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and CNR-IMM-UOS Catania (Universitá), Via Santa Sofia 64, I-95123, Catania, Italy

B. L. Altshuler§

Physics Department, Columbia University, New York, New York 10027, USA

(published 3 April 2014)

The efficiency of the future devices for quantum information processing is limited mostly by the finite
decoherence rates of the individual qubits and quantum gates. Recently, substantial progress was
achieved in enhancing the timewithin which a solid-state qubit demonstrates coherent dynamics. This
progress is based mostly on a successful isolation of the qubits from external decoherence sources
obtained by engineering. Under these conditions, the material-inherent sources of noise start to play a
crucial role. In most cases, quantum devices are affected by noise decreasing with frequency f
approximately as 1=f. According to the present point of view, such noise is due tomaterial- and device-
specific microscopic degrees of freedom interacting with quantum variables of the nanodevice. The
simplest picture is that the environment that destroys the phase coherence of the device canbe thought of
as a system of two-state fluctuators, which experience random hops between their states. If the hopping
times are distributed in an exponentially broad domain, the resulting fluctuations have a spectrum close
to1=f in a large frequency range.This paper reviews the current state of the theoryof decoherencedue to
degrees of freedom producing 1=f noise. Basic mechanisms of such noises in various nanodevices are
discussed and several models describing the interaction of the noise sources with quantum devices are
reviewed. The main focus of the review is to analyze how the 1=f noise destroys their coherent
operation. The start is from individual qubits concentrating mostly on the devices based on super-
conductor circuits and then some special issues related tomore complicated architectures are discussed.
Finally, several strategies for minimizing the noise-induced decoherence are considered.
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I. INTRODUCTION

Evidence of properties that fluctuate with spectral densities
varying approximately as 1=f over a large range of frequen-
cies f has been reported in an astonishing variety of systems.
In condensed matter physics, the difficulties in reasonably
explaining the shape of the spectrum and in ascribing a
physical origin to the noise in the diversity of system where it
has been observed have kept 1=f noise in the forefront of
unsolved problems for a long time. The large theoretical and
experimental effort in this direction up to the late 1980s, with
emphasis on 1=f conductance fluctuations in conducting
materials, has been reported by Dutta and Horn (1981)
Weissman (1988), Kogan (1996), and others cited therein.
With the progressive reduction of systems size, fluctuations

having 1=f-like spectra have been frequently observed in
various mesoscopic systems. The importance of magnetic flux
noise in superconducting quantum interference devices
(SQUIDs) was recognized already in the 1980s (Koch et al.,
1983; Weissman, 1988) thus opening the debate about its
physical origin—noise from the substrate or mount or noise
from trapped flux in the SQUID—and temperature depend-
ence (Savo, Wellstood, and Clarke, 1987; Wellstood, Urbina,
and Clarke, 1987b). Single-electron and other tunneling
devices have provided compelling evidence that fluctuating
background charges, either within the junctions or in the
insulating substrate, are responsible for low-frequency polari-
zation fluctuations (Zorin et al., 1996; Wolf et al., 1997;
Krupenin et al., 1998, 2001).
Nanodevices are the subject of intense research at present

because of their long-term potential for quantum information.

Similarly to atomic systems, the quantum nature of nano-
circuits, despite being hundreds of nanometers wide and
containing large numbers of electrons, is observable.
Because of these characteristics solid-state quantum bits
(qubits) can be relatively easily addressed to perform desired
quantum operations. The drawback of tunability is sensitivity
to fluctuations of control parameters. Fluctuations are partly
extrinsic, such as those due to the local electromagnetic
environment. This source of noise has been greatly reduced
via clever engineering. In almost all quantum computing
nanodevices fluctuations with 1=f spectral density of different
variables and physical origin have been observed. There is
clear evidence that 1=f noise is detrimental to the required
maintenance of quantum coherent dynamics and represents
the main source of decoherence. This fact has stimulated a
large effort of both the experimental and theoretical commun-
ities aimed, on the one hand, at a characterization of the
noise, and, on the other hand, at understanding and eventually
reducing noise effects. From a complementary perspective,
nanodevices are sensitive probes of the noise characteri-
stics and therefore may provide important insights into its
microscopic origin.
In this review we describe the current state of theoretical

work on 1=f noise in nanodevices with emphasis on impli-
cations for solid-state quantum information. We focus on
superconducting systems and refer to other implementations,
in particular, those based on semiconductors, whenever
physical analogies and/or formal similarities are envisaged.
Previous reviews on 1=f noise mainly focused on resistivity

fluctuations of conducting materials (Dutta and Horn, 1981;
Weissman, 1988; Kogan, 1996). Important questions have
been addressed, such as universality of the mechanisms
leading to conductivity fluctuations and the kinetic patterns
leading to the 1=f spectral form. Detailed investigations in
different materials (metals and semiconductors) failed to
confirm the impression of universality and led instead to
the conclusion of a variety of origins of 1=f conductance
noise existing in diverse materials.
Recent experiments with superconducting circuits evi-

denced 1=f low-frequency fluctuations of physically different
observables, thus providing new insight into noise micro-
scopic sources. This is due to the fact that three fundamental
types of superconducting qubits exist: flux, charge, and phase;
for a recent review, see Clarke andWilhelm (2008), Ladd et al.
(2010) Steffen et al. (2011), and You and Nori (2011). The
main difference between them is the physical observable
where information is encoded: superconducting current,
excess charge in a superconducting island, or the super-
conducting phase difference across a Josephson junction.
Different observables couple more strongly to environmental
variables of a different nature and therefore are sensitive
probes of different noise sources. As a result, magnetic flux
noise, polarization or “charge” noise and critical current noise
with 1=f spectrum in some frequency range are presently
routinely measured in the three implementations.
One scope of this review is to present the current under-

standing of the microscopic sources of 1=f noise in super-
conducting nanocircuits. Despite the fact that relevant
mechanisms have been largely identified, in most solid-state
nanodevices this problem cannot be considered as totally
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settled (Sec. II). In some cases, available experiments do not
allow one to draw solid conclusions and further investigation
is needed. A number of basic features of the phenomenon are,
however, agreed upon. According to previous reviews, 1=f
noise results from a superposition of fluctuators (whose nature
has to be specified case by case) having switching times
distributed in a very broad domain (Dutta and Horn, 1981;
Weissman, 1988; Kogan, 1996). Statistical properties of 1=f
noise have been discussed by Kogan (1996). These properties
are at the origin of 1=f noise-induced loss of coherence of
solid-state qubits. For clarity, we recall here the basic
definitions and specify their use in the context of the present
review.
For a Gaussian random process all nonzero nth-order

moments can be expressed in terms of the second-order
moments, i.e., pair correlations. In general, statistical proc-
esses producing 1=f noise are non-Gaussian. This fact has
several important implications. On the one hand, statistical
correlations higher than the power spectrum should be
considered in order to characterize the process; see Kogan
(1996). On the other hand, deviations from Gaussian behavior
are also expected to show up in the coherent quantum
dynamics of solid-state qubits. In relevant regimes for quan-
tum computation, where effects of noise are weak, it can be
described by linear coupling to one or more operators of the
quantum system. Under this condition, for Gaussian noise,
random noise-induced phases acquired by a qubit obey the
Gaussian distribution. We refer to a process as Gaussian
whenever this situation occurs. As we see explicitly in Sec. III,
even in cases where the noise can be considered as a sum of
many statistically independent contributions, the distribution
of the phases can be essentially non-Gaussian. A number of
investigations aimed at predicting decoherence due to non-
Gaussian 1=f noise are (Paladino et al. (2002), Grishin,
Yurkevich, and Lerner (2005), Bergli, Galperin, and Altshuler
(2006, 2009), Galperin et al. (2006, 2007), Burkard (2009),
and Yurkevich et al. (2010) (more references can be found in
Sec. III).
The other crucial property of 1=f noise is that it cannot be

considered a Markovian random process. A statistical process
is Markovian if one can make predictions for the future of the
process based solely on its present state, just as well as one
could do knowing the process’s full history. We will see that
even if the noise can be considered as a sum of Markovian
contributions, the overall phase fluctuations of a qubit can be
essentially non-Markovian. This is the case when non-
Gaussian effects are important; see, e.g., Laikhtman (1985),
where this issue was analyzed for the case of spectral diffusion
in glasses. The consequence of 1=f noise being non-
Markovian is that the effects of 1=f noise on the system
evolution depend on the specific “quantum operation” and/or
measurement protocol. In this review we illustrate various
approaches developed in recent years to deal with the non-
Markovian nature of 1=f noise starting both from microscopic
quantum models and from semiclassical theories. We discuss
the applicability range of the Gaussian approximation as well
as deviations from the Gaussian behavior in connection with
the problem of qubit dephasing.
A statistical process is stationary if all joint probability

distributions are invariant for translations in time. To our

knowledge, at the present there is no clear evidence of
nonstationarity of the processes leading to 1=f noise (see
the discussion in Sec. III).
Low-frequency noise is particularly harmful since it is

difficult to filter out with finite-band filters. In recent years
different techniques have been proposed, and sometimes
experimentally tested, in order to limit the effect of low-
frequency fluctuations. One successful strategy to increase
phase-coherence times is to operate qubits at working points
where low-frequency noise effects vanish to the lowest order;
such operating conditions are called “optimal” point or
“magic” point (Vion et al., 2002). Further substantial
improvement resulted from the use of dynamical techniques
inspired by nuclear magnetic resonance (NMR) (Schlichter,
1992). In a quantum information perspective, any approach
aimed at limiting decoherence should be naturally integrated
with other functionalities as quantum gates. In addition,
achieved fidelities should be sufficiently high to allow for
the successful application of quantum error correction codes.
The question about the best strategy to limit 1=f noise effects
via passive or active stabilization is still open. We review the
current status of the ongoing research along this direction in
Sec. III.D.
Building scalable multiqubit systems is presently the main

challenge toward the implementation of a solid-state quantum
information processor (Nielsen and Chuang, 1996). The effect
of 1=f noise in solid-state complex architectures is a subject of
current investigation. Considerable improvement in minimiz-
ing sensitivity to charge noise has been reached via clever
engineering. A new research area named circuit quantum
electrodynamics (cQED) recently developed from the synergy
of superconducting circuits technology and phenomena of the
atomic and quantum optics realm. In this framework important
further steps have been done. Among the newest we mention
is the achievement of three-qubit entanglement with super-
conducting nanocircuits (Di Carlo et al., 2010; Neeley et al.,
2010) which, in combination with longer qubit coherence,
illustrate a potentially viable approach to factoring numbers
(Lucero et al., 2012), implementing quantum algorithms
(Fedorov et al., 2011; Mariantoni et al., 2011), and simple
quantum error correction codes (Chow et al., 2012; Reed
et al., 2012; Rigetti et al., 2012).

A. General features and open issues

Low-frequency noise is commonly attributed to so-called
fluctuators. In a “minimal model,” reproducing main features
of 1=f noise, fluctuators are dynamic defects, which randomly
switch between two metastable states (1 and 2); see, e.g.,
Dutta and Horn (1981), Weissman (1988), and Kogan (1996).
Such a switching produces random telegraph (RT) noise. The
process is characterized by the switching rates γ1→2 and γ2→1

for the transitions 1 → 2 and 2 → 1. Only the fluctuators with
energy splitting E less than a few kBT (T is temperature)
contribute to the dephasing of a qubit, since the fluctuators
with large level splitting are frozen in their ground states. As
long as E≲ kBT the rates γ1→2 and γ2→1 are close in
magnitude, and to describe the general features of
decoherence one can assume that γ1→2 ¼ γ2→1 ≡ γ, i.e., the
fluctuations can be described as a RT process (Buckingham,
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1989; Kirton and Uren, 1989; Kogan, 1996). A set of random
telegraph fluctuators with exponentially broad distribution of
relaxation rates γ produces noise with a 1=f power spectrum at
γmin ≪ ω ¼ 2 πf ≪ γmax. Here γmin is the switching rate of
the “slowest” fluctuator affecting the process, whereas γmax is
the maximal switching rate for fluctuators with energy differ-
ence E ∼ kBT. Random telegraph noise has been observed in
numerous nanodevices based on semiconductors, normal
metals, and superconductors (Ralls et al., 1984; Rogers and
Buhrman, 1984, 1985; Parman, Israeloff, and Kakalios, 1991;
Peters, Dijkhuis, and Molenkamp, 1999; Duty et al., 2004;
Eroms et al., 2006). Multistate fluctuators with a number of
states greater than 2 were also observed (Bloom, Marley, and
Weissman, 1993, 1994).
Various microscopic sources can produce classical random

telegraph noise. Here we briefly summarize some of them in
connection with charge, flux, and critical current noise and
mention some recent key references; a detailed discussion is
presented in Sec. II.
The obvious source of RT charge noise is a charge which

jumps between two different locations in space. Various
hypotheses about the actual location of these charges and
the nature of the two states are still under investigation. The
first attempt at constructing such a model in relation to qubit
decoherence appeared in Paladino et al. (2002), where
electron tunneling between a localized state in the insulator
and a metallic gate was studied. The quantitative importance
(in explaining observed spectra) of effects of hybridization
between localized electronic states (at the trap) and electrodes
extended states was pointed out by Grishin, Yurkevich, and
Lerner (2005) and Abel and Marquardt (2008). Models
considering the actual superconducting state of the electrodes
have been studied by Faoro et al. (2005) and Faoro and Ioffe
(2006), leading to predictions in agreement with the exper-
imental observations of charge noise based on measurements
of relaxation rates in charge qubits reported by Astafiev
et al. (2004).
Studies of flux noise have a long history. Koch et al. (1983)

demonstrated that flux rather than critical current noise limits
the sensitivity of dc SQUIDs. The interest in this problem was
recently renewed when it was realized that flux noise can limit
the coherence in flux and phase superconducting qubits
(Yoshihara et al., 2006; Harris et al., 2008). Two recent
models for fluctuators producing low-frequency noise were
suggested. Koch, DiVincenzo, and Clarke (2007) attribute
flux noise to electrons hopping between traps, with spins
having fixed, random orientations. de Sousa (2007) proposed
that electrons flip their spins due to interaction with tunneling
two-level systems (TLSs) and phonons. A novel mechanism,
based on independent spin diffusion along the surface of a
superconductor, was suggested by Faoro and Ioffe (2008). It
seems to agree with experiments on measurements of the 1=f
flux noise reported by Bialczak et al. (2007) and Sendelbach
et al. (2008). Instead, recent measurements by Anton et al.
(2013) appear to be incompatible with random reversal
of independent surface spins, possibly suggesting a non-
negligible spin-spin interaction (Sendelbach et al., 2009).
The microscopic mechanism and the source of the fluctua-

tions of the critical current in a Josephson junction are long-
standing open problems. These fluctuations were initially

attributed to charges tunneling or hopping between different
localized states inside the barrier, forming glasslike TLSs.
However, a more detailed comparison with experiments
revealed an important problem: the noise spectrum exper-
imentally observed by Van Harlingen et al. (2004) and
Wellstood, Urbina, and Clarke (2004) was proportional to
T2, which is incompatible with the assumption of constant
TLS density of states, or equivalently with any power-law
dependence of relaxation rates for E≲ kBT. The experiments
by Eroms et al. (2006) on fluctuations in the normal state in
small Al junctions [similar to those used in several types of
qubits (Martinis et al., 2002; Vion et al., 2002; Chiorescu
et al., 2003)] brought a new puzzle. It turned out that the
temperature dependence of the noise power spectrum in the
normal state is linear, and the noise power is much less than
that reported for large superconducting contacts. A plausible
explanation of such behavior was proposed by Faoro and Ioffe
(2007), who suggested that the critical current noise is due to
electron trapping in shallow subgap states that might be
formed at the superconductor-insulator boundary. Recently,
measurements on Al=AlOx=Al junctions reported by
Nugroho, Orlyanchik, and Van Harlingen (2013) showed
an equivalence between the critical-current and normal-state
resistance fractional noise power spectra, both scaling ∝ T,
suggesting the possibility of an upper limit to the additional
noise contribution from electrons tunneling between weak
Kondo states at subgap energies.
The dramatic effect of 1=f charge noise was already

pointed out in the breakthrough experiment performed at
the Nippon Electric Corporation and reported by Nakamura,
Pashkin, and Tsai (1999), where time-domain coherent
oscillations of a superconducting charge qubit were observed
for the first time. This experiment has renewed the interest for
charge noise and has stimulated a number of investigations
aimed at explaining decoherence due to noise sources char-
acterized by a 1=f power spectrum in some frequency range.
The theoretical understanding of decoherence in solid-state
single qubit gates is presently quite well established. Quite
often in the literature the statistics of the fluctuations of the
qubit parameters displaying 1=f spectrum is assumed to be
Gaussian. This assumption is not a priori justified. In order to
discuss the applicability range of the Gaussian approximation
as well as deviations from the Gaussian behavior in connection
with the problem of qubit dephasing, we consider in detail
some of the above-mentioned models where the qubit response
to typical manipulation protocols can be solved exactly.
Peculiar features originated from fluctuations with 1=f

spectrum show up in the qubit dynamics superposed to effects
due to high-frequency fluctuations (see Fig. 1). The intrinsic
high-frequency cutoff of 1=f noise is in fact hardly detectable,
with measurements typically extending to 100 Hz. Recently,
charge noise up to 10 MHz has been detected in a single-
electron transistor (SET) by Kafanov et al. (2008), and flux
noise in the 0.2–20 MHz range has been measured by
Bylander et al. (2011) with proper pulse sequences.
Incoherent energy exchanges between system and environ-
ment, leading to relaxation and decoherence, occur at typical
operating frequencies (about 10 GHz). Indirect measurements
of noise spectrum in this frequency range (quantum noise)
often suggest a “white” or Ohmic behavior (Astafiev et al.,
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2004; Ithier et al., 2005). In addition, narrow resonances at
selected frequencies (sometimes resonant with the nanode-
vice-relevant energy scales) have been observed (Cooper
et al., 2004; Simmonds et al., 2004; Eroms et al., 2006).
In certain devices they originate from the circuitry (Van der
Wal et al., 2000) and may eventually be reduced by improving
filtering. More often, resonances are signatures of the presence
of spurious fluctuators which also show up in the time
resolved evolution, unambiguously proving the discrete nature
of these noise sources (Duty et al., 2004). Fluctuators may
severely limit the reliability of nanodevices (Falci et al., 2005;
Galperin et al., 2006). An explanation of this rich physics is
beyond phenomenological theories describing the environ-
ment as a set of harmonic oscillators. On the other hand, an
accurate characterization of the noise sources might be a
priori inefficient, since a microscopic description would
require a large number of parameters. A road map to treat
broadband noise which allows one to obtain reasonable
approximations by systematically including only the relevant
information on the environment, out of the large parametriza-
tion needed to specify it, has been proposed by Falci et al.
(2005). The predictions obtained for the decay of the coherent
signal are in agreement with observations in various super-
conducting implementations and different protocols, such as

the decay of Ramsey fringes in charge-phase qubits (Vion
et al., 2002).
One successful strategy to increase phase-coherence times

in the presence of 1=f noise is to operate close to the qubits’
optimal points where low-frequency noise effects vanish to the
lowest order. This strategy was first implemented in a device
named “quantronium” (Vion et al., 2002) and it is now applied
to all types of superconducting qubits (except for phase
qubits). Further substantial improvement resulted from the
use of charge- or flux-echo techniques (Nakamura et al., 2002;
Bertet et al., 2005). In NMR the spin echo removes the
inhomogeneous broadening that is associated with, for exam-
ple, variations of static local magnetic fields over the sample,
changing the NMR frequency. In the case of qubits, the
variation is in their energy-level splitting frequency from
measurement to measurement. For some qubits defocusing is
strongly suppressed by combining optimal point and echo
techniques, thus providing further evidence of the fundamen-
tal role of 1=f noise. Dynamical decoupling, which uses
sequences of spin flips to effectively average out the coupling
to the environment, is another promising strategy (Falci et al.,
2004; Faoro and Viola, 2004; Bylander et al., 2011).
Optimized sequences limiting the blowup in resources
involved in 1=f noise suppression (Uhrig, 2007; Lee,
Witzel, and Das Sarma, 2008; Du et al., 2009; Biercuk,
Doherty, and Uys, 2011) as well as “optimal control theory”
design of quantum gates (Montangero, Calarco, and Fazio,
2007; Rebentrost et al., 2009) have recently been explored.
The experimental realization of optimal dynamical decoupling
in solid-state systems and the implementation of quantum
gates with integrated decoupling in a scalable and/or hybrid
architecture is an open problem.

B. Why is 1=f noise important for qubits?

We briefly discuss in which ways noise influences the
operation of an elementary part of a quantum computer—a
quantum bit (qubit). This topic is addressed in detail in
Sec. III. The qubit can be described as a two-level system
with the effective Hamiltonian

Ĥq ¼
ℏ
2
ðϵσz þ ΔσxÞ: (1)

Here ℏϵ represents diagonal splitting of the individual levels,
ℏΔ represents their tunneling coupling, and σx;z are the Pauli
matrices. The physical meaning of the quantities ϵ and Δ
depends on the specific implementation of the qubit. In its
diagonalized form the qubit Hamiltonian (1) reads

Ĥq ¼
ℏΩ
2

σz0 ≡ ℏΩ
2

ðcos θσz þ sin θσxÞ; (2)

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Δ2

p
and the quantization axis σz0 forms an

angle θ with σz. The Hamiltonian (1) corresponds to a
pseudospin 1=2 in a “magnetic field” B, which can be time
dependent:

Ĥq ¼ ðℏ=2ÞB · σ; Bz ≡ ϵðtÞ; Bx ≡ ΔðtÞ: (3)

γ  M
~10    Hz

+?

~10    Hz
−?γ  m

ω

1/f α

Johnson−Nyquist noise

S

Ω

white noise

1/f noise

Quantum
noise

1/f noise

Quantum
noise

FIG. 1 (color online). Qualitative representation of the noise
spectrum SðωÞ [defined in Eq. (10)] on log-log scale. Lines
correspond to the behavior expected in different frequency
domains, and dots represent typical experimental observations
in selected frequency ranges. Long-dashed lines indicate the 1=f
dependence extending between the intrinsic low- and high-
frequency cutoffs γm and γM, which in general are not known.
The thick lines indicate the 1=fα dependence, with α ∼ 0.9. 1=f
noise can be measured in different frequency windows using
different detection techniques (different symbols and dots). For
instance, 1=f-type flux noise has been detected by a free-
induction Ramsey interference experiment in the 0.01–100 Hz
range (Yan et al., 2012) and by noise spectroscopy by means of
dynamical decoupling in the 0.2–20 MHz range (Bylander et al.,
2011). Fluctuations of flux, critical current, and charge corre-
spond usually to different 1=f noise amplitudes and extend in
different frequency ranges: top and bottom curves illustrate
typical 1=f measurements of different variables in the same
setup. At frequencies corresponding to the qubit splittings, Ω ∼
1010 Hz for superconducting qubits, the measured quantum noise
is white or Ohmic (dotted and thin lines). The dash-dotted line
indicates the linearly increasing Johnson-Nyquist noise.
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Any state vector jΨi of the qubit determines the Bloch vector
M through the density matrix

ρ ¼ jΨihΨj ¼ ð1þM · σÞ=2: (4)

The Schrödinger equation turns out to be equivalent to the
precession equation for the Bloch vector:

M
: ¼ B ×M: (5)

The problem of decoherence arises when the magnetic field is
a sum of a controlled part B0 and a fluctuating part bðtÞ which
represents the noise, i.e., the field is a stochastic process
BðtÞ ¼ B0 þ bðtÞ, determined by its statistical properties.
The controlled part B0 is not purely static—to manipulate the
qubit one has to apply certain high-frequency pulses of B0 in
addition to the static fields applied between manipulation
steps. In this language, the role of the environment is that it
creates a stochastic field bðtÞ, i.e., stochastic components of
ϵðtÞ and ΔðtÞ. These contributions destroy coherent evolution
of the qubit making its coherence time finite.
We consider first the simple case of “longitudinal noise,”

where b∥B0, and let the z axis lie along the common
directions of B0 and b (see Fig. 2). In the physics of magnetic
resonance, this situation is called pure dephasing because the
z component of the Bloch vector Mz is conserved during the
process. As long as the time evolution of M is governed by
Eq. (5), the length jMj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
z

p ≡ M is also conserved,
while the length jhMij of the vector M averaged over the
stochastic process bðtÞ decays. The description of this decay is
the main objective of the decoherence theory. In the case of
pure dephasing, this will be the decay of the components Mx
and My. It is convenient to introduce a complex combination
mþ ¼ ðMx þ iMyÞ=M. Equation (5) can be written in terms of
mþ as m

:
þ ¼ iBmþ with solution

mþðtÞ ¼ eiϕðtÞmþð0Þ; ϕðtÞ ≡
Z

t

0

Bðt0Þdt0: (6)

Here we assumed that the variable BðtÞ is a classical one, i.e.,
the order of times in the products Bðt1ÞBðt2Þ � � �BðtnÞ is not
important. The solution has to be averaged over the stochastic
process bðtÞ. We define the phase ϕðtÞ accumulated by

mþ during the time t as the sum of regular ϕ0 and stochastic
φðtÞ parts:

ϕðtÞ ¼ ϕ0ðtÞ þ φðtÞ; ϕ0ðtÞ ¼ B0t; φðtÞ ¼
Z

t

0

bðt0Þdt0

and obtain hmþðtÞi ¼ eiϕ0heiφðtÞimþð0Þ. The stochastic phase
φ is the integral of the random process bðtÞ. The Bloch vector
precesses around the z axis with the angular velocity that has
random modulation bðtÞ. In the Gaussian approximation the
only relevant statistical characteristic of bðtÞ is the correlation
function hbðt1Þbðt2Þi ¼ Sbðjt1 − t2jÞ [we assume that bðtÞ is a
stationary random process]. The function SbðtÞ decays at
jtj → ∞ and the scale of this decay is the correlation time. If
the integration time t strongly exceeds the correlation time, the
random phase φ is a sum of many uncorrelated contributions.
According to the central limit theorem such a sum has a
Gaussian distribution,

pðφÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhφ2i

p exp

�
− φ2

2hφ2i
�
; (7)

independently of the details of the process. Therefore, the
Gaussian distribution should be valid as soon as t exceeds the
correlation time of the noise. In Sec. III.A.1.a we further
discuss this conclusion. As follows from Eq. (7),

heiφi ¼
Z

pðφÞeiφdφ ¼ e−hφ2i=2; (8)

hφ2i ¼
Z

t

0

dt1

Z
t

0

dt2Sbðjt1 − t2jÞ: (9)

Representing SbðτÞ by its Fourier transform,

SbðωÞ ¼
1

π

Z
∞

0

dtSbðtÞ cos ωt; (10)

that is just the noise spectrum, and using Eq. (9) we obtain

hφ2ðtÞi ¼ 2

Z
∞

0

dω

�
sin ωt=2
ω=2

�
2

SbðωÞ: (11)

Therefore, the signal decay given by Eq. (8) is determined (in
the Gaussian approximation) only by the noise spectrum
SbðωÞ. For large t, the identity lima→∞ðsin2 ax=πax2Þ ¼ δðxÞ
implies that hφ2ðtÞi ¼ 2πtSbð0Þ and thus

heiφðtÞi ¼ e−t=T�
2 ; T�

2
−1 ¼ πSbð0Þ: (12)

Thus, the Gaussian approximation leads to exponential decay
of the signal at large times, the decrement being given by the
noise power at zero frequency. Equation (12) shows that the
pure dephasing is determined by the noise spectrum at low
frequencies. In particular, at SbðωÞ ∝ 1=ω the integral in
Eq. (11) diverges; cf. with further discussion of a spin echo.
The time dependence of hmþi ∝ heiφi characterizes decay

of the so-called free induction signal (Schlichter, 1992). The
free induction decay (FID) is the observable NMR signal
generated by nonequilibrium nuclear spin magnetization

FIG. 2. Bloch vector representing the state of a qubit in the
rotating (with angular frequency B0) frame of reference. In the
laboratory frame of reference it precesses around the z axis with
(time-dependent) angular velocity B. The fluctuation of this
velocity is bðtÞ:
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precessing about the magnetic field. This nonequilibrium
magnetization can be induced generally by applying a pulse
of resonant radio frequency close to the Larmor frequency of
the nuclear spins. In order to extract it in qubit experiments,
one usually has to average over many repetitions of the same
qubit operation. Even in setups that allow single-shot mea-
surements (Astafiev et al., 2004), each repetition gives one of
the two qubit states as the outcome. Only by averaging over
many repeated runs can one see the decay of the average as
described by the free induction signal. The problem with this
is that the environment has time to change its state between the
repetitions, and thus we average not only over the stochastic
dynamics of the environment during the time evolution of the
qubit, but over the initial states of the environment as well. As
a result, the free induction signal decays even if the environ-
ment is too slow to rearrange during the operation time. This is
an analog of the inhomogeneous broadening of spectral lines
in magnetic resonance experiments. This analogy also sug-
gests ways to eliminate the suppression of the signal by the
dispersion of the initial conditions. One can use the well-
known echo technique (Mims, 1972) when the system is
subjected to a short manipulation pulse (the so-called π pulse)
with duration τ1 at time τ12. The duration τ1 of the pulse is
chosen to be such that it switches the two states of the qubit.
This is equivalent to reversing the direction of the Bloch
vector and thus effectively reversing the time evolution after
the pulse as compared with the initial one. As a result, the
effect of any static field is canceled and decay of the echo
signal is determined only by the dynamics of the environment
during time evolution. The decay of the two-pulse echo can be
expressed as hmðeÞ

þ ð2τ12Þi (Mims, 1972), where

hmðeÞ
þ ðtÞi≡ heiψðtÞi; ψðtÞ¼

�Z
τ12

0

−
Z

t

τ12

�
bðt0Þdt0: (13)

The finite correlation time of bðtÞ again leads to the Gaussian
distribution of ψðtÞ at large enough t with

hψ2ð2τ12Þi ¼ 8

Z
∞

0

dω

�
sin2ðωτ12=2Þ

ω=2

�
2

SbðωÞ: (14)

This variance can be much smaller than hφ2i given by
Eq. (11), especially if SbðωÞ is singular at ω → 0.
Although the integral (14) is not divergent in the case of
1=f noise, the time dependence of the echo signal is sensitive
to the low-frequency behavior of Sb. Therefore, the low-
frequency noise strongly affects coherent properties of qubits.
Along the simplified model discussed above, the compo-

nent Mz of the magnetic moment which is parallel to the
magnetic field B does not decay because longitudinal fluc-
tuations of the magnetic field do not influence its dynamics. In
a realistic situation it also decays in time, the decay time being
referred to as relaxation time and conventionally denoted T1.
This occurs when the stochastic field bðtÞ has a component
perpendicular to the controlled part B0. Relaxation processes
also induce another decay channel for the Mx and My
components on a time scale denoted T2. We suppose that
the stochastic field is bðtÞ ¼ bðtÞẑ, while B0 ¼ Δx̂þ ϵẑ. Due
to the nonisotropic interaction term, the effect of noise on the

qubit phase-coherent dynamics depends on the angle θ. When
θ ¼ 0 the interaction is longitudinal and we obtain the already
discussed pure dephasing condition. When θ ≠ 0 the stochas-
tic field also induces transitions between the qubit eigenstates.
As a result, if the noise has a spectral component at the qubit
energy splitting, this interaction induces inelastic transitions
between the qubit eigenstates, i.e., incoherent emission and
absorption processes. This is easily illustrated for a weak
amplitude noise treated in the Markovian approximation.
Approaches developed in different areas of physics, as the
Bloch-Redfield theory (Bloch, 1957; Redfield, 1957), the
Born-Markov master equation (Cohen-Tannoudji, Dupont-
Roc, and Grynberg, 1992), and the systematic weak-damping
approximation in a path-integral approach (Weiss, 2008), lead
to exponential decay with time scales

1=T1 ¼ πsin2θSbðΩÞ; (15)

1=T2 ¼ 1=2T1 þ 1=T�
2; (16)

where the adiabatic or pure dephasing term of Eq. (12), in the
general case, reads 1=T�

2 ¼ π cos2 θSbð0Þ. Even if the above
formulas do not hold for 1=f noise, which would lead to a
singular dephasing time, they indicate that the diverging
adiabatic term containing Sbð0Þ may be eliminated (in lowest
order) if the qubit operates at θ ¼ π=2, or equivalently when
the noise is “transverse,” b⊥B0. In the context of quantum
computing with superconducting systems, this condition
(of reduced sensitivity to 1=f noise) is usually referred to
as an “optimal point” (Vion et al., 2002). In this case
T2 ¼ 2T1, which is the upper limit to the dephasing time.
We return to this issue in Sec. III.B.

