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Understanding and control of cluster and thin-film growth on solid surfaces is a subject of intensive

research to develop nanomaterials with new physical properties. In this Colloquium a review of

basic theoretical concepts to describe submonolayer growth kinetics under nonequilibrium con-

ditions is given. It is shown how these concepts can be extended and further developed to treat self-

organized cluster formation in material systems of current interest, such as nanoalloys and

molecular clusters in organic thin-film growth. The presentation is focused on ideal flat surfaces

to limit the scope and to discuss key ideas in a transparent way. Open experimental and theoretical

challenges are pointed out.

DOI: 10.1103/RevModPhys.85.921 PACS numbers: 81.15.Aa, 68.55.�a, 68.65.Pq, 75.75.�c

CONTENTS

I. Introduction 921

II. Elementary Processes and Rate Equations 922

III. How Many Islands Form? 923

A. Island densities of one-component adsorbates 923

B. Island densities of binary alloys 925

C. Beyond � scaling: Self-consistent capture numbers 926

IV. What is the Distribution of Island Sizes? 927

A. Predictions from rate equations 927

B. Scaling approaches 928

C. Limiting behavior for D=F ! 1 928

V. When Do Islands Survive upon Continued Deposition? 929

A. Second-layer nucleation rate 929

B. Applications 930

VI. What Determines Outer Shape and Inner

Structure of Islands? 931

A. Island shapes on (111) surfaces 932

B. Second-layer induced morphologies 932

C. Segregation and ordering effects 934

VII. Concluding Remarks 936

Acknowledgments 937

References 937

I. INTRODUCTION

A widely applied method for the design of materials
with nanoscale dimensions is to deposit atoms or molecules
on a solid substrate. Adsorbed atoms diffuse along the sur-
face, nucleate, and form aggregates. The interplay of these

processes leads to a rich variety of self-organized growth
phenomena. Nanoscale structures built in this way in general
are metastable, so that their physical properties can differ
distinctly from the corresponding equilibrium bulk phases.
Owing to the progress in experimental techniques, especially
scanning tunneling microscopy (STM) and atomic force
microscopy (AFM), it is possible to uncover microscopic
details in the underlying structure formation with unprece-
dented precision.

Starting out with the pioneering work by Venables and co-
workers (Venables, 1973; Venables, Spiller, and Hanbücken,
1984) important theoretical concepts were developed in the
past. Today the adatom kinetics of single-component metallic
systems is rather well understood. From scaling properties of
measured island densities and shapes important kinetic pa-
rameters can be extracted, such as adatom diffusion coeffi-
cients and interaction energies, sizes of critical nuclei, step
edge barriers for interlayer transport, etc. Knowledge of these
parameters makes it possible to control the desired growth
modes to a substantial degree. Several extensive review
articles give an excellent account of the state of the art
(Brune, 1998; Ratsch and Venables, 2003; Michely and
Krug, 2004; Evans, Thiel, and Bartelt, 2006).

This Colloquium is motivated by the fact that many of the
basic questions in the field of surface growth appear nowa-
days in a new context. This includes self-organized growth of
nanoalloys, which can show unexpected physical properties
emerging from frozen-in nonequilibrium atomic arrange-
ments. The submonolayer regime of alloy growth offers a
wealth of new problems relative to growth in one-component
adatom systems. Other examples of wide current interest are
epitaxial growth of colloids (Einstein and Stasevich, 2010;
Ganapathy et al., 2010), growth of graphene on metal sub-
strates (Loginova et al., 2008; Coraux et al., 2009; Zangwill
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and Vvedensky, 2011), and growth of metallic nanoparticles
on graphene (Zhou, Gao, and Goodman, 2010; Pandey et al.,
2011; Moldovan et al., 2012). While theoretical treatments of
the growth kinetics for these systems are still rare, the general
concepts, presented here, can be adapted and refined in order
to understand the graphene and nanoparticle formation.

A further important problem is the self-organized growth
of organic molecules on an inorganic substrate (Kowarik,
Gerlach, and Schreiber, 2008; Kühnle, 2009; Hlawacek and
Teichert, 2013; Rahe et al., 2013). In the latter case, the
complexity of building blocks, provided by organic chemis-
try, can be exploited for generating an even richer spectrum of
surface structures. Such studies are largely driven by per-
spectives of molecular electronics (Nitzan and Ratner, 2003;
Cuniberti, Fagas, and Richter, 2005; Cuevas and Scheer,
2010) and organic photovoltaics (Deibel and Dyakonov,
2010; Nicholson and Castro, 2010).

A challenge in this area is to clarify how far concepts based
on single atom surface kinetics remain valid, or require
modification when dealing with the larger sizes, potential
nonspherical shapes, and internal degrees of freedom of the
molecules. Such questions were addressed in recent experi-
ments, but our understanding of mechanisms underlying
organic surface growth is just at the beginning. Of particular
relevance is to explain which type of island morphologies
develop and how they can be controlled. Organic molecules
exhibit often only weak interactions with the substrate. As a
consequence, dewetting is often observed in molecular pat-
tern formation (Burke, Topple, and Grütter, 2009). Examples
are pentacene on SiO2 (Käfer, Wöll, and Witte, 2009), per-
ylene tetracarboxylic dianhydride (PTCDA) on NaCl (Burke
et al., 2008), or C60 on KBr (Burke et al., 2005), on NaCl
(Burke et al., 2007), and on CaF2 (Loske et al., 2010). Finally,
we note that even the standard theories of cluster growth in
monocomponent atomic systems still imply basic, partly
long-standing open problems and we point out a few of them.

Our focus is on a set of general questions, which seemingly
are well understood but indeed call for a more general treat-
ment or deeper analysis: (i) How many islands form?
(ii) What is the distribution of island sizes? (iii) When do
islands survive upon continued deposition? (iv) What deter-
mines the outer shape and inner structure of clusters? The first
two questions are specially important for submonolayer
growth and the following ones for multilayer growth.
Without reviewing in any detail the current knowledge about
these questions, our attention in each case is concentrated on
specific open problems which are behind them. Steps toward
their solution are proposed, corroborated by simple model
studies.

