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Distributed quantum networks will allow users to perform tasks and to interact in ways which are
not possible with present-day technology. Their implementation is a key challenge for quantum
science and requires the development of stationary quantum nodes that can send and receive as
well as store and process quantum information locally. The nodes are connected by quantum
channels for flying information carriers, i.e., photons. These channels serve both to directly
exchange quantum information between nodes and to distribute entanglement over the whole
network. In order to scale such networks to many particles and long distances, an efficient interface
between the nodes and the channels is required. This article describes the cavity-based approach to
this goal, with an emphasis on experimental systems in which single atoms are trapped in and
coupled to optical resonators. Besides being conceptually appealing, this approach is promising for
quantum networks on larger scales, as it gives access to long qubit coherence times and high light-
matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a
button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport
quantum states between remote atoms, to entangle distant atoms, to detect optical photons
nondestructively, to perform entangling quantum gates between an atom and one or several
photons, and even provides a route toward efficient heralded quantum memories for future
repeaters. The presented general protocols and the identification of key parameters are applicable
to other experimental systems.
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I. INTRODUCTION

Quantum theory was originally formulated as a statistical
theory that describes ensembles of particles. Meanwhile,
however, experiments are being carried out in many labo-
ratories around the world with single particles, without finding
any deviation from the predictions of quantum theory. In fact,
quantum physics is now the best studied and most accurately
tested theory of our time.
Beyond the desire to understand fundamental quantum

phenomena occurring in small-scale systems of individual
particles, the dream has therefore emerged to harness the
strangeness and the power of the quantum to facilitate novel
technologies that provide possibilities beyond those offered by
any classical device (Dowling and Milburn, 2003).
Quantum functionality has been successfully demonstrated

in many different physical systems. Experimental platforms
are as diverse as nuclear magnetic resonance systems
(Vandersypen and Chuang, 2005), single ions or neutral
atoms trapped in the vacuum (Blatt and Wineland, 2008;
Bloch, 2008; Saffman, Walker, and Mølmer, 2010), micro-
wave (Raimond, Brune, and Haroche, 2001) and optical
(O’Brien, Furusawa, and Vučković, 2009) photons, super-
conducting circuits (Schoelkopf and Girvin, 2008), spins in
quantum dots or other solid-state host materials (Hanson et al.,
2008; Greve et al., 2013; Warburton, 2013; Lodahl,
Mahmoodian, and Stobbe, 2015), and even optomechanical
systems (Aspelmeyer, Kippenberg, and Marquardt, 2014).
Each of these systems has its own advantages, but also
drawbacks which prevent a simple and direct scaling of
current proof-of-concept experiments to larger systems.
This, however, is required to exploit the full potential of
quantum technology.
The main challenge is that the individual particles forming a

quantum system have to be largely decoupled from the
environment to prevent decoherence, while at the same time
a controllable long-range interaction is required for upscaling.
It was realized early on (Cirac et al., 1997; Duan et al., 2001)
that a hybrid system of light and matter qubits could tackle this
problem: Single matter qubits can be well isolated from the
environment, while single photons can be used to connect
them over large distances to form a quantum network
(Kimble, 2008; Duan and Monroe, 2010; Meter, 2014).
A quantum network is a coherent few- or many-body

system with genuine quantum properties such as entangle-
ment. This makes it profoundly different from any classical
network. For example, the information stored in the network is
largely encoded between the network nodes, not in the
network nodes. The amount of stored information can be
large as the accessible state space increases exponentially with
the number of nodes, not linearly as in classical networks.
Quantum networks can be large in terms of both number and
distance, and they can display any topology and arbitrary
connectivity, with entangling links between pairs of nodes
being turned on and off at will.
These controlled long-range and potentially even infinite-

range interactions form the basis for numerous possible
applications. For example, distributed quantum networks
allow for the connection of small quantum processors to
form larger computational units for scalable universal

quantum information processing (Awschalom et al., 2013;
Monroe and Kim, 2013). In this context, it is worthwhile to
mention that a large physical separation between individual
qubits might prevent correlated errors that preclude efficient
quantum error correction (Lidar and Brun, 2013), which is a
prerequisite for scalable quantum computation with realistic,
i.e., imperfect, devices (Ladd et al., 2010; Nielsen and
Chuang, 2010).
Furthermore, entangled states that are distributed across a

quantum network lead to correlations that are both nonlocal
and nonclassical (Brunner et al., 2014). Besides enabling
fundamental tests of the predictions of quantum theory, these
correlations can be the basis for communication with unbreak-
able encryption (Gisin and Thew, 2007; Scarani et al., 2009;
Ekert and Renner, 2014), possibly even on a global scale using
quantum repeaters (Briegel et al., 1998; van Enk, Cirac, and
Zoller, 1998).
Looking far into the future, to a time when today’s small-

scale quantum network prototypes might have grown into a
full-scale quantum internet (Kimble, 2008), quantum com-
puters might download quantum software (Gottesman and
Chuang, 1999; Preskill, 1999) just like classical computers
download classical software via today’s classical Internet.
Alternatively, individual users with limited quantum capabil-
ities might place private quantum queries in a future quantum
cloud or perform private quantum calculations on remote
quantum supercomputers (Barz et al., 2012). Finally, one
might even envision the teleportation (Bennett et al., 1993)
of macroscopic quantum objects between remote locations,
a fascinating research perspective for the generations to come.
Outside the immediate realms of quantum computation and

quantum communication, distributed quantum networks could
also find applications in other fields of science and technol-
ogy. To mention just a few examples, recent proposals
consider telescopes with increased resolution (Gottesman,
Jennewein, and Croke, 2012) or timekeeping with unprec-
edented precision (Kómár et al., 2014). Moreover, scaling to
larger networks might enable the simulation of complex
quantum many-body systems (Georgescu, Ashhab, and
Nori, 2014) with the goal to understand and possibly design
biologically and chemically relevant molecules, functional
materials like high-temperature superconductors, and emerg-
ing nanotechnological devices.
The few examples mentioned previously illuminate the

foreseeable prospects of quantum networks, but the whole
cornucopia of potential applications has not yet been imag-
ined, nor will it be until large-scale networks actually become
available. With this in mind, a realistic avenue toward scaling
needs to be found and implemented. From today’s perspective,
it will critically rely on the following criteria:
First, the use of optical photons, ideally in the near infrared,

as easily controllable flying qubits. This allows for the
transmission of quantum information at room temperature
over large distances using existing telecommunication fiber
technology.
Second, the availability of versatile quantum nodes that can

be initialized and manipulated individually and that can
process quantum information and store it for a time that is
much longer than the time it takes to distribute quantum states
over the network.
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Third, the implementation of a protocol that is robust with
respect to photon loss. This can be achieved using a heralded
scheme that allows for the efficient correction of errors caused
by photon loss. Clearly, this requires that quantum informa-
tion is not encoded in the presence of a photon, but in its
polarization, path, frequency, or arrival time.
Finally, a quantum interface that facilitates the connection

of stationary and flying qubits with efficiency that is high
enough to enable a deterministic transfer of quantum infor-
mation between the network nodes well within their coher-
ence time.
Due to the small interaction cross section of atoms and

photons in free space, the last criterion is hard to fulfill. A
possible solution is the use of atomic ensembles that consist of
a large number of particles and therefore are optically thick.
The optical nonlinearity necessary for the operation of a
quantum-network node in a long-distance communication
architecture can be established by suitable measurements
(Duan et al., 2001; Hammerer, Sørensen, and Polzik, 2010;
Sangouard et al., 2011). However, the randomness of the
measurement outcome makes the communication protocol
intrinsically probabilistic. An alternative avenue toward deter-
ministic quantum-nonlinear optics and quantum information
processing at the single-photon level is provided by the
Rydberg blockade mechanism (Lukin et al., 2001) which is
based on the giant interaction between highly excited atoms.
Effectively, an interaction between photons is achieved by
mapping the light quanta onto Rydberg atoms by means of
slow and stopped light (Fleischhauer, Imamoglu, and
Marangos, 2005). Remarkable experimental progress has
been made with Rydberg blockaded ensembles during the
last few years (Chang, Vuletić, and Lukin, 2014). More
specifically, this includes the storage and the generation of
nonclassical light fields (Dudin and Kuzmich, 2012; Peyronel
et al., 2012; Li, Dudin, and Kuzmich, 2013; Maxwell et al.,
2013), the demonstration of photon-photon interactions
(Peyronel et al., 2012; Firstenberg et al., 2013), as well as
single-photon switches and amplifiers (Baur et al., 2014;
Gorniaczyk et al., 2014; Tiarks et al., 2014).
This article describes a different approach, where the

stationary nodes consist of single trapped atoms. This has
the advantage that the quantum information is localized in
individually addressable particles that can be manipulated and
controlled in a straightforward way. Moreover, single atoms
arguably constitute the most natural way to implement
quantum-nonlinear media with the feature that their optical
properties can be controlled by single photons, provided the
light-matter coupling is large. To realize the required efficient
interface between atomic and photonic qubits, the atoms are
placed in optical resonators. The many mirror images of the
atom, each with a stable phase relative to the atomic dipole,
effectively boost the light-matter interaction strength and give
access to the rich physics of cavity quantum electrodynamics
(CQED).
Apart from the experiments in the optical domain which are

described in this article, CQED has been pioneered with flying
atoms that interact with trapped photons in microwave
resonators (Raimond, Brune, and Haroche, 2001; Walther
et al., 2006). Many of the proposed concepts have been

adapted and further developed using superconducting qubits
in the electromagnetic field of microwave cavities and micro-
wave stripline resonators, giving rise to a rapidly growing and
progressing field which is very promising for future quantum
technologies (Devoret and Schoelkopf, 2013). However, in
order to realize large-distance quantum networks with this
platform, longer coherence times and the conversion to optical
photons would be required. Therefore, microwave experi-
ments are not covered in this article.
Apart from superconducting circuits, there are also other

promising approaches to solid-state based quantum networks,
e.g., quantum dots or crystalline defect centers (Hanson et al.,
2008; Awschalom et al., 2013; Greve et al., 2013; Warburton,
2013; Zwanenburg et al., 2013; Lodahl, Mahmoodian, and
Stobbe, 2015). A detailed discussion of these systems goes
beyond the scope of this review. We note only that the
encoding of quantum information in the spin of individual
nuclei in an otherwise spin-free or spin-polarized crystal
lattice can be achieved with remarkably long coherence times
(Maurer et al., 2012; Chekhovich et al., 2013), with a current
record of several hours for the storage of strong light pulses in
a spin ensemble (Zhong et al., 2015). The major remaining
challenge is to efficiently couple individual spins to photonic
quantum channels. Typically, this requires exquisite control
over the involved spatiotemporal light mode, posing a for-
midable challenge to system design and nanofabrication
(Awschalom et al., 2013; Lončar and Faraon, 2013;
Lodahl, Mahmoodian, and Stobbe, 2015). Otherwise, these
solid-state-based systems employ similar techniques and
concepts as the atom-based approach described in this review.
CQED with atomic systems has been an active field of

research during the past decades. Overviews on earlier work
can be found inKimble (1998, 2008), Kuhn andRempe (2002),
Mabuchi and Doherty (2002), Vahala (2003), Kuhn and
Ljunggren (2010), and Solomon, Santori, and Kuhn (2013)
and inmany textbooks, e.g., in Carmichael (2002, 2007),Walls
and Milburn (2008), Agarwal (2013), and Haroche and
Raimond (2013). The focus of this article lies on recent
experiments aimed toward quantum networks. Before turning
to this topic in detail, a basic introduction to the relevant
principles of CQED will be given. Then, in Sec. II, we explain
the different types of employed optical resonators and the basic
experimental techniques to observe, capture, trap, cool, and
control single atoms within optical resonators. Subsequently,
experiments toward the generation of nonclassical light fields
are summarized in Sec. III. In Sec. IV, we discuss the
distribution and processing of quantum information in an
elementary quantum network. To conclude, an outlook into
possible future directions of the field is given in Sec. V.

A. Quantum electrodynamics in a cavity

For an intuitive introduction to the objectives of CQED,
consider a two-level atom which is resonantly interacting with
a faint light pulse that is focused to a beam waist of w0 and that
contains only one photon. To estimate the photon scattering
probability, the area of the light beam A ¼ ðπ=4Þw2

0 is
compared to the absorption cross section of the atom
σabs ¼ 3λ2=2π, with λ denoting the optical wavelength.
Deterministic atom-photon interaction requires σabs ≫ A.
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Clearly, this condition is not achievable in free space, even
when using tight but diffraction limited focusing of a Gaussian
input mode (van Enk and Kimble, 2000; Tey et al., 2008;
Wrigge et al., 2008).
The situation is different when the atom is located in a

Fabry-Perot cavity; see Fig. 1(a). To this end, two mirrors with
reflectivity R1 and R2 are placed in the beam on each side of
the atom, such that the photon can bounce back and forth
many times. Effectively, this increases the absorption cross
section by the number of bounces F=π, which is determined
by the quality of the resonator as characterized by its finesse

F ¼ πðR1R2Þ1=4
1 −

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p . ð1Þ

The condition to achieve a deterministic interaction then reads

3λ2

2π|{z}
σabs

×
F
π|{z}

bounces

≫
π

4
w2
0|{z}

beam area

. ð2Þ

Equation (2) can be rewritten in terms of the cavity field
decay rate κ, the polarization decay rate of the atom γ, and a
parameter g that can be identified as an atom-cavity coupling
constant. It is determined by the electric dipole matrix element
μce of the atomic transition from the (coupled) ground state jci
to the excited state jei, and by the electric field E of a single
photon in the mode volume V of the resonator:

g ¼ μceE
ℏ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ceω

2ϵ0ℏV

s
uð~xÞ. ð3Þ

Here ℏ is the reduced Planck constant, ϵ0 is the permittivity of
free space, ω is the cavity frequency, and V ¼ R

u2ð~xÞd3x is
the integral over the dimensionless electric-field mode func-
tion uð~xÞ of the resonator, normalized to 1 at the field
maximum. With the speed of light c and the resonator length
L, and using

κ ¼ πc
2LF

; ð4aÞ

γ ¼ μ2ceω
3

6πϵ0ℏc3
; ð4bÞ

one can rewrite Eq. (2) as

C ¼ g2

2κγ
≫ 1. ð5Þ

Here C denotes the single-atom cooperativity parameter of the
optical-bistability literature (Gibbs, 2012), originally derived
for many atoms. Clearly, with Na atoms in the mode, the
cooperativity increases to CNa

¼ NaC. Therefore, the inverse
of C is often called the critical atom number, which gives the
number of atoms required to strongly affect the transmission
properties of the resonator. For C ≫ 1, even a single atom is
able to induce a big effect on a light beam transmitted through
the cavity. From this picture of a bouncing photon it is clear
that C should not directly depend on the cavity length. In fact,
the length dependence in the definition of C drops out as
κ ∝ 1=L and g ∝ 1=

ffiffiffiffi
L

p
.

In a similar way, one can define a critical photon number nc,
which determines the number of photons required to signifi-
cantly change the radiation properties of the atom. For a two-
level atom, nc can be identified as the number of photons
needed to saturate the atomic transition. To derive this number,
the rate of spontaneous emission 2γ has to be compared to the
rate of stimulated emission per photon 3λ2c=2πV. This leads
to the condition

nc ¼
γ2

2g2
≪ 1. ð6Þ

This simple picture already allows one to determine the
most relevant experimental parameters. As can be seen from
Eq. (3), the coupling strength on a given atomic transition
depends only on V. Therefore, the use of a cavity with a small
mode volume is essential for the realization of a quantum
interface where the atom-photon coupling rate is supposed to
be larger than all dissipative loss rates. Before the influence of
these losses is discussed in Sec. I.C, an idealized lossless
situation is assumed in Sec. I.B. This allows for a basic
understanding of the dynamics of a coupled atom-cavity
system within the canonical Jaynes-Cummings model that
was first introduced by Jaynes and Cummings (1963).

B. The Jaynes-Cummings model

The basic physical situation described by the Jaynes-
Cummings model is depicted in Fig. 1(a). A single emitter
is located in a resonator that supports a single optical mode at
a frequency ωc. This frequency is in (or close to) resonance
with an atomic transition from a coupled ground state jci to an
excited state jei at a frequency ωa. In addition, the atom
typically also exhibits one or several uncoupled energy states
jui that are far detuned from the cavity field; see the level
scheme in Fig. 1(b).

κout

κloss

γ
g c

e >
a

c >
u > u

ac
(b)(a)

FIG. 1 (color online). Basic physical situation considered in
CQED. A three-level emitter, e.g., a single atom, is located in an
optical cavity, schematically represented by two facing mirrors.
The atom exchanges energy with the optical field at a rate 2g. The
decay rate of photons out of the resonator is 2κ ¼ 2κout þ 2κloss.
The atomic polarization decay rate is γ. (b) Atomic energy level
scheme. The transition frequency between the coupled ground
state jci and the excited state jei is ωa. The cavity resonance
frequency is ωc. Atom and cavity are detuned by Δac ¼ ωa − ωc.
The third, uncoupled level jui is detuned from jci by Δu.
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The coupling of the atomic states jci and jei to the
electromagnetic field of the cavity is described in the dipole
approximation. Thus, the Hamiltonian of the atom-photon
interaction reads

HI ¼ −~d ~E → dEðσ†ce þ σceÞða† þ aÞ ð7aÞ

¼ ðσ†cea† þ σ†ceaþ σcea† þ σceaÞ. ð7bÞ

Here ~d denotes the atomic dipole moment operator and ~E the
electric-field operator of a photon in the cavity mode, σij ¼
jiihjj and σ†ij ¼ jjihij are the atomic lowering and raising
operators, and a† and a are the creation and annihilation
operators of a photon in the cavity mode, respectively. The
term dE=ℏ can be identified as the atom-cavity coupling
strength g.
In the interaction picture with time dependent operators, the

terms σ†cea† and σcea exhibit a very fast time dependence
∝ eiðωaþωcÞt. As long as g ≪ ðωa;ωcÞ, these off-resonant
terms can be neglected in comparison with the resonant terms
σcea† and σ

†
cea which evolve ∝ eiðωa−ωcÞt. This approximation

is called the rotating wave or the secular approximation. In the
following, we chose the energy origin such that the combined
atom-cavity ground state jc; n ¼ 0i has zero energy. In this
state, the photon number in the cavity n is zero and the atom is
in the resonantly coupled state jci. Assuming that the atom
exchanges energy with the cavity field at a frequency 2g then
gives the Jaynes-Cummings Hamiltonian HJC:

HJC ¼ ℏωaσ
†
ceσce|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bare atom

þ ℏωca†a|fflfflfflffl{zfflfflfflffl}
empty cavity

þ ℏgðσecaþ σcea†Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dipole coupling

. ð8Þ

Note that σ†ceσce þ a†a commutes with the Hamiltonian,
which means that the total number of energy quanta in the
system is conserved. Thus, for the diagonalization of the full
Hamiltonian it is sufficient to consider separate two-level
systems [see, e.g., Agarwal (2013) and Haroche and Raimond
(2013)]. This leads to the following energy eigenstates:

E0 ¼ 0; ð9aÞ

EN;� ¼ Nℏωc þ ℏ
Δac

2
� ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

N þ Δ2
ac

q
. ð9bÞ

Here N is a positive integer denoting the total number of
excitation quanta in the system, and ΩN ¼ 2g

ffiffiffiffi
N

p
is the

corresponding N-quanta Rabi frequency. The term Δac ¼
ωa − ωc denotes the detuning of the cavity frequency from the
atomic transition. The resulting spectrum of energy eigen-
states, often called the Jaynes-Cummings ladder, is depicted in
Fig. 2 as a function of the atomic detuning. The ground state of
the coupled system jc; 0i remains unaffected. Similarly, when
the detuning is large the coupled energy eigenstates almost
coincide with those of an uncoupled system with n photons in
the cavity, jc; ni and je; ni. For Δac ≫ g, the coupled states
are shifted by

Δe;n ¼ ðnþ 1Þ g2

Δac
ð10Þ

and

Δc;n ¼ −n
g2

Δac
ð11Þ

(Haroche and Raimond, 2013). Opposite shifts of equal
magnitude occur for −Δac ≫ g. Thus, in this regime the
presence of the atom slightly shifts the cavity frequency.
The consequences of the coupling are much more pro-

nounced on resonance. Here the energies of the excited states
EN;þ and EN;− differ by 2ℏg

ffiffiffiffi
N

p
. Note that the splitting

increases nonlinearly with N. This single-photon nonlinearity
can be exploited to engineer interactions between photons,
which will be further discussed in Sec. IV.D.3.
The eigenstates of the coupled system jN;�i are linear

combinations of je; N − 1i and jc; Ni. On resonance,
Δac ¼ 0, these states are

jN;�i ¼ 1ffiffiffi
2

p ðje; N − 1i � jc; NiÞ. ð12Þ

In order to explore the consequences of this superposition
state, assume, for example, that a resonant atom is prepared in
the excited state jei inside a cavity containing N − 1 photons.
The initial state is thus je; n ¼ N − 1i ¼ ð1Þ= ffiffiffi