II. PHYSICAL ORIGIN OF 1=f NOISE IN NANODEVICES

A. Basic models for the 1=f noise

Studies of the noise with the spectral density ∝ ω−1 have a
long history; see, e.g., Kogan (1996) for a review. This
behavior at low frequencies is typical for many physical
systems, such as bulk semiconductors, normal metals and
superconductors, strongly disordered conductors, as well as
devices based on these materials. One observes, in practically
all cases, an increase of the spectral density of the noise with
decreasing frequency f ≡ ω=2π approximately proportional
to 1=f down to the lowest experimentally achievable frequen-
cies. Therefore, the noise of this type is referred to as 1=f
noise (the term “flicker noise” proposed by Schottky is now
rarely used).
1=f noise poses many puzzles. Is the noise spectrum

decreasing infinitely as f → 0 or does it saturate at small
frequencies? What are the sources of the 1=f noise? Why do
many systems have very similar noise spectra at low frequen-
cies? Is this phenomenon universal and does a unified theory
exist? Those and many other questions stimulated interest to
the 1=f noise from a fundamental point of view. This interest
is also supported by the crucial importance of such a noise for
all applications based on dc and low-frequency response.
Usually, the observed 1=f noise of the electrical current is a

quadratic function of the applied voltage in uniform Ohmic
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conductors. This indicates that the noise is caused by
fluctuation in the sample resistance, which are independent
of the mean current. Therefore, the current just “reveals” the
fluctuations. Although the low-frequency noise spectrum
seems to be rather universal the noise intensity differs a great
deal in different systems depending not only on the material,
but also on the preparation technology, heat treatment, etc.
These facts lead to the conclusion that in many cases the 1=f
noise is extrinsic, i.e., caused by some dynamic defects.
In the simplest case, when the kinetics of fluctuations is

characterized by a single relaxation rate γ, the correlation
function of a fluctuating quantity xðtÞ is proportional to e−γjtj.
Then the spectral density is a Lorentzian function of frequency,

SxðωÞ ∝ LγðωÞ ≡ 1

π

γ

ω2 þ γ2
: (17)

In more general cases, the kinetics of xðtÞ is a superposition of
several, or evenmany, relaxation processes with different rates.
Ingeneral, acontinuousdistributionof the relaxation ratesPxðγÞ
may exist. Then the noise spectral density can be expressed as

SxðωÞ ∝
Z

∞

0

dγPxðγÞLγðωÞ: (18)

Equation (18) describes nonexponential kinetics with PxðγÞdγ
the contribution of the processeswith relaxation rates between γ
and γ þ dγ to the variance

ðδxÞ2 ¼ 2

Z
∞

0

dωSxðωÞ ∝
Z

∞

0

dγPxðγÞ: (19)

If PxðγÞ ∝ γ−1 in some window γ0 ≫ γmin, but very small
outside this interval, then, according to Eq. (18), one gets
SxðωÞ ∝ ω−1 in the frequency domain γ0 ≫ ω ≫ γmin (Surdin,
1939). Following a model of this type, one has to specify the
processesresponsible for thenoise,whichdependonthespecific
properties of the system under consideration. Several types of
kinetic processes were indicated as able to produce the 1=f
noise. Among them are activated processes with different
relaxation rates exponentially dependent on the inverse
temperature γ ¼ γ0e−E=kBT ,where γ0 is someattempt frequency
and the distribution of activation energies F ðEÞ is smooth
in a sufficiently broad domain. Then the distribution of
the relaxation rates has the required form since PxðγÞ ¼
F xðEÞj∂γ=∂Ej−1 ¼ F xðEÞðkBT=γÞ (van der Ziel, 1950).
If the kinetics of the fluctuations is controlled by tunneling

processes, then the relaxation rates depend approximately
exponentially on the width and height of the tunneling barrier.
If the distribution of these parameters is almost constant in a
wide interval, then again the distribution of the relaxation rates
will be proportional to 1=γ. In particular, McWhorter (1957)
suggested that fluctuation of the number of carriers in a
surface layer of a semiconductor arises from the exchange of
electrons between this layer and the traps lying in the oxide
layer covering the surface, or on the outer surface of the oxide.
Since the electron transfer takes place via tunneling, the
characteristic relaxation rate exponentially depends on the
distance x between the surface and trap γ ¼ γ0e−x=λ. Since
the distances x vary with a scatter ≫ λ, the distribution of

relaxation times is exponentially wide. This model has been
extensively used to interpret 1=f noise in field-effect tran-
sistors. However, the model failed to explain observed small
rates γ in the devices with a relatively thin insulator layer.
There exist special low-energy excitations in amorphous

materials, in particular, in all dielectric and metallic glasses.
They result in anomalous temperature dependencies of the
heat capacity and the thermal conductivity at low temper-
atures, as well as specific features of the sound absorption;
see, e.g., Black (1981), Hunklinger and von Schickfus (1981),
and Galperin, Gurevich, and Kozub (1989) for a review.
According to this model, atoms or groups of atoms exist that
can occupy two positions. Therefore, their energy as a
function of some configuration coordinate can be represented
as a double-well potential, as shown in Fig. 3.
The model of TLSs formulated by Anderson, Halperin, and

Varma (1972) and Phillips (1972) contains two parameters—
the asymmetry U of the potential (which is approximately
equal to the difference between the minima) and the tunnel
matrix element λ, characterizing the strength of the barrier
which can be estimated as

Λ ¼ ℏω0e−λ; (20)

where ω0 is the frequency of the intrawell vibrations. Thus the
interlevel spacing E of a TLS (which is its excitation energy)
is given by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ Λ2

p
: (21)

The transitions of atoms or group of atoms between these
levels and the change in the levels’ relative occupancy with
varying temperature or under acoustic vibrations are respon-
sible for the low-temperature properties of structural glasses.
The same type of low-energy excitations were also found in
amorphous metals and ionic conductors; see Black (1981) for
a review.
Due to disorder, the TLSs have different values of U and

λ. Physical considerations lead one to assume that the
distribution of U and λ, PðU; λÞ, is almost constant in the
region λ ≫ 1, U ≪ ℏω0 important for the effects observed
in the experiments. Therefore it is assumed that in this
region PðU; λÞ ¼ P0. Here P0 is a constant, which can be
found by comparison with experiments (Black, 1978;
Halperin, 1976).

FIG. 3. Schematic diagram of the potential energy of a two-level
tunneling system vs a configuration coordinate. U is the distance
between the single-well energy levels, characterizing asymmetry
of the potential. E is the difference between the lowest energy
levels in a two-well potential with the account of tunneling below
the barrier.
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The rate of transitions between the two levels of a TLS is
determined by interactions with phonons (in insulating solids),
or with electrons (in metals). Assuming that fluctuations
of the diagonal splittingU are most important, we can describe
the interaction between the TLS and the environment as

HTLS-env ¼ g0ĉτz; (22)

where ĉ is an operator in the Hilbert space of the environment
depending on the specific interaction mechanism. It is con-
venient to diagonalize the TLS Hamiltonian,

HTLS ¼ 1
2
ðUτz þ ΛτxÞ; (23)

where τi are the Pauli matrices, by rotating the TLS Hilbert
space. Then

HTLS ¼ ðE=2Þτz; (24)

HTLS-env ¼ g0ĉ
�
U
E
τz þ

Λ
E
τx

�
: (25)

The interlevel transitions are described by the second term in
the interaction Hamiltonian (25). Therefore, the relaxation rate
for the deviation of the occupancy numbers of the levels from
the equilibrium ones is proportional to ðΛ=EÞ2 (Jäckle, 1972;
Black and Gyorffy, 1978):

γ ¼ γ0ðEÞ
�
Λ
E

�
2

; γ0ðEÞ ∝ Ea coth

�
E

2kBT

�
: (26)

The quantity γ0ðEÞ has the meaning of a maximal relaxation
rate for the TLSs with given interlevel spacingE. The exponent
a depends on the details of the interaction mechanism;
its typical values are 3 (for the interaction with phonons)
and 1 (for the interaction with electrons). Using Eq. (26) one
obtains the distribution of the relaxation rates as

Pðγ; EÞ ¼ E
2Uγ

PðU; λÞ ¼ P0

2γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ=γ0

p ≈
P0

2γ
(27)

(here we have taken into account that small relaxation rates
require small tunnel couplings of the wells, Λ ≪ U ≃ E).
Therefore, owing to the exponential dependence of γ on the
tunneling parameter λ (γ ∝ e−2λ) and approximately uniform
distribution in λ, the distribution with respect to γ is inversely
proportional to γ in an exponentially broad interval, as is
characteristic of systems showing 1=f noise.
Spontaneous transitions between the levels of the TLSs can

lead to fluctuations of macroscopic properties, such as
resistance of disordered metals (Kogan and Nagaev, 1984b;
Ludviksson, Kree, and Schmid, 1984), density of electron
states in semiconductors and metal-oxide-semiconductor
structures (Kogan and Nagaev, 1984a), etc. These fluctuations
have 1=f spectrum.
The mechanism of 1=f noise in hopping insulators has

been investigated by several theoretical groups. It was first
suggested (Shklovskii, 1980; Kogan et al., 1981) that the 1=f
noise in the nearest-neighbor-hopping transport is associated
with electronic traps, in a way similar to McWhorter’s idea of

1=f noise in metal-oxide-semiconductor field-effect transis-
tors (McWhorter, 1957). Each trap consists of an isolated
donor within a spherical pore of the large radius r. Such rare
configurations form fluctuators, which have two possible
states (empty or occupied) switching back and forth with
the very slow rate defined by the tunneling rate of an electron
out or into the pore.
According to Burin et al. (2006), two-level fluctuators can

also be formed by different many-electron configurations
having close energies. In this case, giant relaxation times
necessary for 1=f noise are provided by a slow rate of
simultaneous tunneling of many localized electrons and by
large activation barriers for their consecutive rearrangements.
The model qualitatively agrees with the low-temperature
observations of 1=f noise in p-type silicon and GaAs.
Several other models of the 1=f noise have been reviewed
by Kogan (1996).

B. 1=f noise and random telegraph noise

In many systems comprising such semiconductor devices
as p-n junctions, metal-oxide-semiconductor field-effect tran-
sistors, point contacts and small tunnel junctions between the
metals, small semiconductor resistors or small metallic sam-
ples, the resistance switches at random between two
(or several) discrete values. The time intervals between
switchings are random, but the two values of the fluctuating
quantity are time independent. This kind of noise is now
usually called random telegraph noise (RTN); see Kogan
(1996) for a review.
Statistical properties of RTNs in different physical systems

are rather common. First, the times spent by the device in each
of the states are much longer than the microscopic relaxation
times. Therefore, the memory of the previous state of the
system is erased, and the random process can be considered as
a discrete Markovian process. Such a process (for a two-state
system) is characterized by the equilibrium probabilities p1

and p2 ¼ 1 − p1 of finding the system, respectively, in the
first and in the second state, as well as transition probabilities
per unit time γ1→2 and γ2→1. The spectral density of a random
quantity, which switches between the two states x1 and x2, can
be easily derived as [cf. Kogan (1996)]

SxðωÞ ¼
ðx1 − x2Þ2

4cosh2ðE=2kBTÞ
LγðωÞ; (28)

where γ ≡ γ1→2 þ γ2→1. Therefore each RT process contrib-
utes a Lorentzian line to the noise spectrum.
RTN was observed in numerous small-size devices. At low

temperatures, usually only one or few telegraph processes
were observed. However, at higher temperatures (or at higher
voltages applied to the device) the number of contributing
telegraph processes increased. Typically, at high enough
temperatures discrete resistance switching is not observed.
Instead a continuous 1=f noise is measured. This behavior
was interpreted by Rogers and Buhrman (1984, 1985) as a
superposition of many uncorrelated two-state telegraph
fluctuators with various relaxation rates γ. The increase of
temperature leads to an increase in the number of contributing
fluctuators and discrete switchings become indistinguishable.
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A different interpretation was suggested by Ralls and
Buhrman (1991), and references therein. This interpretation
is based on interaction between the fluctuators leading to a
deviation from the simple Lorentzian spectrum. Moreover, the
system of interacting defects may pass to another metastable
state where different defects play the role of active fluctuators.
This interpretation is based on the observation of RTN in
metallic nanobridges where the record of resistance at room
temperature is still composed of one or two telegraph
processes, but their amplitudes and characteristic switching
rates change randomly in time. According to this interpreta-
tion, the system of interacting dynamic defects is similar to a
glass, particularly, to a spin glass with a great number of
metastable states between which it is incessantly wandering.
Despite great progress in the 1=f noise physics, for the

major part of systems showing 1=f and/or random telegraph
noise, the actual sources of the low-frequency fluctuations
remain unknown: this is the main unsolved problem. Next we
discuss some simple models in connection with devices for
quantum computation.

C. Superconducting qubits and relevant noise mechanisms

Circuits presently being explored combine in variable ratios
the Josephson effect and single Cooper-pair charging effects.
When the Coulomb energy is dominant, the “charge circuits”
can decohere from charge noise generated by the random
motion of offset charges (Zimmerli et al., 1992; Zorin et al.,
1996; Nakamura et al., 2002). Conversely, when the
Josephson energy is dominant, these “flux circuits” are
sensitive to external flux and its noise (Wellstood, Urbina,
and Clarke, 1987b; Mooij et al., 1999; Friedman et al., 2000).
For the intermediate-energy regime, a circuit designed to be
insensitive to both the charge and flux bias has recently
achieved long coherence times (≲500 ns), demonstrating the
potential of superconducting circuits (Cottet et al., 2002; Vion
et al., 2002). The third type is the phase qubit, which consists
of a single Josephson junction current biased in the zero
voltage state (Martinis et al., 2002; Yu et al., 2002). In this
case, the two quantum states are the ground and first excited
states of the tilted potential well, between which Rabi
oscillations have been observed.1

In the case of charge qubits, the coherence times have been
limited by low-frequency fluctuations of background charges
in the substrate which couple capacitively to the island, thus
dephasing the quantum state (Nakamura et al., 2002). Flux
and phase qubits are essentially immune to fluctuations of
charge in the substrate, and, by careful design and shielding,
can also be made insensitive to flux noise generated by either
the motion of vortices in the superconducting films or by
external magnetic noise. The flux-charge hybrid, operating at
a proper working point, is intrinsically immune to both charge
and flux fluctuations. However, all of these qubits remain
sensitive to fluctuations in the Josephson coupling energy and
hence in the critical current of the tunnel junctions at low

frequency f. These fluctuations lead to variations in the level
splitting frequency over the course of the measurement and
hence to dephasing.

1. Charge noise in Josephson qubits

The importance of the charge noise was recognized after
careful spin-echo-type experiments applied to an artificial
TLS utilizing a charge degree of freedom of a small super-
conducting electrode—a so-called single-Cooper-pair box
(CPB) (Nakamura, Chen, and Tsai, 1997; Bouchiat
et al., 1998).
To explain the main principle behind this device, we

consider a small superconductor grain located close to a
(gate) metallic electrode. The ground state energy of such a
grain depends in an essential way on the number of electrons
on it. Two contributions to such a dependence are given by the
electrostatic Coulomb energy ECðnÞ determined by the extra
charge accumulated on the superconducting grain and the so-
called parity term Δn (Tuominen et al., 1992, 1993; Eiles,
Martinis, and Devoret, 1993; Hekking et al., 1993; Lafarge
et al., 1993; Matveev et al., 1993; Glazman et al., 1994;
Hergenrother, Tuominen, and Tinkham, 1994; Joyez et al.,
1994; Matveev, Glazman, and Shekhter, 1994). The latter
originates from the fact that only an even number of electrons
can form a Bardeen-Cooper-Schrieffer (BCS) ground state of
a superconductor (which is a condensate of paired electrons)
and therefore in the case of an odd number of electrons n one
unpaired electron should occupy one of the quasiparticle states
(Averin and Nazarov, 1992).2

The energy cost of occupying a quasiparticle state, which is
equal to the superconducting gap Δ0, brings a new scale to
bear on the number of electrons that a small superconducting
grain can hold. Taking the above into account, one presents
the ground state energy U0ðnÞ in the form (Hekking et al.,
1993; Matveev et al., 1993; Glazman et al., 1994; Matveev,
Glazman, and Shekhter, 1994),

U0ðnÞ ¼ EC

�
n − q

e

�
2

¼ Δn; Δn ¼
�
0 even n;
Δ0 odd n:

(29)

Here q is the charge induced on the grain by the gate electrode.
One can see from Eq. (29) that if Δ0 > EC only an even
number of electrons can be accumulated in the ground state of
the superconducting grain. Moreover, for special values of the
gate voltage corresponding to q ¼ ð2nþ 1Þe a degeneracy of
the ground state occurs with respect to changing the total
number of electrons by one single Cooper pair. An energy
diagram illustrating this case is presented in Fig. 4. The
occurrence of such a degeneracy brings about an important
opportunity to create a quantum hybrid state at low temper-
atures which will be a coherent mixture of two ground states,
differing by a single Cooper pair:

jΨi ¼ α1j2ni þ α2j2ðnþ 1Þi: (30)

1A more detailed description can be found in the reviews by
Clarke and Wilhelm (2008), Makhlin, Schön, and Shnirman (2001),
and Xiang et al. (2013).

2Averin and Nazarov (1992), Ref. [7], indicates that the original
idea belongs to K. A. Matveev.
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The idea of the device is presented in Fig. 5, where the
superconducting dot is shown to be in tunneling contact with a
bulk superconductor. A gate electrode is responsible for lifting
the Coulomb blockade of Cooper-pair tunneling (by creating
the ground state degeneracy discussed above). This allows the
delocalization of a single Cooper pair between two super-
conductors. Such a hybridization results in a certain charge
transfer between the bulk superconductor and the grain. At the
charge degeneracy point q ¼ ð2nþ 1Þe, the Josephson tun-
neling produces an avoided crossing between the degenerate
levels corresponding to the symmetrical and antisymmetrical
superpositions j2ni � j2ðnþ 1Þi. As a result, the terms
are split by an energy EJ ≪ EC. Far from this point the
eigenstates are very close to being charge states.
To summarize, in a single-Cooper-pair box all electrons

form Cooper pairs and condense in a single macroscopic
ground state separated from the quasiparticle states by the
superconducting gap Δ0. The only low-energy excitations are
transitions between the charge number states j2ni, which are

the states with an excess number of Cooper pairs in the box
due to Cooper-pairs tunneling if Δ0 is larger than the single-
electron charging energy of the box EC. The fluctuations of n
are strongly suppressed if EC exceeds both the Josephson
energy EJ and the thermal energy kBT. Then we get back to
the Hamiltonian (1) with ℏϵ ¼ ECðn − q=eÞ2 (where q is the
induced charge) and ℏΔ ¼ EJ, i.e., the Josephson energy of
the split Josephson junction between the box and the super-
conducting reservoir; see Fig. 5. Therefore, ϵ can be tuned
through the gate voltage determining the induced charge. The
Josephson junction is usually replaced by a dc SQUID with
low inductance. EJ (and, consequently, Δ) is then adjusted by
applying the appropriate magnetic flux. A realistic device is
shown Fig. 6 (Nakamura, Pashkin, and Tsai, 1999).
Nakamura et al. (2002) compared the decay of the

normalized echo signal (see Fig. 7) with the expression by
Cottet et al. (2001):

heiφi ¼ exp

�
− 1

2ℏ2

Z
∞

ωmin

dωSϵðωÞ
�
sin2ðωτ=4Þ

ω=4

�
2
�
; (31)

where SϵðωÞ is the spectrum of the noise in the interlevel
spacing ℏϵ of the qubit. The latter is expressed through the

FIG. 5. Schematic diagram of a single-Cooper-pair box. An
island of superconducting material is connected to a larger
superconducting lead via a weak link. This allows coherent
tunneling of Cooper pairs between them. For a nanoscale system,
such quantum fluctuations of the charge on the island are
generally suppressed due to the strong charging energy associated
with a small grain capacitance. However, by appropriate biasing
of the gate electrode it is possible to make the two states j2ni and
j2ðnþ 1Þi, differing by one Cooper pair, have the same energy
(degeneracy of the ground state). This allows the creation of a
hybrid state jΨi ¼ α1j2ni þ α2j2ðnþ 1Þi.

FIG. 4. Left panel: The energy diagram for the ground state of a
superconducting grain with respect to charge for the case
Δ0 > EC. For a certain bias voltage when q ¼ ð2nþ 1Þe, ground
states differing by only one single Cooper pair become degen-
erate. Right panel: Energy of a Cooper-pair box with account of
the Josephson tunneling.

FIG. 6. Single-Cooper-pair box with a probe junction—
micrograph of the sample. The electrodes were fabricated by
electron-beam lithography and shadow evaporation of Al on a
SiNx insulating layer (400 nm thick) above a gold ground plane
(100 nm thick) on the oxidized Si substrate. The “box” electrode
is a 700 × 50 × 15 nm Al strip containing ∼108 conduction
electrons. Adapted from Nakamura, Pashkin, and Tsai, 1999.

FIG. 7. Decay of the normalized amplitude of the echo signal
(filled circles) and the free induction decay signal (open circles)
compared with estimated decoherence factors heiφi due to charge
noise with the spectrum α=ω. Here

ffiffiffi
α

p
× 103e−1 is 1.3 for line 1

and 0.3 for line 2. Adapted from Nakamura et al., 2002.
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charge noise SeðωÞ as SϵðωÞ ¼ ð4EC=eÞ2SeðωÞ. The charge
noise spectrum was determined by a standard noise meas-
urement on the same device used as a single-electron
transistor. It can be expressed as SeðωÞ ¼ α=ω with
α ¼ ð1.3 × 10−3eÞ2. The estimate following from Eq. (31),
with the mentioned value of α and ωmin ¼ 2π=tmax being the
low-frequency cutoff due to the finite data-acquisition time
tmax (20 ms), is shown in Fig. 7 (solid line 1). Solid line 2 in
the same figure corresponds to α ¼ ð3.0 × 10−4eÞ2. Note that
Eq. (31) is based on the assumption that the fluctuations are
Gaussian; it predicts that at small delay time τ the echo signal
decays as lnheiφi ∝ −τ2. In Sec. III this assumption and the
ensuing prediction is further discussed.
Astafiev et al. (2004) studied decoherence of the Josephson

charge qubit by measuring energy relaxation and dephasing
with the help of a single-shot readout. Both quantities were
measured at different charges induced at the single-Cooper-
pair box by the gate electrode. The decoherence was deter-
mined from decay of the coherent oscillations related to the
noise spectrum as

lnheiφi¼− ϵ2

2½ðℏϵÞ2þE2
J�
Z

∞

ωmin

dωSϵðωÞ
�
sinðωt=2Þ

ω=2

�
2

: (32)

Based on the dependence of the decoherence rate on the
induced charge shown in Fig. 8 and on estimates of the noise,
they concluded that the source of decoherence is charge
noise having a 1=f spectrum. Another conclusion is that
the energy relaxation rate Γ1 is also determined by low-
frequency noise of the same origin. This conclusion is drawn
from the observed Γ1 ∝ E2

J=½ðℏϵÞ2 þ E2
J� dependence. The

importance of 1=f charge noise for decoherence in the so-
called quantronium quantum bit circuit (Cottet et al., 2002)
was emphasized by Ithier et al. (2005).
To verify the hypothesis about the common origin of the

low-frequency 1=f noise and the quantum f noise recently
measured in the Josephson charge qubits, Astafiev et al.
(2006) studied the temperature dependence of the 1=f noise
amplitude and decay of coherent oscillations. The 1=f noise
was measured in the SET regime. In the temperature domain
50 mK–1 K they demonstrated ∝ T2 dependence; see Fig. 9.
The measurements of the noise were accompanied by mea-
surements of the decay rate of the coherent oscillations away
from the degeneracy point (ℏϵ ≫ EJ). The decay of the

oscillations was fitted according to Eq. (32) yielding at small
times the dependence he−iφi ∝ e−t2=2T�2

2 . The results turned
out to be consistent with the strength of the 1=f noise
observed in transport measurements. To explain the quadratic
temperature dependence of the 1=f noise they assumed that
this dependence originated from two-level fluctuators with the
density of states linearly dependent on the interlevel spacing.
We discuss this assumption later while considering models for
the noise-induced decoherence. Recently, measurements of
charge noise in a SET showed a linear increase with temper-
ature (between 50 mK and 1.5 or 4 K) above a voltage-
dependent threshold, with a low-temperature saturation below
0.2 K (Gustafsson et al., 2012). They concluded that this result
is consistent with thermal interaction between SET electrons
and TLSs residing in the immediate vicinity of the device. The
possible defects include residue of Al grains formed around
the perimeter of the SET island and leads during the two-angle
evaporation (Kafanov et al., 2008), as well as interface states
between metal of the SET and its surrounding oxides
(Choi et al., 2009).
Although the obvious source of RT charge noise is a

charged particle which jumps between two different locations
in space, less clear is where these charges are actually located
and what are the two states. The first attempt of constructing
such a model in relation to qubit decoherence appeared in
Paladino et al. (2002), where electrons tunneling between a
localized state in the insulator and a metallic gate was studied.
This model was further studied by Grishin, Yurkevich, and
Lerner (2005), Abel and Marquardt (2008), and Yurkevich
et al. (2010). Later, experimental results (Astafiev et al., 2004)
indicated a linear dependence of the relaxation rate on the
energy splitting of the two qubit states. One also has to take
into account that in the experimental setup there is no normal
metal in the vicinity of the qubit: all gates and leads should be
in the superconducting state at the temperatures of experiment.
These two facts suggest that the model (Paladino et al., 2002)
was not directly applicable to explain the decoherence in
charge qubits (Nakamura et al., 2002) and favored a model
with superconducting electrodes (Faoro et al., 2005). In this
model, the two electrons of a Cooper pair are split and tunnel
separately to some localized states in the insulator [see Fig. 10
for an illustration of this (model III) and other models].
A constant density of these localized states gives a linearly
increasing density of occupied pairs, in agreement with

FIG. 8. Energy relaxation rate Γ1 (closed circles and open
squares) and phase decoherence rate Γ2 ¼ T−1

2 (open circles) vs
gate induced charge q. Adapted from Astafiev et al., 2004.

FIG. 9. Temperature dependence of the amplitudes α1=2, which
can be approximated as α1=2 ¼ ð1.0 × 10−2 e=KÞT. Adapted
from Astafiev et al., 2006.
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experiments (Astafiev et al., 2004). This model was criticized
(Faoro and Ioffe, 2006) because it required an unreasonably
high concentration of localized states, and a more elaborate
model involving Kondo-like traps was proposed. However, it
was shown (Grishin, Yurkevich, and Lerner, 2005; Abel and
Marquardt, 2008) that allowance for quantum effects of
hybridization between the electronic states localized at the
traps and extended states in the electrodes relaxes the above
requirement. At present it seems that no solid conclusions can
be drawn based on the available experiments.
As we have seen, the “standard” Cooper-pair boxes are

rather sensitive to low-frequency noise from electrons moving
among defects. This problem can be partly relaxed in more
advanced charge qubits, such as transmon (Koch, DiVincenzo,
and Clarke, 2007) and quantronium (Vion et al., 2002). The
transmon is a small Cooper-pair box where the Josephson
junction is shunted by a large external capacitor to increase EC
and by increasing the gate capacitor to the same size. The role
of this shunt is played by a transmission line, and therefore the
qubit is called the transmon. The main idea is to increase the
ratio EJ=EC making the energy bands shown in Fig. 5 (right
panel) almost flat. For this reason, the transmon is weakly
sensitive to low-frequency charge noise at all operating points.
This eliminates the need for individual electrostatic gate and
tuning to a charge degeneracy point. A complementary
proposal for using a capacitor to modify the EJ=EC ratio in
superconducting flux qubits was given by You et al. (2007).
At the same time, the large gate capacitor provides strong

coupling to external microwaves even at the level of a single
photon, greatly increasing coupling for cQED. The schematics
of the suggested device is shown in Fig. 11, reprinted from
Blais et al. (2004), where authors present a detailed discussion
of cQED devices. Koch, DiVincenzo, and Clarke (2007)
considered possible sources of dephasing and energy relax-
ation in transmon devices. In particular, the contributions of
the charge, flux, and critical current to the dephasing rate T−1

2

were estimated. These (quite favorable) estimates are based on
Eqs. (11) and (12), which follow from assuming Gaussian
statistics of the noise. In some cases, the decoherence is
predicted to be limited by the energy relaxation T2 ∼ 2T1,
which occurs due to dielectric losses (Martinis et al., 2005)
and quasiparticle tunneling (Lutchin, Glazman, and Larkin,
2005, 2006). Catelani et al. (2011) developed a general theory
for the qubit decay rate induced by quasiparticles. They
studied its dependence on the magnetic flux used to tune

the qubit properties in devices such as the phase and flux
qubits, the split transmon, and the fluxonium. Recently
Hassler, Akhmerov, and Beenakker (2011) proposed using
a transmon qubit to perform parity-protected rotations and
readout of a topological qubit. The advantage over an earlier
proposal using a flux qubit is that the coupling can be
switched on and off with exponential accuracy, promising a
reduced sensitivity to charge noise.
Interestingly, transmon qubits allow one to perform flux-

noise spectroscopy at frequencies near 1 GHz using the
phenomenon of measurement-induced qubit excitation in
cQED (Slichter et al., 2012). The extracted values agree with
a 1=fα power-law fit below 1 Hz extracted from Ramsey
spectroscopy and around 1–20 MHz deduced from Rabi
oscillation decay. The above technique can be used to measure
different types of qubit dephasing noise (charge, flux, or
critical current noise, depending on the type of qubit used) at
frequencies ranging from a few hundred MHz to several GHz,
depending on the system parameters chosen.
Barends et al. (2013) demonstrated a planar, tunable

superconducting qubit with energy relaxation times up to
44 μs. This was achieved by using a geometry based on a
planar transmon (Houck et al., 2007; Koch, DiVincenzo, and
Clarke, 2007) and designed to both minimize radiative loss
and reduce coupling to materials-related defects. They
reported a fine structure in the qubit energy lifetime as a
function of frequency, indicating the presence of a sparse
population of incoherent, weakly coupled two-level defects.
The suggested qubit (called “Xmon” because of its special
geometry) combines facile fabrication, straightforward
connectivity, fast control, and long coherence.
Finally, we mention an alternative single Cooper-pair

circuit based on a superconducting loop coupled to an LC

Model II

µ

S

Model III

ga
p

N

Model I

µ

FIG. 10. Three possible models for the fluctuating charges:
model I, electrons jumping between a localized state and a normal
metal, as discussed by Paladino et al. (2002), Grishin, Yurkevich,
and Lerner (2005), and Abel and Marquardt (2008); model II,
electrons jumping between localized states; and model III,
electrons jumping between localized states and a superconductor,
as discussed by Faoro et al. (2005).

FIG. 11 (color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED
using superconducting circuits. The1D transmission line resonator
consists of a full-wave section of a superconducting coplanar
waveguide, which may be lithographically fabricated using con-
ventional optical lithography. A Cooper-pair box qubit is placed
between the superconducting lines and is capacitively coupled to
the center trace at a maximum of the voltage standing wave,
yielding a strong electric dipole interaction between the qubit and a
single photon in the cavity. The box consists of two small
(≈100 × 100 nm2) Josephson junctions, configured in a ≈1 μm
loop to permit tuning of the effective Josephson energy by an
external flux Φext. Input and output signals are coupled to the
resonator, via the capacitive gaps in the center line, from 50 Ω
transmission lines,whichallowmeasurementsof theamplitudeand
phase of the cavity transmission, and the introduction of dc and rf
pulses to manipulate the qubit states. From Blais et al., 2004.

Paladino et al.: 1=f noise: Implications for solid-state … 373

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014



resonator used for dispersive measurement analogously to
cQED qubits and insensitive to offset charges. The circuit,
named fluxonium, consists of a small junction shunted with
the Josephson kinetic inductance of a series array of large-
capacitance tunnel junctions, thereby ensuring that all super-
conducting islands are connected to the circuit by at least one
large junction (Manucharyan et al., 2009). The array of
Josephson junctions with appropriately chosen parameters
can perform two functions simultaneously: short circuit the
offset charge variations of a small junction and protect the
strong nonlinearity of its Josephson inductance from quantum
fluctuations.

