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The routine transformation of a liquid, as it is rapidly cooled, resulting in glass formation, is
remarkably complex. A theoretical explanation of the dynamics associated with this process has
remained one of the major unsolved problems in condensed matter physics. The random first order
transition (RFOT) theory, which was proposed over 25 years ago, provides a theoretical basis for
explaining much of the phenomena associated with glass forming materials. It links or relates multiple
metastable states, slow or glassy dynamics, dynamic heterogeneity, and both a dynamical and an ideal
glass transition. Remarkably, the major concepts in the RFOT theory can also be profitably used to
understand many spectacular phenomena in biology and condensed matter physics, as illustrated
here. The presence of a large number of metastable states and the dynamics in such complex
landscapes in biological systems from molecular to cellular scale and beyond leads to behavior, which
is amenable to descriptions based on the RFOT theory. Somewhat surprisingly even intratumor
heterogeneity arising from variations in cancer metastasis in different cells is hauntingly similar to
glassy systems. There are also deep connections between glass physics and electronically disordered
systems undergoing a metal-insulator transition, aging effects in which quantum effects play a role,
and the physics of superglasses (a phase that is simultaneously a superfluid and a frozen amorphous
structure). It is argued that the common aspect in all these diverse phenomena is that multiple
symmetry unrelated states governing both the equilibrium and dynamical behavior—a lynchpin in the
RFOT theory—controls the behavior observed in these unrelated systems.
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I. INTRODUCTION

Glasses, which were created over 5000 years ago in
Mesopotamia as objects of astounding beauty, are now used
in everyday life. The unusual properties of this amorphous
state make glasses ideal materials for use in a myriad of ways
ranging from displays to architectural solutions to electronics.
These applications have literally altered our lifestyles without
us fully appreciating their utilities or even being aware of
them. Despite their ubiquitous presence the fundamental
physics of the process driving their formation has remained
elusive (Parisi and Zamponi, 2010; Berthier and Biroli, 2011).
The quest to understand the dynamics of the liquid to glass
transition has led to a number of conceptual ideas, which have
been used to explain a variety of experimental observations.
The unabated efforts to produce a framework to describe the
nature of the structural glass transition (SGT) problem have
been summarized in a number of reviews in the last 20 years
(Kirkpatrick and Thirumalai, 1995b; Lubchenko and
Wolynes, 2007; Parisi and Zamponi, 2010; Berthier and
Biroli, 2011). In this Colloquium, we first summarize the
essential ideas underlying the random first order transition
(RFOT) theory of the glass transition (Kirkpatrick and
Thirumalai, 1987a, 1987b; Kirkpatrick and Wolynes,
1987a, 1987b; Kirkpatrick, Thirumalai, and Wolynes,
1989). The RFOT theory, a phrase that was first introduced
by Kirkpatrick, Thirumalai, and Wolynes (1989), was pre-
viously used to understand both the structural glass transition
(Kirkpatrick and Thirumalai, 1995b) and various types
of spin-glass transitions without inversion symmetry
(Kirkpatrick and Thirumalai, 1987a, 1987b, 1988b;
Kirkpatrick and Wolynes, 1987b). The overarching goal of
this work is not to review the current status of theories for
glass physics but to illustrate how the ideas that underlie the
RFOT can be used to discuss glassy aspects or features that are
manifested in both biological and condensed matter systems.
These applications are meant to showcase the wide ranging
use of ideas that were generated in the physics of the SGT. For
lack of space we will not discuss potential connections
between the RFOT theory and other interesting subjects such
as turbulence (Dauchot and Bertin, 2012, 2013).

A. General remarks on glassy systems

The phenomenology of glasses is well documented. Most
liquids, when rapidly undercooled (0.1 − 100 K=min in the
laboratory), become extraordinarily viscous [Fig. 1(a)] over a
narrow temperature range. The laboratory glass temperature
Tg is experimentally defined when the shear viscosity
ηðTgÞ ≈ 1013 Poise (Berthier and Biroli, 2011), which is
about 15 orders of magnitude larger than the viscosity of
pure water at room temperature. At Tg the relaxation time
becomes so large that thermal equilibrium is not reached in
cooling experiments. The dramatic increase in η is not
accompanied by discernible changes in the structure. The
temperature-dependent relaxation time scale τα (≈1=η)
is typically super-Arrhenius and can be fit using the Vogel-
Fulcher-Tamman (VFT) equation,

τα ¼ τ0 exp

�
D

T=T0 − 1

�
; ð1:1Þ

where τ0 is a microscopic relaxation time, the parameter D is
referred to as the fragility index, and T0 is a putative ideal
glass transition temperature that is obtained by extrapolating
measured viscosity data to inaccessible temperatures.
Typically α relaxation, a terminology borrowed from the
literature in polymer glasses, refers to motion on length scales
larger than the molecular size of the particles. An example of
such a fit for salol is given in Fig. 1(c). The viscosity data have
been fit using other forms (Bassler, 1987; Zwanzig, 1988;
Biroli and Garrahan, 2013) but here we assume that Eq. (1.1)
provides a good description, which indeed is the case for a
number of glass forming materials. As shown schematically in
Fig. 1(b), for many systems the intermediate scattering
function exhibits a plateau after the initial decay before
decaying further on the α-relaxation time. The duration of
the plateau in regime B [Fig. 1(b)] increases as the degree of
supercooling increases. In addition, the glassy phase is
dynamically heterogeneous—a notion that has received con-
siderable attention, and here we argue that this concept, arising
naturally from the RFOT, is of great generality. We do not
delve into other interesting aberrations in supercooled liquids,
such as the breakdown of the Stokes-Einstein relation noted in
computer simulations (Barrat, Roux, and Hansen, 1990;
Thirumalai and Mountain, 1993; Shi, Debenedetti, and
Stillinger, 2013) and in experiments because they are not
relevant to the main themes of this Colloquium.

B. Configurational entropy and the Kauzmann paradox

Configurational entropy is a key concept in many theories
of the glass transition. To define it, consider a free energy
functional Fðn; TÞ that depends on number density nðxÞ and a
temperature T. We assume that at sufficiently low temper-
atures Fðn; TÞ has many minima (that is, the number of
minima goes to infinity with the system volume V). These
states are labeled by an index γ such that to each valley we
associate a free energy Fγ and a free energy density
fγ ¼ Fγ=V. The number of free energy minima with free
energy density f is assumed to be exponentially large:

N ðf; T; VÞ ∼ exp½VScðf; TÞ�; ð1:2Þ
where the function Sc

1 is the configurational entropy or
complexity. Physically, it is the entropy arising from an
assumed exponentially large number of locally stable
configurations.
The concept of configurational entropy also plays a central

role in experimental glassy physics, especially in the formu-
lation and analysis of the so-called Kauzmann paradox
(Kauzmann, 1948), which follows from the following argu-
ments. Below the melting temperature Tm, the heat capacity
CpðTÞ of a supercooled liquid is larger than that of the
corresponding crystal. As a result of this excess heat capacity,
the entropy of the supercooled liquid state is larger than that of
the crystal. However, the supercooled liquid state entropy is
decreasing faster than the crystal entropy. These observations

1More precisely this is the definition of the state entropy or
complexity. These quantities can be exactly defined in mean-field and
infinite dimensional models. In more realistic systems we identify the
complexity with the configurational entropy.
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are illustrated in Fig. 2 and lead to the paradox. If the entropy
difference is extrapolated to temperatures below the laboratory
glass temperature Tg, it vanishes at some nonzero temperature
called TK , after Kauzmann. In his original article Kauzmann
(1948) suggested that the improbable decrease of the entropy
of the liquid below that of the crystal phase could be avoided if
the barrier to nucleation vanished somewhere between Tg and
TK . Extensive analysis (Angell, Macfarlane, and Ogun, 1986)
shows that the crystallization rate slows down more rapidly
than the relaxation rate so that Kauzmann’s paradox is not
realized. One alternative to Kauzmann’s suggestion is that a
very slowly cooled liquid would continue to lose entropy
until, as it approaches the crystal value, an equilibrium phase
transition occurs. The nature and the very existence of such a
transition has been much debated. Importantly, the extrapo-
lated TK is always close to the fitted T0 in Eq. (1.1) (Berthier
and Biroli, 2011).
The Adams-Gibbs (AG) (Adam and Gibbs, 1965) theory of

the glass transition as well as the RFOT theory (below Td
indicated in Fig. 2) focus on the configurational entropy as

defined previously. The idea is as follows. Physically, it is
reasonable to assume that the vibrational part of any amor-
phous state entropy should be more or less equal to the crystal
state vibrational entropy. The excess entropy of the liquid state
is then attributed to the configurational entropy Sc. The
equilibrium phase transition occurs at TK when Sc vanishes.
In this picture, we expect TK to equal T0 because slow
transport below Td is intimately related to loss in Sc. These
ideas will be developed in detail later.
Finally, we remark that both AG and RFOT theories lead to

the VFT law [Eq. (1.1)] via the AG relation,

τα ¼ τ0 exp

�
c
Sc

�
ð1:3Þ

with Sc ∼ ϵ ¼ T=TK − 1, vanishing atTK which is identified as
T0, and c is a positive constant. However, the derivations of
Eq. (1.3) in the two theories arevery different. In theAG theory it
is concluded that there is a divergent length scale ξAG ∼ 1=jϵj1=d,
while in RFOT the length scale is ξRFOT ∼ 1=jϵj2=d. ξRFOT is
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FIG. 1 (color online). General characteristic of glassy systems. (a) Dramatic illustration of the flow of highly viscous material bitumen
in an hourglass. The experiment was initiated in 1927 and to date only about nine drops have fallen. The viscosity of bitumen is about
230 × 109 times that of water. (b) Decay of the intermediate scattering function vs logðtÞ is schematically displayed for a slightly
undercooled liquid. The long time α-relaxation time is given by regime A and the short time decay corresponds to regime C. In the
intermediate B regime there is a typically two-step relaxation, which is in accord with the mode coupling theory. The same plot is
displayed in the inset as a function of t, which shows only the long time decay. From Cummins, 1999. (c) Dependence of the α-
relaxation time τα [regime A in (b)] for salol as a function of TK=T with the fit given by Eq. (1.1). The inset shows τα as a function of
Td=T, where Td is the dynamical transition temperature. (d) Dependence of the mean square displacement of a particle as a function of
time t at various volume fractions for a binary mixture of charge colloidal suspension, which forms a Wigner glass.
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derived and discussed further later. The AG correlation length
exponent νAG ¼ 1=d is in general not consistent with numerous
simulations (Biroli et al., 2008; Karmakar, Dasgupta, and
Sastry, 2009; Berthier and Kob, 2012; Biroli, Karmakar, and
Procaccia, 2013) tomeasure correlations in glassy liquids, nor is
it consistent with the expected inequality ν ≥ 2=d (Kirkpatrick
and Thirumalai, 2014).

C. The origins of the RFOT

In an attempt to provide a theory to account for the nature of
the SGT, a framework was developed in the late 1980s, which
was initially inspired2 by analogies to exotic (explained
further below) spin-glass models i.e., those without inversion
symmetry (Kirkpatrick and Thirumalai, 1987a, 1987b, 1995a;
Kirkpatrick and Wolynes, 1987b). From general physical
considerations it is logical that there ought to be similarities
between structural glasses and spin glasses. A glass, after all,
can be thought of as a frozen liquid or more precisely flows on
time scales that vastly exceed an observational time scale
(Fig. 1). In both cases there is no obvious long range order. It
is only when the systems evolve in time that there are obvious
differences. In a liquid a particle can diffuse arbitrarily far
away from the initial position as t → ∞, whereas it would be
localized in a small region in space in a glass on the
observation time scale τobs [Fig. 1(d)]. Similarly, a spin glass
may be thought of as a frozen paramagnet with no long range
of the magnetic order (Mezard, 1987). When the system
develops in time the local magnetic moment points in a
specific average direction (a spin at a given time remains
correlated with itself at a later time) in the spin-glass phase,
whereas in the paramagnetic the spin direction averages to

zero resulting in the vanishing of local magnetic moment. In
both cases, it is only through time evolution that the two
phases can be distinguished, a concept that plays an important
role in our discussion of dynamic heterogeneity.
Despite the compelling analogy between the structural and

spin glasses there are also important conceptual differences
between the two. First, in SG disorder is quenched (Edwards
and Anderson, 1975). In Ising spin glasses the magnetic
moments of Mn in an alloy with Ni are permanently frozen.
On the other hand, in the SGT problem the randomness is self-
generated (Kirkpatrick and Thirumalai, 1989b) as the material
is cooled below the melting temperature. Second, there is
considerable numerical and experimental evidence for an
equilibrium phase transition in three dimensions in Ising spin
glasses (Binder and Young, 1986). In the SGT case a
thermodynamic transition at T ¼ TK ≈ T0, characterized by
a vanishing of configurational entropy, is not universally
accepted despite considerable experimental and theoretical
support. It is worth emphasizing that the Ising spin glass does
not exhibit unusual slowing down in the relaxation times as a
liquid that undergoes a transition to a supercooled state.
Therefore, an analogy to spin glasses is insightful only if
inversion symmetry is not satisfied as is the case in p-spin
glass models with p > 2 (Gross and Mezard, 1984;
Kirkpatrick and Thirumalai, 1987a). Indeed, for such models,
the mathematical structure of the dynamical equation describ-
ing the relaxation of spin-spin correlation for p ¼ 3-spin glass
model is identical (Kirkpatrick and Thirumalai, 1987a) to the
mode coupling theory of the density-density relaxation
(Bengtzelius, Goetze, and Sjolander, 1984; Leutheusser,
1984; Goetze, 2009). This discovery and subsequent studies
linking dynamics and thermodynamics in these exotic mean-
field spin-glass models to models in which randomness is self-
generated lead to the complete formulation of the RFOT
(Kirkpatrick, Thirumalai, and Wolynes, 1989). It is worth
noting that the random energy model (Derrida, 1981), which
does not have a dynamical transition at high temperature,
is a special case of a p-spin glass model with p ¼ ∞
exhibiting one step replica symmetry breaking (Gross and
Mezard, 1984).
A valid criticism in using exotic spin-glass models to obtain

insights into the SGT is that in the former, quenched disorder
is explicitly modeled in the Hamiltonian whereas in the SGT it
is self-generated and manifests itself in the glassy phase.
[Because glasses are formed from molecules, whose dynamics
(assuming quantum effects are not important) at the micro-
scopic level is Newtonian or Brownian, the information about
the self-generated randomness is implicit in the trajectories.]
In what we consider to be an important paper (Kirkpatrick and
Thirumalai, 1989b), it was shown that the major conclusions
drawn based on spin-glass models can be obtained using a
model Hamiltonian with short range local order, incorporated
using a static structure factor, without any need for explicitly
modeling quenched disorder. We clarified the fact that the
generic ideas within RFOT and related theories that produce a
profound connection between static and dynamic description
solely depend on the emergence of an exponential number of
metastable states at a dynamical transition temperature Td,
which is well above Tg, the laboratory glass transition
temperature. Moreover, the theory further established that

FIG. 2. Schematic representation of the configurational entropy
change as the temperature of a liquid is reduced. Below the
temperature Td, which is an avoided dynamical transition, trans-
port occurs by crossing free energy barriers. At T < Tg, the glass
temperature, the supercooled liquid falls out of equilibrium.
However, if the entropy of the supercooled liquid is extrapolated
(dashed line) it would equal the value of the crystal at TK , the
Kauzmann temperature.

