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Compass models are theories of matter in which the couplings between the internal spin (or other
relevant field) components are inherently spatially (typically, direction) dependent. A simple
illustrative example is furnished by the 90° compass model on a square lattice in which only
couplings of the form τxi τ

x
j (where fτai ga denote Pauli operators at site i) are associated with nearest-

neighbor sites i and j separated along the x axis of the lattice while τyi τ
y
j couplings appear for sites

separated by a lattice constant along the y axis. Similar compass-type interactions can appear in
diverse physical systems. For instance, compass models describe Mott insulators with orbital degrees
of freedom where interactions sensitively depend on the spatial orientation of the orbitals involved as
well as the low-energy effective theories of frustrated quantum magnets, and a host of other systems
such as vacancy centers, and cold atomic gases. The fundamental interdependence between internal
(spin, orbital, or other) and external (i.e., spatial) degrees of freedom which underlies compass models
generally leads to very rich behaviors, including the frustration of (semi-)classical ordered states on
nonfrustrated lattices, and to enhanced quantum effects, prompting, in certain cases, the appearance of
zero-temperature quantum spin liquids. As a consequence of these frustrations, new types of
symmetries and their associated degeneracies may appear. These intermediate symmetries lie midway
between the extremes of global symmetries and local gauge symmetries and lead to effective
dimensional reductions. In this article, compass models are reviewed in a unified manner, paying
close attention to exact consequences of these symmetries and to thermal and quantum fluctuations
that stabilize orders via order-out-of-disorder effects. This is complemented by a survey of numerical
results. In addition to reviewing past works, a number of other models are introduced and new results
established. In particular, a general link between flat bands and symmetries is detailed.
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I. INTRODUCTION AND OUTLINE

A. Introduction

This article reviews compass models. The term “compass
models” refers to a family of closely related lattice models
involving interacting quantum degrees of freedom (and their
classical approximants). Members of this family appear in
very different physical contexts. Already more than three
decades ago they were first encountered as minimal models to
describe interactions between orbital degrees of freedom in
strongly correlated electron materials (Kugel and Khomskii,
1982). The name orbital compass model was coined at the
time, but only in the past decade have these models started to
receive wide-spread attention to describe physical properties
of materials with orbital degrees of freedom (Tokura and
Nagaosa, 2000; van den Brink, 2004; Khaliullin, 2005).
In different guises, these models describe the phase variable

in certain superconducting Josephson-junction arrays (Xu and
Moore, 2004; Nussinov and Fradkin, 2005) and exchange
interactions in ultracold atomic gasses (Duan, Demler, and
Lukin, 2003; Wu, 2008). Last but not least, quantum compass
models have recently made an entrance onto the scene of
quantum information theory as mathematical models for
topological quantum computing (Kitaev, 2003): The much-
studied Kitaev’s honeycomb model has the structure of a
compass model. It is interesting to note that the apparently
different fields such as those dealing with orbital degrees of
freedom in complex oxides and those studying theoretical
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models for quantum computing have compass models in
common and can thereby in principle cross fertilize.
In the current work, we review the different incarnations of

compass models, their physical motivations, symmetries,
ordering, and excitations. One should stress however, that
although the investigation of compass models has grown into
a considerable area of research, this is an active field of
research with still many interesting and open problems, as will
become more explicit in the following. In a subsequent review
(Nussinov and van den Brink, 2015), we provide an in-depth
overview of the relation between orbital models and Kitaev’s
models for quantum computation.

B. Outline of the review

We start by introducing and defining, in Sec. II, various
compass models. Next, in Sec. III, we discuss viable exten-
sions of more typical compass models including, e.g., ring
exchange and extensions to general spatial dimensions. While
the most common representation of compass models is that on
a lattice, other representations are noteworthy.
In Sec. IV, we introduce previously largely unstudied

continuum model representations that are suited for field-
theoretic treatments, introduce general momentum space
representations, and illustrate how this naturally suggests
the presence of dimensional reductions in compass models.
We furthermore discuss classical incommensurate ground
states and the representation of a quantum compass model
as an unusual anisotropic classical Ising model. In Sec. IV.D,
the general equations of motion associated with compass
theories are presented; these equations capture the quintes-
sential anisotropic character of the compass models.
In Sec. V we survey the physical contexts that motivate

compass models and derive them for special cases. This
includes situations where the compass degrees of freedom
represent orbital degrees of freedom (Sec. V.A). We review
how they emerge, how they interact, and how they are
described mathematically in terms of orbital Hamiltonians.
Most typical representations rely on SU(2) algebra but we also
discuss SU(3) Gell-Mann and other matrix forms that are better
suited for the description of certain orbital systems. In Sec. V.B
we proceed with a review of the realization of compass models
in cold atomic systems. We conclude our general discussion of
incarnations of compass models in general physical systems in
Sec. V.C, where we discuss how the effective low-energy
theories in chiral frustrated magnets (such as the kagome and
triangular antiferromagnets) are of the compass model type.
In Sec. VI, we turn to one of the most common unifying

features of compass models: the intermediate symmetries that
they exhibit. We explain what these symmetries are and place
them in perspective to the two extremes of global and local
gauge symmetries. We discuss precise consequences of these
symmetries, notably those concerning effective dimensional
reductions, briefly allude to relations to topological quantum
orders, and illustrate how these symmetries arise in the various
compass models.
In Sec. VII, we introduce new results: an exact relation

between intermediate symmetries and band structures. In
particular, we illustrate how flat bands can arise and are
protected by the existence of these symmetries and demonstrate

how this is materialized in various compass models. One com-
mon and important consequence of intermediate symmetries
is the presence of a subextensive exponentially large ground-
state degeneracy.We discuss situations where this degeneracy is
exact and ones in which it emerges in various limits.
In Sec. VIII, we review how low-temperature orders in

various compass models nevertheless appear and are stabilized
by fluctuations or, as they are often termed, order-out-of-
disorder effects. Aswewill explain, orders in classical compass
models that we study are, rigorously, stabilized by thermal
fluctuations. This ordering tendency is further bolstered by
quantum zero-point fluctuations. Because of an exact equiv-
alence between the large-n and high-temperature limits, the
low-temperature behavior of compass models is supplanted by
exact results at high temperatures as reviewed in Sec. VIII.F.
Following the review of these earlier analytic results concern-
ing the limiting behaviors at both low and high temperatures,
we finally turn in Sec. IX to numerical results concerning the
phases and transitions in various compass model systems.

II. COMPASS MODEL OVERVIEW

A. Definition of quantum compass models

In order to define quantum compass models, we start by
considering a lattice with sites on which quantum degrees of
freedom exist. Throughout this review the total number of
lattice sites is denoted by N. Each lattice site has a vector
pointing to it that is denoted by r. When square (or cubic)
lattices are involved, these are considered of dimension N ¼
L × L (or N ¼ L × L × L). On more general lattices, L
denotes the typical linear dimension (i.e., linear extent along
one of the crystal axes). We set the lattice constant to unity.
The spatial dimensionality of the lattice is denoted by D
(e.g., D ¼ 2 for the square and honeycomb lattices, D ¼ 3 in
cubic and pyrochlore lattices, etc.).
Depending on the physical problems at hand, we will refer

to these degrees of freedom at the lattice sites as spins,
pseudospins, or orbitals. We denote these degrees of freedom
by τi, where i labels the lattice sites and τ ≡ ð1=2Þðσx; σy; σzÞ,
where σx, σy, and σz are the Pauli matrices. In terms of the
creation (c†α) and annihilation (cα) operators for an electron in
state α, the pseudospin operator τ can be expressed as τ ¼
ð1=2ÞPαβc

†
ασαβcβ, where the sum is over the two different

possibilities for each α and β. Here τ is the fundamental T ¼
1=2 representation of SU(2); for T > 1=2 we will generally
employ T to denote that Tx, Ty, and Tz triad (or T1;2;3 which
we will interchangeably often use).
A representation in terms of Pauli matrices is particularly

useful for degrees of freedom that have two flavors, for
instance, two possible orientations of a spin (up or down) or
two possible orbitals that an electron can occupy, as the Pauli
matrices are generators of SU(2), the group of 2 × 2 matrices
with determinant 1. For degrees of freedom with n flavors, we
use a representation in terms of the generators of SUðnÞ,
which for the particular case of n ¼ 3 are the eight Gell-Mann
matrices λi, with i ¼ 1 − 8 (see Appendix B).
The name that one chooses for the degree of freedom

(whether spin, pseudospin, color, flavor, or orbital) is, of
course, mathematically irrelevant. For SU(2) quantum
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compass models it is important that the components of τ obey
the well-known commutation relation ½τx; τy� ¼ iτz, and its
cyclic permutations, and that ðτγÞ2 ¼ 1=4 for any component
γ ¼ x; y, or z. For SU(3), in the fundamental representation τ
is the eight-component vector τ ¼ ð1=2ÞPαβc

†
αλαβcβ, with the

commutation relations governed by the Gell-Mann matrices.
Compass models are characterized by the specific form that

the interactionbetween thedegreesof freedomassumes: (i) there
is an interaction only between certain vector components of τ
and (ii) on different bonds in the lattice, different vector
components interact. When, for instance, a site i is linked to
nearest-neighbor sites j and k, the interaction along the lattice
link hiji can be of the type τxi τ

x
j , whereas on the link hiki it is

τyi τ
y
k. In the following specific Hamiltonians corresponding to

various quantum compass models are introduced, in particular,
the 90° compass models, Kitaev’s honeycomb model, 120°
compass models, and a number of generalizations thereof.

1. 90° compass models

A basic realization of a quantum compass model can be set
up on a two-dimensional square lattice, where every site has
two horizontal and two vertical bonds. If one defines the
interaction along horizontal (H) lattice links hijiH to be Jτxi τ

x
j

and along the vertical (V) links hijiV to be Jτyi τ
y
j , we have

constructed the so-called two-dimensional 90° quantum com-
pass model, also known as the planar 90° orbital compass
model; see Fig. 1. Its Hamiltonian is given by

H90°
□

¼ −Jx
X
hijiH

τxi τ
x
j − Jy

X
hijiV

τyi τ
y
j : ð1Þ

The isotropic variant of this system has equal couplings along
the vertical and horizontal directions (Jx ¼ Jy ¼ J). The
minus signs that appear in this Hamiltonian were chosen
such that the interactions between the pseudospins τ tend to
stabilize uniform ground states with “ferro” pseudospin order.
(In D ¼ 2 the 90° compass models with ferro and “antiferro”
interactions are directly related by symmetry; see Sec. II.A.4.)
For clarity, we note that the isotropic two-dimensional
compass model is very different from the two-dimensional
Ising model

HIsing
□

¼ −J
X
hijiH

τxi τ
x
j − J

X
hijiV

τxi τ
x
j ¼ −J

X
hiji

τxi τ
x
j ;

where on each horizontal and vertical vertex of the square
lattice the interaction is the same and of the form τxi τ

x
j—it is

also very different from the two-dimensional XY model

HXY
□

¼ −J
X

hijiH;hijiV
ðτxi τxj þ τyi τ

y
jÞ;

because also in this case on all bonds the interaction terms in
the Hamiltonian are of the same form, i.e., ðτi · τjÞ.
One can rewrite the 90° compass Hamiltonian in a more

compact form by introducing the unit vectors ex and ey that
denote the bonds along the x and y directions in the two-
dimensional (2D) lattice, so that

H90°
□

¼ −J
X
r

ðτxrτxrþex þ τyrτ
y
rþeyÞ; ð2Þ

where the sum over r represents the sum over lattice sites and
every bond is counted only once. With this notation the
compass model Hamiltonian can be cast in the more general
form

H90°
□

¼ −J
X
r;γ

τγrτ
γ
rþeγ ; ð3Þ

where for the 90° square lattice compass model H90°
□
,

we have γ ¼ 1; 2, fτγg ¼ fτ1; τ2g ¼ fτx; τyg, and feγg ¼
fe1; e2g ¼ fex; eyg.
This generalized notation allows for different compass

models and the more well-known models such as the Ising
or Heisenberg model to be cast in the same form; see
Table I. For instance, the two-dimensional square lattice
Ising model HIsing

□
corresponds to γ ¼ 1; 2 with fτγg ¼

fτx; τxg and feγg ¼ fex; eyg. The Ising model on a three-
dimensional cubic lattice is then given by γ ¼ 1;…; 3,
fτγg ¼ fτx; τx; τxg, and feγg ¼ fex; ey; ezg. The XY model
on a square lattice HXY

□
corresponds to Eq. (4) with γ ¼

1;…; 4, fτγg ¼ fτx; τy; τx; τyg, and feγg ¼ fex; ex; ey; eyg.
Another example is the square lattice Heisenberg model,
where γ ¼ 1;…; 6, fτγg ¼ fτx; τy; τz; τx; τy; τzg, and feγg ¼
fex; ex; ex; ey; ey; eyg, so that in this case

P
γτ

γ
rτ

γ
rþeγ ¼P

γτr · τrþeγ .
This class of compass models can be further generalized in

a straightforward manner by allowing for a coupling strength
Jγ between the pseudospins τγ that depends on the direction of
the bond γ [anisotropic compass models (Nussinov and
Fradkin, 2005)] and by adding a field hγ that couples to τγ

linearly (Nussinov and Ortiz, 2008; Scarola, Whaley, and
Troyer, 2009). This generalized class of compass models is
then defined by the Hamiltonian

Hcompass ¼ −
X
r;γ

ðJγτγrτγrþeγ þ hγτ
γ
rÞ: ð4Þ

From a historical viewpoint the three-dimensional 90°
compass model is particularly interesting. Denoted by H90°

3□,
it is customarily defined on a cubic lattice and given by

FIG. 1 (color online). The planar 90° compass model on a square
lattice: The interaction of (pseudo)spin degrees of freedom τ ¼
ðτx; τyÞ along horizontal bonds that are connected by the unit
vector ex is τxr τxrþex . Along vertical bonds ey it is τyr τ

y
rþey .
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Hcompass [Eq. (4)] where γ spans three Cartesian directions:
γ ¼ 1;…; 3 with fτγg ¼ fτx; τy; τyg, Jγ ¼ J ¼ 1, hγ ¼ 0, and
feγg ¼ fex; ey; ezg, so that

H90°
3□ ¼ −J

X
r

ðτxrτxrþex þ τyrτ
y
rþey þ τzrτ

z
rþezÞ: ð5Þ

Thus, by allowing γ to assume values γ ¼ 1; 2; 3 the square
lattice 90° compass model of Eq. (3) is trivially extended
to three spatial dimensions. Similarly, by allowing
γ ¼ 1; 2;…; D, it can be extended to arbitrary spatial dimen-
sion D (which we return to in later sections). The structure

of H90°
3□ is schematically indicated in Fig. 2. This compass

model is actually the one originally proposed by Kugel and
Khomskii (1982) in the context of orbital ordering. At that
time it was noted that even if the interaction on each individual
bond is Ising-like, the overall symmetry of the model is
considerably more complicated, as is reviewed in Sec. V.A.
In alternative notations for compass model Hamiltonians,

one introduces the unit vector n connecting neighboring lattice
sites i and j. Along the three Cartesian axes on a cubic lattice,
for instance, n equals ex ¼ ð1; 0; 0Þ, ey ¼ ð0; 1; 0Þ, or
ez ¼ ð0; 0; 1Þ. With this one can express τx as τx ¼ τ · ex,
so that with this vector notation

H90°
3□ ¼ −

X
r;γ

τγrτ
γ
rþeγ ¼ −

X
ij

ðτi · nÞðτj · nÞ: ð6Þ

This elegant vector form stresses the compass nature of
the interactions between the pseudospins. This notation,
however, does not always generalize easily to cases with
higher dimensions and/or different lattice geometries. All
Hamiltonians in this review are therefore given in terms of
τγ operators and are complemented by an expression in vector
notation where appropriate.
It is typical for compass models that even the ground-state

structure is nontrivial. For a system governed by H90°
3□, pairs of

pseudospins on lattice links parallel to the x axis, for instance,
favor pointing their pseudospins τ along x so that the
expectation value hτxi ≠ 0; see Fig. 3. Similarly, on bonds

TABLE I. Generalized notation that casts compass models and more well-known Hamiltonians such as the Ising, XY, or Heisenberg models in
the same form. Additional spatial anisotropies can be introduced, for instance, by coupling constants Jγ that depend on the bond direction eγ .
Doing so changes the strengths of the interaction on different links, but not the form of those interactions: these are determined by how different
vector components of τr and τrþeγ couple.

Model Hamiltonian: H ¼ −
P

r;γτ
γ
rτ

γ
rþeγ

fτγg feγg Model name Symbol Dimension

fτxg fexg Ising chain HIsing
1 1

fτx; τyg fex; exg XY chain HXY
1 1

fτx; τy; τzg fex; ex; exg Heisenberg chain HHeis
1 1

fτx; τxg fex; eyg Square Ising HIsing
□

2

fτx; τx; τxg fex; ey; ezg Cubic Ising HIsing
3□ 3

fτx; τy; τx; τyg fex; ex; ey; eyg Square XY HXY
□

2

fτx; τy; τz; τx; τy; τzg fex; ex; ex; ey; ey; eyg Square Heisenberg HHeis
□

2

fτx; τyg fex; eyg Square 90° compass H90°
□

2

fτx; τy; τzg fex; ey; ezg Cubic 90° compass H90°
3□ 3

fτxþ
ffiffi
3

p
τy

2
; τ

x−
ffiffi
3

p
τy

2
g fex; eyg Square 120° compass H120°

□
2

With fθγg ¼ f0; 2π=3; 4π=3g:
fτx; τx; τxg ex cos θγ þ ey sin θγ Honeycomb Ising HIsing

⬡ 2

fτx; τy; τzg ex cos θγ þ ey sin θγ Honeycomb Kitaev HKitaev
⬡ 2

fτx; τx; τzg ex cos θγ þ ey sin θγ Honeycomb XXZ HXXZ
⬡ 2

πγ ¼ τx cos θγ þ τy sin θγ fex; ey; ezg Cubic 120° H120°
3□ 3

πγ ex cos θγ þ ey sin θγ Honeycomb 120° H120°
⬡ 2

With fθγg ¼ f0; 2π=3; 4π=3g and η ¼ �1:

fτx; τy; τzg ηex cos
θγ
2
þ ηey sin

θγ
2

Triangular Kitaev HKitaev
▵ 2

πγ ηex cos
θγ
2
þ ηey sin

θγ
2

Triangular 120° H120
▵ 2

FIG. 2 (color online). The 90° compass model on a cubic lattice:
The interaction of (pseudo)spin degrees of freedom τ ¼
ðτx; τy; τzÞ along horizontal bonds that are connected by the unit
vector ex is Jτxi τ

x
iþex

. On bonds connected by ey it is Jτ
y
i τ

y
iþey

and
along the vertical bonds it is Jτzi τ

z
iþez

.
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parallel to the y direction, it is advantageous for the pseudo-
spins to align along the y direction, so that hτyi ≠ 0. It is clear
that at a site the bonds along x, y, and z cannot be satisfied
at the same time. Therefore the interactions are strongly
frustrated. The form of the interaction in Eq. (6) bears a
resemblance to the dipole-dipole interactions between mag-
netic needles that are positioned on a lattice, and hence the
name compass models.
Such a frustration of interactions is typical of compass

models, but, of course, also appears in numerous other
systems. Indeed, on a conceptual level, many of the ideas
and results that are discussed in this review, such as renditions
of thermal and quantum fluctuation-driven ordering effects,
unusual symmetries, and ground-state sectors labeled by
topological invariants, have similar incarnations in frustrated
spin, charge, cold atom, and Josephson-junction-array sys-
tems. Although these similarities are mostly conceptual there
are also instances where there are exact correspondences. For
instance, the two-dimensional 90° compass model is, in fact,
dual to the Moore-Lee model describing Josephson coupling
between superconducting grains in a square lattice (Moore and
Lee, 2004; Xu and Moore, 2004; Nussinov and Fradkin, 2005;
Xu and Moore, 2005; Cobanera, Ortiz, and Nussinov, 2010).

2. Kitaev’s honeycomb model

In 2006, Kitaev introduced a type of compass model that
has interesting topological properties and excitations, which
are relevant and much studied in the context of topological
quantum computing (Kitaev, 2006). The model is defined on a
honeycomb lattice and is referred to either as Kitaev’s
honeycomb model or as the XYZ honeycomb compass model.
The lattice links on a honeycomb lattice may point along three
different directions; see Fig. 4. One can label the bonds along
these directions by e1, e2, and e3, where the angle between the
three unit lattice vectors is 120°. With these preliminaries, the
Kitaev honeycomb model Hamiltonian HKitaev

⬡ reads

HKitaev
⬡ ¼ −Jx

X
e1−
bonds

τxi τ
x
j − Jy

X
e2−
bonds

τyi τ
y
j − Jz

X
e3−
bonds

τzi τ
z
j:

One can reexpress this model in the form of Hcompass
introduced previously, where

HKitaev
⬡ ¼ −

X
r;γ

Jγτ
γ
rτ

γ
rþeγ ;

with

fτγg¼fτx;τy;τzg; fJγg¼fJx;Jy;Jzg;
eγ ¼ ex cosθγþ ey sinθγ; fθγg¼f0;2π=3;4π=3g. ð7Þ

It was proven that for large Jz, the model Hamiltonian
HKitaev

⬡ maps onto a square lattice model known as Kitaev’s
toric code model (Kitaev, 2003). These models and their
relation to quantum computing are reviewed separately
(Nussinov and van den Brink, 2015). To highlight the
pertinent interactions and geometry of Kitaev’s honeycomb
model as a compass model, it may also be termed an XYZ
honeycomb compass model. This also suggests variants such
as the XXZ honeycomb compass model, which we
define next.

3. The XXZ honeycomb compass model

Avariation of the Kitaev honeycomb compass Hamiltonian
HKitaev

⬡ in Eq. (7) is to consider a compass model where on
bonds in two directions there is a τxτx-type interaction and in
the third direction a τzτz interaction. This model goes under
the name of the XXZ honeycomb compass model (Nussinov,
Ortiz, and Cobanera, 2012a). Explicitly, it is given by the
Hamiltonian

HXXZ
⬡ ¼ −

X
r;γ

Jγτ
γ
rτ

γ
rþeγ ;

with

fτγg ¼ fτx; τx; τzg; fJγg ¼ fJx; Jx; Jzg;
eγ ¼ ex cosθγ þ ey sinθγ; fθγg ¼ f0;2π=3;4π=3g. ð8Þ

FIG. 3 (color online). Frustration in the 90° compass model on a
cubic lattice. The interactions between pseudospins τ are such
that the pseudospins tend to align their components τx, τy, and τz

along the x, y, and z axes, respectively. This causes mutually
exclusive ordering patterns.

FIG. 4 (color online). Kitaev’s compass model on a honeycomb
lattice: the interaction of (pseudo)spin degrees of freedom
τ ¼ ðτx; τy; τzÞ along the three bonds that each site is connected
to are τxr τ

x
rþe1 , τ

y
r τ

y
rþe2 , and τzrτ

z
rþe3 , where the bond vectors of

the honeycomb lattice fe1; e2; e3g are fex;−ex=2þ
ffiffiffi
3

p
ey=2;

−ex=2 −
ffiffiffi
3

p
ey=2g, respectively.
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A schematic is provided in Fig. 5. The key defining feature of
this Hamiltonian compared with the original Kitaev model of
Sec. II.A.2 is that the interactions along both the diagonal
(zigzag)—x and y directions of the honeycomb lattice are of
the τxτx type (as opposed to both τxτx and τyτy in Kitaev’s
model). As in Kitaev’s honeycomb model, all interactions
along the vertical (z direction) are of the τzτz type. While in
Eq. (8) only two couplings Jx and Jz appear, the model can, of
course, be further generalized to having three different
couplings on the three different types of links (and more
generally to have nonuniform spatially dependent couplings),
while the interactions retain their XXZ form. In all of these
cases, an exact duality to a corresponding Ising lattice gauge
theory on a square lattice exists, which we elaborate on later
(Sec. IX.H).

4. 120° compass models

The 120° compass model has the form of Hcompass [Eq. (4)]
and is defined on a general lattice having three distinct lattice
directions eγ for nearest-neighbor links. As for the other
compass models on these lattice links different components of
τ interact. Its particularity is that the three components of τ are
not orthogonal. Along bond γ the interaction is between the
vector components τx cos θ þ τy sin θ of the two sites con-
nected by the bond, where for the three different links of each
site θ ¼ 0; 2π=3, and 4π=3, respectively.
The model was first studied on the cubic lattice (Nussinov

et al., 2004; van den Brink, 2004; Biskup, Chayes, and
Nussinov, 2005) and later on the honeycomb (Nasu et al.,
2008; Wu, 2008; Zhao and Liu, 2008) and pyrochlore lattices
(Chern, Perkins, and Hao, 2010). The general 120°
Hamiltonian can be denoted as

H120 ¼ −J
X

r;γ¼1;…;3

π̂γr π̂
γ
rþeγ ; ð9Þ

where π̂γr are the three projections of τ along three equally
spaced directions on a unit disk in the xy plane:

π̂1 ¼ τx;

π̂2 ¼ −ðτx − ffiffiffi
3

p
τyÞ=2;

π̂3 ¼ −ðτz þ ffiffiffi
3

p
τxÞ=2:

ð10Þ

Hence the name 120° model. In the notation of Hcompass
in Eq. (4) the 120° Hamiltonian on a 3D cubic lattice,
represented in Fig. 6, takes the form

H120
3□ ¼ −J

X
r;γ

π̂γr π̂
γ
rþeγ ;

with

π̂γ ¼ τx cos θγ þ τy sin θγ;

feγg ¼ fex; ey; ezg;
fθγg ¼ f0; 2π=3; 4π=3g: ð11Þ

Like the 90° compass model, the bare 120° model can be
extended to include anisotropy of the coupling constants Jγ
along the different crystalline directions and external fields
(van Rynbach, Todo, and Trebst, 2010). On a honeycomb
lattice the 120° Hamiltonian (Nasu et al., 2008; Wu, 2008;
Zhao and Liu, 2008) can be thought of as a type of H120

3□ and
HKitaev

⬡ :

H120
3⬡ ¼ −J

X
r;γ

πγrπ
γ
rþeγ ;

with

πγ ¼ τx cos θγ þ τy sin θγ;

eγ ¼ ex cos θγ þ ey sin θγ;

fθγg ¼ f0; 2π=3; 4π=3g: ð12Þ
It is worth highlighting the differences and similarities
between the models of Eqs. (11) and (12) on the cubic and
honeycomb lattices, respectively. Although the pseudospin
operators that appear in these two equations have an identical
form, they correspond to different physical links. In the cubic
lattice, bonds of the type π̂γr π̂

γ
rþeγ are associated with links

along the Cartesian γ directions; on the honeycomb lattice,
bonds of the type πγrπ

γ
rþeγ correspond to links along the three

possible orientations of nearest-neighbor links in the two-
dimensional honeycomb lattice.
In 120° compass models the interactions involve only

two of the components of τ (so that n ¼ 2) as opposed to

FIG. 5 (color online). Schematic representation of the XXZ
honeycomb compass model. From Nussinov, Ortiz, and
Cobanera, 2012a.

FIG. 6 (color online). The 120° compass model on a cubic
lattice: The interaction of (pseudo)spin degrees of freedom
τ ¼ ðτx; τy; τzÞ along the three bonds that each site is connected
to are π̂1r π̂

1
rþex , π̂2r π̂

2
rþey , and π̂3r π̂

3
rþez , where the different

components fπ̂1; π̂2; π̂3g of the vector π̂ ¼ (τx; ð−τx þ ffiffiffi
3

p
τyÞ=2;

ð−τx − ffiffiffi
3

p
τyÞ=2) interact along the different bonds fex; ey; ezg.
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a three-component “Heisenberg” character of the three-
dimensional 90° compass system, having n ¼ 3. In that sense
120° models are similar XY models. On bipartite lattices, the
ferromagnetic (with J > 0) and antiferromagnetic (J < 0)
variants of the 120° compass model are equivalent to one
another up to the standard canonical transformation involving
every second site of the bipartite lattice. This can be made
explicit by defining the operator

U ¼
Y
r¼odd

τzr ; ð13Þ

with the product taken over all sites r that belong to, e.g., the
odd sublattice for which the sum of the components of the
lattice site along the three Cartesian directions rx þ ry þ rz is
an odd integer. The unitary mapping U†H120U then effects a
change of sign of the interaction constant J (i.e., J → −J). The
ferromagnetic and antiferromagnetic square lattice 90° com-
pass models ðH90°

□
Þ are related to one another in the same way

as, similarly, in this case n ¼ 2. Note that this mapping does
not hold for the 3D rendition of the 90° model: in this case
the interactions also involve τz and consequently H90°

3□ has
different low-temperature statistical mechanical properties for
J > 0 and J < 0.
The 120° models have also appeared in various physical

contexts on nonbipartite lattices. On the triangular lattice
(Mostovoy and Khomskii, 2002; Wu, 2008; Zhao and Liu,
2008), the model is given by

H120
3▵ ¼ −

J
2

X
r;γ;η

πγrπ
γ
rþηeγ ;

with

πγ ¼ τx cos θγ þ τy sin θγ; eγ ¼ ex cos
θγ
2
þ ey sin

θγ ;

2
;

fθγg ¼ f0; 2π=3; 4π=3g; η ¼ �1. ð14Þ

The factor 1=2 in front of the summation corrects for the
double counting of each bond in the sum over r, γ, and η. The
triangular model is very similar to the honeycomb lattice
model of Eq. (12). The notable difference is that in the
triangular lattice there are additional links: In the triangular
lattice, each site has six nearest neighbors whereas on the
honeycomb lattice, each site has three nearest neighbors. In
the Hamiltonian of Eq. (14), nearest-neighbor interactions of
the π1π1 type appear for nearest-neighbor interactions along
the rays parallel to the ex direction (i.e., they appear from a
given site to its two neighbors at angles of zero or 180° relative
to the e1 crystalline directions). Similarly, interactions of the
π2;3π2;3 type appear for rays parallel to the other two
crystalline directions.

B. Hybrid compass models

An interesting and relevant extension of the bare compass
models is one in which both usual SU(2) symmetric
Heisenberg-type exchange terms τi · τj appear in unison with
the directional bonds of the bare 90° or 120° compass model,
resulting in compass-Heisenberg Hamiltonians of the type

H ¼ −
X
r;γ

ðJHτr · τrþeγ þ JKτ
γ
rτ

γ
rþeγ Þ; ð15Þ

where JH denotes the coupling constant for the interactions of
Heisenberg form and JK the coupling constant of the compass
or Kitaev terms in the Hamiltonian. For instance, the 120°
rendition of this Hamiltonian lattice has been considered on a
honeycomb lattice, where it describes exchange interactions
between the magnetic moments of Ir4þ ions in a family of
layered iridates A2IrO3 (A ¼ Li, Na)—materials in which the
relativistic spin-orbit coupling plays an important role
(Chaloupka, Jackeli, and Khaliullin, 2010; Trousselet,
Khaliullin, and Horsch, 2011). The hybrid 90° Heisenberg-
compass model was introduced in the context of interacting
t2g-orbital degrees of freedom (van den Brink, 2004) and its
2D quantum incarnation was also investigated in the context
of quantum computation (Trousselet, Oleś, and Horsch, 2010,
2012). Another physical context in which such a hybrid model
appears is modeling the consequences of the presence of
orbital degrees of freedom in LaTiO3 on the magnetic
interactions in this material (Khaliullin, 2001). The resulting
Heisenberg-compass and Kitaev-Heisenberg models
(Chaloupka, Jackeli, and Khaliullin, 2010; Reuther,
Thomale, and Trebst, 2011), their physical motivations, and
their conceptual relevance in the area of topological quantum
computing are reviewed separately (Nussinov and van den
Brink, 2015)
In a similar manner hybrids of Ising and compass models

can be constructed. An Ising-compass Hamiltonian of the
form H90°

□
þHIsing

□
has, for instance, been introduced and

studied by Brzezicki and Oleś (2010).

III. GENERALIZED AND EXTENDED COMPASS MODELS

Thus far, we have focused solely on a single pseudospin at
a given site. It is also possible to consider situations in which
more than one pseudospin appears at a site or with a
coupling between pseudospins and the usual spin degrees
of freedom—a situation equivalent to having two pseudospin
degrees of freedom per site. Kugel-Khomskii (KK) models
comprise a class of Hamiltonians that are characterized by
having both spin and pseudospin (orbital) degrees of free-
dom on each site. These models are introduced in Sec. III.A,
followed by a possible generalization that we briefly discuss
which includes multiple pseudospin degrees of freedom.
Their physical incarnations are reviewed in detail in Sec. V.
We then discuss in Sec. III.B extensions of the quantum
compass models introduced earlier to the classical arena, to
higher dimensions, and to a large number of spin compo-
nents n. In Sec. III.C we collect other compass model
extensions.

A. Kugel-Khomskii spin-orbital models

The situation in which at a site both pseudospin and the
usual spin degrees of freedom are present naturally occurs in
the realm of orbital physics. It arises when (electron) spins can
occupy different orbital states of an ion—the orbital degree of
freedom or pseudospin. The spin and orbital degrees of
freedom couple to each other because the intersite spin-spin

8 Zohar Nussinov and Jeroen van den Brink: Compass models: Theory and physical motivations

Rev. Mod. Phys., Vol. 87, No. 1, January–March 2015



interaction depends on the orbital states of the two spins
involved. Hamiltonians that result from such a coupling of
spin and orbital degrees of freedom are generally known as
KK model Hamiltonians, named after the authors that first
derived (Kugel and Khomskii, 1972, 1973) and reviewed them
(Kugel and Khomskii, 1982). Later reviews include those by
Tokura and Nagaosa (2000), Khaliullin (2005) Oleś et al.
(2005), and Oleś (2012).
The physical motivation and incarnations of such KK spin-

orbital models are discussed in Sec. V.A. In Sec. V.A.4 they
are derived for certain classes of materials from models of
their microscopic electronic structure, in particular, from the
multiorbital Hubbard model in which the electron-hopping
integrals tαβi;j between orbitals α on lattice site i and β on site j
and the Coulomb interactions between electrons in orbitals on
the same site are the essential ingredients. A KK Hamiltonian
then emerges as the low-energy effective model of a multi-
orbital Hubbard system in the Mott insulating regime, when
there is on average an integer number of electrons per site and
Coulomb interactions are strong. In that case charge excita-
tions are suppressed because of a large gap and the low-energy
dynamics is governed entirely by the spin and orbital degrees
of freedom. In this section we introduce the generic structure
of KK models. Generally speaking the interaction between
spin and orbital degrees of freedom on site i and neighboring
site iþ eγ is the product of the usual spin-spin exchange
interactions and compass-type orbital-orbital interactions on
this particular bond. The generic structure of the KK models
therefore is

HKK ¼ −JKK
X
r;γ

Horbital
r;rþeγH

spin
r;rþeγ þ

X
r;γ

Δγ
rτ

γ
r . ð16Þ

Horbital
r;rþeγ are operators that act on the pseudospin (orbital)

degrees of freedom τr and τrþeγ on sites r and rþ eγ , and

Hspin
r;rþeγ acts on the spins Sr and Srþeγ at these same sites. In

addition the single-site orbital field Δγ
r is explicitly included.

When the interaction between spins is considered to be
rotationally invariant so that it depends only on the relative
orientation of two spins, Hspin

r;rþeγ takes the simple Heisenberg

form Sr · Srþeγ þ cS. That is, H
spin
r;rþeγ is the usual rotationally

invariant interaction between spins when orbital (pseudospin)
degrees of freedom are not considered.Horbital

r;rþeγ , in contrast, is a
Hamiltonian of the compass type. KK Hamiltonians can thus
be viewed as particular extensions of compass models, where
the interaction strength on each bond is determined by the
relative orientation of the spins on the two sites connected by
the bond.
Electrons in the open 3d shell of, for instance, transition-

metal (TM) ions can, depending on the local symmetry of the
ion in the lattice and the number of electrons have an orbital
degree of freedom. In the case of orbital degrees of freedom of
so-called eg symmetry, two distinct orbital flavors are present
(corresponding to an electron in either a 3z2 − r2 or an x2 − y2

orbital). On a 3D cubic lattice the purely orbital part of the
superexchange Hamiltonian Horbital

r;rþeγ takes the 120° compass
form (Kugel and Khomskii, 1982):

Horbital
r;rþeγ ¼ ð1

2
þ π̂γrÞð12 þ π̂γrþeγ Þ; ð17Þ

where π̂γr are the orbital pseudospins and, as in the earlier
discussion of compass models, γ is the bond corresponding to
unit lattice vector eγ. The pseudospins π̂

γ
r are defined in terms

of τγr ; cf. Eq. (10) as the 120°-type compass variables. If the
spin degrees of freedom in the KK Hamiltonian Eq. (16) are
considered as forming static and homogeneous bonds, then on
the lattice only the orbital exchange part of the Hamiltonian
remains active. The Hamiltonian

P
r;γH

orbital
r;rþeγ then reduces to

H120
3□ , up to a constant, as for the 120° compass variablesP
γτ

γ
r ¼ 0.

