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The theory of random matrices originated half a century ago as a universal description of the spectral
statistics of atoms and nuclei, dependent only on the presence or absence of fundamental symmetries.
Applications to quantum dots (artificial atoms) followed, stimulated by developments in the field of
quantum chaos, as well as applications to Andreev billiards—quantum dots with induced super-
conductivity. Superconductors with topologically protected subgap states, Majorana zero modes, and
Majorana edge modes, provide a new arena for applications of random-matrix theory. These recent
developments are reviewed, with an emphasis on electrical and thermal transport properties that can
probe the Majorana fermions.
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I. INTRODUCTION

A. What is new in RMT?

Random matrices made their first appearance in physics in
the 1950s (Wigner, 1956), to explain the statistical properties
of scattering resonances observed in nuclear reactions (Porter,
1965). Random-matrix theory (RMT) has since found appli-
cations in many branches of physics (Mehta, 2004; Forrester,
2010; Akemann, Baik, and Di Francesco, 2011). In condensed
matter physics, RMT can describe the universal properties of
disordered metals and superconductors (Beenakker, 1997;
Guhr, Müller-Groeling, and Weidenmüller, 1998), dependent
only on the presence or absence of fundamental symmetries in
10 symmetry classes—the so-called “tenfold way” (Altland
and Zirnbauer, 1997).
It was recently discovered that condensed matter with an

excitation gap can be in different phases that are not
distinguished by a broken symmetry, but by the value of a
topological invariant (Hasan and Kane, 2010; Qi and Zhang,
2011). Some of these topological superconductors and insula-
tors have been realized in the laboratory, many others are
being searched for. In this review, we discuss how RMT can
be extended to account for topological properties.
Topological invariants count the number of protected

subgap states, either bound to a defect or propagating along
a boundary. In a superconductor, these are Majorana fermions,
described by a real rather than a complex wave function
(Majorana, 1937; Wilczek, 2009). The absence of complex
phase factors fundamentally modifies the random-matrix
description, notably, the scattering matrix at the Fermi level
is real orthogonal rather than complex unitary. The circular
ensemble of random orthogonal matrices, and the correspond-
ing Gaussian ensemble of real antisymmetric matrices, were
treated in textbooks (Mehta, 2004; Forrester, 2010) for their
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mathematical elegance—without applications in quantum
physics. Topological superconductors now provide these
applications.
Experimentally, the search for Majorana zero modes (bound

to a vortex core or to the end of a superconducting wire) and
Majorana edge modes (propagating along the boundary of a
two-dimensional superconductor) is still at an initial stage
(Alicea, 2013). But much is understood from the theoretical
point of view (Alicea, 2012; Leijnse and Flensberg, 2012;
Beenakker, 2013; Stanescu and Tewari, 2013), so the time
seems right for a review of the RMT of Majorana fermions in
the context of topological superconductivity.
The outline of the review is as follows. We continue this

introductory section with some background information on
superconducting quasiparticles and how they appear in exper-
imental systems that will figure later in the review. In Sec. II,
the key features of topological superconductivity are intro-
duced for the simplest—and paradigmatic—example, the
Kitaev chain. In Sec. III, we then discuss in some more
generality the basic symmetries that govern the random-
matrix ensembles of topological superconductors, distin-
guished from the original Wigner-Dyson ensembles by the
role played by particle-hole symmetry in addition to time-
reversal symmetry.
The random matrix can be the Hamiltonian (Sec. IV) or the

scattering matrix (Sec. V)—we discuss both, but in the
applications to transport properties we focus on the scatter-
ing-matrix ensembles. Electrical and thermal transport proper-
ties are considered separately in Secs. VI and VII. We pay
particular attention to experimental signatures of the topo-
logical quantum numbers, from a broader perspective than just
the search for Majoranas. Topological phase transitions play a
central role in the Josephson effect, as we discuss in Sec. VIII.
We conclude in Sec. IX.

B. Superconducting quasiparticles

The fermionic excitations Ψ of a superconductor are called
“Bogoliubov quasiparticles” (Bogoliubov, 1958). Unlike the
electron and hole excitations ψe and ψh of a normal metal, the
state Ψ has no definite charge—it is a coherent superposition
of ψe (negatively charged, filled state at energy E above the
Fermi level EF) and ψh (positively charged, empty state at E
below EF). The �2e fluctuations in the quasiparticle charge
are absorbed by Cooper pairs of the superconducting
condensate.
The fact that the charge of Bogoliubov quasiparticles is

only conserved modulo 2e is at the origin of the symmetry of
charge conjugation, also called “particle-hole symmetry.” It
expresses the ambiguity that a quasiparticle excitation can be
thought of either as a Cooper pair missing a particle or as a
Cooper pair having an extra particle.
A consequence of particle-hole symmetry is the existence

of a correspondence between Bogoliubov quasiparticles and
Majorana fermions (Chamon et al., 2010; Wilczek, 2014;
Elliott and Franz, 2015), a concept from particle physics
referring to a particle that is its own antiparticle (Majorana,
1937). The correspondence breaks down if Coulomb inter-
actions become important, because these remove the equiv-
alence modulo 2e of charge þe and charge −e excitations.

Since Coulomb interactions are strongly screened in a super-
conductor, the Majorana representation remains a useful
starting point to describe physical phenomena such as the
mutual annihilation of two colliding Bogoliubov quasipar-
ticles (Beenakker, 2014).
Bogoliubov quasiparticles can be bound by a magnetic

vortex or an electrostatic defect (Caroli, de Gennes, and
Matricon, 1964). Particle-hole symmetry requires that the
bound states come in pairs at �E, with the possibility of an
unpaired state at E ¼ 0. The creation and annihilation
operators are related by aE ¼ a†−E;, so they are identical at
E ¼ 0 (at the Fermi level). This self-conjugate bound state,
a0 ¼ a†0, is called a “Majorana zero mode” or “Majorana
bound state” (or sometimes just “Majorana fermion,” when no
confusion with unbound Bogoliubov quasiparticles can arise).
A Majorana zero mode has a certain stability; it cannot be

displaced away from the Fermi level without breaking the �E
symmetry of the spectrum (Volovik, 1999). If a vortex
contains a nondegenerate state at E ¼ 0, then it will remain
pinned to the Fermi level if we perturb the system. This
robustness is called “topological protection” and a super-
conductor that supports Majorana zero modes is called a
“topological superconductor” (or a “topologically nontrivial”
superconductor). For an overview of the ongoing search for
Majorana zero modes in superconductors, see Alicea (2012),
Leijnse and Flensberg (2012), Beenakker (2013), and
Stanescu and Tewari (2013).
The ground state of 2n vortices containing Majorana zero

modes is 2n-fold degenerate and the exchange of pairs of
vortices is a unitary operation on the ground-state manifold
(Read and Green, 2000; Ivanov, 2001). Such noncommuting
exchange operations (non-Abelian statistics) are at the basis of
proposals to store and manipulate quantum information in
Majorana zero modes (Kitaev, 2001, 2003; Nayak et al.,
2008). We will not address this application here; for a recent
review, see Das Sarma, Freedman, and Nayak (2015).

C. Experimental platforms

Random-matrix theory is designed for an ensemble of
chaotic scatterers,1 without making specific assumptions
on how this ensemble is realized. In a typical application,
the scattering is due to disorder and the different members
of the ensemble have different disorder configurations.
Alternatively, the chaotic dynamics may result from some
irregularly shaped boundary and the ensemble is produced by
varying the boundary shape or the energy.
In the electronic context, the chaotic scatterer is referred to

as a quantum dot or quantum billiard, pointing to the
quantization of the energy spectrum by the confinement.
When superconductivity enters, the chaotic dynamics is
governed by the interplay of normal scattering from the
electrostatic potential and Andreev scattering from the pair
potential. One then speaks of Andreev billiards, with a

1A scatterer is called chaotic if it uniformly mixes the incoming
and outgoing degrees of freedom. Mathematically, this uniformity is
expressed by the Haar measure on the unitary group of scattering
matrices; see Sec. V.B.
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spectrum of Andreev levels; see Beenakker (2005) for a
review.
Since random-matrix theory addresses universal properties,

there is a great variety of experimental systems to which it
might be applied. We give a brief overview of platforms that
seem most promising for applications of RMT to Majorana
fermions.
Nanowire SNS geometry—The nanowire device of Fig. 1 is

a good starting point to introduce a characteristic feature of
topological superconductivity. A Josephson junction, or SNS
junction, is formed by two superconducting electrodes (S)
connected via a normal region (N), in this case, a segment of a
semiconducting wire representing a quantum dot (Chang
et al., 2013). Electron and hole quasiparticles (filled states
above the Fermi level or empty states below it) are confined to
the quantum dot by the superconducting gap Δ0 that the
superconductor induces locally in the wire. Andreev reflection
at the normal-superconductor (NS) interface couples the
electron and hole quasiparticles.
A model calculation of the spectrum in a similar device is

shown in Fig. 2, as a function of the superconducting phase
difference ϕ across the SNS junction. Notice the special role
played by the Fermi level E ¼ 0. As ϕ is varied, pairs of levels
that approach each other repel without crossing if they stay
away from the Fermi level; however, level crossings appear at
E ¼ 0. In Fig. 2, there is an even number NX ¼ 4 of level
crossings between ϕ ¼ 0 and ϕ ¼ 2π. If NX is odd, the
superconductor is called topologically nontrivial.
Level crossings appear generically if a magnetic field is

applied to close the excitation gap in the quantum dot, and if
spin-orbit coupling removes the spin degeneracy of the
Andreev levels (Altland and Zirnbauer, 1997). (In the InAs
nanowire of Fig. 1, the spin-orbit coupling is produced by the
Rashba effect.) The transition from NX even to NX odd
requires a Zeeman energy EZ larger than Δ0 (Lutchyn, Sau,
and Das Sarma, 2010; Oreg, Refael, and von Oppen, 2010).
This topological phase transition has observable consequences
(Kitaev, 2001): The supercurrent InðϕÞ ∝ dEn=dϕ carried by
a level En with an odd number of crossings has 4π periodicity
in ϕ, meaning a doubling of the flux-periodicity from h=2e
to h=e.

Section VIII explains the connection between level cross-
ings and switches in the ground-state fermion parity and
describes their statistics in the framework of RMT.
Nanowire NSN geometry—Each level crossing in the SNS

junction of Fig. 1 produces a pair of zero modes between the
superconducting electrodes. The NSN junction of Fig. 3, with
one rather than two superconducting electrodes, allows for the
study of a single zero mode in isolation. One can imagine
gradually decoupling the superconductors by inserting a
tunnel barrier in the Josephson junction. As one raises the
barrier height, the Andreev levels are pushed away from
E ¼ 0 and the ϕ dependence becomes flat. The level crossings
can annihilate pairwise without affecting the ground-state
fermion parity. However, if NX is odd, one level crossing must
remain no matter how high the tunnel barrier has become. This
remaining level crossing for a topologically nontrivial super-
conductor corresponds to a pair of isolated Majorana zero
modes, one for each NS interface.
The conductance G of the NS interface reveals the presence

of the zero mode, as shown in the model calculation of Fig. 4.
Note that the Majorana fermion in such a device is only
weakly bound: The wave function leaks out into the normal
electrode and the zero mode is a broad resonance centered at

FIG. 1 (color online). Quantum-dot Josephson junction formed
by a segment of a semiconducting wire (InAs) in a super-
conducting ring (Al), enclosing a magnetic flux Φ. A weakly
coupled tunnel probe (Au) at bias voltage V measures the
excitation spectrum of electron and hole quasiparticles confined
to the quantum dot, as a function of the phase difference ϕ ¼
Φ × 2e=ℏ across the junction. Electron micrographs (entire
device and enlarged region). From Chang et al., 2013.

FIG. 2. Model calculation of the excitation spectrum of a
Josephson junction similar to Fig. 1, but of larger dimensions
in order to increase the flux inside the junction (about 3h=e for a
disordered normal region of size 1 μm × 2 μm). The spin-orbit
coupling length is lso ¼ 250 nm, the superconducting gap
Δ0 ¼ 0.4 meV, and the Fermi energy EF ¼ 2.5 meV (corre-
sponding to N ¼ 20 electronic modes in the nanowire). Level
repulsion at nonzero E coexists with level crossings at E ¼ 0.
Here, the number of crossings in a 2π phase increment is even, but
it can be odd in a topological superconductor. Data provided by
M. Wimmer (private communication).

FIG. 3 (color online). Scanning electron microscope image of a
device similar to the one studied in Mourik et al. (2012), where
superconductivity is induced in an InSb nanowire by proximity to
a NbTiN superconductor. The Au electrodes are normal-metal
Ohmic contacts, used to measure the electrical conductance of the
wire. Image from V. Mourik (private communication).
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the Fermi energy rather than a discrete level at E ¼ 0. Still, the
distinction between a topologically trivial and nontrivial
superconductor remains clearly visible in the conductance,
in particular, in the single-mode regime, whenG ¼ 2e2=h or 0
depending on the presence or absence of a quasibound
Majorana fermion.
In the context of RMT, the distinction appears because of a

difference in the sign of the determinant of the reflection
matrix r of the NS interface: Detr ¼ þ1 or −1 for a
topologically trivial or nontrivial superconductor, respectively.
The consequence of this sign change for the conductance
statistics is discussed in Sec. VI.
Chain of magnetic nanoparticles—An atomic, single-chan-

nel, variation on the semiconductor nanowire is formed by a
chain of magnetic atoms on a superconducting substrate
(Fig. 5). In such a system, no Rashba spin-orbit coupling is
required to produce Majorana zero modes at the end points of
the chain; it is sufficient if the magnetization varies in
direction from atom to atom (Choy et al., 2011; Klinovaja
et al., 2013; Nadj-Perge et al., 2013; Pientka, Glazman, and
von Oppen, 2013). In the experimental realization of Fe atoms
on Pb by Nadj-Perge et al. (2014), the magnetic moments are

aligned ferromagnetically, so there spin-orbit coupling in the
superconductor is still needed.
Quantum spin-Hall edge—An alternative single-channel

conductor is formed by the edge of a quantum spin-Hall
insulator (Fu and Kane, 2009); see Fig. 6. This is a two-
dimensional quantum well in a semiconductor heterostructure
(HgTe or InAs/GaSb), with an inverted band gap in the bulk
that closes at the edge (König et al., 2008). Electrons and
holes propagate along the edge in a helical mode, meaning
that the direction of motion is tied to the spin direction. The
reflection matrix at the interface with a superconducting
electrode has determinant −1, indicating the presence of a
Majorana zero mode. In the geometry of Fig. 6, the zero mode
is weakly confined by a quantum dot and produces a resonant
conductance peak at V ¼ 0.
Topological insulator surface—The two-dimensional

counterpart of the quantum spin-Hall edge is the conducting
surface of a three-dimensional topological insulator, such as
Bi2Se3 (Hasan and Kane, 2010; Qi and Zhang, 2011). The
proximity effect from a superconductor opens an inverted
band gap in the conducting surface. This heterostructure then
behaves as a topologically nontrivial superconductor, with
Majorana zero modes bound to the core of a magnetic vortex
(Fu and Kane, 2008).
The electrons and holes on the surface of a topological

insulator are massless Dirac fermions, similar to graphene—
but without the spin and valley degeneracy of graphene. [This
is why the superconducting proximity effect does not produce
Majorana zero modes in graphene (Ghaemi and Wilczek,
2012).] Dirac fermions cannot be confined by an electrostatic
potential, because of Klein tunneling, but they can be confined
by a superconducting pair potential (Beenakker, 2008). A
quantum dot can therefore be constructed on the surface of a
topological insulator by suitably patterning the superconduc-
tor, as indicated in Fig. 7.
Chaotic scattering in this Andreev billiard cannot be probed

electrically, because the superconductor acts as a short, but
since the superconductor is a thermal insulator, one can rely

FIG. 4 (color online). Model calculation of a device similar to
Fig. 3, with an additional point contact (as shown in the inset) to
allow for variation of the number of transmitted modes. The ratio
of the spin-orbit coupling energy Eso and superconducting gapΔ0

is adjusted (at fixed Zeeman energy EZ ¼ 6Eso), so that the
superconductor is in either the topologically trivial phase
(Δ0=Eso ¼ 8) or the nontrivial phase (Δ0=Eso ¼ 4). By varying
the Fermi energy inside the point contact, the number N of
transmitted electronic modes is varied between 0 and 8. The first
conductance plateau in the topologically nontrivial phase remains
precisely quantized, notwithstanding the presence of a large
amount of disorder in the simulation. Adapted from Wimmer
et al., 2011.

