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Ettore Majorana (1906–1938) disappeared while traveling by ship from Palermo to Naples in 1938.
His fate has never been fully resolved and several articles have been written that explore the mystery
itself. His demise intrigues us still today because of his seminal work, published the previous year, that
established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own
antiparticle. This work has long had a significant impact in neutrino physics, where this fundamental
question regarding the particle remains unanswered. But the formalism he developed has found many
uses as there are now a number of candidate spin-1=2 neutral particles that may be truly neutral with
no quantum number to distinguish them from their antiparticles. If such particles exist, they will
influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double
beta decay can exist only if neutrinos are massive Majorana particles. Hence, many efforts to search
for this process are underway. Majorana’s influence does not stop with particle physics, however, even
though that was his original consideration. The equations he derived also arise in solid-state physics
where they describe electronic states in materials with superconducting order. Of special interest here
is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero
energy. These Majorana zero modes are endowed with some remarkable physical properties that
may lead to advances in quantum computing and, in fact, there is evidence that they have been
experimentally observed. This Colloquium first summarizes the basics of Majorana’s theory and its
implications. It then provides an overview of the rich experimental programs trying to find a fermion
that is its own antiparticle in nuclear, particle, and solid-state physics.
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I. INTRODUCTION

In the late 1920s Schrödinger published his nonrelativistic
wave equation (Schrödinger, 1926) describing the quantum
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behavior of fundamental particles. Soon thereafter Paul Dirac
developed the wave equation (Dirac, 1928) that bears his
name describing the behavior of relativistic particles. About a
decade later, Ettore Majorana recognized the importance of a
specific representation of the Dirac equation (Majorana,
1937). There are numerous examples of elementary particles
that are described by the Dirac equation, but as yet, none have
been found that obey that of Majorana. Discovering particles
or quasiparticles that are governed by Majorana’s formalism
would have significant implications for science. Depending on
the type of particle or quasiparticle found, subfields ranging
from cosmology to particle physics to solid-state physics
would be affected. The remarkable achievement of the
Majorana equation and its potential consequences motivate
this Colloquium.

A. The particle physics view

Schrödinger’s equation was developed using the classical
equation relating energy (E) to momentum (p) for a particle of
mass m

E ¼ p2=2m; ð1Þ
and substituting the corresponding differential operators
(ℏ ¼ c ¼ 1):

E → i
∂
∂t ; p → −i∇ ð2Þ

to find the resulting wave equation,

i _Ψ ¼ −
1

2m
∇2Ψ; ð3Þ

where Ψ is the wave function. Relativistically, the energy-
momentum relation is

E2 ¼ p2 þm2 ð4Þ
and a straightforward substitution of the operators in Eq. (2)
leads to the Klein-Gordon equation which has a double
differentiation with respect to time. This feature of the
Klein-Gordon equation, which differs from the Schrödinger
equation, means that the probability of the value of a dynamic
variable cannot be predicted at a future time when Ψ is
provided at a given earlier time. Dirac, wanting to avoid this
feature, succeeded in writing an equation that was linear in _Ψ,
removing this difficulty. Dirac wrote his equation as

i _Ψ ¼ HDiracΨ ¼ ðα · pþ βmÞΨ: ð5Þ
The α’s and β of Eq. (5) do not commute and hence they
cannot be simple numbers, but Dirac was able to find a set of
4 × 4 matrices that met the requirements for his equation. The
forms of those matrices are such that operating with HDirac
twice will result in Eq. (4). The solutions of Eq. (5) are four-
component vectors that describe a spin-1=2 particle that is
distinct from its antiparticle. Such antiparticles, including the
electron’s antiparticle partner, the positron, and the neutron’s
antiparticle partner, the antineutron, were found soon after
Dirac’s publication, and his work has been considered a
prediction of their existence.

A more modern description expresses the Dirac equation so
that it is manifestly Lorentz covariant. One can write Eq. (5) as
such by multiplying the equation by the matrix β and defining
the Dirac representation matrices γμ ¼ ðβ; βαiÞ. The equation
is then

ðiγμ∂μ −mÞΨ ¼ ðγμpμ −mÞΨ ¼ 0: ð6Þ
Note that pμ ¼ ði∂t; pÞ, pμ ¼ ði∂t;−pÞ, and ∂μ is shorthand
for ∂=∂xμ. The explicit form of the Dirac matrices can be
written in terms of the 2 × 2 Pauli matrices (σi),

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1
�
; ð7Þ

and σ0 is the identity matrix. Denoting σμ ¼ ðσ0;−σiÞ and
σ̂μ ¼ ðσ0; σiÞ, the Dirac matrices can be written, in the Weyl
representation, as

γμ ¼
�

0 σμ

σ̂μ 0

�
. ð8Þ

The choice of the matrices in Eq. (8), however, is not unique.
Majorana’s insight was that for a particular choice of the α’s
and β, Eq. (5) is real with a real solution. The corresponding
Dirac matrices in Majorana representation read

~γ0 ¼ i

�
0 −σ1
σ1 0

�
; ~γ1 ¼ i

�
0 σ0

σ0 0

�
;

~γ2 ¼ i

�
σ0 0

0 −σ0

�
; ~γ3 ¼

�
0 σ2

−σ2 0

�
:

ð9Þ

TheDirac equation is actually four coupled equations for four
spinor components. For theMajorana equation, the condition of
reality reduces this to two independent systems, each with two
coupled equations. The solution to one of these systems then
describes a truly neutral particle, still spin 1=2, but with no
distinction between particle and antiparticle. Such a particle, if
found, would be termed aMajorana fermion.1 Eddington (1928)
noted that one could derive symmetrical equations from the
Dirac equation, but it was Majorana who noted the particle and
antiparticle correspondence and its importance for neutrinos.
The four components of a Dirac wave function describe a

particle and antiparticle pair, each with spin 1=2. The equiv-
alent in the Majorana picture is two particles, each of spin 1=2.
In some sense one can consider aDirac fermion as a special case
of a Majorana fermion pair. Two, mass-degenerate Majorana
fermions with opposite CP parity2 would be indistinguishable
from a Dirac fermion with that same mass.

1Majorana’s paper was published a year before his disappearance
from a transport ship between Palermo and Naples. The story behind
his life and theories of his demise are interesting in their own right
and are summarized by Holstein (2009), and references therein.

2CP refers to combined operators of charge conjugation and
spatial inversion symmetry. When the operator CP acts upon a wave
function, it changes the sign of all the position coordinates and
changes the particle to antiparticle. For a Majorana fermion it is
somewhat more subtle as C2jνi≡ jνi, and therefore CPjνi ¼ �ijνi
(Carruthers, 1971; Kayser and Goldhaber, 1983).
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B. The solid-state physics view

In solid-state physics the only fermionic particles that
matter for all practical purposes are electrons. Electrons
are, of course, Dirac fermions. However, as it turns out,
Majorana fermions can occur in certain solids as emergent
quasiparticles which can be thought of as collective excita-
tions of the quantum many-body state describing the interact-
ing electron system.
Condensed matter physics is replete with examples of

emergence (Anderson, 1972). Emergent particles in solids
range from those very well established (phonons, magnons,
plasmons, polarons) through some that are more elusive
(triplons, composite fermions) to truly exotic and speculative
(spinons, holons, chargons, visons, etc.). At the conventional
end, phonons, for example, represent quanta of the lattice
vibrations and form an essential ingredient in the description
of the low-temperature thermodynamic and transport proper-
ties of all solids (Kittel, 1987). Magnons—quanta of spin
fluctuations—are similarly essential in the description of
magnetic solids, as are polarons for ionic insulators and
semiconductors. In this sense, emergent particles are as real
as the elementary particles in nuclear and high-energy physics.
Observation of an emergent Majorana fermion in a solid-state
system would be as exciting, and perhaps even more so, as
establishing that, e.g., the neutrino is a Majorana fermion.
As we see in Secs. II and IV quasiparticle excitations in
superconductors indeed behave in all respects as Majorana
fermions.
To understand how Majorana fermions emerge in a system

comprised of many electrons we must first briefly review
the structure of such electronic many-body states. These are
efficiently described using the formalism of second quantiza-
tion which is uniquely suited to handle systems with a very
large numbers of identical particles in condensed matter
physics. In this formalism electrons are represented by a
set of creation and annihilation operators, where c†j creates an
electron with quantum numbers denoted by index j, while cj
annihilates it. In a typical situation j includes the position
degree of freedom as well as the orbital and spin quantum
numbers. As appropriate for identical fermions these operators
obey the canonical anticommutation relations

fc†i ; c†jg ¼ fci; cjg ¼ 0; fc†i ; cjg ¼ δij: ð10Þ

A Hamiltonian describing electrons in an arbitrary solid can
be expressed in terms of these operators; the electron kinetic
energy will be represented by terms bilinear in c’s while
interactions will contain quartic terms.
Without any loss of generality, one can perform a canonical

transformation of the Hamiltonian (and any other operator of
interest) to the “Majorana basis,”

cj ¼ 1
2
ðγj1 þ iγj2Þ; c†j ¼ 1

2
ðγj1 − iγj2Þ; ð11Þ

where the new operators γjα, which can be loosely thought of
as the real and imaginary parts of the electron operator, satisfy
the following algebra:

fγiα; γjβg ¼ 2δijδαβ; γ†iα ¼ γiα: ð12Þ

The last relation informs us that a particle created by the
γ operator is identical to its antiparticle: creating and destroy-
ing such a particle has the same effect on the state of the
system. This is a Majorana fermion.
The above discussion shows that any system of electrons

can be formally recast in terms of Majorana fermion operators
through the canonical transformation (11) and (12). In most
cases, however, such a transformation brings no benefit and
merely complicates things. Physically this is because in most
cases the two Majoranas comprising a given electron are
intertwined in space and it thus makes little sense to describe
them as separate entities. There is, however, a special class of
systems, called topological superconductors, in which two
Majorana fermions comprising a single electron become
spatially separated. In this case a description through the
Majorana basis becomes essential as no other basis can
accurately account for the true physical degrees of freedom
in the system. It is precisely this class of systems that we
discuss in great detail in Sec. IV since they exhibit, in
a very real and quantifiable sense, independent Majorana
particles.
There are a number of conditions that must be satisfied for a

system of electrons to exhibit unpaired Majorana fermions.
One key condition that can be easily understood follows
immediately from inverting the transformation specified in
Eq. (11) to obtain

γj1 ¼ c†j þ cj; γj2 ¼ iðc†j − cjÞ: ð13Þ

These relations suggest that isolated Majorana fermions can
be found in systems with superconducting (SC) order. This is
because coherent superpositions of electron and hole degrees
of freedom, indicated in Eqs. (13), are known to naturally
occur only in the theory of superconductivity, originally due
to Bardeen, Cooper, and Schrieffer (1957) (BCS). Also, an
operator defined in Eq. (13) can act only nontrivially on a
ground state with uncertain total number of particles; such a
ground state is characteristic of superconducting systems. It
therefore follows that one needs a superconductor to observe
Majorana fermions in the solid-state context, or an interacting
many-body system whose effective description is that of a
superconductor (Read and Green, 2000).
Whether or not a neutrino (or another elementary particle)

is a Majorana fermion remains ultimately an experimental
question: theory allows such a possibility but experiment will
have the final word. In solid-state physics the situation is
somewhat different. The relevant theory, based on the band
theory of solids and the BCS theory of superconductivity,
both exceptionally well understood and tested, unambigu-
ously predicts that Majorana fermions should exist in super-
conductors. As discussed in more detail, there is in fact
good experimental evidence that quasiparticle excitations that
occur in superconductors at nonzero energies are described by
the variant of the Majorana equation. A point that remains to
be experimentally settled is the existence of Majorana zero
modes (MZMs). These constitute a special case of Majorana
particles occurring at exactly zero energy. They are thought to
be endowed with some very unusual physical properties that
have no analog in high-energy physics.
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There is now no doubt that Majorana zero modes should
emerge in a class of systems called “topological supercon-
ductors.” The uncertainty has to do with the question of
whether or not the experiments have achieved conditions
necessary for the occurrence of topological superconductivity.
Further uncertainty arises from the difficulties related to the
unambiguous detection of the Majorana zero modes in solid-
state devices, where their signatures can be masked by the
effect of disorder or mimicked by other unrelated effects.
Currently a consensus is building up that Majorana zero
modes have been observed in recent experiments on semi-
conductor quantum wires proximity coupled to a supercon-
ductor (Mourik et al., 2012). Experiments on other systems
that have been proposed to host Majorana particles are being
actively pursued. In Sec. IV we review the underlying theory
and describe the relevant experimental work as well as discuss
in more detail various uncertainties that still exist.

C. Significance and potential applications

The broad interest in the physics community regarding the
existence of Majorana states, whether they be true particles or
an emergent quantum state in condensed matter systems,
arises because of the significance of such states and their
potential applications. Here we mention two important poten-
tial outcomes of the existence of Majorana fermions: lepto-
genesis and quantum computing.
Observationally, theUniverse is composed ofmatterwith no,

or little, antimatter. This fact is necessary for us to exist in order
to even ponder it. There must have been an initial imbalance
between the two, or otherwise all matter would have annihi-
lated with antimatter leaving nothing to form the galaxies, solar
systems, planets, and, of course, us. The big bang, however,
made an equal number of matter and antimatter particles at the
Universe’s beginning. The final asymmetry betweenmatter and
antimatter arose dynamically after the big bang. If neutrinos are
Majorana particles, the theory of leptogenesis might explain
this asymmetry. We discuss this possibility in Sec. III.C.
In a solid-state system, Majorana fermions naturally occur

in superconductors and can appear as isolated and unpaired
zero modes in topological superconductors and certain frac-
tional quantum Hall systems. The state vector that describes
such Majorana zero modes can be used to encode quantum
information. Since they are spatially separated, the informa-
tion in each quantum bit is stored nonlocally leading to long
decoherence times, a necessary feature for robust quantum
computing. We discuss this possibility in Sec. IV.D.1.

II. THE MAJORANA EQUATION AND ITS
CONSEQUENCES

The Dirac equation, its symmetries, solutions, and physical
consequences are discussed in standard textbooks (Peskin and
Schroeder, 1995). The Majorana solution to the Dirac equa-
tion has likewise been reviewed in great detail (Chamon et al.,
2010; Pal, 2011). In this section we outline the key theoretical
ideas behind the concept of Majorana fermions emphasizing
similarities and differences between the elementary particle
and condensed matter physics.

