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Inhomogeneous superconductors and inhomogeneous superfluids appear in a variety of contexts
including quark matter at extreme densities, fermionic systems of cold atoms, type-II cuprates, and
organic superconductors. In the present review the focus is on properties of quark matter at high
baryonic density, which may exist in the interior of compact stars. The conditions realized in these
stellar objects tend to disfavor standard symmetric BCS pairing and may favor an inhomogeneous
color superconducting phase. The properties of inhomogeneous color superconductors are discussed
in detail and in particular of crystalline color superconductors. The possible astrophysical signatures
associated with the presence of crystalline color superconducting phases within the core of compact
stars are also reviewed.
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I. INTRODUCTION

Ideas about color superconducting (CSC) matter date back
to more than 30 years ago (Collins and Perry, 1975; Barrois,
1977; Frautschi, 1978; Bailin and Love, 1984), but this
phenomenon has only recently received a great deal of
consideration [for recent reviews, see Hsu (2000),
Rajagopal and Wilczek (2000), Alford (2001), Hong
(2001), Nardulli (2002), Schafer (2003b), Rischke (2004),
and Alford et al. (2008)]. Color superconductivity is the quark
matter analog of the standard electromagnetic superconduc-
tivity and is believed to be the ground state of hadronic matter
at sufficiently large baryonic densities. At very high density
the naive expectation, due to asymptotic freedom, is that
quarks form a Fermi sphere of almost free fermions. However,
Bardeen, Cooper, and Schrieffer (BCS) (Cooper, 1956;
Bardeen, Cooper, and Schrieffer, 1957a, 1957b) have shown
that the Fermi surfaces of free fermions are unstable in
presence of an attractive, arbitrary small, interaction between
fermions. In quantum chromodynamics (QCD) the attractive
interaction between quarks can be due to instanton exchange
(Schafer and Shuryak, 1998), at intermediate densities, or to
gluon exchange in the 3̄ color channel, at higher densities.

Therefore, one expects that at high densities quarks form a
coherent state of Cooper pairs.
It should be noted that the older papers (Collins and Perry,

1975; Barrois, 1977; Frautschi, 1978; Bailin and Love, 1984)
were based on the existence of the attractive 3̄ color channel
and on analogies with ordinary superconductors. The main
result of these analyses was that quarks form Cooper pairs
with a gap of order a few MeV. In more recent times two
papers (Rapp et al., 1998; Alford, Rajagopal, and Wilczek,
1998) have brought this result to question. They considered
diquark condensation arising from instanton-mediated inter-
actions and although their approximations are not under
rigorous quantitative control, the result was that gaps can
be as large as 100 MeV.
Color superconductivity offers a clue to the behavior of

strong interactions at very high baryonic densities, an issue of
paramount relevance for the understanding of the physics
of compact stars and of heavy ion collisions. In the asymptotic
regime it is possible to understand the structure of the quark
condensate from basic considerations. Consider the matrix
element

h0jψα
isψ

β
jtj0i; (1)

where ψα
is, ψ

β
jt represent the quark fields, and α; β ¼ 1; 2; 3,

s; t ¼ 1; 2, i; j ¼ 1;…; Nf are color, spin, and flavor indices,
respectively. For a sufficiently large quark chemical potential
μ, assuming the orbital angular momentum state be in a s
wave, the color, spin, and flavor structure can be completely
fixed by the following arguments:

• Antisymmetry in color indices ðα; βÞ in order to have
attraction.

• Antisymmetry in spin indices ðs; tÞ in order to have a
spin zero condensate.

• Given the structure in color and spin, Fermi statistics
requires antisymmetry in flavor indices.

The isotropic structure of the condensate with vanishing total
angular momentum is favored with respect to higher spin or
higher orbital angular momentum condensates because a
larger portion of the phase space around the Fermi surface
is available for pairing. Since the quark spin and momenta in
the pair are opposite, it follows that the left- (right-) handed
quarks can pair only with left- (right-) handed quarks.
Considering three-flavor quark matter at large baryonic
density, the so-called color-flavor locked (CFL) phase
(Alford, Rajagopal, and Wilczek, 1999) turns out to be
thermodynamically favored, with condensate

h0jψα
iLψ

β
jLj0i ¼ −h0jψα

iRψ
β
jRj0i ∝ ΔCFL

X3
I¼1

εαβIϵijI ; (2)

where ΔCFL is the pairing gap and εαβγ and ϵijk are the
completely antisymmetric Levi-Civita symbols in color and
flavor space, respectively. We have suppressed spinorial
indices and neglected pairing in the color sextet channel.
Pairing in the color sextet channel is automatically induced by
the quark color structure (Alford, Berges, and Rajagopal,
1999; Alford, Rajagopal, and Wilczek, 1999), but the con-
densate in this channel is much smaller than in the color
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antitriplet channel (Shovkovy and Wijewardhana, 1999;
Schafer, 2000a) and in most cases it can be neglected
(Rajagopal and Wilczek, 2000).
The reason behind the name “color-flavor locked” is that

only simultaneous transformations in color and in flavor
spaces leave the condensate invariant. The corresponding
symmetry breaking pattern is, indeed, the following:

SUð3Þc ⊗ SUð3ÞL ⊗ SUð3ÞR ⊗ Uð1ÞB
→ SUð3ÞcþLþR ⊗ Z2; (3)

where SUð3ÞcþLþR is the diagonal global subgroup of the
three SUð3Þ groups and the Z2 group means that the quark
fields can still be multiplied by −1. According to the
symmetry breaking pattern, the 17 generators of chiral
symmetry, color symmetry, and Uð1ÞB symmetry are sponta-
neously broken. The 8 broken generators of the color gauge
group correspond to the 8 longitudinal degrees of freedom of
the gluons and according to the Higgs-Anderson mechanism
these gauge bosons acquire a Meissner mass. The diquark
condensation induces a Majorana-like mass term in the
fermionic sector which is not diagonal in color and flavor
indices. Thus, the fermionic excitations consist of gapped
modes with mass proportional to ΔCFL. (This is a feature of all
homogeneous superconducting phases: the fermionic excita-
tions which are charged with respect to the condensate acquire
a Majorana-like mass term proportional to the pairing gap.)
The low-energy spectrum consists of 9 Nambu-Goldstone
bosons (NGB) organized in an octet, associated with the
breaking of the flavor group, and in a singlet, associated with
the breaking of the baryonic number. For nonvanishing quark
masses the octet of NGBs becomes massive, but the singlet
NGB is protected by the Uð1ÞB symmetry; it remains massless
and determines the superfluid properties of the CFL phase.
The effective theory describing the NGBs for the CFL phase
has been studied in Casalbuoni and Gatto (1999), Son and
Stephanov (2000a), and Son (2002). The CFL condensate also
breaks the axial Uð1ÞA symmetry; given that at very high
densities the explicit axial symmetry breaking is weak, one
has to include the corresponding pseudo-NGB in the low-
energy spectrum.
After the first attempts with instanton-induced interaction

many tried various approaches for calculating the magnitude
of the gap parameters in the CSC phases [for references see
Rajagopal and Wilczek (2000)]. Dealing with QCD, the ideal
situation would be if this kind of calculation could fall within
the scope of lattice gauge theories. Unfortunately, lattice
methods rely on Monte Carlo sampling techniques that are
unfeasible at finite density because the fermion determinant
becomes complex. Although various approximation schemes
have been developed, for instance, Taylor expansion in the
chemical potential (Allton et al., 2003), reweighing tech-
niques (Fodor and Katz, 2002), analytical continuation of
calculation employing imaginary baryonic chemical potential
(Roberge and Weiss, 1986; Alford, Kapustin, and Wilczek,
1999), or heavy Wilson quarks (Fromm et al., 2012), no
definite results have been obtained so far for large values of
the baryonic chemical potential and physical quark masses.

In the absence of suitable lattice methods, quantitative
analyses of color superconductivity have followed two distinct
paths. The first path is semiphenomenological, and based on
simplified models. The main feature of these models is that
they should incorporate the most important physical effects
while being at the same time tractable within present math-
ematical techniques. All these models have free parameters
that are adjusted to give rise to a reasonable vacuum physics.
Examples of these kinds of techniques include Nambu-

Jona–Lasinio (NJL) models in which the interaction between
quarks is replaced by a four-fermion interaction originating
from instanton exchange (Alford, Rajagopal, and Wilczek,
1998; Rapp et al., 1998; Berges and Rajagopal, 1999) or
where the four-fermion interaction is modeled by that induced
by single-gluon exchange (Alford, Rajagopal, and Wilczek,
1998; Alford, Berges, and Rajagopal, 1999). Random matrix
models have been studied by Vanderheyden and Jackson
(2000) and instanton liquid models have been investigated by
Carter and Diakonov (1999), Rapp et al. (2000), and Rapp,
Shuryak, and Zahed (2001). Although none of these methods
has a firm theoretical basis, all of them yield results in fairly
qualitative agreement. This is probably due to the fact that
what really matters is the existence of an attractive interaction
between quarks and that the parameters of the various models
are chosen in such a way to reproduce the chirally broken
ground state. The gap parameter evaluated within these
models varies between tens of MeV up to 100 MeV. The
critical temperature is typically the same found in normal
superconductivity, that is about one-half of the gap.
The second path starts from first principles and relies on

the property of asymptotic freedom of QCD. Various results
have been obtained starting from the QCD action, employing
renormalization group techniques, or through the Schwinger-
Dyson equation (Evans, Hsu, and Schwetz, 1999; Schafer and
Wilczek, 1999b, 1999c; Son, 1999; Brown, Liu, and Ren,
2000; Evans et al., 2000; Hong et al., 2000; Pisarski and
Rischke, 2000a). In particular, Son (1999), using the renorm-
alization group near the Fermi surface obtained the asymptotic
form of the gap and corrections have been evaluated by
Brown, Liu, and Ren (2000).
The result of the above-mentioned methods is that the CFL

phase is the thermodynamically favored state of matter at
asymptotic densities. Qualitatively one can understand this
result considering that in the CFL phase quarks of all three
flavors participate coherently in pairing. Since superconduc-
tivity is a cooperative phenomenon, the larger the number of
fermions that participate in pairing, more energetically
favored is the superconducting phase.
In the description of color superconductivity one has to deal

with various scales, the chemical potential μ, the gap param-
eter, which we generically indicate with Δ, the constituent
strange quark mass Ms, and the screening or damping scale
gsμ, where gs is the QCD coupling. One typically has that
μ ≫ gsμ ≫ Δ, whereas the strange quark mass can be
considered as a free parameter, although in some models it
can be computed self-consistently.
Quantum chromodynamics at high density is conveniently

studied through a hierarchy of effective field theories, sche-
matically depicted in Fig. 1. The starting point is the
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fundamental QCD Lagrangian, then one can obtain the low-
energy effective Lagrangian through different methods. One
way is to integrate out high-energy degrees of freedom as
shown by Polchinski (1992). The physics is particularly
simple for energies close to the Fermi energy where all
interactions are irrelevant except for a four-fermion interaction
coupling pair of fermions with opposite momenta. This is
nothing but the interaction giving rise to BCS condensation,
which can be described using the high-density effective theory
(HDET) (Beane, Bedaque, and Savage, 2000; Hong, 2000a,
2000b; Casalbuoni, Gatto, and Nardulli, 2001; Nardulli, 2002;
Schafer, 2003a). The HDET is based on the fact that at
vanishing temperature and large chemical potentials antipar-
ticle fields decouple and the only relevant fermionic degrees of
freedom are quasiparticles and quasiholes close to the Fermi
surface. In the HDET Lagrangian the great advantage is that
the effective fermionic fields have no spin structure and
therefore the theory is particularly simple to handle.
This description is supposed to hold up to a cutoff PF þ δ,

with δ smaller than the Fermi momentum PF, but bigger than
the gap parameter, i.e., Δ ≪ δ ≪ PF. Considering momenta
much smaller than Δ all gapped particles decouple and one is
left with the low-energy modes as NGBs, ungapped fermions
and holes, and massless gauge fields according to the
symmetry breaking scheme. In the case of CFL and other
CSC phases, such effective Lagrangians have been derived by
Casalbuoni and Gatto (1999), Casalbuoni, Duan, and Sannino
(2000), and Rischke, Son, and Stephanov (2001). The
parameters of the effective Lagrangian can be evaluated at
each step of the hierarchy by matching the Green’s functions
with the ones evaluated at the upper level. For the CFL phase
the effective Lagrangian of the superfluid mode associated
with the breaking of Uð1ÞB may also be determined by
symmetry arguments alone as done by Son (2002).
In the high-density limit one neglects the quark masses, and

the CFL is believed to be the favored phase. On the other
hand, considering a quark chemical potential of the same order
of magnitude of the strange quark mass tends to disfavor the
CFL pairing. The reason is that the typical effect of quark
masses is to produce a mismatch between Fermi surfaces.
Neglecting light quark masses and assuming, for simplicity,
that quarks have all the same chemical potentials, the Fermi
spheres have different radii

PF
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

s

q
; PF

u ¼ PF
d ¼ μ: (4)

Thus, increasing Ms for a fixed value of μ increases the
mismatch between the Fermi surface of strange quarks and the

Fermi surfaces of up and down quarks (which in this simplistic
case are equal).
The standard BCS mechanism assumes that the Fermi

momenta of the fermionic species that form Cooper pairs are
equal. When there is a mismatch it is not guaranteed that BCS
pairing takes place, because the condensation of fermions with
different Fermi momenta has a free energy cost. As first shown
for weakly interacting two-level systems (Chandrasekhar,
1962; Clogston, 1962), for mismatches below the
Chandrasekhar-Clogston (CC) limit there is still condensation
and in the case at hand it means that the CFL phase is favored.
However, for large values of the strange quark mass the
assumptions leading to prove that the favored phase is CFL
should be reconsidered. According to Eq. (4) if the strange
quark mass is about the quark chemical potential, then strange
quarks decouple, and the corresponding favored condensate
should consist of only up and down quarks. With only two
flavors of quarks, and due to the antisymmetry in color, the
condensate must necessarily choose a direction in color space
and one possible pairing pattern is

h0jψα
iLψ

β
jLj0i¼ −h0jψα

iRψ
β
jRj0i ∝ Δ2SCε

αβ3ϵij3;

α; β ∈ SUcð2Þ i; j ∈ SUð2ÞL: (5)

This phase of matter is known as two-flavor color super-
conductor (2SC) andΔ2SC is the corresponding gap parameter.
This phase is characterized by the presence of two ungapped
quarks qub, qdb and four gapped quasiparticles given by the
combinations qdr − qug and qur − qdg of the quark fields,
where the color indices of the fundamental representation 1, 2,
3 have been identified with r, g, b (red, green, and blue). In
case massive strange quarks are present the corresponding
phase is named 2SCþ s and eventually strange quarks may
by themselves form a spin-1 condensate (Pisarski and
Rischke, 2000b).
In the 2SC phase the symmetry breaking pattern is

completely different from the three-flavor case and it turns
out to be

SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB
→ SUð2Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1Þ ~B ⊗ Z2: (6)

The chiral group remains unbroken, meaning that there are no
NGBs. The original color symmetry group is broken to
SUð2Þc and since three color generators are unbroken, only
five gluons acquire a Meissner mass. Even though Uð1ÞB is
spontaneously broken there is an unbroken Uð1Þ ~B global
symmetry, with ~B given by a combination of B and of the
eighth color generator, playing the same role of the original
baryonic number symmetry. In particular, this means that
unlike CFL matter, 2SC matter is not superfluid. One can
construct an effective theory describing the emergence of the
unbroken subgroup SUð2Þc and the low-energy excitations,
much in the same way as one builds a chiral effective
Lagrangian with effective fields at zero density. This develop-
ment can be found in Casalbuoni, Duan, and Sannino (2000)
and Rischke, Son, and Stephanov (2001).

NGB

HDET

QCDL F
P

F
P

F
P + ∆

+ δ

∆

δ

L

L

FIG. 1. Schematic representation of the hierarchy of effective
Lagrangians characteristic of high-density QCD.
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The CFL phase and the 2SC phase have been the first
phases to be proposed and have been extensively studied.
These are homogeneous phases, meaning that the condensate
is not space dependent. The arising of inhomogeneous
condensates for imbalanced Fermi momenta in quark matter
has only lately attracted the interest of the high-energy
community. Actually, this is quite a general problem arising
not only in high-density QCD but also in condensed matter
systems and in ultracold atom systems. There are several
similarities between these systems; see Casalbuoni and
Nardulli (2004) for a review and discussion of two-flavor
QCD with imbalanced Fermi momenta. In the present review
we focus on high-density QCD giving a detailed and
self-contained presentation of the various properties of
two- and three-flavor quark matter with mismatched Fermi
spheres.
Studying the pairing mechanisms of quark matter in

systems with mismatched Fermi spheres is relevant when
considering realistic conditions, i.e., conditions that can be
realized in a compact stellar object (CSO). This is a real
possibility since the central densities for these stars is very
large, conceivably reaching 1015 g=cm3, whereas the temper-
ature is of the order of tens of keV, much less than the critical
temperature for color superconductivity. The various proc-
esses taking place in CSOs produce a more complicated
mismatch than the one presented in Eq. (4). The reason is that
matter inside a CSO should be electrically neutral, in β
equilibrium and in a color singlet state. If electrons are
present (as generally required by electrical neutrality), the
β-equilibrium condition forces the chemical potentials of
quarks with different electric charges to be different. As far
as color is concerned, it is possible to impose a simple
condition, that is color neutrality, because in Amore et al.
(2002) it has been shown (in the two-flavor case) that there is a
small free energy cost in projecting color singlet states out of
color neutral ones. Since the condensate is in general not
diagonal in color indices, the requirement of color neutrality
determines a mismatch between the chemical potentials of
quarks with different colors. Thus, the effect of the strange
quark mass, β equilibrium, and color and electric neutrality is
to produce a stress on the Fermi spheres of quarks with
different flavor and color, trying to pull them apart. If the
stress is sufficiently large the CFL phase cannot be realized,
but condensation can still take place in different channels,
depending on the parameters of the system. Besides the above-
mentioned standard 2SC and 2SCþ s phases, the two-flavor
superconducting phase 2SCus, with pairing between up and
strange quarks, can be favored; see, e.g., Iida et al. (2004) and
Ruester et al. (2006a) for different pairing patterns. For very
large mismatches among the three flavors of quarks only the
interspecies single-flavor spin-1 pairing may take place
(Bailin and Love, 1979; Alford, Rajagopal, and Wilczek,
1998; Schafer, 2000b; Schmitt, Wang, and Rischke, 2002;
Alford et al., 2003; Buballa, Hosek, and Oertel, 2003;
Schmitt, 2005); see, e.g., Alford et al. (2008) for an extended
discussion on these topics.
In the 2SC phase, β-equilibrium and neutrality conditions

tend to induce a chemical potential mismatch δμ between
up and down quarks. A remarkable property is that for

jδμj ¼ Δ2SC gapless fermionic modes appear and therefore
the corresponding phase has been named g2SC (Huang and
Shovkovy, 2003; Shovkovy and Huang, 2003), with “g”
standing for gapless. The g2SC phase has the same con-
densate of the 2SC phase reported in Eq. (5), and con-
sequently the ground states of the 2SC and g2SC phases
share the same symmetry. However, these two phases have a
different low-energy spectrum, due to the fact that in the
g2SC phase only two fermionic modes are gapped. The
g2SC phase is energetically favored with respect to the 2SC
phase and unpaired quark matter in a certain range of values
of the four-fermion interaction strength when one considers β
equilibrium, color, and electrical neutrality (Shovkovy and
Huang, 2003).
Pinning down the correct ground state of neutral quark

matter in β equilibrium is not simple because another
difficulty emerges. This problem, already present in simple
two-level systems [see, e.g., Gubankova, Mannarelli, and
Sharma (2010)] has a rather general character (Alford and
Wang, 2005), and is due to an instability connected to the
Meissner mass. For sufficiently large chemical potential
differences, the system becomesmagnetically unstable, mean-
ing that the Meissner mass becomes imaginary. In the 2SC
phase the color group is broken to SUð2Þc and five out of eight
gluons acquire a mass. Four of these masses turn out to be
imaginary in the 2SC phase for Δ2SC=

ffiffiffi
2

p
< δμ < Δ2SC, thus

in this range of δμ the 2SC phase is chromomagnetically
unstable (Huang and Shovkovy, 2004a, 2004b). Increasing
the chemical potential difference the instability gets
worse, because at the phase transition from the 2SC phase
to the g2SC phase all five gluon masses become pure
imaginary.
An analogous phenomenon arises in three-flavor quark

matter in the gapless CFL (gCFL) phase (Alford, Kouvaris,
and Rajagopal, 2004, 2005; Alford, Jotwani et al., 2005;
Fukushima, Kouvaris, and Rajagopal, 2005). The gapless
color-flavor locked phase has been proposed as the favored
ground state for sufficiently large mismatch between up, down
and strange quarks and occurs in color and electrically neutral
quark matter in β equilibrium for M2

s=2μ≳ ΔCFL. However,
this phase turns out to be chromomagnetically unstable
(Casalbuoni, Gatto, Mannarelli et al., 2005; Fukushima,
2005), because when gapless fermionic modes appear the
Meissner masses of some gluons become imaginary.
Quite generally, the imaginary value of the Meissner mass

can be understood as a tendency of the system toward an
inhomogeneous phase (Hong, 2005; Iida and Fukushima,
2006; Gubankova, Mannarelli, and Sharma, 2010). This can
be easily seen in a toy model system for the case of a Uð1Þ
symmetry, in which one can show that the coefficient of the
gradient term of the low-energy fluctuations around
the ground state of the effective action is proportional to
the Meissner mass squared (Gubankova, Mannarelli, and
Sharma, 2010).
There is a variety of solutions that have been proposed for

the chromomagnetic instability and that can be realized
depending on the particular conditions considered. As dis-
cussed, the chromomagnetic instability is a serious problem
not only for the gapless phases (g2SC and gCFL) but also for
the 2SC phase. In the latter case, the vector condensates of
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gluons with a value of about 10 MeV can cure the instability
(Fukushima, 2006; Gorbar, Hashimoto, Miransky, and
Shovkovy, 2006; Gorbar, Hashimoto, and Miransky, 2006a;
Kiriyama, Rischke, and Shovkovy, 2006, 2007). The corre-
sponding phase has been named gluonic phase and is
characterized by the nonvanishing value of some gluon
condensates and the spontaneous breakdown of the color,
electromagnetic, and rotational symmetries down to the SOð2Þ
rotational symmetry. As discussed by Gorbar, Hashimoto,
Miransky, and Shovkovy (2006) and Gorbar, Hashimoto, and
Miransky (2007), the chromomagnetic instabilities of the
4–7th gluons and the 8th gluon might be related to two
different phenomena. The 4–7th instability seems to indicate
the Bose-Einstein condensation of a plasmon, which can be
taken to be hA6i, inducing a nonvanishing value of hA3i and
hA3

0i. On the other hand, the existence of gapless fermionic
modes in the g2SC phase may indicate the existence of a hA8i
condensate. The chromomagnetic instability of the gapped
2SC phase can also be removed by the formation of an
inhomogeneous condensate of charged gluons (Ferrer and de
la Incera, 2007). The finite temperature case has been
discussed by Kiriyama (2006) and He, Jin, and Zhuang
(2007), finding that, in the weak and intermediate coupling
regimes, the 2SC and g2SC phases are stabilized by temper-
atures of the order of tens of MeV.
For cases in which the chromomagnetic instability is related

to the presence of gapless modes, Hong (2005) studied the
possibility that a secondary gap opens at the Fermi surface.
The solution of the instability is due to a mechanism that
stabilizes the system preventing the appearance of gapless
modes. This solution represents one of the few cases in which
the instability may be cured by means of a different homo-
geneous condensate. However, the secondary gap turns out to
be extremely small and at temperatures typical of CSOs it is
not able to fix the chromomagnetic instability (Alford and
Wang, 2006).
For three-flavor quark matter two inhomogeneous super-

conducting phases have been proposed. If kaon condensation
takes place in the CFL phase (Bedaque and Schafer, 2002;
Kaplan and Reddy, 2002), the chromomagnetic instability
might drive the system toward an inhomogeneous state in
which a kaon condensate current is generated, balanced by a
counterpropagating current in the opposite direction carried
by gapless quark quasiparticles. This phase of matter, named
curCFL-K0, has been studied by Kryjevski (2008) and turns
out to be chromomagnetically stable.
The second possibility is the crystalline color supercon-

ducting (CCSC) phase (Alford, Bowers, and Rajagopal, 2001;
Bowers et al., 2001; Casalbuoni, Gatto, Mannarelli, and
Nardulli, 2001; Leibovich, Rajagopal, and Shuster, 2001;
Bowers and Rajagopal, 2002; Casalbuoni, Fabiano et al.,
2002; Casalbuoni, Gatto et al., 2002a; Kundu and Rajagopal,
2002; Casalbuoni et al., 2003; 2004; Casalbuoni, Gatto,
Ippolito et al., 2005; Mannarelli, Rajagopal, and Sharma,
2006), which is the QCD analog of a form of non-BCS pairing
first proposed by Larkin, Ovchinnikov, Fulde, and Ferrell
(LOFF) (Fulde and Ferrell, 1964; Larkin and Ovchinnikov,
1964). The condensate characteristic of this phase is
given by

h0jψα
iLψ

β
jLj0i ¼ −h0jψα

iRψ
β
jRj0i ∝

X3
I¼1

ΔIε
αβIϵijI

X
qmI ∈fqIg

e2iq
m
I ·x;

(7)

which is similar to the condensate reported in Eq. (2)
but now there are three gap parameters, each having a
periodic modulation in space. The modulation of the Ith
condensate is defined by the vectors qmI , where m is the
index which identifies the elements of the set fqIg. In
position space, this corresponds to condensates that vary asP

m expð2iqm · xÞ, meaning that the qm’s are the reciprocal
vectors which define the crystal structure of the
condensate.
The case of two-flavor CCSC, first proposed by Alford,

Bowers, and Rajagopal (2001), corresponds to the vanishing
of all but one gap parameter in Eq. (7) and represents a
candidate phase for curing the chromomagnetic instability in
the two-flavor case. Indeed, the chromomagnetic stability of a
simple two-flavor periodic structure with a gap parameter
modulated by a single plane wave with wave vector q
[hereafter we refer to this phase as Fulde-Ferrell (FF) structure
(Fulde and Ferrell, 1964)] has been considered by Giannakis,
Hou, and Ren (2005) and Giannakis and Ren (2005a, 2005b),
where the following has been shown:

• The presence of the chromomagnetic instability in g2SC
is exactly what one needs in order that the FF phase is
energetically favored (Giannakis and Ren, 2005a).

• The FF phase in the two-flavor case has no chromo-
magnetic instability (though it has gapless modes) at
least in the weak coupling limit (Giannakis, Hou, and
Ren, 2005; Giannakis and Ren, 2005b).