FIG. 5 (color online). Chain of magnetic nanoparticles on a
superconducting substrate. If the direction of the magnetization
(arrows) varies along the chain, there can be Majorana zero
modes at the ends without any spin-orbit coupling in the super-
conductor.

FIG. 6 (color online). Right panel: schematic of a quantum dot,
created by a gate electrode at the edge of a quantum spin-Hall
(QSH) insulator in a perpendicular magnetic field B. A current I
is passed between metallic and superconducting contacts, and the
differential conductance dI=dV is determined as a function of the
bias voltage V. Results of a model calculation for an InAs/GaSb
quantum well are shown in the left panel. The Majorana zero
mode produces a resonant peak at V ¼ 0, which survives the
average over disorder realizations. Adapted from Beenakker
et al., 2013.
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on heat transport as a probe. The statistics of the thermal
conductance, dependent on the presence or absence of the
fundamental symmetries of time reversal, particle-hole con-
jugation, and chirality, is discussed in Sec. VII.
Chiral p-wave superconductor—In all these systems, the

superconductor itself has the conventional spin-singlet s-wave
pairing, and it is the proximity effect that provides the
topologically nontrivial phase. A two-dimensional supercon-
ducting layer with spin-triplet pairing and px � ipy orbital
symmetry can be topologically nontrivial on its own.
Strontium ruthenate is a candidate material for such chiral
p-wave pairing (Mackenzie and Maeno, 2003; Kallin and
Berlinsky, 2009). This material is predicted to host Majorana
zero modes, localized by magnetic vortices, as well as
Majorana edge modes, propagating along the boundaries.
The direction of propagation is opposite in domains of

opposite chirality, so that a domain wall forms a conducting
pathway for pairs of Majorana modes (see Fig. 8). The
Majorana edge modes are analogous to the chiral edge modes
of the quantum Hall effect, and the thermal conductance of the
domain wall is then analogous to the electrical conductance of
a bipolar junction between electron-doped and hole-doped
regions. The random-matrix statistics is different, because the

scattering matrix of the bipolar junction is complex unitary,
rather than real orthogonal. This difference stems from
the Majorana nature of the quasiparticle excitations of a
superconductor.

II. TOPOLOGICAL SUPERCONDUCTIVITY

A. Kitaev chain

The application of RMT to superconductivity is based on a
connection between the quasiparticle excitation spectrum and
the eigenvalues of a real antisymmetric matrix. By way of
introduction, we present this formulation in the context of one
of the physical systems from Sec. I, the chain of magnetic
nanoparticles on a superconducting substrate (see Fig. 5). This
provides possibly the simplest realization of the Kitaev chain,
a paradigm for Majorana zero modes and topological super-
conductivity (Kitaev, 2001).
Each magnetic nanoparticle (labeled n ¼ 1; 2;…;M) binds

a fermionic state near the Fermi level in the superconducting
gap (Yu, 1965; Shiba, 1968; Rusinov, 1969), through a
competition of the magnetic exchange energymn · σ (favoring
a spin-polarized state aligned with the magnetization mn) and
the pairing energy Δ0 (favoring a spin-singlet state). Adjacent
nanoparticles are coupled by a hopping energy t0 and feel a
chemical potential μ0. The mean-field Hamiltonian is

H ¼ −
X
n;α

ðt0a†nαanþ1;α þ H:c.Þ −
X
n;α

μ0a
†
nαanα

þ
X
n;α;β

ðmn · σÞαβa†nαanβ þ
X
n

ðΔ0an↑an↓ þ H:c:Þ; ð1Þ

where the abbreviation H.c. stands for Hermitian conjugate.
The operator anα is the fermion operator for a spin-α electron
on the nth nanoparticle and σ ¼ ðσx; σy; σzÞ denotes the vector
of Pauli matrices.
For large magnetization, the electron spin on the nth

nanoparticle is polarized along mn. The Hamiltonian (1)
can then be projected onto the lowest spin band, resulting
in an effective spinless Hamiltonian (Choy et al., 2011)

H ¼
X
n

½−ðtna†nanþ1 þ t0na
†
nanþ2 þ H:c:Þ − μna

†
nan

þ ðΔnananþ1 þ H:c:Þ�: ð2Þ

The coefficients tn; μn;Δn have become site dependent and an
additional next-nearest-neighbor hopping energy t0n has
appeared. More importantly, the pairing energy now couples
adjacent sites in the chain, with an effective pair potential Δn
of order Δ0t0=mn, dependent on the relative angle betweenmn
and mnþ1. For parallel magnetic moments Δn vanishes.
A Hamiltonian of the form in Eq. (2) was introduced by

Kitaev as a toy model for a p-wave superconductor. In the
magnetic chain, the p-wave pairing is obtained from
s-wave pairing due to the coupling of the electron spin to
local magnetic moments. (Rashba spin-orbit coupling has the
same effect in the semiconductor nanowires of Figs. 1 and 3.)

FIG. 7 (color online). Andreev billiard on the surface of a
topological insulator. A sign change of the superconducting pair
potential �Δ0 closes the excitation gap inside the billiard without
breaking time-reversal symmetry. The statistics of the thermal
conductance between two metal electrodes at temperature differ-
ence δT is governed by a random-matrix ensemble in symmetry
class DIII (in zero magnetic field), in class BDI (nonzero field at
the Dirac point), or class D (nonzero field away from the Dirac
point). Adapted from Dahlhaus, Béri, and Beenakker, 2010.

FIG. 8 (color online). Chiral p-wave superconductor with two
domains of opposite chirality. Arrows indicate the direction of
propagation of the Majorana edge modes. If the two modes along
the domain wall are uniformly mixed, the statistics of the thermal
conductance is determined by the probability distribution of a
2 × 2 orthogonal random matrix.
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B. Majorana operators

Majorana operators are defined by

γn1 ¼ an þ a†n

γn2 ¼ ian − ia†n

�
⇔

�
an ¼ ðγn1 − iγn2Þ=2;
a†n ¼ ðγn1 þ iγn2Þ=2.

ð3Þ

Each site (and each spin band) of the Kitaev chain is
associated with a pair of Majorana operators. By construction,
these are Hermitian operators, γns ¼ γ†ns, with the anticom-
mutation relation

γnsγn0s0 þ γn0s0γns ¼ 2δnn0δss0 :

We collect the Majorana operators in one large vector
Γ ¼ ðγ11; γ12; γ21; γ22;…Þ.
In the Majorana representation, the Hamiltonian becomes

the bilinear form

H ¼ constþ
X
n≠m

iΓnΓmAnm; A ¼ A� ¼ −AT: ð4Þ

The constant first term (arising from the product Γ2
n ¼ 1) is an

irrelevant energy offset and may be ignored. The Hamiltonian
is thus represented by a matrix A which is antisymmetric
(because Γn and Γm anticommute) and real (because H is
Hermitian). This matrix is the object to which the methods of
RMT are applied.
Any real antisymmetric matrix of even dimension can be

factored as (Youla, 1961)

A ¼ O

0
BBBBBB@

0 E1

−E1 0 ∅
. .
.

∅ 0 EM

−EM 0

1
CCCCCCA
OT; ð5Þ

with O ∈ Oð2MÞ a real orthogonal matrix and En ≥ 0. The
eigenvalues of A come in inverse pairs �En. This charge-
conjugation or particle-hole symmetry is intrinsic of the
mean-field theory of superconductivity. For thermodynamic
properties, it suffices to retain only the positive En’s, but for
dynamical properties, one needs a complete basis for A and so
both positive and negative En’s need to be retained.
The determinant of the matrix O in the Youla decom-

position (5) equals �1 and can only change sign when one of
the eigenvalues crosses zero; see Fig. 9. Because of the
identity PfA ¼ DetO

Q
nEn, one can also compute this sign

directly from the Pfaffian of A,

P ≡ DetO ¼ sgn PfA ¼ �1: ð6Þ

The physical interpretation of the quantum number P is that it
gives the fermion parity of the superconducting ground state
(Kitaev, 2001): All electrons are paired in the ground state for
P ¼ þ1, while there is one unpaired electron for P ¼ −1.

C. Majorana zero modes

As mentioned in connection with Fig. 2, one can count level
crossings to determine whether the superconductor is topo-
logically trivial or not: One would then close the chain into a
ring, pass a flux Φ through it, and compare the fermion parity
PðΦÞ at Φ ¼ 0 and Φ ¼ h=2e. If the two fermion parities
differ, the superconductor is topologically nontrivial (see
Kitaev, 2001),

Q ¼ Pð0ÞPðh=2eÞ ¼
�þ1 trivial;

−1 nontrivial:
ð7Þ

This is a thermodynamic signature of topological
superconductivity.
For a transport signature, one would keep the chain open

and determine the reflection matrix r from the left or right
end.2 At the Fermi level (E ¼ 0), the matrix r ∈ Oð2NÞ,
assuming the chain is sufficiently long that transmission
through it can be neglected. (The factor of 2 in the dimension
2N of r refers to the electron-hole degree of freedom.) The
transport equivalent of the condition (7) is (Akhmerov et al.,
2011)

Q ¼ sgnDetr ¼
� þ1 trivial;

−1 nontrivial:
ð8Þ

The transition Detr ¼ þ1 ↦ −1 happens via a closing of the
excitation gap, at which an eigenvalue of r passes through
zero. Such a topological phase transition is illustrated in
Fig. 10 for the model Hamiltonian (1).
To make the connection between Detr ¼ −1 and the

appearance of a Majorana zero mode at the end of the chain,
one can argue as follows (Fulga et al., 2011). Upon termi-
nation of one end with a barrier, the condition for a bound state
at E ¼ 0 is

FIG. 9 (color online). Excitation spectrum (solid curves) of two
magnetic particles with an angle θ ¼ 70° between their magnetic
moments, calculated from the Hamiltonian (1) at fixed μ0 ¼
jmnj ¼ 2Δ0 as a function of the hopping energy t0. The level
crossings at E ¼ 0 do not split because the ground states at the
two sides of the crossing differ in fermion parity P [dashed curve,
calculated from Eq. (6)]. Adapted from Choy et al., 2011.

2Which end does not matter, because the full scattering matrix S of
the open chain has determinant þ1 and DetS ¼ ðDetrleftÞðDetrrightÞ
in the absence of any transmission through the chain.
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Detð1 − rBrÞ ¼ 0: ð9Þ

The reflection matrix rB of the barrier has DetrB ¼ 1,
irrespective of Detr ¼ �1. The number N0 of bound states
is the number of eigenvalues þ1 of the orthogonal matrix rBr,
while the other 2N − N0 eigenvalues are either equal to −1 or
come in conjugate pairs e�iϕ. Hence DetðrBrÞ ¼ Detr ¼
ð−1ÞN0 , so if Detr ¼ −1, there is an unpaired (≡Majorana)
zero mode at the end of the chain.

D. Phase transition beyond mean field

Although random-matrix theory is not inherently limited to
single-particle Hamiltonians (it was originally developed for
strongly interacting nuclei), the application to superconduc-
tors relies on an effective single-particle description in which
the pairing interaction is treated at the mean-field level. While
the full Hamiltonian conserves the total number N of
electrons in the system, the mean-field Hamiltonian only
conserves the fermion parity: The pairing terms Δaa and
Δ�a†a† change N by �2. The resulting correspondence
between charge þe and charge −e quasiparticles is at the
origin of particle-hole symmetry, which can be thought of as
an emergent symmetry of the mean-field description.
It is reassuring that for special choices of the pairing

interaction the Kitaev model of topological superconductivity
can be solved exactly, without recourse to the mean-field
approximation (Ortiz et al., 2014). Considering a chain
of L sites with nearest-neighbor hopping energy t0 and
pairing interaction g0ηðn −mÞ between sites n and m, the
Hamiltonian takes the form

H ¼ −t0
XL
n¼1

ða†nanþ1 þ H:c:Þ − 4g0
L

I†I; ð10aÞ

I ¼
XL

1¼m<n

ηðn −mÞanam; anþL ¼ eiϕ=2an: ð10bÞ

The chain is closed in a ring containing a flux Φ ¼ ϕ × ℏ=2e,
corresponding to periodic or antiperiodic boundary conditions
for Φ ¼ 0 or Φ ¼ h=2e.
To arrive at the mean-field Kitaev Hamiltonian (2), one

would substitute 2I†I → hI†iI þ IhI†i, and add a chemical
potential term −μ0

P
na

†
nan to control the electron density

ρ ¼ N =L. Because the Hamiltonian (10) conserves the
particle number, the appropriate ensemble is canonical rather
than grand-canonical and no chemical potential term is
needed.
An exact solution is possible if the pairing interaction has

the p-wave form sinðk=2Þ in momentum space, correspond-
ing in real space to the long-range coupling

ηðsÞ ¼ 1

π

Z
π

−π
eiks sinðk=2Þdk ¼ 8i

π

ð−1Þss
1 − 4s2

: ð11Þ

(All lengths are measured in units of the lattice constant.)
For this choice of interaction, the Kitaev chain belongs to a
class of exactly solvable pairing Hamiltonians first studied
by Richardson (1963) and Gaudin (1976).
The mean-field Hamiltonian has a transition into a topo-

logically nontrivial “weak pairing” phase (Read and Green,
2000) at a critical pairing energy,

gc ¼
t0

1 − 2ρ
: ð12Þ

Majorana zero modes appear at the end points of the
open chain for g0 < gc. Because of the long range of the
interaction potential, they only decay algebraically into
the bulk (DeGottardi et al., 2013; Pientka, Glazman, and
von Oppen, 2013; Vodola et al., 2014).
To establish the transition from a topologically trivial to

nontrivial state in a particle-conserving Hamiltonian, we
determine the ground-state fermion parity from the (inverse)
compressibility,

FIG. 10 (color online). Determinant of the reflection matrix at
one end of a chain of magnetic nanoparticles [Hamiltonian from
Eq. (1)], ensemble averaged over random and uncorrelated
orientations of the magnetic moments (with fixed magnitude
jmnj ¼ 2t0 and Δ0 ¼ 0.9t0). The transition into the topologically
nontrivial phase becomes sharper with increasing lengthM of the
chain. Adapted from Choy et al., 2011.

FIG. 11 (color online). Dependence of the (inverse) compress-
ibility (13) on the pairing strength g0 of the Kitaev chain, for
periodic boundary conditions (þ data points) and for antiperiodic
boundary conditions (∘ data points), calculated from the particle-
number conserving Hamiltonian (10) for N ¼ 2N ¼ 512,
L ¼ 2048. The dashed curves result in the thermodynamic limit
N ; L → ∞ at fixed ρ ¼ N =L ¼ 0.25. The inset shows the mean-
field phase diagram. Adapted from Ortiz et al., 2014.
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KðΦÞ ¼ 1
2
E0ð2N þ 1;ΦÞ þ 1

2
E0ð2N − 1;ΦÞ − E0ð2N;ΦÞ;

ð13Þ

where E0ðN ;ΦÞ is the lowest eigenvalue of the Kitaev
chain containing N electrons and enclosing a flux Φ. The
topological invariant (7) then follows from

Q ¼ sgn½Kð0ÞKðh=2eÞ�: ð14Þ

The exact results shown in Fig. 11 demonstrate a topological
phase transition at g0=t0 ¼ 2 for ρ ¼ 0.25, as predicted by the
mean-field Hamiltonian.

III. FUNDAMENTAL SYMMETRIES

In the disordered systems to which RMT is applied, trans-
lational and rotational symmetries are broken. If a unitary
symmetry remains, so ifH ¼ UHU† for some unitary operator
U, then the Hamiltonian H can be decomposed into blocks
acting on subspaces within which U is the identity operator
(times a phase factor). The unitary symmetry can thus be
ignored if we restrict ourselves to one block. Constraints on the
Hamiltonian that cannot be removed in this way arise from
particle-hole and time-reversal symmetry. These are antiunitary
symmetries H ¼ �UH�U†, involving a complex conjugation.

