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Disk galaxies evolve over time through processes that may rearrange both the radial mass profile

and the metallicity distribution within the disk. This review of such slow changes is largely, though

not entirely, restricted to internally driven processes that can be distinguished from evolution driven

by galaxy interactions. It both describes our current understanding of disk evolution and identifies

areas where more work is needed. Stellar disks are heated through spiral scattering, which increases

random motion components in the plane, while molecular clouds redirect some fraction of the

random energy into vertical motion. The recently discovered process of radial migration at the

corotation resonance of a transient spiral mode does not alter the underlying structure of the disk,

since it neither heats the disk nor causes it to spread, but it does have a profound effect on the

expected distribution of metallicities among the disk stars. Bars in disks are believed to be major

drivers of secular evolution through interactions with the outer disk and with the halo. Once the

material that makes up galaxy disks is converted into stars, their overall angular momentum

distribution cannot change by much, but that of the gas is generally far more liable to rearrange-

ment, allowing rings and pseudobulges to form. While simulations are powerful tools from which

we have learned a great deal, those of disks may suffer from collisional relaxation that requires

some results to be interpreted with caution.
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I. INTRODUCTION

Galaxies are distributed throughout the Universe in a
clustering hierarchy. A large majority of bright galaxies are
disk shaped, with a significant minority being ellipsoidal. The
question of how these objects came into existence is the
subject of intense current research. However, it has become
increasingly clear that the present-day properties of galaxies
were not exclusively laid down at the time of their formation,
and that internally driven processes have contributed signifi-
cantly to their present properties. This review describes, from
a theoretical perspective, the dynamical behavior that is
believed to be important in restructuring galaxy disks from
their initially endowed properties. Kormendy and Kennicutt
(2004), updated in Kormendy (2013), give a comprehensive
review of the same topic from an observer’s perspective. The
present-day properties of galaxy disks were recently reviewed
by van der Kruit and Freeman (2011).

It has to be said at the outset that galaxies do not first form,
and then evolve, in temporally distinct phases. In fact, even
today formation is incomplete for many galaxies, such as the
Milky Way. However, the balance has clearly shifted from
the rapid collapse and merging picture that characterized the
roughly first one-third of the life of the Universe to more
quiescent evolution over the remaining two-thirds. The vi-
brant topic of galaxy formation is too large to be included in
any detail in this review, yet it cannot be omitted entirely as it
provides the context for galaxy evolution.

After the initial collapse, and every subsequent major
merger event, gas begins to settle into a disk whose orienta-
tion is determined by the angular momentum that it acquired
from the tidal fields of other nearby mass concentrations. The
thinness of galaxy disks requires there to have been a pro-
tracted period of quiescent evolution, during which a number
of internally driven processes gradually rearrange the struc-
ture of galaxies. These include disk growth through slow
accretion of gas, the formation and evolution of bars, recur-
ring spiral instabilities, the response of the stellar system to
the radial rearrangement of matter, especially the gas, etc.
These, together with the influence of the environment, drive
what has become known as ‘‘secular evolution,’’ by which is
meant the gradual restructuring of a galaxy over time scales
much longer than a crossing time. Evolution is mostly driven
by the outward redistribution of angular momentum in a
galaxy, which enables it to reach a state of lower energy,
and such changes are prolonged by gas accretion.

Note that the word ‘‘secular’’ has a narrow meaning in
classical studies of rotating fluid spheroids by Maclaurin and
Jacobi [summarized by Chandrasekhar (1987)]. They re-
vealed that viscosity, a dissipative process, can destabilize
some rotating Maclaurin spheroids, which become secularly
unstable and evolve to Jacobi ellipsoids. However, the same
Maclaurin spheroid could be dynamically stable in the ab-
sence of viscosity. In this review, I adopt the deliberately
broader and vaguer meaning of secular explained in the
previous paragraph.

Of the many processes discussed in this review, I here
highlight two of particular significance. Spiral patterns are
probably the most important agent of secular evolution. They
have long been known to redistribute angular momentum and
to cause the random motions of stars to increase over time,
but we now know that they cause extensive radial mixing of
both the stars and the gas, and they smooth small-scale
irregularities in the mass distribution. Bars also cause sub-
stantial secular changes. Once formed, stellar bars in isolated,
gas-free disks simply rotate steadily with no tendency to
evolve [see, e.g., Miller and Smith (1979)], but interaction
with gas and other mass components of the galaxy can
gradually alter the properties of the bar, with evolutionary
consequences for its host galaxy. It is noteworthy that the rate
of secular evolution by both spirals and bars is substantially
accelerated by a moderate fraction of gas.

In order to keep to a manageable length, I focus here on
secular evolution in galaxy disks largely driven through
internal processes. In appropriate places I mention environ-
mental factors, such as the infall of debris, tidal interactions,
etc., which can also alter the structure of a galaxy. But
describing the full extent to which environmental factors
may drive evolution would stray into the domain of galaxy
assembly and would add too much to the length of this
review.

II. BACKGROUND

The purpose of this long section is to introduce the con-
cepts and mechanisms that are invoked in the main part of the
review, which begins in Sec. III. Note that I refer back to the
various parts of this section where appropriate, so that those
who start with the later sections can quickly locate a summary
of the background that is assumed.

A. Galaxy formation

The current paradigm for galaxy formation is the Lambda
cold dark matter (�CDM) model (Springel, Frenk, and
White, 2006), which holds that galaxies form in dark matter
halos whose distribution and properties were seeded by a
Gaussian random field of tiny density fluctuations in the early
Universe (Bardeen et al., 1986). Because the mean matter
density was so close to the closure density in the early
Universe, even very mild initial overdensities grew through
self-gravity, and subclumps on all but the very largest scales
were gravitationally bound together. In this epoch, few over-
dense regions were isolated from their neighbors, and the
growth of structure was characterized by the development of
a ‘‘cosmic web’’ of dense sheets, filaments, and voids that has
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been simulated with ever increasing precision [see Frenk and

White (2012) for a recent review]. During this phase, initially

distinct collapse centers underwent a considerable degree of

merging, giving each major overdensity a treelike origin as

different leaves, branches, and more major boughs join to the

main density peak. Later, a little after redshift z� 1, some

mysterious ‘‘dark energy,’’ which has many of the properties

of Einstein’s cosmological constant, has caused the originally

slowing universal expansion to reaccelerate (Riess et al.,

1998; Perlmutter et al., 1999). Reacceleration increases the

isolation of different pieces of the clustering hierarchy, re-

ducing the later merging rate of halos and allowing galaxies

to settle in a more dynamically quiescent period.
As the first collapses began, the mutual tidal stresses

between the extended overdense regions impart some angular

momentum about each collapse center. A dimensionless

measure of the total angular momentum L is �L ¼
LjEj1=2=GM5=2, where E andM are the system’s total energy

and mass. Halos formed in hierarchical simulations are found

to have a log-normal distribution of this parameter with a

most probable value of �L;0 ¼ 0:037 (Bullock et al., 2001).

Stochastic hierarchical growth leads to a net angular momen-

tum of a halo that varies in magnitude and direction both with

distance from the point of highest density and over time.
The dynamical evolution just described is driven by the

dark matter, popularly supposed to be some relic, weakly

interacting particle that became nonrelativistic in the early

Universe and is therefore described as ‘‘cold.’’ It is believed

(Hinshaw et al., 2013) to have a cosmic density more than

6 times that of the ‘‘baryonic’’ matter, comprised of the

familiar protons, neutrons, and electrons. The small mass

fraction of hydrogen and helium, which combined from the

primordial plasma to become neutral gas at z� 1100, is

known to have subsequently reionized sometime around

z� 10 (Larson et al., 2011) as the first objects dense enough

to support thermonuclear reactions began to radiate.
Gas collects in overdense regions, either by cooling of

shock heated material or through flows of cold gas accreted

along filaments of the cosmic web, and spins up as it settles

into rotationally supported disks at the centers of the dark

matter halos. The ongoing formation of stars in these gaseous

disks gives rise to the galaxies we observe today. Numerical

simulations of the galaxy formation process lack the dynamic

range (Springel, Frenk, and White, 2006) to resolve the

complicated gas physics of fragmentation, star formation,

and the subsequent release of energy through supernovae

(see Sec. II.K). Thus the rate, efficiency, and precise location

of star formation, described as ‘‘subgrid physics,’’ is included

in the simulations through rules that are both motivated by

observational evidence and tuned to achieve the desired out-

come. The difficulty that simulations have in making galaxy-

like objects with the properties we observe today is widely

attributed to inadequacies in the implementation of star for-

mation and feedback.
As halos continue to merge, the disks of stars that had

begun to form in them are transformed into amorphous

ellipsoidal components in the violently changing gravita-

tional potential (Barnes and Hernquist, 1992). Where some

combination of shocks, supernovae, and active galactic nu-

cleus (AGN) activity has heated most remaining gas to very

high temperatures, the merged remnants are believed to

become the ‘‘red sequence’’ galaxies that have little gas

that can cool and reconstitute an active star-forming disk.1

Where gas can cool and resettle, the ellipsoidal ball of stars

becomes a spheroidal bulge at the center of a newly assem-

bling disk that generally continues to grow. Disk galaxies that

are actively forming stars are the ‘‘blue cloud’’ galaxies.
This current picture is widely accepted as broadly correct

because it accounts for the distribution of galaxies throughout

the Universe and some of their properties (Springel, Frenk,

and White, 2006). Yet there are quite a number of important
predictions of the model that seem to be inconsistent with

known galaxy properties. Perhaps the foremost is that

(1) many present-day galaxies lack the types of bulges pro-

duced by mergers (Kormendy et al., 2010; Shen et al., 2010),
whereas the merging hierarchy of the model predicts sub-

stantial, dense bulges in most large galaxies. Other problems

are (2) the central density of dark matter in the halos of

galaxies today seems less than the models predict
(Sellwood, 2009; Kuzio de Naray and Spekkens, 2011),

(3) the number and properties of dwarf satellite galaxies

surrounding each major galaxy seem inconsistent with what

we observe (Boylan-Kolchin, Bullock, and Kaplinghat,
2012), (4) the old stars in galactic disks reside in a thinner

layer that cannot have been stirred by a minor merger for a

very long period (Wyse, 2009), etc. See Silk and Mamon

(2012) for a more detailed critique.

B. Relaxation time in the disks of galaxies

Except in the immediate neighborhood of a star, the gravi-

tational attraction of nearby stars is generally negligible
compared with that from the large-scale distribution of matter

in a galaxy. While the argument that establishes this point can

be found in many textbooks [see, e.g., Binney and Tremaine

(2008), hereafter BT08], the usual derivation requires some
modification for disk systems that is generally omitted even

though it involves several nontrivial issues that are important

both to the scattering of stars by mass clumps in the disk and

to the proper interpretation of simulations, as noted elsewhere
in this review.

1. Standard theory for spherical systems

A test particle moving at velocity v along a trajectory that

passes a stationary field star ofmass�with impact parameterb
is deflected by the attraction of the field star. For a distant

passage, it acquires a transverse velocity component jv?j ’
2G�=bv to first order [BT08 Eq. (1.30)]. Encounters at impact

parameters small enough to produce deflections where this

approximation fails badly are negligibly rare and relaxation is

driven by the cumulative effect of many small deflections.
If the density of field stars is n per unit volume and uniform

in 3D, the test particle encounters �n ¼ 2�b�bnv stars per

1The terms ‘‘red sequence’’ and ‘‘blue cloud’’ refer to distinct

groupings in the color-magnitude diagram for galaxies [see, e.g.,

Baldry et al. (2004)] and reflect, more objectively, the distinction

between early- and late-type galaxies already known to Hubble [see,

e.g., Sandage (1961)].
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unit time with impact parameters between b and bþ �b.
Assuming stars to have equal masses, each encounter at this
impact parameter produces a randomly directed v? that will
cause a mean square net deflection per unit time of

h�v2
?i ’

�
2G�

bv

�
2
2�b�bnv ¼ 8�G2�2n

v

�b

b
: (1)

The total rate of deflection from all encounters is the integral
over impact parameters, yielding

hv2
?i ¼

8�G2�2n

v

Z bmax

bmin

db

b
¼ 8�G2�2n

v
ln�; (2)

where ln� � lnðbmax=bminÞ is the Coulomb logarithm.
Typically one chooses the lower limit to be the impact
parameter of a close encounter, bmin ’ 2G�=v2, for which
jv?j is overestimated by the linear formula, while the upper
limit is, say, the half mass or effective radius Re of the stellar
distribution beyond which the density decreases rapidly. The
vagueness of these definitions is not of great significance to
an estimate of the overall rate because we need only the
logarithm of their ratio. The Coulomb logarithm implies
equal contributions to the integrated deflection rate from
every decade in the impact parameter simply because the
diminishing gravitational influence of more distant stars is
exactly balanced by their increasing numbers.

Note that the first-order deflections that give rise to this
steadily increasing random energy come at the expense of
second-order reductions in the forward motion of the same
particles that we have neglected (Hénon, 1973). Thus the
system does indeed conserve energy, as it must.

We define the relaxation time to be the time needed for
hv2

?i ’ v2, where v is the typical velocity of a star. Thus

�relax ¼ v3

8�G2�2n ln�
: (3)

To order of magnitude, a typical velocity v2 � GN�=Re,
where N is the number of stars each of mean mass�, yielding
� � N. Defining the dynamical time to be �dyn ¼ Re=v and

setting n� 3N=4�R3
e, we have

�relax � N

6 lnN
�dyn; (4)

which shows that the collisionless approximation is well
satisfied in galaxies, which have 108 & N & 1011 stars.
Including the effect of a smooth dark matter component in
this estimate would increase the typical velocity v, thereby
further lengthening the relaxation time.

2. Applications to disk systems

This standard argument, however, assumed a pressure-
supported quasispherical system in several places. Rybicki
(1972) pointed out that the flattened geometry and organized
streaming motion within disks affects the relaxation time in a
number of important ways.

First, the assumption that the typical encounter velocity
is comparable to the orbital speed v ¼ ðGN�=ReÞ1=2 is
clearly wrong; stars move past each other at the typical
random speeds in the disk, say �v with �� 0:1, causing

larger deflections and decreasing the time for hv2
?i ’ �2v2 by

a factor �3.
Second, the distribution of scatterers is not uniform in 3D,

as was implicitly assumed in Eq. (1). Assuming a razor-thin
disk changes the volume element from 2�vb�b for 3D to
2v�b in 2D, which changes the integrand in Eq. (2) to b�2

and replaces the Coulomb logarithm by the factor b�1
min �

b�1
max. In 2D, therefore, relaxation is dominated by close

encounters when the forces are Newtonian, and the system
could never be collisionless.

Real galaxy disks are neither razor thin nor spherical so the
spherical dependence applies at ranges up to the typical disk
thickness z0, beyond which the density of stars drops too
quickly to make a significant further contribution to the
relaxation rate. Thus we should use � ’ z0=bmin for disks.

Third, the local mass density is also higher, so that
N � �R2

ez0n. These three considerations shorten the relaxa-
tion time [Eq. (4)] by the factor

�3

�
z0
Re

�
lnðRe=bminÞ
lnðz0=bminÞ ; (5)

or �10�4 for � ’ 0:1 and reasonable z0=Re. Note that star-
star encounters in galaxy disks remain unimportant, even with
this large reduction in the relaxation time scale. But signifi-
cant relaxation can occur in simulations of stellar disks, and
the issues originally raised by Rybicki are of importance for
scattering by clouds, as developed below.

A fourth consideration for disks is that the mass distribu-
tion is much less smooth than is the case in the bulk of
pressure-supported galaxies. A galaxy disk generally contains
massive star clusters and giant molecular clouds whose in-
fluence on the relaxation rate turns out to be non-negligible
and also determines the shape of the equilibrium velocity
ellipsoid (see Sec. III.B.4).

C. Stellar orbits in disks

While the above considerations should be borne in mind, it
is nevertheless useful to regard the gravitational potential of a
galaxy as a smooth function of position to a first approxima-
tion. If this assumption holds, the stellar component of a
galaxy behaves as a collisionless fluid (BT08). I extend the
discussion to include relaxation processes present in galaxy
disks in Sec. III.B.

A star, or test particle, moving in the symmetry plane
(z ¼ 0) of a steady axisymmetric potential �ðR; zÞ must
conserve its specific energy E and specific angular momen-
tum Lz about the symmetry axis (R ¼ 0); these are the only
two nontrivial integrals of motion when Lx ¼ Ly ¼ 0. In

general, the orbit of a star is a rosette, as shown in Fig. 1,
but when viewed from a frame rotating about the center of the
galaxy at an angular frequency�� (lower panel), we see that

the motion can be decomposed into a radial oscillation about
a guiding center, which is marked with a cross, plus the
uniform angular motion of the guiding center about the center
with a period �� ¼ 2�=��. The guiding center radius Rg is

where the radial acceleration of the particle passes through
zero, i.e., where the central attraction matches the centripetal
acceleration:
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�
@�

@R

�
ðRg;0Þ

¼ L2
z

R3
g

: (6)

For eccentric orbits, such as that shown,�� & �c � Lz=R
2
g,

the angular frequency of circular motion for the same Lz. The
radial oscillation is anharmonic and we simply define the
radial frequency �R � 2�=�R, where �R is the period of a
full radial oscillation. In all realistic galactic potentials�� <

�R < 2��, and stars therefore make more than one, but less

than two radial oscillations per orbit period. For near-circular
orbits, �� ! �c, and the radial oscillation becomes har-

monic about the guiding center, with �R ! �, the Lindblad
epicyclic frequency defined through

�2ðRgÞ ¼
�
@2�

@R2

�
ðRg;0Þ

þ 3

Rg

�
@�

@R

�
ðRg;0Þ

: (7)

Motion in the third dimension can also be oscillatory, with
a well-defined period �z. When both the radial and vertical
excursions are small, the vertical oscillation is decoupled
from the in-plane motion and has an angular frequency 	
given by

	2ðRgÞ ¼
�
@2�

@z2

�
ðRg;0Þ

: (8)

Naturally, �z � 2�=�z ! 	 in this limit.

In a general static, axisymmetric potential, the motion of

most stars can be decomposed into three separate oscillations

at the three different frequencies �R, ��, and �z. Such

orbits are described as regular orbits. However, there is a

generally small fraction of irregular orbits, whose motion is

more complicated and cannot be decomposed into three

oscillations and another fraction that are truly chaotic.
In addition to the two classical integrals E and Lz, regular

orbits respect a third, nonclassical integral. It is described as a

nonclassical integral because it cannot be expressed as a

simple function of the phase-space variables.

D. Action-angle variables

The formal clutter that usually accompanies any introduc-

tion to action-angle variables makes it hard to grasp what they

really are and why they are useful. In an attempt to clarify

these points, I here give a brief qualitative discussion, and

refer the interested reader to BT08 for a more mathematical,

but still not fully rigorous, treatment.
The 2D axisymmetric case, for which there are just two

actions, is easiest to visualize and was illustrated already in

Fig. 1. The azimuthal action J� is simply the angular mo-

mentum, which is a measure of the size of the orbit or

equivalently the radius of the guiding center [Eq. (6)]. The

radial action JR is a second conserved quantity that is a

measure of the radial extent of the oscillation; thus JR ¼ 0
for a circular orbit and nonzero values can be calculated using

Eq. (11). The orbit is uniquely determined by the values of the

actions ðJR; J�Þ, which are an alternative pair of integrals to

ðE; LzÞ.
The doubly periodic motion is described by two angles wR

and w�, which specify, respectively, the phase of the orbit

around its epicycle and the phase of the guiding center around

the galaxy center. One major advantage of this apparatus is

that each angle variable increases at the constant rate wiðtÞ ¼
wið0Þ þ t�iðE; LzÞ, even though the ðR;�Þ coordinates of a
star vary nonuniformly with time.2

This approach becomes far more valuable when used to

describe the 3D motion of a regular orbit, which respects

three integrals. Even though one or more integrals cannot be

expressed as simple functions of the phase-space variables in

either Cartesian or polar coordinate systems, we can fully

describe regular 3D motion in an arbitrary smooth potential

using three actions that are conserved quantities, i.e., they are

a set of integrals. The triply periodic motion is described by

three angles that again increase at uniform rates. The actions

in an axisymmetric potential are JR and J�, the radial and

azimuthal actions as for 2D, and Jz, which quantifies the up-

and-down motion about the midplane. For each regular orbit,

the three oscillation frequencies are �i ¼ dwi=dt ¼ 2�=�i
(Sec. II.C), with i denoting any of the three cylindrical polar

coordinates.
Not only do we now have a set of integrals and can describe

the motion as the three angles increase in time at uniform

FIG. 1. An eccentric orbit in the midplane of an axisymmetric

potential. The center of the potential is marked with a plus. The

orbit is drawn in the inertial frame above and below in a frame that

rotates with the guiding center, marked with a cross. Since the star

conserves Lz, the motion around the epicycle is in the retrograde

sense.

2Lynden-Bell (1962) pointed out that while wið0Þ is a constant of
the motion, it is a nonisolating integral and therefore is of no

importance to the overall structure of phase space.
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rates, but these variables have two further advantages. The
actions are the adiabatic invariants when the system is subject
to slow changes, and the orbit is not close to a resonance.
Finally, a more mathematical advantage is that perturbation
theory is greatly simplified when using these variables (see,
e.g., Sec. III.E).

E. Orbital tori

Were motion confined to a plane, as for the 2D orbit shown
in Fig. 1, the star would move in the 4D phase space
ðR;�; vr; v�Þ. However, because both E and Lz are con-

served, the star’s motion is confined to a 2D surface within
the 4D phase space, since both velocity components v� ¼
Lz=R and vR ¼ f2½E��ðRÞ� � ðLz=RÞ2g1=2 are determined
for every value of R, except for the sign ambiguity of vR.

To see that the motion is confined to the surface of a torus,
imagine that we add to the rosette orbit shown in the upper
panel a third coordinate that is the star’s radial velocity vR,
which is positive above the page and negative below. As the
star moves forward in time from its pericentric distance, say,
vR first rises to a maximum height above the page as it crosses
Rg, and then decreases to zero as it reaches its apocentric

distance. Then vR changes sign and the inward motion is
below the page. As the star moves out and in, it also advances
around the galactic center. Thus the motion in the 3D space of
ðR;�; vRÞ is confined to the surface of a torus in that space. It
is impossible to visualize a fourth dimension, but while the
speed v� around the torus varies with R, it does so within a

restricted range that does not alter the topology.
In 3D, stars move in a 6D phase space, and every conserved

quantity, or isolating integral, confines its motion to a hyper-
surface of one lower dimension. The regular orbit of a star
that possesses three integrals is confined to the surface of a
3D hypertorus in the 6D phase space, and again the motion
within each dimension of the hypertorus is an independent
oscillation.

Fewer quantities are conserved for chaotic orbits, whose
motion cannot be decomposed into three independent oscil-
lations. For example, a star that moves chaotically is not
confined to a 3D surface, but explores a 5D space if only E
is conserved, which is typical in a nonaxisymmetric potential.

All three actions are quantities having the dimensions of
angular momentum, and each is defined as the cross-sectional
area of the appropriate slice through the star’s orbit torus in
6D phase space, i.e.,

Ji � 1

2�

I
_xidxi; (9)

where i labels a particular coordinate and the integral is
around one complete loop in this slice through the torus. In
an axisymmetric potential, J� � ð2�Þ�1

R
2�
0 v�Rd� and,

since the integrand Rv� ¼ Lz is a constant, we have J� �
Lz, but Eq. (9) generally must be evaluated numerically for
the other actions.

Since stars oscillate at differing frequencies in each of the
three coordinate directions, one way to estimate the ith action
is to integrate the orbit and measure the area inside the closed
curve delineated by the locus of points, or consequents, as the
star crosses the 2D surface ðxi; _xiÞ, known as the surface of

section. McMillan and Binney (2008) described a superior
method of ‘‘torus fitting’’ that yields all three actions simul-
taneously in an arbitrary potential.

For those who find torus fitting intimidating, useful ap-
proximations can be obtained more easily for disk star orbits.
We first assume axial symmetry, so that J� ¼ Lz, and write

the energy of a star as

E ¼ 1
2ð _R2 þ _z2Þ þ�effðR; zÞ; (10)

with the effective potential being �eff � �ðR; zÞ þ
L2
z=ð2R2Þ. The approximation is to assume that the radial

and vertical oscillations are decoupled, and that the radial
action can be estimated from motion in the midplane as

JR ’ 1

�

Z Ra

Rp

f2½E��effðR; 0Þ�g1=2dRjz¼0: (11)

The integration limits are the pericentric and apocentric
values of R in the midplane, where the argument of the square
root is zero. This integral is for half the radial period, and we
drop the factor of 2 in the denominator because the return half
makes an equal contribution. Similarly,

Jz ’ 1

�

Z zmax

zmin

f2½E��effðRg; zÞ�g1=2dzjR¼Rg
: (12)

These equations are exact for stars lacking vertical or radial
oscillation, respectively, but in general they are slight over-
estimates since they assume that a star moving in 3D explores
the full extent of the region that is energetically accessible,
which is not quite the case when the orbit is integrated.

The epicyclic approximation for small-amplitude excur-
sions assumes that both the radial and vertical oscillations are
harmonic. If this is valid, JR;epi ¼ �a2=2, with a being the

radial excursion of the star (Lynden-Bell and Kalnajs, 1972)
and Jz;epi ¼ 	z2max=2. Since most stars in a disk have vertical

excursions that take them outside the harmonic region
of the disk potential well, Jz;epi should be avoided in favor

of Eq. (12), which is readily evaluated.

