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I. INTRODUCTION

Coherent Raman processes, in which two or more electro-
magnetic modes resonantly dress and excite an atomiclike
system, provide a powerful interface between light and matter.
They are potentially a cornerstone for future quantum infor-
mation schemes and quantum-technology sensors, allowing
the initialization, control, and monitoring of the quantum state
of either the material or the light. Various Raman processes
have been studied to date, namely, coherent population

trapping (CPT) (Arimondo, 1996a), nonlinear magneto-
optical rotation (NMOR) (Budker et al., 2002), electromag-
netically induced transparency (EIT) (Fleischhauer,
Imamoglu, and Marangos, 2005), and slow and stored light
(Lukin, 2003; Hammerer, Sørensen, and Polzik, 2010). These
were all first demonstrated in a hot atomic vapor, perhaps the
epitome of quantum-optics systems, combining high optical
depth, low relaxation rates, and weak atom-atom interactions
with the simplicity of both the experiments and the theoretical
modeling. Indeed from the pioneering work of Alzetta et al.
(1976) and Arimondo and Orriols (1976) on dark resonances,
through later manifestations of elaborate Raman processes
and dark-state polaritons (Harris, 1997; Budker et al., 1999;
Phillips et al., 2001), and to state-of-the-art magnetometers,
gyrometers, andminiature atomic clocks (Knappe et al., 2004;
Budker and Romalis, 2007; Smiciklas et al., 2011) thermal
atomic media have been at the frontier of experimental
progress.

Two profound mechanisms underlie the dynamics of co-
herent processes in vapor: the continuous thermal motion of
the atoms and the collisions among themselves and with the
walls of the vapor cell. Collisions damage the internal atomic
quantum state and set an upper limit on the coherence time of
the system. Although a record coherence time of 1 min was
recently obtained by Balabas et al. (2010) with an antirelax-
ation coating of the inner glass walls, it is often desirable to
add a foreign buffer gas into the cell to delay the active atoms
from leaving the illuminated region and approaching the
walls (Happer, 1972). Selected species, such as noble gases
or nitrogen molecules, have been known for many years to
preserve the ground-state coherence of alkali-metal atoms
upon collisions (Walker, 1989). Buffered cells are now com-
monly used in coherent Raman experiments (Ezekiel et al.,
1995; Graf et al., 1995; Brandt et al., 1997).
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Nevertheless, even if one assumes perfect coherent-
preserving collisions, the rapid fluctuations in the velocity

of the active atoms modify their interaction with light. Dicke
(1953) was the first to model a moving radiator undergoing

frequent velocity changes. Dicke predicted that, when colli-
sions dominate, the Doppler-broadened spectrum of a thermal

gas will be narrowed, an effect known as Dicke narrowing.
Dicke narrowing is closely related to motional narrowing in
NMR, treated previously in the pioneering paper by

Bloembergen, Purcell, and Pound (1948). Subsequently,
Galatry (1961) formulated the spectral line shape of a thermal

atom undergoing frequent collisions in a buffer gas.
Nevertheless it was only in 2003 when a signature of Dicke
narrowing was detected in the optical regime (Dutier et al.,

2003), because of the fundamental requirements that (a) the
atomic coherence associated with the excited dipole be

preserved during a collision, and (b) the mean free path
between collisions � be much smaller than the wavelength

� ¼ 2�=jqj (q is the wave vector).
In contrast to optical transitions, both requirements are

easily satisfied for Raman processes within a single electronic
level. A collision with a typical buffer gas depends very

weakly on the hyperfine or Zeeman substates and preserves
their mutual coherence. At the same time, the relevant wave

vector for the Doppler and Dicke mechanisms is due to the
difference between the two Raman fields k ¼ q� qc, lead-
ing to the residual Doppler and Dicke effects (Cyr, Tetu, and

Breton, 1993). Broadening is totally avoided in the so-called
Doppler-free arrangement k ¼ q� q ¼ 0, in which one

light beam excites an atom and a collinear beam of the
same frequency deexcites it. However, in general either a
small angular deviation or a small frequency difference be-

tween the two beams yields a nonzero Raman wavelength
�R ¼ 2�=jkj as small as a micrometer or as large as a

centimeter, which affects the process. Residual Dicke narrow-
ing of a Raman transition at the GHz frequency range is

therefore readily obtained at moderate buffer-gas pressures,
as exemplified in Fig. 1 for a Raman dark resonance.
Correspondingly, general multimode light fields that span a

spectrum in k space exhibit a generalized motional effect.
From the spatial viewpoint, the consequence of velocity-

changing collisions in buffered cells is a Brownian or diffu-

sion motion of the atoms. The internal atomic dipoles, e.g.,

those corresponding to the superposition between the two
Raman levels, diffuse across the variations of the light fields.
It is the near degeneracy of the Raman levels and the rela-
tively large Raman wavelength that make the coherent diffu-
sion effectual. The spatial effect is most clearly appreciated in
light-storage experiments, in which the relative amplitude of
the Raman fields is imprinted onto the spatial field of dipoles,
which subsequently undergoes diffusion. The evolution be-
comes more complicated in slow-light experiments, in which
the propagation of polaritons (a combined excitation of light
and atomic coherence) is affected simultaneously by optical
diffraction and atomic diffusion.

This field of research is largely motivated by applications,
namely, high-precision measurements, especially with spatial
multipixel resolution (Kominis et al., 2003), multimode quan-
tum memories (Vasilyev, Sokolov, and Polzik, 2010), and
spatial information processing, either classical or quantum
(Marino et al. (2009). Atomic motion crucially affects the
spectral and spatial resolution, sensitivity, and coherence time
of these applications.

In this Colloquium, we review the recent progress in the
understanding of motional effects in Raman processes. Spin
exchange among the active atoms and with a polarizable
buffer gas (Walker and Happer, 1997) as well as pressure
broadening (Peach, 1981; Corey and McCourt, 1984) is
beyond the scope of this paper. We mostly emphasize the
regime of a dense inert buffer gas, in which the active atoms
undergo perfect diffusion in the medium, and employ the
complementary spectroscopic and spatial viewpoints. In
doing so, we hope to illustrate the underlying mechanisms
and their consequences in hot atomic media as well as in
similar systems.

II. RAMAN SPECTRA OF DIFFUSING ATOMS

A. The Doppler-Dicke transition

The Doppler shift of an emitter moving at a velocity v is
given by !Doppler ¼ v � q. The spectrum exhibits sidebands at

�v � q, if the emitter is confined within two walls and peri-
odically flips its direction. Dicke (1953) showed that, when the
collisions are frequent, spectral components at the original
frequency as well as higher-order harmonics emerge. For very
frequent collisions, the carrier prevails, completely suppress-
ing theDoppler effect. The distance between collisions�, with
respect to the radiation wavelength �, determines the narrow-
ing factor. A movie in the Supplementary Material (161)
illustrates the Doppler-Dicke transition for a moving acoustic
emitter, obtained numerically by following Dicke (1953).

Doppler broadening in vapor originates from a picture of
individual atoms distributed among velocity groups and ex-
periencing distinct Doppler shifts. The Maxwell-Boltzmann

distribution FðvÞ ¼ ð2�v2
TÞ�3=2e�v2=ð2v2

T Þ results in an inho-

mogenous spectral broadening of

�Doppler ¼ vTjqj; (1)

where vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is the thermal velocity and m is the

atomic mass (�Doppler refers to 1�).

In a buffer-gas environment or due to confined cell geome-
tries, the velocity-groups picture breaks down, as collisions

FIG. 1. Measured and calculated linewidths of a hyperfine dark

resonance in rubidium, demonstrating the reduction in both the

Doppler and transit-time broadenings with increasing pressure of

neon buffer gas. Laser intensities are (squares) 17, (triangles) 11,

(circles) 6, and (diamond) 1 mW=cm2. From Brandt et al., 1997.

942 O. Firstenberg et al.: Colloquium: Coherent diffusion of polaritons . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



redistribute the velocities faster than it takes the resonance to
stabilize. Consequently, as we establish in this section, the
light merely faces fluctuations in the atomic velocities, lead-
ing to a crossover from the Gaussian (inhomogenous) to a
Lorentzian (homogenous) line shape. The average velocity
associated with these fluctuations is reduced with respect to
vT by the Dicke narrowing factor 2��=�. The homogenous
Dicke half-width is thus given by (Galatry, 1961)

�Dicke � 2�
�

�
�Doppler � �Doppler: (2)

The Doppler effect corresponds to a ballistic motion of the
atoms (� � �) and the Dicke effect to a diffusive motion
(� � �). One finds that �Dicke is proportional to the diffusion
coefficient D ¼ vT� and quadratic in the radiation wave
number (Nelkin and Ghatak, 1964; Corey and McCourt,
1984),

�Dicke ¼ Djqj2: (3)

Equations (1) and (2) can intuitively be understood as the
inverse time an atom travels a distance � ballistically
(/ �=vT) or diffusively (/ �2=D). Therefore, they are also
interpreted as a transit-time broadening as illustrated in Fig. 2.
At low buffer-gas densities, when the mean-free path is
comparable to the wavelength (�=�� 2�), the spectral
width can be expressed as (Rautian and Sobel’man, 1967)

�Doppler-Dicke ¼ vT

�

4

a2
H

�
2�a

�

�

�
; (4)

where a2 ¼ 2= ln2, and HðxÞ ¼ e�x � 1þ x conveys at its
limits the Doppler trend ½Hðx ! 1Þ ¼ x� and the Dicke trend
½Hðx ! 0Þ ¼ x2=2�.

For Dicke narrowing to occur, it is required and implicitly
assumed in the models that the collisions themselves have a
negligible effect on the internal atomic state. Unfortunately,

this is not the case for optical resonances, where the collision

interaction is different for the ground and excited levels,

leading to decoherence and phase shifts of the optical dipole

(Berman, 1982). The resulting pressure broadening of the

spectral line increases with the buffer-gas density and be-

comes larger than the Doppler width much before the condi-

tion � � � for Dicke narrowing is satisfied. For instance,

room-temperature rubidium with vT � 170 m=s exhibits

�Doppler � 220 MHz at � ¼ 780 nm. For this wavelength,

neon buffer gas at a pressure of about 200 torr is required

for entering the Dicke regime 2��=�� 1, but then the

pressure broadening is already 2 GHz (Ottinger et al.,

1975). Optical Dicke narrowing thus cannot be observed in

nearly all thermal media.
In contrast, ground-state atomic transitions survive mil-

lions of collisions with the buffer gas before decohering.

Since the associated microwave and rf wavelengths are

much larger than the optical wavelength, Dicke narrowing

becomes far more reachable (Frueholz and Volk, 1985).

Indeed, buffer gases at the 1–100 torr levels have been used

since 1955 to delay the atomic motion and reduce Doppler

and transit-time broadening while maintaining long coher-

ence times (Happer, 1972). As laid out by Cyr, Tetu, and

Breton (1993) and discussed in what follows, two-photon

transitions in the ground state, namely, the Raman and

Rayleigh processes, exhibit roughly the same motional broad-

ening behavior, with necessary adjustments mostly due to

optical Doppler effects. We concentrate in the rest of this

section on Dicke narrowing, which occurs already for plane

waves, and discuss Ramsey narrowing in partially illuminated

cells in Sec. V.

