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Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light
nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab initio
calculations reproduce many low-lying states, moments, and transitions in light nuclei, and
simultaneously predict many properties of light nuclei and neutron matter over a rather wide range
of energy and momenta. The nuclear interactions and currents are reviewed along with a description
of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar
to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor,
spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying
spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering
techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering,
and the properties of dense nucleonic matter as found in neutron stars are also described. A coherent
picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions
and currents.
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I. INTRODUCTION

Nuclei are fascinating few- and many-body quantum
systems, ranging in size from the lightest nuclei formed in
the big bang to the structure of neutron stars with ∼10 km
radii. Understanding their structure and dynamics starting
from realistic interactions among nucleons has been a long-
standing goal of nuclear physics. The nuclear quantum many-
body problem contains many features present in other areas
such as condensed matter physics, including pairing and
superfluidity and shell structure, but also others that are less
common including a very strong coupling of spin and spatial
degrees of freedom, clustering phenomena, and strong spin-
orbit splittings. The challenge is to describe diverse physical
phenomena within a single coherent picture.
This understanding is clearly important to describe nuclear

properties and reactions, including reactions that synthesized
the elements and the structure of neutron-rich nuclei. An
accurate picture of interactions and currents at the nucleonic
level is critical to extend this understanding to the properties of
dense nucleonic matter as occurs in neutron stars, and to use
nuclei as probes of fundamental physics through, for example,
beta decay, neutrinoless double-beta decay, and neutrino-
nucleus scattering.
Over the last three decades it has become possible using

quantum Monte Carlo (QMC) methods to reliably compute
the properties of light nuclei and neutron matter starting from
realistic nuclear interactions. While many of the most basic
properties of nuclei can be obtained from comparatively
simple mean-field models, it has been a challenge to relate
the two- and three-nucleon interactions inferred from experi-
ments to the structure and reactions of nuclei. This challenge
arises because the scale of the nuclear interactions obtained by
examining nucleon-nucleon phase shifts is of the order of
50–100 MeV or more, significantly larger than a typical
nuclear binding energy of 8 MeV per nucleon.
In addition, the nucleon-nucleon interaction is much more

complex than the Coulomb force used in molecular and atomic
physics, the van der Waals potential between atoms used, for
example, in studies of liquid helium systems, or the contact

interaction that dominates dilute cold-atom physics. The pri-
mary force carrier at large nucleon separations is the pion,which
couples strongly to both the spin and isospin of the nucleons
with a strong tensor component. In addition there are significant
spin-orbit forces. As a consequence, there is strong coupling
between the spin and isospin and spatial degrees of freedom.
These features lead to complex nuclear phenomena. The

interactions are predominantly attractive at low momenta,
resulting in large pairing gaps in nuclei and associated
superfluidity in matter. In light nuclei, there is further
clustering of neutrons and protons into alpha-particle-like
configurations that are evident in the low-lying excitations of
some nuclei. At moderate nucleon separations, the tensor
character of the neutron-proton interaction produces signifi-
cant high-momentum components in the nuclear wave func-
tion that impact the electroweak response observed in electron
and neutrino scattering. The nuclear correlations also signifi-
cantly quench the single-particle description of nucleon
knockout and transfer reactions. A major challenge has been
to include both the short-range high-momentum phenomena
and the long-range superfluid and clustering properties of
nuclei and matter in a consistent framework.
QMC methods based upon Feynman path integrals for-

mulated in the continuum have proved to be valuable in
attacking these problems. The sampling of configuration
space in variational (VMC) and Green’s function (GFMC)
Monte Carlo simulations gives access to many of the
important properties of light nuclei including spectra, form
factors, transitions, low-energy scattering, and response. The
auxiliary field diffusion Monte Carlo (AFDMC) method uses
Monte Carlo to also sample the spin-isospin degrees of
freedom, enabling studies of, for example, neutron matter
that is so critical to determining the structure of neutron stars.
In this review we concentrate on continuum Monte Carlo
methods. Lattice QMC methods have also recently been
employed to study both neutron matter (Muller et al.,
2000; Lee and Schäfer, 2006; Seki and van Kolck, 2006;
Abe and Seki, 2009; Roggero, Mukherjee, and Pederiva,
2014; Wlazłowski et al., 2014) and certain nuclei (Lee, 2009;
Epelbaum et al., 2012). Other Monte Carlo methods com-
bined with the use of effective interactions and/or space
models like the shell model have also been developed to
study properties of larger systems; see, for example, Koonin,
Dean, and Langanke (1997), Otsuka et al. (2001), Abe et al.
(2012), Bonett-Matiz, Mukherjee, and Alhassid (2013), and
Bonnard and Juillet (2013).
Other many-body methods, many of which have direct

analogs in other fields of physics, have also played important
roles in the study of nuclei. These include the coupled cluster
method (Hagen, Papenbrock, Ekström et al., 2014, Hagen,
Papenbrock, Hjorth-Jensen, and Dean, 2014), the no-core
shell model (Barrett, Navrátil, and Vary, 2013), the similarity
renormalization group (Bogner, Furnstahl, and Schwenk,
2010), and the self-consistent Green’s function (Dickhoff
and Barbieri, 2004). Each of these methods has distinct
advantages, and many are able to treat a wider variety of
nuclear interaction models. Quantum Monte Carlo methods,
in contrast, are more able to deal with a wider range of
momentum and energy and to treat diverse phenomenon
including superfluidity and clustering.

1068 J. Carlson et al.: Quantum Monte Carlo methods for nuclear physics

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



Progress has been enabled by simultaneous advances in the
input nuclear interactions and currents, the QMC methods,
increasingly powerful computer facilities, and the applied
mathematics and computer science required to efficiently run
these calculations on the largest available machines (Lusk,
Pieper, and Butler, 2010). Each of these factors have been very
important. QMC methods have been able to make use of some
of the most powerful computers available, through extended
efforts of physicists and computer scientists to scale the
algorithms successfully. The codes have become much more
efficient and also more accurate through algorithmic develop-
ments. The introduction of auxiliary field methods paved the
way to scale these results to much larger nuclear systems than
would otherwise have been possible. Equally important,
advances in algorithms have allowed one to expand the physics
scope of our investigations. Initial applications were to nuclear
ground states, including energies and elastic form factors. Later
advances opened theway to study low-energy nuclear reactions
and the electroweak response of nuclei and infinite matter.
Combined QMC and other computational methods in

nuclear physics have allowed us, for the first time, to directly
connect the underlying microscopic nuclear interactions and
currents with the structure and reactions of nuclei. Nuclear
wave functions that contain the many-nucleon correlations
induced by these interactions are essential for accurate
predictions of many experiments. QMC applications in
nuclear physics span a wide range of topics, including low-
energy nuclear spectra and transitions, low-energy reactions of
astrophysical interest, tests of fundamental symmetries, elec-
tron- and neutrino-nucleus scattering, and the properties of
dense matter as found in neutron stars. In this review we
briefly present the interactions and currents and the
Monte Carlo methods and then review results that have been
obtained to date across these different diverse and important
areas of nuclear physics.

II. HAMILTONIAN

Over a substantial range of energy and momenta the
structure and reactions of nuclei and nucleonic matter can
be studied with a nonrelativistic Hamiltonian with nucleons as
the only active degrees of freedom. Typical nuclear binding
energies are of the order of 10 MeV per nucleon and Fermi
momenta are around 1.35 fm−1. Even allowing for substantial
correlations beyond the mean field, the nucleons are essentially
nonrelativistic. There is a wealth of nucleon-nucleon (NN)
scattering data available that severely constrains possible NN
interaction models. Nuclear interactions have been obtained
that provide accurate fits to these data, both in phenomeno-
logical models and in chiral effective field theory (χEFT). This
is not sufficient to reproduce nuclear binding, however, as
internal excitations of the nucleon do have some impact. The
lowest nucleon excitation is the Δð1232Þ resonance at
∼290 MeV. Rather than treat these excitations as dynamical
degrees of freedom, however, it is more typical to include them
and other effects as three-nucleon (3N) interactions.
Therefore, in leading order approximation, one can inte-

grate out nucleon excitations and other degrees of freedom
resulting in a Hamiltonian of the form

H ¼ K þ V; ð1Þ

where K is the kinetic energy and V is an effective interaction,
which, in principle, includesN-nucleon potentials, withN ≥ 2:

V ¼
X
i<j

vij þ
X
i<j<k

Vijk þ � � � : ð2Þ

The NN interaction term is the most studied of all, with
thousands of experimental data points at laboratory energies
from essentially zero to hundreds of MeV. Attempts are now
being made to understand this interaction directly through
lattice QCD, althoughmuchmore development will be required
before it can be used directly in studies of nuclei (Ishii, Aoki,
and Hatsuda, 2007; Beane et al., 2013). Traditionally the NN
scattering data have been fit with phenomenological inter-
actions that require a rather complicated spin-isospin structure
because of the way the nucleon couples to the pion, other
heavier mesons, and nucleon resonances. More recently,
advances have been made using chiral effective field theory,
which employs chiral symmetry and a set of low-energy
constants to fit the NN scattering data. This has led to an
understanding of why charge-independent NN terms are larger
than isospin-breaking ones, why 3N interactions are a small
fraction (∼10%) of NN interactions, and has provided a direct
link between interactions and currents.
In what follows we focus on potentials developed in

coordinate space, which are particularly convenient for QMC
calculations. Many phenomenological models are primarily
local interactions (although often specified differently in each
partialwave) and local interactions can be obtainedwithin chiral
effective theory, which is an expansion in the nucleon’s
momentum. The interaction is predominantly local because
of the nature of one-pion exchange, but at higher orders
derivative (momentum) operators must be introduced. Local
interactions are simpler to treat in continuum QMC methods
because the NN propagator is essentially positive definite, a
property that is not always true in nonlocal interactions. The
Monte Carlo sampling for such positive definite propagators is
much easier, reducing statistical errors in the simulation.
A number of accurate NN potentials constructed in the

1990s reproduce the long-range one-pion-exchange (OPE)
part of the interaction and fit the large amount of empirical
information about NN scattering data contained in the
Nijmegen database (Stoks et al., 1993) with a χ2=Ndata ∼ 1

for laboratory energies up to ∼350 MeV. These include the
potentials of the Nijmegen group (Stoks et al., 1994), the
Argonne potentials (Wiringa, Stoks, and Schiavilla, 1995;
Wiringa and Pieper, 2002), and the CD-Bonn potentials
(Machleidt, Sammarruca, and Song, 1996; Machleidt,
2001). Of those potentials derived more recently by using
chiral effective field theory, the most commonly used is that of
Entem and Machleidt (2002). The most practical choice for
QMC calculations is the Argonne v18 (AV18) potential
(Wiringa, Stoks, and Schiavilla, 1995), which is given in
an r-space operator (nonpartial wave) format and has a weak
dependence on nonlocal terms. The latter are small and hence
are tractable in QMC calculations. Another less sophisticated
interaction that, apart from charge-symmetry breaking effects,
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reproduces the gross features of Argonne v18 is the Argonne
v08 (AV8

0) potential. These are the potentials adopted in most
of the QMC calculations.
However all of these NN interactions, when used alone,

underestimate the triton binding energy, indicating that at least
3N forces are necessary to reproduce the physics of 3H and
3He. A number of semiphenomenological 3N potentials, such
as the Urbana (Carlson, Pandharipande, and Wiringa, 1983;
Pudliner et al., 1996) series, were developed to fit three- and
four-body nuclear ground states. The more recent Illinois
(Pieper et al., 2001; Pieper, 2008a) 3N potentials reproduce
the ground-state and low-energy excitations of light p-shell
nuclei (A ≤ 12). More sophisticated models may be required
to treat nucleonic matter at and above saturation density
ρ≳ ρ0. Particularly in isospin-symmetric nuclear matter, the
many-body techniques for realistic interactions also need to be
improved. Effective field theory techniques and QMC meth-
ods may help to provide answers to these questions.

A. The nucleon-nucleon interaction

Among the realistic NN interactions, the AV18 NN
potential (Wiringa, Stoks, and Schiavilla, 1995) is a finite,
local, configuration-space potential that is defined in all partial
waves. AV18 has explicit charge-independence breaking
(CIB) terms, so it should be used with a kinetic energy
operator that keeps track of the proton-neutron mass differ-
ence by a split into charge-independent (CI) and charge-
symmetry breaking (CSB) pieces:

K ¼
X
i

KCI
i þ KCSB

i

≡ −
ℏ2

4

X
i

��
1

mp
þ 1

mn

�
þ
�

1

mp
−

1

mn

�
τzi

�
∇2

i ; ð3Þ

wheremp andmn are the proton and neutron masses, and τzi is
the operator that selects the third component of the isospin.
AV18 is expressed as a sum of electromagnetic and OPE terms
and phenomenological intermediate- and short-range parts,
which can be written as an overall operator sum

vij ¼ vγij þ vπij þ vIij þ vSij ¼
X
p

vpðrijÞOp
ij: ð4Þ

The electromagnetic term vγij has one- and two-photon-
exchange Coulomb interactions, vacuum polarization,
Darwin-Foldy, and magnetic moment terms, with appropriate
form factors that keep terms finite at rij ¼ 0. The OPE part
includes the charge-dependent (CD) terms due to the differ-
ence in neutral and charged pion masses:

vπij ¼ f2½Xijτi · τj þ ~XijTij�; ð5Þ

where the coupling constant is f2 ¼ 0.075, τ are the Pauli
matrices that operate over the isospin of particles, and
Tij ¼ 3τziτzj − τi · τj is the isotensor operator. The radial
functions are

Xij ¼ 1
3
ðX0

ij þ 2X�
ijÞ; ð6Þ

~Xij ¼ 1
3
ðX0

ij − X�
ijÞ; ð7Þ

Xm
ij ¼

�
m
ms

�
2 1

3
mc2½YðμrijÞσi · σj þ TðμrijÞSij�; ð8Þ

where m ¼ mπ� or mπ0, μ ¼ m=ℏc, the scaling mass
ms ¼ mπ� , σ are Pauli matrices that operate over the spin of
nucleons, and Sij ¼ 3σi · r̂ijσj · r̂ij − σi · σj is the tensor oper-
ator. The YðxÞ and TðxÞ are the normal Yukawa YðxÞ¼
ðe−x=xÞξðrÞ and tensor TðxÞ¼ð1þ3=xþ3=x2ÞYðxÞξðrÞ func-
tions with a short-range cutoff ξðrÞ ¼ 1 − expð−cr2Þ
with c ¼ 2.1 fm−2.
The intermediate- and short-range strong-interaction terms

have 18 operators and are given by the functional forms

vIij ¼
X18
p¼1

IpT2ðμrijÞOp
ij; ð9Þ

vSij ¼
X18
p¼1

½Pp þQprþ Rpr2�WðrÞOp
ij; ð10Þ

where T2 is constructed with the average pion mass, μ¼
½ð1=3Þmπ0 þð2=3Þmπ� �=ℏc, and WðrÞ is a Woods-Saxon
potential with radius r0 ¼ 0.5 fm and diffuseness a ¼ 0.2 fm.
Thus the former has two-pion-exchange range, while the short-
range part remains finite and is constrained to have zero slope at
the origin, except for tensor terms which vanish at the origin.
The first 14 operators are CI terms:

OCI
ij ¼ ½1; σi · σj; Sij;L · S;L2;L2ðσi · σjÞ; ðL · SÞ2�

⊗ ½1; τi · τj�; ð11Þ

where Lij ¼ ð1=2iÞðri − rjÞ × ð∇i − ∇jÞ is the relative angular
momentum of the pair ij, and Sij ¼ ð1=2Þðσi þ σjÞ is the
total spin. The remaining operators include three CD and one
CSB term:

OCD
ij ¼ ½1; σi · σj; Sij� ⊗ Tij; ð12Þ

OCSB
ij ¼ τzi þ τzj : ð13Þ

Themaximumvalue of the central (p ¼ 1) potential is∼2 GeV.
The AV18 model has a total of 42 independent parameters

Ip, Pp, Qp, and Rp. A simplex routine (Nelder and Mead,
1965) was used to make an initial fit to the phase shifts of the
Nijmegen PWA93 analysis (Stoks, Timmermans, and de
Swart, 1993), followed by a final fit direct to the database,
which contains 1787 pp and 2514 np observables for
Elab ≤ 350 MeV. The nn scattering length and deuteron
binding energy were also fit. The final χ2=Ndata ¼ 1.1
(Wiringa, Stoks, and Schiavilla, 1995). While the fit was
made up to 350 MeV, the phase shifts are qualitatively good
up to much larger energies ≥ 600 MeV (Gandolfi, Carlson
et al., 2014).
The CD and CSB terms are small, but there is clear

evidence of their presence. The CD terms are constrained
by the long-range OPE form and the differences between pp
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and np scattering in the 1S0 channel. The CSB term is short
ranged and constrained by the difference in pp and nn
scattering lengths and is necessary to obtain the correct
3He-3H mass difference.
Direct GFMC and AFDMC calculations with the full AV18

potential are not practical because the spin-isospin-dependent
terms which involve the square of the orbital momentum
operator have very large statistical errors. However, these
terms in AV18 are fairly weak and can be treated as a first-
order perturbation. Hence it is useful to define a simpler
isoscalar AV80 potential with only the first eight (central, spin,
isospin, tensor, and spin-orbit) operators of Eq. (11); details
are given in Pudliner et al. (1997) and Wiringa and Pieper
(2002). The AV80 is not a simple truncation of AV18, but a
reprojection that preserves the isoscalar average of the strong
interaction in all S and P partial waves as well as the deuteron.
It has been used in benchmark calculations of 4He by seven
different many-body methods, including GFMC (Kamada
et al., 2001).
It has proved useful pedagogically to define even simpler

reprojections of AV80, particularly an AV60 potential without
spin-orbit terms that is adjusted to preserve deuteron binding.
The AV60 has the same CI OPE potential as AV80 and
preserves deuteron binding and S-wave and 1P1 partial wave
phase shifts, but 3P0;1;2 partial waves are no longer properly
differentiated. Details are given in Wiringa and Pieper (2002),
where the evolution of nuclear spectra with increasing realism
of the potentials was investigated.

B. Three-body forces

TheUrbana series of 3N potentials (Carlson, Pandharipande,
and Wiringa, 1983) is written as a sum of two-pion-exchange
P-wave and remaining shorter-range phenomenological terms,

Vijk ¼ V2π;P
ijk þ VR

ijk: ð14Þ

The structure of the two-pion P-wave exchange term with an
intermediate Δ excitation [Fig. 1(a)] was originally written
down by Fujita and Miyazawa (1957); it can be expressed
simply as

V2π;P
ijk ¼

X
cyc

AP
2πfXπ

ij; X
π
jkgfτi · τj; τj · τkg

þ CP
2π½Xπ

ij; X
π
jk�½τi · τj; τj · τk�; ð15Þ

where Xπ
ij is constructed with the average pion mass and

P
cyc

is a sum over the three cyclic exchanges of nucleons i; j; k.
For the Urbana models CP

2π ¼ ð1=4ÞAP
2π , as in the original

Fujita-Miyazawa model, while other potentials like the
Tucson-Melbourne (Coon et al., 1979) and Brazil (Coelho,
Das, and Robilotta, 1983) models have a ratio slightly larger
than 1=4. The shorter-range phenomenological term is
given by

VR
ijk ¼

X
cyc

ART2ðμrijÞT2ðμrjkÞ: ð16Þ

For the Urbana IX (UIX) model (Pudliner et al., 1995), the two
parameters AP

2π and AR were determined by fitting the binding
energy of 3H and the density of nuclear matter in conjunction
with AV18.
While the combined AV18þ UIX Hamiltonian reproduces

the binding energies of s-shell nuclei, it somewhat underbinds
light p-shell nuclei. A particular problem is that the two-
parameter Urbana form is not flexible enough to fit both 8He
and 8Be at the same time. A new class of 3N potentials, called
the Illinois models, has been developed to address this
problem (Pieper et al., 2001). These potentials contain the
Urbana terms and two additional terms, resulting in a total of
four strength parameters that can be adjusted to fit the data.
The general form of the Illinois models is

Vijk ¼ V2π;P
ijk þ V2π;S

ijk þ V3π;ΔR
ijk þ VR

ijk: ð17Þ

The term V2π;S
ijk is due to πNS-wave scattering as illustrated in

Fig. 1(b) and is parametrized with a strength AS
2π . It has been

included in a number of 3N potentials such as the Tucson-
Melbourne and Brazil models. The Illinois models use the
form recommended in the latest Texas model (Friar, Hüber,
and van Kolck, 1999), where chiral symmetry is used to
constrain the structure of the interaction. However, in practice,
this term is much smaller than the V2π;P

ijk contribution and
behaves similarly in light nuclei, so it is difficult to establish
its strength independently just from calculations of energy
levels.
A more important addition is a simplified form for three-

pion rings containing one or two Δs [Figs. 1(c) and 1(d)]. As
discussed by Pieper et al. (2001), these diagrams result in a
large number of terms, the most important of which are used to
construct the Illinois models:

V3π;ΔR
ijk ¼ AΔR

3π ½503 SIτSIσ þ 26
3
AI
τAI

σ�: ð18Þ

Here the SIx and AI
x are operators that are symmetric or

antisymmetric under any exchange of the three nucleons, and
the subscripts σ and τ indicate that the operators act on,
respectively, spin or isospin degrees of freedom.
The SIτ is a projector onto isospin-3=2 triples:

SIτ ¼ 2þ 2
3
ðτi · τj þ τj · τk þ τk · τiÞ ¼ 4PT¼3=2: ð19Þ

To the extent isospin is conserved, there are no such triples in
the s-shell nuclei, and so this term does not affect them. It is
also zero for Nd scattering. However, the SIτSIσ term is
attractive in all the p-shell nuclei studied. The AI

τ has the
same structure as the isospin part of the anticommutator part
of V2π;P, but the AI

τAI
σ term is repulsive in all nuclei studied so

(b) (c)

Δ
Δ Δ

Δ

(d)(a)

π

π

π

π
π

π π

π

ππ

FIG. 1 (color online). Three-nucleon force diagrams for (a) two-
pion P-wave, (b) two-pion S-wave, and (c), (d) three-pion ring
terms.
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far. In p-shell nuclei, the magnitude of the AI
τAI

σ term is
smaller than that of the SIτSIσ term, so the net effect of the
V3π;ΔR
ijk is slight repulsion in s-shell nuclei and larger attraction

in p-shell nuclei. The interested reader is referred to the
appendix of Pieper et al. (2001) for the complete structure
of V3π;ΔR

ijk .
The first series of five Illinois models (IL1-5) explored

different combinations of the parameters AP
2π , A

S
2π , A

ΔR
3π , and

AR, and also a variation of the OPE cutoff function ξðrÞ. One
drawback of these models is that they appear to provide
too much attraction in dense neutron matter calculations
(Sarsa et al., 2003). To help alleviate this problem, the latest
version Illinois-7 (IL7) introduced an additional repulsive
term with the isospin-3=2 projector:

VR;T¼3=2
ijk ¼

X
cyc

AR;T¼3=2T2ðμrijÞT2ðμrjkÞPT¼3=2: ð20Þ

After fixing AS
2π at the Texas value, and taking ξðrÞ from

AV18, the four parameters AP
2π , A

ΔR
3π , AR, and AR;T¼3=2 were

searched to obtain a best fit, in conjunction with AV18, for
energies of about 20 nuclear ground and low-lying excited
states in A ≤ 10 nuclei (Pieper, 2008a).

C. Nuclear Hamiltonians from chiral effective field theory

χEFT has witnessed much progress during the two decades
since the pioneering papers by Weinberg (1990, 1991, 1992).
In χEFT, the symmetries of quantum chromodynamics
(QCD), in particular, its approximate chiral symmetry, are
employed to systematically constrain classes of Lagrangians
describing, at low energies, the interactions of baryons (in
particular, nucleons and Δ isobars) with pions as well as the
interactions of these hadrons with electroweak fields. Each
class is characterized by a given power of the pion mass and/or
momentum, the latter generically denoted by P, and can
therefore be thought of as a term in a series expansion in
powers of P=Λχ , where Λχ ≃ 1 GeV specifies the chiral-
symmetry breaking scale. Each class also involves a certain
number of unknown coefficients, called low-energy constants
(LECs), which are determined by fits to experimental data;
see, for example, Bedaque and van Kolck (2002) and
Epelbaum, Hammer, and Meißner (2009), and references
therein. Thus χEFT provides a direct connection between
QCD and its symmetries and the strong and electroweak
interactions in nuclei. From this perspective, it can be
justifiably argued to have put low-energy nuclear physics
on a more fundamental basis. Just as importantly, it yields a
practical calculational scheme, which can, at least in principle,
be improved systematically.
Within the nuclear χEFT approach, a variety of studies have

been carried out in the strong-interaction sector dealing with
the derivation of NN and 3N potentials (van Kolck, 1994;
Ordonez, Ray, and van Kolck, 1996; Epelbaum, Gloeckle, and
Meissner, 1998; Epelbaum et al., 2002; Entem and Machleidt,
2003; Navratil, 2007; Bernard et al., 2011; Girlanda, Kievsky,
and Viviani, 2011; Machleidt and Entem, 2011) and accom-
panying isospin-symmetry-breaking corrections (Epelbaum
and Meissner, 1999; Friar and van Kolck, 1999; Friar et al.,
2004; Friar, Payne, and van Kolck, 2005). In the electroweak

sector additional studies have been made dealing with the
derivation of parity-violating NN potentials induced by
hadronic weak interactions (Zhu et al., 2005; Girlanda,
2008; Haxton and Holstein, 2013; Viviani et al., 2014) and
the construction of nuclear electroweak currents (Park, Min,
and Rho, 1993; Kölling et al., 2009; Pastore et al., 2009,
2011; Kölling et al., 2011; Piarulli et al., 2013).
Recently chiral nuclear interactions were developed that are

local up to next-to-next-to-leading order (N2LO) (Gezerlis
et al., 2013). These interactions employ a different regulari-
zation scheme from previous chiral interactions, with a cutoff
in the relative NN momentum q. They are therefore fairly
simple to treat with standard QMC techniques to calculate
properties of nuclei and neutron matter (Gezerlis et al., 2013;
Lynn et al., 2014).
As explained by Gezerlis et al. (2014), up to N2LO, the

momentum-dependent contact interactions can be completely
removed by choosing proper local operators. For example,
at leading order (LO) there are several operators that are
equivalent for contact interactions: 1, σ1 · σ2, τ1 · τ2, and
σ1 · σ2τ1 · τ2. Similarly, interactions at next-to-leading order
(NLO) and N2LO can be constructed by adding extra operators
that include the S12, S12τ1 · τ2, and L · S. The short-range
regulators are also chosen to be local, i.e., fcut ¼
1 − expð−r=R0Þ4. In this way, by fitting the low-energy
constants, the chiral potentials are completely local up to
N2LO. At the next order N3LO (next-to-next-to-next-to-leading
order) nonlocal operators start to appear, but their contributions
are expected to be very small (Piarulli et al., 2015).

III. QUANTUM MONTE CARLO METHODS

There is a large variety of quantumMonte Carlo algorithms,
and it would be out of the scope of this review to cover all of
them. We limit ourselves to describing a specific subset of
QMC algorithms that has been consistently applied to the
many-nucleon problem, namely, algorithms that are based on
a coordinate representation of the Hamiltonian and that are
based on recursive sampling of a probability density or of a
propagator. This set of methods includes the standard VMC,
GFMC, and diffusion Monte Carlo methods.
These methods have been successfully applied to a broad

class of problems. The major fields of application of this set of
algorithms are quantum chemistry and materials science
(Hammond and Lester, 1994; Nightingale and Umrigar,
1999; Foulkes et al., 2001), where QMC is a natural
competitor of methods such as coupled cluster theory and
standard configuration interaction methods that are accurate
for problems where the uncorrelated or Hartree-Fock state
provides already a good description of the many-body ground
state. In these fields several software packages have been
developed with the aim of making the use of QMC methods
more and more widespread across the community. Other
applications in condensed matter theory concern the physics
of condensed helium systems, both 4He and 3He (Schmidt and
Ceperley, 1992; Ceperley, 1995). Several QMC calculations
have been extensively performed to investigate properties of
both bosonic and fermionic ultracold gases; see, for example,
Carlson, Chang et al. (2003) and Giorgini, Pitaevskii, and
Stringari (2008).