F. Distribution function

The density of stars in the 6D phase space of position and
velocity is given by a distribution function f (DF). The DF for
an equilibrium stellar system must be a function of the
integrals only (Jeans theorem). The set of actions is a possible
set of integrals, and the density of regular orbits could be
written as fðJ1; J2; J3Þ, but formally only if every possible
orbit respects three integrals and there are no irregular or
chaotic orbits.

For axisymmetric systems, if there were no third integral,
the DF would be a function of the two classical integrals E
and Lz only. If this were true, the ratio of the second moments
of the radial and vertical velocity components,

hv2
Ri

hv2
zi

¼
R
fðE; LzÞ _R2dv3R
fðE; LzÞ _z2dv3

¼ 1; (13)

as both _R and _z enter equally in E [Eq. (10)]. Since we
observe that 
R � 
z, we conclude that large parts of the
phase space of disks are regular and the effective DF must
depend upon three integrals.
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A few analytic expressions for DFs are known for 2D
disks, but because the possible third integral is not a simple
function of the phase-space coordinates, the development of
analytic three-integral DFs for realistic flattened disks [see,
e.g., Binney (2010)] is much more difficult.

G. Nonaxisymmetric disturbances

Consider the potential of a small-amplitude disturbance in
the z ¼ 0 midplane that is the real part of

�1ðR;�; tÞ ¼ �ðRÞeiðm��!tÞ: (14)

This potential has the following properties: it varies
sinusoidally with the azimuthal coordinate �, it is m-fold
rotationally symmetric (e.g., m ¼ 2 for a bisymmetric spiral
or bar), it rotates about the z axis at the angular rate �p ¼
<ð!Þ=m which is described as the pattern speed, and grows
exponentially at the rate � ¼ =ð!Þ. The complex function
�ðRÞ describes the radial variation of the amplitude and
phase of the perturbation.

The density distribution that gives rise to this disturbance
potential is not easily computed. Generally, Poisson’s equa-
tion requires the potential spiral to be less tightly wound than
the density spiral, and the phase relation between the density
and potential therefore varies systematically with radius. The
density and potential are in phase when the tight-winding
(or WKB) approximation is employed, but spirals in galaxies
are sufficiently open that this approximation gives only a
rough guide to the dynamics of real spirals.

H. Resonances

Stars orbiting in the midplane of an almost axisymmetric
galaxy are in resonance with a weak nonaxisymmetric dis-
turbance of the form (14) when

�p ¼ �� þ l

m
�R: (15)

The unperturbed orbit frequencies of the stars are defined in
Sec. II.C and l is a signed integer. Equation (15) is satisfied
for l ¼ 0 when the guiding center of a star rotates synchro-
nously with the disturbance, which is described as the coro-
tation resonance. When l ¼ �1, Eq. (15) defines the
locations of the Lindblad resonances, which arise because
the Doppler shifted frequency at which the star encounters the
wave mj�� ��pj is equal to its unforced frequency of

radial oscillation �R, or � for nearly circular orbits.
Interior to corotation, the stars overtake the wave, and l ¼
�1 at the inner Lindblad resonance (ILR). Outside corota-
tion, the stars are overtaken by the wave, and the outer
Lindblad resonance (OLR) occurs where l ¼ þ1.
Resonances for larger values of jlj, if they occur at all, are
generally of little dynamical interest, since spiral patterns can
exist only between the Lindblad resonances; a steady perturb-
ing potential does not elicit a supporting response from the
stars outside this radial range.

Ultraharmonic resonances arise where Eq. (15) is satisfied
for l ¼ �1 and m replaced by 2m. At these resonances,
which are closer to corotation than are the Lindblad reso-
nances, the star completes two radial oscillations as it moves

between wave crests. Yet higher-order resonances exist for
larger integral numbers of radial oscillations; they are located
still closer to corotation as stars drift ever more slowly
relative to the pattern. Ultraharmonic resonances are dynami-
cally unimportant in linear perturbation theory, but their
nonlinear generalizations play a role in finite-amplitude
perturbations, especially bars (see Sec. V).

Vertical resonances will occur where the Doppler shifted
frequency

mð�p ���Þ ¼ n�z; (16)

with n being a signed integer; the n ¼ 0 case (corotation) is
of no special significance for vertical motion. In the epicycle
approximation, �z ! 	, which is a higher frequency in the
massive part of the disk than is �. Therefore, the n ¼ �1
vertical resonances are farther from corotation than are the
Lindblad resonances. In linear perturbation theory, spiral
perturbations do not extend beyond the Lindblad resonances,
making these vertical resonances uninteresting because the
perturbation potential is tiny there. However, it should be
noted that the effective vertical frequency �z � 2�=�z can
be much smaller than 	 for stars with vertical excursions
extending well outside the region where the potential is
approximately harmonic, and such stars could, in principle,
experience a vertical resonance.

Linear perturbation theory holds even at resonances for
small-amplitude disturbances that grow exponentially, for
then the resonances have a Lorentzian width determined by
the growth rate. However, it breaks down for stars in reso-
nance with a steady, or slowly growing, perturbation. Stars
can be trapped by the resonance, and the size of the trapped
region in phase space increases with the amplitude of the
perturbing potential.

I. Local stability

The problem of computing the gravitational potential of an
arbitrary spiral disturbance is one reason that the global
normal modes of a stellar disk cannot be computed in a
straightforward manner (Kalnajs, 1977; Jalali, 2007, BT08).
While a WKB (local) approach, in which the local spatial
variation of the disturbance can be approximated as part of a
plane wave, is generally a poor approximation, results ob-
tained using it do give some indication of the global behavior.

Toomre (1964) used this approximation to show that axi-
symmetric oscillations in a razor-thin disk of surface density
� are stabilized by rotation on scales

� > �crit ¼ 4�2G�

�2
; (17)

where � is the epicyclic frequency defined in Eq. (7). In the
complete absence of random motion, a disk is unstable to
gravitational clumping into rings on all scales smaller than
�crit. Physically, �crit decreases with increasing � because
stars are held more tightly to their guiding center radii. The
value of �crit � 6 kpc in the solar neighborhood, or three-
fourths of the Sun’s distance from the Galactic center, in-
dicating that the WKB approximation is indeed stretched.

Random motions of the stars prevent gravitational insta-
bilities when the disturbance disperses more rapidly than it
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grows. The tendency of random motions to provide stability
on small scales while rotation suppresses instability on large
scales led Toomre to the following celebrated local stability
criterion: if the stellar radial velocities have a Gaussian
distribution with spread 
R, then the system is axisymmetri-
cally stable on all scales if

Q � 
R


R;crit

> 1; where 
R;crit ¼ 3:36G�

�
: (18)

Adopting solar neighborhood values, we find 
R;crit �
20 km s�1. In a razor-thin, isothermal gas disk 
R is replaced
by the sound speed cs and the constant 3.36 is replaced by �.
The constant is also slightly reduced in finitely thick disks
since the destabilizing gravitational forces are diluted by the
vertical spread of matter [see, e.g., Romeo (1992)]. The local
stability of combined gas and stellar disks was calculated by
Rafikov (2001), while Romeo and Wiegert (2011) offered an
approximate formula for Q in thickened two-component
disks. Global axisymmetric stability may be guaranteed if
the disk is locally stable everywhere (Kalnajs, 1976).

It cannot be emphasized too strongly that criterion (18) is
for local axisymmetric stability only, and that disks that meet
this criterion can still be unstable to nonaxisymmetric modes.
In fact, no general criterion for nonaxisymmetric stability is
known.

Local nonaxisymmetric stability was investigated by
Goldreich and Lynden-Bell (1965) and by Julian and
Toomre (1966), who independently discovered the process
of swing amplification. Figure 2, from a global calculation
due to Toomre (1981), illustrates the fate of an arbitrary input

leading spiral inserted by hand and given a pattern speed so
that it is localized near the ILR. In this linearly stable, Q ¼
1:5 disk, the disturbance initially propagates away from the
ILR and unwinds due to the differential rotation until it
‘‘swings’’ from leading to trailing. The disturbance is ampli-
fied by a large factor during this period when it is least wound
because rotational support, which is a critical part of axisym-
metric stability, is compromised briefly. The disturbance
propagates radially at the group velocity (Toomre, 1969),
which is away from corotation for trailing waves, and the
inner part returns toward the ILR. The part of the disturbance
outside corotation fades quickly as it spreads over a wider
area, while the opposite behavior affects the inner part until it
is gradually absorbed by wave-particle interactions as it
approaches the resonance. Thus the whole episode is a tran-
sient response that, to first order, causes no lasting change to
the disk, although there are second-order changes.

The amplification of a wave packet at corotation can be
calculated in a variety of local approximations (Toomre,
1981), while Drury (1980) computed the relationship be-
tween a continuous wave train incident on corotation and
the super-reflected and transmitted waves. In the notation of
Julian and Toomre (1966), the most important parameter is

X � �y

�crit

¼ 2�RCR

m

�2

4�2G�
; (19)

where �y is the wavelength of the disturbance with angular

periodicitym around the corotation circle of radius RCR. For a
flat rotation curve, amplification is significant for 1 & X & 3
and is strongest for an unwrapped wavelength that is about
twice �crit. If the rotation curve declines, amplification ex-
tends to larger values of X and, conversely, it is confined to
smaller X values in rising cases. Of course, the range of X for
strong amplification shrinks to zero in the absence of shear
(uniform rotation).

The amplification factor also decreases rapidly with in-
creasingQ [Eq. (18)]. The reflected wave can be 100 times as
strong as the incident wave for X ’ 2 and Q ’ 1:2, but only a
few times greater when Q ’ 2.

Notice that X / ðm�Þ�1, implying that for a fixed radius
and rotation curve amplification will be strong for higher m
values when the disk surface density � is low—i.e., we
expect bisymmetric spirals in heavy disks and multiarm
spirals in strongly submaximal disks (Sellwood and
Carlberg, 1984). Thus the number of spiral arms in a galaxy
could be an indicator of the relative contribution of the disk to
the total central attraction (Athanassoula, Bosma, and
Papaioannou, 1987). This argument should not be applied
to flocculent galaxies (Elmegreen and Elmegreen, 1982),
which have many small arm fragments, where the small
spatial scale of the arms probably indicates that the respon-
sive part of the disk is a low-mass component that has become
dynamically decoupled from a hotter, underlying stellar disk.

J. Angular momentum changes

The response of the stars to a weak potential perturbation is
most easily calculated in action-angle variables (Lynden-Bell
and Kalnajs, 1972; Dekker, 1976; Carlberg and Sellwood,
1985; Binney and Lacey, 1988). Lynden-Bell and Kalnajs

FIG. 2. The time evolution of an input leading wave packet in the

half-mass Mestel disk. The unit of time is half a circular orbit period

at the radius marked corotation. From Toomre, 1981.
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(1972) showed that the first-order changes in the angular
momenta of stars average to zero everywhere. However, to
second order, the rate of change in angular momentum of a
group of stars is

dLtot;2

dt
¼4�2�e2�t

X
m

m
Z
m
@f

@J

j�2
1;mj

jm ���!j2dJ; (20)

plus a boundary term. Here the ranges of integration are
unperturbed angular momenta Lz;1 � J� � Lz;2 and radial

action 0 � JR � 1. The �1;m are Fourier coefficients of the

perturbing potential �1 [Eq. (14)], m ¼ ðl; mÞ, J ¼ ðJR; J�Þ,
etc. Resonant denominators arise in Eq. (20) where m �� ¼
<ð!Þ [the same condition as Eq. (15)], which pick out
important locations in phase space where substantial changes
take place. Note that the magnitude of each m term depends
on the gradient of the DF with respect to the actions at that
resonance; thus the net change depends on the imbalance
between those stars that lose on one side of the resonance
compared with those that gain on the other side.

Generally, we expect f to be a decreasing function of all
the actions in any reasonable galaxy; i.e., for a given Lz, there
are more stars with small JR and Jz and f falls off steeply with
increasing values of either of these actions. Also the density
of disk stars generally rises toward the center, and therefore f
rises with decreasing J� � Lz, which is usually the shallow-

est of the three gradients.
A self-excited spiral involves no external torque, and this

expression must therefore integrate to zero over the whole
disk. However, Lynden-Bell and Kalnajs (1972) showed that
the mean angular momenta of stars inward of corotation are
lowered, and those outward are raised, by the growth of the
disturbance. This feature allows a mode to extract energy
from the gravitational potential well of the galaxy, enabling it
to grow. Unfortunately, these angular momentum changes
cannot be equated to the gravity torque between the mis-
aligned density and potential because angular momentum can
also be transported by a Reynolds-like advective stress
[dubbed ‘‘lorry transport’’ by Lynden-Bell and Kalnajs
(1972)]. The Reynolds stress is probably of minor importance
in the vigorously growing modes that galaxies seem to sup-
port, but would be significant were quasisteady spiral modes
important.

K. Gas

The stars of a galaxy move on ballistic orbits that are
affected only by gravitational forces. The fraction of the total
baryonic mass contained in gas is generally less than 10% in
large disk galaxies today. Over time, gas is converted into
stars, but is replenished partly by returned material as massive
stars end their lives, and also by ongoing infall in spiral
galaxies. The interstellar gas is collected into clouds, the
diffuse ones being composed largely of neutral atomic hydro-
gen and helium with a sound speed cs � 1:3 km s�1, while
dense molecular gas clouds are colder with cs & 0:5 km s�1.

Typical orbital speeds in galaxies are 100–200 km=s, while
typical velocity spreads of clouds about the mean orbital
motion appear to have a lower bound of some 6–8 km s�1,
rising to twice this value in the bright, star-forming parts of

disk galaxies. This supersonic turbulence [see Scalo and

Elmegreen (2004) for a review] is maintained by a variety
of mechanisms, the most important of which is mechanical

energy input through supernovae and, to a lesser extent,

stellar winds (streams of particles accelerated from the sur-
faces of massive stars). When many massive stars are born at

similar times in an exceptional burst of star formation, the

ensuing rapid succession of supernovae can create a galactic

wind that drives some of the gas out of the disk plane and
perhaps, in the cases of small galaxies with shallow potential

wells or young galaxies with high rates of star formation,

right out of the galaxy. Large-scale dynamical phenomena
such as spiral activity, tidal interactions, and gas infall are

other sources of turbulence.
The medium is also stirred by the magnetorotational in-

stability of weakly magnetized differentially rotating fluid
disks (Balbus and Hawley, 1998; Sellwood and Balbus,

1999), which maintains a lower level of trans-Alfvénic tur-

bulence in parts of disks that have few young stars, and
correspondingly few supernovae, where the dispersion re-

mains about 6 km s�1 [see, e.g., Dickey, Hanson, and Helou

(1990) and Tamburro et al. (2009)].
High spatial resolution simulations of this medium in small

volumes (Stone, Ostriker, and Gammie, 1998; MacLow,

1999) suggest that the magnetic field plays at most a second-

ary role in the dynamics of the gas clouds, which have a small
filling factor. Collisions between clouds are highly supersonic

and therefore strongly dissipative, with the thermal energy

being radiated efficiently.
This complex medium is radiatively heated by stars to an

extent that varies strongly with the proximity to clusters of

hot young stars. It is also cooled radiatively through processes

such as thermal bremsstrahlung, recombination lines from
excited electronic states at rates that depend strongly on the

fraction of heavy elements, various molecular rotational and

vibrational transitions, and thermal emission from dust.
All these processes are intensely localized on spatial scales

that are tiny compared with the overall size of a galaxy, and

therefore well below the resolution limits of most simulations

that attempt to model the formation and evolution of galaxies
(see Secs. II.A and V.E).

However, despite the complicated microphysics of this

heated, cooled, magnetized, and stirred multiphase medium,

the crucial point is that turbulence cascades down to small
scales where it is dissipated. Dissipation of random energy is

the most important role of gas in the overall dynamics of the

star plus gas disk. Galaxies lacking even a small fraction of
mass in gas barely evolve. I emphasize the role of gas in

appropriate places in this review.

L. Gravity softening in simulations

Computer simulations are powerful tools that have proved

indispensible for unraveling the sometimes mystifying behav-

ior of disk galaxies. Yet even with present-day computational
power, simulations cannot routinely employ as many particles

as there are stars in a galaxy. Thus some degree of smoothing

of the mass distribution is needed, which also prevents strong
accelerations during close encounters between the particles

that would otherwise require adaptive time steps. Smoothing
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can be introduced directly through ‘‘softening’’ the interpar-
ticle force law at short range, or indirectly through the use of a
grid, which similarly weakens the forces between particles on
scales of the cell size [see the appendix of Sellwood and
Merritt (1994)]. A third, but less general, method of smooth-
ing is to determine forces from an expansion in some set of
basis functions that is truncated at low order.

Note that shot noise from the particle distribution remains
the most important limitation of simulations. The contribution
of distant particles to the relaxation rate is unaffected by
softening, which smooths fluctuations on only the smallest
scales, and changes nothing in the formulas for relaxation but
the value of the denominator of � in the Coulomb logarithm
(Sec. II.B). Noise-driven density variations on larger scales
can also excite non-negligible collective responses (Sellwood,
1983; Toomre and Kalnajs, 1991; Weinberg, 1998).

1. 2D simulations

Simulating galaxy disks with the motion of particles con-
fined to a plane has the obvious advantage of reduced com-
putational cost over fully 3D simulations. The most
appropriate gravity softening rule for 2D simulations is the
Plummer law, for which the potential at distance d from a
point mass is

�P ¼ �G�ðd2 þ �2Þ�1=2; (21)

where � is the gravitational softening length.
An advantage of the Plummer softening rule for this appli-

cation is that it provides an approximate allowance for disk
thickness as follows. Convolution of Eq. (21) with the mass
distribution of a razor-thin disk yields the exactNewtonian field
in a plane offset by a vertical distance � from that containing the
mass. In real finitely thick galaxy disks, the field everywhere is
the sum of the Newtonian fields of the various mass elements
spread in layers parallel to themidplane. TheNewtonian forces
experienced by the stars are therefore weaker than if the mass
distributionwere razor thin. Thus the value chosen for � in a 2D
simulation should be closely related to thefinite thickness of the
disk (Romeo, 1998).

Note that gravity softening weakens nonaxisymmetric in-
stabilities (Sellwood, 1983). Since the Newtonian potential of
an arbitrary razor-thin mass distribution can be determined by
expansion in Bessel functions (BT08, Sec. 2.6.2), the poten-
tial of each radial wave number k of the expansion decays
away from the plane as expð�jkzjÞ. Further, since softened
gravity is equivalent to sampling the field of a 2D mass sheet
in a plane offset vertically by a distance �, the disturbance
potential of each term is weaker by the factor expð�jkj�Þ.
Hence instabilities are less vigorous. However, this weaken-
ing is physically realistic because softening provides an
approximate allowance for the real finite thickness of galaxy
disks as explained above.

To estimate the time for peculiar velocities to be random-
ized by encounters in 2D simulations, we replace Eq. (3) with

�relax ¼ �3v3�

8G2�2n
; (22)

where n is now the number of particles per unit area, � ¼
bmin, and we assumed b�1

max 	 b�1
min. This formula,

without the �3 factor, was already given by Hohl (1973).
Setting N ¼ �R2

en, with Re being the half-mass radius of the
disk, we find for 2D disks

�relax � �3�

8

�

Re

N�dyn: (23)

This time is estimated for particles that interact with the
forces derived from the potential of Eq. (21).

An advantage of computing forces through a cylindrical
polar grid is that one can further smooth the mass distribution
by restricting the sectoral harmonics m that contribute to the
forces acting on each particle. The effect of restricting force
terms to include only the range 0 � m � mmax is to replace
each point particle by an azimuthally extended mass, provid-
ing some additional smoothing of the density distribution.

2. Simulations of thickened disks

In 3D simulations, the Plummer softening law [Eq. (21)]
has the undesirable property of weakening the interparticle
force at all distances from the source particle, and a softening
kernel that weakens forces only to a finite range is greatly
preferred. All that is needed for a serviceable softening kernel
is that it should join smoothly to the Newtonian law at some
distance � and yield an interparticle force for d < � that
smoothly approaches zero as d ! 0. The precise form of
the force at short range should not matter because forces in
a collisionless fluid are dominated by the distant mass distri-
bution. Thus, if the behavior of the N-body system is to
mimic that of a galaxy, its evolution should be insensitive
to the adopted force law at short range. Put another way, if the
choice of the softening kernel affects the behavior, then the
simulation is not collisionless.

Of its very nature, gravity softening limits the sharpness of
forces that arise from steep density gradients. While the in-
plane density distribution of galaxy disks varies on spatial
scales that greatly exceed the values of � generally adopted,
the disk mass is strongly confined to a plane. Unless the value
of � 	 z0, the restoring force to the midplane will be weak-
ened significantly, which has adverse consequences for the
correct representation of buckling instabilities (see Sec. V.D).

In quasispherical mass distributions, the relaxation rate is
given by Eq. (4), with bmin ¼ � in the Coulomb logarithm.
Following the discussion in Sec. II.B.2, we replace Eq. (4) for
disks having a characteristic thickness z0 with

�relax � �3 lnðRe=bminÞ
8 lnðz0=�Þ

z0
Re

N�dyn; (24)

where the factor �3 is appropriate for the peculiar velocities
to be randomized by encounters. For typical disk values of
�� 0:1 and z0=Re � 0:1, this time is almost �104 times
shorter than for quasispherical, pressure-supported systems
with the same N [see also Sellwood (2013b)].

III. TRANSIENT SPIRAL MODES

The large majority of disk galaxies manifest beautiful
spiral patterns of some form or other. The patterns are some-
times quite coherent and symmetric, which are described as
‘‘grand design’’ spirals, or the overall pattern can have little
clear symmetry with individual pieces of spiral arm being
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hard to trace over long distances because they bifurcate or

fade. The more coherent patterns are often seen in galaxies
that are barred or have recently suffered a tidal interaction

with a passing companion galaxy (Kormendy and Norman,

1979; Kendall, Kennicutt, and Clarke, 2011). However, the
ubiquity of the spiral phenomenon, and the fact that similar

patterns develop in simulations of stellar disks even when the
influences of bars and companions are excluded (Sellwood

and Carlberg, 1984; Roškar, Debattista, Quinn et al., 2008;

Fujii et al., 2011; Wada, Baba, and Saitoh, 2011), suggests
that spirals in galaxies can also be self-excited.

Spirals are important to secular evolution because they

transport angular momentum to a limited extent (see
Sec. III.E), scatter stars at Lindblad resonances, which in-

creases random motion, cause radial mixing, and smooth

rotation curves. I discuss each of these processes in turn.

A. Origin and recurrence

The precise mechanism that causes spiral patterns to de-
velop is not fully understood and a thorough survey of the

various ideas would require too long a digression here [see

Sellwood (2013a) for a recent review]. There is general
agreement among theorists that spirals are gravitationally

driven density waves in the stellar disk, for which there is a
substantial body of supporting observational evidence, both

photometric (Schweizer, 1976; Gnedin, Goodman, and Frei,

1995; Grosbøl, Patsis, and Pompei, 2004; Zibetti, Charlot,
and Rix, 2009) and kinematic (Visser, 1978; Chemin et al.,

2006; Shetty et al., 2007). While the idea that spiral patterns

could be long lived, or quasisteady, features has been advo-
cated for some time [see, e.g., Bertin and Lin (1996)], it

seems increasingly certain that an individual spiral pattern
does not persist for more than a few disk rotations (Sellwood,

2011). The supporting evidence has to be indirect, since we

cannot observe the time evolution of real galaxies, and is
based on the behavior in simulations, which has not changed

as their quality has improved, and is supported by the argu-

ments developed below that disk evolution makes more sense
when spirals are short lived.

Most simulations manifest spiral patterns whose appear-

ance changes on time scales of less than one rotation of the
disk. However, power spectrum analysis (Sellwood, 1989a)

showed that the extreme variability of the spirals reported by
Sellwood and Carlberg (1984) was caused by the superposi-

tion of a few underlying longer-lived waves, as has subse-

quently been found by others [see, e.g., Grand, Kawata, and
Cropper (2012), Minchev, Famaey, Quillen, Di Matteo et al.

(2012), and Roškar et al. (2012)].
Wada, Baba, and Saitoh (2011), Grand, Kawata, and

Cropper (2012), Baba, Saitoh, and Wada (2013), and Roca-

Fàbrega et al. (2013) reported that spirals in their simulations

are almost material features that wind up over time according
to the local shear rate of the disk. This behavior could also

result from the superposition of multiple waves, as illustrated

in Fig. 3 which shows the visual appearance of the combined
density of two separate fixed-amplitude waves that rotate at

different angular frequencies. As long as the inner wave has
the higher angular speed, the combined density has most of

the properties reported.

The title of this section contains the word ‘‘modes’’ to

distinguishwhat ismeant from the ‘‘transient spiral’’ illustrated

in Fig. 2, which shows the time evolution of the vigorous disk

response to a particularly provoking perturbation. That tran-

sient response is neither an instability, because it does not grow

indefinitely, nor a mode, because it does not have a fixed shape.

A mode, by contrast, is a standing wave oscillation of the

system having a constant shape and frequency.
A few authors have risen to the challenge of solving for the

normal modes of a smooth stellar disk with random motion.

They found vigorously unstable bar-forming (Kalnajs, 1972,

1978; Jalali, 2007) and lopsided (Zang, 1976; Evans and Read,

1998) modes. However, when these instabilities are avoided,

perhaps by embedding the disk in a halo (see Sec. V.B), studies

of smooth disks generally do not reveal milder spiral modes

(Toomre, 1981). An exception was the study by Bertin et al.

(1989), who found slowly growing bisymmetric spiralmodes in

low-mass, cool disks. But Sellwood (2011) showed that their

adopted disk models would not survive, since they were subject

to more vigorous multiarm instabilities that caused the back-

ground state of the disk to heat quickly. Thus these normalmode

analyses have beenuseful to understandglobal disk stability, but

have not yielded any promising spiral-causing modes.
However, the waves that underlie the rapidly changing

patterns in the snapshots and movies from simulations appear

to be genuine modes of the disk. Each has a fixed shape and

well-defined pattern speed and grows and decays on time

scales of a few disk rotations. As they are not truly long lived,

they are best described as transient spiral modes.