A. Particle-hole symmetry

As mentioned in Sec. II.B, when we introduced the
Majorana operators, particle-hole (or charge-conjugation)
symmetry is a property of the mean-field theory of super-
conductivity. For spin-singlet s-wave pairing, the mean-field
Hamiltonian has the general form (Bogoliubov, 1958; de
Gennes, 1966)

H ¼ Ψ̂†HΨ̂; Ψ̂ ¼ ðψ̂ ; ψ̂†Þ ¼ ðψ̂↑; ψ̂↓; ψ̂
†
↑; ψ̂

†
↓Þ; ð15Þ

H ¼
�
H0 − EF −iσyΔ
iσyΔ� EF −H�

0

�
: ð16Þ

The Hermitian operator H acts on the four-component
Nambu spinor Ψ̂, which is a field operator in second
quantization.3

In first quantization, one can interpret H as the Hamiltonian
that governs the dynamics of Bogoliubov quasiparticles,

HΨðr; tÞ ¼ iℏ
∂
∂tΨðr; tÞ; ð17Þ

Ψ ¼ ðψe;ψhÞ ¼ ðψe↑;ψe↓;ψh↑;ψh↓Þ: ð18Þ

This matrix wave equation is called the Bogoliubov–
de Gennes (BdG) equation. The upper-left block H0 − EF
of H acts on the electron component ψe, while the lower-right
block EF −H�

0 acts on the hole component ψh. The off-
diagonal blocks couple electrons and holes in opposite spin
bands ↑;↓ (switched by the Pauli matrix4 σy), through the
(complex) pair potential Δ.
Each eigenfunction Ψ of H at energy E > 0 has a copy τxΨ

at −E. (The Pauli matrix τx switches electrons and holes.) The
corresponding symmetry of H,

H ¼ −CHC−1 ¼ −τxH�τx; ð19Þ

is called “particle-hole symmetry.”5 The charge-conjugation
operator C ¼ τxK, with K the operator of complex conjuga-
tion, is antiunitary and squares to þ1.
If H0 is spin independent, then the Hamiltonian (16)

decouples into the two blocks

H� ¼
�
H0 − EF �Δ
�Δ� EF −H�

0

�
; ð20Þ

acting separately on ðψe↓;ψh↑Þ and ðψe↑;ψh↓Þ. The charge-
conjugation operator C ¼ iτyK for each block now squares
to −1.

B. Majorana representation

The Majorana nature of Bogoliubov quasiparticles is
hidden in the electron-hole basis (18), but becomes apparent
upon a unitary transformation,

H ↦ ΩHΩ†; Ω ¼
ffiffiffi
1

2

r �
1 1

i −i

�
; ð21aÞ

Ψ ↦ ΩΨ ¼
ffiffiffi
1

2

r �
ψe þ ψh

iψe − iψh

�
: ð21bÞ

3The Hamiltonian (16) is sometimes given in the alternative basis
ðψ̂↑; ψ̂↓;−ψ̂†

↓; ψ̂
†
↑Þ, when it has the form

~H ¼
�H0 − EF Δ

Δ� EF − σyH�
0σy

�
;

with a scalar off-diagonal block. The charge-conjugation operator
then equals ~C ¼ ðσy ⊗ τyÞK. We prefer the equivalent representation
(16) because of the simpler C ¼ τxK. Note that both C and ~C square to
þ1.

4The matrices σα and τα act on, respectively, the spin and particle-
hole degree of freedom, according to

σ0 ¼
�
1 0

0 1

�
; σx ¼

�
0 1

1 0

�
;

σy ¼
�
0 −i
i 0

�
; σz ¼

�
1 0

0 −1
�
:

5The term particle-hole symmetry is also used in semiconductor
physics, with a different meaning: The symmetry (19) expresses the
fact that creation and annihilation operators are each other’s Hermitian
conjugate; see Eq. (15). It holds at all energies, irrespective of the band
structure. Particle-hole symmetry in semiconductors holds if we
linearize the band structure near the Fermi level, so that filled states
above the Fermi level and empty states below it have the same
dispersion. In the context of superconductors, this is called the
“Andreev approximation”; it is unrelated to Eq. (19).

1044 C.W. J. Beenakker: Random-matrix theory of Majorana fermions and …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



This is the Majorana representation introduced for the Kitaev
chain in Sec. II.B. The particle-hole symmetry relation (19)
now reads simply

C ¼ K; H ¼ −H�; ð22Þ

so H ¼ iA is given by a real antisymmetric matrix A [as
in Eq. (4)].
The BdG equation (17) becomes a real wave equation,

AΨðr; tÞ ¼ ℏ
∂
∂tΨðr; tÞ: ð23Þ

The corresponding field operator is self-conjugate, Ψ̂ðr; tÞ ¼
Ψ̂†ðr; tÞ, so creation and annihilation operators are one and the
same. In this sense, a Bogoliubov quasiparticle is a Majorana
fermion.
All of this refers to the four-component BdG Hamiltonian

(16), with C2 ¼ þ1, so C ↦ K can be achieved by a unitary
transformation. The wave equation for the reduced two-
component BdG Hamiltonian (20), with C2 ¼ −1, cannot
be brought to a real form by any unitary transformation.
Superconductor quasiparticles are typically probed in the

energy domain, rather than in the time domain. The Fourier
transform

ΨEðrÞ ¼
Z

dteiEt=ℏΨðr; tÞ ¼ Ψ†
−EðrÞ ð24Þ

is real at E ¼ 0, so for quasiparticles with vanishingly small
excitation energy. Transport experiments at small voltage and
low temperature can therefore probe the Majorana nature of
Bogoliubov quasiparticles.

C. Time-reversal and chiral symmetry

Antiunitary symmetries come in two types, the Hamiltonian
H may commute or anticommute with an antiunitary operator.
The particle-hole symmetry discussed in Sec. III.A is the
anticommutation HC ¼ −CH, while the commutation HT ¼
T H is called “time-reversal symmetry.” The physical oper-
ation of time reversal should reverse the spin T σkT −1 ¼ −σk
as well as the momentum T pT −1 ¼ −p. The corresponding
operator T ¼ iσyK squares to −1. The Hamiltonian (16)
commutes with T if Δ is real and

H0 ¼ T H0T −1 ¼ σyH�
0σy: ð25Þ

For a real Hamiltonian, we can take T ¼ K squaring toþ1.
The combination of this fake time-reversal symmetry with the
particle-hole symmetry (19) implies that

Hτx ¼ −τxH: ð26Þ

Such anticommutation of the Hamiltonian with a unitary
operator HU ¼ −UH is called a “chiral symmetry.”
If we change basis such that τx ↦ τz, the chiral symmetry

(26) implies that the Hamiltonian in the new basis has the
block structure

H ↦

�
0 h

h† 0

�
: ð27Þ

Because the nonzero blocks are not on the diagonal, we cannot
restrict ourselves to a single block, as we could have done ifH
would commute rather than anticommute with U.

IV. HAMILTONIAN ENSEMBLES

A. The tenfold way

When Wigner conceived of random-matrix theory in the
context of nuclear physics, there was only a single ensemble
of real Gaussian Hamiltonians (Wigner, 1956, 1967). How
this number grew to ten is a remarkable development in
mathematical physics, starting with Dyson’s threefold way
(Dyson, 1962): The Gaussian orthogonal, unitary, and sym-
plectic ensembles (GOE, GUE, and GSE) of Hermitian
matrices H with Gaussian elements that are real, complex,
and quaternion, respectively. (The names refer to the type of
transformation that diagonalizes the Hamiltonian.) Which of
the three Wigner-Dyson ensembles applies is determined by
the symmetry under time reversal.
Dyson understood the algebraic reason for the trinity: There

are only three types of numbers (real, complex, and quatern-
ion) that can be used to construct a vector space for a quantum
theory.6 Dyson also appreciated that the three circular ensem-
bles (COE, CUE, and CSE) obtained by exponentiating
S ¼ eiH correspond to 3 of the 10 compact symmetric spaces
of differential geometry (Dyson, 1970).7

It would take several decades before all 10 ensembles were
identified in a physical context. The number of ensembles was
first expanded to 6 by adding chiral symmetry in the context of
QCD (Verbaarschot, 1994; Verbaarschot and Wettig, 2000),
and then completed to 10 by adding particle-hole symmetry in
the context of superconductivity (Altland and Zirnbauer,
1997; Heinzner, Huckleberry, and Zirnbauer, 2005).
To understand why considerations of symmetry produce a

tenfold classification, one searches for unitary or antiunitary
operators that commute or anticommute with the Hamiltonian:

• A unitary operator U that commutes with H can be
removed from consideration by restricting H to an
eigenspace of U. (This is possible because H and U
can be diagonalized simultaneously if HU ¼ UH.)

• An antiunitary operator T that commutes with H
produces two symmetry classes, depending on whether
T 2 ¼ þ1 or −1. This takes care of time-reversal sym-
metry without particle-hole symmetry.

• An antiunitary operator C that anticommutes with H and
squares to �1 also produces two symmetry classes.

6The technical statement is that there are only three associative
normed division algebras (Baez, 2012).

7The ten compact symmetric spaces consist of the orthogonal,
unitary, and symplectic groups OðNÞ, UðNÞ, and Spð2NÞ, the three
cosets Xðpþ qÞ=XðpÞ × XðqÞ with X ¼ O;U; Sp, and four more
cosets UðNÞ=OðNÞ, Uð2NÞ=Spð2NÞ, Oð2NÞ=UðNÞ, Spð2NÞ=UðNÞ
(Zirnbauer, 1996; Caselle and Magnea, 2004). The CUE, COE, and
CSE correspond, respectively, to UðNÞ, UðNÞ=OðNÞ, and
Uð2NÞ=Spð2NÞ.
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This takes care of particle-hole symmetry without time-
reversal symmetry.

• The combination of C2 ¼ �1 and T 2 ¼ �1 produces
four symmetry classes. This takes care of time-reversal
symmetry with particle-hole symmetry.

• The product CT is a unitary operator that anticommutes
with H. The presence or absence of this chiral symmetry
produces an additional two symmetry classes if neither
time-reversal nor particle-hole symmetry apply.

In Table I, we summarize the ten symmetry classes that follow
from this inventory. The (seemingly unsystematic) labeling of
each class, shown in the top row of the table, is the Cartan
name of the compact symmetric space.
For a random-matrix approach, the Hamiltonian operator is

represented by an N ×N Hermitian matrix H ¼ H†. In the
Gaussian ensemble, the Hamiltonian has the probability
distribution8

PðHÞ ∝ exp
�
−

c
N

TrH2
�
; ð28aÞ

c ¼ π2βE
8δ20

×

�
2 in class A;AI;AII;

1 in the other classes;
ð28bÞ

where δ0 is the mean level spacing of H in the bulk of the
spectrum and βE ∈ f1; 2; 4g describes the strength of the level
repulsion (see Sec. IV.C). The Gaussian form is chosen for
mathematical convenience; in the large-N limit, the spectral
correlations depend only on the symmetries of H.
The tenfold way of RMT provides the basis for the

classification of topologically distinct states of matter
(Schnyder et al., 2008; Kitaev, 2009; Ryu et al., 2010).
Five of the ten symmetry classes allow for a topological
invariant ν, integer valued (ν ∈ Z) in class BDI, CII, AIII and

binary (ν ∈ Z2) in class D and DIII. The existence of a Z
invariant was first noticed in the context of QCD, where ν is
the topological charge of a gauge field configuration (Shuryak
and Verbaarschot, 1993; Verbaarschot and Zahed, 1993). The
Z2 invariant first appeared in studies of the spectral statistics
of a vortex core in a p-wave superconductor (Bocquet,
Serban, and Zirnbauer, 2000; Ivanov, 2002), as we discuss
next.

B. Midgap spectral peak

The �E particle-hole symmetry modifies the spectral
correlations near E ¼ 0. This is the Fermi level, in the middle
of the superconducting gap, so to allow for states near E ¼ 0

one needs to locally close the gap, for example, by means of a
magnetic vortex (Caroli, de Gennes, and Matricon, 1964). If
spin-rotation symmetry is broken by spin-orbit coupling, the
system is in symmetry class D. The particle-hole symmetry
relation (22) requires that H ¼ iA is purely imaginary in the
Majorana basis, and since it is also Hermitian it must be an
antisymmetric matrix: Anm ¼ −Amn ¼ A�

nm. There are no
other symmetry constraints in class D.
In the Gaussian ensemble, the upper-diagonal matrix

elements Anm (n > m) of the real antisymmetric matrix A
all have identical and independent distributions,

PðfAnmgÞ ∝
Y
n>m

exp

�
−
π2A2

nm

2N δ20

�
ð29Þ

[cf. Eq. (28) with βE ¼ 2]. As for any antisymmetric matrix,
the eigenvalues come in �E pairs, so if N is odd then H
necessarily has one eigenvalue pinned at zero—a Majorana
zero mode; see Sec. II.C. For the nonzero eigenvalue pairs
�En, the Gaussian ensemble gives the probability distribution
(Mehta, 2004)

PðfEngÞ ∝
Y0

i<j

ðE2
i − E2

jÞ2
Y0

k

E2ν
k exp

�
−

π2E2
k

2N δ20

�
: ð30Þ

TABLE I. The tenfold way classification of Hamiltonians H and scattering matrices S at the Fermi level. The symmetry classes are
distinguished by the antiunitary symmetries C (particle-hole) and T (time-reversal), squaring to þ1 or −1. (A cross indicates that the symmetry
is not present.) The third row lists whether or not the product CT is a chiral symmetry of the Hamiltonian. The degeneracies d and repulsion
exponents α; β of the energy and transmission eigenvalues are distinguished by subscripts E; T. (Uncoupled spin bands are not included in
the degeneracy count.) The integer ν counts the number of dE-fold degenerate, topologically protected zero modes (Majorana in class D, BDI,
and DIII).

D BDI DIII C CI CII A AI AII AIII

HC ¼ −CH, C2 ¼ þ1 þ1 þ1 −1 −1 −1 × × × ×
HT ¼ T H, T 2 ¼ × þ1 −1 × þ1 −1 × þ1 −1 ×
HCT ¼ −CT H × ✓ ✓ × ✓ ✓ × × × ✓

ν 0,1 0,1,2,3,… 0,1 0 0 0,1,2,3,… 0 0 0 0,1,2,3,…
dE 1 1 2 1 1 2 1 1 2 1
αE 0 0 1 2 1 3 0 0 0 1
βE 2 1 4 2 1 4 2 1 4 2

S−1 ¼ ST (orthogonal) τySTτy (symplectic) S† (unitary)
ST ¼ × þS −S × þS −S × þS −S S�
dT 1 1 2 2 2 2 1 1 2 1
αT −1 −1 −1 2 1 −1 0 0 0 −1
βT 1 1 2 4 2 4 2 1 4 2

8The factor-of-2 difference in the coefficient c is there on account
of the �E symmetry of the spectrum in the classes with particle-hole
or chiral symmetry; see Mi et al. (2014). The mean level spacing δ0
refers to distinct levels, not counting degeneracies.
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The primed product
Q0 is a reminder that only positive

energies are included. The number ν indicates the presence or
absence of a Majorana zero mode: ν ¼ 1 if N is odd and
ν ¼ 0 if N is even.
In either case ν ¼ 0; 1 the ensemble-averaged density of

states ρðEÞ has a peak at E ¼ 0 (Altland and Zirnbauer, 1997;
Bocquet, Serban, and Zirnbauer, 2000; Ivanov, 2002; Mehta,
2004),

ρðEÞ ¼
�
ρþðEÞ if ν ¼ 0;

ρ−ðEÞ þ δðEÞ if ν ¼ 1;
ð31Þ

ρ�ðEÞ ¼ δ−10 � sinð2πE=δ0Þ
2πE

ð32Þ

(see Fig. 12).
A physical realization of a class D, ν ¼ 1 vortex is offered

by the surface of a three-dimensional topological insulator
(such as Bi2Te3) covered by an s-wave superconductor
(Fu and Kane, 2008). The small level spacing δ0 ≃ Δ2

0=EF
in the vortex core (with superconducting gap Δ0 much smaller
than the Fermi energy EF) complicates the detection of the
midgap spectral peak at experimentally accessible temper-
atures (Xu et al., 2015). Note that ρ ¼ ρþ and ρ ¼ δðEÞ þ ρ−
have identical spectral weight

R ðρ − 1=δ0ÞdE ¼ 1=2, so a
thermally smeared density of states is not a prominent
signature of a Majorana zero mode. (The transport signatures
discussed in Sec. VI are more reliable for that purpose.)
The midgap spectral peak does serve as an unambiguous

distinction between symmetry classes C and D, with and
without spin-rotation symmetry. Particle-hole symmetry of the
class-C Hamiltonian (20) can be expressed as

H� ¼ −τyH�
�τy ¼

�
0 1

−1 0

�
H�

�

�
0 1

−1 0

�
; ð33Þ

where the subscript � labels the spin degree of freedom and
the subblocks refer to the electron-hole degree of freedom.
Because of the spin degeneracy, it is sufficient to consider
Hþ ≡ iQ.
Equation (33) implies that the matrix elements of the

N ×N anti-Hermitian matrix Q are quaternion numbers of
the form

Qnm ¼ anmτ0 þ ibnmτx þ icnmτy þ idnmτz; ð34Þ

with real coefficients a; b; c; d and indices n;m ¼
1; 2;…;N =2. (The dimensionality N is necessarily even in
class C.) The corresponding eigenvalue distribution has the
form (30) with ν ¼ 1, but without any level pinned at zero.
(There are no Majorana zero modes in class C.) As a
consequence, the average density of states is ρðEÞ ¼ ρ−ðEÞ
without the delta-function contribution, so instead of a midgap
spectral peak there is now a midgap spectral dip (Altland and
Zirnbauer, 1997).

