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This review describes recent groundbreaking results in Si, Si=SiGe, and dopant-based quantum dots,

and it highlights the remarkable advances in Si-based quantum physics that have occurred in the

past few years. This progress has been possible thanks to materials development of Si quantum

devices, and the physical understanding of quantum effects in silicon. Recent critical steps include

the isolation of single electrons, the observation of spin blockade, and single-shot readout of

individual electron spins in both dopants and gated quantum dots in Si. Each of these results has

come with physics that was not anticipated from previous work in other material systems. These

advances underline the significant progress toward the realization of spin quantum bits in a material

with a long spin coherence time, crucial for quantum computation and spintronics.
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I. INTRODUCTION AND MOTIVATION

A. Silicon quantum electronics

The exponential progress of microelectronics in the last
half century has been based on silicon technology. After
decades of progress and the incorporation of many new
materials, the core technological platform for classical com-
putation remains based on silicon. At the same time, it is
becoming increasingly evident that silicon can be an excellent
host material for an entirely new generation of devices, based
on the quantum properties of charges and spins. These range
from quantum computers to a wide spectrum of spintronics
applications. Silicon is an ideal environment for spins in the
solid state, due to its weak spin-orbit coupling and the
existence of isotopes with zero nuclear spin. The prospect

of combining quantum spin control with the exquisite fabri-
cation technology already in place for classical computers has
encouraged extensive effort in silicon-based quantum devices
over the past decade.

While there are many proposed physical realizations for

quantum information processors (Lloyd, 1993; Ladd et al.,

2010; Buluta, Ashhab, and Nori, 2011), semiconductor-based

quantum bits (qubits) are extremely interesting, in no small

part because of their commonalities with classical electronics

(Kane, 1998; Loss and DiVincenzo, 1998). Electron spins

in quantum dots have received considerable attention, and

significant experimental progress has been made since the

original Loss and DiVincenzo (1998) proposal. Experiments

on lithographically defined quantum dots in GaAs=AlGaAs
heterostructures have shown qubit initialization, single-shot

single-electron spin readout (Elzerman et al., 2004), and

coherent control of single-spin (Koppens et al., 2006) and

two-spin (Petta et al., 2005) states. One of the major issues in

AlGaAs=GaAs heterostructures is the inevitable presence of

nuclear spins in the host material, leading to relatively short

spin relaxation and coherence times.
A way to increase the coherence time is to use materials

with a large fraction of nonmagnetic nuclei. Natural silicon

consists of 95% nonmagnetic nuclei (92% 28Si and 3% 30Si)
and can be purified to nearly 100% zero-nuclear-spin iso-

topes. Various proposals have been made for electron spin

qubits based on donors in Si (Vrijen et al., 2000; De Sousa,

Delgado, and Das Sarma, 2004; Hill et al., 2005; Hollenberg

et al., 2006) and Si quantum dots (Friesen et al., 2003). The

key requirement for spin quantum bits is to confine single

electrons to either a quantum dot or a donor, thus posing a

scientific challenge. In contrast with the technological ma-

turity of classical field-effect transistors, Si quantum-dot

systems have lagged behind GaAs systems, which were

historically more advanced because of the very early work

in epitaxial growth in lattice-matched III-V materials.

Kouwenhoven, Oosterkamp et al. (1997) studied the excita-

tion spectra of a single-electron quantum dot in a III-V

material. Even though Coulomb blockade in Si structures

was observed very early (Paul et al., 1993; Ali and Ahmed,

1994), it took another 5 years before regular Coulomb oscil-

lations were reported (Simmel et al., 1999). Silicon systems

needed nearly 10 years to achieve single-electron occupation

in quantum dots (Simmons et al., 2007; Lim, Zwanenburg

et al., 2009; Zwanenburg, van Rijmenam et al., 2009) and

dopants (Sellier et al., 2006; Fuechsle et al., 2012). For

quantum dots this laid the foundation for spin filling in valleys

in few-electron quantum dots (Borselli et al., 2011a; Lim

et al., 2011), tunnel rate measurements in few-electron single

and double quantum dots (Thalakulam et al., 2010), Pauli

spin blockade in the few-electron regime (Borselli et al.,

2011b), and very recently Rabi oscillations of singlet-triplet

states (Maune et al., 2012). In the case of dopants valley

excited states (Fuechsle et al., 2010), gate-induced quantum-

confinement transition of a single-dopant atom (Lansbergen

et al., 2008), a deterministically fabricated single-atom tran-

sistor (Fuechsle et al., 2012) and single-shot readout of an

electron spin bound to a phosphorus donor (Morello et al.,

2010) have been reported. The importance of deterministic

doping has recently been highlighted in the 2011 ITRS
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Emerging Research Materials chapter (ITRS, 2011), where a

remaining key challenge for scaling complementary
metal-oxide-semiconductor (CMOS) devices toward 10 nm

is the control of the dopant positions within the channel. All

these results underline the incredible potential of silicon for
quantum information processing.

It is tempting to project the achievements in integrated-

circuit technology onto a supposed scalability of quantum bits
in silicon. Even though current silicon industry standards,

with 22 nm features, have higher resolution than typical

quantum devices discussed in this review, superb patterning
alone does not guarantee any sort of ‘‘quantum CMOS.’’. As

one example, interface traps have a very different effect on

classical transistors (where they serve as scattering centers or
shift threshold voltages) than in quantum dots (where they

also affect spin coherence). Nonetheless, a fully integrated

CMOS foundry has been used for many steps in the fabrica-
tion of silicon quantum devices (Nordberg et al., 2009a).

While silicon-based devices generate special interest for

quantum computation, because of zero-nuclear-spin isotopes

and low spin-orbit coupling, they also face some special
challenges and display physics that, until recently, has been

little explored in the context of quantum computation.
Examples of the challenges include the relatively large effec-

tive mass in silicon and the large difference in lattice constant

between silicon and germanium. An example of the unex-
plored physics is the presence of multiple conduction band

valleys in silicon.
As described in this review, there have been rapid advances

addressing the challenges and exploring the new physics
available in silicon-based quantum devices. The extent to

which these advances will lead to larger-scale quantum sys-

tems in silicon is an exciting question as of this writing.

B. Outline of this review

This review covers the field of electronic transport in
silicon and focuses on single-electron tunneling through

quantum dots and dopants. We restrict ourselves to experi-

ments and theory involving electrons confined to single or
double (dopant) quantum dots, describing the development

from the observation of Coulomb blockade to single-electron

quantum dots and single-dopant atom transistors. Ensembles
of quantum dots or dopants are beyond the scope of this

article. Also, the review is strictly limited to electron trans-

port experiments and does not cover optical spectroscopy
measurements. Optical spectroscopy on quantum dots and

ensembles of dopants is a very active and emerging field; see,

for example, the recent work by Greenland et al. (2010) and
Steger et al. (2012), and references therein.

Section II starts with a general introduction to transport

through quantum-confined silicon nanostructures. The silicon
band structure is described in Sec. III with specifics such as

the valley degeneracy and splitting in bulk and quantum dots,

and wave function control and engineering of dopant states.
Section IV explains the development from the discovery of a

Coulomb blockade in 1990 to single-electron occupancy in

single and double quantum dots in recent years. Analogously,
dopant transport in silicon has evolved from tunneling

through the 1980s metal-oxide-semiconductor field-effect

transistors (MOSFETs) to current-day single-atom transis-
tors; see Sec. V. The remarkable advances of Secs. IV and
V have led to the relaxation and coherence measurements on
single spins in Sec. VI.

II. QUANTUM CONFINEMENT

This section introduces quantum electronic experiments in
silicon, starting with the quantum mechanical confinement of
electrons in silicon, which can be achieved by a combination
of electrostatic fields, interfaces between materials, and/or
placement of individual atoms. All of these approaches lead
to single-electron tunneling devices consisting of a silicon
potential well coupled to source, drain, and gate electrodes.

A. From single atoms to quantum wells

Electrons in Si nanostructures are confined using a combi-
nation of material and electrostatic potentials. The shape and
size of nanostructured materials provide natural confinement
of electrons to 0, 1, or 2 dimensions. The exact confinement
potential of the structure in x, y, and z directions sets the
additional requirements in terms of additional electric fields.
Figure 1 gives an overview of materials of different dimen-
sionality and their integration into single-electron tunneling
devices.

Dopants: The electrostatic potential of a single-dopant
atom is radially symmetric, resulting in the same steep po-
tential well in all directions, as shown in the first row of
Fig. 1. The Bohr radius aB is the mean radius of the orbit of an
electron around the nucleus of an atom in its ground state, and
equals, for example, 2.5 nm for phosphorus in silicon.
A dopant atom has three charge states: the ionized Dþ state,
the neutral D0 state (one electron bound to the dopant), and
the negatively charged D� state (two electrons bound to the
dopant). Because the Dþ state corresponds to an empty
dopant it does not appear as an electron state in the potential
well. Measuring electron transport through a single atom has
been a great challenge, as described in Sec. V, but the single-
dopant regime as sketched in the third column has been
reached by several groups. Depending on the architecture,
the source and drain reservoirs can be made up of highly
doped Si (Sellier et al., 2006; Pierre et al., 2010; Fuechsle
et al., 2012), or of a two-dimensional electron gas (Tan et al.,
2010). The same goes for the gates, but they can also be
metallic (Tan et al., 2010). The resulting single-electron
transistors consist of a steep dopant potential well connected
to source and drain reservoirs.

0D structures: Like dopants, self-assembled nanocrystals
provide confinement to zero dimensions, but the confinement
is better described by a hard-wall potential well in x, y, and
z directions and is much wider (see Fig. 1). The energy levels
of an electron in a quantum well of size L are quantized
according to basic quantum mechanics; see, for example,
Cohen-Tannoudji, Dupont-Roc, and Grynberg (1992). The
corresponding level spacing �E is on the order of
h2=meffL

2, where meff is the electron effective mass. The
separation between energy levels thus decreases quadratically
with the well width: as a result, the discrete levels of, e.g., a
30 nm size nanocrystal are expected to have energy spacings
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2 orders of magnitude smaller than those of a dopant with a

3 nm Bohr radius. Making source and drain contacts requires
very precise alignment by means of electron-beam lithogra-
phy. The tunnel coupling of these devices relies on statistics;
creating tunable tunnel coupling to self-assembled dots is
very challenging. A highly doped substrate can be used as a
global backgate and metallic leads on a dielectric as a local
gate.

1D structures: The high aspect ratio of nanowires implies
a large level spacing in the transverse directions and a small
level spacing in the longitudinal direction (Lx � Ly;z), cre-

ating a (quasi-)1-dimensional channel with few subbands in
the transverse direction (see second row of Fig. 1). Within
this channel a zero-dimensional well can be created by local
gates on the nanowire, or by Schottky tunnel barriers to
source and drain contacts. In the latter case the barrier height
is determined by the material work functions and hardly
tunable in situ—the tunnel coupling will generally decrease
as electrons leave the well and the wave function overlap
with source and drain shrinks. Local gates, however, can

tune the tunnel barriers since the applied gate voltage in-

duces an electric field which locally pulls up the conduction

band. Electrons tunnel from the quantum well into reservoirs

which are part of the nanowire itself. The metallic leads

connecting the nanowire to the macroscopic world must be

Ohmic; i.e., the contacts should have high transparency to

prevent the formation of multiple quantum dots in series

(particularly if the contacts are very close to the quantum

dot).
2D structures: A two-dimensional electron gas (2DEG)

can be created in Si MOSFETs and in Si=SiGe heterostruc-

tures. Electrons are unconfined in the x-y plane and are

confined by a triangular potential well perpendicular to the

plane as sketched in Fig. 1. More realistic band diagrams are

drawn in Fig. 2 in the review by Ando, Fowler, and Stern
(1982) for Si MOS and Fig. 11 in the review by Schäffler

(1997) for Si=SiGe heterostructures. In a 2DEG-based quan-

tum dot, the lateral confinement is a soft-wall potential

defined by top-gate electrodes, enabling tunnel coupling to

source and drain reservoirs in the 2DEG. Those reservoirs are

FIG. 1 (color online). Combining material and electrostatic confinement to create single-electron transistors. First column: Schematic of

dopants, 0D, 1D, and 2D structures. Second column: In the corresponding confinement potentials in x, y, and z directions electron states are

occupied up to the Fermi energy EF (dashed gray lines). Occupied and unoccupied electron states are indicated as straight and dashed lines,

respectively. Third column: Schematic of the silicon nanostructure integrated into a transport device with source, drain, and gate electrodes.

Fourth column: The potential landscape of the single-electron transistor is made up of a potential well which is tunnel coupled to source and

drain reservoir and electrostatically coupled to gates which can move the ladder of electrochemical potentials, as described in Sec. II.B.
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connected to macroscopic wires via Ohmic contacts, which
are often highly doped regions at the edge of the chip. The
resulting potential landscape is highly tunable thanks to local
electrostatic gating via the top gates.

B. Transport regimes

Having introduced quantum-confined devices, we now
cover the basics of quantum transport through single-
electron transistors (SETs), which are made up of a zero-
dimensional island, source and drain reservoirs, and gate
electrodes.

Electronic measurements on single electrons require a
confining potential which is tunnel coupled to electron res-
ervoirs in source and drain leads; see Fig. 2. The SET island is
also coupled capacitively to one or more gate electrodes,
which can be used to tune the electrostatic potential of the
well. The discrete levels are spaced by the addition energy
EaddðNÞ ¼ EC þ �E, which consists of a purely electrostatic
part, the charging energy EC, plus the energy spacing be-
tween two discrete quantum levels �E. �E is zero when two
consecutive electrons are added to the same spin-degenerate
level. The charging energy EC ¼ e2=2C, where C is the sum
of all capacitances to the SET island.1

In the limit of low temperature, if we consider only se-
quential tunneling processes, energy conservation needs to be
satisfied for transport to occur. The electrochemical potential
�N is the energy required for adding the Nth electron to the
island. Electrons can tunnel through only the SET when �N

falls within the bias window [see Fig. 2(b)], i.e., when �S �
�N � �D. Here �S and �D are the electrochemical potential
of the source and the drain, respectively. Current cannot flow
without an available level in the bias window, and the device
is in a Coulomb blockade; see Fig. 2(a). A gate voltage can
shift the whole ladder of electrochemical potential levels up
or down, and thus switch the device from Coulomb blockade
to single-electron tunneling mode. By sweeping the gate

voltage and measuring the conductance, one obtains

Coulomb peaks as shown in Fig. 3(a).
Usually, one measures the conductance versus source-drain

voltage VSD and gate voltage VG in a bias spectroscopy, as

shown in Fig. 3(b). Inside the diamond-shaped regions, the

current is blocked and the number of electrons is constant.

At the edges of these Coulomb diamonds a level is resonant

with either source or drain and single-electron tunneling

occurs. When an excited state enters the bias window a

line of increased conductance can appear parallel to the

diamond edges. These resonant tunneling features have other

possible physical origins, as described in detail by Escott,

Zwanenburg, and Morello (2010). From such a bias spectros-

copy one can read off the excited states and the charging

energy directly, as indicated in Fig. 3(b).
The simple model described above successfully explains

how quantization of charge and energy leads to effects like

Coulomb blockade and Coulomb oscillations. Nevertheless, it

is too simplified in many respects. Up until now we worried

only about the electronic properties of the localized state but

not about the physics of the electron transport through that

state. In this section, based on Lansbergen (2010), we de-

scribe the five different regimes of electron transport through

a localized stated in a three-terminal geometry. How electrons

traverse a quantum device is strongly dependent on the

FIG. 2 (color online). Schematic diagrams of the electrochemical

potential of a single-electron transistor. (a) There is no available

level in the bias window between �S and �D, the electrochemical

potentials of the source and the drain, so the electron number is

fixed at N due to Coulomb blockade. (b) The �N level aligns with

source and drain electrochemical potentials, and the number of

electrons alternates between N and N � 1, resulting in a single-

electron tunneling current.

FIG. 3 (color online). Zero-bias and finite-bias spectroscopy.

(a) Zero-bias conductance G of transport vs gate voltage VG at

both T � TK (solid line) and T � TK (dashed line). In the first

regime, the full width at half maximum (FWHM) of the Coulomb

peaks corresponds to the level broadening h�. In the Kondo regime

(T � TK), Coulomb blockade is overcome by coherent second-

order tunneling processes (see text). (b) Stability diagram showing

Coulomb diamonds in differential conductance dI=dVSD vs eVSD

and eVG at T ¼ 0 K. The edges of the diamond-shaped regions

correspond to the onset of the current. Diagonal lines of increased

conductance emanating from the diamonds indicate transport

through excited states. The indicated internal energy scales EC,

�E, h�, and TK define the boundaries between different transport

regimes. Cotunneling lines can appear when the applied bias

exceeds �E (see text). Adapted from Lansbergen, 2010.

1We refer to other review articles on quantum dots and single-

electron transistors for more background and details: Beenakker and

van Houten (1991), Grabert, Devoret, and Kastner (1993),

Kouwenhoven, Marcus et al. (1997), Kouwenhoven, Austing, and

Tarucha (2001), Reimann and Manninen (2002), van der Wiel et al.

(2002), and Hanson et al. (2007)
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coherence during the tunneling process and thus depends
strongly on eVSD and kBT. These external energy scales
should be compared to the internal energy scales of the
tunneling geometry that determine the transport regime,
namely, the charging energy EC, the level spacing �E, the
level broadening h�, and the Kondo temperature TK. Here �
is the total tunnel rate to the localized state which can be
separated into the tunnel coupling to the source electrode �S

and to the drain electrode �D, i.e., � ¼ �S þ �D. The internal
energy scales are all fixed by the confinement potential, and
the external energy scales reflect the external environment,
namely, the temperature T and the applied bias VSD.

Much literature describes the electronic transport in all
possible proportionalities of these energy scales with each
other (Buttiker, 1988; Beenakker, 1991; Alhassid, 2000). The
internal energy scales are typically related to each other
by TK �h���E�EC, and occasionally by TK � �E
<h� � EC, limiting the number of separate transport re-
gimes that we need to consider. Figure 4(a) is a schematic
depiction of transport regimes as a function of eVSD and kBT.
It should be noted that the boundaries between transport
regimes are typically not abrupt transitions. For clarity,
internal and external energy scales (except TK and h�) are
indicated in a schematic representation of our geometry; see
Fig. 4(b).

Here we do not make a distinction between the external
energy scales kBT and eVSD when we compare them to
internal energy scales, as indicated by Fig. 4(a). The reason

behind this equality is that both these external energy scales
have a very similar effect on the transport characteristics.
Their only relevant effect is that they introduce (hot) phonons
to the crystal lattice, directly either by temperature or by
inelastic tunneling processes induced by the nonequilibrium
Fermi energies of the source and drain contacts.

Next we describe the five separate tunneling regimes and
their corresponding expressions for the source and drain
current I. These regimes are the so-called multielectron
regime, the sequential multilevel regime, the sequential
single-level regime, the coherent regime, and the Kondo
regime; see Fig. 4(a).

1. The multielectron regime

First there is the multielectron regime (EC � kBT, eVSD)
where Coulomb blockade does not occur as mentioned at the
start of this section. This regime is not relevant for this
review.

2. The sequential multilevel regime

At �E � kBT, eVSD � EC the system is in the sequential
multilevel regime. The transport is given by (Beenakker,
1991; Van der Vaart et al., 1993)

I ¼ e
ð�1

in þ �2
in þ � � � þ �n

inÞ�1
out

�1
in þ �2

in þ � � � þ �n
in þ �1

out

; (1)

where the subscript denotes the direction of transport, into or
out of the localized state, and the superscript indicates the
level, where 1 refers to the ground state and n indicates
the highest orbital within the energy window set by eVSD.
The current thus depends on the ingoing rates of all levels in
the bias window and the outgoing rate of only the ground
state. Physically, electrons can enter any orbital state that is
energetically allowed. Once a single electron is transferred to
the localized state, Coulomb blockade prevents another elec-
tron from entering. For dopants, the bound electron will relax
back to the ground state before it has a chance to tunnel out
of the localized state, since the orbital relaxation times
[�ps–ns (Lansbergen et al., 2011)] are typically much faster
than the outgoing tunnel rates (�1 ns). For quantum dots the
physics is similar but tunnel rates and orbital relaxation rates
are slower, e.g., �1–10 ns in GaAs quantum dots (Fujisawa
et al., 1998). The inelastic nature of the relaxation prohibits
coherent transfer of electrons from the source to the drain
electrode.

3. The sequential single-level regime

The next transport regime is the sequential single-level
regime, roughly bounded by h� � kBT, eVSD � �E, where
only a single level resides inside the bias window. This
regime is a transition between phase-coherent and phase-
incoherent transport between source and drain electrodes,
and the tunneling current depends vitally on kBT. For
VSD ¼ 0 the conductance is given by (Beenakker, 1991)

G ¼ e2

4kBT

�1
in�

1
out

�1
in þ �1

out

; (2)

where �in is the tunnel rate into the localized state and �out

is the tunnel rate out. Note that �in ¼ �S, �out ¼ �D for
VSD > 0 and �in ¼ �D, �out ¼ �S for VSD < 0.

FIG. 4 (color online). Thefive separate transport regimes in a three-

terminal quantum device. (a) Schematic depiction of the regimes in

which transport through a localized state takes place as a function of

the external energy scales kBT and VSD. The transitions between

regimes take place on the order of the internal energy scales EC, �E,
h�, and TK. (b) Potential landscape of the three-terminal geometry,

where the quantum states and the electrochemical potential of the

leads are shown together with kBT, VSD and EC, �E.
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If the localized state is strongly coupled to the contacts,
higher-order transport processes become apparent in the
Coulomb blocked region, i.e., the so-called cotunneling lines
indicated in Fig. 3(b). This is the case when EC=� approaches
unity in the open regime. There is an elastic and inelastic
component to the cotunneling (Averin and Nazarov, 1990;
Nazarov and Blanter, 2009). The elastic component leads to a
constant background current in the Coulomb diamond. The
inelastic component leads to a step in the current when the
applied bias exceeds �E. The current is given by

Iel ¼ �2e2

8�2h
�in�out

1

�E
; (3)

Iin ¼ �2e2

6h
�in�out

�
kBT

Ee

þ kBT

Eh

�
; (4)

for the elastic and inelastic cotunneling, respectively, with
Ee þ Eh ¼ EC, where the energies Ee and Eh denote the
distance to the Fermi energy of the filled and empty states
and � is the density of states. The complex cotunneling line
shape is discussed in depth by Wegewijs and Nazarov (2001).

4. The coherent regime

As soon as the external energy scales are much smaller
than h� (TK � kBT, eVSD � h� � �E), the system is in
the coherent regime, where the conductance is given by
Buttiker (1988)

G ¼ e2

ℏ
�1
in�

1
out

ð�1
in þ �1

outÞ2
: (5)

The conductance is thus given by the quantum conductance
e2=ℏ multiplied by a factor that depends only on the symme-
try between �S and �D. It has been proven explicitly that this
expression, easily derived for resonances in 1D double barrier
structures (Ricco and Azbel, 1984), also holds in three di-
mensions (Kalmeyer and Laughlin, 1987).

5. The Kondo regime

The final transport regime occurs when eVSD, kBT � TK.
The Kondo temperature is the energy scale below which
second-order charge transitions other than cotunneling start
to play a role in the transport (Meir and Wingreen, 1993). In
first-order transitions, the transferred electrons make a direct
transition from their initial to their final state. It should be
noted that the constant interaction model considers only first-
order charge transitions (Kouwenhoven, Marcus et al., 1997).
In a second-order transition, the transferred electron goes
from the initial to the final state via a virtual state of the
atom or dot. A virtual state is an electronic state for which the
number operator does not commute with the Hamiltonian of
the system and therefore has a finite lifetime. The lifetime of
the virtual state is related to the Heisenberg uncertainty
principle, as the electron can reside only on the virtual state
on a time scale t� ℏ=ð�N ��S;DÞ, where �N ��S;D is the

energy difference between the virtual state and the nearest
real state. The main characteristic of this transport regime
is a zero-bias resonance inside the Coulomb diamond for
N ¼ odd, as we explain next; see also Figs. 3(a) and 3(b).

When N ¼ even, the total localized spin is zero due to the
(typical) even-odd filling of the (spin) states, resulting in zero
localized magnetic moment. When N ¼ odd, one electron is
unpaired, giving the localized state a net magnetic moment.
In contrast to metals doped with magnetic impurities, the
conductance of double barrier structures actually increases
due to the Kondo effect. This is because the density of states
in the channel at a �S, �D (associated with the newly formed
Kondo singlet state) acts as a transport channel for electrons,
as if it were a ‘‘regular’’ localized state in the channel. The
Kondo temperature can be expressed as (Glazman and
Pustilnik, 2003)

TK ¼ ffiffiffiffiffiffiffiffiffiffi
EC�

p
exp

�
��

�N ��S;D

2�

�
; (6)

assuming �N ��S;D � �N�1 ��S;D. The zero-bias Kondo

resonance is furthermore characterized by its temperature and
magnetic field dependence. The conductance of the Kondo
resonance has a logarithmic temperature dependence, which
is described by the phenomenological relationship
(Goldhaber-Gordon et al., 1998)

GðTÞ ¼ ðGÞ0
�

T02
K

T2 þ T02
K

�
s
; (7)

where T0
K ¼ TK=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=s � 1

p
, G0 is the zero-temperature

Kondo conductance, and s is a constant found to be equal
to 0.22 (Goldhaber-Gordon et al., 1998).

III. PHYSICS OF Si NANOSTRUCTURES

Here we describe the fundamental physical properties of
Si nanostructures. Some of these arise from the electron
confinement into a small region (tens of nanometers or less)
and are similar to those of other semiconductors, but other
properties are present only in Si. One example arises because
Si has multiple degenerate valleys in its conduction band,
described in the first section. The valleys play an important
role in both dopant and quantum-dot devices, although
the details of the valley physics in those two systems are
different. Moreover, in heterostructures, strain often plays an
important role, and the interplay between strain, disorder, and
the properties of the valleys is important in determining the
low-energy properties of the devices.

A. Bulk silicon: Valley degeneracy

Because silicon is used in many technical applications,
methods for manufacturing extremely high purity samples are
well developed. Silicon has several stable nuclear isotopes,
with 28Si, which has no nuclear spin, being the most abundant
(its abundance in natural silicon is 92%). This availability of a
spin-zero silicon isotope is useful for applications in which
one wishes to preserve the coherence of electron spins, since
the absence of hyperfine interaction eliminates a possible
decoherence channel for the electron spin; see Sec. VI.A.4.

The properties of electrons in silicon have been studied in
great detail for many decades (Cohen and Chelikowsky,
1988; Yu and Cardona, 2001). Here we review aspects of
the material that will prove critical in understanding the
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challenges that arise as one works to create devices with

desired properties on the nanoscale. One such aspect is how

the effects of multiple valleys present in the conduction band

in bulk silicon appear in specific silicon nanodevices. The

manifestations of valley physics in quantum dots are different

from those in dopant-based devices, and understanding the

relevant effects is critical for manipulating the spin degrees of

freedom of the electrons in nanodevices. In the following

sections, we first define and discuss the conduction band

valleys in bulk silicon and then the behavior and consequen-

ces of valley physics for quantum dots and for dopant devices.
Crystalline silicon is a covalently bonded crystal with a

diamond lattice structure, as shown in Fig. 5. The band

structure of bulk silicon (Phillips, 1962), shown in Fig. 6,

has the property that the energies of electron states in the

conduction band are not minimized when the crystal momen-

tum k ¼ 0, but rather at a nonzero value k0 that is 85% of the

way to the Brillouin zone boundary, as shown in Fig. 6(b).

Bulk silicon has cubic symmetry, and there are six equivalent

minima. Thus we say that bulk silicon has six degenerate

valleys in its conduction band.