A. The Majorana-Dirac equations

The solution of the free-particle Dirac equation (6) is a
four-component bispinor,

Ψ ¼

0
B@

ψ1

ψ2

ψ3

ψ4

1
CA: ð14Þ

If the spin vector of a particle points in the same direction as its
momentum, it is referred to as right handed. Defining ψR and
ψL as the two-component spinors that are the right-handed
and left-handed projections of ψ (chiral projections),

Ψ≡
�
ψR

ψL

�
; ð15Þ

we use the Weyl representation (8) to write the Dirac
equation (6) as

ði∂t − p · σÞψR −mDψL ¼ 0;

ði∂t þ p · σÞψL −mDψR ¼ 0;
ð16Þ

where we have suggestively added a subscript D for Dirac to
the mass (mD).
The Dirac equation (16) has many symmetries that have

been discussed at length in the literature. Of these, two will be
most important for our discussion of Majorana particles. The
global gauge symmetry, expressed as

ΨðxÞ → eiθΨðxÞ ð17Þ
with θ a real constant, guarantees that one can couple the
Dirac fermion to the electromagnetic field and thus describe
charged particles. This is accomplished by the minimal
substitution pμ → pμ − eAμ, where Aμ represents the electro-
magnetic gauge potential.
The charge conjugation symmetry C is best understood by

examining the stationary solutions of Eq. (16). If we separate
the time dependence as ΨðxÞ ¼ e−iEtΦðxÞ, the Dirac equation
for ΦðxÞ retains the form displayed in Eq. (16) with i∂t
replaced by energy E. This stationary Dirac equation has the
following property: for each solutionΦðxÞwith energyE there
exists a solution

ΦcðxÞ ¼ CΦðxÞ≡ CΦ�ðxÞ; ð18Þ
with energy −E. Here C is the charge conjugation matrix and
the * denotes complex conjugation. In the Weyl representation
(8) of the Dirac matrices C ¼ iγ2 while in the Majorana
representation (9) C ¼ 1. For charged particles it is easy to
show that the C operation reverses the sign of the particle
charge e, hence its name.
Traditionally, the positive energy solutions of the Dirac

equation are taken to describe particles (e.g., electrons), while
the negative energy solutions describe the corresponding
antiparticles (e.g., positrons). In order to describe a particle
that is indistinguishable from its antiparticle we demand,
following Majorana, that

ΨcðxÞ ¼ ΨðxÞ; ð19Þ
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i.e., that the particle wave function and its charge conjugate
partner are the same. Importantly, we note that this condition
can be met only when imposed on the time-dependent wave
function ΨðxÞ. For E ≠ 0 stationary solutions ΦðxÞ and ΦcðxÞ
belong to different energy eigenvalues and are thus necessarily
orthogonal. In the special case E ¼ 0 the Majorana condi-
tion (19) can be satisfied even by a stationary state ΦðxÞ
leading to the concept of the Majorana zero mode which has
been of great interest in condensed matter physics and will be
discussed at length in Sec. IV.
Putting all this together, the corresponding Majorana

versions of the Dirac equations (16) are

ði∂t − p · σÞψR − imRσ
2ψ�

R ¼ 0;

ði∂t þ p · σÞψL − imLσ
2ψ�

L ¼ 0:
ð20Þ

Here we have explicitly indicated that the masses are not
required to be equal since the Majorana equation decouples.
This is not so for the Dirac equation. One should recognize
that when the mass is zero, the two equations are equivalent.
Although not essential for our discussion, Majorana states are
often described in the literature as eigenstates of CP. We note
that if a pair of Majorana particles have equal masses but
opposite CP parity, that pair would be indistinguishable from
a Dirac particle. The two fields ψL and ψR are then both
eigenstates of CP with opposite eigenvalues or CP parities.
It is also important to notice that unlike the Dirac equa-

tion (16), the Majorana equation (20) is not invariant under
the global gauge transformation Eq. (17). Majorana particles
cannot be coupled to the electromagnetic field and are thus
necessarily charge neutral. Indeed they can carry no quantum
numbers that distinguish particles from antiparticles.
The Majorana fields can be expressed in four-component

form as

ΨL ¼
�
−iσ2ψ�

L
ψL

�
; ΨR ¼

�
ψR

iσ2ψ�
R

�
: ð21Þ

From this expression, it can be seen that a pair of Majorana
fields with mL ¼ mR and ψL ¼ iσ2ψ�

R is equivalent to a Dirac
field. This four-component form will be of use in under-
standing the different issues concerning mass in the following
sections.
Further insight into the relation between Dirac and

Majorana fermions can be gained by quantizing the theory
defined by the Dirac equation (16). To this end one can write
the field operator for the Dirac fermion

Ψ̂ðxÞ ¼
X
E>0

aEe−iEtΦEðxÞ þ
X
E<0

b†−Ee
−iEtΦEðxÞ; ð22Þ

where ΦEðxÞ is an eigenstate of the stationary Dirac equation
at energy E, while a†E and b†E are creation operators3 for the

particle and antiparticle with energy E, respectively. They
satisfy the canonical fermionic anticommutation rules indi-
cated in Eq. (10). By reversing the sign of the dummy
summation variable in the second term and using the charge
conjugation property [Eq. (18)] we can recast this as a sum
over positive energy modes,

Ψ̂ðxÞ ¼
X
E>0

½aEe−iEtΦEðxÞ þ b†Ee
iEtCΦ�

EðxÞ�: ð23Þ

The Dirac field operators can now be easily shown to
satisfy the following characteristic equal-time anticommuta-
tion relations:

fΨ̂aðxÞ; Ψ̂†
bðx0Þg ¼ δabδðx − x0Þ;

fΨ̂aðxÞ; Ψ̂bðx0Þg ¼ 0;
ð24Þ

where a; b ¼ 1;…; 4 label their spinor components. Also,
since obviously Ψ̂†ðxÞ ≠ Ψ̂ðxÞ, we conclude that in this
construction particles are distinct from antiparticles. The
corresponding second quantized Dirac Hamiltonian HD ¼R
d3xΨ̂†ðxÞðα · pþmDβÞΨ̂ðxÞ is of the form

HD ¼
X
E>0

Eða†EaE þ b†EbEÞ: ð25Þ

To construct the field operator for the Majorana fermion
we demand that aE ¼ bE in Eq. (23), obtaining

Ψ̂ðxÞ ¼
X
E>0

½aEe−iEtΦEðxÞ þ a†Ee
iEtCΦ�

EðxÞ�: ð26Þ

The meaning of Eq. (26) is easiest to grasp when one employs
the Majorana representation of the Dirac matrices. As already
noted the charge conjugation matrix is simply C ¼ 1 in this
case. For the anticommutation algebra we then obtain

Ψ̂†
aðxÞ ¼ Ψ̂aðxÞ; ð27Þ

fΨ̂aðxÞ; Ψ̂bðx0Þg ¼ δabδðx − x0Þ: ð28Þ

The first equation informs us that, at the level of field
operators, a Majorana particle is indistinguishable from its
antiparticle. Alternately, the nonzero right-hand side of the
second equation can be taken as a defining property of the
Majorana particle. In another representation, when C differs
from unity, Eq. (27) is modified to CabΨ̂

†
bðxÞ ¼ Ψ̂aðxÞ and

δab → Cab in the anticommutator, but the physical content
remains the same. In the Majorana case the Hamiltonian
becomes

HM ¼
X
E>0

Ea†EaE; ð29Þ

and the system can be seen to contain half as many
independent degrees of freedom as HD.
The Dirac equation of the particle physics thus allows for

two fundamentally different types of solutions describing a
massive spin-1=2 particle. The original Dirac fermion can

3For readers unfamiliar with the formalism of second quantization
we remark that aE and bE may be regarded as ordinary c-number
coefficients. Equations (22) and (26) then give expressions for the
time-dependent wave function solutions of the Dirac equation
representing the Dirac and Majorana fermions, respectively.
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carry electrical charge and is distinct from its antiparticle; the
two are related by the charge conjugation symmetry C.
Mathematically, this is obtained from an “unconstrained”
solution of the Dirac equation. The Majorana solution of
the same equation is obtained by imposing a reality constraint
on the time-dependent wave function and describes a truly
neutral spin-1=2 particle indistinguishable from its antipar-
ticle. In the field theory formulation both Dirac and Majorana
fermions can be constructed from the same unconstrained
solution of the stationary Dirac equation but the reality
constraint must then be imposed on the Majorana field at
the operator level. The two descriptions are physically
equivalent.

B. Majorana fermions as emergent particles in solids with
superconducting order

As already noted, the Majorana equation also arises
naturally in the description of electrons in solids with super-
conducting order. This section outlines how this comes about
and points out similarities and differences with the original
Majorana theory.
To set the stage we first briefly review the Bogoliubov–

de Gennes (BdG) formalism (de Gennes, 1966) that is used
to describe solids with superconducting order. This is, in
essence, the venerable BCS theory of superconductivity
(Bardeen, Cooper, and Schrieffer, 1957), adapted to describe
spatially nonuniform situations. We use this formalism to
elucidate howMajorana fermions can arise in superconductors
on general grounds. In later sections we then give specific
examples of this general principle and connect these examples
to the ongoing experimental studies.
Superconductivity arises when electrons in a metal expe-

rience attractive interaction. In ordinary superconductors this
attraction is known to originate from the electron-phonon
coupling but other mechanisms have been proposed to operate
in high-Tc cuprate and other unconventional superconductors.
For our purposes the origin of the attraction will be unim-
portant and we describe the superconductor by the following
minimal model:

H ¼
Z

ddr½hσσ00 ðrÞc†σrcσ0r − Vn↑rn↓r�: ð30Þ

Here c†σr creates an electron with spin σ at the spatial point r
and nσr ¼ c†σrcσr denotes the number operator. The first term in
Eq. (30) describes the kinetic energy of the electrons and any
single-electron potential while the second term represents the
attractive interaction with V > 0. In the simplest case of free
electrons hσσ

0
0 ðrÞ ¼ ð−ℏ2∇2=2meff − μÞδσσ0 , where meff repre-

sents the electron band mass and μ the chemical potential.
To proceed we now perform the Bogoliubov mean-field

decoupling of the interaction term, writing

−n↑n↓ ¼ c†↑c
†
↓c↑c↓

≃ hc†↑c†↓ic↑c↓ þ c†↑c
†
↓hc↑c↓i − hc†↑c†↓ihc↑c↓i; ð31Þ

where the expectation values are taken with respect to the
BdG mean-field Hamiltonian specified below and we have

suppressed the spatial index for brevity. If we now define the
SC order parameter

ΔðrÞ ¼ Vhc↑rc↓ri; ð32Þ

we can write down the BdG mean-field Hamiltonian

HBdG¼
Z
ddr

�
hσσ

0
0 ðrÞc†σrcσ0rþðΔðrÞc†↑rc†↓rþH:c:Þ− 1

V
jΔðrÞj2

�
:

ð33Þ

As the final step we define a four-component Nambu spinor

Ψ̂r ¼

0
BBBBB@

c↑r
c↓r

c†↓r

−c†↑r

1
CCCCCA≡

�
ψ̂ r

iσyψ̂�
r

�
; ð34Þ

where the hat symbol reminds us that Ψ̂r is an operator. This
allows the BdG Hamiltonian to be cast into a compact form

HBdG ¼
Z

ddr

�
Ψ̂†

rHBdGðrÞΨ̂r −
1

V
jΔðrÞj2

�
; ð35Þ

with

HBdGðrÞ ¼
�
h0ðrÞ ΔðrÞ
Δ�ðrÞ −σyh�0ðrÞσy

�
: ð36Þ

In the last equation h0 and Δ should be viewed as 2 × 2

matrices in spin space while σ ¼ ðσx; σy; σzÞ denotes the
corresponding vector of Pauli matrices. It is useful at this
point to introduce another set of Pauli matrices τ ¼ ðτx; τy; τzÞ
acting in the Nambu space, i.e., the 2 × 2 matrix structure
explicitly displayed in Eq. (36). We also note that the size of
the Hamiltonian matrix had to be doubled to accommodate the
pairing term. As a result, only half of its independent solutions
are physical.
The problem specified by the Hamiltonian (35) and the self-

consistency condition (32) can now be solved by seeking a set
of eigenfunctions ΦnðrÞ ¼ ½un↑ðrÞ; un↓ðrÞ; vn↑ðrÞ; vn↓ðrÞ�T
and eigenvalues En satisfying the stationary BdG equation

HBdGðrÞΦnðrÞ ¼ EnΦnðrÞ: ð37Þ

In the basis spanned by these eigenfunctions the Hamiltonian
(35) is brought to a diagonal form,

HBdG ¼
X

n

0 Ena
†
nan þ Eg; ð38Þ

where Eg is a constant representing the ground-state energy
and the prime indicates that the summation is restricted to
positive energies En to avoid double counting of modes
resulting from the doubled matrix size. The term

an ¼
Z

ddrΦ†
nðrÞΨ̂r ð39Þ
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is the eigenmode operator that annihilates the Bogoliubov
quasiparticle with energy En and satisfies the canonical
fermionic anticommutation algebra (10).
The connection between the BdG theory and the Majorana

construction is most directly apparent in the structure of the
Nambu spinor Ψ̂r defined in Eq. (34). This is nothing but an
operator version of Eq. (21). The Nambu spinor satisfies the
Majorana condition (19): indeed it holds

CΨ̂�
r ¼ Ψ̂r; ð40Þ

where Ψ̂�
r ¼ ðΨ̂†

r ÞT and C ¼ τyσy is the charge conjugation
matrix. One could furthermore construct the field operator
Ψ̂ðt; rÞ of the BdG theory which would have the same
structure as the Majorana field operator in Eq. (26). This
property follows directly from the fact that the lower two
components of the Nambu spinor Ψ̂r are related to the upper
two, as indicated in Eq. (40). The form of the Nambu spinor is
in turn dictated by the structure of the second quantized BdG
Hamiltonian (33). So, unlike with the Dirac equation, where
the choice between Dirac and Majorana solutions is ours to
make, the theory of superconductors requires a description in
terms of Majorana particles.
Finally, we note that the BdG Hamiltonian in the eigen-

mode representation (38) has the same form as the Majorana
Hamiltonian HM defined in Eq. (29).
Another similarity with particle physics follows from the

anomalous terms c†↑rc
†
↓r appearing in the BdG Hamiltonian

(33). These indicate events in which the number of electrons
changes by ΔL ¼ 2, analogous to the lepton number non-
conservation discussed in Sec. III.C. In the superconductor,
the total number of electrons is of course strictly conserved, as
one can see by inspecting the full interacting Hamiltonian (30)
which commutes with the number operator. In the BdG
description the number nonconservation reflects the fact that
a pair of electrons can disappear (or emerge from) the
superconducting condensate which is treated at the mean-
field level. Such processes are akin to Majorana pair annihi-
lation in particle physics and have experimentally observable
consequences (Beenakker, 2014).
One can thus say that in the BdG theory defined by

the Hamiltonian HBdGðrÞ the excitations of a supercon-
ductor possess all the key attributes of Majorana fermions:
they are electrically neutral fermions with no distinction
between particles and antiparticles. The SC gap Δ plays the
role of the Majorana mass. This point of view has been
generally appreciated for a long time but was carefully
analyzed and emphasized only fairly recently (Chamon
et al., 2010).
It may be concluded from the analysis presented above that

Majorana fermions naturally appear in the theoretical descrip-
tion of a generic superconductor. Since the BCS theory and
the related BdG formalism on which this description rests are
in excellent agreement with the large body of experimental
data on superconductors, it could be inferred that the existence
of Majorana fermions is already well established in this
context.
The recent interest in condensed matter physics has

been centered around MZMs, already briefly mentioned in
connection with the Majorana condition (19). MZMs

constitute a special case of Majorana fermions that occur
at exact zero energy and are typically localized in space in
the vicinity of defects, such as vortices or domain walls.
Their key property is that the stationary state associated with
the MZM by itself satisfies the Majorana condition. Such
zero modes occur in so-called topological superconductors
and in fact do not obey the ordinary fermionic exchange
statistics but behave as “non-Abelian anyons” (Moore and
Read, 1991; Nayak et al., 2008). It is this extremely
interesting property that has motivated intense theoretical
and experimental studies over the past decade and made
searches for MZMs among the most active subfields of
condensed matter physics. We devote Sec. IV to the detailed
discussion of Majorana zero modes, topological supercon-
ductors, and the explanation of the non-Abelian exchange
statistics. It is important to emphasize that these phenomena
associated with MZMs in solids occur only in one- and two-
dimensional systems and have no direct analog in high-
energy physics.