2. Flux and phase qubits

A flux qubit (see, e.g., Fig. 12), consists of a micrometer-
sized loop with three or four Josephson junctions. The energy
of each Josephson junction can be expressed as
EðiÞ
J ð1 − cos δiÞ, where EðiÞ

J is the Josephson energy of the
ith junction while δi is the phase drop on the junction.
The phase drops on the junctions are related byP

iδi þ 2πðΦ=Φ0Þ ¼ 2πn, where n is an integer number.
Here Φ is the magnetic flux embedded in the loop while Φ0 ¼
πℏc=e is the magnetic flux quantum. To get the total energy
one should add the charging energy of each junction Q2

i =2Ci
and magnetic energy ðΦ − ΦbÞ2=2L, where Φb is the bias
flux created by external sources. Neglecting charging
energies and magnetic energy of the loop and assuming that

Eð1Þ
J ¼ Eð2Þ

J ≡ EJ, Eð3Þ
J ¼ αEJ, one can express the total

energy of the qubit as

uðδÞ ¼ 2 − cos δ1 − cos δ2 þ α½1þ cos ðφ − δ1 − δ2Þ�;
(33)

where uðδÞ ≡ Uðδ1; δ2Þ=EJ, φ ≡ πð2Φ − Φ0Þ=Φ0. The
energy is a periodic function of δ1 and δ2 with a period of
2π. At φ ≪ 1 and α > 1=2 each elementary cell contains two
close minima, the barrier between them being small. In the
eigenbasis of the states representing these minima the qubit is
then described by the effective Hamiltonan (1), where the

asymmetry ℏϵ can be tuned by the embedded magnetic
flux Φ. Figure 13 shows the plot uðδÞ for α ¼ 0.75. The
inset shows the potential profile along the line A for different
β ≡ ð2Φ − Φ0Þ=Φ0. To tune the tunneling parameter Δ, one
can replace the third junction by two Josephson junctions
connected in parallel, as shown in Fig. 12 (inset). The
Josephson energy of this circuit can be tuned by the magnetic
flux through the second loop, which in turn can be tuned by an
external current-carrying line. Quantum superpositions of
these states are obtained by pulsed microwave modulation
of the enclosed magnetic flux by currents in control lines.
Such a superposition was demonstrated by Friedman et al.
(2000) and Van der Wal et al. (2000).
Although fabricated Josephson circuits exhibit a high level

of static and dynamic charge noise due to charged impurities,
the magnetic background is much more clean and stable. The
flux qubits can be driven individually by magnetic microwave
pulses; measurements can be made with superconducting
magnetometers (SQUIDs). They are decoupled from charges
and electrical signals, and the known sources of decoherence
allow for a decoherence time of more than 1 ms. Entanglement
is achieved by coupling the flux, which is generated by the
persistent current, to a second qubit. The qubits are small (of
the order of 1 mm) and can be individually addressed and
integrated into large circuits. However, they are slower than
the charge qubits. As it follows from Eq. (33), fluctuations of
two parameters—magnetic fluxΦ and Josephson energies EðiÞ

J
(or Josephson critical currents JðiÞC )—are important for the
operation of flux qubits.
Phase qubits (Martinis et al., 2002) are designed around a

10 μm scale Josephson junction in which the charging energy
is very small, thus providing immunity to charge noise.
Although still sensitive to flux, the circuit retains the quality
of being tunable, and calculations indicate that decoherence
from flux noise is small. The main part of a phase qubit is a
current-biased Josephson junction, which can be characterized
by the potential energy

UðδÞ ¼ −EJ½cos δþ ðI=IJÞδ�: (34)

Because the junction bias current I is typically driven close to
the critical current IJ the tilted washboard potential (34) can

FIG. 12 (color online). A superconducting loop with three
Josephson junctions (crosses) encloses a flux Φ that is supplied
by an external magnet. Two junctions have a Josephson coupling
energy EJ, and the third junction has αEJ , where α ¼ 0.75. This
system has two (meta)stable states j0i and j1i with opposite
circulating persistent current. The level splitting is determined by
the offset of the flux from Φ0=2. The barrier between the states
depends on the value of α. The qubit is operated by resonant
microwave modulation of the enclosed magnetic flux by a
superconducting control line Ic. From Mooij et al., 1999.

FIG. 13 (color online). Plot uðδÞ for α ¼ 0.75. The inset shows
the potential profile along the line A for different β ≡
ð2Φ − Φ0Þ=Φ0. The potential is symmetric for β ¼ 0.
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be well approximated by a cubic potential with the barrier
height

ΔUðIÞ ¼ ð4
ffiffiffi
2

p
=3ÞEJ½1 − I=IJ�3=2:

Therefore, the barrier can be tuned by the bias current; at
I → IJ it vanishes. The bound quantum states jni with energy
En (see Fig. 14) can be observed spectroscopically by
resonantly inducing transitions with microwaves at frequen-
cies ωmn ¼ ðEm − EnÞ=ℏ. The qubit state can be manipulated
with dc and microwave pulses at frequency ω10 of the bias
current. The measurement of the qubit state utilizes the escape
from the cubic potential via tunneling. To measure the
occupation probability p1 of state j1i, microwave pulses at
frequency ω21 driving a 1 → 2 transition were used. The large
tunneling rate then causes state j2i to rapidly tunnel. Since the
potential profile depends on EJ, i.e., on the Josephson critical
current, as well as on the bias current through the junction,
their fluctuations are important. Unlike the other qubits, the
phase qubit does not have a degeneracy point. Below we
briefly discuss main noise sources in flux and phase qubits.

a. Flux noise

The origin of magnetic flux noise in SQUIDs with a power
spectrum of the 1=f type has been a puzzle for over 20 years.
The noise magnitude, a few μΦ0 Hz1=2 at 1 Hz, scales slowly
with the SQUID area and does not depend significantly on the
nature of the thin-film superconductor or the substrate on
which it is deposited. The substrate is typically silicon or
sapphire, which are insulators at low temperature (Wellstood,
Urbina, and Clarke, 1987b). Flux noise of a similar magnitude
is observed in flux (Yoshihara et al., 2006; Kakuyanagi et al.,
2007) and phase (Bialczak et al., 2007) qubits. The near
insensitivity to the device area of the noise magnitude
(normalized by the device area) (Wellstood, Urbina, and
Clarke, 1987b; Bialczak et al., 2007; Lanting et al., 2009)
suggests that the origin of the noise is local.
Koch, DiVincenzo, and Clarke (2007) proposed a model in

which electrons hop stochastically between traps with differ-
ent preferential spin orientations. They found that the major
noise contribution arises from electrons above and below the
superconducting loop of the SQUID or qubit, and that an areal
density of about 5 × 1013 cm−2 unpaired spins is required to
account for the observed noise magnitude. de Sousa (2007)
proposed that the noise arises from spin flips of paramagnetic
dangling bonds at the Si-SiO2 interface. Assuming an array of
localized electrons, Faoro, Kitaev, and Ioffe (2008) suggested
that the noise results from electron spin diffusion. The model
was extended by Faoro, Ioffe, and Kitaev (2012) where it was
shown that in a typical random configuration some fractions of
spins form strongly coupled pairs behaving as two-
level systems. Their switching dynamics is driven by the

high-frequency noise from the surrounding spins, resulting in
low-frequency 1=f noise in the magnetic susceptibility and
other physical quantities.
Sendelbach et al. (2008) showed that thin-film SQUIDs are

paramagnetic, with a Curie (∝ T−1) susceptibility. Assuming
the paramagnetic moments arise from localized electrons, they
deduced an areal density of 5 × 1013 cm−2. Subsequently,
Bluhm et al. (2009) used a scanning SQUID microscope to
measure the low-T paramagnetic response of (nonsupercon-
ducting) Au rings deposited on Si substrates, and reported an
areal density of 4 × 1013 cm−2 for localized electrons.
Paramagnetism was not observed on the bare Si substrate.
Choi et al. (2009) proposed that the local magnetic

moments originate in metal-induced gap states (MIGS)
(Louie and Cohen, 1976) localized by potential disorder at
the metal-insulator interface. At an ideal interface, MIGS are
states in the band gap that are evanescent in the insulator and
extended in the metal (see Fig. 15). At a metal-insulator
interface there are inevitably random fluctuations in the
electronic potential. The MIGS are particularly sensitive to
these potential fluctuations, and a significant fraction of them
with single occupancy becomes strongly localized near the
interface, producing the observed paramagnetic spins. The
local moments interact via mechanisms such as direct super-
exchange and the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction between themselves, and Kondo exchange with the
quasiparticles in the superconductor. This system, in principle,
can exhibit a spin-glass transition. However, experiments
(Harris et al., 2008) suggest that at T > 55 mK the spins
are in thermal equilibrium and exhibit a 1=T (Curie law) static
susceptibility. To explain the observed 1=fα (0.6 < α < 1)
noise spectrum of the magnetic flux they suggest that in this
region one can use the fluctuation-dissipation theorem leading
to the conclusion that fluctuations of the electronic momenta
have also a 1=fα spectrum. Unfortunately, without knowing
the form of the interaction between the spins, one cannot
derive this behavior theoretically—this is still an open
question.
Recently Sank et al. (2012) measured the dependence of

qubit phase coherence and flux noise on inductor loop
geometry. They concluded that while wider inductor traces
do not change either the flux-noise power spectrum or the
qubit dephasing time, increased inductance leads to a simul-
taneous increase in both. Another important result is the
absence of scaling with the trace aspect ratio. Anton et al.
(2013) performed flux-noise measurements as a function of
temperature in 10 dc SQUIDs with systematically varied

FIG. 14. Cubic potential U showing qubit states and a
measurement scheme. Adapted from Martinis et al., 2002.

(a) (b)

FIG. 15 (color online). (a) Schematic density of states. (b) MIGS
at a perfect interface with energy in the band gap are extended in
the metal and evanescent in the insulator. Adapted from Choi
et al., 2009.
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geometries. Measurements have shown that α increases as
the temperature is lowered. Moreover, for a given SQUID the
spectrum pivoted about a nearly fixed frequency as the
temperature was changed. The mean-square flux noise,
inferred by integrating the power spectra, was found
to rapidly grow with temperature and, at given T, to be
approximately independent of the outer dimension of a given
SQUID. They argued that those results are incompatible with
a model based on the random reversal of independent,
surface spins and considered the possibility that the spins
form clusters (Sendelbach et al., 2009); see Sec. III.B.2.
An interpretation in terms of a spin-diffusion constant
increasing with temperature is instead proposed by Lanting
et al. (2013).

b. Critical current noise

Noise of the Josephson critical current in various super-
conducting qubits incorporating Josephson junctions was
investigated in detail by Van Harlingen et al. (2004). They
considered critical-current fluctuations caused by charge
trapping at defect sites in the tunneling barrier and compared
their contribution to the dephasing time with that of the flux
noise due to hopping of the vortices through the SQUID loop
(see Fig. 16). This mechanism can usually be made negligible
in devices fabricated with linewidths less than approximatelyffiffiffiffiffiffiffiffiffiffiffi
Φ0=B

p
for which vortex trapping in the line is suppressed

(Dantsker et al., 1996); here B is the field in which the device
is cooled. The trapped charges block tunneling through a
region of the junction due to the Coulomb repulsion, effec-
tively modulating the junction area. In general, a single-charge
fluctuator produces a two-level, telegraph noise in the critical
current of a junction characterized by the lifetimes τu in the
untrapped state (high critical current), and τt in the trapped
state (low critical current). This produces a Lorentzian peak in
the power spectral density with a characteristic rate
γ ¼ τ−1u þ τ−1t . Experiments on dynamics of such fluctuators
and their lifetimes (Rogers and Buhrman, 1984, 1985; Wakai
and Van Harlingen, 1986) provide strong evidence that the
dominant charges enter the barrier from one electrode and exit
to the other (voltage dependence), and that the fluctuators
exhibit a crossover from thermal activation to tunneling
behavior at about 15 K. In the tunneling regime, the
fluctuating entity has been shown to involve an atomic mass,
suggesting that ionic reconfiguration plays an important

role in the tunneling process (Galperin, Gurevich, and
Kozub, 1989). Although interactions between traps resulting
in multiple-level hierarchical kinetics have been observed
(Wakai and Van Harlingen, 1987), usually the traps can be
considered to be local and noninteracting. In this limit, the
coexisting traps produce a distribution of Lorentzian features
that superimpose to give a 1=f-like spectrum. Careful analysis
of the influence of the noise in the Josephson critical current
on different qubit designs and various data acquisition
schemes has led (Van Harlingen et al., 2004) to the conclusion
that, although there is strong evidence that the noise derives
from a superposition of random telegraph signals produced by
charge trapping and untrapping processes, the origin of 1=f
noise in the critical current of Josephson junctions is still not
fully understood. In particular, the origin of the ∝ T2

dependence of the noise power observed by Wellstood,
Urbina, and Clarke (1987a, 1987b, 2004) remains puzzling.
To account for this behavior Shnirman et al. (2005) suggested
that the density of states for two-level fluctuators is propor-
tional to their interlevel spacing E. This assumption was
supported with a microscopic model by Faoro et al. (2005).
However, detailed measurements by Eroms et al. (2006)
showed that, in shadow-evaporated Al=AlOx=Al tunnel junc-
tions utilized in many superconductor-based qubits, the noise
power is ∝ T between 150 and 1 K rather than ∝ T2. The
observed spectral density saturates below 0.8 K due to
individual strong two-level fluctuators. Interestingly, the noise
spectral density at 4.2 K is 2 orders of magnitude lower than
expected from the literature survey of Van Harlingen et al.
(2004). Recently, measurements in Al=AlOx=Al Josephson
junctions reported by Nugroho, Orlyanchik, and Van
Harlingen (2013) showed an equivalence between the frac-
tional noise power spectra of the critical current SIc=I

2
c and the

normal-state resistance SRn
=R2

n with a linear temperature
dependence down to the lowest temperatures measured,
consistent with Eroms et al. (2006). Both fractional power
spectra displayed an inverse scaling with the junction area
down to A ≲ 0.04 μm2 at T ¼ 2 K. The estimated TLS
density is consistent with observations from qubit energy
spectroscopy (Martinis et al., 2005) and glassy systems
(Phillips, 1987). Similar noise characteristics have been
observed in junctions with AlOx and Nb electrodes
(Pottorf, Patel, and Lukens, 2009). These properties suggest
that the noise sources are insensitive to the barrier interfaces
and that the main contribution comes from TLSs buried within
the amorphous AlOx barrier.
The role of the critical current noise is conventionally

allowed for by introducing a coupling term into the
Hamiltonian (Simmonds et al., 2004; Faoro et al., 2005;
Ku and Yu, 2005; Shnirman et al., 2005; Faoro and Ioffe,
2006). A simple microscopic model relevant to Al=AlOx=Al
was developed by Constantin and Yu (2007). This model
leads to the scaling of the 1=f noise with the junction
thickness as ∝ L5. The results are in reasonable agreement
with corresponding experimental values of Zimmerli et al.
(1992), Zorin et al. (1996), and Eroms et al. (2006). However,
to the best of our knowledge, the predicted scaling has not yet
been verified.

FIG. 16. Flux modulation from vortices hopping into and out
of a loop, and critical-current modulation from electrons
temporarily trapped at defect sites in the junction barrier. Adapted
from Van Harlingen et al., 2004.
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c. Decoherence in Josephson qubits from dielectric losses

As mentioned in Sec. II.A, amorphous materials contain
low-energy excitations behaving as two-level tunneling sys-
tems. These states are responsible for low-temperature thermal
and kinetic properties of structural glasses, in particular, for
specific heat and dielectric losses. Due to interaction with their
environment, the TLSs switch between their states producing
low-frequency noise. These noises act on a qubit reducing its
coherence time.
Martinis et al. (2005) pointed out that the noises produced

by TLSs in amorphous parts of qubit devices are of primary
importance. The reason is that crossover wiring in complex
superconducting devices requires an insulating spacer that is
typically made from amorphous SiO2 deposited by chemical
vapor deposition (CVD). They performed a variety of micro-
wave qubit measurements and showed that the results are well
modeled by loss from resonant absorption of two-level
defects. Dielectric loss (loss tangent) in a system formed
by a superconductor lead and a 300 nm thick CVD SiO2 layer
was measured at f ∼ 6 GHz and T ¼ 25 mK ≪ ℏω=kB.
Generally, two mechanisms contribute to the dissipation
induced by the two-level defects. The first (resonant) is due
to direct microwave-induced transitions between the TLS’s
level with subsequent emission of phonons. The second one is
due to the relaxation-induced lag in phase between the
nonequilibrium level populations and the driving ac electric
field. One can expect that at ℏω ≫ kBT the first mechanism
should dominate (Hunklinger and von Schickfus, 1981).
A hallmark of the resonant absorption is its strong dependence
on the amplitude of the applied ac electric field. This
dependence is due to a decrease of the difference between
the occupancies of the upper and lower levels with the field
amplitude increase. The theoretical prediction for the loss
tangent β is (von Schickfus and Hunklinger, 1977)

β ¼ πP̄ðedÞ2
3ϰ

tanhðℏω=2kBTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

RT1T2

p : (35)

Here P̄ is the TLS density of states each having a fluctuating
dipole moment ed and relaxation times T1 and T2, ϰ is the
dielectric constant, while ωR ¼ eEd=ℏ is the TLS Rabi
frequency corresponding to the ac field amplitude E.
Equation (35) is derived under the assumption that distribu-
tions of interlevel spacings and logarithms of the relaxation
times of the TLSs are smooth. The theory fits the experimental
data well with parameters compatible with previous measure-
ments of bulk SiO2 (von Schickfus and Hunklinger, 1977).
The above results are consistent with previous measurements
of an AlOx capacitor by Chiorescu et al. (2004).
A key difference between tunnel junctions and bulk

materials is that tunnel junctions have small volume, and
the assumption of a continuous distribution of defects is
incorrect. Instead, dielectric loss must be described by a sparse
bath of discrete defects. Indeed, individual defects were
measured spectroscopically with the phase qubit (Cooper
et al., 2004; Simmonds et al., 2004; Lisenfeld et al.,
2010a, 2010b). They are observed as avoided crossings in
the plots of the occupation probability versus qubit bias.
A qualitative trend is that small-area qubits show fewer

splittings than do large-area qubits, although larger splittings
are observed in the smaller junctions. It follows from a
quantitative analysis of the number of resonances that couple
to the qubit that at large area the decoherence rate is
compatible with the loss tangent of a bulk material.
Based on the obtained results, Martinis et al. (2005)

formulated the following trends for making devices with long
coherence times: (i) the usage of small-area junctions where
the number of two-level defects is small, (ii) the usage of
simple designs with no lossy dielectrics directly connected to
the qubit junction, and (iii) trying to find insulating materials
with low dielectric losses.
Away to eliminate the effects of low-frequency charge (and

flux) noise is to operate the system close to the degeneracy
point [ϵ ¼ 0 in the Hamiltonian (1)]. Indeed, since the
distance between the energy levels is ℏΩ ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Δ2

p
, the

fluctuation part ℏδϵðtÞ of the potential energy ℏϵðtÞ creates
the additional shift

δΩðtÞ ¼ ϵ

Ω
δϵðtÞ þ 1

2

Δ2

Ω3
½δϵðtÞ�2: (36)

Therefore, at ϵ ¼ 0 the charge noise vanishes in the linear
approximation and only second-order contributions are impor-
tant. For a charge qubit, the degeneracy point corresponds to
the induced charge q ¼ e, while for a flux qubit this point
corresponds to an integer number of the half-flux quanta in the
loop. This idea of tuning the device to the double degeneracy
point where the qubit is insensitive to both the charge and flux
noise was implemented in the quantronium device (Cottet
et al., 2002; Vion et al., 2002; Ithier et al., 2005).
The main principle behind the device is shown in Fig. 17.

The CPB involves two Josephson junctions with a capacitance

FIG. 17 (color online). Idealized circuit diagram of the quan-
tronium, a quantum-coherent circuit with its tuning, preparation,
and readout blocks. The circuit consists of a CPB island (black
node) delimited by two small Josephson junctions (crossed
boxes) in a superconducting loop. The loop also includes a
third, much larger Josephson junction shunted by a capacitance
C. The Josephson energies of the box and the large junction are
EJ and EJ0. The Cooper pair number N and the phases δ and γ are
the degrees of freedom of the circuit. A dc voltage U applied to
the gate capacitance Cg and a dc current IΦ applied to a coil
producing a flux Φ in the circuit loop tune the quantum energy
levels. Microwave pulses uðtÞ applied to the gate prepare
arbitrary quantum states of the circuit. The states are read out
by applying a current pulse IbðtÞ to the large junction and by
monitoring the voltage VðtÞ across it. From Vion et al., 2002.
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Cg connected to the island separating them. The junctions are
connected to a third, larger junction, with a larger Josephson
energy, to form a superconducting loop threaded by a
magnetic flux Φ. To achieve insensitivity to the charge noise
the qubit is operated at Ng ≡ CgU=ð2eÞ ¼ 0.5, where the
energy levels have zero slope and the energy-level splitting is
EJ. Insensitivity to the flux noise is achieved by applying an
integer number of half-flux quanta to the loop. Therefore, a
double degeneracy point can be achieved by tuning dc gate
voltage U and the current IΦ. To measure the qubit state one
has to shift the qubit from this point. This was achieved by the
current pulse IbðtÞ applied to the loop, which produces a
clockwise or counterclockwise current in the loop, depending
on the state of the qubit. The direction of the current is
determined by the third (readout) junction since the circulating
current either adds or subtracts from the applied current pulse.
As a result, the readout junction switches out of the zero-
voltage state at different values of the bias current. Thus,
the state of the qubit was determined by measuring the
switching currents. In the quantronium, much longer relax-
ation and decoherence times can be achieved compared with
conventional CPB.

D. Semiconductor-based qubits

Here we briefly discuss main trends in designing the qubits
based on semiconductors and semiconductor devices. One can
find more detailed discussion in the reviews by Hanson et al.
(2007), Chirolli and Burkard (2008), Liu, Yao, and Sham
(2010), and Zak et al. (2010).

1. Spin qubits

It is natural to choose the electron spin as the two-state
system that encodes the qubit. In modern semiconductor
structures the spin of the electron can have a much longer
coherence time than the charge degrees of freedom. However,
it is not easy to isolate, control, and manipulate the spin degree
of freedom of an electron to a degree required for quantum
computation. A successful and promising device for the
physical implementation of electron spin-based qubits is
the semiconductor quantum dot (Loss and DiVincenzo, 1998).
The quantum dots (QDs) considered for implementation of

quantum algorithms are confined regions of semiconductor
materials coupledwith reservoirsby tunable tunnelbarriers.The
height of the barriers, and consequently the rates for tunneling
through the barriers on and off the dot, can be controlled via the
application of gate electrodes. The dots are actually quantum
boxes having discrete energy levels, their positionswith respect
to the chemical potential of the reservoir can be also tuned by
electrostatic potentials. Therefore, QDs can be considered as
tunable artificial atoms. Coulomb interactions between the
electrons (or holes) occupying the dot’s levels determine the
energy cost for adding an extra electron. Because of this cost,
theelectron transport through thedot canbestrongly suppressed
at lowtemperatures(theso-calledCoulombblockade).Since the
energy cost can be tuned by gate electrodes, the QD devices are
promising for many applications.
Among many types of quantum dots, devices based on

lateral III-V semiconductor QDs are of special interest. Such

devices are usually fabricated from heterostructures of GaAs
and AlGaAs grown by molecular beam epitaxy. In such
heterostructures the electron motion can be confined to a
thin layer along the interface forming a two-dimensional
electron gas (2DEG) with high mobility (∼105–107 cm2=V s)
and low density (∼1011 cm−2). The low density results in a
relatively long Fermi wavelength (∼40 nm) and a large
screening length. Therefore, the 2DEG can be locally depleted
by an electrostatic field applied to a metal gate electrode
allowing one to design quantum devices similar to that shown
in Fig. 18. When the lateral size of the dot is comparable with
the Fermi wavelength the distance between the discretized
energy levels becomes larger than the temperature (at temper-
atures of tens of millikelvins), and quantum phenomena
become important.
Spin relaxation and dephasing in quantum dots: Two kinds

of environment turn out to affect mainly the dynamics of an
electron spin in a quantum dot, the phonons in the lattice, and
the spins of atomic nuclei in the quantum dot.
Starting from Khaetskii and Nazarov (2000, 2001), the

phonon-induced relaxation was extensively studied. It turns
out that the lattice phonons do not couple directly to the spin
degree of freedom. However, even without the application
of external electric fields, the breaking of inversion symmetry
in GaAs gives rise to spin-orbit (SO) interaction, which
couples the spin and the orbital degrees of freedom. These
orbital degrees of freedom, being coupled to the phonons,
provide an indirect coupling between the electron spin and the
phonons, which constitute a large dissipative bosonic reser-
voir and provide a source of decoherence and relaxation. Short
time correlations in the phonon bath induce a Markovian
dynamics of the electron spin, with well-defined relaxation
and decoherence times T1 and T2.
As discussed in Sec. I.B, in the Bloch picture, pure

dephasing arises from longitudinal fluctuations of the mag-
netic field, while a perturbative treatment of the SO interaction
gives rise, within first order, to a fluctuating magnetic field
perpendicular to the applied magnetic field. As a consequence
the decoherence time T2 is limited only by its upper bound
T1, T2 ¼ 2T1.
Hyperfine interaction was first taken into consideration as a

source of decoherence for an electron spin confined in a
quantum dot by Burkard, Loss, and DiVincenzo (1999). This
interaction is important since in a ∼40 nm GaAs quantum dot
the wave function of an electron overlaps with approximately

FIG. 18. Scanning electron microscopy (SEM) image of a
double quantum dot device. A quantum point contact with
conductance gS senses a charge on the double dot. From Petta
et al., 2008.
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105 nuclei. The electron spin and the nuclear spins in the dot
couple via the Fermi contact hyperfine interaction, which
creates entanglement between them and strongly influences
the electron spin dynamics. It turns out that long-time
correlations in the nuclear spin system induce a non-
Markovian dynamics of the electron spin, with nonexponen-
tial decay in time of the expectation values of the electron spin
components.
The relative importance of the above decoherence mech-

anisms depends on the external magnetic field: the phonon-
induced relaxation rate of the electron spin is enhanced by an
applied magnetic field, whereas the influence of the hyperfine
interaction is reduced by a large Zeeman splitting.
In this review, we do not focus on decoherence in semi-

conductor spin qubits, which has been extensively reviewed,
e.g., by Chirolli and Burkard (2008). More recent papers
related to random telegraph or 1=f noise address charge traps
near the interface of a Si heterostructure (Culcer, Hu, and Das
Sarma, 2009), as well as nearby two-level charge fluctuators
in a double dot spin qubit (Ramon and Hu, 2010).

2. Charge qubits

In semiconductor systems, a charge qubit can be formed by
isolating an electron in a tunnel-coupled double quantum dot
(DQD) (Hayashi et al., 2003; Fujisawa, Hayashi, and Sasaki,
2006). Here we discuss a DQD consisting of two lateral QDs,
which are coupled to each other through a tunnel barrier. Each
QD is also connected to an electron reservoir via a tunnel
junction. The operation of such a device can be analyzed from
its electric circuit model shown in Fig. 19. The transport
properties of a semiconductor DQD have been studied
extensively (Grabert and Devoret, 1991; Kouwenhoven et al.,
1997; van der Wiel et al., 2002). Each tunnel barrier has a
small coupling capacitance Ci as well as a finite tunneling
coupling Tc, and single-electron transport through the DQD
can be measured. The tunneling rates for the left and right
tunnel barriers are denoted as ΓL and ΓR, respectively. In
addition, the DQD is connected to gate voltages Vl and Vr via
capacitors Cl and Cr, respectively, so that the local electro-
static potential of each dot can be controlled independently.
The energy difference between the electrochemical potentials
μL and μR of the left and right reservoirs corresponds to the

applied source—drain voltage Vsd. The stable charge con-
figuration ðm; nÞ, with m electrons on the left QD and n
electrons on the right one, minimizes the total energy in all
capacitors minus the work that has been done by the voltage
sources. This energy can be estimated from the equivalent
circuit in Fig. 19; see, e.g., Heinzel (2007), Sec. 9.3.
A fragment of the stability diagram in the Vl-Vr plane is
shown in Fig. 20.
When the tunneling coupling Tc is negligibly small, the

boundaries of the stable charge states appear as a honeycomb
pattern, a part of which is shown by dashed lines. The triple
points E andH of three charge states are separated by a length
corresponding to the interdot Coulomb energy U. Electrons
pass through three tunnel barriers sequentially in the vicinity
of triple points. On the other hand, the tunneling process at H
can be viewed as a hole transport, as the unoccupied state
(hole) moves from the right to the left (not shown in the
diagram).
When the tunneling coupling is significantly large, the

charging diagram deviates from the honeycomb pattern as
shown by solid lines in Fig. 20. Due to quantum repulsion of
the levels, the minimum distance between A and B is increased
by the coupling energy ℏΔ ¼ ℏTc from its original value U.
The idealized dynamics of the qubit can be described

assuming that each dot has a single energy level ϵi. Then the
effective Hamiltonian can be expressed in the form (1) with
ℏϵ ¼ ϵL − ϵR andΔ ¼ Tc. The parameters of the Hamiltonian
can be tuned by the gate voltages.
Coherent control of a GaAs charge qubit has been dem-

onstrated (Hayashi et al., 2003; Fujisawa et al., 2004), along
with correlated two-qubit interactions (Shinkai et al., 2009).
In these experiments each dot contained a few tens of
electrons, potentially complicating the qubit level structure.
In addition, the dots were strongly coupled with the leads
typically limiting coherence times to ∼1 ns (due to quantum
cotunneling).
A coherent control of tunable GaAs charge qubit containing

a single electron was demonstrated by Petersson et al. (2010)
(see Fig. 21). The gate electrodes are arranged in a triple QD
geometry and deplete 2DEG in the GaAs=AlGaAs hetero-
structure (Petta, Lu, and Gossard, 2010). The DQD was
formed using the left and middle dots of the structure, while
the right side of the device was configured as a noninvasive
quantum point contact (QPC) charge detector. The device
operated near the ð1; 0Þ − ð0; 1Þ charge transition, where

FIG. 19. Electric circuit model of a DQD containing m and n
electrons in the left and right dots, respectively. The two QDs are
coupled to each other via a tunnel junction, and each dot is
connected to an electron reservoir via a tunnel junction. The
electrostatic potential of the left (right) quantum dot is controlled
by the gate voltage Vl ðVrÞ through the capacitance Cl ðCrÞ.
Adapted from Fujisawa, Hayashi, and Sasaki, 2006.

FIG. 20. Fragment from the stability diagram. Adapted from
Fujisawa, Hayashi, and Sasaki, 2006.
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ðnL; nRÞ denote the absolute number of electrons in the left
and right dots. The level detuning ℏϵ was adjusted by the
voltage VR on the gate R, while the tunnel splitting ℏΔ was
adjusted by the voltage VM on the gateM. The coherence time
was extracted as a function of the detuning (from the charge
degeneracy point) voltage, the maximal value being ∼7 ns.
The result is ascribed to 1=f noise, whose influence is
analyzed along the Gaussian assumption.
In spite of the successful manipulation of a single-charge

qubit, the qubit is actually influenced by uncontrolled
decoherence, which is present even in the Coulomb blockade
regime. Several possible decoherence mechanisms were
discussed.
First, background charge (1=f) noise in the sample and

electrical noise in the gate voltages cause fluctuation of the
qubit parameters ϵ and Δ, which gives rise to decoherence of
the system (Paladino et al., 2002; Hayashi et al., 2003; Itakura
and Tokura, 2003). The amplitude of low-frequency fluc-
tuation in ℏϵ is estimated to be about 1.6 μeV, which is
obtained from low-frequency noise in the single-electron
current, or 3 μeV, which is estimated from the minimum
linewidth of an elastic current peak at the weak coupling limit
(Fujisawa et al., 1998). Low-frequency fluctuations in ℏΔ are
relatively small and estimated to be about 0.1 μeV for
ℏΔ ¼ 10 μeV, assuming local potential fluctuations in the
device (Jung et al., 2004). Actually, the ϵ fluctuation explains
the decoherence rate observed at the off-resonant condition
(ϵ≳ Δ). 1=f is usually attributed to a set of bistable
fluctuators, each of which produced a Lorentzian spectrum.
However, the microscopic origin of the charge fluctuators is
not fully understood, and their magnitude differs from sample
to sample, even when samples are fabricated in the same
batch. It was shown (Jung et al., 2004) that fluctuations in ϵ
can be reduced by decreasing the temperature as suggested by
a simple phenomenological model where the activation energy
of the traps is uniformly distributed in the energy range of
interest. Cooling samples very slowly with positive gate
voltage is sometimes effective in reducing charge fluctuation
at low temperature (Pioro-Ladrière et al., 2005). They
suggested that the noise originates from a leakage current
of electrons that tunnel through the Schottky barrier under
the gate into the conduction band and become trapped near
the active region of the device. According to Buizert et al.
(2008), an insulated electrostatic gate can strongly suppress
ubiquitous background charge noise in Schottky-gated
GaAs=AlGaAs devices. This effect is explained by reduced

leakage of electrons from the Schottky gates into the semi-
conductor through the Schottky barrier. A similar result was
recently reported in Schottky gate-defined QPCs and DQDs in
Si=SiGe heterostructures with a global top gate voltage
(Takeda et al., 2013). By negatively biasing the top gate,
1=f2 switching noise is suppressed in a homogeneous 1=f
charge noise background. It is suggested that this technique
may be useful to eliminate dephasing of qubits due to charge
noise via the exchange interaction (Culcer, Hu, and Das
Sarma, 2009).
In contrast, the decoherence at the resonant condition

(ϵ ¼ 0) is dominated by other mechanisms. Although the
first-order tunneling processes are forbidden in the Coulomb
blockade regime, higher-order tunneling, namely, cotunnel-
ing, processes can take place and decohere the system (Eto,
2001). Actually, the cotunneling rate estimated from the
tunneling rates is close to the observed decoherence rate
and may thus be a dominant mechanism in the present
experiment (Eto, 2001). However, since one can reduce the
cotunneling effect by making the tunneling barrier less
transparent, it is possible to eventually eliminate it.
The electron-phonon interaction is an intrinsic decoherence

mechanism in semiconductor QDs. Spontaneous emission of
an acoustic phonon persists even at zero temperature and
causes an inelastic transition between the two states (Fujisawa
et al., 1998). The phonon emission rate at the resonant
condition ϵ ¼ 0 cannot be directly estimated from the exper-
imental data on the FID-type protocols, but it may be
comparable to the observed decoherence rate. Strong elec-
tron-phonon coupling is related to the fact that the corre-
sponding phonon wavelength is comparable to the size
of the QD (Fujisawa et al., 1998; Brandes and Kramer,
1999). In this sense, electron-phonon coupling may be
reduced by optimizing the size of QD structures. In addition,
polar semiconductors, such as GaAs, exhibit a piezoelectric
type of electron-phonon coupling, which is significant for
low-energy excitations (< 0.1 meV for GaAs). Nonpolar
semiconductors, such as Si or carbon-based molecules, may
be preferable for reducing the phonon contribution to the
decoherence.