II. ELEMENTARY PROCESSES AND RATE EQUATIONS

Advanced computer simulation techniques have made it
possible to study the growth of clusters and films on surfaces
in great detail [for a recent review, see Clancy (2011)].
Classical methods such as molecular dynamics (Rapaport,
2004) and kinetic Monte Carlo (KMC) simulations (Landau
and Binder, 2005) can nowadays be supported by ab initio
calculations, which provide precise force fields and/or
microscopic parameters entering rates for elementary jump

processes. Such approaches (Kratzer and Scheffler, 2001) are

important to account for specifics of material systems. To

capture long time and length scales in the growth kinetics,

continuum phase-field models have been developed, where

atomic features are resolved up to a certain extent (Provatas

and Elder, 2010). Prominent approaches are the level set

method (Gyure et al., 1998; Ratsch and Venables, 2003)

and the phase-field crystal method (Elder et al., 2002;

Greenwood, Provatas, and Rottler, 2010). The latter is based

on a modulated density field that minimizes a free energy

functional. Construction of this functional to adequately

describe patterning in ultrathin films is the major challenge

of the phase-field crystal method (Elder et al., 2012).
To bring up the basic principles in a transparent way, we

consider ideal surfaces; that is, we disregard all complicating

factors arising at real surfaces, as, for example, surface steps,

impurities, anisotropies, or reconstruction. Given this scope,

surface structures evolve through elementary atomic or mo-

lecular moves that obey fairly simple rules, but a sequence of

a large number of moves eventually leads to a high degree of

self-organization and to complex terminal structures on the

nanoscopic or even mesoscopic scale.
Figure 1(a) illustrates some types of atomic moves, which

dominate the early stages of growth. Following deposition to

the substrate surface, atoms can reevaporate or stick to the

surface and perform diffusional steps. Diffusing adatoms

(monomers) can stick together when they meet, forming

dimers, trimers, or larger two-dimensional islands. Islands

as a whole in general do not diffuse; they grow by attachment

of other adatoms or decay by dissociation. Three-dimensional

growth is due to direct deposition on top of an island that has

FIG. 1 (color online). Illustration of (a) elementary moves during

growth after deposition onto a surface and (b) the Ehrlich-

Schwoebel barrier for crossing the step edge.

922 Mario Einax, Wolfgang Dieterich, and Philipp Maass: Colloquium: Cluster growth on surfaces: . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



formed before, or to interlayer jumps. In an interlayer jump,
illustrated in Fig. 1(b), the atom in general must surmount an
additional energy barrier, the so-called Ehrlich-Schwoebel
barrier associated with a low-coordinated site at a step edge
(Ehrlich and Hudda, 1966; Schwoebel, 1969).

Structure formation begins with the assembly of two-
dimensional islands, composed of adsorbate atoms within
the first monolayer. Usually a range of fairly low tempera-
tures exists, where reevaporation can be ignored and thermal
energies kBT are significantly lower than the binding energy
EB between two adatoms, while diffusion is active. The
condition kBT � EB ensures that only a few atoms are
required to form a stable island. An important concept is
the critical island size (critical nucleus). Islands composed of
more than i atoms are more likely to grow than to decay.

Two factors influence the nucleation and growth of islands:
deposition of atoms onto the surface with a flux F and
thermally activated diffusion of adatoms along the surface
with a diffusion coefficient

D ’ D1 expð�U=kBTÞ; (1)

where U is the diffusion barrier. For atomic systems, the
preexponential factor is given by D1 ¼ �a2, where � is an
attempt frequency and a is the lattice constant of the sub-
strate. The mean time for a unit cell to be hit by an atom is
1=Fa2, and a2=D is the mean time after which it leaves that
cell by diffusion. Growth kinetics are controlled by the
dimensionless ratio of these times, the D=F ratio � ¼
D=Fa4. In the following, a is used as a length unit and is
not always given explicitly.

Because adatom diffusion is thermally activated, the den-
sity N of stable islands is a sensitive function of temperature.
At high temperatures,D is large and adatoms can diffuse over
longer distances before encountering another adatom or at-
taching to an island. Accordingly, N becomes smaller with
increasing T. This is demonstrated in Fig. 2 for fullerene
(C60) islands grown on an atomically flat CaF2ð111Þ surface
(Loske et al., 2010).

Rate equations (RE) have proven to be very useful to
relate measured island densities to atomistic parameters
(Zinsmeister, 1966; Venables, 1973). The approach follows

the spirit of classical nucleation theory by Becker and Döring
(1935) and is based on equations for the evolution of densities
nsðtÞ of islands composed of s atoms. Monomers have a
density n1ðtÞ � nðtÞ. Islands with s � 2 are considered to
be immobile. This leads to the infinite set of equations

dn

dt
¼F�2D�1n

2�Dn
X1
s¼2

�snsþ2K2n2þ
X1
s¼3

Ksns;

(2a)

dns
dt

¼D�s�1nns�1�D�snnsþKsþ1nsþ1�Ksns;

s¼2;3; . . . : (2b)

Attachment of diffusing monomers to s clusters occurs with
rates �sDnns, where �s are called capture numbers.
Detachment of monomers from s clusters occurs with rates
Ks, where Ks ¼ 0 if s > i. Reevaporation of atoms, direct
impingement of arriving atoms onto clusters, coalescence of
clusters, or dissociation of clusters into subclusters are ne-
glected in Eqs. (2) but can be incorporated by proper exten-
sion (Venables, Spiller, and Hanbücken, 1984; Brune, 1998;
Venables, 2000).

A straightforward step in refining Eqs. (2) is to distinguish
the impingement of atoms to the free surface from impinge-
ment to the islands edge or to the top of an island and
subsequent attachment to its edge. F is then replaced by
Fð1��Þ and terms of the form F�sns are added, where �s

is a direct capture area (Venables, 1973). In Sec. IV we refer
to the corresponding rate equations as the refined RE.

From the above concepts it is clear that cluster growth on
surfaces basically differs from growth in solutions. There
small clusters composed of only a few atoms (molecules)
are generally unstable due to solvation effects. This implies
that the critical nuclei are large, in contrast to metallic surface
growth. In standard continuum theory they are characterized
by a critical radius, which results from the competition of the
surface free energy, increasing as R2, and the bulk free
energy, proportional to R3. Cluster diffusion and cluster
aggregation that both are affected by hydrodynamic effects
play an important role in distinction to processes shown in
Fig. 1. Moreover, crystal growth in the solution involves
many metastable intermediates. The large variety of inter-
mediate structures generally has no analog in surface growth.
Finally, the buildup of crystalline structures is associated with
release of latent heat, which requires the introduction of a
temperature field and heat diffusion equation into the theory.