B. Motional broadening in Raman processes

We consider as a model system dark resonances created via

EIT in a � configuration, depicted in Fig. 3(a). In �-EIT, a
probe field E and a coupling field Ec couple two states from

the atomic ground level (j1i and j2i) to a common excited

state (j3i). The fields are hereafter taken to be classical and

characterized by the Rabi frequencies � and �c via E ¼
Reðℏ"�=�31Þ and Ec ¼ Reðℏ"c�c=�32Þ, where ", "c are

the field polarizations and �31, �32 are the transition dipole

FIG. 2 (color online). Transit-time interpretation of the Doppler

and Dicke effects. A beam of width �x has a span �k? � 1=�x of

transverse momenta. The interaction time for an atom crossing the

beam with velocity vT (top) is �t ¼ �x=vT , resulting in a transit-

time broadening of vT�k? � �Doppler. For diffusing atoms (bottom),

the mean interaction time is �x2=D, leading to a broadening of

D�k2? � �Dicke. Right: Dark resonances in rubidium vapor mea-

sured by Bolkart, Rostohar, and Weitz (2005) for a beam diameter

�x ¼ 5:6 mm (top) without and (bottom) with 20 torr neon buffer

gas. The respective linewidths are (solid lines) 2�Doppler ¼ 100 kHz

and 2�Dicke ¼ 6 kHz. Dashed and dotted lines are measured with an

angle between the Raman beams of � ¼ 0:31 mrad and � ¼
0:62 mrad, respectively. Adapted from Bolkart, Rostohar, and

Weitz, 2005.

FIG. 3 (color online). Electromagnetically induced transparency

in a � scheme. (a) The Raman resonance j1i $ j2i is excited via the
state j3i by ‘‘probe’’ and ‘‘coupling’’ light fields. (b) Top:

Transmission of the probe (solid line) in the absence of the coupling

field and accompanied refraction (dashed line). Bottom: Dark

resonance induced by the coupling field.
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moments. In the absence of the coupling field, the probe
experiences resonant absorption expð�2�LÞ, determined by
the absorption coefficient 2� and the medium length L. The
combined action of the probe and the coupling fields
(the latter being usually much stronger, j�cj2 � j�j2) drives
the atoms into a dark state—a coherent superposition of the
two lower states that inhibits the absorption of the probe,
rendering the medium transparent. One can easily verify that
the dark state on resonance�	

cj1i ��	j2i is decoupled from
the excited state j3i under the influence of the interaction
Hamiltonian

HI ¼ �ℏ�j3ih1j � ℏ�cj3ih2j þ H:c:; (5)

essentially due to destructive interference between the two
excitation paths to j3i.

The dark resonance depends on the two-photon (Raman)
detuning � ¼ �p ��c where �p and �c are, respectively,

the one-photon (optical) detunings of the probe and coupling
fields, and requires that � be smaller than the Raman line-
width. The latter varies from Hz to tens of MHz in thermal
vapor and is determined primarily by the ground-state deco-
herence rate �0, power broadening from the coupling light,
and motional broadening. For comparison, in most cases, the
optical linewidth � is much larger, varying from a few MHz
for stationary (cold) atoms to a few hundreds of MHz in
Doppler-broadened systems. Therefore a narrow transpar-
ency window forms at �p ¼ �c within the optical absorption

line (Boller, Imamolu, and Harris, 1991), as can be seen in
Fig. 3(b). At the same time, the probe also experiences very
steep dispersion !ðdn=d!Þ � 1 (dashed curve), leading to a
much reduced group velocity. Ultranarrow dark resonances
are used in a wide variety of processes, such as slow light
(Hau et al., 1999), stored light (Lukin, 2003), and nonlinear
optics at low light levels (Harris and Hau, 1999; Peyronel
et al., 2012).

The Raman detuning is sensitive to the difference between
the Doppler shifts of the probe and the coupling fields. When
q ¼ qc, there is no residual Doppler effect, and only the
optical transitions are Doppler broadened. In a general situ-
ation, however, the Raman wave vector

k ¼ q� qc (6)

does not vanish, and the expected residual widths are

�res
Doppler ¼ vTk; �res

Dicke ¼ Dk2; (7)

where k ¼ jkj. The ratio between �res
Dicke and �res

Doppler, the

Dicke narrowing factor, ranges between 10�1 and 10�5 for
typical experimental conditions.

A chief example is the dark resonance among the two
hyperfine sublevels of ground-state alkali atoms, such as
rubidium or cesium (Akulshin, Celikov, and Velichansky,
1991). The hyperfine splitting, on the order of a few GHz,
results in a Raman wavelength �R ¼ 2�=k on the order of a
few centimeters for collinear beams, implying a residual
Doppler width of tens of kHz in the absence of a buffer
gas. With a typical buffer-gas pressure of 10 torr, the mean-
free path of the alkali atoms in the buffer gas is on the order of
micrometers (alkali-alkali collisions cause decoherence but
are much more rare). The narrowing factor is therefore on the
order of �=�R ¼ 10�4, eliminating completely the residual

Doppler effect. A systematic measurement of Dicke narrow-

ing in dark resonances was reported by Brandt et al. (1997)
for cesium (see Fig. 1), and later on by Erhard, Nußmann, and

Helm (2000) for rubidium, accompanied by a numerical

model (Erhard and Helm, 2001). The remaining homogenous

width, due to alkali-alkali collisions, transit-time broadening,
wall collisions, and spin-destruction collisions with the buffer

gas, is on the order of tens of Hz, enabling the implementation

of high accuracy all-optical frequency standards (Cyr, Tetu,
and Breton, 1993; Nagel et al., 1999; Knappe et al., 2004).

Carvalho, de Araujo, and Tabosa (2004) measured the

residual Doppler broadening in hyperfine dark resonances

by introducing an angular deviation � between the probe
and the coupling beams. Measurements of residual Dicke

narrowing in buffered cells were performed by Bolkart,

Rostohar, and Weitz (2005) (see Fig. 2, right) and Shuker
et al. (2007) (see Fig. 4) in a degenerate � scheme, using

two Zeeman states from the same hyperfine level so that

jqj ¼ jqcj. In this scheme, k ¼ jq� qcj � �jqj for small
�, featuring �R � 1 mm for � ¼ 1 mrad. For a mean free

path of a few micrometers, one finds � <� � �R, i.e., the

Raman resonance is in the Dicke regime, while the optical

resonance (� & 1 �m) is Doppler broadened. The latter is
virtually insensitive to � and can be as large as a few GHz,

also due to pressure broadening. The � dependence in Fig. 4

exhibits the quadratic signature of diffusion, with a clear
narrowing effect: at � ¼ 0:5 mrad, the measured width is

�res
Dicke ¼ 2 kHz, much smaller than �res

Doppler ¼ 250 kHz.

Note that the above studies were all done on one-photon

resonance (EIT), while the Doppler-Dicke effect due to an

angular deviation also manifests in off-resonance Raman
transitions (Hosseini et al., 2012), and in fact could be

measured using off-resonant Rayleigh scattering with no

incoming probe light (Berman, 2008).
The light intensity has a strong effect on the Raman

spectra, due to optical pumping and the accompanying deco-

herence. The latter results in the so-called power broadening

of the natural width �0. For an atom at rest, the optical-
pumping rate and the EIT power broadening are given by

FIG. 4 (color online). Residual Doppler-Dicke broadening in EIT

due to an angular deviation � between the coupling and probe

beams, measured in Rb vapor with 10 torr neon. The linewidth

depends quadratically on � as both the Doppler width (�res
Doppler ¼

��:
Doppler) and the Dicke narrowing factor (2��=�R ¼ ��q) are

linear in �. The mean free path � � 2 �m used in the theory (right,

solid line) corresponds to a collision rate of �108=s and is calcu-

lated from the Rb-Ne collisional cross section (Gibble and

Gallagher, 1991; Graf et al., 1995). The broadening also leads to

a decrease of the resonance transmission. Adapted from Shuker

et al., 2007.
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�p ¼ j�cj2=�. Both become smaller in a Doppler-broadened

medium, because the effectiveness of the pumping varies

between the different velocity groups. This is a one-photon
motional effect, in which each velocity group experiences

different pumping and decoherence rates, providing inho-

mogenous ‘‘conditions’’ for the Raman process. The
velocity-selective optical pumping (Aminoff and Pinard,

1982; Gawlik, 1986) results in correlations between the

Raman and optical processes, similar to those employed in
the well-known techniques of Doppler-free saturated-

absorption spectroscopy (Hänsch, Shahin, and Schawlow,
1971) or laser-induced line narrowing (Feld and Javan,

1969). Naturally, buffer gas and velocity-changing collisions

play an important role here, for example, by allowing the
cumulative optical pumping of the whole Doppler profile or,

alternatively, by limiting the interaction time with a certain

velocity group (Bjorkholm, Liao, and Wokaun, 1982). These
correlations were studied for dark resonances1 in experiments

by Ye and Zibrov (2002) and later by Figueroa et al. (2006)
and Goldfarb et al. (2008), along with theoretical analysis by

Javan et al. (2002) and Lee et al. (2003). Being essentially a

one-photon effect, it is beyond the scope of this review;
further details can be found in Ghosh et al. (2009) and

Xiao (2009), and in references therein.
In the absence of additional relaxation, the spectral line at

the extreme Doppler and Dicke limits is always, respectively,

a Gaussian and a Lorentzian. In the intermediate regime,

however, it is determined by the nature of the collisions.
Depending mostly on the colliding species, the collisions

may either be strong (¼ hard) or weak (¼ soft), resulting

in, respectively, a large or small relative change in the veloc-
ity upon a single collision. A phenomenological character-

ization of the collision strength is given by Keilson and Storer
(1952) in their popular collision kernel. For a given collision

rate, the kernel renders the mean free path � and the velocity

correlation time ��1
c ¼ �=vT . There is a vast literature deal-

ing with the sensitivity of atomic spectra to the nature of

collisions; see Berman (1982), Rothberg and Bloembergen

(1984), and Ciuryło et al. (2001), and references therein.
Steady-state experiments, and spectroscopy, in particular,

depend relatively weakly on the collision strength, as shown
in Fig. 5. More elaborate schemes are required to directly

quantify the collision kernels, e.g., coherent transient experi-

ments such as the photon echo (Berman, 1982), or selective
optical pumping of specific velocity groups and the subse-

quent probing of the velocity redistribution (Gibble and

Gallagher, 1991; Morgan and Happer, 2010; McGuyer
et al., 2012). An analogous problem with trapped cold atoms

undergoing elastic collisions was addressed by Sagi et al.
(2010).

In this Colloquium we deal mostly with the limits �R=� �
2� or �R=� � 2�, in which the collision strength has

negligible effect. Detailed derivation of the spectra in the
two regimes, i.e., the Gaussian process at the weak-collision

limit or the Boltzmann relaxation at the strong-collision limit,
and their equivalence in the far Doppler and Dicke limits are
described in the Appendix.

C. The Raman resonance at the diffusion limit

Before concluding this section, we lay down the dynamic
equations for the internal atomic state at the Dicke limit,
when diffusion governs the Raman process. To elucidate the
dynamics, we assume a weak probe field, to which the atomic
response is linear. In fact, it is then sufficient to consider only
two of the atomic dipoles, 	21ðr; tÞ and 	31ðr; tÞ, associated
with the ground-state and optical coherences, respectively.
These are complex, slowly varying, spatial densities (enve-
lopes of the oscillating dipoles), proportional to the atomic
density n0.

