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Any physical process can be represented as a quantum channel mapping an initial state to a final state.
Hence it can be characterized from the point of view of communication theory, i.e., in terms of its
ability to transfer information. Quantum information provides a theoretical framework and the proper
mathematical tools to accomplish this. In this context the notion of codes and communication
capacities have been introduced by generalizing them from the classical Shannon theory of
information transmission and error correction. The underlying assumption of this approach is to
consider the channel not as acting on a single system, but on sequences of systems, which, when
properly initialized allow one to overcome the noisy effects induced by the physical process under
consideration. While most of the work produced so far has been focused on the case in which a given
channel transformation acts identically and independently on the various elements of the sequence
(memoryless configuration in jargon), correlated error models appear to be a more realistic way to
approach the problem. A slightly different, yet conceptually related, notion of correlated errors
applies to a single quantum system which evolves continuously in time under the influence of an
external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory
effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the
intersection of quantum information theory and other branches of physics. A survey is taken of the
field of quantum channels theory while also embracing these specific and complex settings.
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I. INTRODUCTION

In his seminal 1948 work “A Mathematical Theory
of Communication,” C. E. Shannon established the basis of
modern communication technology (Verdú, 1998). Neglecting
all the semantic aspects (which are irrelevant at the level of
engineering) he stressed that “the fundamental problem of
communication is that of reproducing at one point either
exactly or approximately a message selected at another point.”
In particular, “the system must be designed to operate for each
possible selection, not just the one which will actually be
chosen since this is unknown at the time of design” (Shannon,
1948). At the heart of this view is what one may call the
“channel” formalism, where any noisy communication line is
depicted as a stochastic map connecting input signals selected
by the sender of the message (Alice), who is operating at one
end of the line, to their corresponding output counterparts
accessible to the receiver of the messages (Bob), who is
operating at the other end. In the same article Shannon also
proved that the performance of a transmission line can be
gauged by a single quantity, the capacity of the channel, which
measures the maximum rate at which information can be
reliably transferred when Alice and Bob, operating on long
sequences of transmitted signals, follow a preestablished
protocol (error-correcting code procedure) aimed to nullify
the detrimental effects of the communication noise. The
rationale behind this approach (which is typical to commu-
nication theory) is that communication is expensive while
local operations are somehow free (unless external constraints
are explicitly imposed by the selected implementation).
Rolf Landauer was the first to put on firm ground the fact

that information is not just an abstract, mathematical notion
but has instead an intrinsic physical nature which poses limits
on the possibility of processing and transferring it (Landauer,
1961). That is why quantum mechanics, the most advanced
physical theory, comes into play in the study of communi-
cation processes (Bennett and Shor, 1998). In this context
(quantum information theory) it is recognized that any
message two parties wish to exchange must be written into
the states of some quantum system, say a photonic pulse
propagating along an optical fiber (Caves and Drummond,
1994), and that the processing, the transmission, and the
reading of such data must be carried out following the rather
unconventional prescriptions established by quantum mechan-
ics. As in the classical setting this scenario is properly
formalized by introducing the notion of quantum channels
as those mappings which, generalizing the notion of a channel
in Shannon theory, link the initial states of the quantum
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information carriers (controlled by Alice) to their output states
(controlled by Bob); see Fig. 1. Interestingly, to evaluate the
quality of these exotic communication lines several non-
equivalent notions of coding procedures, as well as of
corresponding capacities, must be introduced. Indeed, while
Alice and Bob might still be willing to use a quantum channel
to exchange purely classical messages, new forms of com-
munication can now be envisioned. For instance, Alice may be
interested in transferring to Bob purely quantum messages,
e.g., the unknown quantum state of a quantum memory that is
located in her laboratory, or half of a maximally entangled
state (Gühne and Tóth, 2009; Horodecki et al., 2009) that she
has locally produced. The ability to sustain this special kind of
transmission defines what is called the quantum capacity of a
quantum communication line. This in general differs from the
classical capacity that instead, as in the Shannon setting,
measures the ability to transfer purely classical messages. But
there is more. Quantum teleportation (Bennett et al., 1993)
and the superdense coding protocol (Bennett and Wiesner,
1992) have shown that quantum entanglement (Gühne and
Tóth, 2009; Horodecki et al., 2009) is a catalytic resource for
communication. Indeed, even though entanglement alone
does not constitute a communication link between distant
parties (Alber et al., 2001), allowing Alice and Bob to use
preshared entanglement in the design of their communication
protocols can boost the performance of basically any com-
munication line they have access to (even in terms of the
quantum capacity). This fact naturally brings in the notion of
entanglement-assisted capacities of a quantum channel
(Bennett, Shor et al., 1999), which is yet a different way
of gauging the performance of a communication line.
The vast majority of thework on quantum channels has been

concerned with the study of memoryless configurations where
sequences of exchanged quantum carriers are supposed to
undergo the action of noisy transformations which affect
them independently and identically; see the left panel of
Fig. 2. In this scenario coding theorems have been derived
which allow one to express the various capacities of the
communication line in terms of rather compact entropic
formulas. For instance, the classical (respectively, quantum)
capacity of a memoryless quantum channel is characterized in
terms of the Holevo (respectively, coherent) information
(Schumacher and Nielsen, 1996; Lloyd, 1997; Schumacher

and Westmoreland, 1997; Barnum, Nielsen, and Schumacher,
1998;Barnum, Smolin, andTerhal, 1998;Holevo, 1998a; Shor,
2002a; Devetak, 2005). The memoryless assumption is indeed
a useful hypothesis which permits one to simplify the input-
outputmapping induced by the noise. It also provides a realistic
description for those communication schemes where the
temporal rates at which signals are fed into the communication
line are sufficiently low to allow for a resetting of the channel
environment and to prevent signal cross talking. Nonetheless
this is not always justified. For instance, with increasing signal
feeding rates, successive transmissions happen so rapidly that
the environment may retain a “memory” of past events; see the
right panel of Fig. 2. Optical fibers are an example in which
such effects can occur and have been explored experimentally
(Ball, Dragan, and Banaszek, 2004; Banaszek et al., 2004).
Similarly, in quantum information processors, especially in
solid-state implementations, qubits may be so closely spaced
that the same environmental degree of freedom will interact
jointly with several of them (even if they are not nearest
neighbors) leading to cross talks and correlations in the noise
(Duan and Guo, 1998; Hu, Zhou, and Guo, 2007). The
consideration of spatial and temporal memory effects is there-
fore becoming increasingly pressing with the continuing
miniaturization of information processing devices and with
increasing communication rates through channels. Moreover,
from a fundamental point of view, quantum memory channels
provide a general framework which encompasses the memo-
ryless ones as a special case.
Apparently, the interest toward information transmission

through quantum channels with memory spread after a model
introduced by Macchiavello and Palma (2002). Here an
example of a qubit channel with Markovian correlated noise
was analyzed in which the encoding of information by means
of entangled input states may increase the transmission rate of
classical information. Subsequently, the study of quantum
channels with memory has largely been confined to channels
with Markovian correlated noise with the aim of deriving
bounds on the classical capacity; see, e.g., Hamada (2002),
Bowen and Mancini (2004), and Bowen, Devetak, and
Mancini (2005). Then, coding theorems have been devised

Signal 1

Signal 2

Signal 3

Signal 1

Signal 2

Signal 3

Memoryless channel Memory channel

noise

noise

noise

noise

noise

noise

FIG. 2. Pictorial representation of memoryless (left panel) and
memory (right panel) channels. In the former case the individual
carriers which compose a sequence of transmitted signals expe-
rience the same noisy transformation. In the latter case instead
cross talking among the various transmission events can happen
and, as indicated by the gray arrows in the figure, the noise model
which describes the transformation of the nth carrier depends in
principle upon the previous communication exchanges.

FIG. 1 (color online). Typical communication scenario of two
users communicating by encoding (decoding) the letters of a
message onto (from) physical systems that are transmitted
through a channel. They are subjected to the unavoidable
presence of noise in the channel that introduces errors (eventually
correlated) in the transmitted message.
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for a class of quantum memory channels having structural
properties that guarantee “regular” asymptotic behavior
(Kretschmann and Werner, 2005; Datta and Dorlas, 2007;
Bjelaković and Boche, 2008). This approach can be traced
back to the work of Dobrushin (1963), who considered a wide
class of channels exhibiting stationary or ergodic behavior. A
completely different path was taken by Hayashi and Nagaoka
(2003), who applied the “information-spectrum” method to
obtain a coding theorem for the classical capacity, following
the work by Verdú and Han (1994) on classical channels
with memory. In the context of continuous-variable (CV)
systems (Braunstein and van Loock, 2005; Weedbrook et al.,
2012), generalizing results obtained in the classical setting
(Shannon, 1949) for the capacity of power-constrained
Gaussian channels, quantum “water-filling” formulas have
been recently derived (Schäfer, Karpov, and Cerf, 2009;
Pilyavets, Lupo, and Mancini, 2012). Exact expressions for
classical and quantum capacities have been computed (Lupo,
Giovannetti, and Mancini, 2010a) using an “unraveling”
technique based on the Toeplitz distribution theorem (Gray,
1972), which allows one to map memory correlations into
effective memoryless models. All these results for continuous-
variable memory channels have been derived from funda-
mental results in the memoryless setting (Giovannetti et al.,
2004c; Wolf, Pérez-García, and Giedke, 2007) [see also recent
developments in Giovannetti, Holevo, and García-Patrón
(2013) and Giovannetti, García-Patrón et al. (2013)].
Beyond quantum communication, a detailed study of

quantum channels, and of the mechanisms responsible for
memory correlations, has implications in the broader
research field of quantum open system dynamics (Breuer
and Petruccione, 2002). As a matter of fact the input-output
scheme that underlines the channel formalism reminds us of
what in physics is conventionally described as a series of
scattering events, the scattered particles playing the role of the
messages, while the scattering matrix plays the role of the
communication line. More generally quantum channels can be
used to mimic all those physical processes (temporal evolu-
tion, data processing, etc.) which imply a state change of a
system of interest from an initial to a final configuration under
the influence of an external agent (the system environment).
By exploiting this connection, insight into the system evolu-
tion can then be gained by analyzing its quality as a
communication line. Along this direction models have been
introduced in which memory effects of a communication line
are described as arising from the interaction with a multipartite
environment initialized in a correlated state (Giovannetti and
Mancini, 2005), allowing remarkable links between informa-
tion theoretical quantities, such as capacities, and statistical
properties, such as phase transitions, of the underlining many-
body environment (Plenio and Virmani, 2007, 2008).
When studying open system dynamics one shall not only

deal with the problem of the input-output evolution of a
sequence of otherwise independent carriers. Indeed it is also
interesting to address the problem of the evolution of a single
carrier in time, to see whether the associated trajectory can be
described as a collection of quantum channels which are
applied sequentially on that system; see Fig. 3. When this is
not the case one can talk of memory effects induced by
backaction mechanisms arising from the interaction of the

system of interest and its own environment. At variance from
those described these effects have a clear dynamical character
which is absent in the scheme of Fig. 2 where the temporal
evolution is fixed. The study of this topic is intimately related
to the semigroup structure of the set of quantum channels,
hence with dynamical maps and master equations (Alicki and
Lendi, 1987). It turns out that dynamical evolutions which can
be split into infinitesimal pieces correspond to the set of
solutions of (possibly time-dependent) master equations
standardly used to describe open systems dynamics (Wolf
and Cirac, 2008). A more general approach to open quantum
systems uses the Nakajima-Zwanzig projection operator
technique (Nakajima, 1958; Zwanzig, 1960) which shows
that, under fairly general conditions, the master equation for
the reduced density operator takes the form of a nonlocal
equation in which memory effects are taken into account
through the introduction of a memory kernel. Then, the
problem [first put forward by Daffer, Wódkiewicz, and
McIver (2003) and Daffer et al. (2004)] becomes finding
those conditions on the memory kernel ensuring that the time
evolution map is a bona fide quantum channel (Chruściński
and Kossakowski, 2012). While our review is mostly devoted
to analyze the memory effects which arise in the input-output
paradigm schematized in Fig. 2, for completeness we also
briefly report on the most recent results which have being
produced in the study of dynamical maps.
This work aims at providing an overview of the field of

quantum channels in a broad framework that also includes
memory effects. As such it does not pretend to be omnicom-
prehensive, but it rather touches quantum communication
subjects for which it has been already possible to venture
beyond memoryless assumptions. We start considering in
Sec. II quantum channel maps and parallel them to physical
processes transforming input states into output ones. This
presumes basic knowledge on the structure of quantum states,
entanglement, and measurement that are not reviewed here; a
rather complete report on these topics can indeed be found
elsewhere, e.g., in the books (Preskill, 1998; Nielsen and
Chuang, 2000; Bengtsson and Zyczkowski, 2006; Petz, 2008;
Schumacher andWestmoreland, 2010; Holevo, 2011) or in the

FIG. 3 (color online). Temporal correlations. Left panel: Pictorial
representation of a trajectory which describes the evolution of a
system under dynamical semigroup approximation (discrete evo-
lution steps have been assumed for simplicity). In this case, as
indicated by the arrows, the state of the system of interest (dots) at
time tjþ1 depends only upon the state the system had at time step
immediately before, i.e., at tj. Right panel: Representation of the
evolution when the dynamical semigroup approximation fails; in
this case the state at time tjþ1 depends in general on the states the
system assumed along the whole trajectory.
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review articles (Gühne and Tóth, 2009; Horodecki et al.,
2009). Here the focus is on the representation of quantum
channel maps and their properties related to the way they act
on quantum states, in particular, their composability. For
pedagogical reasons we present several examples of quantum
channels. In Sec. II we provide tools to study quantum
channels such as fidelities, distances, and entropies that are
used throughout the paper.
We then move on discussing in Sec. III the transition from

the memoryless setting to a more general scenario which
allows for correlations in quantum communication. Here
much attention is devoted to the structural properties of
quantum channels. Various classes of memory channels are
then reviewed in Sec. III.D.
In order to use a quantum channel for information trans-

mission one has to cope with the problem of noise altering the
transmitted information. For this reason we next present in
Sec. IV the subject of quantum error correction and discuss
achievable information transmission rates. Actually, this
section briefly reviews basic notions of standard quantum
error correction (mostly suitable for uncorrelated errors) and
decoherence-free subspaces (mostly suitable for completely
correlated errors). For more details the interested reader can
refer to Lidar and Brun (2013). We then present avenues, not
yet fully explored, for correcting partially correlated errors and
discuss convolutional codes that work with a structure similar
to that of memory channels.
After having introduced the notion of transmission rates, it

is natural to ask what are their maximum rates that can be
achieved in a quantum channel. Thus we address the issue of
quantum channel capacities in Sec. V. A series of papers, at
various levels, deal with capacities of memoryless quantum
channels. For instance, the article by Bennett and Shor (1998)
can be seen as a sort of manifesto for quantum information
theory. The review by Caves and Drummond (1994) presents
instead a rather detailed account of the mathematical and
technological issues one faces when dealing with quantum
communication with photonic sources (even if some of the
open problems discussed there were solved in more recent
years, this article remains a useful guide to the field). Galindo
and Martín-Delgado (2002) provides a rather compact over-
view on quantum information theory and discusses in a simple
but clear form the basic aspects of the Shannon approach. A
more mathematically oriented point of view is presented by
Keyl (2002). Holevo and Giovannetti (2012) focus on channel
capacities and their entropic characterization, while finally
Weedbrook et al. (2012) give a detailed introduction to the
field of Gaussian bosonic channels. In Sec. V coding theorems
that allow one to express capacities in a closed form by means
of entropic quantities are succinctly reviewed for memoryless
quantum channels. We then indulge in the possibility of using
them in the memory setting (revisiting what kind of memory
permits it) and on their generalization.
For practical purposes we subsequently present in Sec. VI

quantum channel models that are exactly solvable in terms of
capacities. Already in the memoryless case these examples are
few and they are even less in the memory case. Anyway it is
much instructive to see techniques used to solve optimization
problems imposed by capacity evaluation.

Finally Sec. VII is devoted to the characterization of the
temporal correlations which may arise in the description of the
trajectory of quantum system (see Fig. 3). In particular, we
review the divisibility property of quantum channels and relate
it to properties of dynamical maps and master equations.
A summary of the main results and an outlook on physical

realizations are given in Sec. VIII. Appendixes A and B
provide elementary material about distance measures for
states and quasilocal algebras, respectively. In Appendix C
an alternative proof of the structure decomposition theorem
for nonanticipatory channels is presented, while in
Appendix D an explicit derivation of capacity upper bounds
is provided.

II. QUANTUM CHANNELS: BASIC DEFINITIONS AND
PROPERTIES

In a typical communication scenario two parties (Alice the
sender of the message and Bob the receiver) aim to exchange
(classical or quantum) information by encoding it into (pos-
sibly arbitrarily long) sequences of signals which propagate
through the medium that separates them; see Fig. 1. A train of
transmitted signals defines a sequence of independent uses of
the communication line (channel uses), and their input-output
evolution from Alice to Bob is determined by the noise which
tampers with the transmission process. In classical information
theory (Gallager, 1968) this is schematized by assigning an
input alphabet X and an output alphabet Y whose elements x
and y represent, respectively, the individual signals at the input
and output of the transmission line. The noise instead is
assigned in terms of a stochastic process characterized by
conditional probabilities that, given an input sequence
ðx1; x2;…Þ of elements of X transmitted by Alice, Bob will
receive the sequence ðy1; y2;…Þ of elements of Y.
In quantum information the channel uses are represented by

the degrees of freedom (e.g., polarization, spins) of a collec-
tion fq1; q2;…g of identical information carrying objects
(e.g., optical pulses, flying atoms, or ions) which are locally
produced by Alice and organized in a time-ordered sequence.
In this setting the noise can then be described by assigning a
proper mapping which acts on the (global) input states of the
information carriers to produce the associated (global) output
states received by Bob. The formalism is rather general and
provides the proper mathematical tools apt to describe all
those physical processes that involve the transformation of a
quantum system, induced either by the direct temporal
evolution of its density matrix on a fixed time interval, or
by the transmission through a medium (see Fig. 4). Concrete
examples of these mappings can be encountered for instance
when studying long-distance quantum communication and
cryptography (as quantum key distribution) (Gisin et al.,
2002; Scarani et al., 2009). In this case applications are often
experimentally realized by identifying the information carriers
with single-photon pulses that travel in free space or over
optical fibers, where air turbulence and absorption losses
effectively limit the covered distance from tens to hundreds of
kilometers with the currently available technologies (Hughes
et al., 2002; Ursin et al., 2004, 2007; Gisin and Thew, 2007;
Schmitt-Manderbach et al., 2007; Villoresi et al., 2008; Ma
et al., 2012; Yin et al., 2013). All these effects can be
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faithfully described in terms of a combined action of amplitude
damping channels (dissipation and absorption) and phase-flip
channels (dephasing phenomena) (see Sec. II.I). Similarly,
further examples of input-output mapping which admit a
proper characterization in terms of quantum channels can be
found when analyzing the effectiveness of atomic or molecular
systems trapped in an optical cavity (Leibfried et al., 2003) as
quantum memory elements useful for information storage. In
all these physical implementations, the noise processes may
sometimes show temporal or spatial correlations, leading
unavoidably to the additional presence of memory effects in
the corresponding quantum channel representation. Section III
discusses in detail how such effects can be characterized.
Before doing so, however, it is useful to recall that quantum
mechanics imposes some fundamental structural constraints on
the transformations describing the evolution of quantum
systems, which must apply independently from the underlying
physical mechanisms that govern the process and independ-
ently from the composite nature of the input system.

A. Completely positive and trace preserving (CPTP)
transformations

Let Φ be a mapping [see Fig. 5(a)] describing the input-
output relations of a generic quantum system Q (e.g., the
carriers fq1; q2;…g introduced previously) evolving under
the action of some physical process

ρQ ∈ SðHQÞ ↦ ρQ0 ¼ ΦðρQÞ ∈ SðHQ0 Þ: ð1Þ

Here SðHQÞ and SðHQ0 Þ stand for the sets of density
operators (non-negative operators with unit trace) defined
on the Hilbert spaces HQ, HQ0 (the latter may be different in
general) associated, respectively, to the input and output
systems (unless explicitly stated in what follows it is assumed
that these spaces are finite dimensional). Since ρQ0 must be a
valid density operator, it results naturally to require the map Φ
to be as follows:

(i) linear when extended to the set T ðHQÞ of trace-class
linear operators of HQ. As a matter of fact Φ must
transform mixtures of input density operators
into a mixture of the associated outputs, i.e.,

P
ipiρQðiÞ ↦

P
ipiΦ(ρQðiÞ), with pi the proba-

bility associated with the input state ρQðiÞ1;
(ii) trace preserving (i.e., it must preserve the normali-

zation of all input states);
(iii) positive (i.e., when acting on Q it must preserve the

positivity of density operators).
Actually the latter condition turns out to not be enough to

guarantee the positivity of ΦðρQÞ when considering ρQ as
coming from a joint state ρQA of system Q and system A by
tracing out the latter. This is due to possible quantum
correlations (entanglement) existing between systems Q
and A. Hence, condition (iii) is made tighter as follows:
(iii′) completely positive (i.e., when acting on Q the map

Φ must preserve the positivity of any density
operator, including those describing a joint state
ρQA of Q and an arbitrary ancillary system A).

A violation of any conditions (i), (ii), or (iii′) implies the
impossibility of maintaining the statistical interpretation of the
theory (Stinespring, 1955; Sudarshan, Mathews, and Rau,
1961; Holevo, 1972; Lindblad, 1975; Kraus, 1983).
Finally any transformation fulfilling all these conditions is

said to be a CPTP linear map and is a quantum channel.
Special instances of these last maps are provided by the
isometric channels

ρQ ↦ UðρQÞ ≔ UρQU†; ð2Þ
which are induced by the action of an isometric transformation
U connecting HQ to HQ0 , i.e., U†U ¼ 1 with U† being the
adjoint of U and 1 being the identity on HQ. In particular,
whenQ ¼ Q0 and U corresponds to a unitary operator, Eq. (2)
defines a unitary channel on Q which admits the channel
U−1ð� � �Þ ≔ U†ð� � �ÞU as a CPTP inverse. Furthermore, if U is
the identity operator 1 on HQ, the resulting transformation is
the identity channel, denoted id, which maps any state into
itself, i.e., idðρQÞ ¼ ρQ for all ρQ.

B. Composition rules and structural properties

While referring the interested reader to Breuer and
Petruccione (2002), Keyl (2002), Bengtsson and Zyczkowski

FIG. 5. (a) Quantum channelΦmapping a state ρ into a new one
ρ0, (b) concatenation Φ1∘Φ2 of two channels Φ1 and Φ2, and
(c) tensor product Φ1 ⊗ Φ2 of two channels Φ1 and Φ2.

FIG. 4 (color online). Some examples of communication lines
which can be described by the quantum channel formalism:
(a) quantum communication with Earth- and space-based trans-
mitter terminals, (b) transmission of photons along optical fibers,
and (c) storing information on atoms or molecules trapped in
optical cavities. The evolution, in space or time, of a quantum state
can always be described by the formalism of quantum channels.
The potential presence of temporally or spatially correlated noise
may lead, then, to dealing with memory quantum channels.

1The linearity requirement ensures that the extension of Φ from
SðHQÞ to T ðHQÞ is unique.
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(2006), Petz (2008), and Holevo (2011, 2012) for an exhaustive
characterization, here the most relevant structural properties of
the set PðQ ↦ Q0Þ, formed by the CPTP maps connecting
system Q to system Q0, are reviewed.

1. Convexity

Given Φ, Λ∈PðQ↦Q0Þ, and p∈ ½0;1�, the transformation

ρQ ↦ pΦðρQÞ þ ð1 − pÞΛðρQÞ ð3Þ

is still an element of PðQ ↦ Q0Þ. For instance, convex
combinations of unitary channels on Q define the random
unitary channel subset of PðQ ↦ QÞ.

2. Concatenation of channels

Given two CPTP channels, Φ from Q to Q0 and Ω from Q0

to Q00, one can define [see Fig. 5(b)] their concatenation Ω∘Φ
as the following CPTP transformation from Q to Q00:

ρQ ↦ ðΩ∘ΦÞðρQÞ ≔ Ω(ΦðρQÞ): ð4Þ
Channels concatenation allows one to introduce a relation of
equivalence between CPTP maps. In particular, two maps Φ,
Λ ∈ PðQ ↦ Q0Þ are said to be unitarily equivalent if
there exist unitary channels U ∈ PðQ ↦ QÞ and U 0 ∈
PðQ0 ↦ Q0Þ such that

Φ ¼ U 0∘Λ∘U; ð5Þ

the relation being reversible in Λ ¼ U−1∘Φ∘U 0−1. From the
above properties it follows also that PðQ ↦ QÞ equipped
with the concatenation rule (4) possesses a non-Abelian
semigroup structure, the channel id being the identity element
of the set and the unitary channels U being the only invertible
elements.

3. Tensor product of channels

Given two CPTP channels, Φ fromQ toQ0 andΩ from R to
R0, one can define [see Fig. 5(c)] their tensor product Φ ⊗ Ω
as the CPTP transformation from the composite system QR to
the composite system Q0R0, which given an arbitrary tensor
operator NQ ⊗ MR ∈ T ðHQ ⊗ HRÞ transforms it into

ðΦ ⊗ ΩÞðNQ ⊗ MRÞ ≔ ΦðNQÞ ⊗ ΩðMRÞ: ð6Þ

Special instances are provided by the transformation Φ ⊗ id
obtained by tensoring Φ with the identity channel acting on an
external system: such a map is called an extension of Φ and
represents the action of such channel when the system Q
(where Φ was originally defined) is described as part of an
enlarged composite system—notice that this structure was
implicitly assumed when stating point (iii′) of Sec. II.A.
Concatenations and tensor products of quantum channels

represent two alternative ways of composing CPTP maps
which, to some extent, mimic, respectively, the in-series and
in-parallel composition rules of electrical circuit elements. In
particular, as discussed in Sec. VII, channel concatenation is
naturally suited to characterize the temporal correlations of a
single quantum system schematized in the left panel of Fig. 3

(the sequential applications of CPTP maps corresponding to
different stages of the system evolution). On the contrary the
tensor product (6) allows one to describe spatial correlations
which might be present in the evolution of composite quantum
systems. Also, as discussed in Sec. III, tensor products can be
employed to describe the transformations that a sequence of
information carriers encounters when transmitted through a
communication line; see Fig. 2.

C. Stinespring representation, Kraus representation, and
Choi-Jamiolkowski isomorphism

It can be shown (Stinespring, 1955) that a mapping (1)
satisfies the CPTP conditions detailed in Sec. II.B if and only
if it admits dilations that allow one to represent it in terms of a
unitary coupling with an external environment E (which is
possibly fictitious and may not correspond to the actual
physical environment responsible for the system evolution).
For instance, taking for simplicity Q ¼ Q0, one can write

ΦðρQÞ ¼ TrE½UQEðρQ ⊗ ωEÞU†
QE�; ð7Þ

where ωE is a fixed state of E, UQE is the unitary trans-
formation coupling the latter to the input system Q, and TrE
denotes the partial trace over the environment.2 Equation (7) is
not unique. Nonetheless by enlarging the environment E to
describe the environment state as a pure state, ωE ¼ jωiEhωj
(see Sec. II.J.1 for a proper definition of this purification
mechanism), the choice of UQE can be shown to be unique up
to a local isometric transformation on E. Under this condition
the dilation (7) provides what is generally known as the
Stinespring representation for Φ.
The CPTP conditions are also equivalent to the possibility

of expressing Φ in operator sum (or Kraus) representation
(Sudarshan, Mathews, and Rau, 1961; Kraus, 1971; Choi,
1975),

ΦðρQÞ ¼
X
j

KjρQK
†
j ; ð8Þ

with fKjg being operators onHQ satisfying the normalization
condition

P
jK

†
jKj ¼ 1. The number of nonzero operators in

Eq. (8) is called the Kraus rank. As in the case of the unitary
dilation (7), their choice is in general not unique. One can,
however, guarantee that a Kraus representation exists with no
more than d2 elements (d being the dimension of HQ). Kraus
and Stinespring representations can also be put in mutual
correspondence by identifying the operator Kj with the linear
operator EhejjUQEjωiE of HQ, where fjejiEg is an ortho-
normal basis of E.
It is finally worth recalling that there exists a fundamental

relation, known as the Choi-Jamiolkowski (CJ) isomorphism
(Jamiolkowski, 1972; Choi, 1975), which permits one to
describe any CPTP Φ as a density operator of a composite

2Note that complete positivity can be violated if the initial state of
Q is entangled with the channel environment, in which case,
however, the mapping represented by Eq. (8) is defined only on a
proper subset of SðHQÞ (Jordan, Shaji, and Sudarshan, 2004; Shaji
and Sudarshan, 2005).
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system QA with A being an auxiliary system having the same
dimension d as Q; see Fig. 6(c). The explicit connection is
obtained by applying the map Φ to half of a maximally
entangled state (Gühne and Tóth, 2009; Horodecki et al.,
2009) jβiQA ¼ P

jjejiQ ⊗ jejiA=
ffiffiffi
d

p
of QA to create the so-

called CJ state of the channel

ρðΦÞQA ≔ ðΦ ⊗ idÞðjβiQAhβjÞ; ð9Þ
where id stands for the identity map on A and fjejiQg and
fjejiAg represent orthonormal basis of Q and A, respectively.

D. Heisenberg picture: The dual channel

Equation (1) implicitly assumes the Schrödinger picture in
which the states of the system are evolved while the
observables are kept fixed. In the Heisenberg picture, in
which instead the states are fixed and the observables evolve
in time, the CPTP transformation Φ ∈ PðQ ↦ Q0Þ is replaced
by its dual map

O ∈ BðHQ0 Þ ↦ Φ�ðOÞ ∈ BðHQÞ; ð10Þ
operating on the bounded operator algebra BðHQ0 Þ of the
receiver observable and defined through the identity

Tr½ΦðρQÞO� ¼ Tr½ρQΦ�ðOÞ�; ð11Þ

which holds for allO ∈ BðHQ0 Þ and for all ρQ ∈ SðHQÞ. The
Heisenberg-picture transformation Φ� is linear and completely
positive, but in general it is not trace preserving. On the other
hand, it is always unital, i.e., it maps the identity operator into
itself. Operator sum representations for Φ� can be easily
constructed from those of Φ [Eq. (8)], yielding

Φ�ðOÞ ¼
X
j

K†
jOKj: ð12Þ

Notice also that in the dual picture the concatenation of
channels goes in reverse order with respect to the Schrödinger
picture, i.e., given Φ and Ω CPTP maps,

ðΩ∘ΦÞ� ¼ Φ�∘Ω�: ð13Þ

E. cq and qc channels

Besides considering physical transformations which re-
present the evolution of quantum carriers, in quantum infor-
mation it is useful to describe processes which map classical
inputs into quantum states (cq channels) or, vice versa,
quantum states into classical outputs (qc channels); see
Figs. 6(a) and 6(b). Specifically the former define state
preparation procedures where a symbol x extracted from a
classical alphabet X with probability px is encoded into a state
ρðxÞQ of the quantum system Q, thus producing an average
density operator

P
x∈Xpxρ

ðxÞ
Q . qc channels instead correspond

to measurement procedures which, given ρQ ∈ SðHQÞ, pro-
duce classical outcomes x ∈ X with conditional probabilities

pxðρQÞ ¼ Tr½ExρQ�; ð14Þ

with fExgx∈X being a set of positive operators on HðQÞ,
satisfying the normalization condition

P
xEx ¼ 1, which

defines the statistics of the measurement in the positive-
operator valued measure (POVM) representation (Breuer and
Petruccione, 2002; Petz, 2008; Holevo, 2011). cq and qc
channels can both be extended to CPTP maps (1) by
introducing an ancillary quantum system Q0 of dimension
equal to the cardinality of X , and characterized by an
orthonormal set fjexiQ0 gx∈X (Holevo, 1998b). For instance,
taking px ¼ Q0 hexjρQ0 jexiQ0 with ρQ0 ∈ SðHQ0 Þ, the cq chan-
nel defined above induces the following CPTP mapping from
Q0 to Q:

ρQ0 ↦ ΦcqðρQ0 Þ ≔
X
x∈X

Q0 hexjρQ0 jexiQ0ρðxÞQ : ð15Þ

Analogously the qc channel induces the following CPTP
mapping from Q to Q0:

ρQ ↦ ΦqcðρQÞ ≔
X
x∈X

jexiQ0 hexjTr½ExρQ�: ð16Þ

The concatenation Φcq∘Φ∘Φqc, with Φ being a generic
quantum channel from Q to Q, can also be represented as
a CPTP map (fromQ0 toQ0) and describes the typical scenario
where a collection of classical messages (represented by
elements of the set X ) is transferred to Bob via a quantum
link (represented by Φ) who “reads” them through the POVM
fExgx∈X . In particular, when applied to elements of the
orthonormal set fjexiQ0 gx∈X , Φcq∘Φ∘Φqc induces a classical
stochastic process where x ∈ X is mapped into x0 ∈ X with
conditional probability

pðx0jxÞ ¼ Tr½Ex0ΦðjexiQ0 hexjÞ�: ð17Þ

F. Entanglement breaking and positive partial transpose
(PPT) channels

The cq and qc channels defined in Sec. II.E are particular
instances of a larger group of CPTP transformations, called
entanglement breaking (EB). As the name suggests, a channel
Φ is EB if, when operating on half of a joint input state ρQA
of Q and of an ancillary system A, produces output states

FIG. 6 (color online). (a) qc channels mapping a quantum state ρ
into a classical symbol x, while the reversed mapping is
represented by cq channels (b); (c) definition of the Choi-
Jamiolkowski (CJ) state in terms of a channel Φ and a maximally
entangled state jβiQA of the system Q and an auxiliary system A
subjected to the identity channel. When the CJ state is separable,
the corresponding map Φ is called entanglement breaking (EB).
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ðΦ ⊗ idÞðρQAÞ that are separable (i.e., not entangled) (Gühne
and Tóth, 2009; Horodecki et al., 2009); see Fig. 6(c). These
maps are closed under convex combination and channel
concatenations, that is, given Φ1 and Φ2 EB, then pΦ1 þ
ð1 − pÞΦ2 and Φ1∘Φ2 are also EB for all p ∈ ½0; 1� (more
generally concatenating an EB map with a generic CPTP map
produces an EB channel). Necessary and sufficient conditions
for being EB can be found in Horodecki, Shor, and Ruskai
(2003) and Ruskai (2003) and, for the special case of infinite-
dimensional systems, in Holevo (2008). In particular, Φ is EB
if and only if its associated CJ state (9) is separable.
Alternatively Φ is EB if and only if it is possible to identify
a POVM fEkgk on Q and collection of states fρðkÞQ0 gk in the
output space Q0 such that

ΦðρQÞ ¼
X
k

ρðkÞQ0 Tr½EkρQ�; ð18Þ

for all inputs ρQ [this last condition immediately shows that
maps (15) and (16) are indeed EB].
EB channels form a proper subset of PPT channels. The

latter are defined as those channels which produce output
states ðΦ ⊗ idÞðρQAÞ with PPT (Horodecki, Horodecki, and
Horodecki, 1996; Peres, 1996; Rains, 2001). A necessary and
sufficient condition for such a property is that the channel’s CJ
state (9) is PPT. Channels which are PPT but not EB are called
entanglement binding maps. Generalizations of EB channels
have been presented by De Pasquale and Giovannetti (2012)
to describe those CPTP maps that become EB only after a
certain number of concatenations, and by Moravčíková and
Ziman (2010) and Filippov, Rybár, and Ziman (2012) to
describe maps that when acting jointly on a composite system
break entanglement among the subsystems that compose it.

