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This review compares the conceptualization and practice of early real-space renormalization group
methods with the conceptualization of more recent real-space transformations based on tensor
networks. For specificity, it focuses upon two basic methods: the “potential-moving” approach most
used in the period 1975–1980 and the “rewiring method” as it has been developed in the last five years.
The newer method, part of a development called the tensor renormalization group, was originally
based on principles of quantum entanglement. It is specialized for computing approximations for
tensor products constituting, for example, the free energy or the ground state energy of a large system.
It can attack a wide variety of problems, including quantum problems, which would otherwise be
intractable. The older method is formulated in terms of spin variables and permits a straightforward
construction and analysis of fixed points in rather transparent terms. However, in the form described
here it is unsystematic, offers no path for improvement, and of unknown reliability. The new method
is formulated in terms of index variables which may be considered as linear combinations of the
statistical variables. Free energies emerge naturally, but fixed points are more subtle. Further, physical
interpretations of the index variables are often elusive due to a gauge symmetry which allows only
selected combinations of tensor entries to have physical significance. In applications, both methods
employ analyses with varying degrees of complexity. The complexity is parametrized by an integer
called χ (orD in the recent literature). Both methods are examined in action by using them to compute
fixed points related to Ising models for small values of the complexity parameter. They behave quite
differently. The old method gives a reasonably good picture of the fixed point, as measured, for
example, by the accuracy of the measured critical indices. This happens at low values of χ, but there is
no known systematic way of getting more accurate results within the old method. In contrast, the
rewiring method seems to work poorly in fixed point calculations at low χ. This stands in contrast to
the known excellent performance of these newer methods in calculations of free energy, but not fixed
points, at large values of χ. Speculations are offered with a particular eye to seeing the reasons why the
results of these two approaches are so different.
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I. INTRODUCTION

A. History: The conceptual foundations

The renormalization group (Nelson, 1977; Maris and
Kadanoff, 1978; Cardy, 1996; Kadanoff, 2000) provides a
theoretical understanding of singular problems in statistical
mechanics (Domb, 1996), particularly ones involving phase
transitions. There are two main branches of analysis based
upon this method, one involving work in momentum or wave
vector space (Wilson and Kogut, 1974), the other involving
so-called “real-space” methods. In this review, we follow the
latter approach.
Both approaches make extensive use of the following

conceptual ideas:
• Scale invariance: Singularities in statistical mechanics
tend to be connected with behaviors that are the same
at different length scales. Critical points of phase
transitions have correlations at all length scales.

• Scale covariance: Near the phase transition, many
physical quantities vary as powers of characteristic
lengths that describe the system, or of lengths describing
the quantities themselves, or as powers of “fields” t
hat measure the deviation of thermodynamic quantities
from criticality. These powers characterize the phase
transition. They are called critical indices.

• Fixed point: The scale invariance is described by a
Hamiltonian or free-energy function that has elements

that are independent of length scale. As a result, one
might expect that, for example, the Hamiltonian or the
free-energy function that describes the system will not
change when the length scale changes. This unchanging
behavior is described as “being at a fixed point.”

• Renormalization: A transformation that describes the
results of changes in the length scale. Usually this
transformation will not change the Hamiltonian or free
energy describing the fixed point. That is the reason for
the name fixed point.

• Universality: Near the phase transition, many different
physical systems show identical behavior of the quan-
tities that describe critical behavior. Since these quan-
tities are descriptive of scale-invariant behavior, these
descriptive quantities can all be seen at large length
scales.

• Universality classes: There are many critical points with
a wide variety of different origins. Nonetheless these fall
into relatively few universality classes, each class being
fully descriptive of all the details of a given critical
behavior.

The behaviors of different critical systems can be, in large
measure, classified by describing the dimension and other
topological features of the system, and then describing some
underlying symmetry that plays a major role at the critical
point. For example, the model that Lars Onsager solved, the
Ising model (Ising, 1925; Onsager, 1944; Brush, Stephen,
1967), is mostly described by saying it is a two-dimensional
system with a spin at each point. The spin can point in one of
two directions. The model has a symmetry under flipping the
sign of all spins, so that it can describe a magnetic phase
transition. It is equally well descriptive of a two-dimensional
liquid in which the basic symmetry is in the interchange of
high density regions with low density ones, so that it describes
a liquid-gas phase transition. Any model with the appropriate
symmetry and dimensionality and the right range of inter-
action strengths is likely to describe both situations, and many
others. The Ising model constitutes the simplest model of
this kind.

B. Statistical variables

There are many models and real systems that exhibit critical
behavior (Green and Sengers, 1966; Kadanoff et al., 1967;
Stanley, 1971; Ma, 2000). All of those with short-range
interactions and spatial homogeneity have the same kind of
characteristic behavior. One starts from a statistical ensemble,
that is a very large system of stochastic variables, called fσrg,
where r defines a position in space. The statistical calculation
is defined by probability distribution, given as an expression
of the form exp ð−βHfσrgÞ, where β is the inverse temper-
ature and H is the Hamiltonian for the statistical system. One
then uses a sum over all the stochastic variables, defined by
the linear operation denoted as a trace, to define a thermo-
dynamic quantity the free energy F as

e−βF ¼ Trfσrgðe−βHfσrgÞ: (1a)

Equation (1a) gives the problem formulation for statistical
physics introduced by Boltzmann and Gibbs and directly used
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for renormalization calculations through the 1980s. Since the
Hamiltonian is most often a sum of terms, each containing a
few spatially neighboring σr values, one can write the free
energy as a sum of products of blocks:

e−βF ¼ Trfσrg
Y
R

BLOCKR; (1b)

each block depending on a few statistical variables. This
formulation applies equally well to the older and the new
formulations of the statistical mechanics. Lately, statistical
scientists have realized the advantage of a particular special
form of writing the product of blocks, called the tensor
network representation. In this representation, as well as
in vertex models, the statistical Boltzmann weights are
associated with vertices (rather than bonds) (Baxter, 2007).
The tensor network representation describes the connec-

tivity and interdependence of blocks and statistical variables.
Because of locality the numerical value each block attains
depends on a small number of statistical variables. Every
statistical variable in turn affects the numerical values in a
small number of different blocks. This allows the identifica-
tion of a statistical variable assuming χ different values with
an index assuming the values f1; 2;…; χg. The blocks are
linked because each index appears in precisely two blocks.
The blocks then reduce to tensors whose rank is determined by
how many different indices determine the values assumed by a
given block. Every configuration corresponds to a specific
choice of indices. It is believed, but not proven, that this kind
of representation forms a link to the fundamental description
of the statistical problem (Vidal, 2003). The free-energy
calculation which follows by summation over all possible
configurations of the statistical variables reduces to a tensor
product tracing out all the mutual index values,

e−βF ¼
X

i;j;k;…

Y
Tijkl. (1c)

The tensor indices i; j; k;… are indirect representations of
the original statistical variables. Each value of a given index
may represent a sum, with coefficients that can be positive or
negative, of the weights of statistical configurations in the
system. Moreover, this representation permits a kind of gauge
invariance for each index at each point in space, in which all
rotations of any tensor index are a symmetry of the system.
Specifically, given that the index i appears in two tensors T1

ijkl
and T2

ipqr, then the index transformation

T1
ijkl →

X
m

Oi;mT1
mjkl; T2

ipqr →
X
m

Oi;mT2
mpqr; (2)

for
P

mOi;mOj;m ¼ δi;j, will leave the partition function
unchanged. This important formal property underpins the
newer statistical calculations.

C. Renormalization

The basic theory describing this kind of behavior was
derived by Wilson (1971), based in part upon ideas derived
earlier (Gellmann and Low, 1954; Patashinskii and

Pokrovskii, 1964, 1979; Widom, 1964, 1965; Kadanoff,
1966, 2009, 2010, 2013). The first element of the theory is
the concept of a renormalization transformation. This is a
change in the description of an ensemble of statistical systems,
obtained by changing the length scale upon which the system
is described. Such a transformation can be applied to any
statistical system, including ones which are or are not at a
critical point. There is a whole collection of methods for
constructing such renormalization transformations and
describing their properties. This review is concerned with
describing one class of such transformations, the real-space
transformations. These are ones that employ the description of
the ensemble in ordinary space (or sometimes space-time) to
construct a description of the renormalization process.
The ensemble is parametrized by a set of coupling constants

K ¼ fKjg. These couplings describe the spin interactions
of the early renormalization schemes, with the subscripts
denoting couplings to different combinations of spin operators
sj via

H ¼
X
r

X
j

KjsjðrÞ:

Alternatively the K’s may be parameters that determine the
tensors. The renormalization transformation increases some
characteristic distance describing the system, usually the
distance between neighboring lattice points on a lattice
defining the spatial structure, so that this distance changes
according to a0 ¼ δLa. Correspondingly, the renormalization
transformation changes the coupling parameters to new values
which we denote byK0. These new couplings depend upon the
values of the old ones, so that

K0 ¼ RðKÞ. (3)

Here the function R represents the effect of the renormaliza-
tion transformation.

D. Fixed point

The renormalization theory is particularly powerful at the
critical point. This application of the theory is based upon the
concept of a fixed point, an ensemble of statistical systems that
describes the behavior of all individual statistical systems
within a particular universality class. Since the critical point is
itself invariant under scaling transformations, the ensemble in
question is invariant under a renormalization transformation.
It is said to be at a fixed point. The fixed point is represented
by a special set of couplings K� that obey

K� ¼ RðK�Þ. (4)

E. Response analysis and critical indices

The most important physical effects are obtained by study-
ing the behavior of the renormalization transformation in the
vicinity of the critical points. This behavior is quantified by
the response matrix relating small changes in the couplings Kj
with the small changes they induce in the renormalized
couplings Ki

0,

Efi Efrati et al.: Real-space renormalization in statistical … 649

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



Bij ¼
dK0

i

dKj

����
K¼K�

: (5)

This matrix has right and left eigenfunctions defined as

X
j

Bijψ jα ¼ Eαψ iα and
X
i

ϕαiBij ¼ Eαϕαj: (6)

The eigenvalues above directly determine the scaling
properties of the exact solution through

Eα ¼ ðδLÞyα ¼ ðδLÞd−xα (7)

with δL being the length rescaling factor produced by the
renormalization, d is the dimensionality of the system, and xα
are called the critical exponents.1 Different authors describe
their results in terms of Eα or yα , or xα. In this review, we use
the last descriptor.
The eigenfunctions ϕ and ψ can be used to construct a

linear combination of the coupling constants, namely,
hα ¼ ϕαiδKi, which obey the simple scaling transformation
rule

h0α ¼ Eαhα ¼ ðδLÞd−xαhα:

These eigenfunctions can also be used to construct a set of
densities oαðrÞ of operators called scaling operators since they
have simple properties under scale transformations. The
combinations

X
j

sjðrÞψ jα ¼ oαðrÞ (8a)

define oαðrÞ as the densities for the scaling operator. The
operators oα and their extensive counterparts Oα ¼

P
roαðrÞ,

respectively, scale like distances to the power −xα and yα,
respectively. The other coefficient in the eigenvalue analysis
ϕαi can be interpreted by saying that si generates a combi-
nation of fundamental operators according to

siðrÞ ¼
X
α

ϕαioαðrÞ. (8b)

To make Eqs. (8a) and (8b) work together, we must define the
eigenvectors so that they are normalized and complete

X
i

ϕαiψ iβ ¼ δαβ and
X
α

ϕαjψ iα ¼ δij. (9)

The crucial quantity in this analysis is the critical index xα
defining the scaling properties of the scaling operator. For the
usual always-finite scaling operators the exponents xα are
positive. Operators for which the corresponding critical

exponents lie between zero and the dimension of the system
d are called relevant operators. These play a major role in the
thermodynamics. Operators for which the corresponding
critical exponents are greater than d are called irrelevant
operators and do not contribute to the singular behavior of the
thermodynamic functions (Kadanoff and Wegner, 1971;
Wegner, 1976). Below we compare the values of the critical
indices xα as they emerge from the approximate numerical
renormalization theory with the exact values that are often
known from exact theories as described by Belavin, Polyakov,
and Zamolodchikov (1984) and Di Francesco, Mathieu, and
Senechal (1997).