2The development was also inspired by an early paper (Kirkpatrick
and Wolynes, 1987a) that indicated the mode coupling theory (MCT)
of the glass transition is related to a static density functional
description of the glassy state.
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at the so-called Kauzmann temperature TK the entropy
associated with the metastable state vanishes resulting in
divergence of viscosity [Eq. (1.1)]. Thus, within RFOT
TK ¼ T0, an observation that accords well with many glass
forming materials (Berthier and Biroli, 2011).
The body of works created in the late 1980s was sub-

sequently put on firmer foundation by Mezard and Parisi
(1996), Parisi and Zamponi (2010), and Berthier and Biroli
(2011). There has also been much discussion about the sense
in which the MCT is a proper mean-field theory (Andreanov,
Biroli, and Bouchaud, 2009; Ikeda and Miyazaki, 2010;
Schmid and Schilling, 2010; Franz et al., 2012). Recently
(Kurchan, Parisi, and Zamponi, 2012; Charbonneau et al.,
2013; Kurchan et al., 2013) all aspects of the RFOT have been
illustrated in an exact description of a hard sphere fluid in the
limit of high dimensions. We believe these are illuminating
studies because they provide a microscopic basis for under-
standing RFOT theory of the transition of the SGT, which
cannot be unequivocally stated for other theories of super-
cooled liquids and glasses.

D. Assessment of the RFOT

Despite the success of the RFOT theory of the SGT, some
troubling aspects have been raised (Biroli and Bouchaud,
2012), which require further scrutiny. Before briefly address-
ing these issues, it is worth noting that although the RFOT
theory provides a unified description of both the dynamical
transition and the expected thermodynamic transition pre-
cipitated by the vanishing of the configurational entropy
(Kirkpatrick and Thirumalai, 1987a, 1987b, 1989b;
Kirkpatrick, Thirumalai, and Wolynes, 1989), much of the
focus has been on the dynamics below Td. This is a pity
because RFOT theory seamlessly integrates the dynamics
above and below Td. With this in mind we address the
difficulties raised by Biroli and Bouchaud (2012) associated
with RFOT. The first is related to the notion of surface
tension between two mosaic states, a concept that is relevant
below Td. As we show, the crucial element in producing the
VFT equation with the vanishing of configurational entropy
at TK is that the free energy barriers between mosaic states
scale as ξd=2, where ξ diverges at TK (see below). This
implies that there is really no interface between two statistical
similar glassy states. Rather, to go from one state to another,
roughly N1=2 of the N particles in a correlated volume must
be rearranged. Consequently, it is our opinion that the issues
raised about the surface tension within RFOT merely
obfuscates the physics of the activated transitions below
Td. Second, it was pointed out by Biroli and Bouchaud
(2012) that the crossover between the liquidlike diffusion at
T > Td and the activated transitions below Td is poorly
understood theoretically. While this is certainly correct, there
is considerable experimental evidence for the crossover as is
detailed in, for example, Goetze (2009). Indeed, unlike the
existence of the ideal glass transition temperature, there is
much data establishing a change in the dynamics at a
temperature far above Tg. Moreover, early computer simu-
lations have unequivocally established a change in the nature
of transport near Td (Mountain and Thirumalai, 1987; Barrat,
Roux, and Hansen, 1990; Thirumalai and Mountain, 1993).

More importantly, using a detailed analysis of experimental
data it has been shown (Novikov and Sokolov, 2003) that not
only is there ample evidence for the crossover temperature
but also the dynamics leading to the crossover may be
semiuniversal (see below). We conclude that both experi-
ments and simulations have provided compelling evidence
for the existence and importance of Td. In our view the
crucial missing point in full support of RFOT is the clear
demonstration of the divergent correlation length ξRFOT at
TK , which was discussed briefly in Sec. I.B and in more
detail below.

II. BASIC NOTIONS OF THE RFOT FOR THE
STRUCTURAL GLASS TRANSITION

In this section, we briefly review the basic features
of the RFOT as applied to the structural glass transition
problem.

A. Two transitions

The important physical aspects of the glass transition and
the glassy state that are incapsulated in RFOT (Kirkpatrick,
Thirumalai, and Wolynes, 1989; Kirkpatrick and Thirumalai,
1989b) are based on two key ideas. First, the glassy state is
essentially a frozen liquid with elastic properties. To describe a
glassy state we imagine an order parameter (OP) description in
terms of frozen density fluctuations δn ¼ n − nl. Here n is the
statistical mechanical average local number density and nl is
the spatially averaged density which is identical to the liquid
state density at the same temperature and pressure. In what
follows, we take into account the fact that there can be many
glassy states so that n will have a state label ns. Other order
parameters can be imagined, but frozen density fluctuations
are the simplest and are directly related to the most obvious
characteristic of a solid: elastic properties and a nonzero
Debye-Waller factor. Because the glassy phase is amorphous
or has random characteristics, the frozen density OP is
specified by a functional probability measure DP½δn�
(Kirkpatrick and Thirumalai, 1989b). The first two moments
of this measure are

δnðxÞ ¼
Z

DP½δn�δnðxÞ; ð2:1Þ

q≡ ½δnðxÞ�2 ¼
Z

DP½δn�½δnðxÞ�2: ð2:2Þ

Note that because nðxÞ ¼ nl the density itself cannot be a
proper order parameter for the glass transition. In order to
capture the essence of the glassy state, something analogous to
q must be used (Kirkpatrick, Thirumalai, and Wolynes, 1989;
Kirkpatrick and Thirumalai, 1989b).
At the SGT transition the OP will be discontinuous. There

are two arguments leading to this conclusion. First, any
Landau or Landau, Ginzburg, Wilson (LGW)-type theory
for the density n will not have a n → −n symmetry, and
therefore a Landau-type theory will lead to some sort of
discontinuous transition. More formally, the glassy state is one
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with a broken translational symmetry (since it is randomly
nonuniform), with elastic properties (Palmer, 1982; Szamel
and Flenner, 2011). Because of this broken translational
symmetry it is impossible to go continuously from a liquid
state with time average translational invariance to a glassy
state. The second argument is based on the notion that for a
given glassy state, the frozen density can be written as
(Ramakrishnan and Yussouff, 1979; Singh, Stoessel, and
Wolynes, 1985; Dasgupta and Valls, 1999)

nðxÞ ∼
X
i

exp½−ðx −RiÞ2=2hðΔRÞ2i�; ð2:3Þ

where the fRig are the (random or amorphous) average
positions of the particles making up the glassy state and
hðΔRÞ2i is the average fluctuation of their positions. In the
glassy state this is a finite quantity, on the order of a particle
diameter, and it determines the Debye-Waller factor and the
elastic coefficients of the glass. In a liquid it grows with time
and is proportional to the self-diffusion coefficient [Fig. 1(d)].
As the glassy state is approached from the liquid side, it
initially grows, but then plateaus on the scale of a molecular
diameter. The plateauing of this mean-squared displacement
means that the broken translational symmetry of the glassy
state will occur discontinuously. As mentioned earlier, the use
of density as an order parameter (Singh, Stoessel, and
Wolynes, 1985) differs conceptually from the ideas of the
RFOT theory. In the description of the amorphous state using
the density functional theory of the liquid to crystal transition
(Ramakrishnan and Yussouff, 1979) density itself changes
discontinuously near the putative glass transition density for
hard sphere systems, whereas in the RFOT theory it is the
analog of the Edwards-Anderson order parameter Eq. (2.2),
which jumps discontinuously at the ideal glass transition
temperature.
The second key idea in the formulation of RFOT is that

in general one expects a very large number of distinct
metastable glassy states (Goldstein, 1969). If the number is
large enough this in turn leads to two distinct transitions.
This is indeed what happens in many of the exactly soluble
mean-field spin models (Kirkpatrick and Thirumalai, 1987a,
1987b; Kirkpatrick and Wolynes, 1987b; Thirumalai and
Kirkpatrick, 1988), in exact high dimensional fluid models
(Kurchan, Parisi, and Zamponi, 2012; Kurchan et al., 2013),
and in mean-field approximations for a variety of liquid
state models (Kirkpatrick and Thirumalai, 1989b). In all of
these cases the following scenario is realized. Denote a
particular glass state by the label α, with the frozen density
in that state given by nα ¼ nl þ δnα and the free energy in
that state equal to Fα. Below a temperature denoted by Td
(the d here stands for dynamical, cf. below), there are an
extensive number3 of statistically similar incongruent states
(basically uncorrelated) that have zero overlap (Huse and
Fisher, 1987):

qαα0 ¼ δαα0q ¼ 1

V

Z
dxδnαðxÞδnα0 ðxÞ. ð2:4Þ

In RFOT it is assumed that these features are also realized
in realistic structural glass systems with the only caveat that
there is no strict dynamical transition at Td. Rather, the
transition at Td is avoided but the dynamics changes around
Td signaling the importance of activated transitions.
Because the states are statistically similar one cannot

simply use an external field to pick out a particular state.
The canonical free energy Fc is given by the partition
function via

Z ¼ exp½−βFc� ¼ Tr exp½−βH� ¼
X
α

exp½−βFα�: ð2:5Þ

In the glassy context there are two important cases when
Fc is not the physical free energy. First, if the barrier between
the states is actually infinite then Fc is not a physically
meaningful free energy. Second, if the barriers are finite but
the experimental time scale is too short for fluctuations to
probe the various states, then it is also not a physical free
energy.
A component averaged free energy can be defined

by (Palmer, 1982; Bouchaud and Biroli, 2004)

F ¼
X
α

PαFα; ð2:6Þ

with Pα the probability to be in the state α,

Pα ¼
1

Z
exp½−βFα�: ð2:7Þ

The two free energies Fc and F are related by

Fc ¼ F þ T
X
α

Pα lnPα ≡ F − TSc: ð2:8Þ

Here Sc is the configurational entropy (sometimes called the
complexity or state entropy), introduced in Sec. I.B. In
general, Sc is related to the solution degeneracy and is
extensive (and Fc ≠ F) if there are an exponentially large
number of states. Note that in infinite range models with a
RFOT and a nonzero Sc the physical free energy is F because
the Sc in Eq. (2.8) is an entropy term which is a measure of
parts of state space not probed in a finite amount of time. Since
a physical entropy should be associated only with accessible
configurations, it follows that Fc is not a physically mean-
ingful free energy.
The scenario for the two transitions in the RFOT theory can

be described as follows. For T > Td transport is largely not
collective, and the topology of state space is unremarkable.
However, for T → Td the dynamics slows down and the
system gets stuck in a glassy metastable state. For T < Td,
there are an extensive number of statistically similar, incon-
gruent globally glassy metastable states. If activated transport
is neglected these states are infinitely long lived. The liquid
state free energy Fl is lower than the physical glassy state free
energy F, but it is equal to the canonical free energy Fc.

3An extensive number of states scales like expðcNÞ for a N
particle system with c a constant for large N.
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Because there are so many glassy states, a liquid with
probability one will be stuck in one of the metastable glassy
states for T < Td. In the absence of activated transport it will
remain in that state forever. For infinite range models with
an RFOT, exact dynamical calculations show a continuous
slowing down and freezing as T → Tþ

d . The same result is also
found for some approximate, mean-field-like calculations of
dynamics in realistic liquid state models. The transition at Td
is also closely related to the so-called mode coupling theory of
the glass transition. In realistic systems, activated transport
does take place, and hence on the longest time scales for
T < Td, the dynamics are very sluggish. For this reason Td is
called a dynamical transition: It is a sharp transition only in
infinite range models, but in general it sets a temperature
region where the dynamics becomes glassylike. In addition,
for T < Td dynamic heterogeneity (DH) plays an increasing
important role. This too can be explained as arising from the
multiplicity of states, as we show below.
The driving force for the activated transport in the RFOT

scenario for T < Td is entropic and is given by the state or
configurational entropy. At a lower temperature denoted by
TK , after the so-called Kauzmann temperature, the configu-
rational entropy vanishes as does activated transport. In other
words, there is a second transition at TK which is the ideal or
equilibrium glass transition temperature. For hard sphere
systems for which the volume fraction (ϕ) is the relevant
variable the analogs of the two transitions and emergence of
other phases as ϕ is increased are schematically shown
in Fig. 3.