FIG. 3. Contours of the combined positive overdensity that results

from the superposition of two open spiral patterns that each has

constant amplitude and rotates at a steady, but different, rate. This is

purely a set of drawings, with no underlying dynamics. The

numbered sequence illustrates one full beat period and is shown

in a frame that rotates such that the outer wave does not appear to

move. Notice that the largest net overdensities occur when the

spiral is moderately wrapped. An animation is available at http://

www.physics.rutgers.edu/~sellwood/spirals.html.
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Each spiral mode in the simulations is a vigorously

growing instability that saturates at an overdensity of some

20%–30% relative to the local unperturbed disk density. After

it saturates it fades just about as quickly as it grew, with all the

wave action that had been extracted from the particles during

its growth being carried radially away from corotation at the

group velocity (Toomre, 1969). Wave action is finally ab-

sorbed at the Lindblad resonances (Sec. II.H), where wave-
particle interactions occur (Lynden-Bell and Kalnajs, 1972;

Mark, 1974). The changes to the underlying disk caused by

the scattering of stars at these Lindblad resonances seed

conditions for a new instability to develop (Sellwood,

2012), and thus the cycle recurs. These instabilities were

missed by the authors of the above-cited stability analyses

because they studied the modes of an assumed smooth,

featureless disk. Sellwood (2010) found some evidence in

the velocities of stars in the solar neighborhood to support this

picture.
D’Onghia, Vogelsberger, and Hernquist (2013) introduced

a collection of heavy, co-orbiting particles into their large-N
simulations of low-mass disks, which seeded spiral responses.
In one experiment, they introduced a single heavy perturber

and removed it again after some evolution; they found that

spiral activity continued, which they attributed to additional

responses to the fluctuations caused by responses to the ear-

lier forcing particle, in a bootstrap fashion, that they de-

scribed as ‘‘nonlinear’’ effects, although it was unclear that

the behavior they observed depended in any way on the

amplitudes of the disturbances. It is also possible to regard

their result as the superposition of multiple spiral modes of

the underlying disk, which were triggered at moderate am-

plitude by the original perturbing heavy particle. Whatever

the correct explanation, they concurred with Sellwood (2012)

that spiral activity at one instant is directly influenced by the

immediately preceding activity.
In the absence of dissipation, the recurring spirals drive up

the level of random motion in the disk (see Sec. III.B.2). AsQ
rises, the disk becomes ever less able to support collective

oscillations, and activity weakens on a time scale of perhaps

ten disk rotations (Sellwood andCarlberg, 1984).3At this point

the minor gas component (Sec. II.K) takes on a dynamically

important role;while dense clouds of gas are accelerated by the

spirals in the same manner as are the stars, they are able to

dissipate random motion quickly through supersonic colli-

sions that allow the excess energy to be radiated away. The

gas clouds themselves, and the stars that form within them,

therefore constitute a low velocity dispersion component that

is able to maintain the dynamical responsiveness of the com-
bined star-gas disk. Sellwood and Carlberg (1984) estimated

that a birth rate of a few stars per year over the entire disk of a

galaxy would be sufficient to sustain spiral activity indefi-

nitely. Subsequent work (Carlberg and Freedman, 1985;

Toomre, 1990; Roškar, Debattista, Quinn et al., 2008) on

isolated disks, and fully cosmological simulations [see, e.g.,

Agertz, Teyssier, and Moore (2011)], seems to confirm that no

matter how the dissipation is mimicked, the disk continues to

support transient spiral patterns. This behavior provides an

attractive explanation for the long-noted [see, e.g., Oort

(1962)] contrast between the striking spirals manifested by

galaxies having abundant gas to the featureless appearance of

S0 galaxies that have very little gas.

B. Scattering of stars

It has been clear for over 50 years that older stars in the

neighborhood of the Sun have larger velocity spreads than do

younger stars (Wielen, 1977; Nordström et al., 2004). It

seems unsatisfying to suppose that older stars were born

with larger random velocity components, since it requires

us to live at a special time when random motions at birth have

just become small, but this suggestion has been advocated

[see, e.g., Kroupa (2002)]. Some initial random motion seems

likely in the disturbed conditions of disks in the early

Universe when the oldest stars formed, but the progressive

increase of random motions of disk stars with increasing

intermediate ages is generally attributed to scattering pro-

cesses. Both massive gas clumps (Spitzer and Schwarzschild,

1953) and spiral patterns (Barbanis and Woltjer, 1967) are

still considered viable as scattering agents.

1. Solar neighborhood data

Figure 4 shows the variation of stellar velocity dispersion

components with estimated age, as presented by Holmberg,

Nordström, and Andersen (2009). (The small scatter about

the trend among the points for the older stars is somewhat

odd.) These results are synthesized from the heroic Geneva-

Copenhagen survey (GCS) of �14 000 F- and G-dwarf stars

by Nordström et al. (2004), with repeated radial velocity

measurements of all the stars to eliminate binaries, as well

as improved stellar parameter and age calibrations

(Holmberg, Nordström, and Andersen, 2007), and the revised

Hipparcos distances and proper motions (van Leeuwen,

2007). Holmberg, Nordström, and Andersen (2009) used

the usual notation 
U, 
V , and 
W for the radial, azimuthal,

and vertical velocity spreads as seen from the Sun, where

others may use 
R, 
�, and 
z for the radial, azimuthal, and

vertical dispersions anywhere. Casagrande et al. (2011) re-

analyzed the same sample adding infrared fluxes for about

half the stars to obtain new estimates of stellar parameters and

ages, and again found the total velocity dispersion rose

steadily with age (their Fig. 17), even when they excluded

metal-poor stars.
Assigning ages to individual stars is highly controversial

[see Soderblom (2010) for a review], and the precise trend

with age has therefore been the subject of much debate. Reid

et al. (2007) suggested that the ages of individual stars

assigned by Nordström et al. (2004) and revised by

Holmberg, Nordström, and Andersen (2007) are compro-

mised by large random errors. Were this the case, then the

real trends with age would have to be even steeper than shown

in Fig. 4, since large age errors will flatten a trend, as found

by Casagrande et al. (2011) when they included stars with

more uncertain ages.

3Fujii et al. (2011) suggested the time scale could be longer, but

the spirals in their simulations are quite faint at late times.

Furthermore, the dominant halo they use results in multiarm spirals

that heat the disk more slowly than would patterns of lower m
(Sec. III.B.2).
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On the other hand, Edvardsson et al. (1993) and Quillen
and Garnett (2001) claimed a more nearly constant velocity
dispersion with age, except for very old stars that have a
larger dispersion. Soubiran et al. (2008) also found an almost
flat dispersion with age, although it is unclear whether their
exclusion of probable thick disk and halo stars, based at least
in part on their kinematics, is affecting the trend. If a constant
dispersion with age were correct, and if the small samples of
stars used in these studies were drawn from the same popu-
lation as those selected by Holmberg, Nordström, and
Andersen (2009), then the age errors that give rise to the
steady trends seen here in Fig. 4 and in Fig. 17 of Casagrande
et al. (2011) would have to correlate with the kinematics. It

therefore seems more likely that claims of a flat trend result

from large age errors or selection against stars with large

peculiar velocities. Furthermore Aumer and Binney (2009)

found that blue main-sequence stars, which must be young,

have much smaller random motions than do red main-

sequence stars, which can have a wide range of ages. Using

color as a proxy for age assumes a well-behaved star-

formation rate in the disk, which has probably declined

slowly over time [see, e.g., Fraternali and Tomassetti

(2012)]. Aumer and Binney (2009) constructed a model to

fit the data that also favored a steady increase of velocity

dispersion with time.
In fact, the in-plane components of the GCS stars do not

have simple Gaussian velocity distributions (Fig. 5), as first

deduced from theHipparcos data by Dehnen (1998). Not only

is the overall distribution of the V components quite skew

with an ‘‘asymmetric drift’’ ( �V < 0 as expected, BT08;

Schönrich and Binney, 2012), but the distribution is charac-

terized by multiple ‘‘streams’’ that are distinct at a high level

of significance (Bovy, Hogg, and Roweis, 2009). The streams

are both far too massive and have a spread in metallicities to

be dissolved star clusters (Bensby et al., 2007; Famaey et al.,

2007; Pompéia et al., 2011). Hahn, Sellwood, and Pryor

(2011) examined the nearby stars of the Sloan Digital Sky

Survey (SDSS) (York et al., 2000) and Radial Velocity

Experiment (RAVE) (Steinmetz et al., 2006) finding similar,

but less distinct, substructure. Blurring of the velocity struc-

tures is to be expected for stars in these larger surveys, which

do not have Hipparcos-quality astrometry and distances, with

consequent loss of precision in the sky-plane velocity com-

ponents. Antoja et al. (2012) traced some of these features in

somewhat more distant stars of the RAVE survey.
The substructure in Fig. 5 probably arises from the dy-

namical influence of density perturbations in the disk and a

number of attempts have been made to model it. De Simone,

Wu, and Tremaine (2004) found that multiple, imposed tran-

sient spiral perturbations were able to create qualitatively

FIG. 4. Estimates of the second moments of stellar velocities from

the Geneva-Copenhagen survey. The symbols with error bars show

the estimated spreads of the three velocity components in Galactic

coordinates: in the upper panel, U is in the radial direction and W is

in the direction normal to the plane. The spread of V in the

azimuthal direction and the total dispersion are shown in the lower

panel. The stars were divided by estimates of their ages and the

fitted lines ignore the two youngest and the two oldest groups. From

Holmberg, Nordström, and Andersen, 2009.

FIG. 5. The stellar velocities from the Geneva-Copenhagen

survey (Holmberg, Nordström, and Andersen, 2009), corrected for

solar motion ðU
; V
;W
Þ ¼ ð11:1; 12:24; 7:25Þ km s�1 from

Schönrich, Binney, and Dehnen (2010). Note the substantial sub-

structure in the ðU;VÞ plane that is not reflected in W.
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similar substructure in the stellar velocity distribution. On the

other hand, individual features have been interpreted as

responses to assumed models for the bar [Dehnen, 2000;

Minchev et al., 2010; see also Kalnajs (1991)], or to specific

spiral models (Quillen and Minchev, 2005; Antoja et al.,

2011; Pompéia et al., 2011), or both (Quillen, 2003;

Chakrabarty, 2007; Antoja et al., 2009). Finally, Sellwood

(2010) [see also Hahn, Sellwood, and Pryor (2011) and

McMillan (2011, 2013)] did not need to adopt a perturbing

potential, but instead used action-angle variable analysis to

identify the Hyades stream as resulting from scattering by a

recent Lindblad resonance. It is likely that the different

streams have different origins and a combination of these

ideas would be needed to explain all the features.
Returning to Fig. 4, the data show that the second moments

of the peculiar velocities differ in all three components—

i.e., the velocity ellipsoid of nearby disk stars has a triaxial

shape that apparently grows roughly homologously with

age. Seabroke and Gilmore (2007) argued that the multiple

streams in the U-V plane (Fig. 5) make the second moment a

poor measure of the velocity spread. However, the distribu-

tion in theU-W plane is much smoother and it is worth noting

that the rising trend of the V component in Fig. 4 maintains a

constant fraction of the radial component at the ratio expected

from epicycle theory [BT08, Eq. (8.117)] in a galaxy with an

approximately flat rotation curve.
In Galactic components, the dispersion in the radial direc-

tion is the largest, and the azimuthal component is intermedi-

ate, while the smallest is the component normal to the disk

plane, being only about half as large as the radial velocity

dispersion. A flattened shape appears to be representative of

that in other disk galaxies (Bottema, 1993; Gerssen, Kuijken,

and Merrifield, 2000; Herrmann and Ciardullo, 2009;

Bershady et al., 2011), although Gerssen and Shapiro

(2012) claimed evidence that the axis ratio varies along the

Hubble sequence.
Smith, Whiteoak, and Evans (2012) presented a study of

local disk kinematics using the ‘‘Stripe 82’’ data from the

SDSS, although they make no attempt to assign ages to stars.

Instead they divide stars by metallicity and present-day

z height below the disk plane and devise a procedure to

estimate separate dispersions of the thin- and thick-disk

stars that, however, must become increasingly difficult for

metal-poor stars and those at large distances from the

midplane. While their results for thin-disk stars with

�0:5< ½Fe=H�< 0:2 are consistent with those from other

studies, they found the velocity ellipsoid is distinctly rounder

for more metal-poor stars that also have higher velocity

dispersions.
Lewis and Freeman (1989) found that the velocity disper-

sion in the Milky Way disk has a steep outward gradient over

a wide radial range, as the above-cited studies also found in

other galaxies. A gradient is, of course, expected on local

stability grounds [Eq. (18)], but the radial gradient must

somehow combine with the velocity ellipsoid shape and

disk surface density to create a vertical thickness scale that

appears to be independent of radius for many galaxies (van

der Kruit and Searle, 1981; Kregel, van der Kruit, and de

Grijs, 2002). This conspiracy of disk properties has yet to be

fully explained.

2. Scattering by spirals

Lynden-Bell and Kalnajs (1972) showed that, away from
resonances (Sec. II.H), a spiral perturbation that grows and
decays adiabatically (on a time scale long compared with
orbital and epicycle periods) leaves the stellar motions un-
changed. Stars do work on, or receive energy from, a potential
perturbation as it grows, but these changes are undone as the
wave decays, leaving only oscillatory ripples in the phase-
space density that average to no change (Carlberg and
Sellwood, 1985), except at resonances.

Wave-particle interactions at resonances do, however,
cause lasting changes to the orbits of stars, and Lynden-
Bell and Kalnajs (1972) showed that stars at the ILR lose
angular momentum on average, while those at the OLR gain.
Changes at corotation could be of either sign, depending on
the sign of the gradient of the angular momentum density of
stars around the resonance (see Sec. II.F).

The changes given by Eq. (20) become � functions at
resonances in the limit =ð!Þ ¼ � ! 0, which Lynden-Bell
and Kalnajs (1972) take.4 However, changes are smooth when
broadened by time dependence, and Carlberg and Sellwood
(1985) computed the lasting changes under the assumptions
that the wave both grows and then decays exponentially.

In a rotating, but otherwise steady, nonaxisymmetric po-
tential test particles conserve neither their energy nor their
angular momentum, but Jacobi’s integral,

IJ � E��pLz; (25)

is conserved. Thus changes in energy and angular momentum
are related as �E ¼ �p�Lz. This is illustrated in Fig. 6,

which is drawn for the midplane of an axisymmetric potential
[see also Lynden-Bell and Kalnajs (1972), and their Fig. 2].
Circular orbits have the minimum energy Ec for a given Lz,

FIG. 6. The Lindblad diagram for a razor-thin disk galaxy model.

Circular orbits lie along the full-drawn curve and eccentric orbits fill

the region above it. Angular momentum and energy exchanges

between a steadily rotating disturbance and particlesmove themalong

lines of slope�p as shown. The dotted and dashed lines are the loci of

resonances for an m ¼ 2 perturbation of arbitrary pattern speed.

4Note the important aspect of trapping at resonances by a steady

or slowly growing disturbance is not captured by Eq. (20).
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which marks the boundary of the shaded region, while orbits
with E > Ec are eccentric. Equation (25) constrains particles
that are scattered by a nonaxisymmetric perturbation to move
along lines of fixed slope �p as illustrated by the arrows,

which are marked at the principal resonances because those
are the only places where lasting changes occur.

There is an important difference between scattering at
Lindblad resonances and at corotation. A star near corotation
may suffer quite a large change in its angular momentum, but
because dEc=dLz ¼ �p at this radius (Fig. 6), it neither gains

nor loses random energy (to first order); all the energy change
is invested in changing the radius of the guiding center
[Eq. (6)]. This is a characteristic feature of radial migration
(Sec. III.C). The situation is different away from corotation,
where there is an excess of energy available to increase
random motion, provided that stars inside corotation lose
Lz while those outside gain.

Sellwood and Binney (2002) [their Eq. (6)] showed that the
first-order change in radial action of a star caused by a single
spiral wave is related to its change in angular momentum via

�JR ¼ � l

m
�Lz: (26)

Since l ¼ 0 at corotation, any �Lz causes no change to JR, as
noted. Furthermore, �Lz < 0 at the ILR where l ¼ �1 and
�Lz > 0 at the OLR where l ¼ þ1. Thus outward transfer of
angular momentum from the inner to the outer Lindblad
resonance causes �JR > 0, or heating, at both, as is also clear
from Fig. 6. A succession of transient spiral modes with a
variety of pattern speeds will cause the in-plane components
of stellar random motion to increase generally over the disk.

3. Vertical heating

Note that the changes caused by transient spiral modes
increase only the in-plane random motions, not the compo-
nent normal to the plane as predicted by Carlberg (1987) and
confirmed by Sellwood (2013b). The reason (Sec. II.H) is that
coupling between the spiral perturbation and vertical motion
is expected to be very weak because the frequency 	 of small
vertical oscillations of a star near the midplane [Eq. (8)] is
generally high compared with the Doppler shifted frequency
mj�� ��pj at which it encounters the perturbation, making

its vertical motion adiabatically invariant. While a majority of
stars rise out of the harmonic region, the fraction that have a
low enough vertical frequency to experience a vertical reso-
nance with a spiral perturbation is believed to be quite small.

The discussion in the previous paragraph assumed
Newtonian gravitational forces, and softening in simulations
(Sec. II.L) can change the behavior. Increasing the gravita-
tional softening length weakens the restoring forces to the
midplane, decreasing the vertical frequency and possibly
allowing vertical resonances to become dynamically impor-
tant [see Solway, Sellwood, and Schönrich (2012) and their
Fig. 9]. On the other hand, simulations with small softening,
but modest numbers of particles, may thicken due to relaxa-
tion (Sellwood, 2013b). Thus the modeling of disk thickening
in simulations is somewhat delicate.

Coherent bending waves are another possible mechanism
to increase the vertical velocity dispersion. The mechanics of
bending waves is complicated [see Sellwood (2013a) for a

recent review]. However, we do know that a bending wave

may travel across a stable disk (Toomre, 1983; Weinberg,

1991) until it is damped as it approaches a vertical resonance

(Sellwood, Nelson, and Tremaine, 1998), with the wave

energy going into localized vertical heating. It is also known

(Toomre, 1966; Araki, 1985) that a disk in which the velocity

ellipsoid is flattened such that 
R * 3
z will buckle and

thicken until the axis ratio is approximately this value

(Sellwood, 1996; Rodionov and Sotnikova, 2013).5

However, the velocity ellipsoid of local stars in the

Milky Way is not flattened enough to be near this stability

boundary.
Another possible heating mechanism is the infall of the

cosmic substructure [see, e.g., Kazantzidis et al. (2009)].

While infall of massive clumps in their simulations, and those

of others, is quite disruptive and can probably be excluded

(Sec. IV.B), a gentler bombardment by smaller clumps may

cause more gradual heating. However, a prediction of

Kazantzidis et al. (2009) is that satellite bombardment should

create velocity dispersions that are roughly constant with

radius, whereas data on the Milky Way [see, e.g., Lewis

and Freeman (1989)] indicate a strong decline with radius

to distances well beyond the solar circle. Thus, while some

heating by infall cannot be excluded, it is clearly not the

dominant process.
Since the data (Fig. 4) show that the out-of-plane

motions rise with about the same slope as the in-plane part,

it seems unlikely that spiral waves, neutral bending waves, or

buckling instabilities are important in setting the shape of the

local velocity ellipsoid in the local Milky Way. It therefore

seems that scattering by collective waves cannot be the

whole story.

4. Scattering by dense mass clumps

Spitzer and Schwarzschild (1953) argued that massive

clumps of gas were needed to account for the increase of

peculiar stellar velocities with their ages, and therefore hy-

pothesized the existence of giant molecular cloud complexes

(GMCs), long before their existence was established. Their

original calculation of scattering by dense mass clumps was

extended to 3D by Lacey (1984). In his analysis, as in the

earlier work by Spitzer and Schwarzschild (1953), the star-

clump interaction was computed in the impulse approxima-

tion, in which scattering is assumed to occur over a distance

that is short compared with both the size of the star’s epicycle

and the scale on which the galactic gravitational potential

changes.
Lacey (1984) found that co-orbiting mass clumps are quite

efficient at redirecting peculiar motions out of the plane, but

rather inefficient at increasing them. He also concluded that

cloud scattering should cause the vertical dispersion 
W to be

intermediate between the radial 
U and azimuthal 
V com-

ponents. This result seemed physically plausible on energy

equipartition grounds: scattering by massive clouds redirects

the peculiar motions of stars through random angles, and

therefore isotropizes the motions as far as the epicycle gyra-

tions allow.

5This behavior is also affected by gravity softening.
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However, this again is inconsistent with the data
(Fig. 4), where 
W is the smallest component. In order to
account for the observed flattened shape, Carlberg (1987)
and Jenkins and Binney (1990) developed the plausible
argument that the in-plane dispersion is driven up more
rapidly by spiral heating than scattering is able to redirect
those motions into the vertical direction. Their argument
seemed to offer strong support for the transient spiral
mode picture (Sellwood, 2000), but it now appears to be
incorrect.

Ida, Kokuba, and Makino (1993) found that cloud scatter-
ing alone would lead to the vertical component being the
smallest, with the precise axis ratio of the velocity ellipsoid
depending on the local slope of the rotation curve.
Simulations by Shiidsuke and Ida (1999) and others [see,
e.g., Villumsen (1985) and Hänninen and Flynn (2002)]
confirmed their expectation.

The reason for the discrepancy with Lacey’s prediction was
clarified by Sellwood (2008b), who presented local simulations
of scattering of test particles by massive co-orbiting particles.
He artificially restricted the range of the gravitational forces
from the heavy particles, which vanished at distances greater
than some dmax. Figure 7 shows the equilibrium ratio of the
vertical to radial velocity dispersions 
W=
U plotted as a
function of the adopted dmax. The ratio settles to something
close to the energy equipartition prediction when none but the
closest heavy scatterers perturb the stars but, as the range
of scattering was increased in separate experiments, the
equilibrium ellipsoid gradually flattened and approached the
shape predicted by Ida, Kokuba, and Makino (1993) for no
cutoff.

The flattened shape of the ellipsoid is determined by the
fact that the perturbing clouds are located within the disk,
leading to an aspherical distribution of impact parameters,
with the consequence that deflections from the more distant
clouds preferentially redirect the in-plane velocity compo-
nents. Lacey (1984) and Binney and Lacey (1988) neglected
distant encounters and therefore missed this effect. However,

the familiar argument that every decade in distance makes an
equal contribution to scattering also ceases to hold in disks
(Sec. II.B), and the contribution to scattering by clouds that
are more distant than several disk scale heights drops away
rapidly. Thus it is the clouds at in-plane distances of just a few
disk thicknesses that do most of the redirecting.

Smith, Whiteoak, and Evans (2012) confirmed the pre-
dicted velocity ellipsoid shape for the metal rich stars in their
data, but reported a rounder ellipsoid for the hotter, and
probably older, metal-poor stars. Further work is needed to
confirm this metallicity dependence, which may have been
biased by the difficulty of separating thin- from thick-disk

stars. Note that Holmberg, Nordström, and Andersen (2009)
(see Fig. 4) found an ellipsoid shape that was almost constant
with age and at most only mildly rounder for the older stars.

5. Collective effects

The preceding calculations of scattering by mass
clumps ignored all collective effects. Not only are disk
galaxies subject to spiral perturbations, which themselves
scatter stars, but the co-orbiting GMCs induce a collective
response from the surrounding stellar disk (Julian and
Toomre, 1966) that substantially enhances their effective
mass, a complication that is ignored in most studies of cloud

scattering. An exception was provided by Toomre and
Kalnajs (1991), who studied scattering by both a density
perturbation and the supporting response from the surround-
ing matter. The density fluctuations in their local simulations
arose from the shot noise of the particles, while the same
particles also took part in the supporting response. By apply-
ing a radial damping term, they may have unwittingly pre-
vented the growth of instabilities (Sellwood, 2012), making
their work a particularly clean calculation of the heating rate
due only to the polarized disk response to co-orbiting mass
clumps.

Since molecular gas is mostly (Nieten et al., 2006; Koda
et al., 2009; Gratier et al., 2010; Efremov, 2010), but not
entirely [see, e.g., Corder et al. (2008) and Schinnerer et al.
(2013)], concentrated in spiral arms it is probably futile to
draw a sharp distinction between spiral arms and the wakes of
dense gas clumps, and a correct treatment would be to
calculate the effects of spiral formation and gas dynamics
in the combined star and gas disk. Binney and Lacey (1988)
took a step in this direction, but a full calculation may remain

unreachable for some time if one tries to include a self-
consistent treatment of the formation and dispersal of the
gas clumps: molecular gas concentrations probably grow in
the converging gas flow into a spiral arm and are subsequently
partly dispersed by star formation. D’Onghia, Vogelsberger,
and Hernquist (2013) also showed that massive clumps pro-
voke spiral responses, but the spiral activity probably in-
cluded some self-excited collective modes, since it persisted
after the perturbers were removed.

Thus the studies of scattering in disks reviewed earlier
make the simplifying assumption that spirals and mass
clumps are distinct agents. This assumption at least separates
the problem into tractable pieces. Perhaps it can be justified if
the wakes of cloud complexes can be lumped with spirals into
a single scattering agent that is distinct from the clouds that
caused them.