C. Energy level repulsion

The random-matrix ensembles of class A, AI, AII intro-
duced by Wigner and Dyson have distinct power laws for the
probability to find two levels Ei and Ej close to each other
(Dyson, 1962; Wigner, 1967). The probability vanishes as
jEi − EjjβE , with βE ¼ 2 in the absence of time-reversal
symmetry, βE ¼ 1 if T 2 ¼ þ1, and βE ¼ 4 if T 2 ¼ −1.
All of this still applies if we add �E symmetry, due to

particle-hole or chiral symmetry. The probability distribution
of the positive eigenvalues then has a factor

Y0

i<j

jE2
i − E2

j jβE ¼
Y0

i<j

jEi − EjjβE jEi þ EjjβE ; ð35Þ

with βE cycling through 2, 1, 4; see Table I. This factor
describes the repulsion of a level Ei > 0 with the pair of
levels �Ej.
A new feature of particle-hole symmetry is the repulsion of

a level at þE with its counterpart at −E. This repulsion
introduces a factor

Q0
k jEkjαE into the probability distribution,

with an exponent αE that may be different from βE. In class C,
one has αE ¼ βE ¼ 2, but in class D instead αE ¼ 0, so there
is no level repulsion at the Fermi level in a class-D super-
conductor (Altland and Zirnbauer, 1997). Figure 2 illustrates
this in a computer simulation: Level crossings are avoided
away from the Fermi level, but at the Fermi level pairs of
levels may cross. (The physical significance of the level
crossings is discussed in Sec. VIII.A.)
For reference, we record the complete expressions (Altland

and Zirnbauer, 1997; Ivanov, 2002) for the probability
distributions of energy levels in the ten symmetry classes
from Table I:

PðfEngÞ ∝
YN =dE

1¼i<j

jEi − EjjβE
YN =dE

k¼1

exp

�
−
π2βEdEE2

k

4N δ20

�

in class A;AI;AII; ð36Þ

(a) (b)

(c)

FIG. 12 (color online). (a),(b) The spectrum of a vortex core in a
class-D superconductor. The �E symmetric spectrum may or
may not have an unpaired Majorana zero mode, pinned to E ¼ 0.
The ensemble-averaged density of states (32) is plotted in (c). The
delta-function contribution from the zero mode is accompanied
by a dip in the smooth part ρ− of the density of states. Without the
zero mode, there is a midgap spectral peak ρþ. The density of
states in symmetry class C is given by ρ− without the zero mode
contribution.
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PðfEngÞ ∝
Y0

ðN−νdEÞ=2dE

k¼1

jEkjαEþνβE exp

�
−
π2βEdEE2

k

4N δ20

�

×
Y0

ðN−νdEÞ=2dE

1¼i<j

jE2
i − E2

j jβE ; in the other classes:

ð37Þ

The dE-fold degenerate levels are included only once in
each product, and the primed product indicates that only
positive energies are included (excluding also the νdE zero
modes). The effect of the repulsion factor jEjαEþνβE on the
density of states in the Altland-Zirnbauer ensembles is shown
in Fig. 13.

V. SCATTERING MATRIX ENSEMBLES

A. Fundamental symmetries

We seek to probe Majorana fermions by means of electrical
or thermal transport at low voltages and temperatures, near the
Fermi level where the Majorana operators (24) are self-
conjugate. These transport properties are determined by a
quantum mechanical scattering problem, in which a set of

incident and outgoing wave amplitudes ψ in
n , ψout

n , n ¼
1; 2;…; N, is linearly related by

ψout
n ðEÞ ¼

XN
m¼1

SnmðEÞψ in
mðEÞ: ð38Þ

The scattering is elastic, so incident and outgoing states are at
the same energy E, and it is conservative, so

P
njψout

n j2 ¼P
njψ in

n j2 and S ∈ UðNÞ is a unitary N × N matrix,

S−1ðEÞ ¼ S†ðEÞ ⇔
X
k

SnkðEÞS�mkðEÞ ¼ δnm: ð39Þ

The Cayley transform (Mahaux and Weidenmüller, 1968;
Verbaarschot, Weidenmüller, and Zirnbauer, 1985),

SðEÞ ¼ 1 − iπKðEÞ
1þ iπKðEÞ ; KðEÞ ¼ W† 1

E −H
W; ð40Þ

relates the unitary scattering matrix SðEÞ to the matrix KðEÞ,
being the Green’s function ðE −HÞ−1 projected onto the
scattering states by a coupling matrix W. [The K matrix is
known as the reaction matrix in the theory of nuclear
scattering (Wigner and Eisenbud, 1947). We assume that W
commutes with both the charge-conjugation operator C and
the time-reversal operator T . [See Fulga, Hassler, and
Akhmerov (2012) for a more general treatment of the
symmetry constraints on the scattering matrix.]
Particle-hole symmetry H ¼ −CHC−1 of the Hamiltonian

translates into the scattering-matrix symmetry,

Sð−EÞ ¼ CSðEÞC−1 ¼
�
S�ðEÞ if C ¼ K;

τyS�ðEÞτy if C ¼ iτyK:
ð41Þ

At the Fermi level, E ¼ 0; this implies that Sð0Þ ∈ OðNÞ is a
real orthogonal matrix for C2 ¼ þ1, while Sð0Þ ∈ SpðNÞ is a
unitary symplectic matrix9 for C2 ¼ −1.
Time-reversal symmetry H ¼ T HT −1 translates into

SðEÞ ¼ T S†ðEÞT −1 ¼
�
STðEÞ if T ¼ K;

σySTðEÞσy if T ¼ iσyK;
ð42Þ

where the superscript T denotes the transpose. This may be
written more succinctly, upon a change of basis S ↦ iσyS of
the outgoing modes, as a condition of symmetry or anti-
symmetry,

SðEÞ ¼ �STðEÞ; ð43Þ

depending on whether the antiunitary operator T squares to
þ1 or −1. Finally, chiral symmetry HCT ¼ −CT H translates
into

FIG. 13 (color online). Ensemble-averaged density of states in
the four Altland-Zirnbauer ensembles, calculated numerically for
Hamiltonians of dimensionality N ¼ 60 in class C and CI, N ¼
60þ ν in class D, and N ¼ 120þ 2ν in class DIII. [Analytical
expressions in the large-N limit are collected in Ivanov (2002),
where class D, ν ¼ 1 is called “class B.”] The delta-function
singularity of the zero mode for ν ¼ 1 is not plotted. Except for
class D with ν ¼ 0, the density of states vanishes at the Fermi
level as jEjαEþνβE . Adapted from Mi et al., 2014.

9Orthogonal and symplectic matrices are both unitary, but while
the matrix elements of an orthogonal matrix are real numbers, the
matrix elements of a symplectic matrix are quaternions, of the form
given in Eq. (34).
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SðEÞ ¼ CT S†ð−EÞðCT Þ−1: ð44Þ

The symmetry requirements on the scattering matrix at the
Fermi level (E ¼ 0) are summarized in Table I, for each of the
ten symmetry classes.

B. Chaotic scattering

The approach of random-matrix theory applies if the
scattering is chaotic. Chaotic scattering is a concept that
originates from classical mechanics, referring to the expo-
nential sensitivity of a trajectory to a slight change in initial
condition (Gutzwiller, 1990). This concept was transferred to
quantum mechanics (Blümel and Smilansky, 1990), by con-
sidering—at a fixed energy—the ensemble of scattering
matrices produced by slight deformations of the scattering
potential. Chaotic scattering then refers to a uniform distri-
bution10 of this ensemble in the unitary group,

PðSÞ ¼ const; S ∈ UðNÞ: ð45Þ

This so-called circular unitary ensemble (abbreviated to CUE)
was introduced in the early days of RMT (Dyson, 1962), long
before the advent of quantum chaos. It has found many
applications in the context of microwave cavities (Stöckmann,
2007) and electronic quantum dots (Beenakker, 1997).
The constraint (43) on the scattering matrix imposed by

time-reversal symmetry restricts S to a subset of UðNÞ. A
symmetric scattering matrix S ¼ UUT ¼ ST applies to elec-
trons when their spin is conserved by the scattering potential.
The ensemble generated by the uniform distribution of
U ∈ UðNÞ then describes chaotic scattering. Somewhat con-
fusingly, this ensemble is called the circular orthogonal
ensemble (abbreviated to COE) although it does not contain
orthogonal matrices. The name refers to the fact that unitary
symmetric matrices form the coset UðNÞ=OðNÞ of the
orthogonal group OðNÞ.
In the presence of spin-orbit coupling, the constraint of time-

reversal symmetry reads S ¼ UσyUTσy. The uniform distri-
bution of U ∈ UðNÞ, with N even, then produces the circular
symplectic ensemble (abbreviated to CSE), thus called because
S is in the coset UðNÞ=SpðNÞ of the unitary symplectic group
SpðNÞ. Equivalently, upon a change of basis S ↦ iσyS, we
may describe the CSE by the set of unitary antisymmetric
matrices (Bardarson, 2008), S ¼ UσyUT ¼ −ST.

C. Circular ensembles

Superconductivity introduces a new type of scattering
process, Andreev scattering (Andreev, 1964), which is the
conversion of an electronlike excitation at EF þ E into a
holelike excitation at EF − E. At the Fermi level, for excita-
tion energy E → 0, electrons and holes have complex con-
jugate wave functions. A linear superposition produces

quasiparticles with a real wave function, the self-conjugate
Majorana fermions discussed in Sec. III.B.
Andreev scattering does not conserve charge (the missing

charge is accounted for by the superconducting condensate),
but it does conserve particle number. The scattering matrix
SðEÞ therefore remains a unitary matrix, of dimension 2N ×
2N to accommodate the N electron and N hole degrees of
freedom. The constraint of a real scattering amplitude of
Majorana fermions restricts Sð0Þ to the orthogonal subgroup
Oð2NÞ. Chaotic scattering then implies a uniform distribution,

PðSÞ ¼ const; S ∈ Oð2NÞ: ð46Þ

This extension of Dyson’s circular ensembles to include
Andreev scattering was introduced by Altland and Zirnbauer
(1997).
A few words about nomenclature. The name circular

orthogonal ensemble for the distribution (46) would be most
logical, but this name is already taken for the ensemble of
unitary symmetric matrices (COE). We have become used to
calling it the circular real ensemble (CRE)—another name
found in the literature (Pozniak, Zyczkowski, and Kus, 1998)
is “Haar orthogonal ensemble.” An alternative name could be
“class D” ensemble, referring to the mathematical labeling of
symmetric spaces (Caselle and Magnea, 2004), but as
Zirnbauer (2011) argued one should distinguish the symmetry
of the matrix space from the uniformity of the matrix
ensemble.
The restriction S ¼ �ST to symmetric or antisymmetric

orthogonal matrices produces two further ensembles, which
we refer to as TþCRE (symmetry class BDI) and T−CRE
(symmetry class DIII). This is analogous to how the CUE
produces the COE and CSE, but the physics is different. A
Majorana zero mode is a coherent superposition of electrons
and holes from the same spin band, while Andreev scattering
couples opposite spin bands. Spin-orbit coupling is therefore
needed to mix the spin bands and realize the CRE—while the
CUE can exist with or without spin-orbit coupling. As a
consequence, time-reversal symmetry can realize only the
ensemble T−CRE of antisymmetric orthogonal matrices. The
symmetry that is responsible for the ensemble TþCRE of
symmetric orthogonal matrices is the “chiral” symmetry
discussed in Sec. III.C.
In Table II, we summarize the three scattering matrix

ensembles that support Majorana zero modes. The first row
lists the name of the ensemble and the second row lists the
name of the corresponding symmetric space. The last row lists
the topological invariant, discussed next.

D. Topological quantum numbers

Typically, whenever the orthogonal group appears in a
physics problem, it is sufficient to consider only matrices with
determinant DetS ¼ þ1—the so-called special orthogonal
group (denoted SO or Oþ). The remaining orthogonal
matrices in O− have DetS ¼ −1, they are disconnected from
the identity matrix and would seem unphysical.
The advent of topological superconductors (Hasan and

Kane, 2010; Ryu et al., 2010; Qi and Zhang, 2011) has
provided for a physical realization of orthogonal scattering

10Uniformity in the unitary group is defined in terms of the Haar
measure dU ¼ dðUU0Þ for any fixed U0 ∈ UðNÞ. See Mezzadri
(2007) for how one can generate random matrices with this uniform
distribution, and Creuz (1978) and Collins and Sniady (2006) for how
one can perform integrals

R
dU of polynomials of U.
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matrices with DetS ¼ −1 (Bocquet, Serban, and Zirnbauer,
2000; Merz and Chalker, 2002; Akhmerov et al., 2011). More
generally, the three ensembles from Table II each decompose
into disjunct subensembles, distinguished by an integer Q
called “topological quantum number” or “topological invari-
ant.” In terms of the scattering matrix, this number is
represented by (Fulga et al., 2011)

Q ¼ DetS ¼ �1 in class D ðCREÞ; ð47Þ

Q ¼ 1
2
TrS ∈ f0;�1;…� Ng in class BDI ðTþCREÞ; ð48Þ

Q ¼ PfS ¼ �1 in class DIII ðT−CREÞ: ð49Þ

In the CRE, the two subensembles correspond to a uniform
distribution of the orthogonal matrix S in O�ð2NÞ. The
orthogonal antisymmetric matrices in the T−CRE can be
decomposed as

S ¼ OJOT; O ∈ O�ð2NÞ; J ¼
�

0 1

−1 0

�
; ð50Þ

where each block of J has dimensionN × N. Again, a uniform
distribution of O ∈ O�ð2NÞ produces two subensembles,
distinguished by the Pfaffian of the scattering matrix,11

PfS ¼ ðPfJÞðDetOÞ ¼ ð−1ÞNðN−1Þ=2DetO ¼ �1: ð51Þ

Finally, in the TþCRE, the scattering matrix is both
orthogonal and symmetric, so its eigenvalues are �1 and it
has the decomposition

S ¼ OΣOT; O ∈ Oþð2NÞ;
Σ ¼ diagð�1;�1;…� 1Þ:

ð52Þ

The matrix Σ is a so-called “signature matrix” and the number
of −1’s on the diagonal represents the signature νðSÞ of S.
Now we may take O ∈ Oþð2NÞ without loss of generality,
while the subensembles are distinguished by the trace (or the
signature) of the scattering matrix,

1
2
TrS ¼ 1

2
TrΣ ¼ N − νðSÞ ¼ 0;�1;…;�N: ð53Þ

The invariantQ of symmetry class D and DIII is called a Z2

topological quantum number, because it can take on only two

values. Symmetry class BDI has a Z topological quantum
number, because as N is variedQ ranges over all (positive and
negative) integer values. These invariants first appeared as
winding numbers of Fermi surfaces, hence the adjective
“topological” (Schnyder et al., 2008; Kitaev, 2009; Hasan
and Kane, 2010; Ryu et al., 2010; Qi and Zhang, 2011). In the
present context of scattering matrices, whereQ results from an
operation in linear algebra (Fulga et al., 2011), the name
“algebraic invariant” might be more natural.
Classes D, DIII, and BDI are the three symmetry classes

that support Majorana zero modes. Two further symmetry
classes, AIII and CII, have a Z topological quantum number
given by the same Eq. (48) as class BDI, but the corresponding
zero modes lack the self-conjugate Majorana nature (in class
AIII because of the absence of particle-hole symmetry, in class
CII because particle-hole symmetry relates different spin
bands).

