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This is an overview of theoretical approaches to semiflexible polymers and their networks. Such
semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a
chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies
have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible
polymers form a major structural component of tissue and living cells. Reconstituted networks of such
biopolymers have emerged as a new class of biological soft matter systems with remarkable material
properties, which have spurred many of the theoretical developments discussed here. Starting from
the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles,
entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments
on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal
systems such as jammed soft matter, are discussed.
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I. INTRODUCTION

Over the past decades, semiflexible polymers and their
assemblies in the form of solutions and networks have
emerged as a distinct new class of soft condensed matter
with striking properties. A major reason for the recent interest
in semiflexible polymers has been their importance in living
systems. Biopolymer assemblies form principal structural
components throughout biology (Alberts et al., 1994;
Bausch and Kroy, 2006; Kasza et al., 2007; Fletcher and
Mullins, 2010; Lieleg, Claessens, and Bausch, 2010) from the
intracellular scaffold known as the cytoskeleton to extracel-
lular matrices of collagen, as illustrated in Figs. 1 and 2.
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Cytoskelatal structures contribute to intracellular transport and
organization and ensure the structural integrity and mobility of
cells (Alberts et al., 1994). Thus, most of the experimental
studies of semiflexible polymers have been carried out on
biopolymers. From a fundamental physics perspective, a
major motivation for many of the experimental and theoretical
studies of biopolymers has been the diverse behavior of
biopolymer systems, which are often in stark contrast to their
now better understood synthetic and flexible counterparts in
polymer science and materials.
A polymer is said to be semiflexible when its bending

stiffness is large enough, such that the bending energetics, that
favors a straight conformation, can just outcompete the
entropic tendency of a chain to crumple up into a random
coil. Thus, semiflexible polymers exhibit small, yet signifi-
cant, thermal fluctuations around a straight conformation. This
competition between entropic and energetic effects gives rise
to many of the unique physical properties of semiflexible

polymers and their assemblies (MacKintosh and Janmey,
1997; Bausch and Kroy, 2006; Kasza et al., 2007; Fletcher
and Mullins, 2010; Lieleg, Claessens, and Bausch, 2010). The
semiflexible nature of the polymers also has major implica-
tions for how they interact with each other to form entangled
or cross-linked networks, and for the linear and nonlinear
elastic and flow properties of such networks. A deep and
predictive understanding of the physics of such networks has
proven to be a daunting theoretical challenge, in part due to
their disordered many-body nature, and the fundamentally
more peripheral role of entropy in these systems. Here we
review recent advances in modeling such systems and high-
light some of the major remaining open questions.
Biopolymers, especially those composed of globular pro-

teins much larger than the atomic or molecular scale, are far
more rigid than most synthetic polymers, and they constitute
prime examples of semiflexible polymers. Their rigidity
results in conformations, at both the single polymer and
network levels, that are very far from the near Gaussian or
random coil configurations common in polymer physics
(Wilhelm and Frey, 1996). This difference turns out to be
more than just a quantitative one: Semiflexible polymer
systems exhibit qualitatively different elastic and viscoelastic
properties. These properties include reversible softening under
compression (Chaudhuri, Parekh, and Fletcher, 2007), as well
as both stiffening (Gardel et al., 2004a; Storm et al., 2005;
Lieleg et al., 2007) and negative normal stress under shear
(Janmey et al., 2007).
Because of the unusual material properties of biopolymers

and their assemblies, much can be learned from them and
they can serve as inspiration for new materials or new
experimental systems to test fundamental physics. An
example of the latter is the recent use of carbon nanotubes,
which have comparable mechanical properties to many
biopolymers and which can be effectively visualized with
light microscopy, to address long-standing puzzles in
polymer physics (Odijk, 1983; Doi and Edwards, 1988;
Fakhri et al., 2009, 2010).
From a physical point of view, the main differences

between various semiflexible polymers, biological or syn-
thetic, are their dimensions and mechanical properties. One of
the ways to quantify the bending stiffness of polymers is by
their so-called persistence length, which is essentially the
length over which they appear straight in the presence of
Brownian forces. The persistence lengths and dimensions of
various semiflexible polymers are listed in Table I. An

FIG. 1 (color online). Fluorescence microscopy image of bovine
pulmonary artery endothelial cells. Nuclei are stained with DAPI,
microtubules are labeled by an antibody bound to FITC, and actin
filaments are labeled with phalloidin bound to TRITC. Source
http://rsb.info.nih.gov/ij/images/[example image from ImageJ
(public domain)].

FIG. 2. Confocal microscopy image of a fluorescently labeled
collagen network with a concentration of 0.4 mg=ml. Courtesy of
Stefan Münster (Erlangen-Nurnberg).

TABLE I. Persistence lengths and dimensions of various biopol-
ymers, as well as single-walled carbon nanotubes (SWNTs) (Gittes
et al., 1993; Howard, 2001; Dogic et al., 2004; Mücke et al., 2004;
Fakhri et al., 2009; Lin, Broedersz et al., 2010; Lin, Yao et al., 2010).

Type
Approximate
diameter

Persistence
length

Contour
length

Microtubule 25 nm ∼1–5 mm 10s of μm
F-actin 7 nm 17 μm ≲20 μm
Intermediate

filament
9 nm 0.2–1 μm 2–10 μm

DNA 2 nm 50 nm ≲1 m
SWNTs < 1 nm ∼10 μm ≳1 μm
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important aspect, setting biopolymers apart from most syn-
thetic polymers, is that their persistence length is much larger
than the molecular or single protein scale and is often
comparable to or larger than the relevant length scale on
which the polymer is considered, such as its contour length or
the cross-linking length scale of the network in which they are
embedded. Thus, a variety of biopolymers are considered to
be semiflexible, and their dynamics is governed by a com-
petition between entropic and energetic effects. Many theories
of semiflexible polymers have been put to the test, since it
became possible to study the dynamics and elastic properties
of isolated biopolymers.
Quantitative measurements of the properties of biopolymer

systems in their native environment in vivo remain a formi-
dable experimental challenge (Fletcher and Mullins, 2010).
However, important advances have been achieved by using a
bottom-up approach: proteins are purified and reconstituted to
form simplified in vitro models of real biopolymer systems,
which can be studied quantitatively under well-controlled
conditions (Bausch and Kroy, 2006; Kasza et al., 2007;
Lieleg, Claessens, and Bausch, 2010). Most biopolymers,
including filamentous actin (F-actin), intermediate filaments,
and microtubules, as well as associated regulatory proteins can
now be purified and reconstituted into networks. These
reconstituted networks have not only formed an ideal testing
ground for theory, but have often led the way for new
theoretical developments. Thus, a large share of the work
reviewed here was done in the context of such reconstituted
biopolymer networks.
As an example, we show an electron micrograph and a

fluorescence microscopy image of an in vitro F-actin network
in Figs. 3(a) and 3(b). The microstructure and mechanics of
such networks can depend sensitively on the type and
concentration of polymer and cross-linking proteins
(Lieleg, Claessens, and Bausch, 2010). This represents yet
another key difference with respect to flexible polymers:
semiflexible polymers are fundamentally less prone to
entangle with their neighbors, since they cannot readily form
tight coils or knots. This renders biopolymer networks much
more sensitive to cross-linking and may be a reason why
nature employs a wide variety of cross-linking proteins.
Indeed, distinguishing properties of physiological cross-
linkers, such as their dynamic or transient nature (Lieleg
et al., 2008, 2009; Ward et al., 2008; Broedersz et al., 2010;
Heussinger, 2011; Strehle et al., 2011; Yao et al., 2013) or a
nonlinear elastic response (Gardel et al., 2006; Wagner et al.,
2006; Broedersz, Storm, and MacKintosh, 2008; Kasza et al.,
2009, 2010), have been found to have a major impact on the
linear and nonlinear viscoelastic properties of the networks
they form. The addition of motor proteins such as myosin,
which can actively generate stochastic forces by tugging on
F-actin filaments, can drive the network into a nonequili-
brium state (Mizuno et al., 2007; Koenderink et al., 2009),
with striking effects on the dynamics and mechanics of the
system.
One of the key mechanical properties of such reconstituted

networks is the shear modulus. The shear modulus typically
exhibits a rich frequency dependence (Schnurr et al., 1997;
Hinner et al., 1998; Koenderink et al., 2006), including
frequency-independent plateau regimes at intermediate

frequencies, and various power-law regimes at both low
and high frequencies. This variety reflects how the network
can be dominated by qualitatively different dynamics on
different time scales. Insights into these various frequency
regimes were given by theories on the dynamics of semi-
flexible polymers or bundles in permanently or transiently
cross-linked networks (Gittes and MacKintosh, 1998; Morse,
1998a, 1998b, 1998c); Heussinger, Bathe, and Frey, 2007;
Lieleg et al., 2008; Broedersz et al., 2010; Heussinger,
Schüller, and Frey, 2010). In some cases, weak power laws
were observed (Semmrich et al., 2007), suggesting soft glassy
dynamics (Sollich et al., 1997), which spurred the develop-
ment of theories on the dynamics of polymers in glassy
environments (Kroy and Glaser, 2007; Kroy, 2008). These
systems also exhibit a striking nonlinear response (Gardel
et al., 2004a, 2004b, 2006; Storm et al., 2005), in which the
networks’ differential stiffness can increase (10–100)-fold at
moderate strains between 10% and 100%, which led to much
debate on the origins of this behavior (Onck et al., 2005;
Kabla and Mahadevan, 2007; Heussinger, Schaefer, and Frey,
2007; Huisman et al., 2007; Lieleg et al., 2007; Huisman,
Storm, and Barkema, 2008; Wyart et al., 2008; Conti and
MacKintosh, 2009).
In this review we focus largely on minimal, physical

approaches. We begin with the properties of single filaments
and then move on to the collective properties of entangled
solutions and semiflexible polymer networks.

FIG. 3. (a) Electron micrograph of a fixed and rotary-shadowed
filamin-F-actin network at an actin concentration 1 mg=ml,
average filament length 15 μm, and a filamin:actin molar
ratio of 0.005:1. From Kasza et al., 2009. (b) Confocal
microscopy image of a fluorescently labeled bundled filamin-
F-actin network at high filamin concentrations. From
Kasza et al., 2010. (c) Electron micrograph of a fixed and
rotary-shadowed Vimentin network. Courtesy of Y-C. Lin and
D. Weitz (Harvard).
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II. SEMIFLEXIBLE POLYMERS

Biopolymers such as those that make up the cytoskeleton
and extracellular matrices typically consist of aggregates of
large globular proteins (Fig. 4). These are usually bound
together more weakly than most synthetic, covalently bonded
polymers. Biopolymers can nevertheless exhibit surprising
stability and strength. Specifically, given that their diameter
can be as large as tens of nanometers or more, they are far
more rigid to bending than most common synthetic polymers,
and it can be a good approximation in some cases to treat them
as elastic fibers. Thus, their bending rigidity is often their most
important characteristic. In many cases, however, the contour
length of these filaments is still long enough that they may
exhibit significant thermal bending fluctuations. Thus they are
said to be semiflexible or wormlike.
The most intuitive characterization of the stiffness of

biopolymers is their persistence length lp, which can be
regarded as the contour length at which significant bending
fluctuations occur. This characterization is convent, but can be
misleading. It is not correct, for instance, to think of a
semiflexible polymer as rodlike and effectively athermal on
length scales shorter than lp: even for lengths much less than
this, thermal fluctuations can play an important, even dom-
inant role, e.g., in determining the axial stretching response of
a semiflexible chain. Also, it is important to bear in mind that
lp is directly related to the filament stiffness only in thermal
equilibrium and only for filaments that are perfectly straight in
their relaxed state. Sometimes the term persistence length is
also used merely as a way of characterizing how straight
a given polymer is, for instance, in atomic force microscope
(AFM) experiments that measure the conformation of a
polymer adsorbed on a surface. Such conformations can be
far from equilibrium, and thus the shape may not directly
reflect the bending rigidity of the filament. Under conditions
of thermal equilibrium, the persistence length is more pre-
cisely defined in terms of the angular correlations of the
local tangent along the polymer backbone, which decay
exponentially with a characteristic length lp. The persistence
lengths of a few important semiflexible polymers are given in

Table I, along with their approximate diameter and contour
length.

A. Wormlike chain model

On the scale of several nanometers to micrometers, bio-
polymers are often effectively modeled as inextensible elastic
rods or fibers with finite resistance to bending. This is the
essence of the so-called wormlike chain (WLC) model
(Kratky and Porod, 1949). This can be described by a bending
energy of the form

Hbend ¼
κ

2

Z
ds

���� ∂~t∂s
����2; ð1Þ

where κ is the bending modulus, ~t is a (unit) tangent vector
along the chain, and the integrand represents the square of the
local curvature along the chain. Here the chain position ~rðsÞ is
described by an arc-length coordinate s along the chain
backbone. Hence, the tangent vector

~t ¼ ∂~r
∂s : ð2Þ

These quantities are illustrated in Fig. 5.
The bending modulus κ has units of energy times length. A

natural energy scale due to Brownian fluctuations is kBT,
where T is the temperature and kB is Boltzmann’s
constant. Thus, lp ¼ κ=kBT is a length. In fact, this is
precisely the persistence length described previously.
For a homogeneous rod of diameter 2a consisting of a
homogeneous material, the bending modulus should be
proportional to the material’s Young’s modulus E, which
has units of energy per volume. Thus, having units of energy
times length, we expect that κ to be of the order of Ea4. In fact
(Landau and Lifshitz, 1986),

κ ¼ π

4
Ea4: ð3Þ

This is often expressed as κ ¼ EI, where I is the moment of
inertia of the cross section. For a cylindrical fiber, the moment of

FIG. 4 (color online). The three families of cytoskeletal
filaments, including F-actin, intermediate filaments, and
microtubules.

2a

s

t(s)

FIG. 5. A filamentous protein can be regarded as an
elastic rod of radius a. Provided the length of the rod
is very long compared with the monomeric dimension a, and
that the rigidity is high (specifically, the persistence length
lp ≫ a), this can be treated as an abstract line or curve,
characterized by the length s along its backbone. A unit vector
~t tangent to the filament defines the local orientation of the
filament. A curvature is present when this orientation varies with
s. For bending in a plane, it is sufficient to consider the angle θðsÞ
that the filament makes with respect to some fixed axis. The
curvature is then ∂θ=∂s.
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inertia I depends on the fourth power of the fiber radius a, apart
from a purely geometric prefactor depending only on the cross
section. The factor πa4=4 happens to be the right one for a
cylindrical solid rod of radius a. For a hollow tube, the prefactor
would be different, but still of the order of a4, where a is the
(outer) radius. This elastic rod (or tube, as in the case of
microtubules) approximation can be a good one, at least if the
radius of curvature of the filament is large compared with the
molecular scale a. Within this approximation, the implied
Young’s modulus E for polymers such as F-actin and micro-
tubules can be as large as 1 GPa (Howard, 2001; de Pablo
et al., 2003).
It is instructive to begin our analysis of the WLC model

with the case of motion confined to a plane, for which there is
a single transverse degree of freedom, the deflection away
from a straight line. Here the integrand in Eq. (1) becomes
ð∂θ=∂sÞ2, where θ is simply the local angle that the chain axis
makes relative to any fixed axis. A discrete approximation to
the integral in Eq. (1) is then

P
iðΔθiÞ2=Δs, where Δθi ¼

θi − θi−1 is the angle change between points separated by a
small distance Δs along the contour. If the Δθi are indepen-
dent degrees of freedom, which can be expected to be valid in
the absence of long-range forces, the equipartition theorem
tells us that

hΔθ2i i ¼
kBTΔs

κ
: ð4Þ

This can be used to determine the correlations of orientations
from one point along the chain to another. We note that the
thermal average

hcos ðθm − θnÞi ¼ hcos ðΔθmÞihcos ðθm−1 − θnÞi
� � �
¼ hcos ðΔθmÞim−n−1; ð5Þ

where we have used the independence of the various Δθi, and
the fact that hsin ðΔθmÞi ¼ 0. From this, it follows that the
correlation function decays as

h~tðsÞ · ~tðs0Þi ¼ e−js−s0 j=lp ; ð6Þ

where lp ¼ 2κ=kBT. Of course, this is all for motion
confined to a plane. Taking into account the two independent
transverse directions for thermal fluctuations in 3D, the
persistence length becomes lp ¼ κ=kBT. This persistence
length provides a geometric measure of the mechanical
stiffness of the rod, provided that it is in equilibrium at
temperature T.
This provides, in principle, a way to measure the persist-

ence length and thus the bending modulus of filaments by
imaging the angular correlations along a filament. As dis-
cussed in Sec. II.C, however, one must also be careful to
account for the dynamics of filaments.

B. Force extension

A single filament can respond to forces applied to it by
bending, stretching, or compressing. On length scales
shorter than the persistence length, the bending can be

described in mechanical terms, as for elastic rods. By contrast,
stretching and compression may involve a purely elastic or
mechanical response (as for macroscopic, elastic rods), a
purely entropic response, or a combination of the two. For an
inextensible chain, the entropic response comes from the
thermal bending fluctuations of the filament. Perhaps surpris-
ingly, as we discuss in Sec. II.B.1, the longitudinal response
can be dominated by entropy even on length scales small
compared with the persistence length. Thus, it may be
incorrect to think of a filament as truly rodlike, even on
length scales shorter than lp.
The longitudinal single filament response is often described

in terms of a so-called force-extension relationship, in which
the axial force required to extend the filament is measured or
calculated in terms of the degree of extension along a line. At
any finite temperature, there is an entropic resistance to such
extension due to the presence of thermal fluctuations that make
the polymer deviate from a straight conformation: since there
are many more crumpled configurations of the polymer than the
(unique) straight conformation, extending the polymer reduces
the entropy and may increase the free energy. This entropic
force extension has been the basis of mechanical studies, for
example, of long DNA (Bustamante et al., 1994), and a full,
general calculation for low and high forces, as well as short and
long chains, is very involved, although simple approximations
can be very accurate in the limit of long chains (l ≫ lp) or
high forces (Marko and Siggia, 1995). An interesting and
universal form was recently proposed and shown to capture a
broad range of polymer properties (Dobrynin and Carrillo,
2011; Carrillo, MacKintosh, and Dobrynin, 2013). Here we
focus on a simple calculation appropriate for high tensile forces
or for stiff polymers such as those that make up the cytoskeleton
of cells, for which a nearly straight chain is most relevant
(MacKintosh, Käs, and Janmey, 1995).
For a filament segment of length l≲ lp the filament

is nearly straight, with only small transverse fluctuations. We
let the x axis define the average orientation of the chain
segment, and let u and v represent the two independent
transverse degrees of freedom. These can then be thought of
as functions of x and time t in general. For simplicity, we first
consider just a single transverse coordinate uðx; tÞ. The bending
energy is then

Hbend ¼
κ

2

Z
dx

�∂2u
∂x2
�

2

¼ l
4

X
q

κq4u2q; ð7Þ

where uðxÞ is represented by a Fourier decomposition

uðx; tÞ ¼
X
q

uq sinðqxÞ: ð8Þ

As illustrated in Fig. 6, the local orientation of the filament can
be characterized by the slope ∂u=∂x, while the local curvature
involves the second derivative ∂2u=∂x2. Such a description is
appropriate for the case of a nearly straight filament with fixed
boundary conditions u ¼ 0 at the ends x ¼ 0; l. Here the wave
vectors q ¼ nπ=l, where n ¼ 1; 2; 3;….
If the chain is inextensible, with no compliance in its

contour length, then the end-to-end contraction of the chain in
the presence of thermal fluctuations in u is
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Δl ¼
Z

dx

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

���� ∂u∂x
����2

s
− 1

!
≃ 1

2

Z
dx

���� ∂u∂x
����2

¼ l
4

X
q

q2u2q: ð9Þ

The integration here is actually over the projected length of the
chain. But, to leading (quadratic) order in the transverse
displacements, we make no distinction between projected and
contour lengths here and above inHbend. Because the tension τ
is conjugate to Δl, we can write the energy in terms of the
applied tension as

H ¼ 1

2

Z
dx

�
κ

�∂2u
∂x2
�

2

þ τ

�∂u
∂x
�

2
�

¼ l
4

X
q

ðκq4 þ τq2Þu2q: ð10Þ

Under a constant tension τ therefore, the equilibrium ampli-
tudes uq satisfy the equipartition theorem,

hjuqj2i ¼
2kBT

lðκq4 þ τq2Þ ; ð11Þ

and the contraction

hΔliτ ¼ kBT
X
q

1

ðκq2 þ τÞ : ð12Þ

There are, of course, two transverse degrees of freedom, and
this final expression incorporates a factor of 2 appropriate for a
chain fluctuating in 3D.
Semiflexible filaments exhibit a strong suppression of

bending fluctuations for modes of wavelength less than the
persistence length lp, as can be seen in the q dependence in
Eq. (11). This has important consequences for many of the

thermal properties of such filaments. In particular, it means
that the longest unconstrained wavelengths tend to be dom-
inant in most cases of interest, provided that this length is short
compared with lp. This allows us, for instance, to anticipate
the scaling form of the end-to-end contraction Δl between
points separated by arc length l in the absence of an applied
tension. We note that if it is a length, it must vary inversely
with stiffness κ and must increase with temperature. Thus,
since the dominant mode of fluctuations is that of the
maximum wavelength l, we expect the contraction to be of
the form hΔli0 ∼ l2=lp. More precisely, for τ ¼ 0,

hΔli0 ¼
kBTl2

κπ2
X∞
n¼1

1

n2
¼ l2

6lp
: ð13Þ

Similar scaling arguments to those above lead us to expect that
the typical transverse amplitude of a segment of length l is
given by

hu2i ∼ l3

lp
ð14Þ

in the absence of applied tension. The precise coefficient for
the mean-square amplitude of the midpoint between ends
separated by l (with vanishing deflection at the ends) is 1=24.
Apart from the prefactor, we could have anticipated the
scaling form of the result in Eq. (14) by noting that, being
a thermal effect, it should increase proportional to kBT. It
should also decrease inversely with bending rigidity κ. Thus,
the expectation is that hu2i ∼ ðkBT=κÞ × l3, where the domi-
nating wavelength λ ∼ l is the longest unconstrained mode
and this length enters with a third power for dimensional
reasons.
For a finite tension τ, however, the longest unconstrained

wavelength is not the only relevant length. There is also a
characteristic length lt ∼

ffiffiffiffiffiffiffi
κ=τ

p
associated with the competi-

tion of bending and the tension. In short, modes of wavelength
shorter than this are governed primarily by bending, while
those of longer wavelength are governed by tension. Thus, the
analysis above is valid provided that lt ≳ l, i.e., for tensions τ
small compared with the Euler buckling force κ=l2 of an
elastic rod of length l. This also corresponds to the regime of
force for which the response to tension is linear. In the other
limit lt ≲ l, nonlinearities in the response can be expected. In
both limits, the extension of the chain (toward full extension)
under tension is given by

δlðτÞ ¼ hΔli0 − hΔliτ ¼
l2

π2lp

X
n

ϕ

n2ðn2 þ ϕÞ ; ð15Þ

where

ϕ ¼ τl2=κπ2 ð16Þ
is a dimensionless force. As suggested above, the character-
istic force κπ2=l2 that enters here is the critical force in the
classical Euler buckling problem. The summation in Eq. (15)
can be found analytically, with the result that the relative
extension

