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Insects can hover, fly forward, climb, and descend with ease while demonstrating amazing stability,
and they can also maneuver in impressive ways as no other organisms can. Is their flight inherently
stable? If so, how can they maneuver so well? In recent years, significant progress has been made in
revealing the dynamic flight stability and flight control mechanisms of insects and has partially
answered these questions. Here the most recent advances in this active area are reviewed. The aim is
to provide the background necessary to do research in the area and raise questions that need to be
addressed in the future. This review begins with an overview of the flapping kinematics and
aerodynamics of insect flight. It is followed by a summary of the governing equations of insect motion
and the simplified theoretical models used for analysis of dynamic stability and control. Next, the
stability properties of hovering flight and forward flight are scrutinized. Then the flight control
properties are explored, dealing in turn with flight stabilization control, steady-state control for
changing from hovering to forward flight and from one forward-flight speed to another, and control
for maneuvers near hovering. Finally, remarks are given on the state of the art of this research field and
speculation is made on its outlook in the near future.
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I. INTRODUCTION

Winged insects took to the air about 350 × 106 years
ago (Wootton, 1981; Ellington, 1991). They have been exper-
imenting with wings, kinematics, aerodynamics, sensory sys-
tems, and control since then. Natural selection has produced
flies that complete 180° turns in as little as three wing strokes
(Wakeling and Ellington, 1997) and species capable of landing
on flowers buffeted by wind (Dudley, 2000). Besides curiosity
about how these sophisticated aerodynamic feats are per-
formed, researchers are interested in the mechanics of insect
flight for the following two reasons. One is that biologists need
to understand the effects of aerodynamic-force production,
energy expenditure, and flight balance on the physiology,
behavior, evolution, and other aspects of insects (Weis-Fogh
and Jensen, 1956; Weis-Fogh, 1972; Ellington, Machin, and
Casey, 1990; Dickinson et al., 2000). The other reason is that
engineers who desire to develop small robots with maneuver-
ability comparable to that of flying insects are eager to
understand the novel aerodynamic and control mechanisms
of insects and emulate their performances in the design of small
flying machines (Davis, 1996; Ellington, 1999; Shyy, Berg, and
Ljungqvist, 1999; Wilson, 2001; Ma et al., 2013).
The mechanics of insect flight broadly encompasses two

aspects: aerodynamics and flight dynamics. Aerodynamics
answers the questions of how the aerodynamic forces and
moments, which support the weight of an insect, propel its
motion in the air and control the motion, are produced, and
what the energy expenditure is when producing these forces
and moments. It also provides tools for computing the
aerodynamic forces and moments and their variations as
functions of wing and body motions.
Flight dynamics, on the other hand, includes dynamic flight

stability and flight control. Dynamic flight stability of a flying*m.sun@buaa.edu.cn

REVIEWS OF MODERN PHYSICS, VOLUME 86, APRIL–JUNE 2014

0034-6861=2014=86(2)=615(32) 615 © 2014 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615
http://dx.doi.org/10.1103/RevModPhys.86.615


body deals with the disturbed motion of the body about the
equilibrium-flight state following an initial disturbance. If the
disturbed motion dies out as time increases, the equilibrium
flight is stable; otherwise, it is unstable. Dynamic stability is
an inherent property of the flying system (no active control
using sensory information is applied); it represents the natural
flight dynamics of the flying body (it is also called passive
stability or inherent stability). There are three types of flight
control. One is stabilization control, which is used to stabilize
inherently unstable flight or to augment the stability of weakly
stable flight by applying time-varying control forces and
moments to suppress the disturbed motion. The second is
maneuver control, which is used to produce aerobatics, such
as a fast turn, by applying large, time-varying control forces
and moments. The third is steady-state control, which is used
to change the system from one equilibrium flight to another,
for example, changing from hovering flight to forward flight
or from one forward-flight speed to another. For insects,
stabilization control is generally performed by their reflex
control systems because it requires very fast responses,
while maneuver control and steady-state control are per-
formed intentionally (Dickinson, 1999, 2006; Dudley,
2000; Bender and Dickinson, 2006; Taylor and Krapp, 2007).
Insects fly by flapping their wings (except for dragonflies

and butterflies which occasionally glide). When studying
insects’ aerodynamics and/or flight dynamics, one needs to
first know the flapping kinematics of the wings, i.e., wing
motion relative to the body of the insect. Therefore, wing
kinematics measurement and description are an integral part of
aerodynamics and flight dynamics studies.
Historically, people studied the aerodynamics of insect

flight prior to flight dynamics. This is because flight dynamics
is a result of coupling between aerodynamics and motion
(dynamics) of the insect and it could not be analyzed without
understanding the mechanisms of aerodynamic-force produc-
tion and knowing how the aerodynamic forces and moments
vary as functions of wing and body motion. As a result,
although aerodynamics of insect flight has been a subject of
study for about 100 years (Weis-Fogh and Jensen, 1956;
Ellington, 1995; Sane, 2003; Wang, 2005; Ansari, Zbikowski,
and Knowles, 2006; Shyy et al., 2010; Wu, 2011), only in the
past 15 years or so have researchers begun to devote more
effort to the area of flight dynamics.
In this review we describe the significant work done so far

in the area of flight dynamics of insects. The aim is to point to
unanswered questions in this area that will help in advancing
knowledge on insect flight. Furthermore, it provides the
background necessary to do research in the area. We begin
with an overview of the flapping kinematics and aerodynam-
ics of insect flight (Sec. II). We then summarize the governing
equations of insect motion and the simplified theoretical
models used for stability and control analysis (Sec. III).
Next we scrutinize the stability properties of hovering flight
(Sec. IV) and forward flight (Sec. V). Then we explore the
flight control properties, dealing in turn with flight stabiliza-
tion control (Sec. VI), steady-state controls for changing from
hovering to forward flight and from one forward-flight speed
to another (Sec. VII), and control for maneuvers near hovering
(Sec. VIII). Finally, we remark on the state of the art of this

research field and speculate on its outlook in the near
future (Sec. IX).

II. FLAPPING KINEMATICS AND AERODYNAMICS

A. Flapping kinematics

Researchers have measured flapping kinematics of free
hovering flight for more than ten species and free forward
flight for a few species of insects; these insects include flies,
mosquitoes, wasps, bees, moths, butterflies, beetles, and
dragonflies (Weis-Fogh, 1973; Ellington, 1984c; Dudley
and Ellington, 1900a, 1990b; Willmott and Ellington,
1997a, 1997b; Fry, Sayaman, and Dickinson, 2003, 2005;
Altshuler et al., 2005; Wang and Russell, 2007; Liu and Sun,
2008; Walker, Thomas, and Taylor, 2010). The following
description of flapping kinematics follows the approach taken
by Ellington (1984c) and is mainly based on the results for
these insects.
Generally the flapping motion is approximately confined to

a plane, termed a stroke plane (Fig. 1); the wings sweep back
and forth reciprocally in the plane. The angle between the
stroke plane and the horizontal is referred to as the stroke-
plane angle and is denoted by β (Fig. 1). The longitudinal axis
of the body is at an angle χ from the horizontal (χ is referred to
as the body angle). Let ðx1; y1; z1Þ be a reference frame with
the origin at the wing base and the x1-y1 plane coinciding with
the stroke plane (Fig. 1). The position and orientation of the
wing relative to the stroke plane can be described by three
Euler angles when the wing is considered to be a rigid plate:
positional angle (ϕw), stroke deviation angle (θw), and pitch
angle (ψw) (Fig. 1), where ϕw is defined as the angle between
the projection of the line joining the wing base and the wing
tip onto the stroke plane and the y1 axis, θw is defined as the
angle between the line joining the wing base and the wing tip
and its projection onto the stroke plane, and ψw is defined as
the angle between the local wing chord and the line l (l is
perpendicular to the wing span and parallel to the stroke
plane). ψw is related to the angle of attack of the wing, α
(see below).
For many insects (e.g., hoverflies, droneflies, and bum-

blebees), the angle between the stroke plane and the longi-
tudinal axis of the body (β þ χ) is nearly constant (Ellington,
1984c; Ennos, 1989; Dudley and Ellington, 1900a; Liu and
Sun, 2008) and for others this angle varies a little with flight
conditions; e.g., for the hawk moth Manduca sexta, the angle
increases from 55º at hovering to 75º at the highest flight
speeds (Willmott and Ellington, 1997a).
The amplitude of ϕw is termed the stroke amplitude

(denoted as Φ) and the mean value of ϕw is termed the mean
stroke angle (denoted as ϕ̄). Φ ranges from approximately 60º
(for syrphid flies) to approximately 180º (for beetles and
moths). For a given insect, Φ and ϕ̄ vary depending on the
flight conditions, e.g., the flight speed (Ellington, 1984c;
Willmott and Ellington, 1997a). In general, the stroke
deviation angle θw is relatively small; its magnitude is below
10º (Ellington, 1984c; Ennos, 1989; Mou, Liu, and Sun,
2011), which is why one says that the flapping motion is
generally approximately confined to the stroke plane. Fruit
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flies are an exception; for them θw is relatively large and can
be as large as about 30º (Fry, Sayaman, and Dickinson, 2005).
During hovering flight, for some insects, the stroke plane is

approximately horizontal (β ¼ 0). Hovering with a horizontal
stroke plane is referred to as normal hovering, and otherwise

the hovering is referred to as inclined-stroke-plane hovering
(Weis-Fogh, 1973). At normal hovering, in a forth (ventral)
sweep, termed the downstroke, the wing forms an angle with
the stroke plane (termed the angle of attack and denoted as α)
and lift can be produced. Near the end of the downstroke, the
wing flips (rotates around a spanwise axis) and the underside
of the wing becomes its top side and vice versa. In the
following back (dorsal) sweep, the upstroke, the speed and
angle of attack are the same as those in the downstroke and the
wing produces the same amount of lift. Near the end of the
upstroke, the wing flips back and starts another wing-beat
cycle. The drag on the wing in the upstroke has the same
magnitude as, but the opposite direction to, that in the
downstroke. Thus the mean drag in a cycle is zero, i.e.,
the mean force vector is in the vertical direction, balancing the
insect weight. α is related to ψw as follows: in the downstroke
α ¼ ψw; in the upstroke α ¼ 180° − ψw.
During forward flight, the stroke plane is tilted forward,

which tilts the mean force vector forward; the horizontal
component of the force vector overcomes the body drag of the
insect (Ellington, 1984c; Dudley and Ellington, 1900a;
Willmott and Ellington, 1997a). As the stroke plane tilts
forward, the body angle becomes smaller (the angle between
the stroke plane and the longitudinal axis of the body is
generally fixed), which helps to decrease the body drag. By
tilting the stroke plane backward or sideways, the insect can
fly in the corresponding direction (Ellington, 1984c).
When the stroke plane is tilting forward (in forward flight

and, for some insects, in hovering flight also), in the forth
(ventral) sweep of the wing, the wing is actually moving
forward and downward with respect to the insect body, which
is the reason why the forth sweep is called a downstroke. For
similar reasons, the back (dorsal) sweep is referred to as an
upstroke. A downstroke or an upstroke is referred to as a half-
stroke. As mentioned previously, in a half-stroke, the wing
sweeps (rotates azimuthally) in the stroke plane; this motion is
referred to as “translation.” At stroke reversal, the wing rotates
around a spanwise axis; this motion is referred to as “rotation.”
In general, in the midportion of a half-stroke, the angle of

attack of the wing varies relatively slowly and can be
approximated by a constant, which is about 35º for many
insects in normal hovering (Ellington, 1984c); at stroke
reversal, the wing rotates by about 110º. The rotation time
is approximately 20% of the wing-beat period. For a fruit fly,
the wing-beat frequency is around 250 Hz (Ennos, 1989) and
the mean rotation velocity of the wing exceeds 100 000º per
second; for a hawk moth, the wing-beat frequency is around
25 Hz (Willmott and Ellington, 1997a), and the mean rotation
velocity exceeds 10 000º per second. It should be noted that
for some insects (e.g., dragonflies, some honeybees, and
hoverflies in inclined-stroke-plane hovering) the stroke ampli-
tude is low (Φ is 60°–90°) and the rotation time of a wing can
be about 35% of the wing-beat period, i.e., the wing rotates in
the bigger part (about 70%) of its translation (Norberg, 1975;
Altshuler et al., 2005; Mou, Liu, and Sun, 2011).
For many insects in normal hovering, the translational

velocity can be closely approximated by a simple harmonic
function, in which the maximum velocity occurs at the middle
of the half-strokes and the maximum acceleration at the
beginning of the half-strokes (Ellington, 1984c; Ennos,

(a)

(b)

(c)

FIG. 1. (a) Sketch of insect body and stroke plane. Here β is the
stroke-plane angle; χ is the body angle. (b) Angles of a flapping
wing that determine the wing orientation relative to the stroke
plane. The ðx1; y1; z1Þ coordinates are in a system with its origin
at the wing root; the y1 axis points to the side of the insect and the
x1-y1 plane coincides with the stroke plane. l is a line that is
perpendicular to the wing span and parallel to the stroke plane.
ϕw, ψw, and θw are the positional angle, pitch angle, and deviation
angle of the wing, respectively. ψw is related to the angle of attack
of the wing, α, in the downstroke, α ¼ ψw, and in the upstroke,
α ¼ 180° − ψ . (c) Sketch showing the stroke amplitude Φ ¼
max ϕw −min ϕw, and the mean stroke angle ϕ̄¼
ðmax ϕw − min ϕwÞ=2.
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1989; Liu and Sun, 2008; Mou, Liu, and Sun, 2011). For a
fruit fly in tethered flight, it was observed that the translational
velocity varied with time approximately according to a
trapezoidal function (Zanker, 1990), i.e., the translational
velocity is constant throughout a half-stroke, punctuated by
rapid accelerations at stroke reversal. Compared to the simple
harmonic function, the trapezoidal function exaggerates the
acceleration at the beginning and the deceleration near the end
of a half-stroke, and it also causes the acceleration at the
beginning of the half-stroke to end earlier and the deceleration
near the end of the half-stroke to start later. However, this
pattern of wing translation, combined with proper wing-
rotation timing, can create forces by all the mechanisms
currently known to function on single wings (Dickinson,
1999). Therefore, in several experimental and computational
studies, a translational velocity varying as a trapezoidal
function was employed (Ramamurit and Sandberg, 2002;
Sun and Tang, 2002; Birch and Dickinson, 2003; Wu and
Sun, 2004).
When half the wing rotation is conducted near the end of a

half-stroke and the other half at the beginning of the next half-
stroke, the wing rotation is called symmetrical rotation. When
the major part of rotation is conducted before the stroke
reversal, it is called advanced rotation. And when the major
part of rotation is conducted after the stroke reversal, it is
called delayed rotation. The timing of the wing rotation can
change the time course and the mean of the aerodynamic
forces significantly, especially in the case of translational
velocity varying as a trapezoidal function. Different timing
of the wing rotation for the left and the right wings is
possibly employed to provide control forces on the wings
during maneuvering (Dickinson, Lehman, and Götz, 1993;
Dickinson, Lehman, and Sane, 1999).
Some or all of the kinematic parameters, such as stroke

amplitude, wing-beat frequency, or angle of attack of the
wing, might vary with the flight speed (Vogel, 1966, 1967a;
Dudley and Ellington, 1900a; Willmott and Ellington, 1997a).
Bumblebees and hawk moths are the only insects for which
these kinematic parameters have been measured over the
entire speed range (Dudley and Ellington, 1900a; Willmott
and Ellington, 1997a).
Insect wings are not rigid, and during flapping motion they

deform and have small deviations from the rigid plane. From
high-speed pictures of hovering and forward-flying insects,
Ellington (1984c) and Ennos (1989) observed that for many
insects the wings are twisted by 10º to 20º along their length,
with a higher angle of attack at the wing base than at the tip
(rather like the blades of a propeller), and they are gently
cambered on both the downstroke and the upstroke. Fruit-fly
wings, however, show negligible twist and camber; their small
wings appear relatively stiffer than those of larger insects and
hence more resistant to torsional twisting and camber defor-
mation (Vogel, 1967a; Ellington, 1984c). These data are
qualitative and because only one camera was used, reliable
data could be obtained only for the midportion of a half-
stroke. Recently, using four high-speed digital video cameras,
Walker, Thomas, and Taylor (2010) obtained quantitative data
on the time-varying camber and spanwise twist of wings in
free-flying droneflies. Their data showed that camber and
twist are approximately constant in the mid-half-stroke,

similarly to the results described by Ellington (1984c) and
Ennos (1989), and that around the stroke reversal the camber
and twist are much larger than in the mid-half-stroke; Fig. 2
gives diagrams of wing motion showing the instantaneous
wing profiles at two distances along the wing length in one
half-stroke (upstroke) measured by Walker, Thomas, and
Taylor (2010).