In conventional electronic devices, the presence of

multiple valleys typically does not affect transport properties

in a profound way. However, valley physics plays a critical

role in quantum electronics because of interference between

different valleys that arises when the electronic transport is

fundamentally quantum. For example, the presence of an

additional valley greatly complicates spin manipulation be-

cause it can lift Pauli spin blockade, which is fundamental for

many strategies for spin manipulation in quantum-dot nano-

devices (Rokhinson et al., 2001; Ono et al., 2002; Hüttel

et al., 2003; Johnson, Petta, Marcus et al., 2005; Koppens

et al., 2005). In pure bulk silicon, the valleys are degenerate

(the energies of the six states related by the cubic symmetry

are the same), but in nanodevices this degeneracy can be and

usually is broken by various effects that include strain, con-

finement, and electric fields. When valley degeneracy is

lifted, at low temperatures the carriers populate only the

lowest-energy valley state, thus eliminating some of the

quantum effects that arise when the valleys are degenerate.
Figure 7 shows a summary of valley splitting in hetero-

structures and in dopant devices. For strained silicon quantum

wells, the large in-plane strain lifts the energies of the in-

plane (x and y) valleys. The remaining twofold degeneracy of

the z valleys is broken by electronic z confinement induced by

electric fields and by the quantum well itself, resulting in a

valley splitting of order 0.1–1 meV. The breaking of the

twofold valley degeneracy is very sensitive to atomic-scale

details of the interface and is discussed in detail in Sec. III.B

and in the Supplemental Material [471].
For an electron bound to a dopant in silicon, the valley

degeneracy of bulk silicon is lifted because of the strong

confinement potential from the dopant atom (Kohn and

Luttinger, 1955a). For phosphorus donors in silicon, the

electronic ground state is nondegenerate, with an energy

gap of �11:7 meV between the nondegenerate ground state

FIG. 5. Silicon crystal in real and reciprocal space. (a) 3D plot of

the unit cell of the bulk silicon crystal in real space, showing the

diamond or face-centered-cubic lattice, which has cubic symmetry.

(b) Silicon crystal in reciprocal space. Brillouin zone of the silicon

crystal lattice. It is the Wigner-Seitz cell of the body-centered-cubic

lattice. � is the center of the polyhedron. From Davies, 1998.

FIG. 6 (color online). Band structure of bulk silicon. (a) The

conduction band has six degenerate minima or valleys at 0:85k0.
Results supplied by G. P. Srivastava, University of Exeter. From

Davies, 1998. (b) Zoom-in on the bottom of the conduction band

and the top of the valence band (schematic, not exact). The band gap

in bulk Si is 1.12 eV at room temperature, increasing to 1.17 eV at

4 K (Green, 1990). The heavy and light hole bands are degenerate

for k ¼ 0. The split-off band is separated from the other subbands

by the spin-orbit splitting �SO of 44 meV.

FIG. 7 (color online). Valley splitting of dopants and of quantum

dots in silicon quantum wells. (a) For a quantum well, in which a

thin silicon layer is sandwiched between two layers of SixGe1�x,

with x typically �0:25–0:3, the sixfold valley degeneracy of bulk

silicon is broken by the large in-plane tensile strain in the quantum

well so that two � levels are about 200 meV below the four � levels

(Schäffler et al., 1992). The remaining twofold degeneracy is broken

by the confinement in the quantum well and by electric fields, with

the resulting valley splitting typically �0:1–1 meV. (b) For phos-
phorus dopants, strong central-cell corrections near the dopant break

the sixfold valley degeneracy of bulk silicon so that the lowest-

energy valley state is nondegenerate (except for spin degeneracy),

lowered by an energy 11.7 meV. The degeneracies of higher-energy

levels are broken by lattice strain and by electric fields.
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and the excited states (Ramdas and Rodriguez, 1981;
Andresen et al., 2009). Thus, additional degeneracy of the
electronic ground state is not a concern in dopant devices.
However, the fact that the conduction band minimum in
silicon is at a large crystal momentum k0 that is near the
zone boundary gives rise to other physical effects that are
important for quantum electronic devices. One such conse-
quence arises because the wave functions of the electronic
states in dopants oscillate in space on the very short length
scale �2�=k0, which is roughly on the scale of 1 nm. These
charge oscillations differ from the electron charge variations
due to Bloch oscillations because they can cause the ex-
change coupling to change sign, and thus have significant
implications for the design of quantum electronic devices, as
discussed in Sec. III.C.

B. Quantum wells and dots

In the quantum well devices we discuss here, one starts
with a material with a 2DEG, and then lithographically
patterns top gates to which voltages are applied that deplete
the 2DEG surrounding the quantum dot. By carefully adjust-
ing the gate voltages, one can achieve dots with occupancy of
a single electron; see Sec. IV.D. Moreover, the same gate
voltages that are used to define the dot are also used to
perform the manipulations required for initialization, gate
operations, and readout of charge and spin states (Maune
et al., 2012); see Sec. VI.C.4.

1. Valley splitting in quantum dots

Understanding the valley degrees of freedom is important
for ensuring that the valley splitting is in a regime suitable for
spin-based quantum computation. Even in the low-density
limit appropriate to single-electron quantum dots, where
electron-electron interactions (Ando, Fowler, and Stern,
1982) are unimportant, valley splitting is complex: the break-
ing of the valley degeneracy involves physics on the atomic
scale, orders of magnitude smaller than the quantum dot
itself, so it depends on the detailed properties of alloy and
interface disorder. Because the locations of the individual
atoms in a given device are not known, statistical approaches
to atomistic device modeling or averaging theories such as
effective mass must be utilized. Theory, modeling, and simu-
lation provide insight into the physical mechanisms giving
rise to valley splitting, so that device design and fabrication
methods can be developed to yield dots with valley splitting
compatible with the use of spin-based quantum information
processing devices.

In bulk silicon, there are six degenerate conduction band
minima in the Brillouin zone (valleys) as depicted in Fig. 5.
One modern strategy for fabricating Si devices for quantum
electronics applications is to use a biaxially strained thin film
of Si grown on a pseudomorphic SixGe1�x substrate. In such
devices, the silicon quantum well is under large tensile
strain, and the sixfold degeneracy is broken into a twofold
one (Schäffler, 1997). Confinement of electrons in the
z direction in a two-dimensional electron gas lifts the remain-
ing twofold valley degeneracy, resulting in four � valleys
with a heavy effective mass parallel to the interface at an
energy several tens of meV above the two � valleys (Ando,

Fowler, and Stern, 1982), as shown in Fig. 7. The sharp and
flat interface produces a potential step in the z direction and
can lift the degeneracy of the � valleys in two levels separated
by the valley splitting EV . Built-in or externally applied
electric fields break the symmetry of the Hamiltonian and
can couple the various valleys and thus lift the valley degen-
eracy. Theoretical predictions for the valley splitting of flat
interfaces are generally on the order of 0.1–0.3 meV (Ohkawa
and Uemura, 1977; Boykin, Klimeck, Eriksson et al., 2004;
Culcer et al., 2010; Saraiva et al., 2011). Experimental values
in Si inversion layers mostly vary from 0.3 to 1.2 meV, but
some are substantially smaller (Köhler and Roos, 1979;
Nicholas, von Klitzing, and Englert, 1980; Pudalov,
Semenchinskii, and Édel’Man, 1985; Weitz et al., 1996;
Koester, Ismail, and Chu, 1997; Lai et al., 2006). A giant
valley splitting of 23 meV measured in a similar structure
(Takashina et al., 2006) is still not completely understood
theoretically (Saraiva et al., 2011).

The two main approaches for understanding valley split-
ting in silicon heterostructures are tight-binding calculations
(Boykin, Klimeck, Friesen et al., 2004; Boykin et al., 2005;
Boykin, Kharche, and Klimeck, 2008; Kharche et al., 2007;
Srinivasan, Klimeck, and Rokhinson, 2008) and theories that
use an effective-mass formalism (Friesen, Chutia et al., 2007;
Saraiva et al., 2009; Friesen and Coppersmith, 2010).
Section I in the Supplemental Material (471) reviews a simple
one-dimensional tight-binding model (Boykin, Klimeck,
Eriksson et al., 2004) that illustrates some of the physical
mechanisms that lead the breaking of the valley degeneracy
and hence the emergence of valley splitting. A pictorial
sketch of the two lowest-energy eigenstates of this one-
dimensional model is presented in Fig. 8. The eigenfunctions
have very similar envelopes and fast oscillations with a period

FIG. 8 (color online). Sketch of the two lowest-energy eigenstates

in an infinite square well of the two-band model presented in the

Supplemental Material 471. The envelopes of the two eigenfunc-

tions are very similar to each other and to the sine behavior obtained

in the absence of valley degeneracy; the effects of the valley

degeneracy give rise to fast oscillations within this envelope.

For a square well, one eigenfunction is symmetric and the other

is antisymmetric; the symmetries are different because the fast

oscillations have different phases as measured from the quantum

well boundaries. This sensitive dependence of valley splitting on the

atomic-scale physics near the well boundary is the source of

the sensitive dependence of the valley splitting on disorder at the

quantum well interfaces.
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very close to 2�=k0, where k0 is the wave vector of the
conduction band valley minimum. The different alignments
of the phases of the fast oscillations with sharp interfaces
cause the energies of the two states to be different, thus giving
rise to valley splitting.

Valley splitting has a complicated dependence on environ-
mental and structural conditions. Large-scale atomistic tight-
binding calculations can incorporate realistic inhomogeneity
in the atomic arrangement, both in terms of alloy disorder and
in terms of disorder in the locations of interface steps, as
discussed in Sec. III of the Supplemental Material (471).
Technically well-controlled interfaces in Si are buffers of
either SiO2 or SixGe1�x, which are intrinsically atomistically
disordered. Some of the effects of this disorder can be under-
stood qualitatively using effective-mass theory (EMT), but
because of the importance of atomic-scale physics in deter-
mining valley splitting, atom-scale theory is required for
quantitative understanding. For SixGe1�x, there are three
critical disorder effects to consider: atom-type disorder,
atom-position disorder, and alloy concentration disorder.
A detailed discussion of the characterization of the effects
of these different types is presented in Sec. III of the
Supplemental Material (471).

Many features of the physics that give rise to valley split-
ting can be understood qualitatively and semiquantitatively
using effective-mass theories (Kohn and Luttinger, 1955b;
Seitz and Turnbull, 1957), if these theories are formulated
carefully to incorporate the microscopic effects that give rise
to valley splitting (Fritzsche, 1962; Pantelides, 1978; Friesen,
2005; Nestoklon, Golub, and Ivchenko, 2006; Friesen, Chutia
et al., 2007). In the envelope function or effective-mass
formalism, the theory is written in terms of an envelope
function for the wave function, which is well suited for
describing variations on relatively long scales (such as the
quantum-dot confinement). The effects of the degenerate
valleys are incorporated using a valley coupling parameter
that is treated as a delta function whose strength is determined
by the atomic-scale physics (Friesen, Chutia et al., 2007;
Chutia, Coppersmith, and Friesen, 2008; Saraiva et al.,
2009). The envelope function formalism has the advantage
that one can obtain analytic results for valley splitting in
nontrivial geometries (Friesen, Chutia et al., 2007; Culcer
et al., 2010; Culcer, Hu, and Das Sarma, 2010; Friesen and
Coppersmith, 2010). However, the theory must explicitly
incorporate information from the atomic scale, either as a
valley coupling parameter that is fit to tight-binding results, as
the output of a multiscale approach (Chutia, Coppersmith,
and Friesen, 2008; Saraiva et al., 2009) or by explicit atom-
istic calculation on large scales, as embodied by the NEMO

tool suite (Klimeck et al., 2002; Boykin, Klimeck, Eriksson
et al., 2004; Klimeck et al., 2007; Steiger et al., 2011). More
details of effective-mass theory treatment of valley splitting
are given in the Supplemental Material (471).

2. Mixing of valleys and orbits

When the valley splitting EV is much greater than the
orbital level spacing�E, electrons will occupy single-particle
levels with orbital numbers 1, 2, 3, . . . and valley number V1,
the lowest valley state [see Fig. 9(a)]. Conversely, if �E �
EV , the first four electrons will occupy the valleys V1 and V2

in the lowest orbit before going to the next orbit with n ¼ 2,
as shown in Fig. 9(b). However, valleys and orbits can also
hybridize (Friesen and Coppersmith, 2010), making it inap-
propriate to define distinct orbital and valley quantum num-
bers [see Fig. 9(c)]. Depending on the degree of mixing, the
valley-orbit levels VO1, VO2 etc. behave mostly like valleys
or like orbits. Instead of referring to a pure valley splitting EV

the term valley-orbit splitting is used, EVO ¼ EVO2 � EVO1

for the difference in energy between the first two single-
particle levels EVO1 and EVO2. This is referred to as the
ground-state gap (Friesen and Coppersmith, 2010).

The behavior of the valley splitting in real quantum wells is
complicated by the fact that in real devices the quantum well
interface is not perfectly smooth and oriented perpendicular
to ẑ. The energy difference between the two lowest eigen-
states depends on the relationship between the phase of the
fast oscillations of the wave function with the heterostructure
boundary, and a step in the interface alters this phase rela-
tionship. The lowest-energy wave function minimizes the
energy, and, as shown in Fig. 8, can cause the phase of the
fast oscillations to become dependent on the transverse co-
ordinates x and y. This coupling between the z behavior and
the x-y behavior is called valley-orbit coupling.

As discussed in Sec. III.B.1, in a silicon quantum well
under tensile strain, there are two low-lying conduction band
valleys at wave vectors þk0ẑ and �k0ẑ, whose energies are
split by the effects of confinement potentials and electric
fields perpendicular to z. In the limit of a perfectly smooth
interface aligned perpendicular to ẑ, the valley splitting of a
quantum well with typical width and doping is of the order
of 0.1 meV, a magnitude that can be understood using the
simple one-dimensional model presented in Sec. I of the
Supplemental Material (471).

FIG. 9 (color online). Valley-orbit mixing. (a), (b) If the valley

splitting EV and orbital level spacing �E have very different values,

the orbital and valley quantum numbers are well defined and

there will be no mixing of orbital and valleylike behavior.

(c) When EV � �E the valleys and orbits can hybridize in single-

particle levels separated by the valley-orbit splitting EVO.

970 Floris A. Zwanenburg et al.: Silicon quantum electronics

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



If the step density of the quantum well interface is reason-

ably high, then the transverse oscillations of the charge

density cannot align with the entire interface, and valley

splitting is greatly suppressed (Ando, 1979; Friesen,

Eriksson, and Coppersmith, 2006; Friesen, Chutia et al.,

2007). The physical picture that emerges from effective-

mass theory that incorporates valley-orbit coupling is that

the envelope function for the wave function in a silicon

heterostructure is qualitatively similar to typical wave func-

tions in quantum dots, but that there are also fast oscillations

with wave vector �k0 in the z direction. The fast oscillations
of the two valley states have different phases. In the presence

of interfacial disorder such as interfacial steps, the value of

the valley phase that minimizes the energy becomes position

dependent, so that one fixed value of the phase cannot

minimize the energy everywhere, and the energy difference

between the two different valley states decreases. This sup-

pression explains measurements performed in Hall bars

(Weitz et al., 1996; Koester, Ismail, and Chu, 1997;

Khrapai, Shashkin, and Dolgopolov, 2003; Lai et al., 2004)

that yield very small values for the valley splitting of only

� eV, and also why singlet-triplet splittings in dots with two

electrons have been observed with both positive and negative

values at nonzero magnetic field (Borselli et al., 2011a)—if

the electron wave function straddles a step, then the valley

splitting is small, which, together with the effects of electron-

electron interactions, causes the triplet state to have lower

energy than the singlet state. If an electron is confined to a

region small enough that it does not extend over multiple

steps, then the valley splitting is not affected by the steps.

Over the past several years, measurements of valley splitting

in quantum point contacts (QPCs) (Goswami et al., 2007) and

of singlet-triplet splittings in quantum dots (Borselli et al.,

2011a, 2011b; Simmons et al., 2011; Thalakulam et al., 2011)

in Si=SiGe heterostructures demonstrate that these splittings

can be relatively large, of the order of 1 meV, when the

electrons are highly confined. These splittings are large

enough that valley excitations are frozen out at the relevant

temperatures for quantum devices (�100 mK).
There are two different manifestations of valley-orbit cou-

pling. The first, illustrated in the bottom panel of Fig. 10,

occurs when the phase of the valley oscillations depends on

the transverse coordinate. The second type of valley-orbit

coupling can be visualized by considering an interface with a

nonuniform step density. A wave function localized in a

region with few steps has larger valley splitting and hence

lower energy than a wave function localized in a region with

many steps (Shi et al., 2011). Therefore, the presence of the

valley degree of freedom leads to translation of the wave

function in the x-y plane. Valley-orbit coupling is important

when the scale of the variations of the orbital and valley

contributions to the energy are similar, a situation that occurs

frequently in few-electron quantum-dot devices.
Because valley-orbit coupling and valley splitting depend

on interface details, the observation of valley splittings that

vary substantially between devices (Borselli et al., 2011b) is

not unexpected. Understanding and controlling this variabil-

ity is important for being able to scale up the technology and

for the development of devices that exploit the valley degree

of freedom (Culcer et al., 2009, 2012; Li et al., 2010; Shi

et al., 2012). Therefore, improved understanding of the
physical mechanisms that affect valley splitting in real de-
vices remains an important topic of active research. The
valley-orbit coupling also contains phase information, which
can be used for quantum computation (Wu and Culcer, 2012).

C. Dopants in Si

1. Wave function engineering of single-dopant electron states

The central theme of quantum electronics applications
using single dopants is the ability to modify the dopant
electron wave function using external electric fields and/or
to manipulate the spin degrees of freedom using magnetic
fields. In many proposals for dopant-based qubits using
either electron or nuclear spins as the qubit states, dopant
electron wave function engineering is critical to effect
single- and two-qubit gates. Since most work has been done
on n-type dopants, this section will focus on donors. The
original idea comes from the Kane proposal for a nuclear-
spin-based quantum computer in silicon (Kane, 2000) where
the single-qubit operations are implemented by tuning the
contact hyperfine interaction to bring the donor electron into
resonance with a transverse oscillating magnetic driving field
(see Fig. 11). To see this we write the effective spin qubit
Hamiltonian of a single donor nucleus-electron system in the
presence of a gate potential with strength V at the donor
position as (Kane, 1998; Goan, 2005)

H1Q ¼ �BBz�
z
e � gn�nBz�

z
n þ AðVAÞ ~�n: ~�e; (8)

where �B is the Bohr magneton, gn is the Landé factor for
31P, and �n is the nuclear magneton. The contact hyperfine

FIG. 10. Valley-orbit coupling from interface steps. Top: Gray-

scale visualization of wave function oscillations in the presence of a

perfectly smooth interface, oriented perpendicular to ẑ. Middle: The

relationship between the phase of the wave function oscillations and

the interface is different on the two sides of an interface step. When

the steps are close together, the phase does not adjust to the

individual steps, and the valley splitting is suppressed. Bottom:

When steps are far enough apart, the oscillations line up with the

interface location on both sides of the steps, which causes the phase

of the oscillations to depend on the transverse coordinate. This

coupling between the behavior of the wave function in the z
direction and in the x-y plane, which arises even when the well is

atomically thin, is known as valley-orbit coupling.
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interaction strength A can be tuned by an applied electric field
arising from a bias VA on an A gate as

AðVAÞ ¼ 2
3jc ð0; VAÞj2�Bgn�n�0; (9)

where �0 is the permeability of silicon and c ð0; VAÞ is the
donor electron wave function evaluated at the nucleus under
the A-gate bias VA.

The change in the strength of the contact hyperfine cou-
pling due to the application of a gate bias has been studied by
several since Kane’s proposal. To determine the change in the
contact hyperfine coupling strength it is necessary to calcu-
late the shift in the donor electron wave function at the
position of the donor nucleus. Depending on the applied
bias polarity, an A-gate control electrode will draw the
wave function either toward or away from the gate. In either
scenario the wave function at the donor nuclear position is
perturbed to some extent. The resulting tuning of A depends
critically on device parameters such as the depth of the donor
from the interface and the gate-interface geometry. The level
of sophistication of the treatment of the donor electron wave
function in these devices has steadily improved since the
original calculations following Kane (1998). The earliest
approaches used fairly simple hydrogenic wave functions
scaled by the dielectric constant of silicon. Larionov et al.
(2000) treated the bias potential analytically, and the shift in
the hyperfine interaction constant as a function of applied bias
voltage was calculated using perturbation theory. Wellard,
Hollenberg, and Pakes (2002), again using scaled hydrogenic
orbitals, treated the problem using a more realistic gate
potential (modeled using a commercial semiconductor soft-
ware package, with built-in Poisson solver). The donor elec-
tron wave function was expanded on a basis of hydrogenic
orbitals in which the Hamiltonian was diagonalized numeri-
cally. Kettle et al. (2003) extended these calculations using a
basis of nonisotropic scaled hydrogenic orbital states. Smit
et al. (2003, 2004) used group theory over the valley manifold
and perturbation theory to describe the Stark shift of the
donor electron while Martins, Capaz, and Koiller (2004)
and Martins et al. (2005) applied tight-binding theory to

obtain the first description of the Stark shift of orbital states

and the hyperfine interaction incorporating Bloch structure.

Meanwhile, the effective-mass treatment was further devel-

oped in a combined variational approach by Friesen (2005)

and Calderón et al. (2009), and by Debernardi, Baldereschi,

and Fanciulli (2006) using a Gaussian expansion of the

EMT (see Sec. II of the Supplemental Material 471) envelope

functions. This was followed by the application of direct

diagonalization in momentum space (Wellard and

Hollenberg, 2005) allowing the potential due to the A gate

to be included at the Hamiltonian level and gave a similar
picture of the Stark shift of the hyperfine interaction as a

function of external field strength and donor depth as the

earlier tight-binding treatment of Martins, Capaz, and Koiller

(2004) (see Fig. 12). Although not optimized computation-

ally, the momentum space diagonalization approach has

served as a consistency check against larger-scale real-space

tight-binding calculations of the Stark shift of the donor

hyperfine interaction at low fields (Rahman et al., 2007) in

the overall benchmarking against experiment (Bradbury

et al., 2006) which shows the theoretical description has

converged to a reasonable level in terms of internal consis-

tency and comparison with experiment (see Fig. 13). It should

be noted that in such descriptions encompassing the overall
donor electron wave function it is the relative change in the

contact hyperfine interaction as a function of the electric field

that is computed since these approaches do not describe well

the details of the electron state at the nucleus. Absolute

calculations of the contact hyperfine interaction are the do-

main of ab initio theories where they have had remarkable

success despite the truncation of the long range part of the

donor potential (Overhof and Gerstmann, 2004; Gerstmann,

2011).
In more recent years, the effect of depth and proximity to

the interface on donor orbital states (Calderón et al., 2006;
Calderón, Koiller, and Das Sarma, 2008; Hao et al., 2009;

Rahman, Lansbergen et al., 2009) has received more attention

as key experimental measurements became available. A turn-

ing point was the measurement of donor orbital states through

transport in finshaped field effect transistor (FinFET) devices.

FIG. 11. A silicon-based nuclear-spin quantum computer. (a) Schematic of Kane’s proposal for a scalable quantum computer in silicon

using a linear array of 31P donors in a silicon host. J gates and A gates control, respectively, the exchange interaction J and the wave function,

as shown in (b). From Kane, 1998.
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The observed donor energy levels were very different from

the bulk spectrum (see Sec. V.C). Extensive tight-binding

calculations were used to explore the space of electric field

and donor depth on the quantum-confinement conditions of

the donor-associated electron, identifying Coulombic, inter-

facial, and hybridized confinement regimes. These calcula-

tions provided an excellent description of the low-lying donor

states observed and determination of the donor species

(Lansbergen et al., 2008). It appears that the theoretical

description of electric field ‘‘wave function engineering’’ of

the donor electron across device dimensions is now well

understood. The context of the Kane donor qubit has spurred

further refinements of the theoretical description of donor

states, including the site-specific contact and nonisotropic

hyperfine interaction terms (Ivey and Mieher, 1975a,

1975b) for wave function mapping under electric fields

(Park et al., 2009), interaction with magnetic fields and

gate control of the g factor (Thilderkvist et al., 1994;

Rahman, Park et al., 2009), dynamics of molecular donor-

based systems (Hollenberg et al., 2004; Hu, Koiller, and Das

Sarma, 2005; Wellard, Hollenberg, and Das Sarma, 2006;

Rahman, Park et al., 2011), cross talk in hyperfine control

(Kandasamy, Wellard, and Hollenberg, 2006), coherent
single-electron transport through chains of ionized donor
chains (Rahman, Park et al., 2009), spin-to-charge readout
mechanisms (Fang, Chang, and Tucker, 2002; Hollenberg
et al., 2004), and the calculation of donor levels in the
presence of STM-fabricated nanostructures providing mod-
ifications to the overall potential in a single-atom transistor,
as shown in Sec. V.B.3 (Fuechsle et al., 2012).

2. Two-donor systems and exchange coupling

In the quantum computing context, the two main ap-
proaches to directly couple the spins of donor electrons are
through the Coulomb-based exchange interaction between
proximate donor electrons, or the magnetic dipole interaction.
The Kane model uses gate control of the exchange interaction
as per the two-qubit effective spin Hamiltonian:

H2Q ¼ �BBz�
z
e1 � gn�nBz�

z
n1 þ A1ðVA1Þ ~�n1 � ~�e1

þ�BBz�
z
e2 � gn�nBz�

z
n2 þ A2ðVA2Þ ~�n2 � �e2

þ JðVJÞ ~�e1 � �e2 : (10)

In this equation we apply Eq. (8) on two dopants and add the
exchange coupling J between the dopants. There have been a
number of papers investigating the construction and fidelity
of two-qubit gates (e.g., such as the controlled-NOT) from this
Hamiltonian (Fowler, Wellard, and Hollenberg, 2003; Hill
and Goan, 2003, 2004; Fang, Chang, and Tucker, 2005;
Kerridge et al., 2006; Tsai and Goan, 2008; Tsai, Chen, and
Goan, 2009). From a microscopic physics viewpoint, in
general the exchange energy J is stronger than the dipole
interaction for smaller separations (Herring and Flicker,
1964)

JðRÞ � ðR=a�Þ5=2 expð�2R=a�Þ; (11)

where R is the donor separation and a� is the effective Bohr
radius of the electron wave function. The exchange coupling
dominates over dipole coupling for donors that are separated
by less than approximately 20–30 nm.

The valley degeneracy of the silicon conduction band gives
rise to a far more complicated dependence of J on the donor
separation (so-called ‘‘exchange oscillations’’) as noted in the
early work of Cullis and Marko (1970) and is particularly
relevant in the Kane quantum computer context (Koiller, Hu,
and Das Sarma, 2001; Koiller et al., 2003; Koiller and Hu,
2005) (see Fig. 14). The effect persisted in effective-mass
treatments in which the exchange integrals over Bloch states
were carried out numerically (Wellard et al., 2003; Koiller
et al., 2004). For some time these exchange oscillations were
seen as a fundamental limitation of donor-based quantum
computing as it was thought that to achieve a given exchange
coupling the donors would have to be placed in the lattice
with lattice site precision (Koiller, Hu, and Das Sarma, 2001),
although Koiller, Hu, and Das Sarma (2002) found that strain
could be used to lift the valley degeneracy and alleviate the
problem to some extent. In these treatments the exchange
coupling is calculated in the Heitler-London approximation
(Koiller et al., 2004; Calderón, Koiller, and Das Sarma, 2006)
using effective-mass wave functions containing a single
Bloch component from each valley minimum; hence it is

FIG. 12 (color online). Relative Stark shift of the contact hyper-

fine interaction for different donor depths (z) calculated for a

uniform field in the z direction. (a) Using the tight-binding approach
(Martins, Capaz, and Koiller, 2004); (b) direct diagonalization in

momentum space (Wellard and Hollenberg, 2005). Agreement in

overall trends is reasonable, and for the z ¼ 10:86 nm case both

methods predict ionization at �6 MV=m.
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perhaps not surprising that the overlap integral results in an
oscillatory behavior in the donor separation at the level of the
lattice constant. When the exchange integral is computed
using a more accurate wave function including many such
Bloch states to reproduce the observed donor levels and

valley splittings, the interference effect is somewhat smeared

out (Wellard and Hollenberg, 2005) over the background

Herring-Flicker dependence in Eq. (11) (see Fig. 15).