FIG. 6 (color online). One end of a filament is fixed, in both
position and orientation, while the other is free. The filament
tends to wander in a way that can be characterized by uðxÞ, a
transverse displacement field. For a fixed total arc length of the
filament, thermal fluctuations result in a contraction of the end-to-
end distance, which is denoted by Δl. In fact, this contraction is
actually distributed about a thermal average value hΔli. The
mean-square (longitudinal) fluctuations about this average are
denoted by hδl2i, while the mean-square lateral fluctuations (i.e.,
with respect to the dashed line) are denoted by hu2i. The bottom
image shows how the fluctuations are reduced and the chain is
extended when a tension τ is applied.
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ϵ≡ δl
hΔli0

¼ 1 − 3
π coth ðπ ffiffiffiffi

ϕ
p Þ − 1

π2ϕ
: ð17Þ

Thus, the force-extension curve can be found by inverting this
relationship numerically.
In the linear regime, the extension becomes

δl ¼ l2

π2lp
ϕ
X
n

1

n4
¼ l4

90lpκ
τ; ð18Þ

i.e., the effective spring constant for longitudinal extension of
the chain segment is 90κlp=l4, which varies inversely with
kBT, in contrast to the freely jointed chain and semiflexible
chains in the limit l ≫ lp, both of which exhibit increasing
stiffness with temperature T. The scaling form of this could
also have been anticipated, based on simple physical argu-
ments similar to those above. In particular, given the expected
dominance of the longest wavelength mode (i.e., l), we expect
that the end-to-end contraction scales as δl ∼

R ð∂u=∂xÞ2
∼u2=l. Thus, hδl2i ∼ l−2hu4i ∼ l−2hu2i2 ∼ l4=l2

p, which is
consistent with the effective (linear) spring constant derived
above from Eq. (18), since hδl2i should be equal to kBT
divided by the longitudinal spring constant.
Importantly, due in part to the asymmetry of the wormlike

chain under extension and compression, the statistics of the
end-to-end fluctuation of a semiflexible polymer are not
described by a Gaussian distribution. The full distribution
function was calculated analytically by Wilhelm and Frey
(1996). The resulting distribution can be approximated by a
Gaussian only near the thermal average extension, while the
distribution cuts off sharply near the full extension.
The full nonlinear force-extension curve can be calculated

numerically by inversion of the expression above. This is
shown in Fig. 7. Here one can see both the linear regime for
small forces, with the effective spring constant given above, as
well as a divergent force near full extension. In fact, the force
diverges in a characteristic way, as the inverse square of the
distance from full extension τ ∼ j1 − ϵj−2 (Fixman and Kovac,
1973; Marko and Siggia, 1995; Odijk, 1995). This form of the
divergence of force can be identified without preforming
the full summation in Eq. (12) as follows. For q≲ qτ ¼ffiffiffiffiffiffiffi
τ=κ

p
∼ l−1

t , the tension τ governs the mode amplitudes, as
noted above. Mathematically, in this range the tension term
dominates the bending term in the denominator of Eqs. (11)
and (12). In the other limit, for larger q, the sum rapidly
converges. Thus, only a number of terms that grow as

ffiffiffi
τ

p
are

really needed in the sum, and these terms are themselves
proportional to 1=τ. Thus, hΔliτ ∼ 1=

ffiffiffi
τ

p
and

τ →
κl2

4l2
pjhΔli0 − δlj2 ð19Þ

for large tension.
As noted above, the force-extension relation can be found

by numerically inverting Eq. (15) using Eq. (17). In practice,
however, it is often preferable to use a more tractable
approximation to the exact force-extension relation, as is
usually done for DNA (Marko and Siggia, 1995). However,
this wormlike chain approximation is valid only for l ≫ lp.

In the opposite limit of l < lp, the small extension or linear
response regime is characterized by a different spring con-
stant, although the high-force asymptotic regime in Eq. (19)
is the same, including prefactor. An approximate force-
extension relation can be obtained from the asymptotic limit
in Eq. (19), together with a constant term and a term linear in
the extension, where these are chosen to yield the correct
overall linear response and zero force at zero extension. The
result can be expressed simply in terms of the normalized
extension ϵ and force ϕ:

ϕ ¼ 9

π2

�
1

ð1 − ϵÞ2 − 1 −
1

3
ϵ

�
: ð20Þ

Under extension, this yields the correct small and large force
limits. It strictly overestimates the intermediate force range
between these limits, but by less than 16%. This form has been
used for efficient computation of the nonlinear elasticity of
semiflexible networks (Gardel et al., 2004a). An equivalent
force-extension expression with an additional approximate
term to capture buckling was derived by Huisman, Storm, and
Barkema (2008).

1. Inextensible versus extensible polymers

Before concluding our discussion of the longitudinal
response of semiflexible polymers, it is worth asking about
another obvious contribution to their response. This we think
of as the zero-temperature enthalpic or purely mechanical
response. After all, we are treating semiflexible polymers as

0.02 0.05 0.10 0.20 0.50 1.00

0.1

1

10

100

compression

extension

FIG. 7. The dimensionless force ϕ as a function of the relative
extension ϵ ¼ δl=hΔli from Eq. (17). For small extension or
compression, the response is linear. The upper curve depicts the
force under extension (ϵ > 0), where the force is positive. The
lower solid curve depicts the case of compression (ϵ < 0), where
the force is negative. Both curves exhibit nonlinearities near the
point where the extension or compression becomes comparable to
the thermal contraction hΔli0 in the absence of force (i.e.,
jϵj≃ 1). For comparison, the linear limit is shown by the dashed
line. For both extension and compression, the nonlinearities
appear when the force is near the buckling threshold ϕ ¼ 1,
indicated by the end of the dashed line. While these results
are exact for inextensible chains of length l ≪ lp under tension,
finite-temperature buckling must be included for −ϵ≃ −ϕ
≃1 (Odijk, 1998; Baczynski, Lipowsky, and Kierfeld, 2007;
Emanuel et al., 2007).
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small bendable rods. To the extent that they behave similar to
rigid rods, we might expect them to respond to longitudinal
stresses by increasing or decreasing their contour length.
Based on the arguments above, it seems that the persistence
length lp determines the length below which filaments behave
like rods, and above which they behave like flexible polymers
with significant thermal fluctuations. It would be tempting to
expect that enthalpic stretching dominates for any l≲ lp.
Perhaps surprisingly, however, even for segments of semi-
flexible polymers of length much less than the persistence
length, their longitudinal response can be dominated by the
entropic force extension described above.
To examine this, we consider a simple model of a semi-

flexible polymer as a homogeneous elastic rod of radius a. We
have already seen that the bending modulus is κ ∼ Ea4.
Likewise, the (linear) stretching or compression of such an
elastic rod is described by the Hamiltonian

Hstretch ¼
1

2
μ

Z
ds

�
dlðsÞ
ds

�
2

; ð21Þ

where dl=ds gives the relative change in length (strain) along
the filament. The stretch modulus is μ ∼ Ea2. The effective
(mechanical) spring constant of a segment of length l is thus
kM ∼ μ=l ∼ Ea2=l, compared with the effective (thermal)
spring constant kT ∼ κlp=l4 ∼ kMa2lp=l3, since κ ∼ Ea4.
Since the system will respond primarily according to the softer
effective spring constant, the dominant response will be
thermal if l3 ≳ a2lp and will be mechanical only if
l3 ≲ a2lp. Thus, even segments of length much less than
lp can still respond according to the thermal response
described above. For F-actin, for example, even filament
segments as short as 100–200 nm in length may be dominated
in their longitudinal compliance by the thermal response
arising from bending fluctuations. The extent of this com-
pliance, however, will be quite limited. Thus, there is expected
to be a crossover from a nonlinear thermal compliance to an
enthalpic stretching regime. This crossover can be charac-
terized by two mechanical springs in series, in which one adds
a purely enthalpic compliance δlðeÞ ¼ lτ=μ to the compliance
in Eq. (15) (Odijk, 1995). However, the entropic stiffness is
nonlinear, and nonlinear compliances do not simply add.
There is an additional higher-order correction that corresponds
to a renormalization of the force in the nonlinear entropic
force-extension curve (Storm et al., 2005). The resulting
extension in Eq. (15) for stiff chains, where l ≫ hΔli0, is
given by

δlðτÞ ¼ lτ=μþ δlðτ½1þ τ=μ�Þ: ð22Þ

2. Euler buckling

In addition to the mechanical or enthalpic response to
stretching, there is also another purely mechanical response
under compression: Euler buckling (Landau and Lifshitz,
1986). When a straight elastic rod is subject to a compressive
load, it initially responds by compressing longitudinally along
its axis. Above a well-defined force threshold, however, it
undergoes a buckling instability. To a good approximation, the
rod simply cannot bear any additional compressive load
beyond this threshold. Thus, the rod is simply unstable and

any additional load will cause the rod to completely collapse.
This threshold compressive force can be calculated as follows.
When a rod of length l undergoes an oscillatory transverse

deflection of amplitude uðxÞ ¼Pquq sinðqxÞ, it contracts
longitudinally by an amount given by Eq. (9). The energy of
this deflection is given by Eq. (10), where τ is the (tensile)
load. For τ > 0, each term in the series contributes a positive
energy, so that the system is (harmonically) stable against
increasing amplitude uq for each q. For compressive loads,
however, where τ < 0, this is no longer the case if τ < −κq2.
In that case, the energy as a function of u2q transitions from
being concave to being convex. Thus, for compressive
tensions exceeding this q-dependent threshold, the corre-
sponding transverse deflection modes become unstable. For
such modes, the system is unstable to transverse displace-
ments. As the compressive load −τ increases from zero, this
instability first occurs for the smallest q possible, which is
determined by the length of the rod q ¼ q1 ¼ π=l. Thus, the
buckling instability occurs for compressive force given by

fc ¼ κ

�
π

l

�
2

; ð23Þ

and this instability corresponds to the fundamental oscillatory
mode for the rod, where the wavelength of the instability is
twice the length of the rod, as illustrated in the upper panel of
Fig. 8. One important aspect of this buckling is its threshold
nature, which has been used effectively in numerous bio-
polymer experiments to measure axial forces precisely
(Dogterom and Yurke, 1997; Footer et al., 2007).
Thermal fluctuations modify this classical, Euler buckling

result. As might be expected for thermal fluctuations, the sharp
force threshold no longer applies for filaments at finite temper-
ature. Rather, the smooth force-compression curve is found,
and for even small forces there is a finite compression. This can
be seen in the linear regime for compression in Fig. 7.

FIG. 8 (color online). Schematic of classical Euler buckling
(above), showing the expected shape for an elastic rod that is free
to bend between its ends. Under compression defined by a fixed
end-to-end distance, beyond a well-defined threshold force, the
elastic energy can be lowered by relieving the compression at the
cost of a bend to accommodate the reduced end-to-end distance
(Landau and Lifshitz, 1986). When the lateral deflection of the
rod is suppressed by a surrounding elastic matrix, the buckling
exhibits a shorter wavelength bend at a correspondingly higher
force threshold (Landau and Lifshitz, 1986). Microtubules in vivo
exhibit such a constrained buckling under compression. From
Brangwynne et al., 2006.
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Qualitatively, thermal fluctuations can be said to enhance the
compliance under compression, resulting in reduced forces,
relative to Euler buckling, for the same degree of compression
(Odijk, 1998; Emanuel et al., 2007). Interestingly, however,
this holds only for buckling in three dimensions, and there are
qualitative differences for buckling in two dimensions: for large
compressive forces (f ≳ fc), finite-temperature filaments
actually exhibit reduced compressive compliance, relative
to zero-temperature buckling (Baczynski, Lipowsky, and
Kierfeld, 2007; Emanuel et al., 2007). As discussed by
Emanuel et al., the enhanced compliance arises from fluctua-
tions out of the plane of buckling.
Interestingly, if an athermal elastic rod is embedded in a

surrounding elastic material, as can be the case for micro-
tubules embedded in the matrix formed by the rest of the
cytoskeleton (Brangwynne et al., 2006), then this classical
Euler buckling problem and corresponding threshold is altered
(Landau and Lifshitz, 1986). We can see this from Eq. (9),
since a given amount of longitudinal compression Δl requires
a larger amplitude uq for smaller q. Such large amplitude
lateral deflections are suppressed by the surrounding matrix.
More precisely, for a transverse deflection u, the elastic energy
per unit length along the rod is approximately given by

1
2
α⊥u2; ð24Þ

where

α⊥ ≃ 4πG
lnðλ=bÞ : ð25Þ

HereG is the shearmodulus of the surrounding elasticmedium,
λ is the bending wavelength, and b is a microscopic length of
the order of the radius of the rod. This result is the elastic analog
of a possibly more familiar hydrodynamics result for the
viscous drag per unit length on a thin rod of length ∼λmoving
transverse to its axis (Lamb, 1916). The hydrodynamics case
will be discussed in the next section on dynamics. There are two
important points to note in deriving either result: (1) on
dimensional grounds, the elastic spring constant α⊥ for trans-
verse displacement cannot involve an additional factor of
length beyond the obvious term ∝ G, and (2) the elastic as
well as viscous stress balance equations involve the Laplacian,
for which the solutions in the two transverse dimensions
naturally lead to logarithms. Thus, using the mode decom-
position above, we obtain the elastic energy

H ¼ 1

2

Z
dx

�
κ

�∂2u
∂x2
�

2

− 4ptþ τ

�∂u
∂x
�

2

− 4ptþ α⊥u2
�

¼ l
4

X
q

ðκq4 þ τq2 þ α⊥Þu2q: ð26Þ

The elastic energy of thematrix has the effect of both increasing
the threshold force and shifting the instability to a shorter
wavelength. The first unstable mode corresponds to

q� ¼
ffiffiffiffiffiffiffiffiffiffiffi
α⊥=κ4

p
; ð27Þ

and the critical buckling force is now

fc ¼ 2κq2�; ð28Þ
which can be much larger than for unconstrained buckling.
Such constrained buckling has been reported for microtubules
under compression in cells, where the surrounding cytoskeletal
meshwork can greatly enhance the compressive load bearing
capability of microtubules by up to 100 times (Brangwynne
et al., 2006; Das, Levine, and MacKintosh, 2008; Liu et al.,
2012; Shan et al., 2013).

C. Dynamics

In the above, we have considered only static properties of
individual polymer chains. The dynamics of single chains
exhibit rich behavior that can have important consequences
even at the level of bulk solutions and networks. The principal
dynamic modes come from the transverse motion, i.e., the
degrees of freedom u and v above. The equation of motion of
these modes can be found from Hbend above, together with the
hydrodynamic drag of the filaments through the solvent. In the
presence of only thermal forces, this is done via a Langevin
equation describing the net force per unit length on the chain
at position x,

0 ¼ −ζ
∂
∂t uðx; tÞ − κ

∂4

∂x4 uðx; tÞ þ ξ⊥ðx; tÞ; ð29Þ

which is, of course, zero within linearized, inertia-free (low
Reynolds number) hydrodynamics that we assume here.
The first term represents the hydrodynamic drag per unit

length of the filament. Here we have assumed a constant
transverse drag coefficient that is independent of wavelength.
In fact, the actual (low Reynolds number) drag per unit length
on a rod of length l is

ζ ¼ 4πη

ln ðAl=aÞ ; ð30Þ

where l=a is the aspect ratio of the rod, and A is a constant of
order unity that depends on the precise geometry of the rod
(Lamb, 1916). As noted above, the logarithm is a natural
consequence of the 2D nature of the transverse plane in which
the motion occurs. For a filament undergoing free bending
fluctuations in solution, the relevant length l is the wavelength
λ of the bending mode. Thus, a weak logarithmic dependence
of the relaxation rate on the wavelength is expected. However,
this hydrodynamic effect is weak and has not been directly
observed. In practice, the presence of other chains in solution
gives rise to an effective screening of the long-range hydro-
dynamics beyond a length of the order of the typical
separation ξ between chains, which can then be taken in
place of l above.
The second term in the Langevin equation above is the

restoring force per unit length due to bending, which is
obtained by the functional derivative

−
δ

δu
Hbend ¼ −κ

∂4

∂x4 uðx; tÞ: ð31Þ

Finally, we include a random force ξ⊥, which can be taken to
be uncorrelated white noise in the case of a purely viscous

C. P. Broedersz and F. C. MacKintosh: Modeling semiflexible polymer networks 1003

Rev. Mod. Phys., Vol. 86, No. 3, July–September 2014



solvent. Equation (29) represents an example of model A
dynamics, in which the dissipation (here hydrodynamic drag)
is local and the field uðx; tÞ is nonconserved (Hohenberg and
Halperin, 1977; Chaikin and Lubensky, 2000).
A simple force balance in the Langevin equation above after

thermal averaging (i.e., without the noise term) leads us to
conclude that the characteristic relaxation rate of a mode of
wave vector q is (Farge and Maggs, 1993)

ωðqÞ ¼ κq4=ζ: ð32Þ

This is valid provided end effects are not important, i.e.,
provided that the wavelength is short compared to the contour
length of the chain. The fourth-order dependence of this rate
on q is to be expected from the appearance of a single time
derivative along with four spatial derivatives in Eq. (29). This
relaxation rate determines, among other things, the correlation
time for the fluctuating bending modes. Specifically, in the
absence of an applied tension,

huqðtÞuqð0Þi ¼
2kBT
lκq4

e−ωðqÞt: ð33Þ

The fact that the relaxation rate varies as the fourth power of
the wave vector q has important consequences. For example,
while the time it takes for an actin filament bending mode of
wavelength 1 μm to relax is of order 10 ms, it takes about
100 s for a mode of wavelength 10 μm.
The very strong wavelength dependence of the relaxation

rates in Eq. (32) has important consequences, for instance, for
imaging of the thermal fluctuations of filaments, as is done in
order to measure lp and the filament stiffness (Gittes et al.,
1993). This is the basis, in fact, of most measurements to date
of the stiffness of DNA, F-actin, and other biopolymers. Using
Eq. (33), for instance, one can both confirm thermal equilib-
rium and determine lp by measuring the mean-square
amplitude of the thermal modes of various wavelengths.
However, in order to both resolve the various modes as well
as establish that they behave according to the thermal
distribution, one must sample over times long compared with
1=ωðqÞ for the longest wavelengths λ ∼ 1=q. At the same
time, one must be able to resolve fast motion on times of order
1=ωðqÞ for the shortest wavelengths. Given the strong
dependence of these relaxation times on the corresponding
wavelengths, for instance, a range of the order of a factor of 10
in the wavelengths of the modes requires a range of a factor
104 in observation times.
Another way to look at the result of Eq. (32) is that a

bending mode of wavelength λ relaxes (i.e., fully explores its
equilibrium conformations) in a time of order ζλ4=κ. Since it is
also true that the longest (unconstrained) wavelength bending
mode has by far the largest amplitude, and thus dominates the
typical conformations of any filament [see Eqs. (12) and (33)],
we can see that in a time t, the typical or dominant mode that
relaxes is one of wavelength l⊥ðtÞ ∼ ðκt=ζÞ1=4. As seen above
in Eq. (14), the mean-square amplitude of transverse fluctua-
tions increases with filament length l as hu2i ∼ l3=lp. Thus,
in a time t, the expected mean-square transverse motion is
given by (Farge and Maggs, 1993; Amblard et al., 1996)

hu2ðtÞi ∼ ½l⊥ðtÞ�3=lp ∼ t3=4; ð34Þ
because the typical and dominant mode contributing to the
motion at time t is of wavelength l⊥ðtÞ.
The dynamics of longitudinal motion can be calculated

similarly. Here, however, we must account for the fact that the
mean-square longitudinal fluctuations hδl2ðtÞi of a long
filament involve the sum (in quadrature) of independently
fluctuating segments along a full filament of length l. The
typical size of such independently fluctuating segments at
time t is l⊥ðtÞ, of which there are l=l⊥ðtÞ. As shown above,
the mean-square amplitude of longitudinal fluctuations of a
fully relaxed segment of length l⊥ðtÞ is of the order of
l⊥ðtÞ4=l2

p. Thus, the longitudinal motion is given by (Granek,
1997; Gittes and MacKintosh, 1998)

hδlðtÞ2i ∼ l
l⊥ðtÞ

l⊥ðtÞ4
l2
p

∼ t3=4; ð35Þ

where the mean-square amplitude is smaller than for the
transverse motion by a factor of the order of l=lp. Thus,
for both the short-time fluctuations as well as the static
fluctuations of a filament segment of length l, a point on
the filament explores a disklike region with longitudinal
motion smaller than perpendicular motion by a factor of the
order of l=lp, which is assumed here to be small. This is
illustrated in Fig. 6. From the end-to-end fluctuations in
Eq. (35), it is also possible to determine the time- or
frequency-dependent compliance of such a filament to a
longitudinal force applied at one end, using the fluctuation-
dissipation theorem. The result can be expressed in terms of
a (complex) spring constant KeffðωÞ:

KeffðωÞ ¼ κlpð−2iζ=κÞ3=4ω3=4: ð36Þ
This is valid in the limit of high frequency and high
molecular weight. As discussed in Sec. III.A, additional
relaxations are expected for finite length polymers.
For the problem stated above, i.e., for an isolated fluctuating

filament in a quiescent solvent, there is a potential problem
with the analysis above, which includes only the effect of drag
for motion perpendicular to the filament (Everaers et al.,
1999). In fact, there is a finite propagation of tension along a
semiflexible filament, expressed by yet another length (Morse,
1998b)

l∥ðtÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⊥ðtÞlp

q
∼ t1=8: ð37Þ

This represents, for instance, the range along the filament over
which the tension has spread from a point of disturbance. At
very short times, it is possible to observe a t7=8 motion of ends
of a freely fluctuating filament in a quiescent solvent, rather
than the t3=4 in Eq. (35) (Gittes and MacKintosh, 1998). For
the high-frequency rheology of semiflexible polymer net-
works, however, only a dynamical regime corresponding to
Eq. (35) is observed (Gittes et al., 1997; Koenderink et al.,
2006) and expected (Gittes and MacKintosh, 1998; Morse,
1998a). This is examined in greater detail in Sec. III.A.
There are two important extensions to the dynamic analysis

above. First, when a filament is subject to tension τ, the
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equation of motion in Eq. (29) must be modified to include
τð∂2=∂x2Þuðx; tÞ. Then the relaxation rate in Eq. (32) becomes

ωðqÞ ¼ 1

ζ
ðκq4 þ τq2Þ: ð38Þ

As noted above, tension becomes dominant for wavelengths
longer than lt ∼

ffiffiffiffiffiffiffi
κ=τ

p
. Here the relaxation rate reduces to

τq2=ζ This has important consequences, e.g., for the end-to-
end fluctuations (Granek, 1997):

hδlðtÞ2i ∼ t1=2: ð39Þ
Tension also leads to a corresponding GðωÞ ∼ ω1=2 regime in
the rheology of networks (Mizuno et al., 2007). The analysis
based on Eq. (38) fails for large applied tensions. As the
linearized theory above appears to be sufficient for many
purposes, including a quantitative understanding of network
and solution rheology, this is what we have focused on here. It
is interesting to note, however, that there are rich nonlinear
aspects of the full dynamics. These have been addressed in
part by scaling analyses (Seifert, Shillcock, and Nelson, 1996)
and more rigorous multiscale perturbative approaches
(Hallatschek, Frey, and Kroy, 2007a, 2007b).
The second important extension of the analysis above is

required for quantitative dynamics of finite length filaments,
such as any practical situation of isolated or dilute chains freely
fluctuating in a solvent. The important thing to note here is that,
while the mode decomposition and amplitudes in Eqs. (8) and
(11) are valid when considering static fluctuations, they do not
correspond to proper normal modes, i.e., modes that exhibit
single-exponential relaxation, as in Eq. (33). Stated differently,
the simple Fourier modes mix in their dynamics. For a
discussion of the proper analysis of this situation, see dis-
cussions and derivations by Aragon and Pecora (1985) and
Wiggins et al. (1998), as well as specific discussion of the
dynamics of isolated F-actin and microtubule filaments by
Gittes et al. (1993) and Brangwynne et al. (2007).