FIG. 7. The equilibrium axis ratio of the velocity ellipsoid of

particles plotted as a function of the limiting range of the perturba-

tion forces from the heavy particles. See Sellwood (2008b) for a

description of the calculations.
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6. Conclusions on scattering

We now understand that the velocity ellipsoid in the
solar neighborhood is flattened as expected from scattering
by GMCs (Ida, Kokuba, and Makino, 1993). While the
clouds efficiently redirect peculiar velocities to maintain the
observed shape of the velocity ellipsoid, they are not thought
to be responsible for much heating.

The magnitude of the peculiar velocities of the intermedi-
ate age stars exceeds what cloud scattering could achieve
(Lacey, 1991). The old explanation for this, which may not be
valid because it neglects the cumulative effect of intermediate
distance encounters, was that the efficiency of scattering by
clouds decreases as stars spend more time outside the cloud
layer that is largely confined to the midplane. Simulations by
Hänninen and Flynn (2002), that did include distant encoun-
ters, confirmed that GMCs alone are unable to account for the
random motions of the oldest stars.

Thus some other agent, generally assumed to be the
spirals, is needed to boost the rms velocities of intermediate
age disk stars to their observed values. Even though spirals do
not heat the vertical motions, they drive up in-plane random
motions that are efficiently redirected by GMCs, and the
velocity ellipsoid maintains an approximately constant shape
as its size increases, accounting for the observed trends in
Fig. 4. This picture does not exclude the possibility that the
high peculiar motions of the very oldest disk stars, also
known as the thick disk, have a different dynamical origin
(Sec. IV).

7. Heating in simulations

Note that the behavior in N-body simulations needs to be
interpreted with caution. Section III.B.6 accounted for the
observed peculiar velocities in the solar neighborhood using
the combined action of two distinct mechanisms: heating by
spirals with the random motions being redirected by molecu-
lar clouds. Simulations support spiral patterns that may re-
semble those in galaxies and, if collisionless, should not
thicken because they generally omit heavy particles to rep-
resent GMCs.6 Yet a few authors [see, e.g., Quinn, Hernquist,
and Fullagar (1993) and McMillan and Dehnen (2007)]
worried that disks thicken in isolated N-body simulations
that are heated by spiral activity.

House et al. (2011) compared the vertical heating in a
simulation with the solar neighborhood data. Their simula-
tion, which was probably heated in part by spirals, included
the cosmologically expected infall of pieces of substructure
that could increase the vertical dispersion, and also modeled
the full ‘‘gastrophysics’’ of cooling, star formation, and feed-
back. However, they employed gas (and star) particles having
the masses of GMCs, which therefore lacked the spatial and
mass resolution to form dense clumps that are crucial to
shaping the velocity ellipsoid.

Collisional relaxation, which is much more rapid
in disks (Sellwood, 2013b and Sec. II.B), is a more
likely explanation for redirecting in-plane motions to

thicken disks in simulations.7 Thus, the simulated vertical
heating rate, in particular, will depend on the number of
particles employed, and comparison with the observed verti-
cal heating of disk stars in the Milky Way [see, e.g., House
et al. (2011)] is premature without careful numerical con-
vergence tests.

C. Radial migration and mixing

For years, the focus of spiral scattering was on heating at
Lindblad resonances, and changes at corotation went unre-
ported. Sellwood and Binney (2002) were therefore surprised
to find that a transient spiral mode causes greater angular
momentum changes to stars at corotation than occur at the
Lindblad resonances, as shown in Fig. 8. These more sub-
stantial changes had not attracted attention because they do
not heat the disk [Eq. (26)], and stars largely change places
in a dynamically neutral manner. However, they do have
important consequences for the distribution of chemical
abundances among the disk stars (Roškar, Debattista,
Stinson et al., 2008; Schönrich and Binney, 2009a;
Minchev, Chiappini, and Martig, 2013).

Changes to the guiding center radii caused by a series
of transient spiral modes with corotation radii scattered
over a wide swath of the disk will cause stars to execute a
random walk in radius with a step size ranging up to�2 kpc.
The resulting strong radial migration, called ‘‘churning,’’ has

FIG. 8. Changes in angular momentum L resulting from a single

transient spiral mode. The shaded region includes 90% of the

particles and the solid curve shows the mean change. The vertical

solid line marks the location of corotation, while the dotted lines

mark the Lindblad resonances. The dashed line has slope �2. From
Sellwood and Binney, 2002.

6D’Onghia, Vogelsberger, and Hernquist (2013) included heavy

particles, but did not discuss their effect on the velocity ellipsoid

shape.

7McMillan and Dehnen (2007) found that thickening was sup-

pressed when the azimuth of every disk particle was randomized

after every step, in order to suppress the growth of nonaxisymmetric

disturbances. However, such a procedure must also largely inhibit

two-body scattering, as well as all coherent responses from the

surrounding disk.
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implications for abundance gradients and age-metallicity re-

lations. The apparent metallicity gradient is also ‘‘blurred’’ by

epicyclic motions, which can readily be subtracted for an
individual star without having to integrate the orbit [see, e.g.,

Yu et al. (2012)], since the guiding center radius of a star is

determined only by its angular momentum [Eq. (6)].
The topic of radial migration is bedeviled by the fact that

many have conflated the process first described by Sellwood

and Binney (2002) with the general redistribution of angular
momentum that occurs with any nonaxisymmetric distur-

bance. The fact that spirals, bar formation, the excitation of

responses by satellites, etc., redistribute angular momentum

across the disk of a galaxy had been understood for decades.

However, the recently discovered changes at corotation of a
transient spiral mode have the two unique properties of

neither heating the disk nor causing it to spread, as described

next. All other forms of angular momentum transport do both

of these things. Even processes that are not associated with

lasting angular momentum changes, such as increasing epi-
cycle motions or of trapped particles that cross and recross a

resonance, have been described as ‘‘radial mixing.’’ While

this phrase may be too deeply embedded to be redefined,

‘‘radial migration’’ and churning are less widely used and I

suggest these terms be reserved to describe only the changes
at corotation of a transient spiral mode.

While these other processes may play a role in redistribut-

ing matter radially, the low velocity dispersion of disks limits

the extent to which heating at Lindblad resonances can have

occurred, as discussed in Sec. III.B.2. Churning by spiral
waves over the lifetime of the disk could, in principle, cause

far more mixing with very limited heating, as found by

Sellwood and Binney (2002) and Solway, Sellwood, and

Schönrich (2012) (see Fig. 9).

1. Mechanism of radial migration

Stars near corotation move slowly with respect to the spiral

perturbation and therefore experience almost steady forcing

from the wave, which allows large changes to build up—a

process that is analogous both to surfing on ocean waves and

to Landau damping in plasmas, although the consequences

differ. Stars orbiting just behind the density excess are at-

tracted forward by it and therefore gain angular momentum.

However, the result of gaining angular momentum is that the

star moves onto an orbit of greater guiding center radius

[Eq. (6)], and its angular frequency about the center therefore

decreases. If the star were just inside corotation and therefore

gaining on the density excess, the change can cause it to rise

to a radius just outside corotation where it begins to fall

behind. This behavior is described as a horseshoe orbit.

Conversely, stars just ahead of the perturbation are pulled

back, lose angular momentum, and sink inward, where they

orbit at higher frequency. Those outside corotation, where the

perturbation gains on them, could lose enough angular mo-

mentum to cross corotation and begin to run ahead of the

wave. As long as the gradient @f=@Lz is fairly shallow,

roughly equal numbers of stars gain as lose, and they largely

change places. The process affects stars with small peculiar

velocities most strongly, since larger epicyclic motion leads

to less coherent forcing by the spiral potential.
Were the spiral potential to maintain a fixed amplitude,

stars on horseshoe orbits would be described as trapped. As

they are moving slowly with respect to the wave, it would

take them a long time to reach the next density maximum

where the changes just described would be exactly undone.

However, if the amplitude of a transient spiral mode has

decreased by the time the star reaches the next density

peak, it may no longer be trapped and will continue to

move with a lasting change to its angular momentum.
Adopting variables suited to motion near corotation of a

steady potential perturbation, Sellwood and Binney (2002)

found that the radial extent of the region where these horse-

shoe changes occur varies as the square root of the perturba-

tion amplitude, and therefore widens as a perturbation grows.

At the same time, the more distant ‘‘trapped’’ stars move

more rapidly in the frame of the perturbation, and the shortest

period of a trapped star decreases as the inverse square root of

the potential amplitude. They found the spiral was strong for

less than half the horseshoe period for most trapped stars,

which therefore undergo a single change.
Horseshoe orbits are also responsible for limiting the

amplitude of the spiral. For a disturbance to grow, the re-

sponse of the stars to the growing potential must reinforce the

perturbed density, at least until it saturates. Sellwood and

Binney (2002) also argued that the maximum amplitude of a

spiral is limited by the widening horseshoe region where stars

are driven away from, instead of toward, the density maxi-

mum. This change kicks in suddenly because growth is linear

in the disturbance potential, but the horseshoe region grows as

its square root.

2. Other radial mixing processes

Any process that redistributes angular momentum mixes

stars and gas that originated at different radii, and even the

FIG. 9 (color online). Comparison of initial home radii with home

radii after �10 Gyr of evolution for particles in two simulations by

Solway, Sellwood, and Schönrich (2012). For Milky Way scaling,

the radial unit is 0.75 kpc. Simulation UC did not form a bar,

whereas a bar did form in simulation UCB, and contours are drawn

separately in different colors and line styles for the initially thin-

and thick-disk populations. The barred region is omitted because Rg

[Eq. (6)] cannot be defined in a strongly nonaxisymmetric potential.
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transient spiral modes that churn the disk also transport
angular momentum to a much lesser degree. However, in
contrast to the changes brought about by churning, redistrib-
ution of angular momentum across the disk always increases
random motion and alters the large-scale surface density
profile of the disk.

The role of bars as agents that mix the stars and gas of a
disk has long been recognized [see, e.g., Hohl (1971) and
Friedli, Benz, and Kennicutt (1994)] and has received intense
recent attention. The possible effect of resonance overlap
between the bar pattern and the outer spiral was raised by
Quillen (2003) [see also Minchev and Quillen (2006)] and
developed by Minchev and Famaey (2010) for test particles in
assumed nonaxisymmetric potentials of plausible bars and
spirals. Since they adopted perturbations that grew to steady
amplitudes, they clearly were not exploring the process de-
scribed by Sellwood and Binney (2002). Instead they found,
as had Little and Carlberg (1991), although without comment,
that single perturbations created regions in which particles
were simply trapped to cross and recross corotation with
minimal angular momentum changes at the Lindblad reso-
nances. However, simulations with two imposed disturbances
revealed chaotic behavior when resonances of the two pat-
terns overlapped, which Minchev and Famaey (2010) de-
scribed as nonlinear interaction. The substantially greater
changes in the angular momenta of the particles were also
associated with disk heating (Minchev and Quillen, 2006).
These studies raise the possibility that additional angular
momentum transport could even occur were galaxies able
to support multiple long-lived nonaxisymmetric structures.
Quillen et al. (2009) also used the test-particle technique to
show that the orbits of disk particles are ‘‘mixed’’ when
perturbed by an orbiting satellite.

Results from N-body simulations are of greater interest,
since the perturbations that cause the angular momentum
changes are generated self-consistently and have physically
reasonable time dependence. Brunetti, Chiappini, and
Pfenniger (2011) calculated diffusion coefficients in disks
that form bars and spiral patterns finding, as seems reason-
able, that angular momentum changes are lower in disks with
higher Q [Eq. (18)]. Minchev et al. (2011) and Minchev,
Famaey, Quillen, Di Matteo et al. (2012) reported simulations
that formed bars and spirals, in which they claimed evidence
of enhanced angular momentum changes due to resonance
overlap. They also highlighted disk spreading, which is
largely due to the angular momentum changes during bar
formation (see Sec. V.B), and also prolonged changes at the
corotation resonance of a bar, which are likely caused by
particles that are trapped to cross and recross the resonance
and therefore cannot sensibly be described as something as
irreversible as mixing.

3. Radial migration in simulations

Roškar, Debattista, Quinn et al. (2008) computed an
isolated gas plus stars galaxy model that tracked star forma-
tion and metallicity evolution. The churning of the disk by a
succession of transient spiral modes caused extensive migra-
tion. Some heating was caused by the smaller changes at the
Lindblad resonances of spirals in their models, which is
unavoidable, and they reported a change in the gradient of

mean stellar age near the outer edge of the disk, which must

have been created by the outward migration of particles.

Roškar, Debattista, Stinson et al. (2008) went on to demon-

strate that migration led naturally to an age-metallicity

relation similar to that in the Milky Way. A later work

(Loebman et al., 2011) studied the formation of a thickened

disk comprised of outward migrating stars with enhanced

½
=Fe� ratios and lower mean orbital speed. Bird,

Kazantzidis, and Weinberg (2012) found that mixing is

more extensive when spiral activity is invigorated by star

formation, although the level of spiral activity in their models

depended strongly on the gastrophysical prescription

adopted. They showed that migration persists even for parti-

cles with large oscillations about the midplane, and they

determined migration probabilities from their simulations.
Figure 9 [from Solway, Sellwood, and Schönrich (2012)]

shows that the home radii of stars can migrate either inward

or outward by many kpc, while the formation of a bar causes

some comparatively mild additional mixing. Radial migration

in the thick disk is only slightly weaker than in the thin disk,

because the spiral potential that drives migration decays only

slowly away from the plane. In fact, the slightly smaller

average changes of the thick-disk particles were probably

caused more by their larger in-plane random velocities than

by their greater vertical oscillation (Solway, Sellwood, and

Schönrich, 2012, and their Fig. 10). This is the likely reason

that Bird et al. (2013) found that radial migration was less

effective in the hotter, and generally older, particles of the

inner disk of their model.
Roškar et al. (2012) presented a detailed study of radial

migration in their simulations. They identified the locations,

relative to the spiral density maxima, of particles that gained

or lost large amounts of angular momentum and confirmed

that even particles that moved rapidly over a large radial

distance remained on near-circular orbits.

4. Adiabatic invariants

One of the advantages of using action-angle variables to

describe the motions of stars (Sec. II.D) is that the actions are

adiabatic invariants. Broadly, this means that they are con-

served quantities when the orbit of the star is subject to slow

changes, except where resonances arise (see BT08, Sec. 3.6

for a more careful statement). For example, Lynden-Bell

(1963) used the invariance of radial action of a star to argue

that orbital eccentricity would be invariant during gradual

changes to the potential with no change to the angular

momentum of the star. However, transient spirals change

the angular momentum of stars at corotation without chang-

ing the radial action, and therefore eccentricity is not invari-

ant during these changes.
Nevertherless, the radial action JR is a useful adiabatic

invariant during disk evolution except, of course, from the

nonadiabatic changes at Lindblad resonances, where l ¼ �1
in Eq. (26). For nearly circular orbits JR ! �a2=2, with a
being the radial excursion of the star (Lynden-Bell and

Kalnajs, 1972). For a well-mixed set of stars of fixed JR,
we have ha2i ¼ 2hv2

Ri=�2 in the epicycle approximation, and

therefore JR � hv2
Ri=�. Thus, during radial migration hv2

Ri /
� for this group of stars, i.e., their radial dispersion decreases
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during outward migration, as found by Minchev, Famaey,
Quillen, Dehnen et al. (2012), and vice versa.

Solway, Sellwood, and Schönrich (2012) also showed that
vertical action Jz, and not vertical energy, is the conserved
quantity when stars migrate. Their conclusion stood out far
more clearly when vertical action was calculated exactly
[Eq. (9)], than when the simple epicycle approximation was
used [see, e.g., Minchev, Famaey, Quillen, Dehnen et al.
(2012)]. A somewhat puzzling finding by Solway,
Sellwood, and Schönrich (2012) was that Jz was conserved
on average, but not precisely for individual particles, which
may have been due to gradual relaxation that afflicts all
N-body simulations of disks (Sellwood, 2013b).

Since its vertical action is adiabatically invariant during
migration, the vertical oscillation amplitude of a star varies
with the strength of the vertical restoring force, which in turn
changes with disk surface density. A group of particles that
have migrated outward in a nongrowing disk of declining
surface density must have an increased scale height and a
decreased velocity dispersion (Schönrich and Binney, 2012;
Roškar, Debattista, and Loebman, 2013). The vertical thick-
ness would be squeezed by the increasing mass density that
occurs in a growing disk, but younger stars formed in the
outer disk must still reside in a distinctly thinner layer than
that of the outward migrating stars.

5. Tests for radial migration in the Milky Way

Currently, there has been no decisive test to confirm that
radial migration really does occur in the Milky Way disk or
elsewhere. But there are a number of strands of indirect
evidence to suggest that the mechanism does occur.

Haywood (2008) found evidence for radial migration in a
study of the metallicity distribution of solar neighborhood
stars that suggested some stars were formed elsewhere in the
disk. Lee et al. (2011) claimed evidence for radial migration
in the thin disk on the grounds that metallicity is uncorrelated
with orbital eccentricity, but found a decreasing orbital ve-
locity with metallicity in the thicker disk. Yu et al. (2012)
reported a decreasing metallicity gradient with the age of
Milky Way thin-disk stars, which is the expected conse-
quence of radial migration.

Bovy et al. (2012) corrected data from the SDSS for the
selection function of the survey to determine the properties of
the underlying stellar population. They found a continuous
distribution of abundance-dependent disk structure with in-
creasing scale height and decreasing scale length which they
argued strongly favors ‘‘inside-out’’ disk formation combined
with gradual internal evolution through mechanisms such as
radial migration. Both Bensby et al. (2011) and Cheng et al.
(2012), in separate studies of quite different stellar popula-
tions, also found a short scale length for thick-disk stars,
which are less well mixed because these populations are
dynamically hot.

Haywood (2012) concluded that the metallicity distribu-
tion of disk stars seemed consistent with some degree of
migration, but drew attention to a number of puzzling fea-
tures. He cited very tentative evidence of a steplike feature in
the radial distribution of metallicities (Hill et al., 2012) that,
if confirmed, suggested that migration in the Milky Way may
not have been efficient. However, Yong, Carney, and Friel

(2012), in a study of open star clusters in the disk of the

Milky Way, did not find a discontinuity in the abundance
gradient at the solar radius, but instead found evidence for a

change to a shallower slope at around 12 kpc.
Much stronger tests will emerge from current and future

surveys. The Gaia mission (Perryman et al., 2001) will yield

the kinematics of stars over a large fraction of the Galaxy in

overwhelming detail. More detailed kinematics and chemical
abundance measurements are being, or will soon be, collected

in surveys such as APOGEE (Allende Prieto et al., 2008),

LAMOST (Deng et al., 2012), and ARGOS (Freeman et al.,
2013); see also Rix and Bovy (2013). Indeed, one of the

principal goals of the HERMES survey (Bland-Hawthorn,

Krumholz, and Freeman, 2010) is to unravel the history of
radial migration in the Milky Way.

D. Smoothing rotation curves

The rotation curve, or circular speed as a function of the
radius, is remarkably smooth for most galaxies [see Sofue and

Rubin (2001) for a somewhat dated review]. There is no

feature even where the central attraction shifts from being
baryon dominated to dark matter dominated, which Bahcall

and Casertano (1985) described as a ‘‘disk-halo conspiracy.’’

A few authors [see, e.g., Kalnajs (1983), Kent (1986), and
Palunas and Williams (2000)] have drawn attention to

‘‘bumps and wiggles’’ in long-slit rotation curves, some of
which correspond to photometric features in the light profile.

While this is undeniable evidence for significant mass in the

disk, the underlying cause of these small-scale features may
be spiral arm streaming rather than substantial fluctuations in

the radial mass profile of the disk.
Spiral instabilities may also be responsible for featureless

rotation curves, as first argued by Lovelace and Hohlfeld
(1978). While running simulations with a different purpose,

Sellwood and Moore (1999) noted that as the disk grew in

their models with a dense central mass and a (rigid) cored
outer halo, the mass distribution in the disk rearranged itself

such that the resulting rotation curve was remarkably feature-

less. They noted that they obtained this result with a number
of differing rules for the angular momenta of particles added

to the disk.
A more controlled example is illustrated in Fig. 10

(Sellwood, in preparation). In this simulation, the initial model

was the Mestel disk that has a circular speed independent of

radius shown by the dotted line in the right panel and, in this
case, only one-third of the central attraction is from the disk

with the remaining two-thirds due to a rigid halo. The dashed

lines show the consequences to the surface mass profile and
rotation curve of adding, over a period of less than one disk

rotation, an extra ring of matter composed of live particles to

this archetypal featureless model. The model quickly devel-
oped strong spiral patterns and after just five rotation periods,

the rotation curve and the surface density distribution became

featureless again, as shown by the solid lines.
The spirals that developed in this model were the result of

two unstable modes that were provoked by the density ridge.

Local stability analysis of a disk with a ridgelike density
feature (Sellwood and Kahn, 1991) predicts that, for each

sectoral harmonic, the normal modes are wave pairs with
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corotation on opposite sides of the ridge. However, only those
wavelike distortions to the ridge that can excite a strong
supporting response from the surrounding disk are unstable.
The angular periodicity that excites the strongest supporting
response depends on the X parameter of swing-amplification
theory [Eq. (19)], and the most rapidly growing pair of modes
is for m ¼ 3 for the disk mass in this simulation. As the
amplitudes of the modes rise, horseshoe orbits (Sec. III.C.1)
develop at both corotation resonances but, unlike in a feature-
less disk, the presence of the ridge causes the resulting Lz

changes to be strongly out of balance at corotation for both
modes. Thus far more particles are removed from the ridge
than are added to it, causing the density profile of the disk to
flatten, as shown by the solid curves in Fig. 10.

Thus it seems that the distribution of angular momentum in
the baryonic material that makes galaxy disks does not need
to be able to account for the featureless character of most
galaxy rotation curves, and small-scale variations in any
reasonable distribution will be erased by spiral activity. The
experiments of Sellwood and Moore (1999), together with
results from more realistic modern simulations (Abadi et al.,
2003; Agertz, Teyssier, and Moore, 2011), hint that this effect
may be substantial enough to control the overall shape of the
rotation curve, although further work is needed to establish
this more interesting conclusion.

E. Angular momentum redistribution

For a star in a rotationally supported disk, the angular
momentum Lz � RVc is much greater than the typical radial
action JR � a
R, with a being the radial excursion. Thus,
JR 	 Lz, and Eq. (26) therefore requires that �Lz 	 Lz at
Lindblad resonances. The implication is that spirals do not
cause large changes to the distribution of angular momentum
among the stars of a disk, as was borne out in N-body
simulations (Sellwood and James, 1979; Bird et al., 2013).
The largest changes to the distribution of Lz in a disk occur
during bar formation (Sec. V.B), which has long been known
(Hohl, 1971) to create a high level of random motion
although, even after this event, JR 	 Lz in the outer disk.

This conclusion is not inconsistent with the large changes
in Lz at corotation that cause stars to diffuse through the disk
with little heating (Sec. III.C). Changes at corotation cause
stars largely to exchange places, with only a very minor net
change (if any) to the large-scale distribution of angular
momentum within the disk. Even the smoothing of features
in the rotation curve (Sec. III.D) causes only a localized
smoothing of the angular momentum distribution.

Note that, in growing galaxy disks, the specific angular
momentum of infalling gas is expected to rise over time—the
so-called inside-out growth of disks [see, e.g., Matteucci and
Francois (1989), Samland and Gerhard (2003), and Bird et al.
(2013). The distribution of angular momentum among the
stars formed from this material is expected to differ from that
of the old disk. In this case, the total distribution of angular
momentum within the disk changes for a quite different
reason.

Thus the dynamically cool disks of stars in galaxies testify
that their large-scale distribution of angular momentum can-
not have been greatly altered from that at the time the stars
formed. This constraint from random motion does not apply
to redistribution within the gas component, however, since
random motion in the gas is quickly dissipated.

IV. DISK THICKENING AND SURVIVAL

The disk of the Milky Way contains both a thin layer of
young stars and a thicker layer of old stars. For a long time
they were described as separate components, with intermedi-
ate age stars being included as part of the ‘‘thin’’ disk
(Gilmore and Reid, 1983; Liu and Chaboyer, 2000; Munn
et al., 2004; Ivezić et al., 2008; Jurić et al., 2008). However,
Bovy, Rix, and Hogg (2012) suggested that there is no clear
distinction between the two populations but rather a continu-
ous variation in thickness, metallicity, and radial scale length,
with the oldest, most metal-poor and hottest component
having the shortest radial scale length. Others challenged
this conclusion [see, e.g., Bensby (2013)], arguing that the
thick disk is a distinct component. Whichever way this dis-
cussion is settled, the thick and thin terminology remains
useful to distinguish the two ends of the thickness range.

Burstein (1979) and Mould (2005) and others found evi-
dence for a thicker layer of older stars in other galaxies,
which Yoachim and Dalcanton (2006) suggested may be
more massive, relative to the thin disk, in lower mass gal-
axies. Furthermore, Comerón et al. (2011) suggested that the
thick components may be more massive than previously
believed.

The thin and thick disks of the Milky Way can be distin-
guished not only by their scale heights and velocity disper-
sions, but the thick disk lags in its net rotational velocity
(Chiba and Beers, 2000), contains older stars with lower
metallicities (Majewski, 1993), and its stars have enhanced
½
=Fe� ratios (Bensby et al., 2005; Reddy, Lambert, and
Allende Prieto, 2006; Fuhrmann, 2008; Ruchti et al., 2011;
Liu and van de Ven, 2012; Schlesinger et al., 2012). As noted
previously, Bensby et al. (2011) and Cheng et al. (2012)
suggested a shorter radial scale length for the 
-enhanced
thick disk, although their estimates are still quite uncertain.
These distinctions are not clear cut, and the assignment

FIG. 10. The evolution of the surface density (left panel) and the

total rotation curve (right panel) in the simulation described in

Sec, III.D. The dotted lines show the initial unperturbed Mestel disk,

the dashed lines are drawn after a ring of material is added to the

disk centered on R ¼ 7, and the solid lines show the distribution five

rotation periods later.
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to a population may depend somewhat on whether a spatial,
kinematic, or chemical abundance criterion is applied
(Fuhrmann, 2008; Schönrich and Binney, 2009b; Loebman
et al., 2011).