VI. ELECTRICAL CONDUCTION

A. Majorana nanowire

A semiconducting layer on a superconducting substrate is
in symmetry class D when both time-reversal symmetry and
spin-rotation symmetry are broken. The Bogoliubov–
de Gennes Hamiltonian has the form of Eq. (16), with

H0 ¼
p2

2meff
þ UðrÞ þ αso

ℏ
ðσxpy − σypxÞ þ

1

2
geffμBBσx:

ð54Þ

The first two terms give the kinetic energy and electrostatic
potential energy. In the third term the momentum p ¼
−iℏ∂=∂r in the x-y plane of the layer is coupled to spin by
the Rashba effect, breaking spin-rotation symmetry with
characteristic length lso ¼ℏ2ðmeffαsoÞ−1≃100 nm and energy
Eso ¼ meffðαso=ℏÞ2 ≃ 0.1 meV. The last term describes the
Zeeman effect of a magnetic field Bx̂, parallel to the layer,
breaking time-reversal symmetry with characteristic energy
VZ ¼ 1

2
geffμBB≃ 1 meV at B ¼ 1 T.

Without the term σxpy, the Hamiltonian would be real and
hence the chiral symmetry of Sec. III.C would promote the
system from class D to class BDI (Tewari and Sau, 2012).
Model calculations in a wire geometry (width W in the y
direction) demonstrate that the chiral symmetry is effectively
unbroken for W ≲ lso=2 (Diez et al., 2012). Experimentally
realized InSb nanowires (Mourik et al., 2012), of the type
shown in Fig. 3, have lso in the range 100–200 nm, so the
crossover from class D to class BDI happens when the wire
becomes narrower than about 100 nm.

TABLE II. The three ensembles that support Majorana zero modes.

Ensemble name CRE TþCRE T−CRE
Symmetry class D BDI DIII
S-matrix elements Real Real Real
S-matrix space Orthogonal Orthogonal symmetric Orthogonal antisymmetric
Topological invariant DetS 1

2
TrS PfS

11The Pfaffian entry in Wikipedia (http://en.wikipedia.org/wiki/
Pfaffian) contains a useful collection of formulas. Computer algo-
rithms for the evaluation of Pfaffians can be obtained from Wimmer
(2012).
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As discovered by Lutchyn, Sau, and Das Sarma (2010)
and by Oreg, Refael, and von Oppen (2010), the nanowire
enters into a topologically nontrivial phase, with Majorana
zero modes at the end points, once the Zeeman energy VZ
exceeds the superconducting gap Δ0 (induced by the prox-
imity effect). This theoretical prediction was a strong moti-
vation for the experiments reviewed by (Alicea, 2012; Leijnse
and Flensberg, 2012; Beenakker, 2013; Stanescu and Tewari,
2013), as well as for the development of the random-matrix
theory reviewed here.

B. Counting Majorana zero modes

The topological quantum number Q from Sec. V.D counts
the number ν of stable Majorana zero modes at each end of the
N-mode nanowire, at most one in class D and up to N in class
BDI. This number is fully determined by the 2N × 2N matrix
r of Fermi-level reflection amplitudes from the end of the
nanowire (Fulga et al., 2011).
The reflection matrix r is a unitary matrix if the wire is

sufficiently long that transmission to the other end can be
neglected. It has a block structure of N × N submatrices,

r ¼
�
ree reh
rhe rhh

�
: ð55Þ

Andreev reflection (from electron to hole or from hole to
electron) is described by the off-diagonal blocks, while the
diagonal blocks describe normal reflection (without change of
charge).
At the Fermi level (E ¼ 0), the particle-hole symmetry,

operative in both classes D and BDI, is expressed by
r ¼ τxr�τx, while the chiral symmetry (or fake time-reversal
symmetry) of class BDI is r ¼ rT . The corresponding sym-
metry operators C ¼ τxK and T ¼ K both square to þ1, in
accordance with Table I. In terms of the submatrices, this
corresponds to

ree ¼ r�hh; rhe ¼ r�eh; in classes D and BDI; ð56aÞ

ree ¼ rTee; rhe ¼ r†he; in class BDI only: ð56bÞ

The determinant of a unitary matrix lies on the unit circle in
the complex plane, while r ¼ τxr�τx implies that the deter-
minant is real, hence equal to �1. In class BDI, the unitary
matrix τxr squares to the unit matrix, ðτxrÞ2 ¼ r�r ¼ r†r ¼ 1,
so its 2N eigenvalues are �1. The corresponding topological
quantum numbers are12

Q ¼ Detr ¼ �1; ν ¼ 1
2
ð1 −QÞ; in class D; ð57aÞ

Q ¼ 1
2
TrðτxrÞ ¼ Trrhe ∈ f0;�1;�…Ng;

ν ¼ jQj; in class BDI: ð57bÞ

C. Conductance distribution

The electrical conductance G in the nanowire geometry of
Fig. 14 is determined by the Andreev reflection eigenvalues
An (Takane and Ebisawa, 1992),

G=G0 ¼ 2Trrher
†
he ¼ 2

XN
n¼1

An; ð58Þ

where G0 ¼ e2=h is the conductance quantum. The factor of 2
in front of the sum accounts for the fact that Andreev
reflection of an electron doubles the current. The eigenvalues
An of the Hermitian matrix product rher

†
he lie in the interval

[0, 1]. The An’s different from 0 and 1 are twofold degenerate
(Béri degeneracy; see Appendix A).
Both the conductance (58) and the number of Majorana

zero modes (57) are given by the same reflection matrix, so we
can try to relate them. The Béri degeneracy enforces the upper
and lower bounds (Diez et al., 2012)

2ν ≤ G=G0 ≤ 2ðN − ζÞ; ð59Þ

where ζ ¼ 0 if N − ν is even and ζ ¼ 1 if N − ν is odd. For
N ¼ 1 this immediately givesG=G0 ¼ 2ν, but forN > 1 there
is no one-to-one relation between the two quantities. If we
assume that r is distributed according to the circular ensemble,
a statistical dependence of G on ν can be obtained.
For that purpose, we need the probability distribution of the

M ¼ 1
2
ðN − ν − ζÞ twofold degenerate Andreev reflection

eigenvalues in the class D or BDI circular ensemble. It is
given by (Beenakker et al., 2011; Diez et al., 2012)

PD ∝
YM
1¼i<j

ðAi − AjÞ4
YM
k¼1

A2ζ
k ð1 − AkÞ2ν; ð60aÞ

PBDI ∝
YM
1¼i<j

ðAi − AjÞ2
YM
k¼1

Aζ−1=2
k ð1 − AkÞν: ð60bÞ

These twofold degenerate An’s are free to vary in the interval
(0, 1). In addition, there are ν Andreev reflection eigenvalues
pinned at 1 and ζ pinned at 0. The resulting dependence of the

FIG. 14. Superconducting wire (S) connected at both ends to a
normal-metal contact (N), in a geometry similar to Fig. 3.
Majorana zero modes may appear at the two NS interfaces.
The current I flowing from the normal metal (at voltage V) into
the grounded superconductor gives the electrical conductance
G ¼ I=V, determined by the Andreev reflection matrix rhe.

12In Table II, the class-BDI topological quantum number is
defined without the τx matrix, because there the scattering matrix
is taken in the Majorana basis, while here we use the electron-hole
basis.
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conductance distribution PðGÞ on ν is plotted in Fig. 15, for
the case N ¼ 3.
The sensitivity of PðGÞ to Majorana zero modes becomes

weaker and weaker with increasing N. This happens in a
particularly striking (nonperturbative) way in the circular real
ensemble of class D, where the pth cumulant of the conduct-
ance becomes completely independent of the topological
quantum number for N > p (Beenakker et al., 2011).
Indeed, the solid curves in Fig. 15 have different skewness
but identical average and variance, as expected for N ¼ 3.
Figure 15 also includes histograms of conductance from a

microscopic calculation in the Majorana nanowire of
Sec. VI.A, where the ensemble is generated by varying the
disorder potential. The agreement with the predictions from
the circular ensemble is quite reasonable, with two reserva-
tions. The first is that the nanowire was near the class-D-to-
BDI crossover, with a partially broken chiral symmetry.
The second is that the diffusive scattering produced by the
disorder potential is not the chaotic scattering of the circular
ensembles—the scattering channels are not uniformly mixed
by disorder.

D. Weak antilocalization

The presence or absence of a Majorana zero mode is a
topological property of the nanowire, irrespective of how the
wire is terminated. In particular, the lower bound G ≥ 2νe2=h
holds whether or not there is any tunnel barrier to confine the
Majorana at the end of the wire. The barrier serves a purpose
in providing a resonant peak in the differential conductance
GðVÞ ¼ dI=dV around zero voltage (Sengupta et al., 2001;
Bolech and Demler, 2007; Law, Lee, and Ng, 2009;
Flensberg, 2010; Sau et al., 2010). This resonant peak,
reported in several experiments (Das et al., 2012; Deng et al.,

2012; Mourik et al., 2012; Churchill et al., 2013; Finck et al.,
2013; Nadj-Perge et al., 2014), is shown in the computer
simulation of Fig. 16.
One sees from that simulation (based on the Rashba-

Zeeman Hamiltonian of Sec. VI.A) that a broader and
smaller zero-bias peak appears also in the disorder-averaged
conductance of a topologically trivial nanowire—without
any Majorana zero modes. In that case the origin of the
peak is the weak-antilocalization effect (Pikulin et al.,
2012): the constructive interference of phase-conjugate
scattering sequences (see Fig. 17). In normal metals, this
interference effect requires time-reversal symmetry, but in
the presence of a superconductor, particle-hole symmetry
suffices (Brouwer and Beenakker, 1995; Altland and
Zirnbauer, 1996). The same interference effect is responsible
for a midgap peak in the density of states (Bagrets and
Altland, 2012; Neven, Bagrets, and Altland, 2013); see
Sec. IV.B.
The two distinct origins of a zero-bias conductance peak in

the average conductance can be compared in a random-matrix

FIG. 15 (color online). Probability distribution of the electrical
conductance forN ¼ 3modes, in the circular ensemble of class D
(solid curves) and class BDI (dashed curves), either without any
Majorana zero modes (ν ¼ 0) or with one zero mode (ν ¼ 1). The
curves follow by integration of the probability distribution (60) of
the Andreev reflection eigenvalues. The histograms are the results
of a microscopic calculation for the Rashba-Zeeman Hamiltonian
(54), in a three-mode nanowire of width W ¼ lso ¼ 100 nm (in
class D, but close to the crossover into class BDI at W ≲ lso=2).
Adapted from Beenakker et al., 2011.

FIG. 16 (color online). Disorder-averaged differential conduct-
ance as a function of bias voltage, calculated for the nanowire
shown in the inset. (The solid vertical line indicates the position
of the tunnel barrier, transmission probability T ¼ 0.4 per mode;
disordered regions are dotted.) The ν ¼ 0 curve is for a weak
magnetic field (EZ ¼ 2.5Eso), when the system is topologically
trivial and the zero-bias peak is due to weak antilocalization. (The
corresponding peak for a single disorder realization is shown in
Fig. 19.) The ν ¼ 1 curve, in a stronger magnetic field
(EZ ¼ 10.5Eso), shows the Majorana resonance in the topologi-
cally nontrivial regime. Adapted from Pikulin et al., 2012.

FIG. 17 (color online). Example of a phase-conjugate series of
scattering events responsible for the weak antilocalization effect
in an NS junction. The same loop is traversed once as an electron
(e) and once as a hole (h), with an intermediate Andreev
reflection. Since electron and hole encircle the same flux Φ with
opposite charge, the total accumulated phase shift vanishes even
though time-reversal symmetry is broken by the magnetic field.
The systematic constructive interference shows up as a zero-bias
conductance peak that survives a disorder average. Adapted from
Pikulin et al., 2012.
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model, by including the effect of a tunnel barrier on the
circular ensemble. In the zero-voltage limit, so for scattering
matrices at the Fermi level, we take for the reflection matrix r0
without the barrier a uniform distribution in Oþð2NÞ for the
topologically trivial system (no Majoranas, ν ¼ 0) and in
O−ð2NÞ for the nontrivial system (with a Majorana zero mode,
ν ¼ 1). This is the circular real ensemble of symmetry class D,
in the Majorana basis (see Table II). Away from the Fermi
level, at voltages large compared to the Thouless energy, the
constraint from particle-hole symmetry is ineffective and r0 is
distributed uniformly over the entire unitary group Uð2NÞ.
This is the circular unitary ensemble.
The tunnel barrier (transmission probability T per mode)

transforms r0 into

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
þ Tr0ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
r0Þ−1: ð61Þ

The resulting nonuniform distribution of r is known as the
Poisson kernel of the circular ensemble (Brouwer, 1995; Béri,
2009a),

PðrÞ ∝ jDetð1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
rÞj−p: ð62Þ

The exponent equals p ¼ 4N in the CUE and p ¼ 2N − 1 in
the CRE.
Equation (58) for the conductance in the electron-hole basis

can be rewritten in the Majorana basis, by carrying out the
unitary transformation

r ↦ ΩrΩ†; Ω ¼
ffiffiffi
1

2

r �
1 1

i −i

�
: ð63Þ

The result is

G=G0 ¼ N −
1

2
Trrτyr†τy; τy ¼

�
0 −i
i 0

�
: ð64Þ

The zero-bias conductance peak is then given by the
difference δG ¼ hGiCRE − hGiCUE of the average of r0 over
O�ð2NÞ (for the CRE) and over Uð2NÞ (for the CUE). Results
are shown in Fig. 18. The large-N limit has the ν-independent
value (Altland and Zirnbauer, 1997)

δG=G0 ¼ 1 − T þOðN−1Þ: ð65Þ

E. Andreev resonances

The weak-antilocalization effect explains the appearance of
a zero-bias peak in the disorder-averaged conductance.
Sample-specific zero-bias peaks in the same nanowire geom-
etry are shown in Fig. 19. These are due to resonant Andreev
reflection from quasibound states near the Fermi level. Level
crossings produce an X-shaped pattern when two resonant
peaks meet and split again, but there is also a Y-shaped pattern
of peaks that merge and remain pinned to V ¼ 0 over a range
of magnetic-field values.
The center E and width 2γ of the Andreev resonances are

encoded by the poles ε ¼ E − iγ of the reflection matrix in the

complex energy plane. Referring to the scattering-matrix
equation (40), which can also be written as

rðEÞ ¼ 1 − 2πiW†ðE −H þ iπWW†Þ−1W; ð66Þ

the reflection matrix poles are eigenvalues of the N ×N
non-Hermitian matrix

H ¼ H − iπWW†: ð67Þ

3
4

5

23
4

5

10
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20

20

FIG. 18 (color online). Amplitude δG of the average zero-voltage
conductance peak as a function of (mode-independent) trans-
mission probability T through the tunnel barrier, calculated
numerically for the class-D circular ensemble. The dashed and
solid curves represent, respectively, the topologically trivial
and nontrivial superconductor. The dash-dotted curve is the
topology-independent large-N limit (65). Adapted from Pikulin
et al., 2012.