Nonetheless, the issue remains that in fabricating donor
devices there will be some level of imprecision in the donor

atom placement and hence a variation in the (ungated) value

of J between donor pairs; however, using STM fabrication

these placement errors might be constrained to the single

lattice site level.
In any case, all components of a quantum computer will

need some form of characterization. For all donor qubit logic

gates (single and two qubit), considerations of background

noise sources and decoherence also need to be taken into

account; see, e.g., Wellard and Hollenberg (2001, 2002),

Fowler, Wellard, and Hollenberg (2003), Hill and Goan

(2003), and Saikin and Fedichkin (2003) (the decoherence
of donor electron spins is covered in Sec. VI). Robust control

techniques have been developed specifically for the eventual-

ity of some level of variation in the exchange coupling (Hill,

2007), which in conjunction with gate characterization pro-

tocols (Cole, Devitt, and Hollenberg, 2006; Devitt, Cole, and

Hollenberg, 2006) have the potential to produce high fidelity
two-qubit gates in the Kane scheme (Testolin et al., 2005).

Tsai, Chen, and Goan (2009) applied control techniques to

optimize the CNOT gate in the Kane scheme. A more serious

impediment to employing the exchange interaction for quan-

tum gates is the effect of charge noise (Vorojtsov, Mucciolo,

and Baranger, 2004; Hu and Das Sarma, 2006). Because the
exchange interaction is ultimately derived from an overlap of

electronic wave functions, variations in the background po-

tential such as from charge noise in the device can affect the
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FIG. 13. Low-field Stark shift of the hyperfine interaction for momentum space diagonalization (BMB) and tight-binding (TB) methods.

(a) Electric field response of hyperfine coupling at various donor depths (BMB and TB). (b) Quadratic (left-hand axis) and linear (right-hand

axis) Stark coefficients as a function of donor depth (TB). (c) Shift of the ground state electron distribution (dipole moment) as a function of

the electric field (TB). (d) The electric field gradient of the dipole moments as a function of donor depth (TB). From Rahman et al., 2007.

FIG. 14 (color online). J oscillations in the exchange coupling.

Calculated exchange coupling between two phosphorus donors in Si

(solid lines) and Ge (dashed lines) along high-symmetry directions

for the diamond structure. Values appropriate for impurities at

substitutional sites are given by the circles (Si) and diamonds

(Ge). Off-lattice displacements by 10% of the nearest-neighbor

distance lead to the perturbed values indicated by the squares (Si)

and crosses (Ge). From Koiller, Hu, and Das Sarma, 2001.
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exchange coupling and may require further development of

the materials design (Kane, 2005), and/or quantum control

techniques.
The control of the exchange interaction J has also received

considerable attention since the original Kane paper. Early

calculations of the dependence of J on an external J-gate bias
were carried out by Fang, Chang, and Tucker (2002) using a

Gaussian expansion (see Fig. 16). Subsequent calculations of

the J-gate control in various approaches describing the two-

electron physics were carried out (Kettle et al., 2004; Wellard

and Hollenberg, 2004; Fang, Chang, and Tucker, 2005;

Kettle, Goan, and Smith, 2006; Calderón, Koiller, and Das

Sarma, 2007) giving further insight into the controllability of

the exchange interaction. However, the gate modification of

the overlap between electron states is a difficult calculation
and most likely a full configuration interaction framework
incorporating valley physics and Bloch structure is required
to obtain quantitative results to compare with experiments
once measurements are made. A related problem is the
calculation of the two-electron donor state (D�), notoriously
difficult in the case of a hydrogen ion in vacuum, but even
more so when the nontrivial valley physics is added in to
complicate such simple points of reference as Hund’s rule. In
the context of donor quantum computing Fang, Chang, and
Tucker (2002) calculated the effect of electric fields on the
D� state, which was a key component of the spin-to-charge
conversion readout scheme of Kane. In Hollenberg et al.
(2004) time-dependent calculations of the D0D0 ! DþD�
transition were undertaken in a proposal for resonant based
spin-to-charge conversion. More recent calculations have
focused on the complication of valley physics in the D�
bound states particularly under electric fields (Calderón
et al., 2010a; Rahman, Lansbergen et al., 2011), with some
notable success in comparison with recent experimental mea-
surements (Lansbergen et al., 2008; Fuechsle et al., 2012).

3. Planar donor structures: Delta-doped layers and nanowires

The atom-by-atom fabrication of monolayer donor struc-
tures using STM techniques represents the state of the art in
precision silicon devices (see Sec. V.B.3). From a theoretical
point of view these structures present new challenges in order
to describe not just their inherent physics (band structure,
Fermi level, electronic extent, valley splitting, effect of

disorder, etc.), but their use as in-plane gates in quantum
electronic devices, including quantum computing. In under-
standing the physics of these highly doped monolayer sys-
tems ab initio techniques have been used to good effect.
Paradoxically, ab initio techniques, while being severely
limited to relatively small numbers of atoms, can handle
planar systems with a high degree of symmetry, exploiting
periodic boundary conditions of the supercell in the plane of
the structure with sufficient silicon ‘‘cladding’’ vertically for
convergence. The earliest calculations in this context were by
Qian, Chang, and Tucker (2005) for the infinite 2D planar

(‘‘delta-doped’’) ordered layer using a Wannier-based density
functional theory (DFT) approach [see Fig. 17(a)]. Carter
et al. (2009) carried out an extensive DFT calculation of

FIG. 15 (color online). Smoothing out the exchange oscillations—

the exchange coupling J as a function of donor separation along

[110]. Top curve: Calculation using the effective-mass wave func-

tion. Middle curve: Calculation of J based on wave functions

obtained using direct momentum diagonalization over a large basis

of Bloch states (BMB) with no core correction of the impurity

potential (� ¼ 0). Bottom curve: BMB calculation of J with a core

correction (� ¼ 5:8) that reproduces the donor ground state and

valley splitting. Note that the points refer to substitutional sites in

the silicon matrix. Although the donor separations are relatively

small in this case, the spatial variation of the exchange interaction

appears to be significantly damped compared to the effective-mass

treatment. All J values are calculated in the Heitler-London ap-

proximation. From Wellard and Hollenberg, 2005.

FIG. 16. Gate control of the two-donor system. Averaged charge distribution along the interdonor axis for various strengths of the J-gate

potential (�) for the (a) singlet and (b) triplet states (fixed donor separation at 10aB). From Fang, Chang, and Tucker, 2002.
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the same Si:P structures using a single zeta polarized basis
providing a comprehensive picture of the band structure,
effective potential, Fermi energy, and electronic width as a
function of planar doping density, finding converged results
for cladding above 80 layers [see Fig. 17(b)]. More recently
the effect of disorder on the physics of the delta-doped layer
has been investigated both in a DFT approach (Carter et al.,
2009, 2011) and in a self-consistent tight-binding approach
which can handle much larger supercell sizes and hence more
accurately represent instances of disorder (Lee et al., 2011).
These calculations indicate that the valley spitting of the sub-
Fermi bands is quite sensitive to the degree of disorder which
may play an important role in eventual device applications.

The question of convergence between methodologies still

remains on important quantities such as valley splitting.

Drumm, Budi et al. (2013) applied distinct DFT approaches

based on localized and delocalized basis sets to calculate the

properties of delta-doped layers. They obtained convergence

in the description of the valley splitting and Fermi level only

when the localized basis set is extended to the double zeta

polarized level. The DFT calculations of the band structure

have informed a self-consistent effective-mass description of

Si:P monolayer structures (Drumm, Hollenberg et al., 2012),

which has been effective in describing states observed in a

STM-fabricated seven-donor planar quantum dot (Fuechsle

et al., 2010). The self-consistent tight-binding approach has

also been employed beyond the delta-doped layer to describe

recent STM-fabricated devices. In Weber et al. (2012) the

electronic structure of Si:P monolayer wires only four atoms

wide was calculated and gave results in terms of the number

FIG. 17. Band structure of the 1=4 monolayer phosphorus
�-doped layer. (a) The calculation by Qian, Chang, and Tucker
(2005): the solid lines show the band structure without exchange
correlation and short-range effects, while the dotted lines show the
band structure obtained in the full model. (b) The DFT calculation
in a supercell with 200 cladding layers by Carter et al. (2009). The
plane projected bulk band structure of Si is represented by the gray
continuum. The Fermi level is indicated by a horizontal dashed line.
From Qian, Chang, and Tucker, 2005, and Carter et al., 2009.

FIG. 18 (color online). Calculated electronic spectrumof a single-atom transistor. Top left: Calculated energies of theD0 andD� ground states
(GS) as a function of the applied gate voltage VG. The difference in the energy of these two ground states gives a charging energy of EC �
46:5 meV, which is in excellent agreement with themeasurement in this device. Potential profiles between source and drain electrodes calculated
forVG ¼ 0:45 V (topmiddle) and0.72V (bottom left). The calculated orbital probability density of theground state for theD0 potential (top right)
is more localized around the donor than for theD� potential (bottom right), which is screened by the bound electron. From Fuechsle et al., 2012.

976 Floris A. Zwanenburg et al.: Silicon quantum electronics

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



of conduction modes in good agreement with experiment.
The most ambitious calculation to date was a simulation of
the single-atom transistor (Fuechsle et al., 2012) where the
same self-consistent tight-binding approach was used to
determine the effective potential due to planar gates at the
channel-donor site and subsequently coupled with a tight-
binding description of the donor electronic levels (see
Fig. 18). The agreement of the calculated D0 and D� charge
transitions with the measurements was indeed remarkable
given the complexity of the device and is a strong indication
that the theoretical description of donor-based quantum elec-
tronic devices is well in hand.

IV. QUANTUM DOTS IN Si AND SiGe

Quantum dots showing Coulomb blockade and displaying
single-electron physics can be created in Si and SiGe in many
different ways. In this section we first briefly review the early
work aimed at the demonstration of Coulomb charging ef-
fects in Si and SiGe. An emphasis in this work was the quest
to see Coulomb effects at as high a temperature as possible.
We then discuss modern approaches to quantum-dot fabrica-
tion. The application of charge-sensing methods is shown to
enable a wide range of experiments, including calibration of
the absolute electron number, spin-state spectroscopy, and the
measurement of spin filling as a function of electron number.
We close this section with a discussion of both transport
and charge-sensing measurements in silicon-based double
quantum dots.

A. Early work: Coulomb blockade in silicon

In this section we discuss early experiments studying
Coulomb blockade in Si devices. Additional background
and details can be found in Meirav and Foxman (1996),
Ahmed (1997), Likharev (1999), Tilke et al. (2001),
Takahashi et al. (2002), and Ono et al. (2005).

Experiments exploring intentional Coulomb blockade and
transport through Si=SiO2 and Si=SiGe quantum dots dates to
the early 1990s, shortly after the discovery of Coulomb
blockade (Fulton and Dolan, 1987; Scott-Thomas et al.,
1989; Field et al., 1990; Meirav, Kastner, and Wind, 1990).
The primary requirements for the observation of Coulomb
blockade are to isolate a small island while maintaining a
weak but nonzero tunnel coupling to the leads. The addition
of one or more gates to control the charge on the dot is
essential for more complicated experiments.

Coulomb blockade was achieved very early in structures
formed by etching delta-doped SiGe or doped silicon-on-
insulator (SOI) structures (Paul et al., 1993; Ali and
Ahmed, 1994). Ali and Ahmed (1994) made use of two
separate lithography and etching steps to modulate the thick-
ness of a patterned silicon-on-insulator layer, resulting in a
weakly coupled island between two leads. Coulomb block-
ade, which was observed in measurements of current versus
source-drain voltage that showed a Coulomb gap, persisted up
to T ¼ 3:8 K. The Coulomb gap could be modulated by an
integrated side gate. In this type of highly doped SOI struc-
ture, the current in the doped leads was three dimensional, as
the mean free path was smaller than the lead thickness.

Silicon nanowires formed in SOI can be transformed into a
quantum dot by pattern-dependent oxidation (PADOX), a
process that makes use of the dependence of oxidation in
silicon on the exposed surface area and strain (Takahashi
et al., 1994, 1995). One of the features of this process is that
very small quantum dots can be formed, enabling the mea-
surement of Coulomb oscillations at high temperatures, with a
demonstration of some modulation persisting to room tem-
perature as early as 1994 (Takahashi et al., 1994). Fujiwara and
co-workers studied the few-electron regime in similar devices
using photoexcitation techniques (Fujiwara, Takahashi, and
Murase, 1997). Electron-beam lithography can be used to help
control the shape of small silicon dots that show Coulomb
effects at temperatures above 100 K (Leobandung et al.,
1995).Very narrow triangular cross-section wires also can be
formed by anisotropic etching of a separationbyimplanted
oxygen (SIMOX) substrate, resulting in Coulomb effects at
room temperature from disorder-induced dots along the length
of each wire (Ishikuro et al., 1996).

Coulomb blockade can in fact be observed in devices that
are similar to production field-effect transistors (FETs),
provided a small island of electrons can be isolated in the
device. Isolation of such an island of electrons can be accom-
plished by the use of a gate that does not overlap the source
and drain, leading to Coulomb blockade in CMOS devices
(Boeuf et al., 2003). This approach culminated very recently
in a single-electron transistor operating at room temperature
(Shin et al., 2010; S. J. Shin et al., 2011).

In 1994 Matsuoka and co-workers proposed using ‘‘two-
story gates’’ to create single-electron devices (Matsuoka
et al., 1994). A single gate was used to form an inversion
layer for transport, and an upper gate was reverse biased to
generate barriers and define a quantum dot (Matsuoka and
Kimura, 1995). While this structure has only a single gate to
control the tunnel barriers and differs in significant ways from
later work, it anticipates the use of two layers of gates that
would be used more than a decade later for experiments on
spin blockade, spin measurement, and spin manipulation (see
Secs. IV.F.2 and VI).

B. Single quantum dots

Here we discuss recent experimental measurements with
an emphasis on those showing conceptual differences from
quantum dots in other materials.

1. Self-assembled nanocrystals

The material dimensions of nanocrystals can easily be
made as small as 10 nm, resulting in large and thus easily
observable level splittings, even at room temperature (Otobe,
Yajima, and Oda, 1998). On the other hand, those dimensions
make electron transport measurements cumbersome because
the crystals are not easily connected to source and drain
reservoirs. Self-assembled silicon nanocrystals with diame-
ters varying from 3 to 12 nm have been grown by chemical
vapor deposition techniques (Baron et al., 2000; Steimle
et al., 2007). Coulomb oscillations have been observed by
electrostatic trapping between Al source and drain electrodes
(Dutta et al., 2000). Zaknoon et al. (2008) showed charging
energies of�50 meV using scanning tunneling spectroscopy.
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Twelve resonances in the conductance versus bias voltage

were attributed to the 12-fold conduction band degeneracy

owing to spin and the sixfold valley degeneracy as described

in Sec. III.A.
Small Ge islands can be grown on Si(001) via Stranski-

Krastanov growth resulting in huts, pyramids, and domes

with heights of 5–70 nm and lateral dimensions varying

from 20 to 80 nm (Eaglesham and Cerullo, 1990; Mo et al.,

1990; Medeiros-Ribeiro et al., 1998; Ross, Tromp, and

Reuter, 1999; Stangl, Holy, and Bauer, 2004; Katsaros

et al., 2008); see Fig. 19(a). The group of De Franceschi in

Grenoble made Al contacts to Ge domes with an additional

2 nm Si capping layer (Katsaros et al., 2010, 2011); see

Fig. 19. In this configuration the SiGe nanocrystal acts as a

confining potential for holes due to the valence band offset

between Ge and Si at the heterostructure interface (Van de

Walle and Martin, 1986; Schäffler, 1997). Free holes will

accumulate in the Ge when the Fermi level lies below the

valence band edge of the Ge center; see Fig. 19(b). Electron

transport measurements at 15 mK show Coulomb diamonds

with charging energies varying from a few to 20 meVas eight

holes leave the quantum dot. Because of the limited tunability

reaching the few-charge regime in self-assembled nanocrys-

tals will be a great challenge.

2. Bottom-up grown nanowires

Bottom-up grown nanowires are generally synthesized by

means of a vapor-liquid-solid process (Wagner and Ellis,

1964), allowing for growth of single-crystal Si and Ge nano-

wires (Morales and Lieber, 1998) with diameters varying

from 3 to 100 nm and lengths up to tens of microns; see

Figs. 20(a) and 20(b). Both n-type and p-type dopants have

been incorporated, and their location depends on the diameter

(Xie et al., 2009). The doping can be varied during growth:

such modulation doping has been used to intersect heavily

doped n-Si regions with two short lightly doped regions,

resulting in single-electron tunneling at 1.5 K (Yang,

Zhong, and Lieber, 2005). Within one nanowire heterostruc-

tures of different materials can be created both radially and

axially, such as core and shell Ge=Si nanowires (Lauhon

et al., 2002). In the latter case the valence band offset will

induce hole population in the Ge core; see Fig. 19(b).
When metallic contacts are made to nanowires the

Schottky tunnel barriers can define the quantum-dot length

as shown in core and shell Ge=Si nanowires (Lu et al., 2005)

and Si nanowires (Zhong et al., 2005); see Fig. 20(c). The Si

nanowire quantum-dot length can be shortened by silicidation

transforming the device into, e.g., a NiSi-Si-NiSi nanowire as

shown in Fig. 20(d) (Weber et al., 2006; Zwanenburg, van

Loon et al., 2009; Mongillo et al., 2011).
After the demonstration of Coulomb blockade oscillations

in Ge=Si nanowires by the Lieber group from Harvard

(Lu et al., 2005), they joined forces with the Marcus group

and created double quantum dots with tunable tunnel barriers;

see Sec. IV.F. Here the source and drain contacts were Ohmic,

while the tunnel barriers were defined by local top gates

(Hu et al., 2007). Roddaro et al. (2008) used the same

configuration to create single quantum dots and probe the

hole spin states; see Sec. IV.E. Ge=Si nanowires were found

to have a strong spin-orbit interaction, which can be tuned by

means of an electric field (Hao et al., 2010). Recent spin-

lifetime measurements (Hu et al., 2011) indicate spin-orbit

interaction as the dominant mechanism for spin relaxation.

According to the work by Kloeffel, Trif, and Loss (2011), the

unusually strong spin-orbit coupling makes them particularly

attractive candidates for quantum information processing via

FIG. 19 (color online). Self-assembled nanocrystals. (a) STM

image of a Ge=Sið001Þ cluster with a height of 2.8 nm. Scan area

is 40	 40 nm. From Mo et al., 1990. (b) Band diagram for a

Si=Ge=Si heterostructure, showing the accumulation of holes owing

to the valence band offset between Ge and Si. (c) Schematic of a

quantum-dot device obtained by contacting a single SiGe nano-

crystal to aluminum source or drain electrodes. The heavily doped

substrate is used as a backgate for the measurements in (d) where

ISD is plotted as a function of VG and VSD. (c), (d) From Katsaros

et al., 2010.

FIG. 20 (color online). Bottom-up grown nanowires. (a) TEM

image of a Si nanowire; crystalline material (the Si core) appears

darker than amorphous material (SiOx sheath) in this imaging mode.

Scale bar, 10 nm. (b) High-resolution TEM image of the crystalline

Si core and amorphous SiOx sheath. The (111) planes (black arrows)

are oriented perpendicular to the growth direction (white arrow). (a),

(b) Adapted from Morales and Lieber, 1998. (c) Stability diagram of

a p-Si nanowire quantum dot. From Zhong et al., 2005. (d) SEM

image of a nanowire quantum dot with NiSi Schottky contacts.

From Zwanenburg, van Loon et al., 2009.
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electric-dipole induced spin resonance (Golovach, Borhani,
and Loss, 2006; Nowack et al., 2007; Nadj-Perge et al., 2010),
and for research on Majorana fermions (Majorana, 1937).

Recently, Ge=Si nanowires with a triangular cross section
and a height of just three unit cells were realized by molecular
beam epitaxy (Zhang et al., 2012). These wires are directly
grown on planar Si without the use of any catalyst, and
preliminary low-temperature measurements show Coulomb
blockade.

3. Electrostatically gated Si=SiGe quantum dots

A powerful way to achieve tunability of tunnel couplings
in quantum dots is to provide confinement in one or more
directions through the use of electrostatic gates. Using
Si=SiGe heterostructures or metal-oxide-semiconductor
(MOS) structures, it is possible to form high-quality two-
dimensional electron systems that can be partitioned into
tunable quantum dots using depletion or accumulation gates,
a procedure described in detail in this section and the next. In
general, the confinement in at least one direction must be
provided by a nonelectrostatic method; usually a materials
interface is used, the two most common being the interface
between single-crystal silicon and its amorphous oxide (in
MOS structures, see the next section), and the epitaxial inter-
face between single-crystal Si and Si1�xGex. When the pre-
cise composition x is unimportant and no confusion will arise,
we refer to these heterostructures as Si=SiGe. Both MOS
devices and Si=SiGe devices have been reviewed extensively;
see, for example, Sze and Ng (1981) and Wolf (1990) for the
former and Mooney (1996) and Schäffler (1997) for the latter.

A convenient, if incomplete, figure of merit for two-
dimensional electron systems is the mobility �. For Si MOS,
mobilities in the range 5000–15 000 cm2=Vs are quite good
[see, e.g., Eng, McFarland, and Kane (2005, 2007)],
and mobilities in excess of 40 000 have been reported
(Kravchenko and Sarachik, 2004). The low-temperature mo-
bility in Si=SiGe two-dimensional electron gases is not limited
by defects at the interface and has been improving rapidly in
recent years. In 1995, Ismail and co-workers reported a low-
temperature mobility of 520 000 cm2=Vs in a modulation-
doped Si=SiGe heterostructure (Ismail et al., 1995). An even
higher mobility of 800 000 cm2=Vs was reported by a group
from Hitachi in 1998 (Sugii et al., 1998). Recently, Si=SiGe
two-dimensional electron systems have been formed using
undoped structures with a positively biased accumulation
gate. In this approach, an intervening oxide such as Al2O3

(Lai et al., 2005) is used to separate the accumulation gate from
the semiconductor surface to avoid injecting current into the
heterostructure (Lu et al., 2007). The positively biased accu-
mulation gate removes the need for any doping in the structure,
removing a source of background impurities and eliminating
the modulation doping layer altogether, both of which
cause scattering. Resulting mobilities as high as � ¼ 1:6	
106 cm2=Vs have been reported (Lu et al., 2009). Further, the
removal of intentional doping appears to significantly reduce
low-frequency charge noise in the devices.

Because both Si and Ge have isotopes with zero nuclear
spin, the proposal by Loss and DiVincenzo (1998) to use
quantum dots as hosts for semiconductor spin qubits led to
great interest in the development of high-quality quantum

dots in Si=SiGe heterostructures (Vrijen et al., 2000; Friesen
et al., 2003). The challenge in the early work in this field was
to find ways to fabricate such dots with low-leakage gates,
sufficient tunability, and in such a way as to yield stable, low-
noise devices. As discussed later, modern Si=SiGe quantum
dots have achieved performance that rivals that of any mate-
rials system available. In this section we discuss the materials
and device research that enabled this advance.

Here we discuss a few critical materials issues relevant to
Si=SiGe heterostructures. Interest in Si=SiGe arises because
of the inevitability of defects at the interface between crys-
talline Si and its amorphous oxide. Heterostructures formed
from Si and Si1�xGex offer a natural alternative with, in
principle, no interfacial traps (although other types of disor-
der, such as atomic steps and strain variation, are certainly
present).

Although both Ge and Si have the diamond structure,
Ge sits one row beneath Si in group IV of the periodic table,
so that the lattice constant of Si1�xGex increases as x in-
creases, achieving a mismatch between pure Si and Ge of
approximately 4.17% (Schäffler, 1997). Because of this mis-
match, pure Ge will grow epitaxially in two-dimensional
layers only three monolayers on Si (Mo et al., 1990).
Beyond this critical thickness, self-assembled quantum dots
or ‘‘huts’’ form, as discussed in Sec. IV.B.1, preventing the
growth of uniform quantum wells.

Because the lattice constant of Si1�xGex depends on x, a
full description of a heterostructure of these two materials
must include the strain of the various layers. For the structures
considered here, the layers of interest typically include a Si
quantum well with Si1�xGex barriers on either side, as shown
in Fig. 21; typically x� 0:3. If the quantum well is below the
critical thickness for dislocation formation, the in-plane lat-
tice constant will remain unchanged passing vertically from
the Si1�xGex through the Si quantum well and into the upper
barrier. The band offsets at the Si=Si1�xGex interfaces depend

FIG. 21. Layer design and corresponding band diagram of a

Si=SiGe modulation-doped heterostructure used to form top-gated

quantum dots. From Berer et al., 2007.
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on this in-plane lattice constant. For an unstrained, relaxed

Si0:7Ge0:3 barrier layer, the minimum in the conduction band

is approximately 160 meV lower inside a Si quantum well

compared with the barriers (Schäffler, 1997).
Because it is very challenging to grow bulk, relaxed

Si1�xGex with even moderately large x, relaxed Si1�xGex
substrates conventionally are formed by slowly increasing

the Ge concentration x from zero to the desired final value

over a thickness of several microns. This procedure induces

the formation of misfit dislocations, increasing the overall

lattice constant, and can yield low-defect structures (Mooney,

1996). The relaxation process itself results in small inhomo-

geneities, which can be observed with nanobeam x-ray mea-

surements (Evans et al., 2012).
Quantum dots in Si=SiGe demonstrating Coulomb block-

ade were first formed using a combination of etching and

electrostatic gating. Notargiacomo et al. (2003) observed

Coulomb blockade oscillations in a gated nanowire etched

into a Si=SiGe heterostructure. This early device had a single

overall top gate used to control the number of electrons in the

quantum dot. Klein et al. (2004) formed a quantum dot with

three separate electrostatic gates. These gates were formed of

the same two-dimensional electron gas as the quantum dot,

source, and drain leads (Eriksson et al., 2004). To avoid

current flowing from the gates to the dot, deep trenches

were etched between the gates and the dots; the intervening

gaps make it difficult to apply local fields and separately gate

the quantum dot and the tunnel barriers. This drawback was

partially ameliorated by the demonstration that gates could be

formed by metal deposited into etched regions surrounding

the dot (Sakr et al., 2005), and by the use of extremely small

top gates used to break an etched wire into a gated quantum

dot (Slinker et al., 2005). The drawback of etching, however,

is the potentially large degree of sidewall depletion (Klein

et al., 2006).
Berer et al. (2006) demonstrated a fully top-gate defined

quantum dot formed in a modulation-doped 2DEG, as shown

in Fig. 22. They showed that Pd Schottky gates, when fab-

ricated on heterostructures like that shown in Fig. 21, in

which care was taken to reduce the dopant density near the

surface, enabled low-leakage gates (Berer et al., 2006). There

had been great concern about leakage between the top gates

and the electron gas, but the Pd Schottky gate approach has

proven to be very robust (Klein, Savage, and Eriksson, 2007;
Wild et al., 2010; Payette et al., 2012). The Schottky gate
approach has also been used successfully to gate heteros-
tructures with enhanced concentration of 28Si and 70Ge
(Sailer et al., 2009). A second approach to eliminate leakage
is to use a dielectric material beneath the gates, creating
metal-oxide-semiconductor split gates to define the quantum
dot (Y. S. Shin et al., 2011).