III. DECOHERENCE DUE TO 1=f NOISE

During the last decade we witnessed extraordinary progress
in quantum devices engineering reaching a high level of
isolation from the local electromagnetic environment. Under
these conditions, the material-inherent sources of noise play a
crucial role. While the microscopic noise sources may have
different physical origin, as elucidated in Sec. II, their noise
spectral densities show similar 1=f-type behavior at low
frequencies. Material-inherent fluctuations with 1=f spectrum
represent the main limiting factor to quantum coherent
behavior of the present generation of nanodevices. This fact
has stimulated great effort in understanding and predicting
decoherence due to 1=f noise and to the closely related
RT noise.
There are two characteristic features that make any pre-

diction of decoherence due to 1=f noise quite complicated.
First, stochastic processes with 1=f spectrum are long-time
correlated. The spectral density of the noise increases with

FIG. 21. Scanning electron microphotograph of a device similar
to the one measured. Adapted from Petersson et al., 2010.
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decreasing frequency down to the lowest experimentally
accessible frequencies. The measurement frequency band is
limited either by frequency filters or simply by the finite
duration of each realization of the random process, set by
the measurement time tm. In particular, during tm some of the
excitations responsible for the noise may not reach the
equilibrium. For this reason 1=f noise is considered a non-
equilibrium phenomenon for which fluctuation-dissipation
relations may not hold (Galperin, Altshuler, and
Shantsev, 2004).3

The existence of relaxation times longer than any finite
measurement time tm also poses the question of stationarity of
1=f-type noise, a problem that has attracted much attention
(Kogan, 1996). For a stationary process repeated measure-
ments yield the same power spectrum SxðωÞ, within exper-
imental accuracy. In some systems variations of the spectrum
or its “wandering” have been reported (Weissman, 1993;
Kogan, 1996). However, this effect could be attributed to the
finite measuring time, or to nonequilibrium initial conditions
for different measurements due to the fact that some degrees of
freedom do not completely relax between successive mea-
surements. The long relaxation times may correspond to rare
transitions of the system, overcoming high energy barriers,
from one “valley” in phase space to another one in which the
spectrum of relaxation times τ < tm is different. Several
experiments tried to reveal a possible nonstationarity of
1=f noise [see Kogan (1996) and references therein], but
no clear manifestation of nonstationarity has been found.
Second, in general 1=f noise cannot be assumed to be a

Gaussian random process. Even if the probability density
function of many 1=f processes resembles a Gaussian form
(which is necessary, but not sufficient to guarantee
Gaussianity), clear evidence demonstrating deviations from
a Gaussian random behavior has been reported; for
a review, see Weissman (1988), Sec. III.A, and Kogan
(1996), Sec. 8.2.2. The explanation of the variety of
observed behaviors stems from the fact that the mechanisms
of 1=f noise may be different in various physical systems,
implying that their statistical properties may strongly
differ.
As a consequence, the two standard approximations

allowing simple predictions for the evolution of open quantum
systems, namely, the Markovian approximation and the
modelization of the environment as a bath of harmonic

oscillators, cannot be straightforwardly applied when the
power spectrum of the noise is of 1=f type.4 In the context
of quantum computation, the implication of long-time corre-
lations of the stochastic processes is that the effects of 1=f
noise on the system evolution depend on the specific quantum
operation performed and/or on the measurement protocol.
Some protocols show signatures of the non-Gaussian nature of
the process, whereas for others a Gaussian approximation
captures the main effects at least on a short time scale
(Makhlin and Shnirman, 2004; Rabenstein, Sverdlov, and
Averin, 2004; Falci et al., 2005).
In this section we illustrate various approaches developed in

recent years to address the problem of decoherence due to
noise sources having 1=f spectrum, considering both micro-
scopic quantum models and semiclassical theories. We start
addressing the decohence problem in single-qubit gates driven
by dc pluses or by ac fields, and then we consider more
complex architecture needed to implement the set of universal
gates. To cast these problems in a general framework, we
introduce here the Hamiltonian of a nanodevice plus envi-
ronment on a phenomenological basis. In some cases this
general structure is derived from a microscopic description
of the device, including the most relevant environmental
degrees of freedom. A convenient general form for the
Hamiltonian is

Ĥtot ¼ Ĥ0 þ ĤcðtÞ þ ĤnðtÞ þ ĤR þ ĤI; (37)

where Ĥ0 þ ĤcðtÞ describes the driven closed system, the
classical noise affecting the system is included in ĤnðtÞ, and
ĤR þ ĤI represents the quantum environment and its inter-
action with the system. The structure of this general
Hamiltonian can be justified as follows. The macroscopic
Hamiltonian of the device Ĥ0½q� is an operator acting onto a
N-dimensional Hilbert space H. It depends on a set of
parameters q, which fix the bias (operating) point and account
for tunability of the device. The eigenstates of Ĥ0½q�,
fjϕiðqÞi∶ i ¼ 1;…; Ng, form the “local basis” of the “labo-
ratory frame,” where Ĥ0 ¼

P
N
i¼1 EiðqÞjϕiðqÞihϕiðqÞj.

External control is described by a time-dependent term. In
a one-port design, the driving field AðtÞ couples to a single
time-independent system operator Q̂,

3The typical examples are 1=f voltage fluctuations in uniform
conductors resulting from resistance fluctuations which are detected
by a current and are proportional to the current squared. To observe
them one has to bring the device out of equilibrium where the
fluctuation-dissipation theorem is not necessarily valid. This may not
be the case in some magnetic systems. For instance, experiments in
spin glasses evidenced magnetic noise with 1=f spectrum satisfying,
within experimental accuracies, fluctuation-dissipation relations.
Despite being nonergodic, in these systems magnetic noise is with
satisfactory accuracy a thermal and equilibrium one. The mechanism
of magnetic fluctuations is, however, not yet clear. The problem of
kinetics of spin glasses, determined by both many-body competing
interactions and disorder, is extremely complicated and beyond the
scope of this review. In connection with 1=f noise it has been
addressed by Kogan (1996).

4Note that theMarkovian approximation for the reduced dynamics
of a quantum system is applicable provided that the noise correlation
time τc and the system-bath coupling strength v satisfy the condition
vτc ≪ 1 (Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1992).
Physically, the quantum system very weakly perturbs the environ-
ment; thereby memory of its previous states is quickly lost. If 1=f
noise is produced by superposition of RT processes, each of which is
a discrete Markov process, some of them should have very long
correlation times. “Sufficiently slow” fluctuators would violate the
above inequality (see the discussion in Sec. III.A.1). Therefore, the
Markovian approximation may not be applicable to the reduced
system evolution. For 1=f noise, a signature of the failure of the
Markovian approximation is the divergence of the adiabatic
decoherence rate 1=T�

2, Eq. (16). For more general situations see,
e.g., Laikhtman (1985).
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ĤcðtÞ ¼ AðtÞQ̂; (38)

which is Hermitian and traceless. In general, control is
operated via the same ports used for biasing the system
and accounted for by time-dependent parameters q. It is
convenient to split q in a slow part qðtÞ, which includes static
bias, and the fast control parameter qcðtÞ as q → qðtÞ þ qcðtÞ.
Accordingly, we write

Ĥ0½qðtÞ þ qcðtÞ�≔Ĥ0½qðtÞ� þ ĤcðtÞ; (39)

where ĤcðtÞ describes (fast) control; in relevant situations it
can be linearized in qcðtÞ, yielding the structure of Eq. (38).5

At this stage the interaction with the complicated environment
of microscopic degrees of freedom in the solid state can be
introduced in a phenomenological way. We first consider
classical noise usually acting through the same ports used for
control and that can be modeled by adding a stochastic
component δqðtÞ to the drive. Again, we split slow and fast
noise δqðtÞ → δqðtÞ þ qfðtÞ and include the slow part in
Ĥ0½q� → Ĥ0½qðtÞ þ δqðtÞ�. The same steps leading to Eq. (39)
yield the noisy Hamiltonian

Ĥtot ¼ Ĥ0½qðtÞ þ δqðtÞ� þ ĤcðtÞ þHfðtÞ; (40)

where HfðtÞ describes a short-time correlated stochastic
process. “Quantization” of this term HfðtÞ → Ê Q̂þĤR ¼
ĤI þ ĤR yields the phenomenological system-environment
Hamiltonian in the form of Eq. (37), where Ĥ0½qðtÞ�þ
HnðtÞ ≡ Ĥ0½qðtÞ þ δqðtÞ�, Ê operates on the environment,
and ĤR is its Hamiltonian (plus possibly suitable
counterterms).
When the nanodevice operates as a qubit, Ĥ0½q� can be

projected onto the eigenstates and it can be cast in the form
Eq. (1), where both the level splitting Ω and the polar angle θ
shown in Fig. 2 depend on the set of parameters q. For
simplicity, we suppose that a single parameter is used to fix the
bias point q. We can write Eq. (40) as

Ĥtot ¼
ℏ
2
Ω⃗½qþ δqðtÞ� · σ⃗ þ ĤcðtÞ þ ĤI þ ĤR: (41)

Expanding Ω⃗½qþ δqðtÞ� about the fixed bias q, we obtain

Ĥtot ¼
ℏ
2
Ω⃗ðqÞ · σ⃗ þ δqðtÞ ∂ℏΩ⃗∂q · σ⃗ þ ĤcðtÞ þ ĤI þ ĤR;

(42)

and if bias q controls only one qubit component, for instance,
ΩzðqÞ, then Eq. (42) reduces to the commonly used form

Ĥtot ¼
ℏΩx

2
σx þ

ℏ
2
½ΩzðqÞ þ EðtÞ þ Ê�σz þ ĤcðtÞ þ ĤR:

(43)

Here the qubit working point is parametrized by the angle θq
which is tunable via the bias q, tan θq ¼ Ωx=ΩzðqÞ, the
classical noise term is EðtÞ ¼ 2δqðtÞ∂Ωz=∂q, and we have
consistently set Q̂ ¼ σz in ĤI .
From a physical point of view, the phenomenological

Hamiltonian (43) treats on different footings fast environ-
mental modes exchanging energy with the system and slow
modes responsible for dephasing. The fast modes, responsible
for spontaneous decay, must be treated quantum mechanically
and included in ℏÊσz=2þ ĤR. Slow modes can be accounted
for classically and included in HnðtÞ ≡ ℏEðtÞσz=2. This term
yields the longitudinal fluctuating part bðtÞ of a magnetic field
formed by an external part B0 plus an “internal” classical
stochastic component, as introduced in Eq. (3). Results of
measurements involve both quantum and classical ensemble
averaging. From the technical point of view, effects of
quantum noise described by ĤI þ ĤR can be studied by
weak coupling master equations (Bloch, 1957; Redfield,
1957; Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1992;
Weiss, 2008), which lead to exponential decay of both the
diagonal (populations) and off-diagonal (coherences) ele-
ments of qubit density matrix elements in the Ĥq eigenbasis.
The corresponding time scales T1 and T2 are given by
Eqs. (15) and (16), respectively.
The weak coupling master equation approach fails in

dealing with slow noise as HnðtÞ, which describes low-
frequency (e.g., 1=f) noise. An important feature of super-
conducting nanodevices is that the Hamiltonian Ĥ0½q� can be
tuned in a way such that symmetries (usually parity) are
enforced. At such symmetry points ∂Ei=∂q ¼ 0 and selection
rules hold for the matrix elements Qij in the local basis. In
these symmetry points the device is well protected against
low-frequency noise, and the system is said to operate at
optimal points (Vion et al., 2002; Chiorescu et al., 2004). In
general, noise affecting solid-state devices, as described by
HnðtÞ and ĤI þ ĤR in Eq. (40), has a broadband colored
spectrum. Therefore, approaches suitable to deal with noise
acting on very different time scales are required. This topic
will be discussed in Sec. III.B.1.b.
To start with, we analyze the effect of 1=f noise on the

qubit’s evolution under pure dephasing conditions. As dis-
cussed in Sec. I.B, in some situations the Gaussian approxi-
mation does not apply. In these cases knowledge of only the
noise power spectrum SðωÞ is not sufficient since noise
sources with identical power spectra can have different
decohering effects on the qubit. Therefore, it is necessary
to specify the model for the noise source in more detail. In
Sec. III.A we illustrate dephasing by the spin-fluctuator (SF)
model, which can be solved exactly under general conditions.
When we depart from pure dephasing, i.e., when the noise-
system interaction is not longitudinal, no exact analytic
solution for the time evolution of the system is available
even for the spin-fluctuator model. Different exact methods
have been proposed which lead to approximate solutions in
relevant regimes.

5Note that while Q̂ is an observable and does not depend on the
local basis, its matrix representation does. The physical consequence
is that the effectiveness of the fast control qcðtÞ in triggering
transitions depends also on the slow qðtÞ, a feature of artificial
atoms which is the counterpart of tunability.
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In Sec. III.B we present approximate approaches proposed
to predict dephasing due to 1=f noise described as a classical
stochastic process. Approaches based on the adiabatic
approximation (Falci et al., 2005; Ithier et al., 2005) allow
simple explanations of peculiar nonexponential decay
reported in different experiments with various setups
(Cottet et al., 2001; Vion et al., 2002; Martinis et al.,
2003; Van Harlingen et al., 2004; Ithier et al., 2005;
Bylander et al., 2011; Chiarello et al., 2012; Sank et al.,
2012; Yan et al., 2012). These approaches also predict the
existence of operating conditions where leading order effects
of 1=f fluctuations are eliminated also for complex architec-
tures, analogously to the single qubit optimal point. The effect
of 1=f noise in solid-state complex architectures is a subject of
current investigation (Storcz et al., 2005; Hu et al., 2007;
D’Arrigo et al., 2008; Paladino et al., 2009, 2010, 2011;
Bellomo et al., 2010; Brox, Bergli, and Galperin, 2012;
D’Arrigo and Paladino, 2012). Considerable improvement
in minimizing sensitivity to charge noise has been reached via
clever engineering, in particular, in the cQED architecture; see
Sec. II.C.1. Recently, highly sensitive superconducting cir-
cuits have been used as “microscopes” for probing character-
istic properties of environmental fluctuators. Recent progress
in the ability of direct control of these microscopic quantum
TLSs has opened a new research scenario where they may be
used as naturally formed qubits. These issues will be
addressed in Sec. III.C.
In the final part of this section we present current strategies

to reduce effects of 1=f noise based on techniques developed
in NMR (Schlichter, 1992). The open question about the best
strategy to limit 1=f noise effects via open or closed loop
control is discussed and we review the current status of the
ongoing research along this direction.

A. Spin-fluctuator model

In the following we use a simple classical model according
to which the quantum system, qubit, is coupled to a set of two-
state fluctuators. The latter randomly switch between their
states due to interaction with a thermal bath, which can be
only weakly directly coupled to the qubit. Since we are
interested only in the low-frequency noise generated by these
switches, they will be considered as classical. (The situations
where quantum effects are of importance is discussed sepa-
rately.) The advantage of this approach, which is often referred
to as the spin-fluctuator model, is that the system qubit plus
fluctuators can be described by a relatively simple set of
stochastic differential equations, which in many cases can be
exactly solved. In particular, many results can be borrowed
from earlier work on magnetic resonance (Klauder and
Anderson, 1962; Hu and Walker, 1977; Maynard, Rammal,
and Suchail, 1980), on spectral diffusion in glasses (Black and
Halperin, 1977), as well as works on single-molecule spec-
troscopy (Moerner, 1994; Geva, Reilly, and Skinner, 1996;
Moerner and Orrit, 1999; Barkai, Jung, and Silbey, 2001).
The interaction of electrons with two-state fluctuators was

previously used for evaluation of the effects of noise on
various systems (Kogan and Nagaev, 1984b; Kozub, 1984;
Ludviksson, Kree, and Schmid, 1984; Galperin, Gurevich,
and Kozub, 1989; Galperin and Gurevich, 1991; Galperin,

Zou, and Chao, 1994; Hessling and Galperin, 1995). It was
recently applied to the analysis of decoherence in qubits
(Paladino et al., 2002; Falci, Paladino, and Fazio, 2003;
Paladino, Faoro, and Falci, 2003; Falci et al., 2004, 2005;
Galperin, Altshuler, and Shantsev, 2004; Bergli, Galperin, and
Altshuler, 2006, 2009; Galperin et al., 2006; Martin and
Galperin, 2006). Various quantum and non-Markovian aspects
of the model were addressed by Paladino et al. (2002),
Galperin, Altshuler, and Shantsev (2003), de Sousa et al.
(2005), DiVincenzo and Loss (2005), Grishin, Yurkevich, and
Lerner (2005), Abel and Marquardt (2008), Coish, Fischer,
and Loss (2008), Lutchyn et al. (2008), Burkard (2009),
Culcer, Hu, and Das Sarma (2009), and Yurkevich
et al. (2010).

1. Exact results at pure dephasing

In Sec. I.B we discussed a simple model of so-called pure
dephasing, when the diagonal splitting ϵ of a qubit represented
by the Hamiltonian (1) fluctuates in time and Δ ¼ 0. The
resulting expression (11) for the FID was obtained assuming
that the fluctuations obey the Gaussian statistics. To approach
specific features of the 1=f noise we take into account that
such a noise can be considered as a superposition of random
telegraph processes. To begin with we consider decoherence
due to a single random telegraph process.

a. Dephasing due to a single RT fluctuator

A random telegraph process is defined as follows
(Buckingham, 1989; Kirton and Uren, 1989). Consider a
classical stochastic variable χðtÞ, which at any time takes the
values χðtÞ ¼ �1. It is thus suitable for describing a two-state
fluctuator that can find itself in one of two (meta)stable states,
1 and 2, and once in a while it makes a switch between them.
The switchings are assumed to be uncorrelated random events
with rates γ1→2 and γ2→1, which can be different. For
simplicity, we limit ourselves to a symmetric RT process
γ1→2 ¼ γ2→1 ¼ γ=2. The extension to the general case can be
easily made (Itakura and Tokura, 2003). The number k of
switches that the fluctuator experiences within a time t follows
a Poisson distribution

PkðtÞ ¼
ðγtÞk
2kk!

e−γt=2: (44)

The number of switches k determines the number of times the
function χðtÞ changes its sign contributing ð−1Þk to the
correlation function CðtÞ ≡ hχðtÞχð0Þi. Therefore,

CðtÞ ¼ e−γt=2
X∞
k¼0

ð−1Þk ðγtÞ
k

2kk!
¼ e−γt; t ≥ 0: (45)

The RT process results in a fluctuating field bðtÞ ¼ bχðtÞ
applied to the qubit. The magnitude b ¼ jbj together with the
switching rate γ characterizes the fluctuator. Using Eq. (10) it
is possible to find the power spectrum of the noise generated
by the ith fluctuator:

SiðωÞ ¼ b2iLγiðωÞ; (46)
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with LγiðωÞ given by Eq. (17). Equation (46) corresponds to
the high-temperature limit E ≪ kBT of Eq. (28) with
x1 − x2 ¼ 2bi. Thus, together with the considerations
reported in Sec. II.B, we conclude that telegraph fluctuators
provide a reasonable model for the 1=f noise.
Single shot measurements and FID: Using Eq. (5) we now

discuss how a single RT fluctuator affects a qubit. We assume
that the fluctuator does not feel any feedback from the qubit
and thus the RT function χðtÞ equals to þ1 or −1 with the
probability 1=2 regardless of the direction of the Bloch vector
M. One can show that under this assumption the probability to
find the angle φ (see Fig. 2) at time t, pðφ; tÞ, satisfies the
following second-order differential equation (Bergli,
Galperin, and Altshuler, 2009):

p
:: þ γp

: ¼ b2∂2
φp; (47)

which is known as the telegraph equation. We can always
choose the x direction such that φ ¼ 0 at t ¼ 0, so
pðφ; 0Þ ¼ δðφÞ. The second initial condition,

p
: ðφ; 0Þ ¼ �2b∂φpðφ; 0Þ;

can be derived from the integral equation for pðφ; tÞ (Bergli,
Galperin, and Altshuler, 2009). After averaging over the
fluctuator’s initial state, p

: ðφ; 0Þ ¼ 0.
The FID is given as hmþi ¼ heiφi ¼ R dφpðφ; tÞeiφ. The

differential equation and initial conditions for this quantity can
be obtained multiplying Eq. (47) by eiφ and integrating over φ.
In this way we obtain

hm:: þi þ γhmþ
: i ¼ −b2hmþi (48)

with initial conditions hmþð0Þi ¼ 1, hm: þð0Þi ¼ 0. The sol-
ution of Eq. (48) with these initial conditions is

hmþi ¼ ð2μÞ−1e−γt=2½ðμþ 1Þeγμt=2 þ ðμ − 1Þe−γμt=2�;

μ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2b=γÞ2

q
:

(49)

In the context of decoherence due to discrete noise
sources affecting superconducting qubits Eq. (49) was first
reported by Paladino et al. (2002), where it was derived as the
high-temperature limiting form of a real-time path-integral
result. Equation (49) also follows by direct averaging
the qubit coherence over the stochastic bistable process
bðtÞ ¼ bχðtÞ, i.e., by evaluation of the time average
ZðtÞ ¼ hhexp ½−i R t0 dt0bðt0Þ�ii. The last two approaches do
not necessarily assume a thermal equilibrium initial condition
for the fluctuator at the initial time t ¼ 0. Thus, results also
depend on the initial population difference between the two
states χ ¼ �1, δp0. When this quantity is fixed to one of the
classical values þ1 or −1, we obtain the effect of noise only
during the qubit quantum evolution, i.e., in an “ideal” single
shot measurement. The result takes the form given by Eq. (49)
with the prefactors of the two exponentials μ� 1 replaced by
μ� 1∓iδp02b=γ. The FID results by further averaging
over the initial conditions, i.e., by replacing δp0 with
hδp0i ¼ δpeq, where the thermal equilibrium value δpeq is
consistently set to zero in the regime E ≪ kBT. Both the

single shot and the free induction signals demonstrate quali-
tatively different behaviors for large and small values of the
ratio 2b=γ. This is easily seen from Eq. (49). At b ≫ γ one can
consider the qubit as a quantum system experiencing beatings
between the states with different splittings B0 � b, the width
of these states being γ=2. In the opposite limiting case b ≪ γ,
the energy-level splitting is self-averaged to a certain value,
the width being b2=γ. This situation was extensively discussed
in connection with the magnetic resonance and is known as
the motional narrowing of spectral lines (Klauder and
Anderson, 1962). Different behaviors of the FID amplitudes
depending on the ratio 2b=γ are illustrated in Fig. 22.
Thus, one can discriminate between weakly coupled fluc-

tuators 2b=γ ≪ 1 and strongly coupled fluctuators (in the
other regimes) (Paladino et al., 2002), which influence the
qubit in different ways. Figure 23 shows the decay factor
ΓðtÞ ¼ − ln½jhmþiðtÞj� for different values of 2b=γ normalized
in such a way that the Gaussian decay factor ΓGðtÞ ≡ hφ2i=2

FIG. 22. Time dependence if the FID amplitude for 2b=γ ¼ 0.8
and 5.

FIG. 23. Reduced ΓðtÞ due to fluctuators prepared in a stable
state (δp0 ¼ 1, solid lines and δp0 ¼ −1, dotted lines) and in a
thermal mixture (δp0 ¼ 0, dashed lines) for the indicated values
of g ¼ 2b=γ. Inset: Longer time behavior for stable state
preparation. The curves are normalized in such a way that the
oscillator approximation for all of them coincides (thick dashed
line). Adapted from Paladino, Faoro, and Falci, 2003.
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[see Eqs. (8) and (11)] is the same for all curves. Both the
single-shot and FID signals are reported. Substantial devia-
tions are clearly observed, except in the presence of a weakly
coupled fluctuator. In particular, a fluctuator with 2b=γ > 1

induces a slower dephasing compared to an oscillator envi-
ronment with the same SbðωÞ, a sort of saturation effect.
Recurrences at times comparable with 1=2b are visible in ΓðtÞ.
In addition, strongly coupled fluctuators show memory
effects. This is clearly seen considering different initial states
for the fluctuator, corresponding to the single shot and FID
measurement schemes. This is already seen in the short-time
behavior γt ≪ 1, relevant for quantum operations which need
to be performed before the signal decays to a very low value.
In the limit γt ≪ 1, ΓGðtÞ ≈ b2ð1 − δp2

eqÞt2=2, whereas

ΓðtÞ ≈ b2
�
1 − δp2

0

2
t2 þ 1þ 2δp0δpeq − 3δp2

0

6
γt3
�
: (50)

In a single shot process, δp0 ¼ �1, and ΓðtÞ ∝ t3, showing
that a fluctuator is stiffer than a bath of oscillators. On the
other hand, for repeated measurements δp0 ¼ δpeq and for
very short times we recover the Gaussian result. This is due to
the fact that inhomogeneous broadening due to the uncon-
trolled preparation of the fluctuator at each repetition adds to
the effect of decoherence during the time evolution and results
in a faster decay of ΓðtÞ.
The difference between Eq. (49) and the result (12) based

on the Gaussian assumption is further elucidated considering
the long-time behavior. Substituting Eq. (46) for the noise
spectrum into Eq. (12) one obtains

1=T�ðGÞ
2 ¼ b2=γ: (51)

This result should be valid for times much longer than the
correlation time of the noise, which is γ−1. Expanding Eq. (49)
at long times we find that FID also decays exponentially (or
the beatings decay exponentially at b > γ). However, the rate
of decay is parametrically different from Eq. (51):

1

T�
2

¼ γ

2

 
1 − Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4b2

γ2

s !
: (52)

At b ≪ γ, Eq. (52) coincides with the Gaussian result. Shown
in Fig. 24 are the dephasing rates 1=TðGÞ

2 and 1=T2 given by
Eqs. (51) and (52), respectively. Again we see that the
Gaussian approximation is valid only in the limit b ≪ γ.
The main effect of a strongly coupled fluctuator is a static
energy shift, the contribution to the qubit decoherence rate
saturates at ∼γ, and at b≳ γ=2 the Gaussian assumption
overestimates the decay rate. Apparently, this conclusion is in
contradiction with the discussion in Sec. I.B following from
the central limiting theorem. According to this theorem
pðφ; tÞ always tends to a Gaussian distribution with time-
dependent variance provided that the time exceeds the
correlation time of the noise. To resolve this apparent contra-
diction, we analyze the shape of the distribution function
pðφ; tÞ, following from the telegraph equation (47) with initial
conditions pðφ; 0Þ ¼ δðφÞ, p

: ðφ; 0Þ ¼ 0. This solution is
(Bergli, Galperin, and Altshuler, 2006)

pðφ; tÞ ¼ ð1=2Þe−γt=2½δðφþ btÞ þ δðφ − btÞ�
þ ½γ=bνðtÞ�e−γt=2½Θðφþ btÞ − Θðφ − btÞ�
× fI1½νðtÞγt=2� þ νðtÞI0½νðtÞγt=2�g: (53)

Here IβðxÞ is the modified Bessel function, νðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðφ=btÞ2

p
, while ΘðxÞ ¼ 1 at x > 0 and 0 at x < 0 is

the Heaviside step function. This distribution for various t
shown in Fig. 25 consists of two delta functions and a central
peak. The delta functions represent the finite probability for a
fluctuator to remain in the same state during time t. As time
increases, the weight of the delta functions decreases and the
central peak broadens. At long times, this peak acquires a
Gaussian shape. Indeed, at γt ≫ 1 one can use an asymptotic
form of the Bessel function IβðzÞ ≈ ð2πzÞ−1=2ez, as z → ∞. In

addition, at t ≫ φ=b we can also expand
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðφ=btÞ2

p
and

convince ourselves that the central peak is described by
the Gaussian distribution (7) with hφ2i ¼ 2b2t=γ. If the

FIG. 24. Comparison of the dephasing rate T−1
2 for a single

randomtelegraphprocessandthecorrespondingGaussianapproxi-
mation. Adapted from Bergli, Galperin, and Altshuler, 2009.

FIG. 25. The distribution (53) for 2b=γ ¼ 1 and γt=2 ¼ 1, 3,
and 5 (numbers at the curves). Only the part with positive φ is
shown; the function is symmetric. The arrows represent the delta
functions (not to scale). Adapted from Bergli, Galperin, and
Altshuler, 2009.
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qubit-fluctuator coupling is weak, b ≪ γ, this Gaussian
part of pðφ; tÞ dominates the average heiφi and the
Gaussian approximation is valid. On the contrary, when
the coupling is strong, b > γ=2, the average is dominated
by delta functions at the ends of the distribution and the
decoherence demonstrates a pronounced non-Gaussian
behavior, even at long times (t > 2=γ).
Unfortunately, we are not aware of a way to measure the

distribution pðφ; tÞ in experiments with a single qubit. The
reason is in the difference between the qubit that can be
viewed as a pseudospin 1=2 and a classical Bloch vector M.
According to Eq. (4) the components Mx, My, Mz of M are
connected with the mean component of the final state of the
pseudospin. Therefore, to measure the value of the phase φ
(argument ofmþ) that corresponds to a given realization of the
noise one should repeat the experimental shot with the same
realization of the noise many times. This is impossible
because each time the realization of noise is different.
Therefore, the only observable in decoherence experiments
is the average heiφi.

b. Echo

The analysis of the echo signal is rather similar: One has to
replace hmþðtÞi taken from Eq. (49) by hmðeÞ

þ ð2τ12Þi where
[cf. with Laikhtman (1985)],

hmðeÞ
þ ðtÞi ¼ e−γt=2

2ν2
½ðνþ 1Þeγνt=2−ðν − 1Þe−γνt=2 − 8b2=γ2�:

(54)

This result can also be obtained by direct calculation of
the function Zð2tjηÞ ¼ hhexp ½−i R 2t0 dt0ηðt0Þbðt0Þ�ii, where
ηðt0Þ ¼ 1 for 0 < t0 < t and ηðt0Þ ¼ −1 for t < t0 < 2t
(Falci, Paladino, and Fazio, 2003). To demonstrate non-
Gaussian behavior of the echo signal we evaluate from
Eq. (14) the variance hψ2ð2τ12Þi. We obtain [cf. with
Bergli, Galperin, and Altshuler (2009)]

hψ2i ¼ ð2b2=γ2Þð2γτ12 − 3þ 4e−γτ12 − e−2γτ12Þ (55)

with hmðeÞ
þ i ¼ e−hψ2i=2 as before. Comparison between the two

results is shown in Fig. 26 for a weakly (2b=γ ¼ 0.8) and a
strongly (2b=γ ¼ 5) coupled fluctuator. As discussed, the
Gaussian approximation is accurate at 2b≲ γ, while at 2b > γ
the results are qualitatively different. In particular, the plateaus
in the time dependence of the echo signal shown in Fig. 26 are
beyond the Gaussian approximation. We believe that such a
plateau was experimentally observed by Nakamura et al.
(2002) (see Fig. 3 from that paper partly reproduced in Fig. 7).
In the limit b ≫ γ,

ffiffiffiffiffiffiffi
γ=τ

p
Eq. (54) acquires a simple form:

hmðeÞ
þ ðτÞi ¼ e−γτ½1þ ðγ=2bÞ sin 2bτ�: (56)

According to Eq. (56), the plateaulike features
(j∂hmðeÞ

þ i=∂τj ≪ 1) occur at bτ ≈ kπ (where k is an integer)
and their heights hmðeÞ

þ i ≈ e−πkγ=b exponentially decay with
the number k. Experimentally measuring the height and the
position of the first plateau, one can determine both the
fluctuator coupling strength b and its switching rate γ. For
example, the echo signal measured by Nakamura et al.
(2002) shows a plateaulike feature at τ12 ¼ 3.5 ns at the
height hmðeÞ

þ i ¼ 0.3, which yields b ≈ 143 MHz and
γ=2 ≈ 27 MHz. If the fluctuator is a charge trap near a gate
producing a dipole electric field, its coupling strength is
b ¼ e2ða · rÞ=r3. Using the gate-CPB distance r ¼ 0.5 μm,
we obtain a reasonable estimate for the tunneling distance
between the charge trap and the gate a ∼ 20 Å. A more
extensive discussion can be found in Galperin et al. (2006).
A similar analysis for an arbitrary qubit working point
was reported by Zhou and Joynt (2010). The effect
of RTN for an arbitrary working point is discussed in
Sec. III.A.2.

c. Telegraph noise and Landau-Zener transitions

Driven quantum systems are exceedingly more complicated
to study than stationary systems, and only few such problems
have been solved exactly. An important exception is the
Landau-Zener (LZ) transitions (Landau, 1932; Stueckelberg,
1932; Zener, 1932). In the conventional LZ problem, a TLS is
driven by changing an external parameter in such a way that
the level separation ℏϵ is a linear function of time ϵðtÞ ≡ a2t.
Close to the crossing point of the two levels, an interlevel
tunneling matrix element ℏΔ lifts the degeneracy in an
avoided level crossing. When the system is initially in the
ground state, the probability to find it in the excited state after
the transition is e−πΔ2=2a2 . Hence, a fast rate drives the system
to the excited state, while the system ends in the ground state
when driven slowly.
In connection with decoherence of qubits, there has recently

been increased interest in Landau-Zener transitions in systems
coupled to an environment. This problem is of both theoretical
interest and practical importance for qubit experiments
(Sillanpää et al., 2006). The noisy Landau-Zener problem
was discussed by several (Kayanuma, 1984, 1985; Shimshoni
and Gefen, 1991; Shimshoni and Stern, 1993; Nishino, Saito,
and Miyashita, 2001; Pokrovsky and Sinitsyn, 2003; Wubs
et al., 2006; Pokrovsky and Sun, 2007; Saito et al., 2007).
Here we discuss the role of a classical telegraph fluctuator
following Vestgården, Bergli, and Galperin (2008).