1072 J. Carlson et al.: Quantum Monte Carlo methods for nuclear physics

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



Because of the strong correlations induced by nuclear
Hamiltonians, QMC methods have proved to be valuable in
understanding properties of nuclei and nucleonic matter.
Variational Monte Carlo methods were introduced for use
with nuclear interactions in the early 1980s (Lomnitz-Adler,
Pandharipande, and Smith, 1981). VMC requires an accurate
understanding of the structure of the system to be explored.
Typically, a specific class of trial wave functions is considered,
and using Monte Carlo quadrature to evaluate the multidi-
mensional integrals, the energy with respect to changes in a set
of variational parameters is minimized.
GFMC was introduced in nuclear physics for spin-isospin-

dependent Hamiltonians in the late 1980s (Carlson, 1987,
1988). It involves the projection of the ground state from an
initial trial state with an evolution in imaginary time in terms
of a path integral, using Monte Carlo techniques to sample the
paths. GFMC works best when an accurate trial wave function
is available, often developed through initial VMC calcula-
tions. This method is very accurate for light nuclei, but
becomes increasingly more difficult moving toward larger
systems. The growth in computing time is exponential in the
number of particles because of the number of spin and isospin
states. The largest nuclear GFMC calculations to date are for
the 12C nucleus (Lovato et al., 2013, 2014, 2015) and for
systems of 16 neutrons (Gandolfi, Carlson, and Pieper, 2011;
Maris et al., 2013) (540 672 and 65 536 spin-isospin states,
respectively).
The AFDMC method was introduced in 1999 (Schmidt and

Fantoni, 1999). In this algorithm the spin and isospin
dependence is treated using auxiliary fields. These fields
are sampled using Monte Carlo techniques, and the coordi-
nate-space diffusion in GFMC is extended to include a
diffusion in the spin and isospin states of the individual
nucleons as well. This algorithm is much more efficient at
treating large systems. It has been very successful in studying
homogeneous and inhomogeneous neutron matter and
recently has been shown to be very promising for calculating
properties of heavier nuclei, nuclear matter (Gandolfi, Lovato
et al., 2014), and systems including hyperons (Lonardoni,
Gandolfi, and Pederiva, 2013; Lonardoni, Pederiva, and
Gandolfi, 2014; Lonardoni et al., 2015). It does require the
use of simpler trial wave functions, though, and is not yet quite
as flexible in the complexity of nuclear Hamiltonians that can
be employed. Extending the range of interactions that can be
treated with the AFDMC method is an active area of research.

A. Variational Monte Carlo method

In VMC, one assumes a form for the trial wave function ΨT
and optimizes variational parameters, typically by minimizing
the energy and/or the variance of the energy with respect to
variations in the parameters. The energy of the variational
wave function EV

EV ¼ hΨT jHjΨTi
hΨT jΨTi

≥ E0 ð21Þ

is greater than or equal to the ground-state energy with the
same quantum numbers as ΨT . Monte Carlo methods can be

used to calculate EV and to minimize the energy with respect
to changes in the variational parameters.
For nuclear physics, the trial wave function jΨTi has the

generic form:

jΨTi ¼ F jΦi: ð22Þ

With this form, a factorization of the wave function into long-
range low-momentum components and short-range high-
momentum components is assumed. The short-range behavior
of the wave functions is controlled by the correlation operator
F , the quantum numbers of the system and the long-range
behavior by jΦi. In nuclei the separation between the short-
distance correlations and the low-momentum structure of the
wave function is less clear than in some systems. For example,
alpha-particle clusters can be important in light nuclei, and
their structure is of the order of the interparticle spacing. Also
the pairing gap can be a nontrivial fraction of the Fermi
energy, and hence the coherence length may be smaller than
the system. Nevertheless this general form has proved to be
extremely useful in both light nuclei and nuclear matter.

1. Short-range structure: F

The correlation operator is dominated by Jastrow-like
correlations between pairs and triplets of particles:

F ¼
�
S
Y
i<j<k

ð1þ FijkÞ
��

S
Y
i<j

Fij

�
; ð23Þ

where S is the symmetrization operator, Fij is a two-body
correlation, and Fijk is a three-body correlation. The two-body
correlation operator can include a strong dependence upon
spin and isospin and is typically taken as

Fij ¼
X
p

fpðrijÞOp
ij; ð24Þ

where

Op
ij ¼ 1; τi · τj; σi · σj; ðσi · σjÞðτi · τjÞ; Sij; Sijτi · τj; ð25Þ

and the fp are functions of the distance rij between particles i
and j. The pair functions fpij are usually obtained as the
solution of Schrödinger-like equations in the relative distance
between two particles:

�
−
ℏ2

2μ
∇2 þ vS;TðrÞ þ λS;TðrÞ

�
fS;TðrÞ ¼ 0: ð26Þ

The pair functions are obtained by solving this equation in
different spin and isospin channels, for example, S ¼ 0,
T ¼ 1, and can then be recast into operator form. For
S ¼ 1 channels the tensor force enters and this equation
becomes two coupled equations for the components with
L ¼ J − 1 and L ¼ J þ 1.
The λS;TðrÞ are functions designed to encode the variational

nature of the calculation, mimicking the effect of other
particles on the pair in the many-body system. Additional
variational choices can be incorporated into boundary
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conditions on the fS;TðrÞ. For example, in nuclear and neutron
matter the pair functions are typically short-ranged functions
and the boundary condition that fp¼1 ¼ 1 and fp>1 ¼ 0 at
some distances d, which may be different in different
channels, is enforced. Usually it is advantageous for the
tensor correlation to be finite out to longer distances because
of the one-pion-exchange interaction. The distances d are
variational parameters, and the equations for the pair corre-
lations are eigenvalue equations; the eigenvalues are contained
in the λðrÞ. See Pandharipande and Wiringa (1979) for
complete details.
For the lightest s-shell nuclei (A ¼ 3 and 4), on the other

hand, the asymptotic properties of the wave function are
encoded in the pair correlation operators fp. To this end the
λðrÞ are determined by requiring the product of pair corre-
lations S

Q
jFij to have the correct asymptotic behavior as

particle i is separated from the system. These boundary
conditions are described in Schiavilla, Pandharipande, and
Wiringa (1986) and Wiringa (1991).
It was found advantageous to reduce the strength of the

spin- and isospin-dependent pair correlation functions Fij
when other particles are nearby, with the simple form above
altered to

Fij ¼
X
p

fpðrijÞ
Y
k

qpðrij; rik; rjkÞOp
ij; ð27Þ

where the central (spin-isospin independent) quenching factor
qp¼1 is typically 1, while for other operators it is parametrized
so as to reduce the pair correlation when another particle k is
near the pair ij (Pudliner et al., 1997).
The Fijk becomes particularly important when the

Hamiltonian includes a 3N force. A good correlation form is

Fijk ¼
X
x

ϵxVx
ijkð~rij; ~rjk; ~rkiÞ; ð28Þ

with ~r ¼ yxr, yx a scaling parameter, and ϵx a (small negative)
strength parameter. The superscript x denotes various pieces
of the 3N force like ð2π; PÞ and R, so Eq. (28) brings in all the
spin-isospin dependence induced by that piece of the 3N
potential. In practice the S

Q
i<j<kð1þ FijkÞ in Eq. (23) is

usually replaced with a sum ð1þP
i<j<kFijkÞ which is

significantly faster and results in almost as good a variational
energy. For three- and four-body nuclei and nuclear matter,
pair spin-orbit correlations have also been included in
Eq. (23), but they are expensive to compute and not used
in the work reviewed here.
The typical number of variational parameters for s-shell

nuclear wave functions is about two dozen for a two-body
potential like AV18, as shown in Wiringa (1991) and Pudliner
et al. (1997). Another four to six parameters are added if a
three-body potential is included in the Hamiltonian. One can
also add a few additional parameters to break charge inde-
pendence, e.g., to generate T ¼ 3=2 components in the
trinucleon wave functions, but these are generally used only
for studies of isospin violation. For p-shell nuclei, the alpha-
particle pair and triplet correlations are varied only minimally,
and most optimization is done with the long-range correlations
discussed later.

The variational parameters have generally been optimized
by hand. Variational wave functions with significantly larger
numbers of parameters and more sophisticated optimization
have since been developed (Usmani et al., 2009; Usmani,
Anwar, and Abdullah, 2012), but are not in general use.
However, they have provided useful insight for improving the
simpler parameter sets. The calculation of light nuclei is now
sufficiently fast that automated optimization programs might
be profitably employed in the future.

2. Long-range structure: jϕi
The quantum numbers and long-range structure of the wave

function are generally controlled by the jΦi term in Eq. (22).
For nuclear and neutron matter this has often been taken to be
an uncorrelated Fermi gas wave function. Recently, the crucial
role of superfluidity has been recognized, particularly in low-
density neutron matter. In such cases the trial wave function
includes a jΦi of Bardeen-Cooper-Schrieffer (BCS) form. For
the s-wave pairing relevant to low-density neutron matter, this
can be written

jΦi ¼ A½ϕðr110 Þ;ϕðr220 Þ;ϕðr330 Þ;…�; ð29Þ

where the finite particle number projection of the BCS state
has been taken, with ϕðrÞ the individual pair functions, and
the unprimed and primed indices refer to spin-up and spin-
down particles, respectively. These pair states are functions of
the distance between the two nucleons in the pair. The
operator A is an antisymmetrization operator (Carlson,
Chang et al., 2003; Gezerlis and Carlson, 2008). For a more
general pairing, a Pfaffian wave function is needed [see, for
example, Gandolfi et al. (2008) and Gandolfi, Illarionov,
Pederiva et al. (2009) and references therein].
For light nuclei, the simplest jΦi can be written as the sum

of a few Slater determinants, essentially those arising from a
very modest shell-model treatment of the nucleus. The single-
particle orbitals in such calculations are written in relative
coordinates so as to avoid introducing any spurious center-of-
mass (c.m.) motion. An explicit antisymmetrization of the
wave function summing over particles in s-wave, p-wave,
etc., orbitals is required to compute jΦi.
Improved wave functions can be obtained by considering the

significant cluster structures present in light nuclei. For exam-
ple, the ground state of 8Be has a very large overlap with two
well-separated alpha particles. Alpha-cluster structures are
important in many light nuclei, for example, states in helium
and carbon. To this end, it is useful to use a “Jastrow” wave
function jΦJi which includes spin-isospin independent two-
and three-body correlations and the cluster structure for the jΦi:

jΦJi ¼ A
Y
i<j<k

fcijk
Y
i<j≤4

fssðrijÞ
Y

k≤4<l≤A
fspðrklÞ

×
X
N

Y
4<l<m≤A

fppðrlmÞjΦNð1234∶56 � � �AÞi: ð30Þ

This wave function must be explicitly antisymmetrized as it is
written in a particular cluster structure, with particles 1;…; 4
being in an alpha-particle cluster, summed over the N ¼ ðA

4
Þ

possible partitions. The spin-isospin independent two-body
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correlations fss, fpp, and fsp are different for pairs of particles
where both are in the s shell, both in the p shell, or one in each.
The fss comes from the structure of an alpha particle, the fsp is
constructed to go to unity at large distances. The fpp is set to
give the appropriate cluster structure outside the α-particle core,
for example, it is similar to a deuteron for 6Li and to a triton for
7Li; see Pudliner et al. (1997) for more details.
Except for closed-shell nuclei, the complete trial wave

function is constructed by taking a linear set of states of the
form in Eq. (30) with the same total angular momentum and
parity. Typically these correspond to the lowest shell-model
states of the system. QMC methods are then used to compute
the Hamiltonian and normalization matrix elements in this
basis. These coefficients are often similar in magnitude to
those produced by a very small shell-model calculation of the
same nucleus. In light nuclei LS coupling is most efficient;
examples of the diagonalization can be found in Pudliner et al.
(1997), Wiringa et al. (2000), and Pieper, Varga, and Wiringa
(2002) and compared to traditional shell-model studies such as
Kumar (1974). The VMC calculations give good descriptions
of inclusive observables including momentum distributions,
but the energies and other observables can then be improved,
using the results of the VMC diagonalization to initiate the
GFMC calculations.

3. Computational implementation

The spatial integrals in Eq. (21) are evaluated using
Metropolis Monte Carlo techniques (Metropolis et al.,
1953). A weight function WðRÞ is first defined to sample
points in 3A-dimensional coordinate space. The simplest
choice is WðRÞ ¼ hΨTðRÞjΨTðRÞi, where the brackets indi-
cate a sum over all the spin-isospin parts of the wave function.
For spin-isospin independent interactions the A-particle wave
function is a function of the 3A coordinates of the system
only, and the weight function W is the square of the wave
function. The Metropolis method allows one to sample points
in large-dimensional spaces with probability proportional to
any positive function W through a suitable combination of
proposed (usually local) moves and an acceptance or rejection
of the proposed move based upon the ratio of the function W
at the original or proposed points. Iterating these steps
produces a set of points in 3A-dimensional space with
probability proportional to WðRÞ.
For spin-isospin dependent interactions, the wave function

jΨTðRÞi is a sum of complex amplitudes for each spin-isospin
state of the system:

jΨTðRÞi ¼
X

s≤2A;t≤2A
ϕs;tðRÞχsðσÞχtðτÞ; ð31Þ

and the spin states χs are

χ1 ¼ j↓1↓2 � � �↓Ai;
χ2 ¼ j↑1↓2 � � �↓Ai;
χ3 ¼ j↓1↑2 � � �↓Ai;

� � �
χ2A ¼ j↑1↑2 � � �↑Ai; ð32Þ

and similarly for the isospin states with n and p instead of ↓
and ↑. The 2A isospin states can be reduced by using charge
conservation to A!=ðN!Z!Þ states and, by assuming the
nucleus has good isospin T, further reduced to

IðA; TÞ ¼ 2T þ 1
1
2
Aþ T þ 1

�
A

1
2
Aþ T

�
ð33Þ

components. The weight function in this case is the sum of the
squares of the individual amplitudes WðRÞ ¼ P

s;tjϕs;tðRÞj2.
Given a set of coordinates fRg, to calculate the wave

function one must first populate the various amplitudes in the
trial state by calculating the Slater determinant, BCS state, or
Jastrow wave function jΦi. Spin-isospin independent oper-
ators acting on jΦi are simple multiplicative constants for each
amplitude ϕs;t. Pair correlation operators then operate on the
Φ; these are sparse matrix multiplications for each pair. The
sparse matrices are easily computed on the fly using explicitly
coded subroutines (Pieper, 2008b). The product over pair
correlations is built up by successive operations for each pair.
For example, the effect of the operator σ1 · σ2 on the wave
function of three particles can be written as follows [the
notation að↑1↓2↓3Þ means the amplitude for nucleon 1 being
spin up and nucleons 2 and 3 being spin down; the isospin
components have been omitted for simplicity]:

σ1 ·σ2

0
BBBBBBBBBBBBBBB@

að↓1↓2↓3Þ
að↑1↓2↓3Þ
að↓1↑2↓3Þ
að↑1↑2↓3Þ
að↓1↓2↑3Þ
að↑1↓2↑3Þ
að↓1↑2↑3Þ
að↑1↑2↑3Þ

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

að↓1↓2↓3Þ
2að↓1↑2↓3Þ−að↑1↓2↓3Þ
2að↑1↓2↓3Þ−að↓1↑2↓3Þ

að↑1↑2↓3Þ
að↓1↓2↑3Þ

2að↓1↑2↑3Þ−að↑1↓2↑3Þ
2að↑1↓2↑3Þ−að↓1↑2↑3Þ

að↑1↑2↑3Þ

1
CCCCCCCCCCCCCCCA

: ð34Þ

The Metropolis Monte Carlo method is used to sample
points in the 3A-dimensional space by accepting and rejecting
trial moves of the particles. Enforcing detailed balance ensures
that the asymptotic distribution of such points will be
distributed according to the weight WðRÞ. The energy can
then be computed as the average over the N points in the
random walk:

EV ¼ 1

N

XN
i¼1

hΨTðRiÞjHjΨTðRiÞi
WðRiÞ

; ð35Þ

where the angled brackets imply the sum over spin and isospin
states for each set of spatial coordinates Ri. The matrix
elements of the Hamiltonian are evaluated using the same
techniques as those used for the pair correlation operators.
The computational time for the VMC method scales

exponentially with the particle number. At first glance, this
may seem to be because of the explicit sums over an
exponentially large number of spin-isospin amplitudes calcu-
lated from the trial wave function. If that were the only reason,
it might be possible to sample the spin-isospin state and
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evaluate the trial wave function’s amplitude for that sampled
spin-isospin state. This sampling can in fact be done but the
fundamental problem remains that good trial wave functions
constructed as described in Eqs. (22)–(24) require exponential
in the particle number operations to evaluate either a single
spin-isospin amplitude or all of them. Evaluating a single
amplitude provides negligible savings, so the computational
time is reduced by explicitly summing over the amplitudes,
which removes any variance that would occur from sampling.
If trial wave functions could be constructed which capture the
important physics, while requiring computational time that
scales polynomially with particle number for a single spin-
isospin amplitude, VMC calculations would be straightfor-
ward for all nuclei.
In reality one does not usually compute the full wave

function with all orders of pair operators implied by the
symmetrization operator S in the definition of the wave
function. One can sample the orders of the pairs independently
for the left and right (bra and ket) wave functions of Eq. (35),
and define a slightly more complicated positive definite
form for the weight function W in terms of the two sets of
amplitudes ϕs;t;l and ϕs;t;r for the order of pair operators l and
r in the left- and right-hand wave functions. From several
thousand to several tens of thousands of points are sufficient
for a typical evaluation of the energy, and statistical errors are
obtained using standard techniques.
To search for optimal variational parameters embedded in

ΨT , it is useful to first generate a Monte Carlo walk with
configurations Ri and weights WðRiÞ for a given parameter
set. Then one can change one or more parameters and reuse
the same set of configurations to evaluate the change in the
energy. The correlated energy difference will have a much
smaller statistical error than differencing two large energies
obtained from independent random walks. In this manner, a
chain of small incremental improvements can be developed
that leads to a lower variational energy. When the norm of the
improved wave function starts to differ significantly from
the original walk, a new reference walk can be made and the
search continued from that set.
One way to overcome the exponential growth in computa-

tional requirements and access larger nuclei is to use a cluster
expansion. Cluster expansions in terms of the operator
correlations in the variational wave function were developed
more than two decades ago and used in the first QMC
calculations of 16O (Pieper, Wiringa, and Pandharipande,
1992). In these calculations a full 3A-dimensional integral
was done for the Jastrow part of the wave function while up to
four-nucleon linked clusters were used for the operator terms.
Earlier versions of the Argonne NN and Urbana 3N inter-
actions were used. Given the tremendous increase in computer
power since then, this method might profitably be reconsid-
ered for calculations of much bigger nuclei.

B. Green’s function Monte Carlo method

GFMC methods are used to project out the ground state
with a particular set of quantum numbers. GFMC methods
were invented in the 1960s (Kalos, 1962) and have been
applied to many different problems in condensed matter,
chemistry, and related fields. They are closely related to

finite-temperature algorithms which calculate the density
matrix (Ceperley, 1995), but they use trial wave functions
on the boundaries of the paths to project out the quantum
numbers of specific states.
The GFMC method typically starts from a trial wave

function jΨTi and projects

jΨ0i ∝ lim
τ→∞

exp½−ðH − E0Þτ�jΨTi; ð36Þ

where E0 is a parameter used to control the normalization.
For strongly interacting systems one cannot compute
exp½−ðH − E0Þτ� directly; however, one can compute the
high-temperature or short-time propagator and insert complete
sets of states between each short-time propagator,

jΨ0ðRNÞi ¼
Y
1���N

hRN j exp½−ðH − E0Þδτ�jRN−1i � � �

× hR1j exp½−ðH − E0Þδτ�jR0ijΨTðR0Þi; ð37Þ

and then use Monte Carlo techniques to sample the paths Ri in
the propagation. The method is accurate for small values of
the time step δτ, and the accuracy can be determined by
simulations using several different values of the time step and
extrapolating to zero. In the GFMC method, Monte Carlo is
used to sample the coordinates R; Eq. (37) also has an implied
sum over spin and isospin states at each step of the walk which
is calculated explicitly.

1. Imaginary-time propagator

In the simplest approximation the propagator

GδτðR0;RÞ≡ hR0j expð−HδτÞjRi
≈ hR0j expð−Vδτ=2Þ expð−TδτÞ expð−Vδτ=2ÞjRi;

ð38Þ

where T is the nonrelativistic kinetic energy

G0ðR0;RÞ ¼ hR0j exp½−Tδτ�jRi

¼
�

1

λ3π3=2

�
A
exp½−ðR − R0Þ2=λ2�; ð39Þ

with λ2 ¼ 4ðℏ2=2mÞδτ, yielding a Gaussian diffusion for the
paths. The matrix V is the spin- and isospin-dependent
interaction:

hRj expð−VδτÞjRi ≈ S
Y
i<j

exp½−VijðrijÞδτ�; ð40Þ

where S indicates a symmetrization over orders of pairs. Each
pair interaction can be simply evaluated as the exponent of a
small spin-isospin matrix. This treatment is adequate for static
spin-dependent NN interactions.
In practice one needs to include momentum-dependent

spin-orbit NN interactions as well as 3N interactions. It is
more efficient to calculate the NN propagator explicitly,
storing the radial and spin-isospin dependence on a grid for
each initial and final NN state. This is done by calculating the
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propagator independently in each partial wave and then
summing them to create the full NN propagator. This was
first done in studies of liquid helium (Ceperley, 1995; Schmidt
and Lee, 1995) and then adapted to the nuclear physics case
(Pudliner et al., 1997). This has the advantage of summing all
NN interactions for each pair explicitly, allowing for larger
time steps in the path-integral simulation. The NN propagator
gij is defined

hχ0σχ0τjgijðr0ij; rij; δτÞjχσχτi ¼ hχ0σχ0τr0ijj exp½−Hijδτ�jχσχτriji;
ð41Þ

where rij and r0ij are the initial and final NN relative
coordinates, Hij is the NN Hamiltonian including relative
kinetic energy and the NN interaction, and χ0σ ; χσ and χ0τ; χτ
are NN initial and final spin and isospin states, respectively.
The pair propagator is calculated for the AV80 Hamiltonian,
denoted as gv8ij . At present higher-order terms in the momenta
½p2;L2; ðL · SÞ2;…� are treated perturbatively. Although the
pair propagator can be calculated for these interactions, the
Monte Carlo sampling can lead to large variance (Lynn and
Schmidt, 2012).
The pair propagators are then combined to produce the full

propagation matrix for the system. The 3N interaction Vijk is
included symmetrically, and the full propagation matrix for
each step GδτðR0;RÞ can then be written as

GδτðR0;RÞ ¼ hR0j
�
1 −

X
i<j<k

Vijkδτ=2

�
jR0iG0ðR0;RÞ

× S
Y
i<j

gv8ij ðR0;RÞ
g0ijðR0;RÞ hRj

�
1 −

X
i<j<k

Vijkδτ=2

�
jRi:

ð42Þ

The spin-orbit interaction in the product of propagators with
the full v8 interaction yields spurious interactions resulting
from quadratic terms in the difference R0 − R from different
pairs. One can correct for this but in practice the effect is not
significant. Using the calculated NN propagators allows for a
factor of 5–10 larger time steps δτ than the simple approxi-
mation in Eq. (39) (Pudliner et al., 1997).

2. Implementation

Once the propagator for each step is specified, an algorithm
must be chosen to sample over all possible paths. A branching
random walk algorithm very similar to that used in standard
diffusion Monte Carlo (DMC) (Foulkes et al., 2001) is used.
This random walk does not sample the entire path at once; it
uses the Markov chain Monte Carlo method to perform each
step given the present coordinates and amplitudes in the
propagated wave function. One difference with standard DMC
is that the importance sampled Green’s function is explicitly
sampled rather than using a small time-step extrapolation for
the wave functions.
A positive definite “weight”W(ΨT;ΨðτÞ) is first defined as

a function of the trial function ΨT and the propagated wave
function ΨðτÞ. Typically the form used is

W ¼
����X
s;t

hΨT jχsχtihχsχtjΨðτÞi
����

þϵ
X
s;t

jhΨT jχsχtihχsχtjΨðτÞij; ð43Þ

where ϵ is a small parameter. Sampling of the paths and
branching for the importance function are then implemented
with the scalar function W. Given the present position R,
several different possible final states R0 ¼ Rþ δR are
sampled from the free propagator G0. For each sample of
δR the corresponding −δR configuration is included in the
sample. The weight function Wi is then calculated for each of
the possible new points R0

i, and the final point is chosen
according to the relative weights and scaled with the ratio of
the average Wi to the actual Wi. Branching is performed with
the ratio of weight functions after and before the step, or
typically after several steps. The weights of different paths
used to calculate observables will eventually diverge, yielding
the entire contribution from only a few paths that dominate.
This is commonly avoided by using the branching technique,
in which the configurations are redistributed by killing or
making N copies of each one according to

Ni ¼ ½Wi þ ξ�; ð44Þ

where Wi is the weight of the ith configuration obtained by
multiplying the weight of Eq. (43) by expf½E0 − VðRÞ�δτg
(V is the spin or isospin independent part of the potential), ξ is
a random number with uniform distribution between 0 and 1,
and in Eq. (44) ½� � ��means the truncated integer number of the
argument. Different random number seeds are given to new
copies generated from the same walker. This procedure
guarantees that the configurations with small weight, con-
tributing by generating only noise to the observables, are
dropped. The full procedure is described in Pudliner
et al. (1997).
After every typically 20 to 40 steps, the energy as a function

of imaginary time τ is calculated as

EðτÞ ¼ hΨT jHjΨðτÞi
hΨT jΨðτÞi ¼

P
ihΨTðiÞjHjΨðτ; iÞi=WiP
ihΨTðiÞjΨðτ; iÞi=Wi

; ð45Þ

where the sum over i indicates the sum over samples of the
wave function. The brackets in the numerator and denomi-
nator of the last expression indicate sums over spins and
isospins for each sample. The EðτÞ initially decrease rapidly
from the VMC (τ ¼ 0) energy but then stabilizes and just
fluctuates within the statistical errors; examples of this are
shown in Fig. 2, discussed later, and also in Sec. V.D. These
stable values are averaged to get the converged GFMC results.
In principle, the GFMC propagation should converge to the

lowest-energy state of given quantum numbers Jπ;T. The
nuclei considered here may have a few particle-stable and
multiple particle-unstable excited states of the same quantum
numbers. In practice, GFMC propagation can obtain good
energy estimates for many of these additional states.
First, a set of orthogonal VMC trial functions are generated

that are diagonalized in the small single-particle p-shell basis
of differing LS and spatial symmetry combinations that can
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make a given Jπ;T. These are pseudobound wave functions
that fall off exponentially at long range, with matter radii not
much larger than the ground state. Then independent GFMC
propagations are carried out starting from each of these trial
functions. An example is shown in Fig. 2 for the four 5

2
−

p-shell states in 7Li, all of which are particle unstable (Pieper,
Wiringa, and Carlson, 2004). The GFMC propagations stay
nearly orthogonal to fairly large τ ∼ 1 MeV−1, as shown by
the solid symbols. The overlaps between different states can
be evaluated, and an explicit reorthogonalization made, shown
by the open symbols. The states remain well separated in
energy.
The first 5

2
− state in Fig. 2 is physically wide (∼900 keV)

because it has the spatial symmetry of alpha plus triton and is
several MeV above the threshold for breakup into separated
clusters. Consequently, a GFMC propagation is expected to
eventually drop to that threshold energy, and the figure
shows, after a rapid initial drop from −26 to −32 MeV by
τ ¼ 0.1 MeV−1, a slowly decreasing energy as τ increases,
reaching −33 MeV at τ ¼ 1 MeV−1. In cases like this, the
energy is quoted at the small value of τ, where the rapid initial
improvement over the variational starting point has saturated.
The second 5

