEiaj½Nc�II3SS3i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½Nc�(SUð4Þ)

q � ½Nc�
IS

½212�
IaSi

���� ½Nc�
I0S0

�

×

�
S

S3

Si

Si3

���� S0

S03

��
I

I3

Ia

Ia3

���� I0

I03

�
; ðC1Þ

where

C½Nc�(SUð4Þ) ¼ ½3NcðNc þ 4Þ�=8 ðC2Þ
is the SU(4) Casimir operator eigenvalue for the symmetric
irrep ½Nc�. Also note that a symmetric state of SU(4) has
I ¼ S. We recall that the su(4) algebra is a particular case of
the algebra (12), where Nf ¼ 2

½Si; Sj� ¼ iεijkSk; ½Ta; Tb� ¼ iεabcTc;

½Si; Ta� ¼ 0; ½Si; Gia� ¼ iεijkGka;

½Ta; Gib� ¼ iεabcGic;

½Gia; Gjb� ¼ i
4
δijεabcTc þ i

2
δabεijkSk:

ðC3Þ

The tensor operators Eia are related to Si, Ta, and Gia (i ¼ 1,
2, 3; a ¼ 1, 2, 3) by

Ei ¼ Siffiffiffi
2

p ; Ea ¼ Taffiffiffi
2

p ; Eia ¼
ffiffiffi
2

p
Gia: ðC4Þ

This is a particular case of Eqs. (A1), where we now take
Nf ¼ 2. In Eq. (C1) they are identified by IaSi ¼ 01, 10, and
11, respectively. Now we want to obtain the SU(4) isoscalar
factors as particular cases of the SU(6) results with Ya ¼ 0. In
SU(4) the hypercharge of a system of Nc quarks takes the
value Y ¼ Nc=3. By comparing Eqs. (A2) and (C1) we
obtained the relation� ½Nc�

IS

½212�
IaSi

���� ½Nc�
I0S0

�

¼ rI
aSi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C½Nc�ðSUð6ÞÞ
C½Nc�ðSUð4ÞÞ

s X
ρ¼1;2

� ðλμÞ
Nc
3
I

ðλaμaÞ
0Ia

���� ðλ0μ0Þ
Nc
3
I0

�
ρ

×

� ½Nc�
ðλμÞS

½214�
ðλaμaÞSi

���� ½Nc�
ðλ0μ0ÞS0

�
ρ

; ðC5Þ

where

rI
aSi ¼

8>><
>>:

ffiffi
3
2

q
for IaSi ¼ 01;

1 for IaSi ¼ 10;

1 for IaSi ¼ 11;

ðC6Þ

due to Eqs. (C1) and (C4) and taking into account that in
SU(6) one has Ei ¼ Si=

ffiffiffi
3

p
while in SU(4) one has

Ei ¼ Si=
ffiffiffi
2

p
. In Eq. (C5) we have made the replacement

λ¼ 2I; μ¼ Nc

2
− I; λ0 ¼ 2I0; μ0 ¼ Nc

2
− I0; ðC7Þ

and took

ðλaμaÞ ¼
� ð00Þ for Ia ¼ 0;

ð11Þ for Ia ¼ 1.
ðC8Þ

In this way we have recovered the SU(4) isoscalar factors
presented in Table A4.2 of Hecht and Pang (1969) up to a
phase factor. In doing these analytic calculations we have
made use of the isoscalar factors of SU(3) obtained by Hecht
(1965), Table 4. These coefficients were derived in a nuclear
physics context but they can be easily rewritten in terms of Nc
due to Eqs. (C7).
By introducing these isoscalar factors into the matrix

elements (C1) and the corresponding values of Ia and Si

according to the definition (C6), we have recovered the
expressions given in Eqs. (A1)–(A3) of Carlson et al.
(1998, 1999),

h½Nc�S0 ¼ I0;m0
1; α

0
1jGiajS ¼ I;m1; α1½Nc�i

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 1

2I0 þ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ 2Þ2 − ðI0 − IÞ2ðI0 þ I þ 1Þ2

q

×

�
S

m1

1

i

���� S0

m0
1

��
I

α1

1

a

���� I0

α01

�
; ðC9Þ

h½Nc�S0 ¼ I0;m0
1; α

0
1jTajS ¼ I;m1; α1½Nc�i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ

p �
I

α1

1

a

���� I

α01

�
δI0IδS0Sδm0

1
m1
; ðC10Þ

TABLE XIX. Values of λ and μ as a function of Nc for all sectors of
physical interest.