B. The dynamical transition

1. Theoretical description

The dynamical transition is characterized by the order
parameter

qðx − y; tÞ ¼ hq̂ðx; y; tÞi ¼ hδnðx; tÞδnðy; 0Þi: ð2:9Þ

Above Td this correlation function for fixed x − y decays as
t → ∞ but as T → Tþ

d its decay gets slower and slower in a
power law fashion. The spatial Fourier transform of this
quantity is the intermediate scattering function

qðk; tÞ ¼ hFkðtÞi ð2:10Þ

with

FkðtÞ ¼
1

V

X
i¼1

eik·riðtÞ
X
j¼1

e−ik·rjð0Þ: ð2:11Þ

Here riðtÞ is the position of particle i at time t and V is the
system volume.
We illustrate the dynamical behavior of qðk; tÞ in Fig. 4(a)

as a function of t for a wave number equal to the first peak in
the static structure factor kmax. The data are from (Kang,
Kirkpatrick, and Thirumalai, 2013) a Brownian dynamics
simulation of a binary mixture of highly charged spherical
colloidal particles, a system that becomes a Wigner glass
(Lindsay and Chaikin, 1982) when the fraction of colloidal
particles ϕ increases beyond ϕd the analog of Td. In the RFOT
description of this system, there is a dynamical transition
packing fraction ϕd as well as an ideal glass transition value
ϕK with ϕd < ϕg < ϕK . Because of equilibration problems,
the simulations are restricted to ϕ values just above a packing
fraction interpreted as ϕd, because it exhibits all the character-
istics of the dynamical transition density for colloidal particles
(Kang, Kirkpatrick, and Thirumalai, 2013). The plots show
that in the liquid phase hFkðtÞi decays for long times, but as
the dynamical transition is approached the system becomes
sluggish and hFkðtÞi plateaus for longer and longer times.
A fundamental quantity of interest is

qðtÞ ¼ 1

V

X
k

hFkðtÞi. ð2:12Þ

At Td, qðtÞ no longer decays, except (in non-mean-
field models) on the longest times scales. Effectively, it
becomes the Edwards-Anderson order parameter for the glass
transition:

qEA ¼ lim
t→∞

qðtÞ. ð2:13Þ

In RFOT this dynamical order parameter is identical to the
equilibrium q given by Eq. (2.2). In other words, equilibrium-
like theories are in accord with dynamical theories.
Because the OP involves the square of the density fluctua-

tions it is clear that the associated susceptibility will be
something like

FIG. 3 (color online). States for classical and quantum hard
sphere fluids. The top panel shows the expected phases as the
volume fraction is increased. Transitions to metastable liquid
and glassy phases are shown as the two arrows. The expected
transition to an ideal glassy state, predicted to occur at ϕ close to
the random close packing (RCP) is shown as the top arrow. The
lines at the bottom show the onset of distinct phases when
quantum effects are taken into account. These are further
discussed in Sec. V.
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χOPðx − y; tÞ ¼ hq̂ðx; y; tÞq̂ðy;x; tÞi − hq̂ðx; y; tÞi2. ð2:14Þ

Indeed, in Kirkpatrick and Thirumalai (1988a) the analog of this
quantity was shown to be the relevant susceptibility at a spin-
glass transition in the RFOT universality class. Also of interest
is the spatial and time Fourier transform of χOPðx − y; tÞ,

χOPðk;ωÞ

¼
Z

dt
Z

dxexp½−ik ·ðx−yÞþ iωtÞ�χOPðx−y;tÞ. ð2:15Þ

A related susceptibility4 that is easily measured in simulations
has also been defined,

χ4jFk
ðtÞ ¼ 1

V
½hF2

kðtÞi − hFkðtÞi2�: ð2:16Þ

In Fig. 4(b) we show simulation results for this quantity for the
same (Kang, Kirkpatrick, and Thirumalai, 2013) Wigner glass
as the dynamical transition is approached. In general, one finds
that the location of the maximum and its amplitude grows as the
dynamical transition is approached. This correlation function is
further discussed in Sec. III.
The “static” susceptibility for the glass transition at Td is

(Kirkpatrick and Thirumalai, 1988a)

χOPðkÞ ¼ lim
ω→0

χOPðk;ωÞ: ð2:17Þ

As r ¼ T=Td − 1 → 0, the homogeneous susceptibility χOP ¼
χOPðk → 0Þ in a mean-field theory diverges as (Kirkpatrick
and Thirumalai, 1988a)

χOP ∼ 1=
ffiffiffi
r

p
: ð2:18Þ

At finite and small wave number, on the other hand,

χOPðkÞ ∼ 1=ðk2 þ ξ−2o
ffiffiffi
r

p Þ; ð2:19Þ

with ξo a microscopic (correlation) length. This defines a
divergent length scale as T → Tþ

d given by (Kirkpatrick and
Wolynes, 1987b; Kirkpatrick and Thirumalai, 1988a)

ξ ∼ ξo=r1=4. ð2:20Þ

This is the same divergence found at a mean-field spinodol
point. It is worth emphasizing again that all of these so-called
dynamical results also follow from the equilibrium theory
of the RFOT. It is important to note that they are mean-
field results for a phase transition that is avoided in realistic
systems. Thus, the predicted exponents are effective
exponents.

2. Experimental evidence for the dynamical transition

Although there is considerable debate about the existence of
Tk ∼ T0, there is compelling evidence that the very nature of
transport in liquids changes at Td > Tg. In an insightful paper,
Goldstein argued 45 years ago that the crossover from
liquidlike dynamics to transport that involves overcoming
free energy barriers (Goldstein, 1969) occurs at temperatures
that far exceed Tg. He predicted that barrier crossing events
start to become important as soon the relaxation time exceeds
10−9 s. More recently, by analyzing experimental data of a
number of glass forming materials it has been shown that the
crossover time is τc ≈ 10−7 s (Novikov and Sokolov, 2003).
Remarkably, it was noted that τc might be semiuniversal. The
material-dependent ratio Td=Tg ranges from 1.1 to 1.7 [see
Table 1 in Novikov and Sokolov (2003)]. As pointed out
multiple times, Td roughly corresponds to the temperature
predicted by the MCTwith the caveat that at Td the power law

(a)

(b)

FIG. 4 (color online). (a) Scattering function for a binary mixture
of charged colloidal suspensions calculated from Brownian
dynamics simulations. The mixture consists of an equal number
of large and small highly charged spherical particles. We show
qðkmax; tÞ for the small particles at kmax corresponding to the
inverse of the location corresponding to the first maximum in the
pair function. The volume fraction increases from top to bottom
as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.075, 0.1, 0.125, 0.15,
0.175, and 0.2. The lines are fits to qðkmax; tÞ ¼ exp½−ðt=ταÞβ�
with ϕ-independent β ¼ 0.45. (b) Time-dependent changes in the
four-point susceptibility, showing fluctuations in qðkmax; tÞ for
ϕ ¼ 0.02, 0.03, 0.04, 0.05, 0.06, and 0.075 from left to right.
Adapted from Kang, Kirkpatrick, and Thirumalai, 2013.

4The homogeneous order parameter susceptibility is given
by χOPð0; tÞ ∼

P
k1k2

½hFk1ðtÞFk2ðtÞi − hFk1ðtÞihFk2ðtÞi�. For long
times this becomes the wave number integral of χ4jFkðtÞ.
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singularity describing the dependence of the relaxation time
on temperature is avoided in glass forming materials. These
crucial studies demonstrate the relevance of Td in systems
without quenched disorder, which invalidate the strict claims
made based on the p ¼ 3 spin-glass model in finite dimen-
sions (Moore and Drossel, 2002).

C. Dynamics and random field effects below the dynamical
transition

To a limited extent fluctuations about the RFOT for the
SGT have been considered. From our viewpoint the most
important aspect of this work has been the establishment of
the connection between the SGT problem and the random
magnetic field one (Franz et al., 2012, 2013; Biroli, Karmakar,
and Procaccia, 2013).
The crucial physical point to see this connection is to realize

that for T < Td ergodicity is broken on all but the longest time
scales. This immediately implies that there is a difference
between averages over trajectories and averages over initial
conditions. In the nonergodic phase if time averages over
trajectories are first performed then the second average over
different initial conditions is analogous to a quenched disorder
average. In other words, in the structural glass problem, in the
nonergodic phase, there is self-induced quenched disorder.
The local overlap function for two different initial conditions
or states ðα; βÞ is

QαβðxÞ ¼ nαðxÞnβðxÞ; ð2:21Þ

with nαðxÞ the density in state α. In the high temperature
phase the saddle-point solution is Qsp

αβ ¼ C for all α ≠ β. For
T ≤ Td there is a simple type of “replica” symmetry breaking.
The order parameter fluctuation ϕαβ ¼ Qαβ − C satisfies the
action (Franz et al., 2012)

S ¼ S2 þ S3 þ S4 þ � � � ð2:22Þ

with Sj of OðϕjÞ. The first few terms are

S2 ¼
1

2

Z
dx

�X
αβ

ð∇ϕαβÞ2 þm1

X
αβ

ϕ2
αβ þm2

X
α

�X
β

ϕαβ

�
2

þm3

�X
αβ

ϕαβ

�
2
�
; ð2:23Þ

S3 ¼ −
1

6

Z
dx

�
w1trϕ3 þ w2

X
αβ

ϕ3
αβ

�
; ð2:24Þ

and

S4 ¼
1

4

Z
dxðu1trϕ4 þ � � �Þ: ð2:25Þ

The mean-field dynamical transition occurs at m1 ¼ 0. It is
easily seen that the random field (RF) aspects of this action are
reflected by them2 andm3 terms in S2. In particular, to leading
singular order all the Gaussian propagators behave as

hϕαβðkÞϕγδð−kÞi ¼
−4ðm2 þm3Þ
ðk2 þm1Þ2

þ � � � . ð2:26Þ

That is, it is proportional to a propagator squared, which is
characteristic of a random field problem (Nattermann, 1997;
Young, 1998).
The theory given by Eq. (2.22) is a random field problem

with cubic terms, which in general reflects the symmetry
difference between fluids and the most random magnet
problems. Interestingly, it has been shown that this theory
has a critical point when w1 ¼ w2 where the cubic term
vanishes (Franz et al., 2012).
The implications of this connection of the SGT problem to

the random field problem are not completely understood. The
arguments are perturbative in nature and seem to neglect the
activated transport that takes place for T < Td. Nevertheless,
one speculates that some of the features important in random
field magnets such as activated scaling are also relevant in the
SGT problem.

D. Entropy crisis and divergent activated transport near the ideal
glass transition

The RFOT is a new type of discontinuous phase transition.
General arguments and exact calculations in infinite range
models indicate that a divergent coherence or correlation
length exists as an ideal glass transition is approached.
Physically, this divergent length is like a finite size scaling
length. Generalizing arguments of Fisher and Berker (1982)
for regular first order phase transition to a RFOT give the
correlation length that diverges as5 ξ ∼ 1=ϵν, with ϵ ¼
T=TK − 1, and correlation length exponent (Kirkpatrick,
Thirumalai, and Wolynes, 1989)

ν ¼ 2

d
: ð2:27Þ

This result is expected (Kirkpatrick and Thirumalai, 2014) to
be exact for all dimensions where a transition takes place. An
exact finite size scaling calculation (Kirkpatrick and Wolynes,
1987b) for an infinite range model undergoing an RFOT also
gives this value. In this case as ϵ → 0 the configurational
entropy per site vanishes as

Sc=N ∼ ϵ ð2:28Þ

and the finite size correlation length diverges as

ξ ∼ 1=jϵj2=d. ð2:29Þ

An important characteristic of a glass transition is the
occurrence of extremely long relaxation time scales. While
critical slowing down at an ordinary transition means that the
critical time scale grows as a power of the correlation length,
τ ∼ ξz with z the dynamical scaling exponent, at a glass
transition the critical time scale grows exponentially with ξ,

5We use r ¼ T=Td − 1 as the dimensionless distance from the
dynamical transition and ϵ ¼ T=TK − 1 as the dimensionless dis-
tance from the ideal glass transition.
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lnðτ=τoÞ ∼ ξψ ; ð2:30Þ

with τo a microscopic time scale, and ψ a generalized
dynamical scaling exponent. Effectively, Eq. (2.30) implies
z ¼ ∞. As a result of such extreme slowing down, the
system’s equilibrium behavior near the transition becomes
inaccessible for all practical purposes. Thus, realizable exper-
imental time scales are not sufficient to reach equilibrium, and
one says the system falls out of equilibrium.
Activated scaling, as described by Eq. (2.30), follows from

a barrier picture of the system’s free energy landscape. In the
context of the structural glass transition it is called the so-
called mosaic picture (Kirkpatrick, Thirumalai, and Wolynes,
1989; Bouchaud and Biroli, 2004). The basic idea is that for
Td > T > TK there is an entropic driving force that causes a
compact, glassy state of size ξd to make a transition to a
different glassy state, with the same approximate free energy,
also of size ξd. The physical picture that results is a system that
looks like a mosaic, or patchwork, of different glassy regions
separated by diffuse or fuzzy interfaces slowly making a
transition to yet other glassy states. For the uncorrelated states
that exist above TK the law of large numbers (Thirumalai,
Mountain, and Kirkpatrick, 1989) is consistent with a barrier
that scales like ∼ξd=2. This is also consistent with scaling and
an entropic driving force ϵξd ∼ ϵ−1, if ν ¼ 2=d. In the original
RFOT paper (Kirkpatrick, Thirumalai, and Wolynes, 1989), a
wetting argument, along the lines proposed for the random
field Ising model (Villain, 1985), was given that also led to
barriers scaling like ξd=2. All of this in turn implies a Vogel-
Fulcher law for the temperature dependence of the relaxation
time should hold as the glass transition is approached:

τ ∼ τo exp

�
D

T=TK − 1

�
; ð2:31Þ

with D a positive constant. Within RFOT and related theories
TK is identified with T0 in the VFT equation, Eq. (1.1).
As noted in Sec. I.D that the barriers scaling like ξd=2 imply

there is really no interface between two statistical similar
glassy states.