2
− state in Fig. 2 is physically narrow (∼80 keV)

because it has a spatial symmetry like 6Liþ n and is only
20 keVabove that breakup threshold. The GFMC propagation
shows the same rapid initial drop in energy, and then no
appreciable further decline, allowing us to identify a clear
energy for this state. The third and fourth 5

2
− states are not

experimentally identified, but from the GFMC propagation
behavior we would expect the third state to be physically
narrow, and the fourth to be fairly broad. An alternative
approach to calculate systems in the continuum by imposing
specific boundary conditions is presented in Sec. IV.F.
In general the GFMC method suffers from the fermion sign

problem in that the numerator and denominator of Eq. (45)
tend to have an increasing ratio of error to signal for a finite
sample size and large imaginary times τ. Other than for a few
special cases such as purely attractive interactions, Hubbard
models at half filling, or lattice QCD at zero chemical

potential, QMC methods typically all have this difficulty.
This is basically because when ΨT is not exact it contains
contamination from the bosonic ground state that will be
unavoidably sampled. For scalar potentials, or in any case
where a real wave function can be used, the sign problem is
avoided by using the fixed-node approximation, and the
problem is solved in a restricted (bosonic) subspace, where
the trial wave function always maintains the same sign. In this
case the problem would be exactly solved if the nodes of the
true ground state were known. Because this is not the case, the
solution obtained is a rigorous upper bound to the true ground-
state energy (Moskowitz et al., 1982). For spin-isospin
dependent Hamiltonians a complex wave function must be
used, and the general fixed-node approximation does not
apply. Instead the sign problem is circumvented by using a
“constrained-path” algorithm, essentially limiting the original
propagation to regions where the propagated and trial wave
functions have a positive overlap. This approximation, like
the fixed-node algorithm for spin-independent interaction,
involves discarding configurations that have zero overlap with
the trial wave function. As such, they are exact for the case
when the trial wave function is exact and are therefore
variational. However, unlike the fixed-node case, the con-
strained-path method does not provide upper bounds (Wiringa
et al., 2000).
To address the possible bias introduced by the constraint, all

the configurations (including those that would be discarded)
for a previous number of steps Nuc are used when evaluating
energies and other expectation values. Nuc is chosen to be as
large a number of time steps as feasible with reasonable
statistical error (again typically 20 to 40 steps). Tests using
different trial functions and very long runs indicate that
energies in p-shell nuclei are accurate to around 1% using
these methods. This has been tested in detail by Wiringa et al.
(2000), where the use of different wave functions is discussed.
Expectation values other than the energy are typically

calculated from “mixed” estimates; for diagonal matrix
elements this is

hOðτÞi ≈ 2
hΨT jOjΨðτÞi
hΨT jΨðτÞi −

hΨT jOjΨTi
hΨT jΨTi

: ð46Þ

Equation (46) can be verified by assuming that the true ground
state is well represented by the variational wave function and a
small perturbation, i.e., jΨðτÞi ≈ jΨTi þ λjΨi, and λ is a small
parameter. Since the variational wave functions are typically
very good, the extrapolation is quite small. This can be further
tested by using different trial wave functions to extract the
same observable, or using the Hellman-Feynman theorem. For
the case of simple static operators, improved methods are
available that propagate both before and after the insertion of
the operator O (Liu, Kalos, and Chester, 1974), i.e., directly
calculating operators with ΨðτÞ on both sides. However, these
techniques might be difficult to apply for nonlocal operators.
Because a Hamiltonian commutes with itself, the total

energy of the Hamiltonian used to construct the propagator
[Eq. (42)] is not extrapolated; thus this total energy is not the
sum of its extrapolated pieces, rather the sum differs by the
amount the ΨT energy was improved. As noted, the full AV18
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GFMC Propagation

FIG. 2 (color online). GFMC energies of four 5=2− states in 7Li
vs imaginary time τ. The solid symbols show the computed
energies at each τ, and the open symbols show the results of
rediagonalization.
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NN potential cannot be used in the propagator; rather an H0

containing the AV80 approximation to AV18 is used. In
practice AV80 gives slightly more binding than AV18 so
the repulsive part of the 3N potential is increased to make
hH0i ≈ hHi. The difference hH −H0i must be extrapolated by
Eq. (46). The best check of the systematic error introduced by
this procedure is given by comparing GFMC calculations of
3H and 4He energies with results of more accurate few-
nucleon methods; this suggests that the error is less than 0.5%
(Pudliner et al., 1997).
In the case of off-diagonal matrix elements, e.g., in

transition matrix elements between initial Ψi and final Ψf

wave functions, Eq. (46) generalizes to

hOðτÞi ≈ hΨf
T jOjΨiðτÞi

hΨi
T jΨiðτÞi

jΨi
T j

jΨf
T j
þ hΨfðτÞjOjΨi

Ti
hΨfðτÞjΨf

Ti
jΨf

T j
jΨi

T j

−
hΨf

T jOjΨi
Ti

jΨf
T jjΨi

T j
: ð47Þ

Technical details can be found in Pervin, Pieper, and
Wiringa (2007).
Recently, the capability to make correlated GFMC prop-

agations has been added (Lovato et al., 2015). In these
calculations, the values of R for every δτ time step, the
corresponding weights W, and other quantities are saved
during an initial propagation. Subsequent propagations for
different initial ΨT or different nuclei (such as isobaric
analogs) then follow the original propagation and correlated
differences of expectation values can be computed with much
smaller statistical errors than for the individual values.

C. Auxiliary field diffusion Monte Carlo

The GFMCmethod works well for calculating the low-lying
states of nuclei up to 12C. Its major limitation is that the
computational costs scale exponentially with the number of
particles, because of the full summations of the spin-isospin
states. An alternative approach is to use a basis given by the
outer product of nucleon position states, and the outer product of
single-nucleon spin-isospin spinor states. An element of this
overcomplete basis is given by specifying the 3A Cartesian
coordinates for the A nucleons, and specifying four complex
amplitudes for each nucleon to be in a jsi ¼ jp↑; p↓; n↑; n↓i
spin-isospin state. A basis state is then defined

jRSi ¼ jr1s1i ⊗ jr2s2i � � � ⊗ jrnsni: ð48Þ

The trial functions must be antisymmetric under inter-
change. The only such functions with polynomial scaling are
Slater determinants or Pfaffians (BCS pairing functions), for
example,

hRSjΦi ¼ A½hr1s1jϕ1ihr2s2jϕ2i � � � hrAsAjϕni� ð49Þ

or linear combinations of them. Operating on these with the
product of correlation operators, Eq. (23), again gives a state
with exponential scaling with nucleon number. In most of the
AFDMC calculations, these wave functions include a state-
independent, or central, Jastrow correlation:

hRSjΨTi ¼ hRSj
�Y
i<j

fcðrijÞ
�
Φi: ð50Þ

Calculations of the Slater determinants or Pfaffians scale like
A3 when using standard dense matrix methods, while the
central Jastrow correlation requires A2 operations if its range is
the same order as the system size. These trial functions capture
only the physics of the gross shell structure of the nuclear
problem and the state-independent part of the two-body
interaction. Devising trial functions that are both computa-
tionally efficient to calculate and that capture the state-
dependent two- and three-body correlations that are important
would greatly improve both the statistical and systematic
errors of QMC methods for nuclear problems.
The trial wave functions above can be used for variational

calculations. However, the results are poor since the functions
miss the physics of the important tensor interactions. More
recently the improved form,

hRSjΨTi ¼ hRSj
�Y
i<j

fcðrijÞ
� �

1þ
X
i<j

Fij þ
X
i<j<k

Fijk

�
jΦi;

ð51Þ

has been employed, where fc are spin-isospin independent
correlations, and the correlations F have a form similar to
those discussed in the previous sections. These wave functions
can be used as importance functions for AFDMC calculations
where they have been found adequate for this purpose in a
variety of problems.
Using the basis state as in Eq. (48) requires the use of a

different propagator, with at most linear spin-isospin oper-
ators. The propagator can be rewritten using the Hubbard-
Stratonovich transformation:

e−O
2=2 ¼ 1ffiffiffiffiffi

2π
p

Z
∞

−∞
dxe−x

2=2exO; ð52Þ

where the variables x are called auxiliary fields, and O can be
any type of operator included in the propagator.
It is helpful to apply the auxiliary field formalism to derive

the well-known central potential diffusion Monte Carlo algo-
rithm (Anderson, 1976). The Hamiltonian is

H ¼
XA
n

p2n
2m

þ VðRÞ; VðRÞ ¼
X
i<j

vðrijÞ; ð53Þ

and vðrijÞ is a generic potential whose form depends on the
system. Making the short-time approximation, the propagator
can be written as

e−ðH−E0Þδτ≈ exp

�
−
XA
n

p2n
2m

δτ

�
expf−½VðRÞ−E0�δτg: ð54Þ

Since the Hamiltonian does not operate on the spin, the spin
variables can be dropped from the walker expressions to leave
just a position basis jRi. Operating with the local-potential
term gives just a weight factor
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e−½VðRÞ−E0�δτjRi ¼ WjRi: ð55Þ

The kinetic energy part of the propagator can be applied by
using the Hubbard-Stratonovich transformation:

exp

�
−
X
n

p2n
2m

δτ

�
≈
Y
n

exp

�
−

p2n
2m

δτ

�

¼
Y
n

1

ð2πÞ3=2
Z

dxne−x
2
n=2

× exp

�
−
i
ℏ
pnxn

ffiffiffiffiffiffiffiffiffi
ℏ2δτ

m

r �
: ð56Þ

This propagator applied to a walker jRi generates a new
position jRþ ΔRi, where each particle position is shifted as

rn0 ¼ rn þ
ℏ2δτ

m
xn: ð57Þ

This is identical to the standard diffusion Monte Carlo
algorithm without importance sampling. Each particle is
moved with a Gaussian distribution of variance ℏ2δτ=m,
and a weight of exp½−ðVðRÞ − E0Þδτ� is included. The
branching on the weight is then included to complete the
algorithm.
The NN potential in the general form of Eq. (4) can be

written as

V ¼
X
i<j

vpðrijÞOp
ij ¼

1

2

X
i;j

Oα
i Aiα;jβO

β
j ¼

1

2

X
n

λnO2
n; ð58Þ

where Oα
i are σi, τi, or similar combinations; see Gandolfi

(2007) for more details. The new operators O are defined as

On ¼
X
jβ

ψ ðnÞ
jβ O

β
j : ð59Þ

Here ψ ðnÞ
jβ and λn are the eigenvectors and eigenvalues

obtained by diagonalizing the matrix Aiα;jβ.
It is easy to see that applying the Hubbard-Stratonovich

transformation consists of a rotation of the spin-isospin states
of nucleons:

Y
i<j

e−VijδτjRSi ¼
Y
n

1

ð2πÞ3=2
Z

dxne−x
2
n=2e

ffiffiffiffiffiffiffiffiffi
−λnδτ

p
xnOn jRSi

¼ jRS0i. ð60Þ

The propagation is performed by sampling the auxiliary fields
from the probability distribution expð−x2n=2Þ, and applying
the rotations to the nucleon spinors. At order δτ the above
propagator is the same as that described previously. The
advantage of this procedure is that a wave function with the
general spin-isospin structure of Eq. (49) can be used, at a
much cheaper computational cost than that of including all the
spin-isospin states of Eq. (31). However, one must then solve
the integral in Eq. (52), which is done by Monte Carlo
sampling of the auxiliary fields x.

The inclusion of importance sampling within the auxiliary
fields formalism is straightforward and is currently done as
described in Sec. III.B.2. At each time step a random vector
ΔR for the spatial coordinates and the required auxiliary fields
X are sampled. The four weights corresponding to these
samples are

Wi ¼
hΨIjR� ΔRS0ð�XÞi

hΨIjRSi
exp ½−VcðRÞδτ�; ð61Þ

where ΨI is used for the importance sampling, S0ðXÞ are
obtained by rotating the spinors S of the previous time step
using the auxiliary fields X, and Vc includes all the spin-
isospin independent terms of the interaction. The procedure is
then completed as done in the GFMC method: one of the
above configurations is taken according to the probabilities,
and the branching is done by considering the cumulative
weight. This procedure lowers the variance as the “plus-
minus” sampling cancels the linear terms coming from the
exponential of Eqs. (56) and (60). Note that in the example of
the kinetic energy presented, the effect of sampling using
�ΔR is identical up to first order in gradient to sampling
configurations using ∇ΨI=ΨI commonly adopted in standard
diffusion Monte Carlo methods (Foulkes et al., 2001).
The importance function ΨI must be real and positive, and

an efficient algorithm to deal with complex wave functions
has been proposed by Zhang and Krakauer (2003), i.e.,
consider hΨIjRSi ¼ jhΨT jRSij, and multiply the weight terms
Wi by cosΔθ, where Δθ is the phase of hΨT jR0S0i=hΨT jRSi,
and for each Wi, jR0S0i is the corresponding configuration
obtained from the corresponding �ΔR and �X sampling.
This method samples configurations with a very low variance.
Previous applications of the AFDMC method used a

somewhat different importance sampling, using ∇ΨI=ΨI
for the kinetic energy, and the strategy described by Sarsa
et al. (2003) and Gandolfi, Illarionov, Schmidt et al. (2009) for
the spin; the two methods become the same in the limit of
δτ → 0. Gandolfi, Lovato et al. (2014) found that the
procedure described is much less time-step dependent for
calculations including protons. This is due to the strong tensor
force in the np channel that in the case of pure neutron
systems is very weak. The two algorithms give very similar
results.
The energy and other observables are calculated after a

block of steps in imaginary time, where each block comprises
a number of steps that is chosen to be large enough (typically
around 100–500) such that the configurations are statistically
uncorrelated. This is done to save computing time in calcu-
lating observables for data that are not useful to reduce the
statistical errors.
While the Hubbard-Stratonovich transformation is the most

common, there are many other possibilities. For example, the
propagator for the relativistic kinetic energy can be sampled
by using

exp
h
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2c2 þm2c4
q

−mc2
	
δτ
i
¼

Z
d3xfðxÞe−ip·x=ℏ

ð62Þ
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with

fðxÞ ¼
Z

d3p
ð2πÞ3 e

ip·x=ℏe−ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2þm2c4

p
−mc2Þδτ

¼ emc2δτK2

�
mc
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2δτ2

p �
; ð63Þ

where K2 is the modified Bessel function of the order of 2
(Carlson, Pandharipande, and Schiavilla, 1993).

IV. LIGHT NUCLEI

A. Energy spectra

Results of GFMC calculations for light nuclei using the
AV18þ IL7 Hamiltonian are compared to experiment in
Fig. 3 and Table I (Brida, Pieper, and Wiringa, 2011;
McCutchan et al., 2012; Lovato et al., 2013; Pastore et al.,
2013, 2014; Wiringa et al., 2013; Pieper and Carlson, 2015).
Results using just AV18 with no 3N potential are also shown
in the figure. Figure 3 shows the absolute energies of more
than 50 ground and excited states. The experimental energies
of the 21 ground states shown in the table are reproduced with
an rms error of 0.36 MeVand an average signed error of only
0.06 MeV. The importance of the three-body interaction is
confirmed by the large corresponding numbers for AV18 with
no 3N potential, namely, 10.0 and 8.8 MeV. About 60
additional isobaric analog states also have been evaluated
but are not shown here.
Table I gives the ground-state energies E, proton (neutron)

point radii rp (rn), magnetic moments μ (including two-body
current contributions, see Sec. V), and quadrupole momentsQ
for all the particle-stable ground states of A ≤ 10 nuclei, plus
12C and the resonant ground states of 7He and 8Be. Many of
these results were obtained in recent studies of spectroscopic
overlaps, electromagnetic transitions and sum rules, and
isospin mixing. The energies, radii, and electromagnetic
moments are in generally good agreement with experiment.

A detailed breakdown of the AV18þ IL7 energies into
various pieces for some of the nuclear ground states is shown
in Table II. The components include the total kinetic energyK,
the contribution v18 of the strong-interaction part of AV18, the
full electromagnetic potential vγij, the two-pion-exchange parts
of IL7 V2π

ijk, the three-pion-ring parts V3π
ijk, and the short-range

repulsion VR
ijk. In the last column, δvij is the expectation value

of the difference between v18 and v80 , which is the part of the
NN interaction that is treated perturbatively because v80 is
used in the propagation Hamiltonian. The sum of the six
contributions K through VR

ijk does not quite match the total
energy reported in Table I because they have been individually
extrapolated from the mixed energy expression Eq. (46).
Several key observations can be drawn from Table II. First,

there is a large cancellation between kinetic and two-body
terms. Second, the net perturbative correction δvij is small
(< 2%) compared to the full v18 expectation value. Third, the
total Vijk contribution is ∼5% of vij, suggesting good
convergence in many-body forces, but it is not negligible
compared to the binding energy. Finally, the V3π

ijk contribution
that is unique to the Illinois potentials is a small fraction of the
V2π
ijk in T ¼ 0 states, but does get as large as 35% in T ¼ 2

states.
In describing the structure of the light nuclei, it is

convenient to characterize specific Jπ; T states by their
dominant orbital and spin angular momentum and spatial
symmetry 2Sþ1LJ½n�, where ½n� denotes the Young diagram
for spatial symmetry (Wiringa, 2006). [This classification is
essentially a modern update of the discussion in Feenberg
and Wigner (1937).] For example, 4He is a 1S0½4� state, and
the ground state of 6Li is predominantly 3S1½42�, with
admixtures of 3D1½42� and 1P1½411�. Because NN forces
are strongly attractive in relative S waves, and repulsive in
P waves, ground states of given Jπ;T have the maximum
spatial symmetry allowed by the Pauli exclusion principle.
For the same spatial symmetry, states of higher L are higher
in the spectrum. Further, due to the effect of NN spin-orbit
forces, iterated tensor forces and also 3N forces, the spin
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FIG. 3 (color online). GFMC energies of light nuclear ground and excited states for the AV18 and AV18þ IL7 Hamiltonians compared
to experiment. See Table I for references.
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doublets, triplets, etc., are split, with the maximum J value
for given ½n� lying lowest in the spectrum (up to mid
p shell). These features are evident in the excitation spectra
discussed next.

The excitations relative to the ground-state energies for
many states are shown in Fig. 4 and tabulated in Table III.
These excitation energies are each the difference of two
independent GFMC calculations; the quoted statistical
errors are the uncorrelated combination of the errors of
each calculation. In general, the excitation energies are
quite satisfactory with an rms error of 0.5 MeV for 58
A ≤ 10 states using AV18þ IL7 compared to 1.8 MeV
using just AV18. Thus we see that AV18 alone does a
much better job on excitation energies than it does for
absolute binding, and that the addition of IL7 greatly
improves both aspects.
The 6He ground state is a 1S0½42� combination, with a

1D2½42� first excited state; the AV18þ IL7 Hamiltonian gets
an excitation in fair agreement with experiment. The first three
T ¼ 0 excited states in 6Li constitute a 3DJ½42� triplet, and the
spin-orbit splitting between the 3þ, 2þ, and 1þ states is also
reproduced nicely. The first two states in 7Li are a narrowly
split 2PJ½43� pair, while the next two are a 2FJ½43� pair,
followed by the lowest member of a 4PJ½421� triplet, all with a
reasonably good reproduction of experiment. The 8Be nucleus
exhibits a strong 2α rotational spectrum, with a 1S0½44� ground
state and widely spaced 1D2½44� and 1G4½44� excited states,
also with excitation energies in excellent agreement with
experiment. Above this rotational band are 3P2½431�,
3P1½431�, and 3D3½431� T ¼ 0 states that isospin mix with
the T ¼ 1 isobaric analogs of the 8Li ground and first two
excited states.

TABLE I. AV18þ IL7 GFMC results for A ≤ 12 nuclear ground states (Brida, Pieper, and Wiringa, 2011; McCutchan et al., 2012; Lovato
et al., 2013; Pastore et al., 2013, 2014; Wiringa et al., 2013; Pieper and Carlson, 2015), compared to experimental values (Amroun et al., 1994;
Shiner, Dixson, and Vedantham, 1995; Tilley et al., 2002, 2004; Nörtershäuser et al., 2009, 2011; Purcell et al., 2010; NNDC, 2014). Numbers
in parentheses are statistical errors for the GFMC calculations or experimental errors; errors of less than 1 in the last decimal place are not shown.

AZðJπ ;TÞ
E (MeV) rp [rn] (fm) μ (μN) Q (fm2)

GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.
2Hð1þ; 0Þ −2.225 −2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3Hð1

2
þ; 1

2
Þ −8.47ð1Þ −8.482 1.59 [1.73] 1.58 2.960(1) 2.979

3Heð1
2
þ; 1

2
Þ −7.72ð1Þ −7.718 1.76 [1.60] 1.76 −2.100ð1Þ −2.127

4Heð0þ; 0Þ −28.42ð3Þ −28.30 1.43 1.462(6)
6Heð0þ; 1Þ −29.23ð2Þ −29.27 1.95(3) [2.88] 1.93(1)
6Lið1þ; 0Þ −31.93ð3Þ −31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) −0.082ð2Þ
7Heð3

2
−; 3

2
Þ −28.74ð3Þ −28.86 1.97 [3.32(1)]

7Lið3
2
−; 1

2
Þ −39.15ð3Þ −39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 −3.9ð2Þ −4.06ð8Þ

7Beð3
2
−; 1

2
Þ −37.54ð3Þ −37.60 2.51 [2.32] 2.51(2) −1.42ð1Þ −1.398ð15Þ −6.6ð2Þ

8Heð0þ; 2Þ −31.42ð3Þ −31.40 1.83(2) [2.73] 1.88(2)
8Lið2þ; 1Þ −41.14ð6Þ −41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Beð0þ; 0Þ −56.5ð1Þ −56.50 2.40(1)
8Bð2þ; 1Þ −37.51ð6Þ −37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8Cð0þ; 2Þ −24.53ð3Þ −24.81 2.94 [1.85]
9Lið3

2
−; 3

2
Þ −45.42ð4Þ −45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439 −2.3ð1Þ −2.74ð10Þ

9Beð3
2
−; 1

2
Þ −57.9ð2Þ −58.16 2.31 [2.46] 2.38(1) −1.29ð1Þ −1.178 5.1(1) 5.29(4)

9Cð3
2
−; 3

2
Þ −38.88ð4Þ −39.04 2.44 [1.99] −1.35ð4Þ −1.391 −4.1ð4Þ

10Beð0þ; 1Þ −64.4ð2Þ −64.98 2.20 [2.44] 2.22(2)
10Bð3þ; 0Þ −64.7ð3Þ −64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10Cð0þ; 1Þ −60.2ð2Þ −60.32 2.51 [2.25]
12Cð0þ; 0Þ −93.3ð4Þ −92.16 2.32 2.33

TABLE II. Breakdown of GFMC energy contributions for
AV18þ IL7, in MeV. See Table I for references.

AZðJπ ;TÞ K v18 vγij V2π
ijk V3π

ijk VR
ijk δvij

2Hð1þ; 0Þ 19.81 −22.05 0.02 0.09
3Hð1

2
þ; 1

2
Þ 50.9 −58.5 0.04 −1.8 −0.03 0.7 0.18

4Heð0þ; 0Þ 112.(1) −136.ð1Þ 0.9 −9.8 −0.3 3.9 1.4
6Heð0þ; 1Þ 141.(1) −167.ð1Þ 0.9 −11.5 −1.5 5.1 1.8
6Lið1þ; 0Þ 154.(1) −184.ð1Þ 1.7 −11.4 −1.0 4.9 1.8
7Heð3

2
−; 3

2
Þ 160.(1) −185.ð1Þ 0.9 −13.3 −2.9 6.4 2.3

7Lið3
2
−; 1

2
Þ 196.(1) −231.ð1Þ 1.8 −15.4 −2.0 7.1 2.6

8Heð0þ; 2Þ 208.(1) −235.ð1Þ 0.9 −17.1 −6.8 9.0 3.6
8Lið2þ; 1Þ 236.(2) −274.ð2Þ 2.0 −19.0 −4.7 9.4 3.7
8Beð0þ; 0Þ 238.(2) −290.ð2Þ 3.2 −20.1 −1.4 8.8 3.3
9Lið3

2
−; 3

2
Þ 283.(1) −322.ð1Þ 2.1 −25.1 −10.3 13.6 5.9

9Beð3
2
−; 1

2
Þ 282.(2) −336.ð2Þ 3.5 −25.0 −4.7 11.9 4.9

10Beð0þ; 1Þ 331.(2) −391.ð1Þ 3.7 −31.1 −8.3 15.7 6.6
10Bð3þ; 0Þ 339.(2) −405.ð2Þ 5.7 −32.7 −8.8 16.0 6.9
12Cð0þ; 0Þ 437.(3) −534.ð2Þ 8.3 −45.0 −14.1 23.9 10.9
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The A ¼ 10 nuclei, which are mid-p-shell nuclei, have the
interesting feature of having two linearly independent ways of
constructing 2Sþ1DJ½442� states. In 10Be, the ground state is
1S0½442� (much like 6He with an added α) followed by two

1D2½442� excited states. In 10B, the lowest state might be
expected to be a 3S1½442� state similar to 6Li ground state plus
an α, but there are also two 3DJ½442� triplets, one of which is
so widely split by the effective one-body spin-orbit force that
one 3D3½442� component becomes the ground state leaving the
3S1½442� state as the first excited state (Kurath, 1979).
The IL7 3N force plays a key role in getting these spin-orbit

splittings correctly. The AV18 NN force alone splits the 6Li
3DJ½42� states in the correct order, but with insufficient
spacing. It leaves the 7Li 2PJ½43� doublet degenerate, as well
as the two 1D2½442� states in 10Be, and the 3S1½442� state in
10B is predicted to be the ground state. IL7 not only splits the
two 2þ states in 10Be by about the correct amount, but splits
them in the correct direction, making the predicted E2
transitions to the ground state significantly different in size
as experimentally observed (McCutchan et al., 2012). By
increasing the splitting of the 3DJ½442� states in 10B, IL7 also
gives the correct 3þ ground state for 10Be. The addition of the
older Urbana 3N potentials fixes some, but not all of these
problems. The superior behavior of the Illinois 3N interactions
is also seen in 5He, i.e., αn scattering, as discussed in
Sec. IV.F. The importance of 3N interactions is also observed
in no-core shell-model calculations (Navrátil et al., 2007).

B. Isospin breaking

Energy differences among isobaric analog states are
probes of the charge-independence-breaking parts of the
Hamiltonian. The energies for a given isospin multiplet can
be expanded as

EA;TðTzÞ ¼
X
n≤2T

anðA; TÞQnðT; TzÞ; ð64Þ

where Q0 ¼ 1, Q1 ¼ Tz, Q2 ¼ ð1=2Þð3T2
z − T2Þ, and Q3 ¼

ð1=2Þð5T3
z − 3T2 þ TZÞ are orthogonal isospin polynomials

(Peshkin, 1961). GFMC calculations of the coefficients
anðA; TÞ for a number of isobaric sequences and various
contributions for the AV18þ IL7 Hamiltonian are shown in
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FIG. 4 (color online). GFMC excitation energies of light nuclei for the AV18 and AV18þ IL7 Hamiltonians compared to experiment.
See Table I for references.

TABLE III. GFMC excitation energies in MeV for the AV18þ IL7
Hamiltonian compared to experiment (Tilley et al., 2004) for selected
A ≤ 12 states; those marked with an asterisk are the empirical
isospin-unmixed values. See Table I for references.

