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This article reviews experimental and theoretical work on Bose-Einstein condensation in quantum
magnets. These magnets are natural realizations of gases of interacting bosons whose relevant
parameters such as dimensionality, lattice geometry, amount of disorder, nature of the interactions,
and particle concentration can vary widely between different compounds. The particle concentration
can be easily tuned by applying an external magnetic field which plays the role of a chemical
potential. This rich spectrum of realizations offers a unique possibility for studying the different
physical behaviors that emerge in interacting Bose gases from the interplay between their relevant
parameters. The plethora of other bosonic phases that can emerge in quantum magnets, of which the
Bose-Einstein condensate is the most basic ground state, is reviewed. The compounds discussed in
this review have been intensively studied in the last two decades and have led to important
contributions in the area of quantum magnetism. In spite of their apparent simplicity, these systems
often exhibit surprising behaviors. The possibility of using controlled theoretical approaches has
triggered the discovery of unusual effects induced by frustration, dimensionality, or disorder.
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I. INTRODUCTION

The idea of a Bose-Einstein condensate (BEC) was pro-
posed in 1924 by Bose (1924) and Einstein (1924). Following
the work of Bose on the statistics of photons (Bose, 1924),
Einstein showed in his original paper that a noninteracting gas
of bosons condenses into a coherent BEC in which a macro-
scopic number of bosons occupies the lowest-energy single-
particle state below a critical temperature Tc. In 1938 London
suggested the connection between the superfluidity of 4He and
Bose-Einstein condensation (London, 1938). Superfluid 4He
is indeed the prototype of a BEC and it has played a crucial
role in the development of the main physical concepts
associated with this phase (Pitaevskii and Stringari, 2003).
However, the strong interaction between 4He atoms dramati-
cally reduces the condensate fraction even at zero temperature
(Svensson and Sears, 1987). This fact led to a new search for
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dilute Bose gases. Bose alkali-metal gases were the first
example of very dilute and consequently weakly interacting
BECs (Pethick and Smith, 2002), and the unambiguous
observation of a BEC in a dilute gas of bosonic atoms did
not occur until 1995, when the groups of Cornell and
Wiemann and Ketterle independently observed this state in
laser-cooled collections of cold atoms, leading to the Nobel
prize (Anderson et al., 1995; Davis et al., 1995).
The main concepts and properties of BECs are reviewed in

different texts (Nozieres and Pines, 1990; Griffin, Snoke, and
Stringari, 1995; Dalfovo et al., 1999; Inguscio, Stringari, and
Wieman, 1999; Leggett, 2001). In this paper we introduce and
describe the properties of quantum magnets that are magnetic
realizations of Bose gases.
Thirty years after the pioneering works of Bose and

Einstein, Matsubara and Matsuda introduced an exact map-
ping between hard-core bosons and S ¼ 1=2 spins (Matsubara
and Matsuda, 1956). From this mapping it became clear that
interacting S ¼ 1=2 spin systems can be treated as gases of
bosons with hard-core repulsion. This exact mapping can be
generalized in different ways for higher-spin systems (Batista
and Ortiz, 2001, 2004) and suggests that the BEC state can be
realized in quantum magnets. The precise mapping is
described in detail in the next section. Identifying that the
spins can be mapped onto bosons is the first step toward
realizing a BEC. The next step is to show that the bosons can
condense (Batyev and Braginskii, 1984; Affleck, 1990, 1991;
Giamarchi and Tsvelik, 1999; Nikuni et al., 2000; Nohadani
et al., 2004; Giamarchi, Rüegg, and Tchernyshyov, 2008).
The key property that separates systems of bosons that
condense from those that do not is number conservation.
Number conservation is naturally present in the case of cold
atoms. In the case of magnetic systems, number conservation
implies uniaxial symmetry of the spin environment. Since this
is never strictly true for real magnets, the notion of BEC is
always an idealization, but it turns out to be a good
approximation for most of the materials that will be discussed
in this review. We will see in the next sections that a spin
Hamiltonian that has uniaxial symmetry commutes with the
boson number operator. The local order parameter of an XY-
ordered magnet is a two-dimensional vector ðmx;myÞ that has
a magnitude and a phase. Similarly, the BEC order has also a
magnitude and a phase. Therefore, it is not surprising that both
orderings can be connected by a spin-particle transformation.
This mapping between order parameters already suggests that
the z component of the local magnetization mz maps into the
boson density. Therefore, the boson density of magnetic
systems can be tuned with a magnetic field, which plays
the role of a chemical potential. We will also see in the next
sections that the magnetic-field-induced quantum critical
point (QCP) that separates the quantum paramagnetic and
the XY-ordered states belongs to the BEC universality class.
A partial list of materials where this phenomenon has been
studied is shown in Table I.
There are several compelling reasons for studying BECs in

quantum magnets. The study of BECs in quantum magnets
has yielded experimental tests of the expected scaling laws of
thermodynamic quantities near a BEC QCP (Sebastian et al.,
2005; Tokiwa et al., 2006; Zapf et al., 2006; Kitada et al.,
2007; Yamada et al., 2008; Yin et al., 2008). In addition, the

magnetic field provides a simple and reversible tuning
parameter to adjust the boson number in quantum magnets.
As a function of magnetic field we drive the system from a
state with no bosons to a state with a finite number of bosons,
thereby creating a quantum phase transition driven by ampli-
tude fluctuations of the BEC order parameter with dynamical
exponent z ¼ 2. Finally, the effect of zero-point or quantum
fluctuations on the single-boson mass can be observed by
measuring different thermodynamic properties (Samulon
et al., 2009; Kohama et al., 2011). A quantum phase transition
that belongs to a different universality class with z ¼ 1 can
also be induced in some of these systems by applying
pressure. The single-boson mass becomes particularly small
for quantum paramagnets that are close to the pressure-
induced QCP, as described in Sec. III.B.5. Another reason
to study BEC in quantum magnets is that, compared to BEC
systems in cold atoms, the number of bosons is very large and
the underlying lattice is very homogeneous, enabling us to
study predictions of BEC theory in the thermodynamic limit.
The bosons in quantum magnets are much lighter than in cold
atoms, which leads to critical temperatures that range up to a
few kelvin. The critical temperatures could even occur at
ambient temperature, although BECs at such high temper-
atures have not been experimentally studied because it would
likely require thermodynamic measurements at magnetic
fields of several hundred tesla, which are not yet practical.
Observing the BEC state is just the first step. The

identification of quantum magnets with Bose gases opens a
rich new field of bosonic physics, of which the BEC is just the
first and the most basic ground state. Unlike other realizations
of Bose gases, magnetic realizations offer a natural way of
producing single-boson dispersion relations with more than
one minimum. This degeneracy of the single-particle ground
state arises from competing exchange interactions that are
common in frustrated quantum magnets. A natural conse-
quence is the possibility of observing multi-Q BECs (Q is the
wave vector of the single-particle ground state), which can
correspond to exotic magnetic orderings, such as spontaneous
vortex crystals (Kamiya and Batista, 2013). Bosons can also
crystallize as in the case of SrCu2ðBOÞ3 (Rice, 2002). In
analogy with other bosonic systems, the bosons in quantum
magnets can be weakly or strongly interacting, ordered or
disordered. Magnetic frustration can create a Bose metal
(a type of spin liquid in the magnetic language). When
disorder is introduced, Bose glasses can occur and the
BEC undergoes a type of conducting-to-insulating transition
analogous to Anderson localization for fermions.
Another compelling reason for describing XY magnets in

terms of bosons is that we can borrow the entire formalism that
has been developed for gases of bosons and use it to greatly
simplify the theoretical description of the quantum magnets.
In particular, dilute gases of bosons can be treated under
control by using perturbation theory and expanding in the ratio
between the scattering length and the mean distance between
particles (this ratio is known as the lattice gas parameter). This
approach is particularly useful for describing the physics near
the magnetic-field-induced quantum critical point of many
quantum magnets like the ones listed in Table I. It is important
to emphasize that there are very few controlled approaches for
treating low-spin magnetic systems. The dilute-gas approach
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TABLE I. Some quantum magnets for which a three-dimensional (3D) BEC has been studied. The columns show the chemical formula, the arrangement of the spins, the maximum magnetic
ordering temperature in applied magnetic fields (Tc), the critical fields Hc1 and Hc2, along with Hc3 and Hc4 where applicable, the middle (mid) and the bottom (bot) of the antiferromagnetic
dispersion of the zero-field spin gap, the crystallographic space group, and references. AFM ¼ antiferromagnetic, FM ¼ ferromagnetic, RT ¼ room temperature, and LT ¼ low temperature.

Compound Spins Max Tc Hc1, Hc2 Spin gap (meV) Crystal symmetry U(1) symmetry
breaking

References

BaCuSi2O6 S ¼ 1=2 AFM dimers 3.8 K 23.5 T, 49 T 4–5 (mid), 3–4 (bot) RT: I41=acd
tetragonal; LT:

small monoclinic
distortion

11 mK; 0.7 mK Sasago et al. (1997); Jaime et al. (2004); Sebastian et al.
(2005); Samulon et al. (2006); Sebastian, Harrison et al.
(2006); Sebastian, Tanedo et al. (2006); Zvyagin et al.
(2006); Krämer et al. (2007); and Rüegg et al. (2007)

TlCuCl3 S ¼ 1=2 AFM dimers > 9 K 5.7 T, ∼100 T 5.7 (mid), 0.7 (bot) P21=c monoclinic 0.28 K Tanaka et al. (2001); Oosawa et al. (2002); Rüegg et al.
(2003); Glazkov et al. (2004); Johannsen et al. (2005);
and Yamada et al. (2007)

KCuCl3 S ¼ 1=2 AFM dimers > 6 K 23 T, 54.5 T 4.34 (mid), ∼2.7 ðbotÞ P21=c monoclinic Shiramura et al. (1997); Kato et al. (1998); Takatsu et al.
(1998); Tanaka et al. (1998); Cavadini et al. (2002); and
Oosawa et al. (2002)

IPA-CuCl3
½ðCH3Þ2
ðCHNH3CuCl3Þ�

S ¼ 1=2 FM dimers in
a Haldane chain

2 K 10.4 T, ? 1.2 (bot) P1̄ triclinic Manaka et al. (1998 2000); Masuda et al. (2006); Garlea
et al. (2007); and Zheludev et al. (2007)

Ba3Cr2O8 S ¼ 1=2 AFM dimers 2.7 K 12.52 T, 23.6 T 2.38 (mid), ∼1.5 ðbotÞ R3̄m rhombohedral Nakajima, Mitamura, and Ueda (2006); Aczel et al. (2007,
2008); Aczel, Kohama, Jaime et al. (2009); Kofu, Ueda
et al. (2009); and Zenmoto et al. (2010)

Sr3Cr2O8 S ¼ 1=2 AFM dimers 8 K 30.4 T, 62 T 5.51 (mid), 3.5 (bot) R3̄m rhombohedral Singh and Johnston (2007); Aczel, Kohama, Marcenat
et al. (2009); Islam et al. (2009); Kohama et al. (2010);
and Quintero-Castro et al. (2010)

Pb2V3O9 S ¼ 1=2 AFM dimers 4 K 3.5 T, 38 T P1̄ triclinic Waki, Kato et al. (2005); Waki, Morimoto et al. (2005);
Waki, Michioka et al. (2007); Waki, Tsujii et al. (2007);
Kawamata et al. (2009); Conner et al. (2010); and Nawa
et al. (2011)

ðCuClÞLaNb2O7 S ¼ 1=2 AFM dimers >3.5 K 10 T, 30 T 2.2 (mid) Pbam orthorhombic Kageyama, Kitano et al. (2005); Kageyama, Yasuda et al.
(2005); Kitada et al. (2007); Yoshida et al. (2007); and
Tsirlin and Rosner (2010)

AgVOAsO4 S ¼ 1=2 AFM dimers 10 T, 48.5 T P21=c Tsirlin et al. (2011)

Ag2VOP2O7 S ¼ 1=2 AFM dimers 23 T, 30 T P21=c Daidouh (1997); Tsirlin et al. (2008, 2009)

ðHPIPÞ2-CuBr4 or
BCBP
½ðC5H12NÞ2CuBr4�

Quasi-1D S ¼ 1=2
AFM dimers

0.1 K 7 T, 14 T 1.3 (mid), 0.8 (bot)
P21=c

monoclinic

Patyal, Scott, and Willett (1990); Anfuso et al. (2008);
Klanjšek et al. (2008); Lorenz et al. (2008); Rüegg et al.
(2008); Thielemann, Rüegg, Kiefer et al. (2009); and
Thielemann, Rüegg, Rønnow
et al. (2009)

Cs2CuCl4 S ¼ 1=2
quasitriangular

lattice

0.6 K N/A, 8.5 T N/A Pnma orthorhombic 0.38, 0.52 K Coldea et al. (2001, 2002); Radu et al. (2005); Tokiwa et al.
(2006); Vachon et al. (2006); and Starykh, Katsura, and
Balents (2010)

(Table continued)
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is then useful for calculating a number of key properties,
including the nature of the field-induced magnetic ordering
right above the critical field, the spectrum of excitations, and
the dynamical and transport properties in the neighborhood of
the QCP. Thus, there is a big advantage in describing these
magnetic systems as a gas of bosons.
We should elaborate on the fact that boson number

conservation, which underlies the BEC state, is an approxi-
mation in the case of quantum magnets, as it is in many other
experimental realizations of BECs. In the magnetic language,
the boson number corresponds to the longitudinal magneti-
zation along the magnetic field, and the number conservation
corresponds to uniaxial symmetry (continuous symmetry of
global spin rotations along one axis). This symmetry is never
exact in real magnets due to the presence of anisotropic
interactions such as the classical dipole-dipole coupling or the
effective couplings induced by the spin-orbit interaction in the
presence of lattice anisotropy. Thus, the number of bosons is
subject to small fluctuations. Consequently, the thermody-
namic properties of the quantum magnet are well described by
a number-conserving theory if the temperature is well above
the magnitude of the uniaxial symmetry-breaking terms.
However, nonequilibrium properties of BEC states such as
supercurrents will occur only on very short time scales. What
we strive for is a system in which the uniaxial symmetry-
breaking interactions occur at significantly lower temperatures
than the maximum critical temperature for the onset of the
BEC state.
Besides the quantum magnets reviewed in this paper, there

are a few other examples of BECs in solids. Several groups
have studied condensation of excited magnons into metastable
states, which are predicted to form a BEC over the time scale
of metastability. These systems include optically pumped
yttrium iron garnet films (Demokritov et al., 2006), and
coherently precessing spins in NMR experiments on CsMnF3
(Bunkov et al., 2011), 3He-A (Bunkov and Volovik, 2010),
and 3He-B (Bunkov and Volovik, 2007). We should clarify the
differences between the BEC of magnons in these four
examples, and the BEC in quantum magnets reviewed in this
paper. In BECs of magnons, the BEC is metastable since
magnons are inherently excitations, whereas in quantum
magnets the BEC occurs in the thermodynamic ground state
of the system. The other qualitative difference is that in BECs
of magnons the condensing particles are magnons, whereas in
quantum magnets the condensing bosons are obtained by
mapping the long-range magnetically ordered ground state
onto a lattice of bosons. Magnons in quantum magnets are
actually excitations out of the condensed ground state of the
spins. This issue is confused by the fact that authors of
quantum magnet BEC papers sometimes use the terminology
“BEC of magnons.”
There has also been a lot of work on BECs of excitons,

which are electron-hole pairs excited across a gap that form
metastable bound states (Blatt, Böer, and Brandt, 1962;
Keldysh and Kopaev, 1964; Halperin and Rice, 1968).
Most early experiments investigated metastable excitons
produced, e.g., by optical pumping in semiconductors, where
the goal is to extend the lifetime of the excitons beyond the
thermalization time of the condensate. These exciton con-
densates have been explored experimentally and theoreticallyC
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in many confined geometries including coupled quantum
wells (Butov et al., 1994; Butov et al., 2002; Mani et al.,
2002; Snoke, 2002) and semiconductor microcavities (Snoke,
2002; Deng, Haug, and Yamamoto, 2010). Excitonic con-
densates have also been proposed to occur in equilibrium in
bilayer quantum Hall systems (Eisenstein and MacDonald,
2004; Nandi et al., 2012). Here, the coupling between
electrons and holes, or electrons and electrons occupying
Landau levels in adjacent 2D layers, produces exciton bound
states with very long lifetimes. These produce “Coulomb
drag,” where a current in one layer produces a current in the
other. Excitonic condensates have also been predicted to occur
in thin films of topological insulators (Seradjeh, Moore, and
Franz, 2009). Finally, condensation and/or crystallization of
excitons is also proposed as one explanation for pressure-
induced insulating behavior in certain 4d chalcogenides
(Mott, 1961; Wachter, Bucher, and Malar, 2004).
The primary focus of this paper is BEC in quantum

magnets, and we review the large amount of experimental
and theoretical work that has taken place during the last two
decades. In the following sections we describe the mapping
between spins and bosons in detail and the requirements for
uniaxial symmetry and number conservation. We then cover
the different analytical and numerical approaches for calcu-
lating the properties of bosonic quantum magnets and describe
how these apply to real systems. We go on to discuss the most
important experimental probes and the experimental evidence
for BEC-like quantum phase transitions, and we conclude
with an overview of the field of magnetic realizations of
bosonic gases and the rich variety of bosonic phases that can
be studied in the future.
Finally we apologize to the many whose work we were not

able to treat in the depth it deserved in this review.

II. THEORY

A. Mappings between spin and itinerant-particle
systems

The connection between magnetic spin systems and
gases of itinerant particles became clear after the introduction
of two mathematical transformations several decades ago.
The first was introduced by Jordan and Wigner (1928) for
one-dimensional systems. It consists of a nonlocal mapping
between S ¼ 1=2 spin operators and creation and annihilation
operators for spinless fermions,

Sþj ¼ a†je
iπ
P

k<j
nak ; S−j ¼ aje

iπ
P

k<j
nak ; Szj ¼ naj − 1

2
;

(1)

where a†j (aj) is the creation (annihilation) operator of a
spinless fermion in the site or orbital j and naj ¼ a†jaj is the
occupation number. The Jordan-Wigner transformation (1)
is not only an efficient tool for diagonalizing some one-
dimensional spin Hamiltonians such as the XY spin-1=2 chain
or the quantum Ising model. This transformation is also
helpful for understanding the nature of the ground state and
typical low-energy excitations of one-dimensional systems.
Furthermore, it shows that the particle statistics (fermions or

bosons) can be absorbed into few-body interactions when the
system is one dimensional and the bare interactions are short
ranged. These are examples of the remarkable insight that is
provided by mappings between different physical systems.
Nearly two decades after Jordan and Wigner introduced

their mapping between S ¼ 1=2 spins and spinless fermions,
Matsubara and Matsuda (1956) presented an even simpler
mapping between S ¼ 1=2 spin operators and hard-core
bosons,

Sþj ¼ b†j ; S−j ¼ bj; Szj ¼ b†jbj − 1
2
: (2)

Here b† and b are the creation and annihilation operators of
the hard-core bosons. In contrast to the Jordan-Wigner
mapping, the Matsubara-Matsuda transformation is local
and, consequently, it does not depend on the dimension of
the system under consideration. This is so because spin
operators on different sites satisfy bosonic exchange statistics:
½Sμj ; Sνk� ¼ 0 for j ≠ k and μ, ν ¼ fx; y; zg. This simple
mapping between localized magnetic moments and a gas of
itinerant hard-core bosons establishes a formal analogy
between seemingly unrelated phenomena, i.e., different types
of magnetic orderings are mapped into different ordered
phases of bosonic gases.
The Jordan-Wigner transformation is useful for solving

U(1) invariant one-dimensional spin models because spinless
fermions provide a natural realization of two-level systems.
In other words, there is no need to introduce the hard-core
constraint on occupancy, because the fermionic statistics
guarantees that the occupation number of each site cannot
be higher than 1. Consequently, we start by considering the
fermionic version of a prototypical one-dimensional spin
Hamiltonian. After describing the advantages of using a
fermionic language for treating one-dimensional U(1) invari-
ant spin models, we apply the Matsubara-Matsuda mapping to
the same spin model in spatial dimension d ≥ 2.
A rather ubiquitous one-dimensional spin model consists of

a chain of S ¼ 1=2 moments coupled by an antiferromagnetic
exchange interaction J, with uniaxial exchange anisotropy
determined by the parameter γ. The corresponding spin
Hamiltonian is

HXXZ ¼ J
X
j

ðSxjSxjþ1 þ SyjS
y
jþ1 þ γSzjS

z
jþ1Þ − gzzμBH

X
j

Szj;

(3)

where J > 0 (antiferromagnetic exchange), gzz is the gyro-
magnetic factor along the z axis, and μB is the Bohr magneton.
We also included the Zeeman coupling to an external
magnetic field H applied along the symmetry or z axis.
After applying the Jordan-Wigner transformation to (3), we
obtain the following tight-binding Hamiltonian for spinless
fermions with nearest-neighbor repulsive interactions:

HXXZ ¼ J
2

X
j

ða†jajþ1 þ a†jþ1ajÞ

þ γJ
X
j

ðnaj − 1=2Þðnajþ1 − 1=2Þ − μ
X
j

naj ; (4)
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where the chemical potential μ ¼ gzzμBH is proportional to
the magnetic field. From Eq. (4) we can see that HXXZ
conserves the total number of particles, i.e., it commutes with
N ¼ P

jn
a
j . In other words,HXXZ is invariant under the global

U(1) transformation, ~c†j ¼ eiφc†j . According to Eq. (1), the
Jordan-Wigner transformation maps the total number of
fermions into the total magnetization plus a constant.
Therefore, conservation of the total number of fermions
corresponds to conservation of the total magnetization along
the z axis. The corresponding U(1) symmetry is simply a
global rotation by an angle ϕ along the z axis: ~Sþj ¼ eiϕSþj .
The total number of particles is controlled by the chemical

potential μ ¼ gzzμBH. Therefore, the ground state is populated
with particles with increasing magnetic field. The maximum
number of particles is one fermion per site and it is reached at
the saturation field Hsat ¼ Jð1þ γÞ=gzzμB. Since there is only
one state with one fermion per site, the ground state remains
invariant for H ≥ Hsat. The spectrum of single-particle exci-
tations is obtained by removing a single fermion (creating a
single hole) from the fully occupied ground state. The exact
dispersion relation is obtained by solving the corresponding
single-particle problem which is diagonal in momentum space
because of the translational invariance of HXXZ,

ωk ¼ J þ J cos kþ gμBðH −HsatÞ. (5)

Here and in the rest of the review we use the lattice parameter
as the unit of length and ℏ ¼ 1. This dispersion relation has a
minimum at the antiferromagnetic wave vector k ¼ Q ¼ π
and a gap that changes linearly with the magnetic field. The
gap closes at the saturation field Hsat and the corresponding
gapless mode at k ¼ Q leads to a divergent susceptibility at
the antiferromagnetic wave vector. In the long-wavelength
limit, k ¼ Qþ q with q ≪ 1, the dispersion relation at
H ¼ Hsat can be approximated by ωq ≃ Jq2=2. This is the
dispersion relation of a free fermion with mass m� ¼ 1=J. We
will see in the next section that the field-induced quantum
critical point at H ¼ Hsat is indeed a free-fermion fixed point,
i.e., interaction terms like the repulsion between nearest
neighbors that appears in HXXZ are irrelevant in the long-
wavelength limit.
The dynamical exponent z or scaling dimension of the

inverse of the correlation length along the imaginary time
direction 1=ξτ (Sachdev, 1999) determines the power-law
exponent of the single-particle dispersion at the QCP,ωq ∝ qz.
Since ωq ∝ q2 at H ¼ Hsat, the dynamical exponent of this
field-induced QCP is z ¼ 2. In general, the quasiparticle
dispersion is quadratic at the saturation field because the
magnetic field couples to a conserved quantity that is the total
magnetization along the z axis Mz ¼

P
jS

z
j. Regardless of

details of the interactions or the system dimensionality, the
single-particle excitations above the saturation field corre-
spond to eigenstates with a single spin flip, Mz ¼ N=2 − 1,
relative to the fully polarized ground state. The restricted
action of the Hamiltonian on this invariant subspace leads to
an effective single-particle problem that is exactly diagonal-
ized in the basis of well-defined momentum if the system
under consideration is translationallly invariant. Since these
excited states have Mz ¼ N=2 − 1 and the ground state has
Mz ¼ N=2, the energy gap Δ for exciting the lowest-energy

quasiparticle state must increase linearly with the applied
magnetic field, Δ ¼ ωQ ¼ gzzμBðH −HsatÞ. Since the single-
particle dispersion relation ωk is an analytic function of k, the
expansion around its minimum value at k ¼ Q will lead in
general to a quadratic dispersion or z ¼ 2. Dispersions with
higher even powers like ωk ≃ ωQ þ cðk −QÞ4 would require
fine-tuning of the Hamiltonian parameters. The conservation
of Mz implies that ωk − ωQ does not depend on H for
H ≥ Hsat (the shape of ωk does not change). Therefore, the
dispersion remains quadratic and the mass remains constant
for anyH ≥ Hsat, i.e., z ¼ 2, except for very particular cases in
which the interactions are tuned to produce higher even values
of z. For instance, if we add a next-nearest-neighbor exchange
interaction J0 ≤ J=2 to HXXZ, the single-particle dispersion
becomes ωk ¼ J þ J cos kþ J0 cos 2kþ gμBðH −HsatÞ and
the expansion around its minimum at Q ¼ π gives
ωk ¼ ωQ þ ðJ=2 − J0Þðk −QÞ2 þ ðJ=24þ 2J0=3Þðk −QÞ4.
This implies that z becomes equal to 4 at the fine-tuned
commensurate to incommensurate transition point J0 ¼ J=2.
When the quantum phase transition at H ¼ Hsat is of

second order, the corresponding critical point is called
Bose-Einstein condensate QCP (BEC QCP). In the next
section we will discuss in detail the characteristics of this
QCP. For the moment we just observe that the effective
dimension of this QCP is D ¼ dþ z ¼ dþ 2, where d is the
spatial dimensionality of the system under consideration.
We will see later on that for certain frustrated systems the
value of d can be lower than their actual spatial dimensionality
(Sebastian, Harrison et al., 2006). This phenomenon is called
dimensional reduction but for the moment we will not worry
about this effect. Since D ¼ dþ 2, the upper critical dimen-
sion of the BEC QCP is dc ¼ 2. This means that a mean-field
bosonic description should be adequate in d ≥ 2 except for
logarithmic corrections that exist for d ¼ 2.
The next step is to find the best low-energy effective theory

for a mean-field description for the BEC QCP in d ≥ 2.
Here is where the Matsubara-Matsuda transformation (2)
plays an important role. As we will see in a moment, this
transformation maps the magnetic problem near the saturation
field into the problem of a dilute gas of interacting bosons.
Fortunately, this problem can be solved in a controlled way
in d ≥ 2 by using diagrammatic techniques (perturbation
theory). The small or “control” parameter of the expansion
is the ratio between the scattering length and the average
distance between bosons (lattice gas parameter). This is
enough motivation for applying the Matsubara-Matsuda trans-
formation (2) to the d-dimensional versions of Hxxz. The
natural extension of Eq. (3) to d ≥ 2 corresponds to the case
of a hypercubic d-dimensional lattice with the same type of
nearest-neighbor interactions,

HXXZ ¼ J
X
r;ν

ðSxrSxrþeν þ SyrS
y
rþeν þ γSzrS

z
rþeνÞ

− gzzμBH
X
r

Szr. (6)

After applying the Matsubara-Matsuda transformation (2) to
(6) we obtain
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HXXZ ¼ J
2

X
r;ν

ðb†rbrþeν þ b†rþeνbrÞ

þ γJ
X
r

ðnbr − 1=2Þðnbrþeν − 1=2Þ − μ
X
r

nbr : (7)

HXXZ has particle-hole symmetry, i.e., it is invariant under the
transformation b†r → br and μ → −μ. This invariance is a
direct consequence of the time-reversal symmetry HXXZ in
the original spin language: Sj → −Sj and H → −H. Time-
reversal symmetry implies that the system has two saturation
fields �Hsat with gzzμBHsat ¼ dJð1þ γÞ [see Fig. 1(a)]. The
ground state of HXXZ for H ≤ −Hsat consists of the fully
polarized spin state in the down direction j↓i, with
Szjj↓i ¼ −ð1=2Þj↓i. Conversely, the ground state of HXXZ
for H ≥ Hsat consists of the fully polarized spin state in the up
direction j↑i, with Szjj↑i ¼ ð1=2Þj↑i. In the particle language
we have that the fully polarized states correspond to the empty
state and the state with one hard-core boson in each site:
j↓i↔j0i and j↑i↔Q

rb
†
r j0i. Since there is particle-hole

symmetry, the BEC QCPs at H ¼ �Hsat are identical and
it is enough to analyze only one of them. We consider the case
in which H is close to −Hsat. By rewriting Eq. (4) in
momentum space we obtain

HXXZ ¼
X
k

ðωk − ~μÞb̂†kb̂k þ 1

2L

X
k;k0;q

Vqb̂
†
kþqb̂

†
k0−qb̂kb̂k0 ;

(8)

where

b̂†k ¼ 1ffiffiffiffi
L

p
X
r

eik·rb†r ; ωk ¼ J
X
ν

ð1þ cos kνÞ;

~μ ¼ gzzμBðH þHsatÞ; Vq ¼ U þ 2 γJ
X
ν

cos kν;
(9)

and L is the total number of lattice sites. The on-site repulsion
U has been introduced to enforce the hard-core constraint by
taking the limit U → ∞ (Friedberg, Lee, and Ren, 1993).
Therefore, the bosonic operators b̂†k create canonical bosons
(they satisfy the usual bosonic commutation relations) with
well-defined momentum k. We note that ωk ≃ Jk2=2 for
k ≪ 1 and ~μ ¼ 0 for H ¼ −Hsat. As mentioned, a mean-field
treatment of the interaction term of Eq. (8) is valid for d ≥ 2.
In the noncondensed phase, the mean-field decoupling of
the interaction term leads only to a renormalization of the
chemical potential, ~μ → ~μ − 2 ρv (ρ ¼ hb†jbji is the density
of bosons, and v is the effective interaction in the long-
wavelength limit). Therefore, the BEC QCP in d ≥ 2
corresponds to a free-boson fixed point.