FIG. 19 (color online). Voltage and magnetic-field dependence
of the conductance in the same nanowire as in Fig. 16, but now
for a single disorder realization. The magnetic-field range is in the
topologically trivial regime, without Majorana zero modes. The
conductance peak indicated by the dotted line is pinned to zero
voltage over a range of magnetic-field values because of the
accumulation of reflection matrix poles on the imaginary axis in a
class-D superconductor; see Fig. 20. Adapted from Pikulin
et al., 2012.
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Because the coupling matrix productWW† is positive definite,
the poles all lie in the lower half of the complex plane (γ > 0),
as required by causality. Particle-hole symmetry requires that
the poles are symmetrically arranged around the imaginary
axis (ε and −ε� are both poles).
Figure 20 is a scatter plot of the eigenvalues of H for the

Gaussian distribution (28) of the Hamiltonian H, with
coupling matrix (Guhr, Müller-Groeling, and Weidenmüller,
1998)

Wnm ¼ wnδnm; 1 ≤ n ≤ N ; 1 ≤ m ≤ 2N; ð68Þ

jwnj2 ¼
N δ0
π2Tn

ð2 − Tn − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tn

p
Þ; ð69Þ

representing a tunnel barrier with transmission probability Tn.
(The plot is for a mode-independent Tn ≡ T ¼ 0.2.) The two
Altland-Zirnbauer ensembles with broken time-reversal sym-
metry are contrasted, with and without spin-rotation symmetry
(class C and class D). For jEj≳ δ0, the poles have a uniform
density in a strip parallel to the real axis, familiar from the
Wigner-Dyson ensembles (Fyodorov and Sommers, 1997).
For smaller jEj, the poles are repelled from the imaginary axis
in class C, while in class D they accumulate on that axis (Mi
et al., 2014).
As pointed out in Pikulin and Nazarov (2012), a non-

degenerate pole ε ¼ −iγ on the imaginary axis has a certain
stability; it cannot acquire a nonzero real part E without
breaking the ε ↔ −ε� symmetry imposed by particle-hole
conjugation. To see why this stability is not operative in class
C, we note that on the imaginary axis γ is a real eigenvalue of a
matrix iH that commutes with the charge-conjugation oper-
ator: CiH ¼ −iCH ¼ iHC. In class C, the antiunitary operator
C squares to −1; see Table I, so Kramers theorem13 forbids
nondegenerate poles on the imaginary axis. In class D, in
contrast, the operator C squares to þ1, Kramers degeneracy is

inoperative, and a number NY of nondegenerate poles is
allowed on the imaginary axis.
The reflection matrix rð0Þ at the Fermi level is a real

orthogonal matrix in class D, with determinant �1. Because

ð−1ÞNY ¼ lim
E→0

DetrðEÞ≡Q ð70Þ

is the same class-D topological quantum number as in
Eq. (57a), the nanowire is topologically trivial or nontrivial
depending on whether NY is even or odd. One can now
distinguish two types of transitions (Pikulin and Nazarov,
2012, 2013): At a topological phase transition NY changes
by �1, which requires closing of the excitation gap in the
nanowire and breaking of the unitarity of the reflection
matrix r. At a “pole transition,” NY changes by �2, the
excitation gap remains closed, and r remains unitary. Both
types of transitions produce the same Y-shaped conductance
profile of two peaks that merge and stick together for a
range of parameter values—distinct from the X-shaped
profile that happens without a change in NY . Other
similarities of the two types of transitions are discussed
by San Jose et al. (2014).
In experiments, one can use a variety of methods to

distinguish the pole transition from the topological phase
transition: As calculated in Mi et al. (2014), the average
number of poles on the imaginary axis is hNYi≃ T3=2

ffiffiffiffi
N

p
for

T ≪ 1, so one way to suppress the pole transitions is to couple
the metal to the superconductor via a small number of modes
N with a small transmission probability T. The pole transitions
are a sample-specific effect, while the topological phase
transition is expected to be less sensitive to microscopic
details of the disorder. One would therefore not expect the
pole transitions to reproduce in the same sample upon thermal
cycling. Most convincingly, if one can measure from both
ends of a nanowire, one could search for correlations: The �2

changes in NY at the two ends are uncorrelated, while �1

changes should happen jointly at both ends—provided that the
wire is not broken into disjunct segments.

F. Shot noise of Majorana edge modes

When Majorana zero modes are in close proximity and
overlap, a Majorana mode is formed with a linear dispersion.
This happens at the edge of an array of parallel nanowires, as
illustrated in Fig. 21. Such a Majorana edge mode carries heat
(see Sec. VII.C) but it carries no charge, as a consequence of
particle-hole symmetry. Electrical detection remains possible
via the time-dependent fluctuations δI1ðtÞ in the electrical
current transmitted along the edge in response to a bias
voltage V2.
An unpaired Majorana mode with transmittance T has shot

noise power (Akhmerov et al., 2011)

Pshot ¼
Z

∞

−∞
dthδI1ð0ÞδI1ðtÞi ¼

e3V2

2h
T ð71Þ

(see Appendix B). What is remarkable about this equation is
the coexistence of shot noise and unit transmittance. For
electrons, the shot noise power is proportional to Tð1 − TÞ, so

FIG. 20. Reflection matrix poles ε ¼ E − iγ in the two Altland-
Zirnbauer ensembles with broken time-reversal symmetry
(parameters N ¼ 500, N ¼ 25, T ¼ 0.2). Only a narrow energy
range near E ¼ 0 is shown, to contrast the accumulation of the
poles on the imaginary axis in class D and the repulsion in class
C. Adapted from Mi et al., 2014.

13The usual Kramers degeneracy refers to the eigenvalues of a
Hermitian matrix that commutes with an antiunitary operator squar-
ing to −1. Here, the matrix is not Hermitian, but the degeneracy still
applies to real eigenvalues.
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the shot noise vanishes for T ¼ 1. The difference for Majorana
fermions is that they are not in an eigenstate of charge: The
average charge is zero but the variance is e2, so the current can
fluctuate even if T ¼ 1. A fully transmitted Majorana mode
has a quantized shot noise power of 1=2 × e2=h per electron
volt, the factor 1=2 expressing the fact that an incident electron
has overlap 1=2 with the Majorana mode.
The transmittance can be calculated from the edge mode

Hamiltonian

Hedge ¼
X
n

iκnγnγnþ1; ð72Þ

describing the random coupling κn of adjacent Majorana
operators γn and γnþ1. The transmittance T ¼ 1= cosh2 α is
determined by the Lyapunov exponent α, which has a
Gaussian distribution (Brouwer et al., 2000; Gruzberg,
Read, and Vishveshwara, 2005). The variance Varα ¼ L=l
equals the ratio of the length L of the edge and the mean free
path l. For statistically independent κn’s, the average hαi
vanishes, resulting in a bimodal distribution of the trans-
mission probability (Diez et al., 2014),

PðTÞ ¼
Z

∞

−∞
dαδðT − 1=cosh2αÞð2πL=lÞ−1=2e−α2l=2L

¼ ðl=2πLÞ1=2T−1ð1 − TÞ−1=2
× exp½−ðl=2LÞarcosh2ðT−1=2Þ�; ð73Þ

peaked near T ¼ 0 and T ¼ 1. It follows that the average shot
noise power decays algebraically as

hPshoti ¼
e3V2

h

ffiffiffiffiffiffiffiffiffi
l

2πL

r
: ð74Þ

The absence of localization of the Majorana edge mode is a
consequence of the statistical equivalence of the coupling
between any pair of neighboring Majorana operators (Fulga
et al., 2014). This is the crucial distinction with the Kitaev
chain formed out of magnetic nanoparticles, discussed in
Sec. II.A. There, Majorana operators on the same nanoparticle
have a different coupling strength than those on adjacent
nanoparticles. The Lyapunov exponent α then still has a
Gaussian distribution, but with a nonzero mean hαi ¼ L=ξ
corresponding to a finite localization length ξ. It follows that
the transmittance of the Kitaev chain has a log-normal
distribution peaked at T ¼ e−2L=ξ, with an exponentially
decaying average transmission (Motrunich, Damle, and
Huse, 2001; Gruzberg, Read, and Vishveshwara, 2005).

VII. THERMAL CONDUCTION

A. Topological phase transitions

While the electrical conductance G of a superconducting
nanowire gives information on the topological quantum
number Q, the thermal conductance κ signals the topological
phase transitions, where Q changes from one value to another.
This is illustrated in Fig. 22, for the class-D Majorana
nanowire of Sec. VI.A. The peak in κ at the topological
phase transition has the quantized value

κ0 ¼
π2k2BT0

6h
; ð75Þ

FIG. 21 (color online). Distribution of the transmittance of a
Majorana edge mode in a chain of parallel nanowires on a
superconducting substrate. The histograms are calculated numeri-
cally for a model Hamiltonian of an anisotropic p-wave super-
conductor, for different lengths L of the edge. Dashed lines show
the analytical result (73), with the mean free path l as the single
fit parameter. With increasing L, a bimodal distribution evolves,
which produces a slow 1=

ffiffiffiffi
L

p
decay of the shot noise power

Pshot ¼ 1
2
Tðe3V2=hÞ. Adapted from Diez et al., 2014.

FIG. 22 (color online). Thermal conductance and determinant of
reflection matrix of a clean and disordered superconducting
nanowire. The curves are calculated for the Rashba-Zeeman
Hamiltonian (54), with parameters W¼L=10¼ lso, Δ0 ¼ 10Eso,
and EZ ¼ 10.5Eso. The number of propagating modes N varies
from 0 to 4 in the range of Fermi energies shown. The thermal
conductance κ ¼ Iheat=δT gives the heat current between the
two contacts at temperature T0 and T0 þ δT. Adapted from
Akhmerov et al., 2011.
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without any finite-size or disorder corrections (Akhmerov
et al., 2011).
The quantization follows directly from

κ=κ0 ¼ 2N − Trrr† ¼
X2N
n¼1

ð1 − RnÞ ð76Þ

between the thermal conductance and the eigenvalues Rn of
the reflection matrix product rr†. Far from the topological
phase transition, the reflection matrix r is unitary, hence
Rn ¼ 1 for all n and κ vanishes. In a finite system, the
reflection matrix is a continuous function of external param-
eters, such as the Fermi energy EF, so if the class-D
topological quantum number Q ¼ Detr changes sign, it must
go through zero: Detr ¼ 0 ⇒

Q
nRn ¼ 0 at the transition

point. Generically, one single Rn will vanish, producing a peak
in κ of amplitude κ0.
In class BDI, the argument is similar (Fulga et al., 2011): A

change in the topological quantum number Q ¼ ð1=2ÞTrτxr
by one unit happens when one eigenvalue of τxr switches
between �1, so it must go through zero, hence Detτxr ¼
0 ⇒ Detr ¼ 0 ⇒

Q
nRn ¼ 0 at the transition point, again

resulting in a quantized thermal conductance peak.

B. Superuniversality

The two symmetry classes D and BDI in an N-mode
superconducting wire are distinguished by the number ν of
stable zero modes at each end point: ν ∈ f0; 1g in class D
versus ν ∈ f0; 1; 2;…Ng in class BDI. One speaks of a Z2

versus a Z topological quantum number. At the topological
phase transition itself, where ν changes by one unit as some
control parameter α (such as the Fermi energy) passes through
αc, the thermal conductance peak has the universal line shape
(Fulga et al., 2011)

κ ¼ κ0
cosh2δ

; δ ¼ ðα − αcÞ=Γ; ð77Þ

in both class D and class BDI. (The width Γ of the peak is not
universal.) One cannot, therefore, distinguish the Z2 and Z
topological phases by studying a single phase transition.
This superuniversality (Gruzberg, Read, and Vishveshwara,

2005) extends to the average density of states near a
topological phase transition (Rieder and Brouwer, 2014),

ρðEÞ ¼ L
2l

d
dE

jKlδ=Lð2iEvF=ℏlÞj−2

∝ jEj2ljδj=L−1 for E → 0; ð78Þ

in a disordered wire of length L, mean free path l, and Fermi
velocity vF. (The function KaðxÞ is a Bessel function.) At the
critical point δ ¼ 0, the power-law singularity has an addi-
tional logarithmic factor (Dyson, 1953): ρðEÞ ∝ 1=ðE ln3 EÞ
for E → 0.
All of this refers to well-separated conductance peaks. The

difference between the Z2 and Z topological phases becomes
evident when conductance peaks merge: In class D, the
conductance peaks annihilate, while in class BDI, a maximum
of N conductance peaks can reinforce each other; see Fig. 23.

C. Heat transport by Majorana edge modes

Two-dimensional topological superconductors have gapless
edge modes that allow for thermal transport. In the absence of
time-reversal symmetry, these are chiral (unidirectional) edge
modes of Majorana fermions, analogous to the chiral elec-
tronic edge modes in the quantum Hall effect. One speaks of
the thermal quantum Hall effect (Volovik and Yakovenko,
1989; Read and Green, 2000; Senthil and Fisher, 2000;
Vishwanath, 2001). The quantization of the thermal conduct-
ance κ in units of κ0 ¼ π2k2BT0=6h is the superconducting
analog of the quantization of the electrical conductance G in
units of G0 ¼ e2=h.
Chiral Majorana edge modes require particle-hole sym-

metry without time-reversal symmetry, so they exist in
symmetry classes D and C (see Table I). The difference
between these two symmetry classes is that spin-rotation
symmetry is broken in class D and preserved in class C. The
corresponding symmetry of the superconducting pair potential
is spin-triplet (px � ipy)-wave pairing in class D [possibly
realized in strontium ruthenate (Mackenzie and Maeno, 2003;
Kallin and Berlinsky, 2009)] and spin-singlet dx2−y2 � idxy
pairing in class C [possibly realized in honeycomb lattice
superconductors such as the pnictide SrPtAs (Biswas et al.,
2013; Fischer et al., 2014)].
An alternative platform to realize this exotic pairing is

offered by ultracold fermionic atoms (Sato, Takahashi, and
Fujimoto, 2010). Quite generally, singlet and triplet pairing
coexist and are mixed by Rashba spin-orbit coupling, but the
edge modes remain topologically protected for sufficiently
weak admixture (Tanaka et al., 2010; Sato et al., 2011).
Edge modes of opposite chirality can meet at a domain wall

(Serban et al., 2010), as illustrated in Fig. 24. Disorder at the
boundary will mix the modes and remove the conductance
quantization. Under the assumption of uniform mode mixing,
the probability distribution of the thermal conductance can be
obtained from a circular ensemble (Dahlhaus, Béri, and
Beenakker, 2010): the circular real ensemble (CRE) of

FIG. 23 (color online). Thermal conductance of a five-mode
superconducting nanowire, calculated for two disorder strengths
(solid and dashed curves) without chiral symmetry (class D) and
with chiral symmetry (class BDI). When two peaks merge, κ
drops below the quantized value κ0 in class D but rises above it in
class BDI. In either symmetry class, the isolated conductance
peaks have the same line shape (77). Adapted from Fulga
et al., 2011.
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random orthogonal matrices in class D and the circular
quaternion ensemble (CQE) of random symplectic matrices
in class C (see Table III).
For M chiral Majorana modes at each edge, the scattering

matrix S has dimension 2M × 2M with M ×M reflection and
transmission subblocks,

S ¼
�
r t

t0 r0

�
: ð79Þ

Because of unitarity, the transmission matrix products tt† and
t0t0† have the same set of eigenvalues T1; T2;…; TM. These
determine the thermal conductance

κ=κ0 ¼
XM
n¼1

Tn: ð80Þ

We denote the degeneracy of the transmission eigenvalues by
dT , without counting spin degeneracy (since we may exclude
that from the beginning by considering only a single spin band
for electron and hole).

Notice the distinction between the degeneracy factors dT
for eigenvalues of tt† and dE for eigenvalues of H, as listed
in Table I. In class D, these are equal, dE ¼ dT ¼ 1, but in
class C, we have dE ¼ 1 while dT ¼ 2 because of a
twofold Kramers degeneracy of the electron-hole degree
of freedom. Kramers degeneracy of the Tn’s appears when
tt† commutes with C squaring to −1. Because the
Hamiltonian H does not commute with C (it anticom-
mutes), there is no Kramers degeneracy of the energy
levels in class C.
The probability distribution of the M=dT independent

transmission eigenvalues in the CRE and CQE is given by
(Dahlhaus, Béri, and Beenakker, 2010)

PðfTngÞ ∝
YM=dT

1¼i<j

jTi − TjjβT
YM=dT

k¼1

TβT=2−1
k ð1 − TkÞαT=2; ð81Þ

with exponents αT; βT listed in Table III. As one can see
from comparison with Table I, these exponents for trans-
mission eigenvalue repulsion are different from the expo-
nents αE; βE that govern the repulsion of energy eigenvalues
in Eq. (37).14

Unlike the class-D distribution (60a) of the Andreev
reflection eigenvalues An, the distribution (81) of the Tn’s
does not depend on the number ν of Majorana zero modes, it is
therefore the same whether the superconductor is topologi-
cally trivial or nontrivial. Note also that in class D the Tn’s are
nondegenerate, while the An’s have a twofold Béri
degeneracy.
For a single (dT-fold degenerate) Majorana edge mode

the distribution of the dimensionless thermal conductance
g ¼ κ=dTκ0 ∈ ½0; 1� following from Eq. (81) is

PðgÞ ∝
�
g−1=2ð1 − gÞ−1=2 in class D;

gð1 − gÞ in class C;
ð82Þ

as plotted in Fig. 24. For comparison, we also show there the
uniform distribution of the electrical conductance in the
quantum Hall effect (Beenakker, 1997) (symmetry class A,
circular unitary ensemble).

(a) (b)

(c)

FIG. 24 (color online). Thermal and electrical transport by chiral
edge modes. (a) The chiral Majorana modes at the edge of a
topological superconductor, with either spin-triplet p-wave or
spin-singlet d-wave pairing. The shaded strip at the center
represents a disordered boundary between two domains of
opposite chirality of the order parameter. (b) The chiral edge
modes of the quantum Hall effect in graphene, where modes
of opposite chirality meet at a bipolar junction between electron-
doped and hole-doped regions. (c) The probability distributions
(82) of the conductance in the corresponding circular ensembles
are plotted. (a) From Serban et al., 2010; (b) from Abanin
and Levitov, 2007; and (c) from Dahlhaus, Béri, and
Beenakker, 2010.