The stability of the FF phase in the strong coupling case has
been studied by Gorbar, Hashimoto, and Miransky (2006b), in
which it is shown that for large values of the gap parameter the
FF phase cannot cure the chromomagnetic instability. Nickel
and Buballa (2009) questioned whether among the possible
one-dimensional periodic modulations the LOFF solution is
the favored one. According to Nickel and Buballa (2009), for
two-flavor quark matter a solitonic ground state is favored
with respect to FF in the range of values 0.7Δ≲ δμ≲ 0.78Δ.
However, at least in weak coupling, the FF phase is not the
crystalline structure one should compare to. The FF phase is
slightly energetically favored with respect to unpaired quark
matter and 2SC quark matter for Δ=

ffiffiffi
2

p
< δμ < 0.754Δ, but

more complicated crystalline structures have larger conden-
sation energies in a larger range of values of δμ (Bowers and
Rajagopal, 2002).
The stability analysis of the three-flavor CCSC phase has

only been performed for a simple structure made of two plane
waves by a Ginzburg-Landau (GL) expansion (Ciminale et al.,
2006). This particular three-flavor CCSC phase turns out to be
chromomagnetically stable, but the stability of more compli-
cated crystalline structures has not been studied, although by
general arguments they are expected to be stable, at least in the
weak coupling limit.
Whether or not the crystalline color superconducting phase

is the correct ground state for quark systems with mismatched
Fermi surfaces has not been proven yet. In any case it
represents an appealing candidate because in this phase quark
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pairing has no energy cost proportional to δμ. The reason is
that pairing occurs between quarks living on their own Fermi
surfaces. However, this kind of pairing can take place only if
Cooper pairs have nonzero total momentum 2q and therefore
it has an energy cost corresponding to the kinetic energy
needed for the creation of quark currents. Moreover, pairing
can take place only in restricted phase space regions, meaning
that the condensation energy is smaller than in the homo-
geneous phase. The vector q has a magnitude proportional to
the chemical potential splitting between Fermi surfaces,
whereas its direction is spontaneously chosen by the system.
In case one considers structures composed by a set of vectors
fqIg, one has to find the arrangement that minimizes the free
energy of the system (Bowers and Rajagopal, 2002; Rajagopal
and Sharma, 2006). This is a rather complicated task that is
achieved by analyzing some ansatz structures and comparing
the corresponding free energy.
The presence of CCSC matter within CSOs may lead to a

number of observable signatures associated with
(1) gravitational wave emission,
(2) anomalies in the rotation frequency (known as

“glitches”),
(3) cooling processes,
(4) mass-radius relation.
Point (1) relies on the observation that pulsars can be

continuous sources of gravitational waves if their mass
distribution is not axis symmetric. The large shear modulus
characteristic of the CCSC phase allows the presence of big
deformations of the star, usually called “mountains,” making
CSOs with a CCSC core strong sources of gravitational
waves. A different source of gravitational waves are the
unstable oscillations of CSOs with a crystalline crust.
Regarding point (2), the large rigidity of the CCSC phase

makes the crystalline phases of quark matter unique among all
forms of matter proposed as candidates for explaining stellar
glitches.
Regarding point (3), one of the interesting properties of the

CCSC phase is that some quarks at their respective Fermi
surfaces are unpaired. For this reason their neutrino emissivity
and heat capacity are only quantitatively smaller than those of
unpaired quark matter, not parametrically suppressed. This
suggests that neutron stars with crystalline quark matter cores
will cool down by the direct Urca reactions, i.e., more rapidly
than in standard cooling scenarios.
Point (4) is related to the fact that recent observations of

very massive compact stars seem to challenge the possibility
that CSOs have a CCSC core.
Summarizing, the state of matter at asymptotic densities is

well defined and should correspond to the CFL condensate. At
intermediate and more realistic densities it is not clear which is
the ground state of matter. Our knowledge of the phases of
matter can be represented in the so-called QCD phase
diagram, schematically depicted in Fig. 2. At low density
and low temperature quarks are confined in hadrons but
increasing the energy scale quarks and gluons degrees of
freedom are liberated. At high temperature this leads to the
formation of a plasma of quarks and gluons, while at large
densities matter should be in a color superconducting phase. If
the conditions realized in CSOs favor the presence of

inhomogeneous CSC phase, there might be distinctive astro-
physical signatures of its presence.
Apart from the phases we discussed other possibilities may

be realized in the density regime relevant for CSOs. Here we
mention only that one more candidate phase has recently been
proposed, the so-called quarkyonic phase (McLerran and
Pisarski, 2007), which is characterized by a nonvanishing
baryon number density and found to be a candidate phase at
least for a large number of colors. The possibility that the
quarkyonic phase also shows a crystalline structure, in the so-
called quarkyonic chiral spiral state, has been discussed by
Kojo, Pisarski, and Tsvelik (2010). Another possibility is that
the constituent value of the strange quark mass is so small that
the CFL phase is the dominant one down to the phase
transition to the hadronic phase. In this case, an interesting
possibility is that there is no phase transition between the
CFL phase and the hadronic phase (hypernuclear matter), in
the so-called quark-hadron continuity scenario (Schafer and
Wilczek, 1999a).
This review is organized as follows. Section II is devoted to

the study of the two-flavor inhomogeneous phases. Here we
go from mismatched Fermi spheres, discussed in Sec. II.A, to
the analysis of the gapless 2SC phases of QCD in Sec. II.B,
and a detailed study of the crystalline phase in Sec. II.C. An
approximate method based on the Ginzburg-Landau expan-
sion is introduced in Sec. II.C.2. A different approximation
based on an expansion around the gapless modes is discussed
in Sec II.D and applied to the analysis of the dispersion laws
of fermionic quasiparticles and of the corresponding specific
heats. A third approximation method based on a smearing
procedure is discussed in Sec. II.E. Low-energy phonon
excitations and their contributions to the specific heat are
discussed in Sec. II.F. The stability analysis of the CCSC
phase is considered in Sec. II.G. A discussion of the solitonic
ground state is presented in Sec. II.H. In Sec. II.I we briefly

Compact Stellar Objects µ

T

B

?
Confined phase 

cT

CFL

Quark−gluon plasma

FIG. 2 (color online). Schematic phase diagram of strongly
interacting matter as a function of the baryonic chemical potential
and temperature. At low temperatures and low densities matter
consists of confined hadrons. At high temperatures quark and
gluons degrees of freedom are liberated forming the quark-gluon
plasma. At low temperatures and very high densities, the CFL
phase is favored. At densities and temperatures relevant for
compact stellar objects, the CFL phase may be superseded by
some different color superconducting phase or by some other
phase of matter. The thick segment represents the possible range
of baryonic chemical potential reachable in compact stars.
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report on relevant results obtained in condensed matter and
ultracold fermionic systems. In Sec. III we turn to the three-
flavor case. In particular, in Sec. III.A we discuss the gapless
CFL phase and its instability. In Sec. III.B various aspects of
the three-flavor CCSC phase made of two plane waves are
discussed. Section III.C is dedicated to the Ginzburg-Landau
analysis of three-flavor crystalline structures. In Sec. III.D the
Nambu-Goldstone and the phonon modes are studied and we
report an analysis of the shear modulus of the two energeti-
cally favored crystalline phases. In Sec. IV we discuss whether
the presence of an inhomogeneous color superconducting
phase within the core of a compact star may lead to observable
effects. Gravitational wave emission is discussed in Sec. IV.A;
glitches are discussed in Sec. IV.B and the cooling of toy
model compact stars with a CCSC core is discussed in
Sec. IV.C; the mass-radius relation for some models of hybrid
CSO with a CCSC core is discussed in Sec. IV.D. In Sec. V we
draw our conclusions and outlook.

II. THE TWO-FLAVOR INHOMOGENEOUS PHASES

The inhomogeneous two-flavor crystalline color super-
conducting (CCSC) phase is an extension to QCD of the
phase proposed in condensed matter systems by Fulde and
Ferrell (1964) and Larkin and Ovchinnikov (1964) (LOFF).
Some aspects of this phase have been previously reviewed by
Casalbuoni and Nardulli (2004), in which the analogy
between high-density QCD and condensed matter systems
has been discussed as well. Therefore, we focus here on recent
results, and in particular we discuss one of the main properties
of this phase, namely, its chromomagnetic stability. This
important property is not shared with homogeneous gapless
color superconducting (CSC) phases (at least in weak cou-
pling), and therefore strongly motivates its study.

A. Mismatched Fermi spheres

Before discussing the case of two-flavor quark matter, we
show how gapless superconductivity may arise considering
the simpler case of a nonrelativistic two-level fermionic gas,
thus avoiding the formal complications due to flavor and color
degrees of freedom. For definiteness, we review the system
discussed by Gubankova, Mannarelli, and Sharma (2010)
consisting of two unbalanced populations of fermionic species
ψ1 and ψ2, with opposite spin, at vanishing temperature,
having the Hamiltonian density

H ¼
X
s¼1;2

ψ†
s

�
− ∇2

2m
− μs

�
ψs − gψ†

1ψ
†
2ψ2ψ1; (8)

where g > 0 is the four-fermion coupling constant. The
chemical potentials of the two species can be written as μ1 ¼
μþ δμ and μ2 ¼ μ − δμ, so that μ is the average of the two
chemical potentials and 2δμ their difference. The effect of the
attractive interaction between fermions is to induce the
difermion condensate

hψsðxÞψ tðxÞi ¼
ΔðxÞ
g

iðσ2Þst; (9)

which spontaneously breaks the global symmetry correspond-
ing to particle number conservation. As a result the fermionic
excitation spectrum consists of two Bogolyubov modes with
dispersion laws

Ea ¼ δμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

0

q
; Eb ¼ −δμþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

0

q
; (10)

with ξ ¼ −μþ p2=2m and Δ0 is the homogeneous mean field
solution. Without loss of generality we take δμ > 0, then from
Eq. (10) we infer that tuning the chemical potential difference
to values δμ ≥ Δ0 the mode b becomes gapless. This phase
corresponds to a superconductor with one gapped and one
gapless fermionic mode and is named gapless homogeneous
superfluid.
In the above discussion we did not take into account that

increasing δμ the difference between the free energy of the
superfluid phase Ωs and the normal phase Ωn decreases;
eventually the normal phase becomes energetically favored for
sufficiently large δμ. In weak coupling it is possible to show
that the two free energies become equal at δμ1 ¼ Δ0=

ffiffiffi
2

p
[corresponding to the so-called Chandrasekhar-Clogston limit
(Chandrasekhar, 1962; Clogston, 1962)], that is before the
fermionic excitation spectrum becomes gapless. At this
critical value of δμ a first-order transition to the normal phase
takes place and the superfluid phase becomes metastable. The
reason for this behavior can be qualitatively understood as
follows. Pairing results in an energy gain of the order of Δ0,
however, BCS pairing takes place between fermions with
equal and opposite momenta. When a mismatch between the
Fermi spheres is present it tends to disfavor the BCS pairing,
because for having equal momenta fermions must pay an
energy cost of the order of δμ. Therefore, when δμ > cΔ0,
where c is some number, pairing cannot take place. In the
weak coupling limit, one finds that c ¼ 1=

ffiffiffi
2

p
. This behavior

is depicted in Fig. 3.
Considering homogeneous phases, a metastable supercon-

ducting phase exists for δμ ≥ δμ1, but still the system cannot
develop fermionic massless modes, because at δμ ¼ Δ0

various instabilities appear (Wu and Yip, 2003; Gubankova,
Schmitt, and Wilczek, 2006; Mannarelli, Nardulli, and
Ruggieri, 2006; Pao et al., 2006; Sheehy and Radzihovsky,
2006; Gubankova, Mannarelli, and Sharma, 2010). To explain
what happens, consider the low-energy spectrum of the
system, which can be described considering the fluctuations
of ΔðxÞ around the mean field solution Δ0. The oscillations in
the magnitude of the condensate are described by the Higgs
mode λðxÞ, while the phase fluctuations are described by the
Nambu-Goldstone (or Andersson-Bogolyubov) mode ϕðxÞ.
Integrating out the fermionic degrees of freedom results in the
Lagrangian density (Gubankova, Mannarelli, and Sharma,
2010)

Lλ;ϕ ¼ Að∂tϕÞ2 − B
3
ð∇ϕÞ2 − Cλ2 þDð∂tλÞ2 − E

3
ð∇λÞ2: (11)

The stability of the system is guaranteed when all the
coefficients A, B, C,D, and E are positive. A andD turn out to
be always positive, then we define the following three stability
conditions:
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(1) The Higgs has a positive squared mass: C > 0.
(2) The space derivative of the Higgs must be

positive: E > 0.
(3) The space derivative of the NGB must be

positive: B > 0.
Condition (1) is not satisfied if we are expanding around a
maximum of the free energy, because the Higgs mass is
proportional to the curvature of the free energy at the
stationary point. The fact that condition (2) is not satisfied
signals that the system is unstable toward space fluctuations of
the absolute value of the condensate, while condition (3) is not
fulfilled when the system is unstable toward space fluctuations
of the phase of the condensate. Clearly conditions (2) and (3)
are related and tell us that when a large mismatch between the
Fermi sphere is present, the system prefers to move to a phase
in which the translation symmetry is spontaneously broken. In
other words, the fact that the homogeneous phase is unstable
toward space fluctuations of the condensate means that the
energetically favored condensate is the one having a spacial
modulation, that is an inhomogeneous condensate. For this
aspect one may actually think of δμ as the control parameter
for the transition from a homogeneous phase to an inhomo-
geneous phase. We further elaborate on this point in
Sec. II.G.1, when discussing the momentum susceptibility.
The results of the analysis concerning the stability con-

ditions of the two-level model considered are reported in
Fig. 4. The three conditions above are simultaneously violated
in weak coupling for δμ=Δ0 ≥ 1, but they are violated at
different values of this ratio in the strong coupling regime. The
most stringent is condition (1), excluding the region above the
dot-dot-dashed line. Conditions (2) and (3) exclude the region
above the dot-dashed and dotted lines, respectively. The
region above the dashed line corresponds to Ωs > Ωn.
Therefore in weak coupling (that is, for Δ0 ≪ μ) the homo-
geneous phase is metastable for Δ0=

ffiffiffi
2

p
≤ δμ ≤ Δ0. With

increasing coupling strength it is possible to force the system
into a stable homogeneous gapless phase (corresponding to
the region between the solid and dashed lines at the bottom of
Fig. 4), but this happens when μ ∼ −Δ0, deep in the Bose-
Einstein condensate (BEC) limit.

In weak coupling the homogeneous BCS phase can be
energetically favored for δμ > δμ1 if there is a way of
reducing Ωs − Ωn, and this is indeed what happens in some
CSC phases in which the color and electrical neutrality
conditions may disfavor the normal phase. On the other
hand, this does not imply that the system has gapless
modes. Indeed, in weak coupling the stability of the region
with gapless modes is controlled by conditions (2) and (3).
Decreasing Ωs − Ωn does not per se guarantee that these
constraints are satisfied. In fact, it turns out that the gapless
homogeneous phase is in general not accessible in weak
coupling, because when δμ > Δ0, both conditions (2) and

δµ > δµ

2δµ

δµ < δµ 1

2δµ

increasing δµ

 1

∆

dd

u
u

 0

FIG. 3 (color online). Pictorial description of the behavior of the Fermi spheres of two different populations of fermions, with up (u) and
down (d) spins, with increasing δμ. Left panel: the dashed black lines correspond to the Fermi spheres of the two populations in the
noninteracting case. In the presence of a weak attractive interaction the BCS pairing produces a smearing of the Fermi spheres
corresponding to the gray region. Right panel: for δμ > δμ1 ¼ Δ0=

ffiffiffi
2

p
the Fermi spheres of the two populations (solid black lines) are

widely separated and the BCS homogeneous phase is no more energetically favored.

0 0.5 1 1.5 2

 δµ/∆0

-1
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1
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0
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0 I
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FIG. 4 (color online). Exclusion plot in the (δμ=Δ0, μ=Δ0) plane
according to conditions (1), (2), and (3) (see text). Condition (1)
excludes the region above the dot-dot-dashed line; condition (2)
excludes the region above the dot-dashed line; and condition
(3) excludes the region above the dotted line. The region above
the dashed line corresponds to Ωs > Ωn and is therefore
metastable or unstable. On the top of the figure the Chandra-
sekhar-Clogston limit δμ=Δ0 ¼ 1=

ffiffiffi
2

p ≃ 0.707 is indicated.
Regions featuring zero (0), one (I), or two (II) gapless surfaces
in momentum space are separated by solid lines. These lines are
determined by finding the zeros of Eb, given in Eq. (10). Adapted
from Gubankova, Mannarelli, and Sharma, 2010.
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(3) are not satisfied, meaning that the solution with Δ0 ≠ 0

is unstable.
Gauging the Uð1Þ global symmetry, it is possible to show

that the condition B < 0 is equivalent to the condition that the
Meissner mass squared of the gauge field becomes negative,
which corresponds to a magnetic instability. Therefore the
magnetic instability is related to the fact that we are expanding
the free energy around a local maximum. This statement is
rather general and indeed in Sec. II.G we see that an analogous
conclusion can be drawn for the 2SC phase. Notice that
increasing the temperature of the system does not help to
recover from this instability (Alford and Wang, 2005). Indeed,
the effect of the temperature is to produce a smoothing of the
dispersion law, which has the effect of increasing the insta-
bility region to values δμ < Δ0.
Summarizing, for the simplest case of a weakly interacting

two-flavor system, for δμ > δμ1 the superfluid homogeneous
phase is metastable, while for δμ > Δ0, Ωs does not have a
local minimum in Δ0 ≠ 0 and it is unstable toward fluctua-
tions of the condensate. In general, the three conditions above
should be simultaneously satisfied for having a stable (or
metastable) vacuum. The gapless phase is only accessible for
homogeneous superfluids deep in the strong coupling regime,
for negative values of the chemical potential.
A different possibility is that gapless modes arise at weak

coupling in an inhomogeneous superfluid. As we see in the
following sections, the inhomogeneous LOFF phase is ener-
getically favored for a certain range of values of δμ larger than
the CC limit (see Sec. II.C), it has gapless fermionic
excitations (see Sec. II.D), and it is (chromo)magnetically
stable (see Sec. II.G). It is important to note that the presence
of a gapless fermionic spectrum is not in contrast with the
existence of superconductivity (de Gennes, 1966), e.g., type-II
superconductors have gapless fermionic excitations for suffi-
ciently large magnetic fields (de Gennes, 1966; Saint-James
et al., 1969).

B. Gapless 2SC phase of QCD

The gapless 2SC phase (g2SC) of QCD was proposed by
Shovkovy and Huang (2003) [see also Huang and Shovkovy
(2003)] as a CSC phase which may sustain large Fermi surface
mismatches. However, they soon realized that this phase is
chromomagnetic unstable (Huang and Shovkovy, 2004a,
2004b), meaning that the masses of some gauge fields become
imaginary. In the following we briefly discuss the properties
of the g2SC phase at vanishing temperature, and then we deal
with the problem of the chromomagnetic instability.
We consider neutral two-flavor quark matter at finite

chemical potential described by the following Lagrangian
density:

L ¼ ψ̄ðiγμ∂μ −mþ μγ0Þψ þ Lint; (12)

where ψ ≡ ψα
i , i ¼ 1; 2, and α ¼ 1; 2; 3 corresponds to a

quark spinor of flavor i and color α. The current quark mass is
denoted by m (we take the isospin symmetric limit
mu ¼ md ¼ m), and Lint is an interaction Lagrangian that
will be specified later.

In Eq. (12), μ is the quark chemical potential matrix with
color and flavor indices, given by

μ≡ μij;αβ ¼ ðμδij − μeQijÞδαβ þ
2ffiffiffi
3

p μ8ðT8Þαβδij; (13)

where the quark electric charge matrix and the SUð3Þ color
generators are, respectively,

Qij ¼ diagðQu;QdÞ; Ta ¼
λa
2
; (14)

with λa the Gell-Mann matrices for a ¼ 1;…; 8. With μe and
μ8 we denote, respectively, the electron and the color chemical
potential. Since μ is diagonal in color and flavor spaces, we
can indicate its element with μiα, e.g., μub is the chemical
potential of up blue quarks. A chemical potential along the
third direction of color μ3 can be introduced besides μ8, but,
for all the cases that we discuss in this section, we require the
ground state to be invariant under the SUð2Þc color subgroup;
this makes the introduction of μ3 unnecessary.
As interaction Lagrangian density we consider the NJL-like

model

Lint ¼ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�
þ GD½ðψ̄Cϵεiγ5ψÞkγðiψ̄ϵεiγ5ψCÞkγ�; (15)

where ψC ¼ Cψ̄T denotes the charge-conjugate spinor, with
C ¼ iγ2γ0 the charge conjugation matrix. The matrices ε and ϵ
denote the antisymmetric tensors in flavor and color space,
respectively; we used in the second term on the right hand side
of Eq. (15) the shorthand notation

ðψ̄Cϵεiγ5ψÞkγ ≡ ðψ̄αC
i ϵijkε

αβγiγ5ψ
β
j Þ; (16)

and an analogous expression for the other bilinear. For the
2SC phase considered in this section we assume condensation
takes place only in the k ¼ γ ¼ 3 channel. In Eq. (15) two
coupling constants are introduced in the scalar-pseudoscalar
quark-antiquark channel, denoted by GS, and in the scalar
diquark channel, denoted byGD. Huang and Shovkovy (2003)
chose the parameters of the model to reproduce the pion decay
constant in the vacuum fπ ¼ 93 MeV and the vacuum chiral
condensate hūui1=3 ¼ hd̄di1=3 ¼ − 250 MeV. Moreover,
an ultraviolet cutoff Λ is introduced to regularize the divergent
momentum integrals. The parameter set of Huang and
Shovkovy (2003) is given by

Λ ¼ 653:3 MeV; GS ¼ 5.0163 GeV−2: (17)

The relative strength between the couplings in the quark-
antiquark and quark-quark channels could be fixed by a Fierz
rearranging of the quark-antiquark interaction; see, e.g.,
Buballa (2005). For example, considering interactions with
the quantum numbers of the one gluon exchange, the Fierz
transformation gives GD=GS ¼ 0.75. However, nonperturba-
tive in-medium effects might change this value. Therefore, in
Huang and Shovkovy (2003) the ratio of GD to GS is
considered as a free parameter.
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At high density Huang and Shovkovy (2003) consider only
the case m ¼ 0 and vanishing chiral condensate. When m ≠ 0

the chiral condensate in the ground state does not vanish, but
its effects are presumably negligible, giving a small shift of the
quark Fermi momenta. This shift might change the numerical
value of the electron chemical potential only of some few
percent. Hence, the main results of Huang and Shovkovy
(2003) should not change much if a nonvanishing value of the
current quark mass is considered.
Once the Lagrangian density is specified, the goal is to

compute the thermodynamic potential. In the mean field (and
one loop) approximation, this can be done easily using
standard techniques. The mean field Lagrangian density
can be written within the Nambu-Gorkov formalism, in the
compact form

L ¼ χ†S−1χ − Δ2
2SC

4GD
; (18)

where

χ ¼
�

ψ

ψC

�
; (19)

is the Nambu-Gorkov spinor and the gap parameter Δ≡
Δ2SCε

αβ3εij3Cγ5 is included in the inverse propagator

S−1 ¼
� iγμ∂μ þ μγ0 Δ

Δ† iγμ∂μ − μγ0

�
(20)

as an off-diagonal term in the “Nambu-Gorkov space.”
We focus on the zero temperature regime [for a discussion

of the rather uncommon temperature behavior of the g2SC
phase see Huang and Shovkovy, 2003], which is relevant for
astrophysical applications. The one loop expression of the
thermodynamic potential can be determined from the inverse
propagator in Eq. (20); for vanishing temperature it is given by

Ω ¼ Δ2
2SC

4GD
− μ4e
12π2

−X
n

Z
dp

ð2πÞ3 jEnj. (21)

For a derivation, see, e.g., Buballa (2005). The second
addendum corresponds to the electron free energy (electron
masses have been neglected). The last addendum is the
contribution due to the quark determinant. The sum runs
over the twelve fermion propagator poles, six of them
corresponding to quarks and the other six corresponding to
antiquarks,

E1;2 ¼ jpj ∓ μub; (22)

E3;4 ¼ jpj ∓ μdb; (23)

E5;6 ¼ δμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj ∓ μ̄Þ2 þ Δ2

2SC

q
; (24)

E7;8 ¼ −δμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj ∓ μ̄Þ2 þ Δ2

2SC

q
; (25)

and E9 ¼ E5, E10 ¼ E6, E11 ¼ E7, E12 ¼ E8. Here we have
introduced the shorthand notation

μ̄ ¼ μ − μe
6
þ μ8

3
; δμ ¼ μe

2
: (26)

Using the explicit form of the dispersion laws, the free energy
can be written as

Ω ¼ − μ4e
12π2

− μ4ub
12π2

− μ4db
12π2

− Λ4

2π2
− 2

Z
Λ

0

p2dp
π2

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − μ̄Þ2 þ Δ2

2SC

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ μ̄Þ2 þ Δ2

2SC

q �

− 2θðδμ − Δ2SCÞ
Z

μþ

μ−

p2dp
π2

�
δμ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − μ̄Þ2 þ Δ2

2SC

q �
;

(27)

where μ � ¼ μ̄ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

2SC

p
.

The value of Δ2SC is determined by the solution of the
following equation:

∂Ω
∂Δ2SC

¼ 0; (28)

with the neutrality constraints,

n8 ¼ − ∂Ω
∂μ8

¼ 0; nQ ¼ − ∂Ω
∂μe

¼ 0; (29)

which fix the values of μe and μ8.
The numerical analysis of Huang and Shovkovy (2003)

shows that μ8 is much smaller than μe and Δ2SC, both for
Δ2SC ≥ δμ and for Δ2SC < δμ. As a consequence, it is possible
to simplify the equations for the gap parameter and the
electron chemical potential, Eqs. (28) and (29), respectively,
by putting μ8 ¼ 0. Therefore, the properties of the system
depend only on the values Δ2SC and μe and on the couplings
GD and GS. The result of Huang and Shovkovy (2003) can be
summarized as follows:

• For GD=GS ≳ 0.8, strong coupling, the 2SC phase is the
only homogeneous stable phase.

• For 0.7≲ GD=GS ≲ 0.8, intermediate coupling, the
g2SC phase is allowed for δμ > Δ2SC.

• For GD=GS ≲ 0.7, weak coupling, only unpaired quark
matter is favored.

In the g2SC phase the quasiparticle fermionic spectrum
consists of four gapless modes and two gapped modes,
whereas in the 2SC phase there are two gapless fermionic
modes and four gapped fermionic modes. In the latter case the
only gapless modes correspond to the up and down blue
quarks that do not participate in pairing.

1. Meissner masses of gluons in the g2SC phase

The diquark condensate of the 2SC phase induces
the symmetry breaking pattern reported in Eq. (6); in
particular, the group SUð3Þc ⊗ Uð1Þem is broken down to
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SUð2Þc ⊗ ~Uð1Þem, where ~Uð1Þem is the gauge group corre-
sponding to the rotated massless photon associated with the
unbroken generator

~Q ¼ Q cos θ − gs
e
T8 sin θ; (30)

where gs and e denote the strong and the electromagnetic
couplings, respectively, and Q and T8 are defined in Eq. (14).
The mixing coefficients have been determined by Alford,
Berges, and Rajagopal (2000b) [see also Gorbar (2000)] and
are given by

cos θ ¼
ffiffiffi
3

p
gsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g2s þ e2
p ; sin θ ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g2s þ e2
p : (31)

The linear combination

T 8̄ ¼ T8 cos θ þ gs
e
Q sin θ (32)

is orthogonal to ~Q and gives the broken generator; the
corresponding gauge field, which we refer to as the 8̄ mode,
acquires a Meissner mass. Actually, the NJL-like Lagrangian
in Eqs. (12) and (15) has only global symmetries, but
gauging the SUð3Þc group and the Uð1Þ subgroup of
SUð2ÞL × SUð2ÞR, one has that the spontaneous symmetry
breaking leads to the generation of Meissner masses for the
five gluons associated with the broken generators. To compute
these masses, we define the gauge boson polarization tensor
[see, e.g., Le Bellac (2000)],

Πμν
abðpÞ ¼ − i

2

Z
d4q
ð2πÞ4 Tr½Γμ

aSðqÞΓν
bSðq − pÞ�; (33)

where SðpÞ is the quark propagator in momentum space,
which can be obtained from Eq. (20), and

Γμ
a ¼ gsγμdiagðTa;−TT

aÞ; (34)

Γμ
9 ¼ eγμdiagðQ;−QÞ; (35)

are the interaction vertex matrices. The trace in Eq. (33) is
taken over Dirac, Nambu-Gorkov, color, and flavor indices; a,
b ¼ 1;…; 8 indicate the adjoint color and we use the con-
vention that the component with a, b ¼ 9 corresponds to the
photon.
The screening masses of the gauge bosons are defined in

terms of the eigenvalues of the polarization tensor and in the
basis in which Πμν

ab is diagonal the Debye masses and the
Meissner masses are, respectively, defined as

M2
D;a ¼ −lim

p→0
Π00

aað0; pÞ; (36)

M2
M;a ¼ − 1

2
lim
p→0

�
gij þ

pipj
jpj2

�
Πij

aað0; pÞ: (37)

Both masses have been evaluated in the 2SC phase by Rischke
(2000b, 2004), Rischke and Shovkovy (2002), and Schmitt,

Wang, and Rischke (2004). The Debye masses of all gluons
are related to the chromoelectric screening and are always real,
therefore do not affect the stability of the 2SC and g2SC
phases. The Meissner masses of the gluons with adjoint color
a ¼ 1, 2, 3 are always zero, because they are associated with
the unbroken color subgroup SUð2Þc. It is interesting to note
that in the 2SC phase Π00

ab is diagonal in the a, b indices and
therefore there is no need to diagonalize it (Rischke (2004),
and Schmitt, Wang, and Rischke (2004). This happens
because of a cancellation between the contribution of the
blue ungapped quarks with that of the gapped excitations. The
magnetic components of the 8th gluon and the photon do
instead mix and the polarization tensor has to be diagonalized
for extracting the Meissner mass. In contrast, in the CFL phase
both the electric and magnetic sectors mix because of the
absence of ungapped excitations (Schmitt, Wang, and
Rischke, 2004).
For nonvanishing values of δμ the Meissner masses have

been evaluated by Huang and Shovkovy (2004a, 2004b).
Gluons with adjoint color a ¼ 4, 5, 6, 7 are degenerate and in
the limit μ8 ¼ 0 their Meissner masses are given by

M2
M;4 ¼

4αsμ̄
2

π

�
Δ2

2SC − 2δμ2

2Δ2
2SC

þ δμ

Δ2
2SC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

2SC

q
θðδμ − Δ2SCÞ

�
: (38)

The squared Meissner mass turns out to be negative not only
in the gapless phase Δ2SC=δμ < 1 but also in the gapped
phase, when Δ2SC=δμ <

ffiffiffi
2

p
. This result seems in contrast

with the result of the previous section, where an imaginary
Meissner mass was related to the existence of a local
maximum of the free energy arising at δμ ¼ Δ. However,
from the analysis of the 2SC free energy of the system, one
can see that when Δ2SC=δμ ¼ ffiffiffi

2
p

the state with Δ2SC ≠ 0

corresponds to a saddle point in the Δ-δμ plane. The neutrality
condition transforms this saddle point into a local minimum.
However, as explained in the previous section, the gauge fields
can be related to the fluctuations of the gap parameter. These
fluctuations can probe all directions in the Δ-δμ plane around
the stationary point and would result in a low-energy
Lagrangian with dispersion laws akin to those discussed in
Eqs. (11) with the coefficients E and B negative.
Finally, we consider the 8̄ mode, which is associated with

the broken generator defined in Eq. (32). The corresponding
Meissner mass can be obtained diagonalizing the polarization
tensor in Eq. (33) in the subspace a, b ∈ f8; 9g or, more
directly, by substituting Ta → T 8̄ in the vertex factors of the
polarization tensor. The squared Meissner mass of the 8̄ mode
turns out to be

M2
M;8̄ ¼

4ð3αs þ αÞμ̄2
27π

�
1 − δμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δμ2 − Δ2
2SC

p θðδμ − Δ2SCÞ
�
;

(39)

and becomes negative for Δ2SC=δμ < 1. As shown by Gatto
and Ruggieri (2007), the instability in this sector is transmitted
to a gradient instability of the pseudo-Goldstone boson related
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to the Uð1ÞA symmetry which is broken by the diquark
condensate. Although in vacuum the Uð1ÞA symmetry is
explicitly broken by instantons, at finite chemical potential
instantons are Debye screened and Uð1ÞA can be considered as
an approximate symmetry, which is then spontaneously
broken by the diquark condensate.

C. The two-flavor crystalline color superconducting phase

Since the homogeneous g2SC phase is chromomagnetically
unstable, the question arises of the possible existence of a
different superconducting phase for large mismatch between
the Fermi spheres. There are several candidate phases, which
include the gluonic phase (Gorbar, Hashimoto, and Miransky,
2006a; Gorbar, Hashimoto, Miransky, and Shovkovy, 2006),
the solitonic phase (see Sec. II.H), and the CCSC phase.
In this section we review some of the main results on the

two-flavor CCSC phase. First, we describe the one plane wave
ansatz in the framework of the simple model discussed in
Sec. II.A; then, we turn to the CCSC phase and report on the
Ginzburg-Landau (GL) analysis of various crystalline struc-
tures. We relax the constraint of electrical and color neutrality,
and treat the difference of chemical potentials between u and d
quarks 2δμ as a free parameter.