In the absence of a coupling field, a probe field with a
slowly varying envelope �ðr; tÞ induces the optical dipole
	31ðr; tÞ ¼ in0�ðr; tÞ=�0. The optical line shape is described
by 1=�0 ¼ 1=�0ð�pÞ: a Lorentzian for stationary atoms

(�0 ¼ �þ i�p) and commonly a Voigt profile for a thermal

gas (a convolution of the atomic Lorentzian line with the
Gaussian Doppler distribution). In the case of frequent colli-
sions, the optical line shapes given in Eq. (A4) or Eq. (A13)
are to be used.

For a Raman process in the Dicke limit, Firstenberg et al.
(2008) derived from Eqs. (A11) a set of equations for 	31 and
	21 near the Raman resonance (�p � �c), assuming nearly

collinear fields k ¼ jq� qcj � jqj:

	31ðr; tÞ ¼ i

�0 ½�ðr; tÞn0 þ�cðrÞ	21ðr; tÞ�; (8)

where �cðrÞ is the time-independent coupling field, and

½@t� i�þ�0þ�PðrÞ�Dðrþ ikÞ2�	21ðr;tÞ¼Sðr;tÞ:
(9)

The ground-state dipoles 	21ðr; tÞ obey a diffusionlike equa-
tion with the coefficient D ¼ v2

T=�c (r is the gradient). The

source term Sðr; tÞ ¼ �n0�
	
cðrÞ�ðr; tÞ=�0 is the two-photon

FIG. 5. Absorption spectra of thermal atoms. In the absence of

collisions, the homogenous linewidth � is dominated by the Doppler

width �Doppler ¼ 100�. The transition from the (black) Doppler

limit to the (light gray) Dicke limit occurs when the effective

mean free path � ¼ vT=�c (��1
c is the velocity correlation time

due to collisions) is comparable to the wavelength � (dark gray).

The spectra for the (solid line) weak and (dashed line) strong

collisions are calculated from Eqs. (A4) and (A13), respectively.

The differences between weak and strong collisions are not distin-

guishable at the far limits (black and light gray).

1Even more intricate correlations arise in Raman schemes in-

volving two coupling fields, such as four-wave mixing and electro-

magnetically induced absorption. Here the optical dipoles, and not

only the ground state’s populations and damping, become velocity

dependent (Tilchin, Wilson-Gordon, and Firstenberg, 2011).
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drive of the Raman transition, and �PðrÞ ¼ j�cðrÞj2=�0 is a
spatially varying power-broadening rate. Notably, the atomic
motion affects the transition both directly, by dephasing the
Raman coherence, and indirectly via �0 and the power
broadening.

It is important to realize that the diffusion term Dr2 in
Eq. (9) corresponds to the actual diffusion of the active atoms
in the buffered cell. In fact, the description of spatial diffusion
of the internal states of atoms and molecules in the form of
Eq. (9) dates back to the seminal work by Torrey (1956) and
has been the common practice for optical-pumping experi-
ments in buffered cells (Happer, 1972; Bicchi et al., 1980).
Accordingly, the term Dk2 (for nonstructured stationary
beams @t ¼ r ¼ 0) accounts for the diffusion of atoms
across the fields’ interference pattern. The linear susceptibil-
ity2 
 ¼ ðg=n0Þ	31=�, where g ¼ jqjn0j�31j2=ℏ�0 (�0 is the
vacuum permittivity), is then easily obtained from Eqs. (8)
and (9),


 ¼ ig

�0

�
1� �P

�þDk2 � i�

�
: (10)

The two terms in the parentheses correspond to the optical
and to the Raman resonances. On one-photon resonance, � 

�0 þ �P is real and determines the EIT linewidth for sta-
tionary atoms, while the term Dk2 expresses to the motional
broadening (see Fig. 4).

III. POLARITONS DYNAMICS IN DIFFUSIVE MEDIA

We have so far discussed the response of the atoms to a
given arrangement of light beams from a spectroscopic view-
point, but have not considered the spatial consequences of
atomic motion. As these were taken into account in the
description of the density-matrix dynamics, we can now
directly apply the results of the previous section to the
evolution of the structured light fields in space and time.
The nonlocal response arising from the atomic motion and
reflected in the dependence of the linear susceptibility on the
wave vector has been demonstrated in recent years through
various processes and, in particular, with slow light. In prin-
ciple, it is the effective delay of the light, becoming compa-
rable to the atomic motion through the beams, that renders
these effects pronounced. That said, the description of the
phenomena reviewed in this section is not always an obvious
spatial consequence of atomic motion, and it is sometimes
necessary to return to and employ the spectral picture of a
manifold of Doppler-Dicke spectra.

Before doing so, it is instructive to consider a microscopic
picture for the slow-light mechanism, going beyond the
spectral interpretation of steep dispersion and transmission
window. The propagation of resonant probe pulses in EIT is
actually made possible by the continuous excitation and
deexcitation of the Raman transition. Ahead of the pulse,
the atoms are optically pumped into the ‘‘trivial’’ dark state
j1i; thereafter they stay in the dark state, while adiabatically

following the probe pulse �ðr; tÞ, going through �	
cj1i �

�ðr; tÞ	j2i and eventually returning to j1i. The associated

atomic coherence 	12ðr; tÞ is always proportional to �ðr; tÞ,
and one is thus led to define a coupled excitation of light and

matter in the form of a propagating polariton c ðr; tÞ ¼
�ðr; tÞ cos�� ð ffiffiffiffiffiffi

gc
p

=n0Þ	12ðr; tÞ sin� (Fleischhauer and

Lukin, 2000). The mixing angle � between the two compo-

nents is controlled by the coupling field and determines the

group velocity vg ¼ ccos2�. As expected, a lightlike polar-

iton (� ! 0) travels at the speed of light, while a matterlike

polariton (� ! �=2) stands still. Slower polaritons effec-

tively ‘‘store’’ a larger fraction of the light as an atomic

excitation, and hence their delayed propagation.
Polaritons structured in the plane normal to the propaga-

tion direction have been denoted as slow images, and they

exhibit remarkable properties. A notable example is the delay

and preservation of spatial quantum coherence and entangle-

ment demonstrated by Marino et al. (2009). The ‘‘image’’

may be complex, having both amplitude and phase patterns,

conforming to the amplitude and phase of the polariton’s dark

state. A typical setup for a slow-image experiment is shown in

Fig. 6: while the coupling beam is large and uniform, the

probe is patterned, imaged onto the cell, and eventually

recorded. If the probe is also temporally modulated into a

pulse, the pulse, and thus the whole image, is delayed in the

medium.
The polariton velocity can be calculated from the linear

susceptibility v�1
g ¼ ½dðRe
Þ=d���¼0 for vg � c. At the

diffusion limit, for nearly resonant light (�c � �p � 0, for

which the damping rates �0 and �P are real), Eq. (10) gives

vg ¼ ð�þDk2Þ2=��P. Here 2� ¼ 2g=�0 is the absorption

coefficient with no coupling field. As also shown by Kash

et al. (1999) for the bufferless case (Doppler-broadened dark

resonance), the group velocity is k dependent and reverts to

the known expression vg ¼ �2=��P only for small enough k.

For typical values in hot vapor � � �P � 101–106 Hz and

� � 1=cm, vg is on the order of m=s to km=s (Budker et al.,

1999). The group delay in a medium of length L � 1–10 cm
is then �d ¼ L=vg � 1–105 �s, easily comparable to the

time at which atoms can travel through the beam, or through

the 0.1–10 mm features of an image, in both buffered and

FIG. 6 (color online). Structured slow light. The probe beam is

patterned by using a transmission mask, a grating, or a spatial light

modulator and imaged onto the cell. An iris may be used to filter

high frequencies and limit the angular span. After the cell, the probe

is imaged onto a camera. Top: Diffusion of (left) a line pattern with

1.5 lines pair=mm after (right) 6 �m delay. [Measurements taken in

a setup similar to that used by Shuker et al. (2008).]

2We define a linear susceptibility 
, such that the transfer

function of the probe field is expði
zÞ, as opposed to the prevailing

(unitless) definition expðijqj
z=2Þ (Fleischhauer, Imamoglu, and

Marangos, 2005).
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bufferless cells. In contrast, slow images with 0.1-mm feature
size delayed for only 10 ns using optical (not Raman) reso-
nances by Camacho et al. (2007) showed no significant
motional effects.

A. Transverse spreading of light

The reflection of atomic motion in the spatial variation of
slow light was preceded by extensive research on general
spatial consequences of EIT and similar Raman processes.
The emphasis, in the first experiments by Jain et al. (1995),
Kasapi et al. (1995), and Moseley et al. (1995), and in the
following years, was given to the implications of finite and
inhomogenous strong beams, inducing inhomogenous ab-
sorption and refraction, and to the related effects of self-
focusing and waveguiding. A direct observation of slow-light
spreading due to atomic motion was reported by Pugatch
et al. (2007), using a probe beam with a darkened (blocked)
center. Images of the beam taken on and off resonance
showed that the 50 �s slowing delay was enough for the
atomic diffusion in the buffered cell to ‘‘fill’’ the 0.5-mm-
diameter dark center almost completely. In effect, the ground-
state dipoles diffusing to the center stimulate the conversion
of coupling light into probe light. The phase pattern of the
dipoles ensemble, originating from the incoming probe and
coupling fields, acts as a directional source for this stimulated
emission. In the alternative picture of polariton propagation,
the filling of the center is interpreted as diffusion of the
polaritons due to their atomic constituent.

A direct phase measurement of spreading light was re-
ported by Xiao, Klein et al. (2008). Here the ballistic atomic
motion in a bufferless, wall-coated cell is used to coherently
transfer light between adjacent optical modes, as shown in
Fig. 7. Atomic coherence is created at the input channel and
maintained as the atoms spread in the cell. While longitudinal
spreading has no significance in the degenerate arrangement
used (q ¼ qc), the transverse spreading stimulates the coher-
ent excitation of a propagating pulse in the second channel.

To understand the spreading of light within the Doppler-
Dicke context, we return to Eq. (10) with nearly resonant
beams (�p � �c � 0), for which the absorption spectrum of

the probe is given by

Im
 ¼ �

�
1� �Pð�þDk2Þ

ð�þDk2Þ2 þ �2

�
: (11)

The relative height at the center of the dark resonance
(� ¼ 0) depends on the Raman wave number k in the form
of a Lorentzian �P=ð�þDk2Þ of width k0 ¼ ð�=DÞ1=2, as
confirmed by Bolkart, Rostohar, andWeitz (2005) and Shuker
et al. (2007) with a small deviation angle � � k=jqj between
the coupling and probe beams (see Fig. 8). The dependency of
the transmission on � is manifested in experiments with
nonuniform, structured, light fields, due to the angular span
of beam. In the decomposition of the field into a manifold of
superimposed plane waves, high-order transverse modes and
finely patterned beams require a large angular span, which
implies large Raman wave numbers (top sketch in Fig. 6).
When these are attenuated due to motional broadening, the
fine structure of the beam deteriorates. A maximum accep-
tance angle � ¼ k0=jqj thus sets a minimum ‘‘pixel’’ size of
2�=k0 that can be efficiently transmitted, whereas smaller
features are bound to spread. So atomic motion, via motional
broadening, results in the spreading of the light field.