III. MAJORANA FERMIONS IN NUCLEAR AND PARTICLE
PHYSICS

The neutrino is the usual suspect when one discusses
fundamental particles that might be Majorana in nature.
The neutrino interacts only weakly and therefore it is very
difficult to observe its behavior. As a result, there are key
aspects of the neutrino, such as its mass, that are still
unknown. Furthermore, the weak interaction violates parity
and therefore right-handed neutrinos (and left-handed anti-
neutrinos) have no interaction. Therefore, it is unknown if
those states are unobservable or simply do not exist. The
quantum mechanics of neutrinos, be they Dirac or Majorana
particles, has been described in detail in many places; see,
for example, Boehm and Vogel (1987), Kayser (1989),
Mohapatra and Pal (1991), and Zralek (1997). Here we
provide an overview.

A. The seesaw mechanism

In field theory, the wave equations given by Eqs. (16) and
(20) can be derived from a Lagrangian density (L) using a
variational principle (the Euler-Lagrange equation). The
appropriate L includes mass terms (Lm) whose form would
depend on whether the particles were described as Majorana
or Dirac. In the case of neutrinos, for example, it is not known
which type they are so in principle both possibilities should be
considered. Although there are three flavors of neutrinos, it is
instructive to look at Lm for a lone flavor. Hence the mass
terms of Lm are written (where H.c. is shorthand for Hermitian
conjugate)

Lm ¼ mD½ν̄RνL þ ðν̄LÞcνcR� þ
1

2
mL½ðν̄LÞcνL þ ν̄Lν

c
L�

þ 1

2
mR½ðν̄RÞcνR þ ν̄Rν

c
R�

¼ 1

2
ð ðν̄LÞcν̄R Þ

�
mL mD

mD mR

��
νL

ðνRÞc
�
þ H:c:; ð41Þ
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where we introduced the notation νR;L for the respective
neutrino annihilation operators replacing the generic ΨR;L
notation of Eq. (21). With the possibility that all three mass
terms exist, Lm must be diagonalized resulting in two mass
eigenvalues and their corresponding eigenstates. If
mL ¼ mR ¼ 0, the result is a lone neutrino described by a
four-component Dirac spinor with two equal masses, one for
particle and one for antiparticle. In the seesaw model
(Minkowski, 1977; Sawada and Sugamoto, 1979; Gell-
Mann, Ramond, and Slanski, 1980; Mohapatra and
Senjanović, 1980), the assumption is made that mR is very
large compared to mD and mL is zero. This was motivated by
the nonobservation of νR, which can be explained if its mass is
very heavy. It also seems natural that mD should have a value
near that of the charged fermions (e.g., the electron). Under
these assumptions, diagonalizing the matrix one finds that the
two eigenvalues are mR and mν ∼m2

D=mR. It is critical to
notice here that mν is much smaller than the typical charged
Dirac lepton, which agrees with the important empirical fact
that neutrino masses are much less than those of their charged
partners. Equally important, in this case, is that the diago-
nalization results in two Majorana neutrinos, each described
by a two-component spinor, where one is light and one is
heavy. This seesaw mechanism not only provides a hint as to
why neutrino masses are so small but also ties that hint to the
character of neutrinos being Majorana.

B. Lepton number conservation

Empirically, no process has been observed that changes the
total number of leptons. This fact is usually stated as the
lepton number (L) being conserved. Consider the interactions
given in Eq. (42). In the expression for neutron decay, the
neutron and proton are baryons with L ¼ 0. The beta particle
has L ¼ 1 and the antineutrino has L ¼ −1. Before and after
the decay, the total number of leptons is 0 and therefore L is
conserved. This is also similar for the inverse beta decay
reaction, where L ¼ 1 before and after the interaction,

n → pþ β− þ ν̄e; νe þ n → pþ β−. ð42Þ

Terms such as ðν̄LÞcνL in Eq. (41) result in interactions, such
as double beta decay (Sec. III.D) that change L by two units.
That is, L would not be conserved. Therefore, due to such an
interaction, the ν̄e produced in beta decay could initiate the
inverse beta decay reaction with the result that ΔL ¼ 2.
In fact, this pair of processes was actually one of the
early proposed tests of Majorana neutrinos (Pontecorvo,
1957, 1958).
One important feature of the seesaw mechanism is the

prediction of not only light, but also heavy Majorana
neutrinos. There are numerous searches for both such particles
through the ΔL ¼ 2 processes they would mediate. Figure 1
displays a generic ΔL ¼ 2 process involving an exchanged
Majorana neutrino.

C. Leptogenesis

The seesawmodel described above not only gives insight into
the smallness of νmass, it also provides a mechanism to explain

the matter-antimatter asymmetry of the Universe. This mecha-
nism is called leptogenesis (Fukugita and Yanagida, 1986) and
recent reviews are available (Buchmüller, Peccei, andYanagida,
2005; Davidson, Nardi, and Nir, 2008; Di Bari, 2012).
The general requirements for a dynamical process to

produce this asymmetry were identified by Sakharov
(1967). First, the conservation of baryon number (B), the
number of protons and neutrons, must be violated in some
process. Second, charge-conjugation and space-inversion
(CP) conservation must also be violated. If CP is conserved,
then the rate of a process will be identical to the related
process where all particle charges are reversed (i.e.,Q → −Q)
and spatial coordinates are inverted (i.e., r → −r). Finally,
the processes that violate these conservation laws must take
place out of equilibrium.
Majorana neutrinos violate L. This net L can be converted

to a net B through standard model processes. The mass
matrices represented in Eq. (41) have phases that may lead to
C and CP violation. Finally, the heavy Majorana neutrinos
have no gauge interactions and therefore can fall out of
thermal equilibrium with the other particles in the primordial
soup. Thus Majorana neutrinos and leptogenesis provide
all of the Sakharov requirements. As such leptogenesis is
presently an active area of research into the origin of the
matter-antimatter asymmetry. If neutrinos are shown to be
Majorana, it will be yet another clue as to our origins.

D. Double beta decay

The search for double beta decay (ββ) is primarily moti-
vated by its ability to demonstrate that neutrinos are Majorana,
if that happens to be the case. It is a second order, weak
process closely related to beta decay. Most nuclei that have an
even number of both protons and neutrons are stable against
beta decay. That is, the process,

N
ZA → N−1

Zþ1Aþ β− þ ν̄e; ð43Þ

is energetically forbidden in most nuclei of mass number A
that have an even atomic number Z and even neutron number
N. In even-even nuclei for which beta decay is allowed, the
rate is greatly inhibited. For a large number of even-even

FIG. 1. Generic diagram showing a ΔL ¼ 2 process involving
the exchange of a Majorana neutrino. f is a generic fermion, W�
is the weak-interaction intermediate vector boson, and l� is an
outgoing lepton. The two W and l have the same charge for this
ΔL ¼ 2 process.
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nuclei, however, the second order process with Z changing by
two units, while emitting two electrons and two antineutrinos,
is allowed:

N
ZA → N−2

Zþ2Aþ 2β− þ 2ν̄e: ð44Þ

This process is called two-neutrino double beta decay
[ββð2νÞ]. As the two β−s are leptons and the two ν̄es are
antileptons, the total lepton number before and after the decay
is unchanged and L is conserved. ββð2νÞ is expected within
the standard model and has been observed in about ten
isotopes (Barabash, 2010; Barabash, 2013).
An alternative process that emits no neutrinos is written

N
ZA → N−2

Zþ2Aþ 2β−: ð45Þ

This zero-neutrino, or neutrinoless, double beta decay
[ββð0νÞ] process violates the lepton number by two units.
Diagrams representing ββð2νÞ and ββð0νÞ are shown in Fig. 2.
Note the common features of the ββð0νÞ panel in this figure
compared to that of Fig. 1.
In experiments designed to directly detect ββ, the two decay

modes are distinguished by the energy carried off by the
exiting β particles. (Section III.F.1 discusses the various
experimental issues.) The spectra are shown in Fig. 3.
Since the neutrinos interact too weakly for their energy to
be feasibly observed, the ββð2νÞ spectrum of the sum of the
electron energies is a continuum up to the total available
energy for the decay. In contrast, the sum of the energies of the
two electrons in ββð0νÞ is a monoenergetic peak at that
end point.
It may seem ironic that one can learn about neutrinos

from a process that produces no neutrinos. The key to

understanding this apparent nonsequitor lies in Fig. 2. In
the standard model, when a neutron decays it emits an ν̄e,
whereas a neutron can only absorb a νe. If the neutrino and
antineutrino are distinct particles, the exchange depicted in
the lower panel of that figure cannot occur. If the exchange
does take place, there is no such distinction and neutrinos
must be Majorana particles.
Figure 2 depicts ββð0νÞ proceeding through the exchange

of a light mass neutrino. It is known that neutrinos have a
small mass (Fogli et al., 2012), although the magnitude of
that mass is not yet known. Since we know light neutrinos
exist, this light-neutrino exchange is the most commonly
considered mechanism for ββð0νÞ in the literature.
Numerous other possibilities have been proposed over the
years [see Gehman and Elliott (2007) and references therein
for a list]. It should, however, be mentioned that if some
other mechanism does mediate the decay, an observation of
ββð0νÞ still implies that neutrinos are massive Majorana
particles as shown by the Schechter-Valle theorem
(Schechter and Valle, 1982).4

The decay rate for ββð0νÞ can be written as

½T0ν
1=2�−1 ¼ G0νjM0νj2hmββi2; ð46Þ

where T0ν
1=2 is the half-life of the decay, G0ν is the kinematic

phase space factor,M0ν is the matrix element corresponding to
the ββð0νÞ transition, and hmββi is the effective Majorana
neutrino mass. G0ν contains the kinematic information about
the final state particles and is calculable to the precision of the
input parameters.M0ν is difficult to calculate with an accuracy
estimated to be approximately a factor of 2. One immediately
notices from Eq. (46) that the decay rate is directly related to

FIG. 2. Diagrams showing the ββð2νÞ (top) and ββð0νÞ
(bottom) processes. Within the group of nucleons inside a
nucleus, two neutrons simultaneously emit β particles while
producing protons.

FIG. 3. The spectrum of the sum of the energies of the two
electrons from ββð2νÞ (dotted) and ββð0νÞ (solid). The resolution
used for ββð0νÞ is arbitrary and the relative strength of ββð0νÞ
compared to that of ββð2νÞ is exaggerated for clarity. In reality, if
ββð0νÞ exists, the peak would be very weak.

4The Schechter-Valle theorem, however, does not ensure that we
can deduce an unambiguous value for the neutrino mass given a
measurement of ββð0νÞ. The theorem shows that massive Majorana
neutrinos exist, but the light-neutrino-mass contribution to the decay
rate could be subdominate (Duerr, Lindner, and Merle, 2011).
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the Majorana neutrino mass. As the neutrino mass trends
toward zero, the decay rate will also. In general, as the
neutrino mass vanishes, it becomes impossible to discern the
Dirac or Majorana nature of the neutrino.
The weak eigenstates of neutrinos, the quantum states

produced during a weak interaction such as β decay, are
not identical to the mass eigenstates. As a consequence,
neutrinos will oscillate between the weak eigenstates as they
propagate through space. This empirical fact has permitted the
use of interferometry to study many neutrino characteristics
including the difference between the mass eigenvalues and
the mixing matrix elements that describe the oscillations. [A
review of neutrino oscillations can be found by Balantekin and
Haxton (2013).] The value of hmββi depends on these mixing
angles and mass eigenvalues. If the neutrino is Majorana, then
one can derive an expression for hmββi that includes data from
neutrino oscillation experiments. It is written

hmββi ¼
����X3
i¼1

U2
eimi

����
¼ jU2

e1m1 þ U2
e2m2 þ U2

e2m2j
¼ jm1c212c

2
13 þm2s212c

2
13e

iα21 þm3s213e
iα31 j; ð47Þ

where mi are the mass eigenvalues and the Uei are the mixing
matrix elements. The final line of Eq. (47) expresses the mixing
matrix element in terms of mixing angles with the notation
c12 ≡ cos θ12. There are two phases that appear (α21; α31) that
arise because of the Majorana nature of the neutrino.
Neutrino oscillation experiments are insensitive to the

Majorana-Dirac nature of the neutrino. Importantly, these
experiments also cannot determine the absolute mass scale
of the neutrino. Such experiments only determine mass
differences and hence a relationship between the three mi.
(To be technically correct, these experiments determine the
differences in the masses squared.) As a result, the oscillation
experiments have some, but not perfect, predictive power
for the value of hmββi, and therefore T0ν

1=2, if neutrinos are
Majorana particles. There is a region of hmββi between about
15 and 50 meV where an optimist would expect to see ββð0νÞ.
This region is referred to as the inverted hierarchy or atmos-
pheric mass region. It originates if the dominate contributions
to hmββi arise from the heavier mass values associated with
oscillation channels first observed in atmospheric neutrinos.
A more pessimistic view is that hmββi would be a few meVor
less, the so-called normal hierarchy or solar mass region. This
mass region arises from the lighter mass values associated with
oscillation results first observed in solar neutrinos.
If one makes a plot of hmββi versus the lightest neutrino

mass (Fig. 4) using what is known about the angles and mass
differences, the result will be a band, as opposed to a line, due
to the unknown phases. One will also see that two bands
appear in such a figure, one for the normal and one for the
inverted hierarchy that blend as one approaches a regime
where all three mass eigenvalues are roughly equal, the
degenerate region.
For the inverted-hierarchy region, T0ν

1=2 is expected to be
about 1027 yr. From Eq. (46), it is clear that if hmββi is a factor
of 10 less, that is within the normal-hierarchy region, then

T0ν
1=2 would be near 1029 yr. The next generation of experi-

ments (Sec. III.F.1) is aiming to explore the inverted-hierarchy
region, with longer term research and development aimed at
exploring the normal-hierarchy region if nothing is observed
at the shorter half-life.