FIG. 26. Solid lines: The echo signal for different values of
the ratio 2b=γ, Eq. (54). Dashed lines: The calculations along
the Gaussian approximation, Eq. (55). Adapted from Bergli,
Galperin, and Altshuler, 2009.
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Wemodel a driven qubit by the Hamiltonian (3) with ϵðtÞ ¼
a2t and ΔðtÞ ≡ Δþ vχðtÞ, where χðtÞ is a RT process.
Representing the density matrix as in Eq. (4) one can study
the dynamics of the Bloch vector averaged over the realiza-
tions of the telegraph noise. To this end, one has to study the
solution of the Bloch equation (5) in the presence of the
magnetic fields B� ¼ B0 � vðtÞ. Introducing the partial
probabilities p�ðM; tÞ to be in the state M at time t under
rotations around Bþ and B−, respectively, and defining

M� ≡
Z

d3M½pþðM; tÞ � p−ðM; tÞ�;

one arrives at the set of equations [cf. with Vestgården, Bergli,
and Galperin (2008)]

M
:

þ ¼ Mþ × B0 þ v ×M−;

M
:

− ¼ M− × B0 þ v ×Mþ − γM−: (57)

Here Mþ is the average Bloch vector whose z component is
related to the occupancy of the qubit’s levels. To demonstrate
the role of telegraph noise, we consider a simplified problem
putting Δ ¼ 0. In this way we study the LZ transitions
induced solely by the telegraph process. In this case,
Eqs. (57) reduce to an integro-differential equation for
Mz ≡ Mþz:

M
:

zðtÞ ¼ −v2
Z

∞

0

dt1 cos

�
a2t1ð2t − t1Þ

2

�
e−γjt1jMzðt − t1Þ:

(58)

Equation (58) can be easily analyzed for the case of fast noise
γ ≫ a. A series expansion in t1 leads to the following solution
of Eq. (58) with initial condition Mzð0Þ ¼ 1:

Mzð∞Þ ¼ e−πv2=a2 : (59)

This is the usual expression for the LZ transition probability
with replacement Δ →

ffiffiffi
2

p
v. This result holds for any noise

correlated at short times (≪ a−1), as shown by Pokrovsky and
Sinitsyn (2003). Note that the result (59) can be obtained
using the Gaussian approximation.
The case of a slow fluctuator with γ ≲ a leads to very

different results which, for an arbitrary ratio v=a, require a
numerical solution of the integro-differential equation (58).

The result of such analysis is shown in Fig. 27. The static case
γ ¼ 0 is equivalent to the standard Landau-Zener transition
with the noise strength

ffiffiffi
2

p
v replacing the tunnel coupling Δ

between the diabatic levels. In the adiabatic limit v ≫ a, we
see that Mzð∞Þ → −1, which corresponds to the transition to
the opposite diabatic state. In this case the dynamics is fully
coherent, but since we average over the fluctuator’s initial
states, the Bloch vector asymptotically lies on the z axis of the
Bloch sphere. At finite γ, the noise also stimulates Landau-
Zener transitions; however, the transition probability
decreases with increasing switching rate. Note that the curves
cross the line Mzð∞Þ ¼ 0 at some v=a, which depends on γ.
For this noise strength, the final state is at the center of the
Bloch sphere, corresponding to full decoherence. However,
increasing the noise strength beyond this point results in a
final state with negativeMzð∞Þ. Thus, we have the surprising
result that, under some conditions, increasing the noise
strength will also increase the system purity after the tran-
sition. The results for slow and strong noise cannot be
obtained in the Gaussian approximation. These considerations
point out that telegraph noises can facilitate LZ transitions.
This process may prevent the implementation of protocols for
adiabatic quantum computing.

d. Ensemble of fluctuators: Effects of 1=f noise

As a result of the above considerations, we concluded that
the role of a fluctuator in decoherence of a qubit depends on
the ratio between the interaction strength b and the correlation
time γ−1 of the random telegraph process. Weakly coupled
fluctuators, i.e., “weak” and relatively “fast” fluctuators for
which 2b=γ ≪ 1, can be treated as a Gaussian noise acting on
the qubit. On the contrary, the influence of strongly coupled
fluctuators, i.e., “strong” and “slow” fluctuators for which
2b=γ ≳ 1, is characterized by quantum beatings in the qubit
evolution.
As seen, a set of fluctuators characterized by the distribution

function PðγÞ ∝ 1=γ of the relaxation rates provides a realistic
model for 1=f noise. Therefore, it is natural to study in which
way the qubit is decohered by a sum of the contributions of
many fluctuators bðtÞ ¼PibiχiðtÞ. A key question here is
“Which fluctuators, weak or strong, are responsible for the
qubit decoherence?” In the first case the noise can be treated as
Gaussian, while in the second case a more accurate description
is needed.
Here we analyze this issue using a simple model assuming

that the dynamics of different fluctuators are not correlated,
i.e., hχiðtÞχjðt0Þi ¼ δije−γijt−t

0 j. Under this assumption, the
average hmþi is the product of the partial averages,

hmþðtÞi ¼
Y
i

hmþiðtÞi ¼ exp

�X
i

lnhmþiðtÞi
�
: (60)

Since the logarithm of a product is a self-averaging quantity,
it is natural to approximate the sum of logarithmsP

i lnhmþiðtÞi by its average value −KmðtÞ, where

KmðtÞ ≡ −X
i

lnhmþiðtÞi: (61)
FIG. 27 (color online). Mzð∞Þ vs the ratio v=a for different
switching rate γ (shown in units of a). Adapted from Vestgården,
Bergli, and Galperin, 2008.
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Here the bar denotes the average over both the coupling
constants b of the fluctuators and their transition rates γ.
Equation (61) can be further simplified when the total number
N T of thermally excited fluctuators is very large. Then we can
replace

P
i lnhmþiðtÞi byN T lnhmþðtÞi. Furthermore, we can

use the so-called Holtsmark procedure (Chandresekhar,
1943), i.e., to replace lnhmþðtÞi by hmþi − 1 assuming that
intherelevanttimedomaineachhmþii iscloseto1.Thus,KmðtÞ is
approximately equal to (Klauder and Anderson, 1962;
Laikhtman,1985;Galperin,Altshuler, andShantsev,2003,2004)

KmðtÞ ≈N T ½1 − hmþðtÞi�

¼
Z

dbdγPðb; γÞ½1 − hmþðb; γjtÞi�: (62)

Here hmþii is specified as hmþðb; γjtÞi, which depends on the
parametersbandγ accordingtoEq.(49).Thefreeinductionsignal
is thenexp½−KmðtÞ�.Analysis of the echo signal is rather similar:
one has to replace hmþðtÞi taken from Eq. (49) with Eq. (54).
To evaluate the time dependence of the free induction or

echo signal, one has to specify the distribution function of the
coupling constants b, i.e., partial contributions of different
fluctuators to the random magnetic field bðtÞ. To start with, we
consider the situation where the couplings bi are distributed
with a small dispersion around an average value b̄. Under
these conditions the total power spectrum reads

SðωÞ ¼ b̄2
Z

γM

γm

dγ
P0

2γ
LγðωÞ ≈

A
ω
; (63)

where the amplitude A can be expressed in terms of the
number of fluctuators per noise decade, nd ¼ N T lnð10Þ=
ln ðγM=γmÞ, as follows A ¼ b2P0=4 ¼ b2nd=2 lnð10Þ. The
spectrum exhibits a crossover to ω−2 behavior at ω ∼ γM. In
Fig. 28 we showed the results for a sample with a number of
fluctuators per decade nd ¼ 1000 and with couplings distrib-
uted around b̄=ð2πÞ ¼ 4.6 × 107 Hz. Initial conditions
dp0j ¼ �1 are distributed according to hdp0ji ¼ dpeq, the

equilibrium value. The different role played by weakly and
strongly coupled fluctuators is illustrated considering sets with
γM=ð2πÞ ¼ 1012 Hz and different γm. In this case the dephas-
ing is given by fluctuators with γj > 2π × 107 Hz ≈ 2b̄=10.
The main contribution comes from three decades at frequen-
cies around ≈2b̄. The overall effect of the strongly coupled
fluctuators (γj < 2b̄=10) is minimal, despite their large
number. We remark that, while saturation of dephasing due
to a single fluctuator is physically intuitive, it is not a priori
clear whether this holds also for the 1=f case, where a large
number (∼1=γ) of slow (strongly coupled) fluctuators is
involved. The decay factor KmðtÞ can be easily compared
with the Gaussian approximation (11) (Paladino et al., 2002).
This approximation fails to describe fluctuators with
2b=γ ≫ 1. For instance, hφ2i at a fixed t scales with the
number of decades and does not show saturation. On the other
hand, the Gaussian approximation becomes correct if the
environment has a very large number of extremely weakly
coupled fluctuators. This is shown in Fig. 29, where the power
spectrum is identical for all curves but it is obtained by sets of
fluctuators with different nd and bi. The Gaussian behavior is
recovered for t ≫ 1=γm if nd is large (all fluctuators are
weakly coupled). If in addition we take hdp0ji ¼ dpeq, KmðtÞ
approaches hφ2i also at short times. Hence decoherence
depends separately on nd and b̄, whereas in the Gaussian
approximation only the combination ndb̄2, which enters SðωÞ,
matters. In other words, the characterization of the effect of
slow sources of 1=f noise requires knowledge of moments of
the bias fluctuations higher than SðωÞ. A more accurate
averaging procedure considering hδp0ji ¼ �1 for fluctuators,
with γitm < 1 and hδp0ji ¼ δpeq for γitm > 1, shows that, for
long measurement times b̄tm ≫ 1, fluctuators with γ < 1=tm
are saturated and therefore not effective, whereas other
fluctuators, being averaged, give for short enough times

FIG. 28. The saturation effect of slow fluctuators for a 1=f
spectrum and coupling distributed with hΔbi=hbi ¼ 0.2. Labels
indicate the number of decades included. Adapted from
Paladino et al., 2002.

FIG. 29. Ratio KmðtÞ=hφ2i ≡ ΓðtÞ=Γ2ðtÞ for 1=f spectrum
between γm=ð2πÞ ¼ 2 × 107 Hz and γM=ð2πÞ ¼ 2 × 109 Hz
with different numbers of fluctuators per decade: (a) nd ¼ 103,
(b) nd ¼ 4 × 103, (c) nd ¼ 8 × 103, (d) and (d1) nd ¼ 4 × 104,
and (e) and (e1) nd ¼ 4 × 105. Solid lines correspond to
δp0j ¼ �1, and dashed lines correspond to equilibrium initial
conditions (FID). Adapted from Paladino et al., 2002.
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ΓðtÞ ≈
Z

∞

1=tm

dωSðωÞ
�
sin ωt=2
ω=2

�
2

: (64)

This is illustrated in Fig. 30. The above considerations explain
the often used approximate form (64) obtained from Eq. (11)
with low-frequency cutoff at 1=tm which was proposed by
Cottet et al. (2001) and that we already mentioned in
Sec. II.C, Eq. (32).
The echo signal obtained from Eq. (62) with Eq. (54)

assuming that Pðb; γÞ ∝ γ−1δðb − b̄ÞΘðγm − γÞ leads to the
following time dependence when b̄ ≪ γM (Galperin et al.,
2007):

KðeÞðtÞ ¼

8>><
>>:

AγMt3=6; t ≪ γ−1M ;

ln ð2ÞAt2; γ−1M ≪ t ≪ b̄−1;
αðA=b̄2Þb̄t; b̄−1 ≪ t;

(65)

where α ≈ 6. At small times, the echo signal behaves as in the
Gaussian approximation, Eq. (14), where the t3 dependence
follows from the crossover of the spectrum from ω−1 to ω−2.
On the other hand, at large times b̄−1 ≪ t the SF model
dramatically differs from the Gaussian result which predicts
KðeÞ

G ðtÞ ¼ A lnð2Þt2. The origin of the non-Gaussian behavior
comes from the already observed fact that decoherence is
dominated by the fluctuators with γ ≈ 2b̄. Indeed, very slow
fluctuators produce slowly varying fields, which are effec-
tively refocused in the course of the echo experiment. As to
the “too fast” fluctuators, their influence is reduced due to the
effect of motional narrowing. Since only the fluctuators with
b̄ ≪ γ produce Gaussian noise, the noise in this case is
essentially non-Gaussian. Only at times t ≪ b̄−1, which are
too short for these most important fluctuators to switch,
the decoherence is dominated by the faster fluctuator

contributions, and the Gaussian approximation turns out to
be valid. Instead when b̄ ≫ γM all fluctuators are strongly
coupled and the long-time echo decay is essentially non-
Gaussian (Galperin et al., 2007)

KðeÞðtÞ ¼
�
AγMt3=6; t ≪ b̄−1;
4ðA=b̄2ÞγMt; t ≫ b̄−1:

(66)

Thus, the long-time behavior of the echo signal depends
on the details of the noise model, the dependence on the
high-frequency behavior of the spectrum being the first
manifestation. Unfortunately, the measured signal is usually
very weak at long times, making it difficult to figure out the
characteristics of the noise sources in the specific setup.
Indeed, echo signal data measured on a flux qubit in the
experiment by Yoshihara et al. (2006) can be equally well fit
assuming either a Gaussian statistics of the noise or a non-
Gaussian model. The two models can in principle be dis-
tinguished analyzing the different dependence on the average
coupling b̄. Details of this analysis are given in Galperin et al.
(2007), where a fit with the SF model for different working
points indicates that Eq. (65) for the case b̄ ≪ γM gives an
overall better fit. A similar experiment on a flux qubit has been
reported in Kakuyanagi et al. (2007). Data for the echo decay
rate in that case have been interpreted assuming Gaussian
fluctuations of magnetic flux, and consistency with this model
has been observed by changing the qubit working point. In
general, echo procedures allow extraction of relevant infor-
mation about the noise spectrum, like the noise amplitude
(Yoshihara et al., 2006; Galperin et al., 2007; Kakuyanagi
et al., 2007; Zhou and Joynt, 2010), the noise sensitivity
defined by Eq. (89) (Yoshihara et al., 2006), or the average
change of the flux in the qubit loop due to a single fluctuator
flip (Galperin et al., 2007). Similar possibilities can be
provided by the real time qubit tomography (Sank
et al., 2012).
We now consider the role of the interaction strengths

distribution bi. Using the same model as for TLS in glasses
(see Sec. II.A) we consider each fluctuator as a TLS with
partial Hamiltonian

ĤðiÞ
F ¼ 1

2
ðUiτz þ ΛiτxÞ; (67)

where τi is the set of Pauli matrices describing the ith
TLS. The energy-level splitting for this fluctuator is
Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þ Λ2
i

p
. Fluctuators switch between their states

due to the interaction with the environment, which is modeled
as a thermal bath. It can represent a phonon bath as well as,
e.g., electron-hole pairs in the conducting part of the system.
Fluctuations of the environment affect the fluctuator through
the parameters Ui and Λi. Assuming that fluctuations of
the diagonal splitting U are most important, we describe
fluctuators as TLSs in glasses; see Sec. II.A.
For the following, it is convenient to characterize fluctua-

tors by the parameters Ei and θi ¼ arctanðΛi=UiÞ. The mutual
distribution of these parameters can be written as (Laikhtman,
1985)

PðE; θÞ ¼ P0= sin θ; 0 ≤ θ ≤ π=2; (68)

FIG. 30. Different averages over δp0j for 1=f spectrum
reproduce the effect of repeated measurements. They are
obtained by neglecting (dotted lines) or accounting for
(solid lines) the strongly correlated dynamics of 1=f noise. The
noise level of Nakamura et al. (2002) is used, by setting
jb̄j=ð2πÞ¼9.2×106Hz,nd¼105, γm=ð2πÞ¼1Hz, and γM=ð2πÞ¼
109Hz. Dashed lines are the oscillator approximation with a
lowercutoffatω ¼ minfjb̄j; 1=tmg.AdaptedfromPaladino,Faoro,
and Falci, 2003.
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which is equivalent to the distribution (27) of relaxation rates.
To normalize the distribution one has to cut it off at small
relaxation rates at a minimal value γmin or cut off the
distribution (68) at θmin ¼ γmin=γ0 ≪ 1. The distributions
given by Eqs. (27) and (68) lead to the ∝ 1=ω noise spectra
at γmin ≪ ω ≪ γ0.
The variation of the qubit’s energy-level spacing can be cast

in the Hamiltonian, which [after a rotation similar to that
leading to Eq. (25)] acquires the form

ĤqF ¼ ℏ
X
i

biσzτ
ðiÞ
z ; bi ¼ gðriÞAðniÞ cos θi: (69)

Here ni is the direction of the elastic or electric dipole moment
of the ith fluctuator, and ri is the distance between the qubit
and the ith fluctuator. Note that in Eq. (69) we neglected the
term ∝ σzτx. This can be justified as long as the fluctuator is
considered to be a classical system. The functions AðniÞ and
gðriÞ are not universal.
The coupling constants bi defined by Eq. (69) contain

cos θi. Therefore they are statistically correlated with θi. It is
convenient to introduce an uncorrelated random coupling
parameter ui as

ui ≡ gðriÞAðniÞ; bi ¼ ui cos θi: (70)

We also assume for simplicity that the direction ni of a
fluctuator is correlated neither with its distance from the qubit
ri nor to the tunneling parameter represented by the variable
θi. This assumption allows us to replace AðniÞ by its average
over the angles Ā ≡ hAðjnjÞin.
Now we are ready to analyze the decoherence using

Eq. (62). The question we address in this section is whether
a special group of fluctuators responsible for decoherence
does exist.
An interesting feature of the problem is that the result

strongly depends on the decay of the coupling parameter gðrÞ
with the distance r, which usually can be described by a power
law gðrÞ ¼ ḡ=rs. To illustrate this point, we compare two
cases: (i) the fluctuators are distributed in three-dimensional
space (d ¼ 3) and (ii) the fluctuators are located in the vicinity
of a two-dimensional manifold, e.g., in the vicinity of the
interface between an insulator and a metal (d ¼ 2). Using the
distribution (68) of the relaxation rates one can express
the distribution Pðu; θÞ as

Pðu;θÞ¼ ðη cos θÞd=s
uðd=sþ1Þ sin θ

; η≡ ḡ
rsT

; rT ≡ ad
ðP0kBTÞ1=d

: (71)

Here we assumed that only the fluctuators with E≲ kBT are
important for the decoherence since the fluctuators with E≳
kBT are frozen in their ground states. The typical distance
between such fluctuators is rT ≡ adðP0kBTÞ−1=d, where ad is
a d-dependent dimensionless constant. In the following, for
simplicity, we assume that

rmin ≪ rT ≪ rmax; (72)

where rmin (rmax) are the distances between the qubit and
the closest (most remote) fluctuator. In this case, η ∝ Ts=d

is the typical value of the qubit-to-fluctuator coupling
playing the role of the coupling parameter b. As soon as
the inequality (72) is violated the decoherence starts
to depend on either rmin or rmax, i.e., becomes sensitive to
particular mesoscopic details of the device.
We first consider the case when d ¼ s, as it is for charged

traps located near the gate electrode (where s ¼ d ¼ 2 due to
the dipole nature of the field produced by a charge and its
induced image, as shown in Fig. 31). In this case one can
rewrite Eq. (62) as

KfðtÞ ¼ η

Z
du
u2

Z
π=2

0

dθ tan θfðu cos θ; γ0sin2θjtÞ: (73)

Here fðv; γjtÞ is equal either to 1 − hmþðv; γjtÞi or to

1 − hmðeÞ
þ ðv; γjtÞi, depending on the manipulation protocol.

Equation (62) together with Eqs. (49) and (54) allows one to
analyze various limiting cases.
As an example, we consider the case of the two-pulse echo.

To estimate the integral in Eq. (73) we look at asymptotic
behaviors of the function f following from Eq. (54):

fðeÞ ∝

8<
:

t3γ0 sin θðu cos θÞ2; t ≪ ðγ0 sin θÞ−1;
t2ðu cos θÞ2; ðγ0 sin θÞ−1 ≪ t ≪ u−1;
tu cos θ; u−1 ≪ t:

(74)

Note that these dependences differ from those given by
Eqs. (65) and (66). Splitting the regions of integration over
u and θ according to the domains (74) of different asymptotic
behaviors, one obtains (Galperin, Altshuler, and Shantsev,
2004)

KðeÞð2τ12Þ ∼ ητ12 minfγ0τ12; 1g: (75)

The dephasing time (defined for nonexponential decay as the
time when K ∼ 1) for the two-pulse echo is thus given by

τφ ¼ maxfη−1; ðηγ0Þ−1=2g: (76)

The result for γ0τ12 ≪ 1 has a clear physical meaning [cf.
with Laikhtman (1985)]: the decoherence occurs provided at
least one of the fluctuators flips. Each flip provides a

FIG. 31 (color online). Sketch of localized charges near an
electrode in a Cooper pair box. Induced image charges create
local dipoles that interact with the qubit.
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contribution ∼ηt to the phase while γ0τ12 is a probability for a
flip during the observation time ∼τ12.
The result for long observation times γ0τ12 ≫ 1 is less

intuitive since in this domain the dephasing is non-Markovian;
see Laikhtman (1985) for more details. In this case the
decoherence is dominated by a set of optimal (most harmful)
fluctuators located at some distance roptðTÞ from the qubit.
This distance is determined by the condition

gðroptÞ ≈ γ0ðTÞ: (77)

Although derivation of this estimate is rather tedious
(Galperin, Altshuler, and Shantsev, 2004), it emerges naturally
from the behavior of the decoherence in the limiting cases of
strong (b ≫ γ) and weak (b ≪ γ) coupling. For strong
coupling, the fluctuators are slow and the qubit’s behavior
is determined by quantum beatings between the states with
E� b. Accordingly, the decoherence rate is ∼γ. In the
opposite case, as discussed, the decoherence rate is ∼b2=γ.
Matching these two limiting cases one arrives at the
estimate (77).
What happens if d ≠ s? If the coupling decays as r−s and

the fluctuators are distributed in a d-dimensional space,
then rd−1dr is transformed to du=u1þd=s. Therefore,
PðuÞ ∝ 1=u1þd=s. As a result, at d ≤ s the decoherence is
controlled by the optimal fluctuators located at the distance
ropt provided they exist. If d ≤ s, but the closest fluctuator has
bmax ≪ γ0, then it is the quantity bmax that determines the
decoherence. At d > s the decoherence at large time is
dominated by most remote fluctuators with r ¼ rmax. In the
last two cases, KðtÞ ∝ t2, and one can apply the results of
Paladino et al. (2002), substituting for b either bmin or bmax.
Since ropt depends on the temperature, one can expect

crossovers between different regimes as a function of temper-
ature. A similar mesoscopic behavior of the decoherence rates
was discussed for a microwave-irradiated Andreev interfer-
ometer (Lundin and Galperin, 2001). It is worth emphasizing
that the result (75) for the long-range interaction cannot be
reproduced by the Gaussian approximation. Indeed, if we
expand the Gaussian approximation e−hψ2i=2 with hψ2i given
by Eq. (55) in the same fashion as in Eq. (74) and then
substitute into Eq. (73), the resulting integral over u will be
divergent at its upper limit. Physically, this means the
dominant role of nearest neighbors of the qubit. At the same
time, the SF model implies that the most important fluctuators
are those satisfying Eq. (77).
The existence of selected groups of fluctuators, out of an

ensemble of many, which are responsible for decay of specific
quantities, is closely related to the self-averaging property of
the corresponding decay laws. Schriefl et al. (2006) analyzed
a class of distribution functions of the form (71) with
0 < d=s < 2. In this case the average over the coupling
constants of the Lorentzian functions (46) diverges at the
upper limit and the noise is dominated by the most strongly
coupled fluctuators. The free induction decay has been found
as non-self-averaging at both short and long times with respect
to γ−10 . Non-self-averaging of the echo signal for 2τ12 ≫ γ−10
has also been demonstrated (Schriefl et al., 2006).

e. Dephasing according to other phenomenological models

We remark that, beside the spin-fluctuator model, other
stochastic processes have been considered for the description
of fluctuations having 1=f spectral density. Here we mention
an alternative phenomenological model, which has been
discussed in connection with the problem of qubit dephasing.
The motivation to consider these models comes from the
observation of asymmetric telegraphic signals, with longer
stays in the “down” state than in the “up” state, reported in
tunnel junctions (Zimmerli et al., 1992), in metal oxide
semiconductor tunnel diodes (Buehler et al., 2004), and of
a spike field detected in a SET electrometer (Zorin et al.,
1996). In those cases the signal exhibits 1=f spectrum at low
frequencies. This suggests a description of the 1=f noise in
terms of a single asymmetric RT signal. (Schriefl et al. (2005a,
2005b) considered a phenomenological model for a 1=fμ

classical intermittent noise. The model can be viewed as the
intermittent limit of the sum of RT signals where the duration
of each plateau of the RT signal τav is assumed to be much
shorter than waiting times between the plateaus. In this limit,
the noise is approximated by a spike field consisting of delta
functions whose heights x follow a Gaussian distribution or,
more generally, a distribution with finite first and second
moments x̄ and s ≡ ðx̄2Þ1=2, respectively, as illustrated in
Fig. 32 (. The variance s plays the role of a coupling constant
between the qubit and the stochastic process. A 1=f spectrum
for the intermittent noise is recovered for a distribution of
waiting times τ behaving as τ−2 at large times. Because the
average waiting time is infinite, no time scale characterizes the
evolution of the noise which is nonstationary. In the pure
dephasing regime the relative phase between the qubit states
performs a continuous time random walk (CTRW) (Haus and
Kehr, 1987) as time goes on. Using renewal theory [see Feller
(1962)], Schriefl et al. (2005a, 2005b) found an exact
expression for the Laplace transform of the dephasing factor
allowing analytical estimates in various limiting regimes and

FIG. 32. (a) Low-frequency noise as a sum of the RT signals.
The switching rates for the “up” and “down” states are compa-
rable γþ ≈ γ− and 1=f noise results from a superposition of RT
signals distributed as ∝ 1=γ. (b) The intermittent limit corre-
sponds to the limit where the noise stays in the down states most
of the time (γþ ≫ γ−). The intermittent noise can be approxi-
mated by a spike field with independent random waiting times
and spike eighths. It gives a nonstationary 1=fμ spectrum
depending on the plateaus distribution function. Adapted from
Schriefl et al., 2005a.
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addressing the consequences of the CTRWs nonstationarity.
The noise is initialized at time t0 ¼ 0 and the coupling with
the qubit is turned on at the preparation time tp. The two
qubit states accumulate a random relative phase between tp
and tþ tp and nonstationarity manifests itself in the depend-
ence of the dephasing factor, on the age of the noise tp. This
analysis shows that two dephasing regimes exist separated by a
crossover coupling constant scðtpÞ¼½2ðτav=tpÞlnðtp=τavÞ�1=2,
strongly dependent on the preparation time tp. For s < scðtpÞ
dephasing is exponential and independent on tp, whereas when
s > scðtpÞ the dephasing time depends algebraically on tp.
Since scðtpÞ decays to zero with the noise age, any qubit
coupled to the nonstationary noise will eventually fall in the
regime s > scðtpÞ.
Note that Schriefl et al. (2005a, 2005b) defined the

dephasing factor as a configuration average over the noise,
rather than a time average in a given configuration. The two
averages do not coincide in general for nonstationary or aging
phenomena. Thus one should be careful in comparing these
results with experiments.