B. Diffusion and motional-induced diffraction

At certain conditions, motional broadening results in an
exact diffusion of the slow polaritons as well as in a diffrac-
tionlike evolution. To this end, we employ the following
arrangement: a plane-wave coupling field along the z axis;
a paraxial, nearly parallel, probe q k qc with a finite envelope
in the transverse plane ðx; yÞ; and a nearly degenerate Raman
scheme jqcj � jqj 
 q so that the Raman wave vectors
resulting from the probe’s structure have a negligible
z component (hyperfine splitting with �R on the order of
centimeters is still permitted). Note that the choice q ¼ qc

FIG. 7. Phase coherence between the two ‘‘output channels’’ of a

slow-light beam splitter by Xiao, Klein et al. (2008). The atoms

moving in the bufferless wall-coated cell mediate the coherence

between the two channels. The measured transfer efficiency

(<5%) is a function of the slowing delay (0.5 ms), the decoherence

due to wall collisions, and the beams and cell geometry.

Optimization of these factors promises efficiencies close to unity.

Adapted from Xiao, Klein et al., 2008.

FIG. 8 (color online). Resonant transmission vs the angular de-

viation � between the Raman beams. (a) Imaging experiment,

measuring the resonant transmission of a diverging probe beam

with a large (plane-wave) coupling beam. Pictures are taken beyond

the cell by impinging the beams directly onto a CCD detector, (top)

with and (bottom) without the atoms. Stronger absorption is ob-

served away from the center, where, in the optical ray approxima-

tion, � is larger. Maximal � is �2 mrad at the beam radius. (b) A

reference with a nondiverging probe. (c) Scaled transmission

(squares) from the aforementioned imaging experiment and (circles)

from spectroscopy (see Fig. 4). The theoretical curve is calculated

from Eq. (11). Adapted from Shuker et al., 2007.
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still allows for a small angular deviation between the beams
via a phase term ei�qx in the probe’s envelope. In the paraxial
approximation, the probe field obeys

�
@t
c
þ @z � i

r2
?

2q

�
�ðr; tÞ ¼ i

g

n0
	31ðr; tÞ; (12)

where r2
? ¼ @2x þ @2y is the transverse Laplacian. Equations

(8), (9), and (12) compose the full set of equations of motion
for the slowly varying envelopes.

The group velocity vg obtained earlier in this section is

applicable for pulses long enough such that their bandwidth (in
the temporal frequency domain) is within the linear dispersion
regime. If the pulses varymore slowly than any other rate in the
system, the time dependence can be treated parametrically,
based on a quasi-steady-state assumption. The steady-state
assumption can easily be lifted within the linear response
approximation, which is valid as long as the coupling field is
stationary and uniform. Keeping in mind that the traveling
pulses are essentially delayed, it will still be meaningful in
quasi-steady state to translate distance to time via vg.

The changes of the probe along z are due to its finite extent
(in a pulsed experiment) and due to absorption and refraction
in the medium; both are assumed to vary much more slowly
than the envelope in the transverse plane, making the diffu-
sion negligible in the z direction. The relevant Raman wave
vectors are thus identical with the transverse spatial frequen-
cies. Taking the Fourier transform ðx; yÞ ! ðkx; kyÞ ¼ k? of

Eqs. (8), (9), and (12) while maintaining the explicit z
dependence, one recovers the linear susceptibility 
ðk?Þ ¼
i�½1� �P=ð�þDk2? � i�Þ� and the steady-state evolution

along z:

@z�ðk?; zÞ ¼
�
i
ðk?Þ � i

k2?
2q

�
�ðk?; zÞ: (13)

Clearly the geometric effect of free-space diffraction
ik2?=ð2qÞ influences slow images precisely as in free space.

For a confined k? spectrum, the susceptibility can be ex-
panded in orders of k2? as 
ðk?Þ ¼ 
0 þ ½
ðk?Þ�motional,

where 
0 ¼ i�½1� �P=ð�� i�Þ� is the susceptibility for
an atom at rest, and

ivg½
ðk?Þ�motional ¼ ��2

ð�� i�Þ2 Dk2? þOðk4?Þ; (14)

with vg ¼ �2=ð��PÞ. The k4? term is negligible when the

probe’s spectrum is initially confined within k? � k0 ¼
ð�=DÞ1=2. The requirement k? � k0 is usually stricter than
the optical paraxial condition (for example, the typical values
D ¼ 10 cm2=s and � ¼ 10 kHz give k0 on the order of
0:01 �m�1). Returning to ðx; yÞ space,

@z� ¼
�
i
0 þ

�
D
vg

þ i

2q

�
r2

? þOðr4
?Þ
�
�; (15)

we find an effective complex diffusion coefficient:

D ¼ D
1� ð�=�Þ2

½1þ ð�=�Þ2�2 þ iD
2ð�=�Þ

½1þ ð�=�Þ2�2 : (16)

The real part of D corresponds to an actual diffusion of the
polariton. The imaginary part causes quadratic dispersion

within the k? spectrum, with a functional form identical to
that of the optical paraxial diffraction, and is thus referred to
as motional-induced diffraction (MID).

On resonance � ¼ 0, the polariton diffusion precisely
matches the atomic diffusion D ¼ D. Besides an overall
absorption and phase shift originating from i
0, the evolution
of the polariton is a linear sum of optical diffraction with
respect to the distance traveled ð@z�Þdiffraction ¼ ir2

?�=ð2qÞ
(due to the polaritons’s light constituent) and atomic diffusion
with respect to time ð@t�Þdiffusion ¼ Dr2

?� (due to its matter

constituent). For the latter, we translated vg@z ! @t. The

relative weight of diffraction and diffusion is thus controlled
by the group velocity. Off the Raman resonance � � 0, the
polariton diffusion slows down. The real part of D decreases
with increasing j�j, until vanishing completely at � ¼ ��.
At this detuning, the polariton does not experience any
standard diffusion, while the remaining Oðr4

?Þ term gives

rise to subdiffusion evolution.
Moreover, at � � 0 the MID becomes nonzero and adds

up to the optical diffraction. The detuning determines the sign
of the MID, with ImðDÞ> 0 at positive detuning adding to
the optical diffraction, and ImðDÞ< 0 at negative detuning
negating it. While the maximum MID is obtained at � ¼
�3�1=2�, the more interesting case is � ¼ ��, in which
D ¼ �iD=2 is purely imaginary, inducing diffraction with-
out diffusion. Here the ratio between �D=vg and 1=q deter-

mines the balance between the optical and induced
diffraction, and, for given D and q, it is governed by the
group velocity.

Firstenberg, Shuker et al. (2009) proposed utilizing MID to
completely eliminate the paraxial diffraction in the medium,
by choosing � ¼ �� and vg ¼ qD. At these conditions,

both the imaginary and real parts of the r2
? coefficient vanish

in Eq. (15), rendering a diffractionless, diffusionless medium.
Conversely, at � ¼ þ� the actual diffraction in the medium
is twice that in free space. The nondiffraction condition vg ¼
qD can intuitively be derived by requiring the diffusion
spreading of a focused Gaussian beam to be equal to its
diffraction spreading after one Rayleigh distance zR ¼
qw2

0=2, where w0 is the beam waist radius. Since the beam

does not expand, it is virtually trapped in two dimensions by
the diffusing atoms in an interesting analogy to the mecha-
nism of Doppler cooling of atoms by red-detuned light. The
latter also relates to a proposal by Kocharovskaya,
Rostovtsev, and Scully (2001) to stop light propagation using
one-photon detuning in a bufferless cell.

These effects were studied by Firstenberg, London et al.
(2009) at the condition vg ¼ qD and are demonstrated in

Fig. 9: The image exhibits optical diffraction (far detuned),
diffusion (� ¼ 0), nondiffraction (� ¼ ��), and double
diffraction (� ¼ þ�). Shwa et al. (2012) examined the
MID of an array of optical vortices as shown in Fig. 10.

An intuitive physical explanation to the suppression of
diffraction is the ‘‘trapping’’ of the light by the moving atoms,
in an analogous mechanism to the well-known Doppler trap-
ping of atoms by light. Similar to Doppler trapping, due to the
negative (red) detuning, an atom moving radially toward the
optical axis couples better to the outgoing light components
(k? > 0, see Fig. 6 top), effectively dragging them back to the
axis. The suppression of diffusion is slightly more intricate as
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it involves two competing processes as k? increases: faster
dephasing of the Raman coherence, but smaller sensitivity to
frequency detuning. As with any harmonic oscillator, there
exists a specific driving frequency (� ¼ ��) where the
dissipated power does not depend on the dumping rate (�)
to first order, since the reduction in the amplitude of oscil-
lations is compensated by the increase in friction. At this
frequency, the transmission of the probe does not depend on
k? and diffusion vanishes.

As mentioned, extensive study was devoted to the manipu-
lation of diffraction by modulating the susceptibility in real
space, with either the coupling beam, the probe beam, or the
medium itself inducing the necessary inhomogeneity of
the refraction index.3 In all these schemes, specific transverse
modes are maintained, but a general multimode field
disperses and may perhaps regenerate after a certain self-
imaging distance (Cheng and Han, 2007). In contrast,
diffraction manipulation with linear optics in k? space, in
the form of Eq. (15), applies to multimode fields with

arbitrary phase and intensity patterns. Since no actual wave-
guide is defined, the medium suspends the expansion of an

incoming beam wherever it impinges on the input plane.
It is instructional to define an index of diffraction ndiff ¼

ð1� qD=vgÞ�1, equivalent to the index of refraction as far as

paraxial diffraction is concerned. Without atomic motion

(D ¼ 0), diffraction is not altered (ndiff ¼ 1). At the non-
diffraction conditions, the index diverges (ndiff ! 1). Snell’s
law sin�i ¼ ndiff sin�r then implies no angular divergence

inside the medium �r ¼ 0 regardless of the incident angle �i
and hence no diffraction, as illustrated in Fig. 11(a).

Now consider the possibility of reducing vg below qD, still

with � ¼ ��, so that the (negative) MID be further strength-
ened. Then both the overall diffraction of the polariton and
the index of diffraction become negative. The medium un-

does a paraxial diffraction that already took place, manifest-
ing a negative-index lens in the spirit of Vaselago (1968) and
Pendry (2000). Remarkably, the imaging conditions of such a
lens are insensitive to its position between the object and the

image as shown for ndiff ¼ �1 in Fig. 12.

FIG. 9 (color online). Polariton diffusion and motional-induced

diffraction. A Zeeman EIT setup is used, similar to that in Fig. 6,

with a cell length L ¼ 5 cm and optical depth 2�L ¼ 6. The free-

space diffraction (bottom left) is compared to transmitted slow

images at several Raman detunings (right). At � ¼ 0, the polariton
is delayed by �6 �s and experiences the combination of optical

diffraction and diffusion (D ¼ 11 cm2=s for 10 torr of neon). At

�< 0, both diffusion and diffraction are reduced, and at � ¼
�� � �70 kHz, they are completely suppressed (Dq ¼ vg ffi
8700 m=s). Numerical calculations confirm that the small difference

between the input image and the transmitted image at � ¼ �� is

primarily due to residual r4 terms. At � ¼ þ�, no diffusion

occurs, but the polariton experiences the sum of equal optical and

motional-induced diffraction, as if the image has propagated a free-

space distance of 2L. Adapted from Firstenberg, London et al.,

2009.

FIG. 10. Collective rotation of a vortex array due to induced

diffraction by Shwa et al. (2012). Hyperfine EIT with 87Rb is

performed in a cell of length L ¼ 7:5 cm with 20 torr neon (D ¼
6 cm2=s, vg ¼ 5000 m=s). An array of four m ¼ þ1 vortices (total

angular momentum J ¼ 4) rotates clockwise (b) at � ¼ 0, the same

as it does in free space. (a) At �< 0, the optical diffraction is

counteracted, leading to a counterclockwise rotation with respect to

� ¼ 0. (c) At �> 0, diffraction is enhanced, leading to increased

clockwise rotation. Images are 1� 1 mm2. (d) Rotation angle for a

two-vortex array with (light gray circles) J ¼ 2, (black squares) J ¼
�2, and (dark gray diamonds) J ¼ 1� 1 ¼ 0. All-optical control
on the vortices motion could be useful for fast optical-trapping

applications. Adapted from Shwa et al., 2012.