The Matsubara-Matsuda transformation can be generalized
for higher spin values (Batista and Ortiz, 2004). The crucial
point is that spin degrees of freedom commute on different
sites. Consequently, they can always be represented by
bosonic particles. For instance, one of the spin states jSz ¼
−Si can be mapped into the empty state of bosons j∅i, while
the other 2S spin states can be mapped into the states that have
different numbers of bosons up to 2S. Therefore, the hard-core
constraint ðb†r0 Þ2 ¼ 0 is generalized to ðb†r0 Þ2Sþ1 ¼ 0. In this
way, one can extend the previous approach to any spin system.
As we see in the next sections, there are cases in which the unit
cell contains more than one site and it is more convenient to
describe the system in terms of local degrees of freedom that
include more than one irreducible spin representation. A
simple example is a dimer of two S ¼ 1=2 spins that can
be in a singlet or in one of the three triplet states. The
Matsubara-Matsuda transformation can also be applied to this
case, which is particularly relevant for many quantum para-
magnets that have been studied during the last two decades.
The spin-boson mapping allows us to compare the types of

Hamiltonians that are relevant for both types of systems.
Although the minimal Hamiltonians for describing the S ¼
1=2 magnetic systems that appear in nature are apparently
very similar to the ones that describe gases of strongly
repulsive bosonic atoms on a lattice, there are also important
differences in the general symmetry properties of both types of
Hamiltonians. For instance, we know that the total number
of particles is a conserved quantity for atomic gases. This
conservation is associated with a global U(1) symmetry of the
corresponding Hamiltonians. As we will see below, spin
Hamiltonians that possess this U(1) symmetry are only
approximated models for a class of quantum magnets.
Although the approximated model can provide an excellent
description of certain spin systems down to very low temper-
atures, we will see that terms that break any continuous
symmetry are always present and become relevant at low
enough temperatures. It is for this reason that the notion of
Bose-Einstein condensation applied to spin systems is always
an approximated concept. Like many other instances in
physics, this approximated notion has been useful for analyz-
ing and understanding different physical properties of most of
the quantum magnets that we describe in this review.

B. Uniaxial symmetry breaking and superfluid currents

We have seen in the previous section that any spin
Hamiltonian can be described as a gas of itinerant bosons
by using exact transformations that map the spin operators
into creation and annihilation operators of bosons that satisfy
some constraint. We have also seen that this mathematical fact
can be exploited for solving spin Hamiltonians. Since the
transition to the BEC state corresponds to a spontaneous
breaking of the continuous U(1) symmetry that preserves the
number of particles, the spin Hamiltonian must contain this
U(1) symmetry to exhibit a spontaneous transition to a BEC
state. As discussed, this requirement is fulfilled by magnets
with continuous uniaxial symmetry. The purpose of this
section is to emphasize that real magnets always contain
interactions that break this U(1) symmetry, and thus U(1)-
invariant Hamiltonians are very good approximations for only

(a) (b)

FIG. 1 (color online). ðH; TÞ phase diagrams of (a) S ¼ 1=2 XXZ
and (b) weakly coupled dimer models.
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a subset of these systems. The “degree of U(1) symmetry” is
the most important factor that constrains the number of real
quantum magnets that can be described in terms of BEC. It is
incumbent then on the researcher to understand how large the
broken uniaxial symmetry terms are in comparison with the
ordering temperature of the system. Here we explore different
ways in which the uniaxial symmetry can be broken.
In general, the exchange interaction between two magnetic

moments Sr and Srþeν has a Heisenberg-like contribution
JSr · Srþeν that is isotropic, i.e., invariant under any global
spin rotation. However, there are also anisotropic contribu-
tions that arise from the spin-orbit interaction that transfers the
lattice anisotropy into the spin variables. The most general
exchange interaction between two moments has the formP

i;jS
i
rTijSjrþeν (Moriya, 1960; Sebastian, Tanedo et al.,

2006), where

T ¼ 1
3
TrðTÞIþ Tas þ Tsm;

Tas ¼ 1
2
ðT − T†Þ;

Tsm ¼ 1
2
ðTþ T†Þ: (10)

Here I is the identity and the first term leads to the usual
isotropic exchange coupling J ¼ TrðTÞ=3. Tas is an antisym-
metric tensor that describes the Dzyaloshinskii-Moriya (DM)
interaction D · Sr × Srþeν , where Dη ¼ P

μ;νϵ
ημνTμν

as are the
components of the DM vector, and ϵημν is the Levi-Cività
symbol (Moriya, 1960). The last term Tsm contains the so-
called symmetric exchange anisotropy and has contributions
from the classical dipole-dipole interaction between magnetic
moments. Dipole-dipole interactions always exist and the axis
of uniaxial symmetry is the one that connects the two
moments. Since this axis is different for bonds that are
oriented along different directions, it is not possible to have
a real 2D or 3D quantum magnet with continuous uniaxial
symmetry along any axis. However, for the small spins
(S ¼ 1=2 or 1) found in most BEC compounds, and for
typical lattice spacings of 10 to 3 Å, the dipole-dipole
interactions are of the order of 10–100 mK. Thus, these
interactions are much smaller than typical BEC transition
temperatures, which can range from 1 to 100 K.
In addition to anisotropy in the interaction between two

spins, there are also single-spin terms that can break uniaxial
anisotropy (single-ion anisotropy). For example, in a system
with cubic anisotropy, the spins could prefer to lie along
principal axes, resulting in a clock like model rather than XY
symmetry.
Careful measurements of all the U(1) symmetry-breaking

terms were performed in several compounds, and these
showed that the symmetry-breaking terms are small enough
to provide a clean experimental window where the physics is
well described by a number-conserving theory (Nikuni et al.,
2000; Sebastian, Harrison et al., 2006; Batista et al., 2007;
Schmalian and Batista, 2008). In addition, by understanding
the BEC phenomenology in idealized U(1)-invariant magnets
we can treat U(1) symmetry-breaking terms perturbatively
(Oshikawa and Affleck, 1997; Kolezhuk et al., 2004;
Misguich and Oshikawa, 2004; Sirker, Weiße, and
Sushkov, 2004; Matsumoto and Sigrist, 2005; Orignac and

Citro, 2005; Sebastian, Tanedo et al., 2006; Miyahara
et al., 2007).
Finally, it is important to mention that the U(1) symmetry

plays a fundamental role in the superfluid response of bosonic
systems. The conservation of the number of particles can be
expressed via a continuity equation,

∂ρðrÞ
∂t þ∇ · jðrÞ ¼ 0; (11)

where ρðrÞ and jðrÞ are the particle and current densities at
the point r. This equation implies that the response of the
gas of bosons to a chemical potential gradient ∇μ is a
current: because particles cannot be created or annihilated,
the only response to ∇μ is a flow of particles toward the
region with higher values of μ. In particular, this current
becomes superfluid in the condensate phase, i.e., it flows
without decaying in a ring configuration unless a vortex
moves across the ring. Since the probability of such an event
is exponentially small in the thickness of the ring, the
superfluid current of a BEC of atoms can persist for
arbitrarily long times. The lack of continuous symmetry
for magnetic systems implies that there is no continuity
equation for the magnetization. In other words, the right-
hand side of the magnetic counterpart of Eq. (11) is different
from zero and proportional to the inverse of the relaxation
time, τm of the magnetization,

∂mðrÞ
∂t þ∇ · jmðrÞ ∝

1

τm
: (12)

Here mðrÞ and jmðrÞ are the densities of magnetization
(along the field direction) and the magnetization current at
the point r. Equation (12) shows that magnetization is not
conserved and magnetization currents decay with a time
constant τm. Consequently, the anisotropy terms that are
responsible for the finite value of τm preclude a long-term
superfluid response of the magnetic system.

C. Quantum criticality

1. BEC quantum critical points

In the previous sections we investigated the differences and
commonalities between quantum magnets and gases of
bosonic atoms. The purpose of this section is to characterize
the generic quantum critical point that connects the XY-like
antiferromagnet with the gapped paramagnet when the exter-
nal magnetic field is varied. In the language that is more
common for gases of atoms, this corresponds to the quantum
phase transition between the Mott insulator and the BEC
phases that is induced by a change in the chemical potential μ.
In Sec. II.Awe analyzed a particular realization of this type of
transition in systems that are antiferromagnetic in the absence
of the external field. In these cases the transition occurs at the
critical field required for saturating the uniform magnetiza-
tion. An alternative realization of the BEC QCP is obtained in
materials that are paramagnetic in absence of an external field.
In these so-called quantum paramagnets [see Fig. 1(b)], there
is a zero-field gap between a nonmagnetic ground state and a
magnetic excited state, leading to a ground state with no
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magnetic order. In applied magnetic fields, this gap can be
closed, leading to a QCP into the XY-AFM state that takes
place at a BEC QCP. Most zero-field quantum paramagnets
belong to one of three classes. The first class consists of
materials such as TlCuCl3 or BaCuSi2O6, where the spin gap
is caused by strong dimerization of the magnetic ions (Nikuni
et al., 2000; Jaime et al., 2004). The second class consists of
materials like NiCl2-4SCðNH2Þ2 (DTN), where the gap is
created by a dominant single-ion anisotropy that quenches the
moment of each magnetic ion (Zapf et al., 2006). The main
difference is that materials in the first class are isotropic to a
good approximation before the external field is applied, while
the materials in the second class have only uniaxial symmetry.
A third but less frequent possibility corresponds to the case
of quasi-one-dimensional systems that can have a gapped
paramagnetic ground state even if they are isotropic and
contain one spin per unit cell. The Haldane phase of integer
spin antiferromagnetic chains is the prototypical example
(Haldane, 1983). There are many other ways to create
quantum paramagnetism, and some of these are listed in
the later experimental sections. Here we analyze two of the
most common, namely, dimerized systems and compounds
with strong single-ion anisotropy.
Several quantum paramagnets are quasi-one- or quasi-two-

dimensional. Therefore, before considering the more realistic
situation of field-induced antiferromagnetism in systems with
spatial dimension d ¼ 3, it is instructive to analyze the d ¼ 1
and d ¼ 2 limits. There are materials in which the lower-
dimensional behavior (critical exponents of the d ¼ 1 or
d ¼ 2 QCPs) can be observed over a quite large window
of temperatures. Note that the critical scaling exponent ν,
which relates the correlation length to the driving parameter of
the phase transition, ξ ∼ jH −Hcj−ν is equal to 1=2 regardless
of the spatial dimensionality. This unusual property was
originally derived by Sachdev (1994) and arises from a
symmetry property: the driving parameter μ couples to a
conserved quantity that is the total number of particles. We
have seen in Sec. II.A that this property leads to a dynamical
exponent z ¼ 2. It also leads to a gap that closes linearly in the
driving parameter μ because the ground state and the first
excitation have zero and one particle, respectively. Therefore,
if ξ is the magnetic correlation length that diverges at the BEC
QCP, the following scaling relations hold for d ≤ dc ¼ 2:

Δ ∝ μ ∝
1

ξ1=ν
and Δ ∝

1

ξz
; (13)

implying that

ν ¼ 1=z ¼ 1=2: (14)

This result is still correct for d > dc because ν ¼ 1=2 for the
mean-field theory that is applicable to those cases.
We start by considering the d ¼ 1 case. We have seen in

Sec. II.A that any d ¼ 1 spin Hamiltonian can be expressed in
terms of fermionic operators by means of a Jordan-Wigner
transformation. In addition, for the particular model that we
considered in that section, we obtained the result that the field-
induced QCP, where the gap closes, is described by a free-
fermion model. As we argue in this section, this is a generic

behavior. It is then natural to use a fermionic language for
treating the d ¼ 1 case of interest.
The long-wavelength limit can be obtained by reducing the

lattice parameter a → 0. In this continuum limit, the partition
function Z ¼ Tr e−βH can be expressed as a path integral,

Z ¼
Z

DψDψ†e−
R

βℏ

0
Ldτdx; (15)

where the functional integral is over complex Grassmann
fields, ψðx; τÞ and ψ†ðx; τÞ, and the Lagrangian density L ¼
L0 þ LI can be obtained as a gradient expansion in the
Grassmann fields. L0 contains the quadratic contributions
in the Grassmann fields and describes a nonrelativistic
free-fermion theory,

L0 ¼ ψ†ðx; τÞ∂τψ ðx; τÞ − 1

2m� ψ
†ðx; τÞ∂2

xψðx; τÞ
þ μψ†ðx; τÞψ ðx; τÞ: (16)

For μ ¼ 0 and T ¼ 0, the action S ¼ R β
0 Ldτdx becomes

invariant under the scale transformation,

x0 ¼ xe−l; τ0 ¼ τe−zl; ψ 0 ¼ ψel=2; (17)

where the dynamical exponent is z ¼ 2 because the first term
of L0 contains only one time derivative, while the second term
contains two spatial derivatives. Indeed, by expressing L0 in
terms of the Fourier components of the Grassmann fields
~ψ†ðq;ωÞ and ~ψðq;ωÞ, we obtain the dispersion relation as

ωq ¼
q2

2m� : (18)

According to Eqs. (17), the scaling dimension of the chemical
potential or driving parameter is 1=ν ¼ dim½μ� ¼ z ¼ 2 in
agreement with Eq. (14).
The next step is to compute the scaling dimension of the

interacting terms ofL. The leading contribution in the gradient
expansion is

LI ¼ uψ†ðx; τÞ∂xψ
†ðx; τÞψðx; τÞ∂xψ ðx; τÞ: (19)

Note that the Pauli exclusion principle implies that the
interaction term must include gradients. The lattice counter-
part of this observation is that the density-density interactions
between fermions are always off site because we cannot put
two spinless fermions on the same site. Consequently, by
using Eqs. (17) we obtain the scaling dimension of u as
dim½u� ¼ zþ 1 − 4 ¼ −1. In other words, the interaction
terms are irrelevant for the free-fermion fixed point described
by L0.
Since the field-induced QCP in d ¼ 1 is described by a free-

fermion theory, it is easy to compute the exponents of the
different thermodynamic properties as function of the relevant
parameters μ and T. In particular, at T ¼ 0, the fermion
density (or magnetization density in the spin language) as a
function of μ is given by
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ρ ¼ 1

π

Z
qf

0

dq ¼ qf
π

¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffi
2m�μ

p
; (20)

where qf is the Fermi wave vector, i.e., ωðqfÞ ¼ μ. This
result implies that the magnetization of one-dimensional
magnets increases from zero with an infinite slope at the
critical field Hc: mðT ¼ 0; HÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H −Hc
p

. This anomalous
increase in the magnetization provides one experimental
check for detecting quasi-one-dimensional magnets. As we
see below, the behavior of mðT ¼ 0; HÞ is qualitatively
different for higher-dimensional systems. On the other hand,
the temperature dependence at H ¼ Hc is again obtained
by integrating the Fermi function, mðT;H ¼ HcÞ ¼R
fðωq=kBTÞdq ∝ T1=2. The exponent 1=2 results from

the fact that dq scales like T1=z. The same exponent is
obtained for the specific heat: CðT;H ¼ HcÞ ∝ T1=2.
Given the simplicity of the d ¼ 1 fixed point, it is possible

to accurately compute any physical property in the neighbor-
hood of the field-induced QCP. In particular, the pioneering
work of Giamarchi and Tsvelik (1999) contains a derivation
of the NMR relaxation time-T1, 1=T1 ∝ Tlimω→0χ

00
locðωÞ=

ω ∝ 1=T1=2, where χ00locðωÞ is the imaginary part of the local
magnetic susceptibility in the direction perpendicular to the
applied field. The implicit assumption is that the local
susceptibility near the QCP is dominated by the contribution
from the transverse part of the staggered susceptibility. Once
again, this result can be obtained by computing the scaling
dimension of the two-point correlator associated with χ00locðωÞ.
Finally, we note that application of a staggered field hs is a

relevant perturbation, i.e., it opens a gap at the QCP. The
exponent η that determines the scaling dimension of hs,
dim½hs� ¼ D − ð1þ ηÞ=2 ¼ ð5 − ηÞ=2, is obtained from the
asymptotic behavior of the two-point correlator hSþr S−0 i ∝
1=rð1þηÞ for r ≫ a. We note that the Jordan-Wigner trans-
formation introduces a nonlocal string operator that compli-
cates the computation of this two-point correlator in the
fermionic language. However, it is still possible to use the
powerful bosonization technique for computing this correlator
and obtain η ¼ −1=2 (Giamarchi, 2004).
The relatively straightforward scenario presented for the

d ¼ 1 case is obtained only after making a Jordan-Wigner
transformation. A derivation of the same results becomes
much more complicated if we insist on using a bosonic
language for describing the physics near the d ¼ 1 QCP. On
the other hand, the bosonic description is convenient in higher
dimensions because the upper critical dimension is dc ¼ 2.
Therefore, to analyze the critical behavior near the BEC QCP
for d ≥ 2 we express the action in terms of the complex field
φðr; τÞ,

LðφÞ ¼ φ�∂τφþ j∇φj2 − ~μjφj2 þ ujφj4 − hsðφþ φ�Þ;

S ¼
Z

drddτLðφðr; τÞÞ: (21)

In this case we included explicitly the term hsðφþ φ�Þ that is
a linear coupling between a transverse field hs and the order
parameter. For instance, if this is an effective theory for a field-
induced XY antiferromagnet, this term represents the linear
coupling between an applied staggered field along the x spin

direction and the x component of the staggered magnetization.
We note that the uniform applied field H enters linearly in the
effective chemical potential ~μ [see Eq. (9)]. The T ¼ 0 fixed
point again corresponds to μ ¼ u ¼ hs ¼ 0. Similarly to the
d ¼ 1 case, the action at the fixed point is invariant under the
scale transformation

x0 ¼ xe−l; τ0 ¼ τe−zl; φ0 ¼ φeld=2: (22)

The scaling dimension of the rest of the variables is obtained
by requesting that S must remain invariant under the scale
transformation when we move away from the QCP,

μ0 ¼ μe2l; u0 ¼ ueð2−dÞl; h0s ¼ hseð2þd=2Þl. (23)

Again we get that ν ¼ 1=2 and the scaling dimension of the
parameter u, dim½u� ¼ d − 2, confirms that d ¼ 2 is the upper
critical dimension. Therefore, we should expect a mean-field
behavior for d ≥ 2 with logarithmic corrections for d ¼ 2. To
obtain the asymptotic behavior of the critical field at low
temperatures (phase boundary) we note that u0 can be made
very small by choosing a large value of el. In this way, we can
treat the u0 term of the renormalized action by using
perturbation theory. After applying perturbation theory in
u0, we obtain the result that the free energy has a singularity
when μ0 ¼ μ0c ∝ u0Td=2. The Td=2 arises from the mean value
of jϕ0j2 under a quadratic action. Again, the integration over
each momentum component leads to a factor T1=z. In terms of
the bare coupling constants this condition becomes

HcðTÞ −Hcð0Þ ∝ Td=2: (24)

For d ¼ 2 this boundary corresponds to the Berezinskii-
Kosterlitz-Thouless transition and Eq. (24) is correct up to
a logarithmic correction (Fisher and Hohenberg, 1988).
A similar mean-field analysis shows that the specific heat
and the uniform magnetization at H ¼ Hcð0Þ are proportional
to Td=2. The zero-temperature magnetization increases lin-
early in H −Hcð0Þ for d ≥ 3. In d ¼ 2 the uniform magneti-
zation is proportional to −½H −Hcð0Þ�= ln ½H −Hcð0Þ�
(Fisher and Hohenberg, 1988). The low temperature depend-
ence of the NMR relaxation rate can still be obtained from
scaling arguments for d ¼ 2 (upper critical dimension) and
the result is that 1=T1 is temperature independent up to
logarithmic corrections. However, scaling arguments are no
longer applicable in d ¼ 3 (above the upper critical dimen-
sion) and it is necessary to include the effective boson-boson
interaction to obtain that 1=T1 ∝ T3=2 (Orignac, Citro, and
Giamarchi, 2007).

2. Dimensional reduction

Here we discuss a frustration-induced dimensional reduc-
tion at a BEC QCP. As already pointed out, the main
characteristic of the BEC QCP is that the quantum phase
transition is driven by a parameter (magnetic field or chemical
potential) that couples to a conserved quantity (the z compo-
nent of the magnetization or number of particles). This
observation implies that the ground-state wave function
remains invariant in the paramagnetic region. In particular,
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if we are dealing with a two-level system, the ground-state
wave function of the paramagnetic region is a product state.
For instance, the fully saturated state is a direct product of spin
states in each site that are polarized along the field direction.
The product state structure of the wave function implies that
there are no intersite quantum fluctuations. In this situation, it
is possible to obtain the exact single-particle excitation of the
paramagnetic phase as we did for the XXZ model (6). In
particular, the single-particle dispersion for the saturated
phases of an antiferromagnetic XXZ model on a body-
centered tetragonal (bct) is very peculiar. The bct lattice is
obtained by stacking square lattices in an ABAB… configu-
ration as is shown in Fig. 2(a).
If the nearest-neighbor intralayer exchange coupling J is

dominant and antiferromagnetic, the interlayer exchange Jf is
completely frustrated. The reason is that Jf corresponds to an
interaction between a given spin and the sum of the
four nearest-neighbor spins in an adjacent layer. The
dominant interaction- J forces these four spins to be anti-
ferromagnetically aligned, i.e., their sum is equal to zero and
the Jf interaction is completely blocked. This is a simple
example of geometric frustration. The counterpart of this
effect in the particle version of the problem is that the
single-boson dispersion ωq ¼ Jðcos qx þ cos qyÞ þ
4Jf cos qz cosð qx=2 Þ cosð qy=2Þ is minimized for any wave
vector Q ¼ ðπ; π; qÞ that has in-plane components equal to
Q∥ ¼ ðπ; πÞ (Jackeli and Zhitomirsky, 2004; Ueda and
Totsuka, 2009). In other words, if a boson belongs to a given
layer and has momentum Q∥ ¼ ðπ; πÞ (i.e., it is part of the
condensate of that layer), it cannot hop to the next layer due to
perfect destructive interference between the phases of the four
sites that connect with a given site of the adjacent layer [see
Fig. 2(b)]. We note that this “perfect blocking” of the
interlayer coupling is usually avoided by thermal or quantum
fluctuations via the order-from-disorder mechanism (Villain
et al., 1980). However, thermal fluctuations do not exist at
T ¼ 0 and intersite quantum fluctuations are also absent in the
paramagnetic side of the transition as already anticipated. On
the other hand, quantum fluctuations are present on the

ordered side and can indeed induce an effective interlayer
tunneling for bosons in the condensate of each layer
(½Q∥ ¼ ðπ; πÞ�) (Maltseva and Coleman, 2005). Figure 2(c)
shows the lowest-order diagram that generates this effective
hopping. A particle in the condensate of layer i interacts with a
second particle in the same layer that has arbitrary momentum
k∥i. The outgoing particles have momenta q∥i and q0

∥i
(q∥i þ q0

∥i ¼ k∥i þQ∥i þG∥ with G∥ being a reciprocal
lattice vector). Since the bare interlayer hopping amplitudes
t⊥ðq∥iÞ and t⊥ðq0

∥iÞ are finite for q∥i, and q0
∥i different from

Q∥i, the two particles can hop to the next-nearest layer and
recombine via a second interaction vertex to have final
momenta Q∥iþ2 and k∥iþ2. If we contract the outgoing line
with momentum k∥iþ2 with the incoming line with momen-
tum k∥i, we end up with an effective (coherent) hopping
process that moves particles from the condensate of layer i to
the condensate of layer iþ 2. We note that coherent hopping
processes between layers with opposite parity (like i and
iþ 1) are not allowed by the point group symmetry of rotation
along the c axis by π=2.
It is important to note that the effective hopping amplitude

induced by the diagram shown in Fig. 2(c) is proportional to
the density of bosons ρ (Batista et al., 2007; Schmalian and
Batista, 2008). This is so because the boson in the condensate
of layer i has to be assisted by a second boson in order to hop
to the condensate of layer iþ 2. Since the bosonic density
goes to zero at the BEC QCP, it is natural to ask what is the
effective spatial dimensionality of the corresponding fixed
point. It turns out that an interlayer hopping amplitude that is
proportional to the boson density is a marginal perturbation
relative to the decoupled or d ¼ 2 fixed point (Batista et al.,
2007; Schmalian and Batista, 2008). Therefore, although the
original system is three dimensional, the BEC QCP is
described by the d ¼ 2 fixed point due to the combination
of perfect interlayer frustration and the lack of intersite
quantum fluctuations in the paramagnetic phase. For a while,
the belief was that this phenomenon of dimensional reduction
near a QCP was observed for the first time in the field-induced
transition of the quantum dimer compound BaCuSi2O6 that is
also known as Han purple (Sebastian, Tanedo et al., 2006). We
note that this is a rather unusual behavior if we consider that
dimensionality typically increases near quantum critical
points due to amplification of weak couplings between
lower-dimensional subsystems. Other works (Krämer et al.,
2007; Rösch and Vojta, 2007; Laflorencie and Mila, 2009)
emphasized the importance of the existence of inequivalent
layers in BaCuSi2O6 (the intradimer exchange is different for
A and B layers: JA ¼ 4.27 meV and JB ¼ 4.72 meV) (Rüegg
et al., 2007). However, a recent work by Mazurenko et al.
(2014) has shown that the effective intralayer interaction is
ferromagnetic, implying that the observed d ¼ 2 exponents at
the BEC QCP must be attributed to a combination of non
equivalent layers with a very weak interlayer interaction.
Therefore, the phenomenon of dimensional reduction by
frustration remains to be observed in real materials. Natural
candidates are S ¼ 1=2 magnets with a bct structure and
antiferromagnetic (frustrated) intralayer exchange.
In any case, the dimensional reduction at the BEC QCP of a

highly frustrated quantum magnet is a nice example of the
novel physical phenomena that arise even in one of the

Q // i
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q'// i

q// i

k // i

q'// i+2

q// i+2 k // i+2

t (q')

t (q)

v0

v0

(c) 

Q // i

Q // i+1J

J f
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(b) 

FIG. 2 (color online). (a) Antiferromagnetic XXZ model on a
body-centered tetragonal lattice. (b) Blocking of interlayer
hopping for bosons in the condensate of each layer. (c) Lowest-
order diagram that generates an effective coherent interlayer
hopping.
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simplest types of QCP when we deviate from standard bosonic
gases. Given that the BEC QCPs do not satisfy the Harris
criterion (dν < 2) (Harris, 1974), disorder is another impor-
tant ingredient for inducing novel quantum critical behavior
and the so-called Bose glass phase (Fisher et al., 1989).
Quantum magnets are ideal for exploring the effects of
disorder and test the predictions of Fisher et al. (1989).
Indeed, recent results in Br-doped DTN are showing a quite
unexpected universal behavior for the QCP that separates the
Bose glass from the BEC state (Yu et al., 2012). This is one of
the most promising directions for the future of this field.