B. Aerodynamic-force mechanisms

Awing moving in the air experiences an aerodynamic force.
Following the convention in aerodynamics, the force compo-
nent normal to the direction of the far-field flow relative to the
wing is referred to as lift (L), the force component in the
direction of the flow is referred to as drag (D), and the angle
between the direction of the flow and the wing is referred to as
the angle of attack (α) (Fig. 3). At the Reynolds numbers (Re)
of insect wings (Re ¼ 10 to 3000), L and D are proportional
to ρU2S, where ρ is the air density, U is the speed of the far-
field flow relative to the wing, and S is the wing area (for a
flapping wing, Re is based on the mean chord length and the
mean translational velocity at the radius of the second moment
of the wing area, which is around 0.6R from the wing root for
most insects, where R is the wing length). The dimensionless
L and D are referred to as lift (CL) and drag (CD) coefficients:

CLðαÞ ¼
L

0.5ρU2S
; CDðαÞ ¼

D
0.5ρU2S

. (1)

Most of the results relevant to the aerodynamics of insect
flight published before the 1950s were summarized in a
critical review by Weis-Fogh and Jensen (1956). They
reviewed many theories for aerodynamic analysis of insect
flight, with detailed explanations for what they referred to as
the most complete theories. These theories predicted that
insects did not make use of unusual aerodynamic forces for
their flight (that is, conventional, steady-state aerodynamic

0.75R

0.25R

FIG. 2. Diagram of wing motion in the upstroke of a drone fly in
hovering flight, showing the instantaneous wing profiles at 25%
and 75% wing lengths (R). The arrow represents the direction of
the wing motion. From Walker, Thomas, and Taylor, 2010.
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principles could explain the aerodynamic forces in insect
flight). Research work on insect flight from the late 1950s to
the early 1990s can be divided into three parts. One was the
observation and analysis of the wing kinematics of insects in
tethered and free flight (Vogel, 1966, 1967a; Ellington, 1984c;
Ennos, 1989). The second part was measurements of the
aerodynamic forces on real and model wings and the bodies of
insects in wind tunnels in steady-state and fixed-wing con-
ditions (Vogel, 1967b; Okamoto, Yasude, and Azuma, 1996).
The third part was calculation, under the assumption of a
quasisteady state, of the lift and power of insects based on the
observed wing kinematics and the measured aerodynamic-
force coefficients (Weis-Fogh, 1972, 1973; Ellington, 1984a,
1984d, 1984e). The calculation showed whether or not the
conventional aerodynamic theory can explain the aerody-
namic forces of insect flight. As an example, we considered
the measured lift and drag coefficients at various angles of
attack for a fruit-fly wing, as illustrated in Fig. 4 (Vogel,
1967b). The Reynolds number is 200. At α ¼ 10°, the CL
value is only 0.23, much smaller than that of a wing at high
Re. The maximum CL is around 0.6 (Fig. 4). Even if the
maximum CL is used in the quasisteady-state theory, the
estimated lift is not enough to support the weight of a fruit fly
(Ellington, 1984a; Ennos, 1989; Zanker, 1990); this is also the
case for many other insects (Ellington, 1984a, 1984d, 1984e).
Typically the mean CL required to balance the weight of an

insect is about 1.5 (Sun, Wang, and Xiong, 2007), much larger
than that of an airplane at cruising flight, which is about 0.7
(the velocity relative to the air of an insect wing is small due to
the small length scale of the wing and hence the required
nondimensional lift is large). These works clearly showed that
steady-state aerodynamic theory cannot explain the aerody-
namic-force generation of most insects, and, as a result, it was
concluded that unsteady aerodynamic mechanisms must be
operating.
The work showing that most insects must use unsteady

aerodynamics to fly was conducted in the 1980s. Earlier, in
the 1970s, when studying the flight of the small wasp
Encarsia formosa, Weis-Fogh (1973) discovered that before
the downstroke the two wings “clap” together and then open
like a book (referred to as the “fling”). The Reynolds number
of the wing is only around 15. Weis-Fogh (1973) suggested
that the fling motion of the wing pair might cause the
necessary circulation to be generated immediately because
one wing with its circulation acted as the starting vortex of the
other wing and vice versa, avoiding the delay due to the
Wagner effect (Wagner, 1925; Walker, 1931). Lighthill (1973)
modeled the fling phase using two-dimensional inviscid
theory. He showed that a circulation proportional to the
angular velocity of the fling was generated without the delay
associated with the Wagner effect. Maxworthy (1979), by a
flow-visualization experiment on a pair of wings, discovered
that during the fling process a leading-edge vortex is generated
by each wing and its circulation is substantially larger than
that calculated by Lighthill’s theory. The clap and fling
mechanism is a typical example of unsteady lift generation.
Besides Encarsia formosa, the only insects known to use the
clap and fling mechanism are some butterflies during their
takeoff (Sunada et al., 1993). Although most insects do not
employ this motion (Ellington, 1984c; Ennos, 1989; Fry,
Sayaman, and Dickinson, 2005; Fontaine et al., 2009), its
study made researchers reconsider the aerodynamics of insect
flight. The studies by Lighthill (1973), Weis-Fogh (1973), and
Maxworthy (1979) on the clap and fling mechanism pioneered
the study of unsteady flows of insect flight and inspired
researchers to continue the study in the years to come.
It could be said that, in the 1980s and before, research on

insect flight was mainly on the analysis of wing kinematics
and on exploring whether or not the conventional steady-state
aerodynamic theory was applicable. Entering the 1990s,
researchers began to put forth more effort to explore the
unsteady flows in insect flight (Ellington, 1995).
Since at the beginning of each half-stroke the wing is started

at a high angle of attack, dynamic stall (stall delayed for a
short time) was considered as a candidate for explaining the
extra lift of insect wings. Dickinson, Lehman, and Götz (1993)
measured the aerodynamic forces of an airfoil started rapidly
at high angles of attack in the Reynolds number range of fruit-
fly wings (Re ¼ 75–225). They showed that lift is enhanced
by the presence of a dynamic-stall vortex or leading-edge
vortex (LEV). After the initial start, a CL as high as 2 is
maintained within approximately two to three chord lengths of
travel. Afterward, CL drops due to the shedding of the LEV.
But the decrease is not rapid, because the shedding of the LEV
is slow at such low Re; and from three to five chord lengths of
travel, the CL is still as high as approximately 1.7 (at higher

α
U

D

L

FIG. 3. Definition of aerodynamic lift and drag.
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FIG. 4. Polar diagram of a fruit-fly (Drosophila virilis) wing.
The angle of attack is given in degrees along the curve. Adapted
from Vogel, 1967b.
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Re, CL drops faster). They considered that because the fly
wing typically moved only two to four chord lengths each
half-stroke, the stall-delaying behavior was more appropriate
for models of insect flight than were the steady-state
approximations.
Ellington et al. (1996) and van den Berg and Ellington

(1997a, 1997b) performed flow-visualization studies on the
large hawk mothManduca sexta in tethered forward flight (the
speed ranged from 0.4 to 5.7 ms−1) and on a mechanical
model of the hawk-moth wings (Re ≈ 3500). They found that
the LEVon the wings is not shed in the translational phases of
the half-strokes and that there is a spanwise flow directed from
the wing base to the wing tip; Fig. 5 shows a picture of the
LEV. Analysis of the momentum imparted to fluid by the
vortex wake showed that the LEV could produce enough lift
for weight support. In the case of hovering flight, the hawk-
moth wing travels approximately three chord lengths each
half-stroke; whereas, in the case of forward flight at high
speeds, the wing travels twice as far. They suggested that the
spanwise flow prevented the LEV from detaching.
The above studies identified delayed stall as a high-lift

mechanism of some small and large insects. Dickinson (1999)
measured the aerodynamic forces on a revolving model fruit-
fly wing (Re ≈ 75) and showed that large lift and drag are
maintained and stall does not occur. Usherwood and Ellington
(2002a, 2002b) measured the aerodynamic forces on revolv-
ing real and model wings of various insects and a bird (quail)
and, for some of the cases, flow visualization was also
conducted. They found that large aerodynamic forces are
maintained by the attachment of the LEV for values of Re ≈
600 (mayfly) to 15 000 (quail) and for different wing plan
forms. These results further showed that the delayed-stall
mechanism is valid for most insects [R ranging from 2 mm
(fruit fly) to 50 mm (hawk moth)]. The delayed-stall mecha-
nism was confirmed by flow-field measurements on real
insects (Bomphrey et al., 2005) and by computational fluid
dynamics (CFD) analyses (Liu and Kawachi, 1998; Liu et al.,
1998; Wang, 2000a, 2000b; Lan and Sun, 2001; Sun and Wu,
2004). The flow-field measurement and CFD results also
explained how the LEV attachment could be maintained.
Dickinson, Lehman, and Sane (1999) and Sane and

Dickinson (2001) measured the aerodynamic forces on a
mechanical model of a fruit-fly wing in flapping motion. They
showed that when the translational velocity varies according
to a trapezoidal function with large accelerations at stroke
reversal and the wing rotation is advanced, in addition to the

large lift during the translational phase of a half-stroke (which
is due to the delayed-stall mechanism), large lift peaks occur at
the beginning and near the end of the half-strokes. Dickinson,
Lehman, and Sane (1999) suggested that the large lift peak at
the beginning of the half-stroke was due to the wake-capture
mechanism (see below) and that near the end of the half-stroke
was due to the effect of wing rotation. Ramamurit and
Sandberg (2002) and Sun and Tang (2002) simulated the
flows of model fruit-fly wings using the CFD method, based
on wing kinematics nearly identical to those used in the
experiment of Dickinson, Lehman, and Sane (1999). They
obtained qualitatively similar results to those of the experi-
ment. Sun and Tang (2002), on the basis of the computed
vorticity fields and vortex dynamics theory (Wu, 1981),
showed that the large force peak near the end of the half-
stroke can be explained by the generation of strong vorticity in
a short time due to the fast pitching-up rotation of the wing,
confirming the suggestion of Dickinson, Lehman, and Sane
(1999) (the “pitching-up rotation mechanism”). Their analysis
further showed that the large force peak at the beginning of the
half-stroke is mainly due to the added-mass effect that resulted
from the rapid translational acceleration of the wing (the
“rapid-acceleration mechanism”). Birch and Dickinson (2003)
measured the forces and flows of the model fruit-fly wing, and
by comparing the results of the first stroke (in the absence of
wake effects) with those of the fourth stroke (in the presence
of the wake of the prior strokes), they showed that the force
peak at the beginning of the stroke is partially contributed to
by the interaction between the wing and the wake left by the
previous strokes (the “wake-capture mechanism”). The wake-
capture phenomenon (an increase of the effective fluid
velocity due to the vortex wake shed by the previous stroke)
was first shown to exist for a two-dimensional wing in a
simplified flapping motion (Dickinson, 1994). A relatively
small portion of the large force peak at the beginning of the
half-stroke could have been produced by the wake-capture
mechanism.
In the above, four unsteady high-lift mechanisms have been

identified, i.e., the delayed stall, the rapid acceleration
(or added mass), the rapid-pitching-up rotation, and the wake
capture. However, it should be noted that the rapid-acceler-
ation and rapid-pitching-up-rotation mechanisms are signifi-
cant only in the case when acceleration at the beginning and
deceleration near the end of a stroke are very large (i.e., the
translational velocity varies as a trapezoidal function) and
the wing rotation is advanced, and that the lift enhancement by
the wake-capture mechanism is relatively small and limited to
a short time (Birch and Dickinson, 2003; Wu and Sun, 2005).
For many insects in free flight, the translational velocity of the
wing varies with time approximately according to a simple
harmonic function and the wing rotation is symmetrical
(Ellington, 1984c; Ennos, 1989; Dudley and Ellington,
1900a; Willmott and Ellington, 1997a; Fry, Sayaman, and
Dickinson, 2005; Liu and Sun, 2008; Walker, Thomas, and
Taylor, 2010). Under these conditions, the lift peak at the
beginning of the half-stroke would almost disappear, because
the acceleration there is not very large, and furthermore the
wing is conducting pitching-down rotation which acts to
decrease the lift (Sun and Tang, 2002). The lift peak near the
end of the stroke would be smaller, because the wing conducts

FIG. 5. Flow visualization of the LEVover a model hawk-moth
wing (smoke was released from the leading edge). From
Ellington, 1999.
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rapid pitching-up rotation at a much lower translational speed.
Thus most of the aerodynamic force would be produced in the
midportion of a half-stroke when translation velocity is
relatively high, by the delayed-stall mechanism. This has
been confirmed by several experimental and computational
investigations (Sun and Du, 2003; Wang, Birch, and
Dickinson, 2004; Fry, Sayaman, and Dickinson, 2005;
Ramamurit and Sandberg, 2007; Aono, Liang, and Liu,
2008). However, for insects with relatively low stroke ampli-
tude, e.g., for some honeybees, the translational phase, during
which the delayed-stall mechanism is acting, is relatively
short, and the other mechanisms are also important: measure-
ments on a dynamically scaled robot showed that the
kinematics of honeybee wings generate prominent force peaks
during the beginning, middle, and end of each half-stroke
(Altshuler et al., 2005). For insects in fast maneuvers,
different timing of wing rotation for the left and the right
wings is possibly employed to provide large control forces and
moments, and the other mechanisms might also play an
important role in generating the required forces and moments.
The wings of most insects are corrugated and, in flapping

motion, they undergo time-varying deformation (Ellington,
1984c; Ennos, 1989; Walker, Thomas, and Taylor, 2010).
Researchers have studied the structural properties of corru-
gated insect wings and have shown that corrugation gives a
flapping wing the advantages of low mass, high stiffness, and
low membrane stress, and that because of the arrangement of
the veins, in general, the flapping wing mainly has camber
deformation and spanwise twist deformation (Rees, 1975;
Newman and Wootton, 1986; Ennos, 1988), which is con-
firmed by the observation of freely flying insects (Ellington,
1984c; Ennos, 1989; Walker, Thomas, and Taylor, 2010).
Zhao et al. (2010) conducted an experimental study on
aerodynamic effects of wing deformation, using model wings
with “assumed” time-varying wing deformation and showed
that the deforming wing could generate forces nearly the same
as or even higher than the rigid model wing. Young et al.
(2009) conducted a computational study, using measured
time-varying wing deformation (wing twist and camber) of
a tethered locust in a wind tunnel, and showed that the power
economy in locust forward flight is significantly increased by
wing deformation. Du and Sun (2010) investigated the effect
of wing deformation (wing twist and camber) on aerodynamic
forces in freely hovering hoverflies, using the data of Walker,
Thomas, and Taylor (2010) on realistic wing deformation, and
showed that deformation increased the lift by about 10% and
drag by about 3%, and decreased the aerodynamic power
required to generate the lift by about 5%, compared with those
of the rigid flat-plate wing. They also showed that the lift
increase is mainly due to wing camber and the power
reduction is mainly due to wing twist. Although 10% lift
and 3% drag increases do not have a very large effect on flight
force balance, the effect on the power economy is not small: a
10% increase in lift, allied with a 5% reduction in aero-
dynamic power to generate that lift, could significantly
enhance flight performance. The results of both Young et al.

)2009 ) and Du and Sun (2010) showed that, although
deformation produces some quantitative changes in aerody-
namic forces and power requirements, the wing used the same

unsteady aerodynamic mechanisms as those of a rigid, flat-
plate wing to produce the forces.
In the above studies on deforming wings (Young et al.,

2009; Du and Sun, 2010; Zhao et al., 2010), wing corruga-
tions were not included. Du and Sun (2012) added corrugation
to the deforming hoverfly wing discussed above and showed
the following. When acting alone, the effect of wing defor-
mation is to increase the lift by about 9.7% and decrease the
torque (or aerodynamic power) by 5.2%, and the effect of
wing corrugation is to decrease the lift by 6.5% and increase
the torque by 2.2%. But when acting together, the wing
deformation and corrugation increased the lift by only ∼3%
and decreased the torque by ∼3%. That is, the combined
aerodynamic effect of deformation and corrugation is rather
small. Thus, wing corrugation is mainly for structural, not
aerodynamic, purposes. In computing or measuring the
aerodynamic forces, using a rigid flat-plate wing to model
the corrugated deforming hoverfly wing can be a good
approximation. In the existing studies on insect flight dynam-
ics, rigid flat-plate wings were employed to model real
insect wings.

C. Aerodynamic models for flight dynamics studies

When studying flight dynamics, one needs to know how the
aerodynamic forces and moments vary as functions of wing
and body motion, and models for computing aerodynamic
forces and moments are required. Aerodynamic models for
flight dynamics studies are generally divided into two areas:
simple aerodynamic models and CFD models.
Early simple models (Weis-Fogh, 1972) are the same as

those used for helicopter rotors and propellers, which are
based on quasisteady approximations. According to the
quasisteady approximation, the instantaneous aerodynamic
forces on a flapping wing are equal to the forces during steady
motion of the wing at an identical instantaneous velocity and
angle of attack (Ellington, 1984a). According to this method,
any time dependence of the aerodynamic forces arises from
the time dependence of the kinematics but not the fluid flow
itself. These quasisteady models fell short of calculating even
the required average lift for hovering, and substantial revision
of the quasisteady theory was therefore necessary (Ellington,
1984a). With the newly acquired insights into the unsteady
aerodynamics of insects’ flapping wings, researchers had
developed models which included the key unsteady-flow
mechanisms. Sane and Dickinson (2002) developed a revised
quasisteady model, which has been used in many flight
dynamics studies. In this model, the instantaneous forces
generated by a thin, flapping wing are represented as a sum of
four force components, each acting normal to the wing surface
(frictional force on the surface is neglected):

Finst ¼ Fa þ Ftrans þ Frot þ Fwc; (2)

where Finst is the instantaneous aerodynamic force on the
wing, Fa is the force due to the wing acceleration, i.e., due to
the added-mass effect, Ftrans is the instantaneous translational
force due to the translational mechanism of delayed stall, Frot
is the force due to wing rotation, and Fwc is the force due to
wake capture. The first term Fa is calculated for each blade
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element using the existing formula of added-mass force for
airfoils and integrated along the span of the wing to estimate
the added-mass force on a three-dimensional wing. The
second term Ftrans is obtained through the vector addition
of the mutually orthogonal lift and drag estimates from the
revolving-wing experiment (Dickinson, 1999):

CLðαÞ ¼ 0.225þ 1.58 sinð2.13α − 7.2Þ; (3)

CDðαÞ ¼ 1.92 − 1.55 cosð2.04α − 9.82Þ; (4)

where α is in degrees. For the third term Frot, a rotational force
coefficient is determined by subtracting the measured force of
a revolving wing without rotation from that of a revolving
wing with rotation, or alternatively determined from the
results of thin-airfoil theory (Fung, 1969):

Frot ¼ ρUΓrot; (5)

where Γrot is the rotational circulation, ρ is the fluid density,
and U is the translational velocity of the wing section; Γrot is
given by

Γrot ¼ Crotωc2; (6)

where ω is the angular velocity of the wing section, and the
rotational coefficient Crot is given by