2
p ðjN;þiþ

jN;−iÞ= ffiffiffi
2

p
. Calculating the probability of the atom being

in jei as a function of time givesPjeiðtÞ ¼ cos2ðΩNt=2Þ, which
means that the system undergoes aRabi oscillation between the
states jc; Ni and je; N − 1i at a frequency ΩN ¼ 2g

ffiffiffiffi
N

p
. The

valueΩ1 ¼ 2g that is obtained when the cavity is initially in the
vacuum state N − 1 ¼ 0 is therefore called the vacuum-Rabi
frequency.
The prerequisite for an experimental observation of these

vacuum-Rabi oscillations is that their rate is faster than all
dissipative processes in the system as explained in more detail
in the following.

ac / g

c

0
0-5

a

c,0 

c,1 >
e,0 

e,1 

c,2 

+ >
- >

- >
+ >

c

a

a

a

>
>
>

>
FIG. 2 (color online). The Jaynes-Cummings ladder of the
dressed energy eigenstates jN;�i of a strongly coupled atom-
cavity system, where the cavity frequency is kept fixed and the
emitter frequency is scanned over the resonance. Compared to the
uncoupled situation (gray), the coupled states (black) exhibit
pronounced avoided level crossings. At zero detuning, the levels
are separated by 2g

ffiffiffiffi
N

p
.
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C. Damped atom-cavity system

In contrast to the idealized Jaynes-Cummings model, any
experimental atom-cavity system is an open system that is
coupled to the environment via two loss channels.
First, the electric field of the cavity mode decays at a

rate κ ¼ κout þ κloss. This can be caused by coupling to a
propagating field mode (with rate κout) or by scattering and
absorption losses of both mirrors (with a combined rate of κloss).
Note that the energy in the cavity decays at a rate 2κ.
The second loss channel is the rate γ at which the atomic

polarization decays. This can be either caused by atomic decay
to an uncoupled state jui, which can be avoided using a closed
transition, or caused by the emission of a photon at the
resonant frequency, but into free space rather than into the
cavity mode. Assuming purely radiative decay and a cavity
mode which covers only a small solid angle like in typical
Fabry-Perot resonators, γ ¼ Γ=2, with Γ being the free-space
spontaneous-emission rate (modifications are discussed in
Sec. I.C.2).
The standard approach to calculate the dynamics of the

open atom-cavity system with density operator ρ is to use a
Master equation in the Lindblad form:

_ρ ¼ 1

iℏ
½HJC; ρ� þ

X
i

�
LiρL

†
i −

1

2
ðL†

i Liρþ ρL†
i LiÞ

�
. ð13Þ

Here L1;2 are the jump operators that correspond to the atomic
(L1 ¼

ffiffiffiffiffi
2γ

p
σce) and cavity (L2 ¼

ffiffiffiffiffi
2κ

p
a) decays. Note that at

optical frequencies, the incoupling of energy from a thermal
reservoir is negligibly small. Thus, the system decays to the
vacuum state jc; 0i. Depending on the ratio of the three rates
ðg; κ; γÞ, different dynamics of this decay are expected from a
solution of the master equation.
In the case C ≪ 1, the dynamics is almost the same as

observed with a free-space atom. The situation changes when
C approaches unity. But even if C ≫ 1, there are still two
experimental regimes with different dynamics: First, the
“Purcell” or “fast cavity” regime, where the emission of a
photon is an irreversible process since κ > g. Second, the
regime of “strong coupling,” where g is the highest rate in the
system and a reversible energy exchange between the atom
and the resonator is possible. The basic physical effects
encountered in the different regimes are explained in more
detail in the following sections.

1. The strong-coupling regime

In the regime of strong coupling, the atom-cavity coupling
is the highest rate in the system:

g ≫ ðγ; κÞ. ð14Þ

This also implies that C ≫ 1 [cf. Eq. (5)]. Only in this
regime the reversible atom-photon coupling is faster than all
irreversible processes, such that the vacuum-Rabi oscillations
predicted by the Jaynes-Cummings model can be observed
experimentally.
Because of the presence of the losses, one expects a damped

oscillation in the time domain. Figure 3(a) shows such an
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FIG. 3 (color online). (a) Vacuum-Rabi oscillations in the time
domain. A short laser pulse excites a single atom to the excited
state jei, from which it decays back to the ground state while
emitting a single photon. In the cavity output mode, damped
vacuum-Rabi oscillations are observed. With increasing detuning
jΔacj (front to back), the vacuum-Rabi frequency increases. The
solid curves are fits to the data using a theoretical model. Adapted
from Bochmann et al., 2008. (b) Vacuum-Rabi splitting in the
spectral domain, recorded with exactly one trapped atom. The
detuning of the atom with respect to the cavity is varied by
changing the power of the intracavity dipole-trap laser from
250 nW (top) to 340 nW (bottom). The data points (gray) clearly
show a vacuum-Rabi splitting and are in good agreement with
Monte Carlo simulations of the system (black lines). Adapted
from Maunz et al., 2005.

1384 Andreas Reiserer and Gerhard Rempe: Cavity-based quantum networks with single …

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



experiment (Bochmann et al., 2008). An atom in the resonator
has been excited to the state jei using a laser pulse of 3 ns
duration, which is short compared to the time scale of the
atomic polarization decay (∼50 ns). Subsequently, the atom
can exchange energy with the resonator at a rate ΩN¼1;Δac

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ac þ 4g2
p

. The emission of photons from the cavity mode
is measured with single-photon counting modules (SPCMs),
giving the measured signal in Fig. 3(a). With larger detuning
jΔacj, the oscillation frequency increases. The fit curves (solid
lines) calculated from a theoretical model are in good agree-
ment with the data.
In the spectral domain, the damped vacuum-Rabi oscilla-

tions correspond to a double-peak structure, called the
vacuum-Rabi splitting. This splitting can be observed when
the frequency dependence of the cavity transmission is
measured using a faint laser (such that the system excitation
probability remains low, i.e., the average number of photons in
the cavity n̄ ≪ 1). After the first demonstration in the optical
domain (Thompson, Rempe, and Kimble, 1992), the vacuum-
Rabi splitting was observed in numerous experiments, thus
proving the attainment of the strong-coupling regime. The first
observations with a single trapped atom were reported by
Boca et al. (2004) and Maunz et al. (2005).
Figure 3(b) shows the results of Maunz et al. (2005). In the

different panels, the atomic transition frequency is scanned by
changing the atomic ac Stark shift via the power (charac-
terized by the transmitted intensity, colored numbers in the top
left of each panel) of the dipole-trap laser which holds the
atom inside the cavity. One clearly observes the expected
vacuum-Rabi splitting. The obtained spectra are in excellent
agreement with Monte Carlo simulations of the system (lines).
The simulation takes into account the probe-laser induced
random motion of the atom in the intracavity dipole trap. A
more recent spectrum obtained with a better localized atom is
discussed in Sec. I.D.

2. The Purcell regime

An atom-cavity system in the Purcell regime is charac-
terized by κ ≫ g ≫ γ and C ≫ 1. In this regime, the vacuum-
Rabi oscillations cannot be observed, as a photon that is
emitted into the cavity mode is lost from the resonator before it
can be reabsorbed by the atom. Nevertheless, the dynamics of
the atomic decay is strongly different from observations in free
space, since the density of photonic modes is considerably
changed by the presence of the cavity. This can lead to an
increased (Purcell, 1946) or decreased (Kleppner, 1981) rate
of atomic radiative decay, depending on the detuning of the
cavity frequency from the atomic frequency. Solving the
master equation of the coupled atom-cavity system, the atomic
dipole decay rate into the cavity γc can be derived (Agarwal,
2013; Haroche and Raimond, 2013). This gives

γc ¼
g2κ

κ2 þ Δ2
ac
. ð15Þ

With increasing detuning Δac between atom and cavity, the
decay into the resonator mode is suppressed. When the cavity
mode covers only a small fraction ζ of the solid angle, the
atomic polarization decay rate γ via emission into free-space
modes remains unchanged. Otherwise, γ ¼ ð1 − ζ=4πÞΓ=2,

which can lead to an increased lifetime of the atomic excited
state in the cavity.
It is remarkable that on resonance γc ¼ 2Cγ can be much

larger than γ. The radiative interaction of the atom with the
environment is then dominated by the cavity mode rather
than the free-space modes. This leads to the notion of a “one-
dimensional atom” (Kimble, 1998).
Early observations of atomic lifetime reduction in optical

resonators are reported in Heinzen et al. (1987) and Kreuter
et al. (2004). Figure 4 shows the results obtained in a recent
study (Tiecke et al., 2014) in the Purcell regime with C ¼ 4

and κ ¼ 25g. An almost tenfold reduction of the atomic
excited state lifetime is observed.
The best explored application of the modified decay rate is

the implementation of an efficient source of single photons,
which has been realized in many atomic and solid-state
systems [for a review, see, e.g., Eisaman et al. (2011)]. To
this end, the atom is excited, e.g., by a short resonant laser
pulse. Subsequently, it decays back to the ground state via the
resonant cavity mode, which is coupled to a single propagat-
ing mode at a rate κout. The fraction of photons emitted into
this mode is then

κout
κ

γc
γ þ γc

¼ κout
κ

2C
1þ 2C

: ð16Þ

Note that Eq. (16) has been derived under the assumption
κ ≫ g. For an efficient photon source, clearly a large coop-
erativity of the atom-cavity system is required. The topic of
photon generation in atom-cavity systems is revisited in
Sec. III.

D. Coupling to propagating light fields

In the treatment of Sec. I.C the coupling of the cavity mode
to the outside world has been considered as a damping term.
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FIG. 4 (color online). Purcell-enhanced atomic emission. On
resonance (upper fit curve), the presence of a photonic-crystal
cavity with κ ¼ 2π × 12.5 GHz guides the fluorescence of a
single atom into the cavity mode and shortens the excited state
lifetime from 26 to 3 ns. Both effects are less pronounced at a
detuning of −41 GHz (lower lying fit curve). The inset shows the
dependence of the decay rate on the atom-cavity detuning.
Adapted from Tiecke et al., 2014.
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Now this approach is extended using the framework of input-
output theory (Gardiner and Collett, 1985; Carmichael, 1993)
to calculate the coherent response of the system to impinging
light fields.
Consider an asymmetric Fabry-Perot cavity with field

decay rates κr and κl through the right and left mirrors,
respectively, and losses κloss as depicted in Fig. 1. The
operators ain;l (ain;r) are the field operators of an electromag-
netic mode impinging from the left (right) side (see Fig. 5),
while aout;l (aout;r) describe the outgoing field to the left (right)
side, respectively. a is the annihilation operator for a photon in
the cavity. Then the relation between the input and output
modes (in the Heisenberg picture) is given by (Agarwal, 2013)

aout;rðtÞ þ ain;rðtÞ ¼
ffiffiffiffiffiffiffi
2κr

p
aðtÞ; ð17aÞ

aout;lðtÞ þ ain;lðtÞ ¼
ffiffiffiffiffiffi
2κl

p
aðtÞ. ð17bÞ

For simplicity, assume the system is weakly driven from the
left side only. Then the above relations allow one to calculate
the reflection and transmission properties by solving the
Heisenberg-Langevin equation of motion (Cirac et al.,
1997; Carmichael, 2002; Duan and Kimble, 2004; Walls
and Milburn, 2008; Agarwal, 2013). These equations follow
from the master equation and dhAi=dt ¼ trðA_ρÞ, valid for the
expectation value of any system operator A. For an atom-
cavity system, this gives

h _ai ¼ −
i
ℏ
h½a;HJC�i − κhai þ

ffiffiffiffiffiffi
2κl

p
hain;liðtÞ; ð18aÞ

h _σcei ¼ −
i
ℏ
h½σce;HJC�i − γhσcei. ð18bÞ

Here κ ¼ κl þ κr þ κloss is the total cavity field decay rate.
Equations (18) can be integrated numerically to calculate the
dynamics of the system.
In addition, an analytic result can also be obtained ([see,

e.g., Hu et al. (2008) and Tiecke et al. (2014)] when the
atomic excitation is negligibly small and the photonic wave
packet envelope varies only on a time scale longer than the
cavity decay time. This gives the following relations for the
amplitude reflection rðωÞ and transmission tðωÞ coefficients,
depending on the detuning ΔcðaÞ ≡ ω − ωcðaÞ of the driving
laser with respect to the cavity (atomic transition) frequency
ωc (ωa), respectively:

rðωÞ ¼ 1 −
2κlðiΔa þ γÞ

ðiΔc þ κÞðiΔa þ γÞ þ g2
; ð19aÞ

tðωÞ ¼ 2
ffiffiffiffiffiffiffiffi
κlκr

p ðiΔa þ γÞ
ðiΔc þ κÞðiΔa þ γÞ þ g2

. ð19bÞ

The phase of the reflected light is arg (rðωÞ), while the
intensity reflection and transmission coefficients are given by
RðωÞ ¼ jrðωÞj2 and TðωÞ ¼ jtðωÞj2, respectively.
Measuring the spectrum of the empty cavity transmission

and reflection allows for a quantification of the rates κl, κr, and
κloss. However, the influence of the mode-matching efficiency
ξ between the spatial mode profile of the impinging light and
that of the cavity mode has to be considered. In Fabry-Perot
resonators, any light field that is not coupled to the cavity will
be reflected with R≃ 1. Thus, RexpðΔcÞ ¼ ð1 − ξÞ þ ξRðΔcÞ.
Figure 6(a) shows transmission and Fig. 6(b) reflection

spectra, measured in the strong-coupling regime with
ðg; κ; γÞ ¼ 2π × ð7; 2.5; 3Þ MHz in the coupled (squares)
and uncoupled (circles) case. The system is overcoupled.
For photons impinging from the left side, this means that
κl ≫ κloss; κr. The black lines are fit curves according to the
equations above, which yield κ ¼ 2π × 2.5ð1Þ MHz and
κl ¼ 2π × 2.3ð1Þ MHz. The gray curves are calculated using
Δa ¼ Δc, the fit values of κ, a coupling strength g ¼ 2π×
7 MHz, and a mode-matching parameter ξ ¼ 0.9. The latter
has been estimated by measuring the coupling efficiency of
light transmitted through the cavity from the right into the
antireflection coated optical fiber from which the input mode
ain;l emerges.
Note the good agreement between experiment (gray

squares) and theory (gray line). Compared to the first
measurements displayed in Fig. 3(b), an improved control
over the atomic state, as described in Sec. II, makes the
observed spectrum (gray squares) approach the ideal expect-
ation (gray line). The position of the peaks is centered around
�g. Thus, the spectrum exhibits resonances at the energy
eigenstates of the coupled system calculated in Eq. (9). The
full width at half maximum (FWHM) of the peaks is in good
agreement with the linewidth-averaged value of κ þ γ that is
expected from the solution of the master equation [Eq. (13)].
For a derivation, see Agarwal (2013). For comparison, the
transmission without a coupled atom is also depicted (black
circles), showing a Lorentzian resonance with FWHM 2κ.
From the obtained parameters, one can also calculate the

phase response of the system, as shown in Fig. 6(c) in
transmission and Fig. 6(d) in reflection. Note that in reflection,
unlike in transmission, a phase shift of π occurs around zero
detuning for the case of an empty cavity. With a coupled atom,
the phase shift is zero, as observed by Reiserer, Ritter, and
Rempe (2013) in the strong-coupling regime and by Tiecke
et al. (2014) and Volz et al. (2014) in the Purcell regime. The
resulting conditional phase shift is the basis for the realization
of robust quantum gates (Reiserer et al., 2014) following the
proposal of Duan and Kimble (2004). This will be the topic of
Sec. IV.D.

FIG. 5 (color online). Visualization of the field annihilation
operators describing the input and output of the cavity field.
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E. Coupling to a third level

The previous sections described the coupling of a two-level
atom (with states jci and jei) to the cavity field at a rate g. This
section introduces an additional uncoupled ground-state level
jui detuned by Δu from the resonator frequency, as illustrated
in Fig. 1(b). AssumingΔu ≫ g, the direct coupling of the third
level to the resonator mode is negligible. In addition, there is
no decay between the two ground states jci ↮ jui. Such a
three-level system is often termed to display aΛ configuration.
Now an external laser field is applied at a frequency

ωL ¼ ωa þ Δu þ Δac, i.e., in two-photon resonance with
the resonator mode and detuned from the atomic level jei
by Δac. This control laser is irradiated from the side of the
cavity and leads to a coupling jui↔jei with a Rabi frequency
of ΩL. Setting the energy origin at jc; 0i results in the
following Hamiltonian:

HΛ ¼ ℏωaσee þ ℏΔuσuu|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
atom

þ ℏωca†a|fflfflfflffl{zfflfflfflffl}
cavity

þ ℏgða†σce þ σecaÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jaynes-Cummings coupling

þ ℏ
ΩL

2
ðσue þ σeuÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

external laser

. ð20Þ

The analysis is restricted to the experimentally most
relevant case where only a single excitation is present in

the system. Here the energy eigenstates of the coupled system
are

E0 ¼ ℏωc; ð21aÞ

E� ¼ ℏωc þ
ℏ
2
ðΔac �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

ac þ Ω2
L

q
Þ. ð21bÞ

In analogy to the Jaynes-Cummings doublets introduced in
Sec. I.B, there are now state triplets. One of the states is
located on the cavity resonance. The splitting of the other two
states increases with increasing laser power. The width of the
resonances can again be calculated by solving the master
equation of the system, cf. Eq. (13). Potential decay or
dephasing of the ground states can be included as additional
jump operators.
Similar to the Jaynes-Cummings results [see Eq. (12)], the

eigenstates of the coupled three-level system are linear
combinations of the uncoupled states ju; 0i, jc; 1i, and
je; 0i. Note that one of these new eigenstates is a dark state
that does not contain a contribution from the excited state and,
hence, is not subject to spontaneous emission. This state reads

jΛ0i ¼ cos θju; 0i − sin θjc; 1i. ð22Þ

Here the mixing angle θ is given by tan θ ¼ ΩL=2g. The
coherent dark state allows one to control the interaction
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FIG. 6 (color online). (a) Transmission and (b) reflection spectra of a single-sided, overcoupled cavity in the strong-coupling regime.
Without the presence of an atom (black circles and black fit curves), the cavity exhibits a Lorentzian transmission resonance, which is
also observed as a drop in reflection. The sum of transmission and reflection is less than 100% due to mirror absorption and scattering.
With an atom trapped in the mode (gray squares and gray theory curves), the vacuum-Rabi peaks are clearly resolved. The discrepancy
of the data points from the theory curve is explained by inhomogeneous broadening of the atomic transition frequency. (c), (d) Phase
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observed in reflection for the case of an empty cavity.
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between the atom and a photon in the cavity via the applied
laser intensity. This is employed, in particular, in single-
photon generation and storage experiments, as discussed in
detail in Secs. III and IV. In addition to providing such control,
the use of a Raman coupling scheme allows one to trade
effective atom-cavity coupling strength for a smaller effective
spontaneous-emission rate via a proper choice of the detuning
Δac. For this reason, most processes considered in this review
exhibit a scaling with C, rather than with the worse of g=κ
and g=γ.
The first spectroscopic observation of the coherent dark

state with a single trapped atom was reported by Kampschulte
et al. (2010) and Mücke et al. (2010). Figure 7 shows an
experimental transmission spectrum here recorded with ∼15
atoms to increase the cooperativity and thus the visibility of
the observed features. The black curve shows the transmission
of the empty cavity, which is a Lorentzian of FWHM 2κ. The
dashed curve shows the vacuum-Rabi splitting obtained in the
coupled case without the control laser, i.e., ΩL ¼ 0. Finally,
the gray solid curve shows the transmission resonances when
ΩL ≠ 0. One can clearly resolve the three peaks predicted
from Eq. (21). As expected, for nonzero control-laser power
the vacuum-Rabi peaks are shifted to larger detunings and an
additional resonance appears at the frequency of the empty
cavity. The width of this transmission resonance is much
smaller than both the atomic and cavity linewidths, proving
the coherence of the dark state.

II. EXPERIMENTAL TECHNIQUES

As mentioned in the Introduction, the focus of this article
lies on quantum interfaces between optical photons and single
atoms trapped in vacuum. Using natural atoms has the
advantage that it is easily possible to have several emitters
with identical properties that do not change over time. In
combination with long atomic ground-state coherence times,

this allows one to realize a very clean model system. This,
however, comes at the price of three experimental challenges.
First, the small atom-photon interaction strength requires

excellent optical cavities. The different resonator designs
employed in current experiments are explained in Sec. II.A.
Second, the requirement to trap single atoms in the vacuum

results in a technically demanding experimental setup, includ-
ing an ultrahigh-vacuum system and well-stabilized lasers.
Extensive use can be made of the powerful techniques of laser
cooling and trapping (Metcalf and van der Straten, 1999) that
have been developed over the past decades. This is the topic of
Secs. II.B and II.B.3.
Finally, trapped atoms often exhibit a level structure that is

more complicated than the three-level system discussed
previously. Therefore, techniques to initialize and readout
the atomic state are required. These are presented in Sec. II.C.