FIG. 11 (color online). Probe deflection. (a) Nondiffraction

can be understood as the deflection of all rays into a common

direction. The rays maintain their phase relations while traversing

the medium and afterward deflect back into their original direction.

(b) Generally, the probe beam deflects toward the direction of the

coupling beam for �< 0 and away from the coupling for �> 0. At
� ¼ ��, a Snell-like law determines the ratio between �r and �c.
(c) In the nondiffraction conditions, the probe beam assumes the

direction of the coupling beam for small enough angles (circles are

measurement, lines are theory). Adapted from Firstenberg, London

et al., 2009.

3Electromagnetically induced focusing by an inhomogenous cou-

pling field was realized by Moseley et al. (1995) in hot vapor and by

Mitsunaga, Yamashita, and Inoue (2000) in a cold ensemble.

Nondiffracting propagation of certain transverse modes due to

nonuniformity of the coupling field was referred to as induced

solitons (Bortman-Arbiv, Wilson-Gordon, and Friedmann, 1998),

induced waveguides (Truscott et al., 1999; Kapoor and Agarwal,

2000), and transverse confinement (Andre et al., 2005; Cheng, Han,

and Yan, 2005). Waveguiding was also demonstrated using the

inhomogenous density in a cold atomic cloud (Vengalattore and

Prentiss, 2005; Tarhan, Postacioglu, and Müstecaplioglu, 2007).

Last, it was proposed that self-focusing via a Kerr-like effect will

support spatial solitons (Hong, 2003; Friedler et al., 2005).
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An important caveat when working at large Raman detun-

ings is the reduced transmission; even for high coupling

intensities (� ¼ �P), the absorption at � ¼ �� cannot be

rendered lower than Im
0 � �=2. This translates to a low

transmission, of about expð�5Þ, at the Rayleigh distance of a

beam with w0 ¼ �=k0, which is the minimal pixel size

allowed under the k? � k0 condition. The experiments by

Firstenberg, Shuker et al. (2009) took place under these

conditions.

C. Induced drift and artificial vector potential

The attentive reader may have already realized that, while

ndiff alters the refraction at the entrance and the exit of the

medium, it is the direction of the coupling beam that deter-

mines the virtual plane of incidence for this refraction. In fact,

since the real index of refraction in dilute vapor is only

marginally different than unity (n ¼ 1� 10�6), the actual

entrance plane of the cell has no optical significance. It is thus

the virtual plane perpendicular to the coupling-beam direc-

tion which defines the incident and refraction angles for the

modified Snell’s law sinð�i � �cÞ ¼ ndiff sinð�r � �cÞ, where
�c ¼ 0 for an axial coupling beam. Therefore, tilting the

coupling beam results in an angular deflection of the probe

beam in the cell. For a straight-on incidence (�i ¼ 0), the
modified Snell’s law yields �r¼�cð1�n�1

diffÞ [see Fig. 11(b)].
In particular, at the nondiffraction conditions (ndiff ! 1), the

probe deflects exactly onto the direction of the coupling beam

(�r ¼ �c), as shown in Fig. 11(c).
Mathematically, tilting the coupling beam superimposes a

transverse phase grating expðixq�cÞ on the Raman interfer-

ence pattern, replacing Dk2? in Eq. (14) by Dðk? � q�cx̂Þ2.
For angles small enough (q�c � k0), the resulting term

in Eq. (15), 2ðD=vgÞr? � x̂q�c, induces a directional

deflection on the probe at an angle �r ¼ ðqD=vgÞ�c ¼
ð1� n�1

diffÞ�c, in accordance with the modified Snell’s law.

It is worthwhile emphasizing that the deflection effect does

not involve an actual refraction of the optical wave vector (q).

Similarly to the walk-off phenomenon in birefringent crys-
tals, the wave fronts (equal phase planes) maintain their
original orientation. Hence, the deflection is unobservable
for plane waves and has meaning only for finite beams. In
analogy to a group velocity, which can be modified either via
n or via the dispersion dn=d!, the deflection here is a
(spatial) group effect, in which the transverse dispersion
�dn=dk? changes the propagation trajectory.

In the popular analogy between paraxial light propagation
and the Schrödinger dynamics of a massive particle in two
dimensions, the wave vector plays the role of the mass. When
the MID at � ¼ �� dominates the optical diffraction, and
one translates z ! vgt in Eq. (15), the effective mass is m ¼
�ℏ=D. A phase gradient imposed by the coupling fields thus
translates to a vector potential (VP) for a charged particle:

iℏ@t�ðx; yÞ ¼ 1

2m
ðiℏr? þ eAÞ2�ðx; yÞ; (17)

where A ¼ iℏr? ln�	
cðrÞ and e ¼ 1.

As reviewed by Dalibard et al. (2011), artificial VP created
by the optical dressing of neutral atoms is a major field of
study. Here, however, the polaritons, and not the atoms
themselves, experience the artificial VP. As a result, the
coupling beam can be used to mimic the operation of elec-
tromagnetic fields on the polariton. In particular, a tilted
coupling beam �cðrÞ ¼ �c expðixq�cÞ produces a uniform
VP A ¼ ℏq�c, explaining the deflection effect via a momen-
tary electric ‘‘kick’’ at the entrance of the cell Ein ¼ �@tA ¼
ðt� tinÞℏq�cx̂, after which the probe propagates in a
straight trajectory. A second kick at the existing face deflects
the probe back to its original direction. Alternatively, a vortex
coupling beam with a helical phase expðim�Þ (� the azimu-
thal angle) inflicts a kick in the azimuthal direction. The
underlying VP A ¼ ℏmr?� implies an artificial magnetic
field B ¼ @xAy � @yAx ¼ 2�ðxÞðyÞℏm along the dark vor-

tex core, whereas the probe can propagate only at the bright-
ened areas around the core. For example, a probe in the form
of a ring of lobes is predicted to rotate while propagating in
the medium (Yankelev, 2012).

IV. COHERENT DIFFUSION OF STORED LIGHT

Diffusion and diffraction of dark-state polaritons, dis-
cussed in Sec. III, arise from the interplay between the atomic
motion and the propagating excitation. Perhaps more elemen-
tary is the effect of the atomic motion on the atomic coher-
ence in the absence of the light, as occurs during light storage.
In light storage, the polariton is transformed into a matter-
only excitation which does not propagate. The ground-state
atomic coherence stores the light amplitude in the form of a
spatial spin wave, later to be mapped back to a propagating
polariton. Storage of light is accomplished with EIT by
switching off the coupling beam—and switching it back on
for retrieval (Liu et al., 2001; Phillips et al., 2001); see Fig. 13
(left). Storage and retrieval can also be performed with a
longitudinal gradient of the frequency detunings. This
method, known as gradient-echo memory (GEM), was re-
cently implemented with ground-state coherence in a
� system (Hétet et al., 2008).

FIG. 12 (color online). Manifestation of a negative-diffraction

lens with ndiff ¼ �1. The optical diffraction is exactly reversed

by setting vg ¼ Dq=2, so that an image diffracting along a distance

L before the cell is reimaged at the end of the cell. The positive and

negative diffractions ‘‘commute,’’ e.g., it makes no difference if the

positive diffraction occurs partly before and partly after the cell, as

exemplified by the two right images. The restriction k? � k0 was

not fulfilled in this experiment, hence the imperfections in the

imaging. Solid arrows indicate geometrical rays (not q vectors)

refracting oppositely to the incident angle �r ¼ ��i, according to

Snell’s law sin�i ¼ ndiff sin�r, as expected in a negative-index

material. Adapted from Firstenberg, London et al., 2009.
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When light storage is performed with a single quantum,
ideally by storing a single photon, it realizes a quantum
memory—a fundamental building block for quantum com-
munication and computation (Duan et al., 2001; Hammerer,
Sørensen, and Polzik, 2010). In atomic ensembles, the single
quantum is stored in the collective state of all atoms.
Unconditional storage of light on the level of single photons
was recently achieved by Hosseini, Campbell et al. (2011)
using GEM in a hot buffered cell. However, most of the
experiments so far have used spontaneous Raman scattering
to generate the spin wave, conditioned on the detection of a
scattered photon (Chou et al., 2004; Eisaman et al., 2005;
Matsukevich et al., 2006; R. Zhao et al., 2008; Bashkansky,
Fatemi, and Vurgaftman, 2012). Diffusion of the atoms before
the spin wave is converted back to light poses the same issues
as in unconditional storage as described in this section.

A. Diffusion of a stored coherence field

When storage is performed, the three-dimensional spatial
envelope of the probe �ðrÞ is linearly mapped onto the
ground-state coherence4 	12ðr; � ¼ 0Þ. The dynamics during
the storage time � is governed by

@�	12ðr; �Þ ¼ Dðrþ ikÞ2	12ðr; �Þ � �0	12ðr; �Þ; (18)

derived from Eq. (9) in the absence of light. Even for
a uniform envelope and negligible damping (r ! 0,
�0 ! 0), the diffusion of atoms through the Raman wave
results in a dephasing of rate Dk2. Fleischhauer and Lukin
(2002) and Mewes and Fleischhauer (2005) showed that the
decoherence of the quantum memory (in terms of the storage
fidelity) is proportional to this dephasing.

In a recent experiment, B. Zhao et al. (2008) showed
that the memory time in a cold atomic gas reduces with the
angle between the Raman beams and is determined by the

time it takes the atoms to (ballistically) move one Raman
wavelength (�d / k�1 / ��1). Indeed, memory times as long

as milliseconds were achieved by B. Zhao et al. (2008) and by
Zhang, Garner, and Hau (2009) using collinear beams
(k � 0), and by R. Zhao et al. (2008) with an optical trap
that confines the atomic motion in the direction of k.
Furthermore, Schnorrberger et al. (2009) demonstrated light
storage with ultracold atoms trapped in a three-dimensional
optical lattice (a Mott insulator). The confinement of atomic
motion to a site much smaller than the optical wavelength

allowed Schnorrberger et al. to imprint phase gradients of
wave numbers k ¼ �q, with � as large as 25 mrad, while
maintaining the memory for more than 0.1 ms. All this of

course does not apply to a Bose-Einstein condensate (BEC)
where, due to its long-range coherence, stored light was
retrieved even after the atoms moved numerous �R

(Ginsberg, Garner, and Hau, 2007).
Nevertheless, even when k � 0, atomic motion plays an

important role in the storage of finite-size and structured
fields. Diffusion of the atomic coherence5 @�	12 ¼ Dr2	12

can be directly observed by comparing the input image to the
retrieved image at different storage durations. This is espe-

cially true when the propagation time before and after storage
is much shorter than the storage duration itself, as is often the
case. Figure 13 (right) presents measurements of diffusion
with stored images (Shuker et al., 2008). Diffusion is clearly

observed by the smearing of the digits’ image and is more
pronounced as the storage duration increases. The spreading
of stored information was used by Zibrov et al. (2002) to

perform storage and retrieval at two distant locations in the
cell. As a complementary concept, Novikova, Xiao et al.
(2005) demonstrated two retrievals from the same location
due to diffusion of coherence out and back into the beam area.