A. Formation of thickened disks

Whether the thick disk is or is not a separate component
has important implications for its formation. A distinct com-
ponent suggests some event, such as a minor merger (see
Sec. IV.B) in the past, stirred up the old disk and what is now
described as the thin disk began to form subsequently through
gas accretion and star formation, creating two chemically and
dynamically distinct populations. However, evidence of such
an event could well be obscured by one or more of a number
of other mechanisms that may also contribute to the currently
observed properties.

In addition to the minor merger hypothesis, Abadi et al.
(2003) proposed that the debris accreted from disrupted
satellite galaxies could form part of the thick disk, but
chemical analysis of thick-disk stars (Ruchti et al., 2010,
2011) argued against this suggestion. Brook et al. (2005)
and Bournaud, Elmegreen, and Martig (2009) suggested
that stars formed in a thicker gas layer during galaxy assem-
bly could have given rise to a thick disk. A fourth suggestion
is that stars migrating outward from the inner Galaxy would
have a thick distribution. Both the simulations of Loebman
et al. (2011) and the semianalytic model for Galactic chemi-
cal evolution that includes radial migration by Schönrich and
Binney (2009a) showed that outward radial migration of old
stars from the inner disk can create a thick population of old,
metal-poor stars with enhanced ½
=Fe� ratios. Schönrich and
Binney (2009a, 2009b) and Scannapieco et al. (2011) pointed
out that it naturally gives rise to both a thin and a thick disk,
under the assumption that thick-disk stars experience a simi-
lar radial churning. This assumption was validated by
Solway, Sellwood, and Schönrich (2012).

Sales et al. (2009) proposed a test, based on orbit eccentric-
ity, to distinguish these formation mechanisms that has not
proven decisive (Dierickx et al., 2010; Casetti-Dinescu et al.,
2011; Wilson et al., 2011), although it does disfavor the accre-
tion scenario. In this context, it should be noted that the peculiar
velocity components, even of stars having highly eccentric
orbits, could be redirected by GMC scattering (Sec. III.B.4),
weakening the power of such tests. Furthermore, it is likely that
more than one of these mechanisms has been at play as the disk
of the Milky Way has built up.

Sridhar and Touma (1996) suggested that the thick disk
was formed by ‘‘levitation,’’ in which radially eccentric in-
plane orbits were converted to near-circular inclined orbits
through resonant trapping as the potential of the Galaxy
became more flattened during disk growth. However, the
observed orbital eccentricities in the thin and thick disks
today are the other way around.

B. Survival of thin disks

The hierarchical model of galaxy assembly (Sec. II.A) is
challenged by the thinness of disk galaxies (Tóth and
Ostriker, 1992), which are stirred and thickened by the infall

of satellite galaxies (Quinn, Hernquist, and Fullagar, 1993;

Walker, Mihos, and Hernquist, 1996; Velazquez and White,

1999; Berentzen et al., 2003; Read et al., 2008; Villalobos

and Helmi, 2008; Kazantzidis et al., 2009). The severity of

the challenge to the current �CDM paradigm involves many

questions that are not easily answered. Wyse (2009) summa-

rized the evidence that the thick disk of the Milky Way, and

perhaps that of other galaxies (Mould, 2005), contains essen-

tially no stars younger than �1010 yr. If this critical piece of
evidence holds up, it implies that no gravitational disturbance

to the disk could have scattered stars into the thicker layer

throughout that time.
The survival of the so-called superthin galaxies [see, e.g.,

Matthews (2000)] presents a similar challenge. They are

believed to be low-surface-brightness galaxies viewed edge

on that are probably embedded in a massive halo. If the low-

luminosity density represents a low disk mass density, then

their disks are less coherently held together by their self-

gravity than are normal disks, making them all the more

fragile to gravitational perturbations. Thus, not only are these

disks remarkably thin, but they would be more easily thick-

ened by perturbations than would heavier disks.
The expected rate of infall of subhalos as a function of their

mass can be estimated from simulations of the growth of dark

matter (DM) halos in the appropriate cosmology [see, e.g.,

Purcell, Kazantzidis, and Bullock (2009)]. However, the in-

falling pieces of substructure can be tidally disrupted and may

merge into the smooth inner halo (Gao et al., 2011). The

Sagittarius stream [see, e.g., Belokurov (2006)] provides a

clear example of the tidal stripping of a satellite as it falls into

the Milky Way halo.
If the core of a dwarf galaxy is dense enough to survive

until it interacts strongly with the disk, it may deposit some of

its orbital energy into the disk, the remainder being absorbed

by the halo through dynamical friction (Sec. VI). A proper

calculation of this process needs to take into account the

damping of the vertical oscillation by dynamical friction

(Quinn and Goodman, 1986), the reorientation of the disk

plane in response to the absorption of misaligned angular

momentum (Huang and Carlberg, 1997), and the excitation of

bending waves that can travel some distance across the disk

before depositing their energy into vertical random motion

(Sellwood, Nelson, and Tremaine, 1998). The coherence of

the disk needed to support these last two mechanisms de-

pends both on its self-gravity and on the degree of random

motion (Debattista and Sellwood, 1999).
The simulations by Kazantzidis et al. (2009) revealed that

the disk is significantly distorted and thickened by the infall

of a sequence of massive subclumps. The larger clumps

which arrived first caused the most disruption, while the

smaller fragments did less damage. All three velocity com-

ponents of the disk particles rose substantially, while the disk

also developed a pronounced flare.
Many [see, e.g., Moster et al. (2010), Villalobos,

Kazantzidis, and Helmi (2010), and Puech et al. (2012)]

have pointed out that gas infall subsequent to a minor merger

can form a new thin disk, and that the attraction of the

additional mass in the disk squeezes the thickened layer of

older stars. However, stars formed prior to the merger remain

in a thickened layer [see, e.g., Brook et al. (2004), Robertson
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et al. (2006), and Governato et al. (2009)]. The Milky Way
may have a continuum of disk populations of increasing
thickness and age (Bovy, Rix, and Hogg, 2012), but if the
conclusion of Wyse (2009) that the thickest subcomponent
contains no stars with ages & 1010 yr holds, then the disk
could not have been gravitationally stirred for all that time.
Such a constraint would present a significant challenge to
current cosmological models.

C. Challenge to radial migration models

The old age of the thick disk also raises a challenge for
radial migration models (Schönrich and Binney, 2009b). If
some thick-disk stars have migrated from the inner
Milky Way through the action of spirals, why are they all
so old? One might expect at least a tail of young stars that
have migrated rapidly from the center, although there were
very few in the simulation by Loebman et al. (2011). Solway
and Sellwood (in preparation) suggest that the formation of
the bar in the Milky Way prevented any stars born in the inner
Galaxy from being caught up by the corotation resonance of
spirals and carried to the outer disk. If this suggestion is
correct, then we may be able to date the formation of the
bar in the MilkyWay from the oldest stars that have inner disk
metallicities. Other processes may have added stars to the
thick disk, but there is at least hope that the abundance ratios
of some elements might be unique signatures that the star
originated in the inner Milky Way.

V. BARS

Amajority of disk galaxies contain a bar of some kind. Bars
are clearly visible in some 30% of galaxies, as judged from
SDSS galaxy images by the Galaxy Zoo project (Masters
et al., 2011). A larger bar fraction is seen in near-infrared
images [see, e.g., Eskridge et al. (2000) and Menéndez-
Delmestre et al. (2007)], in part at least because bars can be
obscured by star-forming regions in later type galaxies [see,
e.g., Block and Wainscoat (1991)]. The bar fraction rises still
further when weak oval distortions and short bars are included
[see, e.g., Marinova and Jogee (2007) and Reese et al. (2007)].
Yet even in these studies, some 30% of disk galaxies in the
local Universe still lack any trace of a bar.

The incidence of bars over cosmic time has been inves-
tigated in a number of studies, which face difficulties of
morphological classification from small images, even with
Hubble space telescope resolution, and of band shifting of the
light distribution with redshift. Cameron et al. (2010), who
reviewed previous work, concluded that the bar fraction in
more massive galaxies has been constant since z� 0:6, but
has increased in lower mass galaxies by about a factor of 2
over the same time interval. Sheth et al. (2012) also found
that bars are less common in disturbed galaxies at high
redshift. These findings seem consistent with a general pic-
ture that the bar fraction appears to be set after galaxies form
and settle (Kraljic, Bournaud, and Martig, 2012), which
happens earlier in more massive galaxies. Bars are therefore
believed to be old, long-lived structures.

Bars are also believed to have a greater extent normal to the
disk plane than does the disk that hosts them, giving them a

‘‘peanut’’ shape when viewed edge on. Since we cannot see
the face-on view in such cases, the evidence to support this
interpretation of box-peanut bulges is indirect [see, e.g.,
Bureau and Athanassoula (2005)]. The inner Milky Way
manifests such a shape [see, e.g., Blitz and Spergel (1991),
Weiland et al. (1994), and Skrutskie et al. (2006)]. In fact, its
peanut shape is so pronounced that it is described as an
‘‘X shape’’ (McWilliam and Zoccali, 2010; Nataf et al.,
2010; Ness et al., 2012; Wegg and Gerhard, 2013).

A. Stellar dynamics of bars

Sellwood and Wilkinson (1993) gave a thorough review of
barred galaxies. Although somewhat dated, see that review
for a detailed account and give only a brief outline of the
basic dynamics of bars here.

A self-consistent stellar bar has a nonlinear dynamical
structure that is most easily visualized in a frame that rotates
with the bar. A large fraction of the stars in a bar move in the
forward sense in the rotating frame on elongated orbits that
are confined to the bar. Clearly, moving forward in the
rotating frame implies, in an inertial frame, an orbit period
about the center that is shorter than the figure rotation period.

Most of the orbits within the bar occupy regular parts of
phase space, in which the stars are trapped about periodic
orbits, and there are a number of resonant families of such
orbits. Figure 11 shows the most important orbit families in
the midplane of an idealized rotating bar, which has the
simple effective potential [cf. BT08, Eq. (3.103)]

�effðx; yÞ ¼ 1

2
v2
0 ln

�
1þ x2 þ y2=q2

R2
c

�
� 1

2
�2

pR
2; (27)

where R2 ¼ x2 þ y2, Rc is a core radius inside of which the
potential is approximately harmonic, q � 1 is the flattening,

FIG. 11. The solid lines show examples, in a rotating bar poten-

tial, of important periodic orbits that close after two radial oscil-

lations for every turn about the center: the 2:1 resonant families.

Those orbits elongated parallel to the bar axis (horizontal) are

members of the x1 family. The x2 orbits are elongated perpendicular

to the bar. The dotted lines show three 4:1 resonant orbits (which

close after four radial oscillations for every turn about the center)

that may contribute to the somewhat boxy appearance of many bars.
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and v0 is the circular speed at large R when q ¼ 1. As in
BT08, the values are v0¼1, q¼0:8, Rc ¼ 0:03, and�p ¼ 1.

Periodic orbits are described as resonant because they
close in the bar frame, and the solid curves show 2:1 families
that close after two radial oscillations and one full turn about
the center. The x1 family is described as the ‘‘backbone’’ of
the bar (Contopoulos, 1980), because the stars that are
trapped around these orbits have a density distribution that
is more elongated than the adopted bar potential. Since
Poisson’s equation requires the potential surfaces to be
rounder than the density surfaces, the orbits that make up a
self-consistent bar must be confined to a smaller region than
is energetically accessible to them. This requires the majority
of bar orbits to be regular, since chaotic orbits fill the volume
bounded by their energy [or Jacobi constant, Eq. (25)].

Five Lagrange points occur in the bar potential, where a
particle could remain stationary in the rotating frame. Four lie
on the corotation circle, in an infinitesimal barlike potential:
L1 and L2 lie on the bar major axis, L4 and L5 on the bar
minor axis, while L3 is at the bar center. In strong bars, L1 and
L2 are closer to the center than are L4 and L5. The L1 and L2

Lagrange points in the potential used for Fig. 11 are very
close to the points ðx; yÞ ¼ ð�1; 0Þ.

Theorists generally agree that a self-consistent bar struc-
ture cannot extend farther from the center than the major-axis
Lagrange points, because the stellar response outside corota-
tion to forcing by a bar potential creates a density distribution
that is elongated orthogonal to the bar direction. In addition,
one cause of chaos in phase space is the overlap of resonances
(Chirikov, 1979), and the increasing density of resonances
(see ultraharmonic resonances in Sec. II.H) as corotation is
approached led Contopoulos (1980) to suggest that bars
should end just before corotation. Elmegreen (1996) defined
the useful dimensionless parameter

R � RL=aB; (28)

which is the ratio of the distance RL of the Lagrange point L1

(or L2) from the galaxy center to the semimajor axis of the bar
aB, and thus Contopoulos’s argument is that R> 1 for all
bars. While there is no compelling theoretical argument
against R � 1, which would be called a ‘‘slow bar,’’ bar
formation models and observational evidence from barred
disk galaxies (see Sec. V.H) both indicate a strong preference
for ‘‘fast bars’’ that have R ’ 1:2, although some exceptions
have been claimed.

A second family of 2:1 orbits, known as the x2 family, is
also illustrated in Fig. 11. These orbits are found only deep
inside the bar and are elongated perpendicular to it. They
generally appear only in models with dense centers, where the
orbital periods are short. The forced response of near-circular
orbits can be calculated analytically for an infinitesimal bar
perturbation [BT08, Eq. (3.147)], from which it can be seen
that the driven orbit orientation differs by 90� on opposite
sides of all three major resonances [i.e., where l ¼ 0, �1 in
Eq. (15)]. Orbit integrations are needed in strong bars, where
the orientation shift can be regarded as the generalization of
the ILR to large amplitude perturbations. The existence of an
ILR in the potential of the azimuthally averaged mass distri-
bution is a necessary, but not sufficient, condition for the
appearance of the x2 family in a bar, since it can disappear as

the bar strength is increased (Contopoulos and
Papayannopoulos, 1980). Even though the influence of the
resonance can be recognized from the orbit structure, it is
impossible to identify its location or radius in a strong bar
because some x1 orbits, which align with the bar, overlap
spatially with the perpendicularly oriented x2 orbits (Fig. 11).

The in-plane projections of many bars have distinctly
‘‘boxy’’ shapes (Kormendy, 1983; Athanassoula et al.,
1990; Gadotti, 2011), suggesting that the parent orbits should
have a somewhat rectangular shape. (The 3D shape is dis-
cussed later.) The dotted lines in Fig. 11 show three examples
of 4:1 resonant orbits that are still elongated along the bar,
whose existence may be related to the boxy shape of bars.
Note that these orbits are found only close to corotation,
where the orbit period in the rotating frame is long enough
to allow four radial oscillations, and they therefore can be
populated only in fast bars.

These 2:1, and perhaps also the 4:1, orbit families are the
most important for bar dynamics, but many other less impor-
tant orbit families have been found, even when motion is
confined to a plane. The dynamics of motion in the third
dimension is considerably richer (Pfenniger and Friedli,
1991; Patsis, Skokos, and Athanassoula, 2002; Skokos,
Patsis, and Athanassoula, 2002), with multiple commensur-
abilities possible between the vertical and in-plane frequen-
cies. However, the most important orbits remain those that
resemble the x1 family when seen in projection. Those that
oscillate about the midplane in either an archlike structure or a
figure 8 when viewed from the side are 2:2:1 resonant orbits
that complete two radial and two vertical oscillations for every
turn about the center.

Note that the bar pattern speed is equal to the precession
rate of the orbits that support it, and conversely all orbits
precess at the bar pattern speed. In the absence of the bar
potential, every orbit can still be regarded as a precessing
ellipse (Kalnajs, 1973), but the precession rates of the orbits
would no longer be equal with the larger orbits generally
precessing at lower rates than the smaller. Thus the effect of
the bar potential is to impose a common precession rate on
orbits that would otherwise prefer to precess at a range of
different rates. Clearly, the stronger the bar potential, the
greater its ability to trap orbits to precess with it. Because
the bar is a self-consistent structure, its pattern speed can be
regarded as an average, or ‘‘compromise,’’ between the un-
forced precession rates of the orbits from which it is built.
Thus bar pattern speeds must rise if mass accumulates in the
bar center, since an increased mean density raises all orbital
frequencies.

B. The origin of bars

1. Global bar-forming mode

It has long been known from both numerical simulations
(Hohl, 1971; Ostriker and Peebles, 1973) and global stability
studies (Kalnajs, 1972, 1978; Jalali, 2007) that simple models
of rotationally supported stellar disks are globally unstable. In
the linear regime, the instability takes the form of an open
two-arm spiral but, as it saturates, the shape straightens into a
bar in the inner disk, while the spiral in the outer disk winds
up and disperses. Hohl (1971) showed that the instability
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causes considerable rearrangement of the angular momentum
in the disk,8 and the azimuthally averaged mass profile is
substantially changed, with the inner disk becoming denser,
while material is also spread far outwards.

The vigorous linear instability that creates the nonlinear
bar is the result of a cavity-type gobal mode, or standing
wave, in a massive disk. The linear instability can arise only if
the combined mass distribution of the dominant disk, plus
contributions from any bulge and dark matter halo, yields a
quasiharmonic potential over the inner part, so that the
rotation curve rises roughly linearly from the center before
flattening around a radius Rcore. In most circumstances, the
group velocity (Toomre, 1969) of trailing spiral waves is
directed away from the corotation radius, while leading
waves propagate toward it, as illustrated for a centrally
cusped potential in Fig. 2. In that figure, the trailing distur-
bance was absorbed at an ILR, but an inwardly propagating
trailing spiral can travel all the way to the galaxy center if it
does not encounter this resonance, and an m ¼ 2 disturbance
easily avoids an ILR when the potential near the center is
quasiharmonic. In that case, the incoming trailing wave
reflects off the center into an outgoing leading spiral. The
feedback loop is closed at corotation where the outgoing
leading wave superreflects into an amplified trailing wave.
At the same time, an outwardly propagating trailing wave is
excited outside corotation that satisfies wave action conser-
vation requirements. The mode is unstable because the wave
train is amplified at corotation, and the instability typically
exponentiates on the time scale of an orbital period.

The bar that results from this instability generally extends
to a radius that is perhaps 20%–30% greater than Rcore. The
initial bar has a pattern speed that is often slightly lower than
that of the eigenmode that caused it, and it almost fills its
corotation circle. Thus bars are shorter in models with smaller
harmonic cores (Sellwood, 1981), although something else
can happen (see Sec. V.B.3) if the core is very small or absent.

2. Stabilizing mechanisms

Because it grows through swing amplification, this mode is
highly unstable in massive disks with low velocity dispersion,
whenever the feedback loop is open. If the disk is massive
enough to contribute most of the central attraction, then 1 &
X & 3 for m ¼ 2 disturbances [Eq. (19)], and strong ampli-
fication occurs unless Q * 2.

In mass distributions with quasiharmonic cores, i.e., those
that allow ingoing waves to reflect off the center, the insta-
bility can be quelled either by a high degree of random
motion (Athanassoula and Sellwood, 1986) or by making
the disk unresponsive to m ¼ 2 disturbances, by making X *
3 [Eq. (19)]. This latter solution is that favored by Ostriker
and Peebles (1973) and Efstathiou, Lake, and Negroponte
(1982), and by Christodoulou, Shlosman, and Tohline (1995)
who correctly argued that bar stability can be achieved if a
large fraction of the central attraction over most of the inner

disk comes from unresponsive spherically distributed matter
(bulge and halo). However, this is not the only, or even the
most realistic, way to stabilize a dynamically cool disk.

After having elucidated the mode mechanism, Toomre
(1981) predicted that the formation of a bar could be pre-
vented if the ingoing m ¼ 2 wave were unable to reflect off
the center of the disk. The easiest way to prevent feedback
through the center is to ensure that the wave encounters an
ILR, where it will be absorbed as illustrated in Fig. 2.

Simulations of models with centers dense enough to force
an ILR for most patterns (Sellwood, 1985; Sellwood and
Moore, 1999; Sellwood and Evans, 2001) confirm that

Toomre’s proposed mechanism can indeed stabilize a disk
in high-quality numerical work. These globally stable galaxy
models have massive disks with realistic rotation curves and a
moderate degree of random motion.

3. Bar formation through nonlinear trapping

However, Efstathiou, Lake, and Negroponte (1982) re-
ported that bars formed in their simulations with equal vigor
no matter how dense they made the central bulge, in apparent
contradiction with Toomre’s prediction. Sellwood (1989b)
confirmed that bars formed in his similar simulations with
dense bulges when the initial arrangement of the particles was

random. But he also found that the same models did not form
bars when the particles were uniformly spaced in azimuth
around rings to reduce the initial level of shot noise in the
low-order sectoral harmonics—a quiet start. This different
behavior arose because the absorption of ingoing spiral waves
at an ILR is predicted to occur at small amplitudes only. The
higher level of shot noise from randomly placed particles
seeds larger amplitude disturbances that can overwhelm the
ability of the ILR to absorb them. The resulting nonlinear
trapping of particles causes a bar to form that is superficially
similar to that formed through the global linear instability.
Had Efstathiou, Lake, and Negroponte (1982) employed a

much larger number of particles, a less subtle way to beat
down the level of shot noise, they should have found that
dense bulges can indeed stabilize a disk, as Toomre predicted.
Thus the bulge and halo masses required by the popular
stability criteria proposed by Ostriker and Peebles (1973),
Efstathiou, Lake, and Negroponte (1982), and Christodoulou,
Shlosman, and Tohline (1995) simply do not apply to galaxies
with dense centers or to high-quality simulations of models
with this property.

Shot noise from the �1010 disk stars in real galaxies must
have a low amplitude. Larger density fluctuations caused by
star clusters and GMCs still seem unlikely to trigger non-
linear bar formation. However, this nonlinear method of
making bars in globally stable disks could still occur, for
example, by a large amplitude perturbation caused by a tidal

encounter or minor merger (see Sec. V.B.5).

4. Slow trapping of orbits

Lynden-Bell (1979), in an elegant piece of dynamical
analysis, proposed a mechanism for the secular growth of
bars in galaxies. He showed that eccentric stellar orbits could,
under certain reasonable conditions, gradually become
trapped into a rather slowly rotating bar structure. Orbits

8Although the instantaneous angular momentum of an individual

particle in a strongly nonaxisymmetric system changes continu-

ously, particles in a settled bar stream round the bar in a steady

fashion such that the distribution of their instantaneous values does

not evolve.
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tend to align in the inner parts of galaxies, thereby reinforcing
the bar, when the overall density distribution is not too
sharply peaked toward the center. Lynden-Bell (1979) envis-
aged that the angular momentum loss from the inner part of
the galaxy would be mediated by spiral patterns, as may have
happened in the simulations of James and Sellwood (1978).

This mechanism can be important for the secular growth of
bars discussed below (Sec. V.C).

Even though the mechanism was originally envisaged as a

slow trapping process, Polyachenko (2004, 2013) argued it
may also form slow bars on a dynamical time scale. He
argued that this was the cause of the weak, slow bars that
formed in the simulations described in the appendix of
Athanassoula and Sellwood (1986), which had velocity dis-
tributions that were strongly radially biased. The mechanism
has also been identified (Palmer, Papaloizou, and Allen,
1990) as the root cause of the radial orbit instability in
spheroidal stellar systems with radially biased DFs.

5. Bar formation through tidal encounters

A number of studies of tidal interactions of satellite gal-
axies with disks have shown that bars are often triggered by

the encounter (Byrd et al., 1986; Noguchi, 1987; Gerin,
Combes, and Athanassoula, 1990; Salo, 1991; Mayer and
Wadsley, 2004; Romano-Dı́az, Shlosman, Hoffman, and
Heller, 2008). If the unperturbed disk were stable, bar for-
mation could still occur through the nonlinear trapping
mechanism described in Sec. V.B.3.

Miwa and Noguchi (1998) suggested that tidally induced
bars might be slower, in the sense that R � 1, than those
formed through the usual bar instability. Curir, Mazzei, and
Murante (2006) also reported that bars seemed to form more
readily in cosmologically formed halos with moving sub-
structures than in cases where the halo is smooth and non-
evolving. Berentzen et al. (2007) reported that interacting
galaxy models with large gas fractions appeared to be less

susceptible to bar formation than their gas-free counterparts,
although the high numerical viscosity of the smooth particle
hydrodynamics (SPH) method (Sec, V.E) may have had an
undue influence on this conclusion. The variety of possible
galaxy mass ratios, orbits, spin directions, gas fractions, etc.,
implies that the comparatively few simulations so far reported
have barely scratched the surface of this vast multidimen-
sional, parameter space.

Despite a number of studies to attempt to determine
whether galaxies with nearby companions or those in dense
environments are more likely to be barred, the results have
generally been inconclusive. Skibba et al. (2012) reviewed
this work and presented a much larger study of their own,
based on barred classifications from the Galaxy Zoo project,
that appears to find a significant excess of bars in galaxies

with moderately distant companions. Much more theoretical
work and further observational studies [see, e.g., Méndez-
Abreu et al. (2012)] are required to determine the extent to
which bars in real galaxies could be caused by interactions.

6. Recurring bars?

The changes to the distribution of both mass and angular
momentum that result from this global instability are the

largest that occur in an isolated disk (Hohl, 1971;

Debattista et al., 2006). However, for reasons given below,
bar formation through a global instability is widely believed

to happen just once in the life of most disk galaxies, and the

associated large structural changes are not expected to recur.
Bournaud and Combes (2002) and Combes (2008) offered

a dissenting view, and found that the instability can recur in

their simulations. The process of bar formation and dissolu-
tion (Sec. V.F) creates much random motion, leaving the

original stellar disk dynamically ‘‘hot’’ and unresponsive.