Crot ¼ πð0.75 − x̂0Þ; (7)

where x̂0 is the nondimensional axis of rotation. The fourth
term Fwc is not given by Sane and Dickinson (2002); it is not
readily determined. Because the effect of wake capture is
relatively small and limited to a short time, this term is
neglected in flight dynamics studies that employ this model
(Dickson, Straw, and Dickinson, 2008; Faruque and Humbert,
2010a, 2010b). Pesavento and Wang (2004) and Berman and
Wang (2007) developed a model which is similar to that
of Sane and Dickinson (2002), but does not have the
wake-capture term and includes a viscous force term.
The above two models rely on experimental data to

determine the coefficients of the translational force due to
the delayed-stall mechanism. Zbikowski (2002), Yu, Tong,
and Ma (2003), Ansari, Zbikowski, and Knowles (2006), and
Zbikowski, Ansari, and Knowles (2006) developed semi-
analytical models with no empirical fixes. Awing section was
represented by a flat plate with separated flow at both leading
and trailing edges, and the Laplace equation for unsteady
inviscid flow was solved by modeling the wing section as an
array of sources or sinks (or alternatively by a conformal-
mapping method), while the separated flow was comprised
of “free” point vortices. A time-marching algorithm was
employed whereby a pair of point vortices—one each at
the leading and trailing edges—was introduced at each time
step and the wake due to the free vortices was convected (Yu,
Tong, and Ma, 2003; Ansari, Zbikowski, and Knowles, 2006).
Results of each section were integrated along the span of the
wing to obtain a flow solution for a three-dimensional wing
(Zbikowski, 2002; Ansari, Zbikowski, and Knowles, 2006). In
these semianalytical models, a LEV develops automatically

and the added-mass, wing-rotation, and wake-capture effects
are included. However, they are much more computationally
costly than the simple models discussed above, and further-
more the LEV development may not be very accurately
calculated because viscous effects are neglected and the axial
flow of the LEV is absent. Thus these models may not be very
suitable for flight dynamics analysis. However, because they
are analytical in nature and can clearly show the aerodynamic
contributions and the underlying flow physics of various flow
components, they are powerful in revealing aerodynamic-
force mechanisms (Yu, Tong, and Ma, 2003; Ansari,
Zbikowski, and Knowles, 2006).
CFD models directly solve the Navier-Stokes equations by

numerical methods to determine the aerodynamic forces and
moments (Liu and Kawachi, 1998; Wang, 2000a, 2000b; Sun
and Tang, 2002). The only assumptions made are that the flow
is incompressible and laminar. The flow speed is low (Mach
number about 0.02) and the characteristic length of an insect is
by about 2 orders of magnitude smaller than the wavelength of
the sound generated by the flapping wings, justifying the
incompressible-flow assumption. The Reynolds number of the
flows around the wing is low (Re ¼ 10 to 3000) and hence at
least in the near field the flow is laminar. Thus CFD models
capture all the unsteady and viscous flow phenomena and
calculate aerodynamic forces and moments with good accu-
racy. It is interesting to note that CFD methods were originally
developed to compute complex flows of aircraft, but because
of the lack of a proper turbulence model, separated flows,
wake flows, and many other complex flows of aircraft still
cannot be calculated. However, they can calculate the flow
around an insect wing with good accuracy because there is no
turbulence problem. The major disadvantages of CFD models
are that they are computationally costly and are difficult to
handle.

III. GOVERNING EQUATIONS AND THEORETICAL
MODELS

A. Governing equations

Equations of motion for a model insect with a body and N
rigid wings, with wing motion relative to the body prescribed,
were derived by Gebert, Gallmeier, and Evers (2002), but
simulations were not presented to validate the efforts. Sun,
Wang, and Xiong (2007) noted that the equations of Gebert,
Gallmeier, and Evers (2002) contain errors and cannot be used
and they rederived the equations. Dickson, Straw, and
Dickinson (2008) presented simulation efforts for the flight
dynamics of a model fruit fly. Their method used physics
engine software (similar to that used to make video games and
animated features) to model the body and wings, but equations
of motion were not presented. In the derivation by Gebert,
Gallmeier, and Evers (2002) and Sun, Wang, and Xiong
(2007), three right-handed frames of reference are used in the
derivation (Fig. 6): Frame ðxE; yE; zEÞ is an inertial frame
(a frame fixed on the Earth); xE is in the horizontal direction
and zE in the vertical direction. Frame ðxb; yb; zbÞ is a frame
fixed on the insect body with its origin at the center of mass of
the wingless body; xb and zb are in the longitudinal symmet-
rical plane, and yb points to the right side of the insect. Frame
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ðxw; yw; zwÞ is a frame fixed on each of the wings of the insect
with its origin at the root of the wing; xw is in the spanwise
direction, pointing to the wing tip, and zw is in the chordwise
direction, pointing to the trailing edge of thewing.With respect
to the inertial frame, the center of mass of the wingless body
moves at velocity vcg, and the body rotates at angular velocity
ωbd (the angular velocity of the wing relative to the body is
prescribed). LetFA be the total aerodynamic force,MA the total
aerodynamic moment about the center of mass of the body, m
the totalmass of the insect (bodymass pluswingmass),mwg the
mass of a wing, Ibd the matrix of moments and products of
inertia of the body, Rcg the vector of the center of mass of the
body relative to the Earth frame,Rh is the vector from the body
center of mass to the root of a wing, Rwg the vector from the
wing root to the center of mass of a wing, g the gravitational
acceleration, and t the time. Let bvcg, bωbd, and bFA, etc.,
represent the xb, yb, and zb components of vcg, ωbd, and FA,
etc., respectively. The equations of motion written in the frame
ðxb; yb; zbÞ are (Sun, Wang, and Xiong, 2007)

FA þmg ¼ m

�
dvcg
dt

þ ωbd × vcg

�
þ a1 þ b1; (8)

MA þ
XN
i¼1

h
mwg

�
Rh þRwg

�
× g

i
i

¼ ωbd × ðIbd þ cÞωbd þ ðIbd þ cÞ dωbd

dt
þ a2 þ b2; (9)

where the subscript b of bvcg, bωbd, and bFA, etc., has been
dropped for simplicity; expressions for a1, a2, b1, b2, and c are
given in the Appendix: a1 represents the inertial force of the
wing mass due to the rotation and angular acceleration of the
body, and b1 represents the inertial force of the wing mass due
to the rotational acceleration of the wings and the gyroscopic
force due to the wing and body rotations; a2 and b2 represent
the corresponding moments; c represents the time-varying
moments and products of inertia of the flapping wings with
respect to the body frame ðxb; yb; zbÞ. The second term on the
left-hand side of Eq. (9) is the moment about the center of mass
of the body due to theweight of thewings. Note that when there
are no flapping wings, mwg, a1, a2, b1, b2, and c are zero and
Eqs. (8) and (9) become the equations of rigid-bodymotion that
are widely used in aircraft flight dynamics (Johnson, 1980;
Etkin and Reid, 1996; Padfield, 1996).
The wing motion (flapping motion) with respective to the

body is prescribed. The independent variables in the equations
of motion are the velocity of the body center of mass vcg, the
angular velocity of the body ωbd, and the angles which
determine the orientation of the body; they are called state
variables. Because of the flapping motion of the wings, their
aerodynamic and inertial forces oscillate with a frequency
equal to the wing-beat frequency. Compelled by these forces,
the insect body has oscillations around its gross motion (flight
path), as observed in freely flying insects ( Ellington, 1984c;
Wakeling and Ellington, 1997; Hedrick and Daniel, 2006; Liu
and Sun, 2008). Therefore, the system is a nonlinearly time-
variant system. Letting x ¼ ½vcgωbd�T , the equations of motion
[Eqs. (8) and (9)] are ordinary differential equations of the
form

dx=dt ¼ fðx; tÞ: (10)

The aerodynamic force and moment vectors in Eqs. (8) and
(9), FA and MA, are determined by the Navier-Stokes
equations

∇ · u ¼ 0; (11)

∂u
∂t þ u · ∇u ¼ − 1

ρ
∇pþ ν∇2u; (12)

where u is the fluid velocity, p is the pressure, ρ is the density,
ν is the kinematic viscosity, ∇ is the gradient operator, and ∇2

is the Laplacian operator.
The motion (equilibrium flight and perturbation motion) of

an insect is governed by the equations of motion [Eqs. (8)
and (9)] coupled with the Navier-Stokes equations [Eqs. (11)
and (12)]. It should be noted that in deriving Eqs. (8) and (9)
the insect is assumed to have a rigid body and N rigid wings.
For some large insects, e.g., butterflies, there is relative motion
between the abdomen and the thorax (Betts and Wootton,
1988; Dudley, 1990), and furthermore the wing deformations

FIG. 6 (color online). Reference frames and sketch of insect
body and wings. ðXE; YE; ZEÞ is a frame fixed on the Earth.
ðxb; yb; zbÞ is a frame fixed on the insect body with its origin at
the center of mass of the insect body. ðxw; yw; zwÞ is a frame fixed
on the wing, with its origin at the wing root, the xw axis along the
wing span and the zw axis along the chordwise direction. Rcg is
the vector of the center of mass of the body relative to the Earth’s
frame;Rh is the vector of the wing root relative to the body frame.
Adapted from Sun, Wang, and Xiong, 2007.
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are relatively large (Sunada et al., 1993). In these cases, the
equations of motion need rederivation to include these factors.

B. Averaged model and linear theory

Similarly to a flying insect, a helicopter in forward flight [its
blade encounters periodically varying relative velocity and
hence produces periodic aerodynamic forces (Johnson, 1980)]
or an airplane with wings of high aeroelasticity (Bryson, 1994)
is also a nonlinear time-variant dynamic system. For such a
system, the oscillating mass distribution and the periodic
aerodynamic and inertial forces associated with the oscillating
wings (or rotation blades) can couple with the body’s natural
modes of motion. But if the frequencies of aeroelastic flutter
or blade rotation are sufficiently high compared to the
aircraft’s natural frequencies of motion, such a coupling is
unlikely to occur. In this case, the variations in forces at the
frequencies of the aeroelastic flutter or blade rotation will then
not exhibit resonance with the aircraft’s gross motion and one
may consider replacing the forces by wing-flutter-cycle (or
blade-rotation-angle) average forces, which might vary over
the time scale of the gross motion of the aircraft. This is the
basis of the averaged model introduced by Hohenemser
(1939) to simplify the flight dynamics of helicopters. This
model is now commonly used to make problems of stability
and control analytically tractable in rotary (Johnson, 1980;
Padfield, 1996) and fixed-wing (Bryson, 1994; Etkin and
Reid, 1996) aircraft. With this model, the equations of motion
become the equations of rigid-body motion, or Euler’s
equations of motion, which are widely used in aircraft flight
dynamics (Etkin and Reid, 1996):

Fþmg ¼ m
dv
dt

þ ω × v; (13)

M ¼ ω × I × ωþ I
dω
dt

; (14)

where F andM represent the aerodynamic force and moment,
respectively, and v is the velocity of the center of mass, ω is
the angular velocity of the body,m is the mass of the body, and
I is the matrix of moments and products of inertia of the body.
Now the system becomes an autonomous one, represented by
differential equations of the form dx=dt ¼ fðxÞ.
The majority of the existing studies on insect flight

dynamics (Taylor and Thomas, 2002, 2003; Schenato,
2003; Sun and Xiong, 2005; Deng, Schenato, and Sastry,
2006a; Zbikowski, Ansari, and Knowles, 2006) have
employed the averaged model, assuming that the wing-beat
frequency is relatively high compared to the insect’s natural
frequency of motion, and Eqs. (13) and (14) are used, instead
of Eqs. (8) and (9). Using the assumptions of the averaged
model, Eqs. (13) and (14) can be derived formally from
Eqs. (8) and (9). The derivation clearly shows the simplifi-
cation process of the averaged model: Let the overbar denote
the mean value (wing-beat-cycle average value) and the
symbol ∧ denote the difference between the instantaneous
and mean values (e.g., vcg ¼ v̄cg þ v̂cg). Taking the time
average (average over the wing-beat-cycle period) of
Eqs. (8) and (9) gives (Sun, Wang, and Xiong, 2007)

F̄A þmg ¼ m

�
dv̄cg
dt

þ ω̄bd × v̄cg þ ω̂bd × v̂cg

�
þ ā1 þ b̄1;

(15)

M̄A þ
XN
i¼1

½mwgR̄wg × g�i ¼ ω̄bd × Īb-wω̄bd þ ω̂bd × Īb-wω̂bd

þ ω̄bd × Īb-wω̂bd

þ ω̂bd × Îb-wωbd þ Īb-w
dω̄bd

dtþ

þ ā2 þ b̄2; (16)

where Īb-w and Îb-w are the mean and instantaneous values of
Ibd þ c, respectively. Becausemwg is generally about 2 orders
of magnitude smaller than m (Ellington, 1984b; Dudley,
2000), compared with the terms of insect weight (mg) and
inertial force [mðdvcg=dtþ ωbd × vcgÞ], ā1 in Eq. (15) can be
neglected. Similarly, the moment due to the weight of the
wings [the second term on the left-hand side of Eq. (16)] and
ā2 can be neglected. Because the wing-beat frequency is
assumed to be high, the fast oscillation of the body due to the
cyclic variations of forces and moments at the wing-beat
frequency, v̂ and ω̂, should be very small; thus terms like
ω̂bd × v̂cg can be neglected; similarly, terms like

ω̄bd × Īb-wω̂bd and ω̂bd × Îb-wωbd can also be neglected.
Sun, Wang, and Xiong (2007) performed a simulation for
the reduced system to quantify these terms. It turns out that
each of the product terms is Oð10−2Þ, meaning the product is
Oð10−4Þ, while the retained terms for the aerodynamic
acceleration are Oð10−1Þ, justifying the elimination of these
terms. As for b̄1 and b̄2, they represent the mean inertial force
and moment, respectively, of the wings due to wing accel-
eration and gyroscopic effects of the wing and body rotations.
There are acceleration and deceleration of the wing within
each downstroke (or upstroke), and moreover the rotation of
the wing in its upstroke is opposite to that in the downstroke.
When averaged over one cycle, the positive wing acceleration
and gyroscopic forces and moments approximately cancel
out their negative counterparts; thus b̄1 and b̄2 should be
approximately zero and can be neglected. The same simu-
lation quantified these terms toOð10−6Þ. As a result, Eqs. (15)
and (16) become

F̄A þmg ¼ m

�
dv̄cg
dt

þ ω̄bd × v̄cg

�
; (17)

M̄A ¼ ω̄bd × Īb-wω̄bd þ Īb-w
dω̄bd

dt
; (18)

which are the same as the Euler equations (13) and (14). Let
the xb, yb, and zb axes be so chosen that at equilibrium, the xb
and yb axes are horizontal; the xb axis points forward, and the
yb axis points to the right of the insect (Fig. 7). Let the xb, yb,
and zb components of the velocity v̄cg be u, v, and w,
respectively; those of ω̄bd be p, q, and r, respectively; those
of F̄A be X, Y, and Z, respectively; those of M̄A be L, M, and
N, respectively. Let Ix, Iy, and Iz be the moments of inertia
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about the xb, yb, and zb axes, respectively; Ixz is the product of
inertia. A system of Euler angles defines the orientation of the
body rotation to the Earth and is specified by the angles of
right-handed rotation about the three axes in the order zb (yaw,
ψ), then yb (pitch, θ), and then xb (roll, ϕ). With these
notations, Eqs. (17) and (18) and kinematical equations
governing the Euler angles may be expanded as a set of
eight coupled nonlinear ordinary differential equations (Etkin
and Reid, 1996; Taylor and Thomas, 2003; Zbikowski,
Ansari, and Knowles, 2006):

du
dt

¼ −ðwq − vrÞ þ X
m
− g sin θ; (19)

dv
dt

¼ −ruþ pwþ Y
m
þ g cos θ sinϕ; (20)

dw
dt

¼ qu − pvþ Z
m
þ g cos θ cosϕ; (21)

Ixx
dp
dt

− Ixz
dr
dt

¼ Lþ Ixzpqþ ðIyy − IzzÞqr; (22)

Iyy
dq
dt

¼ M − Ixzðp2 − r2Þ − ðIxx − IzzÞrp; (23)

−Ixz dpdt þ Izz
dr
dt

¼ N þ ðIxx − IyyÞpq − Ixzqr; (24)

_ϕ ¼ pþ tan θðq sinϕþ r cosϕÞ; (25)

_θ ¼ q cosϕ − r sinϕ. (26)

The equation governing ψ ,

_ψ ¼ 1

cos θ
ðq sinϕþ r cosϕÞ; (27)

is decoupled from the above equations and ψ can be solved
after Eqs. (19)–(26) are solved.
Now that an insect has the same equations of motion as

those of a rigid airplane, analysis methods used in the flight

dynamics of aircraft (Etkin and Reid, 1996; Cook, 1997) can
be readily applied to the flight dynamics of insects. The
methods use linear theory and the techniques of eigenvalue
and eigenvector analyses. The insects’ motion is assumed to
consist of small disturbances from a reference flight
condition of steady motion. The independent, state variables
are written as

x ¼ xe þ δx; (28)

where x is the state vector:

x ¼ ½u; v; w; p; q; r;ϕ; θ�T; (29)

the subscript e (for equilibrium) denotes the reference flight
condition, and the prefix δ denotes a small disturbing quantity.
Each of the six aerodynamic forces and moments are written
in the form

X ¼ Xe þ
∂X
∂u δuþ ∂X

∂v δvþ ∂X
∂w δwþ ∂X

∂p δpþ ∂X
∂q δq

þ ∂X
∂r δr; (30)

where ∂X=∂u, ∂X=∂w, etc., are partial derivatives, referred to
as aerodynamic derivatives (e.g., ∂X=∂u represents the incre-
ment in X when there is a unit increment in u). Incorporating
the small-disturbance notation into Eqs. (19)–(27) and drop-
ping any nonlinear terms in the disturbing quantities give the
linearized equations of motion. As a result of the linearization,
the longitudinal and lateral small-disturbance equations are
decoupled. For horizontal forward flight, the linearized
longitudinal-disturbance equations of motion are (Taylor
and Thomas, 2003)

2
666664
δ _uþ

δ _wþ

δ _qþ

δ_θþ

3
777775 ¼ A

2
666664
δuþ

δwþ

δqþ

δθ

3
777775; (31)