We now take an ideal case with k ¼ 0 and a coupling beam
that covers the whole medium. Naively it might seem that the
total power of the restored probe is not altered by diffusion as
diffusion is a conserving process

R
	12 ¼ const. However, it

is the light-field amplitude � / 	12, rather than its intensity
j�j2, that effectively diffuses, and the total power P / R j�j2
decays. For example, a stored Gaussian beam that doubles its
area due to diffusion conveys one-half of its initial power.
This geometric effect was shown to limit the storage time of

images and narrow beams in buffered cells (Shuker et al.,
2008; Hosseini, Sparkes et al., 2011; Glorieux et al., 2012).

In contrast to standard ‘‘heat’’ diffusion, stored images can
be complex valued as the phase pattern of the probe is exactly
imprinted on the diffusing coherence (Fleischhauer and

Lukin, 2000). Patterned phase leads to effects of constructive
and destructive interference during diffusion, similar to those
occurring in light propagation. For instance, consider the
diffusion of the annular ring shown in Fig. 14 (top). A flat-

phased ring is completely filled up after a short storage time,
while the dark center of a stored vortex (LG01 mode) is well
maintained. The vortex core remains dark due to destructive

interference: the phase around the dark center completes a 2�
twist, and the contributions of all atoms diffusing inward sum

FIG. 13 (color online). Diffusion during storage of light in vapor.

Left: The first half of the probe pulse is allowed to leak before

storage. The second half is stored by turning off the coupling beam

for a duration � after which the probe revives. The traces show the

probe for � ¼ 5, 15, and 25 �s, and the coupling for � ¼ 25 �s.
Right: The spatial effect of diffusion is observed by comparing the

images of the input probe (top row) and the retrieved probe (bottom

row). Storage durations are � ¼ 2, 6, and 9 �s. Adapted from

Shuker et al., 2008.

4Alternatively, in spontaneous storage, the superposition of the

coupling beam and a spontaneously generated photon heralding the

storage is saved on the coherence field 	12ðr; � ¼ 0Þ.

5Note that the ground-state populations 	11ðrÞ and 	22ðrÞ diffuse
in a similar manner, but, in the weak-probe regime, their contribu-

tion to the storage is small.
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up to zero. Similar behavior is achieved by applying a well-
designed phase pattern on specific images. The blurring of
three resolution lines in Fig. 14 (bottom) is reduced by
flipping the phase between adjacent lines. The decay of the
lines’ visibility due to diffusion is dramatically slowed down.
Similar principles are used in optical phase-shift lithography
to overcome the diffraction limit of small adjacent features.
The downside of using destructive interference is the faster
decay of the retrieved power. The decay rate increases with
the complexity of the phase pattern, thereby decreasing the
fidelity of the retrieved states (Wang et al., 2008).

Other ideas requiring no a priori knowledge of the image
were also studied. L. Zhao et al. (2008) suggested and
Vudyasetu, Camacho, and Howell (2008) realized the storage
of the Fraunhofer diffraction pattern of the image (see
Fig. 15). Instead of filtering the high spatial components of
the original image (a convolution with a Gaussian), diffusion
merely attenuates its outermost parts (Gaussian multiplica-
tion), thereby maintaining its fine details. Cho, Oh, and Kim
(2012) implemented a correlation-imaging technique,
namely, ghost imaging, in which the retrieved light is re-
corded by a bucket detector and hence nearly unaffected by

diffusion. This technique, however, required thousands of
storage cycles to recover the image.

B. Shape-preserving modes of coherent diffusion

In free-space optics, the paraxial-diffraction equation
@z� ¼ ir2

?�=ð2qÞ has several sets of shape-preserving so-

lutions. These are notably the polynomial-Gaussian modes,
including the well-known standard Hermite-Gauss (sHG) or
Laguerre-Gauss (sLG) modes. Their transverse intensity pat-
tern is maintained along the propagation direction z and

scaled according to the beam radius wz ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
,

where zR ¼ qw2
0=2 is the Rayleigh distance. For example, the

sHG mode EsHG
n;m ðx; y; z;w0Þ has the form

Hn

� ffiffiffi
2

p x

wz

�
Hm

� ffiffiffi
2

p y

wz

�
exp

�
� x2 þ y2

~w2
z

�
;

where ~wz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzR � izÞ=qp

is the complex radius and Hk are
the Hermite polynomials.

A less familiar solution for paraxial diffraction is the set of
elegant modes, first studied by Siegman (1986) for their
neater mathematical form. The elegant Hermite-Gauss
(eHG) mode EeHG

n;m ðx; y; z;w0Þ has the form

Hn

�
x

~wz

�
Hm

�
y

~wz

�
exp

�
� x2 þ y2

~w2
z

�
:

Contrast this with the standard mode above, here the poly-
nomial and the Gaussian have a mutual (complex) scaling,

and the
ffiffiffi
2

p
in the polynomial argument is absent. A corre-

sponding elegant form for the circular-symmetric LG modes
also exists.

The elegant modes are not shape preserving in free-space
optics and are thus rarely used. Remarkably, at the focal plane
(z ¼ 0), they were found to be the basis for the shape-
preserving solutions of coherent diffusion in two dimensions
(Firstenberg et al., 2010). Substituting EeHG

n;m ) 	12 in

Eq. (18) with k ¼ 0, one finds

Eretrieved
n;m ð�Þ ¼ e��0�sð�Þ�ðNþ1ÞEeHG

n;m ðx; y; z ¼ 0;w�Þ;
(19)

where w� ¼ w0sð�Þ is the expanding waist radius, sð�Þ ¼
ð1þ 4D�=w2

0Þ1=2 is the stretching factor, and N ¼ nþm is

the total mode order. The shape is therefore preserved, while
expanding, throughout the diffusion. The algebraic decay
sð�Þ�2ðNþ1Þ of the power P / R jEj2, explicated previously

for the Gaussian (N ¼ 0) case, becomes faster with increas-
ing mode order due to interference between atoms diffusing
through the oscillating phase patterns.

Note that the standard and elegant sets differ only in their
polynomial terms, and therefore low-order HG and all vorti-
ces (LGp¼0) are common to both sets and preserve their shape

under the simultaneous action of diffusion and diffraction.
They are thus the natural modes for slow light—a result
which is standard and elegant, in both meanings of the words.

The diffusion of low-order (common) LG and HG modes
during light storage in EIT is presented in Fig. 16. After
scaling and normalization, the cross sections at different
storage durations of each of the modes collapse to a single

FIG. 14 (color online). Diffusion of coherence fields with uniform

and nonuniform phase patterns. A flat-phased ring (top left) is filled

up after a short storage duration, while a vortex ring with a helical

phase is preserved (top right). Similarly, the blurring of a line

pattern (bottom left) can be reduced by flipping the phase between

adjacent lines (bottom right). As evident, the visibility of the lines

with the alternating phase remains much higher than the flat-phased

image. The vortex radius is 670 �m, the lines are 1:5=mm, and

D ¼ 10 cm2=s. Adapted from Pugatch et al., 2007, and Shuker

et al., 2008.

FIG. 15 (color online). By storing the Fraunhofer diffraction

pattern (top right) instead of the image itself (top left) the fine

details of the image are better preserved under diffusion (bottom).

Rather, diffusion attenuates the outer parts of the beam. Adapted

from Vudyasetu, Camacho, and Howell, 2008.
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curve. Higginbottom et al. (2012) used GEM to demonstrate
the shape-preserving evolution of HG modes and the associ-
ated algebraic decay. By probing an optically pumped me-
dium, the diffusion of LG beams with radial or azimuthal
polarization (vector beams) was observed by Fatemi (2011).
Yankelev et al. (2013) experimented with the high-order
modes sHG22 and eHG22 (see Fig. 17). As expected, the
shape of the sHG22 mode is preserved during diffraction
while dramatically altered during diffusion, and vice versa
for the eHG22.

Quite an interesting effect occurs when diffusion is per-
formed away from the focal plane of the beam. The radial
phase oscillations in the transverse plane, due to the curved
phase fronts of the diverging beam, lead to destructive inter-
ference at the outskirts of the beam during diffusion. The
result is a shape-preserving contraction of the beam, as
shown in Fig. 18, in contrast to the obvious consequence of

diffusion. In effect, diffusion acts to (virtually) expand the

waist radius at the focal plane (z ¼ 0), even if this plane lies

outside the medium, which leads initially to contraction at

jzj> zR (see Fig. 18). This effect is directly related to the

contraction of slow light out of focus, presented in Fig. 8.

V. FINITE-SIZE BEAMS, RAMSEY NARROWING

Up until now, we mainly considered a large and uniform

coupling beam, such that any inhomogeneity experienced by

the atoms originated from the weak probe. In fact, the atoms

are constantly driven toward the dark state by the perpetual

coupling field, and those that are slow enough can adiabati-

cally follow the local dark state / �	
cj1i ��	ðrÞj2i.

However this situation is not prevalent, especially when the

Raman fields (in a single or two beams) have a more sym-

metric role, such as in CPTand NMOR. There is often a finite

‘‘bright’’ region, covered by the light, and a remaining large

‘‘dark’’ region. The atomic motion within these regions and

between them is the subject of this section.
Finite excitation times of ground-state coherence is a well-

studied phenomena, as described by Gawlik (1986) and

Arimondo (1996b), with the atoms either spatially leaving

the illuminated area or shifting out of resonance due to some

inhomogenous mechanism. The observed spectra are more

elaborate than those we studied hitherto, because the finite

pumping time rules out the linear response assumption.

Instead of an instantaneous pumping action, the process

becomes kinetic, with different atomic trajectories contri-

buting differently to the spectra. An example of a non-

Lorentzian, cusplike spectrum was presented by Pfleghaar

et al. (1993). Pfleghaar et al. fully described the spectrum by

using an exact geometrical transit-time model, taking into

account the possible atomic trajectories through the inhomog-

enous beam. Trajectories with a transit time short compared

to the pumping and damping rates �t � ��1
0 , ��1

P contribute

to the transit-time-limited broad feature; trajectories with

long transit time contribute to the narrower central part of

ultimate width � � �0 þ �P. We note here that non-

Lorentzian spectra also arise for atoms at rest, when nonuni-

form power broadening dominates (Taichenachev et al.,

2004).
Coherently pumped atoms that have left the beam may

return at a later time before losing their coherence. Coherent

FIG. 16 (color online). Diffusion of ‘‘common’’ modes during

storage. Left: Intensity patterns of (top to bottom) Gaussian, LG01,

LG02, and HG01, expanding due to diffusion while preserving their

shape. Top right: Normalized cross sections at different storage

durations, � ¼ ðcirclesÞ 2, (squares) 20, (triangles) 40, and (dia-

monds) 60 �s, rescaled horizontally by the stretching factor sð�Þ.
Bottom right: Decay of the total power, increasing with the total

mode order N. The dashed line is e�2��, and solid lines are

e�2��sð�Þ�2ðNþ1Þ. Adapted from Firstenberg et al., 2010.

FIG. 17 (color online). Evolution of (top row) sHG22 and (bottom

row) eHG22, measured by Yankelev et al. (2013), for (center

column) diffraction in free space and (right column) diffusion

during storage of light. The standard mode is preserved only during

diffraction, whereas the elegant is preserved only during diffusion.

Adapted from Yankelev et al., 2013.