For transition-metal 3d orbitals of t2g symmetry, there are
three orbital flavors (xy, yz, and zx), a situation similar to that
of the p orbitals (which have the three flavors x, y, and z). As
one is dealing with a three-component spinor, the most natural
representation of three-flavor compass models is in terms of
the generators of the SU(3) algebra, using the Gell-Mann
matrices, which are the SU(3) analogs of the Pauli matrices for
SU(2). Such three-flavor compass models also arise in the
context of ultracold atomic gases, where they describe the
interactions between bosons or fermions with a p-like orbital
degree of freedom (Chern and Wu, 2011), which are further
reviewed in Sec. V. In descriptions of transition-metal sys-
tems, which we explore in more detail in Sec. V.A, with
pseudospin (orbital) and spin degrees of freedom, the usual
spin exchange interactions are augmented by both pseudospin
interactions and KK-type terms describing pseudospin- (i.e.,
orbital-) dependent spin exchange interactions.
In principle, even richer situations may arise when,

aside from spins, one does not have a single additional
pseudospin degree of freedom per site, as in the KK models,
but two or more. As far as we are aware, such models have
so far not been considered in the literature. The simplest
variants involving two pseudospins at all sites give rise to
compass-type Hamiltonians of the form

H ¼
X
r;γ

½Jγτγrτγrþeγ þ J0γτ
0γ
r τ0

γ
rþeγ �

þ
X
r;γ;γ0

½Vγγ0τ
γ
rτ0

γ0
r þWγγ0τ

γ
rτ

γ
rþeγ τ

0γ
rτ0

γ
rþe0γ

� þ � � � : ð18Þ

Such interactions may, of course, be multiplied by a spin-spin
interaction as in the Kugel-Khomskii Hamiltonian of Eq. (16).

B. Classical, higher-D, and large-n generalizations

A generalization to larger pseudospins is possible in all
compass models (Mishra et al., 2004; Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005) and proceeds by
replacing the Pauli operators τγi by corresponding angular
momentum matrix representations of size ð2Tþ1Þ× ð2Tþ1Þ
with T > 1=2. The limit T → ∞ then corresponds to a
classical model. For the classical renditions of the H90°

□
and

H120°
□

compass models T is a two-component (n ¼ 2) vector
of unit length,

ðTx
r Þ2 þ ðTy

r Þ2 ¼ 1; ð19Þ
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on each lattice site i. This is so simply because in the T ¼ 1=2
model, the operator τz does not appear in the Hamiltonian. In a
similar manner, for n ¼ 3 renditions of the compass model, in,
e.g., H90°

3□, the vector T has unit norm and three components.
An obvious extension is to consider vectors T with a

general number of components n. The 90° compass models
[Eq. (5)] generalize straightforwardly to any system having n
independent directions γ. The simplest variant of this type is a
hypercubic lattice in D ¼ n spatial dimensions wherein along
each axis γ (all at 90° relative to each other) the interaction is
of the form

Hclassical 90°
□

¼ −
X
r;γ

JγT
γ
rT

γ
rþeγ : ð20Þ

(For non-90° models, we more generally set Tγ
r ≡ Tr · eγ .)

When looked at through this prism, the one-dimensional Ising
model can be viewed as a classical one-dimensional
(D ¼ n ¼ 1) rendition of a compass model.
In the classical arena, when τ is replaced by vectors T of

unit norm, there is a natural generalization of the 120°
compass model to hypercubic lattices in arbitrary spatial
dimension D. To formulate this generalization, it is useful
to introduce the unit sphere in n dimensions. In the classical
120° compass model on theD ¼ 3 cubic lattice, the three two-
component vectors Tγ are uniformly partitioned on the unit
disk (the n ¼ 2 unit sphere). These form D equally spaced
directions eγ on the n unit sphere. The angle θ between any
pair of differing vectors is therefore the same (and for n ¼ 2
equal to 2π=3). The generic requirement of uniform angular
spacing of D vectors on a sphere in n dimensions is possible
only when n ¼ D − 1. The angle θ between the unit vectors is
then given by

eγ · eγ0 ¼ cos θ ¼ −
1

D − 1
: ð21Þ

If n ¼ 3, for instance, the four equally spaced vectors can be
used to describe the interactions on any lattice having four
independent directions γ, for instance, the 4D hypercubic one,
or the 3D diamond lattice; see Fig. 7.
It is interesting to note that formally, in the limit of high

spatial dimension of a hypercubic lattice rendition of the 120°

model, the angle θ → 90° and the two most prominent types of
compass models discussed above (the 90° and 120° compass
models) become similar (albeit differing by one dimension of
the n-dimensional unit sphere on which T is defined). This is
so as the directions êγ become nearly orthogonal.
From here one can return to the quantum arena. The

quantum analogs of these D-dimensional classical compass
models (including extensions of the 120° model on a 3D cubic
lattice) can be attained by replacing T by corresponding
quantum operators τ that are the generators of spin angular
momentum in n-dimensional space. These are then finite-size
representations of the quantum spin angular momentum
generators in an n-dimensional space (e.g., the representa-
tions T ¼ 1=2; 1; 3=2;…) of SU(2) for a three-component
vector just discussed earlier (including the pertinent T ¼ 1=2
representation), representations of SUð2Þ × SUð2Þ for a four-
component τ, representations of Sp(2) and SU(4) for a five-
and six-component τ, etc.
These dimensional extensions and definitions of the 90° and

120° models are not unique. One natural d ¼ 1 90° model is
the Ising chain. However, another, more interesting “one-
dimensional 90° compass model” (sometimes also referred
to as the one-dimensional Kitaev model) has been studied in
multiple works; see, e.g., Brzezicki, Dziarmaga, and Oleś
(2007), Sun, Zhang, and Chen (2008), and You and Tian
(2008). In its simplest initial rendition (Brzezicki, Dziarmaga,
and Oleś, 2007), this model is defined on a chain in which
nearest-neighbor interactions sequentially toggle between the
τx2iτ

x
2iþ1 and τ

y
2iþ1τ

y
2iþ2 variants as one proceeds along the chain

direction for even or odd numbered bonds.Many aspects of this
model have been investigated such as its quench dynamics
(Mondal, Sen, and Sengupta, 2008; Divakarian and Dutta,
2009). Such a system is, in fact, dual to the well-studied one-
dimensional transverse field Ising model; see, e.g., Brzezicki,
Dziarmaga, and Oleś (2007), Eriksson and Johannesson
(2009), and Nussinov and Ortiz (2009b). A two-leg ladder
rendition of Kitaev’s honeycomb model (and, in particular, the
quench dynamics in this system) was investigated by Sen and
Vishveshwara (2010) and related ladder models were studied
by Feng, Zhang, andXiang (2007), Saket, Hassan, and Shankar
(2010), Lai and Motrunich (2011), and Pedrocchi et al. (2012)
An interesting two-dimensional realization of the 120° model
was further introduced and studied (You and Tian, 2008)
wherein only two of the directions γ are active in Eq. (11).
Finally, we comment on these models (in their classical

or quantum realization) in the “large-n limit” wherein the
number of Cartesian components of the pseudospins T
becomes large. This limit, albeit seemingly academic, is
special. The n → ∞ limit has the virtue of being exactly
solvable, where it reduces to the “spherical model” (Berlin and
Kac, 1952; Stanley, 1968) and further amenable to perturba-
tive corrections in “1=n expansions” (Ma, 1973). We will
return to discuss some aspects of the large-n limit in Sec. VIII.

C. Other extended compass models

1. Arbitrary angle

Several additional extensions of the more standard models
have been proposed and studied in various contexts. One of

FIG. 7 (color online). Left: A unit disk with three uniformly
spaced vectors, the building blocks for the 120° model with
n ¼ 2, on, for instance, a 3D cubic or the 2D honeycomb lattice.
Right: Generalization to higher dimensions with four uniformly
spaced vectors on the n ¼ 3-dimensional unit sphere, relevant to
a 4D hypercubic lattice, or the 3D diamond lattice.
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these includes a generalized angle that need not be 90° or 120°
or another special value. Cincio, Dziarmaga, and Oleś (2010)
considered a variant of Eq. (9) on the square lattice in which,
instead of Eq. (11), one has

π̂xi ¼ cosðθ=2Þτxi þ sinðθ=2Þτyi ;
π̂yi ¼ cosðθ=2Þτxi − sinðθ=2Þτyi

ð22Þ

with a tunable angle θ. Compass models with varying angle
interactions along particular directions in ladder systems
were earlier introduced and solved (Brzezicki and Oleś,
2008, 2009).
Other direction-dependent interactions may be considered

to include rotations of spins that have a higher number of
components. For instance, Nussinov (2004) studied a model
given by the Hamiltonian

H ¼ −J
X
hijiγ

Ti · ½RijðθÞTj�; ð23Þ

where RijðθÞ implements a rotation by an angle θ around an
axis set by the direction of the nearest-neighbor link hijiγ .

2. Plaquette and checkerboard (sub)lattices

Another variant of the compass model form that has been
considered, initially introduced to better enable simulation
(Wenzel and Janke, 2009), is one in which the angle θ is held
fixed (θ ¼ 90°) but the distribution of various bonds is
permuted over the lattice (Biskup and Kotecky, 2010).
Specifically, the plaquette orbital model (POM) is defined
on the square lattice via

HPOM ¼ −JA
X
hiji∈A

τxi τ
x
j − JB

X
hiji∈B

τyi τ
y
j ; ð24Þ

where A and B denote two plaquette sublattices; see Fig. 8.
Bonds are summed over according to whether the physical
link hiji resides in sublattice A or sublattice B. Although this
system is quite distinct from the models introduced thus far, it
does share some common features, including a bond algebra

which, as one can verify in Appendix A is, locally, similar to
that of the 90° compass model on the square lattice.
The checkerboard lattice (a two-dimensional variant of the

three-dimensional pyrochlore lattice) is composed of corner-
sharing crossed plaquettes. This lattice may be regarded as a
square lattice in which on every other square plaquette, there
are additional diagonal links; see Fig. 8. On this lattice, a
compass model may be defined by the following Hamiltonian
(Nasu and Ishihara, 2011a; Nasu, Todo, and Ishihara, 2012a):

Hcheckerboard ¼ −Jx
X
ðijÞ

τxi τ
x
j − Jz

X
hiji

τzi τ
z
j: ð25Þ

In the first term of Eq. (25), the sum ðijÞ is over all diagonal
(or next-nearest-neighbor) pairs in crossed plaquettes. The
second term in Eq. (25) contains the sum hiji, which is over all
nearest-neighbor (i.e., horizontal or vertical) pairs on the
lattice.

3. Longer-range and ring interactions

In a similar vein, compass models can be defined by pair
interactions of varying range and orientation on other general
lattices. For instance, in the study of layered oxides,
Kargarian, Langari, and Fiete (2012) introduced a hybrid
compass model of Kitaev-Heisenberg type with nearest-
neighbor and next-neighbor interactions on the honeycomb
lattice. One should keep in mind that models in which
different spin components couple for different spatial sepa-
rations may be similar to compass models that we considered
in previous sections, yet on enlarged lattices. A case in point is
that of a one-dimensional spin system with the Hamiltonian

Hchain ¼ −Jx
X
i

τxi τ
x
iþ1 − Jz

X
i

τzi τ
z
iþ2: ð26Þ

Here the interactions on the chain defined by the Hamiltonian
of Eq. (26) are topologically equivalent to a system composed
of two parallel chains that are horizontally displaced from one
another by half a lattice constant. On one of these chains, we
label the sites by odd integers, i.e., i ¼ 1; 3; 5;…, while the
other chain hosts the even sites i ¼ 2; 4;…. On this lattice, the
Hamiltonian of Eq. (26) assumes a form similar to that of
Eq. (25) when the Jx interactions appear along diagonally
connected sites between the two chains while Jz coupling
occurs between spins that lie on the same chain. Thus, the one-
dimensional system with interactions that vary with the range
of the coupling between spins is equivalent to a compass
model wherein the spin coupling is dependent on the
orientation between neighboring spin pairs.
Compass models need not involve only pair interactions.

A key feature of models that go beyond pair interactions is that
the internal pseudospin components appearing in the inter-
action terms that depend on an external spatial direction can be
extended to any number of interacting pseudospins. A very
natural variant was considered by Nasu and Ishihara (2011c)
for ring-exchange interactions involving four spins around a
basic square plaquette in a cubic lattice. Specifically, these
interactions are defined via the Hamiltonian

FIG. 8 (color online). Left: The configuration underlying the
definition of the plaquette orbital model. Here the x components
of the spins are coupled over the solid edges and the z
components are coupled over the dashed edges. From Biskup
and Kotecky, 2010. Right: A schematic representation for the
orbital compass model on a checkerboard lattice. From Nasu,
Todo, and Ishihara, 2012a.
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Hring ¼ K
X
½ijkl�γ

ðτγþi τγ−j τγþk τγ−l þ H:c:Þ: ð27Þ

In Eq. (27),

τ�γ
i ¼ τγi � i

ffiffiffi
3

p

2
τyi

where, as in the 120° model, τγi ¼ cosð2πnγ=3Þτzi
− sinð2πnγ=3Þτxi . In Eq. (27), the subscript ½ijkl�γ denotes
“four neighboring” sites ½ijkl� forming a four-site plaquette
that is perpendicular to the cubic lattice direction γ. In the
definition of τγi , nγ ¼ 1 for a direction γ parallel to the x axis
(i.e., the plaquette ½ijkl� is orthogonal to the x direction).
Similarly, nγ ¼ 2 or 3 for an orientation γ parallel to the cubic
lattice y or z axis. The physically motivated Hamiltonian of
Eq. (27) with its definitions of τγi corresponds to a ring
exchange of interactions of the 120° type. One may similarly
consider extensions for other angles θ.

IV. COMPASS MODEL REPRESENTATIONS

A. Continuum representation

A standard approach in statistical mechanics is to construct
effective continuum descriptions of discrete models. A con-
tinuum representation of a compass model can be attained by
coarse graining its discrete counterpart with pseudospins
attached to each point on a lattice. Such coarse-grained
continuum representations can offer much insight into the
low-energy, long-wavelength behavior and properties of
lattice models. We therefore briefly discuss the particular
field-theoretic incarnation of compass-type systems, both
classical and quantum. The continuum models introduced
in this section have previously appeared in the literature.

1. Classical compass models

For a classical pseudospin T one defines Tγ
r ¼ Tr · nγ , with

the angles defining nγ ¼ ðcos θγ; sin θγÞ given by Eq. (11) for
the 120° model. Similarly, in the 90° compass model in three
dimensions, the three internal pseudospin polarization direc-
tions n are defined by n ¼ ex; ey or ez. In going over from the
discrete lattice model to its continuum representation one uses

−Tγ
rT

γ
rþeγ →

a
2
ðTγ

rþeγ − Tγ
rÞ2 − a

2
½ðTγ

rþeγ Þ2 þ ðTγ
rÞ2�

→
a
2
ð∂γTγÞ2; ð28Þ

where a is the lattice constant and the normalization of the
pseudovector

P
γðTγ

rÞ2 has been invoked. Classical compass
models will be reviewed in detail in Secs. VI–IX. For now, we
note that if T is a vector of unit norm, then in the 120° model in
D ¼ 3 dimensions, regardless of theorientationof that vector on
the unit disk,

P
γðTγ

rÞ2 ¼ 3=2 identically. [For a rendition of the
120° model of the form of Eq. (21) inD dimensions the general
result is D=ðD − 1Þ.] In a similar fashion, for the classical 90°
model

P
γðTγ

rÞ2 ¼ 1. The constant value of the sums ofP
γðTγ

rÞ2 leads to rotational symmetry in the ground state
manifold. In all such instances,

P
γðTγ

rÞ2 identically amounts
to an innocuous constant and as such may be discarded.

In what follows, the “soft-spin” approximation is discussed,
in which the “hard-spin” constraint T2 ¼ 1 is replaced by a
quartic term of order λ that enforces it weakly. Such a term is
of the form ðλ=4!ÞðT2 − 1Þ2 with small positive λ. The limit
λ → ∞ corresponds to the hard-spin situation in which the
pseudospin is strictly normalized at every point.
With the definition of Tγ

r and simple preliminaries, the
continuum-limit Ginzburg-Landau–type free energy in D
spatial dimensions is

F ¼
Z

dDx

�X
γ

ð∂γTγÞ2
2g

þ r
2
T2 þ λ

4!
ðT2Þ2

�
; ð29Þ

with g an inverse coupling constant and r a parameter that
emulates the effect of temperature, r ¼ cðT − T 0Þ with c a
positive constant and T 0 the mean-field temperature. To con-
form with convention, we will use T to denote the temperature.
Whether T alludes to the pseudospin or the temperature will be
understood from the context. The partition function of the
theory is then given by a functional integration over all
pseudospin configurations at all lattice sites Z ¼ R DTe−F,
where T denotes the pseudospin. What differentiates this form
from standard field theories is that it does not transform as a
simple scalar under rotations. Inspecting Eq. (29), one sees that
there is no implicit immediate summation over the repeated
index γ in the argument of the square. In Eq. (29), the
summation over γ is performed at the end after the squares
of the various gradients have been taken. Written long hand for
the 90° compass model in two dimensions, the integrand is�∂Tx

∂x
�

2

þ
�∂Ty

∂y
�

2

: ð30Þ

This is to be distinguished from the square of the divergence of
T (in which the sum over γ would be made prior to taking the
square) which would read�∂Tx

∂x
�

2

þ 2
∂Tx

∂x
∂Ty

∂y þ
�∂Ty

∂y
�

2

: ð31Þ

This is also different from the square of the gradient of com-
ponents Tγ and the sums thereof, for which, rather explicitly,
one would have for any single component γ ¼ x or y,

ð∇TγÞ2 ¼
�∂Tγ

∂x
�

2

þ
�∂Tγ

∂y
�

2

: ð32Þ

In the present case, T indeed represents an internal degree of
freedom that does not transform under a rotation of space. By
comparison to standard field theories, Eq. (29) manifestly
breaks rotational invariance—a feature that is inherited from
the original lattice models that it emulates. In Sec. VI the
investigations of symmetries as well as of the classical compass
models are reviewed in detail.
Continuum limits of other compass theories can similarly

be written down. The continuum limits of Heisenberg-
compass–type theories on hypercubic lattices are given by
the likes of Eq. (29) when these are further augmented by
isotropic [i.e., const

R
dDx

P
γð∇TγÞ2] terms. More compli-

cated theories of the type of Eq. (23) both on the lattice and in
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the continuum with arbitrary angle rotations can be mapped
onto matter-coupled gauge theories (Nussinov, 2004) in which
the strength of the coupling to a gauge theory is set by the
rotation angle. Unlike standard rotationally invariant theories
in which it can be proven that, barring rare commensurability
conditions, all ground states are spirals, in matter-coupled
gauge theories and their incarnations in condensed matter
systems emulated by Eq. (23), the ground states consist of
ordered (Frank-Kasper–type) arrays of “vortices” (Frank and
Kasper, 1958, 1959); these vortices are forced in by an
external (nondynamic) uniform background field associated
with the gauge that implements the compass-type angle-
dependent couplings. In the continuum limit theories of such
matter-coupled gauge theories, there is a standard minimal
coupling between the gauge field and terms linear in the
gradients of the pseudospins. Vortex arrays further appear in
quite different systems such as the Kitaev-Heisenberg model
on the triangular lattice (Rousochatazakis et al., 2013).

2. Quantum compass models

As with the usual spin models, the quantum pseudospin
systems differ from their classical counterparts by the addition
of Berry phase terms. This phase, identical in form to that
appearing in spin systems, can be written in both the real time
and the imaginary time (Euclidean) formalisms (Fradkin, 1991;
Sachdev, 1999). In the quantum arena, one considers the
dynamics in imaginary time u where 0 ≤ u ≤ β with β the
inverse temperature. The pseudospin TðuÞ evolves on a sphere
of radius T with the boundary conditions that Tðu ¼ 0Þ ¼
Tðu ¼ βÞ. Thus, the pseudospin describes a closed trajectory
on a sphere of radius T (the size of the pseudospin). The Berry
phase for quantum spin systems [also known as the Wess-
Zumino-Witten (WZW) term] is, for each single pseudospin at
site j, given by SWZW

j ¼ −iTAj withAj the area of the spherical
cap circumscribed by the closed pseudospin trajectory at that
site. That is, there is a quantummechanical (Aharonov-Bohm–
type) phase that is associated with a magnetic monopole of
strength T situated at the origin. Denoting the orientation
on the unit sphere by n, that monopole may be described
by a vector potential A as a function of n that solves
ϵabcð∂Ab=∂ncÞ ¼ Tna. The partition function for ferromag-
netic variants of the compass models is given by

Z ¼
Z

Dnaðx; uÞδ(ðnaÞ2 − 1) expð−SÞ;

S ¼ iT
Z

β

0

du
Z

dDxAa dn
a

du

þ T2

Z
β

0

du
Z

dDx
X
γ

ð∂γnγÞ2
2g

: ð33Þ

As in the classical case, we note that here the summation over γ
is performed only after the squares have been taken. As in the
so-called “soft-spin” classical model, it is possible to construct
approximations in which the δ function in Eq. (33) is replaced
by soft (i.e., small finite λ) quartic potentials of the form
ðλ=4!Þðn2 − 1Þ2. In the classical case aswell as forXY quantum
systems (such as the 120° compass), the behavior of J > 0 and
J < 0 systems is identical. As noted earlier, this is no longer

true in quantum compass systems in which all three compo-
nents of the spin appear. As for the usual quantum spin systems,
the role of the Berry phase terms is quite different for
ferromagnetic and antiferromagnetic renditions of the three-
component compass models. Although the squared gradient
exchange involving n can be made similar when looking at the
staggered pseudospin on the lattice, the Berry phase term will
change upon such staggering andmay lead to nontrivial effects.

B. Momentum space representations

The directional dependence of the interactions in compass
models is, of course, manifest also in momentum space. Such
a momentum space representation strongly hints that the 90°
compass models may exhibit a dimensional reduction (Batista
and Nussinov, 2005). On a D-dimensional lattice, a general
pseudospin model having n components (i.e., one with the
classical pseudospin T having n Cartesian components at any
site) can be Fourier transformed and cast into the form

H ¼ 1

2

X
k

T†ðkÞV̂ðkÞTðkÞ: ð34Þ

In Eq. (34), k is the momentum space index, the row vector
T†ðkÞ ¼ (T1ðkÞ; T2ðkÞ;…; TnðkÞ)� with � representing com-
plex conjugation is the Hermitian conjugate of TðkÞ, and V̂ðkÞ
is a momentum space kernel—an n × n matrix whose ele-
ments depend on the D components of the momenta k.
In usual isotropic spin exchange systems [i.e., those with

isotropic interactions of the form Ti · Tj between (real space)
nearest-neighbor lattice sites i and j], the kernel V̂ðkÞ has a
particularly simple form,

V̂isotropic ¼
�
−2
XD
l¼1

cos kl

�
1n; ð35Þ

with kl the lth Cartesian component of k and 1n the n × n
identity matrix. There is a redundancy in the form of Eq. (35)
following from spin normalization. At each lattice site i the
sum of the squared projections on the direction γ, i.e.,P

γðTγ
i Þ2 is a constant so that the double sum over all lattice

sites i and directions γ
P

iγðTγ
i Þ2 is a constant proportional to

the total number of sites. From this it follows thatP
kT

†ðkÞTðkÞ is a constant. Consequently, any constant term
[i.e., any constant (non-momentum-dependent) multiple of the
identity matrix] may be added to the right-hand side of
Eq. (35). Choosing this constant to be equal to 2D, in the
continuum limit, the right-hand side of Eq. (35) disperses as k2

for small wave vectors k. This is, of course, a manifestation of
the usual squared gradient term that appears in standard field
theories whose Fourier transform is given by k2. Thus, in the
standard isotropic case, the momentum space kernel V̂ isotropic
has a single zero (or lowest-energy state) with a dispersion that
rises for small k quadratically in all directions.

1. Dimensional reduction

The form of the interactions in compass models dramati-
cally differs from that in standard isotropic interactions. As
discussed in Sec. VIII.B in greater depth, the directional
character of compass systems may lead to a flat momentum
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space dispersion in which lines of zeros of V̂ðkÞ appear, much
unlike the typical quadratic dispersion about low-energy
modes. In compass models, the coupling between interactions
in external space (that ofD dimensions) and the internal space
(the n components of T) leads to a kernel which is more
complex than that of isotropic systems. The n × n kernel V̂ of
Eq. (34) can be written down for all of the compass models
that we introduced earlier by replacing any appearance of

ðJγγ0lTγ
i T

γ0
j Þ in the Hamiltonian where the real space between

nearest-neighbor sites i and j is separated along the lth lattice
Cartesian direction (on a hypercubic lattice) by a correspond-
ing matrix element of V̂ that is given by hγjV̂jγ0i ¼
2Jγγ0l cos kl. By contrast to the usual isotropic spin exchange
interactions, the resulting V̂ for compass models is no longer
an identity matrix in the internal n-dimensional space span-
ning the components of T. Rather, each component of V̂ can
have a very different dependence on k. For the 90° compass
models this allows expression of the Hamiltonian in the form
of a one-dimensional system in disguise. One sets V̂ to be a
diagonal matrix whose diagonal elements are given by

hγjV̂90° jγi ¼ −2J cos kγ; ð36Þ

where the 90° compass model on an (n ¼ D)-dimensional
hypercubic lattice is recovered. The contrast between
Eqs. (35) and (36) is marked and directly captures the
directional character of the interactions in the compass model.
As in the various compass models (including, trivially, the 90°
compass models),

P
iðTγ

i Þ2 is constant at every lattice site i;
one may as before add to the right-hand side of Eq. (36) any
constant times the identity matrix. We may then formally
recast Eq. (36) in a form very similar to a one-dimensional
variant of Eq. (35)—one which depends on only one
momentum space “coordinate” but with that coordinate no
longer being a k but rather a matrix. Toward that end, one may
define a diagonal matrix K̂ whose diagonal matrix elements
are given by ðk1;…; knÞ and cast Eq. (36) as

V̂90° ¼ −2J cos K̂: ð37Þ

In this form, Eq. (37) looks like a one-dimensional (D ¼ 1)
model in comparison to Eq. (35). The only difference is that
instead of having a real scalar quantity k in 1D, one now
formally has a (D ×D)-dimensional matrix [or a quaternion
form for the (D ¼ 2)-dimensional 90° compass model] but
otherwise it looks very similar.
Indeed, to lowest orders in various approximations (1=n,

high-temperature series expansions, etc.) the 90° compass
models appears to be one dimensional. This is evident in the
spin-wave (SW) spectrum: naively, to lowest orders in all of
these approaches, there seems to be a decoupling of excita-
tions along different directions. That is, in the continuum
(small-k limit), one may replace 2ð1 − cos kγÞ by k2γ and the
spectrum for excitations involving Tγ is identical to that of a
one-dimensional system parallel to the Cartesian γ direction.
This is a manifestation of the unusual gradient terms that
appear in the continuum representation of the compass
model—Eqs. (28) and (29). In reality, though, the compass

models express the character expected from systems in D
dimensions (not one-dimensional systems) along their finite-
temperature phase transitions and universality classes. In the
field theory representation of Eq. (29), this occurs due to the
quartic term that couples the different pseudospin polarization
directions (e.g., Tx and Ty) to one another. However, an exact
remnant of the dimensional reduction suggested by this form
still persists in the form of symmetries (Batista and Nussinov,
2005); see Sec. VI.

2. (In)commensurate ground states

In what follows here and in later sections, the eigenvalues of
VðkÞ for each k are denoted by vαðkÞ with α ¼ 1; 2;…; n with
n the number of pseudospin components. In rotationally
symmetric, isotropic systems when vαðkÞ is independent of
the pseudospin index α and �q� are two wave vectors that
minimize v, it is easy to see that two-component spirals
(Luttinger and Tisza, 1946; Lyons and Kaplan, 1960;
Nussinov et al., 1999; Nussinov, 2001) of the form TðrÞ ¼
ðcos q� · r; sin q� · rÞ are classical ground states of the nor-
malized pseudospins T. Similar extensions appear for n ¼ 3
(and higher) component pseudospins. It has been proven that
for general incommensurate wave vectors q�, all ground states
must be spirals of this form (Nussinov et al., 1999; Nussinov,
2001). When the wave vectors that minimize v are related to
one another by commensurability conditions (Nussinov,
2001), then more complicated (e.g., stripe- or checker-
board-type) configurations can arise.
In several compass-type systems that are reviewed here

(e.g., the 90° compass model), the interaction kernel vwill still
be diagonal in the original internal pseudospin component
basis (α ¼ 1; 2;…; n), yet vαðkÞ are different functions for
different α. Depending on the model at hand, these functions
for different components α may be related to one another by a
point group rotation of k from one lattice direction to another.
We briefly remark on the case when the wave vectors q� that
minimize, for each α, the kernel vαðkÞ are commensurate and
allow the construction of Ising-type ground states (Nussinov,
2001) such as commensurate stripes or checkerboard states. In
such a case it is possible to construct n-component ground
states by having Ising-type states for each component α. As
reviewed in Secs. VI and VII, the symmetries that compass-
type systems exhibit ensure that in many cases there is a
multitude of ground states that extend beyond expectations in
most other (pseudo)spin systems.

C. Ising model representations

It is well known that by using a Feynman mapping, one can
relate a zero-temperature quantum system in D spatial
dimensions to classical systems in Dþ 1 dimensions
(Sachdev, 1999). In the current context, one can express
many of the quantum compass systems as classical Ising
models in a dimension one higher. The key idea of such
Feynman maps is to work in a classical Ising basis (fσzi;ug) at
each point in space i and imaginary time u and to write the
transfer matrix elements of the imaginary time evolution
operator between the system and itself at two temporally
separated times. The derivation will not be reviewed here; see,
e.g., Sachdev (1999).
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A simple variant of the Feynman mapping invokes duality
considerations (Nussinov and Fradkin, 2005; Cobanera, Ortiz,
and Nussinov, 2010, 2011) to another quantum system
(Xu and Moore, 2004, 2005) prior to the use of the standard
transfer matrix technique. Here we merely quote the results.
The two-dimensional 90° compass model of Eq. (4) in the
absence of an external field (h ¼ 0) maps onto a classical
model in 2þ 1 dimensions with the action (Nussinov and
Fradkin, 2005; Cobanera, Ortiz, and Nussinov, 2011)

S ¼ −K
X

□∈ðxuÞ plane
σzr;uσ

z
rþex;uσ

z
r;uþΔuσ

z
rþex;uþΔu

− JzΔu
X
r

σzr;uσ
z
rþez;u; ð38Þ

with K a coupling constant that we detailed below. The Ising
spins fσzr;ug are situated at lattice points in the (2þ 1)-
dimensional lattice in space-time. A particular separation
Δu along the imaginary time axis has to be specified in
performing the mapping of the quantum system onto a
classical lattice system in space-time. The coupling constants
in Eq. (38) are directly related to those in Eq. (4). We aim to
keep the form of Eq. (38) general and cast it in the form of a
gauge-type theory (with spins at the vertices of the lattice
instead of on links). The plaquette coupling K in Eq. (38) is
related to the coupling constant Jx of Eq. (4) via a Kramers-
Wannier–type of duality,

sinh 2ðJxΔuÞ sinh 2K ¼ 1: ð39Þ
The particular anisotropic directional character of the
compass model appears in Eq. (38). Unlike canonical systems
in which the form of the interactions is the same in all
plaquettes regardless of their orientation, here four-spin
interactions appear only for plaquettes that lie parallel to
the ðxuÞ plane—that is, the plane spanned by one of the
Cartesian spatial directions (x) and the imaginary time axis
(u). Similarly, exchange interactions [of strength ðJzΔuÞ]
appear between pairs of spins that are separated along links
parallel to the spatial Cartesian z direction.
The zero-temperature effective classical Ising action of

Eq. (38) enables the study of the character of the zero-
temperature transition that occurs as Jx=Jz is varied. From the
original compass model of Eq. (1), it is clear that when jJzj
exceeds jJxj there is a preferential orientation of the spins
along the z axis (and, vice versa, when jJxj exceeds jJzj an
ordering along the x axis is preferred). The point Jx ¼ Jz
(a “self-dual” point for reasons elaborated on later) marks a
transition which has been studied by various other means and
found to be discontinuous (Dorier, Becca, and Mila, 2005;
Chen et al., 2007; Orús, Doherty, and Vidal, 2009), as in the
1D case (Brzezicki, Dziarmaga, and Oleś, 2007).

D. Dynamics: Equation of motion

As we now explain, the anisotropic form of the interactions
leads to unconventional equations of motion that formally
appear similar to those in magnetic systems but are highly
anisotropic. In general spin and pseudospin systems, time
evolution [both classical (i.e., classical magnetic moments)
and quantum] is governed by the equation of motion

∂Ti

∂t ¼ Ti × hi; ð40Þ

where hi is the local magnetic (pseudomagnetic) field at site i.
For a stationary field h, this leads to a “Larmor precession”—
the spin rotates at constant rate about the field direction. This
well-known spin effect has a simple incarnation for pseudo-
spins where it further implies a nontrivial time evolution of
electronic orbitals (Nussinov and Ortiz, 2008) or any other
degree of freedom that the pseudospin represents.
From Eq. (40), we see that for uniform ferromagnetic

variants of the compass models (with a single constant J), the
equation of motion is

∂Ti

∂t ¼ JTi ×
X
j

ðTj · eγ∥hijiÞeγ∥hiji; ð41Þ

which directly follows from Eq. (40). In Eq. (41), the sum is
over sites j that are nearest neighbors of i. By the designation
eγ∥hiji, we make it explicit that the internal pseudospin
direction eγ is set by that particular value of γ that corresponds
to the direction from site i to site j on the lattice itself (i.e.,
by the direction of the lattice link hiji). If the effective
pseudomagnetic field at site i is parallel to the pseudospin at
that site, i.e., if ðPjðTj · eγ∥hijiÞeγ∥hijiÞ∥Ti, then semiclassi-
cally the pseudospin is stationary (i.e., ∂Ti=∂t ¼ 0). Such a
situation arises, for instance, for any semiclassical uniform
pseudospin configuration: Ti ¼ const for all i and we
denote it by T. In such a case, for the 90° compass,P

jðTj · eγ∥hijiÞeγ∥hiji ¼ 2T, whereas for the cubic lattice
120° compass,

P
jðTj · eγ∥hijiÞeγ∥hiji ¼ 3T.

As, classically, T × T ¼ 0, all uniform pseudospin states
are stationary states (which correspond to classical ground
states at strictly zero temperature). Similarly, of course, a
staggered uniform configuration in which Ti is equal to one
constant value (T) on one sublattice and is equal to ð−TÞ on
the other sublattice will also lead to a stationary state (that
of highest energy for J > 0). Such semiclassical uniform
states are also ground states of the usual spin ferromagnets.
The interesting twist here is that the effective field hi is not
given by J

P
jSj as for usual spin systems but rather

by
P

jðTj · eγ∥hijiÞeγ∥hiji.

V. PHYSICAL MOTIVATIONS AND INCARNATIONS

In this section we review the different physical contexts that
motivate compass models and how they can emerge as low-
energy effective models of systems with strongly interacting
electrons. There are quite a few classes of materials where the
microscopic interactions between electrons are described by an
extended Hubbard model. Typically such materials contain
transition-metal ions. Hubbard-type models incorporate both
the hopping of electrons from lattice site to lattice site and
the Coulomb interaction U between electrons that meet on the
same site, typically the transition-metal ion. Particularly in the
situation in which electron-electron interactions are strong,
effective low-energy models can be derived by expanding the
Hubbard Hamiltonian in 1=U—the inverse interaction
strength. In such a low-energy model the interactions are only
between the remaining spin and orbital degrees of freedom of
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the electrons. Compass model Hamiltonians arise when orbital
degrees of freedom interact with each other, whichwe survey in
detail (Sec. V.A). But they can also emerge in the description of
chiral degrees of freedom in frustrated magnets (Sec. V.C).
In the situation in which both orbital and spin degrees of

freedom are present and their interactions are intertwined, the
Kugel-Khomskii models (Sec. III.A) arise. We briefly review
in Sec. V.A.4 how such models are relevant for strongly
correlated electron systems such as TM oxides, when the low-
energy electronic behavior is dominated by the presence of
very strong electron-electron interactions. The orbital degrees
of freedom can be represented via pseudospins.
So-called eg and t2g orbital degrees of freedom that can

emerge in transition-metal compounds with electrons in
partially filled TM d shells give rise to two-flavor compass
models (for eg) and to three-flavor compass models (for t2g)
which, as we explain in this section, are conveniently cast in
an SU(3) Gell-Mann matrix form. Precisely these types of
compass models also emerge in the study of systems of cold
atoms in optical traps (Sec. V.B).

A. Orbital degrees of freedom

Understanding the structure and interplay of orbital degrees
of freedom has garnered much attention in various fields.
Among many others, these include studies of the colossal-
magnetoresistance manganites (Feiner and Oleś, 1999; Tokura
and Tomioka, 1999; Dagotto, Hotta, and Moreo, 2001; Weisse
and Fehske, 2004; van den Brink, Khaliullin, and Khomskii,
2004; Dagotto, 2005; Tokura, 2006) and pnictide super-
conductors (Kuroki et al., 2008; Cvetkovic and Tesanovic,
2009; Kruger et al., 2009; Lv, Wu, and Phillips, 2009;
Nakayama et al., 2009; Paglione and Greene, 2010;
Andersen and Boeri, 2011).
Orbital degrees of freedom are already present in the

electronic wave functions of the hydrogen atom. A brief
discussion of the hydrogen atoms with just a single electron
can thus serve as a first conceptual introduction to orbital
physics (Sec. V.A.1). These concepts translate to transition-
metal ions, where electrons in partially filled TM d shells can
have so-called eg and t2g orbital degrees of freedom (Griffith,
1971; Fazekas, 1999). These orbital states, which can be
represented as spinors (Sec. V.A.2), of ions on neighboring
lattice sites can interact via electronic superexchange inter-
actions (Sec. V.A.3), which in the most general situation also
depend on the spin orientation of the electrons.
In this section, the relevant Hamiltonians that govern

orbital-orbital interactions are derived, and we briefly review
how spin-spin interactions affect the interactions between
orbitals in Kugel-Khomskii models (Sec. V.A.4). Reviews on
this subject are given by Kugel and Khomskii (1982), Tokura
and Nagaosa (2000), Khaliullin (2005), and Oleś (2012). The
basic concepts relevant to strongly correlated electron systems
are found in the books by Goodenough (1963), Griffith
(1971), Fazekas (1999), and Khomskii (2010).
We first review orbital systems on cubic and other unfrus-

trated lattices. The systems are associated with the most
prominent realizations of compass models. It is notable that,
on frustrated lattices, coupling with the orbital degrees of
freedom may lead to rather unconventional states and

corresponding transitions. These include, e.g., on spinel-type
geometries, spin-orbital molecules in AlV2O4 (Horibe et al.,
2006), and a cascade of transitions in ZnV2O4 (Motome and
Tsunetsugu, 2004). In a similar vein resonating valence bond
states were suggested to occur in the layered triangular
compound LiNiO2 (Vernay, Penc, and Mila, 2004).