D. Wormlike bundles

In many biological systems individual filaments can be
cross-linked or ligated together to form hierarchical bundles,
which in some cases combine to form networks. For instance,
actin is known to form networks of thick bundles when
polymerized in the presence of certain actin cross-linker
proteins (Pelletier et al., 2003; Gardel et al., 2004a; Hirst
et al., 2005; Claessens et al., 2008; Schmoller, Lieleg, and
Bausch, 2009; Kasza et al., 2010; Lieleg, Claessens, and
Bausch, 2010), and such bundles constitute important cytos-
keletal components of live cells, including filopodia, sensory
hair cells, and microvilli (Claessens et al., 2006; Bathe et al.,
2008; Fletcher and Mullins, 2010). An illustrative example of
a network of long, straight semiflexible bundles obtained by
polymerizing actin in the presence of fascin cross-linking
proteins is shown in Fig. 9 (Lieleg et al., 2007). In this review
we focus on work that addressed the mechanical properties of
such bundles, and for more detail on the structural properties
of bundles see Kierfeld, Kühne, and Lipowsky (2005), Grason
and Bruinsma (2007), Claessens et al. (2008), Grason (2009),
and Shin et al. (2009).

Can such bundles be described as an inextensible chain with
the standard wormlike chain model with some effective,
renormalized bending stiffness? We may already suspect
various problems. For instance, the WLC model would not
account for internal deformation modes of the bundle, i.e.,
twisting or relative sliding (shear) of the constituent filaments
in the bundle. To address this, a new theory was proposed
termed the wormlike bundle (WLB) model (Heussinger,

FIG. 9. (a) Fluorescence microscopy image of a bundled F-actin
network (0.1 mg=ml actin) cross-linked by fascin proteins (scale
bar is 10 μm). (b) From transmission electron micrographs (inset,
scale bar is 0.2 μm) a scaling relation for the average bundle
diameter D is obtained. Adapted from Lieleg et al., 2007.

FIG. 10 (color online). Semiflexible filaments (black) are
coupled to nearest-neighbor filaments by cross-links (gray) with
axial spacing δ and stiffness kx. The interfilament spacing b is
fixed by the length of the intervening actin-binding proteins and
remains constant in tightly cross-linked bundles. The ratio α [see
Eq. (40)] represents the competition between cross-link shearing
and filament extension or compression during bundle bending.
This ratio determines the degree of coupling in the bundle.
Adapted from Claessens et al., 2006.
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Bathe, and Frey, 2007; Bathe et al., 2008; Heussinger,
Schüller, and Frey, 2010), which explicitly accounts for the
discrete character of the internal architecture of the bundle and
its internal deformation modes.
The WLB model describes a bundle of length l as a

collection of N filaments oriented in parallel, which are
connected by cross-links with a stiffness kx and spacing δ
(see Figs. 10 and 11). The individual fibers run the full length
of the bundle, have a bending rigidity κ, and a stiffness ks on
the scale of the cross-linking distance δ. An important
dimensionless parameter in this model is (Heussinger,
Bathe, and Frey, 2007; Bathe et al., 2008; Heussinger,
Schüller, and Frey, 2010)

α ¼ kxl2

ksδ2
; ð40Þ

which is a measure of the competition between cross-link
shearing and filament stretching. The continuum limit of this
model is obtained by taking N → ∞ at a fixed bundle
diameter, at which the WLB model describes a
Timoshenko beam.
Importantly, it was found that the bundle cannot be

described by a single bending rigidity. Instead, the bending
stiffness is state dependent and, in particular, depends on the
wave number qn of a bending mode of the bundle
(Heussinger, Bathe, and Frey, 2007)

κn ¼ Nκ

�
1þ

�
12κ̂

N − 1
þ ðqnλÞ2

�
−1
�
; ð41Þ

with a dimensionless bending stiffness κ̂ ¼ κ=ksδb2 and
length scale λ ¼ ðl= ffiffiffi

α
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mκ̂=ðM − 1=2Þp
, where b is the

interfilament distance and M ¼ ffiffiffiffi
N

p
=2. Note, however, that λ

itself does not depend on bundle length l.
For a fixed wave number qn ∼ n=l, three elastic regimes

can be identified: (1) If the shear stiffness of the bundle is
large, α ≫ N, the system is in the “tightly coupled” limit and
the fibers do not slide (shear) relative to each other to

accommodate bundle bending, and κn ∼ N2ks. (2) If the
shear stiffness is small, α ≪ 1, the system is “decoupled”
and the fibers contribute to bundle bending independently,
and κn ∼ Nκ. (3) For intermediate shear stiffness, 1 ≪ α
≪ N, the bundles’ bending stiffness is dominated by
internal shearing, and thus has a strong wavelength
dependence κn ∼ Nkxq−2n .
The various regimes for the dependence of the bundles

bending rigidity on N have been observed for single F-actin
bundles formed with variety of actin-binding proteins
(Claessens et al., 2006). This was done by inferring the
scaling dependence of the bundles persistence length lp on N.
For actin bundles cross-linked by plastin, evidence of a
decoupled regime was found (lp ∼ N), while for actin
cross-linked with fascin and α-actinin, the results were
consistent with tightly coupled behavior (lp ∼ N2) for lower
values of N, which then crossed over to decoupled behavior
for larger values of N. By contrast, actin bundles formed by
the depletion agent polyethylene glycol (PEG) exhibited
tightly coupled behavior for a broad range of N. Thus, the
molecular details of the cross-linker can have an important
impact on the mechanical (and dynamical) behavior of
bundles. Clearly, this will impact the mechanics of a bundle
network on the macroscopic level. Indeed, various studies
have found evidence for decoupled or coupled regimes in the
macroscopic rheology of bundle networks (Lieleg et al.,
2007). Moreover, evidence for such behavior has also been
found for networks of fibrinogen, which forms complex,
hierarchical fibers consisting of many protofibrils. The result-
ing fibers can be modeled as bundles, although the protofibrils
are less distinct than, e.g., actin in bundles. Fibrin networks
have also shown evidence of a nonlinear thermal compliance
that goes beyond the mechanical models above (Piechocka
et al., 2010).
It has also been argued that the WLB model is a more

appropriate description than theWLCmodel for microtubules,
owing to their anisotropic molecular architecture (Taute et al.,
2008): as shown in Fig. 4, microtubules are cylindrical and
tubular in shape, but the axial binding of tubulin proteins into
protofilaments is stronger than the lateral binding of these
filaments. Interestingly, it has been reported that microtubules
have a length- or wavelength-dependent stiffness (Pampaloni
et al., 2006; Taute et al., 2008), and the elastic anisotropy of
their structure has been implicated as the cause of this
(Heussinger, Schüller, and Frey, 2010). However, it was also
noted that the degree of anisotropic elasticity required to
account for the reported length dependence is extremely large,
and much larger than recent detailed simulations found (Sept
and MacKintosh, 2010). Moreover, AFM experiments prob-
ing the response of microtubules to radial forces have not
shown evidence for significant anisotropy (de Pablo et al.,
2003). Thus, this remains an interesting and unresolved puzzle
(Liu et al., 2012).
The remarkable wavelength dependence of the bundles

bending rigidity has a number of important implications. The
entropic stiffness of a bundle in the parameter range λ

ffiffiffiffi
N

p
≫

l ≫ λ is given by (Heussinger, Bathe, and Frey, 2007)

kentr ∼
ðNκÞ2
lλ3kBT

. ð42Þ

FIG. 11 (color online). Schematic illustrating the wormlike
bundle model. Bundles consist of regular arrangements of
filaments held together by equally spaced cross-linking proteins.
The bundle can bend and twist in space, which can result in
internal filament sliding or shear. Adapted from Heussinger,
Schüller, and Frey, 2010.
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Importantly, the strong 1=l4 dependence of length in the
WLC model [see Eq. (18)] is replaced here by 1=lλ3 with
implications for the modulus of a network and its scaling with
concentration (Heussinger, Bathe, and Frey, 2007). Under a
compressive force, the bundle buckles (see Sec. II.B.2) at a
force threshold fc ∼ κn=l2 (with n ¼ 1). However, in the
intermediate regime, where internal shear dominates, κn ∼ l2,
and thus the strong length dependence of the buckling force
threshold drops out fc ∼ Nκ=λ2. It has been argued that this
mechanism may stabilize biopolymer assemblies under com-
pression, with possible implications for microtubules and
actin bundles in growing filliopodia (Heussinger, Bathe, and
Frey, 2007; Bathe et al., 2008).

III. ENTANGLED SOLUTIONS OF SEMIFLEXIBLE
POLYMERS

A. Rheology of entangled networks

Given the rigidity of semiflexible polymers at scales shorter
than their contour length, it is not surprising that in solutions
they interact with each other in very different ways than
flexible polymers would, e.g., at the same concentration. In
addition to the important characteristic lengths of the molecu-
lar dimension (say, the filament diameter 2a), the material
parameter lp, and the contour length of the chains, there is
another important new length scale in a solution, the mesh
size, or typical spacing between polymers in solution ξ. A
simple estimate (Schmidt et al., 1989) shows how ξ depends
on the molecular size a and the polymer volume fraction ϕ. In
the limit that the persistence length lp is large compared with
ξ, we can approximate the solution on the scale of the mesh as
one of the rigid rods. Hence, within a cubical volume of size ξ,
there is of the order of one polymer segment of length ξ and
cross section a2, which corresponds to a volume fraction ϕ of
order a2ξ=ξ3. Thus,

ξ ∼ a=
ffiffiffiffi
ϕ

p
: ð43Þ

While the mesh size characterizes the typical spacing
between polymers within a solution, it does not entirely
determine the way in which they interact sterically with each
other. For instance, for a random static arrangement of rigid
rods, it is not hard to see that polymers will not touch each
other on average except on a much larger length: imagine
threading a random configuration of rods at small volume
fraction with a thin needle. An estimate of the distance
between typical interactions (entanglements) of semiflexible
polymers must account for their thermal fluctuations (Odijk,
1983). As seen above, the transverse range of fluctuations δu a
distance l away from a fixed point grows according to
δu2 ∼ l3=lp. Along this length, such a fluctuating filament
explores a narrow conelike volume of the order of lδu2. An
entanglement that leads to a constraint of the fluctuations of
such a filament occurs when, with probability of order unity,
another filament crosses through this volume, in which case it
will occupy a volume of order a2δu, since δu ≪ l. Thus, the
volume fraction and the contour length l between constraints
is of the order of ϕ ∼ a2=lδu. Taking the corresponding
length as an entanglement length

le ∼ ða4lpÞ1=5ϕ−2=5; ð44Þ

which is larger than the mesh size ξ in the semiflexible
limit lp ≫ ξ.
These transverse entanglements, separated by a typical

length le, govern the elastic response of solutions, in a
way first outlined by Isambert and Maggs (1996). A more
complete discussion of the rheology of such solutions can be
found in Morse (1998b, 1998c), along with experimental
evidence in Hinner et al. (1998). The basic result for the
rubberlike plateau shear modulus G0 for such solutions can be
obtained by noting that the number density of entropic
constraints (entanglements) is n ∼ 1=ξ2le, where ρ ∼ 1=ξ2

is the concentration in total chain length per volume. In the
absence of other energetic contributions to the modulus, the
reduction in entropy associated with these constraints results
in a shear modulus proportional to kBT per entanglement:

G ∼
kBT
ξ2le

∼ ϕ7=5: ð45Þ

This is analogous to the case of flexible polymers, where
G ∼ kBT=ξ3. It is also interesting to note that the semiflexible
result in Eq. (45) is strictly smaller than the corresponding
flexible polymer result for the same mesh size, since stiff
polymers are fundamentally less entangled than flexible
polymers, and le > ξ. The modulus in Eq. (45) has been
well established in experiments, such as those of Hinner
et al. (1998).
With increasing frequency, or for short times, the macro-

scopic shear response of solutions is expected to show the
underlying dynamics of individual filaments. One of the main
signatures of the frequency response of polymer solutions in
general is an increase in the shear modulus with increasing
frequency. In practice, for high molecular weight F-actin
solutions of approximately 1 mg=ml, this is seen for frequen-
cies above a few hertz. Initial experiments measuring this
response by imaging the dynamics of small probe particles
have shown that the shear modulus increases as GðωÞ ∼ ω3=4

(Gittes et al., 1997; Schnurr et al., 1997), which has since been
confirmed in other experiments and by other techniques
(Gisler and Weitz, 1999; Gardel et al., 2004b; Deng et al.,
2006; Hoffman et al., 2006; Koenderink et al., 2006).
This behavior can be understood in terms of the dynamic

longitudinal fluctuations of single filaments, as shown above
(Gittes and MacKintosh, 1998; Morse, 1998a). Much as the
static longitudinal fluctuations hδl2i ∼ l4=l2

p correspond to
an effective longitudinal spring constant ∼kBTl2

p=l4, the
time-dependent longitudinal fluctuations shown above in
Eq. (35) correspond to a time- or frequency-dependent
compliance or stiffness, in which the effective spring constant
increases with increasing frequency, as shown in Eq. (36).
This is because, on shorter time scales, fewer bending modes
can relax, which makes the filament less compliant and stiffer.
Accounting for the random orientations of filaments in
solution results in a frequency-dependent shear modulus

GðωÞ ¼ 1
15
ρκlpð−2iζ=κÞ3=4ω3=4 − iωη; ð46Þ
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where ρ is the polymer concentration measured in length per
unit volume.As shown in Fig. 12, this frequency dependence of
the shear modulus has been quantitatively confirmed in
measurements on in vitro actin networks (Koenderink et al.,
2006), and has also been reported for the high-frequency
response of living cells (Deng et al., 2006; Hoffman et al.,
2006). Moreover, the experiments of Koenderink et al. also
showed evidence of an additional relaxation predicted by
Pasquali, Shankar, andMorse (2001). They identified a macro-
scopic relaxation associatedwith tension propagation along the
polymer chains, which was predicted to occur at frequencies
intermediate between the high-frequency ω3=4 regime and an
entangled plateau in the rheology. The experiments in the inset
of Fig. 12 are consistent with the predicted relaxation and are
also consistent with the fact that the relaxation mechanism is
predicted to be absent in cross-linked networks.

B. Glassy wormlike chain model

Microrheology experiments on live cells have provided
evidence that cells may behave as soft glassy materials—
existing close to a glass transition (Fabry et al., 2001; Deng
et al., 2006). The rheology of cells was found to exhibit weak
power-law behavior G ∼ ω0.17 over five decades in frequency.
This weak frequency dependence cannot be understood within

existing theories for semiflexible polymer networks or sol-
utions and indeed appears to be reminiscent to the glassy
rheology of other soft matter systems. This suggests that the
cytoskeleton and its polymer constituents, which are thought
to provide the dominant contribution to the rheological
measured by Fabry et al., may be surrounded by a “glassy”
environment. However, the affect of such a glassy environ-
ment of the dynamic rheology of a semiflexible polymer
network remains poorly understood.
Kroy and Glaser addressed this issue by considering the

affect of a glassy environment on the dynamics of a semi-
flexible polymer (Kroy and Glaser, 2007; Kroy, 2008). Their
approach starts from the relaxation spectrum of a polymer
under tension using the ordinary wormlike chain model. From
Eq. (38), one obtains a relaxation time for the nth mode of
wave vector qn ¼ nπ=l given by

tn ¼
1

ωðqnÞ
¼ ζl4

κπ4
1

n4 þ n2τ=τl
; ð47Þ

where τl ¼ κπ2=l2 and τ is the backbone tension. This
spectrum describes the relaxation time of the nth mode of
the transverse fluctuations (see Sec. II.C) for a filament under
tension.
From the equilibrium mode amplitudes and the relaxation

spectrum one can calculate various quantities of interest, such
as the dynamic structure factor and the rheological response.
The question, asked by Kroy and Glaser, was how a glassy
environment might affect the dynamics of the wormlike chain.
Such a glassy environment may be thought of as a collection
of traps distributed in space, with a broad power-law dis-
tribution in strength (set by the height of a free energy barrier),
locally pinning the polymer—along the lines of the trap
models underlying soft glassy rheology (Sollich et al., 1997).
The trapping interactions will impact the relaxation time

scales of the transverse fluctuations, and longer wavelength
modes are expected to be slowed down more substantially,
since there will be more trapping interactions (see Fig. 13).

FIG. 12. (a) Storage modulus G0ðωÞ and (b) loss modulus
G00ðωÞ of 1 mg=ml solutions of F-actin filaments with (triangles)
and without (squares) cross-links plotted against frequency. The
solid lines indicate theoretical predictions from Eq. (46). Inset:
scaled loss modulus Gs

00ðωÞ ¼ −½G00ðωÞ þ iωη�=caω3=4. From
Koenderink et al., 2006.

FIG. 13 (color online). Schematic to illustrate the glassy worm-
like chain model. The test polymer can be trapped through
effective interactions with the surrounding polymer solution.
These interactions are indicated by the potential wells at sticky
entanglement points, which are on average separated by the
entanglement length le. The test polymer can bind or unbind by
overcoming an energy barrier of height ε. The average distance
length between the “closed” bonds is represented by Λ. From
Wolff, Fernandez, and Kroy, 2010.
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To obtain a description of the glassy wormlike chain (GWLC),
the relaxation spectrum of the ordinary WLC is “stretched” as
follows:

~tn ¼ tn expðNnϵÞ ð48Þ

for wavelengths longer than λn ¼ 2π=qn > Λ. Here Nn ¼
λn=Λ − 1 represents the number of trapping interactions per
wavelength λn of a given mode. The so-called stretching
parameter ϵ controls how modes get slowed down by the
trapping interaction through an Arrhenius factor; ϵ may be
thought of as the characteristic height of the free energy barriers
associated with the traps in units of kBT, while Λ represent the
typical distance between traps. In principle, one expects that the
rough energy landscape of a glassy environment might also
affect the mode amplitudes, but this presents a very daunting
calculation and has so far remained elusive. However, it was
argued that the slowing down of the relaxation times could
capture the most relevant aspects of the glassy wormlike chain.
Thus, the mode amplitudes of the ordinary WLC were
assumed, but with a stretched relaxation spectrum.
The predictions of the GWLC model include logarithmic

tails in the long-time behavior of the dynamic structure factor,
which can account for experiments on F-actin solutions
(Semmrich et al., 2007). In addition, the rheology of a
collection of GWLCs can be calculated assuming affine
deformations (see Sec. IV.A, also in the presence of a prestress
on the network (Kroy and Glaser, 2007). The role of prestress
was included in the model by its affect on the parameter ϵ,
since the free energy landscape gets tilted by the presence of a
force directed along the reaction coordinate. It is interesting to
contrast the GWLC predictions for the dynamic rheology with
that predicted for a cross-linked network, which exhibits a
frequency-independent plateau at low frequencies. The
GWLC still allows relaxation beyond the interaction length
Λ, in contrast to a permanently cross-linked network for which
the transverse filament fluctuations cannot relax for modes
with wavelengths beyond the cross-linking scale lc. Thus, in
the GWLC model, the “plateau” regime is no longer flat but
appears to increase with frequency as a weak power law,
consistent with experiments on live cells (Fabry et al., 2001;
Deng et al., 2006). In the GWLC model, the exponent of this
power law depends on the level of prestress and the interaction
strength ϵ, which is a phenomenological parameter that may
be hard to predict from first principles. Nonetheless, various
predictions of the glassy wormlike chain agree favorably with
the rheology of actin solutions, as well as live cells, and this
was taken as evidence that these systems operate near a glass
transition (Semmrich et al., 2007).