1. From one plane wave to the crystalline phase

In Sec. II.A we showed that in weak coupling the CC limit
signals that the standard BCS phase becomes metastable, but
does not forbid the existence of different forms of super-
conductivity. In particular, it does not forbid the existence of
Cooper pairs with nonvanishing total momentum. It was
shown by Larkin and Ovchinnikov (1964) and Fulde and
Ferrell (1964), in the context of electromagnetic supercon-
ductors, that in a certain range of values of δμ it might be
energetically favored the realization of Cooper pairs with
nonzero total momentum. For the simple two-level system
discussed in Sec. II.A, Cooper pairs with momentum 2q can

be described by considering the difermion condensate in
Eq. (9) given by

hψsðxÞψ tðxÞi ¼
Δ
g
iðσ2Þste2iq·x; (40)

and we call this state of matter the FF phase.
Note that this ansatz breaks rotational symmetry because

there is a privileged direction corresponding to q. In the left
panel of Fig. 5 the two Fermi spheres of fermions are
pictorially shown and the gray ribbons correspond to the
regions in momentum space where pairing occurs. Pairing
between fermions of different spin can only take place in a
restricted region of momentum space and this implies that
Δ < Δ0. The reason why the FF phase is energetically favored
with respect to the normal phase is that no energy cost
proportional to δμ has to be paid for allowing the formation of
Cooper pairs. The only energetic price to pay is due to the
kinetic energy associated with Cooper pairs: there is a
spontaneous generation of a supercurrent in the direction of
q, which is balanced by a current of normal fermions in the
opposite direction (Fulde and Ferrell, 1964). The gap param-
eter in Eq. (40) can be determined solving a gap equation
under the constraint that the modulus of the Cooper momen-
tum q minimizes the free energy. The result is that at δμ ≈
δμ1 ¼ Δ0=

ffiffiffi
2

p
there is a first-order phase transition from the

homogeneous BCS phase to the FF phase. Increasing further
δμ results in a smooth decreasing of the gap function of the FF
phase, until at a critical value δμ2 a second-order phase
transition to the normal phase takes place. In the weak
coupling limit δμ2 ¼ 0.754Δ0; the range ½δμ1; δμ2� is called
the LOFF window. In the LOFF window, the optimal value of
q turns out to be approximately constant, q ≈ 1.2δμ.
Alford, Bowers, and Rajagopal (2001) presented the two-

flavor QCD analog of the FF phase. In this case the
condensate has the same color, spin, and flavor structure of
the 2SC condensate, but with the plane wave space depend-
ence characteristic of the FF phase, that is,

u

d

∆/

P

θ P d

u
2q

2δµ

2q

∆

2θq

q

q

2q

2q
φ φ

1

2

FIG. 5 (color online). Pictorial description of the LOFF pairing in the weak coupling approximation. When δμ > Δ0=
ffiffiffi
2

p
the BCS

homogeneous pairing is not energetically allowed, but pairing between fermions with total nonvanishing momentum can be realized.
Left panel: In the FF phase pairing takes place in two ribbons on the top the Fermi spheres of up and down fermions, such that
Pu þ Pd ¼ 2q, having opening angle 2ϑq ≃ 2 arccosðδμ=qÞ≃ 67∘, thickness Δ, and angular width Δ=q; see Sec. II.E.1. Right panel:
Structure obtained with two plane waves corresponding to two vectors 2q1 (light gray) and 2q2 (dark gray) with relative angle ϕ. The
size and the opening angle of each ribbon is as in the FF phase. The structure with ϕ ¼ 180∘ is called the “strip.” For illustrative
purposes, we exaggerated the splitting between the Fermi surfaces, relative to the values used in the calculations reported in Sec. II.C.
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hψα
i ðxÞCγ5ψβ

j ðxÞi ∝ Δαβ
ij ¼ Δei2q·xεαβ3ϵij3: (41)

As noted by Alford, Bowers, and Rajagopal (2001), the FF
condensate induces a spin-1 condensate as well; however, its
effect is found to be numerically small, and it will be neglected
here. As in the simple two-level system, in the two-flavor FF
phase it is possible to determine the free energy using a NJL-
like model with the condensate given in Eq. (41). To this end it
is convenient using the Nambu-Gorkov formalism discussed
in Sec. II.B in a slightly different way. In the FF case we are
considering pairing between u quarks with momentum pþ q
and d quarks with momentum −pþ q so that the total
momentum is 2q as in Eq. (41). In momentum space, the
standard two-flavor Nambu-Gorkov spinor reads

χðpÞ ¼

0
BBB@

ψuðpÞ
ψdðpÞ
ψC
u ð−pÞ

ψC
d ð−pÞ

1
CCCA; (42)

and thus the corresponding propagator has terms in it that are
not only off-diagonal in the Nambu-Gorkov space, but also
off-diagonal in momentum space. Thus any calculation looks
complicated in this basis, but it simplifies changing the
Nambu-Gorkov basis as follows (Bowers et al., 2001):

χðpÞ ¼

0
BBB@

ψuðpþ qÞ
ψdðp − qÞ
ψC
u ð−p − qÞ

ψC
d ð−pþ qÞ

1
CCCA: (43)

The effect of this momentum shift is to eliminate the
dependence on q in the off-diagonal terms in the Nambu-
Gorkov propagator. Indeed, the pair condensate described by
terms in the fermion propagator occurring in the ψu-ψC

d and
ψd-ψC

u entries are now independent of q, making the propa-
gator diagonal in p space and the calculation tractable. Of
course the above choice of the momentum shift is not unique:
with p being an integration variable we can shift it, for
example, by p → p − q thus rewriting the Nambu-Gorkov
spinor in the two-flavor phase as

χðpÞ ¼

0
BBB@

ψuðpÞ
ψdðp − 2qÞ
ψC
u ð−pÞ

ψC
d ð−pþ 2qÞ

1
CCCA (44)

is always possible.
The inverse propagator in the shifted basis has formally the

same expression given in Eq. (20), with space-independent
off-diagonal terms, but now the derivatives act on spinors with
shifted momenta; see Bowers et al. (2001) for more details.
The gap parameter can then be determined solving the
corresponding gap equation under the constraint that the
favored value of q minimizes the free energy. The results
are the same obtained in the two-level system; in particular,

the LOFF window and q have the same expressions reported
above (but now 2δμ is the difference of chemical potentials
between u and d quarks).
From Fig. 5, it should be clear that an immediate generali-

zation of the FF phase can be obtained adding more ribbons on
the top of the Fermi spheres, corresponding to different vectors
qm, with qm ∈ fqg, where fqg is some set of vectors to be
determined by minimizing the free energy of the system and m
is a label that identifies the vectors of the set. This in turn
corresponds to considering inhomogeneous CSC phases with a
more general ansatz than in Eq. (41), where the single plane
wave is replaced by a superposition of plane waves, that is,

Δe2iq·x →
X

qm∈fqg
Δqme2iq

m·x: (45)

To simplify the analysis, a set of assumptions are used. The
vectors qm are taken with equal length, thus we can write
qm ¼ qnm and the set of vectors characterizing each condensate
can be indicated with fng. The set of vectors fng identifies the
vertices of a crystalline structure, thus at each set fng
corresponds a particular crystalline phase. As a further sim-
plifying assumption, the coefficients Δqm are taken independent
of qm and we indicate their common value with Δ. In other
words, we consider condensates with

ΔðxÞ ¼ Δ
XP
m¼1

e2iqn
m·x; (46)

where P is the number of vectors nm. The simplest example is
clearly the FF condensate, depicted in the left panel of Fig. 5,
characterized by a single plane wave, thus corresponding to
P ¼ 1. The case with P ¼ 2 is reported in the right panel of
Fig. 5, in this case the “crystalline” structure is completely
determined by ϕ, the relative angle between n1 and n2; more
complicated structures can be pictorially represented in a
similar way.
It is important to stress that the crystalline structure is

determined by the modulation of the condensate, but the
underlying fermions are not arranged in an ordered pattern,
indeed fermions are superconducting, that is they form a
superfluid of charged carriers.
Computation of the spectrum and the free energy of a

system with a general crystalline condensate cannot be
obtained by the momentum shift technique discussed
above. The reason is that by a momentum shift we can
eliminate the dependence on only one of the vector qm in
the off-diagonal term of the Nambu-Gorkov propagator. As
a consequence, the use of some approximation is neces-
sary. In the next section we discuss the GL approximation
for the evaluation of the free energy and in Sec. II.D we
present a method for determining the low-energy fermionic
spectrum. A different approximation method is discussed
in Sec. II.E.

2. Ginzburg-Landau analysis

A viable method for the evaluation of the free energy of
some crystalline structures is the GL expansion, which is
obtained expanding Ω in powers of Δ
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Ω ¼ Ωn þ PαΔ2 þ β

2
Δ4 þ γ

3
Δ6 þOðΔ8Þ; (47)

where Ωn is the free energy of the normal phase and the
coefficients α, β, and γ have been computed, in the one-loop
approximation, using as microscopic theory a NJL model by
Bowers and Rajagopal (2002). The GL expansion is well
suited for studying second-order phase transitions but might
give reasonable results for soft first-order phase transitions as
well. In the present case the expansion is under control for
Δ=q ≪ 1 and if the coefficient γ is positive, meaning that the
free energy is bounded from below.
For a given crystalline structure, the coefficients in Eq. (47)

depend on δμ and q; the latter is fixed, in the calculation of
Bowers and Rajagopal (2002), to the weak coupling value
q≃ 1.2δμ. For any value of δμ the thermodynamic potential
of a given structure is computed by minimization with respect
to Δ and then the optimal crystalline structure is identified
with that with the lowest free energy. It is possible to compute
analytically the GL coefficients only for few structures. One
example is the FF phase, in which

αFFðq; δμÞ ¼
2μ2

π2

�
−1þ δμ

2q
ln

���� qþ δμ

q − δμ

����
þ 1

2
ln

���� 4ðq2 − δμ2Þ
Δ2

2SC

����
�
; (48)

βFFðq; δμÞ ¼
μ2

2π2
1

q2 − δμ2
; (49)

γFFðq; δμÞ ¼
μ2

16π2
q2 þ 3δμ2

ðq2 − δμ2Þ3 ; (50)

where Δ2SC is the 2SC gap parameter. In general, the GL
coefficients of more complicated structures have to be
computed numerically; see the appendix of Bowers and
Rajagopal (2002) for details. Bowers and Rajagopal (2002)
studied twenty-three crystalline structures and among them
those with P > 9 turn out to be largely disfavored. This has
been nicely explained in the weak coupling regime: in this
case, as shown in the left panel of Fig. 5 for the FF phase, the
pairing regions of the inhomogeneous superconductor can be
approximated as rings on the top of the Fermi surfaces; one
ring per wave vector n in the set fng. The computation of the
lowest order GL coefficients shows that the intersection of two
rings is energetically disfavored (Bowers and Rajagopal,
2002). As a consequence, it is natural to expect that in the
most favored structure no intersecting rings appear. Since each
ring has an opening angle of approximately 67°, a maximum
of nine rings can be accommodated on a spherical surface.
The fact that configurations with overlapping rings are

disfavored can be quantitatively understood as follows. For
the case of two plane waves (right panel of Fig. 5), in the weak
coupling approximation there is one pairing ring for each of
the two wave vectors. The quartic coefficient β depends on the
angle ϕ between the two wave vectors and it diverges at

ϕ0 ≈ 2ϑq ≈ 2 arccos
δμ

q
≈ 67∘; (51)

corresponding to the angle at which the two pairing rings are
contiguous, meaning that for ϕ < ϕ0 the two rings overlap.
The latter case is energetically disfavored because, being β
large and positive, the free energy gain would be smaller.
The divergence of the coefficient βðϕÞ at ϕ ¼ ϕ0 is due to

the two limits that have been taken to compute the free energy,
namely, the GL and weak coupling limits. A detailed
explanation of what happens will be given in Sec. III.B when
discussing a simple three-flavor crystalline structure. In any
case it is clear that the divergency of a GL coefficient means
that the expansion is not under control, or, more precisely, that
the radius of convergence of the series in Eq. (47) tends
to zero.
Among the crystals with no intersecting rings, seven are

good candidates to be the most favored structure. Within these
seven structures, the octahedron, which corresponds to a
crystal with P ¼ 6 and whose wave vectors point into the
direction of a body-centered cube (bcc), is the only one with
effective potential bounded from below (that is, with γ > 0).
The remaining six structures, given by different configurations
with P ¼ 7, 8, and 9, are characterized by a potential which is
unbounded from below, at least at the considered order Δ6.
Even if in this case the free energy cannot be computed,
qualitative arguments given by Bowers and Rajagopal (2002)
suggest that the favored structure is the one with P ¼ 8 having
wave vectors pointing toward the vertices of a face-centered
cube (fcc).
Of course, as Bowers and Rajagopal admit, their study

cannot be trusted quantitatively, because of the several
limitations of the GL analysis. First, the GL expansion
formally corresponds to an expansion in powers of Δ=q
and therefore it is well suited for the study of second-order
phase transitions, but the condition that Δ=q ≪ 1 is not
satisfied by all crystalline structures considered by Bowers
and Rajagopal (2002). In some cases the GL analysis predicts
a strong first-order phase transition to the normal state, with a
large value of the gap at the transition point. Moreover, it may
happen that the local minimum for small values ofΔ=q is not a
global minimum of the system, as discussed in Sec. II.H. In
this case the GL expansion in Eq. (47) underestimates the free
energy gain of the system and is not able to reproduce the
correct order of the phase transition. For a more reliable
determination of the ground state one should consider terms of
higher power in Δ, which are difficult to evaluate. Finally, the
claimed favored crystalline structure, namely, the fcc, has
γ < 0 and a global minimum cannot be found unless the
coefficient OðΔ8Þ (or of higher order) is computed and found
to be positive.
Because of these reasons, the quantitative predictions of the

GL analysis should be taken with a grain of salt. One should
not trust the order of the phase transition obtained by the GL
expansion and the comparison among various crystalline
structures may be partially incorrect, because it is not
guaranteed that the corresponding free energies have been
accurately determined.
On the other hand, the qualitative picture that we can draw

from it, namely, the existence of crystalline structures with

Roberto Anglani et al.: Crystalline color superconductors 523

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



lower free energy than the single plane wave, is quite
reasonable: crystalline structures benefit of more phase space
available for pairing, thus lowering the free energy. The
symmetry argument is quite solid too, because it is based
on the fact that configurations with overlapping pairing
regions are disfavored, and as we see for one particular
configuration in the three-flavor case in Sec. III.B, one can
prove that this statement is correct without relying on the GL
expansion. We also show an interesting point, that the GL
expansion underestimates the free energy gain of the crys-
talline structures. And this happens not only in the presence of
a global minimum different from the local minimum around
which the GL expansion is performed (see Sec. II.H), but also
comparing the GL free energy with the free energy evaluated
without the Δ=q expansion.

D. Fermionic dispersion laws and specific heats

The thermal coefficients (specific heat, thermal conduc-
tivity, etc.) of quark matter at very low temperature are of
fundamental importance for the transport properties and
cooling mechanisms of compact stars. The largest contribu-
tion to the thermal coefficients comes from the low-energy
degrees of freedom and it is therefore of the utmost importance
to understand whether fermionic modes are gapped or gapless.
Indeed, the absence of a gap in the spectrum of fermions

implies that quasiquarks can be excited even at low temper-
ature and therefore the corresponding thermal coefficients are
not suppressed by a factor ≈e−Δ=T (which is distinctive of
homogeneous BCS superconductors).
In this section we discuss the fermion dispersion laws in the

two-flavor CCSC phase for low values of momenta. Then, we
use the obtained dispersion laws for the computation of the
specific heat. A different contribution to the specific heat, due
to phonons, will be presented in Sec. II.F. The results
discussed below do not rely on the GL approximation but
are obtained by an expansion around the zeros of the full
inverse propagator (Larkin and Ovchinnikov, 1964;
Casalbuoni et al., 2003).

1. Fermi quasiparticle dispersion law: General settings

We consider a general difermion condensate ΔðxÞ, and
determine the quasiparticle dispersion laws looking at the zero
modes of the inverse propagator of the system. Arranging the
fields in the Nambu-Gorkov spinor as follows:

χαi ¼
� ~Gα

i

−iðσ2Þαβ ~Fβ
i

�
; (52)

the inverse propagator is given by

ðS−1Þαβij ¼
� δαβ½δijðEþ iv · ∇Þ þ δμðσ3Þij� −εαβ3εij3ΔðxÞ

−εαβ3εij3ΔðxÞ� δαβ½δijðE − iv · ∇Þ þ δμðσ3Þij�

�
; (53)

where E is the quasiparticle energy and v is the Fermi velo-
city, that for massless quarks satisfies v ¼ jvj ¼ 1. The
quasiparticle spectrum can obtained by solving the eigen-
value equation

ðS−1Þαβij χβj ¼ 0: (54)

Performing the unitary transformation

Ḡα
i ¼ ðeiδμσ3v·x=v2ÞijGα

j ; F̄α
i ¼ ðe−iδμσ3v·x=v2σ2ÞijFα

j ;

(55)

it is possible to eliminate the dependence on δμ in the
eigenvalue problem and this corresponds to measuring the
energy of each flavor from its Fermi energy. The resulting
equations for Fα

i andG
α
i are independent of color and flavor

indices, and therefore these indices will be omitted below.
The eigenvalue problem reduces to solve the coupled
differential equations

ðEþ iv · ∇ÞG − iΔðxÞF ¼ 0;

ðE − iv · ∇ÞF þ iΔðxÞ�G ¼ 0: (56)

These equations can be used to find the dispersion laws for
any inhomogeneous ΔðxÞ, and we consider here the periodic
structures of the form given in Eq. (46) determining whether

gapless fermionic excitations are present. We prove that for
any crystalline structure with real-valued periodic functions
ΔðxÞ there exists a gapless mode if and only if the set fng does
not contain the vector n ¼ 0.
The proof is given below. Here we note that this theorem

does not apply to the case in which ΔðxÞis not real. As a
representative case of complex ΔðxÞ, we consider the single
plane wave (FF structure), explaining in which circumstances
gapless modes arise. The theorem implies that any antipodal
structure has a gapless mode, in particular, the “strip”
(corresponding to the structure depicted in the right panel
of Fig. 5 for ϕ ¼ 180∘) and the cube have gapless modes. On
the other hand, the set of vectors which identify a trihedral
prism or a hexahedral prisms have a vector with n ¼ 0, and the
corresponding dispersion laws are gapped.
Proof.—A periodic solution of the system in ΔðxÞ solution

of the system in (56) is given by the Bloch functions

GðxÞ ¼ uðxÞeik·x FðxÞ ¼ wðxÞeik·x; (57)

where uðxÞ and wðxÞ are periodic functions. These solutions
are periodic if k is real. However, we can look for a generic
solution of Eqs. (56) with k complex. If the solution with a
complex k exists, it means that a gap is present in the
excitation spectrum and the eigenfunctions decrease exponen-
tially with x. In fact, suppose that the dispersion law has a gap
Δ ≠ 0, then it can be written as E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Δ2

p
. Since we are

expanding around E ¼ 0, then k ≈
ffiffiffiffiffiffiffiffiffi−Δ2

p
þ corrections,
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making k complex. Clearly, the physical momentum is always
real; the fact that we find a complex momentum only means
that the spectrum is gapped.
Taking E ¼ 0 in Eq. (56), the two solutions of the system of

equations are given by Fþ ¼ Gþ or F− ¼ −G−, where

G � ðxÞ ¼ exp

�
�

Z
x∥

0

Δðx0Þ dx
0
∥

v2

�
; (58)

with x∥ ¼ x · v.
Comparing this expression with Eq. (57), it is clear that

these solutions corresponds to Bloch functions with
ReðkÞ ¼ 0. If ΔðxÞ has a term with n ¼ 0, it means that
ΔðxÞ ¼ Aþ fðxÞ, where A is a constant and fðxÞ is a periodic
nonconstant function. In this case Eq. (58) has an exponential
behavior of the type GðjxjÞ ∝ exp ð � AjxjÞ and therefore the
spectrum is gapped. On the other hand, if in the expansion of
ΔðxÞ no term with n ¼ 0 is present then the imaginary part of
k vanishes and the spectrum is gapless Q.E.D.
The fermion dispersion law for the gapless modes can be

determined using degenerate perturbation theory for
ξ ¼ p − μ ≪ q, i.e., close to the Fermi sphere. At the lowest
order in ξ=q one finds that

Eðv; ξÞ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AþðvÞA−ðvÞ

p ¼ cðvÞξ; (59)

where cðvÞ is the velocity of the excitations, and

A � ðvÞ ¼ 1

Vc

Z
cell

dx exp

�
� 2

Z
Δðx0Þ dx

0
∥

v2

�
; (60)

where Vc is the volume of a unit cell of the lattice. The energy
of the fermionic excitations depends linearly on the residual
momentum ξ, but the velocity of the excitations is not
isotropic.
We now specialize Eq. (59) to the case of the strip,

ΔðxÞ ¼ 2Δ cosð2q · xÞ; (61)

which corresponds to the condensate in Eq. (46) with m ¼ 2

and n2 ¼ −n1 ¼ n and strictly speaking does not describe a
crystal, but a condensate that is modulated in the n direction.
The coefficients in the dispersion law are given by

AðstripÞ
� ≡ AðstripÞ ¼ I0

�
2Δ
q · v

�
; (62)

where I0ðzÞ is the modified Bessel function of the zeroth
order. Therefore, the velocity of the fermionic quasiparticles
has the analytic expression

cstripðvÞ ¼
1

I0ð2Δ=q · vÞ
; (63)

which has the important property to vanish when v is
orthogonal to n. The reason is that in the direction orthogonal
to n the gap is constant and its effect is equivalent to a
potential barrier. Taking n ¼ ð0; 0; 1Þ, the dispersion law is

symmetric for rotations around the z axis, for inversions with
respect to the plane z ¼ 0, and depends only on the polar
angle ϑ, between v and the z axis. In Fig. 6 we report a plot of
the velocity of fermionic quasiparticles as a function of cos ϑ,
for three different values of the ratio Δ=qv. In the ultra-
relativistic case, v ¼ 1, the relevant case is Δ=q < 1 and we
see that the dispersion law of fermionic quasiparticles is not
much affected by the condensate for cos ϑ≳ 0.2Δ=q and it is
the same of relativistic fermions. On the other hand, for small
values of cos ϑ the fermionic velocity is exponentially sup-
pressed and vanishes for ϑ ¼ π=2, meaning that fermionic
quasiparticles cannot propagate in the x-y plane, as dis-
cussed above.
The fact that the dispersion law is linear in ξ for small

values of the momentum does not assure that it is linear for
any value of the momentum. Considering vz ≪ 1, it is
possible to solve the Eq. (56) for k in (57) along the z
direction, without restricting to low momenta (Larkin and
Ovchinnikov, 1964); the result is that

E2 ¼ 4Δjvzqj
π

e−4Δ=jvzqj
�
1 − cos

πk
q

�
; (64)

thus the dispersion law is linear in the residual momentum,
only for k=q ≪ 1.
For the octahedron, whose six wave vectors point into the

direction of a bcc structure, the corresponding gap parameter
can be written as

ΔðxÞ ¼ 2Δ½cosð2 qxÞ þ cosð2 qyÞ þ cosð2 qzÞ�: (65)

It is easy to show that in this case the integral in Eq. (60)
factorizes, and the dispersion law is gapless with velocity

cBCCðvÞ ¼
1

I0ð2Δ=qvxÞI0ð2Δ=qvyÞI0ð2Δ=qvzÞ
: (66)

The corresponding plot is reported in Fig. 7, left panel, where
the unit vector v has been expressed by the polar angles ϑ and
φ. The plot has been obtained for 2Δ=qv ¼ 0.3 and consid-
ering ϑ ∈ ½0; π� and φ ∈ ½0; 2π�. Note that according to
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FIG. 6 (color online). Velocity of the fermionic quasiparticles as
a function of z ¼ cos ϑ for 2Δ=qv ¼ 0.1 (solid line), 2Δ=qv ¼
0.2 (dashed line), and 2Δ=qv ¼ 0.3 (dotted line) for the strip
structure given in Eq. (61).
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Eq. (66) the velocity of the fermionic quasiparticles vanishes
along the planes vx ¼ 0, vy ¼ 0, and vz ¼ 0.
Unfortunately, for more complicated crystalline structures it

is not possible to have an analytic expression of the fermionic
velocity. One notable example is the fcc structure which is
defined by the condensate

ΔðxÞ ¼ 2Δ
X4
m¼1

cosð2qnm · xÞ; (67)

where n1¼
ffiffi
1
3

q
ð1;1;1Þ, n2¼

ffiffi
1
3

q
ð1;1;−1Þ, n3¼

ffiffi
1
3

q
ð1;−1;1Þ,

and n4 ¼
ffiffi
1
3

q
ð−1; 1; 1Þ. Upon plugging this expression in to

Eq. (60) we obtain that

AðfccÞ
� ¼

�
q
π

�
3
Z
cell

dV exp

�
� 2Δ

qv
B

�
; (68)

where the integration is over the elementary cell of volume
ðπ=qÞ3 and

B ¼
ffiffiffi
3

p
v

�
sin 2qðxþ yþ zÞ
vx þ vy þ vz

þ sin 2qðxþ y − zÞ
vx þ vy − vz

þ sin 2qðx − yþ zÞ
vx − vy þ vz

þ sin 2qð−xþ yþ zÞ
−vx þ vy þ vz

�
: (69)

It is then easy to show that AðfccÞ
þ ¼ AðfccÞ− ≡ AðfccÞ and

expressing the components of the unit vector v in B as
functions of the polar angles ϑ and φ, and upon substituting
in AðFCCÞ, one has that the quasiparticle velocity

cfccðϑ;φÞ ¼
1

AðfccÞðϑ;φÞ (70)

has the behavior reported in Fig. 7, right panel. The plot of
cfccðϑ;φÞ has been obtained for 2Δ=qv ¼ 0.3 and considering
ϑ ∈ ½0; π� and φ ∈ ½0; 2π�. The velocity of the fermionic
quasiparticles is equal to 1 almost everywhere with the
exclusion of a restricted region which corresponds to the
zeros of Bðϑ;φÞ, given by the solutions of v · nm ¼ 0.
In conclusion, we have shown that for various crystalline

structures the fermionic spectrum is gapless. For k=q ≪ 1 the

dispersion law is linear in momentum and the fermionic
velocity vanishes along the planes orthogonal to the direction
of the vertices of the reciprocal lattice. This result remains
valid also for massive quarks, since the effect of the quark
mass can be accounted for by reducing v (Casalbuoni, De
Fazio et al., 2002).
Regarding the FF condensate we take the direction of the

Cooper pair total momentum 2q along the z axis. In this case,
the quasiparticle spectrum has the analytical expression

E � ¼ qvz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
; (71)

where the quasiparticle energies are computed from the
corresponding Fermi energies μu;d. Equation (71) is the
dispersion law of quasiparticle (E � ≥ 0) or hole states
(E � < 0). As for the case of the strip and the fcc, the
dispersion law depends on the considered direction in coor-
dinate space. However, contrary to what happens for real
crystalline structures, in the FF phase there are directions
along which the dispersion laws are gapped and directions
along which the dispersion laws are gapless.
The zeros of the dispersion laws are located, for a given

value of cos ϑ, at

ξ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqv cos ϑÞ2 − Δ2

q
; (72)

and therefore for Δ=qv > 1 both gapless modes disappear.

2. Specific heat of the Fermi quasiparticles

The contribution of the Fermi quasiparticles to the specific
heat per unit volume is given by

cV ¼ 2
X
j

Z
d3p
ð2πÞ3 Ej

∂nðEj; TÞ
∂T

; (73)

where nðEj; TÞ is the Fermi distribution function and the sum
is over all fermionic modes. Considering the low temperature
range, T ≪ Δ, which is relevant for astrophysical applica-
tions, and using Eq. (59) one obtains for a generic two-flavor
crystalline structure

FIG. 7 (color online). Velocity of the fermionic quasiparticles in the BCC crystalline structure (left panel) and in the FCC crystalline
structure (right panel) as a function of the polar angles ϑ and φ, for 2Δ=ðqvÞ ¼ 0.3.
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cV ¼ 4μ2T
3

Z
dΩ
4π

1

cðvÞ þ
2μ2

3
T; (74)

where the first and second addenda correspond to the con-
tribution of the paired and unpaired quarks, respectively. Note
that both contributions are linear in T, because all degrees of
freedom have a linear dispersion law at small momenta. This
expression can be evaluated in closed form for the strip
(Casalbuoni et al., 2003)

cðstripÞV ¼ 4μ2T
3

1F2ð − 1=2; 1=2; 1; ðΔ=qvÞ2Þ þ 2μ2

3
T; (75)

where 1F2 denotes the generalized hypergeometric function
(Gradshteyn and Ryzhik, 1980). Different from the analysis of
Larkin and Ovchinnikov (1964), here v is not small and we
can take Δ=qv → 0 near the second-order phase transition.
Since for small Δ=qv one has 1F2ð − 1=2; 1=2; 1; ðΔ=qvÞ2Þ≃
1 − ðΔ=qvÞ2, it is easily seen that the normal Fermi liquid
result is obtained for Δ ¼ 0. On the other hand, for non-
vanishing Δ, the specific heat turns out to be smaller.
In the case of the FF state, the dispersion law of the

quasiparticles is given by Eq. (71) and using Eq. (73) one
obtains that in the small temperature limit (T ≪ Δ) and for
Δ < q

cðFFÞV ≃ 4μ2T
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

ðqvÞ2

s
þ 2μ2

3
T: (76)

The paired quark contribution depends linearly on temper-
ature because the quasiparticle dispersion law (71) gives rise
to gapless modes when Δ=qv < 1. There is also an additional
contribution to the specific heat due to gapped modes, but this
contribution is exponentially suppressed with the temperature
and has not been reported in Eq. (76).