G. Complementary channels and degradability

Associated with the Stinespring representation (7) is the
notion of the complementary channel of Φ (see Fig. 7). The
latter is the CPTP map ~Φ ∈ PðQ ↦ EÞwhich sends the initial
states of the system Q into the states of the environment E
through the transformation

ρQ ↦ ~ΦðρQÞ ≔ TrQ½UQEðρQ ⊗ jωiEhωjÞU†
QE�; ð19Þ

where TrQ denotes the partial trace over the system Hilbert
space. The purity of the environmental state ωE ¼ jωiEhωj

ensures the uniqueness of ~Φ up to an isometric trans-
formation on E. Channels (19) defined in terms of unitary
dilations (7) with nonpure states ωE are called weak
complementaries of Φ and in general do not enjoy such
symmetry (Caruso and Giovannetti, 2006; Caruso,
Giovannetti, and Holevo, 2006).
The definition of ~Φ allows us to introduce another property

of quantum channels, which is called degradability (Devetak
and Shor, 2005). A map Φ is degradable when one can recover
the final environment state ~ΦðρQÞ just by applying a third
CPTP map to the output system state. More formally, a
degradable map is such that there exists a CPTP map Ω ∈
PðQ ↦ EÞ satisfying

~Φ ¼ Ω∘Φ: ð20Þ
Similarly, a channel is called antidegradable when the
opposite relation holds, i.e.,

Φ ¼ Ω∘ ~Φ; ð21Þ
for some Ω ∈ PðE ↦ QÞ, as shown in Fig. 7. Special
examples of antidegrabable channels are the symmetric
channels introduced by Smith, Smolin, and Winter (2008):
these are CPTP maps for which Φ and ~Φ coincide (hence they
are both degradable and antidegradable). Structural properties
of degradable and antidegradable channels have been exten-
sively analyzed by Cubitt, Ruskai, and Smith (2008), showing
for instance that EB channels are always antidegrabable.
Analogous definitions can be obtained for weak-complemen-
tary channels: in this case one says that Φ is weakly
degradable if Eq. (20) holds—there is no need to define a
weakly antidegradability condition as the latter can be shown
to be equivalent to the antidegradabilty condition (Caruso,
Giovannetti, and Holevo, 2006).

H. Causal, localizable, local operations and classical
communication (LOCC), and separable channels

Additional structures arise when a quantum channel Φ acts
on a multipartite system, e.g., a bipartite one Q ¼ Q1Q2. It is
useful to imagine that the two subsystems are associated with
spatially or temporally separated laboratories where local
CPTP maps can be applied and that can exchange classical
or quantum information. In particular, bipartite channels can
be characterized in terms of (1) how the output of one
subsystem changes if a local transformation is applied to
the input of the other subsystem; and (2) which resources (e.g.,
a preshared quantum state, local operations on the subsystems,
classical, or quantum communication) are needed to simulate
the bipartite channel.
The notions of causal and semicausal channels developed

by Eggeling, Schlingemann, and Werner (2002) and Piani
et al. (2006) provide a means of characterizing how the output
of one subsystem depends on the input of the other. In this
context a quantum channel Φ ∈ PðQ ↦ QÞ acting on a
bipartite system Q ¼ Q1Q2 is said to be Q1↛Q2 semicausal
(Beckman et al., 2001) if for any local CPTP map Ψ ∈
PðQ1 ↦ Q1Þ applied to Q1 before the action of Φ, there is no
detectable effect in the subsystem Q2, i.e.,

FIG. 7. Graphical representation of a channel Φ, its comple-
mentary one ~Φ, and the degradability properties, in terms of the
system and an external environment E.
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TrQ1
½ΦðρQÞ� ¼ TrQ1

fΦ½ðΨ ⊗ idÞðρQÞ�g; ð22Þ

where ρQ is a generic (possibly entangled) input state of the
two carriers and where TrQ1

denotes the partial trace with
respect to Q1. In other words, for Q1↛Q2 semicausal maps
cross talking from Q1 to Q2 is prevented. Similarly, one
introduces the notion of Q2↛Q1 semicausal map. When both
properties are satisfied, the map is called causal or non-
signaling. Special examples of nonsignaling channels are the
tensor product channels Φ ¼ Φ1 ⊗ Φ2 with Φ1;2 being CPTP
maps operating locally on Q1 and Q2, respectively.
Another way of characterizing a bipartite quantum channel

is in terms of the physical resources which are needed to
simulate it. A bipartite channel is said to be localizable if
it can be implemented by applying local CPTP maps on the
subsystems with the assistance of a preshared bipartite
quantum state (Beckman et al., 2001). Notice that the
simulation of localizable channels does not require classical
nor quantum communication between the two laboratories.
Formally, this is the case when Φ can be represented as

ΦðρQ1Q2
Þ ¼ TrA1A2

½ðΨ ⊗ ΩÞðρQ1Q2
⊗ ωA1A2

Þ�; ð23Þ

where ωA1A2
is a shared bipartite state, and Ψ and Ω are

quantum channels acting locally on subsystems Q1A1 and
Q2A2, respectively; see Fig. 8. Otherwise, Φ is called Q1 →
Q2 semilocalizable if also one-way quantum communication
from Q1 to Q2 is required to simulate the channel.
Accordingly in this case Eq. (23) is replaced by

ΦðρQ1Q2
Þ ¼ TrA½ðΨ∘ΩÞðρQ1Q2

⊗ ωAÞ�; ð24Þ

with ωA being the state of an ancillary system A which is
transmitted from one laboratory to the other and acts as the
mediator between Q1 and Q2, and Ψ and Ω are quantum
channels acting on the systems Q2A and Q1A, respectively.
By comparison of Eqs. (22) and (24) it follows that all

Q1 → Q2 semilocalizable maps are Q2↛Q1 semicausal,
which in turn implies that all localizable maps are causal.
Moreover, it can be proven that semicausality implies semi-
localizability, hence semicausal and semilocalizable maps
coincide, although causal and localizable maps do not
(Beckman et al., 2001; Eggeling, Schlingemann, and
Werner, 2002; Piani et al., 2006).
An important class of bipartite quantum channels is finally

represented by the set of transformations which can be

simulated only with LOCC [see Chitambar et al. (2012) for
a recent survey]. These channels are hence termed LOCC
channels. Classical communication is generally allowed in
both directions between the two laboratories; the most general
LOCC channel however can always be equivalently obtained
by concatenating local CPTP maps and one-way classical
communication. A LOCC transformation can hence be simu-
lated by a finite number of iterations of the following sequence
of operations: (1) on one of the two subsystems, say Q1, a
local CPTP mapΨ1 is applied; (2) classical information is sent
fromQ1 toQ2, possibly conditioned on the local output of the
mapΨ1; (3) conditioned on the received classical information,
a local CPTP map Ψ2 is applied on subsystem Q2; (4) the
sequence of operations is repeated with the roles of Q1 and
Q2 exchanged. A closely related class of bipartite channels
is that of separable channels, defined as those channels
admitting a Kraus representation in which all the Kraus
operators are in the form of a direct product of operators
acting on the local subsystems. It is easy to see that all the
LOCC channels are separable. Interestingly enough, there
exist separable channels which are not LOCC (Bennett,
DiVincenzo et al., 1999).

I. Examples

Here some examples of quantum channels are presented.

1. Qubit channels

Qubit channels are the simplest, yet nontrivial, example
of quantum channels: they are CPTP transformations
Φ ∈ PðQ ↦ QÞ that map the states of a bidimensional
quantum system (qubit) into states of the same system
(in this case HQ ¼ C2). A compact characterization of
these channels can be obtained by adopting the Bloch ball
representation, according to which any density operator ρ of
the system is uniquely identified with the corresponding
(Bloch) vector r ¼ ðrx; ry; rzÞ ∈ R3 of length jrj ≤ 1 via the
correspondence

ρ ¼ ρðrÞ ≔ 1
2
ð1þ r · sÞ; ð25Þ

where s ¼ ðσx; σy; σzÞ⊤ is a column vector formed by the
Pauli matrices. In this framework any qubit channel Φ induces
affine transformations of the form

r ↦ r0 ¼ Mrþ t; ð26Þ

with M and t being, respectively, a fixed 3 × 3 real matrix and
a fixed three-dimensional real vector satisfying certain con-
sistency requirements (King and Ruskai, 2001; Ruskai,
Szarek, and Werner, 2002; Ruskai, 2003). In particular, qubit
unital channels are obtained for t ¼ 0 and M⊤M ≤ I, the
inequality being saturated if and only if Φ describes a unitary
transformation [the latter case corresponds to having
M ∈ SOð3;RÞ]. Exploiting this fact and the matrix singular
value decomposition (Horn and Johnson, 1990) one can use
the unitary equivalence of Eq. (5) to identify a canonical form
for the qubit channel Φ, where the matrix M of Eq. (26) is

FIG. 8. Graphical structure of (a) semilocalizable and (b) local-
izable channels on bipartite systems Q1Q2, where the two parties
act locally with the maps, respectively, Ψ and Ω on their
subsystems and some auxiliary resources.
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written as O0DO with D being a real diagonal 3 × 3 matrix,
and with O0 and O being elements of SOð3;RÞ.
An important class of qubit channels that have been

extensively analyzed in the literature are those admitting a
representation (8) with only two Kraus operators K0 and K1.
In the canonical basis formed by the eigenvectors fj0i; j1ig of
the Pauli operator σz they can be parametrized as

K0 ¼
�
cos θ 0

0 cosϕ

�
; K1 ¼

�
0 sinϕ

sin θ 0

�
; ð27Þ

with θ;ϕ ∈ ½0; π�, up to unitary rotation. The corresponding
affine mapping (26) is obtained with M ¼ diag( cosðϕ − θÞ;
cosðϕþ θÞ; ½cosð2θÞ þ cosð2ϕÞ�=2) and t ¼ (0; 0; ½cosð2θÞ−
cosð2ϕÞ�=2). In the Stinespring representation (7) these maps
describe situations in which the qubit system interacts with
the smallest nontrivial environment (i.e., another qubit
initialized in a pure state) and can be shown to be degradable
for cosð2θÞ=cosð2ϕÞ ≥ 0 and antidegradable otherwise
(Giovannetti and Fazio, 2005; Caruso and Giovannetti,
2007; Wolf and Pérez-García, 2007). In particular, setting
cosð2θÞ ¼ 1 and cosð2ϕÞ ¼ 2η − 1, Eq. (27) defines the
amplitude damping channel with damping rate η. For sin θ ¼
� sinϕ instead one gets unital maps. Specifically for ϕ ¼ θ,
Eq. (27) describes the bit-flip channel that exchanges the
states j0i and j1i with probability px ¼ sin2 ϕ. By applying
the unitary matrix (Hadamard transform)

1ffiffiffi
2

p
�
1 1

1 −1
�

to K1; K2 in Eq. (27) one recovers a unitarily equivalent
channel called the phase-flip channel (or phase damping
channel) that introduces a π shift between the states j0i
and j1i with probability pz ¼ sin2 ϕ; see Fig. 9. Still Eq. (27)
for ϕ ¼ −θ describes the bit-phase flip channel which with
probability py ¼ sin2 ϕ exchanges the states j0i and j1i and
also adds a relative π shift to them.

Convex combinations of these three maps plus the identity
channel define the class of Pauli channels: i.e.,

ΦðρÞ ¼ p0ρþ p1σxρσx þ p2σyρσy þ p3σzρσz; ð28Þ

with non-negative parameters p0 þ p1 þ p2 þ p3 ¼ 1. Via
the canonical representation detailed previously any other
unital qubit map can be obtained from Eq. (28) through the
concatenation Eq. (5).

2. Erasure channels

Erasure channels describe those communication scenarios
in which errors are somehow heralded (i.e., the receiver Bob
can determine whether or not something bad has happened to
Alice’s original message): accordingly they provide the
simplest examples of CPTP maps operating among spaces
of different dimensionality. Given a systemQ described by the
Hilbert space HQ, an erasure map is a stochastic trans-
formation connecting SðHQÞ with SðHQ0 Þ, where HQ0 ¼
HQ⊕jei and ⊕ denotes the direct sum of the input Hilbert
space with an extra “erasure” state jei (the error “flag”) which
is orthogonal to each of the vectors of Q. In particular, as
described by Bennett, DiVincenzo, and Smolin (1997) and
Grassl, Beth, and Pellizzari (1997), the channel sends the
input ρQ to itself with probability 1 − p and to jei with
probability p.

3. Weyl covariant channels

Given a quantum system of finite dimension d (qudit)
and the canonical basis fjekigk¼0;…;d−1, consider the group
Zd × Zd as a discrete phase space and take the unitary
representation of such a group in the Hilbert space H of
the system as

z ¼
�
x
y

�
↦ Wz ¼ UxVy; ð29Þ

where x; y ∈ Zd and U, V are unitary operators on H
generalizing the Pauli operators σx and σz in the following
way (Gottesman, 1999):

Ujeki ¼ jekþ1ðmoddÞi; Vjeki ¼ exp

�
2πik
d

�
jeki: ð30Þ

The operators Wz are the discrete Weyl operators and they
satisfy the canonical commutation relations

WzWz0 ¼ eð2πi=dÞz⊤Σz0Wz0Wz; ð31Þ

where the row vector z⊤ is the transpose of the column vector
z and where

Σ ≔
�
0 −1
1 0

�
ð32Þ

is the matrix representation of the symplectic form with 0
(respectively, 1) the null (respectively, identity) d × d matrix.
The algebra BðHÞ of operators onH can be considered as a

Hilbert space supplied by the Hilbert-Schmidt inner product.
FIG. 9. Pictorial representation of the shrinking effects on the
Bloch sphere via (a) phase-flip and (b) depolarizing channels.
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There the Weyl operators form an orthogonal basis
TrðWzW

†
z0 Þ ¼ dδzz0 , hence for all O ∈ BðHÞ one has

O ¼
X
z

fOðzÞWz; fOðzÞ ¼
1

d
TrðOW†

zÞ: ð33Þ

In this scenario a CPTP map Φ is said to be Weyl covariant
(Fukuda and Holevo, 2005) when for all z ∈ Zd × Zd it
fulfills the identity

Φ∘Wz ¼ Wz∘Φ; ð34Þ

withWz representing the quantum channel (2) associated with
the unitary Wz. Applying Eq. (34) to the operator Wz, from
Eq. (31) it follows that ΦðWzÞ commutes with Wz. Hence, by
means of Eq. (33), one can write

ΦðWzÞ ¼ ϕðzÞWz; ð35Þ

with ϕðzÞ a complex-valued function, termed the “character-
istic function of the channel” [without loss of generality it can
be assumed ϕð0Þ ¼ 1].
Special examples of Weyl covariant channels are provided

by Weyl channels (Amosov, 2007) defined as those
CPTP maps which admit Kraus decomposition in terms of
random Weyl operators, i.e., Φ ¼ P

zpzWz, with pz a
probability distribution over Zd × Zd. These are unital maps
and their associated characteristic function is given by
ϕðzÞ ¼ P

z0e
ð2πi=dÞz0ΣzTpz0 . In particular, any d-depolarizing

channel

ΦðρÞ ¼ λρþ ð1 − λÞ 1
d
1; ð36Þ

where λ ∈ ½0; 1� is a Weyl channel having ϕðzÞ ¼ λ for z ≠ 0.
One notes also that since for d ¼ 2 (Fig. 9) the Weyl operators
reduce to the standard Pauli operators including identity, any
unital qubit (d ¼ 2) channel which is unitarily equivalent to
the Pauli channels (28) is a Weyl channel. It is also possible to
define the transpose d-depolarizing transformation,

ΦðρÞ ¼ λρ⊤ þ ð1 − λÞ 1
d
1; ð37Þ

which defines a CPTP map for

λ ∈
�
1 −

d
dþ 1

; 1 −
d

d − 1

�

(here ρ⊤ is the transpose of ρ with respect to a given basis)
(Fannes et al., 2004).

4. Continuous variable quantum channels

Up to now mainly finite dimensional Hilbert spaces have
been considered. This has been done to avoid technicalities
related with the proper definition of the domains of the
functionals. It is true however that the most common imple-
mentations of quantum communication lines are typically
realized with CV systems (Braunstein and van Loock, 2005;
Weedbrook et al., 2012) which at the quantum level are

associated with an infinite-dimensional space—consider for
instance the transferring of classical signals encoded into light
pulses propagating along optical fibers or in free space (Caves
and Drummond, 1994).
CV systems admit a description in terms of a discrete set of

(say n) bosonic oscillators, typically a set of normal modes of
the electromagnetic field, defined by ladder operators
a1; a

†
1; a2; a

†
2;…; an; a

†
n obeying canonical commutation rela-

tions ½ak; a†k0 � ¼ δkk0 . Introducing the generalized “positions”
and “momenta” coordinates fxk; ykgk¼1;…;n, the density oper-
ators ρ of the CV system can be represented in terms of the
(symmetrically ordered) characteristic functions
χðzÞ ¼ Tr½ρVðzÞ�, where z ≔ ðx1; y1;…; xn; ynÞ⊤ defines
the vector of phase-space variables and where

VðzÞ ≔ exp

�
1ffiffiffi
2

p
X
k

ðxk þ iykÞa†k − H:c:

�

denotes n-mode Weyl operators. The function χðzÞ and the
operator VðzÞ represent the infinite-dimensional counterparts
of fOðzÞ and Wz introduced in Sec. II.I.3. In particular, VðzÞ
fulfills commutation relations analogous to Eq. (31), i.e.,

VðzÞVðz0Þ ¼ e2πiz
⊤ΣðnÞz0Vðz0ÞVðzÞ; ð38Þ

where now ΣðnÞ is the 2n × 2n block matrix defined by

ΣðnÞ ≔ ⨁
n

k¼1

Σ;

with Σ the single-mode phase-space canonical symplectic
form deducible from Eq. (32) for d ¼ 1.
Because of their physical relevance and relative simplicity

of their mathematical description, a remarkable class of states
is the class of Gaussian states (Eisert and Plenio, 2003;
Ferraro, Olivares, and Paris, 2005; Holevo, 2011). They
correspond to multimode (thermal) Gibbs states of
Hamiltonians which are quadratic in the ladder operators of
the system and are formally identified by the property of
possessing Gaussian characteristic functions, i.e.,

χðzÞ ¼ exp ðim⊤z − 1
2
z⊤CðnÞzÞ: ð39Þ

In Eq. (39) m is the vector of first moments

mk ¼ TrðxkρÞ; ð40Þ

where

ffiffiffi
2

p
x ≔ (ða1 þ a†1Þ;−iða1 − a†1Þ; ða2 þ a†2Þ;−iða2 − a†2Þ;…):

ð41Þ

Furthermore, CðnÞ is the covariance matrix (CM)

CðnÞ
hk ¼ 1

2
TrðxhxkρÞ þ 1

2
TrðxkxhρÞ − TrðxhρÞTrðxkρÞ; ð42Þ

obeying the generalized uncertainty relation (Simon,
Mukunda, and Dutta, 1994)
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CðnÞ − iΣðnÞ=2 ≥ 0: ð43Þ

Concerning quantum channels in CV systems, attention has
been mainly devoted to the study of Gaussian channels, i.e.,
CPTP maps that map Gaussian input states to Gaussian output
states (Holevo and Werner, 2001; Weedbrook et al., 2012). A
part from attenuation and thermalization events arising from
linear interactions with bosonic baths, they also include
squeezing and linear amplification processes. When applied
to a (not necessarily Gaussian) density operator ρ with
characteristic function χðzÞ, a Gaussian channel Φ will
transform it into an output density operator ρ0 ¼ ΦðρÞ having
characteristic function

χ0ðzÞ ¼ χðXðnÞ⊤zÞfðzÞ; ð44Þ

where XðnÞ is a matrix inducing a linear transformation on the
2n-dimensional phase-space vector z, and the function fðzÞ is
Gaussian, i.e., fðzÞ ¼ exp ðidðnÞ⊤z − 1

2
z⊤YðnÞzÞ. The linear

term proportional to the vector dðnÞ accounts for a translation
(displacement) of the mean m, while the quadratic term
proportional to the matrix YðnÞ adds a term to the CM.
CPTP conditions are ensured if and only if

YðnÞ − iðΣðnÞ − XðnÞΣðnÞXðnÞ⊤Þ=2 ≥ 0: ð45Þ

Gaussian transformations which are also unitary are charac-
terized by the property that XðnÞ is a symplectic matrix (i.e.,
XðnÞΣðnÞXðnÞ⊤ ¼ ΣðnÞ), and YðnÞ ¼ 0. An n-mode Gaussian
channel is hence characterized by the triad ðdðnÞ;XðnÞ;YðnÞÞ
satisfying the constraint (45). The concatenation of two

Gaussian channels with associated triads ðdðnÞ1 ;XðnÞ
1 ;YðnÞ

1 Þ
and ðdðnÞ2 ;XðnÞ

2 ;YðnÞ
2 Þ is in turn characterized by the triad

ðXðnÞ
2 dðnÞ1 þ dðnÞ2 ;XðnÞ

2 XðnÞ
1 ;XðnÞ

2 YðnÞ
1 XðnÞ

2

⊤ þ YðnÞ
2 Þ. It follows

that, by applying suitable Gaussian unitaries at the input
and output of the channel, one can always reduce the channel
to a canonical form, in which dðnÞ ¼ 0, and the matrices XðnÞ,
YðnÞ take a particular symmetric form. For the case of channels
acting on one or two modes, the reduction to canonical forms
allows one to classify Gaussian quantum channels according
to invariance under unitary transformations (Serafini, Eisert,
and Wolf, 2005; Caruso and Giovannetti, 2006; Holevo,
2007b; Caruso, Eisert et al., 2008).
The basic processes of linear attenuation and amplification

are modeled by single-mode Gaussian channels with
Xð1Þ ¼ ffiffiffi

η
p

, Yð1Þ ¼ j1 − ηj=2. For η ≤ 1 these channels
describe linear losses (with attenuation factor η), while for
η > 1 they model the process of parametric amplification
(with gain η). If extra Gaussian noise affects the attenuation or
amplification process, one gets the noisy versions of the lossy
and amplifier channel. In particular, the lossy and noisy
Gaussian channel is defined by Xð1Þ ¼ ffiffiffi

η
p

and Yð1Þ ¼
ð1 − ηÞðNth þ 1=2Þ (η ∈ ½0; 1� and Nth ≥ 0), and the additive
noise Gaussian channel by Xð1Þ¼1 and Yð1Þ¼Nadd (Nadd ≥ 0).
Notice that the additive noise can be obtained from the lossy
and noisy channel by taking the limit of η → 1 and Nth → ∞
under the condition ð1 − ηÞðNth þ 1=2Þ ¼ Nadd.

J. Transfer fidelities and channel distances

In quantum information distance measures are of funda-
mental importance: by determining how far apart two states or
two transformations are from each other, they are an essential
guidance in the optimization of the data processing.

1. Input-output and entanglement fidelity of a quantum channel

A proper way to determine how much a system Q is
modified by the action of a channel Φ ∈ PðQ ↦ QÞ can be
obtained by considering the fidelity functional Fðρ1; ρ2Þ
(Uhlmann, 1976; Jozsa, 1994) (the definition relevant proper-
ties are recalled in Appendix A). Accordingly, for each input
ρQ one defines the input-ouput (or transfer) fidelity associated
with the map Φ as

FðρQ;ΦÞ ≔ F(ρQ;ΦðρQÞ); ð46Þ

which for a pure state jψiQ is linked to the error probability
PeðjψiQ;ΦÞ of not getting the right state at the channel output,
via the identity

PeðjψiQ;ΦÞ ¼ 1 − FðjψiQ;ΦÞ: ð47Þ

An overall estimate of the disturbance introduced by the
channel can then be obtained by looking at how different from
unity is the minimum or (alternatively) the average of
FðρQ;ΦÞ evaluated with respect to all possible pure input
states of Q, i.e., the quantities

FminðΦÞ ≔ min
jψiQ

FðjψiQ;ΦÞ; ð48Þ

F̄ðΦÞ ≔
Z

dμðψÞFðjψiQ;ΦÞ; ð49Þ

the rationale being that FminðΦÞ ¼ 1, as well as F̄ðΦÞ ¼ 1, can
occur if and only if Φ coincides with the identity channel id.
The average in Eq. (49) is performed with respect to the Haar
measure dμðψÞ of the group whose action on a vector jψi is
able to generate the entire space of states (Bengtsson and
Zyczkowski, 2006); the minimization in Eq. (48) instead can
be generalized to also include mixed states by exploiting the
concavity property of the fidelity (Nielsen and Chuang, 2000;
Wilde, 2013), i.e., FminðΦÞ ¼ minρQFðρQ;ΦÞ.
To gauge the disturbance of the channel Φ, one may also

consider its entanglement fidelities (Schumacher, 1996),
defined as the input-output fidelities of the extended map Φ ⊗
id when operating on purifications of the density matrices ρQ.
Recall that a purification of a density matrix ρQ ∈ SðHQÞ is
any pure state jψρiQR ∈ HQ ⊗ HR of the enlarged system
formed by Q and by an ancillary system R, which fulfills the
property ρQ ¼ TrRðjψρiQRhψρjÞ (Gühne and Tóth, 2009;
Horodecki et al., 2009). The entanglement fidelity is then
written as

FeðρQ;ΦÞ ≔ FðjψρiQR;Φ ⊗ idÞ; ð50Þ

where id is the identity map on R. It is important to stress that
FeðρQ;ΦÞ is independent of the way jψρiQR is constructed
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and of the choice of the ancillary system: as a matter of fact,
given fKjgj a set of Kraus operators of Φ, it can be expressed
as

FeðρQ;ΦÞ ¼
X
j

jTrðρQKjÞj2: ð51Þ

Operationally the entanglement fidelity functional (50) can be
used to detect the detrimental effects on the transmission of
half of the entangled state jψiQR through the channel Φ. This
quantity is related to the input-output fidelity (46) via the
inequality

FeðρQ;ΦÞ ≤ FðρQ;ΦÞ; ð52Þ

implying that values of FeðρQ;ΦÞ close to 1 force FðρQ;ΦÞ to
approach unity too. Slightly weaker versions of the opposite
implication can also be proven (Kretschmann and Werner,
2004; Holevo, 2012). In particular, given ϵ > 0, if
FðjψiQ;ΦÞ ≥ 1 − ϵ for all input states jψiQ belonging to
the support of the density matrix ρQ, then (Barnum, Knill, and
Nielsen, 2000)

FeðρQ;ΦÞ ≥ 1 − 3ϵ=2: ð53Þ

Furthermore, taking ρQ to be the completely mixed state of Q,
i.e., the density matrix 1=d (d being the dimension of HQ)
whose purification is a maximally entangled state ofQR, from
Eq. (51) it follows that

Feð1=d;ΦÞ ¼
1

d2
X
j

jTrðKjÞj2; ð54Þ

which can be put in correspondence with the average fidelity
(49) through the identity (Horodecki, Horodecki, and
Horodecki, 1999; Nielsen, 2002)

F̄ðΦÞ ¼ dFeð1=d;ΦÞ þ 1

dþ 1
: ð55Þ

2. Distance measures for channels

Distance measures for quantum channels (and in general for
quantum operations) are typically written as jjjΦ −Ψjjj,
where jjjΛjjj denotes a proper norm of the superoperator Λ.
Suitable choices are

jjjΛjjjk ≔ sup
‖O‖k≤1

‖ΛðOÞ‖k; ð56Þ

where the index k identifies a norm for the operators of the

system. Specifically for k ¼ 1, ‖O‖1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffi
O†O

p
is the trace

norm; for k ¼ 2, ‖O‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrO†O

p
is the Hilbert-Schmidt

norm; and finally for k ¼ ∞, ‖O‖∞ ¼ supjψihψ jOjψi is the
standard operator norm—recall that they obey the following
ordering ‖O‖∞ ≤ ‖O‖2 ≤ ‖O‖1 (Horn and Johnson, 1990).
While correctly defined, when applied to CPTP maps, the
norms (56) become unstable under channel extension. In
particular, jjjΛ ⊗ idjjjk can explicitly depend upon the dimen-
sionality of the ancillary system for which the id channel is

defined. In order to amend this, regularizations have been
proposed. Of particular relevance is the norm of complete
boundedness, or cb norm (Paulsen, 2003), and the diamond
norm (Kitaev, 1997). Given a generic (not necessarily
CPTP) map Λ∶ SðCnÞ ↦ SðCkÞ they are defined, respec-
tively, as

jjjΛjjjcb ≔ sup
m
jjjΛ ⊗ idmjjj∞; ð57Þ

jjjΛjjj⋄ ≔ jjjΛ ⊗ idnjjj1; ð58Þ

where idm denotes the identity channel on SðCmÞ. While
not obvious at least in the case of jjj � � � jjj⋄, both these
norms are stable under channel extension. Furthermore, they
are related through the identity jjjΛjjjcb ¼ jjjΛ�jjj⋄, where
Λ� is the dual of Λ (Johnston, Kribs, and Paulsen, 2009).
In the context of quantum communication, the properties

of the cb norm have been extensively reviewed by Holevo
and Werner (2001), Keyl (2002), Kretschmann (2003),
Kretschmann and Werner (2004, 2005), Belavkin, D’
Ariano, and Raginsky (2005), and Johnston, Kribs, and
Paulsen (2009). Recall that it is well behaved under tensor
product composition rule (6), since it has the property

jjjΛ1 ⊗ Λ2jjjcb ¼ jjjΛ1jjjcbjjjΛ2jjjcb: ð59Þ

Furthermore, if Λ is completely positive then jjjΛjjjcb ¼
‖Λð1Þ‖∞. Accordingly if Λ is CPTP and Λ� its dual
channel (10), one has that jjjΛjjjcb can take any value up
to d (the dimension of the channel input space) while
jjjΛ�jjjcb ¼ 1 always.
Finally, another useful distance measure for quantum

channels is the one introduced by Grace et al. (2010) as a
distance between unitary operations acting on a bipartite
quantum system, where only the effect of the operations on
one component (the subsystem of interest) is relevant in the
measure, while the effect on the other component (environ-
ment) can be arbitrary.

K. Channels and entropies

In the study of quantum communication, entropic quantities
play a fundamental role in characterizing quantum channels in
terms of their efficiency as communication lines (Barnum,
Nielsen, and Schumacher, 1998). A comprehensive charac-
terization of these functionals can be obtained moving into the
so-called “church of the larger Hilbert space,” a construction
based on the Stinespring dilation form (7), where the input
state ρQ of the system Q is also represented as a reduced
density operator of a pure state jψρiQR of a larger system QR
via a purification; see Fig. 10. We denote by

SðρÞ ≔ −Trðρlog2ρÞ ð60Þ

the von Neumann entropy of the density operator ρ (Wehrl,
1978; Ohya and Petz, 1993; Petz, 2008) which generalizes to
quantum mechanical systems the Shannon entropy of a
classical random variable X taking values in the alphabet
X , defined as
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HðXÞ ≔ −
X
x∈X

pðxÞ log2 pðxÞ; ð61Þ

with pðxÞ being the probability that X acquires the value x
(Gallager, 1968; Cover and Thomas, 1991). Then given a
quantum channel Φ ∈ PðQ ↦ Q0Þ and an input state ρQ,
there are three important entropic quantities related to the pair
ðρQ;ΦÞ. First is the entropy of the input state S½Q� ≔ SðρQÞ
(input entropy), which exploiting the fact that the purification
jψρiQR is pure can also be expressed as the entropy of the
ancillary system R, i.e., S½Q� ¼ S½R�. Second is the entropy of
the output state ΦðρQÞ, i.e., S½Q0� ≔ S½ΦðρÞ� (output entropy).
Finally there is the entropy of exchange (Schumacher, 1996;
Barnum, Nielsen, and Schumacher, 1998) computed as the
von Neumann entropy of the environment E after the
interaction with Q, i.e., the entropy measured at the output
of the complementary channel ~Φ defined in Eq. (19),

S½E0� ¼ SðρQ;ΦÞ ≔ S( ~ΦðρQÞ) ¼ S½ðΦ ⊗ idÞðjψρiQRhψρjÞ�
ð62Þ

(the last identity follows from the fact that the global state of
Q, R, and E is always pure). A complete analysis of the
relations between these three quantities was reviewed by
Schumacher and Nielsen (1996) and Holevo and Werner
(2001). In particular, they satisfy

S½ΦðρQÞ� þ SðρQ;ΦÞ ≥ SðρQÞ; ð63Þ

jS½ΦðρQÞ� − SðρQ;ΦÞj ≤ SðρQÞ; ð64Þ
and the quantum Fano inequality

SðρQ;ΦÞ ≤ h½FeðρQ;ΦÞ� þ ½1 − FeðρQ;ΦÞ� log2ðd2 − 1Þ;
ð65Þ

with d the dimension of the channel input,

hðpÞ ≔ −plog2p − ð1 − pÞlog2ð1 − pÞ; ð66Þ

the Shannon binary entropy function (Gallager, 1968; Cover
and Thomas, 1991), and FeðρQ;ΦÞ the entanglement fidelity
introduced in Eq. (50).