C. Transient linkers and cross-link governed dynamics

One essential feature of many physiological biopolymer
networks is the intrinsically dynamic nature of their cross-
links. For instance, many actin-binding cross-linking proteins
only form transient bonds between filaments. Such systems
represent a distinct class of polymeric materials whose long-
time dynamics are not governed by viscosity or reptation (Doi
and Edwards, 1988), but rather by the transient nature of their
cross-links (Lieleg et al., 2008, 2009, 2011; Ward et al., 2008;

Broedersz et al., 2010; Heussinger, 2011; Strehle et al., 2011;
Yao et al., 2011, 2013). This can give rise to a complex
mechanical response, particularly at long times, where the
network is expected to flow. In Sec. IV we discuss perma-
nently cross-linked networks in detail. Here we briefly discuss
some recent work on transient networks, which forms a
natural segue between solutions and cross-linked networks.
The simplest possible description of a material that is elastic

on short-time scales while flowing on long-time scales is that
of a Maxwell fluid; this exhibits a single relaxation time.
Indeed some experiments on transient networks have been
modeled with a single relaxation time (Lieleg et al., 2008,
2009); however, those experiments and others (Ward et al.,
2008; Broedersz et al., 2010; Yao et al., 2011, 2013)—
probing longer relative time scales compared to the linker
unbinding time—show a more complex low-frequency vis-
coelastic behavior, indicative of multiple relaxation times.
To address these experimental observations, a microscopic

model was developed for long-time network relaxation that is
controlled by cross-link dynamics (Broedersz et al., 2010).
This cross-link-governed dynamics (CGD) model describes
the structural relaxation that results from many independent
unbinding and rebinding events (Fig. 14), leading to a very

FIG. 14 (color online). (a) For times shorter than the unbinding
time τoff , only small scale bend fluctuations between the
effectively permanent cross-inks can relax, resulting in a plateau
in G0 for frequencies > 1=τoff . (b) For longer times, large scale
conformational relaxation can occur via linker unbinding (open
circle) and subsequent rebinding at a new location. (c) Measured
linear rheology of a 23. 8 μM actin network cross-linked with
various concentrations of α-actinin-4. The low-frequency behav-
ior is consistent with G ∼ ω1=2. The solid and dashed lines are
global fits using the mean-field CGD model for the low-
frequency regime together with the known high-frequency
response. Adapted from Broedersz et al., 2010.
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slow relaxation of stress. Using a combination of Monte Carlo
simulations and an analytic approach, it was shown that this
type of cross-link dynamics yields power-law rheology

G ∼ ω1=2 ð49Þ

at frequencies below the cross-link unbinding rate, arising
from a broad spectrum of relaxation rates. An important
difference with the GWLC model for entangled solutions
described in the previous section is that in the CGD model the
relaxation spectrum of the bending modes is derived from the
microscopic unbinding of individual cross-links at a constant
rate 1=τoff , and the exponent of the power-law rheology is
fixed at a value of 1=2. The predictions from the CGD model
are in quantitative agreement with experiments on F-actin
networks using the transient linker protein α-actinin-4
(Broedersz et al., 2010; Yao et al., 2011, 2013), as shown
in Fig. 14(c).
The CGD model can be qualitatively understood in simple

physical terms as follows. Each filament is assumed to be cross-
linked into the network, with an average spacing lc. Only
filament bending modes between cross-links can relax
[Fig. 14(a)], and the thermalization of these results in an
entropic, springlike response [e.g., that of Eq. (18)]. To account
for transient cross-linking, the linkers may unbind at a rate
1=τoff . This initiates the relaxation of long-wavelength
(λ > lc) modes [Fig. 14(b)], giving rise to a reduced macro-
scopic modulus. However, the relaxation of successively
longer wavelength modes becomes slower, as an increasing
number of unbinding events are needed for such a relaxation.
Interestingly, this suppression of longer wavelength relaxation
cannot be accounted for, even phenomenologically, by an
effectively larger viscosity for polymer motion. This would
lead to a terminal relaxation and viscouslike response. Rather
this simple physical picture of multiple, uncoordinated unbind-
ing events suggests a broad spectrum of relaxation times for the
different mode wavelengths λ≳ lc, leading to a power-law
rheology. Specifically, this model predicts the scaling in
Eq. (49) below the characteristic frequency 1=τoff.
This model does not account for the steric entanglements of

the surrounding chains that can hinder the relaxation of
bending modes. These constraints begin to affect the relax-
ation of modes with wavelength λ≳ le. Thus, the ω1=2 regime
above can be expected for networks with lc substantially
smaller than le, and this power-law regime is expected to give
way to a solutionlike plateau in Eq. (45), albeit at much lower
frequencies due to the transient binding. Finally, at the lowest
frequencies, a dramatically slowed-down reptation and cor-
respondingly enhanced viscous behavior is expected.
The unbinding kinetics of the transient cross-links may also

depend on the level of an imposed macroscopic stress. One
possibility is that stress leads to forced unbinding (Lieleg and
Bausch, 2007; Kasza et al., 2010), which has been studied
within the GWLC framework (Wolff and Kroy, 2010, 2012).
Interestingly, various experiments with actin and myosins
(Lieleg et al., 2009; Norstrom and Gardel, 2011) or
α-actinin-4 cross-links (Yao et al., 2013) appear to show a
counterintuitive response to stress; macroscopical rheological
experiments indicate that the upper bound of the cross-link
governed dynamical regime shifts to lower frequencies with

increasing stress, suggesting that the unbinding rate slows
downwith increasing stress. Such behavior may be caused by a
“catch-bond” mechanism at the molecular level, causing an
enhanced gel-like range in the macroscopic rheology (the
fluidlike regime is shifted to lower frequency with increasing
stress levels).
Another framework to describe networks with transient

cross-links was proposed by Heussinger (2012). This model
went beyond the assumption of affine deformations (see
Sec. IV.A) on the scale of a filament, and assigned an elastic
stiffness to the transient cross-links. Using a self-consistent
effective medium approach, this model treated a test filament
connected by reversible cross-links to a “tube,” representing
the surrounding network. When a finite strain is applied, this
confining tube deforms, stretching the cross-links and bending
the test filament. Thus, using this approach, it is possible to
self-consistently calculate the nonlinear mechanical properties
of the network. When the network is deformed, cross-link
unbinding processes lead to stress relaxation, resulting in a
reduction of the network modulus with increasing strain.
However, in the current model, both the cross-links and
filaments were treated as linear elements, and it will be
interesting to investigate how the network softening caused
by linker unbinding competes with stiffening contributions
from the filaments and cross-links (DiDonna and Levine,
2006; Gardel et al., 2006; Wagner et al., 2006; Broedersz,
Storm, and MacKintosh, 2008; Kasza et al., 2009, 2010).

IV. CROSS-LINKED NETWORKS

A major challenge in this field is to construct a formulation
to bridge the gap between the mechanical properties of an
individual polymer and the collective response of a network of
such polymers. Here, among other things, the disordered
nature of these networks complicates such a description
because it can lead to nonuniform deformations, which
may depend sensitively on the local details of network
inhomogeneities. In some cases, such nonuniform strain fields
can have a major qualitative impact on the network’s elastic
response. Nonetheless, we start by ignoring these spatial strain
fluctuations. This constitutes the central assumption of the
affine model (MacKintosh, Käs, and Janmey, 1995; Morse,
1998b; Storm et al., 2005). This is inspired, in large part, by
the success of such an approach in flexible polymer systems
(Doi and Edwards, 1988; Rubinstein and Colby, 2003). Then,
after discussing various experimental studies of reconstituted
biopolymer gels that have made direct comparisons with the
affine model, we will resume with theoretical approaches that
have gone beyond the affine assumption.
In the following, we treat the cross-links as freely hinging

but otherwise noncompliant. Thus, we shall not cover various
interesting aspects of physiological cross-linking proteins that
are themselves compliant or that tend to impose specific bond
angles. Recent reviews covering these topics can be found in
Fletcher and Mullins (2010) and Lieleg, Claessens, and
Bausch (2010). Moreover, we focus here on isotropic net-
works. We point the interested reader to several recent studies
addressing phase behavior and possible anisotropic networks
in Zilman and Safran (2003), Borukhov et al. (2005),
Benetatos and Zippelius (2007), and Cyron et al. (2013).
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A. Affine model

The affine model assumes that all cross-links in the network
deform according to the externally imposed (uniform) strain γ.
A polymer strand of length l between two such cross-links
will deform through stretching or compressing by an amount
that scales with its length and depends on both its orientation
and the macroscopic strain γ. In the limit of small γ, this
extension or compression is simply proportional to strain
δl ∼ lγ with a simple trigonometric prefactor related to the
polymer orientation relative to the shear direction
(MacKintosh, Käs, and Janmey, 1995; Morse, 1998a).
Thus, this affine assumption completely specifies how each
polymer strand in the network deforms, making the calcu-
lation of all the stresses in the system straightforward. The
stress tensor is found by adding contributions from polymer
strands over all orientations. These aspects form the essence of
affine models of both the semiflexible networks reviewed here
as well as much earlier approaches to rubber elasticity (James
and Guth, 1943; Wall and Flory, 1951; Doi and Edwards,
1988; Rubinstein and Colby, 2003) that have been the
inspiration for much of what follows in this section.
We begin with the approach by Storm et al. (2005), which

extends the small-strain approach of MacKintosh, Käs, and
Janmey (1995) and Morse (1998a) to larger strains. Here we
consider a semiflexible polymer strand with an orientation n̂ in
the initially undeformed network. The deformation of such a
strand is described by the uniform Cauchy deformation tensor
Λij. For example, for a simple shear of the x-y plane in the
x direction we have

Λ ¼
 
1 0 γ
0 1 0

0 0 1

!
: ð50Þ

The total polymer length per unit volume in the undeformed
network ρ is not conserved under this deformation. While the
volume is conserved, the total length of polymer will increase
when the network is deformed.
To calculate all components of the stress tensor, we need to

decompose the various contributions to the stress. It is helpful
to recall that the stress is a rank-2 tensor because it contains
information about both the direction of the forces in a given
plane as well as the orientation of this plane. The length
density of strands per unit volume crossing a plane oriented
perpendicular to the j direction transforms as ðρ= detΛÞΛjknk,
where the determinant detΛ accounts for the volume change
associated with the deformation. For a simple shear, as
considered here, the volume is conserved, and thus
detΛ ¼ 1. The tension in a strand between the two affinely
deforming cross-links is denoted as τðjΛn̂j − 1Þ, where jΛn̂j −
1 represents the axial strain of the polymer. The i component
of this tension is given by τðjΛn̂j − 1ÞΛilnl=jΛn̂j. Adding all
these contributions, weighed by the amount of polymer length
crossing the j plane, results in the ij component of the
symmetric stress tensor (Morse, 1999; Storm et al., 2005),

σij ¼
ρ

detΛ

�
τðjΛn̂j − 1ÞΛilnlΛjknk

jΛn̂j
�
; ð51Þ

where the summation of the repeated indices is implied. The
angular brackets indicate an average over the distribution of
chain orientations in the initial, undeformed network. For a
small shear deformation γ ≪ 1, the stress simplifies to (Gittes
and MacKintosh, 1998; Morse, 1998b)

σij ¼ ρhτðγnxnzÞn̂in̂ji þOðγ3Þ; ð52Þ

where γnxnz represents the axial strain of a polymer with
orientation n̂ due to the strain tensor in Eq. (50).

1. Affinely deforming semiflexible polymer networks

So far we have not specified the force-extension behavior of
the network’s polymer constituents, which is implied by the
τðγnxnzÞ term in Eq. (52). Here we consider the case of a
semiflexible polymer network. To model an inextensible,
semiflexible polymer of length lc between two pointlike,
freely hinging cross-links in the network, we can use the WLC
model (Kratky and Porod, 1949; Marko and Siggia, 1995) in
the semiflexible limit lp ≳ lc (MacKintosh, Käs, and Janmey,
1995), which was discussed in Sec. II.B.
Taking the linearized force-extension relation for a semi-

flexible polymer in Eq. (18), the tension above in the small
strain limit becomes

τðγnxnzÞ ¼
90κlp

l3
c

γnxnz ð53Þ

and the shear stress becomes

σxz ¼ ρ
90κlp

l3
c

γhnxnznxnzi: ð54Þ

For an assumed isotropic distribution of orientations n̂, we
obtain the linear shear modulus of a semiflexible polymer
network,

G0 ¼ 6ρ
κ2

kBTl3
c
: ð55Þ

Thus, the network stiffness depends sensitively on the cross-
linking density.
Using the small strain approximation γ ≪ 1 for the stress

tensor [Eq. (52)], we can also cast the nonlinear network
response in a universal form (Gardel et al., 2004a)

~σij ¼ hϕð~γnxnzÞn̂in̂ji; ð56Þ

where ~σ ¼ σ=σc, ~γ ¼ γ=γc, and ϕ was defined in Eq. (15).
Here the characteristic strain and stress for the onset of
nonlinearity are defined as

γc ¼
1

6

lc

lp
and σc ¼ ρ

κ

l2
c
: ð57Þ

Beyond these characteristic values, the differential shear
modulus K ¼ dσ=dγ asymptotically approaches a scaling
regime where K ∼ σ3=2. This can be seen by the high tension
limit of the force-extension relation in Eq. (19), since σ ∼ τ
and
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dσ
dγ

∼
dτ

dðδlÞ ∼
1

jδl − Δlj−3 ∼ τ3=2: ð58Þ

This scaling form is not exact, as it does not account
for the angular distribution of filaments, but this does
not significantly affect the asymptotic behavior (Gardel et al.,
2004a).

2. Comparison of the affine model to experiments on
reconstituted biopolymer networks

A comparison of the functional form of the nonlinear elastic
response of a range of biopolymer networks reveals a
remarkable qualitative similarity, even between intracellular
and extracellular biopolymers, as shown in Fig. 15 (Storm
et al., 2005). All these systems stiffen under applied strain.
These data suggested that the nonlinear elasticity across
systems may have the same biophysical origins, despite large
differences in architectural details and mechanical properties
at both the filament and network level. Indeed, it has been
shown, for systems ranging from actin (Gardel et al., 2004a,
2004b; Koenderink et al., 2006; Tharmann, Claessens, and
Bausch, 2007) and intermediate filaments (Lin, Broedersz

et al., 2010; Lin, Yao et al., 2010; Yao et al., 2010) to
synthetic stiff polymers (Kouwer et al., 2013), that aspects of
both linear and nonlinear rheological response can be
accounted for by simple affine thermal models. In this section
we discuss a few of these experimental studies.
First we relate some of the quantities introduced in the

previous section, such as the cross-linking length scale lc, to
experimental control parameters. For example, consider a
reconstituted F-actin network. Two important experimental
control parameters are the concentration of monomeric actin c
and the concentration of cross-linking protein c×. It will also
be useful to quantify the degree of cross-linking by the ratio of
cross-linkers to polymer, which is often most conveniently
expressed in terms of the molar ratio R ¼ c×=c.
We limit this discussion to the affine thermal model for

homogenous, isotropic networks in which the cross-links do
not lead to the bundling of filaments. For such cases, we
expect that varying the polymer concentration will not only
affect the polymer length density ρ ∼ c but also the cross-
linking length scale lc, since the number of potential physical
bonds between cross-links increases with more polymer
[see Eqs. (55) and (57)]. The precise dependence of the

FIG. 15 (color online). (a) The shear modulus G0 ¼ σ=γ as a function of strain for various reconstituted biopolymer networks and
polyacrylamide. From Storm et al., 2005. (b) The differential shear modulus K ¼ dσ=dγ as a function of applied external stress σ0 for
reconstituted actin networks cross-linked by scruin (Gardel et al., 2004a). The lines indicate the theoretically predicted form of stiffening
for small strains, as outlined in Sec. IV.A.1. (c) Neurofilament network moduli (K ¼ dσ=dγ) normalized by the linear modulus G0 vs
applied stress normalized by the characteristic stress σc for the onset of nonlinearity. Adapted from Lin, Broedersz et al., 2010. These
data are compared with the predicted behavior for the small-strain approximation (solid line) introduced by Gardel et al. (2004a), as well
as the asymptotic 3=2 scaling (dashed line). The inset also shows a comparison with the behavior predicted in Eq. (60) for both
neurofilaments and vimentin intermediate filaments (Lin, Broedersz et al., 2010). The difference between these two filament types is
consistent with a difference between their persistence lengths. (d) Biomimetic polyisocyanopeptide hydrogels also show nonlinear
rheology consistent with the affine thermal model in Sec. IV.A.1. From Kouwer et al., 2013.
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cross-linking distance lc on parameters is subtle. The most
likely binding sites on the polymer for effective cross-links are
sites where two polymer strands interact sterically, i.e., the
entanglement points (Odijk, 1983). Thus, we expect that
cross-linking will occur on the entanglement length scale
lc ∼ le ∼ ða4lpÞ1=5ϕ−2=5 [see Eq. (44)], where a is the
polymer’s diameter, and the polymer volume fraction
ϕ ∼ c. However, if we fix the actin concentration to hold
the entanglement length constant, while varying R, we
expect that lc will also vary. It is often postulated that
lc ∼ R−x, where x is a phenomenological exponent that
may depend on the type of cross-linker. Taking the scaling
of lc with the entanglement length scale and the degree of
cross-linking together yields

lc ∼ ða4lpÞ1=5c−2=5R−x. ð59Þ

If R is held fixed, then it is expected thatG0 ∼ c11=5, which is a
stronger dependence than the prediction for an entangled
solution G ∼ c7=5 (see Sec. III). Various measurements of the
linear shear modulus of F-actin and intermediate filament
networks have been found to be consistent with the 11=5
scaling predicted by the affine model (MacKintosh, Käs, and
Janmey, 1995; Gardel et al., 2004a, 2004b; Tharmann,
Claessens, and Bausch, 2007; Lin, Broedersz et al., 2010;
Lin, Yao et al., 2010; Yao et al., 2010).
It is often found that the network response becomes

nonlinear for stresses (or strains) beyond a characteristic or
critical stress σc (or strain γc). From Eqs. (55) and (57), the
critical stress can be expressed in terms of the linear modulus
according to

G0 ¼ 6

ffiffiffi
κ

ρ

r
σ3=2c ∼ c−1=2ðkBTlpÞ1=2σ3=2c : ð60Þ

Note that lc drops out of this equation, and hence this
relationship should depend only on directly measured rheo-
logical quantities and material parameters such as lp that are
usually known by independent means. The predicted relation-
ship in Eq. (60) is in good agreement with recent experiments
on intermediate filaments (Lin, Broedersz et al., 2010) (see
Sec. IV.A.1) and has also been tested in synthetic hydrogels
(Kouwer et al., 2013). In particular, this relation should be
insensitive to the details of cross-linking. Moreover, from the
measured rheological quantities G0 and σc, one can the infer
microscopic quantities

lp ¼ 1

36
ρkBT

G2
0

σ3c
ð61Þ

and

lc ¼ 6lp
σc
G0

: ð62Þ

Since the persistence length is often known independently, the
first of these represents an additional test of the model. These
relations have been tested recently in intermediate filament
gels and in synthetic hydrogels (Lin, Broedersz et al., 2010;
Lin, Yao et al., 2010; Yao et al., 2010; Kouwer et al., 2013).

Another important prediction of this model is the univer-
sality of the stiffening response to applied stress. Scaling the
differential shear modulus K ¼ dσ=dγ by G0 and the stress by
σc should result in a collapse of all data on a universal curve
[see Eq. (56)] that exhibits a high stress scaling regime in
which K ∼ σ3=2 (Gardel et al., 2004a). Such behavior has been
observed for actin, intermediate filaments, and for synthetic
hydrogels (Gardel et al., 2004b; Lin, Yao et al., 2010; Yao
et al., 2010; Kouwer et al., 2013) (see Fig. 15). However, this
universal response is valid only if the polymers are truly
inextensible. Real polymers will have some purely energetic
or enthalpic (as apposed to entropic) mode of extension
(Odijk, 1995), which could start playing a role at high stresses,
resulting in a departure from the universal stiffening curve.
Evidence of this has been seen for fibrin gels and intermediate
filament gels (Storm et al., 2005; Lin, Broedersz et al., 2010;
Lin, Yao et al., 2010; Piechocka et al., 2010).

B. Contractility and motor-generated stiffening in affine thermal
networks

Given the ubiquitous nonlinear elastic response of bio-
polymer networks to applied stress, it is natural to ask
whether internal stresses in living systems might also couple
to such nonlinearities. These internal stresses might arise, for
instance, due to molecular motors that are known to induce
motion and exert forces within cytoskeletal networks in the
cytoplasm of living cells. While the evidence for this in vivo
remains indirect, reconstituted systems in vitro with added
motor activity have observed mechanical stiffening, quali-
tatively consistent with the elastic stiffening due to externally
applied stress (Mizuno et al., 2007; Koenderink et al., 2009).
Specifically, when myosin motor proteins are added to actin
networks, together with adenosine triphosphate (ATP) that
acts as a fuel for the activity, an approximate 100-fold
increase in the modulus was observed, both by local micro-
mechanical measurements (Mizuno et al., 2007) and by
macroscopic rheological measurements (Koenderink et al.,
2009). While such a stiffening can also arise from an increase
of mechanical cross-linking, e.g., due to dead or inactive
myosins, Mizuno et al. were able to confirm that there
was a significant increase in network tension that was
coincident with the mechanical stiffening, consistent with
mechanisms due to network nonlinearity. They were also
able to directly demonstrate the nonequilibirum nature of
both reconstituted and living systems (Mizuno et al., 2007,
2008, 2009). Interestingly, analogous behavior is beginning
to be studied in synthetic systems (Bertrand, Fygenson, and
Saleh, 2012).
These observations are consistent with mean-field

theories of stiffening due to network tension induced by
motor activity (MacKintosh and Levine, 2008; Liverpool
et al., 2009), as well as simulations of networks of stiff fibers
activated by motors (Broedersz and MacKintosh, 2011). Both
of these approaches model the motors by force dipoles
of pairs of equal and opposite forces within the network.
This was done to ensure the necessary force balance within
the network. Subsequent theory has begun to account for the
nonlinear nature of the networks in determining the local
response of networks to internal motor forces (Shokef and

C. P. Broedersz and F. C. MacKintosh: Modeling semiflexible polymer networks 1013

Rev. Mod. Phys., Vol. 86, No. 3, July–September 2014



Safran, 2012). Here we briefly return to motor-activated
systems in Sec. V.C.1, but we point the interested reader
to recent reviews on the subject (Brangwynne et al., 2008;
MacKintosh and Schmidt, 2010; Marchetti et al., 2013).

C. Nonaffine approaches for disordered fiber networks

Considering the success of the affine model in describing
rubber elasticity (Doi and Edwards, 1988), its application to
semiflexible polymer networks may seem reasonable. Indeed,
in many cases, the affine model for semiflexible polymers
agrees well with in vitro experiments for a range of bio-
polymer systems, including intracellular actin and intermedi-
ate filament gels as well as extracellular fibrin networks
(MacKintosh, Käs, and Janmey, 1995; Gardel et al., 2004a;
2004b; Storm et al., 2005; Tharmann, Claessens, and Bausch,
2007; Lin, Broedersz et al., 2010; Lin, Yao et al., 2010;
Piechocka et al., 2010; Yao et al., 2010). There are reasons,
however, to expect the affine approximation to fail. In detail,
of course, even rubber or flexible polymer networks are not
strictly affine in their response (Basu et al., 2011; Wen et al.,
2012). But, in such cases, nonaffinity does not result in a
significant deviation from the affine limit (Carrillo,
MacKintosh, and Dobrynin, 2013). The more interesting
question for semiflexible networks is whether nonaffinity
leads to a qualitatively different behavior. This can happen, for
instance, if the response becomes dominated by chain or fiber
bending, rather than stretching. Naively, affine shear cannot
lead to bending of straight filaments. If bending dominates,
one can expect, for instance, a softer network response than
for purely affine deformations, as well as a different scaling of
G with the concentration c (Kroy and Frey, 1996; Satcher and
Dewey, 1996; Broedersz, Sheinman, and MacKintosh, 2012).
Recent evidence seems to point in this direction for some
systems (Lieleg et al., 2007; Piechocka et al., 2011; Stein
et al., 2011), and the affine state may even be considered to be
unstable (Heussinger and Frey, 2006b). This leaves us now
with the question: When should we expect this model to break
down and what are the signatures of a network response that is
dominated by nonaffine deformations?
An important aspect of affine models is that the polymer

strands deform only through stretching modes. In contrast to
flexible polymers, however, the force extension behavior of a
semiflexible polymer is highly anisotropic: semiflexible
polymers are typically much softer to bending than to
stretching. In particular, the ratio of the restoring force for
a transverse displacement (bending) to that for an axial
deformation (stretching) is k⊥=k∥ ∼ lc=lp. Naively, this
may suggest that in semiflexible polymer networks, for which
lp ≳ lc, it may be considerably more favorable to avoid
costly affine stretching modes by, instead, favoring deforma-
tion through the (presumed) softer bending modes.
Interestingly, however, it turns out to not be that simple.
The energy of a deformation mode is not just set by the
associated elastic rigidity, but also by the amplitude of the
deformation; even though the fibers themselves can be softer
to bending, the bending deformations required to accommo-
date the macroscopically imposed strain can still be large
compared to the stretching deformations, which may render
the nonaffine scenario energetically less favorable than the

affine alternative. Clearly, there is a trade-off, which may
depend sensitively on the system properties. Moreover, given
the connectivity of the network, it might simply be impossible
to construct modes of deformation that avoid the stretching of
bonds. Thus, we seek to determine a “phase” or regime
diagram of some sort for fiber networks, describing which
deformation modes dominate the macroscopic response, given
certain network and fiber parameters. To set the stage for this,
we start by discussing how the nonaffine deformation field can
be characterized and quantified.