However, gas settling onto circular orbits and forming new
stars creates a new, dynamically responsive, component.

Thus, they invoked a high gas accretion rate in order that

the whole disk may again become bar unstable. Some of their
simulations formed a second bar, in Bournaud and Combes

(2002) after the disk mass had roughly doubled, and Sellwood

and Moore (1999) presented an additional case.
However, it is hard to see how such behavior could recur

repeatedly, since each cycle adds mass to the hot unrespon-

sive disk population. Also, angular momentum changes asso-

ciated with earlier bar formation will have made the disk
more centrally concentrated, which is stabilizing as Sellwood

and Moore (1999) demonstrated. Furthermore, inside-out
disk growth suggests that fresh gas is expected to be accreted

less in the center, where it would most be needed, and more in

the outer disk.

C. Continued growth of bars

A globally unstable bar-forming mode generally has an

open spiral form, which causes a large-scale rearrangement of
the angular momentum in the disk. However, the spiral soon

fades, leaving the bar as the only persistent feature and the

outer disk dynamically much hotter. If the disk does not
extend far beyond the bar, and the simulation does not include

a live halo or any dissipative component, then very little

further happens.
Amore extended disk can support continuing spiral activity

for a period, which generally has a lower pattern speed than

that of the bar (Sellwood and Sparke, 1988), and the duration of
that activity can be extended, perhaps indefinitely, by mimick-

ing dissipation. The apparent connection between the bar and

the spiral pattern in such cases must be transitory, although
Sellwood and Sparke (1988) showed that contours of the non-

axisymmetric density distribution appear to join the bar to the

spiral for a significant fraction of the beat period. Whether
spirals in real barred galaxies are driven responses to the bar or

distinct dynamical entities has proven harder to establish

(Buta et al., 2009; Meidt, Rand, and Merrifield, 2009).
Although spiral patterns in simulations generally have

different pattern speeds from that of the bar, the two non-

axisymmetric structures do interact. Generally, it is found that
spiral activity is associated with bar growth, since spirals

remove angular momentum from particles, allowing them

to become trapped into the bar (Lynden-Bell, 1979;
Sellwood, 1981; Solway, Sellwood, and Schönrich, 2012).

This process causes the bar to slow as it grows, because it

adds material to the bar that has a lower natural precession
rate (see Sec. V.A), and the requirement R> 1 continues to

hold. Note that spirals do not always cause bars to strengthen
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and can sometimes cause them to weaken, as described in

Sec. V.F.
Tagger et al. (1987) and Masset and Tagger (1997) argued

that bars can drive spirals through nonlinear resonance cou-

pling. In their picture, the location of corotation of the bar
coincides with the ILR of the outer m ¼ 2 spiral, which has a
lower pattern speed, and the coupling is mediated by a third

mode, which may be axisymmetric (m ¼ 0) or m ¼ 4.
Similar ideas were proposed by Fuchs, Dettbarn, and

Tsuchiya (2005). There is no doubt that many spirals in
simulations have pattern speeds of approximately the angular

frequency for this to be a possible explanation, but the

evidence for the third mode that would confirm it has proved
more elusive.

Bars also grow in length due to dynamical friction with the

halo (Sec. VI), and growth by this process can be extreme
(Athanassoula and Misiriotis, 2002; Martinez-Valpuesta,

Shlosman, and Heller, 2006; Villa-Vargas, Shlosman, and

Helller, 2009). Athanassoula and Misiriotis (2002) showed that
a bar in a moderately dense halo continues to grow until it is as

large as the disk from which it formed! Perhaps the mechanism
proposed by Lynden-Bell (1979) operates in this context also,

with secular bar growth caused by loss of angular momentum to

the halo instead of to the outer disk. Of course, the bar slows as it
grows in these cases also. Since we do not observe bars of this

size, in relation to their disks [see, e.g., Erwin (2005)], it seems

reasonable to conclude that halo friction, which is determined by
the inner halo density (Sec. VI), is too mild for excessive bar

growth to occur in nature.

D. Buckling instability

After a bar has formed and settled, it generally experiences

a second instability that causes it to thicken out of the plane
into a pronounced peanut shape, as first reported by Combes

and Sanders (1981). Combes et al. (1990) and Pfenniger and

Friedli (1991) suggested that thickening is caused by a ver-
tical resonance, since gradual thickening also occurs in simu-

lations in which the buckling mode is suppressed by forcing
vertical symmetry of the potential about the midplane, but

Friedli and Pfenniger (1990) conceded that thickening is

more rapid when buckling is allowed. The asymmetric bend-
ing of the bar when viewed edge on in many simulations

(Raha et al., 1991; O’Neill and Dubinski, 2003; Martinez-
Valpuesta and Shlosman, 2004; Martinez-Valpuesta,

Shlosman, and Heller, 2006) is a clear indication that a

dynamical buckling instability is the principal cause of the
peanutlike shape. The buckling instability of a bar is believed

to have formed the peanut shape of the Milky Way bulge [see,

e.g., Shen et al. (2010), Gerhard and Martinez-Valpuesta
(2012), and Li and Shen (2012)], and additional kinematic

data (Vásquez et al., 2013) seem to support this picture.
Buckling instabilities had been predicted for a stellar

system with an excessively flattened velocity dispersion el-

lipsoid (Toomre, 1966; Kulsrud, Mark, and Caruso, 1971;

Fridman and Polyachenko, 1984). Araki (1985) showed that
the instability is present in a uniform stellar sheet with a

sech2ðz=z0Þ vertical profile provided 
z < 0:3
x, and this

criterion appeared to be roughly correct in a global axisym-
metric model (Sellwood, 1996). Simulations of the nonlinear

evolution of the instability in strongly prolate systems

(Merritt and Hernquist, 1991), disks (Sellwood and Merritt,

1994), and the rotating bars of interest here reveal that the

flattened system develops an increasing bend in the vertical

direction until self-gravity is no longer able to confine the

particles to the bending layer; the nonlinear evolution is a

puffier system with less extreme velocity anisotropy. In the

case of rotating bars, the disk in which the bar formed may

have been quite stable to buckling when axisymmetric, but

the formation of the bar creates an elliptical flow, with

substantial streaming motion in the radial direction that has

the same destabilizing effect on the bending dynamics as does

random motion.
It is clear that the 2:2:1 resonant orbit family invoked by

Pfenniger and Friedli (1991) is the reason that the bar takes on

a peanut shape. Orbits of this family dominate in rapidly

rotating 3D bars [see, e.g., Pfenniger and Friedli (1991) and

Martinez-Valpuesta, Shlosman, and Heller (2006)]; in the

rotating frame, they close after two radial oscillations (as

do the x1 family in 2D) and two vertical oscillations, with the

vertical excursions peaking when the particle is far from the

center.
The buckling instability weakens the bar (Raha et al.,

1991; Debattista et al., 2004, 2006; Martinez-Valpuesta and

Shlosman, 2004) and causes it to become slightly more

centrally concentrated, as energy added to the vertical mo-

tions is removed from the horizontal. The peanut shape of the

bar after the instability may also be affected by the degree of

concentration of the central mass: the central waist is more

pronounced in models with a quasiuniform inner density

distribution, while the thickness is more uniform when the

central density is strongly peaked (Berentzen et al., 2007).
The peanut shape generally does not encompass the full

extent of the bar, i.e., there is some flat bar outside the

buckled inner part (Blitz and Spergel, 1991; Lütticke,

Dettmar, and Pohlen, 2000; Athanassoula, 2005; Gadotti

et al., 2007; Erwin and Debattista, 2013) as has also been

claimed for the Milky Way (Martinez-Valpuesta and Gerhard,

2011), with the ‘‘long bar’’ seen in counts of the mid-IR

sources (Benjamin et al., 2005) and variable stars (González-

Fernández et al., 2012). Erwin and Debattista (2013) also

argued that not every bar thickens vertically and estimated

that at least 13% of bars in galaxies have not buckled.
Unfortunately, the nature of the buckling instability in

simulations depends on spatial resolution (or the gravity

softening length) used in the N-body code. Codes, such as

that used by Raha et al. (1991), which do not have many

zones or softening lengths within the vertical thickness of the

disk yield restoring forces to the midplane that are not as

sharp as they should be. A soggy restoring force increases the

spatial scale of the instability, leading to the simple low-order

buckling mode reported by Raha et al. (1991). Subsequent

models with better spatial resolution found that bars still

thicken, but the buckling occurs on shorter length scales,

causing less pronounced bends before the mode saturates.
The inclusion of a rigid mass component, especially a

bulge or central mass concentration that is held fixed, also

compromises the proper representation of the buckling insta-

bility. Such models provide an additional restoring force to

the fixed center, whereas a fully mobile mass distribution
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should move in response to the bend in the thin component
(Berentzen et al., 2007).

Martinez-Valpuesta, Shlosman, and Heller (2006) showed
that a bar that grows substantially in length may undergo a
second buckling instability. Athanassoula and Misiriotis
(2002) also found that the extent of peanut appearance grew
significantly as the size of the bar continued to increase.

E. Gas response to bar forcing

As described in Sec. II.K, the interstellar medium (ISM) in
galaxies is not a simple fluid with a well-defined equation of
state. Thus before running simulations to model the gas flow,
one must first decide how best to approximate the dynamical
behavior of the ISM.

One approach [see, e.g., van Albada and Roberts (1981),
(Piner, Stone, and Teuben (1995), and Kim et al. (2012)] is to
use a standard Eulerian hydrodynamic code with an isother-
mal equation of state, adopting a sound speed that is repre-
sentative of the velocity spread of the clouds, typically
between 5 and 10 km s�1 rather than the much lower thermal
speed. These well-developed methods have the advantages of
optional adaptive grid refinement [see, e.g., Kravtsov, Klypin,
and Hoffman (2002)] and a low numerical viscosity, but they
also attribute a pressure that resists compression in a con-
verging flow where the physical properties of the gas suggest
that we should expect strong dissipation through some kind of
bulk viscosity.

Lagrangian methods have also been applied, the most
popular of which is SPH [see Springel (2010a, 2010b) for a
review]. The advantage of these methods is that they concen-
trate numerical resources in the interesting regions of high
density, and self-gravity of the gas can readily be combined
with the scheme used for the stellar particles. A known
weakness of SPH is its inability to support some standard
fluid instabilities, especially the Kelvin-Helmholtz instability
(Agertz et al., 2007), but fix-ups have been developed (Read
and Hayfield, 2012; Hopkins, 2013). Another weakness of all
Lagrangian methods, such as ‘‘sticky’’ particle and ‘‘collid-
ing’’ particle schemes as well as SPH, is the high numerical
viscosity due to the finite radius (or kernel width) of the
particles. This is of particular importance in spatially sepa-
rated, but nearby counterstreaming flows, such as can occur in
strongly nonaxisymmetric potentials. Two nearby streams of
oppositely flowing particles whose interpolation kernels over-
lap will clearly drag on each other, causing viscous dissipa-
tion that may be greatly overestimated.

Springel (2010a, 2010b) described a promising new hybrid
Eulerian-Lagrangian method that adjusts the grid cell
boundaries as the fluid flows. However, the number of pub-
lished examples is so far rather small, and most are applied to
galaxy formation, rather than to galaxy evolution.

Since no one method perfectly mimics the dynamics of the
ISM, it is good to compare the behavior in any one problem
using a variety of techniques. One has greater confidence in
behavior that is reproducible by more than a single method.

1. Flows in two dimensions

Many have reported simulations of a massless gas compo-
nent flowing in a rigidly rotating bar potential [a partial list of

some of the more important papers is Sanders and Huntley

(1976), Matsuda and Isaka (1980), Sanders and Tubbs

(1980), Schwarz (1981), van Albada and Roberts (1981),

Athanassoula (1992), and Kim et al. (2012)]. These simula-

tions used a variety of approximations to model the gas, but

generally they found that gas within the bar region is driven

inward toward the galaxy center, where it accumulates, while

gas in the region outside corotation is driven outward.
Because the gas is moving highly supersonically, pressure

is negligible and, except where shocks arise, the motion of a

fluid element follows a ballistic orbit. Therefore, were shocks

absent, mild dissipation would drive gas onto streamlines

corresponding to periodic orbits in the potential. However,

in most bar flows, the periodic orbits do not nest without

intersecting others or themselves, as exemplified in Fig. 11,

and shocks must form. Shocks form along the leading edges

of the bar as it rotates, causing the gas to lose both energy and

angular momentum. The loss of angular momentum occurs

because the shocks skew the flow pattern with respect to the

axis of the bar, and therefore the gas spends more than half its

time on the leading side of the bar, where the nonaxisym-

metric part of the bar potential applies a retarding accelera-

tion. In all models except those that lack a central mass

concentration, the inflow stalls at some distance from the

center, which happens where the x2 orbit family appears.
Observational evidence from barred galaxies reviewed in

Kormendy and Kennicutt (2004) suggests that something like

the behavior just described also happens in nature.

Prendergast (1962) appears to have been the first to associate

shocks with the dust lanes that are generally seen on the

leading edges of the bar, assuming the outer spiral to trail.

Physically, a shock in simulations of the idealized ISM

implies, in real galaxies, locations where streams of gas

clouds undergo more frequent collisions, causing a change

in momentum, and a large increase in density that gives rise to

the dust lane. Steep velocity gradients across dust lanes can

be detected in high resolution velocity maps [see, e.g., Weiner

et al. (2001), Hernandez et al. (2005), and Zánmar Sánchez

et al. (2008)] and massive gas concentrations are observed in

the centers of barred galaxies (Gerin, Combes, and Nakai,

1988; Garcia-Barreto et al., 1991b; Sheth et al., 2005; Regan

et al., 2006). Large accumulations of gas, presumably having

been driven inward by the bar, are often found in circum-

nuclear rings (Garcia-Barreto et al., 1991a) (see Sec. VII.A).
Extracting a reliable estimate of the inflow rate of gas from

simulations is fraught with difficulties, however. The high

numerical viscosity of some methods may enhance the inflow

rate (Prendergast, 1983) but, even more insidious, is that the

precise position of the shock, and therefore the magnitude of

the gravity torque on the gas, is strongly affected by the

choice of numerical scheme and parameters. Quillen et al.

(1995) imaginatively took an observational approach to avoid

these pitfalls, although other difficulties arise associated with

accounting for all phases of the gas.
A small fraction of the radial flow may continue inward

(Wada, 2004; Kim et al., 2012), perhaps driven by weak

spirals that are particularly prominent in dust (Carollo,

Stiavelli, and Mack, 1998; Martini et al., 2003). Again, the

inflow rate in a simulation depends strongly on the numerical

scheme and parameters (Kim et al., 2012) and Kim and Stone
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(2012) found that including magnetohydrodynamics substan-

tially increases the inflow rate in this region. However, it is

clear from the observed buildup of gas in the nuclear rings of

real barred galaxies that the inward mass flux interior to the

ring must be lower than that which flows down the bar into

the ring.
Wada and Koda (2001) included self-gravity of the gas, as

well as heating and cooling. But the more important limita-

tion of most simulations mentioned in this section is the

neglect of the bar response to the angular momentum gained

or lost by the gas and the evolution of the gravitational

potential as mass accumulates in the center.

2. Flows in 3D

Most 3D studies of gas flows in bars have employed the

SPH method with an isothermal equation of state. Since there

are few results from other 3D methods with which to compare,

it makes sense to compare with the 2D behavior, especially as

no dramatically new features have been reported that arise

specifically from the freedom of motion in 3D. Indeed, Pérez

(2008) showed that the flow velocities obtained by SPH

compared well with those from a 2D Eulerian method.
Another feature of added realism in most studies is

that the self-gravitating evolution of the SPH particles is

combined with that of stellar particles [see, e.g., Berentzen

et al. (1998) and Fux (1999)]. This aspect therefore implies

that the simulations capture both the angular momentum loss

to the bar and the changing gravitational potential as

the gas accumulates in the center. However, while the flow

patterns are broadly similar to those seen in 2D models, a

characteristic new feature of many of these Lagrangian

models is a high inflow rate of isothermal gas to the center.9

This finding raises a concern that the quantitative inflow

rate may be substantially overestimated because of the nu-

merical viscosity inherent in the SPH method. An artifact of

this kind will cause gas to accumulate in the center too

quickly, and the effects of the central mass buildup, especially

in gas-rich models, may occur too rapidly. Note that this

concern is not about the physical process, which surely

does happen, but about the rate at which it happens in the

simulations.
Berentzen et al. (2007) found that the buildup of a central

mass concentration due to gas inflow caused a slight increase

in the bar pattern speed, probably because the increased mass

in the center raises orbit frequencies. They also found a

reduced slowdown rate of the bar, since the bar must take

up the angular momentum lost by the gas as it is driven

inward. Another finding was that a significant gas fraction

altered the buckling behavior, which changed the final

strength and 3D shape of the bar. In a follow-up study,

Villa-Vargas, Shlosman, and Helller (2010) found that mod-

erate fractions of gas ( & 5% of the disk mass) have little

effect on the behavior; the bar grew, slowed, and buckled

pretty much as in a comparison stars only case.

F. Bar dissolution

Bars in N-body simulations that do not include any dis-

sipative component or a live halo are long-lived structures

(Miller and Smith, 1979) that are also quite robust (Sparke

and Sellwood, 1987). But it has long been recognized

(Pfenniger and Norman, 1990) that the buildup of a central

mass concentration (CMC) at the center of the bar can change

its dynamical structure. Studies to determine the response of a

bar to an imposed central mass (Norman, Sellwood, and

Hasan, 1996; Shen and Sellwood, 2004; Athanassoula,

Lambert, and Dehnen, 2005; Debattista et al., 2006) have

generally found that the bar is weakened, but not completely

destroyed by a central mass as large as a few percent of the

disk mass, and still larger masses are needed to cause the bar

to dissolve entirely. The destructive power of a given mass is

also increased by making it more dense. Note that a high

central density requires that simulation particle orbits near the

center have short time steps (Shen and Sellwood, 2004), and

numerical errors in this regime can accelerate bar dissolution.
The CMC alters the gravitational potential of the bar,

which in turn requires the orbital structure to adjust. Shen

and Sellwood (2004) found that the massive compact CMC in

their model made large parts of phase space chaotic,10 caus-

ing an abrupt dissolution of the bar. Lower mass CMCs also

caused some orbits to become chaotic, weakening the bar

after which the weakened bar continued to adjust more

gradually toward a new structure in the presence of the CMC.
A complete dissolution of the bar leaves the disk dynami-

cally hot, since the highly eccentric orbits of the bar no longer

remain aligned in a coherent streaming flow, but become

randomly oriented. The process can be very rapid because

of collective effects; the coherent alignment of the bar orbits

is maintained by the bar potential and, as the bar weakens, the

orbits of remaining stars are less strongly constrained to

precess at the original common rate. Since the bar has usually

buckled by this time, the hot inner disk formed this way is

also quite thick. Finally, a very dense central mass can scatter

orbits in any direction, and the stars could take up a spheroi-

dal shape, perhaps slightly flattened by the potential of the

surrounding disk (Norman, Sellwood, and Hasan, 1996).

There should be observable consequences from this sequence

of events that could test the predictions of the simulations.
Bournaud, Combes, and Semelin (2005) and Combes

(2008), who used sticky particles to mimic gas, claimed

that the backreaction of the torque between the bar and the

gas can be strong enough to dissolve the bar. They correctly

pointed out that gas inflow must add angular momentum to

the bar which should weaken it (Lynden-Bell and Kalnajs,

1972). However, the angular momentum required to dissolve

the bar should be at least roughly equal to what it lost to the

outer disk when it was formed, perhaps more if the bar has

been intensified through spiral activity or halo friction

(Sec. V.C). Thus gas inflow through the comparatively small

lever arm of the bar, in comparison to the outer disk, would

indeed need to be prodigious to supply the angular momen-

tum to unbind the bar. Berentzen et al. (2007), for example,
9Debattista et al. (2006) found reduced inflow with an adiabatic

equation of state because the gas is then more resistant to com-

pression. However, the pressure of even an isothermal gas may be

unrealistic (see Sec. II.K).

10Gerhard and Binney (1985) predicted this consequence for

nonrotating ellipsoidal galaxies.
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found that the bar weakened earlier as the gas mass fraction

was increased, but they argued this behavior was caused by
the accumulation of mass into the center rather than a back-

reaction of the torque between the bar and the gas.
A third possible internal method to weaken a bar is an

interaction with an exceptionally strong spiral, which has
occurred in a few simulations [see, e.g., Sellwood and

Moore (1999) and Solway, Sellwood, and Schönrich

(2012)]. Lynden-Bell and Kalnajs (1972) derived Eq. (20)
by averaging over all phases, which they assumed to be

uniformly populated, leading them to the widely cited con-

clusion that spirals remove angular momentum from the inner

disk. However, the stars are far from uniformly distributed in
azimuth near the end of a bar and the fact that they are trapped

in the bar further invalidates, in this context, the assumptions

that underlie the derivation of Eq. (20). The behavior in this
more complex situation seems to depend on the relative phase

of the spiral arm and the bar. For most of the cases when the

bar leads, or is close to the same phase, as the inner end of the
spiral, the spiral can remove angular momentum from nonbar

stars which may allow them to become trapped into the bar,

thereby increasing the bar strength, as described in Sec. V.C.
On the other hand, when the spiral density maximum signifi-

cantly leads the bar, their mutual attraction adds angular

momentum to stars in the bar, which weakens it. This behav-

ior has not been studied in detail, and further work is required
to understand it and quantify its likelihood.

All three bar weakening mechanisms are discussed further

in Sec. VIII.

G. Discussion of bar fraction

None of the proposed methods to form bars, or of prevent-

ing their formation, seems able to give a convincing expla-
nation for the observed fraction of bars in galaxies.

Furthermore, Bosma (1996) and Courteau et al. (2003) and

others have pointed out that barred galaxies seem little differ-
ent from their unbarred cousins in most respects—e.g., they

lie on the same Tully-Fisher relation. Sánchez-Janssen and

Gadotti (2013) found significant differences between barred

and unbarred galaxies in photometric parameters, which they
attributed to evolution caused by the bar.

Barazza, Jogee, and Marinova (2008) reported an anticor-

relation of bar frequency with the bulge light fraction and
Buta, Laurikainen et al. (2010) found a decreased frequency

of strong bars in S0 galaxies, which have dense and massive

bulges. Both these studies offer weak support for the stabiliz-

ing mechanism proposed by Toomre (1981). But this cannot
be the whole story because some near-bulgeless disks lack a

strong bar (e.g., M33) while other barred disks have massive

bulges.
The inability of theory or data to find a clear predictor for

the incidence of a bar in a particular galaxy suggests that

whether a particular galaxy is or is not barred may depend on

unobservable factors such as its formation history [see also
Sheth et al. (2012)].

Erwin (2005) [see also Hoyle et al. (2011)] found that bars

in early-type galaxies are larger than those in late-type gal-
axies, both in absolute size and in terms of the scale length of

the disk light. He also noted that bars in many real galaxies,

especially of late Hubble type, are shorter than those in
simulations, which is another reason to think that our under-
standing of bar formation in real galaxies remains
incomplete.

H. Bar pattern speeds

Tremaine and Weinberg (1984a) devised a method to
measure the pattern speed of a bar directly from observations
of a tracer component, which must obey the equation of
continuity. Their original method assumes that the galaxy
has but a single pattern and would yield a misleading result
were there more than one pattern, each rotating at a different
angular rate.

The stellar light distribution of early-type barred galaxies
is believed to obey the equation of continuity because these
galaxies have little dust obscuration and no star formation.
They also rarely possess prominent spirals in the outer disk.
Results of many studies using this method for early-type
barred galaxies were summarized by Corsini (2008). While
some individual measurements are quite uncertain, the data
seem to favor 1<R & 1:4. Chemin and Hernandez (2009)
found a counterexample in a low-luminosity galaxy.

Fathi et al. (2009) and Meidt, Rand, and Merrifield (2009)
applied the method of Tremaine and Weinberg (1984a) to
ionized and to molecular gas, respectively. Both groups
argued that this is valid, even though the separate gas com-
ponents do not obey the continuity equation that underlies the
method. Fathi et al. (2009) generally found fast bars. Meidt
et al. (2008) generalized the method to attempt to measure
radial variations in the pattern speed and Meidt, Rand, and
Merrifield (2009) found suggestions of pattern speeds that are
lower at large radii than those near the center.

Other methods can yield indirect estimates of bar pattern
speeds. Fits of models of the gas flow (Sec. V.E) have been
reported for a few galaxies (Lindblad, Lindblad, and
Athanassoula, 1996; Weiner et al., 2001; Pérez, Fux, and
Freeman, 2004; Zánmar Sánchez et al., 2008), finding R�
1:2 in all cases. Athanassoula (1992) argued that the shapes and
locations of dust lanes in bars also seem to suggest that R ’
1:2. If the 4:1 resonant orbit family (dotted curves in Fig. 11)
gives rise to the boxy appearance of a bar, then that bar must be
fast, as the orbit family cannot be populated in slow bars.
Identifying a ring in a barred galaxy as the location of a major
resonance with the bar (Buta and Combes, 1996) yields, with
kinematic information, an estimate of the pattern speed.

Rautiainen, Salo, and Laurikainen (2008) computed mod-
els of the stellar and gas (using sticky particles) responses to
forcing by photometric models of 38 barred galaxies, in
which they assumed that the entire nonaxisymmetric struc-
ture rotated at the same pattern speed. They attempted to
match the model to the visual morphology of the galaxy and
found a range of values forR. However, in most cases where
R � 1, the fit is dominated by the outer spiral, which may
have a lower angular speed than does the bar.