F. Requirements on approximations

The concepts of renormalization and scale invariance lead
naturally to the identification of scaling and universality and
have contributed to the fundamental understanding of critical
phenomena. There is also a more practical aspect of the
renormalization concepts that allows one to predict the location
of phase transitions of specific systems anddescribe their nature
in terms of the critical exponents. However, for most systems,
carrying out the actual renormalization cannot be done exactly.
Instead, some approximation method must be used to find an
approximate renormalization transformation. We hope that the
approximation method will give an informative picture of the
physical system, that it is numerically accurate, and that it is
improvable so that more work can lead to better results.

G. History of real-space methods

The first heuristic definition of a real-space renormalization
was given by Kadanoff (1966). Later the viability of the
renormalization approach was demonstrated by inventing the
ϵ expansion (Wilson and Fisher, 1972; Wilson and Kogut,
1974). This approach was adapted for a numerical calculation
of the renormalization function R in terms of a small number
of different couplings (Niemeijer and van Leeuwen, 1973;
Niemeyer and Van Leeuwen, 1974). These methods were
described in one dimension (Nelson and Fisher, 1975;
Maris and Kadanoff, 1978) and applied (Kadanoff and
Houghton, 1975).
From the point of view of this review, an important advance

occurred when a variational method was invented (Kadanoff,
1975) and extensively employed (Kadanoff and Houghton,
1975; Burkhardt, Knops, and den Nijs, 1976; Burkhardt,
1976b; Burkhardt and Knops, 1977; Knops, 1977; den Nijs
and Knops, 1978). This method was described as a
lower-bound calculation since it permitted calculations that
gave a lower bound on possible values of the free energy.
This approach permitted reasonably accurate and extensive
calculations of critical properties in two and higher dimensions.
However, as the 1970s came to an end, the lower-bound

method fell into disuse. This turning away was in part because
higher accuracy could be obtained by commingling the ideas
from real-space renormalization with Monte Carlo simulations
(Ma, 1976; Swendsen, 1979; Blote et al., 1996), thereby
obtaining excellent representations of fixed points and scal-
ings. Gradually, however, interest turned away from statistical
problems and toward problems involving quantum mechanics

1Scaling indices xα and yα are used to represent the natural group
properties of scaling operations. If δL1 and δL2 are two rescaling
factors, then the forms of the eigenvectors as a function of these
rescaling factors satisfy EðδL1 · δL2Þ ¼ EðδL1ÞEðδL2Þ. It follows
that Eð1Þ ¼ 1 and E0ðδL1Þ=EðδL1Þ ¼ C=δL1 for some constant C,
leading to EðδLÞ ∝ δLy (Goldenfeld, 1992).

650 Efi Efrati et al.: Real-space renormalization in statistical …

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



and zero temperature phase transitions. Although path-integral
methods permit one to convert a quantum problem into one in
classical statistical mechanics, the statistical methods seemed
to work best when the problem had the full rotational
symmetry of its lattice and hence did not apply to many
quantum problems.
White (1993) invented a quantum mechanical real-space

renormalization scheme that worked well for finding the
properties of one-dimensional quantum systems via numerical
analysis. The success of the density matrix renormali-
zation group started a large school of work aimed at these
problems and analogous problems in higher dimensions
(Evenbly and Vidal, 2009a; Vidal, 2010; Zhao et al., 2010;
Schollwock, 2011).
White’s method looked very different from the real-space

work of the 1970s. It did, however, have an important
provenance in the numerical solution of the Kondo problem
(Wilson, 1975). White studied the approximate eigenstates
involving long chains of correlated spins and how those long
chains interacted with small blocks of spins.
The correlations within wave functions were produced by

summing products of correlations on small blocks, producing
situations described as “tensor product states” (Cirac and
Verstraete, 2009). These tensor product representations facili-
tated accurate analysis based on the correlations among
statistical variables located at a very small number of nearby
lattice sites. For example, Vidal (2010) studied a one-
dimensional lattice where two or three neighboring lattice
sites are used as the basis of the correlations, whereas Levin
and Nave (2007) examined higher dimensional systems and
used a hexagonal construction in which correlations were
constructed from examining the interactions between two
neighboring lattice sites and their interactions with their
nearest neighbors. Last, in the analysis presented by Gu
and Wen (2009), which is closest in structure to the one we
carry here and use to compare to the lower-bound calculation,
they use a four-index tensor describing the intersections in a
square lattice and generate correlations from examining the
interaction of a lattice site with all four nearest neighbors.
Over the course of time, connections among the different
approaches began to be appreciated.

H. Comparisons

Here we focus on differences between the work of the
1970s and that of the last two decades.

1. Stochastic variables

We have already mentioned that the 1975 scheme uses spins
while the recent scheme employs much more complex spatial
structures labeled by tensor indices. Both approaches need to
reflect the underlying symmetry of the problem at hand, for
example, the spin flip symmetry of an Ising model. The early
work used spin variables that directly reflected the symmetry.2

In contrast, the more recent work has replaced summation
over spin variables by sums over tensor indices. The basic
symmetries are hidden in the structure of these tensors. In
using this tensor representation, recent workers have used
universality to say that they can use any problem definition
that reflects a desired symmetry. They then also argue that the
proper meaning of the tensor indices will give them direct
access to the deep structure of the statistical mechanics
problem (Swingle and Wen, 2010).
Each tensor index can take on χ possible values,

representing the number of different configurations of the
system. Recent workers believe, but have not proven, that
working with a constant χ [thereby omitting χ2 − χ terms
from the singular value decomposition (SVD)] results in an
error which tends to zero as χ → ∞. Consequently, they
reach for approximation methods that permit them to
increase χ until it reaches quite large values, and perform
the approximation with a high χ value. (Note that these
indices with their large number of possible values can
simultaneously approximately represent many kinds of
different variables: many-component vectors, Ising spins,
or continuous variables.) In contrast the earlier workers felt
that arbitrary accuracy would not be available to them.
The best that was expected was a qualitatively accurate
description of the problem.
We use the term summation variables to describe both the

spins of the earlier work and the stochastic variables linked to
the tensor indices more recently used.

2. Geometric structure

Another difference can be seen in the geometric structures
used to describe the interactions among the summation
variables. In the tensor network formulation the summation
variables are associated with bonds and their interactions are
associated with vertices, as was done in vertex models; see,
for example, Baxter (2007). Each summation variable
appears in exactly two tensors, thereby connecting two
vertices. The vertices, however, are less constrained and
typically group together several indices, thereby forming a
rank m vertex.
In the earlier renormalization work, in contrast, the sum-

mation variables are associated with vertices and thus may
participate in more than two interactions. The interactions
are associated with blocks of summation variables allowing
each summation variable to participate in more than two
interactions.
This difference not only manifests itself in the formulation

of the partition function of each of the representations but
more importantly restricts the placement of the rescaled
summation variables and their interactions. In the earlier work
new summation variables could be placed arbitrarily provided
the interactions they participate in can be formulated in terms
of the old interaction blocks. In the tensor representation
the binary interaction structure must be preserved when
introducing new summation variables. Thus every introduc-
tion of a new summation variable is necessarily associated
with changing the interaction connectivity of the old variables,
a process called rewiring.

2However, there were occasional uses of more complex variables.
For example, in the Ising model calculation by Burkhardt (1976a),
the “spin” variable could take on three values: �1 and zero. The last
value reflects a hole unoccupied by a magnetic spin.
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3. Calculational strategy

The earlier work found the properties of critical points via a
method based upon the analysis of fixed points. First the
critical system was brought to a fixed point. Critical indices
were then calculated by looking at the growth or decay under
renormalization of small perturbations about the fixed point,
using a method based upon eigenvalues (see Sec. I.E). The
main output of the calculation was a set of critical indices
which could be compared among calculations and with
theoretical results.
In contrast, tensor analysts seldom calculate fixed points.3

Instead they calculate free energies and other thermodynamic
quantities by going through a large number of renormaliza-
tions, usually increasing the value of χ as they go. (As we shall
see, it is natural to square the value of χ in each tensor
renormalization.) When they reach a maximum convenient
value of χ they employ approximations that enable them to
continue to renormalize with fixed χ. These calculations then
show the thermodynamic behavior near criticality.
The nonappearance of fixed points in many of the tensor

calculations provides an important stylistic contrast between
that work and the studies of the 1975 era. The calculation of
fixed points for the critical phenomena problems permits the
direct calculation of critical indices and thus offers many
insights into the physics of the problem. The insights are
obtained by keeping track of and understanding every
coupling constant used in the analysis. This is easy when
there are, as in Kadanoff (1975), sixteen couplings. However,
the more recent tensor-style work often employs indices
which are summed over hundreds of values, each representing
a sum of configurations of multiple spinlike variables.
All these indices are generated and picked by the computer.
The analyst does not and cannot keep track of the meaning of
all these variables. Therefore, even if a fixed point were
generated, it would not be very meaningful to the analyst. In
fact, the literature does not seem to contain much information
about the values and consequences of fixed points for the new
style of renormalization.
The fixed-point method seems more fundamental and

preferable, but offers major challenges when the value of χ
is large.

I. Plan of review

The next section describes the block spin and the rewiring
methods employing SVD used for renormalization by Levin
and Nave (2007) and Gu and Wen (2009). Section III outlines
the results from these calculations, including some new results
for both the 1975 method and also the rewiring calculations.
The final section suggests further work.

II. THE RENORMALIZATION PROCESS

A. Overview

We now compare different approximate real-space renorm-
alization schemes. The starting point for the considered
methods is a system described by the statistical variables
fσg and a Hamiltonian Hfσg. In the 1975 scheme this
Hamiltonian is directly used to define the partition function

Z ¼ Trfσge−βH: (10a)

In the newer scheme, the Hamiltonian is used to define a
two-, three-, or four-index tensor along the lines described in
Sec. II.B. The partition function is then defined as a statistical
sum in the form of a sum over indices of a product of such
tensors, in the form

two index :Z ¼
X

i;j;k;…;n

TijTjk � � �Tni (10b)

or

four index :Z ¼
X

i;j;k;…;

Y
Tijkl. (10c)

In both cases, the setup of the tensor product is such that each
index appears exactly twice. In this way, the system can
maintain its gauge invariance. We can then imagine that these
partition functions may equally well be described in terms of
the values of coupling constantsK or of the value of tensors T.
Working from this starting point, the renormalization

scheme is implemented through three steps as follows.

1. Introducing new statistical variables

In the 1975-style scheme, the new variables are defined to
be exactly similar to the old variables fσg, except that the new
variables are spaced over larger distances than the old ones
(see Fig. 1).4 A new Hamiltonian, depending on both old and
new variables, is defined by adding to the old Hamiltonian an
interaction term 5 ~Vðfμg; fσgÞ. This term is defined so that the
partition function remains unchanged by the inclusion of the
μ’s. This invariance is enforced by the condition

Trfμge−β
~Vðfμg;fσgÞ ¼ 1; ∀ σ (11a)

so that the partition function can be written as

Z ¼ Trfσge−βHðfσÞg ¼ TrfσgTrfμge−βHðfσÞg−β ~Vðfμg;fσgÞ: (11b)

A roughly similar analysis can be used in the tensor network
scheme. Starting from the definition of the partition function as

3Notable exceptions include the Hamiltonian work of Vidal and
co-workers (Evenbly and Vidal, 2009a; Vidal, 2010), in which
a fixed-point Hamiltonian is indeed calculated. For statistical
rather than quantum problems, fixed-point studies were done by
Hinczewski and Nihat Berker (2008) and Aoki, Kobayashi, and
Tomita (2011). These fixed-point analyses, however, were carried out
only for small values of χ.

4In fact, this structural identity of the old and new variable sets is
one of the major limitations of the older scheme. The quality of the
entire renormalization scheme is determined by the choice of a set of
initial variables.