1. Characterizing nonaffinity in disordered elastic media

A detailed discussion of nonaffine correlation functions of
inhomogeneous elastic media was provided by DiDonna and
Lubensky (2005), and here we summarize some of their
results.
The most general and straightforward way of characterizing

the nonaffine deformation field (Figs. 16 and 17) is by the
correlation function

Gijðx;x0Þ ¼ hδuiðxÞδujðx0Þi; ð63Þ

or, perhaps, the related form

GðxÞ ¼ h½δuðxÞ − δuð0Þ�2i: ð64Þ

FIG. 16 (color online). Schematic to illustrate nonaffine
deformations in networks (DiDonna and Lubensky, 2005).
(a) Undeformed reference state. (b) Sheared state with nonaffine
displacements. Under affine deformation, points on the vertical
dotted lines in (a) map to points on the slanted dotted lines. The
schematic in (b) illustrates a nonaffinely deformed network where
they do not.

FIG. 17 (color online). Simulated fiber network on a diluted
triangular lattice (see Sec. V.A). The gray network in the
background represents the affinely sheared state.
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Here δui represents the nonaffine component of the displace-
ment δu ¼ u − uaff in the i direction. Since δu will scale with
strain, both these nonaffinity measures scale with γ2.
The scaling of this function with distance may be antici-

pated from continuum elasticity theory. Considering the
nonaffine displacement δuð0Þ multiplied by the local modu-
lus, as a force applied at the origin we should expect a scaling
δuðxÞ ∼ δuð0Þjxj−ðd−2Þ. Indeed it was shown by DiDonna and
Lubensky that for disordered media with spatially varying
elastic properties that G scales logarithmically with distance in
2D and inversely with distance in 3D. The 3D results make
intuitive sense as we expect the network to become more
affine on larger scales (Head, Levine, and MacKintosh,
2003a; DiDonna and Lubensky, 2005; Liu et al., 2007;
Hatami-Marbini and Picu, 2008). Furthermore, DiDonna
and Lubensky reported that, within this continuum
approach, the nonaffinity parameter is expected to be propor-
tional to the variance of the spatial fluctuations of the elastic
modulus.
There are numerous other nonaffinity parameters in the

literature. However, it was shown by DiDonna and Lubensky
(2005) that many of these nonaffinity parameters are closely
related and can be expressed in terms of the nonaffinity
correlation function in Eq. (63). Perhaps the simplest measure
of nonaffinity is the variance of local nonaffine fluctuations

Γ ¼ 1

γ2
h½δuðxÞ�2i. ð65Þ

Note that in this measure the strain dependence is scaled out,
and it thus represents an intrinsic network property, equal to the
trace γ−2Giiðx; xÞ. The advantage of this measure is its
simplicity and convenience in experiments (an accurate esti-
mate of a one-point measure requires less data than
a two-point measure). However, there are drawbacks: in 2D
this measure has a logarithmic dependence on system size, and
this measure may be more sensitive to spurious long-wave-
length inhomogeneities compared to a two-point measure.
Finally, another example of a two-point measure is one that

characterizes the change in orientation of a vector between
two nodes separated by a distance x under deformation,
relative to the affine prediction (Head, Levine, and
MacKintosh, 2003a, 2003b; Liu et al., 2007). The variance
in the nonaffine component of this angular deformation is a
measure of nonaffinity and depends on the distance between
two points. This measure can be shown to scale as ∼GðxÞ=x2
and is thus related to the other measure discussed above.
We are still left with the question: What can we learn from

these nonaffinity measures? The message we hope to convey
in the next few sections is that although these nonaffinity
parameters can be extremely insightful, they need to be
interpreted with caution. For instance, paradoxically, a system
with higher values of the nonaffinity parameter may still have
a mechanical response that is dominated by affine deformation
modes, compared to a system with lower nonaffine fluctua-
tions that is governed by a nonaffine mechanical response.
Again, it must be remembered that all disordered networks can
be expected to exhibit some level of nonaffinity, so that simply
measuring a nonzero value of any of the above measures of
nonaffine deformation does not imply an essential breakdown

of the affine limit, e.g., in the form of qualitative changes to
the elastic response. We discuss these issues in Sec. IV.C.6.

2. Unit-cell approaches

Various unit-cell approaches have been developed for
networks such as rubber, especially in the mechanics literature
(Arruda and Boyce, 1993). In such approaches, rather than
assuming that all network strands deform affinely, a small cell
consisting of a few strands of different orientations is repeated
to form a 2D or 3D structure. The resulting networks are
studied as mechanical and athermal structures. Such
approaches have been adapted to go beyond the affine
formalism to calculate the viscoelastic or viscoplastic proper-
ties of biopolymer solutions (James and Guth, 1943; Satcher
and Dewey, 1996; Jerry Qi, Ortiz, and Boyce, 2006; Palmer
and Boyce, 2008; Brown et al., 2009; Fernández, Grosser, and
Kroy, 2009; Cioroianu, Spiesz, and Storm, 2013).
Among the earlier theoretical studies of nonaffine behavior

of cross-linked nonaffine, Kroy and Frey (1996) and Satcher
and Dewey (1996) borrowed from the field of cellular solids.
The assumption of this model is that fibers deform only
through bending and that such network deformations can be
characterized using a cubic unit cell with sides equal to the
mesh size ξ. Assuming that the fiber strands deform by an
amount δu ∼ γξ, perpendicular to their orientation, the bend-
ing energy becomes

Eb ∼ κ

�
δu
ξ2

�
2

ξ ¼ κ

�
γ2

ξ

�
.

Thus, the energy density amounts to κðγ2=ξ4Þ. Using this
unit-cell picture, we can relate the mesh size to the polymer
concentration ξ ∼

ffiffiffi
c

p
[see Eq. (44)], suggesting a scaling for

the shear modulus

G ∼ κc2: ð66Þ

This concentration dependence should be contrasted with the
affine thermal model for which G ∼ c11=5 in Sec. IV.A.2,
although from this scaling alone it is difficult to distinguish the
two models in practice.
Unit-cell models have the advantage that an affine response

does not need to be enforced at the cross-link level, and
aspects such as averaging over different fiber orientations are
included naturally. Recently, a variation on this theme was
introduced by Carrillo, MacKintosh, and Dobrynin (2013), in
which a diamond lattice unit cell was used to create and study
fully thermalized networks of semiflexible filaments spanning
a wide range of mechanical properties. They found good
agreement with several experimental observations.
Such unit-cell approaches, whether thermal or athermal,

should be appropriate, at least for networks of short stubby
filaments with lengths comparable to the network’s mesh size,
such as in a foamlike architecture (Heussinger and Frey,
2006b). However, in many cases filaments have lengths greatly
exceeding the networks’ mesh size. At the very least, this
introduces additional correlations since the filaments exhibit
mechanical integrity beyond the scale of the unit cell. A unit-
cell-based approach cannot account for this, and one may need
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to deal with a network of linear dimension at least as large as the
fibers themselves. In addition, one might challenge the
assumption that deformations of the fibers scale with mesh
size and the implicit assumption made here that nonaffine
deformations are uncorrelated. These assumptions clearly fail in
some cases, such as networks that are close to marginal stability
(see Sec. V), where network deformations may be correlated
over large length scales, and where nonaffine deformations may
be controlled by other network parameters such as connectivity
or filament length. To address these issues, we now continue
with a discussion of whole-network models that have been
studied numerically.

3. A minimal model for disordered, athermal fiber networks in
2D: The Mikado model

One of the simplest whole-network models for cross-linked
filamentous networks is theMikadomodel (Head, Levine, and
MacKintosh, 2003a, 2003b; Wilhelm and Frey, 2003).
Mikado networks are constructed by randomly depositing
monodisperse filaments of length l onto a two-dimensional
square of size W ×W, as shown in Fig. 18. The intersections
between filaments are identified as pointlike, freely hinging
cross-links. The energy of this system can be expressed as

H ¼ μ

2

X
i

δl2
i

li
þ κ

2

X
hiji

δθ2ij
lij

. ð67Þ

Here li indicates the length of segment i, lij is the average
length of segments i and j, and δθij is the angular deflection
between segments i and j. For fibers, the second sum runs
only over neighboring segments along the same fiber. This is a
purely mechanical model, and the thermal properties of
semiflexible polymers can be captured, at best in a coarse-
grained sense, by setting the modulus μ ¼ 90κlp=l3

c—the
entropic elasticity of a semiflexible polymer (Head, Levine,
and MacKintosh, 2003a). Moreover, the model treats the
filaments as linearly elastic elements with respect to both
bending and stretching. Thus, it does not capture filament
nonlinearities such as the entropic stiffening behavior. This
does not mean, however, that networks of these simple elastic
filaments are necessarily linear in their macroscopic response:
networks of purely linear elements can have a nonlinear
response, as we shall see below. In fact, even at the level of

single fibers with linear bending and stretching elasticity,
nonlinearity can appear due to buckling under compression.
The parameter space of the Mikado model can be expressed

in terms of a line density ρ ¼ π=hlci and the dimensionless
parameter lb=lc. Here the material length scale lb ¼

ffiffiffiffiffiffiffiffi
κ=μ

p
characterizes the ratio of the bending and stretching rigidities.
For simple elastic beams of length lc, lb=lc is a measure
of their aspect ratio, while for thermal semiflexible
polymers lb=lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc=90lp

p
.

Simulations of the Mikado model reveal various qualita-
tively distinct mechanical regimes, including a stretching-
dominated regime where the shear modulus is close to the
affine limit G ≈Gaff (large l=lc or lb=lc). The affine shear
modulus of the Mikado model can easily be calculated and is
given by

Gaff ¼
π

16

μ

lc
ð68Þ

in 2D. This affine value forms a strict upper bound on the
shear modulus of such networks: networks always have the
affine deformation mode available to them, and any deviations
from this deformation will occur only if they lower the elastic
energy. In addition to the affine regime, there is a nonaffine
bending regime G ∼ κ, and a rigidity percolation point ρc at
low network densities at which the shear modulus vanishes
continuously. The crossover between bending-dominated
elastic behaviorG ∼ κ and stretching-dominated behaviorG ∼
μ is shown in Fig. 19 for a simulated Mikado network
response.

FIG. 18 (color online). 2D Mikado networks at low and high
density under a small shear. The colors indicate distribution of
tensions on a filament. Adapted from Wilhelm and Frey, 2003.
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FIG. 19. Simulations of the Mikado model indicate a transition
between a nonaffine bending regime and an affine stretching
regime. Shear modulus G as a function of filament rigidity lb ¼ffiffiffiffiffiffiffiffi

κ=μ
p

for l=lc ¼ 29.09, where G has been scaled to the affine
prediction for this density and lb is shown in units of l. The
straight line corresponds to the bending-dominated regime with
G ∼ κ, which gives a line of slope 2 when plotted on these axes.
The inset depicts the shear modulus G, normalized by the affine
value, for different densities as a function of filament length
scaled by the nonaffinity length scale λ [see Eq. (71)]. This
rescaling results in a good data collapse, as described by Eq. (70).
Adapted from Head, Levine, and MacKintosh, 2003b.
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An understanding of the bending regime poses one of the
main theoretical challenges in this model. Owing to the
disordered nature of the network, bending deformations may
be correlated and could extend over large length scales. Initially,
two basic approaches were offered to provide insight into the
origins of this nonaffine bending regime and the crossover to
affine network behavior. One argument approaches the problem
from the rigidity percolation point (Wilhelm and Frey, 2003),
which we discuss first, while the other approach starts from the
affine limit (Head, Levine, and MacKintosh, 2003a, 2003b). In
Sec. IV.C.4 we discuss a more recent approach, based on
constructing the networks’ floppy modes (Heussinger and Frey,
2006a; Heussinger, Schaefer, and Frey, 2007).
For densities beyond the regime controlled by the rigidity

percolation point, Wilhelm and Frey (2003) proposed the
following form for the shear modulus:

G ¼ κ

l3
jδρ̂jμg

�
lb

l
jδρ̂jν0

�
; ð69Þ

where δρ̂ ¼ lðρ − ρcÞ is dimensionless, and gðxÞ is a universal
scaling function. To capture the affine limit G → Gaff , the
universal function should scale as gðxÞ → x−2 for x ≫ 1, and
the exponents must satisfy μ − 2ν0 ¼ 1. By contrast, in the
bending regimex ≪ 1, the functiongðxÞ shouldbe constant such
that G ∼ ðκ=l3Þjδρ̂jμ. Wilhelm and Frey found an excellent
collapseof their numericaldatawith this scaling functionwith the
values ρ̂c ¼ 5.71, μ ¼ 6.67, and thus ν0 ¼ 2.83.
One interesting implication of this scaling law is a length

scale ξ0 ¼ ljδρ̂j−ν0 (distinct from the length scale of the
incipient percolation cluster) controlling the crossover between
the bending and stretching regimes. In particular, the crossover
is expected when ξ0 ≃ lb, yielding the crossover line density
δρcross ¼ l−1ðlb=lÞ−1=ν (reinstating units of length).
Alternatively, this crossover line density can be understood
from the limiting expressions of the shear moduli: In the
bending regime the shear modulus scales more strongly with δρ̂
than in the affine limit. Thus, at high density the modulus of the
bending-dominated regime surpasses the affine “ceiling,”
implying a crossover to affine network behavior beyond δρcross.
An alternative approach to understanding the rich mechani-

cal behavior of the Mikado model uses the affine limit as a
benchmark, together with a self-consistent scheme to find the
crossover to the nonaffine bending regime (Head, Levine, and
MacKintosh, 2003a, 2003b). The implicit assumption is that the
bending regime near the nonaffine-affine crossover is governed
by different physics than the rigidity percolation point.
Conceptually, the main idea of this argument is to estimate
when the total energy can be reduced by relaxing the axial strain
of a filament of length l over a scale λ near the ends at the cost
of bending other filaments in the surrounding network. This
argument leads to the following scaling prediction:

G ¼ μ

lc
f

�
l
λ

�
; ð70Þ

where

λ ¼ lc

�
lc

lb

�
z0

ð71Þ

is a length scale controlling the crossover (at l≃ λ) between
the bending and the affine stretching regime. This argument
predicts a crossover exponent z0 ¼ 2=5. For the system to
cross over to a bending-dominated regime, given here by
G ∼ ðκ=l3

cÞðl=lcÞ2=z0 , the universal scaling function fðxÞ ∼
x2=z

0
for x ≪ 1, while for large arguments fðxÞ is constant.

Head, Levine, and MacKintosh (2003a, 2003b) reported a good
collapse of numerical data using this scaling form for z ¼ 1=3
for low network density data, while a better collapse is obtained
using z ¼ 2=5 at higher densities (see Fig. 19 inset). However,
this scaling form does not capture the continuous vanishing of
the shear modulus at the rigidity threshold, which could explain
the different scaling at low density.
Although the physical reasoning in the two approaches is

different and the two scaling forms differ in detail, some
reconciliation is obtained by identifying the length scales ξ0

and λ. Far from the rigidity threshold δρ ∼ ρ ∼ 1=lc and the
two scaling forms become similar, implying a correspondence
between the two length scales if z0 ¼ 1=ðν0 − 1Þ or, equiv-
alently, μ ¼ 2=z0 þ 3. However, the numerical values for these
exponents reported in the two studies are inconsistent with
these equations, still leaving the puzzle partially open.
An effective medium description for diluted kagome lattices

was offered by Mao et al., as a model for 2D filamentous
networks. This effective medium approach provided an
analytical calculation of the crossover function that captures
the bend-stretch transition (Mao, Stenull, and Lubensky,
2013b). Interestingly, the exponent that governs the crossover
appears to be different in lattice-based networks than in
Mikado networks. Other studies have discussed the impact
of orientational order and length polydispersity of the fila-
ments on this scaling (Missel et al., 2010; Bai et al., 2011).

4. Floppy mode theory

Heussinger and Frey proposed a theoretical framework to
calculate the properties of the nonaffine bending regime of
semiflexible polymer networks (Heussinger and Frey, 2006a;
Heussinger, Schaefer, and Frey, 2007), although the general
framework is not limited to fibrous networks and could find
applications in other soft matter systems. The main premise of
this model is that the low-frequency, soft deformation modes
in the system derive from a set of zero-energy, floppy modes
(Liu and Nagel, 2010). In the lb → 0 limit, the network can
deform through these floppy modes with no contribution to
the mechanical energy up to harmonic order. However, at a
finite, yet small bending rigidity these modes are no longer
floppy, but are still considered to be the softest modes and may
thus be used to calculate the network’s properties.
By using a self-consistent effective medium approach in

which the floppy modes for the Mikado model are constructed
explicitly, the elastic properties of the nonaffine bending
regime can be calculated (Heussinger and Frey, 2006a;
Heussinger, Schaefer, and Frey, 2007). This calculation yields
the prediction G ∼ κρμ, with μ ¼ 6.75, in good agreement
with simulations (Wilhelm and Frey, 2003).
The high value of this exponent (μ)may be understood from a

simple scaling argument, which conveys the main idea behind
the floppy mode theory. The typical bending energy of a
segment of length ls is wb ∼ κδu2NA=l

3
s , where δNA is the
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amplitude of a bendon the scalels. This amplitude represent the
nonaffine deformation and is independent of ls, as apposed to
an affinemodel; by assuming that individual fiber centers follow
the affine deformation field, it was argued that δuNA ∼ l. Thus,
the average bending energy stored in a fiber is

hWbi ¼ ρ

Z
∞

lmin

dlsPðlsÞ
κδu2NA
l3
s

; ð72Þ

where PðlsÞ represents the distribution of segment lengths and
lmin is a cutoff. Below this cutoff the segments become too stiff
to contribute to the bending energy. A localized bend on this
scale can be relaxed by exciting a floppy mode in the fiber to
which it is connected, with a corresponding typical energy
hWbi. Hence, this cutoff length scale can be found self-
consistently from the condition wbðlminÞ ¼ hWbi. Using a
Poissonian distribution for PðlsÞ, as in a Mikado network, the
shearmodulus is predicted to scale asG ∼ κρμ, with μ ¼ 7. This
is remarkably close to the result of the more elaborate effective
medium calculation and the numerical result. This model has
provided insight in the mechanics of bundled actin networks
(Lieleg et al., 2007) and in simulations of composite networks
(Huisman, Heussinger et al., 2010).

5. 2D versus 3D networks

Biological filamentous networks are usually three dimen-
sional. To what extent should one expect the mechanical
behavior of such networks to be captured by the simple 2D
models described above? Stated differently, are there essential
qualitative differences in the mechanics of semiflexible
polymer networks in 2D and 3D?
Various computational approaches to address 3D networks

of semiflexible polymers or elastic fibers have been developed
recently, including Brownian dynamics models (Kim et al.,
2009; Huisman, Storm, and Barkema, 2010), Monte Carlo
simulations (Blundell and Terentjev, 2011), energy minimi-
zation schemes for minimal mechanical models (Buxton and
Clarke, 2007; Stenull and Lubensky, 2011; Broedersz,
Sheinman, and MacKintosh, 2012), and coarse-grained
approaches (Huisman et al., 2007; Huisman, Storm, and
Barkema, 2008; Huisman and Lubensky, 2011; Stein et al.,
2011). These have shown significant nonaffine effects.
On very general grounds, nonaffine deformations could be

expected to have a greater impact on the network’s elastic
response in 3D systems. More specifically, the case of binary
cross-links between fibers can be expected to be more bend

dominated than corresponding 2D systems. This can be seen
as a consequence of arguments going back to Maxwell (1864),
showing that the critical coordination number for mechan-
ically stable networks of springs (i.e., with stretching and no
bending resistance) is greater in 3D than the local coordination
of binary cross-linked networks. Moreover, this critical
coordination or connectivity depends on dimensionality and
is close to that of filament networks in 2D, while it is far from
that of such networks in 3D. Thus, the mechanical stability of
3D fibrous networks with binary cross-links is expected to
rely on the bending elasticity of the fibers, while a 2D network
is (marginally) stable without fiber bending elasticity. This
suggests that nonaffine bending deformations could play a
more dominant role in 3D fibrous networks with binary cross-
links (Huisman et al., 2007; Huisman and Lubensky, 2011;
Stenull and Lubensky, 2011; Broedersz, Sheinman, and
MacKintosh, 2012). However, the scaling arguments by
Head, Levine, and MacKintosh (2003a) appear to suggest
that the behavior in 2D and 3D, at least for high molecular
weight, should not be qualitatively different.
Thus, there are fundamental questions regarding the behav-

ior of 3D networks that makes their study more important than
simply the need to examine more realistic systems. However,
addressing these questions in 3D proved to be a significant
computational challenge, partly because, by analogy with the
Mikado work in 2D, the transition from bending to stretching
may occur only for long fibers, compared to the spacing of the
cross-links, which would suggest the need for large networks
and, thus, computationally slow models in 3D.
To develop a three-dimensional network model that reflects

architectural characteristics of an actual biopolymer gel,
Huisman et al. used a Monte Carlo scheme to generate
thermalized networks (Huisman et al., 2007; Huisman,
Storm, and Barkema, 2008; Huisman and Lubensky, 2011)
using the wormlike chain model for semiflexible polymers.
Starting from a random, isotropic network, Monte Carlo
moves that alter the topology of the network are performed
to minimize the free energy of the network. Subsequently,
segments are cut until an average filament length l is
obtained. This procedure results in a disordered network of
curved filaments [see Fig. 20(b)]. Although these filaments
have disordered intrinsic curvatures, they maintain direction-
ality over their persistence length. Once the network is
generated, the filament segments are described by a bending
rigidity and the nonlinear force extension curve for

FIG. 20 (color online). Comparison between various fiber network models. (a) Mikado model with curved filaments (Onck et al., 2005).
(b) Thermalized semiflexible polymer network model (Huisman, Storm, and Barkema, 2008; Huisman and Lubensky, 2011).
(c) Lattice-based dilution model of a 3D fiber network on an fcc lattice (Broedersz et al., 2011).
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semiflexible filaments [Eq. (15)]. Finally, an energy minimi-
zation scheme is used to simulate the network under shear.
Simulations of this model found a nonaffine bending

regime that covered the range of network parameters studied
(Huisman and Lubensky, 2011). Importantly, however, com-
putational limits did not permit Huisman and Lubensky to
exceed a system sized about an order of magnitude larger than
the network mesh size. Also, the persistence length was held
constant, while increasing the molecular weight. Networks in
the high molecular weight limit constructed in this way consist
of filaments that are much longer than their persistence length.
Thus, the question of what happens in networks of long stiff
filaments that are approximately straight over their full
contour length remained.
An obvious practical problem associated with this high

molecular weight limit is that networks with large l=lc have a
large number of degrees of freedom, which may not be
computationally tractable. To overcome this problem, fiber
networks with underlying lattice geometries were developed
for which such large networks are computationally feasible,
although the architectures were obviously simplified. We
discuss these lattice-based networks in the next section, as
well as in Sec. V.A.

