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Point defects and impurities strongly affect the physical properties of materials and have a decisive
impact on their performance in applications. First-principles calculations have emerged as a
powerful approach that complements experiments and can serve as a predictive tool in the
identification and characterization of defects. The theoretical modeling of point defects in
crystalline materials by means of electronic-structure calculations, with an emphasis on approaches
based on density functional theory (DFT), is reviewed. A general thermodynamic formalism is laid
down to investigate the physical properties of point defects independent of the materials class
(semiconductors, insulators, and metals), indicating how the relevant thermodynamic quantities,
such as formation energy, entropy, and excess volume, can be obtained from electronic structure
calculations. Practical aspects such as the supercell approach and efficient strategies to extrapolate
to the isolated-defect or dilute limit are discussed. Recent advances in tractable approximations to
the exchange-correlation functional (DFTþU, hybrid functionals) and approaches beyond DFT are
highlighted. These advances have largely removed the long-standing uncertainty of defect
formation energies in semiconductors and insulators due to the failure of standard DFT to
reproduce band gaps. Two case studies illustrate how such calculations provide new insight into the
physics and role of point defects in real materials.
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I. INTRODUCTION

Point defects and impurities often play a decisive role in the
physical properties of materials. Experimental defect identi-
fication is typically difficult and indirect, usually requiring
an ingenious combination of different techniques. First-
principles calculations have emerged as a powerful approach
that complements experiments and has become reliable
enough to serve as a predictive tool. This methodology is
now practiced by a large and growing number of research
groups around the world. Due to the importance of this active
field a number of textbooks and overview articles have been
published (Leibfried and Breuer, 1978; Estreicher, 1995,
2000; Van de Walle and Neugebauer, 2004; Drabold and
Estreicher, 2007; Alkauskas et al., 2011; Evarestov, 2012).
Rapid methodological developments over the last few years
make this a timely moment to present a comprehensive
overview of the state of the art and the major achievements
and insights that have been obtained. Our goals are to
(1) address the fundamental physics issues that underlie the
methods; (2) unify the methodology by covering semicon-
ductors, insulators, and metals on the same footing; (3) devote
particular attention to the impressive methodological progress
that has been achieved within the past few years; and
(4) provide a critical assessment of areas in which future
research is most needed.
A formalism based on formation energies allows calcula-

tion of defect and impurity equilibrium structures and con-
centrations. In the case of semiconductors and insulators, it
also allows the calculation of the relative stability of the
different charge states of a given defect, and hence the
thermodynamic and optical transition levels associated with
deep and shallow centers. The formalism is entirely general
and can be applied to any crystalline solid, even though some
issues addressed may not be relevant for all material classes.
For instance, charged defects and band gaps can occur only in
nonmetals, i.e., semiconductors, wide-gap materials, and
insulators. From a modeling point of view, the nonmetallic
materials differ only in the size of the band gap and related
quantities. For the sake of readability, we will sometimes use
“semiconductor” as a synonym for materials with a band gap
whenever the existence of the band gap matters. Section II
provides an overview of the state-of-the-art methodology for
performing first-principles ground-state calculations for
defects and impurities. Finite-temperature effects, i.e., the
evaluation of free energies that include effects beyond
configurational entropy, will also be comprehensively treated.
The electronic ground state provides a variety of additional
response properties that are accessible with dedicated experi-
ments and theory (see Sec. I.B.4). However, the calculation of
response or even dynamical properties (such as local vibra-
tional modes, phonon scattering, or localized electronic
excitations) will not be discussed in detail within this review
due to space limitations.
An area that has proved problematic in the past is related to

the lattice geometry in which the calculations are performed.
Typically, one addresses the dilute limit, in which the
defect concentration is low and defect-defect interactions
are negligible. When performing calculations for defects
using periodic boundary conditions, in the so-called supercell
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approach, interactions may affect the calculated formation
energies and transition levels. Electrostatic interactions, which
occur in the case of charged defects in semiconductors and
insulators, decay particularly slowly with increasing supercell
size. Errors may also arise due to defect wave-function
overlap, magnetic interactions, and strain. Rigorous trans-
formations and extrapolation schemes are therefore critical to
describe the accurate asymptotic limit. All of this is addressed
in Sec. III.
Density functional theory (DFT), often in conjunction with

pseudopotentials or projector augmented wave potentials, has
emerged as the most commonly used first-principles approach
for defect calculations. When used with the traditional local or
semilocal exchange-correlation (xc) functionals, such as the
local density approximation (LDA) or generalized gradient
approximation (GGA), this approach has been limited in
its ability to predict properties associated with the electronic
structure of materials due to the so-called “band-gap
problem.” Great progress has been made in overcoming this
deficiency, both by going beyond DFT and by implementing
advanced functionals within DFT. Section IV is devoted to
these issues, including discussion and critical comparison of
approaches such as the quasiparticle (QP) GW method,
DFTþ U, and hybrid functionals.
Defect calculations have been pushed forward by the need

for a better theoretical understanding of defects in a wide
range of technologies such as electronic and optoelectronic
devices, solar cells, structural materials, and catalysts, just to a
name a few. While a comprehensive overview of the insights
gained for these applications is desirable, it would clearly
exceed the limits of our review. Instead, Sec. Vexemplifies the
methodology in an applied context by two illustrative case
studies. Section VI, finally, includes a critical outlook on those
areas that will benefit from additional research.

A. Role of point defects and impurities in solids

1. Doping

Various properties of materials are controlled by the
presence of defects and impurities. An outstanding example
occurs in the case of semiconductors, where the incorporation
of impurities even in small concentrations determines the
electrical conductivity. The fabrication of p-type and n-type
doped layers underlies the design of virtually all electronic
and optoelectronic devices. To achieve such control, compre-
hensive knowledge of the fundamental processes that control
doping is required, and first-principles calculations have made
important contributions to this knowledge.
Shallow dopants (i.e., heterovalent impurities with small

ionization energies that easily release carriers to the host)
render the material n-type or p-type conductive. This con-
ductivity can be counteracted by the presence of compensating
centers in the form of either native point defects or impurities.
These centers can also introduce deep levels that affect
recombination rates and cause optical absorption or lumines-
cence. Even in well-established semiconductors such as Si or
Ge, achieving high and well-controlled doping levels is still an
active area of research (Voyles et al., 2002). Some other
semiconductors have very attractive intrinsic properties, but

have not been amenable to device applications because of
a lack of control over their conductivity. These problems tend
to be particularly severe in the case of wide-band-gap
semiconductors.
Several studies have attempted to identify the underlying

reasons for these difficulties (Zhang, Wei, and Zunger, 1999;
Walukiewicz, 2001). A general conclusion that can be drawn
from such investigations is that n-type doping is difficult when
the energy of the conduction-band minimum (CBM) is high
on an absolute energy scale (e.g., referenced to the vacuum
level); and p-type doping is difficult when the energy of the
valence-band maximum (VBM) is low. This notion is actually
fairly intuitive. For instance, in the case of shallow donors, the
goal is to introduce a filled electronic state with an energy
level higher than the CBM, which results in an electron being
donated to the conduction band (see Sec. II.D.2). The
remaining positive defect in turn induces a shallow, hydro-
genic effective-mass state slightly below the CBM. When the
CBM of the semiconductor is high in energy, the range of
impurities that can accomplish this feat is limited. In addition,
any processes that can lead to a lowering of the energy of the
added electron will be particularly favored if the CBM is high;
such processes include spontaneous formation of defects and
atomic relaxation of the impurity away from its substitu-
tional site.
While general rules for describing doping in semiconduc-

tors are useful in elucidating the underlying physics, they turn
out to be inadequate and potentially misleading when applied
to specific cases. For instance, such rules typically predict that
it is not possible to dope GaN p type. In reality, acceptor
doping of GaN is difficult but by no means impossible: room-
temperature hole concentrations on the order of 1018 cm−3 are
now routinely achieved. One has to conclude that there is no
substitute for considering every case individually. This is a
formidable task experimentally, but first-principles calcula-
tions are now capable of providing detailed understanding and
predictions.

2. Overcoming doping limits and achieving ambipolar doping

In some semiconductors, doping is in principle straightfor-
ward, but achieving the increasingly higher doping levels that
are required for novel devices can be challenging. At high
doping levels, self-compensation sets in, i.e., not every dopant
that is incorporated yields a carrier. In many cases, compen-
sation can be attributed to the formation of point defects.
Native point defects have also often been invoked to explain

unintentional conductivity in semiconductors and insulators.
There has been a long-standing belief that native defects such
as vacancies or self-interstitials can act as a source of doping,
particularly in wide-band-gap semiconductors. This belief is
based largely on “circumstantial evidence,” such as trends
observed when growing or annealing in environments that are
rich or poor in one particular constituent. Direct experimental
verification (or refutation) has been lacking, however, mainly
due to the difficulty in establishing quantitative measurements
relating to the presence of point defects. ZnO is a prime
example of a wide-band-gap oxide in which these issues have
long been debated. First-principles calculations can provide
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powerful insights, and ZnO will be the subject of one of the
case studies presented in Sec. V.
Bringing unintentional doping under control is a first and

essential step for achieving ambipolar doping. Gallium
nitride, a semiconductor that is now the basis of the rapidly
growing solid-state lighting industry, offers a striking exam-
ple. Until about 1990, all GaN material that was grown was
invariably n type, and almost all reports attributed this to point
defects (in particular, nitrogen vacancies). It gradually became
clear, however, partly thanks to first-principles calculations,
that the conductivity was actually due to unintentionally
incorporated impurities. Improved high-purity growth tech-
niques brought these contamination problems under control
and opened the path for achieving p-type doping. More
recently, ZnO followed a similar trajectory, although in that
case achieving p-type doping is still a major problem, as
discussed in Sec. V.A.2.
The following factors need to be considered when discus-

sing doping of semiconductors and its limitations:

a. Solubility

A high free-carrier concentration requires a high concen-
tration of the dopant impurity. The solubility corresponds to
the maximum concentration that the impurity can attain in the
semiconductor, under conditions of thermodynamic equilib-
rium. This concentration depends on temperature and on the
abundance of the impurity as well as the host constituents in
the growth environment, as determined by chemical potentials
(see Sec. II.B.2).

b. Ionization energy

For a shallow donor or acceptor, the ionization energy
determines the fraction of dopants that will be ionized and
hence contribute free carriers at a given temperature. A high
ionization energy limits the doping efficiency. Ionization
energies of shallow dopants are predominantly determined
by intrinsic properties of the semiconductor, such as the
effective masses and dielectric constant.

c. Incorporation of impurities in other configurations

Most dopant impurities must reside on substitutional sites
in order to exhibit the desired electrical activity. For instance,
in order for Mg in GaN to act as an acceptor, it needs to be
incorporated on the gallium site. If Mg is incorporated in an
interstitial position, it actually acts as a donor and hence
causes compensation. Another instance of impurities incor-
porating in undesirable configurations consists of the so-called
DX centers. The prototype DX center is Si in AlGaAs
(Mooney, 1992). In GaAs and in AlGaAs with low Al content,
Si resides on the cation site and behaves as a shallow donor,
but when the Al content exceeds a critical value, Si behaves as
a deep acceptor. This has been attributed to Si being displaced
from the substitutional site toward an interstitial position
(Chadi and Chang, 1988).

d. Compensation by native point defects

Native defects are point defects intrinsic to the semi-
conductor, such as vacancies (missing atoms), self-interstitials

(additional atoms incorporated on sites other than substitu-
tional sites), and antisites (in a compound semiconductor, a
cation on a nominal anion site, or vice versa). Native point
defects usually counteract the prevailing conductivity of the
semiconductors, acting as compensation centers.

e. Compensation by foreign impurities

In spite of experimental attempts to maintain high purity,
unintentional incorporation of impurities that are present in
the growth environment is unavoidable. Obviously, when
doping with acceptors in order to obtain p-type conductivity,
incorporation of impurities that act as donors should be
carefully controlled. Such control may be more difficult than
is obvious at first sight. The chemical potential of the
unintentional impurity is largely independent of the intended
doping type, causing its formation energy to be determined by
the position of the Fermi level (see Sec. I.B.1). A contami-
nating impurity with donor character will thus be incorporated
in much larger concentrations in p-type material than in
n-type material.
Each and every one of the factors listed here can be explicitly

examined using the computational approach described in
Secs. I.B and II, as illustrated for ZnO in Sec. V.A.

3. Diffusion

Diffusion is a problem of great importance in solids. In the
context of doping, diffusion will determine the doping profile.
Dopants incorporated during growth may diffuse inside the
growing material at the high temperatures used for high-
quality growth. Alternatively, doping can be achieved by
direct diffusion of impurities from a solid or gaseous source.
Finally, implantation can be used, but this usually requires a
subsequent annealing step during which diffusion of impu-
rities determines their final location in the lattice. Diffusion
can also play a role in device degradation.
The issue of doping clearly shows that diffusion is of high

significance for semiconductors, but it is equally important
for structural metals [e.g., hydrogen diffusion causing embrit-
tlement (Du et al., 2011)], ceramics [e.g., impurity diffusion in
thermal barrier coatings (Milas, Hinnemann, and Carter,
2011)], or in the dehydrogenation of hydrogen storage
materials (Peles and Van de Walle, 2007).
Diffusion of impurities is usually assisted by point defects

in both metals (Adda and Philibert, 1966; Seeger et al., 1970)
and semiconductors (Fahey, Griffin, and Plummer, 1989;
Nichols, Van de Walle, and Pantelides, 1989). A substitutional
impurity only rarely diffuses by a direct exchange mechanism,
where it exchanges places with a neighboring atom (Pandey,
1986; Windl, 2006; Janotti and Van de Walle, 2007a). It is
much more common for diffusion to proceed via a vacancy
mechanism, in which the impurity jumps into a vacancy on a
neighboring site, or an interstitial mechanism, in which, for
instance, a self-interstitial kicks the impurity out of a substitu-
tional site and the impurity then migrates through an inter-
stitial channel. As a general trend, interstitials move more
readily than vacancies, but are less abundant in equilibrium
due to their higher formation energies. All of this highlights
the importance of building a thorough understanding of the
formation and migration of native point defects.
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Diffusion also plays a crucial role in structural materials.
For instance, the diffusion of alloying elements in the
low-percentage regime governs the kinetics of segregation
and phase transformations. Point defects also tend to pin
dislocations or even grain boundaries, which play a crucial
role in plasticity. The motion of the dislocation is then directly
linked to the diffusion of the pinning point defect.
Actual barriers for hopping processes can be obtained from

first-principles calculations. The nudged elastic band method
(Henkelman, Uberuaga, and Jónsson, 2000) has proven
particularly useful for automating the search for a saddle
point. Migration of defects or impurities can also be studied
directly via molecular dynamics (Estreicher, Fedders, and
Ordejon, 2001) or through the calculation of total-energy
surfaces. Such surfaces provide direct insight into stable
configurations and migration paths, and they show the location
of saddle points, providing values for migration barriers
(Van de Walle et al., 1989). They allow for the calculation
of finite-temperature diffusion coefficients (Blöchl, Van de
Walle, and Pantelides, 1990), and they are also useful for
identifying spatial locations where additional local minima
(metastable configurations) might occur. A guide to the
construction of total-energy surfaces can be found in
Sec. II.G of Van de Walle and Neugebauer (2004).

4. Thermodynamics and phase stability

In general, defect formation energies are assumed to be
largely independent of temperature. The configurational
entropy usually dominates (see Sec. II.A.1) and determines
the temperature dependence of the defect concentration in
thermodynamic equilibrium. Additional entropy contributions
that could result in temperature-dependent defect formation
energies include (1) vibrational (phonon) contributions (the
creation of a defect modifies the chemical bonds and thus the
bond strength in its vicinity), (2) electronic contributions
(which are commonly small for semiconductors but can be
sizable for metals), and (3) magnetic excitations.
These entropy contributions to the formation energy have

been commonly neglected, for a number of reasons. First, for
common defect concentrations that are well below 10−4,
configurational entropy per defect is larger than 10kB and
is therefore by far the most dominant entropy contribution.
Second, computing vibrational and magnetic entropy
increases the computational effort by several orders of
magnitude compared to a static (T ¼ 0 K) defect calculation.
We note that, because of the high cost of computing the
defect-induced changes in the phonon spectra, elastic models
that consider only the change of elasticity around the defect
(i.e., the long-wavelength part of the phonon spectra) have
been proposed (Mishin, Sorensen, and Voter, 2001). Third, for
semiconductors and insulators the largest uncertainty in
predicting accurate defect formation energies has been the
notorious band-gap problem of semilocal DFT xc functionals,
resulting in errors of several tenths of an electron volt.
Compared to this error the missing entropy contributions
were regarded as small. However, with the advent of new
theoretical techniques (see Sec. IV) the predictive power has
greatly increased, making the inclusion of entropy contribu-
tions essential. In the case of metals the spurious

self-interaction that is behind the band-gap problem is largely
absent due to efficient screening. Since in metals the equi-
librium defect concentrations can be experimentally accessed
with high precision and over a large temperature range, the
inclusion of all entropy effects is essential for an accurate
description of defects, as shown in Sec. II.B.3.
While the impact of point defects on electronic properties is

well known, their impact on thermodynamic bulk properties
(such as heat capacity, thermal expansion, etc.) that are closely
related to bulk phase stability has often been assumed to be
negligible. As shown in Sec. V.B point defects can have a
significant impact on such properties at temperatures close to
melting.

B. Key quantities

In this review, we focus on calculations of defects in a
supercell geometry. (From now on, we use the term “defect” to
generically refer to both point defects and impurities.) The
defect is surrounded by a finite number of atoms, and this
whole structure is periodically repeated (Messmer and
Watkins, 1972; Louie, Schlüter, and Chelikowsky, 1976).
Provided the defects are sufficiently well separated, properties
of a single isolated defect can be derived. While alternatives to
the supercell approach exist [see, e.g., Deák (2000) and
Pacchioni (2000)], employing supercells has the following
advantages: (1) It allows the use of mathematical techniques
that require translational periodicity of the system. (2) The
band structure of the host crystal is well described. This
contrasts with cluster approaches, where the host is modeled
by a finite number of atoms terminated at a surface, which is
typically hydrogenated in order to eliminate surface states in
the case of semiconductors or embedded in point charges or
pseudopotentials in the case of insulators (Pacchioni, 2000).
Even fairly large clusters still produce sizable quantum
confinement effects that significantly affect the band structure,
and interactions between defect wave functions and the cluster
surface are hard to avoid. (3) The results are straightforward to
interpret, unlike, for instance, the Green’s function approach
(Car et al., 1984), which is challenging from a programming
point of view, and less transparent than the supercell technique
from a physics standpoint. Supercells are discussed in detail in
Sec. III.

1. Formation energies

The formation energy of a defect X in charge state q is
defined as (Zhang and Northrup, 1991; Van de Walle et al.,
1993)

Ef½Xq� ¼ Etot½Xq� − Etot½bulk� −
X
i

niμi þ qEF þ Ecorr: (1)

Etot½Xq� is the total energy derived from a supercell calculation
containing the defect X, and Etot½bulk� is the total energy for
the perfect crystal using an equivalent supercell. The integer ni
indicates the number of atoms of type i (host atoms or
impurity atoms) that have been added to (ni > 0) or removed
from (ni < 0) the supercell to form the defect, and the μi are
the corresponding chemical potentials of these species.
Chemical potentials represent the energy of the reservoirs
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with which atoms are being exchanged; they are discussed in
detail in Sec. II.B.2. The analog of the chemical potential for
“charge” is given by the chemical potential of the electrons,
i.e., the Fermi energyEF. Ecorr, finally, is a correction term that
accounts for finite k-point sampling in the case of shallow
impurities, or for elastic and/or electrostatic interactions
between supercells. These issues are explored in detail in
Sec. III.
Thermodynamic considerations relating to free energies

and entropies are discussed in Secs. II.A and II.B. A schematic
diagram of the defect formation energy as a function of the
Fermi-level position and for various charge states q is shown
in Fig. 1.
We indicate the charge state of a defect with a superscript q:

for a neutral defect, q ¼ 0; if one electron is removed,
q ¼ þ1; if one electron is added, q ¼ −1, etc. This is
equivalent to the historical Kröger-Vink notation (Kröger,
1974), in which neutral charge states (0) are indicated by
a × superscript, negative charge states by a 0, and positive
charge states by a •. In a metal, only neutral defects can occur.
In a semiconductor or insulator, the defect can typically
assume various charge states, accomplished through exchang-
ing electrons with an electron reservoir, the energy of which is
the electron chemical potential, or Fermi level EF, conven-
tionally referenced to the VBM in the bulk. An alignment
procedure is required to relate the potential in the supercell to
that in the bulk material; this is discussed in Sec. III.C.
Our approach centers around defining and calculating

formation energies for individual defects and as such it is
distinct from the Kröger-Vink approach (Kröger, 1974), in
which the physics of defects is expressed in terms of
explicit reactions that involve pairs of defects, e.g.,
Frenkel pairs. In a more formal notation our approach
corresponds to a grand canonical approach where defect-
defect interaction takes place only via interaction with the
electron reservoir (defined by the chemical potential of the

electrons EF). Since the total system containing all the
defects has a fixed number of electrons and must be charge
neutral, the grand canonical description has to be mapped
back onto a canonical one. This is done by identifying
in a self-consistent manner the position of the electron
reservoir for which the system becomes charge neutral (see
Sec. II.B.2). In contrast, the Kröger-Vink approach (Kröger,
1974) constructs reactions (creation of pairs or multiples of
defects) that keep the system charge neutral. For realistic
systems the number of reactions can become significantly
larger than the number of defects and their charge states,
making careful bookkeeping challenging. In contrast, the
grand canonical approach using individual defect energies as
a function of the energy of the electron reservoir requires no
ad hoc assumptions about which reactions are important but
includes all of them in an intuitive and transparent manner.
The approach provides a direct way to determine the defect
concentrations and Fermi-level position in the material as a
function of growth or annealing conditions (see Secs. II.B.2
and II.B.3).

2. Complex formation and binding energies

At higher concentrations or at low temperatures defects not
only occur as isolated centers but can also form defect
complexes. Hydrogen complexes are a prime example. Due
to the small size of the H atom and its high chemical reactivity
hydrogen easily forms complexes with other impurities or
with native point defects. Among the latter, complexes with
vacancies are particularly stable since the inner surface of a
vacancy provides highly stable binding sites for one or more H
atoms. Defect reactions that result in complex formation are of
high technological relevance for both semiconductors and
metals.
In semiconductors, complexes are often detrimental to

device performance since the electronic behavior of the
complex is typically qualitatively different from that of its
constituents. For example, Mg in GaN is a shallow acceptor
which renders the material p-type conductive. Complexing
with H removes the acceptor state and results in a neutral
complex: the Mg in the complex no longer acts as an acceptor
(Neugebauer and Van de Walle, 1996; Lyons, Janotti, and Van
de Walle, 2012). This mechanism by which the formation of a
complex destroys the doping character of an impurity is called
passivation. Complex formation in semiconductors is often
driven by the strong attractive electrostatic interaction
between defects with opposite charge states. This explains
the often compensating nature of defects since donor
(acceptor) dopants attract point defects or impurities that
behave as acceptors (donors), resulting in a charge-neutral and
electrically inactive complex.
In metals, where Coulomb interaction between defects is

negligible due to efficient screening, defects are nevertheless
known to form centers consisting of two or more defects or
impurities. The driving forces here are local elastic inter-
actions and the formation of covalent bonds. For example, H is
known to form stable complexes with vacancies. At suffi-
ciently high concentrations the formation energy of the
vacancy-hydrogen complex becomes lower than that of
the vacancy resulting in concentrations that are orders

FIG. 1 (color online). Schematic illustration of formation energy
Ef vs Fermi level EF for an amphoteric defect that can occur in
three charge states q:þ1, 0, and −1. Solid lines correspond to the
formation energy as defined by Eq. (1). The defect exhibits two
charge-state transition levels (see Sec. II.D): a deep donor level
εðþ=0Þ and a deep acceptor level εð0=−Þ. The thick solid lines
indicate the energetically most favorable charge state for a given
Fermi level.
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of magnitude larger than the concentration of bare
vacancies (superabundant vacancies) (Nazarov, Hickel, and
Neugebauer, 2012).
An advantage of the grand canonical formulation is that the

formation energy of a complex (which determines its con-
centration) is defined in the same way as for isolated defects,
i.e., by Eq. (1). Another key quantity for complexes is their
binding energy, i.e., the energy difference between the
complex formation energy and the sum of the formation
energies of its isolated constituents. For example, for a
complex consisting of two defects A and B the complex
binding energy is

Eb ¼ Ef½A� þ Ef½B� − Ef½AB�: (2)

A positive binding energy implies that the energy to create
isolated defects is higher than that for forming a complex,
i.e., the interaction between defects A and B is attractive and
complex formation becomes thermodynamically advanta-
geous. However, a positive binding energy indicates only
that complexes can in principle be formed, but not that they
will occur in sizable concentrations. The reason is the very
different configurational entropy of a pair of isolated defects
versus that of a complex. For a more detailed discussion, see
Sec. II.F in Van de Walle and Neugebauer (2004). It should
also be noted that complex formation does not change the
number and nature of participating species. Thus, the
complex binding energy is independent of the chemical
potentials.

3. Charge-state transition levels in semiconductors and insulators

Defects in semiconductors and insulators almost always
introduce levels in the band gap or near the band edges. These
levels determine the electronic behavior, and they are also
often used as the basis for experimental detection or identi-
fication of the defect. Accurate calculation of these levels is
therefore essential for defect identification and characteriza-
tion. In principle, internal excitations of the defect can occur in
which the charge state of the defect remains unchanged. More
commonly, however, carriers are exchanged with the semi-
conductor host and a transition to a different charge state
occurs. These different charge states may correspond to quite
different local lattice configurations. It is important to realize
that the Kohn-Sham (KS) levels that result from a band-
structure calculation for the center cannot directly be identi-
fied with any levels that are relevant for experiment, even if
there were no concerns about the accuracy of the KS band gap.
Instead, the total energies of the defect configurations before
and after the transition must be considered.
The thermodynamic transition level εðq1=q2Þ is defined as

the Fermi-level position for which the formation energies of
charge states q1 and q2 are equal:

εðq1=q2Þ ¼
EfðXq1 ;EF ¼ 0Þ − EfðXq2 ;EF ¼ 0Þ

q2 − q1
; (3)

where EfðXq;EF ¼ 0Þ is the formation energy of the defect X
in the charge state q when the Fermi level is at the VBM
(EF ¼ 0). The experimental significance of this level is that

for Fermi-level positions below εðq1=q2Þ, charge state q1 is
stable, while for Fermi-level positions above εðq1=q2Þ, charge
state q2 is stable. This concept is illustrated in Fig. 1 for a
system with three charge states and two transition levels.
Thermodynamic transition levels can be observed in experi-

ments where the final charge state can fully relax to its
equilibrium configuration after the transition, such as in deep-
level transient spectroscopy (DLTS) (Lannoo and Bourgoin,
1981, 1983; Mooney, 1999). Transition levels correspond to
thermal ionization energies. Conventionally, if a transition
level is positioned such that the defect is likely to be thermally
ionized at room temperature (or at device operating temper-
atures), this transition level is called a shallow level; if it is
unlikely to be ionized at room temperature, it is called a deep
level. A detailed discussion of deep versus shallow levels is
given in Sec. II.D.
For purposes of defining the thermal ionization energy, it is

implied that for each charge state the atomic structure is
relaxed to its equilibrium configuration. The atomic positions
in these equilibrium configurations are not necessarily the
same for both charge states. Indeed, it is precisely this
difference in relaxation that leads to the difference between
thermodynamic transition levels and optical transition levels,
discussed in detail in Sec. II.E.