III. HOW MANY ISLANDS FORM?

A. Island densities of one-component adsorbates

To predict from Eqs. (2) the dependence of density N ¼P
s¼iþ1ns of stable islands on �, it is sufficient to replace �s

for s > i by an averaged capture number ��,

�� ¼ 1

N

X1
s¼iþ1

�sns: (3)

In addition, a quasistationary state for unstable islands of
size 2 � s � i is assumed, where decay and aggregation
processes nearly balance each other, Ksns ’ D�s�1nns�1,

FIG. 2 (color online). AFM images of C60 molecules on

CaF2ð111Þ at a coverage � ¼ 0:1 for different substrate tempera-

tures between 96 and 217 K. From Loske et al., 2010.
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yielding ns / ns. Since a monomer, when it gets detached
from an s cluster, has to overcome an energy barrier that is
composed of both its binding energy ðEs�1 � EsÞ to the
cluster and the diffusion barrier, one can write Ks ¼
�sD exp½�ðEs � Es�1Þ=kBT�, where �s is a constant. Here
Es > 0 is the total energy needed to decompose an s cluster
into monomers (E1 ¼ 0). In this way one arrives at the
so-called Walton relations (Walton, 1962)

ns ’ bs expðEs=kBTÞns; s ¼ 2; . . . ; i; (4)

where bs ¼
Q

s�1
j¼1 �j=�jþ1.

Summation of Eq. (2b) over s > i leads to a cancellation of
all terms on the right-hand side except the term s ¼ i. Using
Eqs. (3) and (4) the rate equations (2) reduce to a closed set of
equations for nðtÞ and NðtÞ,

dn

dt
¼ F� ð1þ �i;1Þ�iDnni � ��DnN; (5a)

dN

dt
¼ �iDnni; (5b)

with ni / ni from Eq. (4). The last equation simply tells that
NðtÞ grows by nucleation events.

Experimental � values are very large compared to unity,
typically 105 < �< 1011. Values of that order are often
representative of the leading asymptotic behavior in the limit
� ! 1. An asymptotic solution of Eqs. (5) in this limit can be
derived from the scaling ansatz nð�;�Þ � ���n1ð�Þ and
Nð�;�Þ � ���N1ð�Þ with � , �> 0 (Dieterich, Einax, and
Maass, 2008). Note that both n and N should decrease with
increasing � at fixed �. Inserting this scaling ansatz into
Eqs. (5) gives � ¼ 2=ðiþ 2Þ and � ¼ i=ðiþ 2Þ. Finally,

Nð�;�Þ �
�ðiþ 2Þ�ibi

��iþ1
�

�
1=ðiþ2Þ

eEi=ðiþ2ÞkBT��i=ðiþ2Þ;

(6a)

nð�;�Þ � 1

���Nð�;�Þ : (6b)

Equation (6b) is often used in the literature as a ‘‘quasista-
tionary’’ approximation in Eqs. (5) to derive Eq. (6a). Our
derivation is more general and shows that this quasistationary
relation becomes exact in the � ! 1 limit. Its range of
validity for finite � can be estimated from the first-order
corrections �Nð�;�Þ and �nð�;�Þ to the solution (6). In
the case i ¼ 1, for example, both ratios �Nð�;�Þ=Nð�;�Þ
and �nð�;�Þ=nð�;�Þ are found to behave as �ð�2�Þ�1=3,
and the criterion for Eq. (6a) to hold is

ð�2�Þ1=3 �
�
64�1

9 ��2

�
1=3

; (7)

where the right-hand side is of order unity. The smaller � is,
the larger � is in order for the scaling solutions (6) to remain
valid. For i ¼ 1 the ratio Nð�;�Þ=nð�;�Þ also behaves as
�ð�2�Þ1=3 according to Eqs. (6). This means that the appli-
cability of Eqs. (6) is equivalent to the experimentally testable
condition nð�;�Þ � Nð�;�Þ. Because � is large, this con-
dition is well satisfied in a large range of � before N steeply
falls in the coalescence regime, which typically sets in near
� 	 0:2. In other words, the scaling of the island density with
respect to � is not restricted to a ‘‘saturation regime’’ of

nearly �-independent island density, although this regime
preceding island coalescence is certainly most convenient for
experiments. An alternative argument for obtaining the cross-
over to the stationary regime was given earlier by equating
Eq. (6a) with the solution for N in the initial time regime
(Evans, Thiel, and Bartelt, 2006).

Measurements of N as a function of F and T allow one to
extract critical island sizes, diffusion coefficients, and binding
energies. Via the �-dependent factor in Eq. (6a) one first
determines i. In practice, because T competes with the bind-
ing energy EB, i is constant only within certain temperature
intervals and overall increases with T. This is illustrated
in Fig. 3 for the system Ag=Ptð111Þ (Brune, 1998).
Knowing i, the slopes in an Arrhenius representation of N
yield ðiUþ EiÞ=ðiþ 2Þ as the activation energy, which for
i ¼ 1 is U=3. The high-T extrapolation of N in addition
allows one to obtain information about the preexponential
factor D1. This ‘‘nucleation route’’ (Brune et al., 1994;
Müller et al., 1996; Brune, 1998; Barth et al., 2000) to
measuring surface diffusion coefficients and binding energies
has been found particularly useful. Examples are diffusion of
Pd diffusion on SrTiO3ð100Þ (Richter and Wagner, 2005), of
Co diffusion on Cu(111) (Prieto, de la Figuera, and Miranda,
2000), or of C60 molecules on CaF2ð111Þ (Loske et al., 2010),
and of hydrogenated tetraphenyl porphyrin (2H-PPT) on Ag
(111) (Rojas et al., 2011). A thorough overview on similar
analyses of surface diffusion on metals can be found in
Antczak and Ehrlich (2010).

For a quantitative description of N beyond � scaling, it
turns out that the approximation (3) of constant capture
numbers is insufficient. In particular, the � dependence
predicted by Eq. (6a) does not account for the tendency for
N to saturate at large � before the coalescence regime. A
good quantitative account is provided by a self-consistent
theory of the capture numbers, which will be discussed in
Sec. III.C.