D. Theoretical approaches

1. Perturbation theory

Degenerate perturbation theory is the common tool for
deriving low-energy effective Hamiltonians of quantum
magnets in the presence of an external magnetic field.
A low-energy effective Hamiltonian ~H is an operator whose
spectrum is very similar to the low-energy spectrum of the
original Hamiltonian H. If we are only interested in the
phenomena that take place well below a certain temperature
T0, it is enough to work with an effective Hamiltonian
that reproduces the spectrum of H for energies lower than
kBT0. The main advantage is that ~H operates in the smaller
Hilbert space of the reduced number of relevant degrees of
freedom.
As mentioned, there are three types of quantum para-

magnets that form the majority of magnetic-field-induced
BEC QCPs: those with weakly coupled spin dimers, those
with strong single-ion anisotropy that quenches the local
magnetic moment in the absence of an external field, and
Haldane chains. Other examples include larger magnetic
clusters like integer-spin trimers or tetramers. In the next
section we describe the simplest examples of the dimer and
single-ion anisotropy cases. In both cases we can apply the
formalism of degenerate perturbation theory by expanding in a
small parameter. This parameter corresponds to the ratio
between exchange interactions responsible for long-range
order and the energy scale of the zero-field gap, which could
be an intradimer exchange interaction in the first case, or
the single-ion anisotropy in the second case. Although
the formalism is the same for both classes of magnets, we
consider them separately because the effective Hamiltonians
can be quite different.
Dimer systems consist of magnetic lattice structures whose

units are pairs of spins that interact via a dominant anti-
ferromagnetic exchange constant J0. The single dimer spec-
trum consists of a singlet ground state that is separated from
the triplet excited state by an energy difference of order J0
(precisely equal to J0 for S ¼ 1=2 dimers). The application of
an external field lowers the energy of the Sz ¼ 1 triplet state.
For high enough field, this triplet state becomes degenerate
with the singlet ground state while the energy gap to the other
two triplet states remains of order J0. For S ¼ 1 dimers, we
also need to consider the Sz ¼ 2 quintet whose energy rapidly
decreases as a function of field and becomes degenerate with
the single-dimer ground state at high enough fields. If we want
to keep only contributions that are of first order in the

interdimer exchange constants Jr;r
0

ll0 , we need to project our
original Hamiltonian into the low-energy subspace generated
by the low-energy states (singlet and Sz ¼ 1 triplet for
S ¼ 1=2 dimers, singlet, Sz ¼ 1 triplet, and Sz ¼ 2 quintet
for S ¼ 1 dimers, and so on). If P is the projector into
this subspace, we have that ~H ¼ PHP. The effective two-
level local degree of freedom for S ¼ 1=2 dimers can be
represented with a pseudospin s ¼ 1=2 variable or by
the equivalent representation in terms of hard-core bosons.
(We use lower-case letters for these pseudospin variables in
order to distinguish them from the original spin variables,
which are denoted by capital letters.) In other words, ~H
describes a system of interacting s ¼ 1=2 effective moments
or, equivalently, a gas of hard-core bosons.
The type of effective interactions that result from weakly

coupled dimers can be obtained by considering a pair of
dimers with coordinates r and r0 coupled by the most general
set of isotropic interdimer exchange constants Jll0 (see Fig. 3).
The corresponding exchange Hamiltonian is

Hr;r0
d ¼ J0ðSr1 · Sr2 þ Sr01 · Sr02Þ þ

X
l;l0¼1;2

Jr;r
0

ll0 Srl · Sr0l0

− gzzμBH
X
rl

Szrl; (25)

where J0 is the intradimer exchange interaction, and the
indices l; l0 ¼ f1; 2g specify the particular spin in the dimer.
As long as J0 ≫ jJr;r0ll0 j, we can use perturbation theory to
include the effect of the interdimer exchange. The effective
Hamiltonian to first order in Jll0 is

~Hr;r0
d ¼ PHr;r0

d P: (26)

Since the perturbation corresponds to an interaction between
spins on different dimers, the following relation holds:

PSrl · Sr0l0P ¼ PSrlP · PSr0l0P: (27)

Consequently, to obtain ~Hd we just need to replace the spin
operators of Eq. (25) by the projected spin operators

~Srl ¼ PSrlP; (28)

where ν ¼ x; y; z. In particular, the projected spin operators
for the system under consideration are

J11 

J22 

J12 

J0 

J0 

1 

2 

1 

2 

r  

r

FIG. 3 (color online). Pair of weakly coupled dimers.
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~Szrl ¼
nr
2
; ~Sþrl ¼

ð−1Þlffiffiffi
2

p b†r ; ~S−rl ¼
ð−1Þlffiffiffi

2
p br: (29)

Here we have used the hard-core representation for operators
acting on the low-energy subspace generated by the singlet
and the Sz ¼ 1 triplet of each dimer. The singlet is mapped
into the empty state of bosons, while the Sz ¼ 1 triplet
corresponds to the state occupied by one boson. The notation
for the hard-core boson operators is the same as in Sec. II.A.
We note that the internal index l of each dimer has disappeared
after the projection because the two spins of the dimer are no
longer independent variables after projection into the
low-energy sector. This means that each dimer becomes an
effective site in the lattice of ~Hd. Therefore, the effective low-
energy model for the two-dimer system of Fig. 3 is a two-site
Hamiltonian for a gas of hard-core bosons,

~Hr;r0
d ¼ tr;r0 ðb†rbr0 þ b†r0brÞ þ Vr;r0 ðnr − 1=2Þðnr0 − 1=2Þ

− μr;r0 ðnr þ nr0 Þ; (30)

where

tr;r0 ¼
1

4
ðJr;r011 þ Jr;r

0
22 − Jr;r

0
12 − Jr;r

0
21 Þ;

Vr;r0 ¼
1

4
ðJr;r011 þ Jr;r

0
22 þ Jr;r

0
12 þ Jr;r

0
21 Þ;

μr;r0 ¼ −J0 þ gzzμBH − Vr;r0

2
: (31)

Here tr;r0 is the hopping amplitude between sites r and r0, Vr;r0

is the amplitude of the corresponding off-site density-density
interaction, and μr;r0 is the chemical potential.
We note that Eq. (30) has been derived for H > 0. The

effective Hamiltonian is identical for negative values of H:
~Hr;r0
d ðHÞ ¼ ~Hr;r0

d ð−HÞ due to the time-reversal symmetry of

Hr;r0
d (the Sz ¼ 1 triplet must be replaced by the Sz ¼ −1

triplet). Therefore, without loss of generality, we focus on the
H > 0 case. The extension of this derivation to an infinite and
arbitrary lattice of dimers is straightforward. We just need to
add the contributions from every pair of dimers that are
connected by finite exchange constants Jr;r

0
ll0 ,

~Hd ¼
X
hr;r0i

tr;r0 ðb†rbr0 þ b†r0brÞ

þ
X
hr;r0i

Vr;r0 ðnr − 1=2Þðnr0 − 1=2Þ − μ
X
r

nr; (32)

with

μ ¼ −J0 þ gzzμBH − 1

2

X
r0
Vr;r0 ; (33)

where the angular brackets hr; r0i indicate that we are
summing over the bonds that connect r and r0. ~Hd describes
a gas of interacting bosons and the model is similar to the one
obtained for the S ¼ 1=2 XXZ Hamiltonian discussed in
Sec. II.A. The main difference is that ~Hd has two critical
fields- Hc1 and Hc2 ¼ Hsat, instead of the single saturation
field of HXXZ (see Fig. 1). This is so because our system of

weakly coupled dimers is a gapped quantum paramagnet
for H ¼ 0.

~Hd is invariant under the particle-hole transformation
b†r → br and μ → −μ. This implies that the field-induced
ordered phase is symmetric around the μ ¼ 0 point that
corresponds to gzzμBH0 ¼ J0 þ 1

2

P
r0Vr;r0 . H0 is at the center

of the field-induced dome (phase boundary of the ordered
state) on the H > 0 axis and it corresponds to the field that
maximizes the ordering temperature TN (see Fig. 1). The
critical field Hc2 is mapped into Hc1 under the particle-hole
transformation, i.e., Hc1 ¼ H0 − ðHc2 −Hc1Þ=2 and
Hc2 ¼ H0 þ ðHc2 −Hc1Þ=2. We note that although this trans-
formation is a symmetry of ~Hd, it is not a symmetry of the
original Hamiltonian Hd. This is an example of an emergent
symmetry (Batista and Ortiz, 2004), i.e., a transformation that
leaves the low-energy spectrum of Hd invariant up to some
order in the perturbative parameter. For the case under
consideration, second-order contributions in the interdimer
exchange already remove the particle-hole symmetry.
Therefore, if the measured boundary of the BEC phase is
approximately symmetric around H0, we can infer that
interdimer exchange is much weaker than J0. This is, for
instance, the case of BaCuSi2O6 (Jaime et al., 2004), where
the phase diagram of the ordered region in ðT;HÞ is
symmetric about H0, but it is not the case of Ba3Mn2O8

(Samulon et al., 2009).
The most common phases for a gas of interacting bosons,

like the one described by ~Hd, are the Mott state, the BEC, and
the crystal state (Rice, 2002). As is indicated in Table II, these
states correspond to the quantum paramagnet, the XY anti-
ferromagnet, and Ising-like order, respectively. The Mott state
does not break any symmetry, it is gapped, and it has an
integer number of bosons per site. For instance, the ground
state of ~Hd is in the quantum paramagnet, or Mott state, for
H < Hc1 (every dimer is in a singlet state that corresponds to
zero bosons per site) and H > Hc2 (every dimer is in a Sz ¼ 1

triplet state that corresponds to one hard-core boson per site).
The XY AFM, or BEC state, is stabilized between Hc1 and
Hc2. Here the hopping amplitudes tr;r0 dominate over the off-
site repulsions Vr;r0 . On the other hand, dominant repulsive
terms can lead to a Bose crystal rather than a BEC when boson
filling factors are commensurate. In this case the spectrum is
usually gapped. The experimental signature of the crystal state
is the appearance of plateaus in the field dependence of the
uniform magnetization. The Shastry-Sutherland (Shastry and
Sutherland, 1981) compound SrCu2ðBO3Þ2 is a prominent
example of field-induced crystallization in a spin-dimer

TABLE II. Corresponding spin and boson variables under the spin-
particle transformations discussed in the main text.

Spin Particle

hSzji hnbj i
gzzμBH μ
hmx � imyi hb†ji, hbji
Superfluid density Spin stiffness
Ising-like ordering Crystalization
XY-like ordering BEC
Gapped quantum paramagnet Mott insulator
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quantum paramagnet (Smith and Keszler, 1991; Kageyama,
Onizuka et al., 1999; Kageyama, Yoshimura 1999; Misguich,
Jolicoeur, and Girvin, 2001; Kodama et al., 2002; Shastry
and Kumar, 2002; Miyahara and Ueda, 2003; Sebastian
et al., 2008).
From Eqs. (31), one can see that the ratio tr;r0=Vr;r0 is

controlled by the degree of frustration between the different
exchange interactions that connect a given pair of dimers. In
particular, we have that tr;r0 ¼ 0 when the four exchange
couplings are the same (fully frustrated case). To understand
the origin of this cancellation we need to note that a hopping
process corresponds to the exchange of singlet and triplet
states between the two dimers. While the triplet state is
symmetric under the exchange of the two dimer sites 1 and 2,
the singlet state is antisymmetric. The exchange terms Jr;r

0
12 and

Jr;r
0

21 can be obtained from the terms Jr;r
0

11 and Jr;r
0

22 by
exchanging the two sites of the second dimer. This implies
that the Jr;r

0
12 and Jr;r

0
21 contributions to the effective hopping tr;r0

must have opposite signs relative to contributions from Jr;r
0

11

and Jr;r
0

22 [see Eqs. (31)]. On the other hand, the four
amplitudes contribute with a positive sign to Vr;r0 because
this effective repulsion results from the Ising terms SzrlS

z
r0l0 ,

which are all positive if there is a triplet state in each dimer.
Therefore, the degree of frustration in the interdimer couplings
is the key ingredient that determines whether the field-induced
ordered state is a crystal or a BEC. In general, the field-
induced ordered region can also include BEC and crystal
phases in different intervals of magnetic fields. Moreover,
these two phases can also coexist in certain windows of
magnetic field leading to the so-called spin supersolid state on
the lattice (Laflorencie and Mila, 2007; Sengupta and Batista,
2007a, 2007b; Schmidt et al., 2008; Albuquerque et al., 2011;
Peters, McCulloch, and Selke, 2012). In other words, inter-
dimer frustration provides a natural mechanism for realizing a
gas of bosons with dominant off-site repulsions that are a
precondition for stabilizing spin supersolid states. We note
that this is specific to dimers, and is not the case for single-
spin systems in the nearly isotropic Heisenberg magnets for
which the hopping amplitude and off-site repulsion are of the
same order (see Sec. II.A).
To complete the previous discussion, it is instructive to

apply the Matsubara-Matsuda transformation (Matsubara and
Matsuda, 1956) to ~Hd,

~Hd ¼
X
hr;r0i

�
tr;r0

2
ðsxrsxr0 þ syrs

y
r0 Þ þ Vr;r0szrs

z
r0

�
− μ

X
r

szr: (34)

The pseudospin-1=2 variable sr provides an alternative
description of the two-level singlet-triplet system (szr ¼ 1=2
corresponds to the triplet state while szr0 ¼ −1=2 corresponds
to the singlet state). A small tr;r0=Vr;r0 ratio corresponds to a
strong easy-axis exchange anisotropy in this effective XXZ
model. Therefore, by starting with an isotropic spin system,
we managed to produce an effective low-energy model that
can have a very anisotropic exchange interaction. The
Zeeman anisotropy produced by the application of a large
magnetic field has been converted into a strong effective
exchange anisotropy by combining strong dimerization and

interdimer frustration. As explained earlier, this property
opens the door for realizing novel and exotic field-induced
magnetic orderings in quantum dimer systems. There are
other exotic states such as Bose metals (spin liquids) that can
be stabilized in very frustrated lattices or Bose glasses that can
appear in presence of disorder. Although this is a fascinating
subject, a detailed discussion of these states of matter is
beyond the scope of this review.
The effective Hamiltonians are more constrained in the case

of magnets whose local moments are quenched by a strong
single-ion anisotropy. The spins of these magnets have to be
S ¼ 1 or higher because of the requirement of single-ion
anisotropy. The simplest and prototypical example corre-
sponds to S ¼ 1 and a large uniaxial anisotropy term
DðSzÞ2, with D ≫ jJr;r0 j (Jr;r0 are the exchange constants
between spins located at sites r and r0 of the magnetic lattice).
The compound NiCl2-4SCðNH2Þ2 (Paduan-Filho et al., 1981,
2009;Paduan-Filho, Gratens, and Oliveira, 2004b; Zapf et al.,
2006; Zvyagin et al., 2007; Chiatti et al., 2008, 2009; Cox
et al., 2008; Reyes, Paduan-Filho, and Continentino, 2008;
Yin et al., 2008; Zvyagin et al. 2008;; Sun et al., 2009;
Zherlitsyn et al., 2009; Kohama et al., 2011; Zapf et al. 2011;
Paduan-Filho, 2012; Psaroudaki et al., 2012), also known as
DTN, provides a natural realization of this situation. If the
dominant terms of the magnetic system are U(1) invariant, the
spin Hamiltonian for a pair of neighboring ions has the general
form

Hr;r0
s ¼ D½ðSzrÞ2 þ ðSzr0 Þ2� − gzzμBHðSzr þ Szr0 Þ

þ Jr;r0 ðγSzrSzr0 þ SxrSxr0 þ SyrS
y
r0 Þ: (35)

In this case, the low-energy subspace corresponds to the direct
product of the single-ion subspaces generated by the Sz ¼ 0

and Sz ¼ 1 states (we keep assuming that the magnetic field is
positive). By repeating the projection process similar to the
one described by Eqs. (26), (27), (28), and using the new
projected spin operators,

~Szr ¼ nr; ~S
þ
r ¼

ffiffiffi
2

p
b†r ; ~S

−
r ¼

ffiffiffi
2

p
br; (36)

(nr ¼ 1 corresponds to the Sz ¼ 1 state while nr ¼ 0 corre-
sponds to the Sz ¼ 0 state) we obtain the effective low-energy
Hamiltonian for Hr;r0

s ,

~Hr;r0
s ¼ tr;r0 ðb†rbr0 þ b†r0brÞ þ Vr;r0 ðnr − 1=2Þðnr0 − 1=2Þ

− μr;r0 ðnr þ nr0 Þ; (37)

where

tr;r0 ¼Jr;r0 ;Vr;r0 ¼γJr;r0 ;μr;r0 ¼−DþgzzμBH−Vr;r0

2
: (38)

Although the effective Hamiltonian (37) has the same form as
~Hd, it is clear from Eq. (38) that the Hamiltonian parameters
are more restricted than in the case of dimerized spin systems
[see Eqs. (31)]. The effective exchange anisotropy for the
dimerized compounds can be easy-plane or easy-axis depend-
ing on the relative strength of the four interdimer exchange
interactions Jr;r

0
ll0 . In contrast, since γ ≃ 1, the effective

exchange anisotropy of ~Hr;r0
s is easy-plane or XY-like because
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the hopping amplitude is similar to the nearest-neighbor
repulsion. We note that the exchange anisotropy of the original
Hamiltonian (35) is usually small (γ ≃ 1) for magnetic ions
with relatively small spin-orbit coupling. Therefore, we expect
that the field-induced BEC phase should be the most common
type of ordering for this class of axially symmetric quantum
paramagnets. That is indeed the case for DTN.

2. Generalized spin-wave theory

Once we have an adequate original or effective spin
Hamiltonian H for describing the quantum magnet under
consideration, we need to find an approach for describing the
low-temperature magnetic ordering and low-energy excita-
tions. The simplest and most popular approach is to propose a
mean-field (MF) variational ground state of the form

jψMFðfκjrgÞi ¼⊗r jψ rðfκjrgÞi; (39)

where r is the coordinate of each unit cell and jψrðfκjrgÞi is a
local wave function for the spin degrees of freedom in the unit
cell at r. The variational parameters fκjrg are determined by
minimizing the mean energy hψMFðfκjrgÞjHjψMFðfκjrgÞi. It is
clear that these parameters are a function of the applied
magnetic field and the nature of jψMFðfκjrgÞi must change
qualitatively at the critical field Hc1. In particular, if the
transition corresponds to a BEC QCP, we have seen that this
mean-field description will provide the correct exponents for
d ≥ 2. Low-energy excitations for this mean-field ground state
are obtained by including Gaussian or quadratic fluctuations
as is usually done in the traditional spin-wave treatment.
However, the method that we describe here (Muniz, Kato, and
Batista, 2013) differs from the traditional spin-wave approach.
The main difference arises from the variational space of the
mean-field wave function. In the traditional spin-wave theory,
the most general mean-field wave function contains two
variational parameters θr and ϕr per spin (r is the coordinate
of each spin). There is a one-to-one correspondence between
these mean-field states and a classical spin configuration in
which the orientation of the classical spin at site r is
determined by the spherical angles θr and ϕr. This para-
metrization is usually enough for mean-field descriptions of
Heisenberg-like spin models with one spin per unit cell and
weak single-ion anisotropy. However, a more complete para-
metrization is required for more general quantum magnets.
For instance, themean-field descriptionof theground state of

DTN in the absence of magnetic field is a direct product of the
Szr ¼ 0 state jSzr ¼ 0i on every ion. This mean-field state has
no classical counterpart because hSzr ¼ 0jSνrjSzr ¼ 0i ¼ 0 for
ν ¼ fx; y; zg. This observation leads to a very natural question:
What is the most general parametrization of jψMFðfκjrgÞi? The
answer depends on the dimension N of the local Hilbert space
of each unit cell. The parametrization of an arbitrary state
jψrðfκjrgÞi for the unit cell r requires a total of N − 1 complex
variational parameters (note that thewave function is defined up
to a phase). A pair of arbitrary states is connected by a unitary
transformation that belongs to the SU(N) group, in contrast to
the reduced SU(2) group that connects all possible variational
states of the traditional spin-wave approach. If we are dealing
with a system like DTN with one spin S ¼ 1 per unit cell, we

need four variational parameters per unit cell (two complex
numbers) (Muniz,Kato, andBatista, 2013). The physical origin
of this freedom is that a local Hilbert space of dimension N
admits local order parameters that are more general than the
magnetization. The local order parameter of ourS ¼ 1 example
has eight independent components: besides the three compo-
nents of the localmagnetizationvector ðSxr ; Syr ; SzrÞ, there are the
five nematic components of the symmetric and traceless tensor
3ðSzÞ2 − 2, ðSxÞ2 − ðSyÞ2, SxSy þ SySx, SxSz þ SySz, and
SzSy þ SySz. In general, the N2 − 1 components of the local
order parameter are generators of the SUðNÞ group. Strong
inhomogeneities in the exchange constants or strong easy axis
anisotropies can stabilize states with nonzero mean values of
components of the local order parameter that are orthogonal to
the magnetization. For instance, the jSzr ¼ 0i state that is
relevant for DTN has a net nematic component but no net
magnetization.
Since the components of the most general local order

parameter are generators of the SU(N) group, it is clear that
these generators provide a more appropriate language for
including the Gaussian fluctuations. We note that these
quantum fluctuations, induced by the exchange interaction
between different magnetic moments, lead to small deviations
of the local order parameter around its mean value. Schwinger
bosons (SBs) provide a useful representation of the generators
of the SU(N) group in the fundamental representation
(Auerbach, 1998),

Smm0
r ¼ b†rmbrm0 ; (40)

where the indices 1 ≤ m, m0 ≤ N run over the N states that
form the basis of the local Hilbert space and the SBs satisfy the
constraint X

m

b†rmbrm ¼ NS: (41)

S ¼ 1=N for the case of interest because we are working with
the fundamental representation of SUðNÞ. However, under
special circumstances it could be more convenient to work
with a higher representation of SUðNÞ. The operators Smm0

satisfy the suðNÞ algebra,

½Smm0
r ; Sll

0
r0 � ¼ ðδm0lSml0

r − δml0Slm
0

r Þδrr0 : (42)

One useful property of the fundamental representation is
that any local operator can be expressed as a linear combi-
nation of the identity and the generators Smm0

. In particular, we
are interested in expressing the spin operators as a linear
combination of the generators Smm0

,

Sνlr ¼
X
mm0

b†mrSν
lmm0bm0r; (43)

where l is an internal index of the unit cell and ν ¼ fx; y; zg.
Sν
l is then the matrix associated to the spin operator Sνlr in the

SB representation of generators of SUðNÞ. Similarly,

ðSνlrÞn ¼
X
mm0

b†mrO
ν;n
lmm0bm0r; (44)
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where Oν;n is the matrix associated with the ðSνlr0 Þn
and Oν;1

l ¼ Sν
l .

The Hamiltonian H under consideration is always a
polynomial function of the spin operators Sνlr0 . Therefore,
the SB representation of H is obtained by replacing the
operators ðSνlr0 Þn with the bilinear form (43)

HðfSνlrgÞ → H
��X

mm0
b†mrSν

lmm0bm0r

��
. (45)

Equation (44) implies that Hamiltonian terms that involve
spins from the same unit cell are bilinear forms in the SBs.
However, exchange terms between spins on different sites are
biquadratic because each site brings a bilinear form.
It is also important to note that any local state can be

expressed as a linear combination of the states b†rmj∅i. This is
true in particular for the local states jψ rðfκjrgÞi that appear in
the lowest energy mean-field or product state (39),

jψrðfκjrgÞi ¼
X
j¼1;N

κjrb
†
j j∅i. (46)

The rest of the procedure is formally similar to the traditional
spin-wave approach. The first step is to apply a unitary
transformation [rotation in SUðNÞ] that transforms b†1r into
~b†1r ¼

P
j¼1;Nκ

j
rb

†
jr,

~b†mr ¼
X
l

Ur
mlb

†
lr. (47)

It is clear that the unitary transformation Ur is not unique. The
mean-field state (39) can be regarded as a condensation of the
new ~b†1r bosons,

jψMFðfκjrgÞi ¼⊗r
~b†1rj∅i: (48)

In other words, the mean-field approximation of the ground
state is the state with ~n1r ¼ ~b†1r ~b1r ¼ 1 and ~nmr ¼ 0
(1 < m ≤ N). If we assume that fluctuations will induce
small changes in these occupation numbers, we can introduce
the following generalization of the Holtstein-Primakoff
transformation:

~b†1r ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN − X

j¼2;N

~b†jr ~bjr

s
; (49)

which follows from the constraint (41). The rest of the
procedure is very straightforward. In the first place we need
to express H as a function of the new SB operators,

H
��X

mm0
b†mrO

ν;n
lmm0bm0r

��
→H

��X
mm0

~b†mr
~Oν;n
lmm0 ~bm0r

��
;

(50)

with ~Oν;n
l ¼ Ur†Oν;n

l Ur. In the second place, we need to keep
the Hamiltonian terms up to quadratic order in the SB
operators ~b†mr and ~bm0r (1 < m;m0 ≤ N),

H≃Hð0Þ þHð1Þ þHð2Þ þ � � � ; (51)

where Hð0Þ ¼ hψMFðfκjrgÞjHjψMFðfκjrgÞi is the mean-field
energy. The linear contributions cancel, e.g., Hð1Þ ¼ 0,
because we minimized the mean-field energy as a function
of the variational parameters κjr. Finally, Hð2Þ is the quadratic
contribution that can be diagonalized by going to momentum
space and applying a standard Bogoliubov transformation.
This approximation can be regarded as a 1=NS expansion,
which is a generalization of the traditional 1=S expansion.
It is important to stress that the local order parameter space

of the traditional spin-wave approach and the SUðNÞ case for
S ¼ 1=N, that we just introduced, are completely different.
In the former case, the local order parameter is the local
magnetization and small oscillations around its equilibrium
value can be described by a single Holstein-Primakoff boson
(Holstein and Primakoff, 1940). In the second case, the local
order parameter space is larger and consequently we need to
introduce a larger number, N − 1, of Holstein-Primakoff
bosons in order to describe the small oscillations around its
equilibrium value. Therefore, the two approximations are
different even when the local order parameter is the local
magnetization (Muniz, Kato, and Batista, 2013).
Our generalized spin-wave approach is indeed useful for

describing quantum paramagnets in a magnetic field because
the local order parameter evolves from a nonmagnetic
situation, in absence of an external field, to a magnetically
ordered state for H > Hc1. For instance, in the case of weakly
coupled dimers, the unit cell has two spins and the local
Hilbert space consists of one singlet and three triplets. This
implies that N ¼ 4, i.e., we need to introduce four SB bosons,
one for creating the singlet state and three for creating the
triplets. In the absence of a magnetic field, the optimal mean-
field wave function (39) is a direct product of singlets in each
dimer and consequently we need to condense the boson that
creates the singlet state. This so-called bond operator repre-
sentation (Chubukov, 1989; Sachdev and Bhatt, 1990) is then
a particular case of the generalized spin-wave approach.
A nice application of this formalism to the case of TlCuCl3
can be found in Matsumoto et al. (2002, 2004).
Another example of application of the generalized spin-

wave approach to DTN (S ¼ 1 magnetic moment quenched
by strong single-ion anisotropy) is given by Zapf et al. (2006);
Kohama et al. (2011); and Zhang et al. (2013). The relevant
S ¼ 1 spin Hamiltonian is a particular case of Eq. (35),

H ¼
X
r;ν

JνSr · Srþeν þD
X
r

ðSzrÞ2 − h
X
r

Szr; (52)

where eν are the primitive vectors of the lattice, ν ¼ fa; b; cg,
and h ¼ gzzμBH. The dominant single-ion uniaxial anisotropy
D ¼ 8.9 K splits the Ni S ¼ 1 triplet into an Sz ¼ 0 ground
state and an Sz ¼ �1 excited doublet. The antiferromagnetic
exchange coupling between Ni ions is Jc ¼ 2.2 K along the c
axis and Ja ¼ 0.18 K along the a and b axes, while the
gyromagnetic factor along the c axis is gzz ¼ 2.26 (Zvyagin
et al., 2007). DTN is a quasi-one-dimensional magnet
because Jc=Jab ≳ 10.
The dimension of the local Hilbert space is N ¼ 3 (Sz ¼ 1,

0, −1). Therefore, it is convenient to use SU(3) SBs b†1r, b
†
0r,

b†
1̄r

that create eigenstates of Szr with eigenvalues 1, 0, −1,
respectively. The SBs obey the constraint (41)
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X
m¼−1;0;1

b†rmbrm ¼ 1: (53)

The spin operators in this representation are

Szr¼nr↑−nr↓; Sþr ¼ðS−r Þ†¼
ffiffiffi
2

p
ðb†r↑br0þb†r0br↓Þ; (54)

where the indices f↑; 0;↓g correspond to m ¼ f1; 0;−1g and
nrm ¼ b†rmbrm. Instead of using the Holstein-Primakoff
approximation (49) (Holstein and Primakoff, 1940), we
enforce the constraint at a mean-field level by introducing
spatially uniform Lagrange multiplier μ:

Ĥ ¼ Hþ μ
X
r

ðb†r↑b†r↑ þ b†r↓b
†
r↓ þ b†r0b

†
r0 − 1Þ: (55)

As discussed next, this procedure has one advantage and
one disadvantage relative to the more traditional Holstein-
Primakoff approach (Holstein and Primakoff, 1940). The low-
field quantum paramagnet is described by the mean-field state,

jψMFi ¼⊗r b
†
0rj∅i. (56)

By using the spin representation (54) with the mean-field
value for hbð†Þ0r i ¼ s and neglecting terms of order higher than
quadratic in the other two bosonic operators bð†Þ↑ð↓Þr, we obtain
the generalized spin-wave Hamiltonian in the harmonic
approximation

Ĥ ¼ E0 þ
X
k;σ

�
Akσb̂

†
kσ b̂kσ þ

Bk

2
ðb̂†kσb̂†−kσ̄ þ H:c:Þ

�
; (57)

with Akσ ¼ ðμþ s2ϵk − hσÞ and Bk ¼ s2ϵk, where E0 ¼
Nðμ −DÞðs2 − 1Þ is the bare ground state energy, N is
the number of sites, σ ¼ f↑;↓g, hσ ¼ �h, σ̄ ¼ −σ, b̂ð†Þkσ
are the Fourier-transformed bosonic operators, and
ϵk ¼ 2

P
νJν cos kν. The anomalous terms indicate that

bosons with opposite Sz are created and annihilated in the
ground state. These are the quantum fluctuations that lead
to renormalization of the quasiparticle dispersion relation.
The Hamiltonian (57) is diagonalized by the Bogoliubov
transformation

b̂kσ ¼ ukβkσ þ vkβ
†
−kσ̄; (58)

where ukvk ¼ Bk=2ω0
k, u2k þ v2k ¼ ðμþ s2ϵkÞ=ω0

k, and

ω0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 2μs2ϵk

p
. The resultant diagonal form of Ĥ is

Ĥ ¼ ~E0 þ
X
k

½ðω0
k − hÞβ†k↑βk↑ þ ðω0

k þ hÞβ†k↓βk↓�: (59)

Thus, the low-energy spectrum for h < hc1 is

~ω<
k ≡ ω0

k − h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 2μs2ϵk

q
− h. (60)

The band ~ω<
k has a minimum at the antiferromagnetic wave

vector Q ¼ ðπ; π; πÞ with the gap Δ< ¼ ω0
Q − h, whose

vanishing point defines the critical field hc1 ¼ gμBHc1 ¼
ω0
Q. The ground state energy is also affected by quantum

fluctuations,

~E0 ¼ E0 þ
X
k

ðω0
k − μ − s2ϵkÞ: (61)

The saddle point conditions ∂ ~E0=∂s ¼ ∂ ~E0=∂μ ¼ 0 lead to
the self-consistent equations for the parameters s and μ,

s2 ¼ 2 − 1

N

X
k

μþ s2ϵk
ω0
k

; D ¼ μþ μ

N

X
k

ϵk
ω0
k

: (62)

Using the Hamiltonian parameters for DTN given by
Zvyagin et al. (2007), the resulting values are s2 ¼ 0.92
and μ ¼ 10:3 K. The value of s2 corresponds to a ∼10%
correction relative to the mean-field solution (56) and it
implies that quantum fluctuations are rather strong. This is
indeed expected for a quasi-one-dimensional magnet like
DTN. By introducing the Lagrange multiplier μ, we allow

hbð†Þ
0r0 i ¼ s to deviate significantly from one in presence of

strong quantum fluctuations. This is important because zero-
point fluctuations contribute to the stabilization of the
T ¼ 0 quantum paramagnet. Indeed, the introduction of the
Lagrange multiplier is necessary to reproduce the value of hc1
that is obtained from controlled quantum Monte Carlo sim-
ulations and that is also experimentally observed. On the other

hand, the Holstein-Primakoff approach restricts hbð†Þ
0r0 i to be

much closer to 1 and incorrectly predicts a magnetically
ordered H ¼ 0 state. However, the main disadvantage of
introducing the Lagrange multiplier is that the resulting
approach is no longer a 1=NS expansion (only a subset of
higher-order terms in 1=NS is included). The main negative
consequence is the lack of a gapless Goldstone mode that must
exist in the magnetically ordered state above hc1. In other
words, if we introduce the Lagrange multiplier to describe the
fluctuations around the magnetically ordered mean-field state
for h > hc1, we obtain that the low-energy spectrum of
excitations is gapped. Consequently, the continuous quantum
phase transition from the quantum paramagnet to the canted
XY antiferromagnet (BEC QCP) is not captured by this
approximation, while it is correctly described within the
Holstein-Primakoff scheme (1=NS expansion).