4. Quantities amenable to comparison with experiment

The ability to compare with experimental results is of
paramount importance. First, such comparisons are essential
for validation of the computational approach. Second, the
ability to help interpret and explain experimental observations
is a crucial asset of the first-principles calculations. The
ultimate goal is to reliably predict structures and properties
that can be experimentally implemented and observed. We
also note that experimental observations of defects in solids
have their own limitations, which computational studies can
aid in overcoming. Here we touch upon some of the key
quantities that can be obtained from first-principles calcula-
tions, and how they are linked to experimental techniques; an
excellent overview of such techniques is provided by
McCluskey and Haller (2012).

a. Defect concentrations

The formation energy defined in Eq. (1) can be used
to calculate concentrations, as discussed in Sec. II.B.
Concentrations of impurities can be experimentally deter-
mined using secondary ion mass spectrometry (SIMS) or
Rutherford backscattering spectrometry. Determining the
concentration of native point defects is more difficult; electron
paramagnetic resonance (EPR) is one of the few techniques
that can both identify the nature of a defect and accurately
determine its concentration. EPR is discussed in more detail
below. Positron annihilation spectroscopy (PAS) (Puska and
Nieminen, 1994) can also identify and measure point defects,
but is typically limited to detection of vacancies. A commonly
used method in metals is dilatometry in combination
with precision measurements of the lattice constant
(Simmons and Balluffi, 1960). Knowing both the change in
the lattice constant and the macroscopic (dilatometric) change
allows separating the effect of thermal expansion from that of
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vacancy creation. Less frequently used are electrical-
resistivity (Cotterill et al., 1965) and specific-heat measure-
ments (Kraftmakher, 1998). Resistivity measurements probe
for the additional scattering due to defects. The specific heat
associated with the creation of intrinsic defects (notably
vacancies) can be separated from bulk contributions via its
exponential increase with rising temperature or the character-
istic time scale of defect formation. Another approach
measures electrical noise and uses sophisticated theoretical
tools to extract dynamical defect properties such as creation
and annihilation rates or equilibrium concentrations (Celasco,
Fiorillo, and Mazzetti, 1976).

b. Atomic structure

Direct measurements of atomic structure and bond lengths
around an impurity can be obtained from extended x-ray
absorption fine structure (EXAFS) (Lee et al., 1981) but only
in the case of impurities with relatively heavy mass.

c. Scanning tunneling microscopy and spectroscopy

Scanning tunneling microscopy (STM) and its variable-bias
variant, scanning tunneling spectroscopy (STS), are powerful
tools for revealing the atomic and electronic structure of
surfaces. As such, STM and STS can also detect defects on or
slightly below surfaces. Insight into bulklike defects can be
obtained from cross-sectional STM after cleavage, provided
that the investigated cleavage surface is atomically flat,
exhibits no states within the bulk band gap, and has a low
density of STM-observable surface defects (Feenstra, 1994;
Garleff, Wijnheijmer, and Koenraad, 2011). Prominent exam-
ples are the GaAs (110) surface under ultrahigh-vacuum
conditions (Feenstra, 1994; Tsuruoka et al., 2002;
Mikkelsen and Lundgren, 2005; Garleff, Wijnheijmer, and
Koenraad, 2011) or passivated Si surfaces (Garleff,
Wijnheijmer, and Koenraad, 2011). The simulation of STM
images theoretically is well established (Tersoff and Hamann,
1985). The relation of STS data to properties of the bulk
defect, however, requires a careful analysis (Grandidier et al.,
2000; Garleff, Wijnheijmer, and Koenraad, 2011).

d. g factors and hyperfine parameters

EPR is one of the most powerful techniques for the study
and identification of defects in semiconductors and insulators
(Watkins, 1999). Experimental EPR data provide information
about the chemical identity of the atoms in the vicinity of the
defect as well as about the symmetry. The ability to directly
compare with calculated values for specific defect configu-
rations then allows an explicit identification of the micro-
scopic structure (Van de Walle, 1990; Van de Walle and
Blöchl, 1993; Ricci et al., 2003).
EPR relies on the presence of unpaired electrons. In cases

where the stable ground-state configuration of the defect is not
paramagnetic, optical excitation can often be used to generate a
metastable charge statewith a net spin density.Optically detected
magnetic resonance (ODMR) is a variant of the technique that
can offer additional information about the defect-induced levels
in the band gap (Kennedy and Glaser, 1999).

EPR spectra yield two types of information, namely,
hyperfine parameters and g tensors. Hyperfine parameters
can be calculated directly from the ground-state spin density,
but all-electron wave functions are required. In a pseudopo-
tential approach these can be obtained by combining free-
atom wave functions with the pseudo-wave-functions
obtained in the defect calculation (Van de Walle and
Blöchl, 1993). In the projector augmented wave (PAW)
method, this information can be extracted directly from the
all-electron spin density (Blöchl, 2000).
Computing g tensors posed additional complexities, par-

ticularly the implementation of a gauge-invariant theory
within a pseudopotential or PAW approach (Pickard and
Mauri, 2001); this problem was successfully addressed by
Pickard and Mauri (2002).

e. NMR chemical shifts

Nuclear magnetic resonance (NMR) is used for molecules
as well as solids to provide chemical and structural informa-
tion. The technique has been employed, e.g., to study point
defects in irradiated aluminum and copper (Minier, Andreani,
and Minier, 1978). When combined with first-principles
calculations of chemical shifts, the approach allows an
unambiguous determination of the microscopic structure.
The computation of these shifts required developments similar
to those mentioned for g tensors above (Pickard and
Mauri, 2001).

f. Mössbauer spectroscopy

Similarly to NMR, Mössbauer spectroscopy probes
changes in the nuclear energy levels and allows detection
of interactions of point defects with neighboring atoms
(Czjzek and Berger, 1970).

g. Vibrational frequencies

Defects often give rise to local vibrational modes (LVMs),
whose frequencies and polarization contain information about
the chemical nature of the atoms involved in the bond as well
as the bonding environment (McCluskey, 2000). Light impu-
rities, in particular, exhibit distinct LVMs that are often well
above the bulk phonon spectrum. A direct comparison of
signals obtained with Raman spectroscopy or Fourier-
transform infrared spectroscopy with first-principles calcula-
tions can greatly aid in identifying the nature and local
structure of the defect.
Vibrational frequencies can be directly extracted from

the velocity-velocity autocorrelation function of molecular
dynamics runs (Estreicher, 2000; Estreicher et al., 2009).
Alternatively, vibrational frequencies corresponding to a
stretching or wagging mode of a particular bond can be
extracted from a dynamical matrix based on calculated forces.
In the case of light impurities, anharmonic corrections can be
sizable. These can be evaluated by focusing on the motion of
the light impurity only, keeping all other atoms fixed, and
mapping out the potential energy as a function of displace-
ment (Van de Walle, 1998a; Limpijumnong, Northrup, and
Van de Walle, 2003).
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h. Defect transition levels

Charge-state transition levels were introduced in Sec. I.B.3
and will be discussed in more detail in Secs. II.D and II.E.
Thermodynamic transition levels can be derived from experi-
ments such as DLTS (Lannoo and Bourgoin, 1981, 1983;
Mooney, 1999) or temperature-dependent Hall measurements
(Look, 1992), while optical levels can be observed in photo-
luminescence, absorption, or cathodoluminescence experi-
ments (Davies, 1999). The identification of the underlying
defect is greatly helped by comparison to theory, notably in
complex cases (Hourahine et al., 2000).

C. Requirements for theoretical and computational treatments

1. Electronic-structure approaches

Various methods are in principle available to investigate
the electronic structure of solids in general and defects in
particular.
Tight-binding methods use a local basis set, for which the

Hamiltonian matrix elements decrease rapidly with increasing
distance between the orbitals. Thus, instead of having to
diagonalize the full Hamiltonian matrix, most of the matrix
elements vanish and only a sparsematrix has to be diagonalized.
Twomainapproaches aredistinguished, basedonhow thematrix
elements are determined. Within the empirical tight-binding
approach, matrix elements are usually fitted to experiment, and
the lack of a consistent prescription is a problem. First-principles
tight-binding methods, on the other hand, use local orbitals to
explicitly calculate the matrix elements. The choice of orbitals
is critical: instead of the standard atomic orbitals, specifically
designed highly localized orbitals (e.g., Gaussians) are used.
Approximations are made in neglecting some of the multicenter
integrals and charge self-consistency. The description can be
improved by using a point-charge model to take charge transfer
and polarizability into account (Elstner et al., 1998).
The Hartree-Fock (HF) method is described in detail in

Sec. IV.A. For defect calculations this approach has been
employed only in a few cases since it is computationally much
more expensive than density functional theory discussed
below and provides no advantages with respect to predictive
power. For cluster models, correlated quantum-chemical post-
Hartree-Fock methods such as configuration interaction (CI),
complete active space methods [complete active space self-
consistent field (CASSCF) and complete active space second-
order perturbation theory (CASPT2)], or coupled-cluster (CC)
methods promise unrivaled theoretical accuracy. However, the
enormous computational effort and unfavorable scaling
behavior with respect to system size restrict such methods
to a few tens of atoms. While these approaches can be used for
benchmarking or to answer specific questions, in general the
artifacts due to inadequate cluster size may easily undo the
advantages gained from the high level of theory. In contrast,
hybrid approaches that are based on a combination of Hartree-
Fock theory and DFT have become feasible and highly
popular for defect calculations. The underlying concepts
and the performance of hybrid functionals are discussed
in Sec. IV.
DFT calculations have become the standard tool for first-

principles calculations of solids. DFT (Hohenberg and Kohn,

1964; Kohn and Sham, 1965) allows a description of the
many-body electronic ground state in terms of single-particle
equations and an effective potential. The latter consists of the
ionic potential due to the atomic cores, the Hartree potential
describing the electrostatic electron-electron interaction, and
the xc potential that takes into account the many-body effects.
This approach has proven to describe with high accuracy such
quantities as atomic geometries and charge densities.
Choices have to be made for the basis set and for the xc

functional. The LDA and GGA are still the most widely used
functionalswithinDFT,and inmost cases theyproduceaccurate
and reliable structural information. It is well recognized,
however, that these functionals fail to produce the correct band
structure; in particular, the band gap of semiconductors and
insulators is severely underestimated (Perdew and Levy, 1983;
Sham and Schlüter, 1983). This also affects the position of
defect-induced states in the band gap, and when these states are
occupied with electrons, the formation energy can also be
affected.AsmentionedwhendiscussingHartree-Fockmethods,
great progress has recently been made in overcoming these
limitations, and this is the subject of Sec. IV.
All-electron calculations can be carried out with techniques

such as the full-potential linearized augmented plane-wave
(FP-LAPW) method (Singh and Nordstrom, 2000) or atom-
centered basis sets [e.g., Gaussian (Frisch et al., 2009),
CRYSTAL (Dovesi et al., 2005), DMol3 (Delley, 2000), or
FHI-AIMS (Blum et al., 2009)]. In most cases, however, an
approximate treatment of the core electrons suffices, leading
to the pseudopotential approach (Pickett, 1989) or the PAW
approach (Blöchl, 1994; Kresse and Joubert, 1999). These
tend to be computationally more tractable than all-electron
approaches and hence have been most widely used for the
large system sizes required for first-principles studies of
defects. The pseudopotential or PAW approximations to deal
with the core electrons are essential for rendering plane-wave
basis sets efficient, but offer advantages also for pseudoatomic
orbital basis sets (Sankey and Jansen, 1988; Estreicher,
Fedders, and Ordejon, 2001; Soler et al., 2002) or real-space
grids (Mortensen, Hansen, and Jacobsen, 2005). Most of the
examples given in this review have been obtained based on
plane-wave calculations; however, in principle any well-
chosen basis set can be used, and the topics covered in this
review do not depend on this choice.

2. Constraints on accuracy of computational results

Comparing defect concentrations based on calculated for-
mation energies with experiment requires high accuracy.
Based on the expressions discussed in Sec. II.B, to limit
the error to less than an order of magnitude at a temperature
of 1000 K requires an accuracy of 0.2 eV. More detailed
comparisons, or lower temperatures, require even higher
accuracy. As noted in Sec. I.A.4, electronic-structure calcu-
lations for metals are capable of achieving such accuracy, and
the constraints mainly revolve around the inclusion of entropy
effects (see Sec. II.B.3). For semiconductors and insulators,
achieving accuracies even of a few tenths of an electron volt
has been challenging, and this has also limited the ability to
compare with experimental results for charge-state transition
levels, let alone to accurately predict concentrations or defect

Christoph Freysoldt et al.: First-principles calculations for point … 261

Rev. Mod. Phys., Vol. 86, No. 1, January–March 2014



levels. The most fundamental constraint on accuracy is due to
the approximations in the xc functionals. As shown in Sec. IV,
new theoretical techniques allowed great progress in reducing
these uncertainties.
Even if approximations in the underlying electronic-struc-

ture methods constitute a hard bound on the achievable
accuracy, guaranteeing this accuracy is often a challenging
task in practical defect calculations. The reason is the large
number of parameters involved in performing electronic-
structure calculations of defects, including the size of the
supercell, completeness of the basis set, and sampling of the
Brillouin zone, to name only a few. Even though all these
parameters are controllable, in the sense that they can be
systematically improved until convergence is reached, in
practice limitations in the computational resources place
severe restrictions on the extent to which such convergence
can be achieved.
Consider, for example, the issue of supercell-size conver-

gence. As discussed in Sec. III.C the electrostatic interaction
between a charged defect and its periodic images scales as
1=L, with L the dimension of the supercell. Thus, in a brute
force approach, to decrease the error by a factor of 2, the
necessary 3D volume and thus the number of atoms needs to
increase by a factor of 8. Since most DFT implementations
asymptotically scale with the third power of the number of
atoms, the computational effort needed to reduce the error by a
factor of 2 requires an increase by a factor of 83 ¼ 512 in
computer time. Improving the accuracy by an order of
magnitude requires increasing the computation time by a
factor of 109. It is therefore of extreme importance to design
and employ schemes that improve convergence (see, e.g.,
Sec. III.C).
Besides supercell-size convergence, an efficient k-point

sampling of the Brillouin zone is also critical. Brillouin-zone
integration is carried out by replacing the continuous integral
by a set of special points. Ideally, such sets contain a minimum
number of points (to reduce computational effort), conserve
the symmetry of the system, and provide an accurate estimate
of the integrated quantity. In practice, such sets are generated
with the Monkhorst-Pack scheme (Monkhorst and Pack,
1976), i.e., a regularly spaced mesh of n × n × n points in
the reciprocal-space unit cell. To avoid the inclusion of
extrema (i.e., local maxima or minima) in the band structure,
high-symmetry points such as the Γ point should be avoided.
Consequently, odd values of n are used for which by
construction the Γ point is excluded. Most defect geometries
conserve part of the point-group symmetry of the bulk system,
and the full set of points in the Brillouin zone can be reduced
to a set of points in the irreducible part of the zone. The
required size of n depends on the material and the considered
physical quantity. In general, metals require substantially
larger k-point sets than semiconductors and a careful choice
of the smearing scheme. Furthermore, the consideration of
vibrational contributions to the free energy of the defect calls
for a particularly careful k-point convergence (Grabowski,
Hickel, and Neugebauer, 2007).
Defects in semiconductors or insulators that exhibit a defect

state in the band gap show an artificial dispersion of the
defect-induced level in the supercell approach. A truly isolated
defect (corresponding to the limit of an infinitely large

supercell) leads to a flat, dispersionless defect level in the
then infinitely small Brillouin zone. Thus, the magnitude of
dispersion is a direct measure of the artificial interaction
between the defect and its neighboring images. For finite-
sized supercells, minima and maxima in the defect band
correspond to artificial bonding and antibonding states,
respectively. Using special points provides a way of averaging
over the defect band and corresponds to extracting non-
bonding states that closely resemble the isolated defect in
an infinite cell. These considerations imply that the Γ point,
which is sometimes used as the single k point for Brillouin-
zone integrations because of the numerical simplicity, pro-
vides a poor description since defect-defect interactions are
strongest at this point. Further discussions of this issue, as well
as guidelines for dealing with partially occupied defect levels,
are included in Sec. III.B.

II. THERMODYNAMIC CONCEPTS

The fundamental methodological approach to calculating
defect formation energies has been outlined in Sec. I.B.1.
As expressed in Eq. (1), defect formation energies are
defined as an energy difference between supercell calcu-
lations with and without a defect. Electronic-structure
calculations provide a great deal of additional information
beyond the formation energy of the defect. An analysis of
the energy as a function of atomic positions (potential
energy surface) and defect-state occupations allows
extracting many defect properties, notably the complete
finite-temperature thermodynamics. The implementation of
this concept in first-principles calculations involves a num-
ber of technical developments that are discussed in the next
sections. First, however, we review the relevant concepts
from statistical mechanics.
As noted in Sec. I.A.4, defect formation energies are

generally assumed to be independent of temperature.
Nevertheless, even at T ¼ 0 K the proper choice of the
chemical potential(s) in Eq. (1) decisively depends on phase
stabilities of the considered system (cf. Sec. II.B.2). Most
importantly, all experimental measurements of defect con-
centrations (see Sec. I.B.4) are performed at finite temper-
atures. While configurational entropy is the dominant
contribution, other entropy contributions can also become
relevant (in particular, for metals) and will therefore also be
discussed in this section.
In semiconductors and insulators, defects can typically

occur in different charge states. The resulting transition levels
(see Sec. I.B.3) are classified into thermodynamic or optical
levels, depending on the time scale of the transition. Even
though the optical levels are not thermodynamic properties,
they can be determined directly from the potential energy
surface and will therefore be discussed here. The physical
concepts related to this distinction will be addressed in
Secs. II.D and II.E.

A. Entropy of defects

1. Configurational entropy

Defect formation energies are always positive—otherwise
the host crystal would be unstable. It is therefore the
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configurational degree of freedom that allows point defects to
form in the first place. The configurational part of the entropy
has to counterbalance the energy cost of defect creation. A
general and rigorous approach to treat the configurational
entropy of point defects including their mutual interaction
requires methods such as the cluster expansion technique
(Sanchez, Ducastelle, and Gratias, 1984) combined with
Monte Carlo simulations. As mentioned in Sec. I, this review
focuses on isolated defects and ignores defect-defect inter-
actions. This assumption is justified due to the typically low
defect concentrations (dilute limit) in many physically rel-
evant cases. Consider, for instance, vacancies in elemental
metals, which are known to be the dominant defects over a
wide temperature range (Kraftmakher, 1998). Yet, even close
to the melting temperature their concentrations are typically
< 10−3, i.e., even under conditions where defect concentra-
tions are high the dilute limit applies.
If n is the number of point defects of a specific type andN is

the number of lattice sites, then the numberW of distinct ways
(≙microstates) to arrange the defects is (Keer, 1993)

W ¼ ðgNÞ!
ðgN − nÞ!n! ≈

ðgNÞn
n!

: (4)

Here g is a degeneracy factor accounting for the internal
degrees of freedom of the point defect. For instance, g ¼ 1 for
simple monovacancies but g ¼ 6 for a tetrahedral interstitial
site in a bcc structure since there are six such interstitial
positions per lattice site. Likewise g can capture spin degen-
eracy if it is not explicitly included in the electronic entropy
(see Sec. II.A.2). Further, Eq. (4) uses the fact that atoms and
point defects of the same kind are indistinguishable. The first
equation takes into account that creation of a defect reduces
the configuration space for the next defect. However, such
considerations make the derivations tedious, in particular,
when dealing with more than one type of defect. In the dilute
limit (n ≪ N), the second part of Eq. (4) is a well-justified
approximation.
The configurational entropy is given by (Keer, 1993)

Sconf ¼ kB ln W; (5)

and the corresponding term entering the free energy is
−TSconf . Since W ≥ 1 and T is always positive, −TSconf is
always negative, thus favoring defect formation. Note that
generally several kinds of defects exist simultaneously. This
yields a product W ¼ Q

iWi in the number of configurations,
and therefore a summation Sconf ¼ kB

P
i ln Wi in the

entropy.
The consideration of Eqs. (4) and (5) in the thermodynamic

limit allows the application of the Stirling approximation,
resulting in

Sconfðn; NÞ ¼ kB½n − n lnðn=NÞ þ n lnðgÞ�: (6)

It is convenient to transform this into a per atom quantity that
depends only on the point-defect concentration c ¼ n=N,

SconfðcÞ ¼ kB½c − c lnðcÞ þ c lnðgÞ�: (7)

By including the penalty energy for creating defects,
Econf ¼ cEf, with the energy of formation Ef from Eq. (1),
we arrive at the configurational free energy:

FconfðcÞ ¼ EconfðcÞ − TSconfðcÞ
¼ cEf½Xq� − TkB½c − c lnðcÞ þ c lnðgÞ�: (8)

This equation gives direct access to the equilibrium defect
concentration as outlined in Sec. II.B.3. Before considering
the equilibrium concentration, however, we need to take into
account the fact that in a fully consistent treatment the defect
energy of formation acquires a temperature and volume or
pressure dependence and becomes a Gibbs energy of for-
mation, i.e., Ef → Gf. The contributions responsible for this
are the electronic and vibrational entropy, which are discussed
in the following sections.

2. Electronic entropy

We aim to compute the formation free energy of an isolated
defect in a fully integrated first-principles approach. The
starting point is the free-energy Born-Oppenheimer approxi-
mation (Cao and Berne, 1993), which is a thermodynamic
extension of the standard Born-Oppenheimer approximation.
The main result of this approximation is that the ionic
movement, i.e., the motion of the point defect, is governed
by the electronic free-energy surface FelðfRIg; V; TÞ. Here
the thermodynamic averaging has been done only over a part
of the microscopic configuration space (the electronic degrees
of freedom), which should formally not be the case for a
thermodynamic potential. Therefore, the superscript “el” as
well as the indication of the dependence on the microscopic
atomic coordinates ðfRIgÞ is important for distinguishing
these quantities from the full free energy F.
Thecrucial step thatallowsforaseparation into thephysically

relevant excitation mechanisms is a Taylor expansion of
FelðfRIg; V; TÞ around the equilibrium positions fR0

Ig:

FelðfRIgÞ ¼ Fel
0 þ 1

2

X
k;l

ukul

� ∂2Fel

∂Rk∂Rl

�
fR0

I g
þOðu3Þ: (9)

Here the zeroth-order term is abbreviated as
Fel
0 ðV; TÞ≔FelðfR0

Ig; V; TÞ, k and l run over all nuclei of the
system and additionally over the three spatial dimensions for
each nucleus, and uk ¼ Rk − R0

k is the displacement out of
equilibrium.Equilibriumpositions refer to the atomic geometry
that is obtained after introducing the point defect into the perfect
bulk and relaxing the atoms until the corresponding forces
are zero. Since forces are related to the first-order term in the
expansion, this term vanishes from Eq. (9). The higher-order
terms correspond to vibrational motion and are discussed in
Sec. II.A.3.
The zeroth-order term in Eq. (9) is related to electronic

entropy. If DFT is performed at finite temperatures, as first
introduced by Mermin (1965), then the electronic free energy
is given as

Fel
0 ðV; TÞ ¼ EelðfR0

Ig; V; TÞ − TSelðfR0
Ig; V; TÞ: (10)
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Here the temperature enters via the energy EelðV; TÞ, due to
the T dependence of the occupation of KS energy levels, as
well as via the second term. The latter contains in Sel the
electronic entropy given by an ideal mixing as

SelðfR0
Ig; V; TÞ ¼ −kB

X
i

½ð1 − fiÞ ln ð1 − fiÞ þ fi ln fi�;

(11)

where the sum runs over all electronic states with Fermi-Dirac
occupation weights fi ¼ fðT; ϵiÞ. Depending on the way spin
polarization is considered, Eq. (11) is sometimes written with
an additional factor of 2.
For an accurate treatment of temperature dependences it is

often useful to separate the zero-temperature electronic energy
Eel
0 from Fel

0 as

Fel
0 ðV; TÞ ¼ Eel

0 ðVÞ þ ~Fel
0 ðV; TÞ: (12)

The remainder ~Fel
0 describes the temperature dependence of

both terms in Eq. (10). For a continuous density of states at the
Fermi level it can be shown (Methfessel and Paxton, 1989)
that ~Fel

0 varies quadratically with temperature, which leads to
(Kresse and Furthmüller, 1996)

~Fel
0 ðV; TÞ ¼ −1

2
TSel þOðT3Þ: (13)

3. Vibrational entropy

a. Quasiharmonic excitations

The second-order term in Eq. (9) describes quasiharmonic
excitations due to noninteracting but volume-dependent pho-
nons. To arrive at an explicit expression for the corresponding
free energy we first define the dynamical matrix D:

Dk;lðV; TÞ≔
1ffiffiffiffiffiffiffiffiffiffiffiffi

MkMl
p

�∂2FelðfRIg; V; TÞ
∂Rk∂Rl

�
fR0

I g
; (14)

where Mk (Ml) is the atomic mass of atom k (l). The
dynamical matrix D depends not only on the volume V but
also on the temperature T which is a consequence of the
temperature dependence of the electronic free-energy surface
Fel. Note that at this stage T determines electronic excitations
by the Fermi broadening rather than atomic motion. Next the
dynamical matrix is diagonalized,

DðV; TÞwi ¼ ω2
i ðV; TÞwi; (15)

resulting in eigenvectors wi and phonon frequencies ωi. The
obtained phonon frequencies allow one to determine the vibra-
tional internal energy in the quasiharmonic approximation,

Eqh ¼
X
i

�
1

2
þ ni

�
ℏωi; (16)

which yields after the application of some statistics and trans-
formations the quasiharmonic free energy (Wallace, 1998):

Fqh ¼
X
i

�
ℏωi

2
þ kBT ln

�
1 − exp

�
− ℏωi

kBT

���
: (17)

For periodic systems it is convenient to transform the real-space
dynamical matrix [Eq. (14)] into its reciprocal-space represen-
tation. This allows an accurate interpolation of the phonon
frequencies, which is critical for integrals or sums over the
Brillouinzone, as inEq. (17).For systemsbreaking translational
symmetry, such as a solid containing a point defect, a Fourier
transformation is not meaningful and the analysis should be
performed in real space.
In practice, the supercells in first-principles calculations of

point defects are of limited size (100–1000 atoms). As a result
the number of phonon modes entering Eq. (17) is limited. As
shown by Grabowski, Hickel, and Neugebauer (2011), a
consistent treatment of the corresponding bulk reference
calculation guarantees converged results. Specifically, the
quasiharmonic free energy of the reference perfect bulk
system needs to be calculated on the identical mesh of phonon
wave vectors as used for the point defect.
Studies of the quasiharmonic contribution to the formation

free energy are still rare, even though its importance has been
shown (Estreicher et al., 2004; Lucas and Schäublin, 2009)
For example, Lucas and Schäublin (2009) investigated vacan-
cies and self-interstitials (the h110i and h111i dumbbells) in
bcc iron. Figure 2 shows a major result of Lucas and
Schäublin (2009): vibrations within the quasiharmonic
approximation can change the formation free energy by as
much as 0.5 eV over a range of 1000 K. Figure 2 also shows
that the contributions can differ significantly for different
point defects (compare, e.g., the almost constant free energy of
formation for the h110i split-interstitial dumbbell with the
strong dependence of the free energy of formation for the
h111i interstitial).

b. Beyond the quasiharmonic approximation: Explicitly anharmonic
excitations

A conceptually simple approach to include higher-order
terms in Eq. (9) is first-principles-based molecular dynamics
(MD), for which the free energy is obtained from an
integration of the internal energy with respect to temperature
(Ackland, 2002). The use of conventional MD, however,

FIG. 2 (color online). Quasiharmonic formation free energy of
the vacancy and the h110i and h111i split-interstitial dumbbell in
bcc iron. Adapted from Lucas and Schäublin, 2009.

264 Christoph Freysoldt et al.: First-principles calculations for point …

Rev. Mod. Phys., Vol. 86, No. 1, January–March 2014



requires computation times that are impracticable. Therefore
highly efficient sampling strategies to perform the thermody-
namic averages had to be developed (Grabowski et al., 2009).
The approaches can be divided into two classes:

(1) Thermodynamic-integration-based techniques, which start
from a reference system for which the free energy can be
easily obtained either analytically or numerically. Making an
adiabatic connection to the true first-principles potential
energy surface, only the small differences in free energies
between reference and full surface need to be sampled.
(2) Free-energy perturbation techniques, which use well-
approximated phase-space samplings to compute first-order
free-energy shifts.
We focus on the thermodynamic integration method first.

Often the quasiharmonic potential energy surface is a suitable
reference system. Note that, while the quasiharmonic calcu-
lations discussed above contain quantum effects, the thermo-
dynamic integration is commonly performed classically,
yielding a classical anharmonic correction Fclas;ah to the
classical free energy Fclas [although extensions are possible
(Ramirez et al., 2008)]. Therefore, for a consistent treatment
the quasiharmonic reference needs to be considered classi-
cally, as expressed by Fclas;qh:

Fclas;ah≔Fclas − ðFel
0 þ Fclas;qhÞ

¼ ½Fclas
λ �λ¼1 − ½Fclas

λ �λ¼0 ¼
Z

1

0

dλ

�∂Fel
λ

∂λ
	

t;λ
: (18)

Here Fel
λ ðfRIg; tÞ is the λ-dependent electronic free-energy

surface determining the classical motion of the nuclei in the
coupled system and h⋅it;λ denotes the time average at a given λ.
Provided the boundary conditions for λ ¼ 0 and λ ¼ 1 are
fulfilled, any type of coupled system can be chosen. In
practice, a simple linear coupling to the quasiharmonic
reference,

Fel
λ ðfRIg; V; TÞ ¼ λFelðfRIg; V; TÞ

þ ð1 − λÞ
�
Fel
0 ðV; TÞ

þ
X
k;l

ffiffiffiffiffiffiffiffiffiffiffiffi
MkMl

p
2

ukulDk;lðV; TÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Uclas;qhðfRIg;V;TÞ

�
(19)

(uk ¼ Rk − R0
k), yields computationally efficient results.

Finally, the anharmonic free energy reads

Fclas;ahðV; TÞ ¼
Z

1

0

dλhFelðfRIg; V; TÞ − Fel
0 ðV; TÞ

− Uclas;qhðfRIg; V; TÞit;λ: (20)

The use of the thermodynamic integration makes the
determination of anharmonic entropy contributions a few
orders of magnitude more efficient than a conventional
molecular dynamics simulation. The high accuracies neces-
sary to obtain these contributions in the case of point defects
render the first-principles simulation still a formidable task.