The primary advantage of top-gated quantum dots, in
which the lateral confinement is entirely provided by adjust-
able gate voltages, is their extreme tunability. At zero gate
voltage in most cases current can flow directly under a gate,
enabling a smooth transition from a completely open two-
dimensional electron gas to a fully confined quantum dot.
This tunability led to both the observation of the Kondo effect
in a Si=SiGe top-gated quantum dot (Klein, Savage, and
Eriksson, 2007) and the demonstration of single-electron
occupation, as shown in Fig. 28.

4. Quantum dots in planar MOS structures

The silicon MOSFET is arguably the world’s most impor-
tant electronic device, being the basic component of all
modern microprocessor chips. Its success has been built on
the ability to grow a high-quality SiO2 layer on the Si(001)
surface by thermal oxidation, forming a high band-gap insu-
lator that isolates the gate from the silicon channel. In current
processor chips a SiO2 layer of �1 nm is sufficient to main-
tain gate voltages that are a significant fraction of a volt with
negligible leakage. The Si=SiO2 interface, which confines the
electron layer in a MOSFET, can also have relatively low
disorder, with reported electron mobilities as high as
40 000 cm2=Vs (Kravchenko and Sarachik, 2004), although
the imperfect lattice match between the Si and SiO2 creates
defects at the interface, thus constraining the electron mobi-
lities below those attainable at Si=SiGe interfaces. Despite
this, it is possible to form quantum dots in MOS structures
that can be controlled down to the single-electron level with
high tunability.

In this section we focus on quantum dots formed at the
Si=SiO2 interface via the use of multiple surface gates that
provide electrostatic confinement in all three dimensions. In
general an upper gate is used to induce an electron layer at the
interface (as in a ‘‘traditional’’ MOSFET), while two or more

FIG. 22 (color online). (a) Scanning electron micrograph of the Schottky gates used to form a gated quantum dot in Si=SiGe. (b) Coulomb

diamonds: Conductance of the dot as a function of the voltage VG applied to gates G1 and G2 and of the drain-source voltage VDS. From

Berer et al., 2006.
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lower gates provide tunable tunnel barriers between the
electron reservoirs and the dot. As described in Sec. IV.A,
one of the earliest such structures (Matsuoka et al., 1994)
exhibited Coulomb blockade oscillations, although these
preliminary results were rather irregular.

One of the first well-controlled MOS quantum dots was
demonstrated by Simmel and co-workers (Simmel et al.,
1999); see Fig. 23. In this structure a continuous upper gate
was used to induce a 2DEG over a large area, while four
lower gates were used to confine the dot and form tunnel
barriers. The resulting lower gate structure mimics those used
to confine GaAs=AlGaAs quantum dots, although in the latter
case the 2DEG is created by modulation doping. The result-
ing Coulomb oscillations in this MOS device were quite
regular [see Fig. 23(c)] and provided promise for future
MOS quantum-dot studies. The lower gates of the device in
Fig. 23 were made using refractory metal, since a high-
temperature process was used to deposit the upper oxide
isolation layer [see Fig. 23(a)].

This type of architecture, employing a large-area upper
gate, has since been used by a number of groups to construct
MOS quantum dots. A group at Sandia National Laboratory
demonstrated a range of quantum-dot devices in which etched
polycrystalline silicon (poly-Si) is used for the lower gates,
and a large-area upper metal gate is used to induce the 2DEG
layer (Nordberg et al., 2009a; Tracy et al., 2010). The use of
poly-Si gates is appealing from the perspective of future
manufacturing, since it opens the way toward the use of
CMOS process technologies. Similar MOS quantum dots
also have been used to confine single electrons, enabling
direct measurement of electron spin relaxation times (Xiao,
House, and Jiang, 2010a).

By reducing the upper MOSFET gate to nanoscale dimen-
sions, a group at the University of New South Wales devel-
oped a highly compact multigate MOS architecture (Angus

et al., 2007) that has since been used to construct a wide range
of single (Lim, Zwanenburg et al., 2009; Lim et al., 2011) and
double (Lim, Huebl et al., 2009; Lai et al., 2011) quantum-
dot structures. This architecture uses aluminum (Al) upper
and lower gates, with a thin (3–5 nm) Al2O3 insulating layer
between the gates, formed by thermally oxidizing the lower
gates at the relatively low temperature of 150 
C. Despite
being very thin, the Al2O3 insulator can maintain intergate
voltage differentials of up to 4 V, allowing for high gate
tunability and the formation of very small (sub-50 nm)
multidot structures. Figure 24 shows a quantum-dot device
based on this technology, in which a third layer of gate
metal is used. This allows one upper gate to be used as a
‘‘plunger,’’ to control the dot’s electron occupancy, while
separate upper gates are used to induce the source and
drain electron reservoirs; see Fig. 24(b). In this way the dot
occupancy can be reduced to the single-electron level,
as confirmed by the bias spectroscopy measurements in
Fig. 24(c), while maintaining a high density of states in the
reservoirs. Such independent tuning of the dot occupancy and
the reservoir electron density is not possible when a large-
area upper gate is employed.

The metal-oxide-semiconductor techniques just discussed
can be applied to Si=SiGe heterostructures, yielding ex-
tremely stable and tunable quantum dots (Hayes et al.,
2009; Borselli et al., 2011a). The device design, as shown
in Fig. 25, uses a Si quantum well surrounded by epitaxial
SiGe barriers to provide a clean environment for the electrons
in the device. Those electrons are induced by an accumulation
gate at the top of the structure. Depletion gates in between the
accumulation gate and the heterostructure surface are used to
control size and shape of the dot.

MOS-based quantum dots, using architecture like those in
Figs. 23 and 24, have since been used in a range of advanced
measurements, including single-spin measurement, and

FIG. 23. Si-MOS quantum dot with large-area top gate. (a) Cross-sectional schematic, showing two oxide and two gate layers, formed on a

silicon substrate. The lower SiO2 layer is thermally grown, while the upper oxide layer is formed using plasma deposition. The large-area

upper gate induces a 2DEG at the Si=SiO2 interface, while the lower gates locally deplete the 2DEG to form a quantum dot. (b) Top-view

schematic, showing lower depletion gates (black) and induced electron layer (gray). (c) Normalized spacings � between Coulomb peaks in

dot conductance as a function of upper gate voltage. Inset: Raw Coulomb oscillations in dot conductance as a function of upper gate voltage.

From Simmel et al., 1999.
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spin- and valley-state spectroscopy, as will be discussed in
Secs. IV.E and IV.F.

5. Quantum dots in etched silicon nanowires

As discussed in Sec. IV.A, some of the earliest silicon-based
single-electron devices [e.g., Takahashi et al. (1994, 1995)]
were based upon narrow nanowires, patterned using traditional

top-down lithographic techniques, and etched from thin

(typically <50 nm) silicon layers that form the upper layer

of SOIwafers. These early devices used the PADOX technique

to create additional confinement along the length of the nano-

wire, but in subsequent structures researchers incorporated

‘‘wrap-around’’ gates, positioned along the wire to provide

additional confinement.

One of the first examples of this type of gated silicon

nanowire was demonstrated by a group at NTT Basis

Research Laboratories in Japan (Fujiwara et al., 2006); see

Fig. 26. Here confinement in the y and z directions was

provided by the narrow wire of width 20 nm and thickness

20 nm. Confinement along the wire was created by wrap-

around lower gates, which in this case were made from poly-

Si. Finally, a large-area poly-Si upper gate, isolated from the

gates below using SiO2, was patterned above the entire

structure to induce carriers in the nominally undoped nano-

wire. The resulting structure is entirely CMOS compatible,

making it convenient for production using well-established

manufacturing processes, and also utilizing the high-quality

thermally grown SiO2 insulator, which is known for having

very low charge noise. In subsequent measurements on these

(b)

(d)

(c)(a)

FIG. 24 (color online). Si-MOS quantum dot with compact multilayer gate stack. (a) Scanning electron microscope image of device.

(b) Cross-sectional schematic, showing three oxide layers and three Al gate layers, formed on a silicon substrate. The SiO2 layer is thermally

grown in a high-temperature process, while the thin Al2O3 layers between the gates are formed by low-temperature oxidation of the

aluminum. (c) Stability map obtained by plotting differential conductance through the device as a function of source-drain bias VSD and

plunger (P) gate voltage VP. The first diamond opens up completely, indicating that the dot has been fully depleted of electrons. (d) Coulomb

oscillations as a function of plunger gate voltage VP for the first 23 electrons in the dot. From Lim et al., 2011.
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FIG. 25 (color online). Gated quantum dot formed from a Si=SiGe
heterostructure with a global accumulation gate. (a) Cross-sectional

view of the heterostructure and the two layers of gates. (b) Top-view

SEM image of the gates with a numerical simulation of the electron

density superimposed. From Maune et al., 2012.
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devices it was found that they exhibited extremely high

charge stability, with a drift of less than 0:01e over several

days (Zimmerman et al., 2007).
As seen in Fig. 26(d), a quantum dot could be formed by

using the outer gates named LGS and LGD to create tunnel

barriers, with the central gate named LGC acting as a plunger

to control the dot occupancy. The Coulomb oscillations [see

Fig. 26(d)] were highly periodic over a large gate voltage

range (� 0:5< VLGC < 1:0 V), with a deviation of less than

1%, although the dot occupancy Ne in this case was relatively

large, with Ne � 200 electrons at VLGC ¼ 0 V. The peak

conductance could also be tuned over more than 3 orders of

magnitude by varying the barrier gate voltages. For central

gate voltages VLGC <�1:0 V, an additional tunnel barrier

was formed, breaking the quantum dot into two dots in series.

Using similar device structures this group could therefore

operate double quantum dots, demonstrating effects such as

Pauli spin blockade (Liu, Fujisawa, Ono et al., 2008), dis-

cussed further in Sec. VI.C.4.
It is also possible to form a quantum dot in a silicon

nanowire using just a single gate, by making use of technology

that has been developed for the manufacture of FinFET-type

MOSFETs. FinFETs are considered likely replacements for

planar CMOS technology, due to their ability to operate as

FETs with good on/off ratios at much shorter channel lengths.

Figures 27(a) and 27(b) show a FinFET structure, which is

based on a nanowire (the ‘‘fin’’) that is etched from a SOI

wafer, as previously described. A single wraparound poly-Si

gate is encapsulated on either side by an insulating ‘‘spacer,’’

made from either SiO2 or Si3N4. The gate and spacer act as a

mask for subsequent ion implantation of the nþ source and

drain regions, which is a standard ‘‘self-aligned’’ gate process

used in CMOS production. By applying a positive voltage to

the poly-Si gate electrons can be induced below, to form a

quantum dot, isolated from the source and drain due to the

natural barrier created by the spacer regions; see Fig. 27(b).

Such quantum dots can be extremely stable in the many-

electron regime, as shown in Fig. 27(c), which demonstrates

bias spectroscopy (‘‘Coulomb diamonds’’) taken over a wide

range of electron occupancy, with high stability and almost

constant charging energy (Hofheinz et al., 2006b). Similar

FinFET structures have also been used for single-dopant

tunneling studies; see Sec. V.B.2.

C. Charge-sensing techniques

The noninvasive sensing of charge displacements in quan-

tum nanostructures was first demonstrated in a GaAs=AlGaAs
heterostructure device (Field et al., 1993), when a QPC was

used to detect the change in occupancy of a quantum dot. Here

the QPC is biased close to pinch-off, where its transconduc-

tance dI=dVG can be very large. Any small charge displace-

ment in the vicinity of the QPC channel can then lead to a

significant change in QPC current, via its capacitive coupling.

This technique has since been widely applied, enabling the

direct probing of single-electron charges and the indirect

FIG. 26 (color online). Multigated quantum dot in etched silicon

nanowire. (a) Schematic top view and cross-sectional view of the

device. Three lower ‘‘wrap-around’’ gates (LGS, LGC, LGD) are

used to form tunnel barriers in an etched silicon nanowire. (b) Top-

view scanning electron microscope image of the device before the

upper gate is deposited. (c) Equivalent circuit of the device.

(d) Coulomb blockade oscillations in device conductance as a

function of central gate voltage VLGC when the two outer gates

(LGS, LGD) are biased to set each tunnel barrier to G ¼ 1 �S.
Inset: Coulomb oscillations for a range of values of barrier con-

ductance from 20 nS to 8 �S. From Fujiwara et al., 2006.

FIG. 27 (color online). Single-gated quantum dot in etched silicon

nanowire. (a) SEM images and (b) cross-sectional schematics taken

perpendicular to the nanowire (upper) and along the nanowire

(lower). (c) Stability map (Coulomb diamonds) obtained by plotting

differential current through the device as a function of source-drain

bias Vd and wrap-gate voltage Vg. From Sellier et al., 2006, and

Hofheinz et al., 2006b.
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probing of single spins in nanostructures based on a variety of

materials systems, including silicon.
Sakret al. (2005) fabricated aQPCadjacent to a quantumdot

in a Si=SiGe heterostructure using a combination of isolation

etching and metal gates aligned to the etched trenches. While

this structure enabled sensing of the dot’s electron occupancy in

the many-electron regime, it did not have sufficient sensitivity

to probe down to the last electron. Simmons et al. (2007) used

Pd metal surface depletion gates on a Si=SiGe heterostructure
to define a similar geometry; see Fig. 28(a). By monitoring the

differential conductance of the QPC sensor they were able to

accurately probe the depopulation of electrons in the adjacent

quantum dot, even when the transport current Idot through the

dot had fallen below the noise level [see Fig. 28(b)]. In this way

they were able to track the occupancy of the dot down to the

final electron, as shown in Fig. 28(c).
More recently, QPC sensors have been used with great

versatility in both Si=SiGe and Si MOS quantum dot systems

for measurement of both charge (Nordberg et al., 2009b) and

spin (Hayes et al., 2009; Xiao, House, and Jiang, 2010a;

Simmons et al., 2011) states. A technique developed to mea-

sure the spin state of a single electron in a GaAs=AlGaAs
quantum dot (Elzerman et al., 2004) has been successfully

applied to dots in silicon. This involves loading an electron (of

indeterminate spin) into an empty quantumdot and positioning

the Fermi level so that only a spin-up electron is able to tunnel

out, with the charge displacement monitored by a QPC sensor.

The technique has been used to measure the spin lifetime of

single electrons loaded into Si=SiGe (Hayes et al., 2009;

Simmons et al., 2011) and Si MOS (Xiao, House, and Jiang,

2010a) quantum dots. These experiments are discussed in

more detail in Sec. VI.
SETs have also been used as highly sensitive electro-

meters in nanostructure devices. The most sensitive such

electrometers employ Al metal islands, with Al2O3 tunnel

barriers, which can be integrated with both MOS (Andresen

et al., 2007) and Si=SiGe-based quantum dots (Yuan et al.,

2011). Integrating such SETs into a radio-frequency (rf) tank

circuit forms an rf-SET (Schoelkopf et al., 1998), which can

operate at frequencies above 100 MHz with charge sensitiv-

ities approaching �10�6 e=
ffiffiffiffiffiffi
Hz

p
. Andresen et al. (2007)

fabricated such an Al-Al2O3 rf-SET on the surface of a

phosphorus-doped silicon (Si:P) device to study the gate-

controlled transfer of an electron between two implanted

phosphorus donors, with a measurement bandwidth exceed-

ing 1 MHz. They were able to study the charge relaxation rate

as a function of gate-induced detuning between the two donor

levels, measuring an oscillating relaxation rate consistent

with acoustic phonon emission in silicon.
While Al-Al2O3 rf-SETs are well established as fast charge

sensors, it is advantageous to integrate the SET sensor into the

silicon device itself, as has been done with silicon-based QPC

sensors, since this can improve the capacitive coupling to the

system being measured and can also simplify fabrication.

Furthermore, the larger charging energies that can be ob-

tained with silicon quantum dots, compared with Al metal

islands, provide the potential for increased sensitivity and

higher operating temperature. Figure 29 shows an example of

a silicon SET integrated adjacent to a Si-MOS quantum dot

(Yang et al., 2011). In this experiment, Yang and co-workers

also employed a dynamic feedback technique to keep the

SET sensor at a point of constant sensitivity, allowing for

more robust measurements that can tolerate random charge

FIG. 28 (color online). Noninvasive charge sensing of a Si=SiGe

quantum dot using a quantum point contact (QPC) sensor. (a) SEM

device image. (b) (Top) Derivative of the QPC current dIQPC=dVG

as a function of gate voltage VG. The peaks correspond to changes

in the number of electrons in the dot. (Bottom) Current Idot through
the quantum dot as a function of VG. (c) QPC sensor output in the

few-electron limit. No further transitions occur for VG < 1:68 V,
indicating an empty quantum dot. From Simmons et al., 2007.

FIG. 29 (color online). Noninvasive charge sensing of a Si-MOS

quantum dot using a single-electron transistor (SET) sensor.

(a) SEM device image, showing a Si-MOS SET sensor (upper

device) that is capacitively coupled to a Si-MOS quantum dot

(lower device). (b) Transport current ID through the quantum dot

shows Coulomb peaks as a function of dot plunger gate voltage VPD.

The changing potential on the dot is detected by monitoring the

uncompensated current IS through the SET sensor, which shows

charge transfer events superimposed on a rising background, due to

the coupling of the SET to VPD. This background can be largely

removed by adding a linear correction (fixed compensation) to the

SET gate voltage VPS, and then further enhanced by plotting the

derivative dIS=dVPD. From Yang et al., 2011.

984 Floris A. Zwanenburg et al.: Silicon quantum electronics

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



displacement events. Podd and co-workers in Cambridge also
demonstrated a capacitively coupled pair of Si-MOS quantum
dots, in which one of the dots could be used to sense the
potential of the other (Podd et al., 2010).

Angus et al. (2007) configured a silicon-based rf-SET by
using a double-gate structure to induce a Si-MOS quantum
dot and connecting this within a radio-frequency tank circuit.
They demonstrated a charge sensitivity of better than

10�5 e=
ffiffiffiffiffiffi
Hz

p
at a bandwidth up to 2 MHz, which compares

well with metallic rf-SETs. In their device the bandwidth was
limited by a high gate resistance, but there is no reason why
such a structure could not be designed to operate at band-
widths above 100 MHz. One advantage of a Si-MOS SET

compared with its Al-Al2O3 counterpart is that the tunnel
barriers of the Si-MOS device are gate controlled, meaning
that the resonant frequency of the tank circuit can be easily
tuned to optimize its operation.

For studies of spin dynamics, which can be orders of
magnitude slower than charge dynamics in silicon, the need
for high-frequency sensing becomes less critical and a stan-
dard low-frequency (sub-MHz) SET operation can be used
(Hofheinz et al., 2006a). Most notably, Morello et al. (2010)
used a Si-MOS SET, similar to the structure used by Angus
et al. (2007), to detect charge motion between the SET island
and implanted phosphorus dopants, thus enabling single-shot
spin readout of an electron bound to a phosphorus donor. This
experiment is discussed further in Sec. VI.C.3.

D. Few-electron quantum dots

For many years it was difficult to achieve single-electron
occupation in gated quantum dots, in spite of the tunability of
such dots. The fundamental problem was the difficulty main-
taining reasonably fast tunnel rates between a quantum and
nearby charge reservoirs. A common gate design [see, e.g.,
Waugh et al. (1995)], is shown schematically in Fig. 30(a). As
the quantum dot is made smaller, by making the gate voltages
more negative, the tunnel barriers to one or both reservoirs
must become wider.

Figure 30(b) shows an alternative approach for the for-
mation of few-electron quantum dots in GaAs, developed

by the group in Ottawa (Ciorga et al., 2000). The advantage

of this gate design is that it enables strong tunnel coupling

to both reservoirs even when the quantum dot is small.

This gate design is equally useful for gated dots in Si, and

it was first implemented in a Si=SiGe heterostructure in

Sakr et al. (2005), enabling observation of both Coulomb

blockade and charge sensing, but not single-electron

occupation.
The challenge to achieving single-electron occupation in

both single and double one-electron dots in Si=SiGe has

been to bring under control instability in the background

offset charge of the quantum dots. In 2007 Simmons et al.

(2007) demonstrated single-electron occupation in a top-

gated, Si=SiGe quantum dot. In that work, care was taken

to ensure that the doping of phosphorous in the modulation

doping layer was not larger than necessary; limiting the

doping in this layer appears to improve the stability of

devices. The primary evidence for single-electron occupa-

tion was the absence of additional charge transitions, as

shown in Fig. 28, for a change in gate voltage more than

3.5 times as large as that required to add the last observed

electron.
Metal-oxide-semiconductor quantum dots can also ap-

proximate the few-electron regime (Prati et al., 2011). In

the approach of Xiao, House, and Jiang (2010b), the depletion

gates underneath a global accumulation gate form the quan-

tum dot. Using an approach analogous to this type of MOS Si

structure, Borselli and collaborators showed that single-

electron occupation can be achieved in very stable Si=SiGe
quantum dots when the doping is removed from the structure

(Borselli et al., 2011a); see Sec. IV.B.4.
A novel approach to achieving single-electron occupation

was demonstrated by Borselli and colleagues at HRL

Laboratories (Borselli et al., 2011b). As shown in Fig. 31,

the device structure uses two quantum wells, the lower of

which is doped. An air bridge is used to apply a positive

voltage to an isolated, circular surface gate, pulling electrons

into the upper quantum well. Nearby surface gates are nega-

tively biased, enabling the formation of a charge-sensing

channel in the lower electron layer. Such a device forms an

extremely symmetric quantum dot that is easily tuned to the

one-electron charge state.
(a) (b)

FIG. 30. Gate design enabling few-electron occupation. The gate

design in (a) is a natural way to form a quantum dot tunnel coupled

to two reservoirs, as shown by the arrows. As the dot becomes

smaller, however, it is very difficult to maintain a high tunnel rate to

both reservoirs. The gate design in (b), based on Fig. 1 of Ciorga

et al. (2000), enables a small dot to be coupled to both reservoirs.

FIG. 31 (color online). Schematic diagram of a few-electron

quantum dot formed from a Si=SiGe heterostructure with a double

quantum well and an accumulation gate contacted by an air bridge.

Inset: SEM micrograph of the gate region of a corresponding device.

From Borselli et al., 2011b.
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Few-carrier occupation can be accomplished even in the
absence of charge sensing, as demonstrated in nanowire-
based hole quantum dots for which the Coulomb diamonds
open to very large gate voltages at sufficiently positive gate
voltage (Zhong et al., 2005). Zwanenburg, van Rijmenam
et al. (2009) reached the one-hole state in a very small Si
quantum dot in a nanowire, enabling them to perform spin
spectroscopy. The device made use of NiSi contacts, in which
a Schottky barrier defines the quantum dot, as shown in
Fig. 32. The few-electron regime was also observed without
charge sensing in planar MOS Si quantum dots, thanks to the
high degree of tunability of these devices (Lim, Zwanenburg
et al., 2009; Lim et al., 2011), and in MOSFETs built within a
preindustrial fully depleted silicon-on-insulator technology
(Prati et al., 2012).

E. Spins in single quantum dots

In the previous sections we established the evolution in
recent years from the observation of simple localization and

Coulomb blockade to few-electron quantum dots in silicon.

With the understanding and control of the charge side of

electrons one can also probe their spins. In this section we
first discuss experiments on ground state and excited state

magnetospectroscopy in silicon quantum dots. The existence

of valleys in silicon makes the spin filling nontrivial: the

configuration and mixing of valleys and orbits determines
how electrons will consecutively occupy the available spin-up

or spin-down states.

1. Spin-state spectroscopy

The most straightforward methods of measuring electron

spin states in quantum dots are ground state and excited state

magnetospectroscopy (Hanson et al., 2007). Excited state

magnetospectroscopy allows observation of spin excited

states at a fixed magnetic field (Cobden et al., 1998), as
long as the Zeeman energy can be resolved. Four experimen-

tal demonstrations in silicon systems are bottom-up Si and

SiGe nanowires (Roddaro et al., 2008; Zwanenburg, van

Rijmenam et al., 2009; Hu et al., 2011) and SiGe nanocrystals
(Katsaros et al., 2010); see Fig. 33. When the spin-excited

state is measured at different magnetic fields, one can extract

the g factor by plotting the Zeeman energy versus magnetic

field; see Fig. 33(b). The first two holes in a Si nanowire

quantum dot were found to have a g factor of 2:3� 0:2 in
perpendicular magnetic field. In SiGe nanocrystals and nano-

wires the g factor is anisotropic: the results in Fig. 33(c) show

g factors of gk ¼ 1:21 and g? ¼ 2:71 for, respectively, par-

allel and perpendicular fields.
In the case of ground state magnetospectroscopy,

the spin filling is investigated by measuring the magnetic

field dependence of the electrochemical potential �N ,

which is by definition the energy required for adding the
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FIG. 32 (color online). Transport data showing the last hole in a Si

nanowire-based quantum dot. Inset: SEM image of the device

showing the NiSi contacts and a Cr=Au side gate device. From

Zwanenburg, van Rijmenam et al., 2009.

FIG. 33 (color online). Excited statemagnetospectroscopy inSi quantumdots. (a)Zeeman splitting at the 0-1 and1-2 transition in a few-hole Si

nanowire quantum dot; (b) the corresponding magnetic field dependence of the Zeeman energy. From Zwanenburg, van Rijmenam et al., 2009.

(c) Anisotropic g factors in SiGe nanocrystals; (d) the corresponding excited-state magnetospectroscopy. From Katsaros et al., 2010.
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Nth electron to the dot. The slope of �NðBÞ is given by

@�N=@B ¼ �g�B�StotðNÞ, where g is the g factor, the

Bohr magneton�B ¼ 58 �eV=T, and �StotðNÞ is the change
in total spin of the dot when the Nth electron is added (Hada

and Eto, 2003). The electrochemical potential has a slope of

þg�B=2 when a spin-up electron is added, whereas addition

of a spin-down electron results in a slope of �g�B=2. The
rate at which�N changes with magnetic field thus reveals the

sign of the added spin.
Rokhinson et al. (2000) were the first to observe the

theoretically expected slopes in multiples of g�B=2 in an

n-type Si quantum dot. They showed the peak shift with

magnetic field of 29 electrons entering the dot, and more

detailed measurements on two sets of Coulomb peaks with

slopes of � 1
2g�B and � 3

2 g�B. The charge transitions dis-

play an unexpected large number of kinks at which the slope

changes sign, and thus the spin state as well. They concluded

that the spin filling is inconsistent with a simple picture of

noninteracting electrons in four single-particle levels. Later

reports are more straightforward to interpret and will be

discussed below.
The spin filling of holes has been investigated in nanowire

quantum dots. Zhong et al. (2005) found alternating spin-up

and spin-down holes in a many-hole quantum dot. The mag-

netic field evolution of the positions of eight consecutive

Coulomb peaks in Fig. 34(a) reveals alternating slopes of

�g�B=2, with an extracted g factor of 2� 0:2. The few-hole
regime displayed similar spin filling of the first four holes

in an empty dot (Zwanenburg, van Rijmenam et al., 2009);

see Fig. 34(b). The even-odd filling suggests that the degen-

eracy of heavy and light holes is lifted due to strain and

confinement effects; see, for example, calculations based on
density functional theory (Leu, Shan, and Cho, 2006; Sorokin
et al., 2008) and tight-binding models (Niquet et al., 2006;
Buin et al., 2008). SiGe nanowires have been shown to
exhibit the same spin filling; see Roddaro et al. (2008) and
Fig. 34(c).

2. Spin filling in valleys and orbits

The even-odd spin filling as observed in p-type silicon
quantum dots (see Sec. IV.E.1) is not very different from
similar devices in other material systems. However, the val-
leys in the silicon conduction band make the spin filling of
electrons nontrivial. Valley physics in silicon has been studied
extensively both theoretically (Saraiva et al., 2009; Culcer
et al., 2010; Culcer, Hu, and Das Sarma, 2010; Friesen and
Coppersmith, 2010; Saraiva et al., 2011) and experimentally
(Köhler and Roos, 1979; Nicholas, von Klitzing, and Englert,
1980; Pudalov, Semenchinskii, and Édel’Man, 1985; Koester,
Ismail, and Chu, 1997; Takashina et al., 2006; Goswami et al.,
2007; Fuechsle et al., 2010; McGuire et al., 2010).