I. Bars within bars

The nuclear regions of many barred galaxies show isophote
twists [see, e.g., Shaw et al. (1993)] that are interpreted as
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inner secondary bars within large-scale primary bars. Erwin

and Sparke (2002) identified secondary bars in >25% of
barred galaxies and reported that they have a length of ’
12% of that of the primary bar. The deprojected angles

between the principal axes of the two bars appeared to be
randomly distributed, suggesting that the two bars may

tumble at differing rates. This inference was supported by

Corsini, Debattista, and Aguerri (2003), who used the

Tremaine and Weinberg (1984a) method to show that the
two bars in NGC 2950 could not have the same rotation rates;

Maciejewski (2006) used the same data to argue that the

secondary bar has a large retrograde pattern speed. Fathi
et al. (2007) inferred an angular speed for the secondary

bar that is higher than that of the primary in NGC 6946.
The theoretical challenge presented by these facts is sub-

stantial, and progress toward understanding the dynamics has
been slow. Maciejewski and Sparke (2000) studied the orbital

structure in a potential containing two nonaxisymmetric

components rotating at differing rates. However, a self-
consistent secondary bar can neither rotate at a uniform rate

(Louis and Gerhard, 1988) nor can it maintain the same shape

at all relative phases to the primary.
Friedli and Martinet (1993) argued that gas was essential to

forming secondary bars [see also, e.g., Heller, Shlosman, and

Englmaier (2001) and Englmaier and Shlosman (2004)].

However, some of the collisionless simulations reported by
Rautiainen and Salo (1999) and Rautiainen, Salo, and

Laurikainen (2002) manifested dynamically decoupled inner

structures when the inner disk had high orbital frequencies
due to a dense bulge. The structure was more spiral-like in

some models, but others appeared to show inner bars that

rotated more rapidly than the main bar.
Debattista and Shen (2007) created long-lived, double-

barred galaxy models in collisionless N-body simulations

having dense inner disks, which they described as pseudo-

bulges. They followed up with a more detailed study (Shen
and Debattista, 2009) that also made some predictions for

observational tests. The secondary bars in their models indeed

rotated at nonuniform rates, with a shape that also varied

systematically with a phase relative to that of the primary.
These models prove that purely collisionless dynamical

systems can support this behavior. However, it remains un-

clear what initial conditions have given rise to double-barred

galaxies in nature.
The possible consequence of gas inflow in these galaxies

has attracted a lot of attention. Shlosman, Frank, and

Begelman (1989) speculated that bars within bars might
lead to gas inflow over a wide range of scales, from global

to the parsec scale where accretion onto a black hole might

cause AGN activity. While inflows may have been observed

[see, e.g., Haan et al. (2009) and van de Ven and Fathi
(2010)], understanding of gas flow in these nonsteady poten-

tials remains rather preliminary (Maciejewski et al., 2002;

Heller, Shlosman, and Athanassoula, 2007).

J. Fueling of AGN by bars?

Many [a partial list is Knapen, Shlosman, and Peletier
(2000), Laine et al. (2002), Laurikainen, Salo, and Buta

(2004), Hao et al. (2009), and Lee et al. (2012)] have

discussed the vexing question of whether there is, or is not,
an excess of AGN in barred galaxies. Even the observational
question is hard to answer, because a low level of AGN
activity can be confused by a high rate of star formation
and low-ionization nuclear emission regions (LINERs). It is
also necessary to ensure that the barred and unbarred galaxy
samples to be compared have similar distributions of lumi-
nosities, colors, etc.

Emphatically one can answer that a single large-scale bar
in a galaxy cannot drive gas close enough to the black hole to
be accreted, and therefore produce an enhanced level of
activity. Torques on the gas from the bar are able to reduce
its angular momentum by about a single order of magnitude,
leaving it orbiting the nucleus at speeds * 100 km s�1 at a
distance * 200 pc. Its angular momentum must be reduced
by at least a factor of 2 orders of magnitude before the gas
could join even the dusty torus that is thought to surround the
accretion disk in a typical AGN (Krolik, 1999). Thus the
essence of the debate is whether secondary (or even multiple)
bars, nuclear spirals, magnetic fields, etc., can bridge this gap
and deliver to the accretion disk some of the larger supply of
circumnuclear gas that resides in barred galaxies.

Since the argument over the observational evidence con-
tinues, with perhaps the nay sayers in the ascendant at the
present time, one concludes that there is no clear, direct
connection between large-scale bar inflow and AGN activity,
and there may be none at all.

VI. DYNAMICAL FRICTION

Chandrasekhar (1943) pointed out that a massive object
moving through a background sea of light particles would
experience a drag force, known as dynamical friction. It is
believed to affect globular clusters, satellite galaxies, and bars
as they move or rotate inside dark matter halos. Orbital decay
of satellites, or the slowdown of bars, together with the gain
of energy by the halo, are important aspects of secular
evolution.

A. Mechanism

Each particle in the background sea experiences an attrac-
tive gravitational impulse as it is passed by the advancing
massive body. Since the attracted particles converge behind
the perturber as it moves forward, the perturber in effect
‘‘focuses’’ the background particles into a trailing density
excess, or wake. The gravitational attraction between the
wake and the perturber gives rise to an apparent ‘‘frictional’’
drag that slows the motion of the perturber. The kinetic
energy lost by the perturber is added to the random motion
of the background particles.

The deceleration of a mass M, moving at speed vM,
through a background sea of particles of uniform density �
with an isotropic velocity spread 
 may be written (BT08,
Sec. 8.1)

dvM

dt
¼ 4� ln�G2 M�


2
V

�
vM




�
; (29)

where ln� is the Coulomb logarithm introduced in Sec. II.B.
The function VðxÞ describes how the retarding acceleration
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varies with the speed of the perturber relative to the random
motions of the stars, and is illustrated for Maxwellian velocity
distribution in Fig. 12. A rapidly moving perturber gives weak
impulses to the background particles that create a mild wake
far downstream behind the perturber, and the drag therefore
dies away as VM ! 1. The drag on a perturber moving
slowly with respect to the rms motions of the particles is
also mild, because there is only a small excess of particles
dragging it backward over those urging it forward, and the
acceleration must also vanish as VM ! 0. For a Maxwellian
velocity distribution, the drag force peaks when the perturber
moves somewhat faster than the 1D dispersion 
, i.e., the rms
velocity in any coordinate direction.

1. Improved treatment

There are a number of conceptual problems with
Chandrasekhar’s analysis. Foremost is that fact that the hy-
pothesized infinite sea of uniform density cannot be realized;
away from the center of any finite distribution of matter, the
motion of the perturber would not be a straight line but a
curved orbit within the host mass distribution. Second,
each particle in the sea is supposed to have a single interac-
tion with the perturber, but particles must be bound to any
finite system (otherwise it would disperse), and therefore
repeatedly interact with a bound perturber. Choosing values
for the density � and velocity dispersion
 appropriate for use
in Eq. (29) also presents difficulties, especially when the mass
distribution is highly inhomogeneous (Arena and Bertin,
2007).

These problems were all overcome in a seminal paper by
Tremaine and Weinberg (1984b), who reformulated the
analysis in action-angle variables. They found that the rate
at which angular momentum is lost from a disturbing mass
orbiting in a spherical system of background particles, here-
after a ‘‘halo,’’ is given by an expression identical in form to
that derived by Lynden-Bell and Kalnajs (1972) (LBK) for a
disk [Eq. (20) in Sec. II.J] except that the DF in the spherical

case expresses the density in the 6D phase space. The number

of possible resonances is substantially increased, since they

arise wherever combinations of the three separate frequencies

(orbital, radial, and vertical) for the unperturbed motion of

background particles match the angular frequency of the

perturbation. In a follow-up paper, Weinberg (1985)

evaluated the frictional drag expected from a halo, modeled

as a singular isothermal sphere, on a rotating bar, modeled as

a homogeneous prolate spheroid rotating about an axis in its

equatorial plane. Assuming the bar also had the moment of

inertia of the rigid spheroid, Weinberg found that in a dense

halo the pattern speed of a strong bar would decay with a half-

life of a few of its initial rotation periods.
While the complicated LBK torque expression [Eq. (20)] is

daunting, its physical meaning is very similar to that of

Chandrasekhar’s formula [Eq. (29)]. The drag force arises

because, to second order, the halo builds up a density excess,

or wake, behind the perturber, leading to a gain, on average,

of angular momentum by the halo particles and a correspond-

ing loss by the perturber. The lagging wake was illustrated for

the case of a bar by Weinberg and Katz (2007), their Fig. 1.
As Lynden-Bell and Kalnajs (1972) showed for spiral

perturbations, halo particles that are not in resonance also

experience changes that average to zero and therefore the

drag is caused only by resonant particles. Referring back to

Eq. (20) again, the contribution to the drag from each reso-

nance depends on the gradient of the halo particle DF across

that resonance, and there is generally an excess of gainers

over losers. But the gainers will depopulate the high-density

side, and cross the resonance to the previously low-density

side. Thus, were the pattern speed of the perturber to remain

constant, the local gradient across the resonance would be

reduced, and the system would adjust toward a balanced

equilibrium in which the gradient in the DF in the immediate

vicinity of the resonance had flattened. Then the imbalance of

gainers over losers would be erased and friction would die

away. This effect was explicitly demonstrated by Lin and

Tremaine (1983) for the case of an orbiting satellite and will

turn out to be important in Sec. VI.B.1.
However, the motion of the perturber is affected by its loss

of angular momentum. An orbiting mass clearly sinks inward,

making its angular speed about the center rise. Because a bar

is not a solid object with a well-defined moment of inertia,

Tremaine and Weinberg (1984b) were less certain about

whether its pattern speed would increase or decrease as a

result of angular momentum loss. However, simulations

(Sellwood, 1980, 2003; Debattista and Sellwood, 1998,

2000; Athanassoula, 2003; Valenzuela and Klypin, 2003;

Holley-Bockelmann, Weinberg, and Katz, 2005; Martinez-

Valpuesta, Shlosman, and Heller, 2006; Villa-Vargas,

Shlosman, and Helller, 2009; Minchev, Famaey, Quillen,

Di Matteo et al., 2012) have always found that bars slow as

they lose angular momentum.
The change in pattern speed of the perturber causes the

resonances to sweep through phase space (Sellwood and

Debattista, 2006; Dubinski, Berentzen, and Shlosman,

2009), and therefore the gradients across resonances do not

have time to flatten and, in general, friction persists as the

perturber loses angular momentum, although exceptions have

occurred (see Sec. VI.B.1).

FIG. 12. The dimensionless acceleration function V defined in

Eq. (29) for the case of a Maxwellian distribution of velocities

among the background particles. The function is negative because

the acceleration is directed oppositely to the velocity.
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Lin and Tremaine (1983), Bontekoe and van Albada
(1987), Sellwood (2006), and Jardel and Sellwood (2009),
for an orbiting satellite, and Sellwood (2006) for a rotating
bar, showed that the dependence of the friction term on the
perturber mass, its angular speed, and both the dispersion and
density of the halo were all as expected from Eq. (29). The
inclusion of self-gravity of the halo causes a slightly larger
density response, with a corresponding increase in the drag
force, but does not appear to change the scaling.

2. Bar-halo friction

The case of a bar rotating in a halo has received a great deal
of recent attention, as friction from a moderately dense halo
slows the bar on a time scale of a few rotations (Sellwood,
1980; Weinberg, 1985). Bars also grow in length and strength
(i.e., the quadrupole moment rises) as they are braked by
friction.

While many resonances exist between the bar and halo
orbits, Weinberg and Katz (2007) stressed that frictional drag
was dominated by a small number of resonances, of which the
ILR was by far the most important. The consequence of
flattening the gradient in the halo DF at this resonance has
also affected simulation results (see Sec. VI.B.1).

The phase lag angle between the axis of the halo response
and principal axis of a bar varies with the drag force
(Debattista and Sellwood, 2000; Sellwood, 2006). Friction
is weak at high angular speeds because the halo response is
almost exactly perpendicular to the bar, it strengthens as the
pattern slows reaching a maximum when the response is
�45� to the bar axis, and decreases to zero as the response
becomes aligned with the bar, which generally happens
before the bar is brought to a complete stop. Thus the system
reaches a steady state in which the corotating halo response,
which has been described as a halo bar (Athanassoula, 2007),
is aligned with the bar in the disk. Since the response of orbits
to a steadily rotating bar potential is a forced precession (see
Sec. V.A), it is no surprise that studies of halo orbits in barred
simulations (Athanassoula, 2002, 2003; Ceverino and Klypin,
2007) have found a large fraction of resonant orbits.

It is possible that such trapped orbits are responsible for the
asymmetric distribution of thick-disk and/or luminous halo
stars in the Milky Way. A density excess of such stars that are
only a few kiloparsec from the Sun in the first Galactic
quadrant, with no counterpart in the fourth quadrant, has
been reported by Larsen, Humphreys, and Cabanela (2008).
A similar asymmetry, that could be aligned with the bar in the
disk, was also found by the same group (Parker, Humphreys,
and Beers, 2004) in stellar kinematics.

Debattista and Sellwood (2000) experimented with rotating
halos, finding that the frictional drag varies with the degree
and sense of halo rotation. It is little changed in halos having
mild rotation in the same sense as the disk and is significantly
weakened only by an unrealistic degree of halo rotation.

The loss of angularmomentum from the bar to the halo slows
the bar and allows it to continue to grow (Debattista and
Sellwood, 2000). Continued evolution of bars in moderately
dense halos (Athanassoula andMisiriotis, 2002; Athanassoula,
2003; Martinez-Valpuesta, Shlosman, and Heller, 2006) can
cause the bar to growuntil it fills almost the entire disk, atwhich
point corotation canbe outside the disk.The unreasonably large

bars, relative to the disk size, obtained in these simulations
would appear to argue against even moderately dense inner
halos for real galaxy disks.

The halo that absorbs the angular momentum need not be
just the dark matter halo; visible spheroidal components are
also angular momentum sinks. Saha, Martinez-Valpuesta, and
Gerhard (2012) found that an initially nonrotating classical
bulge acquires angular momentum from a strong bar and
becomes triaxial, corotating with the bar when angular mo-
mentum transfer is complete. The bulge streaming motions
they report are quite large.

B. Constraint on halo density

While the above theory leads to the expectation that a halo
must exert a strong frictional drag on a massive bar, fully self-
consistent simulations were needed to show that a bar in a
disk embedded in a dense halo slows to the point that
R> 1:4 (Debattista and Sellwood, 2000; Weinberg and
Katz, 2002; O’Neill and Dubinski, 2003; Sellwood, 2003;
Valenzuela and Klypin, 2003; Holley-Bockelmann,
Weinberg, and Katz, 2005; Villa-Vargas, Shlosman, and
Helller, 2009), which is inconsistent with most observed
values. The pattern speeds of strong bars are generally fast,
in that R� 1:2 [Eq. (28)]; the evidence is reviewed in
Sec. V.H. Furthermore, the slow bar reported by Chemin
and Hernandez (2009) is in the low-surface-brightness galaxy
UGC 628, which is believed to have a large DM fraction that
should have slowed a strong bar.

The observationally accessible ratio R is not a direct
measure of friction, since both the bar length and corotation
radius can change independently, but halo friction has driven
this ratio to a high value in all collisionless simulations in
which a strong bar rotated in a dense halo. Since no convinc-
ing counterexamples of strong bars remaining fast for long
periods in dense halos have been found (see Sec. VI.B.2), the
simulations clearly predict low-density halos for the majority
of strongly barred galaxies. This result is little changed in
simulations with moderate fractions of gas (Villa-Vargas,
Shlosman, and Helller, 2010), but friction is weaker because
bars are smaller and weaker in simulations with unreasonably
large gas fractions. Obviously, the magnitude of the friction
force varies with bar strength, and weak bars therefore expe-
rience little friction, e.g., simulation MHH2 by Athanassoula
(2003). Unfortunately, Athanassoula does not give the crucial
value of R for any of her simulations, limiting further
interpretation of her many results.

Since strong bars experience fierce braking from moder-
ately dense halos, Debattista and Sellwood (1998, 2000)
argued that bars in real galaxies can remain fast only if the
central dark matter density is much lower than was predicted
by galaxy formation models. The implication of their result
led to the conclusion being examined very closely by others,
but even though two serious issues were raised (see below),
their conclusion still holds.

1. Anomalously weak friction

Valenzuela and Klypin (2003) reported that the bar in a
disk embedded in a cuspy halo rotated at almost its initial
speed for quite some time and did not experience strong
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braking, which was inconsistent with all other numerical
results and with theory. Sellwood and Debattista (2006)
reproduced their anomalous result when they reran the exact
same model and were able to show that the reason for the
absence of friction stemmed from a flattened gradient in the
halo DF at the crucial ILR. While the halo DF had a density
gradient @f=@Lz that was negative everywhere initially, the
halo DF was changed by interactions with the disk bar as it
formed. As the disk bar buckled, its pattern speed increased,
with the implication that the resonances returned to parts of
phase space where the previous changes at those resonances
had flattened the gradient in the DF. Since friction depends
upon there being an excess of gainers over losers caused by a
decreasing density across the resonance, the absence of a
gradient allowed the bar to rotate without friction—exactly as
Lin and Tremaine (1983) had shown for a sinking satellite.
Strong friction resumed after a while, probably because mild
braking at minor resonances eventually moved the ILR reso-
nance into a region where the DF gradient was normal.
Sellwood and Debattista (2006) were also able to show that
the near-frictionless state was fragile and could not be ex-
pected to arise in nature, since tiny perturbations by passing
low-mass satellites were sufficient to shake the halo out of its
‘‘metastable’’ state and to cause fierce friction to resume.

This type of behavior was the root cause of the stochastic
variations found by Sellwood and Debattista (2009). They
reported that the evolution of the bar pattern speed in many
different random realizations of the same (isolated) model
galaxy varied widely because the halo DF was sculptured by
the early disk evolution, which was stochastic. The chance
absence of gradients in the DF at the dominant resonance
inhibited friction for periods that variedwidely from realization
to realization. Stochastic behavior was unaffected by changes
to the numerical parameters, even the particle number, and
persisted when they used a tree code instead of a grid code.
Thus a simulation of an isolated galaxy that shows weak
friction between a strong bar and a dense halo for a short period
[see, e.g., Klypin et al. (2009)] is inconclusive; firm evidence
for weak friction that contradicts all the theory and experimen-
tal evidence summarized above would require longer simula-
tions that are repeated with different random realizations.

2. Particle number

Weinberg and Katz (2007) claimed that simulations re-
quired immense numbers of particles to reproduce the correct
frictional drag. Their argument stemmed from their recogni-
tion that most of the frictional drag arises from the gradient in
the halo DF across a single resonance, the ILR. They argued
that too few particles in this small region of phase space
would prevent the bar from experiencing the correct drag.
Their predicted symptoms of this deficiency would be sto-
chastic variations in the drag force resulting from shot noise
in the local distribution of particles that happened to be in the
vicinity of the resonance. (It should be emphasized that they
were discussing friction with an imposed rigid bar, which is
separate from the possible stochastic variations due to disk
evolution that were discussed in the previous paragraph.)
They went on to estimate that simulations needed a hundred-
fold increase in the number of particles, from �106 to �108,
before this problem would be brought under control.

Sellwood (2008b) conducted a series of simulations of
exactly the kind that Weinberg and Katz (2007) envisaged (a
rigid bar in a halo ofmassive particles) and found that only very
small numbers of particles ( & 104) behaved stochastically in
the manner predicted by Weinberg and Katz (2007). Once
N * 105, the evolution of both the pattern speed and the
halo mass profile was independent of N, and no new behavior
emerged when the number of particles was increased to
N ¼ 108.

The reason for the discrepancy with the predictions of
Weinberg and Katz (2007) is that the resonances are broad-
ened by the time dependence of the bar pattern speed. Their
estimates of particle number requirements used only the
intrinsic width of the resonance due to the finite amplitude
of the perturbation—in effect, they assumed a fixed pattern
speed. A much larger fraction of the particles than they
expected contribute to the friction when the pattern speed
decreases rapidly due to frictional drag from the halo, and
friction can be reliably reproduced in simulations of strong
bars with 105 to 106 halo particles. Ceverino and Klypin
(2007) and Dubinski, Berentzen, and Shlosman (2009)
came to similar conclusions.

C. Change in halo density

As noted in Sec. II.A, all collisionless cold dark matter
models of halo formation predict a steep inner gradient to the
halo density profile, whereas shallower density profiles seem
to be required [see, e.g., Sellwood (2009) and Kuzio de Naray
and Spekkens (2011)]. Dynamical friction between the bary-
ons and the dark matter halo has been proposed as a possible
solution to this discrepancy.

El-Zant, Shlosman, and Hoffman (2001) and Weinberg and
Katz (2002) argued that dynamical friction between the halo
and bars or gas clumps, respectively, could transfer enough
energy to the dark matter halo to reduce its density in the
inner parts of galaxies. Note that the mechanism invoked in
these papers is somewhat distinct from galaxy formation
models (Read and Gilmore, 2005; Governato et al., 2010;
Pontzen and Governato, 2012) that invoke repeated changes
to the gravitational potential as gas disks collect and then
evaporate; since this latter mechanism is essentially part of
current ideas for galaxy formation, I do not review it here.

1. Halo density reduction by bars

A number of authors have reported a mild reduction in halo
density resulting from bar friction (Hernquist and Weinberg,
1992; Debattista and Sellwood, 2000; Athanassoula, 2003;
McMillan and Dehnen, 2005); and both Holley-Bockelmann,
Weinberg, and Katz (2005) and Sellwood (2008a) verified that
the dominant changes occurred at the ILR. Simulations with
rigid bars that are pinned to a center can suffer from a numeri-
cal artifact if the halo is allowed to become lopsided
(Sellwood, 2003; McMillan and Dehnen, 2005), resulting in
an erroneously large angular momentum transfer.

A convenient measure of halo density is its mean value
inside the radius where the circular speed has risen to half its
peak value (Alam, Bullock, and Weinberg, 2002). Sellwood
(2008a) found that moderate, rigid bars reduced this quantity
by a few percent, as already noted, but an order of magnitude
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reduction required a bar of length �12–20 kpc, an axis ratio
a=b * 3, and a bar mass* 30% of the enclosed halo mass. In
fact, the angular momentum given up by the bar in order to
achieve this density reduction exceeded the likely store of
angular momentum in a galaxy disk (McMillan and Dehnen,
2005; Sellwood, 2008a).

Furthermore, a real bar, formed say through instabilities in
the disk, contracts as it loses angular momentum to the halo,
since the sizes of the stellar orbits that make up the bar

themselves shrink. The resulting increase in the central at-
traction causes the halo density to rise, an effect that can
overwhelm the density reduction due to angular momentum
changes (Sellwood, 2003; Colı́n, Valenzuela, and Klypin,
2006; Dubinski, Berentzen, and Shlosman, 2009).

2. Halo density reduction by moving mass clumps

El-Zant, Shlosman, and Hoffman (2001), and later Tonini,
Lapi, and Salucci (2006), proposed that moving clumps of
dense gas will also transfer energy to the DM halo through

dynamical friction and lower its density. They envisaged that
baryons would collect into clumps through the Jeans insta-
bility as galaxies are assembled and present somewhat sim-
plified calculations of the consequences of energy loss to the
halo through dynamical friction. The dynamical process is
that of mass segregation, which is well known in other
contexts, such as in globular clusters [see, e.g., Merritt
et al. (2004)], but requires much larger mass differences for
evolution on an interesting time scale.

The idea has been tested in idealized N-body simulations
in which the heavy mass clumps were modeled as softened
point masses [see, e.g., Jardel and Sellwood (2009), Goerdt
et al. (2010), and Cole, Dehnen, and Wilkinson (2011)].
Generally, low-mass clumps were found to be ineffective,
because dynamical friction is too weak. However, the orbital
decay of a really massive clump, about 1% of the virial mass

of the halo, transfers enough energy to the halo particles to
effect a substantial reduction in its density, even as the heavy
clump itself deepens the gravitational potential.

Ma and Boylan-Kolchin (2004) used clumps which were
themselves composed of particles that could therefore suffer
tidal stripping, etc. They reported that the stripped particles
remained roughly at the radii at which they were detached
and also found that significant reduction in the halo density
was caused by only the heaviest clumps.

The proposed mechanism faces a number of challenges,
however. The settling gas clumps are assumed to maintain
their coherence for many dynamical crossing times without
colliding with other clumps or being disrupted by tidal fields
and/or star formation, for example. Romano-Dı́az, Shlosman,
Hoffman, and Heller (2008) claimed that baryonic physics
had precisely this effect in their galaxy formation simula-
tions, but calculations (Kaufmann et al., 2006) of the masses
of the condensing gas clumps suggested they range up to only

�106M
, which is too small to experience strong friction.
Larger clumps will probably reside in subhalos, which may
get dragged in, but simulations with subclumps composed of
particles (Ma and Boylan-Kolchin, 2004) indicated that the
DM halos of the subclumps will be stripped, and the stripped
matter largely replaces any DM moved outward in the
main halo. Thus if dynamical friction is to accentuate the

separation of the baryons from dark matter before the bar-
yonic mass clumps in subhalos settle to the center, they must
somehow be stripped efficiently of their dark matter without
dissolving the gas clumps themselves.

Mashchenko, Wadsley, and Couchman (2006, 2007) ar-
gued that the energy input to the halo, mediated by the motion
of the mass clumps, can be boosted if the gas is stirred by the
usual feedback from stellar winds and supernovae. A chal-
lenge for this mechanism is the difficulty of accelerating such
massive gas clumps into coherent motion, since the high-
pressure material from the postulated energetic events will
vent more easily along low-density paths, thereby relieving
the pressure before the dense clumps gain much momentum
(MacLow and Ferrara, 1999).