Efforts are therefore under way to explore new methods to
further reduce computation times. On the one hand, one can
reduce the complexity of the first-principles treatment by
incorporating analytical assumptions regarding the volume
and temperature dependence of anharmonic contributions
(Wu, 1991; Wu and Wentzcovitch, 2009). On the other
hand, the numerical precision can be stepwise improved by
application of free-energy-perturbation techniques.
A strategy combining both approaches is the upsampled

thermodynamic integration using Langevin dynamics
(UP-TILD) method (Grabowski et al., 2009). Its main idea
is that DFT convergence parameters (for example, the elec-
tronic k-point sampling) that provide a low precision can be
used to obtain for each thermodynamic integration step a
phase-space distribution (termed fRIglowt in the following)
which closely resembles the phase-space distribution fRIghight
that would be obtained from parameters yielding highly
converged results. In this way it is possible to sample various
λ, V, and T values with modest computational resources.
However, the resulting free-energy surface h∂Fel

λ =∂λilowt;λ ,
which is required as input for the thermodynamic integration,
needs to be corrected in a second step. For this purpose free-
energy perturbation theory is employed: a small set of NUP

uncorrelated structures fRIglowtu (indexed with tu) is extracted
from fRIglowt and the upsampling average hΔFeliUPλ is
calculated as

hΔFeliUPλ ¼ 1

NUP

XNUP

u

Fel;lowðfRIglowtu Þ − Fel;lowðfR0
IgÞ

− ½Fel;highðfRIglowtu Þ − Fel;highðfR0
IgÞ�: (21)

Here Fel;low (Fel;high) refers to the electronic free energy
calculated using DFT parameters for low (high) convergence.
The λ dependence of hΔFeliupλ is hidden in the trajectory
fRIglowt , which is additionally dependent on the volume and
temperature. In the last step, the quantity of interest, i.e., the
converged h∂Fel

λ =∂λihight;λ , is obtained from

h∂Fel
λ =∂λihight;λ ¼ h∂Fel

λ =∂λilowt;λ − hΔFeliupλ ;

and thus the anharmonic free energy reads

Fclas;ah ¼
Z

1

0

dλh∂Fel
λ =∂λihight;λ : (22)

The efficiency of this method is exemplified by the fact that in
practice fewer than 100 uncorrelated configurations have to be
calculated with high convergence parameters to get statistical
error bars below 1 meV, whereas a full thermodynamic
integration includes many thousands of configurations
(Grabowski et al., 2009).

B. Free energy of formation and defect concentrations

1. Point defects at finite temperatures and pressures

By consistently taking into account the full temperature and
volume dependence of the electronic and vibrational entropy
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contributions (see Secs. II.A.2 and II.A.3), the thermody-
namically relevant quantity becomes the Gibbs energy of
formation Gf. The central formula Eq. (1) changes in such a
case to

Gf½Xq�ðP; TÞ ¼ F½Xq�ðΩ0; TÞ − F½bulk�ðΩ; TÞ þ PVf

−
X
i

niμiðP; TÞ þ qEF þ Ecorr: (23)

Here F½Xq� is the free energy of a supercell containing the
defect Xq and F½bulk� is the free energy of the corresponding
perfect bulk supercell. Both free energies are consistently
composed of the contributions discussed in the previous
sections:

F½Xq� ¼ Fel
0 ½Xq� þ Fqh½Xq� þ Fclas;ah½Xq�; (24)

F½bulk� ¼ Fel
0 ½bulk� þ Fqh½bulk� þ Fclas;ah½bulk�: (25)

They are calculated at volumes Ω0 and Ω, respectively, which
correspond to the given pressure P. Further, in Eq. (23), Vf is
the volume of formation Vf ¼ Ω0 − Ω, and the chemical
potentials μi acquire a pressure and temperature dependence.
The chemical potentials need to contain the same free-energy
contributions as included in F½Xq� and F½bulk�.

2. Chemical potentials

a. Variability and limits

The chemical potentials appearing in the formation (Gibbs)
energy, Eqs. (1) and (23), reflect the reservoirs for atoms that
are involved in creating the defect. Chemical potentials of pure
phases depend on pressure and temperature. To emphasize the
strong dependence of the chemical potential of gases like N2

on temperature and partial pressure, we keep these variables in
our notation for μðN2; P; TÞ while omitting them for solid
phases for the sake of readability. Ultimately, the experimental
conditions under which the defects are created uniquely define
the relevant reservoirs. Conversely, by varying the chemical
potentials in the calculation, different experimental scenarios
can be explored. In the general formalism, chemical potentials
are regarded as variables. However, they are subject to specific
bounds. These bounds are set by the existence or appearance
of secondary phases. Consider, for instance, growth of a
compound semiconductor such as GaN. The chemical poten-
tials of Ga and N are linked by the stability of the GaN
phase, i.e.,

μGa þ μN ¼ μðGaNÞ: (26)

Bounds on the chemical potentials are set by the formation
of metallic Ga and molecular nitrogen, respectively,

μGa ≤ μGaðGametalÞ; (27)

μN ≤ μNðN2; P; TÞ: (28)

When combined with Eq. (26), the lower bounds on μGa and
μN transform into upper bounds for the corresponding other
species:

μðGaNÞ − μNðN2; P; TÞ ≤ μGa; (29)

μðGaNÞ − μGaðGametalÞ ≤ μN: (30)

When impurities are present, their chemical potentials μi
[Eq. (1)] are subject to similar bounds, imposed by the
formation of stable phases with the elements of the host
material, or among each other. For instance, when hydrogen is
present as an impurity in GaN, formation of NH3 may place a
stricter upper bound on μH than the formation of H2 [depend-
ing on the value of μN (Van de Walle and Neugebauer,
2003a)]. If two impurities are present, for instance, hydrogen
and oxygen, then in addition to the formation of NH3 and
Ga2O3 the formation of H2O needs to be considered.
When direct comparisons with experimental findings are

attempted, one needs to critically assess whether equilibrium
conditions apply. For instance, when a material is annealed at
a high temperature under an overpressure of a certain element,
it may be appropriate to relate the chemical potential of that
species with the partial pressure in the gas phase. On the other
hand, the nucleation of solid phases is often kinetically
hindered, which may allow the thermodynamic limits to be
exceeded to a certain degree (Abu-Farsakh and Neugebauer,
2009). In this context, the concept of constrained thermody-
namic equilibrium (Reuter and Scheffler, 2003) can be help-
ful, where equilibrium is assumed only between some phases
(or defects) in the system, but not all.

b. Chemical potential reference

Numerical values of chemical potentials always depend
on their implicit reference. In electronic-structure calculations,
chemical potentials can be referenced to the total energy
of the elementary phases at T ¼ 0 K. Experimental databases
employ elementary phases at standard conditions (T ¼ 273.15
or 298.15 K and P ¼ 100 or 101.325 kPa). These different
approaches are equally valid and differ only by the (free)
energy of formation of the standard phase in the electronic-
structure reference. What is crucial, however, is that a
consistent choice is made for all chemical potentials and
formation energies considered.
To avoid confusion relating to the choice of reference, it is

advisable to directly include it in the equations by using

ΔμGa ¼ μGa − μGaðGametalÞ; (31)

ΔμN ¼ μN − μNðN2; P0; T0Þ (32)

ΔμGaN ¼ μGaN − μGaðGametalÞ − μNðN2; P0; T0Þ
¼ ΔfG0ðGaNÞ: (33)

Here we have introduced the standard Gibbs energy of
formation ΔfG0. Using these definitions, Eq. (26) becomes

ΔμGa þ ΔμN ¼ ΔfG0ðGaNÞ; (34)

independent of the underlying reference.
For a gas-phase species it is critical to take the temperature

and pressure dependence into account. For solid phases, on
the other hand, these dependences are usually negligible in a
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first approximation. For the gas phase, the chemical potentials
can be related to partial pressures P by standard thermody-
namic expressions. For instance, for N2

2μN ¼ EðN2Þ þ kBT ln
PVQ

kBT
þ ln

σB0

kBT
þ μvib; (35)

where VQ ¼ ð2πℏ2=mkBTÞ3=2 is the quantum volume, B0 is
the rotational constant, and σ is the associated symmetry
factor (2 in the case of homonuclear diatomic molecules). The
vibrational contribution to the chemical potential μvib can be
straightforwardly obtained from the vibrational free energy
[Eq. (17)], but should be included only if it is also included for
the bulk phases.

c. Chemical potential of electrons

In semiconductors or insulators, defects commonly appear
in charged states. Charge is exchanged with a reservoir of
electrons, the energy of which is the electron chemical
potential, in other words, the Fermi energy EF. It should
be emphasized that the relevant Fermi energy here is not the
(artificial) Fermi energy of the DFT calculations. The latter is
adjusted to maintain the total electron number in the defect
supercell calculation when Kohn-Sham states are occupied
according to a Fermi-Dirac distribution. The Fermi energy that
is relevant in the real material, in a thermodynamic context,
depends on any defects or impurities contained therein and is
determined by the condition of charge neutrality

X
X;q

qcðXqÞ þ nh − ne ¼ 0 (36)

for the combined set of defects Xq, free holes (nh), and free
electrons (ne). The concentration of the free carriers is
formally obtained by an integration of the electronic density
of states DðEÞ,

ne − nh ¼
Z

∞

−∞
dE

DðEÞ
1þ exp½ðE − EFÞ=kBT�

− Nelectron; (37)

where Nelectron is the number of electrons in the neutral bulk
cell. In the case of isotropic, parabolic bands with effective
mass m�, and for sufficiently low electron concentrations
(nondegenerate case), this equation can be approximated by a
Boltzmann expression,

ne ≈
�
m�kBT
2πℏ2

�
3=2

e−ðϵCBM−EFÞ=kBT; (38)

where ϵCBM is the conduction-band energy. Since the defect
concentrations cðXqÞ depend on EF (see Sec. II.B.3), the
condition of charge neutrality [Eq. (36)] implicitly defines the
Fermi energy. When the Boltzmann approximation applies,
this amounts to the solution of a polynomial equation in
expðEF=kBTÞ. In general, EF can be found by standard root-
finding algorithms.

3. Defect concentrations

The Gibbs energy of formation Gf [Eq. (23)] cannot be
directly compared with experiment. However, in thermody-
namic equilibrium, Gf determines the equilibrium concen-
tration of the defects, which is a quantity that can be
experimentally measured. The equilibrium concentration
can be obtained by optimizing the total Gibbs energy G of
the system which is obtained by replacing Ef in Eq. (8) by
Gf from Eq. (23) and by adding the Gibbs energy of the
perfect bulk G½bulk�, the Legendre transform of F½bulk� from
Eq. (25):

G ¼ G½bulk� þ cGf − kBT½c − c lnðcÞ þ c lnðgÞ�: (39)

The equilibrium condition ∂G=∂c≡ 0 yields (Varotsos and
Alexopoulos, 1986)

GðP; TÞ ¼ G½bulk�ðP; TÞ − kBTceqðP; TÞ; (40)

with ceqðP; TÞ being the equilibrium defect concentration:

ceqðP; TÞ ¼ g exp½−GfðP; TÞ=kBT�: (41)

Experimentally, guaranteeing thermodynamic equilibration
typically requires high temperatures (roughly > 0.5Tm).
Energies at T ¼ 0 K, which are needed to compare with
standard DFT calculations, can thus be obtained only by
extrapolation. Commonly, an Arrhenius relation

ceqðTÞ ¼ g exp½−ðHf − TSfÞ=kBT� (42)

with temperature-independent values for the enthalpy of
formation Hf and entropy of formation Sf is assumed. In
an Arrhenius plot, i.e., a plot of logðceqÞ vs 1=T, the condition
of constant Hf and Sf results in a linear behavior. Deviations
from linearity imply non-Arrhenius behavior. In this case Hf

and Sf must be treated as temperature-dependent quantities.
Figure 3 shows experimental data (black symbols) for the

concentration of vacancies in fcc Al as determined by positron
annihilation and dilatometry. The data closely follow a linear
relation and the existence and relevance of non-Arrhenius
behavior is difficult to quantify. The reason is the large
statistical noise at the low-temperature end (due to the
extremely small vacancy concentrations at low temperatures),
the absence of any data for temperatures below 0.5Tm–0.6Tm,
and the occurrence of defect complexes (e.g., divacancies). As
a consequence, it is presently impossible to experimentally
check the validity of an Arrhenius extrapolation of the high-
temperature data down to T ¼ 0 K. We come back to this
issue in Sec. II.C.
Figure 3 also shows LDA and GGA-PBE (Perdew-Burke-

Ernzerhof) DFT data obtained with Eq. (41) including
quasiharmonic and electronic contributions to Gf (dashed
lines) and additionally taking anharmonicity into account
(solid lines) (Glensk et al., 2014). From the shown
dependences, a number of conclusions can be deduced:
First, in the experimentally accessible temperature window
the theoretical data, at both the quasiharmonic and the full
anharmonic levels, are close to an Arrhenius behavior.
Second, similar to previous studies of T-dependent
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thermodynamic quantities (Grabowski, Hickel, and
Neugebauer, 2007), the LDA and GGA give approximately
an upper and a lower bound to the experimental data. Finally,
we note the good agreement between theory and experiment,
which is particularly impressive when considering the expo-
nential scaling with respect to the free energy of defect
formation according to Eq. (41).
While the presented example of Al demonstrates that the

methodological developments of the past few years now allow
one to perform defect calculations including anharmonic free-
energy contributions, such calculations are still computation-
ally highly demanding. Therefore, the majority of the defect
calculations now and in the near future will be most likely
performed at the T ¼ 0 K level, including temperature effects
only via configurational entropy or at the quasiharmonic level.
Typical deviations from experiment on the order of a few
tenths of an electron volt for the formation free energies
(Delczeg et al., 2009; Nazarov, Hickel, and Neugebauer,
2012) and approximately an order of magnitude for defect
entropies (Andersson and Simak, 2004) have been reported.
Possible origins of these discrepancies between theory and
experiment are analyzed in Sec. II.C.

C. Sources of discrepancies between theory and experiment

The differences between theoretical and experimental
defect formation enthalpies and entropies are related to the
limited accuracy in both experiment and theory. As pointed
out in Sec. II.B, experimentally a direct determination of
defect formation enthalpies (e.g., by calorimetry) is not
possible and only an indirect deduction from defect concen-
trations measured at high temperatures is used. Thus, all
experimentally derived defect formation energies and entro-
pies are strictly speaking high-temperature data. All T ¼ 0 K
data commonly used to compare with T ¼ 0 K DFT results

are only an extrapolation based on the assumption that the
Arrhenius behavior applies down to zero temperature.
On the other hand, theory also has only a limited precision

and accuracy. For first-principles calculations, two possible
sources of error have to be distinguished: first, errors resulting
from the limited precision of the defect calculations, for
instance, due to incompletely converged basis sets, k-point
sampling, or supercell sizes; and second, the approximate
nature of the xc functionals employed in DFTand the lack of a
procedure to systematically improve their accuracy. For
metals, with the techniques outlined in Secs. II.A and II.B
it is possible in practical DFT calculations to achieve a
precision that is systematically below the intrinsic error of
the DFT xc functionals. Thus, two major sources for discrep-
ancies between theoretical and experimental data remain and
need to be analyzed carefully: (i) the extrapolation of
high-temperature experimental defect concentration data to
T ¼ 0 K defect formation energies and (ii) DFT xc functional
errors. Both issues are addressed in Secs. II.C.1 and II.C.2.

1. Non-Arrhenius behavior of defect concentrations

The approaches outlined in Sec. II.B.3 allow one to
compute the temperature dependence of the Gibbs energy
of defect formation up to the melting temperature and thus to
explicitly check the validity of the linear (Arrhenius) behavior
in Eq. (42). Calculations for vacancies in metals (Grabowski
et al., 2009, 2011; Glensk et al., 2014) show large deviations
from a linear behavior, indicating that the underlying
assumption of a temperature-independent enthalpy and
entropy is not valid. The explicit dependence of the Gibbs
energy of defect formation is shown in Fig. 4 for the example
of an Al vacancy. Considering only the experimentally
accessible range of high temperatures (> 550 K) the Gibbs
energy of formation is approximately linear, i.e., the defect
entropy and enthalpy are constant in this temperature range.
The slope gives the entropy (Sf ¼ −∂Gf=∂T), and the
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FIG. 3 (color online). Equilibrium concentration of vacancies in
aluminum at zero pressure as a function of Tm=T, where Tm is the
melting temperature. The first-principles results have been
obtained according to Eq. (41) with (solid lines) and without
(dashed lines) the inclusion of anharmonic (ah) contributions to
the free energy of formation. Both LDA and GGA functionals
have been applied. Experimental results are included for com-
parison. Adapted from Grabowski et al., 2009.
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FIG. 4 (color online). DFT-computed temperature dependence of
the Gibbs energy of vacancy formation in Al. The horizontal
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cluding anharmonic contributions. The dotted lines show the
linear (Arrhenius) extrapolation of high-temperature formation
enthalpies down to T ¼ 0 K as discussed in the text.
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extrapolation to T ¼ 0 K (dashed lines) the high-temperature
enthalpy Hf. The corresponding values were computed by
Grabowski, Hickel, and Neugebauer (2011) and are listed in
Table I at the quasiharmonic and anharmonic levels. Table I
shows that these values obtained from high-temperature data
are significantly different from the actual T ¼ 0 K values for
both enthalpy and entropy. Since quantization effects are fully
included, the entropy goes to its correct asymptotic limit
(Sf ¼ 0kB) at T ¼ 0 K. Furthermore, since anharmonic con-
tributions become negligible at low temperatures, the for-
mation enthalpies at the quasiharmonic and the anharmonic
levels are identical in this limit.
Comparing the high-temperature enthalpies and entropies

(which correspond to the situation in actual experiments) with
the low-temperature values provides direct access to temper-
ature-related corrections due to non-Arrhenius behavior. For
the Al vacancy the correction is well below 0.1 eV (see
Table I). For other vacancies deviations up to 0.3 eV have been
reported (Glensk et al., 2014). Table I shows further that non-
Arrhenius effects in entropy have much more dramatic
consequences and can change the entropy from 0kB to more
than 2.2kB. Moreover, non-Arrhenius behavior is the origin of
the differences in the high-temperature entropies and to a
lesser extent in the enthalpies between quasiharmonic and
fully anharmonic calculations. Going from the approximate
quasiharmonic description to a fully anharmonic one can
result in entropy changes of an order of magnitude, e.g., from
0.2kB to 2.2kB in the case of the Al vacancy. In any
comparison of DFT T ¼ 0 K data with experiment one should
be aware of the magnitude of these deviations. As a conse-
quence, when aiming at accuracies in the formation enthalpies
on the order of 0.1 eV or when computing defect entropies,
inclusion of temperature effects at the fullest level (i.e.,
including anharmonic contributions) is mandatory.

2. Effect of xc errors on defect formation energies

For point defects in semiconductors or insulators, the
dominant intrinsic error is due to the band-gap problem
and can be traced back to the spurious self-interaction in
DFT within the traditional local density or generalized
gradient approximations. In Sec. IV strategies are discussed
that address and overcome this issue.

For metals, self-interaction artifacts are less significant due
to the highly efficient electronic screening. As a consequence
measurable quantities related to the bulk electronic structure,
such as the work function, usually agree with experiment to
better than 0.1 eV. The corresponding errors for nonmetals are
typically up to an order of magnitude larger. Due to this
fortunate situation, defect formation energies for metals are
generally more accurate than for semiconductors or insulators.
Still, even in metals errors due to the approximate nature of the
xc functionals exist and need to be analyzed. Commonly, the
dominant intrinsic defect in metals is the vacancy and we
restrict the following discussion to this defect.
Systematic studies on vacancy formation energies in metals

(Carling et al., 2000; Mattsson and Mattsson, 2002; Delczeg
et al., 2009) indicate that the LDA gives generally more
accurate energies as compared to the various GGAs such as
PBE (Perdew, Burke, and Ernzerhof, 1997) or PW91 (Perdew,
1991). These differences have been explained by the different
abilities of the LDA and GGA to describe surface energies.
Since a vacancy can be viewed as an inner surface in an
otherwise perfect bulk matrix, various approaches to correct
for this shortcoming have been proposed. Carling et al.
(2000) employed a postprocessing correction scheme using
jellium surfaces to estimate the error. In contrast to realistic
surfaces or defects, these model surfaces can be solved not
only using standard DFT functionals, but also by quantum
Monte Carlo (QMC) techniques, and allow one thus to
quantitatively estimate the DFT error in describing surfaces.
For Al (Carling et al., 2000), as well as Pt, Pd, and Mo
(Mattsson and Mattsson, 2002), significantly improved for-
mation energies as compared to experimental data were found.
In subsequent studies Armiento and Mattsson proposed a new
xc functional AM05 (Armiento and Mattsson, 2005; Mattsson
et al., 2008) to overcome the deficiencies of other GGA
functionals (PBE and PW91) in describing point defects.
Delczeg et al. (2009) tested the accuracy of the AM05
functional for formation energies of vacancies in three fcc
metals (Al, Cu, and Ni). They concluded that the LDA
provides a better description of vacancy formation energies
than the PBE or AM05 functional. A recent extension
(Nazarov, Hickel, and Neugebauer, 2012) of the postprocess-
ing approach by Carling et al. (2000) avoids making assump-
tions about size and shape of the inner surface and reduces the
difference between the LDA and the various GGA results
from a few tenths of an electron volt to typically less
than 0.1 eV.
It should be noted that all the above correction schemes are

limited to vacancies. In metals, we expect xc-related errors to
be largest for vacancies since density gradients are strongest
and chemical bonds are broken. Still, the use of higher-level
methods such as the random phase approximation (RPA) (see
Sec. IV.F.4) that allow going beyond DFT is highly desirable
to systematically analyze xc-related errors in defect energies;
such methods are expected to become affordable in the near
future.

D. Thermodynamic transition levels

As mentioned in the Introduction (see Sec. I.B.3), the
different charge states of defects in semiconductors and

TABLE I. First-principles enthalpyHf and entropy of formation Sf

for aluminum. The high-temperature (T ¼ Tm) values are obtained
from a linear (Arrhenius) extrapolation (see text). For comparison the
low-temperature data (T ¼ 0 K) are also given. The calculations have
been performed with (w) and without (w/o) the consideration of
anharmonic (ah) lattice vibrations. The LDA and GGA xc functionals
have been used and the results are compared to experimental data
(Simmons and Balluffi, 1960).

Hf (eV) Sf (kB)
T LDA GGA LDA GGA

DFT w/o ah 0 K 0.68 0.63 0.0 0.0
DFT with ah 0 K 0.68 0.63 0.0 0.0
DFT w/o ah Tm 0.65 0.58 0.2 0.1
DFT with ah Tm 0.78 0.68 2.2 1.5
Experiment Tm 0.76 2.4

Christoph Freysoldt et al.: First-principles calculations for point … 269

Rev. Mod. Phys., Vol. 86, No. 1, January–March 2014



insulators are of the utmost importance for materials charac-
terization and device applications. On changing the charge
state of a defect, for instance, by optical excitation or by
shifting the position of the Fermi level with an applied electric
field, the local atomic structure can change and the defect
assumes a new thermodynamic ground state. Depending on
the time scale on which the change occurs two cases can be
distinguished. In the first case, the transition occurs slowly so
that the defect has sufficient time to equilibrate into its new
ground state; i.e., the equilibration occurs on the phonon time
scale (picoseconds). The defect goes from one equilibrated
configuration with charge state q to a different configuration
with charge state q0, and the transitions are called thermody-
namic transition levels. In the second case, the transition
occurs via optical excitations and the atomic geometry of the
original charge state q is frozen in on the time scale of the
measurement. These transitions are called optical transitions
and are discussed in Sec. II.E.
Figure 5 illustrates the distinction schematically for an

acceptor-type defect that can exist in two charge states,
namely, neutral (q ¼ 0) and singly negatively charged
(q ¼ −1). The figure shows that both types of transitions
can be derived from standard defect calculations. To obtain the
thermodynamic transition level the crossing point between the
fully relaxed defect structures (solid lines) is computed. This
level is independent of the direction of this transition, i.e.,
whether an electron is added or removed.

1. Deep levels

In general, transition levels are called deep levels when they
are energetically “deep” in the band gap and far away from the
band edges. For these defect levels the energy required to
remove electrons from the valence band or to add electrons to
the conduction band is much larger than the thermal energy

kBT. Such levels are usually undesirable in electronic or
optoelectronic devices since they provide uncontrolled radi-
ative or nonradiative recombination channels. These channels
deteriorate device performance and may act as a source of
failure mechanisms that reduce device lifetimes. In some
cases, though, deep levels can be used constructively, for
instance, to pin the Fermi level in an energy region far
from the band edges, leading to semi-insulating material.
Such layers can serve as insulating buffer layers in electronic
devices. Deep levels can also be used as single spin centers
for quantum computing, for which the nitrogen-vacancy (NV)
center in diamond is an outstanding example (Weber
et al., 2010).
Deep levels are typically associated with defects for which

the local atomic geometry significantly deviates from the ideal
bulk structure; examples include vacancies with broken
bonds, interstitials, transition-metal impurities with localized
states only weakly interacting with the host, and DX centers
which include large displacements of impurity or host atoms.

2. Shallow levels

Shallow levels are defect-induced states appearing closely
above the VBM or below the CBM. Their energetic distance
to the band edges is within a few kBT, resulting in efficient
ionization of electrons from the valence band into the defect
level (leading to holes in the valence band) or of electrons
from the defect level into the conduction band (leading to
mobile electrons). Shallow levels are the origin of controlled
n- and p-type conductivity. However, not all shallow levels are
technologically desirable: unintentional dopants (impurities)
may also introduce shallow levels, resulting in compensation
and thus reduction of doping efficiency.
Traditionally, shallow defect levels have been associated

with substitutional atoms that have only a small impact on the
crystal lattice and thus the bulk band structure, but which
introduce extra holes or electrons into the system. Elements
taken from adjacent columns in the periodic table, relative to
the host atom for which they are substituting, tend to play
this role.
Shallow donors largely conserve the bulk band structure,

but they introduce a state in the conduction band that, in the
neutral charge state, would be occupied with an extra electron.
This carrier is transferred to the CBM, resulting in a Coulomb
attraction between the electron and the positively charged
defect center. This attraction leads to the formation of a
hydrogenlike defect state, the main differences from an
isolated H atom being that the electrostatic interaction is
effectively reduced by efficient electronic screening in solids,
and that the free-electron mass is replaced by the effective
mass of electrons in the conduction band. The same argu-
ments, mutatis mutandis, apply to shallow acceptors, which
introduce holes in the valence band. This description has been
formalized in Kohn and Luttinger’s hydrogenic effective-mass
theory (Kohn and Luttinger, 1955).
Electronic-structure calculations indeed show that the

impurities that give rise to shallow defect levels also give
rise to states that are resonances in either the conduction band
(for donors) or the valence band (for acceptors). A schematic
illustration, which also depicts a practical way of assessing the

FIG. 5 (color online). Schematic illustration of formation energy
vs Fermi level for an acceptor-type defect that can occur in two
charge states: 0 and −1. Solid lines correspond to formation
energies for the fully relaxed atomic geometry for each charge
state. Dashed lines correspond to formation energies of configu-
rations where the defect geometry of the other charge state has
been frozen in. Both thermodynamic [εð0=−Þ] and optical
transition levels (E−=0

opt and E0=−
opt ) are shown.
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nature of defect states, is shown in Fig. 6. The origin of a
shallow donor level is a state deep in the conduction band (i.e.,
well above the CBM) (again, all the arguments also apply to
acceptors, mutatis mutandis). The corresponding defect state
is closely related to the chemistry and local geometry of the
defect; i.e., linear combinations of dangling-bond states for a
vacancy or atomic levels for a substitutional impurity. Due to
the strong spatial localization of such defect states they are
only weakly coupled to the host system, resulting in a fairly
weak dependence on the bulk lattice constant that can be
probed by applying external pressure. In contrast, the energy
of the CBM depends strongly on pressure; for a direct-band-
gap material, the CBM typically rises when pressure is applied
(i.e., with decreasing lattice constant). As a consequence of
this different pressure dependence, the localized defect state
may emerge into the band gap when a high enough pressure
(above a critical pressure pcrit) is applied. When this happens,
it turns into a conventional deep defect level in which an
electron can actually be localized on the defect itself, rather
than merely bound in an effective-mass state.
The character of the defect wave function associated with

this state remains largely unchanged, whether the state is
located above or below the CBM. Regardless of whether a
defect is shallow or deep, a corresponding localized state can
be identified. In the case of a deep level, this state corresponds
to the intuitive notion of a highly localized carrier trapped on
the defect. In the case of a shallow level, the state is a
resonance and is not actually occupied by an electron (or a
hole). Nonetheless, the state exists and its identification is
often useful when studying the physics of the shallow defect.
Clearly this state should be distinguished from the hydrogenic
effective-mass state that is often the only one that is consid-
ered in the context of shallow defects.
One reason why the localized states (resonances in the CB

or VB) associated with shallow defects are not usually
considered, and they have generally not been discussed in
the past, is that they have no effect on defect formation
energies or on the electronic behavior of the defect. However,
the identification of these localized states can be effective in

building understanding of the electronic character or chemical
trends, or when studying the behavior under strain. These
insights can be used to understand doping limits, for instance,
when studying why changing the band gap by chemical
alloying or pressure (Fig. 6) can change the character of a
defect from shallow to deep. Electronic-structure calculations
provide a unique way to identify these “hidden” levels,
providing for a new route to identify universal rules
governing defect behavior (Zhang, 2002; Van de Walle and
Neugebauer, 2003b).