The input, output, and exchange entropies are the build-
ing blocks for constructing several information quantities.
For instance, one defines the quantum mutual information
IðρQ;ΦÞ between the system Q at the output of the map Φ
and the system R which enters in the purification jψρiQR,
i.e.,

IðρQ;ΦÞ ≔ SðρQÞ þ S½ΦðρQÞ� − SðρQ;ΦÞ: ð67Þ

This is a non-negative quantity which is known to be
concave and subadditive with respect to density operators on
Q (Adami and Cerf, 1997; Bennett et al., 2002).
Subtracting SðρQÞ from IðρQ;ΦÞ one also defines the

channel coherent information (Schumacher and Nielsen,
1996; Barnum, Nielsen, and Schumacher, 1998),

JðρQ;ΦÞ ≔ S½ΦðρÞ� − SðρQ;ΦÞ ¼ S½ΦðρÞ� − S½ ~ΦðρQÞ�;
ð68Þ

where in the last expression it is noted that JðρQ;ΦÞ can also
be expressed as the difference between the output entropy ofΦ
and of its complementary counterpart ~Φ. Unlike IðρQ;ΦÞ, the
function JðρQ;ΦÞ is in general neither non-negative, nor
convex or subadditive (DiVincenzo, Shor, and Smolin,
1998; Smith and Smolin, 2007). However, both the quantum
mutual and the coherent information satisfy data-processing
inequalities. In particular, given Φ1 and Φ2 CPTP channels,
one has (Holevo, 2012)

IðρQ;Φ2∘Φ1Þ ≤ minfIQðρQ;Φ1Þ; I(Φ1ðρQÞ;Φ2)g; ð69Þ

while

JðρQ;Φ2∘Φ1Þ ≤ JðρQ;Φ1Þ: ð70Þ

A further entropic quantity useful for characterizing the
channel Φ is the channel Holevo information. In contrast to
the previous expressions this is a functional of an input
ensemble E ≔ fpj; ρ

ðjÞ
Q gj Alice feeds into the channel (here

fpjgj is a probability distribution while fρðjÞQ gj is a collection
of input states). Accordingly one has

χðE;ΦÞ ≔ S½ΦðρQÞ� −
X
j

pjS½ΦðρðjÞQ Þ�

¼
X
j

pjS(ΦðρQÞ∥ΦðρðjÞQ Þ); ð71Þ

where ρQ ¼ P
jpjρ

ðjÞ
Q is the average state associated

with E and in the last identity the quantum relative entropy
Sðρ1∥ρ2Þ ≔ Tr½ρ1ðlog ρ1 − log ρ2Þ� (Lindblad, 1975;
Schumacher and Westmoreland, 2000) has been used. Via
the Holevo bound (Holevo, 1973a, 1973b) the quantity
χðE;ΦÞ provides an upper bound on the information one
could retrieve on the random variable X associated with index
j of the ensemble E if allowed to measure the corresponding
states at the output of the channel Φ. Specifically, indicating
with Y the random variables associated with the estimation of
j after a POVM has been performed on the density matrix
ΦðρðjÞQ Þ, one has

FIG. 10 (color online). Graphical representation of a quantum
channel Φ ∈ PðQ ↦ Q0Þ as the unitary interaction UQE between
the system state ρQ and the environmental one ρE. The action of
Φ ⊗ id on the purification of jψρiQR and the complementary map
~Φ are also shown.
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IðX∶YÞ ≤ χðE;ΦÞ; ð72Þ

with IðX∶YÞ≔HðYÞþHðXÞ−HðX;YÞ being the (Shannon)
mutual information associated with the couple X and Y
(Gallager, 1968; Cover and Thomas, 1991). The functional
χðE;ΦÞ obeys the data-processing inequality

χðE;Φ2∘Φ1Þ ≤ χðE;Φ1Þ; ð73Þ

for all Φ1, Φ2 CPTP maps and for all ensemble E. Another
quantity related to the Holevo information is the minimum
output entropy of the channel SminðΦÞ ¼ minρS½ΦðρÞ� that
quantifies the minimum disturbance induced by the channel.
A connection with the coherent information can be established
via the identity (Devetak, 2005; Holevo, 2012)

χðE;ΦÞ − χðE; ~ΦÞ ¼ JðρQ;ΦÞ −
X
j

pjJðρðjÞQ ;ΦÞ; ð74Þ

with ρQ being the average density matrix of the ensemble
E ¼ fpj; ρ

ðjÞ
Q gj.

III. FROM MEMORYLESS TO MEMORY QUANTUM
CHANNELS

Having in mind the multiuses communication scenario
detailed at the beginning of Sec. II, in which a time-ordered
sequence of carriers Q ≔ fq1; q2;…g propagates from Alice
to Bob along a noisy channel, we start this section by
discussing the simplest case, where they are affected by
uncorrelated identical maps and then move on to consider
correlations among uses, i.e., memory effects.

A. Memoryless quantum channels

Memoryless quantum channels describe those scenarios in
which the noise acts identically and independently on each
element of the sequence Q. Under this assumption the
multiuse map associated with the communication line is
expressed as a tensor product of a CPTP map Φ∶ SðHqÞ ↦
SðHqÞ that acts on the states of a single carrier q. Therefore,
indicating as HðnÞ

Q ≔ Hq1 ⊗ � � � ⊗ Hqn the Hilbert space of
the first n carriers of the system, its input density operators
ρðnÞQ ∈ SðHðnÞ

Q Þ will be mapped into

ΦðnÞðρðnÞQ Þ ¼ Φ⊗nðρðnÞQ Þ; ð75Þ

with Φ⊗n ≔ Φ ⊗ � � � ⊗ Φ. Equivalently, one can say that the
Kraus operators of the memoryless map ΦðnÞ can be expressed
as a tensor product Ki1 ⊗ � � � ⊗ Kin formed by independent
and identically distributed sequences extracted from the Kraus
set fKigi associated with the single carrier channel Φ. A
simplified, yet informative, model can be found in Giovannetti
(2005). Here the carriers Q are assumed to propagate from
Alice to Bob, one by one and at constant speed, while
interacting with an external environmental system via a
constant coupling described by the unitary operator Uqe ∈
BðHq ⊗ HeÞ whose role is to effectively simulate the inter-
action between the carriers and the medium which separate the
two communicating parties. In the model the environment e is

assumed to undergo a dissipative process which on a time
scale τ tends to reset it into a stable configuration ωe (see
Fig. 11 for a pictorial representation of the scheme). The
memoryless regime is achieved in the limit in which the
rate ν, at which the carriers propagate from Alice to Bob, is
much lower than the inverse of the relaxation time τ, i.e.,
ν ≪ 1=τ. In this limit in fact each carrier couples with
identical and independent environmental states. Defining then
ω⊗n
E ≔ ωe1 ⊗ � � � ⊗ ωen , this allows one to write

ρðnÞQ ↦ TrE½Uqn;en ⊗ � � � ⊗ Uq1;e1

ðρðnÞQ ⊗ ω⊗n
E ÞU†

q1;e1 ⊗ � � � ⊗ U†
qn;en �; ð76Þ

which reduces to Eq. (75) when identifying Tre½Uqeð� � � ⊗
ωeÞU†

qe� with unitary dilation of the single-use channel Φ.

1. Compound and averaged quantum channels

Before entering into the subject of memory quantum
channels, we briefly discuss the situation in which the channel
map, although intended as acting like Eq. (75), is not perfectly
known to the sender and receiver. Such a situation can be
modeled by considering not a single CPTP map, but rather a
set fΦigi of them. Here Φi∶ SðHqÞ ↦ SðHqÞ and the set
fΦigi can in principle contain a finite or infinite (countable or
not) number of CPTP maps. This leads to the notion of a
memoryless compound quantum channel, i.e., the family
fΦ⊗n

i ∶ SðH⊗n
q Þ → SðH⊗n

q Þgn;i. Averaged channels are
closely related to compound channels. The difference is that
in the former the sender and receiver know an a priori
probability distribution fpigi governing the appearance of

FIG. 11. Pictorial representation of the model of Giovannetti
(2005). The different elements represent the sequence of carriers
that propagates at a rate ν from Alice to Bob, interacting on the
way, with the environment e via the unitary coupling Uqe.
Among two consecutive interactions the environment tends to
relax toward its stable configuration ωe via a dissipative process
characterized by the relaxing time τ. The memoryless channel
configuration is achieved when ν ≪ 1=τ.
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the members of a compound channel. It means that for any
n ∈ N one can write the averaged channel map as

ΦðnÞðρðnÞQ Þ ¼
X
i

piΦ
⊗n
i ðρðnÞQ Þ: ð77Þ

Equation (77) describes a scenario in which, with some
probability pi, all the carriers of the system are operated on
by the same identical local transformation Φi. The index i can
be interpreted as a “switch” selecting different memoryless
channels, and Eq. (77) as the average channel over different
values of the switch. Classical counterparts of compound and
averaged channels were studied a long time ago (Blackwell,
Breiman, and Thomasian, 1959; Wolfowitz, 1960; Jacobs,
1962; Ahlswede, 1968). Compound and averaged quantum
channels were introduced only recently (Hayashi, 2008;
Bjelaković and Boche, 2009). In Sec. III.D.8 one will see
that these channels are closely related to a special set of
memory channels having long-term memory.

B. Nonanticipatory memory quantum channels

Whenever the tensorial decomposition of Eq. (75) does not
apply, one can speak of memory channels or correlated noise
channels. Among the plethora of possibilities, the following
focuses only on those configurations that have physical
relevance and have attracted some interest in the recent
literature. In particular, one can treat those models in which
the noise respects the time ordering of the carriers Q so that at
a given channel use, the output cannot be influenced by
successive inputs as pictorially shown in the right panel of
Fig. 2. This property generalizes the notion of semicausality
discussed in Sec. II.H to the case of multiple (ordered)
subsystems. Inspired by the classical theory of communication
(Gallager, 1968) one can name the quantum communication
lines which fulfills such condition, nonanticipatory quantum
channels [note, however, that in the approach of Kretschmann
and Werner (2005) these maps are called just causal—see
Sec. III.C].
Under the nonanticipatory condition there must exist a

family of CPTP maps F ≔ fΦðnÞ; n ¼ 1; 2;…g with
ΦðnÞ∶ SðHðnÞ

Q Þ → SðHðnÞ
Q Þ which allows one to express the

output states of the first n carriers in terms of the density
matrices of their associated inputs, i.e.,

ρðnÞQ ↦ ΦðnÞðρðnÞQ Þ: ð78Þ

Clearly the property (78) requires that the family F must
fulfill the minimal consistency requirement that for all m < n
the element ΦðmÞ should be obtained as a restriction of ΦðnÞ

over the degrees of freedom of the first m carriers. That is,
given ρðnÞQ ∈ SðHðnÞ

Q Þ and ρðmÞ
Q ∈ SðHðmÞ

Q Þ, one must have

ΦðmÞðρðmÞ
Q Þ ¼ TrðmÞ½ΦðnÞðρðnÞQ Þ�; ð79Þ

whenever ρðmÞ
Q ¼ TrðmÞ½ρðnÞQ �, where TrðmÞ stands for the partial

trace over all the carriers but the first m.
As noted, in the language introduced in Sec. II.H, non-

anticipatory channels can be classified as semicausal with

respect to the natural ordering of the channel uses. The
representation of semicausal channels given in Eq. (24) can
hence be applied, yielding a representation of nonanticipatory
quantum channels in which each carrier couples sequentially
with a common memory system M. The backaction of M on
the message state simulates the memory effects of the trans-
mission. Accordingly, all the nonanticipatory CPTP maps can
be expressed as

ΦðnÞðρðnÞQ Þ ¼ TrM½UqnM…Uq1Mðρ
ðnÞ
Q ⊗ ωMÞU†

q1M
…U†

qnM
�;
ð80Þ

where for all j ¼ 1; 2;…; n, UqjM is a unitary transformation
which describes the coupling of the jth carrier with the
memory system M, and where ωM is some given state of M;
see Fig. 12(a). The unitary transformations UqjM may in
general depend on the carrier label j. Otherwise, if they are
independent of j the memory channel has the additional
property of being invariant under translation of the carrier
labels. An explicit proof of Eq. (80) was first given by
Kretschmann and Werner (2005) in the context of quasilocal
algebras (see also Appendix B), under the assumption of
translational invariance of the noise (see Sec. III.C). An
alternative proof which does not make use of this hypothesis
can be found in Appendix C.

FIG. 12. Unitary dilations for nonanticipatory quantum memory
channels. (a) A graphical sketch of the representations of
Eq. (80): here the noise correlations among the n channel uses
can be described via a series of concatenated unitary interactions
with a common reservoirM whose dimension in general depends
(exponentially) upon n (n ¼ 3 in the example). Notice that while
the carrier q1 might influence the outcome of q2q3 via their
common interaction with M, q2q3 cannot influence the output of
the first carrier. (b) The environmentM can also be represented as
a collection of smaller systemsM1;M2;… initially prepared into
a separable state while, as shown in Eq. (81), the unitary
transformation operating on the jth channel use couples it with
the first j subsystems only. (c) Unitary dilation (82) where
besides M a series of local environment e1; e2;… are also
present. In all the diagrams the unitary operators (represented
by the white boxes) are applied sequentially on the input states of
the global system (i.e., the carriers and the environment) starting
for the one on the top of the figure. The carriers and the
environmental states evolve, respectively, from left to right and
from top to bottom while interacting, meeting at a white box. The
trash-bin symbol stands for the partial trace operation on the
environment.
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In Eq. (80)M is in general a large system whose dimension
dM is an explicit function of n (in any case it can always be
chosen to be less than or equal to d2n with d being the
dimension of a single carrier). In fact, as explained in
Appendix C, one can take M to be a composite system of
components m1; m2;…; mn whose dimensions can always be
chosen to not be larger than d2. In this configuration then one
can assume ωM to be a pure tensor product state of local terms
j0im1

⊗ � � � ⊗ j0imn
, and write UqjM as a transformation

which couples the jth carrier only with the first j elements
of M, i.e.,

UqjM ¼ 1mn
⊗ � � � ⊗ 1mjþ1

⊗ Uqjmjmj−1…m1
; ð81Þ

with 1m0 being the identity operator on the m0 components of
the environment; see Fig. 12(b).
An alternative, but fully equivalent, representation for

nonanticipatory channels is obtained by adding to Eq. (80)
a collection of local environments which individually couples
with the carriers, i.e.,

ΦðnÞðρðnÞQ Þ ¼ TrME½UqnMen � � �Uq1Me1

× ðρðnÞQ ⊗ ωM ⊗ ω⊗n
E ÞU†

q1Me1
� � �U†

qnMen
�; ð82Þ

where for all j ¼ 1; 2;…; n, UqjMej is now the unitary
transformation which describes the coupling of the jth carrier
with its own local environment ej and with the memory
system M, where ω⊗n

E ≔ ωe1 ⊗ � � � ⊗ ωen as in the memory-
less case, and ωM is some given state of M; see Fig. 12(c). In
principle one can distinguish different setups in which Alice,
Bob, or Eve (third party) has control of the initial or final states
of the memory system M (Kretschmann and Werner, 2005).
Equation (82) was first introduced by Bowen and Mancini
(2004) as a model for representing correlated channels: from
Eq. (80) it follows that it provides a general unitary dilation for
every nonanticipatory quantum map. It can also be expressed
in terms of an n-fold concatenation of a sequence of CPTP
maps acting on a single carrier and the memory system M
(Bowen and Mancini, 2004; Kretschmann and Werner, 2005).
Such concatenation is shown pictorially in Fig. 12(c) and
results in the following identity:

ΦðnÞðρðnÞQ Þ ¼ TrM½ΦðnÞ
QMðρðnÞQ ⊗ ωMÞ�; ð83Þ

with

ΦðnÞ
QM ≔ ΦqnM∘Φðn−1Þ

QM ¼ ΦqnM∘ � � � ∘Φq1M; ð84Þ

where for j ¼ 1; 2;…; n, ΦqjM∶ SðHqj ⊗ HMÞ → SðHqj ⊗
HMÞ is a CPTP map that operates on the jth carrier and on the
memory ancilla M and is defined by the unitary dilation

ΦqjMð� � �Þ ¼ Trej ½UqjMejð� � � ⊗ ωejÞU†
qjMej

�: ð85Þ

In this representation the evolution of M after the interaction
with the carriers is provided by the transformation

ωM ↦ ΨðnÞðρðnÞQ ;ωMÞ ≔ TrQ½ΦðnÞ
QMðρðnÞQ ⊗ ωMÞ�; ð86Þ

which explicitly depends upon the input state of Q.
Cases of special interest (Kretschmann and Werner, 2005)

are those in which, for all j, the ΦqjM describes the same
mapping Φ ¼ ΦqM on SðHq ⊗ HMÞ which according to
Eq. (84) becomes the generator of the n-fold concatenation.
That characterizes memory channels which are nonanticipa-
tory and translation invariant (i.e., invariant under translation
of the information carriers qj → qjþ1). Memoryless channels
can then be included in this class as a limiting case in which
the generator Φ can be expressed as a tensor product channel
that acts independently on the carrier q and on the memory
system M. In terms of the unitary dilation (82) this is
equivalent to assuming that the unitaries UqjMej in Eq. (76)
factorize in a tensor product Uqjej ⊗ VM, where VM is a
unitary operator on the memory system and Uqjej acts only on
the degree of freedom of the jth carrier and on its local
environment ej.
A special subset of nonanticipatory channels is formed

by symbol independent (SI) maps (Bowen, Devetak, and
Mancini, 2005). They are communication lines where pre-
vious input states do not affect the action of the channel on the
current input state. In other words, the symbol independent
maps are nonanticipatory (or semicausal) with respect to all
possible ordering of the carriers (in this sense they are hence
fully nonanticipatory). Accordingly, given a generic subset
of the carrier set Q, its output state is uniquely determined by
the corresponding input state via a proper CPTP mapping.
Following the terminology introduced in Sec. II.H (Beckman
et al., 2001; Eggeling, Schlingemann, andWerner, 2002; Piani
et al., 2006), they can be said to be nonsignaling (or causal)
channels, meaning that the output states of any subset of the
carriers cannot be influenced by the input state of the
remaining carriers.
Channels which are not SI are said to exhibit intersymbol

interference (ISI) (Bowen, Devetak, and Mancini, 2005), that
is, the input states of previous carriers affect the action of the
channel on the current input. From a physical point of view, in
ISI channels there is a non-negligible backaction of the carrier
onto the memory during their interaction. So the carrier’s state
(symbol) influences the subsequent actions of the channel. On
the contrary, in SI channels the carrier does not influence the
memory during their interaction. Usually this happens because
the memory is much larger (in terms of degrees of freedom)
of the single carrier. A pedagogical example of ISI channels is
the quantum shift channel, where each input state is replaced
by the previous input state, i.e., given the jth carrier qj whose
state is ρj, then ΦqjðρjÞ ¼ ρj−1.

C. Quasilocal algebras approach

Until now we followed a constructive approach in which
memory quantum channels were always thought of as
concatenations of smaller units which, starting from an official
“first carrier” element, process one quantum signal each. An
alternative view where the communication lines are treated as
mappings applied on infinitely long message strings was
proposed by Kretschmann and Werner (2005) and Bjelaković
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and Boche (2008). This approach requires some advanced
mathematical tools that are briefly reviewed in Appendix B.
To set the stage, suppose we have a quantum channel which

transforms input states of an infinitely extended quantum
lattice system (representing the infinite message string) into
output states on the same system. Kretschmann and Werner
(2005) formally assigned this map by working in the
Heisenberg picture (see Sec. II.D) via the introduction of a
completely positive and unital map Φ�∶ BZ → AZ operating
on the quasilocal algebras BZ and AZ (Bratteli and Robinson,
1979) that define the observable quantities on the lattice as
described by the receiver Bob and the sender Alice, respec-
tively. In this context one says that the channel is translational
invariant or (borrowing from Bjelaković and Boche, 2008)
stationary if Φ� commutes with the shift operator on the
lattice, i.e.,

Φ�∘TB ¼ TA∘Φ� ð87Þ

(TB and TA being the representation of the shift operator on
BZ and AZ, respectively). Furthermore, Φ� is said to be
ergodic if it is extremal in the convex set of stationary
channels.3

Requiring then that future inputs should not affect past
measurements, i.e., the nonanticipatory property (79),
Kretschmann and Werner (2005) introduced the definition
of a causal channel as a completely positive and unital
translational invariant map Φ� that fulfills the constraint

Φ�ðOð−∞;z� ⊗ 1½1þz;∞ÞÞ ¼ Φ�ðOð−∞;z�Þ ⊗ 1½1þz;∞Þ; ð88Þ

for all z ∈ Z and for all Oð−∞;z� ∈ Bð−∞;z�, where Bð−∞;z�

denotes the set of bounded operators defined on lattice
elements up to that associated with the label z. In particular,
memoryless configurations are obtained when also the con-
dition

Φ�ð1ð−∞;z� ⊗ O½1þz;∞ÞÞ ¼ 1ð−∞;z� ⊗ Φ�ðO½1þz;∞ÞÞ ð89Þ

applies for all Oð−∞;z� ∈ B½1þz;∞Þ.
Examples of causal (not necessarily memoryless) maps (88)

are provided by concatenated memory channels (Kretschmann
and Werner, 2005) which can be easily constructed by
adapting the concatenation scheme of Eqs. (83) and (84)
to the quantum lattice formalism. Within this context
Kretschmann and Werner (2005) proved a structure theorem
which shows that any map obeying Eq. (88) can always be
represented as concatenated memory channels produced by an
assigned generator (see Sec. III.B).
Although cq channels can easily be included in the above

formalism by expressing them as CPTP maps via the
embedding (15), it is worth reviewing the approach adopted
by Bjelaković and Boche (2008) to address this special set of

maps. Here a cq channel taking values on the classical
alphabet X is described as a mapping which to each x ∈
XZ (the set of doubly infinite sequences with components
from alphabet X ) associates a complex value linear functional
Wðx;…Þ on BZ, i.e.,

x ↦ Wðx;…Þ: ð90Þ

Ultimately, via the Gelfand-Naimark-Segal correspondence
(Bratteli and Robinson, 1979), the functional Wðx;…Þ can
be identified with a density operator ρx defined on the
Hilbert space H carrying a representation π of the quasilocal
algebra (see Appendix B), through the identification
Wðx;…Þ ¼ Tr½ρxπð� � �Þ�. In this form the stationary condi-
tion (87) of the cq channel is thatWðT inx; bÞ ¼ Wðx; TBbÞ for
all x ∈ XZ and all b ∈ BZ (here T in and denote the shift
operator on XZ). The causality condition (88) is instead

Wðx; bÞ ¼ Wð~x; bÞ; ð91Þ

for z ∈ Z, b ∈ Bð−∞;z�, and all x; ~x ∈ XZ ðxi ¼ ~xi;∀i ≤ zÞ.
Similarly, memoryless configurations (89) are recovered
when Eq. (91) applies also for all b ∈ B½z;∞Þ and all x; ~x ∈
XZ ðxi ¼ ~xi;∀i ≥ zÞ.

D. Taxonomy of nonanticipatory quantum memory channels

Here we review those classes of nonanticipatory quantum
channels which have been discussed in the literature.

1. Localizable memory quantum channels

A subset of nonanticipatory quantum channels which
represent the natural multipartite generalization of the
localizable maps of Beckman et al. (2001), Eggeling,
Schlingemann, and Werner (2002), and Piani et al. (2006),
reviewed in Sec. II.H, has been introduced in Giovannetti and
Mancini (2005) and Plenio and Virmani (2007, 2008). For
such models, the mapping (78) is expressed in terms of (not
necessarily identical) local unitary couplings with a correlated
many-body environmental system E ≔ fe1; e2;…g; see
Fig. 13. These transformations are clearly SI: memory effects
appear because, unlike the memoryless case (76), the many-
body environment is initialized in a state ωðnÞ

E which does not
factorize, i.e.,

ΦðnÞðρðnÞQ Þ ¼ TrE½Uqnen ⊗ � � � ⊗ Uq1e1ðρ
ðnÞ
Q ⊗ ωðnÞ

E Þ
×U†

q1e1 ⊗ � � � ⊗ U†
qnen �: ð92Þ

It is worth mentioning that a variant of this model (Rossini,
Giovannetti, and Montangero, 2008), where the local unitary
interaction Uqnen ⊗ � � � ⊗ Uq1e1 is replaced by a local
Hamiltonian coupling between carriers and environments, is
neither SI nor nonanticipatory.
An alternative representation for the localizable mappings

described by Eq. (92) has also been provided in Caruso,
Giovannetti, and Palma (2010) by generalizing a model
presented in Ban, Sasaki, and Takeoka (2002) and Bowen
and Bose (2001) for memoryless channels. In this approach
the channel noise is effectively described as a quantum

3Note that this notion of ergodicity refers to an in-parallel
composition of quantum channels and differs from ergodicity of
an in-series concatenation discussed by Richter and Werner (1996),
Raginsky (2002), Burgarth and Giovannetti (2007), and Burgarth
et al. (2013), and references therein.
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teleportation protocol (Bennett et al., 1993; Vaidman, 1994;
Braunstein and Kimble, 1998) that went wrong because the
communicating parties used nonoptimal resources (e.g., the
state they shared was not maximally entangled). In the case of
Eq. (92) each of the carriers gets teleported independently
using the same procedure, the correlations arising from the
fact that the communicating parties use a correlated many-
body quantum state as a shared resource.

2. Finite-memory channels

The expression finite-memory channels (Bowen and
Mancini, 2004) is used to indicate those nonanticipatory
channels that admit a representation of the form (82) with
M being finite dimensional. The dimension of the memory is
determined by the number of Kraus operators in the single
channel expansion. Within the representation (80) examples of
finite-memory channels are obtained by assuming that the
unitary transformations (81) couple the carriers with no more
than a fixed number k of environmental subsystems, the
parameter k playing the role of the correlation length of the
channel. More precisely for all j ≥ k one has

UqjM ¼ 1mn
⊗ � � � ⊗ 1mjþ1

⊗ Uqjmjmj−1…mj−k
⊗ 1mj−k−1

⊗ � � � ⊗ 1m1
ð93Þ

(see Fig. 14 for a graphical representation of the case with
k ¼ 2). Note that the case of a memoryless channel can be
considered as an extreme example of finite-memory channels,

where k ¼ 1 and each carrier interacts with a devoted
component of the multipartite environment M (specifically,
for each j, the carrier qj interacts with mj only).

3. Perfect memory channels

Memoryless channels have unitary dilations in which the
environment has a dimension which is at least exponentially
growing in n (i.e., log½dimHðnÞ

E � ¼ n log de) or, equivalently,
by possessing a (minimal) operator sum representations
whose Kraus sets contain a number of elements which is
exponentially growing in n. The same property typically holds
also for memory channels with the important exception of the
perfect memory channels (Kretschmann and Werner, 2005;
Giovannetti, Burgarth, and Mancini, 2009). Perfect memory
channels are those admitting a representation as in Eq. (82),
where the carriers interact only with the memory system, that
is, UqjMej ¼ UqjMUej . The simplest example of such com-
munication lines is obtained by assuming that the memory
system M in Eq. (80) does not scale with n and it is finite
dimensional. Under this hypothesis the maps ΦðnÞ explicitly
admit a unitary dilation with an environment (the system M)
of constant size. A comparison with the dimension of the
Hilbert space HðnÞ

Q of the information carriers, which grows
exponentially with n, shows that information cannot be stuck
in the channel environment for a long time. As a consequence,
in the asymptotic limit of long carrier sequences, no infor-
mation is expected to be lost to the environment, yielding
optimal communication capacity (see Sec. V). A typical

FIG. 13 (color online). Model for a localizable, fully non-
anticipatory quantum memory channel. Here the correlations
are introduced by allowing the state of the environment (gray
element) to be initially entangled. As in the previous figures white
boxes represent unitary couplings while the trash bin indicates
partial trace over the corresponding degree of freedom. These
maps are SI and hence nonanticipatory (therefore they also admit
unitary dilations of the form described in Fig. 12).

FIG. 14. Unitary dilation (80) for a finite-memory nonanticipa-
tory quantummemory channelwith correlation length k ¼ 2. In the
depicted example the total number of channel uses is n ¼ 4 and
each carrier is supposed to interactwith only two components of the
environment. Consequently, the carrier q1 can influence the output
carrier q3 only via q2. For a comparison see the scheme of
Fig. 12(b), where instead the first carrier can directly influence
q3 via their common interaction with m1 (symbolized here by
dotted lines).
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example is provided by the shift channel (see Sec. III.B) which
can be described as in Eq. (80) by assuming M to have the
same dimension of a single carrier and by taking UqjM as
swapping the states of qj and M. It is worth noting that
Bowen, Devetak, and Mancini (2005) also conjectured that the
memory channels that, analogously to the shift channel,
display only intersymbol interference, can be represented as
perfect memory channels.
More generally the class of perfect memory channels can be

extended to include all the CPTP maps (78) that admit unitary
dilations (80) in which the dimension dM of the environmental
system M is subexponential in n, i.e.,

lim
n→∞

1

n
log dM ¼ 0: ð94Þ

As explicitly discussed in Sec. V.C.2, in this case the channel
is also asymptotically noiseless (Kretschmann and Werner,
2005; Giovannetti, Burgarth, and Mancini, 2009).

4. Markovian channels

An important class of nonanticipatory quantum channels is
given by the channels with Markovian correlated noise. They
describe noise models in which the carriers are transformed
via the applications of strings of local CPTP maps whose
elements are randomly generated by a classical Markov
process. Explicitly, Markovian channels admit the following
representation:

ΦðnÞðρðnÞQ Þ ¼
X

i1;…;in

pðnÞ
injin−1p

ðn−1Þ
in−1jin−2…pð2Þ

i2ji1p
ð1Þ
i1

× ΦðinÞ
qn ⊗ Φðin−1Þ

qn−1 ⊗ � � � ⊗ Φði1Þ
q1 ðρðnÞQ Þ; ð95Þ

where fΦðiÞ
qj gi is a set of CPTP maps operating on the jth

carrier, pð1Þ
i is an initial probability distribution, and for j ≥ 2

the pðjÞ
iji0 are conditional probabilities.