AZðJπ ;TÞ GFMC Experiment
6Heð2þ; 1Þ 2.0(1) 1.80
6Lið3þ; 0Þ 2.3(1) 2.19
6Lið2þ; 0Þ 4.1(1) 4.31
6Lið1þ; 0Þ 5.4(1) 5.37
7Lið1

2
−; 1

2
Þ 0.2(1) 0.48

7Lið7
2
−; 1

2
Þ 5.0(1) 4.65

7Lið5
2
−; 1

2
Þ 6.6(2) 6.60

7Lið5
2
−
2
; 1
2
Þ 7.8(2) 7.45

8Heð2þ; 2Þ 4.7(3) 3.1(4)
8Lið1þ; 1Þ 1.4(3) 0.98
8Lið3þ; 1Þ 3.0(5) 2.26
8Beð2þ; 0Þ 3.2(2) 3.03(1)
8Beð4þ; 0Þ 11.2(3) 11.35(15)
8Beð2þ2 ; 0Þ 16.8(2) 16.75*
8Beð1þ; 0Þ 18.0(2) 18.13*
8Beð3þ; 0Þ 19.9(2) 19.21*
9Lið1

2
−; 3

2
Þ 2.0(5) 2.69

9Beð1
2
þ; 1

2
Þ 1.5(3) 1.68

9Beð5
2
−; 1

2
Þ 2.4(3) 2.43

10Beð2þ; 1Þ 3.4(3) 3.37
10Beð2þ2 ; 1Þ 5.3(3) 5.96
10Bð1þ; 0Þ 1.3(4) 0.72
10Bð1þ2 ; 0Þ 2.4(5) 2.15
10Bð2þ; 0Þ 3.3(5) 3.59
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Table IV along with the experimental values. The contribu-
tions are the CSB component of the kinetic energy KCSB, all
electromagnetic interactions vγ , and the strong CIB inter-
actions vCIB ¼ vCSB þ vCD. The experimental values were
computed using ground-state energies from NNDC (2014)
and excitation energies from TUNL (2014). By using the
correlated GFMC propagations described in Sec. III.B, it is
possible to extract statistically significant values for some of
the a3ðA; TÞ. An additional contribution is the second-order
perturbation correction to the CI part of the Hamiltonian δHCI

due to differences in the wave functions. Although this term is
small, it is the difference between two large energies and has
the greatest Monte Carlo statistical error of any of the
contributions; again correlated GFMC propagations make
its extraction possible.
The dominant piece in all these terms is the Coulomb

interaction between protons, giving 85%–95% (70%–100%)
of the experimental isovector (isotensor) total. However, the
strong CSB and CD interactions give important corrections,
and the other terms are not negligible. In particular, the vCSB

contribution is just the right size to fix the 3He-3H mass
difference and is a strong constraint on the difference of nn
and pp scattering lengths. Overall, the isoscalar terms are in
good agreement with experiment, while the isotensor terms
are perhaps a little too large. One can understand the
negative values of a3ðA; TÞ as coming from the increasing
Coulomb repulsion as Tz increases; this expands the nucleus
and reduces vC1ðppÞ.
Another place that CSB interactions play a role is in the

isospin mixing of nearby states with the same spin and
parity but different isospins (Wiringa et al., 2013). A classic

case is the appearance in the 8Be excitation spectrum of
three pairs of states with Jπ of 2þ (at 16.6–16.9 MeV), 1þ

(at 17.6–18.2 MeV) and 3þ (at 19.0–19.2 MeV). The
unmixed states come from three T ¼ 0 states, including
the second 2þ excitation and first 1þ and 3þ states in the
8Be spectrum and three T ¼ 1 states that are the isobaric
analogs of 8Li ground state and its first two excited states.
These states have the same dominant [431] spatial sym-
metry, so it is not surprising that their energies are closely
paired. The CSB components of the Hamiltonian have
∼100 keV off-diagonal (in isospin) matrix elements H01

leading to significant isospin mixing. Experimentally this is
observed in the two-alpha decay of the 2þ states, which
have comparable widths and which can go only via the
T ¼ 0 component of the wave functions. The mixing of
the 1þ doublet is apparent in their M1 decays (Pastore
et al., 2014).
GFMC calculations of the isospin-mixing matrix elements

are shown in Table V. The table includes a small contribution
from class IV CSB terms vIV that can connect T ¼ 0 and
T ¼ 1 np pairs (Henley et al., 1979). The theoretical total
provides about 90% of the inferred experimental values
in the 2þ and 1þ doublets, but is too large for the (poorly
determined) 3þ case.

C. Densities

The one- and two-nucleon density distributions of light
nuclei are interesting in a variety of experimental settings.
They are evaluated as the expectation values

ρNðrÞ ¼
1

4πr2
hΨj

X
i

PNi
δðr − jri −RcmjÞjΨi; ð65Þ

ρNNðrÞ ¼
1

4πr2
hΨj

X
i<j

PNi
PNj

δðr − jri − rjjÞjΨi; ð66Þ

where PN is a proton or neutron projector.
Ground-state proton and neutron rms point radii are

tabulated in Table I. These can be related to the charge radii,
which have been measured very accurately for the helium,
lithium, and beryllium isotopic chains in recent years by a
combination of electron scattering from stable nuclei and
isotopic differences by atomic spectroscopy on rare isotopes.
A recent review (Lu et al., 2013) discusses these develop-
ments and the conversion between point and charge radii and
presents figures for the GFMC one- and two-body densities of
the helium isotopes.
The proton and neutron one-body densities for the lithium

isotope chain are shown as up and down triangles,

TABLE IV. GFMC isovector and isotensor energy coefficients
anðA; TÞ computed using AV18þ IL7, in keV, compared to experi-
ment (Wiringa et al., 2013; Pieper, 2015).

anðA; TÞ KCSB vγ vCIB δHCI Total Experiment

a1ð3; 12Þ 14 670(1) 65(0) 8(1) 755(1) 764

a1ð6; 1Þ 18 1056(1) 44(0) 68(3) 1184(4) 1174

a1ð7; 12Þ 23 1478(2) 83(1) 27(10) 1611(10) 1644

a1ð7; 32Þ 17 1206(1) 45 85(4) 1358(3) 1326

a1ð8; 1Þ 25 1675(1) 77 43(6) 1813(6) 1770

a1ð8; 2Þ 22 1557(1) 63 104(4) 1735(3) 1651

a1ð9; 12Þ 19 1713(6) 55(1) 1786(7) 1851

a1ð9; 32Þ 26 1976(1) 91(0) 84(7) 2176(7) 2102

a1ð10; 1Þ 25 2155(7) 85(1) 2170(8) 2329

a2ð6; 1Þ 153(1) 112(2) 5(4) 270(5) 223

a2ð7; 32Þ 106(0) 34(1) 13(2) 158(5) 137

a2ð8; 1Þ 136(1) −3ð2Þ 10(5) 139(5) 127

a2ð8; 2Þ 130(0) 38(0) 9(2) 178(1) 151

a2ð9; 32Þ 150(1) 44(1) 4(5) 200(4) 176

a2ð10; 1Þ 178(1) 119(18) 297(19) 241

a3ð7; 32Þ −3ð0Þ 0(0) 0(2) −3ð1Þ −20ð8Þ
a3ð8; 2Þ −1ð0Þ 0(0) −1ð1Þ −2ð1Þ −3ð1Þ
a3ð9; 32Þ −1ð1Þ 0(0) −0ð4Þ −1ð3Þ −2ð5Þ

TABLE V. GFMC isospin-mixing matrix elements H01 in 8Be spin
doublets computed using AV18þ IL7 (augmented by class IV CSB
contributions) in keV, compared to experiment (Wiringa et al., 2013).

H01ðJπÞ KCSB vγ vCSB vIV Total Experiment

H01ð2þÞ −4 −99ð1Þ −23 −2ð1Þ −128ð2Þ −145ð3Þ
H01ð1þÞ −3 −74ð1Þ −19 3(1) −93ð2Þ −103ð14Þ
H01ð3þÞ −3 −87ð1Þ −17 −6ð2Þ −113ð3Þ −59ð12Þ
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respectively, in the upper panels of Fig. 5. As the binding
energy increases with A, the central proton density increases,
even though the number of protons is constant. Consequently,
the proton point radius decreases by 0.4 fm in going from 6Li
to 9Li, in fair agreement with the experimentally observed
reduction of 0.34 fm. In contrast, the neutron point radius is
relatively constant, even though neutrons are being added,
varying only 0.15 fm over the same range.
The magnetic moments of A ≤ 9 nuclei have been calcu-

lated in GFMC methods (Pervin, Pieper, and Wiringa, 2007;
Marcucci et al., 2008; Pastore et al., 2013) including con-
tributions from two-body meson-exchange currents (MEC), as
discussed in Sec. V. The MEC can give 20%–40% contribu-
tions over the impulse approximation (IA) values, resulting in
very good agreement with experiment as shown in Table I.
The origin of the IA contributions from the proton and

neutron spin densities and proton orbital density are illustrated
in the bottom panels of Fig. 5, also for the lithium isotope
chain. Here the proton spin contribution μp½ρp↑ðrÞ − ρp↓ðrÞ�
is shown by upward-pointing triangles, the neutron spin
contribution by downward-pointing triangles, the proton
orbital contribution by diamonds, and the total by circles.
The proton spin density, due to one unpaired p-shell proton, is
similar in all cases, with a negative region at short distance
from the core and a positive peak near 2 fm that gradually
shifts inward as the binding increases. The neutron spin
density has the opposite sign and alternates between a
significant unpaired neutron contribution in 6;8Li and a very
small paired contribution in 7;9Li. The proton orbital piece gets
progressively larger as A increases. The MEC contributions
are discussed in more detail, but come largely from pion
exchange and are primarily isovector in character, ranging
from 2% in 6Li to 10% in 7Li and 20% in 8;9Li.
The two-nucleon density for pp pairs in the lithium

isotopes is shown in Fig. 6 and all four curves integrate to
three pairs. Because the third proton is in the p shell, the
behavior of ρppðrÞ is rather different from the one pp pair in

the core of the helium isotopes shown in Fig. 12 of Lu et al.
(2013). In that case, there is a slight decrease in the peak value
as A increases because the p-shell neutrons in 6;8He tug the
core protons out a little. In lithium the peak value of ρppðrÞ
gets progressively larger with increasing A due to the
increasing binding, so the pair rms radius decreases from
4.03 fm in 6Li to 3.20 fm in 9Li.

D. Momentum distributions

Momentum distributions of individual nucleons, nucleon
pairs, and nucleon clusters reflect features of the short-range
structure of nuclei. They can provide useful insight into various
reactions on nuclei, such as ðe; e0pÞ and ðe; e0pp=pnÞ electro-
disintegration processes or neutrino-nucleus interactions.
The probability of finding a nucleon with momentum k and

spin-isospin projection σ, τ in a given nuclear state is
proportional to the density
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density in IA (circles). From Wiringa, 2015.
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ρστðkÞ ¼
Z

dr01dr1dr2 � � � drAψ†
JMJ

ðr01; r2;…; rAÞ

× e−ik·ðr1−r01ÞPστð1ÞψJMJ
ðr1; r2;…; rAÞ: ð67Þ

PστðiÞ is the spin-isospin projection operator for nucleon i,
and ψJMJ

is the nuclear wave function with total spin J and
spin projection MJ. The normalization is

Nστ ¼
Z

dk
ð2πÞ3 ρστðkÞ; ð68Þ

where Nστ is the number of spin-up or spin-down protons or
neutrons.
Early variational calculations of few-nucleon momentum

distributions (Schiavilla, Pandharipande, and Wiringa, 1986)
evaluated Eq. (67) by following a Metropolis Monte Carlo
walk in the dr1dr2 � � � drA space and one extra Gaussian
integration over dr01 at each Monte Carlo configuration. This
was subject to large statistical errors originating from the
rapidly oscillating nature of the integrand for large values of k.
A more efficient method is to rewrite Eq. (67) as

ρστðkÞ ¼
1

A

X
i

Z
dr1 � � � dri � � � drA

Z
dΩx

Z
xmax

0

x2dx

× ψ†
JMJ

ðr1;…; ri þ x=2;…; rAÞe−ik·x
× PστðiÞψJMJ

ðr1;…; ri − x=2;…; rAÞ ð69Þ

and perform the Gaussian integration over x. However, this
requires reevaluating both initial and final wave functions at
multiple configurations, which limits the present calculations
to VMC. A comprehensive set of single-nucleon momentum
distributions for A ≤ 12 nuclei, evaluated with the AV18þ
UX Hamiltonian, has been published (Wiringa et al., 2014)
with figures and tables available online (Wiringa, 2014a).
The overall evolution of the proton momentum distribution

in light T ¼ 0 nuclei is shown in Fig. 7. The shapes of the
distributions show a smooth progression as nucleons are
added. As A increases, the nuclei become more tightly bound,
and the fraction of nucleons at zero momentum decreases.

As nucleons are added to the p shell, the distribution at low
momenta becomes broader and develops a peak at finite k.
The sharp change in slope near k ¼ 2 fm−1 to a broad
shoulder is present in all these nuclei and is attributable to
the strong tensor correlation induced by the pion-exchange
part of the NN potential, further increased by the two-pion-
exchange part of the 3N potential. Above k ¼ 4 fm−1, the
bulk of the momentum density appears to come from short-
range spin-isospin correlations.
Two-nucleon momentum distributions, i.e., the probability

of finding two nucleons in a nucleus with relative momentum
q ¼ ðk1 − k2Þ=2 and total center-of-mass momentum
Q ¼ k1 þ k2, provide insight into the short-range correla-
tions induced by a given Hamiltonian. They can be formulated
analogously to Eqs. (67) and (69) and projected with total
pair spin-isospin ST, or as pp, np, and nn pairs. Again,
a large collection of VMC results has been published (Wiringa
et al., 2014) and figures and tables are available online
(Wiringa, 2014b).
Experiments to search for evidence of short-range correla-

tions have been a recent focus of activity at Jefferson
Laboratory (JLab). In an ðe; e0pNÞ experiment on 12C at
JLab, a very large ratio ∼20 of pn to pp pairs was observed at
momenta q ¼ 1.5–2.5 fm−1 for back-to-back (Q ¼ 0) pairs
(Subedi et al., 2008). VMC calculations for ρpNðq;Q ¼ 0Þ are
shown in Fig. 8 as diamonds for pn pairs and circles for pp
pairs for T ¼ 0 nuclei from 4He to 12C (Schiavilla et al., 2007;
Wiringa et al., 2014). The pp back-to-back pairs are primarily
in 1S0 states and have a node near 2 fm−1, while the pn pairs
are in deuteronlike 3S1 − 3D1 states, where the D wave fills in
the S-wave node. Consequently, there is a large ratio of pn to
pp pairs in this region. This behavior is predicted to be
universal across a wide range of nuclei.
As Q increases, the S-wave node in pp pairs will gradually

fill in, as illustrated for 4He in Fig. 9, where ρppðq;QÞ is
shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast, the
deuteronlike distribution in pn pairs is maintained as Q
increases, as shown in Fig. 10, with only a gradual decrease
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in magnitude because there are fewer pairs at high total Q.
Recently, these momentum distributions for 4He have been
tested in new JLab experiments and found to predict the ratio
of pp to pn pairs at higher missing momentum very well
(Korover et al., 2014).

E. Spectroscopic overlaps, spectroscopic factors, and asymptotic
normalization coefficients

Determining the influence of nuclear structure on nuclear
reactions is a challenging subject. One source of theoretical
input is the calculation of spectroscopic overlaps, spectro-
scopic factors (SFs), and asymptotic normalization coeffi-
cients (ANCs). They are steps on the way to calculating
reaction cross sections in direct nuclear reactions, such as
nucleon knockout or radiative capture.
A one-nucleon spectroscopic overlap is the expectation

value of the nucleon removal operator between states of nuclei
differing by one particle. It can be written as

Rðβ; γ; ν; rÞ ¼
ffiffiffiffi
A

p 

½ΨA−1ðγÞ ⊗ Yðν; rCvÞ�JA;TA

×

���� δðr − rCvÞ
r2Cv

����ΨAðβÞ
�
; ð70Þ

where β≡ fA; JπA; TA; Tz;Ag denotes the quantum numbers of
a parent A-body nucleus, γ ≡ fC; JπC; TC; Tz;Cg specifies an
ðA − 1Þ-body core, and ν≡ fv; l; s; j; t; tzg specifies the
valence nucleon. Here rCv is the distance between the valence
nucleon and the center of mass of the core, and Yðν; rÞ≡
½Ylðr̂Þ ⊗ χsðσvÞ�jχt;tzðτvÞ is the valence angle-spin-isospin
function. The SF is then defined as the norm of the overlap:

Sðβ; γ; νÞ ¼
Z

jRðβ; γ; ν; rÞj2r2dr: ð71Þ

In standard shell-model calculations (Cohen and Kurath,
1967), the SFs obey various sum rules (Macfarlane and
French, 1960), including those for a given state of the parent
nucleus, the SFs to all possible final states of the core plus
valence nucleon add up to the parent’s number of such
nucleons. For example,

P
γ;νh6HeðγÞ þ pðνÞj7LiðβÞi ¼ 1

because 7Li has one p-shell proton.
Overlap functions RðrÞ satisfy a one-body Schrödinger

equation with appropriate source terms (Pinkston and
Satchler, 1965). Asymptotically, at r → ∞, these source terms
contain a core-valence Coulomb interaction at most, and
hence the long-range part of overlap functions for parent
states below core-valence separation thresholds is propor-
tional to a Whittaker function W−η;lþ1=2:

Rðβ; γ; ν; rÞ !r→∞
Cðβ; γ; νÞW−η;lþ1=2ð2krÞ

r
; ð72Þ

where η ¼ ZCZνα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc2=2jBj

p
depends on proton numbers ZC

and Zν, the fine-structure constant α, and the core-valence
reduced mass μ and the separation energy B (negative for
parent states below core-valence separation thresholds). The
wave number k is defined as

ffiffiffiffiffiffiffiffiffiffiffi
2μjBjp

=ℏ, and l is the orbital
momentum in YðνÞ. The proportionality constant Cðβ; γ; νÞ in
Eq. (72) is the ANC.
VMC calculations of overlaps and SFs for s-shell nuclei

were first reported by Schiavilla, Pandharipande, and Wiringa
(1986), followed by calculations in various p-shell nuclei for
application to ðe; e0pÞ experiments (Lapikás, Wesseling, and
Wiringa, 1999), transfer reactions such as ðd; pÞ and ðd; 3HeÞ
(Wuosmaa et al., 2005, 2008), and single-neutron knockout
reactions (Grinyer et al., 2011, 2012). The first GFMC
calculations for A ≤ 7 nuclei were reported by Brida,
Pieper, and Wiringa (2011). These are off-diagonal calcula-
tions, as in Eq. (47), so the final GFMC result is extrapolated
from two different mixed estimates, one where ΨðτÞ is
propagated for the A-body nucleus and one where it is
propagated for the ðA − 1Þ-body nucleus. A large collection
of VMC and GFMC results can be found online (Wiringa and
Brida, 2014).
For the s-shell nuclei, VMC energies and densities are very

close to the exact GFMC results, so VMC and GFMC
overlaps RðrÞ for cases such as h3Hþ pðs1=2Þj4Hei are in
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Wiringa et al., 2014.
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excellent agreement, both in the peak values at small r and in
the asymptotic regime. This translates into similar SF and
ANC predictions. However, for p-shell nuclei, the VMC
energies are progressively smaller in magnitude relative to
GFMC as A increases, although the one-body densities remain
fairly close. Consequently, the overlaps have similar peak
values but different asymptotic behavior.
An example of p-shell overlap calculations is shown in

Fig. 11 for h6Heð0þÞ þ pðp3=2Þj7Lið32−Þi. The VMC calcu-
lation is shown by squares, the two GFMCmixed estimates by
down (up) triangles for GFMC propagation of the 6He (7Li)
states, and the final GFMC result by circles. In this case, the
VMC overlap and the GFMC mixed estimate when 6He is
propagated give virtually identical results, so the GFMC
mixed estimate when 7Li is propagated coincides with the
final result. The smooth fit to the GFMC result shown by the
solid line is parallel at large r to the Whittaker function W=r
(constructed with the experimental separation energy) shown
by the dot-dashed line. The integrated VMC and GFMC SFs
for this case are 0.44 and 0.41, respectively. These values are
consistent with experiment (Lapikás, Wesseling, and Wiringa,
1999; Wuosmaa et al., 2008) but much smaller than the
standard shell-model value (corrected for center of mass) of
0.69 (Cohen and Kurath, 1967).
In general, the SFs predicted by the VMC and GFMC

calculations show a significant quenching relative to standard
shell-model estimates which are based on notions of inde-
pendent particle motion. The low-energy states of light nuclei
can be interpreted as having quasiparticles in single-particle
orbitals (Pandharipande, Sick, and deWitt Huberts, 1997). The
difference between physical particles and quasiparticles is the
consequence of the correlations in the system, which push a
significant fraction of nucleons above the nominal Fermi sea,
as noted in the momentum distribution calculations of
Sec. IV.D. The SF is the quasihole strength, i.e., the proba-
bility of the quasiparticle being a physical particle. A variety
of experiments find that, for a broad range of nuclei from 4He
to 208Pb, SFs are quenched ∼0.5 relative to a standard shell
model, consistent with the VMC and GFMC calculations
(Kay, Schiffer, and Freeman, 2013).

The ratios CðrÞ of the VMC and GFMC overlaps with the
Whittaker function constructed with the experimental sepa-
ration energy are shown in Fig. 12. The incorrect asymptotic
behavior of the VMC calculation means the CðrÞ does not
reach a constant value and precludes extracting a reasonable
ANC from this ratio. However the GFMC calculation, with its
much better asymptotic behavior, does go to a constant at large
r, as indicated by the line fit.
There is an alternative method to obtain overlaps, ANCs, and

estimates of widths from variational wave functions using
integral constraints that are insensitive to their asymptotic
behavior (Barletta et al., 2009; Nollett and Wiringa, 2011;
Nollett, 2012). As an example, the ANC is given by a sort of
modified overlap integral with a finite-range potential insertion:

Cðβ; γ; νÞ ¼ 2μ

kℏ2w
A
Z

M−η;lþ1=2ð2krÞ
r

×Ψ†
A−1ðγÞY†ðν; rÞðUrel − VCÞΨAðβÞd3r: ð73Þ

The integral extends over all particle coordinates, A is an
antisymmetrization operator for the core and valence particle,
M−η;lþ1=2 is the Whittaker function that is irregular at infinity,
and w is its Wronskian with the regular Whittaker function
W−η;lþ1=2. The Urel is a sum of two- and three-body potentials
involving the last nucleon

Urel ¼
X
i<A

viA þ
X
i<j<A

VijA; ð74Þ

where we labeled the last nucleon A. The point-Coulomb
potential between the residual nucleus and last nucleon isVC ¼
ZA−1Zναℏc=r and in the limit of large separation, typically
r > 7 fm,Urel − VC vanishes. This provides a natural cutoff to
the integral of Eq. (73).
This integral method has been implemented, using VMC

wave functions obtained for the AV18þ UIX Hamiltonian,
for 19 one-nucleon removals from nuclear states with
3 ≤ A ≤ 9. Detailed tables are given in Nollett and Wiringa
(2011), as well as comparisons to available experimental

0 2 4 6 8
r [fm]

10
-3

10
-2

10
-1

R
 [

fm
-3

/2
]

VMC
mixed

6
He

mixed
7
Li

GFMC
fit
W/r

FIG. 11 (color online). VMC and GFMC calculations of the
h6Heð0þÞ þ pðp3=2Þj7Lið32−Þi overlap; see text for details. From
Brida, Pieper, and Wiringa, 2011.

0 2 4 6 8
r [fm]

0

2

4

6

C
(r

)

VMC
GFMC
fit

FIG. 12 (color online). The ratios CðrÞ of the VMC and GFMC
h6Heð0þÞ þ pðp3=2Þj7Lið32−Þi overlaps to the asymptotic Whit-
taker function; see text for details. From Brida, Pieper, and
Wiringa, 2011.

1088 J. Carlson et al.: Quantum Monte Carlo methods for nuclear physics

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



determinations and previous theoretical work. In general,
when the experimental binding energy Bexpt is used in the
wave number k, the ANCs derived from VMC wave functions
through Eq. (73) are in excellent agreement with experiment.
The results also agree with the GFMC determinations dis-
cussed above at ∼10% level, e.g., the GFMC ANC for
h6Heð0þÞ þ pðp3=2Þj7Lið32−Þi from Fig. 12 is 3.5, while the
VMC integral value is 3.7. Of particular note, the astrophysi-
cal S factor for 8B → pþ 7Be is related to the ANCs by
S17ð0Þ¼ ½38.7 eVbfm�PjjCð2þ;32−;jÞj2 (Esbensen, 2004).
Inserting the VMC ANC values gives the result 20.8 eV b,
which is exactly the current recommended value from the
solar fusion II analysis (Adelberger et al., 2011).
Relations similar to Eq. (73) can be used to generate

overlaps and also to estimate the widths of resonant states
(Nollett, 2012). Examples of overlaps evaluated in this way
are shown in Fig. 13, where they are compared to the VMC
input and the GFMC overlaps of Brida, Pieper, and Wiringa
(2011). Many widths in 5 ≤ A ≤ 9 nuclei have also been
evaluated, using as input VMC pseudobound wave functions
from the AV18þ UIX Hamiltonian. Detailed tables are given
in Nollett (2012). The agreement with experiment is generally
satisfactory when the physical states are narrow, but the
method fails for broad states; the overlaps can help differ-
entiate these cases. For broad states, true scattering wave
functions need to be developed, as discussed later.
While the preceding discussion has focused on single-

nucleon spectroscopic overlaps, SFs, ANCs, and widths, the
techniques involved are readily adaptable to other cluster-
cluster pairings, e.g., with deuterons or α’s as the valence
cluster. Spectroscopic overlaps for dd in 4He, αd in 6Li, and αt

in 7Li are included in the online overlap tabulations of Wiringa
and Brida (2014) and spectroscopic factors can be obtained
from the cluster-cluster momentum distribution tables in
Wiringa (2014a). It should be possible in the future to evaluate
α ANCs and widths from the VMC wave functions and
generalized integral relations.

F. Low-energy scattering

Quantum Monte Carlo methods can also be used to treat
low-energy scattering in nuclear systems (Carlson, Schmidt,
and Kalos, 1987; Nollett et al., 2007). The methods employed
are similar to bound-state methods and are easily applicable at
low energies where the combined system breaks up into at
most two clusters. One enforces one or more boundary
conditions on the asymptotic wave function at large cluster
separations and then solves for the energy levels with these
boundary conditions. The resulting energies can be used with
the boundary conditions to determine the elements of the
S matrix for those energies.
The simplest example is for a one-channel case with only

elastic scattering, for example, n − α scattering. The asymp-
totic wave function for the relative motion of the neutron and
the alpha particle is given by

Ψ ∝ fΦc1Φc2YLgJ½cos δJLjLðkrÞ − sin δJLnLðkrÞ�; ð75Þ

where Φc1 and Φc2 are the internal wave functions of the two
clusters, k and r are the relative momentum and spatial
separation between the two clusters, and δJL is the phase
shift in the JL partial wave. For problems with Coulomb

FIG. 13 (color online). Overlaps for various bound states as computed by (1) VMC sampling (points with error bars), (2) a bound-state
integral relation with the VMC as input but imposing experimental separation energies (solid curves) evaluated by Nollett (2012), and
(3), GFMC overlaps (dashed curves) from Brida, Pieper, and Wiringa (2011).
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interactions between the clusters the relative wave function
will contain Coulomb rather than Bessel functions.
The original QMC scattering calculations required the wave

function to be zero at a specified cluster separation (Carlson,
Schmidt, and Kalos, 1987), while in recent work the loga-
rithmic derivative γ of the relative wave function at a boundary
r ¼ R0 is specified (Nollett et al., 2007):

γ ¼ ∇rΨ
Ψ

����
r¼R0

: ð76Þ

In VMC calculations this is enforced within the form of the
trial wave function, which is required at large distances to go
similar to Eq. (75). The radius R0 should be large enough so
that there is no strong interaction between the clusters at that
separation. The scattering energy and hence the relative
momentum between clusters is unknown initially, but these
are obtained by variationally solving for states confined within
the boundary r ¼ R0. Knowledge of the energy and the
boundary condition is then sufficient to determine the phase
shift at that energy. The method for GFMC is very similar,
except that the logarithmic derivative of the wave function
must also be enforced in the propagator. This can be
incorporated through an image method. For each point R
near the boundary r ¼ R0 reached during the random walk,
the contribution to the internal wave function from points
originally outside the boundary are added. Consider an image
at a cluster separation re ¼ rðR0=rÞ2; simple manipulations
yields

Ψnþ1ðR0Þ ¼
Z
jrj<R0

dRc1dRc2drGðR0;RÞ

×

�
ΨnðRÞþ γ

GðR0;ReÞ
GðR0;RÞ

�
re
r

�
3

ΨnðReÞ
�
; ð77Þ

where R and R0 are the initial and final points of all particles,
Rc1 and Rc2 are the internal coordinates of the clusters, and r
is the separation between clusters. The image point for all the
particles is denoted byRe, and re is its cluster separation. The
image contribution ensures the correct logarithmic derivative
of the wave function at the boundary is preserved in the
propagation.
The n − α system is interesting as it is the lightest system

where T ¼ 3=2 triplets play a significant role. QMC methods
have been used to study low-energy scattering in n − α,
including the two low-lying P-wave resonances and S-wave
scattering (Nollett et al., 2007). The spin-orbit splitting is
especially interesting, as it can be examined by comparing the
3P1=2 and 3P3=2 partial waves.
The results of calculations with the AV18 NN interaction

and with different 3N interactions are shown in Fig. 14. The
various calculations are also compared with an R-matrix
analysis of the experimental data. As is evident from the
figure, the AV18 interaction alone significantly underpredicts
the spin-orbit splitting. The two-pion exchange in the UIX 3N
interaction increases the splitting, but not enough to agree with
the experimental data. The IL2 model of the 3N interaction
results in good agreement with the experimental spin-orbit
splitting.