III. DYNAMIC HETEROGENEITY, LAW OF LARGE
NUMBERS, RARE REGIONS, AND ACTIVATED SCALING
IN GLASSY SYSTEMS

A. Dynamic heterogeneity

Experimentally, various spectroscopic techniques have
revealed heterogeneous relaxation in glassy systems
(Ediger, 2000; Bouchaud and Biroli, 2005; Berthier, 2011).
In such systems, there is nonexponential decay of correlations
that can be explained as arising from the superposition of
different regions decaying with different relaxation rates.
A large number of molecular simulations have provided

visualization of the microscopic details of the dynamical
heterogenities in glass forming systems (Donati et al., 2002;
Ediger and Harrowell, 2012). These simulations have pro-
vided direct evidence of dynamic heterogeneities, i.e., the
existence of finite time correlated domains with a length scale
that can exceed the molecular scale. An illustrative simulation
result is shown in Fig. 5. Experiments to directly visualize

these dynamic heterogeneities have also been performed in
colloidal glasses.
The chief theoretical construct used to understand dynamic

heterogeneity near the dynamical transition is the order
parameter susceptibility and the related function χ4jFk

ðtÞ, both
of which are defined in Sec. II.B. In Fig. 4(b), we show
χ4jFk

ðtÞ as a function of t for a wave number equal to that of
the first peak of the static structure factor kmax for a system
forming a Wigner glass. In general, one finds that there is a
peak that becomes larger and moves to longer times as the
glass transition is approached.
Ordinary scaling ideas can be used to partially explain and

interpret these results. The simulations show that the location
in the peak of χ4jFk

ðtÞ increases as a power law as ϕd is
approached from below according to (Kang, Kirkpatrick, and
Thirumalai, 2013)

t� ∼ ðϕ−1 − ϕ−1
d Þ−γχ ; ð3:1Þ

γχ ≃ 1.05. ð3:2Þ

General scaling ideas, on the other hand, give that t� ∼ ξz ∼
1=rνz with z the dynamical scaling exponent, r ¼ ϕ−1 − ϕ−1

d
is the distance from the dynamical transition, and ν is the
correlation length exponent for the dynamical transition.
According to the mean-field description in Sec. II.B,
ν ¼ 1=4. This along with Eqs. (3.1) and (3.2) gives

FIG. 5 (color online). Schematic illustration of dynamic hetero-
geneity in a three-dimensional binary mixture of charged colloi-
dal suspensions. The three figures on the left show a sample
prepared at a given time t for ϕ ¼ 0.10, which is close to ϕd. The
snapshots for two subsamples are shown above and below. The
three figures on the right are the same snapshots at a later time
t0 ≈ tþ τα. The subsamples on the top are essentially identical,
where the ones on the bottom are quite different. Even though
there are a large number of particles within each subsample their
time evolutions are very different indicating considerable sub-
sample-to-subsample variations. This observation leading to the
violation of law of large numbers and loss in ergodicity is
indicative of dynamical heterogeneity. These schematic illustra-
tions affirm the mosaic picture of glassy states and show that only
by following the subsamples as a function of time can the extent
of dynamic heterogeneity be assessed.
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z≃ 4.2. This result is consistent with the results of Kim and
Saito (2013).
In nonequilibrium aging simulations and experiments there

is a growing, time-dependent, correlation length that has been
measured. If we assume ordinary scaling (also see Sec. III.D)
to describe the r and t dependences of the correlation length
then the natural assumption is

ξðr; 1=tÞ ¼ bfξðb1=νr; bz=tÞ; ð3:3Þ

with b an arbitrary length rescaling factor and fξ a scaling
function. Choosing b ¼ t1=z gives

ξðr; 1=tÞ ¼ t1=zfξðrt1=νz; 1Þ. ð3:4Þ

This implies that for rt1=νz < 1 there is a correlation length
that grows in time as ∼t1=z ∼ t:24.

B. Dynamic heterogeneity and violation of law of large numbers

Ingenious four-dimensional nuclear magnetic resonance
experiments (Sillescu, 1999; Sillescu et al., 2002) and
dielectric relaxation measurements have provided the needed
evidence for heterogeneous dynamics in glass forming mate-
rials. However, much of our understanding of the notion of
DH comes from computer simulations, most of which have
been quantified using the four-point dynamic susceptibility
function. The lack of symmetry breaking as the SGT occurs
forces us to use higher order correlation functions to distin-
guish between the liquid and the glassy phase. Within the
RFOT (and MCT) formalism the natural dynamic order
parameter is the two-point intermediate scattering function
given by Eq. (2.11). It decays to zero in the liquid phase and
acquires a plateau whose duration grows as the extent of
supercooling increases [Fig. 4(a)]. Thus, it is necessary to use
the fluctuations in FkðtÞ, which plays the role of generalized
susceptibility χ4jFkðtÞ, Eq. (2.16), to distinguish between the
states accessed above and below Td (Kirkpatrick and
Thirumalai, 1988a). Although it is physically most mean-
ingful to use fluctuations in FkðtÞ, a number of studies have
used χ4jS (S is some observable) to infer the nature of
dynamical heterogeneity in several model systems
(Dasgupta et al., 1991; Donati et al., 2002; Bouchaud and
Biroli, 2005; Toninelli et al., 2005). The four-point correlation
function χ4jFkðtÞ (S ¼ Fk) is the variance in FkðtÞ. For a large
number of systems it is found that χ4jFk

ðtÞ, at a specified k, has
a peak in the time domain with the amplitude that grows with
increased supercooling. In Fig. 4(b), we show a typical
dependence of χ4jFk

ðtÞ at kmax for a Wigner glass for which
the increasing volume fraction of the colloidal particles is
roughly analogous to decrease in temperature. By computing
the k dependence of χ4jFk

ðtÞ an estimate for the length scale
ξDH, associated with dynamic heterogeneity (DH length) can
be made with the assumption that the maximum amplitude
χ4jFk

ðtÞ follows the Ornstein-Zernicke form,

χ4jkðtÞ ≈
ξ2DH

1þ ðξDHkÞ2
.

A physical consequence of the length scale associated with
dynamic heterogeneity is that the usual law of large numbers,

which is obeyed in liquids, is violated in the glassy phase
(Thirumalai, Mountain, and Kirkpatrick, 1989). The plausible
emergence of a natural length scale within which the particles
are highly correlated allows us to imagine that below T < Td
the entire sample can be partitioned into subsamples whose
size can be associated with the DH length. As the temperature
decreases we expect this length to be large enough that
meaningful averages over the number of particle within DH
length can be performed. In the liquid phase (T < Td) the
statistical properties of the liquid (for example, the average
energy of particles of a given type) would be independent of
the subsample size and should coincide with that of the entire
sample (within the usual fluctuation effects) provided the DH
length is large. This is the usual statement that the law of large
numbers is expected to hold in the ergodic liquid phase. On
the other hand, in the glassy phase each subsample is likely to
be distinct, and consequently there ought to be variations
between one subsample to another. Because the time for
rearrangement of one subsample to another gets slower and
slower as the degree of supercooling increases, the inequiva-
lence between particles of a given type between two samples
would persist even on the observation time τobs. Thus, no
single subsample can statistically characterize the equilibrium
properties of the entire sample, even after a suitable time
average. In other words, in the glassy phase the law of large
numbers is violated and there ought to be subsample-to-
subsample fluctuations. Only by examining the entire sample
on time scales that far exceed the observation times can these
intrinsic heterogeneities between subsamples become irrel-
evant. This physical picture suggests that DH dynamical
heterogeneity is a consequence of the emergence of glassy
clusters, which are essentially frozen with relaxation time that
far exceeds τobs. Because of the variations in both equilibrium
and relaxation properties from subsample to subsample a
glassy phase is inherently heterogeneous, as noted in several
studies.
These concepts were illustrated using computer simulations

of binary soft sphere mixtures (Thirumalai, Mountain, and
Kirkpatrick, 1989), and more recently mixtures of charge
colloidal particles, which form Wigner glasses at high
densities or volume fractions (Kang, Kirkpatrick, and
Thirumalai, 2013). This experimentally characterized system
is liquidlike at volume fractions ϕ below ϕ ≈ ϕd ≈ 0.1, and
turns into a Wigner glass above ϕ > 0.1. We divided the
simulation sample into subsamples with appropriate size
determined by an approximate measure of structural entropy.
In order to establish the violation of the law of large numbers
we showed in Fig. 7 of Kang, Kirkpatrick, and Thirumalai
(2013) the time evolutions of distribution of the structural
entropy s3 for a large subsample and the whole sample for
ϕ ¼ 0.02 and ϕ ¼ 0.2. As expected, based on the law of large
numbers, we found that in the liquid phase (ϕ ¼ 0.02) the
distributions Pðs̄3jtÞ are almost the same for all t values that
exceed the typical relaxation time. In contrast, at higher
volume fractions (> ϕd) where ergodicity is effectively
broken, the Pðs̄3jtÞ for the subsample are substantially differ-
ent from that of the entire sample, thus violating the law of
large numbers. Because different subsamples behave in a
distinct manner and do not become equivalent, we surmise
that dynamical heterogeneity is a consequence of the violation
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of the law of large numbers. It should be noted that only by
examining the time evolution of the subsamples in the liquid
and the glassy phase can this link be established. The intuitive
arguments given here are made more precise in the following
section.

C. Rare region dynamics near the glass transitions

The existence of DH suggests that in a very viscous liquid
the longest time decay of any time correlation function will be
determined by the large rare region or anomalous clusters of
particles of some linear dimension L (Berthier, 2011). These
large clusters are fluidized and can relax to a more typical
configuration of particles in some characteristic time τðLÞ. For
this argument to be sensible L must be larger than a molecular
scale. To estimate the effect of these large rare regions on a
typical time correlation function an average over L must be
performed.
Since the large clusters are rare, we assume that their

probability distribution is controlled by Poisson statistics so
that the tail probability of an unusual cluster of size L is6

PðLÞ ∼ expð−cLdÞ; ð3:5Þ

with c a positive constant. We also assume that a typical
correlation associated with the rare region decays exponen-
tially as

CðL; tÞ ∼ exp½−t=τðLÞ�: ð3:6Þ

It is also reasonable to assume that the long time dynamics
of these fluidized regions is diffusive so that 1=τðLÞ →
Dk2 → DðLÞ=L2. We consider two temperature regions.
The first is appropriate for temperatures near Td and the
second for temperatures close to TK or the laboratory glass
transition temperature Tg.
In the first region the scale dependence of D is ignored so

that the average correlation function decays as

Cðt → ∞Þ ∼
Z

dL exp½−cLd −Dt=L2�

∼ exp½−AðDtÞd=ðdþ2Þ�; ð3:7Þ

with A a positive constant. The characteristic length scale is
given by L�

1ðtÞ ∼ ½Dt�1=ðdþ2Þ. Equation (3.7) is the stretched
exponential behavior typically observed in correlation func-
tions in simulations near Td with a large time τ, scale given by
τ ∼ 1=D. For example, the solid lines in Fig. 4(a) are a fit to a
stretched exponential ∼ exp½−ðt=τÞβ� with β ¼ 0.45. In gen-
eral a distribution of relaxation times PðτÞ can be defined by
writing

CðtÞ ∼
Z

dτPðτÞ exp½−t=τ�: ð3:8Þ

By comparing Eqs. (3.7) and (3.8) it follows that

Pðτ → ∞Þ ∼ exp½−ðDτÞd=2�; ð3:9Þ

with a tail that decays faster than exponential.
In the second, lower temperature region, the scale depend-

ence of the diffusion constant becomes most important. If we
assume that DðLÞ is inversely proportional to the RFOT
relaxation time,

τðLÞ ¼ τm exp½aLd=2�; ð3:10Þ
with τm a microscopic time and a a positive constant. Using all
of this an average correlation function then decays for long
times as

CðtÞ ∼
Z

dL exp½−cLd − ðt=τmÞðe−aLd=2
=L2Þ�

∼ expf−A½lnðt=τmÞ�2g; ð3:11Þ
with A a positive constant [see also Biroli and Bouchaud
(2012)]. The conclusion is that for long times CðtÞ decays
faster than any power law, but slower than any stretched
exponential. The characteristic length scale for this case
is L�

2ðtÞ ∼ ðln tÞ2=d.
In this case, the distribution of relaxation times PðτÞ is

given by

Pðτ → ∞Þ ∼ expf−c½lnðτ=τmÞ�2g ð3:12Þ
with a characteristic tail that decays slower than any
exponential.
Finally we note that in a given system well below Td there

will be an intermediate time region where the scale depend-
ence of DðLÞ is not important and a stretched time behavior
will be observed, before crossing over to the exponential of
½ln t�2 at the longest times. The crossover time will be roughly
given by L�

1ðtÞ ∼ L�
2ðtÞ.