3. Spatial localization and U parameter

The fact that the electronic states of deep defects are
spatially localized and energetically positioned within the
band gap implies that they cannot be described as small
perturbations of the electronic states at the band edges. In
contrast to bulk states which are delocalized over the entire
bulk system, wave functions related to deep defect states are
spatially confined, extending typically over only a few
neighboring atomic lattice sites. The localization is also
directly related to the chemical nature of such defects,
originating from dangling or broken bonds, or from atomic
states that are largely decoupled from the host electronic
structure.
These spatially localized defect states can be occupied with

one or more electrons. The maximum filling is directly related
to the character and the symmetry of the defect. For spin-
compensated systems an s-like state can be occupied by 0, 1,
or 2 electrons, and a set of p-like states with 0 to 6 electrons.
Bringing multiple electrons into such localized defect states
leads to strong repulsive electrostatic interactions between
the electrons. These interactions should be distinguished from
the spurious electronic self-interaction that occurs in DFT; the
repulsion between electrons within a given defect has a
concrete physical meaning and is experimentally observable.
To understand and quantify this effect in terms of defect
formation energies we extend Fig. 5, where we considered
only a single charge transition level, i.e., a system with two
charge states only, to a system with multiple charge states.
Figure 7 schematically shows formation energies for such a

case. To clearly distinguish between electronic and atomic
effects we first consider the impact of charging the defect on
the electronic structure alone, i.e., without including lattice
relaxations. Lattice relaxation is switched off by fixing the
atomic structure to that corresponding to one of the defect
charge states (in Fig. 7 we have chosen the neutral state).
Changes in the formation energies are then exclusively a result
of changes in the electronic structure. Adding electrons to the
defect shifts the charge-state transition level to higher ener-
gies. This is a direct consequence of the above-mentioned
electronic repulsion and results in a positive value of the
electronic U parameter Uel. Generally, the more localized the
defect wave function and/or the smaller the electronic screen-
ing in the host system, the larger Uel will be.
The scenario changes when charging of the defect is

accompanied by large relaxations of the atomic structure. A
prime example is the atomic hydrogen impurity, which
depending on the charge state prefers to be in different
interstitial positions [see, e.g., Neugebauer and Van de

FIG. 6 (color online). Schematic illustration of pressure depend-
ence of band edges and defect levels.
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Walle (1995) and Herring, Johnson, and Van deWalle (2001)].
For these systems the energy gained by atomic relaxation
depends strongly on the charge state. The resulting formation
energies are sketched as solid lines in Fig. 7. The ordering of
the transition states is inverted: the donor level (þ=0) is now
higher in energy than the acceptor level (0=−), implying that
the neutral charge state becomes thermodynamically unstable
against formation of positive and negative charge states.
Formally, this situation where the donor level lies above
the acceptor level and the charge state in between becomes
unstable is described by a negative sign of the effective U
parameter,Ueff < 0. The present discussion is not restricted to
a system with þ, 0, − charge states but applies to arbitrary
charged defect systems. The U parameter is then defined as

U ¼ Eqþ1
f þ Eq−1

f − 2Eq
f (43)

and can be determined from the calculated defect formation
energies Eq

f.

E. Optical transition levels

For thermodynamic transition levels the Fermi energy at
which the transition occurs is independent of the direction of
the charge transfer, i.e., it does not depend on whether an
electron is added or taken away (see Fig. 5). In contrast, for
optical transitions, as shown in Fig. 5, adding an electron
shifts the corresponding level to higher energies compared to

the thermodynamic charge transition level, while removing an
electron shifts the level to lower energies. The energy
difference between the higher and lower optical levels is
directly related to the Stokes shift (the energy difference
between optical absorption and emission peaks) and can be
calculated from defect relaxation energies. When going
from charge state q to q0, the relaxation energy is Erel ¼
Eq0 ðfRIgqÞ − Eq0 ðfRIgq0 Þ, where the energy subscript q0

indicates the defect charge state used in the calculation while
ðfRIgqÞ indicates the frozen equilibrium structure of the
defect in charge state q. The simplified picture outlined here
ignores excitonic and vibrational coupling effects; the latter is
briefly addressed in Sec. II.E.2.

1. Configuration coordinate diagrams

While the above discussion provides us with important
information about the initial and final states of the charge
transition, it does not address the actual path and process. To
obtain insight into the actual dynamics of such a transition the
concept of a configuration coordinate diagram has been
developed. This concept, originally intended to explain
transitions only qualitatively, can be treated fully quantita-
tively using modern electronic-structure theory.
Underlying the idea of the configuration coordinate dia-

gram is the observation that the initial and final states can
typically be connected by a one-dimensional collective
reaction coordinate that closely resembles the actual transi-
tion. This reaction coordinate or generalized coordinate may,
for instance, represent the magnitude of the relaxation of the
atoms surrounding the defect (e.g., the displacement of the Ga
atoms around a nitrogen vacancy in GaN), or the magnitude of
the off-center displacement of an impurity along a specific
direction [e.g., the displacement of the oxygen atom in
AlGaN, which forms a DX center (Van de Walle, 1998b)].
We illustrate this concept for the case of a nitrogen

substitutional impurity in ZnO, NO, which is a deep acceptor
and one of the subjects of a case study in Sec. V.A.2. The
relevant charge states here are q ¼ 0 and q ¼ −1, and the
thermodynamic transition level is εð0=−Þ ¼ 1.3 eV (refer-
enced to the VBM). For purposes of defining the thermody-
namic transition levels, the atomic structure for each charge
state is relaxed to its equilibrium configuration. These
equilibrium configurations are not necessarily the same for
both charge states. Indeed, it is this difference in relaxation
that leads to the difference between thermodynamic transition
levels and optical levels.
The optical level associated with a transition between

charge states is defined similarly to the thermodynamic
transition level, but now the energy of the final state is
calculated using the atomic configuration of the initial state. In
the example of Fig. 8, the initial state in an optical absorption
experiment is the equilibrium configuration of the q ¼ −1
charge state, and the final state corresponds to the same
atomic configuration but with the defect in the neutral charge
state (plus an electron at the CBM). Similarly, in photo-
luminescence the initial state is q ¼ 0 in its equilibrium
configuration plus an electron at the CBM, and the final state
corresponds to the same atomic configuration but with the
defect in the negative charge state. The absorption and

FIG. 7 (color online). Formation energy vs Fermi level for a
defect that can occur in q ¼ þ1, 0, or −1 charge states,
illustrating the definition of the U parameter. Solid lines corre-
spond to formation energies for the fully relaxed atomic geometry
for each charge state. Dashed lines correspond to formation
energies where the defect geometry of the neutral charge state has
been frozen in. Charge-state transition levels derived from the
fully relaxed geometries (i.e., the thermodynamic transition
levels) are marked by εðq=q0Þ, and the levels where the geometry
has been frozen in by Eq=q0

opt . The latter also correspond to optical
transition levels (see Sec. II.E). The difference between two
subsequent transition levels is called the U parameter. Note that
the purely electronic U parameter (Uel) is positive whereas the
effective Ueff parameter in this example is negative.
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emission energies Eabs and Ee are clearly different from the
energy difference between the CBM and εð0=−Þ (which
corresponds to the “zero-phonon line”).
Configuration coordinate diagrams such as Fig. 8 are

extremely useful for analyzing optical experiments. In the
original qualitative scheme, the dependence of energy on the
configuration coordinate was often assumed to be parabolic,
the justification being that the displacements needed to go
from the geometry of one charge state to the other are within
the harmonic regime. However, first-principles calculations
allow us to explicitly calculate this dependence without
making any approximations, although the calculations of
the optically excited state and relaxation in the excited state
pose a significant challenge to theoretical methods. In some
cases, it is possible to manually prepare the excited state and
perform standard DFT calculations. Often, however, time-
dependent density-functional methods for the optically
excited state or methods beyond DFT are required to treat
the excited state accurately (Furche and Ahlrichs, 2002;
Hutter, 2003; Gali, 2012; Rinke et al., 2012). The associated
challenges merit a review in their own right and further
discussion therefore is beyond the scope of this work.

2. Vibrational contributions and linewidth

The discussion about optical and thermodynamic transition
levels summarized in Figs. 5 and 8 neglected vibrational
coupling, which can lead to transitions at energies other than
the ones corresponding to the “vertical transitions.” These
additional transitions include the zero-phonon line, which
roughly corresponds to the thermodynamic transition energy.
The vertical transitions, which do not involve phonons, tend to

be strongest and hence generally correspond to peaks in the
optical spectra. Vibrational coupling leads to broadening of
lines. An illuminating discussion of these effects was provided
by Davies (1999)
Other temperature-induced effects that could affect line-

widths include (1) fluctuations in the defect formation energy
on the phononic time scale (≈ 10−13 s) due to thermally
induced atomic vibrations; (2) occupation of charge states
other than the ground state if their formation energies are
within a few kBT; (3) thermal fluctuations in the reaction path,
which in reality is multidimensional; and (4) energy fluctua-
tions due to Heisenberg’s uncertainty principle (with the
lifetime of the optical final states being very short). These
additional factors can be considered to be second-order
effects.

III. FROM SUPERCELLS TO THE DILUTE LIMIT

A. The supercell approach

In Sec. I.B we explained that the defect is usually modeled
in a supercell, consisting of the defect surrounded by a few
dozen to a few hundred atoms of the host material, which is
then repeated periodically throughout space (Messmer and
Watkins, 1972; Louie, Schlüter, and Chelikowsky, 1976). This
allows one to employ the highly efficient and thoroughly
tested computer codes developed for periodic solids and also
guarantees an accurate description of the defect-free host
material. However, it must be kept in mind that the use of
supercells implies that the isolated defect is replaced by a
periodic array of defects. Such a periodic array contains
unrealistically large defect concentrations, resulting in artifi-
cial interactions between the defects that cannot be neglected.
Specifically, the interactions are of quantum-mechanical

(overlap of the wave functions), elastic, magnetic, and
electrostatic nature. These artifacts do not constitute a funda-
mental problem for the supercell approach—they become
negligibly small when the supercell size is increased. In
practice, however, the supercell sizes required to reach such
absolute convergence would be too large for feasible calcu-
lations as was recognized early on (Leslie and Gillan, 1985;
Makov, Shah, and Payne, 1996; Puska et al., 1998). It is
therefore crucial to estimate the magnitude and decay behav-
ior of the different effects, to employ computational schemes
to minimize the impact on calculated properties, and to correct
a posteriori for any remaining effects whenever possible. We
focus here on the formation energy, but other properties
sensitive to these interactions of course also suffer from these
artifacts. For instance, corrections must be applied for the
formation volumes (see Sec. II.B.1) of charged defects (Leslie
and Gillan, 1985; Bruneval and Crocombette, 2012).
As mentioned in Sec. I.B, alternatives to the supercell

approach exist, namely, Green’s function techniques and
clusters. They have in common with the supercell approach
that only the defect and its immediate environment are treated
explicitly (Deák, 2000). In cluster approaches, this system is
then regarded as a supermolecule. In the Green’s function
approach, the explicit region is embedded in a perfect host
material. The Green’s function of the combined system can
then be obtained exactly when only the defect region is subject
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FIG. 8 (color online). Configuration coordinate diagram for a NO
substitutional impurity in ZnO, illustrating the difference between
thermodynamic and optical transition levels. The negative charge
state is considered the ground state, and the variation of the
energy as a function of atomic displacements around the stable
configuration is shown. The curve for N0

O is vertically displaced
from that for N−

O assuming the presence of an electron at
the CBM. Erel is the relaxation energy that can be gained, in
the negative charge state, by relaxing from configuration fRgq¼0

(the equilibrium configuration for the neutral charge state) to
configuration fRgq¼−1 (the equilibrium configuration for the
negative charge state). This relaxation energy is sometimes called
the Franck-Condon shift. The peak energies that would be
observed in optical absorption or emission experiments are
indicated. Adapted from Lyons, Janotti, and Van deWalle, 2009b.
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to self-consistency. Unfortunately, the electrostatic and elastic
response beyond the explicitly treated region is typically
neglected. Likewise, clusters suffer from quantum confine-
ment effects when wave functions are delocalized. In other
words, the mechanisms that give rise to defect-defect inter-
actions in the supercell approach cannot be avoided and cause
artifacts specific to the chosen boundary conditions. The
supercell ansatz dominates in the solid-state physics commu-
nity, and we focus on this approach next.
Supercell artifacts can be avoided only to the extent that we

understand the underlying mechanisms. These mechanisms,
and the extent to which they dominate, may differ from defect
to defect. At present, no universal “black box” scheme is
available that guarantees a complete removal of artifacts. An
accuracy of better than 0.1 eV can usually be achieved only
when the defect is well understood. If computational resources
allow, an empirical extrapolation from a series of supercells
represents an alternative, as shown for instance by Shim et al.
(2005a), Wright and Modine (2006), Castleton, Höglund, and
Mirbt (2006, 2009), and Nieminen (2009). Such an approach
removes the need for analyzing all effects in detail and can
even be employed in addition to the corrections suggested
below. The functional form of the extrapolation [“scaling law”
(Castleton, Höglund, and Mirbt, 2006)] is motivated by the
formalism (notably including 1=L and 1=L3 terms, where L is
a representative supercell dimension). As an alternative, Hine
et al. (2009) suggested interpolating to the dilute limit from
the defect formation energy as a function of the Madelung
potential for different cell sizes and cell shapes. Due to the
lack of physical insight, however, the accuracy of results based
purely on extrapolation cannot be assessed, even when the
quality of the fit is very good.

B. Overlap of wave functions

1. Dispersion of the defect band

The overlap of defect wave functions between neighboring
supercells turns the single-particle state from an isolated
defect into a dispersive defect band. For sufficiently localized
states, e.g., deep states in an insulator or wide-gap semi-
conductor, or when the nearest band edge has a very high
effective mass, the width of the defect band can be negligible
in practice. The dispersion of this band can be analyzed in a
tight-binding picture (Makov, Shah, and Payne, 1996) based
on the Hamiltonian

H ¼ H0 þ
X
R

HdðRÞ. (44)

The sum R runs over the superlattice vectors. H0 is the bulk
Hamiltonian and HdðRÞ introduces the change in the
Hamiltonian arising from the defect at R. The isolated defect
is obtained from

HisoψdðrÞ ¼ ϵdψdðrÞ with Hiso ¼ H0 þHdð0Þ.
(45)

We consider a deep defect, associated with an electronic state
that is largely (but not completely) contained within the
supercell. The periodic defect band ψk is a linear combination
of the normalized isolated states ψd,

ψkðrÞ ¼
X
R

ψdðr −RÞeik⋅R ¼
X
R

ψdRðrÞeik⋅R: (46)

Note that ψk is not normalized. The defect band dispersion
can be estimated within first-order perturbation theory from
this trial wave function as

ϵðkÞ ¼ ϵd þ
P

RhψdjH −HisojψdRieik⋅R
1þP

R≠0hψdjψdRieik⋅R
¼ ϵd þ ΔϵðkÞ:

(47)

The most important insight from the tight-binding model is
that a deep defect band disperses around the level of the
isolated defect. For a localized state with a level in the band
gap, the defect wave function decays exponentially away from
the defect center. The intersite Hamiltonian and overlap matrix
elements therefore exhibit an exponential reduction as the
supercell size is increased.
The error from band dispersion can be estimated to first

order from

ΔE ¼
X
k

wkfkΔϵðkÞ; (48)

where wk are summation weights of the chosen k-point set. fk
is the occupation of the defect state in the supercell. For a
given supercell and k-point independent occupations fd, the
effects of dispersion can be minimized by using special
k-point sets (Makov, Shah, and Payne, 1996) or standard
schemes that approximate the Brillouin-zone average (Shim
et al., 2005b). The dispersion error then reduces to
fd=ΩBZ

R
d3kΔϵðkÞ. The remaining error arises mainly from

the unavoidable contribution of Hamiltonians in neighboring
cells picked up by the tails of the defect state:

hψdjH −Hisojψdi (49)

and the second-order contributions

−X
R≠0

hψdjH − ϵdjψdRihψdRjψdi: (50)

The latter reflect the Pauli repulsion between the defect states
due to the additional orthogonality constraint in the periodic
array of defects compared to the isolated case. We point out
that this theory notably captures defect-induced gap states
below the valence band of both metals and nonmetals. For
metals, the usual k-point sampling is sufficient to ensure an
efficient integration of ΔϵðkÞ. As our further considerations
are specific for semiconductors and insulators, we conclude
that errors from wave function overlap require no particular
attention for metals.

2. Partially occupied states

Since only occupied states enter the total energy, special
care must be taken in the case of partially occupied defect
states, since variations in the occupation fnk would interfere
with the averaging effect of the chosen k-point set. In a
standard DFT calculation, the electrons fill the lowest-lying
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states according to the Fermi-Dirac (or some other) distribu-
tion. For partially occupied defect states, lower-lying parts of
the defect band will be occupied preferentially (Fig. 9), giving
rise to an artificial attraction between the defects.
This unphysical defect-defect interaction can easily be

overcome by not performing a minimization of the energy
with respect to defect-band occupations. Instead, one sets the
occupations to the desired occupation of the isolated defect
state throughout the Brillouin zone (Van de Walle and
Neugebauer, 2004). As an alternative for nondegenerate defect
states, the total occupation per k point Nk ¼ P

fnk can be set
to a fixed value by employing a k-dependent Fermi energy
EFðkÞ for the occupation numbers (Schultz, 2006).
Figure 10 illustrates this discussion with the example of the

neutral vacancy in diamond, which has two electrons in a
threefold-degenerate defect state. The standard Fermi occu-
pation scheme converges much more slowly with the number
of k points than the equal-occupation scheme. Moreover, the
formation energy is significantly underestimated for small
cells. The equal-occupation scheme, on the other hand,

converges quickly as a function of both k-point sampling
and supercell size. The systematic overestimation for small
cells is due to Pauli repulsion, as discussed, but is overall a
small effect.

3. Corrections for shallow levels

In principle, the above discussion also applies to shallow
defects, but in practice the spatial extent of their wave
functions significantly exceeds typical supercell sizes.
Therefore a first-order perturbation theory on top of a super-
position of isolated defect states is not sufficient. A better
approach is to remember that shallow states are hydrogenic
effective mass states (see Sec. II.D.2), or “perturbed host
states” (Lany and Zunger, 2008). Their dispersion closely
follows the host band from which they are derived, as depicted
schematically in Fig. 11. Since the bulk valence- and con-
duction-band dispersions ϵVBðkÞ and ϵCBðkÞ are known, one
can correct directly for effects of dispersion and occupation.
For a given k-point set (summation weight wk) and occupa-
tions fk, the band-dispersion correction for a shallow donor
state is (Van de Walle and Neugebauer, 2004; Lany and
Zunger, 2008)

ΔE ¼ −
X
k

wkfk½ϵCBðkÞ − ϵCBM� (51)

and for a shallow acceptor state

ΔE ¼ þ
X
k

wkð1 − fkÞ½ϵVBðkÞ − ϵVBM�: (52)

Conceptually, the correction vanishes for a Γ-only sampling of
the Brillouin zone. In practice, a Γ-only sampling is usually
inadequate for proper sampling of other quantities of interest,
especially in modest-sized supercells. Even though the
scheme deals transparently with different occupation schemes
for shallow defects, we suggest combining it with the
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FIG. 9 (color online). Schematic illustration of defect-band
dispersion for a p-like defect state (s-like states would have a
minimum at Γ). The shaded area indicates the effect of occupa-
tion according to a Fermi-Dirac distribution: electrons accumu-
late in the lower-lying, bonding parts of the defect band, shifting
the occupied average away from the desired value for the isolated
defect.
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FIG. 10 (color online). Calculated formation energy of the
unrelaxed, neutral vacancy in diamond as a function of k-point
sampling [Monkhorst-Pack mesh (Monkhorst and Pack, 1976)
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defect-band occupations. Dashed lines: Fermi distribution
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FIG. 11 (color online). Schematic illustration of origin and
supercell dispersion of a shallow donor state. The defect gives
rise to a localized state (resonance) within the conduction band.
The electrically active level is not directly associated with this
localized state, but rather arises from a perturbed host state below
the CBM, offset in energy by an approximately constant amount.
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constant-occupation scheme as described above for partially
occupied deep defect states in order to average out
k-dependent variations in the offset of the defect band from
the bulk band.

C. Electrostatic interactions

Supercell calculations for charged systems (charge q) must
always include a compensating background charge, since the
electrostatic energy of a system with a net charge in the unit
cell diverges (Leslie and Gillan, 1985; Makov and Payne,
1995). Most commonly a homogeneous background is
included, which is equivalent to setting the average electro-
static potential to zero.
The formation energy of a charged defect depends on the

Fermi level [see Eq. (1)], which is referenced to the bulk VBM
and hence depends on the average electrostatic potential in the
bulk. The long-range nature of the Coulomb potential pre-
cludes establishing an absolute reference for the electrostatic
potential (Kleinman, 1981), and hence a procedure needs to be
devised to align the average electrostatic potential in the defect
supercell with that in the bulk. This can in principle be done
by examining the electrostatic potential in the supercell:
in a large enough cell, far from the defect, the electrostatic
potential should converge to its bulk value. In practice, the
alignment is problematic for charged defects because of the
slow q=r decay of the defect’s Coulomb potential; see Fig. 12.
The unphysical electrostatic interaction of the defect with

its periodic images and the constant background also makes a
spurious contribution to the calculated energy of the system.
The magnitude of these interactions can be estimated from the
Madelung energy of an array of point charges with neutral-
izing background (Leslie and Gillan, 1985). The interaction
decays asymptotically as q2=L (Leslie and Gillan, 1985;
Makov and Payne, 1995), where L is a representative super-
cell dimension, e.g., the cube root of the supercell volume.
Makov and Payne proved for isolated ions that the quadrupole
moment of the charge distribution gives rise to a further term
scaling as L−3 (Makov and Payne, 1995). For realistic defects
in condensed systems, however, such corrections, scaled by
the macroscopic dielectric constant ε to account for screening,

do not always improve the convergence (Lento, Mozos, and
Nieminen, 2002; Shim et al., 2005a; Castleton, Höglund, and
Mirbt, 2006; Wright and Modine, 2006). These difficulties
can be attributed to the following causes: (a) At the typical
length scale of supercells, the macroscopic limit of screening
is not yet reached, and microscopic effects are important
(Shim et al., 2005a). (b) The quadrupole moment of the charge
distribution is ill defined. (c) Potential alignment and charge
corrections are not independent, but need to be treated
together consistently (Lany and Zunger, 2008; Freysoldt,
Neugebauer, and Van de Walle, 2011).
A modified version of the Makov-Payne corrections was

proposed by Lany and Zunger (2008, 2009), providing
consistent schemes to calculate the quadrupole moment and
the potential alignment. The approach has been employed
successfully in practice, but a potential drawback is that
quadrupole and alignment terms from this scheme scale as
1=L, too, and therefore modify the 1=εL asymptotic limit of
continuum theory.
On the analytic side, Freysoldt et al. showed how micro-

scopic screening can be treated formally, providing a con-
sistent scheme to calculate charge corrections and potential
alignment (Freysoldt, Neugebauer, and Van de Walle, 2009).
In practice, this scheme reduces to correcting for the macro-
scopically screened Madelung energy of a localized charge
and to aligning the potential after subtracting the correspond-
ing Madelung potential (Freysoldt, Neugebauer, and Van de
Walle, 2011). This rigorous and well-defined approach cir-
cumvents most of the problems associated with previous
schemes and is easy to apply. The key advantage is that the
long-range 1=r potential is removed from the potential before
the alignment is determined for the remaining short-range
potential. If the range separation is successful, the short-range
potential reaches a plateau far from the defect, which yields
the alignment as a well-defined quantity. Conversely, the
absence of a plateau clearly indicates that the underlying
assumptions (degree of charge localization, validity of bulk-
like macroscopic screening) are not fulfilled. In other words,
the scheme automatically provides the limits of its applicabil-
ity for each defect. The software to compute the corrections
SXDEFECTALIGN is available online (Freysoldt, 2011). The
SXDEFECTALIGN scheme has been found to give the best
overall performance for localized defects in a recent compar-
ative study of several correction schemes for a variety of
defects (Komsa, Rantala, and Pasquarello, 2012).
As an alternative to the homogeneous-background

approaches, several authors proposed modifying the compu-
tation of the electrostatic potential in the DFT calculation itself
in order to remove the unwanted interactions (Carloni, Blöchl,
and Parinello, 1995; Schultz, 2000, 2006; Rozzi et al., 2006).
For isolated systems, this is an exact treatment. For condensed
matter, however, the polarization of the host material outside
the supercell is neglected. The magnitude of bulk polarization
energy can be estimated from continuum electrostatics
(Schultz, 2006) as

ffiffiffiffiffiffiffiffi
π=63

p ð1 − ε−1Þq2=L, exhibiting the same
asymptotic scaling as the standard approach. Therefore for
most defect calculations the homogeneous background
scheme with the currently available efficient correction
approaches is the method of choice.
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FIG. 12 (color online). Alignment problem for charged defects:
Isolated defects (dashed lines) have a well-defined asymptotic
limit for the 1=r Coulomb potential (thin solid line), where the
potential can be aligned to the bulk. From the periodic array
(thick solid line)—here aligned at the defect centers—the bulk
limit cannot be determined.
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D. Elastic interactions

Elastic interactions arise when the defect distorts the
surrounding lattice (Eshelby, 1956). The position of each
atom at position RI in the ideal lattice becomes RI þ uðRIÞ
after distortion, where u denotes the displacement field. These
distortions are produced by “Kanzaki forces” fðRIÞ acting on
the atoms close to the defect before we allow for relaxation.
Kanzaki forces are defined as those forces that would
reproduce the displacements if the force-constant matrix were
not modified by the presence of the defect (Tewary, 1973).
In the harmonic limit, the displacements are given by

(Tewary, 1973)

uðrÞ ¼
X
r0
Gðr; r0Þfðr0Þ; (53)

where G denotes the Green’s function of harmonic elasticity,
the pseudoinverse of the force-constant matrix

Φðr; r0Þ ¼ ∂fðrÞ
∂uðr0Þ ¼

∂2E
∂uðrÞ∂uðr0Þ : (54)

The calculation of the lattice Green’s function, defined only
for atom positions, and the continuum Green’s function,
defined as a continuous function, is best performed in
reciprocal space (Cook and de Fontaine, 1969; Tewary,
2004; Trinkle, 2008). G decays as 1=r; however, since defects
do not exert a net force, the displacement field decays as 1=r2.
The whole theory can then also be expressed in terms of the
strain (ϵ) and stress (σ) fields:

ϵαβ ¼
1

2

�∂uα
∂rβ þ

∂uβ
∂rα

�
; σαβ ¼

1

2

�∂fα
∂rβ þ

∂fβ
∂rα

�
: (55)

This transition from the original fields (forces and displace-
ments) to the gradient fields (stress and strain) can be seen in
analogy to electrostatics: for vanishing net charge, the relevant
quantities are electric dipoles and fields rather than charges
and potentials. Indeed, the long-range strain field is charac-
terized by the elastic dipole tensor (Tewary, 1973; Leslie and
Gillan, 1985)

Gαβ ¼
X
r

fαðrÞrβ ¼
X
r

rαfβðrÞ: (56)

Like electric dipole-dipole interactions, elastic interactions
between point defects decay as 1=r3. The elastic energy of a
periodic array likewise scales as 1=L3. In principle, this
energy can be calculated in the continuum limit from the
elastic constants, the dipole tensor, and the supercell shape
(i.e., simple cubic, bcc, hcp, etc.). However, we are not aware
of any such approach in the context of first-principles
calculations.
It has been argued that elastic interactions can be minimized

by relaxing the volume of the defect-containing supercell until
the macroscopic stress vanishes (Turner et al., 1997). For
hydrostatic stress, this corresponds to the constant-pressure (in
fact, zero-pressure) approach to defect formation, in contrast
to the constant-volume approach which implies a finite,

defect-induced hydrostatic pressure P. The difference is given
by the volume relaxation of the bulk atoms: the strain energy
in an unrelaxed supercell (volume V0) due to the defect
formation volume Vf ¼ V0P=B can be roughly estimated
from

ΔE ≈
1

2
B
ðVfÞ2
V0

; (57)

where B is the bulk modulus. This relation directly results
from the definition of the bulk modulus B ¼ −∂P=∂ ln V and
the relation of energy to pressure P ¼ −∂E=∂V when defect-
andvolume-inducedchanges in thebulkmodulus areneglected.
Using characteristic values (B ¼ 100 GPa, Vf ¼ 10 Å3, V0 ¼
1000 Å3), we obtain an order-of-magnitude estimate for
ΔE ≈ 30 meV, which is a very small energy.
However, nonhydrostatic elastic interactions are equally

important. Even for a spherical defect in a finite sphere (radius
L) of an elastically isotropic material, the formation energy in
the zero-pressure approach converges only as 1=L3 (Mishin,
Sorensen, and Voter, 2001). The prefactor dE=dV is negative,
but in magnitude comparable to that of the constant-volume
approach. In the spherical model, the ratio of the prefactors is
given by the Poisson ratio ν of the material as

dEðP ¼ 0Þ=dEðV ¼ constÞ ¼ −2 1 − 2ν

1þ ν
: (58)

Any anisotropy in the elastic constants of the host material, the
cell shape, or the defect’s elastic dipole tensor will certainly
modify the prefactors, but not the scaling.
We also note that the potential alignment for charged

defects (see Sec. III.C) relies on the presence of a bulklike
region, which can no longer be identified if volume relaxation
is performed. We therefore recommend avoiding volume
relaxation. If elastic effects are known to dominate the finite
supercell error, the best way currently is to extrapolate
convergence based on the known 1=L3 scaling at fixed cell
shape for two (or more) supercell sizes.