A ¼

2
666664
Xþ
u =mþ Xþ

w=mþ Xþ
q =mþ −gþ

Zþ
u =mþ Zþ

w=mþ Zþ
q =mþ þ uþe 0

Mþ
u =Iþy Mþ

w=Iþy Mþ
q =Iþy 0

0 0 1 0

3
777775; (32)

and the linearized lateral equations of motion are (Faruque and
Humbert, 2010b; Xu and Sun, 2013)

2
664
δ _vþ
δ _pþ

δ_rþ
δ _ϕ

3
775 ¼ A1

2
664
δvþ
δpþ

δrþ
δϕ

3
775; (33)
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FIG. 7. Definition of the state variables and sketches of the
reference frame. (a) Lateral view and (b) back view. ðxb; yb; zbÞ is a
frame fixedon the insect bodywith its origin at the center ofmass of
the insect body; the xb, yb, and zb axes are chosen so that at
equilibrium, the xb and yb axes are horizontal, the xb axis points
forward, and the yb axis points to the right of the insect. Themodel
insect is shownduring aperturbation (v,w,p,q, r,θ, andϕ are zero
at reference flight). Adapted from Zhang and Sun, 2011a.
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A1 ¼

2
64

Yþ
v =mþ Yþ

p =mþ Yþ
r =mþ − uþe gþ

ðIþz Lþ
v þ IþxzNþ

v Þ=ðIþx Iþz − Iþxz2Þ ðIþz Lþ
p þ IþxzNþ

p Þ=ðIþx Iþz − Iþxz2Þ ðIþz Lþ
r þ IþxzNþ

r Þ=ðIþx Iþz − Iþxz2Þ 0

ðIþxzLþ
v þ IxNþ

v Þ=ðIþx Iþz − Iþxz2Þ ðIþxzLþ
p þ Iþx Nþ

p Þ=ðIþx Iþz − Iþxz2Þ ðIþxzLþ
r þ Iþx Nþ

r Þ=ðIþx Iþz − Iþxz2Þ 0

0 1 0 0

3
75; (34)

where the overdot represents differentiation with respect to
time (t); ue is the forward-flight speed; Xu ¼ ∂X=∂u,
Xw ¼ ∂X=∂w, etc. (in equilibrium flight θ and ϕ are zero).
The variables have been nondimensionalized using c, U,
and c=U as reference length, velocity, and time, respec-
tively (c is the mean chord length of a wing; U is the mean
flapping velocity at the radius of the second moment of
wing area r2 and is defined as U ¼ 2Φnr2, where Φ is the
stroke amplitude and n is the wing-beat frequency):
Xþ ¼ X=0.5ρU2St (St is the area of two wings and ρ is
the fluid density); Yþ ¼ Y=0.5ρU2St; Zþ ¼ Z=0.5ρU2St;
Lþ ¼ L=0.5ρU2Stc; Mþ ¼ M=0.5ρU2Stc; Nþ ¼ N=
0.5ρU2Stc; tþ ¼ tU=c; mþ ¼ m=0.5ρStc; gþ ¼ gc=U2

(g is the gravitational acceleration); Iþx ¼ Ix=0.5ρStc3;
Iþy ¼ Iy=0.5ρStc3; Iþz ¼ Iz=0.5ρStc3; Iþxz ¼ Izz=0.5ρStc3;
uþ ¼ u=U; vþ ¼ v=U; wþ ¼ w=U; pþ ¼ pc=U;
qþ ¼ qc=U; and rþ ¼ rc=U. Aerodynamic derivatives
can be computed by solving the Navier-Stokes equations
[Eqs. (11) and (12)] or using the simple aerodynamic
models, or alternatively measured experimentally using
mechanical flappers. Setting ue in Eqs. (31)–(34) to zero
gives the linearized disturbance equations of motion for
hovering flight.
Equations (31) and (33) are solved using the techniques

of eigenvalue and eigenvector analyses to yield insights
into the dynamic flight stability (Etkin and Reid, 1996;
Taylor and Thomas, 2003). Letting xðtÞ represent the vector
½ δuþ δwþ δqþ δθ �T or ½ δvþ δpþ δrþ δϕ �T, the
general solution of Eq. (31) or (33) can be written in the
following form:

xðtÞ ¼
X4
j¼1

cjqjeλjt; (35)

where λj and qj ðj ¼ 1; 2; 3; 4Þ are the eigenvalues and
eigenvectors of A (or A1), respectively, and cj ðj ¼
1; 2; 3; 4Þ are constants determined by the initial conditions
(i.e., initial disturbances). A real eigenvalue and the corre-
sponding eigenvector (or a conjugate pair of complex eigen-
values and the corresponding eigenvector pair) represent a
simple motion called the natural mode of motion of the
system. The disturbance motion represented by Eq. (35) is a
linear combination of the natural modes of motion. To know
the dynamic stability properties of the system, one needs only
to examine the motions represented by the natural modes of
motion. In a natural mode of motion, the real part of the
eigenvalue determines the time rate of growth of the disturbed
quantities and the eigenvector determines the magnitudes and
phases of the disturbed quantities relative to each other.
A positive real eigenvalue results in an exponential growth
of each of the disturbed quantities, so the corresponding
natural mode is dynamically unstable (this is termed an

unstable divergent mode). A negative real eigenvalue results
in an exponential decay of the disturbed quantities and the
corresponding natural mode is dynamically stable (called a
stable subsidence mode). A pair of complex conjugate
eigenvalues, e.g., λ1;2 ¼ n̂� ω̂i, results in oscillatory time
variation of the disturbed quantities with ω̂ as its angular
frequency; the motion decays when n̂ is negative (dynamically
stable, a stable oscillatory mode) but grows when n̂ is positive
(dynamically unstable, an unstable oscillatory mode).
In Secs. IV–VII, the stability and control properties of

flying insects based on the above averaged model and linear
theory are examined, and a test of assumptions in the model
and theory by numerically solving the complete equations of
motion [Eqs. (8) and (9)] coupled with the Navier-Stokes
equations is discussed.

IV. HOVERING-FLIGHT STABILITY ANALYSIS

A. Aerodynamic derivatives and natural modes of motion

Sun and colleagues applied the averaged model and linear
theory to a study of the longitudinal stability in several
hovering insects (hoverfly, crane fly, dronefly, bumblebee,
and hawk moth) and the lateral stability in the hovering
dronefly and hawk moth (Sun and Xiong, 2005; Sun, Wang,
and Xiong, 2007; Zhang and Sun, 2010b). The mass of the
insects ranged from 11 to 1648 mg and the wing-beat
frequency from 26 to 157 Hz. They used the CFD method
to compute the aerodynamic derivatives which, to a large
extent, determine the dynamic properties of a flying insect.
The computed aerodynamic derivatives have the following

features. For longitudinal derivatives, Xþ
u and Zþ

w are negative,
their magnitude is large, and Mþ

u is positive and large; the
other derivatives Zþ

u , Xþ
w ,Mþ

w , Xþ
q , Zþ

q , andMþ
q are very small.

For lateral derivatives Yþ
v , Lþ

p , and Nþ
r are negative and their

magnitude is large, and Lþ
v is positive and large; the others

Nþ
v , Yþ

p , Nþ
p , Yþ

r , and Lþ
r are very small. These results show

that a longitudinal-disturbance motion mainly produces a
pitch moment (Mþ

u δuþ), a horizontal damping force
(Xþ

u δuþ), and a vertical damping force (Zþ
wδwþ), and a

lateral-disturbance motion mainly produces a roll moment
(Lþ

v δvþ) and a damping force and two moments: a side
damping force (Yþ

v δvþ), a roll damping moment (Lþ
p δpþ),

and a yaw damping moment (Nþ
r δrþ). Different insects have

similar nondimensional aerodynamic derivatives.
Some of the force and moment derivatives are very different

from those of airplanes and helicopters (Johnson, 1980;
Bryson, 1994; Etkin and Reid, 1996; Padfield, 1996). For
example,Mþ

u of an airplane is zero, but for a hovering insect, it
is rather large; Lþ

v of an airplane is negative, while for a
hovering insect, it is positive. Both an airplane and an insect
have three damping force derivatives and three damping
moment derivatives, but they produce the derivatives by
different mechanisms. Detailed discussions of how the
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derivatives are produced can be found in work by Sun and
Xiong (2005), Hedrick, Cheng, and Deng (2009), Zhang and
Sun (2010b), Cheng et al. (2010), and Cheng and Deng
(2011). As an example, discussion of how the u derivatives are
produced (Sun and Xiong, 2005; Cheng and Deng, 2011) is
given here. In equilibrium flight (hovering), the stroke plane is
almost horizontal. When the insect moves forward with Δuþ,
in the downstroke, the wing experiences a larger relative
velocity than that in the reference, or equilibrium, flight and its
drag is larger than the reference value, giving a decrease in Xþ.
In the upstroke, the wing experiences a smaller velocity than
that in the reference flight and its drag is smaller than the
reference value, also giving a decrease in Xþ. This explains
the negative Xþ

u , one of the damping-force derivatives. As for
the vertical force caused by the above changes in the relative
velocity, compared to the reference value, there is an increase
in lift in the downstroke, which gives a decrease in Zþ, and a
decrease in lift in the upstroke, which gives an increase in Zþ,
resulting in little change in Zþ. This explains the small Zþ

u .
Because the wing is above the mass center, the decrease in Xþ

results in a nose-up pitch moment, and because of the
unsteady-flow effects, the increase in Zþ in the downstroke
and the decrease in Zþ in the upstroke produce a couple,
which is also a nose-up pitch moment (Sun and Xiong, 2005),
explaining the large positive Mþ

u . This discussion also serves
to explain why different insects have similar nondimensional
aerodynamic derivatives: they have similar aerodynamic
configuration and wing kinematics, i.e., the wings flap back
and forth in a horizontal plane and the center of mass is below
the stroke plane.
As seen next, the two moment derivatives with respect to

translation velocity,Mþ
u and Lþ

v , the damping-force derivative
Zþ
w and the two lateral damping-moment derivatives Lþ

p and
Nþ

r are the major stability derivatives that determine the
natural modes of motion of a hovering insect. Mþ

u and Lþ
v

cause longitudinal and lateral instabilities, respectively. The
damping-moment derivatives make the instabilities weaker,
but they are not large enough to stabilize the unstable modes.
The computed eigenvalues are shown in Table I. Three

longitudinal natural modes of motion are identified for the five
insects: one unstable slow oscillatory mode, one stable fast
subsidence mode and one stable slow subsidence mode; and
three lateral natural modes of motion are identified for the
dronefly, bumblebee, and hawk moth: one unstable slow
divergence mode, one stable slow oscillatory mode, and
one stable fast subsidence mode. Despite the 1500-fold weight
difference, the insects have similar natural modes of motion.

Because of the unstable modes, the hovering flight of the
insects is dynamically unstable. Based on the eigenvalues,
the time for the initial disturbances to double (a time scale of
the instability) is 46–60 ms for the hoverfly, dronefly, and
crane fly and about 100 ms for the bumblebee and hawk moth
(when nondimensionalized by the wing-beat period, the time
for the initial disturbances to double is about 9–15 for the
hoverfly, dronefly, and bumblebee; about 2.5 for the crane fly
and the hawk moth).
From the computed eigenvectors, they observed that for the

longitudinal motion, the unstable oscillatory mode and the fast
subsidence mode has only forward-backward translation and
pitch rotation, and the slow subsidence mode has only vertical
translation. For the lateral motion, the unstable slow diver-
gence mode and the stable slow oscillatory mode has only side
translation and roll rotation, and the stable fast subsidence
mode has only yaw and roll rotations. That is, for the
longitudinal motion, the horizontal and pitching motions
are decoupled from the vertical motion. For the lateral motion,
in two of the three modes, side translation and roll rotation are
decoupled from yaw rotation and in the other mode, yaw and
roll rotations are decoupled from side translation. These
properties can be used for exploring the underlying physics
of the disturbed motion; we return to this in Sec. IV.B.
Also applying the averaged-model theory, Faruque and

Humbert (2010a, 2010b) studied the dynamic stability in a
hovering fruit fly, and Cheng and Deng (2010, 2011) studied
the dynamic stability in several hovering insects (fruit fly,
stalk-eyed fly, bumblebee, and hawk moth). Unlike Sun and
colleagues, they estimated the aerodynamic derivatives using
the simple aerodynamic model of Sane and Dickinson (2002),
discussed in Sec. II.C. Arguing that the “translational lift” is
the largest component, approximately 65%–85%, of an insect’s
lift production in hover and the most straightforward of the lift
mechanisms known to be active, they neglected the added-
mass, wing-rotation, and wake-capture terms of Eq. (2).
For the longitudinal motion of the model insects, the same

three natural modes of motion as those revealed by Sun and
colleagues were identified: one unstable oscillatory mode, one
stable fast subsidence mode, and one stable slow subsidence
mode; hence the longitudinal motion is unstable.
For the lateral motion, the natural modes of motion are as

follows: one stable slow subsidence mode, one stable slow
oscillatory mode, and one stable fast subsidence mode. The
first mode (a stable slow subsidence mode) is different from
that given by Sun and colleagues (an unstable slow divergence
mode). Thus, Faruque and Humbert (2010a, 2010b) and

TABLE I. Wing-beat-frequency nondimensionalized eigenvalues λ of hovering flight. HF, DF, BB, CF, and HM
represent hoverfly, dronefly, bumblebee, crane fly, and hawk moth, respectively. Results are from Sun and Xiong (2005),
Sun, Wang, and Xiong (2007), Zhang, Wu, and Sun (2012), and Xu and Sun (2013).

Longitudinal modes Lateral modes
λ1;2 ð1=sÞ λ3 ð1=sÞ λ4 ð1=sÞ λ1 ð1=sÞ λ2;3 ð1=sÞ λ4 ð1=sÞ

HF 0.074� 0.144i −0.171 −0.020
DF 0.073� 0.139i −0.165 −0.015 0.08 −0.09� 0.06i −0.51
BB 0.045� 0.129i −0.197 −0.012 0.09 −0.12� 0.07i −0.69
CF 0.330� 0.733i −0.865 −0.110
HM 0.269� 0.608i −0.747 −0.092 0.26 −0.57� 0.26i −5.68
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Cheng and Deng (2010, 2011) predicted that the lateral
motion was stable, while, as seen above, Sun and colleagues
predicted that the lateral motion was unstable (Zhang and Sun,
2010b; Zhang, Wu, and Sun, 2012). The Lv derivative (the roll
moment produced by unit side translation) calculated by Sun
and colleagues using the Navier-Stokes code is positive
(Zhang and Sun, 2010b; Zhang, Wu, and Sun, 2012), but
that calculated by Faruque and Humbert (2010b) and Cheng
and Deng (2011) using the simple aerodynamic model is
negative. A recent analysis by Xu and Sun (2013) showed that
it is the difference in the sign of Lv that has caused the
difference in the first lateral mode between the study of Sun
and colleagues and those of Faruque and Humbert (2010b)
and Cheng and Deng (2011). Xu and Sun (2013) also
explained what caused the sign difference in Lv. When there
is a side slip (δv), the insect experiences a lateral wind. The
chordal component of the lateral wind (the component of the
lateral wind that is perpendicular to the spanwise axis of a
wing) changes the relative velocity of a wing section. The
change in relative velocity of a section of the left wing is

different from that of the corresponding section of the right
wing, resulting in different aerodynamic forces on the left and
right wings. This is called the “changing-relative-velocity”
effect. On the other hand, the spanwise component of the
lateral wind (the component of the lateral wind that is parallel
to the spanwise axis of a wing) will change the axial velocity
of the LEV of the wing, increasing the axial velocity of the
LEV on one wing and decreasing that on the other. This will
make the LEVof one wing more concentrated than that of the
other wing (Fig. 8), also resulting in different aerodynamic
forces on the left and right wings. This is called the “changing-
LEV-axial-velocity” effect. The changing-relative-velocity
effect gives a negative contribution, and the changing-LEV-
axial-velocity effect gives a positive contribution to Lv.
Because the positive contribution by the changing-LEV-
axial-velocity effect is larger than the negative contribution
by the changing-relative-velocity effect, Lv is positive. The
simple aerodynamic model used by Faruque and Humbert
(2010b) and Cheng and Deng (2011) can take the changing-
relative-velocity effect into account, but not the changing-
LEV-axial-velocity effect; thus their Lv is negative, resulting
in the stable slow subsidence mode. Xu and Sun (2013)
suggested that if the simple aerodynamic model was modified
to include the changing-LEV-axial-velocity effect, Lv would
be positive and the resulting first lateral mode would be an
unstable divergence mode.

B. Reduced-order equations and physical interpretation of the
natural modes of motion

Of particular interest in the work of Sun and colleagues is
their notion that some of the natural modes of motion are
decoupled from the others (Sun and Xiong, 2005; Sun, Wang,
and Xiong, 2007; Zhang and Sun, 2010b). As a result of the
decoupling, the order of the equations of motion can be
reduced and approximate analytical expressions for the
eigenvalues can be obtained. The analytical expression of
an eigenvalue can clearly show the physics underlying the
corresponding natural mode of motion.
The longitudinal unstable oscillatory mode and the stable

fast subsidence mode have only forward-backward translation
and pitch rotation (Sun and Xiong, 2005; Sun, Wang, and
Xiong, 2007). Therefore, the vertical component of the force
equation can be neglected, δw in other equations can be set to
zero, and the longitudinal equations of motion [Eq. (31)] can
be simplified to

" δ _uþ
δ _qþ
δ_θ

#
¼

"Xþ
u =mþ Xþ

u =mþ −gþ
Mþ

u =Iþy Mþ
q =Iþy 0

0 1 0

#" δuþ
δqþ
δθ

#
; (36)

where the characteristic equation is

λ3 −
�
Xþ
u

mþ þMþ
w

Iþy

�
λ2 þ

�
Xþ
u Mþ

q

mþIþy
−Mþ

u Xþ
q

mþIþy

�
λþ gþMþ

u

Iþy
¼ 0.