5The ~ appears on this V to distinguish it from another use of the
symbol V, that is the V that conventionally appears in singular value
decomposition analysis.
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the trace of a product of tensors in Eq. (10c) one replaces each of
the rank four tensors by a product of rank three tensors, using a
scheme derived from the SVD theorem (see Sec. II.C.1 ),

Tijkl ¼
X
α

SAijαS
B
klα; (12a)

leaving us with

Z ¼
X
ijkl���

Y
Tmnpq ¼

X
ijkl���

X
αβγ���

Y
SAijαS

B
klα. (12b)

2. Tracing out the original statistical variable

In the 1975 scheme the trace over the original statistical
variables fσg defines a new Hamiltonian H0 which depends
solely on the new variables fμg,

e−βH
0fμg ¼ Trfσge−β

~Hðfμg;fσgÞ; (13)

so that

Z ¼ Trfμge−βH
0fμg. (14)

One can expect that some approximation will be needed in
order to calculate the sum over the σ’s.
A roughly analogous procedure can be applied to the tensor

sums in Eq. (12). If the positions of the SA and SB products
and the new indices have been deftly chosen, the old indices
will appear in a series of small islands in which each island is
coupled only to a limited number of new indices. Following
Gu and Wen (2009), we shall work with the case in which that
number is four. After a rearrangement, the partition function
sum in Eq. (12) can be written as

Z ¼
X
αβγ���

X
ijkl���

Y
SAijαS

B
klα ¼

X
αβγ���

Y
T 0
αβγδ; (15)

where each of the new tensors T 0 was obtained via a partial
summation over the old indices, for example,

T 0
αβγδ ¼

X
ijmn

SAijαS
B
jnδS

A
nmγSBmiβ.

The specific tensors that enter the partial tracing (e.g., SB vs
SA) and their connectivity depend on the details of the
problem. Nonetheless, the structure of both old and new
methods remains one in which one introduces new variables
and then performs a summation over the old variables.

3. Obtaining a recursion relation

The new degrees of freedom μ have been defined to be
identical to the variables σ, the only difference being that the
μ’s are defined on a rescaled system. This identity usually
permits the extraction of new coupling constants K0 from the
new Hamiltonian. The new couplings are then connected to
the old via the recursion relation K0 ¼ RðKÞ.
If the recursion relation is calculated exactly, the new set of

couplings will likely contain many more terms than the old
set. This proliferation of couplings reflects the additional
information from several blocks of the old system that we are
trying to cram into one block of the new one. An approxi-
mation is needed to limit the new couplings. This limitation
usually results in a situation in which the possible couplings
include only those that can be formed from spins completely
within a geometrically defined block. Couplings which
include spins from several blocks are excluded. One example
of such a block is shown in Fig. 1.
The tensor scheme has a different approach. In order to do

renormalization, the new partition function calculation of
Eq. (15) must have the same structure as the old one in
Eq. (10c). As discussed in detail in Sec. II.C.1, this structural
identity is violated by the exact theory in which there are many
more new indices than old. To obtain a recursion relation, one
must use an approximation to eliminate the proliferation in the
summation degree χ. As discussed in Sec. II.C.1, an approxi-
mation of this kind is automatically provided by the SVD

6The correspondence with the notation employed in Kadanoff
(1975) is as follows: The green blocks correspond to striped block in
our work, the red blocks are empty, and the blue blocks become solid
shaded blocks in our work.

decoration 

potential moving 

summation 

FIG. 1 (color online). The setup for a potential-moving scheme
on a square lattice. The old spins (σ) are marked by solid circles
located at the vertices of a square lattice. Note that each such
spin belongs to four different squares. These squares form the
“blocks” for our calculation. The new spins μ appear in one-
quarter of the blocks and are marked as empty circles. The thick
dashed lines emanating from these new spins denote coupling
terms that link these to the old spins. Each such coupling connects
a single old spin to a new one. The potential moving places all the
interactions between old spins in one-quarter of the squares (solid
colored). The old spins around every one of these squares are
connected only to themselves and to the neighboring new-spin
variables. They can be summed over, giving a new effective
coupling between adjacent new spins. The basic blocks in the
starting situation are shown as squares of different textures in the
upper left panel. The blocks in the final situation are shown
outlined by the dashed lines in the bottom left panel. In the course
of the calculation, the lengths of the sides of the blocks have been
increased by a factor of 2.6
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method. Using this approximation method, one has a renor-
malized problem with exactly the same structure as the
original problem. The result may be expressed as a recursion
relation for the rank four tensor

T 0 ¼ SðTÞ (16)

or as a recursion relation for the parameters defining those T’s,
e.g., K0 ¼ RðKÞ.
There is a difficulty in using tensor components in the

recursion relation of Eq. (16). Because of the gauge invariance
the components of the new tensor T 0 are not uniquely defined.
To ensure uniqueness, it would be better to define the tensors
in terms of gauge-invariant parameters. While this may be
done relatively easily for low χ values, identifying all
independent gauge invariants for high χ value tensors may
be a daunting task.
With a recursion relation at hand one can apply all the tools

described in Sec. I.E and obtain a fixed-point Hamiltonian and
the corresponding critical exponents.
In the remainder of this secion, we describe the nuts and

bolts of the real-space renormalization process, using as our
example square lattice calculations based on Ising models and
the version of tensor renormalization found in Gu and Wen
(2009). We particularly focus on understanding the differences
between the older (Kadanoff, 1975) and the newer styles
(Levin and Nave, 2007; Gu and Wen, 2009) of doing
renormalization work.

B. Basic statistical description

In Sec. I.H.1 we pointed out that the older calculations are
based upon summations over defined stochastic variables like
the Ising models σr ¼ �1. These calculations then use a
Hamiltonian HðfσgÞ to define the statistical weight of each
configuration of the variables. Consider a problem involving
four spin variables σ1; σ2; σ3; σ4 sitting at the corners of a
square (see Fig. 2), each variable taking on the values �1. If
this problem has the symmetry of a square, it can be described
in terms of the following combinations:

S0 ¼ 1;

S1 ¼ σ1 þ σ2 þ σ3 þ σ4;

Snn ¼ σ1σ2 þ σ2σ3 þ σ3σ4 þ σ4σ1;

Snnn ¼ σ1σ3 þ σ2σ4;

S3 ¼ σ1σ2σ3 þ σ2σ3σ4 þ σ3σ4σ1 þ σ4σ1σ2;

S4 ¼ σ1σ2σ3σ4: (17)

The spin combination variables Si form a closed algebra,
i.e., any function of the spin variables of Eq. (17) may be
expressed as a linear sum of these same variables with
constant coefficients:

FðS0; S1; Snn; Snnn; S3; S4Þ ¼
X

aiSi:

One important example of this set of variables, denoted as ½S�,
is a Hamiltonian Hsq½S� which describes the most general

isotropic interactions with the symmetries of a square unit
block that can be formed from the set of σi ’s . The basic block
used in the 1975 renormalization calculation is given in terms
of this Hamiltonian as

BLOCK ¼ e−βH
sq½S� with − βHsq½S� ¼

X
i

KiSi. (18)

Here the K’s are called coupling constants and their values
provide a numerical description of the problems at hand.
In contrast, the host of new calculations replaces the

coupling constants by tensors and uses the tensor indices
as a proxy for statistical variables. To illustrate this process,
we write the tensor Tijkl for the cases in which each index can
take on two possible values and in which there is once more
the symmetry of a square. The tensors are situated on every
other square and therefore capture only half of the possible
four spin interaction and next nearest neighbor interaction.7

We use the spin notation to write the tensor as

T ¼ e
P

KiSi : (19)

There is considerable flexibility in defining the tensor’s
indices. This flexibility is a feature of the gauge flexibility
of the tensor-SVD method. For example, we could allow one
index value ðþÞ correspond to positive spin and the other ð−Þ
to negative spin. Then the tensor components would have the
following distinct values:

Tþþþþ¼expðK0þ4K1þ4Knnþ2Knnnþ4K3þK4Þ;
Tfþþþ−g¼expðK0þ2K1−2K3−K4Þ;
Tfþþ−−g¼expðK0−2KnnnþK4Þ;
Tfþ−þ−g¼expðK0−4Knnþ2KnnnþK4Þ;
Tfþ−−−g¼expðK0−2K1þ2K3−K4Þ;
T−−−−¼expðK0−4K1þ4Knnþ2Knnn−4K3þK4Þ; (20)

where curly braces stand for all cyclic index transformation,
i.e.,

Tfþþþ−g ¼ Tþþþ− ¼ Tþþ−þ ¼ Tþ−þþ ¼ T−þþþ:

Alternatively, one might use the index value [1] to represent a
sum over the statistical weights produced by the possible spin
configurations (σ ¼ þ1) and (σ ¼ −1) and the index [2] to

1 2 

3 4 

FIG. 2. Identification of the spin variables located at the vertices
of a square unit cell.

7We note that allowing the index four possible values allows the
description of every interaction in Eq. (17). However, for simplicity
we restrict our present treatment to the two valued index tensors only.
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represent a difference between these two statistical weights,
specifically

½1� ¼ ðþÞ þ ð−Þffiffiffi
2

p and ½2� ¼ ðþÞ − ð−Þffiffiffi
2

p . (21)

The factor of
ffiffiffi
2

p
is introduced to make the index change into

an orthogonal transformation. Under this definition the tensor
representation would also have six distinct components,
however, their values in the different representations change
according to

~Tijkl ¼
X
mnop

OimOjnOkoOlpTmnop; (22)

where O denotes the orthogonal transformation which maps
the indices þ− on the right to the new indices [1] and [2] that
appear on the left. For example,

~T1111 ¼ 1
4
ðTþþþþ þ 4Tþþþ− þ 4Tþþ−−

þ 2Tþ−þ− þ 4Tþ−−−− þ T−−−−Þ;
~Tf1112g ¼ 1

4
ðTþþþþ þ 2Tþþþ− − 2Tþ−−−− − T−−−−Þ:

It is important to note that Eq. (22) gives two different
descriptions of the very same tensor T in different bases. The
tensors remain the same, but the coordinate system is varied.
Of course, the case described here is rather simple. The

renormalization transformation develops, step by step, a suc-
cession of tensors, usually of increasing complexity. At each
step, the partition function depends upon the tensor in question,
but is independent of the particular representation of that tensor.
When applied successively to the redefinition of indices in each
step of a long calculation, the index method provides a
flexibility and power not easily available through the direct
manipulation of spinlike variables. We see this flexibility in the
specific calculations of renormalizations described in Sec. III.

C. Tensor-SVD renormalization

In this section, we complete the discussion of renormalization
as set up by Levin and Nave (2007) and Gu andWen (2009) and
then carried out by Hinczewski and Nihat Berker (2008) and
Aoki, Kobayashi, and Tomita (2011). We begin by introducing
the main tool of the method, singular value decomposition, and
discuss its properties. We then discuss the underlying geometry
of the tensor network and review the tensor gauge freedom.

1. Singular value decomposition

The new renormalization methods described in this review
are based upon those of Levin and Nave (2007) and Gu and
Wen (2009); [see also, for example, Zhao et al. (2010) and Xie
et al. (2012)]. These make use of the singular value decom-
position theorem in their analysis. The theorem states that
every n by n real matrixMij can be expressed as a product of a
real unitary matrix, a diagonal non-negative matrix, and
another real unitary matrix:

Mij ¼
Xn
α¼1

UiαΛαVjα; (23)

where
P

αUiαUjα ¼ δij and
P

αViαVjα ¼ δij. While the
singular values Λα are uniquely determined, the normalized
eigenvectors constituting the columns of U and V have a sign
ambiguity. Note, however, to preserve the structure (23), the
signs picked for U will determine the signs for V.8

Customarily, the Λα’s, called singular values, appear in
descending order. Equation (23) can then be used to construct
an approximation for M by including only the χ largest
components of Λ. This approach yields an approximation of
M which is optimal in the least squares sense.9

Finally, we fold the singular values into the matrices
V and U:

SAiα ¼ UiαΛ
1=2
α and SBjα ¼ VjαΛ

1=2
α : (24a)

The above matrices allow us to rewrite the approximation of
M as a product10:

Mij ≈ Mχ
ij ¼

Xχ
α¼1

SAiαS
B
jα. (24b)

This approximation is used throughout the discussion of
rewiring methods. Notice that the approximation in
Eq. (24) becomes exact when χ ¼ n.