The mapping (95) is SI (see Sec. III.B) since modifying the
input state of previous (or subsequent) channel uses does not
have any effect on the output states of the carriers that follow
(or precede). A unitary dilation of Eq. (82) can be obtained by
identifying the initial state ωM of the memory M with the

vector
P

i

ffiffiffiffiffiffiffiffi
pð1Þ
i

q
jiiM, and by taking the unitary UqjMej in

such a way that for all vectors jψiqj of the jth carriers one has

Uq1Me1 jψ ; i0; 0i ¼ Kði0Þ
q1 ðlÞjψ ; i0;ϕi0

li ð96Þ

and

UqjMej jψ ; i0; 0i ¼
X
i

ffiffiffiffiffiffiffiffi
pðjÞ
iji0

q
KðiÞ

qj ðlÞjψ ; i;ϕi0
li; ð97Þ

for j ≥ 2 (in the above expressions fKðiÞ
qj ðlÞgl is a set of

Kraus operators for ΦðiÞ
qj , jψ ; i;ϕi0;li stands for the state

jψiqj jiiMjϕi0;liej , while fjiiMgk and fjϕi;liejgi;l are an

orthonormal basis for the memory systems M and ej,
respectively).
Most of the analysis conducted so far focused on the special

case of homogeneous Markov processes in which both pðjÞ
iji0

and ΦðiÞ
q do not depend upon the carrier label j (i.e.,

pðjÞ
iji0 ≔ piji0 ). Under these conditions one also says that the

quantum Markov process is regular if the corresponding
classical Markov process piji0 is regular, i.e., if some power
of the transition matrix Γ (whose entries are the transition
probabilities piji0 ) has only strictly positive elements. In this
case, for j → ∞ the statistical distribution of the local noise
converges to a stationary distribution pð∞Þ

i ≔ limn→∞p
ðnÞ
i ,

with

pðnÞ
i ≔

X
i0
ðΓn−1Þi;i0pð1Þ

i0 ð98Þ

being the probability of getting ΦðiÞ
qn on the nth carrier. The

initial probability pð1Þ
i is said to be stationary if it satisfies the

eigenvector equation
P

i0Γi;i0p
ð1Þ
i0 ¼ pð1Þ

i (when this happens
pðjÞ
i ¼ pð1Þ

i and the local statistical distribution of ΦðiÞ
qj is

identical for all the carriers).
The first example of a regular Markov process was analyzed

by Macchiavello and Palma (2002). Here the carriers are
assumed to be qubits and the CPTP transformations ΦðiÞ

q

entering in Eq. (95) are unitary rotations ΦðiÞ
q ð� � �Þ ≔

σi;qð� � �Þσi;q, where σ0;q ¼ 1 is the identity operator while
for i ¼ x; y; z, σi;q is the Pauli matrix. The conditional
probability piji0 which describes the associated classical
Markov process was finally written as

piji0 ¼ ð1 − μÞpð1Þ
i þ μδii0 ; ð99Þ

where μ ∈ ½0; 1� is a correlation parameter (note that for μ ¼ 0

the model describes a memoryless channel while for μ ¼ 1 it
describes a long-term memory channel; see Sec. III.D.8). This
model of a Markovian correlated Pauli channel shows a
remarkable feature when it is used for the transmission of
classical information (see Sec. V). That is, when two succes-
sive uses of the channel are considered, classical information
is optimally encoded in either separable states or maximally
entangled states, depending on whether the correlation param-
eter μ is below or above a certain threshold value. This feature
was first conjectured by Macchiavello and Palma (2002), then
proven for certain instances of the model by Macchiavello,
Palma, and Virmani (2004), and finally proven for general
Markovian correlated Pauli channels by Daems (2007).
Remarkably, this effect is at the root of the superadditivity
property of memoryless quantum channels for transmitting
classical information (Hastings, 2009) (see Sec. V.B.5).
An experimental demonstration of the optimality of

entangled qubit pairs for encoding classical information
through a correlated Pauli channel was provided by
Banaszek et al. (2004) for mechanically induced correlated
birefringence fluctuations, which in turn induce correlated
depolarization (Ball, Dragan, and Banaszek, 2004).
A generalized model of the d-dimensional Markovian

correlated Pauli channel was considered by Shadman et al.
(2011) for the problem of sending classical information using
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a dense-coding protocol. An alternative model of a two-qubit
correlated channel was characterized by Caruso, Giovannetti
et al. (2008) in terms of the minimum output entropy.
Going beyond the case of two uses of a qubit channel,

Markovian correlated depolarization over an arbitrary number
of channel uses was studied by Karimipour and Memarzadeh
(2006b) and Demkowicz-Dobrzanski, Kolenderski, and
Banaszek (2007), and the case of Markovian correlated noise
in higher dimensional quantum systems was considered by
Karimipour and Memarzadeh (2006a) and Karpov, Daems,
and Cerf (2006a, 2006b). Generally speaking, the optimality
of entangled states for encoding classical information can be
interpreted in terms of a decoherence-free subspace (see
Sec. IV) associated with the correlated noise model: this
was considered for the Hilbert space defined by multiple uses
of a qubit channel (Demkowicz-Dobrzanski, Kolenderski, and
Banaszek, 2007) and for the multiphoton Hilbert space
associated with the polarization of light (Ball and
Banaszek, 2005). In a different context, the same phenomenon
was discussed for the problem of quantum communication
with polarized light without a shared reference frame (Bartlett,
Rudolph, and Spekkens, 2003).
Finally, models of Markovian correlated noise in the

framework of quantum systems with continuous variables
(see Sec. VI.B.2) were first discussed by Cerf et al. (2005,
2006) for the case of two uses of the channel, and then
extended to the arbitrary number of uses in Ruggeri and
Mancini (2007a), Lupo, Memarzadeh, and Mancini (2009),
and Schäfer, Karpov, and Cerf (2009) (see Sec. VI.B.2).

5. Fixed-point channels

Within the representation (83) a channel is said to be a
fixed-point memory channel (Bowen, Devetak, and Mancini,
2005) if the initial memory state ωM of the representation is
left invariant after each interaction with the carriers.
Specifically, recalling the definition (86) this notion is
formalized by the following identity:

ΨðnÞðρðnÞQ ;ωMÞ ¼ ωM; ∀ ρðnÞQ ∈ SðHðnÞ
Q Þ: ð100Þ

Fixed-point channels can easily be shown to be symbol
independent while the opposite is not necessarily true.
Indeed from Eq. (84) one has that the output state of nth
carrier ρ0qn ≔ TrQðn−1Þ ½ΦðnÞðρðnÞQ Þ� can be expressed as

ρ0qn ¼ TrQðn−1ÞM½ðΦqnM∘Φðn−1Þ
QM ÞðρðnÞQ ⊗ ωMÞ�

¼ TrM½ΦqMðΨðn−1ÞðρðnÞQ ;ωMÞÞ�
¼ TrM½ΦqnMðρqn ⊗ ωMÞ�; ð101Þ

which depends only upon the reduced density operator ρqn and
not on the previous information carriers [in Eq. (101) TrQðn−1ÞM
indicates the partial trace with respect to M and the first
(n − 1) carriers].
Markovian memory channels are examples of fixed-point

memory channels, in which the memory system can be
represented by the classical variable of the underlying
Markov chain. Being classical, the memory system can be
chosen in such a way that it is unaffected by the backaction of

the input system. This representation can be made explicitly
by choosing a unitary dilation of the form (96). Another
example is provided by Plenio and Virmani (2007, 2008),
in which the input system interacts with the memory
system by a controlled-unitary transformation, where the
memory is the control and the system is the target. In this
setting, the resulting memory channel is a fixed-point
one if the initial state of the memory is diagonal in the control
basis.

6. Indecomposable and forgetful channels

An indecomposable channel is one where, for each channel
input, the long-term behavior of the channel is independent of
the initial memory state (Bowen, Devetak, and Mancini,
2005). Such independence can be quantified by evaluating

the distance between different trajectories ΨðnÞðρðnÞQ ;ωMÞ and
ΨðnÞðρðnÞQ ;ω0

MÞ associated through Eq. (86) to two different
initial memory configurations ωM and ω0

M. Specifically a
finite-memory quantum channel is said to be indecomposable

if for any input state ρðnÞQ and ϵ > 0 there exists an NðϵÞ such
that for n ≥ NðϵÞ,

D½ΨðnÞðρðnÞQ ;ωMÞ;ΨðnÞðρðnÞQ ;ω0
MÞ� ≤ ϵ; ð102Þ

for any pair of initial states of the memory ωM, ω0
M [here D is

the trace distance—see Eq. (A1)]. Equivalently Eq. (102)

can be stated by saying that for large n, ΨðnÞðρðnÞQ ;ωMÞ
converges to a state of M which depends on ρðnÞQ but not
on ωM [compare this with the behavior (100) of the fixed-
point memory channels]. Here one notices that for finite
dimensional systems this implies that there exists a family of

CPTP channels ΘðnÞ∶ SðHðnÞ
Q Þ → SðHMÞ which fulfills the

identity

TrQ½ΦðnÞ
QMðOðnÞ

QMÞ� ⟶ ΘðnÞðOðnÞ
Q Þ; ð103Þ

in the limit n → ∞ for all the operators OðnÞ
QM on Q and M,

with OðnÞ
Q ¼ TrM½OðnÞ

QM�. In the Heisenberg picture (see
Sec. II.D) this can also be stated as

ΦðnÞ
QM

�ð1Q ⊗ � � �Þ → ΘðnÞ�ð� � �Þ ⊗ 1M; ð104Þ

with ΦðnÞ
QM

� and ΘðnÞ� being the dual of ΦðnÞ
QM and ΘðnÞ,

respectively.
The main features of indecomposable channels were

revisited through the notion of forgetful channels
(Kretschmann and Werner, 2005). The latter was originally
introduced in the quasilocal algebra approach detailed in
Sec. III.C, where the quantum memory channels are assumed
to be translation invariant and nonanticipatory. In the repre-
sentation (83) this definition coincides with the limiting
condition (103), which in Kretschmann and Werner (2005)
is written in terms of the cb-norm distance (see Sec. II.J.2). In
this context a memory channel is said to be strictly forgetful if
there exists a finite integer m such that the right-hand side

1224 Caruso et al.: Quantum channels and memory effects

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



(rhs) and the left-hand side (lhs) of Eq. (103) exactly coincide
for all n ≥ m. A simple example of forgetful channels can be
obtained if ΦðnÞ

QM is defined by the concatenation (85) of a
generator map ΦqM ≔ pidþ ð1 − pÞSWAP, where p ∈ ½0; 1Þ,
and SWAP denotes the swap channel which exchanges
q and M. In this case the only way for ΦðnÞ

QM not to be
forgetful is to choose the ideal channel in every step of
the concatenation. However, the probability for this
event vanishes in the limit n → ∞ as pn, implying that
Eq. (103) holds.
Several criteria for a quantum memory channel to be

forgetful have been proposed (Kretschmann and Werner,
2005). For instance, a sufficient condition is that the
cb-norm distance between the rhs and the lhs of Eq. (103)
falls below 1 for some finite n. From a physical point
of view, one could expect a generic quantum memory
channel to be forgetful. Indeed, it can be proven that the
subset of forgetful channels is dense and open (according to
the topology induced by the cb norm) (Kretschmann and
Werner, 2005).
In the case of Markovian channels, the forgetfulness is

determined by the asymptotic properties of the underlying
Markov chain: in particular, for a discrete-variable memory
system, the channel is forgetful if and only if the underlying
Markov chain converges to a unique stationary state (Datta
and Dorlas, 2009). On the other hand, if the memory system is
described by continuous variables, one could have situations
in which the Markov chain has a unique stationary state, yet
the convergence property (103) in the cb norm is not satisfied.
To overcome this limitation, a weaker notion of forgetfulness,
named weak forgetfulness, was introduced by Lupo,
Memarzadeh, and Mancini (2009) for Markovian channels.
Although restricted to this setting, its definition coincides with
that of indecomposability [Eq. (102)] and is equivalent to
forgetfulness for a discrete-variable Markov chain. Beyond
this setting, the model of Gaussian memory channels in Lupo,
Giovannetti, and Mancini (2010a) was proven to be inde-
composable under restricted conditions on the memory
initialization, e.g., if the initial state of the memory is a
Gaussian state with finite first and second moments. Finally,
the relation between the forgetfulness of the channel and the
chaotic quantum evolution of the memory system was studied
by Barreto Lemos and Benenti (2010) for a model of a
dephasing channel with memory.

7. Decaying input memory cq channels

Forgetful channels represent configurations in which the
effect of the far past inputs do not strongly affect present and
future outputs. Within the quasialgebra approach a similar
notion was developed by Bjelaković and Boche (2008) for the
special class of cq channels (see Sec. III.C). Specifically a
cq channel defined by Eq. (90) is said to have decaying input
memory if for each ϵ > 0 there exists a non-negative integer
mðϵÞ such that

jWðx; bÞ −Wðx0; bÞj ≤ ϵ; ð105Þ

for all b ∈ B½n;∞�, n;∈ Z, whenever xi ¼ x0i for n −m ≤ i and
m ≥ mðϵÞ. Note that

P
bjWðx; bÞ −Wðx0; bÞj is a distance

between quantum states. Then Eq. (105) says that, starting
from the nth use, the outputs of two identical channels W are
almost (i.e., within a distance ϵ) the same provided that the
inputs have started to be identical from the n −mðϵÞth use.
Hence mðϵÞ gives an estimation of the memory length.
This provides a “continuity” property of the channel which

plays a crucial role in establishing coding theorems, an idea
that also appears in Sec. IV.D and goes back to the classic
paper by McMillan (1953).

8. Long-term memory channels

Long-term quantum memory channels describe those
communication lines in which the effect of the memory does
not decay with the number of channel uses. These channels
are defined as those memory channels which are not forgetful.
Extreme examples are provided by statistical mixtures of

memoryless channels (77) of Sec. III.A.1 as pointed out by
Datta and Dorlas (2007) and Datta, Suhov, and Dorlas (2008).
The memory correlations of this class of channels can be
considered to be given by a Markov chain which is aperiodic
but not irreducible (Norris, 1997). This can be easily seen by
noticing that Eq. (95) reduces to Eq. (77) by setting pðjÞ

iji0 ¼ δii0
for all j ¼ 2;…; n. Hence, once a particular branch i ¼
1;…;M has been chosen, the successive inputs are sent
through this branch (aperiodicity) and transition between
the different branches (which correspond to the different
states of the Markov chain) is not permitted (reducibility).
It is worth stressing that the transformation (77) is fully

nonanticipatory (i.e., the input state of any subset of carriers
cannot influence the output state of the remaining ones): as a
consequence, fixing an ordering, it can always be represented
as in Fig. 12 with a proper choice of the unitary couplings.

IV. QUANTUM CODES

Coding theory is the branch of information science studying
how to use software strategies to counteract the effect of an
assigned noise source affecting a communication line or the
components (memory elements) of a database. In a sense it
can be described as the last resort which can be exploited once
no further improvements can be obtained at the level of
hardware engineering.
Both in the classical and in the quantum setting, the key

idea to prevent the corruption of information is to use
redundancy: by properly spreading a given message over
many information carriers instead of a single one, one can take
advantage of the structural properties of a noise source.
Consider for instance the paradigmatic case in which one
wishes to store the information contained in (say) k qudits,
affected by an assigned error model described by the channel
ΦðkÞ, into a larger set of n ≥ k qudits, affected by the noise
ΦðnÞ. Then a coding strategy consists of identifying an
encoding CPTP map Φðk→nÞ

E ∶ SðH⊗kÞ → SðH⊗nÞ, shuffling
a state from the smaller space of the k carriers to the larger
space of the n carries, and a decoding CPTP map
Φðn→kÞ

D ∶ SðH⊗nÞ → SðH⊗kÞ, moving the information back
to the original space, under the requirement that the resulting
channel Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E is somehow “less” noisy than the

original transformation ΦðkÞ (see Fig. 18). The image Q of
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Φðk→nÞ
E is called a quantum error-correcting code (QECC): it

represents the information vault where messages are deposited
to prevent the noise from affecting them. The ratio R ¼
ðk=nÞ log d represents the communication rate (in qubits per
channel use) of the code, whose inverse measures how much
information spread is involved in the procedure. It is worth
noting that if Φðk→nÞ

E is taken to be an isometry (an option
which is often implicitly assumed in QECC) the space Q
becomes a proper vector subspace of H⊗n of dimension dk.
When this happens ΦðnÞ∘Φðk→nÞ

E is just a restriction of ΦðnÞ on
Q and the encoding mapping can be fully specified by simply
assigning the latter. This also justifies the consideration of a
recovery map ΦðnÞ

R in place of the decoding map Φðn→kÞ
D (in the

following this simplification is assumed).
Different equivalent ways have been devised to evaluate the

quality of a given coding procedure [Cafaro et al. (2011)
analyzed and compared some of them]. The most commonly
used is by means of the input-output fidelities introduced in
Sec. II.J.1. In particular, good choices are the minimum or
average fidelity functionals, i.e., FminðΦðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ

and F̄ðΦðn→kÞ
D ∘ΦðnÞ∘Φðk→nÞ

E Þ. It is important however to dis-
tinguish between two different scenarios: the case where the
messages to be stored or transmitted are purely classical, and
the case where instead they are quantum. In the first scenario
the minimization (respectively, average) involved in Eq. (48)
[respectively, Eq. (49)] needs not be performed over the
entire input space of the k carriers, but only with respect
to the orthogonal set of states in H⊗k which are encoding the
classical messages one wishes to protect. Vice versa in the
second scenario, which implies the possibility of producing
arbitrary superposition of the input signals, the minimization
(respectively, average) is performed over the whole input
space. In this last configuration the effectiveness of a
correcting code can also be quantified by other distance
measures, such as the entanglement fidelity Feð1=dk;
Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ defined in Eq. (54), or the cb-norm

distance of Φðn→kÞ
D ∘ΦðnÞ∘Φðk→nÞ

E from the identity channel id
on the set of the k carriers; see Sec. II.J.2. The simplest
example of error-correcting code is obtained for counteracting
bit-flip errors by repeating qubit basis states (preferably an
odd number of times); see Fig. 15.
When a given code allows for the exact protection of the

data stored in the k carriers [e.g., when Fmin ¼ 1, implying
zero-error probability (47) for all possible channel inputs], the

code is said to be perfect. However, in realistic situations
codes allow only for arbitrary high fidelity at a finite rate in the
limit of large code length (n → ∞); see Sec. V. For finite code
length, one has to find the optimal compromise between rate,
fidelity, and the complexity of the coding and decoding
operations. Here the focus is on the general properties of
quantum error-correcting codes. The large body of works in
this field was mainly concerned with the development of
strategies for independent and identically distributed (i.i.d.)
errors, i.e., for noise arising from memoryless quantum
channels. In this section, after reviewing the basics of such
codes, we analyze their effectiveness against correlated errors.
Then possible answers to the new challenges posed by
memory effects are discussed. Since the extension of the
formalism for QECC (mostly relying on group theory) from
H≃ C2 to higher dimensional H is nontrivial, the presenta-
tion will be restricted to qubit systems, i.e., to binary quantum
codes. For nonbinary codes see Knill (1996), Ashikhmin and
Knill (2001), and Ketkar et al. (2006).

A. Standard quantum coding theory

Consider a memoryless quantum channel ΦðnÞ ¼ Φ⊗n,
characterized by a set of Kraus operators fKig, on the
Hilbert space C2⊗n of n qubits

ρ ↦ ΦðnÞðρÞ ¼
X
i

KiρK
†
i ; ð106Þ

where Ki ¼ Ki1 ⊗ � � � ⊗ Kin describes i.i.d. errors on single
qubits. An error-correcting code is identified by a 2k-dimen-
sional subspace Q ⊂ C2⊗n. We denote as PQ the projector
operator associated withQ. It is possible to show that the code
is able to correct errors belonging to a subset Q⊆fKigi if and
only if there exists a Hermitian matrix S such that

PQK
†
l KmPQ ¼ SlmPQ; ð107Þ

for any pair of error operators Kl; Km ∈ Q (Knill et al., 2002).
Because of the unitary freedom of the Kraus representation,
Eq. (107) holds true if and only if a Kraus representation of the
map ΦðnÞ exists, say ΦðnÞðρÞ ¼ P

iK
0
iρK

0†
i , such that

PQK0†
l K

0
mPQ ¼ δlmsmPQ for some set of non-negative num-

bers sm. This condition in turn yields the fact that different
correctable error operators map the code words in Q into
mutually orthogonal subspaces. This property implies that
different errors can be detected by applying a projective
measurement able to distinguish the different orthogonal
subspaces. Moreover, if the same error applies to two different
basis code words, their scalar product will not change. Thus,
the geometrical interpretation is that each correctable error
maps the code space into an orthogonal subspace without
deformations.
Applying again the unitary freedom of the Kraus repre-

sentation, one can find a basis where any pair of errors acting
on a given code word produces either orthogonal states or
exactly the same state. This phenomenon will occur if the
matrix S results singular. In such a case the quantum codeQ is
called degenerate.
Now let ViL be the subspace of C2⊗n spanned by the

corrupted images fK0
ljiLigl of the code words jiLi and let

FIG. 15. The encoding and recovery maps for a qubit repetition
code, able to counteract uncorrelated bit-flip errors. The circuital
implementation of encoding and decoding maps involves con-
trolled NOT operations [for a primer on qubit logical operation,
see Mermin (2003)]. Upon encoding the qubit basis states are
spreader over three qubits as j0i ↦ j000i and j1i ↦ j111i. The
reverse happens upon recovery provided that no more than one
qubit is affected by bit flip.
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fjviLr ig be an orthonormal basis of ViL . We define a subspace
ViL for each code word. Then the recovery map ΦðnÞ

R is
characterized by Kraus operators fRrg such that

Rr ¼
X
i

jiLihviLr j: ð108Þ

In the qubit context we are considering, an ⟦n; k⟧ quantum
correcting code Q is given by a 2k-dimensional subspace of
C2⊗n encoding k logical qubits into n physical qubits (n ≥ k).
One can assume the error operators to be proportional to the

Pauli operators acting on the jth qubit and corresponding to
no-error, bit-flip error, bit-phase-flip error, and phase-flip
error, i.e., K0j

∝ 1j, K1j
∝ σx;j, K2j

∝ σy;j, and K3j
∝ σz;j.

This restriction to Pauli errors represents no loss of generality.
Indeed, it can be easily shown that if a code corrects a given
set of errors it can also correct any linear combination (by
complex coefficients) (Nielsen and Chuang, 2000). It is hence
sufficient to restrict to Pauli operators since they are a basis on
the space of qubit operators.
Given a subsetQ⊆fK igi of errors that can be corrected one

says that the code Q has Q-correcting ability. To each Ki one
can assign a weight t, an integer 0 ≤ t ≤ n denoting the
number of qubits, where operators Kij (j ¼ 1;…; n) act
differently from identity. Then the correction ability of Q
can also be expressed by specifying the value of the distance
d ¼ 2tþ 1 of the code, meaning that Q corrects all errors
affecting at most t qubits.
Suppose that errors are i.i.d. with probability pe on each

qubit, then for any of the

�
n

tþ 1

�

ways of choosing tþ 1 locations, the probability that errors
occur at every one of those locations results in ptþ1

e . Therefore
one has the following upper bound on the probability that at
least tþ 1 errors occur in the block of n qubits:

�
n

tþ 1

�
ptþ1
e :

This means that for pe small the performance of the code
1 − F ≈Oðptþ1

e Þ is substantially improved over the unpro-
tected data 1 − F ≈OðpeÞ.
An upper bound on the rates achievable by nondegenerate

quantum codes is given by the quantum version of the
(classical) Hamming bound (Ekert and Macchiavello, 1996)

2k
Xt

i¼0

3i
�
n
i

�
≤ 2n; ð109Þ

which for large n and d=n fixed yields the approximate bound

R ≤ 1 −
d
2n

log23 − h

�
d
2n

�

with h the binary entropy (66).

There are also upper bounds that apply to all quantum
codes, not just nondegenerate ones, such as the quantum
Singleton bound (Knill and Laflamme, 1997)

n ≥ 4tþ k: ð110Þ

On the other hand, a lower bound on the rates, confirming that
good codes indeed exist (Calderbank et al., 1997), comes from
the quantum version of the Gilbert-Varshamov theorem,
stating that a ⟦n; k⟧ quantum code of distance d ¼ 2tþ 1

exists with

k ≥ max

�
k0j2k0

X2t
i¼0

3i
�
n
i

�
≤ 2n

�
: ð111Þ

For large n and d=n fixed one gets the approximate bound

R ≥ 1 −
d
n
log23 − h

�
d
n

�
.

Unfortunately the explicit construction of quantum codes is
not an easy task. Historically the first quantum code that
appeared was a ⟦9; 1⟧ code with d ¼ 3 (Shor, 1995) whose
basis code words read

�
1ffiffiffi
2

p ðj000iþj111iÞ
�
⊗3

;

�
1ffiffiffi
2

p ðj000i− j111iÞ
�
⊗3

: ð112Þ

Its construction relies on a simple argument. A three-qubit
code suffices to protect against a single bit flip (see Fig. 15).
The reason the three-qubit clusters are repeated 3 times is to
protect against phase errors as well.
Then attempts were made following classical linear codes

(Hill, 1985). In the classical setting, the state of n bit system is
represented by a binary string of length n. An error affecting
this string can also be represented by a binary string of the
same length, where the 1’s indicate the locations of the bits
that have been flipped. The action of an error string on a code
words string is hence represented by a summation modulo
two. The space of binary strings of length n, endowed with the
summation modulo two, defines the linear space Fn

2 . A
classical ½n; k� linear code C is defined as a subspace
C⊆Fn

2 . The subspace can be characterized by a set of k
generators or equivalently by a parity check ðn − kÞ × n
matrix H such that Hv⊤ ¼ 0, ∀v ∈ C. Errors ei taking
v ∈ C into vþ ei can be detected by applying the parity
check Hðvþ eiÞ⊤ ¼ He⊤i ¼ syndðeiÞ (error syndrome)
and corrected iff they give rise to distinct syndromes, i.e.,
Hðei þ ejÞ⊤ ≠ 0 for i ≠ j. If C is with distance d ¼ 2tþ 1

it means that it is able to correct up to t errors, i.e., bit-flip
errors in at most t bits. The set of errors correctable by C is
denoted by C.
An advantage of linear codes over general error-correcting

codes is their compact specification. Using them, quasiclass-
ical [or Calderbank, Shor, and Steane (CSS)] codes were
constructed in the following way (Calderbank and Shor, 1996;
Steane, 1996). Consider two classical linear codes C1 and C2
such that C⊥2 ⊆C1, where C⊥2 is the dual code to C2, i.e.,
consisting of those bit strings that are orthogonal to the code
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words of C2. If C1 is a ½n; k1� code with distance d1 and C2 is a
½n; k2� code with distance d2, then the corresponding CSS
quantum code is a ½ ½n; k1 þ k2 − n� � code with distance
minfd1; d2g. Its basis code words are

1ffiffiffiffiffiffiffiffiffi
jC⊥2 j

p X
w∈C⊥

2

juþ wi; u ∈ C1: ð113Þ

Performing the Hadamard transform on each qubit of the code
one can switch from C1 to C2 to account for σz errors beside σx
ones. As a matter of fact it takes Eq. (113) to

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2njC⊥2 j

p X
x∈Fn

2

X
w∈C⊥

2

ð−1Þx⋅ðuþwÞjxi:

Since
P

w∈C⊥
2
ð−1Þx⋅w ≠ 0 if x ∈ C⊥1 and zero otherwise, one is

left with a state ∝
P

x∈C⊥
1
jxi. This latter, being C⊥1 ⊆C2, can be

considered as an instance of basis code words

1ffiffiffiffiffiffiffiffiffi
jC⊥1 j

p X
w∈C⊥

1

juþ wi; u ∈ C2. ð114Þ

Therefore, to correct errors it is enough to implement the
parity check of C1 by measuring in the σz basis (for bit-flip
errors) and that of C2 by measuring in the σx basis (for phase
flip errors). An example along this line is provided by the
⟦7; 1⟧ code with d ¼ 3 (Steane, 1996).
Another, more general, way to construct quantum codes is

to exploit the group structure of the set of errors as is done for
stabilizer codes (Gottesman, 1997). The method can be
summarized as follows. First note that the set of Pauli errors
on n qubit can be written as4

Pn ≔
�
⊗
n

j¼1
σXðjÞx;j ⊗

n

j¼1
σZðjÞz;j jXðjÞ; ZðjÞ ∈ F2

�
; ð115Þ

and forms a multiplicative group known as a Pauli group. One
can represent the elements of Pn as 2n-dimensional binary
vectors

e ∈ Pn↔ðeXjeZÞ≡ e ∈ Fn
2 × Fn

2; ð116Þ
where eX (respectively, eZ) is the n-bits vector of components
XðjÞ (respectively, ZðjÞ) specifying on which qubits the σx
(respectively, σz) error occurs and ðeXjeZÞ is the joint eX; eZ
vector. Then one considers an Abelian subgroup G⊆Pn:

G ¼ spanfgi ∈ Pnj1 ≤ i ≤ n − kg; ð117Þ

where g1; g2;…; gn−k are independent of each other. Note that
the operators in Pn have eigenvalues �1. An n-qubit vector
jxi is said to be stabilized by the group G if it is a common
eigenvector with eigenvalue þ1. The set of vectors stabilized
by G forms a 2k-dimensional subspace

Q ¼ fjxi ∈ C2⊗n∶gjxi ¼ jxi;∀ g ∈ Gg: ð118Þ

The subspace Q is a ⟦n; k⟧ code. Note that all errors
belonging to the group G will leave the code word unaffected.

The other errors will in general change the n-qubit states. To
detect which error has occurred one measures the set of n − k
commuting observables gi. The results of these measurements
are either þ1 or −1. The corresponding set of measurement
results plays the role of the error syndrome. Errors with
nontrivial error syndromes are detectable, while errors with
different error syndromes are correctable.
One can describe stabilizer codes using the same formalism

of classical linear codes. By using the vectors in Fn
2 × Fn

2

corresponding to the generators g1; g2;…; gn−k it is possible to
write down the following ðn − kÞ × 2n parity check matrix:

H ≔

0
B@

g1;Xjg1;Z
..
.

gn−k;Xjgn−k;Z

1
CA ð119Þ

for a ½2n; k� classical linear code C [its jth row is given by the
vector ðgj;Xjgj;ZÞ] corresponding to Q. Then the analysis of
correcting Q⊆Pn errors by Q can be traced back to that of
correcting C⊆Fn

2 × Fn
2 errors by C.

In this way it results (Gaitan, 2008) in the fact that Q
hasQ-correcting ability iff for every ðe1;Xje1;ZÞ, ðe2;Xje2;ZÞ ∈
C it is

Hðe1;X þ e2;Xje1;Z þ e2;ZÞ⊤ ≠ 0: ð120Þ
Equation (120) states thatQ is correctable byQ iff syndðeiÞ ≠
syndðejÞ for all ei; ej ∈ C [which corresponds to Eq. (107)].
A stabilizer code of distance d has the property that

each element of Pn of weight t less than d either lies in
the stabilizer or anticommutes with some element of the
stabilizer. An example is provided by the ⟦5; 1⟧ code with
d ¼ 3 introduced by Laflamme et al. (1996) and saturating the
quantum Hamming bound (109). It is worth remarking that a
systematic method to find stabilizer generators exists based
on the connection with vectors over Galois field GFð4Þ
(Calderbank et al., 1998).
If the subgroup S⊆Pn is not Abelian, it can be used as well

to construct a QECC provided that entanglement between
encoder and decoder is available (Brun, Devetak, and Hsieh,
2006). The trick consists of extending the generators of S (by
attaching extra Pauli operators at their end) in order to
generate a new group S0 that is Abelian and for which the
above theory can be applied. These are entangled-assisted
QECC and the notation ⟦n; k;m⟧, with m denoting the
number of entangled ancilla qubits (n −m − k giving the
number of unentangled ancilla qubits), is used. Entanglement-
assisted codes may lead to rates higher than their non-
entangled counterparts. The reason is that entanglement
allows one to increase the dimension of the decoding
Hilbert space to 2nþm compared to 2n for unentangled ancillas.
This also leads to a revision of the Hamming bound (109) with
2nþm on the rhs (Bennett et al., 2002).
Finally note that in constructing codes, besides pursuing the

highest possible rate, one should also take into account the
complexity of the encoding and decoding procedures. This
can be evaluated by means of the number of elementary steps,
i.e., the number of elementary gate operations, needed.
Efficient encoding and decoding requires polynomial
(actually near linear) scaling of complexity versus block code
length n. Luckily, stabilizer codes are efficiently encodable or

4Actually σy ¼ iσxσz; however, the imaginary unit, as well as any
global phase factor, is irrelevant in quantum error correction.
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decodable (Gottesman, 1997), but usually do not achieve the
channel capacity (see Sec. V).

B. Codes concatenation

Unfortunately, using the previous approach it is quite hard
to construct good codes with large distances. Families of
codes that offer good performance by increasing the distance
are the toric codes (Kitaev, 2003) and the quantum version of
Reed-Muller codes (Steane, 1999). Aside from them, a
particularly simple way to construct codes that can correct
multiple errors is to concatenate several single-error correcting
codes, i.e., codes with d ¼ 3. For simplicity, we illustrate the
case of two layers of concatenation and consider single qubit
encoding. Assume the inner code (first layer) is a ⟦n1; k1⟧
stabilizer code Q1 with distance d1, and the outer code
(second layer) is a ⟦n2; 1⟧ stabilizer code Q2 with distance
d2. The concatenated code Q ¼ Q1∘Q2 maps k1 qubits into
n ¼ n1n2 qubits, with code construction parsing the n qubits
into n2 blocks BðbÞ (b ¼ 1;…; n2) each containing n1 qubits.
Explicitly, the concatenated code Q is constructed as follows.
For any code word jcouti of the outer code Q2,

jcouti ¼
X
i1���in2

αi1���in2 ji1 � � � in2i; ð121Þ

with ji1 � � � in2i ¼ ji1i ⊗ � � � ⊗ jin2i, replace each basis vectorjiji by a basis vector jϕiji of the inner code Q1, so that

jcconci ≔
X
i1���in2

αi1���in2 jϕi1i ⊗ � � � ⊗ jϕin2
i: ð122Þ

Note that the above-mentioned construction produces a
⟦n1n2; k1⟧ code with distance d ≥ d1d2.
If there are L levels of concatenation of the same single

qubit code, and pe is the error probability on a single qubit, it
is possible to show that the code failure probability is bounded
by (Gaitan, 2008)

pðLÞ
e ≤ p0

�
pe

p0

�
2L

; ð123Þ

where p0 is an estimate of the threshold error probability that
can be tolerated and depends on the chosen single qubit code.
Hence, provided that pe < p0, one can make the code failure
probability as small as one wants by adding enough levels to
the code.
Finally, it is worth remarking that minimum distance is not

everything. It helps in constructing good codes (codes with
arbitrarily small error probability). However, very good codes
(codes with arbitrarily small error probability and achieving
maximum rate) can be constructed even with bad (small)
minimum distance. The reason can be understood by means of
a metaphor due to Berlekamp [see, e.g., Mac Kay (2003)], and
applicable in both classical and quantum frameworks. A blind
bat lives in a cave and flies about the center of the cave which
corresponds to one code word with its typical distance from
the center controlled by the error rate. The boundaries of the
cave are made up of stalactites that point in toward the center
of the cave. The longest stalactites determine the minimum
distance. If there is only a tiny number of such long stalactites,

they are relatively unlikely to cause errors when the bat flies
beyond the safe distance. It will collide most frequently with
more distant (shortest) stalactites, owing to their greater
number. So the take-home message is that a given code must
be able to correct only “typical” errors.