3. Dilute gas

As far as we know, Batyev and Braginskii (1984) were the
first to exploit the analogy between a spin system and a Bose
gas in order to apply the well-developed dilute gas approxi-
mation (Beliaev, 1958) to an antiferromagnet near the satu-
ration field. We have seen in Sec. II.A that a spin S ¼ 1=2
antiferromagnet near the saturation field can be mapped into a
dilute gas of hard-core bosons. The hard-core constraint can
be replaced by an infinitely repulsive on-site interaction that
has to be added to the off-site interaction potential (which
arose from the Ising terms of the exchange interactions). This
mapping has been described in detail in Sec. II.A [see Eq. (9)].
The goal of this section is to review the dilute gas approach
near the field-induced QCP and briefly describe the successful
applications of this approach to several quantum magnets.
As mentioned, this is one of the very few controlled
approaches for magnetic systems that are near the quantum
limit. In particular, it is useful for determining the nature of the
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magnetically ordered state of frustrated quantum magnets near
the saturation field (Nikuni and Shiba, 1995).
In Sec. II.D.1 we derived an effective model for hard-core

bosons by keeping the two lowest-energy eigenstates of each
unit cell. In this description, the low-field quantum para-
magnet corresponds to the vacuum of hard-core bosons, while
the magnetically ordered state right above Hc1 corresponds to
a condensate of a dilute gas of hard-core bosons. The general
form of this effective Hamiltonian is

H ¼
X
q

ðϵq − μÞb†qbq þ
1

2N

X
q;k;k0

Vqb
†
kb

†
k0bk0−qbkþq; (63)

where ϵQj
¼ 0 and Qj is a wave vector that minimizes ϵq

(1 ≤ j ≤ M). In principle, there can be more than one wave
vectorQj that minimizes ϵq. This is indeed the case for highly
frustrated antiferromagnets such as the XXZ model on the
triangular lattice (Nikuni and Shiba, 1995) for which M ¼ 2.
M ¼ 1 in absence of frustration, implying that the bosons
must condense in a single wave vector state. This is for
instance the case of the the antiferromagnetic XXZ model on a
cubic lattice in which the bosons condense at Q ¼ ðπ; π; πÞ
leading to a canted XYAFM phase in terms of the original spin
language. The situation is less clear for frustrated systems with
M > 1 because the bosons can condense in a single-particle
state that is an arbitrary linear combination of the M different
Qj states. All of these states are degenerate at the non-
interacting level. In these cases, the interaction term of
Eq. (63) plays a more important role because it determines
the optimal linear combination that minimizes the repulsion
between bosons. Therefore, we need a controlled approach for
treating the interaction terms. Semiclassical approaches do not
include the full effect of quantum fluctuations and conse-
quently can lead to an incorrect ordered state in the quantum
limit that we are currently considering. Fortunately, such a
controlled approach exists and was originally introduced by
Beliaev in the 1950s (Beliaev, 1958). We note that the
approach was introduced for bosonic gases that usually have
a unique single-particle ground state. However, it can be easily
extended to degenerate situations, such as the ones presented
by frustrated spin magnets, for which this formalism has a
much bigger impact (Stone et al., 2008a; Samulon et al.,
2010). The advantage of treating a spin system as a gas of
bosons becomes very clear at this point.
The hard-core constraint is imposed by an on-site repulsion

U → ∞. The bare four-point boson vertex is given by
Vq ¼ U þ γq. The Bethe-Salpeter equation for the scattering
function with zero total frequency is

Γqðk;k0Þ ¼ Vq −
Z

π

−π
d3p
8π3

Vq−p
Γpðk;k0Þ

ϵkþp þ ϵk0−p
. (64)

This corresponds to the exact solution of the two-particle
problem and consequently provides an effective interaction
vertex that is asymptotically exact for ρ → 0 [see Abrikosov,
Gorkov, and Dzyaloshinski (1975); and Fetter and Walecka
(2003)]. In terms of Feynman diagrams, Eq. (64) corresponds
to adding all the ladder diagrams shown in Fig. 4 that give the
dominant contribution in an expansion in aρ1=d, where a is the

scattering length of the interaction potential Vq and aρ1=d is
the so-called lattice gas parameter.
By taking the limit U → ∞ and integrating both sides of

Eq. (64), we obtain

hΓiðk;k0Þ ¼
Z

π

−π
d3p
8π3

Γpðk;k0Þ

¼ U

�
1 −

Z
π

−π
d3p
8π3

Γpðk;k0Þ
ϵkþp þ ϵk0−p

�
. (65)

By replacing this expression into Eq. (64) and taking the
U → ∞ limit in (65), we obtain the system of equations

Γqðk;k0Þ ¼ γq þ hΓiðk;k0Þ −
Z

π

−π
d3p
8π3

γq−p
Γpðk;k0Þ

ϵkþp þ ϵk0−p
;

1 ¼
Z

π

−π
d3p
8π3

Γpðk;k0Þ
ϵkþp þ ϵk0−p

; (66)

where we have used hγpi ¼ 0. This system of integral
equations can be reduced to a linear system of algebraic
equations by expanding Γqðk;k0Þ in lattice harmonics of the
wave vector q. Examples of this expansion for particular
lattices can be found in Batyev and Braginskii (1984) and
Nikuni and Shiba (1995).
The next step is to take the long-wave length limit of

Eq. (63) by expanding around each of the wave vectorsQj that
minimizes the single-particle dispersion,

Heff ¼
X

q;j¼1;M;ν

�
q2ν
2mν

j
− μ

�
b†QjþqbQjþq

þ 1

2N

X
q;k;k0;j;j0;l;l0

ΓQl−Qj
ðQj;Qj0 Þb†Qjþkb

†
Qj0þk0

× bQl0þk0−qbQlþkþqδðQj þQj0 −Ql −Ql0 −GÞ;
(67)

where G is a reciprocal lattice vector, ν ¼ fx; y; zg, and
q; k; k0 ≪ 1. The effective masses mν

j are given by

1

mν
j
¼ ∂2ϵq

∂q2ν
����
q¼Qj

: (68)

Here we assumed that the mass tensor for each Qj is diagonal
in order to simplify the expression of Heff . The optimal
magnetic ordering right above Hc1 is obtained from a mean-
field variational treatment of the interaction term of Heff . The
corresponding variational parameters consist of one amplitude
and one phase for each Qj: hb†Qj

i ¼ Ajeiϕj . The optimal

k
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k + q

k' q

k

k'

k + q

k' q

q (k,k')

k

k'

k + q

k' q

FIG. 4 (color online). Diagrammatic representation of Eq. (64).
The ladder diagrams give the dominant contribution in an
expansion in aρ1=d, where a is the scattering length of the
interaction potential Vq.
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magnetic ordering is then determined by the relative magni-
tude of the effective interactions vertices ΓQl−Qj

ðQj;Qj0 Þ. By
diagonalizing the resulting quadratic mean-field Hamiltonian
it is possible to obtain the low energy excitations and compute
different thermodynamic quantities near the field-induced
QCP. This procedure has been successfully applied to a long
list of quantum magnets including TlCuCl3 (Misguich and
Oshikawa, 2004; Sirker, Weiße, and Sushkov, 2004),
BaCuSi2O2 (Batista et al., 2007; Schmalian and Batista,
2008), DTN (Kohama et al., 2011; Weickert et al., 2012),
and Ba3Mn2O8 (Samulon et al., 2009, 2010; Suh et al., 2011;
Kamiya and Batista, 2013).
In general, there are no controlled analytical techniques for

solving the problem far away from the dilute limit. The d ¼ 1
case is an exception because one can still apply the bosoniza-
tion technique even for high concentrations of bosons
(Giamarchi, 2004). For spin-ladder compounds like
TlCuCl3, one can combine the bosonization method (to
compute the single-ladder susceptibility) with the random
phase approximation (RPA) to include the small interladder
coupling. Thus it is possible to obtain the thermodynamic
phase diagram of weakly coupled ladder compounds (Bouillot
et al., 2011). Unfortunately, this approach is no longer valid
for d ¼ 2, 3 systems that have similar couplings along the
different dimensions. In these cases it is necessary to imple-
ment controlled numerical techniques to provide an accurate
or quantitative description of the properties that are typically
measured in quantum magnets.

4. Numerical approaches

The analytical approaches that we considered in the
previous subsections are useful as long as certain control
parameters remain small enough to guarantee the validity of
the corresponding approximations. For instance, the dilute gas
approach gives quantitatively accurate results for low enough
boson concentrations. However, this ceases to be true if we
move far enough away from the QCP. Fluctuations induced by
higher-order diagrams in the lattice gas parameter have to be
included in order to obtain a quantitatively accurate descrip-
tion of this nonuniversal regime. The generalized spin-wave
approach is based on a mean-field approximation which
assumes that quantum fluctuations are small relative to the
average value of the order parameter. However, this
assumption is typically not correct for low-dimensional or
highly frustrated quantum magnets. Therefore, in the absence
of a small parameter that justifies the validity of our ana-
lytical approach, it is convenient to use a controlled numerical
technique to complement the analytical results. Quantitatively
accurate estimations of the full ðH; TÞ phase diagram and
different thermodynamic properties are particularly useful to
determine the validity of the model under consideration.
There are two types of numerical approaches that are

typically applied to the study of quantum magnets: quantum
Monte Carlo (QMC) simulations and density matrix renorm-
alization group (DMRG) calculations (White, 1992). QMC
methods (Prokofev, Svistunov, and Tupitsyn, 1998; Sandvik,
1999; Syljuåsen and Sandvik, 2002; Kawashima and Harada,
2004) allow for computing static correlation functions of
models for interacting quantum spin systems in any spatial

dimension. The main limitation of the QMC techniques is that
they are limited to systems that do not include off-diagonal
frustrating interactions such as frustrated hopping terms in the
case of lattice gases or frustrated XY interaction terms in the
case of quantum spin systems. There are some particular
Hamiltonians that include off-diagonal frustration but their
low-energy effective model is not frustrated. This is the case of
the Hamiltonian given in Eq. (25). Although the interdimer
exchange interactions are always frustrated, there is a region
of exchange parameters for which the sign of the hopping
amplitudes tr;r0 of the effective Hamiltonian remains negative
[see Eq. (31)]. In cases like this one, one can still use a
QMC approach for simulating the effective low-energy
model. Another important limitation of QMC methods is
the difficulty of computing dynamical correlation functions.
Controlled QMC calculations of different thermodynamic

quantities away from a QCP are important for the exper-
imental determination of critical exponents. In the first place,
it is necessary to determine the window of parameters, such as
temperature and magnetic field, where the universal power-
law behaviors are dominant. In other words, there is always a
crossover temperature TU above which corrections to scaling
become important. A clear example of this situation is
illustrated by the early measurements of the critical exponent
associated with the phase boundary Hc1ðTÞ that divides the
paramagnetic and field-induced canted XYAFM phases of
several quantum paramagnets,

Hc1ðTÞ −Hc1ð0Þ ∝ Tϕ; (69)

for low enough temperature. According to our Eq. (24),
ϕ ¼ d=z for a BEC QCP. The question is: how low is “low
enough”? Early fits of experimental data over arbitrary
windows of temperature led to quite unexpected values of
the exponent ϕ. For instance, values like ϕ ¼ 1.7ð1Þ (Oosawa,
Ishii, and Tanaka, 1999), ϕ ¼ 2.2ð1Þ (Nikuni et al., 2000),
ϕ ¼ 2.0ð1Þ (Tanaka et al., 2001), ϕ ¼ 2.3ð1Þ (Oosawa et al.,
2002), and ϕ ¼ 1.67ð1Þ (Shindo and Tanaka, 2004) were
reported by early experiments in the same compound,
TlCuCl3, while ϕ ¼ 2.6ð2Þ (Paduan-Filho, Gratens, and
N. F. Oliveira, 2004a; Paduan-Filho, Gratens, and Oliveira,
2004b) was reported for DTN. All of these estimates are
higher than the mean-field exponent ϕ ¼ 3=2 that is expected
for d ¼ 3 (D ¼ dþ z ¼ 5). The origin of this large discrep-
ancy was explained by Nohadani et al. (2004) and Kawashima
(2005) who performed large-scale QMC simulations for
computing the thermodynamic phase boundary. Nohadani
et al. (2004) studied a 3D Heisenberg model of coupled S ¼
1=2 dimers and showed that the exponent ϕ approaches the
expected value of 3=2 when the window of temperatures is
reduced. Kawashima computed the phase boundaryHc1ðTÞ of
the S ¼ 1=2 XY model [see Eq. (6)] in d ¼ 3. A scaling
analysis of his numerical results shows that the expected
exponent of ϕ ¼ 3=2 gives the best fit in a low-temperature
window of T < ≃0.4Tcmax, where Tcmax is the maximum
magnetic ordering temperature as a function of the applied
field. However, an exponent ϕ ¼ 2 gives the best fit if we try
to fit the phase boundary with the power law (69) over a
temperature window of 0.7Tcmax. This example illustrates the
importance of complementing analytical calculations with
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careful numerical simulations of the model under consider-
ation. Large-scale QMC simulations of a 3D Heisenberg
model of coupled spin-1=2 dimers also confirmed the
expected exponents for the field dependence of the staggered
(order parameter) and uniform magnetization (Nohadani,
Wessel, and Haas, 2005). QMC simulations have been useful
for obtaining the phase boundaries and several thermody-
namic properties of BaCuSi2O2 (Jaime et al., 2004; Sebastian
et al., 2005; Batista et al., 2007), NiCl2-4SCðNH2Þ2 (DTN)
(Zapf et al., 2006, 2008; Zvyagin et al., 2007; Kohama et al.,
2011), and ðHPIPÞ2-CuBr4 (Thielemann, Rüegg, Kiefer et al.,
2009; Bouillot et al., 2011). These calculations were essential
for validating the spin models that describe these quantum
magnets.
The second method that has been applied to the description

of many quantum paramagnets in a magnetic field is the
DMRG (White, 1992). This method is appropriate for one-
dimensional systems and it is not limited to nonfrustrated
models. It is particularly useful for describing quantum
paramagnets comprising weakly coupled frustrated ladders.
Although the method is mainly adequate for one-dimensional
systems such as a single ladder, this alone can provide
valuable information if the interladder exchange coupling is
weak enough. This method has evolved to the extent that
dynamical properties such as the frequency and momentum
dependence of the magnetic structure factor can be computed
very accurately (Kühner and White, 1999). The DMRG
method has also been recently applied to the computation
of the field-induced magnetization curve of SrCu2ðBO3Þ2
(Moukouri, 2008; Manmana et al., 2011; Jaime et al., 2012), a
2D frustrated paramagnet whose field-induced magnetization
plateaus have been the subject of intensive research during the
last fifteen years. The recent work by Bouillot et al. (2011)
provides a clear example of combination of state of the art
numerical techniques for computing static and dynamical
properties of weakly coupled ladders. The work is motivated
by recent experiments on the compound ðHPIPÞ2-CuBr4.
While single-ladder static and dynamical properties are
computed with the DMRG technique, the thermodynamic
phase diagram for weakly coupled ladders is obtained from
QMC simulations.

E. Theoretical summary

Here we summarize the key points of the theory section,
and the minimum conditions for observing BEC-like behavior
in magnetic systems. The most important prerequisite for
observing BEC in quantum magnets is boson number con-
servation. This corresponds to uniaxial symmetry of the
magnetic spin Hamiltonian. The number of bosons in these
magnetic realizations is the total magnetization Mz along the
field direction, while the number of condensed particles is
proportional to the square of the ordered transverse compo-
nent (XY staggered magnetization in the case of simple
antiferromagnets). Since Mz is the infinitesimal generator
of global spin rotations along the z axis, the Hamiltonian is
invariant under finite global spin rotations along the same axis
if it commutes with Mz [U(1) symmetry]. As we saw in
Sec. II.B, the uniaxial symmetry can be broken in real
quantum magnets by the effective spin-spin interactions

induced by spin-orbit coupling or dipole-dipole interactions.
These symmetry-breaking terms can be small enough to be
neglected at temperatures above tens of millikelvins.
However, the small symmetry-breaking interactions will
ensure that Mz will fluctuate on short time scales due to
terms in the Hamiltonian that connect states of different Mz.
Thus, supercurrents and other metastable excited states will
relax in these systems.
To minimize spin-orbit couplings that tend to pin spins

along certain lattice directions, lattices can be chosen with
greater than twofold symmetry, e.g., fourfold or sixfold in a
plane. If present, DM interactions are normally the strongest
uniaxial-symmetry-breaking terms. However, these terms can
be avoided by choosing crystals with high enough symmetry
(Moriya, 1960). Dipole-dipole interactions will also break
uniaxial symmetry. These are unavoidable, but their influence
can be reduced by selecting certain classes of magnets. For
instance, uniaxial symmetry-breaking terms of spin dimer
systems can be minimized by choosing compounds where the
dimers are parallel to each other and the interdimer distance a
is significantly larger than the distance lD between the two
magnetic ions in the same dimer. If the applied magnetic field
is parallel to the dimers, then the intradimer dipolar interaction
does not break the U(1) symmetry, while the already weak
interdimer dipolar coupling is further reduced at low energies
(singlet-triplet subspace) by a prefactor of order lD=a. This
observation could explain why most of the quantum magnets
that have been used for studying BEC-related phenomena
consist of weakly coupled spin dimers.
Once the uniaxial symmetry is established, down to some

well-characterized energy scale, we must apply the magnetic
field along the symmetry axis. Any magnetic realization of
BEC-like physics must have at least two low-energy levels per
unit cell with different magnetization (eigenvalue of Sz). We
can assign each spin level to a different boson occupation. The
raising and lowering spin operators are mapped into creation
and annihilation bosonic operators that satisfy the same
commutation relations. Note that spin operators from different
ions commute with each other.1 The conservation of the total
magnetizationMz implies conservation of the particle number
while the applied magnetic field Hz acts as a chemical
potential that tunes the boson number. The ground state of
a quantum paramagnet is the empty state in the bosonic
language and there is a gap for creating a single boson
excitation (e.g., the gap between the spin levels). The
application of a magnetic field closes the gap at H ¼ Hc1
and populates the ground state with bosons. In the dilute limit,
the bosons normally condense into a BEC state. The BEC
state corresponds to XY magnetic ordering in the spin
language and this phase extends up to a second critical field
Hc2 if the kinetic energy dominates over the off-site inter-
actions between bosons. While the ordered (XY) spin com-
ponent is perpendicular to the applied field and corresponds to

1It is important to note that this mapping connects only the
(bosonic) spin degrees of freedom of a system of localized electrons
(the orbital degree of freedom is quenched) with a gas of spinless
bosons. Therefore, the mapping does not violate the spin-statistics
theorem.
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the density of condensed bosons, there is also a uniform spin
component along the field direction (canted XY ordering) that
corresponds to the overall boson density.
We note that for two-level systems, bosons are subject to the

constraint of a hard-core repulsion, e.g., a maximum of one
boson can occupy each effective orbital. This constraint is
essential to guarantee that a two-level system is mapped into
another two-level system (the mapping must not change the
dimension of the Hilbert space). In a mean-field description,
each two-level system is in a linear superposition of the two
states with different magnetization, i.e., a linear superposition
of states with zero and one boson. As the magnetic field
increases, the moments become more polarized along the field
direction and lose their xy component. The ordered moment is
finally suppressed at the second critical pointH ¼ Hc2, where
the spins become fully polarized. Above this second critical
field, the ground state contains one hard-core boson in each
site and can be regarded as a Mott insulator in the bosonic
language.
The two QCPs at Hc1 and Hc2 belong to the BEC

universality class in dimension D ¼ dþ z. The dynamical
exponent is z ¼ 2 because the single-boson dispersion is
quadratic at the BEC QCPs: ω ∝ kz for k ≪ 1 with z ¼ 2.
This quadratic dispersion is a direct consequence of the fact that
the driving parameter (magnetic field) couples to a conserved
quantity (total magnetization Mz): the quadratic shape of the
single-particle excitations of the quantum paramagnet cannot
be modified whenH approachesHc1 because these excitations
have the same Sz eigenvalue. Therefore, the only effect of the
applied field is to close the gap while keeping the dispersion
unaltered all theway up toHc1.Mxy is zero outside of the range
Hc1 < H < Hc2. Inside that interval it is dome shaped, reach-
ing a peak somewhere between the two critical fields. The XY
ordering requires a spontaneous symmetry breaking that
chooses both a size and an orientation of the moments, i.e.,
the order parameter is a two-dimensional vector. Thus, this
ordering can be suppressed either by suppressing the amplitude
of the order parameter or by increasing its phase fluctuations.
BEC-like transitions correspond to the first case where the
amplitude is suppressed, while transitions induced by phase
fluctuations lead to the so-calledO(2) universality class that has
a dynamical exponent z ¼ 1. The critical exponents expected
for the BEC QCP are summarized in Table III. The dispersion

relation of the bononic quasiparticles (magnons in the spin
language) becomes linear,ω ∝ k for k ≪ 1, in the ordered state
that exists between Hc1 and Hc2. This is the Goldstone mode
that is expected from the spontaneous breaking of the U(1)
symmetry.

III. EXPERIMENTS

A. Compounds

In the following we summarize experiments on quantum
magnets that have been described in terms of BEC. The
quantum magnets described in this section benefit from
the fact that BEC behavior can be accessed for values of
the tuning parameters, such as temperature, magnetic field,
and pressure, that are readily accessible in many condensed
matter physics laboratories (see Fig. 5). Indeed, Table I shows
magnetic ordering temperatures compatible with standard
liquid 4He as well as 3He-4He dilution refrigerators, when
magnetic fields produced by either superconducting, resistive,
resistive hybrid, or resistive pulsed magnets are applied.
Simultaneously, the relatively small exchange interactions
that make these systems amenable to liquid helium studies can
be tuned as a function of laboratory-produced external
pressures.
As we saw in the previous sections, the mapping between

spins and bosons requires at least two different low-energy
spin levels. Then, each spin level corresponds to a different
boson occupation and the gap between these levels can be
tuned with magnetic field. In most quantum magnets exhibit-
ing BEC, a nonmagnetic ground state at zero magnetic field is
separated from a magnetic excited state by a gap Δ. This gap
can be tuned to zero by applied magnetic fields, resulting in a
magnetic-field-induced QCP at Hc1 that belongs to the BEC
universality class.
There are several different ways to create the zero-field gap.

The most widely studied method involves S ¼ 1=2 dimers,
and has been investigated in BaCuSi2O6, TlCuCl3,
KCuCl3, Pb2V3O9, Ba3Cr2O8, Sr3Cr2O8, ðCuClÞLaNb2O7,
Sul-Cu2Cl4, and PHCC among others (see Table I). In these
spin dimer materials, two closely coupled S ¼ 1=2 spins
form a dimer with antiferromagnetic coupling J0. Thus, the

FIG. 5 (color online). ðT;HÞ phase diagram for several quantum
magnets studied in the context of BEC.

TABLE III. Temperature dependencies of the thermodynamic
quantities: Phase boundary, magnetization MðTÞ, thermal expansion
ΔL=L; αðTÞ, specific heat CðTÞ, thermal Grüneisen parameter ΓðTÞ,
and magnetic Grüneisen parameter ΓmagðTÞ at the field-induced QCP
at H ¼ Hc as the temperature T → 0. The variable d denotes the
spatial dimensionality of the system. The exponents of the Ising-like
QCP are given for d ¼ 3.