2. SVD as an approximation method

For a square lattice, one writes down the tensor product
representation of the partition function as the trace over a
product of rank four tensors

Z ¼
X

ijklmn���

Y
Tijkl;

in which each index occurs precisely twice. The summation
depends strongly on the topology of the network composed of
the indices connecting adjacent tensors. For this reason the
usual methods of describing tensor calculations make heavy
use of pictures. We follow that precedent.
We show the tensor lattice in Fig. 3. Each colored box is

a four-legged tensor. The tensor indices appear at the
corners as solid circles. The inset shows the definition of
these indices. The task at hand is to introduce new indices
while isolating small groups of old indices so that these
groups make no contact with other old indices. To do this
we rewrite a potential term like Tijkl as a matrix product in
the form

8One can lift this ambiguity, as we do in our calculations, by
setting the sign such that the first nonvanishing component of each
right eigenvector is positive. Note, however, that this resolution of the
sign ambiguity is not invariant under a base change.

9More precisely, the SVD estimate of M, called Mχ , serves to
minimize the quantity Q¼jM−Nj2¼Tr½ðM−NÞðMT−NTÞ� within
the class of N ’s that are matrices with only χ nonzero eigenvalues.
The minimizer is given by N ¼ Mχ.

10The notation SA and SB was introduced by Levin and Nave
(2007) who then put these different matrices on different sublattices.
In the case considered here the tensors in the two sublattices coincide
leading to some algebraic simplification.
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Tapprox
ijkl ¼

Xχ0
α¼1

SAijαS
B
klα; (25)

where α is the new index. There are six ways of doing this,
involving different placements of the indices ijkl in SA and
SB. Two of these are depicted in Fig. 4.
The singular value decomposition theorem points out

that we can make Eq. (25) give an exact expression for the
four-legged tensor by using SVD and letting χ0 ¼ χ2.
Alternatively we can use a smaller value of χ0, as, for example,
χ0 ¼ χ, and use either SVD or some other method to get a good
approximation involving U and V. The change suggested by
Gu and Wen (2009) is shown in Fig. 4. This figure has the
crucial property that blocks of four old indices are coupled to
new indices but not to any other old ones. The four-index block
draws its indices from four different tensors T. No interactions
among these old indices are to be found in this kind of block
before the renormalization process. All correlations are pro-
duced by the SA’s and SB’s that surround the block. The
calculation of the renormalized T is then very simple. It is

T 0
αβγδ ¼

X
ilmn

SAliαS
B
inδS

A
nmγSBmlβ: (26)

In this way, a recursion relation is derived for any choice
of SA and SB.11 It is natural and simple to use the SVD

method to generate these three-legged tensors. In the
remainder of this review we do that, fixing the number
of indices by χ 0 ¼ χ. In our numerical work, we stick with
small values of χ. To get really accurate results, one squares
χ several times until a large enough value is reached so that
one feels one can neglect higher order indices.

3. Gauge invariance and interpretation of
fixed-point tensor components

The tensorial formulation of a given statistical problem
is, as previously mentioned, not unique. In particular, one
can apply an orthogonal transformation to each of the legs
of each of the tensors keeping the partition function
obtained from their product invariant. One can naturally
ask how does the fixed-point tensor behave under such
transformations?
We write the renormalization step Eq. (26) for a general

tensor T as T 0 ¼ RðTÞ. The fixed-point tensor T� satisfies
T� ¼ RðT�Þ. In the Appendix we prove that up to sign
ambiguities any rotation of fixed-point tensor having distinct
singular values yields under the renormalization step the
original fixed-point tensor, i.e.,12

RðOimOjnOkoOlpT�
nmopÞ ¼ RðT�Þ ¼ T�: (27)

This implies that there exists one particular “preferred” base
for the representation of the fixed-point tensor, picked out by
the renormalization scheme. Consequently, the physical
interpretation of tensor renormalization group (TRG) fixed
points is complicated by the necessity for disentangling
gauge-specific results from physical results. Gauge-specific
terms in the tensors may also slow down and complicate the
search for a physically meaningful fixed point.

D. Zeros in the response matrix

The gauge symmetry discussed previously implies that
there will be many kinds of linear changes in T that will
produce zero change in T 0. Consequently, there will be a
whole space of changes, called a null space, that produce
zeros in the response matrix.
Another contribution to the null space comes from the loss

of information in the truncation of the SVD decomposition.
The number of independent components in a χ2 by χ2 matrix is
χ4. If, however, the χ2 by χ2 matrix is known to have only χ
nonvanishing eigenvalues then the number of independent
components is only 2χ3 − χ2. These two losses of information
imply that the analysis of a tensor fixed point may be
dominated by understanding the effects of the null space.

1. Errors

When χ0 < χ2 the approximate rewiring will generate an
error. We denote the local error resulting from the approxi-
mation by

i j 

l k 

i j 

l k 

T 

FIG. 3 (color online). The basic tensor network used here for the
SVD renormalization calculations. Tensors are represented by
solid shaded squares. Solid circles denote the position of the
tensor’s indices. Every tensor has four indices. Every index
assumes integer values between 1 and χ and is shared between
exactly two tensors. Four indices determine the configuration of
the statistical variable, and the corresponding tensor entry gives
the statistical weight of the configuration. Note that the inter-
actions represented by the tensors occupy half the available
space. The left inset shows the labeling of the indices; the right
inset shows the same tensor in the stick figure usually used in the
literature.

11Note that the tensor T 0 is not isotropic. Moreover, it is rotated by
90° in adjacent cells. An alternative calculation resulting in rota-
tionally invariant tensors sums either only SA matrices or only SB

matrices for every T 0. This results in two different tensors T 0
1 and T 0

2

placed on a bipartite lattice (Levin and Nave, 2007).

12This implies that a representation independent definition of the
fixed-point tensor is given by Rð ~T�Þ ¼ RðRð ~T�ÞÞ.
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Errorijkl ¼ ln½Tijkl=Tapprox
ijkl�. (28)

This is the error of a single tensor at a specific configuration
given by its indice values. The SVD scheme yields an error for
the tensor that is optimized in a mean square sense (Levin and
Nave, 2007; Gu and Wen, 2009). In the analysis of Levin and
Nave and Gu andWen, the error term is then simply neglected.
This method works exceptionally well for large values of χ,
for which the error is quite small. In Secs. III and IV we see
that this strategy does not work exceptionally well for
smaller χ.
An alternative approach is to replace the error term by its

maximum (minimum) over tensor indices. This yields an error
of definite sign and in turn gives a lower (upper) bound on the
free energy. This approach can even be used to find optimal
values for SA and SB so as to give a best bound for the free
energy.
The 1975 work employed a one parameter family of local

lower-bound approximations. The value of the parameter was
carefully chosen so as to minimize the global error of the free
energy, resulting in an error term that is quadratic in the local
error term. In contrast the SVD scheme yields a free-energy
error that is linear in the error of Eq. (28).
This 1975 method proved to give plausible results for low χ

values. We now turn to a discussion of this method.

E. Lower-bound variational renormalization

In this section, we complete the description of the
lower-bound variational method. We first introduce the local
conditions, formulated in terms of the symmetry of the
Hamiltonian, which give rise to a lower bound on the free
energy. We then construct a one-dimensional family of such
lower-bound potentials characterized by a single parameter p.
We finally show how to choose the parameter p to globally
minimize the resulting error in the free energy.

1. Decoration

As noted in Sec. II.A the first step toward a renormalization
is to introduce new statistical variables, a process known as
decoration. In Eq. (12) we described the tensor analysis
scheme for doing the decoration. Here we describe in more
detail the 1975 scheme for decoration.
In general each of the new degrees of freedom, which we

denote by μ, is coupled only to a small subset of the old spin
variables σ through a coupling potential vð½σ�; μÞ (where ½σ�
defines the small subset of the old spin variables). For
example, in Fig. 1 every new degree of freedom is placed
within an interaction block and interacts only within this block
with its four nearest neighboring old spin variables. We define
a new Hamiltonian within the interaction block of the new
variable by

~hð½σ�; μÞ ¼ hð½σ�Þ þ vð½σ�; μÞ; (29)

where h½σ� is the old Hamiltonian for the block. Choosing the
coupling potential to satisfy

Trμe−βvð½σ�;μÞ ¼ 1; (30)

regardless of the specific value of the variables σi, renders the
partition function, and thus the free energy, unchanged by the
inclusion of the new variable. The full decoration is obtained
by using

~Vðfσg; fμgÞ ¼
X
R

vð½σ�R; μRÞ;

where the sum over R is a sum over all μ sites. With the new
Hamiltonian being ~H ¼ Hþ ~V, the full partition function is
unchanged by the decoration as in Eq. (11).
The 1975 scheme associates one new μ spin with the group

of four old σ spins in a surrounding square block. There are

i 

k

j

l

i 

k

j

l

i 

m

n

l

FIG. 4 (color online). The tensor network after rewiring. The old four-legged tensors are shown lightly shaded. They have disappeared
and have been replaced by the three-index tensors SA and SB shown in darker shades. Each three-index tensor appears as a triangle with
two of the old tensor indices and one new index at its vertices. These are, respectively, shown as solid circles and empty circles. Note the
white squares are all empty of interactions. These squares are of two kinds: the ones flanked by colored triangles (three-legged tensors)
and the one flanked by shaded triangles (the ghosts of disappeared four tensors). Each first-kind square permits the summation over the
four old index variable at its corners and thereby the generation of interactions among the new indices. These white squares together with
their four bounding triangles become the new tensors on the rescaled system.
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multiple ways to choose a potential interaction among the
spins that will satisfy Eq. (30). Following Kadanoff (1975)
and Fig. 1 we define a one parameter family of such potential
vpð½σ�; μÞ, where the parameter p serves to vary the strength of
interaction among the new and old spins. This parameter later
allows us to optimize the choice of potential. The family of
potentials is given explicitly by

−βvpð½σ�; μÞ ¼ pμðσ1 þ σ1 þ σ3 þ σ4Þ þ cð½σ�Þ
¼ pμS1 − ln½2 coshðpS1Þ�; (31)

where S1 is defined in Eq. (17) and cð½σ�Þ is chosen such that
the sum of e−βv over all values of μ gives unity. Because of the
closed form algebra of the isotropic spin variable (17) we also
know that the constant cðσÞ can be rewritten as a linear
function of the isotropic invariant

cð½σ�Þ ¼
X

aiSi:

As a result, the potential vpðσ; μÞ can be written as a linear
combination of the Si values with coefficients which depend
on the variational parameter p.

2. Potential-moving theorem

The work presented by Kadanoff (1975) employed a device
for making the renormalization sum tractable that goes under
the name of potential moving. This device makes use of
the following theorem: Consider the statistical sum
e−βF ¼ Tre−βH, where the trace gives a sum over a positive
semidefinite set of terms involving a Hamiltonian H, giving
rise to a free energy F. Now assume that −βH ¼ −βHa þ δV.
Here we use Ha to generate an approximate free energy Fa

which has a value close to that of the exact free energy F. Our
calculation makes use of the symmetry of −βH and δV, in
which we demand that δV be odd under some exact symmetry
of −βH, so that

Tr½e−βHδV� ¼ 0: (32)

This condition yields

e−βF
a ¼ Tr e−βHa implies e−βF

a ≥ e−βF. (33)

To derive Eq. (33) define a Hamiltonian that interpolates
between the exact and the approximate Hamiltonians and a
free energy that arises from this interpolation:

−βHðλÞ ¼ −βHa þ ð1 − λÞδV and e−βFðλÞ ¼ Tr e−βHðλÞ.

These definitions imply that

d
dλ

βFðλÞ ¼ hδViλ

and

d2

ðdλÞ2 βFðλÞ ¼ −hδV − hδViλi2λ ;

where the λ subscript means that the average is calculated
using a Hamiltonian HðλÞ. It follows from Eq. (32) that the
first derivative vanishes at λ ¼ 0. The second derivative is
always negative. Therefore the interpolating free energy is
always larger than the true free energy. At λ ¼ 1 the
interpolating free energy reduces to our approximate free
energy. Consequently,

βFa − βF ¼ −
Z

1

0

dλð1 − λÞhδV − hδViλi2λ ≤ 0. (34)

Thus, the error in the approximation is of second order in δV
and the approximate free energy provides an upper bound for
the real free energy.