(37)

The longitudinal stable slow subsidence mode has only
vertical translation and the equation of motion [Eq. 31] can
be simplified to

t=1.25^

Left Right

 

t=3.25^

 

t=5.25^

 

t=7.25^

 

FIG. 8. Vorticity plots at the 0.7R wing section at various times
for the left and right wings (solid and dashed lines indicate
positive and negative vorticities, respectively; the magnitude of
the nondimensional vorticity at the outer contour is 2 and the
contour interval is 3). Left column: results of the left wing; right
column: results of the right wing. The insect moves to its right at
Δv=U ¼ 0.1. The “lateral wind” due to the side motion of the
insect increases the axial velocity of the LEVon the left wing and
decreases that on the right wing, causing the LEVof the left wing
to be more concentrated than that of the right wing. Adapted from
Zhang, Wu, and Sun, 2012.
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δ _wþ ¼ Zþ
w

mþ δwþ; (38)

where the characteristic equation is

λ − Zþ
w=mþ ¼ 0. (39)

Solving Eqs. (37) and (39) and dropping some higher-order
small terms, they obtained the approximate analytical expres-
sions for the longitudinal roots as

λ1;2 ¼ n̂� iω̂; (40)

where

n̂ ≈
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ

u gþ

Iþy
3

s
ð1 − 2jÞ; (41)

ω̂ ≈
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ

u gþ

Iþy
3

s
; (42)

and

λ3 ≈ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ

u gþ

Iþy
3

s
ð1þ jÞ; (43)

with

j ¼ − 1

3

�
Mþ

q

Iþy
þ Xþ

u

mþ

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ

u gþ

Iþy
3

s
; (44)

λ4 ≈ Zþ
w=mþ: (45)

They further showed that j is considerably smaller than 1, i.e.,
the contributions of the damping moment Mq and damping
force Xu are negligibly small.
Equations (40)–(44) indicate that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mug=Iy3

p
plays a major

role in determining the longitudinal roots λ1;2 ð¼n̂� iω̂Þ and
λ3. That is, the unstable slow oscillatory mode and the stable
fast subsidence mode are mainly determined by the param-
eters Mu, g, and Iy. The physical interpretation of these two
natural modes of motion are as follows (Sun and Xiong, 2005;
Sun, Wang, and Xiong, 2007). First, we look at the unstable
slow oscillatory mode. Based on information given by the
eigenvectors, in this mode, δu and δq have the same sign most
of the time, and they lag δθ by a phase angle of about 100º
(Sun and Xiong, 2005; Sun, Wang, and Xiong, 2007).
Suppose that at the beginning δθ is zero and the insect moves
forward and pitches up, i.e., δu and δq are positive [Fig. 9(a)];
a positive moment (pitch-up moment)Muδu will be produced.
This moment will aid the pitching up: δθ increases to
some positive value, tilting the vertical force F0 backward
(F0 equals the insect weight mg) and resulting in a negative
horizontal force −F0 sinðδθÞ [Fig. 9(b)]. The negative hori-
zontal force will decrease the forward-motion velocity. After
δu is decreased to zero, it continues to become negative
because the negative horizontal force −F0 sin ðδθÞ is still in
action [Fig. 9(c)]. With δu being negative (the insect moving

backward), a negative moment (pitch-down moment) Muδu
will be produced [Fig. 9(c)], which will make the insect pitch
down; that is, δθ decreases [Fig. 9(d)]. When δθ decreases to
zero, the horizontal force becomes zero and the magnitude of
the negative δu; hence the pitch-down moment Muδu reaches
its maximum [Fig. 9(e)]. Afterward, δθ becomes negative,
tilting the vertical force F0 forward, resulting in a positive
horizontal force F0 sin ð−δθÞ [Fig. 9(f)]. The positive
horizontal force will first decrease the backward-motion
velocity to zero and then make the insect move forward
again [Figs. 9(f) and 9(g)]. This explains why the motion is
oscillatory. As seen above, the pitch-up rotation is accom-
panied by a forward translation (δu positive) and the pitch-
down rotation is accompanied by a backward translation (δu
negative). The forward translation will produce a pitch-up
moment (Muδu positive) that enhances the pitch-up rotation
and the backward translation will produce a pitch-down
moment (Muδu negative) that enhances the pitch-down
rotation. This causes the instability. Next, we look at the
stable fast subsidence mode. In this mode, δu and δq are out of
phase (Sun and Xiong, 2005; Sun, Wang, and Xiong, 2007):
when the insect moves forward, it pitches down and vice
versa. Suppose that at the beginning the insect has a positive
δθ, moves forward, and pitches down (δu positive and δq
negative). The positive moment produced by δu ðMuδu > 0Þ
tends to decrease the pitch-down motion; the negative hori-
zontal force −F0 sinðδθÞ will decrease the forward-motion
velocity, making the magnitudes of δu, δq, and δθ decrease
monotonically, explaining why this mode is stable.
From Eq. (45), it is seen that the stable slow subsidence

mode mainly depends on Zw and m. The physical interpre-
tation of why this mode is stable is straightforward: Zw is
negative (vertical damping), a positive δw disturbance (insect
moving downward) will produce a negative vertical force,
which opposes the downward motion, stabilizing the motion.
For the lateral natural modes of motion, similar derivation

gives the following simple expressions of the eigenvalues
(Zhang and Sun, 2010b):

λ1 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
v gþ

Iþx − Iþxz2=Iþz

3

s
þ Lþ

p

3ðIþx − Iþxz2=Iþz Þ
; (46)

λ2;3 ¼ n̂� iω̂; (47)

where

n̂ ≈
−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
v gþ

Iþx − Iþxz2=Iþz

3

s
þ Lþ

p

3ðIþx − Iþxz2=Iþz Þ
; (48)

ω̂ ≈
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
v gþ

Iþx − Iþxz2=Iþz

3

s
; (49)

λ4 ≈
1

2

�
Lþ
p

Iþx − Iþxz2=Iþz
þ Nþ

r

Iþz − Iþxz2=Iþx

�
þ Iþxz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ
pNþ

r

p
Iþx Iþz − Iþxz2

.

(50)

For the lateral unstable slow divergence mode, the expression
of λ1 [Eq. (46)] shows that Lv, g, and Lp play major roles in
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this mode. Lv and g are both positive; hence
ffiffiffiffiffiffiffiffi
Lvg3

p
is positive,

giving a destabilizing contribution (note that Ix − Ixz2=Iz is
positive); Lp, the roll damping, is negative, giving a stabilizing
contribution. The physical reason for the destabilizing effects
of

ffiffiffiffiffiffiffiffi
Lvg3

p
can be explained as follows (Zhang and Sun, 2010b).

Lv is the roll moment produced by side-motion velocity, and g
represents the weight or vertical aerodynamic force. In this
mode, based on information given by the eigenvectors, the
insect conducts horizontal side motion with its body tilted in
the same direction as that of the side motion (Zhang and Sun,
2010b). Suppose that at the beginning the insect moves and
tilts to the right, as illustrated by Fig. 10. The side motion
(δv > 0) will produce a moment Lvδv ð> 0Þ that will
enhance the roll and at the same time, the roll will tilt the
vertical force (equal tomg) to the right, which will enhance the
side motion, producing the destabilizing effect (the case of
translating and rolling to the left can be similarly explained).
The physical reason for the stabilizing effect of Lp is obvious:
Lp gives a damping moment. From the above discussion, we
see that because of the roll moment produced by the horizontal
side motion and the side force produced by the roll rotation,

the motion is unstable, and because of the effect of the roll
damping moment, the instability becomes relatively weak
(i.e., the divergence is relatively slow).
For the lateral stable slow oscillatory mode, the expression

of the real part of λ2;3 [Eqs. (47)–(49)] is similar to that of λ1,
except that the term involving Lv and g is negative (multiplied
by −1=2). Thus, in this mode, Lv and g, as well as Lp, give a
stabilizing contribution. Unlike in the unstable slow diver-
gence mode, in this mode the insect conducts horizontal side
motion with its body rolled to the opposite direction of the
side motion. Thus the moment produced by the side velocity is
in the opposite direction of the roll and the side force produced
by the roll is in the opposite direction of the side motion,
stabilizing the motion.
For the lateral stable fast subsidence mode, δp and δr are

the main variables. As seen from the expression for λ4
[Eq. (50)], Lp and Nr are both negative; hence each
term in the expression for λ4 produces a stabilizing effect
(note that Ixz is negative). The physical reason is clear: Lp and
Nr give damping moments. They also explained why this
mode is relatively fast. Based on information given by the

FIG. 9 (color online). Diagram (side view) of the body attitude (Δθ), forward-backward translation speed (Δu), pitch rate (Δq), and the
forces and moments, during the first cycle of the disturbed motion when the unstable slow oscillatory mode is excited. F0 is the total
aerodynamic force at equilibrium, F0 ¼ mg. The forward translation produces a pitch-up moment (MuΔu positive) that enhances the
pitch-up rotation and the backward translation produces a pitch-down moment (MuΔu negative) that enhances the pitch-down rotation,
causing the instability. Adapted from Sun and Xiong, 2005, and Sun, Wang, and Xiong, 2007.
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eigenvectors, in this mode the insect rotates about the long
axis of its body (δp and δr have approximately the same
magnitude but opposite sign, and the xb axis is about 45° from
the long axis of the body; hence the resultant angular velocity
is about the long axis of the body). The moment of inertia
about the long axis of the body is relatively small, while the

damping moments, represented by Lp and Nr, are relatively
large. This results in large decelerations in δp and δr, causing
δp and δr to die out very fast.

C. Test of the averaged model by direct numerical simulation

Numerical solution of the complete equations of motion
coupled with the Navier-Stokes equations can provide data to
test the validity of the averaged-model theory and the
linearization; moreover, it can extend the stability analysis
to nonlinear ranges. Requisite solution methods and codes
have been developed by Wu and Sun (2009), Liu et al. (2010),
and Zhang and Sun (2010b).
Zhang and Sun (2010b) and Zhang, Wu, and Sun (2012)

simulated the disturbed motions of two hovering model
insects and compared the results with the analytical solutions
given by the averaged model and by linear theory. They
considered only small disturbance motions so that the non-
linear effect would not appear in the direct numerical
simulation. Thus any discrepancy between the analytical
and numerical solutions is due to the averaged-model
assumption. The two model insects were a model dronefly
and a model hawk moth. The model dronefly represents
insects with relatively high wing-beat frequency (its wing-beat
frequency is about 160 Hz) and the model hawk moth those
with relatively low wing-beat frequency (its wing-beat fre-
quency is about 26 Hz). Typical results are presented in
Fig. 11. The averaged-model theory works well for the
dronefly [Fig. 11(a)]. But for the hawk moth, quantitative
differences exist between the theory and the simulation
[Fig. 11(b)]. They suggested that this is because the time
scale of the gross motion of the hawk moth is not much larger
than the period of the wing beat (based on Table I, the ratio of

q bc
/U

0 2 4 6 8 10

0

0.02 c

t/tw

θ b

0 2 4 6 8 10
0

0.5 d

u b/
U

0 2 4 6 8 10
0

0.1

0.2
Theory
Simulation

a

w
b/

U

0 2 4 6 8 10
0

0.1

0.2 b

q bc
/U

-0.2

0

0.2 c

w
b/

U

-0.2

0

0.2 b

u b/
U

-0.2

0

0.2

Theory
Simulation

a

t/tw

θ b

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

0.5

1 d

(a) (b) 

FIG. 11. Curves showing the comparison between simulation and the averaged-model theory for the longitudinal-disturbance motion
of (a) the model dronefly and (b) the model hawk moth. The initial disturbances are Δu ¼ 0.1 and Δw ¼ Δq ¼ Δθ ¼ 0, which simulate
a horizontal longitudinal gust (U is the mean flapping velocity). Adapted from Zhang and Sun, 2010b.

FIG. 10 (color online). Diagram of the body attitude (roll angle
Δγ), side translation speed (Δv), and roll rate (Δp), and the forces
andmoments during the disturbedmotionwhen the lateral unstable
slow divergence mode is excited (insect moving to the right, back
view). F0 is the total aerodynamic force at equilibrium, F0 ¼ mg.
Thesidemotion (Δv > 0)producesamomentLvΔv ð> 0Þ thatwill
enhance the roll and at the same time, the roll tilts the vertical force
(F0) to the right, whichwill enhance the sidemotion, producing the
destabilizing effects. Adapted from Zhang and Sun, 2010b.
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the period of the unstable oscillatory mode to the period of the
wing beat is only about 10 for the hawk moth; it is about 45 for
the dronefly). Nevertheless, the theory still correctly predicts
the trend of the dynamic properties of the motion of the hawk
moth. Compared with many other insects, the wing-beat
frequency of the hawk moth is relatively low and the
characteristic times of the natural modes of motion of the
body divided by the wing-beat period are relatively large. The
fact that the theory based on the averaged model can correctly
predict the trend of the dynamic properties of the hawk moth
suggests that it could do so for many insects.
Another approach to testing the validity of the averaged

model is to compare the solution given by the averaged model
and linear theory with that given by Floquet theory, which
does not average out the high-frequency oscillation. This is
discussed in Sec. IV.D.

D. Floquet stability analysis

As previously mentioned, because of the periodically
varying aerodynamic and inertial forces of the flapping wings,
an insect hovering or flying at a constant speed is a cyclically
forcing system, and generally the flight is not in a fixed-point
equilibrium but in a cyclic-motion equilibrium. Thus, when
studying the flight stability of an insect, in principle, one
should consider the stability of the periodic solution that
represents the “equilibrium flight.” But in the averaged model
used in the above studies, the cyclic-motion equilibrium was
reduced to a fixed-point equilibrium, and stability with respect
to this equilibrium point was considered.
Taylor and Zbikowski (2005) studied the dynamic flight

stability of locusts without assuming the equilibrium as a
fixed point. They used instantaneous force and moment
measurements from tethered locusts to parametrize the
equations of motion and developed a nonlinear time-periodic
model of the locusts. By numerically integrating the non-
linear equations in the model, they explored the stability
problem of the locusts. Because forces and moments
measured from real insects were used, some control
responses were necessarily included in the model. As a
result, the results they obtained were for a controlled system
not for an open-loop system. Therefore, their model cannot
provide information on the inherent stability of an insect.
Moreover, by numerical simulation, the study gave specific
solutions only for given initial data, while the general
stability properties cannot be obtained.
Wu and Sun (2012) treated the flight as a cyclic-motion

equilibrium and used the Floquet theory to analyze the
longitudinal stability of insect flight. Again, the hovering
flights of a model dronefly and a model hawk moth were
considered. The former has a relatively high wing-beat
frequency and a small ratio of wing mass to body mass,
and hence a very small amplitude of body oscillation, while
the latter has a relatively low wing-beat frequency and a large
ratio of wing mass to body mass, and hence a relatively large
amplitude of body oscillation (Wu, Zhang, and Sun, 2009).
They first numerically solved the complete equations of
motion coupled with the Navier-Stokes equations to obtain
the periodic solution of the hovering flight. Then they
perturbed the equations of motion about the periodic solution

and linearized, obtaining a system of linear ordinary differ-
ential equations with periodic coefficients:

d
dt

2
664
δu
δw
δq
δθ

3
775 ¼ AðtÞ

2
664
δu
δw
δq
δθ

3
775; (51)

where AðtÞ is the system matrix and each element of AðtÞ is a
periodic function of time with a period T (T ¼ 1=n, the wing-
beat period of the insect). On the basis of the Floquet theory
(Rugh, 1996), the general solution of Eq. (51) can be written
in the following form:

xðtÞ ¼
X4
j¼1

ajpjðtÞeρjt; (52)

where aj ðj ¼ 1; 2; 3; 4Þ are constants, pjðtÞ ðj ¼ 1; 2; 3; 4Þ
are periodic vector functions with T as the period, and ρj
ðj ¼ 1; 2; 3; 4Þ are the characteristic exponents of the system.
The stability of the periodic solution or the hovering flight is
determined by the sign of the real part of ρj ðj ¼ 1; 2; 3; 4Þ.
Their computed values of ρj ðj ¼ 1; 2; 3; 4Þ showed that for
each of the two model insects there is a pair of complex
characteristic exponents (ρ1;2) with positive real part and two
negative real characteristic exponents (ρ3 and ρ4). Because the
real part of ρ1;2 is positive, the periodic solution, or the
hovering flight, of the two model insects is unstable.
For comparison, they also made an analysis using the

averaged-model theory (fixed-point stability analysis). For
each of the insects, there are a pair of complex eigenvalues
(λ1;2) with positive real part and two negative real eigenvalues
(λ3 and λ4). Thus the Floquet theory and the averaged-model
theory predict three similar natural modes of motion: one
unstable slow oscillatory mode, one stable fast subsidence
mode, and one stable slow subsidence mode. There are only
quantitative differences between the two theories for the
model hawk moth: the growth and decay rates of the modes
obtained by the Floquet theory [(real) ρ1;2 ¼ 0.199,
ρ3 ¼ −0.747, and ρ4 ¼ −0.103] are different from those of
the averaged-model theory [(real) λ1;2 ¼ 0.253, λ3 ¼ −0.715,
and λ4 ¼ −0.094] by 4%–21%. For the model dronefly, the
two theories give almost identical results.
These results further show that the averaged model works

well for the dronefly, and that for the hawk moth, although
there are quantitative differences in results between the
averaged-model theory and the Floquet theory, the aver-
aged-model theory can correctly predict the trend of the
dynamic properties of the disturbed motion.

E. Applicability of the linearization

Besides averaging over the wing-beat cycle, another major
simplification in the stability theories discussed earlier is the
linearization of the equations of motion. In the linearization,
each of the six aerodynamic forces and moments is approxi-
mated by a linear function of the disturbed-state variables, and
nonlinear terms in the disturbed quantities are dropped from
the equations. In principle, the small-disturbance theory
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should work only for calculations where the disturbances are
infinitesimal. But in practice it has been found to give good
results for calculations where the disturbances are not very
small (Dickson et al., 2010; Zhang and Sun, 2010b, 2010c;
Cheng, Deng, and Hedrick, 2011). For example, comparison
between the theory and simulation using complete equations
of motion coupled with Navier-Stokes equations shows that
under a horizontal gust of velocity equal to 0.3U (30% of the
mean flapping velocity), results of the theory are still in good
agreement with those of the simulation (Zhang and Sun,
2010b). Experiments by Dickson et al. (2010) and Cheng and
Deng (2011), using a dynamically scaled, flapping winged
robotic model, showed that the aerodynamic torques vary
linearly with each of the three angular velocities, even at a
rather high value of the angular velocity, e.g., 35º per wing
stroke. This partially explains the above results.
A systematic study on why the theory gives good results

for motion under a relatively large disturbance should be
conducted in future work.