C. Decoherence-free subspaces

Since the idea of i.i.d. errors was underlying the standard
theory of quantum error-correcting codes, it is natural to
expect lowered performance when employed on memory
channels.
A case study is provided by a regular Markovian channel

(see Sec. III.D.4), where the CPTP maps Φ
ðijÞ
qj in Eq. (95) are

of the form Φ
ðijÞ
qj ð� � �Þ ¼ ΦðiÞð� � �Þ ¼ Kið� � �ÞK†

i , with unitary

Kraus operators Ki and pðjÞ
ijjij−1 ¼ piji0 ¼ ð1 − μÞpi þ μδi;i0 . A

sequence of n uses of the memory channel is hence repre-
sented by the map

ΦμðρðnÞQ Þ ¼
X

i1;…;in

pinjin−1pin−1jin−2 � � �pi2ji1pi1

× ðKin ⊗ � � �⊗ Ki1ÞρðnÞQ ðKin ⊗ � � �⊗ Ki1Þ†: ð124Þ

The correlation parameter μ roughly quantifies the degree of
memory of the considered channel. For μ ¼ 0 one obtains the
case of i.i.d. (memoryless) noise, while the limit μ ¼ 1
describes completely correlated errors.
Cafaro and Mancini (2010a, 2010b) showed that the

performance of stabilizer codes [evaluated by means of
entanglement fidelity (54)] is lowered by increasing μ. The
same relation between the fidelity and the correlation param-
eter has been observed for a model of long-term memory
channel (see Sec. III.D.8) obtained by a convex combination
of uncorrelated and completely correlated quantum channels

ΦðρÞ ¼ ð1 − μÞΦμ¼0ðρÞ þ μΦμ¼1ðρÞ; ð125Þ
where Φμ¼0 and Φμ¼1 are given by Eq. (124) in the limiting
cases of μ ¼ 0 and μ ¼ 1 (corresponding to uncorrelated and
completely correlated errors, respectively). Actually, the effect
of the memory is to take the code probability of error back to a
linear dependence on the single-error probability [see also
(Klesse and Frank (2005)].5

5It should be noted, however, that the condition of independent
errors is not equivalent to the condition of memoryless quantum
channel. Indeed, one can say that independent errors are those for
which the probability of k errors is of the order of ϵk, given that the
single error has a (small enough) probability ϵ. On the other hand, in
the setting of memoryless channels each qubit independently
interacts with its own environment, and different environments do
not interact among themselves. While memoryless channels give rise
to independent errors, the converse is not necessarily true. In fact,
there are situations where although qubits do not interact independ-
ently with their environments, the generated errors still satisfy the
independence condition, provided that qubits do not directly interact
with each other (Hwang, Ahn, and Hwang, 2001; D’Arrigo, Benenti,
and Falci, 2009). Thus, in such cases standard QECCs work well
enough.
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On the other hand, a suitable strategy to deal with
completely correlated errors is represented by noiseless codes,
also known as decoherence-free subspaces (DFSs). This is a
“passive” quantum error correction method where the key idea
is that of avoiding decoherence by encoding quantum infor-
mation into special subspaces that are protected from the
interaction with the environment by virtue of some specific
dynamical symmetry (Palma, Suominen, and Ekert, 1996;
Duan and Guo, 1997; Zanardi and Rasetti, 1997; Lidar,
Chuang, and Whaley, 1998; Lidar and Whaley, 2003).
It turns out that a subspace Q is a DFS if and only if all

Kraus operators, when restricted to Q, are equal, up to a
multiplicative constant, to a given unitary transformation UQ.
In the case of imperfect initialization, i.e., a state not initialized
inside a DFS, in a suitable basis the Kraus operators are
described by a matrix of the form

Kk ¼
�
skUQ 0

0 Mk

�
; ð126Þ

where Mk is an arbitrary matrix that acts on the orthogonal
complement Q⊥ and may cause decoherence there (Shabani
and Lidar, 2005). Equation (126) implies

K†
kKl ¼

�SklIQ 0

0 M†
kMl

�
; ð127Þ

where Skl ¼ s̄ksl. Applying Eq. (107) to the present setting, it
follows that DFSs can be viewed as a special class of QECCs,
where upon restriction to the code spaceQ all Kraus operators
are proportional to the unitaryUQ. It is worth noting that in the
DFSs case the matrix S has rank 1. Hence, a DFS is an
example of a maximally degenerate quantum error-correcting
code. In the case of perfect DFS encoding, the necessary and
sufficiency conditions are less restrictive than Eq. (126)
(Shabani and Lidar, 2005).
An example of the effective application of DFS encoding

can be obtained for the case of the “completely correlated”
channel (see Sec. III.D.8). By putting n ¼ 2, K0 ¼ 1,
K1 ¼ σz, and p0 ¼ 1 − p, p1 ¼ p in Eq. (124) one obtains
a quantum channel with Kraus operators

K00 ¼
ffiffiffiffi
p

p
1 ⊗ 1; K01 ¼ 0;

K10 ¼ 0; K11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − pÞ

p
σz ⊗ σz: ð128Þ

A DFS is given by spanfj01i; j10ig where one can safely
encode a qubit

j0Li ¼ j01i; j1Li ¼ j10i: ð129Þ

By extending this argument, one can say that in the case of
completely correlated errors it is possible to exploit the
invariance of a subspace to encode information reliably.
Chiribella et al. (2011) provided a generalized quantum

Hamming bound for nondegenerate codes, which depends on
the rank of the CJ state (see Sec. II) associated with the noise
process and holds for any kind of (possibly correlated)
channel model. The original Hamming bound (109), which

was formulated for the case of independent noise on the
encoding systems is then recovered as a particular case. On the
other hand, for completely correlated noise it was shown how
to exploit degeneracy to violate the generalized quantum
Hamming bound and achieve perfect quantum error correction
with fewer resources than those needed for nondegenerate
codes. As an example consider the following channel:

ΦðρðnÞQ Þ ¼ pρþ
X

i¼1;…;n;j>i

ðpX;ijσx;iσx;jρ
ðnÞ
Q σx;iσx;j

þpY;ijσy;iσy;jρσy;iσy;j þ pZ;ijσz;iσz;jρσz;iσz;jÞ;
ð130Þ

where the input state is left unchanged with probability
p ¼ 1 −

P
i¼1;…;n;j>iðpX;ij þ pY;ij þ pZ;ijÞ, while it under-

goes Pauli errors σx, σy, and σz on qubits i and j with
probabilities pX;ij, pX;ij, and pZ;ij, respectively. By evaluating
the rank of the CJ state associated with the map (130) one
obtains the following generalized quantum Hamming bound
of Chiribella et al. (2011):

2k
�
1þ 3

�
n
2

��
≤ 2n: ð131Þ

Then by considering for instance k ¼ 1, one gets n ¼ 7 as the
smallest integer satisfying the bound. However, one can also
construct codes with lower values for n. For instance, this is
the case of the code

j0Li ¼ j000i; j1Li ¼ j111i: ð132Þ
Note that these basis code words are not affected by the action
of σz on any pair of qubits. Consequently, the action of σx on a
pair of qubits is identical to the action of σy on the same pair of
qubits. In other words the code is degenerate. Therefore, it is
sufficient to consider only the errors due to σx operators. This
can be realized through a projective measurement onto the
subspaces S00¼spanfj000i;j111ig, S01¼spanfj100i;j011ig,
S10 ¼ spanfj010i; j101ig, and S11 ¼ spanfj001i; j110ig. If
the measurement outcome is “00,” no errors have affected the
qubits; on the contrary, if the measurement outcome is “01,”
errors have affected qubits 2 and 3 and can be corrected by
applying there σx. Similarly, all other possible errors can be
detected and corrected. It is hence clear that this code violates
the quantum Hamming bound (131) thanks to the invariance
of the coding subspace under the action of the pair of σz which
allows for perfect error correction.
Having seen that DFSs are suitable to encode information in

the presence of completely correlated errors, it is natural to
expect that their performance decreases by reducing the degree
of errors’ correlation (Demkowicz-Dobrzanski, Kolenderski,
and Banaszek, 2007). Actually Cafaro and Mancini (2010a,
2011) confirmed this fact for theMarkovianmodel of Eq. (124)
and for themodel of Eq. (125), respectively. Then one can argue
that for the memory channel models (124) and (125), where the
memory effects are described by a single parameter μ, there
must be a threshold value μ⋆ that allows one to select the
best code between the standard and the noiseless ones
(D’Arrigo et al., 2008; Cafaro and Mancini, 2010a; Cafaro
and Mancini, 2011).
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D. Designing quantum codes for correlated errors

The specific features of error models can be used to design
new quantum codes that better cope with correlated errors.
The results of Sec. IV.C suggest that it might be convenient

to concatenate decoherence-free subspaces with standard
quantum error-correcting codes in order to achieve higher
entanglement fidelity values in both low and high correlation
regimes. This kind of concatenation was first introduced by
Lidar, Bacon, and Whaley (1999), and it was investigated in
the context of memory channels in Clemens, Siddiqui, and
Gea-Banacloche (2004) and subsequently in Cafaro and
Mancini (2011).
As an illustrative example, consider encoding one logical

qubit into a decoherence-free subspace (QDFS ¼ Qouter)
spanned by the basis code words

j0Li ¼ j þ −i; j1Li ¼ j −þi; ð133Þ
and then encode each qubit of this basis into a three-qubit bit
repetition code (132) (Qbit ¼ Qinner). One obtains the fact that
the basis code words of the concatenated codeQ ¼ Qbit∘QDFS
are given by

j0Li ¼ 1
2
ðj000 000i − j000 111i þ j111 000i − j111 111iÞ;

j1Li ¼ 1
2
ðj000 000i þ j000 111i − j111 000i − j111 111iÞ:

The entanglement fidelity for the concatenation of a repetition
code and a noiseless code for the models of Eqs. (124) and
(125) with K0 ¼ 1, K1 ¼ σx, p0 ¼ 1 − p, and p1 ¼ p is
reported in Fig. 16. It turns out that in the first case the

concatenated code does not work well for partially correlated
errors. It is always better to use either the outer or the inner
code alone depending on whether one is below or above the
threshold value μ⋆ðpÞ. On the contrary, in the second case the
concatenated code works optimally almost everywhere.
Hence, one can argue that for the model of Eq. (125) the
concatenation procedure is particularly advantageous in the
presence of partially correlated errors.
Another error model often employed is that of burst errors.

Such errors can be considered as affecting a sequence of
qubits as opposed to random single qubit errors. They are well
studied in the classical framework where corresponding error-
correcting codes have been developed (Peterson and Weldon,
1972). Vatan, Roychowdhury, and Anantram (1997) consid-
ered a quantum analog of burst-error correcting codes.
Hamming and Gilbert-Varshamov–type bounds have been
derived showing that these codes are more efficient than codes
protecting against random errors. In fact, to protect against
burst errors of width b (that is, errors occurring on a number b
of consecutive qubits with b a fixed constant), it is enough to
map n − log2n −OðbÞ qubits to n qubits, while in the case of t
random errors at least n − tlog2n qubits should be mapped to
n qubits.
A linear code C has burst-correcting ability b iff, for every

burst w1 and w2 of width ≤ b it is Hðw1 þ w2Þ⊤ ≠ 0, with H
the parity check matrix of C. Vatan, Roychowdhury, and
Anantram (1997) presented an explicit construction of quan-
tum codes for correcting burst errors starting from classical
binary cyclic codes. A classical binary cyclic code C is
such that if ðcð1Þ; cð2Þ;…; cðnÞÞ is in C, then so is
ðcðnÞ; cð1Þ;…; cðn−1ÞÞ (Hill, 1985).
The definition of quantum burst-correcting codes straight-

forwardly follows from Eq. (116). Consider the set Q of
quantum errors (hence the corresponding set C of classical
error) such that both

CX ¼ feX ∈ Fn
2j∃eZ ∈ Fn

2 ⇒ ðeXjeZÞ ∈ Cg; ð134Þ

CZ ¼ feZ ∈ Fn
2j∃eX ∈ Fn

2 ⇒ ðeXjeZÞ ∈ Cg ð135Þ

are bursts of width ≤ b. Then any quantum code Q having
Q-correcting ability is called a b-burst quantum cor-
recting code.
Now suppose having a ð3bþ 1Þ-burst-correcting binary

½n⋅k� cyclic code C then, to construct the b-burst-correcting
⟦n; k⟧ quantum code one can proceed as follows.
Let the ðn − kÞ × n matrix ~H be a parity check matrix

for the classical code C. Let ~H→m denote the matrix that is
obtained from ~H by cyclically shifting the columns m times
to the right. Since C is cyclic, ~H→m is also a parity check
matrix of C. Consider the stabilizer quantum code ⟦n; k⟧
defined by the parity check matrix [see Eq. (119)]

H ¼ ð ~Hþ ~H→bj ~Hþ ~H→2bþ1Þ: ð136Þ

Let e ¼ ðeXjeZÞ and e0 ¼ ðe0Xje0ZÞ be bursts of width ≤ b,
with e ≠ e0 and take
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FIG. 16 (color online). Entanglement fidelity for the mod-
els (124) (top panel) and (125) (bottom panel) with p ¼ 10−2.
Solid lines correspond to a standard code. Dot-dashed lines refer
to a noiseless code. Dashed lines represent their concatenation.
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w ¼ eX þ e0X þ ðeX þ e0XÞ→b þ eZ þ e0Z þ ðeZ þ e0ZÞ→2bþ1;

ð137Þ

where e→b denotes the vector obtained by cyclically shifting e
to the right b times. Then, it is easy to check that w ≠ 0
and w is the sum of two bursts of width ≤ 3bþ 1. Hence
w∉C and

Hðeþ e0Þ⊤ ¼ ~Hw⊤ ≠ 0; ð138Þ

which guarantees the ability of the quantum code ⟦n; k⟧ to
correct b-burst errors.
The existence of classical ð3bþ 1Þ-burst-correcting

binary cyclic codes with length n ¼ 2m − 1 and dimension
k ¼ n −m − ð3bþ 1Þ is known with m depending only on b

(Peterson andWeldon, 1972). Hence these classical codes lead
to almost optimal quantum codes [compared with the bound
n − log2 n −OðbÞ given above].
By increasing the length of the bursts, one should increase

the length of the burst code as well. Alternatively it might be
possible to resort to the interleaving technique. By using this
method, the code words can be distributed among the qubit
stream so that consecutive words are never next to each other.
On deinterleaving they are returned to their original positions
so that any errors that have occurred become widespread. This
ensures that any burst (long) errors now appear as random
(short) errors.
Classically the interleaving of m code words

ðc1; c2;…; cmÞ of an ½n; k� code is achieved by permuting
the positions of bits in code words as follows:

ðc1; c2;…; cmÞ ¼ (ðcð1Þ1 ; cð2Þ1 ;…; cðnÞ1 Þ; ðcð1Þ2 ; cð2Þ2 ;…; cðnÞ2 Þ;…; ðcð1Þm ; cð2Þm ;…; cðnÞm Þ)
→ (ðcð1Þ1 ; cð1Þ2 ;…; cð1Þm Þ; ðcð2Þ1 ; cð2Þ2 ;…; cð2Þm Þ;…; ðcðnÞ1 ; cðnÞ2 ;…; cðnÞm Þ): ð139Þ

The procedure is equivalent to constructing the code as an
m × n array where every row is a code word of the original
½n; k� code ðc1; c2;…; cmÞ. Now, a burst of length≤ bm can
have at most b symbols in any row of this array. Since each
row can correct a burst of length ≤ b, the code can correct
all bursts of length ≤ bm (the parameter m is the interleav-
ing degree).
Therefore, given an ½n; k� classical code correcting bursts of

length ≤ b, then interleaving this code to the degree m
produces an ½nm; km� classical code correcting bursts of
length ≤ bm (Peterson and Weldon, 1972).
Moving to the quantum framework, in order to interleave

quantum codes, one needs to exchange the qubits one by one,
following Eq. (139). Therefore, the basic step of the quantum
interleaving simply is a swapping operation between two
qubits. Then the classical result can be extended as follows
(Kawataba, 2000): interleaving an ⟦n; k⟧ quantum code
correcting bursts of length ≤ b to the degree m produces
an ⟦nm; km⟧ quantum code correcting bursts of length ≤ bm.

E. Convolutional codes

It is possible to extend the notion of stabilizer codes
introduced in Sec. IV.A to codes that allow for an overlap
between the individual steps of the encoding operation (Chau,
1998, 1999; Ollivier and Tillich, 2003, 2004). From classical
coding theory, codes with these properties are called convolu-
tional codes. Although not specifically designed for memory
channels, they are intimately related to them.
A quantum convolutional stabilizer code is defined by the

generators of its stabilizer group just like a block stabilizer
code [see Eq. (117)]. Consider a convolutional code encoding
k logical qubits per n physical qubits, such that every block
has an output of nþm qubits. n of those are output qubits,
while m are passed on to the next step. Then, an ⟦n; k⟧
m-convolutional stabilizer code is given by the Abelian
stabilizer group

G ¼ spanfgj;i ¼ 1⊗jn ⊗ g0;ij1 ≤ i ≤ n − k; 0 ≤ jg; ð140Þ

where g0;i ∈ Pnþm and all gi;j are independent of each other.
Note that the total number of physical qubits (length of the

code) is left unspecified. Actually it is useful to set it to infinity
by considering a Pauli group P∞ with elements defined on a
semi-infinite chain of qubits, but acting nontrivially only on a
bounded number of them (as it happens with quasilocal
algebra; see Appendix B). Then the generators are considered
to be padded from the right with identities 1.
The structure of the stabilizer group generators can be

summarized, following Eq. (119), by a semi-infinite matrix

Each line of the matrix represents one of the gj;i and each
column a different qubit. Thus, any given entry of H is a Pauli
matrix for the corresponding qubit and generator. The rec-
tangles represent which qubits are potentially affected by the
action of the generators. Clearly, when m ¼ 0 one has each
block separately and obtains a block code.
Actually, it is possible to use the invariance by n qubit

translation of the generators to find a shorter description. One
defines the shift (delay) operator D acting on any element
A ∈ P∞ by

D½A� ¼ 1⊗n ⊗ A: ð142Þ
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Then the generators of the code can be written as

gj;i ¼ Dj½g0;i�; 0 ≤ j; 1 ≤ i ≤ n − k: ð143Þ

Using this, one needs only to consider the first n − k
generators. All others are obtainable by repeated applications
of D.
In addition to applying Dj to an element of the Pauli group

A (with bounded support), it is also possible to consider
a polynomial PðDÞ ¼ P

jαjD
j and apply it as PðDÞ½A� ¼Q

jαjD
j½A�. That critically relies on the fact that all copies

of A shifted by Dj commute [see, e.g., Ollivier and
Tillich (2004)].
It is worth noting that the encoding operations for

convolutional codes can be described as quantum memory
channels, due to the fact that some of the output qubits of the
nth encoding step will be used as inputs in the ðnþ 1Þth step
of the encoding; thus the blocks overlap. These qubits
correspond to the memory system of the memory channel
describing the encoding map. The encoding operation is the
same in every step (neglecting initialization and finalization);
thus every step is described by the same channel (see
Fig. 17). This can be stated more precisely saying that for
every ⟦n; k⟧ m-convolutional stabilizer code one can find an
encoding operation which is described by a concatenation of
a Weyl covariant memory channel with unimodular charac-
teristic function (see Sec. II.I.3). The channel has n input and
output qubits and uses m qubits of memory. One use of the
channel corresponds to one block in the encoding
(Gütschow, 2010).
Unfortunately convolutional codes also carry disadvan-

tages. Because information is transmitted from one block to
the next, errors can spread as well. Depending on the
encoding algorithm errors that spread without bound on
the output side can occur. These are called catastrophic
errors and have to be avoided by employing noncatastrophic
convolutional codes (Grassl and Roetteler, 2006). Necessary
and sufficient conditions for an encoder to be noncata-
strophic are provided by Poulin, Tillich, and Ollivier
(2009) and the minimal amount of resources to satisfy them
were determined by Houshmand, Hosseini-Khayat, and

Wilde (2013). Furthermore, an attempt to relate such con-
ditions to the property of strict forgetfulness of the memory
channel representing the encoder was made by Gütschow
(2010). Lacking the boundaries between code blocks, con-
volutional codes exhibit the same “continuous structure” as
channels with memories. As such, they could result particu-
larly suited to protect from correlated noise.

V. CAPACITIES OF QUANTUM CHANNELS

A natural question that arises after having examined
correcting codes is what are the maximum communication
rates achievable in quantum channels? For classical channels
the highest rate (number of bits per channel uses) of reliable
information transmission attainable via the application of
encoding and decoding error-correcting procedures defines
the capacity (Gallager, 1968; Cover and Thomas, 1991). In
this context reliability refers to the requirement that the
transferred messages have to be received without possibility
of misunderstanding, i.e., the communication errors have to be
removed by the selected coding strategy. One speaks of zero-
error capacity when imposing this constraint for codes of finite
length (i.e., codes which operate on a finite number of
information carries or channel uses) (Shannon, 1956;
Körner and Orlitsky, 1998). However, in many cases of
physical and technological interest, it is more reasonable
and mathematically more convenient to enforce such a
condition only in the asymptotic limit of infinitely long
messages. Under this paradigm, in fact, explicit expressions
for the channel capacity are available as a function of the noise
model which is tampering the communication line. For
instance, in the case of a memoryless classical channel
characterized by the conditional probability pðyjxÞ of pro-
ducing the output symbol y when fed with input x, the
associated capacity can be expressed as (Shannon, 1948)

CSH ¼ max
pðxÞ

IðX∶YÞ; ð144Þ

where the maximization is performed over all probability
distributions on x, and where IðX∶YÞ is the corresponding
Shannon mutual information; see Sec. II.K. The proof leading
to Eq. (144) relies on the notion of typical sequences
(Gallager, 1968; Cover and Thomas, 1991) and it does not
provide an explicit recipe for determining the optimal coding
and decoding strategies; this is why error-correcting codes and
capacities are often treated as distinct subjects with no
exception for the quantum realm, except a few notable
exceptions, e.g., polar codes (Arikan, 2009). Yet Shannon’s
result establishes a fundamental benchmark that is useful to
test the effectiveness of any coding procedure; an informal and
clear introduction to these topics can be found in Preskill
(1998) or Galindo and Martín-Delgado (2002). Strong ver-
sions of the converse Shannon theorem have been proved
(Wolfowitz, 1964; Arimoto, 1973), which establish that if the
rate of communication of a (memoryless) classical channel
exceeds CSH, then the error probability of any coding scheme
converges to one in the limit of many channel uses.
The notion of capacity based on asymptotic reliability has

also an important operational meaning stated by the reverse
Shannon theorem, a result which was only formulated and

FIG. 17 (color online). The channel encoding the ⟦3; 1⟧
1-convolutional stabilizer code. The first input qubit is the
memory input, and the last output qubit is the memory output.
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proved only recently within the context of quantum commu-
nication (Bennett, Shor et al., 1999; Bennett et al., 2002; Cuff,
2008). According to it, for any classical noisy channel of
capacity CSH, if the sender and receiver share an unlimited
supply of random bits, an expected nCSH þ oðnÞ uses of a
noiseless binary channel are sufficient to exactly simulate n
uses of the original channel.
As anticipated in Sec. I, the generalization of the above ideas

to the quantum setting leads to the introduction of a plethora
of channel capacities, depending on whether classical or
quantum information has to be transmitted, and whether
additional resources, as preshared entanglement, are exploited.
Unification of these quantities under a common formalism
based on resource inequalities was presented by Abeyesinghe
and Hayden (2003), Devetak, Harrow, and Winter (2004,
2008), Abeyesinghe et al. (2009), and Hsieh and Wilde
(2010a, 2010b). Here we do not report this approach; instead
we focus on clarifying the operational definitions of these
quantities in a framework which does not make explicit
reference to the structure of the communication line. Then
coding theorems will be reviewed, which allow one to express
the capacities in terms of suitable entropic quantities, starting
from the case of memoryless channels (the best understood and

characterized so far) and then moving on to the more complex
scenario of memory channels.

A. Operational definitions

1. Sending bits or qubits on a quantum channel

The classical (respectively, quantum) capacity C (respec-
tively,Q) of a quantum channel defined by the CPTPmapsΦðnÞ

of Eq. (78) is the maximum rate R at which classical (respec-
tively, quantum) information, encoded on a set of quantum
carriers, can be sent reliably from the sender Alice to the
receiverBob (Shor, 1995); seeFig. 18.As in the classical setting
(Shannon, 1948) the rate is measured as the ratio R ¼ k=n
among the number k of bits (respectively, qubits) transmitted
and the numbern of carriers employed (the “redundancy” of the
code according to Sec. IV). Similarly the reliability condition is
introduced by requiring that in the asymptotic limit of k → ∞
the error probability of the procedure can be made arbitrarily
small (or, equivalently, the fidelity of the transmission will
approach unity), while keeping R constant. In view of these
operational definitions, C and Q can be expressed as the
following limit (Bennett and Shor, 1998; Bennett et al., 2002):

lim
ϵ→0

lim sup
k→∞

�
k
n
∶ ∃Φðk→nÞ

E ; ∃Φðn→kÞ
D ;min

m∈M
Fðjmi;Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ > 1 − ϵ

�
; ð145Þ

where, analogously to the notation introduced at the begin-

ning of Sec. IV and as shown in Fig. 18, Φðk→nÞ
E and Φðn→kÞ

D
are, respectively, encoding and decoding channels mapping
elements jmi from a reference input spaceM (the messages

Alice wishes to send to Bob) to states Φðk→nÞ
E ðmÞ ≔

Φðk→nÞ
E ðjmihmjÞ of n carriers (the code words of the

procedure), and F is the input-output fidelity function
introduced in Sec. II.J.1. In particular, to fix the units
properly, the expression for C is obtained by taking M
to be a collection of 2k orthogonal vectors which, without
loss of generality can be identified with the elements
fj0i; j1ig⊗k of the computational basis of k qubits. On
the other hand, for the quantum capacity Q the set M

coincides with the whole C2⊗k (as the latter includes the
elements of the canonical basis, it trivially follows that for a
given communication line one has Q ≤ C). The limits in
Eq. (145) are finally computed by first taking a supremum
limit in k → ∞ (which always exists) and then sending the
error parameter ϵ to zero to enforce the transmission fidelity
to approach unity for all input messages. In Eq. (145) this is
explicitly enforced by requiring 1 − ϵ to lower bound the
minimum value achieved onM by the transmission fidelity.
Such a rather strong requirement however can be relaxed by
replacing it with a similar constraint that applies only on the
average transmission fidelity: this does not affect the limit in
Eq. (145) and hence the definitions of either C or Q (Keyl,
2002; Kretschmann and Werner, 2004). Similarly the same
value of Q one gets from Eq. (145) can also be obtained by
substituting the minimum inF with the entanglement fidelity
introduced in Eq. (52) (Barnum, Knill, and Nielsen, 2000;
Kretschmann and Werner, 2004).6

FIG. 18. Classical (C) and quantum (Q) capacities of a (mem-
oryless or memory) quantum channel Φ in terms of all possible
classical or quantum encoding and decoding schemes, with the
potential use of additional resources as shared entanglement.

6All definitions introduced so far assume a notion of capacity in
which the error probability is required to nullify only in the
asymptotic limit of large enough k. As in classical communication
theory (Shannon, 1956; Körner and Orlitsky, 1998), however, a more
stringent reliability requirement can be enforced, i.e., imposing that
the min-fidelity onM should equal 1 for a finite number n of channel
uses. Under this condition one is led to the definition of zero-error
classical and quantum capacities (Medeiros and de Assis, 2005). This
corresponds to the maximal communication rate achievable by
perfect codes, as introduced in Sec. IV.
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Finally, one observes that the definition (145) yields a
natural data-processing inequality for the capacities. For
instance, given C the classical capacity of a quantum channel
whose CPTP mapping ΦðnÞ ¼ Φ0ðnÞ∘Φ00ðnÞ is obtained by
concatenating the other two CPTP maps, one has

C ≤ minfC0; C00g; ð146Þ
where C0 and C00 are, respectively, the classical capacities of
channels described by Φ0ðnÞ and Φ00ðnÞ [the same relation also
applies for the quantum capacitiesQ,Q0, andQ00 as well as for
all the other capacities reviewed in Sec. V.A with the notable
exception of those discussed in Sec. V.A.4, where the
constraints may introduce spurious effects in the optimization,
see, e.g., Giovannetti and Mancini (2005)]. The proof of this
rather intuitive fact follows by observing that when passing
from C to C0 one can interpret Φ00ðnÞ as part of the decoding
procedure of map Φ0ðnÞ. Since the C0 is obtained by optimizing
the transmission rate with respect to all possible decodings,
including those that do not use Φ00ðnÞ as a preliminary stage, it
follows that C0 is certainly not smaller than C. Similarly when
passing from C to C00, one can interpret Φ0ðnÞ as part of the
encoding stage for Φ00ðnÞ: again since C00 is the optimal rate
with respect to all encoding maps one has that it is certainly
not smaller than C. An application of the above analysis

to two channels ΦðnÞ
1 and ΦðnÞ

2 which are unitarily equivalent
Eq. (5) shows that they must possess the same capacities:
in this case indeed the CPTP concatenation which links the
two maps can always be reversed, producing both the

inequality CðΦðnÞ
1 Þ ≤ CðΦðnÞ

2 Þ and its counterpart CðΦðnÞ
2 Þ ≤

CðΦðnÞ
1 Þ.

2. Capacities assisted by ancillary resources

Entanglement is a fundamental resource in quantum infor-
mation theory. In the context of quantum communication this
fact is testified by the teleportation (Bennett et al., 1993) and
superdense coding (Bennett and Wiesner, 1992) protocols.
The former provides a nontrivial way of transmitting arbitrary
quantum states when quantum carriers are not available but
only bits can be exchanged through a classical communication
line. The latter instead, in the presence of a noiseless quantum
communication line, allows one to send 2 bits of classical
information per transferred physical qubit. The necessary
additional resource for both procedures is a shared entangled
state between the sender Alice and receiver Bob. Application
of these ideas to noisy communication lines introduces the
notion of entanglement-assisted classical capacity Cea
(respectively, quantum capacity Qea) of a quantum channel
Φ (Bennett, Shor et al., 1999; Bennett et al., 2002).
Operationally they are defined as the maximum rate of reliable
transmission of classical (respectively, quantum) information
when the sender and the receiver have at their disposal an
unbounded number of preshared maximally entangled states
as ancillary side resources. Formal expressions are hence
obtained through the same limit given in Eq. (145) with the

difference that now the transformations Φðk→nÞ
E and Φðn→kÞ

D
map elements of the reference input space M to and from the
joint space associated with the n carriers of the channel plus the

local quantum memories where Alice and Bob are storing

their prior entangled states (specifically Φðk→nÞ
E acts on Alice’s

memories, and Φðn→kÞ
D on Bob’s memories). While by defi-

nition Cea and Qea provide natural upper bounds for the
unassisted counterparts C and Q, respectively, a direct appli-
cation of the teleportation and superdense coding protocol
shows that for any given quantum channel they are related by
the identity Cea ¼ 2Qea (Bennett, Shor et al., 1999).
Unlimited classical communication between Alice and Bob

is another example of an ancillary resource which is known to
increase the ability of transferring arbitrary quantum states
over a quantum channel via the application of entanglement
distillation protocols—admitting only forward classical com-
munication from Alice to Bob is instead of no use in this
respect (Bennett et al., 1996). This yields the notion of the
(two-way) classical assisted quantum capacity Q2 (Bennett,
Shor et al., 1999; Bennett et al., 2002) which again can be
formally expressed as in Eq. (145) by replacing the concat-
enation Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E with an arbitrary LOCC process

intermediated by the action of the channel (see Sec. II.H).
Quantum capacity assisted by providing access to nontrivial
zero quantum capacity side channels was analyzed by Smith,
Smolin, and Winter (2008).
Both the classical and quantum capacities of a channel can

finally also be improved by allowing a feedback communi-
cation line (either quantum or classical) which permits the
receiver Bob of the messages to signal to the sender Alice.
Interestingly enough it has been shown that using feedback in
the presence of prior shared entanglement is of no use, i.e.,
CeaþFB ¼ Cea and QeaþFB ¼ Qea (Bowen, 2004, 2005).
A partial ordering among some of the quantities introduced

in this section is provided in Bennett et al. (2006).

3. Private classical capacity of a quantum channel

The private classical capacity Cp of a quantum channel is
defined as the maximum rate at which classical information
can be transmitted privately from the sender to the receiver.
Formally this is enforced by requiring that a third party (Eve)
who has access to the channel environment, and who is trying
to recover Alice messages to Bob, will get it with an error
probability that is approaching unity in the asymptotic limit of
infinitely long messages (Cai, Winter, and Yeung, 2004;
Devetak, 2005). Again Cp can be expressed as the limit in
Eq. (145) by further constraining the coding and decoding
procedures to satisfy an entropic inequality that implement the
privacy requirement. Specifically this is obtained by upper
bounding with ϵ the Holevo information (71) of the comple-
mentary channel (19) of ΦðnÞ and associated with the uniform
ensemble E ¼ fpm ¼ 2−k;Φðk→nÞ

E ðmÞgm∈M generated by the
encoding mapping selected by Alice. As the complementary
map is the transformation that links the channel inputs to the
images they produce on the environment (see Sec. II.G), this
choice, via the Holevo bound (72), ensures that the informa-
tion Eve can recover on Alice’s messages vanishes when
taking the limit ϵ → 0. By construction Cp is always smaller
or equal to the corresponding C and greater or equal to Q, i.e.,

C ≥ Cp ≥ Q ð147Þ
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(the last inequality is associated with the fact that the ability of
sending all vectors of C2⊗k with unit fidelity ensures that no
information on the transferred states is passing from Alice to
the environment).