E. Supersymmetry

The standard model (SM) has been very successful describ-
ing observed phenomena up to an energy scale of about a TeV.
Even so, there are a number of deficiencies. These include
the existence of dark matter, neutrino masses, the matter-
antimatter asymmetry, and why the interaction strength of the
known forces varies so greatly (the hierarchy problem).
Supersymmetry (SUSY) (Aitchison, 2009) is a proposed

extension to the SM that addresses these shortcomings. SUSY
relates bosons to fermions through a new symmetry that joins
a fermion (boson) to a supermultiplet with a boson (fermion).
When all the known particles are placed into supermultiplets,
one finds that no known particles are available to fill the role
of the superpartners. That is, one-half of the particles required
by SUSY have yet to be observed.
Particles within such a supermultiplet share properties,

although they have differing spins. The supermultiplet that
contains the spin-1 photon contains a new spin-1=2 particle,
referred to as the photino. Since the photon is its own
antiparticle, so is the photino. Since the photino is spin
1=2, if it exists, it is a Majorana particle. In practice, there
are four such new particles (the superpartners of the photon,
Z and two Higgs bosons) that mix with the possible
combinations being called neutralinos, which are Majorana
particles. If one of these neutralino states is the lightest
supersymmetric particle (LSP), it would be long lived and
might be the dark matter. Although other SUSY LSP
candidates that are not Majorana in nature might also be
dark matter candidates, SUSY provides for some Majorana
dark matter candidates.
In general, SUSY predicts the existence of Majorana

particles. The search for such particles is described in
Secs. III.F.3 and III.F.5.

θ12 = 33.650
   δ

θ13 = 8.990         
   δ

FIG. 4 (color online). hmββi as a function of the smallest of the
three mass eigenvalues. The plot is done for the best fit oscillation
parameters. From Fogli et al., 2012.
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F. Prospects for observation

Processes that violate the total lepton number by two units
(ΔL ¼ 2) are indicators of Majorana neutrinos. In this section,
we consider such processes and their prospects for discovering
a Majorana particle. We treat ββð0νÞ first and in greater detail,
as it is the most feasible technique to achieve this goal.
Furthermore, the observation of ββ is an unambiguous
signature for Majorana neutrinos (Schechter and Valle,
1982). Most of the other Majorana particle searches discussed
below are indicative but not conclusive.
Equation (46) makes it clear that the ββð0νÞ decay rate is

directly related to the Majorana neutrino mass. Table I
summarizes the most recent ββð0νÞ experimental results,
which indicate T0ν

1=2 is greater than 1025 yr, more than 1015

times longer than the age of the Universe. This long half-life
limit constrains the effective Majorana neutrino mass to be
very small. Measuring, or placing limits on, such a slow

process is possible because Avogadro’s number is so large.
Experiments to date have used about 10 moles of isotope, and
future proposals will be much larger yet. It is the advantage of
monitoring such a large number of atoms that makes ββð0νÞ
the most sensitive technique to search for light Majorana
neutrinos. Experiments that use neutrino sources and targets
suffer from low event rates due to modest neutrino fluxes and
small weak-interaction cross sections, when searching for
ΔL ¼ 2 processes. Some accelerator searches for heavy
Majorana neutrinos overcome these limitations when resonant
interactions are considered. Hence, in certain limited mass
regions, accelerator efforts can compete with ββð0νÞ.

1. Double beta decay

Figure 5 shows how the limit on hmββi has evolved over the
years. The limit improves by about a factor of 2 every 6 years.
If this trend continues, the inverted-hierarchy goal for the
Majorana mass sensitivity below 50 meV should be explored
during the coming decade or so. Within the next few years, the
presently operating experiments and those due to appear
online should extend the reach below 100 meV. The exper-
imental and theoretical situation in ββ has been well sum-
marized in numerous reviews (Elliott and Vogel, 2002;
Barabash, 2004, 2011; Elliott and Engel, 2004; Avignone,
King, and Zdesenko, 2005; Ejiri, 2005; Avignone, Elliott, and
Engel, 2008; Rodejohann, 2011; Elliott, 2012; Vergados, Ejiri,
and Šimkovic, 2012; Schwingenheuer, 2013). In particular,
the current experimental program has been described in detail.
Here we do not repeat that effort, but only summarize some
highlights and direct the interested reader to the literature.
Recent results come from the EXO-200 (Auger et al., 2012;

Albert et al., 2014) and KamLAND-Zen (Gando et al., 2013)
Collaborations working with 136Xe and the GERDA
Collaboration with 76Ge (Agostini et al., 2013).5 Several
additional experiments should have results by about 2016,
including CUORE (Alessandria et al., 2011), MAJORANA

(Abgrall et al., 2014), NEXT (Gómez et al., 2011), SNO+
(Hartnell, 2012), and SuperNEMO (Barabash et al., 2012).
Half-life limits are presently beyond 1025 yr with hmββi limits
below a couple hundred meV. Within a couple years, it is
expected that the mass limit will reach 100 meV or less.

TABLE I. A list of recent ββð0νÞ experimental results and their 90% confidence level limits on T0ν
1=2. The hmββi limits are those quoted by the

authors using the M0ν of their choice. The result on 76Ge (Agostini et al., 2013) combines data from Klapdor-Kleingrothaus et al. (2001) and
Aalseth et al. (2002).

Isotope Technique T0ν
1=2 (yr) hmββi (eV) Reference

48Ca CaF2 scintillating crystals > 5.8 × 1022 < 3.5 − 22 Umehara et al. (2008)
76Ge enrGe detector > 3.0 × 1025 < ð0.2 − 0.4Þ Agostini et al. (2013)
82Se Thin metal foils and tracking > 3.2 × 1023 < ð0.94 − 1.71Þ Tretyak et al. (2011)
100Mo Thin metal foils and tracking > 1.1 × 1024 < ð0.3 − 0.9Þ Arnold et al. (2013)
116Cd 116CdWO4 scintillating crystals > 1.7 × 1023 < 1.7 Danevich et al. (2003)
128Te Geochemical > 7.7 × 1024 < ð1.1 − 1.5Þ Bernatowicz et al. (1993)
130Te TeO2 bolometers > 2.8 × 1024 < ð0.3 − 0.7Þ Arnaboldi et al. (2008)
136Xe Liquid Xe scintillator > 1.9 × 1025 < ð0.16 − 0.33Þ Gando et al. (2013)
150Ne Thin metal foil within time projection chamber > 1.8 × 1022 N.A. Barabash et al. (2010)

FIG. 5 (color online). A history of the effective Majorana
neutrino mass limit from ββð0νÞ. The shaded band indicates
the range of masses one would deduce from the reported T0ν

1=2 as a
result of the spread of matrix element calculations. The straight
line is an extrapolation drawn by the eye for a mass value
improvement of a factor of 2 every 6 years. The lower shaded
region is the target derived from neutrino oscillation experiments.

5These three results are in tension with an earlier claim (Klapdor-
Kleingrothaus and Krivosheina, 2006) for the observation of ββð0νÞ.

Steven R. Elliott and Marcel Franz: Colloquium: Majorana fermions in nuclear, … 147

Rev. Mod. Phys., Vol. 87, No. 1, January–March 2015



The sensitivity goal of the next generation of ββð0νÞ
experiments is to cover the inverted-hierarchy region of
Majorana neutrino mass. This region is indicated by other
neutrino mass experiments to be between 15 and 50 meV.
The various proposals to reach this goal are summarized in
Table II.
For a given experiment, the sensitivity to hmββi can be

written as (Moe, 1991)

hmββi <
ð2.50 × 10−5 meVÞ

M0ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NW

MTfxϵG0ν

s
; ð48Þ

whereM is the detector mass in kg, T is the live time in years,
N is the upper limit on the number of counts assigned to
signal,W is the molecular weight of the detector material, f is
the isotopic abundance of the ββð0νÞ isotope, x is the number
of ββð0νÞ atoms per molecule, ϵ is the detection efficiency,
and G0ν is the phase space factor. The constant in the equation
has units appropriate for hmββi given in meV. In most
publications, N takes the form of

N ¼
ffiffiffiffiffiffiffi
NB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bΔEMT

p
; background limited

¼ 1.18; background free; 68% C.L.; ð49Þ

where NB is the number of background counts, b is the
background index or number of background counts per energy
and exposure (counts=keV kg yr), and ΔE is the resolution-
determined energy window [referred to as the region of
interest (ROI)] at the end point over which the background
is measured. The product MT is the exposure, and for an
experiment to reach hmββi sensitivity near 15 meV requires
exposures near 10 ton yr and background rates below
1 count=ton yr in the region of interest.
The most critical feature of any ββð0νÞ experiment is

the background level. The dominant background in these
experiments to date arises from α, β, and γ emitting isotopes

contained as contaminants within the experimental apparatus.
The most significant of these contaminants are the isotopes of
the U and Th natural decay chains. All materials have U/Th in
trace levels. Typical values are ppm or ppb. If a detector
material has Th at a level of 1 ppb, 1 ton of that material will
have an activity of 108 decays per year. For neutrino masses
within the inverted-hierarchy region, we expect a ββð0νÞ
decay rate of about 1/ton yr or less. Purifying material to a
level that will allow the observation of this low rate is quite a
challenge. And even when the technology is available, quality
assurance is complicated at this stringent level. Currently
GERDA achieved the lowest background in the ββð0νÞ ROI
(Agostini et al., 2013), about 40 counts=ðton yrÞ. This is a
remarkable achievement but still a factor of 40 above what is
required to investigate the inverted-hierarchy region.
The first direct measurement of ββð2νÞ used a time

projection chamber (Elliott, Hahn, and Moe, 1987). This
was a fairly large apparatus (≈m3) for a modest amount of
source (13 g) and, therefore, the design does not scale easily to
large source mass with very low backgrounds. To consider
how one might design a large experiment, Eq. (48) can be used
to develop a set of criteria for an ideal ββð0νÞ experiment
(Elliott and Vogel, 2002; Elliott, 2003). Such criteria for an
experiment to reach the 15 meV goal, include the following:

• The experimental exposure must be large enough
(MT ≈ 10 ton yr). A large quantity of isotope is required
and the duty cycle of the experiment must be high. High
isotopic abundance in the sample is required, as is a high
efficiency of detection.

• The background in the ROI must be low enough
(NB < 1 count=ton yr).

• Good energy resolution is required to reduce the back-
ground rate within the ROI. It is also required to prevent
the tail of the ββð2νÞ spectrum extending into the ββð0νÞ
ROI. Furthermore, good resolution can help prove that a
peak is at the expected energy and is therefore due to
ββð0νÞ in the case of an observation.

TABLE II. A summary of the ββð0νÞ proposals and experiments. The Q value is the available energy for the decay as referenced in the text.

Isotope Q value (MeV) Technique Collaboration
48Ca 4.274 CaF2 scintillating crystals CANDLES (Umehara et al., 2008),

CARVEL (Zdesenko et al., 2005)
82Se 2.995 ZnSe scintillating bolometers LUCIFER (Arnaboldi et al., 2011)

Thin foils and tracking SuperNEMO (Barabash et al., 2012)
76Ge 2.039 High-purity Ge semiconductor detectors GERDA (Agostini et al., 2013),

MAJORANA (Abgrall et al., 2014)

100Mo
3.034 CaMoO4 bolometers AMoRE (Lee et al., 2011)

Thin foils and tracking MOON (Ejiri et al., 2000)
ZnMoO4 bolometers Mo bolometer (Beeman et al., 2012)

116Cd 2.809 CdZnTe semiconductor detectors COBRA (Dawson et al., 2009)
130Te 2.528 TeO2 bolometers CUORE (Alessandria et al., 2011)

Te dissolved in scintillator SNO+ (Hartnell, 2012)

136Xe

2.458 Liquid Xe time projection chamber EXO-200 (Auger et al., 2012),
nEXO, LZ (Akerib et al., 2013)

Gaseous Xe time projection chamber NEXT (Gómez et al., 2011)
Xe dissolved in scintillator KamLAND-Zen (Gando et al., 2013)
Scintillating liquid Xe within graphene sphere GraXe (Gómez-Cadenas et al., 2012)

150Nd 3.371 Thin foils and tracking DCBA (Ishihara et al., 2000)
160Gd 1.730 Cd2SiO5∶Ce scintillating crystals in liquid scintillator GSO (Wang, Wong, and Fujiwara, 2002)
Various Quantum dots in liquid scintillator Quantum dots (Winslow and Simpson, 2012;

Aberle et al., 2013)
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• A small detector volume minimizes internal back-
grounds, when they scale with the detector volume.
This is most easily accomplished by an apparatus whose
source is also the detector. However, a very large source
may have some advantage due to self-shielding, although
such a configuration may also result in some inefficient
use of isotopic material.

• Event reconstruction, providing kinematic data such as
opening angle and individual electron energy, can aid in
the elimination of backgrounds. These data might also
help elucidate the physics if a statistical sample of
ββð0νÞ events is observed.

• Good spatial resolution and timing information can help
reject background processes.

• If an experiment was able to observe the N−2
Zþ2A

daughter [see Eq. (45)] in coincidence with the ββ
decay energy, it would eliminate most potential back-
grounds except ββð2νÞ.

• The cost of these next generation experiments will be
substantial. Therefore, any experiment must be based
on a demonstrated technology for the detection of ββ.
That is, one must demonstrate that one can achieve the
required background.

• The nuclear theory is better understood in some isotopes
than others. However, arguments have been made
(Robertson, 2013) that there is no strongly preferred
isotope when all the isotope related factors are consid-
ered in Eq. (48).

• A high value for the energy available to the emitted β
particles is desired (i.e., a high Q value), as it places the
ROI above many potential backgrounds.

No experiment, past or proposed, is able to optimize for all
of these characteristics simultaneously. Each collaboration has
chosen a design that emphasizes different aspects of this list.
In particular, the requirements of a large mass and good
energy resolution are frequently at odds. The best resolution
experiments use high-purity solid-state detectors (e.g.,
MAJORANA, GERDA, or CUORE). The cost of these detectors
impedes instrumenting a large volume. Large quantities of a
scintillator with dissolved isotope can achieve large masses,
but the lack of energy resolution reduces discovery potential
(e.g., KamLAND-Zen, SNO+). Table II summarizes the ideas
proposed for the future. As seen from the number of listings,
there are a lot of ideas being pursued (too many to discuss
each here, unfortunately).

2. Proton decay

There is a close connection between proton decay and
double beta decay due to the relationship between B and L
violation in extensions to the standard model. Using an
argument along similar lines to the Schechter-Valle theorem,
Babu and Mohapatra (2014) showed that if two B violating
decays are observed, with at least one that obeys the selection
rule ΔðB − LÞ ¼ �2, one will have established the fact that
neutrinos are Majorana.