FIG. 18 (color online). Shape-preserving contraction and subse-

quent expansion of LG01 during storage. Because of destructive

interference, the diffusion of a diverging beam initially decreases

the beam area w2
� (line is the theoretical prediction). Adapted from

Firstenberg et al., 2010.
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recurrence occurs in wall-coated or buffered cells and has
long been known as a narrowing mechanism in standard rf
spectroscopy (Robinson and Johnson, 1982). While the ho-
mogenous damping rate (�0) sets a lower limit on the width of
any spectral feature, transit-time broadening (��1

t ) is reduced
by recurring atoms that effectively increase the interaction
time, and power broadening (�P) is reduced because the
recurring atoms have evolved predominantly in the dark.
The initial pumping of the atoms in the bright region, the
subsequent evolution in the dark, and their contribution to the
spectrum upon return correspond to the Ramsey method of
separated oscillating fields (Ramsey, 1950). The associated
narrowing was therefore named Ramsey narrowing. For all-
optical Raman resonances, Ramsey narrowing was first ob-
served in wall-coated cells with NMOR (Kanorsky, Weis, and
Skalla, 1995; Budker, Yashchuk, and Zolotorev, 1998), EIT
(Klein et al., 2006), and CPT (Breschi et al., 2010). The
measured spectra exhibit a broad pedestal feature, attributed
to single-transit trajectories, and a narrow peak, due to co-
herent atoms recurring after long times in the dark (Budker
et al., 2002, 2005). Diffusion-induced Ramsey narrowing in a
buffered cell was observed in various Raman processes
(Zibrov, Novikova, and Matsko, 2001; Alipieva et al., 2003;
Novikova, Matsko, and Welch, 2005; Novikova, Xiao et al.,
2005), as exemplified in Fig. 19 (left).

The difficulty of writing a linear susceptibility in the form
of Eq. (10) originates from the nonlinear terms in Eq. (9).
Even for negligible power broadening �PðrÞ ! 0, the source
term�	

cðrÞ�ðrÞ yields a convolution in k space that, although
accurate, makes it hard to solve for the spectrum. The follow-
ing two approaches to calculate the spectrum thus stay in real
space.

A. Repeated interaction

Following the original ideas by Frueholz and Volk
(1985), the repeated-interaction model builds the spec-
trum from an ensemble average of stochastic atomic trajec-
tories, as delineated by Xiao, Novikova et al. (2008).
Trajectories may comprise a single-transit time (tin), a

Ramsey process (tin=tout=tin), or any longer sequence
(tin=tout=tin=tout=tin � � � ). The contribution of longer trajecto-
ries is smaller due to the constant damping �0, and the sum
thus converges. During the dark period, the ground-state
dipole oscillates at the Raman-detuning frequency � with
respect to the beating frequency of the Raman beams. An
atom leaving the beams in a perfect dark state will have the
probability Re½e�ði�þ�0Þtout� of returning in phase (in the dark
state), resulting in Ramsey fringes with respect to �. These
can be measured by a fixed pulse sequence as shown in
Fig. 20 (left). As with Ramsey spectroscopy, the fringes’
period is set by the dark time t�1

out and their envelope by the
bright time t�1

in . Ramsey fringes were observed with Raman

processes by separations in the velocity, time, and space
domains (Buhr and Mlynek, 1986; Schuh et al., 1993;
Zibrov and Matsko, 2001; Zanon, Guerandel et al., 2005).

Because of the distribution of the times spent in the bright
and dark areas, a weighted average of such Ramsey fringes
constitutes the spectrum. Xiao et al. (2006) calculated the
time probability distribution of staying in the bright area
PinðtÞ and dark area PoutðtÞ for atoms diffusing through a
cylindrical beam (see Fig. 20, right). A similar analysis for
ballistic motion in wall-coated cells was carried out by Klein
et al. (2011). The calculations assume two spatial dimen-
sions, as the process is virtually insensitive to the axial
motion of the atoms. If the dipole amplitude d0 of an atom
leaving the beam was fixed, the ensemble average would have
read

hdi ¼ d0
Z 1

0
dtPoutðtÞe�ði�þ�0Þt ¼ d0PoutðsÞ; (20)

where s ¼ i�þ �0 and PoutðsÞ is the Laplace transform of
PoutðtÞ. The full repeated-interaction model involves nested
integrals essentially similar to that of Eq. (20). To calculate
the more intricate evolution in the bright stages, which
involves dark-state pumping, Xiao, Novikova et al. (2008)
followed Zanon, Tremine et al. (2005) and used the three-
element vector model by Shahriar et al. (1997). The model
reduces the master equation of the density matrix into a set of
three Bloch equations, under the assumption of negligible �0.
The evolution of the reduced vector has a closed mathemati-
cal solution in the form of a damped precession. A Ramsey
sequence is then obtained by chaining three (in/out/in) solu-
tions. Xiao, Novikova et al. (2008) generalized the vector

FIG. 19 (color online). Ramsey narrowing. Left: Dark-resonance

spectrum for rubidium in 5 torr neon with 1-mm-wide beam,

measured by Xiao et al. (2006) and calculated using the repeated-

interactions model by Xiao, Novikova et al. (2008). The comparison

to the transit-time (��1
t ) broadening highlights the substantial

Ramsey narrowing. Right: The diffusion solutions (21) by

Firstenberg et al. (2008), for 2a ¼ 0:2 mm, D ¼ 10 cm2=s, no

walls, and large power broadening �p ¼ 20�0 ¼ 2 kHz. Ramsey

narrowing produces a central feature narrower than 2�p. Adapted

from Firstenberg et al., 2008, and Xiao, Novikova et al., 2008.

FIG. 20 (color online). Left: Ramsey fringes in a dark resonance,

obtained by Zanon, Guerandel et al. (2005) with 80-�s pulses

separated by 1 ms. Right: Probability distribution of the durations

in the beam (tin) and in the dark (tout), calculated by Xiao et al.

(2006) for atoms diffusing in a cylindrical geometry. Adapted from

Zanon, Tremine et al., 2005, and Xiao et al., 2006.
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model to account for finite �0 and obtained an analytic

expression for all Ramsey spectra. Integrating over the tra-

jectories using PinðtÞ and PoutðtÞ, the reconstructed spectrum

agrees very well with the measurements (see Fig. 19, left) for

a range of experimental parameters. Klein et al. (2011)
augmented the model with a fourth atomic state, to account

for optical pumping out of the � system due to strong light

fields. Indeed, for both ballistic and diffusing atoms, the

distribution of bright times turns the Ramsey envelope into

a broad spectral feature, while the distribution of dark times
wipes out the Ramsey fringes, leaving a single pronounced

narrow feature at the line center.
Recently, Pugatch et al. (2009) analyzed the limit of

an infinitely small beam, for which the transit-time broad-

ening, and hence the fringes envelope, is very large. Since
Pinðt > 0Þ ! 0, the bright periods have a negligible effect on
the spectrum, which becomes independent of the beam size

and, in that respect, universal. While the atoms are essentially

always in the dark, a nonzero ground-state dipole is sustained
by the weak beam. The average dipole is given by an infinite

sum of multiple periods in the dark, each one given by

Eq. (20), hdi ¼ d0
P

nPoutðsÞn ¼ d0=½1� PoutðsÞ�. As evi-

denced by this expression, the resulting complex spectrum,

measured by Pugatch et al. (2009) (see Fig. 21, left),
constitutes a direct signature of the time distribution in the

dark. Moreover, as the beam is infinitely small, PoutðtÞ is

equivalent to the so-called first return-time distribution

FRTðtÞ, which is the universal probability distribution for a

random walker of returning to the origin at time t. In one-
dimensional diffusion, corresponding to the sheetlike beam

used in the experiment, FRTðsÞ¼1�ð4DsÞ1=2, yielding

hdi¼d0ð4DsÞ�1=2, in striking contrast to the complex

Lorentzian spectrum hdi / s�1. These power-law decays

are shown in Fig. 21, right.

B. Diffusion solution

Although providing insight into the Ramsey-narrowing

process, the repeated-interaction model applies the same
physics already contained in the diffusion-equation formal-

ism of the previous sections. One can essentially obtain the

spectra from the coupled internal and external dynamics of

the density-matrix distribution. To this end, we express the
spatially dependent source and pumping rates, Sðr; tÞ and

�PðrÞ in Eq. (9), using the profiles of the beams �ðx; yÞ
and �cðx; yÞ and then solve the diffusion equation for the

steady-state distribution of the ground-state dipoles 	21ðx; yÞ.
The optical dipole 	31ðx; yÞ is calculated from Eq. (8), and an
integration over the beam profile yields the absorption spec-
trum P / Im

R
dxdy�		31. As a matter of fact, such a

mathematical procedure conflicts with the previous notion
that steady-state solutions cannot accurately describe transit-
time-limited spectra (Gawlik, 1986).

Xiao, Novikova et al. (2008) wrote a similar diffusion
equation using the three-element vector model and by that
generalized Eq. (9) to include a nonweak probe, and essen-
tially any ratio between the Raman beams, including the
balanced case. Numerical solution of the diffusion equation
in this model, for a small Gaussian beam, was shown by Xiao
et al. to agree with the repeated-interaction model.

For a few simple geometries, it is possible to obtain closed-
form expressions for the spectra, as corrections Rð�Þ to the
stationary spectrum 
0 ! 
0ð1� RÞ (Firstenberg et al.,
2008). For a stepwise light sheet (1D) or a top-hat beam
(2D) of widths 2a, and absorbing boundary conditions at the
walls at a distance b, the diffusion solution gives

R1Dð�Þ¼ 1

�a

tanhð�aÞ
1þð�=�0Þtanhð�aÞtanh½�0ðb�aÞ� ;

R2Dð�Þ¼ 2

�a

�
I0ð�aÞ
I1ð�aÞþ

�

�0

K0ð�0aÞ
K1ð�0aÞð1��Þ

��1
;

(21)

where � ¼ K0ð�0bÞK�1
0 ð�0aÞI�1

0 ½�0ðb� aÞ� is due to the

walls. Here � and �0 are defined via D�2 ¼ �0 þ �p � i�

(inside the beam) and D�2
0 ¼ �0 � i� (outside), and In, Kn

are the modified Bessel functions. These expressions revert to
the transit-time limit for a circumferential wall (b ¼ a) that
depolarizes all atoms before they recur. The solution with no
walls (b ! 1) is shown in Fig. 19 (right), where the reduc-
tion of power broadening is clearly visible on the central
feature. One may also recover the asymptotic universal be-
havior shown in Fig. 21 by taking a ! 0. Finally, minor
corrections for nonflat beams were solved by Romanenko
and Yatsenko (2008).

VI. OUTLOOK

We presented the physics of Raman processes with hot
atoms, whose internal coherence is preserved despite their
external motion. The unique combination of rapid atomic
motion, large Raman wavelengths, long lifetimes, and large
group delays was shown to have diverse, significant spectral
and spatial consequences. The same physical principles hold
for a rich variety of Raman schemes and matter systems that
are either out of the scope of this Colloquium or yet to be
explored.

The spectra we studied derived from the exponential or
Gaussian dephasing rate, pertaining to regular thermal mo-
tion. In two-dimensional systems, power-law decay of the
velocity correlation is manifested by Lévy-like Raman spec-
tra, whereas more intriguing spectra are expected for non-
equilibrium one-dimensional systems. These are realizable
with cold atoms, for which it is also exciting to explore
anomalous diffusion, ballistic motion, and billiard dynamics.
Oscillatory motion in a confining trap adds a modulated

FIG. 21 (color online). Dispersion spectrum with a one-

dimensional light sheet of width 126 �m. Right: Universal power

laws with exponents �1 (Lorentzian) and �0:5 (one-dimensional

recurrence). Adapted from Pugatch et al., 2009.
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component to the velocity correlation function, which is also
measurable as periodic revivals of spatial structures.