D. Activated scaling near the glass transition

Activated scaling was developed to understand finite
dimensional (three dimensions) spin glasses and random field
magnets where the dynamics is controlled by large, possibly
divergent, free energy barriers (Fisher and Huse, 1988).
Similar ideas can be applied to the structural glass problem,
also in three dimensions.
Here we examine the behavior of the glass transition

susceptibility, introduced in Sec. II.B using activated scaling
ideas (Fisher and Huse, 1988) as the ideal glass transition is
approached. We start with the observation that the first order
nature of the ideal glass transition implies that the scale
dimension of qðx; tÞ is zero. This and the activated scaling
ansatz gives that the wave number and time-dependent glass
transition susceptibility will satisfy the scaling law

χOPðϵ; k; tÞ ¼ bdFχ

�
ϵb1=ν; bk;

bd=2

lnðt=toÞ
�
; ð3:13Þ

where ϵ ¼ T=TK − 1 is the dimensionless distance from the
ideal glass transition, to is some microscopic time scale, and

6Although related, this assumption is physically distinct from what
is used in quenched disordered systems (Vojta, 2006). Here we
simply postulate that since the events are rare, they are controlled by a
Poisson distribution.
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Fχ is a scaling function. Note that the barrier height scales
as bd=2 ∼ ξd=2. This equation implies a number of nontrivial
results. For example, at zero wave number, and at the ideal
glass transition temperature we can choose b ¼ ½lnðt=toÞ�2=d
to obtain

χOPð0; 0; t → ∞Þ ∼ ½lnðt=toÞ�2: ð3:14Þ

This dynamic scaling result is valid as long as ϵ lnðt=toÞ < 1.
It also defines a dynamic crossover ϵ being given by

ϵx ∼ 1=½lnðt=toÞ�. ð3:15Þ

Physically this means that the large correlations that exist at
TK can be measured by examining the slow growth in time of
the glass transition susceptibility around k ¼ 0. This should be
experimentally relevant. If the exponent of 2 in Eq. (3.14) can
be experimentally demonstrated then it would be very strong
evidence for the validity of the RFOT theory of the SGT.
The frequency dependent glass transition susceptibility

defined by Eq. (3.14) can similarly be expressed as a scaling
function. In general the ϵx given by Eq. (3.15) will give the
scale distinguishing static critical behavior from dynamical
critical behavior for all quantities as T → TK .
Although not as rigorously founded as the scaling law for

χOP, we can also give a scaling law for the frequency
dependent shear viscosity ηðϵ;ωÞ. Because ηðϵ;ωÞ is related
to a time integral of a time correlation function its static value
is proportional to τ given by Eq. (2.30). We then obtain

ηðϵ;ωÞ ¼ expðbd=2ÞFη

�
ϵb1=ν;

bd=2

lnð1=toωÞ
�
; ð3:16Þ

with Fη a scaling function. The static or zero frequency shear
viscosity then behaves as τ, but for ϵ < 1= lnð1=toωÞ it
behaves as

η½ϵ lnð1=toωÞ < 1� ∼ 1

toω
: ð3:17Þ

Again, the important physical and experimental point is that
ϵx, given by Eq. (3.15), sets the crossover scale in either time
or frequency (t → 1=ω) space. Note that η being simply
proportional to τ in Eq. (3.16) is needed to obtain Eq. (3.17),
which in turn is required for the proper stress or strain relation
in the glassy phase.
Following Sec. III.A we next use activated scaling ideas to

describe the time-dependent aging correlation length. In this
case the natural assumption is

ξðϵ; 1=tÞ ¼ bFξðb1=νϵ; ebd=2=tÞ ð3:18Þ

with Fξ a scaling function. Choosing bd=2 ¼ ln t and using
ν ¼ 2=d gives

ξðϵ; 1=tÞ ¼ ðln tÞ2=dFξðϵ ln t; 1Þ. ð3:19Þ

Thus, we expect that close to the ideal glass transition and for
ϵ ln t < 1, there ought to be a correlation length in aging
experiments that grows as ∼ðln tÞ2=3 in (d ¼ 3).

IV. UNDERSTANDING BIOLOGICAL PROBLEMS FROM
THE PERSPECTIVE OF GLASS PHYSICS

There are several ways in which concepts in glass physics
can be used to understand many aspects of biological systems.
At the cellular level, on a length scale on the order of
microns, functions are carried out often by several interacting
biological molecules. Transport in eukaryotes, supporting
cytoskeletal structures, is powered by adenosine triphosphate
(ATP)-driven motors. However, in E. Coli all dynamical
processes occur by diffusion. Moreover, the dynamics has
to occur in a heterogeneous crowded environment within a
restricted time interval with the upper bound being the cell
doubling time. Therefore, it is likely that the biological
molecules sample only a restricted part of the access con-
formational space, which implies that ergodicity could well be
broken as in a liquid undergoing glass transition. On longer
length scales, involving communication between cells,
needed in diverse phenomena such as development and
wound healing, there is manifestation of glasslike behavior
or at least evidence of highly heterogeneous behavior
(Altschuler and Wu, 2010; Pelkmans, 2012; Herms et al.,
2013). This is not entirely surprising because these processes
involve collective movements, which can be sluggish. In
particular, in tissues without gaps between cells there is
evidence that the collective dynamics (Angelini et al.,
2011), much like correlated movements of particles in the
glassy state, have many of the hallmarks of the SGT
(Garrahan, 2011). Here we use a few examples to illustrate
the fact that concepts in glass physics, which at first glance
may seem unrelated to biology, are useful in providing
insights into dynamics in biological systems from nanometers
to microns, and beyond.

A. Countable number of structural states in the sequence space of
proteins

An astounding aspect of proteins and ribonucleic acid
(RNA) is that natural foldable sequences, whose number is
much smaller than all possible sequences, self-organize
themselves spontaneously often without the help of molecular
chaperones (Onuchic, Luthey-Schulten, and Wolynes, 1997;
Shakhnovich, 2006; Dill et al., 2008; Schuler and Eaton,
2008; Thirumalai et al., 2010). Why are the number of
structure forming sequences so small? Answering this ques-
tion quantitatively forces us to think in terms of partitioning of
the vast sequence space in terms of disjoint states (as described
in Sec. II.A). By envisioning the partitioning of both the
sequence and conformational space of proteins and RNA in
terms of the associated landscapes, we can begin to appreciate
the emergence of structures as well as the characteristics of
sequences that make them biologically viable, implying that
they fold relatively rapidly.
Here we consider only proteins. The primary building

blocks of proteins are α helices (one-dimensional ordered
structures), β sheets (contain two-dimensional order), and
loops of varying bending rigidity (Stryer, 1988). From these
seemingly simple building blocks (referred to as secondary
structural elements) a large number of three-dimensional
structures can be constructed. The number of distinct
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topological folds is suspected to be only on the order of a few (at
best) thousand—a relatively small number (Chothia, 1992).
How do these preferred folds, which should also be kinetically
accessible on biologically relevant time scale, emerge from the
dense sequence space? The number of sequences of a poly-
peptide chain with N amino acids is 20N , which is astronom-
ically large evenwhenN takes on amodest value. It is likely that
only an extremely small fraction of the sequences encodes for
the currently known protein structures. A quantitative mapping
between sequence space and structures, obtained using lattice
models (Li, Winfreen, and Tang, 1996), sheds light on the
structure of the sequence space landscape. In order to appreciate
the partitioning of the sequence space it is worth recalling that
natural proteins in their native states are (i) compact, and (ii) the
dense interior is made up of predominantly hydrophobic
residues. With these two restrictions on the native structures,
it has been shown that even though the number of sequences is
astronomically large, the number of compact low energy
structures (proteinlike) is considerably smaller in both two
and three dimensions (Camacho and Thirumalai, 1993b;
Thirumalai and Klimov, 1999; Lin and Zewail, 2012). This
would imply that for many sequences the low energy compact
structures could be nearly the same, as was illustrated by
exploring sequences in a three-dimensional lattice model
(Li, Winfreen, and Tang, 1996). In other words, the basins of
attraction in the structure space are rare enough so that a large
number of sequences map on to precisely one basin, thus
explaining the emergence of a greatly limited number of
structures from the sea of sequence space (Chothia, 1992).
Similar considerations hold for RNA with the crucial

difference that RNA structures are a lot more degenerate
compared to proteins (Thirumalai et al., 2001). An identical
RNA sequence can fold into two distinct structures perform-
ing entirely different functions (Schultes and Bartel, 2000).
This implies that the sequence space landscape could be
multiply connected with a larger number of structurally
degenerate states compared to proteins. From the perspective
of navigating the sequence space landscape, which presum-
ably occurs on the evolutionary time scale, the dynamics is
predicted to be slower than evolvability of protein sequences.

B. Kinetic accessibility and folding rate dependence of proteins
and RNA on N

A corollary of the finding that natural sequences fold into
minimum energy compact strctures quickly is that random
sequences cannot exhibit proteinlike behavior on account of
both stability and perhaps more importantly kinetic acces-
sibility of the folded states (Bryngelson and Wolynes, 1989).
Even if random heteropolymers formed by covalently linking
various amino acids have unique ground states the folding
dynamics would be highly sluggish (Thirumalai, Ashwin, and
Bhattacharjee, 1996; Takada, Portman, and Wolynes, 1997)
such that deleterious aggregation could intervene before
folding. A solution to this conundrum is that the folding
transition temperature TF of sequences that lead to functional
proteins should exceed the equilibrium glass transition temper-
ature, a suggestion that was based on the extension of the
random energy model (REM) to protein folding with the native
state playing a special role (Bryngelson and Wolynes, 1989).

In the REM, equivalent to the p-spin model with p → ∞, there
is an entropy crisis at a finite temperature. Because of the finite
size of proteins there is no strict entropy crisis, and hence it was
realized that TF has to exceed a dynamic glass transition
temperature Tg for folding to the native state to occur in
biologically meaningful time (Socci and Onuchic, 1995). Ideas
based in polymer physics further showed that the interplay of
TF and the equilibrium collapse temperature (Tθ) (Camacho
and Thirumalai, 1993a) could be used to not only fully
characterize the phase diagram of generic protein sequences
but also determine their foldability, a prediction that has been
experimentally validated only very recently (Hofmann et al.,
2012). Based on the study of dynamics of random copolymer
models it was proposed that the upper bound on TF=Tgd is
TF=Tθ (Thirumalai, Ashwin, and Bhattacharjee, 1996). Thus,
by studying disordered systems exhibiting glassy behavior
insights into foldable sequences were obtained.
The description of activated dynamics using RFOTwas also

adopted to obtain an estimate of the dependence of the folding
rates of globular proteins on N. The folding reaction typically
involves crossing a free energy barrier, and hence the folding
time is given by τF ¼ τ0eΔF

‡=kBT, where ΔF‡ is the average
free energy separating the native state from an ensemble of
partially structured and compact states. The scaling of ΔF‡

with N parallels the arguments developed in the context of
activated dynamics using RFOT concepts (Thirumalai, 1995).
We assume that the free energy distribution of the low energy
structures is given by a Gaussian distribution, which is also
consistent with computations on model glass forming systems.
Since there is an ensemble of independent transition states
connecting the conformations of compact but non-native states
and the native state it is natural to assume that the barrier height
distribution is also roughly Gaussian with a dispersion hΔF2i
that scales as N. Since the barrier height distribution is
essentially a Gaussian it follows that ΔF‡ ≈ hΔF2i1=2≈ffiffiffiffi
N

p
. This physically motivated argument is also consistent

with the tenets of RFOT. For proteins the appropriate length
scale is essentially the whole protein molecule, and hence

ΔF‡ ≈ N1=νd; ð4:1Þ

and with ν ¼ 2=dwe obtain the result that the barrier to folding
scales sublinearly with N. This scaling-type relation has been
successfully applied to rationalize the folding rates of a large
number of proteins whose folding rates cover 7 orders of
magnitude [Fig. 6(a)].
Although Eq. (4.1) explains the data for proteins, we expect

that the theory should account for the folding rate changes
with the number of nucleotides (N) even better because RNA
has multiple folded metastable states (Thirumalai and Hyeon,
2005), which could be thought of as free energy excitations
around the native state. It is also likely that even the functional
state for RNA may not be unique (Solomatin et al., 2010),
thus7 making the energy landscape very much glasslike.

7There is evidence that in some cases it is likely that even in
proteins the folded state may be metastable, especially in the case of
mammalian prions (Baskakov et al., 2001; Thirumalai, Klimov, and
Dima, 2003).

196 T. R. Kirkpatrick and D. Thirumalai: Colloquium: Random first order transition theory …

Rev. Mod. Phys., Vol. 87, No. 1, January–March 2015



In accord with this expectation, it has been found that the
folding dynamics is sluggish with trapping in metastable states
occurring with high probability (Pan, Thirumalai, and
Woodson, 1997). As a consequence of the highly rough free
energy surface the folding rates can be predicted using
Eq. (4.1). Remarkably, the folding rates of RNA also obey
τF ¼ τ0e

ffiffiffi
N

p
with high accuracy with τ0 ≈ 1 μs [Fig. 6(b)].