E. Magnetic interactions

Although magnetic interactions are (similar to elastic
interactions) also known to be long ranged in many material
systems, the consequences for supercell calculations have
been much less investigated. This is an issue that is relevant
for magnetic interactions in semiconductors; in dilute mag-
netic semiconductors, for example, magnetic impurities are
assumed to interact with each other via Ruderman-Kittel-
Kasuya-Yoshida (RKKY) interactions (Liu, Yun, and Morkoc,
2005). This interaction is captured by an effective Heisenberg
Hamiltonian

H ¼ −
X
i;j

Ji;jSi · Sj; (59)

with exchange integrals Ji;j that vary as 1=r3 for large
distances r between the magnetic impurity spins Si.
Vacancy-induced ferromagnetism in an otherwise nonmag-
netic material has also been suggested for several materials,
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such as ZnO, SrTiO3, and graphene (Palacios and Ynduráin,
2012). In addition, magnetic ordering occurs in a variety of
insulating transition-metal compounds, notably in Mott
insulators (Imada, Fujimori, and Tokura, 1998). The majority
of DFT calculations for magnetic systems, however, have
been performed for metals. The (anti)ferromagnetic inter-
actions need to be taken into account in supercell calculations
(Körmann et al., 2010) and can again often be simulated with
a Heisenberg-type Hamiltonian with long-range parame-
ters Ji;j.
The interaction of these long-range magnetic effects with

native defects (e.g., vacancies) happens in two directions: On
the one hand, the magnetic state significantly modifies the
defect formation energy. A major reason for this effect is a
strong magnetoelastic coupling in metals, which easily yields
changes in atomic distances of several percent if the magnetic
state is altered, and therefore effectively results in an addi-
tional strain component for the defect formation process
(Korzhavyi et al., 1999). As a consequence, if the correct
magnetic state of the vacancy is not a priori clear or not
captured by a single magnetic configuration (e.g., paramag-
netic), calculations need to be performed for different mag-
netic configurations to evaluate this influence. For example,
such calculations have been carried out for fcc Fe, which
has its magnetic ordering temperature around 200 K but is
thermodynamically stable only above 1100 K. A difference in
the vacancy formation energy of 0.45 eV between non-
magnetic and antiferromagnetic structures (Nazarov, Hickel,
and Neugebauer, 2010) was found (corresponding to 25% of
the formation energy), and a difference of 0.15 eV (10%)
between two different antiferromagnetic structures (Klaver,
Hepburn, and Ackland, 2012).
On the other hand, the presence of a defect modifies the

magnetic environment in a range corresponding to several
nearest-neighbor shells. This is due to the long-range mag-
netic interactions, but more importantly to the strong coupling
between atomic relaxation and magnetic changes.
As a consequence, careful supercell convergence tests

should be performed for all defect calculations in magnetic
systems. For antiferromagnetic fcc Fe, one obtains changes of
the magnetic moment (referenced to the defect-free system)
that are oscillating with distance and noticeable up to the fifth-
neighbor shell of a vacancy or an interstitial hydrogen atom
(Nazarov, Hickel, and Neugebauer, 2010). These modifica-
tions are coupled to atomic displacements that are also much
longer ranged than in nonmagnetic calculations, where only
fluctuations of the charge density occur.
Similar observations have been made in paramagnetic

calculations for various Fe-Cr-Ni alloys, for which the
magnetic moments in vacancy-containing supercells did not
reach their corresponding bulk value even at the fifth-neighbor
shell of the defect (Delczeg, Johansson, and Vitos, 2012). In
those calculations the coherent potential approximation was
used to simulate the magnetic disorder, keeping the atomic
positions fixed. The relaxation effects can be better inves-
tigated in supercell calculations with quasirandom disorder,
where one can even compare frozen-in magnetic configura-
tions with strong magnetic fluctuations (Körmann
et al., 2012).

These examples illustrate that a systematic supercell cor-
rection scheme (of the type available for electrostatic inter-
actions between charged defects, Sec. III.C) does not yet exist
for magnetic interactions. The interplay of point defects and
magnetism is still a field of active research and future work is
needed before specific recommendations for particular com-
putational strategies can be made.

F. Recommendations

The multitude of schemes that have been proposed to
overcome supercell artifacts has led to an unsatisfactory
situation in which different groups apply different correc-
tions, sometimes without specifying which scheme is being
used, or without providing sufficient detail. This adds an
additional source of uncertainty to any calculated results.
In an attempt to restore order, we issue the following
recommendations:

(1) Additive schemes focusing on a single physical effect
should be preferred over seemingly universal schemes.
The effects for which corrections are available should
not interfere with each other and can be corrected for
independently.

(2) Information extracted from the DFT calculations
themselves should be used to validate the underlying
assumptions of the correction schemes. Examples
include monitoring the localization of wave functions
(Freysoldt, Neugebauer, and Van de Walle, 2009),
explicitly calculating the short-range deviations from
the macroscopic electrostatic potential (Freysoldt,
Neugebauer, and Van de Walle, 2011), and comparing
displacement patterns to predictions from continuum
elasticity theory.

(3) If affordable, energies (after correction) from different
supercells should be compared.

We note that the macroscopic bulk behavior for electrostatic
screening or elasticity is typically recovered to within 0.01 eV
at a distance of only 5–10 Å from the defect center. For shorter
distances between defects, specific defect-defect interactions
must be expected that cannot be captured by macroscopic
theories. None of the existing schemes are capable of
removing such defect-specific short-range interactions. This
implies that defect calculations should aim to use supercell
sizes that are large enough to describe individual defects as
accurately as possible to minimize the error due to these
short-range interactions. At the same time, errors due to the
approximate nature of the electronic structure scheme
(e.g., the choice of the xc functionals in DFT) can be
minimized by increasing the level of sophistication of those
calculations (using improved functionals or going beyond
DFT, see Sec. IV), but usually at significant computational
cost, which limits the system size. Practical calculations will
therefore require choosing supercell sizes that balance these
two types of errors.

IV. OVERCOMING THE BAND-GAP PROBLEM

The DFT method within the LDA or the GGA has been
extensively used to describe defects in semiconductors and
insulators (Van de Walle et al., 1993; Van de Walle and
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Neugebauer, 2004; Drabold and Estreicher, 2007). However,
its predictive power has been limited by the severe under-
estimation of band gaps (Sham and Schlüter, 1983; Perdew,
1985; Godby, Schlüter, and Sham, 1986; Mori-Sánchez,
Cohen, and Yang, 2008). In many cases the DFT LDA or
GGA also fails to correctly predict charge localization
originating from narrow bands or associated with local lattice
distortions around defects. This limitation is thought to be
largely due to self-interaction. The deficiency in predicting
band gaps leads to large uncertainties in the calculated defect
formation energies and transition levels, especially in the case
of wide-band-gap materials (Zhang, Wei, and Zunger, 2001),
so that conclusions about defect concentrations and about the
electrical and optical activities of defects based on DFT LDA
or GGA calculations have been restricted to a semiquantitative
level (Zhang, Wei, and Zunger, 2001; Janotti and Van de
Walle, 2005, 2007b; Pacchioni, 2008). As a purely pragmatic
approach, it has been suggested to completely ignore the
calculated band edges and reference charge transition levels to
marker levels [in the marker method of Coutinho et al. (2003)]
or to the average electrostatic potential (Alkauskas, Broqvist,
and Pasquarello, 2008; Komsa, Broqvist, and Pasquarello,
2010; Alkauskas and Pasquarello, 2011). The position of these
reference levels with respect to the band edges would then be
obtained from high-level calculations or experiment. These
schemes, however, fail if the defect state changes qualitatively
due to self-interaction, e.g., if the state lies outside the
theoretical gap before alignment. Moreover, self-interaction
errors may modify the local lattice geometry and distortions,
which in turn alter the defect level. Such effects cannot be
captured by alignment.
In this section, we start from a comparison to Hartree-Fock

theory (see Sec. IV.A) to discuss insights into self-interaction
(see Sec. IV.B). We then review (Secs. IV.C, IV.D, and IV.E)
empirical schemes that—partially based on these insights—
aim at circumventing the band-gap problem based on approxi-
mate (and computationally inexpensive) methods, before
returning to more accurate (and generally computationally
more demanding) ways of overcoming the problem in
Secs. IV.F, IV.G, and IV.H.

A. Hartree-Fock theory

The Hartree-Fock equations, which are widely used by
quantum chemists, are usually derived by using a completely
antisymmetric ansatz (Slater determinant) for the many-
electron wave function Ψ with N orbitals (Szabó and
Ostlund, 1996)

Ψ ¼ 1ffiffiffiffiffiffi
N!

p

��������

φ1ðr1Þ φ2ðr1Þ � � � φNðr1Þ
..
. ..

. ..
.

φ1ðrNÞ φ2ðrNÞ � � � φNðrNÞ

��������
;

and minimizing hΨjĤjΨi, where Ĥ is the many-electron
Hamiltonian. As a result of this ansatz, the usual KS DFT
equations (Hohenberg and Kohn, 1964; Kohn and Sham,
1965; Parr and Yang, 1994)

�
−

ℏ2

2me
Δþ vextðrÞ þ vHðrÞ þ vxcðrÞ

�
φiðrÞ ¼ ϵKSi φiðrÞ

(60)

that involve a local (in real space) multiplicative potential
vxcðrÞ are replaced by a slightly more complicated coupled set
of integro-differential equations, the HF equations:

�
− ℏ2

2me
Δþ vextðrÞ þ vHðrÞ

�
φiðrÞ

þ
Z

vxðr; r0Þφiðr0Þd3r0 ¼ ϵHFi φiðrÞ: (61)

While the Hartree potential vH can be calculated directly from
the density nðrÞ alone,

vHðrÞ ¼ e2
Z

nðr0Þ
jr − r0j d

3r; nðrÞ ¼
X
j

fjφjðrÞφ�
jðrÞ;

the exact exchange potential requires knowledge of all
(occupied) orbitals

vxðr; r0Þ ¼ −e2
P

jfjφjðrÞφ�
jðr0Þ

jr − r0j ;

where fj are the occupation weights of the orbitals φj (usually
0 or 1). Since the potential is nonlocal and orbital dependent,
approaches involving nonlocal exchange go beyond conven-
tional KS DFT and are usually referred to as generalized KS
approaches (Gilbert, 1975; Seidl et al., 1996). Some of the
methods discussed below, in particular, LDAþ U (see
Sec. IV.D), also fall into this category.
A major advantage of HF theory is that it is one-electron

self-interaction-free, since the exchange potential exactly
cancels the Hartree potential for occupied orbitals.
However, the nonlocality of the exchange potential vx renders
practical calculations using Hartree-Fock theory significantly
more expensive than the now almost routine DFT calculations.
With plane-wave codes the computation time typically
increases by a factor of 10 if the Brillouin zone is sampled
by a single k point, but by a factor of 100 to 1000 if
the sampling includes multiple k points; this is because the
exchange term involves a double summation over the
Brillouin zone. The second problem of Hartree-Fock theory
is that it entirely neglects correlation effects, leading to a
strong underbinding for most thermochemical reactions, as
well as a huge overestimation of band gaps as discussed in
Sec.IV.B.

B. Shortcomings of density functional theory

1. Self-interaction and localization errors

The accurate prediction of fundamental band gaps Eg is a
prerequisite for a proper determination of defect properties in
semiconductors and insulators. As illustrated in Fig. 5, the
theoretically predicted transition levels are referenced to the
theoretical VBM and CBM, and errors in the gap preclude
accurate assessments of the positions of these levels. To better
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understand the link between the fundamental gap and the KS
one-electron energies, we first need to discuss the relation
between them, as well as the concept of self-interaction and
localization errors.
For a system of N electrons, the true fundamental band gap

(or integer gap) is defined as the difference between the
electron ionization energy I and electron affinity A, Eint

g ¼
I − A, where the ionization energy is the (positive) energy
required to remove one electron from the system

I ¼ Eel
0 ðN − 1Þ − Eel

0 ðNÞ; (62)

and the electron affinity is the energy gained upon adding one
electron

A ¼ Eel
0 ðNÞ − Eel

0 ðN þ 1Þ; (63)

where Eel
0 ðNÞ is the zero-temperature electronic binding

energy for N electrons.
When density functional theory is extended from integer to

fractional electron numbers, the exact DFT ground-state
energy becomes a set of straight-line segments connecting
the energies for integer electron numbers …; Eel

0 ðN − 1Þ;
Eel
0 ðNÞ; Eel

0 ðN þ 1Þ;… (Perdew et al., 1982; Mori-Sánchez,
Cohen, and Yang, 2006):

Eel
0 ðN − δÞ ¼ Eel

0 ðNÞ þ δI; Eel
0 ðN þ δÞ ¼ Eel

0 ðNÞ − δA;

where δ is between 0 and 1.
This generalization of DFT to noninteger electrons implies

that for the exact functional the fundamental band gap can also
be calculated by evaluating the derivative of the energy with
respect to the number of electrons

Eder
g ¼ lim

δ→0

∂Eel
0

∂N
����
Nþδ

− lim
δ→0

∂Eel
0

∂N
����
N−δ

; (64)

approaching the limit of N electrons from either above
or below.
The term “self-interaction error” nowadays usually refers to

the deviation from the straight-line behavior (the so-called
many-electron self-interaction error), and neither HF theory
nor present density functionals are many-electron self-inter-
action-free.
For local and semilocal xc functionals, the total energy is a

convex curve with discontinuities at integer occupancies. The
discontinuities are related to the fact that upon adding an
electron the conduction band becomes filled, whereas removal
of an electron depletes the valence band. That is, one is
probing the energy dependence on the electron filling in
distinct parts of the eigenvalue spectrum separated by the band
gap. For (semi)local functionals, the derivative band gap is
given by one-electron KS energy differences between the
highest occupied orbital (HOMO) and lowest unoccupied
orbital (LUMO) (Mori-Sánchez, Cohen, and Yang, 2008)

Eder
g ¼ ϵLDA=GGAg ¼ ϵLDA=GGALUMO ðNÞ − ϵLDA=GGAHOMO ðNÞ; (65)

where the eigenvalues are calculated for the N-electron
system. Likewise for Hartree-Fock calculations, the

discontinuities are given by the energy difference of the
one-electron eigenvalues of the Hartree-Fock Hamiltonian.
To illustrate this behavior we show in Fig. 13 the energy
versus electron number curves for a Si4 tetrahedron saturated
with hydrogen at the corners. The exact xc functional should
yield a straight-line behavior between integer electron num-
bers. The LDA yields curves that are too convex and favor
fractional occupancies over integer occupancies: two mole-
cules with 19.5 electrons each are more stable than two
molecules with 20 and 19 electrons. For Hartree-Fock
calculations, on the other hand, fractional charges are unfav-
orable compared to the straight-line behavior (although in this
particular example the deviation from a straight line is very
small in the case of electron addition).
We note that HF addition and removal energies are not

expected to be accurate at integer occupancies, since HF
theory entirely neglects correlation effects. In contrast, expe-
rience indicates that electron addition and removal energies
calculated using integer electron numbers are fairly accurate
for semilocal functionals and finite systems (Ernzerhof and
Scuseria, 1999).
The origin for the convex behavior of local and semilocal

functionals is a remainder of the Hartree energy. If we imagine
that the density for the neutral case nðrÞ does not change when
an electron is added to the orbital φLUMO, then the Hartree
energy is given by [δjφLUMOðrÞj2 ∝ δnðrÞ]

EH ¼ e2

2

Z ½nðrÞ þ δnðrÞ�½nðr0Þ þ δnðr0Þ�
jr − r0j d3rd3r0

¼ e2

2

Z
nðrÞnðr0Þ
jr − r0j d3rd3r0 þ δhφLUMOjvHjφLUMOi

þ e2

2

Z
δnðrÞδnðr0Þ
jr − r0j d3rd3r0:

The first term is just the Hartree energy for the neutral case,
the second term containing the Hartree potential for the neutral
case vH is linear in δnðrÞ and contributes to the eigenvalue
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FIG. 13 (color online). Energy vs number of electrons for the
LDA, Hartree-Fock theory, and a hybrid functional (HSE) for a
Si4H4 cluster. The LDA underestimates the discontinuities at
integer numbers, yielding a convex behavior below the straight
line, whereas the Hartree-Fock calculation yields a concave
behavior lying above the ideal straight line (dotted lines). The
KS (HF) eigenvalues of the LUMO and HOMO correspond to the
derivatives for 20� δ electrons.
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ϵKSLUMO, and the third term is quadratic with a positive curvature
yielding a convex upward-bending behavior. A similar analy-
sis for the exact exchange energy shows that it yields a
negative curvature upon electron addition, which would
exactly compensate the positive curvature, if and only if
the other electrons did not relax in response to the added
electron; Hartree-Fock theory is one-electron self-interaction-
free. In a many-electron system, however, relaxation of the
other electrons invalidates this behavior, and the Hartree-Fock
energy always lies above the straight line (concave behavior in
Fig. 13). If exchange and correlation are approximated by a
semilocal DFT functional, the positive curvature of the
Hartree energy prevails, as the present functionals are not
able to compensate the upward curvature of the Hartree term:
the added electron experiences a residual of its own Hartree
potential.
How these errors carry over to extended (infinite) systems is

still a subject of active research. Studies suggest that with
increasing system size the behavior for integer electron
numbers (the fundamental gap) will approach the incorrect
behavior of the derivative gap, which is overestimated in
Hartree-Fock calculations and underestimated using semilocal
functionals (Mori-Sánchez, Cohen, and Yang, 2008). A
simple argument supports this conjecture. If one electron is
added to or removed from an extended bandlike state in a large
simulation box, the change in the local charge density nðrÞ is
infinitesimally small at each point in space, and the resulting
change in the local approximations to the KS potential is
infinitesimally small as well. In the LDA, one then recovers
the behavior for an infinitesimal change of the electron
number in a finite cell, i.e., the one-electron addition and
removal energies become identical to the KS eigenvalues. This
expectation has been confirmed by practical calculations
(Lany and Zunger, 2008). Likewise, the change of the non-
local exchange potential will be negligible upon adding or
removing electrons to or from Bloch states, so that for Hartree-
Fock calculations the overestimation of the derivative band
gap (compared to the fundamental gap) will dictate the
behavior in extended systems. These conjectures are in full
agreement with the observation that semilocal functionals
underestimate the band gap in virtually all extended systems,
whereas Hartree-Fock theory severely overestimates the
band gap.
The deviation from the straight-line behavior has other

consequences. If one considers the solid to be made up of
weakly interacting fragments, then local and semilocal func-
tionals will prefer to spread out charge over the fragments
instead of localizing charge at one of the fragments, since
fractional occupancies are incorrectly preferred over integer
occupancies. This error manifests itself in defect calculations:
it is commonly accepted that semilocal functionals yield
defect states that are less localized than they should be,
and this is to some extent true. A more precise statement,
however, is that semilocal functionals prefer to spread the
charge over many defects favoring fractional occupation
instead of localizing the entire charge on one defect. The
opposite applies to Hartree-Fock calculations, which incor-
rectly prefer to localize charge on one fragment (defect)
instead of delocalizing it over many fragments (defects). In
practical calculations, this error is partly remedied by

performing defect calculations only at integer electron num-
bers, but this does not remedy the severe underestimation of
the band gaps.

2. Exchange-correlation derivative discontinuity

Over the years, a great deal of evidence has accumulated
showing that the KS potentials in solids are qualitatively and
often even quantitatively correct (Sham and Schlüter, 1983;
Godby, Schlüter, and Sham, 1986; Grüning, Marini, and
Rubio, 2006). If the potentials are correct for extended
systems and energy differences reasonably accurate for integer
electron numbers, what is then the origin of the incorrect band
gap in solids, and how can one restore the straight-line
behavior for finite systems?
For Kohn-Sham functionals, the only plausible explanation

is that the derivative of the xc functional must change
discontinuously when the electron number goes through an
integer, from N to N þ δ (Perdew et al., 1982; Perdew and
Levy, 1983; Sham and Schlüter, 1983). This will cause a
discontinuous jump in the xc potential vxcðrÞ upon addition of
the fractional charge. As a result, the energy derivative

lim
δ→0

∂Eel
0

∂N
����
Nþδ

≠ ϵKSLUMOðNÞ

will deviate from the KS eigenvalue of the lowest unoccupied
orbital calculated for N electrons ϵKSLUMOðNÞ.
Unfortunately, no practical means exist to estimate (even

a posteriori) the magnitude of the discontinuity using the
density functional applied in the ground-state calculations.
Instead, a more accurate approach beyond DFT is needed to
estimate the magnitude of the derivative discontinuity for
extended systems, for instance, the GW QP techniques
discussed in Sec. IV.F (Sham and Schlüter, 1983; Godby,
Schlüter, and Sham, 1986; Grüning, Marini, and Rubio,
2006). For finite-sized systems, suitable models for the
derivative have been suggested only recently, restoring the
straight-line behavior (Zheng et al., 2011).
Because KS functionals with accurate discontinuities pres-

ently do not exist, in practice one needs to resort to
quasiparticle methods (see Sec. IV.F) or generalized KS
schemes that include a fraction of the nonlocal exchange
(see Sec. IV.G). While excellent results can be obtained, these
methods have the disadvantage that they increase the compu-
tational demands by at least 1 to 2 orders of magnitude. Hence
there is a need for computationally less expensive alternatives,
which are covered in Secs. IV.C, IV.D, and IV.E.

C. Extrapolation schemes

Several approaches to overcoming the band-gap problem
without resorting to more expensive electronic-structure
methods have been proposed over the years, most of them
based on empirical corrections (Zhang, Wei, and Zunger,
2001). The simplest approach consists of rigidly shifting the
conduction band to match the experimental band-gap value
(using a so-called scissors operator), while leaving the defect
levels unchanged with respect to the valence band (Baraff and
Schlüter, 1984; Zhang, Wei, and Zunger, 2001). An extension
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of this approach additionally shifts donor levels along with the
conduction band, while leaving acceptor levels unchanged
(Zhang, 2002), a correction based on the assumptions that the
former are derived from conduction-band states and the latter
from valence-band states, and that the band-gap correction is
solely due to the error in the position of the conduction band
(Gunnarsson and Schönhammer, 1986). Instead of sorting
defects a priori into donors and acceptors, one can also project
the defect level onto valence and conduction states of the
host material, which form a complete basis. The formation
energy is then corrected by assuming that the level has shifted
upward by the fraction of the band-gap correction given
by its conduction-band content (Bogusławski, Briggs, and
Bernholc, 1995).
A more refined approach consists of performing an

extrapolation of results obtained by varying certain parameters
that affect the band gap. For example, by applying pressure
(i.e., by changing the lattice parameters in the calculation) one
can determine the rate at which the band gap of the host and
the defect level change with pressure. In other words, one
compares the variation of the conduction band with respect to
the valence band with the variation of the defect level with
respect to the valence band (Ren, Dow, and Wolford, 1982;
Gorczyca, Svane, and Christensen, 1997; Janotti et al., 2002).
By comparing the pressure coefficient of the bulk band gap
and that of the defect level, one then extrapolates the defect
level position to the case in which the gap assumes the
experimental value: Δϵ ¼ ðadef=abulkÞΔEg, where abulk and
adef are the rates at which the bulk band gap and defect level
vary with pressure, and ΔEg ¼ Eexpt

g − ELDA
g . The main

problems with the pressure approach are that (i) the character
of the defect wave function may change with pressure, and
(ii) the variations of the band gap with pressure are typically
much smaller than ΔEg, i.e., small errors in the pressure
coefficient are translated into large errors in the extrapolation
limit (proportional to ΔEg).
Zhang, Wei, and Zunger (2001) formalized and generalized

this approach to other parameters that enter into the calcu-
lations and that affect the calculated band gap. The defect
formation energy is expanded in terms of a parameter λ that
affects the band gap,

EfðλÞ ¼ Ef
LDAðλ0Þ

þ
�∂Ef

LDA

∂Eg

�
λ¼λ0

½EgðλÞ − ELDA
g ðλ0Þ�

¼ Ef
LDA þ δE; (66)

where λ is a parameter that satisfies Egðλ0Þ ¼ ELDA
g

and EgðλÞ ¼ Eexpt
g .

Zhang, Wei, and Zunger (2001) suggested several possible
choices of the parameter λ: (i) the cutoff energy in a plane-
wave basis set; (ii) the coefficient in an exchange-correlation
energy functional, such as λ ¼ α in the Xαmethod; or (iii) p-d
repulsion in cases where semicore d states affect the band gap.
An important aspect of these corrections is that the valence
band is pushed down in energy (Zhang, Wei, and Zunger,
2001; Zhang, 2002), contrary to earlier assumptions that the

band-gap correction would solely affect conduction-band
states (Baraff and Schlüter, 1984).
The extrapolation schemes were found to be useful for

obtaining more reliable results for the wide-band-gap semi-
conductor ZnO, in which the band-gap corrections are
particularly large (Zhang, Wei, and Zunger, 2001). Still, the
wide scatter in the extrapolated values indicated that the
schemes have limitations. For instance, changing the cutoff
energy in the plane-wave expansion [scheme (i)] restricts the
short-wavelength components in the basis set and lacks direct
physical meaning. In approach (ii), the band gap is corrected
at the expense of inconsistently describing other bulk proper-
ties that are necessary in the calculation of defect formation
energy, such as the formation enthalpy of the host compound.
Scheme (iii) is based on the observation that DFT LDA or

GGA underestimates the binding energy of semicore d states
and therefore places them too close to the anion p states that
make up the VBM (Wei and Zunger, 1988). In the simplest
correction scheme (Zhang, Wei, and Zunger, 2001), λ0
corresponds to calculations with d states treated as valence
states and λ to d states in the core. The problem is that
inclusion of the semicore states in the valence is often
necessary for a correct description of bulk properties, and
therefore simply placing the d states in the core results in an
inadequate description. A more sophisticated approach is
based on the LDAþ U method, which corrects for the
underbinding of the d states. Section IV.D focuses on this
approach.

D. LDAðGGAÞ þ U for materials with semicore d states

Here we describe an approach for correcting defect tran-
sition levels and formation energies based on LDAþ U or
GGAþ U calculations (Janotti and Van de Walle, 2007b;
Boonchun and Lambrecht, 2011). The approach requires only
minor additional computational effort beyond regular LDA or
GGA computations and has the virtue that it improves not
only the band gap but also the overall description of the
electronic structure of the host materials.
Filled narrow bands derived from cation semicore d states

occur in many of the nitride and oxide semiconductors of
current interest, including GaN, InN, ZnO, CdO, In2O3,
Ga2O3, and SnO2. For example, in ZnO the Zn 3d states
occur at ∼8 eV below the VBM (Blachnik et al., 1999) and
strongly couple to the states at the top of the VB derived from
O 2p orbitals. Inclusion of the Zn d states as valence states, as
opposed to treating them as frozen-core states, is therefore
essential for a proper description of the electronic structure of
ZnO, as it affects structural parameters, band offsets, and
deformation potentials (Zhang, Wei, and Zunger, 2001;
Janotti, Segev, and Van de Walle, 2006). DFT LDA or
GGA calculations do not properly describe these narrow
bands due to their higher degree of localization and stronger
electron-electron interaction, as compared to the more delo-
calized s and p bands. The d states in the LDA or GGA are
underbound, which places them too close in energy to the
VBM. The resulting overestimation in p-d repulsion affects
bandwidths and band gaps, on top of the other sources of the
band-gap error discussed in Sec. IV.B.
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The LDAþ U method (Anisimov, Zaanen, and Andersen,
1991; Anisimov et al., 1993; Liechtenstein, Anisimov, and
Zaanen, 1995; Anisimov, Aryasetiawan, and Lichtenstein,
1997) overcomes this problem by applying an orbital-
dependent potential that adds an extra Coulomb interaction
U for the semicore states. The correction of the semicore state
energy results in a shift of the VBM and (more surprisingly)
also the CBM; an explanation for the latter effect is given in
Sec. IV.D.3. This provides a partial correction to the band gap
(Persson et al., 2005; Janotti, Segev, and Van de Walle, 2006;
Lany and Zunger, 2007), and therefore also to the defect
transition levels. Since the band gap is only partially corrected
by performing LDAðGGAÞ þ U, further corrections are
necessary, as described in Sec. IV.D.4.