Property XYAFM order Ising (3D)

Phase boundary HcðTÞ −Hcð0Þ Td=2, ν ¼ 2=d T2

Magnetization MðHc; TÞ Td=2 T2

Thermal expansion ΔL
L ðHc; TÞ Td=2 T2

Coefficient of thermal
expansion αðHc; TÞ

Tðd=2Þ−1 T

Specific heat CðHc; TÞ Td=2 T3

Grüneisen parameter Γ ∝ α=C T−1 T−2
Magnetic Grüneisen Γmag ∝ α=M T−1 T−2
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single-dimer ground state is a singlet and the lowest-energy
excitation is an S ¼ 1 triplet consisting of jSz ¼ −1i,
jSz ¼ 0i, and jSz ¼ −1i states, which have an energy J0
relative to the singlet. The presence of interdimer interactions
disperses the triplet levels into a band of excitations and the
spin gap of the coupled system is reduced relative to
the single-dimer gap J0. This is shown for TlCuCl3 in
Fig. 6. The branch of jSz ¼ 1i excitations decreases linearly
in magnetic field via the Zeeman effect, thereby creating a
degeneracy between the lowest energy jSz ¼ 1i excitation and
the singlet ground state that leads to a divergent susceptibility
at the wave vectors that minimize the triplet dispersion
relation. Long-range magnetic order occurs between Hc1
and Hc2 and the spins align with the magnetic field above
Hc2 creating a saturated paramagnet.
Zero-field gaps also exist in systems of nondimerized S ¼ 1

spins. Single-ion anisotropy terms, like DðSzÞ2, can become
important for S ≥ 1 systems. One example of a system of
S ¼ 1 spins and strong easy-plane single-ion anisotropy is
NiCl2-4SCðNH2Þ2 (DTN) (see Fig. 7). The DðSzÞ2 term
(D > 0) splits the S ¼ 1 triplet of each Ni2þ ion into an jSz ¼
0i ground state and a jSz ¼ �1i doublet separated by a gapD.
Unlike the isotropic S ¼ 1=2 dimer systems, the direction of
the magnetic field is now important because the D term
already breaks the rotational SU(2) symmetry and so H must
be applied along the direction of D to retain uniaxial
symmetry. As H angles away from ẑ, the BEC description
becomes increasingly less valid and there is a crossover from a
BEC QCP to an Ising QCP.
BEC has also been studied in systems of dimers with higher

spin. For example, Ba3Mn2O8 and F2PNNNO are S ¼ 1
dimer compounds. In Ba3Mn2O8 (see Fig. 8), antiferromag-
netic coupling of S ¼ 1Mn spins within a dimer with strength
J0 produces an jS ¼ 0i singlet ground state, an S ¼ 1 spin
triplet with a gap of J0, and finally an S ¼ 2 spin quintuplet
with a gap 3J0 above the jS ¼ 0i ground state. As shown in
Fig. 8, the energies of the Sz ¼ 1 triplet and Sz ¼ 2 quintuplet
spin levels decrease linearly in magnetic field and lead to
two domes of antiferromagnetic order, the first where the
Sz ¼ 1 triplets condense, between Hc1 ≤ H ≤ Hc2, and the
second where the Sz ¼ 2 quintuplets condense, between
Hc3 ≤ H ≤ Hc4.
Cs2CuCl4 is an example of a compound that is already

magnetically ordered in zero field (see Fig. 9), in contrast to all
others discussed in this section, that have a zero-field gap.
The BEC QCP is observed at the saturation field Hc when
the gap opens. The Cu2þS ¼ 1=2 moments form an aniso-
tropic triangular lattice with two different antiferromagnetic
couplings.
Tetramer or larger superstructures can also provide a route

to BEC. Sul-Cu2Cl4 is such an example of a four-leg spin
ladder compound. In another material, ðCuClÞLaNb2O7, it
was initially thought that antiferromagnetically coupled tet-
ramers could occur, resulting in a nonmagnetic collective
ground state with a finite gap Δ. Further studies found that an
S ¼ 1=2 dimer description is more appropriate (Tsirlin and
Rosner, 2010).
Finally, systems with infinite coupled chains can form gaps.

For example, IPA-CuCl3 is a Haldane system where effective
S ¼ 1 spins are created by dimers of ferromagnetically

coupled S ¼ 1=2 spins. The effective S ¼ 1 moments are
antiferromagnetically coupled along chains. While the inter-
chain coupling is weak enough to observe a Haldane phase
(quantum paramagnet) at zero field, it is sufficiently strong to
create 3D magnetic ordering above a critical magnetic
field Hc1.

FIG. 6 (color online). (a) Cartoon of the spin levels of TlCuCl3
showing the zero-field gap due to the interdimer interactions
Jinterdimer. The levels are dispersed, forming bands that evolve in
magnetic fields due to the Zeeman interaction. Long-range order
occurs in the region Hc1 < H < Hc2. (b) Phase diagram of
TlCuCl3 from elastic neutron diffraction (open symbols) and
magnetization measurements (solid symbols). The complete
phase diagram extends to approximately 100 T, and the anti-
ferromagnetically ordered phase occurs underneath and to the
right of the data points. Adapted from Tanaka et al., 2001.

(a)

(b)

(K
)

T c
(

FIG. 7 (color online). (a) Cartoon of the spin levels of DTN
[NiCl2-4SCðNH2Þ2] showing the Sz ¼ �1 excited doublet and
Sz ¼ 0 ground state, separated by a zero-field gap D due to
single-ion anisotropy. As with Fig. 6, the spin levels are shown as
bands due to magnetic dispersion. (b) Phase diagram from
specific heat (solid symbols) and magnetocaloric effect (open
symbols) showing a dome-shaped region of quasi-XY antiferro-
magnetic order (XYAFM), the low-field quantum paramagnet
(QPM), and the high-field spin saturated phase (SP). Adapted
from Zapf et al., 2006.
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B. Measurements

Experimental characterizations of BEC materials generally
fall into three categories: (1) Determination of the ðT;HÞ
phase diagram and estimation of the various parameters such
as exchange interactions and zero-field splittings between spin
levels. (2) Verification of uniaxial symmetry, e. g., using
electron spin resonance and inelastic neutron scattering.
(3) Determination of the power-law temperature dependences
of thermodynamic properties like specific heat, magnetization,
and the critical fields, and comparison to predictions for the
BEC QCP.
In the literature reviewed here, the experimental character-

izations of prospective quantum magnets typically start with a
measurement of the magnetic susceptibility (χ) as a function
of temperature to estimate the magnitude of the spin gap,
or the lack of thereof. Some simple models can be used to
assess the magnitude of exchange interactions from χðTÞ,
although the results are very sensitive to the details of the
model assumed. Measurements of magnetization (M), specific

heat (C), thermal conductivity (κ), and magnetostriction or
thermal expansion (ΔL=L) as a function of magnetic field
and/or temperature measurements are often used to confirm
the existence of the zero-field energy gap and get a first
glimpse at the shape, extension, and possible anisotropy of the
phase diagram. NMR and μSR are probes of local magnetic
fields, and can reveal important effects such as structural and
magnetic modulations of the magnetic spins especially at
fields higher than where neutron scattering is practical.
Inelastic neutron scattering (INS) performed in single-
crystalline samples and electron spin resonance (ESR) are
essential to directly determine the spin gap as well as the
strength and sign of all relevant exchange interactions in the
system. These tools will also verify the size of any uniaxial
symmetry-breaking terms. Once this characterization has been
done, the magnitude of the spin gap, exchange interactions,
and symmetry-breaking terms can then be used to construct a
minimal model which, in turn, is used to predict or replicate
the ðT;HÞ phase diagram and physical properties. An impor-
tant, although not very frequent, characterization tool is
Young’s modulus, to determine elastic properties and predict
the effect of external pressure (P).

FIG. 9. (a),(b) Frustrated triangular arrangement of S ¼ 1=2 Cu
spins in Cs2CuCl4 with couplings J and J0 in the b-c plane and J00
between planes. Dzyaloshinskii-Moriya (DM) couplings Da are
also shown pointing into (dots) and out of (crosses) the bc plane.
(c) Temperature–magnetic-field phase diagram for magnetic
fields along the a axis showing a conelike magnetic state below
the critical field 8.5 T, and the opening of a gap above 8.5 T
(Coldea et al., 2002; Radu et al., 2005).

FIG. 8 (color online). The S ¼ 1 antiferromagnetically coupled
dimer compound Ba3Mn2O8 forms an S ¼ 0 ground state, an
S ¼ 1 excited triplet separated by the intradimer antiferromag-
netic coupling J0, and an S ¼ 2 quintuplet separated by 3J0 from
the ground state. (a) Evolution of the spin levels with applied
magnetic field. (b) Schematic of the S ¼ 1 dimers in the lattice.
(c) Magnetization M vs magnetic field H at various temperatures
and (d) temperature–magnetic-field phase diagram determined
from specific heat and magnetocaloric effect (MCE) showing two
regions of BEC, one where the lowest triplet level crosses the
ground state, and one where the lowest quintuplet level crosses.
The magnetization M is overlaid. From Samulon et al., 2009.
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One can then circle back and test the predictions for a BEC
QCP, especially the power-law scalings of different physical
properties including the specific heat, magnetization, NMR
relaxation rate, and critical fields at low temperatures. Some of
these exponents are listed in Table III. Figure 10 is a typical
phase diagram that shows the regions in ðT;HÞ space where
the universal power-law scalings from Table III should occur.
These regions are very close to Hc1 and Hc2 and they are
bounded by Tsb and TU. Tsb is the crossover temperature
below which uniaxial-symmetry-breaking terms become sig-
nificant and induce a crossover from the BEC-QCP scaling to
a different universality class associated with the spontaneous
breaking of a discrete symmetry. In particular, the asymptotic
behavior of the QCP is Ising-like in dimension D ¼ dþ 1 for
compounds where the uniaxial symmetry axis for the spins
acquires a twofold symmetry at low temperatures, and XY-like
in D ¼ dþ 1 (d > 1) when the uniaxial symmetry axis
acquires a p-fold symmetry and p ≥ 4 (Siegert and Everts,
1989; Miyashita, 1997; Pleimling, Neubert, and Siems, 1998).
TU is the crossover temperature between universal and
nonuniversal behavior at higher temperatures. The BEC
description of the phase transition is still valid above TU;
however, the power laws are not observed because they are
approximations for low T. Higher-order contributions of the
expansion in the lattice gas parameter become important and
the behavior of a given thermodynamic property depends on
the microscopic details of each system. The exact value of TU
depends on the property, e.g., magnetization, specific heat, or
thermal expansion, that is being measured. Thus ideally the
region between Tsb and TU should extend over at least a
decade of temperature (Tsb ≪ TU) so the power laws can be
accurately measured.

The phase diagram in Fig. 10 also shows the region of
ordering in the ðT;HÞ plane labeled XY-AFM. In real
magnets, this state is not a true XYAFM because the spins
will be pinned along an easy axis in the XY plane. Even
though uniaxial-symmetry-breaking terms that produce
this pinning are very small and can be neglected at the
BEC QCP, once the spins order, a phenomenon known as
correlated pinning occurs. The small uniaxial-symmetry-
breaking terms then act in the same way on every spin and
the spins are rigidly coupled to each other in the ordered state.
Therefore, the anisotropy energy is multiplied by the number
of ordered spins and the spins cannot rotate freely in the
XY plane.

1. Magnetization

Quantum magnets that exhibit BEC typically have a zero-
field gap Δ, which produces a prominent maximum in the
magnetic susceptibility versus temperature near the gap
energy (see Fig. 11). The location of the maximum is dictated

FIG. 11 (color online). (a) The temperature dependence of the
magnetic susceptibilities of KCuCl3 and TlCuCl3 measured at
H ¼ 5 kOe. χ1 is the susceptibility for H perpendicular to the
cleavage plane, while χ2 and χ3 are the maximum and minimum
susceptibilities when H is applied in the cleavage plane, respec-
tively. From Tanaka et al., 1997. (b) Magnetic susceptibility
vs temperature χðTÞ of Sr3Cr2O8 measured in a magnetic field
of 10 kG showing fits with Eq. (72) for H ∥ c and H⊥ c. The g
factors are fixed in the fits to the values obtained by ESR gc ¼
1.938 and gab ¼ 1.950. The fitting indicates 0.8% free S ¼ 1=2
moments, with the rest being dimerized, and the estimated
exchange constants areΔ ¼ J ¼ 61:5ð3Þ K (intradimer) and J0 ¼
12ð2Þ K (interdimer). FromAczel, Kohama,Marcenat et al., 2009.

FIG. 10 (color online). Conceptual ðT;HÞ phase diagram for a
quantum magnet with a field-induced QCP belonging to the BEC
universality class. The region of magnetic ordering is delimited
by the critical fields Hc1 and Hc2 and the maximum ordering
temperature Tcmax in the ðT;HÞ plane. The energy scale Tsb is the
lower limit for observing a BEC QCP, and is given by uniaxial-
symmetry-breaking terms below which discrete symmetry (DS)
becomes important to the QCP. TU is the maximum temperature
expected for universal properties that are derived from low-
temperature approximations to the boson distribution function,
such as T3=2 scaling of thermodynamic properties for a d ¼ 3
BEC QCP.
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by the crossover from an exponential increase for temper-
atures kBT ≪ Δ to a Curie-Weiss-type decrease for kBT ≫ Δ.
Strictly speaking, the magnetic susceptibility of such systems
must be numerically computed taking into account the
dispersion of magnetic excitations that is given by all relevant
exchange interactions. However, the zeroth-order approxima-
tion is to assume that moments in different magnetic units do
not interact with each other. A magnetic unit is a dimer,
tetramer, or single spin depending on the compound. In this
approach, we can discuss the magnetic energy levels of each
magnetic unit cell that have energy Ej and magnetization mj
along the quantization axis defined by the orientation of the
magnetic field. The magnetization per magnetic unit is then
given by

M ¼
P

j gμBmje−ðEj−gμBmjμ0HÞ=kBTP
j e

−ðEj−gμBmjμ0HÞ=kBT . (70)

The magnetic susceptibility is then calculated as χ ¼
dM=dH ≃M=H for small H. In this way, for noninteracting
spin S ¼ 1=2 dimers we obtain χp ¼ 2ðμ2Bg2=kBTÞ=
ð3þ eΔ=kBTÞ, where Δ ¼ J0 is the energy of the excited
triplet state given by the intradimer exchange. The effect of
exchange interactions between unit cells can be included at the
mean-field level as an effective molecular field (Hara et al.,
1971; Aczel, Kohama, Marcenat et al., 2009),

χp ¼ 2ðgμBÞ2
ð3þ eΔ=kBTÞkBT þ 1

2

P
νν0ηJ

η
ν;ν0

. (71)

The index η runs over all dimers that have a finite exchange
Jηνν0 with a given dimer, while ν and ν0 are internal indices for
the two ions in each dimer (see Fig. 3).
Impurities are always present in a real compound, and these

lead to an additional contribution χimp ¼ νimpμ
2
imp=kBT, where

νimp is the concentration of magnetic impurities and μimp is
their magnetic moment. Finally, there is a constant Van Vleck
contribution χ0 that is present in any magnet and has to be
added to reproduce the measured susceptibility. The final
result is

χ ¼ χp þ
νimpμ

2
imp

kBT
þ χ0. (72)

Ideally, data along different crystallographic directions are
fitted, keeping all J’s constant. This type of behavior is
observed in quantum magnets with gapped zero-field ground
states and was seen in most compounds in Table I. It is worth
pointing out that, while useful to identify materials with
potentially interesting zero-field gaps, these fits only serve as a
rough estimate for the dominant interactions and g-factor
anisotropy. A much better job can be done with inelastic
neutron scattering and electron spin resonance techniques,
which are discussed in upcoming sections.
Since an external magnetic field H can be used to close the

magnetic energy gap and induce magnetic order, an excellent
way to characterize quantum magnets is the measurement of
properties as a function of H. MagnetizationMðHÞ data allow
us to estimate the strength of the effective AFM interdimer

exchange, because the width of the region between Hc1 (onset
of magnetization) and Hc2 (saturation of magnetization) is
related to the dispersion of the magnetic excitations of the
quantum paramagnet. Figure 12 illustrates such measurement
with early results in DTN and BaCuSi2O6. The critical
magnetic fields are (Hc1 ¼ 2 T, Hc2 ¼ 12:5 T) in the former
and (Hc1 ¼ 23:5 T, Hc2 ¼ 49 T) in the latter. MðHÞ is zero
between 0 and Hc1, then increases roughly linearly between
Hc1 and Hc2 as the spins cant in the direction of the applied
magnetic field, and then saturates above Hc2. This character-
istic MðHÞ behavior is another indicator of a potential BEC
candidate. The ðT;HÞ phase diagram obtained from magneti-
zation as well as specific heat C and magnetocaloric effect
delineates the region where magnetic order is observed.
Qualitatively, a broad Hc2 −Hc1 ordered region implies
stronger AFM exchange interactions between magnetic units.
We will see in Sec. III.B.5 that Hc1 → 0 leads to enhanced
zero-point fluctuations that modify the boson mass and create
strong phase boundary asymmetry (particle-hole asymmetry)
(Kohama et al., 2011).
The temperature dependence of the longitudinal magneti-

zation Mz(T) at constant magnetic field Hc1 < H < Hc2,

FIG. 12 (color online). Magnetization (left vertical axis) versus
magnetic field MðHÞ measured at low temperatures for (a) DTN
½NiCl2-4SCðNH2Þ2� and (b) BaCuSi2O6. Critical fields Hc1 and
Hc2 delimit the region of magnetic-field-induced long-range
order. A temperature (right vertical axis) vs magnetic field
TcðHÞ phase diagram is superimposed on the magnetization
data for both materials. Adapted from Jaime et al., 2004, and
Zvyagin et al., 2007.
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calculated by Nikuni et al. (2000) using a Hartree-Fock
approximation for treating a gas of interacting bosons
(Popov, 1987), is an indicator for a BEC QCP. Nikuni’s
results for MzðTÞ near the phase boundary are

nðTÞ
nðTcÞ

¼
�
T
Tc

�
3=2

; T ≥ Tc; (73)

nðTÞ
nðTcÞ

¼ 2 −
�
T
Tc

�
3=2

; T < Tc. (74)

These expressions result in a minimum in MðTÞ at T ¼ Tc,
and qualitatively explain the experimental results in several
compounds including TlCuCl3 (Oosawa, Ishii, and Tanaka,
1999), NiCl2-4SCðNH2Þ2 (Paduan-Filho, Gratens, and
Oliveira, 2004b), and Pb2V3O9 (Waki et al., 2004)
(see Fig. 13).

2. Specific heat

The specific heat generally shows a sharp λ-like anomaly at
the 3D ordering transition, which can be used to map the phase
diagram. An example of specific heat measurements is shown
in Fig. 14(a) for TlCuCl3 (Oosawa, Katori, and Tanaka, 2001).
These measurements reveal a magnetic anomaly that grows
and shifts in temperature as the magnetic field is increased
above Hc1. In Fig. 14(b) we show low-temperature specific
heat measurements for BaCuSi2O6 covering a broad range of
magnetic fields (Jaime et al., 2004). Due to the high critical

magnetic fields in BaCuSi2O6, measurements were performed
in a calorimeter made out of plastic materials (Jaime et al.,
2000) using both a superconducting magnet and the 45 T
hybrid magnet at the National High Magnetic Field
Laboratory. In BaCuSi2O6, the λ-like anomalies in CðTÞ
are the same at low and high magnetic fields, i.e., there is
a mirror symmetry about the field μ0H ¼ 36� 1 T. This
symmetry of the specific heat matches the mirror symmetry of
the phase diagram. As explained in Sec. II.D.1, the mirror
symmetry offers an experimental hint for an emergent particle-
hole symmetry in BaCuSi2O6 that results from the fact that
higher-energy spin levels jSz ¼ −1i and jSz ¼ 0i that break
the mirror symmetry are so high above the ground state that
they can be neglected.
Figure 15 shows the specific heat of Cs2CuCl4 (Radu

et al., 2005). Unlike TlCuCl3, this material is gapless and
ordered in zero field and the BEC QCP is reached where the
gap opens at Hsat. In addition to the λ-like peak due to the
onset of long-range order, these data show a broad maximum
at higher temperatures. This higher-temperature feature
results from short-range intrachain spin correlations due to
the quasi-1D nature of the compound. The overall shape of
CðTÞ above TN can be fitted by a numerical QMC simulation
of a spin Hamiltonian determined from fits of INS data. In
the gapped state for H > Hc (not shown), the magnetic
portion of the specific heat can be fitted by Cp ∼ e−Δ=kBT=T
at T > 0.4 K where the magnons are quasi-2D, and it can be
fitted by Cp ∼ e−Δ=kBT=

ffiffiðp
TÞ below 0.15 K where the

magnons becomes 3D. From these fits the value of the

FIG. 13. Magnetizationvs temperatureMðTÞmeasured at constantmagnetic fields for (a) TlCuCl3 (Oosawa, Ishii, and Tanaka, 1999), (b) DTN
[NiCl2-4SCðNH2Þ2](Paduan-Filho,Gratens,andOliveira,2004b),and(c)Pb2V3O9 (Wakietal.,2004).AclearminimuminMðTÞ isobservedinall
three compounds, as expected for a BEC.
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gap can be extracted (Radu et al., 2005). With careful
specific heat measurements approaching the critical field,
it was shown that the gap closes at Hsat to within the
resolution of the measurements.

In addition to CðTÞ, CðHÞ can also be directly compared to
the results of QMC simulations of quantum magnets. One of
the main advantages of this measurement is that the non-
magnetic contributions to CðHÞ do not play an important role,
and the effect of H is directly observed (Kohama et al., 2011),
as shown in Fig. 16 for DTN. In this compound the rising
jSz ¼ −1i state is still low in energy near Hc1 (see Fig. 7) and
therefore breaks the mirror symmetry of the phase diagram, so
the specific heat peak at the higher critical field Hc2 is
significantly larger than the peak at Hc1. These data show
broad shoulders in CðTÞ below Hc1 and above Hc2 due to the
opening of a spin gap in these paramagnetic regions.

3. Magnetocaloric effect

The magnetocaloric effect (MCE) is a sometimes under-
appreciated tool for extracting information about quantum
magnets. It can be used to determine the phase diagram, often

FIG. 15 (color online). (a) High-temperature specific heat vs
temperature CðTÞ measured in Cs2CuCl4 from which the spin
energy gap is estimated. (b) Magnetic contribution to the specific
heat measured for a number of applied magnetic fields showing a
λ-like 3D ordering peak. From Radu et al., 2005.

FIG. 16 (color online). Specific heat C vs magnetic field H for
DTN [NiCl2-4SCðNH2Þ2] obtained using an ac technique. CðHÞ
measured at several temperatures show sharp anomalies at the
critical magnetic fields Hc1ðTÞ and Hc2ðTÞ. The contribution
from the sample holder was not subtracted. The light shaded
region is the XYAFM phase in the ðH; TÞ phase diagram of DTN
From Kohama et al., 2011.

FIG. 14. (a) Magnetic contribution to the specific heat C vs temperature T measured in TlCuCl3. From Oosawa, Katori, and Tanaka,
2001. (b) Total CðTÞ=T for BaCuSi2O6 for a number of magnetic fieldsH < Hc2. These data show a remarkable symmetry for magnetic
fields around HðTcmaxÞ due to particle-hole symmetry. From Jaime et al., 2004.
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much more quickly than the specific heat. MCE data can also
be used to extract the entropy versus temperature and
magnetic field, and thereby predict the magnetization and
the rest of the thermodynamic parameters of a material. It
provides useful information about the nature of phase tran-
sitions, e.g., whether they are first or second order, and it can
be used to estimate the entropy involved in any phase
transition or crossover. When a sample is subjected to a
changing magnetic field H, its entropy changes as the spin
configuration evolves. The entropy increases when the spin
gap becomes smaller than kBT while it decreases above the
ordering transition [H > Hc1ðTÞ]. Thus, these two regimes
can be readily distinguished. Under adiabatic or semiadiabatic
conditions, the changes in spin entropy are balanced by
opposite changes in the lattice entropy, which in turn affect
the temperature. For example, the MCE is central to the
principle of magnetic cooling and adiabatic demagnetization
refrigerators. A typical MCE measurement measures the
temperature of the lattice via a thermometer that is in intimate
thermal contact with the sample, as the magnetic field is
varied. The sample and thermometer should be somewhat
isolated from the external environment, and depending on the
degree of this isolation, the MCE can be measured in dif-
ferent limits, e.g., adiabatic, quasiadiabatic or equilibrium.
Understanding these limits is critical to interpreting the data.
If the sample is linked to an infinite thermal bath by a

thermal conductivity κ that has no thermal mass of its own,
then the time constant for the temperature of the sample to
relax to the bath is τ1 ¼ Csample=κ. If we define τexp as the time
scale under which the magnetic field is swept, e.g., the
time needed to traverse a phase transition, adiabatic conditions
correspond to τ1 ≫ τexp, and semiadiabiatic conditions cor-
respond to τ1 ∼ τexp. The equilibrium limit corresponds

to τ1 ≪ τexp, but κ is not infinitely large, so temperature
changes will still be observed. This is a useful limit as
we will see in the coming discussion. The relaxation time
between the sample and the thermometer, τ2, is an additional
parameter to consider. We will assume in this section that
τ2 ≪ τ1; τexp. The analysis would become more complicated
for τ2 ∼ τ1 or τ2 ∼ τexp because we need to take into account
the delayed response of the thermometer to the sample’s heat
changes.
Figure 17(a) illustrates the different experimental regimes

in a MCE experiment. Typical curves are shown for a field-
induced phase transition from disorder to order, under
adiabatic, semiadiabatic, and equilibrium conditions, as well
as the fully thermalized condition (κ → ∞), where T does not
change with H.
Typical TðHÞ curves are shown in Fig. 17(b) for a quantum

paramagnet that exhibits a field-induced ordering transition.
The main effect on the paramagnetic region comes from the
linear reduction of the spin gap as a function of the applied
field. Consequently, one would expect to observe the first
anomaly in the magnetocaloric effect when the spin gap
becomes of the order of kBT. We note that this anomaly
should be distinguishable from the second one that appears at
the ordering transition as long as kBT is a significant fraction
of kBTcmax. In the following we describe how these different
anomalies become manifest in the adiabatic, semiadiabatic,
and equilibrium regimes.
Under adiabatic conditions, and assuming τ2 is negligibly

small, the Langevin expression for TðHÞ is
�∂T
∂H

�
S
¼ − T

CH

�∂M
∂T

�
H
; (75)

FIG. 17 (color online). (a) Typical TðHÞ traces at a field-induced disorder-order transition. From top to bottom, curves are shown for the
adiabatic (τ1 ≫ τexp), semiadiabatic (τ1 ∼ τexp), quasi-isothermal (τ1 ≪ τexp), and completely thermalized (κ → ∞), where
τ1 ¼ Csample=κ. Note that the size of the jumps are not to scale—the jump in the adiabatic case would be largest. (b) TðHÞ traces
at a field-induced ordering transition in a system that also has spin levels that cross, e.g., the quantum magnets with BEC QCPs.
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where T is the temperature, H is the magnetic field, S is the
entropy,M is the magnetization, and CH is the sample specific
heat at constant magnetic field. From Eq. (75) and the
magnetization data shown in Fig. 13 one can extract the
TðHÞ curve that is expected for TlCuCl3 in the adiabatic limit.
The TðHÞ curve should exhibit an upward jump at the field-

induced ordering transition. If all phase transitions are of
second order, TðHÞ will jump down at the same transition
when the field is swept down. In fact the entire TðHÞ curve
will be reversible, e.g., identical on magnetic field upsweeps
and downsweeps. Any entropy gained in sweeping the field up
will be lost on sweeping the field down. Irreversibility in this
adabiatic limit indicates a first-order phase transition with
latent heat, or irreversible heat releases from, e.g., sudden
structural changes. In the adiabatic limit [see Fig. 17(a)], TðHÞ
can directly be used to extract the entropy and the magneti-
zation from Eq. (75). Figure 17(b) shows thatHc1 corresponds
to a minimum in TðHÞ for an ordering transition under
adiabatic conditions. This is consistent with the fact that
δM=δT also shows a minimum at Hc1 (see Fig. 13), and
indicates that entropy is maximized at the phase transition. We
note that entropy is reduced deep inside the ordered T ≪ Tc
and paramagnetic phases kBT ≪ ΔðHÞ . Representative data
in the adiabatic regime are shown in Fig. 18 for DTN.
Under semiadiabatic conditions, the sample relaxes back to

the bath temperature with a relaxation time τ1. This can be a
difficult limit in which to interpret the data because the
temperature changes due to relaxation can occur on the same
time scales as the temperature changes due to the changing

magnetic field. The parameters κ (thermal conductance of the
thermal link) and τ1 (characteristic time constant) need to be
well-characterized in order to extract quantitative information
about the entropy. TðHÞ is governed by (Kohama et al., 2010)

κΔT ¼ κτ1

�∂T
∂H

��
dH
dt

�
þ T

�∂S
∂H

�
T

�
dH
dt

�
. (76)

Note that Eq. (76) assumes that the thermal link κ has no
thermal mass. The curves in Figs. 17(a) and 17(b) show that in
this limit TðHÞ shows signs of exponential behavior governed
by τ1. TðHÞ is not reversible in this regime, even though there
are no first-order phase transitions. Data in this regime are
shown in Fig. 19 for BaMn2O8 (Samulon et al., 2009).
BaCuSi2O6 (Jaime et al., 2004) is another example for which
MCE data have been published in the semiadiabatic limit.
There are some indications that the TðHÞ curve wants to
follow the TcðHÞ critical field line in certain regimes
(see Figs. 19 and 20). One possibility is a stabilization at
the critical field. The sample heats up as the magnetic field is
increased and the sample transitions into the ordered phase,
which could drive it back across the phase boundary into the
disordered region. At that point the sample tries to cool again,
which brings it back toward the phase boundary. This effect
might be realized when the lattice specific heat is small
compared to the spin specific heat, so that heating just inside
the ordered phase is large. Furthermore, TðHÞ given in
Eq. (76) contains two terms under semiadiabatic conditions.
These terms can add just inside the phase boundary so as to
amplify the heating. Whether this phase-boundary-hugging
effect in TðHÞ, hinted at in the semiadiabatic data of Fig. 19,
occurs deserves further study.
Finally, we consider the equilibrium regime τ1 ≪ τexp. Note

that this limit does not mean that the sample’s temperature
remains constant as the field is swept. A MCE effect will
occur for any noninfinite κ and can once again be used to

FIG. 19 (color online). Magnetocaloric effect and specific heat vs
temperature were used to build the ðH; TÞ phase diagram for
Ba3Mn2O8, shown here for H∥c. The magnetocaloric effect was
measured under semiadiabatic conditions and shows an anomaly
near the spin level crossing, and another set of anomalies at Hc1
and Hc2. Adapted from Samulon et al., 2008.