C. Persistent heterogeneity

The underlying energy landscapes of biological molecules,
especially large RNA, are rugged consisting of multiple states
that are separated by large barriers. As a consequence, it is
most likely the case that they should exhibit glasslike
behavior, which has only been recently revealed most clearly
using single molecule experiments although pioneering
experiments by Frauenfelder, Parak, and Young (1988) had
already anticipated these possibilities. An important conse-
quence of several studies is that the functionally competent
states of RNA and possibly proteins may not be unique, as is
generally assumed. In terms of the RFOT description of
glasses it implies that there are many components or states in
the folding landscape and just as in glasses the canonical free
energy is not relevant as would be the case if the folded state
always corresponded to the global free energy minimum
(Anfinsen and Scheraga, 1975). The widely accepted notion
that the native state of proteins and RNA are unique was
inferred using bulk ensemble experiments tacitly assuming
that ergodicity is established on τobs. In a rugged landscape, a
specific molecule with an initial conformation distinct from
others samples only limited conformational space correspond-
ing to a single state. Ergodically sampling all states would be
possible only on time scales longer than biologically relevant
times. This scenario results in heterogeneous dynamics as in
glasses, and ensemble average would obscure the complexity
of the structural features of the underlying landscape. Indeed,
recent findings from single molecule experiments on several
biomolecular systems explicitly showed persistent hetero-
geneities in time traces (or molecule-to-molecule variations)

generated under identical folding conditions (Zhuang et al.,
2002; Okumus et al., 2004; Ditzler et al., 2008; Borman, 2010;
Solomatin et al., 2010). Unlike phenotypic cell-to-cell vari-
ability among genetically identical cells, which can be visu-
alized using amicroscope (Pelkmans, 2012), the observation of
heterogeneity among individual biomolecules onmuch smaller
length scales is tantalizing because it would make it difficult to
reconcile this concept with the conventional notion that func-
tional states of proteins and RNAs are unique or that various
native basins of attraction easily interconvert on the time scale
of observation. For example, in docking–undocking transitions
of surface immobilized hairpin ribozyme (Zhuang et al., 2002)
and Tetrahymena group I intron ribozyme (Solomatin et al.,
2010), time traces for individual molecules display a very
different dynamic pattern with long memory without apparent
compromise in catalytic efficiency. Based on these observa-
tions it was suggested that these ribozymes havemultiple native
states (Solomatin et al., 2010). If this were the case then it
follows from the analogies to glasses that (1) the underlying
folding landscape must contain multiple discernible states with
little possibility of interconversion among them on τobs imply-
ing that ergodicity is effectively broken, and (2) the dynamics
within each state or basin of attraction ought to be different,
which would be a manifestation of dynamic heterogeneity.
Demonstrating these important aspects of molecule-to-mol-
ecule variations resulting in persistent DH using ensemble
experiments is difficult. However, singlemolecule experiments
analyzed using glass physics concepts have recently shown that
these conclusions are indeed valid. We use two completely
unrelated examples to illustrate the concept persistent hetero-
geneity in biological systems at a molecular scale.

1. Holliday junctions

Holliday junctions (HJs) are essential intermediates for
strand exchange [Fig. 7(a)] (Lushnikov, Bogdanov, and
Lyubchenko, 2003) in DNA recombination. HJs exist in
two distinct isoforms (isoI and isoII) both of which have
the characteristic X-shaped architectures at high Mg2þ

FIG. 6 (color online). Dependence of the folding rates of proteins (left) and RNA (right) as a function of length. The fits are based on
predictions using kF ≈ e

ffiffiffi
N

p
, which follows from activated scaling ideas described in Sec. II.D.
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concentrations (∼50 μM). Using single molecule fluorescent
energy transfer (smFRET) experiments (Schuler and Eaton,
2008), concepts from glass physics (Kirkpatrick and
Thirumalai, 1989a; Thirumalai, Mountain, and Kirkpatrick,
1989), and complementary clustering algorithms (Tamayo et
al., 1999; Sturn, Quackenbush, and Trajanoski, 2002), the
state space structure and associated dynamics were quantita-
tively analyzed (Hyeon et al., 2012). Although the HJ
dynamics at the ensemble level shows fluctuations between
only two states, trajectories from smFRET reveal a much
richer structure with the associated dynamics exhibiting
some of the hallmarks associated with glasses. In smFRET
experiments efficiency of energy transfer as a function of
t is calculated from the measured donor (D) [ID;iðtÞ] and
acceptor [IA;iðtÞ] emission intensities as EiðtÞ ¼ IA;iðtÞ=
½IA;iðtÞ þ ID;iðtÞ�. Thus, smFRET experiments provided
time-dependent “trajectories” in terms of the collective var-
iable EiðtÞ for the ith molecule [Fig. 7(b)]. When an ensemble
average over a sufficiently large number of molecules and
time τobs ≈ 40 s is performed one observes a simple two-state
behavior [right side of Fig. 7(b)].

However, detailed analysis of the FRET trajectories
revealed surprising evidence of DH. For a given time trace
corresponding to a specific molecule α, T obs ≈ 40 s is long
enough to observe multiple isomerization events between isoI
and isoII conformations (Hyeon et al., 2012). The time scale
for single isomerization between isoI and isoII (ταI↔II) is much
smaller than T obs (ταI↔II ≪ T obs) [Figs. 7(a) and 8(a)]. Thus, a
HJ explores the conformations in only the α state exhaustively
as shown by the ergodic measure in the upper part of Fig. 8(b);
however, it is not long enough for interconversion to take
place between molecules α and β, i.e., T obs ≪ τα↔β

conv , where
τα↔β
conv is the interconversion time between α and β states,
implying that a substantially high kinetic barrier separates the
states α and β. In this sense, the kinetics is glassy. Therefore,
dynamics of HJs are effectively ergodic within each state on
T obs, but T obs is not long enough to ensure ergodic sampling
of the entire conformational space—a situation that is rem-
iniscent of ergodicity breaking in supercooled liquids
(Thirumalai, Mountain, and Kirkpatrick, 1989).
How many ergodic components states, which do not

interconvert among themselves on T obs, are needed to fully

(a)

(b)

FIG. 7 (color online). HJ dynamics probed using smFRET experiments. (a) Strand exchange in DNA recombination (top) and the two
isoforms of the Holliday junction connected by the open square structure (bottom). The Cy5 and Cy3 dyes, attached to the B and H
branches in smFRET experiments, are represented as spheres. (b) FRET time traces [fEiðtÞg with i ¼ 1; 2;…; N with N ¼ 315]
obtained for individual HJ molecules at ½Mg2þ� ¼ 50 mM. The ensemble averaged histogram of the FRETefficiency E, i.e., PensðEÞ, fits
to a double-Gaussian curve, and the dwell time distribution (bottom panel) for low and high FRET states are approximately fit to single
exponential functions.
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account for the experimental data? In order to determine the
number of states a K-means clustering algorithm was used
to partition the conformational space of HJ into multiple
“ergodic subspaces.” This was achieved by partitioning the
stationary distribution of FRET efficiencies psðE; iÞ ¼
limt→T obs

pðE; t; iÞ into distinct states with the requirement that
the HJ should ergodically explore the conformational space
within each state. At high Mg2þ (50 mM) there are five disjoint
states [Fig. 8(b)]. The effective ergodic diffusion constantDE in
E space associated with each state varies greatly from one
ergodic subspace to another [Fig. 8(b)].
The HJ gets trapped in one metastable state, which is solely

determined by the initial Mg2þ binding (Hyeon et al., 2012).
In this sense, Mg2þ plays the role of a random field, which
quenches the conformation of the HJ into one ergodic

component. Transition to another ergodic component can be
triggered by using an annealing protocol in which the Mg2þ

concentration is first decreased for a period of time enabling
the HJ to explore an entirely different region of the energy
landscape. Subsequent increase of Mg2þ concentration results
in HJ exploring other ergodic components. The redistribution
of population is clearly shown in Fig. 8(c) along with the
network of connected states. It is indeed surprising that such a
small system exhibits all the key hallmarks of slow dynamics
involving multiple ergodic components.

2. RecBCD helicase

Another example (Liu, Baskin, and Kowalczykowski,
2013) that vividly illustrates significant molecule-to-molecule

(a)

(c)

(b)

FIG. 8 (color online). (a) Model for the dynamics of HJ constructed based on experiments and simulations reported by Hyeon et al.
(2012). The free energy contours for various states are on the left. The isoforms [Fig. 7(a)] in each state are connected open square forms.
Ensemble averaged distribution of the FRET efficiencies PensðEÞ is shown on the bottom. On the right schematic of the free energy
profiles are shown with the cartoons of HJ structures. The symbols (star, pentagon, etc.) at the junction emphasize that the junction
structure is intact during the isomerization process. Consequently, τξI↔II (ξ ¼ α; β;…) ≪ T obs ≪ τξ↔η

conv (ξ; η ¼ α; β; γ;… with ξ ≠ η) is
established. (b) Five ergodic components are needed to partition the set of stationary distributions of FRETefficiencies. The ratesDEs of
exploration of the conformational space obtained from the ergodic measure, ΩEðtÞ ¼ ð1=NÞPN

i¼1 ½εiðtÞ − ¯εðtÞ�2 with ¯εðtÞ≡
ð1=NÞPN

i¼1 εiðtÞ (shown on top), are different in the distinct ergodic components. Here εiðtÞ is the running time average of the
FRETefficiency for molecule i, which can be calculated using trajectories in Fig. 7(b). (c) Evidence for interconversion between ergodic
components by Mg2þ reset experiments in 148 molecules. The indices at the sides of the matrix and in the nodes denote the cluster
number k ¼ 1; 2;…; 5. The numbers in the parentheses are the occupation number in each cluster, which can be obtained by summing
up the transition frequency from one cluster to the other. The diagram on the right is the kinetic network describing the HJ transition
under Mg2þ pulse. The widths of the arrows are proportional to the number of transitions.
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variations is in the function of the RecBCD helicase in E. Coli,
which is involved in the repair of breaks in the double stranded
DNA (dsDNA) in an ATP-dependent manner. Here again
single molecule experiments showed that there are dramatic
variations in the unwinding speed of dsDNA depending on the
molecule even though all the enzymes were prepared with no
heterogeneity in protein composition. The unwinding veloc-
ity, for specified concentration of ATP, can vary greatly as
shown in the top panel of Fig. 9. The most likely explanation
is that the functional landscape is highly heterogeneous with
multiple states each with its own unwinding velocity. This
possibility, reminiscent of the phase space partitioning into
ergodic subspaces in Holliday junction, was demonstrated
using an ingenious set of experiments. Liu, Baskin, and
Kowalczykowski (2013) examined the possibility that upon
initially binding Mg2þ ATP the enzyme is pinned to one of the
accessible states in the functional landscape. In an initial
experiment, they measured the unwinding velocity by incu-
bating the enzyme in the presence of the ligand and discovered
that RecBCD processively unwinds a large portion of DNA at
a speed that is “set” by the initial state. Subsequently, they
moved the enzyme to a chamber without the ligand to stop
unwinding for a period of time of about 20 s. After the period
of inactivity, the complex was supplied with ATP to resume

function. Remarkably, the unwinding velocity of the same
molecule changed drastically before and after being depleted of
Mg2þ ATP, as shown in the bottom panel of Fig. 9. From the
perspective of multiple functional states used to understand the
dynamics of a Holliday junction, we can draw three generic
lessons for heterogeneity of the RecBCD helicase: (1) The
whole space of conformation partitions into distinct subspaces.
The observation that the unwinding velocity is determined by
the dynamics within a single space implies without changing
even after tens of hundreds of base pairs are ruptured,
suggesting that the enzyme likely ergodically explores con-
formations within a single state. (2) Transitions between
distinct states, with variations in unwinding velocity, can be
achieved only by resetting the ATP concentration, which is
reminiscent of Mg2þ pulse experiments used to establish
interconversion between distinct states in HJ (Hyeon et al.,
2012). In both cases, ligands act to quench the conformation to
a single substate. Thus, in these systems biological systems
heterogeneity is realized by binding of ligands to the biological
molecule. As a result of pinning the HJ or RecBCD to a single
state ergodicity is effectively broken.

D. Cellular dynamics

Just as is the case in the dynamics of enzymes and
ribozymes discussed above, ensemble averages hide the rich
dynamics associated with cell-to-cell variations. Although the
sources of such variations are hard to pin point except
generically as arising from biochemical noise, as is the case
in signaling networks, there is virtually no question that such
variations are manifested in phenotypes (Altschuler and Wu,
2010; Almendro, Marusyk, and Polyak, 2013). Hence, such
stochastic variations are of fundamental importance from both
the perspective of physics as well as biology. In many studies
the behavior of subpopulation of cells is found to be
drastically different from the mean characteristics of the
ensemble (Altschuler and Wu, 2010), a situation that is similar
to DH in glasses. There are now countless examples of cellular
heterogeneity, but here we focus on one example set in the
context of cancer (Almendro, Marusyk, and Polyak, 2013).
There are apparently profound implications of the observed
heterogeneity including possible variations in the treatment of
specific cancers as it evolves toward metastatic disease—a
topic that is far beyond the scope of the present discussion. We
focus on the similarities between the evolution of cells within
a single tumor and particulate glasses.
The variability in cells within tumors differing in the ability

to metastasize and response to drugs were reported long ago
(Heppner and Miller, 1983). Such variations could arise due to
genetic heterogeneity but more recently it has been appre-
ciated that nongenetic factors including stochastic variations
due to differences in the biochemical reactions, controlling
signaling networks, between cells could also contribute to
cellular heterogeneity (Fig. 10). This has also been demon-
strated most vividly in the differential response of identical
cancer cells to drugs (Cohen et al., 2008; Spencer et al., 2009)
or other therapies. By carefully measuring the expression
levels and locations of a large number of proteins upon
treatment of cancer cells with a drug it was shown that there
are dramatic variations in the dynamics of a certain subset of

FIG. 9 (color online). The top panel gives the length of DNA
unwound of various RecBCD motors for various molecules. The
black line is for a system without RecBCD. The unwinding
velocities, listed on the right, vary greatly depending on the
molecule. The bottom panel gives the result of a reset experiment
in which the motor is depleted of the ligand for a period of time
and reintroduced to resume unwinding. The velocities of the three
motors vary greatly after reset and suggest that the function
before and after reset probes distinct ergodic components.
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proteins between cells, resulting in the heterogeneous
response. There are substantial variations in the internal
stochastic fluctuations within cells, which manifest them-
selves as differences between cells in their response to a
cancer drug. In terms of glass concepts this implies that the
various cells can be partitioned [depending on the dynamics of
individual cells as depicted in Fig. 2A in Cohen et al. (2008))]
into distinct states with distinct dynamics as shown by large
variations in yellow fluorescent protein (YFP) intensities
among different cells. The similarities to time averaged
variations in FRET efficiency between molecule-to-molecule
in a Holliday junction are astounding.