A. Optical resonator designs

An optical resonator that allows for the implementation of
an efficient quantum interface should fulfill the following two
conditions:

C ≫ 1; ð23aÞ

κout ≫ ðγ; κlossÞ. ð23bÞ

These conditions indicate the need for high-quality resonators
(i.e., small κloss) with a small mode volume (i.e., large g).
Several different approaches exist toward realizing such a
resonator, the most prominent being the use of Fabry-Perot
cavities, whispering-gallery-mode resonators, and photonic-
crystal cavities. These are briefly discussed in the following.
For a more detailed review, see Vahala (2003, 2004).
The first approach that has reached C ≫ 1 in the optical

domain is the use of Fabry-Perot resonators. Such a cavity
consists of two curved mirrors, facing each other at a short
distance, as illustrated in Fig. 8(a). In order to achieve the
condition expressed by Eq. (23b), excellent dielectric mirrors
with small surface roughness are required. This can be
achieved with commercially available superpolished mirrors,
typically coated with a stack of dielectric interference layers
which are deposited by means of an ion-beam sputtering
technique. Transmission and scattering losses both below
1 ppm per mirror have been reported (Rempe et al., 1992),
corresponding to a finesse of 1.9 × 106. Details about the
characterization of such mirrors can be found in Hood,
Kimble, and Ye (2001). In addition to superpolished mirrors,
the fabrication of low-roughness depressions with smaller
radii of curvature, either by etching (Trupke et al., 2005) or by
laser machining (Hunger et al., 2012), is a recent promising
direction. The latter has enabled the assembly of cavities with
mode volumes on the order of 103λ3 and a cooperativity of
C≃ 145 (Colombe et al., 2007). Optimization of the fab-
rication process leads to high finesses exceeding 105 (Hunger
et al., 2010; Muller et al., 2010; Uphoff et al., 2015) and
frequency-degenerate polarization eigenmodes (Uphoff
et al., 2015).
The use of Fabry-Perot resonators has been widely explored

experimentally, with typical cavity linewidths in the range of a
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FIG. 7 (color online). Electromagnetically induced transparency,
observed with about 15 atoms trapped in a cavity. When the
cavity is empty or the atoms are prepared in the uncoupled state
(black), a Lorentzian transmission peak is obtained. When the
atoms are prepared in the coupled state, the vacuum-Rabi splitting
is observed (dashed theory curve). When an additional control
laser is switched on (data with error bars and theory curve), the
transmission peaks are shifted outward, and the spectrum exhibits
a narrow transparency window, which indicates the presence of a
coherent dark state. Adapted from Mücke et al., 2010.
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few MHz, comparable to the spectral width of an alkaline-
atom resonance line. Such resonators have several advantages
compared to the other approaches: First, an atom in the
resonator can be optically accessed from the side, independent
from the resonator mode. This is favorable for Raman
coupling (see Sec. I.E) and moreover allows for trapping
and cooling in cavity-independent potentials (see Secs. II.B
and II.B.3). Second, the energy of a photon in the resonator is
almost completely stored in the vacuum, which makes
material absorption less critical and facilitates trapping of
several individually addressable atoms in the same resonator
mode. Third, the atom is far away from any dielectric surfaces,
which prevents the undesired influence of surface forces
and charges. Finally, the cavity length can be easily tuned
and actively stabilized when the mirrors are mounted on a
piezoelectrical crystal.
Unfortunately, these advantages come at the price of an

atom-cavity coupling rate that is bounded to a few 100 MHz
since the standing-wave light field of the cavity mode
significantly penetrates into the mirror coatings, an effect
which sets a lower bound to the achievable mode volume V
[see Eq. (3)] (Hood, Kimble, and Ye, 2001). An early
approach to improve the coupling strength was the use of
so-called whispering-gallery modes (Vahala, 2003) in micro-
spheres, microtoroids, and bottle resonators; see Fig. 8(b). In
contrast to Fabry-Perot cavities, the field is predominantly
guided in the material, typically silicon dioxide. Nevertheless,
atoms can be coupled to the cavity mode when they are
brought into the evanescent field of the mode, i.e., within a
distance of ∼100 nm to the surface. Typical cavity linewidth
values are tens of MHz, which enables one to reach the strong-
coupling regime in experiments with falling atoms (Aoki
et al., 2006) with C≃ 20, a value comparable to those
achieved in Fabry-Perot resonators. Unfortunately, the reali-
zation of a larger C seems difficult in these experiments as the

atom would need to fly closer to the material where the
attractive van der Waals force would quickly pull the atom
onto the surface (Alton et al., 2011). For the same reason,
atom trapping has not been achieved with these whispering-
gallery resonators so far, which hinders experiments that
require long atomic coherence times or the simultaneous
presence of several atoms. Beyond these challenges, it was
recently observed that whispering-gallery-mode resonators
open up new possibilities stemming from the nontransversal
character of the evanescent light field (Junge et al., 2013).
In contrast to whispering-gallery-mode resonators, atom

trapping has been demonstrated near photonic-crystal resona-
tors, where the photon field is confined by the photonic band
gap that a suitably patterned microstructure can exhibit; see
Fig. 8(c). The achievablemodevolumes can be extremely small,
on the order of λ3. This results in coupling strengths in the range
of GHz, values that have allowed reaching the strong-coupling
regime with quantum dots (Reithmaier et al., 2004; Yoshie
et al., 2004). The combination of photonic-crystal cavities and
neutral atomswas proposed (Vučković et al., 2001) and recently
achieved (Thompson et al., 2013). In this experiment, deter-
ministic loading and stable trapping of a single atom in the
cavity mode was demonstrated using an optical tweezers trap.
Further improvements of the resonator design have reduced the
resonator linewidth to κ=2π ≃ 13 GHz. With this, the Purcell
regimewas reachedwith a cooperativity ofC≃ 4 (Tiecke et al.,
2014). The high rates of g and κ allow for an investigation of
atom-photon interactions on short time scales and make this
approach promising for the implementation of quantum inter-
faces with a large bandwidth.

B. Observing, trapping, and cooling single atoms

CQED with single atoms has a long history. The first
experiments in the optical domain employed thermal atomic

(a) (c)

2µm

(b)

FIG. 8 (color online). Optical resonator designs. (a) Top: Schematic of a Fabry-Perot cavity. The resonator is formed by two
facing mirrors with high reflectivity. A small residual mirror transmission allows for incoupling and outcoupling of light. Bottom:
Photograph of a fiber-based Fabry-Perot resonator. The mirrors are the coated end facets of two optical fibers, which allows for
improved optical access. The fibers are surrounded by a copper sleeve to facilitate ion trapping in the ∼200 μm small gap between
the mirrors. Adapted from Brandstätter et al., 2013. (b) Microtoroid (left) and bottle (right) resonators. Atoms are coupled to the
evanescent field of a whispering-gallery mode that circulates in the glass structure. The mode diameter is typically on the order of
100 μm. The resonator is coupled to a nanofiber with a rate that can be adjusted via the fiber distance. Bottom: Scanning electron
microscope image of a microtoroid with a diameter of 120 μm. Adapted from Vahala, 2003 and Junge et al., 2013. (c) Photonic-
crystal cavity. Top: Sketch of the experiment. Atoms are trapped in a standing-wave optical tweezer ∼0.2 μm from the surface of
the resonator. The electric field of the resonator mode is confined to a volume of less than λ3 using a periodic modulation of the
refractive index. The cavity is coupled to a propagating mode via a fiber taper visible at the left side. Bottom: Scanning electron
microscope image. Adapted from Tiecke et al., 2014.

Andreas Reiserer and Gerhard Rempe: Cavity-based quantum networks with single … 1389

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



beams, with a decreasing number of atoms in the cavity, which
eventually led to the observation of the vacuum-Rabi splitting
with an average atom number of only 1 (Thompson, Rempe,
and Kimble, 1992). However, atom-light interaction was
limited to very short times, typically less than a few hundred
nanoseconds in these experiments, hampering the unambigu-
ous detection of single atoms.
To improve, the techniques of laser cooling and trapping

(Metcalf and van der Straten, 1999) were introduced to
CQED. The first steps along these lines were taken by
releasing cold atoms from a magneto-optical trap such that
they fall through a high-finesse optical cavity. This allowed
one to reach longer interaction times of some 10 μs, sufficient
to detect single atoms on their transit through the cavity mode
by measuring the resonator output when driving the system
with a faint laser (Mabuchi et al., 1996; Hood et al., 1998;
Hennrich et al., 2000; Trupke et al., 2007; Terraciano et al.,
2009). This approach has even allowed one to continuously
observe atoms in real time and to reconstruct individual
atomic trajectories (Hood et al., 2000; Pinkse et al., 2000;
Puppe et al., 2004). Later, it was also applied to atoms passing
toroidal resonators (Aoki et al., 2006), where the transit time
through the small resonator mode is even shorter, ∼1 μs.
Interaction times can be further increased when using an
atomic fountain with the cavity at the turning point of the
atoms (Münstermann et al., 1999, 2000). Figure 9 shows an
experimental trace recorded in this configuration.
Albeit many of the basic functionalities of a quantum

interface can be demonstrated with flying atoms, it is obvious
that the connection of several systems to a quantum network
requires atom trapping. The major concern in this respect is to
achieve long storage times and the maximum possible
coupling strength. The latter requires that the atom is tightly
localized, such that the extent x0 of the atomic wave packet in
the ground state of the potential is small compared to the mode
structure of the cavity. This usually implies x0 ≪ λ, favoring
the use of tight potentials with trap frequencies on the order of
100 kHz. Such trap frequencies are larger than the recoil
frequency that corresponds to the momentum of a single
resonant photon. Therefore, the motional state of the atom
rarely changes in absorption and emission events. Such a

situation is called the Lamb-Dicke regime (Leibfried et al.,
2003) and is favorable for efficient laser cooling, even to the
ground state of the potential.
Trapping in the Lamb-Dicke regime was achieved in two

different approaches: First, by electrical trapping of charged
atoms, usually cations (Leibfried et al., 2003), and second, by
optically trapping neutral atoms in far-detuned laser fields
(Grimm, Weidemüller, and Ovchinnikov, 2000; Ye, Kimble,
and Katori, 2008). These two approaches will be discussed in
the following.

1. Ion traps

While the first CQED experiments with trapped atoms used
neutral atoms (Ye, Vernooy, and Kimble, 1999), the imple-
mentation of an ion trap in a Fabry-Perot resonator was also
early realized (Guthöhrlein et al., 2001; Mundt et al., 2002).
This has allowed for very long trapping times of more than
90 min (Keller et al., 2004). In addition, excellent control over
the position of trapped ions within the resonator field has
quickly become experimentally feasible. This can be seen in
Fig. 10(a), where the position of a single ion has been shifted
in a controlled way, thus mapping out the mode structure of a
Fabry-Perot resonator (Guthöhrlein et al., 2001). Recently,
position control was also demonstrated individually for two
ions trapped in the same cavity (Casabone et al., 2013).
Unfortunately, experiments with ion traps have long been

limited to rather long cavities because of the technical
difficulty that surface charges on the dielectric mirrors of
optical resonators tend to disturb the electric trapping poten-
tial. Therefore, neither the Purcell nor the strong-coupling
regime has been reached with trapped ions until today; albeit
there is recent progress due to the development of high-finesse
fiber-based Fabry-Perot cavities (Hunger et al., 2010).
Because of their smaller size, the size of the required dielectric
surfaces is reduced and the resulting fields can be efficiently
shielded using metal sleeves. Thus, such resonators allow for
ion trapping in a sufficiently small mode volume to fulfill the
condition g > γ (Steiner et al., 2013). With improved mirror
finesse, operation in the Purcell regime might become
feasible. Other experiments even try to reach the strong-
coupling regime (Brandstätter et al., 2013).

2. Optical dipole traps

In contrast to trapped ions, a cooperativity larger than unity
has been achieved in many experiments trapping neutral
atoms. Remarkably, it was early demonstrated in two inde-
pendent experiments (Hood et al., 2000; Pinkse et al., 2000)
that even the force of a laser beam that contains only one
photon on average can suffice to trap an atom on a ms time
scale when operating on a strongly coupled transition. In all
experiments that employ several atomic levels, however, a
state-insensitive trap is required. In this respect, the first
milestone was the achievement of a 28 ms atom storage time
(Ye, Vernooy, and Kimble, 1999) in a far-off-resonance dipole
trap (FORT) (Metcalf and van der Straten, 1999; Grimm,
Weidemüller, and Ovchinnikov, 2000), implemented in a
standing-wave configuration along the cavity axis.
Optical traps are typically only a few mK deep. Therefore, it

is important to load the trap with precooled atoms. Most
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FIG. 9 (color online). Observation of single atoms launched from
an atomic fountain on their pass through a Fabry-Perot cavity.
(a) Sketch of the used experimental setup. (b) Cavity transmission
signal. When an atom arrives in the mode, the transmission of a
weak probe laser drops. The depth and duration of the dip are
determined by the cavity parameters and the specific atomic
trajectory. Adapted from Münstermann et al., 1999.
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experiments use a magneto-optical trap as a starting point.
Then the atoms are transferred to the cavity field by dropping
them from above, using an atomic fountain from below, or
employing a running-wave transfer trap (Nußmann, Hijlkema
et al., 2005). In combination with single-atom imaging, even
deterministic atom loading was demonstrated, either with an
optical conveyor belt (Fortier et al., 2007; Khudaverdyan
et al., 2008) or by shifting an optical tweezers trap (Thompson
et al., 2013) to the resonator mode. An alternative method uses
single-atom extraction from a small Bose-Einstein conden-
sate, transferred to the cavity mode by shifting a confining
radio-frequency potential on an atom chip (Gehr et al., 2010;
Volz et al., 2011).
To observe long trapping times even when the atom is

constantly illuminated requires efficient cooling, which was

first demonstrated by McKeever et al. (2003). Figure 10(b)
shows an experimental trace obtained in this study, where the
transmission of a faint laser through the resonant cavity is
shown. When one or several atoms are present in the trap, the
transmission is reduced with increasing atom number. This
has allowed one to demonstrate single-atom trapping under
constant observation for a period of about 500 ms. The
techniques developed to further increase the trapping times
and to reduce the temperature are discussed in more detail in
Sec. II.B.3.
As mentioned previously, it is highly desirable to achieve

tight confinement and high trap frequencies. With optical
traps, this typically requires a standing-wave configuration
and high intensities. Unfortunately, the latter comes at the
price of potentially large scattering rates that can cause heating
and decoherence. The common solution is to choose a large
detuning Δ of the trap light with respect to the atomic
transition frequency, as the trap depth scales as 1=Δ; the
scattering rate, however, scales as 1=Δ2 (Grimm,
Weidemüller, and Ovchinnikov, 2000). This is the reason
why most CQED experiments with optical dipole traps
operate at a detuning of tens or even hundreds of nanometers,
often limited by the power the resonator can withstand.
Still, achieving long trapping times with neutral atoms can

be hampered by large parametric heating rates caused by
fluctuations of the optical trap. This is especially problematic
when using an intracavity dipole trap whose intensity is
typically very sensitive to acoustic vibrations of the cavity
mirrors. Nußmann, Murr et al. (2005) avoided this problem by
using a cavity-independent FORT. With a combination of
vacuum-stimulated and Sisyphus cooling, trapping times of
17 s have been demonstrated, later increased to more than
1 min on average (Specht et al., 2011), which is most likely
limited by collisions with the room-temperature background
gas.
In addition to increased storage times, using a cavity-

independent trap has another advantage: it facilitates changing
the position of the atom along the beam axis with submicron
precision by shifting the standing-wave pattern of the trapping
laser (Nußmann, Hijlkema et al., 2005). In combination with
single-atom imaging, full control over the atomic position
with respect to the cavity field has thus also been achieved
with neutral atoms (Reiserer et al., 2013).

3. Cooling

Numerous approaches have been explored to improve the
localization of atoms in CQED and to extend the storage
times. An early approach was to gain information about the
atomic position and momentum from the temporal modulation
of a resonant laser beam transmitted through the cavity (Hood
et al., 2000; Pinkse et al., 2000). Subsequent feedback onto
the trap allowed one to reduce the scattering-induced heating
(Fischer et al., 2002). With the implementation of an optical
dipole trap and fast electronics, feedback-increased storage
times have been observed (Kubanek et al., 2009). With a
higher output-coupling efficiency of the cavity, the available
rate of information about the atomic motion has been
increased. This facilitated cooling of the atomic motion and
average trapping times exceeding 1 s (Koch et al., 2010).
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FIG. 10 (color online). (a)–(d) Measurement of the spatial
structure of the electromagnetic field within a high-finesse
Fabry-Perot cavity. An ion is trapped in a radio-frequency
potential. When the trap is shifted, the rate of photons scattered
into free space out of a laser beam that drives the resonator mode
reveals the spatial structure of the cavity field. The solid curve is a
fit that includes saturation of the atomic transition. By changing
the incoupling, different resonator modes can be mapped (a)–(d).
The insets show the calculated mode structures, and arrows
indicate the scan paths. Adapted from Guthöhrlein et al., 2001.
(e) State-insensitive trapping of single atoms in a Fabry-Perot
cavity in the strong-coupling regime. The depth of transmis-
sion suppression of a faint resonant probe laser allows for
continuous monitoring of the number of atoms N trapped in
the resonator (when N < 3). In both depicted traces, the initial
drop is caused by several atoms that are cooled into the cavity
mode. Subsequently, the transmission increases in steps when-
ever one atom is lost from the trap. Adapted from McKeever
et al., 2003.
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The first CQED experiments with second-long neutral-
atom trapping times (McKeever et al., 2003), however, used a
different cooling method, namely, a combination of red-
detuned Doppler cooling (on a closed transition) and blue-
detuned Sisyphus cooling (on another transition). In these
experiments, Cs atoms were trapped in a magic-wavelength
(Ye, Kimble, and Katori, 2008) FORT in a standing-wave
configuration along the cavity axis. With a cavity-independent
trap, trapping times have been increased above 1 min on
average (Specht et al., 2011) using Rb atoms and intracavity
Sisyphus cooling (Nußmann, Murr et al., 2005).
The above-mentioned cooling mechanisms (feedback,

Doppler, and Sisyphus cooling) all lead to the observation
of long storage times. However, it is also important to achieve
the highest possible cooling rate, as many experimental
protocols require photon scattering that causes heating.
Similarly, it is also important to cool the atoms to a low
temperature to avoid motion-induced dephasing, fluctuations
in the atom-cavity coupling strength, and a time-varying ac
Stark shift of the atomic levels in case the trap is not a magic
one (Ye, Kimble, and Katori, 2008). Therefore, the quest for
fast and efficient cooling mechanisms has not come to an
end yet.
Along these lines, a mechanism was proposed (Horak et al.,

1997; Vuletić and Chu, 2000) that directly makes use of the
coupling to a cavity. The first implementation (Maunz et al.,
2004) of this cavity-cooling method used neutral Rb atoms in
an intracavity dipole trap, while cooling of a Srþ ion is
reported in Leibrandt et al. (2009). Meanwhile, even cooling
below the recoil limit has been demonstrated with an atomic
ensemble trapped in a long cavity of high finesse (Wolke
et al., 2012). Unfortunately, cavity cooling requires the
operation at a specific detuning, which often conflicts with
experiments that operate at a different detuning or on
resonance. The same holds for the recently proposed
(Bienert and Morigi, 2012) and observed (Kampschulte et al.,
2014) cooling based on electromagnetically induced trans-
parency (Roos et al., 2000) in a cavity QED setting. Thus, the
use of another technique is often desirable.
To this end, Raman sideband cooling has been investigated,

following many successful experiments in free space with
single trapped ions (Leibfried et al., 2003). The first experi-
ment in CQED used this mechanism in one dimension only,
achieving a ground-state probability of 95% along the axis of
an intracavity dipole trap (Boozer et al., 2006). Later, cooling
to the three-dimensional ground state could be demonstrated
in a three-dimensional optical lattice with high trap frequen-
cies in all directions (Reiserer et al., 2013).
Figure 11 shows the experimental results obtained in this

study. The gray curve shows a sideband spectrum after
intracavity Sisyphus cooling. The mean vibrational quantum
number, obtained from the ratio of the red and blue sidebands
(Leibfried et al., 2003), is about or even below one quantum
along all three spatial axes. After 5 ms of Raman sideband
cooling, the red sideband peaks vanish completely, proving
cooling to the three-dimensional motional ground state with a
probability of 89(2)%.

In addition to its motion, the position of the atom was also
fully controlled in this experiment, thus realizing the ideal
CQED situation: A pointlike single atom trapped at a fixed
position and strongly coupled to an optical resonator.