E. Smearing procedure and HDET approximation for two-flavor
QCD

In Sec. II.C.2 we discussed the GL expansion of the free
energy for various CCSC phases. Since the GL expansion has
several limitations and is reliable when Δ=δμ is small, it is
useful to derive a different approximation scheme. In
Sec. II.D.1 we presented an approximation allowing us to
deal with the dispersion law of fermionic quasiparticles close
to the gapless momentum. However, this method cannot be
used for evaluating the free energy of the system or the low-
energy Lagrangian. For these purposes a different approxi-
mation named the smearing procedure can be used. This
approximation, developed by Casalbuoni et al. (2004) within
the HDET framework, is valid when Δ=δμ is large, and is thus
complementary to the GL expansion.

1. Gap equations

The mean field Lagrangian term describing condensation in
any CCSC phase can be written as follows:

LΔ ¼ − 1

2
½ψα

i Cγ5ψ
β
jΔ

αβ
ij ðxÞ þ H:c:� − Δ�ðxÞΔðxÞ

G
; (77)

where Δαβ
ij ðxÞ is the pertinent gap parameter and hereafter we

indicate the NJL coupling constant in the diquark channel with
G. We define the smearing procedure considering in the first
place the FF phase, with Δαβ

ij ðxÞ given in Eq. (41). Although
this case can be solved exactly, it is useful to consider it
to fix the notation and to introduce some definitions to be used
later on. We consider Cooper pairing of the massless up and
down quarks, chemical potential μu, μd, and we define μ ¼
ðμu þ μdÞ=2 and δμ ¼ jμu − μdj=2 ≪ μ.
The calculation can be simplified using the HDET approxi-

mation (Beane, Bedaque, and Savage, 2000; Hong, 2000a,
2000b; Casalbuoni, Gatto, and Nardulli, 2001; Nardulli, 2002;
Schafer, 2003a). We Fourier decompose the fermionic fields
as follows:

ψα
i ðxÞ ¼

Z
dΩ
4π

e−iμv·x½ψα
i;vðxÞ þ ψα−

i;v ðxÞ�; (78)

where v is a unit three-dimensional vector whose direction is
integrated over. ψα

i;vðxÞ [ ψα−
i;v ðxÞ] are positive (negative)

energy projections of the fermionic fields with flavor i and
color α indices, as defined by Casalbuoni, Gatto, Mannarelli,
and Nardulli (2001) and Nardulli (2002). Note that these fields
are written in a mixed notation, meaning that they depend both
on the space coordinates and on the unit vector v, which points
to a particular direction in momentum space. Since only
quasiparticles and quasiholes live close to the Fermi surface,
they are the only relevant degrees of freedom. Antiparticles
decouple and their contribution is suppressed by powers of
1=μ. The three-dimensional momentum of a fermion is written
as ðμþ ξÞv, with ξ representing the “residual” momentum
component. The integration over momentum space is sepa-
rated into an angular integration over v and a radial integration
over−δ ≤ ξ ≤ δ. The cutoff δmust be taken smaller than μ but
much larger than the gap in the homogeneous phase and δμ;
see Fig. 1. At the leading order in 1=μ the free Lagrangian can
be written as

L ¼
Z

dΩ
4π

½ψα†
i;vðiV · ∂þ δμiÞψα

i;v�; (79)

where Vν ¼ ð1; vÞ, and we also define for later use
~Vν ¼ ð1;−vÞ. In the HDET approximation the Lagrangian
term in Eq. (77) for the FF phase turns into

LΔ ¼ − 1

2

�Z
dΩ
4π

Δαβ
ij ψ

αT
i;−vCγ5ψ

β
j;v þ H:c:

�
− Δ2

G
; (80)

and the zero-temperature gap equation can be written as

1 ¼ Gρ
2

Z
dΩ
4π

Z
δ

0

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p ½1 − θð−EuÞ − θð−EdÞ�; (81)

where ρ ¼ 4μ2=π2 is the density of states in two-flavor QCD.
The quasiparticle dispersion laws have been obtained in
Eq. (71), but energies are now measured from the common
energy level μ, and therefore

Eu;d ¼ � δμ ∓ q · vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
: (82)
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In Eq. (81) the contribution of hole excitations is taken into
account simply multiplying the contribution of quasiparticles
times 2. We observe that in general

1 − θð−xÞ − θð−yÞ ¼ θðxÞθðyÞ − θð−xÞθð−yÞ; (83)

and since Eu and Ed cannot be simultaneously negative, then

1 − θð−EuÞ − θð−EdÞ ¼ θðEuÞθðEdÞ; (84)

so the integration in Eq. (81) is over a restricted region named
the pairing region (PR), defined by

PR ¼ fðξ; v · nÞjEu > 0 and Ed > 0; ξ ≤ δg: (85)

More explicitly, the pairing region is defined by the condition

max

�
−1; zq −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
q

�

< v · n < min

�
1; zq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
q

�
; (86)

with

zq ¼
δμ

q
: (87)

From the above definition it follows that for small values of Δ
and ξ the pairing region is centered at ϑq ¼ arccos zq, has an
angular width of order Δ=q and a thickness of order Δ;
see Fig. 5.
Thus, Eq. (81) can be written in a different way,

Δ ¼ Gρ
2

Z Z
PR

dΩ
4π

dξ
Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ Δ2
p

¼ Gρ
2

Z
dΩ
4π

Z
δ

0

dξ
Δeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ Δ2
eff

p ; (88)

where Δeff ≡ Δeffðv · n; ξÞ is defined as

Δeff ¼ ΔθðEuÞθðEdÞ ¼
�Δ for ðξ; v · nÞ ∈ PR

0 elsewhere:
(89)

The above procedure defines the smearing procedure for the
FF phase; it can be extended to the case of P plane waves,
Eq. (46), generalizing the results of the previous equations,
assuming that in the mean field Lagrangian one can substitute
Δ with ΔEðv; p0Þ, where

ΔEðv; p0Þ ¼
XP
m¼1

Δeffðv · nm; p0Þ; (90)

meaning that ΔE ¼ nΔ, where n ¼ 1;…; P. We can thus
generalize the pairing region to

Pn ¼ fðv; ξÞjΔEðv; ϵÞ ¼ nΔg: (91)

Note that in this equation we have made explicit the
dependence on the energy p0 instead of that on the residual
momentum, because the pole position is in general in

ϵn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ n2Δ2

p
: (92)

Correspondingly, the gap equation is

PΔ ¼ i
Gρ
2

Z
dΩ
4π

Z
dp0dξ
2π

ΔEðv; p0Þ
p2
0 − ξ2 − Δ2

Eðv; p0Þ
; (93)

which generalizes Eq. (88). The origin of the factor P on the
left-hand side of this equation is as follows. The Lagrangian
contains the term

Δ�ðxÞΔðxÞ
G

; (94)

which, when averaged over the cell, gets nonvanishing
contribution only from the diagonal terms in the double
sum over the plane waves and each plane wave gives a
separate contribution.
The energy integration is performed by the residue theorem

and the phase space is divided into different regions according
to the pole positions. Therefore the gap equation turns out to
be given by

PΔ ln
2δ

Δ2SC
¼

XP
n¼1

Z Z
Pn

dΩ
4π

dξ
nΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ n2Δ2
p ; (95)

where we have used the NJL gap equation

Δ2SC ¼ 2δ exp

�
− π2

2Gμ2

�
; (96)

for relating the NJL coupling G to the 2SC gap parameter and
the momentum cutoff. The first term in the sum, correspond-
ing to the region P1, has P equal contributions with a
dispersion law equal to the FF case. This can be interpreted
as a contribution from P noninteracting plane waves. In the
other regions the different plane waves have an overlap. Since
the definition of the regions Pn depends on the value of Δ,
their determination is part of the problem of solving the gap
equation.
Stated in a different way, in the smearing procedure the

dispersion relation of the quasiparticles has several branches
corresponding to the values nΔ, n ¼ 1;…; P. Therefore, the
following interpretation of the gap equation (95) can be given.
Each term in the sum corresponds to one branch of the
dispersion law, i.e., to the propagation of a gapped quasipar-
ticle with gap nΔ, which is defined in the region Pn. However,
the regions Pn do not represent a partition of the phase space
since it is possible to have at the same point quasiparticles
with different gaps.

2. Numerical results: Free energy computation

In Table I we report the results obtained in the CC limit
(δμ ¼ δμ1 ¼ Δ2SC=

ffiffiffi
2

p
) for four crystalline structures, respec-

tively, the FF (P ¼ 1), the strip (P ¼ 2), the octahedron (bcc)
(P ¼ 6), and the fcc (P ¼ 8). The table shows that, among the
four considered structures, the favored one at δμ ¼ δμ1 is the
octahedron, which, however, does not have the largest gap Δ.
The gap parameter determines the extension of the pairing
regions [see Eq. (86)], but a free energy gain may result from
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having many small nonoverlapping pairing regions, as well.
Indeed, the strip has the largest gap parameter, but not the
largest free energy, presumably because the pairing occurs
only in four large ribbons (two for each vectors qm; see the
right panel of Fig. 5). Indeed, as shown in the previous section,
the width and the thickness of the ribbons are proportional to
Δ. For example, in the octahedron pairing occurs in smaller
ribbons, but there are twelve pairing regions, which give a
large contribution to the free energy.
For the case δμ ≠ δμ1, we plot in Fig. 8 the free energy of

the octahedron (dashed line) and the fcc (full line) structures
as a function of δμ=Δ2SC. The octahedron is the favored
structure up to δμ≃ 0.95Δ2SC; the fcc structure is favored in
the range 0.95Δ2SC ≲ δμ≲ 1.32Δ2SC; for larger values of δμ
the normal phase becomes favored. The fcc gap parameter is
smaller than the octahedron gap parameter for any value of δμ,
but the fcc benefits of more pairing regions than the
octahedron.
In Table II we report various numerical results for each

crystalline structure at the transition point from the CCSC
phase to the normal phase: the value of δμ2, the computed
order of the phase transition between the crystalline phase and
the normal phase, the value of zq [see Eq. (87)], and of the
discontinuity in Δ=Δ2SC at δμ ¼ δμ2 − 0þ.
In the smearing approximation both the order of the

transition and the point where the transition occurs are

different from those obtained within the GL approximation.
However, the difference in δμ2 is ∼10% and in zq is ≃17% at
most (in GL for any structure zq ≈ 0.83). On the other hand,
in agreement with the GL results, the structure with six plane
waves is energetically favored over the structure with two
plane waves or with one plane wave. Therefore, increasing the
pairing region leads to an increase of the free energy gain
making the configuration more stable. An interesting result of
the smearing procedure is that with increasing δμ the
configuration with six plane waves is superseded by the
structure with eight plane waves, which has a lower Δ but a
larger number of pairing regions. This has to be contrasted
with the result of the GL approximation (see Sec. II.C.2),
where the octahedron is always disfavored with respect to the
fcc (but one should consider that the GL free energy of the fcc
is not bounded from below).

F. Effective Lagrangian of phonons and contribution
to the specific heat

The low-energy spectrum of a periodically modulated
condensate, besides Fermi quasiparticles, consists also of
massless NGBs which originate from the spontaneous break-
ing of translational invariance. For two-flavor quark matter in
any crystalline phase, these are the only NGBs, because no
global symmetry of the system is spontaneously broken. Since
the modulation of the condensate is associated with a
crystalline structure, these NGBs describe the vibrations of
the crystal and are for this reason called phonons. These
phonons are not the standard pressure oscillations of a fluid,
rather they are akin to second sound in standard superfluids,
because they are related to chemical potential oscillations; see,
e.g., Anglani, Mannarelli, and Ruggieri (2011). In more detail,
phonons are small position and time dependent displacements
of the condensate: in the presence of phonons, then,

ΔðxÞ → ΔuðxÞ ¼ Δðx − uðxÞÞ; (97)

and one may define a set of three dimension-one scalar field
ϕðiÞ by

ϕðiÞ

fϕ
¼ 2qui; (98)

with i ¼ 1, 2, 3, where fϕ is the corresponding decay
constant. In the following we refer to both u and ϕ as the
phonons. For any crystalline structure one can deduce
the general expression of the phonon Lagrangian from the
symmetries of the system, but the various coefficients have to
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δµ/∆2SC
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 Ω−Ω  n
ρ∆2
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FIG. 8 (color online). Free energy as a function of δμ=Δ2SC, for
the octahedron (dashed line) and the fcc (solid line). Free energies
are measured respect to the normal phase. The octahedron is the
favored structure up to δμ≃ 0.95Δ2SC. In the range 0.95Δ2SC ≲
δμ≲ 1.32Δ2SC the fcc is favored. For larger values of δμ the
normal phase is energetically favored. In this plot the values of
δμ, zq, and Δ are those that minimize the free energy. Adapted
from Casalbuoni et al., 2004.

TABLE II. Values of δμ2, the order of the phase transition between
the CCSC phase and the normal phase, zq ¼ δμ=q, and the
discontinuity of Δ=Δ2SC at the phase transition point for different
crystalline structures. See the text for more details. Adapted from
Casalbuoni et al., 2004.

P δμ2=Δ2SC Order zq Δ=Δ2SC

1 0.754 II 0.83 0
2 0.83 I 1.0 0.81
6 1.22 I 0.95 0.43
8 1.32 I 0.90 0.35

TABLE I. The values of zq ¼ δμ=q, the gap, and the free energy at
δμ ¼ δμ1 ¼ Δ2SC=

ffiffiffi
2

p
for different crystalline structures. See the text

for more details. Adapted from Casalbuoni et al., 2004.

P zq Δ
Δ2SC

Ω−Ωn
ρΔ2

2SC

1 0.78 0.24 −3.6 × 10−3
2 1.0 0.75 −0.16
6 0.9 0.28 −0.22
8 0.9 0.21 −0.18
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be evaluated with a microscopic theory. Calculation of the
low-energy coefficients can be done using a NJL-like model
with a smearing procedure, as in Casalbuoni, Gatto,
Mannarelli, and Nardulli (2001) and Casalbuoni, Fabiano
et al. (2002), or by a GL expansion, as in Mannarelli,
Rajagopal, and Sharma (2007). These coefficients are related
to the elastic properties of the crystalline structure. For the
two-flavor CCSC phases the elastic properties do not seem to
be of particularly interest, because not all quarks condense and
thus the system should not behave as a crystal under an
external stress. However, as we discuss in Sec. III.D, the shear
modulus of various three-flavor crystalline structures is
actually associated with a form of rigidity of quark matter.
The GL expansion of Mannarelli, Rajagopal, and Sharma

(2007) provides an expression of the leading order (LO)
Lagrangian density in the derivative expansion valid for a
generic set fng of unit vectors

LΔ2 ½u� ¼ 1

2

2μ2jΔj2
π2ð1 − z2qÞ

X
m

½∂0ðnm · uÞ∂0ðnm · uÞ

− ðnm · ∂Þðnm · uÞðnm · ∂Þðnm · uÞ�; (99)

with zq given in Eq. (87). ThisOðΔ2Þ Lagrangian includes the
displacement fields at the second order and therefore the
interaction terms are missing. We see in Sec. III.D.1 how this
expression can be derived from a NJL-like model in the more
complicated case of the three-flavor CCSC phase.
In the FF phase there is one single phonon field ϕ and one

privileged direction corresponding to q. Given the space
symmetries of the system, the LO Lagrangian density in
the momentum expansion is given by

L ¼ C
2f2φ

½ _φ2 − v2∥ð∇∥φÞ2 − v2⊥j∇⊥φj2�; (100)

where ∇∥ ¼ n · ∇, ∇⊥ ¼ ∇ − n∇∥, and n is the unit vector
parallel to q. The breaking of the rotational symmetry in the
underlying microscopic theory implies that the velocity of
propagation in the direction parallel to n, v∥, can be different
from the velocity of propagation in the direction orthogonal to
n, v⊥. The dispersion law, relating the phonon quasimomen-
tum k and energy ω, is given by

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2⊥ðk2x þ k2yÞ þ v2∥k

2
z

q
; (101)

and the contribution of phonons to the specific heat at small
temperatures turns out to be

cðFFÞV ¼ 8π2

15v2⊥v∥
T3 ðphononsÞ: (102)

Casalbuoni et al. (2003), using the smearing procedure,
obtained that C ¼ μ2k2r , with kr ∝ δμ2=q2 a coefficient arising
within the smearing procedure. The obtained values of the
velocities are

v2∥ ¼ cos2ϑq ≃ 0.7; v2⊥ ¼ 1
2
sin2ϑq ≃ 0.15; (103)

with ϑq defined in Eq. (51).

Since the strip has the same space symmetries of the FF
phase and one phonon field, the Lagrangian density has the
same formal expression reported in Eq. (100), but the values
of the longitudinal and transverse velocities can be different.
Thus, for the strip the expression of the specific heat is
formally the same reported above. From Eq. (99) we can see
that the OðΔ2Þ GL expansion gives v∥ ¼ 1 and v⊥ ¼ 0 for
both the FF and the strip. Unfortunately, higher order
corrections in Δ of the phonon velocities have not been
computed within the GL expansion, hindering the comparison
with Eq. (103). Note, however, that both methods give a FF
low-energy Lagrangian with the same O(2) symmetry of the
microscopic system.
The low-energy oscillations of more complicated crystals

can in principle be described in a similar way. As an example,
for the FCC structure the oscillations are described by three
phonon fields ϕðiÞ and the LO Lagrangian density compatible
with the fcc symmetry is given by

L ¼ C
2f2ϕ

� X
i¼1;2;3

ð _ϕðiÞÞ2 − a
X

i¼1;2;3

j∇ϕðiÞj2 − b
X

i¼1;2;3

∂iϕ
ðiÞ
∂iϕ

ðiÞ

− 2c
X

i;j¼1;2;3

∂iϕ
ðiÞ
∂jϕ

ðjÞ
�
; (104)

where a, b, and c are three coefficients to be determined by the
microscopic theory. The smearing procedure gives

a ¼ 1=12≃ 0.08; b ¼ 0;

c ¼ ð3cos2ϑq − 1Þ=12≃ 0.09:
(105)

Since for vanishing b the Lagrangian in Eq. (104) is rota-
tionally invariant, it has a larger symmetry than the underlying
microscopic theory, which has the FCC symmetry. A possible
explanation is that being phonons long wavelength fluctua-
tions of the crystal, the low-energy parameters are given by an
average over the cubic structure and thus are not sensitive to
the local modulation of the condensate. On the other hand,
substituting the appropriate unit vectors in the OðΔ2Þ GL in
Eq. (99) one obtains a ¼ c ¼ −b=2 ¼ 1=3. Thus, according
to the GL analysis the low-energy theory and the microscopic
theory have the same FCC symmetry. This might be an artifact
of the GL expansion, indeed in the GL analysis the low-energy
parameters are obtained first expanding the action in Δ and
then in ϕ, but it is not obvious that the two expansions
commute. Nevertheless, note that the smearing procedure
gives a≃ c, compatible with the GL result a ¼ c. In principle
the additional term ∂iϕ

ðjÞ
∂jϕ

ðiÞ should be included [see, e.g.,
Leutwyler (1997)], but here it is assumed that it can be recast
in the term proportional to c by integration by parts.
The specific heat contribution of the phonons in the fcc

structure has been evaluated numerically by Casalbuoni et al.
(2003), and the result is

cðfccÞV ≈ 88π2T3 ðphononsÞ: (106)
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G. Chromomagnetic stability of the two-flavor crystalline phase

As discussed in Sec. II.B.1, the 2SC phase is chromomag-
netically unstable for δμ > δμ1. This instability could be
interpreted as the tendency of the system to generate a net
momentum of the quark pair, as shown by Giannakis and Ren
(2005a). Therefore, the chromomagnetic instability can be
interpreted as a tendency to develop quark currents, which in
turn is equivalent to the FF phase, where diquark carry
momentum 2q.
In this section, we review the results of Giannakis and Ren

(2005a), which relate the Meissner mass of the 8̄ mode of the
2SC to the momentum susceptibility and also the computation
of the Meissner tensor in the crystalline phases (Giannakis,
Hou, and Ren, 2005; Giannakis and Ren, 2005a, 2005b;
Reddy and Rupak, 2005).

1. Momentum susceptibility

The response of the thermodynamic potential of the 2SC
phase to a small momentum of the quark pair can be computed
absorbing the phase of the condensate into the phase of the
quark fields; the net effect is a shift of each quark momentum
by q; see Sec. II.C.1. Therefore, the one loop effective action
(in the presence of background gauge fields) can be computed
using the same steps that lead to Eq. (21); see also the
discussion after Eq. (44). Expanding the thermodynamic
potential around q ¼ 0 one has, at the lowest order,

Ω ¼ Ω2SC þ 1
2
Kq2; (107)

where the momentum susceptibility is given by

K ¼ i
6

X3
i¼1

Z
d4p
ð2πÞ4 Tr½ΓiSðpÞΓiSðpÞ�; (108)

with SðpÞ the quark propagator in momentum space and Γ ¼
diagðγ;−γÞ the appropriate vertex factor. Note that we are
considering an expansion of the thermodynamic potential for
small q, therefore the momentum susceptibility does not
depend on q, meaning that SðpÞ is the 2SC quark propagator,
which can be obtained inverting Eq. (20). The momentum
susceptibility has an expression similar to the space compo-
nent of the 2SC polarization tensor [see Eq. (33)], at vanishing
momentum. In particular, it is possible to show that it is
proportional to the squared Meissner mass of the 8̄ mode. The
reason is that the only nonvanishing contribution both to the
momentum susceptibility and to the Meissner mass of the 8̄

mode are determined from the red-green color sector (blue
quarks do not carry a condensate and do not mix with red and
green quarks). But in this color sector T 8̄ is proportional to the
identity and thus the corresponding vertex factor is propor-
tional to Γ. A more detailed discussion can be found in
Giannakis and Ren (2005a), where it was shown that

M2
M;8̄ ¼

1

12

�
g2s þ

e2

3

�
K; (109)

where the mass of the 8̄ mode in the 2SC phase is given
in Eq. (39).

At the transition point between the 2SC and g2SC phases,
δμ ¼ Δ, one finds M2

M;8̄ < 0 and thus Eq. (109) implies that
the system is unstable toward the formation of pairs with
nonvanishing net momentum; indeed a negative K in
Eq. (107) implies that there is a gain in free energy if
q ≠ 0. Therefore, the chromomagnetic instability of the 8̄

mode leads naturally to the FF state.
Before turning to the computation of the Meissner tensor in

the crystalline phase, we briefly comment on the absence of
total currents induced by the net momentum of the quark pair.
The value of the total momentum is determined by minimizing
the free energy, thus ∂Ω=∂q ¼ 0, and the stationarity con-
dition is equivalent to

hψ̄γψi ¼ 0; (110)

which implies that no baryon matter current is generated in the
ground state. Analogously, one can show (Giannakis and Ren,
2005a) that electric and color currents vanish as well. In
particular, the residual SUð2Þc ⊗ Uð1Þ ~Q symmetry implies
that hψ̄ΓAψi ¼ 0 for A ≠ 8, with ΓA defined in Eqs. (34) and
(35); moreover, for A ¼ 8 one finds

J8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2s þ e2

p
6

hψ̄γψi; (111)

which vanishes because of the stationary condition, Eq. (110).
Therefore, no total current is generated in the FF state.

2. Meissner masses in the FF phase

Since the FF phase has the same gauge symmetry breaking
patternof the2SCphase, it has fivemassivegluons.Computation
of the Meissner tensor of gluons in the two-flavor FF phase has
beendonebyGiannakis,Hou, andRen(2005)andGiannakis and
Ren (2005b), neglecting neutrality conditions and considering
the isospin chemical potential δμ ¼ μe=2 as a free parameter.
Since there exists a privileged direction, the Meissner mass
becomes direction dependent and is in general decomposed into
longitudinal and transverse components with respect to q. The
Meissner tensors of the gluon fields with adjoint color a ¼
4;…; 7 are all equal and can be written as

ðM2
M;4Þij ¼ A

�
δij − qiqj

q2

�
þ B

qiqj
q2

: (112)

The Meissner tensor of the 8̄ mode can be decomposed in a
similar way

ðM02
M;8̄Þij ¼ C

�
δij − qiqj

q2

�
þD

qiqj
q2

: (113)

The coefficients A and C are called the transverse Meissner
masses; similarly,B andD are the longitudinalMeissnermasses.
As discussed in the previous section, the mass of the rotated
eighth gluon is related to the variation of the free energy with
respect to q. In the FF phase it has been shown by Giannakis,
Hou, and Ren (2005) that the precise relation is the following:
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C ¼ 1

12

�
g2s þ

e2

3

�
1

q
∂Ω
∂q

; (114)

D ¼ 1

12

�
g2s þ

e2

3

�
∂
2Ω
∂q2

: (115)

If the phasewithq ≠ 0 is aminimumof the free energy, thenboth
the conditions ∂Ω=∂q ¼ 0 and ∂2Ω=∂q2 > 0 must be satisfied.
Thus,C ¼ 0 andD > 0 at the minimum. As a consequence, the
Meissner tensor of the 8̄ mode is purely longitudinal and
positively defined.
The coefficients A, B, and D can be computed analytically.

We refer the interested reader to the original article (Giannakis
and Ren, 2005b). Here it is enough to consider the small gap
expansion (Giannakis and Ren, 2005b; Ciminale et al., 2006);
in this approximation scheme one has

A ¼ g2sμ2

96π2
Δ4

δμ4ðz−2q − 1Þ2 ; (116)

B ¼ g2sμ2

8π2
Δ2

δμ2ðz−2q − 1Þ ; (117)

D ¼ g2sμ2

6π2

�
1þ e2

3g2s

�
Δ2

δμ2ðz−2q − 1Þ : (118)

The message of the above equations is that the Meissner tensor
is positively defined for the one plane wave phase, within the
small gap parameter approximation. Giannakis and Ren
(2005b) argued that for a multiple plane wave structure the
situation will be better (within the small gap expansion). As a
matter of fact, at the Δ2=δμ2 order, the Meissner tensor is
purely longitudinal, and the longitudinal components are
positive at the minimum of the free energy. Therefore, if
the expansion in plane waves contains at least three linearly
independent momenta, the Meissner tensor will be positive
definite, being additive with respect to different terms of the
plane wave expansion to order Δ2=δμ2. This has been
explicitly checked by Ciminale et al. (2006).
Besides, Giannakis and Ren (2005b) performed the numeri-

cal computation of the Meissner masses, beyond the small gap
expansion. The results can be summarized as follows. First,
the FF phase is found to be more stable than the 2SC phase in
the LOFF window

0.706Δ2SC ≲ δμ≲ 0.754Δ2SC: (119)

Within this range, the LOFF gap window is

0 < Δ ≲ 0.242Δ2SC; (120)

and the longitudinal Meissner masses B and D turn out to be
positive within the range

0 < Δ≲ 0.84Δ2SC; (121)

moreover, the transverse mass A of the gluons with a ¼
4; :::::; 7 turns out to be positive within the range

0 < Δ≲ 0.38Δ2SC: (122)

Since the LOFF window for the FF state (120) is contained in
both the intervals (121) and (122), the FF state is free from the
chromomagnetic instability, as long as it is energetically
favored with respect to the homogeneous phase.