1. Atomiclike states in correlated solids

The well-known hydrogen wave functions are the product
of a radial part Rnl and an angular part Ym

l , with principal
quantum number n and angular quantum numbers l and m:

ψnlmðr; θ;ϕÞ ¼ Rnlð2r=nÞ · Ym
l ðθ;ϕÞ; ð42Þ

where the radial coordinate r is measured in Bohr radii, θ and
ϕ are the angular coordinates, and n is any positive integer,
l ¼ 0;…; n − 1 and m ¼ −l;…; l. States with l ¼ 0; 1; 2; 3
correspond to s; p; d, and f states, respectively. The energy
levels of hydrogen are En ¼ −13.6 eV=n2 when the small
spin-orbit coupling is neglected. The energy therefore does
not depend on the angular quantum numbers l and m. As is
well known, in the hydrogen atom, due to “accidental
reasons,” the nth level has (when spin is included) a
degeneracy of size 2n2. Far more generally, in rotationally
invariant systems, the degeneracy factor associated with
orbital momentum alone is ð2lþ 1Þ. Thus, the orbital degen-
eracy associated with the l ¼ 1 (or p) states is three.
Similarly, the d (or l ¼ 2) states are fivefold degenerate
and the f (i.e., l ¼ 3) states are sevenfold degenerate. In
explicit terms the angular wave functions for the d states, the
spherical harmonics Ym

2 , are

Y−m
l ¼ ð−1ÞmðYm

l Þ�

and

Y0
2 ¼

ffiffiffiffiffiffiffiffi
5

16π

r
ð3cos2θ − 1Þ;

Y1
2 ¼

ffiffiffiffiffi
15

8π

r
sin θ cos θeiϕ;

Y2
2 ¼

ffiffiffiffiffiffiffiffi
15

32π

r
sin2θei2ϕ.

Introducing the radial coordinates x ¼ r sin θ cosϕ,
y ¼ r sin θ sinϕ, and z ¼ r cos θ the complex valued angular
basis functions (the spherical harmonics Ym

2 ) can be combined
into real wave function basis states, for instance,

ðY−2
2 þ Y2

2Þ=
ffiffiffi
2

p
¼

ffiffiffiffiffiffiffiffi
15

16π

r ffiffiffiffiffi
1

r2

r
ðx2 − y2Þ.

Apart from an overall normalization constant the resulting
d orbitals are

eg orbitals

�
Y−2
2 þ Y2

2ffiffiffi
2

p
Y0
2

���� x2 − y2;

ð3z2 − r2Þ= ffiffiffi
3

p
;

t2g orbitals

8>><
>>:

Y−2
2 − Y2

2

Y−1
2 þ Y1

2

Y−1
2 − Y1

2

��������
xy;

yz;

zx;
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where a distinction between so-called eg and t2g orbitals is
made, which is based on their different local symmetry
properties, as will shortly become clear from crystal field
considerations. These orbitals are pictured in Fig. 9. In atoms
and ions farther down the periodic table this orbital degree of
freedom can persist, depending on the number of electrons
filling a particular electronic shell.
In solids, p wave functions of atoms may tend to be rather

delocalized, forming wide bands. When such wide bands form,
amaterial tends to be ametal and the different atomic statesmix.
Local orbital degeneracies become completely lifted due to the
delocalized character of the electrons. However, d and f states
tend to retain to a certain extent their atomic character and the3d
and 4f states especially are particularly localized—4d, 5d, and
5f wave functions are again more extended than 3d and 4f,
respectively. In the periodic table ions with open d shells are in
the group of transition metals and open f shells are found in the
lanthanides and actinides.
The localized nature of 3d and 4f states has as a

consequence the fact that in the solid the interactions between
electrons in an open 3d or 4f shell are much like those in the
atom (Griffith, 1971). For instance, Hund’s first rule (stating
that when possible the electrons form high-spin states and
maximize their total spin) keeps its relevance for these ions
and for the 3d states leads to an energy lowering of JH ∼
0.8 eV for a pair of electrons having parallel spins. Another
large energy scale is the Coulomb interaction U between
electrons in the same localized shell. In a solid U is
substantially screened from its atomic value and its precise
value therefore depends critically on the details of the screen-
ing processes—it, for instance, reduces the Cu d-d Coulomb
interactions in copper oxides from an atomic value of 16 eV to
a solid state value of about 5 eV (van den Brink et al., 1995).
But in many cases it is still the dominant energy scale
compared to the bandwidth W of the 3d electrons (Imada,
Fujimori, and Tokura, 1998). If U is strong enough, roughly
when U > W, this causes a collective localization of the
electrons and the system becomes a Mott insulator (Mott,
1990; Fazekas, 1999; Khomskii, 2010), or, when a filled
oxygen band still lies between the lower and upper Hubbard
bands (split by an energy of about U), a charge transfer
insulator (Zaanen, Sawatsky, and Allen, 1985).

In a strongly correlated Mott insulator electrons in an open
d shell can partially retain their orbital degree of freedom. The
full fivefold degeneracy of the hydrogenlike d states is broken
down by the fact that in a solid a positively charged TM ion is
surrounded by other ions, which manifestly breaks the rota-
tional invariance that is present in a free atom and on the basis
of which the hydrogenlike atomic wave functions were
derived. How precisely the fivefold degeneracy is broken
depends on the point group symmetry of the lattice
(Ballhausen, 1962; Fazekas, 1999).
The simplest, and rather common, case is that of cubic

symmetry, in which a TM ion is in the center of a cube, with
ligand ions at the center of each of its six faces. The negatively
charged ligand ions produce an electrical field at the center of
the cube. Expanding this field in its multipoles, the first
nonvanishing contribution is quadrupolar. This quadrupole
field splits the d states into the two eg’s and the three t2g states,
where the t2g states are lower in energy because the lobes of
their electronic wave functions point away from the negatively
ligand ions (Ballhausen, 1962; Fazekas, 1999); see Fig. 9.
Also, the electronic hybridization of these two classes of states
with the ligand states is different, which further adds to the
energy splitting between the eg and t2g states. But for a cubic
ligand field (also referred to as a crystal field) a twofold orbital
degeneracy remains if there is an electron (or a hole) in the eg
orbitals and a threefold degeneracy for an electron or hole in
the t2g orbitals.
The two eg states and the three t2g states relate, respectively,

to two- and three-dimensional vector spaces (or two- and
three-component pseudovectors T). This combined with the
real space anisotropic directional character of the orbitals
leads to Hamiltonians similar to compass models that we
introduced in earlier sections.
A further lowering of the lattice point group symmetry,

from, for instance, cubic to tetragonal, will cause a further
splitting of degeneracies. The existence of degenerate orbital
freedom raises the specter of cooperative effects, i.e., orbital
ordering. Because of the coupling to the lattice in many of the
materials in which they occur, orbital orders appear at high
temperatures—often at temperatures far higher than magnetic
orders.

2. Representations of orbital states

In this section we describe the two- and three-dimensional
representations of, respectively, the two eg states and three t2g
states.
• eg orbitals: For the eg doublet the orbital pseudospin can

be represented by a spinor, where ð1
0
Þ corresponds to an

electron in the x2 − y2 orbital and ð0
1
Þ to the electron in the

ð3z2 − r2Þ= ffiffiffi
3

p
orbital. It is instructive to consider the rota-

tions of this spinor, which are generated by the Pauli matrices
σ1, σ2, and σ3, the generators of the SU(2) algebra; the identity
matrix is σ0. Rotation by an angle ϕ around the 2 axis is
denoted by the operator R̂2ðϕÞ, where

R̂2ðϕÞ ¼ eiσ2ϕ=2 ¼ σ0 cosϕ=2þ iσ2 sinϕ=2: ð43Þ

It is easily checked that for ϕ=2 ¼ �2π=3, rotation of the
spinor corresponding to x2 − y2 leads to

FIG. 9 (color online). The five orthogonal d orbitals. Crystal
field effects lift the fivefold degeneracy of the d atomic orbitals
into an eg doublet (top) and a t2g triplet of states.
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R̂�
2

�
1

0

�
¼−

1

2

�
1

∓ ffiffiffi
3

p
�
¼−

1

2
½x2 − y2∓ð3z2 − r2Þ� ¼ y2 − z2;

z2 − x2, and similarly 3z2− r2 → 3x2− r2;3y2− r2. Rotations
of the orbital wave function by ϕ=2 ¼ 2π=3 thus cause the
successive cyclic permutations xyz → yzx → zxy → xyz in
the wave functions, as depicted in Fig. 10.
Next we consider how the pseudospin operator τ transforms

under these rotations (van den Brink et al., 1999). As

τ ¼ 1

2

X
αβ

c†ασαβcβ;

where the sum is over the two different orbital states for each α
and β, after the rotation it is

τ ¼ 1

2

X
αβ

c†αR̂
∓
2 σαβR̂

�
2 cβ.

For the vector component τ3 this implies, for instance, that
successive rotations by an angle ϕ=2 ¼ �2π=3 transform it as

τ3 → −1
2
ðτ3 þ

ffiffiffi
3

p
τ1Þ → −1

2
ðτ3 −

ffiffiffi
3

p
τ1Þ → τ3.

• t2g orbitals: The same procedure may be applied to the
three t2g states. These states can be represented by three-
component spinors

xy ¼
 
1

0

0

!
;

yz ¼
 
0

1

0

!
;

and

zx ¼
 
0

0

1

!
:

In general, the operators acting on the three-flavor spinors
form an SU(3) algebra, which is generated by the eight Gell-
Mann matrices λ1;…;8; see Appendix B. This implies that the
pseudospin operator for t2g orbitals

τ ¼ 1

2

X
αβ

c†αλαβcβ

is an eight-component vector. The operator

R̂þ ¼
 
0 0 1

1 0 0

0 1 0

!

brings about the cyclic permutations xyz → yzx → zxy →
xyz in the t2g wave functions and R̂− ¼ ðR̂þÞT . R̂� applied to
the Gell-Man matrices transforms the t2g pseudospin operators
accordingly. We wish to highlight this SU(3) character here.
Conventionally, SU(3) algebra is not employed.

3. Orbital-orbital interactions

Even if in a Mott insulator, the electrons are localized in
their atomiclike orbitals, they are not completely confined and
can hop between neighboring sites. For electrons in non-
degenerate s-like orbitals, this leads to the magnetic super-
exchange interactions between the spins of different electrons;
see Fig. 11. The competition between the strong Coulomb
interaction that electrons experience when they are in the
same orbital, which tends to localize electrons, and the
hopping, which tends to delocalize them, is captured by
the isotropic Hubbard Hamiltonian (Hubbard, 1963)

Hiso
Hub ¼

X
hiji;α¼↑;↓

tðc†iαcjα þ H:c:Þ þ U
X
i

ni↑ni↓; ð44Þ

where c†iα creates an electron with spin α ¼ ↑;↓ on site i and
cjα annihilates it on neighboring site j, t is the hopping
amplitude, and the Hubbard U the energy penalty when two
electrons meet on the same site and thus are in the same s-like
orbital (Fazekas, 1999; Khomskii, 2010).
For later purposes it is convenient at this point to introduce a

2 × 2 hopping matrix tγαβ, with α ¼ ↑;↓ and β ¼ ↑;↓. The
hopping matrix determines how an electron changes its spin
“polarization” from α to β when it hops from site i to j on the
bond hiji in the direction γ, which connects sites r and rþ eγ ,
where eγ is the unit lattice vector. Using this notation the first
term in the Hubbard Hamiltonian HHub isX

hiji;α
tc†iαcjα ¼

X
r;γ
α;β

tγα;βc
†
r;αcrþeγ ;β; ð45Þ

so that

FIG. 11 (color online). Superexchange between spin-1=2 elec-
trons, resulting into the effective antiferromagnetic Heisenberg
Hamiltonian H ¼ J

P
i;jðSi · Sj − 1=4Þ, with J ¼ 4t2=U.

FIG. 10 (color online). Result of the rotations of the eg orbital
spinor by an angle ϕ=2 ¼ 2π=3.
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HHub ¼
X
r;γ
α;β

ðtγαβc†r;αcrþeγ ;β þ H:c:Þ þ U
X
r

nr↑nr↓; ð46Þ

where for the isotropic Hubbard Hamiltonian Hiso
Hub of

Eq. (46), since hopping does not depend on the direction γ
of the bond and spin is conserved during the hopping process,
we simply have

tγαβ ¼ t

�
1 0

0 1

�
; ð47Þ

for all γ. A compass model is the low-energy effective model
of a Hubbard Hamiltonian with more involved, bond-
direction-dependent, forms of tγαβ. Numerous works have
investigated direction-dependent hopping for different orbital
flavors; note that in some cases these hoppings may lead to an
effective dimensional reduction wherein deconfined motion
appears along lattice directions (Daghofer et al., 2008).
In the isotropic Hubbard Hamiltonian with U ≫ t and at

half filling (i.e., when the number of electrons equal to the
number of sites in the system) the resulting Heisenberg-type
interaction between spins is

H ¼ J
X
i;j

�
Si · Sj −

1

4

�
.

This interaction is antiferomagnetic: J ¼ 4t2=U > 0. The
high symmetry of the Heisenberg Hamiltonian (the interaction
Si · Sj is rotationally invariant) is rooted in the fact that the
hopping amplitude t is equal for spin-up and spin-down
electrons. This is again reflected by the hopping matrix of an
electron on site i and spin α to site j and spin β being diagonal:

tαβ ¼ t

�
1 0

0 1

�
:

For the orbital degrees of freedom the situation is very
different from that of the spin. This is so as the hopping
amplitudes strongly depend on the type of orbitals involved
and thus on the orbital pseudospin. This anisotropy is rather
extreme as it depends not only on the local symmetry of the
two orbitals involved, but also on their relative position in the
lattice: for instance, the hopping amplitude between two 3z2 −
r2 orbitals is very different when the two sites are positioned
above each other, along the z axis, or next to each other, e.g.,
on the x axis; see Fig. 12.

a. eg-orbital-only Hamiltonians

As in our discussion of the representations (Sec. V.A.2),
because there are two independent eg orbitals, in the eg sector
the pseudospin τ has two independent components. Thus, the
oribtal-orbital interactions in eg systems may be represented
by 2 × 2 matrices as we detail below. For the eg orbitals the
hopping matrix between sites i and j along the ẑ direction is

tẑαβ ¼ tδα;2δβ;2 ¼ t

�
0 0

0 1

�

in the basis x2 − y2, 3z2 − r2; see Fig. 12: due to the symmetry
of the orbitals only hopping from one 3z2 − r2 orbital to
another 3z2 − r2 one is allowed along the ẑ direction. This
fully specifies the hopping between orbitals on a cubic lattice,

as the hopping along x̂ and ŷ is dictated by symmetry. The
corresponding hopping matrices can be determined with the
help of the rotations introduced in Sec. V.A.2. The hopping
matrix along the x direction, tx̂αβ is obtained by first rotating the
full coordinate system by π=2 around the y axis, so that
tẑαβ → tx̂αβ ¼ tδα;2δβ;2, now with basis states z2 − y2, 3x2 − r2.
A subsequent rotation of the orbital spinors by ϕ=2 ¼ −2π=3
around the 2 (i.e., the internal pseudospin y) direction brings
the matrix back into the original x2 − y2, 3z2 − r2 basis and
transforms tx̂αβ → Rþ

2 t
x̂
αβR

−
2 . After the rotations one finds

tx̂αβ ¼
t
4

�
3

ffiffiffi
3

pffiffiffi
3

p
1

�
.

Similarly first rotating around the ŷ axis and transforming
tŷαβ → R−

2 t
x̂
αβR

þ
2 leads to

tŷαβ ¼
t
4

�
3 − ffiffiffi

3
p

− ffiffiffi
3

p
1

�
;

a well-known result (Kugel and Khomskii, 1982; van den
Brink and Khomskii, 1999; Ederer, Lin, and Millis, 2007)
that is in accordance with microscopic tight-binding consid-
erations (Harrison, 2004).
Orbital-orbital interactions are generated by superexchange

processes between electrons in eg orbitals. When the electron
spin is disregarded, the most basic form of the orbital-orbital
interaction Hamiltonian is obtained. Superexchange with spin-
full electrons leads to Kugel-Khomskii Hamiltonians which
will be derived and discussed in Sec. V.A.4. For spinless
fermions the exchange interactions along the ẑ axis take a
particularly simple form. If the electron on site i is in an x2 − y2

orbital, corresponding to τ3i ¼ −1=2, and the one on site j in a
3z2 − r2 orbital (τ3j ¼ 1=2), a virtual hopping process is
possible, giving rise to an energy gain of −t2=U in second-
order perturbation theory, where U is the energy penalty of
having spinless fermions on the same site (which are by
definition in different orbitals). The only other configuration
with nonzero energy gain is the one with i and j interchanged.
The Hamiltonian on the bond ij is therefore

Hẑ
ij ¼ −

t2

U

��
1

2
− τ3i

��
1

2
þ τ3j

�
þ
�
1

2
− τ3j

��
1

2
þ τ3i

��

¼ J
2

�
τ3i τ

3
j −

1

4

�
.

FIG. 12 (color online). Hopping amplitudes between eg orbitals
along the ẑ axis: the hoppingmatrix is tẑαβ ¼ tδα;2δβ;2. Threematrix
elements vanish because of the symmetry of the x2 − y2 orbitals,
with a wave function on adjacent lobes that has opposite sign.
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With the same rotations as above, but now acting on the
operator τz, the Hamiltonian on the bonds in the other two
directions can be determined: along the x̂ and ŷ axes,
respectively,

τ3 → Rþ
2 τ

3R−
2 along x̂;

τ3 → R−
2 τ

3Rþ
2 along ŷ; ð48Þ

so that

Hx̂
ij ¼

J
8

h
ðτ3i þ

ffiffiffi
3

p
τ1i Þðτ3j þ

ffiffiffi
3

p
τ1jÞ − 1

i
¼ J

4
πxi π

x
j ;

where the last step defines πγ [see Eq. (49)] as in Eq. (10), and
along ŷ one obtains

Hŷ
ij ¼

J
8

h
ðτ3i −

ffiffiffi
3

p
τ1i Þðτ3j −

ffiffiffi
3

p
τ1jÞ − 1

i
¼ J

4
πyi π

y
j .

The orbital-only Hamiltonian for eg orbital pseudospins
therefore is exactly the 120° compass model of Eqs. (9) and
(10) (van den Brink et al., 1999) on the cubic lattice

H
eg
3□ ¼ J

2

X
r;γ

�
πγrπ

γ
rþeγ −

1

4

�
;

with

πγ ¼ τ3 cos θγ þ τ1 sin θγ;

feγg ¼ fex; ey; ezg;
fθγg ¼ f0; 2π=3; 4π=3g. ð49Þ

The exchange J ¼ 4t2=U > 0 is antiferromagnetic. These
antiferromagetic orbital-orbital interactions drive a tendency
toward the formation of staggered orbital patterns.
Similar analysis leads to the 120° model on other lattices.

The 120° model on the honeycomb lattice,H120°
⬡ , Eq. (12), was

motivated by Nasu et al. (2008) in a study of the layered iron
oxides RFe2O4 (R ¼ Lu, Y, Yb); see Fig. 13. These oxides are
multiferroic systems in which both the magnetic and electric
responses are dominated by Fe 3d electrons. The nominal
valence of the Fe ions is 2.5þ and thus an equal number of Fe2þ

and Fe3þ are present. One of the eg levels in the Fe2þ ions is
doubly occupied, where all of the five 3d orbitals in the Fe3þ

ions are singly occupied. The system assumes the form of a
stack of pairs of triangular lattice planes along the c axis of the
form Fe2þ-2Fe3þ and 2Fe2þ-Fe3þ. In the 2Fe2þ-Fe3þ member
of this pair, Fe2þ ions (with a doubly degenerate eg orbital
degree of freedom) form a honeycomb lattice. Superexchange
with the Fe3þ ions leads directly to theHamiltonian of Eq. (12).
The 120°model has been proposed to account for the physics

of materials such as NaNiO2 in which the transition-metal ions
(with doubly degenerate eg orbitals occupied by a single
electron or hole) lie on weakly coupled triangular layers
(Mostovoy and Khomskii, 2002). In NaNiO2, Na and Ni ions
occupy alternate [111] planes as seen in Fig. 14 and consecutive
low-spin Ni3þ triangular layers are weakly coupled to each
other. Within each such layer the dominant interactions

between Ni ions involve exchange paths via intermediate
oxygen ions (Reitsma, Feiner, and Oleś, 2005). The bonds
between neighboring Ni and oxygen ions form a 90° angle.
Direct calculations lead to the triangular lattice 120°
Hamiltonian of Eq. (14). In Sec. V.A.7, we further review
charge transfer via intermediate ligand (e.g., oxygen) sites and
how they may lead to orbital interactions. Augmenting the
orbital-only interactions of the 120° compass type, an addi-
tional orbital-dependent ferromagnetic spin exchange can
become active (Mostovoy and Khomskii, 2002). The dominant
interactions are those of the orbital-orbital type.

b. Compass and Kitaev Hamiltonians

Compass and Kitaev Hamiltonians are the low-energy
effective description of certain two-flavor Hubbard
Hamiltonians of the type HHub given by Eq. (46). When
the two flavors are spin up and down, the hopping matrix
corresponds to that of the simple isotropic Hubbard model
Hiso

Hub [see Eqs. (45) and (47)] and the low-energy effective
spin Hamiltonian is the spin-1=2 Heisenberg model. Instead,

FIG. 13 (color online). Top: H120°
⬡ models orbital-orbital inter-

actions in RFe2O4 (a) A pair of triangular planes and (b) three Fe-
O bond directions in a triangular lattice in RFe2O4. Below:
Schematic of the charge and spin structures in the 2Fe2þ-Fe3þ
plane (right) and in the Fe2þ-2Fe3þ plane (left) for RFe2O4. Filled
and open circles represent Fe3þ and Fe2þ, respectively. At sites
surrounded by dotted circles, spin directions are not uniquely
determined due to frustration. From Nasu et al., 2008.

FIG. 14. Left: The crystal structure of NaNiO2. Right:
A plaquette in the αβ plane ðα; β ¼ x; y; zÞ formed by two
nearest-neighbor Ni ions, 1 and 2, and two oxygen ions, O1

and O2. From Mostovoy and Khomskii, 2002.
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in compass models in which we, e.g., consider orbital
pseudospins instead of spins, the hopping matrix along the
ẑ lattice direction is given by

tẑαβ ¼
�
0 0

0 1

�
.

That is, for eg orbitals along ẑ, this gives rise to an Ising type
of interaction τ3i τ

3
j between pseudospins on the bond hiji

parallel to ẑ. Such a hopping matrix is realized in the original
Hubbard model [Eq. (46)], if only spin-↓ electrons are
permitted to hop between the sites i and j (and spin-↑
electrons cannot hop).
When the hopping matrix has a different form along

different bonds a compass model arises. The 90° compass
model, for instance, has an Ising-type interaction τ3i τ

3
j along ẑ,

corresponding to the matrix tẑαβ above.
Next, we come to a very central idea—hoppings along

different cubic lattice directions are related by rotations of the
components of the orbital pseudospins. Specifically, along the
bond parallel to the x axis, the term τ1i τ

1
j has to be active. A

rotation of the pseudospin by an angle of ϕ ¼ π=2 around the
2 axis transforms τz into τx. Thus, in such a rotated basis the
hopping matrix must again take the form

�
0 0

0 1

�
:

Let us now see what effective interactions this implies in the
original unrotated pseudospin basis. The above operator
requires a specific hopping tαβ along x̂. It is easy to check
by performing these rotations that for

tx̂αβ ¼
1

2

�
1 −1
−1 1

�
.

Similarly, by symmetry, for hopping along the ŷ direction,

tŷαβ ¼
1

2

�
1 −i
i 1

�
.

Summing the three terms associated with the hopping along
the x̂, ŷ, and ẑ directions, the cubic 90° compass model H90°

3□

[Eq. (6)] is seen to arise. Thus for hopping matrices in the
Hubbard Hamiltonian [Eq. (46)] that have the form

tx̂α;β ¼
1 − σx

2
; tŷα;β ¼

1 − σy

2
; and tẑα;β ¼

1 − σz

2
ð50Þ

on a cubic lattice in the large-U limit and at half filling, the
low-energy effective Hamiltonian is the 90° compass model
H90°

3□ [Eq. (6)]. A hopping matrix of this type can be realized
physically for electrons in the 5d states of iridium ions, where
a strong relativistic spin-orbit coupling locks the spin to the
orbital degree of freedom (Jackeli and Khaliullin, 2009).
Controlling the (pseudo)spin dependence of the hopping
amplitudes on different bonds thus suffices to generate any
type of compass Hamiltonian as the effective low-energy
(pseudo)spin model of the Hubbard Hamiltonian.

c. t2g orbital-only Hamiltonian

The three flavors of t2g orbitals xy, yz, and zx are most
naturally represented by a three-component spinor so that the
hopping tαβ is a 3 × 3 matrix. The structure of the hopping
matrix is rather simple (Fig. 15), as between sites i and j
electrons can hop only between orbitals of the same symmetry,
so that orbital flavor is conserved in the hopping process,
which renders tαβ diagonal. Moreover, along the x̂ axis the
hopping between yz orbitals vanishes. This determines the
hopping matrices in all three directions, which can be
constructed via rotations, as for the eg orbitals (see
Appendix B):

tx̂ ¼

0
B@
1 0 0

0 0 0

0 0 1

1
CA; tŷ ¼

0
B@
1 0 0

0 1 0

0 0 0

1
CA; tẑ ¼

0
B@
0 0 0

0 1 0

0 0 1

1
CA:

ð51Þ

As along the ŷ direction, for instance, the hopping matrix is
diagonal for the two orbitals involved, the exchange inter-
action for two (spinless) fermions in these two active orbitals
on sites i and j is of Heisenberg type. In terms of Gell-Mann
matrices it is ðJ=4Þðλ1;iλ1;j þ λ2;iλ2;j þ λ3;iλ3;j − 1Þ, which is
SU(2) invariant. Because both fermions need not be in the two
active orbitals, an additional diagonal term ρ1;iρ1;j is present,
where ρ1 ¼ ð1=3Þðλ0 −

ffiffiffi
3

p
λ8Þ. As ρ1 commutes with λ1;…;3,

it does not break the SU(2) invariance. Defining the
vector μ1 ¼ ðλ1; λ2; λ3; ρ1Þ along the x̂ direction, Hr;rþex ¼ðJ=4Þðμ1r · μ1rþex − 1Þ. Rotation of the coordinate system and
subsequently of the orbital basis produces the interactions
along the other two directions, μ2r · μ2rþey − 1 along ŷ and μ3r ·
μ3rþez − 1 along ẑ, so that

H
t2g
3□ ¼ J

4

X
r;γ

ðμγrμγrþeγ − 1Þ; ð52Þ

FIG. 15 (color online). Hopping amplitudes between t2g orbitals
along the x̂ axis, assuming that the hopping is via a ligand
intermediate p state (not shown here), for instance, of an oxygen
atom between two TM ions; see Fig. 24.
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with feγg ¼ fex; ey; ezg. Along each of the bonds one of the
SU(2) subgroups corresponding to the elements of μγ is active
and the Hamiltonian is rotationally invariant in terms of that
subgroup. This aspect emphasizes the compass character of
the ensuing Hamiltonian. The situation is complicated by the
fact that all three μγ belong to the same SU(3) algebra, so that
the elements of μγ and μγ

0
in general do not commute.

As the three-flavor exchange Hamiltonian is represented by
Gell-Mann matrices, it is natural to refer to it as a Gell-Mann
matrix model. This approach allows for a representation of the
interactions between t2g orbitals that goes beyond the current
well-studied orbital Hamiltonians in which SU(2) representa-
tions are used. In the context of ultracold gas systems a number
of this type of model has been proposed. Of course, the Gell-
Mann representation is not unique.Gell-Mannmatrices can, for
example, be expressed in polynomials of the three L ¼ 1
angular momentum matrices Lx, Ly, and Lz, which thus also
can be used to represent H

t2g
3□ (Kugel and Khomskii, 1982).

4. Spin-spin and orbital-orbital interactions

Going beyond the case of spinless fermions requires
considering the local Coulomb and exchange interactions
between electrons in various orbital configurations, via a
multiorbital Hubbard Hamiltonian. This opens an entire field,
of which reviews can be found by Kugel and Khomskii
(1982), Tokura and Nagaosa (2000), and Khaliullin (2005).
Here we restrict ourselves to indicating how compass models
are decorated with spin-spin interactions, with a particular
focus on the 120° compass model for eg electrons.
The considerations concerning the hopping amplitudes of

eg electrons directly enter into the kinetic part of the eg-orbital
Hamiltonian

Hmulti
Hub ¼

X
r;γ

α;β;σ

tγαβðc†r;ασcrþeγ ;βσ þ H:c:Þ þHC;

with

tγαβ ¼ t
2

�
1− cos2θγ sin2θγ
sin2θγ 1þ cos2θγ

�
; fθγg¼ f0;2π=3;4π=3g;

ð53Þ

where the on-site electron-electron interaction terms are
(Kugel and Khomskii, 1982; Oleś, 1983)

HC ¼ ðU þ 2JHÞ
X
r;α

nr;α↑nr;α↓ − 2JH
X
r;α<β

Sr;α · Sr;β

þ ðU − JH=2Þ
X

r;σ;σ0;α<β

nr;ασnr;βσ0

þ JH
X
r;α;β

c†r;α↑c
†
r;α↓cr;β↓cr;β↑: ð54Þ

Here not only the Hubbard U, but also Hund’s rule JH enters,
and in such a form that HC does not break the local rotational
symmetry in the spin-orbital basis. Normally the regime
U ≫ JH is considered, which is considered the most physical,
in particular, for 3d transition-metal oxides where the on-site
Coulomb interactions are typically around 4–6 eV and the

Hund’s rule exchange around0.8 eV. It should however be noted
that U, which is the monopole part of the Coulomb interaction,
is strongly screened in a solid and depends on the polarizability
of the anions and the anion coordination in a material. The
magnetic interaction strength JH instead is little screened. A
similar trend is observed ongoing to 4d and 5d systems, where
due to the larger spatial extent of thewave function, in particular,
the effective value of U is substantially smaller.
A second-order perturbation expansion of Hmulti

Hub in powers
of (t=U) directly leads to exchange interactions between spin
and eg-orbital degrees of freedom, resulting in an effective
low-energy KK Hamiltonian (Kugel and Khomskii, 1972,
1973, 1982). The KK Hamiltonian can also be derived from
symmetry arguments. In doing so, first the case JH ¼ 0 is
considered. For spin-full eg systems, superexchange is pos-
sible along the ẑ direction if both electrons are in 3z2 − r2

orbitals (τ3j ¼ 1=2). This leads to

JðSr · Srþez −
1
4
Þð1

2
− τ3r Þð12 − τ3rþezÞ.

This contribution to the Hamiltonian has to be added to the
orbital only term

J
2

�
τ3r τ

3
rþez −

1

4

�

from H
eg
3□ in the ẑ direction [see Eq. (49)]. Thus, the total

contribution associated with interactions along the z direction
is

Hr;rþez ¼ JðSr · Srþez þ 1
4
Þð1

2
− τ3r Þð12 − τ3rþezÞ

þ ðJ=4Þðτ3r þ τ3rþez − 1Þ. ð55Þ

The Hamiltonian along the other two axes is generated by the
rotations of the orbital basis specified in Eqs. (43) and (48).
The result, up to an innocuous constant, is the celebrated
Kugel-Khomskii Hamiltonian [cf. Eq. (16)]

HKK
U ¼ J

X
r;γ

HU;orb
r;rþeγH

U;spin
r;rþeγ .

Here

HU;spin
r;rþeγ ¼Sr ·Srþeγ þ 1

4
; HU;orb

r;rþeγ ¼ð1
2
−πγrÞð12−πγrþeγ Þ; ð56Þ

where the operators πγ are defined in Eq. (10). Interestingly,
the energy of the classical antiferromagnetic Néel state, where
Si · Sj ¼ −1=4 is identically zero independent of any orbital
configuration and therefore macroscopically degenerate. This
opens the possibility of stabilizing spin-orbital liquid states
(Feiner, Oleś, and Zaanen, 1997; Oleś, Feiner, and Zaanen,
2000) or driving the formation of quasi-one-dimensional spin
states (Khaliullin and Oudovenko, 1997). However, the
presence of a finite Hund’s coupling JH [Eq. (54)] lifts this
degeneracy of the Néel-ordered spin state. To leading order in
η ¼ JH=U, this generates the spin-orbital Hamiltonian

HKK
JH

¼ ηJ
X
r;γ

HJH;orb
r;rþeγ H

JH;spin
r;rþeγ ;
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with

HJH;spin
r;rþeγ ¼ Sr · Srþeγ þ 3

4
; HJH;orb

r;rþeγ ¼ πγrπ
γ
rþeγ −

1
4
; ð57Þ

and the full Kugel-Khomskii (Kugel and Khomskii, 1982)
model for electrons in eg orbitals on a cubic lattice, given by

HKK ¼ HKK
U þHKK

JH
: ð58Þ

It is interesting to note that when, on two neighboring
sites, different orbitals are occupied, i.e., hπγiπγiþeγ

i < 0, the

resulting spin-spin interaction according to Eq. (58) is
ferromagnetic. If instead different orbitals are occupied and
hπγiπγiþeγ

i > 1=4, the magnetic exchange is antiferromagnetic.

This correlation between orbital occupation and magnetic
exchange interactions reflects the well-known Goodenough-
Kanamori-Anderson rules for superexchange (Anderson,
1959; Kanamori, 1959; Goodenough, 1963).
Similar models describe magnetic systems with eg-orbital

degrees of freedom on different lattices, for instance, the
checkerboard lattice (Nasu and Ishihara, 2012), and with
different types of bonds between the ions, for instance, 90°
bonds (Mostovoy and Khomskii, 2002), and have been
extended to systems with t2g-orbital degrees of freedom
(Kugel and Khomskii, 1982; Khaliullin, 2001, 2005).

5. Compass Hubbard models

Compass-type hopping amplitudes lead to more complex
variants of the standard Hubbard model (Hubbard, 1963) and
give further impetus to the study of compass systems. In this
section, we describe an extended compass Hubbard model on
the square lattice that contains both standard kinetic hopping
terms (as in the Hubbard model) and pairing terms. As will be
elaborated in Sec. IX.K, this system has the virtue of being
exactly reducible to well-studied quantum gauge systems at a
point of symmetry. At this point of symmetry, the “symmetric
extended compass Hubbard model” (SECHM) is given by

HSECHM ¼ −
X

r;γ¼x;y

tr;rþeγ ðc†r;sγ þ cr;sγ Þ

ðc†rþeγ ;sγ − crþeγ ;sγ Þ þ
X
r

Urðnr↑nr↓ − nrÞ: ð59Þ

Here both the Coulomb penaltyUr and the hopping amplitudes
(t) linking sites r and rþ êγ are allowed to vary spatially with
the site i and direction γ. Somewhat similar to earlier sections,
the operators cr;sγ (c

†
r;sγ ) denote the annihilation (creation) of an

electron of spin polarization sγ at site i. The shorthand sγ (with
γ ¼ x; y) is, in this case, defined via sx ¼ ↑ and sy ¼ ↓. The
dependence of a hopping amplitude for an electron of spin
polarization σ on the lattice direction γ alongwhich the electron
may hop embodies a compass-type feature. In Secs. V.A.3 and
V.A.4 we review how such hopping amplitudes precisely
appear for the pseudospin orbital degrees of freedom. The
number operators nrσ with the spin polarization σ ¼ ↑;↓ are,
as usual, given by nrσ ¼ c†r;sγcr;sγ. The total number operator at
site r is nr ¼ nr;↑ þ nr;↓. The Hamiltonian of Eq. (59) is
symmetric inasmuch as the pairing and hopping terms are of
equal magnitudes. Reminiscent to the situation for HSECHM,
equal-strength pairing and hopping terms appear in soluble

antiferromagnetic spin chains (Lieb, Schultz, andMattis, 1961)
and related fermionic representations of the two-dimensional
Ising model (Schultz, Mattis, and Lieb, 1964). An extended
compass Hubbard model arises away from the particular point
of symmetry in Eq. (59); such a system allows for differing
ratios of the pairing and hopping terms as well as a general
chemical potential term

P
rμrnr where μr ≠ Ur. Further

extensions to other lattices are possible as well.