FIG. 3. Island densities of Ag on Pt(111) at coverages � ¼ 0:12
in an Arrhenius plot. Analysis of the slope with Eq. (6a) in the low-

temperature regime, where i ¼ 1, gives a diffusion barrier U ¼
0:168
 0:005 eV. In the high-temperature regime, where i ¼ 2, the
slope yields a dimer bonding energy E2 ¼ 0:15
 0:02 eV. From

Brune et al., 1999.
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The rate equations form a very useful basis for treating
problems in more complicated situations. Extensions of the
theory for predicting island densities of multicomponent
adsorbates are discussed in Secs. III.B and III.C. A beautiful
example is the growth of graphene on metallic surfaces,
induced by deposition of carbon atoms or hydrocarbon mole-
cules. Nucleation can then proceed via a two-step process.
Clusters of five carbon atoms, which still are mobile, form
first. In turn, six such clusters react to a stable, immobile
graphene island (Zangwill and Vvedensky, 2011). Measured
carbon adatom densities on Ru(0001) (Loginova et al., 2008)
could be analyzed in terms of coupled rate equations for the
densities of adatoms (n), five-atom clusters (c), and stable
islands (N), thereby giving insight into the detailed kinetics of
this more complicated nucleation scenario. Because of the
large ‘‘critical nuclei’’ in this case, one has n � c � N. Note
that due to the scaling n=N � �ði�2Þ=ðiþ2Þ, cf. Eq. (6), n � N
is in general expected to hold for i > 2.

Epitaxial growth of graphene was indeed observed on
several metallic surfaces (Castro Neto et al., 2009;
Voloshina and Dedkov, 2012) such as Ru(0001) (Loginova
et al., 2008; Zhou, Gao, and Goodman, 2010), Ir(111)
(Coraux et al., 2009; Rusponi et al., 2010), Pt(111) (Sutter,
Sadowski, and Sutter, 2009; Gao et al., 2011),
Ni(111) (Grüneis and Vyalikh, 2008), and Cu(111) (Gao,
Guest, and Guisinger, 2010). Single-layer graphene on metal
surfaces as well as chemically modified graphene and few-
layer graphene can conversely be used as a substrate for the
growth of metals such as Ag, Au, Fe, Pt, and Ti. Such
substrates modify the energetics of adsorbed metal atoms,
allowing the production of a variety of metallic nanoparticle
structures [for details, see Pandey et al. (2011) and Moldovan
et al. (2012)].

B. Island densities of binary alloys

For binary (or multicomponent) alloys, growth kinetics are
controlled by an enlarged set of parameters including mixing
ratios and surface diffusion coefficients, which can vary
strongly among different atomic species. This poses the
question of a multiparameter scaling of island densities.
Moreover, atoms of different types will differ in their mutual
binding energies on the surface, which can lead to a com-
petition of different nucleation paths. The coexistence of
critical nuclei with different compositions together with
asymmetries in adatom diffusion coefficients leads to new
crossover phenomena in the scaling of island densities.
Detection of such crossovers by experiment and interpreta-
tion with the help of theoretical predictions, described below,
should allow one to deduce novel information on the size and
composition of critical nuclei, in particular, on the binding
energies of unlike atoms in the presence of the surface.

Consider two species of atoms � ¼ A and B to be code-
posited with partial fluxes F� ¼ x�F, where F ¼ FA þ FB is
the total flux. In this way a binary alloy with mole fractions xA
and xB ¼ 1� xA is formed. Only monomers of densities n�
are supposed to diffuse along the surface with diffusion
coefficients D� ¼ �� expð�U�=kBTÞ, while clusters with
more than one atom (s > 1) are immobile.

To elucidate the essential new physics compared to one-
component systems, we limit our discussion to cases where

the largest unstable clusters are composed of not more than
two atoms [for the general treatment, see Einax, Ziehm et al.
(2007)]. Stable islands of density N, in particular, trimers and
larger clusters, are treated in an averaged manner irrespective
of composition. Monomers with densities n� and all combi-
nations of dimers (densities n�	) will be treated explicitly.

Considering systems where the important differences be-
tween A and B atoms primarily arise from diffusion coeffi-
cients and fluxes, we do not distinguish between A and B
atoms in their respective capture numbers.

In comparison with Eq. (2a) the equation of motion for A
monomers involves additional terms due to the capture of B
atoms and to the decay of AB dimers. Similarly the rate
equations for the dimer density involve additional terms.
The structure of these equations is quite obvious. For ex-
ample, for nABðtÞ the rate equation is

dnAB
dt

¼ ðDA þDBÞ�1nAnB

�
�X

	

D	n	

�
�2nAB � KABnAB: (8)

Note that the coefficient for relative diffusional motion of A
and B monomers is DA þDB. K�	 ¼ K	� denote the disso-

ciation rates of dimers. A reduced set of rate equations for
n�ðtÞ, n�	ðtÞ, and NðtÞ is thus obtained, which allows us to

derive the scaling behavior of island densities.
In experiments with binary systems both conditions �� ¼

D�=F � 1 hold in general and a scaling analysis similar to
that for monocomponent adsorbates can be worked out. The
simplest situation arises when all dimers are stable. This
corresponds to the case i ¼ 1, where

N ’
�
3�1�

��2

�
1=3

��1=3
eff : (9)

The exponents agree with those in Eq. (6a) for one-
component systems, but the scaling variable �eff ¼ Deff=F
with Deff ¼ DADB=ðxADB þ xBDAÞ now describes the influ-
ence of both the different diffusion coefficients and mole
fractions of the two species. Clearly, the species with the
lower diffusion coefficient governs the dependence of N on
temperature.

If all dimers are unstable (i ¼ 2), we first have to seek for
generalized Walton relations (Einax, Ziehm et al., 2007) to
express dimer densities in terms of adatom densities. As in
Sec. III.A, these are obtained by nearly balancing the for-
mation and dissociation of dimers,

�1D�n
2
� ’ K��n��; � ¼ A; B; (10)

�1ðDA þDBÞnAnB ’ KABnAB: (11)

Writing K�	 ¼ ��	D�	 expð�E�	=kBTÞ in terms of the

diffusion coefficients D�� ¼ D�, DAB ¼ ðDA þDBÞ=2, and
the dimer binding energies E�	 � 0 (with ��	 being con-

stants), one obtains

N ’
�
4�1�2�

��3

�
1=4

�X
�;	

��1
�	e

E�	=kBT
F�F	

D�D	

�
1=4

: (12)

Equations (9) and (12) generalize the scaling relation (6a) for
i ¼ 1, 2 to the binary case. The predictions are in excellent
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agreement with KMC simulations (Einax, Ziehm et al.,
2007), but still await experimental confirmation. Because of
the dependence of N on EAB in Eq. (12), binding energies
between unlike atoms on a substrate should become acces-
sible by experiment. To achieve this, U� and E�� can first be
determined under deposition of only one species and then N
is measured under codeposition. The feasibility of a corre-
sponding procedure has been demonstrated by recovering all
growth parameters from a ‘‘computer experiment’’ on island
densities, in a way equivalent to analyzing a true experiment
[for details, including consistency checks, see Einax,
Dieterich, and Maass (2009)].