H. Solitonic ground state

The analysis of various crystalline phases has shown that a
periodic structure is energetically favored for mismatched
Fermi spheres. Nickel and Buballa (2009) proposed a gen-
eralization of the crystalline structure for exploring whether
the more complicated periodic condensate [we do not report
the color-flavor structure because it is the same as Eq. (41)]

ΔðzÞ ¼
X
k∈Z

Δq;ke2 ikqz; (123)

may be energetically favored with respect to standard crys-
talline structures. The wave vector q is taken along the z axis,
thus the condensate corresponds to a band structure along the
z direction. Assuming that the condensate is real [which is the
assumption of Nickel and Buballa (2009)], one has Δq;k ¼
Δ�

q;−k and Eq. (123) can be rewritten as

ΔðzÞ ¼ 2
X∞
n¼1

Δn cosð2nqzÞ: (124)

Hereafter we refer to this phase as the solitonic phase. Written
in this form, it is clear that the ansatz is a generalization of the
strip structure and amounts to considering higher harmonics
contributions to the gap function, which are not included in
the strip.
For any value of δμ, the ground state in Nickel and Buballa

(2009) is determined using a two-step procedure. First, the
magnitude of q in Eq. (124) is fixed, and the profile ΔðzÞ is
determined by solving the gap equation. Then, among several
choices for q, the physical value corresponds to the one
minimizing the free energy. In the left panel of Fig. 9, which
is from Nickel and Buballa (2009), the plotted profile ΔðzÞ is
obtained with the numerical solution of the gap equation at
fixed value of q. In the plot, δμ is fixed to the numerical value
0.7Δ2SC with Δ2SC ¼ 80 MeV; but changing δμ does not
change the picture qualitatively. For q of the same order of
Δ2SC, the shape of the gap function is very close to that of the
strip. In this case, the largest contribution to the gap comes from
the lowest order harmonic n ¼ 1 in Eq. (124). However, for
small values of q=Δ2SC, the solution of the gap equation has a
solitonic shape. This is evident in the case q ¼ 0.1Δ2SC, in
which ΔðzÞ ≈ � Δ2SC for one half period, then suddenly
changes its sign in a narrow interval. In this case, the higher
order harmonics play a relevant role in the gap function profile.
In the right panel of Fig. 9, the physical value of q as a

function of δμ is plotted. In the window in which q ¼ 0, the
ground state is the homogeneous BCS state. At the critical
value δμ≡ δμc ≈ 0.695Δ2SC, the ground state has q ≠ 0. This
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signals the transition to the inhomogeneous phase. Since q can
be arbitrarily small in proximity to the transition point, from
the left panel of Fig. 9 we see that the ground state will consist
of a solitonic structure for δμ ≈ δμc. As δμ is increased, the
physical value of q increases as well. Therefore, again from
the left panel of the figure, we see that the solitonic structure
will continuously evolve into the strip structure.
In Fig. 10, from Nickel and Buballa (2009), the BCS free

energy (solid line) and the solitonic phase (dashed line) are
plotted as a function of δμ. The dotted line corresponds to the
free energy of the FF phase. The baseline corresponds to the
free energy of the normal phase. With increasing mismatch a
second-order phase transition takes place from the BCS to the
solitonic structure at a value δμ=ΔBCS ≃ 0.7 which is smaller
than the value at which the transition from the BCS phase to
the FF phase takes place. On the other hand, the transition
from the solitonic phase to the normal one takes place almost
simultaneously with the transition from the FF phase to the
normal one.
In the case of the FF phase, the transition to the BCS state is

first order and to the normal phase is second order. On the
other hand, the transition from the solitonic phase to the BCS
phase is second order. This is possible because the gap

function (124) naturally interpolates between the homo-
geneous state, corresponding to a single soliton with infinite
period, and the cosine-shaped solution.
The transition from the solitonic phase to the normal phase

is found to be of the first order, in agreement with the results of
the smearing procedure for the strip (Casalbuoni et al., 2004);
see Table II. At this transition point, the profile of the gap
function is of the cosine type, i.e., the strip profile dis-
cussed above.
The results of this analysis are in disagreement with those of

the GL expansion (Larkin and Ovchinnikov, 1964; Bowers
and Rajagopal, 2002), which predicts that the transition from
the strip to the normal phase is second order. Since the GL
expansion is expected to be exact in proximity of a second-
order phase transition, it is important to understand the origin
of the discrepancy among the GL result and that of Nickel and
Buballa (2009) and the smearing procedure. To this end,
Nickel and Buballa (2009) computed the free energy for a gap
function ΔðzÞ ¼ Δ cosð2qzÞ with a fixed value of q, as is
customary in the GL studies. Their analysis reveals that in this
case, beside the local minimum of Ω located at small values of
Δ, and which is captured by the GL expansion, a global
minimum appears for larger values of Δ. Then they argued
that to capture this true minimum, which is responsible for the
first-order transition to the normal phase, terms of at least
eighth order in the GL expansion, which are usually neglected,
should be included. In a subsequent paper Nickel (2009)
discussed the emergence of a solitonic phase for lower
dimensional modulations in the NJL model and the quark-
meson model. His results confirm the replacement of the first-
order transition of the phase diagram of the homogeneous NJL
phase by two transition lines of second order. These lines are
the borders of an inhomogeneous phase and they intersect at
the critical point. An interesting point is the relation to the
chiral Gross-Neveu model (Gross and Neveu, 1974). A more
complete program would require the inclusion of higher
dimensional modulations of the inhomogeneity [as done by
Abuki, Ishibashi, and Suzuki (2012) for the chiral conden-
sates], and, as pointed out by Buballa and Nickel (2010),
simultaneous study of both superconducting and chiral
condensates.
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FIG. 9 (color online). Left panel: Profile for the gap function, at several values of q, obtained from the self-consistent solution of the gap
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FIG. 10 (color online). Free energy as a function of δμ, for the
BCS phase (solid line), FF phase (dotted line), and solitonic
phase (dashed line). Free energies are measured with respect to
the normal phase. From Nickel and Buballa, 2009.
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I. Condensed matter and ultracold fermionic systems

Fermionic systems consisting of two different “flavors”
with mismatched Fermi surfaces and inhomogeneous con-
densates are quite generic and appear in various contexts.
Particularly interesting are the population imbalanced super-
fluid (or superconducting) systems that can be realized and
studied in laboratory. Examples of these type are gases of cold
atoms, type-II cuprates, and organic superconductors. The
study of these systems is helpful for shedding light on various
aspects of superfluidity of asymmetric systems in a framework
under experimental control.
Of considerable importance for their similarity to quark

matter are ultracold systems consisting of fermions of two
different species corresponding to two hyperfine states of a
fermionic atom; see Giorgini, Pitaevskii, and Stringari (2008),
Ketterle and Zwierlein (2008), Radzihovsky and Sheehy
(2010), and Gubbels and Stoof (2012) for reviews. These
fermions have opposite spin and one can change the number
of up and down fermions at will. One of the most intriguing
aspects of these systems is that the interaction between
fermions can be tuned by employing a Feshbach resonance
(Chin et al., 2010), and therefore the crossover between the
BCS and BEC superfluid phases can be studied. This research
field has grown in an impressive way in the last two decades
and continuous progress in understanding and characterizing
the properties of these systems is under way; see, e.g., Muther
and Sedrakian (2002), Bedaque, Caldas, and Rupak (2003),
Gubankova, Vincent Liu, and Wilczek (2003), Liu and
Wilczek (2003), Carlson and Reddy (2005), Castorina
et al. (2005), Forbes McNeil et al. (2005), Yang (2005),
Bulgac, Forbes McNeil, and Schwenk (2006), Gubankova,
Schmitt, and Wilczek (2006), Mannarelli, Nardulli, and
Ruggieri (2006), Pao et al. (2006), Partridge et al. (2006),
Sheehy and Radzihovsky (2006), Son and Stephanov (2006),
Yang (2006), Zwierlein and Ketterle (2006), Zwierlein et al.
(2006), Bulgac and Forbes (2008), Rizzi et al. (2008), Sharma
and Reddy (2008), and Shin et al. (2008).
A mismatch between the populations of electrons in a

superconductor can also be produced by Zeeman splitting.
The magnetic field that couples with the spins of the electrons
can be an external one or an exchange field. However, an
external magnetic field couples with the orbital motion of the
electrons as well, destroying superconductivity or leading to
the creation of a vortex lattice structure.
In order to reduce the orbital effect one employs 2D super-

conductors, i.e., films of superconducting material or systems
with a layered structure, and an in-plane magnetic field
(Bulaevskiı̌, 1973). Good candidates for LOFF superconductors
of this type are heavy-fermion compounds like CeRu2 (Huxley
et al., 1993).Recently, interesting results have alsobeenobtained
with CeCOIN5 (Matsuda and Shimahara, 2007). Quasi-two-
dimensional organic superconductors (Uji et al., 2006) like
κ-(ET) or λ-(ET) salts, in particular, λ-ðBETSÞ2FeCl4, are
promising candidates for realizing the LOFF phase, as well.
High-Tc superconductors are good candidates as well.
As a final remark, we recall that the gapless CSC phases are

the QCD analog of a condensed matter phase, known as the
Sarma phase (Sarma, 1963; Gubankova, Vincent Liu, and
Wilczek, 2003; Liu and Wilczek, 2003; Forbes McNeil et al.,

2005), which are found to be unstable (Wu and Yip, 2003;
Gubankova, Schmitt, and Wilczek, 2006; Mannarelli,
Nardulli, and Ruggieri, 2006; Pao et al., 2006; Sheehy and
Radzihovsky, 2006; Gubankova, Mannarelli, and Sharma,
2010) in the weak coupling limit.

III. THE THREE-FLAVOR INHOMOGENEOUS PHASES

In Sec. II we discussed the crystalline inhomogeneous
phases that can be realized in two-flavor quark matter. A
plethora of possible structures have been analyzed by a
Ginzburg-Landau expansion and by the so-called smearing
procedure for determining the favored thermodynamic
state.
Here we extend the analysis to the three-flavor case which is

relevant if the effective strange quark mass Ms is not too
heavy. In compact stars Ms will lie somewhere between its
current mass of order 100 MeV and its vacuum constituent
mass of order 500 MeV, and therefore is of the order of the
quark number chemical potential μ, which is expected to be in
the range 400–500 MeV. Furthermore, deconfined quark
matter, if present in compact stars, must be in weak equilib-
rium and must be electrically and color neutral. All these
factors work to separate the Fermi momenta of the quarks and
thus disfavor the cross-species BCS pairing. Actually, as
discussed in Sec. I, quark matter must be in a color singlet,
however, it has been shown by Amore et al. (2002) that
projecting out color singlet states into color neutral states does
not lead to a large change of the free energy.
As a means to understand how the mismatch among Fermi

momenta is linked to β equilibrium and neutrality, consider
quark matter composed of u, d, and s quarks with no strong
interactions. We treat the strange quark mass as a parameter
considering sufficiently long time scales for which weak
equilibrium and electrical neutrality are relevant.
Since we are assuming that color interactions are absent, the

chemical potential of quarks is diagonal in the color indices
and the free energy of the system is given by

Ωunpairedðμ; μe;MsÞ ¼
3

π2

Z
PF
u

0

ðp − μuÞp2dp

þ 3

π2

Z
PF
d

0

ðp − μdÞp2dp

þ 3

π2

Z
PF
s

0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

s

q
− μsÞp2dp

þ 1

π2

Z
μe

0

ðp − μeÞp2dp; (125)

where the Fermi momenta are given by

PF
u ¼ μu; PF

d ¼ μd; PF
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −M2

s

q
: (126)

Weak equilibrium relates the chemical potentials of quarks
with different flavors as follows:

μu ¼ μ − 2
3
μe μd ¼ μþ 1

3
μe μs ¼ μþ 1

3
μe; (127)

and the electrical chemical potential is obtained from the
neutrality constraint
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∂Ω
∂μe

¼ 0: (128)

Solving Eq. (128) one determines μe and using Eqs. (126)
and (127) one obtains the values of PF

u , PF
d , and PF

s for the
electrically neutral unpaired phase. The effect of Ms is to
reduce the number of strange quarks, which must be com-
pensated by a larger number of down quarks to ensure
electrical neutrality. It follows that there is a hierarchy of
Fermi momenta

PF
s ≤ PF

u ≤ PF
d ; (129)

and in Fig. 11 we report the difference of the Fermi momenta
PF
d − PF

u and PF
u − PF

s as a function ofMs, for μ ¼ 500 MeV.
ForMs ≪ μ, the effect of a nonzero strange quark mass can

be taken into account by treating the strange quark as
massless, but with a chemical potential that is lowered by
M2

s=ð2μÞ from μþ μe=3. To the order M2
s=μ electric neutral-

ity, Eq. (128), requires that μe ≃M2
s=4μ. In this case

PF
d − PF

u ≃ PF
u − PF

s , and we need no longer to be careful
about the distinction between PF and μ, as we can simply
think of the three flavors of quarks as if they have chemical
potentials

μd ¼ μu þ 2δμ; μu ¼ pu
F; μs ¼ μu − 2δμ; (130)

with

δμ≡M2
s

8μ
; (131)

and we can write the chemical potential matrix as

μij;αβ ¼ δαβ ⊗ diagðμu; μd; μsÞij: (132)

The above results are strictly valid for unpaired matter;
indeed, if BCS pairing between quarks with different flavors
takes place, their Fermi momenta must be equal and the
electron chemical potential vanishes. As discussed in the two-
flavor case, the cross-species homogeneous pairing between
quarks on split Fermi spheres has a free energy cost propor-
tional to the corresponding chemical potential difference.

Since in the CFL phase quarks of all flavors and all colors
pair according with the condensate in Eq. (2), increasing the
value of δμ makes the CFL phase less energetically favored.
However, small values of the chemical potential difference,
i.e., ofMs, cannot disrupt the BCS pairing and the CFL phase
will be energetically favored. Nevertheless, when Ms is
sufficiently large, the mismatch between the Fermi momenta
becomes large disfavoring CFL pairing.
As shown in Fig. 11, for values of Ms comparable with μ

the strange quarks decouple; in this case only the 2SC phase
with the pairing between up and down quarks seems realiz-
able. However, as pointed out by Alford and Rajagopal
(2002), once the constraints of electrical and color neutrality
and β equilibrium are imposed, the 2SC phase turns out to be
strongly disfavored or even excluded at least at zero temper-
ature [for finite temperature evaluations see, e.g., Abuki
(2003)]. Alford and Rajagopal (2002), performing an expan-
sion in terms of the strange quark mass (at the leading
nontrivial order), found that whenever the 2SC phase is more
favored than unpaired matter, then the CFL is even more
favored. The point is that the CFL phase is extremely robust,
because it allows pairing between all the three-flavor species.
This analysis has been redone by Steiner, Reddy, and Prakash
(2002) evaluating the density-dependent strange quark mass
self-consistently. The results of Steiner, Reddy, and Prakash
(2002) almost confirm previous conclusions, finding the 2SC
favored in a very narrow region of density, that is likely to
disappear once the hadronic phase boundary is properly taken
into account. Note that these results are valid in the weak-
coupling approximation. Computations using NJL-like mod-
els with a stronger coupling (Abuki and Kunihiro, 2006;
Ruester et al., 2006a) (see also Sec. II.B) show that a large
portion of the phase diagram is occupied by the 2SC phase.

A. The gapless CFL phase

Given that the effect of nonzero strange quark mass and
electrical neutrality constraints is to pull apart the Fermi
spheres of different quark flavors, there is little motivation for
assuming the symmetric CFL pairing reported in Eq. (2).
Indeed, one might expect that a mismatch between the Fermi
momenta reflects in a reduction of the interaction channel and
thus in a reduction of the corresponding gap parameter.
Therefore, the gap parameters should now be flavor dependent
and one can consider the generalized pairing ansatz

h0jψα
iLψ

β
jLj0i ¼ −h0jψα

iRψ
β
jRj0i ∝

X3
I¼1

ΔIϵijIε
αβI; (133)

where Δ1, Δ2, and Δ3 describe d-s, u-s, and u-d Cooper
pairing, respectively. Alford, Kouvaris, and Rajagopal (2004),
(2005) studied the superconducting phase characterized by the
ansatz (133) with a NJL-like model at zero temperature [see
Fukushima, Kouvaris, and Rajagopal (2005) for a study at
nonvanishing temperature], considering the in-medium
strange quark mass as a free parameter, while the light quarks
are taken massless. The gap equations, coupled to the neutral-
ity conditions, have been solved and the corresponding free
energy has been determined. Besides the strange quark mass,
the final results depend on the quark chemical potential, which
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is fixed to the numerical value μ ¼ 500 MeV; moreover, the
strength of the NJL-like interaction is fixed by the value of
the homogeneous CFL gap ΔCFL. The numerical value
ΔCFL ¼ 25 MeV, corresponding to the weak-coupling
regime, has been chosen.
Some of the results of Alford, Kouvaris, and Rajagopal

(2004), (2005) are summarized in Fig. 12. In the left panel of
the figure, the solutions of the gap equations as a function of
M2

s=μ are plotted. As can be inferred from the figure, at
M2

s=μ ≈ 47:1 MeV, there is a continuous phase transition
between the CFL phase and a phase characterized by
Δ3 > Δ2 > Δ1 > 0. Note that the hierarchy of the gap
parameters is in agreement with the hierarchy of the Fermi
momenta splitting reported in Fig. 11, which substantiates the
reasoning presented above about the relation between mis-
matched Fermi momenta and gap parameters. Actually, the
mismatches of chemical potential are not only due to the finite
value of the strange quark mass, but as well as to the nonzero
values of the color chemical potentials μ3 and μ8, which,
however, do not overturn the hierarchy in Fig. 11.
The phase appearing at M2

s=μ ≈ 47:1 MeV is called the
gapless CFL, or gCFL, phase, and is the three-flavor analog of
the g2SC phase discussed in Sec. II.B. The symmetry break-
ing pattern is the same of the CFL phase [see Eq. (3)], but the
spectra of some fermionic excitations are gapless (Alford,
Kouvaris, and Rajagopal, 2004, 2005; Kryjevski and Schfer,
2005). The possibility of a gapless CFL superconductor was
first argued by Alford, Berges, and Rajagopal (2000a), where
a toy model was used to infer the effect of a heavy Ms on the
quasiparticle spectrum and it was found that if the condensates
of light and strange quarks are below a certain critical value,
there is not a minimum excitation energy in the quasiparticle
spectrum. As discussed in Sec. II.A, the mechanism at the
origin of gapless modes in a superconductor is quite general,
and is due to a mismatch δμ between condensing fermions of
the order of Δ.
In three-flavor quark matter the situation is complicated by

the presence of several interaction channels and three chemi-
cal potential differences proportional to μe, μ3, and μ8. Thus,
in the gCFL phase the dispersion laws are more complicated

than those reported in Eq. (10). However, the qualitative result
is rather similar, as gapless excitations appear in the spectrum
for sufficiently large mismatches between the Fermi momenta
of the various species.
Comparing the free energy of the gCFL with other

candidate phases, e.g., the 2SC phase, or the 2SCþ s, which
is a three-flavor model in which the decoupled strange quark is
taken in to account, or the so-called 2SCus in which only the
u-s pairing survives (i.e., Δ2 > 0, Δ1 ¼ Δ3 ¼ 0) or the g2SC
discussed in Sec. II.B, the gCFL phase turns out to be
energetically favored in a quite large window of the control
parameter (Alford, Kouvaris, and Rajagopal, 2004, 2005). The
comparison of the gCFL free energy with the free energy of
some of theses phases is reported in Fig. 12. Besides the
considered phases, other pairing patterns have been proposed
(Iida et al., 2004), corresponding to the uSC phase (with Δ1 ¼
0 and Δ2, Δ3 ≠ 0) and the dSC phase (with Δ2 ¼ 0 and Δ1,
Δ3 ≠ 0); see Fukushima, Kouvaris, and Rajagopal (2005) and
Ruester et al. (2006a) for a comparison of the thermodynamic
potentials of the various phases.
However, as discussed for the two-flavor case, the fact

that a phase is energetically favored with respect to other
phases is not a sufficient condition to ensuring its stability.
Indeed, the analysis of fluctuations around the mean field
solutions may reveal that the phase does not correspond to
a minimum of the free energy. As in the case of the g2SC
phase, the gCFL phase is indeed chromomagnetically
unstable, because four of the eight Meissner masses of
gluons become imaginary when gapless modes appear
(Casalbuoni, Gatto, Mannarelli et al., 2005; Fukushima,
2005). Further increasing the mismatch among the Fermi
surfaces, the masses of the remaining four gluons become
imaginary as well. The effects of temperature on the
Meissner masses in the gCFL phase has been studied
by Fukushima (2005), in which it was found that for
sufficiently high temperatures [of about 10 MeV for the
parameter choice of Fukushima (2005)] the gCFL phase
becomes stable. However, such a temperature is much
larger than the typical temperature of compact stars and
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therefore cannot be used as an argument in favor of the
gCFL phase.
Since the gCFL is chromomagnetically unstable but is

energetically favored with respect to both unpaired quark
matter and the two-flavor CSC phases, there must exist a
phase with a lower free energy. Interestingly, at vanishing
temperature the gCFL phase is favored with respect to the
other phases even at weak coupling, whereas the g2SC phase
is energetically favored with respect to unpaired quark matter
and the 2SC phase only in the intermediate coupling regime;
see Sec. II.B.
As discussed for the two-flavor case, the chromomagnetic

instability can be associated with the tendency of the system to
develop supercurrents, that is to realize a FF-like state. Then,
as done for the two-flavor case, one can generalize the FF state
to more complicated structures trying to single out the favored
ground state among various crystalline phases. We investigate
various crystalline patterns in the following sections.

B. Three-flavor crystalline phase: Two plane waves

In this section we present the evaluation of the simplest
nontrivial three-flavor CCSC phase using a modified Nambu-
Gorkov formalism. The approach presented is based on the
high-density effective theory (HDET) of Casalbuoni, Gatto,
Mannarelli, and Nardulli (2001) and Nardulli (2002) and the
evaluation is performed with and without making a GL
expansion.

1. Nambu-Gorkov and HDET formalisms for the
three-flavor crystalline phase

As discussed in Sec. II.C.1 one can properly choose the
Nambu-Gorkov basis for simplifying the calculation in the FF
phase. Here we extend that reasoning to the three-flavor case.
In the three-flavor case the simplest form of inhomogeneous
pairing corresponds to the condensate

Δαβ
ij ¼

X3
I¼1

ΔIe2iqI ·xϵijIεαβI; (134)

meaning that for each pairing channel we assume a FF ansatz,
with 2qI representing the momentum of the pair.
In this case it is not possible to diagonalize the propagator in

p space, because three different fields are locked together in
pairs and thus one can only eliminate in the off-diagonal terms
of the propagator two independent momenta. However, as
shown in Eqs. (130) and (131), the separation between the s
and d Fermi spheres is twice the separation between the d and
s Fermi spheres and the u and s Fermi spheres, thus it is
reasonable to expect Δ1 ≪ Δ2, Δ3. As a first approximation
one can consider Δ1 ¼ 0 and in this case it is possible to
diagonalize the propagator in momentum space.
The form of the two-flavor Nambu-Gorkov spinor (44)

immediately suggests that we analyze the three-flavor crys-
talline phase with condensate (134) with Δ1 set to zero by
introducing the Nambu-Gorkov spinor

χðpÞ ¼

0
BBBBBBBBB@

ψuðpÞ
ψdðp − 2q3Þ
ψsðp − 2q2Þ
ψC
u ð−pÞ

ψC
d ð−pþ 2q3Þ

ψC
s ð−pþ 2q2Þ

1
CCCCCCCCCA
. (135)

It is clear that it would not be possible to use this calculation
method ifΔ1 were kept nonzero, except for the special case, in
which q1 ¼ q2 − q3. (That is, except in this special case which
is far from sufficiently generic, it will not be possible to
choose a Nambu-Gorkov basis such that one obtains a
propagator that is diagonal in some momentum variable p.)
Moreover, it seems unlikely that this method can be employed
to analyze more complicated crystal structures. Indeed, it
seems that the pairing with Δ1 ¼ 0 and Δ2 and Δ3 each
multiplying a single plane wave is the most complex example
that is currently known how to analyze without using the GL
expansion.
We now implement the calculation in the basis (135) using

the HDET formalism. We generalize the discussion presented
in Sec. II.E including the shifts of the quasiparticle momenta.
To this end we Fourier decompose the fermionic fields as
follows:

ψα
i ðxÞ ¼ e−iki ·x

Z
dΩ
4π

e−iμv·x½ψα
i;vðxÞ þ ψα−

i;v ðxÞ�; (136)

which differs from Eq. (78) by the presence of the three
vectors ki, one for each flavor, that we specify below. In the
standard HDET approximation ki ≡ 0 and the field ψα

i;vðxÞ is
used to describe a quark in a patch in momentum space in the
vicinity of momentum p ¼ μv. The introduction of the ki
vectors means that now ψα

i;vðxÞ describes a quark with
momentum in a patch in the vicinity of momentum μvþ ki
and the chemical potential differences with respect to the
average value μ are then given by

δμiðvÞ ¼ μi − μ − ki · v: (137)

At the leading order in 1=μ (i.e., neglecting the contribution
of antiparticles) the free Lagrangian can be written as in
Eq. (79), but with a velocity dependent chemical potential
difference

L ¼
Z

dΩ
4π

fψα†
i;v½iV · ∂þ δμiðvÞ�ψα

i;vg: (138)

To take into account diquark condensation, we add to
Eq. (138) a term similar to Eq. (80), which, however, takes
into account the ki shifts in the momenta, that is,

LΔ ¼ − 1

2

Z
dΩ
4π

Δαβ
ij ψ

αT
i;−vCγ5ψ

β
j;ve

−iðkiþkjÞ·x þ H:c:; (139)

where the condensate Δαβ
ij is given in Eq. (134) and we have

omitted the term proportional to Δ2. In the three-flavor case it
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is convenient to work in a new basis for the spinor fields
defined by

ψα
i ¼

X9
A¼1

ðFAÞαi ψA; (140)

where the matrices FA are given by

F1 ¼
1

3
I þ T3 þ

1ffiffiffi
3

p T8; F2 ¼
1

3
I − T3 þ

1ffiffiffi
3

p T8;

F3 ¼
1

3
I − 2ffiffiffi

3
p T8; F4;5 ¼ T1 � iT2;

F6;7 ¼ T4 � iT5; F8;9 ¼ T6 � iT7;

with Ta the SUð3Þ generators defined in Eq. (14) and I the
3 × 3 identity matrix. Introducing the velocity dependent
Nambu-Gorkov fields

χAv ¼ 1ffiffiffi
2

p
�

ψv

Cψ�−v

�
A

; (141)

and replacing any matrix M in color-flavor space with
MAB ¼ Tr½FT

AMFB�, the NJL Lagrangian density can be
written in the compact form

L ¼ 1

2

Z
dΩ
4π

χA†v S−1ABðvÞχBv ; (142)

where the inverse propagator is given by

S−1AB ¼
� ½V · lþ δμAðvÞ�δAB −ΔAB

−ΔAB ½V̄ · l − δμAð−vÞ�δAB
�
;

(143)

where lν ¼ ðp0; ξvÞ. As discussed in Sec. II.E for the standard
HDET, the integration over momentum space is separated into
an angular integration over v and a radial integration over
−δ ≤ ξ ≤ δ. The cutoff δ must be taken smaller than μ but
much larger than the homogeneous gap parameter (that is,
ΔCFL in the three-flavor case) and δμ; see Fig. 1.
If Δ1 ¼ 0, the space dependence in the anomalous terms of

the propagator can be eliminated by choosing

ku þ kd ¼ 2q3; ku þ ks ¼ 2q2; (144)

and the calculation is technically simplified. It has been
numerically checked by Mannarelli, Rajagopal, and Sharma
(2006) that different choices of ku, kd, and ks satisfying
Eq. (144) yield the same results for the gap parameter and free
energy. The different choices yield quite different intermediate
stages to the calculation; the fact that the final results are the
same is a nontrivial check of the numerics.
From the Lagrangian (142), following a derivation analo-

gous to that by Alford, Kouvaris, and Rajagopal (2005), the
free energy can be evaluated to be

Ω ¼ − μ2

4π2
X18
a¼1

Z þδ

−δ
dξ

Z
dΩ
4π

jEaðv; ξÞj þ
2Δ2

G
− μ4e
12π2

;

(145)

where we have set Δ2 ¼ Δ3 ¼ Δ and G is the NJL coupling
constant. The dependence onG can be eliminated by using the
CFL gap equation

ΔCFL ¼ 22=3δ exp

�
− π2

2Gμ2

�
; (146)

where ΔCFL is the CFL gap parameter forMs ¼ 0 and μe ¼ 0.
As discussed, for example, by Nardulli (2002), although the
value of the free energy and the gap parameter depend on δ,
the energetically favored phase is independent of it.
Alternatively, one can use a coupling constant which explicitly
depends on the momentum cutoff as in Ippolito, Nardulli, and
Ruggieri (2007).
In Eq. (145), the Ea are the energies of the fermionic

quasiparticles, which are given by the 18 roots of det S−1 ¼ 0,
given in Eq. (143). The doubling of degrees of freedom in the
Nambu-Gorkov formalism means that the 18 roots come in
pairs whose energies are related by Eaðv; ξÞ ¼ Ebð−v; ξÞ. One
set of nine roots describes ðψd;v;ψu;−vÞ and ðψs;v;ψu;−vÞ
pairing, while the other set describes ðψu:v;ψd;−vÞ and
ðψu;v;ψs;−vÞ pairing (color indices have been omitted for
simplicity). Since v is integrated over, the free energy can be
evaluated by doing the sum in Eq. (145) over either set of nine
roots, instead of over all 18, and multiplying the sum by 2.
The lowest free energy state is determined minimizing the

free energy given in Eq. (145) with respect to the gap
parameter Δ and with respect to q2 and q3. One could also
determine self-consistently the values of μe, μ3, and μ8 which
ensure electrical and color neutrality. Moreover, one could
allow Δ2 ≠ Δ3 and minimize with respect to the two gap
parameters separately. However, in the results that we present
in the next section we fix Δ2 ¼ Δ3 ¼ Δ, μe ¼ M2

s=ð4μÞ and
μ3 ¼ μ8 ¼ 0, as is correct for small Δ.

2. Ginzburg-Landau analysis

As discussed for the two-flavor case, the GL expansion
allows us to determine the gap parameter and the free energy
for a generic crystalline structure. We discuss the GL results
for various crystalline phases in Sec. III.C; in the present
section we restrict to the case of the condensate reported in
Eq. (134). In the three-flavor case the GL expansion is
controlled by the ratio Δ=ΔCFL ≈ Δ=δμ and is reliable in
the vicinity of a second-order transition; this restriction
implies that pairing does not significantly change any number
density, and thus one can assume μ3 ¼ μ8 ¼ 0 and μe ≈
M2

s=4μ as in the normal phase. We briefly comment in
Sec. III.B.5 on the latter approximation.
For the condensate in Eq. (134), the GL expansion of the

free energy is given by (Casalbuoni, Gatto, Ippolito et al.,
2005; Mannarelli, Rajagopal, and Sharma, 2006)
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Ω ¼ Ωn þ
X3
I¼1

�
αIΔ2

I þ
βI
2
Δ4

I þ
X
J≠I

βIJ
2

Δ2
IΔ2

J

�
þOðΔ6Þ;

(147)

which can be seen as an extension of theOðΔ4Þ two-flavor GL
free energy, [cf. Eq. (47)] to the three-flavor case. We neglect
the sextic (and higher-order) terms because for the simple
inhomogeneous condensates considered here the quartic terms
are positive. Note that, in contrast to the two-flavor case, the
presence of three ΔI’s requires the introduction of various
coefficients with indices referring to the particular condensate
ΔI . In particular, the term proportional to βIJ, with I ≠ J,
corresponds to the interaction term between different
condensates.
Using the HDET formalism, it has been shown by

Casalbuoni, Gatto, Ippolito et al. (2005) that αI and βI have
the same formal expression derived in the GL analysis of the
two-flavor FF structure. This means that

αI ≡ αFFðqI; δμIÞ; βI ≡ βFFðqI; δμIÞ; (148)

with αFF defined in Eq. (48) [with Δ2SC → 21=3ΔCFL, for
replacing the 2SC gap parameter with the CFL gap parameter;
cf. Eq. (96) with Eq. (146)] and βFF defined in Eq. (50). We
indicate with δμI the chemical potential difference between
quark whose flavor is not I, e.g., 2δμ1 ¼ μd − μs. In the weak-
coupling limit the chemical potential differences are the same
of the unpaired phase, thus from Eq. (130) one obtains

δμ1 ¼ −μe; δμ2 ¼ −δμ3 ¼ − μe
2
: (149)

For the interaction term between different condensates, it
turns out that

β12 ¼ − μ2

4π2

Z
dv
4π

1

ðiϵ − 2q1 · v − 2δμ1Þðiϵ − 2q2 · v − 2δμ2Þ
;

(150)

and β13 is obtained from β12 by changing q2 → q3 and μs↔μd;
in a similar way β23 is obtained from β12 by changing q1 → q3
and μs↔μu. These are the only terms in which a dependence
of the free energy from the relative orientation of the qI can
arise at this order.
One should fix the norms qI and the relative orientation of

the three vectors qI by a minimization procedure. This is a
complex task requiring the simultaneous minimization of the
free energy with respect to many parameters. What is usually
done to circumvent this complication is to propose different
definite structures for the qI , selecting among them the one
with the lowest free energy. In the present simple case we can
do something better, using the angle ϕ between q2 and q3 as a
variational parameter. Indeed, it has been found by
Casalbuoni, Gatto, Ippolito et al. (2005) that the energetically
favored solution corresponds to Δ1 ¼ 0 and Δ2 ≈ Δ3 and
clearly in this case the free energy is independent of q1. As to
the norms q2 and q3, since we work in the GL approximation,
it is possible to neglect theOðΔ2Þ terms in the minimization of
Ω. Thus, one has that ∂αI=∂qI ¼ 0 for I ¼ 2, 3, which is

identical to the condition for two flavors giving the result
qI ¼ z−1q jδμIj, with zq defined in Eq. (87). Considering this
condition and Eq. (149) one has that

jδμ2j ¼ jδμ3j≡ δμ; jq2j ¼ jq3j≡ q; (151)

therefore implies that the u-s and d-u quark pairs momenta
have the same modulus. A pictorial representation of the
Fermi surfaces and pairing regions for this simple configu-
ration is reported in Fig. 15 for two different values of ϕ.
Given Eq. (151) and taking Δ1 ¼ 0, the free energy

including up to O ðΔ4Þ terms can be written as

Ω ¼ Ωn þ 2αFFΔ2 þ ðβFF þ β23ÞΔ4; (152)

where αFF ≡ αFFðq; δμÞ, βFF ≡ βFFðq; δμÞ, and

Δ≡ Δ2 ¼ Δ3; (153)

is the only independent gap parameter. Minimizing the free
energy expression with respect to Δ we obtain for values of
δμ, where αFF is negative, the solution

Δ2 ¼ jαFFj
βFF þ β23

; (154)

and the free energy at the minimum is given by

Ω ¼ Ωn − α2FF
βFF þ β23

; (155)

which still depends on the angle ϕ by β23.