6. Lattice-mediated interactions

Orbital degrees of freedom couple strongly to the lattice via
the Jahn-Teller effect (Jahn and Teller, 1937; Kugel and
Khomskii, 1982). A convenient mathematical way to derive
the effective Hamiltonian for eg electrons on a cubic lattice
interacting via Jahn-Teller distortions is to consider first an
elongated 3z2 − r2 orbital that is occupied on site i, so that the
octahedron elongates with a so-called Q3 distortion; see
Fig. 16. We denote the crystallographic axes of the solid
by a, b, and c and now consider how the Jahn-Teller
distortions of neighboring octahedra interact. If site i has a
Q3 distortion, the octahedron connected to it along the c axis
is automatically compressed; see Fig. 16. Thus a distortion
−Q3 is induced on j, the neighboring site of i along the c axis.
Therefore the interaction between the distortions of these
nearest neighbors hiji isQ3;iQ3;j. One can, however, rotate the
orbitals in any direction: by choosing θ ¼ 2π=3 one obtains an
orbital that is elongated along the a axis, the 3x2 − r2 orbital.
As discussed earlier, a 3x2 − r2 orbital corresponds to the
linear combination ð1=2Þð−j3z2 − r2i þ ffiffiffi

3
p jx2 − y2iÞ. The

distortion that goes along with it is ð1=2Þð−Q3 þ
ffiffiffi
3

p
Q2Þ;

see Fig. 16. Therefore it is this linear combination of
distortions that determines the interaction along the a axis.
Along the b axis the situation is analogous with θ ¼ −2π=3.
One arrives at the Hamiltonian for eg orbitals on a cubic lattice
with corner-sharing octahedra (Kanamori, 1960; Kugel and
Khomskii, 1982; van den Brink, 2004)

H120 ¼
X
r;γ

Qγ
rQ

γ
rþeγ ; ð60Þ

where γ ¼ a; b; c and Qa ¼ ð1=2ÞðQ3 −
ffiffiffi
3

p
Q2Þ, Qb ¼

ð1=2ÞðQ3 þ
ffiffiffi
3

p
Q2Þ, and Qc ¼ Q3; see Fig. 16. This model

is that of the 120° model of Eqs. (9) and (10). Note that unlike

FIG. 16 (color online). Jahn-Teller distortions of eg symmetry,Q2

and Q3, of a transition metal–oxygen octahedron. The electronic
orbital degree of freedom is locked to the distortion ðQ3; Q2Þ.
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the realization of Eq. (49), the 120° model of Eq. (60) derived
from Jahn-Teller distortions is essentially classical: the zero-
point quantum oscillations of the heavy oxygen ions that
mediate the orbital-orbital interactions (or, equivalently, the
interactions between Jahn-Teller centers) are negligible.
Similar 90°-type compass models describe Jahn-Teller effects
in t2g systems [see, e.g., Eq. (8) of van den Brink (2004)].

7. Charge transfer effects through ligand sites

The electronic hopping can occur directly from a d orbital
on one site to a d orbital on a neighboring one, but as stated
previously, in many oxides such hoppings from d to d state
occur via an oxygen p orbital of an oxygen ion that is bridging
two transition-metal ions. This is particularly relevant for
oxides that are charge transfer isolators (Zaanen, Sawatsky,
and Allen, 1985). In these materials the charge transfer
through ligand sites is dominant when the energy for an
electron transfer Δ between the ligand and the TM ion is
smaller than the energy penalty U for direct charge transfer
between one TM ion and another.
However, it can be easily shown that the effective hopping

integrals between eg and t2g states do not change their
symmetry if the hopping occurs via an oxygen ligand bridging
the two transition-metal sites. In these circumstances, emerging
Kugel-Khomskii, and compass models for the orbital and/or
spin degrees of freedom in the strong-coupling limit of largeU
basically remain unaltered. This situation changes fundamen-
tally when the TM-oxygen-TM bond is not 180°, which is, in
particular, the case for edge-sharing octahedra, where this bond
is (close to) 90° (Mostovoy and Khomskii, 2002).
The effective orbital-only and orbital-dependent spin

exchangeHamiltonians that resultwhen charge transfer through
ligand sites is the dominant conduit for charge excitations lead
to compass-type Hamiltonians different from those we have
discussed thus far (Mostovoy and Khomskii, 2004). Most
notably, an orbital-only Hamiltonian appears which remains
finite in the limit of U → ∞ and is asymmetric between eg
orbitals partially filled by holes and by electrons. When pairs of
transition-metal ions with a single hole (h) on the doubly
degenerate eg orbitals (e.g., Cu2þ ions that have an outer-shell
structure of t62ge

3
2g) interact with one another through ligand

sites, in the limit U → ∞ (leaving the charge transfer Δ as the
only remaining finite energy scale), the effective resultant
charge transfer orbital-only Hamiltonian assumes the form

HðhÞ
CT ¼ 2t2

Δ3

X
r;γ

�
1

2
þ πγr

��
1

2
þ πγrþeγ

�
. ð61Þ

Here t denotes the hopping amplitude between the transition-
metal ion and the ligand site. The operators πγ are of the same
form as inEqs. (10) and (49). Similarly, for transition-metal ions
that have one electron (e) in the doubly degenerate eg states, the
effective interaction that remains in the large-U limit is of the
form

HðeÞ
CT ¼ 2t2

Δ3

X
r;γ

�
3

2
− πγr

��
3

2
− πγrþeγ

�
: ð62Þ

The situationof a single electron in theeg orbitals is encountered
in ions such as Mn3þ Cr2þ [both having an (t32ge

1
g) structure] as

well as the low-spin Ni3þ (t62ge
1
g).

The Hamiltonians of Eqs. (61) and (62) capture the effect of
common ligand sites which are shared by the transition-metal
ions. For finite values of U, a compass-type coupled spin and
orbital Hamiltonian different from the Kugel-Khomskii
Hamiltonian appears.
The energetics associated with these orbital-only

Hamiltonians favors orbital and spin states which differ from
those that would be chosen by the Jahn-Teller or Kugel-
Khomskii Hamiltonians. A marked feature of the orbital-only
interactions that results is, as clearly seen in Eqs. (61) and (62),
the appearance of linear terms in the pseudospins. Such terms
are not present in the Jahn-Teller Hamiltonian of Eq. (60).
These linear terms effectively act as external effective fields
that couple to the pseudospins and may help account for
empirically observed orbital structure which is not favored by
Jahn-Teller nor Hubbard (and thus also Kugel-Khomskii)-type
Hamiltonians (Mostovoy and Khomskii, 2004). We remark
that such linear terms may lead to orbital precessions as
discussed in Sec. IV.D (Nussinov and Ortiz, 2008).

B. Cold atom systems

In recent years, the ability to manipulate cold atom (and
molecule) systems in standing-wave laser beams has enabled
the generation of systems with tunable interactions. In essence,
laser beams enable one to generate confining potentials and a
crystal of light in which the lattice sites are energy minima for
the location of dilute atoms or molecules.
Gaining an understanding of electronic and magnetic

effects is, in a solid, typically complicated by, for example,
the presence of impurities, and the long-range nature of
Coulomb interactions and in general the rather limited
possibility to change parameters and interactions. Ultracold
atoms in optical lattices provide a great advantage in allowing
one to probe model Hamiltonians that capture the essential
many-body physics of strongly correlated electron systems in
a clean experimental setting (Jaksch and Zoller, 2005; Bloch,
Dalibard, and Zwerger, 2008). Relevant parameters can be
independently controlled, thus allowing quantitative compar-
isons of the experiment and theory.
In particular, the Hubbard Hamiltonian for both bosonic

(Jaksch et al., 1998; Greiner et al., 2002; Stöferle et al., 2004)
and fermionic particles (Schneider et al., 2008) on optical
lattices has been realized, also in the Mott-insulating regime.
This has opened the road to preparation of other effective
spinor models with ultracold atoms on the lattice, such as the
ones of compass type, which we review in this section.
Proposals for the creation of compass-type models in the

ultracold gas setting can be classified into three categories.
The first one uses an ensemble of ultracold bosonic or
fermionic atoms with two relevant internal states and engineer
the hopping amplitudes by additional laser fields (Duan,
Demler, and Lukin, 2003). The second category employs
atoms that are in p-like states, the orbital degeneracy of which
constitutes the pseudospin degree of freedom, which can be
created either by excitation out of s-like states or by filling a
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site with more than one fermionic atom (Browaeys et al.,
2005; Isacsson and Girvin, 2005; Köhl et al., 2005; Kuklov,
2006; Liu and Wu, 2006; Wu et al., 2006; Anderlini et al.,
2007; Müller et al., 2007; Wu, 2008; Wu and Das Sarma,
2008; Wu and Zhai, 2008; Zhao and Liu, 2008). Finally, by
manipulating ultracold dipolar molecules anisotropic spin
interactions can be generated (Micheli, Brennen, and
Zoller, 2006; Weimer, 2013).

1. Engineering tunneling amplitudes

In an ensemble of ultracold bosonic or fermionic atoms
confined in an optical lattice with two relevant internal states,
a T ¼ 1=2 pseudospin, the pseudospin-dependent tunneling
between neighboring atoms in the lattice can be controlled. As
will be reviewed in Sec. V.A.3, full control of these hopping
amplitudes is in the Mott-insulating regime of the Hubbard
model enough to construct any compass-type Hamiltonian. In
both Bose and Fermi systems, the anisotropy of the exchange
and, in particular, tunneling directions can be engineered by
applying blue-detuned standing-wave laser beams along those
directions (Duan, Demler, and Lukin, 2003; Kuklov and
Svistunov, 2003).

2. Bosonic gases with orbital degree of freedom

In the ground state, the atoms in an optical lattice are centered
around their localminimaprovided by the confining potential of
the laser beams which in the vicinity of its minima is harmonic.
The atomic states in the lowest Bloch band are, essentially, the
ground of the harmonic oscillator (more precisely, the product
of a single harmonic oscillator centered around each of the
minima of the periodic confining potential generated by the
laser beams) and those within the first excited Bloch band
correspond to the first excited states of a harmonic oscillator.
Several approaches are available for transferring cold atoms

to the first excited p-orbital band, for instance, by applying an
appropriate vibrational pulse with frequency on resonance
with the s-p state transition (Liu and Wu, 2006). A theory for
the interactions in a dilute system of bosons in which the two
lowest Bloch bands of a three-dimensional optical lattice are
considered was developed by Isacsson and Girvin (2005).
The central point in all of this is that in the cold atomic gas

there are three such excited states corresponding to an
“excitation” along each of the three Cartesian directions
(which for a single atom around its local confining potential
minimum, which for symmetric confining potentials along all
three directions, are of the form xe−ðr=aÞ2 , ye−ðr=aÞ2 , and
ze−ðr=aÞ2 , with r2 ¼ x2 þ y2 þ z2 and a the harmonic confin-
ing potential length scale). Henceforth these excitations are
labeled as p ¼ X, Y, and Z. These p states are rather confined
along all Cartesian directions apart from one and in that sense
resemble an atomic p orbital. In the presence of Hubbard-type
local interactions between the bosons the resulting system is
thus of a compass type, where the pseudospins emerge from
bosonic degrees of freedom. The strength of the confining
potential along the three Cartesian directions can be tuned by
the optical lattice. In the symmetric case, the resulting
effective Hubbard-type model, taking into account on-site
interactions of strength U between atoms, is (Isacsson and
Girvin, 2005)

HIG ¼
X
i;p

�
EiðiÞnðpÞi þ Upp

2
npi ðnpi − 1Þ

�

þ
X
i;p≠p0

Upp0

�
npi n

p0
i þ 1

2
ðp†

i p
†
i p

0
ip

0
i þ H:c:Þ

�

− t
X

hi;i0ip;p
ðp†

i pi0 þ H:c:Þ: ð63Þ

The operators p†
i and pi correspond to the creation and

annihilation operators for an excited boson of flavor p ¼
X; Y; Z at site i. The constants Upp0 , Upp, and Ei are
determined by the parameters describing the confining optical
potential. In a similar vein, if the confining potential along,
say, the z direction is much larger than along the x and y
directions, the system is effectively two dimensional
[p ¼ X; Y in Eq. (63)]. Physically, the Hamiltonian then
describes two boson species (of types X and Y) each of
which may propagate along only one direction. The inter-
action terms enable two bosons of type X to fuse and generate
two bosons of type Y (and vice versa).
There is a formal connection between a system of hard-core

bosons where the on-site repulsion U → ∞ (for which no two
bosons can occupy the same site) and the pseudospin variants
of the compass models. Toward this end, one can employ the
Matsubara-Matsuda transformation (Matsubara and Matsuda,
1956) relating a two-flavor system of hard-core bosons (e.g.,
bosons of type X and Y) and the two states of a pseudospin
T ¼ 1=2 particle.

3. Fermionic gases with orbital degree of freedom

Fermionic realizations of compass-type systems have also
been considered in optical lattices (Wu, 2008; Zhao and Liu,
2008). A situation with a strong confining potential along, e.g.,
the spatial z direction will again lead to a two-dimensional
system. Wu (2008) focused on atomic orbitals and considered
a situation in which there are two fermions per site with one of
the fermions in an inert s shell and the other occupying the p
bands [which in the case of strong optical confinement along
the vertical (z) direction is restricted to one of the two p states
(i.e., px and py orbitals)]. One possibility for hopping within
the p-band states is via the so-called σ overlap integral (t∥), the
head-on overlap of one electronic lobe of one site with another
(parallel) single electronic p lobe on a neighbor site. The other
possibility is a π overlap (t⊥) between pwave functions on two
neighboring sites that are orthogonal to the axis that links these
two sites. Notwithstanding our earlier focus on d-orbital
physics in transition-metal solids, we remark that p orbitals
with a subtle interplay of t∥; t⊥, and p-wave orbital orders not
only appear in optical lattices but can also arise in some solids
such as the hyperoxides; see, e.g., Wohlfeld, Daghofer, and
Oleś (2011).
Because of the far smaller overlaps involved in π bonding,

the σ bonding is typically far stronger (t∥=t⊥ ≫ 1). In what
follows π effects will be neglected. The directional character
of the σ bonding underlies the compass-type interactions in
this system. Orbitals in the px state have a high tunneling
amplitude in only the x direction, and similarly orbitals in the
py state have a high tunneling and lead to consequent effective
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interactions only along the y direction. Scattering in the p-
wave channel as well as enhancements by magnetic effects
and proximity to the Feshbach resonance can lead to a
substantial Hubbard-like interaction

HI ¼ I
X
i

ni;xni;y: ð64Þ

In Eq. (64), the operators nix ¼ p†
ixpix and ni;y ¼ p†

i;ypi;y are,
respectively, the number operators for states of the px and py
type on lattice site i. Here p†

i;x and pi;x denote the creation and
annihilation operators for an electron, in this case a spinless
fermion, in the px orbital at site i, the operators ni;x ¼ p†

i;xpi;x
and ni;y ¼ p†

i;ypi;y are the number operators for states of the px
and py type, respectively, on the lattice site i. The interaction
strength is given by I. Precisely such interactions appear in
certain Hubbard models of transition-metal oxides with t2g
orbitals; see, e.g., Daghofer et al. (2008).
We can define T ¼ 1=2 pseudospin operators to be

(Wu, 2008; Zhao and Liu, 2008) τ1 ¼ ð1=2Þðnx − nyÞ, τ2 ¼
ð1=2Þðp†

xpy þ H:c:Þ, and τ3 ¼ −ði=2Þðp†
xpy − H:c:Þ. The px;y

states are eigenstates of τ1 with eigenvalues �1=2, respec-
tively. The compass-type character emerges naturally from the
σ-bonding exchange between two sites separated along, say,
the Cartesian x lattice direction. In that case, for large U, a
perturbative expansion in t∥=U about the degenerate ground
state of Eq. (64) (that of a single px or py state per site) is
possible. Second-order perturbation theory in the kinetic t∥
term gives rise to an effective Ising-type exchange Hex ¼
J∥τ1r τ1rþex with J∥ ¼ 2t2∥=U (Wu, 2008; Zhao and Liu, 2008).
We now consider the case of a general quantization axis and
arbitrary separation between neighboring sites on the lattice.
Similar to compass models in other arenas (in particular, in
orbital physics of the transition-metal oxides), a simple but
important feature of the underlying quintessential physics is
that the Ising quantization axis will change with different
orientations of the link connecting neighboring lattice sites.
For a lattice link of general spatial direction eθ ¼
ex cos θ þ ey sin θ, it is possible to rotate the px;y orbitals
by θ to restore the situation above (i.e., with the new p0

x; p0
y

states having large hopping amplitudes along the x0 and y0 (or
êθ and êθþπ=2) directions of the lattice. This change of basis
effects p0

x ¼ px cos θ þ py sin θ and p0
y ¼ py cos θ − px sin θ.

These two states p0
x;y are eigenstates of the operator

τ01 ¼ τ1 cos 2θ þ τ2 sin 2θ. The exchange interaction for gen-
eral orientation of a link between nearest-neighbor sites is thus
(Wu, 2008; Zhao and Liu, 2008)

Hexði; iþ eθÞ ¼ J∥½τi · e2θ�½τiþeθ · e2θ�: ð65Þ

As in other orbital systems, once the interaction along one link
[Eq. (65)] is known, the Hamiltonian for the entire lattice can
be pieced together by summing over all links in the lattice
(taking into account their different spatial orientations eθ).

4. Fermions in an optical lattice

In 3D, similar considerations recently led to the introduc-
tion of the Gell-Mann compass models of Chern and Wu
(2011) on the cubic and diamond [Eqs. (67) and (68)] and

more general lattices as we now review. As in the two-
dimensional case, each site of the lattice hosts two fermions
with one electron filling the inert s orbital. In three dimen-
sions, the remaining electron can be in any one of the three p
orbitals (px; py, or pz). Replicating the arguments presented
above for two dimensions (Chern and Wu, 2011), in the limit
U ≫ t∥ ≫ t⊥, Chern and Wu arrived at the following
Hamiltonian (Chern and Wu, 2011):

HCW ¼ −J
X
hiji

½Peij
i ð1 − P

eij
j Þ þ ð1 − P

eij
i ÞPeij

j �: ð66Þ

In Eq. (66), eij ¼ ðexij; eyij; ezijÞ is the bond direction [along
which t∥ dominates for the orbital jeiji ¼ exijjpxi þ eyijjpyi þ
ezijjpzi (over the transverse hopping t⊥)]. The projection
operator Peij ¼ jeijiheijj. The Hamiltonian of Eq. (66) embod-
ies the ability of an electron in state jeiji on site i to hop in a
direction parallel to eij to site j if that site is unoccupied in that
state (and vice versa). As in the standard Hubbard model, and
the two-dimensional Hubbard-type model discussed previ-
ously, this kinetic hopping leads, for large U, to an effective
exchange Hamiltonian in the presence of one relevant elec-
tronic degree of freedom per site.
When applied to the cubic and diamond lattices, this

Hamiltonian reduces to the form provided in Eqs. (67) and
(68) (Chern and Wu, 2011). Expressing, in the case of the
cubic lattice model, the projection operators along the three
crystalline directions (γ ¼ x; y; z) as Pγ ¼ ð1=3Þð1þ 2λ · eγÞ
and inserting this form into Eq. (66) leads, up to an innocuous
additive constant, to Eq. (67). Similarly, in the case of the
diamond lattice, the projection operators may be written as
P ¼ ð1=3Þð1þ ffiffiffi

3
p

λ · nγÞ which reduces Eq. (66) to Eq. (68).

5. Spin interactions on a lattice

Micheli, Brennen, and Zoller (2006) discussed how to
design general lattice spin systems using cold systems of polar
molecules. In cold gases of polar molecules, the spin degree of
freedom originates in the spin of an electron outside a closed
shell of a heteronuclear molecule in its rotational ground state.
The complete energy of the system is given by the sum of the
translational kinetic and potential energies representing the
confining potential of the laser system and two contributions
which are of paramount importance in this setup—the
individual rotational excitation energies of each molecule
[which contains the nuclear angular momentum energy BN2

(with N the nuclear orbital angular momentum) and spin-
rotation coupling (S · N)], and the dipole-dipole interactions
between two molecules with the dipoles induced by the
(nuclear) orbital angular momentum of each molecule. A
key point is that large dipole-dipole interactions may be
induced by a microwave field when the frequency is near
resonance with the transition N ¼ 0 → N ¼ 1. An effective
second-order Hamiltonian in the ground-state basis was
obtained (Micheli, Brennen, and Zoller, 2006) which when
averaged over the intermolecular relative distance between
members of a pair of molecules leads to an effective spin-only
interaction. The final effective Hamiltonian enables rather
general interactions. The effective spin interactions are due to
the dipolar interactions induced by the microwave field. The
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interactions depend on the orientation of intermolecular
separations relative to the microwave field direction. In this
setup spin-orientation-dependent compass-type interactions
appear very naturally.

6. Three-flavor compass models

One can define models in which there are several fermionic
species—each of which has “compass-type” hopping ampli-
tudes and may, e.g., propagate along only one direction or
more generally have anisotropic hopping amplitudes that
differ from one species to another. Different types of such
systems have been investigated (Chern and Wu, 2011). Here
the concept is illustrated by specifically considering the
incarnation of such a system recently introduced by Chern
andWu (2011). It leads to compass-type systems referred to as
Gell-Mann matrix compass models. Unlike the SU(2) isospins
that formed the focus of most of our discussion thus far, the
basic degrees of freedom in these systems are Gell-Mann
operators.
Specifically, on the cubic lattice, these take the form

(Chern and Wu, 2011)

HGell-Mann
3□ ¼ 8J

9

X
a¼x;y;z

X
hiji∥γ

ðλi · eγÞðλj · eγÞ: ð67Þ

In Eq. (67), λi are two component operator vectors,
λ ¼ ffiffiffi

3
p

=2ðλð3Þ; λð8ÞÞ, where the standard Gell-Mann matrices
λð3Þ and λð8Þ are diagonal and given by λð3Þ ¼ diagð1;−1; 0Þ
and λð8Þ ¼ diagð1; 1;−2Þ= ffiffiffi

3
p

. As in the earlier compass
model that we introduced, γ denotes the direction of the link
between the nearest-neighbor sites i and j. Similar to the 120°
model, the three unit vectors in Eq. (67) are equidistant on a
disk, ex;y ¼ ð� ffiffiffi

3
p

; 1Þ=2 and ez ¼ ð0;−1Þ.
On the diamond lattice (Chern and Wu, 2011),

HGell-Mann
3⋄ ¼ 2J

3

X3
γ¼0

X
hiji∥γ

ðλi · nγÞðλj · nγÞ: ð68Þ

In this case, in Eq. (68), the vector λ ¼ ðλð6Þ; λð4Þ; λð1ÞÞ. The
Gell-Mann matrices λð1Þ; λð4Þ, and λð6Þ are nondiagonal (and do
not commute among themselves). The index γ ¼ 0; 1; 2; 3
denotes the four nearest-neighbor directions on the diamond
lattice with correspondingly fnγg denoting the unit
vectors from a given lattice site to its nearest neighbors.
Specifically, when expressed in the Cartesian coordinate
system, n0 ¼ ðex þ ey þ ezÞ=

ffiffiffi
3

p
, n1 ¼ ðex − ey − ezÞ=

ffiffiffi
3

p
,

n2 ¼ ð−ex þ ey − ezÞ=
ffiffiffi
3

p
, and n3 ¼ ð−ex − ey þ ezÞ=

ffiffiffi
3

p
.

The motivation and properties of these models are reviewed
in Secs. V.B.4 and IX.J.

C. Chiral degrees of freedom in frustrated magnets

It is interesting to note that compass models can emerge by
focusing on the low-energy subspace of certain spin models.
In particular, compass models appear in an effective low-
energy description of quantum magnets that have a chiral
degree of freedom (Ferrero, Becca, and Mila, 2003; Budnik
and Auerbach, 2004; Capponi, Laeuchli, and Mambrini, 2004;

Mila et al., 2007). In these systems, the low-energy chiral
degrees of freedom play the role of the pseudospin with
nontrivial directional dependence of the coupling.
In orbital systems, the pseudospin tracks the different

degenerate orbital states belonging to, e.g., the eg and t2g
sectors in transition-metal systems. A similar situation appears
here. In magnets with basic building blocks (e.g., triangles or
others) having frustrated interactions, a multitude of degen-
erate ground states can appear. The chirality tracks the extra
degeneracy in these systems. In the quantum magnets that we
detail later, there are, within each building block, several
degenerate ground states that are labeled by different values of
the chirality. This degeneracy is lifted by interactions between
the different building blocks (e.g., interactions between differ-
ent triangular units in a kagome lattice) that rise to effective
interactions involving chiralities on different basic units
(triangles) which are precisely of the compass type. To date,
two variants of the kagome lattice antiferromagnet have been
investigated in their low-energy sector. These are the trimer-
ized kagome lattice antiferromagnet (Ferrero, Becca, and
Mila, 2003) and the uniform kagome antiferromagnet
(Budnik and Auerbach, 2004). Both of these systems were
investigated for a spin S ¼ 1=2 rendition of the original
antiferromagnet. One way to describe the kagome lattice,
which was made use of for both the trimerized and uniform
systems, is, indeed, as a triangular lattice of triangles;
see Fig. 17.
The kagome lattice has a very low coordination number.

This feature along with the frustrated nature of the antiferro-
magnetic interactions around individual triangular loops leads
the system to have a richness of low-energy states and an
extremely high degeneracy of classical ground states. Next we
elaborate on the effective low-energy description and conse-
quent origin of the compass-type interactions in both systems.

1. Nonuniform trimerized kagome lattice antiferromagnet

In systems such as the spin S ¼ 3=2 antiferromagnet
SrCr8−xGa4þxO19, the existence of triangular layers between
the kagome lattice planes generates two types of effective

FIG. 17. The trimerized kagome lattice. The solid and dashed
lines indicate the antiferromagnetic coupling J and J0, respec-
tively. The numbers 1, 2, and 3 indicate the site indexing inside
the elementary triangles which defines the gauge. From Ferrero,
Becca, and Mila, 2003.
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bond strengths inside the kagome lattice plane. The resulting
effective planar system (the trimerized kagome lattice anti-
ferromagnet) highlights the geometry of the kagome lattice as a
triangular lattice of triangles. Focusing on the upward-facing
triangles (see Fig. 17), we observe that they form a triangular
lattice. Ferrero, Becca, andMila (2003) andCapponi, Laeuchli,
and Mambrini (2004) considered a spin S ¼ 1=2 model in
which the nearest-neighbor couplings inside the triangles (J)
were far larger than the nearest-neighbor couplings between
sites on different triangles (J0). In the limit J0=J ≪ 1, the
trimerized kagome lattice antiferromagnet becomes a set of
decoupled triangular units (with an antiferromagnetic
exchange constant of J within each triangular unit). The idea
is then to employ perturbation theory in J0=J about this limit of
decoupled antiferromagnetic triangular units.
Now the problem of a three-spin S ¼ 1=2 on an antiferro-

magnetic ring (i.e., a basic triangular unit of the kagome
lattice) spans 23 ¼ 8 states. In the total spin basis it can be
decomposed into a Hilbert space sector that has a total spin
Stot ¼ 3=2 (a sector spanning four states) as well as two
sectors with total spin Stot ¼ 1=2 (with each of these latter
sectors, of course, spanning two states). Formally, that is, the
direct product basis can be decomposed in the total spin basis
as 1=2 ⊗ 1=2 ⊗ 1=2 ¼ 3=2⊕1=2⊕1=2. In the antiferromag-
netic problem, the tendency is to minimize the spin as much as
possible. Indeed an immediate calculation that we perform
now shows that at low energies we can confine our attention to
the four lower-lying Stot ¼ 1=2 ground states. Toward that
end, we explicitly note that for a three-site antiferromagnetic
problem on a triangle,

JðS1 · S2 þ S1 · S3 þ S2 · S3Þ ¼
J
2
S2tot −

9J
8
; ð69Þ

with Stot ¼ S1 þ S2 þ S3 and S2tot ¼ StotðStot þ 1Þ. Thus, given
the simple identity of Eq. (69), in the ground statesweminimize
the total spin Stot. For the three spins that we consider, the
minimal value of Stot is 1=2. Physically, these states in which
the total spin is smaller than the maximal one (i.e., Stot < 3=2)
are superpositions of states in which two of the three spins
combine to form a singlet. This is a particular instance of amore
general result that when the total spin is smaller than the
maximal possible in a plaquette (such as the three site triangles
here), all ground states are superpositions of states that, in any
plaquette, contain (at least) one singlet connecting two sites
(Nussinov, 2006). The four ground states that are spanned by
the two Stot ¼ 1=2 sectors can be parametrized in terms of an
eigenvalue of a spin and a chirality pseudospin each of size
S ¼ T ¼ 1=2. These are defined via (Mila, 1998; Capponi,
Laeuchli, and Mambrini, 2004)

σzjαRi ¼ αjαRi; σzjαLi ¼ αjαLi;
τzjαRi ¼ jαRi; τzjαLi ¼ −jαLi: ð70Þ

That is, α and R=L denote the eigenvalues of the two operators
Sz andTz.Written in terms of the original degrees of freedomof
the three spins on a triangular unit (jα1; α2; α3i), with, e.g., α1
corresponding to the “topmost” spin of the upward-facing
triangles, we have (Mila, 1998)

jαRi ¼ 1ffiffiffi
3

p ðj − αααi þ ωjα − ααi þ ω2jαα − αiÞ;

jαLi ¼ 1ffiffiffi
3

p ðj − αααi þ ω2jα − ααi þ ωjαα − αiÞ;

with ω≡ expð2πi=3Þ. When J0 ¼ 0, the system exhibits a
ground-state degeneracy exponential in size. That is, the
degeneracy is equal to 4N△ with N△ equal to the number of
triangular units. This degeneracy is lifted once J0 is no longer
zero. For small J0=J, we can work in the ground-state basis of
the J0 ¼ 0 problem and employ perturbation theory to write
down an effective Hamiltonian in that basis. The resulting
effective low-energy Hamiltonian is of a compass type (more
precisely, of a form akin to the Kugel-Khomskii Hamiltonian
augmenting the usual uniform spin exchange) that is defined on
a triangular lattice in which each site represents a triangle of the
original kagome lattice. Unlike the definition of eγ in the
compassmodels that we considered earlier, now eγ depends not
only on the orientation of the link connecting two sites, but it
differs from bond to bond depending on its physical location on
the lattice. A certain “gauge” for eγ is to be chosen. Such a
gauge is shown in Fig. 18. Explicitly, the effective low-energy
Hamiltonian reads (Ferrero, Becca, and Mila, 2003; Capponi,
Laeuchli, and Mambrini, 2004)

H ¼ J0

9

X
hiji

σi · σjð1 − 4eij · τiÞð1 − 4eij · τjÞ: ð71Þ

2. Uniform kagome antiferromagnet

Several research groups (Budnik and Auerbach, 2004;
Capponi, Laeuchli, and Mambrini, 2004) employed the
“contractor renormalization method” (CORE) to investigate
kagome antiferromagnets. This method has been invoked to
find an effective low-energy Hamiltonian for the uniform
kagome antiferromagnet wherein all exchange couplings are
the same. In a spirit similar to the earlier discussion, the
individual triangular units are examined and, to lowest order in
the CORE, an effective low-energy Hamiltonian is con-
structed that embodies interactions between different triangu-
lar units. A notable difference from the earlier approach is that
perturbation theory was not invoked. Rather the system is
solved on larger-size units and effective Hamiltonians involv-
ing the more primitive basic units are constructed. Budnik and
Auerbach (2004) developed a related, yet, by comparison to

FIG. 18. Triangular lattice on which the effective Hamiltonian is
defined. The unit vector for the bond is indicated by solid lines
(eij ¼ e1), dashed lines (eij ¼ e2), and dotted lines (eij ¼ e3).
From Ferrero, Becca, and Mila, 2003.
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the work of Ferrero, Becca, and Mila (2003) and Capponi,
Laeuchli, and Mambrini (2004), different definitions of the
spin and chiral degrees of freedom are employed. Rather
explicitly, with s an Sz eigenvalue of a spin operator S and ⇑
and ⇓ denoting states of eigenvalues �1=2 of a pseudospin
operator T (Budnik and Auerbach, 2004)

js;⇑i ¼ js↑↓i − js↓↑iffiffiffi
2

p ;

js;⇓i ¼ js↑↓i þ js↓↑iffiffiffi
6

p −
ffiffiffi
2

3

r
jð−sÞssi: ð72Þ

As in the perturbative treatment, the resulting effective
Hamiltonian (Budnik and Auerbach, 2004) contains effective
interactions similar to those of the Kugel-Khomskii model of
Secs. III.A and V.A.4. These are further augmented by direct
compass-type interactions (i.e., pseudospin interactions
uncoupled from spin), similar to those that arise from Jahn-
Teller interactions in orbital systems, as well as nontrivial
compass-type coupled pseudospin-spin interactions of the form

Si · SjðJ1Ti · eij þ J2Tj · ejiÞ; ð73Þ
with J1 and J2 being fixed multiples of the uniform exchange
constant J in the kagome lattice antiferromagnet. The direct
pseudospin interactions that couple the chiralities on neighbor-
ing triangles favor the formation of aligning singlets parallel to
one another along particular directions.

VI. SYMMETRIES OF COMPASS MODELS

A. Global, topological, and intermediate symmetries and
invariances

In terms of symmetries, compass systems are particularly
rich. In what follows, we discuss the invariances that these
systems exhibit, but first recall the classification of orders and
their relation to symmetry:

(i) Global symmetry. Inmany condensedmatter systems
(e.g., ferromagnets, liquids), there is an invariance of
the basic interactionswith respect to global symmetry
operations (e.g., continuous rotations in the case of
ferromagnets, uniform translations, and rotations in
liquids) that are to be simultaneously performed on
all of the constituents of the system. At sufficiently
low temperatures (or strong enough interactions),
such symmetries might be spontaneously broken.

(ii) Topological invariants and orders. Topological
orders have been the object of some fascination in
recent years (Wen, 2004). In the condensed matter
community, part of the activity in analyzing these
types of order is stimulated by the prospects of fault-
tolerant-free quantum computation. What lies at the
crux of topological order is the observation that even
if, in some cases, global symmetry breaking cannot
occur, systems may nevertheless still exhibit a robust
order of a nonlocal, topological type.
The most prominent examples of topological

order, long studied by high-energy theorists, are
afforded by gauge theories (Wegner, 1971; Kogut,

1979; Wen, 2004). Some of the current heavily
studied quintessentialmodels of topological quantum
order in condensed matter and quantum information
lattice theories [see, e.g., Kitaev (2003) and Wen
(2004)] share much in common with the early
pioneering lattice gauge theory concept along with
the explicit simplest lattice gauge model first intro-
duced by Wegner (1971).

Gauge theories display local gauge symmetries
and indeed, in pure gauge theories (theories that have
only gauge bosons yet no matter sources) the only
measurable quantities pertain to correlators defined
on loops, the so-called Wilson loops. Related prod-
ucts pertain to open contours in some cases when
matter sources are present (Fradkin and Shenker,
1979; Kogut, 1979; Nussinov, 2005).

(iii) Intermediate symmetry. The crucial point is that
many compass systems display symmetries which,
generally, lie midway between the above two ex-
tremes of global symmetries and local gauge sym-
metries. These symmetries are sometimes known as
“sliding” symmetries, and aside from compass
models are also present in numerous other systems.
These include, among many others, arrays of Lut-
tinger liquids (Emery et al., 2000; Vishwanath and
Carpentier, 2001), quantum Hall smectic phases
(Fradkin and Kivelson, 1999; MacDonald and
Fisher, 2000), DNA intercalated in lipid bilayers
(Golubovic and Golubovic, 1998; O’Hern and
Lubensky, 1998; O’Hern, Lubensky, and Toner,
1999), ring-exchange models of frustrated models
(Paramekanti, Balents, and Fisher, 2002), and
Kondo lattice systems (Venderbos et al., 2011).

To clarify the distinction between these different
symmetries, we can rephrase it in a formal way as it
applies to general systems (Batista and Nussinov,
2005; Nussinov, Ortiz, and Cobanera, 2012b). Con-
sider a theory with fields fϕig that is characterized
by a Hamiltonian H (or action S).

Definition: A d-dimensional gaugelike symmetry of a theory
is a group of symmetry transformations such that the minimal
nonempty set of fields fϕig changed by the group operations
occupies a d-dimensional subset (C) of the full D-dimensional
region on which the theory is defined. In the following we refer
to such symmetries as d-dimensional symmetries.
To exercise this notion it is useful to make contact with

known cases. Clearly local gauge symmetries correspond to
symmetries of dimension d ¼ 0. That is, gauge transforma-
tions can be applied locally at any point in space—a region of
dimension d ¼ 0. At the opposite extreme, e.g., in a nearest-
neighbor ferromagnet on a D-dimensional lattice, described
by the Heisenberg Hamiltonian H ¼ −J

P
hijiSi · Sj, the

system is invariant under a global rotation of all spins. For
the Heisenberg model, the volume influenced by the sym-
metry occupies aD-dimensional spatial region and thus in this
case, d ¼ D. Sections VI.D, VI.E, VI.F, VI.G, VI.H exem-
plify how symmetries of intermediate dimension 0 < d < D
arise in compass systems.
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In their simplest form, one which typically appears in
compass models, d-dimensional symmetries are of the formY

j∈P
gj; ð74Þ

where gj are group elements associated with a site j and P is a
d-dimensional spatial region. In many cases, depending on the
boundary conditions of the system, P corresponds to entire
open d-dimensional planes (as in 90° compass models which
we review in Sec. VI.D; see, e.g., Fig. 19) or closed contours
(when compass models are endowed with periodic boundary
conditions). Defect creation operators (those that restore
symmetries) and translations of defects are typically products
of local group elements that do not span such an entire region
P but rather a fragment of it (see, e.g., the open finite string in
Fig. 19 with domain wall boundaries), generally leading to
defects at the boundaries where the group element operations
are applied (Nussinov and Ortiz, 2009c).