2. Decoherence due to the SF model at general working point

Here we discuss decoherence due to the spin-fluctuator
model at a general operating point where

Ĥtot ¼
ℏ
2
½Ωxσx þ ΩzðqÞσz� þ

ℏ
2
bχðtÞσz: (78)

As a difference with the pure-dephasing regime, no exact
analytic solution is available under these conditions. Different
approaches have been introduced to study the qubit dynamics
leading to analytical approximations in specific limits and/or
to (exact) numerical results.
A straightforward approach consists of solving the stochas-

tic Schrödinger equation. Using the theory of stochastic
differential equations (Brissaud and Frisch, 1974), a formal
solution in Laplace space can be found which is however
difficult to invert analytically. A numerical solution is instead
feasible and the method can be extended to investigate the
effect of an ensemble of fluctuators with proper distribution of
parameters to generate processes having a 1=f power spec-
trum (Falci et al., 2005). Cheng, Wang, and Joynt (2008)
proposed a generalized transfer-matrix method. It reduces to
the algebraic problem of the diagonalization of a 6 × 6 matrix
whose eigenvalues give the decoherence “rates” entering the
qubit dynamics. This approach also gives the system evolution
on time scales shorter than the fluctuator correlation time. The
transfer matrix method is suitable to address the dynamics
under instantaneous dc pulses like those required in the spin-
echo protocol. The method can in principle be extended to the
case of many fluctuators, although the size of the matrices
soon becomes intractable. Another approach consists in the
evaluation of the quantum dynamics of a composite system
composed of the qubit and one (or more) fluctuator(s), treated
as quantum mechanical two-level systems (Paladino et al.,
2002; Paladino, Faoro, D'Arrigo, and Falci, 2003). This
requires solving either the Heisenberg equations of motion
or a master equation in the enlarged Hilbert space. Impurities

are traced out at the end of the calculation, when the
high-temperature approximation for the fluctuator is also
performed (Paladino et al., 2002; Paladino, Faoro,
D'Arrigo, and Falci, 2003). Both methods lead to analytic
forms in a limited parameter regime and a numerical analysis
is required in the more general case. Other approximate
methods rely on the extension of the approach based
on the evaluation of the probability distribution pðφ; tÞ
which is evaluated numerically (Bergli, Galperin, and
Altshuler, 2006).
The main effects of a RT fluctuator coupled to a qubit via an

interaction term of the form (78) can be simply illustrated as
follows. The noise term −bχðtÞσz=2 induces two effective
splittings Ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩz � bÞ2 þ Ω2

x

p
and correspondingly two

values of the polar angle θ� ¼ arctan½Ωx=ðΩz � bÞ�, as
illustrated in Fig. 33.
In the adiabatic limit γ ∼ jΩþ − Ω−j ≪ Ω�, and neglecting

any qubit backaction on the fluctuator, the qubit coherence
takes a form similar to the pure dephasing result Eq. (49). Here
we report the average hσyðtÞi (Paladino, Faoro, D'Arrigo, and
Falci, 2003):

hσyðtÞi ¼ −Im
�
eiðΩþγg=2Þt

α

X
�
Að�αÞe−½ð1∓αÞ=2�γt

�
; (79)

where α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− g2 − 2 igδpeq − ð1− c4Þð1− δp2

eqÞ
q

;

c¼ cos½ðθ− − θþÞ=2�; g¼ ðΩþ −Ω−Þ=γ;
AðαÞ ¼ ðαþ c2 − ig0Þρð−Þþ−ð0Þp0 þ ðαþ c2 þ ig0ÞρðþÞ

þ−ð0Þp1;

with g0 ¼ gþ iδpeqð1 − c2Þ and ρð�Þ
þ−ð0Þ are values at t ¼ 0 of

the qubit coherences in the eigenbasis j�iθ� of the qubit
conditional Hamiltonians corresponding to χ ¼ �1. In the
high-temperature regime, δpeq ≈ 0, and α ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 − g2

p
. Thus

the relevant parameter separating the weak-coupling from the
strong-coupling regime is g=c2 ¼ ðΩþ − Ω−Þ=c2γ. A fluc-
tuator is weakly coupled if g=c2 ≪ 1 and strongly coupled
otherwise. This condition depends on the qubit’s operating
point, and at θ ¼ 0 we get g=c2 ¼ 2b=γ. Thus a fluctuator
characterized by a set ðb; γÞ affects in a qualitatively different
way the qubit dynamics depending on the qubit’s operating
point. In particular, a fluctuator turns from strongly to weakly
coupled increasing θ from 0 to π=2, as illustrated in Fig. 34.
From Eq. (79) it easy to see that a weakly coupled fluctuator
induces an exponential decay with T2 given by Eq. (16),
whereas a strongly coupled fluctuator induces a saturation
effect which is less effective at θ ¼ π=2 than at θ ¼ 0

θ+
ε ∆

∆

ΩΩ_
θ_
θ

ε εε

FIG. 33. Left panel: Qubit Bloch sphere. An isolated qubit
defines the mixing angle θ ¼ arctan fΔ=ϵg, H� define
θ� ¼ arctan fΔ=ðϵ� bÞg. Right panel: Qubit energy bands
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Δ2

p
: the energy splittings depend on the impurity state

Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ� bÞ2 þ Δ2

p
.
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(Paladino, Faoro, D'Arrigo, and Falci, 2003; Bergli, Galperin,
and Altshuler, 2006; Cheng, Wang, and Joynt, 2008; Zhou and
Joynt, 2010). The effect of strongly coupled fluctuators is
more sensitive to deviations from the optimal point θ ¼ π=2.
The dependence on the working point of the decoherence and
relaxation times for a weakly and a strongly coupled fluctuator
is shown in Fig. 35. The decay rates at θ ¼ π=2 have also been
obtained by Itakura and Tokura (2003) by solving the
stochastic differential equation.

a. Ensemble of fluctuators: Decoherence due to 1=f noise

All mentioned approaches become intractable analytically
as soon as the number of fluctuators increases. Already in the
presence of a few fluctuators a numerical solution is required.
This difficulty and the physical scenario behind the mecha-
nisms of dephasing due to 1=f noise at different operating
points can be traced back to the dependence of the qubit
splitting on the induced fluctuations [cf. with Eq. (36)], which
we write here for Ω�:

δΩ� ≈�Ωz

Ω
bþ 1

2

Ω2
x

Ω3
b2: (80)

Far from the optimal point, the leading term is linear in the
couplingb. This is the only effect left at pure dephasingΩx ¼ 0,
and it is also the reason why an exact formula is available under
this condition both in the case of a single fluctuator and in the
presence of an ensemble of fluctuators. In this last case the
phase-memory functional for any number of fluctuators is
found by simplymultiplying the phase-memory functionals for
different fluctuators. At the optimal point instead, Ωz ¼ 0, the
first order term is quadratic. Thus the effect of the fluctuator is
reduced with respect to the pure dephasing regime. The effects
of different fluctuators in this case do not simply add up
independently and no analytic solution is available. This simple
observation suggests an important physical insight into the
combined effect of various fluctuators at different working
points. When the first order effect on the splitting is quadratic,
even if the different fluctuators in themselves are independent,
their effect on the qubit will be influenced by the position of all
others. At pure dephasing, since effects sum up independently,
all slow fluctuators are ineffective at times γt ≪ 1. This is no
longer truewhen the leading term isquadratic, as theyplay a role
in determining the effect of faster fluctuators. In fact even if they
do not have time to switch during the experiment, they
contribute to the average effective operating point the qubit
is working as seen by the faster fluctuators. Thus very slow
fluctuators may be of great importance at the optimal point. For
example, Fig. 36 illustrates the point that even a single, strongly
coupled fluctuator, out of the many fluctuators forming the 1=f
spectrum, determines a dephasing more than twice the pre-
dictionof theweakcoupling theoryT�

2, evenwhen the fluctuator
is not visible in the spectrum. Further slowing down of the
fluctuator produces a saturation of dephasing, as expected
based on the above considerations. In this regime effects related
to the initial preparation of the fluctuator, or equivalently effects
of themeasurement protocol, arevisible as illustrated in Fig. 37.

FIG. 34. The threshold value γc=v ≡ ðΩþ − Ω−Þ=ð2bc2Þ
for a fluctuator behaving as weakly coupled depends on the
operating point (v=Ω ≡ 2b=Ω). Adapted from Paladino, Faoro,
and Falci, 2003.

(a) (b)

FIG. 35 (color online). Relaxation 1=T1 and dephasing 1=T2

rates (rescaled for visibility) as functions of θ. Triangles: 1=T�
2 ¼

cos2 θSð0Þ=2 for a (a) weakly and (b) strongly coupled fluctuator.
γ=Ω: (a) 0.5, (b) 0.1. b=Ω: (a) 0.1, (b) 0.3. The solid (dashed)
lines correspond to a symmetric (slightly asymmetric) fluctuator.
Adapted from Cheng, Wang, and Joynt, 2008.

FIG. 36. The Fourier transform of hσzðtÞi for a set of weakly
coupled fluctuators plus a single strongly coupled fluctuator
(thick line). The separate effect of the coupled fluctuator
(g ¼ 8.3, thin line) and the set of weakly coupled fluctuators
(dotted line) is shown for comparison. Inset: corresponding
power spectra. In all cases the noise level at Δ ¼ EJ is fixed
to the value SðEJÞ=EJ ¼ 3.18 × 10−4 [from typical 1=f noise
amplitude in charge qubits (Zorin et al., 1996; Covington et al.,
2000; Nakamura et al., 2002) extrapolated at GHz frequencies].
Adapted from Paladino et al., 2002.
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The presence of selected strongly coupled fluctuators in the
ensemble leading to the 1=f spectrum may give rise to striking
effects like beatings between the two frequencies Ω� (see
Fig. 40 and the discussion in Sec. III.B.1.b). Relevant effects of
1=f noise at a general working point, especially for protocols
requiring repeatedmeasurements, are captured by approximate
approaches based on the adiabatic approximation which we
discuss in Sec. III.B.

B. Approximate approaches for decoherence due to 1=f noise

In the context of quantum computation, the effects of
stochastic processes with long-time correlations, like those
characterized by a 1=f spectral density, depend on the
quantum operation performed and/or on the measurement
protocol. Here we present approximate approaches proposed
to predict dephasing due to 1=f noise and its interplay with
quantum noise. An approach based on the adiabatic approxi-
mation (Falci et al., 2005; Ithier et al., 2005) allows simple
explanations of peculiar nonexponential decay reported in
different experiments with various setups. In some protocols a
Gaussian approximation captures the main effects at least on a
short time scale (Makhlin and Shnirman, 2004; Rabenstein,
Sverdlov, and Averin, 2004; Falci et al., 2005). Some other
protocols, instead, reveal the non-Gaussian nature of the noise.
The adiabatic approximation suggests a route to identify
operating conditions where leading order effects of 1=f noise
are eliminated also for complex architectures.

1. Approaches based on the adiabatic approximation

Our staring point is the phenomenological Hamiltonian
equation (43), where we separated the effect of quantum noise
due to (high-frequency) modes exchanging energy with the
system and low-frequency fluctuations δqðtÞ of the bias
parameter q. Environments with long-time memory, i.e.,
correlated on a time scale much longer than the inverse of
the natural system frequencies, belong to the class of adiabatic
noise. Stochastic processes can be treated in the adiabatic
approximation provided their contribution to spontaneous
decay is negligible, a necessary condition being t ≪
T1 ∝ SðΩÞ−1. This condition is satisfied for 1=f noise at

short enough times, considering that SðωÞ ∝ 1=ω is substan-
tially different from zero only at frequencies ω ≪ Ω. For pure
dephasing θ ¼ 0, relaxation processes are forbidden and the
adiabatic approximation is exact for any SðωÞ. In the adiabatic
approximation the instantaneous Hamiltonian of a qubit,
manipulated only with dc pulses, reads

Ĥtot ¼
ℏΩðqÞ

2
ðcos θqσz þ sin θqσxÞ þ

ℏEðtÞ
2

σz

≡ ℏ
2
Ω½q; δqðtÞ�σ ~z; (81)

where EðtÞ ¼ 2δqðtÞ∂Ωz=∂q, and the instantaneous
splitting is

Ωðq; δqðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2ðqÞ þ E2ðtÞ þ 2EðtÞΩðqÞ cos θq

q
: (82)

The σ ~z axis forms a time-dependent angle ~θqðtÞ ¼
arctan ðΩ sin θq=½Ω cos θq þ EðtÞ�Þ, with σz. In the qubit
eigenbasis (E ≡ 0) the adiabatic Hamiltonian (81) reads

FIG. 38 (color online). Simulations of an adiabatic fluctuators
1=f environment at θ ¼ π=2. Relaxation studied via hσxi is well
approximated by the weak coupling theory T2(dots). Dephasing
in repeated measurement damps the oscillations (thin black line).
Part of the signal is recovered if the environment is recalibrated
(thin gray line). Noise is produced by nd ¼ 250 fluctuators per
decade, with 1=tm ¼ 105 rad=s ≤ γi ≤ γM ¼ 109 rad=s < Ω ¼
1010 rad=s. The coupling v̄ ¼ 0.02 Ω is appropriate to charge
devices and corresponds to S ¼ 16πAE2

C=ω with A ¼ 10−6
(Zorin et al., 1996). The adiabatic approximation, Eq. (91), fully
accounts for dephasing (dot-dashed line). The static-path
approximation (SPA), Eq. (95) (solid line) and the first correction
(dashed line) account for the initial suppression, and it is valid
also for times t ≫ 1=γM. Inset: Ramsey fringes with parameters
appropriate to the experiment (Vion et al., 2002) (thin black
lines). The SPA (solid line), Eq. (95), is in excellent agreement
with observations and also predicts the correct phase shift of the
Ramsey signal (dots, compared with simulations for small
detuning δ ¼ 5 MHz, line), which tends to ≈π=4 for large times.
Adapted from Falci et al., 2005.

FIG. 37. The Fourier transform hσziω for a set of weakly
coupled fluctuators plus a strongly coupled fluctuator
(2b=γ ¼ 61:25) prepared in the ground (dotted line) or in the
excited state (thick line). Inset: corresponding power spectra
(the thin line corresponds to the extra fluctuator alone). Adapted
from Paladino et al., 2002.
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Ĥ ¼ ℏΩðq; δqÞ
2

ð cos ½~θqðtÞ − θq�σz0 þ sin ½~θqðtÞ − θq�σx0 Þ:
(83)

The effect of an adiabatic stochastic field EðtÞ is to produce
fluctuations both of the qubit splitting Ω½q; δqðtÞ� and of the
qubit eigenstates, or equivalently of the “direction” of the
qubit Hamiltonian, expressed by the angle ~θqðtÞ. Since we are
interested in situations where jEðtÞj ≪ Ω, both Ω½q; δqðtÞ�
and ~θqðtÞ can be expanded in a Taylor series aboutΩðq; 0Þ and
θq, respectively,

Ωðq; δqÞ ≈ Ωðq; 0Þ þ ∂Ω
∂q ðδqÞ þ 1

2

∂2Ω
∂q2 ðδqÞ

2 þ � � � ; (84)

~θq ≈ θq þ
∂ ~θq
∂q ðδqÞ þ 1

2

∂2 ~θq
∂q2 ðδqÞ2 þ � � � ; (85)

where ðδqÞ ≡ δqðtÞ and all derivatives are evaluated at
δq ¼ 0. The adiabatic Hamiltonian (81) therefore can be cast
in the form

Ĥ ¼ ℏ
2
½Ωðq; 0Þσz0 þ δΩ∥ðtÞσz0 þ δΩ⊥ðtÞσ⊥�; (86)

where, from Eq. (83), δΩ∥ includes the derivatives of
Ω½q; δqðtÞ� cos ½~θqðtÞ − θq� and δΩ⊥ the derivatives of
Ω½q; δqðtÞ� sin ½~θqðtÞ − θq�. The Pauli matrix σ⊥ in the case
of Eq. (83) is σx0 ; in general it can be a combination of σx0
and σy0 .
The effect on the qubit dynamics of adiabatic transverse

fluctuations weakly depends on time; on the other hand,
longitudinal components are responsible for phase errors,
which accumulate in time. Thus adiabatic transverse noise has
possibly some effect at very short times, but the phase
damping channel eventually prevails. The relevance of these
effects quantitatively depends on the amplitude of the noise at
low frequencies. It was demonstrated by Falci et al. (2005)
(see Fig. 38) that, for the typical noise figures of super-
conducting devices and at least for short time scales relevant
for quantum computing, the leading effect of adiabatic noise is
defocusing originated by the fluctuating splitting during the
repetitions of the measurement runs. This effect is captured by
neglecting the transverse terms in Eq. (85), i.e., making the
longitudinal approximation of the Hamiltonian (81)

Ĥ ≈
ℏΩðq; 0Þ

2
σz0 þ

ℏδΩ∥ðtÞ
2

σz0 : (87)

In addition, consistent with ~θqðtÞ ≈ θq, the splitting fluctua-
tions are further approximated as (Falci et al., 2005; Ithier
et al., 2005)

δΩ∥ðtÞ ≈
∂Ω
∂q ðδqÞ þ 1

2

∂2Ω
∂q2 ðδqÞ

2 þ � � � : (88)

Considering the explicit dependence on δq of Ωðq; δqÞ, the
first terms of the expansion read [cf. with Eq. (36)],

Ωðq; δqðtÞÞ ≈ ΩðqÞ þ EðtÞ cos θq þ
1

2

½EðtÞ sin θq�2
ΩðqÞ : (89)

For longitudinal noise θq ¼ 0, we recover the exact linear
dependence on the noise of the instantaneous splitting. For
transverse noise instead θq ¼ π=2, the first nonvanishing term
of the expansion is quadratic. It is common to refer to this
regime as the “quadratic coupling” (Ithier et al., 2005), or the
“quadratic longitudinal coupling” condition (Makhlin and
Shnirman, 2004).
We remark that Eq. (86) also applies when both compo-

nents Ωx and Ωz fluctuate. For instance, this is the case of flux
qubits where both flux and critical current fluctuate with 1=f
spectrum and the physical fluctuating quantity δq is a function
of the magnetic flux or the critical current. The partial
derivatives can be expressed in terms of noise sensitivities
as follows:

∂Ω
∂q ¼ ∂Ω

∂Ωz

∂Ωz

∂q þ ∂Ω
∂Ωx

∂Ωx

∂q ¼ Ωz

Ω
∂Ωz

∂q þ Ωx

Ω
∂Ωx

∂q ; (90)

where the noise sensitivities ∂Ωz=∂q, ∂Ωx=∂q can be inferred
from spectroscopy measurements as in the experiment
(Bylander et al., 2011).
A formal expression for the qubit dynamics in the adiabatic

approximation, introduced by Falci et al. (2005), has been
discussed in detail and extended to more complex gates by
Paladino et al. (2009). Here we report the results in the
adiabatic and longitudinal approximations. In this regime
populations of the qubit density matrix in the eigenbasis do
not evolve, whereas the off-diagonal elements are obtained by
averaging over all realizations of the stochastic process EðtÞ
expressed by the path integral

ρmnðtÞ
ρmnð0Þ

¼
Z

D½EðsÞ�P½EðsÞ�e−i
R

t

0
dsΩmnðq;δqðsÞÞ: (91)

Here P½EðsÞ� contains information both on the stochastic
processes and on details of the specific protocol. It is
convenient to split it as follows:

P½EðsÞ� ¼ F½EðsÞ�p½EðsÞ�;

where p½EðsÞ� is the probability of the realization EðsÞ. The
filter function F½EðsÞ� describes the specific operation. For
most of the present day experiments on solid-state qubits
F½EðsÞ� ¼ 1. For open-loop feedback protocol, which allows
initial control of some collective variable of the environment,
say E0 ¼ 0, we should put F½EðsÞ� ∝ δðE0Þ. The different
decay of coherent oscillations in each protocol in the presence
of adiabatic noise originates from the specific filter function
which needs to be specified at this stage.
A critical issue is the identification of p½EðsÞ� for the

specific noise sources, as those displaying a 1=f power
spectrum. If we sample the stochastic process at times
tk ¼ kΔt, with Δt ¼ t=n, we can identify

p½EðsÞ� ¼ lim
n→∞

pnþ1ðEn; t;…;E1; t1;E0; 0Þ; (92)
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where pnþ1ð� � �Þ is a nþ 1 joint probability. In general, this is
a formidable task. However, a systematic method can be found
to select only the relevant statistical information on the
stochastic process out of the full characterization included
in p½EðsÞ� (Falci et al., 2005; Paladino et al., 2009).
The signal decay in FID is obtained by performing in

Eq. (91) the static path approximation (SPA), which consists
of neglecting the time dependence in the path EðsÞ ¼ E0 and
taking F½E� ¼ 1. In the SPA the problem reduces to ordinary
integrations with p1ðE0; 0Þ ≡ pðE0Þ. The qubit coherences
can be written as ρ01ðtÞ ¼ ρ01ð0Þ exp½−iΩt − iΦðtÞ� with the
average phase shift

ΦðtÞ ≈ i ln

�Z
dE0pðE0Þeit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2þE2

0
þ2ΩE0 cos θ

p �
: (93)

Clearly, Eq. (93) describes the effect of a distribution of stray
energy shifts ℏ½Ωðq; δqÞ − Ωðq; 0Þ� and corresponds to the
rigid lattice breadth contribution to inhomogeneous broad-
ening. In experiments with solid-state devices this approxi-
mation describes the measurement procedure consisting of
signal acquisition and averaging over a large number N of
repetitions of the protocol, for an overall time tm (minutes in
actual experiments). Due to slow fluctuations of the environ-
ment calibration, the initial value Ω cos θ þ E0 fluctuates
during the repetitions blurring the average signal, independ-
ently of the measurement being single shot or not.
The probability pðE0Þ describes the distribution of the

random variable obtained by sampling the stochastic process
EðtÞ at the initial time of each repetition, i.e., at times
tk ¼ ktm=N, k ¼ 0;…; N − 1. If E0 results from many inde-
pendent random variables of a multimode environment, the
central limit theorem applies and pðE0Þ is a Gaussian
distribution with standard deviation σ,

σ2 ¼ hE2i ¼ 2

Z
∞

0

dωSðωÞ;

where integration limits are intended as 1=tm, and the high-
frequency cutoff of the 1=f spectrum γM. In the SPA the
distribution standard deviation σ is the only adiabatic noise
characteristic parameter. If the equilibrium average of the
stochastic process vanishes, Eq. (93) reduces to

ΦðtÞ ≈ i ln

�Z
dE0ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−E2
0
=2σ2eit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2þE2

0
þ2ΩE0 cos θ

p �
: (94)

Expanding the square root in Eq. (94) we obtain (Falci et al.,
2005)

ΦðtÞ ¼ − i
2

�
Ωðcos θσtÞ2
Ωþ isin2θσ2t

þ ln
Ωþ isin2θσ2t

Ω

�
: (95)

The short-time decay of coherent oscillations qualitatively
depends on the working point. In fact, the suppression of the
signal exp½ImΦðtÞ� turns from an exponential behavior ∝
e−ðcos θσtÞ2=2 at θ ≈ 0 to a power law ½1þ ðsin θ2σ2t=ΩÞ2�−1=4
at θ ≈ π=2. In these limits Eq. (95) reproduces the results for
Gaussian 1=f environments in the so-called “quasistatic case”

reported by Ithier et al. (2005). In particular, at θ ¼ 0 we
obtain the short-time limit t ≪ 1=γM of the exact result of
Palma, Suominen, and Ekert (1996), Eq. (11). In fact, for very
short times we can approximate sin2ðωt=2Þ=ðωt=2Þ2 ≈ 1
inside the integral Eq. (11), obtaining the exponential quad-
ratic decay law at pure dephasing predicted by the Gaussian
approximation. At θ ¼ π=2 the short and intermediate times
result of Makhlin and Shnirman (2004) for a Gaussian noise
and quadratic coupling is reproduced.
The fact that results of a diagrammatic approach with a

quantum environment, as those of Makhlin and Shnirman
(2004), can be reproduced and generalized already at the
simple SPA level makes the semiclassical approach quite
promising. It shows that, at least for not too long times (but
surely longer than times of interest for quantum state process-
ing), the quantum nature of the environment may not be
relevant for the class of problems, which can be treated in the
Born-Oppenheimer approximation. Notice also that the SPA
itself has surely a wide validity since it does not require
information about the dynamics of the noise sources, provided
they are slow. For Gaussian wide-band 1=f noise and for
times γm ≪ 1=t < γM, the contribution of frequencies ω ≪
1=t can be approximated by Eq. (95), where the noise variance
is evaluated integrating the power spectrum from γm to 1=t,
that is, σ2 ¼ A ln ð1=γmtÞ (Cottet et al., 2001; Nakamura
et al., 2002; Ithier et al., 2005). The diagrammatic approach of
Makhlin and Shnirman (2004) for Gaussian noise and
quadratic coupling also predicts a crossover from algebraic
behavior to exponential decay at long times At ≫ 1 with rate
A=2. This behavior is, however, hardly detectable in experi-
ments, where the long-time behavior is ruled by quantum
noise (see the discussion in Sec. III.B.1.b).
Equation (91) can be systematically approximated by

proper sampling Eðt0Þ in ½0; t�. In this way the dynamics
of the noise sources during the runs can also be systema-
tically included. For the first correction, p½Eðt0Þ� can be
approximated by the joint distribution p½Ett;E0; 0�, where
Et ≡ EðtÞ. At θ ¼ π=2 for generic Gaussian noise we
find

ΦðtÞ ¼ − i
2

ln

��
Ωþ iσ2t½1 − ΠðtÞ�

Ω

��
3Ωþ iσ2tΠðtÞ

3Ω

��
;

where ΠðtÞ ≡ R
∞
0 ðdω=σ2ÞSðωÞð1 − e−iωtÞ is a transition

probability, depending on the stochastic process. For
Ornstein-Uhlenbeck processes it reduces to the result of
Rabenstein, Sverdlov, and Averin (2004). The first correction
suggests that the SPA, in principle valid for t < 1=γM, may
have a broader validity (see Fig. 38). For 1=f noise due to a set
of bistable impurities it is valid also for t ≫ 1=γM, if γM ≲ Ω.
Of course, the adiabatic approximation is tenable
if t < T1 ¼ 2=SðΩÞ.
As pointed out for the SF model, the signal decay during

echo protocols is very sensitive to the dynamics of the noise
sources within each pulse sequence. The SPA cannot capture
these effects and would yield no decay for the echoes. On the
other hand, predictions critically depend on the specific
sampling of the stochastic process Eðt0Þ, making it difficult
to obtain reliable estimates. The decay of the echo signal is
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often approximated assuming Gaussian quasistatic (t < 1=γM)
noise (Ithier et al., 2005).
Several experiments confirmed that the effect of 1=f

noise in repeated measurement protocols can be described
by the above simple theory (Cottet et al., 2001; Martinis et al.,
2003; Van Harlingen et al., 2004; Ithier et al., 2005; Chiarello
et al., 2012; Sank et al., 2012; Yan et al., 2012). Of course,
the dominant 1=f noise sources are device and material
dependent and the decay of the measured signal depends
on the measurement procedure. An accurate estimate
and comparison with Gaussian theory of defocusing has been
done by Ithier et al. (2005) for the quantronium. Clear
evidence of an algebraic decay at the optimal point due to
quadratic 1=f charge noise was reported (see Fig. 39), in
agreement with the prediction of Falci et al. (2005)
(see Fig. 38).
Van Harlingen et al. (2004) numerically computed the

effects of 1=f noise in the critical current in various
superconducting qubits incorporating Josephson junctions,
showing that the envelope of the coherent oscillations

scales as exp ½−t2=ð2τ2ϕÞ�, in qualitative agreement with the
adiabatic and longitudinal approximations. Interestingly, the
extrapolated decay time τϕ depends both on the elapsed time
of the experiment and on the sequence in which the mea-
surements are taken. Two averaging methods were employed:
a time-delay averaging (method A) which averages only high-
frequency fluctuations at each time-delay point, and a time-
sweep averaging (method B) which averages both high- and
low-frequency components. Method A gives longer dephasing
times than method B, since the number of decades of 1=f
noise that affect the qubit dynamics in method A is smaller
than the number of decades sampled in method B. For a large
number of repetitions, τϕ for method B approaches the
prediction of Martinis et al. (2003) of the effect of critical
current 1=f noise on a phase qubit in the Gaussian approxi-
mation, i.e., Eq. (11) with integration limits 0 and Ω. The
dephasing time τϕ is found to scale as I0 ≡ ΩΛS1=2I0

ð1 HzÞ,
where SI0ð1 HzÞ is the spectral density of the critical-current
noise at 1 Hz, and Λ ¼ I0dΩ=ΩdI0 is computed for given
parameters for each type of qubit that specifies the sensitivity
of the level splitting to critical-current fluctuations (Van
Harlingen et al., 2004).
Of course, any setup also suffers from noise sources active

at frequencies around GHz, which cannot be treated in the
adiabatic approximation. In Sec. III.B.1.b we discuss a
convenient procedure to deal with the interplay of noise
sources responsible for spectral fluctuations in different
frequency ranges.

a. 1=f noise during ac-driven evolution: Decay of Rabi oscillations

The manipulation of superconducting qubits is often
achieved by varying the control parameters in a resonant
way at a microwave angular frequency close to the qubit
transition frequency Ω. Rabi oscillations are routinely mea-
sured in different laboratories (Nakamura, Pashkin, and Tsai,
2001; Martinis et al., 2002; Vion et al., 2002; Yu et al., 2002;
Chiorescu et al., 2003). The decohering effect of 1=f noise
during driven evolution is actually weaker than in the undriven
case. The intuitive reason is that the ac field averages the
effects of noise (Ithier et al., 2005). This is explained treating
the ac-driven noisy system in the adiabatic and longitudinal
approximations (Falci et al., 2012).
A qubit acted by an external ac field can be modeled by

the Hamiltonian (43) where the control is operated via
ĤcðtÞ ¼ ℏB cosðωtÞQ̂. The device is nominally biased at q
and its low-frequency fluctuations δqðtÞ can be treated in the
SPA. The problem is solved in the rotatingwave approximation
which keeps only control entries “effective” in triggering
transitions between different states. This effective part of the
controlalsodependsonthe randomvariableδq.Thepopulations
in the rotating frameare readily found, e.g., thepopulationof the
first excited state is P1ðtjδqÞ ¼ ðΩR=2ΩflÞ½1 − cosðΩfltÞ�,
where the flopping frequency for Rabi oscillations is
Ωflðq; δqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ðq; δqÞ þ Ω2

Rðq; δqÞ
p

. Here ΩRðq; δqÞ ¼
BQ10ðq; δqÞ is the peak Rabi frequency, Q10 being the matrix
element of Q̂ in the instantaneous eigenbasis of Ĥ0ðqþ δqÞ
and the detuning is ηðq; δqÞ ¼ Ωðq; δqÞ − ω. Averages are
evaluated by expanding Ωfl to second order as in Eq. (84),

FIG. 39. Ramsey signals at the optimal point for ωR0=2π ¼
106 MHz and Δν ¼ 50 MHz, as a function of the delay Δt
between the two π=2 pulses. Top and middle panels: Solid lines
are two successive records showing the partial reproducibility of
the experiment. Dashed lines are a fit of the envelope of the
oscillations in the middle panel leading to T2 ¼ 300 ns. The
dotted line shows for comparison an exponential decay with
the same T2. Bottom panels: Zoom windows of the middle panel.
The dots represent the experimental points, whereas the solid line
is a fit of the whole oscillation with Δω=2π ¼ 50:8 MHz. The
arrows point out a few sudden jumps of the phase and amplitude
of the oscillation, attributed to strongly coupled charged TLFs.
Adapted from Ithier et al., 2005.
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Ωflðq; δqÞ ≈ Ωflðq; 0Þ þ Ω0
flðδqÞ þ

1

2
Ω00

flðδqÞ2 þ � � � ; (96)

where Ω0
fl ¼ ∂Ωfl=∂q, Ω00

fl ¼ ∂2Ωfl=∂q2. Assuming a
Gaussian distribution of δq with variance σq one obtains

he−iΩflðδqÞti ¼ e−iΩflð0Þte−iΦðtÞ;

e−iΦðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iΩ00

flσ
2
qt

q exp

�
− ðΩ0

flσqtÞ2
2ð1þ iΩ00

flσ
2
qtÞ
�
: (97)

Equation (97) describes different regimes for the decay of

Rabi oscillations, namely, a Gaussian time decay je−iΦðtÞj ∼
e−ðΩ

0
flσqtÞ2=2 when the linear term in the expansion dominates,

and power-law behavior∼1=σqðΩ00
fltÞ1=2whenΩ0

fl → 0. In this
regime Eq. (97) describes the initial suppression of the signal.
The coefficients of the expansion depend on several parameters
such as the amplitude of the control fields and the nominal
detuning η0 ¼ Ωðq; 0Þ − ω. Further information, such as the
dependence on q of the energy spectrum and matrix elements
QijðqÞ, comes from the characterization of the device. The
variancecanberelated to the integratedpowerspectrum,andcan
be extracted from FID or Ramsey experiments (Ithier et al.,
2005;Chiarello et al., 2012).A similar power lawdecay ofRabi
oscillations has been observed for an electron spin in a QD, due
to the interaction with a static nuclear-spin bath in Koppens
et al. (2007).
Notice that even if Eq. (97) describes the same regimes of

the SPA in the undriven case, Eq. (95), here the situation is
different. In particular, Eq. (97) quantitatively accounts for the
fact that ac driving greatly reduces decoherence compared to
undriven systems. In particular, at resonance η0 ¼ 0, non-
vanishing linear fluctuations of the spectrum ∂Ω=∂q ≠ 0
determine quadratic fluctuations of Ωflðq; δqÞ (neglecting
fluctuations of Qij). Thus Ω0

fl ¼ 0 and Rabi oscillations
undergo power-law decay, whereas in the absence of drive
they determine the much stronger Gaussian decay
∼e−ð∂Ω=∂qÞ2σ2t2=2 of coherent oscillations. In this regime
measurements of Rabi oscillations (Bylander et al., 2011)
have been used to probe the environment of a flux qubit. At
symmetry points ∂Ω=∂q ¼ 0, coherent oscillations decay
with a power law, whereas Rabi oscillations are almost
unaffected by low-frequency noise. For nonvanishing detun-
ing decay laws are equal being system driven or not.
This picture applies to many physical situations, since

fluctuations of Qij are usually small, corresponding to a
fraction of ΩR ≠ 0, whereas ηðq; δqÞ fluctuates on the scale of
the Bohr splitting Ω ≫ ΩR and may be particularly relevant
for η0 ¼ 0. The dependence QijðqÞ may have significant
consequences in multilevel systems.
Recently, the influence of external driving on the noise

spectra of bistable fluctuators was investigated by Constantin,
Yu, and Martinis (2009). They proposed an idea that external
driving may saturate the fluctuators thus decreasing their
contribution to the dephasing. A calculation based on the
Bloch-Redfield formalism showed that the saturation of some
fluctuators does not lead to a significant decrease in
decoherence. Brox, Bergli, and Galperin (2011) took into
account the effect of driving on the dynamics of the

fluctuators. The main result of this analysis is the prediction
that additional low-frequency driving may shift the noise
spectrum toward high frequencies. Since the dephasing is
influenced mostly by the low-frequency tail of the noise
spectrum, this shift decreases decoherence. However, the
predicted effect is not very strong.