λ μ

28J 1 Nc−1
2

48J 1 Nc−1
2

210J 3 Nc−3
2

21J 0 Nc−3
2
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h½Nc�S0 ¼ I0;m0
1; α

0
1jSijS ¼ I;m1; α1½Nc�i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ

p �
S

m1

1

i

���� S

m0
1

�
δI0IδS0Sδα0

1
α1 : ðC11Þ

We recall that S ¼ I for a symmetric representation. Note that
the matrix elements of Gia in Carlson et al. (1998 1999) refer
to the symmetric representation [Nc − 1] describing a core of
Nc − 1 quarks, while here we consider a system of Nc quarks;
hence we have the term Nc þ 2 instead of Nc þ 1 under the
square root in Eq. (C9). As an example, putting Nc ¼ 3 in
Eq. (C9) one can recover the first four rows of Table 2 of
Carlson and Carone (2000) by taking into account the relation
between Clebsch-Gordan and 3j coefficients.

APPENDIX D: ISOSCALAR FACTORS OF THE
PERMUTATION GROUP

Here we recall the definition of isoscalar factors of the
permutation group Sn. We denote a basis vector in the
invariant subspace of the irrep [f] of Sn by j½f�Yi, where Y
is the corresponding Young tableau or Yamanouchi symbol. A
basis vector obtained from the inner product of two irreps [f0]
and [f00] is defined by the sum over products of basis vectors
of j½f0�Y 0i and j½f00�Y 00i at fixed [f0] and [f00]:

j½f�Yi ¼
X
Y 0Y 00

Sð½f0�Y 0½f00�Y 00j½f�YÞj½f0�Y 0ij½f00�Y 00i; ðD1Þ

where Sð½f0�Y 0½f00�Y 00j½f�YÞ are CG coefficients of Sn. Any CG
coefficient can be factorized into an isoscalar factor, here
called aK matrix (Stancu, 1996), and a CG coefficient of Sn−1.
To apply the factorization property it is necessary to specify
the row p of the nth particle and the row q of the (n − 1)th
particle. The remaining particles are distributed in a Young
tableau denoted by y. Then the isoscalar factor K associated
with a given CG of Sn is defined as

Sð½f0�p0q0y0½f00�p00q00y00j½f�pqyÞ
¼ Kð½f0�p0½f00�p00j½f�pÞSð½f0p0 �q0y0½f00p00 �q00y00j½fp�qyÞ;

ðD2Þ
where the right-hand side contains a CG coefficient of Sn−1
containing [fp], [f0p0 ], and [f00p00 ] which are the partitions
obtained from [f] after the removal of the nth particle. The K
matrix obeys the following orthogonality relations:X
p0p00

Kð½f0�p0½f00�p00j½f�pÞKð½f0�p0½f00�p00j½f1�p1Þ ¼ δff1δpp1
;

ðD3Þ
X
fp

Kð½f0�p0½f00�p00j½f�pÞKð½f0�p0
1½f00�p00

1j½f�pÞ ¼ δp0p0
1
δp00p00

1
:

ðD4Þ

We consider a system of Nc quarks having a total spin S. The
group SU(2) allows only partitions with a maximum of two
rows, in this case with Nc=2þ S boxes in the first row and
Nc=2 − S in the second row. So, one has

½f0� ¼
�
Nc

2
þ S;

Nc

2
− S

�
: ðD5Þ

Then one can write a symmetric state of Nc particles with spin
S as the linear combination

j½Nc�1i ¼ c½Nc�
11 ðSÞj½f0�1ij½f0�1i þ c½Nc�

22 ðSÞj½f0�2ij½f0�2i: ðD6Þ
The isoscalar factors used to construct the spin-flavor sym-
metric state (D6) are

c½Nc�
11 ¼ Kð½f0�1½f0�1j½Nc�1Þ;
c½Nc�
22 ¼ Kð½f0�2½f0�2j½Nc�1Þ:

ðD7Þ

The isoscalar factors needed to construct the state of mixed
symmetry ½Nc − 1; 1� from the same inner product are

c½Nc−1;1�
11 ¼ Kð½f0�1½f0�1j½Nc − 1; 1�2Þ;
c½Nc−1;1�
22 ¼ Kð½f0�2½f0�2j½Nc − 1; 1�2Þ:

ðD8Þ

The above coefficients and the orthogonality relation (D4)
give

c½Nc−1;1�
11 ¼ −c½Nc�

22 ; c½Nc−1;1�
22 ¼ c½Nc�

11 : ðD9Þ

When the Ncth particle is located in different rows in the
flavor and spin parts the needed coefficients are

c½Nc−1;1�
12 ¼ Kð½f0�1½f0�2j½Nc − 1; 1�2Þ ¼ 1;

c½Nc−1;1�
21 ¼ Kð½f0�2½f0�1j½Nc − 1; 1�2Þ ¼ 1;