F. The effect of wing deformation

The model employed in the above analyses of insect
flight stability and control assume rigid flat-plate wings
(Sun and Xiong, 2005; Hedrick, Cheng, and Deng, 2009;
Faruque and Humbert, 2010a, 2010b). As far as the present
author knows, there is no formal quantitative study or
even qualitative discussion about the effect of wing deforma-
tion on flight dynamics stability. However, examination of
the existing data on wing deformation could shed light on the
problem. Because of the arrangement of the veins of a
wing (or the pattern of wing corrugation), in general, a
flapping insect wing mainly has camber deformation and
spanwise twist deformation (Rees, 1975; Newman and
Wootton, 1986; Ennos, 1988). Quantitative measurement in
freely flying droneflies and dragonflies (Wang, Zeng, and Yin,
2002; Walker, Thomas, and Taylor, 2010) and computation by
fluid and structure coupling in hovering hawk moths (Nakata
and Liu, 2012) showed that in the midportion of a downstroke
or upstroke, where the major part of the aerodynamic force is
produced, the camber is less than 8% of the wing chord, and
that along the outer 80% of the wing length the twist is less
than 25º. That is, at equilibrium flight the deformation is
relatively small. During small-disturbance motion, the aero-
dynamic force on the wing has changes of small order and the
inertial force of the wing mass does not change (Sun and
Xiong, 2005; Faruque and Humbert, 2010a, 2010b; Cheng
and Deng, 2011). As a result, the changes in deformation
during disturbed motion are small at a higher order. Therefore,
deformation produces negligibly small variations in aerody-
namic force during the disturbed motion and hence cannot
affect the stability properties.

V. FORWARD-FLIGHT STABILITY ANALYSIS

The majority of the present studies on insect flight stability
are for hovering flight, and there are only limited works on
forward-flight stability. An obvious reason for this is that
hovering flight is a very important type of flight and is
relatively simple, yet representative of insect flight. Another

possible reason is that complete wing kinematic descriptions
of free forward flight are very few. Bumblebees and hawk
moths are the only insects in which the most complete wing
kinematic descriptions of free forward flight have been
measured (Dudley and Ellington, 1990b; Willmott and
Ellington, 1997a). It should be noted that even in these cases,
the angle of attack of a wing and its variations along the wing
span (i.e., wing twist) at stroke reversal were not accurately
measured.
Taylor and Thomas (2003) studied dynamic flight stability

in the desert locust Schistocerca gregaria at one flight speed,
employing the averaged-model theory. This was the first
attempt to conduct a formal quantitative study of the dynamic
stability in a flapping-flying animal. They measured the
aerodynamic forces and moments of the locust tethered in
a wind tunnel to obtain the aerodynamic derivatives. They
identified three natural modes of motion: one stable sub-
sidence mode, one unstable divergence mode, and one stable
oscillatory mode. Because their experimental approach
(i.e., using real insects) necessarily included some control
responses, the aerodynamic derivatives they measured are not
the inherent (or passive) stability derivatives, but stability
derivatives with some control effects. As a result, these natural
modes of motion are unlikely to represent the inherent
stability properties of the forward-flying locust. Never-
theless, their work pioneered a formal quantitative analysis
of dynamic stability in a flying insect.
Xiong and Sun (2008, 2009) applied the averaged-model

theory to investigate the longitudinal flight dynamics of level
forward flight in a bumblebee. The stability analysis was
conducted at various flight speeds, ranging from 0 to 4.5 m=s
(the advance ratio J ranging from 0 to 0.57; J is defined as the
ratio of flight speed to the mean tip speed of the wing in the
flapping motion). Wing kinematics of freely flying bumble-
bees measured by Dudley and Ellington (1990b) were used for
the equilibrium flight at each flight speed. The CFD method
was used to compute the aerodynamic derivatives in the
system matrices. The computed eigenvalues show the follow-
ing. At slow forward-flight speeds of less than 1.0 m=s, the
natural modes of motion are qualitatively similar to those of
the hovering flight: one unstable oscillatory mode, one stable
fast subsidence mode, and one stable slow subsidence mode.
Because of the unstable oscillatory mode, the flight is
unstable. At medium forward-flight speeds of 2.5 and
3.5 m=s, the eigenvalues exist in two pairs and both have
negative real parts of very small magnitude. The flight is
approximately neutrally stable in longitudinal motion. Finally,
at a high speed of 5.7 m=s, the modal structure contains four
real eigenvalues: two stable and two unstable, and the
magnitude of one of the positive eigenvalues is quite large.
The flight is strongly unstable (the initial disturbance doubles
its value in only 3.5 wing beats). Furthermore, they found no
decoupling between the natural modes of motion in forward
flight. The results differ from those presented by Taylor and
Thomas (2003), which predicted a modal structure identical to
that in the hovering flight. As noted, the Taylor and Thomas
(2003) results may not represent the inherent stability proper-
ties of the forward-flying locust.
Xu and Sun (2013) extended the above work on bumble-

bees to a lateral stability analysis. At slow forward-flight
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speeds of less than 1.0 m=s, the natural modes of motion are
qualitatively similar to those of a hovering flight: one unstable
slow divergence mode, one stable slow oscillatory mode, and
one stable fast subsidence mode. Because of the unstable slow
divergence mode, the flight is unstable. At medium forward-
flight speeds of 2.5 and 3.5 m=s, the modal structure is similar
to those at the lower speeds, but the eigenvalue of the first
mode is close to zero. The flight becomes approximately
neutrally stable in lateral motion. At a high speed of 5.7 m=s,
the modal structure is also similar to those at the lower speeds,
but the first eigenvalue becomes negative or the first mode
becomes a stable slow subsidence mode. The flight is stable in
lateral motion. Similarly to the case of longitudinal motion,
they found no decoupling between the lateral modes. As
discussed, the instability at hovering is mainly caused by the
roll moment produced by a sideways wind made by the lateral
movement of the bee; Xu and Sun (2013) showed that as the
bee flies faster, the wings “bend” toward the back of the body,
reducing the effect of the sideways wind and increasing the
stability of its flight.
In summary, these investigations on bumblebee forward

flight show that, at low forward-flight speeds, flight is weakly
unstable (because both longitudinal and lateral disturbance
motions have a slow unstable mode); at medium forward-
flight speeds, flight is approximately neutrally stable; at high
forward-flight speeds, the flight is strongly unstable (because
one of the longitudinal modes is strongly unstable, even if the
other longitudinal modes and all lateral modes are stable). It is
interesting to note that bumblebees are more unstable when
they hover than when they fly forward at low to medium
speeds.
Because there is no decoupling between the natural modes

of motion in forward flight, approximate analytical expres-
sions for the eigenvalues like those for hovering flight are not
available for interpretation of the physics of the stability
properties. Other approaches should be explored in the future
to give insight into the underlying physics of the natural
modes of motion.
Unlike the case of hovering flight for which a stability

analysis has been made for a number of species by several
groups, analyses on forward-flight stability at a series of flight
speeds have been made only for bumblebees. For other
insects, the modal structure and its variation as functions of
flight speed could be different. For instance, when examining
the effect of aerial turbulence on forward-flight performance
and maximum flight speed in wild orchid bees, Combes and
Dudley (2009) found that the bees’ flight exhibits severe
lateral instability at high flight speeds; however, for bum-
blebees at high flight speeds, the above stability analysis
predicts strong longitudinal instability. Further studies on
flight dynamic stability at forward flight are required in the
future.

VI. STABILIZATION CONTROL ANALYSIS

The stability studies described showed that for many insects
at hovering flight and for bumblebees at hovering or at each of
the forward-flight speeds considered, there exists at least one
unstable, or neutrally stable, natural mode of motion. As a
result, the flight is generally inherently unstable. If the insects

did not use sensory information to control their inherent flight
dynamics, they would quickly crash. The main advantage of
being inherently unstable is that this enhances maneuverabil-
ity, but it also requires the insect to have a fast response and
move its controls constantly to stabilize the flight. In fact, one
of the functions of an insect’s control systems is to provide
stability (Dudley, 2000; Balint and Dickinson, 2001;
Taylor, 2001).

A. Controllability analysis

A few research groups added control-force terms into the
linearized disturbance equations of motion [Eqs. (31) and
(33)] and studied the controllability (or reachability) of
hovering flight (Sun and Wang, 2007; Cheng and Deng,
2010; Humbert and Faruque, 2011; Zhang and Sun, 2011a).
Controllability characterizes the amount of control one has
over the state of a system through the choice of input.
When control is applied, the expression for each of the six

forces and moments is changed from Eq. (30) to

X ¼ Xe þ
∂X
∂u δuþ ∂X

∂v δvþ � � � þ ∂X
∂c1 δc1þ

∂X
∂c2 δc2þ � � � ;

(53)

where c1, c2, etc., refer to the control variables and ∂X=∂c1,
∂X=∂c2, etc., are partial derivatives and termed control
derivatives (e.g., ∂X=∂c1, denoted as Xc1, is the increment
in X when there is a unit increment in c1). For the longitudinal
motion the disturbance equations of motion become (Taylor
and Thomas, 2003)

2
664
δ _uþ
δ _wþ

δ _qþ
δ_θþ

3
775 ¼ A

2
664
δuþ
δwþ

δqþ
δθ

3
775þ Bc; (54)

where c is the control vector, c ¼ ½c1; c2;…; �T , and

B ¼

2
6664
Xþ
c1=m

þ Xþ
c2=m

þ � � �
Zþ
c1=m

þ Zþ
c2=m

þ � � �
Mþ

c1=I
þ
y Mþ

c2=I
þ
y � � �

0 0 � � �

3
775. (55)

Many freely flying insects have been observed to control
their flight by changing stroke amplitude (Φ), mean stroke
angle (ϕ̄), downstroke (αd) and upstroke (αu) angles of attack,
wing-rotation time (Δtr), and rotation timing (Ellington,
1984b; Ennos, 1989; Fry, Sayaman, and Dickinson, 2003;
Zhang and Sun, 2010a). Freely flying fruit flies were observed
to control their flight by changing the stroke-plane angle (β) in
addition to Φ, ϕ̄, αd, αu, Δtr, and wing-rotation timing (Fry,
Sayaman, and Dickinson, 2005). Thus the longitudinal control
changes are δΦ, δϕ̄, δα1, δα2, etc. (δΦ and δϕ̄ represent
changes in Φ and ϕ̄ from their equilibrium values, respec-
tively; δα1 represents an equal change in αd and αu from their
equilibrium values and δα2 represents a differential change in
αd and αu from their respective equilibrium values). The
lateral control changes are δΦa, δα1a, δα2a, etc. δΦa represents
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an asymmetrical change in Φ of the left and right wings, e.g.,
δΦa ¼ 10° means that Φ of the left wing increases by 5º and
that of the right wing decreases by 5º from the equilibrium
value. δα1a represents the following variation in wing angle of
attack: αd and αu of the left wing both increase by jδα1aj=2
and those of the right wing decrease by jδα1aj=2 from their
respective equilibrium values. δα2a represents the following
variation in wing angle of attack: for the left wing, αd
increases and αu decreases by jδα2aj=2 from their respective
equilibrium values; for the right wing, αd decreases and αu
increases by jδα2a

����=2 from their respective equilibrium values.
Control derivatives with respect to each control variable can

be measured using a dynamically scaled robotic model [as by
Dickson et al. (2010)], or computed using the CFDmethod [as
by Sun and Wang (2007)] or the simple aerodynamic model
discussed in Sec. II.C [as by Humbert and Faruque (2011)].
The measured (Dickson et al., 2010) and computed (Sun and
Wang, 2007; Cheng and Deng, 2011; Humbert and Faruque,
2011; Zhang and Sun, 2011a) longitudinal control derivatives
at a normal hovering condition indicate that a change in stroke
amplitude (δΦ) and/or an equal change in the angles of attack
of the downstroke and upstroke (δα1) mainly produces a
change in vertical force (the magnitude of Zþ

Φ is much greater
than those of Xþ

Φ and Mþ
Φ and the magnitude of Zþ

α1 is much
greater than those of Xþ

α1 and Mþ
α1), a change in mean stroke

angle (δϕ̄) mainly produces a change in pitching moment, and
a differential change in the angles of attack of the downstroke
and upstroke (δα2) mainly produces a change in horizontal
force. The corresponding lateral control derivatives show that
an antisymmetrical change in stroke amplitude (δΦa) or an
antisymmetrical change in angle of attack with equal change
in αd and αu (δα1a) mainly produces a change in roll moment,
and an antisymmetrical change in angles of attack with
differential change in αd and αu (δα2a) mainly produces a
change in the yaw moment. These results tell us that at normal
hovering each control variable mainly produces a force or a
moment in one direction, i.e., the control variables are
approximately uncoupled.
With control derivatives determined, the flight control-

lability was then analyzed by using the modal decomposi-
tion method. In this method (Bryson, 1994; Stevens and
Lewis, 2003), a linearly dynamic system is transformed into
modal coordinates. When the system is in modal coordi-
nates one can immediately see whether or not a mode can
be controlled, and if it can, by which controls. Sun and
Wang (2007), Cheng and Deng (2011), and Zhang and Sun
(2011a) studied the controllability of hovering flight in
hoverflies, fruit flies, and droneflies. Φ, ϕ̄, and α were taken
as control variables, and the results were as follows. For
longitudinal motion, the unstable slow oscillatory mode can
be controlled by δϕ̄ or δα2 and the stability of the weakly
stable mode can be augmented by δΦ and δα1. For lateral
motion, the unstable mode can be controlled and the
stability of the weakly stable mode can be augmented by
any two of δΦa, δα1a, and δα2a. Humbert and Faruque
(2011) studied the longitudinal controllability of a hovering
fruit fly. They took δΦ, δϕ̄, δβ, δα1, and δα2 as control
variables and demonstrated that controllability is achieved
through the choice of two of these control inputs.

Liu et al. (2010), by numerically solving the complete
equations of motion coupled with the Navier-Stokes equations
and by trial and error, showed that a cycle-by-cycle manipu-
lation of just three wing-kinematical parameters (Φ, ϕ̄, and β)
could stabilize longitudinal flight.
These controllability analyses show that although unstable,

the hovering flight of insects is controllable, and that there are
redundant control variables. The studies discussed above are
limited to hovering flight. Formal quantitative studies on
controllability at forward flight need to be made in the future.

B. Closed-loop control analysis

Controllability considers only the “outer” open-loop
dynamics of the insects [the equations of motion, e.g.,
Eq. (31), modeled only the dynamics and aerodynamics of
the body and wings and contained no information on the
sensors, neural circuits, and muscles]. These studies show
only whether or not the flight is controllable, and which
control variables can best control an unstable or weakly stable
mode, but cannot tell us how the controls are applied to
stabilize the flight. How an insect stabilizes its flight is
determined by the coupling between its “inner” control
systems (sensory system and neuron-motor control system)
and the outer dynamics. At present, wing and body aerody-
namics and dynamics are relatively well understood and
modeled (as seen in Secs. II–V), but it is not so for the inner
control systems. Insect sensors are well studied and are well
understood in physiological detail, but not at a broader
functional level (Dudley, 2000; Land and Nilsson, 2002;
Taylor and Krapp, 2007). Many components of the internal
control system, e.g., neural circuitry and wing-hinge mechan-
ics, are still poorly understood (Dickson, Straw, and
Dickinson, 2008) and are being actively investigated
(Balint and Dickinson, 2001; Tammero and Dickinson,
2002; Sherman and Dickinson, 2003; Kern et al., 2005;
Sane et al., 2007; Straw, Lee, and Dickinson, 2010;
Rohrseitz and Fry, 2011; Krishnan et al., 2012). Despite
these limitations, some attempts have been made to under-
stand how flying insects control and stabilize their flight, by
combining recordings of insects’ closed-loop free-flight
behaviors and the open-loop dynamics with simple models
of sensory systems and sensory-motor responses (Dickson,
Straw, and Dickinson, 2008; Ristroph et al., 2010; Cheng and
Deng, 2011).
Dickson, Straw, and Dickinson (2008) presented a frame-

work for simulating the flight dynamics and control strategies
of flies, which consisted of five main components: a model of
body dynamics, a model of aerodynamic forces and moments,
a sensory systems model, a control model, and an environment
model (see the block diagram in Fig. 12). In modeling the
body dynamics, the two-winged insect was represented by a
system of three rigid bodies connected by a pair of actuated
ball joints (similar to that shown in Fig. 6). For the aerody-
namic model, a simple aerodynamic model of Sane and
Dickinson (2002) discussed in Sec. II.C was employed.
The sensory model focused on two key sensory systems,
the visual system and the halteres, with the former proving
information concerning the presence of approaching obstacles
or distant targets (navigation) and the latter providing
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information on the rate of change of key variables such as
pitch, roll, and yaw angles. The control model consisted of a
set of control laws specifying the behavior of the insect with
regard to sensory inputs, providing a means by which the
outputs of the sensory system modulated the wing kinematics.
In the environment model, arbitrary visual surroundings were
simulated by a computer graphics engine, and physical
features such as wind gusts could be added; the model
provided input to both the sensory systems and the aerody-
namic model. Because the flight control mechanisms and
neuron-motor physiology in real insects are poorly understood
at present, the control model in the framework is coarsely
represented. Nevertheless, this simulation framework is valu-
able in that it provides a quantitative test bed for examining the
possible control strategies employed by flying insects. Similar
work have been done to model a micromechanical flying
insect (Schenato, 2003; Deng, Schenato, and Sastry, 2006a,
2006b), a small fixed-wing aircraft (Beyeler et al., 2006), and
a hovercraft (Serres et al., 2006).
Ristroph et al. (2010) studied the stabilization control of

fruit flies at near hover by combining thoughtful experiment
and model simulation. This work can be considered as an
example of application of the simulation framework given by
Dickson, Straw, and Dickinson (2008). First, they applied
yaw-torque impulses to freely flying fruit flies (Drosophila
melanogaster) in slow-speed flight and measured the body
yaw-angle and wing-motion variation using high-speed video
and a motion tracking method (Ristroph et al., 2009),
obtaining the overall response properties of the insects.
Then they formed a simulation model that included the body
dynamics, wing aerodynamics, angular rate sensing system,
and a controller that specified the relation between the output
of sensory systems and the input to the wing-motion system.
Finally, by comparing the measured closed-loop behaviors
with the results of the simulation model, they tested some of
the uncertain components of the simulation model and
determined the time constant in the model of the sensory
system and the parameters in the model of neural circuitry.