FIG. 18 (color online). (a) Magnetocaloric effect for DTN
[NiCl2-4SCðNH2Þ2] in the adiabatic limit, near Hc1
(unpublished). (b) Magnetocaloric effect in the equilibrium
limit near Hc1 (in which the data were incorrectly interpreted as
showing irreversible behavior). The different limits are
achieved by varying the sample size and the magnetic field
sweep rate from Zapf et al. (2006).
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extract the entropy. The equation governing this regime is
P ¼ κΔT, where P is the heat rate associated with the
changing entropy, which in turn escapes over the thermal
link κ at a rate determined by the temperature difference ΔT
between the sample and the bath. We call it the “equilibrium
limit” because the sample temperature is never governed by τ1
or τ2—there is never a time when the sample temperature is
relaxing back to the bath at an exponential rate. Substituting
P ¼ dQ=dt ¼ ðdQ=dHÞðdH=dtÞ ¼ CðdT=dHÞðdH=dtÞ and
employing Eq. (75) we obtain

TðHÞ ¼ − T
κ

dH
dt

�∂M
∂T

�
H

(77)

Once again, the magnetization, entropy, and the rest of the
thermodynamic quantities can be extracted from TðHÞ.
Typical curves are shown in Figs. 17(a) and 17(b). Note that
∂M=∂T is now proportional to TðHÞ, whereas in the adiabatic
case ∂M=∂T was proportional to ∂T=∂H. Thus, in the
equilibrium limit the TðHÞ curves look like derivatives with
respect to H of the curves in the adiabatic case. Note also that
the TðHÞ traces on upsweep and downsweep are inverses of
each other because dH=dt that appears in Eq. (77) changes
sign on the downsweep. By contrast, TðHÞ was reversible
without any inversion in the adiabatic case.
Measurements in the equilibrium or near-equilibrium limit

were performed, for example, in the compounds DTN (Zapf
et al., 2006), ðHPIPÞ2-CuBr4 (Thielemann, Rüegg, Kiefer
et al., 2009), BaCr2O8 (Aczel, Kohama, Jaime et al., 2009),

and Sr3Cr2O8 (for T < 4 K) (Aczel, Kohama, Marcenat et al.,
2009). This equilibrium limit requires very slow sweep rates
such as are found in superconducting or dc resistive magnets.
MCE data for DTN taken in a superconducting magnet in the
equilibrium limit are shown in Fig. 18(b). MCE data in the
equilibrium limit for Sr3Cr2O8 in a dc resisitive magnet
are shown in Fig. 20 for T > 3 K. Here the entropy is
extracted from TðHÞ and shown in a contour plot.
Thus the magnetocaloric effect can map the phase diagram,

determine the order of the phase transitions, and extract the
entropy and thereby the rest of the thermodynamic properties
of the sample. Additional theoretical and experimental dis-
cussions of the MCE at general phase transitions and QCPs
can be found in Garst and Rosch (2005), Silhanek et al.(2006),
and Wolf et al. (2010).

4. Thermal conductivity

As discussed in Sec. II.B, quantum magnets should not
exhibit the transport properties of superfluid 4He due to the
absence of an actual superfluid response for times longer than
τm. The first experimental exploration of thermal conductivity
(κ) by magnons (Kudo et al., 2004) revealed some enhance-
ment at the transition to the ordered state of TlCuCl3 both in
the T dependence and in the H dependence. These findings
were later echoed by a qualitative discussion of data in
Pb2V3O9 (Sato et al., 2010). If the temperature is significantly
smaller than the spin gap of the quantum paramagnet, the
number ofmagnetic excitations as a function ofmagnetic field
has maxima at the critical fields Hc1 and Hc2. This is so
because the dispersion relation is gapless and quadratic
(z ¼ 2) at the BEC QCPs, gapless and linear inside the
ordered region, and gapped on the paramagnetic sides. In
other words, the low-energy density of states has maxima at
the critical fields. Therefore, the observation of maxima in the
low-temperature κðHÞ near the critical fields indicates that
magnons give the predominant contribution to κ, and the
maxima occur because the number of carriers (magnons) is
maximized around those fields. We note, on the other hand,
that the phonon contribution should have minima around the
critical fields because the scattering of phonons by magnetic
excitations should be proportional to the density of magnetic
excitations. Therefore, the thermal conductivity is dominated
by magnons if the κðHÞ curve measured at low temperature
has maxima around the critical fields, while it is dominated by
phonons if it has minima. Measurements of κðHÞ in the S ¼ 1

DTN (Ke et al., 2011; Kohama et al., 2011) show a strong
enhancement at the critical fields Hc1ðTÞ and Hc2ðTÞ, con-
sistent with thermal transport dominated by magnons,
whereas most other systems in this paper show a local
minimum in κ consistent with thermal transport dominated
by phonons.
The dominant scattering mechanism for the magnon con-

tribution to the thermal conductivity is unclear without a
quantitative analysis. However, it is clear that scattering with
impurities shoulddominateat lowenoughtemperaturesbecause
the density of magnons and phonons goes to zero for T → 0.
Detailed measurements of κðTÞ in DTN and Ba3Mn2O8 (Sun
et al., 2009; Ke et al., 2011; Kohama et al., 2011) have shown

FIG. 20 (color online). (a) Phase diagram of Sr3Cr2O8 near Hc1,
with the entropy extracted from Eq. (75) shown as a contour plot.
(b) Phase diagram and magnetocaloric effect for Sr3Cr2O8 in the
equilibrium limit for T < 4 K and the nearly adiabatic limit for
T > 4 K from Aczel, Kohama, Marcenat et al. (2009).
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intriguing behaviors. The thermal conductivity κðTÞmeasured
for field orientation parallel and perpendicular to the crystallo-
graphic c axis (see Fig. 21) show similar characteristics for both
systems, i.e., a broad maximum at T ∼ 8–18 K likely due to
phonon heat conduction and a shoulder at lower temperatures
thatmoves towardT ¼ 0as theappliedmagnetic field increases.
This shoulder was interpreted as originating from resonant
magnetic scattering. Below this shoulder, κ obeys a power-law
temperature dependencewith an exponent between 2.5 and 2.7,
somewhat smaller than the cubic dependence expected for
phonons in the boundary scattering limit. All BEC-like systems
show evidence of the XY-AFM transition for magnetic fields
Hc1 < H < Hc2 and κðTÞ is enhanced below the ordering
temperature TcðHÞ (see Fig. 21).

5. Evidence of quantum fluctuations: Asymmetry
of the phase diagram

An interesting aspect of magnetic realizations of bosonic
gases is the possibility of probing the effect of quantum
fluctuations on the boson mass. The boson mass is a pro-
perty of the single-particle dispersion relation, 1=m� ¼
∂2ϵ=∂k2jk¼Q. In particular, we have seen already that the
dispersion relation is gapped and quadratic in the paramag-
netic regions H < Hc1 and H > Hc2 (e.g., the bosons have a
finite mass outside of the ordered phase) and becomes linear
and gapless (e.g., massless) inside the ordered phase.
[A Goldstone mode appears inside the ordered phase due
to the spontaneous breaking of the continuous U(1) sym-
metry.] The bosonic masses in the two paramagnetic regions
do not need to be the same because the zero-point fluctuations
below Hc1 can be much stronger than the corresponding
fluctuations above Hc2. To understand this statement we need
to notice that the fully polarized product state that appears
above Hc2 is the exact ground state because it is the only state
which has the maximum value of the magnetization Mz along
the field direction. The conservation of Mz implies that this
state cannot be mixed with any other state. Being a product

state, we can say that the paramagnetic ground state aboveHc2
has no intersite zero-point fluctuations. In contrast, the total
magnetization isMz ¼ 0 belowHc1 and the exact ground state
is a linear combination of an infinite number of product states.
For instance, if we are considering a dimerized quantum
magnet, the direct product of singlet states on each dimer is
mixed by the Hamiltonian with states in which a pair of
singlets connected by interdimer exchange become a pair of
triplets with net magnetization equal to zero. This means that a
triplet (boson) created below Hc1 moves in a background of
quantum fluctuations. These zero-point AFM fluctuations
have the effect of reducing the bosonic mass. Indeed, we
know that this mass should vanish when the zero-point AFM
fluctuations diverge, i.e., when the zero-field spin gap is
closed by the application of pressure. We have seen already
that the corresponding pressure-induced QCP has dynamical
exponent z ¼ 1, implying that the bosons become massless
because the single-particle dispersion relation is linear in
momentum. Therefore, the bare mass m for H > Hc2 should
be much larger than the effective mass m� for H < Hc1,
whenever the ratio Hc1=ðHc2 −Hc1Þ is much smaller than 1.
This effect was studied in Ba3Mn2O8, which has two

ordered phases due to triplet and quintuplet condensation
(Samulon et al., 2009). The T-H phase diagram in Fig. 8(d)
shows slight but noticeable asymmetries in the dome shape of
the ordered phases. The specific heat versus temperature and
magnetic field CðT;HÞ shown in Fig. 22 illustrates the
asymmetry between Hc3 and Hc4 in this material, with larger
peaks and thus higher effective bosonic masses near Hc4.
The asymmetry is even more pronounced in DTN because

of the small ratio Hc1=ðHc2 −Hc1Þ ∼ 1=5 (Kohama et al.,
2011). The mass tensors for H < Hc1 and H > Hc2
are obtained from the single-boson dispersions in each
paramagnetic state,

1

m�
νν
¼ ∂2 ~ω<

k

∂k2ν
����
k¼Q

;
1

mνν
¼ ∂2 ~ω>

k

∂k2ν
����
k¼Q

: (78)

FIG. 21 (color online). Thermal conductivity κ vs temperature T along the crystallographic a and c axes measured in DTN
[NiCl2-4SCðNH2Þ2] and Ba3Mn2O8 for different magnetic field values (Ke et al., 2011; Kohama et al., 2011).
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where the < sign holds for H < Hc1 and the > sign holds for
H > Hc2. The dispersion relation ~ω<

k was derived in
Sec. II.D.2 [see Eq. (60)], while the exact dispersion relation
above H > Hc2 is

~ω>
k ¼ ϵk − ϵQ þ h − hc2. (79)

Then, the mass renormalization factor is given by

mνν

m�
νν
¼ s2

μ

ω0
Q

≈
Hc2

4Hc1

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8H2

c1

H2
c2

s �
: (80)

For the parameters of the Hamiltonian from Zvyagin et al.
(2007), we obtain mνν=m�

νν ≃ 3.2. The large asymmetry
between m and m� is reflected in different physical properties
at Hc1 and Hc2 as shown in Figs. 23 and 16, such as the shape
of the phase boundary, the specific heat (Zapf et al., 2006),
magnetization (Paduan-Filho, Gratens, and Oliveira, 2004b),
magnetostriction (Zapf et al., 2008; Weickert et al., 2012),
ESR (Zvyagin et al., 2007), and sound velocity (Chiatti et al.,

2009; Zherlitsyn et al., 2009). Kohama et al. (2011) showed
that the large asymmetry between the peaks in the low-
temperature specific heat CðHÞ in the vicinity of Hc1 and Hc2
is closely described by analytical and QMC calculations.
The mass renormalization also explains similar asymme-
tries observed in other properties of DTN. In a remarkable
contrast to these properties, peaks in the low-temperature
thermal conductivity κ near Hc1 and Hc2 do not show any
substantial asymmetry (see Fig. 24). Kohama et al. (2011)
provided an explanation to this dichotomy by demonstrating
that the leading boson-impurity scattering amplitude is also
renormalized by quantum fluctuations, effectively canceling
the mass renormalization effect in κ.

6. Magnetic effects on the crystal lattice

Important physical properties related to the spin-charge-
lattice coupling, such as sound velocity, magnetostriction, and
electric polarization, were studied in several BEC quantum
magnets. We note magnetostructural coupling is universal in
magnetically ordered systems and does not automatically
create first-order behavior or create significant terms in the
Hamiltonian that would violate the conditions for BEC.
Johannsen et al.(2005) analyzed the magnetoelastic coupling
of TlCuCl3 based on high-resolution measurements of the
thermal expansion and the magnetostriction. By combining
linear thermal expansion measurements along different crys-
tallographic axes in constant magnetic fields with published
specific heat data and Ehrenfest relations, they found that the
phase boundaries TcðpÞ and Hc1ðpÞ between the low-field
paramagnetic phase and the ordered phase are extremely
sensitive to pressure and change by about 185% GPa depend-
ing on the direction of uniaxial pressure. This drastic effect
can be traced back to the pressure dependence of the intra-
dimer exchange, whereas changes of the interdimer couplings
play a minor role. Substitution of Tl for K, however, causes the
opposite effect, i.e., mostly a reduction in the dispersion.

FIG. 24 (color online). Thermal conductivity κ, along the c axis
as function of H∥c for DTN [NiCl2-4SCðNH2Þ2]. κ is measured
at constant temperatures between T ¼ 0.3 and 0.81 K, showing a
clear enhancement at the critical fields Hc1 and Hc2 From
Kohama et al., 2011.
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FIG. 23 (color online). Asymmetry between physical properties
of DTN [NiCl2-4SCðNH2Þ2] at Hc1 and Hc2. Here χ is the
magnetic susceptibility, Cp is the specific heat, dL=dH is the
magnetostriction, dP=dt is the magnetoelectric current due to
changes in the electric polarization of the sample, and TN is the
Néel temperature determined from the magnetocaloric effect
(open symbols) and the specific heat (solid symbols) (Zapf et
al., 2006; 2011; Yu et al. 2008; Kohama et al., 2011).

FIG. 22 (color online). Specific heat Cp vs temperature T and
magnetic field H of Ba3Mn2O8 showing the ordered transitions
betweenHc3 andHc4 in this material. From Samulon et al., 2009.
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Zapf et al. (2008) and Weickert et al. (2012) investigated
the magnetostriction of DTN and found a lattice response to
the field-induced XY AFM phase between the critical fields
Hc1 and Hc2 (see Fig. 25). The longitudinal magnetostriction
ΔL=Lc measured along the crystallographic c axis shows a
gradual non-symmetry-breaking shrinking above Hc1 fol-
lowed by a minimum and an expansion as the field approaches
Hc2 (Zapf et al., 2008). The volume stops changing for
external magnetic fields above Hc2. This behavior has been
interpreted as a result of a strong Ni-Ni distance dependence in
Jc. Since the AFM exchange constant increases as the Ni-Ni
distance shrinks, the AFM component of the spin ordering
induces magnetostriction, while the field-induced FM com-
ponent produces magneto expansion. Indeed, the AFM-
staggered component dominates at low fields H ≳Hc1,
because it increases like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H −Hc1

p
(β ¼ 1=2 is the mean-

field exponent expected for a BEC QCP in dimension
D ¼ 3þ 2), while the uniform component increases linearly
in H −Hc1 (see Sec. II.C). This observation explains why the
lattice shrinks for low fields and expands for high fields. These
measurements are extremely well reproduced by the results of
quantumMonte Carlo simulations of the Hamiltonian given in
Eq. (52), by assuming that the main contribution to the
magnetostriction arises from the change in the exchange
constant Jc as a function of the lattice parameter along
the c axis. Under this assumption, the relative change
of the sample length along the c axis ΔLc=Lc is proportional
to the correlation function between two neighboring
spins along the same axis: hSr · Srþeci (Zapf et al., 2008).
From the proportionality constant between the measured
ΔLcðHÞ=LcðHÞ curve and the simulated correlation function
hSr · SrþeciðHÞ, Zapf et al. (2008) obtained the dependence of
Jc on inter-Ni2þ distance dJc=dc ¼ 2.5 K=Å by also using
the value of the Young’s modulus E33 ¼ 7.5� 0.7 GPa that
was measured for this purpose. Similar measurements and
analysis were performed for ðHPIPÞ2-CuBr4 (Anfuso et al.,
2008), although in the 1D Luttinger liquid regime, and
excellent agreement was found with spin-spin correlation
function calculations for a two-leg spin ladder model.
Ultrasonic measurements provide a powerful experimental

technique to study various phase transitions and critical
phenomena. It is also a well-established tool for the

investigation of low-dimensional spin systems. Spin-lattice
interactions are responsible for the attenuation of acoustic
waves and influence the sound velocity in magnetic crystals.
These interactions are connected either with a strain modu-
lation of the exchange interactions or with a magnetostrictive
coupling of a single-ion type. Chiatti et al. performed
measurements of the relative change of the sound velocity
and attenuation in NiCl2-4SCðNH2Þ2 using a phase-sensitive
detection technique, based on a standard pulse-echo method
(Chiatti et al., 2008, 2009; Zherlitsyn et al., 2009). The
acoustic c33 mode manifests a pronounced softening accom-
panied by energy dissipation of the sound wave in the vicinity
of the quantum critical points. The acoustic anomalies are
traced up to T > TN , where the thermodynamic properties are
well described by fermionic magnetic excitations because the
interchain coupling becomes less relevant (as discussed in
Sec. II.A, the magnetic Hamiltonian can be mapped into a gas
of interacting fermions for one-dimensional systems). On the
other hand, the 3D ordering present in the AFM phase implies

FIG. 26 (color online). (a) Field dependence of the relative
change of the sound velocity and (b) the sound attenuation of the
acoustic c33 mode in DTN [NiCl2-4SCðNH2Þ2] at temperatures
below the maximum Néel temperature TN . The magnetic field
was applied along the (001) axis. The ultrasonic frequency was
78 MHz. The insets show the sound velocity and attenuation in
the vicinity of Hc in an enlarged scale. (c) Field dependence of
the relative change of the sound velocity and (d) the sound
attenuation of the acoustic c33 mode in DTN for temperatures
above the maximum TN Froom Chiatti et al., 2008.

FIG. 25 (color online). (a) Magnetostriction ΔL=L measured along the c and a crystallographic axes vs magnetic field H applied
along the c axis. (b) Experimental (open circles) and numerically simulated (line) magnetostriction ΔL=L of DTN [NiCl2-4SCðNH2Þ2]
along the c axis vs magnetic field (Zapf et al., 2008; Weickert et al., 2011).
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that the system has to be treated as a gas of interacting bosons
for T < TN in order to reproduce the experimental results
(the fermionic approach is no longer a good approximation
because the interchain coupling becomes relevant at low
temperatures). Indeed, the experimental results indicates a
crossover from a high-temperature regime [Fig. 26(d), 8.1 K
data] that is well described by a 1D fermionic model to a low-
temperature 3D regime [Fig. 26(d), 1.3 K data], where the
actual bosonic character of the magnetic excitations becomes
evident (Chiatti et al., 2008).

7. Critical exponents for the thermal properties
near the BEC QCP

As discussed earlier in Sec. II.C, a field-induced BEC QCP
leads to universal properties in the proximity of the critical
fields Hc1ðT ¼ 0Þ and Hc2ðT ¼ 0Þ. A number of experiments
have attempted to check the validity of Eq. (24) for Hc1ðTÞ
and Hc2ðTÞ in BEC quantum magnets. In addition, thermo-
dynamic quantities should follow power-law temperature
dependencies at H ¼ Hc1 and H ¼ Hc2. Table III shows
the expected exponents for BEC and Ising-like QCPs (Zapf
et al., 2011). It is important to note that d ¼ 3 is the upper
critical dimension for the Ising-like QCP (D ¼ dþ z ¼ 4)
because the the dynamical exponent is z ¼ 1. Therefore, one
should expect further logarithmic corrections to the power-law
behaviors listed in Table III (Weickert et al., 2012).
A common test for the BEC universality class involves

measurements of the ordering temperature as a function of the
temperature-dependent critical field TcðHÞ. A fit with Eq. (24)
then provides a way to test the prediction in the first line of
Table III. The problem, however, is that the range of temper-
atures over which data are available is often too small to

accurately determine the exponent of the power law. Ideally,
at least an order of magnitude should be available down to
as low temperatures as possible. Furthermore, the power-
law predictions are valid only in the window Tsb < T < TU
(see Fig. 10). Thus, different values of ϕ can be determined by
fitting over different temperature windows. Literally any value
of the exponent ϕ can be obtained with an insufficient data set
and a simplistic approach to fitting the power law.
Several groups have used the windowing technique to

determine ϕ in BaCuSi2O6, DTN, TlCuCl3, KCuCl3, and
CsCu2Cl4 (Nohadani et al., 2004; Sebastian et al., 2005; Radu
et al., 2006; Sebastian, Harrison 2006; Zapf et al., 2006;
Tanaka et al., 2007; Yamada et al., 2008). Here the data are
fitted over many different windows of temperature and then
the fitting parameters are extrapolated toward T ¼ 0. In
addition, an attempt is made to determine Hcð0Þ and ϕ
separately. First Hcð0Þ is extracted from fits by setting a
fixed value of ϕ and then repeating this for different fixed
values of ϕ. In experiments, the obtained Hcð0Þ extrapolated
toward T → 0 is independent of the choice of ϕ. This
universal Hcð0Þ value is then used to fit ϕ, and once again
the values of ϕ are extrapolated toward fitting windows
with T → 0.
Figure 27 shows the windowing approach applied to

BaCuSi2O6. Based on the emergent particle-hole symmetry
that should be approximately correct for this material (the
interdimer exchange interactions are ten times smaller than the
intradimer exchange), the empirical equation

t ¼ gðh2Þ½ð1 − hÞð1þ hÞ�ϕ ≡ gðh2Þð1 − h2Þϕ (81)

was proposed to fit the experimental phase boundary in a
window of increasing size tw, where t ¼ TN=TNmax and

FIG. 27 (color online). Windowing analysis of the critical field HcðTÞ in BaCuSi2O6. (a) Circles represent estimates of Hc1 obtained
from fitting experimental points on the phase boundary of BaCuSi2O6 in a window of increasing size tw ¼ T=Tcmax, for different fixed
values of ν ¼ 1=ϕ. tw labels the highest reduced temperature of the fit window. The dotted lines show the linear convergence of Hc1
values at tw ¼ 0. Triangles represent estimates ofHc1 similarly obtained from quantumMonte Carlo simulations for corresponding fixed
values of ν, and similar convergence is observed. (b) Circles represent estimates of ν from fitting experimental points on the phase
boundary in a window of increasing size tw, withHc1 ¼ 23:52 T determined from (a). The error bars are due to experimental uncertainty
in determining values of Hc. Triangles represent estimates of ν from a similar fit to QMC simulation data. The dotted line is a guide to
the eye, illustrating the approach of the QMC data to the mean-field value as tw → 0. (c) The same as (a) with temperatures now reaching
30 mK in a dilution refrigerator. A rapid change is found in the estimate for Hc1 for tw < 0.6. (d) The same as (b), but again to 30 mK.
The change in Hc1 accordingly affects the zero-temperature limit for ν, indicating a crossover from 3D to 2D universality as the
temperature is dropped. (e) T vs H −Hc1 phase boundary plotted for the two different values of Hc1 in (c) showing ϕ ¼ 1
(Hc1 ¼ 23:17 T) and ϕ ¼ 3=2 (Hc1 ¼ 23:52 T) behaviors (Sebastian et al., 2005; Sebastian, Harrison et al., 2006).
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h ¼ ðHmax −HÞ=ðHmax −Hc1Þ. Here gðh2Þ is assumed to be
constant to a first approximation for different fixed values of
ϕ. It is empirically observed from linear extrapolation to
tw ¼ 0 that estimates of Hc1 become less dependent on ϕ near
the QCP and converge to a single value irrespective of the
value of ϕ [Fig. 27(a)]. Hc1 ≃ 23:52� 0.03 T is estimated
from thisHc1 convergence. This value is then used to estimate
the critical exponent ϕ by fitting Eq. (81) in the narrowest
temperature range near the QCP that has a statistically
significant number of data points. Figure 27(b) shows the
variation in ϕ with the size of the temperature window.
For temperature windows below 0.61 K, a value of
1=ϕ ¼ 0.63�0.03, or ϕ ¼ 1.59� 0:08 can be extrapolated,
which is just about consistent with the theoretical mean-
field prediction ϕ ¼ 3=2. A similar analysis was also imple-
mented for DTN (Zapf et al., 2006), TlCuCl3 (Tanaka
et al., 2007), and CsCu2Cl4 (Radu et al., 2006), as well as
for the phase diagram predicted by QMC calculations for
TlCuCl3 and KCuCl3 (Nohadani et al., 2004).
Shortly after the first critical exponent study in BaCuSi2O6,

Sebastian et al. (2005) extended their measurements to
dilution-refrigeration temperatures (Sebastian, Harrison et al.,
2006). They found an unexpected crossover from the three-
dimensional ϕ ¼ 3=2 to the two-dimensional value ϕ ¼ 1.
Initially this dimensional crossover was attributed to the
effects of 2D interlayer frustration. However, further experi-
ments found a ferromagnetic non-frustrated interlayer
exchange interaction as well as a modulation of the intradimer
exchange constant along the crystallographic c axis with
uneven density of boson condensation that could account for
the dimensional reduction as is explained in Sec. II.C
(Sebastian, Tanedo et al., 2006; Batista et al., 2007; Rösch
and Vojta, 2007; Schmalian and Batista, 2008; Laflorencie
and Mila, 2009; Mazurenko et al., 2014). The exponent for
DTN was also subsequently measured down to 1 mK
(T=Tmax ¼ 1=1000) immersed in 3He in an adiabatic

demagnetization fridge by using ac susceptibility at the high
B=T facility of the National High Magnetic Field Laboratory
(Yin et al., 2008). The value of ϕ ¼ 3=2 was confirmed by
direct fits without windowing analysis over the temperature
range 1–200 mK. These data are shown in Fig. 28.
Another important way of testing the universal properties of

quantum magnets is to measure the temperature dependence
of thermodynamic properties in close proximity to the critical
magnetic fields. These quantities are expected to follow the
simple power-law dependences shown in Table III. However,
the high critical magnetic fields of many BEC compounds
renders these experiments difficult. The magnetization is
expected to show T3=2 behavior up to higher temperatures
than other thermodynamic properties. For DTN the magneti-
zation is shown in Fig. 29(a) for temperatures up to 80% of
Tcmax. Further measurements of magnetization, specific heat,
and thermal expansion carried out down to 0.1Tcmax ¼ 0.1 K
in DTN were extensively analyzed and contrasted against both
QMC and analytical results shown in Figs. 30 and 31
(Weickert et al., 2012). The measured properties do approach
the theoretical expectations as the temperature is reduced,
although the limited thermal conductivity of the sample below
0.1 K prevents reaching very low temperatures in some
experimental setups in vacuum. The experimental results
can be compared to theoretical predictions for temperatures
higher than TU with the help of materials-dependent QMC
calculations.

FIG. 28 (color online). Critical field Hc1 vs T1.5 for DTN
[NiCl2-4SCðNH2Þ2] down to 1 mK, determined from ac suscep-
tibility data. The observed linear behavior of this function is
consistent with the expected BEC power-law exponent ϕ ¼ 3=2.
Deviations at low temperatures are eventually expected due to
uniaxial-symmetry-breaking terms. The inset shows the curve
Hc1ðT2Þ showing that the exponent ϕ ¼ 2 expected for an Ising
QCP in dimension 3þ 1 is inconsistent with the experimental
data From Yin et al., 2008.

FIG. 29 (color online). (a) Critical field HcðTÞ vs magnetization
at the critical field McðTÞ=Msat for DTN [NiCl2-4SCðNH2Þ2].
(b) Scaled magnetization vs temperature below and above the
upper critical field showing the approach toward the T3=2

dependence expected for a BEC QCP in spatial dimension
d ¼ 3 (Reyes, Paduan-Filho, and Continentino, 2008; Paduan-
Filho et al., 2009).
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For TlCuCl3, studies of the thermal expansion and specific
heat do not follow the expected universal behavior, although the
Grüneisen parameter seems to be consistent with expected
BEC-like behavior nevertheless. Small U(1)-symmetry-break-
ing DM terms were identified from ESR measurements of this
compound (Glazkov et al., 2004).A staggered-field component
perpendicular to the uniform applied field is induced by the
small DM interaction. This staggered component opens a spin
gap at the critical fieldHc1. The experimental observation is that
the transition becomes first order due to lattice involvement
(Vyaselev et al. 2004). This qualitative change in the low-
energy excitation spectrum at Hc1 could explain the deviation
from BEC predictions.