3. Using potential moving

To construct our approximate renormalization transforma-
tion, we need to make sure that the old spins are in isolated
small groups, each group coupled to the new spins, but not to
any other old spins. If all the couplings obey this condition, we
can calculate the new approximate Hamiltonian.
We start from a situation in which the lattice is divided into

square blocks as in Fig. 1. There are three kinds of blocks:
ones containing a new spin, another containing the nearest
neighbor to these new-spin blocks, and another containing the
next neighbors of the new-spin blocks. In figurative language,
we think of δV as containing some inconvenient couplings
that interfere with our calculation of the partition function in
Eq. (33). What we do is then “move” the inconvenient
couplings from their inconvenient positions (in the new-spin
blocks and their nearest neighbors) to convenient positions in
the next nearest neighbor blocks. These convenient positions
are required to be completely equivalent in the exact version of
the calculation to the inconvenient sites. It is only our motion
that produces the distinction between these two classes of
sites. Thus, Eq. (32) will be satisfied.
The geometry of our calculation is shown in Fig. 1. The

original Ising spins appear as solid circles at the vertices of the
squares. The new variables are the open circles in the empty
squares. The new spins are linked to the old spin variables by
interactions indicated by the dashed line. These bonds have
interactions of the form epσμ. All the squares have interactions
described by blocks of the form

BLOCK ¼ exp ð−βHsqÞ; (35)

where the exponent is given by the block Hamiltonian using
the stochastic variables defined by Eq. (17). In addition the
empty squares have a potential in the form of c½σ� as given
by Eq. (18).
All the old interactions from the colored squares are moved

into the solid colored squares. The potentials that exist at these
squares define the motion. They are

δV ¼ −Hsq striped squares;

δV ¼ −Hsq þ cð½σ�Þ empty squares;

δV ¼ 3 �Hsq − cð½σ�Þ solid squares. (36)
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The value of the potential on the solid colored squares is
picked so that the sum of all the potential terms is zero,
allowing for the double weight of the striped squares. The
new interaction between the old and new spins can be
formulated as a pairwise interaction between the new spin μ
and each of its surrounding old spins. It therefore can be
reformulated to be centered about the solid colored squares
without any approximation. After the motion of the poten-
tials, we end up with no potential on striped or empty
squares and a total potential 4 �Hsq − cð½σ�Þ on each solid
colored square.
The error generated by the potential moving is proportional

to the mean variance in the δV of Eq. (36).
After that motion the spins at the four vertices of each solid

colored square are linked to each other and to the surrounding
new spins but to none of the other old spins. This condition
permits summations to be performed over each solid colored
square independently of all the others, thereby producing
interactions. The result is

e−βH
0sqð½μ�Þ ¼ Tr½σ� exp

�
−4βH0sqð½σ�Þ − cð½σ�Þ þ p

X4
j¼1

ðσjμjÞ
�
.

(37)

The new coupling may then be projected out of the new
Hamiltonian. This projection then gives us the recursion
relation.
To obtain the optimal calculation in the lower-bound

method being described, the parameter p was varied aiming
at a p value defined so that the linear response to this change
in parameter resulted in no change in the free energy at the
fixed point. This resulted in one kind of optimization of the
calculation. This approach is not the only reasonable one.
There is a wide range of things one might do to optimize
real-space calculations. The work of Knops (1977) and Van
Saarloos, Van Leeuwen, and Pruisken (1978) suggested an
optimization of the free energy at every stage of the renorm-
alization calculation. This approach has the disadvantage that
it cannot give any positive value to the specific heat exponent
α and in general proved to be a less accurate method for
determining critical exponents than the fixed-point optimiza-
tion. This method gives a better (larger) free energy away from
criticality, but the first goal of the renormalization calculations
is to get good free-energy derivatives in the neighborhood of
the fixed point. This goal appears to be best served by
parameter optimization at the fixed point, followed by the
use of that parameter value for derivative calculations near the
fixed point. Other parameter dependent schemes are available
such as by Stella et al. (1979).

4. Spatial vectors and tensors

This same mode of analysis enables us to discuss
combinations of spin operators which behave like spatial
vectors or tensors rather than the spatial scalers defined in
Eq. (17). Thus, from the spin labeling shown in Fig. 2, it
follows that the combination σ1 þ σ4 − σ2 − σ3 is to leading
order the derivative of the spin with respect to the horizontal
coordinate x, while σ1 � σ4 − σ2 � σ3 is the derivative of the

energy density with respect to x. Similarly the two compo-
nents Txx and Txy of the stress tensor13 operator can,
respectively, be identified as the simplest operators that
have the right symmetry,

Txy ¼ σ1σ3 − σ2σ4 and

Txx ¼ σ3σ4 − σ2σ3 þ σ1σ2 − σ1σ4: (38)

These identifications enable us to calculate the scaling
properties of these operators in the lower-bound scheme.
One simply calculates the scaling properties of these operator
densities by putting these densities into the coupling of one
particular solid colored square and then doing the recursion
calculation for the lattice containing that one special square.
One can retain the lower-bound property by setting up the
potential moving to be symmetrical about that square. This
approach then provides a recursion approximation for local
operators that fit into a single block. In Sec. III we show
some eigenvalues for these vector and tensor operators.
No such scheme exists within the lowest order SVD

analysis. Therefore we do not show eigenvalues for any
vector or tensor operators within the SVD scheme.

III. RESULTS

Both the variational lower-bound renormalization and
the tensor renormalization can be realized by numerical
schemes which produce fixed points and, more importantly,
critical indices. The latter are expected to be a robust
description of a critical point as they do not depend on
the specific variables chosen to describe a given system. We
next review some new numerical results, mostly in terms of
critical indices, and compare them to exact results taken from
the literature.

A. Results from block spin calculations

Wereviewvarious systems differing in their underlying lattice
structure (triangular, square, and hexagonal), spin degrees of
freedom (χ ¼ 2; 3;…), spin coupling (Ising, three-state Potts,
and tricritical Ising), and methods of approximation. We
collected the results in Secs. III.A.1 and III.A.2, separating
the Isingmodels from the othermodels considered. Each section
begins with a brief description of the different systems and
methods presented. The critical indices of thevariousmodels are
collected in two tables, concluding each of the sections.Most of
these results are not new. They are results from 1975 (Kadanoff,
1975; Burkhardt, 1976a; Kadanoff, Houghton, and Yalabik,
1976a), somewhat augmented by calculations done for this
review. Additional results can be found in the literature
(Burkhardt, 1976b; Burkhardt and Knops, 1977; Jan and
Glazer, 1978; den Nijs and Knops, 1978), but the answers
shown here are representative of the field.
The critical indices values x are derived from response-

matrix calculations at critical fixed points. The x’s are defined
by

13Of course, the stress tensor is a spatial tensor and not a gauge
tensor like the T’s that appear in the rewiring scheme.
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x ¼ d − logðEÞ= logðδLÞ;

where E is the eigenvalue of the response matrix at the fixed
point, d is the dimensionality, and δL is the change in length
scale. Each of the critical indices is associated with an
eigenvector of the response matrix which represents a scaling
operator, i.e., a linear combination of the system’s operators
which admits a simple scaling rule under renormalization
(Wegner, 1976). The distinct indices were identified by the
symmetry properties of their corresponding scaling operators
and their values as compared with exactly known results.

1. Block spin renormalization of Ising models

We list here different calculations using the block spin
renormalization method as applied to the two-dimensional
Ising model’s critical fixed point. The index values are
tabulated in Table I, with the columns indexed by capital
letters, as described.
(A) The first-ever block spin calculation was performed

by Niemeijer and van Leeuwen (1973). In this work,
studying Ising spins on a triangular lattice, they single
out a subset of the triangular cells and separate the
interactions into intracellular and intercellular inter-
actions. The intracellular interactions are summed
over and the intercellular interactions are recast as
interactions between spins residing at the center of the
chosen triangles. The “unfavorable” interactions
which make the exact summation over intracellular
variables intractable were simply neglected.

(B) The original lower-bound model for Ising spins on a
square lattice (Kadanoff, 1975) as described in
Sec. II.E. The fixed point for which the critical
exponents were computed exhibited equal nearest
neighbor and next nearest neighbor couplings.

(C) The same system as above but at a different fixed
point having unequal nearest neighbor and next
nearest neighbor couplings.

(D) The χ ¼ 3 Ising model (also known as the Blum-
Capel model or spin 1 model) variational potential-
moving calculation which appeared in Burkhardt

(1976a) and Burkhardt, Knops, and den Nijs
(1976). This calculation generates a nearby pair of
fixed points: onewith equal couplings between nearest
neighbor and next nearest neighbor, the other with
unequal couplings. Their indices are sufficiently close
to one another so they are not separately reported here.

(E) and (F) Ising spins on a hexagonal lattice studied via
a variational potential-moving calculation (Jan and
Glazer, 1978).

(G) The critical indices as calculated from the exact
theory for the two-dimensional Ising model (Ons-
ager, 1944; Di Francesco, Mathieu, and Sene-
chal, 1997).

In Table I we list the critical indices obtained. The first three
indices listed in the table are for the primary operators in the
theory. Their values are known from the Onsager solution to
the two-dimensional Ising model (Onsager, 1944), from the
calculation of that model’s magnetization which appears in
Yang (1952), and from the results of conformal field theory
(Di Francesco, Mathieu, and Senechal, 1997). The approxi-
mate numerical results for these indices are, with one
exception, very close to the exact values. The exception,
the triangular lattice shown in column (F), displays indices
that are considerably off the mark. It was argued by Southern
(1978) that the approximate calculation on a triangular lattice
resembles a situation at a dimension different from 2.
However, that is an after-the-fact explanation. We do not
really know why the potential-moving calculation does not
work as well on the triangular lattice or indeed why it does
perform so well on the other lattices.
The next three critical indices correspond to higher order

operators. These operator indices were not reported in the
earlier papers and are first reported here. They are obtained by
calculating the critical indices for operators that do not have
the full symmetry of the BLOCK in Fig. 1. For example, the
index of σy is calculated from the recursion for the operator
σ1 þ σ2 − σ3 − σ4. Correspondingly, all of the operators
beyond the primary ones are identified from their trans-
formation properties under rotations and can further be
identified with the lowest order operators with the

TABLE I. Ising model critical indices xα. Note the solid agreement of observed indices with exact indices, except in the stress tensors. The
final column is the exact result for the two-dimensional Ising model. All the approximate calculations were done with χ ¼ 2 except for column
(D) which has χ ¼ 3. The sources for the data presented above are as follows: (A) Niemeijer and van Leeuwen (1973), (B) Southern (1978),
(C) Kadanoff (1975)), new data first presented here, (D) (Burkhardt (1976a), new data first presented here, (E) Jan and Glazer (1978), (F) Jan
and Glazer (1978), and (G) Di Francesco, Mathieu, and Senechal (1997).

(A) (B) (C) (D) (E) (F) (G)
Lattice type Square Square Square Square Hexagonal Triangular
Variational No Yes Yes Yes Yes Yes
Approximation method Error neglect Potential moving Potential moving Potential moving Potential moving Potential moving Exact

x0 free energy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
xσ spin 0.124 86 0.124 68 0.122 26 0.1173 0.1289 −0.70, −0.31 0.1250
xT energy 1.027 74 0.999 12 0.982 473 1.0302 1.0241 0.67, 0.09 1.0
∇σ 1.167 1.073 1.1440 1.125
Txx 1.797 1.595 2.080 2.0
Txy 1.803 1.595 1.569 2.0
Φ 1.796 68 2.119 00 1.98
∇2 spin 2.061 67 2.116 89 1.8303 2.125
∇2 energy 2.983 91 3.158 48 2.9389 3.0
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corresponding symmetry in the exact theory (Di Francesco,
Mathieu, and Senechal, 1997).
The operator marked Φ is a scalar operator which does not

fit into the above pattern. There is no operator with the
corresponding index and symmetry in the exact theory.
Instead it is, we believe, a redundant operator as defined
by Wegner (1976). This kind of operator appears essentially
as an artifact of the particular method of renormalization. A
scalar operator with index close to 2.0 is a likely consequence
of two nearby fixed points. The existence of two fixed points
is not required by the basic theory and is itself a consequence
of the particular method of constructing a renormalization.
Once one has two fixed points, one expects to see an operator
that powers the flow from one fixed point to the other. As a
redundant operator it is extraneous to the theory and has no
“correct” index value. But because it produces changes in
critical behavior, it is not surprising (Kadanoff and Wegner,
1971) that it has an index close to 2.
The χ ¼ 3 result, depicted in the column (D), disappoint-

ingly shows no better index values than the ones in the χ ¼ 2
columns. In fact, one of the values, the one labeled ∇2σ, is
substantially worse. These results tend to suggest that one will
not gain advantages from going to higher values of χ with the
potential-moving strategy as employed in the 1975 period.
Perhaps this result should have been expected. The potentials
moved may not become smaller for higher χ.