In the behavioral-response measurement, at t ¼ 0, the
yaw-torque impulse was applied for about one wing beat
(the wing-beat period is 4.5 ms). They found that at about
3.5 wing beats the fly experiences its maximal deflection in
yaw angle (ψ), and then ψ decreases from its maximal
deflection to approximately zero monotonically, in about
6.5 wing beats. Measured wing-kinematical data show that
the recovery is controlled by asymmetrically adjusting the
angles of attack of the left and right wings, i.e., using control
input δα2a. The control starts at t ≈ 2.5 wing beats, showing
that the delay time of the sensory-motor response (neural
latency and inertia of the sensors and motor) is about 10 ms.
In the simulation model, only the yaw rotation (rotation

about a vertical axis passing the center of mass of the body)
was considered and other motions were neglected. The body
yaw dynamics was described by

Iψ̈ ¼ Naero þ Next; (56)

where I was the yaw moment of inertia of the insect body,
Naero was the aerodynamic yaw torque, and Next was the
applied torque impulse. Naero had two parts: One was due to
the disturbed motion and could be written as N _ψ _ψ , where N _ψ

was the yaw damping derivative. The other was due to active
control by adjusting the wing angle of attack, and can be
written as Nαδα2a, where Nα was the control derivative
representing the yaw moment produced by a unit asymmet-
rical change in the angles of attack of the left and right wings.
Equation (56) can be written as

Iψ̈ ¼ N _ψ _ψ þ Nαδα2a þ Next. (57)

The wing aerodynamic model used to compute N _ψ and Nα

was the simple aerodynamic model of Sane and Dickinson
(2002), the same as that used by Dickson, Straw, and
Dickinson (2008). The sensory system for the stabilization
control was considered to be the halteres for the following
reasons. As observed from the measured data, the body
motion was a yaw rotation and the delay time of the
sensory-motor response was very short (only about 10 ms).
Anatomical, mechanical, and behavioral evidence indicated
that the halteres serve as detectors of body angular velocity
that quickly trigger muscle action (Pringle, 1948; Sandeman
and Markl, 1980; Dickinson, 1999). Here the input of the
halteres was the yaw rate _ψ . The controller, which related the
sensed yaw rate _ψ to the change in wing kinematics (δα2a),
was modeled and tested as follows. They first modeled it by a
minimal linear-control model containing a term proportional
to the integral over time of _ψ :

δα2a ¼ K1ψðt − ΔtÞ; (58)

whereΔtwas the response delay time and its value was known
from the measurement (2.5 wing-beat periods or about 10 ms).
They found that this control law [Eq. (58)] was used, the
simulation model failed to match the yaw data. They then
changed to a proportional-plus-derivation (PD) scheme:

δα2a ¼ K1ψðt − ΔtÞ þ K2 _ψðt − ΔtÞ. (59)
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FIG. 12. Block diagram illustrating the overall architecture of the
simulation framework which simulates the flight dynamics and
control strategies of flies. The framework consists of five main
components: a model of body dynamics, a model of aerodynamic
forces andmoments, a sensory systemsmodel, a controlmodel, and
an environment model. Adapted from Dickson, Straw, and
Dickinson, 2008.
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With this control law, they arrived at a good match to the
yaw data.
This study shows that in its stabilization of the yaw motion,

the sensory-motor circuit of the fruit flies can be modeled by a
linear-control model with a PD scheme that feeds back to all
state variables (here ψ and _ψ) with a delay time. It should be
noted that in the study the delay times for ψ and _ψ were
assumed to be the same. This may not be appropriate: Fruit
flies are known to use their halteres to sense angular velocity,
but sensing of angular orientation is likely visual (Dickinson,
1999; Taylor and Krapp, 2007). The latency of the visual
system is much higher than that of mechanosensor-based
biological gyroscopes. There is another problem with the
modeling: only the yaw rotation (rotation about the vertical
axis) was considered in the model. The applied yaw moment
and the yaw moment produced by the wings’ δα2a were about
the vertical axis. Because the vertical axis is not a principal
axis of the body (the vertical axis is about 30º from the long
axis of the body, which is very close to a principal axis), the
yaw moments would produce, in addition to the yaw rotation,
rotations in other directions. Neglect of these rotations needs
justification.
Cheng, Deng, and Hedrick (2011) studied the stabilization

control of hovering hawk moths, using an approach similar to
that of Bergou et al. (2010). They took advantage of the hawk
moths’ natural behavior of hovering to feed. They first applied
a visual stimulus to disturb hawk moths which freely hovered
in front of an artificial flower. The disturbed motion was
approximately longitudinal and mainly contained pitch rota-
tion and horizontal translation. The results of the behavioral-
response measurement are as follows: After being startled, the
hovering moth began to pitch up and move backward
simultaneously, and the backward velocity was close to
maximum when the moth reached the largest pitch angle
(about 60º; the initial hovering pitch angle was 35º). Next the
moth began to pitch down while it was still moving backward,
typically overpitching down to about 15º below the initial
hovering pitch angle. Last, the moth began to pitch up again
but at a slower rate, returning to the equilibrium flight
(hovering). The recovery time, the period between the time
when the insect is at the largest pitch angle and the time when
hovering is recovered, is about 360 ms (11 wing beats). The
simultaneously measured wing kinematics shows that the
recovery is controlled by a differential change in the down-
stroke and upstroke angles of attack of the wings (δα2 control).
In this simulation model, the dynamics of the pitch rotation

and horizontal translation of the body is described by

mbẍ ¼ Xu _x −mbg sin δθþ Xc; (60)

Iyyθ̈ ¼ Mq
_θ −Mu _xþMc; (61)

where mb is the body mass; Iyy is the pitch moment of inertia
of the body; _x ð¼uÞ and ẍ are the horizontal-translation
velocity and acceleration, respectively; θ is the pitch angle;
and δθ is the difference between θ and its value at hovering.
Xu, Mq, and Mu are aerodynamic derivatives; and Xc and Mc
are the control force and moment, respectively. They model
the controller using a linear-control model with PD scheme:

Xc ¼ −Ku _xðtÞ; (62)

M ¼ −Kθδθðt − τ1Þ − K _θδ
_θðt − τ2Þ; (63)

where Ku, Kθ, and K _θ are constants, and τ1 and τ2 are the
response delay times for the visual sensing system and the
mechanosensor-based sensing system, respectively [recent
studies showed that hawk moths’ antennae may be involved
in the inertial sensing of rotations, in addition to sensing
airflow (Sane et al., 2007; Krishnan et al., 2012)].
Experiments employing dynamically scaled robotic wings
(Zhao et al., 2010) were used to estimate the force and
moment derivatives. They found that the above controller
model gave a good match to the measured behavioral response
for plausible sensory delays (τ1 and τ2) for one to two wing
beats. In recomputing the closed-loop flight dynamics coef-
ficients with different assumed sensory delays, they found that
increasing the sensory delay parameters increased the feed-
back gain required for the best fit to the observed data; this is
also true in the case of yaw motion in fruit flies (Elzinga,
Dickson, and Dickinson, 2012). The study also showed that
hawk moths rely largely on passive damping to reduce the
body translation but use feedback control based on pitch angle
and angular velocity to control their orientation.
In the control-force model Eq. (62), the translation-velocity

feedback −Ku _x does not have a time delay and they did not
explain why it could be so. Furthermore, only the translation
velocity (_x), but not the horizontal position (x), is fed back for
the stabilization control. A hawk moth hovering in front of a
flower tends to maintain contact with the flower (Sprayberry
and Daniel, 2007), and the horizontal position might need to
be fed back for the stabilization control.
Both studies discussed (Ristroph et al., 2010; Cheng, Deng,

and Hedrick, 2011) indicate that the insect’s sensory-motor
system can be modeled by a PD controller with delay times.
Tanaka and Kawachi (2006) and Graetzel, Nelson, and Fry
(2010) studied an insect’s sensory-motor system using fre-
quency-domain approaches. Frequency-response character-
istics of tethered bumblebees (Tanaka and Kawachi, 2006)
and fluit flies (Graetzel, Nelson, and Fry, 2010) to vertical
visual oscillations were measured and analyzed. By tethering
the insect and measuring its control responses to a properly
designed stimulus, the active controls that stabilize the
inherent instability of flying insects can be separated from
the natural flight dynamics of the insect and analyzed (Taylor
et al., 2008). They measured the vertical force of the insects at
various oscillation frequencies. They summarized the
response characteristics in terms of amplitude and phase
differences. In the low-frequency domain, the amplitude
was almost constant, whereas the phase gradually lagged
with increasing frequency. This indicates that the vertical force
is directly proportional to the apparent vertical displacement
and there is a delay time (Graham and McRuer, 1961; Tischler
and Remple, 2006). That is, the controller is a proportional (P)
controller with a delay time. Further studies are required to
explore why for the case of vertical motion (Tanaka and
Kawachi, 2006; Graetzel, Nelson, and Fry, 2010) the con-
troller is a P controller with a delay time, but for the case of
yaw rotation (Ristroph et al., 2010), or a combination of pitch
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rotation and horizontal translation (Cheng, Deng, and
Hedrick, 2011), it is a PD controller with delay times.
Earlier on, some researchers obtained the overall response

properties of freely flying hawk moths by presenting oscillat-
ing visual stimuli at a range of different frequencies, taking
advantage of their natural behavior of maintaining contact
with the flower where they are feeding. Farina, Varju, and
Zhou (1994) investigated how well the diurnal hawk moth
Macroglossum stellatarum performed when a (dummy)
flower was moved toward and away from the animal. The
hawk moth successfully tracked the dummy flower at frequen-
cies from 0.15 to 5 Hz, indicating that the system behaved as a
bandpass filter with corner frequencies of 0.15 and 5 Hz. The
same group also investigated the result of oscillating the wider
visual environment but with the flower stationary, and similar
frequency-response properties were shown in the hawk moth
Macroglossum stellatarum (Farina, Kramer, and Varju, 1995).
This group further investigated the case of combined trans-
lational and rotational pattern motion (Kern and Varju, 1998).
They found that oscillatory translational and rotational pattern
motion leads to compensatory responses that peak in the
frequency range between 2 and 4 Hz. Similar behavior was
demonstrated in the crepuscular hawk moth Manduca sexta
(Moreno, Tu, and Daniel, 2000). Sprayberry and Daniel
(2007) investigated the effect of frequency and the direction
of flower motion on tracking performance in the hawk moth
Manduca sext, and found that whileM. sexta appeared equally
capable of tracking flowers moving in the horizontal and
vertical axes, they demonstrated poor ability to track flowers
moving in the looming axis. These studies (Farina, Varju, and
Zhou, 1994; Farina, Kramer, and Varju, 1995; Kern and Varju,
1998; Moreno, Tu, and Daniel, 2000; Sprayberry and Daniel,
2007) identified the overall response properties of the hawk
moths, but did not break the system down into subsystems
representing the effects of active control and of the natural
flight dynamics. If the overall response study is combined
with the natural flight dynamics model, the subsystem
representing the effects of active control can be identified.
This approach is recommended for future studies.

VII. STEADY-STATE CONTROL

Steady-state control is the constant control required for
changing the flight system from one equilibrium flight to
another. Theoretical and experimental investigations have
been done on changing from hovering to small-speed flight.
But only experimental investigations have been done on
forward flight (changing from one flight speed to another).

A. Steady-state control for changing from hovering to
small-speed flight

Ellington (1984c) and Ennos (1989) made high-speed films
of many insects hovering and flying slowly inside flight
chambers. Their films revealed that insects changing from
hovering to small-speed flight are simply controlled by tilting
the stroke plane, as for a helicopter: Going from hovering to
forward flight is always preceded by a forward tilt of the
stroke plane, and backward tilt gives backward flight.
Similarly, flight in lateral directions is accompanied by a roll

of the stroke plane. Roll can be affected by increasing the
flapping amplitude and/or angle of attack of the outside wing
(i.e., δΦa and/or δα1a controls). Pitching results from a fore or
aft shift of the center of lift, which pitches the body and hence
the stroke plane; the shift can be realized by changing the fore
or aft extent of the flapping motion (i.e., a δϕ̄ control) and/or
the angle of attack over a half-stroke (i.e., a δα2 control).
Wu and Sun (2009) and Zhang and Sun (2011b) made a

formal quantitative analysis of the steady-state control for
changing from hovering to small-speed flight in a model
dronefly, using the linear theories of stability and control.
They solved the steady-state equations of motion to determine
the required steady-state control. Based on experimental
observation of dronefly flight (Ellington, 1984a; Ennos,
1989), δΦ, δϕ̄, δα1, and δα2 were taken as longitudinal
control variables, and δΦa, δα1a, and δα2a as lateral control
variables. Setting the time-derivative terms on the left-hand
side of the equations of motion with control force and moment
terms [Eq. (54)] to zero gives

A

2
664
δuþ
δwþ

δqþ
δθ

3
775þ B

2
664
δΦ
δα1
δϕ̄
δα2

3
775 ¼ 0 (64)

for longitudinal motion. For lateral motion the corresponding
equation is

A1

2
64
δvþ
δpþ

δrþ
δγ

3
75þ Bl

2
4 δΦa

δα1a
δα2a

3
5 ¼ 0. (65)

Equations (64) and (65) determine the small-speed steady-
state motion under given small controls: Without controls (i.e.,
δΦ, δα1, etc., are zero), one obtains the reference flight
(hovering: δuþ, δwþ, δqþ, δθ, δvþ, δpþ, δrþ, and δγ are
zero). With small controls (some of δΦ, δα1, etc., are not zero),
some of the motion variables are nonzero, giving small-speed
steady-state motions. The solutions of Eqs. (64) and (65) are

ðδqþ ¼ 0; δpþ ¼ 0Þ; (66)

δuþ ¼ 1.73δϕ̄ − 0.28δα2; (67)

δwþ ¼ −1.47δΦ − 2.17δα1; (68)

δθ ¼ −1.61δϕ̄ − 1.80δα2; (69)

δvþ ¼ −2.77δΦa − 4.29δα1a; (70)

δrþ ¼ −2.47δα2a; (71)

δγ ¼ −1.62Φa − 2.91δα1a. (72)

Supposing that a control δϕ̄ is applied (i.e., δϕ̄ ≠ 0 and the
other controls are zero), the above equations give

δuþ ¼ 1.73δϕ̄; (73)

δθ ¼ −1.61δϕ̄; (74)
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δwþ ¼ δvþ ¼ δpþ ¼ δqþ ¼ δrþ ¼ δγ ¼ 0. (75)

That is, a change in the mean stroke angle (δϕ̄) results in a
horizontal forward or backward flight at velocity δuþ [see
Eq. (73)] with the body tilted forward or backward from its
hovering attitude by an angle δθ [see Eq. (74)]. This is
consistent with observations by Ellington (1984c) and Ennos
(1989). Similarly, from Eqs. (66)–(72) the following can be
shown: A change in the stroke amplitude (δΦ) or an equal
change in the downstroke and upstroke angles of attack (δα1)
results in a vertical climb or descent at velocity δwþ ¼
−1.47δΦ (or −2.17δα1). An antisymmetrical change in the
stroke amplitudes of the contralateral wings (δΦa), and/or an
antisymmetrical change in the angles of attack of the contra-
lateral wings, with the downstroke and upstroke angles of
attack of a wing having equal change (δα1a), results in a side
translation at velocity δvþ ¼ −2.77δΦa (or −4.29δα1a) with
the body tilted to the same side by an angle. A proper
combination of these controls can give a flight of any small
speed in any desired direction.
Equations (66)–(72) also show that an antisymmetrical

change in the angles of attack of the contralateral wings, with
the downstroke and upstroke angles of attack of a wing having
differential change (δα2a), results in a constant-rate yaw
rotation at rotational speed δrþ ¼ −2.47δα2a [see Eq. (71)].
The only possible steady-state rotational motion is a constant-
rate yaw rotation (steady-state pitch or roll rotation could not
be realized), which agrees with observations.
It should be noted that the above results are the steady-state

(or long-term) effects of the controls. The initial (or short-
term) effects of a control can sometimes be opposite to the
steady-state effects. The initial effects of a control are to start a
motion, and its exact analysis needs to solve the complete
equations of motion. An example of this is the analysis of the
starting of yaw maneuvers of a fruit fly by Bergou et al.
(2010). We return to their analysis in Sec. VIII. Here, we
examine the initial (or short-term) effects of the controls
qualitatively by simple physical reasoning. We first consider
the δα2a control (an antisymmetrical change in the angles of
attack of the contralateral wings, with the downstroke and
upstroke angles of attack of a wing having differential
change). When a positive δα2a control is applied, a negative
yaw moment Nα2a δα2a [Nα2a is the yaw moment derivative
with respect to δα2a and is negative (Cheng and Deng, 2011;
Zhang and Sun, 2011a)] will result, which makes the insect
start yawing to the left and gradually increases the yaw-
rotation velocity. The left-yawing velocity (δr < 0) produces a
positive moment Nrδr [Nr is the yaw moment derivative with
respect to δr and is negative, a damping moment (Cheng and
Deng, 2011; Zhang and Sun, 2011a)]. As the magnitude of the
yawing velocity becomes large enough, Nrδr and Nα2a δα2a
become balanced and the steady-state flight (left-yawing
rotation) is reached. Here both the initial and steady-state
effects of the δα2a control are to make the insect yaw to the
left. We thus see that the initial (short-term) and steady-state
(long-term) effects of a δα2a control are similar. However, this
is not true for the case of δΦa control (an antisymmetrical
change in the stroke amplitudes of the contralateral wings):
When a positive δΦa control is applied, a positive roll moment

LΦa
δΦa [LΦa

is the roll moment derivative with respect to δΦa
and is positive (Cheng and Deng, 2011; Zhang and Sun,
2011a)] will result. This moment makes the insect start rolling
to the right and a positive roll angle δγ results. This angle δγ
tilts the vertical force F0 ð¼mgÞ to the right, giving a positive
side force F0δγ, which makes the insect move to the right (i.e.,
have a positive δv). That is, the initial effect of the positive δΦa
control is to make the insect start a horizontal right-side
translation. But, as discussed, the steady-state effect of the
positive δΦa control is to maintain a left-side translation. Thus,
we see that the initial and steady-state effects of a δΦa control
are quite contrary. For a steady-state horizontal side translation
that requires a positive δΦa control, the insect needs to use a
negative δΦa control as the initial control, and vice versa. For
example, to have a steady-state left-side translation, the insect
needs a positive δΦa control (increasing the stroke amplitude
of the left wing and decreasing that of the right wing) to
maintain the steady-state flight, but it needs a negative δΦa
control (decreasing the stroke amplitude of the left wing and
increasing that of the right wing) to start the flight.