3. Accelerator searches

Processes that violate L by two units are indicative of the
exchange of a virtual Majorana neutrino. When the Majorana

neutrino mass is light compared to the energy scale of the
process, then the rate of that process will scale as the effective
Majorana mass squared (hmi ≈ jPlightU

2
eimij). This was the

possibility discussed in detail for ββð0νÞ and given in Eq. (47).
In contrast, if the mass is heavy compared to the energy scale,
then the rate will scale inversely to the effective Majorana
mass (hMi ≈ jPheavyV

2
ei=Mij). (Here we used Vei in contrast

to the previous Uei to emphasize that the mixing is among the
heavy neutrino states.) Such heavyMajorana neutrinos, if they
exist, would not only mediate ββð0νÞ, but also processes in
high energy collisions at accelerators. In this later case,
accelerators can compete with ββð0νÞ in the search for
Majorana fermions under certain conditions.
Table III lists frequently searched-for processes that indi-

cate the existence of Majorana particles. These include μ to e
conversion, meson decay to two leptons, neutrino-antineutrino
oscillation, dilepton production, and inverse double beta
decay. Neutrinos are not observed in the detectors used to
study these processes. Hence they not only carry away
missing energy but also lepton number, which can make
evidence for a Majorana particle difficult to confirm.
Therefore the best limits come from processes that have
lepton number violation but no missing energy.
Atre, Han, Pascoli, and Zhang wrote a review of the

searches for heavy Majorana neutrinos (Atre et al., 2009).
A good overview of the field of lepton number conservation
including the ΔL ¼ 2 class that is indicative of Majorana
neutrinos can be found by de Gouvea and Vogel (2013). An
estimate of the rate of inverse double beta decay e−e− →
W−W− is discussed by Rodejohann (2011) with a clear
discussion of the issue of resonance. This latter reaction is
the fundamental ΔL ¼ 2 process.
For heavy Majorana neutrino masses below 5 GeV, meson

decays produce good limits. The best are due toKþ → lþlþπ−

(Atre et al., 2009) but only below 350 MeV. For the energies
up to 5 GeV, one relies on charm decays from Babar (Lees
et al., 2011) and B decays from Babar (Lees et al., 2012),
CLEO (Edwards et al., 2002), and LHCb (Aaij et al., 2012).
Limits on τ decays that provide constraints near 1 GeV were
found by Belle (Miyazaki et al., 2013). From 10 to 100 GeV,
past results come from dilepton production in hadron colli-
sions from CDF (Abulencia et al., 2007), DELPHI (Abreu
et al., 1997), and L3 (Adriani et al., 1992). The most sensitive
μ− → eþ conversion result comes from the SINDRUM II
experiment (Kaulard et al., 1998). None of these results

TABLE III. A summary ΔL ¼ 2 processes that are studied to
search for Majorana neutrinos. L0 (LF) is the initial (final) L in the
reaction. These example reactions are just one of many possibilities
for each row. For a more detailed discussion, experimental limits rate
estimates, and many more such examples; see Atre et al. (2009),
Rodejohann (2011), and de Gouvea and Vogel (2013).

Process L0 Final LF Example

Decay 0 2 ββð0νÞ, K− → μ−μ−πþ
Conversion �1 ∓1 μ− þ ðZ; AÞ → eþ þ ðZ − 2; AÞ
Lepton decay �1 ∓1 τ− → eþπ−π−
Lepton collision 2 0 e−e− → W−W−

Hadron collision 0 −2 pp → μþμþX
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compete with ββð0νÞ particularly well in constraining the
hypothesis of Majorana neutrino exchange.
The hadron collision search is well underway at the LHC. If

mR is near the W-boson mass (MW), then the LHC may have
sensitivity to Majorana neutrinos in dilepton production
(Keung and Senjanović, 1983), even given the constraints
imposed by ββð0νÞ (Atre et al., 2009). In general, the LHC
program expands the results in energy up to about 500 GeV.
The lepton collision technique is a powerful study from any
future linear collider. The reactionWW → ll (see Fig. 1) has a
resonant enhancement of its rate when the momentum transfer
between the two particles is near that of mR.

4. Searches for a fourth neutrino

There are three known neutrino mass eigenstates. Some
tantalizing, but as yet not universally accepted, evidence for a
fourth neutrino comes from the LSND (Aguilar et al., 2001)
and MiniBooNE (Aguilar-Arevalo et al., 2009, 2010) experi-
ments. These experiments are accelerator neutrino oscillation
experiments that find their data best described by a neutrino
mass difference that does not match that of either the solar or
atmospheric oscillation results. Hence, if those results are
established, it implies an additional light neutrino state.
When we discussed the seesawmechanism in Sec. III.A, we

focused on the assumption that mR is very large compared to
mL and mD. However, if mD ≫ mL;mR or if mD ≈mL and/or
mR, then the spectrum of neutrino masses required by the
LSND and MiniBooNE results can be accommodated.
Hence, the discovery of a fourth neutrino mixing with the
three known neutrinos would not prove that neutrinos are
Majorana, but it does fit that paradigm well.
There are a large number of searches, ongoing and

proposed, for a fourth neutrino mass eigenstate. These
searches include experiments using neutrinos produced by
accelerators, reactors, and intense radioactive sources, as well
as observations in astrophysics and cosmology. A detailed
summary of these searches, in addition to an overview of the
theory, is given by Abazajian et al. (2012). That review
provides summary tables such as those we have provided here
for the other classes of searches. Therefore, we do not provide
them ourselves.

5. Dark matter searches

Dark matter comprises a large fraction of the Universe’s
energy density and a dominant fraction of the Universe’s
matter. The nature of dark matter is not fully understood and
a large program is underway to elucidate it. The recent long-
range planning process for high-energy physics in the United
States has resulted in a number of reviews (Buckley et al., 2013;
Cushman et al., 2013; Kusenko et al., 2013) detailing this
program, and the review by Schumann (2013) ties the field
together well in a short summary. The review by Jungman,
Kamionkowski, and Griest (1996) gives details about SUSY
and its relationship to darkmatter.We refer the interested reader
to these reviews and only briefly summarize the situation here.
There are many candidates for the dark matter particle,

which we indicate by χ0, and many of these candidates are
Majorana in nature. Detecting dark matter will not, by itself,
be a smoking gun that Majorana particles exist, but it would

certainly be a key piece of data addressing the question. To
accommodate the astrophysical and cosmological data, these
particles must be electrically neutral, nonrelativistic, and
stable. There are three techniques used to search for these
particles, including direct detection, indirect detection, and
colliding beam experiments.
Direct detection searches hope to observe weakly interact-

ing massive particles (WIMP) by their interaction within a
low-background particle detector located deep underground.
Supersymmetry allows the existence of a particle whose mass
and cross section match well with that required to explain the
relic density of dark matter. Furthermore, it would be a
Majorana particle. The signature for the resulting reaction,

χ0 þ N
ZA → χ0 þ N

ZA; ð50Þ

is the recoiling nucleus, which is detected. The recoil energy,
however, is low, depositing a few to ten’s of keV. Furthermore,
the energy spectrum of the recoil is nondescript, being
exponentially decreasing. The expected event rates are also
extremely low. Hence, the detector requirements are stringent
with respect to the low-energy threshold and background.
Seeing a significant signal above background with different
targets can provide a consistency test that dark matter is truly
being observed. Presently, the most sensitive detectors are
those based on liquid noble gas targets. The LUX experiment
(Akerib et al., 2014), sited at the Sanford Underground
Research Facility, has currently the best limits on the
WIMP detection rate.
Indirect detection searches look for processes within

astrophysical objects such as

χ0þ χ̄0 → qþ q̄; lþ l̄; WþþW−; or ZþZ; ð51Þ

where q represents a quark, W represents a W boson, and Z
represents a Z boson. These product particles then decay into
particles that can be observed. Heavy astrophysical bodies
such as the Sun, dwarf galaxies, or the Galactic center can
gather χ0’s into a locally high density that enhances the
annihilation rate. Satellites looking for antiparticles and
experiments searching for high-energy γ rays in the cosmic
ray spectrum place limits on this annihilation. The detection
scheme for these experiments assumes the particle self-
annihilates, which is a key characteristic of Majorana par-
ticles, such as the neutralino.
The cosmic microwave background multipole spectrum is

modified by dark matter annihilation in the early Universe.
The lack of an observed impact on the multipole spectrum
leads to significant constraints, especially for low-mass
(≈10 GeV) WIMP annihilation into electron-positron pairs
(Galli et al., 2011).
Collider beam searches look for processes such as

qþ q̄ → χ0 þ χ̄0 þ X; ð52Þ

where the X represents a radiated γ, Z, W, or gluon. The χ0,
being weakly interacting, is not observed within the detector;
however, X produces a monojet which is observed. Therefore,
the signature is a large missing energy event with a monojet.
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IV. MAJORANA ZERO MODES IN SOLID-STATE
SYSTEMS

Majorana fermions have been of great interest in
condensed matter physics over the past decade. In this
Colloquium we focus on MZMs in solid-state systems where
they arise as emergent quasiparticles of the underlying
superconducting state. Although there are other proposed
realizations, superconducting systems are conceptually sim-
plest, best understood, and arguably closest to unambiguous
physical realization and detection. There exist several
reviews on this topic aimed at the condensed matter
audience (Alicea, 2012; Beenakker, 2013; Stanescu and
Tewari, 2013). By contrast, our objective here is to present
the topic to a broader audience of physicists who possess a
basic understanding of condensed matter physics but are not
specialists.

A. Majorana zero modes

As already explained in Sec. II.B, quasiparticle excitations
in superconductors posses all the key attributes of Majorana
fermions. A situation of particular interest arises when the
spectrum of excitations in a superconductor is such that there
exists a single mode with exactly zero energy,

HBdGðrÞΦ0ðrÞ ¼ 0; ð53Þ

separated from all other modes by an energy gap. According
to the discussion presented in Sec. II.B we must conclude that,
remarkably, only one-half of that mode is actually physical.
In addition, such a zero mode is self-conjugate under the
symmetry defined in Eq. (40) meaning that

Φ0ðrÞ ¼ τyσyΦ�
0ðrÞ; ð54Þ

or, written in terms of the individual components,

0
BBB@

u0↑
u0↓
v0↑
v0↓

1
CCCA ¼

0
BBB@

−v�0↓
v�0↑
u�0↓
−u�0↑

1
CCCA; ð55Þ

where we dropped the position argument for clarity. The zero-
mode annihilation operator is now given by Eq. (39) which,
when expanded, reads

ψ̂0 ¼
Z
ddr½u�0↑ðrÞcr↑ þ u�0↓ðrÞcr↓ þ v�0↑ðrÞc†r↓ − v�0↓ðrÞc†r↑�;

ð56Þ

With the help of Eq. (55) it is now straightforward to verify
that

ψ̂†
0 ¼ ψ̂0; ð57Þ

informing us that the zero-mode particle is the same as the
antiparticle and is therefore Majorana.

To motivate interest in Majorana zero modes we note the
following points:

(i) Because according to Eq. (53) it costs zero energy to
create the particle described by ψ̂†

0, we conclude that
in the presence of the MZM the ground state of the
system is degenerate: if j0i is a ground state then so
is ψ̂†

0j0i. However, because one cannot form the
usual number operator from Majorana fermions
ðψ̂†

0ψ̂0 ¼ ψ̂0ψ̂0 ¼ 1Þ it is not possible to label the
degenerate ground states by the number of MZMs;
technically the degeneracy in the presence of a
single MZM is

ffiffiffi
2

p
. We elucidate this mysterious

statement below.
(ii) The discussion above makes it clear that if a

Majorana zero mode exists in a system then it is
topologically protected, provided that there is an
energy gap (often called a “minigap”) separating it
from all other states. The reason is that the zero
mode cannot acquire a nonzero energy E0 by any
continuous deformation of the Hamiltonian that
does not close the minigap. If this were so then
the symmetry defined in Eq. (40) would require
another mode to appear at energy −E0, in violation
of the unitary evolution.

(iii) A single unpaired MZM can exist only in an infinite
system. In systems of finite size Majorana modes
always appear in pairs, reflecting the fact that such
systems always contain an integral number of
electrons. Nevertheless, a situation of interest arises
when the two MZMs are spatially separated so that
their individual wave functions have a negligible
overlap. In this case, when probed locally, the
system exhibits an unpaired MZM. Also, in this
situation Majorana modes can be moved away from
zero energy without closing the minigap by simply
bringing them close together so that the wave
functions overlap. The two zero modes thus evolve
into a pair of levels ðE0;−E0Þ with a splitting
proportional to the overlap.

(iv) If there are several MZMs in the system it is easy to
show that their associated annihilation operators ψ̂0j
formally satisfy the canonical commutation relations
(12) characteristic ofMajorana fermions. Upon closer
examination, however, it turns out that their exchange
statistics is more complicated and the zero modes
should be correctly described as non-Abelian anyons
(Moore and Read, 1991; Nayak et al., 2008). This
interesting property arises because of the extra con-
tribution to the exchange statistics coming from the
superconducting condensate andwediscuss it inmore
detail later in this section. Non-Abelian exchange
statistics also underlies the potential significance of
MZMs for topological quantum computation.

Unpaired MZMs discussed thus far are localized objects
that are typically associated with pointlike defects present in
topological superconductors. We explain in the following
sections how they arise at the ends of 1D SC wires, in the
vortex cores of 2D topological superconductors, and other
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situations. We also discuss their unusual properties that
underlie much of the current interest in these exotic forms
of quantum matter.