6. 3D Phantom and generalized kagome networks

Three-dimensional lattice-based fiber network models with
binary cross-links have been developed (Stenull and
Lubensky, 2011; Broedersz, Sheinman, and MacKintosh,
2012). Because of the computational efficiency of lattice-
based networks, these models have been able to address the
outstanding question of whether 3D networks exhibit a bend-
to-stretch crossover analogous to 2D networks. In particular,
these approaches have been able to address the high molecular
weight limit. Stennul and Lubensky generated a 3D gener-
alization of the kagome lattice by appropriately combining 2D
kagome lattices. The result was a large unit cell with 54 nodes.
Broedersz, Sheinman, and MacKintosh (2012) constructed a
network based on a face centered cubic (fcc) lattice [see
Fig. 20(c)], and disorder was introduced in such a way as to
reduce the maximum coordination number to 4 while main-
taining individual fibers of arbitrary length. Although an fcc
lattice has local 12-fold coordination, a simple trick can be
used to achieve the desired network structure in which the
maximum coordination number at each vertex can be reduced:
Three independent pairs of cross-linked fibers are formed out
of the six fibers crossing at a vertex. Thus, this results in three
binary cross-links that may overlap in space, but do not
interact with or constrain each other; these three pairs of fibers
move through each other as phantom chains. This lattice is
termed the 3D phantom network.
In both the kagome-based lattice and the 3D phantom lattice

networks, the fiber length can be tuned l ¼ l0=ð1 − pÞ by
cutting bonds with a probability 1 − p, where l0 is the
distance between vertices. In the phantom model at least
one bond is removed along every fiber to avoid filaments that
span the system; such spanning filaments will deform more
affinely. Thus, this model can approach z ¼ 4 only asymp-
totically from below. Although this may seem like a technical
detail, some of the most subtle and interesting behavior in this

model occurs in the limit where filaments are long, and
spanning filaments can completely overshadow the macro-
scopic elastic response of the network.
The perfect, undiluted lattice is mechanically rigid when

κ ¼ 0 in both models, and there is a first-order jump in the
shear modulus to zero when p is less than 1. Surprisingly,
however, for diluted networks it was found that for a finite
bending rigidity, no matter how small, the network shear
modulus approaches its affine value in the high molecular
weight limit, which becomes insensitive to the fiber bending
stiffness. This is similar to what was observed in 2D Mikado
networks (Sec. IV.C.3). However, the reason this is particu-
larly surprising in 3D is that in this case the network
connectivity is still well below the Maxwell isostatic thresh-
old, which governs the stability of networks with κ ¼ 0; only
beyond a higher local coordination number do stretching
constraints imposed by the connectedness of the network
force the system to be stretch dominated and nearly affine (see
discussion on isostaticity in Sec. V.A). Stated differently, these
are networks that are strictly mechanically unstable (G ¼ 0)
when κ ¼ 0, and yet stretch dominated and approximately
affine (G ≈ Gaffine) for any κ > 0, provided l=l0 is chosen to
be sufficiently large. Another interesting finding in the 3D
4-fold networks is that, in the limit of floppy filaments
with weak bending rigidity or infinite molecular weight,
the elastic response of the system becomes intrinsically
nonlinear with a vanishing linear response regime
(Broedersz, Sheinman, and MacKintosh, 2012). We discuss
nonlinear properties of filamentous networks in more detail in
Sec. IV.D.
The linear response of these systems can be understood

within an effective medium framework developed for 2D
kagome networks (Mao, Stenull, and Lubensky, 2013b), as
discussed by Stenull and Lubensky (2011). An alternative
approach (Broedersz, Sheinman, and MacKintosh, 2012)
builds on some of the ideas of the floppy mode theory
(Heussinger and Frey, 2006a; Heussinger, Schaefer, and
Frey, 2007) (see Sec. IV.C.4), as well as ideas presented by
Head, Levine, and MacKintosh (2003a, 2003b). We start by
considering a deformed network in which the fibers are softer
to bending than to stretching. Network nodes along a fiber are
assumed to undergo independent nonaffine deformations
scaling as δuNA ∼ γl to avoid stretching of the other fibers
to which they are connected. As a result, we anticipate a
scaling for the nonaffine fluctuations of the form Γ ∼ l2

independent of κ, which is indeed observed numerically
(Broedersz, Sheinman, and MacKintosh, 2012) [(see
Sec. IV.C.1 and Eq. (65) for more detail on the definition
of the nonaffinity parameter].
Nonaffine fluctuations of this form have interesting impli-

cations for the bending energy in the system. Such length-
controlled nonaffine deformations store an amount of elastic
energy that scales as κðδuNA=l2

0Þ2l0 per segment of length l0,
which at the macroscopic level results in a shear modulus for
the bending regime given by

GLC ∼
κ

l2
0

�
δuNA
l2
0

�
2 1

γ2
∼

κ

l6
0

l2: ð73Þ
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We can relate this to the behavior discussed for the 2DMikado
model (Sec. IV.C.3). Thus, for 3D lattice networks we expect a
similar scaling, but with the exponent μ ¼ 5 in Eq. (69). This
type of bending elasticity implies that the energetic cost of
nonaffine bending deformations grows with increasing l. But,
the affine shear modulus GA ∼ μ=l2

0 represents an upper
bound. Thus, with increasing l, at some point the nonaffine
modulus in Eq. (73) exceeds the affine upper bound, and thus
becomes unphysical. This suggests a crossover from bend-
dominated to stretch-dominated elasticity, as the nonaffine
bending deformations become less favorable than the
l-independent affine stretching deformations. This crossover
is expected to occur for an average molecular weight com-
parable to λNA, which can be identified as a nonaffine length
scale. This length can be estimated by comparingGLC with the
affine stretching shear modulus GA ∼ μ=l2

0, which becomes
comparable to

l ∼ λNA ¼ l2
0=lb; ð74Þ

where lb ¼
ffiffiffiffiffiffiffiffi
κ=μ

p
. Consistent with this expected crossover,

numerical simulations of both the 2D and 3D kagome-based
and 3D phantommodels show a length-controlled crossover in
G to the affine prediction for large l (Stenull and Lubensky,
2011; Broedersz, Sheinman, and MacKintosh, 2012; Mao,
Stenull, and Lubensky, 2013b). Moreover, G=GA is a univer-
sal function of l=λNA, for which G=GA ≃ 1 when l=λNA ≳ 1.
These results are qualitatively consistent with the earlier

Mikado model in 2D, which also showed a length-controlled
crossover from nonaffine to affine elasticity with increasing
fiber length, indicating that dimensionality does not play a
qualitatively important role, in spite of the Maxwell argument
(Maxwell, 1864). In detail, however, the prior 2D work
showed a different nonaffine length scale: λNA ∼ l−α

b , with
α ≈ 0.3–0.4 (Head, Levine, and MacKintosh, 2003a, 2003b;
Wilhelm and Frey, 2003) (see Sec. IV.C.3). However, for such
2D Mikado networks it is difficult to unambiguously identify

the origin of the crossover as the same length-controlled
mechanism in 3D, since the high molecular weight limit also
corresponds to the central force (CF) isostatic point for the
Mikado model, which also leads to a bend-stretch crossover
(Heussinger and Frey, 2006a; Buxton and Clarke, 2007;
Heussinger, Schaefer, and Frey, 2007; Broedersz et al.,
2011). Head et al. argued for a length-controlled mechanism
that was independent of dimensionality (Head, Levine, and
MacKintosh, 2003a), and it may be that the difference in the
exponent α is due primarily to the difference in local network
structure: the Mikado model exhibits inherently larger poly-
dispersity of fiber segment lengths than lattice-based networks
(Heussinger and Frey, 2006a; Heussinger, Schaefer, and Frey,
2007). By contrast, 2D diluted kagoma lattice networks (Mao,
Stenull, and Lubensky, 2013b), which do not exhibit a large
polydispersity in fiber segment length, exhibit crossover
behavior quantitatively more similar to the 3D networks with
binary cross-links (Stenull and Lubensky, 2011; Broedersz,
Sheinman, and MacKintosh, 2012).
The scaling argument discussed in this section also provides

some insight into the amplitude of the nonaffine fluctuations at
the nonaffine-affine transition. Intriguingly, at this crossover
the nonaffine fluctuations reach a maximum Γλ ¼ λ2NA=l

2
0 ¼

l2
0=l

2
b (Broedersz, Sheinman, and MacKintosh, 2012). This

counterintuitive result shows that the amplitude of the non-
affinity parameter can actually be large (or maximal), even if
the networks shear modulus is very close to the affine value.
This analysis suggests that we should be cautious interpreting
the nonaffine fluctuations in an absolute sense; these non-
affinity parameters may be meaningful only when considered
in the context of the elastic properties of the relevant modes of
deformation.
We summarize the main results from these studies in a

simple diagram, as shown in Fig. 21. In Fig. 21(a) we show the
expectation for a thermal semiflexible polymer network with
binary cross-links as a function of two important control
parameters: filament length l and polymer concentration c.

FIG. 21 (color online). Schematic for the elastic regimes (a) for a thermal semiflexible polymer network with binary cross-links as a
function of two important control parameters: filament length l and polymer concentration c, and (b) for an athermal fiber network in
3D with binary cross-links as a function of l=lc and lb=lc. Here lc is the distance between cross-links measured along a filament, and
l2
b is set by the ratio between the bending and stretching rigidity of a fiber.
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When the connectivity is too low, the network is mechan-
ically unstable and thus is best described as a solution.
However, just beyond this threshold, the network is margin-
ally stable and is described by the physics of the rigidity
percolation. In principle, the network can be dominated by
either bending (low concentration) or stretching modes (high
concentration). When the polymer length is increased
further, we enter the nonaffine bending regime and sub-
sequently crossover to the affine regime. At low concen-
trations the distance between cross-links is large, and thus
the entropic stretching modulus of the semiflexible polymers
is softer than the enthalpic stretching modulus. Thus, there
is a low-concentration affine thermal regime and a high
concentration affine mechanical regime (Head, Levine, and
MacKintosh, 2003a).
In Fig. 21(b), we sketch the expected regimes for an

athermal fiber network in 3D with binary cross-links as a
function of l=lc and lb=lc, where l2

b is set by the ratio
between the bending and stretching rigidity of a fiber. When
increasing l=lc, the system transitions from a solution state
(G ¼ 0), to a marginally stable network. When the fiber length
is further increased, it starts dominating the nonaffine defor-
mations, and thus we enter the length-controlled bending
regime. However, no matter how soft the fibers are to bending,
the systems always cross over to an affine regime at high
l=lc. As long as the network is mechanically stable (G > 0),
the system is bend dominated at low lb=lc, and stretch
dominated at lb=lc.

7. Is the affine limit stable?

The discussion above was limited to the simple athermal
fiber limit, in which the fiber segments are characterized by a
1D Young’s modulus that is independent of length. By
contrast, thermal semiflexible polymers have an entropic
stretch modulus that depends sensitively on length (see
Sec. II.B), and this may have important implications for the
macroscopic elastic response of real semiflexible polymer
networks; typically, such systems can be expected to exhibit
polydispersity in the length of segments between cross-links,
and thus also a polydispersity in the stretching moduli of these
segments.
It has been argued that the pure affine limit in such networks

is not strictly stable (Heussinger and Frey, 2007; Mao, Stenull,
and Lubensky, 2013b). This can be understood in terms of the
local force balance in the network. Consider two consecutive
segments along a single filament (1) somewhere in a network
of straight filaments. These two segments are separated by a
cross-link to another filament (2) crossing at some angle.
Assuming a purely affine network deformation, the force due
to the stretching of filament 1 on each side of the cross-link
will be proportional to the Young’s modulus of the respective
segments. If these are different, there is a net force on the
cross-link that must be balanced by filament 2. As this crosses
at an angle, some resulting bending energy is expected and the
network deformation must be locally nonaffine. Thus in
networks with polydispersity the affine limit is stable for
athermal simple elastic fibers, but not for thermal semiflexible
filaments or other systems where the 1D Young’s modulus is
not constant.

How important is this lack of local force balance and the
resulting local instability in networks with polydisperse
Young’s moduli? Will the necessary bending energy generated
in such systems under strain be dominant over stretching, or
will this result in merely a quantitative correction to an
otherwise still stretch-dominated response? On the one hand,
it has been argued based on scaling and simulations of 2D
Mikado network architectures that regimes can arise where the
mechanical response depends on both stretching and bending
energies (Heussinger and Frey, 2007). On the other hand, as
argued in the previous section, if the response is purely bend
dominated with small or vanishing stretch response, then the
bend elastic energy must increase with molecular weight l.
Thus, in the limit of high molecular weight, a purely bend-
dominated behavior may not be possible. Thus, the question
as to whether real, disordered networks are stretch dominated
or bend dominated remains, particularly in the limit of high
molecular weight.

D. Nonaffinity and nonlinear elasticity of athermal fiber
networks

In Sec. IV.A we discussed the nonlinear network response
of the affine thermal model. As filaments in the network
undergo large affine deformations, the thermal undulations in
the polymer get “stretched out,” giving rise to a dramatic
entropic stiffening response, reflected by a (10–1000)-fold
increase of the networks differential shear modulus at large
deformations (MacKintosh, Käs, and Janmey, 1995; Kroy and
Frey, 1996; Morse, 1998b; Gardel et al., 2004a; Storm et al.,
2005; Lin, Broedersz et al., 2010; Yao et al., 2010). However,
as discussed above, semiflexible polymer networks can be
nonaffine and dominated by athermal filament bending
deformations. Thus, the question arises: What is the elastic
response under large imposed shear deformations of an
athermal fiber network dominated by nonaffine fiber bending
deformation modes? Naively, one might not expect a non-
linear stiffening response for athermal networks that are
composed of purely linear elastic elements. Strikingly, how-
ever, it was shown that athermal fiber networks also strain
stiffen, with a dramatic increase of the differential shear
modulus at moderate deformations.
Onck et al. (2005) employed 2D Mikado networks to study

the effects of large strains in filamentous networks, with the
additional feature that static, intrinsic curvatures could be built
into the filaments. These “frozen-in” undulations were
sampled from a thermal equilibrium distribution for semi-
flexible filaments without tension, although the network was
otherwise treated as athermal and fully mechanical. They
found that networks that were dominated by soft bending
modes for small strains crossed over to a high-strain elastic
regime dominated by stiffer stretching modes. They argued
that such a strain-induced bend-to-stretch crossover is due to
filament reorientations, which is reflected as a peak in the
nonaffinity parameter at strain values near the transition. The
additional frozen-in undulations were not found to be respon-
sible for the transition, although these tended to increase the
strain threshold for the stiffening transition (we will return to
the point of frozen-in curvature later). Indeed, a similar
stiffening response was observed in 2D athermal networks
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even without curvature defects along the filaments by
Chandran and Barocas (2005), Heussinger, Schaefer, and
Frey (2007), and Conti and MacKintosh (2009). Similar
results have also been seen in 3D (Broedersz, Sheinman,
and MacKintosh, 2012).
Despite the numerous numeric studies demonstrating non-

linear strain stiffening originating in nonaffine network
deformations, little analytical progress was made initially to
provide insight into this behavior. The floppy mode theory,
which provided a description for the linear regime, also has
implications for the onset of the nonlinear behavior
(Heussinger and Frey, 2006a; Heussinger, Schaefer, and
Frey, 2007). An essential point in understanding the nonlinear
elastic response of athermal networks is that fibers cannot
undergo large bending deformations without stretching at all.
This can be understood from a simple geometric argument.
We consider one of the filaments cross-linked at a length scale
lc in a deformed network and suppose that there is a
transverse displacement δu⊥ at one of the cross-links. This
transverse displacement not only results in a curvature of the
filament, but also in an axial deformation lc þ δ. This axial
deformation can be related to the transverse bend deformation
l2
c þ δu2⊥ ∼ ðlc þ δÞ2, where δu⊥ ∼ γl is assumed in the

floppy mode model. For moderate deformations one finds
to leading order δ ∼ δu2⊥=lc. It was argued by Lieleg et al.
(2007) that the floppy mode description for the linear regime
remains valid only as long as the axial fiber stretch δ is small
compared to the available thermal excess length lc=lp [see
Eq. (57)]. Thus, this implies a critical strain set by
δu2⊥=l2

c ∼ δc=lc, yielding

γc ∼ l3=2
c =ðl2lpÞ1=2: ð75Þ

This is an argument for a thermal semiflexible polymer that is
dominated by nonaffine bending mechanics in the linear
regime, but that stiffens entropically under shear.
From simulations, we know that athermal networks of

linear elastic fibers also stiffen. We can build on the argument
in the previous section to provide some insight into this
behavior (Broedersz, Sheinman, and MacKintosh, 2012). As
in the floppy mode model, length-controlled nonaffine defor-
mations are assumed δu⊥ ∼ γl. This deformation results in a
bend with an amplitude ∼γl, and a corresponding bending
energy δEB ∼ κl2γ2=l3

c. We know from the geometric pre-
vious argument that there is also a higher-order axial stretch
δ ∼ δu2⊥=lc of the filament, but what is the energy associated
with this stretching deformation? The axial strain associated
with this stretch is ε ∼ ðγl=l0Þ2 þOðγ4Þ, which amounts to a
stretch energy δES ∼ μðγlÞ4=l3

0. Thus, we expect that these
higher-order stretch contributions start dominating the elastic
response at a strain where δEB ≈ δES, resulting in a stiffening
of the network’s shear modulus. This implies a critical strain,

γc ∼
lb

l
; ð76Þ

where lb ¼
ffiffiffiffiffiffiffiffi
κ=μ

p
. Interesting, both Eqs. (75) and (76) show

a characteristic strain for the onset of nonlinear behavior that
vanishes in the limit of increasing molecular weight l. Thus,
both models can be said to have an absent or vanishing linear

response regime in this limit. The argument that led to this last
result assumed that the bending energy scales with l2.
However, the floppy mode model for the Mikado network
predicted a slightly stronger scaling, which would then lead to
γc ∼ ðlb=lÞðl=lcÞðμ−5Þ=2, with μ ¼ 5 for the 3D phantom
model and μ ≈ 6.67 for the 2D Mikado model.
In the discussion above, we assumed that the nonaffine

deformations are governed by filament length. Near isostatic
connectivity thresholds (see Sec. V), where the network is
marginally stable, we know that nonaffine deformations can
be dominated by the proximity of network connectivity to the
isostatic point. Indeed, for such cases, arguments like the one
previously discussed taken together with nonaffine deforma-
tions that follow the form in Eq. (83) (Wyart et al., 2008;
Broedersz et al., 2011) imply a critical strain for the onset of
stiffening

γc ∼
�
lb

lc

�
λCF=ϕþ1

; ð77Þ

where λCF is a critical exponent associated with the nonaffine
fluctuations, and ϕ is a crossover exponent, both of which are
discussed in detail in Secs. V.A.2 and V.A.3.
It is interesting to note that the various results in Eqs. (75)–

(77) make rather different predictions for the dependence of
the critical strain on lc, since this is a parameter that is
expected to depend on network concentration c, roughly as
lc ∼ c−1=2. Thus Eqs. (75) and (77) both predict a decrease in
the critical strain with increasing polymer concentration.
Qualitatively, such a decrease is observed for many bio-
polymer networks, including actin (Gardel et al., 2004a,
2004b; Tharmann, Claessens, and Bausch, 2007), fibrin
(Piechocka et al., 2010), and intermediate filaments (Lin,
Yao et al., 2010). However, the experimentally observed
exponents are more consistent with the predictions of
Eqs. 57 and (59). By contrast, the prediction of the athermal
nonaffine model far from the isostatic point in Eq. (76) is that
the critical strain should be independent of concentration. This
is consistent with reports for collagen networks (Piechocka
et al., 2011), which are expected to be athermal.
The arguments above address the strain only at which

stiffening sets in. Numerical data also clearly indicate the
presence of a stiffening regime in athermal fiber networks
(Onck et al., 2005), but such results do not identify a specific
functional form of the stiffening response. Beyond the critical
strain (or critical stress), the network stiffens gradually as the
system crosses over from bending-dominated to stretching-
dominated elasticity. At very large deformations, the differ-
ential shear modulus of linear elastic fibers is expected to
asymptotically approach the affine high-strain prediction, and
no longer stiffen. But, what happens during the crossover?
Recent lattice-based and Mikado simulations not only show
the expected asymptotic affine behavior, but also suggest a
regime where K ∼ σ1=2 at higher stress, as well as an initial
stiffening regime with an approximate K ∼ σα with α ≈ 1

(Conti and MacKintosh, 2009; Broedersz and MacKintosh,
2011), as shown in Fig. 22. However, the origin of this form of
stiffening behavior and even whether it represents a genuine
power-law regime remains unclear. It has been argued that
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such nonlinearity can be viewed as a transition from pre-
dominantly bending to stretching behavior (Onck et al.,
2005). But, pure spring networks without bending have been
shown to exhibit shear stresses σ that increase quadratically
with strain γ (Wyart et al., 2008), suggesting that only the
onset of the K ¼ dσ=dγ ∼ σ1=2 regime corresponds to a
transition to stretching-dominated behavior (see also
Sec. V.B). Thus, whether the nonlinear response of fiber
networks can be generally described by a crossover from
bending to stretching remains unclear (Licup et al., 2014).

1. More on the role of intrinsic curvature

We briefly return to the point of intrinsic curvature. An
interesting perspective on the role of intrinsic curvatures was
provided by Kabla and Mahadevan (2007). Their model
captures the geometrical effects of quenched disorder in the
intrinsic curvatures of the fibers. When a single such filament
is stretched, it will first unbend as the natural curvatures are
ironed out, after which the presumedly stiffer backbone may
stretch. They considered an inextensible, weakly curved
filament with random curvatures chosen from a distribution
that represents the curvatures of fibers in felt. Using this, they
calculated a force-extension curve, which for large forces
diverges as

f ∼
1ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p ; ð78Þ

where ϵ measures the extension relative to the fully extended
state. Interestingly, this is in contrast to the predicted

divergence of the force extension behavior of a semiflexible
polymer, for which f ∼ 1=ð1 − ϵÞ2 (Fixman and Kovac, 1973;
MacKintosh, Käs, and Janmey, 1995; Marko and Siggia,
1995; Gardel et al., 2004a). Thus, even though both mech-
anisms for a nonlinear response have their origin in stretching
out fluctuations, quenched fluctuations and thermal fluctua-
tions can give rise to a quantitatively different form for the
divergence. Kabla and Mahadevan used a unit-cell approach
in their quenched fiber model to describe the elastic and
plastic behavior of felt networks.