4. Constrained capacities

The operational definitions of capacities can be modified in
order to account for possible constraints on the input (or
output) states on the channel. For instance, three weaker
versions of the classical capacity of a quantum channel have
been identified (Bennett and Shor, 1998). Specifically one
defines the product-state (or classical-quantum or Holevo)
classical capacity Ccq (which following a rather universal
convention hereafter is indicated with the symbol C1) by
requiring that the employed coding maps entering in Eq. (145)
produce only separable code words, that is, Φðk→nÞ

E ðmÞ is a
separable state of the n carriers for all messages jmi inM [one
notes incidentally that the analogous of C1 for the classical
private capacity Cp, i.e., the product-state private classical
capacity Cp;1, has been defined by Devetak (2005); see
Sec. V.B.2]. Similarly one defines a quantum-classical capac-
ity Cqc by leaving the encoding channel unconstrained but
imposing the decoding channels Φðn→kÞ

D to be LOCC with
respect to the outputs of different uses of the channel. Finally
assuming LOCC operations for Φðn→kÞ

D and separability for the
code words Φðk→nÞ

E ðmÞ one defines the classical-classical
capacity Ccc. The unconstrained capacity C (often identified
in this context also as the quantum-quantum or Cqq capacity)
is a natural [and in general strict (Hastings, 2009)] upper
bound for the others. Similarly, for any assigned quantum
channel, Ccc is a natural lower bound for Ccq and Cqc, the
ordering between the last two being at present unknown.
Of special interest is also a class of physically motivated

constrained capacities obtained by introducing a family of
observables fAðnÞgn¼1;…;∞ and by imposing that for any n the
mean value of AðnÞ is bounded on the ensemble of states at the
input of n uses of the quantum channel. The capacity of a
quantum channel under such a constraint can be defined as in
Eq. (145) under the additional requirement that for any k and n

TrðAðnÞρðnÞÞ ≤ a; ð148Þ

with ρðnÞ ¼ Φk→n
E ð1=2kÞ, 1=2k being the average state over the

set M. In particular, a relevant role is played by additive
observables, for which one can put AðnÞ ¼ n−1

P
n
k¼1 Ak,

where Ak ≡ A is the observable for a single input quantum
system at the input of the kth use of the channel.
The notion of constrained capacity naturally applies in the

context of CV channels (see Sec. II.I.4). Indeed, due to the fact
that the carrier Hilbert space is infinite dimensional it turns out
that the capacity of a CV channel can be infinite (Holevo and
Werner, 2001). In fact, an infinite value for the capacity
corresponds to the encoding of information into larger and
larger sectors of the Hilbert space. Clearly, that is in contra-
diction with the finiteness of the resources employed in
physical realizations, e.g., the finiteness of the mean energy.
It is hence meaningful to introduce a notion of capacity under
a physically motivated constraint. Most natural choices are to
impose a constraint on the mean value of the energy or the

number of bosonic excitation per mode. In the latter case one
has An ¼ n−1

P
n
k¼1 a

†
kak, where fak; a†kg are the canonical

ladder operators at the channel input. From a technical point of
view, these choices, besides being physically sound, guarantee
that the set of states satisfying the constraint form a compact
set. This is a crucial feature to ensure that the coding theorems
for Gaussian channels under a constrained mean excitation
number (or energy) yield expressions formally analogous to
the unconstrained case, with the optimization being performed
over input ensembles satisfying the constraint (Holevo, 1997,
2004; Holevo and Shirokov, 2006). Since the excitation
number and the energy are quadratic in the canonical
variables, their mean values can be expressed in terms of
the first and second moments of the characteristic function of
the input states; see Sec. II.I.4. In particular, the condition of
having no more than N mean excitations per mode is
expressed in terms of the first and second moments

TrðCðnÞÞ þ jmj2
2n

≤ N þ 1

2
: ð149Þ

5. A superoperator norm approach to quantum capacities

The limit that definesC andQ in Eq. (145) indicates that for
sufficiently large k there exists Φðn→kÞ

D and Φðk→nÞ
E which

makesΦðn→kÞ
D ∘ΦðnÞ∘Φðk→nÞ

E close to the identity transformation
idM on M. Specifically for the quantum capacity Q, idM is
the identity superoperator on C2⊗k, while for the classical
capacity C, the map idM is the fully dephasing channel on
C2⊗k which leaves the elements of its computational basis
fj0i; j1ig⊗k unchanged.
Based on this observation a definition of capacities which is

fully equivalent to the approach of Sec. V.A.1 can be given in
terms of the cb-norm superoperator distance defined in
Sec. II.J.2. In this approach (Keyl, 2002; Kretschmann,
2003), a positive quantity R is said to be an achievable rate
for the channel Φ if for all sequences fki; nigi∈N with
limi→∞ki ¼ ∞ and lim supi→∞ki=ni < R one has

lim
i→∞

inf
ΦD;ΦE

jjjΦ�ðki→niÞ
E ∘Φ�ðniÞ∘ΦD

�ðni→kiÞ− id�Mjjjcb ¼ 0; ð150Þ

where Φ�ðki→niÞ
E , Φ�ðniÞ, and ΦD

�ðni→kiÞ are the duals (10) of the
maps Φðki→niÞ

E , ΦðniÞ, and ΦD
ðni→kiÞ defined in Eq. (145), while

id�M is the dual of the identity map on M. With this
prescription the values of Q and C are then identified as
the supremum of the corresponding achievable rates. A similar
construction was also presented by Holevo and Werner (2001)
and Kretschmann and Werner (2004): here, however, the cb-
norm distance was used directly in the Schrödinger channel
representation.

B. Coding theorems for memoryless channels

Coding theorems provide expressions for the communica-
tion capacities of memoryless quantum channels (75) in terms
of suitable entropic functions of the input and output states of
the channel. While referring the interested reader to Winter
(1999a), Holevo (2012), and Wilde (2013) for a detailed
review of the subject, here the main results are reported
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concerning the entanglement-assisted classical capacity, the
classical capacity and its product-state version, the private
classical capacity, and the quantum capacity. Limitations and
applicability of these expressions for the case of memory
channels are discussed in Sec. V.C.

1. The Holevo-Schumacher-Westermoreland coding theorem

Preliminary attempts to compute the classical capacity of
quantum channels were presented by Hausladen et al. (1995,
1996). A closed expression for the product-state classical
capacity introduced in Sec. V.A.4 was finally provided by the
Holevo-Schumacher-Westermoreland (HSW) coding theorem
(Schumacher and Westmoreland, 1997; Holevo, 1998a). It
mimics the Shannon formula (144) by establishing the fact
that, for a memoryless channel Φ, C1ðΦÞ can be expressed in
terms of a maximization of the associated output Holevo
information (71) over the set of input state ensembles
E ¼ fpj; ρjg (possibly satisfying some additional input
constraints), i.e.,

C1ðΦÞ ¼ max
E

χðE;ΦÞ ð151Þ

[owing to the concavity of von Neumann entropy (Wehrl,
1978; Petz, 2008), the maximization can, in fact, be always
restricted to the ensemble of pure states]. Besides the original
derivations (Schumacher and Westmoreland, 1997; Holevo,
1998a), several independent proofs of Eq. (151) are known
(Holevo, 1998b; Ogawa and Nagaoka, 1999, 2002; Winter,
1999b; Hayashi and Nagaoka, 2003; Datta and Dorlas, 2007;
Hayashi, 2007, 2009; Lloyd, Giovannetti, and Maccone,
2011; Sen, 2011; Giovannetti, Lloyd, and Maccone, 2012).
As is typical with many coding theorems the general argument
beyond the HSW result consists of two parts: (i) an inequality
which establishes the fact that the rhs of Eq. (151) is an upper
bound for the channel capacity (converse part of the theorem),
and (ii) a direct part which proves the existence of a coding
procedure that saturates such a bound asymptotically in the
length of code. Part (i) can be established via the classical
Fano inequality (Cover and Thomas, 1991) (relating the
average information lost in a classical noisy channel to the
error transmission probability) and the Holevo bound inequal-
ity (Holevo, 1973a, 1973b) on the achievable information of a
quantum source; see Eq. (72). A sketch of this proof can be
found in Appendix D. This approach is sufficient to show that
any rate exceeding the capacity will necessarily produce an
error probability which is nonzero even in the limit of
infinitely many channel uses. It is worth noting however that,
in contrast to classical information theory, establishing a
strong version of the converse part of the theorem (i.e.,
proving that the transmission error probability will necessarily
reach 1 as soon as the rate exceeds the capacity threshold) is
particularly demanding in the quantum setting. In fact, strong
converse coding theorems have been derived only for limited
classes of finite dimensional channels (Ogawa and Nagaoka,
1999; Winter, 1999b; König and Wehner, 2009; Wilde,
Winter, and Yang, 2013) while explicit counterexamples have
been provided that show that in general they do not apply
when considering continuous-variable systems (Wilde and
Winter, 2013).

The direct part of the coding theorem which yields to
Eq. (151) is based instead on the notion of typical subspace for
quantum sources (Ohya and Petz, 1993; Schumacher, 1995).
From this it follows that given an ensemble E ¼ fpj; ρjg and
an integer number N fulfilling the condition N ≤ 2nχðE;ΦÞ, one
can identify N code words ρðnÞ1 ;…; ρðnÞN of the form ρðnÞj ¼
ρj1 ⊗ ρj2 ⊗ � � � ρjn and an associated POVM that allows Bob
to discriminate among the output counterparts of the ρðnÞj [i.e.,
the density matrices Φðρj1Þ ⊗ Φðρj2Þ ⊗ � � �ΦðρjnÞ] with an
error probability that can be bounded below any assigned
threshold by sending n to infinity. Accordingly one is thus led
to coding-decoding schemes which guarantee faithful transfer
of classical messages at rates

R ¼ log2N
n

≤ χðE;ΦÞ

(the upper limit being attainable for large enough n), which
approach Eq. (151) when taking the supremum over E.
It is important to note that the POVMwhich comes with the

proof of the HSW theorem is explicitly a joint one: this is the
reason why the rhs of Eq. (151) coincides with C1ðΦÞ and not
with the CccðΦÞ capacity of Sec. V.A.4 (the latter indeed is the
maximum rate attainable when allowing only LOCC oper-
ations among the various channel outputs). In fact, closed-
form expressions for CccðΦÞ and for CqcðΦÞ are at present still
missing. An explicit formula for the unconstrained capacity
CðΦÞ defined in Sec. V.A instead can be obtained as a simple
generalization of Eq. (151). This is done by adopting a block-
coding strategy which, for all n, allows one to represent the
density matrices produced by the (possibly nonseparable)
encoding maps Φðk→nÞ

E of Eq. (145) as tensor states over
blocks of channels uses on which Φ⊗n acts as a single carrier
map with an associated product-state capacity C1ðΦ⊗nÞ. The
resulting capacity ofΦ can then be obtained by taking the limit
over n of the associated rates, i.e.,

CðΦÞ ¼ lim
n→∞

1

n
C1ðΦ⊗nÞ: ð152Þ

2. The private classical capacity theorem

The capacity formula for the private classical capacity
CpðΦÞ introduced in Sec. V.A.3 was given by Cai, Winter, and
Yeung (2004) and Devetak (2005). As for the HSW theorem
discussed in Sec. V.B.1 it is derived by first providing a closed
expression for its product-state version Cp;1ðΦÞ (i.e., the
private classical capacity attainable by using only separable
code words), and then using block coding to compute CpðΦÞ
via the identity

CpðΦÞ ¼ lim
n→∞

1

n
Cp;1ðΦ⊗nÞ: ð153Þ

Analogously to Eq. (151), Cp;1ðΦÞ is a functional of the
Holevo information (71). In this case, however, one has

Cp;1ðΦÞ ¼ max
E

½χðE;ΦÞ − χðE; ~ΦÞ�; ð154Þ
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where ~Φ is the complementary channel of Φ as defined in
Sec. II.G.
The converse part of the proof which leads to Eq. (154) is

obtained by joining the classical Fano inequality and the
Holevo bound at the output of the map Φ with the privacy
requirement imposed on the Holevo information of the
complementary channel ~Φ of Φ. Vice versa the direct part
of the coding theorem is based on the fact that, using a typical
subspace argument, for each ϵ > 0 and for each ensemble
E ¼ fpj; ρjg satisfying χðE;ΦÞ > χðE; ~ΦÞ, one can identify
up to N ≃ 2nχðE;ΦÞ states of the form ρj1 ⊗ ρj2 ⊗ � � � ⊗ ρjN
which, when organized in groups of M ≃ 2nχðE; ~ΦÞ elements
each, (i) can be faithfully discriminated on Bob’s side, and
(ii) fully overlap on Eve’s side. Accordingly by assigning to
each of such group the same classical message, Alice can now

transfer up toN=M ≃ 2n½χðE;ΦÞ−χðE; ~ΦÞ� distinct messages to Bob
without Eve being able to read them.

3. The quantum capacity theorem

The expression for the quantum capacity QðΦÞ of a
memoryless channel Φ is (Lloyd, 1997; Shor, 2002a;
Devetak, 2005)

QðΦÞ ¼ lim
n→∞

1

n
Q1ðΦ⊗nÞ; ð155Þ

where

Q1ðΨÞ ¼ max
ρ

Jðρ;ΨÞ; ð156Þ

with Jðρ;ΨÞ the associated coherent information (68) and the
maximization is over all input states; see also Hayden
et al. (2008).
The converse part of the coding theorem can be obtained as

an application of the quantum Fano inequality (65) which,
when imposing a lower limit to the entanglement fidelity,
forces the dimensionality of M to be bounded in terms of
the channel coherent information (Barnum, Nielsen, and
Schumacher, 1998; Barnum, Knill, and Nielsen, 2000) (in
Appendix D.2 a detailed derivation of this relation is presented
for the general case of non-necessarily memoryless channels).
Following Devetak (2005), a relatively simple proof of the
direct part of the theorem instead can be obtained as a
modification of the coding theorem for the private classical
capacity. The idea here is to extract from the codes which lead
to privacy of the classical messages those that allow also the
preservation of the coherent superpositions among the various
code words. It turns out that this can be enforced by restricting
the maximum in Eq. (154) to only those ensemble E formed
by pure state elements: a condition which, thanks to Eq. (74),
allows one to identify as achievable rates for quantum
communication those obtained from Eq. (154) in which
χðE;ΦÞ − χðE; ~ΦÞ gets replaced by Jðρ;ΦÞ.
4. The Bennett-Shor-Smolin-Thapliyal theorem and the quantum
reverse Shannon theorem

The entanglement-assisted classical capacity of a memory-
less channel is given in terms of the quantum mutual
information defined in Eq. (67), i.e.,

CeaðΦÞ ¼ max
ρ

Iðρ;ΦÞ; ð157Þ
where the maximization is over any input ρ [the corresponding
quantum capacity version QeaðΦÞ being half of CeaðΦÞ as
already anticipated in Sec. V.A.2]. This result was proven by
Bennett, Shor et al. (1999) and Bennett et al. (2002) by
generalizing the dense-coding protocol (Bennett and Wiesner,
1992) to the case of noisy memoryless channel. In dense
coding, the sender and the receiver share a maximally
entangled state in a Hilbert space of finite dimension, say
d2. The sender encodes classical information by applying d2

generalized d-dimensional Pauli unitaries to one-half of the
maximally entangled states, which is then sent through the
channel. These transformations map the given states into d2

orthogonal states, which the receiver can reliably distinguish.
More generally, Alice, the sender, may encode classical
information by applying generic CPTP maps on her half of
the maximally entangled state and then sending it through the
channel. However, Bennett et al. (2002) proved that the use of
encoding by generalized Pauli unitaries is optimal. This is
obtained using the results of Schumacher and Westmoreland
(1997) and Holevo (1998a) about encoding classical infor-
mation into quantum states, which apply also in these settings
[see also Hsieh, Devetak, and Winter (2008)]. It is worth
noting that the encoding by generalized Pauli unitaries
constrains ρ to be the maximally mixed state ρ ¼ 1=d.
This limitation is circumvented by considering the typical
input states in the asymptotic limit of many uses of the
channel, in which the average input state is always the
maximally mixed one on the typical subspace. Remarkably,
due to the subadditivity of the quantum mutual information,
the expression for CeaðΦÞ of a memoryless channel does not
require the regularization over the channel uses.
An important property of CeaðΦÞ is provided by the

quantum reverse Shannon theorem (Bennett et al., 2009;
Berta, Christandl, and Renner, 2011; Berta, Renes, and Wilde,
2013; Berta et al., 2013) which generalizes the reverse
Shannon theorem discussed in the introductory paragraphs
of Sec. V. It establishes the fact that the input-output mapping
of n uses of a memoryless quantum channel Φ can be
simulated using nCeaðΦÞ þ oðnÞ uses of a noiseless (qubit
or bit) channel by providing the sender and the receiver an
unlimited supply of prior shared entanglement.

5. Superadditivity and superactivation

The expressions in Eqs. (152), (153), and (155) for the
classical, private, and quantum capacity of a memoryless
quantum channel require the computation of the regularized
limit over the number of uses of the channel n → ∞. Then one
has the inequalities CðΦÞ ≥ C1ðΦÞ, CpðΦÞ ≥ Cp;1ðΦÞ, and
QðΦÞ ≥ Q1ðΦÞ. For a given memoryless channel Φ, if the first
inequality is strict, that is, CðΦÞ > C1ðΦÞ, one says that the
Holevo information of Φ is superadditive; otherwise it is said
to be additive. Similarly, one says that the coherent informa-
tion is superadditive whenever QðΦÞ > Q1ðΦÞ, and additive
otherwise; see, e.g., Smith (2010).
At a higher level of complexity, when two different

channels, Φ1 and Φ2, are used in parallel the inequalities
CðΦ1 ⊗ Φ2Þ ≥ CðΦ1Þ þ CðΦ2Þ, CpðΦ1 ⊗ Φ2Þ ≥ CpðΦ1Þþ
CpðΦ2Þ, and QðΦ1 ⊗ Φ2Þ ≥ QðΦ1Þ þQðΦ2Þ follow from
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simple coding arguments [for instance, the rate CðΦ1Þ þ
CðΦ2Þ can always be attained by feeding the inputs of Φ1 and
Φ2 independently with their corresponding optimal codes];—
see Fig. 19. If it happens that one of these inequalities is strict,
then one says that the classical (respectively, private, respec-
tively, quantum) capacity is superadditive under the tensor
product of the channels Φ1 and Φ2 [note that the additivity of
(say) the Holevo capacity of Φ1 and Φ2 does not necessarily
guarantee the additivity of C under the tensor prod-
uct Φ1 ⊗ Φ2].
These (super)additivity issues are instances of a general

(super)additivity problem in quantum information theory
(Holevo, 2007c). While it was known early on that the
coherent information can be superadditive (Shor and
Smolin, 1996; DiVincenzo, Shor, and Smolin, 1998), hence
the regularization over n in Eq. (155) is in general necessary,
the problem of determining whether the Holevo information is
additive or superadditive under the tensor product of quantum
channels has been for a long time an open problem. The
additivity of the Holevo information was shown to be
equivalent to the additivity of other quantities in quantum
information theory (Shor, 2004), most notably the entangle-
ment of formation (Bennett et al., 1996) and the minimum
output entropy (King and Ruskai, 2001), and was put in
connection with the behavior of a family of operator norms
under composition of quantum channels (Amosov and
Holevo, 2000; Hayden and Winter, 2008). Only recently it
was established that the Holevo information can indeed be
superadditive for certain quantum channels (Hastings, 2009),
also implying the superadditivity of the minimum output
entropy and the entanglement of formation. Extensions of the
results presented by Hastings (2009) can be found in Aubrun,
Szarek, and Werner (2011), Brandão and Horodecki (2010),
and Fukuda, King, and Moser (2010).
However, notwithstanding the fact that the Holevo infor-

mation is generally superadditive, it has been proven to be
additive for certain classes of quantum channels (Hiroshima,
2006; Amosov and Mancini, 2009), among which are the
qubit unital channels (King, 2002) and the entanglement-
breaking channels (Shor, 2002b). In particular, it is worth
observing that in the case of qc channels (16) the classical
capacity equation (152) reduces to the Shannon capacity (144)
for a classical channel with conditional probability
pðyjxÞ ¼ heyjExjeyi. Moreover, as observed by Holevo

(2007a) if a quantum channel is (super)additive for the
Holevo information, so is its complementary channel. The
coherent information has been proven to be additive for
degradable channels (see Sec. II), for antidegradable channels
[for which the quantum capacity is always zero (Bennett,
DiVincenzo, and Smolin, 1997)], and for entanglement-break-
ing channels (Cubitt, Ruskai, and Smith, 2008) and PPT maps
(see Sec. II.G) (Horodecki, Horodecki, and Horodecki, 1996;
Peres, 1996). Regarding the private classical capacity CpðΦÞ it
is known that it coincides with its product-state version
Cp;1ðΦÞ for degradable and antidegradable maps (Devetak,
2005): in particular, in both cases one has CpðΦÞ ¼
Cp;1ðΦÞ ¼ QðΦÞ ¼ Q1ðΦÞ, which for antidegradable maps
implies CpðΦÞ ¼ 0.
A remarkable example of superadditivity for the quantum

capacity, called superactivation, has been provided by
Smith and Yard (2008) by building up from previous results
on the quantum assisted capacities (Smith, Smolin, and
Winter, 2008). In particular, it has been shown that it is
possible to find channels Φ1 and Φ2 with zero-quantum
capacity, i.e., QðΦ1Þ ¼ QðΦ2Þ ¼ 0, for which, by parallel
use of the two communication lines Φ1 and Φ2 in Φ1 ⊗ Φ2, it
becomes possible to transmit quantum information, i.e.,
QðΦ1 ⊗ Φ2Þ > 0. Specifically, Φ1 and Φ2 are given by an
antidegradable channel and a PPT channel which possesses a
nonzero private classical capacity (Horodecki et al., 2005,
2008). Note that the two channels have zero-quantum capacity
for different reasons: the first as a consequence of the no-
cloning theorem and the second due to the fact that entangle-
ment cannot be distilled from a PPT state. However, while it
cannot be used to distill entanglement, there exist PPT
channels that can still be used to establish a secret key
between the sender and the receiver. See Brandão,
Oppenheim, and Strelchuk (2012) for other examples in terms
of depolarizing maps and for a more general construction.
It is finally worth noting that in the context of zero-error

classical capacity (see footnote 6 in Sec. V.A.1) superactiva-
tion effects have been observed by Duan and Shi (2008) and
Duan (2009).

C. Coding theorems for memory channels

The operational definitions of channel capacities, intro-
duced in Sec. V.A, apply to both memoryless and memory
quantum channels. Indeed they express the optimal classical
and quantum information transmission rates between two
parties, no matter how complex the internal structure of the
communication line is. However, the memory setting is often
more complicated than the memoryless one. One notes, in
particular, that when dealing with nonanticipatory channels,
introduced in Sec. III.B, different notions of coding proce-
dures and capacities can be defined depending on whom,
among Alice, Bob or a third party (Eve), controls (or uses for
the encoding and decoding procedures) the initial and final
states of the memory system M. For instance, for the same
communication line one can introduce the classical capacities
CAB, CAE, CEB;μ, CEE;μ, with the first (second) index repre-
senting the party controlling the initial (final) memory state
and μ being Eve’s choice for the initial state of the memoryM
(when considered); the same classification holds for the other

FIG. 19. According to the superadditivity property of channel
capacities, the capability of transmitting classical or quantum
information over a tensor product of two maps Φ1 and Φ2 is, in
general, larger than the sum of the individual capacities. This can
be intuitively understood by the fact that global encoding or
decoding schemes allow one to explore a larger part of the Hilbert
space, with respect to the local ones.

Caruso et al.: Quantum channels and memory effects 1239

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



forms of capacity, i.e., quantum, private classical, etc. The
differences between these various choices have been analyzed
by Kretschmann and Werner (2005): here, for simplicity, only
the situation in which the third party (Eve) has full control of
the memory M will be considered.

1. Entropic bounds

The presence of correlations introduced by noise makes
more remote the possibility of formalizing capacities in terms
of entropic quantities when residing in the memory setting. A
useful strategy is to derive bounds on the capacities, with
particular attention to upper bounds, and then show whenever
possible their achievability (thus providing coding theorems).
The first attempt in this direction was presented by Bowen and
Mancini (2004), where for the case of finite-memory channels,
i.e., maps with memory of finite dimension (described in
Sec. III.D.2), the bounds of Eqs. (158) and (159) discussed
later (as well as an analogous inequality for the entanglement-
assisted capacity) were derived and shown to be achievable for
a class of Markovian channels.
Simple geometric considerations allow one to conclude that

both C and Q, independently of the noise model, can never be
larger than log2 d, where d is the dimension of the Hilbert
space of an individual carrier (the rationale being that in the
space of n carriers one cannot fit more than dn orthogonal
states). This threshold however is not particularly informative
as it does not depend upon the CPTP mapping which
describes the action of the channel (its value being achieved
only by noiseless channels, i.e., by identity or unitary maps).
Tighter upper limits on C and Q can be derived from the
Holevo bound (72) and the quantum Fano inequality (65),
respectively. Specifically as explicitly shown in Appendix D.1
for the classical capacity one gets

C ≤ lim
n→∞

1

n
max
E

χðE;ΦðnÞÞ; ð158Þ

where χð� � �Þ is the Holevo information defined as in Eq. (71)
and the maximization is performed over the ensembles of the
first n input carriers. Similarly for the quantum capacity one
has

Q ≤ lim
n→∞

1

n
max
ρ

Jðρ;ΦðnÞÞ; ð159Þ

where the maximization is now performed over the set of
density matrices of the first n carriers, and where Jð� � �Þ is the
coherent information defined in Eq. (68); see Appendix D.2.
By direct comparison with Eqs. (152) and (155), one notes

that for memoryless channels (i.e., when ΦðnÞ ¼ Φ⊗n) the
bounds given above coincide with the exact values of the
corresponding capacities. If the channel has memory corre-
lations however, this feature is typically lost apart from some
special configurations that are analyzed in Secs. V.C.2
and V.C.3.
It is worth stressing that the inequalities (158) and (159)

refer to the limit of an infinite number of channel uses, i.e.,
they are asymptotic. Besides them, one could also consider
bounds referring to a finite number of channel uses (the

so-called one-shot setting). Note that any situation in which a
channel is used a finite number of times with arbitrarily
correlated noise can be equivalently described as a single use
of a larger channel. Bounds on the one-shot classical capacity
have been found by Wang and Renner (2012) by using a
relative entropy-type measure defined via hypothesis testing,
while bounds on the one-shot quantum capacity have been
derived by Buscemi and Datta (2010) in terms of a generali-
zation of relative Renyi entropy of zero order.

2. Perfect memory channels

Perfect memory channels admit a Kraus representation with
a number of Kraus operators growing subexponentially with
the number of channel uses n; see Sec. III.D.3. In other
words, the size of the environment is not large enough to
“contain” the information sent from Alice to Bob, which is
exponentially increasing in n, and so asymptotically the loss
of information into the environment is negligible. This
intuitively explains that perfect memory channels are asymp-
totically noiseless and have maximal capacities, i.e.,
C ¼ Q ¼ log2 d.
Specifically, one can verify that (Kretschmann and Werner,

2005; Giovannetti, Burgarth, and Mancini, 2009) given a
perfect memory channel ΦðnÞ [see Eq. (80)], for sufficiently
large n there exists a coding procedure which allows zero-
error classical communication for reference set M of size

jMj ≥ dn

d2M
; ð160Þ

with dM satisfying Eq. (94) and dn being the size of the n
carriers. The corresponding rate is hence

R ≥ log2d −
2

n
log2dM;

that for n → ∞ converges to the optimal value log2 d,
implying hence C ¼ log2 d. Analogously, for sufficiently
large n there exists a zero-error quantum communication
with a reference set M of dimension

jMj ≥ dn

d4M þ d2M
ð161Þ

with rate

R ≥ log2d −
1

n
log2½d4M þ d2M�

which, again, for n → ∞ converges to the optimal value
log2 d.

3. Forgetful channels

Forgetful channels are characterized by the property that
the effects of the initial memory state become negligible
with time, i.e., memory effects die away exponentially
fast, as discussed in Sec. III.D.6. This feature allows one
to prove that the upper bounds of Eqs. (158) and (159)
can be actually asymptotically achieved (Kretschmann and
Werner, 2005). Such important result can be demonstrated by

1240 Caruso et al.: Quantum channels and memory effects

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



invoking a double-blocking encoding procedure which effec-
tively maps forgetful channels into memoryless ones.
Consider a n-fold concatenation of a memory channel

ΦðnÞ. If the channel is strictly forgetful (see Sec. III.D.6),
there exists a finite integer m such that for all n ≥ m the final
state of the memory system does not depend on its initial state.
In such a case, it is possible to group the channels ΦðnÞ into
blocks of length mþ l, encoding the input in the l channels
and ignoring the intermediate m ones. Accordingly the
memory channel is reduced to a memoryless one defined
on the larger Hilbert spaces HQ

⊗lþm, hence allowing one to
extend the coding theorems for memoryless channels.
Remarkably, the double-block strategy can be applied even
if the channel is forgetful although not strictly forgetful.
Therefore, the memoryless expressions for classical and
quantum channel capacities in Eqs. (152)–(155) can be
applied also in the memory setting for forgetful maps, and
the entropic upper bounds in Eqs. (158) and (159) are exactly
achieved (the same holds true for entanglement-assisted
capacity).
Forgetful channels have been proven to constitute a dense

set with the topology induced by the cb-norm distance
(Kretschmann and Werner, 2005). That implies that any
nonforgetful channel can be approximated by a forgetful
one. Notwithstanding, their capacities may be different. An
example can be given in the context of Markovian channels. A
long-term memory channel, Sec. III.D.8, can be approximated
by a forgetful Markovian channel, Sec. III.D.4. However,
according to the coding theorem for long-term memory
channels discussed in the following section, the capacity of
the latter does not approximate the capacity of the former
(Datta and Dorlas, 2009).

4. Long-term memory channels

An example of memory channels for which the
bounds (158) and (159) are not tight is provided by the
long-term quantum memory channels of the form (77); see
Sec. III.D.8. In that context it is worth noting that if the set
fΦigi contains a finite number of elements, the determination
of capacities of the averaged channel is equivalent to the
determination of capacities of the associated compound
channel (see Sec. III.A.1), since for finite sums one can
always bound the error probability of the individual
(memoryless) branches by the error probability of the aver-
aged channel and vice versa. Then, under the condition of
fΦigN<þ∞

i¼1 , it has been shown that the product-state classical
capacity is given by

C1 ¼ sup
E
½min

i
χðE;ΦiÞ�; ð162Þ

where the supremum is taken over all finite ensembles E of
input states (Datta and Dorlas, 2007). This result was derived
by employing a quantum version of Feinstein’s fundamental
lemma (Feinstein, 1954; Khinchin, 1957) and a generalization
of Helstrom’s theorem (Helstrom, 1976). The basic idea is to
allow Alice and Bob to use the first channel uses to determine
which, among the various possible channels Φi, happens to be
assigned by the statistical process that defines the communi-
cation line via Eq. (77). After that, Alice and Bob can use a

proper HSW encoding to optimize the communication rate.
Accordingly it is clear that the maximum rate for which
reliable transmission can be guaranteed is the lowest one
among those allowed by the Φi. Indeed by operating the
channel to the highest rate allowed by the collection of maps
fΦig will introduce errors with finite probability.
The product-state capacity can be generalized to give the

classical capacity of the channel in the usual manner, that is,
by considering inputs that are product states over uses of
blocks of n channels, but may be entangled across different
uses within the same block. This yields the value

C ¼ lim
n→∞

1

n
C1ðΦðnÞÞ; ð163Þ

which, in general, is smaller than the bound (158). Similarly,
the entanglement-assisted classical capacity has been proven
to be expressed as (Datta, Suhov, and Dorlas, 2008)

Cea ¼ sup
ρ
½min

i
Iðρ;ΦiÞ�; ð164Þ

where Iðρ;ΦiÞ is the quantum mutual information (67).
Finally, Bjelaković, Boche, and Nötzel (2009) provided the
expression for the quantum capacity

Q ¼ lim
n→∞

1

n
max
ρ

½inf
i
Jðρ;Φ⊗n

i Þ�: ð165Þ

Actually it was shown, by means of a discretization technique
based on τ nets, that this result holds true for the compound
channel associated with an arbitrary set fΦig (not only a finite
one). Finding the best rate for quantum communication over
an arbitrary set of channels can be viewed as a universal
coding problem. As such this result looks like a quantum
channel counterpart of the universal quantum data compres-
sion result discovered by Jozsa et al. (1998).

5. Ergodic cq channels with decaying input memory

For cq channels (Sec. II.E) W∶AZ × BZ → C which are
stationary ergodic (Sec. III.C) and have decaying input
memory (Sec. III.D.7), a coding theorem has been derived
(Bjelaković and Boche, 2008) such that the classical capacity
is given by

CðWÞ ¼ sup
p stationary ergodic

iðp;WÞ; ð166Þ

where

iðp;WÞ ≔ lim
n→∞

1

n
½SðρnpÞ þ SðρnWÞ − Sðρnp;WÞ�; ð167Þ

with

ρnp ¼
X
xn∈An

pnðxnÞjxnihxnj; ð168Þ

ρnW ¼
X
xn∈An

pnðxnÞρxn ; ð169Þ

ρnp;W ¼
X
xn∈An

pnðxnÞjxnihxnj ⊗ ρxn : ð170Þ
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Here ρxn denotes the density operator of the output state
Wnðxn; ·Þ, xn ∈ An and jxni ¼ jex1i ⊗ � � � ⊗ jexni for some

orthonormal basis fjeiigjAji¼1 of CjAj.
The sup in Eq. (166) is calculated over all stationary ergodic

probability measures p on AZ. That is, consider a shift
T∶ AZ → AZ of double infinite sequences of A; then p is
stationary if pðTaÞ ¼ pðaÞ for all a ∈ AZ. Moreover, it is
ergodic if for all a ∈ AZ such that Ta ¼ a it is pðaÞ ¼ 0 or 1.
The above theorem results as an extension of the coding

theorem for the input memoryless cq channel whose proof
combines Wolfowitz’s code construction (Wolfowitz, 1957)
and a version of Feinstein’s lemma (Blackwell, Breiman, and
Thomasian, 1958) based on the notion of the joint input-
output probability distribution.