b. Broadband noise: Multistage approach

In the last part of this section, we warn the reader that when
comparing the above predictions with experiments one has to
keep in mind that in nanodevices noise is typically broadband
and structured. In other words, the noise spectrum extends to
several decades, it is nonmonotonic, and sometimes a few
resonances are present. We mentioned that typical 1=f noise
measurements extend from a few Hz to ∼100 Hz (Zorin et al.,
1996). The intrinsic high-frequency cutoff of 1=f noise is
hardly detectable. Recently, charge noise up to 10 MHz has
been detected in a SET (Kafanov et al., 2008). Flux and
critical current noises with 1=f spectrum consistent with that
in the 0.01–100 Hz range were measured at considerably
higher frequencies (0.2–20 MHz) (Bylander et al., 2011; Yan
et al., 2012). Incoherent energy exchanges between the system
and environment, leading to relaxation and decoherence,
occur at typical operating frequencies (about 10 GHz).
Indirect measurements of noise spectrum in this frequency
range often suggest a white or Ohmic behavior (Astafiev et al.,
2004; Ithier et al., 2005). In addition, narrow resonances at
selected frequencies (sometimes resonant with the nanode-
vice-relevant energy scales) have been observed (Cooper
et al., 2004; Simmonds et al., 2004; Eroms et al., 2006).
The various noise sources responsible for the above

phenomenology have a qualitative different influence on
the system evolution. This naturally leads to a classification
of the noise sources according to the effects produced rather
than to their specific nature. Environments with long-time
memory belong to the class of adiabatic noise for which the
Born-Oppenheimer approximation is applicable. This part of
the noise spectrum can be classified as “adiabatic noise”: 1=f
noise falls in this noise class. High-frequency noise is
essentially responsible for spontaneous decay and can be
classified as “quantum noise.” Finally, resonances in the
spectrum unveil the presence of discrete noise sources which
severely affect the system performances, in particular, reli-
ability of devices. This is the case when classical impurities
are slow enough to induce a visible bistable instability in the
system intrinsic frequency. This part of the noise spectrum can
be classified as “strongly coupled noise.” Each noise class
requires a specific approximation scheme, which is not
appropriate for other classes. The overall effect results from
the interplay of the three classes of noise. In order to deal with
broadband and structured noise we resort to a multiscale
theory which can be sketched as follows (Falci et al., 2005;
Taylor and Lukin, 2006; Paladino et al., 2009).
Suppose we are interested in a reduced description of a n-

qubit system, expressed by the reduced density matrix ρnðtÞ. It
is formally obtained by tracing out environmental degrees of
freedom from the total density matrix WQ;A;SCðtÞ, which
depends on quantum (Q), adiabatic (A), and strongly coupled
(SC) variables. The elimination procedure can be conveniently
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performed by separating in the interaction Hamiltonian, which
we write analogously to Eq. (43), as

P
iσ

ðiÞ
z ⊗ Êi, various

noise classes, e.g., by writing

σðiÞz ⊗ Êi ¼ σðiÞz ⊗ ÊQ
i þ σðiÞz ⊗ ÊA

i þ σðiÞz ⊗ ÊSC
i : (98)

Adiabatic noise is typically correlated on a time scale much
longer than the inverse of the natural frequencies Ωi, and then
application of the Born-Oppenheimer approximation is equiv-
alent to replace ÊA

i with a classical stochastic field E
A
i ðtÞ. This

approach is valid when the contribution of adiabatic noise to
spontaneous decay is negligible, a necessary condition being
t ≪ TA

1 ∝ SAðΩÞ−1. This condition is usually satisfied at short
enough times since SAðωÞ ∝ 1=ω.
This fact suggests a route to trace out different noise classes

in the appropriate order. The total density matrix para-
metrically depends on the specific realization of the slow
random drives E⃗ðtÞ ≡ fEA

i ðtÞg and may be written as
WQ;A;SCðtÞ ¼ WQ;SC½tjE⃗ðtÞ�. The first step is to trace out
quantum noise. In the simplest cases this requires solving a
master equation. In the second stage, the average over all
realizations of the stochastic processes E⃗ðtÞ is performed. This
leads to a reduced density matrix for the n-qubit system plus
the strongly coupled degrees of freedom. These have to be
traced out in a final stage by solving the Heisenberg equations
of motion, or by approaches suitable to the specific micro-
scopic Hamiltonian or interaction. In particular, this is the case
discussed in the initial part of this section, of the spin-
fluctuator model at pure dephasing. The ordered multistage
elimination procedure can be written as

ρnðtÞ ¼ TrSC

�Z
D½E⃗ðtÞ�P½E⃗ðtÞ�TrQ½WQ;SCðtjE⃗ðtÞÞ�

�
:

The multistage approach allows one to make predictions in
realistic situations when the outcome of a measurement results
from the effects of various noise classes. For instance, we can
address the interplay of 1=f noise with RT noise produced by
one fluctuator which is more strongly coupled with the qubit,
having γ0 ≪ 1=t ≪ Ω, but b0 ≤ Ω. Even if the fluctuator is
not resonant with the qubit, it strongly affects the output
signal. If g0 > 1, it determines beats in the coherent

oscillations and split peaks in spectroscopy, which are
signatures of a discrete environment. Because of the mecha-
nism discussed in Sec. III.A.2.a, the additional fluctuator
makes the working point of the qubit bistable and amplifies
defocusing due to 1=f noise. Even if the device is initially
optimally polarized, during tm the fluctuator may switch it to a
different working point. The line shape of the signal shows
two peaks, split by and differently broadened by the 1=f noise
in the background. The corresponding time evolution shows
damped beats, this phenomenology being entirely due to the
non-Gaussian nature of the environment. Figure 40 shows
results of a simulation at the optimal point, where 1=f noise is
adiabatic and weaker than the typical noise level in charge
qubits; this picture applies to smaller devices. The fact that
even a single impurity on a 1=f background causes a
substantial suppression of the signal poses the problem of
reliability of charge based devices. We remark that the
reported beatings do not arise from a resonant coupling
between the qubit and the fluctuator. This situation is
addressed later in this section.
Finally, we mention that a commonly used simplified

version of the multistage approach consists of simply facto-
rizing the effects of different noise classes, in particular, of
adiabatic and quantum noise. For some measurement proto-
cols, when the responsible noise classes act on sufficiently
different time scales and the spectra are regular around the
relevant frequency ranges, this approximation leads to a
reasonable prediction of the signal decay (Martinis et al.,
2003; Ithier et al., 2005).

2. 1=f noise in complex architectures

Realizing the promise of quantum computation requires
implementing a universal set of quantum gates, as they
provide the building blocks for encoding complex algorithms
and operations. To this end, scalable qubit coupling and
control schemes capable of realizing gate errors small enough
to achieve fault tolerance are required. Fluctuations with 1=f
spectrum represent a limiting factor also for the controlled
generation of entangled states (two-qubit gates) and for the
reliable preservation of two- (multi)qubit quantum correla-
tions (entanglement memory). In addition to fluctuations
experienced by each single qubit, solid-state coupled qubits,
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FIG. 40 (color online). (a) hσyi at θ ¼ π=2, Ω=ð2πÞ ¼ 1010 Hz. The effect of weak adiabatic 1=f noise (light gray line)
(γ ∈ 2π × ½105; 109� Hz, uniform 2b ¼ 0.002 Ω, nd ¼ 250) is strongly enhanced by adding a single slow (γ=Ω ¼ 0.005) more
strongly coupled (2b0=Ω ¼ 0.2) fluctuator (black line), which alone would give rise to beats (dark gray line). (b) When the bistable
fluctuator is present the Fourier transform of the signal may show a split-peak structure. Even if peaks are symmetric for the single
bistable fluctuator alone (dashed line), 1=f noise broadens them in a different way (solid line). Adapted from Falci et al., 2005.
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being usually built on chip, may suffer from correlated noise
sources acing simultaneously on both subunits. Already in
1996, measurements on SET circuits revealed 1=f behavior of
voltage power spectra on two transistors and the cross-
spectrum power density (Zorin et al., 1996).6 In Josephson
charge qubits, fluctuators in the insulating substrate can
influence several qubits fabricated on the same chip, whereas
fluctuating traps concentrated inside the oxide layer of the
tunnel junctions are expected to act independently on the
two qubits, due to screening by the junction electrodes.
Background charge fluctuations could also lead to significant
gate errors and/or decoherence in semiconductor-based
electron spin qubits through interqubit exchange coupling
(Hu and Das Sarma, 2006).
Recent investigations aimed at identifying operating con-

ditions or control schemes allowing protection from 1=f
fluctuations in complex architectures. On the one hand,
passive protection strategies, such as “optimal tuning” of
nanodevices extending the single-qubit optimal point concept
(Paladino et al., 2010, 2011; D’Arrigo and Paladino, 2012)
and the identification of symmetry protected subspaces
(Storcz et al., 2005; Brox, Bergli, and Galperin, 2012), have
been proposed. Alternatively, or in combination with passive
protection, resonant rf pulses (Rigetti, Blais, and Devoret,
2005) and pulse sequences eventually incorporating spin
echoes (Kerman and Oliver, 2008) have been considered
as well.
In this section we focus on the first strategies; dynamical

decoupling approaches are presented in Sec. III.D. In addition,
we review the recent theoretical studies on the impact of 1=f
noise correlations on the entanglement dynamics of coupled
qubits. We refer to the strictly related experimental works,
which also provided important indications on the microscopic
origin of the observed noise. Rather extensive literature on
decoherence of coupled qubits in the presence of correlated
quantum noise will be omitted, as well as a variety of relevant
experimental works demonstrating the feasibility of universal
quantum gates and simple quantum algorithms based on
superconductor and semiconductor technologies. It is worth
mentioning that coupling schemes for superconductor-based
qubits have been reviewed by Clarke and Wilhelm (2008);
since the first demonstration of quantum oscillations in
superconducting charge qubits (Pashkin et al., 2003), several
benchmarking results have been reached in different labo-
ratories (Di Carlo et al., 2010; Neeley et al., 2010; Palacios-
Laloy et al., 2010; Fedorov et al., 2011; Mariantoni et al.,
2011; Lucero et al., 2012; Reed et al., 2012).
The core element of an entangling two-qubit gate can be

modeled as

Ĥ ¼
X
α¼1;2

Ĥα
tot½qαðtÞ� þ Ĥcoupling½fqαðtÞg�; (99)

where for each qubit Ĥα
tot is given by Eq. (41), and we indicate

that the interaction term Ĥcoupling may also depend on the

control parameters fqαg. Following the same steps as leading
to Eq. (42) and considering only classical bias fluctuations one
can cast Eq. (99) as Ĥ þ δĤ, where

Ĥ ¼ ℏ
2

X
α

~ΩαðqαÞ · ~σα þ ℏ
X
ij

νijðfqαgÞσ1i σ2j ; (100)

δĤ ¼ ℏ
X
i

X
α¼1;2

Eα
i ðtÞσαi þ ℏ

X
i;j

Ei;jðtÞσ1i σ2j ; (101)

i, j ∈ fx; y; zg. The stochastic processes Eα
i ðtÞ include

fluctuations affecting each unit and cross-talk effects due to
the coupling element: Eα

i ðtÞ ¼ cαiδqα þ dαiδqβ with cαi ∝∂Ωα=∂qα and dαi ∝ νijðfqαgÞ (β ≠ α). Fluctuations of the
interaction energy ℏνijðfqαgÞ are included in Ei;jðtÞ ¼
ð∂νij=∂q1Þδq1 þ ð∂νij=∂q2Þδq2. Charge fluctuations affect-
ing the exchange splitting of two electrons in a gate-defined
double dot (Hu and Das Sarma, 2006) or background charge-
induced fluctuations of the coupling capacitance of charge
qubits (Storcz et al., 2005) can be modeled by a term of this
form. The stochastic processes δqα can originate from the
same source, from different sources, or a combination. In the
case of charge qubits, for instance, random arrangements of
background charges in the substrate produce correlated gate-
charge fluctuations to an extent depending on their precise
location (see Fig. 41), whereas impurities within tunnel
junction α are expected to induce only gate charge fluctuations
δqα (Zorin et al., 1996). These correlations are quantified by
the intrinsic correlation factor μ, which for stationary and zero
average processes with the same variance follows from
hδqαðtÞδqβðtÞi ¼ ½δαβ þ μð1 − δαβÞ�σ̄2. The overall degree
of correlation between the processes E1

i ðtÞ and E2
i ðtÞ results

both from intrinsic correlations and from cross-talk effects. It
is expressed by the correlation coefficient μc defined, for two
generic stochastic processes XαðtÞ, as

(a)

(b)

FIG. 41. (a) Two qubitsQ1 andQ2 coupled to a fluctuator in the
substrate between the two qubits, where the charge can tunnel
between two sites. (b) The qubits are coupled to a charged impurity
through its image charge on themetallic gate; the charge can tunnel
between thegate and the impurity.The coupling strengths aregiven
by ξ1 and ξ2. The configuration demonstrated in (a) gives origin to
anticorrelated noise, while (b) gives origin to correlated noise.
Adapted from Brox, Bergli, and Galperin, 2012.

6The cross spectrum of two stochastic processes X1ðtÞ and X2ðtÞ is
definedasSX1X2

ðωÞ ¼ ð1=πÞ R∞0 dtCX1X2
ðtÞ cos ωt,whereCX1X2

ðtÞ ¼
hX1ðtÞX2ð0Þi − X̄1X̄2 and X̄α ¼ hXαðtÞi.
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μc ¼
h½X1ðtÞ − X̄1�½X2ðtÞ − X̄2�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½X1ðtÞ − X̄1�2ih½X2ðtÞ − X̄2�2i

p ; (102)

where h� � �i denotes the ensemble average and X̄α ≡ hXαðtÞi.
The adiabatic approximation scheme introduced in

Sec. III.B.1 can easily be extended to complex architectures
to investigate the short-time behavior relevant for quantum
computing purposes. In this approximation the effect of
stochastic processes with 1=f spectrum and/or cross spectra
on universal two-qubit gates has been studied by D’Arrigo
et al. (2008), Paladino et al. (2009, 2010), Brox, Bergli, and
Galperin (2012), and D’Arrigo and Paladino (2012) and
entanglement memory element by Bellomo et al. (2010). In
this case adiabatic noise does not induce the phenomenon of
entanglement sudden death, but it may reduce the amount of
entanglement initially stored faster than quantum noise for
noise figures typical for charge-phase qubits. An extension of
the multistage approach to complex architectures was reported
by Paladino et al. (2011), where the characteristic time scales
of entanglement decay in the presence of broadband noise
have been derived. Analogously to single-qubit gates, low-
frequency noise induces fluctuations of the device eigenergies
resulting in a defocused averaged signal. One way to reduce
inhomogeneous broadening effects is to optimally tune multi-
qubit systems. Paladino et al. (2010) proposed a general route
to reduce inhomogeneities due to 1=f noise by exploiting
tunability of nanodevices. The basic idea is very simple: in the
adiabatic and longitudinal approximations the system evolu-
tion is related to instantaneous eigenfrequencies ωl½EðtÞ�,
which depend on the noise realization EðtÞ. For Ĥ given by
Eq. (100), EðtÞ ≡ fEα

i ðtÞ; EijðtÞg. The leading effect of low-
frequency fluctuations in repeated measurements is given
within the SPA. The frequencies ωlmðEÞ are random variables,

with standard deviation Σlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδω2

lmi − hδωlmi2
q

, where

δωlm ¼ ωlmðEÞ − ωlm. Optimal tuning consists of fixing
control parameters to values which minimize the variance
Σ2
lm of the frequencies ωlmðEÞ. This naturally results in an

enhancement of the decay time of the corresponding coher-
ence due to inhomogeneous broadening. The short-time decay
of the coherence in the SPA is given by

jhe−iδωlmðEÞtij ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΣlmtÞ2

q
; (103)

resulting in reduced defocusing for minimal variance Σlm. For
a single-qubit gate, the optimal tuning recipe reduces to
operating at the optimal point: if ωlmðEÞ is monotonic, then
Σ2
lm ≈

P
α½∂ωlm=∂qα�2σ2qα , and the variance attains a mini-

mum for vanishing differential dispersion. When bands are
nonmonotonic in the control parameters, minimization of
defocusing necessarily requires their tuning to values depend-
ing on the noise variances. For a multiqubit gate, the optimal
choice may be specific to the relevant coherence for the
considered operation. By operating at an optimal coupling,
considerable improvement of the efficiency of a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i − SWAP

p
gate realized via a capacitive coupling of two quantronia has
been proved, even in the presence of moderate amplitude
charge noise (Paladino et al., 2010, 2011). Optimization

against 1=f flux and critical current noise of an entangling
two-transmon gate has also been demonstrated (D’Arrigo, and
Paladino, 2012). Other passive protection strategies are based
on the use of a “coupler” element mediating a controllable
interaction between qubits. In Kerman and Oliver (2008) a
qubit mediates the controllable interaction between data
qubits. By Monte Carlo simulation, the feasibility of a set
of universal gate operations with Oð10−5Þ error probabilities
in the presence of experimentally measured levels of 1=f flux
noise has been demonstrated.
The effect of correlated or partially correlated low-

frequency noise acting on two qubit gates was studied by
Storcz et al. (2005), Hu et al. (2007), D’Arrigo et al. (2008),
Faoro and Hekking (2010), and Brox, Bergli, and Galperin
(2012). Due to the complexity of the Hilbert space of coupled
qubits, efforts primarily resulted in numerical surveying of
various situations. The natural question to ask is whether
correlations between noise sources increase or suppress
dephasing of the coupled systems compared to uncorrelated
noise. The answer depends on the symmetry of the system-
environment interaction, i.e., the existence of decoherence-
free subspaces (DFSs), possibly also one dimensional, and the
initial system state. Brox, Bergli, and Galperin (2012),
introducing a generalized Bloch-sphere method combined
with the SPA, derived analytical expressions for the dephasing
rates of the two-qubit system as a function of the degree of
correlation μc. For resonant qubits with a σ1zσ2z coupling in the
presence of transverse noise, two one-dimensional DFSs are
found j00i − j11i, which does not decay in the presence of
correlated noise, but which is sensitive to anticorrelations (see
Fig. 41), and j00i þ j11i showing the opposite behavior. In
the absence of perfect symmetry (for instance, if qubits are not
resonant), the above symmetric states are not eigenstates of the
Hamiltonian and as a consequence are also less sensitive to
noise correlations. In other words, it is both the symmetry of
the initial state and how much this state overlaps with an
eigenstate of the Hamiltonian in the absence of noise that
determines the decoherence rate. This analysis suggests that,
for each setup, the most convenient subspace for two-qubit
encoding should be based on preliminary investigation of the
nature of noise correlations. For instance, in the absence of
correlations, the SWAP subspace generated by ðj01i �
j10iÞ= ffiffiffi

2
p

is more resilient to transverse low-frequency fluc-
tuations with respect to the orthogonal subspace, this fact
being ultimately due to the dependence of the corresponding
eigenvalues on the deviations δqα as illustrated in Fig. 42.
Note that the SWAP subspace is expected to be also more
stable for the single qubit. An analogous conclusion was
reached by De et al. (2011) for a pair of qubits coupled via the
exchange interaction. Hu et al. (2007) and D’Arrigo et al.
(2008) considered a phenomenological model for 1=f corre-
lated noise affecting a two-qubit gate in a fixed coupling
scheme. The effect of noise correlations on the entanglement
generation in the SWAP subspace sensitively depends on the
ratio σ=νzz between the amplitude of the low-frequency noise
and the qubits coupling strength (D’Arrigo et al., 2008). For
small amplitude noise, correlations increase dephasing
zat the relevant short times scales (smaller than the dephasing
time). On the other hand, under strong amplitude noise, an
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increasing degree of correlations between noise sources acting
on the two qubits always leads to reduced dephasing. The
reason for this behavior originates from the nonmonotonic
dependence of the SWAP splitting variance on the correlation
coefficient μc. A numerical analysis has shown that the above
features hold true for adiabatic 1=f noise extending up to
frequencies 109 s−1, which are about 2 orders of magnitude
smaller that the qubit Bohr frequencies. At longer times,
the entanglement decay time (defined as the time where the
signal is reduced by a factor e−1) weakly increases with μc
(Hu et al., 2007).
Recent experiments on flux qubits quantified 1=f flux noise

and flux-noise correlations providing relevant indications on
its microscopic origin. Yoshihara, Nakamura, and Tsai (2010)
studied flux-noise correlations in a system of coupled qubits
sharing parts of their loops, whereas Gustavsson et al. (2011)
used a single, two-loop qubit to investigate flux-noise corre-
lations between different parts within a single qubit. In both
experiments the qubit dephasing rate was measured at differ-
ent bias points. Comparison of the data with the rate prediction
in the Gaussian approximation, based on the assumption of
1=f-type behavior of both spectra and cross spectrum,
provided indications of the noise amplitudes and the sign
of noise correlations. In the first experiment it was found that
flux fluctuations originating from the shared branch lead to
correlations in the noise of the two qubits. Gustavsson et al.
(2011) found flux fluctuations in the two loops to be
anticorrelated. Both experiments provided a strong indication
that the dominant contribution to the noise comes from local
fluctuations, in agreement with Martinis et al. (2002),
Bialczak et al. (2007), Koch, DiVincenzo, and Clarke
(2007), and Faoro and Ioffe (2008). In particular, in the setup
of Gustavsson et al. (2011) a global fluctuating magnetic field
would have given positive correlations, which were not
observed. Results of both experiments are found to be
consistent with a model, where flux noise is generated by
local magnetic dipoles (randomly oriented unpaired spins)
distributed on the metal surfaces. A similar conclusion on the
local origin of flux noise was drawn by Lanting et al. (2010)

from measurements of macroscopic resonant tunneling (MRT)
between the lowest energy states of a pair of magnetically
coupled rf-SQUID flux qubits. In this experiment, the MRT
rate peak widths indicate that each qubit is coupled to a local
environment whose fluctuations are uncorrelated with those of
the other qubit. Indications of magnetic flux noise of local
origin in two phase qubits separated by 500 μm on the same
chip were recently reported by Sank et al. (2012).
Sendelbach et al. (2009) measured the cross spectrum of

inductance and flux fluctuations in a dc SQUID. In this
experiment, the imaginary part of the SQUID inductance and
the quasistatic flux threading the SQUID loop were monitored
simultaneously as a function of time. From the two time series,
the normalized cross spectral density was computed. The
inductance and flux fluctuations were found to be highly
correlated at low temperature, indicating a common under-
lying physical mechanism. The high degree of correlation
provided evidence for a small number of dominant fluctuators.
The data were interpreted in terms of the reconfiguration of
clusters of surface spins, with correlated fluctuations of
effective magnetic moments and relaxation times. The
observed specific correlation between low-frequency flux
noise and inductance fluctuation suggests that the flux noise
is related to the nonequilibrium dynamics of the spin system,
possibly described by spin glass models (Chen and Yu, 2010)
or fractal spin clusters, which appear naturally in a random
system of spins with wide distribution of spin-spin inter-
actions (Kechedzhi, Faoro, and Ioffe, 2011).

C. Quantum coherent impurities

The model of two-level tunneling systems formulated by
Anderson, Halperin, and Varma (1972) and Phillips (1972),
illustrated in Sec. II, has been extensively tested experimen-
tally by ensemble measurements performed on samples
having a large TLS density, such as structural glasses.
Results reported in this section demonstrated that ensembles
of TLSs, sparsely present in the disordered oxide barrier of
Josephson junctions or in the insulating substrates, induce
fluctuations with a 1=f spectrum which are a major source of
decoherence in superconducting nanocircuits. However, the
effects unambiguously proving quantum mechanical behavior
of an individual fluctuator interacting with a qubit were not
observed. Only recently highly sensitive superconduct-
ing circuits could be used as “microscopes” for probing
spectral, spatial, and coupling properties of selected TLSs.
Understanding the origin of these spurious TLSs, their
coherent quantum behavior, and their connection to 1=f noise
is important for any low-temperature application of Josephson
junctions and it is a challenge, which is crucial to the future of
superconducting quantum devices.
The first observations indicative of a considerable interac-

tion of a superconducting circuit with a strongly anharmonic
quantum system were reported on a large-area Josephson
junction (≈ 10 μm2) phase qubit at NIST Boulder
Laboratories (Cooper et al., 2004; Simmonds et al., 2004).
Microwave spectroscopy revealed the presence of small unin-
tended avoided crossings in the transition spectrum suggestive
of the interaction between the device and individual coherent
TLSs resonantly coupledwith the qubit. In these experiments, a
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FIG. 42 (color online). Dispersion in the SWAP subspace δω21

(thin continuous and dashed lines) and the orthogonal subspace
δω30 (thick gray) as a function of transverse fluctuations on
qubit 1 x1 ≡ δq1 (x2 ≡ δq2 ¼ 0) for resonant qubits with
νzz=Ω ¼ 0.01. The exact splitting (thin continuous) is compared
with a second-order expansion (dotted) and the single qubit
dispersion (circles). Adapted from Paladino et al., 2010.
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small number of spurious resonators with a distribution of
splitting size, the largest being ∼25 MHz and an approximate
density of one major TLS per ∼60 MHz, were observed.
Magnitude and frequency of the TLS considerably changed
after thermal cycling to room temperature, whereas cycling to
4 K produced no apparent effect. Moreover, different qubits in
the same experimental setup displayed their own unique
“fingerprint” of TLS frequencies and splitting strengths.
Qubit Rabi oscillations driven resonantly with a TLS showed
considerably reduced visibility with respect to off-resonant
driving. It has been observed that similar spectroscopic
observations may also result from macroscopic resonant
tunneling in the extremely asymmetric double-well potential
of phase qubits (Johnson et al., 2005). The TLS and
MRT mechanisms could be distinguished measuring the
low-frequency voltage noise in a Josephson junction in the
dissipative (running phase) regime (Martin, Bulaevskii, and
Shnirman, 2005).
Since these first experiments, similar avoided crossings in

spectroscopy have been observed in different superconducting
circuits. In phase qubits they were reported by Martinis et al.
(2005), Neeley et al. (2008), Hoskinson et al. (2009), Bushev
et al. (2010), Lisenfeld et al. (2010a, 2010b), Palomaki et al.
(2010), and Shalibo et al. (2010); in flux qubits by Plourde
et al. (2005), Deppe et al. (2008), and Lupaşcu et al. (2009); in
a Cooper-pair box (ultrasmall Josephson junction with
nominal area 120 × 120 nm2) by Kim et al. (2008); in the
quantronium by Ithier et al. (2005), and in the transmon by
Schreier et al. (2008).
The close analogies among these observations, despite the

differences in the qubit setups, junction size, and materials,
confirm that microscopic degrees of freedom located in the
tunnel barrier of Josephson junctions, usually made of a 2- to
3-nm-thick layer of disordered oxide (usually AlOx, x ≈ 1),
are at least one common cause of these effects. These
microscopic degrees of freedom are strongly anharmonic
systems and observations are fully consistent with coherent
TLS behavior. Further confirmation comes from multiphoton
spectroscopy in phase (Bushev et al., 2010; Lisenfeld et al.,
2010b; Palomaki et al., 2010; Sun et al., 2010) and flux
qubits (Lupaşcu et al., 2009), where the hybridized states of
the combined qubit-TLS systems have been probed under
strong microwave driving. For instance, an additional
spectroscopic line in the middle of the qubit-TLS anticross-
ing corresponding to a two-photon transition between the
ground state and the two excitations state of the qubit-TLS
system has been observed by Lupaşcu et al. (2009), Bushev
et al. (2010), and Sun et al. (2010). Moreover, in some of
these experiments, spontaneous changes of the resonator’s
frequency were observed. The instability was observed
during many hours while the device was cold (Simmonds
et al., 2004), whereas Lupaşcu et al. (2009) observed the
instability in some samples during a few tens of minutes data
acquisition time. Other samples were instead stable over the
few months duration of the experiment. The instability
supports the idea that the coupled TLSs are of microscopic
origin. The qualitative trend is that small-area qubits show
fewer splittings than do large-area qubits, although larger
splittings are observed in the smaller junctions (Martinis
et al., 2005).

Time-resolved experiments on phase qubits demonstrated
that an individual TLS can be manipulated using the qubit as
a tool to both fully control and read out its state. The
trajectory (i.e., time record) of the switching current of a
phase qubit revealed “quantum jumps” between macro-
scopic quantum states of the qubit coupled to a TLS in
the Josephson tunnel junction, thus providing a way to
detect the TLS state (Yu et al., 2008). Through the effective,
qubit mediated, coupling between the TLS and an externally
applied resonant electromagnetic field “direct” control of
the quantum state of individual TLSs was demonstrated by
Lisenfeld et al. (2010a). In this experiment the qubit always
remained detuned during TLS operations, merely acting as a
detector to measure its resulting state. A characterization of
the TLS coherence properties was possible via detection of
TLS Rabi oscillations, relaxation dynamics, Ramsey
fringes, and spin echo. Measurements at different temper-
atures showed stable TLS resonance frequencies and qubit’s
coupling strengths. The energy relaxation time is found to
decrease quadratically with temperature, whereas the TLSs
dephasing times had a different behavior, only one of the
measured TLSs being close to 2T1. Shalibo et al. (2010)
measured relaxation and dephasing times of a large ensem-
ble of TLSs in a small-area (∼1 μm2) phase qubit (82
different TLSs obtained from 8 different cooling cycles
of the same sample). Decay times ranged almost 3 orders of
magnitude, from 12 to more than 6000 ns, whereas coher-
ence times varied between 30 and 150 ns. The average T1

followed a power-law dependence on the qubit-TLS cou-
pling strength, whereas the average dephasing time was
maximal for intermediate coupling. They suggested that
both time scales naturally result from TLSs dipole phonon
radiation and anticorrelated dependence of the TLS tunnel-
ing amplitude and bias energy on low-frequency environ-
mental fluctuations. Nonmonotonous dependences of the
qubit’s decay time on the qubit-TLS coupling and temper-
ature were also predicted by Paladino et al. (2008) for a
qubit longitudinally coupled to a coherent TLS. In general,
different experiments showed that some TLSs exhibit
coherence times much longer than those of the super-
conducting qubits (Neeley et al., 2008; Lisenfeld et al.,
2010a; Palomaki et al., 2010).7 This remarkable fact,
together with the ability to directly control selected TLSs,
shed new light on these microscopic systems. Indeed, it was
proposed that TLSs in the barrier of a Josephson junction
can themselves act as naturally formed qubits (Zagoskin
et al., 2006; Tian and Jacobs, 2009). Neeley et al. (2008)
demonstrated the first quantum memory operation on a TLS
in a phase qubit. An arbitrary quantum state was transferred
to a TLS, stored there for some time and then retrieved. Sun
et al. (2010) demonstrated creation and coherent manipu-
lation of quantum states of a tripartite system formed by a
phase qubit coupled to two TLSs. In this experiment, the
avoided crossing due to the qubit-TLS interaction acted as a
tunable quantum beam splitter of wave functions, which was