More complex situations arise when dimers with different
compositions have different stability. For example, only BB
dimers could be unstable (KAA ¼ KAB ¼ 0,KBB > 0), or only
AA dimers could be stable (KAB, KBB > 0, KAA ¼ 0). For
these and similar situations a closed rate equation for N can
be derived by factorizing dimer densities in terms of the
adatom densities with the help of Eqs. (10) and (11), and
by expressing the adatom densities through N via the quasi-
stationary condition analogous to Eq. (6b). In all cases this
leads to

dN

d�
¼ b

N2
þ c

N3
: (13)

The linear combination on the right-hand side reflects nu-
cleation via the dimer (dN=d�� N�2) and trimer routes
(dN=d�� N�3).

The full solution of Eq. (13) is given by

N ¼ ðc=bÞc ðb4�=c3Þ; (14)

where c ð�Þ is determined by a transcendental equation
(Einax, Ziehm et al., 2007). The coefficients b and c in
Eq. (13) depend on �� and x�, and their detailed form is
given in Dieterich, Einax, and Maass (2008). If, for example,
stable dimers are of AA type only, then b / FA=DA, and c is a
sum of two terms proportional to FAFB=DADB and to
ðFB=DBÞ2, corresponding to the two paths of trimer formation
via AB and BB dimers. Each possible nucleation path in the
above examples contributes additively to dN=d�. The dimer
route is dominating for fast B diffusion and xA large, and the

trimer route for slow B diffusion and xB large. The smooth
crossover is validated in Fig. 4, where KMC data for N versus
DB=F are plotted for a situation with stable AA dimers
(KAA ¼ 0) and zero binding energies of AB and BB dimers.

C. Beyond � scaling: Self-consistent capture numbers

The efficiency of islands to capture monomers is affected
by the shielding by other islands in their neighborhood. Such
shielding effects can be treated approximately by capture
numbers that depend on the whole set of monomer and island
densities (Bales and Chrzan, 1994; Bales and Zangwill,
1997). The idea is to consider the diffusion equation for the
local adatom profile ~nðr; tÞ around an s cluster with radius
Rs ¼ ðs=
Þ1=2 in the presence of the flux F and an effective
medium with absorption rate D=�2,�

@

@t
�D�

�
~nðr; tÞ ¼ F� D

�2
~nðr; tÞ; (15)

where D=�2 is identified with the loss terms in Eq. (2a),

��2 ¼ 2�1nþ X
s�2

�sns: (16)

The sum over s can be replaced by ��N as before, leading
to a reduced self-consistent description already considered
by Venables (1973). In a quasistationary state, @t~n ’ 0,
D��2n ’ F, and Eq. (15) becomes

�~nðrÞ � 1

�2
½~nðrÞ � n� ¼ 0: (17)

For large r, ~nðrÞ should approach its mean value n considered
in the rate equations and at the island edge r ¼ Rs, it must be
zero in the absence of detachment processes [case i ¼ 1; for a
generalization to higher i, see Bales and Zangwill (1997)].
With these boundary conditions, the solution of Eq. (17)
becomes ~nðrÞ ¼ n½1� K0ðr=�Þ=K0ðRs=�Þ�, where K�ð�Þ
denotes the modified Bessel function of order �. Equating
the inward current of adatoms 2
RsDð@~n=@rÞr¼Rs

at the

island edge with the aggregation rate �sDn, one obtains

�s ¼ 2
Rs

n

�
@~n

@r

�
r¼Rs

¼ 2

Rs

�

K1ðRs=�Þ
K0ðRs=�Þ : (18)

The merit of this approach is that a good quantitative de-
scription of n and N as a function of� is provided despite the
fact that �s themselves are not well predicted, as discussed
later [cf. Fig. 6(a)].

For a generalization of the self-consistent theory to multi-
component systems, many-particle densities need to be in-
troduced to obtain expressions for capture numbers that are
symmetric under the exchange of atomic species (Einax,
Maass, and Dieterich, 2013). The method is best illustrated
by considering the reaction rate ðDA þDBÞ�AB

1 nAnB of A and

B monomers to form AB dimers in the case of binary alloys
with i ¼ 1. The effective medium in this case is characterized
by two mean free paths ��, � ¼ A, B, which result from the
loss terms ðD�=�

2
�Þn� in the rate equations of the monomer

densities. Considering the pair distribution function of A and
B monomers, this function satisfies a diffusion equation with
symmetric diffusion coefficient DA þDB and symmetric
absorption rate

P
�D��

�2
� . Taking into account the boundary
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FIG. 4. Simulated number densities N of stable islands at cover-

age � ¼ 0:1 as a function of DB=F, when AA dimers are stable,

while AB and BB dimers are unstable. The solid lines correspond to

the full solution (14) and the dashed lines indicate the change of

scaling behavior associated with the dimer and trimer nucleation

routes. From Einax, Ziehm et al., 2007.
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conditions, the final result for�AB
1 has the same structure as in

the one-component theory (Bales and Chrzan, 1994),

�AB
1 ¼ 2


R1

�eff

K1ðR1=�effÞ
K0ðR1=�effÞ (19)

with an effective mean free path �eff . In contrast to the one-
component theory this mean free path depends on the diffu-
sion coefficients,

��2
eff ¼ ðDA þDBÞ�1½DA�

�2
A þDB�

�2
B �: (20)

One can show that ���
1 is also given by Eq. (19) with �eff

replaced by ��. To get ��
s for s > 1 one has in addition to

replace R1 by Rs.
As in the monocomponent case, an extension is possible

also to include decay processes of clusters. The capture
and decay rates in this extension are consistent with the
generalized (two-component) Walton relations. Again a
good quantitative description of island densities is obtained.
As an example we show in Fig. 5 the calculated number
densities N, n�, and n�� for mixed dimer stabilities in
comparison with KMC data.

For critically testing the theory outlined here, it is impor-
tant to provide experimental data for island densities in
multicomponent systems. A particular challenge is to simul-
taneously measure the densities of the individual monomers
or, more generally, the densities of the subcritical clusters.
This is already highly desirable for monocomponent systems,
because it allows one to test basic assumptions of the rate
equation approach. For example, to our knowledge, neither
the Walton relation (4) nor their generalized forms (10) and
(11) have been tested in experiments.