These scattering methods have many possible applications.
They can be extended to inelastic multichannel processes in a
fairly straightforward manner. In this case there are multiple
independent solutions for a given scattering energy; hence one
must study the energy as a function of the boundary conditions
in each channel and obtain multiple independent solutions for
the same energy. From the boundary conditions, the energy,
and the relative asymptotic magnitude of the wave functions,
one can obtain the full multichannel S matrix. It should be
possible to treat a variety of low-energy strong reactions, as
well as electroweak transitions involving scattering states
using these methods. In addition, hadronic parity violation
in few-nucleon systems is an important application.

G. Chiral interactions

Local NN potentials derived within chiral effective field
theory have been used to calculate properties of A ¼ 3; 4
nuclei with GFMC by Lynn et al. (2014). Although the
calculations do not yet include 3N interactions that also
appear at N2LO, they are nevertheless interesting, showing
the order-by-order results for the binding energies and also the
range of results for different cutoffs. Also the question of
perturbative treatments of higher-order corrections has been
investigated, as well as one- and two-nucleon distributions.
Figure 15 shows results at various orders and for different

values of the cutoff R0 used to regulate the small-r behavior of
the pion-exchange potentials flong ¼ 1 − exp½−ðr=R0Þ4�. The
LO result is extremely overbound, whereas the NLO and
N2LO results are underbound as expected because of the
lack of the 3N interaction. The NLO interaction includes
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pion-exchange diagrams, and the N2LO two-pion-exchange
terms. On the right, the column labeled NLOþ pert shows the
results for the N2LO binding energy using the NLO wave
function plus the perturbative contribution of the difference
between the two interactions. The perturbative treatment is
reasonable, but the spread of energies is significantly larger
and of course the binding is less than in the full non-
perturbative calculation. The roles of chiral 3N interactions
in light nuclei and matter are currently being investigated.
It should be noted that lattice QMC approaches to the study

of chiral interactions have been pursued (Lee, Borasoy, and
Schaefer, 2004; Epelbaum et al., 2011, 2012, 2014). These
methods have also been used to study, for example, the Hoyle
state in 12C and the ground state and excitations in 16O. While
the lattices used to date are rather coarse, using a lattice
spacing near 2 fm corresponding to a maximum momenta of
∼1.5 fm−1, they obtain good results for the energies of the
Hoyle state and for other nuclei with alpha-particle substruc-
ture. Comparisons for different forms of chiral interactions
and for a variety of observables could prove valuable.

V. ELECTROWEAK CURRENTS

A. Conventional nuclear electroweak currents

A fundamental aspect in the description of electroweak
processes in nuclei is the construction of a realistic set of
nuclear electroweak currents. The electromagnetic current is
denoted by jμγ, and the neutral and charge-changing weak
currents as jμNC and jμCC, respectively. In the standard model of
particle physics, the latter consist of polar-vector (jμγ or jμ) and
axial-vector (jμ5) parts, and read

jμNC ¼ −2sin2θWj
μ
γ;S þ ð1 − 2sin2θWÞjμγ;z þ jμ5z ;

jμCC ¼ jμ� þ jμ5� ; j� ¼ jx � ijy; ð78Þ

where θW is the Weinberg angle [sin2 θW ¼ 0.2312
(Nakamura et al., 2010)], jμγ;S and jμγ;z are, respectively, the
isoscalar and isovector pieces of the electromagnetic current,

and the subscript b with b ¼ x, y, or z on jμγ;b, j
μ
b, and jμ5b

denotes components in isospin space. The conserved-vector-
current constraint relates the polar-vector components jμb of
the charge-changing weak current to the isovector component
jμγ;z of the electromagnetic current via

½Ta; j
μ
γ;z� ¼ iϵazbj

μ
b; ð79Þ

where Ta are isospin operators, the implication being that
ðjμx; jμy; jμγ;zÞ form a vector in isospin space. There are in
principle isoscalar contributions to jμNC associated with strange
quarks, but they are ignored in Eq. (78), since experiments at
Bates (Spayde et al., 2000; Beise, Pitt, and Spayde, 2005) and
Jefferson Laboratory (Aniol et al., 2004; Acha et al., 2007;
Ahmed et al., 2012) have found them to be very small.
The leading terms in jμγ and j

μ
NC=CC are expected to be those

associated with individual nucleons. A single nucleon absorbs
the momentum and energy of the external electroweak field and
can later share this momentum and energy with other nucleons
via two- and three-body interactions. These interactions deter-
mine the final state of the nucleus and are not part of the current
operator. They are known as final state interactions in
approaches based on perturbation theory. Interactions between
nucleons that take place before the absorption of the external
field momentum and energy are known as initial state inter-
actions. Nonperturbative approaches, such as those discussed in
this review, use eigenstates of the nuclear Hamiltonian as initial
and final states and treat only the interaction with the external
field, described by the above currents, as a weak perturbation.
The nuclear eigenstates contain all the effects of nuclear forces
including those of the electroweak interaction between nucle-
ons in the nucleus.
The one-body electroweak operators follow from a non-

relativistic expansion of the single-nucleon covariant currents.
By retaining terms proportional to 1=m2 in this expansion, one
finds in the electromagnetic case the following timelike
(charge) and spacelike (current) components:

j0γ ðq; iÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=ð2mÞ2

p ϵiðQ2Þ

−
i

4m2
½2μiðQ2Þ − ϵiðQ2Þ�q · ðσi × piÞ

�
eiq·ri ;

ð80Þ

jγðq; iÞ ¼
ϵiðQ2Þ
2m

fpi; eiq·rig −
i
2m

μiðQ2Þq × σieiq·ri ; ð81Þ

where q and ω are the momentum and energy transfers (due to
the external field) with Q2 ¼ q2 − ω2, pi is the momentum
operator of nucleon i with its charge and magnetization
distributions described by the form factors ϵiðQ2Þ and μiðQ2Þ,

ϵiðQ2Þ ¼ 1
2
½GS

EðQ2Þ þ GV
EðQ2Þτi;z�; ð82Þ

μiðQ2Þ ¼ 1
2
½GS

MðQ2Þ þ GV
MðQ2Þτi;z�: ð83Þ

Here GS
EðQ2Þ and GS

MðQ2Þ, and GV
EðQ2Þ and GV

MðQ2Þ, are,
respectively, the isoscalar electric and magnetic, and isovector
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FIG. 15 (color online). GFMC 4He binding energies at LO,
NLO, and N2LO compared with experiment (dashed line) and
with the Argonne AV80 energy. Also shown is a first-order
perturbation-theory calculation of the N2LO binding energy
using the NLO wave function. From Lynn et al., 2014.
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electric and magnetic, combinations of the proton and neutron
form factors, normalized as GS

Eð0Þ ¼ GV
Eð0Þ ¼ 1, GS

Mð0Þ ¼
μS, and GV

Mð0Þ ¼ μV , with μS and μV denoting the isoscalar
and isovector combinations of the proton and neutron mag-
netic moments, μS ¼ 0.880 and μV ¼ 4.706 in units of nuclear
magnetons μN . These form factors are obtained from fits to
elastic electron scattering data off the proton and deuteron; for
a recent review, see Hyde-Wright and de Jager (2004).
The isoscalar jμγ;S and isovector jμγ;z pieces in jμNC are easily

identified as the terms proportional to GS
E=M and GV

E=M in the
expressions above, while the isovector components jμ5z are
given by

j05z ðq; iÞ ¼ −
1

4m
τi;z

�
GAðQ2Þσi · fpi; eiq·rig

þ GPSðQ2Þ
mμ

ωσi · qeiq·ri
�
; ð84Þ

j5zðq; iÞ¼−
GAðQ2Þ

2
τi;z

�
σieiq·ri

−
1

4m2

�
σifp2

i ;e
iq·rig−fσi ·pipi;eiq·rig

−
1

2
σi ·qfpi;eiq·rig−

1

2
qfσi ·pi;eiq·rig

þ iq×pieiq·ri
��

−
GPSðQ2Þ
4mmμ

τi;zqσi ·qeiq·ri ; ð85Þ

where GA and GPS are the nucleon axial and induced
pseudoscalar form factors. The former is obtained from the
analysis of pion electroproduction data (Amaldi, Fubini, and
Furlan, 1979) and measurements of the reaction nðνμ; μ−Þp in
the deuteron at quasielastic kinematics (Baker et al., 1981;
Miller et al., 1982; Kitagaki et al., 1983) and of νμp and ν̄μp
elastic scattering (Ahrens et al., 1987). It is normalized as
GAð0Þ ¼ gA, where gA is the nucleon axial coupling constant,
gA ¼ 1.2694 (Nakamura et al., 2010). The form factor GPS is
parametrized as

GPSðQ2Þ ¼ −
2mμm

m2
π þQ2

GAðQ2Þ; ð86Þ

where mμ and mπ are the muon and pion masses, respectively.
This form factor is not well known; see Gorringe and Fearing
(2003) and Kammel and Kubodera (2010) for recent reviews.
This parametrization is consistent with values extracted
(Czarnecki, Marciano, and Sirlin, 2007; Marcucci et al.,
2012) from precise measurements of muon-capture rates on
hydrogen (Andreev et al., 2007) and 3He (Ackerbauer et al.,
1998), as well as with the most recent theoretical predictions
based on chiral perturbation theory (Bernard, Kaiser, and
Meissner, 1994). Last, the polar-vector jμ� and axial-vector jμ5�
components in jμCC follow, respectively, from jμγ;z and jμ5z by
the replacements τi;z=2 → τi;� ¼ ðτi;x � τi;yÞ=2.
In a nucleus, these one-body (1b) contributions lead to the

IA electroweak current

jμ1bðqÞ ¼
X
i≤A

jμðq; iÞ: ð87Þ

In the limit of small momentum transfers qμ, and ignoring
relativistic corrections proportional to 1=m2 and neutron
charge contributions, it is easily seen that jμγ;1b reduces to
the charge and convection current operators of individual
protons, and to the magnetization current operator of indi-
vidual protons and neutrons, while the timelike j0� and
spacelike j5� components in jμCC reduce, respectively, to the
familiar Fermi and Gamow-Teller operators.
There is ample evidence for the inadequacy of the IA

currents to provide a quantitatively satisfactory description of
electroweak observables at low and intermediate values of
energy and momentum transfers, especially in light s- and p-
shell nuclei with A ≤ 12, for which essentially exact calcu-
lations can be carried out. This evidence is particularly striking
in the case of electromagnetic isovector transitions. Well-
known illustrations are, among others, the 10% underestimate
of the np radiative capture cross section at thermal neutron
energies, which in fact provided the initial impetus to consider
two-body terms in the nuclear electromagnetic current oper-
ator (Riska and Brown, 1972), the 15% underestimate of the
isovector magnetic moment of the trinucleons and the large
discrepancies between the experimental and calculated mag-
netic and charge form factors of the hydrogen and helium
isotopes (Hadjimichael, Goulard, and Bornais, 1983; Strueve
et al., 1987; Schiavilla, Pandharipande, and Riska, 1989,
1990), particularly in the first diffraction region at momentum
transfers in the range of 3.0–3.5 fm−1, the large underpre-
diction, by, respectively, about 50% and 90%, of the nd and
n3He radiative capture cross sections (Marcucci et al., 2005;
Girlanda et al., 2010), and, finally, the significant under-
estimate, in some cases as large as 40%, of magnetic moments
and M1 radiative transition rates in A ¼ 7–9 nuclei (Pastore
et al., 2013).
In the case of charge-changing weak transitions, discrep-

ancies between experimental data and theoretical results
obtained with the IA operators are not as large and are all
limited to the low momentum and energy transfers of interest
in β decays and electron- and muon-capture processes. They
are nevertheless significant. Examples of these in the few-
nucleon systems are the few percent underestimate of the
Gamow-Teller matrix element in tritium β decay (Schiavilla
et al., 1998) and the 10% underprediction (Marcucci et al.,
2012) of the precisely measured (Ackerbauer et al., 1998)
3Heðμ−; νμÞ3H rate.
Many-body terms in the nuclear electroweak current

operators arise quite naturally in the conventional meson-
exchange picture as well as in more modern approaches based
on chiral effective field theory. Next we provide a brief review
of both frameworks; a recent review on reactions on electro-
magnetic reactions in light nuclei (Bacca and Pastore, 2014) is
also available.

1. Two-body electromagnetic currents

We first discuss electromagnetic operators. There is a large
body of work dealing with the problem of their construction
from meson-exchange theory, crystallized in a number of
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reviews of the 1970s and 1980s; see, e.g., Chemtob and Rho
(1971), Towner (1987), Mathiot (1989), and Riska (1989).
Here we describe an approach, originally proposed by Riska
(Riska and Poppius, 1985; Riska, 1985a, 1985b), that leads to
conserved currents, even in the presence of NN and 3N
potentials, not necessarily derived from meson-exchange
mechanisms (as is the case for the AV18 and UIX or IL7
models). This approach has been consistently used to study
many photonuclear and electronuclear observables and has
proved to be quite successful in providing predictions sys-
tematically in close agreement with experiment.
Leading electromagnetic two-body charge and current

operators are derived from the static (that is, momentum-
independent) components of the NN potential, consisting of
the isospin-dependent central, spin, and tensor terms. These
terms are assumed to be due to exchanges of effective
pseudoscalar (PS or π-like) and vector (V or ρ-like) mesons,
and the corresponding charge and current operators are
constructed from nonrelativistic reductions of Feynman
amplitudes with the π-like and ρ-like effective propagators.
For the π-like case [see Carlson and Schiavilla (1998) and
Marcucci et al. (2005) for a complete listing] they are given in
momentum space by

j0;PSγ ðki;kjÞ ¼ ½FS
1ðQ2Þτi · τj þ FV

1 ðQ2Þτj;z�

×
vPSðkjÞ
2m

σi · qσj · kj þ ði⇌jÞ; ð88Þ

jPSγ ðki;kjÞ ¼ iGV
EðQ2Þðτi × τjÞz

× vPSðkjÞ
�
σi −

ki − kj

k2i − k2j
σi · ki

�
σj · kj þ ði⇌jÞ:

ð89Þ

Here ki and kj are the fractional momenta delivered to
nucleons i and j, with q ¼ ki þ kj, and vPSðkÞ is projected
out of the (isospin-dependent) spin and tensor components of
the potential (Marcucci et al., 2005). The Dirac nucleon
electromagnetic form factors FS=V

1 are related to those intro-

duced previously via FS=V
1 ¼ ðGS=V

E þ ηGS=V
M Þ=ð1þ ηÞ with

η ¼ Q2=4m2, and therefore differ from GS=V
E by relativistic

corrections proportional to η. The representation of these
operators in coordinate space follows from

jμ;PSγ ðq; ijÞ ¼
Z

dki

ð2πÞ3
dki

ð2πÞ3 ð2πÞ
3

× δðki þ kj − qÞeiki·ri eikj ·rj jμ;PSγ ðki;kjÞ; ð90Þ
and explicit expressions for them can be found in Schiavilla,
Pandharipande, and Riska (1989).
By construction, the longitudinal components of the result-

ing jPSγ and jVγ currents satisfy current conservation with the
static part of the potential vijðstaticÞ,

q · ½jPSγ ðq; ijÞ þ jVγ ðq; ijÞ�
¼ ½vijðstaticÞ; j0γ ðq; iÞ þ j0γ ðq; jÞ�; ð91Þ

where j0γ ðq; iÞ is the one-body charge operator of Eq. (80) to
leading order in an expansion in powers of 1=m. The

continuity equation requires that the form factor GV
EðQ2Þ be

used in the longitudinal components of the PS and V currents.
However, it poses no restrictions on their transverse compo-
nents, in particular, on the electromagnetic hadronic form
factors that may be used in them. Ignoring this ambiguity, the
choice GV

E has been made for both longitudinal and transverse
components.
Additional conserved currents follow from minimal sub-

stitution in the momentum-dependent part of the potential
vijðnonstaticÞ. In a realistic potential such as the AV18, this
momentum dependence enters explicitly via the spin-orbit,
quadratic orbital angular momentum, and quadratic spin-orbit
operators, and implicitly via τi · τj, which for two nucleons
can be expressed in terms of space- and spin-exchange
operators as

τi · τj ¼ −1 − ð1þ σi · σjÞe−irij·ðpi−pjÞ: ð92Þ

Both the explicit and implicit (via τi · τj) momentum-depen-
dent terms need to be gauged with pi → pi − ϵiðQ2ÞAðriÞ,
where AðrÞ is the vector potential, in order to construct
exactly conserved currents with vijðnonstaticÞ (Sachs, 1948).
The procedure, including the nonuniqueness inherent in its
implementation, is described in Sachs (1948) and Marcucci
et al. (2005). In contrast to the purely isovector jPSγ and jVγ , the
currents from vijðnonstaticÞ have both isoscalar and isovector
terms, which, however, due to their short-range nature lead to
contributions that are typically much smaller (in magnitude)
than those generated by jPSγ and jVγ .
Conserved three-body currents associated with the V2π

ijk
term of the 3N potential have also been derived by assuming
that this term originates from the exchange of effective PS and
V mesons with excitation of an intermediate Δ isobar.
However, their contributions have been found to be generally
negligible, except for some of the polarization observables,
such as T20 and T21, measured in proton-deuteron radiative
capture at low energy (Marcucci et al., 2005).
It is important to stress that the two- and three-body charge

and current operators discussed so far have no free parameters,
and that their short-range behavior is consistent with that of
the potentials—for the NN potential, in particular, this
behavior is ultimately constrained by scattering data. It is
also worthwhile noting that in a nucleus AZ global charge
conservation requires that

hAZ∣
Z

dxj0γ ðxÞ∣AZi ¼ Z: ð93Þ

This condition is satisfied by j0γ;1bðq ¼ 0Þ (equivalent to the
volume integral of the charge density above); it implies that
two-body (and many-body) charge operators must vanish at
q ¼ 0, to which both j0;PSγ and j0;Vγ conform. As emphasized
by Friar (1977), a proper derivation of the leading two-body
charge operator j0;PSγ necessarily entails the study of nonstatic
corrections to the OPE potential. However, these corrections
are neglected in the AV18 and in fact in most modern realistic
potentials. These issues have recently been reexamined (and
extended to the two-pion-exchange potential and charge
operator) within the context of chiral effective field theory
(Pastore et al., 2011).
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There are many-body currents arising from magnetic-dipole
excitation of Δ resonances. They have been derived in a
number of different approaches, the most accurate of which is
based on the explicit inclusion of Δ-isobar degrees of freedom
in nuclear wave functions. In this approach, known as the
transition-correlation-operator (TCO) method and originally
developed by Schiavilla et al. (1992), the nuclear wave
function is written as

ΨNþΔ ¼
�
S
Y
i<j

ð1þ UTR
ij Þ

�
Ψ≃

�
1þ

X
i<j

UTR
ij

�
Ψ; ð94Þ

where Ψ is the purely nucleonic component and S is the
symmetrizer, and in the last expression on the right-hand
side (rhs) only admixtures with one and two Δ’s are retained.
The transition operators UTR

ij convert NN into NΔ and ΔΔ
pairs and are obtained from two-body bound and low-energy
scattering solutions of the full N þ Δ coupled-channel
problem, including transition potentials vTRij ðNN → NΔÞ
and vTRij ðNN → ΔΔÞ; see Wiringa, Smith, and Ainsworth
(1984). The simpler perturbative treatment of Δ-isobar
degrees of freedom, commonly used in estimating the
Δ-excitation current contributions, uses

UTR;PT
ij ¼ 1

m −mΔ
½vTRij ðNN → NΔÞ þ ði⇌jÞ�

þ 1

2ðm −mΔÞ
vTRij ðNN → ΔΔÞ; ð95Þ

and mΔ (1232 MeV) is the Δ mass. This perturbative treat-
ment has been found to overestimate Δ-isobar contributions
(Schiavilla et al., 1992), since UTR;PT

ij ignores the repulsive
core in the NΔ⇌NΔ and ΔΔ⇌ΔΔ interactions as well as the
significant kinetic energies of the Δ’s in these channels.
In the presence of an electromagnetic field, N⇌Δ and

Δ⇌Δ couplings need to be accounted for. For the first
process, the coupling and associated electromagnetic form
factor are taken from Nðe; e0Þ data in the resonance region
(Carlson, 1986), while for the second, experimental informa-
tion on the magnetic moment μγΔΔ comes from soft-photon
analysis of pion-proton bremsstrahlung data near the Δ
resonance (Lin and Liou, 1991). The associated currents give
important contributions to isovector transitions, comparable to
those from the PS current. In particular, the leading N → Δ
current is parametrized as

jγðq; i; N → ΔÞ ¼ i
2m

GγNΔðQ2ÞSi × qTi;zeiq·ri ; ð96Þ

where Si and Ti are spin and isospin transition operators
converting a nucleon into a Δ. The Δ → N current follows
from Eq. (96) by replacing Si and Ti by their adjoints S†

i and
T†
i . The electromagnetic γNΔ form factor, obtained from fits

of γN data at resonance, is normalized as GγNΔð0Þ ¼ μγNΔ
with μγNΔ ≃ 3μN (Carlson, 1986). There can also be an
electric quadrupole transition between the N and Δ states.
However, this coupling is very weak compared to the
magnetic dipole and has typically been neglected. In the
perturbative approach, the N⇄Δ current in Eq. (96) leads to a
two-body current given by

jΔ;PTγ ðq; ijÞ ¼ ½vTRij ðNN → ΔNÞ�† 1

mN −mΔ
jγðq; i; N → ΔÞ

þ jγðq; i;Δ → NÞ 1

mN −mΔ
vTRij ðNN → ΔNÞ

þ ði⇌jÞ: ð97Þ

This current is obviously transverse and hence unconstrained
by current conservation.
The Δ-excitation currents either in perturbation theory or in

the nonperturbative TCO approach can be reduced to effective
two- and many-body operators depending on UTR

ij , but acting
only on the nucleonic component Ψ of the full wave function.
This is accomplished by making use of standard identities
which allow one to express products of spin and isospin
transition operators in terms of Pauli spin and isospin
matrices. Both perturbation theory and the TCO method have
been used to obtain results reported in this review.
Finally, additional short-range isoscalar and isovector two-

body charge and (purely transverse) current operators follow
from, respectively, the ρπγ and ωπγ transition mechanisms.
The coupling constants and hadronic and electromagnetic
form factors at the ρNN, ωNN, ρπγ, and ωπγ vertices are
poorly known (Carlson and Schiavilla, 1998). In reference to
the ρπγ current, it is important to note that, because of
the large tensor coupling of the ρ meson to the nucleon,
a nonrelativistic expansion of jμ;ρπγ which retains only the
leading order is not accurate (Schiavilla and Pandharipande,
2002). The inadequacy of this approximation becomes espe-
cially apparent in the deuteron magnetic form factor at high-
momentum transfers. However, with the exception of this
observable, these transition currents typically lead to very
small corrections to charge and magnetic form factors of light
nuclei, in the momentum-transfer range where data are
available.

2. Two-body weak currents

Among the axial current operators, the leading terms
are those associated with the excitation of Δ resonances.
The N → Δ axial current is

j5aðq; i; N → ΔÞ ¼ −
GANΔðQ2Þ

2
SiTi;aeiq·ri ; ð98Þ

where the (unknown) N to Δ axial form factor is
parametrized as

GANΔðQ2Þ ¼ gANΔ

ð1þQ2=Λ2
AÞ2

; ð99Þ

and the cutoff ΛA is taken of the order of 1 GeV (as in the case
of the nucleon). The coupling constant gANΔ is not known. In
the static quark model, it is related to the nucleon axial
coupling constant via gANΔ ¼ ð6 ffiffiffi

2
p

=5ÞgA. This value has
often been used in the literature in the calculation of
Δ-induced axial current contributions to weak transitions
(Saito et al., 1990; Carlson et al., 1991). However, in view
of the uncertainty in the naive quark-model predictions, a
more reliable estimate of gANΔ is obtained by determining
it phenomenologically in the following way. It is well
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established that the one-body axial current leads to a 3%–4%
underprediction of the measured Gamow-Teller matrix
element of tritium β decay (Schiavilla et al., 1998), the
relatively small spread depending on the particular realistic
Hamiltonian adopted to generate the trinucleon wave func-
tions. Since the contributions due to Δ → Δ currents
(Schiavilla et al., 1992), and to the other mechanisms
discussed below, have been found to be numerically small,
this 3%–4% discrepancy can be used to determine gANΔ. Of
course, the resulting value depends on how the Δ degrees of
freedom are treated in nuclear wave functions, whether
perturbatively as in Eq. (97) or nonperturbatively in the full
TCO approach (Schiavilla et al., 1992; Marcucci et al., 2000).
In any case, this value is typically significantly smaller than
the quark-model estimate.
There are additional axial two-body currents due to

π- and ρ-meson exchange and ρπ transition; explicit expres-
sions have been listed most recently in Shen et al. (2012).
They are derived from nonrelativistic reduction of Feynman
amplitudes (Towner, 1987). However, the contributions of
these two-body operators to weak transitions in light nuclei
have been found to be numerically far less important than
those from Δ degrees of freedom (Carlson et al., 1991;
Schiavilla et al., 1992).
Finally, in the axial charge there is a two-body operator of

pion range, whose model-independent structure and strength
are determined by soft-pion theorem and current algebra
arguments (Kubodera, Delorme, and Rho, 1978) and it arises
naturally in chiral effective field theory:

j05;πa ðki;kjÞ ¼ −i
GAðQ2Þ
4f2π

h2πðkiÞ
k2i þm2

π
ðτi × τjÞa

× σi · ki þ ði⇌jÞ: ð100Þ

Here fπ is pion decay amplitude (fπ ≃ 93 MeV), the Q2

dependence of the form factor GA is assumed to be the
same as in the nucleon, and the hadronic form factor hπ is
parametrized as

hπðkÞ ¼
Λ2
π −m2

π

Λ2
π þ k2

: ð101Þ

The Λπ is in the range 1.0–1.5 GeV, consistent with values
inferred from the OPE component of realistic NN potentials.
Because of the absence of Jπii ¼ 0þ → J

πf
f ¼ 0− weak tran-

sitions in light nuclei, it does not play a significant role in
these systems.