2. Block spin renormalization for other models

Additional coupling constants appear when the spin vari-
ables are allowed to take more than two values. In this case,
one can find, in addition to the Ising fixed point, new fixed
points displaying their own characteristic critical behavior. In
Table II we give a set of indices for the fixed point
corresponding to the tricritical point of the Ising model and
another set for the three-state Potts model. The critical indice
values, calculated by potential-moving methods on a square
lattice, are compared with exact values obtained from con-
formal field theory (Di Francesco, Mathieu, and Senechal,
1997). As one can see, the agreement is not as good as the best
obtained for the Ising model. Nonetheless, the values of the
indices are good enough to be informative.
Here again a combination of the values of the critical indices

and the symmetry of the corresponding operators was used to
determine their identity. The free-energy exponent is exactly

zero in both the exact result and approximate models. The spin
exponents describe operators that have the symmetry of the
order parameters in the model. Finally the operators marked
energy display the symmetry of the fixed point. Notice that the
approximate calculations do not include all the indices available
in the theory. There are two sources of this omission. The first is
conceptual: If one starts with a limited set of operators, working
with them will not necessarily produce all the operators in the
theory. This limitation particularly applies to the three-state
Potts model. The other limitation is calculational. The approxi-
mate calculations produce meaningful results only for a limited
set of operators, those with the smallest values of the indices.

B. SVD results

We next review some fixed-point results obtained for
rewiring SVD schemes at low values of χ. The main analysis
included is composed of critical exponents calculated at fixed
points of the tensor renormalization scheme. Most tensor
renormalization calculations in the existing literature find the
critical indices using extrapolation from data obtained from
approximations to the free energy rather than, as we do here,
by calculating a fixed point. Fixed points are usually found by
a Newton’s method search, which then require derivatives of
the free energy at the fixed point. The SVD analysis of this
kind is then rather delicate in that it requires a careful
treatment of the gauge invariance and also a careful control
of which singular values will be included. These tasks, which
may be trivial for small χ, become very difficult when
successive iterations produce a large value of χ.
We begin with interpretations of the configurations labeled

by the different index values. We then summarize the results
of the tensor renormalization calculation in tables similar to
Tables I and II.

1. Generation of SVD fixed point

Our first SVD fixed point was generated for the χ ¼ 2
square lattice Ising model. We put spins halfway along the
bonds forming the legs of the basic SVD tensor. These spins
are the filled circles in Fig. 3. For this square lattice each
tensor has four legs. Each such tensor can be described by a
statistical weight exp½−βHsq�. We started from a tensor using
two indices: ðþÞ for up spins and ð−Þ for down spins. We
picked a tensor describing interaction strengths of the Onsager
critical point of the two-dimensional Ising model. Using the

TABLE II. Critical indices for the three-state Potts model and the Ising model tricritical point. The numerical calculations were performed on a
square lattice and employed variational potential moving. The sources for the data presented above are as follows: (A) Burkhardt (1976a) and
Burkhardt and Knops (1977)), (B) Burkhardt and Knops (1977), (C) Di Francesco, Mathieu, and Senechal (1997), (D) Dasgupta (1977), and
(E) Di Francesco, Mathieu, and Senechal (1997).

Tricritical Ising Three-state Potts
(A) (B) (C) (D) (E)

Scaling
operators

Variational potential
moving

Variational potential
moving

Exact
solution

Variational potential
moving

Exact
solution

Scaling
operators

Free energy 0.0 0.0 0.0 0.0 0.0 Free energy
Spin 1 0.0224 0.0412 0.0375 0.0896 0.0666 Spin σ
Spin 2 0.4375 0.6667 Spin Z
Energy ϵ 0.2030 0.1057 0.1 0.4 Energy ε
Energy ϵ0 0.8077 0.8077 0.6 1.1940 1.4 Energy X
Energy ϵ00 1.5 3 Energy Y
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SVD recipe given in the end of Sec. II.C.1 we calculated an
SVD decomposition starting from a tensor defined by

Tþþþþ ¼ T−−−− ¼ e4K and Tfþ−þ−g ¼ e−4K (39)

with all the other tensor components having the value of 1.
(Once again, f·g describes any cyclic permutation of indices.)
This tensor represents the two-dimensional Ising model with
nearest neighbor coupling K. The statistical sum is a sum over
products of such tensors, each having a weight determined by
values of the four spins [see Eq. (18)]. We then performed
SVD recursions at χ ¼ 2, adjusting the tensor strengths until
we reached a fixed point.
The first step of this process is an SVD recursion starting

from the numerical data in the Ising tensor of Eq. (39). The
result of an SVD renormalization is shown in Table III which
gives the U matrix and the singular values, as defined in
Eq. (23). Table III describes the process of rewiring one block
of couplings. An essential part is going from the four
configurations of two spins defined by the left-hand column
of Table III to the four SVD indices [1], [2], [3], and [4]. These
data enable us to construct the tensor described in Eq. (39) in
the basis formed by these new indices. The interaction
between spin pairs is diagonal in this base, e.g., T ½1�;J reads
zero for J ¼ ½2�; ½3�; ½4�. This in turn allows us to eliminate the
less significant index values without affecting any of the
retained interaction terms.
Table III says, for example, that, in this initial rewiring

calculation, the index [1] is constructed from a block with two
spins and given partial weights 0.656 708 when the spins are
equal but only 0.261 24 when they are unequal. These weights
and the others in the table as well as the singular values Λ for
the configurations are adjusted by the SVD scheme so that the

statistical weights in a block are represented by the values of
the original four-index tensors Tjklm of Eq. (39). In this way,
the information in the couplings Ki in the block are repre-
sented by the values of old tensors T and by the
values U, V, and Λ. When all four indices are included,
U, V, and Λ contain the same information as in the original
interactions.
The index values each reflect a particular representation of

the symmetries of the two-variable blocks of the basic
problem. Here the symmetries are spin flip, þ⟷−, as well
as the interchange of the two base spin variables. A glance at
Table III shows that the configurations represented by indices
[1] and [4] are even under both symmetries while that of [2] is
odd under spin flip but even under interchange, with the
configuration represented by [3] being odd under both
symmetries.
To keep the calculation simple, we use the approximation in

which we retain all tensor components with indices [1] and [2]
while discarding those with the less significant indices [3] and
[4]. The relative significance of the different indices is judged
by the relative strength of the singular values as given in the
table. Finally we complete the calculation by using Eq. (26) to
give us new tensors that come out of the renormalization
scheme. Since we have eliminated indices [3] and [4], the new
tensors have exactly the same number of components as the
old ones.
We expect that the new tensors contain the same kind of

information as the starting tensors, only with different
interaction strengths. Thus we can equally well represent
them in terms of components that are even and odd under
spin flip [1] and [2], respectively, or in terms of compo-
nents described by spin values ðþÞ and ð−Þ. This kind
of correspondence between the meaning of old and new
variables exists near the fixed point of any successful SVD
renormalization scheme.
In this case, the mode of translation between these

two representations is given in Sec. II.B, particularly in
Eq. (21). One might perhaps argue that one or the other
representation is more basic or more transparent. Between
iterations of the renormalization transform, data can be
stored in either basis, which can be equally used in fixed-
point calculations.
To illustrate this point, we list in Table IV theU matrix used

at the χ ¼ 2 fixed point of the two-dimensional Ising model.
In this particular analysis we chose to use [1] and [2] from
Table III as our indices for the representation of the tensors
formed beyond the start of the renormalization process. We
followed through every step of renormalization, examining the
U values at every iteration. We observed that, without
exception, the SVD analysis resulted in index variables
possessing well-defined symmetries; specifically under spin
flip the index variables follow the transformation ½1� → ½1�
and ½2� → −½2�. Table IV shows that under these transforma-
tion rules all four composite variables ½10�, ½20�, ½30�, and ½40�
obtained from the U matrix are also endowed with
well-defined symmetry properties for both spin flip and
interchange.
Table V shows similar behavior for the χ ¼ 3 Ising case. At

the fixed point, starting from three index variables [1], [2], and
[3], where the first is even under spin flip and the latter two

TABLE III. The U matrix. This four by four matrix describes the
translation from a description that employs two spin indices to one
that employs a single tensor index. This SVD translation is derived
for the χ ¼ 2 Ising model calculated from a tensor representing an
Ising system with coupling corresponding to the Onsager critical
coupling as explained in the text. The different columns give the spin
content of each index. The behaviors of the bare Ising spin variables
under spin flip and site exchange imply the corresponding sym-
metries of the index variables noted in the first two rows of the table.

SVD index
[1] [2] [3] [4]

Symmetries:
Spin flip Even Odd Odd Even
Interchange Even Even Odd Even
Spin values

þþ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
2
3

qr
1ffiffi
2

p 0 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffi
2
3

qr

þ− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffi
2
3

qr
0 1ffiffi

2
p −1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
2
3

qr

−þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffi
2
3

qr
0 − 1ffiffi

2
p −1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
2
3

qr

−− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
2
3

qr
− 1ffiffi

2
p 0 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffi
2
3

qr

Singular value 4þ2
ffiffiffi
3

p
2þ2

ffiffiffi
2

p
2

ffiffiffi
2

p
−2 4 − 2

ffiffiffi
3

p
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odd, the U matrix gives rise to composite variables with well-
defined symmetries. The most relevant composite variables
(associated with the largest singular values), ½10�, ½20�, and ½30�,
share the same symmetry properties under spin flip, the first
being even and the latter two odd. Note that all composite
variables possess well-defined symmetry also with respect to
interchange.
In general, when retaining all variables after n renormal-

izations, every variable represents 2n single variables and there
are n additional symmetries, corresponding to the composite
interchange symmetries. Because in each step we retain only
two variables, [1] and [2], which are both even under
interchange, at the nth step only one nontrivial interchange
property survives corresponding to the interchange of the
variables of the n − 1 step. All other interchange operations
leave the system unchanged.

C. Summary of SVD numerical results

In this section we list and describe some critical indices
generated by low order (χ ¼ 2, 3, or 4) SVD calculations.

1. Square χ ¼ 2

The recursion analysis gives a very simple fixed point for
the case we have been discussing χ ¼ 2 with Ising variables
on the square lattice. The fixed-point tensor has the following
nonzero elements: T1111 ¼ 0.986 69, Tf1212g ¼ 0.289 04,
Tf1122g ¼ 0.397 57, and T2222 ¼ 0.2357. The spin flip sym-
metry implies that any component with an odd number of [2]
indices vanishes, so Tf1112g ¼ Tf1222g ¼ 0.
Because the U values in Tables III and IV indicate that this

calculation has the symmetry of an Ising model, one can
immediately guess that this fixed point is an approximate
representation of the two-dimensional Ising model.
In the response analysis, the even-under-spin-flip elements

generate four eigenvalues, which give rise to the indices
x ¼ 0, 0.983 31, 5.56, and x ¼ ∞. The odd-under-spin-flip

elements give two more eigenvalues xσ ¼ 0.258 48 and
x ¼ ∞. These infinite indices (corresponding to vanishing
eigenvalues) form the null space of the response function.
Their sources are distinct: the index corresponding to the odd-
under-spin-flip elements is due to the gauge symmetry
whereas the index corresponding to the even-under-spin-flip
elements reflects the loss of information in the SVD
truncation14; see column (B) of Table VI.
The symmetry properties of the eigenvectors of the

response analysis together with the values of the indices
further support our identification of the fixed point as
representing the two-dimensional Ising model. The first scalar
index x ¼ 0 is exactly right. The second index xT ¼ 0.98 � � � is
satisfyingly close to the exact value 1.0. The spin index is,
however, more than a factor of 2 larger than the exact value
0.125. The index 5.56 was not identifiable and was therefore
left out of Table VI. This table lists the index values obtained
through different schemes alongside their interpretations and
expected exact values.