1. The LDAðGGAÞ þ U method

The LDAðGGAÞ þ U approach separates the valence
electrons into two subsystems: (i) localized d (or f) electrons
for which the Coulomb repulsion U is taken into account
via a Hubbard-like term in an ad hoc Hamiltonian, and
(ii) delocalized or itinerant s and p electrons that are assumed
to be well described by the usual orbital-independent
one-electron potential in the LDA or GGA. In the formulation
of Anisimov, Aryasetiawan, and Lichtenstein (1997) and
Dudarev et al. (1998), the total energy is written as

ELDAþU
tot ½ρðrÞ; fng�

¼ ELDA
tot ½ρðrÞ� þ

X
t

U
2

�X
α;σ

nt;σα;α −
X
α;β;σ

nt;σα;βn
t;σ
β;α

�
; (67)

where nt;σα;β are the occupation matrices involving orbitals α
and β for site t and spin channel σ. These matrices are obtained
by projecting a given band onto the orbital functions α and β
within a sphere around predefined atoms for which U is
applied. Note that the term that has been added to the LDA or
GGA total energy is self-interaction-free because terms like
nt;σα;αnt;σα;α cancel out. The corresponding KS energies are shifted
according to

ϵLDAþU
α ¼ ∂ELDAþU

tot

∂nα;α ¼ ϵLDAα þ U

�
1

2
− nα;α

�
: (68)

Therefore the net effect of the added on-site Coulomb
interaction is to shift the fully occupied narrow d bands down
in energy by ≈ U=2 with respect to the other bands for which
the LDA or GGA provides an adequate description.
Although the LDAðGGAÞ þ Umethod had been developed

and applied for materials with partially filled d or f bands
(Anisimov, Aryasetiawan, and Lichtenstein, 1997), it was
demonstrated that it significantly improves the description of
the electronic structure of materials with completely filled d
bands such as GaN and InN (Janotti, Segev, and Van de Walle,
2006), In2O3 (Lany and Zunger, 2007; Limpijumnong et al.,
2009), SnO2 (Singh et al., 2008), CdO (Janotti, Segev, and
Van de Walle, 2006), and ZnO (Erhart, Albe, and Klein, 2006;
Janotti, Segev, and Van de Walle, 2006; Janotti and Van de
Walle, 2007b; Lany and Zunger, 2007).

2. Choice of U

An important issue is the choice of the parameter U. It has
often been treated as a fitting parameter, with the goal of
reproducing either (i) the experimental band gap or (ii) the
experimentally observed position of the d states in the band
structure (Persson et al., 2005; Erhart, Albe, and Klein, 2006;
Paudel and Lambrecht, 2008). Neither approach can be
justified, because (i) the LDAþ U cannot be expected to
correct for other shortcomings of the DFT LDA, specifically,
the lack of a derivative discontinuity in the xc energy, as
discussed in Sec. IV.B.2, and (ii) experimental observations of
semicore states may include additional (“final-state”) effects
inherent in experiments such as photoemission spectroscopy.
Among the different proposed approaches for determining
the parameter U, those that do not require experimental
information are preferable in the spirit of first-principles
investigations.
A number of first-principles methods for obtaining the

parameter U have been proposed (Anisimov, Aryasetiawan,
and Lichtenstein, 1997; Pickett, Erwin, and Ethridge, 1998;
Cococcioni and de Gironcoli, 2005; Madsen and Novák,
2005; Janotti, Segev, and Van de Walle, 2006). Within
methods based on muffin-tin spheres and atomiclike basis
sets, such as the linear muffin-tin-orbital (LMTO) or the
linearized augmented-plane-wave (LAPW) methods, deter-
mining U by adding or subtracting an electron to or from a
specific orbital confined to the muffin-tin sphere around a
specific atom is more or less straightforward (Anisimov,
Aryasetiawan, and Lichtenstein, 1997; Madsen and Novák,
2005). However, this method is not easily implemented if the
basis set does not include localized orbitals, as in the case of
the pseudopotential-plane-wave approach. Cococcioni and de
Gironcoli (2005) developed an approach based on linear
response theory, in which the response in the occupation of
localized states to a small perturbation of the local potential is
calculated, and the parameter U is self-consistently deter-
mined. Comparing the different approaches for calculating U
is difficult because they rely on different computational
techniques and have been applied to very different materials
systems.
An alternative, approximate, but unbiased approach con-

sists of calculating U for the isolated atom, and then dividing
by the optical dielectric constant of the solid under consid-
eration in order to reflect the effects of screening (Janotti,
Segev, and Van de Walle, 2006). Values resulting from this
approach for selected oxide and nitride materials were
reported by Janotti, Segev, and Van de Walle (2006). The
on-site Coulomb interaction energiesU for 4d electrons (CdO,
InN) are significantly smaller than those for 3d electrons
(ZnO, GaN), corresponding to the smaller degree of locali-
zation and enhanced screening experienced by the 4d states.
Combined with the fact that ε∞ is larger in CdO and InN, this
leads to significantly smaller values of U in these compounds.
The calculated band structures of ZnO using the LDA and

LDAþ U are shown in Fig. 14. While in the LDA the Zn 3d
bands overlap with the O 2p bands, in the LDAþ U a gap
opens up between these two sets of bands. The band gap of
ZnO increases from 0.8 eV in the LDA to 1.5 eV in the
LDAþ U, compared to the experimental value of 3.43 eV
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(Madelung, 1996). The LDAþ U [with U ¼ 4.7 eV (Janotti,
Segev, and Van de Walle, 2006)] thus provides only a partial
correction to the band gap, since it does not account for the
inherent band-gap error in the LDA (see Sec. IV.B).

3. Band alignment between LDA and LDAþ U

It is interesting to explore how the LDAþ U affects not just
the band gap, but the individual valence- and conduction-band
edges. This question cannot be answered by performing bulk
calculations alone, since the long-range nature of the Coulomb
potential precludes establishing an absolute reference in a
calculation for an infinite solid (Kleinman, 1981). The lineup
between the band structures in the LDA and LDAþ U can be
obtained by following a procedure similar to the calculation of
band alignments at semiconductor heterojunctions (Van de
Walle and Martin, 1987). For the example of ZnO, it is
possible to calculate the band lineup at the hypothetical
ZnOLDA=ZnOLDAþU interface, where on one side of the
interface ZnO is described by the LDA and on the other side
by the LDAþ U. In practice this is accomplished by defining
two types of Zn atoms in a superlattice, those for which U is
applied and those which are described by the standard LDA
(Janotti, Segev, and Van de Walle, 2006). The results are
shown in Fig. 15.
As expected, the LDAþ U lowers the energy of the Zn d

states. This weakens the p-d repulsion and lowers the VBM
on an absolute energy scale, resulting in a valence-band offset
of 0.34 eV between the LDA and LDAþ U. The lowering of
the VBM results in an increase of the band gap, but the
increase in the gap (by 0.71 eV) is significantly larger than
the VB offset, indicating that the LDAþ U affects not only
the VBM but also the CBM, which is raised by 0.37 eV. The
change in the conduction band can be explained as follows:
The introduction of U causes the Zn d band to become

narrower and the Zn d states to become more localized around
the Zn atom. This results in the valence 4s state becoming
more effectively screened and thus more delocalized, and
therefore its energy increases. Since the states at the CBM are
composed mainly of Zn 4s states, an increase in the energy of
the CBM is observed.

4. Corrected defect transition levels and formation energies
based on LDAþ U

Different groups followed different procedures for
obtaining defect formation energies based on LDA and
GGAþ U calculations. Persson et al. (2005) used the
LDAþ U to calculate the band gap of CuInSe2 and
CuGaSe2 and assumed that LDAþ U affects only the position
of the VBM through the p-d coupling. In addition, the
conduction band was rigidly shifted to bring the band gap
in agreement with experiment. Shallow-acceptor levels were
shifted with the VBM and shallow-donor levels with the CBM
in an a posteriori approach. Formation energies were cor-
rected through the shift of the VBM. While the corrections for
shallow levels are intuitive and obvious, the question of
whether the treatment of deep levels was correct remains.
Erhart, Albe, and Klein (2006) used the GGAþ U for ZnO

with a U parameter chosen to reproduce the position of the
Zn d bands with respect to the VBM in ZnO. Results for
transition levels and formation energies of native defects were
interpreted within the calculated band gap in the GGAþ U
(which was 1.83 eV, still 47% lower than the experimental
value even for the rather large chosen value of U ¼ 7.5 eV).
Erhart, Albe, and Klein (2006) also performed an extrapola-
tion of the transition levels based on GGA and GGAþ U
results, as proposed by Janotti and Van de Walle (2005).
Paudel and Lambrecht (2008) studied the oxygen vacancy

in ZnO by applying the LDAþ U to both Zn d and Zn s
states, i.e., LDAþ Ud þ Us with Ud ¼ 3.40 eV and
Us ¼ 43.54 eV. The large value of Us has the effect of
pushing the unoccupied Zn-s-derived conduction-band states
upward, resulting in a band gap of 3.3 eV, close to the
experimental value of 3.4 eV. The application of the LDAþ U
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FIG. 14 (color online). Calculated electronic band structures of
ZnO using the LDA (left) and the LDAþ U (right). The band
alignment between LDA and LDAþU was taken into account
(see text and Fig. 15). The lowest-energy bands between −6.5
and −4.5 eV in the LDA (−8 and −7 eV in the LDAþ U) are
derived from Zn 3d states; the bands between −4.5 and 0 eV in
the LDA (−6.0 and −0.7 eV in the LDAþU) are derived mostly
from O 2p states; the bands above 0.8 eV in the LDA (1.5 eV in
the LDAþU) are conduction-band states, with the lowest
conduction-band states derived mostly from Zn 4s states. The
character of the bands was determined by projecting a given band
on atomic-orbital states centered on the Zn and O atoms.
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FIG. 15 (color online). Calculated band alignment at a hypo-
thetical ZnOLDA=ZnOLDAþU interface, showing the effects on
individual band edges of including the on-site Coulomb inter-
action U (with a value U ¼ −4.7 eV) for Zn 3d states. All values
are in electron volts.
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to such delocalized states lacks justification, in our opinion.
The electronic states of the oxygen vacancy are formed from
orbitals on the surrounding Zn atoms. These combine into a
symmetric a1 state and antisymmetric t2 states. The a1 state
lies in the gap, and because it has a significant contribution
from Zn states the application of LDAþ Ud þ Us strongly
affects its position. The large values of Us used by Paudel and
Lambrecht (2008) lead to a downward shift of the defect levels
related to the oxygen vacancy, resulting in the (2þ =0)
transition very close to the VBM, in contrast to other
published results (Janotti and Van de Walle, 2005; Erhart,
Albe, and Klein, 2006).
In general, we feel that the application of the LDAþ U to

states that are more appropriately described as delocalized or
itinerant bands is unwarranted and may lead to spurious
results. For instance, applying the LDAþ U to the Ti d states
of TiO2 and related materials, or to the O p states in oxides is
not physically justified, since these states clearly lead to
extended states in the band structure.
While the LDAþ U does not provide a full band-gap

correction for reasonable values of U, it does contain valuable
information on how the defect levels change as the band gap is
corrected, i.e., by going from the LDA to the LDAþ U. A
correction scheme can therefore be devised based on self-
consistent calculations for the same defect in the LDA and
LDAþ U approaches, and inspection of the change in
transition levels with the band gap; an extrapolation of the
defect levels to the fully corrected band gap can then be
performed to obtain corrected transition levels (Janotti and
Van de Walle, 2005, 2007b, 2008; Singh et al., 2008). This
extrapolation fits into the schemes discussed in Sec. IV.C, with
the advantage that the calculations that produce different band
gaps are physically motivated, ensuring that the shifts in defect
states that give rise to changes in formation energies reflect the
underlying physics of the system [as opposed to choices of the
parameter λ in Eq. (66) which correspond to purely numerical
issues such as the plane-wave cutoff].
The shifts in defect-induced states between the LDA and

LDAþ U reflect their relative valence- and conduction-band
character, and hence an extrapolation to the experimental gap
is expected to produce reliable results. The corrected transition
levels εðq=q0Þ are determined by

εðq=q0Þ ¼ εðq=q0ÞLDAþU þ Δε
ΔEg

ðEexpt
g − ELDAþU

g Þ; (69)

with

Δε
ΔEg

¼ εðq=q0ÞLDAþU − εðq=q0ÞLDA
ELDAþU
g − ELDA

g
; (70)

where ELDA
g and ELDAþU

g are the band gaps given by LDA and
LDAþ U, and Eexpt

g is the experimental gap. The coefficient
Δε=ΔEg is the rate of change in the transition levels with
respect to the change in the band gap. In order to correct
formation energies, Janotti and Van de Walle (2007b) started
from the formation energy for defects that do not have any
occupied states in the band gap, calculated consistently within
the LDAþ U—in contrast to the approach of Persson et al.

(2005) and Lany and Zunger (2007, 2008). Formation
energies of other charge states were obtained by combining
the formation energy of this lowest charge state with the
extrapolated transition levels from Eq. (69) (referencing
everything to the VBM position calculated with the
LDAþ U). For defects that have occupied states in the gap
for any of the stable charge states, an additional correction was
included that takes into account the effect on the formation
energy of the shift of the occupied KS states (Janotti and
Van de Walle, 2007b).
This extrapolation scheme has been applied to point defects

in ZnO (Janotti and Van de Walle, 2007b), InN (Janotti and
Van de Walle, 2008), and SnO2 (Singh et al., 2008). Figure 16
shows the results for the case of oxygen vacancy in ZnO and
compares them with hybrid-functional calculations from Oba
et al. (2008). The physical basis for the correction scheme is
that the defect states can in principle be described as a linear
combination of host states, as the latter form a complete basis.
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FIG. 16 (color online). Formation energy as a function of Fermi
level for an oxygen vacancy (VO) in ZnO. Energies according to
the (a) LDA and (b) LDAþ U calculations for Zn-rich con-
ditions. The 0, 1þ, and 2þ charge states are shown and the
calculated band gaps are indicated. (c) Energies according to
the LDA and LDAþ U extrapolation scheme described in
Sec. IV.D.4 (Janotti and Van de Walle, 2007b). (d) Energies
obtained with the HSE hybrid functional described in Sec. IV.G.1
(Oba et al., 2008). (c), (d) The formation energies for Zn-rich
(lower curve) and O-rich conditions (upper curve) are shown for
the 0 and 2þ charge states. The position of the εð2þ =0Þ
transition level is indicated in (c) and (d).
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A defect state in the gap region will have contributions from
both VB and CB states. The shift in transition levels with
respect to the host band edges upon band-gap correction
reflects the valence-band versus conduction-band character
of the defect-induced single-particle states. A comparison of
Figs. 16(c) and 16(d) shows that the position of transition
states is in good agreement with the hybrid-functional results,
and it was shown to also agree with experimental observations
(Janotti and Van de Walle, 2005), confirming that the
extrapolation scheme is reliable.
Figure 16 also shows, however, that formation energies are

much higher in the extrapolated LDAþ U approach than in
the hybrid-functional calculations. This discrepancy is largely
due to a shift in position of the VBM on an absolute energy
scale. In the extrapolation scheme based on the LDA or
LDAþ U (Janotti and Van de Walle, 2007b), it was assumed
that the VBM is well described in the LDAþ U. Subsequent
hybrid-functional calculations (Lyons, Janotti, and Van de
Walle, 2009a) have shown that the VBM shifts down by about
1.7 eV compared to GGA calculations. This effect can be
attributed to self-interaction corrections (SICs) to the VB
states, which are not included in the LDAðGGAÞ þ U
approach. The VBM thus exhibits an additional downward
shift by ∼1.4 eV compared to LDAþ U results (Fig. 15), and
therefore we expect the formation energy of the VO 2þ charge
state to be lower by 2 × 1.4 ¼ 2.8 eV in the HSE calculations
compared to the LDAþ U—very close to the difference
observed in Fig. 16.

E. Correction schemes based on modification of pseudopotentials

A number of correction schemes have been proposed that
aim to capture some of the essential physics of the band-
structure correction. Instead of being self-consistently imple-
mented within the calculations for the solid (which would be
difficult or even infeasible), the corrections are included
within the pseudopotential. The advantage is that once such
pseudopotentials have been constructed, the computational
cost is no higher than for a regular LDA or GGA calculation.
The disadvantages are the neglect of self-consistency, the
absence of a total-energy formalism within some of the
schemes, and the ad hoc nature of most of the approaches.
Nonetheless, since the computational effort of such schemes is
comparable to conventional LDA and GGA calculations, they
continue to be used, and they have shown a fair amount of
success in explaining or even predicting experimental proper-
ties. A brief discussion of the major approaches is
included here.

1. Self-interaction-corrected pseudopotentials

SICs attempt to correct for the unphysical self-interaction
that is present in most DFT functionals (see Sec. IV.B). In
finite systems, implementing such corrections is straightfor-
ward, but for an extended state in a solid, the correction
vanishes since the interaction scales inversely with the size of
the region in which the state is localized (Martin, 2008). Thus,
in extended systems there is some arbitrariness in the
definition of a SIC. A widely cited approach was proposed
by Perdew and Zunger (1981), but it is difficult to implement

in solids, particularly with a plane-wave basis set. The group
of Pollmann developed an approach in which the self-
interaction corrections, along with relaxation corrections,
were included in the pseudopotential (Vogel, Krüger, and
Pollmann, 1996, 1997). Based on these self-interaction- and
relaxation-corrected (SIRC) potentials, defect calculations
were carried out for InN (Stampfl et al., 2000), a material
which is particularly difficult to describe within the LDA or
GGA since the underestimation of the gap leads to a metallic
system. The study indicated that the character of the defect-
induced states is very similar in SIRC calculations compared
to LDA, but conduction-band-related states are shifted to
higher energies. Unfortunately, the SIRC approach did not
allow for the evaluation of total energies, and therefore the
effects of the calculated changes in the band structure on the
total energy of the defect could only be estimated, without
inclusion of self-consistency.

2. Modified pseudopotentials

Pseudopotentials should be transferable and should
generate reliable structural and energetic properties.
However, this leaves considerable flexibility in the choice
of parameters (which has been exploited, for instance, in
making potentials “soft,” i.e., amenable to the use of
relatively small plane-wave basis sets). In particular, the
calculated structural properties tend to be insensitive to
modifications of the potential close to the nucleus. However,
such modifications can have noticeable effects on the band
structure, since s states, in particular, are shifted when a
repulsive potential is applied close to the nucleus. This
concept was exploited by Christensen (1984) to generate a
correction to the band gap of GaAs. Although developed in
the context of LMTO calculations, the idea can readily be
implemented in the pseudopotential approach (Segev,
Janotti, and Van de Walle, 2007).
An atom-centered repulsive potential of Gaussian shape is

applied at the all-electron stage of the pseudopotential gen-
eration, within the LDA and the norm-conserving scheme
(Segev, Janotti, and Van de Walle, 2007). This potential acts
primarily on the lowest-energy 1s state and affects higher-
lying states through orthogonality of the wave functions. The
potential is adjusted in order to achieve agreement with the
experimental band gap. The resulting delocalization of inner
atomic states results in decreased screening and hence a more
attractive nuclear potential experienced by semicore states
such as the 3d and 4d, which tend to play an important role in
nitride and oxide semiconductors, as discussed in Sec. IV.D.
Although not explicitly designed to do so, the modified
pseudopotential scheme thus also achieves a correction of
the underbinding of these semicore states. It was demonstrated
that carefully constructed modified pseudopotentials can
produce results for atomic structure and energetics that are
as accurate as those of regular pseudopotentials, but also
produce band structures (and related properties such as defect
levels and surface states) that can be more directly compared
with experiment (Segev, Janotti, and Van de Walle, 2007). A
similar approach was used by Bruska et al. (2011), but with a
numerical atomic orbital basis set.
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A related approach was developed by Wang (2001) and
Li and Wang (2005) and subsequently applied by Wei and co-
workers [see, e.g., Li and Wei (2006)]. The difference is that
an existing pseudopotential is used, to which functions of the
form β sinðr=rcÞ=r (with β and rc being adjustable param-
eters) are added for all angular momentum channels, and with
an rc value that is quite large (up to 2.2 Bohr radius). This type
of modified pseudopotential is not suitable for self-consistent
total-energy calculations, but is employed only in a final step
to obtain band structures.
In Sec. IV.G we will return to overcoming the band-gap

problem within the framework of DFT, with the implementa-
tion of hybrid functionals. First, however, we discuss quasi-
particle calculations as a path to correcting the DFT band
structure in a first-principles way. The discussion of quasi-
particle calculations will also expose the underlying many-
particle physics that is subsequently effectively approximated
in hybrid functionals.

F. Quasiparticle calculations

1. Fundamental concepts

The goal of quasiparticle calculations is an accurate
prediction of band gaps and defect levels in semiconductors
and insulators. To achieve this goal, a different starting point is
taken than in conventional DFT. Most quasiparticle calcu-
lations are based on Green’s function theory, which attempts
to determine a two-point propagator, the one-particle Green’s
function Gðxt;x0t0Þ, describing the propagation of a particle
(or hole) from xt to x0t0.
Although G is a function of only two arguments, no matter

how many electrons are considered, G suffices to evaluate all
one-particle operators and the total ground-state energy
through the Galitskii-Migdal formula, as well as the quasi-
particle excitation spectrum through the Lehmann represen-
tation (Fetter and Walecka, 2003). For present purposes, the
prediction of the quasiparticle spectrum is the most relevant
property. Peaks in the Fourier-transformed Ĝðω;kÞ at positive
and negative energies are called quasiparticle energies ϵQP and
correspond to electron addition and removal energies. They
can be compared directly to photoemission and inverse
photoemission experiments. As before, the fundamental band
gap is described by the energy difference between the electron
affinity A (smallest electron addition energy) and the ioniza-
tion energy I (smallest electron removal energy). For defects,
the calculated peaks correspond to transition levels for fixed
atomic configurations, i.e., the intersection of the lines
EqðfRIgqÞ ¼ Eq0 ðfRIgqÞ in Fig. 5. Since forces are usually
not available in quasiparticle calculations, the positions and
relaxation energies need to be determined by other methods.
Diagrammatic Green’s function theory sounds like an ideal

starting point for a powerful computational framework; the
drawback, however, is that the determination of G is far from
obvious, and it turns out that the equation of motion for the
one-particle Green’s function G ¼ Gð1Þ itself depends on the
two-particle Green’s function Gð2Þ, which in turn depends on
the three-particle Green’s function Gð3Þ, etc.
Hedin (1965) was the first to explicitly state a closed set of

equations for the one-particle Green’s function Gðxt;x0t0Þ.

The standard derivation of Hedin’s equations works by
complicated formal functional derivatives, the calculation of
which is based on the Gellmann-Low formula (Fetter and
Walecka, 2003). The final set of equations is usually written as
(Hedin, 1965) [for a concise rederivation see Starke and
Kresse (2012)]

Gð1; 2Þ ¼ G0ð1; 2Þ þ
Z

dð3; 4ÞG0ð1; 3ÞΣxcð3; 4ÞGð4; 2Þ;
(71)

Σxcð1; 2Þ ¼ iℏ
Z

dð3; 4ÞGð1; 4ÞWð1; 3ÞΓð4; 2; 3Þ; (72)

Pð1; 2Þ ¼ −iℏ
Z

dð5; 6ÞGð1; 6ÞGð5; 1þÞΓð6; 5; 2Þ; (73)

Wð1; 2Þ ¼ vð1; 2Þ þ
Z

dð3; 4Þvð1; 3ÞPð3; 4ÞWð4; 2Þ; (74)

Γð1; 3; 2Þ ¼ δð1; 2Þδð2; 3Þ þ iℏ
Z

dð5; 6; 7; 8ÞIð1; 5; 3; 6Þ

×Gð6; 7ÞGð8; 5ÞΓð7; 8; 2Þ; (75)

where Σxc is the nonlocal part of the self-energy (the local
part being the self-consistent Hartree potential vH) and
G0 is the inverse of the Hartree one-particle Hamiltonian
iℏ∂t − Ĥ0 − vH,

�
iℏ∂t þ

ℏ2

2me
Δ − vextð1Þ − vHð1Þ

�
G0ð1; 2Þ ¼ δð1; 2Þ;

(76)

the density in vH being given by the self-consistent ground-
state density −iℏGð1; 1þÞ ¼ nð1Þ. Numbers here refer to
combined space-time indices, i.e., 1 ¼ ðr1; t1Þ, 2 ¼ ðr2; t2Þ.
Spin indices have been dropped, but may be added to the
combined space-time indices. Unfortunately, not much has
been gained by rewriting the equations in this way, since the
irreducible scattering amplitude I corresponds to infinitely
many Feynman graphs irreducible in the electron-hole channel
(i.e., they cannot be separated into two graphs by simulta-
neously cutting one forward and backward propagator G; the
first-order graph v also needs to be excluded). It is important
to note that Hedin’s equations are in principle exact and the set
can even be formally closed by identifying

iℏIð1; 5; 3; 6Þ ¼ δΣxcð1; 3Þ
δGð5; 6Þ :

In practice, however, one always needs to make explicit
assumptions and simplifications for I in order to solve the
coupled system of equations. We will not discuss Hedin’s
equations in much detail, but rather concentrate on the
underlying physics and practical applications. For concise
reviews, we refer the interested reader to Aryasetiawan and
Gunnarsson (1998) and Bechstedt, Fuchs, and Kresse (2009),
as well as standard textbooks (Giuliani and Vignale, 2005).
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2. Practical approximations

Two approximations need to be considered when Hedin’s
equations are solved in practice. (i) First, one desires to solve
the set of equations fully self-consistently, i.e., starting with
some initial guess for the interacting one-particle Green’s
function G, and repeating the calculation of each quantity
dependent on G until G does not change. (ii) Second, one
needs to make a specific choice for I in order to explicitly
close the system of equations.
In practice, none of the publicly available computer codes

allow for a fully self-consistent solution (although some
limited self-consistency is discussed below). The reasons
are technical; in particular, the one-particle Green’s function
Gð1; 2Þ depends on two spatial arguments r1 and r2, as well as
the time difference t1 − t2. The accurate discretization in time
is challenging and has been addressed by only a few (Ku and
Eguiluz, 2002). Virtually all implementations instead limit the
Green’s function G to a “noninteracting” form

GðωÞ ¼
X
i

jφiihφij
ω − ϵQPi þ iη sgn ðϵQPi − EFÞ

; (77)

where η is a positive infinitesimal, EF is the Fermi energy, and
most crucially the orbitals φi are normalized eigenfunctions of
some Hermitian one-particle Hamiltonian Hjφii ¼ ϵijφii.
This simplification has the advantage that the QP energies
ϵQPi can be readily identified as poles of the Green’s function,
and the band gap is simply given as the energy difference
between the energy of the lowest unoccupied and highest
occupied quasiparticle.
As originally suggested by Hybertsen and Louie (1986), the

Hamiltonian H is usually the KS Hamiltonian specified in
Eq. (60), although hybrid functionals or Hartree-Fock orbitals
have been applied as well (Fuchs et al., 2007). Furthermore,
and consistent with the restriction to noninteracting Green’s
functions, the first equation of Hedin (71) is replaced by the
much simpler relation (Hybertsen and Louie, 1986)

ϵQPi ¼ Re½hφijT þ vext þ vH þ ΣxcðϵQPi Þjφii�: (78)

Since the self-energy ΣxcðωÞ is energy dependent, Eq. (78)
needs to be solved iteratively for ϵQPi , for instance, by a
Newton root-finding algorithm (Hybertsen and Louie, 1986;
Shishkin and Kresse, 2007) starting from the KS eigenvalues
ϵKSi [Eq. (60)]. The approximation Eq. (78) assumes that the
orbitals in the Green’s function G remain identical to the
original DFT orbitals, and only the quasiparticle energies in
the Green’s function G, occurring in the denominator of
Eq. (77), are updated.
The second point to be addressed consists of the approx-

imations for the irreducible scattering amplitude I. In most
cases, the system of equations is closed using the approxi-
mation Ið1; 5; 3; 6Þ ¼ 0 which implies that the vertex
Γð1; 3; 2Þ [Eq. (75)] is identical to δð1; 2Þδð2; 3Þ. As shown
below, this implies that all interactions between particles and
holes are neglected. This approximation can be justified only
a posteriori by comparison of the final results with experi-
ment, and there are many cases, for instance, strongly
correlated metals, where one expects this approximation to

be inadequate. Still, overwhelming evidence has accumulated
that the neglect of the vertex is an excellent approximation
for semiconductors and insulators if DFT orbitals are used
(see below).
For pedagogical reasons, we recapitulate the particularly

simple case Pð1; 2Þ ¼ 0 corresponding to the approximation
Wð1; 2Þ ¼ vð1; 2Þ [see Eq. (74)]. With this replacement, the
self-energy operator becomes exactly identical to the Fock
exchange operator [Eq. (72)]:

Σxð1; 2Þ ¼ iℏGð1; 2Þvð1; 2þÞ ¼ vxðr1; r2Þδðt1 − t2Þ; (79)

and Eq. (78) [with the help of Eq. (61)] simplifies to

ϵEXXi ¼ hφijT þ vext þ vH þ vxjφii; (80)

where the only difference from the Hartree-Fock case is the
evaluation of the Hartree potential vH and exchange operator
vx using the orbitals in the Green’s function. Furthermore, if
the Green’s function is updated using Eq. (71), the exact
Hartree-Fock Green’s function is obtained (Fetter and
Walecka, 2003). In the simplest case, Hedin’s equations
therefore recover the well-known self-consistent Hartree-
Fock equations, and one might well term this approximation
Gv [compare Eq. (79)].
The commonly applied GW approximation takes this one

step further and approximates the irreducible polarizability P
by the simplest possible approximation, the independent-
particle approximation. In this case, the bare Coulomb
operator in Eq. (79) is replaced by the screened potential
W obtained from the third and fourth Hedin equations
[Eqs. (73) and (74)]:

Pð1; 2Þ ¼ −iℏGð1; 2ÞGð2; 1Þ;
Wð1; 2Þ ¼ vð1; 2Þ þ

Z
dð3; 4Þvð1; 3ÞPð3; 4ÞWð4; 2Þ;

and the self-energy becomes

Σxcð1; 2Þ ¼ iℏGð1; 2ÞWð1; 2þÞ: (81)

Interpreting each object as a matrix, we can equally well write
W as

W ¼ vþ vPW ¼ vþ vPvþ vPvPvþ � � � . (82)

On the right-hand side, we have repeatedly inserted W (cf.
Fig. 17). The physics underlying this approximation is that the
exchange interaction is screened by the other electrons acting
as an effective medium: bare exchange is screened by
correlation effects resulting in an effective screened exchange.
This insight is at the core of Hedin’s GW approximation but
applies to any level of theory and sophistication [cf. Eq. (72)].
The approximation underlying the GW approach assumes

the simplest physically plausible form for the irreducible
polarizability P, the independent-particle approximation. For a
Green’s function of the noninteracting form Eq. (77), the
corresponding independent-particle polarizability reduces to
the well-known form (Adler, 1962, Aryasetiawan and
Gunnarsson, 1998, Chang, Rohlfing, and Louie, 2000, and
Onida, Reining, and Rubio, 2002):
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Pðr1; r2;ωÞ ¼
2

Ω

X
nn0

ðfn0 − fnÞ

×
φ�
n0 ðr1Þφnðr1Þφ�

nðr2Þφn0 ðr2Þ
ωþ ϵQPn0 − ϵQPn þ iη sgn ½ϵn0 − ϵn�

; (83)

which can be interpreted as the creation of a particle-hole pair
at position r1 and annihilation of the pair at position r2.
However, there are infinitely many other Feynman diagrams
for the irreducible polarizability that are not accounted for by
this approximation. The vertex [Eq. (75)] in Hedin’s equations
accounts in principle precisely for these missing diagrams. Its
intent is to sum all v irreducible Feynman diagrams between
one Coulomb line v and two propagators, where v irreducible
means that the Feynman graphs cannot be divided into two
distinct graphs by cutting a single Coulomb line. A number of
possible Feynman diagrams are summarized in Fig. 18. Again
one has to keep in mind that the GW approximation neglects
all but the first term describing the direct creation of a
noninteracting (independent) electron-hole pair from the
ground state.