B. Exact and emergent symmetries

A Hamiltonian H, and by extension the system it describes,
can have two principal kinds of symmetries: exact and
emergent ones. These are defined as follows.

(i) Exact symmetries. This refers to the existence
operators Ô that commute with the Hamiltonian,

½H; Ô� ¼ 0: ð75Þ
Such operators, indicated in this review by a caret,
reflect symmetries of the Hamiltonian.

(ii) Emergent symmetries. In many compass (and nu-
merous other) systems, there are operators ~O that do
not commute with the Hamiltonian,

½H; ~O� ≠ 0; ð76Þ
i.e., do not satisfy Eq. (75), and are therefore
indicated throughout this review by a tilde. Yet

these operators become symmetries when projected
to a particular sector—a particular subset of states on
which the Hamiltonian acts. That is,

½H;P ~OP� ¼ 0; ð77Þ
where P is the relevant projection operator of that
sector. In this case, if one defines P ~OP ¼ Ô, then Ô
is an exact symmetry satisfying Eq. (75).

The most prominent cases in condensed matter systems,
including compass models, in particular [yet also many others,
see, e.g., Batista and Trugman (2004), Nussinov et al. (2007),
Venderbos et al. (2011), and Normand and Nussinov (2014)]
relate to symmetries that appear in the ground-state sector
alone. In such instances, the symmetries are sometimes said to
emerge in the low-energy sector of the theory.
Although the formulation above is for quantum

Hamiltonians, the same can, of course, be said for classical
systems. There are numerous classical systems in which the
application of a particular operation on an initial configuration
will yield, in general, a new configuration with a differing
energy. However, when such an operation is performed on a
particular subset of configurations, such as the classical
ground states, it will lead to other configurations that have
precisely the same energy as the initial state. Similarly, certain
quantum systems exhibit such particular symmetries only in
their large-pseudospin (or classical) limit, where they may be
said to emerge. As reviewed in Secs. VI.D.3, VI.E, and VI.F,
particularly in certain compass-type models, symmetries may
emerge within a sector of the combined large-pseudospin and/
or low-energy (or temperature) limit.
One should note that the emergence of low-energy sym-

metries is notably different from the far more standard
situation of spontaneous symmetry breaking, wherein an
invariance of the Hamiltonian (or action) is spontaneously
broken in individual low-energy states (which are related to
one another by the symmetry operation at hand). In the
condensed matter arena, the canonical example is supplied by
rotationally symmetric ferromagnets in a spatial dimension
larger than 2, in which at sufficiently low temperature a finite
magnetization points along a certain direction, thus breaking
the rotational symmetry. Another canonical example is the
discrete (up ↔ down or) time-reversal symmetry which is
broken in Ising ferromagnets in dimensions large than 1.
Spontaneous symmetry breaking appears in systems that
exhibit long-range order of some sort such as the process
of crystallization (breaking translational and rotational sym-
metries), superconductors (local gauge invariance and an
Anderson-Higgs mechanism), or superfluid helium. Other
examples include the Higgs mechanism of particle physics,
chiral symmetry breaking in quantum chromodynamics,
nucleon pairing in nuclei, electroweak symmetry breaking
at low energies, and related mass generation.
In all of these textbook examples, the system is symmetric

at high energies and exhibits low-energy states that do not
have that symmetry. However, in low-energy emergent sym-
metries, the situation is reversed: the system may become
more symmetric in the low-energy sector. We discuss explicit
examples of exact and emergent symmetries in compass
models in Secs. VI.D–VI.H.

FIG. 19 (color online). (a) The 90° square lattice compass model.
The action of the d ¼ 1 symmetry operation of Eq. (84) when the
“plane” P is chosen to lie along the vertical axis. (b) A d ¼ 0
(local) gauge symmetry. Defects within a gauge theory cost a
finite amount of energy. Local symmetries such as the one
depicted above for an Ising lattice gauge theory cannot be
broken. (c) A defect in a semiclassical ground state of the
two-dimensional orbital compass model. Defects such as this do
not allow for a finite on-site magnetization. The energy penalty
for this defect is finite (there is only one bad bond—the dashed
line) whereas, precisely as in d ¼ 1 Ising systems, the entropy
associated with such defects is monotonically increasing with
system size. From Nussinov and Ortiz, 2009c.
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C. Consequences of intermediate symmetry

In this section, we review the consequences of intermediate
symmetries. In later sections, we will see how the intermediate
symmetries appear in various compass models. Aside from the
earlier results reviewed in Sec. VII, we further report on an
additional consequence concerning the link between these
symmetries and “flat bands” and illustrate how this relation
appears throughout the compass models investigated.

1. Degeneracy of spectrum

We now briefly discuss how the presence of a d-
dimensional intermediate symmetry, either classical or
quantum, implies an exponential degeneracy of the energy
spectrum that corresponds to the Hamiltonian. The application
of intermediate symmetries on disparate d-dimensional
planes leads to inequivalent states that all share the same
energy. If a symmetry transformation ~OP has its support on a
d-dimensional plane P, then one can define the composite
symmetry operators

~Ocomposite ¼ ~OP1
~OP2

� � � ~OPR
: ð78Þ

For a hypercubic lattice in D dimensions which is of size
L × L × L × � � � × L, the number of independent planes (R) in
Eq. (78) scales as R ¼ OðLd0 Þ, where

d0 ¼ D − d: ð79Þ

If each individual d-dimensional symmetry operation (exact
or emergent) UPi

leads to a degeneracy factor of m then the
composite operation of Eq. (78) can lead to a degeneracy
[of any state (for exact symmetries) or of the ground state
(for emergent symmetries)] whose logarithm is of magnitude

logmðdegeneracyÞ ¼ OðLD−dÞ: ð80Þ

That this is indeed the case is clearer for classical systems with
discrete symmetries than for quantum systems. Nevertheless,
in the thermodynamic limit and/or on lattices whose bounda-
ries are tilted the degeneracy factor of Eq. (80) associated with
the intermediate d-dimensional symmetries becomes exact
(Nussinov and Shtengel, 2015). On hypercubic lattices, such
as the square lattice of the planar 90° compass model
discussed in Sec. VI.D, whose boundaries are the same along
the d0 directions orthogonal to the planes P, the application of
the operators of Eq. (78) does not lead to independent states
for finite-size systems. However, in the thermodynamic limit,
the application of disparate operators of the form of Eq. (78)
on a given initial state may lead to orthogonal states.

2. Dimensional reduction

The existence of intermediate symmetries has important
consequences: it implies a dimensional reduction. The corre-
sponding dimensional reduction is only with respect to
expectation values of local quantities: the free energies of
these systems and the transitions that they exhibit are gen-
erally those of systems in high dimensions (Batista and
Nussinov, 2005; Nussinov, Ortiz, and Cobanera, 2012b).

a. Theorem on dimensional reduction

More precisely, the expectation value of any such quantity
hfi in the original system (of dimension D) is bounded from
above by the expectation value of the same quantity evaluated
on a d-dimensional region:

jhfij ≤ jhfijHd
: ð81Þ

The expectation value hfi refers to that of the original system
(or lattice) that resides in D spatial dimensions. The
Hamiltonian Hd on the right-hand side is defined on a
d-dimensional subregion of the full lattice (system). The
dimensionality d ≤ D. The Hamiltonian Hd preserves the
range of the interactions of the original systems. It is formed
by pulling out of the full Hamiltonian on the complete
(D-dimensional) lattice, the parts of the Hamiltonian that
appear within the d-dimensional subregion (C) on which the
symmetry operates. Fields (spins) external to C act as non-
symmetry-breaking external fields in Hd. The bound of
Eq. (81) becomes most powerful for quantities that are not
symmetry invariant as then the expectation values hfiHd

need
to vanish for low spatial dimensions d (as no spontaneous
symmetry breaking can occur). This, together with Eq. (81),
then implies that the expectation value of hfi on the full
D-dimensional spatial lattice must vanish. By “noninvariant”
we mean that fðϕiÞ vanishes when summed over all argu-
ments related to each other by a d-dimensional symmetry
operation,

P
kf½gikðϕiÞ� ¼ 0. For continuous symmetries,

noninvariance explicitly translates into an integral over the
group elements

R
f½giðϕiÞ�dg ¼ 0.

We now summarize for completeness general corollaries of
such a symmetry-based analysis for general systems.

b. Corollaries

By choosing f to be the order parameter or a two-particle
correlator, one arrives at the following general corollaries
(Batista and Nussinov, 2005; Nussinov, Batista, and Fradkin,
2006; Nussinov, Ortiz, and Cobanera, 2012b):
Corollary I: Any local quantity that is not invariant under

local symmetries (d ¼ 0) or symmetries that act on one-
dimensional regions (d ¼ 1) has a vanishing expectation value
hfiHd

at any finite temperature. This follows as neither zero-
nor one-dimensional systems can exhibit symmetry breaking:
in one- and two-dimensional systems, the expectation value
of any local quantities not invariant under global symmetries
hfi ¼ 0.
Physically, entropy overwhelms energetic penalties and

forbids symmetry breaking. Just as in zero- and one-
dimensional systems, much more entropy is gained by
introducing defects (e.g., domain walls in discrete systems),
and the same energy-entropy calculus is replicated when these
symmetries are embedded in higher dimensions. An example
with d ¼ 1 domain walls in a two-dimensional systems is
afforded by the planar 90° compass model (see Fig. 19); even
though the planar compass model is two dimensional, the
energy cost of these domain walls is identical to that in a d ¼ 1

system. The particular case of local (d ¼ 0) symmetry is that
of Elitzur’s theorem (Elitzur, 1975), so well known in gauge
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theories. We see it more generally as a consequence of
dimensional reduction.
A discussion of how, by virtue of this consequence, such

symmetries may protect and lead to topological quantum
orders in systems at both finite and zero temperature is given
by Nussinov and Ortiz (2009a, 2009c).
Corollary II: One can push the consequences further by

recalling that no symmetry breaking occurs for continuous
symmetries in two spatial dimensions. Here again, free-energy
penalties are not sufficiently strong to induce order. When
embedding continuous two-dimensional symmetries in higher
dimensions, the energy-entropy balance is the same and the
same result is attained: hfi ¼ 0 at all finite temperatures for
any quantity f that is not invariant under continuous d ≤ 2
symmetries.
Further noting that order does not exist in continuous two-

dimensional systems at zero temperature in the presence of a
gap between the ground and the next excited state, one
similarly finds that for a (d ≤ 2)-dimensional continuous
symmetry the expectation value of any local quantity not
invariant under this symmetry strictly vanishes at zero temper-
ature. Although local order cannot appear, multiparticle
(including topological) order can exist. In standard gauge
(d ¼ 0) theories, the product of gauge degrees of freedom
along a closed loop (the Wilson loop) can attain a nonzero
value as it may be invariant under all d ¼ 0 symmetries. In
more general theories with higher d-dimensional symmetries,
similar considerations may lead to loop (or “brane”)-type
correlators that involve multiple fields and are invariant under
all low-dimensional symmetries. Precisely such nonlocal
correlation functions appear in Kitaev’s honeycomb model
and many other systems with topological orders (Chen and
Nussinov, 2008; Perez-Garcia et al., 2008; Nussinov and
Ortiz, 2009a, 2009c).
In Sec. VIII we review how, when it is indeed allowed by

symmetry, symmetry breaking in the highly degenerate
compass models often transpires via a fluctuation-driven
mechanism (“order by disorder”) (Villain, 1972; Shender,
1982; Henley, 1989). In this mechanism, entropic contribu-
tions to the free energy play a key role.
Corollary III: Not only can we make statements about

the absence of symmetry breaking, we can also adduce
fractionalization of non-symmetry-invariant quantities in
high-dimensional systems. That occurs if no (quasiparticle-
type) resonant terms appear in the lower-dimensional spectral
functions (Nussinov, Batista, and Fradkin, 2006).
This corollary allows for fractionalization in quantum

systems, where d ¼ 1, 2. It enables symmetry-invariant quasi-
particle excitations to coexist with non-symmetry-invariant
fractionalized excitations. Fractionalized excitations may
propagate in (D − d)-dimensional regions. Examples are
afforded by several frustrated spin models where spinons
may drift along lines on the square lattice (Batista and
Trugman, 2004) and in D-dimensional regions on the pyro-
chlore lattice (Nussinov et al., 2007; Normand and
Nussinov (2014).
In what follows, we explicitly enumerate the symmetries

that appear in various compass models. The physical origin of
dimensional reduction in these systems can be seen by
examining intermediate symmetry-restoring defects.

D. Symmetries of the 90° compass model

We now classify symmetries of the 90° compass model in
various spatial dimensions, reviewing both quantum and
classical versions. To highlight some aspects of the sym-
metries of this system, it is profitable to discuss the general
anisotropic compass model, as given forD ¼ 2 in Eq. (1) with
general couplings Jx and Jy, and in general spatial dimension
D given by Eq. (4), without field:

H90°
D□

¼ −
X
r;γ

Jγτ
γ
rτ

γ
rþeγ : ð82Þ

The equivalent classical Hamiltonian on a D-dimensional
hypercubic lattice is

H90°;class
D□

¼ −
X
r;γ

JγT
γ
rT

γ
rþeγ : ð83Þ

In the quantum systems, Tγ are generators of the representa-
tions of SU(2) of size (2T þ 1). For a pseudospin-1=2 system,
Tγ ¼ τγ=2. In the classical arena, Tγ are the Cartesian
components of the normalized vector T, as discussed in
Sec. III.B. These classical and quantum Hamiltonian systems
exhibit both exact and emergent symmetries.

1. Exact discrete intermediate symmetries

Exact symmetries of both the square lattice and cubic lattice
90° compass models in any pseudospin representation are
given by Nussinov et al. (2004), Batista and Nussinov (2005),
Biskup, Chayes, and Nussinov (2005), Dorier, Becca, and
Mila (2005), Doucot et al. (2005), and Nussinov and Fradkin
(2005)

ÔðγÞ ¼
Y
r∈Pγ

eiπT
γ
r ; ð84Þ

where, as in Eq. (87), Pγ is any line (in the case of the two-
dimensional model) or plane (in the case of the cubic lattice
model) which is orthogonal to the external eγ axis of the
lattice. A schematic for the (D ¼ 2)-dimensional case is
provided in Fig. 19(a).
It should be noted that despite appearances, Eq. (84) is,

when written longhand, quite different from the emergent
symmetries of the 120° model in Eq. (87) that is discussed in
Sec. VI.D.2. In that case T is a two-component vector that is
projected along three different equidistant nonorthogonal
planar directions. That is, in Eq. (87), the unit vectors eγ in
the argument of the exponential correspond, with γ ¼ 1, 2,
and 3, to the equidistant nonorthogonal internal pseudospin
directions a, b, and c that lie in the two-dimensional plane
defined of the 120° model. By contrast, in Eq. (84), T is a
D ¼ 2 (square lattice model) or D ¼ 3 (cubic lattice) vector
and Tγ are projections along the orthogonal directions. The
two operators appearing in Eqs. (84) and (87) differ from one
another: T · b ≠ T2, etc. In Fig. 19, we provide a classical
schematic of the action of such an operator when it acts on a
uniform state. As in the case of the 120° model on the cubic
lattice, these operators lead to stratified states.
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The exact nature of the symmetries of Eq. (84) is readily
seen: the operators of Eq. (84) commute with the general
Hamiltonian of Eq. (83), ½OðγÞ; H� ¼ 0. Thus, rotations of
individual planes about an orthogonal axis leave the system
invariant. Written generally, for a 90° compass model in D
dimensions, the planes Pγ are objects of spatial dimensionality
d ¼ D − 1. In the (D ¼ 3)-dimensional system, the sym-
metries of Eq. (84) are of dimension d ¼ 2 as the planes
Pγ are two-dimensional objects. On the square lattice, the
symmetries are of dimension d ¼ 1 as Pγ are lines. These
symmetries hold for both the quantum system with arbitrary
size pseudospin and the classical system of Eq. (20) in a high
dimension D. A consequence of these symmetries is an
exponential-in-LD−1 degeneracy of each eigenstate of the
Hamiltonian (including but not limited to ground states) in
systems with “tilted” boundary conditions that emulate the
thermodynamic limit (Nussinov and Shtengel, 2015). In
pseudospin-1=2realizations of this system [Eq. (82)], on an
L × L square lattice, a 2L degeneracy was numerically
adduced for anisotropic systems (Jx ≠ Jy) in the thermody-
namic limit (Dorier, Becca, and Mila, 2005). Correlation
functions involving the symmetry operators were examined by
Lin and Scarola (2013).
Here is an important point we want to reiterate—that of the

physical origin of the dimensional reduction in this system. In
a (D ¼ 2)-dimensional 90° compass model system, the energy
cost for creating defects (domain walls) is identical to that in a
(d ¼ 1)-dimensional system (see Fig. 19). With the aid of the
bound of Eq. (81), we then see the finite-temperature expect-
ation value hσzi i ¼ 0within the D ¼ 2 orbital compass model.
The physical mechanism behind the loss of the on-site order of
hσzi i is the proliferation of solitons; see Fig. 19. Just as in
(d ¼ 1)-dimensional systems, domain walls (solitons) cost
only a finite amount of energy while their entropy increases
with system size. A schematic is provided in Fig. 19(c). The
Hamiltonian Hd¼1 defined on the vertical chain of Fig. 19
where these operations appear is none other than a one-
dimensional Ising Hamiltonian augmented by transverse fields
generated by spins outside the vertical chain. Any fixed values
of the spins outside the (d ¼ 1)-dimensional chain lead to
transverse fields that act on the chain. Those in the direction of
the Ising exchange interactions between neighboring spins
along the chain lead in this case to the pertinent Hd¼1 in
Eq. (81): that of a transverse-field Isingmodel Hamiltonian. By
virtue of their location outside the region where the symmetry
of Eq. (84) operates, the spins σxi∉Px

do not break the discrete
d ¼ 1 symmetry associated with the plane Px. These defects
do not enable a finite-temperature symmetry breaking.

2. Exact discrete global symmetries

When the couplings are not completely anisotropic (e.g.,
Jx ¼ Jy ≠ Jz or Jx ¼ Jy ¼ Jz on the cubic lattice or Jx ¼ Jy
on the square lattice), there are additional discrete symmetries
augmenting the d ¼ D − 1 Ising symmetries detailed above.
For instance, when Jx ¼ Jy ≠ Jz a global discrete rotation of
all pseudospins on the lattice by an angle of 90° about the Tz

direction leaves the Hamiltonian of Eq. (83) invariant. Such a
discrete rotation essentially permutes the x- and y-oriented
bonds, which are all of equal weight in the isotropic case when

they are summed over the entire square lattice. The same, of
course, also applies for the square lattice model when Jx ¼ Jy.
Yet another possible representation of essentially the same

symmetry that is pertinent to the exchange of couplings in the
compass model is that of a uniform global rotation by 180°
about the ð1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p Þ direction of the pseudospins. Such a
representation occurs in Eq. (105). Similarly, when Jx ¼
Jy ¼ Jz, a uniform global rotation by 120° of all pseudospins
about the internal ð1= ffiffiffi

3
p

; 1=
ffiffiffi
3

p
; 1=

ffiffiffi
3

p Þ pseudospin direction
is also a discrete symmetry; this latter symmetry is of the Z3

type—if performed 3 times in a row, it gives back the identity
operation.
These additional discrete symmetries endow the system

with a higher degeneracy. For isotropic systems (Jx ¼ Jy),
numerically a 2Lþ1-fold degeneracy is seen in the pseudospin
T ¼ 1=2 system (Dorier, Becca, and Mila, 2005); this addi-
tional doubling of the degeneracy is related to a global Ising
operation of a rotation by 180° about a chosen pseudospin
direction that leaves the system invariant. These additional
symmetries are global symmetries and thus of a dimension
d ¼ D which is higher than that of the discrete lower-
dimensional symmetries that are present in both the aniso-
tropic and isotropic systems (d ¼ D − 1). As a result, the
isotropic (D ¼ 2)-dimensional 90° compass model may
exhibit a finite-temperature breaking of a discrete global
symmetry associated with such a discrete rotation. By con-
trast, the d ¼ 1 symmetries of the two-dimensional 90°
compass model cannot be broken, as discussed in Sec. VI.C.2.
We note that in the classical anisotropic rendition of this

system the degeneracy is exactly the same, i.e., 2L, aside from
continuous emergent symmetries that are discussed in the next
section. The classical isotropic case is somewhat richer. There,
each uniform pseudospin state (each such state is a ground
state as is elaborated in Sec. VII) has an additional degeneracy
factor of 22L associated with the 2L independent classical
d ¼ 1 Ising symmetries.

3. Emergent intermediate discrete symmetries: Cubic 90° model

We now turn to intermediate symmetries that appear in the
large-pseudospin (or classical) limit of the 90° compass model
in three dimensions. In its classical limit, the classical 90°
compass model on the cubic lattice has d ¼ 1 inversion
(or reflection) symmetries along lines parallel to each of the
three Cartesian axes xa. Along these lines, we can set τai → −τai
and not touch the other components. This corresponds to, e.g., a
reflection in the internal x-y pseudospin plane when we invert
τz and do not alter the x or y components.
We explicitly note that this transformation is not canonical

and does not satisfy the commutation relation and is thus
disallowed quantum mechanically; indeed, this appears only
as an emergent symmetry in the classical limit of large
pseudospin. Instead in the 90° compass model on the cubic
lattice, quantum mechanically we have the d ¼ 2 symmetries
that we wrote earlier (which, of course, trivially also hold for
the classical system). Thus, the quantum system is less
symmetric than its classical counterpart.
By contrast to the cubic lattice case, for the square lattice

90° compass model, the intermediate d ¼ 1 symmetries of
Eq. (84) are exact quantum (as well as classical) symmetries.
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4. Emergent continuous global symmetries

In addition to its exact symmetries, the 90° model also
exhibits emergent symmetries in its isotropic version. As
mentioned earlier, globally uniform pseudovector configura-
tions are ground states of any classical isotropic ferromagnetic
compass model. Thus, following the considerations presented
for the 120° compass model, any global rotation of all
pseudospins is an emergent symmetry of the 90° models.
In theD ¼ 2 system, this corresponds to a global U(1) rotation
of all angles of the planar pseudospins. In the D ¼ 3 cubic
lattice system, any SO(3) rotation of the three-dimensional
pseudospins is an emergent symmetry. That a rotation does
not change the energy of any uniform configuration is clear in
the 90° model. Imagine that all pseudospins in the planar 90°
model are oriented at an angle θ relative to the Tx axis. In such
a case, the energy associated with the horizontal bonds
Tx
rTx

rþex will vary as cos2 θ, whereas that associated with
the vertical bonds varies as sin2 θ. As Jx ¼ Jy ¼ J in the
isotropic system and as sin2θ þ cos2θ ¼ 1, any uniform
pseudospin state will have the same energy (which is, in fact,
the ground-state energy as discussed in Sec. VII.A) and global
rotations will not alter this energy.

E. Emergent symmetries: Classical cubic 120° compass model

The 120° compass model on a 3D cubic lattice, Eqs. (9) and
(10), exhibits nontrivial symmetries which emerge in the
ground-state sector in the large-pseudospin T (classical) limit
(Lieb, 1973; Simon, 1980) (see also Sec. III.B). In the
classification of Sec. VI.B, all of the symmetries which we
next detail correspond to emergent symmetries. Before
explicitly describing these symmetries, we briefly recount
how to define this classical system from the quantum one,
which we alluded to in Sec. V.A.6.
The classical 120° compass model may, following the

discussion in Sec. III.B, be specified as follows. At each site
we assign a unit length two-component spin denoted by T. Let
a, b, and c be evenly spaced vectors on the unit circle that are
separated from one another by 120°. To conform with the
operators of Eq. (9), one sets c to point at 0° and a and b to be
at �120°, respectively. Next, one defines TðcÞ ¼ T · c, and
similarly for Tða;bÞ. These projections onto the above unit
vectors Tða;b;cÞ are the classical counterpart of the pseudospin
1=2 operators of Eq. (9). The classical 120° compass model
Hamiltonian is then given by

H120;class
3□ ¼ −

X
i

ðTðaÞ
r TðaÞ

rþex þ TðbÞ
r TðbÞ

rþey þ TðcÞ
r TðcÞ

rþezÞ; ð85Þ

where the interaction strength J is set to unity. The ferro-
magnetic and antiferromagnetic models are related by sym-
metry, so that for convenience the interaction strength is
chosen as negative, so that low-temperature ordering patterns
of pseudospins tend to be uniform. This model exhibits two
types of emergent symmetries in its ground-state sector.

1. Emergent continuous global symmetries

All uniform pseudospin configurations, i.e., those with
constant pseudospin Tr ¼ T or uniform angular orientation

of the classical two-component pseudospins in the XY plane,
are ground states of H120;class

3□ in Eq. (85) (Nussinov et al.,
2004). Therefore any configuration for which

Tγ
r ¼ Tγ

rþeγ ð86Þ

on all sites i is also a ground-state configuration. Thus, when
the system is restricted to this subspace of uniform configu-
rations, any uniform rotation of all of the pseudospin angles
θr → θr þ δθ does not change the energy. This global rotation
operation [formally a U(1) symmetry] emerges as a symmetry
when the system is restricted to these ground states. It can be
readily verified that this emergent symmetry is not an exact
symmetry of the system. When a global rotation is applied to
any initial pseudospin configuration that is not uniform, it will
generally lead to a new state that has energy from that of the
initial configuration.
Formally therefore the classical cubic lattice 120° compass

model exhibits a global (i.e., a dimension d ¼ D ¼ 3)
emergent U(1) symmetry within the ground-state sector. It
turns out that on top of this there are additional nonuniform
stratified classical ground states for which this global rotation
is not a symmetry, which is discussed next.

2. Emergent discrete d ¼ 2 symmetries

The existence of a global rotational symmetry, as discussed
in the previous section, is pervasive in physical systems,
although usually these are exact symmetries. Much more
specific to the 120° compass and related models is the
existence of numerous low-dimensional (d < D) symmetries.
These symmetries relate to ground states that will be stabilized
at finite (yet low) temperatures. An explanation of what these
symmetries are is given pictorially. In the top left-hand corner
of Fig. 20 a general uniform configuration is shown—a
ground state of the classical system. Starting with any such
state, it is possible to reflect pseudospins in individual planes
to generate myriad other configurations which are also ground
states of the classical 120° compass model. For instance, one
may take any plane that is orthogonal to the ex direction and
reflect all of the pseudospins in that plane about the a
direction. Under such an operation, TðaÞ

r is unchanged but
the pseudospin component along the direction that is orthogo-
nal to a flips its sign. This will lead to a state that has exactly
the same energy as that of the uniform state. Similarly, one
may reflect all pseudospins in planes orthogonal to the ey or ez

FIG. 20 (color online). The symmetries of Eq. (87) applied to a
uniform ground state (top left).
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directions by b or c, respectively. All three cases are depicted
in Fig. 20.
These reflections are Ising symmetry operations or, for-

mally, Z2 symmetries. Any reflection performed twice will
lead to the original state and is thus an Ising-type operation.
Going beyond the 2 × 2 × 2 cube shown in Fig. 20, one can
consider a cubic lattice of dimension L × L × L with L ≫ 1.
On such a lattice, these reflections are emergent (d ¼ 2) ½Z2�3L
gaugelike symmetry operators (Nussinov et al., 2004; Batista
and Nussinov, 2005; Biskup, Chayes, and Nussinov, 2005).
The power of (3L) relates to the number of planes [(d ¼ 2)-
dimensional objects] in which such reflections can be applied:
there are L such planes which are orthogonal to one of the
three cubic lattice directions.
Formally, these operations, rotations of all pseudospins by

an angle of 180° about the internal Tγ axis, can be written as
quantum operators in the limit of large pseudospin size (where
they correspond to classical rotations). These operations are

~OðγÞ ¼
Y
r∈Pγ

eiπTr·eγ ; ð87Þ

where Pγ is any plane orthogonal to the corresponding cubic
eγ axis. It is important to reiterate that these are not bona
fide symmetries over the entire spectrum—these are not exact
symmetries of the Hamiltonian. That is, these operations are
symmetries when restricted to classical ground states and
emerge in those combined limits, i.e., the classical limits of
(i) high pseudospin and (ii) zero temperature.
It is well known that two-dimensional Ising symmetries can

be broken at finite temperatures. Thus, the symmetries of
Eq. (87) of the classical 120° model can be broken. And
indeed they are, as discussed in Sec. VIII.B.1.

F. Emergent symmetries: Classical honeycomb 120° compass
model

We now review the ground states and associated low-energy
emergent symmetries of the classical (or large-pseudospin
limit of the) 120° model on the honeycomb lattice (Nasu et al.,
2008; Wu, 2008; Zhao and Liu, 2008). This model is given by
Eq. (12). In what follows, we invoke a decomposition of the
honeycomb lattice into two interpenetrating triangular sub-
lattices, referred to as sublattices A and B. Two neighboring
sites of the honeycomb lattices thus belong to different
sublattices.
The 120° model on the honeycomb lattice shares a number

of similarities with the 120° model on the cubic lattice
discussed above and the key elements of the discussion are
the same. Nevertheless, in some respects, this system is even
richer, largely as a result of the larger number of emergent
symmetries in the ground-state sector.
One may generally seek to find all of the ground states of

this system using Eq. (86)—a condition for finding all ground
states of the classical ferromagnetic compass model. It is
instructive, within the framework of symmetries, to compare
the consequences of this constraint as they apply to both the
cubic lattice 120° model, whose symmetries we enumerated
above, and the honeycomb lattice 120° model.
The coordination number of the honeycomb lattice (z ¼ 3)

is far smaller than that of the cubic lattice (z ¼ 6). Thus, the

number of independent conditions of the type of Eq. (86) will
be halved. As a result of this simple counting argument, we
see that the ground-state manifold might be far richer. This
indeed turns out to be the case and emergent local (d ¼ 0)
symmetries appear.
We first review the ground states of this classical system

and stratification procedures that are more similar in nature to
those of the 120° model on the cubic lattice (i.e., involve the
application of emergent intermediate and global symmetries
on a uniform ground state) and then review additional local
symmetry operations that appear in this case.

1. Ground states and emergent intermediate symmetries

In the classical limit, the pseudospins in Eq. (12) become
two-component (XY) variables which may be parametrized by
(with some abuse of notation) a continuous angular variable θr
at the different lattice sites r. Here fθrg denote the orientation
of the classical pseudovectors Tr [the large-pseudospin limit
variant of τr in Eq. (12)].
As in the cubic lattice case reviewed in Sec. VI.E all

uniform states (Tr ¼ T) are ground states and these may be
stratified by the application of low-dimensional emergent
symmetry operations. The d ¼ 2 emergent symmetries of
Eq. (87) and Fig. 20 have their counterparts in d ¼ 1
symmetries in the 120° model on the honeycomb lattice
(Nasu et al., 2008). As shown in Fig. 21 it is possible,
starting from a uniform state, to generate other ground states
by varying θr → θr þ δθr. In this case, by considering (the
d ¼ 1) zigzag chains along one of the three crystalline
directions (Nasu et al., 2008), it is possible to generate other
ground states by a reflection of all of the spins in these chains
as in Fig. 21.

2. Emergent local symmetries

Figure 22 shows particular ground states found by Wu
(2008) wherein the pseudospins Tr are oriented in the plane, at
angles of ð�30°;�90°;�150°Þ such that they are tangential to
the basic hexagonal plaquettes. In Fig. 22, the explicitly
shown clockwise (or counterclockwise) chirality [correspond-
ingly, Ch ¼ 1 (or Ch ¼ −1)] for each hexagon h relates to the
tangential direction of the pseudospins which can be flipped
with no energy cost. As in our earlier considerations, chiral
degrees of freedom adhere to emergent discrete Ising-like
gauge symmetries (or d ¼ 0 symmetries in the classification
of Sec. VI.A). These particular ground states lie within a larger

FIG. 21 (color online). Left: Pseudospin configuration for
θ� ¼ 0. Right: Configuration obtained by �δθ rotations of
pseudospins in each zigzag chain. From Nasu et al., 2008.
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space of classical states that are generated from the chiral
tangential patterns as shown in Fig. 22. Generally, a larger set
of ground states is generated by an application of a continuous
d ¼ 2 symmetry on the ground states of Fig. 22. This set of
classical configurations may be obtained as follows: Starting
with any tangential state of the pseudospins as in Fig. 22 about
the various hexagons, one can apply a global staggered [U(1)]
rotation of all of the pseudospins in the plane such that all of
the spins that lie on sublattice A are rotated by an angle of δθ
whereas all of the spins lying on sublattice B are rotated by an
angle of ð−δθÞ (Wu, 2008).

G. Emergent symmetries of the triangular 120° compass model

In its ground-state sector, the classical 120° model of
Eq. (14) exhibits (d ¼ 1)-dimensional emergent symmetries.
Similar to those discussed previously, those relate to reflec-
tions of the pseudospins (Tγ

r → −Tγ
r) for all sites r that lie

along a plane P (a one-dimensional line in this case) that is
parallel to the direction eγ . This operation leads to stratified
states once again. A schematic is shown in Fig. 23.

H. Three-component Kugel-Khomskii model

In Secs. III.A and V.A.4, we discussed the KK model
(Kugel and Khomskii, 1972, 1973, 1982). In particular, we
reviewed the underlying physics of this Hamiltonian in

Sec. V.A.4. Its most prominent version is that for two-
component pseudospins, wherein the KK Hamiltonian
describes the two eg levels (represented by two-component
pseudospins). We now return to the three-component variant
of this model that is more pertinent to three-t2g-orbital states
We label these as follows (Khaliullin and Maekawa, 2000;
Khaliullin, Horsch, and Oleś, 2001; Harris et al., 2003):

jai≡ jyzi; jbi≡ jxzi; jci≡ jxyi: ð88Þ

To make the discussion self-contained, we write anew the KK
Hamiltonian in its general form and focus on its three-
component pseudospin version. The KK Hamiltonian is
given by

H ¼
X
hiji∥γ

HðγÞ
orbðijÞ

�
Si · Sj þ

1

4

�
: ð89Þ

Physically, Si is the spin of the electron at site i and HðγÞ
orbðijÞ

are operators that act on the orbital degrees of freedom of sites
i and j. For TM atoms arranged in a cubic lattice, wherein
each TM atom is surrounded by an octahedral cage of
oxygens, these operators are given by

HðγÞ
orbðijÞ ¼ Jð4π̂γi π̂γj − 2π̂γi − 2π̂γj þ 1Þ; ð90Þ

where π̂γi are pseudospin components, and γ ¼ a, b, and c is
the direction of the bond hiji. In the three-component
realization that we discuss now,

π̂γi ¼ 1
2
τγi : ð91Þ

The KK model in t2g systems exhibits a continuous exact
lower-dimensional symmetry as we now review. In the t2g
compounds, hopping is disallowed via intermediate oxygen p
orbitals between any two electronic states of orbital flavor jγi
(γ ¼ a, b, or c) along the γ axis of the cubic lattice (see
Fig. 24). As a consequence, as noted by Harris et al. (2003), a
uniform rotation of all spins, whose electronic orbital state is
jγi, in any plane (P) orthogonal to the γ axis c†iγσ ¼P

ηU
ðPÞ
σ;ηd

†
iγη with σ,η the spin directions, leaves Eq. (89)

invariant. The total spin of electrons of orbital flavor jγi in any
plane orthogonal to the cubic γ axis is conserved. Here we
have the d ¼ 2 SU(2) symmetries

ÔP;γ ≡ ½expðiSγP · θγPÞ=ℏ�; ½H; ÔP;γ� ¼ 0; ð92Þ

with SγP ¼Pi∈PS
γ
i being the sum of all the spins Sγi in the

orbital state γ in any plane P orthogonal to the direction γ
(see Fig. 24).
We now, once again, turn to the physical origin of dimen-

sional reduction in this system with continuous d ¼ 2 SU(2)
symmetries. The bound of Eq. (81) prohibits, at finite temper-
atures, local on-site order as provided by Eq. (92) for the KK
model. Physically, this is due to the proliferation and del-
eterious effect of (d ¼ 2)-dimensional defects (i.e., spin
waves) in SU(2) continuous pseudospin systems. The energy
or entropy balance associated with these defects in the

FIG. 22 (color online). The fully packed oriented loop configu-
rations in which τ vectors lie in directions of ϕ ¼ �30°;�90°,
and�150°. (a) The closest-packed loop configuration with all the
loops in the same chirality. (b) The p-orbital configuration for one
closed loop in (a). The azimuthal angles of the p orbitals are 45°,
105°, 165°, 225°, 285°, and 345°. From Wu, 2008.

FIG. 23. The triangular lattice formed in the [111] plane. Shown
is a disordered mean-field ground state, in which the isospins
form lines parallel to the unit vector exy, such that hTz

ji is the same
on all lattice sites, while the sign of hTx

ji varies arbitrarily from
line to line. From Mostovoy and Khomskii, 2002.
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three-dimensional KK system is identical to that in a two-
dimensional three-component Heisenberg spin system.