2. Hexagonal χ ¼ 2

The very simplest SVD calculation is on a hexagonal
lattice. The renormalization increases the lattice constant by
a factor of

ffiffiffi
3

p
. One finds the fixed point by starting out with a

tensor representing a spin-flip-symmetric triangle, invariant
under rotations through 120°. In the spin representation, this
situation is represented by the two couplings K0, a normali-
zation constant, and the nearest neighbor coupling Knn. In the
SVD representation generated from this one, there are two
independent tensor components T111 and Tf122g.
There are two trivial fixed points: A high temperature point

in which T111 and Tf122g both equal unity, and a low
temperature fixed point in which T111 ¼ 1 and Tf122g ¼ 0.
The critical fixed point is first found by searching in the

space formed by the ratio of these tensor components. After
many recursions most starting points will lead to one of the
trivial fixed points. However, between these two possibilities,
one starting point with T212=T111 ¼ 0.524 548 57 will give a
nontrivial fixed point. Two couplings means two critical
indices. The exponents read x0 ¼ 0 for the free energy, and
xT ¼ 0.984 57 for the temperature or energy.
To go further, one can include couplings describing

configurations that are odd under spin flip. There are two
groups of tensor elements of this kind Tf112g and T222. These
four tensor components are set to zero at the fixed point.
Including these components in the response analysis gives two

TABLE IV. The U matrix transforming from two SVD indices to a
single index calculated for the χ ¼ 2fixed point. The spin pairs at the
input (titled “old index”) use the spin variables [1] and [2] which are
obtained by starting from the output of Table III and using a series of
renormalizations exactly like the one described in this table. There-
fore the index variables [1] and [2] at the input (left column) are,
respectively, even and odd under spin flip. The first two composite
variables, [1] and [2], which are the only variables retained for the
χ ¼ 2 renormalization, inherit these properties directly from the
structure of the U matrix.

New index
½10� ½20� ½30� ½40�

SVD value 1.158 0.687 0.109 0.064
Symmetries:
Spin flip Even Odd Odd Even
Interchange Even Even Odd Even
Old index
[1] [1] −0.918 32 0.0 0.0 −0.395 84
[1] [2] 0.0 −0.707 11 −0.707 11 0.0
[2] [1] 0.0 −0.707 11 0.707 11 0.0
[2] [2] 0.395 848 −0.0 0.0 −0.918 32

14In calculating the recursion relation for the odd-in-spin-flip
couplings, we found a difficulty that had to be surmounted. The
second index [2] could change its meaning as a result of very small
perturbations. Its sign was essentially undefined. Since the tensor
components with an odd number of [2]’s are all zero at the fixed
point, such a sign change might be considered to be “no big deal.”
However, a sign change engendered by an almost infinitesimal
change in the tensor components defining the SVD transform can
make a big difference in the calculation of the derivative of a
recursion relation. That in turn can ruin the calculation of a response
matrix. This kind of difficulty can be surmounted by defining the
ambiguous signs in the U matrix ab initio.
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more eigenvalues E ¼ 2.5549 and E ¼ 0, which then generate
the x values 0.2923 and ∞; see column (A) of Table VI.
All this looks surprisingly similar to the square case. Once

more, we have a pretty good approximate representation of the
known Ising result, marred by an unexpectedly bad xσ .

3. Hexagonal χ ¼ 3

The χ ¼ 3 fixed point described in column (C) of
Table VI has a structure determined by seven nonzero tensor
components,

T111 as well asTf122g ¼ Tf133g. (40)

The structures of both of these components and of theUmatrix
indicate a full symmetry between the configurations repre-
sented by [2] and [3]. At the fixed point, the ratio of these
tensors is Tf122g=T111 ¼ Tf133g=T111 ¼ 0.577 350 27. The
identical behaviors of the [2] and [3] indices are reflections
of the basic symmetry of this situation. A further indication of
this symmetry is the singular values, which are identical for
these two indices. This behavior can be expected from the

three-state Potts model, in which the system can line up in any
one of the three components of its spin variable. There are
then two linearly independent orderings. This degeneracy is
reflected in the possibility of rotations of the indices [2] and
[3] into one another.
This degeneracy of singular values made the calculation of

a fixed point and the evaluations of a response matrix and
eigenvalues very hard. The problem was solved in part by
artificially breaking the [2]-[3] symmetry, for example, by
making tensor components containing the index [3] differ
from ones with the index [2] by about 1 part in 108, and then
seeing what response eigenvalues might arise. Two eigenval-
ues appeared robustly, ones with x values of zero and 1.432
274 1. The zero is, of course, the expected response of the
free energy, while it seems reasonable to identify the latter
values with the operator X of the three-state Potts model
(Di Francesco, Mathieu, and Senechal, 1997). That operator
has an x value of 1.4.
The analysis is, however, highly unstable and often shows

an x value of 1.007 40. This could very likely be a reflection of
the thermal index of the Ising model. The Ising model might
have arisen as a consequence of our artificially added
symmetry breaking.

4. Additional fixed point (hexagonal χ ¼ 3)

We found a second fixed point that, at first sight, seemed
qualitatively similar to the Potts model fixed point described
in Eq. (40). It looks as if we are heading once more for a fixed
point of the three-state Potts model. However, in this case the
one nonzero fixed-point ratio is T133=T111 ¼ T122=T111 ¼
0.768 945 3. Thus the coupling is much stronger than in the
previous case.
Furthermore, the x values are not at all the same as in the

previous case. In addition to the ubiquitous x ¼ 0, we find
x ¼ 0.026 69, 0.027 51, and 2.948 10. The last x value is
likely to belong to the Potts operator called Y that has the exact
x value of 3.0. A possible identification of the previous two is
with the Potts ordering operator with xσ ¼ 1=15 ¼ 0.066 67
in the exact theory. However, there are six operators in the
theory (Di Francesco, Mathieu, and Senechal, 1997) that
should all be generated in an algebra containing spin oper-
ators. Thus the description we have given here is not very
satisfactory.

TABLE V. The U matrix for the χ ¼ 3 Ising model fixed point. The
transformation from two SVD indices to a single index. The χ ¼ 3
renormalization uses only columns [1]–[3]. The last three columns
are not shown because they have relatively little influence on the
T matrix since their singular values are 0.02, 0.003, and 0.002.

New index
½10� ½20� ½30� ½40� ½50� ½60�

SVD value 1.22 0.81 0.34 0.24 0.07 0.03
Symmetries:
Spin flip Even Odd Odd Even Odd Even
Interchange Even Even Odd Even Even Odd
Old indices
[1] [1] 0.86 0 0 0.158 0 0
[1] [2] 0 0.69 0.43 0 0.16 0
[1] [3] 0 0.16 0.55 0 −0.69 0
[2] [1] 0 0.69 −0.43 0 0.16 0
[2] [2] 0.45 0 0 −0.56 0.16 0
[2] [3] −0.13 0 0 −0.56 0 0.71
[3] [1] 0 0.16 −0.55 0 −0.69 0
[3] [2] −0.13 0 0 −0.56 0 −0.71
[3] [3] −0.16 0 0 −0.20 0 0

TABLE VI. Primary results from rewiring calculations using SVD. The index values are derived from fixed-point calculations that hold on to
indices that have the same symmetry as the lattice. The energy, spin, etc. are defined to be the scaling operators with the appropriate symmetry
and the smallest x value. We left out some of the larger response eigenvalues, which are apparently not meaningful in the SVD calculations. The
sources for the data presented above are as follows: (A) (new data first presented here), (B) Aoki, Kobayashi, and Tomita (2011), (new data first
presented here), (C) (D), and (E) (new data first presented here), (F) Aoki, Kobayashi, and Tomita (2011), (G) (new data first presented here).

(A) (B) (C) (D) (E) (F) (G)
Lattice type Hexagonal Square Square Hexagonal Hexagonal Hexagonal Square
χ 2 2 3 3 3 3 4
Fitted model Ising Ising Ising Ising χ ¼ 1þ 2 q ¼ 3 Potts q ¼ 3 Potts Ising

Free energy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.0018

xσ spin 0.2924 0.258 48 0.275 73 0.306 05 0.027 52 � � � 0.322 02
−0.026 69

xT energy 0.9846 0.983 30 0.985 34 0.986 85 � � � 1.432 27 0.983 30
Y 2.948 10
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5. And one more (hexagonal χ ¼ 3)

The nonzero fixed-point tensor values are

T111 ¼ 0.995 538 8;

Tf133g ¼ 0.521 005 1;

T222 ¼ 1.000 489 0:

We interpret this situation as a direct product of a critical point
of a χ ¼ 2 Ising model (indices [1] and [3]) and a trivial χ ¼ 1
situation (index [2]). It then has two indices close to zero,
representing the free energies of the two uncoupled models
and also indices 0.3060 and 0.9868. These indices reflect the
Ising model as well as an additional uncoupled model at a
trivial fixed point.

6. Square χ ¼ 3

On the square lattice, there is at least one fixed-point tensor
for χ ¼ 3 that describes the two-dimensional Ising model.
This tensor has ten different kinds of components, each with
its own separate value. However, the outcome of the response
analysis is entirely familiar. The three lowest x values are zero,
for the free energy, 0.275 73 for the magnetization , and 0.985
346 for the thermal index. We notice that neither the higher χ
nor the additional complexity of a four-index tensor has
yielded any improvement (or change) in the response
eigenvalues.

7. Square χ ¼ 4

The χ ¼ 4 fixed point on the square lattice was calculated
by Aoki, Kobayashi, and Tomita (2011), getting almost
exactly the same values of the free energy and thermal indices
as they obtained for χ ¼ 3. They did not report a value for the
magnetization index. Once again we feel disappointment to
see that additional complexity did not produce improved
accuracy.

8. Four-state Potts model

We found, but did not analyze, several χ ¼ 4 fixed points.
One of these is especially worth mentioning. This one
describes a situation that appears to be trying to represent
the four-state Potts model, but does not quite get there. It has
one configuration [1] that represents a scalar background
situation with a tensor component tensor T111 ¼ 1.009 378 8.
In addition, there are three other indices [2], [3], and [4].
Our approximate numerical fixed point makes the tensor
components described by these indices almost equal in
value, viz.,

Tf122g ¼ 0.449 236 5;

Tf133g ¼ 0.449 236 6;

Tf144jg ¼ 0.449 236 7.

Finally, all six of the Tijk’s that contain all three of the
higher index values (e.g., T234) have the value 0.351 510 6.
Note that the values of three of the independent tensor entries
differ from each other by less than 1 part in 106. This

difference is, however, important in order to obtain a fixed
point to numerical accuracy. Equating all three independent
entries above does not result in a fixed point. However, adding
the same small constant (∼10−6) to these three independent
entries (while keeping them distinct) results in an equivalent
fixed point to numerical accuracy. This numerics reflects the
null space of the response matrix at the fixed point. It also
points to the numerical delicacy of the calculation in the
presence of multiple x ¼ 0 critical index values.
Note the even spacing of the numerical values of the

magnitude of the T’s. The reason that three index values
represent four possible values of the Potts model spin variable
lies in the fact that, from the four probabilities of having one of
four different values, one can form three linearly independent
difference variables. In addition there is one trivial variable,
the sum of these probabilities, that then has the value unity.
Unfortunately, because of the near degeneracy of this

situation, we have had difficulties analyzing the consequences
of this model. The near degeneracies make the eigenvalue
analysis, both in the response and in the SVD, quite difficult to
understand.