3. Self-consistency and vertex corrections

If local or semilocal functionals are chosen as a starting
point, then (and only then) the neglect of vertex corrections Γ
seems to be an excellent approximation. This is most likely
related to the underestimation of the band gap for semilocal
functionals being well balanced against the neglected dia-
grams. The accuracy of this approach has been repeatedly
demonstrated for a wide variety of systems (Aryasetiawan and

Gunnarsson, 1998; Bechstedt, Fuchs, and Kresse, 2009).
However, data consistently obtained with a single code and
similar convergence are difficult to find in the literature.
In Fig. 19 we show results for two different approximations

that are often termed G0W0 and GW0 (Shishkin and Kresse,
2007). In the first case (G0W0), the polarizability in Eq. (83)
and the Green’s function in Eq. (77) are calculated using DFT
eigenvalues (ϵQP → ϵDFT). W and Σxc are calculated using
Eqs. (81) and (82), and Eq. (78) is solved once. In the second
case (GW0), the one-electron energies in the Green’s function
are then updated in Eq. (77), Σxc is recalculated using Eq. (81),
and Eq. (78) is solved again. This procedure is repeated until
self-consistency in the quasiparticle energies is achieved.
However, in GW0 the original DFT eigenvalues are kept
fixed in the calculation of the polarizability equation (83). The
incentive to do this is based on the observation that the DFT
and RPA polarizabilites seem to account well for the overall
screening properties of the system (Weissker et al., 2006;
Shishkin, Marsman, and Kresse, 2007). The initial one-
electron energies are, however, quite far from the experimental
values, and the quasiparticle energies converge toward a stable
value only after three to four iterations.
Overall, Fig. 19 clearly demonstrates that G0W0 and, in

particular,GW0 are accurate approximations for the prediction
of band gaps. From a practitioner’s point of view, these two
fairly efficient approximations are currently the approaches of
choice for the modeling of defect levels.
Van Schilfgaarde and co-workers proposed a modified GW

version, called the self-consistent quasiparticleGW (scQPGW)
approximation (Faleev, van Schilfgaarde, and Kotani, 2004;
van Schilfgaarde, Kotani, and Faleev, 2006). The approach
replaces Eqs. (71)–(75) by the diagonalization of a Hermitian
Hamiltonian

T þ vext þ vH þ Σ̄;

= +

+ +
P P P

+ . . .

FIG. 17. Feynman diagrams for the screened interaction W in
the random phase approximation. In the random phase approxi-
mation, an “incoming” field v can create a particle-hole pair
which annihilates (P) creating a new field v. As a response to this
induced field, another particle-hole pair can be created corre-
sponding to the third term, and this process continues ad infin-
itum. The closed particle-hole diagrams are usually termed
“bubble” diagrams; they are summed up to infinity.

FIG. 18. Selected Feynman diagrams for the vertex connecting a
Coulomb line with two propagators (vertex Γ). The diagrams shown
are the particle-hole ladder diagrams and correspond to the diagrams
typically used in the Bethe-Salpeter equation for the calculation of
optical properties (Albrecht et al., 1998; Rohlfing and Louie, 1998).
This is the simplest possible vertex correction and it describes the
electrostatic interactions between particles and holes.
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FIG. 19 (color online). Results for G0W0 and GW0 and self-
consistent quasiparticle GW (scQPGW) band gaps, along with
results using the semilocal Perdew-Burke-Ernzerhof (PBE) func-
tional (Shishkin and Kresse, 2007). Lattice constants are from
low-temperature experiments, where available. Note the double
logarithmic scale.
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where the approximate Hermitian self-energy Σ̄ is defined as

Σ̄ ¼ Herm
X
ij

jφiihφij
Σ†
xcðϵQPi Þ þ ΣxcðϵQPj Þ

2
jφjihφjj (84)

with the quasiparticle energies calculated using Eq. (78). The
orbitals obtained by diagonalization are then used in the same
way as DFTorbitals, the Green’s function maintains its simple
noninteracting form Eq. (77), and all quantities in Hedin’s
equations are updated until self-consistency is reached.
Alternatives using a static screened exchange and Coulomb
hole approximation have been suggested as well (Bruneval,
Vast, and Reining, 2006).
This “bootstrap” procedure is found to yield results that are

independent of the starting orbitals, but the method is fairly
expensive and so far limited to unit cells with a few atoms. A
second problem is that the predicted screening properties,
such as the static dielectric constants, are significantly in error
when this procedure is used (van Schilfgaarde, Kotani, and
Faleev, 2006; Shishkin, Marsman, and Kresse, 2007), with the
static electronic screening typically underestimated by 30%
and related band-gap overestimations of about 10%.
To repair this deficiency, vertex corrections should be

included in the self-consistency procedure (Bruneval et al.,
2005). In particular, the inclusion of the electron-hole ladder
diagrams shown schematically in Fig. 18 brings the dielectric
properties back into excellent agreement with experiment.
This correction also yields band gaps within a few percent of
the experimental values as shown in Fig. 19 (Shishkin,
Marsman, and Kresse, 2007). The same electron-hole ladder
diagrams are usually included when optical properties are
calculated using the Bethe-Salpeter equation (Albrecht et al.,
1998; Rohlfing and Louie, 1998), and neglecting these
diagrams results in optical spectra that are blueshifted and
lack any excitonic features, related to the “too weak” screen-
ing mentioned above.
These observations suggest that the calculation of the

polarizability from a Green’s function with realistic quasipar-
ticle energies is accurate only if vertex corrections are
included. Unfortunately, the inclusion of vertex corrections
is very demanding and scales asN5–N6 with system sizeN, so
that this procedure is currently not suitable for large-scale
applications. We note that the scQPGW method (without
vertex corrections) was used to calculate band alignments
across the silicon/silica interface, but results were found to be
in worse agreement with experiment than for the standard,
more routine G0W0 approximation (Shaltaf et al., 2008). The
inaccurate band alignment was most likely a result of the
incorrect screening properties typical for scQPGW calcula-
tions without vertex corrections, ultimately leading to inac-
curate dipoles across the interface. Similar problems are
expected to occur for defect levels. We conclude that until
an efficient means to correct for the screening error is
identified, results of scQPGW calculations should be regarded
with caution.

4. Constraints and limitations

The most severe limitation of the GW method is that the
approach is currently limited to the calculation of QP energies,

i.e., electron addition and electron removal energies for fixed
geometries.
Total energies can be calculated using the related random

phase approximation to the correlation energy (Nozières and
Pines, 1958; Langreth and Perdew, 1977), which has recently
gained significant attention among quantum chemists (Furche,
2008; Eshuis and Furche, 2011) as well as solid-state
physicists (Harl and Kresse, 2009; Ren et al., 2011). While
this is clearly a promising approach, it has not yet been
explored for defect calculations.
Accurate electron addition and electron removal energies

are, however, needed to make quantitative predictions of
defect levels. DFT with the standard semilocal functionals
is particularly unreliable for predicting electron addition and
removal energies, whereas lattice relaxations and relaxation
energies are usually accurately predicted using these func-
tionals. Figure 5 suggests a procedure to combine both
approaches (Rinke et al., 2009). The electron addition
energies at fixed geometries fRIgq and fRIgq0 are calculated
using the G0W0 approximation, whereas the relaxation
energies are determined by DFT. Comparison with Fig. 5
suggests that this yields more information than required,
allowing for straightforward cross-checks. For instance, in
principle one can start from different charge states of the
defect by adding or removing electrons from the defect states
in the band gap, and combining with LDA or GGA lattice
relaxation energies, obtain the values for transition levels by at
least two different paths.
Rinke et al. (2009) applied this approach to calculations of

self-interstitial defects in Si. They found results that were
significantly improved over those obtained with semilocal
functionals, with formation energies in good agreement with
diffusion Monte Carlo calculations (Leung et al., 1999; Leung
and Needs, 2003; Batista et al., 2006) and transition levels
close to experimental values.
The main drawback of the approach is that in some cases

DFT might not yield a correct “zeroth-order” description of
the defect level. For instance, DFT may place the defect level
above the CBM or below the VBM (Janotti et al., 2010), while
the true quasiparticle level is located in the gap. In such cases,
the perturbative G0W0 approach is unreliable, as the one-
electron orbitals are much too delocalized. scQPGW calcu-
lations might be a solution to this problem, but the caveats of
this method have been noted above. Related problems may be
encountered for polarons, which are characterized by a strong
coupling of the lattice degrees of freedom to the electronic
degrees of freedom (Franchini, Kresse, and Podloucky, 2009).
If the applied density functional underestimates the degree of
charge localization, the polaronic lattice distortions will be too
weak or they will not occur at all. In summary, whenever local
and semilocal functionals severely underestimate the locali-
zation of the defect charge, the a posteriori application of
G0W0 or GW0 corrections may be unreliable.
Ideally, one needs a method that yields a realistic band-gap

description as well as reliable energetics and forces from the
outset. This is one reason why hybrid functionals, described in
Sec. IV.G, may be preferable for many modeling situations,
although admittedly at the expense of a less rigorous descrip-
tion of the electronic many-body problem than can be
achieved in quasiparticle calculations.
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G. Hybrid functionals

1. Screened exchange

The concept of screened exchange is a natural ingredient
emerging from the GW approximation. To illustrate this,
Fig. 20 shows the diagonal part of the electronic contributions
to the dielectric function ε−1ðg;ω ¼ 0Þ versus the reciprocal
lattice vector g. This quantity is related to W in the GW
approach through

Wstaticðg;gÞ ¼ 4πe2

jgj2 ε−1ðjgj;ω ¼ 0Þ; (85)

whereWstatic is the screened potential at zero frequencyω ¼ 0,
and 4πe2=jgj2 is the bare Coulomb kernel. Obviously, ε−1ðgÞ
describes to what extent the nonlocal Hartree-Fock exchange
prevails in the actual GW calculation. If the inverse dielectric
function is 1, the nonlocal exchange is not screened, and one
recovers the Hartree-Fock description, as happens for large g.
On the other hand, if ε−1ðgÞ is small, most of the nonlocal
exchange is screened by the other electrons. In GaAs and
MgO the experimental dielectric constants are 11.1 and 3.0,
respectively, i.e., ε−1 is equal to 0.09 and 0.33, values that are
well reproduced by the DFT RPA screening at small wave
vectors g.
This raises the question of whether it is actually necessary

to perform full GW calculations, or whether a description
using a static screened exchange would suffice for a correct
description of the band gap. Such an approximation was
already suggested by Hedin (1965) in his seminal work by
combining static screened exchange with a suitable local
potential that models the Coulomb hole (COH) around an
electron. The only required ingredient is then a model for the
dielectric function ε−1ðgÞ. In fact, until 2000, it was common
practice to perform GW calculations using either frequency-
dependent models for ε−1ðg;ωÞ (Surh, Louie, and Cohen,
1991; Zhu and Louie, 1991; Zakharov et al., 1994) or static
models for the dielectric function combined with local models
for the COH (Bechstedt et al., 1992). The results of these
calculations are often on par with, if not better than, full

first-principles GW calculations, since using the experimental
screening properties as input seems to guarantee excellent
agreement with experimental quasiparticle energies.
If one aims at an accurate prediction of total energies (and

not quasiparticle energies) then the screened exchange needs
to be supplemented by a suitable density functional that, in the
spirit of DFT (Hohenberg and Kohn, 1964; Kohn and Sham,
1965), restores the total energy of the homogeneous electron
gas. The idea was first adopted by Bylander and Kleinman
(1990), who suggested the use of a Thomas-Fermi model for
the dielectric function,

ε−1ðgÞ ¼ jg2j
jgj2 þ jkTFj2

; (86)

where kTF is the Thomas-Fermi wave vector. Suitable approx-
imations for the local exchange can be constructed (Bylander
and Kleinman, 1990), and for the correlation energy the usual
local parametrization may be chosen. Figure 20 includes the
corresponding screening for kTF ¼ 2.0 Å−1, which corre-
sponds roughly to the density of valence electrons in
GaAs. Since Thomas-Fermi screening models the screening
in metals, screening is infinite at small wave vectors and
approaches 1 at large wave vectors.
The main drawback of this approach is that total energies are

hardly improved over the LDA values (Lee et al., 2007), and
improvements for the lattice constants are not very systematic
either (Clark and Robertson, 2010). This is possibly related to
the lack of suitable gradient corrections for the correlation, but it
ismore likely that theerror cancellation thatoccurs for exchange
and correlation in purely semilocal functionals is more difficult
to achieve if full exchange is applied at short distances (large
wave vectors). For instance, it is well known that the combi-
nation of full nonlocal Hartree-Fock exchange with local
correlation functionals yields unsatisfactory energetics
(Becke, 1993b). The second problem is that the Thomas-
Fermi wave vector is, in principle, system dependent, and it
remains unclear how to perform calculations for interfaces
between materials with very different screening properties.
Likewise, relative energies between atoms and solids, which
possess very different screening properties, are in principle not
accessible in this method. While some interesting results for
defects have been reported (Clark et al., 2010) more expertise
needs to be acquired on how to deal with these problems before
this approach can be routinely applied.

2. Hybrid functionals: Historical overview

Hybrid functionals were originally suggested by Becke
(1993b), who based his arguments for the inclusion of
nonlocal exchange on the adiabatic connection fluctuation-
dissipation theorem (Langreth and Perdew, 1977). The theo-
rem suggests that in the limit of a weak Coulomb coupling
between the electrons, the Hartree-Fock theory should be a
good approximation, whereas in the limit of strong coupling
DFT is adequate. With this consideration in mind, Becke
suggested combining one-half of the Hartree-Fock exchange
with one-half of the DFT exchange (Becke, 1993b), and
complementing this with semilocal correlation functionals, or
compactly
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FIG. 20 (color online). Diagonal part of the electronic contri-
bution to the inverse of the macroscopic dielectric function vs
wave vector g. DFT RPA screening results for magnesia (MgO)
(circles) and GaAs (squares) are shown. The lines are fits to the
calculated data. Thomas-Fermi screening for GaAs (broken line)
and the hybrid functional HSE (full line) are shown as well.
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Ehybrid
xc ¼ EDFT

xc ½n� þ αðEnonlocal
x − EDFT

x ½n�Þ; (87)

with α ¼ 0.5. Becke later introduced a more flexible form that
combines exact exchange and local and gradient-corrected
exchange and correlation in a form that is parametrized using
three parameters (Becke, 1993a). This, or rather a slightly
modified version implemented in the GAUSSIAN program
suite, became the popular B3LYP functional, which has
dominated calculations in quantum chemistry over the past
two decades. The B3LYP functional admixes only 20% of the
exact HF exchange with DFT exchange (α ¼ 0.2), which was
empirically found to be an optimal choice for thermochem-
istry. Because of the lack of efficient implementations, hybrid
functionals have hardly been applied to solid-state systems.
This changed only around 2005–2010, when nonlocal
exchange became available in all major program packages
for solids.
Muscat, Wander, and Harrison (2001) were the first to

demonstrate that band gaps in solids are dramatically
improved using the B3LYP functional. But since the
B3LYP functional does not reproduce the correct exchange
correlation energy for the free-electron gas, it is of limited use
for periodic systems. Errors are particularly large for metals
and heavier elements, beyond the 3d transition metal series
(Paier, Marsman, and Kresse, 2007) and “nonempirical”
functionals based on the popular semilocal Perdew-Burke-
Ernzerhof functional (Perdew, Burke, and Ernzerhof, 1997)
are more appropriate for solid-state applications. The PBEh
hybrid functional was initially evaluated for small molecules,
and the performance was found to be only slightly worse than
for the B3LYP functional explicitly fitted to this database
(Adamo and Barone, 1999; Ernzerhof and Scuseria, 1999;
Paier et al., 2005).
Further widespread application in solids was hindered by

the numerical difficulties in calculating the long-range part of
the exchange integrals and exchange potential, leading to slow
convergence with the number of k points in metals (Paier et
al., 2006). Heyd, Scuseria, and Ernzerhof solved this issue by
truncating the long-range part of the Coulomb kernel in the
exchange, i.e., by replacing the exact exchange by a screened
version (Heyd, Scuseria, and Ernzerhof, 2003, 2006):

vsxðr; r0Þ ¼ −e2X
j

fjφjðrÞφ�
jðr0Þ

erfcðμjr − r0jÞ
jr − r0j :

The optimal choice for μ is found to be about μ ¼ 0.11 a.u.
(μ ≈ 0.2 Å−1) (Krukau et al., 2006), and the mixing parameter
α is set to α ¼ 1=4. This functional is now usually referred to
as HSE06. Comparison with Eq. (85) then suggests that this
choice of α corresponds to a model screening

ε−1ðgÞ ¼ 1
4
ð1 − e−jgj2=4μ2Þ;

which is also included in Fig. 20. A fairly extensive review of
applications of the HSE06 functional can be found in Janesko,
Henderson, and Scuseria (2009) and Henderson, Paier, and
Scuseria (2011).

3. The incentive to use hybrid functionals and 1=4 of the exact
exchange

Now we address the important question of the choice of
α ¼ 1=4, and why the truncation of the Coulomb kernel at
long range is a sensible choice for solids, although this choice
does not recover the correct amount of nonlocal exchange at
any wave vector (see Fig. 20). From the outset, we emphasize
that this choice is not serving all needs, but it works
remarkably well for a broad class of systems and a broad
class of properties, such as thermochemical quantities, band
gaps, and optical properties.
Fitting the parameter α to thermochemistry data for small

molecules yields values that are consistently around 0.2–0.25
for gradient-corrected functionals (Becke, 1993a; Krukau et
al., 2006). Furthermore, relying on the adiabatic connection
fluctuation-dissipation theorem, Perdew, Ernzerhof, and
Burke (1996) found strong support for using α ¼ 1=4 for
global hybrid functionals. It is also clear from Sec. IV.B.1 that
admixing Hartree-Fock and semilocal functionals will
improve the straight-line behavior even though, as shown
in Fig. 13, the straight-line behavior is not exactly restored for
HSE06. In summary, empirical evidence accumulated over the
years indicates that 1=4 of the exact exchange works well for
thermochemistry and band gaps, but it is also established that
the optimal amount of exchange may vary from system to
system.
We now comment in more detail on the band-gap issue and

the truncation of the Coulomb kernel at long distances. The
HSE functional uses zero exact exchange at short wave vector
g (large distances), which is inappropriate for insulators. We
first demonstrate that this removal of exact exchange at large
distances influences the results only little in semiconductors
and insulators. To this end, we evaluate the exchange energy
using Wannier functions wn instead of Bloch orbitals:

−
e2

2

X
nm

Z
d3rd3r0

w�
mðrÞwnðrÞw�

nðr0Þwmðr0Þ
jr − r0j : (88)

The exchange integral yields a finite contribution if the
Wannier orbitals n and m exhibit an overlap and are located
at nearby lattice sites [otherwise w�

mðrÞwnðrÞ ¼ 0, ∀ r]. This
implies that the long-range part of the exchange is not relevant
in large-gap insulators, where the Wannier functions are
strongly localized. In metals, on the other hand, the removal
of the long-range part at large distances is correct. The only
case where the HSE06 functional yields a qualitatively
incorrect behavior is in vacuum, where other electrons are
not available to screen the exchange and one would, in
principle, like to preserve the exact Hartree-Fock exchange.
Note that a correct description of the long-range decay of the
potential into the vacuum is not achieved with any semilocal
functional, but fortunately this is of little relevance for the
modeling of defects. In summary, cutting of the long-range
part of the exchange is a well-balanced approximation in
extended systems.
The cutoff at short wave vectors has another decisive

beneficial side effect. In systems with heavier elements and
larger lattice spacings, the orbitals will sample the exchange
interaction at larger r and smaller wave vectors g, since the
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Wannier functions become less localized. In the HSE06
functional, the amount of nonlocal exchange will hence
decrease with increasing interatomic distances within a group
of materials, e.g., C, Si, Ge, and Sn. In the GW method, the
amount of nonlocal exchange will decrease as well within a
group, since screening becomes more effective for heavier
atoms. Although the HSE06 functional cannot describe the
change in the screening properties properly, it mimics this
effect remarkably well by reducing the nonlocal exchange at
larger distances. As a result, HSE06 is remarkably accurate in
predicting relative band gaps within a group (Hummer, Harl,
and Kresse, 2009). In summary, it does not seem to matter
much at which wave vector nonlocal exchange is placed; what
rather matters is that the average amount of nonlocal exchange
is well represented, so that one-center and two-center integrals
are well approximated [see Eq. (88)].
With these arguments in mind, it is also obvious that 1=4 of

the exact exchange is not sufficient to describe wide-band-gap
materials such as MgO (see Fig. 21). This can be easily
explained by considering the screening in MgO (see Fig. 20):
in MgO at any wavelength the amount of nonlocal exchange
exceeds 1=4, with the minimum value given by the inverse of
the dielectric constant 1=ε∞. This explains why the HSE06
band gaps are not very accurate for weakly screening
materials, including ZnO, MgO, LiF, Ar, and Ne. A remark-
ably simple way to improve the band gaps is to set the
parameters in the HSE functional to μ ¼ 0.5 Å−1 and α ¼ 0.6,
i.e., increasing the amount of nonlocal exchange to 0.6 at long
wave vectors, and making the increase to that value much
slower. Although these settings significantly improve the band
gaps across the series, as shown in Fig. 21, the thermochem-
istry results for this functional are worse than those using the
conventional HSE functional.
Overall, if thermochemistry and band gaps are important,

the HSE06 functional seems to be the best overall choice. We
suggest using the functional as is, without further adjustment
of parameters, since this will increase the available database

and help to pinpoint and fix possible deficiencies of HSE06 in
the future. Even when an adjusted value of α is used to better
reproduce experimental band gaps [see, e.g., Lyons, Janotti,
and Van de Walle (2009a)], simultaneous calculations with
α ¼ 0.25 provide a useful cross-check to ensure that the
qualitative conclusions are not sensitive to the choice of this
parameter.
Since the HSE06 functional does not restore the proper

straight-line behavior (see Fig. 13), the transition levels even
at fixed positions must be calculated as for conventional KS
functionals by adding and removing electrons and taking total
energy differences (see Sec. II.D). For extended Bloch states,
however, specifically conduction- and valence-band edges, the
generalized KS eigenvalues can be used and directly com-
pared to experiment.
Finally, we point out that G0W0 calculations based on the

HSE06 functional yield very good band gaps lying only
slightly above the experimental values (Fuchs et al., 2007).
The overestimation of the band gap is related to the random
phase approximation which, combined with HSE06 one-
electron energies and orbitals, yields underestimated dielectric
constants. In principle, this can be fixed by including vertex
corrections in the calculation of the dielectric screening
properties, but since this increases the computational demand
significantly it is usually not practical (Paier, Marsman, and
Kresse, 2008). In summary, although slightly overestimated
band gaps must be expected, a G0W0 calculation on top of the
HSE06 functional is an efficient approach to double-check
band gaps and the position of defect levels (Stroppa, Kresse,
and Continenza, 2011).

4. Performance of hybrid functionals

A number of systematic assessments of the performance of
hybrid functionals in studies of point defects have appeared
in the literature. These include comparisons between DFT
calculations performed with different functionals, as well as
cases for which reliable experimental results are available and
thus serve as benchmarks. Examples of the latter include the
self-interstitial in Si (Batista et al., 2006), the NV center in
diamond (Deák et al., 2010), and the As antisite defect in
GaAs (Komsa and Pasquarello, 2011). For the self-interstitial
in Si the formation energies of different configurations
calculated with HSE06 were found to be in good agreement
with quantum Monte Carlo calculations (Batista et al., 2006)
as well as with experiment (Bracht, Haller, and Clark-Phelps,
1998). For the NV− center in diamond, the excitation energy
calculated with HSE06 for the 3A2 →3 E transition is 2.21 eV
(Deák et al., 2010), compared to an experimental value of
2.18 eV (Davies and Hamer, 1976). For the As antisite in
GaAs, Komsa and Pasquarello (2011) performed a compari-
son of different hybrid functionals and found the calculated
(þ2=þ 1) and (þ1=0) transition levels to be within 0.2 eVof
the experimental values (Blakemore, 1982), the agreement
being better for functionals that give band gaps closer to the
experimental value. Systematic comparisons between differ-
ent hybrid functionals (corresponding to different Hartree-
Fock mixing or screening-length parameters) were also
performed for defects in oxides by Ágoston et al. (2009)
and by Alkauskas and Pasquarello (2011).
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FIG. 21 (color online). Band gaps for the HSE03 (Heyd,
Scuseria, and Ernzerhof, 2003) and for a modified HSE func-
tional with μ ¼ 0.5 Å−1 and α ¼ 0.6. The latter yields consis-
tently improved band gaps. Also shown are the band gaps for
G0W0 calculations using HSE03 orbitals and one-electron en-
ergies. Note the double logarithmic scale.
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H. Quantum Monte Carlo calculations

Until now our focus has been on strategies to improve the
quality of density functional calculations. Indeed, DFT con-
tinues to provide the optimal compromise between accuracy
and computational cost when ∼100 atoms need to be
considered. Still, advances in wave-function-based methods
have made calculations of this size also possible. Notably,
QMC methods [see, e.g., Foulkes et al. (2001) for a review]
have been used to calculate point-defect energies due to their
acceptable scaling with system size. QMC calculations for
point defects have been reviewed by Needs (2007) and Parker,
Wilkins, and Hennig (2011); here we summarize the advan-
tages and disadvantages compared to DFT-based methods.
The key idea of the QMC method is to calculate the total

energy from an integral over a trial many-electron wave
function. The high-dimensional integral is then approximated
by an importance-weighted sum over electron configurations
in real space, which are iteratively produced by a Monte Carlo
procedure. To guarantee an importance sampling with positive
weights and to overcome the fermion sign problem, however,
the nodal structure of the trial wave function is kept fixed
(fixed-node approximation). Due to the statistical integration,
QMC energies are always subject to statistical errors that grow
with the system size, but these can be systematically reduced
by including more electron configurations (the error decreas-
ing as 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
). Likewise, the variance in the local energy

integrand gives a direct measure of the quality of the trial wave
function.
By construction, the QMC method captures all electron-

electron interactions on an equal footing and, therefore, does
not suffer from any problems if the electron interactions
change between different atomic configurations. Moreover,
electronic states that are not well described by a single Slater
determinant do not pose problems, in contrast to DFT. Such
states may appear for highly symmetric point defects with
partial filling of the (single-particle) levels, e.g., the vacancy in
diamond (Hood et al., 2003). On the other hand, the QMC
method fundamentally relies on the quality of the trial wave
function, in particular, its nodal structure. Using a backflow
transformation allows one to shift the nodal surfaces (López
Ríos et al., 2006) and reduce the associated error, which may
even be used to extrapolate the total energy without this error.
Otherwise, not much is known a priori about the magnitude of
the nodal error in QMC calculations, nor to what extent it
cancels if energy differences are taken between large systems.
Two additional approximations must be made in QMC

calculations. For heavy atoms, the core electrons come with a
much larger statistical QMC error compared to the valence
electrons, which would render any realistic calculation pro-
hibitively expensive. They are replaced by a local pseudopo-
tential. Nonlocal pseudopotentials cannot be used since they
apply only to wave functions, but not to electron configura-
tions. In practice, a standard nonlocal pseudopotential is made
local with the help of the trial wave function. Second, only a
single k point can be used in periodic supercell calculations
since the many-body Hamiltonian is not invariant to trans-
lation of a single electron coordinate. Twist averaging (Lin,
Zong, and Ceperley, 2001) remedies this for single-particle

effects, but the correlation length as well as exchange is still
limited by the supercell size.
Another severe restriction for practical applications is that

the QMC method provides accurate total energies, but (up to
now) not much more. In particular, accurate interatomic
forces, electron densities, or even wave functions are not
easily accessible. This hinders the interpretation of results in
terms of qualitative mechanisms, notably when the QMC
energetics differs from DFT predictions. The lack of forces
also implies that atomic configurations have to be obtained
from DFT, although this can be shown to introduce only
second-order effects for energy differences (Needs, 2007).
The QMCmethod has been applied to three point defects so

far, namely, the self-interstitial in Si (Leung et al., 1999;
Leung and Needs, 2003; Batista et al., 2006; Parker, Wilkins,
and Hennig, 2011), the vacancy in diamond (Hood et al.,
2003), and the Schottky defect (the simultaneous formation of
a Mg2þ and O2− vacancy) in MgO (Alfe and Gillan, 2005).
The Si self-interstitial has been the guinea pig for developing
the QMC methodology for point defects. DFT with semilocal
functionals underestimates the formation energy of the neutral
self-interstitial by as much as 1.5 eV, due to the incorrect
positioning of occupied defect states within the band gap. The
QMC predictions for formation energies for the Si self-
interstitial are in good agreement with experiment. Later,
both HSE (Batista et al., 2006) and DFTþ GW (Rinke et al.,
2009) methods have been shown to yield similar results. This
may indicate that the removal of self-interaction, which is
strongly reduced or even absent in all three approaches, is a
key factor.
In summary, the QMC method provides in general more

reliable formation energies than the DFT with standard
semilocal functionals, but the large computational effort
and the lack of additional information beyond the energy
presently limit its application to special cases.