VI. SOLVABLE MODELS

A. Examples of solvable models for memoryless channels

This section collects examples of discrete and continuous
memoryless quantum channels for which classical or quantum
capacities can be analytically calculated. For most of them the
calculation is made feasible by the fact that the Holevo
information or the coherent information is additive. Hence
the regularization in the limit of infinite n of Eqs. (152) and
(155) is not necessary as the capacities equal their product-
state version.

1. Discrete-variable memoryless channels

A closed expression for the classical capacity can be
obtained for unital qubit channels (mapping the two-
dimensional identity operator into itself, see Sec. II.I.1) and
for the depolarizing channel acting on a finite dimensional
Hilbert space of arbitrary dimension. For these channels the
Holevo information has been proven to be additive (King,
2002, 2003).
Since any unital qubit channel is unitary equivalent to a Pauli

channel (28) and, as discussed in Sec. V.A, capacities are
invariant under unitary tranformations, it is sufficient to
consider the latter. As anticipated, the classical capacity for
these maps equals its product-state version. The fundamental
ingredient to achieve this goal is the inequality Eq. (D9),
derived in Appendix D.1 (which for this special channel can be
shown to be achievable), and the fact that SminðΦ⊗nÞ happens
to be additive, i.e., SminðΦ⊗nÞ ¼ nSminðΦÞ. The resulting
expression for the classical capacity is then computed as

CðΦÞ ¼ C1ðΦÞ ¼ 1 − h

�
1þ ξ

2

�
; ð171Þ

where h is the binary Shannon entropy (66) and ξ is the
maximum among jp0 þ p1 − p2 − p3j, jp0 − p1 þ p2 − p3j,
and jp0 − p1 − p2 þ p3j. One may notice that the capacity
reaches its maximum value of 1 if and only if ξ ¼ 1, i.e., when
at least two of the probabilities pi are different from zero.
Vice versa the capacity nullifies for ξ ¼ 0, i.e., when pi ¼ 1=4
which corresponds to a fully depolarizing qubit map sending ρ
into the completely mixed state 1=2. In a similar way the
classical capacity of the qudit depolarizing channel of Eq. (36)
can be shown to be

CðΦÞ ¼ C1ðΦÞ ¼ log2dþ
�
1 − λ −

1 − λ

d

�
log2

�
1 − λ

d

�

þ
�
λþ 1 − λ

d

�
log2

�
λþ 1 − λ

d

�
; ð172Þ

and the maximum in Eq. (151) is achieved by a set of d
equiprobable orthogonal pure states (King, 2003). Moreover,
the entanglement-assisted classical capacityCeaðΦÞ is given by
the same expression as for CðΦÞ but replacing d with d2. A
similar expression can be derived for the transpose depolarizing
channel of Eq. (37) which has also been proven to have additive
Holevo information (Fannes et al., 2004; Datta, Holevo, and
Suhov, 2006).
Concerning the large class of qubit maps in Eq. (27), the full

quantum capacity, corresponding to the product-state one for
the degradable case (since the coherent information is addi-
tive) and vanishing for the antidegradable regime, is given by
(Giovannetti and Fazio, 2005; Wolf and Pérez-García, 2007)

QðΦÞ ¼
�
fðθ;ϕÞ for cosð2θÞ= cosð2ϕÞ > 0;

0 for cosð2θÞ= cosð2ϕÞ ≤ 0;
ð173Þ

with

fðθ;ϕÞ ¼ max
q∈½0;1�

fh½qcos2θ þ ð1 − qÞsin2ϕ�

− h½qsin2θ þ ð1 − qÞsin2ϕ�g: ð174Þ

Finally the erasure channel introduced in Sec. II.I.2 is one
of the few examples for which one can compute the whole set
of capacities. This map is degradable for p ≤ 1=2 and has a
quantum capacity QðΦÞ ¼ ð1 − 2pÞ log2 d with d being the
dimension of the input carrier; for p ≥ 1=2 it is, instead,
antidegradable, hence with vanishing Q. Its Holevo informa-
tion is also additive, yielding a classical capacity equal to
CðΦÞ ¼ ð1 − pÞ log2 d which can also be shown to coincide
with the two-way classically assisted quantum capacity
Q2ðΦÞ. Finally the entanglement-assisted classical capacity
is CeaðΦÞ ¼ 2CðΦÞ ¼ 2ð1 − pÞlog2d (Bennett, DiVincenzo,
and Smolin, 1997; Bennett, Shor et al., 1999); these quantities
are shown in Fig. 20.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

C
ha

nn
el

 C
ap

ac
it

ie
s

p

 C
 Cea

 Q

FIG. 20 (color online). Classical capacity (C), entanglement-
assisted classical capacity (Cea), and quantum capacity (Q) of the
erasure channel mapping the input state into itself with proba-
bility p and into an orthogonal state otherwise; see Sec. II.I.2. The
local dimension of the carrier is d ¼ 2.
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2. Continuous-variable memoryless channels

The very first example of a nontrivial CV memoryless
channel for which the capacity has been explicitly computed
was provided by Holevo, Sohma, and Hirota (1999) who
considered a cq channel where classical messages are mapped
into Guassian states obtained by continuously displacing an
assigned Gibbs reference state. This is a special example of
one-mode Guassian channels; see Sec. II.I.4. Under the
memoryless condition the latter can be identified by a triad
ðdð1Þ;Xð1Þ;Yð1ÞÞ, where dð1Þ is a two-component displacement
vector, and Xð1Þ, Yð1Þ are 2 × 2 matrices. Therefore, a
sequence of n consecutive channel uses is described by a
triad ðdðnÞ;XðnÞ;YðnÞÞ, where dðnÞ ¼ ⨁n

k¼1d
ð1Þ, XðnÞ ¼

⨁n
k¼1X

ð1Þ, and YðnÞ ¼ ⨁n
k¼1Y

ð1Þ.
The property of (anti)degradability holds for the single-

mode channels describing the process of linear attenuation
and amplification. These channels are characterized by a
single parameter η (see Sec. II.I.4) and are known to be
antidegradable (hence having null quantum capacity) for η ≤
1=2 and degradable (hence having additive coherent informa-
tion) otherwise (Caruso and Giovannetti, 2006; Caruso,
Giovannetti, and Holevo, 2006). For η > 1=2 their quantum
capacity reads (Wolf, Pérez-García, and Giedke, 2007)

QðΦÞ ¼ log η − log j1 − ηj: ð175Þ

Analogously, if the mean number of bosonic excitation at the
channel input is constrained to be less than N (see Sec. II.I.4),
for η > 1=2 the constrained quantum capacity reads (Holevo
and Werner, 2001; Wolf, Pérez-García, and Giedke, 2007)

QðΦ; NÞ ¼ Q1ðΦ; NÞ ¼ gðηNÞ − gðj1 − ηjNÞ; ð176Þ

where gðxÞ ≔ ðxþ 1Þ log ðxþ 1Þ − x log x for x > 0 and
gðxÞ ≔ 0 for x ≤ 0.
Under a constraint of N mean input excitations, the Holevo

information has been shown to be additive for the lossy bosonic
channel (η ∈ ½0; 1�) (Giovannetti et al., 2004c), allowing for a
single-letter expression for the classical capacity:

CðΦ;NÞ ¼ C1ðΦ;NÞ ¼ gðηNÞ. ð177Þ

Similarly, the constrained entanglement-assisted classical
capacity (Giovannetti et al., 2003a, 2003b) reads

CeaðΦ;NÞ ¼ gðNÞ þ gðηNÞ − g½ð1 − ηÞN�: ð178Þ

(Notice that their unconstrained counterparts, unlike the quan-
tum capacity, are unbounded.) Besides being additive, the
Holevo information for the lossy bosonic channel is maximized
for Gaussian inputs. The same properties have been very
recently proven to hold for a broad family ofGaussian channels,
which includes the lossy and noisy channel, the linear amplifier,
and the additive noise channel (Giovannetti, Holevo, and
García-Patrón, 2013; Giovannetti, García-Patrón et al.,
2013). For all these channels, this result solves and gives a
positive answer to a long-standing conjecture (Holevo and
Werner, 2001; Giovannetti et al., 2004a, 2010; Serafini, Eisert,
andWolf, 2005; Hiroshima, 2006; Guha, Erkmen, and Shapiro,
2007; Lloyd et al., 2009; García-Patrón et al., 2012;

Giovannetti, Lloyd et al., 2013; König and Smith, 2013a,
2013b) and proves single-letter expressions for their classical
capacities [the latter were summarized by Lupo, Pirandola et al.
(2011)]. For example, the capacity of the lossy and noisy
Gaussian channel reads (η ∈ ½0; 1�)

CðΦ;NÞ ¼ C1ðΦ;NÞ ¼ g½ηN þ ð1 − ηÞNth� − g½ð1 − ηÞNth�;
ð179Þ

that of the linear amplifier is (η ≥ 1)

CðΦ;NÞ ¼ C1ðΦ;NÞ ¼ g½ηN þ ðη − 1Þ� − g½ðη − 1Þ�;
ð180Þ

and for the additive noise channel one has

CðΦ;NÞ ¼ C1ðΦ;NÞ ¼ gðN þ NaddÞ − gðNaddÞ: ð181Þ

B. Examples of solvable models for memory channels

The main difficulty in the evaluation of the capacities of
quantum channels with memory relies on the requirement of
the regularization of the corresponding entropic quantities in
the limit of infinite uses of the channel. For the case of
forgetful channels this gives the exact expression for the
capacities, while in general it provides an upper bound for
nonforgetful channels.
Up to now only a few models of memory quantum channels

have been fully solved in terms of their capacities. One is the
dephasing channel (in the discrete-variable setting), and the
other is the lossy bosonic channel (in the continuous-variable
setting), with different types of correlations.

1. Discrete memory channels

Referring to the model discussed in Sec. III.A, consider a
sequence of qubit carriers propagating at rate ν and interacting
each one with a single qubit environment subject in turn to a
relaxation process described by amplitude damping with a rate
1=τ. Then assume that the carrier-environment interaction is a
control unitary, such that when the carrier is in j0iqj nothing
happens to the environment, while when qj is in j1iqj the
environment undergoes the unitary transformation described
by the operator γσz þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
σx. One hence has a memory

channel whenever the condition ντ ≪ 1 is not satisfied.
However, it is possible (Giovannetti, 2005) to trace this model
back to a memoryless phase damping channel Φγ̄ with pz ¼
ð1 − γ̄Þ=2 the probability of σz error. Here γ̄ is a complicated
function of several parameters including ν and τ and it reduces
to γ for ντ ≪ 1 (the memoryless limit of Sec. III), while it can
be γ̄ > γ for ντ ≥ 1, thus making Φγ̄ effectively less noisy
than Φγ .
In the case of the phase damping channels (see Sec. II.I.1)

the capacities can be explicitly computed. For instance, since
the noise does not affect the populations associated with the
computational basis, the classical capacity of the phase
damping channel Φγ is CðΦγÞ ¼ 1.
On the other hand, the quantum capacity of a phase

damping channel Φγ is QðΦγÞ ¼ 1 − hðpzÞ (Devetak and
Shor, 2005; Wolf and Pérez-García, 2007), where h is the
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binary entropy. One hence has QðΦγ̄Þ ≥ QðΦγÞ for γ̄ > γ, i.e.,
enhanced quantum capacity by memory effects.
Markovian correlated dephasing was considered by

D’Arrigo, Benenti, and Falci (2007), where the degree of
correlations is expressed by a correlation parameter μ ∈ ½0; 1�
which characterizes the Markovian transition probabilities as
in Eq. (99). Likewise in the above model, the quantum capacity
increases when considering a higher degree of memory. In
particular, the memoryless dephasing channel capacity is
recovered for μ ¼ 0, while for μ ¼ 1 (perfect memory) the
channel is asymptotically noiseless, i.e., QðΦÞ ¼ 1 (Bowen
and Mancini, 2004). D’Arrigo, Benenti, and Falci (2007) also
considered a microscopic model for correlated dephasing
defined in terms of a spin-boson model, where quantum
information is encoded in a train of qubits and a single
bosonic mode represents the memory system. Lower bounds
for the quantum capacity of a qubit memory channel with both
correlated dephasing and damping have been evaluated
numerically starting from a microscopic spin-boson model
with Jaynes-Cummings interaction in the presence of strong
dephasing noise (Benenti, D’Arrigo, and Falci, 2009, 2012).
Plenio and Virmani (2007, 2008) considered another model

of dephasingmemory channel for qubits. It can be traced back to
the scenario introduced by Giovannetti andMancini (2005) and
schematized in Fig. 13, where each individual information
carrier (a qubit in this case) interacts with a corresponding
environment particle, the correlations being established by the
environment multiparticle state. Specifically they considered
the case where the two-particle (two-qubit) interaction is
defined by a controlled-phase gate, the environmental particle
being the controller qubit that determines which unitary trans-
formation will be applied to the carrier. As a consequence the
join state of the carriers gets transformed through mixtures of
random sequences of identity and σz operators, each sequence
being characterized by a (correlated) probability which depends
upon the diagonal elements of the environment initial state.
The interesting feature of this model is that it allows one to

write explicit formulas for the associated capacities for the
channel in terms of properties of the many-body environment
that share a close relationship with thermodynamical quan-
tities. In particular, the CJ state of their family of correlated
channels is a maximally correlated state (i.e., state of the formP

i;jαi;jjiiihjjj) (Rains, 1999a, 1999b, 2001), and, combining
this feature with the forgetfulness of such maps, one can show
(Plenio and Virmani, 2007, 2008) that the quantum capacity
can be expressed in terms of the regularized diagonal entropy
of the system environment, i.e.,

QðΦÞ ¼ 1 − lim
n→∞

S½diagðρenvÞ�
n

; ð182Þ

where diagðρenvÞ is the environmental state in the computa-
tional basis after eliminating all off-diagonal elements [note
that the coding argument used in order to arrive at Eq. (182)
has also been independently shown by Hamada (2002)]. For
the special case in which the initial state of the environment is
described by a classically correlated many-body system (i.e.,
diagonal in the computational basis), the last term on the right-
hand side of Eq. (182) coincides with the thermodynamical
entropy of the environment. Hence, the capacity is given by

QðΦÞ ¼ 1 −
�
1 − β

∂
∂β

�
lim
n→∞

1

n
log2Zn; ð183Þ

where Zn is the partition function for n environment spins, and
β is the associated inverse temperature. In other words, one
can exploit results from classical statistical physics in order to
compute the capacity, as shown by Eq. (183).
The calculation of the entropy of the associated many-body

system, and hence of the quantum capacity of the memory
channel, can be done exactly in certain relevant cases. One of
them is the case of many-body systems described by matrix-
product states (MPSs) involving only rank-1 matrices. For the
sake of simplicity, one focuses on a translationally invariant
MPS for a 1D system of two-level particles, with periodic
boundary conditions. This environmental state is character-
ized by two matrices A0 and A1 and is given by
jψi ¼ P

i1���in TrfAi1 � � �Aingji1 � � � ini. Then, by dephasing
each qubit, the resulting unnormalized state is

ρ ¼
X
i1���in

Tr

�Yn
k¼1

ðAik ⊗ ĀikÞ
�
ji1 � � � inihi1 � � � inj; ð184Þ

where Ā is the complex conjugate matrix of A. It is possible to
show that, if ji1 � � � ini has l occurrences of 0 and n − l of 1,
and k boundaries between 0’s and 1’s blocks, then the
corresponding diagonal elements of ρ are proportional to
albn−lck, with a (respectively, b) being the eigenvalue of
A0 ⊗ Ā0 (respectively, A1 ⊗ Ā1), and c being the eigenvalue
of ðA0 ⊗ Ā0ÞðA1 ⊗ Ā1Þ=ðabÞ.
Finally it is worth remarking that Wolf et al. (2006) showed

the existence of Hamiltonians exhibiting quantum phase
transitions and with ground states being MPSs involving only
matrices of rank 1. Hence, it can be shown that the diagonal
elements of such MPSs are equal to the probability ℘ of
microstates in corresponding classical Ising chains. Therefore,
by exploiting this connection, one can easily compute the
limit in Eq. (182) by using well-known many-body physics
methods. Figure 21 shows the case of the following
Hamiltonian:

1

I

g
g=0 

Diverging gradient 

FIG. 21 (color online). Sketch of the capacity behavior in the
case of an environment given by the ground state of the
Hamiltonian (185). Notice the divergent gradient near the “phase
transition”, i.e., at g ¼ 0. From Plenio and Virmani, 2007.
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X
i

2ðg2 − 1Þσz;iσz;iþ1 − ð1þ gÞ2σx;i þ ðg − 1Þ2σz;iσx;iσz;iþ1:

ð185Þ

In this case, one knows that the ground state is a rank-1 MPS
which possesses a nonstandard phase transition at g ¼ 0,
where indeed some correlation functions are nondifferentiable
(though continuous) and the ground state energy is analytic
(Wolf et al., 2006).

2. Continuous memory channels

Among Gaussian memory channels, one can identify a
subclass of channels for which the memory effects can be
unraveled. That is, by applying suitable unitary encoding and
decoding transformations,n uses of such channels aremapped to
n independent single-mode channels used in parallel. By
applying known results for the memoryless setting one may
then compute the capacities of the memory channel (see
Sec. VI.A.2).
Such a unitary mapping from n uses of a Gaussian memory

channel to n parallel uses of independent single-mode
channels was first considered by Cerf et al. (2005, 2006)
and Giovannetti and Mancini (2005), and then applied for
estimating the communication capacities of Gaussian memory
channels in several settings (Lupo, Memarzadeh, and
Mancini, 2009; Lupo, Pilyavets, and Mancini, 2009;
Schäfer, Karpov, and Cerf, 2009; Lupo, Giovannetti, and
Mancini, 2010a, 2010b). A formal definition of the class of
memory channels that can be unraveled first appeared in Lupo
and Mancini (2010).
If one takes the one-mode channel as a reference point,

representing a single use of the channel, n uses of the
quantum memory channel are characterized by the triads
ðdðnÞ;XðnÞ;YðnÞÞ such that either dðnÞ ≠ ⨁n

k¼1d
ð1Þ or XðnÞ ≠

⨁n
k¼1X

ð1Þ, YðnÞ ≠ ⨁n
k¼1Y

ð1Þ (see Sec. II.I.4). A memory
channel can be unraveled if there exist unitary transformations
ΦðnÞ

E , ΦðnÞ
D , acting on n modes, such that ΦðnÞ

D ϕðnÞΦðnÞ
E ¼⊗k¼

1nϕð1Þ
k ; that is, n uses of the memory channel are unitary

equivalent to the tensor product of n independent, but not
necessarily an identical, single-mode Gaussian channel (this
mapping is depicted in Fig. 22). Since the application of unitary
transformations cannot change the capacities of the channel,
they can be equivalently computed for the unraveled channel, in
which each inputmode is transformed independently (although
in general not identically). If one is interested in the calculation
of constrained capacities, then one has to take into account how

the constraint changes under the action of the encoding and
decoding unitaries. A relevant setting is that of encoding
transformations preserving the constraint. For the case of the
constrained mean input excitation number, the constraint is
preserved if

Xn
k¼1

a†kak ¼ Φ�ðnÞ
E

�Xn
k¼1

a†kak

�
;

a condition which is satisfied when the encoding unitary is a
linear passive transformation, e.g., in the case of optical
realization, when exploiting a network of beam splitters and
phase shifters [see, e.g., Ferraro, Olivares, and Paris (2005)].
If a Gaussian memory channel can be unraveled, then its

capacities can be computed upon reduction to the case of a
memoryless single-mode Gaussian channel. This is the case
for the model of a lossy channel with memory introduced by
Lupo, Giovannetti, and Mancini (2010a). In this model, the
action of the channel upon n uses is defined by the concat-
enation of n identical unitary transformations coupling the
input modes a1; a2;…; an with a collection of local environ-
mental modes e1; e2;…; en and the memory mode m.
Specifically the evolution of the kth input mode is obtained
by a concatenation of two beam-splitter transformations, the
first with transmissivity ϵ and the second with transmissivity
η; see Fig. 23. This results in a nonanticipatory channel with
ISI (see Sec. III.B) having the same structure depicted in
Fig. 12(c). By varying the transmissivity parameters, the
model is capable of describing different memory schemes,
from the memoryless lossy bosonic channel configuration
(Giovannetti et al., 2004c) (the input ak influences only the
output bk), to a channel with perfect memory (all ak interacts
only with the memory mode m1) (see Sec. III.D.3), to a
quantum shift channel (Bowen and Mancini, 2004) where
each input state is replaced by the previous one (this is
obtained by setting η ¼ 0, ϵ ¼ 1). Extensions of Lupo,
Giovannetti, and Mancini (2010a) which encompass memory
effects in linear amplification and thermalization processes are
presented by Lupo, Giovannetti, and Mancini (2010b) and De
Palma, Mari, and Giovannetti (2014), respectively. All these
models can be unraveled into the tensor product of one-mode
lossy or amplifier channels.

FIG. 22. Unraveling of n uses of a memory channel. Each
horizontal line indicates one bosonic mode, propagating from the
left to the right. ϕðnÞ denotes n uses of the memory channel. EðnÞ
and DðnÞ are preprocessing and postprocessing Gaussian uni-
taries. ϕð1Þ

k ’s are one-mode Gaussian channels.

FIG. 23. Left: A single use of the lossy bosonic memory
channel. From Lupo, Giovannetti, and Mancini, 2010a. Right:
The n-fold concatenation of the memory channel: photons
entering in the kth input mode ak can emerge only in the output
ports bk0 with k0 ≥ k.

Caruso et al.: Quantum channels and memory effects 1245

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



The capacities of these memory channels can hence be
computed following four steps: first the memory channel is
unraveled into the direct product of the single-mode Gaussian
channels; second the optimization of the relevant entropic
function is performed modewise under a constrained mean
input excitation number; then the distribution of the mean
excitation number over the input modes is optimized; finally
the asymptotic limit of infinite channel uses is considered. The
optimization of the distribution of the mean excitation number
leads to a quantum water filling solution for the capacity of the
memory channel, where the way the mean excitation number
is distributed over input modes is analogous to the way water
distributes into a vessel (Cover and Thomas, 1991). While
algorithms for the optimization were presented by Schäfer,
Karpov, and Cerf (2011) and Pilyavets, Lupo, and Mancini
(2012), the most delicate point is the consideration of the
asymptotic limit (Lupo, Memarzadeh, and Mancini, 2009;
Lupo, Giovannetti, and Mancini, 2010a).
Memory channels with additive noise are characterized by

having XðnÞ ¼ 1. They can be realized by means of multimode
CV teleportation protocol (Vaidman, 1994; Braunstein and
Kimble, 1998; Ban, Sasaki, and Takeoka, 2002), where the
teleportation resource is a multimode state (Caruso,
Giovannetti, and Palma, 2010). The memory channel consid-
ered by Cerf et al. (2005, 2006) belongs to this class. The
latter was defined for two channel uses, represented by two
bosonic modes, which are affected by correlated additive
noise. A generalization of this model to the case of more than
two channel uses was first introduced by Ruggeri and Mancini
(2007a) and subsequently by Lupo, Memarzadeh, and
Mancini (2009) and Schäfer, Karpov, and Cerf (2009), where
the additive noise, characterized by the matrix YðnÞ, constitutes
a Markov process.
It is easy to recognize that these models define SI memory

channels, which are instances of the general scheme depicted
in Fig. 13 and first introduced by Giovannetti and Mancini
(2005). Here Gaussian memory effects were introduced by
imposing that the n input modes interact modewise with a
joint (possibly entangled) Gaussian state of n environmental
modes through beam-splitter transformations of transmissivity
η [the associated YðnÞ matrix of the channel being ð1 − ηÞCðnÞ,
where CðnÞ is the CM of the environmental state]. These
Gaussian memory channels can be unraveled whenever the
matrix YðnÞ has a suitable form; furthermore under certain
conditions they can be unraveled with the use of energy-
preserving unitary preprocessing transformation (Pilyavets,
Zborovskii, and Mancini, 2008; Lupo, Pilyavets, and Mancini,
2009) [see also Ruggeri et al. (2005)].
It is worth noting that, unlike the case of discrete-variable

memory channels (see Sec. III.D.4), there is no transitional
behavior in these models of Gaussian memory channels: the
optimal input states are either separable or entangled accord-
ing to the model symmetries (Cerf et al., 2005, 2006; Lupo
and Mancini, 2010). As entangled states cannot be prepared
locally, it is crucial to identify suboptimal input states that can
be prepared efficiently. This issue was considered by Schäfer,
Karpov, and Cerf (2012), where it was shown that encoding
classical information via Gaussian matrix-product states
(Adesso and Ericsson, 2006; Schuch, Cirac, and Wolf,
2008), which can be efficiently prepared, may allow one to

achieve a reliable communication rate close to the channel
capacity. An analysis of correlated additive Gaussian channels
beyond the case of Markovian correlations was presented by
Schäfer, Karpov, and Cerf (2011).
Finally, it is worth remarking that the study of Gaussian

memory channels has also stimulated and motivated a deep
analysis of the communication capacities of the single-mode
memoryless Gaussian channel (Schäfer, Karpov, and Cerf,
2010; Lupo, Pirandola et al., 2011; Pilyavets, Lupo, and
Mancini, 2012). In particular, Pilyavets, Lupo, and Mancini
(2012) and Schäfer, Karpov, and Cerf (2010) provided a
complete characterization of one-mode Gaussian channels,
respectively, for the case of lossy channels and additive noise.

VII. QUANTUM CHANNELS DIVISIBILITY AND
DYNAMICAL MAPS

In this section we leave the input-output scenario, which has
characterized all the previous parts of the review, and focus on
the memory effects that may arise when studying the dynami-
cal evolution of a system that is evolving in time while
interacting with an external environment; see Fig. 3.
As discussed in Sec. II.B the concatenation of CPTP maps

defines a new quantum channel. It is also worth considering
whether the converse is also true, that is, under which
conditions a quantum channel Φ ∈ P ≔ PðQ ↦ QÞ acting
on a system Q can be expressed as a concatenation of other
elements of P. This is intimately related to the semigroup
structure of the set of quantum channels, hence with dynami-
cal maps and master equations.

A. Divisible and indivisible quantum channels

Loosely speaking, by divisibility of a quantum channel Λ ∈
P one refers to the possibility of decomposing it in terms of
concatenation of other channels, i.e., to the possibility of
writing Λ ¼ Λ1∘Λ2, with Λi ∈ P. Obviously, every channel
Λ ∈ P is divisible in the following way: Λ ¼ ðΛ∘U−1Þ∘U,
with U any unitary map. A nontrivial definition of (in)
divisibility was introduced by Wolf and Cirac (2008).
According to that, a quantum channel Λ ∈ P is indivisible
if every decomposition of the form Λ ¼ Λ1∘Λ2, with Λi ∈ P,
implies that either Λ1 or Λ2 is a unitary conjugation.
Otherwise, Λ is said to be divisible. It happens that quantum
channels with maximal Kraus rank (d2) are divisible (Wolf
and Cirac, 2008).
Hereafter the subset of P of divisible channels is denoted

as D. The notion of divisibility can then be refined by
considering different kinds of divisible quantum channels.
First one introduces a notion of Markovianity for quantum
channels related to their decomposability, rather than to their
composability as done in Sec. III.D. According to Wolf and
Cirac (2008) a quantum channel is called Markovian if it
is an element of a continuous one-parameter semigroup of
CPTP maps.
In such a case there exists a (Liouvillian) generator L such

that the quantum channel can be written as ΛðtÞ ¼ etL ∈ P
for all t ≥ 0. A standard form for such generators was derived
by Gorini, Kossakowski, and Sudarshan (1976) and Lindblad
(1976):
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Lρ ¼ i½ρ; H� þ
X
α;β

Gα;β

�
FαρF

†
β −

1

2
fF†

βFα; ρg
�
; ð186Þ

where the matrix G is positive semidefinite, f; g denotes the
anticommutator, and the operators H and Fα, respectively,
describe the Hamiltonian and non-Hamiltonian dynami-
cal terms.
Through the (Liouvillian) generator L one can write down

the dynamical (master) equation for the system density
operator ρ (Breuer and Petruccione, 2002)

d
dt

ρðtÞ ¼ LρðtÞ: ð187Þ

Its solution, for given initial condition ρðt0Þ, reads ρðtÞ ¼
Λðt − t0Þρðt0Þ with Λðt − t0Þ ¼ eðt−t0ÞL obeying the homo-
geneous composition law

Λðt1Þ∘Λðt2Þ ¼ Λðt1 þ t2Þ; ð188Þ

for t1; t2 ≥ 0, hence defining a one-parameter semigroup of
CPTP maps. As consequence, Eq. (187) is called a Markovian
master equation.
A class of Markovian master equations of this kind can be

obtained as the continuous-time limit of a concatenation of
identical system-bath interactions. These models, known as
collision models (Rau, 1963; Alicki and Lendi, 1987; Terhal
and DiVincenzo, 2000; Scarani et al., 2002; Ziman et al.,
2002; Ziman and Bužek, 2005; Ziman, Štelmachovič, and
Bužek, 2005), are defined by the iterated unitary interactions
of the system Q with n identical reservoirs E ¼ ðe1;…; enÞ.
This cascade process, depicted in Fig. 24, defines a quantum
channel of the form

ΦnðρQÞ ¼ TrE½UQe1 � � �UQenðρQ ⊗ ω⊗n
E ÞU†

Qe1
� � �U†

Qen
�;

ð189Þ

where UQej ’s are n instances of a unitary transformation
coupling the system Q with the environmental systems. A
comparison with Fig. 12(a) is useful to enlighten the relations
between this model and the unitary dilation of memory
channels introduced in Eq. (80): basically in passing from
the latter to Eq. (189) the environment and the carriers have
exchanged their roles transforming the spatial correlations of
Eq. (80) into temporal correlations. A hybrid approach which
includes both effects was recently introduced by Giovannetti
and Palma (2012): as shown in Fig. 25 the scheme has the
same structure as Fig. 24 for each row, and the same as
Fig. 12(a) for each column. This model provides a link

between memory channels and time-continuous dynamical
evolutions.
The set of Markovian quantum channels is denoted below

by M. Clearly M ⊂ D because any Markovian quantum
channel can be divided into a large number of infinitesimal
channels being the solution of the (time-independent) master
equation (187).
Then one can attempt to single out the class of quantum

channels that can be split into infinitesimal pieces, i.e., into
channels arbitrarily close to the identity. Clearly it would
contain M. Actually the set I of infinitesimal divisible
quantum channels can be defined (Wolf and Cirac, 2008)
as the closure of the set of all families fΛðt2; t1Þ ∈ Pjt1; t2 ∈
½0; t�g of quantum channels for which there exists a continuous
mapping ½0; t� × ½0; t� → P onto fΛðt2; t1Þg such that

(1) Λðt3; t2Þ∘Λðt2; t1Þ ¼ Λðt3; t1Þ, for all 0 ≤ t1 ≤ t2 ≤
t3 ≤ t, and

(2) limϵ→0jjjΛτþϵ;τ − idjjj2 ¼ 0, for all τ ∈ ½0; tÞ,
where jjj � � � jjj2 is the superoperator norm defined in Eq. (56)
of Appendix II.J.2—the closure being intended with respect to
the associated distance. For a given family there is a
continuous path in P (where one can move by concatenating
quantum channels) connecting any element of the family with
the identity.
Actually one could consider in the above definition a set

IM analogous to I with the restriction Λ ∈ M, i.e., of the
form ΛðtÞ ¼ etL. It is obvious thatIM⊆I. Intuitively also the
converse should be true since any quantum channel close to
the identity is “almost Markovian” according to the definition
of a Markovian quantum channel. In fact, it was proven by
Wolf and Cirac (2008) that any infinitesimal divisible quan-
tum channel can be (arbitrary well) approximated by a product
of Markovian quantum channels.

FIG. 24. The cascade structure of a collision model, defined by
the concatenation of identical unitaries. From Scarani et al., 2002.

FIG. 25. The cascade structure leading to the master equation
for correlated quantum channels discussed by Giovannetti and
Palma (2012), and described by Eq. (189). Each row corresponds
to a single collision model (see Fig. 24), and each column
corresponds to a memory channel [see Fig. 12(a)].

Caruso et al.: Quantum channels and memory effects 1247

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



In summary one has the following chain of inclusion
M ⊂ I ⊂ D ⊂ P. The complement of D to P is given by
the indivisible quantum channels.

B. Non-Markovian master equations

The simplest generalization of the dynamical equation (187)
is obtained by introducing a time-dependent Liouvillian LðtÞ
admitting the representation (186), but with time-dependent
operatorsHðtÞ and FαðtÞ. Hence, the time-dependent equation
for the dynamical map Λðt; t0Þ

d
dt

Λt;t0 ¼ LðtÞ∘Λðt; t0Þ; Λðt0; t0Þ ¼ id; ð190Þ

has a formal solution

Λðt; t0Þ ¼ T exp

�Z
t

t0

LðτÞdτ
�
; ð191Þ

where T denotes time ordering. Different from the time-
homogeneous case (188), the explicit dependence on time
implies that the dynamical map Λðt; t0Þ is no more a function
of t − t0 only. Notwithstanding, it still satisfies the inhomo-
geneous composition law

Λðt; sÞ∘Λðs; t0Þ ¼ Λðt; t0Þ; ð192Þ

for any t ≥ s ≥ t0. The Markovian character is hence pre-
served by the time-dependent dynamical equation (190) and it
implies the infinitesimal divisibility discussed in Sec. VII.A.
This is true if one intends the Markovian character simply
expressed by an associative binary operation like Eq. (192) (a
quantum version of the Chapman-Kolmogorov equation).
However, it results that the Chapman-Kolmogorov equation
is a necessary but not sufficient condition for having Markov
chains (processes) (Vacchini et al., 2011).
On the other hand, from the fact that any infinitesimal

divisible quantum channel can be (arbitrary well) approxi-
mated by a product of Markovian quantum channels (as
discussed in Sec. VII.A), it follows that every infinitesimally
divisible quantum channel can be written as a solution of a
time-dependent master equation [Wolf and Cirac (2008)
proved this fact for d ¼ 2 and argued the same for d > 2].
Hence, loosely speaking, one can say that the class of
infinitesimal divisible channels corresponds to the set of
solutions of time-dependent master equations.
A more general dynamical equation comes from the

Nakajima-Zwanzig projection operator technique (Nakajima,
1958; Zwanzig, 1960; Breuer and Petruccione, 2002) and reads
as follows:

d
dt

ρðtÞ ¼
Z

t

t0

Kðt − uÞρðuÞdu; ρðt0Þ ¼ ρ0: ð193Þ

Here one has memory effects modeled by the memory kernel
superoperatorKðtÞ. Hence, the rate of change of the state at time
also depends on its history, and the Markovian setting (187) is
recovered when KðτÞ ¼ 2δðτÞL.