VII. RINGS AND OUTER LIGHT PROFILES

Gas in nonaxisymmetric galaxies is driven inward inside
corotation and outward at larger radii. This behavior contrasts
with that of the stars (Sec. III.E); dissipation allows the gas to
stay dynamically cool while experiencing large changes in
Lz. Secular evolution of this type is believed to be responsible
for the formation of most rings observed in galaxies. The faint
outer light profiles of galaxies also manifest features, but their
origin is less clearly attributable to secular evolution.

Encounters between galaxies are invoked to explain other
types of galaxy rings (Lynds and Toomre, 1976; Struck, 2010;
Eliche-Moral et al., 2011) or polar rings [see, e.g., Sparke
et al. (2008)], which are not, therefore, the result of secular
evolution.

A. Rings

Long-lived perturbations, such as bars, can drive gas radi-
ally until the flow stalls at resonances where rings of star-
forming gas build up. Buta (1995) identified three types of
ring: outer rings, inner rings, and nuclear rings, all of which
are commonly found in barred galaxies, but some are known
in unbarred galaxies also. Outer rings, which are divided into
two subtypes depending on their elongation relative to the
bar, are generally believed to occur at the OLR of the bar.
Inner rings have mean radii that are about as large as the
bar semimajor axis, while nuclear rings are deep inside the
bar. The rings are thought to depart from circles because of
the quadrupole field of the bar, and the distortion is enhanced
by being located at a resonance.

Outer rings have been identified in the light profiles of 66
early-type barred galaxies by Erwin, Pohlen, and Beckman
(2008), who found an occurrence rate (or a feature at the
expected radius) in 35% of the cases. Buta et al. (2010) are
conducting an ongoing search using their deep 3:6 �m sur-
vey with Spitzer (called S4G) for additional outer rings, but
are finding few new cases, perhaps because these features
tend to be quite blue.

The outer, inner, and nuclear rings are widely believed to
form through secular evolution in, mostly barred, galaxies.
Buta and Combes (1996) give a thorough review of rings and
the theory of secular formation of rings, and though written
some years ago, remains reasonably up-to-date as the subject
has not advanced much since. A more recent review of the
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properties of such rings and their formation mechanisms was

included in Kormendy and Kennicutt (2004).
The gas in a nonaxisymmetric potential must shock when

periodic orbits cross (see, e.g., Sec. V.E), causing an irrevers-

ible change to the orbital motion. The shock is generally
offset from the potential minimum, resulting in an angular

momentum exchange between the gas and the bar or spiral.

The position of the shock relative to the potential minimum
determines the sign of the exchange: gas loses angular mo-

mentum inside corotation, whereas it gains outside this reso-
nance, since the gas flow relative to the wave is in the

opposite sense. Thus gas is driven away from corotation until

the flow stalls, at an OLR, or where the dominant orbit family
switches orientation in the nuclear region of a strong bar. Two

orbit families can support rings at the OLR; just inside the

resonance, orbits are elongated perpendicular to the bar,
whereas the elongation is parallel to the bar just outside

that resonance. The early simulations by Schwarz (1981),
which employed sticky particles, were able to produce rings

of both orientations, and there is evidence for both types in

real galaxies [see Buta and Combes (1996), for examples].
More recent models for the formation of outer rings were

presented by Bagley, Minchev, and Quillen (2009) as the

response of collisionless test particles to bar forcing, and
they also compared their models with near-infrared images

of galaxies.
Inner rings are believed to be located at the ultraharmonic

resonance (UHR, see Sec. II.C) of the bar, where the potential

supports 4:1 orbits (dotted lines in Fig. 11). Buta and Combes
(1996) suggested that inflow from corotation stalls at the

UHR to make this ring, which is perhaps consistent with

the behavior also found in Schwarz’s work (Simkin, Su, and
Schwarz, 1980). There the ring is simply a pointy oval, a

shape that is often found in real galaxies. However, if the 4:1
resonant family is responsible, it is somewhat surprising that
such rings are not more boxy; perhaps the theoretical inter-

pretation of inner ring formation deserves further study.
Subsequent to the review by Buta and Combes (1996),

most attention has focused on nuclear rings. Bars appear to be

efficient at driving gas inward until the flow stalls in a nuclear
ring, as described in Sec. V.E. The gas concentrations in these

nuclear rings appear to be forming stars at a prodigious rate

(Hawarden et al., 1986; Maoz et al., 2001; Benedict et al.,
2002; Mazzuca et al., 2008, 2011).

B. Outer light profiles

While galaxy disks are frequently described as exponen-
tials, few galaxies have light profiles that can be fitted with a

single exponential over several length scales. The light pro-
files reported by Freeman (1970) did not extend to very faint

light levels, by the standards of today. Yet he identified both

type I profiles, which were good exponentials over the limited
dynamic range of his data, and type II, in which the surface

brightness of the inner disk rises less rapidly than the inward

extrapolation of the outer exponential. Both these types have
been found in modern, much deeper photometry (Pohlen

et al., 2002; Bland-Hawthorn et al., 2005; Erwin, Beckman,
and Pohlen, 2005; Hunter and Elmegreen, 2006; Pohlen and

Trujillo, 2006; Erwin, Pohlen, and Beckman, 2008), which

also revealed type III, in which the light profile at large radii
declines less steeply than the inner exponential. Erwin et al.
(2008) found that type II profiles are more common in barred
galaxies. The fraction having type III profiles rises to late
Hubble types, but galaxy interactions also appear to play a
role (Erwin, Beckman, and Pohlen, 2005).

The origin and significance of this variety of behavior is
still not fully understood and may be related to galaxy for-
mation, environment, or star-formation efficiency (Martı́nez-
Serrano et al., 2009; Sánchez-Blázquez et al., 2009).
However, some aspects may be due to internal disk evolution
(Debattista et al., 2006; Foyle, Courteau, and Thacker, 2008;
Minchev, Famaey, Quillen, Di Matteo et al., 2012). Martı́n-
Navarro et al. (2012) proposed that breaks might be phe-
nomena related to a threshold in the star formation, while
truncations are more likely a real drop in the stellar mass
density of the disk associated with the maximum angular
momentum of the stars. On the other hand, Roškar,
Debattista, Quinn et al., 2008 and Muñoz-Mateos
et al. (2013) suggested internal secular evolution may be
the cause.

While Trujillo et al. (2009) asserted that the extended
type III disk in M94 is not a ring, they nevertheless suggested
it could be formed by an outflow in the disk that was driven by
a rotating oval distortion in the inner part of the disk. Also
noteworthy is the suggestion by Roškar, Debattista, Quinn
et al. (2008) that the radial decline in the mean ages of disk
stars, caused by inside-out disk formation, could be reversed
in the far outer disk by the outward migration of older stars.
An attempt to verify this prediction (Yoachim, Roškar, and
Debattista, 2012) met with mixed results, however.

VIII. PSEUDOBULGES AND LENSES

Classical bulges, which have R1=4 light profiles, are not
strongly flattened, and rotate rather slowly, are believed to
have been formed from violent mergers of protogalactic
fragments in the early stages of galaxy formation, as de-
scribed in Sec. II.A. Galaxy disks with an embedded classical
bulge are presumed to have built up subsequently through the
usual process of dissipative gaseous infall.

However, it has become clear that many galaxies host
bulges having quite different properties that are now de-
scribed as a pseudobulge. They have more nearly exponential
light distributions (Andredakis and Sanders, 1994; Fisher and
Drory, 2008), exhibit quite a high degree of rotation that has a
roughly cylindrical flow pattern in 3D (Kormendy and
Illingworth, 1982), and are generally flatter than are classical
bulges. Kormendy and Kennicutt (2004), updated in
Kormendy (2013), gave a more detailed description of how
a pseudobulge can be distinguished from a classical bulge.

The observed properties of pseudobulges strongly suggest
a different formation mechanism and it seems highly likely
that they formed through internal evolution from the disk
(Kormendy and Kennicutt, 2004), and that this evolution is
more rapid in galaxies with a higher gas fraction (Kormendy,
2013). Their basic idea is that pseudobulge formation is
mediated by a bar, which first forms and buckles, as described
in Sec. V, and then dissolves into a dynamically hot, but
flattened and rotationally supported bulgelike structure.
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Kormendy (2013) proposed that a CMC of both stars and

gas causes the bar to dissolve and create a pseudobulge. Gas

is indeed driven inward by bars (Sec. V.E) and simulations

(Sec. V.F) show that bars dissolved by massive CMCs do

indeed form thickened, rotationally supported, near axisym-

metric structures that resemble pseudobulges. The mass frac-

tion in the dense central concentrations required to cause the

bar to dissolve entirely is very high [see, e.g., Debattista et al.

(2006), their simulation NG5]. The more concentrated the

mass the more efficiently it destroys the bar (Shen and

Sellwood, 2004), but the mass required is far larger than

that suggested for any supermassive black hole [see, e.g.,

Gültekin et al. (2009)]. Large gas concentrations spread over

an area of a few hundred parsecs in radius are observed [see,

e.g., Sakamoto et al. (1999) and Sheth et al. (2005)], but

again are nowhere near massive enough.
However, the gas in the nuclear region forms stars at a

vigorous rate (Sec. VII.A), with presumably a significant

fraction of the mass being locked into long-lived stars that

are gravitationally bound to the region where they formed.

Kormendy (2013) therefore proposed that the stars built up in

the nuclear region over a protracted period, together with the

gas, eventually reach the combined mass required to dissolve

the bar. Kormendy developed this proposal at length in his

review, to which I refer the interested reader for the full

picture. If his plausible idea is correct, it once again implies

that significant secular evolution is mediated by the behavior

of gas.
No simulation has yet tested this suggestion, however.

Previous studies of bar dissolution have created the central

mass rather quickly, giving the bar little time to adjust as the

mass grows, and further simulations of more gradual growth

are needed to confirm that dissolution can eventually occur.

The numerical task is particularly challenging for several

reasons: (a) The evolution must be followed for a long period

while the orbit time scales in the very center are short. (b) Gas

would have to be accreted continuously to the bar region, and

the subsequent inflow rate should not be exaggerated by

numerical viscosity (Sec. V.E). (c) The halo would need to

modeled self-consistently to follow bar growth through dy-

namical friction (Sec. VI).
Two other methods that might dissolve a bar were discussed

in Sec. V.F: Bournaud, Combes, and Semelin (2005) and

Combes (2008) suggested that the angular momentum added

to bars as they drive gas inward can weaken or destroy them.

Whilemorework on this scenario is needed, the inflow require-

ments are severe, and the consequencewould not be so different

from the buildup of a CMC. It is also noteworthy that some

possible interactions between a bar and a strong spiral can

weaken or destroy the bar. The mechanism and the conditions

under which this behavior can occur also require further study,

but the process may prove useful in this context, especially as

strong spirals are most likely to arise in gas-rich outer disks.
Bars could also be destroyed in minor mergers, of course.

But to make a pseudobulge, the perturber would have to be

dense enough to not be tidally disrupted before reaching the

bar, but not so massive as to destroy the cylindrical flow

pattern and/or shallow inner radial light profile. This degree

of fine-tuning makes the explanation seem untenable to

account for the observed high frequency of galaxies that

seem to host pseudobulges (Kormendy et al., 2010; Fisher
and Drory, 2011).

Other mechanisms for pseudobulge formation have been
proposed. Guedes (2013) found that the pseudobulge in their
simulations was formed at an early stage through mergers,
although its subsequent development was still mediated by a
bar. Okamoto (2013) argued for an early starburst origin.
However, these ideas may be inconsistent with a broad range
of ages among the stars of pseudobulges (Fisher, Drory, and
Fabricius, 2009).

Kormendy (2013) also highlighted the lens component
seen in some barred galaxies, which he argued is the inter-
mediate case in which the bar is dissolving, while a lens in an
unbarred galaxy is a fully dissolved bar [see also Combes
(2008)]. He therefore suggested that bar dissolution could be
gradual, else we would not observe many transition cases.
More moderate mass concentrations do cause bars to weaken
and to become more oval (Sec. V.F), but no author has
commented, as far as this reviewer is aware, that the weak-
ened bar in a simulation inhabits a lenslike structure.
Nevertheless, lenses are established features of galaxies that
seem most likely to have been created through disk evolution.
The fact that we do not yet have a satisfactory explanation for
their origin is part of the reason why galaxy evolution remains
so fascinating.

IX. CONCLUSIONS

This review has been rather narrowly focused on the
internal evolution of isolated disk galaxies. The environment
surely plays a substantial role in galaxy evolution; it is
probably responsible for warps, lopsidedness, tidal bridges
and tails, and a whole host of phenomena related to halo
substructure, halo streams, galaxy transformations, dry merg-
ers, etc., but broadening this review to include all, or even
some, of these topics would have necessitated either a shal-
lower treatment or a greatly increased length.

The internally driven evolution of galaxy disks would
scarcely be of any interest if the disk were composed of stars
alone. Spiral activity would heat the disk on the time scale of
a few disk rotations, causing later spiral episodes to be
progressively weaker and less distinct. The extent to which
the overall distribution of angular momentum among the stars
could be rearranged on large scales is strongly limited, since
redistributive changes necessarily increase random motion.
The fractional change in angular momentum of a distribution
of stars (Sec. III.E) with radial velocity dispersion 
R and
typical radial excursion a� 
R=� is bounded by��������

�Lz

Lz

��������&
a

Rm


R

Vc

; (30)

where Vc is the circular orbit speed at radius R, and m * 2 is
the angular periodicity of the spiral patterns. Thus the small
value of both factors on the right-hand side provides a very
tight constraint on the extent to which the distribution of
angular momentum among the stars of a galaxy disk can
have changed since their birth.

However, this constraint does not apply to individual stars,
which can migrate radially for large distances within the disk
through interactions near the corotation resonance of spirals
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(Sec. III.C). Since gains by some stars are roughly matched

by losses by others in every diffusive step, these changes alter

only the distribution of metals in the disk with almost no

change to its dynamical structure. In particular, they neither

lead to increased random motion nor do they cause the disk to

spread.
Note also that Eq. (30) does not limit the possible angular

momentum changes of the gas component. The random

motions of gas clouds, which experience similar radial accel-

erations from nonaxisymmetric disturbances as do the stars,

are quickly damped through dissipative collisions with other

clouds. Furthermore, the low velocity dispersion of the clouds

makes them highly responsive to nonaxisymmetric disturban-

ces, allowing them to exchange angular momentum with the

driving potential to a greater extent than for the stars. Thus

secular evolution in galaxies is greatly accelerated by the gas

component. Since gas is consumed by star formation, it

requires constant replenishment, as is expected in hierarchical

structure formation models [see, e.g., Gunn (1982)].
The rising velocity dispersion of disk stars with age is now

thought (Sec. III.B.6) to be driven by the combined influence

of deflections away from circular orbits by scattering at the

resonances of spiral patterns, with the resulting in-plane

peculiar motions being efficiently redirected into the third

dimension by encounters with massive gas cloud complexes.

No other combination of heating and scattering can account

for both the high dispersion of the older disk stars and the fact

that the velocity ellipsoid maintains a roughly constant shape

as it grows in size. This combination of factors has not been

tested in fully self-consistent simulations because particle

masses in most simulations are too large to mimic the two

processes separately. The vertical heating that has been re-

ported in some simulations is probably due to collisional

relaxation (Sellwood, 2013b).
Bars are another important agent of secular evolution. The

formation of a bar causes the largest change in the distribution

of angular momentum among the stars of a disk, and further

evolution occurs only through the influence of the outer disk,

halo, and/or gas component. Bars can continue to grow, losing

angular momentum to the outer disk, or to the halo, and the

fact that bars are usually surrounded by an extensive disk

suggests that halos cannot be dense enough to cause them to

grow excessively (Sec. V.C).
Bars slow, as well as grow, through dynamical friction

from the halo (Sec. VI). The loss of angular momentum by

this mechanism also causes the disk mass to contract slightly,

which actually deepens the gravitational potential, over-

whelming any tendency for halo density to decrease as a

result of its energy gain from the disk. While the central

density rises, bars also grow in length as they slow, and the

fact that corotation of most bars today appears to lie just

beyond the bar end requires that the inner DM halos have

lower densities than is predicted by �CDM models of galaxy

formation (Sec. VI.B).
Bars also drive gas in toward their centers, causing the

buildup of gas-rich nuclear rings (Sec. V.E) where stars are

seen to form at a high rate (Sec. VII.A). The integrated inflow

over the lifetime of a galaxy can lead to the buildup of

concentrations of stars and gas in the center that may be

able to destroy the bar and to form a pseudobulge (Sec. VIII).

Substantial evolutionary changes to the structure of disks
could also occur through outside intervention, although the
degree to which minor mergers could be important is again
strongly constrained by data (Sec. IV). The infrequency of
classical bulges (Kormendy et al., 2010) places strong con-
straints on past merging activity, as does both the thinness of
the main disks and the absence of young stars in thick disks.

The realization that secular evolution is capable of rear-
ranging the structure of disk galaxies from their initially
endowed properties has been gradual. The topic was perhaps
begun by Kormendy (1979), and it has gradually gained
credence, largely through his constant advocacy. Despite
the enormous progress described in this review, there are
many areas where more work, such as the shaping of rotation
curves (Sec. III.D) and the weakening of bars by spirals
(Sec. V.F), or even new ideas, such as to account for the
observed fraction of galaxies that host bars (Sec. V.G) or the
formation of double bars (Sec. V.I) or of lens components
(Sec. VIII), are needed. Above all, we need better algorithms,
with low numerical viscosity (Sec. V.E), to capture the role of
gas in a more realistic manner—a need that is also recognized
in galaxy formation.
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Sundelius (Göteborgs University, Gothenburg), p. 323 [http://

adsabs.harvard.edu/abs/1991dodg.conf..323K].

J. A. Sellwood: Secular evolution in disk galaxies 41

Rev. Mod. Phys., Vol. 86, No. 1, January–March 2014

http://dx.doi.org/10.1111/j.1365-2966.2007.12671.x
http://dx.doi.org/10.1088/0004-637X/730/2/109
http://adsabs.harvard.edu/abs/1999A%26A...345..787F
http://adsabs.harvard.edu/abs/1999A%26A...345..787F
http://dx.doi.org/10.1111/j.1365-2966.2011.18945.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12295.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12295.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17601.x
http://adsabs.harvard.edu/abs/1991A%26A...252...19G
http://adsabs.harvard.edu/abs/1991A%26A...244..257G
http://adsabs.harvard.edu/abs/1985MNRAS.216..467G
http://dx.doi.org/10.1088/2041-8205/744/1/L8
http://dx.doi.org/10.1088/2041-8205/744/1/L8
http://adsabs.harvard.edu/abs/1990A%26A...230...37G
http://adsabs.harvard.edu/abs/1990A%26A...230...37G
http://adsabs.harvard.edu/abs/1988A%26A...203...44G
http://dx.doi.org/10.1046/j.1365-8711.2000.03667.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03667.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21078.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21078.x
http://adsabs.harvard.edu/abs/1983MNRAS.202.1025G
http://dx.doi.org/10.1086/117590
http://dx.doi.org/10.1088/0004-637X/725/2/1707
http://dx.doi.org/10.1088/0004-637X/725/2/1707
http://dx.doi.org/10.1051/0004-6361/201219756
http://dx.doi.org/10.1051/0004-6361/201219756
http://dx.doi.org/10.1111/j.1365-2966.2009.15143.x
http://dx.doi.org/10.1038/nature08640
http://dx.doi.org/10.1111/j.1365-2966.2012.20411.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20411.x
http://dx.doi.org/10.1051/0004-6361/201014441
http://dx.doi.org/10.1051/0004-6361:20035804
http://dx.doi.org/10.1051/0004-6361:20035804
http://dx.doi.org/10.1088/0004-637X/772/1/36
http://dx.doi.org/10.1088/0004-637X/698/1/198
http://dx.doi.org/10.1088/0004-637X/692/2/1623
http://dx.doi.org/10.1111/j.1365-2966.2011.19633.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19633.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05956.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05956.x
http://adsabs.harvard.edu/abs/1986MNRAS.221P..41H
http://adsabs.harvard.edu/abs/1986MNRAS.221P..41H
http://dx.doi.org/10.1111/j.1365-2966.2008.13395.x
http://adsabs.harvard.edu/abs/2012EPJWC..1905001H
http://adsabs.harvard.edu/abs/2012EPJWC..1905001H
http://dx.doi.org/10.1086/320983
http://dx.doi.org/10.1086/320983
http://dx.doi.org/10.1086/513104
http://dx.doi.org/10.1086/513104
http://dx.doi.org/10.1111/j.1365-2966.2005.09125.x
http://dx.doi.org/10.1086/171975
http://dx.doi.org/10.1088/0004-637X/705/2/1686
http://dx.doi.org/10.1088/0004-637X/705/2/1686
http://adsabs.harvard.edu/abs/2012EPJWC..1906001H
http://adsabs.harvard.edu/abs/2012EPJWC..1906001H
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1086/151091
http://dx.doi.org/10.1086/152334
http://dx.doi.org/10.1111/j.1365-2966.2005.09501.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09501.x
http://dx.doi.org/10.1051/0004-6361:20077221
http://dx.doi.org/10.1051/0004-6361:20077221
http://dx.doi.org/10.1051/0004-6361/200811191
http://dx.doi.org/10.1051/0004-6361/200811191
http://dx.doi.org/10.1093/mnras/sts210
http://dx.doi.org/10.1111/j.1365-2966.2011.18891.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18979.x
http://dx.doi.org/10.1086/303977
http://dx.doi.org/10.1086/498096
http://dx.doi.org/10.1086/498096
http://adsabs.harvard.edu/abs/1993MNRAS.263..875I
http://dx.doi.org/10.1086/589678
http://dx.doi.org/10.1086/521523
http://adsabs.harvard.edu/abs/1978MNRAS.182..331J
http://dx.doi.org/10.1088/0004-637X/691/2/1300
http://adsabs.harvard.edu/abs/1990MNRAS.245..305J
http://dx.doi.org/10.1086/148957
http://dx.doi.org/10.1086/523619
http://dx.doi.org/10.1086/151538
http://adsabs.harvard.edu/abs/1973PASAu...2..174K
http://adsabs.harvard.edu/abs/1973PASAu...2..174K
http://dx.doi.org/10.1086/154331
http://dx.doi.org/10.1086/155086
http://adsabs.harvard.edu/abs/1978IAUS...77..113K
http://adsabs.harvard.edu/abs/1978IAUS...77..113K
http://adsabs.harvard.edu/abs/1991dodg.conf..323K
http://adsabs.harvard.edu/abs/1991dodg.conf..323K


Kaufmann, T., L. Mayer, J. Wadsley, J. Stadel, and B. Moore, 2006,

Mon. Not. R. Astron. Soc. 370, 1612.

Kazantzidis, S., A. R. Zentner, A. V. Kravtsov, J. S. Bullock, and

V. P. Debattista, 2009, Astrophys. J. 700, 1896.

Kendall, S., R. C. Kennicutt, and C. Clarke, 2011, Mon. Not. R.

Astron. Soc. 414, 538.

Kent, S.M., 1986, Astron. J. 91, 1301.

Kim, W-T., W.-Y. Seo, J.M. Stone, D. Yoon, and P. J. Teuben, 2012,

Astrophys. J. 747, 60.

Kim, W-T., and J.M. Stone, 2012, Astrophys. J. 751, 124.

Klypin, A., O. Valenzuela, P. Colı́n, and T. Quinn, 2009, Mon. Not.

R. Astron. Soc. 398, 1027.

Knapen, J. H., I. Shlosman, and R. F. Peletier, 2000, Astrophys. J.

529, 93.

Koda, J., et al., 2009, Astrophys. J. Lett. 700, L132.

Kormendy, J., 1979, Astrophys. J. 227, 714.

Kormendy, J., 1983, Astrophys. J. 275, 529.

Kormendy, J., 2013, in Secular Evolution of Galaxies, XXIII Canary

Islands Winter School of Astrophysics, edited by J. Falcón-Barroso

and J. H. Knapen (Cambridge University Press, Cambridge,

England), p. 1.

Kormendy, J., N. Drory, R. Bender, and M. E. Cornell, 2010,

Astrophys. J. 723, 54.

Kormendy, J., and G. Illingworth, 1982, Astrophys. J. 256, 460.

Kormendy, J., and R. C. Kennicutt, 2004, Annu. Rev. Astron.

Astrophys. 42, 603.

Kormendy, J., and C.A. Norman, 1979, Astrophys. J. 233, 539.

Kraljic, K., F. Bournaud, and M. Martig, 2012, Astrophys. J. 757,

60.

Kravtsov, A.V., A. Klypin, and Y. Hoffman, 2002, Astrophys. J.

571, 563.

Kregel, M., P. C. van der Kruit, and R. de Grijs, 2002, Mon. Not. R.

Astron. Soc. 334, 646.

Krolik, J., 1999, Active Galactic Nuclei. (Princeton University

Press, Princeton, NJ).

Kroupa, P., 2002, Mon. Not. R. Astron. Soc. 330, 707.

Kulsrud, R.M., J.W-K. Mark, and A. Caruso, 1971, Astrophys.

Space Sci. 14, 52.

Kuzio de Naray, R., and K. Spekkens, 2011, Astrophys. J. Lett. 741,

L29.

Lacey, C. G., 1984, Mon. Not. R. Astron. Soc. 208, 687 [http://

adsabs.harvard.edu/abs/1984MNRAS.208..687L].

Lacey, C. G., 1991, in Dynamics of Disc Galaxies, edited by B.
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Roškar, R., V. P. Debattista, T. R. Quinn, and J. Wadsley, 2012, Mon.

Not. R. Astron. Soc. 426, 2089.
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