V. CASE STUDIES

A. Overcoming doping limits

First-principles calculations based on DFT have been
instrumental in the exploration of doping in semiconductors
and have revealed fundamental mechanisms responsible for
doping limits in many materials (cf. Sec. I.A.2). In this
section, we first mention a few illustrative examples (by no
means intended to be comprehensive) and then focus on a
particular case study for ZnO.
An early example of DFT calculations addressing doping

problems occurred for the case of unintentional passivation of
dopant impurities in silicon. Experimental studies by Sah,
Sun, and Tzou (1983) and Pankove et al. (1983) indicated that
hydrogen was responsible for the observed deactivation of
boron acceptors, and it was inferred that hydrogen in boron-
doped silicon behaved as a donor. Soon thereafter, however,
Johnson, Herring, and Chadi (1986) demonstrated that hydro-
gen could also passivate phosphorus donors in Si, indicating
that hydrogen had to behave as an acceptor in n-type material.
This behavior of hydrogen as an amphoteric impurity was
elucidated in DFT calculations (Van de Walle et al., 1989),
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which showed the correlation between its atomic and elec-
tronic structure.
DFT calculations have also played a major role for

materials that were being newly developed. Ambipolar doping
is essential for fabricating p-n junctions that enable light-
emitting diodes and lasers, and wide-band-gap semiconduc-
tors are needed to achieve green and blue light emission. It had
often been assumed that ambipolar doping of wide-band-gap
semiconductors was not possible because compensating
native defects would spontaneously form as the Fermi level
approaches the band edge (Reynolds, 1989; Morkoç et al.,
1994). For instance, in the case of ZnSe n-type doping is
straightforward, and the difficulty of achieving p-type doping
was attributed to compensation by native defects. First-
principles calculations (Laks et al., 1992; Van de Walle
et al., 1993; Zhang, Wei, and Zunger, 1998) revealed,
however, that native defects are not the culprit. Instead,
limited solubility of impurities, high ionization energies,
and compensation by other impurities are to blame. p-type
doping of ZnSe was indeed eventually demonstrated (Haase et
al., 1990, 1991; Morkoç et al., 1994).
Degradation of ZnSe devices turned out to be a major

problem, and GaN soon proved to be a far superior material
for short-wavelength light emitters. Again, p-type doping was
initially a major problem, and again this was initially blamed
on point defects. There was in fact a widespread belief that
nitrogen vacancies easily formed and acted as shallow donors
in GaN, leading to unintentional n-type conductivity. If this
had been true, p-type doping would have been impossible,
since donor-type defects have even lower formation energies
in p-type material than in n-type material, and hence self-
compensation would have been unavoidable. First-principles
calculations demonstrated, however, that nitrogen vacancies
actually have very high formation energies in n-type GaN
and hence are not responsible for unintentional conductivity
(Neugebauer and Van de Walle, 1994a). Based on calculations
it was also suggested that compensation by common impu-
rities, such as oxygen, was a more plausible explanation for
unintentional doping (Neugebauer and Van de Walle, 1994b).
However, p-type doping of GaN had other complications.

When grown in the presence of hydrogen (which is the
case for most techniques used to grow GaN), the Mg
acceptors turned out to be electrically inactive, and postgrowth
activation by electron-beam irradiation or high-temperature
annealing was required (Amano et al., 1989; Nakamura et al.,
1992). The microscopic nature of the passivation mechanism
was elucidated by DFT calculations, which revealed an
unusual passivation mechanism in which H forms a direct
bond to a neighboring N atom rather than to the Mg acceptor
(Neugebauer and Van de Walle, 1995). The calculations
offered a prediction for the frequency of the H-N stretching
mode (Neugebauer and Van de Walle, 1995), which was
subsequently identified by means of vibrational spectroscopy
(Götz et al., 1996).
Another example of compensation occurs in the case of

DX centers, but in this case it is the dopant impurity itself
that causes the compensation. As mentioned in Sec. I.A.2,
DX centers are impurities that undergo a shallow–deep
transition when the band gap of a semiconductor is increased,
for instance, by alloying or by hydrostatic pressure. Based on

DFT calculations for Si in (Al)GaAs, the prototype DX
center (Lang, 1992; Mooney, 1992), Chadi and Chang (1988,
1989) proposed a microscopic model that was able to
account for the experimental observations. A large off-center
lattice relaxation occurs, which changes the electronic
character of the impurity from shallow donor to deep
acceptor. DX centers were also analyzed by DFT calculations
in nitride semiconductors (Mattila and Nieminen, 1996;
Bogusławski and Bernholc, 1997; Park and Chadi, 1997;
Van de Walle, Stampfl, and Neugebauer, 1998), again
explaining experimental observations (Wetzel et al., 1997;
McCluskey et al., 1998).
We now turn to ZnO, a material in which controlling the n-

type conductivity and the struggle to obtainp-type doping have
been major issues impeding potential applications (Jagadish
and Pearton, 2006; Litton, Collins, and Reynolds, 2011).

1. Causes of unintentional n-type conductivity in ZnO

a. Native point defects

The unintentional n-type conductivity in ZnO was long
assumed to be caused by native point defects, in particular,
oxygen vacancies and zinc interstitials,1 yet microscopic
evidence of the presence of these defects in n-type ZnO
remained elusive. Attributions to point defects have often been
made on the basis of observed changes in conductivity as a
function of oxygen partial pressure; for instance, a decrease in
oxygen partial pressure in the annealing environment leads to
an increase in the conductivity (Kröger, 1974). But changes in
partial pressure can have a number of simultaneous effects.
For instance, an increase in oxygen pressure could make it
more likely that zinc vacancies which act as compensating
acceptors are formed. It is also very difficult or even
impossible to exclude the unintentional incorporation of
impurities that act as donors.
DFT calculations for native defects in ZnO were performed

by a number of different groups.2 Significant quantitative
differences occurred between the results reported by various
groups. These differences can largely be attributed to the
difficulty in calculating accurate transition levels and for-
mation energies when traditional LDA or GGA functionals are
used (see Sec. IV). ZnO indeed suffers from a particularly
severe underestimation of the bulk band gap [0.77 eV in the
LDA (Usuda et al., 2002), 0.73 eV in the GGA (Schleife et al.,
2006), versus 3.44 eV experimentally (Park et al., 1966)].
Defect-induced single-particle states and transition levels in
the band gap can therefore be significantly underestimated,
and formation energies will also be affected.
These problems were recognized, and attempts were made

to overcome these issues, some of which were discussed in

1See, e.g., Harrison (1954), Hutson (1957), Thomas (1957),
Mohanty and Azaroff (1961), Kröger (1974), Hagemark (1976),
and Neumann (1981).

2See, e.g., Kohan et al. (2000), Lee et al. (2001), Oba et al. (2001,
2008), Van de Walle (2001), Zhang, Wei, and Zunger (2001), Erhart,
Klein, and Albe (2005), Janotti and Van de Walle (2005, 2007b),
Lany and Zunger (2005, 2007), Erhart, Albe, and Klein (2006),
Patterson (2006), Paudel and Lambrecht (2008), and Clark et al.
(2010).
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Sec. IV. These approaches have included extrapolations based
on various calculational parameters that affect the band gap
(see Sec. IV.C) (Zhang, Wei, and Zunger, 2001), the
LDAðGGAÞ þ U approach (see Sec. IV.D) (Erhart, Klein,
and Albe, 2005; Erhart, Albe, and Klein, 2006; Lany and
Zunger, 2007), LDAþ U combined with extrapolation (see
Sec. IV.D.4) (Janotti and Van de Walle, 2005, 2007b), and
hybrid functionals (see Sec. IV.G) (Patterson, 2006; Oba et al.,
2008; Clark et al., 2010).
While not all issues have been resolved and some uncer-

tainties still exist in numerical values, important conclusions
can now be extracted from the more recent calculations.
Oxygen vacancies and zinc interstitials are the lowest-energy
donor defects. Zinc antisites (ZnO) are also donors but were
found to be high in energy. Zinc vacancies (VZn) are the
lowest-energy acceptors in n-type ZnO; the other acceptors,
oxygen interstitials (Oi) and OZn antisites, are much higher in
energy. The donor defects VO, Zni, and ZnO are favored under
Zn-rich conditions, while the acceptors VZn, Oi, and OZn are
favored under O-rich conditions.
Calculated formation energies for the oxygen vacancy (VO)

were shown in Fig. 16, based on extrapolated LDAþ U
results (Janotti and Van deWalle, 2007b) (see Sec. IV.D.4) and
on hybrid functional results (Oba et al., 2008) (see Sec. IV.G).
The latter are similar to those reported by Clark et al. (2010).
The oxygen vacancy (VO) is a deep donor, with the (2þ =0)
transition level at ∼1 eV below the conduction band (see
Sec. II.D about calculations of transition levels). Hence, VO

cannot explain the observed n-type conductivity in ZnO. The
oxygen vacancy is a negative-U center (the 1þ charge state
being metastable), due to the large difference in local lattice
relaxations for the different charge states, and consistent with
experimental measurements as the paramagnetic 1þ charge
state can only be observed under optical excitation (Vlasenko
and Watkins, 2005).
In contrast to VO, the zinc interstitial (Zni) is actually a

shallow donor. However, it has high formation energy in
n-type ZnO (Oba et al., 2008) and is thus unlikely to form
under equilibrium conditions. Even if incorporated under
nonequilibrium conditions, such as electron or ion irradiation,
isolated Zni would quickly diffuse out of the material,
restoring the concentration to its equilibrium value. Indeed,
with a migration barrier of ∼0.6 eV [also calculated by DFT,
see Janotti and Van de Walle (2007b), in good agreement with
experiment (Thomas, 1957)], Zni is mobile even well below
room temperature.

b. Impurities

DFT studies thus allow us to conclude that native defects
cannot account for the observed unintentional n-type con-
ductivity in ZnO. Therefore, the conductivity must be attrib-
uted to impurities. Among the possible impurities that act as
donors in ZnO are column-III elements, such as Al, Ga, and In
substituting on the Zn site. While these impurities have, in
fact, been found to act as shallow donors (Hu and Gordon,
1992; Gordon, 1993; Ko et al., 2000), they are unlikely to be
present in all ZnO crystals found to exhibit unintentional
n-type conductivity (McCluskey and Jokela, 2007).

There is, however, one impurity that is ubiquitous and
easily incorporated in ZnO, namely, hydrogen. A link between
the presence of hydrogen and n-type conductivity in ZnO was
established long ago (Mollwo, 1954; Thomas and Lander,
1956). The mechanisms for this behavior were not under-
stood, however. Indeed, these observations were puzzling
because in most semiconductors hydrogen was found (theo-
retically as well as experimentally) to act as an amphoteric
impurity (Pankove and Johnson, 1991; Van de Walle and
Neugebauer, 2006), i.e., in p-type material, hydrogen incor-
porates as Hþ

i , and in n-type material as H−
i , always counter-

acting the prevailing conductivity of the material.
The shallow-donor behavior of hydrogen impurities in ZnO

was explained on the basis of DFT calculations. In 2000, it
was found that interstitial H in ZnO occurs exclusively in the
positive charge state, i.e., the negative charge state is never
stable (Van de Walle, 2000). This implies that hydrogen
behaves as a shallow donor and can act as a source of n-type
conductivity. The reason for this behavior in ZnO, which
differs greatly from that observed in most other semiconduc-
tors, was subsequently explained on the basis of the alignment
of the band structures of the various materials on an absolute
energy scale (Van de Walle and Neugebauer, 2003b).
Interstitial H impurities form strong bonds with O atoms,
giving rise to characteristic H-O stretching frequencies (Van
de Walle, 2000) that were later identified by means of infrared
spectroscopy (Lavrov et al., 2002; McCluskey et al., 2005;
Jokela and McCluskey, 2005).
Still, interstitial hydrogen impurities could not explain all

the experimental observations; in particular, their high dif-
fusivity (Wardle, Goss, and Briddon, 2006) was not consistent
with hydrogen-related conductivity being stable up to temper-
atures of 500 °C in annealing experiments (Shi et al., 2005).
Another, more stable form of hydrogen thus had to be present,
and on the basis of DFT calculations it was proposed that
substitutional hydrogen (i.e., hydrogen on a substitutional
oxygen site) was the main candidate (Janotti and Van de
Walle, 2007a). Substitutional hydrogen (HO) also acts as a
shallow donor in ZnO, occurring exclusively in the positive
charge state Hþ

O (Janotti and Van de Walle, 2007a). HO can
also explain the observed dependence of the electrical
conductivity on oxygen partial pressure.
Hydrogen is obviously not the only possible donor in ZnO,

but it is an attractive candidate for an impurity that can be
unintentionally incorporated and can give rise to background
n-type conductivity. Hydrogen is either intentionally or
unintentionally present in almost all growth and processing
environments.
Experimental identification of substitutional hydrogen has

been difficult. The predicted frequencies of the local vibra-
tional modes are in a strongly absorbing region of ZnO close
to the reststrahlen band, rendering IR absorption measure-
ments practically impossible. MgO, which is insulating, does
not suffer from this problem, and the predicted frequencies for
HO in MgO agree very well with experimental observations
(González et al., 2002). The presence of substitutional hydro-
gen in ZnO was indirectly probed by a combination of Raman
scattering, infrared spectroscopy, photoconductivity, and pho-
toluminescence measurements (Lavrov, Herklotz, and Weber,
2009). Recent experiments succeeded in extending the
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sensitivity of photoconductivity measurements to probe local
vibrational modes even in the highly absorbing regions of the
spectrum. Using this technique, Koch, Lavrov, and Weber
(2012) measured frequencies of 742 and 792 cm−1 in ZnO, in
good agreement with the theoretical predictions for substitu-
tional HO in ZnO (Janotti and Van de Walle, 2007a).

2. p-type doping of ZnO

DFT calculations have also played a key role in determining
the properties of acceptor impurities and the prospects for
p-type conductivity in ZnO. Achieving p-type conduction in
ZnO is a long-standing problem that has been explored
experimentally as well as theoretically.3 Potential p-type
dopants are impurities that have one less valence electron
than the host atoms, e.g., Li, Na, or Cu substituting on the Zn
site, or N, P, or As substituting on the O site. Calculations
based on hybrid functionals (see Sec. IV.G) indicate that Li
and Cu are deep acceptors, in agreement with experiment, and
cannot lead to p-type conductivity in ZnO (Carvalho et al.,
2009; Du and Zhang, 2009; Gallino and Di Valentin, 2011),
although some disagreement remains on the precise position
of the acceptor levels. Results for column-V impurities have
been more controversial. Experiments suggested that N would
behave as a shallow acceptor in ZnO (Look et al., 2002;
Tsukazaki et al., 2005). A lack of reproducibility of the results
has, however, cast doubt on the assumption that N would
render ZnO p type.
Hybrid-functional calculations (see Sec. IV.G) have shown

that N substituting on the Zn site is actually a deep acceptor
(Lyons, Janotti, and Van de Walle, 2009b; Lany and Zunger,
2010), with the (0=−) transition level at 1.3 eV above the
valence band, as illustrated in Fig. 22. In the neutral charge
state, NO induces local large relaxations and hole localization

on the axial Zn atom. The difference in relaxations between
the neutral and negatively charged NO causes a large Stokes
shift between the absorption and emission peaks associated
with the impurity level. The calculated configuration coor-
dinate diagram (see Sec. II.E.1) was shown in Fig. 8. These
predictions have subsequently been verified by photolumi-
nescence measurements in N-doped ZnO (Tarun, Iqbal, and
McCluskey, 2011), providing unambiguous evidence of the
deep nature of the nitrogen acceptor. The experimental onset
of absorption and the peak of the (broad) luminescence line
both agree with the first-principles predictions to within
0.1 eV, attesting to the accuracy that can be achieved by
the use of hybrid functionals.
Now that it is established that N is a deep acceptor in ZnO,

it is safe to conclude that other column-V impurities will be
even less suitable: their valence p orbital is higher in energy
than that of N (Harrison, 1999), pushing the acceptor states of
P, As, and Sb when substituting on the O site even deeper in
the gap. In addition, the size mismatch is likely to cause As
and Sb to prefer substituting on the Zn site, in which case they
would act as donors. Moving even farther to the left of N in the
periodic table, i.e., to the double acceptor C, is also fruitless,
since the valence p orbital energies also increase (Harrison,
1999). These considerations illustrate how first-principles
calculations can provide essential insights into the techno-
logically essential issue of doping.

B. Impact of point defects on phase stability close to the melting
temperature

1. The debate about vacancies versus anharmonicity

Predicting the instability of a solid with respect to the liquid
phase when approaching the melting temperature is a remark-
able challenge for any first-principles simulation. This is
mainly due to the difficulty of reliably describing the liquid
phase with an accuracy relevant for phase transitions (a few
meV=atom). In this light, “one-phase” criteria which aim at
predicting this phase transition by considering solely proc-
esses occurring in the bulk solid phase are particularly
attractive (Sorkin, 2005). Several such approaches based on
empirical findings have been proposed: The Lindemann
criterion (Lindemann, 1910), for example, assumes that at
the melting point lattice vibrations with displacements of
more than 10% of the lattice constant fully break the (time-
averaged) translational symmetry of the solid phase. The
criterion suggested by Born (1939) explains melting by a
mechanical instability based on the observation that shear
moduli typically soften during thermal expansion.
Furthermore, theories of positional disordering have been
suggested (Ubbeldone, 1965).
The hypothesis that a strong increase of point defects at

high temperatures might induce bulk melting also falls in this
class of one-phase criteria. For instance, Stillinger and Weber
(1984) found in their molecular dynamics simulations a
cooperative formation of point defects, starting with vacancies
and split-interstitial defect pairs. Granato (1992) attributed the
decrease of the shear stress and the corresponding mechanical
instability to an increase of self-interstitials. Such point-
defect-related phenomena have been shown to be consistent
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3For an overview of experimental work, see the reviews by
Jagadish and Pearton (2006) and Litton, Collins, and Reynolds
(2011). Theoretical studies include those by Lee and Chung (2004),
Limpijumnong et al. (2004), Lyons, Janotti, and Van de Walle
(2009b), Park, Zhang, and Wei (2002), Wardle, Goss, and Briddon
(2005), and Lany and Zunger (2010).
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with the assumptions of Lindemann and Born (Zhou and
Jin, 2005).
First-principles calculations indicate that for simple metals

the formation of vacancies is energetically more favorable
than the formation of self-interstitials (Kraftmakher, 1998;
Grabowski, Hickel, and Neugebauer, 2011; Moitra, Kim, and
Horstemeyer, 2011). The exponential increase of concentra-
tions with temperature, discussed in Sec. II.B, is expected to
lead to very high vacancy concentrations close to the melting
temperature. The resulting increase of the configurational
entropy should be observable in thermodynamic response
functions such as the heat capacity or the expansion coef-
ficient. Indeed, a significant increase of the heat capacity
beyond the quasiharmonic contribution is observed for many
materials close to the melting temperature (Born, 1921).
Anharmonic lattice vibrations were long considered to be
the explanation for this effect, but an attribution to vacancy
defects was proposed already in 1953 for Al and Pb
(Pochapsky, 1953).
Here we focus the discussion mainly on the example of Al

(Grabowski, 2009). Brooks and Bingham (1968) measured
the constant-pressure heat capacity of Al using dynamic
adiabatic calorimetry and transformed it to a constant-volume
heat capacity (a procedure that may be error prone). From a
subsequent comparison with the Debye model, they con-
cluded that anharmonicity was responsible for the nonlinear
increase in their experimental data (Brooks and Bingham,
1968). Ditmars, Plint, and Shukla (1985) and Shukla, Plint,
and Ditmars (1985) later reconsidered these assessments of
the aluminum heat capacity and went beyond the approach of
Brooks and Bingham (1968) by employing empirical poten-
tials rather than a simple Debye model to calculate the fixed-
volume heat capacity. Their new experimental and theoretical
data suggested that the vacancy contribution is more important
than anharmonicity. Forsblom, Sandberg, and Grimvall (2004)
further increased the theoretical level of accuracy by calculat-
ing the fixed-volume heat capacity using the embedded atom
method. Their results showed that the contribution due to
explicit anharmonicity can well be of a similar magnitude as
the one obtained for the vacancy contribution by Shukla, Plint,
and Ditmars (1985). However, the precise value depended
sensitively on the potential parametrizations.

2. First-principles studies for Al

Amore accurate theoretical treatment was needed to resolve
the controversy. The approach described in Secs. II.A and II.B
combined with methodological developments (Grabowski
et al., 2009) made a first-principles study finally feasible
(Grabowski, Hickel, and Neugebauer, 2011). All contribu-
tions to the free energy were carefully analyzed, including
vacancies, and the entropy due to (quasiharmonic and anhar-
monic) lattice vibrations as well as electronic excitations. Here
we summarize the main results. The first step is to demonstrate
that the complete set of methods yields sufficiently accurate
results. Response functions such as the heat capacity and
expansion coefficient are first- or higher-order derivatives of
the free-energy surface, and are therefore affected even by
small changes in the free energy. To resolve the influence of
different entropy contributions at the melting point the error

bar in the free energy has to be systematically kept below
1 meV=atom. This is significantly less than typically required
in defect calculations (≈ 0.1 eV) and particularly challenging
to achieve at high temperatures.
Figure 23 demonstrates the performance of the applied

methods. The calculated LDA and GGA expansion coeffi-
cients (upper panel) agree well with each other and with
experiment. In fact, the LDA and GGA results form approxi-
mate lower and upper bounds. The theoretical uncertainty, i.e.,
the difference between LDA and GGA values, is of the same
order of magnitude as the experimental scatter. As demon-
strated for a wide range of fcc metals, this remarkable success
of the methodology extends also to other thermodynamic
properties (Grabowski, Hickel, and Neugebauer, 2007):
whenever the theoretical uncertainty is small, the agreement
with experiment is very good. For the heat capacity of Al
(lower panel of Fig. 23), however, all experimental data sets
deviate visibly from the theoretical ones above 500 K.
Simultaneously, the scatter in the experimental data is
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FIG. 23 (color online). (a) Thermal expansion coefficient and
(b) isobaric heat capacity of aluminum including electronic,
quasiharmonic, anharmonic, and vacancy contributions. Exper-
imental values (divided into pre-1950 and post-1950 data) are
included for comparison. The melting temperature Tm (933 K) is
indicated by the vertical dashed line. At Tm, the crosses indicate
the sum of all numerical errors (e.g., pseudopotential error,
statistical inaccuracy, etc.) in all contributions for the GGA.
Adapted from Grabowski, Hickel, and Neugebauer, 2011.
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unusually large. From the small theoretical uncertainty, we
expect no intrinsic difficulty in obtaining the Al heat capacity
accurately. We therefore suggest (supported by the fact that the
DFT results lie systematically below the experimental data)
that the deviations are due to additional, uncontrolled con-
tributions to the entropy in experiment, not necessarily related
to the particular material being measured. Minimizing such
unwanted disturbances should bring the experimental values
closer to theory.
The first-principles results in Fig. 23 show a nonlinear

increase in both physical quantities close to the melting
temperature, which is qualitatively consistent with the exper-
imental findings. Since all contributions are computed sepa-
rately, the contribution of vacancies to the Gibbs energy, the
heat capacity, and the expansion coefficient can be directly
analyzed (Fig. 24). The total magnitude of the vacancy
contribution to the Gibbs energy G turns out to be

comparatively minor (below 0.1 meV=atom). This is an
important observation since it indicates that vacancies have
no direct effect on the phase stability between the solid and
liquid phase. The small size of this contribution to the Gibbs
energy is mainly due to the fact that the concentration of point
defects in metals is rarely above 10−3 even at the melting
temperature (see Sec. II.B).
However, what matters for the response functions is not the

absolute Gibbs energy, but its relative change with temper-
ature. Due to the exponential increase of the vacancy-related
Gibbs energy with temperature, vacancies do affect both the
heat capacity and the expansion coefficient, as revealed in
Fig. 24 (dash-dotted lines). In particular, close to the melting
temperature the vacancy contribution becomes comparable in
magnitude to the anharmonic contribution—but notice the
difference in sign: the anharmonic contribution (the quasi-
harmonic part is subtracted) is negative and cannot possibly
explain the exponential increase in the response functions
observed near the melting temperature. Neither can it be
explained by electronic excitations, since they turn out to give
rise to an almost linear effect. Hence, we conclude that it is
the formation of vacancies that is mainly responsible for the
behavior of the heat capacity of aluminum close to the melting
temperature (Grabowski et al., 2009) and is, therefore, a
precursor effect of the melting transition.

VI. CONCLUSIONS AND OUTLOOK

We have given an overview of the state of the art of first-
principles modeling of point defects in solid-state materials.
We presented the general formalism for calculating the defect
formation energy as a function of thermodynamic variables
(chemical potentials, temperature, and pressure) and how it
can be computed with present-day first-principles methods,
most prominently DFT. We showed that artifacts of the most
widely used supercell approach can (and should) be removed
by carefully designed correction schemes. We also discussed
how developments in DFT dramatically reduce the uncertainty
in calculated results due to the band-gap problem associated
with the standard LDA and GGA functionals, which had
dominated the field for more than two decades. Two illus-
trative case studies demonstrated that the presented method-
ology can significantly contribute to elucidating the role of
point defects in engineering materials for (opto)electronic
device and structural applications.
The accuracy and reliability of modern first-principles

simulations (if performed and interpreted with sufficient care)
match those of many experimental measurements; i.e., the
remaining uncertainties are of the same order as the error bars
in many experiments, or the scatter in published experimental
data. The calculations also provide independent and valuable
insight into the many physical properties of defects that are not
directly accessible to experiment. The power of this approach
leads to continued and increasing applications in many areas;
we hope that our review has highlighted the progress that has
been made in recent years and will serve as a useful guide to
the correct application of the methodology.
It is worth noting, however, that several aspects of the

methodology can benefit from additional research. First, the
contribution of vibrational effects to the free energies of
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formation (see Sec. II.A.3) should be investigated more
thoroughly, notably in semiconductors and insulators. For
this purpose, practical approximations to reduce the associated
computational cost (see Sec. II.A.3) would be of great use,
e.g., analytical expressions for the temperature and volume
dependence of phonon frequencies with a small number of
free parameters. Moreover, finite-temperature effects (see
Sec. II.C.1), supercell artifacts (see Sec. III), and deficiencies
of the underlying density functional (see Secs. II.C.2 and IV)
are mutually dependent in general. Whether the available
corrections suffice to account for their combined effect, which
may not be additive, remains to be shown.
On the fundamental side, while hybrid functionals currently

offer the best compromise between accuracy and computa-
tional cost, they clearly do not offer a universal solution, nor
do they guarantee an accuracy of 0.1 eV. Additional experi-
ence needs to be gained in order to assess the predictive power
and (equally importantly) the limitations of such functionals,
as noted in Secs. II.C.2, IV.G, and V.A. Dispersive (van
der Waals) interactions are not captured in current functionals,
but are addressed in next-generation density functionals based
on the random phase approximation (see Sec. IV.F.4). The
large scatter in calculated surface energies from different
functionals needs to be overcome to more confidently address
open-volume defects (see Sec. II.C.2).
Finally, comparisons to alternative theoretical approaches

such as quantum Monte Carlo (see Sec. IV.H) or quantum-
chemical methods will be fruitful, but also require refinements
in those alternative methods. The engagement of specialists in
these various fields is encouraged and will continue to widen
the applicability and improve the accuracy of defect calcu-
lations in solids.
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