VII. INTERMEDIATE SYMMETRIES AND FLAT BANDS IN
CLASSICAL SPIN-WAVE DISPERSION

In this section, we introduce a new result that is of utility in
understanding a number of aspects of the order-by-disorder
physics and the role of the large degeneracy of these systems.
It pertains to a simple k-space classical spin-wave-type
analysis and sheds light on the relation between spectral
structure, degeneracy, and intermediate symmetries in general
classical ferromagnetic compass systems in D-spatial dimen-
sions. In a nutshell, one asks what the consequences are of the
existence of real space stratified ground states found in
Sec. VIII (schematically illustrated in Figs. 20–24) on the
momentum space spectrum of pseudospin excitations.
Application of the low d-dimensional symmetries (either

exact or emergent) that lead to stratified states in real space, on
the canonical uniform (k ¼ 0) ferromagnetic state, leads, in
momentum space, to a redistribution of weights in (D − d)-
dimensional regions. As all of these states share the same
energy, one finds that the existence of d-dimensional sym-
metries ensures that there are (D − d)-dimensional volumes
which are flat and share the same mode energy as the k ¼ 0
point. Although d-dimensional symmetries imply flat bands in
classical systems, the converse is not true—in classical
systems with a finite number of pseudospin components, flat
bands generally do not imply the existence of d-dimensional
symmetries.
However, in the large-n limit, (D − d)-dimensional flat

bands indeed imply the existence of d-dimensional real space

symmetries. Large-n analysis of these systems is identical to
that of d-dimensional systems (i.e., in all directions orthogonal
to the flat zero-energy regions in k space). That is, in the large-
n system, an effective dimensional reduction occurs (from D
dimensions to d dimensions). Thus, for systems with, e.g.,
d ¼ 2 symmetries (such as the cubic lattice 120° compass
model), large-n analysis and related approximate methods
relying on simple classical k-space spin-wave analysis will,
incorrectly, predict that the finite-n classical system does not
order and that quantum fluctuations are mandatory to explain
the observed ordering in these systems. Similar considerations
to all of these results concerning the interesting link between
symmetries and band structure may apply, in general (i.e., not
necessarily ferromagnetic) systems for both ground and
excited states.

A. Uniform states as ground states of classical compass models

In the absence of an external field, the classical ground
states corresponding to the general isotropic compass model
Hamiltonian of Eq. (4) are fairly trivial. In the anisotropic
(nonuniform Jγ), the pseudospins tend to align along
the direction γ0, the direction associated with the highest
exchange coupling Jγ0 . We now first explicitly turn to the
isotropic situation where Jγ ¼ J > 0 (Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005). As discussed in
Sec. III.B, in their classical rendition, the pseudospins are
normalized at all lattice sites T2

r ¼ 1. In such a case, for the
classical rendition of all of the systems that we focus on in this
review, up to an irrelevant additive constant C, the
Hamiltonian may be written as a sum of squares:

Hcompass
isotropic ¼

J
2

X
i

�X
γ

ðTγ
r − Tγ

rþeγ Þ2 − 2C

�
: ð93Þ

A direct computation yields the value of C ¼PγðTr · eγÞ2,
which is independent of the orientation of Tr. For all classical
compass models on regular lattices with two-component (i.e.,
XY)-type spins whose orientation may be specified by a single
angle θr on the unit disk, the constant C ¼ z=2 with z being
the coordination number of the lattice (the number of nearest
neighbors of any given site). Values of the constant C in
Eq. (93) can be readily computed for compass models with
a higher number of spin components. For the classical
d-dimensional 90° compass model of Eq. (20), the additive
constant C in Eq. (93) is given by C ¼ 2. Similarly, for the
classical counterpart of the Kitaev model of Eq. (7), C ¼ 1.
As all terms in the sum of Eq. (93) are positive or zero,

minima are achieved when Tr ¼ T for all r with T an arbitrary
orientation. Thus, any uniform state is a ground state and a
continuous global rotation may relate one such ground state to
another. These rotations are not bona fide symmetries of the
Hamiltonian and may emerge as such only in the restricted
ground-state subspace. Thus, the ferromagnetic compass
models exhibit a continuous emergent symmetry of their
ground states. Starting from any uniform state (a ground state
of the classical system), any uniform global rotation of all
pseudospins will lead to another ground state.

FIG. 24 (color online). The anisotropic hopping amplitudes
leading to the KK Hamiltonian after Batista and Nussinov
(2005). The spins are indicated by rods. Following Harris et
al. (2003), the four-lobed states denote the 3d orbitals of a TM
ion while the intermediate small p orbitals are oxygen orbitals
through which the superexchange process occurs. Because of
orthogonality with intermediate oxygen p states, in any orbital
state jγi (e.g., jci≡ jxyi above), hopping is disallowed between
sites separated along the cubic γ (c above) axis. The ensuing KK
Hamiltonian has a d ¼ 2 SU(2) symmetry that corresponds to a
uniform rotation of all spins whose orbital state is jγi in any plane
orthogonal to the cubic direction γ. Such a rotation in the xy plane
is indicated by the spins in the figure.
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Although perhaps obvious, we remark on the relation
between ferromagnetic and antiferromagnetic compass mod-
els. On bipartite lattices, the sign of the exchange couplings
can be reversed (Jγ → −Jγ) for classical systems. The same
trivially holds true for quantum XY spins (such as those in the
120° model) for which a canonical transformation (rotation by
180° about the z axis) can be performed.

B. Stratification in classical compass models

The richness of the classical compass models stems from
the many possible ground states that they may possess (aside
from the uniform state). Such stratified ground states are
depicted in Figs. 20–24. Equal-energy states (classical or
quantum) are generally related to each other via the sym-
metries discussed in Sec. VI.B. Emergent (and exact) sym-
metries of the classical ferromagnetic compass models link the
uniform ferromagnetic states discussed in Sec. VII.A to a
plethora of other classical ground states. As elaborated on in
Sec. VIII, this proliferation of low-energy states leads to high
entropic contributions and the failure of the simplest analysis
to predict finite-temperature order. We now explicitly deter-
mine all classical ground states of ferromagnetic compass
models and link those to the earlier depicted ground states. As
can be seen from Eq. (93), any configuration for which

Tγ
i ¼ Tγ

iþeγ
ð94Þ

on all sites i is also a ground-state configuration. That is, in
standard compass models, the projections of any two nearest-
neighbor T along the bond direction γ must be the same. [As
noted several times earlier and made explicit in the original
compass model definitions in Sec. III.B, the components in
Eq. (94) are defined by Tγ ≡ T · eγ; in this scalar product, the
corresponding internal pseudospin unit vectors eγ are chosen
differently for different compass systems.] In Kitaev’s model,
the direction specified by γ is dictated by the lattice link
direction but it is not equal to it. At any rate, generally, the
number of conditions that Eq. (94) leads to is equal to the
number of links on the lattice ðNz=2Þ. Equation (94) states
that only the γ component of the pseudospin T is important as
we examine the system along the γ lattice direction. It may
therefore generally allow for numerous other configurations
apart from the uniform ferromagnetic states in which one
transforms the pseudospins in planes orthogonal to the γ
direction in such a way as not to alter the projection Tγ of T on
the γ axis. This allows for the multitude of ground states
discussed in Sec. VI.B that are related to the uniform ground
states via an intermediate low-dimensional operation (gen-
erally an emergent symmetry of the ground-state sector).

C. Flat bands: Momentum space consequences of real space
stratified ground states

A new prevalent aspect that has apparently not been
discussed before in the literature concerns a general relation
between the classical ground states of the compass models and
the classical spin-wave dispersions. This relation will be
introduced shortly. Toward this end, it will be profitable to
examine the matrix V̂ðkÞ of Eq. (34) in its internal pseudospin
eigenbasis and write the classical compass Hamiltonians as

H ¼ 1

2

X
α

X
k

vαðkÞjtαðkÞj2: ð95Þ

In Eq. (95), the internal pseudospin space index α labels the
eigenvalues vαðkÞ of the matrix V̂ðkÞ and tαðkÞ are the internal
pseudospin components of the vectors TðkÞ when expressed
in this basis.
These emergent symmetries within the ground-state sector

lead to an enormous degeneracy of the classical ground states.
One can relate this to the eigenvalues of the matrix V̂ðkÞ of
Eq. (34). Before doing so for the compass (and general
systems), we reflect on the situation in canonical nearest-
neighbor classical ferromagnets. In standard, isotropic, ferro-
magnetic systems, vαðkÞ attains its global minimum when
k ¼ 0. Thus, in standard ferromagnets, only the uniform
(k ¼ 0) states are ground states. Any other nonuniform state
necessarily has nonvanishing Fourier space amplitudes
tαðkÞ ≠ 0 also for modes k ≠ 0 each of which costs some
energy relative to the lowest-energy k ¼ 0 state.
By contrast, the multitude of nonuniform ground states

generated by the stratification operations of Fig. 20 proves
that vαðkÞ no longer attains its minimum at a single point
in k space but rather at many such points. We observe that the
application of the general stratification (or stacking) oper-
ations of Fig. 20 on the uniform k ¼ 0 state (one for which the
Fourier amplitudes Tk≠0 ¼ 0 lead to new configurations for
which the Fourier amplitudes Tk ≠ 0, where k lies along the
kz axis).
According to Eq. (95), this observation suggests that the

lowest values of minαfvαðkÞg define lines along the kx, ky, or
kz axes. This can indeed be verified by a direct computation.
More generally, if one sets minα;kvαðkÞ ¼ 0, the ground-state
energy happens to have a zero value according to Eq. (95). In
general, of course, when one applies a general operation U to
get a new ground state, with tα0 ðk0Þ ≠ 0 then, for all of these
values of α0 and k0 with a nonzero Fourier amplitude tα0 ðk0Þ,
one must have that vα0 ðk0Þ ¼ 0. The fact that the uniform
ground states at k ¼ 0 are invariant under global rotation [i.e.,
a change of basis of the internal indices α0 for all components
α0 for which tα0 ðk0 ¼ 0Þ] shows that states having components
α0 such that minαfvαðk ¼ 0Þg ¼ vα0 ðk ¼ 0Þ can, indeed, be
materialized. This follows as, whatever α0 happens to be, for
k ¼ 0, the eigenvector t ¼ ð0 � � � 010 � � � 0ÞT corresponding to
it will relate to some particular uniform real space vector ~T in
the original basis. On the other hand, any uniform state is a
ground state and thus such a configuration with a vector ~T can
be materialized. That is, the lower bound on the energy
stemming from the lowest-energy eigenvector(s) of V̂ of
Eq. (34) can be saturated.
Thus, emergent symmetries mandate the appearance of

lines of nodes in the dispersion. (The same, of course, also
trivially holds for exact symmetries of the Hamiltonian.) The
converse is, of course, not true: the existence of flat regions of
the dispersion [those with vα0 ðk0Þ ¼ 0] does not mandate that
symmetries appear in the ground-state sector as even for any
linear combination involving only tα0 ðk0Þ it might not be
possible to construct real space states out of these amplitudes
for which T2

i ¼ 1 at all sites i. The discussion above relates
the degeneracies brought about by (exact or emergent)
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intermediate symmetries to the dispersion of vαðkÞ about its
minimum. This general link between intermediate symmetries
and (flat) spin-wave-type dispersion applies to many of the
other compass models in this review.
If in a general compass model, a d-dimensional operation

relates the different ground states [such as the d ¼ 2 reflec-
tions of Fig. 20 and Eq. (87)] then the lowest bands vαðkÞ are
zero (or, more generally attain their lowest values) within
d0 ¼ ðD − dÞ-dimensional regions in k space. This follows
from the application on a uniform ferromagnetic state of
symmetry operators of the form of Eq. (78). Different
symmetries [either emergent ( ~OP) or exact (ÔP)] can be
chosen in the string product of Eq. (78) that when acting on
the uniform ferromagnetic state lead to disparate configura-
tions that must all share the same energy. Putting all of the
pieces together establishes a new theorem:
When a system of the general form of Eq. (95) exhibits a

ferromagnetic state then the existence of d-dimensional
symmetries (exact or emergent) implies that vα0 ðkÞ has a flat
dispersion in a (D − d)-dimensional manifold that connects to
the ferromagnetic point of k ¼ 0.
As explained above, for classical pseudospins Ti with a

finite number (n) of components, that have to be normalized at
each lattice site i, the converse is not guaranteed to be true: if
one has flat lowest-energy bands then we are not guaranteed
that we can generate real space configurations with normal-
ized pseudospins Ti whose sole Fourier amplitudes are
associated with wave vectors k that belong to these flat bands.
In the large-n limit of the classical models (or, equivalently,

in the corresponding spherical models) (Berlin and Kac, 1952;
Stanley, 1968; Nussinov, 2001), the local normalization
conditions become relaxed and linear superpositions of
Fourier modes on the flat band lead to allowed states that
share the same energy. That is, in the large-n limit (and,
generally, only in that limit), if there is a band vα0 ðkÞ that
assumes a constant value vα0 ðkÞ ¼ const for wave vectors k
that belong to a manifold M of dimension d0 ¼ D − d, then
the system exhibits a d-dimensional symmetry: any trans-
formation that acts as a unitary transformation on the modes
k ∈ M will not alter the energy of states whose sole non-
vanishing Fourier amplitudes tα0 ðkÞ belong to this manifold.
For related aspects, see Batista and Nussinov (2005) and
Nussinov, Ortiz, and Cobanera (2012b). As the spectrum
vα0 ðkÞ is pinned at its minimum value along d0 ¼ ðD − dÞ-
dimensional regions in k space, large-n computations will,
up to constant factors associated with the volume of these
regions, reproduce results associated with the nonvanishing
dispersion in the remaining ðD−d0Þ¼d-dimensional regions.
Thus, in the large-n limit, the behavior of compass model

ferromagnets in D spatial dimensions is identical to that of the
ferromagnets in the large-n limit in d dimensions. As the
large-n ferromagnet does not exhibit long-range order in
d ¼ 2 dimensions (and indeed any pseudovector system with
n ≥ 2 components), the large-n analysis of the classical cubic
lattice 120° model predicts that it does not order at finite
temperatures—an erroneous conclusion. As it turns out,
simple large-n and other related approximations are not valid
for the analysis of the classical 120° model and careful
calculations are required for the free energy of the

(n ¼ 2)-component classical system (Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005). We return to this point
in Sec. VIII.B.1.
In principle, the theorem can be replicated for any other

commensurate real space ground-state structure for which the
only nonvanishing Fourier components tαðkÞ ≠ 0 are those that
minimize the kernel vαðkÞ in Eq. (95). Above, we illustrated
that the ferromagnetic compass model has, among many other
states, the uniform (k ¼ 0) state as a ground state. There are
other commensurate structures (e.g., Néel states, 2 × 2

checkerboard states, etc.) that correspond to a particular set
of wave vectors (Nussinov, 2001). We proceed by discussing
the particular realizations of this theorem in compass models.

1. Spin waves of cubic lattice 120° compass model

In the case of the 120° model in D ¼ 3 dimensions, this
codimension is d0 ¼ 1 and the zeros of the modes lie along
lines (which happen to be the Cartesian coordinate axes in
momentum space). We briefly remark that when local sym-
metry operations are present (i.e., when d ¼ 0) as they are on
some of the more frustrated compass models that we review
later, there will be flat bands where the corresponding
vα0 ðkÞ ¼ 0 for all k in the full (d0 ¼ D)-dimensional k space
for some value(s) of the (band) index α0.
Although it is, of course, of less physical significance, the

analysis for the highest-energy state is essentially identical to
that for the ground states. When the sign in Eq. (94) is flipped
(as on bipartite lattices), the resulting staggered configuration
is that of the highest energy possible. Replication of all of
the arguments made above,mutatis mutandis, shows that if the
operations U do not change the energy of these states then the
manifold of highest-energy modes is of the dimensionality d0

of Eq. (79).

2. Honeycomb lattice 120° compass model

We now discuss the system of Eq. (12) on the honeycomb
lattice. As noted from Eq. (95), the existence of emergent d-
dimensional symmetries of ground states that include the
ferromagnetic state mandates [Eq. (79)] that a d0-dimensional
subvolume of k space corresponds to zero models [vα0 ðk0Þ ¼ 0
for one or more bands α0].
Given the appearance of the discrete chiral d ¼ 0 sym-

metries above (Wu, 2008), one sees that d0 ¼ D and thus flat
bands may exist corresponding to the highest and lowest
possible energy states. Indeed, flat bands exist in the spin-
wave dispersion about a state that has these symmetries
(Wu, 2008). A more general diagonalization of the 4 × 4

matrix V̂ð~kÞ of Eq. (34) indeed illustrates that there are two flat
bands with (in our convention) values of v1;2ðkÞ ¼ 0; 3J=2
that correspond to the lowest and highest energies attainable.
There are also two dispersing modes. This matrix is of
dimension 4 as a result of two factors of 2 as we now explain.
Translation invariance appears only for the honeycomb lattice
when it is considered as a triangular lattice (belonging to either
the A or B sublattices) with a basis of two sites leading to the
first factor of 2. The second factor of 2 stems from the number
of components of each of the classical pseudospins at each of
these sites.
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VIII. ORDER BY DISORDER IN COMPASS MODELS

In Secs. VI and VII, we illustrated how classical (and also
quantum) compass systems might exhibit numerous ground
states. Aside from emergent global symmetries of the classical
ferromagnetic compass model, both the classical and quantum
models in D spatial dimensions exhibit a degeneracy which
scales exponentially with LD−d, where d is the dimension of
the intermediate symmetries [see Eq. (80)]. As we now review,
this large degeneracy is generally lifted by the fluctuations
process colloquially referred to as order by disorder (Villain
et al., 1980; Shender, 1982; Henley, 1989; Moessner, 2001).
Although several states may appear to be equally valid

candidate ground states, fluctuations can stabilize those states
which have the largest number of low-energy fluctuations
about them. These differences can be explicitly captured in
values of the free energies for fluctuations about the con-
tending states. Classically, fluctuations are driven by thermal
effects and lead to entropic contributions to the free energy.
Quantum tunneling processes may fortify such ordering
tendencies [“quantum order by disorder” (Rastelli and
Tassi, 1987; Henley, 1989; Chubukov, 1992)], especially at
zero temperature, and stabilize a particular set of linear
combinations of classically degenerate states.
We note that, albeit being very different, somewhat related

physics concerning forces deriving from the weight of zero-
point “fluctuations” appears in the well-known Casimir effect
of quantum electrodynamics (Casimir, 1948; Casimir and
Polder, 1948). In the classical arena, similar effects appear—
seafarers have long known about the tendency of closely
separated ships to pull inward toward each other as a result
of hydrodynamic fluctuations. Other notions related to
those in order-by-disorder physics concern entropy-driven
effects which lead to particular conformations that appear
in the funnel model for protein folding (Bryngelson
et al., 1995).

A. Classical and quantum order out of disorder

Colloquially, quantum and classical systems may be antici-
pated to exhibit the same qualitative order-out-of-disorder
physics. Although this is often the case, there is no funda-
mental reason for this to be so (and, indeed, the two effects
may lead to very different results in some instances). Different
sets of states can be stabilized by these fluctuations. An
understanding of the quintessential physics may be obtained
by considering small (harmonic) fluctuations about classical
ground states. To harmonic order, within the quantum arena,
the fluctuations will be governed by a Bose distribution (with
frequencies ωi that denote the energies of the various
independent harmonic modes), whereas the classical fluctua-
tions obey a Boltzmann distribution with the same set of
harmonic modes. The two may be radically different at low
temperatures especially insofar as they apply to zero-mode
fluctuations about the ground states. This intuition is made
more precise in Appendix C. The upshot is that in many
situations quantum systems may order more readily than their
classical counterparts. In the following we review the relevant
order-out-of-disorder effects for specific compass models.

B. Cubic lattice 120° compass model

When entropic contributions are omitted, the spin-wave
spectrum of the standard classical cubic lattice 120° compass
model is gapless (van den Brink et al., 1999). This suggests
that, on the classical level, these orbital systems exhibit finite-
temperature disorder. Indeed the commonly held lore for some
time was that quantum fluctuations (tunneling between the
different contending classical ground states) are mandatory in
order to lift the orbital degeneracy and account for the
experimentally detected orbital orders. Most of the work on
quantum order out of disorder focused on 1=S corrections
(with S the spin size) to the classical spin-wave spectrum.

1. Thermal fluctuations

The difficulties encountered in the simplest analysis of the
classical model stem from the d ¼ 2 symmetries that it
exhibits (see Sec. VI.B) as exemplified in Fig. 20. As
discussed in Sec. VII, these symmetries lead to flat
ðd0 ¼ D − dÞ-dimensional regions in k space along which
the dispersion vα0 ðkÞ attains its minimum. In the case of the
cubic lattice 120° model, there are lines (d0 ¼ 1) along the
Cartesian axis along which the dispersion is nonincreasing. In
simple Gaussian calculations (such as those for the large-n or
spherical models) (Biskup, Chayes, and Nussinov, 2005) this
leads to canonical divergent fluctuations that inhibit low-
temperature order. The divergences are identical to those
associated with canonical D − d0 ¼ d ferromagnetic systems
(or, in cubic lattice 120° compass systems, those associated
with two-dimensional continuous spin ferromagnetic sys-
tems). In various guises, this dispersion led to early difficulties
in the analysis of this system and to the inclusion of quantum
or thermal effects to lift this degeneracy. To make this lucid,
note that the structure factor SðkÞ within spin-wave theory
[and classical large-n analysis (Biskup, Chayes, and Nussinov,
2005)] behaves, at low temperatures, as

SðkÞ ∝ Ex þ Ey þ Ez

ExEy þ ExEz þ EyEz
; ð96Þ

with the shorthand EγðkÞ≡ 2 − 2 cos kγ . As can be seen
by inspection, the structure factor of Eq. (96) diverges along
lines in k space (corresponding to momenta along the lattice
directions kx, ky, or kz). As briefly alluded to in Sec. VIII.A
(and elaborated on in Appendix C), as the simplest, large-n
spin-wave type is approached, this divergence of the classical
system (as opposed to the convergence of the corresponding
integral for its quantum large-n counterpart as well as standard
1=S calculations) leads to the false conclusion that there is no
finite-temperature ordering in this system. This divergence is
removed by the proper inclusion of fluctuations about the
ground states of the (n ¼ 2)-component classical pseudospin
system—an item that we turn to next.
We now, in particular, briefly review finite-temperature

effects on the classical 120° model of Eq. (85) (Nussinov
et al., 2004). The important thing to note is that the free-
energy minima (not the energy minima) determine the low-
energy states at finite temperatures. The classical spins fSrg
are parametrized by the angles fθrg with the a axis. We may
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consider the finite-temperature fluctuations about the uniform
ground states where each θr ¼ θ⋆. At low temperatures, the
deviations ϑr ¼ θr − θ⋆ are small, and the quadratic [spin-
wave (SW) Hamiltonian corresponding to Eq. (85) becomes
(Nussinov et al., 2004; Biskup, Chayes, and Nussinov, 2005)

HSW ¼ 1

2
J
X
r;γ

qγðθ⋆Þðϑr − ϑrþeγ Þ2; ð97Þ

where γ ¼ a, b, and c while qcðθ⋆Þ ¼ sin2ðθ�Þ,
qaðθ⋆Þ ¼ sin2ðθ⋆ þ 2π=3Þ, and qbðθ�Þ ¼ sin2ðθ⋆ − 2π=3Þ.
On a cubic lattice with periodic boundary conditions with
θ� the average of θr on the lattice, at an inverse temperature
β ¼ 1=kBT, the partition function (Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005)

Zðθ⋆Þ ¼
Z

δ

�X
r

ϑr ¼ 0

�
e−βHSW

Y
r

dϑrffiffiffiffiffi
2π

p : ð98Þ

A Gaussian integration leads to

lnZðθ⋆Þ ¼ −
1

2

X
k≠0

log

�X
γ

βJqγðθ⋆ÞEγðkÞ
	
; ð99Þ

where k ¼ ðkx; ky; kzÞ is a reciprocal lattice vector. The spin-
wave free energy F ðθ�Þ of Eq. (99) has minima at

θ�n ¼ nπ=3 ð100Þ

with integer n (Nussinov et al., 2004; Biskup, Chayes, and
Nussinov, 2005).
The application of the d ¼ 2 stratification operations of

Eq. (87) on each of these uniform configurations (see Fig. 20)
leads to an interface with an effective surface tension that leads
to a free-energy penalty additive in the number of operations.
The detailed derivation is provided by Nussinov et al. (2004)
and Biskup, Chayes, and Nussinov (2005). Next we provide
physical intuition concerning the preference for uniform
angles of the form of Eq. (100) over all others [i.e., why
the free energy F ðθ�Þ indeed has its minima at the points θ�n].
This analysis will build, once again, on the d-dimensional

emergent (i.e., ground-state) symmetries of the problem. We
first start with the system where, for all lattice sites r, the angle
θr ¼ θ�n of Eq. (100) with a particular value of n. For
concreteness, we set θr ¼ 0 at all r. We next ask what occurs
when we twist the angle between sequential planes, i.e., apply
the operation of Eq. (87) leading to a configuration such as

θr ¼ δθð−1Þrz ð101Þ

(all other related configurations in which the angle is uniform
within each plane are orthogonal to the z axis) with rz the z
coordinate of the lattice point r and δθ being arbitrary. In this
situation, as emphasized earlier, the energy of Eq. (85) does
not change. This is the origin of the large degeneracy that we
have been alluding to all along. Next we consider the case
when the system is uniformly oriented along an angle that
differs from the angles of Eq. (100), i.e., θr ¼ θ� ≠ θ�n. Now,
if we perform a twist between any two consecutive planes,

e.g., θ� þ δθ on one plane of fixed iz and a uniform angle of
θ� − δθ on a neighboring plane separated by one lattice
constant along the z axis, then a simple calculation shows
that the energy of Eq. (85) will be elevated. This simple
picture can be fleshed out in a full detailed calculation for the
free energy of the system about a chosen set of angles
(Nussinov et al., 2004; Biskup, Chayes, and Nussinov,
2005). Thus, the stratification (or stacking) ground-state
symmetry operation of Eq. (87) leads to the preference for
the uniform states of Eq. (100) over all others when thermal
fluctuations are included. Thus, while for all values of θ�, a
uniform spatial twist will lead to no energy cost, a staggered
twist in which consecutive planes are rotated by �δθ costs no
energy only for the uniform states of Eq. (100).
Along similar lines of reasoning, if we consider the

staggered state in which consecutive planes transverse to
the z axis have the angles of Eq. (101) then an additional
staggered twist ð�δφÞ of the opposite parity, i.e., one for
which θrz ¼ δθð−1Þrz þ δφð−1Þrzþ1, elevates the energy for
general small δθ and δφ (while, of course, the energy of a
uniform state of, e.g., δθ ¼ 0, will not). This is, once again,
the origin of the lower free energy for a uniform state than for
a stratified one—there are more low-energy fluctuations about
the uniform states of Eq. (100) than in their stratified
counterparts, with this increase being proportional to the
number of stratified interfaces for which a twist was applied.
By “blocking” the lattice (i.e., partitioning the lattice into

finite size blocks) and employing reflection positivity bounds
(Nussinov et al., 2004; Biskup, Chayes, and Nussinov, 2005),
it can indeed be proven that the results of the spin-wave
analysis are correct: the free energy has strict minima for six
uniform orientations (Nussinov et al., 2004; Biskup, Chayes,
and Nussinov, 2005): Tr ¼ �Sea, Tr ¼ �Seb, and
Tr ¼ �Sec. Thus, out of the large number of classical ground
states, only six are chosen. Orbital order already appears
within the classical (S → ∞) limit (Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005) and is not exclusively
reliant on subtle quantum zero-point fluctuations [captured by
1=S calculations (Kubo, 2002; Tanaka, Matsumoto, and
Ishihara, 2005)] for its stabilization. Indeed, orbital order is
detected up to relatively high temperatures [Oð100 KÞ]
(Murakami et al., 1998; Tokura and Nagaosa, 2000).
Numerical work (Dorier, Becca, and Mila, 2005) and an
analysis with tilted boundary conditions (Nussinov and
Shtengel, 2015) shows that quantum fluctuations do not lift
the orbital degeneracy in the simplest S ¼ 1=2 systems—the
planar orbital compass model of Eq. (1). A 2D pseudospin
T ¼ 1=2 analog of the cubic lattice 120° compass model of
Eq. (9), a model of far lower symmetry (and less frustration)
than the square lattice 90° compass model, has been shown to
have an S ¼ 0 order (Biskup, Chayes, and Nussinov, 2005).

2. Quantum order out of disorder

In certain geometrically frustrated systems, one encounters
quantum order-from-disorder phenomena, that is, quantum
fluctuations lifting the degeneracy of the ground states
obtained within a mean-field approach. Examples are the
Heisenberg antiferromagnet on the triangular and pyrochlore
lattices (Chubokov and Golosov, 1991; Tsunetsugu, 2001).
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The 120° quantum compass model also exhibits this phe-
nomenon, where quantum fluctuations not only select the
ordered state, but also stabilize the selected state against
thermal fluctuations which would destroy the ordering at finite
temperatures.
If the ground state of the 120° quantum compass model is

considered to be ordered, the evaluation of the quantum
corrections to the ground-state energy reveals pronounced
minima for specific θ�, as illustrated in Fig. 25. The quantum
corrections to the energy in a 1=T expansion with T the
pseudospin size (also denoted as 1=S expansion in order to
make a clear connection with the equivalent-approach spin
models) and the finite order parameter is consistent with the
presumed presence of order (van den Brink et al., 1999;
Kubo, 2002).
Thus global rotation of the pseudospins does not affect the

energy of the classical ground state, which is therefore
rotationally invariant, but quantum corrections to the
ground-state energy restore the discrete symmetry of the
Hamiltonian. When the quantum fluctuations are evaluated
to lowest order the excitation spectra are found to be gapless
and purely 2D, but higher-order corrections cause the opening
of an excitation gap of around 0.49J (Kubo, 2002), which
agrees with the results of quantum Monte Carlo simulations
on this model and its extensions (van Rynbach, Todo, and
Trebst, 2010). These are reviewed in Sec. IX.D.2.

C. 90° compass models

We now focus on the planar and three-dimensional real-
izations of the 90° models in both the classical and quan-
tum cases.

1. Quantum planar 90° compass models

We first examine the quantum 90° planar compass model.
By the theorem reviewed in Sec. VI.C.2 and, in particular,
corollary I therein, at all positive temperatures, the average
local “magnetization” hτri ¼ 0. In the quantum arena, this is
so as the system admits the inversion symmetries of Eqs. (84)
and (91), and thus, as reviewed in Sec. VI.D.1 and displayed

in Fig. 19, insofar as the breaking of the Ising symmetries of
Eqs. (84) and (91) is concerned, the system behaves as
though it were one dimensional. As these Ising symmetries
cannot be broken in (d ¼ 1)-dimensional symmetry, the finite-
temperature average hτri ¼ 0. By contrast, any product
involving an even number of τx operators along any horizontal
line and an even number of τz operators along any vertical line
is invariant under these d ¼ 1 symmetries and may be used as
an order parameter (Batista and Nussinov, 2005; Nussinov and
Fradkin, 2005). In particular, of greatest interest is an order
parameter that is invariant under all d ¼ 1 symmetries and
may probe a global (d ¼ 2)-dimensional Ising (reflection)
symmetry that may be broken at finite temperature in isotropic
compass models (Nussinov and Ortiz, 2009a). Such a reflec-
tion symmetry [as further elaborated in Eq. (105)] interchanges
the spin components τx ↔ τz. Bilinears such as hτxrτxrþex −
τzrτ

z
rþezi are invariant under all of the d ¼ 1 symmetries and

can thus attain nonzero values at finite positive temperatures
(Batista and Nussinov, 2005; Nussinov and Fradkin, 2005)
when the reflection symmetry is broken. Nematic-type order
parameters that probe this Ising symmetry may be constructed
as linear combinations of these bilinears. In a general aniso-
tropic compass model [such as that of Eq. (4) without an
applied field], which we rewrite here (yet again) for clarity,

Hcompass ¼ −
X
r;γ

Jγτ
γ
rτ

γ
rþeγ ; ð102Þ

the difference between the energy associated with bonds along
the two lattice directions,

hJxτxr τxrþex − Jyτ
y
rτ

y
rþeyi; ð103Þ

may be used as an order parameter (Wenzel and Janke, 2008).
In dimensions D > 2, there are no d ¼ 1 symmetries of the
quantum model [the symmetries of Eqs. (84) and (91) are
generally d ¼ D − 1 dimensional]. As Ising symmetries can
be broken in more than one dimension, the local hτri may be
finite at low temperatures.

2. Classical 90° compass models

In the classical version of the 90° compass model in
arbitrary spatial dimension, the considerations are identical.
We elaborate on these next. As alluded to earlier (Sec. III.B),
in considering the classical compass models, the Pauli
operators τ are replaced by a normalized classical XY
pseudospin T subject to Eq. (19), and the model becomes
once again of the form of Eq. (93). In the planar system, the
lattice directions eγ ¼ e1; e2. Along any line l parallel to the
lattice eγ direction, the classical planar system is trivially
invariant under the global reflection (an identical Ising
symmetry to that in the quantum case) about the Tγ axis:
Tγ0≠γ
i → −Tγ

i , T
γ
i → Tγ

i for all sites i that lie along such a line
l. As such Ising symmetries cannot be broken in one
dimension (for either the quantum or classical system), they
also cannot be broken, at finite temperatures, in the planar
compass model, and the local magnetization hTii ¼ 0. As for
the quantum models, it is possible to construct nematic-type
two-site bilinears like that of Eq. (103) (Wenzel and Janke,

FIG. 25. Left: Quantum corrections for the cubic lattice 120°
model system as functions of rotation angle θ for the renormal-
ized order parameter ΔTz (full lines) and the ground-state energy
ΔE=J (dashed lines). From van den Brink et al., 1999. Right: The
gap Δ as a function of 1=ð2SÞ (solid curve) and the square root
behavior at small 1=ð2SÞ given by Δ2=ð2SJÞ2 ¼ 0.49=ð2SÞ, for
pseudospin S (dashed curve). From Kubo, 2002.
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2008). It is, in fact, also possible to construct single-site
quantities which are identical to those of the standard order
parameters for classical nematic liquid crystals (Nussinov and
Fradkin, 2005) which would be most appropriate for isotropic
planar compass models (with Jγ ¼ J for all γ). In the planar
case, a simple generalization of Eq. (103) is given by
Q ¼ hJxðTx

i Þ2 − JyðTy
i Þ2i. It is noteworthy that a quantity

such as Q is meaningful for all pseudospin representations of
the planar compass model with a pseudospin of size S > 1=2.
In the pseudospin-1=2 case, Q is trivially zero.

D. 120° honeycomb model

We now discuss the system of Eq. (12) on the honeycomb
lattice.

1. Thermal fluctuations

An order-by-disorder analysis for the classical version of
the Hamiltonian of Eq. (12) proceeds (Nasu et al., 2008; Wu,
2008) along similar lines as for the cubic lattice 120° model
above (Nussinov et al., 2004; Biskup, Chayes, and Nussinov,
2005). By considering thermal fluctuations about a uniform
state, it is seen that orientations with the values of Eq. (100)
are preferred (Nasu et al., 2008). The underlying physics for
the preference of these states (and the larger multitude of low-
energy states made possible by stacking operations) is similar
to our discussion for the cubic lattice (Nasu et al., 2008).
Work to date has not investigated thermal fluctuations about

a nonuniform state that resides in the sector of ground states
that, as reviewed previously, are related to each other by a
local chiral emergent symmetry operation.

2. Quantum fluctuations

The effect of quantum fluctuations (as seen in 1=S
calculations) has been investigated (Nasu et al., 2008; Wu,
2008; Zhao and Liu, 2008). The analysis is similar to that in
the case of the 120° model on the cubic lattice. All inves-
tigations concluded that, as for the thermal fluctuation analysis
on this system (Nasu et al., 2008) and for the 120° system on
the cubic lattice, the preferred ground states are those
of Eq. (100).
A detailed calculation for the free energy due to thermal

fluctuations (as well as the physical considerations underlying
the order-by-disorder mechanism favored the application of
these symmetry operations in the ground-state sector) similar
to that for the cubic lattice 120° model discussed shows that
the low-energy states are, once again, one of the six uniform
states of Eq. (100).
Wu (2008) further considered fluctuations about the non-

uniform chiral state with emergent chiral gauge symmetries
and found that these had a lower free energy than those
resulting from fluctuations about the uniform states. The low
free energy of these states is in accord with the multitude of
low-energy fluctuations about them (Wu, 2008). Wu (2008)
and Zhao and Liu (2008) both similarly also investigated the
triangular and kagome lattice versions of this system. Earlier
work (Mostovoy and Khomskii, 2002) introduced and exam-
ined the triangular ferromagnetic 120° model of Eq. (14) to

find that quantum fluctuations lift the degeneracy to favor the
six uniform pseudospin states.