C. Measurement and control of the internal atomic state

The implementation of quantum interfaces not only
requires control over the position and momentum of the
trapped atoms, but also techniques to initialize, manipulate,
and readout the internal state of the atoms. Many of the
required tools have been pioneered in free-space experiments
with trapped ions (Leibfried et al., 2003) and neutral atoms
(Meschede and Rauschenbeutel, 2006). In the following
section, the most common techniques realized in CQED
setups are summarized.

1. Detection of the atomic state

In any quantum network, the projective readout of the
stationary nodes is of central relevance. In the following, the
properties that an ideal readout process should exhibit are
listed: First, it is nondestructive. This trivially means that after
the readout procedure, the atom is still trapped. Second, the
readout gives an unambiguous result in every attempt. Third,
after the measurement the atom is projected to an eigenstate
within the qubit subspace with a probability that fully reflects
the initial atomic state. Finally, the readout procedure is fast
enough to allow for feedback onto the quantum state, which is
a prerequisite for measurement-based quantum information
processing (Briegel et al., 2009), entanglement purification
(Bennett et al., 1996; Dür and Briegel, 2007), and quantum
error correction (Lidar and Brun, 2013).

FIG. 11 (color online). Full control over the atomic motion.
Atoms are trapped in a three-dimensional optical lattice with
different trap frequencies along the three orthogonal axes. When a
Raman sideband spectrum is recorded after intracavity Sisyphus
cooling, three peaks are resolved on either side of the carrier
(dashed Lorentzian fit), at the positions of the three red (left side)
and the three blue (right side) sidebands. After Raman sideband
cooling, the atom is prepared in the three-dimensional ground
state of the trapping potential and the red sideband peaks vanish.
From Reiserer et al., 2013.
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In principle, atomic-state readout is possible using atom-
photon quantum-state transfer, followed by detection of the
photon. This technique is described in detail in Sec. III.C.
Unfortunately, due to limited transfer and detection effi-
ciencies, the readout procedure is not deterministic.
Instead, to achieve the ideal atomic-state readout

described previously, two other techniques can be employed
in CQED systems. Both are based on measuring the photons
emitted from the cavity while optically exciting the system.
The difference is that in the first approach the cavity field is
excited while in the second approach the atom is driven by a
laser impinging from the side of the resonator.
We start by describing the second approach, fluorescence

state detection, which is similar to the electron-shelving
technique pioneered in ion-trap experiments (Leibfried et al.,
2003). The basic idea is to drive the atom on a cycling
transition, say the transition between the coupled state jci and
the excited state jei, and to detect the fluorescence photons
with single-photon counters. When the atom is in the “dark”
level jui, which is detuned much farther than the linewidth of
the transition, then no photons will be detected. Clearly, the
achievable fidelity is limited by the probability to lose the
atom from the trap or to pump it from the dark to the bright
level (or vice versa) before detecting enough photons to
discriminate the two.
When the atom is trapped in a cavity, one can take

advantage of the Purcell effect (see Sec. I.C.2), which guides
the emitted photons into the cavity mode. Thus, very high
photon collection efficiencies can be realized, thereby dras-
tically reducing the number of scattered photons that are
required to detect the atomic state. This procedure was first
implemented to detect the hyperfine state of a 87Rb atom
trapped in a cavity in the intermediate coupling regime
(Bochmann et al., 2010). Figure 12(a) shows a histogram
of the detected photon number per shot when the atom is in the
bright or dark state. The two states can be discriminated within
85 μs with a fidelity of 99.4%.
The fluorescence scheme has two major advantages.

First, it is not very sensitive to the atom-cavity detuning.
This can facilitate a state measurement for each of several
atoms that are trapped in the same cavity and detuned from its
resonance. Second, it provides a high contrast between the
bright and dark states, even if C≲ 1. This allows for very fast
state detection irrespective of the detector dark time. Thus, a
fidelity of 99.65% within 3 μs has recently been achieved in a
system with C≃ 3 (Reiserer et al., 2014). In comparison to
the results of Bochmann et al. (2010), less time is required to
detect the atomic state, which is the result of improved control
over the atomic position and momentum (Reiserer et al.,
2013).
In contrast to the fluorescence scheme, state detection via

pumping the cavity typically requires operation at C > 1.
Here the detection mechanism is a change of the cavity
transmission and reflection when an atom is coupled to the
resonator, as explained in more detail in Sec. I.D. The
achievable fidelity is again limited by the probability of atom
loss and bright-to-dark state pumping. Figure 12(b) shows the
results obtained in the first experiment that successfully
demonstrated state detection using this approach (Boozer
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FIG. 12 (color online). Atomic-state detection (a) Fluorescence
state detection. The cavity output photons are measured when the
atom is driven on a closed transition with a laser beam applied from
the side of the cavity. By setting a suitable threshold (dashed line),
one can unambiguously discriminate the fluorescent “bright” state,
where several photons are detected within a certain time interval,
from the detuned “dark” state, where no photons are detected.
Adapted from Bochmann et al., 2010. (b) Transmission state
detection. A weak resonant laser drives the cavity along its axis.
When the atom is in a detuned state jui, it does not alter the
transmission of the resonator. Within a certain time interval, one
observes a Poissoniandistribution of detectedphotons. If the atom is
in the coupled state (jci), the transmission is strongly suppressed.
The two obtained distributions are clearly separated, which allows
for unambiguous discrimination of the two states. Adapted from
Boozer et al., 2006. (c) Continuous detection of and feedback onto
the combined state of two atoms trapped in the same resonator. Top:
Experimentally obtained cavity transmission signal. The vertical
lines indicate the instants when a feedback pulse is applied to
transfer one of the atoms to the coupled or uncoupled ground state.
Bottom: Number of atoms α in the coupled state according to the
Bayesian state estimation. Because of the feedback, the probability
for α ¼ 1 is maximized. Right: Histograms of the resonator trans-
mission with exactly (0,1,2) atoms prepared in the coupled state.
When two atoms are loaded into the resonator and the feedback is
applied, the histogrammatches that observed with exactly one atom
in the coupled state. Adapted from Brakhane et al., 2012.
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et al., 2006). The transmission is high when the atom is in a
detuned state jui, while it is strongly suppressed if the atom is
in the coupled state jci. This has allowed for detecting the
hyperfine state of trapped cesium atoms with a fidelity of
> 98% within 100 μs.
After the first demonstration, state detection via trans-

mission measurements has found applications in several
experiments. Examples include the observation and charac-
terization of quantum jumps of single atoms in a cavity
(Khudaverdyan et al., 2009) and the application of Bayesian
feedback onto the joint spin state of two atoms (Brakhane
et al., 2012). In this experiment, the parameters are chosen
such that the cavity transmission is reduced by 0, 30%, and
60% when the number of atoms α in the coupled hyperfine
ground state is equal to 0, 1, and 2. A Bayesian update
formalism is used to estimate state occupation probabilities as
well as transition rates. Based on this analysis, a digital
feedback loop switches the intensity of a depumping and a
repumping laser beam, aiming to stabilize the system in a
mixed state with exactly one atom in each of the two hyperfine
ground states. Figure 12(c) shows the major result obtained in
this study. With feedback, a system state with one out of two
atoms coupled to the cavity mode (α ¼ 1) can be stabilized to
a high degree, as can be seen in the calculated Bayesian
probability (bottom) and in the transmission histogram on the
right side. Here the measured curve closely matches the
transmission in case a single coupled atom is present, which
is distinct from those cases where the two atoms occupy the
same ground state.
Note that in this experiment the stabilized quantum state

is a statistical mixture of jc1; u2i and ju1; c2i, where the
subscript denotes the individual atom. To facilitate feed-
back that stabilizes superposition or even entangled quantum
states, two requirements have to be fulfilled: First, the atomic
phase must remain unchanged during the time required to
detect the atomic population. Second, the atomic state has to
be detected without photon scattering into free space as that
would reveal information about which atom is in the fluo-
rescing state.
Decisive steps in this direction have been made in a system

with a higher cooperativity. First, a state detection fidelity of
99.4% has been achieved in a readout interval of 2 μs (Gehr
et al., 2010), which is much shorter than typical coherence
times of Zeeman qubits. Second, it has been shown that
transmission and reflection measurements allow one to detect
the atomic state without energy exchange, i.e., with less than
one scattered photon on average (Volz et al., 2011). This has
facilitated the measurement-based creation of entangled Dicke
states of an atomic ensemble consisting of up to 41 atoms on
average (Haas et al., 2014).
With respect to single emitters, state detection without

energy exchange is very encouraging toward the implemen-
tation of quantum feedback and quantum error correction.
Most notably, it should facilitate the readout of individual
qubits in a quantum register in which the problem of crosstalk,
i.e., the scattering-induced decoherence of adjacent unread
qubits, has to be avoided. In addition, the technique might
allow one to detect the state of quantum systems that do not
exhibit a sufficiently closed transition, such as molecules or

nitrogen-vacancy centers at high strain splitting. In this
respect, the only hurdle is achieving a sufficient cooperativity.

2. Initialization of the atomic state

Most experiments require preparation of the atom in a well-
defined internal state, which includes the principal and orbital
quantum numbers of the electronic state and the spin of both
the electron and the nucleus. While, in principle, measurement
and feedback can be used to initialize the atomic state, most
experiments to date use a procedure known as optical
pumping, which simply means the irradiation of laser light
that drives transitions from all but one ground-state level.
Thus, the atomic population will accumulate in this level after
a certain time interval.
Most experiments to date are performed with heavy single-

electron atoms at low magnetic fields. In this case, the atomic
state jF;mFi is described by two quantum numbers represent-
ing the total angular momentum (F) and its projection onto the
quantization axis (mF) (Metcalf and van der Straten, 1999).
When this axis coincides with that of an external magnetic
field, the mF number refers to the Zeeman state.
When the used laser light is circularly polarized and

irradiated along the quantization axis, it drives σþ or σ−

transitions with ΔmF ¼ �1. Thus, one of the two “stretched”
states jF;Fi or jF;−Fi can be prepared. When the laser is
applied orthogonal to the quantization axis with parallel linear
polarization, it drives π transitions with ΔmF ¼ 0. The dipole
selection rules (Metcalf and van der Straten, 1999) then allow
for the preparation of jF;mF ¼ 0i by irradiating π-polarized
light on the transition F↔F0 ¼ F. Other Zeeman states can be
prepared by applying additional Raman lasers (Boozer, Miller
et al., 2007) or microwave radiation (Tiecke et al., 2014) that
spectrally resolve individual Zeeman states. This will be
further discussed in Sec. II.C.3.
State preparation via optical pumping is a stochastic

process. The achievable fidelity of state preparation in a
specific Zeeman state is therefore limited by the ratio of the
average desired pumping rate compared to the rate of
undesired transfer to other states. The latter can be caused
either by qubit decoherence or by technical imperfections such
as misaligned lasers or magnetic field fluctuations. Trivially,
state preparation in a specific Zeeman level gets more difficult
the more levels an atom exhibits. Fortunately, the preparation
fidelity can be substantially improved (Reiserer, Ritter, and
Rempe, 2013) when an initial stage of optical pumping is
combined with fast transmission state detection, explained in
Sec. II.C.1, which allows for detecting whether the atom has
been pumped to the desired state or not.
While these procedures can be used to prepare the atom in a

specific energy eigenstate, many advanced experiments require
one to prepare a specific superposition state, e.g., between a
coupled and an uncoupled state, ðjci þ juiÞ= ffiffiffi

2
p

. Such states
can be prepared with atomic-state rotations, which will be the
next topic.

3. Coherent control of the atomic state

Exploiting the full potential of quantum networks requires
coherent control of the quantum state of each node. The basic
operations to achieve such control are often called single-qubit
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gates, unitary transformations, or coherent rotations. The basic
principles of such rotations have been pioneered in nuclear
magnetic resonance experiments and later adapted to quantum
information processing (Vandersypen and Chuang, 2005) in
several different physical systems, including trapped ions
(Leibfried et al., 2003) and neutral atoms (Meschede and
Rauschenbeutel, 2006).
In atomic systems, coherent control can be implemented by

driving the transition between the qubit states jui and jci with
an external control field. Depending on the energy difference
between the states, this field can be at optical or microwave
frequencies. Alternatively, it is also possible to couple the
levels with a two-photon Raman transition; see, e.g., Leibfried
et al. (2003) and Sec. I.E. In both cases, the dipole selection
rules of the transitions have to be considered.
In most atomic systems, the qubit states are part of a larger

hyperfine manifold. To remain in the qubit subspace, the
degeneracy between the Zeeman states is often lifted by
applying an external magnetic field. This allows for spectrally
selective addressing of individual transitions.
For a visualization of coherent ground-state control, the

Bloch-sphere picture is very helpful. Here any superposition
αjci þ β expðiφÞjui (with α2 þ β2 ¼ 1) of the two atomic
ground states is represented by a point on the surface of a
sphere, as can be seen in Fig. 13(a).
Assume that the control field is applied for a time τ with a

Rabi frequency of ΩrðtÞ and a detuning Δr. In the Bloch-
sphere picture, this implements the rotation

R~nðθÞ ¼ expðiθ~n⋅~σ=2Þ. ð24Þ

Here θ ¼ R
τ
0 ΩrðtÞdt is the angle of rotation and ~σ is a formal

vector of the Pauli matrices σx, σy, and σz. The rotation axis ~n
is given by

~n ¼ cosðφÞxþ sinðφÞy þ Δr

Ωr
z. ð25Þ

In Eq. (25), x, y, and z are the coordinate vectors of the
Bloch sphere and φ is the phase difference between the atomic
dipole and the external control field. Clearly, any rotation can
be implemented by a suitable choice of control field param-
eters. In Fig. 13(a), two such rotations are indicated. One is the
rotation Ryðπ=2Þ, and the other is RφðπÞ.
According to Bloch’s theorem, any rotation can be decom-

posed into a series of rotations around two different axes. This
reduces the control parameters and thus simplifies the exper-
imental sequence. In many cases, one chooses Δr ¼ 0, φ ¼ 0,
or φ ¼ π=2, and ΩrðtÞ ¼ Ω0, which leads to rotations at
constant speed Ω0 around the axes x or y, respectively. Then
the only remaining parameter that has to be controlled is the
pulse duration τ.
Figure 13(b) shows an experimental implementation of

such a qubit rotation around the x axis. The control field is
applied with constant intensity for a varying duration. This
results in the observation of Rabi oscillations with a visibility
of 98%, demonstrating the high quality of the combined state
preparation, rotation, and readout process achieved in this
simple scheme. The fidelity of the rotations can be further

increased using more advanced techniques such as shaped or
composite pulses and optimal control theory. For a review, see
Vandersypen and Chuang (2005).

III. QUANTUM LIGHT SOURCES

Two different approaches are typically considered toward
the generation of entanglement in a quantum network and the
transfer of quantum states from one network node to another.
Both rely on encoding quantum information in nonclassical
light fields. While the first approach is based on the trans-
mission of single photons (Cirac et al., 1997; Bose et al.,
1999), the second employs continuous quantum light fields
(Braunstein and van Loock, 2005) such as squeezed states
(Kraus and Cirac, 2004).

FIG. 13 (color online). (a) Bloch-sphere representation of a two-
level system. Any pure atomic superposition state αjui þ
β expðiφÞjci is represented by a point on the surface of a sphere.
The latitude represents the ratio of α and β, while the longitude
gives φ. Mixed quantum states can be represented by points
within the sphere. (b) Rabi oscillations demonstrating controlled
atomic-state rotations. The atom is prepared in the state jci.
Subsequently, a pair of Raman lasers drives transitions to the state
jui. The atomic population in jci is measured by fluorescence
state detection. The visibility of the resulting Rabi oscillations
(here 98%) is a good measure for the combined quality of the
state preparation, rotation, and readout process. The observed
decay of the oscillation can be caused by fluctuating laser beam
intensities and fluctuating ground-state energies, e.g., due to
changes in the magnetic field. Adapted from Reiserer, 2014.
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The latter approach has been successful in experiments with
atomic ensembles (Hammerer, Sørensen, and Polzik, 2010).
However, it is still unclear whether it can be used with single-
particle nodes, because the existing protocols are typically
hampered by errors arising from photon loss. Nevertheless, we
emphasize that numerous experiments have investigated the
generation of continuous quantum light fields with atom-
cavity systems (Rempe et al., 1991; Birnbaum et al., 2005;
Dayan et al., 2008; Kubanek et al., 2008; Schuster et al.,
2008; Armen, Miller, and Mabuchi, 2009; Koch et al., 2011;
Ourjoumtsev et al., 2011; Tiecke et al., 2014; Volz
et al., 2014).
In contrast, quantum networks based on the transmission of

single photons have been realized in CQED and will therefore
be discussed in detail in this article. Toward this end, qubits
αj↑i þ βj↓i can be encoded in various degrees of freedom of
the electromagnetic field. The most fundamental encoding is
the simple presence j↑i≡ j1i or absence j↓i≡ j0i of a
photon. Clearly this encoding is also prone to errors caused
by photon loss, which transfers j1i to j0i. Therefore, one
typically encodes the qubits in the polarization, the frequency,
the arrival time, or the path of propagation of a photon.
While these encodings all have specific advantages, they

share the property that photon loss destroys the qubit, but does
not rotate it from one state to the other. One can thus use a
sensitive photodetector to select only those cases where the
photon has not been lost. This facilitates the implementation
of protocols that are insensitive to photon loss or can correct
for it in an efficient way. This is the prerequisite for the
transfer of quantum states both over large distances and using
imperfect devices.
Before turning to the experimental generation of single-

photon fields, a few remarks about their characterization seem
appropriate. It is well known that the properties of a quantum
state cannot be determined with a single measurement.
Instead, analysis of a large ensemble of identically prepared
states is required. Unfortunately, this condition is often hard to
achieve in an experiment. Typically, one will rather prepare a
statistical mixture of quantum states, described by a density
operator.
The generated mixed state of the light field can be fully

reconstructed when it is interfered with a classical laser field
with well-known properties, a technique known as homodyn-
ing or heterodyning (Lvovsky and Raymer, 2009; Agarwal,
2013). Unfortunately, this approach becomes more difficult
with decreasing field amplitude due to technical noise.
Therefore, in many cases the properties of quantum light
fields are characterized using SPCMs, which allow both for
heterodyning (Thompson et al., 2006) and for the direct
detection of single-photon events.
Today’s commercial SPCMs typically exhibit high quantum

efficiencies (> 50%) and low dark count rates (< 10 Hz)
(Eisaman et al., 2011), providing an excellent signal-to-noise
ratio even for weak photon streams. Based on correlation
measurements, very powerful techniques have been developed
in quantum optics to characterize nonclassical light fields
using such detectors. For a detailed explanation, see, e.g.,
Agarwal (2013). Similarly, many techniques have been
developed to reconstruct single- and multiqubit states. To
reconstruct the density operator, one typically employs a

scheme known as quantum-state tomography (Altepeter,
Jeffrey, and Kwiat, 2005; Nielsen and Chuang, 2010).