As discussed in Sec. III.B.2 a two-dimensional electron gas
has two � valleys, separated by the valley splitting EV ; see
Fig. 7. A finite valley splitting influences the spin filling as
observed in ground state magnetospectroscopy (Hada and
Eto, 2003): the first electron is always a spin down, yielding
a slope of the corresponding Coulomb peak of �g�B=2; see
the experiment by Lim et al. (2011) in Fig. 35(b). The kink in
the second Coulomb peak (marked 2a) at �0:86 T is caused
by a sign change of the N ¼ 2 ground state spin: at low
magnetic field (before the kink), the second electron fills
the quantum dot with a spin up. As the magnetic field is

FIG. 34 (color online). Ground state magnetospectroscopy. Three examples of even-odd hole spin filling. (a) A many-hole Si nanowire

quantum dot (Zhong et al., 2005); (b) a few-hole Si nanowire quantum dot (Zwanenburg, van Rijmenam et al., 2009); (c) a many-hole Ge=Si
nanowire quantum dot (Roddaro et al., 2008).
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increased, the sign of the second electron spin changes from
up to down at B� 0:86 T.

When the valleys and orbits are mixed (Sec. III.B.2), there
are no pure valleys or pure orbits, and the lowest available
levels are referred to as valley orbits. The sign change can
then be explained with a simple model where the two lowest
valley-orbit levels are separated by the valley-orbit splitting
�EVO; see Fig. 35(b). At zero magnetic field, the first two
electrons fill with opposite spins in valley-orbit level 1. When
a magnetic field is applied, the spin-down and spin-up states
are split by the Zeeman energy EZ. Above 0.86 T the spin-up
state of valley-orbit level 1 (VO1) is higher in energy than the
spin-down state of valley-orbit level 2 (VO2) and it becomes
energetically favored for the second electron to occupy the
latter, i.e., VO2. At the kink the valley-orbit splitting equals
the Zeeman energy, which is 0.10 meVat 0.86 T. Comparable
kinks were reported simultaneously in accumulation-mode
Si=SiGe quantum dots, yielding valley splittings of 0.12 and
0.27 meV (Borselli et al., 2011b). In 2010, the absence of
kinks in the ground state magnetospectroscopy of a planar
MOS Si quantum dot was explained as a result of a large
exchange energy and an unusually large valley splitting of
0.77 meV (Xiao, House, and Jiang, 2010b).

F. Double quantum dots

Like their counterparts in the Ga-AlGaAs material system,
double quantum dots in silicon represent the natural extension
from a semiconductor ‘‘artificial atom’’ to an ‘‘artificial
molecule.’’ As outlined in the previous sections, it took until
around 2006 for low-disorder silicon-based quantum dots to
be produced with reasonable repeatability. Correspondingly,
this is also when the first demonstrations of double quantum
dots in silicon began to be reported.

1. Charge-state control

One of the earliest reports of silicon double dot operation
was by Gorman, Hasko, and Williams (2005), who formed an

isolated double dot by etching a thin (35 nm) layer of bulk-

phosphorus-doped silicon (Si:P) in a SOI substrate. They also

integrated a nearby SET, again formed by etching the Si:P

layer, which they used to monitor charge transfer in the

double dot. By rapidly pulsing a nearby control gate they

observed oscillations in the charge state of the double dot, as

a function of pulse length, which they interpreted as coherent

oscillations between the (n, m) and (n� 1, mþ 1) charge
states of the double dot. Because of the high electron numbers

in the dots resulting from the degenerative doping, and the

difficulty of controlling the dots size via the etching process,

this type of dot structure has not progressed significantly

since this time, and most studies of silicon quantum dots

are now based on dots induced in undoped silicon layers.
The starting point for any experimental study of a double

quantum dot is the determination of its charge state (N1, N2)

as a function of at least two gate voltages Vg1 and Vg2

controlling the system. Here N1 (N2) is the electron occu-

pancy of dot 1 (dot 2). By directly measuring the transport

current I through the dot, or by measuring the local electro-

static potential of the system using a nearby QPC or SET

charge sensor, one can plot a charge stability map as a

function of Vg1 and Vg2. van der Wiel et al. (2002) provide

an excellent review of semiconductor double quantum dots

and Figs. 36(a)–36(c) depict the charge stability maps ex-

pected for different interdot coupling strengths. Figure 36(b)

shows a map at intermediate interdot coupling, where one

observes a characteristic ‘‘honeycomblike’’ structure. The

points on the map where three different charge states are

degenerate in energy are known as ‘‘triple points’’ and it is

only at these points where a transport current I can flow

through the system, from source to drain [see Fig. 36(d)]. If

we then apply a source-drain bias VSD across the double dot,

these triple points expand to take on a triangular shape, as

shown in Fig. 36(e). It should be noted that while in a

transport measurement only the triple points (or bias tri-

angles) can be observed; when charge sensing is employed

one can also directly detect the transition lines between

charge states. Sarma, Wang, and Yang (2011) recently ap-

plied a Hubbard model approach to determine the charge

stability diagrams for silicon double dots, showing excellent

agreement with experiments (Simmons et al., 2009; Lai et al.,

2011).
The first clear demonstration of a double quantum dot in

nominally undoped silicon (Fujiwara et al., 2006) used a

double-gated silicon nanowire formed from a SOI substrate,

with three independently controlled barrier gates. This device

structure was previously described in Sec. IV.B.5 and is

depicted in Figs. 26(a) and 26(b). By varying the voltage

VLGC on the central barrier gate, Fujiwara and co-workers

were able to gradually tune the system from one large dot to

two well-isolated dots, as evidenced by the charge stability

plots shown in Figs. 37(b)–37(e). In Fig. 37(b) the central

gate voltage VLGC is tuned to minimize the tunnel barrier

between the dots, forming one large dot. As the outer barrier

gate voltages VLGS and VLGD are varied, the transport current

I plotted in Fig. 37(b) shows Coulomb blockade oscillations

as a function of the addition voltage (VLGS þ VLGD), which

can be compared with Fig. 36(c), indicating that one large dot

is present. However, as the tunnel barrier height is increased

FIG. 35 (color online). Spin filling in valleys in a planar MOS Si

quantum dot. (a) Magnetospectroscopy of the first two electrons

entering the quantum dot. The circle 2a marks a kink in the second

Coulomb peak at �0:86 T. The arrows in the boxes (VO1 for valley

orbit 1 and VO2 for valley orbit 2) represent the spin filling of

electrons in the quantum dot. (b) For B< 0:86 T, the first two

electrons fill with opposite spins in the same valley-orbit level (top

panel). The Zeeman energy at the kink is equal to the valley-orbit

splitting (0.10 meV). From Lim et al., 2011.
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by tuning VLGC, two separate dots form, as revealed in
Figs. 37(c)–37(e) with the gradual formation of a
honeycomb-shaped map of IðVLGS; VLGDÞ, consistent with
that in Fig. 36(b). Gate-tuneable double quantum dots based
on etched silicon nanowires have since also been reported by
other groups [see, e.g., Pierre et al. (2010)].

Epitaxially grown nanowires have also been configured
as double quantum dots. Hu and co-workers from Harvard
(Hu et al., 2007) used a Ge=Si core-shell nanowire, as
described in Sec. IV.B.1, with a number of surface metal
gates to demonstrate a highly tunable double dot device, as
shown in Fig. 38. Figures 38(b) and 38(c) show the evolution
of the charge stability map from a strongly coupled single dot
to a double dot as the central barrier gate is tuned.

Using a gated etched nanowire device, Liu, Fujisawa,
Inokawa et al. (2008) were able to explore the excited state
energy levels within a double quantum dot, which in this

case was formed using two barrier gates and the presence
of a third barrier created by local disorder. Figure 39(a) shows
the charge stability diagram for this double dot in the pres-
ence of a source-drain bias, which transforms each triple
point into a ‘‘bias triangle,’’ as described in Fig. 36(e). By
mapping the bias triangle in more detail, Liu and co-workers
were able to observe resonant tunneling through excited
states of the double dots. Using a planar MOS structure,
similar to that in Figs. 24(a) and 24(b), Lim, Huebl et al.
(2009) were also able to observe excited state transport
through a double quantum dot, this time controlled using
three independent barrier gates. Figure 39(b) shows a pair
of bias triangles for two triple points, each showing structure
in the source-drain current ISD, that is further revealed in
Fig. 39(c), which shows a line trace of ISD along the detuning
axis �.

Simmons et al. (2009) demonstrated one of the first highly
tunable double quantum dots in a gated Si=SiGe device. The
device structure shown in Fig. 38(d) also incorporated a QPC
charge sensor, which enabled mapping of the double dot
charge stability as a function of the gate voltages VL and
VR controlling the two dots [see Figs. 38(e) and 38(f)]. They
were able to tune the interdot coupling by control of the
central gate voltage VM. The same group was able to dem-
onstrate depletion of a double quantum dot to the single-
electron level (Thalakulam et al., 2010). The data in
Fig. 40(b) show a charge stability map of the double dot,
measured using the QPC sensor. The lack of charge transi-
tions in the lower left quadrant of this map demonstrates
control of electron number down to the (0,0) charge state.

FIG. 36. Schematic stability diagrams for a double dot system.

Maps are shown for (a) small, (b) intermediate, and (c) large interdot

couplings. The equilibrium charge on each dot in each domain is

denoted by (N1, N2). (e) Region within the dotted square of (b),

corresponding to the unit cell of the double dot stability diagram at

finite-bias voltage. The solid lines separate the charge domains.

Classically, the regions of the stability diagram where current flows

are given by the gray triangles. From van der Wiel et al., 2002.

FIG. 37 (color online). Evolution from a single dot to a double

quantum dot in a gated silicon nanowire device. (a) Equivalent

circuit. (b)–(e) Contour plots of the drain current as a function of the

outer barrier gate voltages VLGS and VLGD. The central barrier gate

voltages used were (b) VLGC ¼ �0:75, (c) �1:13, (d) �1:18, and
(e) �1:284 V. From Fujiwara et al., 2006.

Floris A. Zwanenburg et al.: Silicon quantum electronics 989

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



Occupation down to the (0,0) charge state in a double dot
has also been recently demonstrated in an undoped Si=SiGe
heterostructure device (Borselli et al., 2011b), in which a
two-layer gate structure analogous to that used for Si-MOS
dots [see Figs. 23(a) and 23(b)] was used, resulting in a very
stable system. Recently, a few-electron double dot was dem-
onstrated in an isotopically enriched 28Si quantum well (Wild
et al., 2012).

2. Spin transport in double quantum dots

As discussed in Sec. V.D, in tightly confined quantum dots
the singlet-triplet exchange energy for an electron pair can
become appreciable. In a double quantum-dot system this can

lead to an effect known as Pauli spin blockade, where transport

through the double dot is dependent upon the spin state of the
electron. This phenomenon was first observed in 2002 in a

GaAs=AlGaAs double quantum dot (Ono et al., 2002). In 2008
Liu and co-workers observed Pauli blockade in a silicon nano-

wire device similar to that shown in Figs. 26(a) and 26(b), in

which a double quantum dot was formed using two barrier
gates and a third barrier created by local disorder (Liu,

Fujisawa, Ono et al., 2008).
Lai et al. (2011) demonstrated Pauli blockade in a Si-MOS

double quantum dot formed using an Al-Al2O3 multilayer

(a) (b) (c)

(d) (e) (f)

FIG. 38 (color online). Gate tunable double quantum dots. (a) SEM image of a Ge=Si nanowire-based hole quantum dot. The Ge=Si

nanowire at top (white in image) is gated by metal gates to form a double dot. (b), (c) Charge stability maps of the conductance as a function

of plunger gate voltages. (d) SEM image of an electron quantum dot defined by electrostatic top gates in a Si=SiGe heterostructure.

(e) Charge-sensing measurement showing the difference in the charge detection signal from the dot farthest from the QPC (4 small steps in

IQPC) and the dot closest to the QPC (single large step) as a function of gate voltage. (e) Two-dimensional plot of the charge-sensing current

showing the sequential addition of electrons to the left and right dots. (a)–(c) From Hu et al., 2007. (d)–(f) From Simmons et al., 2009.

(c)(b)(a)

FIG. 39 (color online). Bias spectroscopy of silicon double quan-

tum dots. (a) Stabilitymapwith a source-drain biasVSD ¼ 1 mV for a

silicon nanowire double dot, depicted in Fig. 26, obtained by plotting

source-drain current I as a function of two barrier gate voltages. The
triple points have clearly evolved into bias triangles. (b) Bias triangles

for two triple points atVSD ¼ 1 mV, obtained in aSi-MOSdouble dot.

(c) Line trace of ISD, taken along arrow in (b), showing resonances

corresponding to excited states in the double dot. FromLiu, Fujisawa,

Inokawa et al., 2008, and Lim, Huebl et al., 2009.

FIG. 40. Single-electron occupancy in a Si=SiGe double quantum

dot. (a) SEM of the device. (b) Charge stability map of the double

dot, obtained by plotting the QPC charge sensor output as a function

of the control gate voltages VL and VR. The charge configurations

ðn;mÞ are marked, showing depletion to the (0, 0) state. From

Thalakulam et al., 2010.
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gate stack, similar to that discussed in Sec. IV.B.4. Their

device structure, shown in Figs. 41(a) and 41(b), incorporated

three barrier gates (B1, B2, B3) and two plunger gates (P1,
P2) which controlled the occupancy of the two dots. Pauli

blockade occurs in one bias direction only, as depicted in

Fig. 41. The phenomenon is revealed experimentally via the

difference between the bias triangles for positive and negative

source-drain bias VSD, observed in the charge stability map as

a function of the two plunger gate voltages.
For VSD > 0 [see Fig. 41(c)] a pair of overlapping com-

plete bias triangles are observed. Resonant transport through

the ground and excited states in the double dot occurs when

the states within the dots are aligned, leading to current peaks

that appear as lines parallel to the triangle base. The non-

resonant background current in the triangle is due to inelastic

tunneling. The nonzero current throughout the triangular

region indicates that electrons from the reservoir can tunnel

freely from the Sð0; 2Þ singlet state to the Sð1; 1Þ singlet state,
as depicted [right-hand box in Fig. 41(c)]. For VSD < 0 the

current is suppressed in the region bounded by the dashed

lines in Fig. 41(d). The suppression arises because the tran-

sition from Tð1; 1Þ to Sð0; 2Þ is forbidden by spin conservation
during electron tunneling. Once the Tð1; 1Þ triplet state is

occupied, further current flow is blocked until the electron

spin on one dot reverses its orientation via a relaxation

process [right-hand box in Fig. 41(d)].
In Fig. 41(d) it is possible to discern some nonzero current

at the bottom of the bias triangle. This ‘‘leakage current’’ in

the spin-blockade regions has been identified as resulting

from a spin-flip cotunneling mechanism (Qassemi, Coish,

and Wilhelm, 2009; Coish and Qassemi, 2011; Lai et al.,

2011), where a spin-up electron from one of the reservoirs

swaps with a spin-down electron in one of the dots. This

effect has also been observed in a double dot formed from an

etched silicon nanowire device (Yamahata et al., 2012).
Note that in this experiment (Lai et al., 2011), and also that

performed in the nanowire device (Liu, Fujisawa, Ono et al.,

2008), the electron occupancy in each dot was of the order of

10 or more, and so the labels (1,1) and (0,2) refer to the

effective electron occupancy, whereas the true electron occu-

pancy is ðmþm0; nþ n0Þ. Pauli blockade for two-electron

singlet and triplet states therefore occurs when the total

electron spin of each dot is zero in the ðm0; n0Þ state.

More recently, Borselli et al. (2011a) demonstrated a

Si=SiGe double dot that exhibits Pauli blockade in the true

(1,1)-(0,2) limit. The same group has since used this structure

to demonstrate coherent oscillations between singlet and

triplet states of the double dot system (Maune et al., 2012),

as discussed further in Sec. VI.C.4.
By applying a magnetic field B, it is possible to modify the

singlet-triplet splitting �ST, defined as the energy difference

between the blockaded ground state Sð0; 2Þ and the excited

state T�ð0; 2Þ. In a magnetic field there are four accessible

spin states: the singlet S and three triplets T�, T0, and Tþ,
corresponding to Sz ¼ �1, 0, and þ1. Lai et al. (2011)

studied the singlet-triplet splitting by mapping the bias tri-

angles in the spin-blockade regime at increasing magnetic

fields B ¼ 0–8 T. They found that the splitting�ST decreased

linearly with increasing B [see Fig. 41(e)], as expected, since

the triplet states split linearly by the Zeeman energy, EZ ¼
�Szg�BB, where �B is the Bohr magneton and SZ is �1, 0,
þ1. Here a linear fit through �STðBÞ yielded a Landé g factor

of 2:1� 0:2, consistent with electrons in silicon.
Spin transport in silicon double quantum dots can also be

strongly affected by the relative values of the spin lifetimes

and the various tunnel rates of the system. For example, it is

sometimes possible to observe transport through a double dot

in gate-space regions where the current would normally be

blockaded, a phenomenon that has been termed lifetime-

enhanced transport (LET), observed in a Si=SiGe quantum-

dot structure (Shaji et al., 2008). Shaji and co-workers

observed this effect in a device similar to that depicted in

Fig. 28, which was originally configured to operate as a single

quantum dot. Under certain gate bias conditions a double

quantum dot could be formed that exhibited a charge stability

map consistent with occupancies down to the single-electron

level, in particular, providing access to the (1,1) and (0,2)

(c)

(d)

(e)

(b)

(a)

FIG. 41 (color online). Pauli spin blockade in a silicon MOS

double quantum dot. (a) SEM image; (b) cross-sectional schematic

of the Si-MOS device. Gates L1 and L2 induce electron reservoirs

at the Si=SiO2 interface, while barrier gates B1–B3 define the

double dot potential. Plunger gates P1 and P2 control the occu-

pancy of each dot. (c), (d) Current ISD as a function of VP1 and VP2

for B ¼ 0 T. (c) For VSD ¼ þ2:5 mV, the ground state and excited

states of a full bias triangle are observed. The current flows freely at

the Sð0; 2Þ-Sð1; 1Þ transition, as illustrated in the box marked by the

dot. (b) The same configuration at VSD ¼ �2:5 mV. Here the

current between the singlet and triplet states is fully suppressed

by spin blockade (box marked by star). (e) The measured singlet-

triplet splitting �ST , plotted as a function of magnetic field B. From
Lai et al., 2011.
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states. In the vicinity of the (1,1)-(0,2) charge transition, a

positive source-drain bias (VSD ¼ þ0:2 mV) led to bias tri-

angles that exhibited a zero current region due to Pauli

blockade [see Figs. 42(a) and 42(b)], similar to that observed

in Fig. 41.
Under negative bias (VSD ¼ �0:3 mV) the entire bias

triangle exhibited a transport current, as expected, but outside

the bias triangles additional ‘‘tail’’ regions of nonzero current

were also observed [see Figs. 42(d) and 42(e)]. These can be

understood with reference to the bottom box in the schematic

diagram in Fig. 42(f) and by considering the tunnel rates to

the relevant states in the double dot (Simmons et al., 2010).

Typically, once the Sð2; 0Þ state is loaded from the source

reservoir (with rate �LS), it would remain locked in position

due to the Coulomb blockade, and an electron could pass to

the drain only via a cotunneling process (with unloading rate

�S). If, however, the Sð2; 0Þ loading rate is much slower than

the unloading rate (�LS � �S) and the triplet-singlet relaxa-

tion rate �TS from Tð2; 0Þ to Sð2; 0Þ is also much slower than

�S, then the most likely transport pathway is via the Tð2; 0Þ
and Tð1; 1Þ triplets, as shown in Fig. 42(f), leading to a

nonzero current. The upper triangle in the data and schematic

diagram, known as the hole triangle, also shows LET behav-

ior. The direction of the tail in gate voltage space for the hole

triangle is different than that for the electron triangle, a

phenomenon that can be explained by a spin-flip cotunneling

process (Koh et al., 2011). This type of spin-lifetime en-
hanced transport can occur in silicon quantum dots in part
because of the very long spin lifetimes present, as discussed
further in Sec. VI.A.

V. DOPANTS IN SILICON

A. Dopants in silicon transistors

1. Early work: Mesoscopic silicon transistors

Low-temperature transport experiments in silicon transis-
tors have been used since the 1980s to perform spectroscopic
measurements of dopants and defect states. Devices reached a
sufficiently small length scale about 25 years ago to observe
the mesoscopic transport phenomenon; see Fowler, Wainer,
and Webb (1988). In these devices the conductance G was
found to fluctuate as a function of the gate voltage VG around
the threshold, as shown in Fig. 43(a). The strongly fluctuating
pattern, reproducible within the same cooling cycle, did not
originate from electrical noise but from the presence of a
finite number of dopant or defect states in the channel. The
important length scales needed to understand this phenome-
non are the localization length � and the device dimensions
(channel length L and channel width W). As device dimen-
sions approached �100 nm in size, comparable or less than
the localization length, only a limited number of defect or

(c)

(f)(e)(d)

(b)(a)

FIG. 42 (color online). Spin blockade and lifetime-enhanced transport in a Si=SiGe double quantum dot. (a) Measured and (b) schematic

charge stability map of current I through the double dot with a source-drain bias of VSD ¼ þ0:2 mV. The dotted trapezoids in (a) and (b)

mark the zero current regions due to spin blockade, as depicted in the schematics in (c). (d) Measured and (e) schematic charge stability map

of current I with a source-drain bias of VSD ¼ �0:3 mV. In this bias direction there is no blockade and current flows throughout the entire

bias triangle; however, additional tails are observed due to lifetime-enhanced transport, as depicted schematically in (f) and described in the

text. From Shaji et al., 2008.
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dopant states contributed to the current in contrast to the

much larger device dimensions before the 1980s where these

fluctuations were always averaged out.
Three major conduction processes are known to contribute

to the conductance of such small transistors, as shown in

Fig. 43(b). First, there is thermally activated hopping con-

duction, where the transported electrons hop via several
dopant states from source to drain. This type of transport

decreases exponentially with temperature T, i.e., G /
expð��E=kBTÞ, where �E is the energy difference between

the localized states of the dominant (most resistant) hop and
kB is the Boltzmann constant. The second process is direct

tunneling, which scales with the barrier height EB and L

roughly as G / exp� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�EBL=ℏ2

p
. Although typically ir-

relevant in the early 1980s, his conduction mechanism is
playing an increasingly important role in today’s nanoscale

transistor operation. The last and increasingly important

conduction mechanism is tunneling through a single defect.

Because of the large number of conductance fluctuations, as
depicted in Fig. 43(a), the identification of each state with a

particular defect or dopants in the channel region was not

possible. Dopants are not the only sources of disorder that

cause localized states in MOSFETs as discussed by Peters
et al. (1998) and Sanquer et al. (2000). However, these early

measurements represent the first observation of mesoscopic

physics in silicon MOSFET devices and show how low-

temperature transport data offer a tool to electrically access
dopant states in the channel region.

2. Nanoscale transistors

Following this early work, the purity of silicon MOSFETs

steadily continued to improve with a concomitant decrease

in device size until the point where discrete impurities clearly

started to show up in device transport properties
as they reached the nanoscale (Mizuno, Okamura, and

Toriumi, 1994). Here fluctuations in the threshold voltage

were observed, caused by the statistical fluctuation in the
number of dopants in the channel as a result of the random
Poisson distribution during doping. These results challenged
the conventional understanding and modeling of micron-
silicon devices where continuous ionized dopant charge
with smooth boundaries and interfaces had previously been
assumed. Now the granularity of the electric charge and
the atomicity of matter introduced substantial variation in
individual device characteristics, as shown in Fig. 44 (Asenov
et al., 2003). In particular, the variation in number and
position of the individual dopant atoms in the active region
of MOSFETs were found to make each transistor microscopi-
cally different, introducing significant variations from device
to device.

Recent advances in single ion implantation using a focused
ion beam source have shown that device to device fluctuations
can be suppressed by ordering the dopants within the channel
(Shinada et al., 2005). The benefit of ordering the dopants
was to create a homogeneous potential distribution in the
channel resulting in the formation of a uniform current path.
The uniformity in the channel lowers the voltage required to
open the channel from the source to the drain allowing for an
earlier turn on and reduction of the threshold voltage. This
contrasted to devices with a random distribution of dopants
where the nonhomogeneous potential could lead to a block in
the current path.

B. Single-dopant transistors

1. The demand for single-dopant architectures

In parallel with the increasingly central role of individual
dopants in classical silicon CMOS devices has been the
advent of their importance in quantum computation. In
1998 Bruce Kane introduced the concept of using the nuclear
spins of individual donor atoms in doped silicon electronic
devices as quantum bits or qubits (Kane, 1998). Originally
Kane envisioned that the quantum information could be
stored in the state of the 31P nuclear spin and accessed by
the electron-nuclear hyperfine coupling. Figure 11(a) shows
the basic two-qubit unit cell of the Kane proposal based on an
array of P donors beneath the silicon surface. The addition of
a group V phosphorus donor to the silicon crystal results in
electron states close in energy to the conduction band but
weakly bound to the donor site at low temperatures. The
electron has spin S ¼ 1=2, while the host silicon has stable
I ¼ 0 isotopes. It is important to isolate the qubits from any
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FIG. 43. Conductance in micron-scale silicon MOSFETs.

(a) Typical low-temperature conductance pattern of a 1980s

generation MOSFET around the threshold regime. The strongly

oscillating but chaotic pattern that appears at low temperature is

associated with localized states in the channel region. (b) Schematic

representation of the three major conduction mechanisms through

the channel. From Fowler, Wainer, and Webb, 1988.

(a) (b)

FIG. 44. The importance of discrete dopants in nanoscale

MOSFETs. (a) The transition from continuously ionized dopant

charge and smooth boundaries and interfaces to (b) a 4-nm

MOSFET where there are less than 10 Si atoms along the channel.

From Asenov et al., 2003.
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degrees of freedom that may lead to decoherence. Recent

results have shown that 28Si can be isotopically refined to a

level of 99.98% (Tezuka et al., 2010), making it a good choice

for the host material.
Any proposal for a quantum computer must meet the so-

called DiVincenzo criteria (DiVincenzo, 2000), including the

ability to operate on individual qubits, couple qubits into

quantum logic gates, read out the information encoded on

the qubit, and to be free of environmental effects that destroy

qubit entanglement. In Kane’s architecture, control of the

qubit states is achieved by a combination of gates and glob-

ally applied ac magnetic field. The gates above the donors,

labeled A gates, control the strength of the hyperfine interac-

tion and therefore the resonance frequency of the nuclear

spins beneath them. The J gates are used to turn on and off the
electron-mediated coupling between the nuclear spins.

Finally the nuclear spins can be flipped by a resonant globally

applied ac magnetic field. Readout of the final spin state is

achieved by spin-to-charge conversion and detection through

spin-dependent tunneling to a doubly occupied donor state.

This donor state is a singlet with a second electron binding

energy of 1.7 meV (Larsen, 1981; Larsen and McCann,

1992). Consequently by applying a differential voltage be-

tween the A gates charge motion between the donors can

occur only if the electrons are in a singlet state. This charge

motion can then be detected using a sensitive electrometer

nearby, such as a SET.
Subsequently a number of proposals for encoding and

manipulating quantum information based on donor spin

(Vrijen et al., 2000; Larionov, Fedichkin, and Valiev, 2001;

Skinner, Davenport, and Kane, 2003; Stoneham, Fisher, and

Greenland, 2003; De Sousa, Delgado, and Das Sarma, 2004;

Hill et al., 2005; Hollenberg et al., 2006) or charge degrees of

freedom (Hollenberg et al., 2004) have been put forward.