Various matter-wave phenomena can find their analog in
polariton diffusion, as diffusion manifests the diffraction
equation in imaginary time. Thus, a speckle field of ‘‘traps’’
that locally depolarizes the dark state relates to the Anderson
problem in one or two dimensions and is measurable spec-
trally and spatially. Here one can extend the study to the
subdiffractive, subdiffusive (r4) evolution (Staliunas and
Herrero, 2006) by controlling the slow-light parameters.
Identifying the transverse modes of either ordered or disor-
dered configurations is an important, instructive stage for
understanding these systems (Wang and Genack, 2011).
Extensions to the nonlinear realm can be performed with
diffusion and diffraction manipulation in Raman four-wave
mixing schemes, which will further allow optical conjugation
and gain (Marino et al., 2009; Katzir, Firstenberg, and Ron,
2012). These promising avenues, which represent a subset of
what is currently being explored in this exciting field, are not
only of fundamental interest, but could also have a profound
impact on future quantum-technology applications.
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APPENDIX: WEAK AND STRONG COLLISIONS

1. Weak-collisions formalism

Here we derive the Raman spectrum in the weak-collisions
limit for stationary uniform fields (plane waves), a weak
probe, and no power broadening. Assuming the � atom of
Fig. 3 travels along the classical trajectory r ¼ rðtÞ, either
ballistic or diffusive, we plug the time-dependent Rabi
frequencies

~�ðtÞ¼�eiq�rðtÞ�i!t; ~�cðtÞ¼�ce
iqc�rðtÞ�i!ct (A1)

into the Hamiltonian (5), with ! ¼ cjqj and !c ¼ cjqcj. To
account for relaxations, the individual atom is represented by
a density matrix 	i

ss0 ðtÞ (s, s0 ¼ 1, 2, 3) in a master equation

formalism; see, for example, Cyr, Tetu, and Breton (1993)
and Nikonov et al. (1994). For brevity, we use a single decay
rate � for the two optical dipoles (3 $ 1, 2). The ground-state
relaxation rate is �0. For a given atomic density n0, the
absorption of the probe is calculated from the imaginary

part of the linear susceptibility 
ð�!;!Þ ¼ gh	i
31ðtÞ= ~�ðtÞi,

where g ¼ jqjn0j�31j2=ℏ�0 and h i 
 lim�!1
R
�
0 dt=�.

We assume that the equilibrium state of the atom in the
absence of the probe is j1ih1j (	eq

11 ¼ 1), regardless of the

velocity and the instantaneous coupling power, which con-
forms with the limit of no power broadening. The first-order
correction to the equilibrium state in the nonsaturated and
weak-probe conditions � � �c � � involves only the
ground-state dipole 	i

21ðtÞ and the probe transition dipole

	i
31ðtÞ (Kofman, 1997):

d

dt
	i
31¼ i ~�cðtÞ	i

21þ i ~�ðtÞ	eq
11� ið!��p� i�Þ	i

31;

d

dt
	i
21¼ i ~�	

cðtÞ	i
31� ið!�!c��� i�0Þ	i

21:
(A2)

To obtain 	i
31ðtÞ, Eqs. (A2) can be integrated and solved

formally, by iterations up to first order in 	i
31, a valid

approximation in the absence of power broadening j�2
cj �

��0. In this regime, the susceptibility becomes a sum

ð�!;!Þ ¼ 
Ið!Þ � j�2

cj
IIð!Þ of the Raman resonance
j�2

cj
II within the optical resonance 
I (Firstenberg et al.,
2007):


I¼g

�
i
Z t

0
dt1e

ð�i�p��Þðt�t1Þei�I

�
; (A3a)


II¼g

�
i
Z t

0
dt1

Z t1

0
dt2

Z t2

0
dt3

eð�i�p��1Þðt�t1þt2�t3Þ

e�ði���0Þðt1�t2Þ ei�II

�
:

(A3b)

The phases accumulated due to atomic motion though the
light fields are�I ¼ q � ½rðtÞ � rðt1Þ� and�II ¼ qc � ½rðt1Þ �
rðt2Þ� � q � ½rðtÞ � rðt3Þ�. One may recognize a homogenous
Lorentzian line

R
d�eð�i�p��Þ� in Eq. (A3a), broadened by

the motional phase q � rð�Þ.
We now invoke the weak-collisions limit, as laid out by

Galatry (1961), Kubo (1962), and Rautian and Sobel’man
(1967). Assuming a Gaussian process for the random
variable �I, together with a Markovian velocity relax-
ation h _rðtÞ _rðt��Þi¼3v2

Te
��cj�j, renders the dephasing

hei�Iðt;t��Þi�e�h�2
I
i=2�e�jqj2�2Hð�c�Þ, with HðxÞ ¼ e�x�

1þ x and � ¼ vT=�c. The result is an optical spectrum in
the form of a Gumbel distribution


Ið�pÞ ¼ ig
Z 1

0
d�eð�i�p��Þ�e�jqj2�2Hð�c�Þ: (A4)

The absorption line Im
I is shown in Fig. 5: At the Doppler
limit HðxÞ � x2=2 (solid black), it is a Gaussian
expð��2

p=�
2
Doppler=2Þ; at the Dicke limit HðxÞ � x (light

gray), it is a Lorentzian ½�þ �Dicke�=½�2 þ ð�þ �DickeÞ2�;
and in between (dark gray), it is neither.

A more elaborate but analogous derivation was performed
by Firstenberg et al. (2007) for the Raman dephasing hei�II i,
resulting in a closed integral form for 
II. The Doppler-Dicke
transition of the Raman resonance was thereby formally
obtained for the first time, for the predominant case of a
Doppler-broadened optical line and a nearly resonant cou-
pling light:


IIð�Þ ¼ ig

�2

Z 1

0
d�eði���0Þ�e�k2�2Hð�c�Þ: (A5)

Remarkably, the transmission line (A5) has the same form as
the absorption line (A4), with the Raman parameters (k; �0)
replacing the optical parameters (jqj;�).

2. Strong-collisions formalism

For the strong-collisions formalism, we use a density-
matrix distribution function in space and velocity ~%ss0 ¼
~%ss0 ðr; v; tÞ, constructed from the sum over (identical) indi-
vidual atoms:
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~%ss0 ¼
X
i

	i
ss0 ðtÞðr� riðtÞÞðv� viðtÞÞ: (A6)

This approach is general in that it allows atoms in different
states to travel or diffuse between the illuminated and the dark
areas, both in real spatial space and in velocity space, and
thereby circumvents the approximation of an open system
(Nikonov et al., 1994). In a hot vapor, the density-matrix
distribution can be taken as classical in the external-motion
degrees of freedom, and evolves according to

ð@t þ v � rÞ~%ss0 þ ð@t ~%ss0 Þcol
¼ X

i

ð@t	i
ss0 Þðr� riðtÞÞðv� viðtÞÞ; (A7)

where ð@t ~%ss0 Þcol accounts for collisions. The right-hand side
of Eq. (A7) describes the internal atomic dynamics, which
can be taken from Eqs. (A2). Here, however, to set the stage
for the description of polariton dynamics, we generalize Eqs.
(A2) and employ a structured (time-dependent) probe and a
structured (stationary) coupling:

~� ¼ �ðr; tÞeiq�r�i!t; ~�c ¼ �cðrÞeiqc�r�i!ct; (A8)

where �ðr; tÞ and �cðrÞ are slowly varying envelopes of the
Rabi frequencies. Correspondingly, we define the slowly
varying atomic densities %31 ¼ ~%31e

i!t�iq�r and %21 ¼
~%21e

ið!�!cÞt�iðq�qcÞ�r.
We now assume that a single collision is strong enough to

completely randomize the atomic velocity, so that the post-

collision velocity is drawn from the equilibrium distribution
FðvÞ regardless of the precollision velocity. This assumption
pertains to a Kubo-Anderson process, which in principle
could be implemented in the individual-atom formalism
used above for the weak-collisions limit (Brissaud and
Frisch, 1974; Sagi et al., 2010). In practice, however, calcu-
lating the four-time dephasing of the Raman resonance [�II

in Eq. (A3b)] under the Kubo-Anderson assumptions is pro-
hibitive. One thus resorts to a more direct approach and
invokes a Boltzmann collision term with a single relaxation
rate �c (Nelkin and Ghatak, 1964):

ð@t ~%ss0 Þcol ¼ ��c½%ss0 ðr; v; tÞ � 	ss0 ðr; tÞFðvÞ�; (A9)

where the spatial density matrix is

	ss0 ðr; tÞ ¼
Z

d3v%ss0 ðr; v; tÞ: (A10)

The physical meaning of 	ss0 ðr; tÞ is readily understood by
identifying its diagonal elements 	ssðr; tÞ as the spatial den-
sity of atoms at state jsi, and its off-diagonal elements as the
polarization density Pðr; tÞ, e.g., 	31ðr; tÞ ¼ "P31ðr; tÞ=�	

31.

Note that Eq. (A9) does not consider pressure broadening,
which we later introduced via the atomic decay rates (Corey
and McCourt, 1984).

Finally, identifying 	
eq
11 ) n0FðvÞ in Eq. (A2) and substi-

tuting the definitions (A8)–(A10) into Eq. (A7), we obtain the
equations of motion for the densities:

½@t þ v � r� ipðvÞ�%31ðr; v; tÞ � i�cðrÞ%21ðr; v; tÞ ¼ �c	31ðr; tÞFðvÞ þ i�ðr; tÞn0FðvÞ; (A11a)

½@t þ v � r� iðvÞ�%21ðr; v; tÞ � i�	
cðrÞ%31ðr; v; tÞ ¼ �c	21ðr; tÞFðvÞ; (A11b)

where pðvÞ ¼ �p � q � vþ ið�þ �cÞ and ðvÞ ¼
�� ðq� qcÞ � vþ ið�0 þ �cÞ are the Doppler-shifted
complex detunings. These equations, together with a
wave equation for the probe field, form the basis for the
diffusion of polaritons presented in Secs. III and IV. To
derive the Doppler-Dicke profiles at this stage, we restrict
Eq. (A11) to stationary plane waves,

i1ðvÞ%31ðvÞ þ i�c%21ðvÞ ¼ �ð�c	31 þ i�n0ÞFðvÞ;
(A12a)

iðvÞ%21ðvÞ þ i�	
c%31ðvÞ ¼ ��c	21FðvÞ: (A12b)

From Eqs. (A12), Firstenberg et al. (2008) derived
an exact integral form for the susceptibility 
 ¼
ðg=n0Þ	31=� and numerically exemplified the Doppler-
Dicke transition of the dark resonance. The transition is
similar to but not exactly as that found in the weak-
collisions limit. For the sake of elucidation, we may exam-
ine the one-photon spectrum by substituting �c ¼ 0,


I ¼ g
GIð�pÞ

i�cGIð�pÞ � 1
; (A13)

where GIð�pÞ is the widely used Voigt profile:

GIð�pÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
vT

Z
du

e�u2=ð2v2
T Þ

�p � jqjuþ ið�þ �cÞ :
(A14)

The spectrum in the form of Eq. (A13) exhibits the
Doppler-Dicke transition; see May (1999) and references
therein. A comparison in Fig. 5 to the weak-collisions
spectra reveals a maximal deviation of 10%–20% at the
Doppler-Dicke crossover.
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