2. Negative normal stress in athermal networks

Recently, biopolymer networks were shown to exhibit an
additional form of nonlinear elastic response known as
negative normal stress or a negative-anomalous Poynting
effect. When most materials are subjected to simple shear, they
tend to expand in the strain gradient direction. This is an effect
first observed by Poynting a little more than 100 years ago
(Poynting, 1909). Poynting performed careful experiments
twisting wires, which he showed resulted in an axial extension
of the wires. This Poynting effect can also be expressed in
terms of the positive (compressive) stresses that would
develop axially if such a wire is not allowed to elongate.
This effect is fundamentally nonlinear, in that it cannot change
sign under twisting in the reverse direction: while shear
stresses are odd in twist or shear strain, normal stresses must
be even. Thus, no linear normal stress response is expected at
small strain.
Interestingly, rheological studies of a wide variety of

biopolymer gels have been shown to exhibit the opposite
effect: they develop tensile stresses or contract in the axial
direction, which shows up as a negative thrust in a rheometer
(Janmey et al., 2007). Moreover, the normal stresses were
shown to become as large in magnitude as the shear stresses. It
was shown in that same work that the affine thermal model can
account for the unexpected sign and large magnitude of the
normal stresses. The stiffening response of Mikado networks
has also been shown to coincide with additional nonlinearities,
such as the appearance of negative normal stresses
and a softening response due to buckling (Onck et al.,
2005; Heussinger, Schaefer, and Frey, 2007; Conti and
MacKintosh, 2009; Kang et al., 2009). Although both affine
and nonaffine models can account for negative normal
stresses, they predict a qualitatively different dependence of
the normal stress as a function of shear stress (Conti and
MacKintosh, 2009). Experiments on fibrin networks appear to
be in better agreement with the nonaffine predictions (Kang
et al., 2009).
Normal stresses are frequently studied in other soft matter

systems, in connection with such phenomena as the
Weissenberg effect, in which a viscoelastic fluid tends to
climb a rod that is rotated in the liquid (Larson, 1999). This
can also be seen in the stirring of bread dough, as a network of
gluten begins to form. Normal stresses appear in the stress
tensor along the diagonal, where hydrostatic pressure also
appears as a uniform contribution along the diagonal of the
stress tensor. But, only spatial variations in the pressure can
affect the flow and deformation of incompressible materials.
Thus, the stress tensor for such materials is defined only up to

FIG. 22 (color online). Nonlinear elasticity of a fiber network on
a diluted 2D phantom lattice. The differential shear modulus K ¼
dσ=dγ as a function of the applied external stress σext for various
values of hli at fixed bending rigidity κ ¼ 10−3. K and σext are
measured in units of μ=l0. It is not completely clear whether
definite power-law regimes exist, but the stiffening curves for
hli≲ 5 initially show a stiffening behavior of K ∼ σ that crosses
over to a regime K ∼ σ1=2 at large shear, as shown by the dashed
lines that indicate a slope of 1 and 1=2. For longer filaments,
only the second, weaker stiffening response is apparent. From
Broedersz and MacKintosh, 2011.
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an additive isotropic (pressurelike) term, with the result that
rheological measurements are sensitive only to normal stress
differences among the various diagonal terms in the stress
tensor.
It is important to note, however, that this follows only for

incompressible materials. And, while systems such as
biopolymer networks can usually be considered to be
incompressible by virtue of the solvent they are imbedded
in, the two-component character of such systems can lead
osmotic compressibility of the network (Brochard and De
Gennes, 1977; Gittes et al., 1997; Levine and Lubensky,
2000, 2001; MacKintosh and Levine, 2008). This means
that rheological measurements in such effectively compress-
ible materials can, in principle, measure individual normal
stress components of the tensor. As argued by Janmey et al.
(2007), this can be expected especially for biopolymer
systems with their relatively open meshworks, where the
mesh size can be as large as several micrometers, e.g., in
the case of collagen and fibrin gels. On long time scales, the
solvent can be expected to move relatively freely through
such a porous network. Only on shorter time scales, or for
finer meshworks, where this motion is impeded by hydro-
dynamics, will the network be expected to inherit the
incompressibility of the solvent: here a strong hydrodynamic
coupling of network and solvent is expected. For this
reason, normal stress measurements in biopolymer gels
have been reported in terms of the single, axial normal
stress component (Janmey et al., 2007; Kang et al., 2009).

V. MARGINAL STABILITY AND CRITICAL PHENOMENA
IN FIBER NETWORKS

The importance of network connectivity and concepts such
as isostaticity and criticality have long been recognized in the
fields of rigidity percolation and jamming phenomena. As
discussed here, many of these concepts have also proven to be
helpful in understanding interesting aspects of fibrous
networks.
Maxwell (1864) introduced an analysis of the mechanical

stability of spring networks highlighting the importance of
connectivity. Springlike bonds give rise to central forces, i.e.,
forces which depend only on the relative distance between two
connected network nodes. Maxwell’s constraint counting
argument predicts that such spring networks are mechanically
rigid at connectivities exceeding zCF ¼ 2d. At this CF isostatic
point the number of constraints arising from the central-force
interactions Nz=2 precisely balances the number of internal
degrees of freedom Nd. This prediction for the isostatic
connectivity is remarkably accurate for jammed systems
and is reasonably accurate in percolation networks
(Phillips, 1981; Thorpe, 1983, 1985; Feng and Sen, 1984;
He and Thorpe, 1985; Schwartz et al., 1985). [See Liu and
Nagel (2010) and van Hecke (2010) for recent reviews on this
subject.] These and many other studies have also demon-
strated that a variety of systems, including network glasses
and jammed systems, exhibit a rich mechanical behavior that
is controlled by the proximity of network connectivity to the
isostatic connectivity.
What is the role of connectivity and isostaticity in fiber

networks? Clearly this is more subtle than for spring networks,

since fibers resist both stretching and bending; while fiber
stretching can be modeled with springlike central-force
interactions, fiber bending requires noncentral, three-point
interactions. Thus, bending interactions add constraints of a
different nature that can stabilize the systems at connectivities
below the central-force isostatic point. Indeed, various studies
on network glasses and jammed systems have illustrated how
additional interactions can stabilize networks below the CF
threshold (Garboczi and Thorpe, 1986; Wyart et al., 2008).
More recently, various studies looked at the role of other
stabilizing quantities, such as contractile stresses, viscous
interaction, and temperature, and we return to these stud-
ies later.
Filamentous networks such as biological gels typically

have average connectivities between three and four, posi-
tioning them well below the CF isostatic threshold in 3D
(Lindström et al., 2010). Thus, their rigidity can be strongly
influenced or even controlled by other stabilizing effects,
such as bending rigidity. However, although the network
stability may rely on fiber bending rigidity, this does not
necessarily imply that the network mechanics is governed
by fiber bending, as evidenced by the length-controlled
bend-to-stretch crossover discussed in Sec. IV.C.6. The role
of network disorder and nonaffinity is also presumed to
become more important in such underconnected networks.
Indeed, the precise role of bending interactions in biological
fiber networks has been the subject of much debate (Head,
Levine, and MacKintosh, 2003a, 2003b; Wilhelm and Frey,
2003; Gardel et al., 2004a; Onck et al., 2005; Storm et al.,
2005; Heussinger and Frey, 2006a; Buxton and Clarke,
2007; Chaudhuri, Parekh, and Fletcher, 2007; Heussinger,
Schaefer, and Frey, 2007; Lieleg et al., 2007; Huisman and
Lubensky, 2011).
One fruitful approach to studying the role of network

connectivity in 2D and 3D has been to use network archi-
tectures based on lattice structures (Das, MacKintosh, and
Levine, 2007; Broedersz and MacKintosh, 2011; Broedersz
et al., 2011; Broedersz, Sheinman, and MacKintosh, 2012;
Das, Quint, and Schwarz, 2012; Sheinman, Broedersz, and
MacKintosh, 2012a; Mao, Stenull, and Lubensky, 2013a,
2013b), and we discuss these studies in Sec. V.A.
We pause to ask how useful such an approach might be

for describing real networks. Differences in network archi-
tecture can have dramatic consequences for the network
mechanics (Heussinger and Frey, 2007). The precise archi-
tecture of biological networks in different physiological
contexts and in vitro reconstituted biopolymer gels is not
well understood. While the architectural variety is an
interesting subject of investigation in and of itself, we
now ask whether there may be simple overarching principles
governing the network mechanics that do not depend
sensitively on architectural details. If such principles exist,
this could justify using a network architecture that is
convenient from a theoretical perspective, enabling both
efficient computation and tractable analytical calculations.
However, one should ask whether the results of these lattice
models, or other minimalistic models for that matter (see
Sec. IV.C.3), do not rely crucially on the simplified
geometry or dimensionality and still hold for more realistic
network.
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A. Lattice-based bond-dilution networks

These networks consist of straight fibers organized on a
lattice geometry. The constituent filaments resist stretch, with
modulus μ, and compression, with modulus κ. Thus, they
generate central forces directed along the fiber segment
between cross-links; because the fibers resist bending, they
also generate torques favoring parallel alignment of consecu-
tive segments along a single fiber. The connectivity can be
controlled by randomly diluting bonds between cross-links,
such that the probability for each bond to be present is p, as
illustrated in Fig. 17 for a 2D triangular lattice and Fig. 20(c)
for a 3D face centered cubic lattice. Thus the connectivity in
such a network, set by the average number of bonds connected
to a node excluding dangling bonds, is roughly given by
z ¼ pZ, where Z is the coordination number of the undiluted
lattice.
We focus here on networks with freely hinged bonds

between fibers, in contrast with earlier studies of rigidity
percolation, including studies of network glasses (Thorpe,
1983; He and Thorpe, 1985; Schwartz et al., 1985; Sahimi and
Arbabi, 1993). The motivation for this is partly to keep the
number of parameters to a minimum, but also because of the
large aspect ratio of cross-link distance to molecular scale or
low volume fraction of most biopolymer networks, which
means that the fiber segments have a large lever arm for
bending fibers at cross-links that fix the bond angles. Bond
bending can be included, however, and it has been shown to
stabilize networks to a somewhat lower connectivity threshold
(Das, Quint, and Schwarz, 2012). Otherwise, the qualitative
features are much the same as for freely hinged bonds.
The numerical results for this lattice-based fiber model with

freely hinged cross-links are shown in Fig. 23 for a triangular
lattice in 2D. For κ ¼ 0 (dashed grey line Fig. 23), the shear
modulus vanishes continuously at a critical value pCF (for a
2D triangular lattice pCF ≈ 0.651, and for a 3D fcc lattice
pCF ≈ 0.473). In particular, it is well established that near the
CF isostatic point G ∼ μjp − pCFjfCF (see Table II). In con-
trast, in the limit of large κ=μ the shear modulus is G ∼ μp.
Thus, the shear modules approaches the affine limit and
becomes independent of κ; even if the network has a
connectivity below the CF threshold, if nonaffine bending
deformations are energetically more costly than stretching
deformation, it is more favorable to deform through
stretching.
For all networks with a finite bending stiffness, the shear

modulus vanishes continuously at a rigidity threshold pb. This
behavior is governed by the bending rigidity exponent fb (see
Table II). The value of pb independent of the bending rigidity
for a 2D triangular lattice is pb ≈ 0.445, and for a 3D fcc
lattice is pb ≈ 0.268. This bending threshold can be under-
stood from a counting argument similar to Maxwell’s analysis
at the central-force threshold, but now extended to include
bending constraints.

1. Counting argument for the “bending” rigidity threshold

The bending isostatic point pb of lattice-based fibrous
networks can be calculated using Maxwell counting and
mean-field arguments. Isostatic conditions require that the

total number of network constraints due to both stretching and
bending are equal to the total number of degrees of freedom.
In d dimension, the total number of internal degrees of
freedom is equal to dNc, where Nc is the number of network
cross-links. The number of constraints due to the stretching
stiffness of the bonds is Nbp, where Nb is the number of
bonds in the undiluted network (p ¼ 1). In addition, the
bending rigidity contributes d − 1 constraints at any pair of
neighboring coaxial bonds, and the total number of such
bonds is Nbp2. Thus, the rigidity percolation transition occurs
when
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FIG. 23 (color online). The shear modulus for a diluted 2D
triangular lattice fiber network. The shear modulus G is shown in
units of μ=l0 as a function of the bond occupation probability p
for a range of filament bending rigidities κ (in units of μl2

0). The
numerical results for κ ¼ 0 are shown as dashed grey lines. The
EMT calculations for a 2D triangular lattice are shown as solid
lines in (a). (b) The nonaffinity measure Γ is shown as a function
of p for various values of κ for a 2D triangular lattice. Adapted
from Broedersz et al., 2011.

TABLE II. Critical exponents for bond-diluted lattice fiber net-
works in 2D (triangular lattice) and 3D (fcc lattice) (Broedersz et al.,
2011).

Exponent 2D simulation 2D EMT 3D simulation

fCF 1.4� 0.1 1 1.6� 0.2
ϕ 3.0� 0.2 2 3.6� 0.3
νCF 1.4� 0.2
λCF 2.2� 0.4
fb 3.2� 0.4 1 2.3� 0.2
νb 1.3� 0.2
λb 1.8� 0.3
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dNc ¼ Nb½pþ ðd − 1Þp2� ð79Þ

or

pb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4dNc=Nbðd − 1Þp

− 1

2ðd − 1Þ : ð80Þ

For the triangular lattice we obtain

pb ¼
ffiffiffiffiffiffiffiffiffiffi
11=3

p
− 1

2
≃ 0.4574;

for the kagome and square lattices

pb ¼
ffiffiffi
5

p
− 1

2
≃ 0.618;

while for the fcc lattice

pb ¼
ffiffiffi
5

p
− 1

4
≃ 0.309;

in reasonable agreement with simulations (Broedersz et al.,
2011; Das, Quint, and Schwarz, 2012; Mao, Stenull, and
Lubensky, 2013a, 2013b). A more accurate calculation of the
rigidity points can be found in Broedersz et al. (2011), and
similar arguments for off-lattice networks have also been
presented (Huisman and Lubensky, 2011).

2. The critical crossover regime between stretching-dominated
and bending-dominated mechanical behavior

Although this bending threshold pb marks the true onset
for rigidity in fiber networks, there is another important
connectivity threshold for these systems: For low enough κ,
the shear modulus crosses over at the central-force isostatic
point pCF from bending-dominated to stretching-dominated
behavior, as shown in Fig. 23(a). This crossover in the
mechanical response is accompanied by a cusp in the non-
affine fluctuations as quantified by the nonaffinity parameter Γ
[see Fig. 23(b) and Eq. (65) for the definition of the non-
affinity parameter]; the amplitude of this cusp diverges with
vanishing κ, highlighting the critical state of the network when
p ¼ pCF and κ ¼ 0.
It is instructive to draw an analogy between these obser-

vations in fiber networks and the behavior of other well-
understood models for critical behavior at finite temperature.
When a small bending rigidity is added to the network model,
the system is stabilized at and below the central-force isostatic
point: the shear modulus no longer vanishes and the strain
fluctuations are now finite. Thus, at least qualitatively, the
impact of κ on the strain fluctuations and the shear modulus
near the central-force isostatic point is analogous to the impact
of an external field or coupling parameter on the order
parameter and its fluctuations near the critical temperature
as the field takes the system away from criticality. This turns
out to be more than just a qualitative analogy, but with some
intriguing nuances between athermal networks and thermal
systems.

The CF isostatic point plays a central role in determining
the crossover from the stretching-dominated regime to the
bending-dominated regime (Straley, 1976; Garboczi and
Thorpe, 1986; Buxton and Clarke, 2007; Wyart et al.,
2008; Broedersz et al., 2011). Only in the limit κ → 0 is
the CF isostatic point a true critical point. From the perspec-
tive of critical phenomena, the bending rigidity may be
thought of as an applied field or coupling constant that leads
to a crossover from one critical system to another [such as
from the Heisenberg model to the Ising model (Fisher, 1983)].
In such thermal systems, there is a continuous evolution of the
critical point as this coupling parameter is varied.
Interestingly, there is no such continuous evolution with
variation in κ in athermal fiber networks, which show a
discontinuous jump from pCF to pb, as soon as κ becomes
nonzero. Furthermore, although the analogy between κ and a
field is insightful, there are other important formal differences.
For instance, the magnetic field couples linearly to a sym-
metry breaking order parameter, while this is not the case
for κ.
These ideas about how κ impacts the mechanical response

near pCF have been formalized by constructing an EMT using
the coherent potential approximation (CPA) by Mao and
Lubensky (Broedersz et al., 2011; Mao, Stenull, and
Lubensky, 2013a) (see Sec. V.C). This model shows that
the shear modulus may be written as a universal function when
κ=μ ≪ Δp, with

G ¼ μjΔpjfCFG�

�
κ

μ
jΔpj−ϕ

�
; ð81Þ

where G� is a universal function where the two branches apply
above and below the transition. When the argument of G�ðyÞ,
y ≪ 1, GþðyÞ ∼ const, and G−ðyÞ ∼ y, such that G ∼ μjΔpjfCF
for Δp > 0 and G ∼ κjΔpjfCF−ϕ for Δp < 0. In the opposite
limit ðκ=μÞjΔpj−ϕ ≳ 1, i.e., in the critical regime, G must
become independent of Δp since G is neither zero nor infinite
at Δp ¼ 0. Thus, Eq. (81) predicts G ∼ κfCF=ϕμ1−ðfCF=ϕÞ in the
vicinity of pCF, yielding an anomalous mechanical regime that
is governed by both the stretching and bending energies. The
various mechanical regimes are summarized in a phase
diagram in Fig. 24.
Interestingly, the scaling form in Eq. (81) is analogous to

that for the conductivity of a random resistor network (Straley,
1976) with bonds occupied with resistors of conductance σ>
and σ< with respective probabilities p and 1 − p, as well as
random spring networks with soft and stiff springs (Garboczi
and Thorpe, 1986; Wyart et al., 2008).
The universal scaling function in Eq. (81) is also predicted

by the EMT theory when κ=μ ≪ Δp, with

G�ðyÞ≃ 3
2
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ay=9

p
Þ; ð82Þ

where A≃ 2.413, fEMT ¼ 1, and ϕEMT ¼ 2. Interestingly,
these mean-field exponents are identical to those found in
central-force networks with two types of springs (Garboczi
and Thorpe, 1986; Wyart et al., 2008). However, in lattice-
based fiber networks non-mean-field exponents are found (see
Table II).
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We provide a more detailed discussion of the effective
medium approach below. But, we first discuss some other
interesting aspects of these networks, which generalize to
other marginal systems, including networks in the presence of
viscous interactions, thermal fluctuations, or internal stresses.

3. What can we learn from the nonaffine fluctuations in marginal
networks?

The analogy observed above between the mechanics of
fiber networks and thermal critical phenomena begs the
question as to whether other signatures of criticality may
also be present here. Among the most important and general
aspects of critical phenomena are fluctuations and a corre-
sponding correlation length, both of which diverge at the
critical point. These features have also been shown for
athermal fiber networks, as well as for particle packings near
the jamming transition. Perhaps the most natural candidate for
fluctuations in such systems is the nonaffinity of the defor-
mation field, i.e., the fluctuations in the strain field. Indeed, it
was found that the nonaffine fluctuations Γ diverge as Γ�jp −
pCFj−λCF for κ ¼ 0 near the CF critical point, and Γ�jp −
pbj−λb for κ > 0 at the rigidity percolation point [see
Sec. IV.C.1 and Eq. (65) for more details on the definition
of the nonaffinity parameter]. This is similar to findings in
spring networks in a jammed configuration (Wyart et al.,
2008), but with non-mean-field exponents in the case of lattice
fiber networks. Moreover, one can find an associated diver-
gent length scale ξ ¼ ξ�jΔpj−ν near the respective critical
points. This scaling can be determined by performing a finite
size scaling analysis. The divergence of ξ is limited by the
system size W, which should and does suppress the diver-
gence of Γ.
When κ > 0, the system is no longer critical at pCF, yet

signatures of criticality remain near pCF. Specifically, the

divergence of the nonaffinity parameter is suppressed, but
grows as κ → 0. Close to the CF isostatic point one finds a
peak of Γ that scales as

Γmax ∼
�
κ

μ

�
−λCF=ϕ

: ð83Þ

Moreover, as in ordinary critical phenomena, the diverging
fluctuations are also associated with a diverging susceptibility
χ ∼ Γ. This suggests that the order parameter (here G) can be
expressed in terms of the susceptibility and the field or
coupling constant (here κ) that takes the system away from
the critical point at pCF:

G ∼ κΓmax ∼ μλCF=ϕκ1−λCF=ϕ ¼ μ1−fCFϕκfCF=ϕ; ð84Þ

which can be confirmed by simulation. The scaling behavior
of the nonaffine fluctuations also has important implications
for the critical strain at which these networks become non-
linear, as discussed in Sec. IV.D.

B. Stability of marginal networks

We have discussed how bending rigidity can stabilize an
otherwise floppy network below the isostatic or marginal state
of connectivity. This is an example of a much broader class of
phenomena, in which additional interactions or fields can
change the state of a system and lead to rich critical
phenomena associated with the marginal state. The basic idea
goes back at least to the 1970s in the context of random
resistor networks (Dykne, 1971; Efros and Shklovskii, 1976;
Straley, 1976). In the present context, this is also closely
related to rigidity percolation studies in the 1980s (Garboczi
and Thorpe, 1986). More recently, in the context of jamming,
the importance of critical fluctuations and crossover has also
been shown (Wyart et al., 2008).
Here it is useful to draw an analogy with ferromagnetism in

statistical physics. We associate the shear modulus G of a
network with the magnetic order parameter m: the ordered
phase is the stable, rigid one. In essence, much as a magnetic
field h can stabilize a paramagnet, i.e., by creating a nonzero
magnetization, the bending stiffness κ above can act to
stabilize an otherwise floppy network. Given the critical
nature of the underlying marginal point in the absence of
additional interactions, signatures of this critical point can be
seen away from the critical point, as for a magnetic system: for
instance, for weak applied magnetic fields, both the suscep-
tibility and magnetic fluctuations exhibit evidence of a
divergence near the critical point, although this divergence
is suppressed or rendered finite by the finite magnetic field.
For fiber networks, this is illustrated by the divergence of the
fluctuations near pCF in Fig. 23(b), which is suppressed by the
bending stiffness κ. Similar effects are also seen in jamming
(Wyart et al., 2008), where nonaffine fluctuations are sup-
pressed by the addition of weak springs.
One of the signatures of criticality in magnetic systems is

the relationship between the magnetization m and the applied
field h along the critical isotherm, where m ∼ h1=δ, with
δ ¼ 3 in mean-field theory. This can be seen as a consequence
of the equation of state relating h to m, much like the

FIG. 24 (color online). Phase diagram for a fibrous network on a
diluted triangular lattice. Above the rigidity percolation point pb
there are three distinct mechanical regimes: a stretching-domi-
nated regime with G ∼ μ, a bending-dominated regime with
G ∼ κ, and a regime in which bend and stretch modes couple
with G ∼ μ1−xκx. Here x is related to the critical exponents
x ¼ fCF=ϕ. The mechanical regimes are controlled by the
isostatic point pCF, which acts as a zero-temperature critical
point. Adapted from Broedersz et al., 2011, and Mao, Stenull,
and Lubensky, 2013a.
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pressure-volume relation in a liquid-gas critical system:
h≃m=χ þ bm3, for some constant b. The susceptibility χ
diverges at the critical point, resulting in m ∼ h1=3 along the
critical isotherm. Here the form of the equation of state is
constrained by symmetry to have only odd terms. For bending
stabilized marginal networks, one can expect a similar
relationship between G and κ: κ ∼ G=χκ þ bG2, where χκ
represents the susceptibility of G on κ. Note that this is based
on the following assumptions: (i) the system is operating in a
regime where G ¼ 0 in the absence of κ; (ii) κ is a stabilizing
field that renders G nonzero, but small; and (iii) κ is analytic
and can be expanded in powers of small G, in analogy with
other mean-field theories. Importantly, even terms are no
longer forbidden here by symmetry, resulting in G ∼ κ1=2 at
the critical point. This suggests a simple explanation for the
observation of the approximate square-root dependence of G
on κ in Sec. V.A.2. This mean-field argument is general, and it
suggests a similar square-root dependence of G in the critical
regime on any stabilizing field such as κ, viscous stresses,
active internal stresses, and thermal fluctuations. Such behav-
ior is consistent with other mean-field arguments and effective
medium theories (Wyart et al., 2008; Wyart, 2010; Broedersz
et al., 2011; Tighe, 2011, 2012; Das, Quint, and Schwarz,
2012; Sheinman, Broedersz, and MacKintosh, 2012a; Mao,
Stenull, and Lubensky, 2013a, 2013b; Yucht, Sheinman, and
Broedersz, 2013).
Both the stabilization and associated critical behavior of

marginal and floppy (submarginal) networks have been shown
for a broad class of different networks, including spring and
fiber networks, and for a range of stabilizing fields, including
external and internal stresses (Broedersz and MacKintosh,
2011; Sheinman, Broedersz, and MacKintosh, 2012a), vis-
cous interactions by an embedding Newtonian fluid (Wyart,
2010; Tighe, 2011, 2012; Andreotti, Barrat, and Heussinger,
2012; Lerner, Dring, and Wyart, 2012a, 2012b, 2013; Yucht,
Sheinman, and Broedersz, 2013), large external strains
(Sheinman, Broedersz, and MacKintosh, 2012b), and even
thermal fluctuations (Dennison et al., 2013). Although each of
these cases has interesting distinguishing features, the general
critical phenomena framework and the connection between
network mechanics and strain fluctuations apply to all.
Moreover, these cases show approximate square-root depend-
ence of G on the corresponding stabilizing field: e.g., in the
presence of thermal fluctuations, anomalous entropic elastic-
ity is seen, in which G ∼

ffiffiffiffi
T

p
at finite temperature T or G ∼ffiffiffi

σ
p

under applied shear stress σ (see the discussion at the end
of Sec. IV.D).
One of the possible biological implications of the

stabilizing effect of stresses is the observation that internal
stress by molecular motors can stabilize and control the
mechanics of intracellular networks (Sheinman, Broedersz,
and MacKintosh, 2012a). This can provide a simple and
general mechanism for control of cell mechanics without the
need to change the amount or even the connectivity of
cytoskeletal networks. Additionally, the critical nature of the
model systems suggests the possibility of exquisite control
of mechanics through the expected strong (mechanical)
susceptibility, making such a system a highly responsive
material.