ðD10Þ

which are identical because of the symmetry properties of K.
The identification of the so-called “elements of orthogonal
basis rotation” of Carlson et al. (1998, 1999) with the above
isoscalar factors is the following. For the symmetric states one
has

c½Nc�
11 ¼ cSYM0− ; c½Nc�

22 ¼ cSYM0þ ; ðD11Þ

and for the mixed symmetric states there is

c½Nc−1;1�
11 ¼ cMS

0− ; c½Nc−1;1�
22 ¼ cMS

0þ ; ðD12Þ

c½Nc−1;1�
12 ¼ cMSþþ; c½Nc−1;1�

21 ¼ cMS
−− . ðD13Þ

The coefficients ðc½Nc�
pp Þ2 (p ¼ 1, 2) can be defined in the

context of SUð6Þ ⊃ SUð2Þ × SUð3Þ as squares of isoscalar
factors of Sn. Wewrite the matrix elements of the generators Si
in two different ways. One is to use the Wigner-Eckart
theorem for SU(2):

h½Nc�ðλ0μ0ÞY 0I0I03;S
0S03jSij½Nc�ðλμÞYII3;SS3i

¼ δSS0δλλ0δμμ0δYY 0δII0δI3I3 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðSUð2ÞÞ

p �
S
S3

1

i

���� S0

S03

�
.

ðD14Þ
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The other is to calculate the matrix elements of Si by using the
fact that this is a one-body operator

Si ¼
XNc

k¼0

siðkÞ; ðD15Þ

where siðkÞ is a single particle operator acting on the particle
k. Then for a symmetric state one can write

hSii ¼ NchsiðNcÞi. ðD16Þ

We define the spin state

jS1; 1=2; SS3;pi

¼
X
m1;m2

�
S1
m1

1=2
m2

���� S
S3

�
jS1; m1ij1=2; m2i ðD17Þ

in terms of an SU(2)-spin CG coefficient with S1 ¼ S − 1=2
for p ¼ 1 and S1 ¼ Sþ 1=2 for p ¼ 2.
For a symmetric state similar to (D6) one obtains

hS11=2; SS03;pjsiðNcÞjS11=2; SS3;pi

¼
ffiffiffi
3

4

r X
m1m2m0

2

�
S1
m1

1=2

m2

���� S

S3

��
S1
m1

1=2

m0
2

���� S

S03

��
1=2

m2

1

i

���� 1=2

m0
2

�

¼ ð−Þ2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð2Sþ 1Þ

r �
S

S3

1

i

���� S

S03

��
1 S S

S1 1=2 1=2

	
: ðD18Þ

Using all this algebra we obtain the equality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
¼ ð−Þ2SNc

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ 1

p �

c½Nc�
22

�
2
�

1 S S
Sþ 1=2 1=2 1=2

	
−


c½Nc�
11

�
2
�

1 S S
S − 1=2 1=2 1=2

	�
; ðD19Þ

which is an equation for the unknown quantities. The other
equation is the normalization relation (D3)

ðc½Nc�
11 Þ2 þ ðc½Nc�

22 Þ2 ¼ 1: ðD20Þ
We found

c½Nc�
11 ðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½Nc þ 2ðSþ 1Þ�

Ncð2Sþ 1Þ

s
;

c½Nc�
22 ðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ 1ÞðNc − 2SÞ

Ncð2Sþ 1Þ

s
;

ðD21Þ

as in Carlson et al. (1998, 1999).

In Eqs. (D22)–(D25), we illustrate the application of
isoscalar factors for mixed symmetric states of a system with
Nc ¼ 7 (Matagne, 2006). In each inner product the first Young
diagram corresponds to spin and the second to flavor.
Accordingly, one can see that Eq. (D22) stands for 210,
Eq. (D23) for 48, Eq. (D24) for 28, and Eq. (D25) for 21, in the
sense of Table XIX. Each inner product contains the corre-
sponding isoscalar factors and the position of the Ncth particle
is marked with a cross. In the right-hand side, from the
location of the cross one can read off the values of p and of p0.
The equations are
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The above example is a particular case of the approximate
spin-flavor wave function used in the approach of the
symmetric coreþ excited quark of Carlson et al. (1998,
1999). One can see that the Ncth particle is always in the
second row (p ¼ 2) of the spin-flavor wave function and all
the terms with the Ncth particle in the first row are missing
from the exact wave function (38). Using group theoretical
arguments, the relation between the exact wave function and
the approximate one as used in Carlson et al. (1998, 1999) was
thoroughly discussed in Matagne and Stancu (2008b, 2010).
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