E. Effect of dilution

We conclude this section with a brief summary of some of
the recent results on diluted (or “doped”) orbital compasslike
systems (Tanaka, Matsumoto, and Ishihara, 2005; Ishihara,
Tanaka, and Matsumoto, 2007; Tanaka and Ishihara, 2007,
2009). It was found that the critical doping fraction (x ¼ 1=2)
necessary to remove order is smaller than the requisite doping
needed to eradicate order in typical diluted magnets (e.g.,
KCu1−xZnxF3) (Breed et al., 1970; Stinhcombe, 1983); in
typical magnetic systems, the decrease in the ordering temper-
ature and its saturation are governed by the percolation
threshold (where the ordering temperature vanishes at the
critical dopant concentration of xc ¼ 0.69 for the simple cubic
lattice). The faster degradation of orbital order with doping
compared to simple percolation physics can be attributed to
the directional character of the orbital exchange interactions.
Similar effects have been found in related systems, as, e.g., by
Honecker et al. (2007).
The concept of an orbital-order-driven quantum critical

point was introduced (Nussinov and Ortiz, 2008) by an exact
solution of diluted 2D and 3D orbital compass models. The
solution relies on an exact gauge-type symmetry which results
from dilution and the use of a bond algebra mapping
(Nussinov and Ortiz, 2008, 2009b; Cobanera, Ortiz, and
Nussinov, 2010, 2011; Nussinov, Ortiz, and Cobanera,
2012b; Ortiz, Cobanera, and Nussinov, 2012) wherein the
system is mapped onto decoupled one-dimensional trans-
verse-field Ising chains (Nussinov and Ortiz, 2008) that
exhibit quantum criticality at their isotropic point. The
symmetries associated with the dilution increase the degen-
eracy of the system. Like charge- and spin-driven quantum
critical fluctuations, orbital fluctuations may also drive the
system to quantum criticality. The system may be driven to
criticality by a combination of doping and uniaxial pressure or
strain (Nussinov and Ortiz, 2008). More recently, Chen,
Balents, and Schnyder (2009) considered such a quantum
critical point for spin-orbital singlets. An overdamped col-
lective mode leading to non-Fermi-liquid-type response
functions may emerge in systems that exhibit orbital-order-
ing-driven quantum critical points (Lo, Lee, and Phillips,
2013). It can be shown that spin-glass-type behavior can
arise in doped orbital systems with random exchange con-
stants. Here the orbitals take on the role of spins in the usual
spin-glass systems.
In Sec. VIII, we illustrated how low-temperature orders in

compass systems may be triggered by thermal and/or quantum
fluctuations. We now remark on the opposite limit—that
of high temperatures. As illustrated by Chakrabarty and
Nussinov (2011) and Nussinov, Ortiz, and Cobanera
(2012b) the high-temperature limit of compass (and other)
systems as evinced by general correlation functions and
thermodynamics coincides with that of the large-n (or
spherical model) solution. In the large-n limit, all thermody-
namic quantities are directly given by integrals of simple
functions involving eigenvalues of the kernel V̂ðkÞ of Eq. (34).
A brief review of some aspects of this limit is provided in
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Appendix C. Flat bands, such as those discussed in Sec. VII,
in which these eigenvalues vαðkÞ depend on a reduced number
of Cartesian components of k, lead, in the large-n or high-
temperature limit, to exact dimensional reductions to a system
whose dimensionality is given by the number of components
of k on which vαðkÞ depends. Bolstered by their unique high-
temperature limit in which compass models may effectively
exhibit a reduced dimensionality, all large-n renditions of the
compass models that we considered are disordered. In Sec. IX,
we discuss the precise character of the transitions in a
multitude of compass models between their low- and high-
temperature phases.

F. High-temperature correlations and dimensional reduction

In the previous section, it was illustrated how low-
temperature orders in compass systems may be triggered
by thermal and/or quantum fluctuations. We now remark on
the opposite limit—that of high temperatures. As illustrated
by Chakrabarty and Nussinov (2011) and Nussinov, Ortiz, and
Cobanera (2012b) the high-temperature limit of compass (and
other) systems as evinced by general correlation functions
and thermodynamics coincides with that of the large-n (or
spherical model) solution. In the large-n limit, all thermody-
namic quantities are directly given by integrals of simple
functions involving eigenvalues of the kernel V̂ðkÞ of Eq. (34).
A brief review of some aspects of this limit is provided in
Appendix C. Flat bands, such as those discussed in Sec. VII,
in which these eigenvalues vαðkÞ depend on a reduced number
of Cartesian components of k, lead, in the large-n or high-
temperature limit, to exact dimensional reductions to a system
whose dimensionality is given by the number of components
of k on which vαðkÞ depends. Bolstered by their unique high-
temperature limit in which compass models may effectively
exhibit a reduced dimensionality, all large-n renditions of the
compass models that we considered are disordered. In Sec. IX,
we discuss the precise character of the transitions in a
multitude of compass models between their low- and high-
temperature phases.

IX. PHASES AND PHASE TRANSITIONS IN COMPASS
MODELS

Finite (or zero) -temperature transitions correspond to
singularities in the free energy (or energy). When possible,
transitions are most easily ascertained when an order param-
eter is found whose value differs from zero in a symmetry-
broken phase. This is not the case for gauge theories that
exhibit finite-temperature transitions but do not have a simple
corresponding order parameter (Kogut, 1979; Bricmont and
Frolich, 1983; Fredenhagen and Marcu, 1986) as they display
local (d ¼ 0) symmetries which according to our earlier
discussion cannot, by Elitzur’s theorem, be broken at any
finite temperatures (Elitzur, 1975) due to an effective dimen-
sional reduction (Batista and Nussinov, 2005; Nussinov, Ortiz,
and Cobanera, 2012b). Via this extension of Elitzur’s theorem
concerning generalized dimensional reduction, topological
order (see Sec. VI.A) can be established in numerous systems
including, in particular, numerous compass models (Nussinov
and Ortiz, 2009a, 2009c).

In systems with topological orders (see Sec. VI.A), analogs
(Gregor et al., 2011; Cobanera, Ortiz, and Nussinov, 2013) of
the quantities discerning phases in gauge theories (Kogut,
1979; Bricmont and Frolich, 1983; Fredenhagen and Marcu,
1986) may be considered. As reviewed in Secs. VI and VIII, at
low temperatures, most compass models exhibit broken-
symmetry states in which discrete symmetries of the compass
Hamiltonians are broken. While there are notable exceptions
the majority of the compass models exhibit low-temperature
broken symmetries. While symmetry arguments are powerful,
and while, as discussed in Sec. VIII, it may be possible to
rigorously prove the existence of a phase transition, it is of
great interest to get more insight into the qualitative and
quantitative character of the transitions that these systems
display by performing direct numerical and analytical analysis
of various sorts. Both numerically and analytically, this task is
daunting as these systems are highly frustrated. Moreover,
numerically, many variants of the compass models currently
suffer from the “minus sign” problem.
Many results have been attained, in particular, for the

simpler compass models. However, results for many more,
including models pertinent to orbital ordering, are currently
unknown. Here we review the results known to date on nearly
all compass models. We reserve the Kitaev and the related
Kitaev-Heisenberg models to another review and start with a
summary of results on the classical models and then turn our
attention to the quantum systems.

A. 90° compass models

1. Classical square lattice

For convenience, we provide again the Hamiltonian
classical planar 90° model, defined on a square lattice:

Hclassical 90°
□

¼ −Jx
X
hijiH

Tx
i T

x
j − Jy

X
hijiV

Ty
i T

y
j ; ð104Þ

with hijiH and hijiV denoting nearest-neighbor links along the
horizontal and vertical directions, respectively. The general
dimensional extension of this system was given in Eq. (20).
Equation (104) is simply the classical counterpart of the
quantum model of Eq. (1).
In the 90° compass model, unlike the 120° compass model,

attention is required to examine contending order parameters.
The sole symmetry of high dimension which can be broken in
the 90° compass model on the square lattice is an Ising-type
reflection symmetry of the symmetric compass model [with
equal exchange constants along the x and y directions
Jx ¼ Jyð¼ JÞ] that involves a global [(d ¼ 2)-dimensional]
reflection of all pseudospins in the plane. Formally, such a
symmetry is given by

Oreflection ¼
Y
r

eiπð
ffiffi
2

p
=4Þðσxrþσyr Þ; ð105Þ

where r denotes the lattice sites. This global Ising reflection
symmetry is related to a duality (Jx ↔ Jy) between the
couplings. Along the self-dual line, Jx ¼ Jy, the duality
between the x and y bonds becomes a symmetry [as in
general self-dual systems (Cobanera, Ortiz, and Nussinov,
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2010, 2011)]. As a (d ¼ 2)-dimensional Ising-type symmetry
can be broken at finite temperature, this reflection symmetry
can (and indeed is) broken at finite temperatures. However, the
order parameter cannot be of the usual single-site type. By the
symmetry arguments that we outlined in Sec. VI, it is clear
that while spontaneous symmetry breaking of the pseudospin
on a single site (i) is prohibited (hTri ¼ 0) in the planar 90°
compass model, any quantity that is invariant under all
(d ¼ 1)-dimensional symmetries might serve as an order
parameter. This implies that one should consider quantities
involving more than one on-site operator.
Indeed, d ¼ 1 symmetry-invariant, low-temperature

nematic-type order is stabilized in this system by thermal
fluctuations (Nussinov et al., 2004); the physical consider-
ations are similar to those presented earlier for the 120°
compass model in Sec. VIII.B.1. An elegant study of the
classical two-dimensional 90° compass model was pursued by
Mishra et al. (2004). As in the entropic stabilization in the
120° model, (Nussinov et al., 2004; Biskup, Chayes, and
Nussinov, 2005) a (pseudo-)spin-wave-type dispersion about
the state with a particular uniform orientation θ� of all of the
classical pseudospins Tr may be computed. For the 90° square
lattice compass model of Eq. (104), the dispersion about θ� ¼
0 is given bymþ γxð1 − cos kxÞ þ γyð1 − cos kyÞ, with m and
γx;y denoting a self-consistent (pseudo)spin gap and moduli
along the x and y axes, respectively. At low temperatures,
these scale as (Mishra et al., 2004) γx ¼ 0, γy ¼ 1 −OðT2=3Þ,
and mðTÞ ¼ ð1=2ÞT2=3 þOðTÞ. To emulate the ordering
transition in a qualitative way, Mishra et al. (2004) studied
the “four-state Potts compass model” given by

H ¼ −J
X
r

ðnrμnrþexμμrμrþex þ nrνnrþeyννrνrþeyÞ;

where at each lattice site r there are occupation numbers
nrν ¼ 0, 1 and nrμ ¼ 0, 1 for which nrμ þ nrν ¼ 1 and μ; ν are
classical Ising variables (μ ¼ �1, ν ¼ �1). This Hamiltonian
captures the quintessential directionality of the bonds in the
compass model. By tracing over the Ising variables μ and ν at
all sites, this four-state Potts compass can be mapped onto the
two-dimensional Ising model, from which it can be deduced
that the Potts compass model has a critical temperature of
(Mishra et al., 2004) Tc ¼ 0.4048J.
Ordering at lower temperatures corresponds to a dominance

of horizontal bonds over vertical ones or vice versa. That is,
for temperatures below the critical temperature (Mishra et al.,
2004) hnr;μi − hnr;νi ≠ 0. In effect, this reflects an order of the
nematic type present in the classical 90° compass at low
temperatures in which the fourfold rotational symmetry of the
square lattice is lifted. A natural nematic-type order is given
by (Mishra et al., 2004)

q ¼ hðTx
r Þ2 − ðTy

r Þ2i: ð106Þ

Using Monte Carlo calculations, it was found (Mishra
et al., 2004) that this quantity q becomes nonzero for
temperatures lower than an estimated transition temperature
of Tc ¼ ð0.147� 0.001ÞJ. Impressive calculations further
improved this estimate (Wenzel and Janke, 2008; Wenzel,

Janke, and Läuchli, 2010) to a value for the classical 90°
compass model of Tc ¼ 0.146 12J.
In the 90° compass models (whether classical or quantum),

related nematic-type order is also characterized by the energy
difference between the vertical and horizontal bonds,

hQii≡ hTx
riT

x
riþex − Ty

riT
y
riþeyi; ð107Þ

where lattice site r is indexed by the label i. The virtue of this
form by comparison to that of Eq. (106) is that it can be
extended to quantum pseudospins T ¼ 1=2. Near a general
critical point (including the one at hand for the 90° compass
model in the vicinity of its critical temperature), the connected
correlation function canonically behaves as

hQiQji − hQiihQji≃ A
e−rij=ξ

jrijjp
; ð108Þ

with Qi the corresponding local order parameter which attains
a nonzero average value (hQii) in the ordered phase. In
Eq. (108), rij is the distance between sites i and j, and ξ is the
correlation length, A is an amplitude, and p is a power.
Typically, a susceptibility χ ¼ hQ2i − hQi2 (with Q ¼P

N
i¼1 Qi=N) diverges at the critical point. The classical 90°

compass model was indeed found to fit this form with Qi
chosen to be the local nematic-type order parameter of
Eq. (107). As discussed in Sec. VI, any generally nonzero
quantity [as such, involving any number of bonds (Nussinov
and Ortiz, 2009b; Cobanera, Ortiz, and Nussinov, 2010)] that
is invariant under all low-dimensional gaugelike symmetries
can serve as an order parameter. That is, general composites of
such bonds can serve as order parameters (Batista and
Nussinov, 2005). A similar interesting measure was intro-
duced by Brzezicki and Oleś (2010) for the quantum 90°
compass model.
Although order sets in at a temperature far lower than that of

the two-dimensional Ising model and its equivalent four-state
Potts clock model the transition was numerically found to be
in the two-dimensional Ising universality class (Mishra et al.,
2004; Wenzel and Janke, 2008; Wenzel, Janke, and Läuchli,
2010). The standard critical exponents that describe the
divergence of the correlation length (ν) and susceptibility
(γ) as the temperature approaches the critical temperature Tc,

ξ ∼ jT − Tcj−ν; χ ∼ jT − Tcj−γ: ð109Þ

The two-dimensional Ising model and all systems that
belong to its universality class are given by ν2D Ising ¼ 1

and γ2D Ising ¼ 1.75. These two exponents were numerically
measured by Wenzel, Janke, and Läuchli (2010). From any
two exponents, the values of all other exponents follow by
scaling relations (in this case the values of all other critical
exponents are identical to those of the two-dimensional Ising
model). Earlier work (Mishra et al., 2004) found Binder
cumulants similar to those in the two-dimensional Ising model
as a specific heat collapse which is also similar to that of the
two-dimensional Ising model. This two-dimensional Ising-
type transition is consistent with the transition in the Potts
clock model on the square lattice.
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A technical issue that reflects the unusual nature of the
system (its high degree of symmetry and proliferation of
degenerate and nearly degenerate states) is that finite-size
effects are of far greater dominance here than in the usual
systems (Wenzel and Janke, 2008; Wenzel, Janke, and
Läuchli, 2010). The most successful boundary conditions
found to date for numerical study of these systems are the so-
called “screw periodic boundary conditions” (Wenzel, Janke,
and Läuchli, 2010) in which there is periodicity along
a line that wraps around the system with a general non-
zero pitch.

2. Quantum square lattice 90° compass model

The pseudospin T ¼ 1=2 planar 90° compass model of
Eq. (1) was investigated by multiple groups using a variety of
tools. The results to date belong to two interrelated subclasses:
(i) the character of the finite-temperature transition between a
low-temperature ordered state and the disordered high-
temperature phase in the symmetric [Jx ¼ Jyð¼ JÞ] 90°
compass model for which the global d ¼ 2 Ising-type
reflection symmetry can be broken and (ii) studies of the
zero-temperature transition in the extended anisotropic 90°
compass model of Eq. (4) in the absence of an external field
(h ¼ 0) at the point Jx ¼ Jy. As in the classical system, in the
anisotropic 90° quantum compass model, Jx ≠ Jy, the global
reflection symmetry is not present. The sole symmetries that
remain in the anisotropic model relate to the d ¼ 1 Ising-type
symmetries of Eq. (84).

a. Finite-temperature transitions

A few direct studies have been carried out (Wenzel and
Janke, 2008; Wenzel, Janke, and Läuchli, 2010) on the finite-
temperature breaking of the (d ¼ 2 Ising-type) reflection
symmetries in the symmetric (Jx ¼ Jy) 90° compass model.
The calculations of Wenzel and Janke (2008) and Wenzel,
Janke, and Läuchli (2010) employed an order parameter akin
to Eq. (107) and its related susceptibility to find that the two-
dimensional quantum pseudospin T ¼ 1=2, 90° compass
system also belongs to the universality class of the classical
two-dimensional Ising model. While the exponents character-
izing the transition are identical to those in the classical two-
dimensional Ising model and thus also those of the classical
two-dimensional 90° compass model, the critical temperature
is significantly reduced once again. The reduction in the
critical temperature is, however, far more severe in the
quantum case than in the classical rendition of the 90°
compass model. Specifically, within numerical accuracy,
Wenzel, Janke, and Läuchli (2010) found the transition
temperature for the quantum 90° compass model to
be Tc ¼ 0.0585J.
Different numerical fitting schemes [e.g., allowing the

critical (correlation length) exponent ν to differ from its value
of ν ¼ 1 and using it as an adjustable parameter] lead to only
an incremental shift in the value of the ascertained critical
temperature (i.e., a shift only in the last decimal place). The
factor of approximately 0.4 between the quantum pseudospin
T ¼ 1=2 compass model critical-temperature value and the
classical value shows that, at least, in these simple compass
models, quantum fluctuations inhibit order rather than fortify

it, contrary to what was thought some time ago to be
universally true for compass models (and certain other highly
frustrated spin systems).
A slightly less accurate (by comparison to the numerical

values above) yet quite insightful and intensive high-
temperature series expansion (Oitmaa and Hamer, 2011) to
order β24 in the inverse temperature β ¼ 1=kBT led to a similar
value for the critical temperature (Tc ¼ 0.0625J). This was
achieved by determining when the inverse susceptibility χ−1,
evaluated with Padé approximants, extrapolated to zero. By
fitting the determined susceptibility from the high-temperature
series expansion with the standard form of Eq. (109) while
setting Tc to the numerical value, the critical exponent γ was
found to be 1.3 (of the same order as the value in the two-
dimensional Ising value of γ ¼ 1.75 yet still slightly removed
from it) (Oitmaa and Hamer, 2011). More recent numerical
work observed that in finite-size systems the specific heat
typically exhibits peaks at two different temperatures
(Brzezicki and Oleś, 2013).

b. Zero-temperature transitions

Before focusing on transitions between ground states, we
regress to a very simple discussion concerning the unim-
portance of the sign of the couplings Jx and Jy within the
quantum (and classical) 90° model on the square lattice. This
is so, as in other two-component pseudospin systems, it is
possible to invert the sign of the individual couplings Jx or Jy
[or both simultaneously as in Eq. (13)] by simple canonical
transformations. In order to set Jx → −Jx we may rotate all of
the pseudospins that lie on odd-numbered columns (wherein
rx, the x component of site r, is an odd integer) by 180° about
the τy axis. The simple transformation

U ¼
Y

rx¼odd

expðiπτyr=2Þ ð110Þ

implements this transformation. One may, of course, similarly
rotate by 180° all pseudospins on odd-numbered rows (odd iy)
to effect the transformation Jy to −Jy. The combined effect of
both transformations is encapsulated in the sublattice rotation
of Eq. (13) as a result of which all of the exchange couplings
have their signs flipped. Below we will at times refer to the
system for positive Jx and Jy and sometimes for general real
Jx and Jy. Using the above transformations, the results for
positive Jx and Jy imply identical conclusions for all Jx and Jy
when their modulus (jJx;yj) is considered.
The very existence of a finite-temperature two-dimensional

Ising-type critical point within the symmetric 90° planar
compass model (Jx ¼ Jy)—in both the classical (proven by
entropy stabilization with detailed numerical results and
further analysis) and quantum (thus far supported by numeri-
cal results alone)renditions—allows, but does not prove, that,
for temperatures T < Tc there may be a line of first-order
transitions along the temperature axis when Jx ¼ Jy. Across
this line the system may switch from preferring ordering along
the x direction (when jJxj > jJyj) to ordering of the pseudo-
spin parallel to the y direction (when jJxj < jJyj). The
situation is reminiscent of, among other systems, the ferro-
magnetic two-dimensional Ising model in a magnetic field h,
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H ¼ −J
X
hiji

σiσj − h
X
i

σi: ð111Þ

At T ¼ Tc, the system is critical with the two-dimensional
Ising model critical exponents for small jT − Tcj for h ¼ 0.
For all temperatures T < Tc, there is a line of first-order
transitions along the temperature axis when h ¼ 0, where the
system switches from preferably order with positive magneti-
zation hσii > 0 (when h > 0) to negative magnetization
hσii < 0 (when h < 0). Across the h ¼ 0 line for T < Tc,
there is a discontinuous jump in the value of hσii between its
values at h ¼ 0þ and h ¼ 0− marking the first-order
transition.
Similarly, establishing the existence of a first-order phase

transition in the T ¼ 0 system as a function of jJxj − jJyj
when jJxj ¼ jJyj would suggest (but not prove) the existence
of a finite-temperature critical point Tc > 0 at which the line
of phase transitions terminates and above which (T > Tc) the
system exhibits no order of any kind. At arbitrarily high
temperatures T ≫ Jx; Jy the system is, of course, disordered.
A natural question then concerns the direction of inves-

tigation of the T ¼ 0 transition at Jx ¼ Jy. We note that one
approach for analyzing the character of the transition at the
point Jx ¼ Jy in the quantum system would be to analyze the
(2þ 1)-dimensional corresponding classical Ising model of
Eq. (38). A first-order transition would suggest the possibility
of a finite-temperature critical point Tc > 0 as seen by
numerical studies.
Many other approaches to investigate the zero-temperature

transition have been put forth. The upshot of these studies is
that the zero-temperature transition at both Jx ¼ Jy is indeed
first order. As in the classical system, Jx ↔ Jy is a self-dual
transformation of the quantum system (Nussinov and Fradkin,
2005; Nussinov, Batista, and Fradkin, 2006; Cobanera, Ortiz,
and Nussinov, 2010, 2011) and the transition in question
pertains to the system at its self-dual point.
Like any other zero-temperature transition, the zero-

temperature transition at Jx ¼ Jy in the 90° compass model
corresponds to a “level crossing” at which the low-energy
state(s) change from being of one type for Jx > Jy to another
type for Jx < Jy. At the point Jx ¼ Jy, their energy levels
cross. In order to understand the level crossing, one needs to
understand the structure of the low-energy levels in general.
In Sec. VI.B, we reviewed the noncommutativity of the

symmetries of Eq. (84) as applied to the two-dimensional 90°
model (where the planes Pγ are one-dimensional lines
orthogonal to the γ axis) on all lattices as well as time-reversal
symmetry as applied to odd-sized lattices, which both imply
(at least) twofold degeneracy of the ground-state sector. [As it
turns out, the two considerations are not independent. Time-
reversal symmetry can be directly expressed in terms of the
symmetries of Eq. (84) (Nussinov and Ortiz, 2009c).] This
implied twofold degeneracy appears also in the anisotropic
case of Jx ≠ Jy. The ground states can be characterized in
terms of the set of eigenvalues fλ1; λ2;…; λLg of, say, the L
symmetries of Eq. (84) corresponding to vertical planes P
(Dorier, Becca, and Mila, 2005; Doucot et al., 2005). All of
these symmetries commute with one another [while, as
highlighted below, anticommuting with all of the symmetries

of Eq. (84) corresponding to horizontal planes P]. The
application of any horizontal plane symmetry will generate
another ground state with all of the eigenvalues flipped,
λi → −λi.
The large number of symmetries [ð2LÞ for an L × L lattice]

of the form of Eq. (84) allows for [and, in fact, mandates
(Nussinov and Shtengel, 2015)] a degeneracy which is
exponential in the perimeter. Crisp numerical results illustrate
(Dorier, Becca, and Mila, 2005; Brzezicki and Oleś, 2013)
that in the square lattice 90° compass model each level is
(asymptotically) 2L-fold degenerate for Jx ≠ Jy and is 2Lþ1-
fold degenerate when Jx ¼ Jy. This degeneracy appears in the
thermodynamic limit L → ∞. For finite L, these states split to
form a narrow band. There is a gap of size Oðe−L=L0Þ, with a
fixed length scale L0, that separates the ground states from the
next excited state (Dorier, Becca, and Mila, 2005; Doucot
et al., 2005). In the thermodynamic limit, these sets of 2L

degenerate states further merge at the point Jx ¼ Jy to form
bands of 2Lþ1 degenerate states. Numerical and other analyses
illustrate that the level crossing at Jx ¼ Jy is related to a first-
order (or discontinuous) transition of the lowest-energy state
as a function of (Jx − Jy) (Dorier, Becca, and Mila, 2005;
Chen et al., 2007; Orús, Doherty, and Vidal, 2009). The two
sets of states for positive and negative values (Jx − Jy) are
related to one another by the global Ising-type reflection
symmetry of the 90° compass model which exchanges
Jx ↔ Jy. Particular forms for this global symmetry were
written down by Nussinov and Fradkin (2005), Nussinov and
Ortiz (2009a), and Orús, Doherty, and Vidal (2009). In
essence, these correspond to rotations in the internal pseu-
dospin space about the Tz axis by an angle of 90° or by 180°
about the 45° line in the ðTx; TyÞ plane, compounded by an
overall external reflection of the lattice sites about the 45° line
on the square lattice or a rotation by 90° about the lattice z axis
that is orthogonal to the square lattice plane. The first-order
transition at Jx ¼ Jy found by various groups represents the
crossing of two bands that are related by this global symmetry.
Similarly, although by the considerations outlined in earlier
sections, hTx;y

r i ¼ 0 at any positive temperature, within the
ground state, Tr can attain a nonzero expectation value. It is
seen that the “magnetization components” hTx;yi exhibit a
discontinuous jump at the point Jx ¼ Jy (Dorier, Becca, and
Mila, 2005; Orús, Doherty, and Vidal, 2009). [For Jx > Jy, the
expectation value hTxi is strictly positive; this expectation
value jumps discontinuously to zero when Jx ¼ Jy (and
remains zero for all Jx < Jy). Similar results are found when
exchanging Jx ↔ Jy and hTxi ↔ hTyi.] The free energy is
similarly found to exhibit a discontinuity in the first derivative
relative to Jx − Jy at the point Jx ¼ Jy (Orús, Doherty, and
Vidal, 2009).
It is also interesting to note that when Jx > Jy > 0, the

ground states jψi were found to be an eigenstate of the Tx

related symmetry operators of Eq. (84) with an eigenvalue of
þ1. That is, for the pseudospin T ¼ 1=2 analyzed (Orús,
Doherty, and Vidal, 2009),

Y
ry; fixed rx

τxr jψi ¼ þjψi: ð112Þ
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Similarly, for Jy > Jx the same occurs with x and y inter-
changed,

Y
rx; fixed ry

τyr jψi ¼ þjψi: ð113Þ

A symmetry analysis starting from the decoupled-chain limit
is provided by Dorier, Becca, and Mila (2005) and Doucot
et al. (2005).
An analytic mean-field-type approximation was invoked

(Chen et al., 2007) to study the fermionic representation of the
90° compass model. In general, fermionization cannot be done
in a useful way in dimensions larger than 1. That is, on a
general lattice a fermionization procedure (known as the
Jordan-Wigner transformation) where pseudospins (or spins)
are replaced by spinless fermions, gives rise, in spatial
dimensions larger than 1, to a system with arbitrarily long-
range interactions. In the case of the 90° compass model,
however, the special form of the interactions and consequent
symmetries of Eq. (84) enable a reduction to a fermionic
system in two dimensions with local terms. The resulting
fermionic Hamiltonian (Chen et al., 2007) contains both
hopping and pairing terms along single (e.g., horizontal)
chains. The chains interact with one another along a transverse
direction (e.g., vertical) via a nearest-neighbor-type density-
density attractions (Jy > 0) or repulsion (Jy < 0). The fer-
mionic Hamiltonian reads

H ¼ −
X
r

�
Jynrnrþey − Jynr þ

Jx
4
ðcr − c†r Þðcrþex þ c†rþexÞ

�
:

ð114Þ

The fermionic Hamiltonian of Eq. (114) was analyzed by a
self-consistent mean-field-type analysis and the analysis was
extended to perturbations beyond mean field (Chen et al.,
2007). This work suggests that a first order is indeed present at
Jx ¼ Jy. The self-consistent mean-field-type calculation sug-
gests that the average values of hTx;zi exhibit a discontinuous
jump. This analytical result is in accord with the numerical
approaches of Dorier, Becca, and Mila (2005) and Orús,
Doherty, and Vidal (2009). We pause to reiterate that while
fermionization giving rise to local interactions is generally
impossible in canonical systems, in compass-type systems
fermionization is possible. A similar occurrence is encoun-
tered in Kitaev’s honeycomb model where in fact the
fermionization enables us to solve the problem exactly in
different topological charge sectors. The possibility of fermio-
nization in these systems is rooted in the simple bond algebra
which the interactions along different bonds satisfy, giving
rise to further symmetries (giving rise to local conserved
topological charges in Kitaev’s model) (Nussinov and Ortiz,
2009b; Cobanera, Ortiz, and Nussinov, 2010, 2011).
The quantum 90° compass models that we have thus far

focused on were of pseudospin T ¼ 1=2. For integer
pseudospin T ¼ 1; 2;…, all of the symmetries of Eq. (84)
commute with one another. Unlike the case of all half-odd-
integer pseudospins where the anticommutator fexpðiπTxÞ;
expðiπTyÞg¼0 for integer T, and the commutator ½expðiπTxÞ;
expðiπTyÞ� ¼ 0. Thus, for integer pseudospin T, the two types

of symmetry operators of Eq. (84) with the two different
possible orientations for the planes (in this case lines) Pγ

corresponding to vertical columns and horizontal rows com-
mute with one another. As noted by Dorier, Becca, and Mila
(2005), in this case the pseudospin T ¼ 1=2 argument con-
cerning a minimal twofold degeneracy as a result of the
incompatibility of the symmetry operators of Eq. (84) no
longer holds and a nondegenerate ground state can arise.
Indeed, numerical calculations on small finite-size systems
(Dorier, Becca, and Mila, 2005) found the ground state to be
nondegenerate. In a similar fashion, time reversal no longer
implies a twofold degeneracy for integer pseudospin T as it
does for all half-odd-integer pseudospin values (Nussinov and
Ortiz, 2009a, 2009c). As in the considerations discussed in
Sec. VI.C, the d ¼ 1 symmetries of this system imply a
degeneracy, for tilted boundary conditions, which is expo-
nential in the system perimeter (Nussinov and Shtengel,
2015). Such boundary conditions may emulate the square
lattice in the thermodynamic limit.
We close this section by remarking that a solution of a

one-dimensional (1D) variant of the quantum planar 90°
compass model (Brzezicki, Dziarmaga, and Oleś, 2007)
further illustrates how the energy spectrum collapses at the
quantum phase transition between two possible kinds of
order, with either σz-like or σx-like short-range correlations,
and is thus highly degenerate, similarly to the 2D case where
the degeneracy scales exponentially in the perimeter size
[i.e., as Oð2LÞ].

3. The classical 90° model on a cubic lattice

For the classical three-dimensional 90° compass model, the
existence of d ¼ 1 symmetry-invariant nematic order can be
established, via entropic stabilization calculations along the
same lines as for the classical 120° model (Nussinov et al.,
2004). Clear signatures of nematic order were seen in
Monte Carlo simulations (Wenzel and Läuchli, 2011b). A
particular three-dimensional extension of Eq. (107) was
considered by Wenzel and Läuchli,

QWL ¼ 1

N


�X
i
Tx
rTx

rþex − Ty
rT

y
rþey

�
2

þ
�X

r
ðTy

rT
y
rþey − Tz

rT
z
rþez

�
2

þ
�X

i
ðTx

rTx
rþex − Tz

rT
z
rþez

�
2
�
; ð115Þ

with (as throughout) N denoting the total number of sites in
the lattice. A discontinuous transition appeared at an ordering
transition temperature To ≃ 0.098J. That is, the nematic-type
order parameter of Eq. (115) was finite just below To and
exhibits a discontinuous jump at To. As noted by Wenzel and
Läuchli (2011b), when present, the detection of a first-order
transition via the vanishing of χ−1, as we review next for the
quantum model, may lead to null results.

4. The quantum 90° model on a cubic lattice

Using the same high-temperature-series methods (Oitmaa
and Hamer, 2011) discussed in Sec. IX.A.2.a, Oitmaa and
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Hamer (2011) further examined the pseudospin T ¼ 1=2
three-dimensional 90° compass model. The susceptibility,
evaluated with the free energy associated with the inclusion
of an external field coupled to a standard three-dimensional
version of the nematic order parameter of Eq. (107),

Q3 ¼ h2τxrτxrþex − τyrτ
y
rþey − τzrτ

z
rþezi; ð116Þ

did not, to order Oðβ20Þ with β the inverse temperature,
indicate the existence of a real zero of χ−1. This suggested that
no finite critical transition temperature exists. The absence of
divergence of χ does not rule out the existence of a first-order
transition similar to that found in the classical model (Wenzel
and Läuchli, 2011b).

B. Classical 120° model

Transitions in the 120° compass model on the cubic lattice
were numerically examined by various groups. In the most
recent study to date, Wenzel and Läuchli (2011a, 2011b)
examined the standard XY-type order parameter

m ¼ N−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XN
i¼1

Tx
i

�
2

þ
�XN

i¼1

Ty
i

�
2

s
; ð117Þ

and the susceptibility χ ¼ Nðhm2i − hmi2Þ as a function of
temperature. In accordance with earlier estimates (Tanaka,
Matsumoto, and Ishihara, 2005; van Rynbach, Todo, and
Trebst, 2010), the transition temperature between the ordered
and disordered states was determined to be (Wenzel and
Läuchli, 2011b)

Tc;120° classical ≃ 0.6775J. ð118Þ

This value is, essentially, the same as that reported earlier by
van Rynbach, Todo, and Trebst (2010). As the classical 120°
model concerns XY-type pseudospins in D ¼ 3 dimensions, a
natural expectation may be that the transition may be in the
same universality class as 3D XY systems but this turned out
not to be the case. In fact, the collection of exponents found
seems to suggest that the 120° compass model lies in a new
universality class. These results beg further analysis.
Specifically, by examining the scaling of m and χ with system
size, Wenzel and Läuchli (2011a, 2011b) found that the
critical exponents associated with the transition at the critical
temperature of Eq. (118) are

ν120° ¼ 0.668ð6Þ; η120° ¼ 0.15: ð119Þ

The “anomalous” exponent η governs the algebraic decay of
the correlation function at the critical point. That is, the two-
point correlation function at the critical point scales as

hTi · Tji ∼
1

jrijjD−2þη ; ð120Þ

with, as in earlier expressions, jrijj denoting the distance
between sites i and j, and D being the spatial dimensionality
of the lattice. To make a connection with the canonical form of

the correlation function of Eq. (108), which is valid for general
parameters, at the critical point ξ diverges and an algebraic
decay of correlations remains. For the bare fields Ti, at the
critical temperature, the form of Eq. (120) appears. These
reported exponents do not fall into any of the typical
universality classes. In particular, although ν of Eq. (119)
is not very different from its value in a 3D XY-type system
(where ν3DXY ¼ 0.671), the value of the anomalous exponent
is significantly larger (ν120° ≫ ν3DXY ≃ 0.038) (Wenzel and
Läuchli, 2011a, 2011b). Combined with the hyperscaling
relations, these critical exponents are consistent with the seen
small specific heat exponent α (Cv ∼ jT − Tcj−α) seen in
numerical results (Wenzel and Läuchli, 2011a, 2011b).
A similar large discrepancy between the exponents of the

120° model and those of known universality classes appears in
the value of an exponent a6 that will be introduced next for a
related discrete version of the 120° model.

C. Discrete classical 120° compass model

A clock model version of the 120° compass model was
further introduced and studied by Wenzel and Läuchli (2011a,
2011b). In this variant, the classical Hamiltonian of Eq. (85) is
used wherein the classical pseudovectors Ti at any site i can
point only along six equally spaced discrete directions on the
unit disk. These directions correspond to the angles of
Eq. (100) along which the system may be oriented at low
temperatures (Nussinov et al., 2004; Biskup, Chayes, and
Nussinov, 2005). One of the virtues of this system is that it is
easier to simulate and enables numerical investigations of
larger size systems.
The quantity QWL of Eq. (115) as well as the magnetization

m of Eq. (117) attain nonzero values below a critical temper-
ature Tc discrete 120° ≃ 0.675 05J. This value is numerically
close to, yet slightly larger than, the transition for the
continuous classical 120° model [Eq. (118)]. As noted by
Wenzel and Läuchli (2011a, 2011b), if this deviation in the
values of the critical temperature between the discrete version
and the original continuous 120° model is indeed precise, it
may well be that the entropic stabilization of the 120° model
driven by continuous pseudospin fluctuations (Nussinov et al.,
2004; Biskup, Chayes, and Nussinov, 2005) can be somewhat
larger than in its discrete counterpart where fluctuations are
more inhibited.
The critical exponents, as attained numerically, for the

discrete 120° compass model are almost identical to those of
the continuous 120° model [given by Eq. (119)]. An analysis
similar to that of (Lou, Sandvik, and Balents, 2007), for
T < Tc, examined the distribution of the orientations, as seen
in the average m ¼ N−1P

imi for individual systems of
sufficiently small size (L < Λ6). Similarly to the results of
Lou, Sandvik, and Balents (2007), it was found that when
examined over an ensemble of such systems the probability
PðmÞ of attaining a particular m was invariant under con-
tinuous [i.e., U(1)] rotations. Conversely, for larger systems,
this continuous rotational symmetry was lifted. That is, for
systems of size L > Λ6, the probability distribution PðmÞ
exhibited only the discrete global sixfold global symmetry of
the system, with clear peaks along the six angles along which
each individual Ti may point. The system-size length scale Λ
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for the onset of this change scales with the correlation length ξ
as Λ6 ∼ ξa6 . This exponent was found to be a6; discrete 120° ≃ 1.3
which is far removed from the corresponding value
[a6;six state clock ¼ 2.2 (Lou, Sandvik, and Balents, 2007)] for
XY models perturbed by a term of the type −h

P
i cos 6θi.

[Such an external field term renders XY systems to be of the
discrete (clock) type.] The lack of breaking of continuous
rotational symmetry as evinced in the distribution PðmÞ for
sufficiently small systems thus allows a new exponent which,
like the standard critical anomalous exponent η of Eq. (119),
differs from that in known examples thus far.

D. Extended 120° model

An extended 120° model on the cubic lattice was recently
studied (van Rynbach, Todo, and Trebst, 2010). The model is
defined by the Hamiltonian

Hextended
120 ¼ −

X
r;α¼x;y

1

4
½JzTz

rT
z
rþeα þ 3JxTx

rTx
rþeα

�
ffiffiffi
3

p
JmixðTz

rTx
rþeα þ Tx

rT
z
rþeαÞ�

− Jz
X
r

Tz
rT

z
rþez : ð121Þ

This model was studied in both its classical and quantum
incarnations. The symmetric point Jx ¼ Jz ¼ Jmixð¼ JÞ cor-
responds to the 120° model of Eq. (9). Next we survey these
results.