C. Effective medium theories

We now review the effective medium approach, first
formulated by Feng, Thorpe, and Garboczi (1985), in its
most simplest form: for spring networks. We then end with a
brief discussion on how this EMT approach can be extended
for various situations.
The effective medium network is an undiluted network,

with renormalized bond stiffness ~g, depending on the degree
of dilution p of the actual network it represents. The EMT
provides a self-consistent construction to determine this
renormalized bond stiffness from which the mechanical
response of the effective network can be calculated.
Suppose the effective network is subjected to a macroscopic

infinitesimal strain ϵ, deforming bond nm affinely by r̂nmϵ,
where r̂nm is the unit vector along bond nm. Subsequently,
replacing this effective medium bond with stiffness g (see
Fig. 25), sampled from the distribution PðgÞ, gives rise to an
additional, nonaffine deformation δu. The original (uniform)
deformation can be restored by applying an additional force to
the bond

f ¼ r̂nmϵð~g − gÞ. ð85Þ

Since the network is assumed to be in the linear response
regime, applying this force to an unstrained network would
have given the same deformation δu that resulted from
substituting a bond in the strained effective network in the
absence of the force. If we had only removed the nm bond,
the effective stiffness between these two nodes due to the
surrounding network is gEM − ĝ, where gEM is the force on a
bond in the perfect effective medium network in response to a
unit displacement. Then inserting a random bond g between
nodes n and m leads to a local stiffness gEM − ĝþ g [see
Fig. 25(b)]. Thus, the nonaffine deformation that arose from
the bond replacement in the strained effective network (with-
out the force f) can be expressed as

δu ¼ r̂nmϵð~g − gÞ
gEM − ~gþ g

. ð86Þ

FIG. 25. Illustration of the effective medium framework. (a) The
bonds in the effective medium have a stiffness ĝ, which are
calculated self-consistently. The bond between nodes n and m is
replaced by a random bond g, which leads to a distortion if the
effective network is under strain. However, an additional force f
can be applied to counter this distortion. (b) How the stiffness
between nodes n and m can be described by two springs in
parallel. From Feng, Thorpe, and Garboczi, 1985.

1028 C. P. Broedersz and F. C. MacKintosh: Modeling semiflexible polymer networks

Rev. Mod. Phys., Vol. 86, No. 3, July–September 2014



This deformation depends on the stiffness of the inserted bond
chosen randomly from the distribution PðgÞ, leading to either
a contraction or dilation of the network. The stiffness of the
effective medium should be chosen such that, on average, we
recover the macroscopically imposed deformation, and thus,
these nonaffine displacements due to bond insertion should
vanish on average. Hence, the self-consistency condition
requires that the local fluctuations in the deformation field
must average to zero hδui ¼ 0, leading to the following
implicit equation for ~g:

Z
∞

0

g − ~g
gEM þ g − ~g

PðgÞdg ¼ 0: ð87Þ

This equation can be solved by first determining g−1EM
as the displacement in response to a unit force with wave
vector k between directed along nodes n and m, fðkÞ ¼
r̂nmð1 − eik·r̂nmÞ, by solving the network’s equation of motion

uðkÞ ¼ −D−1ðkÞ · fðkÞ; ð88Þ

whereDðkÞ is the dynamical matrix of the Bravais lattice, and
uðkÞ is the displacement in k space due to this force. The
displacement of the nm bond due to a unit force, which is
needed to solve Eq. (87), follows from

g−1EM ¼ 1

N
rnm ·

X
k

uðkÞðe−ik·rnm − 1Þ; ð89Þ

where N is the total number of nodes in the network.
For a random bond-diluted lattice with bond stiffness μ and

dilutiom p, the self-consistency condition [Eq. (87)] can be
written as

p
μ − ~g

gEM þ μ − ~g
− ð1 − pÞ ~g

gEM − ~g
¼ 0. ð90Þ

From this it can be found that G vanishes continuously at the
CF isostatic point as G ∼ μΔpfCF , with Δp ¼ p − pCF, and
the mean-field results pCF ¼ 2=3 and fCF ¼ 1.
A more detailed discussion of this approach has been given

by Feng, Thorpe, and Garboczi (1985). Feng et al. also
describe an alternative, scattering approach (Lax, 1951) using
the CPA, which leads to the same results as the “static”
approach discussed above.
The EMT framework was further developed to describe

spring networks for a variety of situations. An EMT was
developed to describe “glasses”with bond-bending forces (He
and Thorpe, 1985). To describe the nonlinear elastic response
of spring networks under large external isotropic strain
(Fig. 26), a perturbative approach for infinitesimal dilution
was discussed by Tang and Thorpe (1988), and, more recently,
for arbitrary dilution by Sheinman, Broedersz, and
MacKintosh (2012b). In this approach, the EMT
Hamiltonian at finite strain is expanded around a nonlinear
state for small nonaffine deformations. It was found that the
external strain shifts the isostatic point continuously from pCF
to the (lower) conductivity threshold of the network. Networks
with internal stresses (Alexander, 1998) garnished attention
recently because of their relevance for fiber networks

contracted by force-generating molecular motors (Mizuno
et al., 2007; Koenderink et al., 2009) or contractile cells (Lam
et al., 2011). An EMT approach developed for this scenario
was described by Sheinman, Broedersz, and MacKintosh
(2012a). Such internal stresses can stabilize subisostatic
networks mechanically and can even poise the network in a
critical state. Finally, EMTs were also developed to describe
the dynamic shear modulus of a spring network embedded in a
viscous medium (Wyart, 2010; Lerner, Dring, and Wyart,
2013; Yucht, Sheinman, and Broedersz, 2013).
EMTs for bond-diluted lattices with CF springs are, in

principle, straightforward because the springs reside on an
individual bond. In contrast, EMTs for lattices with three-
point bending forces are considerably more involved because
such bending forces reside on two bonds, whereas the dilution
procedure only removes individual bonds one at a time. Two
such approaches have been developed to incorporate this
effect by Das, MacKintosh, and Levine (2007) and Das,
Quint, and Schwarz (2012) and Broedersz et al. (2011) and
Mao, Stenull, and Lubensky (2013a, 2013b). Given the
complications of three-point bending forces, there is no single,
obvious way to implement the effective medium approach,
and these two groups have introduced two different approx-
imations, which will not be elaborated on here. However, it is
interesting to note that one of these approaches appears to be
better at calculating the rigidity threshold (Das, Quint, and
Schwarz, 2012), while the other does a better job of capturing
the magnitude of the elastic modulus far from this threshold
(Broedersz et al., 2011; Mao, Stenull, and Lubensky, 2013a,
2013b). The latter approach necessitated the inclusion of
third-neighbor couplings not present in the earlier approach by
Das, MacKintosh, and Levine (2007) and Das, Quint, and
Schwarz (2012). Thus, it still remains a challenge to construct
an EMT for a fiber network that can accurately capture both
the bending threshold and the mechanical response.
Furthermore, EMT approaches to describe the nonlinear
response of such networks, or their dynamic response when
coupled to a viscous liquid, should be of considerable interest,
but have not yet been reported on.

1. Contractile nonaffine and marginal networks

The nonlinear mechanical response of reconstituted bio-
polymer networks in many cases reflects the nonlinear force

(a) (b)

FIG. 26 (color online). A small section of the (a) undeformed
and (b) expanded diluted triangular lattice. The average
coordination number in this example is z ¼ 3. Adapted from
Sheinman, Broedersz, and MacKintosh, 2012b.
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extension behavior of the constituting cross-links or filaments
(Gardel et al., 2004a, 2004b; Storm et al., 2005; Wagner et al.,
2006; Broedersz, Storm, and MacKintosh, 2008; Kasza et al.,
2009). For such networks, both experiments and theoretical
studies show that internal stress generation by molecular
motors can result in network stiffening in direct analogy to an
externally applied uniform stress (Mizuno et al., 2007;
MacKintosh and Levine, 2008; Koenderink et al., 2009;
Levine and MacKintosh, 2009; Liverpool et al., 2009;
Head and Mizuno, 2010). However, as discussed, the
mechanical response of semiflexible polymers is highly
anisotropic and is typically much softer to bending than to
stretching. In some cases, this renders the network deforma-
tion highly nonaffine with most of the energy stored in
bending modes. Such nonaffinely deforming stiff polymer
networks can also exhibit a nonlinear mechanical response,
even when the network constituents are linear elastic fibers.
Can internal stresses generated, for instance, by molecular
motors or contractile cells embedded in the network, stiffen
such networks?
This was studied numerically in networks of athermal, stiff

filaments using the 2D phantom model (Broedersz and
MacKintosh, 2011) (see also Sec. IV.C.6). In the absence
of motors, these networks can exhibit strain stiffening under
an externally applied shear. This behavior has been attributed
to a crossover between two mechanical regimes; at small
strains the mechanics is governed by soft bending modes and a
nonaffine deformation field, while at larger strains the elastic
response is governed by the stiffer stretch modes and an affine
deformation field (Onck et al., 2005). Interestingly, motors
that generate internal stresses can also stiffen the network. The
motors induce force dipoles leading to musclelike contrac-
tions, which “pull out” the floppy bending modes in the
system (Broedersz and MacKintosh, 2011). This induces a
crossover to a stiffer stretching-dominated regime. Through
this mechanism, motors can lead to network stiffening in
nonaffine athermal fiber networks in which the constituting
filaments in the network are themselves linear elements.
To obtain a better understanding of this behavior, this was

studied in more detail in 3D fiber networks based on the
diluted fcc lattice, using both simulations and an analytical
approach. Networks are formed by cross-linked straight fibers
with linear stretching and bending elasticity. These fibers are
organized on a fcc lattice in which a certain fraction of the
bonds can randomly be removed. This allows one to explore a
wide range of network connectivities 0 ≤ z ≤ 12. Motor
activity is introduced by contractile, static, and strain-
independent force dipoles acting between neighboring
network nodes. The shear modulus of these networks, with
or without contractile stress, can be determined numerically
by applying a small shear deformation.
It was found that motors can stabilize the elastic response of

otherwise floppy, unstable networks. The motor stress also
controls the mechanics of stable networks above a character-
istic threshold in connectivity, in the vicinity of which the
network exhibits critical strain fluctuations. Interestingly, the
network’s stiffness is controlled by a coupling of the motor
induced stresses σm to the strain fluctuations according to a
constitutive relation,

G ¼ G0 þ ΓðσmÞσm þ σm; ð91Þ

where G0 is the shear modulus in the absence of stress, and
prefactors in the last two terms have been left out. The linear
modulus G0 in the absence of stress may be zero. Γ is the
nonaffinity parameter proportional to the susceptibility that
controls the network response to stress and which may depend
on the stress σm.
The coupling between stress and the nonaffine fluctuations

gives rise to anomalous regimes at the stability thresholds, at
which network criticality implies divergent strain fluctuations
with a power-law dependence on motor stress. This is
reflected as an anomalous dependence of the network’s shear
modulus on stress. To be in such a critical regime the network
needs to be marginally stable. This can be achieved by either
tuning the network connectivity, such that it is close to the
bending or central-force isostatic point, or by adding a near-
critical density of motors to marginally stabilize an otherwise
floppy network. Importantly, this critical density does not
sufficiently enhance the effective connectivity of the network
to bring it near to the bending or central-force isostatic point.
In such critical regimes, the shear modulus depends non-
linearly on both motor stress and single filament elasticity
(Lam et al., 2011; Broedersz and MacKintosh, 2011; Chen
and Shenoy, 2011). Interestingly, this dependence on internal
motor stress differs qualitatively from that of an applied
external stress.

VI. SUMMARY AND OUTLOOK

In this review, we discussed some of the main theoretical
developments over roughly the last two decades on semi-
flexible polymers and their assemblies as bundles, solutions,
and cross-linked networks. We focused on physical and
minimal approaches that have studied the basic principles
of these systems, with some bias toward biopolymer systems
(Bausch and Kroy, 2006; Kasza et al., 2007; Fletcher and
Mullins, 2010; Lieleg, Claessens, and Bausch, 2010) and our
personal interests. We have not discussed more realistic
approaches that aim to capture some of the specific molecular
details of biopolymers and architectural features of the net-
works they form (Kim et al., 2009). And, we have only briefly
touched upon some recent examples of applications of some
of the ideas coming from various biopolymer studies to
synthetic hydrogels (Kouwer et al., 2013) and carbon nano-
tubes (Fakhri et al., 2009, 2010). Both of these examples are
likely just the tip of the iceberg: it seems there is much more to
be gained in translation of such ideas to new materials
(Bertrand, Fygenson, and Saleh, 2012), and one can expect
much more work in the future along these lines.
We started with a discussion on the properties of single

semiflexible polymers. A defining characteristic of semi-
flexible polymers is that thermal energy excites only small
bending fluctuations around their straight zero-temperature
conformation. As a result, their mechanical response is highly
anisotropic: Buckling under compression, stiffening entropi-
cally under even modest extensions, while bending easily.
Moreover, the entropic stretch modulus of a semiflexible
polymer is governed by its bending rigidity and is inversely
proportional to temperature (MacKintosh, Käs, and Janmey,
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1995; Kroy and Frey, 1996), in contrast to a flexible polymer
which has an entropic modulus proportional to temperature
(Rubinstein and Colby, 2003). Thus, while flexible polymers
are completely dominated by entropy, the properties of
semiflexible polymers reflect a competition between the
entropy and the bending energy. The important role of
bending also has implications for the dynamics of semiflexible
filaments, which exhibit a much stronger wavelength depend-
ence of relaxation than for flexible polymers.
The competition between entropy and bending energy in

semiflexible polymers has interesting consequences for the
assemblies they form. We discussed the intriguing properties
of semiflexible bundles (Claessens et al., 2006; Heussinger,
Bathe, and Frey, 2007; Bathe et al., 2008; Heussinger,
Schüller, and Frey, 2010) and solutions (Isambert and
Maggs, 1996; Gittes et al., 1997; Schnurr et al., 1997;
Hinner et al., 1998; Morse, 1998a, 1998b). Various experi-
ments indicate that semiflexible polymer solutions such as
entangled actin networks (Semmrich et al., 2007) and living
cells (Fabry et al., 2001; Deng et al., 2006) exhibit soft glassy
behavior (Sollich et al., 1997), e.g., a weak power-law
dependence of the dynamic shear modulus on frequency.
The glassy wormlike chain model has offered various impor-
tant insights into such behavior (Kroy and Glaser, 2007; Kroy,
2008), but in its current form this is a phenomenological
approach. Thus, the construction of a microscopic theory for
glassy semiflexible polymer systems remains an important
challenge.
Networks with dynamic cross-links have aspects of both

solutions and permanently cross-linked networks (Lieleg et al.,
2008; Broedersz et al., 2010; Heussinger, 2011; Strehle et al.,
2011). However, these transiently cross-linked networks
exhibit a dynamic rheological response distinct from solutions
or permanent networks, with a surprising dependence on
stress (Lieleg et al., 2009; Norstrom and Gardel, 2011; Yao
et al., 2013). An experiment on reconstituted actin networks
indicates that the onset of stress relaxation shifts to lower
frequency in the presence of stress, suggesting that the cross-
links may actually become more stable under an applied force.
This may have implications in biological processes such as
mechanosensing (Luo et al., 2013).
The affine model constitutes the simplest analytical

approach to describe the mechanical response of a perma-
nently cross-linked semiflexible polymer network
(MacKintosh, Käs, and Janmey, 1995; Morse, 1998b,
1998c; Storm et al., 2005), and this model captures various
experiments on reconstituted biopolymer networks (Gardel
et al., 2004a, 2004b; Koenderink et al., 2006; Tharmann,
Claessens, and Bausch, 2007; Lin, Broedersz et al., 2010; Lin,
Yao et al., 2010; Yao et al., 2010) and synthetic stiff polymers
(Kouwer et al., 2013). However, the low connectivity (≲4) of
many biopolymer networks implies that networks are only
weakly constrained (especially in 3D) and can deform through
nonaffine bending modes (Head, Levine, and MacKintosh,
2003a, 2003b; Wilhelm and Frey, 2003). In addition, semi-
flexible polymers are softer to bending deformations than to
stretching deformations, which begs the question: Why would
the network not always favor nonaffine deformations?
Nonaffine bending deformations can be “leveraged” by
filament length and thus become large and energetically less

favorable than the affine stretching deformations in the high
molecular weight limit (Head, Levine, and MacKintosh,
2003a, 2003b; Heussinger and Frey, 2006a; Heussinger,
Schaefer, and Frey, 2007). Hence, even 3D networks with
connectivities ≲4 can be tuned into a mechanical regime
where the shear modulus is governed by affine stretching
deformations (Stenull and Lubensky, 2011; Broedersz,
Sheinman, and MacKintosh, 2012). We have summarized
the main predictions of affine and nonaffine filamentous
networks in Figs. 27(a)–27(c).
We discussed various approaches to describe the nonaffine

regime and the crossover to affine behavior in athermal
filamentous networks (Head, Levine, and MacKintosh,
2003a, 2003b; Wilhelm and Frey, 2003; Heussinger and
Frey, 2006a; Stenull and Lubensky, 2011; Broedersz,
Sheinman, and MacKintosh, 2012). Many, if not all, of the
elastic regimes of these networks have now been identified
and understood, at least at the level of scaling theory.
However, a comprehensive analytical theory that describes
fiber networks over the full range of behaviors, including the
rigidity percolation regime, the length-controlled bending
regime, and the affine regime still remains elusive.
Theoretical studies have recently started exploring nonlinear
(Onck et al., 2005; Heussinger, Schaefer, and Frey, 2007;
Conti and MacKintosh, 2009; Broedersz and MacKintosh,
2011; Broedersz, Sheinman, and MacKintosh, 2012),
dynamic (Huisman, Storm, and Barkema, 2010), and thermal
effects in nonaffine fibrous networks (Carrillo, MacKintosh,
and Dobrynin, 2013), but these effects still remain poorly
understood. Moreover, experiments have still provided little
direct evidence for nonaffine mechanical behavior (Lieleg
et al., 2007; Stein et al., 2011), in part probably because
unambiguous theoretical predictions have been lacking. To
address nonaffine behavior in fibrous networks, various
groups have now started combining macroscopic rheological
methods with a microscopic visualization of the strain field in
the network (Liu et al., 2007; Schmoller et al., 2010; Basu
et al., 2011; Wen et al., 2012; Münster et al., 2013).
Nonaffine deformations become paramount when a fiber

network becomes marginally stable (Wyart et al., 2008;
Broedersz et al., 2011). This represents an interesting and
promising connection between the basic physics of elastic
networks and jamming (Liu and Nagel, 1998, 2010; O’Hern,
Silbert, and Nagel, 2003; van Hecke, 2010). Depending on
connectivity, networks can be poised near a marginally stable
state analogous to that of granular packings. And, much as
compression can stabilize such packings, fiber or biopolymer
networks can be stabilized by various interactions or fields,
including applied stress, strain, internal molecular motor
activity, and even thermal fluctuations, leading to rich critical
phenomena (Wyart et al., 2008; Broedersz et al., 2011;
Sheinman, Broedersz, and MacKintosh, 2012a, 2012b; Sun
et al., 2012; Tighe, 2012; Vitelli, 2012; Dennison et al., 2013).
Theoretically, marginally stable fiber networks are predicted
to exhibit rich critical behavior, including large, or even
divergent, nonaffine strain fluctuations and anomalous elas-
ticity [Figs. 27(d) and 27(e)], with close connections to the
field of rigidity percolation (Thorpe, 1983, 1985; Feng et al.,
1984; He and Thorpe, 1985; Schwartz et al., 1985), as well as
jamming. However, easily tunable experimental fibrous
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(a)

(b)

(d) (e)

(c)

FIG. 27 (color online). Graphical summary for the behavior of cross-linked networks. (a) Affine thermal model (see Sec. IV.A)
(MacKintosh,Käs, and Janmey, 1995;Gardel et al., 2004a, 2004b). (b), (c)Nonaffine fiber networks (seeSec. IV.C) (Head,Levine, and
MacKintosh, 2003a, 2003b;Wilhelm and Frey, 2003; Onck et al., 2005; Heussinger and Frey, 2006a; Heussinger, Schaefer, and Frey,
2007; Broedersz and MacKintosh, 2011; Stenull and Lubensky, 2011; Broedersz, Sheinman, and MacKintosh, 2012. (d) Marginally
stable spring networks (see Sec. V.A) (Wyart et al., 2008; Wyart, 2010; Tighe, 2011, 2012; Andreotti, Barrat, and Heussinger, 2012;
Lerner, Dring, andWyart, 2012a, 2012b, 2013; Yucht, Sheinman, and Broedersz, 2013. (e)Marginally stable fiber networks (Wyart et
al., 2008; Broedersz et al., 2011; Mao, Stenull, and Lubensky, 2013a, 2013b).
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systems to study this behavior are still lacking, and to date,
there is little direct evidence on marginal or critical behavior in
real biopolymer systems. Recently, however, several groups
have begun to study networks in which molecular motors
drive the system to effectively lower connectivity (Köhler,
Schaller, and Bausch, 2011; Soares e Silva et al., 2011;
Murrell and Gardel, 2012), and even to a state resembling a
critical point (Alvarado et al., 2013).

LIST OF SYMBOLS AND ABBREVIATIONS

a Filament radius
E Young’s modulus
ϕ Volume fraction
G Shear modulus
γ Strain
Γ Nonaffinity parameter
ϵ Relative extension
K Differential shear modulus
κ Filament bending rigidity
l Filament length
lp Persistence length
lc Spacing between cross-links
μ Filament stretching modulus
ρ Filament length density
σ Stress
τ Tension
ξ Mesh size
z Network connectivity
zCF Central-force isostatic point
zb Bending isostatic point
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