To sum up, using rate equations and KMC simulations, it
was shown that even for binary systems comparatively simple
(multiparameter) scaling relations can be established that
describe the densities of stable islands as a function of adatom
diffusion coefficients and partial deposition fluxes. Equation
(18) entails a generalization to binary systems of the well-
known nucleation route for obtaining microscopic parameters
from island density measurements. In practice, this equation

can be utilized to determine binding energies between unlike
atoms in the presence of the surface. It would be interesting to
compare these results with corresponding ones from elec-
tronic structure calculations. A particularly interesting feature
is the occurrence of novel crossover phenomena in the island
densities, which emerge when critical nuclei of different
composition compete with each other in determining the

dominant nucleation pathway. A detailed quantitative de-
scription of island densities is possible, when considering
many-particle densities in self-consistent theories for capture
numbers. Also decay processes of unstable clusters can be
treated successfully within this framework.

IV. WHAT IS THE DISTRIBUTION OF ISLAND SIZES?

A. Predictions from rate equations

More detailed information of the submonolayer growth
kinetics is contained in the island size distribution (ISD)
nsð�;�Þ. Imagine that the capture numbers �s in Eqs. (2)
were known. Can we then expect that the RE predict the ISD
in the precoalescence regime? This would mean that many-
particle correlation effects can be incorporated in effective
capture numbers, and that spatial fluctuations in shapes and
capture zones of islands as well as coalescence events, despite
rare in the early-stage growth, are negligible.

While Eq. (18) already implies that capture numbers have
to be regarded as effective ones, �s ¼ �sð�;�Þ, their full
dependence on both island size s and external parameters has
been determined recently in an extensive KMC study of

models yielding different island morphologies (Körner,
Einax, and Maass, 2010, 2012). In Fig. 6(a) we show
representative results of this study for kinetic growth with
hit-and-stick aggregation on a (100) surface. Integrating the
refined RE [see discussion after Eqs. (2)] under consideration
of the full � dependence of �sð�;�Þ indeed gives a good
description of the ISD, as demonstrated in Fig. 6(b). To
achieve this good agreement it is necessary to take into
account details in the functional form of �sð�;�Þ. For ex-
ample, when neglecting the � dependence by setting
�sð�;�Þ ¼ �sð�0;�Þ for a fixed reference coverage �0, a
good description is not obtained. It is moreover important to
point out that for compact island morphologies the good

agreement is of limited practical use, because coalescence
events, not considered in the RE, become relevant already at
rather small coverages of about 5%.

Since the refined RE with those simulated�-dependent �s

were shown to be suitable for predicting the ISD, the chal-
lenge is to find an accurate description of the functional form
of the �sð�;�Þ. Unfortunately �sð�;�Þ shows a high sensi-
tivity with respect to the island morphologies and probably
also to details of the growth kinetics. A general feature is that
for island sizes s larger than the mean island size �s, �sð�;�Þ
increases linearly with s, �sð�;�Þ � c1ð�;�Þ þ c2ð�;�Þs.
This can be reasoned by considering the areas for adatom
capture surrounding the islands (Evans, Thiel, and Bartelt,
2006). However, even for this generic feature the functions
cjð�;�Þ depend on details of the attachment kinetics (hit and

stick or with limited edge diffusion, etc.). For improving
theories for the ISD, it was argued that correlation effects
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FIG. 5 (color online). Number densities of A and B adatoms, AA

dimers, and stable islands as a function of the coverage � for a case

of mixed dimer stabilities, where AA dimers are stable, while AB
and BB dimers are unstable with zero binding energies. Results

from the self-consistent approach (solid lines) are compared with

KMC simulations (symbols). Parameters are xA ¼ xB ¼ 1=2,
DA=F ¼ 108, and DB=F ¼ 107.
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between island sizes and capture areas need to be taken into
account. This can be achieved by considering the joint proba-
bility of island size and capture area (Mulheran and Robbie,
2000; Amar, Popescu, and Family, 2001; Popescu, Amar, and
Family, 2001; Evans and Bartelt, 2002; Mulheran, 2004).

B. Scaling approaches

While a theoretical description of the details in �sð�;�Þ
seems to be out of reach, a simpler approach to the ISD
becomes possible when assuming that the dependence of
nsð�;�Þ on � and � is mediated by the mean island size
�sð�;�Þ. In this case the ISD should obey the following
scaling form, as first suggested by Vicsek and Family (1984):

nsð�;�Þ ¼ �

�s2ð�;�Þ f
�

s

�sð�;�Þ
�
: (21)

Here the scaling function fðxÞ must fulfill the normalization
and first moment conditions

R1
0 fðxÞdx ¼ R1

0 xfðxÞdx ¼ 1,
because

P
sns ’ N ’ �=�s and

P
ssns ¼ �.

An explicit expression for fðxÞwith a shape independent of
� was suggested by Amar and Family (1995),

fðxÞ ¼ Cix
i expð�iaix

1=ai Þ; (22)

where the parameters Ci and ai follow from the above
conditions on f. Equation (22) was believed to be inde-
pendent even of the morphology (Amar and Family, 1995),
but this was later questioned (Bartelt and Evans, 1996;
Evans, Thiel, and Bartelt, 2006). The dependence of
Eq. (22) on i allows one to determine the size of the critical
nucleus from measurements of the ISD (Ruiz et al., 2003;
Pomeroy and Brock, 2006; Loske et al., 2010; Potocar
et al., 2011).

It is interesting to note that a semiempirical form, which
has a structure similar to Eq. (22), was suggested by
Pimpinelli and Einstein (2007) for the distribution of
capture-zone areas A as identified by Voronoi tessellation,

P	 ¼ c	a
	 expð�d	a

2Þ; (23)

where a ¼ A= �A is the capture zone rescaled with respect to
the mean �A and 	 ¼ iþ 2 (Li, Han, and Evans, 2010;
Pimpinelli and Einstein, 2010).1 The parameters c	 and d	
are again determined by normalization and a condition on the
first moment.