1. Classical extended 120° model

A free-energy analysis similar to that in Sec. VIII.B.1 found
that the six uniform states discussed earlier, at angles θ� ¼ 0,
60°, 120°, 180°, 240°, and 320° relative to the Tx axis, are the
entropically stabilized low-energy states for the extended 120°
model over a region of parameter space where 0.8 ≤
Jmix=Jz < 1. This region, however, lies at the interface
between two other phases (van Rynbach, Todo, and Trebst,
2010). For Jmix > Jz, low-temperature states are energetically
selected (and not entropically selected as discussed earlier for
the 120° model) to be states in which there is a preferred angle
that alternates in a staggered fashion. Pseudospins in a single
x-z or y-z plane may have a value of θ� while those on the next
parallel plane may assume a value of θ� þ 180°, and so on.
This value of θ� varies continuously from 30° for Jmix=Jz
→ 1þ to a value of θ� ¼ 45° for asymptotically large Jmix=Jz.
The transition from the regime with Jmix=Jz ≤ 1 (where order
is stabilized by entropy) to that where Jmix=Jz > 1 (where
order is energetically stabilized) is the first transition at zero
temperature in which level crossing occurs. For Jmix=Jz ≤ 0.8,
entropic stabilization favors configurations for which the
angle θ� is uniform throughout the system and assumes a
value that is an integer multiple of 90°. Throughout the entire
region 0 ≤ Jmix=J ≤ 1, the d ¼ 2 emergent symmetries of
Eq. (87) found earlier for the classical system remain intact.
Like the 90° compass model, the extended 120° model

exhibits finite-temperature critical points concurrent with the
first-order transitions at zero temperature at the point of
symmetry (the original 120° for which Jmix ¼ Jz). In the

extended 120° model, these critical points fuse to form a
continuous line as Jmix=Jz is varied (while Jx ¼ Jz). The
critical nature is seen by the specific heat divergence and the
finite-temperature expectation values of the pseudospins. van
Rynbach, Todo, and Trebst (2010) reported that at the
symmetric point, the 120° model exhibits a critical transition
at a temperature of Tc ¼ ð0.677� 0.003ÞJ, a value which is
very close to that of the later study of Wenzel and Läuchli
(2011b) [see Eq. (118)].

2. Quantum extended 120° model

One of the major virtues of the extended model, along the
line Jmix ¼ 0, is that it is free of the “sign problem” that
plagues quantum Monte Carlo simulations. Along the line
Jx ¼ Jz ¼ J (and Jmix ¼ 0), the system was found to undergo
a continuous transition at a temperature Tc ¼ ð0.41� 0.1ÞJ
into an ordered state in which all pseudospins point up or
down along the Tz direction (the �Tz directions). At zero
temperature, as the ratio Jx=Jz is varied, a first-order transition
corresponding to level crossing at Jx ¼ Jz appears. For
Jx=Jz < 1, the ground state is of the �Tz form.
Conversely, for Jx=Jz > 1, the ground states are of the
�Tx type. This situation is reminiscent of the first-order
transition found in the 90° compass model on the square
lattice. In both cases, elementary excitations corresponding to
a pseudospin flip (of either the �Tz or the �Tx type) are
gapped. The gap is reduced at the point of symmetry
(Jx ¼ Jz ¼ J) of this truncated model with Jmix ¼ 0, where
it attains a value equal to Δ ≈ ð0.34� 0.04ÞJ.
The main interest lies in the symmetric 120° angle and its

environs. Toward that end, van Rynbach, Todo, and Trebst
(2010) computed perturbatively the effect of a finite Jmix=Jz to
find a very interesting suggestive result. These calculations
suggest that the gap closes in the vicinity of the symmetry
point (Jx ¼ Jz ¼ Jmix). If this is indeed the case then the states
found in the “unmixed” truncated model (Jmix ¼ 0) are
adiabatically connected to those near and at the original
symmetric 120° model. On either side of the symmetry point,
the ground states are of the �Tx and �Tz types as discussed
above. These states must somehow evolve and merge into the
states at the point of symmetry. This suggests a greater degree
of degeneracy within the ground-state sector of the symmetric
120° model. Among other possibilities this raises the pos-
sibility (compounded by 1=S calculations) of six states akin to
those found classically (Nussinov et al., 2004; Biskup,
Chayes, and Nussinov, 2005) in the symmetric 120° model
or of having 12 states with pseudospins all uniformly oriented
at an angle θ� ¼ 0; 30°;…; 330° relative to the τx direction.

E. Honeycomb lattice 120° compass models

In Secs. VI.F and VIII.D we reviewed key physical aspects
of the 120° honeycomb model of Eq. (12). This included an
analysis of the ground-state sector, its emergent symmetries,
and the order-out-of-disorder free-energy calculations. We
now turn to other more quantitative aspects.

1. Classical model

Following Nasu et al. (2008), Wu (2008), and Zhao and
Liu (2008), we reviewed, in Sec. VI.F, the presence of a
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continuous global (d ¼ 2) and chiral discrete d ¼ 1 emergent
symmetries of the 120° compass models on the honeycomb
lattice. The low-temperature orders are unconventional. That
is, the numerically observed usual pair correlations hTi · Tji
were found to be short ranged (and hTii vanished) as the
system size increased (Nasu et al., 2008). Numerically, a
continuous (or weakly first-order) low-temperature ordering
transition at ca. Tc ¼ 0.0064J is marked by an order param-
eter q defined as (Nasu et al., 2008) q ¼ N−1PN

i¼1 qi with
qi ¼ cos 3θi. Note that this quantity constitutes an analog to
the nematic-type order parameters in the two- and three-
dimensional 90° models. The pair correlations hqiqji exhibit a
correlation length of size ξ that scales in accordance with
Eq. (109) with an exponent ν ¼ 0.72� 0.04. Similarly, the
transition at To is evident as a peak in the specific heat. Within
the ground states jqj ¼ 1 in accord with the order-out-of-
disorder analysis that, as reviewed in Sec. VI.F (similar to that
of the 120° model on the cubic lattice), led to the angles
of Eq. (100).

2. Quantum model

The numerical value of the spectral gap between the ground
state and the next excited state was found to progressively
diminish as the system size was increased (Nasu et al., 2008).
Currently, it is not clear if this reflects the existence of gapless
modes or points to a degeneracy of the system. Generally, in
many spin (and pseudospin) systems, similar results appear in
simpler systems that harbor bona fide SU(2) symmetries
where the Lieb-Schultz-Mattis theorem and more recent
extensions exist (Lieb, Schultz, and Mattis, 1961; Hastings,
2004). It was furthermore found that the ground states might
be approximated by an ansatz wave function of the type (Nasu
et al., 2008)

jΨð�Þi ¼ N
X
l

Alfjψ ð↑Þ
l i � jψ ð↓Þ

l ig: ð122Þ

In Eq. (122), N is a normalization constant, fAlg are

variational parameters, and the states jψ ð↑;↓Þ
l i are schemati-

cally represented in Fig. 26.
Explicitly,

jψ ð↑Þ
l i ¼

Y
hijil

UðϕγÞj↑↑ � � �↑i: ð123Þ

In the above, l denotes a set of links hiji for which the fully
polarized state j↑ � � �↑iwill be rotated so that the pseudospins
will be parallel to the links in the set l. In Eq. (123) we will,
specifically, set for a single pair of sites i and j on the link hiji
(Nasu et al., 2008)

UðϕγÞhiji ¼ exp½−iϕγðTy
i þ Ty

jÞ�; ð124Þ

where γ is set by the spatial direction of the link between i and
j: ðϕ1;ϕ2;ϕ3Þ ¼ ð0; 2π=3; 4π=3Þ. Thus, the states of
Eq. (122) correspond to a linear superposition of “dimer
states;” see, e.g., Kivelson, Rokhsar, and Sethna (1987),
Rokshar and Kivelson (1988), Nussinov et al. (2007), and
Nogueira and Nussinov (2009). In this case, the dimer states

jψ↑ð↓Þ
l i correspond to states wherein the pseudospins are

parallel (or antiparallel) to the spatial direction. Kinetic
tunneling between different dimer states can lower the energy
of such states; see Fig. 26.
Thus, in the space spanned by the dimer states fjψ ð↑=↓Þ

l ig
certain admixtures of these states with certain sets of the
amplitudes fAlg in Eq. (122) can be selected by quantum
fluctuations.

F. Checkerboard lattice compass models

The most prominent compass models have been inspired by
orbital or other interactions on cubic or other geometrically
unfrustrated lattices. We briefly touched on some aspects of
geometric frustration in different arenas in Secs. V.C, V.B.6,
and elsewhere. We now explicitly turn to compass models on
the checkerboard lattice. In Sec. III.C.2 [and, in particular, in
Eq. (25)], we briefly introduced the checkerboard on the
checkerboard lattice (Nasu and Ishihara, 2011b; Nasu, Todo,
and Ishihara, 2012b). The checkerboard lattice, a two-
dimensional rendition of the pyrcholore lattice, is a prototypi-
cal frustrated lattice. The system of Eq. (25) was motivated by
examining, within second-order perturbation theory (assuming
the kinetic term is small relative to the Coulomb penalty), a
spinless Hubbard model on this lattice. This model exhibits
d ¼ 1 symmetries in the form (Nasu, Todo, and Ishihara,
2012b) of Ol ¼

Q
i∈lτ

z
i , where l denotes diagonals that run

across the system either in the h11i or h11̄i direction. By the
generalization of Elitzur’s theorem (Batista and Nussinov,
2005; Nussinov, Ortiz, and Cobanera, 2012b), these sym-
metries cannot be broken at finite temperatures. Some limits of
the problem are obvious. When jJxj ≫ jJzj, as each site lies on
only one of the two diagonal directions (h11i or h11̄i), the
Hamiltonian of Eq. (25) reduces to that of decoupled diagonal
chains with Ising τiτj interactions between nearest neighbors.
In the other extreme limit, that of jJzj ≫ jJxj, interactions

FIG. 26 (color online). Top: Some of the pseudospin configu-
rations where the honeycomb lattice is covered by nearest-
neighbor (NN) bonds with the minimum bond energy. One of
the q ¼ 1 states in (a) and one of the q ¼ −1 in (b). In NN bonds
surrounded by ellipses, the bond energy is the lowest. Bottom:
One example for the two pseudospin configurations where a
resonance state is possible due to the off-diagonal matrix element.
From Nasu et al., 2008.
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along the diagonals become negligible and the system becomes
a two-dimensional Ising model on the square lattice with
nearest-neighbor τzi τ

z
j interactions. In tandem with these limits,

it was reported (Nasu and Ishihara, 2011b; Nasu, Todo, and
Ishihara, 2012b) that at low temperatures, for jJxj≲ 2jJzj,
uniform or Néel (depending on the sign of Jz) Ising order
appears. By contrast, when 2jJzj≲ jJxj, the decoupled chain-
like character leads, on an L × L lattice, to a 22L degeneracy
similar to that found for the square lattice 90° compass model.
In the antiferromagetic variant of this system, at zero temper-
ature, a first-order transition between the two low-temperature
phases was found at Jx ≃ 2.7Jz. Several approaches (Nasu and
Ishihara, 2011b; Nasu, Todo, and Ishihara, 2012b) suggest that
there is a finite-temperature tricritical point in the vicinity
of Jx ¼ 2Jz.

G. Arbitrary-angle compass models

We now discuss the arbitrary-angle square lattice compass
models (Cincio, Dziarmaga, and Oleś, 2010) of Eq. (22). The
symmetry of the ground states of these systems changes
character at an angle θc which is very close to the right-angle
value of the 90° compass model. The second-order transition
at θ ¼ θc is associated with the doubling of the ground-state
degeneracy. Specifically, for θ < θc, the system of Eq. (22)
has two degenerate ferromagnetic ground states with a
spontaneous magnetization that is parallel (antiparallel) to
the τx (πx þ πy) direction. Conversely when θ > θc, there are
four degenerate ground states with pseudospins along the�πx

or �πy directions. For the pseudospin-1=2 realization of
Eq. (22), it was numerically seen that θc ≃ 84.8°. As the
pseudospin value increases and the system becomes more
classical, θc monotonically increases and reaches 90° in
the classical limit. Thus, the fourfold-degenerate phase is
promoted by quantum fluctuations.

H. XXZ honeycomb compass model

In Sec. II.A.3 [in particular, in Eq. (8)] the XXZ honeycomb
compass model (Nussinov, Ortiz, and Cobanera, 2012a) was
introduced (see also Fig. 5). This model can be mapped onto a
quantum Ising gauge (QIG) theory on a square lattice
(Nussinov, Ortiz, and Cobanera, 2012a)

HXXZ
QIG ¼ −

X
x bonds

Jlxσxl −
X
y bonds

Jlxσxl −
X
z bonds

Jl
0

z

Y
l∈Pl0

σzl: ð125Þ

A few explanations are in order concerning this Hamiltonian.
The links l and the associated coupling constants Jl refer to
the links of the original honeycomb lattice; these links can be
oriented along either the x, y, or z directions of the honeycomb
lattice. In Eq. (125), the Pauli operators σx;zl are located at the
centers l of the square lattice which is formed by shrinking all
of the vertical (or z) links of the honeycomb lattice to an
individual point. After such an operation, the resulting
(topologically square) lattice is comprised of x- and y-type
links. As seen in Eq. (125), there is a field h ¼ Jx that couples
to the Pauli x operator on each such link. This is augmented by
a plaquette term [the last term in Eq. (125)]. The plaquette P0

l
is formed by the centers of the four links (two x-type links and

two y-type links) that are nearest neighbors to the center of a
vertical z-type link l. The product

Q
l∈Pl0

σzl denotes the
product of all four σz operators at the centers of links of the
square plaquette that surrounds an original vertical link l that
has been shrunk to a point. The sum over the original vertical
links (z bonds) becomes, in Eq. (125), a sum over all
plaquettes of a square lattice formed by the shrinking of all
vertical links. The link center points of this square lattice
coincide with those formed by the center points of the x- and
y-type bonds of the original honeycomb lattice. When all of
the coupling constants Jlx;z are isotropic, the system is that of
the canonical uniform standard transverse-field Ising gauge
theory which, as is well known, maps onto the 3D Ising gauge
theory. The 3D Ising gauge theory is dual to the standard 3D
Ising model on the cubic lattice (Wegner, 1971; Kogut, 1979).
Thus, the uniform XXZ honeycomb compass model is dual to
the 3D Ising model and exhibits a finite-temperature phase
transition with the standard 3D Ising exponents (Nussinov,
Ortiz, and Cobanera, 2012a). As is evident in Eq. (125), not all
coupling constants Jlx;z need to be of the same strength. As the
disordered transverse-field Ising gauge theory can exhibit a
spin-glass-type transition, the XXZ honeycomb model may
also correspond to a spin glass when it is nonuniform
(Nussinov, Ortiz, and Cobanera, 2012a). Additional informa-
tion concerning the quantum Ising gauge theory appears in
Sec. IX.K.

I. Plaquette orbital model

Biskup and Kotecky (2010) studied the classical realization
of the plaquette orbital model (Wenzel and Janke, 2009) and
certain quantum variants. Next these results are reviewed.

1. Exact symmetries

Examining the Hamiltonian of Eq. (24) we note that the
inversion of the four pseudospins τxi → −τxi on an A plaquette
(while leaving τyi unchanged) constitutes a local symmetry. A
similar effect occurs with x and y interchanged on any of the
B-type plaquettes. These local (i.e., gauge) symmetries are
recast in terms of the following four-site symmetry operators
of the T ¼ 1=2 quantum Hamiltonian of Eq. (24) (½U□A

; H� ¼
½U□B

; H� ¼ 0),

U□A
¼
Y
i∈□A

τyi ; U□B
¼
Y
j∈□B

τxj : ð126Þ

In Eq. (126), A denotes any plaquette of the A type and,
similarly, B denotes any plaquette of the B type. By Elitzur’s
theorem, at any finite temperature (T > 0), all expectation
values must be invariant under the symmetries of Eq. (126).

2. Classical ground states and emergent symmetries

As in the analysis for the classical 120° and 90° models,
(Nussinov et al., 2004; Biskup, Chayes, and Nussinov, 2005),
by rewriting the Hamiltonian of Eq. (24) as a sum of squares
and using uniform states as classical “variational states,”
Biskup and Kotecky (2010) demonstrated that all classical
ground states of Eq. (24) are uniform states up to the
application of the classical version of the local symmetries
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of Eqs. (126). In particular, for JA > JB, a state which is fully
polarized along the x axis constitutes a ground state; this state
can be further mutated by local inversion gauge transforma-
tions. Similarly to the situation in the classical 120° and
compass models a continuous symmetry emerges in the
classical ground-state sector. When JA ¼ JB, any constant
uniform state of the pseudospins Tr is a ground state of the
classical system. As these classical vectors can point any-
where on the unit disk, a continuous rotational symmetry
appears.

3. Finite-temperature order out of disorder

As in the classical 120° and 90° compass models, a finite-
temperature order-out-of-disorder mechanism lifts the ground-
state degeneracy (Mishra et al., 2004; Nussinov et al., 2004;
Biskup, Chayes, and Nussinov, 2005), and leads, at low
positive temperatures (0 < T < T0), to a nematic-type order
in the plaquette compass model wherein most of the configu-
rations have a majority of the pseudospins aligned along either
the ð�exÞ or the ð�ezÞ direction (Biskup and Kotecky, 2010).
Because of the (classical version of the) local symmetries of
Eqs. (126), both signs of the orientation (�) are equally likely.
Following Biskup, Chayes, and Starr (2007), low-

temperature order was also proven to hold in the quantum
model when the magnitude of the pseudospin is sufficiently
large (jTj > cβ2 with c a positive constant and β the inverse
temperature) (Biskup and Kotecky, 2010). The technical
reason for requiring a sufficiently large pseudospin is that
within the proof of Biskup, Chayes, and Starr (2007) and
Biskup and Kotecky (2010) thermal fluctuations were
assumed to dominate quantum fluctuations.

J. Gell-Mann matrix compass models

The two Gell-Mann matrix compass models of Eqs. (67)
and (68), derived from Eq. (66), have very interesting and
distinct behaviors (Chern and Wu, 2011).

1. Cubic lattice Gell-Mann matrix compass model

As the two Gell-Mann matrices λð3Þ and λð8Þ are diagonal
and commute with one another, the quantum model of
Eq. (67) is essentially classical (Chern and Wu, 2011).
T ¼ 0: The ground-state energy per site E=N ¼ −2J=3 is

consistent with two-thirds of the bonds being minimized and
the remaining one-third being frustrated. The two-point
correlation function hλi · λji exhibits rapidly decaying oscil-
lations and is essentially vanishing for distances jrijj ≥ 5
lattice constants (Chern and Wu, 2011).
T > 0: Monte Carlo simulations were performed. An

integration from the specific heat curve indicates that there
is a large residual entropy at zero temperature. Although not
explicit an estimate was given by Chern and Wu (2011) for
viable transitions; judging from the data shown the sharp
specific heat peak occurs at a temperature T ∼ 0.7J.

2. Diamond lattice Gell-Mann matrix compass model

For a single pair of nearest-neighbor sites on the lattice
along the n0 direction (i and j), the minimum of the
corresponding term in Eq. (68) is achieved when the

corresponding orbital states are 3−1=2ðjpxi þ jpyi þ jpziÞ
and 2−1=2ðjpxi − jpyiÞ. As in the case of the Gell-
Mann model on the cubic lattice and, more generally,
compass models, the system is frustrated and not all inter-
actions can be simultaneously minimized. As shown by
Chern and Wu (2011), the ground states are of the form
jψi ¼Qijλi with, for site i, the local state jλii ¼
j � exi; j � eyi, or j � ezi such that for all nearest-neighbor
pairs hiji,

ðλi · eijÞðλj · eijÞ ¼ −1
3
: ð127Þ

When expressed in terms of the original orbital degrees
of freedom, the local states are explicitly j � exi ¼
2−1=2ðjpyi � jpziÞ and cyclic permutations thereof [i.e., j �
eyi ¼ 2−1=2ðjpzi � jpxiÞ and j � ezi ¼ 2−1=2ðjpxi � jpyiÞ].
As shown in Fig. 27, the states j � ex;y;zi at any site i can be

represented by corresponding arrows on the pyrochlore lattice
formed by the centers of all nearest-neighbor links hiji.
Specifically, these arrows are given by

Rhiji ¼ σγi eijð¼ −σγjeijÞ; ð128Þ

where, with eij denoting a unit vector from site i to site j, the
Ising-type variables σγi ¼ �1 are given by σγi ¼

ffiffiffi
3

p ðλi · eijÞ.
Following Chern and Wu (2011), we next focus on the basic
tetrahedrons of pyrochlore lattice (that have the vertices of the
original diamond lattice at their centers). As a result of the
condition of Eq. (127), there are two incoming and two
outgoing arrows R toward the center of each tetrahedron. This
is the so-called “ice condition” which appears in many other
systems and leads to an extensive degeneracy (Nagle, 1966;
Lieb, 1967) which according to the Pauling estimate would be
S ≈ NkB lnð3=2Þ≃ 0.405NkB (Chern and Wu, 2011). [Note
that according to the more accurate estimate of Nagle (1966)
this would be S ≈ 0.4102NkB.] As in the Gell-Mann matrix
model on the cubic lattice, two-point correlations within the
ground state are decaying. In general, the correlations asso-
ciated with extensively degenerate ice states are dipolar-type
power-law correlations hλi · λji ∼ jrijj−3 (Villain, 1972;

FIG. 27 (color online). A configuration of the pseudovectors
on the diamond lattice and its mapping to the spin-ice state
on the dual pyrochlore lattice. The pseudovector assumes only
six different values hμii ¼ �x̂;�ŷ;�ẑ in the ground states,
corresponding to (py � pz), (pz � px), and (px � py) orbitals,
respectively. These six orbital configurations are mapped to
the six two-in-two-out ice state on a tetrahedron. From
Chern and Wu, 2011.
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Stillinger and Cotter, 1973; Youngblood and Axe, 1981; Ioffe
and Larkin, 1989; Huse et al., 2003; Henley, 2005; Nussinov
et al., 2007). Such correlations were indeed numerically
verified by Chern and Wu (2011) in their system. The ice
condition and its breaking are known to lead to effective
fractional charges and related effects as found in different
contexts (Fulde, Penc, and Shannon, 2002; Nussinov et al.,
2007; Castelnovo, Moessner, and Sondhi, 2008; Powell, 2011;
Chang et al., 2012). In particular, when the temperature
T > 0, thermal excitations out of the ground-state ice con-
dition manifold can lead to deconfined fractional charges
(with dipolar correlations). It would be interesting to see what
is the corresponding physics in this orbital system.

K. Symmetric extended compass Hubbard models

In Sec. V.A.5, and in Eq. (59), in particular, a compass-type
Hubbard model was introduced that, aside from lattice hopping
terms, further included electronic pair creation and annihilation
terms. Both of these terms (kinetic and pairing) were of the
compass type. In Eq. (59), the spatial indices of the electronic
creation and annihilation operators involved were determined
by the spin polarization. The particular, symmetric, variant
written of the extended compass Hubbard model, that of
Eq. (59), in which the pairing and hopping amplitudes are of
equal strength, is amenable to an exact result. It can be
demonstrated (Nussinov, Ortiz, and Cobanera, 2012a) that
the square lattice system of Eq. (59) is dual to the QIG theory
on the dual lattice. This dual lattice (which is also a square
lattice) is formed by regarding each site i of the original square
lattice as the center of a minimal square (or plaquette) of the
dual lattice. The QIG theory was already written down as its
associated couplings pertain to the XXZ honeycomb compass
in Eq. (125). We now do so anew for the symmetric extended
compass Hubbard model. The Hamiltonian of the quantum
Ising gauge theory which is dual to the theory of Eq. (59) is
given by

HSECHM
QIG ¼ −2

X
l

tlσxl −
X
P

Ui

Y
l∈Pi

σzl : ð129Þ

The index l in Eq. (129) denotes a link of the square lattice. In
reference to the symmetric extended compass Hubbard model
of Eq. (59), tl is the hopping amplitude between two sites in the
original electronic system. In the spin Hamiltonian of
Eq. (129), a Pauli operator is placed at the center of each
link l of the square lattice. The first term in Eq. (129) thus
physically corresponds, at each such link l, to a magnetic field
term along the x direction which is of strength tl. The second
term in Eq. (129) is the standard plaquette term of classical
gauge theories. Pi denotes any elementary plaquette of the
square lattice on which Eq. (129) is defined [corresponding to a
site i on the original square lattice model of Eq. (59)].

Q
l∈Pi

σzl
is the product of the four σz operators on the links l of such a
minimal square plaquette Pi of the lattice. In the absence of the
first (magnetic field) term in Eq. (129), the Hamiltonian is that
of the classical square lattice Ising gauge theory (Kogut, 1979)
(which is trivially dual to an Ising chain). The field tl along the
transverse x direction leads to quantum fluctuations between
different classical spin states. These fluctuations are the origin

of the name “quantum Ising gauge theory.” As is well known,
the square lattice quantum Ising gauge theory can be mapped
onto the 3D classical Ising gauge theory (the theory given
solely by square plaquette terms on the cubic lattice). The 3D
Ising gauge theory is, in turn, dual to the standard Ising model
on the cubic lattice. Thus, similar to the discussion in
Sec. IX.H, by the equivalence between the theories of
Eqs. (59) and (129), one can adduce much information.
These considerations make specific remarks about (i) the
spatially uniform and (ii) disordered realizations of this theory.
The spatially uniform system. When all of the pairing and

hopping amplitudes tl and the Hubbard energy terms Ui in
Eq. (59) are spatially uniform and equal to fixed values t and
U, the system is equivalent to and exhibits canonical 3D Ising
behavior. At zero temperature, a 3D Ising transition appears at
a critical t=U ratio of 0.14556.
Disordered systems. The mapping (Nussinov, Ortiz, and

Cobanera, 2012a) between the symmetric extended compass
Hubbard model of Eq. (59) and the quantum Ising gauge
theory of Eq. (129) in general applies to any set of couplings
ftl; Uig. As is well known, sufficiently disordered Ising
models (in which couplings are nonuniform) may display a
spin-glass-type behavior. Thus, by the correspondence
between Eqs. (59) and (129), the electronic system given
by a random symmetric extended compass Hubbard model
may display spin-glass behavior.

X. CONCLUSIONS

Complementing more standard theories with isotropic
interactions between various fundamental fields (such as spin,
charge, color, or more generally pseudospin), there exists a
plethora of physical systems in which the couplings between
the pertinent internal degrees of freedom are direction depen-
dent. The couplings in these compass models depend on the
direction of the vectors connecting the interacting sites relative
to a lattice (or continuum Cartesian or other directions). Such
anisotropic direction-dependent interactions are ubiquitous.
Indeed, the anisotropic components of the interactions
between dipoles when these are placed on lattices have
precisely such a form.
In compass models, external lattice (or other) directions lift

the standard rotational invariance of the interactions. As
reviewed here, in recent decades, numerous condensed matter
systems have been discovered to host precisely such compass-
type interactions. The paradigmatic class of physical systems
described by compass interactions is afforded by transition-
metal materials where the real space form of the pertinent
electronic orbitals leads to exactly such direction-dependent
interactions. The associated ordered orbitals have been
observed to persist, in some materials, up to temperatures
[which can range up to Oð103 KÞ] that may significantly
exceed magnetic ordering temperatures (when these are
present) in these materials.
Other primary examples of compass-type interactions

include diverse spin systems on frustrated lattices, bosonic
and fermionic gases on optical lattices, materials with strong
spin-orbit interactions, and other systems. The simplicity of
the Hamiltonians of even some basic compass-type systems is
deceptive. Compass model systems enjoy far fewer currently
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known results than their standard isotropic peers. Because of
the anisotropic character of the interactions, the study of these
systems is, by comparison to more standard rotationally
invariant systems, a supremely interesting and challenging
problem. Notably, as reviewed here for many particular
compass Hamiltonians, some of these systems may be
quantum liquids or, conversely, may lead to low-temperature
phases of matter in which order is triggered by fluctuation
effects. The dichotomy between compass-type and the more
standard isotropic interactions is manifest in many physical
properties such as the absence of standard symmetry breaking
in many compass models (see, e.g., Sec. VI). Broad highlights
of currently known results and a concise description of their
location in this review have been charted at greater length in
the opening outline of Sec. I.B.
Many other systems with directional interactions, such as

that of wires with unidirectional hopping and different
interactions along the transverse directions, also constitute
compass models. For instance, a Jordan-Wigner transforma-
tion of the 2D 90° compass model yields such a system (with
unidirectional hopping/pairing along one direction and near-
est-neighbor charge-charge interactions along the transverse
directions). More complicated systems that still retain the
same character along different directions abound in many
other arenas. This encompasses both general mesoscopic
systems as well as, e.g., effective theories for topological
insulator surface interfaces (Mross, Essin, and Alicea, 2014).
Augmenting their physical relevance to many different

materials, novel rich phenomena appear in compass models,
e.g., dimensional reduction and holography that are spawned
by unusual (exact or emergent) symmetries. The symmetries
and some of the unusual rich behaviors of compass-type
systems are strongly intertwined. Within the wide framework
of this review, we incorporated new results including a general
theorem establishing the intimate relation between flat bands in
a very broad class of systems and these unusual symmetries
(see Secs. VII and VII.C, in particular). The exploration of the
different states of matter of compass models with such
symmetries has just begun. Specific items that have only
started to be examined include the precise understanding of the
nature of the phase transitions that they exhibit. To date, for
instance, no effective-field theories of these systems have been
studied, or for that matter even been written down (this review
actually includes one of the first general forms of these unusual
anisotropic field theories). One of the powerful driving forces
of this field is the close connections between compass models
and topological quantum information (Nussinov and
van den Brink, 2013, 2015) (such as in Kitaev’s model)
and, in particular, topological states of matter (e.g., those
displayed by recently discovered topological insulators). This
is one of the directions in which the field is bound for the
discovery of new physical phenomena and insights.
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APPENDIX A: THE BOND ALGEBRA OF THE
PLAQUETTE ORBITAL MODEL

In Eq. (24), following Wenzel and Janke (2009) and Biskup
and Kotecky (2010), the plaquette orbital model is introduced.
Remarkably, its local algebraic structure is similar to that of
the 90° compass model on the square lattice [Eq. (1)]. In this
Appendix this observation is clarified, invoking the bond
algebraic structure (Nussinov and Ortiz, 2008, 2009b;
Cobanera, Ortiz, and Nussinov, 2010, 2011; Nussinov,
Ortiz, and Cobanera, 2012a, 2012b; Ortiz, Cobanera, and
Nussinov, 2012). The Hamiltonian defining the plaquette
orbital model is a sum of two types of terms (or “bonds”):
(A) τxi τ

x
j for all links that belong to the A plaquette

sublattice, hiji ∈ A. (B) τyi τ
y
j for all links hiji that belong

to the B plaquette sublattice.
The decomposition into the two plaquette (A and B

sublattices) is shown in Fig. 8 (Biskup and Kotecky, 2010).
The algebra satisfied by these bonds is very simple and is
encapsulated by the following relations:

(i) The square of each bond is 1.
(ii) Any two bonds that are of different type (i.e., one

bond is of type A and the other is of type B) and
share one common site anticommute: fτxi τxj ; τyi τykg ¼
0 with the curly brackets denoting the anticommu-
tator. (By fiat, given the type of the interactions,
hiji ∈ A and hiki ∈ B.)

(iii) Bonds of different type commute if they share no
common site: ½τxi τxj ; τykτyl � ¼ 0 (with i; j; k, and l
corresponding to four different sites).

(iv) Any bond of type A commutes with any other bond
of type A and, similarly, any bond of type B
commutes with all bonds of the B type. Thus,
locally, each bond (having a square that is unity)
anticommutes with two other neighboring bonds and
commutes with the two other nearest-neighbor
bonds (as well as all other bonds on the lattice).
The bond algebra associated with the 90° compass
model of Eq. (1) is very much like that of the
plaquette orbital model. This system has a decom-
position into two types of similar bonds:
(a) τxi τ

x
j on all horizontal links.

(b) τyi τ
y
j on all vertical links.
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The algebra satisfied by these bonds is specified by a
similar list:

(i) The square of each bond is 1.
(ii) Any two bonds that are of different type

that share one common site anticommute
fτxi τxj ; τyi τykg ¼ 0.

(iii) Bonds of different type commute if they share
no common site ½τxi τxj ; τykτyl � ¼ 0 (with i; j; k,
and l corresponding to four different sites).

(iv) Any horizontal bond commutes with any other
horizontal bond and, analogously, any vertical
bond commutes with all vertical bonds.

The local algebra is congruent to that of the plaquette orbital
model: each bond anticommutes with two out of its four
nearest neighbors. This equal structure implies that in their
Cayley tree (or Bethe lattice) approximations, the 90° and the
plaquette compass model are identical.

APPENDIX B: GELL-MANN MATRICES

The Gell-Mann matrices are a representation of the infini-
tesimal generators of the special unitary group SU(3). This
group has dimension 8 and therefore it has a set with eight
linearly independent generators, which canbewritten as λi, with
i takingvalues from1 to8. Theyobey the commutation relations

½λi; λj� ¼
i
2
fijkλk; ðB1Þ

where a sum over the index k is implied. The constants
fijk are f123 ¼ 1, f147 ¼ f165 ¼ f246 ¼ f257 ¼ f345 ¼
f376 ¼ 1=2, and f458 ¼ f678 ¼ ffiffiffi

3
p

=2 and are antisymmet-
ric in the three indices. The Gell-Mann matrix representa-
tions involving 3 × 3 matrices act on complex vectors with
three entries. They have the additional properties that
they are traceless, Hermitian, and obey the relation
TrðλiλjÞ ¼ 2δij,

λ1¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ2¼

0
B@
0 −i 0

i 0 0

0 0 0

1
CA; λ3¼

0
B@
1 0 0

0 −1 0

0 0 0

1
CA;

λ4¼

0
B@
0 0 1

0 0 0

1 0 0

1
CA; λ5¼

0
B@
0 0 −i
0 0 0

i 0 0

1
CA; λ6¼

0
B@
0 0 0

0 0 1

0 1 0

1
CA;

λ7¼

0
B@
0 0 0

0 0 −i
0 i 0

1
CA; λ8¼

1ffiffiffi
3

p

0
B@
1 0 0

0 1 0

0 0 −2

1
CA.

The matrices λ3 and λ8 commute. Three independent SU(2)
subgroups are formed by the elements of vectors μ1, μ2, and
μ3, where μ1 ¼ ð1=2Þðλ1; λ2; λ3Þ, μ2 ¼ ð1=2Þðλ4; λ5; λþÞ, and
μ3 ¼ ð1=2Þðλ6; λ7; λ−Þ. Here the λþ and λ− are linear combi-
nations of λ3 and λ8: λ� ¼ λ3 cos ð2π=3Þ � λ8 sin ð2π=3Þ, so
that, as is expected for an SU(2) spin-1=2, the commutator
½μγ1; μγ2� ¼ ði=2Þμγ3, for each γ ¼ 1, 2, 3.

The operators

R̂þ ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; R̂− ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA ðB2Þ

rotate the vectors μ onto each other: μ2 ¼ R̂−μ1R̂þ

APPENDIX C: CLASSICAL AND QUANTUM
FLUCTUATIONS IN THE LARGE-n LIMIT

The large-n limit (see Sec. III.B) of the theory of Eq. (95) is
exactly solvable. As such, it allows us to easily point out a
difference between the classical and quantum theories. In the
large-n limit of the classical system, order appears in the D-
dimensional system if and only if the classical (lowest-order
[Oð1=nÞ0]) self-energy diagram stemming from the
Boltzmann distribution of harmonic modes (and its related
equipartition theorem)

Σð0Þ
cl ¼

X
α

Z
dDk
ð2πÞD

1

vαðkÞ þ μ
ðC1Þ

does not diverge as the “mass” μ approaches
½−mink;αfvαðkÞg�. The integration in Eq. (C1) is performed
over the first Brillouin zone—a region of finite volume.

Thus, Σð0Þ
cl can diverge only from infrared contributions. In

systems in which the mode spectra vαðkÞ disperse quad-
ratically about their minimum, the relevant integral con-
verges in dimensions D > 2 but fails to converge in low
dimensions due to the large relative phase space volume of
low-energy modes. Quantum mechanically, in large n
systems [see, e.g., Nussinov et al. (2004) and Serral Gracia
and Nieuwenhuizen (2004)], the corresponding self-energy
is governed by the Bose function set by the modes ωk. The
pertinent zero-temperature dispersion of vαðkÞ in the argu-
ment of the integrand governing the convergence or
divergence of Eq. (C1) in the classical case is replaced
in the quantum case by the square root form

ffiffiffiffiffiffiffiffiffiffiffi
vαðkÞ

p
.

Qualitatively similar Bose-type distributions and disper-
sions are found in 1=S calculations. As power counting
suggests, the convergence of the integral and thus the
character of the fluctuations arising from classical and
quantum effects are different. It is possible to have ordering
of the quantum system at zero temperature while the
classical counterpart of Eq. (C1) exhibits an infrared
divergence. Such a case arises in two-dimensional ferro-
magnets. Precisely this sort of situation arises in the 120°
compass model—the large-n quantum version of the model
exhibits low-temperature order (quantum order out of
disorder) yet its classical counterpart exhibits no finite-
temperature order. As a result, however, once the 120°
system is constrained to its original (n ¼ 2)-component
version, both classical thermal fluctuations and quantum
effects lead to similar sorts of ordering.
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