B. Kitaev chain: The 1D prototype system

The simplest model system that shows unpaired MZMs is
the Kitaev chain (Kitaev, 2001). It describes a 1D system of
spinless fermions and for this reason it has been initially
viewed as a somewhat unphysical toy model. However, it has
been realized more recently that in the presence of spin-orbit
coupling (SOC) and the Zeeman field real electrons can in fact
behave essentially like spinless fermions. The Kitaev model,
which is simple and exactly soluble, thus provides an
extremely useful paradigm for MZMs in one spatial dimen-
sion and for this reason we discuss it in some detail.
The Kitaev chain consists of spinless fermions hopping

between the sites of a 1D lattice described by the Hamiltonian

H¼
X
j

�
−tðc†jcjþ1þH:c:Þ−μ

�
c†jcj−

1

2

�
þðΔc†jc†jþ1þH:c:Þ

�
;

ð58Þ

where Δ represents the nearest-neighbor pairing amplitude,
the simplest allowed possibility for SC order with spinless
fermions. Henceforth we assume for simplicity that Δ is real
and consider a chain with N sites and open boundary
conditions. Using the transformation (13) we can rewrite this
Hamiltonian in the Majorana representation,

H¼ i
2

X
j

½−μγj;1γj;2þðtþΔÞγj;2γjþ1;1þð−tþΔÞγj;1γjþ1;2�:

ð59Þ

At this point it is useful to examine two specific limits. First,
consider the case Δ ¼ t ¼ 0. The Hamiltonian becomes
simply

H ¼ i
2
ð−μÞ

X
j

γj;1γj;2 ¼ −μ
X
j

�
c†jcj −

1

2

�
: ð60Þ

The ground state consists of all fermion states at site j either
occupied (μ > 0) or empty (μ < 0) and this is clearly a
topologically trivial phase. Second, consider the cases
Δ ¼ t and μ ¼ 0. Now the Hamiltonian takes the form

H ¼ it
XN−1

j¼1

γj;2γjþ1;1: ð61Þ

The ground state of this Hamiltonian is easily found by
defining a new set of fermionic operators

aj ¼ 1
2
ðγj;2 þ iγjþ1;1Þ; a†j ¼ 1

2
ðγj;2 − iγjþ1;1Þ; ð62Þ

for j ¼ 1; 2;…; N − 1. These exist on nearest-neighbor bonds
of our 1D chain as illustrated in Fig. 6(b). In terms of these
new fermions we have

H ¼ 2t
XN−1

j¼1

�
a†jaj −

1

2

�
; ð63Þ

and the ground state for t > 0 is simply an aj vacuum with
total energy Eg ¼ −tðL − 1Þ. The remarkable thing is that
Hamiltonian (61) does not contain operators γ1;1 and γN;2.
These represent zero-energy MZMs localized at the ends of
the chain. Together they encode one Dirac fermion which is
fundamentally delocalized between the two ends of the chain.
We remark that similar considerations yield unpaired MZMs
also for the special case Δ ¼ −t and μ ¼ 0.
The two special cases considered above represent two

distinct phases of the Kitaev model: the trivial phase and
the topological phase with unpaired MZMs localized at its
ends. To show that these indeed correspond to stable phases
consider the same Hamiltonian (58) but now with periodic
boundary conditions. In momentum space it can be written as

H¼
X
q

½ð−2tcosq−μÞc†qcqþΔðisinqcqc−qþH:c:Þ�; ð64Þ

and has an excitation spectrum of the form

EðqÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2t cos qþ μÞ2 þ ð2Δ sin qÞ2

q
: ð65Þ

If we now focus on the superconducting phases (i.e., Δ ≠ 0)
then it is easy to see that the excitation spectrum Eq. (65)
remains fully gapped except when 2t ¼ �μ. This condition
defines two lines, indicated in Fig. 6(c), which mark the phase
boundaries between the two stable phases of the model. (We
are making use of the general principle of adiabatic continuity
which states that two gapped phases are identical if they
can be smoothly deformed into one another without
closing the excitation gap.) We identify the region j2tj >
jμj as the topological phase since the second special point

(c) μ

2t

(b)

(a)

TSCTSC

FIG. 6 (color online). Two phases of the Kitaev chain. (a) In the
trivial phase Majorana fermions on each lattice site can be
thought of as bound into ordinary fermions. (b) In the topological
phase Majoranas on neighboring sites are bound leaving two
unpaired Majorana fermions at the ends of the chain. (c) The
phase diagram of the Kitaev chain in the μ-2t plane, showing
the topological phase (TSC) and the normal phase. The dots mark
the special points in the parameter space considered in the text.
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considered above lies within this phase. The other phase is
topologically trivial.
Since the two phases have the same physical symmetries,

the transition between them is a special type of a phase
transition called topological phase transition. The two phases
are distinguished by the presence or absence of unpaired
MZMs at the ends in the geometry with open boundary
conditions. The question that naturally arises and that will
have important consequences in our search for topological
phases in realistic systems is the following. In the absence of
symmetry distinction is it possible to theoretically distinguish
the topological phase from the trivial phase by studying the
bulk of the system? The answer is affirmative: such phases can
be distinguished by means of topological invariants. Among
the better known topological invariants are the Chern number,
allowing one to differentiate between different quantum Hall
phases in two-dimensional quantum Hall systems, and the
more recently discovered Z2 invariants that characterize
topological insulators (TIs) in two and three dimensions.
For 1D topological superconductors the relevant topological
invariant is the Majorana number M ¼ �1 first formulated
by Kitaev (2001). In his seminal 2001 paper Kitaev showed
that all 1D fermionic systems with SC order fall into two
categories distinguished by M. The presence of unpaired
MZMs is indicated when M ¼ −1 and the system is gapped.
As topological invariants go, M is easy to evaluate

(although the reasoning behind its formulation is more
involved and we refer the interested reader to the original
Kitaev paper). A Hamiltonian for any noninteracting transla-
tionally invariant fermionic system in 1D can be written in the
Majorana representation as

H ¼ i
4

X
lmαβ

Bαβðl −mÞγlαγmβ; ð66Þ

where l and m denote the lattice sites while α and β label all
other quantum numbers, including spin and orbital degrees of
freedom. The Majorana number is defined as

M ¼ sgnfPf½ ~Bð0Þ�Pf½ ~BðπÞ�g; ð67Þ

where ~BðqÞ denotes the spatial Fourier transform of Bðl −mÞ
viewed as a matrix in indices α, β and Pf½A� denotes the
Pfaffian (the square root of determinant with a definite sign).
For q ¼ 0; π matrix ~BðqÞ is antisymmetric (this follows from
the requirement that H is Hermitian) and the Pfaffian is thus
well defined. For a known matrix of a small size the Pfaffian is
readily evaluated. The topological invariant for a 1D super-
conductor can therefore be easily computed directly from the
system’s Hamiltonian. We next present a concrete example of
such a computation.
An important conceptual tool follows from studying the

limit of weak SC order, i.e., the situation when Δ is much
smaller than all relevant energy scales in the problem, such as
the bandwidth, which is often the case in superconductors. In
this limit one can show that Eq. (67) further simplifies to

M ¼ ð−1Þν; ð68Þ

where ν represents the number of Fermi points qF of the
underlying normal system ðΔ ¼ 0Þ in the interval ð0; πÞ. This
formulation provides a simple but extremely useful guide to
searches for topological superconductors in 1D: one is
compelled to look for 1D metals with an odd number of
Fermi points in the right half of the Brillouin zone. Such 1D
metals, when made superconducting, form a topological phase
with unpaired MZMs localized at their ends. We emphasize
that the classification implied by Eqs. (67) and (68) is
physically meaningful only when applied to fully gapped
systems. Some concrete examples of physical systems where
such a situation can occur are given in Sec. IV.C. A more
comprehensive discussion is given in the existing review
articles (Alicea, 2012; Beenakker, 2013; Stanescu and
Tewari, 2013).
We close this section by evaluatingM for the Kitaev model

using Eq. (67). To this end passing into momentum space we
can write the Kitaev Hamiltonian (59) in the following form:

H ¼ i
4

X
q

ðγq1; γq2Þ
�

0 Dq

−D�
q 0

��
γ−q1

γ−q2

�
; ð69Þ

with Dq ¼ −μ − 2t cos q − 2iΔ sin q. A Pfaffian of a 2 × 2
antisymmetric matrix is simply given by its upper off-diagonal
component which yields the Majorana number

M ¼ sgnðD0DπÞ ¼ sgnðμ2 − 4t2Þ: ð70Þ

The topological phase occurs whenM ¼ −1, or jμj < 2jtj, in
accord with our earlier analysis. One can also test Eq. (68).
When Δ ¼ 0 the normal state dispersion of the Kitaev chain
becomes ϵðqÞ ¼ −2t cos q − μ. This yields one Fermi point
between ð0; πÞ when jμj < 2jtj and no Fermi points otherwise,
confirming once again the structure of the topological phase
diagram indicated in Fig. 6(c).

C. Physical realizations in 1D

The key obstacle standing in the way of physical realiza-
tions of Kitaev’s paradigm is the electron spin. In most natural
realizations of a 1D chain, electron spin causes all bands to
be doubly degenerate thus preventing the desirable situation
with an odd number of Fermi points, required for the
emergence of the topological phase according to the discus-
sion in Sec. IV.B. Next we discuss special situations in which
this problem can be avoided. They involve various combina-
tions of the spin-orbit coupling and magnetic interactions
that produce a normal metal that is effectively spinless.
Superconductivity is then induced through the proximity
effect, whereby pairing occurs due to Cooper pair tunneling
from a nearby superconductor.

1. Edge of a 2D topological insulator

TIs are materials with gapped insulating bulk and topo-
logically protected gapless surface states (Hasan and Kane,
2010; Moore, 2010; Qi and Zhang, 2011; Franz and
Molenkamp, 2013). The surface states form an unconven-
tional metal and are protected by time reversal symmetry T .
This remarkable behavior comes about as a result of strong
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spin-orbit coupling and occurs in crystals and alloys made of
heavy nonmagnetic elements. Canonical examples of TIs
include HgTe quantum wells, BixSb1−x alloys, and Bi2Se3
crystals.
The edge of a 2D TI is characterized by a pair of counter-

propagating, spin filtered, linearly dispersing edge states,
illustrated in Fig. 7(b). The relevance of such an edge for
the emergence of MZMs stems from the fact that when the
chemical potential resides inside the bulk band gap, the state
can be viewed as a 1D system with an odd number of Fermi
points in the right half of the Brillouin zone. Thus, according
to the Kitaev criterion, one expects such an edge to form a
foundation for a 1D topological superconductor if super-
conductivity can be induced, e.g., by the proximity effect. One
important subtlety stems from the fact that being a boundary
of a 2D system, the edge does not have an end. In order to
localize the expected MZMs one must employ a setup
illustrated in Fig. 7(a) with a TI edge interfaced with a
superconductor and a magnetic insulator (Fu and Kane, 2009).
The magnetic material also provides the T breaking that is
necessary to obtain unpaired MZMs. As shown below, MZMs
arise at the boundary between the SC and magnetic regions of
the edge.
The low-energy theory of the edge modes is described by

the Bloch Hamiltonian

h0ðqÞ ¼ vqσy þmσx − μ; ð71Þ

where v is the mode velocity and m represents the x compo-
nent of the magnetic order induced by the proximate magnetic
insulator. We are selecting specific quantization directions in

the spin space but the only important feature is that the
magnetic order has a component perpendicular to the electron
spin. In this case the spectrum of excitations reads ϵðqÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 þm2

p
− μ and is illustrated in Fig. 7(b). Magnetic

order will gap out the surface mode if jμj < jmj. This explains
why magnetic order can be thought of as effectively ending
the wire. Since we are interested in spatially varying sit-
uations, we now pass into real space taking q → −i∂z in
Eq. (71). To include SC order we then follow the same path
that led us to Eq. (36) and obtain the BdG Hamiltonian
relevant to this situation

HBdG ¼ vð−i∂zÞσyτz þmðzÞσx þ ΔðzÞτx; ð72Þ

where we set μ ¼ 0 and assumed that ΔðzÞ is real. To find
the expected MZM we seek a zero-energy eigenstate
HBdGΦ0ðzÞ ¼ 0 in the vicinity of a domain wall between
SC and magnetic domains, as illustrated in Fig. 7(c). It is a
simple matter to show that there exists precisely one such zero
mode with the wave function

Φ0ðzÞ¼
χ0ðzÞffiffiffi

2
p

0
B@

0

1

−1
0

1
CA; χ0ðzÞ¼Ae−ð1=vÞ

R
z

0
dz0 ½mðz0Þ−Δðz0Þ�;

ð73Þ

where A is a normalization constant. The corresponding field
operator takes the form

ψ̂0 ¼
1ffiffiffi
2

p
Z

dzχ0ðzÞ½c↓ðzÞ þ c†↓ðzÞ�; ð74Þ

and obeys the requisite Majorana condition ψ̂†
0 ¼ ψ̂0. We note

that the other domain wall (with SC domain to the right of the
magnetic domain) also hosts an MZM which involves spin-up
electrons. Also, note that MZMs persist for an arbitrary
complex order parameter Δ and for jμj < jmj, although the
solution is slightly more complicated when μ ≠ 0 with the
wave function Φ0ðzÞ oscillating at the relevant Fermi wave
vector.

2. Nanowire made from a 3D topological insulator

The surface of a 3D topological insulator, such as Bi2Se3 or
Bi2Te3, is known to host a single gapless linearly dispersing
Dirac fermion. The massless character of this surface state is
protected by T . For a planar surface perpendicular to the z axis
the low-energy theory of the Dirac mode is described by the
Bloch Hamiltonian (Hasan and Kane, 2010)

h0ðqÞ ¼ vðqxσy − qyσxÞ − μ: ð75Þ

We are interested in a quasi-1D wire geometry, illustrated in
Fig. 8(a). The wire exhibits Majorana end modes when it is
threaded by the magnetic flux of half-integer flux quanta and
brought into proximity of a superconductor (Cook and Franz,
2011). To see this we note that a Dirac Hamiltonian analogous
to Eq. (75) can be formulated for an arbitrary curved surface
(Ostrovsky, Gornyi, and Mirlin, 2010) and solved exactly for a
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FIG. 7 (color online). (a) 2D topological insulator interfaced
with a superconductor (SC) and two ferromagnetic (FM) insula-
tors. MZMs are expected to occur at the SC and FM boundaries.
(b) Schematic spectrum of the surface state in a 2D TI. The
shaded regions represent the bulk conduction and valence bands.
(c) SC and magnetic order parameter profiles near the SC and FM
boundary assumed in the calculation. The dashed line shows the
resulting Majorana wave function amplitude.
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surface of an infinitely long cylindrical wire with radius R
threaded by magnetic flux Φ (Rosenberg, Guo, and Franz,
2010). The solution yields an excitation spectrum of the form

ϵlðqzÞ ¼ �vℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ

�
lþ η − 1=2

R

�
2

s
; ð76Þ

where qz is the momentum along the axis of the cylinder,
l ¼ 0;�1;… is the angular momentum, and η ¼ Φ=Φ0 is the
magnetic flux in units of flux quantum Φ0 ¼ hc=e. In the
absence of the magnetic field the system exhibits a finite-size
gap vℏ=R and all levels are doubly degenerate. A more
interesting situation arises when η is half integer [e.g., when
Φ ¼ ð1=2ÞΦ0]. In this case a single nondegenerate gapless
branch arises of the form �vℏqz, while all other branches
remain doubly degenerate. This situation is illustrated in
Fig. 8(b). The spectrum now exhibits an odd number of
Fermi points in the right half of the Brillouin zone when the
chemical potential resides inside the bulk band gap and we
expect a topological state to emerge when superconductivity is
induced. The resulting topological phase diagram is depicted
in Fig. 8(c).
When the chemical potential is small, jμj < vℏ=2R, so that

it intersects only the lowest band, one can easily solve for the
MZMs. The procedure is essentially identical to the one
discussed earlier for the edge of the 2D TI and yields an MZM
at each end of the wire. When more bands are occupied and for
wires with a noncircular cross section, such as those grown
experimentally, Eq. (76) for the normal state spectrum holds
only approximately but the pattern of degeneracies (i.e., one
gapless nondegenerate branch plus a set of gapped doubly
degenerate bands) remains robust as a consequence of
T invariance. One thus expects MZMs to exist in this case
as well and this is indeed confirmed by numerical calculations
(Cook and Franz, 2011; Cook, Vazifeh, and Franz, 2012).