TABLE III. The three ensembles that support chiral edge modes,
Majorana modes in classes D and C, and electronic modes in class A.

Ensemble name CRE CQE CUE

Symmetry class D C A
S-matrix elements Real Quaternion Complex
S-matrix space Orthogonal Symplectic Unitary
dT 1 2 1
αT −1 2 0
βT 1 4 2

14In the context of differential geometry, the parameters αE þ 1≡
ml and βE ≡mo are root multiplicities characterizing the symmetric
space of Hamiltonians, while αT þ 1 and βT do the same for transfer
matrices (Brouwer et al., 2005).

C.W. J. Beenakker: Random-matrix theory of Majorana fermions and … 1057

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



D. Thermopower and time-delay matrix

A temperature difference δT may produce an electrical
current in addition to a heat current. In an open circuit the
electrical current is balanced by a voltage difference
V ¼ −SδT, the Seebeck effect, with S the thermopower or
Seebeck coefficient. Majorana edge modes allow for thermo-
electricity—even if they themselves carry only heat and no
charge (Hou, Shtengel, and Refael, 2013).
The thermopower geometry is shown in Fig. 25. In a

scattering formulation, two matrices enter, the scattering
matrix at the Fermi level S0 ≡ SðE ¼ 0Þ and the Wigner-
Smith time-delay matrix (Wigner, 1955; Smith, 1960;
Fyodorov and Savin, 2011)

D ¼ −iℏlim
E→0

S†
dS
dE

: ð83Þ

We define transmission and reflection submatrices as in
Eq. (79), where the transmission matrices t; t0 couple the
N0 Majorana edge modes to the N electron-hole modes in
the point contact, mediated by quasibound states in the
quantum dot.
In the circular ensembles, the joint distribution of S0 and D

follows from the invariance (Brouwer, Frahm, and Beenakker,
1997; Marciani, Brouwer, and Beenakker, 2014)

P½SðEÞ� ¼ P½U · SðEÞ ·U0� ð84Þ

of the distribution functional P½SðEÞ� upon multiplication of
the scattering matrix by a pair of energy-independent matrices
U;U0, restricted by symmetry to a subset of the full unitary
group (see Table III).
The time-delay matrix D is a positive-definite Hermitian

matrix. Its eigenvalues Dn > 0 are the delay times, and

γn ≡ 1=Dn are the corresponding rates, each with the same
degeneracy dT as the transmission eigenvalues. It follows
from the invariance (84) that D and S0 are independent, so the
distribution of the Dn’s can be considered separately from
the distribution (81) of the Tn’s. The distribution of the
N ¼ ðN þ N0Þ=dT distinct delay times is given by (Marciani,
Brouwer, and Beenakker, 2014)

PðfγngÞ ∝
YN
k¼1

ΘðγkÞγαTþN βT=2
k exp

�
−
1

2
βTt0γk

�

×
YN
1¼i<j

jγi − γjjβT ; t0 ¼
dE
dT

2πℏ
δ0

; ð85Þ

with coefficients from Table III. The unit step function ΘðγÞ
ensures that the probability vanishes if any γn is negative.
The Cutler-Mott formula for the thermopower (Cutler and

Mott, 1969),

S=S0 ¼ −lim
E→0

1

G
dG
dE

; S0 ¼
π2k2BT0

3e
; ð86Þ

can be written in terms of the matrices S0 and D,

S=S0 ¼ iℏ−1 TrPτzS0ðDP − PDÞS†0
N − TrPτzS0PτzS

†
0

: ð87Þ

The Pauli matrix τz acts on the electron-hole degree of
freedom, while P projects onto the N modes at the point
contact. The commutator of D and P in the numerator ensures
a vanishing thermopower in the absence of gapless modes in
the superconductor, because then the projector P is just the
identity.
The resulting thermopower distributions, shown in Fig. 26

for a single-channel point contact, are qualitatively different
for Majorana edge modes in class C (d-wave pairing) or
class D (p-wave pairing). Like the thermal conductance of

FIG. 25 (color online). Geometry to measure the thermopower
S of a semiconductor quantum dot (mean level spacing δ0)
coupled to chiral Majorana modes at the edge of a topological
superconductor. A temperature difference δT induces a voltage
difference V ¼ −SδT under the condition that no electrical
current flows between the contacts. For a random-matrix
theory, we assume that the Majorana modes are uniformly
mixed with the modes in the point contact, via quasibound
states in the quantum dot. Adapted from Marciani, Brouwer,
and Beenakker, 2014.

FIG. 26 (color online). Probability distribution of the dimension-
less thermopower in symmetry class C (solid curve, bottom and
left axes), and in class D (dashed curve, top and right axes). These
are results for the quantum dot of Fig. 25 connecting a single-
channel point contact to the Majorana edge modes of a chiral
superconductor. Adapted from Marciani, Brouwer, and Beenak-
ker, 2014.
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Sec. VII.C, the thermopower does not feel the presence or
absence of a Majorana zero mode in the quantum dot—to
probe that one needs the electrical conductance (Sec. VI.C), or
alternatively, introduce chiral symmetry.

E. Andreev billiard with chiral symmetry

Chiral symmetry (meaning the anticommutation
HCT ¼ −CT H) promotes the symmetry class from D to
BDI (see Table I), and allows for multiply degenerate
Majorana zero modes. A quantum dot (Andreev billiard) with
chiral symmetry can be realized on the surface of a topological
insulator (see Fig. 27), because the Dirac Hamiltonian

H0 ¼ vðpx − eAxÞσx þ vðpy − eAyÞσy þ V ð88Þ

anticommutes with σz when the electrostatic potential V → 0

is tuned to the Dirac point. We rely on random scattering by
disorder to produce a finite density of states at E ¼ 0, but in
order to preserve the chiral symmetry, the disorder cannot be
electrostatic (V must remain zero). Scattering by a random
vector potential is one possibility (Ludwig et al., 1994;
Motrunich, Damle, and Huse, 2002), or alternatively scatter-
ing by random surface deformations (Lee, 2009; Dahlhaus
et al., 2010; Parente et al., 2011).
The coupling to a superconductor at Fermi energy EF → 0

introduces particle-hole symmetry without breaking the chiral
symmetry15 of the BdG Hamiltonian (16),

HðEFÞσz ¼ −σzHð−EFÞ: ð89Þ

As a consequence, overlapping Majorana zero modes in a
superconductor and topological insulator heterostructure (Fu
and Kane, 2008) will not split when the Fermi energy EF → 0

lines up with the Dirac point (Cheng et al., 2010; Teo and
Kane, 2010).

The zero modes are broadened by coupling to the con-
tinuum through a scattering matrix S. At the Fermi level
E ¼ EF, this is a real orthogonal matrix in the Majorana basis.
When EF ¼ 0, the chiral symmetry equation (44), which here
takes the form

SðEÞ ¼ σzS†ð−EÞσz; ð90Þ

implies that S0 ≡ σzSð0Þ is orthogonal and symmetric.
In the two-terminal geometry of Fig. 27, with 2M scattering
channels at each contact,16 the matrix S0 has the decom-
position (52), so that we can write

S0 ¼
�

σzr σzt

tTσz σzr0

�
¼ Odiagð�1;�1;…� 1ÞOT: ð91Þ

For chaotic scattering, the statistics of S0 is obtained by
drawing O uniformly from the orthogonal group (ensemble
TþCRE of Table II). The trace TrS0 ¼ 2Q is fixed by the
number ν ¼ jQj of zero modes that are coupled to the
continuum (Fulga et al., 2011).
The transmission eigenvalues at the Fermi level determine

the thermal conductance

κ ¼ κ0
X2M
n¼1

Tn ¼ κ0
X2M
n¼1

ð1 − r2nÞ;

κ0 ¼
1

6
π2k2BT0=h: ð92Þ

The Tn’s are the eigenvalues of the transmission matrix
product tt† ¼ 1 − rr†, and since rr† and σzrr†σz have the
same eigenvalues, we may equivalently write Tn ¼ 1 − r2n,
with rn ∈ ½−1; 1� a real eigenvalue of the Hermitian
matrix σzr.

FIG. 27 (color online). Thermal conduction through an Andreev
billiard on the surface of a topological insulator. Multiple
Majorana zero modes are stabilized by chiral symmetry, when
the Fermi level lines up with the Dirac point joining the two cones
of the band structure (marked by a dot in the left inset). FIG. 28 (color online). Probability distribution of the dimension-

less thermal conductance κ=κ0 ¼ T1 þ T2 in an Andreev billiard,
calculated from Eqs. (94) and (95) in symmetry class D (only
particle-hole symmetry) and class BDI (particle-hole with chiral
symmetry). In class D, there is no dependence on the number ν of
Majorana zero modes, while in class BDI there is.

15Equation (89) at EF ¼ 0 amounts to the chiral symmetry
HCT ¼ −CT H with particle-hole symmetry C ¼ τxK and fake
time-reversal symmetry T ¼ ðσz ⊗ τxÞK. In the nanowire geometry
of Sec. VI.A, the chiral symmetry takes the different form (26), with
T ¼ K. The symmetry class is BDI in both realizations, determined
by C2 ¼ T 2 ¼ þ1. In each case, the chiral symmetry ofH is inherited
by SðEÞ ¼ CT S†ð−EÞðCT Þ−1, provided that the coupling matrix W
in Eq. (40) commutes with CT .

16To preserve the chiral symmetry at each contact, the reflection
and transmission matrices in Eq. (91) should be even dimensional.
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The probability distribution of the rn’s in the TþCRE is
given by (Macedo-Junior and Macêdo, 2002, 2008)

PðfrngÞ ∝
Y2M

l¼2M−νþ1

δðrl − sgnQÞ
Y2M−ν

1¼i<j

jri − rjjβT

×
Y2M−ν

k¼1

ð1 − r2kÞνβT=2þβT=2−1; ð93Þ

with symmetry index βT ¼ 1 in class BDI. The distribution
(93) holds also in the other two chiral ensembles from
Table I with a Z topological quantum number: class AIII
(βT ¼ 2) and class CII (βT ¼ 4, each eigenvalue twofold
degenerate).
One pair of electron-hole channels in each contact produces

two transmission probabilities T1, T2. We compare the
ν-dependent class-BDI distribution from Eq. (93),

PBDIðT1; T2Þ ∝

8>><
>>:

ðT1T2Þ−1=2ð1 − T1Þ−1=2ð1 − T2Þ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −minðT1; T2Þ

p
; for ν ¼ 0;

ð1 − T1Þ−1=2δðT2Þ; for ν ¼ 1;

δðT1ÞδðT2Þ; for ν ¼ 2;

ð94Þ

with the ν-independent class-D distribution from Eq. (81),

PDðT1; T2Þ ∝ ðT1T2Þ−1=2ð1 − T1Þ−1=2ð1 − T2Þ−1=2
× jT1 − T2j: ð95Þ

The powers of Tn and 1 − Tn in class D are the same as in
class BDI with ν ¼ 0, but the eigenvalue repulsion in class
D does not carry over to class BDI—where PðT1; T2Þ
remains finite when T1 → T2. The corresponding distribu-
tions of the thermal conductance are plotted in Fig. 28.
It is noteworthy that the sensitivity to the presence or

absence of a Majorana zero mode in class BDI appears already
for ν ¼ 1, so for the single nondegenerate zero mode that is
also stable in class D. A qualitatively similar sensitivity
applies to the thermopower and time-delay matrix of
Sec. VII.D; see Schomerus, Marciani, and Beenakker (2015).

VIII. JOSEPHSON JUNCTIONS

The electrical and thermal conductance discussed in the
previous sections probe the system out of equilibrium, in
response to a voltage or temperature difference. A super-
conductor can also support a persistent electrical current IðϕÞ
in equilibrium, in response to a phase difference ϕ of the pair
potential (Josephson effect).
A nanowire is a Josephson junction if it connects two

superconducting electrodes, as shown in Fig. 1. The segment
of the wire between the two superconductors forms a quantum
dot, a confined region with quasiparticle excitation spectrum
0 < E0 < E1 < E2 < � � �. The spectrum depends on the phase
difference ϕ of the pair potential across the junction, which
can be controlled by the magnetic flux Φ. Because a 2π
increment of ϕ corresponds to a variation of Φ by h=2e,
the excitation spectrum has the flux periodicity EnðΦÞ ¼
EnðΦþ h=2eÞ.
The presence of Majorana zero modes in the quantum dot

induces a period doubling of the flux dependence, with a free
energy FðΦÞ that has h=e rather than h=2e flux periodicity, or,
equivalently, a 4π rather than 2π phase periodicity (Kitaev,
2001). The mechanism behind the period doubling is a switch
in the fermion parity of the superconducting condensate, as we
now discuss.

A. Fermion parity switches

We mentioned in Sec. I.C that a quantum dot in symmetry
class D (no time-reversal or spin-rotation symmetry) supports
level crossings at the Fermi energy when we vary the phase
difference ϕ of the superconducting electrodes. As indicated
in Fig. 29, we denote by E�ðϕÞ the smooth (adiabatic) ϕ
dependence of the pairs of crossing levels, arranged such that
Eþ < 0 < E− ¼ E0 at ϕ ¼ 0.
Level crossings are a signal of a conserved quantity,

preventing transitions between the levels that would convert
the crossing into an avoided crossing. In this case the
conserved quantity is the parity P ¼ �1 of the number of
electrons in the quantum dot. At low temperatures and for
small charging energy17 (kBT and e2=C ≪ Δ0), the quantum
dot can only exchange pairs of electrons with the super-
conducting electrodes, so P is conserved. A transition
between Eþ and E− would add or remove an unpaired
quasiparticle, which is forbidden and hence the crossing is
protected.
The free energy FP of the quantum dot depends on whether

the number of electrons is even (P ¼ þ1) or odd (P ¼ −1)
(Averin and Nazarov, 1992; Tuominen et al., 1992). In the
zero-temperature limit, this dependence can be written as
(Law and Lee, 2011)

FP ¼ 1
2
ðEP − E1 − E2 − � � �Þ: ð96Þ

(The factor 1=2 ensures that the switch from Eþ to E−
properly introduces an excitation energy E0 rather than 2E0.)
At ϕ ¼ 0, the level Eþ lies below E−, so the superconducting
condensate favors fully paired electrons and is said to be of
even fermion parity. At the first crossing, E− drops below Eþ,
so now a single unpaired electron is favored (odd fermion
parity). The fermion-parity switch signaled by a level crossing
is a topological phase transition of the superconducting
condensate (Kitaev, 2001).

17Existing experiments (Chang et al., 2013; Lee et al., 2014)
mainly explored the opposite regime e2=C > Δ0 of large charging
energy.
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Sequences of fermion-parity switches are not independent.
As illustrated in Fig. 30 for an InSb Josephson junction,
the level crossings show an antibunching effect, with a
spacing distribution that vanishes linearly at small spacings
(Beenakker et al., 2013). So while in symmetry class D there
is no energy level repulsion at E ¼ 0, there is a “level crossing
repulsion.”
This effect can be connected to a classic problem in

non-Hermitian random-matrix theory (Edelman, 1997;
Khoruzhenko and Sommers, 2011): How many eigenvalues

of a real random matrix are real? The connection is made by
identifying the phase ϕn of a level crossing with the real
eigenvalue εn ¼ tanðϕn=2Þ of the matrix

M ¼ ð1 −OÞð1þOÞ−1J; ð97Þ

with J defined in Eq. (50) and O ∈ SOð2NÞ. The 2N × 2N
orthogonal matrix O ¼ rLrR is the product of the reflection
matrices from the left and right ends of the Josephson
junction, each end supporting N electron modes and N hole
modes. The matrix O is real because both rL and rR are
taken in the Majorana basis (63), and DetO ¼ þ1 because
DetrL ¼ DetrR ¼ �1.
Figure 30 shows good agreement between the spacing

distribution from a random-matrix ensemble for O and from a
computer simulation of the InSb Josephson junction. Once the
spacing is normalized by the average spacing, there are no
adjustable parameters in this comparison. The linearly vanish-
ing spacing distribution is reminiscent of the Wigner distri-
bution in the Gaussian orthogonal ensemble (Wigner, 1967),
but for larger spacings the distribution has approximately the
Poisson form of uncorrelated eigenvalues (Beenakker et al.,
2013; Forrester, 2013). This difference can be understood as a
“screening” by intervening complex eigenvalues of M of the
eigenvalue repulsion on the real axis.