B. Electromagnetic currents in chiral effective field theory

Electromagnetic charge and current operators were derived
up to one loop originally by Park, Min, and Rho (1996) in the
heavy-baryon formulation of covariant perturbation theory.
More recently, however, two independent derivations, based
on time-ordered perturbation theory, have appeared in the
literature, one by Pastore et al. (2009, 2011), and Piarulli et al.
(2013) and the other by Kölling et al. (2009, 2011). In the
following, we only discuss briefly the electromagnetic current
operator, since it has been used recently in QMC calculations

of magnetic moments and M1 transition rates in light p-shell
nuclei (Pastore et al., 2013, 2014). For a derivation of this as
well as of the electromagnetic charge operator, see the original
papers.
The contributions to the current operators up to one

loop are illustrated diagrammatically in Fig. 16, where
the NnLO terms correspond to the power counting
ðP=ΛχÞn × ðP=ΛχÞLO. The electromagnetic currents from
LO, NLO, and N2LO terms and from (N3LO) loop corrections
depend only on the known parameters gA and fπ (NLO and
N3LO), and the nucleon magnetic moments (LO and N2LO).
Note that the LO and NLO currents are the same as the
conventional ones, while the N2LO current consists of
relativistic corrections to the LO one. Unknown LECs enter
the N3LO OPE contribution involving a γπN vertex from a

higher-order chiral Lagrangian Lð3Þ
πN (proportional to the LECs

d0i) and contact currents implied by nonminimal couplings
(Pastore et al., 2009; Piarulli et al., 2013). They are given by

FIG. 16. Diagrams illustrating one- and two-body electromag-
netic current operators at ðP=ΛχÞ−2 (LO), ðP=ΛχÞ−1 (NLO),
ðP=ΛχÞ0 (N2LO), and ðP=ΛχÞ1 (N3LO). Nucleons, pions, and
photons are denoted by solid, dashed, and wavy lines, respec-
tively. The square in (d) represents the relativistic correction to
the LO one-body current, suppressed relative to it by an addi-
tional ðP=ΛχÞ2 factor; the solid circle in (j) is associated with a
γπN vertex in HγπN involving the low-energy constants (LECs)
d08, d

0
9, and d021; the solid circle in (k) denotes two-body contact

terms of minimal and nonminimal nature, the latter involving the
LECs C0

15 and C
0
16. Only one among all possible time orderings is

shown for the NLO and N3LO currents, so that both direct- and
crossed-box contributions are retained.
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jN
3LO

γπN ðki;kjÞ ¼ i
gA
F2
π

σj · kj

ω2
kj

½d08τj;zkj þ d09τi · τjkj

− d021ðτi × τjÞzσi × kj� × qþ ði⇌jÞ;
ð102Þ

jN
3LO

γ;nm ðki;kjÞ ¼ −ie½C0
15σi þ C0

16ðτi;z − τj;zÞσi� × qþ ði⇌jÞ:
ð103Þ

Before discussing the determination of these LECs, we note
that the loop integrals in the N3LO diagrams of Fig. 16 are
ultraviolet divergent and are regularized using dimensional
regularization. The divergent parts of these loop integrals are
reabsorbed by the LECs multiplying contact terms. Finally,
the resulting renormalized electromagnetic operators have
power-law behavior for large momenta and must be further
regularized before they can be sandwiched between nuclear
wave functions. This is accomplished by the inclusion of a
momentum-space cutoff of the type CΛðkÞ ¼ expð−k4=Λ4Þ
with Λ in the range ≃500–700 MeV=c. The expectation is
that observables, such as magnetic moments and M1 tran-
sitions in light nuclei, are fairly insensitive to variations ofΛ in
this range.
The d0i, entering the OPE N3LO current, could be fitted to

pion photoproduction data on a single nucleon or related to
hadronic coupling constants by resonance saturation argu-
ments (Pastore et al., 2009; Piarulli et al., 2013). Both
procedures have drawbacks. While the former achieves
consistency with the single-nucleon sector, it nevertheless
relies on single-nucleon data involving photon energies
much higher than those relevant to the threshold processes
under consideration and real (in contrast to virtual) pions.
The second procedure is questionable because of poor
knowledge of some of the hadronic couplings, such as
gρNN . Alternative strategies have been investigated for
determining the LECs d0i as well as C0

15 and C0
16 (Piarulli

et al., 2013). In this respect, it is convenient to define the
dimensionless LECs dS;Vi (in units of the cutoff Λ) related to
the original set via

C0
15 ¼ dS1=Λ

4; d09 ¼ dS2=Λ
2;

C0
16 ¼ dV1 =Λ

4; d08 ¼ dV2 =Λ
2; d021 ¼ dV3 =Λ

2; ð104Þ

where the superscripts S or V on the dS;Vi characterize the
isospin of the associated operator.
The isoscalars dS1 and dS2 have been fixed by reproducing

the experimental deuteron magnetic moment μd and isoscalar
combination μS of the trinucleon magnetic moments. It turns
out that in calculations based on the AV18 and AV18þ UIX
Hamiltonians the LEC dS1 multiplying the contact current
assumes reasonable values dS1 ≃ 2.5 and 5.2 corresponding to
Λ ¼ 500 and 600 MeV, while the LEC dS2 values are quite
small ≃ − 0.17 and −0.20 for the same range of cutoff Λ
(Piarulli et al., 2013).
Three different strategies, referred to as I, II, and III, have

been investigated to determine the isovector LECs dV1 , d
V
2 , and

dV3 . In all cases I–III, dV3 =dV2 ¼ 1=4 is assumed as suggested

byΔ dominance in a resonance saturation picture of the N3LO
OPE current in Fig. 16(j). In set I, dV1 and dV2 have been
constrained to reproduce the experimental values of the np
radiative capture cross section σnp at thermal neutron energies
and the isovector combination μV of the trinucleon magnetic
moments. This, however, leads to unreasonably large values
for both LECs and is clearly unacceptable (Piarulli et al.,
2013). In sets II and III, the LEC dV2 is fixed by assuming Δ
dominance while the LEC dV1 multiplying the contact current
is fitted to reproduce either σnp in set II or μV in set III. Both
alternatives still lead to somewhat large values for this LEC:
dV1 ≃ −9.3 and −11.6 in set II and dV1 ≃ −5.2 and −1.0 in
set III. There are no three-body currents at N3LO (Pastore
et al., 2009), and therefore it is reasonable to fix the strength of
theNN contact operators by fitting a 3N observable such as μS

and μV .

C. Elastic and inelastic form factors

The longitudinal FL and transverse FT form factors for
elastic and inelastic transitions are extracted from electron
scattering data by measuring the cross section (Donnelly and
Sick, 1984)

dσ
dΩ

¼ 4πσMf−1rec

�
Q4

q4
F2
L þ

�
Q2

2q2
þ tan2θe=2

�
F2
T

�
; ð105Þ

where σM is the Mott cross section, q and Q are the electron
three- and four-momentum transfers, frec is the recoil
correction frec ¼ 1þ ð2ϵ=mAÞsin2θe=2, ϵ and θe are the
electron initial energy and scattering angle in the laboratory,
and mA is the mass of the target nucleus. In the case
of elastic scattering, the electron energy transfer is
ωel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A

p
−mA and the four-momentum transfer

Q2
el ¼ 2mAωel. The form factors FL and FT are expressed

in terms of reduced matrix elements (RMEs) of charge
(CL), magnetic (ML), and electric (EL) multipole operators
defined as

F2
LðqÞ ¼

1

2Ji þ 1

X∞
L¼0

∣hJf∣∣CLðqÞ∣∣Jii∣2; ð106Þ

F2
TðqÞ ¼

1

2Ji þ 1

X∞
L¼1

½∣hJf∣∣MLðqÞ∣∣Jii∣2

þ ∣hJf∣∣ELðqÞ∣∣Jii∣2�: ð107Þ

We note that for elastic scattering Ji ¼ Jf ¼ J and the EL
RMEs vanish because of time reversal invariance.
Standard techniques (Walecka, 1995) are used to carry out

the multipole expansion of the electromagnetic charge j0γ ðqÞ
and current jγðqÞ operators in a reference frame in which the ẑ
axis defines the spin-quantization axis, and the direction q̂ is
specified by the angles θ and ϕ:

J0γðqÞ ¼
Z

dxeiq·xj0γðxÞ ¼
X
LML

4πiLY�
LML

ðq̂ÞCLML
ðqÞ;

ð108Þ
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jγ;qλðqÞ ¼
Z

dxeiq·xêqλ · jγðxÞ

¼ −
X

LMLðL≥1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð2Lþ 1Þ

p
iLDL

ML;λ
ð−ϕ;−θ;ϕÞ

× ½λMLML
ðqÞ þ ELML

ðqÞ�; ð109Þ

where λ ¼ �1, the YLML
are spherical harmonics, and the

DL
ML;λ

are rotation matrices (Edmonds, 1957). The unit vectors
êqλ denote the linear combinations

êq�1 ¼ ∓ 1ffiffiffi
2

p ðêq1 � iêq2Þ; ð110Þ

with êq3 ¼ q̂, êq2 ¼ ẑ × q=∣ẑ × q∣, and êq1 ¼ êq2 × êq3.
These relations are used below to isolate the contributing
RMEs to elastic transitions in nuclei with A ≤ 12. The ground
states of nuclei in the mass range 6 ≤ A ≤ 12 have spins
ranging from J ¼ 0 (as in 12C) to J ¼ 3 (as in 10B), and are
described by VMC or GFMC wave functions. For reasons of
computational efficiency, it is convenient to determine the
RMEs of charge and magnetic multipoles contributing to a
specific transition by evaluating the matrix elements of j0γ ðqÞ
and jγðqÞ between states having a given spin projection MJ,
usually the stretched configuration withMJ ¼ J, for a number
of different q̂ directions. The matrix element of the charge
operator can then be written as

hJJ; qjj0γ ðqÞjJJi ¼
X∞
L¼0

ffiffiffiffiffi
4π

p
iLcLJPLðcos θÞhJjjCLðqÞjjJi;

ð111Þ

where θ is the angle that q̂ makes with the ẑ spin-quantization
axis, the PL are Legendre polynomials, and cLJ is the Clebsch-
Gordan coefficient hJJJ − JjL0i. Generally, for a nucleus of
spin J the number of contributing (real) RMEs of charge
multipole operators is ½J� þ 1 (here ½J� denotes the integer part
of J) and the allowed L are the even integers between 0 and
2J. Thus, it is possible to select ½J� þ 1 independent q̂
directions, evaluate the matrix element of the charge operator
for each of these different q̂, and then determine the RMEs by
solving a linear system. For example, for a nucleus of spin
J ¼ 1 (such as 6Li)

h11; qẑjj0γ ðqẑÞj11i ¼
ffiffiffiffiffi
4π

3

r �
C0 −

1ffiffiffi
2

p C2

�
; ð112Þ

h11; qx̂jj0γ ðqx̂Þj11i ¼
ffiffiffiffiffi
4π

3

r �
C0 þ

1

2
ffiffiffi
2

p C2

�
; ð113Þ

where CL is a short-hand notation for h1jjCLðqÞjj1i.
For the transverse elastic form factor, it is possible to

proceed in a similar fashion. Since electric multipoles do not
contribute in elastic scattering

hJJ; q∣êqλ · jγðqÞ∣JJi
¼ −λ

X
L≥1

iL
ffiffiffiffiffi
2π

p
cLJDL

0;λð−ϕ;−θ;ϕÞhJjjMLðqÞjjJi; ð114Þ

where the unit vectors êqλ, λ ¼ �1 have been defined in
Eq. (110). Using the identity (Edmonds, 1957)

DL
0;λð−ϕ;−θ;ϕÞ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2Lþ1

r
YLλðθ;ϕÞ; λ¼�1; ð115Þ

and rather than considering the spherical components jqλðqÞ
of the current, it is possible to work with its component along
the unit vector eq2 defined earlier; further, q can be taken in
the x-z plane (ϕ ¼ 0), in which case eq2 is along the ŷ axis,
leading to

hJJ;q∣jγ;yðqÞ∣JJi ¼
ffiffiffiffiffi
4π

p X
L≥1

iLþ1
cLJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp
× P1

Lðcos θÞhJjjMLðqÞjjJi; ð116Þ

where P1
LðxÞ are associated Legendre functions. For a nucleus

of spin J > 0, the number of contributing (purely imaginary)
RMEs of magnetic multipole operators is ½J − 1=2� þ 1,
and the allowed L are the odd integers between 0 and 2J.
In the case of a J ¼ 1 nucleus, for example, it is possible
to take q along the x̂ axis (θ ¼ π=2), and determine
M1 ≡ h1jjM1ðqÞjj1i from

h11; qx̂∣jyðqx̂Þ∣11i ¼ ffiffiffi
π

p
M1: ð117Þ

Finally, the small-q behavior of the charge monopole and
quadrupole, and magnetic dipole RMEs is given by

hJjjC0ðq ¼ 0ÞjjJi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
Z; ð118Þ

hJjjC2ðqÞjjJi≃ 1

12
ffiffiffi
π

p
c2J

q2Q; J ≥ 1; ð119Þ

hJjjM1ðqÞjjJi≃ iffiffiffiffiffi
2π

p
c1J

q
2m

μ; J ≥ 1=2; ð120Þ

where Q and μ are the quadrupole moment and magnetic
moment, defined in terms of matrix elements of the charge and
current density operators j0γ ðxÞ and jγðxÞ, respectively, as

Q ¼ hJJ∣
Z

dxj0γ ðxÞð3z2 − x2Þ∣JJi; ð121Þ

μ

2m
¼ hJJ∣ 1

2

Z
dx½x × jγðxÞ�z∣JJi: ð122Þ

They are determined by extrapolating to zero a polynomial fit
(in powers of q2) to the calculated C2=q2 and M1=q on a grid
of small-q values. Consequently, the longitudinal form factor
at q ¼ 0 is normalized as

F2
Lðq ¼ 0Þ ¼ Z2

4π
; ð123Þ

while the transverse form factor F2
TðqÞ vanishes at q ¼ 0.

Note that experimental data for F2
LðqÞ are often reported in the

literature as normalized to 1 at q ¼ 0.
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In QMC, matrix elements are evaluated as described in
Sec. III.B.2. The results of elastic and inelastic electromag-
netic form factors for 6Li are shown in Fig. 17. The
calculations were performed within the IA and two-body
operators added (IAþMEC). Overall, the agreement with
the experimental data is excellent. The contribution of MEC
is generally small but its inclusion improves the agreement
between theory and data. In particular, it shifts the longi-
tudinal elastic and inelastic form factors to slightly lower
values and sensibly increases the transverse inelastic form
factor.
The longitudinal form factor of 12C is shown in Fig. 18. The

calculation has been performed including only one-body
operators (empty symbols), and one- plus two-body operators
(Lovato et al., 2013). The experimental data are from a
compilation by Sick (1982, 2013) and are well reproduced by
theory over the entire range of momentum transfers. The two-
body contributions are negligible at low q and become
appreciable only for q > 3 fm−1, where they interfere destruc-
tively with the one-body contributions, bringing theory into
closer agreement with experiment.

D. Second 0þ state of 12C: Hoyle state

The second 0þ state of 12C is the famous Hoyle state, the
gateway for the triple-alpha burning reaction in stars. It is a
particularly difficult state for shell-model calculations as it is
predominantly a four-particle four-hole state. However, the
flexible nature of the variational trial functions allows us to
directly describe this aspect of the state.
To do this (Pieper and Carlson, 2015) two different types of

single-particle wave functions have been used in the jΦNi of
Eq. (30): (1) the five conventional 0þ LS-coupled shell-model
states and (2) states that have an explicit three-alpha structure.
The first alpha is in the 0s shell, the second in the 0p shell, and
the third in either the 0p or 1s0d shell. The latter can have four
nucleons in 1s or four in 0d or two in 1s and two in 0d. In
addition, we allow the third alpha to have two nucleons in 0p
and two in 1s0d (a two-particle two-hole excitation). This
gives us a total of 11 components in jΦNi; a diagonalization
gives the ΨT for the ground and excited 0þ states.
The resulting ground state has less than 1% of its ΨT in the

1s0d shell while the second state has almost 70% in the 1s0d
shell. The GFMC propagation is then done for the first two
states; the resulting energies are shown as a function of
imaginary time τ in Fig. 19 which has results for two different
initial sets of ΨT . The GFMC rapidly improves the variational
energy and then produces stable (except for Monte Carlo
fluctuations) results to large τ. The resulting ground-state
energy is very good, −93.3ð4Þ MeV versus the experimental
value of −92.16 MeV. However, the Hoyle state excitation
energy is somewhat too high, 10.4(5) versus 7.65 MeV.
Figure 20 shows the resulting VMC and GFMC densities

for one of the sets of ΨT . The GFMC propagation builds a dip
at r ¼ 0 into the ground-state density which results in good
agreement with the experimental value. However, the Hoyle
state density is peaked at r ¼ 0 in both the VMC and GFMC
calculations. A possible interpretation of these results is that
the ground state is dominated by an approximately equilateral
distribution of alphas while the Hoyle state has an approx-
imately linear distribution.
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FIG. 17 (color online). The 6Li longitudinal elastic (upper left
panel), inelastic (bottom left), and transverse elastic (upper right),
and inelastic (bottom right) calculated with VMC in the impulse
approximation (IA), and with the addition of MEC contributions
(Wiringa and Schiavilla, 1998). The results are compared to the
experimental data indicated in the legend. See Wiringa and
Schiavilla (1998) and references therein.
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The calculated impulse E0 transition form factor is com-
pared to the experimental data in Fig. 21. The inset is scaled
such that (linear) extrapolation to k2 ¼ 0 gives the BðE0Þ. The
GFMC more than doubles the VMC result and gives excellent
agreement with the data.

E. Magnetic moments and electroweak transitions

In the IA, magnetic moments are calculated as

μIA ¼
X
i

ðeN;iLi þ μN;iσiÞ; ð124Þ

where eN;i ¼ð1þ τi;zÞ=2, μN ¼ eN þ κN , κN ¼ðκSþ κVτi;zÞ=2,
and κS ¼ −0.120 and κV ¼ 3.706 are the isoscalar and
isovector combinations of the anomalous magnetic moment
of the proton and neutron. The magnetic moment corrections
associated with the two-body operators discussed previously
are obtained from diagonal nuclear matrix elements

μMEC ¼ −ilim
q→0

2m
q

hJπ;MJ;TjjMEC
y ðqx̂ÞjJπ;MJ;Ti; ð125Þ

where the nuclear wave function is taken with M ¼ J, the
momentum transfer q is taken along x̂, m is the nucleon mass,
and the extrapolation to determine μ is done from calculations
performed at several small values of q.
The total magnetic moments, including MEC derived

within χEFT, are presented in Table I. Results obtained using
MEC derived in the conventional approach and within χEFT
are similar and have been discussed in detail by Pastore et al.
(2013). Here it is interesting to discuss the role of MEC
compared to the IA. GFMC calculations using AV18þ IL7
and chiral two-body currents of the magnetic moments are
shown in Fig. 22. The experimental magnetic moments of
A ¼ 2; 3 nuclei were used to constrain the LECs of the χEFT;
all results for heavier nuclei are predictions.
In many cases the two-body currents significantly change

the IA results and in all of these much better agreement with
experiment is achieved. The contribution of MEC is generally
larger for even-odd and odd-even nuclei, in particular, for 9Li
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and 9C. The exceptions are 9Be and 9B, which with their [441]
spatial symmetry are essentially single nucleons outside a
8Beð0þÞ core; on average, these have no OPE interaction with
the core and therefore no significant MEC contribution. For
odd-odd isoscalar nuclei, the IA results are already in good
agreement with experimental data; only for the T ¼ 1 nuclei
8Li and 8B are the MEC contributions significant.
M1 and E2 electromagnetic transitions for A ¼ 6–9 nuclei

have been calculated with GFMC. The one-body parts of these
operators are given by

M1 ¼ μN
X
i

ðLi þ gpSiÞð1þ τi;zÞ=2þ gnSið1 − τi;zÞ=2;

E2 ¼ e
X
i

½r2i Y2ðr̂iÞ�ð1þ τi;zÞ; ð126Þ

where Y is a spherical harmonic, L and S are the orbital and
spin angular momentum operators, and gp and gn are the
gyromagnetic ratio of protons and neutrons. MEC are also
included in the M1 transitions. The nuclear matrix elements
can be compared with the experimental widths. In units of
MeV, they are given by (Preston, 1962)

ΓM1 ¼
16π

9

�
ΔE
ℏc

�
3

BðM1Þ;

ΓE2 ¼
4π

75

�
ΔE
ℏc

�
5

BðE2Þ; ð127Þ

where ΔE is the energy difference between the final and initial
states and BðM1Þ ¼ hJFjjM1jjJIi2=ð2JI þ 1Þ is in units of μ2N
and BðE2Þ ¼ hJFjjE2jjJIi2=ð2JI þ 1Þ is in units of e2 fm4.
A number of calculated electromagnetic transition strengths

are compared with experiment in Fig. 23. Many additional
transitions within 8Be are reported in Pastore et al. (2014).
Again GFMC calculations were made using AV18þ IL7 and
chiral two-body currents. The two-body currents make large
corrections to the IA results for theM1 transitions; these often
result in excellent agreement with experiment.
Weak decays of A ¼ 6, 7 nuclei have been evaluated using

QMC but much more needs to be done in the future. In IA, the
weak Fermi (F) and Gamow-Teller (GT) operators to be
evaluated are

F ¼
X
i

τi�;

GT ¼
X
i

σiτi�: ð128Þ

A first calculation for the weak decays 6Heðβ−Þ6Li and
7BeðεÞ7Li was made by Schiavilla and Wiringa (2002) using
VMC wave functions for the AV18þ UIX Hamiltonian and
incorporating conventional MEC as discussed in Sec. V.A.2.
Parameters in the MEC were fixed to reproduce 3H β decay
(Schiavilla et al., 1998).
The 6He β decay is a pure GT transition, while the 7Be

electron capture is a mixed Fþ GT transition to the ground
state, and a GT transition to the first excited state of 7Li. These
are superallowed decays where the dominant spatial symmetry
of the parent and daughter states is the same, e.g., ½42� → ½42�

in A ¼ 6 and ½43� → ½43� in A ¼ 7. In these cases, the F and
GT matrix elements are of the order of 1–2 and the MEC
contributions are only a 2%–4% correction.
Subsequently, a GFMC calculation for these transitions was

made by Pervin, Pieper, and Wiringa (2007) based on the
AV18þ IL2 Hamiltonian, but only in the IA. The GFMC
results for these three Bð GTÞ reduced transition probabilities
are shown at the bottom of Fig. 23. These are already in fairly
good agreement with experiment, and small MEC corrections
will not shift the results by much.
Weak decays in the A ¼ 8; 9 nuclei pose a much bigger

challenge. For example, 8Heðβ−Þ8Li goes from a predomi-
nantly [422] symmetry state to multiple 1þ excited states, but
primarily to the first excited state in 8Li. The latter is
predominantly a [431] symmetry state with only a small
[422] component, so the allowed GT matrix element is of the
order of 0.1–0.2. Similarly, the 8Liðβ−Þ8Be and 8BðβþÞ8Be
decays are transitions from large to small components, with
the added complication that the final 2þ state in 8Be is a
moderately broad resonant state. GFMC calculations in
impulse approximation underpredict the A ¼ 8 experimental
matrix elements by a factor of 2 (Pastore, 2014). It is possible
that GFMC does an inadequate job of accurately determining
small components in the final state wave functions, or that
the specific Hamiltonian does not induce the required
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as in Fig. 22.
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correlations. However, if the magnitude of the MEC correc-
tions is comparable to that in the A ¼ 6; 7 superallowed
decays, then the MEC will be relatively much more important
in the allowed decays and may resolve the problem. This is an
important task for future QMC studies.

F. Electroweak response of light nuclei

The response to electroweak probes provides direct infor-
mation on dynamics in the nucleus. The rich structure of
nuclear interactions and currents, combined with the avail-
ability of different probes, offers the opportunity to study
many intriguing aspects of nuclear dynamics. Here we
describe theoretical approaches for describing inclusive scat-
tering of electrons and neutrinos from a nucleus, including
both sum-rule techniques and direct computations of response
functions, as well as comparisons to available experimental
data. In the last few years inclusive neutrino scattering from
nuclear targets has seen a surge in interest, spurred by the
excess, at relatively low energy, of measured cross section
relative to theoretical calculations observed in recent neutrino
quasielastic scattering data on 12C (Aguilar-Areval et al.,
2008; Butkevich, 2010). Analyses based on these calculations
have led to speculations that our present understanding of the
nuclear response to charge-changing weak probes may be
incomplete (Benhar, Coletti, and Meloni, 2010). However, it
should be emphasized that the calculations on which these
analyses are based use rather crude models of nuclear
structure—Fermi gas or local density approximations of the
nuclear matter spectral function—and simplistic treatments of
the reaction mechanism, and should therefore be viewed with
some skepticism. The differential cross section for neutrino
ν and antineutrino ν̄ inclusive scattering off a nucleus,
specifically the processes Aðνl; νlÞ and Aðν̄l; ν̄lÞ induced by
neutral weak currents (NC), and the processes Aðνl; l−Þ and
Aðν̄l; lþÞ induced by charge-changing (CC) weak currents,
can be expressed in terms of five response functions Rαβ as

�
dσ

dϵ0dΩ

�
ν=ν̄

¼ G2

2π2
k0ϵ0FðZ; k0Þcos2 θ

2

"
R00 þ

ω2

q2
Rzz

−
ω

q
R0z þ

�
tan2

θ

2
þ Q2

2q2

�
Rxx

∓ tan
θ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2

θ

2
þQ2

q2

s
Rxy

#
; ð129Þ

where G ¼ GF for the NC processes and G ¼ GF cos θC for
the CC processes, and the − (þ) sign in the last term is relative
to the ν (ν̄) initiated reaction. The value of GF ¼
1.166×10−5 GeV−2 as obtained from the muon lifetime by
Beringer et al., 2012, this value includes radiative corrections,
while cos θC is taken as 0.974 25 from Nakamura et al. (2010).
The initial neutrino four momentum is kμ ¼ ðϵ;kÞ, the final
lepton four momentum is kμ0 ¼ ðϵ0;k0Þ, and the lepton
scattering angle is denoted by θ. The lepton energy and
momentum transfers are defined as ω ¼ ϵ − ϵ0 and
q ¼ k − k0, respectively, and the squared four-momentum
transfer as Q2 ¼ q2 − ω2 > 0. The Fermi function FðZ; k0Þ

accounts for the Coulomb distortion of the final lepton wave
function in the charge-raising reaction,

FðZ; k0Þ ¼ 2ð1þ γÞð2k0rAÞ2γ−2 exp ðπyÞ
���� Γðγ þ iyÞ
Γð1þ 2γÞ

����2; ð130Þ

with

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

q
; ð131Þ

otherwise it is set to 1. Here y ¼ Zαϵ0=k0, ΓðzÞ is the gamma
function, rA is the nuclear radius, and α is the fine-structure
constant. There are in principle radiative corrections for the
CC and NC processes due to bremsstrahlung and virtual
photon and Z exchanges. These corrections have been
evaluated in the deuteron by Towner and Hardy (1998) and
Kurylov, Ramsey-Musolf, and Vogel (2002) at the low
energies (∼10 MeV) relevant for the Sudbury Neutrino
Observatory experiment, which measured the neutrino flux
from the 8B decay in the Sun. They are not considered further
below, since our focus here is primarily on scattering of
neutrinos with energies larger than 100 MeV, and we are not
concerned with discussing cross section calculations with %
accuracy in this regime. The nuclear response functions are
defined as