3. Testing the Ginzburg-Landau approximation

We are now able to evaluate the gap parameter and the free
energy for the “crystalline” color superconducting phase

Δαβ
ij ¼ Δðe2iqn2·xεαβ2ϵij2 þ e2iqn3·xεαβ3ϵij3Þ; (156)

with and without the GL approximation (Mannarelli,
Rajagopal, and Sharma, 2006); here we have written q2 ¼
qn2 and q3 ¼ qn3. In Fig. 13 we report the results obtained for
μ ¼ 500 MeV and ΔCFL ¼ 25 MeV. Calculations are made
varying Ms, but we plot quantities versus M2

s=μ because the
most important effect of a nonzeroMs is the splitting between
the d, u, and s Fermi momenta given in Eq. (130). We report
the results for four values of the angle between n2 and n3:
ϕ ¼ 0, 2π=3, 7π=8, and 31π=32. The lines correspond to the
GL analysis, with Δ and Ω − Ωn determined from Eqs. (154)
and (155), respectively, using Eq. (148) to relate αFF to δμI and
hence to M2

s=μ. The points correspond to the NJL calculation
without the GL expansion, hereafter full NJL, obtained by
minimizing the free energy of Eq. (145) with respect to Δ.
For all values of the angle ϕ, both the full NJL calculation

and the GL expansion have a second-order transition to the
normal phase at M2

s=μ≃ 151 MeV, clearly visible in the left
panel of Fig. 13, corresponding to δμ≃ 0.75ΔCFL. In the GL
calculation the independence of the critical value of δμ on ϕ
occurs because the location of the phase transition depends
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only on αI , which is independent of ϕ. Near the phase
transition, where Δ=ΔCFL and hence Δ=δμ are small, there
is good agreement between the full NJL calculation and the
GL approximation, as expected. When the GL approximation
breaks down, it does so conservatively, underpredicting both
Δ and jΩ − Ωnj. Furthermore, even considering a situation in
which the GL approximation has broken down quantitatively,
it correctly predicts the qualitative feature that at all values of
M2

s=μ the favored crystal structure is that with ϕ ¼ 0.
Therefore, the GL approximation is useful as a qualitative
guide even in a case in which it has broken down
quantitatively.
It is evident from Fig. 13 that the extent of the regime in

which the GL approximation is quantitatively reliable is
strongly ϕ dependent. In the best case, which it turns out
is ϕ ¼ 0, the results of the GL calculation are in good
agreement with those of the full NJL calculation as long as
Δ=ΔCFL ≲ 0.25, corresponding to Δ=δμ≲ 0.35. For larger ϕ,
the GL approximation yields quantitatively reliable results
only for much smaller Δ. For example, with ϕ ¼ 31π=32 the
GL calculation gives results in quantitative agreement with the
full NJL calculation only for Δ=ΔCFL ≲ 0.04, corresponding
to Δ=δμ≲ 0.05 (Mannarelli, Rajagopal, and Sharma, 2006).
A remarkable result is that the free energy of the favored

phase, corresponding to n2 ¼ n3, has a lower free energy of
the CFL and gCFL phases in the window (Casalbuoni, Gatto,
Ippolito et al. 2005; Mannarelli, Rajagopal, and Sharma,
2006)

128≲M2
s

μ
≲ 151 MeV; (157)

in which the GL expansion of the free energy for the favored
structure is in excellent agreement with the result of the full
NJL calculation; see the right panel of Fig. 13. This result
strongly motivates the study of more complicated crystalline
structures employing the GL approximation.
Note that the range in Eq. (157) has been obtained

considering the fixed value of the gap parameter
ΔCFL ¼ 25 MeV. However, the CFL gap parameter and the

constituent strange quark mass should depend on μ. We
discuss this point in Sec. III.C.1 considering the dependence
of both ΔCFL and Ms on μ within a NJL model.
We can now get a deeper insight about the favored

orientation of the qI from the analysis of β23. As explained,
this is the only term in the GL expansion that depends on the
relative orientation between n2 and n3 and can be rewritten as

β23 ¼
μ2

π2δμ2
IðϕÞ; (158)

where

IðϕÞ ¼ ℜe
Z

dΩ
4π

−1
ðiϵ − z−1q v · n2 − 1Þðiϵ − z−1q v · n3 þ 1Þ

(159)

can be evaluated numerically and the result is plotted in
Fig. 14 showing that the minimum value occurs at ϕ ¼ 0, that
is, for n1 ¼ n2, in agreement with the fact that the
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I(
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π

FIG. 14. IðϕÞ, defined in Eq. (159), vs the angle ϕ between the
wave vectors q2 and q3. This function is proportional to the free
energy cost for having overlap between ribbons associated with
different wave vectors. For q2 parallel to q3, corresponding to
ϕ ¼ 0, there is no overlap between ribbons and no free energy
cost has to be paid. The free energy cost diverges for perfectly
overlapping ribbons, corresponding to ϕ ¼ π.
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FIG. 13 (color online). Plot of Δ=Δ0 (left panel), with Δ0 ¼ ΔCFL, and the free energy relative to neutral noninteracting quark matter
(right panel) as a function of M2

s=μ for four values of the angle ϕ between q2 and q3. The various lines correspond to the calculations
done in the GL approximation whereas dots correspond to the NJL calculation, done without making a GL approximation. The solid
lines and circles correspond to ϕ ¼ 0, the dash-dotted lines, and diamonds correspond to ϕ ¼ 2π=3, the dashed lines and squares
correspond to ϕ ¼ 7π=8, the dotted lines and triangles correspond to ϕ ¼ 31π=32. From Mannarelli, Rajagopal, and Sharma, 2006.
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configuration that minimizes IðϕÞ does as well minimize the
free energy; see Eq. (155). We note that although IðϕÞ is an
increasing function of ϕ it depends very slightly on the angle
except close to the value ϕ ¼ π, i.e., when the two vectors are
antiparallel and IðϕÞ diverges.
Although the divergence of β23 at ϕ ¼ π is not physically

relevant, since it is not the value that minimizes the free
energy, it is worth considering this case to gain a qualitative
understanding of the behavior of the GL approximation. We
see in Fig. 15 that there are two pairing rings on the up quark
Fermi surface, because some up quarks pair with down quarks
forming Cooper pairs with wave vector 2q3 and other up
quarks pair with strange quarks forming Cooper pairs with
wave vector 2q2. However, as shown in the right panel of
Fig. 15, if ϕ ¼ π the two pairing rings on the up quark Fermi
surface are close to being coincident. In the weak-coupling
limit in which δμ=μ → 0 (and ΔCFL → 0 with δμ=ΔCFL fixed)
these two rings become precisely coincident. We attribute the
divergence in β23 to the fact that antiparallel wave vectors pay
an infinite free energy price and hence are forbidden, because
of the coincidence of these two pairing rings. In contrast, if
ϕ ¼ 0, the two pairing rings on the up Fermi surface are as far
apart as they can be, and β23 and the free energy of the state are
minimized. This qualitative understanding also highlights that
it is only in the strict GL and weak-coupling limits that the
cost of choosing antiparallel wave vectors diverges. If Δ=δμ is
small but nonzero, the pairing regions are ribbons on the
Fermi surfaces instead of lines. And if δμ=μ is small but not
taken to zero (as of course is the case in Fig. 15) then the two
ribbons on the up Fermi surface will have slightly different
diameter, as the figure indicates. This means that we expect
that if we do a calculation at small but nonzero ΔCFL ∼ δμ, and
do not make a GL expansion, we should find some free energy
penalty for choosing ϕ ¼ π, but not a divergent one. This is
indeed the result that one obtains without using the GL
expansion; see Fig. 13. These results also explain why the
breakdown of the GL expansion in Fig. 13 happens for very
small values of Δ for ϕ ≈ π, while only for larger values of Δ

for ϕ ¼ 0. Indeed, increasing ϕ from 0 to π, the β23 term in the
GL expansion increases, and therefore the radius of con-
vergence of the GL expansion decreases.
A more quantitative study of the radius of convergence of

the GL approximation would require evaluating (at least) the
Δ6 terms, whose coefficients we generically call γ. Because
we are working in the vicinity of a point where αI ¼ 0, the
first estimator of the radius of convergence that we can
construct comes by requiring γΔ6 ≲ ðβI þ β23ÞΔ4. Thus, the
results of the comparison in Fig. 13 are not conclusive on
this point, but they certainly indicate that the radius of
convergence in Δ decreases with increasing ϕ, and tends
toward zero for ϕ → π.

4. Chromomagnetic stability of the three-flavor crystalline phase

Given that the three-flavor CCSC phase in Eq. (156) is
thermodynamically favored with respect to the CFL and
normal phases, it remains to be proven that it is chromo-
magnetically stable. This issue has been discussed within the
GL expansion by Ciminale et al. (2006). It has been shown
that gauging the NJL Lagrangian the Meissner masses of
gluons are real and positive, meaning that this phase is
chromomagnetically stable. To properly take into account
gluons, the HDET Lagrangian has to be extended to include
nonlocal terms arising from the integration over the negative
energy fields (Casalbuoni Fabiano et al., 2002; Casalbuoni
et al., 2003), obtaining in momentum space

L ¼ ψα†
i;vðlÞ

�
V · lαβ

ij þ μαβij þ Pμν

�
lμlν

~V · lþ 2μ

�
αβ

ij

�
ψβ
j;vðlÞ;

(160)

where

ðlμÞαβij ¼ lμδijδ
αβ − gsAaT

αβ
a δij (161)

and
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FIG. 15 (color online). Sketch showing where on the Fermi surfaces pairing occurs for condensates in which q2 and q3 are at an angle ϕ.
The light gray ribbons on the d and u Fermi surfaces indicate those quarks that contribute the most to the hudi condensate with gap
parameter Δ3 and wave vector q3, which points upward in both panels. The dark gray ribbons on the u and s Fermi surfaces indicate
those quarks that contribute most to the husi condensate with gap parameter Δ2 and wave vector q2. For descriptive reasons, in the left
panel the case ϕ ¼ 70∘ is shown, and in the right panel the antipodal case, with the two vectors pointing in opposite directions. We
exaggerated the splitting between the Fermi surfaces, relative to the values used in the calculations reported in Sec. III.B.
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Pμν ¼ gμν − ðVμ ~Vν þ ~VμVνÞ
2

: (162)

In the HDET there is an infinite series of effective vertices
suppressed by increasing powers of 1=μ, describing the
coupling between gluons and quarks. These interaction
vertices arise from the expansion of the nonlocal term in
the square bracket of (160). For the leading-order evaluation
of the gluon self-energy two vertices are relevant: the one-
gluon coupling to two quarks (three-body vertex, coupling
∼gs); and the two-gluon coupling to two quarks (four-body
vertex, coupling ∼g2s). These two vertices originate from the
terms in Eq. (160) with one and two momenta l, respectively.
One may naively think that the contribution to the gluon
self-energy due to the four-body vertex would be negligible
with respect to the contribution arising from the three-body
vertex, because of the 1=μ suppression. Instead, the two
vertices lead to the two one-loop diagrams shown in Fig. 16,
whose contribution to the Meissner mass are clearly of the
same order g2sμ2. Remarkably, these are the only order g2s
contributions to the Meissner mass not suppressed in the μ →
∞ limit; see Casalbuoni, Gatto et al. (2002b) for more details.
In more detail, the four-body coupling gives rise to the

tadpolelike Feynman diagram, in Fig. 16(a), contributing
g2sμ2=ð2π2Þ to the Meissner mass. This contribution is
momentum independent, is the same for all the eight gluons,
and is the same one has in the CFL phase. The three-body

coupling gives rise to the charmlike Feynman diagram, in
Fig. 16(b), contributing

iΠμν
abðx; yÞ ¼ −Tr½iSðx; yÞiHμ

aiSðy; xÞiHν
b� (163)

to the polarization tensor. Here the trace is over all internal
indexes; Sðx; yÞ is the quark propagator, and

Hμ
a ¼ i

gs
2

�
iVμTa 0

0 −i ~VμT�
a

�
(164)

is the vertex matrix in the HDET formalism.
The Meissner masses are defined in terms of the gluon self-

energy in momentum space [see Eq. (37)], and in this case the
mass matrix of gluons in the adjoint sector a ¼ 3, 8 is not
diagonal. Therefore we introduce the two linear combinations

~Ai3 ¼ cos θiAi3 þ sin θiAi8;

~Ai8 ¼ − sin θiAi3 þ cos θiAi8; (165)

which are eigenstates of the mass matrix. In Eq. (165) the
subscript i denotes the spatial component of the gluon field; it
is easily shown that the mixing angle satisfies

tan 2θi ¼
2M2

ii;38

M2
ii;33 −M2

ii;88
; (166)

the corresponding Meissner masses are the eigenvalues of the
matrix

�M2
ij;33 M2

ij;38

M2
ij;38 M2

ij;88

�
; (167)

which turn out to be positive and are reported in Fig. 17.
On the left panel of Fig. 17 we report the longitudinal (i.e.,

zz) components of the squared Meissner masses against
M2

s=μ, in units of the CFL squared Meissner mass
(Rischke, 2000a; Son and Stephanov, 2000b), at the
OðΔ4Þ; on the right panel the results for the transverse
(i.e., xx) squared Meissner masses are given.
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FIG. 17 (color online). Squared Meissner masses of the gluons ~A3 (solid line), A6 (dotted line), ~A8 (dashed black line), and A1 (dot-
dashed line), in units of the CFL squared Meissner mass, vs M2

s=μ. Left panel: longitudinal masses. Right panel: transverse masses.
Adapted from Ciminale et al., 2006.

(b)(a)

FIG. 16. (a) Tadpolelike diagram and (b) charmlike diagram
contributing to the gluon masses in the HDET. The curly lines
correspond to the gluon fields; the solid lines correspond to the
positive energy quark fields; see Eq. (136). The interaction
vertices can be obtained from the expansion of the effective
Lagrangian in Eq. (160), including terms of order 1=μ.
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These results are the analogs of those obtained in the two-
flavor case by Giannakis and Ren (2005b). Note that the
transverse mass of ~A8, although positive, is almost zero, being
3 orders of magnitude smaller than the other ones. The
conclusion is that the three-flavor condensate in Eq. (156)
has no chromomagnetic instability, at least within the GL
approximation. The results of Ciminale et al. (2006) have
not been extended tomore complicated structures, however, for
agenericCCSCstructure theMeissner tensor shouldbepositive
definite for small values ofΔ, since it is additivewith respect to
different terms of orderΔ2 in the GL expansion (Giannakis and
Ren,2005b).Theseconsiderations suggest that theCCSCphase
can be a good candidate in removing the chromomagnetic
instability of the homogeneous gapless CSC phases of QCD.

5. Influence of Oð1=μÞ corrections
Since the Meissner masses have been determined including

the Oð1=μÞ corrections in the HDET Lagrangian, for a
consistent calculation it is necessary considering the effect
of Oð1=μÞ corrections on the gap parameters and the free
energy (Casalbuoni et al., 2006). These corrections amount to
a shift of the strange quark Fermi momentum to lower values
with respect to the corresponding chemical potential

pF
s ≃ μs − M2

s

2μs
− 1

2μ

�
M2

s

2μ

�
2

; (168)

and thus increasing the difference between the u and s strange
chemical potential, without affecting the u-d chemical poten-
tial difference. Therefore (neglecting corrections proportional
to μ3 and μ8 which are of order Δ6) one has that

δμ2 ¼
1

2

�
μe −M2

s

2μ
− 1

3μ

�
M2

s

2μ

�
2
�
; δμ3 ¼

μe
2
; (169)

and jδμ2j > jδμ3j [neglecting Oð1=μÞ corrections one would
get jδμ2j ¼ jδμ3j as in Eq. (149); indeed in this limit
μe ¼ M2

s=4μ]. The results for the splitting of chemical

potentials are reported in the left panel of Fig. 18, together
with the result obtained in the large μ limit.
As a consequence of the Oð1=μÞ corrections, the two gap

parameters are not equal and Δ2 < Δ3, as shown in the right
panel of Fig. 18. This effect is akin to the one considered in the
gCFL phase (see Fig. 12), but in that case the chromomagnetic
instability prevented the splitting of the gap parameters. The
effect of the corrections considered here is to enlarge the
LOFF window, as can be seen from the right panel of Fig. 18.
Neglecting Oð1=μÞ corrections the crystalline phase was
characterized by one gap, and by condensation in two
channels: u-s and u-d. Including Oð1=μÞ corrections there
is pairing in both channels only for small values of M2

s=μ, but
the crystalline phase extends to larger values of M2

s=μ, where
onlyΔ3 ≠ 0 and therefore there is no u-s pairing. This phase is
the two-flavor FF phase, with a chemical potential difference
determined by the ratio of the strange quark mass to the
average quark chemical potential.

C. Ginzburg-Landau analysis of crystalline structures

As in the two-flavor case, more complicated crystalline
structure can be considered and analyzed by the GL expansion
(Rajagopal and Sharma, 2006). The most general two-flavor
CCSC condensate was given in Eq. (45) and in the three-flavor
case it can be extended to

h0jψα
iLψ

β
jLj0i ¼ −h0jψα

iRψ
β
jRj0i

∝
X3
I¼1

εαβIϵijI
X

qmI ∈fqIg
ΔI;qmI

e2iq
m
I ·x: (170)

This condensate is antisymmetric in color ðα; βÞ, spin, and
flavor ði; jÞ indices, and can be viewed as well as a
generalization of the CFL ansatz. As in two-flavor quark
matter, we consider the simplified case with ΔI;qmI

≡ ΔI
independent of qmI . The resulting condensate is the one
reported in Eq. (7), where each gap parameter has a periodic
modulation in space corresponding to a crystalline structure.
For example, Δ2 is associated with a crystal due to u-s pairing
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FIG. 18 (color online). Left panel: Quark chemical potential difference as a function ofM2
s=μ. The dashed line corresponds to jδμ2j and

the dash-dotted line corresponds to jδμ3j; their common value M2
s=ð8μÞ, obtained neglecting Oð1=μÞ corrections, corresponds to the

solid black line. Right panel: Gap parameters as a function ofM2
s=μ. The solid black line represents the solution Δ ¼ Δ2 ¼ Δ3 obtained

neglecting Oð1=μÞ corrections; the dashed and dash-dotted lines represent, respectively, Δ2 and Δ3 and are obtained including Oð1=μÞ
corrections. All gap parameters are normalized to the CFL gap Δ0 ¼ ΔCFL ¼ 25 MeV. Adapted from Casalbuoni et al., 2006.
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which is described by the vectors qm2 , where m is the index
which identifies the elements of the set fq2g. This means that
the qm2 ’s are the reciprocal vectors which define the crystal
structure of the u-s condensate.
Even within this simplified case, self-consistent computa-

tions based on Eq. (7) are very complicated. As a conse-
quence, several additional assumptions and simplifications
have been used by Rajagopal and Sharma (2006). As
discussed in the previous section, the pairing between d
and s quarks can been neglected; this is a very reasonable
approximation, since the difference of chemical potentials
between d and s quarks is approximately twice the imbalance
of chemical potentials between u-s and u-d. Therefore,
Δ1 ¼ 0, and one can take Δ2 ¼ Δ3, neglecting Oð1=μÞ
corrections. As a further simplification, only crystalline
structures with wave vectors fqm2 g and fqm3 g with equal
modulus are considered. This means that any phase is
determined by one gap parameter, by the modulus of the
total pair momentum q, and by the sets of unit vectors which
determine the two crystalline structures. The corresponding
pairing ansatz simplifies to

h0jψα
iLψ

β
jLj0i ¼ −h0jψα

iRψ
β
jRj0i

∝ Δ
X3
I¼2

εαβIϵijI
X

nmI ∈fnIg
e2iqn

m
I ·x: (171)

Finally, Rajagopal and Sharma (2006) consider only
structures which are exchange symmetric, which means that
fn2g and fn3g can be exchanged by some combination of
rotations and reflections applied simultaneously to all wave
vectors.
The thermodynamic potential within the GL expansion up

to the sextic order in the gap parameters is given by a
generalization of Eq. (47) [see also Eqs. (147) and (152)],
that is,

Ω ¼ Ωn þ
�
PαðjΔ2j2 þ jΔ3j2Þ þ

β

2
ðjΔ2j4 þ jΔ3j4Þ

þ γ

3
ðjΔ2j6 þ jΔ3j6Þ

�

þ
�
β23
2

jΔ2j2jΔ3j2 þ
γ233
3

jΔ2j2jΔ3j4 þ
γ322
3

jΔ2j4jΔ3j2
�

þOðΔ8Þ; (172)

where we have explicitly diversified Δ2 and Δ3 as a means to
show the interaction between the condensates in the u-d and
u-s channels. The coefficients α, β, and γ in the first square
bracket are the same coefficients computed for the two-flavor
case by Bowers and Rajagopal (2002). The terms in the
second square bracket are peculiar of the three-flavor case. In
the numerical computations the free energy is minimized with
respect to Δ and for any crystalline structure considered it is
found that the thermodynamic potential is always bounded
from below. Therefore, it is possible to compute the numerical
value of Δ and the value of the free energy density at the
minimum.

Among the many crystalline structures considered by
Rajagopal and Sharma (2006), two of them have been found
to have the lowest free energy: they are called the CubeX and
2Cube45z structures. In the CubeX crystal each set contains
four vectors, that is, fn2g ¼ fn12; n22; n32; n42g and fn3g ¼
fn13; n23; n33; n43g with

n12 ¼
ffiffiffi
1

3

r
ð1; 1; 1Þ ¼ −n22; n32 ¼

ffiffiffi
1

3

r
ð−1;−1; 1Þ ¼ −n42;

n13 ¼
ffiffiffi
1

3

r
ð−1; 1; 1Þ ¼ −n23; n33 ¼

ffiffiffi
1

3

r
ð1;−1; 1Þ ¼ −n43:

Thus, the vectors of each set point to the vertices of a
rectangle; the eight vectors together point toward the vertices
of a cube. In the 2Cube45z crystal, fn2g and fn3g each
contains eight wave vectors, pointing to the corners of a cube;
the two cubes are rotated by 45° about the z axis. The
computation of Rajagopal and Sharma (2006) shows that
the CubeX crystal is favored over all considered structures in
the range

2.9ΔCFL <
M2

s

μ
< 6.4ΔCFL; (173)

similarly for the 2Cube45z crystal it is found that it is
energetically favored for

6.4ΔCFL <
M2

s

μ
< 10:4ΔCFL: (174)

Putting together the above results, the CCSC phase is favored
with respect to the homogeneous CFL, gCFL, and unpaired
phases in the range

2.9ΔCFL <
M2

s

μ
< 10:4ΔCFL: (175)

The above condition can be translated to a condition on μ only
if the constituent strange quark mass as a function of μ is
known. This topic will be discussed in the next section.
We remark that from the quantitative point of view, the

result in Eq. (175) should be taken with care. The GL
expansion is reliable only if the gap parameter Δ is small,
compared to δμ. On the other hand, the numerical results of
Rajagopal and Sharma (2006) show that, within this expan-
sion, the ratio Δ=δμ turns out to be of order 1. This clearly
signals that the results lie beyond the validity of the expansion
itself. Moreover, the coefficients in the expansion in Eq. (172)
depend on the microscopic model. Therefore, Eq. (175) is
certainly model dependent. Nevertheless, the qualitative
picture which arises in Rajagopal and Sharma (2006) seems
to be quite robust: the crystalline superconductor has lower
free energy with respect to the single-plane-wave state. This
conclusion seems reasonable and model independent: in fact,
the phase space for pairing in the case of CubeX and
2Cube45z is larger than the one corresponding to the
single-plane-wave structure; this suggests that the free energy
gain for multiple plane waves is larger than the one obtained
for the single-plane-wave state.
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1. LOFF window in the QCD phase diagram

It is important to identify, within a self-consistent compu-
tation, the range of chemical potential in which the CCSC
phase is expected to be thermodynamically favored. This
would correspond to a chemical potential LOFF window in
Fig. 2. Then, using an appropriate equation of state this
chemical potential window can be translated into a density
window. So far we reported the LOFF window in terms of
M2

s=μ for the two-plane-waves structure and the favored
crystalline phases, respectively. For translating this window
to a window in μ, it is necessary to consider the chemical
potential dependence of both the CFL gap parameter and of
the constituent quark masses. This investigation has been
started by Ippolito, Nardulli, and Ruggieri (2007) considering
vanishing temperature. They computed the in-medium quark
masses self-consistently within a NJL model and the CFL gap
was evaluated in the chiral limit by means of Eq. (146), where
the considered hard momentum cutoff is taken as δ ¼ Λ − μ.
Ippolito, Nardulli, and Ruggieri (2007) considered Λ≃
643 MeV with a corresponding NJL coupling con-
stant GðΛÞ≃ 13:2 GeV−2.
In the simple case of two plane waves, Eq. (156), the state

with n2 ¼ n3 is energetically favored in the range given in
Eq. (157) This range has been obtained for a fixed value of the
CFL gap parameter. Considering the dependence of the CFL
gap on the chemical potential given in Eq. (146) and the
results for the constituent strange quark massMsðμÞ computed
by Ippolito, Nardulli, and Ruggieri (2007), that range can be
transformed in

4.8ΔCFLðμÞ≲MsðμÞ2
μ

≲ 7.6ΔCFLðμÞ; (176)

and then to the quark chemical potential window

467≲ μ≲ 488 MeV: (177)

Therefore, there exists a small but finite window in μ in which
the structure (156) has a lower free energy than both gCFL
quark matter and normal quark matter.
One might expect that such a small window is considerably

enlarged in more complicated CCSC phases. As discussed in
the previous section, the analysis of Rajagopal and Sharma
(2006) shows that more complicated crystalline structures are
favored in the interval reported in Eq. (175), which used the
self-consistent treatment of Ippolito, Nardulli, and Ruggieri
(2007) transforms in

442≲ μ≲ 515 MeV: (178)

This result is certainly model dependent, however it shows
that the actual extension of the LOFF window in Fig. 2 might
not be very large. Therefore, it is likely that the CCSC phase
occupies only a fraction of the quark core of hybrid compact
stars. We discuss this topic in Sec. IV.D.

D. Shear modulus and Nambu-Goldstone modes

The three-flavor CCSC phase has several low-energy
excitations; besides gapless quasifermions, there are the

bosonic modes related to the spontaneous breaking of trans-
lational symmetry, the three phonons, of the chiral symmetry,
the eight pseudoscalar NGBs, and to the breaking of Uð1ÞB
symmetry, the so-called H phonon. The phonon Lagrangian
for the two-flavor CCSC phase has been discussed in
Sec. II.F; here we extend the results to the three-flavor case
(Mannarelli, Rajagopal, and Sharma, 2007) deriving the low-
energy coefficients of the GL expansion from a NJL-like
model. Regarding the eight pseudoscalar NGBs, we briefly
discuss the results of Anglani et al. (2007) obtained for the
three-flavor CCSC phase.