This new theoretical result can alternatively be used to
determine i. In fact, the capture-zone scaling was recently
applied to determine critical island sizes in organic thin-film
growth (Lorbek, Hlawacek, and Teichert, 2011; Potocar et al.,
2011; Tumbek et al., 2012). For para-hexaphenyl (6P) mole-
cules deposited on a sputter-modified muscovite mica (001)
substrate, Potocar et al. (2011) reported that the combined
analysis of the ISD according to Eq. (22) and the capture-
zone distribution (23) gave convincing evidence for i ¼ 3.
More experiments in this direction should be performed to
test the general validity of Eq. (23). In particular, the analysis
should be extended to identify correlations between island
size and capture-zone area. As mentioned (see Sec. IV.A),
corresponding information is highly relevant to check theo-
retical considerations on the size dependence of capture
numbers.

C. Limiting behavior for D=F ! 1

Because the refined RE with the appropriate �sð�;�Þ
predicts the ISD, it should be possible to derive an evolution
equation for the scaled island density fðx;�;�Þ � �s2nx �s=�.
Because of the normalization this function will approach a
limiting curve f1ðx;�Þ for � ! 1, and an interesting ques-
tion is whether this curve is independent of�. To discuss this,
we concentrate on the case i ¼ 1. For large �, �s� N�1 �
�1=3, and x ¼ s=�s becomes a continuous variable. This allows
one to consider a continuum version of the refined RE (Bartelt
and Evans, 1996; Evans and Bartelt, 2001; Körner, Einax, and
Maass, 2012), which gives a partial differential equation for
fðx; �;�Þ in the variables x and�. This equation includes the
scaled capture numbers Cðx;�;�Þ ¼ �x�s= �� and scaled areas
for direct capture Kðx;�;�Þ ¼ �x �s= ��. Taking the � ! 1
limit then yields a determining equation for f1ðx;�Þ. If f1
is independent of �, this equation becomes an ordinary
differential equation that can be solved exactly (Bartelt and
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FIG. 6. (a) Capture numbers and (b) island size distributions

from KMC simulations of kinetic growth with hit-and-stick aggre-

gation on a (100) surface. In (a) the open circles refer to the

prediction of the self-consistent theory for � ¼ 0:1 and � ¼ 107,
which for large s deviate strongly from the true �sð�;�Þ (full

circles). In (b) the solid lines are the solution of the rate equation (2)

with the simulated �sð�;�Þ as input. From Körner, Einax, and

Maass, 2012.

1In the original work (Pimpinelli and Einstein, 2007) 	 ¼ iþ 1
was suggested [see also Oliveira and Aarão Reis (2011, 2012)].
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Evans, 1996) and yields a power-law decay for large x.
However, arguments presented by Oliveira and Aarão Reis
(2012) support a stretched exponential decay of the scaling
function.

To study this question of a � dependence of f1ðx;�Þ for
different island morphologies in the case i ¼ 1, one can use
the simulated capture numbers �sð�Þ, discussed in Sec. IV.A
(Körner, Einax, and Maass, 2012). In addition, the connection
of f1ðx;�Þ to the scaled capture numbers and areas in
the limit � ! 1 was studied. For the point island model
(Bartelt and Evans, 1992), where islands have no extension
and � ¼ Ft plays the role of the deposition time, f1 indeed
turned out to be independent of �, while for extended
islands the results indicate that f1 exhibits a (weak) �
dependence.

To conclude taking into account the full dependence of
capture numbers on island size, coverage, and D=F ratio, the
rate equation approach predicts well the ISD in the precoa-
lescence regime. Moreover, analysis of ISDs and capture
cone area distributions allow for a determination of i, inde-
pendent of the methods presented in Sec. III. Further theo-
retical work is required in order to establish the behavior of
the limiting curve f1ðxÞ.

V. WHEN DO ISLANDS SURVIVE UPON CONTINUED

DEPOSITION?

With ongoing deposition, when multilayer growth sets in,
two contrasting growth modes can arise. Islands in the first
layer either grow in the lateral direction and coalesce before a
new layer nucleates or stable nuclei form on top of them
before coalescence. Which of these two cases is realized
depends on the characteristic island radius Rc at the onset
of second-layer nucleation: If Rc is larger than the mean
distance N�1=2 between islands, coalescence sets in before
second-layer nucleation and a smooth layer-by-layer growth
behavior is obtained. On the other hand, if Rc is smaller
than N�1=2, islands grow in the normal direction before a
smooth layer has developed and the film topography becomes
rough.

It is important to note that the occurrence of smooth or
rough films is answered differently from a thermodynamic
viewpoint, where it is dictated by surface tensions and
associated wetting properties. In this context a rough
Volmer-Weber, a smooth Van der Merwe, and an intermediate
Stranski-Krastanov growth mode are distinguished
(Pimpinelli and Villain, 1998). During growth, however,
films are usually not in thermal equilibrium and the film
topography is determined by kinetics rather than thermody-
namics. Under nonequilibrium growth conditions, Rc is the
decisive quantity that determines the film topography
(Tersoff, Denier van der Gon, and Tromp, 1994; Rottler and
Maass, 1999).

An important quantity controlling the size of Rc is the
Ehrlich-Schwoebel or additional step edge barrier �EES that
an atom has to surmount when passing an island edge. If
�EES is large, the associated Boltzmann factor

W ¼ expð��EES=kBTÞ (24)

becomes small and atoms can remain longer on top of islands,
implying that second-layer nucleation becomes more likely.2

A. Second-layer nucleation rate

In order to develop a theory, which predicts how Rc

depends on W and �, a precise definition of Rc is needed.
More generally, consider at time t the fraction fðtÞ of islands
covered by stable clusters. This fraction is zero for small t and
increases to 1 in some time window, after which all islands
are covered. At a time tc half of the islands are covered,
fðtcÞ ¼ 0:5, and the critical radius Rc can be conveniently
defined by Rc ¼ RðtcÞ, where RðtÞ denotes the mean island
radius at time t. We define by �ðRÞ the second-layer nuclea-
tion rate. The fraction of covered islands then is (Tersoff,
Denier van der Gon, and Tromp, 1994)

fðtÞ ¼ 1� exp

�
�

Z t

0
dt0�ðRðt0ÞÞ

�
; (25)

and the problem reduces to determine�ðRÞ in dependence of
W and �.