B. Control for changing from one forward-flight speed to another

Differences in wing-kinematical parameters between two
flight speeds can be taken as the constant controls required for
changing from one flight speed to the other. Using high-speed
cinematography, Dudley and Ellington (1990a, 1990b) and
Cooper (1993) measured the wing and body kinematics of
bumblebees in a wind tunnel, over a flight speed range of 0 to
4.5 m=s (the advance ratio, the ratio of the flight speed to the
mean flapping speed at the wing tip, ranged from 0 to 0.57).
They found that as flight speed increases from 0 to 1 m=s,
then to 2.5 m=s, and finally to 4.5 m=s, the stroke-plane angle
(β) invariably increases and the body angle (χ) concomitantly
decreases, with the angle between the stroke plane and the
longitudinal body axis (β þ χ), remaining approximately
constant for any particular insect. The increasing tilt of the
stroke plane with forward speed results in increasing tilt of the
mean force vector of the wings, providing a larger thrust
required for the increased flight speed, and at the same time,
the decreasing body angle results in smaller body drag
coefficient. The wing kinematical data showed that as air
speed increases, the differential change in the angles of attack
of the downstroke and upstroke increased, but no systematic
change in wing-beat frequency, stroke amplitude, or mean
stroke angle was observed. Willmott and Ellington (1997a,
1997b) made similar measurements in hawk moths over a
flight speed range of 0 to 5 m=s (advance ratio ranging from
0 to 1.12). Similar to the case of bumblebees, as flight speed
increases, the stroke-plane angle increases and the body angle
decreases. The wing kinematical data showed that the changes
in flight speed and body attitude resulted from an increase of
the mean stroke angle and a differential change of the
downstroke and upstroke angles of attack. At lower flight
speeds (between hovering and 3 m=s), the change in mean
stroke angle is pronounced and at higher flight speeds
(between 3 and 5 m=s), the change in downstroke and
upstroke angles of attack is pronounced. No systematic
change in wing-beat frequency with airspeed was observed,
similarly to the case of bumblebees.
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These data indicate that the insects mainly use a change in
mean stroke angle (δϕ̄) and a differential change in the
downstroke–upstroke angles of attack (δα2a) to go from
one flight speed to another. Up to now, wing and body
kinematics of free flight has been measured over the entire
speed range only for bumblebees and hawk moths. Other
insects might use different controls for changing flight speed.

VIII. MANEUVER CONTROL

Many insects perform maneuvers as often as they hover or
fly at constant speed along a straight line (Dudley, 2000;
Grimaldi and Engel, 2005). Typical maneuvers include takeoff
and landing, fast change in flight speed and/or flight direction,
body saccades (brisk right-angle turns at or near hovering),
etc. (Govind and Dandy, 1972; Land and Collett, 1974; Collett
and Land, 1975; Ruppell, 1989; Dudley, 2000; Wang et al.,
2003; Card and Dickinson, 2008). For most of these maneu-
vers, there have been many photographs and descriptions of
body motion, but detailed wing kinematics during the maneu-
vers are not available. As a result, controls applied to achieve
the maneuvers cannot be analyzed. There is one typical
maneuver, the saccade of flies, for which the body motion
and the corresponding change in wing motion (i.e., the
control) have been studied in detail. Body motion and wing
motion during the maneuver saccades of fruit flies (Fry,
Sayaman, and Dickinson, 2003; Bergou et al., 2010) and
droneflies (Zhang and Sun, 2010a) are measured using three-
dimensional, high-speed videograph, and aerodynamic forces
produced by the wings are measured by “replaying” the wing
kinematics on a dynamically scaled robotic model (Fry,
Sayaman, and Dickinson, 2003), or computed by using the
simple aerodynamic model discussed in Sec. II.C (Bergou
et al., 2010) or by the CFD method (Zhang and Sun, 2010a).
Previously it was assumed that inertia plays a minor role in

the dynamics of even large fly species (Reichardt and Poggio,
1976). If so, during a saccade a fly would apply a positive (or
negative) control continuously to produce torque of the same
sign to overcome the friction force acting on its body.
However, studies on fruit flies Drosophila melanogaster,
which are very small in size, showed that the flies need to
apply a control to start the turn and an opposite one to stop it;
thus it is the inertia, not friction, that dominates the flight
dynamics of the flies (Fry, Sayaman, and Dickinson, 2003).
The flies rotate by 90° within 50 ms, completing the maneuver
within 10 wing beats.
Similar experiments were conducted with droneflies

(Zhang and Sun, 2010a), which are about 4.5 times as large
as fruit flies. It was surprising to find that the number of wing
beats taken to make the turn (about 10 wing beats) is
approximately the same as, and the turning time (about
55 ms) is only a little different from, that of the fruit flies,
even though the mass of a dronefly is more than 100 times that
of a fruit fly. The reason for this is that, although the moment
of inertia increases as R5 (R is the wing length), so does the
aerodynamic moment (Zhang and Sun, 2010a).
During a saccade, although the body rotation is mainly

about a vertical axis, the moment vector required for the turn is
not along the vertical axis, since it is not a principal axis of the
body. Because the moment of inertia of the body about the

axis perpendicular to the long axis of the body is much larger
than that about the long axis, a moment around an axis that is
almost perpendicular to the long axis is needed for the turn,
and this axis is about 30º from the vertical axis for droneflies
(Zhang and Sun, 2010a). The moment is mainly produced by
changes in wing angles of attack (Bergou et al., 2010; Zhang
and Sun, 2010a): in a right turn, for example, the dronefly lets
its right wing have a rather large angle of attack in the
downstroke (generally larger than 50º) and a small one in
the upstroke to start the turn, and lets its left wing do so to stop
the turn. Although the stroke amplitude, mean stroke angle,
and elevation angle have some variations during the turn, they
were shown to not be responsible for the turning moment
generation; the wing-beat frequency does not change during
the turn (Bergou et al., 2010; Zhang and Sun, 2010a). It is
believed that variations in the stroke and elevation angles are
used to stabilize the turning motion.
In the study of Bergou et al. (2010) of fruit-fly saccade, they

also considered the wing-hinge mechanics, or how the
variations of the wing angles of attack (the controls) were
generated. They inverted the equations of motion of wings to
determine the torque exerted by the fly at the wing hinge, τp.
Body and wing inertial forces and moments in the equations
were determined using the measured kinematics and morpho-
logical data. The aerodynamic torque in the equations was
computed using the simple aerodynamic model. Thus the
torque of the fly exerted to pitch the wing (to maintain or
change the angle of attack) could be determined. Examining
the τp vs ψw (wing pitch angle) plot, which was an elliptical
curve whose major axis had a negative slope, suggested that
the hinge acted like a damped torsional spring. They found
that this hinge model matched the experimental data well.
They concluded that the wing hinge acted as a torsional spring
that passively resisted the wing’s tendency to flip in response
to aerodynamic and inertial forces. To change the pitch angle
(angle of attack) of the wing (e.g., for initiating a turn), the
insects simply changed the spring rest angle. In this way, the
wing pitch control becomes rather simple. Animals take
advantage of mechanical properties of their bodies to simplify
the complex actuation necessary to move (Dickinson et al.,
2000; Liao et al., 2003); the wing-hinge mechanism provides
a concrete example of this.
Saccades of flies are made during or near hovering flight.

There is one study on turning maneuvers in free forward flight
of dragonflies in which detailed wing motion (control) is
measured. Wang et al. (2003) used a projected comb-fringe
technique combined with the natural landmarks on dragonflies
(Polycanthagyna melanictera) to determine the wing kin-
ematics, body position, and attitude of the dragonflies.
Kinematical parameters, including wing-beat frequency,
stroke angle, angle of attack, torsional angle, and camber
deformation, were measured. Their data showed that during
the turn there were large asymmetries between the stroke
amplitudes of the left and right wings, while asymmetries in
other parameters were generally small, implying that the
dragonflies use asymmetries between the stroke amplitudes
of the left and right wings to make a turn. This is different
from the behavior of fruit flies and droneflies, which use
asymmetries between the angles of attack of the left and right
wings to make a turn. Unfortunately, aerodynamic forces and
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moments were not computed or measured. It is desirable to
have these forces and moments to provide a quantitative
analysis of this type of turning maneuver.

IX. CONCLUDING REMARKS

Aerodynamic models for flight dynamics studies are gen-
erally divided into two types: simple aerodynamic models and
CFD models. Computational fluid dynamics models capture
all the unsteady and viscous flow phenomena of a flapping
insect wing and can accurately calculate the aerodynamic
derivatives needed in the flight dynamics analysis. But they
are computationally costly and difficult to handle. Simple
models by Sane and Dickinson (2002) and Berman and Wang
(2007) capture the essential unsteady and viscous flow
phenomena (delayed-stall and added-mass effects). For longi-
tudinal motion, they can predict aerodynamic derivatives with
reasonably good accuracy. But for lateral motion, they
encounter difficulties when predicting some of the aerody-
namic derivatives, because they do not take the changing-
LEV-axial-velocity effect into account. This raises a need
for modifying these models to include the changing-LEV-
axial-velocity effect.
Current stability and control analyses of insect flight are

based on the averaged-model theory and treat hovering flight
or forward flight as a fixed-point equilibrium. With this
model, well-developed stability and control theories and
analysis methods for aircraft can be applied to insect flight
dynamics. Verifications using Floquet theory and direct
numerical simulation (solving the complete equations of
motion coupled with the Navier-Stokes equations) show that
the averaged model is a good approximation for many insects,
even for relatively large insects, such as hawk moths for which
the wing-beat frequency is relatively low and characteristic
times of the natural modes of motion of the body divided by
the wing-beat period are relatively large compared with many
other insects.
Stability analysis shows that for hovering flight there exist

three longitudinal natural modes of motion: one unstable slow
oscillatory mode, one stable fast subsidence mode, and one
stable slow subsidence mode, and three lateral natural modes
of motion: one unstable slow divergence mode, one stable
slow oscillatory mode, and one stable fast subsidence mode.
Approximate analytical expressions of the eigenvalues iden-
tify the speed derivative Mu (the pitch moment produced by
unit forward-backward speed) as the primary source of the
longitudinal unstable mode, and the speed derivative Lv (the
roll moment produced by unit side speed) as the primary
source of the lateral unstable mode. Coupling between
horizontal forward-backward motion and pitch rotation
through Mu causes longitudinal instability, and coupling
between horizontal side motion and roll rotation through
Lv causes lateral instability. Because of the unstable modes,
the hovering flight of the insects is dynamically unstable. As
for forward flight, only one study on one species (bumblebee
Bombus terrestris) has been made. It was shown that for
bumblebees at hovering and at each of the forward-flight
speeds considered, there exists at least one unstable, or
neutrally stable, natural mode of motion, and thus the flight
is not dynamically stable. Further studies on flight dynamic

stability at level forward flight and straight-line flight in other
directions (climbing flight, vertical flight, etc.) are required in
the future. Dragonflies and butterflies often glide. No studies
have been made on dynamic flight stability in gliding in
insects. It is of interest to investigate this problem in the future.
The advantage of being inherently unstable or neutrally

stable is that this enhances maneuverability. But it also
requires the insect to have fast response and move its controls
constantly to stabilize the flight. To achieve stable flight, an
unstable natural mode of motion needs to be stabilized, and a
neutrally stable or weakly stable mode requires stability
enhancement. For hovering flight, controllability analyses
show the following: The longitudinal unstable mode (the
unstable slow oscillatory mode) can be controlled by a change
in mean stroke angle and/or a differential change in angles of
attack of the downstroke and upstroke; the longitudinal
weakly stable mode (the stable slow subsidence mode) can
be controlled by a change in stroke amplitude and/or an equal
change in angles of attack of the downstroke and upstroke.
The lateral unstable mode (the unstable slow divergence
mode) and weakly stable mode (the stable slow oscillatory
mode) can be controlled through the choice of two of the
following control inputs: an asymmetrical change in stroke
amplitude of the left and right wings, an asymmetrical change
in angles of attack of the left and right wings (for each wing,
downstroke and upstroke angles of attack have an equal
change), and an asymmetrical change in angles of attack of the
left and right wings (for each wing, downstroke and upstroke
angles of attack have a differential change). That is, although
hovering flight is inherently unstable, it is controllable, and
furthermore there are redundant control variables. A control-
lability analysis has not been made for forward flight. It is of
great interest to conduct the analysis because the maximum
flight speed might be limited by flight stability.
The flight control of animals is a result of closed-loop flight

dynamics, i.e., the combination of the passive open-loop
dynamics (dynamic flight stability and controllability), sen-
sory systems, and feedback control responses. As the first
step, these subsystems have been studied individually. But
recently, in a few pioneering works, researchers have taken the
approach of combining these interacting dynamical subsys-
tems (Dickson, Straw, and Dickinson, 2008; Ristroph et al.,
2010; Cheng, Deng, and Hedrick, 2011). Stabilization con-
trols of fruit flies and hawk moths have been studied in these
works. Fruit flies flying at low speed, when disturbed by an
impulsive yaw torque, asymmetrically adjust the angles of
attack of the left and right wings to stabilize the flight. The
flight course is recovered in about 6.5 wing beats (30 ms).
Hawk moths hovering to feed in front of an artificial flower,
after a pitching-up and backward-moving disturbance, use a
differential change in the downstroke and upstroke angles of
attack of the wings to stabilize the flight, and hovering is
recovered in about 11 wing beats (360 ms). Using measure-
ments of these overall response properties and simple models
for the passive open-loop dynamics it has been shown that the
insects’ sensory-motor systems can be modeled by a PD
controller with delay times. The results are interesting, but it
should be noted that in these studies overly simplified models
of passive open-loop dynamics were used and morphological
data, such as body and wing moments of inertia and location
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of the center of mass, were roughly estimated. These approx-
imations might affect the accuracy of the models of the
sensory-motor systems. The results could be improved when
more accurate models of the passive open-loop dynamics are
employed. At present, the passive open-loop flight dynamics
of insects is relatively well understood and modeled. Insect
sensors for flight control have been intensively studied and are
well understood in physiological detail, but not at a broader
functional level. Many components of the internal control
system, e.g., neural circuitry and wing-hinge mechanics, are
still poorly understood and are being actively investigated.
Simultaneous examination of several of these research areas
may lead to rapid progress in understanding how insects
control and stabilize their flights and how each subsystem

works. Future research in this direction is strongly
recommended.
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APPENDIX

Expressions a1, a2, b1, b2, and c in Eqs. (8) and (9) are given here:

a1 ¼ mwg

XN
i¼1

�
dωbd

dt
× ðRh þRwgÞ þ ωbd × ½ωbd × ðRh þRwgÞ�

�
i
; (A1)

b1 ¼ mwg
P

N
i¼1

	�
E

w→b
_E
b→w

ωbd þ E
w→b

dwωwg0

dt

�
×Rwg þ ðωbd þ ωwg0Þ × ðωwg0 ×RwgÞ þ ωwg0 × ðωbd ×RwgÞ



i
; (A2)

a2 ¼ mwg

XN
i¼1

�
ðRh þRwgÞ ×

dvcg
dt

þ vcg × ½ωbd × ðRh þRwgÞ� þ ωbd × ½ðRh þRwgÞ × vcg�
�

i
; (A3)

b2 ¼
XN
i¼1

�
mwgRh ×

	
dωwg0

dt
×Rwg þ ðωwg0 þ ωbdÞ × ð _E

w→b
wRwgÞ



þ _E

w→b
wIwgðwωwg0 þ E

b→w
ωbdÞ

þ E
w→b

wIwg
dwωwg0

dt
þ ωbd × ð E

w→b
wIwgwωwg0Þ þ E

w→b
wIwg _E

b→w
ωbd þmwgωbd × ½Rh × ðωwg0 ×RwgÞ�

þmwgð _E
w→b

wRwgÞ × ðvcg þ ωbd ×RhÞ þmwgvcg × ðωwg0 ×RwgÞ
�

i
; (A4)

c ¼
XN
i¼1

½ E
w→b

wIwg E
b→w

−mwgð~Rh þ~RwgÞ~Rh −mwg~Rh~Rwg�i; (A5)

where Iwg represents is the moments and products of the
inertial of a wing with respect to the wing frame ðxw; yw; zwÞ;
wIwg represents the xw, yw, and zw components of Iwg; E

w→band E
b→w

are matrices of direction cosines (determined by the
flapping angles), representing the transformation from wing
frame to body frame and body frame to wing frame,
respectively; the symbol “~” is defined as follows: let a ¼
½ a1 a2 a3 �T be a vector, and the ~a denotes the following
matrix (Etkin and Reid, 1996):

~a ¼

2
64

0 −a3 a2
a3 0 −a1
−a2 a1 0

3
75. (A6)
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