Electron spins bound to donor nuclei are particularly attrac-

tive since they have exceptionally long coherence times and

relaxation times relative to the time scales for the control of

the quantum state (Hill et al., 2005). The electron spin

coherence time of a P donor is T2 > 60 ms at T ¼ 6:9 K in

isotopically pure 28Si (Tyryshkin et al., 2003). These times

are currently limited by the presence of 29Si which causes

spectral diffusion due to the dipolar fluctuations of nuclear

spins (Witzel, de Sousa, and Das Sarma, 2005). Dipolar

fluctuations in the nuclear spins give rise to a temporally

random effective magnetic field at the localized electron spin

leading to irreversible decoherence (i.e., a T2 process).

Isotopic purification in silicon systems can in principle over-

come this limiting process.
These developments have led to the proposal of a

bilinear donor-based architecture, incorporating transport

(Hollenberg et al., 2006). This design considered the limita-

tions and constraints posed by the sensitivity of the exchange

interaction due to donor placement (Koiller, Hu, and Das

Sarma, 2001), high gate densities required (Copsey et al.,

2003), spin readout based on spin-charge conversion (Kane,

1998), and the communication bottleneck for linear nearest-

neighbor qubit arrays. A buried array of ionized donors

provides pathways for coherent transport of electron spins

for in-plane horizontal and vertical shuttling of qubit states

into and out of the interaction zones. The overall gate density

is low compared to the original Kane version since coherent
spin transport is achieved adiabatically, lowering the barriers
between donors in a well-defined sequence to effect coherent
transport by adiabatic passage without populating the inter-
vening donors (Greentree et al., 2004; Rahman et al., 2010).
Logic gates are carried out in interaction zones with the A and
J gates for electron spin qubit control and these are distinct
from the qubit storage regions. The design allows space for
local B-field antennas and SET readout devices. The intro-
duction of coherent spin transport to donor quantum comput-
ing provides a means to consider scalable, fault tolerant
architectures.

The use of single donor atoms in silicon as qubits
has demanded tremendous advances in single-atom fabrica-
tion and engineering. Donor separations of the order of
�10–20 nm are required to ensure significant coupling be-
tween neighboring spins. Currently this is at the limit of what
is technologically achievable. Indeed in the original critique
of Kane’s paper by DiVincenzo (1998) he recognized that the
fundamental and engineering obstacles to implementing the
scheme were vast stating ‘‘At the time no existing materials-
preparation technology will place an array of individual
phosphorus atoms at desired spots in the interior of a perfect
crystal, let alone systems free from defects in the semicon-
ductor and the overlying oxide layer.’’ Despite these concerns
there have been concentrated efforts internationally to realize
a donor-based qubit architecture resulting in a plethora of
experiments of transport in nanoscale doped quantum dots
and donors. Significant to these results has been the different
technologies developed to fabricate donor-based devices.

2. Single dopants in MOS-based architectures

In this section we discuss single-dopant transport in ultra-
scaled MOSFET structures based on randomly and determin-
istically doped devices. The Kane (1998) proposal sparked
the interest in single dopants and small MOSFETs were
quickly identified as devices that should easily allow obser-
vation of single-dopant transport. Tabe et al. (2010) con-
firmed the impact of dopants on the potential landscape of
a FET and discussed the evolution from many-dopant to
single-dopant transport. In the newer generation of CMOS
devices the issue of random device fluctuations is circum-
vented in a more straightforward approach, namely, by the
use of undoped channel FETs. However, even in the newest
generation of prototype FETs, fluctuations in device charac-
teristics are still evident due to the presence of only a few
down to a single unintentional dopant(s) in the channel region
(Colinge et al., 2007). By now, several groups have reported
transport through a random, single dopant in a three-terminal
configuration (Sellier et al., 2006; Calvet, Wheeler, and Reed,
2007a, 2007b; Pierre et al., 2010), including microwave
assisted transport (Prati, Latempa, and Fanciulli, 2009).
Recently this work was extended to double-gate structures
and 28Si devices (Lo et al., 2009; Roche et al., 2012). Roche
et al. (2012) even demonstrated controlled sequential tunnel-
ing through two donors. In all these experiments, the number
of electrons bound to the dopant atom could be controlled by
the gate electrode. Such spectroscopic transport experiments
reveal vital information on the orbital levels, the charging
energy and the binding energy of the dopant atom, and the

994 Floris A. Zwanenburg et al.: Silicon quantum electronics

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



spin configuration of the bound electron(s) (Lansbergen et al.,
2008, 2011). They thus form a powerful characterization tool
in the development of single-dopant structures in parallel
with the development of precision controlled single-dopant
devices (Fuechsle et al., 2012).

These experiments all relied on the indiffusion of dopant
atoms into nanoscale transistors from the source and drain
regions. However, several groups concentrated on adapting
the industry standard technique of ion implantation to implant
single dopants into a silicon device in a controlled manner
(Schenkel et al., 2003; Jamieson et al., 2005; Batra et al.,
2007; Seamons et al., 2008; Shinada et al., 2008; Weis et al.,
2008; Bielejec, Seamons, and Carroll, 2010). There are three
main limitations to applying the technique to scalable single-
atom architectures: the ability to register individual ion
strikes, the overall spatial registration of the ion implant
site, and subsequent straggling of the ion due to the statistical
nature of the stopping process. Once the dopants are im-
planted a rapid thermal anneal at high temperature is needed
to repair the damage and activate the donors, causing diffu-
sion and segregation of dopants (Park et al., 2004). Despite
these concerns silicon nanoscale transistors have been fab-
ricated with a low density of local area implants where it has
been possible to tune individual dopants into resonance and
observe transport spectroscopy through a single dopant, such
as a P donor in Fig. 45 (Tan et al., 2010). More recently
single-dopant implantation has been demonstrated into the
channel of a silicon nanoscale metal-oxide-semiconductor
field-effect transistor (Johnson et al., 2010; Prati, Hori,
Guagliardo, Ferrari, and Shinada, 2012). In the work by
Johnson et al. (2010) FinFET devices were fabricated using
SOI with 20 nm of Si on a 145 nm thick buried oxide, giving
nominal channel dimensions of 25	 70	 20 nm. Using
14 keV there was a 57% chance of a Pþ ion stopping within
the channel region. The implant resulted in an increase in
charge in the buried oxide, causing a shift in threshold voltage

and an increase in series resistance consistent with the in-
troduction of Frenkel pairs in the channel. In the more recent
work of Prati, Hori, Guagliardo, Ferrari, and Shinada (2012)
donors were placed in a 1D array allowing the regime be-
tween single-electron tunneling and Hubbard band formation
due to interdot coupling to be investigated.

There are three different regimes for single-dopant trans-
port experiments, as shown in Fig. 46. In the first regime the
channel current is influenced by the presence of a neutral or
charged dopant. Ono et al. (2007) identified a single acceptor
that modified the current through a FET depending on its
charge state and refined this technique with a dual gate device

(a)

(b)

FIG. 45 (color online). Transport through dopants ion implanted

in a nano-FET. (a) Schematic of a nano-FET where roughly three

donors have been implanted into the 50	 30 nm active area of the

device. (b) The stability diagram showing the differential conduc-

tance as a function of the barrier gate and dc source-drain bias,

highlighting the resonant tunneling peaks a1, b1, and c1 of the three
donors. From Tan et al., 2010.

(a)

(b)

(c)
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FIG. 46 (color online). Three examples of device layouts that

illustrate different transport regimes for the detection of a single

dopant. (a) Capacitive coupling to the channel which leads to a

modification of the channel current due to the charge state of a

dopant. (b) Tunneling through a dopant in the access region in series

with transport through the channel. (c) Direct tunneling through a

dopant in the channel in the subthreshold regime. From (a) Ono

et al., 2007, (b) Hofheinz et al., 2006a, and (c) Sellier et al., 2006.
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to realize acceptor mapping (Ono et al., 2008; Khalafalla

et al., 2009). In the second regime there is direct transport
through a dopant in the access region to a FET channel

(Hofheinz et al., 2006a; Calvet, Wheeler, and Reed, 2007a,

2007b). This allowed the study of electric field and strain

effects on the acceptor (Calvet, Wheeler, and Reed, 2007a,
2007b) and the Zeeman splitting (Hofheinz et al., 2006a) of

the donor ground state. The third regime, representing the

most direct way to access information about the properties of
a dopant and its environment, is direct transport through the

dopant states in the subthreshold extreme of a transistor.

Because of the progress in device scaling this was recently

realized in ultrascaled MOSFET devices by Sellier et al.
(2006), Prati, Latempa, and Fanciulli (2009), Pierre et al.

(2010), and Tan et al. (2010). Results from all three transport

regimes are illustrated in Fig. 47 and will be discussed in

more detail in the remaining part of this section.
Sellier et al. (2006) demonstrated transport through a

donor in a nano-FET and identified excited states as well as

the doubly occupiedD� state confirmed by magnetotransport

[regime 3 in Fig. 47(c)]. The ionization energy observed in

this work was consistent with the presence of an As atom as

expected from indiffusion from the source and drain region.

In contrast to the ionization energy of theD0 state, which was

similar to bulk, the ionization energy of the D� state was

enhanced. This reduction in the charging energy, i.e., an

increase in D� ionization energy at an unchanged D0 ioniza-

tion energy, is discussed in comparison to several experi-

ments in Sec. V.C.2. Here Lansbergen et al. (2008) analyzed

the orbital spectrum based on nonlinear transport and studied

the impact of the electric field and gate interface on the donor

state. They analyzed the data in comparison to a large-scale

atomistic model and found good agreement even though the

spectrum is strongly altered from the bulk. Tan et al. (2010)

demonstrated transport spectroscopy on a transistor that was

implanted with three donors based on a timed exposure, thus

the first experiment on an intentionally placed group of

donors. The intentional placement is confirmed by a sample

that was not implanted and did not show any resonances. As

expected the donor peaks show a paramagnetic Zeeman shift

of the D0 state and the opposite for the D� state.

Spectroscopic measurements combined with device-based

modeling led to a detailed understanding of the valley-orbit

coupling of donor or dot states (Rahman, Verduijn et al.,

2011) and the two-electron state of a donor (Lansbergen

et al., 2011; Rahman, Lansbergen et al., 2011) which are

discussed in detail in Sec. V.C. Recently, Pierre et al. (2010)

linked low-temperature resonant transport through donor

states to the room-temperature performance of a MOSFET.

They performed a statistical analysis of the threshold voltage

of ultrashort channel FinFETs (less than 20 nm). Transistors

with a threshold voltage far below the average display reso-

nant transport at low temperature due to a donor in the middle

of the channel, as shown in Fig. 48. This direct link between

the room-temperature variability and the low-temperature

spectroscopy represents an important contribution to device

engineering (Wacquez et al., 2010).
Hofheinz et al. (2006a) reported transport through a donor

in the access region of a small MOSFET (regime 2). The

access region is part of the channel that has a weaker coupling

to the gate which leads to a barrier in the band structure, as

shown in Fig. 46(b). They observed sequential transport

through the donor and through a localized state between the

two barriers of the access region which has a much lower

charging energy. Magnetotransport revealed a Zeeman shift

of the resonance consistent with a paramagnetic trap. The

complex interaction between a single-electron transistor and

a dopant was only recently explained in detail (Golovach

et al., 2011). Calvet et al. investigated acceptors in the barrier

of a Schottky FET. They observed a Zeeman shift of the

acceptor and analyzed the impact of the electric field on the

acceptor (Calvet, Wheeler, and Reed, 2007b) and the effect of

local strain (Calvet, Wheeler, and Reed, 2007a).
As mentioned, single dopants cannot only be detected

by passing a current through them but also by their electro-

static coupling to free electrons in the channel (regime 1).

Khalafalla et al. (2009) developed earlier single-gate

experiments (Ono et al., 2007) to a multigate configuration.

Two overlapping top gates allowed the modulation of the
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FIG. 47 (color online). Three-dopant transport regimes in a tran-

sistor geometry. (a) An example of the dopant detection regime

based on the capacitive coupling of the channel for an undoped

(left) and doped (right) double-gate sample. The signature of a

single acceptor charging event is evident in the doped sample. From

Ono et al., 2007. (b) An example of the second regime where the

dopant is in the barrier of the access region in series with a quantum

dot. The top line represents the room temperature FET character-

istics and the line below the low-temperature Coulomb peaks From

Hofheinz et al., 2006a. (c) The third regime with direct transport

through a dopant in the subthreshold limit. From Sellier et al., 2006.
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channel potential profile. This made it possible to define the

position of a donor along the length of the channel which led

to the observation that an acceptor close to the source has the

largest impact on transport. This device geometry has been

further developed to allow for charge pumping based on a

small number of dopants which is attractive due to the large

charging energy of the dopant and its potential for high

accuracy as current standard (Lansbergen, Ono, and

Fujiwara, 2012). A double-gate study of n-type channels

revealed a clear difference between doped and undoped

devices. In undoped devices the back gate simply shifts the

threshold voltage of the device. Devices of the same geometry

with 2	 1018 P cm�3 show many subthreshold resonances

with a large charging energy and a different coupling to

the top gate (Verduijn, Tettamanzi, and Rogge, 2013).

Furthermore, coupling between some of these is observed.

These observations close the loop between the randomly and

deterministically doped devices.

Until recently single donor transport was focused on se-
quential tunneling to probe the spectrum of a donor. Recently,
several coherent transport experiments with single donor and
double donor systems have been reported. Strong coupling to
the contacts leads to the formation of a Kondo ground state
where the parametric donor state is screened leading to
transport in the traditional Coulomb blocked one-electron
region (Lansbergen, Tettamanzi, and Verduijn, 2010). The
valleys play a key role in Si Kondo physics as theoretically
predicted (Shiau and Joynt, 2007; Shiau, Chutia, and Joynt,
2007) and experimentally confirmed for donors by the pres-
ence of spin and orbital Kondo and their combination
(Lansbergen, Tettamanzi, and Verduijn, 2010; Tettamanzi
et al., 2012). Furthermore, quantum interference between
two tunneling paths has been discussed in the context of a
Fano resonance (Verduijn et al., 2010; Calvet, Snyder, and
Wernsdorfer, 2011). Dopants present an ideal platform to
investigate the crossover from scaleless mesoscopic effects
to atomistic transport.

3. Single dopants in crystalline silicon

An alternative technology has been developed to place
dopants in silicon with atomic precision using a scanning
probe microscope. Ever since its invention in 1981 by Binnig
and Rohrer, the STM has gained international recognition by
not only its capability to image surfaces with unprecedented
resolution but also by its potential to modify and pattern
crystalline surfaces at the atomic scale. Among the most
notable examples are the formation of the letters IBM with
individual xenon atoms on a nickel surface by Eigler’s group
(Eigler and Schweizer, 1990).

The translation of this technology to manipulate atoms in
silicon was, however, not simple due to the strong, covalent
nature of silicon bonds. To position atoms in silicon it was
necessary to use a lithographic process, analogous to conven-
tional optical or e-beam lithography. Here a monolayer of
hydrogen resist is patterned using the tip of the STM to create
an atomic-scale template. In the early 1990s Lyo and Avouris
(1990) and Lyding et al. (1994) proposed the use of such a
template to create a pattern of highly reactive dangling bond
sites on the silicon surface which could subsequently be
functionalized with various atomic and molecular species.

The process of STM hydrogen lithography has since been
adapted to realize a complete fabrication strategy for atomic-
scale silicon device fabrication (Ruess et al., 2004, 2005;
Simmons et al., 2005). Here dopants are placed in the silicon
crystal with atomic precision laterally using scanning probe
techniques and atomic precision vertically with molecular
beam epitaxy. The important feature of these devices is
that, in contrast to modern CMOS devices and almost all
quantum semiconductor devices, which use many materials
and have heterogeneous interfaces, STM-patterned devices
are formed in single-crystal silicon. Confinement of electrons
is thus achieved by atomically abrupt changes in the density
of dopant atoms within the silicon crystal. The doped regions
can have very high planar electron densities in the range
n2D � 2:5	 1014 cm�2. In three dimensions this density
corresponds to a value � 1021 cm�2, 3 orders of magnitude
above the Mott metal-insulator transition. At these high
carrier densities one in every four silicon atoms is substituted

(a)

(b)

(c)

FIG. 48 (color online). Direct tunneling through a dopant in a

short-channel FET. (a) Illustration of a Monte Carlo simulation

of the doping profile in a 20 nm channel where some dopants

diffused into the channel region from the source and drain. (b) The

dashed curve shows the current averaged over many devices

where the black line indicates the threshold. Two devices show a

drastically lower threshold linked to resonant transport at low

temperature as indicated in (c) for the device with the lowest

Vth. These data show the clear connection between the low

threshold of these devices at room temperature and the resonant

transport at low temperature, both mediated by a single dopant.

From Pierre et al., 2010.
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with a phosphorus atom, so that the average separation of
phosphorus atoms is <1 nm, much smaller than the single-
dopant Bohr radii (aB � 2:5 nm). As a consequence the
doped regions are highly conducting and behave like a dis-
ordered metal. Electron transport has been studied in these
highly doped single-crystal donor-based quantum wires
(Ruess, Pok et al., 2007; Ruess, Weber et al., 2007; Ruess
et al., 2008) and recently this technique has been used to
realize conducting wires in silicon with Ohmic behavior
down to the atomic scale (Weber et al., 2012).

It is also possible to pattern more complex devices, such as
atomically abrupt, epitaxial quantum dots with 1D source and
drain leads (Fuhrer et al., 2009; Fuechsle et al., 2010). These
studies allowed the impact of vertical and lateral confinement
on silicon quantum dots to be investigated. In such abruptly
confined quantum dots very small energy level splittings of
� 100 �eV have been observed in electron transport and

attributed to transport through the valley states of a few-

electron quantum dot, as shown in Fig. 49 (Fuechsle et al.,

2010). STM images of the device in Figs. 49(a) and 49(b)

show the central region of the device into which 6� 3 P
atoms are laterally confined with the STM. These dopants are

also strongly vertically confined by low-temperature silicon

molecular beam epitaxy. The corresponding stability diagram

shown in Figs. 49(c) and 49(d) reveals spacing in the energy

spectrum of order � 100 �eV. This very small energy level

splitting was surprising given the ultrasmall size (�4 nm2)

of the quantum dot. However, it is well known that strong

lateral and vertical confinement breaks the degeneracy of

silicon valley states.
This is illustrated in Fig. 49(e) where electrons strongly

confined in a two-dimensional plane result in splitting of the

six bulk valleys into four degenerate � pockets as well as two

� pockets at k ¼ 0. The remaining degeneracies can be

broken in the presence of sharp lateral or vertical confine-

ment. In these highly doped � layers strong, abrupt quantum

confinement in the z direction splits the degeneracy of the

out-of-plane � bands to give the lower energy �1 and �2

bands. The four � valleys, two each in the x and y directions,
are usually degenerate in 2D devices. However, since the

quantum-dot device is also confined laterally on the nm scale,

valley splitting of these states is also observed. It is this valley

splitting that gives rise to the � 100 �eV energy level

separation observed experimentally in STM-patterned few-

electron quantum dots. This contrasts to studies of other few-

electron quantum-dot systems, where it is the large size of the

dot itself that gives rise to � 100 �eV (Beenakker, 1991).

The source and drain leads to these quantum dots are not 2D

reservoirs but 1D leads. This results in the formation of

resonant tunneling features due to the presence of 1D sub-

bands. The energy separation of these subbands depends on

the width of the 1D leads and for this device was found to be

�10 meV. Such 1D states have also been observed in other

silicon-based quantum dots (Lim, Zwanenburg et al., 2009;

Möttönen et al., 2010) and a recent review discusses how to

distinguish these in electron transport (Escott, Zwanenburg,

and Morello, 2010).
Using such a technology it is also possible to pattern

individual dopants in silicon with atomic precision

(Schofield et al., 2003; Wilson et al., 2004) to realize

single-dopant atom transistors, as shown in Fig. 50(a)

(Fuechsle et al., 2012). The critical features of this device

are that the dopant, the source-drain leads, and the control

gates are crystalline and all exist within one plane of the

silicon crystal, as shown in Fig. 50(b). The encapsulation of

this device in epitaxial silicon removes the confined dopant

states away from the influence of surfaces and interfaces.

However, transport devices by definition also contain elec-

trodes, and these electrodes are known to have profound

effects on the energetics of the single-dopant atom. In these

epitaxial architectures the electrostatic potential at the dopant

could be tuned using two in-plane gates G1 and G2 patterned
on either side of the transport channel defined by the S and D
leads.

Figure 50(c) presents the measured stability diagram of

the single donor at 4.2 K, in which the three charge states

of the donor can easily be identified: the ionized Dþ state, the
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FIG. 49 (color online). Few-electron quantum dot. (a) An STM

image of the central device region of a few-electron single-crystal

quantum dot acquired during hydrogen lithography, showing a four

terminal devicewith source (S), drain (D), and two in-plane gates (G1,

G2). The bright regions correspond to areas where phosphorus donors
will be incorporated. (b) A close-up showing the central quantum dot

containing 6� 3 donors. (c) Stability diagram showing the conduc-

tance dI=dVSD through the dot as a function of gate voltage VG and

bias voltage VSD. (d) A close-up of the transition [white square in (c)]

reveals a high density of conduction resonances with an average

energy spacing of � 100 �eV. (e) The sixfold degeneracy of the

conduction band minima of bulk silicon is lifted by confining the

electrons vertically to two dimensions and is then split again by

abrupt, lateral confinement. From Fuechsle et al., 2010.
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neutral D0 state, and the negatively charged D� state. The
diamond below VG � 0:45 V does not close, as expected for
the ionized Dþ state, because a donor cannot lose more than

its one valence electron. The conductance remains high
(on the order of microsiemens) down to the lower end of

the gating range, making the possibility of additional charge
transitions unlikely. TheDþ ! D0 charge transition occurred
reproducibly at VG � 0:45� 0:03 V, as shown in Fig. 50(d)

for multiple cool downs and is attributed to the high
stability of the device and the inherent influence of the

nearby electrodes on the position of the donor eigenstates

relative to the Fermi level of the leads.
To understand quantitatively how the nearby transport

electrodes affected the electronic properties of the donor,

the electrostatic potential landscape of the innermost part of
the device was calculated, treating the heavily doped gate

regions in a self-consistent atomistic approach using a
Thomas-Fermi approximation. Having established the elec-

trostatic potential of the device, the donor electronic states

were then calculated using a tight-binding approach
(Lansbergen et al., 2008). The position of the resulting one-

electron ground state D0 for the solitary phosphorus dopant is
depicted in Fig. 50(e) (solid line). As expected, due to the

electrostatic environment, the energy levels of the device are

raised significantly from the bulk case (dashed line), where
the unperturbed Coulombic donor potential asymptotically

approaches the silicon conduction band minimum Ecb (upper
dashed line) and D0 has a binding energy of EB �
�45:6 meV. In contrast, D0 in the effective donor potential
of the single donor transport device resides much closer to the

top of the barrier (solid line) along the S-D transport direc-

tion. Despite this, the charging energy EC could be extracted
from the transport data and was found to be 47� 3 meV,
remarkably similar to the value expected for isolated phos-
phorus donors in bulk silicon ( � 44 meV) (Ramdas and

Rodriguez, 1981).
These results are in sharp contrast to previous experiments

on single dopant in silicon transport devices, which have

reported charging energies that significantly differ from the

bulk case (Lansbergen et al., 2008; Pierre et al., 2010;
Rahman, Lansbergen et al., 2011). There the difference was

attributed either to screening effects resulting from strong
capacitive coupling to a nearby gate (Lansbergen et al., 2008)

or strong electric fields (Rahman, Lansbergen et al., 2011) or

to an enhanced donor ionization energy in the proximity of a
dielectric interface (Pierre et al., 2010). Importantly, these

effects are small for a single phosphorus dopant, which is
symmetrically positioned between two gates and encapsu-

lated deep within an epitaxial silicon environment.

C. Discussion

A dopant in a semiconductor represents the ultimate limit

of a quantum dot. In contrast to a quantum dot the confine-
ment potential is given by the three-dimensional Coulomb

potential of the dopant ion (see Sec. II) and not by external

gates. In quantum dots the orbital energy is small and mainly
probed as the energy difference between the triplet and single

sates in the two-electron problem. The dopant has a hydro-
genic level spectrum with splittings in excess of 10 meV. The

valleys in Si lead to interesting corrections due to the re-
stricted momentum space of these states. Again in strong

contrast to a quantum dot, the confinement potential of a

dopant is strongly altered by the amount of charge on the
dopant. A shallow impurity can bind only two electrons

where the second charging energy for the second electron is
almost the ionization energy of the first, i.e., H� like the two-

electron state is very close in energy to the continuum. Here

we compare the physical properties of the dopant confined
states for the different devices. The orbital spectrum of a
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FIG. 50 (color online). A single-atom transistor. (a) 3D perspec-

tive STM image of a hydrogenated silicon surface. Phosphorus will

incorporate in the bright shaded regions selectively desorbed with

an STM tip to form electrical leads to a single phosphorus atom

patterned precisely in the center. (b) The source (S), drain (D), and

two gate leads (G1, G2) to the central donor, which is incorporated

into the dotted square region. (c) The electronic spectrum of the

single-atom transistor, showing the drain current ISD as a function of

source-drain bias VSD and gate voltage VG applied to both gates.

(d) The differential conductance dISD=dVSD as a function of VSD

and VG in the region of the D0 diamond shown in (c). (e) A

comparison of the potential profile between the source and

drain electrodes in this device (straight line) to an isolated bulk

phosphorus donor (dashed line), where the D0 state resides

45.6 meV below Ecb. In contrast, the D0 state in the single-atom

transistor resides closer to the top of the potential barrier. From

Fuechsle et al., 2012.
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gated donor is illustrated followed by a discussion of the
charging energy between the one- and two-electron states.
Finally, we look at the interaction between the donor and the
leads and the interaction between two donors.

1. Orbital structure of a dopant in a nanostructure

Section III.C discussed the spectrum and orbital structure
of a bulk dopant. A dopant in a nanostructure does not
necessarily possess these properties as already calculated by
Macmillen and Landman (1984). The environment in a nano-
device has a large impact on the orbital spectrum of a donor.
An electric field will lift degeneracies (Smit et al., 2004;
Friesen, 2005) and a triangular well, e.g., due to a gate, lowers
the excited states of the dopant due to the interaction with the
interface well (Martins, Capaz, and Koiller, 2004; Calderón,
Koiller, and Das Sarma, 2007). These theoretical predictions
have been experimentally confirmed in the interface
(Lansbergen et al., 2008) as well as the bulk regime
(Fuechsle et al., 2012). Critically important for the ability
to model the devices and obtain metrology data with respect
to impurity type and depth was the ability to compute the
excited state spectra as well as the ground state spectra in the
NEMO3D tool suite; see Sec. III of the Supplemental Material

471. The effective-mass models offer key physical insight
into the problem and go hand in hand with the tight-binding
work which generates accurate predictions to interpret the
experimental data.

The environment, i.e., the leads, an interface to a gate, or
an electrical field, can drastically alter the orbitals of a dopant
in comparison to the unperturbed bulk condition. Lansbergen
et al. (2008) measured the energy spectrum of single donors,
located in the channel of FinFETs by transport spectroscopy,
as shown in Fig. 51(a). They were not bulk like but agreed
well with multimillion atom simulations of the complete
system. In conjunction with the data, the theoretical analysis
allowed Lansbergen et al. to identify the species of the donors
(As) and furthermore provided an explicit determination of
the degree of gate-controlled quantum confinement in each
device. Figure 51(b) shows the three confinement regimes
that can be distinguished: Coulomb, hybridized, and interfa-
cial confinement with the charge density and schematic
potential landscape for these three regimes. At low electric
fields the electron is located at the donor site and its ground
state corresponds to a donor in bulk (thus full lattice symme-
try). At high electric fields the electron is pulled inside the
triangular potential well at the interface reducing the sym-
metry of the system. The electron is still localized near the
donor site in the lateral directions though, in correspondence
with the results of Calderón, Koiller, and Das Sarma (2007).
At the crossover between these regimes, the electron is
delocalized over the donor and well sites.