A. Generation of single photons

From the beginning of research in CQED, many schemes
have been proposed to use the strong atom-photon interaction
in a cavity to generate nonclassical light fields. Pioneering
work in the microwave domain (Rempe, Schmidt-Kaler, and
Walther, 1990; Raimond, Brune, and Haroche, 2001) concen-
trated on the generation and detection of photons trapped
within the cavity. Along these lines, early proposals to generate
Fock states in the optical domain (Parkins et al., 1993) also
treated the decay of the cavity field as a loss channel.
A paradigm shift emerged from the seminal work of Cirac

et al. (1997), where it was realized that the cavity decay, when
caused by mirror transmission, efficiently couples the atomic
state to propagating photonic modes. Photons in this mode can
then be sent to and absorbed by another atom-cavity system
which thus forms the elementary building block of a quantum
network. The first experimental step in this direction is the
generation of single photons from an atom-cavity system,
which will be described in this section.
To understand the basic mechanism of photon generation,

consider a two-level atom trapped in a cavity with C ≫ 1. The
transition from the ground state jci to the excited state jei is
driven using an external laser field applied from the side of the
resonator. From the excited state, the atom can decay under
emission of a photon, either into free space or into the cavity
mode. The dynamics of this decay have been discussed in
Sec. I.C. When κout ≫ κloss, intracavity photons are emitted
into a propagating mode, which facilitates efficient single-
photon sources.
In the Purcell regime, the single-photon character of the

cavity output field has the same origin as for an atom in free
space (Kimble, Dagenais, and Mandel, 1977). In fact, upon
photon emission, the atom is projected to the ground state
jc; 0i. Before it can emit a second photon, the atom has to be
excited again, which takes a finite amount of time. This leads
to the observation of antibunching, gð2Þð0Þ ¼ 0, when only
one atom is trapped in the resonator and the (normally
ordered) intensity correlation function

gð2ÞðτÞ ¼ ha†ð0Þa†ðτÞaðτÞað0Þi
ha†ai2 ð26Þ

of the light field emitted from the system is measured in a
Hanbury Brown and Twiss setup (Agarwal, 2013).
In the strong-coupling regime, the emission of a photon

from the cavity does not necessarily project the atom to its
ground state jci. Still, when the system, i.e., either the atom or
the cavity, is driven on resonance with one of the states j1;þi
or j1;−i, the output field is a stream of single photons because
the nonlinearity of the Jaynes-Cummings ladder makes the
coupled system resemble a two-level atom. This topic is
revisited in Sec. IV.D.3.
When the atom is constantly driven, it steadily emits

photons at random times. In contrast, most quantum-network
experiments require the emission of only one photon in a well-
defined temporal mode. This can be achieved using two
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different strategies. The atom can be excited to the state jei
using a laser pulse that is much shorter than the decay time of
the system (Bochmann et al., 2008). This is the standard
technique to generate photons from a system that exhibits only
two levels; see Eisaman et al. (2011) for a review.
Alternatively, one can employ a Raman coupling scheme to

generate single photons. Such a scheme can be implemented
both in the Purcell regime (Law and Kimble, 1997) and in the
strong-coupling regime (Kuhn et al., 1999). It makes use of
the presence of a third level jui, as described in Sec. I.E. Here
the transition from the uncoupled ground state jui to the
excited state jei is driven by an external control laser. Upon
emission of a photon, the atom ends up in jci and is decoupled
from the excitation laser due to the large detuning Δu. Thus, in
every attempt only a single photon is emitted.
Atomic systems typically use the second approach, Raman

coupling. When the intensity of the external control laser is
varied only on a slow time scale, the system can be kept in a
coherent Raman dark state, as described in Sec. I.E. This
technique is called vacuum-stimulated Raman adiabatic pas-
sage (vSTIRAP) (Kuhn et al., 1999; Kuhn and Rempe, 2002).
When the intensity of the control laser is ramped up, the atom
will end up in the coupled ground state jci and emit exactly one
photon. We emphasize that the emission process is not
necessarily a stepwise process in which the atom first deposits
the photon into the cavity from where the photon subsequently
escapes. Instead, typically photon generation into and photon
emission from the cavity occur simultaneously, and the average
number of photons inside the cavity is much smaller than 1.
Compared to other photon generation schemes, the

vSTIRAP technique has several advantages with respect to
quantum networks: First, the excited state is never populated,
which leads to reduced spontaneous emission into free space
and thus increases the photon collection efficiency. Second, it
is reversible, which is the prerequisite for the implementation
of the protocol proposed by Cirac et al. (1997). This topic will
be revisited in Sec. IV.A. Finally, the photon properties, e.g.,
the frequency and wave packet envelope, are tunable using the
external laser. This allows for the generation of indistinguish-
able photons from dissimilar emitters, which is required for
quantum networks based on two-photon interference and
subsequent measurement, as discussed in Secs. III.B and IV.B.
The first experimental steps toward on-demand single-

photon generation have been made with atoms falling through
a Fabry-Perot cavity. Hennrich et al. (2000) observed the dark
state of the vSTIRAP technique in the spectral domain. Kuhn,
Hennrich, and Rempe (2002) demonstrated the emission of
short single-photon streams. Figure 14(a) shows the correla-
tion function recorded in this experiment. The absence of
coincidence counts at τ ¼ 0 demonstrates the single-photon
character of the emitted field. The temporal distance of the
peaks is given by the repetition rate of the pulsed experiment.
The duration of the photon stream was limited by the atomic
transit time through the resonator mode, which can be seen in
the decreasing envelope of the correlation function at larger
absolute values of the delay time.
This effect can be avoided when using trapped rather than

falling atoms. Figure 14(b) shows the results of the first
realization of such experiment (McKeever et al., 2004). The
efficiency to generate a single propagating photon (albeit

distributed over two spatial modes due to the use of a
symmetric cavity) reached a value of 69% in this experiment,
thus realizing an almost deterministic on-demand source of
single photons.
In the same year, single-photon emission has been dem-

onstrated with a trapped ion with 8% efficiency (Keller et al.,
2004). This experiment has also demonstrated that the
photonic waveform can be controlled by the external laser
field; see Fig. 14(c). To this end, the intensity of the control
laser (dotted line) that drives the Raman transfer is changed
and the arrival time of the generated photons is measured. The
data points are in good agreement with a numerical model
(solid line) of the photon generation process. The wave packet
envelope can be varied over a large range, with a minimum
duration that is set by the cavity decay rate of 2κ.
Following these early demonstrations, single-photon gen-

eration has been studied in several other experimental setups
with flying (Wilk et al., 2007; Nisbet-Jones et al., 2011, 2013)
and trapped atoms (Hijlkema et al., 2007; Barros et al., 2009;
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FIG. 14 (color online). Cavity-based single-photon sources.
Using a vacuum-stimulated Raman transfer from one of the
atomic ground states to the other, single photons are emitted into
the cavity mode. With alternating repump pulses, a single-photon
stream is generated. (a) Photons are generated with atoms falling
through a Fabry-Perot resonator. The cavity output is analyzed in
a Hanbury Brown and Twiss setup to measure the correlation
function. With respect to the independently measured back-
ground caused by detector dark counts (hatched area), the
absence of coincidence counts at τ ¼ 0 demonstrates the sin-
gle-photon character of the emitted field. The temporal distance
of the peaks is given by the repetition rate. The envelope of the
correlation function is determined by the atom transit time.
Adapted from Kuhn, Hennrich, and Rempe, 2002. (b) With
trapped rather than falling atoms, a continuous stream of single
photons can be generated, and the peaks in the correlation
function remain at a constant height. Adapted from McKeever
et al., 2004. (c) Control of the photonic wave packet envelope.
The intensity of the control laser (dashed line) that drives the
Raman transfer is changed and the arrival time of the generated
photons is measured. The data points are in good agreement with
a numerical model (solid lines) of the photon generation process.
Adapted from Keller et al., 2004.
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Mücke et al., 2013), investigating the achievable wave packet
control and efficiency over a large range of experimental
parameters.

B. Time-resolved two-photon interference

The previous section described the generation of single
photons in a well-defined spatial mode using atom-cavity
systems. This section will focus on the temporal and spectral
properties of such photons. In particular, it will be shown that
photons can be generated in a pure quantum state. This lays
the ground for the implementation of quantum networks using
probabilistic protocols that are based on two-photon
interference.
A first step in the characterization of a triggered single-

photon source is to measure the photon statistics in a Hanbury
Brown and Twiss setup as presented in Sec. III.A.
Simultaneously, the temporal envelope of the photons in
the ensemble can be measured when the photon duration is
longer than the temporal resolution of the detectors, which is
typically below 1 ns.
Information about the purity of the quantum state can then

be obtained in two-photon interference experiments. The first
such experiment was performed with photon pairs from a
downconversion source (Hong, Ou, and Mandel, 1987). The
photons were interfering with a variable delay on a non-
polarizing beam splitter (NPBS). Because of the quantum
nature of the light fields, one observes nonclassical interfer-
ence: Two photons that impinge simultaneously on a NPBS
and that are indistinguishable in all of their properties are
always found in the same output port, and the coincidence
signal between the two ports drops to zero. When the delay
between the pulses is increased, the coincidence signal rises to
a constant maximum value when the two photonic wave
packets have no temporal overlap.
The characteristic drop in the coincidence signal is known

as the Hong-Ou-Mandel dip. Its depth, also called contrast C,
is a direct measure for the indistinguishability of the two
photons. The first such experiment was performed with
simultaneously generated photons. However, with an appro-
priate delay line the technique can also be applied to photons
that are emitted by the same source one after another. This was
first demonstrated with a single quantum dot (Santori et al.,
2002) and has allowed one to analyze shot-to-shot fluctuations
in the generated photonic quantum state. Fluctuations on a
longer time scale, however, are not detected. Therefore,
demonstrating that a pure quantum state is generated requires
the interference of photons from independent sources. This
was first realized by Beugnon et al. (2006) with two atoms in
the same free-space trap, and by Nölleke et al. (2013) with two
atoms trapped in separate optical resonators in independent
laboratories.
Recording the interference signal with temporal resolution

(Legero et al., 2006) allows one to obtain more information
about temporal and spectral characteristics of the photons. To
this end, consider two photons in the same temporal mode
whose frequencies differ by Δp. The photons impinge
simultaneously in the two input ports A and B of a NPBS.
The two output ports C and D are related to the inputs via

aC;D ¼ 1ffiffiffi
2

p ðaB � aAÞ. ð27Þ

Here a denotes the annihilation operator of a photon in the
respective mode. Depending on which detector clicks, aC or
aD is applied to the input state j1A; 1Bi. Thus, the system is
projected onto the superposition state:

jΨ�ðτÞi ¼
1ffiffiffi
2

p ðj1A; 0Bi � eiΔpτj0A; 1BiÞ. ð28Þ

In Eq. (28), the phase difference between the fields,
depending on the detection time difference τ, is given by
Δpτ. The contrast, i.e., the probability to detect the second
photon in the same port as the first one, is then given by
(Legero et al., 2006)

CðτÞ ¼ 1
2
½1þ cosðΔpτÞ�. ð29Þ

From Eq. (29), one expects to observe an oscillation in the
coincidence signal when the two photons exhibit a frequency
detuning. This was first demonstrated with falling atoms by
Legero et al. (2004). Figure 15 shows the results obtained with
trapped atoms by Specht et al. (2009). In this study, two
photons at the same frequency were generated one after the
other. One of them was shifted in frequency by sending it
through an electro-optical modulator with an increasing
voltage ramp applied to the electrodes. With a suitable optical
delay line, subsequently generated photons were impinging
simultaneously onto a NPBS. The solid circle reference data
are recorded with noninterfering photons that had orthogonal
polarization, while the open circle data are obtained with
parallel polarization. The predicted beat signal is clearly
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FIG. 15 (color online). Time-resolved two-photon interference.
Two photons are generated one after the other from an atom-
cavity system. One of the photons is sent to an optical delay line,
such that both arrive at the same time in the two input ports of a
beam splitter. When the photons have the same frequencies, no
coincidence counts are observed (not shown). When a frequency
offset is externally applied to the photons, a quantum beat is
observed (open circles), which proves the coherence of the
photon generation process. The solid circle data show a reference
run with distinguishable photons of orthogonal polarization.
Adapted from Specht et al., 2009.
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observed. When Δp is increased (not shown), the oscillation
period is reduced as expected.
It must be emphasized that the coincidence signal is always

zero around τ ¼ 0, even for photons with different wave
packet shapes and arrival times, as derived by Legero et al.
(2003). This has important consequences for the implemen-
tation of probabilistic quantum-network protocols that are
based on two-photon interference: When conditioning on a
short detection time difference, a perfect interference contrast
can be obtained even with imperfect photon sources. This
topic will be revisited in Sec. IV.B.
In the same section, two-photon interference data obtained

with two independent atom-cavity setups will also be pre-
sented. The achieved contrast reached 99% in this experiment
when conditioning on τ < 20 ns. When integrating over all
values of τ, a contrast of 64% was observed (Nölleke et al.,
2013). This demonstrates that the photons generated by each
of the atom-cavity systems are in a quite pure quantum state.
The deviation from unity contrast is attributed to inhomo-
geneous broadening of the atomic transition frequencies,
caused by the uncorrelated motion of the atoms in both traps.
A dramatic improvement is therefore expected when cooling
to lower temperatures as later demonstrated in one of the two
setups (Reiserer et al., 2013).

C. Atom-photon quantum-state transfer

The previous sections demonstrated the generation of
photons in a pure quantum state. This section will go one
step further and present the implementation of a unidirectional
quantum interface that allows for the transfer of the quantum
state of a single trapped atom onto that of a single propagating
photon. While in principle any photonic qubit implementation
can be used toward this end, all experimental implementations
to date are based on polarization qubits. This has the
advantage that it is easily possible to manipulate the qubit
states using polarization optics, such that tomography of the
photonic state is straightforward (Altepeter, Jeffrey, and
Kwiat, 2005).
The first experiment that demonstrated a unidirectional

quantum interface used 87Rb atoms falling through a Fabry-
Perot cavity (Wilk, Webster, Kuhn, and Rempe, 2007). The
atomic level scheme exhibits five levels in a double-Λ
configuration, as illustrated schematically in Fig. 16(a). The
atomic qubit is encoded in two Zeeman states, such that
mF ¼ þ1 is represented by j↑i and mF ¼ −1 by j↓i. Here the
atomic quantization axis is chosen such that it coincides with
the cavity axis. Note that for flying photons the assignment of
polarization states to ΔmF ¼ þ1 or ΔmF ¼ −1 transitions
depends on the propagation direction. In the following, a
single-sided cavity is considered, and impinging (emitted)
photons exhibit a positive (negative) direction of propagation,
respectively.
Assume that the atom is initially prepared in mF ¼ −1 and

a photon is generated with the vSTIRAP technique, as
explained in Sec. III.A. To this end, the intensity of a
control-laser beam, irradiated from the side of the cavity
and polarized along its axis, is adiabatically increased from
zero to a value larger than g. Because of polarization selection
rules, the laser couples only π transitions with ΔmF ¼ 0,

indicated by the up arrows in Fig. 16(a). The cavity supports
two frequency-degenerate modes with orthogonal polariza-
tion, indicated by the curly arrows.
As there is no state with mF ¼ −2, the cavity only couples

the atom in the excited mF ¼ −1 state to the ground state with
mF ¼ 0, which is a σ− transition. As the angular momentum
of the combined atom-photon state must be conserved, the
emitted photon will be right-circularly polarized j↻i.
Similarly, when the atom is in the mF ¼ þ1 state, it is only
coupled to the cavity on a σþ transition, which results in a left-
circularly polarized photon j↺i.
The photon generation process is fully coherent. Therefore,

when the atom is prepared in a superposition state

(c)

        -1       0       1-1       0       1   mF= 

(b)(a)

FIG. 16 (color online). (a) Atom-photon state transfer. The
atomic qubit is encoded in the states mF ¼ þ1≡ j↑i and
mF ¼ −1≡ j↓i. The atom is initially in the superposition state
αj↑i þ βj↓i. A photon is generated using a π-polarized control
laser (up arrows), which transfers the atom to mF ¼ 0, indepen-
dent of its initial state. The polarization of the emitted photons
(curly arrows), however, depends on the initial state, such that
αj↑i þ βj↓i → αj↺i þ βj↻i. (b) Generation of atom-photon
entanglement. The atom is prepared in the mF ¼ 0 state. Using
a π-polarized control laser (up arrow), a photon can be generated
on two different transitions σ� with ΔmF ¼ ∓1. Depending on
the polarization of the emitted photon (curly arrows), the atom
ends up in a different state. Thus, the process generates atom-
photon entanglement. (c) Density matrix of an atom-photon
entangled state, reconstructed by mapping the atomic state onto a
second photon and performing quantum-state tomography on the
two-photon polarization state in the horizontal (H)—vertical (V)
qubit basis. The resulting state has a fidelity of F ¼ 86%with the
jΨ−i state. Adapted from Wilk, Webster, Kuhn, and Rempe,
2007.
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αj↑i þ βj↓i, the emitted photon will exhibit the polarization
αj↺i þ βj↻i, and the atom will always end up in the ground
state with mF ¼ 0. In this way, the atomic qubit state is fully
transferred to the photonic qubit state.
This procedure can also be employed to transfer the state of

one atom to that of a remote one, which will be further
discussed in Sec. IV. In addition, it can be used for a
reconstruction of the atomic state. To this end, the photonic
polarization is determined via quantum-state tomography. An
important feature is that, in contrast to the methods presented
in Sec. II.C.1, state readout is possible even if the atomic qubit
levels are degenerate in energy. However, the readout pro-
cedure is probabilistic as both the state-transfer and photon-
detection processes exhibit a limited efficiency.
The first demonstration of atom-photon quantum-state

transfer achieved an efficiency of 9% (Wilk, Webster,
Kuhn, and Rempe, 2007), identical to the first experiment
with a trapped atom (Weber et al., 2009). Improvement of the
cavity mirrors has increased this value to 56% in the same
experimental setting of Specht et al. (2011). The achieved
fidelity was larger than 93% in this experiment, limited by
imperfect state preparation and laser beam alignment.
Optimization of these parameters has meanwhile allowed
for a value as high as 98(2)%.
Atom-photon state transfer has also been achieved with a

single trapped ion, with an efficiency of 1% (including
detector inefficiency) and a fidelity of 66(1)% (Stute et al.,
2013). To improve, a higher cooperativity would be required
in this experiment. Nevertheless, a higher fidelity of 92% has
been observed for a small subensemble of the data, because
conditioning on early photon-detection events excludes
attempts where the atom has undergone spontaneous scatter-
ing before emitting a photon into the cavity. Thus, it is
possible to increase the fidelity at the price of a reduced
efficiency.

D. Generation of atom-photon entanglement

In the last years, it was realized that the power of quantum
communication and quantum information processing stems
from the use of entangled states as a resource for information
processing tasks (Horodecki et al., 2009). There are two
canonical models in this respect (Nielsen and Chuang, 2010).
In the first approach, known as the circuit model, entangle-
ment is generated and manipulated between existing qubits
based on quantum-gate operations. This approach can also be
implemented with atoms and photons (Reiserer et al., 2014),
which is the topic of Sec. IV.D. The second approach, known
as measurement-based quantum computing (Briegel et al.,
2009), instead relies on the generation of a highly entangled
state, and any processing task can be implemented with local
measurements and feedback in the form of unitary operations.
Similarly, the distribution of entanglement in a quantum
network and many quantum communication protocols
(Gisin and Thew, 2007; Duan and Monroe, 2010) are based
on the generation of entangled states between light and matter.
This emphasizes the high relevance of efficient atom-photon
entangled-state generation, which is described in this section.
In principle, there are many protocols that allow for the

creation of atom-photon entangled states. However, all CQED

experiments to date employed photonic polarization qubits,
most of them using a scheme that is described in the
following. Consider an atomic four-level system in a
double-Λ configuration, as illustrated in Fig. 16(b). The atom
is prepared in the ground state with mF ¼ 0. Subsequently, a
photon is generated using the vSTIRAP technique, as
described in Sec. III.A. To this end, the intensity of a π-
polarized control laser (up arrow) is increased, thus coupling
the atom to the excited state withmF ¼ 0. This state is equally
coupled via the cavity mode to the two ground states
with mF ¼ �1.
Depending on the polarization of the emitted photon (curly

arrows), the atom will end up in a different Zeeman state. If the
photon is right- (left-)circularly polarized, it will drive a
σ− ðσþÞ transition to mF ¼ þ1 ð−1Þ, respectively. Therefore,
the following entangled state is generated:

jmF ¼ 0i⟶π-pol drive 1ffiffiffi
2

p ðj↓;↺i � j↑;↻iÞ. ð30Þ

Which of the two signs is realized experimentally depends on
the Clebsch-Gordan coefficients of the atomic transitions.
The first experimental realization of this entanglement

procedure (Wilk, Webster, Kuhn, and Rempe, 2007) again
uses 87Rb atoms falling through a cavity. Here the jΨ−i-Bell
state is generated, corresponding to the minus sign in Eq. (30).
To verify entanglement, the atomic state is transferred to the
state of a second photon, as explained in Sec. III.C, and the
photon-photon state is reconstructed using quantum-state
tomography (Altepeter, Jeffrey, and Kwiat, 2005).
Figure 16(c) shows the obtained density matrix. The com-
bined entanglement and readout fidelity, defined as the over-
lap with the ideal photonic Bell state, F ¼ hΨ−jρjΨ−i is 86.0
(4)%. The entanglement-generation efficiency is 15%, a
drastic improvement compared to free-space experiments
with single atoms (Blinov et al., 2004; Volz et al., 2006),
single spins in diamond (Togan et al., 2010; Bernien et al.,
2013), or quantum dots (De Greve et al., 2012; Gao et al.,
2012) that have not exceeded 0.1% yet.
Following this early realization, atom-photon entanglement

has been demonstrated in a number of experiments. The first
realization with trapped neutral atoms was reported by Weber
et al. (2009). Later, the efficiency has been increased above
50% (on theD2 line of 87Rb), with a fidelity of 94.1(1.5)% (on
the D1 line) (Lettner et al., 2011). The first CQED imple-
mentation of the above protocol with trapped ions has reached
an efficiency of 16% (Stute et al., 2012). Here a bichromatic
Raman driving has been used because of nondegenerate
atomic ground-state levels. To measure the atomic state,
fluorescence state detection has been employed instead of
atom-photon state transfer. A fidelity of 97.4(2)% with a
maximally entangled atom-photon entangled state has thus
been demonstrated.
There are several proposals of how to extend the approach

of entanglement generation with atom-cavity systems to
cluster states that consist of many subsequently emitted
photons; see, e.g., Schön et al. (2005). Typically, this requires
coherent control of the atomic state, which has meanwhile
been achieved in several experiments. However, entanglement
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.