R00ðq;ωÞ ¼
X
f

δðωþ E0 − EfÞ

× hf∣j0ðq;ωÞ∣0ihf∣j0ðq;ωÞ∣0i�; ð132Þ

Rzzðq;ωÞ ¼
X
f

δðωþ E0 − EfÞ

× hf∣jzðq;ωÞ∣0ihf∣jzðq;ωÞ∣0i�; ð133Þ

R0zðq;ωÞ ¼ 2
X
f

δðωþ E0 − EfÞ

× Re½hf∣j0ðq;ωÞ∣0ihf∣jzðq;ωÞ∣0i��; ð134Þ

Rxxðq;ωÞ ¼
X
f

δðωþ E0 − EfÞ

× ½hf∣jxðq;ωÞ∣0ihf∣jxðq;ωÞ∣0i�
þ hf∣jyðq;ωÞ∣0ihf∣jyðq;ωÞ∣0i��; ð135Þ

Rxyðq;ωÞ ¼ 2
X
f

δðωþ E0 − EfÞ

× Im½hf∣jxðq;ωÞ∣0ihf∣jyðq;ωÞ∣0i��; ð136Þ

where ∣0i represents the initial ground state of the nucleus
of energy E0, ∣fi its final state of energy Ef, and an average
over the initial spin projections is understood. The three-
momentum transfer q is taken along the z axis (i.e., the spin-
quantization axis), and jμðq;ωÞ is the time component
(for μ ¼ 0) or space component (for μ ¼ x; y; z) of the NC
or CC. Note that in the model of electroweak currents adopted
here, their ω dependence enters through the dependence
on Q2 of the electroweak form factors of the nucleon and
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N-to-Δ transition. When discussing QMC calculations of
Rαβðq;ωÞ, the four-momentum Q2 transfer is fixed at the top
of the quasielastic peak, and the form factors are evaluated at
Q2

qe ¼ q2 − ω2
qe with ωqe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
−m, so that the only

ω dependence left in Rαβðq;ωÞ is that from the energy-
conserving δ function.
The expression above for the CC cross section is valid in the

limit ϵ0 ≃ k0, in which the lepton rest mass is neglected. At
small incident neutrino energy, this approximation is not
correct. Inclusion of the lepton rest mass leads to changes in
the kinematical factors multiplying the various response
functions. The resulting cross section can be found in Shen
et al. (2012).
The cross section for inclusive electron scattering follows

from Eq. (129) by using current conservation to relate the
longitudinal component of the current to the charge operator
via jzγðqẑÞ ¼ ðω=qÞj0γðqẑÞ and by noting that the interference
response Rxy vanishes, since it involves matrix elements
of the vector and axial parts of the current jNC or jCC of
the type Imðhjxihjy5i� þ hjx5ihjyi�Þ. One finds

�
dσ

dϵ0dΩ

�
e
¼ σM

�
Q4

q4
RL þ

�
tan2

θ

2
þ Q2

2q2

�
RT

�
; ð137Þ

where σM is the Mott cross section, and the longitudinal (L)
and transverse (T) response functions are defined as in
Eqs. (132) and (135) with jμ replaced by jμγ.
The accurate calculation of the inclusive response at low

and intermediate energy and momentum transfers (say, q≲
0.5 GeV=c and ω in the quasielastic region) is a challenging
quantum many-body problem, since it requires knowledge of
the whole excitation spectrum of the nucleus and inclusion in
the electroweak currents of one- and two-body terms. In the
specific case of inclusive weak scattering, its difficulty is
compounded by the fact that the energy of the incoming
neutrinos is not known [in contrast to inclusive ðe; e0Þ
scattering where the initial and final electron energies are
precisely known]. The observed cross section for a given
energy and angle of the final lepton results from a folding with
the energy distribution of the incoming neutrino flux and,
consequently, may include contributions from energy- and
momentum-transfer regions of the nuclear response where
different mechanisms are at play: the threshold region, where
the structure of the low-lying energy spectrum and collective
effects are important; the quasielastic region, which is domi-
nated by scattering off individual nucleons and nucleon pairs;
and the Δ resonance region, where one or more pions are
produced in the final state.
The simplest model of nuclear response is based on the

plane-wave impulse approximation (PWIA). The response is
assumed to be given by an incoherent sum of scattering
processes off single nucleons that propagate freely in the final
state. In PWIA the struck nucleon with initial momentum p
absorbs the momentum q of the external field and transitions
to a free particle state of momentum pþ q without suffering
any interactions with the residual A − 1 system. In the most
naive formulation of PWIA, the response is obtained from the
single-nucleon momentum distribution in the ground state of
the nucleus and the nucleon electroweak form factors,

RPWIA
αβ ðq;ωÞ ¼

Z
dpNðpÞxαβðq;pÞ

× δ

�
ω − Ē −

ðpþ qÞ2
2m

−
p2

2ðA − 1Þm
�
; ð138Þ

where xαβ describes the coupling to the external electroweak
field, NðpÞ is the nucleon momentum distribution, and the
effects of nuclear interactions are subsumed in the single
parameter Ē, which can be interpreted as an average binding
energy. The remaining terms in the δ function are the final
energies of the struck nucleon and recoiling ðA − 1Þ system,
respectively. In cases where the momentum transfer q is large,
it may be more appropriate to use relativistic expressions for
the coupling xαβ and final nucleon kinetic energy.
More sophisticated formulations of PWIA are based on the

spectral function, thus removing the need for including
the parameter Ē. To this end, it is useful to first express the
response in terms of the real-time propagation of the final
state as

Rαβðq;ωÞ ¼
1

2π

Z
∞

−∞
dteiðωþE0Þth0∣O†

βðqÞe−iHtOαðqÞ∣0i

≡ 1

2π

Z
∞

−∞
dteiðωþE0Þt ~Rαβðq; tÞ; ð139Þ

where the Oα’s denote the relevant components of the
electroweak current of interest. Since the interactions of
the struck nucleon with the remaining nucleons are
neglected, the A-body Hamiltonian reduces to H ≃ KðAÞþ
Hð1;…; A − 1Þ, where KðAÞ is the kinetic energy operator of
nucleon A (the struck nucleon) and Hð1;…; A − 1Þ is the
Hamiltonian for the remaining (and fully interacting) A − 1

nucleons.
Ignoring the energy dependence in the spectral function

reproduces the naive PWIA response, since integrating the
spectral function Sðp; EÞ recovers the momentum distribution.
At large values of the momentum transfer (q ∼ 1 GeV=c), one
would expect the spectral function approach to be reasonably
accurate. There will be significant corrections, however,
arising from the fact that in some instances the struck nucleon
is not only in a mean field, but is strongly interacting with one
or more other nucleons. More sophisticated treatments are
required to get a complete picture.
PWIA calculations of the longitudinal response measured

in ðe; e0Þ scattering, for example, grossly overestimate the data
in the quasielastic peak region (Carlson and Schiavilla, 1998).
They also lead to an incorrect strength distribution, since they
underestimate energy-weighted sum rules of the longitudinal
(and transverse) response functions. Much of this overestimate
can be attributed to the fact the charge can propagate through
the interaction, not only through the movement of nucleons.
It is possible to compute sum rules of the electroweak

response as ground-state expectation values that are much
more accurate than approximations to the full response. One
can also calculate integral transforms of the response, which
can be directly compared to experimental data and provide a
great deal of information about the full response. Here we
review results for sum rules and Euclidean response.
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G. Sum rules of electroweak response functions

Sum rules provide a powerful tool for studying integral
properties of the response of a nuclear many-body system to
an external probe. Of particular interest are those at constant
three-momentum transfer, since they can be expressed as
ground-state expectation values of appropriate combinations
of the electroweak current operators (and commutators of
these combinations with the Hamiltonian in the energy-
weighted case), thus avoiding the need for computing the
nuclear excitation spectrum.
In the electromagnetic case, the (non-energy-weighted) sum

rules are defined as (Carlson et al., 2002)

SαðqÞ ¼ Cα

Z
∞

ωþ
th

dω
Rαðq;ωÞ
Gp2

E ðQ2Þ ; ð140Þ

where Rαðq;ωÞ is the longitudinal (α ¼ L) or transverse
(α ¼ T) response function, ωth is the energy transfer corre-
sponding to the inelastic threshold, Gp

EðQ2Þ is the proton
electric form factor (evaluated at four-momentum transfer
Q2 ¼ q2 − ω2), and the Cα’s are appropriate normalization
factors, given by

CL ¼ 1

Z
; CT ¼ 2

ðZμ2p þ Nμ2nÞ
m2

q2
: ð141Þ

Here Z (N) and μp (μn) are the proton (neutron) number and
magnetic moment, respectively. These factors have been
introduced so that Sαðq → ∞Þ≃ 1 under the approximation
that the nuclear electromagnetic charge and current operators
originate solely from the charge and spin magnetization of
individual protons and neutrons and that relativistic correc-
tions to these one-body operators, such as the Darwin-Foldy
and spin-orbit terms in the charge operator, are ignored. The
sum rules above can be expressed (McVoy and Van Hove,
1962) as ground-state expectation values of the type

SαðqÞ ¼ Cα½h0jO†
αðqÞOαðqÞj0i − jh0;qjOαðqÞj0ij2�; ð142Þ

where OαðqÞ is either the charge j0γðqÞ (α ¼ L) or transverse
current jγ;⊥ðqÞ (α ¼ T) operator divided by Gp

EðQ2Þ, j0;qi
denotes the ground state of the nucleus recoiling with total
momentum q, and an average over the spin projections is
understood. The SαðqÞ as defined in Eq. (140) includes only
the inelastic contribution to Rαðq;ωÞ, i.e., the elastic con-
tribution represented by the second term on the rhs of
Eq. (142) has been removed. It is proportional to the square
of the longitudinal FL or transverse FT elastic form factor.
For Jπ ¼ 0þ states such as 4He or 12C, FT vanishes, while
FLðqÞ, discussed in Sec. V.B is given by FLðqÞ ¼
Gp

EðQ2
elÞh0;qjOLðqÞj0i=Z, with the four-momentum transfer

Q2
el ¼ q2 − ω2

el and ωel corresponding to elastic scattering,

ωel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A

p
−mA (mA is the rest mass of the nucleus).

In the case of NC and CC weak response functions, the
(non-energy-weighted) sum rules are generally defined as
(Lovato et al., 2014)

SαβðqÞ ¼ Cαβ

Z
∞

ωel

dωRαβðq;ωÞ ð143Þ

and can be expressed as

SαβðqÞ ¼ Cαβh0jjα†ðqÞjβðqÞ þ ð1 − δαβÞjβ†ðqÞjαðqÞj0i;
ð144Þ

SxyðqÞ ¼ CxyImh0jjx†ðqÞjyðqÞ − jy†ðqÞjxðqÞj0i; ð145Þ

where the Cαβ’s are convenient normalization factors,
αβ ¼ 00, zz, 0z, and xx, and for αβ ¼ xx the expectation
value of jx†jx þ jy†jy is computed. Note that the electroweak
nucleon and N-to-Δ form factors in jμNC=CC are taken to be
functions of q only by evaluating them atQ2

qe, at the top of the
quasielastic peak. In contrast to the electromagnetic sum rules,
the SαβðqÞ include the elastic and inelastic contributions; the
former are proportional to the square of electroweak form
factors of the nucleus. In the large-q limit, these nuclear form
factors decrease rapidly with q, and the sum rules reduce to the
incoherent sum of single-nucleon contributions. The normali-
zation factors Cαβ are chosen such that Sαβðq → ∞Þ≃ 1, for
example,

C−1
xy ¼ −

q
m
GAðQ2

qeÞ½Z ~Gp
MðQ2

qeÞ − N ~Gn
MðQ2

qeÞ�; ð146Þ

where Z (N) is the proton (neutron) number, GA is the
weak axial form factor of the nucleon normalized as
GAð0Þ ¼ gA, and ~Gp

M ¼ ð1 − 4 sin2 θWÞGp
M=2 − Gn

M=2 and
~Gn
M ¼ ð1 − 4 sin2 θWÞGn

M=2 −Gp
M=2 are its weak vector form

factors. The Gp
M and Gn

M are the ordinary proton and neutron
magnetic form factors, normalized to the proton and neutron
magnetic moments Gp

Mð0Þ ¼ μp and Gn
Mð0Þ ¼ μn. Thus the

SαβðqÞ give sum rules of response functions corresponding to
approximately pointlike electroweak couplings.
Sum rules of weak response functions cannot be compared

to experimental data. Even in the electromagnetic case, a
direct comparison between the calculated and experimentally
extracted sum rules cannot be made unambiguously for two
reasons. First, the experimental determination of Sα requires
measuring the associated Rα in the whole energy-transfer
region, from threshold up to ∞. Inclusive electron scattering
experiments allow access only to the spacelike region of the
four-momentum transfer (ω < q). While the response in the
timelike region (ω > q) could, in principle, be measured via
eþe− annihilation, no such experiments have been carried out
to date. Therefore, for a meaningful comparison between
theory and experiment, one needs to estimate the strength
outside the region covered by the experiment. In the past this
has been accomplished in the case of SLðqÞ either by
extrapolating the data (Jourdan, 1996) or, in the few-nucleon
systems, by parametrizing the high-energy tail and using
energy-weighted sum rules to constrain it (Schiavilla,
Pandharipande, and Riska, 1989; Schiavilla, Wiringa, and
Carlson, 1993).
The second reason that direct comparison of theoretical and

“experimental” sum rules is difficult lies in the inherent
inadequacy of the dynamical framework adopted in this
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review to account for explicit pion production mechanisms.
The latter mostly affect the transverse response and make its
Δ-peak region outside the range of applicability of this
approach. At low and intermediate momentum transfers
(q≲ 500 MeV=c), the quasielastic and Δ peak are well
separated, and it is therefore reasonable to study sum rules
of the electromagnetic transverse response. In the quasielastic
region, where nucleon and (virtual) pion degrees of freedom
are expected to be dominant, the dynamical framework
adopted in this review should provide a realistic and quanti-
tative description of electromagnetic (and weak) response
functions.
In Figs. 24 and 25, we show recent results obtained for the

electromagnetic longitudinal and transverse sum rules in 12C.
The open squares give the experimental sum rules SLðqÞ and
STðqÞ obtained by integrating up to ωmax (in the region where
measurements are available) the longitudinal and transverse
response functions (divided by the square of Gp

E) extracted
from world data on inclusive ðe; e0Þ scattering off 12C
(Jourdan, 1996); see Lovato et al. (2013) for additional
details. We also show by the solid squares the experimental
sum rules obtained by estimating the contribution of strength
in the region ω > ωmax. This estimate ΔSαðqÞ is made by
assuming that for ω > ωmax, i.e., well beyond the quasielastic
peak, the longitudinal or transverse response in a nucleus such
as 12C (RA

α ) is proportional to that in the deuteron (Rd
α), which

can be accurately calculated (Shen et al., 2012). This scaling
assumes that the high-energy part of the response is dominated
by NN physics, and that the most important contribution is
from deuteronlike np pairs. It is consistent with the notion
that at short times the full propagator is governed by the
product of pair propagators (assuming 3N interactions
are weak), discussed earlier in Sec. V.F. Thus, one sets
RA
αðq;ω > ωmaxÞ ¼ λðqÞRd

αðq;ωÞ, and determines λðqÞ by
matching the experimental 12C response to the calculated
deuteron one. It is worthwhile emphasizing that, for the
transverse case, this estimate is particularly uncertain for

the reasons explained earlier; the data on RT (Jourdan, 1996)
indicate that at the higher q values for ω ∼ ωmax there might
already be significant strength that has leaked in from the
Δ-peak region.
The sum rules computed with the AV18þ IL7Hamiltonian

and one-body only or one- and two-body terms in the
electromagnetic charge SL and current ST operators are
shown, respectively, by the dashed and solid lines in
Figs. 24 and 25. In the small-q limit, SLðqÞ vanishes
quadratically, while the divergent behavior in STðqÞ is due
to the 1=q2 present in the normalization factorCT. In this limit,
OTðq ¼ 0Þ ¼ i½H;

P
iriPi� (Carlson and Schiavilla, 1998;

Marcucci et al., 2005), where H is the Hamiltonian and Pi
is the proton projector, and therefore STðqÞ=CT is finite; the
associated strength is due to collective excitations of electric-
dipole type in the nucleus. In the large-q limit, the one-body
sum rules differ from unity because of relativistic corrections
in OLðqÞ, primarily the Darwin-Foldy term which gives a
contribution −η=ð1þ ηÞ to S1bL ðqÞ, where η≃ q2=4m2, and
because of the convection term in OTðqÞ, which gives a
contribution ≃ð4=3ÞCTTp=m to S1bT ðqÞ, where Tp is the
proton kinetic energy in the nucleus.
In contrast to SL, the transverse sum rule has large two-

body contributions. This is consistent with studies of
Euclidean transverse response functions in the few-nucleon
systems (Carlson et al., 2002), which suggest that a significant
portion of this excess transverse strength is in the quasielastic
region. Overall, the calculated SLðqÞ and STðqÞ are in
reasonable agreement with data. However, a direct calculation
of the response functions is clearly needed for a more
meaningful comparison between theory and experiment.
While sum rules of NC or CC weak sum rules are of a more

theoretical interest, they nevertheless provide useful insights
into the nature of the strength seen in the quasielastic region of
the response and, in particular, into the role of two-body terms
in the electroweak current. Those corresponding to weak NC
response functions and relative to 12C are shown in Fig. 26:
results S1b (S2b) corresponding to one-body (one- and two-
body) terms in the NC are indicated by the dashed (solid)
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FIG. 24 (color online). The longitudinal sum rule of 12C obtained
with GFMC from the AV18þ IL7 Hamiltonian with one-body
only (empty circles, dashed line) and one- and two-body (solid
circles, solid line) terms in the charge operator is compared to
experimental data without (empty squares), and with (solid
squares), the tail contribution. From Lovato et al., 2013.
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FIG. 25 (color online). Same as in Fig. 26, but for the transverse
sum rule. The open symbols do not contain derivative terms while
a VMC evaluation of the derivative terms is included for the solid
dots. The inset shows STðqÞ=CT in the small-q region. From
Lovato et al., 2013.
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lines. Note that both S1bαβ and S2bαβ are normalized by the same

factor Cαβ, which makes S1bαβðqÞ → 1 in the large-q limit. In

the small-q limit, S1b00ðqÞ and S1b0zðqÞ are much larger than S1bαβ
for αβ ≠ 00; 0z.
Except for S2b00ðqÞ, the S2bαβðqÞ sum rules are considerably

larger than the S1bαβðqÞ, by as much as 30%–40%. This
enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012). The increase due to
two-body currents is quite substantial even down to small
momentum transfers. At q≃ 1 fm−1, the enhancement is
about 50% relative to the one-body values. In general, the
additional contributions of the two-body currents (j2b)
to the sum rules are given by a combination of interference
with one-body currents (j1b), matrix elements of the type
h0∣j†1bj2b∣0i þ h0∣j†2bj1b∣0i, and contributions of the type
h0∣j†2bj2b∣0i. At low-momentum transfers the dominant con-
tributions are found to be of the latter h0∣j†2bj2b∣0i type, where
the same pair is contributing in both left and right operators.
Enhancements of the response due to two-body currents could
be important in astrophysical settings, where the neutrino
energies typically range up to 50 MeV. A direct calculation of
the 12C response functions is required to determine whether
the strength of the response at low q extends to the low
energies kinematically accessible to astrophysical neutrinos.
At higher momentum transfers the interference between

one- and two-body currents plays a more important role. The
larger momentum transfer in the single-nucleon current
connects the low-momentum components of the ground-state
wave function directly with the high-momentum ones through
the two-body current. For nearly the same Hamiltonian as is
used here, there is a 10% probability that the nucleons have
momenta greater than 2 fm−1 implying that ≈30% of the wave
function amplitude is in these high-momentum components

(Wiringa et al., 2014). The contribution of np pairs remains
dominant at high-momentum transfers, and matrix elements of
the type h0∣½j1bðlÞ þ j1bðmÞ�†j2bðlmÞ∣0i þ c:c: at short dis-
tances between nucleons l and m are critical.
Figure 27 shows the separate contributions associated with

the vector (VNC) and axial-vector (ANC) parts of the Sxx=Cxx
sum rule. The ANC piece of the Sxx sum rule is found to have
large two-body contributions of the order of 30% relative to
the one-body part. Similar results are found for the 0z and zz
sum rules; the xy sum rule is nonzero because of interference
between the VNC and ANC and vanishes in the limit in which
only one or the other is considered. The ANC two-body
contributions in the sum rules are much larger than the
contributions associated with axial two-body currents in
weak charge-changing transitions to specific states at low-
momentum transfers, such as β decays and electron- and
muon-capture processes involving nuclei with mass numbers
A ¼ 3–7 (Schiavilla and Wiringa, 2002; Marcucci et al.,
2011), where they amount to a few percent (but are never-
theless necessary to reproduce the empirical data).
In summary, two-body currents generate a significant

enhancement of the single-nucleon neutral weak current
response, even at quasielastic kinematics. This enhancement
is driven by strongly correlated np pairs in nuclei. The presence
of these correlated pairs also leads to important interference
effects between the amplitudes associated with one- and two-
body currents: the single-nucleon current can knock out two
particles from a correlated ground state, and the resulting
amplitude interferes with the amplitude induced by the action of
the two-body current on this correlated ground state.

H. Euclidean response functions

Direct calculations of Rαβ are difficult in systems with
A > 2, and at the moment one has to rely on techniques based
on integral transforms relative to the energy transfer, which
eliminate the need for summing explicitly over the final states.
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FIG. 26 (color online). The GFMC sum rules Sαβ in 12C,
corresponding to the AV18þ IL7 Hamiltonian and obtained
with one-body only (dashed lines) and one- and two-body (solid
lines) terms in the NC. From Lovato et al., 2014.
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Two such approaches have been developed: one based on the
Lorentz-integral transform has been used extensively in the
few-nucleon systems, albeit so far by including only one-body
electroweak current operators. It was reviewed recently
(Leidemann and Orlandini, 2013) and will not be discussed
here. The other approach is based on the Laplace transform
(Carlson and Schiavilla, 1992, 1994) and leads to Euclidean
(or imaginary-time) response functions, defined as

Eαβðq; τÞ ¼
Z

∞

0

dωe−τωRαβðq;ωÞ

¼ h0∣O†
βðqÞe−τðH−E0ÞOαðqÞ∣0i: ð147Þ

The Euclidean response is essentially a statistical mechanical
formulation and hence can be evaluated with QMC methods
similar to those discussed earlier. Electromagnetic Euclidean
response functions have been calculated for the few-nucleon
systems (A ¼ 3 and 4) (Carlson and Schiavilla, 1992, 1994;
Carlson et al., 2002), and very recently for 12C (Lovato et al.,
2015). It should be realized that in a nucleus such as 12C these
are computationally intensive calculations, requiring tens of
millions of core hours on modern machines.
In the case of ðe; e0Þ scattering the electromagnetic

Euclidean response functions can be directly compared with
experimental data, by simply evaluating the Laplace trans-
forms of the measured response functions, at least for values
of τ large enough so as to make EL=Tðq; τÞ mostly sensitive
to strength in the quasielastic and low-energy regions of
RL=Tðq;ωÞ.
The response at τ ¼ 0 is identical to the sum rule, and its

slope at τ ¼ 0 is equivalent to the energy-weighted sum rule.
The simulation proceeds by calculating the ground-state wave
function using GFMC and then evaluating the imaginary-time
dependent correlation functions over a range of separations τ
using the same paths sampled in the original ground-state
calculation. Since the current operators couple to states of
different spin and isospin, the calculations require recomput-
ing the path integral for different current operators OαðqÞ.
To more easily compare the Euclidean response to

data for larger τ, we multiply by a scaling factor ~Eαβðq; τÞ ¼
exp½q2τ=ð2mÞ�Eαβðq; τÞ. For a free nucleon initially at rest,
this scaled response is a constant independent of τ, since the
response is a delta function in energy for each momentum
transfer q. The slope and curvature of the calculated Euclidean
response at low τ indicates the strength at high energy, and
the response at large τ is related to the low-energy part of the
nuclear response. The calculated responses have a higher
average energy than simple PWIA-like approaches and also
have greater strength at high energy (from NN processes) and
at low energy (from low-lying nuclear states).
The difference between the full response and the simple

PWIA is most easily understood for the longitudinal response,
which is dominated by one-nucleon currents. The PWIA is
sensitive to the momentum distribution of the protons, as it
assumes that the struck nucleon does not interact with other
nucleons. The full calculation is also sensitive to the propa-
gation of charge through the NN interaction, since the struck
proton can charge exchange with other nucleons. This rapid

propagation of charge leads to an enhanced strength at high
energy.
In Fig. 28 we show recent calculations (Lovato et al., 2015)

of the 12C Euclidean electromagnetic longitudinal and trans-
verse response compared with experimental data. The overall
agreement with experiment in the longitudinal channel is
excellent. Here the calculation with the full currents is very
similar to that with one-nucleon currents alone. The error bars
are higher at large τ (lower energy) because of the required
subtraction of the elastic contribution.
The transverse response is shown in the lower panel of

Fig. 28. The difference between single-nucleon currents and
one- plus two-nucleon currents is quite substantial and extends
over the full range of τ. This implies a substantial enhance-
ment of the cross section in the full energy region, including
both the quasielastic peak and the low-energy regime. The full
calculation is in good agreement with experiment. The
enhancement can in some cases be as large as 40%, somewhat
larger than typical effects of two-nucleon currents on the
squared matrix elements of low-energy transitions, but not
dramatically so. The larger momentum transfers in these
inclusive experiments can be expected to lead to larger
contributions from pion and Δ currents, and these are found
to be the dominant two-nucleon current contributions.
Ideally wants to invert the Laplace transform to obtain a

more direct reconstruction of the response as a function of
momentum and energy transfer. This has been accomplished
already for A ¼ 4, where the calculations are much faster and
hence the simulations can be carried out with high accuracy.

FIG. 28 (color online). The longitudinal (upper panel) and
transverse (lower panel) electromagnetic Euclidean responses
for 12C at q ¼ 570 MeV=c. The bands represent the transform of
the experimental data, and the calculations with single-nucleon
and two-nucleon currents are shown as open and filled symbols,
respectively.
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Recent calculations (Lovato et al., 2015) agree with earlier
calculations of the electromagnetic response of 4He (Carlson
et al., 2002), but the statistical accuracy is at least an order of
magnitude better.
For such accurate data the maximum entropy method

(Bryan, 1990; Jarrell and Gubernatis, 1996) can be used to
reconstruct the response. Results for 4He at q ¼ 600 MeV=c
are shown in Fig. 29, and similar accuracy is obtained over a
wide range of momentum transfers. Again it is seen that the
enhancement from two-nucleon currents is substantial and
extends over the whole quasielastic regime. At higher energies
the calculated response does not include pion production and
hence fails to reproduce the strength associated with Δ
production.
Imaginary-time response functions for the neutral current

response of 12C have also been performed (Lovato et al.,
2015) and are shown in Fig. 30. At present the statistical
accuracy is not sufficient to invert the response, but the
Euclidean response already gives important results. These
calculations demonstrate an enhancement of the axial currents
in addition to the expected enhancement in the vector
channels. In particular, the vector-axial interference response
(lower panel) is significantly enhanced by the two-nucleon
currents. It is this response that gives the difference between
neutrino and antineutrino cross sections. This is an important
quantity in attempts to isolate the CP-violating phase in the
neutrino sector or the mass hierarchy in long-baseline experi-
ments; see, for example, Adams et al. (2013). Future work on

charge current responses and inversions to the real-time
response has many important applications including accel-
erator neutrinos and neutrinos in astrophysical environments.