7TLSs’ decay times following from Ramsey fringes are of the
order of a few hundred nanoseconds, and maximal relaxation times
are about 1 μs.
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used to precisely control the quantum states of the system
and demonstrate a Landau-Zener-Stückelberg interference.
Although TLSs were suitable for these initial proof-of-
principle demonstrations, their use in a quantum computer
still seems unlikely because of their intrinsically random
nature and limited coherence times. A relevant step further
in this direction was done recently by Grabovskij et al.
(2012) who reported an experiment in which the energy of
coherent TLSs coupled resonantly to a phase qubit is tuned.
When varying a static strain field in situ and performing
microwave spectroscopy of the junction, they observed
continuously changing energies of individual coherent
TLSs. Moreover, results obtained over 41 individual TLS
between 11 and 13.5 GHz are explained readily by the
tunneling model and, therefore, provide firm evidence of the
hypothesis that atomic TLSs are the cause of avoided level
crossings in the spectra of Josephson junction qubits.
Mechanical strain offers a handle to control the properties
of coherent TLSs, which is crucial for gaining knowledge
about their physical nature.
Alternative theoretical models of TLSs were proposed

to explain the avoided level crossings observed in qubit
spectroscopy data in phase and flux qubits. It was suggested
that the state of the TLS modulates the transparency of the
junction and therefore its critical current Ic (Simmonds
et al., 2004; Ku and Yu, 2005; Faoro and Ioffe, 2006;
Constantin and Yu, 2007). In this case two-level defects
could be formed by Andreev bound states (Faoro et al.,
2005; de Sousa et al., 2009) or Kondo impurities (Faoro and
Ioffe, 2007; Faoro, Kitaev, and Ioffe, 2008). Alternatively
the TLS may couple to the electric field inside the junction,
which is consistent with the TLS carrying a dipole moment
located in the aluminum oxide tunnel barriers (Martin,
Bulaevskii, and Shnirman, 2005; Martinis et al., 2005).
Recently Agarwal et al. (2013) analyzed the interaction with
phonons of individual electrons tunneling between two local
minima of the potential well structure due to the electron
Coulomb interaction with the nearest atoms in the insulator.
They concluded that the resulting strong polaronic effects
dramatically change the TLS properties providing quantita-
tive understanding of the TLS relaxation and dephasing
observed in Josephson junctions. In particular, the strain
effects observed by Grabovskij et al. (2012) are quantita-
tively interpreted.
Finally, a TLS may modulate the magnetic flux threading

the superconducting loop (Sendelbach et al., 2008; Bluhm
et al., 2009). Cole et al. (2010) performed a direct comparison
between these models and high precision spectroscopy data on
a phase qubit. Experimental data indicate a small or non-
existent longitudinal qubit-TLS coupling relative to the trans-
verse term. In phase and flux qubits fluctuations of the critical
current or magnetic flux generate both transverse and longi-
tudinal components, whereas the coupling to the electric field
within the junction is purely transverse. Although longitudinal
coupling cannot be ruled out, no evident signatures of this
coupling were observed in most of the experiments which
have been consistently explained considering purely trans-
verse dipolar interaction (Lupaşcu et al., 2009; Bushev et al.,
2010; Lisenfeld et al., 2010b). Other multilevel spectroscopy
experiments did not uniquely pin down the coupling

mechanism as well. Similar features observed in phase qubits
and the flux qubit experiment (Lupaşcu et al., 2009) suggested
that strongly coupled TLS have the same origin in flux and
phase qubits, even though the degrees of freedom manipulated
are different. A charge coupling model is also supported by
spectroscopic observations in a Cooper-pair box (Kim et al.,
2008). A distribution of avoided splitting sizes consistent with
the qubit coupling to charged ions tunneling between random
locations in the tunnel junction oxide and not directly
interacting with each other was reported by Palomaki et al.
(2010). Tian and Simmonds (2007) proposed a possible
way to resolve the underlying coupling mechanism of
TLSs to phase qubits through the use of a magnetic field
applied along the plane of the tunnel barrier inside the
junction. More generally, one or two noninteracting
qubits can be conveniently used as a probe of a coherent
environment (Paladino et al., 2008; Oxtoby et al., 2009; Jeske
et al., 2012).
The controllable interaction between a qubit and a micro-

scopic coherent TLS also led to a number of interesting
features in the qubit time evolution. One aspect is the reduced
visibility of qubit Rabi oscillations driven resonantly with a
TLS first observed by Simmonds et al. (2004). This problem
was investigated using different approaches and under various
driving conditions and TLS decoherence mechanisms by
Galperin et al. (2005), Ku and Yu (2005), Meier and Loss
(2005), Ashhab, Johansson, and Nori (2006), and Sun et al.
(2010). The main conclusion of Meier and Loss (2005) was
that fluctuators are the dominant source of visibility reduction
at Rabi frequencies small compared to the qubit-TLS coupling
strength, while leakage out of the qubit computational sub-
space becomes increasingly important for large Rabi frequen-
cies of experiments with phase qubits. Galperin et al. (2005)
investigated the quantum dynamics of the four-level system
subject to an arbitrarily strong driving ac field, including both
phase and energy relaxation of the TLS in a phenomenological
way. It was demonstrated that if the fluctuator is close to
resonance with the qubit, the Rabi oscillations of the qubit are
suppressed at short times and demonstrate beatings when
damping is weak enough. In addition, it was pointed out that if
the readout signal depends on the state of the fluctuator, the
visibility of the Rabi oscillations can be substantially reduced,
a possible scenario in Simmonds et al. (2004). Depending on
the relative strength of the resonant ac driving and the qubit-
TLS coupling, additional features in the qubit dynamics have
been predicted as anomalous Rabi oscillations and two-photon
processes involving transitions between the four-level states of
the coupled qubit TLS (Ashhab, Johansson, and Nori, 2006;
Sun et al., 2010). Some of these effects were observed in the
experiments mentioned.
The role of coherent TLSs on qubit relaxation processes

was investigated by Mueller, Shnirman, and Makhlin (2009).
There a qubit is considered as interacting with coherent TLSs
each subject to relaxation and pure dephasing processes (in the
underdamped regime) and in resonance or close to resonance
with the qubit. Depending on the distribution of the TLSs
energies (uniform or with strong local fluctuations), the qubit
T1 can either be a regular function of the qubit splitting or
display an irregular behavior. They suggested that this
mechanism can explain the smooth T1-versus-energy curve
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in large-area junction phase qubits (Cooper et al., 2004;
Simmonds et al., 2004; Neeley et al., 2008) and the seemingly
random dependence reported in smaller-area phase qubits and
flux or charge qubits (Astafiev et al., 2004; Ithier et al., 2005).
It is also speculated that the large splittings observed in
spectroscopy of the same phase qubits may result from many
weakly coupled spectrally dense TLSs.
A characterization of the effects of bistable coherent

impurities in superconducting qubits was proposed by
Paladino et al. (2008). Introducing an effective impurity
description in terms of a tunable spin-boson environment,
the qubit dynamics has been investigated for a longitudinal
qubit-TLS interaction. The asymptotic time limit is ruled by a
dominant rate which depends nonmonotonically on the qubit-
TLS coupling strength and reflects the TLS dissipative
processes and temperature. At intermediate times relevant
for quantum computing, different rates and frequencies enter
the qubit dynamics displaying clear signatures of non-
Gaussian behavior of the quantum impurity.
Finally, the possibility of highlighting the coherent inter-

action between a superconducting circuit and a microscopic
quantum TLS, in principle, allows one to investigate the
important question of the applicability domain of the classical
RTN model. Wold et al. (2012) investigated the decoherence
of a qubit coupled to either a TLS again coupled to an
environment or a classical fluctuator modeled by RTN. A
model for the quantum TLS is introduced where the temper-
ature of its environment and the decoherence rate can be
adjusted independently. The model has a well-defined
classical limit at any temperature and this corresponds to
the appropriate asymmetric RT process. The difference in the
qubit decoherence rates predicted by the two models is found
to depend on the ratio between the qubit-TLS coupling and the
decoherence rate in the pointer basis of the TLS. This is then
the relevant parameter which determines whether the TLS has
to be treated quantum mechanically or can be replaced by a
classical RT process. This result also validates the application
of the RT process model for the study of decoherence in qubits
when the coupling between the qubit and the fluctuator is
strong as long as the fluctuator couples even more strongly to
its own environment.

D. Dynamical decoupling and 1=f noise spectroscopy

1. Noise protection and dynamical decoupling

In the last few years several strategies for coherence
protection have been developed, both for quantum informa-
tion processing and in the broader perspective of quantum
control. An optimal bias point discussed earlier is a passive
stabilization (or error avoiding) code very successful in solid-
state nanodevices. Dynamical decoupling (DD) relying on
repeated application of pulsed or switched control is an active
stabilization (i.e., error correcting) scheme developed in the
field of high-resolution NMR (Becker, 2000). DD has been
proposed as a method to extend decoherence times in solid-
state quantum hardware and has been recently applied to
decouple spin baths in semiconductor-based qubits (Barthel
et al., 2010; de Lange et al., 2010; Ryan, Hodges, and Cory,
2010; Bluhm et al., 2011) and 1=f noise in superconducting
nanocircuits (Bylander et al., 2011; Gustavsson et al., 2012).
Coherent averaging of unwanted couplings is at the heart of

DD. The principle is illustrated by the spin echo which is
operated by a single π pulse inducing a spin-flip transition.
Shining a pulse Xπ (evolution operator U ¼ σx) at half of the
evolution time t, say ft=2; Xπ; t=2g, dynamically suppresses
terms ∝ σy; σz in the qubit Hamiltonian. In NMR samples
unwanted terms H1 ∝ δBσz are due to static randomly
distributed local fields. The Bloch vector dynamics for the
ensemble of spins is defocused resulting in inhomogeneous
broadening. The Hahn echo fXπ=2; t=2; Xπ; t=2; Xπ=2g is
routinely used to achieve efficient refocusing (Becker,
2000). Echoes also switch off “dynamically” two-qubit
J couplings of the nuclear spin Hamiltonian in liquid NMR
quantum computers (Vandersypen and Chuang, 2005).

2. Pulsed control

Coupling to a stochastic field EðtÞ induces diffusion in the
free spin precession and decoherence, which mitigates Hahn
echoes. Carr and Purcell (1954) (CP) recognized that sequen-
ces of π pulses may suppress spin diffusion since they
coherently average out EðtÞ (see Fig. 43). Composite pulses
are also used in NMR to stabilize a given quantum gate against
errors in the control (Becker, 2000; Vandersypen and Chuang,

FIG. 43 (color online). Timing of the Carr-Purcell-Meilboom-Gill (CPMG), CP, and Uhrig DD (UDD) pulse sequences for N ¼ 10.
Adapted from Bylander et al., 2011.
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2005). NMR pulse sequences beyond Hahn echo have been
employed in a superconducting qubit to demonstrate both gate
stabilization (Collin et al., 2004) and dynamical reduction of
decoherence due to 1=f noise (Ithier et al., 2005).
From echo to DD: DD may selectively remove a noisy

environment with a finite correlation time τc. Control is
operated via a time-dependent ĤcðtÞ describing a sequence
of π pulses. We consider hard Xπ pulses, whose duration is
very short tp → 0, at times tj (j ¼ 1;…; N). The time-
evolution operator reads

UNðt; 0Þ ¼ σxUðt; tN−1Þσx � � �Uðt2; t1ÞσxUðt1; 0Þ; (104)

where Uðt; t0Þ describes the noisy free evolutions between
pulses. Notice that pulses in σxUðtn−1; tnÞσx reverse the sign
of operators σy;z appearing in U. Therefore such “orthogonal”
components flip in sequential steps of the protocol. It is
convenient to use the language of average Hamiltonian theory
(Vandersypen and Chuang, 2005) and introduce the effective
Hamiltonian HNðtÞ, defined as eiHNðtÞt=ℏ≔UNðt; 0Þ. Then a
periodic train of pulses tjþ1 − tj ¼ Δt ¼ t=N, implementing a
sequence named periodic DD (PDD), with elementary block
fΔt; Xπ;Δt; Xπg, tends to average out orthogonal spin com-
ponents (provided N is even) (Viola, Knill, and Lloyd, 1999).
This emerges from the perturbative (Magnus) expansion
(Vandersypen and Chuang, 2005) of HN , which washes these
terms out in the limit of continuous flipping Δt → 0. In the
simple case of a qubit coupled to pure dephasing classical
noise H ¼ ðℏ=2Þ½Ωþ EðtÞ�σz þ ĤcðtÞ, calculations can be
carried out exactly (Biercuk, Doherty, and Uys, 2011).
Coherences decay as

ρ01ðtÞ ¼ ρ01ð0Þhe−iΦNðtÞi ¼ ρ01ð0Þe−ΓNðtÞ−iΣNðtÞ; (105)

where the phase ΦNðtÞ ¼
R
t
0 dsyNðsÞEðsÞ is obtained by

sampling a realization of noise with the piecewise constant
yNðtÞ whose discontinuities reflect the effect of pulses at ti.
The decay function ΓNðtÞ obtained by noise averaging
depends on the pulse sequence. For Gaussian noise with
power spectrum SðωÞ the averaging yields

ΓNðtÞ ¼
Z

dω
ω2

SðωÞFNðωtÞ; (106)

where the filter function FNðωtÞ ¼ jyNðωtÞj2 has been defined
as (Uhrig, 2007)

FNðωtÞ ¼
����1þ ð−1ÞNþ1eiωt þ 2

XN
j¼1

ð−1Þjeiωtj
����2:

In the absence of pulses the function F0ðωÞ ¼ 4 sin2ðωt=2Þ
reproduces the decay in a FID protocol, whereas in the
presence of pulses it yields diffraction patterns induced by
interference in the time domain (Ajoy, Álvarez, and Suter,
2011) and, in particular, to coherent suppression of FN at low
frequencies. As a consequence, ΓNðtÞ decreases and the signal
decay due to decoherence is effectively recovered.
Viola and Lloyd (1998) applied such techniques to selec-

tively decouple a pure dephasing quantum environment,

obtained by letting 1
2
σzEðtÞ → 1

2
σzÊþ ĤR, where ĤR

describes the environment alone. The structure of Eq. (105)
is still valid, ΓNðtÞ depending only on the dynamics ruled
by ĤR. In particular, Viola and Lloyd (1998) studied an
environment of linearly coupled quantum oscillators
Ê ¼Pαgαða†α þ aαÞ. They found that Eq. (106) holds true,
SðωÞ being related to the symmetrized correlation function
of Ê, uniquely expressed via the spectral density
JðωÞ ¼Pαg

2
αδðω − ωαÞ, namely,

SðωÞ ¼ 1

2
hÊðtÞÊð0Þ þ Êð0ÞÊðtÞiω ¼ coth

�
ℏω
2kBT

�
JðωÞ:

The ultraviolet (UV) cutoff ωc of JðωÞ, sets the time scale of
fastest response of the environment. As for classical noise,
decoherence is washed out completely for Δt → 0 and greatly
suppressed for ωcΔt ∼ 1.
In general, open loop schemes with a finite set of pulsed

fields allow one to perform fault-tolerant control (Viola, Knill,
and Lloyd, 1999), i.e., to design the dynamics of a quantum
system to attain a given objective. The simplest goal is the
effective decoupling of the environment. With respect to other
active stabilization strategies, as quantum error correction or
closed loop (quantum feedback) schemes, DD has the advan-
tage that only unitary control of a small and well characterized
system is needed and it does not require additional measure-
ment resources. Relying on coherent averaging, DD can
suppress errors regardless of their amplitude. In the last
few years optimization of pulse sequences (Biercuk,
Doherty, and Uys, 2011) has been an active subject of
investigation allowing substantial improvement when dealing
with real open quantum systems.
Optimized sequences and robust DD: Performances of

sequences strongly depend on their details such as the parity
of the number of pulses or their symmetrization. For
instance, in odd-N PDD the noise during the final Δt
remains uncompensated. Proper symmetrization of the
sequences, such as CP sequence (see Fig. 43), may lead
to higher order cancellations in HNðtÞ. Meiboom and Gill
(1958) proposed a refinement (CPMG sequence), which is
usually very efficient against spin diffusion (Becker, 2000),
since it also averages errors due to control field inhomo-
geneities. Indeed, if pulses are implemented by resonant ac
fields, the component producing spin-flip fluctuates in
amplitude due to the same noise responsible for the spin
diffusion. For a given initial state of the Bloch vector, CP
accumulates errors in Xπ at second order, while in CPMG Yπ

errors appear at fourth order (Borneman, Huerlimann, and
Cory, 2010).
Recently Uhrig (2007) found that nonequidistant pulses

improve performances in a pure-dephasing spin-boson envi-
ronment. In the Uhrig DD (UDD) sequence tj=t ¼
sin2½πj=ð2N þ 2Þ� times are such that the first N derivatives
of the filter function vanish, ½djFN=dzj�z¼0 ¼ 0;
j ∈ f1; 2;…; Ng. This ensures that pure dephasing is sup-
pressed to OðtNÞ in the series expansion of EðtÞ. Lee, Witzel,
and Das Sarma (2008) conjectured that UDD is universal for
the generic pure dephasing model, and Yang and Liu (2008)
proved that generalized UDD suppresses both pure dephasing
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and relaxation to OðtNÞ. In the spirit of UDD, several new
pulse sequences were introduced in the last few years,
achieving optimization for a given sequence duration
(Biercuk et al., 2009), or being nearly optimal for generic
single-qubit decoherence (West, Fong, and Lidar, 2010) or for
specific environments (Pasini and Uhrig, 2010).
Concatenated DD (CDD) proposed by Khodjasteh and

Lidar (2005) is an alternative scheme based on the idea of
recursively defined sequences, which guarantee to reduce
decoherence below a pulse noise level. Within this frame-
work high fidelity quantum gates have been demonstrated
numerically (West et al., 2010).
The quest for robust DD arises from the general problem of

the tradeoff between the control resources involved and
efficient suppression of decoherence. Ideal DD requires
available couplings allowing the synthesis of controlled
evolution (Viola, Knill, and Lloyd, 1999), large pulse repeti-
tion rate, and pulse hardness. Optimization can be used
together with realistic bounded amplitude control or continu-
ous always-on field schemes (Viola and Knill, 2003;
Khodjasteh, Erdélyi, and Viola, 2011; Jones, Ladd, and
Fong, 2012) to allow a flexible use of resources needed to
attain a given decoupling error ΓNðtÞ.

3. DD of 1=f noise

DD has a large potential impact in solid-state coherent
nanosystems where noise has large low-frequency compo-
nents. Indeed, DD of Gaussian 1=f noise does not always
require ultrafast pulse rates (Shiokawa and Lidar, 2004).
However, sources responsible for 1=f noise are often discrete
producing non-Gaussian noise. For a proper treatment
Eq. (106) must be generalized accordingly. Initially addressed
for understanding charge noise in superconducting qubits
(Falci et al., 2004; Faoro and Viola, 2004), DD in non-
Gaussian environments is important in other implementations
since, independently of the microscopic origin, critical current
noise and flux noise may also be described as due to a
collection of discrete sources, and also resulting in a 1=fα

spectrum. Recently this topic attracted large interest for solid-
state quantum hardware based on electron and nuclear spins
(Witzel and Das Sarma, 2007a; 2007b; Lee, Witzel, and Das
Sarma, 2008). Besides determining the decay of coherences,
non-Gaussian noises are responsible for additional structure
(splitting of spectroscopic peaks and beats) observable in the
qubit dynamics. This deteriorates the fidelity and must be
washed out by stabilization.

a. RT noise and quantum impurities

The simplest physical non-Gaussian environment is a single
impurity coupled to the qubit. Models of quantum impurities
were studied by Falci et al. (2004), Lutchyn et al. (2008), and
Rebentrost et al. (2009), whereas the classical counterpart was
addressed by Faoro and Viola (2004), Gutmann et al. (2005),
Bergli and Faoro (2007), and Cheng, Wang, and Joynt (2008).
Falci et al. (2004) modeled the environment by an electron
tunneling with switching rate γ from an impurity level to an
electronic band (Paladino et al., 2002). The parameter
quantifying Gaussianity is g ¼ ðΩþ − Ω−Þ=γ (Sec. III.A.2).

The problem is tackled by studying the reduced dynamics of
the qubit-plus-impurity system (QI) for arbitrary qubit bias.
The band acts as a Markovian environment for the QI reduced
dynamics (Paladino, Faoro, D'Arrigo, and Falci, 2003) and
can be treated exactly by a master equation. The key point is
that DD has no effect on a Markovian environment. Thus the
quantum map in the presence of a number N of pulses can be
written as ρQIðtÞ ¼ EN ½ρQIð0Þ� ¼ fP exp½LΔt�gNρQIð0Þ.
Here the superoperators L and P describe, respectively, the
QI reduced dynamics and Xπ pulses on the qubit 1I ⊗ σx. The
reduced qubit dynamics is obtained by tracing out the impurity
ρQðtÞ ¼ TrI½ρQIðtÞ� at the end of the whole protocol. In this
way non-Gaussianity and non-Markovianity of the impurity
are exactly accounted for. At pure dephasing (Ωx ¼ 0) a
simple analytic form can be found. The different physics due
to a weakly (g < 1) or strongly coupled g > 1 impurity is
discussed in Sec. III.A.1.a. This difference is washed out for
large flipping rates (N ≫ γt), where the environment becomes
effectively Gaussian with universal behavior ΓNðtÞ ∼ g2 (see
Fig. 44). On the other hand, for N < γt a crossover is clearly
observed between different domains of g. Notice that in the
intermediate regimeN ≲ γtDD is still able to cancel fast noise
g < 1 and all features of the qubit dynamics appearing when
g ∼ 1. Qualitatively similar behavior is found also for Ωx ≠ 0,
where the solution requires the diagonalization of EN . The
new feature in this regime is that DD of slow fluctuators g > 1
may be nonmonotonic with the flipping rate, yielding for
N < γt decoherence acceleration which is reminiscent of the
anti-Zeno effect.
Notice that this model reduces to a classical RT fluctuator if

mutual QI backaction, described by frequency shifts, is
dropped out. Numerical simulations in this limit by
Gutmann et al. (2005) confirmed that decoherence is sup-
pressed for large pulse rates N ≫ γt; Gutmann et al. (2004)
addressed imperfect DD pulses and Bergli and Faoro (2007)
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FIG. 44 (color online). Scaled decay rate of the qubit coherence
ΓNðtÞ=g2 at fixed t ¼ 10γ−1 and DD (here N enumerates an echo
pair of pulses). N ¼ 0 corresponds to FID. A Gaussian environ-
ment with the same power spectrum would give, for arbitrary g,
the curve labeled with g ¼ 0.1, since ΓNðtÞ ∝ g2. Inset: ΓNðtÞ for
g ¼ 1.1 for different intervals between pulses Δt (lines with dots,
Δt ¼ 5, 2, 0.2) are compared with the FID Γ0ðtÞ (thick line) and
with results obtained by numerical solution of the stochastic
Schrödinger equation. Adapted from Falci et al., 2004.
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also found analytic solutions and showed that a train of Yπ

pulses avoids decoherence acceleration. A quantum impurity
modeled with a “rotating wave” spin-boson model was
recently studied by Rebentrost et al. (2009) with the numerical
gradient ascent pulse engineering (GRAPE) algorithm.
They found decoherence acceleration at t=N ≈ Ω=2π
next to the optimal point, and optimal pulses allowing for
relaxation-limited gates at larger pulse rates.

b. 1=f noise

An environment composed of a set of independent
impurities can be treated along the same lines. At pure
dephasing ΓNðtÞ is the sum of independent single impurity
contributions, and the analytic solution can be found for an
arbitrary distribution of parameters (Falci et al., 2004). An
analytic expression valid in the classical limit was also found
by Faoro and Viola (2004) who pointed out that relatively
slow DD control rates (Δt ∼ 1=γM which is only a soft cutoff
of the environment) suffice for a drastic improvement. For
figures of noise typical for experiments, pulse rates yielding
recovery are insensitive to the average coupling strength
of the impurities (Falci et al., 2004). The situation changes
when the distribution includes individual more strongly
coupled impurities (Galperin, Altshuler, and Shantsev,
2003; Paladino, Faoro, and Falci, 2003). Time symmetric
CP is found to perform better than PDD (Faoro and Viola,
2004). While no decoherence acceleration is found at pure
dephasing, this may happen for low pulse rates (ΩΔt ∼ 10)
when Ωx ≠ 0 and noise acquires a transverse part (Faoro and
Viola, 2004).

c. Robust DD

Suppression of 1=f pure dephasing longitudinal flux
noise was demonstrated in a recent experiment (Bylander et al.,
2011) using a 200 pulses CPMG sequence yielding a 50-fold
improved T2 over the baseline value, whereas the performance
of UDD sequences was slightly worse. Earlier work with
few-pulse sequences demonstrated partial suppression of
low-frequency transverse charge noise (Ithier et al., 2005).
Referring to superconducting qubits, Cywinski et al. (2008)

studied CMPG, UDD, and CDD for 1=fα (0.5 ≤ α ≤ 1.5)
Gaussian classical noise at pure dephasing with UV cutoff ωc.
For pulse rates larger than this cutoff, CPMG is the most
effective sequences increasing T2, UDD keeping however
higher fidelity. Instead, CDD does not give relevant improve-
ment even if it outperforms PDD for a wide range of
parameters (Khodjasteh and Lidar, 2007). For pulse rates
smaller than ωc, CPMG slightly outperforms all other
sequences. CPMG is also a better approach for strongly
coupled RT noise, non-Gaussian features being suppressed
in the large pulse rate limit. Similar conclusions were drawn
by Lutchyn et al. (2008) for a quantum impurity environment
of Andreev fluctuators. Pasini and Uhrig (2010) studied
sequences optimized for specific power-law noise spectra
and found that they approach CPMG for soft UV cutoff (1=f
noise), whereas for hard UV behavior (Ohmic) UDD is the
limiting solution.
Bounded amplitude “dynamical control by modulation”

was proposed by Gordon, Kurizki, and Lidar (2008) who

studied optimization for Lorentzian and 1=f pure dephasing
noise. A practical limitation of this optimal chirped modula-
tion is the sensitivity to the low-frequency cutoff. The design
of GRAPE-optimized quantum gates in the presence of 1=f
noise and inhomogeneous dephasing was recently investi-
gated by Gorman, Young, and Whaley (2012).
Note that in general solid-state nanodevices suffer from

different noise sources with a multiaxis structure of couplings.
In these cases CDD (Khodjasteh and Lidar, 2005) or concat-
enated UDD sequences (Uhrig, 2009; West, Fong, and Lidar,
2010) may give substantial advantages.

4. Spectroscopy

The possibility that DD could be used as a spectroscopic
tool was raised in a number of early works (Falci et al., 2004;
Faoro and Viola, 2004) and has been formalized using the
concept of filter function (Uhrig, 2007; Biercuk, Doherty, and
Uys, 2011). The key observation is that for a Gaussian process
the filter function in Eq. (106) can be interpreted, at a fixed
time t̄, as a linear filter (Biercuk, Doherty, and Uys, 2011),
transforming the input phase noise EðtÞ to the output phase
ΦNðt̄Þ, yielding the decay function ΓNðt̄Þ after noise averag-
ing. Each implementation of time-dependent control samples
the noise in a distinctive way determining the form of the filter
FNðωt̄Þ. For suitable sequences, we define a filter frequency
ωF1 such that FðωF1t̄Þ ∼ 1, which roughly corresponds to the
minimal interpulse Δt. DD is described by a filter with
negative gain for ω < ωF1, the steepness of the attenuation
yielding a measure of the effectiveness of the given sequence.
This analysis allows one to develop a filter-function-guided
pulse design suited to a particular noise spectrum.
Application to spectroscopy emerges from the observation

that, in addition to the decoupling regime, there exist spectral
regions of positive gain about ω ¼ ωF, where the effect of the
corresponding spectral components of noise is amplified. This
is apparent from Fig. 45, where the modified filter function
Fðωt̄Þ=ω2 is plotted, indicating the dominant spectral con-
tributions to decoherence. For CPMG and PDD there is a
single dominant peak. The shift of the peak toward larger ω for
increasing N indicates that effects of sub-Ohmic noise are
reduced by DD. Cywinski et al. (2008) proposed that UDD
spectroscopy may also give information on higher moments of
noise via the additional structure of the filter function
(see Fig. 45).
Yuge, Sasaki, and Hirayama (2011) proposed a method

for obtaining the noise spectrum from experimental data.
The method, valid for the case of pure dephasing, is based
on the relationship between the spectrum and a generalized
dephasing time, evaluated from the asymptotic exponential
decay in the presence of a sufficiently large number of
π pulses.
Recently Bylander et al. (2011) exploited the narrow-band

filtering properties of CPMG to measure 1=f flux noise in a
persistent current qubit, where flux noise is the main source of
dephasing away from the optimal point Ωz ≠ 0. Indeed,
Eq. (106) is approximated as ΓNðt̄Þ ∝ Δωð∂Ω=∂qÞ2SqðωFÞ×
FNðωFt̄Þ=ω2

F, where ωF ¼ π=2Δt is the peak frequency, Δω
is the bandwidth of the filter, and Sq and ∂Ω=∂q are related to
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the power spectrum of flux noise and the qubit sensitivity,
depending on the flux bias, Eq. (90). This method has allowed
one to access the unexplored spectral region 0.2–20 MHz
where 1=f0.9 noise was detected. The decay of Rabi oscillations
provides an alternative tool for environment spectroscopy in the
same frequency range (Bylander et al., 2011). As explained in
Sec. III.B.1.a, quasistatic noise is efficiently averaged out and
the observed decay of Rabi oscillations is essentially exponen-
tial with a contribution from frequency components around ΩR

behaving as ΓR ∝ ½ΩzðqÞ=Ω�2SqðΩRÞ (Geva, Kosloff, and
Skinner, 1995; Ithier et al., 2005). Extracting this contribution
yields independent information on the power spectrum at
ω ¼ ΩR ∼MHz. Remarkably, the very same power laws have
been measured at much lower frequencies (0.01–100 Hz) by a
direct method using the noise sensitivity of a free-induction
Ramsey interference experiment (Yan et al., 2012). The
peculiarity of this technique is that it enables measurements
of noise spectra up to frequencies limited only by achievable
repetition rates of the measurements.
Two qubits: The extension of DD to entanglement pro-

tection from 1=f noise is a relevant issue, currently under
investigation both theoretically and experimentally. The first
experimental demonstration of DD protection of pseudo-
two-qubit entangled states of an electron-nucleus ensemble
in a solid-state environment was reported by Wang et al.

(2011). DD control pulses operated on the electron spin
suppressed inhomogeneous dephasing due to the static
Overhauser field induced by the hyperfine interaction
between electron spin and surrounding nuclear spins in a
P:Si material. Recently, Gustavsson et al. (2012) extended
single-qubit refocusing techniques to enhance the lifetime of
an entangled state of a superconducting flux qubit coupled to
a coherent TLS. Fluctuations of the qubit splitting due to 1=f
flux noise induce low-frequency fluctuations of the qubit-
TLS effective interaction. They demonstrated that by rapidly
changing the qubit’s transition frequency relative to TLS, a
refocusing pulse on the qubit improved the coherence time of
the entangled state. Further enhancement was demonstrated
when applying multiple refocusing pulses. These results
highlight the potential of DD techniques for improving two-
qubit gate fidelities, an essential prerequisite for implement-
ing fault-tolerant quantum computing. Quantum optimal
control theory represents an alternative possibility to design
high-fidelity quantum gates. Montangero, Calarco, and Fazio
(2007), using the GRAPE numerical algorithm, demon-
strated a stabilized two charge-qubit gate robust also to
1=f noise. For realistic noise figures, errors of 10−3–10−4,
crossing the fault tolerance threshold, have been reached. A
high-fidelity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
has been studied by Gorman, Young,

and Whaley (2012) using GRAPE optimization in the
presence of 1=f noise.

IV. CONCLUSIONS AND PERSPECTIVES

In this review we discussed the current state of theoretical
work on 1=f noise in nanodevices with an emphasis on
implications for solid-state quantum information processing.
Our focus was on superconducting systems and we referred to
implementations based on semiconductors only when physi-
cal analogies and/or formal similarities were envisaged.
According to the existing literature, relevant mechanisms
responsible for 1=f noise in superconducting nanocircuits
have been largely identified. However, in many solid-state
nanodevices this problem cannot be considered as totally
settled and details of the interaction mechanisms remain
controversial (see Sec. II). In some cases, available experi-
ments do not allow drawing solid conclusions and further
investigation is needed.
We discussed the role of low-frequency noises in

decoherence of quantum bits and gates. Various methods to
address this problem have been presented. A relevant issue in
connection with quantum computation in the solid state is
decoherence control and the achievement of the high fidelities
needed for the succesful application of error correction codes.
Various proposals have been put forward to limit the effects of
1=f noise. Since such noises in solid-state devices are created
by material-inherent sources, an obvious way to improve
performance of quantum devices is optimizing materials used
for their fabrication. In particular, it is important to engineer
the “dielectric” part of devices. Enormous effort in this
direction based on identification of the noise sources and
properties has resulted in significant optimizing of existing
devices and suggesting novel ones. The main focus of the
review is relating the device performance along different
protocols to the properties of the noise sources. We hope that

FIG. 45 (color online). (a)–(c) Modified filter function
FNðωt̄Þ=ω2, for the indicated pulse sequences and N values.
Dominant spectral contributions to the measured ΓNðtÞ appear as
peaks in the modified filter functions. (a) Modified filter
function for FID showing a large weight for low-frequency noise
on a semilog scale, with arbitrary units. (b) Demonstration
of even-odd parity through the modified filter function of
PDD on a semilog scale. Adapted from Biercuk, Doherty,
and Uys, 2011.
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understanding these relations may lead to improvement of the
quantum devices.
The integration of control tools, like dynamical decoupling

sequences appropriate to 1=f noise, with other functionalities,
such as quantum gates, in a scalable architecture is a nontrivial
open problem. Application of optimized pulse sequences to
non-Markovian noise is the subject of future investigation. We
reviewed the current status of the ongoing research along this
direction, which represents an area for future development of
the field.
Despite the tremendous progress in this field, there is still a

long way to go until a practically important quantum
computer will be realized. Many details have to be worked
out, and at the present time it is actually not clear which
physical implementation of quantum devices and even which
architecture will be the most advantageous. However, it is
fully clear that ongoing research on design and studies
of devices for quantum information processing will signifi-
cantly improve our understanding of the quantum world
and interplay between classical and quantum physics. It will
certainly lead to significant development of modern meso-
scopic physics and, in particular, of quantum electronics.

LIST OF SYMBOLS AND ABBREVIATIONS

BCS Bardeen, Cooper, Schrieffer
CDD Concatenated dynamical decoupling
CP Carr, Purcell
CPB Cooper-pair box
CPMG Carr, Purcell, Meilboom, Gill
CTRW Continuous time random walk
CVD Chemical vapor deposition
DD Dynamical decoupling
DQD Double quantum dot
FID Free induction decay
GRAPE Gradient ascent pulse engineering
LZ Landau-Zener
MRT Macroscopic resonant tunneling
NMR Nuclear magnetic resonance
PDD Periodic dynamical decoupling
QD Quantum dot
QED Quantum electrodynamics
QI Qubit plus impurity
QPC Quantum point contact
RKKY Ruderman, Kittel, Kasuya, Iosida
RT Random telegraph
RTN Random telegraph noise
SEM Scanning electron microscopy
SET Single electron tunneling
SO Spin orbit
SQUID Superconducting quantum interference

device
TLS Two-level system
UDD Uhrig dynamical decoupling
UV Ultraviolet
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