A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is

Node BNode A
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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increased. This transfers the system to jc; 1i and thus gen-
erates a photon that leaves the cavity, preferentially through
the outcoupling mirror. When the coherent coupling g is larger
than the dissipative processes γ and κloss, the process is fully
coherent and thus reversible.
The realization of the reverse process (coherent photon

absorption) was first demonstrated with single Cs atoms
trapped in a Fabry-Perot resonator in the strong-coupling
regime (Boozer, Boca et al., 2007). To mimic a single photon,
a faint laser pulse with an average photon number of n̄ ¼ 1.1
is impinging onto the cavity. At the same time, a control laser
is irradiated from the side of the cavity, resonant to the
transition from jui to jei. This results in a Raman coupling as
explained in Sec. I.E. Thus, the system is initially in a coherent
dark state, where the cavity is transparent to the impinging
photon; compare the spectrum in Fig. 7 (Mücke et al., 2010).
To store the photon, the intensity of the external control-

laser field is now ramped down adiabatically. In this way, the
state jc; 1i is transferred to ju; 0i while remaining in the
Raman dark state; see also Sec. I.E. To this end, it is important
that the control-laser ramp exactly matches the temporal
envelope of the impinging photon pulse. When this condition
is not perfectly achieved, the efficiency of the process is
reduced.
In the experiment of Boozer, Boca et al. (2007), the

achieved efficiency of 5.7% is mainly limited by mirror losses
and the fact that a symmetric cavity with two output channels
is used instead of a single-sided one. Nevertheless, the
coherence of the photon absorption process is verified by
mapping the atomic state back onto a photon. Using inter-
ference with a reference field, a fringe visibility of 46% is
observed. The achieved value is limited by incoherent transfer
processes in which the atom has undergone spontaneous
scattering.
In the first experiment that demonstrates an optical quantum

memory using a single atom, this problem is avoided by
operating at a detuning of 4γ from the atomic excited state jei
(Specht et al., 2011). Again, a faint laser pulse with average
photon number n̄ < 1 is used to mimic impinging single
photons. The system employs 87Rb atoms in a single-sided
cavity in the intermediate coupling regime with C≃ 1. A
storage efficiency of 17% is achieved, which is substantially
lower than the retrieval efficiency of 56%.
The reason for this reduction is that, in contrast to the

readout, the storage process relies on perfect spatial and
temporal mode matching between the impinging photon, the
cavity mode, and the control-laser field. The deviation of both
efficiency values from unity is caused by the limited coop-
erativity and by imperfect atomic localization. Improving the
latter, a threefold increase in the combined storage and
retrieval efficiency has been observed.
To demonstrate an optical quantum memory, a photonic

qubit is encoded in the polarization of the impinging laser
pulse. Consider the atomic level scheme of 87Rb depicted in
Fig. 18(a). The atom is prepared in the ground state
with mF ¼ 0. The quantization axis is chosen parallel to
the cavity axis, such that the two frequency-degenerate
polarization modes of the cavity couple σþ and σ− transitions
(curly arrows), depending on the photonic polarization.

The external control laser is linearly polarized along the
quantization axis, thus driving π transitions (down arrows). In
this way, the polarization of an impinging photon in the
state jΨini ¼ αj↺i þ βj↻i is transferred to the spin state of
the atom jΨai ¼ αj↓i þ βj↑i, where mF ¼ −1≡ j↓i and
mF ¼ þ1≡ j↑i.
To derive a lower bound on the fidelity of the storage

process, the atomic state is transferred back to a photon, i.e.,
the storage process is time reversed as explained in Sec. III.C.
Then the photonic polarization state is reconstructed using
quantum-state tomography. This procedure is repeated for six
unbiased input states, which allows one to determine the

FIG. 18 (color online). Single-atom quantummemory. (a) Atomic
level scheme for photon storage using the STIRAP technique.
The atom is prepared in the ground state with mF ¼ 0 (ball). An
impinging photon (curly arrows) drives σ� transitions, depending
on its polarization. A π-polarized control laser (down arrows)
thus transfers the photonic polarization onto the spin state of the
atom. (b) Atomic level scheme for an alternative proposal, termed
deterministic single-photon Raman passage, that uses an atom-
photon SWAP gate to achieve photon storage in the Purcell
regime. When the atom is initially in the state mF ¼ −1≡ j↓i, a
left-circularly polarized photon is not coupled to it and thus
reflected with unchanged polarization. In contrast, a right-
circularly polarized photon will be reflected with left-circular
polarization (curly arrows) due to interference with the atomic
emission, and in this process the atom is transferred to the state
mF ¼ þ1≡ j↑i. In this way, the photonic polarization is trans-
ferred to the atomic state. (c) Quantum memory results, achieved
with the STIRAP scheme. The qubit state after storage and
readout is reconstructed for six unbiased input states using
quantum-state tomography. The result is visualized as colored
circles in the Bloch-sphere representation. Via quantum process
tomography, the memory performance for any input state can be
predicted, as visualized by the sphere. The average fidelity of the
depicted measurement is F̄ ¼ 93%. From Specht et al., 2011.
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storage fidelity for any input qubit using quantum process
tomography (Nielsen and Chuang, 2010). The result of this
procedure is shown in the Bloch-sphere representation in
Fig. 18(c). The colored circles show the measured position of
three of the six input qubit states on the Bloch sphere. The
colors on the axes indicate the ideally expected states,
showing excellent agreement. The fidelity, averaged over
all six input state, is

F̄memory ¼ hΨinjρoutjΨini ¼ 93%. ð31Þ

This value is limited by imperfect preparation of the atomic
state (Specht et al., 2011). The first demonstration of the
storage of single photons (rather than faint laser pulses) in a
single atom achieved comparable values of fidelity and
efficiency (Ritter et al., 2012). With improved laser beam
alignment and atom localization, the fidelity later improved to
98% (for faint laser pulses). All quoted fidelities are clearly
above the classical threshold. This benchmark is 2=3 when the
quantum memory is characterized with single photons and
increases with the average photon number when coherent
input states are used (Specht et al., 2011).
A recent alternative approach to the implementation of a

heralded quantum memory is the use of a reflection-based
atom-photon quantum gate, which is presented in Sec. IV.D.2,
followed by feedback onto the atomic state (Kalb et al., 2015).
Finally, a similar scheme that does not require feedback was
proposed and further investigated by Pinotsi and Imamoglu
(2008), Lin et al. (2009), and Koshino, Ishizaka, and
Nakamura (2010). It is based on photon reflection from a
single-sided cavity, too. Consider an atom with two degen-
erate ground-state levels, e.g., Zeeman states with quantum
numbers mF ¼ −1 and mF ¼ þ1 as depicted in Fig. 18(b).
Both ground states are equally coupled to a common excited
state via two circularly polarized polarization modes (curly
arrows) of the cavity. Consider the situation when the atom is
in mF ¼ −1≡ j↓i. A left-circularly polarized photon that
would drive σ− transitions is not coupled to the atom and will
therefore simply be reflected from the cavity. Because of the
change in propagation direction, it will then exhibit right-
circular polarization.
The situation is different for a right-circularly polarized

impinging photon. When operating in the Purcell regime
(C ≫ 1), there are two possible paths that could lead to a left-
circularly polarized photon after the reflection process: Either
direct reflection from the cavity or absorption and subsequent
reemission on the atomic σþ transition. As pointed out by
Pinotsi and Imamoglu (2008), these two paths interfere
destructively, and the impinging photons will deterministi-
cally be absorbed by the atom and then reemitted on the σþ

transition, i.e., with right-circular polarization. Thus, the atom
ends up in the state mF ¼ þ1≡ j↑i. Applying the same
arguments to the situation where the atom is initially in j↑i,
one finds that the effect of the reflection process is a SWAP
operation, i.e., an interchange between atomic and photonic
states:

ðαpj↺i þ βpj↻iÞðαaj↓i þ βaj↑iÞ
→ ðαaj↺i þ βaj↻iÞðαpj↓i þ βpj↑iÞ; ð32Þ

where the subscripts denote the two particles, atom and
photon. This mechanism, sometimes termed deterministic
one-photon Raman interaction (Rosenblum and Dayan,
2014), might facilitate the implementation of an atomic
quantum memory without additional Raman control fields.
The first step in this direction was made by Shomroni et al.
(2014). The experiment uses atoms flying through the
evanescent field of a whispering-gallery-mode resonator,
where the two orthogonal polarization modes are accompa-
nied by a different direction of propagation along the coupling
nanofiber. The presence of an atom is verified and its state is
prepared by detecting reflected photons from several short
“control” pulses. Instead of reading out the atomic state after
the last control pulse, the transmission (reflection) of another
faint “target” laser pulse is measured, achieving the intended
switching with 90% (65%) probability, respectively. Toward
the implementation of a quantum memory, these values would
have to be improved, and equal losses and phase stability of
the σþ and σ− paths would have to be ensured.

2. Atom-atom quantum-state transfer

The combination of photon generation and photon storage
facilitates the distribution of quantum information in an
elementary quantum network (Ritter et al., 2012). In this
context, we start by describing the transfer of the atomic state
from one network node to the other. To this end, the atom at
node A is prepared in a superposition of Zeeman states jΨAi.
This state is first transferred to the polarization state of a
photon using the procedure described in Sec. III.C:

jΨAi ¼ αj↓i þ βj↑i → jΨpi ¼ αj↻i þ βj↺i. ð33Þ

Subsequently, a STIRAP pulse is used to transfer the
polarization of the photon to the spin state of the atom at
node B, as explained in Sec. IV.A.1. This completes the state
transfer jΨAi → jΨBi. To characterize the process, it is
performed for six unbiased input states, and the state-transfer
fidelity is evaluated using quantum process tomography. This
gives an average fidelity of

F̄ state transfer ¼ hΨAjρBjΨAi ¼ 84ð1Þ%: ð34Þ

The achieved value proves the quantum character of the
state transfer as the highest fidelity achievable with classical
information exchange between the nodes is again 2=3. The
overall success probability of the protocol is 0.2%. This is the
product of the atom-photon state-transfer efficiency at node A
(3%), the photon transmission through the fiber (34%), and
the storage efficiency at node B (20%). Optimization of the
parameters to the values given above should allow for an
increase by a factor of ∼20. Further improvement is possible
with better atomic localization and with higher cooperativity.

3. Remote atom-atom entanglement

We now summarize an experiment that demonstrates entan-
glement of two atoms via the transmission of a single photon
(Ritter et al., 2012). The first step in the used protocol is the
creation of atom-photon entanglement at node A using the
procedure described in Sec. III.D. Thegenerated state thus reads
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jΨ−iAP ¼ 1ffiffiffi
2

p ðj↓iAj↺i − j↑iAj↻iÞ. ð35Þ

Again the generated photon is coupled into a glass fiber and
transmitted to node B, where it is coherently absorbed using
the STIRAP scheme explained in Sec. IV.A.1. This results in
the atom-atom entangled state:

jΨ−iAB ¼ 1ffiffiffi
2

p ðj↓iAj↑iB − j↑iAj↓iBÞ. ð36Þ

To readout the atomic state at both nodes, it is transferred to
a photonic polarization qubit which is subsequently detected.
Quantum-state tomography then allows for a reconstruction of
the atomic density matrix of those experimental runs where
the protocol has worked as intended. Figure 19 shows the
obtained result. The achieved fidelity is

F entanglement ¼ hΨ−jρABjΨ−i ¼ 85ð1Þ%: ð37Þ

This by far exceeds the classical limit of 50%, thus proving
the existence of entanglement between the two remote atoms.
Fidelities as high as 98.7(2.2)% can be achieved by further
postselection of photon-detection events, as explained in
Sec. IV.A.4.
The achieved success probability of remote atom-atom

entanglement is 2%. Again this number is the product of the
photon generation efficiency (40%) at node A, the probability
with which the photon is delivered to node B (34%), and its
storage efficiency at node B (14%).

4. Discussion

The experiments described previously realize the seminal
proposal of Cirac et al. (1997). While this scheme is in

principle deterministic, the experimentally achieved efficien-
cies are in the percent regime, predominantly limited by fiber
and optics losses, atomic localization, and the finite cooper-
ativity of C≃ 1. None of these limitations is fundamental, and
efficiencies above 50% should be feasible with current
technology, outperforming free-space approaches by orders
of magnitude. The only experimental requirements are a
suitable atomic level scheme and a large enough cooperativity.
Still, with the achieved limited efficiency values, the

successful transfer of quantum information relies on the
use of loss-resistant polarization qubits and is detected only
a posteriori. This means that the detection of readout photons
indicates that the protocol has worked as intended. For scaling
to larger quantum networks, a heralded scheme is required,
such that finite efficiencies will not necessarily lead to finite
fidelities. Such herald can be implemented in a straightfor-
ward way: The successful storage of a photon at node B leads
to a change of the atomic hyperfine ground state. Thus,
detecting whether the atom is still in its original state (using
one of the techniques described in Sec. II.C.1) could herald
successful realizations of the protocol (Lloyd et al., 2001).
Comparing to the probabilistic protocols presented in

Sec. IV.B, higher efficiencies are achievable, and the fidelity
of the deterministic approach is robust with respect to the
properties of the generated photons. To be more specific,
fluctuating photon arrival time, wave packet envelope, or
frequency will reduce only the efficiency of the protocol,
without affecting its fidelity. The achieved value is thus
limited by other experimental imperfections, such as the
preparation of the initial atomic state, imperfect laser polari-
zation, and incoherent scattering. In the experimental setting
of Ritter et al. (2012), all of these imperfections lead to a
delayed emission of readout photons. Thus, postselecting the
data evaluation on those experimental runs where a photon has
been detected at the beginning of the readout interval leads to
increased fidelities. For the atom-atom entanglement experi-
ment, values as high as 98.7(2.2)% are reported, which is
promising toward scaling remote entanglement to larger
distances in a repeater-type architecture.
Toward this goal, also other deterministic approaches may

be considered, including entanglement distribution via
squeezed light (Kraus and Cirac, 2004), the preparation of
entangled states using dissipative dynamics (Kastoryano,
Reiter, and Sørensen, 2011; Nikoghosyan, Hartmann, and
Plenio, 2012), and dispersive interaction of remote atoms
while only virtually populating the photonic modes
(Pellizzari, 1997; Serafini, Mancini, and Bose, 2006).
However, achieving high fidelities using one of these schemes
requires a strong improvement with respect to the parameters
of current experimental systems. Another approach is to
combine the generation of atom-photon entanglement at
node Awith an atom-photon quantum gate, which is described
in Sec. IV.D.2. Subsequent measurement of the photon
reflected from node B, followed by feedback onto the atomic
state, constitutes a robust, quasideterministic, and most
important heralded quantum memory (Kalb et al., 2015) that
is highly promising for the generation of remote entanglement
(Duan, Wang, and Kimble, 2005), which is the prerequisite for
quantum repeater schemes (Briegel et al., 1998) and more
general for deterministic interactions between network nodes

FIG. 19 (color online). Remote atom-atom entanglement. In the
experiment, atom-photon entanglement is created at node A and
the photon is sent via an optical fiber to node B, where it is
coherently absorbed. The resulting atom-atom state is recon-
structed using quantum-state tomography, which results in the
depicted density matrix. The fidelity with the jΨ−i-Bell state is
85%. From Ritter et al., 2012.
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mediated by probabilistic photonic channels (van Enk, Cirac,
and Zoller, 1998).

B. Probabilistic distribution of quantum information

In contrast to the deterministic approach described in
Sec. IV.A, the following sections present the distribution of
quantum information between two atoms based on the
interference of single photons that are entangled with the
atomic state. When the emitted photons are indistinguishable,
one can implement probabilistic photon-photon gates using
the techniques of linear optical quantum computing (O’Brien,
2007; Pan et al., 2012). Detection of a specific two-photon
correlation then heralds successful events. While the
employed techniques have been pioneered in free-space
experiments (Duan and Monroe, 2010), the use of optical
cavities can increase the success probability by several orders
of magnitude.
We start the discussion in Sec. IV.B.1 by explaining how

two-photon interference allows one to determine the Bell state
of two photons. This facilitates the basic operations required
in quantum networks: transfer of the atomic state via tele-
portation, described in Sec. IV.B.2, and atom-atom entangle-
ment via entanglement swapping, presented in Sec. IV.B.3.

1. Optical Bell-state measurement

Photons are bosons, a fact which implies that their overall
wave function must be symmetric under particle exchange. To
understand how this can be used to detect the Bell state of
two photons, consider as an example the setup depicted in
Fig. 20(a). Two photons that are completely indistinguishable
in their temporal and spectral mode impinge onto a NPBS, one
in each port. When their combined polarization state is
antisymmetric, then their spatial wave function after the
NPBS must be antisymmetric as well, which means that
the photons leave in different output ports. Thus, when the H
and V detectors in different ports register a coincidence event,
then the photon-photon state is projected onto the antisym-
metric Bell state

jΨ−ipp ¼ 1ffiffiffi
2

p ðjHijVi − jVijHiÞ. ð38Þ

The other Bell states exhibit a symmetric polarization state.
Thus, they will lead to the detection of photon pairs in the
same output port of the NPBS. Still, the

jΨþipp ¼ 1ffiffiffi
2

p ðjHijVi þ jVijHiÞ ð39Þ

Bell state can be unambiguously detected because it exhibits
orthogonal polarizations. The other two Bell states cannot be
distinguished using the depicted setup. In general, the effi-
ciency that is achievable using only linear optical elements
exhibits an upper bound of 50%, irrespective of the specific
setup (Calsamiglia and Lütkenhaus, 2001; Pan et al., 2012).
The first realization of a Bell-state measurement in optical

CQED (Nölleke et al., 2013) used the same two experimental
setups that previously implemented the deterministic

approach (see Sec. IV.A), which enables a direct comparison.
Two 87Rb atoms are trapped in remote cavities in the
intermediate coupling regime with C≃ 1. Each atom gen-
erates a photon using the vSTIRAP technique (see Sec. III.A).
Spatial mode matching is guaranteed by overlapping the
photons on a fiber-based beam splitter. Spectral indistinguish-
ability is provided by locking the control laser that drives the
vSTIRAP to the same reference, provided by an optical
frequency comb. Thus, the frequency of the photons (deter-
mined by the difference between the laser frequency ωL and
the atomic ground-state hyperfine splitting Δu) is identical,
independent of the atomic transition frequency. The remaining

FIG. 20 (color online). (a) Photonic Bell-state measurement. Two
photons arrive simultaneously in the two input ports of a non-
polarizing beam splitter (NPBS), which is followed by two
polarizing beam splitters (PBS). Single-photon counters in the
individual output ports allow one to independently detect hori-
zontal (H) and vertical (V) polarizations. Coincident detection
events project the photonic state onto the jΨþi or the jΨ−i Bell
state. (b) Time-resolved two-photon quantum interference from
two atoms trapped in independent setups. Photons of parallel
(solid bars) or orthogonal (open bars) polarization impinge onto a
nonpolarizing beam splitter. For indistinguishable photons, the
ratio of parallel and orthogonal coincidence events (circles) is
expected to be zero. The observed dip indicates photon indis-
tinguishability with a contrast of 64%. Selecting a shorter
coincidence timewindow allows one to obtain a better interference
contrast at the price of a reduced number of events. (c) Telepor-
tation between remote atoms. The sender atom is initialized in six
unbiased input states. After the teleportation process, the resulting
state of the receiver atom is reconstructed, giving the colored
circles in the figure. The sphere is the result of quantum process
tomography. The average fidelity in the depicted experiment was
88.0(1.5)%. Adapted from Nölleke et al., 2013.
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critical parameter, the temporal mode, is adjusted via the
intensity profile of the control laser.
To characterize the achieved indistinguishability, time-

resolved two-photon interference is employed, as explained
in Sec. III.B. The experimental results are depicted in
Fig. 20(b). When the photons have orthogonal polarization
(open bars) they do not interfere, and one therefore observes
correlations in the two output ports of the NPBS. When the
photons exhibit parallel polarization (solid bars), they are
supposed to be indistinguishable and thus one expects to
observe no coincidence counts. While this is indeed the case
for short detection time differences τ, the integrated contrast,
and thus the fidelity of an optical Bell-state measurement,
decreases from 99% to 64% for larger values of τ. This
observation is explained by the fact that the atoms are trapped
in deep optical potentials. The uncorrelated motion of both
atoms thus leads to inhomogeneous broadening of the two
atomic transition frequencies and the two couplings to the
cavity modes, which in turn causes a jitter in the temporal
mode of the photons.