V. GLASS TRANSITION CONCEPTS AND THE RFOT IN
CONDENSED MATTER PHYSICS

Typical glassy behavior such as long relaxation times,
memory of history, and physical aging are often observed in
the electronic and conductance properties of low temperature
condensed matter systems (Pollack and Ortuno, 1985;
Ovadyaha, 2006). There is an enormous amount of exper-
imental and theoretical work on the glassy behavior in
disordered insulators and Coulomb glasses (Amir, Oreg,
and Imry, 2011; Pollack, Ortuno, and Frydman, 2013).
More recently it has been appreciated that glassy behavior
also occurs in disordered metallic systems, or electron liquids.
For example, next we discuss some aging experiments in a
metallic 2D MOSFET (metal-oxide-semiconductor field-
effect transistor) system. In this system as well as others
(see, for example, the transport properties in the metallic
ferromagnet Sr1−xLaxRuO3) (Kawasaki et al., 2014), typical
liquidlike glassy behavior is observed.
It is physically very plausible that a strongly correlated

disordered electron liquid should have many things in

common with classical liquids exhibiting a SGT. First, at
least within the RFOT theory of the SGT, the absence or
presence of quenched disorder is not important. Second, they
are both strongly correlated, frustrated fluids, with identical
spatial symmetries. The frustration in general leads to a
rugged energy landscape where concepts such as the
Kauzmann transition can play a role. In this section we
discuss some connections between the disordered and inter-
acting electron problems and the SGT problem.
We then discuss some theoretical and experimental aspects

of supersolids and their connection to what has been referred
to as a superglass (Kim and Chan, 2004; Ray and Hallock,
2009; Reppy, 2010). Interestingly, the ground state of an
interacting Bose system is related to the Boltzmann measure
of a classical hard sphere fluid where RFOT is directly
applicable.
Although we focus here on low temperature or quantum

condensed matter systems, there are also interesting classical
or higher temperature glassy condensed matter systems. For
example, recent experiments (Sato et al., 2014) in charged
cluster glasses have shown a remarkable similarity between
these systems and viscous liquids. Interestingly, as in RFOT,
there seems to be an intrinsic relation between dynamics and
structure. Related theoretical work based on RFOT ideas is
given in Schmalian and Wolynes (2000).

A. Aging in quantum glassy systems

In general, if SðtÞ is an observable, or an operator whose
quantum average is an observable, at time t and hðtÞ is a field
conjugate to SðtÞ then the correlation function C and the
response function R,

Cðt; t0Þ ¼ hSðtÞSðt0Þi; ð5:1Þ

FIG. 10 (color online). Illustrating intratumor heterogeneity. Typically, a cancer diagnosis is based on sampling a subsample of tumor
cells (left-hand side) based on a biopsy. Because of inherent heterogeneity there are subsample-to-subsample variations, shown by
different colors on the top left. Treatments based on such biopsies are successful only in combating the cells in the subsample. Because
of stochastic heterogeneity, other clones resist the therapy, leading to progression of the disease. Metastases could develop from clones
that survived the initial therapy. Consequently, treatments based on initial diagnosis are not efficacious in fighting proliferation at
subsequent times, which is an inherent feature of heterogeneity much like in glasses.
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Rðt; t0Þ ¼ ∂hSðtÞi
∂hðt0Þ ; ð5:2Þ

are related by a fluctuation-dissipation theorem. In addition, in
equilibrium they are functions only of the time difference
τ ¼ t − t0. In a glassy system, the relaxation is often so slow
that on an experimental time scale neither of these features
hold. We define t ¼ τ þ tw and t0 ¼ tw. The time tw is called
the aging time, and it physically represents the duration for
which the system was perturbed before allowing it to relax
back to an original equilibrium state. In nonglassy systems
time correlation and response functions do not depend on
tw. In all glassy systems, on the other hand, this history or
aging dependence is ubiquitous (Struik, 1977; Bouchaud
et al., 1997).
Next one imagines that Cðτ þ tw; twÞ and Rðτ þ tw; twÞ

consist of two parts: A stationary (st) part that depends only on
τ as in nonglassy systems, and an aging (ag) part that depends
on the aging time. For example, we write

Rðτ þ tw; twÞ ¼ RstðτÞ þ Ragðτ þ tw; twÞ. ð5:3Þ

In general, the precise dependence on the aging time is
complicated. However, deep in the glassy phase there does
appear to be a simple τ=tw scaling. That is,

Ragðτ þ tw; twÞ ≈ Fðτ=twÞ: ð5:4Þ

In Fig. 11 (Grenet and Delahaye, 2010) we show the low
temperature (T ¼ 4 K) conductance GðVÞ of insulating
granular aluminum thin films. A “three-step protocol” has
been used in these experiments. After the sample is cooled
with a gate voltage Vg ¼ Vg1, a dip forms in GðVÞ during a
time tw1, centered on the voltage Vg1. The gate voltage is
then increased to Vg2 for a time tw2, and a new dip forms
while the first one vanishes. The gate voltage is then
changed to Vg3. The changing of the dip ΔG2 at Vg2 is
the measured quantity. ΔG2 can be interpreted as the aging
part of the conductance. The important thing to note is that
ΔG2 depends on the aging times tw1

and tw2
and that there

is t=tw2
scaling. Again we emphasize that this simple aging

phenomenon is observed in numerous classical and quantum
systems.
More complicated, or different, aging behavior is

observed in disordered and strongly correlated metallic
states. In fact, the change in the aging behavior from exotic
to simple has been related to the so-called metal-insulator
transition (MIT) in a two-dimensional electron system in
MOSFETS that were fabricated on the (100) surface of Si.
In this system the crucial quantity is the surface electron
density ns. As ns increases screening improves so that
correlation effects become weaker, and at the same time the
disorder is at least partly weakened since it is in part due to
oxide charge scattering which is also better screened. The
first crucial observation was that with decreasing density
there is an apparent metal-insulator transition at ns ¼ nc.
Subsequent experiments (Bogdanovich and Popovic, 2002)
on the metallic side showed an onset of glassy behavior at
ns ¼ ng with ng > nc. This second observation showed

there was an enormous increase in the low frequency noise
for ns < ng, suggesting a sudden and dramatic slowing
down of the electron dynamics. Later aging experiments
were performed on the same system (Jarosznki and
Popovic, 2007).
The system was cooled to either T ¼ 0.5 or 1.0 K and an

equilibrium conductivity σoðns; TÞ was obtained with a gate
voltage Vo. The gate voltage was then rapidly changed to a
different value V1, where it is kept for a time tw. The voltage is
then changed back to Vo, and the slowly evolving σðt; ns; TÞ
was measured. The results for T ¼ 1 K are shown in Fig. 12.
In the insulating phase, ns < nc ≃ ð4.5� 0.4Þ × 1011 cm−2,
the system exhibits simple aging with t=tw scaling. In the
metallic glassy region, nc <ns <ng≃ð7.5�0.3Þ×1011 cm−2,
there is aging with exotic scaling (Kurchan, 2002). That is,
there is apparent t=tμw scaling with μ an increasing function of
ns varying from μ ¼ 1, simple aging, at ns ¼ nc to μ ≈ 3.5 at
ns ¼ ng. This scaling with μ > 1 is called superaging.
Additional experiments probing DH in these systems would
be most interesting.
Superaging or hyperaging behavior has also been observed

in glassy liquids (Leheny and Nagel, 1998) and colloidal
systems (nanoclay suspensions) (Shanin and Joshi, 2012). It
also occurs in various random magnets and random fieldlike
systems (Bouchaud et al., 1997; Alberici-Kious et al., 1998;
Paul, Schehr, and Rieger, 2007). The connection between
random field problems and RFOT is discussed in Sec. II.C.

FIG. 11 (color online). (a) Experimental protocol as described in
the text. (b) Gate voltage dip as a function of time t > 0 for
tw1

≪ tw2
and tw1

≫ tw2
.
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B. Disordered and interacting electrons: Connections with
random field problems and the glass transition problem

In Sec. II.C we considered the connection between random
field magnetic problems and the SGT (Franz et al., 2012,
2013; Biroli, Karmakar, and Procaccia, 2013). Here we
discuss a connection between random field problems and
the disordered and interacting electron problem (Belitz and
Kirkpatrick, 1995a, 1995b; Kirkpatrick and Belitz, 1995).
Physically, since quenched disorder and electron-electron
interactions in general frustrate one another, glassy behavior
is anticipated.
Technically, the glassy nature of the interacting and dis-

ordered electron problem is also expected on general grounds.
To see this we start with a schematic action for the problem

S½ψ̄ ;ψ � ¼ So þ Se−e; ð5:5Þ

where So is the noninteracting, disordered action,

So ¼ −
X
σ

Z
dxψ̄σðxÞ

� ∂
∂τ −

1

2m
∇2 − μþ uðxÞ

�
ψσðxÞ

ð5:6Þ

and Se−e is the electron-electron interaction term:

Se−e ¼
Γ
2

Z
dxψ̄σ1ðxÞψ̄σ2ðxÞψσ2ðxÞψσ1ðxÞ. ð5:7Þ

Here ½ψ̄ ;ψ � are fermion Grassmann fields, x ¼ ðx; τÞ with τ
denoting imaginary time,

R
dx≡ R

dx
R 1=T
0 dτ, m is the

electron mass, μ is the chemical potential, σ is a spin label,
and for simplicity we assumed an instantaneous pointlike
electron-electron interaction with strength Γ. uðxÞ is a random
potential which represents the effects of disorder. We assume
u to be δ correlated and obeys a Gaussian distribution with
second moment

fuðxÞuðyÞg ¼ 1

2πNFτel
δðx − yÞ; ð5:8Þ

where the braces denote the disorder average. Here NF is the
(bare) density of states (DOS) per spin at the Fermi surface
and τel is the elastic mean free time.
Theories (Belitz and Kirkpatrick, 1994, 1997) for the MIT

around its lower critical dimension indicate that the natural OP
for the MIT is the single-particle DOS at the Fermi surface N.
In terms of the Grassmann variables this quantity is
N ¼ ImNðiωn → 0þ i0Þ, with

NðiωnÞ ¼ Nn ¼ −
1

2πNF

X
σ

hψ̄σ;nðxÞψσ;nðxÞi; ð5:9Þ

where we normalized the DOS by 2NF. Equations (5.6) and
(5.9) suggest that the OP for the MIT couples directly to the
random potential u, and that this RF term is structurally
identical to the one that appears in magnetic RF terms. Notice

FIG. 12 (color online). A 2D MOSFETwith initial gate voltage V0ðdensity n0Þ that is changed to a voltage V1ðdensity n1Þ for a time tw
and then changed back to voltage V0 at a time t ¼ 0. σðt > 0; twÞ is measured. (a), (c), (e) Relaxations for different n0 at fixed n1, scaled
with time tw. (b), (d) Scaling with tμw improves the collaspe of the data. (f) μ vs n0 does not depend on n1.
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that this term is present in both interacting and noninteracting
disordered electron problems, but in the interacting case
there is an additional physical feature: The interaction term
will in general favor a local electron arrangement that is
different from the one favored by the random potential. This
type of frustration is generally sufficient to lead to glassy
behavior.
More formally, the theory using the replica trick to handle

the disorder dependence and the replicated order parameter is
(the spin dependence is suppressed for convenience)

Qαβ
nmðxÞ ¼ 1

2
¯½ψα
nðxÞψβ

mðxÞ þ ψ̄β
mðxÞψα

nðxÞ�; ð5:10Þ

with

hQαβ
nmðxÞi ¼ δαβδnmNn; ð5:11Þ

where now the angular brackets denote both a statistical
mechanics average and a disorder average. The random field
structure becomes apparent by transforming the field theory
that is originally in terms of electron operators to one in terms
of the order parameterQαβ. Expanding that theory in deviation
of Q from its average value yields

Qαβ
nmðxÞ ¼ hQαβ

nmðxÞi þ ϕαβ
nmðxÞ. ð5:12Þ

The resulting theory has an expansion in powers of ϕ of the
form

S ¼ S2 þ S3 þ S4 þ � � � ; ð5:13Þ

with Sj ∼ ϕj. Explicitly,

S2 ¼
Z

dxtr½ϕðxÞð−∇2 þmÞϕðxÞ�

þ Δ
2

Z
dx

X
i¼þ;−

½triϕðxÞ�2; ð5:14Þ

withm a masslike term that is zero at zero frequency and at the
MIT point where Nð0Þ vanishes.
At Gaussian order the two-point propagator for this theory

in the replica limit is (Belitz and Kirkpatrick, 1995b;
Kirkpatrick and Belitz, 1995)

hϕ12ðkÞϕ34ð−kÞi ¼
−4Δδ12δ34θðn1n3Þ

ðk2 þmn1n2Þ2
þ � � � ; ð5:15Þ

where other terms in this correlation function involve only
a single propagator and are therefore less singular. Here
1 ¼ α1; n1, etc. denotes replica and frequency. This correla-
tion function is characteristic of a random field problem. Note
that there are cubic terms in this theory, just as there are in the
structural glass random field discussion of Sec. II.C.
So far an epsilon expansion and ordinary and activated

scaling theories of this approach to the MIT have been
discussed. It is clear that many aspects of the RF strucure
of the MIT need to be investigated. For example, is there a
smeared dynamical glass transition quite apart from the MIT
just as in the RFOT of the SGT transition? Is it related to the

glassy behavior observed in the 2D MOSFETS that was
discussed in Sec. V.A [see also Muller, Strack, and
Sachdev (2012)]?