8. Pressure-induced quantum critical points

This article focuses primarily on magnetic-field-induced
BECs. However, a different QCP can be reached by applying
pressure to a quantumparamagnet. In this case, the gap is closed
by lowering not just one spin level, as is the case with magnetic
fields, but all of the excited levels that are connected by global
spin rotations or time-reversal symmetries. Since both sym-
metries are preserved under the application of external pressure,
the universality class of the pressure-induced QCP is different
from the universality class of the field-induced QCP. For
instance, pressure can close the gap of an isotropic spin dimer
compound by increasing the ratio between the interdimer
exchange and intradimer exchange constants. This is the case
for TlCuCl3 (see Fig. 32), which develops AFMordering above
a critical pressure just over 1 kbar, according to neutron
diffraction, and 0.042 kbar, according to magnetization

measurements (Oosawa et al., 2003; Goto et al., 2004;
Matsumoto et al., 2004; Oosawa et al., 2004; Rüegg et al.,
2004, 2008; Yamada et al., 2008). In this case, the universality
class of the pressure-induced QCP is O(3) in dimension
D ¼ dþ 1, because the O(3) symmetry is spontaneously
broken beyond the QCP and the dynamical exponent is
z ¼ 1. The three triplet modes become gapless at the QCP
and have a linear dispersion (z ¼ 1), in contrast to the quadratic
dispersion of the Sz ¼ 1 single triplet mode that becomes
gapless at the field-induced BEC QCP. Another important
difference between the field- and pressure-induced QCPs is
that themagnetic field couples to a conserved quantity (the total
magnetization along the field direction), e.g., a quantity that
commuteswith theHamiltonian,while the perturbation induced
by pressure does not.
Although the three triplet modes become gapless at the

pressure-induced QCP of isotropic quantum dimer systems, a
gap reopens for the longitudinal mode inside the ordered state.
The remaining two gapless modes are the Goldstone modes
associated with the spontaneous breaking of two continuous
symmetries. These modes were measured in TlCuCl3 with
INS (Rüegg et al., 2004, 2008).

FIG. 31 (color online). (a) Measured magnetization M, vs
temperature T compared against the results of QMC simulations
and analytical results for DTN [NiCl2-4SCðNH2Þ2]. This com-
parison shows that the experimental data follow the expected
behavior for T → 0. Inset: T−1 behavior of the magnetic
Grüneisen parameter. (b) Coefficient of volumetric thermal
expansion α divided by temperature as a function of T for
different magnetic fields. Inset: T−1 behavior of the thermal
Grüneisen parameter From Weickert et al., 2012.

FIG. 30 (color online). (a) DTN [NiCl2-4SCðNH2Þ2] magneti-
zation M, vs T3=2 for magnetic field values between 1 and 3 T.
(b) Measured specific heat vs temperature compared against the
results of QMC simulations From Weickert et al., 2012.
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Since D ¼ dþ 1 for the pressure-induced QCP, mean-field
behavior with logarithmic corrections is expected for d ¼ 3.
This observation implies that the order parameter MQ is
proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P − Pc

p
and Tc ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P − Pc

p
, where Pc is the

critical pressure. Pressure studies have also been done in
IPA-CuCl3 (Hong et al., 2008) and PHCC (Hong et al., 2010)
showing reductions in the spin gap, although these experi-
ments could not reach the critical pressures to suppress the
QCP to zero magnetic field.
If pressure studies were to be performed on a quantum

magnet with uniaxial symmetry like DTN, one symmetry axis
is already broken by the uniaxial crystal field. Thus, the
pressure-induced QCP would belong to the O(2) universality
class in dimension D ¼ dþ 1. In this case, two gapless linear
modes with Sz ¼ �1 are expected at the pressure-induced
QCP because of time-reversal symmetry.

9. Elastic neutron scattering

Elastic neutron scattering (ENS) can directly probe the
ordered magnetic moment in the field-induced ordered state.
This ordered moment is proportional to the order parameter
for the XY AFM. As explained before, the spins are always
pinned along an easy axis inside the ordered phase of real
magnets, so the description in terms of XY-AFM ordering is
always an approximation. Nevertheless it is important to
understand the nature of the ordered phase, the direction of
the easy axes, and the size of the ordered moments. ENS can
confirm that there is a component of the ordered moment
transverse to the applied magnetic field and test the power-law
temperature dependences in the size of the ordered moment
near the critical fields Hc1 and Hc2.

In a recent article, Grenier and Ziman, (2007) provided a
comprehensive review of the use of modern neutron scattering
techniques for the study of quantum magnetism with emphasis
on the spin-ladder compound NaV2O5 and the spin dimer
system Cs3Cr2X9 (X ¼ Br, Cl). We refer the interested reader
to this work for more details on this technique. Here we
provide an overview of ENS applied to quantum magnets with
BEC QCPs, many of which are also spin-ladder compounds.
Tanaka et al performed ENS experiments on TlCuCl3

samples to confirm the transverse spin ordering and to
investigate the temperature and field dependence of m⊥
(Tanaka et al., 2001). Figure 33(a) shows the θ-2θ scans
for the (1, 0, 3) reflection measured at T ¼ 1.9 K for μ0H ¼ 0
and 12 T. Figure 33(b) shows the spin structure determined at
T ¼ 1.9 K and μ0H ¼ 12 T. The magnetic moments are
ordered in the a-c plane, which is perpendicular to the applied
field, and they are antiparallel on the same dimers (represented
by thick lines) forming an angle of 39° with the a axis. The
spins on the same legs of the double chains located at the
corner and the center of the unit cell in the b-c plane are
antiparallel. The temperature dependence of the magnetic
peak intensity at (1, 0, 3) is shown in Fig. 33(c) for various
applied magnetic fields. The square of the transverse mag-
netization per site m2⊥ is shown on the right y axis. Thus, the
transverse magnetic ordering predicted by the theory is
confirmed by ENS experiments in TlCuCl3. ENS experiments
were carried out in most other candidates for BEC behavior,
confirming transverse ordering (see Table I). However, the
spin ordering is not always a simple antiferromagnet trans-
verse to the applied magnetic field. For instance, the frustrated
compound Sul-Cu2Cl4 exhibits field-induced helical ordering
(Garlea et al., 2009), whereas different ordered phases occur
in CsCu2Cl4 depending on the field direction (Coldea et al.,
2001), including a conical phase whose suppression was
investigated in the context of BEC QCPs (Radu et al., 2005).

10. Inelastic neutron scattering

While elastic neutron scattering (ENS) provides direct
information about the magnetic ordering, inelastic neutron
scattering (INS) measures the dispersion relation of the
magnetic excitations. The exchange constants are extracted
from fits of the measured dispersion. Therefore, INS data are
crucial for constructing minimal spin Hamiltonians. INS
experiments also measure the quasiparticle dispersion inside
the paramagnetic region that is invisible to ENS. Indeed, INS
studies have been used to (a) measure the spin gap directly,
(b) measure the dispersion of the triplon modes in the
paramagnetic region, (c) produce essential information on
the magnitude and sign of the relevant exchange interactions
and potential anisotropies, (d) confirm that the spin gap can be
closed with external parameters such as magnetic field or
pressure, and (e) uncover the emergence of a magnetic
Goldstone mode in the ordered state (at least to a good
approximation). INS is also the ideal experimental tool for
measuring spontaneous decays of high-energy magnons
that commonly occur near magnetic-field-induced QCPs
(Zhitomirsky and Chernyshev, 2013). Ideally INS is combined
with complementary techniques, such as electronic para-
magnetic spin resonance (EPR or ESR), that have higher

FIG. 32 (color online). Magnetic field vs pressure phase diagram
for TlCuCl3 at T ¼ 0 K. A square root phase boundary separates
the spin-liquid (SL) phase from the AFM phase. (a)–(e)
Dispersion relation of triplet modes in for different temperatures
and pressures. (a) Degenerate triplet modes at H ¼ 0 (anisotro-
pies are neglected). (b) Zeeman-split triplet modes. (c) Spin
dynamics in the field-induced ordered phase. (d) Degenerate and
linear triplet modes close the spin energy gap at the critical
pressure Pc. (e) Spin dynamics in the pressure-induced ordered
phase. Two degenerate transverse Goldstone modes (solid line)
and a longitudinal amplitude mode (dashed line) are expected
From Rüegg et al., 2004.
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energy resolution but can only access magnetic excitations
with zero transferred momentum.
The importance of INS results is reflected in the large

number of groups that have devoted resources to studying
powder and single-crystal samples of quantum magnets that
are strong candidates for the observation of field-induced BEC
QCPs including but not limited to Sasago et al. (1997),
Cavadini et al. (2001, 2002), Coldea et al. (2002), Coldea,
Tennant, and Tylczynski (2003), Rüegg et al. (2003, 2004,
2007, 2008), Masuda et al. (2006), Stone et al. (2006, 2007,
2008b, 2008c), Zapf et al. (2006), Garlea et al. (2007, 2008),
Zheludev et al. (2007, 2008), Hong et al. (2008, 2010), Kofu,
Kim et al. (2009), Kofu, Ueda et al. (2009), Thielemann,
Rüegg, Rønnow et al. (2009), Quintero-Castro et al. (2010),
Schmidiger et al. (2011), and Tsyrulin et al. (2013).
The dispersion relation of the magnetic excitations has been

measured for most of the quantum magnets that are discussed
and the corresponding exchange constants were extracted
from these measurements. For example, the zero-field triplon
dispersion measured in TlCuCl3 is shown in Fig. 34. The
dispersion relation of the different branches of magnetic
excitations, ωνðkÞ (ν is the branch index) are extracted from
the peaks (poles) of the measured dynamical structure
factor Sðq;ωÞ. The values of the exchange interactions and

single-ion anisotropies are determined by fitting the measured
curve with a model. In some cases, analytical approximations
can be benchmarked with controlled numerical calculations of
the spectrum of spin excitations. As discussed in Sec. II.D.4,
the DMRG method can be used to compute the spectrum of
spin excitations in one-dimensional systems. As long as the
off-diagonal terms of the Hamiltonian are not frustrated, this
spectrum can also be computed numerically for higher-
dimensional systems by means of quantum Monte Carlo
simulations combined with maximum entropy methods
(Sandvik, 1998). Typically, the generalized spin-wave
approach described in Sec. II.D.2 works very well in spatial
dimension d ≥ 2, as long as the effective magnetic inter-
actions are not strongly frustrated. Returning to Fig. 34 we
note that the dispersion is quadratic in energy about the
minimum. This gapped quadratic (massive) dispersion
was derived in the theory sections and should persist
up to Hc1. The excitations become gapless and linear
for Hc1 < H < Hc2.
INS studies in single crystals of Ba3Mn2O8, reveal that not

only the nearest-neighbor (NN) but also the next-nearest-
neighbor (NNN) exchange interactions play an important role.
Singlet-triplet dispersion relations show that the NN and NNN

FIG. 33. TlCuCl3 elastic neutron diffraction study. (a) θ-2θ scans for (1, 0, 3) reflection measured at μ0H ¼ 0 and 12 Tat 1.9 K. (b) Spin
structure in the ordered phase. The external field is applied along the b axis. The double chains located at the corner and the center of the
chemical unit cell in theb-c plane are represented by solid and dashed lines, respectively. The shaded area is the chemical unit cell in thea-c
plane. (c) Temperature dependence of the magnetic peak intensity at (1, 0, 3) in various magnetic fields. The square of the transverse
magnetization per sitem2⊥ is shown on the right y axis. (d)Magnetic field dependence of the magnetic peak intensity for (1, 0, 3) at various
temperatures. The square of the transverse magnetization per site m2⊥ is shown on the right y axis. From Tanaka et al., 2001.
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interactions are antiferromagnetic and compete between adja-
cent bilayers (Stone et al., 2008b). In particular, the existence
of the NNN exchange interaction was unveiled by comparing
the measured dispersion of the triplet excitation with the
dispersion relation obtained with the generalized spin-wave
approach described in Sec. II.D.2. The excellent agreement
between theory and experiment (see Fig. 35) can be obtained
only if the NNN interlayer exchange is included. Although the
interlayer exchange is comparable to the intralayer exchange,
this competition between the NN and NNN interlayer cou-
plings reduces the effective magnetic coupling along the c axis
and leads to quasi-two-dimensional behavior. In addition, the
four critical fields Hc1, Hc2, Hc3, and Hc4 that appear in the
experimental phase diagram (see Fig. 8) are well reproduced
with the exchange constants extracted from the fit of the INS
dispersion shown in Fig. 35. Recall that this material consists
of S ¼ 1 spins arranged in dimers, and thus not only total
S ¼ 1 triplet excited states but also total S ¼ 2 quintuplet
excited states are present. This compound was discussed in
Secs. III.A and III.B.5 showing that the phase diagram has two
dome-shaped regions of BEC where the triplet and the quintet
become degenerate with the ground state (see Fig. 8).
INS studies of Ba3Mn2O8 at higher temperatures in poly-

crystals show the presence of the quintuplet excited state in
addition to the triplet state. INS data for this material (Fig. 36)
show the presence of both singlet-triplet and singlet-quintet
excitations in plots of the intensity versus energy transfer ℏω.
The higher-energy singlet-quintet excitations become more
noticeable as the temperature is increased, appearing as small
shoulders near ℏω ¼ 3 meV. By contrast, the peak due to the
lower-energy singlet-triplet excitations just below 2 meV is
suppressed with increasing temperature.

FIG. 34 (color online). (a)–(c) Measured neutron intensity vs
energy transfer in the a-c plane of TlCuCl3 for (1.35,0,0), (top)
and (0,0,3.15) (bottom) (r.l.u.). (d) Observed energy dispersion
of the magnetic excitation modes in TlCuCl3 at T ¼ 1:5 K.
Full circles from the relevant directions of reciprocal space
are arranged in a reduced scheme representation, with
A ¼ E ¼ ð1=2; 0; 0Þ, B ¼ ð0; 1; 0Þ, D ¼ ð0; 0; 0Þ (r.l.u.). Zone
centering corresponds to C ¼ ð0; 0; 1Þ for Δq ¼ ðh; 0; lÞ, C ¼
ð0; 0; 0Þ for Δq ¼ ð0; k; 0Þ. From Cavadini et al., 2001.

FIG. 35 (color). T ¼ 1.7 K inelastic neutron scattering data for Ba3Mn2O8, which have six degenerate minima (only one shown) in the
dispersion relation. (a)–(d) Scattering intensity (contour plot) and ℏω (points) vs Q plotted in reciprocal lattice units (r.l.u.). Solid lines
are fits to a calculated dispersion relation. (e)–(h) Integrated scattering intensity from Gaussian fits to constant Q scans. Solid lines are
fits. (i) Path through the ðhhlÞ plane shown in (a)–(h). From Stone et al., 2008b.
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Having described INS measurements of the zero-field
gapped state, we can extract even more information by
applying magnetic fields to suppress the gap. Turning once
again to TlCuCl3 as an example, Fig. 37 shows the evolution
of the spin triplet states in applied magnetic fields. The lowest
level of the spin triplet becomes degenerate with the spin
singlet near 6 T. Inside the ordered phase, the gap in principle
should not reopen, and the lowest excitation should be a
gapless Goldstone mode with linear dispersion. For TlCuCl3,
INS data are shown at 14 T, well inside the ordered phase, and
a mode is indeed found whose dispersion can be fit to a linear
function (Rüegg et al., 2003). Again, we note that small U(1)-
symmetry-breaking terms discussed in Sec. II.B should open a
small spin gap inside the ordered phase. However, this gap

may not be observable with the available energy resolution of
state-of-the-art INS experiments.
In Sul-Cu2Cl4, INS reveals not only the (mostly) gapless

Goldstone mode inside the ordered phase but an additional
gapped mode with a gap that opens inside the ordered phase,
reaching a maximum energy near 0.3 meV (Zheludev et al.,
2009). This gapped mode is not due to uniaxial-symmetry-
breaking terms (after all, the mostly gapless mode is also
observed), but it is consistent with theoretical predictions
for this frustrated spin-ladder material. Similarly, in DTN, a
gapped mode opens in addition to the (mostly) gapless mode,
although for completely different reasons. This gapped mode
has been observed in ESR (Zvyagin et al., 2007) and INS in
magnetic fields (Tsyrulin et al., 2013). It is attributed to the
fact that DTN has two interpenetrating tetragonal lattices with
weak frustrated coupling between them. This weak coupling
lifts the degeneracy between the two Goldstone modes of the
decoupled sublattices, leading to one gapped mode and a
remaining global Goldstone mode.
INS provides us not only with the information necessary to

analyze BEC QCPs in these quantum magnets, but it has also
uncovered a rich variety of other behavior in several quantum
magnets in this paper. For example, a large body of work on
CsCu2Cl4 has interpreted the INS data on that compound as
evidence for fractionalized excitations due to a resonant-
valence-bond model, which generated much excitement for a
while. Recent work, however, reinterprets the data as arising
from a hierarchy of energy scales created by frustration, in
which very small interlayer exchange and DM interactions
can play a dominant role in shaping the magnetic behavior
(Starykh, Katsura, and Balents, 2010). We refer the inter-
ested reader to a recent review on this subject (Balents,
2010). In another compound, PHCC (Stone et al., 2006), INS
data show a breakdown of the quasiparticle description that
is normally used to describe the magnon excitations between
the nonmagnetic ground state and the excited state in gapped
quantum magnets. In PHCC, the quasiparticle dispersion
terminates above a critical wave vector and merges with the
two-particle continuum. This is similar to what is observed in
excitations of superfluid 4He. This behavior can be traced to

FIG. 36 (color online). Energy-dependent scattering intensity of
Ba3Mn2O8 for 0.9 < Q < 1.0 Å−1 for (from top to bottom):
T ¼ 1.4, 8, 16, 24, 40, and 160 K. Data for different temperatures
are vertically offset. Solid lines are fits to Lorentzian functions
convolved with the energy-dependent resolution of the instru-
ment. The inset illustrates scattering intensity of the T ¼ 12 K
measurement plotted on a logarithmic intensity scale. The dotted
line corresponds to the spectral contribution of the lower-energy
singlet-triplet mode, and the dashed line corresponds to the
higher-energy singlet-quintet mode. From Stone et al., 2008c.

FIG. 37 (color). TlCuCl3 inelastic neutron diffraction study. (a) Intensity vs energy transfer showing the emergence of three spin levels
with different energies (Furrer and Rüegg, 2006). (b) Spin levels as a function of external magnetic field H. (c) Contour plot of the
neutron scattering intensity vs momentum transfer, in the spin gapped state at H ¼ 0 (top), and inside the ordered phase at H ¼ 14 T
showing the linear dispersion of the Goldstone mode. From Rüegg et al., 2003.
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the highly frustrated nature of the magnetic interactions in
PHCC in the predominantly 2D planes of dimers.

11. Electron spin resonance

The ESR technique is critically important for identifying
uniaxial-symmetry-breaking terms in quantum magnets. ESR
is based on the resonant absorption of electromagnetic energy
due to transitions between different spin levels. It is a very
sensitive probe for detecting transitions between spin states
that have the same momentum and whose energy difference is
in the range of a fraction of a kelvin up to a few tens of kelvins.
In the presence of magnetic exchange interactions that
disperse the spin levels, ESR couples to the ferromagnetic
(k ¼ 0) edge of each dispersed spin level since the applied
magnetic field is uniform.
Figure 38 shows spin levels evolving in magnetic field for

an S ¼ 1 isolated spin, or alternatively for the S ¼ 1 triplet of
an S ¼ 1=2 dimer. Since ESR results from Zeeman coupling
to a time-dependent magnetic field that is perpendicular to
the static magnetic field, it is subject to the selection rule
ΔSz ¼ �1 (neglecting orbital contributions). The figure on
the left shows the case of a system with perfect uniaxial
symmetry, while the figure on the right corresponds the case in
which the uniaxial anisotropy is broken by the additional
terms DðSzÞ2 þ E½ðSxÞ2 − ðSyÞ2�. For an isolated spin, D and
E are single-ion anisotropy terms that result from interaction
between the spin and its orbit, which is affected by the crystal
electric field of surrounding atoms. For a dimer, however, the
effective D and E terms that split the triplet levels arise from
intradimer symmetric exchange anisotropy and dipole-dipole
interactions. The D term leaves a single uniaxial symmetry
axis. Therefore, uniaxial symmetry is preserved in the
presence of an external field H only if H is parallel to the
symmetry axis. The D term splits the Sz ¼ 0 and Sz ¼ �1
states as shown in Fig. 38. The E term splits the Sz ¼ �1
states and breaks uniaxial symmetry because it does not
commute with Sz, i.e., the Hamiltonian eigenstates are linear
combinations of eigenstates of Sz that have different eigen-
values. The degree of mixing decreases with H, because the
Zeeman term opens a gap between states with different Sz that

increases linearly in H. Thus, the energy levels evolve
nonlinearly at low magnetic fields, and linearly for fields
H ≫ E=gμB. Therefore, the magnitude of the U(1)-symmetry-
breaking term can be estimated from the size of the region in
which the excited spin levels do not evolve linearly in
magnetic field, and from the size of the zero-field gaps
between spin levels. This is true not only for the examples
that we used to illustrate the point, but for any other magnetic
system: U(1)-symmetry-breaking terms mix states with differ-
ent total Sz and consequently lead to nonlinear dependence of
the energy as a function of H. U(1) symmetry-breaking terms
can also arise from interdimer interactions, in addition to
intradimer interactions, and from interactions between non-
dimerized spins. DM interactions between spins will break the
U(1) symmetry ifH is not parallel to the DM vector DDM. DM
interactions DDM · S1 × S2 can be readily detected in spin
dimer systems by looking for singlet-triplet transitions, which
become allowed due to the antisymmetric nature of the DM
coupling under exchange of both spins 1⇔2 (note that the
triplet and the singlet have opposite parity under this
transformation).
ESR experiments have been performed in a number of BEC

compounds (Schrama et al., 1998; Takatsu et al., 1998;
Tanaka et al., 1998; Manaka et al., 2001; Kodama et al.,
2005; Zvyagin et al., 2007, 2008; Cox et al., 2008; Fujisawa
et al., 2009; Kofu, Ueda et al., 2009; Povarov et al., 2011;
Glazkov et al., 2012; Psaroudaki et al., 2012). Some of these
experiments have measured the size of the gap between pairs
of spin levels and the degree of linearity as a function of
magnetic fields, thus probing uniaxial symmetry down to the
lowest energy scale that can be resolved with this technique.
The measured U(1)-symmetry-breaking terms are listed in
Table I for the various materials discussed in this paper.
An analysis of ESR measurements in BaCuSi2O6

(Sebastian, Tanedo et al., 2006) found a zero-field splitting
(ZFS) of the triplet states that is consistent with a symmetric
exchange anisotropy of 0.1 K. This term does not break U(1)

E
ne

rg
y

Magnetic field

α β
Sz = 0

Sz = 1

Sz = -1

D

(a)

E
ne

rg
y

Magnetic field

α

γ

β
Sz = 0

Sz = 1

Sz = -1

E

D

(b)

FIG. 38 (color online). (a) Energy-level diagram for an S ¼ 1
spin triplet with a HamiltonianH ¼ gμBHzSz that obeys uniaxial
symmetry. The transitions α and β obey the ΔSz ¼ �1 selection
rules and would be observed in ESR. (b) H contains additional
terms DðSzÞ2 þ E½ðSxÞ2 − ðSyÞ2�. The E term breaks the con-
tinuous uniaxial symmetry and disallows BEC for kBT < E. The
D term breaks uniaxial symmetry only if H is not parallel to the z
axis. The eigenstates of the new Hamiltonian now contain
mixtures of the different Sz states; thus the energies are no
longer linear in H and follow E� ¼ D�
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FIG. 39 (color online). ESR measurements on BaCuSi2O6 single
crystals at T ¼ 0.6 K. The frequencies of intratriplet splittings of
the Cu dimer S ¼ 1 triplet are plotted as a function of Hjjĉ,
labeled R1 and R2, showing linear evolution with a very small
offset from zero, from which the maximum size of D can be
estimated. There is no evidence for a nonzero E in these data. The
inset shows a cartoon of the triplet levels evolving in magnetic
field. From Sebastian, Tanedo et al., 2006.
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symmetry along the dimer axis and arises from intradimer
dipole-dipole interactions. The ESR data are shown in Fig. 39.
The absence of splitting between the Sz ¼ �1 states and the
lack of singlet-triplet transition indicate that the effect of U(1)-
symmetry-breaking terms, such as dipolar interactions
between different dimers, is smaller than the experimental
resolution. Indeed, the effective U(1)-symmetry-breaking
term produced by interdimer dipolar interactions is estimated
to be of the order of 10 mK, i.e., 0.02% of the maximum
ordering temperature Tcmax.
ESR measurements have found more significant deviations

from uniaxial symmetry in TlCuCl3 (Glazkov et al., 2004),
PHCC (Glazkov et al., 2012) and CsCu2Cl4 (Povarov et al.,
2011). Symmetry exchange anisotropies are evident from the
ESR data of TlCuCl3 and PHCC. In addition, the singlet-triplet
transition observed in TlCuCl3 clearly indicates the presence of
U(1)-symmetry-breaking DM interactions. The order of mag-
nitude of these anisotropic terms in TlCuCl3 is estimated to be
1% of the maximum ordering temperature. In PHCC, D ¼
0.37 K and E ¼ 0.06 K, which is 5% and 0.8%, respectively,
of the maximum ordering temperature. In CsCu2Cl4, DM
interactions along two different crystallographic axes were
identified so there is no configuration in whichH is parallel to
DDM. The energies of the DM interactions are reported to be
0.38 and 0.52 K, which is 63% and 87% of the 0.6 K ordering
temperature (Povarov et al., 2011). This analysis is inconsistent
with BEC in Cs2CuCl4.
The ESR data for DTN (Zvyagin et al., 2007, 2008),

IPA-CuCl3 (Manaka et al., 2001), Ba3Cr2O8 (Kofu, Ueda
et al., 2009), and Sul-Cu2Cl4 (Fujisawa et al., 2009) are
consistent with uniaxial symmetry for at least one field
direction in each case, although the precise upper bound
for U(1)-symmetry-breaking terms is not estimated from the
data. In DTN there is a dominant D term along the crystallo-
graphic c axis, thus H must be parallel to c to preserve U(1).
There is a DM interactionDDM⊥c in Ba3Cr2O8, soHmust be
perpendicular to ĉ in order to preserve U(1) the symmetry.
ESR measurements also reveal the g factor, whose devia-

tions from the free electron value ∼2 give a rough estimate of
the ratio between the spin-orbit coupling and the crystal field
splitting between 3d levels of the transition metal ion. In the
case of IPA-CuCl3, a 3D mapping of the g factor allowed them
to derive the arrangement of the Cu dx2−y2 -like orbitals that
contribute to the magnetic exchange interactions (Manaka,
Yamada, and Higemoto, 2007).
Finally, ESR was used in DTN to observe a two-magnon

bound state above the saturation field (Fig. 40). The single
magnon excitation aboveHc1 corresponds to an jSz ¼ 0i state
that propagates on top of the fully polarized ground state with
well-defined momentum. The large D=Jc value in DTN leads
to the formation of two-magnon bound states. The k ¼ 0 two-
magnon bound state has been detected with ESR (Zvyagin
et al., 2007) in spite of the fact that ΔSz ¼ −2. The origin of
this violation of the selection rule ΔSz ¼ �1 is still unclear,
although it could be explained by small misalignment between
the applied field and the crystallographic c axis in that
measurement, or by DM terms. T ¼ 0.4 K measurements
in this material (Zvyagin et al., 2008) also reveal an energy
gap opening in the ordered phase. This gap on first sight could
be interpreted as evidence of uniaxial symmetry breaking.

However, Zvyagin et al. (2008) found that the relative sizes of
the resonances in the ESR data and the field dependence of the
gap size are very inconsistent with that scenario. Rather, the
data are consistent with a coupling between the low-energy
modes of the two interpenetrating simple tetragonal sublat-
tices of DTN. The finite coupling between the two sublattices
splits the two gapless modes into a gapped mode, in which the
spins of both sublattices rotate in opposite directions, and a
(mostly) gapless Goldstone mode associated with a global
spin rotation in which the spins of both sublattices rotate by
the same amount.