2. Quantum teleportation

In the following, the optical Bell-state measurement is
employed to transfer the atomic qubit state via teleportation
from one network node to another one. To this end, the
proposal of Bose et al. (1999) is extended to polarization
qubits. The atom at sender node A is initialized in the state to
be teleported:

jφiA ¼ αj↑iA þ βj↓iA: ð40Þ

Then entanglement is created locally between the spin state
of atom B and the polarization of a photon C using a
vSTIRAP, as explained in Sec. III.D. The atom-photon state
reads

jΨ−iBC ¼ 1ffiffiffi
2

p ðj↓iBj↺iC − j↑iBj↻iCÞ: ð41Þ

Here j↻i and j↺i denote right- and left-circularly polarized
photon states, and the subscripts label the individual particles.
Photon C is sent to node A via an optical fiber. The three-
particle state of the qubits A, B, and C can be written as

jφiAjΨ−iBC ¼ 1
2
ðjΦþiACσ̂xσ̂zjφiB þ jΦ−iACσ̂xjφiB

−jΨþiACσ̂zjφiB − jΨ−iACjφiBÞ: ð42Þ

Here jΦ�i and jΨ�i are the four Bell states and σ̂i are the Pauli
operators, with i ¼ x; y; z. To transfer the atomic state from A
to B, the Bell state of the qubits A and C is measured. This
projects atom B onto the initial state jφi of atom A, except for
a rotation that depends on the measurement outcome.
In the experiment (Nölleke et al., 2013), the Bell-state

measurement is performed optically, as explained in
Sec. IV.B.1. To this end, the qubit state of atom A is first
mapped onto a photon, as explained in Sec. III.C, and this
photon then interferes with photon C.
The success probability of the teleportation protocol is

0.1%. It is the product of the photon-production efficiency

(39% at node A and 25% at node B) and the photon-detection
efficiency of 31% and 12%, respectively, multiplied by a
factor of 0.25 as only one Bell state is detected. These
numbers include all propagation losses and the quantum
efficiency of the detectors. Compared to a realization with
atoms in free space (Olmschenk et al., 2009), the use of
cavities boosts the efficiency by almost 5 orders of magnitude.
However, compared to the values achieved using the deter-
ministic networking approach presented in Sec. IV.A, the
efficiency is more than an order of magnitude smaller, which
is caused by the fundamental factor of 0.25 and by the limited
quantum efficiency of the SPCMs (about 50% each).
The achieved average fidelity is F̄ ¼ ð78.9� 1.1Þ%. It is

determined by the entanglement fidelity and by the limited
two-photon interference contrast of 66% already mentioned in
Sec. IV.B.1. Reducing the coincidence time window to 80 ns
increases the contrast to 92.8% and thus the average telepor-
tation fidelity to ð88.0� 1.5Þ%, while reducing the efficiency
by a factor of 4.
As a side remark, the described teleportation protocol can

be directly applied to entanglement swapping, as required for
the implementation of a quantum repeater. To this end, both
atoms A and B would be entangled with remote atoms A0 and
B0, e.g., using the procedure described in Sec. IV.A.3. Then,
atom-photon quantum-state transfer (as explained in
Sec. III.C) followed by the optical Bell-state measurement
would allow for entanglement swapping to the nodes A0 and
B0. The achievable efficiency and fidelity are expected to be
comparable.

3. Entanglement of two atoms in one cavity

An entanglement swapping protocol based on an optical
Bell-state measurement can also be used for the heralded
entanglement of two atoms in the same resonator. The first
experimental realization (Casabone et al., 2013) follows the
scheme proposed by Duan and Kimble (2003). It employs two
40Caþ ions trapped in a Fabry-Perot cavity in the intermediate
coupling regime with C≃ 0.25. Adjusting the trap frequen-
cies of the employed linear Paul trap facilitates controlled
localization of both ions at an antinode of the cavity field.
Atom-photon entanglement is generated by driving both ions
with a bichromatic Raman laser, as first demonstrated by Stute
et al. (2012). Ideally, this generates the ion-photon state:

jψi ¼ 1ffiffiffi
2

p ðj↑ijHi þ j↓ijViÞ. ð43Þ

Here j↑i≡ j32D5=2; mj ¼ −3=2i and j↓i≡ j32D5=2; mj ¼
−5=2i denote the atomic spin state, and jHi (jVi) denotes
horizontal (vertical) polarization, respectively. The two pho-
tons leave the cavity in the same output mode and are
impinging onto a polarizing beam splitter that allows for a
photonic Bell-state measurement, similar to that using a NPBS
described in Sec. IV.B.1. Thus, when one photon is detected in
each port, the state of the atoms A and B is projected to the
entangled state:
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jψiAB ¼ 1ffiffiffi
2

p ðj↑iAj↓iB þ j↓iAj↑iBÞ. ð44Þ

Reconstructing the density matrix of the combined atom-
atom state requires individual addressing of both ions. This is
not implemented experimentally. Instead, a lower bound
to the fidelity of the generated state with the ideally expected
one is obtained using common qubit rotations, followed
by a measurement of the atomic-state parity given by
p0 þ p2 − p1. Here pi denotes the probability to find i ions
in the fluorescent state after the rotation. The experimental
results can be seen in Fig. 21. One observes the expected
parity oscillation when varying the phase between the two π=2
qubit rotations.
The depicted data include experimental runs in which the

two photons have been detected within a time window of
0.5 μs, achieving a fidelity of 91.9(2.5)%. The used coinci-
dence time window is short compared to the 40 μs duration of
the Raman laser pulse that generates the photons. This
increases the achieved fidelity as it excludes experimental
runs in which the atom has undergone several scattering
events before emitting a photon into the cavity mode.
However, the consequence is a reduction of the success
probability by more than an order of magnitude.
Nevertheless, the achieved entanglement rate is 0.2 event
per second. To improve, a cavity with a higher cooperativity
and reduced scattering losses is required.
Albeit entanglement of two or more ions within one trap

can be generated deterministically with higher fidelity using
the direct Coulomb interaction (Blatt and Wineland, 2008).
The used mechanism can also find applications in the

generation of entangled states that consist of neutral atoms
or other emitters that do not provide direct coupling mech-
anisms. In addition, the measured efficiency and fidelity allow
one to extrapolate the values that should currently be achiev-
able with ions trapped in remote cavities.

4. Discussion

The experiments described (Casabone et al., 2013; Nölleke
et al., 2013) are first steps toward larger quantum networks
using the probabilistic approach. Compared to free-space
approaches (Moehring et al., 2007; Duan and Monroe,
2010; Hofmann et al., 2012; Bernien et al., 2013; Pfaff et al.,
2014), the use of optical resonators as efficient quantum
interfaces allows for high success probabilities. Remarkably,
in Nölleke et al. (2013) the time required for one successful
teleportation event, 0.1 s, is about an order of magnitude
shorter than the coherence time observed with single trapped
atoms (Meschede and Rauschenbeutel, 2006), even at a
moderate repetition rate of 10 kHz that is currently limited
by intermittent cooling intervals.
Still, scaling to larger quantum networks is challenging and

requires much higher event rates. One way to achieve this is
the implementation of faster cooling mechanisms. In addition,
the efficiency of the protocol can still be improved by 2 orders
of magnitude compared to the realization in Nölleke et al.
(2013). A factor of 10 can be gained by increasing the photon-
production efficiency, which is feasible with better atomic
localization and higher coupling strength. Gaining another
order of magnitude requires an improved optics setup and
SPCMs with an efficiency approaching unity, as invented
recently (Marsili et al., 2013).
This might allow for further approaching the fundamental

limit of 50%. Beating this limit requires a deterministic
photon-photon gate, which might soon be realized in
CQED; see Sec. IV.D.3. Alternatively, the use of photon
states that are entangled in several degrees of freedom and thus
allow for deterministic Bell-state measurement with linear
optics can be considered (Walborn, 2008). Finally, to further
increase the teleportation efficiency, the Bell state can also be
measured by applying an atom-photon quantum gate,
described in Sec. IV.D.2, followed by detection of the atomic
and photonic states (Bonato et al., 2010).
Apart from the efficiency, the fidelity values achieved so far

using the probabilistic approach also pose a problem with
respect to upscaling. Improvement requires higher coopera-
tivity in the ion-cavity experiment (Casabone et al., 2013). In
the neutral-atom experiment (Nölleke et al., 2013), reducing
the atomic temperature (Reiserer et al., 2013) or using a
magic-wavelength trap (McKeever et al., 2003) is expected to
improve the interference contrast. Then the fidelity values
might approach the high values achieved with the determin-
istic networking approach presented in Sec. IV.A.

C. Nondestructive photon detection

Scaling quantum networks to large distances necessitates
heralded protocols that combat photon absorption in the used
fiber links. The simplest approach to herald that a photon has
been transmitted through a fiber is to measure its presence
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FIG. 21 (color online). Entanglement of two ions, heralded by
the detection of two photons in the cavity output. The fidelity of
the entangled state is bounded by three measurements. First, the
sum of population terms ρ↓↑;↓↑ and ρ↑↓;↑↓, indicated by the
horizontal line. Second, the parity after two π=2 rotations with
relative phase ϕ on the jci↔jui transition (circles and dashed
sinusoidal fit curve). Third, the parity after one π=2 pulse with
absolute phase ϕ (triangles). From the obtained values, a lower
bound to the state fidelity of 92% can be derived. Adapted from
Casabone et al., 2013.
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with an SPCM. This destroys the encoded quantum informa-
tion and is thus not useful for quantum networks. One can do
better by using two-photon interference to transfer the state of
the photon to that of a remote particle, e.g., a second photon or
a trapped atom (as described in the teleportation experiment in
Sec. IV.B.2). However, this process is intrinsically probabi-
listic, with 0.1% being the highest success probability
achieved to date (Nölleke et al., 2013). This section presents
an alternative scheme that facilitates a deterministic detection
of the presence of a single photon without absorbing it. In this
process, quantum information that is encoded in the photonic
polarization or arrival time can be preserved, making the
scheme promising for applications in quantum networks.
In order to nondestructively detect a photon, the interaction

mechanism proposed by Duan and Kimble (2004) is
employed. In the experiment (Reiserer, Ritter, and Rempe,
2013), an incoming photon j1i, contained in a faint laser pulse
(with average photon number n̄ ¼ 0.12), is reflected from an
atom-cavity system in the strong-coupling regime (with
C≃ 3). A theoretical treatment of this process is given in
Sec. I.D. Recall from Fig. 6(d) that the phase of the combined
atom-photon state remains unchanged when the atom is in jci,
i.e., jcij1i → jcij1i. In contrast, when the atom is in jui, the
phase is flipped, i.e., juij1i → −juij1i. Here the arrow
denotes the reflection process.
To use this conditional phase shift for photon detection, the

atom is prepared in a superposition of its ground states using
the techniques described in Sec. II.C; see Fig. 22(a). If there is
no reflected photon, the state remains unchanged, as sym-
bolized by the filled circle on the right side of Fig. 22(b).
Reflection of a photon, symbolized by the arrow, however,

leads to a flip of the superposition phase (filled circle on the
left side):

1ffiffiffi
2

p ðjci þ juiÞj1i → 1ffiffiffi
2

p ðjci − juiÞj1i. ð45Þ

To measure this phase flip, a π=2 rotation [Fig. 22(c)] maps
the atomic state ðjui þ jciÞ= ffiffiffi

2
p

onto jui, while ðjui −
jciÞ= ffiffiffi

2
p

is rotated to jci. Subsequently, cavity-enhanced
fluorescence state detection [Fig. 22(d)] is used to discrimi-
nate between the atomic states jui and jci. Figure 22(e) shows
a typical experimental trace. A photon is reflected in the first
2.5 μs. After the reflection, it is detected by a conventional
SPCM. Following a rotation of the atomic state, many
fluorescence photons are detected by the same SPCM in
the readout interval, which means that the photon has indeed
been detected twice: Before it was absorbed by the SPCM, it
has left its trace in the atom, which is subsequently read out.
The probability that an impinging photon is reflected (rather

than absorbed or scattered) is 66%. The achieved single-
photon detection efficiency is 74%. In contrast to absorbing
photon detectors, it can be further improved by attempting
more measurements. This yields 87% for two concatenated
setups, and 89% for three or more devices. The performance
of the setup is not fundamentally limited. It could be further
increased with a higher cooperativity, smaller cavity losses,
and reduced technical imperfections in the atomic-state
preparation, rotation, and readout.
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FIG. 22 (color online). Nondestructive detection of an optical photon. (a)–(d) Ramsey sequences. (a) The atomic state, visualized on the
Bloch sphere, is first prepared in the superposition state ðjui þ jciÞ= ffiffiffi

2
p

. (b) When a single photon is reflected from the resonator, the
phase of the superposition state is flipped ðjui þ jciÞ= ffiffiffi

2
p

→ ðjui − jciÞ= ffiffiffi
2

p
. (c) This state is transferred to jci in a subsequent Raman

rotation. (d) State detection in fluorescence thus facilitates detecting whether a photon has been reflected or not. (e) Result of a
nondestructive detection process. A photon is destructively detected by an SPCM after reflection from an atom-cavity system (line in the
left trigger interval). But before being absorbed, the photon has left its trace in the atomic state. Therefore, after π=2 rotation, many
fluorescence photons are observed in the 25 μs long readout interval (right), unambiguously signaling the atomic-state change induced
by the reflected photon. (f) Arrival-time histogram of the photons detected with the SPCMs after reflection from the setup. The data
taken during the nondestructive photon measurement (squares) do not show a significant deviation from the reference curve recorded
without an atom (points). Adapted from Reiserer, Ritter, and Rempe, 2013.
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To investigate whether the presence of a photon can be
heralded without affecting encoded quantum information, the
wave packet envelope of the reflected pulses was measured;
see Fig. 22(f). Except for a small reduction in amplitude, the
data of the nondestructive photon-detection experiment
(squares) do not show a significant deviation from the
reference curve recorded without an atom (points). This
means that the photonic wave packet shape remains
unchanged, and therefore it should be possible to detect a
photon without changing the quantum information encoded in
its arrival time. Similarly, polarization qubits can be employed
when the atom is equally coupled to two degenerate polari-
zation modes of a resonator.

D. Quantum computing

While the previous sections focused on the distribution of
quantum information, experiments toward its processing in
optical CQED setups are summarized in the following. The
first step in this direction is to control the transmission,
reflection, and phase of a light field via a single, strongly
coupled atom. This is the topic of Sec. IV.D.1. Combining
these techniques with atomic-state control facilitates the
realization of an atom-photon quantum gate, described in
Sec. IV.D.2. When this gate is applied to two photons
consecutively, it can mediate a photon-photon quantum gate.
This and other approaches toward photon-photon interactions
in CQED are discussed in Sec. IV.D.3.

1. Atom-controlled amplitude switching and phase shifting

As explained in Sec. I.D, the coupling of a single atom to an
optical resonator can lead to a large change in the phase and
amplitude of the transmission and reflection of light from a
cavity when the cooperativity of the system fulfills the
condition C ≫ 1. Since the first observation of this effect
(Thompson, Rempe, and Kimble, 1992) with an atomic beam
(with one intracavity atom on average traversing a Fabry-Perot
resonator), many experiments have investigated atom-
controlled switching. The first switching of the amplitude
transmission with a single trapped atom was reported by Boca
et al. (2004) and Maunz et al. (2005), using a Fabry-Perot
cavity in the strong-coupling regime. Similar experiments
have meanwhile been realized in solid-state systems, e.g.,
using a single quantum dot coupled to a photonic-crystal
cavity (Englund et al., 2007). Recent experiments with optical
ensembles trapped in a resonator have also demonstrated a
hybrid approach (Chen et al., 2013). Here excitations at the
single-photon level are trapped and released in a mode that is
orthogonal to the cavity using the effect of collective enhance-
ment of the absorption cross section. The coupling of the
atoms to the resonator mode then leads to a reduced trans-
mission whenever a photon is stored in the ensemble.
In order to harness atom-induced switching for quantum

information processing, a high contrast between transmission
and reflection is required, combined with excellent mode
matching between the input and resonator modes. Toward this
end, whispering-gallery-mode resonators have been identified
as a promising system, with the additional advantage of
operation in a fiber-coupled configuration with an adjustable

outcoupling rate (Spillane et al., 2003). Several experiments
have demonstrated switching by single atoms falling through
the mode (Dayan et al., 2008; Aoki et al., 2009; O’Shea et al.,
2013; Shomroni et al., 2014), but coherent control of the
atomic ground state and thus the demonstration of a quantum
gate is hardly possible without trapping.
Quantum information processing can also be implemented

with atom-induced phase (rather than amplitude) control. The
first experiment in this direction was the observation of a
phase shift of several tens of degrees, observed in transmission
with an atomic beam passing through a Fabry-Perot cavity in
the Purcell regime (with C≃ 1) (Turchette et al., 1995).
Higher phase shifts of 140 deg in transmission have been
observed recently with a single trapped atom in a strongly
coupled system (Sames et al., 2014). Even stronger effects can
be observed in the reflection from a single-sided cavity. Here
ideally a π phase shift is achievable without a change in the
reflected amplitude; see the calculations in Sec. I.D depicted
in Fig. 6.
Recently, this was observed in three independent experi-

ments, both in the strong-coupling regime using a Fabry-Perot
resonator (Reiserer, Ritter, and Rempe, 2013) and in the
Purcell regime using a photonic-crystal cavity (Tiecke et al.,
2014) or a whispering-gallery-mode resonator (Volz et al.,
2014). A phase shift in reflection was also observed with
quantum dot-cavity systems (Fushman et al., 2008; Kim et al.,
2013). With neutral atoms, the phase shift has facilitated the
implementation of an atom-photon quantum gate, which is
described in Sec. IV.D.2. In addition, the mechanism is
promising for the implementation of photon-photon quantum
gates; see Sec. IV.D.3.

2. An atom-photon quantum gate

For an intuitive explanation of the mechanism that facil-
itates an atom-photon quantum gate (Duan and Kimble,
2004), consider a three-level atom in a lossless cavity that
consists of a perfectly reflecting mirror and a coupling mirror
which has a small transmission; see Fig. 1. A resonant photon
is impinging onto and reflected from the setup.
When the atom is in the uncoupled ground state jui, any

transition is far detuned. Therefore, the photon can enter the
cavity, as the light field leaking out of the resonator interferes
destructively with the direct reflection at the first mirror. In the
reflection process, the combined atom-photon state thus
experiences a phase shift of π, as discussed in Sec. I.D.
Now consider the case when the atom is in the coupled state
jci. When the system is operated in a regime with C ≫ 1, the
photon cannot enter the cavity and is reflected without a phase
shift. The effect of the reflection process is thus a conditional
phase shift of π, i.e., a sign change, of the combined atom-
photon state.
We emphasize that the conditional phase shift is indepen-

dent of the exact atom-cavity coupling strength and detuning,
making the scheme robust with respect to most experimental
imperfections. There are only three prerequisites: First, the
photonic bandwidth has to be small compared to the cavity
linewidth. Second, the frequency of the impinging photons
must be stable with respect to the cavity resonance. Third, the
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spatial mode of the impinging photons has to match that of the
cavity.
When these conditions are fulfilled, the controlled-phase

shift enables the implementation of a quantum gate. To this
end, a loss-tolerant photonic qubit is encoded in the polari-
zation of the impinging photon. The original proposal (Duan
and Kimble, 2004) employs a PBS, such that only one
polarization component is reflected from the cavity and the
other one is reflected from a mirror. Alternatively, one can use
a resonator that only supports one resonant polarization mode
and directly reflects the other, or employ an atomic level
scheme that only couples to one polarization. The latter is
used in the first experimental realization of an atom-photon
quantum gate (Reiserer et al., 2014), which is described in this
section.
In the experiment, the atomic qubit is defined such that

jui≡ j↓ia and jci≡ j↑ia, and the photonic qubit such that
j↺i≡ j↓ip and j↻i≡ j↑ip. The photon is coupled only to the
atom in the state j↑a↑pi. Thus, the reflection of a photon
results in the following conditional sign change of the
combined atom-photon state:

j↑a↑pi → j↑a↑pi; ð46aÞ

j↑a↓pi → −j↑a↓pi; ð46bÞ

j↓a↑pi → −j↓a↑pi; ð46cÞ

j↓a↓pi → −j↓a↓pi. ð46dÞ

Equation (45) is a controlled-phase gate that is universal for
quantum computation. This means that any two-qubit unitary
can be decomposed into a sequence of controlled-phase gates
and rotations of the individual qubits. Thus, with respect to the
rotated photonic basis states

j↑p
x i≡ 1ffiffiffi

2
p ðj↑pi þ j↓piÞ ð47Þ

and

j↓p
x i≡ 1ffiffiffi

2
p ðj↑pi − j↓piÞ; ð48Þ

the conditional phase shift represents an atom-photon con-
trolled-not (CNOT) gate that performs a flip of the photonic
target qubit, controlled by the quantum state of the atom,
similar to its classical analog.
The first step to characterize the gate is therefore to measure

a classical truth table that shows the normalized probabilities
to detect a certain output state for each of the orthogonal input
states. The measurement result is depicted in Fig. 23(a). The
control and target qubits are expected to be unchanged when
the control qubit is in the state j↓ai, which is accomplished
with a probability of 99%. When the control qubit is in j↑ai,
the expected flip of the photonic target qubit is observed with
a probability of 86%.
The decisive feature that discriminates a quantum gate from

a classical one is its capability to generate entangled output

states from separable input states. To demonstrate this, the gate
is applied to the photons contained in one or two sequentially
impinging laser pulses (n̄ ¼ 0.07, FWHM 0.7 μs).
Postselecting events where one photon was detected in each
of the input pulses, a maximally entangled jΨþi Bell state or
Greenberger-Horne-Zeilinger (GHZ) state (Greenberger,
Horne, and Zeilinger, 1989) is expected, respectively,

j↓a
x↓

p
x i → jΨþi ¼ 1ffiffiffi

2
p ðj↑a↑p

x i þ e−iφj↓a↓p
x iÞ; ð49aÞ

j↓a
x↓

p
x↓

p
x i → jGHZi ¼ 1ffiffiffi

2
p ðj↑a↑p

x↑
p
x i − e−iφj↓a↓p

x↓
p
x iÞ.