VI. THE EQUATION OF STATE OF NEUTRON MATTER

A. Pure neutron matter: Homogeneous phase

The equation of state (EoS) of neutron matter is a key
ingredient in understanding the static and dynamic properties
of neutron stars. In the region between the inner crust and the
outer core, neutron stars are primarily neutrons, in equilibrium
with a small fraction of protons, electrons, and muons in
β-decay equilibrium. It has been argued that when the
chemical potential is large enough, heavier particles contain-
ing strange quarks may appear. This is expected to happen at
densities ≳3ρ0 (Lonardoni et al., 2015). However, while the
determination of the maximum mass of neutron stars requires
knowledge of the EoS up to several times nuclear densities,
the EoS around nuclear density and up to about 2ρ0 largely
determines their radii (Lattimer and Prakash, 2001).
Astrophysical applications are not the only relevant ones.
The EoS of neutron matter is used to constrain effective forces
in the presence of large isospin asymmetry. For example, the
bulk term of Skyrme models is sometimes fitted with input
from a neutron matter EoS.
Neutron matter is not directly accessible in terrestrial

experiments, and all the indirect experimental evidence related
to it is based on extrapolations of measurements on heavy

FIG. 29 (color online). The longitudinal (upper panel) and
transverse (lower panel) electromagnetic response of 4He at q ¼
600 MeV=c reconstructed from the Euclidean response com-
pared to experimental data. The experimental results are shown as
symbols with error bars, and the bands show the reconstructed
responses and errors associated with the maximum entropy
reconstruction. From Lovato et al., 2015.

FIG. 30 (color online). The neutral current weak response of 12C
at q ¼ 570 MeV=c. Calculations with single-nucleon currents
are shown as open symbols and with the full currents as filled
symbols. The upper panel shows the transverse response and its
vector-vector and axial-axial contributions, while the lower panel
shows the interference vector-axial-vector response.
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nuclei, and on astrophysical observations (Danielewicz,
Lacey, and Lynch, 2002). The role of ab initio techniques
becomes therefore crucial as a tool for testing the model
Hamiltonians that can be directly fitted on experimental data
for light nuclei against the constraints deriving from indirect
measurements.
At low densities ρ ≤ 0.003 fm−3 properties of neutron

matter are similar to ultracold Fermi gases that have been
extensively studied in experiments. In this regime, the
interaction is mainly s wave, and the system strongly paired.
The nuclear interaction can be simplified, the standard DMC
method for central potentials can be used, and very accurate
results for the energy and the pairing gap obtained (Gezerlis
and Carlson, 2008, 2010; Carlson, Gandolfi, and Gezerlis,
2012). Other results obtained using AFDMC with the full
nuclear Hamiltonian are qualitatively similar (Gandolfi et al.,
2008; Gandolfi, Illarionov, Pederiva et al., 2009). At higher
densities, the contribution of higher partial waves becomes
important, and the complete nuclear Hamiltonian has to be
used to calculate the EoS.
Argonne and other modern interactions are very well

suited to study dense matter. The NN scattering data are
described well with AV18 in a very wide range of laboratory
energies, and this gives an idea to their validity to study
dense matter. A laboratory energy of 350 MeV (600 MeV)
corresponds to a Fermi momentum kF ≈ 400 MeV
(530 MeV) and to a neutron density 2ρ0 (4ρ0). This is not
the case of softer potentials fitted to very low-energy
scattering data. The AV18 and AV80 two-body interactions
combined with the UIX three-body force have been exten-
sively employed to calculate the properties of neutron matter
and its consequences for neutron-star structure (Akmal,
Pandharipande, and Ravenhall, 1998). In the past, several
attempts to use Illinois three-body forces were made, but
they provided unexpected overbinding of neutron matter at
large densities (Sarsa et al., 2003) and will not be discussed
any further. It was recently shown that even the IL7 three-
body interaction gives an EoS that is too soft (Maris et al.,
2013). It would be very interesting to calculate the EoS of
symmetric nuclear matter using IL7, but unfortunately there
are no such calculations.
The first AFDMC calculations of the EoS of neutron matter

including three-body forces were produced by Sarsa et al.
(2003). Later using a different implementation of the con-
strained path and with more statistics, better agreement was
obtained with GFMC where the comparison is available
(Gandolfi, Illarionov, Schmidt et al., 2009). To date, only
the equation of state of pure neutron matter has been
calculated with QMC using realistic Hamiltonians, while
nuclear matter can be studied by including only two-body
forces (Gandolfi, Lovato et al., 2014).
By imposing periodic boundary conditions it is possible to

simulate an infinite system using a finite number of particles.
However, the energy and other physical quantities are affected
by the spatial cutoffs that are required to make the wave
function compatible with periodic boundary conditions. The
effect of cutting the potential energy at the edge of the
simulation box is made milder by summing the contributions
due to periodic images of the nucleons included in a given
number of shells of neighboring image simulation cells.

Finite-size corrections to the kinetic energy already appear
for the Fermi gas. In order to have a wave function that
describes a system with zero total momentum and zero
angular momentum, it is necessary to fill up a shell charac-
terized by the modulus of the single-particle momentum. This
fact determines a set of magic numbers, which are commonly
employed in simulations of periodic systems. The kinetic
energy corresponding to each magic number is a nonregular
and nonmonotonic function of the number of fermions
(Ceperley, Chester, and Kalos, 1977). This fact suggests that
for an interacting system it is necessary to proceed with an
accurate determination of the closed-shell energies in order to
minimize the discrepancy with the infinite system limit.
To this end, the effect of using a different number of

neutrons was carefully studied by means of the periodic box
Fermi hypernetted chain method (Fantoni and Schmidt, 2001).
This study showed that the particular choice of 33 fermions
(for each spin state) is the closest to the thermodynamic limit.
Another strategy for allowing an accurate extrapolation
consists of using the twisted averaged boundary conditions.
The method, described by Lin, Zong, and Ceperley (2001), is
based on randomly drifting the center of the Fermi sphere,
which adds a phase to the plane waves used in the Slater
determinant, in order to add contributions from wave vectors
other than those strictly compatible with the simulation box.
This procedure smooths the behavior of the energy as a
function of N, giving the possibility of better determining the
N → ∞ limit (Gandolfi, Illarionov, Schmidt et al., 2009).
In Fig. 31 the EoS of neutron matter computed by a

simulation with N ¼ 66 is presented. In order to check the
consistency of the results given by AFDMC, a simulation was
performed using only N ¼ 14 neutrons and by imposing the
same boundary conditions to the interaction as in the GFMC
calculation (Carlson, 2003; Carlson, Morales et al., 2003).
The comparison shows that the two methods are in good
agreement (Gandolfi, Illarionov, Schmidt et al., 2009).
Particular care was taken in studying the effect of finite-size
effects by repeating each simulation using a different number
of neutrons and using twisted averaged boundary conditions.
The repulsive nature of the three-neutron interaction is clear

0 0.1 0.2 0.3 0.4 0.5

Neutron Density (fm
-3

)

0

20

40

60

80

100

120

E
ne

rg
y 

pe
r 

N
eu

tr
on

 (
M

eV
)

AV8’+UIX
AV8’

FIG. 31 (color online). The EoS of neutron matter as a function
of the density, obtained using the AV80 NN interaction alone
(lower symbols and line) and combined with the UIX
3N force (Gandolfi, Carlson et al., 2014).
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from the figure, where the EoS obtained with and without UIX
is shown.
The AFDMC results are conveniently fitted using the

functional form

EðρnÞ ¼ a

�
ρn
ρ0

�
α

þ b

�
ρn
ρ0

�
β

; ð148Þ

where E is the energy per neutron (in MeV) as a function of
the density ρn (in fm−3). The parameters of the fit for both
AV80 and the full AV80 þ UIX Hamiltonian are reported in
Table VI.
The EoS of neutron matter up to ρ0 was recently calculated

by Gezerlis et al. (2013, 2014) with nuclear two-body local
interactions derived within the chiral effective field theory.
The AFDMC calculations for the χEFT interaction at LO,
NLO, and N2LO orders are shown in Fig. 32. (Note that three-
body forces have not been included at N2LO.) At each order in
the chiral expansion, it is important to address the systematic

uncertainties entering through the regulators used to renorm-
alize short-range correlations; see Gezerlis et al. (2014) for
more comprehensive details. In the figure, the EoS obtained
using cutoffs of R0 ¼ 1.0 and 1.2 fm are indicated. The figure
shows that the results are converging in the chiral expansion,
i.e., the energy per neutron at N2LO is quite similar to NLO.
The three-neutron interaction entering at N2LO has not been
included in the calculation but its contribution is expected to
be small (Tews et al., 2015). Other approaches based on
lattice-based QMC methods have been explored recently by
Roggero, Mukherjee, and Pederiva (2014) and Wlazłowski
et al. (2014), with similar results also included in Fig. 32.

1. Three-neutron force and symmetry energy

As described in Sec. II.A the NN force is obtained by
accurately fitting scattering data, but a 3N force is essential to
have a good description of the ground states of light nuclei.
The effect of the 3N force on the nuclear matter EoS is
particularly important, as it is needed to correctly reproduce
the saturation density ρ0 and the energy. The neutron matter
EoS is also sensitive to the particular choice of the 3N force
and consequently the corresponding neutron-star structure.
By assuming that the NN Hamiltonian is well constrained

by scattering data, the effect of using different three-neutron
forces to compute the EoS of neutron matter has been studied
carefully. As described in Sec. II.B the 3N force can be split
into different parts: a long-range term given by 2π exchange,
an intermediate part described by 3π rings, and a phenom-
enological short-range repulsion. The role of the latter term is
the least understood, although in part it is probably mocking
up a relativistic boost correction to the NN interaction
(Akmal, Pandharipande, and Ravenhall, 1998; Pieper et al.,
2001). It is important to address the effect of all these terms in
the calculation of neutron matter. These parts have been tuned
and the effective range of the repulsive term changed to
explore how these terms change the many-body correlations in
neutron matter. The main part that has been explored is the
short-range term. This term is purely phenomenological and it
is mainly responsible for providing the correlations at high
densities. The expectation value of the 2π-exchange Fujita-
Miyazawa operator in neutron matter is small compared to VR,
and this limits almost the whole effect of UIX to the short-
range term (Gandolfi, Carlson, and Reddy, 2012).
From the experimental side, the EoS of neutron matter

cannot be measured, but strong efforts have been made to
measure the isospin-symmetry energy; see the review by
Tsang et al. (2012). By assuming a quadratic dependence of
the isospin asymmetry δ ¼ ðρn − ρpÞ=ðρn þ ρpÞ, the sym-
metry energy can be interpreted as the difference between pure
neutron matter (δ ¼ 1) and symmetric nuclear matter (δ ¼ 0):

EsymðρÞ ¼ EPNMðρÞ − ESNMðρÞ; ð149Þ

where EPNM is the energy per neutron of pure neutron matter,
and ESNM is the energy per nucleon of symmetric nuclear
matter. The total energy of nuclear matter will take the form

Eðρ; δÞ ¼ ESNM þ EsymðρÞδ2: ð150Þ

TABLE VI. The parameters of Eq. (148) fitting the equation of state
computed with the full AV80 þ UIX Hamiltonian and with the NN
interaction only (AV80). The parametrization of selected EoSs shown
in Fig. 33 is also included. For each EoS, the corresponding Esym and
slope L are indicated.

3N force
Esym L a

α
b

β(MeV) (MeV) (MeV) (MeV)

None 30.5 31.3 12.7 0.49 1.78 2.26
VPW
2π þ VR

μ¼150 32.1 40.8 12.7 0.48 3.45 2.12

VPW
2π þ VR

μ¼300 32.0 40.6 12.8 0.488 3.19 2.20
V3π þ VR 32.0 44.0 13.0 0.49 3.21 2.47

VPW
2π þ VR

μ¼150 33.7 51.5 12.6 0.475 5.16 2.12
V3π þ VR 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436
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FIG. 32 (color online). The EoS of neutron matter as a function
of the density, calculated by Gezerlis et al. (2014) using AFDMC
with chiral NN interactions at LO, NLO, and N2LO for the two
different cutoffs indicated in the figure (three-body forces have
not been included at N2LO). Also shown are the results obtained
by Wlazłowski et al. (2014) using lattice QMC at N2LO, by
including the 3N interaction (upper dot-dashed line) and without
(lower dot-dashed line), and the results of Roggero, Mukherjee,
and Pederiva (2014) using the N2LOopt without 3N (dashed line).
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Several experiments aim to measure the symmetry energy
Esym at the empirical saturation density ρ0 ¼ 0.16 fm−3 and
the parameter L related to its first derivative. Around ρ0 the
symmetry energy can be expanded as

EsymðρÞ ¼ Esym þ L
3

ρ − ρ0
ρ0

þ � � � : ð151Þ

The present experimental constraints to Esym have been
used to study the sensitivity of the EoS of neutron matter to
the particular choice of the 3N force. The assumptions are
that the empirical energy of nuclear matter at saturation is
ESNMðρ0Þ ¼ −16 MeV, and through Eq. (149) there is a
consequent range of the energy of neutron matter at saturation
EPNMðρ0Þ. By following Tsang et al. (2009) the symmetry
energy is expected to be in the range 32� 2 MeV,
corresponding to the neutron matter energy EPNMðρ0Þ ¼
16� 2 MeV. Others report a wider range of values of
Esym; see, for example, Chen et al. (2010).
Following Pieper et al. (2001), different parametrizations of

APW
2π , ASW

2π , and A3π have been considered. Starting with the
original strengths of these parameters, the constant AR has
been adjusted in order to reproduce a particular value of
EPNMðρ0Þ and give a corresponding symmetry energy. We
show the various EoSs computed using different models of 3N
interactions in Fig. 33, compared to the AV80 NN force alone
and with the original UIX 3N force. The shaded bands in the
figure show the EoS with a symmetry energy corresponding to
33.7 and 32 MeV. Each band covers the various results
obtained using different three-neutron forces adjusted to have
the same Esym. The parameters fitting the higher and lower
EoSs for each band are reported in Table VI. It is interesting to
note that the bands are small around ρ0, and the uncertainty
grows at larger densities. The two bands show the sensitivity
of the EoS to the three-neutron force.

The EoSs are used to determine the value of L as a function
of Esym in Eq. (151), and the result is shown in the inset of
Fig. 33. As expected, the uncertainty in L is small, producing
an accurate prediction of L as a function of Esym (Gandolfi,
Carlson, and Reddy, 2012). These results generally agree with
experimental constraints (Tsang et al., 2012; Lattimer and
Lim, 2013), and with constraints from neutron stars (Steiner
and Gandolfi, 2012), as discussed in the next section. Future
experiments with the aim to measure simultaneously Esym and
L will provide a strong test of the assumed model. Two
important aspects could be missing in this model: the
relativistic effects and the contribution of higher-order
many-body forces. However, in the regime of densities
considered, these effects can probably be neglected. First,
the relativistic effects were previously studied by Akmal,
Pandharipande, and Ravenhall (1998), where it was shown
that the density dependence of such effects has roughly the
same behavior as the short-range part of the three-body force,
i.e., that they can be incorporated in its short-range part.
Second, the four-body force contributions should be sup-
pressed relative to the three-body force for densities up to
ð2–3Þρ0. Within χEFT this assumption can be justified at
nuclear density by the high precision fits to light nuclei
obtained with only three-body forces (Epelbaum, Hammer,
and Meißner, 2009). For phenomenological interactions, the
contribution of the two-body potential energy is much larger
than that of the three-body, and the four-body is then expected
to be much smaller than the three-body in dense matter
(Akmal, Pandharipande, and Ravenhall, 1998).

2. Neutron-star structure

While real neutron stars are complicated objects, their main
global properties can usually be well approximated by
considering simple idealized models consisting of a perfect
fluid in hydrostatic equilibrium. If rotation can be neglected to
a first approximation (as is the case for the spin rates of most
currently known pulsars) then the model can be taken to be
spherical and its structure obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations (Oppenheimer and
Volkoff, 1939), enabling one to calculate, for example, the
stellar mass as a function of radius or of central density. Using
the energy density ϵðρÞ defined as

ϵðρÞ ¼ ρ½EðρÞ þmnc2�; ð152Þ

wheremn is the mass of neutron, and the pressure PðρÞ at zero
temperature is given by

PðρÞ ¼ ρ2
∂EðρÞ
∂ρ ; ð153Þ

as inputs, the neutron-star model is evaluated by integrating
the TOV equations:

dP
dr

¼ −
G½mðrÞ þ 4πr3P=c2�½ϵþ P=c2�

r½r − 2GmðrÞ=c2� ; ð154Þ

dmðrÞ
dr

¼ 4πϵr2: ð155Þ
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FIG. 33 (color online). The energy per particle of neutron matter
for different values of the nuclear symmetry energy (Esym). For
each value of Esym the corresponding band shows the effect of
different spatial and spin structures of the three-neutron inter-
action. The bottom and top lines show the same result of Fig. 31,
where just the two-body alone and with the original UIX three-
body forces has been used. The inset shows the linear correlation
between Esym and its density derivative L. From Gandolfi,
Carlson, and Reddy, 2012.
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HeremðrÞ is the gravitational mass enclosed within a radius r,
and G is the gravitational constant. The solution of the TOV
equations for a given central density gives the profiles of ρ, ϵ,
and P as functions of radius r, and also the total radius R and
mass M ¼ mðRÞ, with R defined as the distance where the
pressure P drops to zero. A sequence of models can be
generated by specifying a succession of values for the central
density. In Fig. 34 the massM (measured in solar massesM⊙)
as a function of the radius R (measured in km) is shown, as
obtained from AFDMC calculations using different prescrip-
tions for the EoS presented previously.
It is interesting to make a comparison between these results

so as to see the changes caused by the introduction of the
various different features in the Hamiltonian. An objective of
this type of work is to attempt to constrain microphysical
models for neutron-star matter by making comparison with
astronomical observations. This has become possible in the
last few years, as discussed, for example, by Ozel, Baym, and
Guver (2010), Steiner, Lattimer, and Brown (2010), Steiner
and Gandolfi (2012), and Steiner et al. (2015). Further
progress is anticipated within the next few years if gravita-
tional waves from neutron-star mergers can be detected. The
most recently observed maximum neutron-star masses are
1.97ð2ÞM⊙ (Demorest et al., 2010) and 2.01ð4ÞM⊙
(Antoniadis et al., 2013). These observations put the most
severe constraints on the EoS, although the precise hadronic
composition is still undetermined.

B. Inhomogeneous neutron matter

While the mass and radius of a neutron star depend
primarily on the equation of state of neutron matter, the inner
crust of the star contains inhomogeneous neutron matter
immersed between very neutron-rich nuclei (Ravenhall,
Pethick, and Wilson, 1983; Shternin et al., 2007; Brown
and Cumming, 2009). Similarly, the exterior of very

neutron-rich nuclei is believed to have a significant excess
of neutrons. This neutron distribution can be probed, for
example, in parity-violating electron scattering.
Mean-field models including Skyrme and related models

are typically fit to bulk properties of known nuclei, which are
much nearer to isospin symmetry. They have sometimes also
included results from ab initio calculations of neutron matter
directly in their fits; see, e.g., Chabanat et al. (1997, 1998).
Historically, this is the only information used to constrain
density functionals in the pure neutron matter limit.
Therefore it is useful to perform ab initio studies of

inhomogeneous neutron matter at low and moderate densities.
A study of neutron drops can provide constraints on density-
functional studies of neutron-rich inhomogeneous matter, as
well as the properties of neutron-rich nuclei that can be
measured in terrestrial experiments (Gandolfi, Carlson, and
Pieper, 2011; Maris et al., 2013). It is also possible to study
neutron-rich nuclei with an inert core of neutrons and protons,
including realistic NN and 3N interactions between the
neutrons. This approach has been used to study the binding
energies of oxygen (Chang et al., 2004; Gandolfi et al., 2006)
and calcium isotopes (Gandolfi, Pederiva, and Beccara, 2008).
Calculations of neutron drops provide information about a

variety of quantities that enter in the energy-density func-
tional. Clearly the gradient term in pure neutron matter is
important in neutron drops; this term has a large uncertainty in
fits of known nuclei. The gradient term is important even in
closed-shell arrangements of neutrons in an external well.
Studying drops between the closed-shell limits provides a
variety of additional information. One can study the superfluid
pairing of pure neutron drops, a very different environment
from nuclei. The pairing is expected to play a more important
role in dilute neutron matter and may affect the shell closure.
Similarly one can look at the purely isovector spin-orbit
splitting by varying the number of neutrons around closed
shells and possible subshell closures.
Early QMC calculations of very small neutron drops

(N ¼ 6; 7; 8) already indicated a substantial difference from
traditional Skyrme models, which overbind the drops and
yield a too-large spin-orbit splitting (Pudliner et al., 1996;
Smerzi, Ravenhall, and Pandharipande, 1997; Pederiva et al.,
2004). However, these calculations did not systematically
cover a wide range of neutron numbers and confinement
potentials.
Both GFMC and AFDMC have been used to provide

ab initio results for neutron drops. The AV80 þ UIX
Hamiltonian, which produces an EoS consistent with known
neutron-star masses (see Sec. VI.A.2), has been used to
constrain several modern Skyrme models (Gandolfi,
Carlson, and Pieper, 2011; Maris et al., 2013). Several forms
of the external well were considered, including harmonic
oscillators (HO) of various frequency, as well as Wood-Saxon
wells. The former produce a wider range of densities,
particularly higher densities near the center of the trap, while
in the latter the density saturates as in nuclei.
The results of these calculations are shown in Figs. 35 and

36. For the harmonic traps the energy is divided by the
frequency of the trap times N4=3; this would be a constant for a
free Fermi gas in the Thomas-Fermi or local density approxi-
mation. The QMC results are shown as solid points. For a
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given Hamiltonian, the agreement between GFMC and
AFDMC is very satisfactory. Results agree very well for
the 10 MeV HO interaction, while for ℏω ¼ 5 MeV, the
AFDMC results are slightly higher than the GFMC ones;
the maximum difference is 3%, and more typically results
are within 1%. The larger difference for the low-density drops
produced by the 5-MeV well presumably arises because the
importance function used in AFDMC does not include
pairing, in contrast to the more complete treatment used
in GFMC.
In both cases conventional Skyrme models overbind the

drops. Since some of the Skyrme functionals have been fitted
to the neutron matter EoS, the overbinding might be explained
by the contributions given by the gradient term. As is evident
from Fig. 35, closed shells are still found at N ¼ 8, 20, and 40
neutrons in the HO wells. These closed-shell states are almost
exclusively sensitive to the neutron matter EoS and the
isovector gradient terms, while the contributions from pairing
and spin-orbit terms are very small. Instead, by examining
drops with neutron numbers that differ slightly from closed
shells, one can constrain the spin-orbit interaction. It has
been found that a smaller isovector coupling, approximately
1=6 of the isoscalar coupling, reproduces rather accurately the
ab initio calculations for these drops. Results for half-filled-
shell drops (e.g., N ¼ 14 or 30) and odd-even staggerings are

sensitive to the pairing interactions as well as the spin-orbit
force. Fixing the spin-orbit strength from near closed-shell
drops, the pairing strength can be adjusted to fit the calculated
spectra.
Adjusting these three parameters in the density functional to

better describe energies for a selected number of neutrons in
the HO as described by Gandolfi, Carlson, and Pieper (2011)
improves the agreement for all external fields and particle
numbers considered. This is shown by the upper solid curves
(SLY4-adj) in Figs. 35 and 36.
The rms radii and density distributions of neutron drops

are also useful checks of the density functionals. GFMC
accurately computes these quantities. In Fig. 37 the radii
computed using GFMC for different drops are compared to
those computed using the original SLY4 Skyrme and the
adjusted SLY4-adj for the two HO wells considered.
Comparisons of the densities for N ¼ 8 and 14 in the
HO wells are shown in Fig. 38. These two systems provide
benchmarks of a closed-shell drop and of a half-filled shell,
respectively. The adjusted-SLY4 gives much better evalua-
tions of these observables than those obtained using the
original SLY4 functional.
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The QMC calculations can also be compared to predictions
given by other methods. For example, in Fig. 39 the AFDMC
results obtained using different Hamiltonians (indicated in
the legend) are compared to the no-core full configuration
results obtained using the JISP16 interaction in no-core full
configuration (NCFC) calculations (Maris et al., 2013).
Recent density functionals successfully reproduce the

properties of both nuclei and neutrons drops. The new
Skyrme parametrizations UNEDF0, UNEDF1, and
UNEDF2 (Kortelainen et al., 2014) are compared to QMC
calculations in Fig. 40. These new parametrizations provide a
much better fit to neutron drops.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Quantum Monte Carlo methods have proved to be
extremely valuable for studying the structure and reactions
of nuclei and nucleonic matter with realistic nuclear inter-
actions and currents. As illustrated in this review, QMC
methods can simultaneously treat diverse phenomena across

a range of momentum scales including strong tensor corre-
lations at short distances and the associated electroweak
responses, spectra and clustering and low-energy electromag-
netic transitions in light nuclei, and superfluidity and the dense
neutron matter equation of state. Across this range from the
lightest nuclei to neutron matter the same nuclear models of
interactions and currents are applicable. These models have
been directly obtained from nucleon-nucleon scattering data
and properties of the very lightest nuclei.
QMC methods and accurate interaction and current models

provide quantitative predictions for spectra, electromagnetic
moments, transition rates, form factors, asymptotic normali-
zation constants, and other low-momentum properties of
nuclei up to A ¼ 12. The recent results on electromagnetic
transitions in light nuclei are particularly encouraging, con-
clusively demonstrating the importance of realistic models of
two-nucleon currents even at very low momentum transfer.
The wide range of energies (up to ∼350 MeV laboratory)
covered by these interactions also allows one to study the
electroweak response at rather large momentum transfers and
to study the neutron matter equation of state up to the regime
where the Fermi momentum is ∼2.5 fm−1, a regime that
controls the radius and much of the structure of neutron stars.
Realistic models of the nuclear interaction predicted a stiff
equation of state at high densities from the two- and three-
nucleon repulsion. The recent observation of two-solar mass
neutron stars confirms this behavior.
Progress is due to a concerted effort of physicists studying

nuclear interactions and currents, novel quantum Monte Carlo
methods, and computer scientists and applied mathematicians
enabling efficient computations on the largest available
computers (Bogner et al., 2013). The dramatic advances in
computer architecture, and the fairly wide availability of these
machines, have also been key.
Many important challenges will be addressed in the near

future, in both light and heavy nuclei and nucleonic matter. In
light nuclei the study of more complicated nuclear reactions
will be important. These can address problems where it is
difficult to conduct experiments, including reactions at very
low energies where the Coulomb barrier suppresses the
reaction rate, or reactions on unstable nuclei. In addition,
tests of fundamental symmetries, including electric-dipole
moments in light nuclei, can be addressed. Many of these
problems require only moderate advances in theory and
computation and it should be possible to address a significant
number in the next few years.
Neutrino scattering and nuclear response is of fundamental

interest both in fairly light nuclei such as carbon and oxygen
and in heavier nuclei such as argon. Calculations of the
charged-current carbon response will be very illuminating, in
particular, regarding the difference of neutrino to antineutrino
cross sections. This plays a key role in future attempts to
measure the neutrino mass hierarchy and the CP-violating
phase using accelerator neutrinos. Calculations in heavier
nuclei will allow us to explore the nuclear dependence of the
quasielastic scattering, which is expected to be fairly small as
in electron scattering.
The properties of heavy neutron-rich nuclei are also

important, particularly in light of the upcoming Facility for
Rare Isotope Beams. The extreme neutron-rich nuclei play an
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important role in the r process, and it will be interesting to
explore questions including pairing in neutron-rich nuclei and
their weak response starting from fundamental interactions.
Of course larger nuclei also provide important tests of
fundamental symmetries, including electric-dipole moments
and neutrinoless double-beta decay. It will be an important
challenge to use quantum Monte Carlo techniques to study
these problems.
The reliability and dynamic range of these models are

extremely important in extrapolating to new regimes, particu-
larly the neutron-rich matter found in supernovae and neutron
stars. Questions to be addressed there include the equation of
state and weak response of beta-stable matter, relevant to the
cooling of neutron stars, and the response in hot low-density
regimes characteristic of the surface where the neutrinos
decouple in the core-collapse supernovae. Studies of the
equation of state and its relevance to neutron-star mergers
are also important. Gravitational wave observations should be
able to give much more precise information on the mass-
radius relation in neutron stars.
We look forward to dramatic advances in theory and

computation, including a more refined understanding of
nuclear interactions and currents. Combined with exciting
prospects in experiments and observation, we believe there is a
bright future for nuclear physics and its connections to
quantum few- and many-body theory, astrophysics, neutrino
physics, and physics beyond the standard model.
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