Donors in devices fabricated with the STM, as discussed in
Sec. V.B.3, exhibit a more bulk-like orbital spectrum
(Fuechsle et al., 2012). This is due to the fact that in these
devices the donor is far away from a dielectric interface and
the gate does not create large fields in comparison with
MOSFET structures (Lansbergen et al., 2008). Fuechsle
et al. (2012) also showed that the charging energy of a dopant
in an STM-fabricated device is comparable to the bulk value.
This is to be expected for an environment that is close to bulk

with source and drain electrodes with a cross section of only a

few square nanometers.

2. Charging energy of a dopant in a nanostructure

In the constant-interaction model (Beenakker, 1991) the

charging energy of a Coulomb island is independent of the

number of electrons N localized on the charge island. This

assumption is valid as long as the confinement potential is not

affected by N which is not at all the case for isolated donors.

For shallow donors, only a single-charge transition (N ¼ 1 !
N ¼ 2) plays a role since it is not possible to bind a third

electron. The addition of a single electron to an ionized donor

site will screen the positive nucleus and thus strongly alter the

confinement potential for an additional electron. The

Coulomb interaction between an electron on the donor and

all other electrons in its environment can still be parametrized

by a single capacitance C, which is specific to N and the
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FIG. 51 (color online). Excited state spectroscopy of single-gated

donors. (a) Differential conductance of a dopant in a FET. Excited

states are indicated by the dots and arrows. Inset in (a) shows current

ISD as a function of gate voltage at Vb ¼ 40 mV where each plateau

indicates the addition of a quantum channel due to an orbital. (b)

Simulations of the gated donors eigenstates: wave function density

of the D0-ground state (j�GSj2) located 4.3 nm below the interface

in three different electric field regimes: Coulomb confinement

regime 0 MVm�1 (left), hybridized regime 20 MVm�1 (middle),

and interfacial confinement regime 40 MVm�1 (right). The gray

plane indicates the Si=SiO2 interface. From Lansbergen et al., 2008.
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donor environment. The charging energy, represented by
e2=2C, of donors close to a gate interface is modified due
to the screening at the interface as well as the applied electric
field which was experimentally demonstrated by Lansbergen
et al. (2008). Fuechsle et al. (2012) showed that an STM-
fabricated single-dopant device displays an unaltered
charging energy consistent with the bulk-like environment.
Recent theoretical work addresses this problem and progress
has been made using effective-mass (Fang, Chang, and
Tucker, 2002; Hollenberg et al., 2004; Calderón et al.,
2010b; Hao et al., 2011) and self-consistent field tight-
binding (Rahman, Lansbergen et al., 2011) treatments.

3. Interactions between donors

The interaction between donors plays a central role in
quantum information science. The goal is to achieve a tunable
interaction that preserves coherence (Kane, 1998). This has
not been achieved yet but it is within reach. Initial experi-
ments focused on the study of capacitive coupling as well as
the coherent coupling between dopants. A detailed under-
standing of tunnel coupling as well as capacitive coupling
between a donor and a SET is a key issue since this is the
central readout mechanism for qubits (Morello et al., 2009).
This complex coupling between a dopant and a quantum dot,
i.e., a semiconductor SET, has been analyzed in detail in an
experimental and theoretical effort by Golovach et al. (2011).
Coherent coupling between dopants has been achieved in the
limit of weakly coupled dopants (Verduijn et al., 2010) and
strongly coupled dopants (Calvet, Snyder, and Wernsdorfer,
2011). Both rely on the interference between two coherent
transport channels which leads to a specific line shape (Fano,
1961) that is sensitive to the phase difference between the two
transport paths. This phase difference can be modified by
changing the magnetic flux that is enclosed in the loop of the
transport paths. Verduijn et al. (2010) studied two As atoms in
a nano MOSFET and showed that the distance between the
dopants is about 30 nm based on the magnetic field depen-
dence. Calvet, Snyder, and Wernsdorfer (2011) studied ac-
ceptors in a Schottky FETand also observed a Fano resonance
which proves coherent exchange of electrons. The lack of
magnetic field dependence confirms their expectation that the
acceptors studied are strongly coupled in these devices.

D. Double dopant quantum dots

The study of transport and interactions in donor-based
double quantum dots has been motivated by their potential
for solid-state quantum computing applications (Loss and
DiVincenzo, 1998; Taylor et al., 2005). Initial studies con-
centrated on ion-implanted devices, where both independent
gate control (Hudson et al., 2008) on the dot occupancies and
charge detection using surface aluminum SETs were demon-
strated (Mitic et al., 2008) in multidonor devices which
contained hundreds of dopants in each dot. Characteristic
honeycomb structures (see Sec. IV.F) were observed in the
charge stability maps. However, difficulty was encountered
going to smaller dot sizes due to the inherent straggling
in the ion implantation process. Nonetheless, sequential
transport through a stochastically doped FinFET structure
was demonstrated by Roche et al. (2012). They used a split

gate geometry to independently control the chemical poten-
tial of two dopants and probe the excited states by tunneling
spectroscopy in a similar manner to a double quantum dot, as
shown in Fig. 52.

Few-electron single-crystal quantum dots have recently
been realized using STM-patterned devices, as shown in
Fig. 53. Here independent electrostatic control of the ultra-
small dots was achieved by careful modeling and optimiza-
tion using the capacitance modeling tool FASTCAP (Nabors
and White, 1991) and a single-electronics modeling tool
(SIMON) (Wasshuber, Kosina, and Selberherr, 1997). This is
quite remarkable given the small physical size of the dots

FIG. 52 (color online). Sequential transport through a double donor

device with independent gate control. The left panel shows the two

opposing gates similar to a conventional FinFET geometry but with a

split gate. The channel received a background doping of 1018 P=cm3

and this device demonstrates independent gate control of two

dopants. The right panel shows a finite-bias stability diagram reveal-

ing bulk-like excited states of the dopant. From Roche et al., 2012.

FIG. 53 (color online). A donor-based double quantum dot in

silicon. (a) An overview STM image of the device showing the

two quantum dots, tunnel coupled to the source and drain (S=D)

leads and capacitively coupled to the gates G1ð2Þ. (b) Close-up of the

two quantum dots �4 nm in diameter. The double quantum dot

angle 	 ¼ 60
 � 3
 has been optimized for maximum electrostatic

control while suppressing parallel leakage through the dots.

(c) Modeled and (d) measured charge stability diagrams show

excellent agreement, demonstrating independent electrostatic con-

trol of the individual dots. From Weber, Mahapatra, Watson, and

Simmons, 2012.
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(�4 nm in diameter) and their close spacing (�10 nm).

At such small dimensions cross capacitances between
the quantum dots become considerable and the dots need to

be positioned at an angle 	� 60
 with respect to one another
to achieve independent electrostatic control. One of the

advantages with donor-based quantum dots is that this

combination of device modeling and precision lithography
using scanning probe microscopy allows reliable predictive

device design, an important tool as devices scale to the single
donor level.

E. Charge sensing in few-electron dopants

Following the principal work by Field et al. (1993) on
remote sensing of charge using a quantum point contact in a

AlGaAs=GaAs system, Elzerman et al. (2004) adapted this
technique to perform single-shot detection of spin-dependent

single-electron tunneling events in a single-electron quantum
dot. Real time sensing of single-electron tunneling is funda-

mental to electrical readout of qubit states in spin quantum

computing. In these experiments (Elzerman et al., 2004) a
quantum point contact was capacitively coupled to the qubit.

However, the visibility, and therefore fidelity of spin readout,
of these charge detectors is greatly enhanced when a single-

electron transistor rather then quantum point contact is used

as a charge detector (Morello et al., 2009). Here the SET is
additionally tunnel coupled to the qubit and electrons can be

loaded from the SET island itself, thus eliminating the need
for a separate electron reservoir.

High-fidelity spin readout of a P-donor-bound electron in

Si was recently demonstrated within this architecture
(Morello et al., 2010) by implanting a small number of P

donors in the vicinity of an electrostatically induced SET, at

the Si-SiO2 interface. This established the feasibility of
fiducial detection of P-donor-based spin qubits; however the

uncertainty in the number and position of the donors relative
to the SET is of concern for scaling up to a practical 2D Si:P

quantum computer with multiple donor arrays. To reprodu-

cibly achieve sufficient charge sensitivity and electron tunnel
rates, it is important to precisely situate the SET with respect

to a deterministically positioned array of Si:P qubits. Toward
this end STM lithography has recently developed a charge

detection device layout, wherein a SET charge sensor and an
ultrasmall quantum dot are both patterned on the same plane

of a Si crystal, at an atomically precise separation, as shown

in Fig. 54.
In this way two of the key design parameters, i.e., the

sensitivity of charge detection and electron tunnel rates, can

be made sufficiently high to enable projective spin readout of
individual P donors in Si. Since the fabrication technique is

essentially identical to the established approach for determi-
nistic placement of P donors in Si, this charge-sensing layout

can be readily integrated in scalable Si:P spin quantum

computing architectures. Recent results demonstrate that
single-electron tunneling between the quantum dot and the

SET island occurred on a time scale (
�ms) 2 orders of
magnitude faster than the spin-lattice relaxation time of a P

donor in Si and suitable for projective readout of Si:P

spin qubits (Mahapatra, Buech, and Simmons, 2011).
Another work by Mazzeo et al. (2012) reported on the charge

dynamics of a single donor coupled to a few-electron silicon
quantum dot. Single-spin sensitivity is discussed in more
detail in Sec. VI.A.

VI. RELAXATION, COHERENCE, AND MEASUREMENTS

In the previous sections we reviewed the quantum
electronic properties of silicon and how such properties can
be harnessed in nanoscale structures. That field of research is
fairly mature, thanks partly to its technological links with
classical silicon nanoelectronics.

Once the confinement of a single electron in silicon has
been achieved, it is possible to start exploring the properties
of the electron spin. An exciting possible application is
quantum computing (Ladd et al., 2010), where the electron
spin is used as a quantum bit (Morton et al., 2011). Another
vast field of research is spin transport (Appelbaum, Huang,
and Monsma, 2007; Dash et al., 2009) and spintronics (Žutić,
Fabian, and Sarma, 2004; Awschalom and Flatté, 2007;
Jansen, 2012), which we will not discuss in this review.

In this section we present a theoretical introduction to the
behavior of electron spins confined in silicon and a snapshot

FIG. 54 (color online). Charge sensing using a donor-based

single-electron transistor coupled to a small donor dot. (a) Filled-

state STM image of the overall device pattern, showing (in lighter

contrast) the regions where the hydrogen resist monolayer has been

desorbed to create the source (S) and drain (D) contacts of the

single-electron transistor, and the two gates (G1, G2). (b) High-

resolution image of the device pattern within the white box in (a),

showing the SET island (D1) and the quantum dot (D2) (c) Charge

stability plot showing the dependence of ISD on the gate voltages

(VG1, VG2), for a constant VSD ¼ �50 �V. The high current lines

correspond to the Coulomb peaks of the SET. Inset: High-resolution

map of a small section of (c) showing discontinuity of a current line,

due to a particular charge transition of D2. The triangles in the main

map indicate a total of seven such transitions of D2. From

Mahapatra, Buech, and Simmons, 2011.
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of the current state of experimental progress. The discussion
here is meant to provide the reader with an outlook on the
future direction of the field. A thorough review of spin control

in silicon will only be possible several years from now.

A. Spin relaxation and decoherence

The suitability of a physical system to encode and preserve
quantum information is quantified by parameters such as the
relaxation and coherence times. The first, called T1, describes
the time scale over which an energy-excited state decays to
the ground state. The second, called T2, describes the time

scale over which the phase coherence between different
branches of a quantum superposition can be preserved.

A spin S ¼ 1=2, such as an electron spin confined in a Si
structure by a natural or artificial potential, can be described
by a 2	 2 density matrix � ¼ jc ihc j. The state vector jc i
belongs to a two-dimensional Hilbert space with basis vectors
j #i, j "i, normally chosen as the eigenstates of the spin
operator Sz if a static magnetic field B0 k ẑ is applied.

At thermal equilibrium, the diagonal elements of the
density matrix are related by a Boltzmann factor �th

11 ¼
expð�EZ=kBTÞ�th

22, where EZ ¼ g�BB0 is the Zeeman split-

ting. Therefore, the diagonal elements of � are related to the
degree of spin polarization. After a perturbation involving
exchange of energy with an external field or reservoir, the
spin returns to equilibrium in a typical time scale T1, e.g.,
�11ðtÞ � �th

11 / expð�t=T1Þ. T�1
1 represents the spin-lattice

relaxation rate. T1 measurements in bulk samples are per-
formed by observing the time scale over which the thermal
equilibrium is recovered after either an ‘‘inversion pulse,’’

which swaps the populations of the ground and excited spin
states, or a ‘‘saturation comb,’’ which equalizes the popula-
tions. Section VI.C.3 discusses how to obtain the T1 of a
single spin in a nanostructure from a measurement of the
probability of detecting the spin excited state as a function of
the waiting time after the excited state preparation.

A coherent superposition of the j "i, j #i basis states results
in nonzero off-diagonal elements (‘‘coherences’’) �12 ¼ ��

21.

The preparation and manipulation of such coherent super-
positions is at the heart of quantum information technology

(Nielsen and Chuang, 2000) and relies on well-established
techniques that belong to the vast field of magnetic resonance
(Slichter, 1990). Even in the absence of energy exchange with
the environment, the coherence may decay in time like
�12ðtÞ / exp½�ðt=T2Þ	�, where T�1

2 is the decoherence rate,

and 	 is an exponent that depends on the details and the
dynamics of the environment coupled to the spin. For electron
spins in solid state, a major contribution to decoherence is

given by the hyperfine coupling between the electron and the
surrounding nuclear spins. The nuclear spins exhibit complex
dynamics, driven by the interplay of their mutual interactions
and the coupling with the electron. The time fluctuations of
the hyperfine field randomize the electron spin precession
frequency and destroy its coherence.

Even in the presence of a perfectly static nuclear-spin bath,
a macroscopic ensemble of spins would exhibit a spread of

precession frequencies as a consequence of inhomogeneity in
the local magnetic field, caused, e.g., by the difference in the
instantaneous value of the local hyperfine field at every

electron site. The resulting dephasing time T�
2 represents

the time scale over which a free induction decay occurs,
i.e., the vector sum of all the spins in the ensemble averages
to zero. For a single spin, the free precession cannot be
observed in a single experiment and must be obtained through
repetition averaging. Therefore, a T�

2 process arises when the

quasistatic value of the local magnetic field changes from one
repetition to the next. The ‘‘true’’ decoherence time T2 is
obtained in the experiments by ‘‘refocusing’’ the quasistatic
inhomogeneity (in space, for a spin ensemble, or in time, for a
single spin) of the magnetic field through a Hahn-echo tech-
nique (Slichter, 1990).

The definitions and discussion above can be readapted to
the case where a two-level system is obtained from the
truncation of the Hilbert space of two exchange-coupled spins
(Levy, 2002; Petta et al., 2005). The basis states then become

the singlet and triplet states, jSi ¼ ðj "#i � j #"iÞ= ffiffiffi
2

p
and

jT0i ¼ ðj "#i þ j #"iÞ= ffiffiffi
2

p
, and the energy splitting caused by

the exchange interaction J replaces EZ in the expressions
above. This way of defining spin-based two-level systems has
been proposed to allow the control of the qubit purely by
electrical means, i.e., without resorting to magnetic resonance
techniques.

Relaxation and decoherence of spins in semiconductors
has been the subject of intense research, and an accessible
review is given by Hanson et al. (2007). Here we highlight the
specific phenomena that arise in silicon, in particular, due to
the valley degeneracy of the conduction band.

The spin-lattice relaxation, i.e., the return of the diagonal
elements of the spin density matrix to their equilibrium value,
requires the coupling of the spin to a phonon reservoir.
Silicon lacks a piezoelectric effect, which is often the domi-
nant source of spin-phonon coupling in III-V materials. The
only type of phonons present in Si is the ‘‘deformation
potential,’’ i.e., a local change in lattice spacing which prop-
agates with wave vector q. A deformation potential phonon
alters the band gap in an inhomogeneous and time-dependent
way, with repercussions on the exact mixture of spin, valley,
and orbital nature of the electronic wave functions.

The relaxation rate T�1
1 is obtained in a ‘‘Fermi golden

rule’’ approach as

T�1
1 � 2�

ℏ
jh" jH e-ph;SOj #ij2NðEZÞ; (12)

where NðEZÞ / E2
Z is the density of phonon states at the

energy splitting EZ, and H e-ph;SO is a Hamiltonian term

that includes the electron-phonon interaction and the spin-
orbit coupling. It should be noted that the electron-phonon
interaction does not directly couple Zeeman-split pure spin
states. However, a nonzero coupling is obtained if the true
eigenstates contain admixtures of other orbital or valley
states, mixed in by the spin-orbit interaction.

Another way to look at the problem (more familiar to the
spin resonance community) is to think of the spin as being
subject to an effective magnetic field, whose magnitude and
direction can be modulated by a lattice phonon. Then T�1

1 is

proportional to the spectral density, at frequency !e ¼ EZ=ℏ,
of the component of the phonon-induced fluctuating local
field perpendicular to the spin quantization axis.
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Recall a simple expression for the electron g factor in a
semiconductor (Roth, 1960; Kittel, 1963):

g � 2� m

m�

�
2�SO;VB

3Eg þ 2�SO;VB

�
; (13)

where �SO;VB is the spin-orbit splitting of the valence band,

Eg is the band gap, andm andm� are the free electron and the
effective mass, respectively. In Si, �SO;VB � 40 meV is rela-

tively small, due to the small atomic number. The large band
gap Eg ¼ 1:12 eV results in electron g factors very close to 2.

Accordingly, spin relaxation in Si is relatively slow, since the
modulation of the g factor due to phonon scattering is very
small.

There are four main differences in the spin relaxation
behavior between Si and III-V semiconductors such as
GaAs (Blakemore, 1982): (i) Si has no piezoelectric effect,
and therefore only deformation potential phonons are present;
(ii) Si has no bulk inversion asymmetry and therefore is
immune from Dresselhaus spin-orbit coupling effects
(Dresselhaus, 1955; Hanson et al., 2007); (iii) the small
atomic number and large band gap of Si produce a weak
spin-orbit coupling; and (iv) the physical mechanism and the
magnetic field dependence of T�1

1 depend on the nature

(valley or orbital) and the details of the excited states above
the valley-orbit ground state.

1. Electron spin relaxation in donors

We first consider the case of a shallow donor such as P, As,
or Sb, where doublet and triplet valley-orbit excited states
(see Sec. III.B.2) lie �10–15 meV above the singlet
(spin-degenerate) ground state. All of these six states share
the same hydrogenic 1s orbital nature and lie well below the
2p orbital states. In this situation, the dominant contribution
to spin relaxation arises from valley effects, which can take
the following two forms: (i) ‘‘valley repopulation’’ or
(ii) ‘‘one-valley’’ mechanisms.

(i) Valley repopulation: Within one valley, the g factor of
an electron is slightly different (anisotropic) for mag-
netic field parallel (gk) or perpendicular (g?) to the

valley axis. In the unperturbed 1s singlet ground state
of a donor, all six valleys contribute equally, and the
overall g factor of the donor-bound electron is iso-
tropic. However, the local strain produced by a phonon
has the effect of disrupting the symmetry of the six
valleys, lowering certain valleys with respect to others.
Now the g factor may assume an anisotropic character,
which can be interpreted as a phonon-induced modu-
lation of the effective local field, with a component
perpendicular to the spin quantization axis. The result-
ing relaxation rate becomes (Hasegawa, 1960)

T�1
1 ðB; TÞ ¼ fSið�;�Þ 6

5�

�
g0�
3gEvo

�
2
�

1

�5
t

þ 2

3�5
l

�

	
�
g�BB

ℏ

�
4
kBT (14)

¼ K4B
4T: (15)

Here � is the deformation potential parameter
(Bardeen and Shockley, 1950; Herring and Vogt,
1956), representing the energy shift of the valleys due
to a deformation of the crystal lattice. g0 ¼ ðgl � gtÞ=3
describes the anisotropy of the g factor along the
principal axes of the effective-mass tensor for each
valley, Evo is the energy difference between the first
excited valley-orbit state and the ground state, � ¼
2330 kg=m3 is the density of Si, and t ¼ 5860 m=s
and l ¼ 8480 m=s are the transverse and longitudinal
sound velocities, respectively. fSið�;�Þ is an angular
factor that goes to zero for � ¼ 0 (B k ½001�) and is
maximum for B k ½111�.
Equation (14) was derived in the high-T limit, appro-
priate for typical X-band (� 10 GHz) electronspin
resonance (ESR) experiments at T > 1 K (Feher and
Gere, 1959). The full expression contains the term 1þ
nph�kBT=g�BB, where nph¼½expðg�BB=kBTÞ�1��1

is the Bose occupation factor of the phonon mode at
the Zeeman energy. For this reason, T�1

1 / T in the

high-T limit. Conversely, single-spin experiments in
nanostructures (Morello et al., 2010) are conducted in
the low-T limit, where 1þ nph � 1. This indicates that

only spontaneous emission of phonons can take place.
Equation (15) becomes

T�1
1 ðBÞjlow-T ¼ K4

g�BB

kBT
B4T ¼ K5B

5: (16)

The T�1
1 / B5 dependence arises from the following

factors: (i) The density of phonon states NðEZÞ is
proportional to B2; (ii) in the matrix element
h" jH e-ph;SOj #i, a factor proportional to B accounts

for the need to break time-reversal symmetry, while
another factor proportional to

ffiffiffiffi
B

p
arises from the

ffiffiffi
q

p
dependence of the strain caused by a deformation
potential phonon, where q / g�BB is the wave num-
ber. Therefore, jh" jH e-ph;SOj #ij2 is proportional to B3.

(ii) One-valley mechanism: A phonon-induced strain in-
troduces a coupling between the � band and the near-
est� band (see Sec. III.B.2). This yields an anisotropic
modulation of the g factor even for an electron con-
fined to a single valley. This one-valley mechanism
also yields T�1

1 / B5 in the low-T limit, but has a

different angular dependence, with fastest relaxation
for B k ½001� and slowest along [111]. Unlike the
valley repopulation, the one-valley mechanism always
produces a nonzero relaxation rate.
A detailed discussion and experimental study of these
relaxation channels for Si:P was given by Wilson and
Feher (1961), in the high-T limit [see Fig. 55(a)].
Since both the valley repopulation and the one-valley
mechanism are generally active at the same time and
have a comparable strength, Wilson and Feher (1961)
included the analysis of the angular dependence of T�1

1

to unravel the different contributions. The low-T limit
has been investigated in the single-shot spin readout
experiments of Morello et al. (2010), where the T�1

1 /
B5 law was verified, and the experimental values
of T�1

1 were found to be in quantitative agreement

with the prediction of Eq. (16) to within factors of �2
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[see Fig. 55(b)]. The longest observed relaxation time
for a single spin was T1 � 6 s at B ¼ 1:5 T. Because
of the very strong field dependence of T1, Feher and
Gere (1959) were able to observe T1 � 5000 s at T ¼
1:25 K and B ¼ 0:32 T in a bulk sample.

2. Electron spin relaxation in quantum dots

The spin relaxation mechanisms for an electron confined to
a quantum dot obtained differ slightly from those in a donor,
due to the different valley and orbital nature of the electron
states (see Sec. III.B and Fig. 7). The ground and first excited
electron wave functions are symmetric or antisymmetric
combination of the �z valleys, because of the strong vertical
confinement in the quantum well from which the dot is
formed. It can be shown that, under this circumstance, the
valley repopulation mechanism does not contribute to spin
relaxation (Glavin and Kim, 2003; Tahan, 2007).

The one-valley mechanism, on the contrary, is active and
yields a relaxation rate T�1

1 / B5 (Glavin and Kim, 2003).

Note that, unlike in the donor case, the one-valley mechanism
in dots obtained from a [001] quantum well gives vanishing
relaxation for B k ½001� and [110] (Tahan, 2007).

An additional mechanism for spin relaxation in quantum

dots arises from the structural inversion asymmetry of the

quantum well in which the dot is confined, known as Rashba

spin-orbit coupling (SOC) (Rashba, 1960; Khaetskii and

Nazarov, 2000; Tahan and Joynt, 2005; Hanson et al.,

2007). Spin relaxation due to Rashba SOC can become

dominant in Si quantum dots if the dot geometry gives rise

to low-lying excited states of different orbital symmetry as

compared to the ground state, or when the one-valley mecha-

nism vanishes due to B k ½001� or [110]. The magnetic field

dependence of the Rashba-SOC spin relaxation channel is

T�1
1 / B7 for deformation potential phonons (Hanson et al.,

2007; Tahan, 2007; Raith, Stano, and Fabian, 2011), the only

ones present in Si. The additional factor B2 as compared to

the valley-related mechanisms arises from the linear depen-

dence on q of the matrix element for deformation potential

phonons to couple states of different orbital nature. Two

experiments (Hayes et al., 2009; Xiao, House, and Jiang,

2010a) indeed found a behavior consistent with T�1
1 / B7

in gate-defined Si dots [see Figs. 55(c) and 55(d)]. Relaxation

times as long as T1 � 2:8 s at B ¼ 1:85 T have been mea-

sured in a Si=SiGe dot (Simmons et al., 2011). The relaxation

105
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FIG. 55 (color online). (a) Spin-lattice relaxation rate T�1
1 of P donors in bulk Si, at B � 0:3 T and T ¼ 1:2 K, as a function of the field

orientation. The angular dependence allows the separation of ‘‘valley repopulation’’ and ‘‘single valley’’ contributions. From Wilson and

Feher, 1961. (b) T�1
1 ðBÞ for single P donors in two different devices. Both show a T�1

1 / B5 contribution, but device A also exhibits a

B-independent plateau, attributed to dipolar flip-flops with nearby donors. Also shown is T�1
1 ð3:3 TÞ in bulk Si:P. From Morello et al., 2010.

(c) T�1
1 ðBÞ in a gate-defined Si=SiGe dot (d), compared to data for a InGaAs dot (j,r). From Hayes et al., 2009. (d) T1ðBÞ in a gate-defined

Si-MOS dot, for the one-electron (j) and two-electron () states. From Xiao, House, and Jiang, 2010a.
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rate depends on the size and shape of the dot and is inversely
proportional to the square of the orbital level spacing,
producing longer T1 for smaller dots. Importantly, the
Rashba-SOC relaxation channel gives nonzero contribution
for any magnetic field direction. A summary of the magnetic
field dependences of the spin relaxation mechanism for
donors and dots in Si is given in Table I.

3. Singlet-triplet relaxation

The Zeeman-split states of a single electron bound to a
donor or a dot constitute a natural qubit. An alternative
scheme has been proposed, where the logical qubit is ob-
tained from the two-electron singlet and triplet (S=T) spin
states of a double quantum dot (Levy, 2002). Coherent ma-
nipulation of S=T qubits has been pioneered in GaAs double
dots (Petta et al., 2005) and has recently been demonstrated in
Si=SiGe double dots as well (Maune et al., 2012). A ‘‘digital’’
scheme applicable to donors in Si has also been proposed
(Skinner, Davenport, and Kane, 2003). The first measurement
of S=T relaxation in a Si double quantum dot (Prance et al.,
2012), discussed in Sec. VI.C.4, gave a value of T1;S=T �
10 ms at B ¼ 0, 2 orders of magnitude longer than in GaAs
dots (Johnson, Petta, Taylor et al., 2005). In an applied
magnetic field, the spin lifetime of the T� state grows up to
values of order 3 s at B ¼ 1 T. The theory of S=T spin
relaxation in the (1,1) charge configuration of double dots
in Si=SiGe was discussed by Wang and Wu (2011) and Raith
et al. (2012), while two groups (Prada, Blick, and Joynt,
2008; Wang et al., 2010) analyzed the relaxation mechanisms
in a two-electron single dot, which is relevant for the under-
standing of lifetime-enhanced transport (Shaji et al., 2008) or
the direct measurement of spin relaxation in a two-electron
dot (Xiao, House, and Jiang, 2010a).