ð49bÞ

FIG. 23 (color online). (a) Truth table of the atom-photon CNOT

quantum gate, showing the normalized probability of obtaining a
specific output state for a complete set of atom-photon input
states. The experimentally obtained values (filled bars) are close
to the ideally expected ones (open bars). (b) Atom-photon-photon
entangled state, generated via subsequent interactions of two
photons with the same atom. The depicted density matrix is
obtained by quantum-state tomography. The fidelity with a
maximally entangled GHZ state (open bars) is 67%, proving
genuine three-particle entanglement. From Reiserer et al., 2014.
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The density matrix of the generated quantum state is recon-
structed using quantum-state tomography. For the jΨþi
state with φ ¼ 0, a fidelity of 83% is achieved, proving
quantum operation of the gate. The result for the GHZ state
is shown in Fig. 23(b). With φ ¼ 0.21π, the achieved fidelity is
67(2)%, proving genuine three-particle (atom-photon-photon)
entanglement.
In principle, the gate mechanism could be applied to more

than two reflected photons in order to generate larger atom-
photon cluster states. However, this would require an increase
in the fidelity. In the experiment, the dominant source of error
is imperfect spatial mode matching between the impinging
photons and the cavity mode. It should be feasible to strongly
improve this in an optimized optics setup, or with additional
spatial filters.
Then the experimentally achievable cluster-state size would

depend on the efficiency of the used source of input photons
and the efficiency of the gate itself. The experimental value of
67% is limited by the moderate cooperativity of C≃ 3 and
scatter and absorption losses of the cavity mirrors. However,
the achievable efficiency scales quite favorably with the atom-
cavity coupling strength, such that gate efficiencies above
90% seem feasible with current cavity technology.
The hybrid character of the atom-photon quantum gate

makes the scheme promising for applications in quantum
information processing. In combination with photon meas-
urement and feedback, the mechanism allows for the imple-
mentation of a heralded quantum memory and quantum gates
between two atoms in the same or in remote cavities (Xiao
et al., 2004; Cho and Lee, 2005; Duan, Wang, and Kimble,
2005). In addition, it may mediate a deterministic photon-
photon gate, which will be discussed at the end of Sec. IV.D.3.

3. Toward photon-photon quantum gates

The realization of deterministic interactions between single
photons is a long-sought goal in quantum optics, and several
different approaches are investigated in this context (Chang,
Vuletić, and Lukin, 2014). In CQED systems, one can
consecutively apply the atom-photon gate described in
Sec. IV.D.2. This approach will be revisited at the end of
this section. Alternatively, one can make use of the nonlinear
character of the atom-controlled switching mechanisms
described in Sec. IV.D.1 to mediate interactions between
photons.
Toward this end, consider a single atom that is trapped in a

cavity in the strong-coupling regime. A stream of photons
impinges onto the system, i.e., either the atom or the cavity,
with a frequency that is shifted from the empty cavity
resonance frequency by the coupling strength g. When the
atom is in the coupled state, the photons can resonantly drive
transitions to one of the states in the first excited doublet of the
Jaynes-Cummings ladder, j1;þi or j1;−i, shown in Fig. 2.
Therefore, a single photon impinging onto the setup has a high
chance to be absorbed and reemitted. If, however, two photons
impinge simultaneously, only one of them can be absorbed, as
the corresponding doubly excited state j2;þi or j2;−i is
detuned from the light field by ð ffiffiffi

2
p

− 1Þg.
It follows that photons can be emitted only one at a time, so

that one expects to observe antibunching when measuring,

e.g., the cavity output photon stream in a Hanbury Brown and
Twiss setup. The first experiment that investigates this effect
(Birnbaum et al., 2005) used crossed polarizations for
excitation of the cavity and photon detection behind the
cavity in order to suppress photons transmitted through the
cavity in instances when the atom was not strongly coupled to
the mode or no atom was present. The resulting normalized
number of cross-polarization coincidences is shown in Fig. 24.
Around zero time delay, sub-Poissonian photon statistics was
observed, proving the single-photon character of the output
field. The width of the dip in the correlation function is set by
the linewidth of the normal mode ðγ þ κÞ=2.
The nonlinearity of the Jaynes-Cummings ladder can also

be used to implement a “two-photon gateway” (Kubanek
et al., 2008): When operating at a different frequency, namely,
one with vanishing two-photon detuning, two photons are
more likely transmitted simultaneously than at large temporal
separation. Note that this situation should not be confused
with a source of two-photon Fock states, as the one-photon
transmission probability can be comparable or even larger
than the joint two-photon transmission probability. In fact, a
measurement of three-photon correlations reveals interesting
dynamics (Koch et al., 2011).
The experiments mentioned previously all operate in the

strong-coupling regime and exploit the nonlinear eigenspec-
trum of the Jaynes-Cummings ladder. Alternatively, one can
also observe nonlinear amplitude or phase switching when
operating in the Purcell regime at Δa ¼ Δc ¼ 0, making use
of the fact that a single two-level atom can absorb and emit
only one photon at a time. Following the early work of
Turchette et al. (1995), such nonlinearities have been inves-
tigated in several experiments with atoms near whispering-
gallery-mode resonators (Dayan et al., 2008; Aoki et al.,
2009; O’Shea et al., 2013; Volz et al., 2014), and with atoms
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FIG. 24 (color online). A two-mode photon-blockade effect. A
faint, linearly polarized probe laser, detuned from the empty
cavity resonance by the coupling strength g, drives the cavity
mode. After passing an orthogonal polarizer, the transmitted light
is analyzed in a Hanbury Brown and Twiss setup. The obtained
correlation function exhibits clear antibunching. This demon-
strates the fact that because of its nonlinear eigenspectrum,
photons can pass the atom-cavity system only one at a time.
Adapted from Birnbaum et al., 2005.
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or quantum dots in photonic-crystal cavities (Reinhard et al.,
2012; Tiecke et al., 2014).
While in principle the observation of nonlinear effects in the

experiments mentioned previously leads to an interaction
between photons, the question whether such nonlinearity
allows for the implementation of a photon-photon quantum
gate has been the subject of a long debate, starting with the
work of Shapiro (2006). The basic argument is that such
quantum gate requires conflicting properties of the photonic
wave packets: On the one hand, matching the cavity band-
width requires the photon duration to be long. But with long
two-photon pulses, the average population of the atomic
excited state becomes small, and thus the nonlinearity
vanishes. Therefore, the observation of nonlinear switching
explained previously is restricted to a subensemble of all
events (Rosenblum, Parkins, and Dayan, 2011). Still it can be
used for probabilistic gates and photonic Bell-state measure-
ments (Witthaut, Lukin, and Sørensen, 2012).
In contrast, consecutive application of an atom-photon gate

in a three-level configuration is expected to facilitate deter-
ministic photon-photon quantum gates. Toward this goal,
there are two possible mechanisms, that of Duan and
Kimble (2004) which implements a CNOT gate as explained
in Sec. IV.D.2, and that of Koshino, Ishizaka, and Nakamura
(2010) which should allow for a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
operation.

The first step toward realizing the latter was reported by
Shomroni et al. (2014), where it was shown that using the gate
mechanism in a SWAP configuration, photons contained in
faint light pulses can toggle the state of an atom, as described
in Sec. IV.A.1. Then the atom can switch the transmission of
another photon, as described in Sec. IV.D.1. Toward photonic
quantum gates, a higher switching contrast and faithful
operation with quantum superposition states would have to
be demonstrated.
Considering the mechanism of Duan and Kimble (2004),

the implementation of an atom-photon quantum gate has been
demonstrated (Reiserer et al., 2014). To extend this toward
photon-photon gates, a first reflected photon is entangled with
the atomic state, which in turn toggles the polarization of a
second photon. To realize a quantum gate, the atom has to be
disentangled from the photons, which can be done by
reflecting the first photon a second time from the setup
(Duan and Kimble, 2004). Alternatively, a quantum eraser
protocol can be employed (Hu, Munro, and Rarity, 2008).
The latter approach was used by Reiserer et al. (2014) to

generate a maximally entangled photon-photon state out of
two separable input photons by postselection. The experiment
starts by generating the state jGHZi; see Eq. (49b). Then, a
π=2 rotation is applied to the atom. When φ ¼ 0, the state is
transformed to

1ffiffiffi
2

p ½j↑aiðj↑p
x↑

p
x i − j↓p

x↓
p
x iÞ − j↓aiðj↑p

x↑
p
x i þ j↓p

x↓
p
x iÞ�.

ð50Þ

Subsequent measurement of the atomic state disentangles
the atom, which results in an entangled two-photon state: If
the atom is found in j↑ai (j↓ai), the resulting state is jΦ−i
(jΦþi), respectively. The experimentally achieved fidelity

with a maximally entangled state is 76(2)%, proving pho-
ton-photon entanglement.
This postselected measurement demonstrates that the atom-

photon quantum-gate mechanism can mediate a photon-
photon gate that is in principle deterministic. To this end,
fast feedback onto the photonic state would have to be
implemented, which requires that the two photons are stored
during the time required to rotate and readout the atomic state,
which takes about 3 μs in the setup of Reiserer et al. (2014).
Thus, the feedback procedure can technically be realized with
an optical fiber of less than 1 km length and an electro-optical
modulator. This makes the implementation of a deterministic
photon-photon quantum gate via the mechanism proposed by
Duan and Kimble (2004) a realistic perspective for the near
future.

V. SUMMARY AND OUTLOOK

The experiments described in this review article demon-
strated that optical resonators with low internal loss provide an
efficient interface between stationary material qubits and
flying optical qubits. Moreover, steady progress in atom
trapping and cooling has enabled full control over individual
atoms. Thus, the ideal situation assumed in most CQED
proposals can nowadays be realized experimentally: A point-
like two- or multilevel atom that is trapped at a fixed position
within the field of an overcoupled optical cavity which
provides controllable strong coupling to propagating photons.
The achieved experimental control has enabled the reali-

zation of first prototype quantum networks, consisting of two
nodes connected by one channel. The nodes are universal,
meaning that they can perform all operations required in a
quantum network: sending, receiving, storing, and processing
of quantum information. Nevertheless, scaling the demon-
strated elementary networks to more nodes and larger dis-
tances poses a formidable challenge, both experimentally and
theoretically. The reason is that all of the described processes
exhibit finite efficiencies and fidelities.
In the following, we first consider the scaling to larger

distances, where the main obstacle is the loss in both fiber and
free-space photonic quantum channels. In free-space net-
works, the main source of loss is atmospheric scattering
and distortion of the mode. An interesting approach to
mitigate this problem is to establish photonic channels via
satellites (Peng et al., 2005). In fiber-based networks, long-
distance experiments will likely require operation in the so-
called telecommunications window, i.e., at a wavelength
around 1.55 μm where the loss is lowest, typically about
0.2 dB=km. Toward this end, one can use atoms with suitable
transition frequencies, employ wavelength-bridging entangle-
ment (Radnaev et al., 2010), or convert the photonic wave-
length via nonlinear processes (Tanzilli et al., 2005; De Greve
et al., 2012) that can achieve remarkable efficiencies above
30% (Zaske et al., 2012). Still, direct fiber-based links will be
limited to internode separations of tens of kilometers at most,
as the transmission probability ptransðLÞ ¼ e−L=Lloss of a
photon decreases exponentially with distance L. Here Lloss ≃
20 km denotes the 1=e loss length of today’s telecommuni-
cation fibers.
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Many proposals have been put forward to overcome this
unfavorable exponential scaling by using a divide-and-
conquer strategy. To understand the basic idea, consider a
situation where one tries to generate entanglement between
two nodes A and B that are separated by a distance L0.
The average success rate is then given by Rsuccess ¼
RreppintptransðL0Þ, where pint is the intrinsic efficiency of
the entanglement generation and distribution protocol and Rrep

is the repetition rate. When the distance between the nodes is
increased to nL0, the success rate will drop proportional to
ptransðnL0Þ ¼ ptransðL0Þn, i.e., exponentially with n.
Now consider adding n intermediate network nodes,

equally distributed between A and B, and each equipped with
two qubits. Generating entanglement between one of the
qubits of adjacent intermediate nodes will still succeed with an
average rate Rsuccess. When the entanglement generation is
heralded and the quantum state of individual qubits can be
preserved until all neighboring nodes are entangled, then
entanglement over an arbitrary distance can almost instanta-
neously be generated (without an exponential reduction of the
efficiency) by repeated application of entanglement swapping
(Żukowski et al., 1993). The latter process is equivalent to
teleportation (Bennett et al., 1993) of one of the qubits of an
entangled state to the next node (and subsequently all along
the chain).
Ideally, perfect qubit readout and both deterministic and

error-free two-qubit quantum gates are used for entanglement
swapping and teleportation. However, ideal systems are not
required as two seminal proposals have shown that remote
entanglement and state transfer can also be achieved with
imperfect (Briegel et al., 1998) and even probabilistic (Duan
et al., 2001) local operations at the (polynomial) cost of an
increased number of network nodes. In order to make this
work, additional purification (Bennett et al., 1996) steps are
employed to distill remote entangled pairs of high fidelity
from two or several pairs of lower fidelity. Recent approaches
employ the concept of quantum error correction for entangle-
ment distillation (Jiang et al., 2009) and quantum-state
transmission (Munro et al., 2012; Muralidharan et al.,
2014). Devices that implement one of the mentioned or the
numerous related proposals are called quantum repeaters. A
detailed analysis of the scaling of different protocols with the
fidelity and efficiency of the individual operations is presented
in Duan and Monroe (2010) and Sangouard et al. (2011). Still,
to date, no experiment has demonstrated an improvement of
the remote entanglement rate per optical mode, compared
to the fundamental limit encountered for direct photon
transmission (Takeoka, Guha, and Wilde, 2014). However,
achieving this task over a limited distance seems feasible with
state-of-the-art atom-cavity setups.
We now consider the scaling to a larger number of network

nodes. As in the previous scenario of large distances, the
success probability of naively trying to generate a maximally
entangled state of the network will again drop exponentially
with the number of nodes, as any experimental entanglement
protocol will exhibit finite efficiencies. And again, there are
several proposals how to overcome this problem with the
techniques developed for the implementation of universal
quantum computation. One approach is to use cluster states

(Raussendorf and Briegel, 2001) as a resource, which are
generated using probabilistic gates between remote qubits.
The scaling of such networks is analyzed, e.g., by Duan and
Monroe (2010). A different approach is to combine probabi-
listic remote operations with local deterministic ones, as in the
quantum repeater schemes mentioned previously. In such a
setting a deterministic interaction of remote quantum memo-
ries via probabilistic but heralded photonic channels is
possible using a repeat-until-success strategy (van Enk,
Cirac, and Zoller, 1998), where failure after a certain number
of trials leads to a reduction in fidelity that can be efficiently
corrected (Fowler et al., 2010; Nickerson, Fitzsimons, and
Benjamin, 2014).
In summary, both the scaling toward larger distances and a

larger number of network nodes require similar experimental
capabilities. The cavity-based network nodes described in this
review article have already demonstratedmany of these require-
ments. A realistic avenue toward scalable quantum networks,
however, will still require the following developments.
First, the nodes have to be equipped with two or more

quantum bits, as recently implemented in atom-cavity setups,
both with neutral atoms (Reimann et al., 2015) and with ions
(Casabone et al., 2015). Yet, it still has to be demonstrated that
it is possible to optically address a single qubit within a node
without inducing decoherence of the others. Possible solutions
to this problem include the use of off-resonant Raman
schemes, shelving of the qubits in protected internal states,
shifting individual atoms to uncoupled locations, and employ-
ing different atomic species for either communication or
storage of qubits.
Second, the nodes must allow for local entanglement

swapping with very high probability and fidelity. Othe-
rwise, even though the success rates scale polynomially with
distance, they will be too low for a useful experimental
implementation (Duan and Monroe, 2010; Sangouard et al.,
2011). Toward the implementation of efficient entanglement
swapping, deterministic local two-qubit gates will be benefi-
cial, which can be implemented using the Coulomb interaction
of trapped ions (Blatt and Wineland, 2008; Casabone et al.,
2015) or the dipolar interaction of neutral atoms excited to a
Rydberg state (Saffman, Walker, and Mølmer, 2010).
Alternatively, numerous proposals exist to implement two-
qubit gates via the common interaction with the same cavity
mode (Xiao et al., 2004; Cho and Lee, 2005; Duan, Wang, and
Kimble, 2005).
Third, the scaling of quantum networks requires that remote

nodes can be entangled in a heralded way at a rate that is
orders of magnitude faster than the inverse of the qubit
coherence time. In this respect, the envisioned use of quantum
error correction to increase the memory lifetime (Terhal, 2015)
will be beneficial. But even without such techniques, the rates
achieved with optical cavities, up to 100 Hz (Ritter et al.,
2012) with the deterministic and 10 Hz (Nölleke et al., 2013)
with the probabilistic approach, both at a distance of 21 m, are
very promising. Still, they would have to be substantially
increased for practical scaling.
Finally, the major challenge toward scaling is to improve

the fidelity of both local and remote operations. On the one
hand, theoretical progress in quantum error correction and
entanglement purification protocols over the last decade has
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constantly lowered the error thresholds for fault-tolerant
quantum operations to a few percent (Fowler et al., 2012;
Terhal, 2015), even in a network-type architecture (Fowler
et al., 2010; Zwerger, Briegel, and Dür, 2013; Nickerson,
Fitzsimons, and Benjamin, 2014). On the other hand, keeping
the number of qubits at realistic levels still requires error rates
well below 10−3. Albeit the fidelity of most experiments
presented in this article is not physically bounded, technically
achieving such thresholds will require considerable effort. In
addition, the application of fast qubit measurements and
quantum feedback, which is a prerequisite for quantum error
correction (Devitt, Munro, and Nemoto, 2013; Lidar and
Brun, 2013), entanglement purification (Bennett et al., 1996;
Dür and Briegel, 2007), and measurement-based quantum
computing (Briegel et al., 2009), is still in its infancy. In this
respect, the use of optical resonators to efficiently couple
stationary qubits to photons, for which efficient detectors and
powerful measurement techniques are readily available, pro-
vides unique possibilities for current and future experiments in
quantum communication and quantum information processing.
To conclude, albeit large-scale quantum networks are still

far beyond the current state of the art, the experiments
presented in this review have identified the main challenges
that have to be addressed toward scaling. Continuing research
in this direction will help to find answers to a fundamental
question: How large can a system become without losing its
quantum properties? In this question, the word large can again
refer to both physical distance and number of involved
particles. In the first sense, next steps might be the realization
of a loophole-free test of a Bell inequality (Brunner et al.,
2014) that facilitates exploring the ultimate limits of privacy
(Ekert and Renner, 2014), and a vision for the future might be
the realization of a quantum network on a global scale
(Kimble, 2008) using quantum repeater protocols (Briegel
et al., 1998). In the second sense, where large refers to the
number of quantum bits, future studies will investigate
collective decoherence effects and the network-based simu-
lation of quantum systems (Georgescu, Ashhab, and Nori,
2014). In this respect, quantum networks might provide an
open-system approach that is complementary to investigations
with ultracold atoms (Bloch, Dalibard, and Nascimbène,
2012) and superconducting qubits (Houck, Türeci, and
Koch, 2012). Experimental steps toward this goal will include
studies on quantum phase transitions of light (Törmä, 1998;
Greentree et al., 2006; Hartmann, Brandão, and Plenio, 2006;
Carusotto and Ciuti, 2013), on the percolation of entangle-
ment (Acin, Cirac, and Lewenstein, 2007), and on different
quantum-network topologies including quantum random net-
works (Perseguers et al., 2010). Apart from quantum simu-
lation, the long-term vision of scaling to more network nodes
is the development of a distributed quantum computing
architecture, in which small quantum registers are connected
by optical photons (Awschalom et al., 2013; Monroe and
Kim, 2013).
At the current stage, however, realistic practical applica-

tions of quantum networks demand for a reduction of the
experimental overhead. With this respect, emergent photonic
technologies (O’Brien, Furusawa, and Vučković, 2009) might
lead to an on-chip integration of light sources, switches,

single-photon detectors, and maybe even cavities, thus reduc-
ing the complexity and price of experimental setups and
improving their stability. Still, atom trapping and cooling
necessitates ultrahigh vacuum and several controlled laser
beams. Avoiding these difficulties using solid-state systems
seems to be a prerequisite for a transition that is comparable to
that from the drift tube to the transistor. However, because of
the many challenges solid-state systems still pose today,
atomic physics experiments will likely continue to play a
leading role in the exploration of fundamental phenomena in
distributed quantum networks.
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