1. Phonons effective action and shear modulus

According to the basic theory of elastic media (Landau and
Lifshits, 1959), the elastic moduli are related to the potential
energy cost of small deformations of the crystal. Therefore,
the evaluation of the shear modulus requires knowledge of
the low-energy Lagrangian for the displacement fields
(Mannarelli, Rajagopal, and Sharma, 2007). Since the three
condensates that characterize the crystalline phase can oscil-
late independently, three are three sets of displacement fields
uIðxÞ. Thus, we can extend the definition of the phonon fields
in Eq. (97) by

ΔIðxÞ → Δu
I ðxÞ ¼ ΔIðx − uIðxÞÞ; (179)

and the Lagrangian that includes fluctuation on the top of the
mean field solution can be written as

L ¼ 1

2
χ̄

�
i∂þ μ ΔuðxÞ
Δ̄uðxÞ ði∂ − μÞT

�
χ þ 1

16G
tr½ðΔ̄uÞTΔu�; (180)

where tr represents the trace over color, flavor, and Dirac
indices.
To find the low-energy effective action describing the

phonons and the gapless fermionic excitations, one should
integrate out the high-energy fermion fields. The procedure is
detailed in Mannarelli, Rajagopal, and Sharma (2007), where
the effective action is derived starting from a NJL-like
microscopic model. The final form of the effective action
of the phonon fields is given by

iS½u� ¼ logðZ½u�Þ

¼ i
Z

d4x

�
1

16G
tr½ðΔ̄uÞTΔu�

�
þ 1

2
Trng log ðS−1Þ;

(181)

where Trng stands for the trace over the Nambu-Gorkov, color,
flavor, and Dirac indices and a further trace over a set of
functions on space-time containing all energy modes. The full
inverse propagator is given by

S−1 ¼
�
i∂þ μ ΔuðxÞ
Δ̄uðxÞ ði∂ − μÞT

�
; (182)

and it includes interactions of the phonon fields.
For the crystal structures CubeX and 2Cube45z, the full

inverse propagator cannot be inverted, so a GL expansion has
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been performed in order to obtain the effective action for the
phonon field, first separating the full inverse propagator into
the free part S−10 and a part containing the condensate Σ, as
follows: S−1 ¼ S−10 þ Σ, where

S−10 ¼
�
i∂þ μ 0

0 ði∂ − μÞT
�

(183)

and

Σ ¼
�

0 ΔuðxÞ
Δ̄uðxÞ 0

�
: (184)

Then, one can expand the term logðS−1Þ that appears on the
right-hand side of Eq. (181) as

Trng½logðS−10 þ ΣÞ� ¼ Trngðlog S−10 Þ þ TrngðS0ΣÞ
− 1

2
TrngðS0ΣÞ2 þ � � � : (185)

The Trngðlog S−10 Þ term is related to the free energy of
unpaired (normal) quark matter. Furthermore, it is easily
found that only even powers of ðS0ΣÞ contribute to the trace
over Nambu-Gorkov indices. Expanding the effective action
in powers of ϕm

I ¼ 2qm · uI and including the first nontrivial
quadratic term, which is calculated to order Δ2, one obtains

Sϕ2Δ2 ¼
X
I

X
qmI

Z
d4k
ð2πÞ4 ϕ

m
I ðkÞϕm

I ð−kÞΔ�
IΔIPm

I ðkÞ; (186)

where k ¼ k2 − k1 is the four-momentum of the phonon and

Pm
I ðkÞ ¼ i

X
j≠k
≠I

Z
d4p
ð2πÞ4

× Tr

�
1

ðpþ qIm þ k1 þ μjÞðp − qIm þ k2 − μkÞ

− 1

ðpþ qIm þ μjÞðp − qIm − μkÞ
�
; (187)

where the trace is over Dirac indices. Integrating Eq. (187) one
obtains

SΔ2 ½u� ¼ 1

2

Z
d4x

X
I

κI
X
nmI

½∂0ðnmI · uIÞ∂0ðnmI · uIÞ

− ðnmI · ∂ÞðnmI · uIÞðnmI · ∂ÞðnmI · uIÞ�; (188)

where

κI ≡ 2μ2jΔIj2
π2ð1 − z2qÞ

; (189)

with zq defined in Eq. (87). This action generalizes Eq. (99) to
the three-flavor case and is the LO low-energy effective action
valid for phonons in any CCSC phase, indeed it has a general
expression depending on the nmI vectors. Only terms of the
second order in derivatives and the phonon fields are reported,
but higher-order terms can be obtained in a similar way.

In Eq. (188) there are no terms that “mix” the different
uIðkÞ, meaning that at this order the displacement of the
various crystals can be considered separately. This follows
from the fact that the Lagrangian conserves particle number
for every flavor of quarks, which corresponds to symmetry
under independent global phase rotations of quark fields of the
three flavors, meaning independent phase rotations of the
threeΔI’s. The effective action should be invariant under these
rotations and hence ΔI can only occur in the combination
Δ�

IΔI . Since the effective action has been obtained up to the
second order in the gap parameters ΔI’s, the mixing terms
do not appear; mixing between different fluctuations can
only appear in higher-order terms, e.g., by terms such
as μ2jΔIΔJj2∂uI∂uJ=δμ2.
The coefficients κI determine the potential energy cost of a

fluctuation and therefore are related to the shear modulus. In
particular, Mannarelli, Rajagopal, and Sharma (2007) found
that for the two favored structures, 2Cube45z and CubeX, the
shear modulus is a 3 × 3 nondiagonal matrix in coordinate
space with entries given by

νCQM ¼ 2.47 MeV=fm3

�
Δ

10 MeV

�
2
�

μ

400 MeV

�
2

: (190)

Considering typical values of the quark chemical potential in
the range

350 < μ < 500 MeV (191)

and

5 < Δ < 25 MeV; (192)

one has that

0.47 < νCQM < 24 MeV=fm3: (193)

The standard neutron star crust, which is a conventional
crystal of positively charged ions immersed in a fluid of
electrons (and, at sufficient depth, a fluid of neutrons), has a
shear modulus given by (Strohmayer et al., 1991; Mannarelli,
Rajagopal, and Sharma, 2007)

0.092 < νNM < 23 keV=fm3; (194)

thus, the crystalline quark matter is more rigid than the
conventional neutron star crust by at least a factor of
20–1000. Note that the three-flavor CCSC phase is also a
superfluid, by picking a phase its order parameter does indeed
break the quark-number Uð1ÞB symmetry spontaneously.
These results demonstrate that this superfluid phase of matter
is at the same time a rigid solid and a superfluid.

2. Goldstone modes

The superfluid property of the CCSC phase derives from
the existence of a massless NGB associated with the breaking
of Uð1ÞB. Actually, the crystalline condensate breaks the same
global (and local) symmetries of the CFL phase (Alford,
Rajagopal, and Wilczek, 1999), leaving unbroken a global
symmetry group: SUð3ÞcþLþR × Z2; see Eq. (3). Therefore,
there are nine NGBs due to the spontaneous breaking of
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Uð1ÞB and of the chiral symmetry, but only the Uð1ÞB boson
(H phonon) is massless. Indeed, the pseudoscalars associated
with chiral symmetry have mass, because this group is
explicitly broken by quark mass terms and by chemical
potential differences.
Similar to the phonons described in the previous section,

the NGBs discussed here describe the fluctuations of the
condensate; see, e.g., Eguchi (1976). The pseudo-NGBs are
related to fluctuations in flavor space, while the H phonon ϕ
describes fluctuations in baryonic number. The form of the

low-energy Lagrangian describing both phonons and the H
phonon can be determined from symmetry arguments alone
following the discussion by Leutwyler (1997) and Son (2005);
see also Cirigliano, Reddy, and Sharma (2011). Here we focus
on the microscopic derivation of the H phonon Lagrangian
and introduce it by means of the transformation ψ → U†ψ
with U ¼ exp fiφ=fφg, where fφ is its decay constant.
Taking into account the unitary rotations, the HDET
Lagrangian takes the form (Anglani et al., 2007)

L ¼ 1

2

Z
dΩ
4π

χ†A

� ½V · lþ δμAðvÞÞδAB� −Ξ⋆
BA

−ΞAB ½V · l − δμAð−vÞ�δAB
�
χB; (195)

where all quantities have been defined in Sec. III.B.1 [see
Eq. (143)], except ΞAB, which is given by

ΞAB ¼ Δ⋆
I ðxÞTr½ϵIðFAU†ÞTεIFBU†�; (196)

with ϵI ≡ ϵijI and εI ≡ εαβI .
Expanding the Lagrangian in the scalar field one derives

three-body and four-body interaction vertices. At the leading
order in Δ these couplings provide the dominant contribution
to the H phonon self-energy. We encountered similar inter-
action terms in the evaluation of the Meissner masses of
gluons discussed in Sec. III.B.4. As in that case the two
leading contributions are given by the tadpolelike and charm-
like Feynman diagrams reported, in Figs. 16(a) and 16(b),
respectively, but with the gluon lines replaced by H phonon
lines. Technically the calculation is very similar to the one
sketched in Sec. III.B.4 and the result is that the charmlike
diagram contributes to the self-energy by

Sc:l: ¼ −i 2

f2φ

X3
I¼2

Δ2
I

X
qmI

Z
d4k
ð2πÞ4 φð−kÞφðkÞP

m
I ðk0; kÞ;

(197)

with k ¼ ðk0; kÞ and Pm
I ðk0; kÞ corresponds to the HDET

version of Eq. (187),

Pm
I ðk0; kÞ

¼ −2μ2
Z

dΩ
4π

Z
dp0dξ
ð2πÞ4

×

�
1

ð ~V · lþ δμ − qmI · vÞ½V · ðlþ kÞ þ δμ − qmI · v�

þ 1

ðV · l − δμ − qmI · vÞ½ ~V · ðlþ kÞ − δμ − qmI · v�

�

þ δμ → −δμ: (198)

The tadpolelike contribution is given by

St:l:¼ i
2

f2ϕ

X3
I¼2

Δ2
I

X
qmI

Z
d4k
ð2πÞ4φð−kÞφðkÞP

m
I ðk0¼0;k¼0Þ:

(199)

We do not provide further details of the calculation which
can be found in Anglani et al. (2007), and we only quote the
final result valid at small momenta

LφðkÞ ¼ 1
2
φð−kÞ½k20I0 − kikjVij�φðkÞ; (200)

where

I0 ¼ − μ2

π2f2φ

X3
I¼2

Δ2
I

X
qmI

ℜe

×
Z

dΩ
4π

1

ðδμ − qmI · vþ i0þÞ2 þ ðδμ → −δμÞ; (201)

Vij ¼ − μ2

π2f2φ

X3
I¼2

Δ2
I

X
qmI

ℜe

×
Z

dΩ
4π

vivj
ðδμ − qmI · vþ i0þÞ2 þ ðδμ → −δμÞ: (202)

Specializing these results to the case Δ2 ¼ Δ3 ¼ Δ,
jqa2j ¼ jqa3j ¼ q, and requiring canonical normalization of
the Lagrangian in Eq. (200), leads to

f2φ ¼ 4Pμ2

π2
z2qΔ2

δμ2ð1 − z2qÞ
; (203)

where P is the number of plane waves comprising each crystal
(we assume that the number of plane waves in the two crystals
are equal). Upon substituting this result in to Eq. (202), and
specializing it to P ¼ 1, we find Vij ¼ ½diagð0; 0; 1Þ�ij, where
we have chosen q2 and q3 along the positive z axis. For the two
cubic structures corresponding to the values P ¼ 4 (CubeX)
and P ¼ 8 (2Cube45z) we find Vij ¼ δij=3, i.e., the velocity
is isotropic and has the value 1=

ffiffiffi
3

p
.

The extension of the above procedure to the octet of
pseudo-NGBs is straightforward; see Anglani et al. (2007).
Here we just recall that one of the important result is that the
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squared masses of the pseudo-NGBs are always positive, thus
kaon condensation for the considered CCSC phases is
excluded, at least at the order Δ2.
As we see in the next sections, it is of astrophysical interest

the study of rotating quark matter. In particular, in Sec. IV.B
we see how superfluid vortices may influence the spinning
evolution of compact stars. The response of the crystalline
phase to rotation should indeed result in the formation of
vortices. The naive expectation is the formation of Uð1ÞB
vortices (Forbes and Zhitnitsky, 2002; Iida and Baym, 2002),
but non-Abelian vortices (Auzzi et al., 2003; Hanany and
Tong, 2003) might be energetically favored (Balachandran,
Digal, and Matsuura, 2006; Eto, Nitta, and Yamamoto, 2010).

IV. ASTROPHYSICS

The artificial creation of the low-temperature and high-
density conditions appropriate for testing the properties of
color superconductors is one of the challenging aims of high-
energy experiments (Klahn, Blaschke, and Weber, 2012). To
date, however, the unique laboratory in which these extreme
conditions can be realized is the core of a compact stellar
object (CSO). (Note that even if the relevant densities and low-
temperature conditions were reached in a terrestrial laboratory,
the conditions realized in a CSO are different from those
produced in an accelerator, because in the former case quark
matter is long lived, charge neutral, and in β equilibrium.) In
the inner core of a CSO the extremely high densities and low
temperatures may favor the transition from nuclear to quark
matter (Ivanenko and Kurdgelaidze, 1965, 1969; Collins and
Perry, 1975; Baym and Chin, 1976) and in turn, to the color
superconducting (CSC) phase. Indeed, if matter is compressed
at densities about a factor of 5 larger than the density of an
ordinary nucleus, a simple geometrical reasoning suggests that
baryons are likely to lose their identity and dissolve into
deconfined quarks (Weber, 1999). In this case compact
(hybrid) stars featuring quark cores would exist providing a
window on the properties of QCD at high baryon densities.
Assuming that deconfined matter is present, it should be in a
CSC phase because its critical temperature (in weak coupling)
is given by Tc ≃ 0.57Δ, and as we have seen in the previous
sections Δ ∼ 5–100 MeV, although lower values of the gap
parameter, of the order of keV up to few MeV, can be realized
in the spin-1 single flavor pairing phase (Alford, Rajagopal,
and Wilczek, 1998; Schafer, 2000b; Schmitt, Wang, and
Rischke, 2002; Alford et al., 2003; Buballa, Hosek, and
Oertel, 2003; Schmitt, 2005). In any case, for the greatest part
of the compact star lifetime, the temperature is much lower
than this critical temperature and the CSC state is thermody-
namically favored.
Clearly, the basic question is whether gravity in the interior

of CSOs is able to compress matter to such extreme densities.
This question is still open, but some progress has been made in
recent years. In particular, recent astronomical observations of
very massive CSOs (Demorest et al., 2010) seem to disfavor
this possibility (Logoteta et al., 2012), but the results depend
on the poorly known equation of state (EOS) of matter at high
density, and the possibility that hybrid stars of about 2M⊙
have a quark-matter core (Alford, Braby et al., 2005; Bonanno

and Sedrakian, 2012) or a crystalline color superconducting
(CCSC) core (Ippolito et al., 2008) cannot be excluded.
Besides the stellar mass, the presence of deconfined quark

matter in the interior of a CSO can be probed by a number of
astrophysical observables linked to the microscopic properties
of CSC matter. In particular, the mass-radius relation, various
transport properties, the r-mode evolution, glitches, and very
strong magnetic fields are under scrutiny for ruling in or out
CSC matter. Unfortunately, the available observational data do
not allow us to infer in a unique way the internal structures of
CSOs, but the investigation of the astrophysical signatures can
help to pave the path connecting theoretical models to
astronomical observations. In the following we present a brief
state-of-the-art of some astrophysical implications related to
the presence of CCSC matter in CSOs.

A. Gravitational waves

As reported in Sec. III.D the CCSC phase is extremely
rigid, with a shear modulus larger than the standard neutron
star crust by at least a factor 20. The existence of such a rigid
core within compact stars may have a variety of observable
consequences. A large deformation of the core, initially
produced, for example, by magnetic fields not aligned with
the rotation axis, can be sustained by the rigid structure
provided by the crystalline condensate. If the deformation of
the core is in a shape that has a nonzero quadrupole moment
and if this axis-asymmetric mass distribution is not compen-
sated by the overlying nuclear envelope, the spinning
CSO would efficiently emit gravitational waves (Haskell
et al., 2007; Lin, 2007). The size of the distortion of the
mass distribution can be measured by the equatorial
ellipticity

ϵ ¼ Ixx − Iyy
Izz

; (204)

which is defined in terms of the star principal moments of
inertia. Standard neutron stars are expected to have maximum
ellipticity of the order of ϵmax ≈ 10−6, meaning that this is the
largest deformation sustainable by the crust before breaking.
For the three-flavor crystalline phases considered in Sec. III.D,
deformed to the maximum extent allowed by the shear
modulus, the maximum equatorial ellipticity sustainable could
be as large as ϵmax ≈ 10−2 (Haskell et al., 2007; Lin, 2007).
Different models of exotic stars composed of quark clusters
(Xu, 2003) have a magnitude of the maximum ellipticity
which is smaller than the CCSC phase by 2 orders of
magnitude (Owen, 2005).
The gravitational waves emitted by an optimally oriented

compact star spinning at a frequency ν would produce a strain
on Earth-based interferometric detectors (such as LIGO,
VIRGO, GEO600, and TAMA300) given by

h0 ¼
16π2G
c2

ϵIzzν2

r
; (205)

where G is the gravitational constant and r is the distance. If
the standard value Izz ¼ 1038 kgm2 is assumed, Eq. (205) can
be used to relate the ellipticity to the spinning frequency and
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distance. The LIGO nondetection of gravity waves from
nearby neutron stars already limits the parameter space of
CCSC matter. A first analysis of CSOs which include the
crystalline phase was made by Haskell et al. (2007) and Lin
(2007) using the results of the S3/S4 LIGO scientific run
(Abbott et al., 2007) and by Knippel and Sedrakian (2009)
using the results of the S5 LIGO scientific run (Abbott et al.,
2008) on gravitational wave emission from the Crab neutron
star. This is a young neutron star, first observed in the year
1054, which is a pulsating emitter of electromagnetic radiation
(generically known as pulsars). In Fig. 19 we present the
exclusion plots for the Crab (left panel) and the pulsar
J2124-3358 (right panel), assuming maximum strain and that
these stars are constituted by incompressible and uniformly
distributed matter. The dashed lines on the left panel are those
obtained by Lin (2007) for the Crab pulsar using the S3/S4
LIGO data assuming that the whole star is in the crystalline
color superconducting phase. We determined the solid lines
using the S5 LIGO data of Abbott et al. (2010). The parameter
space appears to be extremely reduced and even more severe
constraints can be obtained from the pulsar J2124-3358,
which leads to the exclusion plots reported in the right panel
of Fig. 19.
Unfortunately, the maximum deformation of a star depends

as well on the breaking strain σmax, which measures the largest
shear stress deformation sustainable by a rigid body before
breaking. For standard neutron stars it is assumed that
10−5 ≤ σmax ≤ 10−2. The results shown on the left panel of
Fig. 19 have been obtained with σmax ¼ 10−3 (upper dashed
line) and σmax ¼ 10−2 (lower dashed line). The plots on the
right panel are instead obtained assuming σmax ¼ 10−3 and
considering three different values of x ¼ Rc=R, where Rc is
the CCSC core radius. For lower values of σmax the various
curves would move up. It is important to remark that there
seems to be little motivation for assuming that the breaking

strain of the CCSC phase be of the order discussed above,
because the breaking mechanism (if it exists) of the crystalline
pattern of CCSC matter is still unknown.
From Fig. 19 we infer that the S5 LIGO data give some

hints about the properties of quark matter (under the
assumption discussed above), because if it is present it should
have a breaking strain σmax ≤ 10−3 and that if σmax ∼ 10−3, it
is unlikely that the pulsar J2124-3358 is a crystalline quark
star; although, it could still contain a small crystalline quark
core. With Advanced LIGO and Virgo detectors the spin-
down limit on gravitation waves (GW) emission from known
CSOs will reach ϵ ≈ 10−5, and objects with ellipticity of the
order of 10−6 would be detectable up to the Galactic center
(Palomba, 2012). These observation will put even more severe
limitations the parameters of the crystalline phases and on the
EOS of highly compressed matter.
Different constraints on the CCSC phase can be obtained

from the study of r-mode oscillations, which, if not damped,
would lead to a rapid slowdown of a spinning compact star by
emission of gravitational waves (Andersson, 1998; Friedman
and Morsink, 1998). The analysis of Rupak and Jaikumar
(2012) shows that a quark star with a CCSC crust can provide
sufficiently large damping for preventing the growth of these
oscillations even for rapidly rotating CSOs.

B. Glitches

The rigidity of the crystalline phase may also be put in
relation with the anomalies in the frequency of rotation of
CSOs observed as pulsars (Alford, Bowers, and Rajagopal,
2001; Mannarelli, Rajagopal, and Sharma, 2007). Pulsars
steadily spin down, because they lose rotational energy by
emitting electromagnetic radiation, but occasionally the angu-
lar velocity at the crust of the star suddenly spins up in a
dramatic event called a glitch. Pulsar glitches are rare events
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FIG. 19 (color online). Exclusion plots in the Δ-μ plane for the Crab (left panel) and the pulsar J2124-3358 (right panel) obtained
assuming that these stars have mass M ¼ 1.4M⊙, radius R ¼ 10 km, uniform mass distribution, and are maximally strained. The area
above each line is excluded by the corresponding model. The rectangular box is the theoretically allowed region of μ and Δ for the
CCSC phase; see Mannarelli, Rajagopal, and Sharma (2007). Left panel: The dashed lines correspond to the results of Lin (2007) which
considers the S3/S4 LIGO data of the Crab pulsar, for the case σmax ¼ 10−3 (upper heavy dashed line) and σmax ¼ 10−2 (lower dashed
line) and assuming that the whole star consists of maximally strained crystalline color superconducting matter. The solid lines have been
determined using Eq. (7) of Lin (2007), but with the S5 LIGO data (Abbott et al., 2010) and considering the case of σmax ¼ 10−3 (upper
heavy solid line) and σmax ¼ 10−2 (lower solid line). Right panel: Dependence of the exclusion region on the size of the crystalline core
for the pulsar J2124-3358 obtained using the S5 LIGO data (Abbott et al., 2010) and considering the case of σmax ¼ 10−3. The three
lines correspond to different values of x ¼ Rc=R, where Rc is the radius of the crystalline color superconducting core.
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first observed in the Vela pulsar (Radhakrishnan and
Manchester, 1969; Reichley and Downs, 1969) and the
Crab pulsar (Boynton et al., 1969; Richards et al., 1969)
which manifest in a variety of sizes (Espinoza et al., 2011),
with an activity changing with time and peaking for pulsars
with a characteristic age of about 10 kyr. Although a number
of models have been proposed including two-fluid models
(Baym et al., 1969; Anderson and Itoh, 1975; Alpar, 1977)
and “crust-quake”models (Ruderman, 1969; Baym and Pines,
1971) [for a review of early models see Ruderman (1972)],
these phenomena still remain to be well understood, and their
underlying mechanism is not yet completely clear.
The standard explanation of pulsar glitches (Anderson and

Itoh, 1975; Alpar, 1977) requires the presence of two basic
ingredients: a superfluid in some region of the star and a rigid
structure that can pin the vortex lines without deforming when
the vortices are under tension. The spinning superfluid is
indeed threaded by superfluid vortex lines with quantized
circulation and, as the crust of the spinning pulsar slowly loses
angular momentum by radiation emission, the superfluid
vortices tend to move toward the surface of the star to
compensate the rotational energy bias. The reason is that
the angular momentum of a superfluid is proportional to the
density of vortices and therefore the only way in which a
superfluid can reduce the rotational energy is by vortex creep
toward the boundary of the superfluid region. But vortex lines
are topological objects and if they are pinned to a rigid
structure they cannot move outward and therefore the super-
fluid cannot spin down. Thus, as time passes, the frequency
lag between the superfluid component of the star and the rest
of the star increases. This state persists until the stress exerted
by the pinned vortices on the rigid structure reaches a critical
value, equal to the pinning force. Then, there is a sudden
avalanche in which many vortices unpin from their original
sites, move outward, in part reaching the superfluid boundary
and in part repinning. Both processes reduce the angular
momentum of the superfluid component, meaning that the rest
of the star, including in particular the surface whose angular
velocity is observed, speeds up.
The two above-mentioned basic ingredients are both

present in the CCSC matter, indeed the crystalline phases
are rigid as well as superfluid. Since the core of superfluid
vortices consists of unpaired matter, it is reasonable to expect
that the superfluid vortex lines will have lower free energy if
they are centered along the intersections of the nodal planes of
the underlying crystal structure, i.e., along lines along which
the condensate vanishes even in the absence of a vortex. An
estimate of the pinning force on vortices within CCSC quark
matter (Mannarelli, Rajagopal, and Sharma, 2007) indicates
that it is comparable to that on neutron superfluid vortices
within a conventional neutron star crust (Alpar, Anderson,
Pines, and Shaham, 1984; Alpar, Pines, Anderson, and
Shaham, 1984). Although the basic requirements for explain-
ing glitches are both present, several issues remain to be
addressed and a great deal of theoretical work remains before
the hypothesis that pulsar glitches originate within a CCSC
core is developed fully enough to allow it to confront the
observational data. The road map for achieving this goal
includes the following: the explicit construction of a vortex
line on the top of the crystalline pattern; the understanding of

the pinning mechanism and the calculation of the correspond-
ing pinning force; the investigation of the mechanism which
allows angular momentum transfer between the CCSC core
and the crust, presumably by means of the common electron
fluid or by coupling through the magnetic field.
The same mechanism outlined above might work for a star

with a CFL inner core and an outer core in the CCSC phase. In
this case superfluid vortices lying in the CFL phase are pinned
to the periodic structure of the CCSC phase.

C. Cooling and Urca processes

Neutron stars cool down by neutrino emission and photon
emission, the latter dominating at late ages (t≳ 106 yr). The
cooling rate of a CSO may give information on its interior
constitution, because different phases of hadronic matter cool
down in a rather different way; see, e.g., Pethick (1992) for a
brief review.
After a very short epoch, when the temperature of a

compact star is of the order of ∼1011 K and neutrinos are
trapped in the stellar core (Shapiro and Teukolsky, 1983;
Prakash et al., 2001; Steiner, Reddy, and Prakash, 2002;
Ruester et al., 2006b), the temperature drops and the mean
free path of neutrinos becomes larger than the star radius.
Then, the neutrinos emitted from any part of the neutron star
are free to escape and the cooling is governed by the following
differential equation:

dT
dt

¼ − LνþLγ

VncnVþVqc
q
V
¼−Vnε

n
νþVqε

q
νþLγ

VncnVþVqc
q
V

; (206)

where T is the inner temperature at time t and Lν and Lγ are,
respectively, neutrino and photon luminosities, i.e., heat losses
per unit time; with cnV and εnν (cqV and εqν ) we denote the
specific heat and the emissivity of nuclear matter (quark
matter). Here it is assumed that the specific heats and
emissivities do not depend on the local value of the density
and thus the pertinent volumes of nuclear matter Vn and quark
matter Vq factorize. In principle, for obtaining the heat loss
one should integrate the density dependent quantities over the
corresponding volume. In our simplified treatment we neglect
this dependence, considering toy models of CSOs with a
constant density. Although this approximation is rather rough,
especially for nuclear matter, it serves to show the qualitative
effect due to the presence of the crystalline phase. We assume,
as well, a common inner temperature T, which is appropriate
for sufficiently old compact stars (Lattimer et al., 1994); see,
e.g., Ho, Glampedakis, and Andersson (2012) for a recent
discussion.
Since the mean free path of photons is very short, the

luminosity by photon emission is a surface effect and can be
estimated by the black-body expression

Lγ ≃ 4πR2σT4
s ; (207)

where R is the radius of the star, σ is the Stefan-Boltzmann
constant, and the surface temperature is given by
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Ts ≃ 0.87 × 106
�

gs
1014 cm=s2

�
1=4

�
Tb

108 K

�
0.55

K; (208)

(Gudmundsson, Pethick, and Epstein, 1982; Page et al.,
2004), where Tb ≃ T is the temperature at the basis of the
stellar envelope and gs ¼ GNM=R2 is the surface gravity. The
above relation between Ts and Tb holds for CSOs with a
standard crust. In the following we always assume that the
matter at the basis of the envelope consists of nuclear matter
with deconfined matter eventually present within the core of
the star.
For the neutrino luminosity, one has to consider the relevant

weak processes. When kinematically allowed, direct Urca
processes are the most efficient cooling mechanism for a CSO
in the early stage of its lifetime (Shapiro and Teukolsky,
1983). However, the neutrino emission via the (nuclear) direct
Urca processes n → pþ eþ ν̄e and e− þ p → nþ νe is only
allowed for certain EOS (Lattimer et al., 1991) having a
sufficiently large proton abundance to guarantee energy-
momentum conservation (Chiu and Salpeter, 1964; Bahcall
and Wolf, 1965). Therefore, considering nuclear matter, only
modified Urca processes are in general considered, where a
bystander particle allows energy-momentum conservation.
The resulting cooling is less rapid and the emissivity turns
out to be

εnν ¼ ð1.2 × 104 erg cm−3 s−1Þ
�
n
n0

�
2=3

�
T

107 K

�
8

; (209)

much smaller than the emission rate εnν ∼ T6 due to direct Urca
processes (Shapiro and Teukolsky, 1983). Here n is the
number density and n0 ¼ 0.16 fm−3 is the nuclear equilibrium
density.
These considerations apply to stars containing standard

nuclear matter; faster cooling can be determined by the
presence of a pion condensate (Bahcall and Wolf, 1965;
Maxwell et al., 1977; Muto and Tatsumi, 1988) or a kaon
condensate (Brown et al., 1988). If the central region of the
star consists of deconfined quark matter direct Urca processes
involving quarks, i.e., the processes d → uþ e− þ ν̄e and uþ
e− → dþ νe may take place and largely contribute to the
cooling rate. It has been shown by Iwamoto (1980, 1981,
1982) that quark direct Urca processes are kinematically
allowed and the corresponding emission rate for massless
quarks is of the order αsT6, where αs is the strong coupling
constant. This result is valid if quark matter is a normal Fermi
liquid, but in the CSC phase the expression above is not
correct because quarks form Cooper pairs and fermionic
excitations are gapped. If the color superconductor is cold
(i.e., T ≪ Tc) and homogeneous (i.e., the quasiparticle gap Δ
does not depend on the spatial coordinate), the corresponding
neutrino emissivity and specific heat are suppressed by a
factor e−Δ=T. This suppression is particularly strong in the
CFL phase, because Δ is large and all quarks are paired.
However, the ground state of quark matter in realistic

conditions might not be the CFL phase, but a phase with a less
symmetric pairing pattern. In this case not all quarks form
Cooper pairs, with unpaired quarks giving the leading con-
tribution to the neutrino emissivity. It is also possible that the

temperature of the CSO is close to Tc, in that case the
emissivity of quark matter is not exponentially suppressed
(Jaikumar, Roberts, and Sedrakian, 2006). In the following we
evaluate the contribution of the CCSC phase to the neutrino
emissivity and specific heat showing how the cooling curve is
modified.