12. Nuclear magnetic resonance

NMR provides a sensitive probe of the local magnetism and
can yield important details about these quantum magnets
exhibiting BEC. In particular, it becomes a very valuable
technique for quantum paramagnets whose values of Hc1 are
above 20 T. The difficulty of doing neutron scattering
experiments under such high fields (at least for the moment)
leaves NMR as the primary probe for revealing details of the
magnetic order parameter that appears above Hc1. Such
experiments are particularly important for frustrated materials
in which there are several competing order parameters right

FIG. 40 (color online). Electron spin resonance data at 1.4 K for
single crystals of DTN [NiCl2-4SCðNH2Þ2]. (a) Top: resonant
absorption of energy at a fixed frequency as a function of
magnetic field. Bottom: magnetic field dependence of the
resonant absorption lines labeled A–F. (b) Schematic of the five
absorption lines A–F, which include not only resonant transitions
between spin levels (A and B), but also single- and two-magnon
bound states (C, E, F). The expected dispersion of the spin levels
are shown, which illustrated the fact that ESR measures ferro-
magnetic (uniform field) excitations, which correspond to the top
(energy maximum) of the dispersion in DTN because the
interactions are antiferromagnetic. From Zvyagin et al., 2007.
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above Hc1 because the single-boson dispersion has global
minima at more than one wave vector (see Sec. II.D.3). The
power-law dependence of the NMR relaxation rate (1=T1) can
also be used to test predictions in different regimes of the
phase diagram (Giamarchi and Tsvelik, 1999; Orignac, Citro,
and Giamarchi, 2007; Mukhopadhyay et al., 2012).
NMR measurements of the 135;137Ba nucleus in Ba3Mn2O8

reveal a magnetization versus temperature curve at H ¼ Hc1,
MðH ¼ Hc1; TÞ that is in agreement with the BEC scenario
for Hjjc, but not H⊥c (Suh et al., 2011). This is expected
because the Mn S ¼ 3=2 spins have a small uniaxial sym-
metric anisotropy (D term in the Hamiltonian) and thus H
must lie along the c direction for uniaxial symmetry to be
preserved. The double-horn shape of the NMR line measured
for H∥c and H > Hc1 indicates that the magnetic ordering
wave vector is incommensurate, as expected from the position
of the minima of measured triplon dispersion (Stone
et al., 2008b).
NMR measurements in TlCuCl3 show that the transition

into the BEC phase is not purely second order, due to very
strong spin-lattice coupling (Vyaselev et al., 2004). Locally
the transition is discontinuous, indicative of a first-order
component to the ordering. However, Vyaselev et al.
(2004) note that bulk probes like INS can still show a
seemingly continuous transition if the local value of TN varies
somewhat across the sample.
NMR in BaCuSi2O6 reveals interesting structural compli-

cations (Krämer et al., 2007, 2013). 63;65Cu and 29Si NMR
(Krämer et al., 2007) show that below 90 K at least two
structurally different planes of Cu dimers form, with dif-
ferent intradimer exchange couplings and different gaps
A=B ¼ 1.16. These data are shown in Fig. 41 and are mostly
consistent with the INS measurements discussed in
Sec. III.B.10 (Rüegg et al., 2007). The boson density near
the critical field Hc1 is five times higher in one plane than the
other. The NMR data also show a broadening of the line
widths that is consistent with an incommensurate structural
modulation within the planes, which was also observed in
high-resolution x-ray diffraction data (Samulon et al., 2006).
Most recently, an even more detailed NMR study (Krämer
et al., 2013) finds that frustration is not perfect, leading to
partial condensation in the planes with lower boson densities.
These findings have lead to several new theoretical
approaches to understanding BECs in heterogeneous and
frustrated systems (Rösch and Vojta, 2007; Laflorencie and
Mila, 2009). We note that a recent study shows that the
effective intralayer exchange is ferromagnetic for BaCuSi2O6,
implying that there is no geometric frustration in this com-
pound (Mazurenko et al., 2014). Thus the details of magnetic
ordering in BaCuSi2O6 present an ongoing puzzle.

IV. MAGNETIC FRUSTRATION

Since magnetic frustration is quite common in the quantum
magnets we are reviewing, we highlight it with its own
section. Frustration occurs in magnetic systems that cannot
satisfy all their magnetic interactions even in the limit of
classical moments S → ∞ for which spin operators commute
with each other. For example, a triangle of three antiferro-
magnetically coupled spins is frustrated because the spins

cannot all simultaneously antialign with their neighbors.
Frustration has different manifestations in the class of com-
pounds that we are considering. This is particularly true for the
dimerized quantum paramagnets. On the one hand, as dis-
cussed in Sec. II.D.1, frustration between exchange constants
connecting the same pair of dimers (see Fig. 3) reduces the
ratio between the hopping amplitude and the strength of the
density-density repulsion in the effective low-energy model
that describes the system as a gas of hard-core bosons [see
Eqs. (31)]. On the other hand, frustration between exchange
constants connecting different pairs of dimers can lead to more
than one global minimum in the dispersion relation of the
single-particle excitations for H ≤ Hc1. As we will see below,
these two different manifestations of geometric frustration
lead to different types of field-induced magnetic orderings.
SrCu2ðBO3Þ2 provides a clear example of suppression of

the bosonic hopping amplitude due to frustration between
exchange constants connecting the same pair of dimers
(Kageyama, Yoshimura et al., 1999). In the notation of

FIG. 41 (color online). (a) 63;65Cu NMR spectra of BaCuSi2O6

single crystals in the gapped phase H < Hc1. The T dependence of
the high-frequency satellite reveals two different Cu sites associated
with two different types of planes in the crystalline structure. Inset:
field-sweep spectrum that reveals the incommensurate nature of the
line shape for each of the two sites. Shading separates the
contribution of the 65Cu high-frequency satellite from the rest of
the spectrum. The analysis of the latter part confirms that the
observed line shape has a purely magnetic origin. (b) 29Si NMR at
50 mK nearHc1. A decomposition of the line shape into A and B as
shown yields the different magnetizations of the two types of planes
A and B. This corresponds to a ratio of the average boson density
nA=nB ∼ 5. From Krämer et al., 2007.
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Sec. II.D.1, the exchange constants between two nearest-
neighbor dimers with coordinates r and r0 satisfy the follow-
ing condition: Jr;r

0
11 ¼ Jr;r

0
12 and Jr;r

0
22 ¼ Jr;r

0
21 ¼ 0. According to

Eqs. (31), this condition implies that the bosons (triplets)
cannot hop to first order in Jr;r

0
νν0 because tr;r0 ¼ 0. The effective

hopping amplitude turns out to be of sixth order in the
interdimer exchange (Fukumoto, 2000; Knetter et al., 2000;
Totsuka, Miyahara, and Ueda, 2001). This observation
explains the flat dispersion of the single-triplet excitations
that has been observed with INS experiments (Kageyama
et al., 2000). It also explains the existence of multiple field-
induced magnetization plateaus (Smith and Keszler, 1991;
Kageyama, Onizuka et al., 1999; Kageyama, Yoshimura,
1999; Misguich, Jolicoeur, and Girvin, 2001; Kodama
et al., 2002; Shastry and Kumar, 2002; Miyahara and
Ueda, 2003; Sebastian et al., 2008; Jaime et al., 2012).
These plateaus correspond to different crystallizations of
triplets, whose particular complex structures are difficult to
determine for the lower magnetization steps due to the
presence of multiple competing length scales.
As explained in Sec. II.C.2, frustration between exchange

constants connecting different pairs of dimers can reduce the
dimension of the field-induced BEC QCP. This drop in
dimensionality, shown in Fig. 27, is very unusual, since
dimensionality usually increases when approaching a critical
point.
The most common consequence of frustration between

exchange constants connecting different pairs of dimers is the
emergence of spiral (or single-Q) and multiple-Q spin order-
ings right above the critical field Hc1. As explained in
Sec. II.D.3, the existence of more than one global minimum
in the dispersion relation of single-triplet excitations implies
that these bosons can condense in more than one single-
particle state. Condensation in a single single-Q state corre-
sponds to a spiral phase. Condensation in a linear combination
of different Q states leads to richer structures. In contrast to
the case of single-Q ordering, the longitudinal spin compo-
nent of multi-Q structures is always modulated. In other
words, XY and Ising-like orderings coexist in the same phase.
Ba3Mn2O8, Sul-Cu2Cl4, and Cs2CuCl4 are three examples

where frustration leads to spiral structures with incommensu-
rate wave vectors. In Cs2CuCl4, Cu2þS ¼ 1=2 spins form an
anisotropic triangular lattice, which leads to helical ordering.
In this material the choice of handedness of the helix is
determined by the lattice, which already breaks inversion
symmetry as evidenced by the existence of DM interactions.
In contrast, the choice of handedness is spontaneous for the
helix that is observed in Sul-Cu2Cl4 (a four-leg spin tube with
frustrated diagonals as shown in Fig. 42). Ba3Mn2O8 is an
example of six degenerate global minima in the single-triplet
dispersion (Stone et al., 2008a). This degeneracy arises from
the frustrated nature of the exchange interaction between
dimers on the same and on adjacent triangular layers. The
resulting dispersion is shown in Fig. 35. While single-Q
ordering is observed above Hc1 for H parallel to the c axis
(Uchida et al., 2002; Samulon et al., 2008, 2009, 2010; Stone
et al., 2008a; 2009; 2010), a second phase appears right above
Hc1 for any other direction of H. While this second phase
certainly corresponds to a multi-Q structure that arises from
easy-axis anisotropy in the a-b plane (the condensation occurs

simultaneously in Q and −Q so the transverse spin compo-
nent can point along the easy-axis), it is still unclear if the
phase is a double-Q, four-Q or six-Q state. In particular, as it
was recently demonstrated by Kamiya and Batista (2013), the
six-Q structures correspond to triangular crystals of magnetic
vortex with an intervortex distance that is controlled by the
ratio between interlayer and intralayer exchange interactions
between different spin dimers. This six-Q phase is favored by
the symmetric exchange anisotropy terms that become
relevant close enough to the critical fields because they are
quadratic in the bosonic operators (the interaction terms are
quartic). Magnetic vortex crystals can only arise from n-Q
condensates with n ≥ 3, i.e., the single-boson dispersion must
have more than two minima. This observation reflects the new
possibilities that are opened by magnetic realizations of
bosonic gases. Atomic gases and superconducting systems
normally become single Q ¼ 0 condensates because their
kinetic energy terms are not frustrated (the single-boson
dispersion has a single minimum). In contrast, it is rather
common to find single-boson dispersions with several minima
in highly frustrated magnets, which is the minimum require-
ment for observing exotic multi-Q condensates.
The combination of the two types of frustration between

exchange interactions connecting the same and different pairs
of dimers provides one way of stabilizing the so-called
supersolid structures. The name is imported from the bosonic
version of these phases in which crystal or “solid” ordering
coexist with a superfluid state. The magnetic counterpart
corresponds to coexistence of Ising and XY ordering. For
instance, it is predicted that this phase is stabilized over a wide
range of concentrations of hard-core bosons on a triangular
lattice for negative hopping amplitude, t < 0, and large
enough nearest-neighbor repulsion V ≫ jtj (Boninsegni and
Prokof’ev, 2005; Heidarian and Damle, 2005; Wessel and
Troyer, 2005). These results imply that triangular layers of

FIG. 42 (color online). (a) Schematic (not crystallographic)
representation of frustration in the four-leg spin tube of
Sul-Cu2Cl4. From Zheludev et al., 2009. (b) Incommensurate
helical structure induced by magnetic fields in Sul-Cu2Cl4 with
wave vector k ¼ ð−0.22; 0; 0.48Þ. From Garlea et al., 2009.

606 Vivien Zapf, Marcelo Jaime, and C. D. Batista: Bose-Einstein condensation in quantum magnets

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



dimers, like the ones in Ba3Mn2O8, would host a spin-
supersolid state if there were enough frustration between
exchange interactions connecting the same pair of dimers [see
Eqs. (31)]. Spin-1 Heisenberg systems with strong uniaxial
and easy-axis single-ion anisotropy provide an alternative
realization of supersolidity in the same effective model for
hard-core bosons (t < 0 and V ≫ jtj). Experimental examples
of “spin supersolids” in quantum magnets have not been
found yet.

V. FUTURE DIRECTIONS AND CONCLUSIONS

A. Disorder

Having established BEC-like quantum critical behavior in
quantum magnets, we can now use these compounds to
explore other frontiers in the physics of bosonic gases.
This is perhaps the most important outgrowth of the study
of BEC in quantum magnets—shedding light on unsolved
mysteries of bosonic systems for which quantum magnets
could provide an alternative route toward achieving under-
standing. For example, we have seen in Sec. II.C.2 that BEC
QCPs do not satisfy the Harris criterion because dν < 2
(Harris, 1974). This observation implies that disorder is
relevant for inducing novel quantum critical behavior at the
transition between the so-called Bose glass phase and the
BEC. A Bose glass phase can be realized when disorder
suppresses global phase coherence and the bosons are con-
fined in localized regions of different sizes (Fisher et al.,
1989). The phase transition from Bose glass to BEC (BG to
BEC) can be considered analogous to Anderson localization
for fermions (Giamarchi and Schulz, 1988), where conduction
electron Bloch states scatter off random disorder potentials,
leading to localization. Both the bosonic and the fermionic
cases are of fundamental importance to understanding the
effect of disorder on the physical properties of materials.
Disorder causes the loss of phase coherence in bosonic
systems, and a metal-to-insulator transition for fermions.
Quantum magnets provide a bosonic system in which the
thermodynamic properties of the BEC-BG transition can be
studied in order to guide the field toward a theoretical
resolution of this important problem. The BG-to-BEC phase
transition has been proposed to occur in many systems
including superfluids, condensates of cold atoms, and high-
Tc superconductors (Kramer and MacKinnon, 1993; Emery
and Kivelson, 1995; Crowell, Van Keuls, and Reppy, 1997;
Azuah et al., 2003; Lye et al., 2005; Fallani, Fort, and
Inguscio, 2008; Sanchez-Palencia and Lewenstein, 2010;
Bouadim et al., 2011; Sacépé et al., 2011). However, quantum
magnets provide a natural and convenient scenario to test the
fundamental predictions for this QCP.
In quantum magnets, the most studied route to creating a

Bose glass is through chemical doping. A recent review article
summarizes theoretical and experimental work in this field
(Zheludev and Roscilde, 2013). In the Bose glass both the
amplitude and the phase of the order parameter (magnitude of
ordered magnetic moment and its orientation) vary from one
localized BEC cluster to the next.
Two approaches to creating a Bose glass in quantum

magnets have been proposed in theory: site dilution and bond

disorder. In site dilution, the magnetic ion is replaced with a
nonmagnetic impurity, until a percolation threshold is reached
and the transition to a Bose glass occurs (Roscilde and Haas,
2005; Roscilde, 2006, 2007; Yu, Haas, and Roscilde, 2010).
Although this approach has been treated theoretically, exper-
imental examples have not yet been found. In one exper-
imental work, V was doped into the Mn site of Ba3Mn2O8.
However, the experimental results were more consistent with a
random dimer model (Samulon, Shapiro, and Fisher, 2011).
On the other hand, the bond disorder approach has had

more success in experiments. Here disorder is introduced by
doping on a nonmagnetic ion that is on the exchange path,
resulting in randomness in the magnetic exchange between
magnetic ions and/or single-ion crystal electric fields. This
disorder results in different critical magnetic fields for
inducing long-range order (Nohadani, Wessel, and Haas,
2005; Yu, Roscilde, and Haas, 2005; Carrasquilla, Becca,
and Fabrizio, 2011; Crépin et al., 2011; Yu et al., 2012). Thus
Bose glass behavior occurs in the intermediate regime of
magnetic field for which the spin gaps for some magnetic ions
have been suppressed to zero but not others. Bose glass
behavior due to bond doping has been studied in several
materials including IPA-CuCl3−xBrx (Saito et al., 2006;
Adachi et al., 2007; Manaka, Kolomiets, and Goto, 2008;
Manaka et al., 2009; Hong et al., 2010), Tl1−xKxCuCl3
(Shindo and Tanaka, 2004; Suzuki et al., 2009, 2010;
Yamada et al., 2011), and DTN (Yu et al., 2012; Wulf et al.,
2013).
Measurements that suggest the presence of a Bose glass

phase include: the overall phase diagram (in which Bose glass
behavior appears for magnetic fields adjacent to the dome-
shaped region of BEC), a finite magnetic susceptibility in the
absence of long-range order inside the Bose glass phase,
evidence for local clusters of magnetic order in ac suscep-
tibility, NMR measurements, ESR line shapes, and increases
in the spin relaxation rates in μSR measurements. A key
signature of the Bose glass phase is the critical exponent ϕ of
the critical field versus temperature line, when the Bose glass
is driven toward the BEC with magnetic fields by closing
all the local gaps. This exponent ϕ can be determined by
QMC simulations and compared to experiments. Simulations
and experiments in IPA-CuCl3, Tl1−xKxCuCl3, and DTN
show an exponent ϕ ¼ 1 for the critical field versus temper-
ature line at the 3D Bose glass to BEC phase transition. This
contrasts with the ϕ ¼ 3=2 exponent at the quantum para-
magnet to BEC in the absence of disorder (Table III). This
BG-to-BEC phase transition is also marked by broadening in
the phase transition in the magnetization, even though the
specific heat transition remains sharp and consistent with
long-range order. Analytical attempts to derive the exponent at
the BG-to-BEC phase transition do not agree with the value of
ϕ ¼ 1 determined from experiments and QMC simulations.
The classic prediction from analytical theory (Fisher et al.,
1989) is that the exponent of the critical field versus temper-
ature should be ϕ < 1=2. Thus, an analytical approach to the
BG-to-BEC transition that agrees with experiments still needs
to be developed.
One experimental challenge for studying Bose glass behav-

ior is that chemical doping can introduce other unwanted
effects like local crystalline distortions that break uniaxial
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symmetry. DTN provides an unusually clean approach to
studying chemical doping because one of the Cl sites is
oversized, and thus can accommodate a larger Br dopant
without significantly changing the lattice parameters. This
prevents unwanted effects like clustering of dopants or
buckling of bonds that might introduce uniaxial symmetry
breaking (Yu et al., 2012). The compound Sul-Cu2Cl4 is
another BEC-related material in which Br doping is relatively
clean, producing only a 0.15% change in the c-axis lattice
parameter with 5% doping (Wulf et al., 2011). However, Bose
glass behavior does not ensue in Sul-Cu2Cl4 due to frustration.
In the undoped compound, the frustration along the four-leg
spin tube creates an incommensurate spiral magnetic order.
With Br doping, phase slips are introduced into the incom-
mensurate magnetic spirals such that adjacent spin tubes are
no longer in phase with each other, resulting in the intertube
interactions averaging to zero. Thus three-dimensional order is
suppressed with only 1% doping, which is the lowest doping
level studied. We believe, however, that the resulting one-
dimensional behavior is interesting in and of itself. One-
dimensional disordered systems could be the easiest starting
point for creating contact between analytical approaches and
experiment because of the powerful analytical tools that exist
for treating the quasi-1D limit. Thus experimental doping
studies in spin Luttinger liquid systems are important, for
example, in Sul-Cu2Cl4 and ðHPIPÞ2-CuBr4.

B. Exotic states induced by frustration

As discussed in previous sections, frustration can change
the nature of the magnetic-field-induced QCP and the mag-
netic states that appear above Hc1. The elusive spin-liquid
state, in which frustration prevents the traditional symmetry
breaking present in Landau phase transitions, is the para-
digmatic example of an exotic state of matter. There are also
rather unusual broken symmetry states that could be stabilized
in frustrated quantum magnets.
Wen (2002) identified three subcategories of gapless spin

liquids: those where low-level excitations have fermionic
statistics like a Fermi liquid; “algebraic spin liquids,” where
the excitations are neither bosonic nor fermionic; and those
with bosonic statistics. The last type, known as Bose metals,
are predicted to have a 1D “Bose surface” analogous to Fermi
surfaces, except they are not constrained by Fermi statistics.
Bose metals have been extensively studied in the context of

high-Tc superconductivity (Phillips and Dalidovich, 2003),
and are proposed to explain a metallic phase that is observed
between the superconducting and the insulating phases in 2D
thin films. In quantum magnets, many theoretical microscopic
models have been proposed for realizing the Bose metal,
including different kinds of spin ladders (Motrunich and
Fisher, 2007; Sheng et al., 2008; Sheng, Motrunich, and
Fisher, 2009; Mishmash et al., 2011), 2D kagome lattices
(Balents, Fisher, and Girvin, 2002; Dang, Inglis, and Melko,
2011), square lattices (Schaffer, Burkov, and Melko, 2009;
Tay and Motrunich, 2011), and a 2D honeycomb lattice-
(Block et al., 2011; Varney et al., 2011). Here the Bose metal
is of course not metallic in the sense of conducting electricity,
but in the sense of conducting heat at T ¼ 0. Most of these
Bose metal models for quantum magnets rely on ring

exchange, which is a kinetic term in the Hamiltonian that
favors rotating the configuration of spins around a ring, e.g.,
jσ1; σ2; σ3; σ4i → jσ4; σ1; σ2; σ3i. A theory of a kagome lattice
with ring exchange and up to third next-nearest-neighbor
interactions (Dang, Inglis, and Melko, 2011) predicts a novel
QCP at the transition between a Bose metal and long-range
XY antiferromagnetic order. A Bose metal arising from a two-
leg spin ladder on a triangular lattice has been proposed
(among many other models) (Sheng, Motrunich, and Fisher,
2009) to explain the spin liquid phase of κ-ðEtÞ2Cu2ðCNÞ3 and
EtMe3Sb½PdðdmitÞ2�2. These are organic materials with tun-
able Mott gaps, where spin liquid behavior is observed in
close proximity to a metal-to-insulator transition where the
Mott gap is suppressed to zero (Kanoda and Kato, 2011).
One guiding principle for finding exotic states like spin

liquids or complex magnetic orderings is to look for highly
degenerate single-particle excitation minima in these quantum
magnets. We have seen in the previous section that single-
boson dispersions with a few global minima can lead to
ordered multi-Q magnetic structures right above the critical
field Hc1. On the other hand, a spin liquid could result if the
single-boson dispersion has continuous manifold of global
minima. However, often quantum or thermal fluctuations will
remove the continuous degeneracy and select a BEC state at
one or more high-symmetry wave vectors that minimize the
single-boson dispersion. This selection mechanism leads to
other types of exotic behavior. For instance, we have seen in
Sec. II.C.2 that a line of minima at ðπ; π; kÞ with k taking
any arbitrary value leads to dimensional reduction at a
field-induced QCP, which was applied to the compound
BaCuSi2O6 in the scenario of antiferromagnetic interlayer
interactions. We have also seen that an order-from-disorder
mechanism selects the BEC at ðπ; π; 0Þ right above the critical
field Hc1 (Batista et al., 2007; Schmalian and Batista, 2008).
Thus highly frustrated spin Hamiltonians lead to a range of
exotic behavior in the quantum magnets covered in this
review, and spin liquids could be realized in materials with
sufficiently degenerate dispersion relations.

C. Low dimensionality

Besides frustration, another way to suppress long-range
order in bosonic systems is to reduce the dimensionality. The
Luttinger liquid is the most ubiquitous gapless phase of one-
dimensional systems (Sachdev, 1994; Giamarchi and Tsvelik,
1999; Ding, Yao, and Fu, 2010; Cazalilla et al., 2011; Crépin
et al., 2011; Ninios et al., 2012). It can be reached in quantum
magnets, for example, by closing the Haldane gap in a 1D
Haldane chain with applied magnetic fields, or the spin gap in
a 1D spin ladder. The resulting spectrum is gapless as in a
d ¼ 3 BEC, but has algebraically decaying spin correlations
instead of long-range order. It also shows fractional S ¼ 1=2
spin excitations called “spinons.” Two examples of spin
Luttinger liquid behavior in quantum magnets are
ðHPIPÞ2-CuBr4 (Klanjšek et al., 2008; Rüegg et al., 2008;
Thielemann, Rüegg, Kiefer et al., 2009) and ðC7H10NÞ2CuBr4
(Hong et al., 2010; Schmidiger et al., 2011, 2012; Ninios
et al., 2012). These are quasi-1D spin ladder systems in which
3D ordering occurs at temperatures of 100–150 mK or
below. Spin-ladder systems are a good field in which to
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search for spin Luttinger liquids because the magnetic
interactions between ladders tend to be weak due to frus-
tration. ðHPIPÞ2-CuBr4 is in the strong-rung limit (Giamarchi
and Tsvelik, 1999) with Jleg=Jrung ≈ 0.25 whereas in
ðC7H10NÞ2CuBr4 (DIMPY) the leg interactions dominate
with Jleg=Jrung ¼ 2.2.
ðHPIPÞ2-CuBr4 exhibits magnetic ordering below

∼100 mK in applied magnetic fields and the spin-
Luttinger-liquid phase can be observed between 100 mK
and 1.5 K (see Fig. 43). The phase diagram is in qualitative
agreement with the spin-Luttinger-liquid picture, and the
characteristic linear-in-T specific heat is observed at low
temperatures. Both the temperature and field dependence of
the specific heat are in very good agreement with numerical
calculations with no free parameters.
Similar results are found in DIMPY. INS results in for

DIMPY are in excellent agreement with theory and no long-
range order has been observed in the specific heat down to
150 mK (Hong et al., 2010) and the magnetization down to
45 mK (Ninios et al., 2012). We mention that IPA-CuCl3
discussed previously is also a quasi-1D spin ladder compound
with ferromagnetic rungs, but it has sufficient interladder
interactions to create 3D long-range order at 10 K, which is
too high to allow for the observation of spin-Luttinger-liquid
behavior for T > TN.

D. Other exotic states

Finally, there are other exotic broken symmetry states that
can be induced by magnetic fields such as spin supersolids
(Ng and Lee, 2006; Laflorencie and Mila, 2007; Sengupta and
Batista, 2007a; 2007b; Picon et al., 2008; Peters, McCulloch,
and Selke, 2012), spin nematic ordering (Wierschem et al.,
2012), and complex crystal or Ising-like orderings (Smith and
Keszler, 1991; Kageyama, Onizuka et al., 1999; Kageyama,
Yoshimura, 1999; Misguich, Jolicoeur, and Girvin, 2001;

Kodama et al., 2002; Shastry and Kumar, 2002; Miyahara and
Ueda, 2003; Sebastian et al., 2008; Jaime et al., 2012).
Each of these states has its bosonic counterpart. For

instance, the field-induced spin-nematic ordering corresponds
to a BEC of pairs of bosons. This phase appears right below
the saturation field of S ¼ 1Heisenberg antiferromagnets with
strong single-ion easy-axis anisotropy. Since a BEC of single
bosons is more stable for lower values of the anisotropy, this
kind of magnet allows for studies of the quantum phase
transition between BECs of single bosons and pairs
(Wierschem et al., 2012). The atomic physics counterpart
of this phenomenon is the transition between BECs of atoms
and diatomic molecules that may occur whenever the inter-
atomic interaction is attractive. Moreover, the same S ¼ 1
model on frustrated lattices, such as triangular or face centered
cubic, contains a phase in which crystal or Ising-like ordering
coexists with a BEC of pairs or spin-nematic ordering for large
enough anisotropy (Boninsegni and Prokof’ev, 2005;
Heidarian and Damle, 2005; Wessel and Troyer, 2005;
Suzuki and Kawashima, 2007) (see discussion at the end
of Sec. IV). Magnets that reproduce bosonic gases with
attractive interactions can also be used for observing
Efimov states (Efimov, 1970; Nishida, Kato, and Batista,
2013). Spin-supersolid states are also predicted to appear for
bipartite lattices of S ¼ 1 dimers (Sengupta and
Batista, 2007a).

E. Conclusions

Quantum magnets that exhibit BEC-like behavior remain
an active area of research. BEC phase transitions have now
been observed in at least a dozen quantum magnets, and
undoubtedly there are many more waiting to be discovered.
These compounds provide realizations of gases of bosons in
homogeneous (translationally invariant) systems. This is an
important advantage relative to trapped atomic gases for the
study of quantum phase transitions, since trapped atomic
gases are subject to a trap that imposes a spatially varying
potential on small spatial scales. Another advantage to
quantum magnets is that they have a well-defined temperature
and a macroscopic number of bosons. Thus the thermody-
namic properties can be studied. A significant feature of these
quantum magnets is that the particle number can be cleanly
tuned with applied magnetic fields, providing a powerful
system in which to study the rich variety of phases that emerge
in different limits of boson densities. Most work has focused
on S ¼ 1=2 dimer systems, motivated by the initial report of
BEC in TlCuCl3 (Rüegg et al., 2004). However, BEC-related
phenomena have also been observed in systems with higher
spins and dimers of higher spins, such as DTN, Ba3Mn2O8,
F2PNNNO, and AgVOAsO4. Haldane-like systems, like
IPA-CuCl3, have also been used to study the magnetic-
field-induced BEC quantum critical point. Some other inter-
esting examples of BEC in quantum magnets, such as easy-
plane ferromagnets (Syromyatnikov, 2007), still remain to be
explored. Finally, there are many other bosonic phases and
phase transitions for which quantum magnets can give
important insight. We believe that the observation of BEC-
related phenomena in quantum magnets is only the beginning

FIG. 43 (color). Phase diagram of ðHPIPÞ2-CuBr4 showing
regions of spin-Luttinger-liquid behavior and 3D BEC ordering
at the top. The magnetocaloric effect and the magnetization derived
from the magnetocaloric effect are shown in the contour plot. The
line at the bottom of the plot the TN points is a theoretical
prediction. From Thielemann, Rüegg, Kiefer et al., 2009.
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of a long journey that will reveal many interesting states and
phase transitions of interacting gases of bosons.
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