A theory for exchange-coupled donor pairs exists (Borhani
and Hu, 2010) and predicts a complicated dependence of the
triplet ! singlet relaxation rate on the exchange interaction
J, ranging from / J to / J3. Valley interference plays a
crucial role, since J can vary over orders of magnitude by
simply changing the direction of the axis joining two donors.

4. Spin decoherence

The attractiveness of silicon for quantum computing
applications arises in large part because of the predicted

weakness of the decoherence mechanisms (Tahan, Friesen,
and Joynt, 2002; De Sousa and Das Sarma, 2003; Tahan and
Joynt, 2005). The main source of decoherence for electron
spins in solid state is the coupling to the bath of nuclear spins
in the host material. In the spin resonance literature this goes
under the name of ‘‘spectral diffusion’’ to indicate that the
time evolution of the state of a bath of nuclear spins coupled
to an electron spin causes the electron spin resonance fre-
quency (the ‘‘spectrum’’) to ‘‘diffuse’’ over a certain range
(Klauder and Anderson, 1962). Natural silicon has only a
4.7% concentration of spin-carrying (I ¼ 1=2) 29Si isotope,
greatly reducing the effects of nuclear fields compared to
GaAs devices (Witzel and Das Sarma, 2006). The isotopic
purification to silicon consisting of only spinless 28Si has
been demonstrated for some time (Ager et al., 2005), and
further pursued to extreme levels in the context of the
Avogadro project (Andreas et al., 2011), where a 28Si sphere
with less than 5	 10�5 29Si concentration has been produced
with the goal of redefining the kilogram. Purified material
originating from the Avogadro project has been used to
demonstrate exceptional electron spin coherence times
T2 > 10 s (Tyryshkin et al., 2011). Natural germanium con-
tains 7.7% 73Ge (I ¼ 9=2), with all other isotopes spinless.
An isotopically purified Si=SiGe heterostructure was demon-
strated (Sailer et al., 2009). Even with unenriched Ge, the
effects of the Ge nuclear spins are greatly suppressed because
in the typical heterostructures used for Si=SiGe qubits, only
about 0.6% of the electron density resides in the SiGe barrier
(Shi et al., 2012).

The theory of electron spin decoherence arising from
nuclear spins in Si is well understood. The correct order of
magnitude of the decoherence time T2 was already predicted
by early studies, where the dynamics of the nuclear-spin bath
was approximated as Markovian, i.e., neglecting time corre-
lations (De Sousa and Das Sarma, 2003). Full agreement with
experimental data in bulk Si:P (Tyryshkin et al., 2003)
requires a more sophisticated treatment of the spin bath
dynamics, where non-Markovian time correlations are taken
into account. Quantum mechanical solutions of the dynamics
of electron spins in a nuclear bath included nuclear-spin pair
correlations (Yao, Liu, and Sham, 2006), all the way to
higher-order cluster-expansion techniques (Witzel, de
Sousa, and Das Sarma, 2005; Witzel and Das Sarma, 2006).
The echo decay takes the form

Vð2
Þ / expfð�2
=TRÞ exp½�ð2
=TSDÞ	�g; (17)

where 
 is the time interval before and after the refocusing
� pulse in the Hahn-echo sequence (Slichter, 1990), TR is a
relaxation time that accounts for both instantaneous diffusion
and T1 processes, TSD is the spectral diffusion time, which
depends on the internal dynamics of the nuclear bath, and the
exponent 	 takes the value 2.3 (Witzel, Hu, and Das Sarma,
2007). Full matching between cluster-expansion theory and
experimental data (Tyryshkin et al., 2003) [see Fig. 56(a)]
was obtained by including the electron spin echo envelope
modulation (ESEEM) effect (Rowan, Hahn, and Mims,
1965), which arises from the anisotropic component of the
hyperfine coupling to the 29Si nuclei (Ivey and Mieher,
1975b; Saikin and Fedichkin, 2003; Park et al., 2009).

TABLE I. Summary of the magnetic field dependence of the spin
relaxation rates T�1

1 ðBÞ for different mechanisms applicable to
donors and quantum dots in Si. It is assumed that the dots are
formed from [001] quantum wells.

Donors Quantum dots

Valley repopulation T�1
1 / B5 Negligible

maxk ½111�
0 k ½001�

One valley T�1
1 / B5 T�1

1 / B5

maxk ½001� maxk ½100�, [010]
mink ½111� 0 k ½001�, [110]

Rashba spin-orbit
coupling

Negligible T�1
1 / B7

maxk ½100�, [010]
mink ½001�
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The cluster-expansion technique has been extended to the
study of decoherence upon isotopic purification (Witzel et al.,
2010) [see Fig. 56(b)]. An interesting phenomenon that must
be taken into account to match Si:P bulk data is the interplay
between 29Si spectral diffusion and dipole-dipole coupling
among electron spins. The latter gives an additional contribu-
tion to decoherence, which is always present because any
realistic Si crystal contains some level of background doping.
The dipolar coupling between donor electron spins contains
terms of the formSþ1 S�2 þ S�1 Sþ2 , which allow the excitation of

spin 1 and deexcitation of spin 2 (‘‘flip-flop’’ process) or vice
versa, while conserving total energy to within the strength of
the coupling term. This process produces additional magnetic
noise on a spin qubit. However, the presence of some 29Si
nuclei may actually be beneficial in this context. When the
inhomogeneity of the local hyperfine fields is stronger than the
electron dipole-dipole coupling, flip-flop processes are sup-
pressed by energy conservation. The concept can be extended

to any source of local field inhomogeneity, and the field

inhomogeneity does not degrade the potential implementation
of exchange gates (Hu, de Sousa, and Das Sarma, 2001; De

Sousa, Hu, and Das Sarma, 2001). On this basis, Tyryshkin

et al. (2011) measured T2 > 10 s by using a highly purified
28Si:P crystal and deliberately introducing a magnetic field

gradient across the sample to prevent neighboring spins from
undergoing energy-conserving flip-flop processes. Another

way to suppress flip flop is by lowering the temperature such

that g�BB � kBT, thereby polarizing the electron spins. This
leads to an exponential suppression of the dipolar decoherence

channel (Morello, Stamp, and Tupitsyn, 2006; Witzel et al.,
2010) because of the scarcity of spins in an excited state.

Once the nuclear spin and dipole-dipole decoherence

mechanisms have been thoroughly suppressed, one may ex-

pect the remaining dominant decoherence channel to be
charge noise, particularly in the case where exchange cou-

pling is used to implement quantum logic gates (Culcer, Hu,
and Das Sarma, 2009; Gamble et al., 2012). Dephasing from

charge noise is expected to be more pronounced in quantum-

dot qubits than in donor qubits, but less pronounced than
in superconducting qubits, because the characteristic size of

quantum-dot qubits is intermediate between the sizes of

impurity qubits and superconducting qubits.

B. Orbital and valley relaxation

So far we have discussed the relaxation processes for the
electron spin confined to a donor or a gate-defined dot, with

the intention of describing the lifetime of an excited qubit

state encoded in the spin Hilbert space. Excited orbital or
valley states then act as intermediate states for perturbations

involving lattice phonons and spin-orbit coupling to cause
spin relaxation.

However, the orbital and valley excited states can also be

used actively, for instance, to mediate strong interaction

between nearby donors. An early proposal suggested the
use of the excited 2p orbital states of a deep donor to induce

a superexchange interaction between pairs of shallow donors
placed on either side of the central one (Stoneham, Fisher,

and Greenland, 2003). This involves the coherent manipula-

tion of hydrogenic Rydberg states, a well-established practice
in atomic physics. The 2p Rydberg state lifetime for P donors

in Si was found to be T1 � 200 ps, attributed to the sponta-
neous emission of phonons (Vinh et al., 2008). Coherent

control of the Rydberg states has also been achieved, with

an orbital coherence time T2 � 28 ps (Greenland et al.,
2010).

Valley states are expected to have much longer lifetimes

and coherence, due to the unlikelihood of processes that cause
intervalley transitions. A recent proposal describes the use of

singlet and triplet valley states of a double quantum dot to

encode and manipulate quantum information with reduced
sensitivity to noise (Culcer et al., 2012). Recent experiments

have shed light on the valley physics and its effect on

electronic states. Through transport spectroscopy measure-
ments of donor states in FinFETs, Lansbergen et al. (2011)

showed that under certain conditions relaxation of excited
states into lower manifolds is suppressed due to a combina-

tion of both spin and valley blockade. This enhanced lifetime

FIG. 56 (color online). (a) Experimental echo decay and cluster-

expansion theory for natSi:P at different angles of the magnetic field

with respect to the crystallographic [001] axis. Notice the echo

envelope modulation arising from anisotropic hyperfine coupling

between donor electron and 29Si nuclei. From Witzel, Hu, and Das

Sarma, 2007. (b) Decoherence time T2 for Si:P as a function of 29Si
concentration CN for different dopant concentrations CE. Symbols

are experimental data points. From Witzel et al., 2010.
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results in an additional transport path through the excited
state and appears as a current step in the stability diagram.
The phenomena called lifetime-enhanced transport was first
observed in a silicon double quantum dot (Shaji et al., 2008)
due to a blocked relaxation of a spin triplet into a ground state
spin singlet, arising from the long spin relaxation times in
silicon (see Sec. IV.F.2). In the experiment, LET enabled
Lansbergen et al. (2011) to identify a blocked transition
between states that have different valley symmetries. They
confirmed this observation (i) by extracting the tunnel rates in
and out of the donor states through a temperature dependent
measurement and analysis, and (ii) by computing the low-
energy two-electron spectrum of the system from a multi-
million atom tight-binding method to compare and identify
the measured excited manifolds.

C. Control and readout of spins in silicon

1. Bulk spin resonance

The dynamics of spins in bulk materials has been
traditionally studied by ESR and nuclear magnetic resonance
techniques. Pioneering experiments on ESR of donors in
Si by Feher and Gere (1959) measured exceptionally long
electron spin-lattice relaxation times at low temperature,
with the longest measured T1e � 1:4 h at 1.25 K and 0.3 T.
These experiments were crucial to the development of the
general theory of spin relaxation in semiconductors, as well
as for the understanding of the electronic structure of donors
(Feher, 1959).

Bulk spin resonance has also been used to study electron
gases in modulation-doped Si=SiGe quantum wells (Jantsch
et al., 1998; Tyryshkin et al., 2005), and the paramagnetic
defects that occur at Si=SiO2 interfaces (Poindexter and
Caplan, 1983; Brower, 1989) and in amorphous silicon
(Stutzmann and Biegelsen, 1983; Askew et al., 1984). The
temperature dependence of T1 in paramagnetic dangling
bonds points to a relaxation mechanism where the electron
spin is coupled to the charge fluctuations of the defect, which
acts as a tunneling two-level system (Askew et al., 1984; De
Sousa, 2007). Thus, ESR can be used as a noninvasive
diagnostic tool to characterize the distribution of tunneling
energies of defects in or near amorphous interfaces.

The possibility of enhancing the electron spin coherence of
donors in Si by reducing the concentration of the spin-1=2
29Si isotope (Abe et al., 2010) was demonstrated as early as
1958 (Gordon and Bowers, 1958). More recently, the quality
of isotopic purification has been further improved (Ager
et al., 2005) and reached a pinnacle with the Avogadro project
(Becker et al., 2010) to redefine the kilogram as a sphere of
pure 28Si. Tyryshkin et al. (2003) showed that a 28Si:P sample
with P doping concentration n � 1015 cm�3 exhibits a co-
herence time T2e ¼ 60 ms, by using a conventional Hahn-
echo technique (Slichter, 1990), but accounting for the effect
of instantaneous diffusion. In bulk experiments, the dipole-
dipole coupling between the spins introduces an artifact
whereby the refocusing pulse has the effect of flipping the
coupled spins, therefore instantaneously changing the local
magnetic field and artificially suppressing the echo. The true
T2 must be obtained by extrapolating the echo decay time
constant in the limit �2 ! 0. This extrapolation method,

however, does not eliminate the dynamical effect of dipole-
dipole coupling (Witzel et al., 2010) during the wait time 
.
The decoherence due to dipolar interaction can be suppressed
by introducing a magnetic field gradient across the sample of
magnitude larger than the spin-spin coupling strength. With
this method, and using a bulk sample with extreme isotopic
purity (< 50 ppm 29Si) and low doping (n� 1014 cm�3),
Tyryshkin et al. (2011) obtained a record value of T2e � 10 s.
The combination of narrow ESR absorption lines, very long
spin coherence, and the presence of a nuclear spin with I ¼
1=2 make the 28Si:P system an ideal candidate to explore
sophisticated techniques to encode, retrieve, and manipulate
nontrivial quantum states. Morton et al. (2008) demonstrated
the ability to store and retrieve an arbitrary quantum state of
the P electron onto the 31P nucleus, obtaining a quantum
memory with coherence time T2n > 1 s.

2. Electrically detected magnetic resonance

In a bulk spin resonance experiment, the precession of a
spin ensemble is detected through the electromotive force
induced in a cavity or pickup coil. In this way, one can only
detect a macroscopic number of spins, typically >1015. In
semiconductors, however, it is possible to make localized

spins and mobile electrons coexist. This allows the detection
of spin resonance by electrical means and yields a significant
improvement in detection sensitivity. Electrically detected
magnetic resonance (EDMR) exploits spin-dependent scat-
tering between free carriers and localized spins. A change in
the current (or the conductance) of a suitably designed nano-
structure is observed when a resonant oscillating magnetic
field alters the equilibrium magnetization of localized spins
onto which the free carriers are made to scatter (De Sousa,
Lo, and Bokor, 2009). The free carriers can be generated
either by illumination (Boehme and Lips, 2003) or by electro-
statically inducing an electron layer in a MOSFET structure
(Ghosh and Silsbee, 1992; Lo et al., 2007; van Beveren et al.,
2008). EDMR has been successfully applied to the detection
of spin resonance and coherent control of 31P dopant spins in
Si (Stegner et al., 2006; Huebl et al., 2008; Lu et al., 2011)
(see Fig. 57), and to demonstrate a very long-lived classical
spin memory (McCamey et al., 2010). The detection sensi-
tivity has been pushed to the level of 100 donors in ion-
implanted nanostructures (McCamey et al., 2006), and it has
been proposed that reaching the single-spin limit is possible
and would yield a quantum nondemolition measurement of
the donor nuclear spin (Sarovar et al., 2008).

3. Single-shot readout of a single-electron spin

To reach single-spin sensitivity, it is necessary to integrate
single-charge detection with a spin-dependent displacement
of the charge. This idea was already incorporated in the Kane
proposal for a Si:P quantum computer (Kane, 1998), where
the readout of the electron spin state would take place by
detecting the transfer of an electron from the D0 state of a
donor to the D� state on its neighbor. This transfer is allowed
only if the two electrons form a spin singlet state. The
detection of the spin-dependent charge transfer occurs via a
SET on the surface of the device. Subsequent proposals
pointed out that it is possible to detect the displacement of
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a single charge through the change in conductance of a small

transistor (Vrijen et al., 2000). In addition to the spin-
dependent addition of a second electron to an already occu-

pied donor, Martin, Mozyrsky, and Jiang (2003) pointed out
that, in the presence of a large magnetic field, a charge center
(not necessarily a donor) can change its occupancy state when

the excited spin state lies above the Fermi level of a nearby
electron reservoir (e.g., the channel of a transistor), while the
ground spin state lies below. This process corresponds to an

energy-dependent spin-to-charge conversion. If a resonant
magnetic field is applied to drive transitions between the
spin states, one expects to observe a switching behavior in

the current through the transistor as the system goes through
the cycle: excite spin-up state ! ionize ! load spin-down
electron. This method was employed by Xiao et al. (2004)

to detect the spin resonance of a single-charge trap coupled
to a small Si transistor (see Fig. 58). The same type of

spin-to-charge conversion lies at the heart of the single-shot

readout of a single electron confined to a GaAs quantum dot

(Elzerman et al., 2004). In that case, the spin state of the

single electron was detected in a single-shot manner, i.e., with

no need for repetition averaging, thanks to the large electrical

signal obtained by monitoring the change in conductance of a

quantum point contact with strong electrostatic coupling to

the quantum dot.
The spin-to-charge conversion, and therefore the single-

shot spin readout, is considerably more challenging in Si

than, e.g., in GaAs quantum dots. This is because the large

effective mass requires tighter electron confinement and de-

creases the transparency of tunnel barriers. Averaged spin

readout experiments were performed in Si=SiGe (Hayes

et al., 2009) and Si-MOS (Xiao, House, and Jiang, 2010a)

quantum dots, yielding the spin relaxation time T1. The first

successful single-shot electron spin readout in Si was ob-

tained by Morello et al. (2010), where the electron was bound

to a 31P donor and tunnel coupled to the island of an induced

Si-SET. The readout scheme is a modification of the energy-

dependent spin-to-charge conversion used by Elzerman et al.

(2004). The donor and the SET island effectively form a

hybrid double quantum dot (Huebl et al., 2010) connected

FIG. 57 (color online). (a) Sketch of the spin-dependent transition

between a donor-bound electron and an interface trap, following the

creation of free carriers through illumination. (b) Schematics of an

EDMR device. P donors close to charge traps at the Si=SiO2

interface contribute a spin-dependent scattering mechanism for

the electrons traveling between the Au contacts. A resonant micro-

wave excitation alters the polarization of the donor-bound electrons,

causing a measurable change of the overall device resistance

(c) Electrically detected Rabi oscillations of P-donor electrons at

different values of the driving power. From Stegner et al., 2006.

FIG. 58 (color online). (a) Schematics of a single-charge trap

coupled to the channel of a Si transistor. (b) Single-electron spin

resonance measurement, obtained by monitoring the average current

through the transistor as a function of magnetic field, while applying

a microwave excitation at 45 GHz. The excess current at the

resonance frequency arises from the change in charge occupancy

of the trap, made possible by the driven flipping of its electron spin.

From Xiao et al., 2004.
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‘‘in parallel’’ (Hofmann et al., 1995), where one dot is

coupled to source and drain leads, and the other (the donor
in this case) is coupled only to the main dot (Morello et al.,

2009). This results in a very compact structure and charge
transfer signals large enough to completely switch the SET

from Coulomb blockade (ISET ¼ 0) to the top of a Coulomb
peak (ISET � 2 nA), resulting in single-shot readout of the

donor spin with >90% visibility (see Fig. 59). Most recently
singleshot readout has also been observed in precision

STMpatterned donors with relaxation times of �2 s (Büch
et al., 2013). Single-shot spin readout has also been achieved

in a gate-defined Si quantum dot (Simmons et al., 2011),
using a QPC as charge sensor and the 2DEG in a Si=SiGe
heterostructure as the charge reservoir. There the weaker
(purely capacitive) coupling between sensor and dot lead to

a current signal �20 pA upon spin-dependent displacement
of a single-electron charge.

4. Readout and control of singlet-triplet states

in double quantum dots

Some of the most successful implementations of spin-based
qubits in semiconductors have made use of two-electron

systems (Levy, 2002), where quantum information can be
encoded into the singlet and triplet (S=T) states of exchange-
coupled electrons, instead of the Zeeman-split spin states of a
single electron. Coherent control (Petta et al., 2005), single-
shot readout (Barthel et al., 2009), and dynamical decoupling
methods (Bluhm et al., 2010) for S=T qubits have been dem-
onstrated in GaAs double quantum dots. In the quest to imple-
ment S=T qubits in Si, the large effective mass plays again a
role in requiring very tight electron confinement and reducing
the tunnel couplings, which in this case also have the essential
role of determining the spin exchange coupling J. In addition,
most S=T qubit implementations in GaAs have made use of a
gradient of hyperfine field�Bz between the two dots to be able
to control the qubit along two orthogonal axes in the S=T basis
(Foletti et al., 2009). Because of the much smaller hyperfine
interaction in Si (Assali et al., 2011) as compared to GaAs, the
two-axis control of a S=T qubit through J and �Bz becomes
more challenging. On the other hand, the weak coupling to the
nuclear-spin bath allows for substantially longer coherence
times.

As long as the valley degeneracy of the Si conduction band
(see Sec. III.B.2) is completely lifted, the singlet-triplet spin
states in Si double quantum dots can be detected and manipu-
lated in the sameway as in GaAs dots. The readout mechanism
involves Pauli spin blockade (see Sec. IV.F.2). Figure 60 shows
the single-shot readout of the singlet and triplet states of a
Si=SiGe double quantum dot (Prance et al., 2012). The state of

FIG. 59 (color online). (a) Spin-to-charge conversion scheme for a

single donor tunnel coupled to the island of an SET. The presence of

quantized states inside the SET island can be ignored if the single-

particle energy level spacing is smaller than the thermal broadening.

From Morello et al., 2009. (b) Single-shot readout of a donor

electron spin. The individual traces show the evolution of the

readout signal as a function of the donor electrochemical potential

with respect to the Fermi level. From Morello et al., 2010.

FIG. 60 (color online). Single-shot readout of singlet-triplet states

in a Si=SiGe double quantum dot. (a), (b) QPC current traces IQPC
while pulsing the detuning with a square wave. Singlet states are

identified when IQPC returns to a high value as in (b). (c) Charge

stability diagram and pulsing levels. (d)–(f) Time traces of IQPC at

different magnetic fields as indicated. Increasing B extends the

lifetime of the T11 (constant current) state. (g) Control sequence,

pulsing outside the spin-blockade region. From Prance et al., 2012.
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the two-electron system is detected by pulsing the detuning �
from negative—where the (1,1) charge state is stable—to

positive—where the electrons can occupy the (0,2) state,

provided their spin state is a singlet. Switching between the

(1,1) and the (0,2) state produces a signal on the QPC current

which can be measured in a single shot. This experiment also

yields the triplet spin relaxation time T1, which is found to be

�10 ms for all triplets at B ¼ 0, but extends up to �3 s at
B ¼ 1 T for the T� state, whose splitting from the singlet

state is reduced by the applied field.
The coherent control of singlet-triplet states has been

achieved in an accumulation-mode Si=SiGe (see Sec. IV.B.3)
double quantum dot (Maune et al., 2012). In the S=T qubit

basis, one can represent the singlet and triplet states as the

poles of a Bloch sphere, with the j "#i, j #"i states on the equator
(Petta et al., 2005). The exchange interaction J acts equiva-

lently to an effective field along ẑ, while a gradient of hyperfine
field �Bz between the two dots acts as an effective field

along x̂. Figure 61 shows the measurement of Rabi oscillations

in the S=T basis of a Si=SiGe double quantum dot. The system

is prepared in the (0,2) singlet state by exchangewith the leads.

A subsequent adiabatic pulse (i.e., slow with respect to the

interdot tunnel rate, fast with respect to the S=T mixing time

arising from hyperfine interactions) prepares a state close to the

equator of the Bloch sphere. The exchange oscillations are then

initiated by pulsing closer to the zero detuning line, causing J to
increase and the spin state to undergo a rotation around an axis

that depends on the instantaneous value of J and �Bz. A final

adiabatic pulse brings the state back to � > 0, where the

electrons occupy the same dot as if they returned to a singlet

state. The oscillations of the singlet return probability consti-

tute a demonstration of coherent control of the two-electron

spin states. The dephasing introduced by the randomness of the

hyperfine field can be measured with a modified pulse se-

quence, where the electrons prepared in the (0,2) singlet state

are rapidly separated and left to dephase at J � 0 before being

brought back to the (0,2) region for readout. The measured
dephasing timeT�

2 � 360 ns (Maune et al., 2012) represents an

improvement by nearly 2 orders of magnitude over the value
observed inGaAs dots (Petta et al., 2005), as expected from the
much weaker hyperfine coupling in Si as compared to GaAs
(Assali et al., 2011). It should be noted, however, that the
smallness of the hyperfine field poses a challenge when at-
tempting to reach the regime where J <�Bz [see Fig. 61(d)].

5. Single-atom spin qubit

The single-shot spin readout techniques discussed in
Sec. VI.C.3 have recently been combined with coherent
spin control via microwave pulses, yielding the demonstra-
tion of a spin qubit based on the electron bound to a single 31P
atom implanted in a silicon MOS device (Pla et al., 2012)
[see Fig. 62(b)]. The use of energy-selective spin-dependent
tunneling as the readout process (Morello et al., 2010) has the
consequence that the qubit must be operated in a magnetic
field B such that the Zeeman splitting g�BB is larger than the
thermal broadening of the charge reservoir at electron tem-
perature Tel, � 5kBTel. For instance, Tel � 200 mK requires
B > 1 T, and consequently a qubit operation frequency  >
g�BB=h � 20 GHz. Careful microwave design is necessary
to achieve a strong oscillating magnetic field B1 at the qubit,
while minimizing the electric field disturbance to the charge
detector (Dehollain et al., 2013) [see Fig. 62(a)].

Coherent control of a donor-bound electron spin was
achieved by electrically initializing the qubit in the j #i state,
applying short microwave pulses to rotate the spin to j "i, and
reading out the final state in a single shot. The probability to
measure a j "i electron reveals the characteristic Rabi oscil-
lation as a function of the pulse duration [see Fig. 62(c)].
A microwave power of 10 dBm (��20 dBm at the chip)
resulted in a Rabi frequency of 3.3 MHz, i.e., an oscillating
field B1 � 0:12 mT. The coherence time of the electron spin
qubit was measured with a Hahn-echo technique, yielding
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T2 � 210 �s, close to the value obtained in bulk ESR experi-
ments in natural Si (Gordon and Bowers, 1958). Coherent
qubit rotations around two orthogonal axes were also dem-
onstrated, with an XYXY sequence yielding TXYXY

2 � 410 �s
(Pla et al., 2012) [see Fig. 62(d)].

VII. OUTLOOK

We presented a comprehensive review of the progress of
quantum electronic devices in silicon. This field of research
has reached maturity in the theoretical understanding and
experimental demonstration of the confinement, manipula-
tion, and measurement of single electrons in nanometer-scale
structures. These developments have the potential to inform
and support the progress of classical silicon-based nanoelec-
tronic devices, as necessary to keep pursuing Moore’s law in
computer chips. Most importantly, they underpin the manipu-

lation of quantum degrees of freedom such as those of
electron and nuclear spins, and open the perspective of
processing quantum information using the same technologi-
cal platform that has allowed the extraordinary progress of
microelectronics over the last half century.

While the manipulation of individual spin qubits in silicon
is still in its infancy, the results obtained so far (Maune et al.,
2012; Pla et al., 2012) confirmed that silicon is an excellent
host for spin qubits as expected on the basis of the weak spin-
orbit coupling and the abundance of isotopes with zero
nuclear spin. To build a large-scale quantum computer in
silicon, the next milestones involve harnessing the exchange
interaction (see Sec. III.C.1) and demonstrating two-qubit

logic gates as well as coherent transport of quantum spin
states. This is arguably the most challenging goal in the whole
program, and several theoretical ideas have been put forward
to achieve it (Greentree et al., 2004; Friesen, Biswas et al.,
2007). Among solid-state qubits, great success in multiqubit
coupling has been obtained by combining superconducting
qubits and microwave cavities (You and Nori, 2011), and

similar methods are being applied to semiconductor quantum
dots (Frey et al., 2012; Petersson et al., 2012). Once again,
silicon appears to be the ideal host to attain strong coupling
between spins qubits and cavities (Hu, Liu, and Nori, 2012),
thanks to the extremely narrow resonance lines achievable
with isotopic purification. The ideas and methods for silicon
quantum electronics described here lay the foundations for
future efforts to bring the potential of silicon to full fruition in
the quantum information era.
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Phys. Lett. 88, 162112.

Berer, T., D. Pachinger, G. Pillwein, M. Mühlberger, H.
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