IV. DISCUSSION

A. Error estimates

The error in a square lattice rewiring calculation is propor-
tional to the deviation from unity of the ratio of the exact four-
index tensor to the approximate one used in the analysis.
A wide variety of methods can be used to obtain the
approximate tensor. In all our work, we followed previous
results by employing the SVD method. In any step of the SVD
analysis, the error can be set to zero by choosing the new value
of χ to be the square of the old value. However, the
computational complexity of the calculation will, at some
point, have to be limited by demanding the cessation of the
increase in χ. If this eventual value of χ is large, one can expect
the calculational error to be small. Since the error terms are
simply neglected in the analysis, we might expect that the
inaccuracy in critical indices should be linear in the error. For
this reason, we should not have been surprised when, despite
the accurate calculations of free energy for large χ, low values
of χ gave inaccurate results.
On the other hand, our numerical results for critical indices

might suggest a different story. The magnetic index taken
from the fixed point for the Ising model and its cousins is
uniformly in error by about a factor of 2. In contrast, the
thermal index starts out, for small χ, accurate to within a few
percent and then gets worse (see Fig. 5). Might we have a
situation in which the free energy derived from the fixed point
converges quite well, but the indices do not show equal
convergence? There are some hints in Levin and Nave (2007)
and Gu and Wen (2009) that they expect a nonuniform
convergence of the free energy, better convergence away
from the critical point than at that point.15 The whole effort to

15Many rewiring experts believe that working with finite χ is
effectively equivalent to introducing a gap in the system. The gap is
expected to decrease, but not disappear, as χ gets larger.
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use SVD or rewiring schemes for the calculation of fixed
points might be fraught with conceptual difficulties.16

The SVD-rewiring fixed-point calculations show a wide
variety of numerical difficulties. The most natural way of
finding a fixed point involves a Newton’s-method search. This
approach, in turn, requires that the approximation used give
the parameters that determine the fixed point in differentiable
form. However, there are several important impediments to
such differentiability, including the following:

(i) Crossing of singular values: The SVD method does
not necessarily make the approximate matrix be
analytic in the parameters of the approximated
one. In particular, singular values may cross one
another, producing a result containing discontinuous
derivatives. This problem is likely to result in very
delicate numerics for large values of χ.

(ii) Degeneracy of singular values: In situations with
higher symmetry than the Ising model, the singular
values may be degenerate, making the SVD calcu-
lation very sensitive to small perturbations.

(iii) Gauge symmetry: The tensor recursion has a gauge
symmetry that makes the output tensor insensitive to
some combination of components of the specific
representation of input tensor. A given tensor re-
normalization scheme will normally employ (either
explicitly or implicitly) some gauge fixing which we
can interpret as selecting a particular representation of

the tensor. One can easily go between representations
using an orthogonal transformation. The components
of the matrix corresponding to the orthogonal trans-
formation, however, may jump around in an unpre-
dictable manner. This unphysical jumping could
pollute the entire response-matrix calculation.

(iv) Order parameter: The order parameter does not fit
smoothly into the SVD scheme. The critical system
will fluctuate among several states of order. In our
calculations, and probably in all SVD calculations,
some index variables had U and V values that varied
discontinuously as one went from one state of order
to the other. As a result we saw discontinuous
derivatives of the recursion matrix.

Whatever the cause, the net result is that, for statistical
mechanical problems as distinct from Hamiltonian ones,17 as
far as we know, no one has calculated fixed points for χ
beyond 8. Further, the one reference that has gone to large χ
(Hinczewski and Nihat Berker, 2008) sees an xT that shows
little improvement as χ increases in this range18 (see Fig. 5).
One promising direction of improvement of the rewiring
approach is the departure from the SVD scheme in the
approximation step as done, for example, by Xie et al.
(2012) and Meurice (2013).
In contrast, the potential-moving scheme, factored into a

renormalization calculation, has given remarkably accurate
results for simple models of critical behavior (Kadanoff,
1975; Burkhardt, Knops, and den Nijs, 1976; Burkhardt,
1976a; Kadanoff, Houghton, and Yalabik, 1976b; Dasgupta,
1977; Katz, Droz, and Gunton, 1977; Knops, 1977; Jan and
Glazer, 1978; den Nijs and Knops, 1978). See Tables I and II
which lists critical indices for the two-dimensional Ising model
as derived from this kind of analysis. Both thermal and
magnetic critical indices derived in this manner are remarkably
accurate. Several (Burkhardt, 1976b; Southern, 1978; Den Nijs,
1979) expressed surprise about this high accuracy. Additional
indices, also listed in Table I are qualitatively reasonable.
There are several reasons for the increased accuracy of

potential moving relative to the SVD scheme with a similar
(small) value of χ. Once again the source of error may be
measured as a four-index tensor, here the tensor that defines
the various potentials to be moved. However, in this case,
because the first order effect of the motion vanishes at λ ¼ 0,
the inaccuracy in the free energy must automatically be
second order in the error source. This change is the first
reason for the improvement over SVD. In addition, the
parameter is adjusted to produce a minimum change in free

2 8 14 20

1

1.05

FIG. 5 (color online). The thermal exponent xT vs χ. Empty
circles denote the results that Hinczewski and Nihat Berker
(2008) obtained for an hexagonal lattice tensor product. Squares
denote the exponents for a square lattice obtained here, and
diamonds denote the results for a hexagonal lattice obtained
here. All the preceding arise from a fixed-point–response-
matrix analysis. In contrast, the solid circles denote exponents
obtained through the fitting of the free energy in the vicinity of
the critical point.

16In contrast, the fixed points and critical indices that arise from
some other TRG schemes do not share the same difficulties. Specifi-
cally the multiscale entanglement renormalization ansatz (MERA)
scheme (Evenbly and Vidal, 2009b; Vidal, 2010) to do quantum
Hamiltonian renormalization gives excellent fixed points and critical
indices when applied to Hamiltonian formulation of the Ising model
and other standard statistical problems.Note that thismethod has some
overlapwith the 1975 scheme in that it moves elements of the quantum
potential within the lattice, and it also utilizes an optimization of
renormalization parameters at the fixed point.

17Excellent critical index values have been obtained for Hamil-
tonian approaches to renormalization, for sample via the MERA
scheme of Vidal and co-workers; see, for example, Giovannetti,
Montangero, and Fazio (2008), Giovannetti et al. (2009), Montan-
gero et al. (2009) and Pfeifer, Evenbly, and Vidal (2009).

18For χ ¼ 2; 3; 4, we find that this critical index is 0.985� 0.0015
compared with the exact value 1.0. For higher χ, estimates in
Hinczewski and Nihat Berker (2008) give the disappointing value
xT ¼ 0.938� 0.005 at χ ¼ 12 and the more pleasing value 0.991�
0.007 at χ ¼ 24. Convergence is slow and erratic.
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energy. This adjustment pushes the error source to be as
small as it can be.
Nonetheless, our use of the potential-moving scheme has

serious flaws. The most serious one is that we do not know
how accurate the method might be. Sometimes it behaves
better than expected, sometimes worse. In addition, we know
nothing about convergence at higher values of χ.

B. Work to be done

One can hope that the methods of analyzing the rewiring
can be improved. We would argue that the advances to be
considered might include the following:

• Avoid gauge degeneracy: One should calculate
renormalizations and recursions using gauge-invariant
quantities, built, for example, from traces of the tensors.
This will eliminate the worst source of numerical
instability.

• Understand gauge degeneracy: We do not understand the
reason that gauge degeneracy should underlie these
statistical mechanical calculations. A deeper understand-
ing might bring us to better control of the method.

• Control index degeneracy: A physical symmetry can
give a degeneracy in SVD and response functions.
Learning to deal with these can be a great help.

• The magnetization: We do not understand why this
index is much less accurately determined than the thermal
index. We should understand that. If we can, we could
design an alternative way of determining this index.

• More global analysis: Construct a variational scheme.
We need a calculational scheme to replace SVD. One
possibility is to replaceU and V by arbitrary three-legged
tensors and minimize the free-energy error they pro-
duce.19 One may achieve this goal following the princi-
ples of the variational potential moving. However, the real
challenge is to design a scheme that both improves
accuracy and helps convergence at higher values of χ.
But we would also like our calculations to be elegant,
smooth, analytic, and intelligently designed. All of that is
difficult.

C. Where do we stand?

The rewiring method as put forward by Levin and Nave
(2007) and Gu and Wen (2009) has a compelling elegance.
The replacement of four-legged tensors by sums of three-
legged ones is an excellent way of formulating the renorm-
alization concept. The next step, the evaluation of the
three-legged tensors via SVD is attractive, but not equally
compelling. We follow many others in noting that this
replacement depends only upon the local properties of the
tensor being replaced, and not upon the global nature of the
free-energy calculation. In contrast, the potential-moving
calculation contains a global optimization. We hope to
combine the virtues of the two methods.
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APPENDIX: GAUGE FREEDOM AND INVARIANCE
OF THE RECURSION STEP IN ISOTROPIC TRG

Here we prove that, provided that the singular values are
distinct, up to sign ambiguities, the renormalization step
described in Sec. II.C is invariant under rotations, i.e., if
~T is obtained from T by isotropic rotations, or componentwise

~Tijkl ¼ OipOjqOkrOlsTpqrs;

where O is an orthogonal matrix, then ~T 0 ¼ Rð ~TÞ ¼ RðTÞ ¼
T 0 up to sign ambiguities. Again componentwise this reads

~T 0
ijkl ¼ DipDjqDkrDlsT 0

pqrs;

where Dij ¼ δijfi, where fi is eitherþ1 or −1. This of course
can be rectified by setting the sign of D11 ¼ þ1 and then
making sure that D1112; D1113, and D1114 are all positive
(provided that they do not vanish). Incorporating such a sign
rectifying step into the TRG scheme results in

~T 0
ijkl ¼ T 0

ijkl:

An immediate corollary of this claim is that the isotropic
response matrix possesses a null space whose dimension must
be greater than that of the rotation group from which O was
selected.

Proof

We begin with considering the uniqueness of the SVD of a
given matrix T and its transformation under rotations. To
avoid identity misinterpretation we denote the χ2 valued
index obtained from all the possible combinations of the χ
valued indices i and j by fijg. This makes its untangling
simpler.
Let Tfijgfklg be a diagonalizable matrix with distinct

singular values representing a rank four tensor and let the
SVD of T be given by

Tfijgfklg ¼ UfijgαΛαβVfklgβ; (A1)

where Λαβ ¼ λαδαβ (no summation) are the distinct principal
values, and U and V are orthogonal matrices, then:

(1) The columns of U are the normalized eigenvectors
of TTT .

(2) The columns of V are the normalized eigenvectors
of TTT.

19We note that alternatives to the choice of largest χ singular
values, which are optimized globally rather than locally, as proposed
by Zhao et al. (2010), when restricted to low χ values did not result in
improved exponents.
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(3) In this nondegenerate case the orthogonal matrices are
defined up to a sign: i.e., if U and V are the orthogonal
matrices obtained by some algorithm, and ~U and ~V are
orthogonal matrices obtained by a different yet equiv-
alent algorithm, then

UT ~U ¼ VT ~V ¼ D; Dαβ ¼ δαβfβ; fα ¼ �1:

We now consider an orthogonal matrix which is the external
product of two orthogonal matrices Ofijgfklg ¼ OikOjl. The
rotation by O of the rank four tensor Tijkl is equivalent to
the rotation by O of the matrix Tfijgfklg. By the above
considerations the SVD of a rotated matrix is the rotated
SVD up to sign ambiguities. If the SVD of T is given by
Eq. (A1) then the SVD of the rotated matrix is given by

OfijgfmngOfklgfpqgTfijgfklg

¼ OfijgfmngUfijgαDαγΛγδDβδVfklgβOfklgfpqg;

where again Dij ¼ δijfi, fi ¼ �1, accounts for the sign
ambiguity. Setting

ffiffiffiffi
Λ

p
to be the non-negative diagonal matrix

whose square reproduces Λ, and using commutativity and
symmetry of products of diagonal matrices we have

OfijgfmngUfijgαDαγ

ffiffiffiffi
Λ

p
γδ ¼ OimOjnUfijgα

ffiffiffiffi
Λ

p
αγDγδ

¼ OimOjnuijγDγδ ¼ ~umnδ.

As the last step in the renormalization includes a product of
four such u tensors, the rotations O give unity and the only
remnant is the sign ambiguity captured by D:

~uijα ~ujkβ ~uklγ ~uliδ ¼ uijηujkμuklνuliρDαηDβμDγνDδρ:
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