1. Neutrino emissivity

The transition rate for the β decay of a down quark dα, of
color α ¼ r, g, b, into an up quark uα

dαðp1Þ → ν̄eðp2Þ þ uαðp3Þ þ e−ðp4Þ; (210)

is

Wfi ¼ Vð2πÞ4δ4ðp1 − p2 − p3 − p4ÞjMj2
Y4
i¼1

1

2EiV
; (211)

where V is the available volume and M is the invariant
amplitude. Neglecting quark masses the squared invariant
amplitude averaged over the initial spins and summed over
spins in the final state is

jMj2 ¼ 64G2
F cos

2 θcðp1 · p2Þðp3 · p4Þ; (212)

where GF is the Fermi constant and θc is the Cabibbo angle;
we neglect the strange-quark β decay whose contribution is
smaller by a factor of tan2 θc. Since for relatively aging stars
there is no neutrino trapping, the neutrino momentum and
energy are both of the order T. The magnitude of the other
momenta is of the order of the corresponding Fermi momenta
p1 ∼ p1

F ∼ μ, p3 ∼ p3
F ∼ μ and p4 ∼ p4

F ∼ μe, which is
smaller, but still sizable (see the discussion in Sec. III). It
follows that the momentum conservation can be implemented
neglecting p2 and one can depict the three-momentum con-
servation for the decay (210) as a triangle (Iwamoto, 1980,
1981, 1982) having for sides p1, p3 and p4. It follows that we
can approximate

ðp1 · p2Þðp3 · p4Þ≃ E1E2E3E4ð1 − cos θ12Þð1 − cos θ34Þ;
(213)

where Ej are the energies and θ12 (θ34) is the angle between
momenta of the down quark and the neutrino (between the up
quark and the electron).
In the CSC phase one has to take into account that the

neutrino emissivity

εqν ¼
X

α¼r;g;b

εαν

¼
X

α¼r;g;b

2

V

�Y4
i¼1

Z
d3pi

ð2πÞ3
�
E2Wfinðp1Þ½1 − nðp3Þ�

× ½1 − nðp4Þ�B2
dα
ðp1ÞB2

uαðp3Þ (214)

depends on the Bogolyubov coefficients Buα and Bdα which
are functions of the quasiparticle dispersion laws (Alford,
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Jotwani et al., 2005). In Eq. (214) the quark thermal
equilibrium Fermi distributions

nðpjÞ ¼ ð1þ e½EjðpjÞ−μj�=TÞ−1 (215)

appear because strong and electromagnetic processes establish
thermal equilibrium much faster than weak interactions. The
overall factor of 2 in Eq. (214) takes into account the electron
capture process.
The cooling of the CCSC matter with condensate (156) was

studied by Anglani et al. (2006), and in this case the largest
contribution to the emissivity stems from the phase space
region around the quark gapless modes, while the relevant
momentum for the electron is its Fermi momentum, thus we
have that

Z
d3p1

Z
d3p3

Z
d3p4

≈
Z

μ2edp4dΩ4P2
1dp1dΩ1P2

3dp3dΩ3; (216)

with dΩj ¼ sin ϑjdϑjdϕj and P1 (P3) is the quark down
(quark up) momentum where the corresponding quasiparticle
energy vanishes. The gapless momenta P1 and P3 depend on
the angle ϑj that quark momenta form with the pair momen-
tum q. The integral expression in Eq. (214) can be simplified
expanding around the gapless modes EjðpÞ≃ μj þ vjðp −
PjÞ (for j ¼ 1 and 3), with the quasiparticle velocity given by

vj ¼
∂Ej

∂p

����
p¼Pj

: (217)

In the three-flavor case the dispersion law of each quasipar-
ticle has from one to three gapless modes, thus one has to
expand the corresponding dispersion laws around each gap-
less momentum.
Using the above approximations the neutrino emissivity for

each pair of gapless momenta P1, P3, can be written as

εαν ≃G2
Fcos

2θcμ
2
eT6

32π8
I
Y4
j¼1

Z
dΩj

P2
1P

2
3B

2
dα
ðP1ÞB2

uαðP3Þ
jv1jjv3j

× δð3Þðp1 − p3 − p4 − qÞð1 − cos θ12Þð1 − cos θ34Þ;
(218)

where I ¼ 457π6=5040. Some of the angular integrations
appearing in Eq. (218) can be performed analytically [see
Anglani et al. (2006) for more details], and the numerical
computation can be reduced observing that, even if each
quasiparticle dispersion law is characterized by various gap-
less momenta, not all of them satisfy the conservation of
momentum p1 − p3 − p4 − q ¼ 0.
From Eq. (218) one can deduce that the largest contribution

to the emissivity is due to blue quarks, that is, to the process in
Eq. (210) with α ¼ b. The reason is that according to the
Ginzburg-Landau analysis of Casalbuoni, Gatto, Ippolito
et al., (2005), the gap parameter Δ1 vanishes and therefore
the down blue quark is ungapped [see the discussion after

Eq. (133)]. Quarks of different flavor or color are instead
gapped; neglecting Oð1=μÞ corrections (see Sec. III.B.5) one
has Δ2 ¼ Δ3 ¼ Δ. The dispersion of down blue quarks is
E1ðpÞ ¼ p, with gapless momentum P1 ≃ μ independent of
ϑ1, mixing coefficient BdbðP1Þ ¼ 1, and v1 ¼ 1. The up blue
quark is instead paired and has two gapless momenta depend-
ing on ϑ3; see Anglani et al. (2006) for an explicit expression.
Of these two gapless momenta one satisfies the momentum
conservation and thus the decay of a down blue quark in an up
blue quark is not suppressed with respect to the analogous
decay in unpaired quark matter, giving the leading contribu-
tion to the emissivity. The contributions of quarks with red and
green colors can be treated in a similar way, but for these
colors neither the down nor the up quarks are unpaired and the
corresponding processes are thus suppressed. The sum of the
contributions of all quarks turns out to be

εν ≈ 4.3 × 1013
�

T
107 K

�
6

erg cm−3s−1; (219)

and is comparable with the emissivity of unpaired quark
matter; see, e.g., Iwamoto (1982).

2. Specific heats

As discussed in Sec. II.D for the two-flavor case, at low
temperature the largest contribution to the specific heat is
determined by the fermionic quasiparticles. The specific heat
of the three-flavor crystalline phase is given by the same
formal expression given in Eq. (73), but with the quasiparticle
dispersion laws of the three-flavor CCSC phase. The compu-
tation can be simplified following the same reasoning used
above: the contributions of gapped modes are exponentially
suppressed and each gapless mode contributes by a factor ∝ T.
This result follows from the evaluation of the integral in
Eq. (73); employing the saddle point method and assuming
that the quasiparticle dispersion laws are linear close the
gapless momenta. Then the angular integral can also be
simplified because the dispersion laws are gapless only in a
restricted angular region. The numerical analysis confirms the
above results; see Anglani et al. (2006) for a discussion and an
expression of the specific heat.
For unpaired nuclear matter and unpaired quark matter the

contribution of each fermionic species can be given by the
fermionic ideal gas result

cV ¼ T
3
PF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ ðPFÞ2

q
; (220)

wherem and PF are the appropriate fermionic mass and Fermi
momentum, respectively. For unpaired nuclear matter, the
three species are neutrons, protons, and electrons with Fermi
momenta evaluated as in neutral matter in weak equilibrium
(Shapiro and Teukolsky, 1983)

PF
n ≃ ð340 MeVÞ

�
n
n0

�
1=3

;

PF
p ¼ Pf

e ≃ ð60 MeVÞ
�
n
n0

�
2=3

:

(221)
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For unpaired quarks, considering electric neutrality and weak
equilibrium, the nine quark species have Fermi momenta
independent of color given by PF

d ¼ μþM2
s=12μ, PF

u ¼ μ −
M2

s=6μ and PF
s ¼ μ − 5M2

s=12μ; see the discussion in Sec. III.

3. Cooling by neutrino emission

For evaluating the effect on the compact star cooling of the
CCSC phase we consider three different toy models compris-
ing neutral and β equilibrated matter (Anglani et al., 2006).
Model I is a star consisting of unpaired “nuclear” matter
(neutrons, protons, and electrons) with mass M ¼ 1.4M⊙
(whereM⊙ is the solar mass), radius R ¼ 12 km, and uniform
number density n ¼ 1.5n0. Model II is a star containing a core
of radius Rc ¼ 5 km of unpaired quark matter with
μ ¼ 500 MeV, with an outer part of unpaired nuclear matter
with uniform density n. Assuming a star mass M ¼ 1.4M⊙
from the solution of the Tolman-Oppenheimer-Volkov (TOV)
equations (Oppenheimer and Volkoff, 1939; Tolman, 1939)
one gets a star radius R ¼ 10 km. Model III is a compact star
containing a core of electric and color neutral three-flavor
quark matter in the CCSC phase with gap parameter given
in Eq. (156), with Δ≃ 6 MeV, μ ¼ 500 MeV, and
M2

s=μ ¼ 140 MeV. The outer part of the star is made of
unpaired nuclear matter. Since the value of the gap parameter
in the model III is small, the radius of the CSO and the quark
core do not differ appreciably from those of a star with a core
of unpaired quark matter, i.e., Rc ¼ 5 km and R ¼ 10 km
(also in these cases M ¼ 1.4M⊙).
In Fig. 20 the cooling curves of the surface temperature are

shown as a function of time for the various star models. For
unpaired quark matter the coupling αs ≃ 1 is used, corre-
sponding to μ ¼ 500 MeV and ΛQCD ¼ 250 MeV. The use of
perturbative QCD at such small momentum scales is, however,
questionable. Therefore the results for model II should be

considered with some caution and the curve is plotted only to
allow a comparison with the other models. The similarity
between the dashed curve and the dotted curve follows from
the fact that in the CCSC phase the quasiparticle dispersion
laws are linear and gapless, so that the scaling laws cV ∼ T and
εν ∼ T6 are analogous to those of the unpaired quark matter.
Thus, the two models cannot easily be distinguished. From
this figure we can see that stars with a CCSC core (or an
unpaired quark core) cool down faster than ordinary neutron
stars. In particular, for 103 < t < 106 yr the cooling is
dominated by the neutrino emission and one has that for
model I, T ∼ t−1=6, while T ∼ t−1=4 for models II and III. At
later times photon emission dominates and the three cooling
curves move closer.
Similar results, with a more refined analysis, have been

obtained by Hess and Sedrakian (2011), where a more realistic
EOS is used to model compact stars with different masses.
Their results are reported in Fig. 21. The models considered
have an envelope of standard nuclear matter, cooling by the
modified Urca process and neutral current bremsstrahlung
processes, and a core of quark matter comprising a two-flavor
inhomogeneous phase, cooling by the direct Urca process.
The solid curve corresponds to standard nuclear matter; the
other curves correspond to hybrid stars with a quark core of
different radii. In order to reproduce, with a hybrid model, the
measured surface temperatures of compact stars, the BCS-like
pairing between u and d blue quarks has to be included, with a
pairing gap Δb of the order of 0.1 MeV. In this case models
with a quark core radius Rc ≲ 1 km seem to be in good
agreement with part of the observational data.
All these results have interesting phenomenological con-

sequences because observational measurements on the cool-
ing of compact stars are being accumulated at an increasing
rate. Some data indicate that stars with an age in the range
103–104 years have a temperature significantly smaller than
expected on the basis of the modified Urca processes; see
Fig. 21. It is difficult, however, to infer, from these data,
predictions on the star composition, as theses stars may have
different masses. But, quite recently, the thermal evolution of
the neutron star in Cassiopeia A (Heinke and Ho, 2010;
Shternin et al., 2011), corresponding to the þ sign in Fig. 21,
has been observed [note that we do not report in Fig. 21 the
detailed observational data of Heinke and Ho (2010) and
Shternin et al. (2011)] and explained as an effect of neutron
superfluidity (Page et al., 2004, 2011; Shternin et al., 2011).
From Fig. 21 we see that models with a LOFF-like two-flavor
pairing seem to fail to reproduce the initial observed values of
age-temperature of this compact star. However, it has been
recently shown that the rapid cooling of Cassiopeia A might
be explained as a phase transition from a gapped to a gapless
(possibly crystalline) phase in a two-flavor CSC (Sedrakian,
2013). The caveat is that the considered CSO should have a
mass≃ 2M⊙. It would be interesting to check whether the
observed behavior can be reproduced with the thermody-
namically favored CCSC phase, for which, however, the
identification of the quasiparticle dispersion laws is still
lacking.
The rapid cooling of neutron superfluids determined in

Page et al. (2004, 2011) and Shternin et al. (2011) is due to the
difermion pair-breaking effect, which enhances the emissivity
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FIG. 20 (color online). Surface temperature, in Kelvin, as a
function of time, in years, for various models of compact stars
(Anglani et al., 2006). Model I is a neutron star of nuclear matter
with uniform density n ¼ 0.24 fm−3 and radius R ¼ 12 km;
model II corresponds to a star with R ¼ 10 km, having an outer
part of nuclear matter and a core of radius Rc ¼ 5 km of unpaired
quark matter; model III is like model II, but in the core there is
quark matter in a crystalline phase, see the text for more details.
For all stars M ¼ 1.4M⊙ and the temperature at t ¼ 1 yr was set
to T ¼ 109 K. Parameters for the core are μ ¼ 500 MeV and
M2

s=μ ¼ 140 MeV. Adapted from Anglani et al., 2006.
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of nuclear matter. The presence of CCSC matter has a very
similar effect. Indeed, the fast cooling of relatively young
compact stars with a CCSC core should be a consequence of
the scaling laws for neutrino emissivity and specific heat,
which in turn strongly depend on the existence of gapless
points (Anglani et al., 2006; Hess and Sedrakian, 2011),
present at the edge of the pairing regions in momentum space.
Since this property is typical of any CCSC phase, independ-
ently of detailed form of the condensate, when a CCSC core
nucleates inside a compact star it should be followed by a
rapid cooling, pretty much as the formation of a neutron
superfluid determines the rapid cooling of a young neu-
tron star.
Although the above-reported analysis is not conclusive,

because a detailed treatment of the thermodynamically
favored CCSC phase is still missing, some qualitative assess-
ments can be made from the obtained results. Slow cooling is
typical of stars containing only nonsuperfluid standard nuclear
matter or of stars with a uniform CSC phase (like CFL); the
observed cooling rate of the neutron star in Cassiopeia A
(Heinke and Ho, 2010; Shternin et al., 2011) seems to disfavor
both possibilities, leaving superfluid nuclear matter and CCSC
matter as candidate phases. The latter possibility is compatible
with the result that for intermediate densities the quark normal
state and the CFL phase are less favored than the CCSC phase
in a certain range of values of the quark chemical potential.

Note that the results reported above do not properly take
into account the heat transport inside the compact star. It
would be interesting to include in the analysis the various
transport mechanisms to have detailed simulations of the CSO
cooling; see, e.g., Ho, Glampedakis, and Andersson (2012).

D. Mass-radius relation

Since any phase transition leads to a softening of the EOS
(Lattimer and Prakash, 2001; Haensel, 2003), at one time it
was thought that hybrid stars (having a quark matter core and
an envelope of baryonic matter) should have mass
M ≲ 1.7M⊙; see, e.g., Alford and Reddy (2003), Buballa
et al. (2004), and Maieron et al. (2004). For CSOs with larger
masses, the deconfinement phase transition from baryonic to
quark matter would reduce the central pressure to the point of
instability toward black hole formation, unless some repulsive
interaction between quarks prevents the collapse.
Some evidence for massive neutron stars with M ∼ 2M⊙

has been inferred from various astronomical observations: a
compact star may exist in the LMXB (low mass x-ray binary)
4U 1636-536 with ð2.0 � 0.1ÞM⊙ (Barret, Olive, and Miller,
2005). A measurement on the pulsar PSRB1516þ02B in the
Globular Cluster M5 gave M ¼ ð2.08 � 0.19ÞM⊙ (Freire
et al., 2008). The millisecond pulsar J1614-2230 has a mass
ð1.97 � 0.04ÞM⊙ accurately measured by Shapiro delay
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FIG. 21 (color online). Surface temperature, in Kelvin, as a function of time, in years, for various models of compact stars comprising a
two-flavor LOFF phase between u and d red and green quarks, with gap parameterΔ, and pairing between u and d blue quarks, with gap
parameter Δb. Various values of the central density ρc of ζ ¼ Δ=δμ and Δb are considered. The solid curve refers to a model with no
quark matter, central density 5.1ρ14, where ρ14 ¼ 1014 g cm−3, corresponding to a star with M ≃ 0.54M⊙. The long dashed curve
corresponds to a model with ρc ¼ 10:8ρ14, M ≃ 1.91M⊙, and a quark core with radius Rc ≃ 0.68 km. The short dashed curve
corresponds to a model with ρc ¼ 11:8ρ14, M ≃ 1.93M⊙, and Rc ≃ 3.41 km. The dotted curve corresponds to a model with
ρc ¼ 21:0ρ14, M ≃ 2.05M⊙, and Rc ≃ 6.77 km. The symbols correspond to the observational data points [see Hess and Sedrakian
(2011) for an explanation]; here we only remark that the þ sign on the top left corner corresponds to Cassiopeia A (Heinke and Ho,
2010; Shternin et al., 2011). From Hess and Sedrakian, 2011.
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(Demorest et al., 2010). Although these observations seem to
disfavor the presence of quark matter (Logoteta et al., 2012),
the details of a stability analysis depend on the theoretical
model employed for the description of the hadronic phase,
deconfinement, and the CSC matter. We show below that in
the presence of the crystalline phase large masses can indeed
be reached (Ippolito et al., 2008). The drawback, as we see, is
that if M ≃ 2M⊙ CSOs have a CCSC core, then ordinary
M ≃ 1.4M⊙ CSOs are unlikely to have a CCSC core.
Since a first principles calculation of the high-density EOS

is not feasible, the description of quark matter relies on several
different models including the MIT bag model, the NJL
model, and the chromodielectric model. The results obtained
within these three models may differ in a sizable way, and do
as well depend on the detailed form of the model considered.
Recent phenomenological studies of hybrid stars based on the
MIT bag model were carried out using a generic parametriza-
tion of the quark matter EOS in Alford, Braby et al. (2005)
and it was shown that hybrid stars may actually “masquerade”
as neutron stars. Alford, Braby et al. (2005) parametrized
nonperturbative QCD corrections to the EOS of the Fermi gas
in a rather general way, considering a Taylor expansion of the
pressure in terms of μ2; for a different approach see Fraga,
Pisarski, and Schaffner-Bielich (2001). Taking into account
these corrections, stable hybrid stars containing CFL quark
matter may exist with maximum mass of about 2M⊙.
Various studies of very massive hybrid stars within the

three-flavor NJL model displayed a general instability toward
collapse into a black hole (Buballa et al., 2004). Stable stars
featuring the 2SC phase were obtained with typical maximum
masses M ∼ 1.7M⊙ assuming reasonable values of the con-
stituent quark masses (Shovkovy, Hanauske, and Huang,
2003) or by replacing the hard NJL cutoffs by soft form
factors with parameters fitted to a certain set of data
(Grigorian, Blaschke, and Aguilera, 2004; Blaschke et al.,
2007). Heavier objects can be obtained if a repulsive vector
interaction is introduced in the NJL Lagrangian (Klahn et al.,
2007; Bonanno and Sedrakian, 2012; Orsaria et al., 2013),
which makes the EOS stiffer, but at the same time, reducing
the amount of deconfined quark matter in the core of the star,
or with no pure quark matter at all (Orsaria et al., 2013), i.e.,
with a core comprising a mixed phase of quarks and hadrons.
Another source of uncertainty comes from the nuclear EOS

at high densities, which can be constructed starting from a
number of different principles (Weber, 1999; Sedrakian, 2007)
and a large number of EOS have been proposed for hybrid star
configurations. In the analysis of the considered EOS,
presented below only the stiffest were found to be admissible
for phase equilibrium between nuclear and CCSC matter.
The inclusion of hyperonic matter in the EOS of compact

stars although reasonable is certainly troublesome, because
the nucleon-hyperon and hyperon-hyperon interactions are
not well known, even though some progress has been done
mainly by lattice simulations (Aoki et al., 2012). Hyperons
would certainly soften the EOS (Glendenning and Kettner,
2000), making the comparison with the observed 2M⊙ of
some CSOs problematic (Lattimer and Prakash, 2007).

1. Matching the equation of state

The self-consistent computation of the strange quark mass
given in Ippolito, Nardulli, and Ruggieri (2007) allows the
evaluation of pressure as a function of the quark chemical
potential μ. Thus, varying the quark chemical potential, the
phase equilibrium between the confined and the CSC phase
can be constructed.
A possible normalization of the quark pressure in the NJL

model is obtained by requiring that the pressure vanishes at
zero density and temperature (Buballa and Oertel, 1999;
Sandin and Blaschke, 2007). In the terminology of the
MIT bag model, this is equivalent to a subtraction of the
bag constant from the thermodynamic potential (Alford,
Braby et al., 2005). Since the value of the bag constant is
related to confinement, which is absent in the NJL model, it
appears reasonable changing its value, and hence the nor-
malization of the pressure. The simplest option is to consider
the case of a constant shift in the asymptotic value of the
pressure; an alternative is the use of form factors for the bag
constant (Grigorian, Blaschke, and Aguilera, 2004).
Regarding the matching between the nuclear and quark

matter EOS, it can be performed in the strong coupling limit,
corresponding to GD=GS ¼ 1 (Ruester et al., 2005; Sandin
and Blaschke, 2007) [see Eq. (15) and the discussion after
Eq. (29)]. The transition from the confined phase to quark
matter happens at the baryonic chemical potential at which the
pressures of the two phases are equal, meaning that the
chemical potential curves PðμÞ for these phases cross. At
intermediate coupling and weak coupling, corresponding,
respectively, to GD=GS ∼ 0.75 and GD=GS ≲ 0.7, the PðμÞ
curves for nuclear and quark matter do not cross; the models
are thus incompatible, meaning that they cannot describe the
desired transition between nuclear and quark matter.
In the following we discuss two simple models of CSOs

(Ippolito et al., 2008). In the first model, hereafter named
nuclear, we consider standard nuclear matter described by the
Dirac-Brueckner-Hartree-Fock theory. The selected EOS is
the hardest one in the collection of Weber (1999) and Weber,
Negreiros, and Rosenfield (2007). The second model, here-
after model A, has the same low-density EOS of nuclear
matched at an interface via the Maxwell construction to the
high-density EOS of CCSC matter. In order to achieve this
matching the zero density pressure is shifted by an amount
δp ¼ 10 MeV=fm3. This is equivalent to a variation of the
bag constant. Another possibility is to set δp ¼ 0, but varying
the value of the constituent masses of the light quarks in the fit
of the parameters of the NJL model; for small values of the
light quark masses the matching between quark and nuclear
equations of state is facilitated (Buballa et al., 2004).
Note that because of the Maxwell construction of the

deconfinement phase transition, there is a jump in the density
at constant pressure as illustrated in the left panel of Fig. 22.

2. Results for nonrotating configurations

Given the EOS, the spherically symmetric solutions of
Einstein’s equations for nonrotating self-gravitating fluids are
obtained by the TOVequations. For simplicity we only discuss
the two nonrotating configurations corresponding to the
Model A and nuclear; see Ippolito et al. (2008) for different
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models including rotation. A generic feature of the TOV
solutions is the existence of a maximum mass for any EOS; as
the central density is increased beyond the value correspond-
ing to the maximum mass, the star becomes unstable toward
collapse to a black hole. One criterion for the stability of a
sequence of configurations is the requirement that
dM=dρc > 0, meaning that the mass of the star should be
an increasing function of the central density. At the point of
instability the fundamental (pulsation) modes become unsta-
ble. If stability is regained at higher central densities, the
modes by which the stars become unstable toward the eventual
collapse belong to higher-order harmonics.
The right panel of Fig. 22 shows that for configurations

constructed from the nuclear EOS, the stable sequence
extends up to a maximum mass of the order 2M⊙; the
value of the maximum mass is large, since the chosen EOS
is stiff. The hybrid configurations branch off from the
nuclear configurations when the central density reaches that
of the deconfinement phase transition. We also report the
astronomical bounds on the masses of CSOs (horizontal
dashed lines). The upper bound corresponds to M ¼ 2M⊙,
while the lower bound to a mass of about ð1.249 �
0.001ÞM⊙ inferred from the millisecond binary J0737-
3039 (Lyne et al., 2004). Note that both the hybrid stars
and their nuclear counterparts have masses and radii within
these bounds. However, the hybrid configurations are more
compact than their nuclear counterparts, i.e., they have
smaller radii. Contrary to the case of self-bound quark stars
(Alcock, Farhi, and Olinto, 1986), whose radii could be
much smaller than the radii of purely nuclear stars, the
differences between the radii of hybrid and nuclear stars are
small and cannot be used to distinguish these two classes by
means of current astronomical observations. A remarkable
result is that although the hybrid model A is roughly
consistent with the bound of M ∼ 2M⊙, it should be noted
that canonical 1.4M⊙ CSOs will be purely nuclear if they are
described by this model. According to the presented analysis
when the CCSC matter appears the star first gets unstable
and then it becomes stable only at higher values of the

central density [corresponding to the so-called third family
compact stars (Gerlach, 1968; Glendenning and Kettner,
2000; Schertler et al., 2000)]. Moreover, only sufficiently
massive CSOs, with mass M ≳ 1.8M⊙, can contain a
fraction of quark matter. Different hybrid EOS constructed
in a similar way lead to analogous results (Ippolito
et al., 2008).

V. CONCLUSION

The investigation of the properties of matter in extreme
conditions is one of the most fascinating and challenging
frontiers in high-energy physics. The aim is to understand the
fundamental properties of matter when the relevant degrees of
freedom are deconfined quarks and gluons. According to
QCD, cold and dense matter at asymptotic densities should be
in the color superconducting (CSC) phase, with quarks
forming Cooper pairs.
Ongoing research in cold and dense quark matter is now

confronting astrophysical data, allowing us to exclude some
CSC models and/or to restrict the parameter space of some
phases. The most important consideration for a comparison
with the astrophysical data is certainly that the conditions
realized in compact stellar objects may determine a mismatch
between the Fermi momenta of quarks, disfavoring the
homogeneous CSC phases, and favoring less symmetric
diquark pairing.
In this review, we focused on the inhomogeneous CSC

phases, chiefly on the crystalline color superconducting
(CCSC) phase. This phase might be the CSC phase realized
in the core of compact stars, if deconfined quark matter is
present, because it allows pairing between quarks on mis-
matched Fermi surfaces.
First proposed in the two-flavor case by Alford, Bowers,

and Rajagopal (2001), the CCSC phase has been studied by
many for both two- and three-flavor quark matter. We reported
on the various results obtained showing that nowadays it is a
well-developed subject with several open problems and
fascinating applications to compact star astrophysics. In this
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FIG. 22 (color online). Left panel: Pressure vs matter density for the two considered models. The solid black line labeled nuclear refers
to the EOS based on the Dirac-Brueckner-Hartree-Fock approach (Weber, 1999; Weber, Negreiros, and Rosenfield, 2007). The dashed
line corresponds to model A. The EOS of model A has the low-density EOS corresponding to nuclear and the high-density EOS
obtained by a NJL model describing CCSC matter. At the deconfinement phase transition there is a jump in the density at constant
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respect, this phase of matter has very appealing features,
residing in its extraordinary properties. The CCSC is char-
acterized by a periodic modulation of the condensate which is
extremely resistant to deformations. Thus, compact stars
featuring CCSC matter may sustain large “mountains,” mean-
ing that spinning compact stars might be strong sources of
gravitational waves. Moreover, since the three-flavor CCSC
phase is also superfluid, when rotating it will develop
quantized vortices which might be pinned to the periodic
condensate, thus it satisfies the basic requirements for explain-
ing stellar glitches. Finally, we also discussed how the
presence of CCSC matter might influence the mass-radius
relation and the cooling curve of a compact star, although in
this case the presence of a crystalline modulation appears to be
less relevant.
Whether the CCSC phase will stand the test of the

increasing observational data on compact stellar objects it
is still unclear. It seems to us that among the astrophysical
data, probably those on stellar glitches and those provided by
the next-generation gravitational wave detectors might give
the most stringent constraints on the CCSC matter. However,
to properly confront the astrophysical data, we still need to
understand several fundamental properties of the CCSC
phase. Among the open issues, we remark that the individua-
tion of the favored crystalline structure does so far rely on a
Ginzburg-Landau (GL) expansion. Although the GL analysis
does certainly give useful qualitative information on the
favored periodic modulations, the resulting gap parameter
and free energy are under poor quantitative control. Moreover,
in order to study stellar glitches, an understanding of super-
fluid vortices in CCSC matter has to be developed. So far only
an order of magnitude estimate of the pinning force has been
obtained, which is not enough for a full description of the
vortex dynamics and the associated stellar spinning evolution.

LIST OF SYMBOLS AND ABBREVIATIONS

For clarity we report below a list of the review’s most used
acronyms and symbols.

bcc: Body-centered cube
BCS: Bardeen-Cooper-Schrieffer
BEC: Bose-Einstein condensate

CCSC: Crystalline color superconducting
CFL: Color-flavor locked
CC: Chandrasekhar-Clogston

CSC: Color superconducting
CSO: Compact stellar object
EOS: Equation of state
fcc: Face-centered cube
FF: Fulde-Ferrell
GL: Ginzburg-Landau
GW: Gravitational waves

HDET: High-density effective theory
LO: Larkin-Ochinnikov

LOFF: Larkin-Ochinnikov-Fulde-Ferrell
NGB: Nambu-Goldstone boson

NJL: Nambu-Jona–Lasinio
QCD: Quantum chromodynamics
QGP: Quark-gluon plasma
TOV: Tolman-Opennheimer-Volkoff
2SC: Two-flavor color superconducting

gCFL: Gapless color-flavor locked
g2SC: Gapless two-flavor color superconducting
a; b∶ Adjoint color indices

i; j; k∶ Flavor indices
s; t∶ Spin indices
GD∶ Quark-quark coupling constant
GS∶ Quark-antiquark coupling constant
PF∶ Fermi momentum
Ms∶ Constituent strange quark mass
M⊙∶ Solar mass

α; β; γ∶ Fundamental color indices
δμ∶ Chemical potential difference

ϵi;j;k∶ Levi-Civita symbol in flavor space
εαβγ∶ Levi-Civita symbol in color space

μ∶ Quark chemical potential
μe∶ Electron chemical potential
Δ∶ Pairing gap
Ω∶ Free energy
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