C. The metal-insulator transition and many-body localization

Apart from the 2D MOSFETS discussed in Sec. V.A, there
has been an enormous amount of experimental work done on
metal-insulator transitions in three-dimensional interacting
and disordered electronic systems. The subject, however,
remains controversial. Significant hysteresis effects are
observed in NiðS; SeÞ2 and if conventional (as opposed to
activated) scaling is assumed, then the dynamical scaling
exponent is surprisingly large (Husmann et al., 1996). In the
well-studied (Rosenbaum, Thomas, and Paalanen, 1994;
Stupp et al., 1994) doped semiconductor SiP there are large
sample-to-sample variations that are apparent only at very low
temperatures T < 60 mK, suggesting equilibration problems
due to very long relaxation times, and, possibly, dynamical
heterogeneity effects. The glassy aspects of this have been
discussed in detail elsewhere (Belitz and Kirkpatrick, 1995a).
Related work on glassy features of MITs is considered in
Dobrosavljević, Trivedi, and Valles (2012).
More recently, other glassy aspects of the MIT and

interacting and disordered electrons in general have become
apparent. Following the ideas of Anderson (1958), Basko,
Aleiner, and Altshuler (2006) suggested that it is possible for
such a system to remain an insulator and nonergodic even at a
nonzero temperature. Effectively, weakly interacting localized
electrons cannot serve as their own heat bath, and conse-
quently Mott’s variable range hopping does not occur in the
absence of delocalized phonons. The basic idea is that since
the spectrum of localized electronic states is discrete the
interaction between electrons will not in general have the
exact energy difference to connect localized states and cause
transport. This nonergodic phase is called the many-body
localized state. Basko et al. further argued that a system will
remain an insulator and nonergodic up to a critical temperature
they denote by Tc and at T > Tc the system will become
ergodic and a metal. That is, the MIT occurs at finite
temperature and is a sort of glass transition.
This idea has profound consequences not only for transport

theory, but also for the foundations of quantum statistical
mechanics. A basic tenant of statistical mechanics is that in a
large system one can consider a smaller subsystem and the rest
of the system acts as a heat bath for it. This apparently does
not hold in a many-body localized phase.
There has been a large amount of subsequent work done on

this problem (Bauer and Nayak, 2013; Huse and Oganesyan,
2013; Serbyn, Papic, and Abanin, 2013). Bauer and Nayak
theoretically and numerically investigated the entanglement
entropy of excited states for a system of interacting and
disordered one-dimensional spinless fermions. In the ground
state the entanglement entropy SðLÞ between a region of size
L and the rest of the system satisfies an area law behaving for
large L given by8

8This is true for gapped systems. For gapless systems such as
Fermi liquids there are logarithmic corrections.
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SðLÞ ¼ αLd−1 þOðLd−2Þ; ð5:16Þ

where α is a constant. This is to be contrasted with highly
excited or thermal states which in general satisfy a volume
(∼Ld) law. Importantly, Bauer and Nayak gave evidence that
for many-body localized states the area law holds even for
excited states as long as the interaction strength is not too
large. In Fig. 13 we show numerical results for excited states
for a quantity aðLÞ that is closely related to the entropy. Here
W is a measure of the disorder and V is a fermion interaction
strength. The results indicate that for large disorder and small
interactions the excited states obey an area entropy law and are
thus many-body localized, but that for smaller disorder and
larger interactions the entropy scales like a volume. This in
turn is consistent with a finite temperature MIT and the
considerations of Basko, Aleiner, and Altshuler (2006).
Remarkably when this transition is approached from the
metallic phase the results of Bauer and Nayak (2013) suggest
there is a sort of Kauzmann or RFOT transition characterized
by a vanishing entropy at a finite temperature.

D. Superglasses

Biroli, Chamon, and Zamponi (BCZ) (Biroli et al., 2008;
Nussinov, 2008) investigated the so-called superglass phase of
matter which is simultaneously a superfluid and a frozen
amorphous structure. Such a system can in principle be
characterized experimentally by placing the system in a
container rotating at a small frequency ω. If the system is a
supersolid, and if the frequency is not too high, then one
would find the angular momentum of the solid is reduced from
its classical value Iclω by a fraction fs which is called the
superfluid fraction.
BCZ employed a mapping between quantum Hamiltonians

and classical Fokker-Planck operators, to relate the ground
state of a model of interacting bosons to the Boltzmann
measure of a classical hard sphere system. They further used
this connection and known RFOT results for the glassy

dynamics of Brownian hard spheres to work out the properties
of the superglass phase and the quantum phase transition
between the superfluid and superglass phases. In Fig. 3 we
reproduce their phase diagram summarizing the mapping.
An important experimental question is if pure helium can

form an amorphous phase. Simple monodisperse classical
hard sphere systems quickly crystallize and the glassy phase
can be studied only if the quenching rate is very fast.
Superficially one expects the same behavior in helium.
Indeed, path integral Monte Carlo simulations (Biroli et al.,
2011) of distinguishable 4He rapidly quenched from the liquid
phase to very much lower temperatures show that the system
crystallizes very quickly, without any sign of intermediate
glassiness. Interestingly, it has been suggested that the
neglected exchange interaction, and quantum fluctuations in
general, can enhance glassiness.
This last point is very significant and can be understood

using RFOT ideas (Foini, Semerjian, and Zamponi, 2010,
2011) [see also Markland et al. (2011) and Zamponi (2011)].
Consider a classical system just above the ideal glass
transition temperature with a configurational entropy ScðsÞ
that is a function of the internal entropy s of the various
mosaic states or clusters. The complexity is small, and in
general there will be more compact small entropy states than
large s states. Now add a small amount of quantum fluctua-
tions as measured by a hopping term ∼J. This hopping will
not induce transitions into different mosaic states since that
would involve the movement of a large number of particles
which would be unlikely if J is small. Instead the quantum
fluctuations will cause particle rearrangement within a given
cluster. Now small cluster states cannot easily delocalize to
lower their kinetic energy. Instead, adding the quantum
fluctuations will favor larger entropy states that can more
easily delocalize and get bigger. Since these states are less
numerous, J has the effect of decreasing the complexity and
can cause an ideal glass transition.
There is some experimental evidence for both superflow

and glassiness in solid helium at very low temperatures
although the subject remains very controversial. Using a
torsional oscillator experiment Rittner and Reppy (2007)
and Reppy (2010) observed a sample history dependence
with large superfluid fractions (∼20%) measured in quenched
cooled samples that had small macroscopic dimensions and
saw reductions of the superfluid fraction that depended on
how much the sample had annealed. This result is consistent
with a nonequilibrium glassy phase that is not stable. Ray and
Hallock (2008, 2009) performed experiments in which a
chemical potential difference is applied across hexagonal-
close-packed solid helium at low densities by injecting liquid
helium into one side of the solid. They observed a dc mass
flow at temperatures below approximately 550 mK. They also
observed hysteresis effects: Samples thermally cycled to, or
above, 550 mK do not in general support flow when cooled
down again. This memory effect is consistent with glassylike
behavior. More experiments are needed in these samples to see
if flow is reestablished at still lower temperatures. Still other
experiments are needed to unambiguously confirm or other-
wise the superglass phase of solid helium (Kim et al., 2012;
Mi et al., 2014).

FIG. 13 (color online). The coefficient aðLÞ is a measure of
the entropy. Solid lines are W ¼ 8, and dashed lines are W ¼ 6;
the interaction strength is V ¼ 0, 0.4, 0.8, 1.2, 1.6, and 2.0. In
a many-body localized regime aðL → ∞Þ approaches a constant,
while in a metallic state aðL → ∞Þ grows linearly with system
size.
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VI. SUMMARY AND DISCUSSION

All of the themes that we highlighted in this Colloquium,
which can be viewed from the perspective of concepts
developed in glass physics, are active fields of research. It
should be emphasized that our viewpoint is not universally
endorsed, and hence there is a spirited debate on the origins of
slow relaxation in glasses. It is unclear if there is an underlying
structural order parameter describing the stability or dynamics
glass forming systems. The search for such an order parameter
has been pursued for nearly 30 years, and it has been asserted
that some sort of orientational order may increase upon
supercooling. However, such a conclusion may be relevant
only to quasi-one-component systems but the generality of
this notion for complex glass forming materials is hardly
obvious. In addition, the unambiguous demonstration of the
existence of an the ideal glass transition temperature (TK in
the VFT fit) in experiments has been very difficult. For
example, fitting viscosity data for salol [Fig. 1(a)] shows that
temperatures at which reliable measurements can be made are
far from TK with ϵ ≈ 0.26 the dimensionless distance from the
transition. It is even more difficult to show TK ≠ 0 in
computer simulations although the plausibility of a thermo-
dynamic transition envisioned in RFOT has been hinted at
using random pinning simulations (Karmakar and Parisi,
2013; Kob and Berthier, 2013).
Despite these reservations, Kurchan, Parisi, and Zamponi

(2012), Charbonneau et al. (2013), and Kurchan et al. (2013)
[see also Kirkpatrick and Wolynes (1987a)] studied in detail
the thermodynamics of hard sphere particles in large dimen-
sions (d ¼ ∞) and all of the predictions of RFOT have been
exactly demonstrated. By exploiting the observation that in
this system at d ¼ ∞ only the second virial coefficient
contributes to the free energy functional of the system it
was shown that the one step replica symmetry breaking
(1RSB) and the two transitions (with the variable being
density as opposed to temperature) scenario, as anticipated
in the RFOT theory (Kirkpatrick and Thirumalai, 1989a), is
valid. In addition, they discovered an instability of the 1RSB
at high density resulting in the Gardner transition. It is
generally believed that an inherently mean-field description
is reasonable for liquids (except close to the gas-liquid critical
point), and hence the large dimensional theory may have a
wider range of applicability [see, for example, Kirkpatrick
(1986) and Marechal, Zimmermann, and Lowen (2012)].
We have barely touched on the potential application of glass

transition concepts in biological problems. One noteworthy
example is the folding of chromosomes, which could result in
manifestation of metastability and glasslike behavior due to
topological constraints (Hyeon and Thirumalai, 2011). In
eukaryotic cells chromosomes fold into globules occupying
well-defined regions referred to as chromosome territories
(Cremer and Cremer, 2001), thus bringing widely separated
gene-rich regions into close proximity. Folding of chromo-
somes apparently occurs without forming knots, which is
important for gene activity, in a polymer containing many
mega base pairs. Using constraints derived from experiments
as a guide (Lieberman-Aiden et al., 2009) it was argued that
the genome is packaged into fractal globules (Grosberg et al.,
1993) differing qualitatively from equilibrium globules in

which formation would occur with high probability. It is most
likely the case that there are multiple states associated with
fractal globules, which implies that the dynamics of chromo-
some folding would be glassy. Although the biological
implications are unclear, it is worth exploring genome folding
in various eukaryotic cells to assess if glasslike behavior is
exhibited, and to understand if nature utilizes such dynamics
in the most crucial functions.
There is a large amount of glassy phenomena that occur in

the so-called hard condensed matter physics systems.
Generally these are quantum systems at low temperatures.
They include Coulomb glasses, disordered insulators, disor-
dered metals, quantum phase transitions from a supercon-
ducting state to either a disordered insulator or metal, various
non-Fermi-liquid systems, quantum Griffith’s phase effects,
etc. Even in low temperature ferromagnetic metals there are
numerous manifestations of glassy effects (Kawasaki et al.,
2014). One of the main problems is that there is not a common
language, let alone a common description, in these various
subfields. It is possible that some of the recent unifying ideas
in classical glassy systems will be relevant in these quantum
systems. For example, in the SGT problem there has been a
tremendous amount of work recently on dynamic hetero-
geneity. There has been a fruitful interplay between theory,
simulations, and experiments. This concept is also clearly
relevant in biological glassy systems, as illustrated here.
Recently, it was shown that single molecule pulling experi-
ments on proteins and DNA provide direct evidence for
heterogeneity on the molecular scale (Hyeon, Hinczewski,
and Thirumalai, 2014). In the condensed matter case this
subject has hardly been touched (Nussinov et al., 2013). In
understanding the similarities and differences between
classical and quantum glassiness two fundamental differences
must be kept in mind. The first is that quenched disorder is
perfectly correlated along the imaginary time direction and
this can have especially profound implications for quantum
phase transitions (Vojta, 2006). If the disorder is self-
generated as in the case of the SGT, it is likely that similar
profound effects will occur. The second is that in general there
are modes that are soft only at T ¼ 0, and these extra soft
modes (Belitz and Kirkpatrick, 2014) will likely play an
important role in the long time glassy dynamics.
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