B. 4π-periodic Josephson effect

One can distinguish topologically trivial from nontrivial
Josephson junctions by counting the number NX of level
crossings when ϕ is incremented by 2π. For the spectrum
shown in Fig. 29(a), the number NX ¼ 4 is even; this is the
topologically trivial case. Alternatively, if NX is odd, the
Josephson junction is topologically nontrivial; see Fig. 29(b).
The free energy (96) is 2π periodic when NX is even and

4π-periodic when NX is odd. This period doubling can be
observed via the supercurrent flowing through the ring,

I�ðϕÞ ¼
2e
h
dF�
dϕ

¼ e
h
dE�
dϕ

þ 2π-periodic terms: ð98Þ

The dependence on the enclosed flux Φ ¼ ϕℏ=e has h=2e
periodicity when NX is even, but a doubled h=e periodicity
when NX is odd. This is the 4π-periodic Josephson effect
(Kitaev, 2001; Kwon, Sengupta, and Yakovenko, 2004).
Because IþðϕÞ ¼ I−ðϕþ 2πÞ, when NX is odd, the 2π

periodicity is restored when a quasiparticle can enter or leave
the junction during the measurement time, which severely
complicates the observation of the effect (Rokhinson, Liu, and
Furdyna, 2012).

C. Discrete vortices

The class-D subgap states in a superconducting vortex core
discussed in Sec. IV.B can be realized in a quantum dot, if
Josephson junctions are configured to produce a 2π winding
of the superconducting order parameter. This is a discrete
vortex, with stepwise increments of the phase at each
Josephson junction. The class-D, ν ¼ 1 vortex needs a
topological insulator to allow for an unpaired Majorana zero

FIG. 30 (color online). Spacing distribution of level crossings in
a Josephson junction. The smooth curve shows the prediction
from RMT. The histogram results from a microscopic calcu-
lation using the Rashba-Zeeman Hamiltonian (54), for a
Josephson junction formed out of a disordered InSb wire in
a weak perpendicular magnetic field, sampled over different
impurity configurations. The excitation spectrum for one
impurity configuration is shown in Fig. 2. This system is
topologically trivial (NX ¼ 4 crossings in a 2π phase interval).
Adapted from Beenakker et al., 2013.

(a)

(b)

FIG. 29 (color online). Excitation spectrum of an InSb Josephson
junction, calculated using the Rashba-Zeeman Hamiltonian (54)
in a weak parallel magnetic field [(a) Zeeman energy
VZ ¼ 0.35 meV] and in a stronger field [(b) VZ ¼ 0.52 meV].
The other parameters are the same in (a) and (b) (Δ0 ¼ 0.4 meV,
EF ¼ 2.4 meV, N ¼ 19). The dashed and solid levels E� that
cross at E ¼ 0 correspond to different parity P ¼ �1 of the
number of electrons in the junction. The phase periodicity of the
spectrum at fixed parity is 2π in (a) (topologically trivial junction)
and 4π in (b) (topologically nontrivial). Data provided by M.
Wimmer.
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mode (Fu and Kane, 2008), while for the class-D, ν ¼ 0
vortex, a conventional semiconductor quantum dot suffices.
In Fig. 31, we illustrate the latter system, studied in Van

Heck, Mi, and Akhmerov (2014). A minimum of two
independent fluxes Φ1;Φ2 is needed to produce a discrete
vortex, so the minimal configuration consists of a quantum dot
connected to three superconducting leads [see Fig. 31(a)].
Level crossings at E ¼ 0 appear along closed contours in the
ðΦ1;Φ2Þ plane, encircling domains of odd fermion parity [see
Fig. 31(b)]. The density of states of the discrete vortex,
averaged over the symplectic ensemble of chaotic quantum
dots, has the characteristic midgap spectral peak of the class-D
ν ¼ 0 vortex core [cf. Figs. 12(c) and 31(c)]. The peak
requires the 2π winding of the order parameter; without it
the density of states is gapped.

IX. CONCLUSION

C. N. Yang famously spoke of the three “thematic melodies
of twentieth century theoretical physics,” quantization,
symmetry, and phase factor, each of which “evolved from
primordial concepts in the cognitive history of mankind”
(Yang, 2003). For the twenty-first century, one might add
topology as a fourth melody, and one could say the same about
its primordial origin. The prediction of states of matter that are
distinguished by topology rather than by symmetry is a
triumph of theoretical physics, and a reversal of the usual
course of events where theory follows experiment.
The theory of random matrices is very much a twentieth-

century production, but turns out to be well suited as a
framework for the classification of topologically distinct

single-particle Hamiltonians. We reviewed how the
tools of random-matrix theory can be adapted to account
for topology in addition to symmetry, focusing on
superconductors—where the topological quantum number
counts the number of Majorana modes.
The tenfold-way classification exhausts the possibilities for

topologically distinct states of noninteracting fermions, pro-
viding for two symmetry classes with a Z2 and three with a Z
topological quantum number. Much recent work aims at a
similarly complete classification for interacting electrons
(Chen, Gu, and Wen, 2011a, 2011b; Fidkowski and Kitaev,
2011; Turner, Pollmann, and Berg, 2011; Lu and Vishwanath,
2012; Manmana et al., 2012; Chen et al., 2013; Meidan,
Romito, and Brouwer, 2014; Neupert et al., 2014). It remains
to be seen whether the methods of RMT can be of use in that
context.
The nontopological Wigner-Dyson ensembles were tested

extensively in GaAs quantum dots. The topological Altland-
Zirnbauer ensembles still lack an experimental platform of
similar versatility, but there is a great variety of candidate
systems. We are particularly excited by the recent progress in
quantum spin-Hall insulators (HgTe or InAs quantum wells)
with superconducting electrodes (Knez, Du, and Sullivan,
2012; Hart et al., 2014; Pribiag et al., 2015). The quantum-dot
geometry of Fig. 7 seems within reach, and would provide an
ideal testing ground for RMT.
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APPENDIX A: BÉRI DEGENERACY

The twofold degeneracy of the Andreev reflection eigen-
values An ≠ 0; 1 in classes D and BDI is a consequence of an
antiunitary symmetry C that squares to þ1. This distinguishes
it from the more familiar Kramers degeneracy, resulting from
an antiunitary symmetry T that squares to −1. We give a
self-contained derivation of this unexpected degeneracy
discovered by Béri (2009b).18

We recall from Sec. VI.B that particle-hole symmetry in
classes D and BDI implies that the reflection matrix r at the
Fermi level has the block decomposition

r ¼
�
ree reh
rhe rhh

�
; rhh ¼ r�ee; reh ¼ r�he: ðA1Þ

FIG. 31 (color online). Discrete vortex in a three-terminal
quantum-dot Josephson junction. (a) The geometry. The fluxes
Φ1 and Φ2 produce a 2π winding of the order parameter within
the dashed triangles of (b). The data in (b) and (c) are obtained
numerically from the symplectic ensemble of chaotic quantum
dots (N ¼ 10 modes per lead, level spacing ≫ Δ0=N). (b) The
energy Emin of the lowest subgap state for a single sample, with
level crossings appearing on the colored contour. The ensemble
averaged density of states is plotted in (c) for two arrangements of
fluxes. The gap closes with a midgap peak when there is a 2π
winding. Adapted from Van Heck, Mi, and Akhmerov (2014).

18The proof of Béri degeneracy published in Wimmer et al. (2011)
is incomplete (the case of a noninvertible rhe is not properly
accounted for). The complete proof given here follows ar-
Xiv:1101.5795 (http://arxiv.org/abs/1101.5795).
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The Andreev reflection eigenvalues An ∈ ½0; 1� are the eigen-
values of the matrix product rher

†
he. (Equivalently,

ffiffiffiffiffiffi
An

p
is the

singular value of rhe.)
We first assume that all An’s are nonzero, so that the

matrix rhe is invertible. Unitarity r†r ¼ 1 requires that
r†ehree þ r†hhrhe ¼ 0, hence

A≡ reer−1he ¼ −AT ðA2Þ

is an antisymmetric matrix. We focus on the product

A†A ¼ ðrher†heÞ−1 − 1; ðA3Þ

with eigenvalues an ¼ 1=An − 1 ≥ 0. Let Ψ be an eigenvector
of A†A, so A†AΨ ¼ aΨ. Then Ψ0 ¼ ðAΨÞ� satisfies

A†AΨ0 ¼ −A�AA�Ψ� ¼ A�ðA†AΨÞ� ¼ ðaAΨÞ� ¼ aΨ0:

The eigenvalue a is therefore twofold degenerate if Ψ0 and Ψ
are linearly independent.
Suppose they are not independent, meaning that Ψ0 ¼ λΨ

for some λ, then

aΨ ¼ A†AΨ ¼ −A�ðλΨÞ� ¼ −jλj2Ψ;

hence a ¼ 0. So any eigenvalue 1=An − 1 ≠ 0 of A†A is
twofold degenerate. Since we assumed from the beginning
that An ≠ 0, this implies that the Andreev reflection eigen-
values An ≠ 0; 1 are twofold degenerate.
To extend the proof to the case that rhe is not invertible,

we regularize the inverse and consider the matrix

Aϵ ¼ XTrThereeX; X ¼ r†heðrher†he þ ϵÞ−1; ðA4Þ

with ϵ a positive infinitesimal. Since Aϵ remains antisym-
metric, we can follow the same steps to conclude that the
nonzero eigenvalues of A†

ϵAϵ are twofold degenerate.
Evaluation of this matrix product using the identity

r†eeðrher†heÞT ¼ ðr†herheÞr†ee ðA5Þ

gives

A†
ϵAϵ ¼ ð1 − rher

†
heÞðrher†heÞ3ðrher†he þ ϵÞ−4; ðA6Þ

which has eigenvalues

aϵ;n ¼ ð1 − AnÞA3
nðAn þ ϵÞ−40: ðA7Þ

These are either zero or twofold degenerate; hence, we
conclude that An ≠ 0; 1 is twofold degenerate.
In the absence of time-reversal and spin-rotation symmetry,

only the Béri degeneracy of the Andreev reflection eigenval-
ues applies. If one or both of these symmetries are present,
then all An’s are twofold degenerate—including those equal to
0 or 1. Kramers degeneracy then comes in the place of Béri
degeneracy; it is not an additional degeneracy (Beenakker
et al., 2011). This is probably the reason that Béri degeneracy

was not noticed during half a century of studies of Andreev
reflection—it was hidden by Kramers degeneracy.
Note that Béri degeneracy immediately explains the sta-

bility of an unpaired unit Andreev reflection eigenvalue:
It cannot be displaced from unity by disorder without a
partner. This is in essence why a Majorana resonance in the
conductance remains stable no matter how strongly the zero
mode is coupled to the continuum (Wimmer et al., 2011).

APPENDIX B: SHOT NOISE OF A MAJORANA MODE

A fully transmitted Majorana edge mode combines zero
electrical conductance with a quantized shot noise power of
e2=2h per electron volt. This result was derived by Akhmerov
et al. (2011) starting from general scattering formulas in the
literature (Anantram and Datta, 1996). Because of its signifi-
cance for the characterization and detection of Majorana
modes, we give here a self-contained derivation.
The zero-frequency shot noise power is defined by the

correlator

Pshot ¼
Z

∞

−∞
dthδI1ð0ÞδI1ðtÞi ðB1Þ

of the time-dependent fluctuations δI1ðtÞ of the electrical
current into the grounded terminal 1. Terminal 2 is biased at
voltage V and connected to terminal 1 via the Majorana edge
model; see Fig. 21.
We introduce the vectors of fermion operators

ain ¼ ða1e; a1h; a2e; a2hÞin;
aout ¼ ða1e; a1h; a2e; a2hÞout

for incoming and outgoing quasiparticles, labeled by the
terminal numbers 1, 2 and electron-hole degree of freedom
e; h. Incoming and outgoing operators are related by the
scattering matrix,

aoutðtÞ ¼
1ffiffiffiffiffi
4π

p
Z

∞

−∞
dEe−iEtSðEÞainðEÞ; ðB2Þ

S ¼
�
r t

t0 r0

�
; SS† ¼ 1;

SðEÞ ¼ τxS�ð−EÞτx; ðB3Þ

composed out of reflection and transmission blocks r; r0; t; t0.
The Pauli matrix τx acts on the electron-hole degree of
freedom. (The spin degree of freedom plays no role here.)
Since we will be restricting ourselves to the linear response
limit V → 0, we can evaluate the scattering matrix at the Fermi
level E ¼ 0 (and will omit the energy argument of S in what
follows).
The current operator at terminal 1 is given by

I1ðtÞ ¼ ea†outðtÞP1aoutðtÞ; P1 ¼
�
τz 0

0 0

�
: ðB4Þ

The projector P1 projects onto terminal 1 and the Pauli matrix
τz accounts for the opposite charge of electrons and holes. (For
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notational simplicity, we take the electron charge e > 0 and
we have also set ℏ ¼ 1.) Substitution into Eq. (B1) gives the
shot noise power

Pshot ¼
e2

h

Z
∞

0

dE
Z

∞

0

dE0
Z

∞

0

dE00

× ½ha†inðE0ÞMainðE00Þa†inðEÞMainðEÞi
− ha†inðE0ÞMainðE00Þiha†inðEÞMainðEÞi�; ðB5Þ

M ¼ S†P1S ¼
�
r†τzr r†τzt

t†τzr t†τzt

�
: ðB6Þ

The fermion operators ain originate from a reservoir in
thermal equilibrium, so the expectation values are given by the
Fermi distribution. In the zero-temperature limit, we need to
consider only energies in the interval 0 < E < eV, where

ha†in;nðEÞain;mðE0Þi ¼ F nmðEÞδðE − E0Þ;

F ¼
�
0 0

0 ð1þ τzÞ=2

�
: ðB7Þ

The term ð1þ τzÞ=2 in the definition of F ensures that
terminal 2 injects electrons and not holes (assuming V > 0).
The equilibrium expectation value that we need is given by

ha†inðE0ÞMainðE00Þa†inðEÞMainðEÞi
− ha†inðE0ÞMainðE00Þiha†inðEÞMainðEÞi

¼ δðE − E0ÞδðE − E00ÞTrFMð1 − F ÞM; ðB8Þ

so we arrive at the shot noise power

Pshot ¼
e2

h
eVTrFS†P1Sð1 − F ÞS†P1S: ðB9Þ

Using that ðS†P2SÞ2 ¼ S†P2
2S, this evaluates to

Pshot=P0 ¼ 1
2
Trð1þ τzÞt†t − 1

4
Tr½ð1þ τzÞt†τzt�2

¼ Trðt†eetee þ t†hetheÞ − Trðt†eetee − t†hetheÞ2: ðB10Þ

We have defined P0 ¼ e3V=h, the shot noise quantum of e2=h
per electron volt.
So far, we have not yet used that terminals 1 and 2 are

connected by an unpaired Majorana mode. To account for that,
it is convenient to switch from the electron-hole representation
to the Majorana representation, by means of the unitary
transformation

SM ¼ ΩSΩ†; Ω ¼
ffiffiffi
1

2

r �
1 1

i −i

�
: ðB11Þ

The particle-hole symmetry relation (B3) implies that SM is a
real orthogonal matrix at the Fermi level. The Pauli matrix τz
transforms into τy, so that the shot noise equation (B10)
becomes

Pshot=P0 ¼ 1
2
Trð1þ τyÞtTMtM − 1

4
Tr½ð1þ τyÞtTMτytM�2

¼ 1
2
TrtTMtM − 1

4
Tr½ð1þ τyÞtTMτytM�2: ðB12Þ

(The trace of the antisymmetric matrix tMτyτTM vanishes.)
The transmission matrix for an unpaired Majorana mode

has rank 1, meaning that tM has only 1 nonzero singular value.
We make the polar decomposition

tM ¼ Udiagð
ffiffiffiffi
T

p
; 0; 0;…; 0ÞV ðB13Þ

in terms of a pair of orthogonal matrices U;V and the
transmittance T of the Majorana edge mode. The matrix

ðtTMτytMÞnm ¼ TV1nðUTτyUÞ11V1m ¼ 0 ðB14Þ

vanishes identically, because it is proportional to the diagonal
element of an antisymmetric matrix. The shot noise power
(B12) thus reduces to

Pshot=P0 ¼ 1
2
TrtTMtM ¼ 1

2
T: ðB15Þ

In the absence of backscattering, T ¼ 1, the shot noise power
of the Majorana edge mode equals Pshot ¼ e3V=2h.
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