3. Semiconductor quantum wires

Another platform for MZMs is based on ordinary semi-
conductors with strong SOC, as realized by InSb or InAs. This

platform has gained significant momentum recently due to the
existing expertise and technological background available for
these long studied materials. The initial proposal involved a
2D structure composed of semiconductor and superconductor
films interfaced with an insulating ferromagnet (Sau et al.,
2010) or in the presence of external in-plane magnetic field
(Alicea, 2010). Later, advantages of 1D quantum wires were
recognized (Lutchyn, Sau, and Das Sarma, 2010; Oreg,
Refael, and von Oppen, 2010) and this is now the leading
solid-state candidate for the experimental realization of
unpaired MZMs. We focus on this system.
To understand the physics behind this proposal we start

from a Hamiltonian describing the low-energy electrons in a
1D quantum wire with a Rashba SOC,

HðqzÞ ¼
ℏ2q2z
2meff

þ αn̂ · ðσ × qÞ: ð77Þ

Here meff is the electron effective mass, α sets the strength of
the SOC, and n̂ its direction. For a quantum wire supported
by a substrate, n̂ points in the direction perpendicular to the
substrate surface, which we take at y ¼ 0. In this case the SOC
takes the form ασxqz. The spectrum of excitations is com-
prised of two shifted parabolas,

ϵðqzÞ ¼
ℏ2q2z
2meff

� αqz; ð78Þ

and is depicted in Fig. 9(a). It is seen that SOC separates the
two spin projections but there is still an even number of Dirac
points in the right half of the Brillouin zone for any chemical
potential. To change this one must in addition apply a
magnetic field B. If its direction is perpendicular to x then
a gap opens up in the spectrum (78) at qz ¼ 0 due to the
Zeeman coupling, as illustrated in Fig. 9(b). Specifically, for
the field along z the perturbation reads δH ¼ VZσ

z and the
spectrum becomes

ϵðqzÞ ¼
ℏ2q2z
2meff

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2q2z þ V2

Z

q
. ð79Þ

When the chemical potential is tuned to lie inside the Zeeman
gap jμj < Vz, then the system exhibits a single Fermi point for
qz > 0 and we expect it to enter the topological phase upon
inducing the SC order. In the presence of a superconducting
gap Δ the Kitaev criterion Eq. (67) imposes
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FIG. 8 (color online). (a) A 3D topological insulator wire in
longitudinal magnetic field B. (b) Spectrum of the surface state
excitations when the total flux piercing the wire η ¼ Φ=Φ0 ¼
SB=Φ0 is half integral. The dashed lines indicate nondegenerate
bands while those represented by the solid lines are doubly
degenerate. (c) The topological phase diagram in the limit of
small Δ. Shaded regions represent the topological phase and the
numerals indicate the number of Fermi points in the right half of
the Brillouin zone.
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FIG. 9 (color online). Excitation spectra of a single channel
semiconductor quantum wire Eq. (78). The three panels show
representative cases with different Zeeman coupling:
(a) VZ=ESO ¼ 0.0, (b) 0.4, and (c) 1.2. The arrows indicate
the spin direction at the Fermi points.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

q
< VZ ð80Þ

as a condition for the topological state. An explicit calculation
once again confirms the existence of an unpaired Majorana
mode at the end of the wire in this regime but we shall not
reproduce it here. Also we note that although SOC strength
does not explicitly enter the criterion (80) its presence is
crucial for the emergence of the topological phase.
As already mentioned this proposal has attracted by far

the most attention from theorists and experimentalists alike
and as a result much is known about this system beyond the
simplest model outlined earlier. Among the key experimen-
tally relevant issues are the effect of multiple bands (arising
from the fact that real wires are not truly one-dimensional
systems) and disorder, which is generically present in any
solid-state system, as well as details of the proximity effect for
specific materials. Existing literature devoted to these issues
was reviewed in recent articles (Alicea, 2012; Beenakker,
2013; Stanescu and Tewari, 2013). The interested reader is
referred to these review articles for more in-depth discussion.
Despite various challenges, semiconductor nanowires prox-

imity coupled to superconductors are currently farthest along
in terms of experimental realization of MZMs. We give a brief
review of the existing experimental studies in Sec. III.F and
provide a critical discussion of the claims that MZMs have
already been observed in these systems.

4. Helical spin chains

In the proposals discussed thus far spin-orbit coupling
played an essential role in giving rise to a normal state with
spin degeneracy removed. SOC is fundamentally a relativistic
effect and this is the main reason why the associated energy
scales remain relatively small in solid-state systems. We close
this section with a description of a simple system that can host
MZMs but does not rely on SOC. Consider a chain of magnetic
atoms, such asGd, Cr, or Fe, deposited on an atomically flat SC
substrate. Each such magnetic moment is known to create a
bound state with the energy inside the SC gap, known as the
Shiba state (Shiba, 1968). The distance between the magnetic
atoms is chosen such that the bound-statewave functions have a
significant overlap t. It turns out that the magnetic moments Sj
of the atoms in this situation have a tendency to order in a
coplanar spiral. The 1D electron system formed of the
hybridized Shiba states then can be in the topological phase
with unpaired MZMs localized at its ends (Choy et al., 2011;
Martin and Morpurgo, 2012; Nadj-Perge et al., 2013).
The spiral state and its stability against fluctuations and

interactions has been studied in recent theoretical works
(Braunecker and Simon, 2013; Klinovaja et al., 2013;
Pientka, Glazman, and von Oppen, 2013; Vazifeh and
Franz, 2013) with some encouraging results. The main finding
is that for energetic reasons the spiral pitch G self-consistently
adjusts to the changing chemical potential so that the system
remains in the topological phase. In addition, this “self-
organized” topological state appears stable against the effects
of fluctuations and interactions.
Structures composed of single atoms such as the 1D chain

discussed here can now be built fairly routinely using
techniques of scanning tunneling microscopy (Gomes et al.,

2012). The first attempt to construct the present system was
recently reported with some encouraging results and is
discussed in Sec. IV.E.

D. Systems in two dimensions

An important property of the solid-state realizations of
Majorana particles in two dimensions is their nontrivial
exchange statistics. This property is thought to harbor a
unique potential for future applications in quantum compu-
tation in which operations would be topologically protected
against the effects of decoherence. The recent surge of interest
in Majorana fermions owes much to these prospects and the
aim of this section is to explain the physics behind the
phenomenon of non-Abelian exchange statistics as realized
in simple models of 2D topological superconductors.

1. Non-Abelian exchange statistics: General considerations

As noted before a pair of spatially separated MZMs γj1 and
γj2 can be thought of as forming one ordinary Dirac fermion
represented by creation and annihilation operators c†j and cj
defined in Eq. (11). We imagine that we have 2N such well-
separated MZMs arranged in a 2D plane. We also assume that
there are no other low-energy degrees of freedom in this
region of space, i.e., our MZMs are protected by a minigap. It
is easy to see that the ground state of this system exhibits a
2N-fold degeneracy6 arising from two possible occupancies
nj ¼ 0; 1 of each of the N ordinary fermion states. The
corresponding degenerate Hilbert space is spanned by basis
vectors

jΦfnjgi ¼ jn1; n2;…; nNi; ð81Þ
where nj denotes the eigenvalue of the corresponding number
operator

n̂j ¼ c†jcj ¼ 1
2
ð1þ iγj1γj2Þ: ð82Þ

The state vector jΨi composed of an arbitrary linear combi-
nation of the basis vectors jΦfnjgi can be used to encode
quantum information.
This way of encoding quantum information has two

important advantages compared to many other schemes.
First, as can be seen from the definition of the number
operator in Eq. (82), the information in each quantum bit is
stored nonlocally. In order to read the information one must
either bring the constituent MZMs close together (to test if
the combined fermionic state is filled or empty by a local
measurement) or else perform a coherent measurement at two
distant spatial positions. Since the environment presumably
cannot perform a nonlocal measurement, the information
stored in the quantum bit n̂j is thought to be immune to
the effects of decoherence. One caveat here is that if there exist
uncontrolled low-energy excitations in the system then the
environment can potentially flip the quantum bit (without
reading it) by tunneling a fermion into the qubit—this is

6In reality the degeneracy is only 2N−1 because of the electron
parity considerations. ν ¼ ðPjnjÞ mod 2 represents the electron
parity which is conserved in a fully gapped, isolated superconductor.
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possible even if only one Majorana can be accessed. The
existence of the minigap is therefore crucial for preserving
the quantum information stored in a pair of MZMs.
The second key feature of the setup described above is the

ability to manipulate the quantum information stored in jΨi in
a topologically protected fashion. As demonstrated next
braiding of MZMs, performing adiabatic exchanges of their
positions, implements certain unitary transformations on the
state vector jΨi. The corresponding braid group turns out to be
non-Abelian, meaning that unitary transformations describing
individual exchanges do not in general commute. A sequence
of exchanges performed on a properly initialized quantum
state jΨii followed by a readout of the final state jΨfi thus
constitutes a topologically protected quantum computation.
Unfortunately, it is known that the braid group realized by
exchanging MZMs is not sufficiently rich to perform an
arbitrary unitary transformation on jΨii which would be
needed to implement a universal quantum computer. To
achieve the latter the braid group must be supplemented by
some “unprotected” operations making the system vulnerable
to decoherence, although in theory much less so than a
nontopological quantum computer (Nayak et al., 2008).
Majorana zero modes with the above non-Abelian

exchange statistics have been theoretically proposed to exist
in a number of 2D systems. Historically the first was the so-
called Moore-Read Pfaffian state (Moore and Read, 1991) that
many believe describes the fractional quantum Hall state
observed at ν ¼ 5=2 filling. Another is the thin film of a spin-
polarized px þ ipy superconductor, which may be realized in
Sr2RuO4, although definitive evidence for this pairing state is
still lacking (Kallin, 2012). More recently Fu and Kane (2008)
proposed that a 2D topological superconductor with the
requisite properties could arise at an interface formed between
a 3D topological insulator and a conventional s-wave super-
conductor. MZMs are expected to be localized in the cores of
Abrikosov vortices in such a 2D superconductor. In the
following we focus on this model because it is closest in
the spirit to our previous discussions and also because it might
be most amenable to various practical tests of non-Abelian
exchange statistics.

2. Vortices in the Fu-Kane model

Fu and Kane (2008) envisioned inducing superconductivity
in the surface state of a 3D topological insulator by covering it
with a thin film of an ordinary s-wave superconductor such as
Pb or Nb as depicted in Fig. 10(a). Although more elaborate
treatments are possible the simplest model that captures the
essential physics of this situation consists of a Hamiltonian h0
describing the TI surface defined in Eq. (75) with the super-
conducting order included via the BdG formalism described in
Sec. II.B. The resulting BdG Hamiltonian (36) can be written
in the following form:

HBdGðrÞ ¼

0
BBB@

0 p− ΔðrÞ 0

pþ 0 0 ΔðrÞ
Δ�ðrÞ 0 0 −p−

0 Δ�ðrÞ −pþ 0

1
CCCA; ð83Þ

where p� ¼ px � ipy, and we set v ¼ 1 and μ ¼ 0 for
simplicity.
We are interested in finding the eigenstates ofHBdGðrÞ in the

presence of anAbrikosov vortex. For our purposes the vortex is
defined as a point around which the phase of ΔðrÞ winds by
2πn with n integer. More generally, an isolated Abrikosov
vortex also requires amagnetic flux hc=2e spread in a flux tube
with a characteristic size λ≃ 10 − 103 Å around the vortex
center [Fig. 10(a)]. However, inclusion of the magnetic flux is
unimportant for the existence of the MZM and we henceforth
neglect it. For a vortex placed at the origin we thus have

ΔðrÞ ¼ Δ0ðrÞe−iðnφþαÞ; ð84Þ
where Δ0ðrÞ is a real function of the distance, φ represents the
polar angle, and α denotes an arbitrary constant phase offset
that becomes important in our later discussion of vortex
braiding. Single valuedness of the Hamiltonian dictates that
for n nonzero Δ0ðrÞ vanishes at the origin. Energy consid-
erations further show that Δ0ðrÞ ∼ rjnj for small r.
To find the zero modes of HBdGðrÞ in the presence of a

vortex it is useful to first perform a unitary transformation
Hn ¼ UHBdGU−1 with

U ¼

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA; ð85Þ
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FIG. 10 (color online). (a) Schematic setup for the Fu-Kane
model with a 3D TI covered with a thin layer of SC film. Avortex
is depicted in the surface layer with a small core, phase winding
2π and a sketch of a magnetic field profile BðrÞ. (b) Avortex with
Majorana zero mode γ2 encircles a vortex placed at the origin
with Majorana γ1 in its core.
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which brings the Hamiltonian into the following off-diagonal
form:

Hn ¼
�

0 Dn

D†
n 0

�
; Dn ¼

�ΔðrÞ p−

−pþ Δ�ðrÞ

�
: ð86Þ

The transformed Hamiltonian acts on the Nambu spinor
Ψ̂r ¼ ðc↑r;−c†↑r; c†↓r; c↓rÞT . When looking for the zero modes
the off-diagonal form of the Hamiltonian (86) has a distinct
advantage: the zeromodes necessarily have the spinor structure
(ψðrÞ; 0)T and (0; χðrÞ)T , where ψðrÞ and χðrÞ are two-
component zero modes of D†

n and Dn, respectively. For a
positive singly quantized vortex ðn ¼ 1Þ it is easy to show that
there exists a normalizable zero mode of D1 of the form

χðrÞ ¼ 1ffiffiffi
2

p
�
e−iðα=2−π=4Þ

eiðα=2−π=4Þ

�
f0ðrÞ; ð87Þ

with f0ðrÞ ¼ Ae−
R

r

0
Δ0ðr0Þdr0 , whileD†

1 does not have a normal-
izable zero mode. The field operator of the zero mode can be
constructed following Eq. (56) and reads

ψ̂0 ¼
1ffiffiffi
2

p
Z

d2r½eiðα=2−π=4Þcr↓ þ e−iðα=2−π=4Þc†r↓�f0ðrÞ: ð88Þ

As expected, the zero mode represents a Majorana particle
ψ̂†
0 ¼ ψ̂0. We note that a singly quantized antivortex (n ¼ −1)

also possesses a zeromode, this time in the upper component of
the spinorψðrÞ and is then composed of a spin-up electron and a
spin-up hole.