The dynamical map Λðt; t0Þ associated with the non-
Markovian evolution (193) is a solution of

d
dt

Λðt; t0Þ ¼
Z

t

t0

dτKðt − τÞ∘Λðτ; t0Þ; Λðt0; t0Þ ¼ id:

ð194Þ

It appears to be a function of both t0 and t. However, one can
notice that the dynamics of an open quantum system can be
always understood as the reduced dynamics of its unitary
dilation (see Sec. II) which includes the environment. Being
the unitary dynamics of an isolated system homogeneous in
time, it follows that, once the degrees of freedom of the
environment are taken into account, the dynamical map will
be only a function of the difference t − t0; that is,
Λðt; t0Þ≡ Λðt − t0Þ. This mirrors the fact that any solution
of Eq. (194) is also a solution of the time-dependent equation
(Chruściński and Kossakowski, 2010)

d
dt

Λðt − t0Þ ¼ Lðt; t0Þ∘Λðt; t0Þ; Λðt0; t0Þ ¼ id; ð195Þ

with a time-dependent Liouvillian defined by the logarithmic
derivative of the dynamical map

Lðt − t0Þ ≔
�
d
dt

Λðt − t0Þ
�
∘Λ−1ðt − t0Þ.

Nevertheless, the explicit dependence of the generator on the
initial time t0 implies that L is effectively nonlocal in time.
Although the formal solution of Eq. (195) is analogous to
Eq. (191), it does not satisfy the composition law (192), a fact
which represents a signature of memory effects.
Then a fundamental problem is to find those conditions on

the memory kernel KðtÞ that ensure that the time evolution
map Λðt; t0Þ is CPTP, i.e., a quantum channel. Contrary to the
Markovian case, a full characterization of legitimate memory
kernels is still missing.
Chruściński and Kossakowski (2012) provided a class of

memory kernels giving rise to legitimate quantum dynamics
(quantum channels). The construction is based on a simple
idea of normalization: starting from a family of (possibly non-
trace-preserving) CPTP maps satisfying a certain additional
condition one is able to “normalize” it in order to obtain a
legitimate dynamics, i.e., a CPTP map. Non-Markovian
master equations have also been described by Rybar et al.
(2012) and Ciccarello, Palma, and Giovannetti (2013) by
generalizing the collision models discussed previously and in
Shabani and Lidar (2005) exploiting adaptive strategies that
involve the measurements of the system environment followed
by local transformations.

C. Markovian vs non-Markovian dynamics

Given a CPTP map, the problem of determining whether or
not it admits an infinitesimal generator of the form (186) has
been proven to be computationally hard (Wolf et al., 2008;
Cubitt, Eisert, and Wolf, 2012).
For CPTP maps that do not belong toM, a measure of non-

Markovianity has been introduced by Wolf et al. (2008) in
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terms of the minimal amount of white noise Lμ that has to be
added in order to make logΛþ Lμ of the form (186).
Besides the Markovianity definition given in Sec. VII.A

and the above-mentioned quantifier of (non)Markovianity
other proposals have been put forward; see, e.g., Breuer,
Laine, and Piilo (2009), Lu, Wang, and Sun (2010), Rivas,
Huelga, and Plenio (2010), and Luo, Fu, and Song (2012).
On the one hand, Rivas, Huelga, and Plenio (2010)

considered the equivalence between Markovian dynamics
and infinitesimal divisibility and introduced a measure of
deviation from it. Given a maximally entangled state jβi of the
system of interest and a suitable ancillary system, due to the
Choi-Jamiolkowski isomorphism (9), Λðtþ ϵ; tÞ is a CPTP
map iff ½Λðtþ ϵ; tÞ ⊗ id�jβihβj ≥ 0. Then one can consider
‖½Λðtþ ϵ; tÞ ⊗ id�jϕihϕj‖1 as a measure of the non-CPTP
character of Λðtþ ϵ; tÞ. In fact, due to the trace-preserving
property, this quantity equals 1 iff Λðtþ ϵ; tÞ is CPTP,
otherwise it is greater than 1. Actually, the derivative of this
quantity has been considered

gðtÞ ≔ lim
ϵ→0

‖½Λðtþ ϵ; tÞ ⊗ id�jβihβj‖1 − 1

ϵ
: ð196Þ

It happens that gðtÞ > 0 iff the map Λ is indivisible.
On the other hand, Breuer, Laine, and Piilo (2009) used a

fundamental property of CPTP maps, namely, the fact that
they cannot increase the trace distance

D(Λðt; 0Þðρ1Þ;Λðt; 0Þðρ1Þ) ≤ Dðρ1; ρ2Þ; ð197Þ

for any pair of states ρ1, ρ2. If a family of CPTP maps is
infinitesimally divisible, the monotonicity of the trace distance
holds true locally, that is,

d
dt

D(Λðt; 0Þðρ1Þ;Λðt; 0Þðρ1Þ) ≤ 0: ð198Þ

According to that the dynamical map Λðt; 0Þ is said to be non-
Markovian if there exists a value of t such that Eq. (198) is
violated, for some initial states ρ1, ρ2. Physically, this implies
a temporal increase in the distinguishability of the two
quantum states, a consequence of the backflow of information
from the surrounding environment.
The criteria relying on Eqs. (196) and (198) allow one to

define a computable measure of non-Markovianity. A natural
quantifier derived from the criterion of Rivas, Huelga, and
Plenio (2010) reads

N RHPðΛÞ ¼
R∞
0 gðtÞdt

1þ R∞
0 gðtÞdt ; ð199Þ

where gðtÞ is as in Eq. (196). From the criterion of Breuer,
Laine, and Piilo (2009) one defines the non-Markovianity
quantifier

N BLPðΛÞ ¼ sup
ρ1;ρ2

Z
d
dt0

D(Λðt0; 0Þðρ1Þ;Λðt0; 0Þðρ1Þ)jt0¼tdt;

ð200Þ

where the integral is performed only for those t such that
Eq. (198) is violated.
It was pointed out that the relation between these two

criteria resembles that between separable and PPT states in
entanglement theory (Chruściński, Kossakowski, and Rivas,
2011). Indeed, any family of CPTP maps which is Markovian
according to the first criterion is as well Markovian according
to the second one, that is, N RHPðΛÞ ¼ 0 implies
N BLPðΛÞ ¼ 0, while the converse is in general not true. An
example comparing nondivisibility and non-Markovianity, for
the case of Gaussian channels, was recently discussed by
Benatti, Floreanini, and Olivares (2012) while a test of non-
Markovianity for these maps was discussed by Vasile,
Maniscalco et al. (2011).
One of the few example of non-Markovian dynamics that

are exactly solvable for their communication capacities is a
single qubit coupled to an environment of noninteracting
qubits in a star configuration giving rise to dephasing channel
(Arshed, Toor, and Lidar, 2010). Its quantum capacity
behavior as a function of time is strongly dependent on the
coupling parameters and on the temperature of the bath. For
generic values of these parameters, recurrence in the quantum
capacity as a function of time is of small amplitude and
quickly vanishes. On the contrary, for commensurable values
of these parameters the quantum capacity becomes a periodic
function of time. This feature indicates the backflow of
information from the environment to the central spin: a
signature of non-Markovian dynamics. This is also related
to the increased distinguishability of states pointed out by the
non-Markovianity criterion introduced by Breuer, Laine, and
Piilo (2009).

VIII. SUMMARY AND OUTLOOK

In the last decades the subject of quantum channels has
become prominent for its usefulness in foundational issues
(Kraus, 1983) as well as in technological applications [see the
latest striking experiments in quantum communication (Ma
et al., 2012; Yin et al., 2013)]. Here this subject has been
addressed using a broad approach that embraces memory
effects. This is because the consideration of spatial and
temporal memory effects is becoming increasingly pressing
with the continuing miniaturization of devices and with
increasing communication rates. In this scenario defining
general properties and determining communication perfor-
mance become daunting tasks. Hence, we mainly touched
topics relevant to and witnessing progress toward these ends.
In the beginning (Sec. II) we reviewed basic features of

quantum channel maps and tools for their characterization.
Some physical examples of temporal and spatial evolutions of
quantum systems, that the general framework of quantum
(input-output) channels can describe, were also discussed.
Then we focused on multiple channel uses by addressing their
structural properties in Sec. III. There several quantum
memory channels models were devised and their taxonomy
presented. However, it is worth noting that the latter is based
on channel representations that consider input and (initial)
memory systems mapped onto output and (final) memory
systems. In a black-box description accounting only for input
to output mapping some of these models could result

Caruso et al.: Quantum channels and memory effects 1249

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



equivalent. Loosely speaking this could be analogous to the
possibility of having different Kraus representations of the
same quantum channel. Hence, a property of quantum
channels (fixed point, indecomposability, etc.) should be
defined in a more general way; that is, the channel has the
property if there exists at least one of its memory representa-
tions that satisfies it.
Reliable communication through quantum channels can be

achieved by employing error-correcting codes as discussed in
Sec. IV. Standard quantum codes are designed to counteract
independent errors affecting multiple uses of a noisy quantum
channel. On the other hand, memory channels produce
correlated errors. An extreme case is represented by collective
errors affecting a certain number of information carriers at
once. In such a case the symmetries of the noise usually allow
for the existence of decoherence-free subspaces. In the
intermediate situations one has to design new codes to
counteract errors that are neither independent nor completely
correlated. A relevant strategy to produce such codes is by
concatenation of standard codes and decoherence-free sub-
spaces. Another strategy consists of exploiting cyclic property
of some codes. Finally a relation between convolutional codes
and memory channels was highlighted.
The general definitions of classical and quantum capacities,

unassisted as well as assisted by entanglement, were given in
Sec. V followed by the definition of constrained capacities
suitable for continuous channels. For such definitions we
remarked that a superoperator norm approach can be used as
well. Then we sketched coding theorems. Actually, concern-
ing the capacities evaluation, the main obstacle is the restricted
class of channels for which coding theorems are available.
Hopefully this can be enlarged by resorting to stationary or
ergodic properties of the quantum channels as outlined by
Bjelaković and Boche (2009). Still within such a class, those
channels leaving hopes for an exact capacity computation are
the forgetful channels (see Sec. V.C.3). For this reason it is of
utmost importance to derive general criteria to decide whether
or not a given channel is forgetful. Beyond that it would be
extremely interesting to establish when memory effects
increase the capacity of a quantum channel. It is also worth
noting that the effects of correlations among errors are in close
connection with the property of superadditivity of the mini-
mum output entropy (Hastings, 2009). The possible memory
induced enhancement of the capacity of a quantum channel,
looked through the dynamical memory model sketched in
Sec. VI.B.1, can be seen as due to a sort of Zeno effect (Misra
and Sudarshan, 1977). In fact, by frequently inserting infor-
mation carriers through the channel one prevents the envi-
ronment from coming back to its stationary state after the
passage of each of them, thus less affecting the carriers
themselves. Whereas in the case of quantum channels arising
from non-Markovian dynamics like that of Sec. VII, the
increment of capacity can be explained by the backflow of
information from environment to system.
Known solvable (in terms of capacities) models were

discussed in Sec. VI. Among them, dephasing memory
channels possess features related to many-body physics and
lossy bosonic memory channels show water-filling phenom-
ena similar to fluid mechanics.

Finally, in Sec. VII, we showed the conditions under which a
quantum channel can be “divided” into the concatenation of
other quantum channels, i.e., its action results as the compo-
sition of other quantum channels. This possibility is closely
related to quantum channels intended as dynamical maps. Then
one can distinguish between Markovian and non-Markovian
dynamics, the latter showing memory effects in time. As a
consequence we briefly accounted for some measures quanti-
fying deviation from Markovian dynamics, although a general
consensus on that subject is not yet reached.
All in all examples of quantum channels showing memory

effects are abundant in quantum information processing. An
unmodulated spin chain was proposed as a model for short
distance quantum communication (Bose, 2003). In such a
scheme, the state to be communicated over the channel is
placed on one of the spins of the chain, propagates for a
specific amount of time, and is then received at a distant spin
of the chain. When viewed as a model for quantum commu-
nication, it is generally assumed that a reset of the spin chain
occurs after each signal, for instance, by applying an external
magnetic field, resulting in a memoryless channel. However, a
continuous operation without resetting corresponds to a
quantum channel with memory (Bayat et al., 2008).
Another model of a quantum channel with memory is the
so-called one-atom maser or micromaser (Benenti, D’Arrigo,
and Falci, 2009). In such a device, excited atoms interact with
the photon field inside a high-quality optical cavity. If the
photons inside the cavity have sufficiently long lifetime,
atoms entering the cavity will feel the effect of the preceding
atoms, introducing ISI correlations (see Sec. III.B) among
consecutive signal states.
Another source of correlated noise in the propagation of the

electromagnetic field is due to atmospheric turbulence, whose
effects on the signal propagation can be modeled as random
changes of the channel’s characteristics (Semenov and Vogel,
2009, 2010). Moreover, the decoherence induced by atmos-
pheric turbulence introduces cross talks (Tyler and Boyd,
2009; Boyd et al., 2011), i.e., ISI correlations (see Sec. III.B),
when information is encoded in the transverse degrees of
freedom of the electromagnetic field, e.g., the orbital angular
momentum. Furthermore, the propagation of the quantum
electromagnetic field in linear dispersive media, including the
free-space propagation and through linear optical systems, can
be described by a quantum channel with memory (Giovannetti
et al., 2004b; Shapiro, 2009; Memarzadeh and Mancini, 2010;
Lupo, Giovannetti et al., 2011; Lupo et al., 2012), where wave
diffraction introduces memory effects.
Memory effects also arise in the context of quantum

cryptography. Quite generally, one can categorize the collective
attackswithin the framework ofmemoryless channels,while the
coherent attacks within thememory channels framework (Gisin
et al., 2002; Scarani et al., 2009). However, this link has been
subjected to limited attention and probably needs further
exploration. Actually, in one-way quantum key distribution
memory effects that introduce correlations among transmitted
symbols can give an advantage to the eavesdropper (Ruggeri
and Mancini, 2007b). Only if the legitimate users have the
control of the noise correlations, by properly tuning them, can
they reduce eavesdropper information (Vasile, Olivares et al.,
2011). Instead, in two-way quantum key distribution checking
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the presence or absence of noise correlations can help in
counteracting eavesdropper attacks (Pirandola et al., 2008).
Then an analysis of memory effects in other channel uses
configurations, like zero-error channel capacity, channels with
feedback, channels with unknown parameters and multiuser
channels, should be pursued.
Finally, moving to the framework of time-continuous

quantum evolution, non-Markovian effects are relevant in
several physical systems characterized by the interaction with
a structured environment. Examples are in the framework of
solid-state physics, as quantum dots in photonic crystals (Vats,
John, and Busch, 2002; Madsen et al., 2011), and in the soft
matter framework as the case of exciton dynamics surrounded
by their protein environment (Plenio and Huelga, 2008;
Caruso et al., 2009; Rebentrost, Chakraborty, and Aspuru-
Guzik, 2009; Thorwart et al., 2009; Caruso, Huelga, and
Plenio, 2010).
In summary, more efforts are needed to gain a full under-

standing of quantum channels; however, the presented work
constitutes a rather general frame where the still missing
pieces of the puzzle could be settled.
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APPENDIX A: DISTANCE MEASURES

A proper way to measure the distance between two states
ρ1, ρ2 ∈ SðHQÞ of a quantum system Q, is provided by the
trace distance defined as

Dðρ1; ρ2Þ ≔ 1
2
‖ρ1 − ρ2‖1; ðA1Þ

with ‖O‖1 ≔ Tr
ffiffiffiffiffiffiffiffiffiffi
O†O

p
being the trace norm of the operatorO

(Nielsen and Chuang, 2000; Wilde, 2013). While fulfilling all
the conditions of a regular distance (i.e., positivity, symmetry,
and triangular inequality) the trace distance possesses other
interesting properties which makes it operationally well
defined. For instance, it is bounded between 0 and 1 (reaching

the latter value only when ρ1 and ρ2 have orthogonal support).
Furthermore, the trace distance is preserved under unitary
transformations, i.e., DðUρ1U†; Uρ2U†Þ ¼ Dðρ1; ρ2Þ (imply-
ing that the distance between physical states does not depend
upon the coordinate system used to describe them) but it is
contractive under CPTP maps Φ, i.e.,

D(Φðρ1Þ;Φðρ2Þ) ≤ Dðρ1; ρ2Þ ðA2Þ

(implying that the action of noise tends to blur the differ-
ence among states). Finally Dðρ1; ρ2Þ can be identified
with the maximum distance between the statistical distri-
butions fpxðρ1Þ¼Tr½Exρ1�gx∈X and fpxðρ2Þ¼Tr½Exρ2�gx∈X
obtained by performing the same POVM measurement
fExgx∈X on ρ1 and ρ2.
Another quantity useful to gauge how close two density

matrices ρ1 and ρ2 are, is the fidelity (Uhlmann, 1976; Jozsa,
1994)

Fðρ1; ρ2Þ ≔ ‖ρ1=21 ρ1=22 ‖21; ðA3Þ

which for ρ1 being rank 1, i.e., ρ1 ¼ jψ1ihψ1j, coincides with
the probability of finding ρ2 in the vector jψ1i, i.e.,

Fðjψ1i; ρ2Þ ¼ hψ1jρ2jψ1i: ðA4Þ

The function Fðρ1; ρ2Þ is symmetric [i.e., Fðρ1; ρ2Þ ¼
Fðρ2; ρ1Þ] and always in the range [0, 1] (equal to 1 if and
only if ρ1 ¼ ρ2 and vanishing for density operators with
orthogonal supports, e.g., for orthogonal pure states).
Furthermore, F is invariant under the action of a unitary
evolution FðUρ1U†; Uρ2U†Þ ¼ Fðρ1; ρ2Þ, and increasing
under the CPTP map,

F(Φðρ1Þ;Φðρ2Þ) ≥ Fðρ1; ρ2Þ: ðA5Þ

While not a distance itself, the fidelity is directly linked to the
Bures distance (Bures, 1969) via the identity DBðρ1; ρ2Þ ≔
½2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ1; ρ2Þ

p �1=2. Trace distance and fidelity are related
by the following inequalities:

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ1; ρ2Þ

p
≤ Dðρ1; ρ2Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ1; ρ2Þ

p
; ðA6Þ

therefore states which have high values of fidelity are also
close in trace distance, and vice versa.

APPENDIX B: QUASILOCAL ALGEBRAS

Quasilocal algebras are the proper mathematical tools to
describe infinitely extended quantum lattice systems (Bratteli
and Robinson, 1979). For the sake of simplicity we consider a
chain of infinitely many qubits (spins) placed in a one-
dimensional lattice Z. Then, to each lattice site j ∈ Z attach
a Hilbert space Hj ≃ C2 and consider the associated algebra
of bounded operators Aj ¼ BðHjÞ. If one restricts to a finite
part of the chain, say a set Λ ⊂ Z, it is possible to define the
following tensor products:

HΛ ¼⊗j∈Λ Hj; AΛ ¼ BðHΛÞ ¼⊗j∈Λ Aj: ðB1Þ
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Operators a ∈ AΛ are called local operators as they are
operators “localized” in Λ. Clear examples of local observ-
ables are the Pauli operators σx;j, σy;j, and σz;j, attached to the
site j ∈ Z. However, if the region Λ is infinite the situation
becomes tricky. In fact, although it is still possible to attach a
Hilbert spaceH to the whole chain such that local operators σj
act on H, this cannot be done in a unique way. It is then
preferable to proceed by considering the algebraic properties
of local operators not requiring a global Hilbert space H. To
this end, we first notice that having two finite regions Λ;Λ0

such that Λ ⊂ Λ0 ⊂ Z, the operators

a ∈ AΛ and a ⊗ 1Λ0nΛ ∈ AΛ0 ðB2Þ

describe the same physical object. Therefore, one can identify
AΛ with the subalgebra AΛ ⊗ 1Λ0nΛ of AΛ0

through the map

AΛ∋a ↦ a ⊗ 1Λ0nΛ ∈ AΛ0
: ðB3Þ

Doing so one gets a system of matrix algebras AΛ which are
ordered by inclusion

Λ ⊂ Λ0 ⇒ AΛ ⊂ AΛ0
; ∀ finiteΛ;Λ0 ⊂ Z: ðB4Þ

This construction leads to the possibility of defining, for two
arbitrary local operators a1; a2,

(i) their linear combination μ1a1 þ μ2a2 with
μ1; μ2 ∈ C;

(ii) their product a1a2; and
(iii) their adjoints a†1 (respectively, a†2).

To this end one needs only to find a region Λ such that the
matrix algebra AΛ contains both operators a1; a2.
More precisely one can introduce the space of all local

operators by the union

Aloc ≔ ⋃
finiteΛ⊂Z

AΛ; ðB5Þ

and then equip this space with a vector space structure, a
product (associative and bilinear), a † operation and a unit
element 1. In such a way Aloc becomes the algebra of local
observables.
Going further on, one can associate to each a ∈ Aloc its

norm ‖a‖ by finding the region Λ such that a ∈ AΛ and then
using the standard operator norm. A problem is given by the
fact that Aloc is not complete with respect to such a norm, i.e.,
not all Cauchy sequences converge. This problem can be
solved by taking the norm closure of Aloc and get the algebra
of quasilocal observables

AZ ¼ Aloc‖·‖: ðB6Þ

Here quasilocal stands for the fact that AZ besides all local
observables, also contains nonlocal observables which can be
approximated in norm by local ones.AZ results in aC� algebra
and its elements can be regarded in many respects as bounded
operators (Bratteli and Robinson, 1979).
It is also useful to consider methods to transform abstract

elements a ∈ AZ into operators πðaÞ acting on a Hilbert space
H, i.e., representations of quasilocal algebra. A representation

π on Hilbert space H is a homomorphism π∶ AZ → BðHÞ,
i.e., a linear map satisfying πðabÞ ¼ πðaÞπðbÞ and
πða†Þ ¼ πðaÞ†. Unfortunately for spin chains there is not a
unique representation that can be used for all purposes, but
one has to choose the representation which is most appropriate
to the given physical context. This ambiguity also reflects on
the definition of states. In fact, one might be tempted to use
density operators ρ on the Hilbert space H which carries the
representation π. However, since different representations
correspond to different physical contexts one should use all
possible representations (in fact, each density operator in any
representation can describe a state). Clearly, it would be much
better to describe states in a way independent from the
representation. Thus a state of AZ is defined as a linear
functional ψ∶ AZ → C which is positive [ψða†aÞ ≥ 0,
∀a ∈ A] and normalized [ψð1Þ ¼ 1]. This means that given
a representation π and a density operator ρ on H, the
corresponding state is the functional ψρðaÞ ¼ trfπðaÞρg.
The possibility of finding for each state ψ a Hilbert spaceH

carrying a representation π and a density operator ρ such that
ψ ¼ ψρ is guaranteed by the Gelfand-Naimark-Segal theorem
(Bratteli and Robinson, 1979). It states that each state ψ can be
represented by a state vector jvψi on a suitable Hilbert space.
In other words, we like to say that it is always possible to
provide a “purification” of the state ψ .
One can introduce into the quasilocal algebra AZ a shift

operation T∶ AZ → AZ by the following action:

AΛ∋a≃ a ⊗ 1A ↦ TðaÞ ≔ 1A ⊗ a≃ a ∈ AΛþ1; ðB7Þ

where A ⊗ 1A (respectively, 1A ⊗ A) stands for the tensor
product between A belonging to AΛ and the identity of A on
the site to the right of Λ (respectively, between the identity of
A on the site to the left of Λ and a belonging to AΛ).
Moving from the action of the shift T, it is possible to

introduce the notion of stationary state ψ on AZ when ψ∘T ¼
ψ holds true. The set of stationary states onAZ turns out to be
convex. Then a state ψ onAZ is called ergodic (with respect to
the shift) if it is extremal on this set.

APPENDIX C: DECOMPOSITION FOR
NONANTICIPATORY QUANTUM CHANNELS

This Appendix provides an explicit derivation of the
decomposition of nonanticipatory channels in Eq. (80)
based on a generalization of analysis presented in Beckman
et al. (2001), Eggeling, Schlingemann, and Werner (2002),
Kretschmann and Werner (2005), and Piani et al. (2006).
Let then fΦðnÞ; n ¼ 1; 2;…g be a family of CPTP maps

describing a nonantipatory quantum channel. Adopting the
unitary representation in Eq. (7), for each n one can define a

unitary transformation WðnÞ
qn;qn−1;…;q1;M

coupling the first n
carriers to a common environment M which allows one to
write

ΦðnÞðρðnÞQ Þ ¼ TrM½WðnÞ
qn;qn−1;…;q1;M

× ðρðnÞQ ⊗ ωðnÞ
M ÞWðnÞ†

qn;qn−1;…;q1;M
�: ðC1Þ

1252 Caruso et al.: Quantum channels and memory effects

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



The environmental state ωðnÞ
M is in general a function of n but is

independent on the input state ρðnÞQ . Without loss of generality

here it is assumed to be a pure state ωðnÞ
M ¼ jωðnÞiMhωðnÞj.

In general the unitary couplings WðnÞ
qn;qn−1;…;q1;M

can have a
complicated dependence upon n: however, since the channel
is nonanticipatory they must obey the following rule:

Trqn;M½W
ðnÞ
qn;…;q1;M

ðρðnÞQ ⊗ ωðnÞ
M ÞWðnÞ†

qn;…;q1;M
�

¼ TrM½Wðn−1Þ
qn−1;…;q1;M

ðρðn−1ÞQ ⊗ ωðn−1Þ
M ÞWðn−1Þ†

qn−1;…;q1;M
�;

where ρðn−1ÞQ ¼ Trqn ½ρðnÞQ � is the reduced density operator of

ρðnÞQ associated with the first n − 1 carriers. Applying this

relation to a pure input state ρðnÞQ of the form jψiqn ⊗
jϕiqn−1;…;q1 one notes that the vectors WðnÞ

qn;qn−1;…;q1;M
jψiqn ⊗

jϕiqn−1;…;q1 ⊗ jωðnÞiM and Wðn−1Þ
qn−1;…;q1;M

jϕiqn−1;…;q1⊗ jωðn−1ÞiM
are both purifications of the state Φðn−1Þðρðn−1ÞQ Þ. Therefore
there must exist a unitary transformation UqnM acting on the
latter which satisfies the identity (Nielsen and Chuang, 2000)

WðnÞ
qn;qn−1;…;q1;M

jωðnÞiM ¼ UqnMW
ðn−1Þ
qn−1;…;q1;M

jωðn−1ÞiM: ðC2Þ

Iterating this n times yields

WðnÞ
qn;qn−1;…;q1;M

jωðnÞiM ¼ UqnMUqn−1M � � �Uq1Mjωð0ÞiM; ðC3Þ

which replaced into Eq. (C1) implies Eq. (80).

APPENDIX D: EXPLICIT DERIVATION OF CAPACITY
UPPER BOUNDS

Here we present an explicit derivation of the upper
bounds (158) and (159) for the classical and quantum
capacities defined in Eq. (145) of a (non-necessarily mem-
oryless) quantum channel ΦðnÞ.

1. Upper bound for the classical capacity

The derivation of Eq. (158) follows by merging the Holevo
bound (Holevo, 1973a, 1973b) with the classical Fano
inequality (Cover and Thomas, 1991). For this purpose one
is reminded that given two random variables X and Y
connected by conditional probability distribution pðyjxÞ
and a correspondence rule which assigns values of X to each
of the values of Y, the Fano inequality allows one to lower
bound the mutual information IðX∶YÞ as

IðX∶YÞ ≥ HðXÞ − hðPeÞ − Pelog2ðjXj − 1Þ; ðD1Þ

where jXj is the number of elements of the variable X, hðpÞ is
the binary Shannon entropy (66), and finally Pe is the average
error probability that the correspondence rule is violated by
the conditional probability pðyjxÞ. Specifically, assuming for
simplicity that the X and Y span the same alphabet of symbols
and that the correspondence rule assigned to Y the same
symbol on X, we have Pe ¼ 1 −

P
xpðxÞpðy ¼ xjxÞ. Identify

then X with the messages m that Alice is mapping from M to

the n carriers via the coding channel Φðk→nÞ
E , and with Y the

elements of M which Bob is retrieving via his decoding

mapping Φðn→kÞ
D . Under the assumption that the probability

that Alice is selecting the messages from M with uniform
probability, and reminding one that M contains 2k elements,
Eq. (D1) yields

IðX∶YÞ ≥ k − hðPeÞ − Pelog2ð2k − 1Þ
≥ k − hðϵÞ − ϵk; ðD2Þ

wherewe used the fact thatPe ≤ 1 − Fmin < ϵ, withFmin being
the minimum fidelity achieved by the selected code. By
reorganizing the various terms and by dividing by nwe then get

k
n
≤

IðX∶YÞ
ð1 − ϵÞnþ hðϵÞ

ð1 − ϵÞn : ðD3Þ

Remember next that IðX∶YÞ is the mutual information asso-

ciated with the ensemble of code words E ¼ fpm ¼
2−k;Φðk→nÞ

E ðmÞg generated by Alice and received by Bob
through the channel ΦðnÞ. The Holevo bound (72) implies
then

k
n
≤
χðE;ΦðnÞÞ
ð1 − ϵÞn þ hðϵÞ

ð1 − ϵÞn

≤
maxEχðE;ΦðnÞÞ

ð1 − ϵÞn þ hðϵÞ
ð1 − ϵÞn : ðD4Þ

Since this inequality holds for all encoding and decoding
strategies entering in the capacity definition (145), by
taking the limits on k → ∞ and ϵ → 0 we finally get the
inequality (158).
The same derivation detailed above can be used to prove the

converse part of the HSW theorem for the one-shot classical
capacity C1ðΦÞ of a memoryless channel Φ, i.e.,

C1ðΦÞ ≤ max
E

χðE;ΦÞ: ðD5Þ

Indeed, exploiting the fact that the channel is memoryless and
the coding procedure uses only separable code words
Φðk→nÞ

E ðmÞ one can apply the subadditivity of the classical
mutual information (Gallager, 1968; Cover and Thomas,
1991) to replace Eq. (D2) as

Xn
i¼1

IðXi∶YiÞ ≥ k − hðPeÞ − Pelog2ð2k − 1Þ

≥ k − hðϵÞ − ϵk; ðD6Þ

where, for i ¼ 1;…; n, IðXi∶YiÞ is the mutual information
associated with the classical input of the ith channel use.
Applying the Holevo bound to all these terms we get

k
n
≤
maxEχðE;ΦÞ

ð1 − ϵÞ þ hðϵÞ
ð1 − ϵÞn ; ðD7Þ

that finally leads to Eq. (D5) when taking ϵ → 0.
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In conclusion, it is worth remarking that Eq. (158) can be
used to prove an inequality which in some cases happens to be
useful for deriving an explicit expression for C; see, e.g.,
Sec. VI.A.1. This is obtained by noting that

max
E

χðE;ΦðnÞÞ ≤ max
ρ

S½ΦðnÞðρÞ� −min
ρ
S½ΦðnÞðρÞ�

≤ nlog2d − SminðΦðnÞÞ; ðD8Þ

with SminðΦðnÞÞ ¼ minρS½ΦðnÞðρÞ� being the minimum
entropy one can reach at the output of the channel. In the
above derivation the first inequality follows directly from the
definition of the Holevo information, while the second from
the fact that the entropy of a state of H⊗n

Q is not larger than
log2 dn (d being the dimension of HQ). Replacing this into
Eq. (158) we then get

C ≤ log2d − lim
n→∞

SminðΦðnÞÞ
n

: ðD9Þ

2. Upper bound for the quantum capacity

The derivation which follows is an adaptation to the
memory channel scenario of the proof of Barnum, Nielsen,
and Schumacher (1998). The starting point in this case is the
quantum Fano inequality presented in Eq. (65), the data-
processing inequality (70) and the bounds (63). From them
one can easily verify that given a generic density matrix τ of
the reference set M the following relation holds:

SðτÞ
n

≤
Jðτ;Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ

n

þ 2

n
hðFeðτ;Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ

þ 4

n
½1 − Feðτ;Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ�log2ð4k − 1Þ

≤
maxρJðρ;ΦðnÞÞ

n
þ 2

n
hð1 − 3ϵ=2Þ þ 6

n
ϵk; ðD10Þ

where the second inequality has been obtained by using
again the data-processing inequality (70) and maximizing
J over all possible inputs states ρ of the n channels
uses, and by using the fact that the minimum fidelity of
the code is lower bounded by 1 − ϵ and the fact that this
implies that the corresponding entanglement fidelity
fulfills Feðτ;Φðn→kÞ

D ∘ΦðnÞ∘Φðk→nÞ
E Þ > 1 − 3ϵ=2; see Eq. (53).

Specifying Eq. (D10) for the maximally mixed state ofM, we
then get

k
n
≤
maxρJðρ;ΦðnÞÞ

n
þ 2

n
hð1 − 3ϵ=2Þ þ 6

n
ϵk;

which in the limit of k → ∞ and ϵ → 0 yields finally
Eq. (159).
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