3. Vortex exchange and braiding

Having established the existence of MZMs in the core of a
vortex in the Fu-Kane model we now proceed to discuss their
statistics under exchange. These results follow from the earlier
studies (Moore and Read, 1991; Read and Green, 2000), but
we follow the physically more transparent derivation given by
Ivanov (2001).
We begin by considering the effect of a vortex encircling

another vortex located at the origin. If their distance d ≫ ξ, we
can neglect the exponentially small splitting of the zero-mode
energies resulting from the wave function overlap and the only
effect will be the change of the SC phase near the origin due to
the phase field produced by the distant vortex. In view of
Eq. (84) and by inspecting Fig. 10(b) this phase change can be
expressed as

αðRÞ ¼ α0 þ ΩðRÞ þ π; ð89Þ
where ΩðRÞ is the polar angle of the distant vortex and α0
denotes an arbitrary constant phase offset that we can adjust at
will without affecting the physics. [The latter corresponds to
the global U(1) phase of the condensate and does not have
physical meaning.] Taking α0 ¼ −π=2 the wave function (87)
of the Majorana mode at the origin becomes

χRðrÞ ¼
1ffiffiffi
2

p
�
e−ði=2ÞΩðRÞ

eði=2ÞΩðRÞ

�
f0ðrÞ; ð90Þ

where the subscript R reminds us that the wave function now
depends on the position of the distant vortex.
As the distant vortex adiabatically encircles the origin

counterclockwise over the time interval t ∈ ð0; TÞ the
Majorana wave function χðr; tÞ acquires a Berry phase
through the dependence of the instantaneous eigenstate
χRðtÞðrÞ on the time parameter. The Berry phase reads

γðCÞ ¼ −Im
I
C
hχRj∇RχRi · dR − i ln ½hχRð0ÞjχRðTÞi�; ð91Þ

where the second term must be included in order to account
for the fact that χRðrÞ as defined in Eq. (90) is not single
valued asΩ → Ωþ 2π. Explicit evaluation shows that the first
term vanishes but the second term yields γðCÞ ¼ π. This leads
to the conclusion that upon being encircled by another singly
quantized vortex the MZM wave function changes its sign.
This is a direct consequence of the wave function being an
equal superposition of an electron and a hole, which acquire a
phase of þπ and −π, respectively, upon the adiabatic change
in the order parameter phase by 2π.
The Majorana wave function of the distant vortex also

changes sign because its local SC phase likewise advances by
2π. If we denote the Majorana operators corresponding to the
two vortices by γ1 and γ2, then the effect of the encircling
operation can be encoded as

γ1↦ − γ1; γ2↦ − γ2: ð92Þ

For a set of 2N Majorana modes γk an operation in which γj
encircles γi can be implemented by a unitary transformation

γk↦UijγkU
†
ij; Uij ¼ γiγj: ð93Þ

An adiabatic exchange of two Majoranas γi and γj can
be thought of as one-half of the encircling operation (two
subsequent counterclockwise exchanges are equivalent to a
single counterclockwise encircling operation). The unitary
operator implementing such an exchange is therefore

Tij ¼ ðUijÞ1=2 ¼
1ffiffiffi
2

p ð1þ γiγjÞ: ð94Þ

Applying this unitary transformation we find the following
rule governing such pairwise exchanges:

γi↦ − γj; γj↦γi; γk↦γk; ð95Þ

for k ≠ i; j. These rules, first derived in this form by
Ivanov (2001), can be intuitively understood by appealing
to Fig. 11(a). The form of Tij given in Eq. (94) also belies the
non-Abelian structure of the braid group; it is easy to check
that subsequent exchanges do not in general commute,
e.g., T12T23 ≠ T23T12.
We close this section by working out a simple example

that illustrates the action of the transformations on specific
quantum states. Consider a system with four MZMs γ1, γ2, γ3,
and γ4 localized in vortices and arranged as indicated in
Fig. 11(b). Of these we form two ordinary fermions
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ca ¼ 1
2
ðγ1 þ iγ2Þ; cb ¼ 1

2
ðγ3 þ iγ4Þ; ð96Þ

and label the resulting two-dimensional Hilbert space by the
eigenvalues of the corresponding number operators jna; nbi.
We consider the action of several operations on this state.
Encircling γ3 by γ1 is implemented by U31 ¼ γ3γ1 ¼ ðc†a þ
caÞðc†b þ cbÞ and gives

jna; nbi↦U31jna; nbi ¼ ð−1Þna jn̄a; n̄bi; ð97Þ

where n̄ ¼ ð1 − nÞ mod 2 denotes a state with opposite
occupancy to n. The encircling operation performed
between the constituent members of different fermions thus
reverses the occupancy of the states, e.g., j0; 0i↦j1; 1i or
j1; 0i↦ − j0; 1i. Meanwhile encircling between the Majorana
members of the same fermion just changes the overall sign of
the state vector.
One can similarly work out the effect of exchanges, for

instance,

T12jna; nbi ¼ eiðπ=4Þð1−2naÞjna; nbi;

T31jna; nbi ¼
1ffiffiffi
2

p ½jna; nbi þ ð−1Þna jn̄a; n̄bi�.
ð98Þ

We observe that exchanging two Majoranas belonging to the
same fermion c merely attaches an (occupancy dependent)
overall phase factor to the state. Exchange of Majoranas
belonging to different fermions, however, creates a new
entangled state. The set of operations afforded by the braid
group allows for nontrivial manipulations of the ground-state
degenerate manifold but unfortunately does not permit cre-
ation of an arbitrary state jΨi ¼ P

na;nbCna;nb jna; nbi from a

given reference state by repeated application of group ele-
ments Tij. As a result this system cannot be used to perform a
generic quantum computation. There exist, however, theoreti-
cal proposals for solid-state realizations of emergent particles
with more complicated non-Abelian statistics, e.g., the so-
called “Fibonacci anyons,” whose braid group is sufficiently
rich to permit construction of a universal quantum computer
(Nayak et al., 2008).

E. Experimental observations

1. Quantum wires and other 1D systems

By far the greatest progress to date in detecting the
Majorana zero modes in solid-state devices has been achieved
in semiconductor quantum wires. Figure 12(a) reproduces the
original pioneering result of the Delft group (Mourik et al.,
2012) showing the historically first experimental evidence for
the MZM. In the experiment a wire made of an InSb single
crystal has been deposited on a substrate equipped with gates
and contacted with superconducting and normal metal electro-
des as depicted in Fig. 12(b). According to the theory
explained in Sec. IV.C.3 two Majoranas should appear at
the ends of the SC sections of the InSb wire. Gates in the

13T

γ

i

j

γ

γ1 γ2

γ3 γ4

(a)

(b)

FIG. 11 (color online). (a) Upon exchange of two Majoranas one
of them must cross the branch cut implied by the wave function
Eq. (90). When the branch cuts are chosen as indicated by the
dashed lines then counterclockwise exchange of γi and γj results
in rules summarized in Eq. (95). (b) Setup used for the simplest
topologically protected operations on the internal Hilbert space
spanned by four MZMs.
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FIG. 12 (color online). The Delft experiment. (a) Tunneling
conductance gðVÞ as a function of the voltage bias showing a SC
gap at low magnetic field and the emergence of a zero-bias peak
attributed to the MZM at higher fields. (b) Scanning electron
microscope image of the device with normal (N) and super-
conducting (S) contacts attached to an InSb nanowire. Adapted
from Mourik et al., 2012.
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substrate are used to deplete the electron density in the section
between the SC and normal metal electrodes and thus create a
weak link. The existence of the MZM is then probed by
measuring the tunneling current I through this weak link
under an applied voltage bias V. In this setup, to a very good
approximation, differential tunneling conductance gðVÞ ¼
dI=dV is proportional to the density of states in the SC
end of the wire adjacent to the tunneling contact. When the
magnetic field B is below about 90 mT the tunneling
conductance shows a SC gap of about 260 μeV with no
significant features at low energy [Fig. 12(a)]. However, as the
field is further increased a zero-bias peak is seen to emerge in
gðVÞ which persists until about 400 mT and then disappears.
This behavior is qualitatively consistent with the theoretical
prediction for the MZM and has been interpreted as such.
The result described has been subsequently reproduced by

several independent groups (Das et al., 2012; Deng et al.,
2012; Churchill et al., 2013; Finck et al., 2013) using variants
of the setup indicated in Fig. 12(b). In all cases a zero-bias
peak has been reported at nonzero magnetic field consistent
with the existence of MZM in this device. These experiments
are now viewed as compelling evidence for Majorana particles
in quantum wires although it must be noted that zero-bias
anomalies often occur in superconducting systems in situations
when MZMs are not expected to be present. For instance, the
presence of disorder and multiple bands can conspire to
produce zero-bias peaks in semiconductor wires (with the
correct magnetic field dependence) even when the system is in
the topologically trivial phase (Liu et al., 2012). It is now
generally thought that a truly conclusive experiment showing
Majorana particles will have to test one of their other unique
properties in addition to the zero-bias conductance peak. There
exist several proposals in the literature to achieve this. The
effects that can be probed include the fractional Josephson
effect (Kitaev, 2001), quantized conductance in the ballistic
regime (Law, Lee, and Ng, 2009;Wimmer et al., 2011), various
tests of nonlocality (Nilsson, Akhmerov, and Beenakker, 2008;
Fu, 2010; Burnell, Shnirman, and Oreg, 2013), and the non-
Abelian exchange statistics (Alicea et al., 2011). Of these only
the first on the list has been thus far tested (Rokhinson, Liu, and
Furdyna, 2012) with a positive result. Unfortunately it has been
subsequently pointed out that the fractional Josephson effect
can actually arise under certain conditions even for Josephson
junctions formed of ordinary superconductors with no MZMs
(Sau, Berg, and Halperin, 2012). Currently it thus appears that
although compelling experimental signatures consistent with
MZMs in semiconductor quantumwires have been observed by
multiple groups, further experiments will be necessary to obtain
truly unambiguous evidence.
Experiments searching for MZMs in quantum wires made

of topological insulators are ongoing but have not yet
succeeded in producing evidence. Thus far studies have
established the existence of coherent surface states in
Bi2Te3 nanowires (Peng et al., 2010) and proximity-induced
superconducting order has likewise been demonstrated
(Zhang et al., 2011). The key obstacle facing the observation
of MZMs appears to be the significant bulk contribution to the
electron conduction.
MZMs have not yet been observed in structures based

on edge states of 2D topological insulators discussed in

Sec. IV.C.1. This is chiefly because of the relative paucity
of suitable 2D TI materials as well as the notorious difficulty
with the fabrication and manipulation of the prototype system,
the HgTe quantum well (Franz and Molenkamp, 2013). This
proposed realization awaits discovery of new 2D TI materials
that are straightforward to grow and fabricate into suitable
devices. A worldwide effort to achieve this goal is currently
underway (Liu et al., 2008; Knez, Du, and Sullivan, 2011;
Lindner, Refael, and Galitski, 2011; Weeks et al., 2011;
Ezawa, 2012). An innovative proposal was recently formu-
lated for a reliable transport detection of MZMs in the edge
states of 2D TIs (Mi et al., 2013) which could prove useful if
the proposed setup were to be experimentally implemented.
A recent study (Yazdani, 2013) reported preliminary

evidence for zero-bias peaks (obtained through scanning
tunneling spectroscopy) associated with the ends of chains
of magnetic Gd atoms deposited on the (110) surface of
superconducting Pb crystals. These are consistent with MZMs
discussed in Sec. IV.C.4 and if confirmed could constitute an
exciting new direction for Majorana research in solid-state
devices. An even more recent study by the same group (Nadj-
Perge et al., 2014) reported evidence for MZMs in the chains
of Fe atoms on similar Pb surfaces, with Fe magnetic moments
ordered ferromagnetically. This result can be understood
provided one takes into account the strong SOC present in
the Pb substrate (Hui et al., 2014).

2. 2D systems

The Fu-Kane model discussed in Sec. IV.D.2 and its
variants remain the focus of experimental studies in two
dimensions. The experimental efforts thus far have focused on
improving materials and devices with the goal of producing
the correct conditions for the emergence of Majorana par-
ticles. A superconducting proximity effect has been achieved
in surfaces of Bi2Se3 with Ti/Al electrodes (Williams et al.,
2012) and an unconventional Josephson effect possibly
indicative of Majorana physics has been reported in these
devices. More recently a proximity effect in the surface of
BixSb2−xSe3 with chemical potential inside the bulk band gap
was demonstrated (Cho et al., 2013) paving the way for future
detailed studies of MZMs. In addition, high-temperature
superconductivity has been induced in Bi2Se3 flakes
and films by interfacing with a cuprate superconductor
Bi2Sr2CaCu2O8þδ (Zareapour et al., 2012; Wang et al.,
2013). Recently, evidence for MZMs was reported in the
cores of magnetic vortices in a thin film of Bi2Te3 grown on
the surface of a conventional superconductor NbSe2 (Xu et al.,
2014). Using scanning tunneling spectroscopy some features
consistent with the theoretical prediction for the Fu-Kane
model (Chiu, Gilbert, and Hughes, 2011) have been observed.

V. SUMMARY AND CONCLUSIONS

The concept of the Majorana fermion, introduced in the
seminal 1937 paper (Majorana, 1937), remains more relevant
today than at any previous time. Although experimentally thus
far unobserved in the realm of fundamental particles, ongoing
searches are now approaching the sensitivity required to test
the Majorana character of the leading candidate, the neutrino.
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In addition, Majorana fermions are thought to play an
important role in resolving some of the key outstanding
questions in particle physics and cosmology, including lepto-
genesis (abundance in the Universe of matter over antimatter),
nature and origin of the dark matter, and the relevance of
supersymmetry to our understanding of elementary particles.
As discussed in Sec. III supersymmetry requires the existence
of superpartners that are Majorana fermions (e.g., the photino,
superpartner of the photon). If such particles are stable, they
may well constitute the dark matter. Similarly, one way to
understand the abundance of matter over antimatter in our
Universe is through primordial processes involving the decay
of heavy Majorana neutrinos accompanied by CP violation in
the lepton sector.
Majorana fermions also appear in the formal description of

solids with superconducting order. In fact, as explained in
Sec. II.B, quasiparticle excitations above the ground state of any
superconductor possess all the key attributes of Majorana
fermions: they are electrically neutral spin-1=2 fermions indis-
tinguishable from their antiparticles. Of great current interest in
solid-state physics are Majorana zero modes, i.e., excitations
that exist at zero energy in an otherwise gapped system and
are typically localized and spatially separated from one another.
In this situation one can probe their Majorana character in a
tabletop experiment and, due to their unusual properties
including exotic non-Abelian exchange statistics, even exploit
them to perform a protected quantum computation. Compelling
experimental evidence exists for Majorana zero modes in
semiconductor quantum wires coupled to ordinary supercon-
ductors. Their properties are currently a subject of intense
experimental and theoretical studies as are other solid-state
systems that have the potential to harbor Majorana particles.
Although extremely disparate in their physical manifesta-

tions, the above phenomena stand unified by their description
through the Majorana equation. In more ways than one,
Majorana’s seminal work may thus contain clues to our
origins. By enabling new transformative technologies it
may also pave the way toward our future.
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