The functional form of �ðRÞ can be deduced from scaling
arguments (Rottler and Maass, 1999; Heinrichs, Rottler,
and Maass, 2000; Krug, 2000; Krug, Politi, and Michely,
2000). To this end we consider a state where in total n
adatoms are simultaneously on top of an island of size R. A
number of iþ 1 adatoms encounter at a point of the island
with a probability �ða2=
R2Þðiþ1Þ Qi

k¼0ðn� kÞ, where

the product takes into account that there are nðn� 1Þ=2
possibilities to form an (intermediate) pair, and, for i > 1,
ðn� 2Þ � ðn� 3Þ � � � � ðn� iÞ further possibilities for the
remaining i� 1 adatoms to attach to the pair. Multiplying
this probability with the adatom diffusion rate D=a2 and
integrating over the island area (factor 
R2) yields the en-
counter rate of iþ 1 atoms in the presence of n � iþ 1
atoms on an island of size R3:

!nðRÞ ¼ �e

D

a2

�Yi
k¼0

ðn� kÞ
��

a2


R2

�
i
: (26)

Logarithmic corrections need to be included in Eq. (26) when
taking into account the fact that the encounter problem
involves the number of distinct sites visited by a diffusing
adatom (Politi and Castellano, 2003).

The decay time �nðRÞ of a state with n noninteracting
adatoms on top of an island is the nth fraction of the lifetime
�1ðRÞ of one adatom. The latter is given by the typical time
�R2=D to reach the island edge plus the time �Ra=D to
return to the edge, which on average takes place W�1 times

2The step edge barrier can be an effective one, i.e., �EES ¼
�kBT lnhexpð��E�=kBTÞi, where h� � �i denotes an average over

microscopic step edge barriers �E� for different local atomic

configuration � at the island edge. Moreover, a factor �s=�isl needs

to be included in Eq. (24) if the attempt frequency �s for hops down

the step edge is different from the attempt frequency �t for jumps

between sites on top of the island.
3To keep the notation simple, we have not introduced a new

coefficient D0 for adatom diffusion in the second layer, which, of

course, can be different from D in the first layer.
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before the step edge barrier is eventually passed (if no
second-layer nucleation occurs). Accordingly,

�nðRÞ ¼ 1

n
�1ðRÞ ¼ 1

n

�
�1

R2

D
þ �2

Ra

WD

�
: (27)

Equations (26) and (27) have been validated by more detailed
analytical calculations and tested against KMC simulations
by Heinrichs, Rottler, and Maass (2000), where, in particular,
the constants �1 and �2 were determined and �e was shown to
depend on i due to memory effects.

Knowledge of �nðRÞ allows us to calculate the probabilities
pn ¼ pnðRðtÞÞ of finding n adatoms on top of the island at a
time t before the onset of second-layer nucleation. These are
given by the Poisson distribution

pnðRÞ ¼ �nðRÞn
n!

exp½� �nðRÞ�; (28)

where an analytical expression for the mean number �n ¼
�nðRðtÞÞ of adatoms was derived by Heinrichs, Rottler, and
Maass (2000). It holds that �nðRÞ ¼ 
FR2�1ðRÞ, except for a
regime of small R=a � W�1��2=ðiþ2Þ.

With the encounter rates !nðRÞ, the lifetimes �nðRÞ, and
the probabilities pnðRÞ, the second-layer nucleation rate can
be evaluated. Different from what one may intuitively expect,
it is possible that second-layer nucleation sets in at times
when �nðRðtÞÞ � iþ 1, which means when on average less
than iþ 1 adatoms are on top of the island (Rottler and
Maass, 1999). In this case the nucleation is caused by fluc-
tuations, where by chance iþ 1 adatoms are on top of an
island and encounter each other to form a stable nucleus.

To calculate the corresponding fluctuation-dominated nu-
cleation rate �flðRÞ, consider the probability of a second-
layer nucleation event in a finite time interval �t.4 This
equals the probability piðRðtÞÞ of finding i atoms on top of
the island (states with n > i can be neglected in the
fluctuation-dominated situation), times the probability

FR2�t to deposit an additional atom on the island, times
the probability ð1� exp½�!iþ1ðRÞ�iþ1ðRÞ�Þ that iþ 1 ada-
toms encounter each other during the lifetime �iþ1ðRÞ.
Dividing the probability of a nucleation event in �t by �t
yields

�flðRÞ ¼ 
FR2 �nðRÞi
i!

e� �nðRÞð1� e�!iþ1ðRÞ�iþ1ðRÞÞ: (29)

For i ¼ 1, Eqs. (26) and (27) give!2ðRÞ�2ðRÞ � 1=RW for
RW � 1 and !2ðRÞ�2ðRÞ�const for RW � 1, which means
that the encounter probability ð1� exp½�!2ðRÞ�2ðRÞ�Þ in
Eq. (29) is always of the order of 1. One thus obtains

�flðRÞ � FR2 �nðRÞ � F2R4�1ðRÞ

�
�
FW�1��1R5; ��11=12 � WR � 1;

F��1R6; 1 � WR:
(30)

For WR � ��11=12 it holds that �flðRÞ � F��1=3R6.
If �nðRðtÞÞ * iþ 1 at the onset of second-layer nucleation,

the rate follows from the weighted sum of the encounter rates
!nðRÞ over all states with n � ðiþ 1Þ,

�mfðRÞ ¼
X1

n¼iþ1

pnðRÞ!nðRÞ ¼ �e

D

a2
�nðRÞiþ1

�
a2


R2

�
i
:

(31)

This agrees with the result of mean-field theory (Tersoff,
Denier van der Gon, and Tromp, 1994), which predicts that
�ðRÞ is given by an integration of the local nucleation rate
Dniþ1

1 �D½ �nðRÞ=
R2�iþ1 over the island area (factor 
R2).

With a self-consistent analysis it can be decided which of
the two different situations leading to Eqs. (29) and (31)
actually occurs. Assume that the fluctuation-dominated situ-
ation is relevant. Then calculating fðtÞ from Eq. (25) with
�ðRÞ ¼ �flðRÞ from Eq. (29), and determining Rc, one can
check if �nðRcÞ � iþ 1. If this is true, the assumption of a
fluctuation-dominated nucleation was correct, while other-
wise the mean-field rate from Eq. (31) must be used. When
RðtÞ evolves according to the natural growth law
ðFN�1tÞ1=2 � F1=2�i=2ðiþ2Þt1=2, it turns out that for i � 2 the
fluctuation-dominated rate �flðRÞ is relevant, while for i > 2
it is the mean-field rate �mfðRÞ (Heinrichs, Rottler, and
Maass, 2000).

With respect to the dependence of Rc on W and � the
theory based on Eq. (29) predicts various scaling regimes in
different intervals ofW, where Rc �W
�� with exponents 

and � depending on i. For example, for i ¼ 1, one finds Rc �
W1=7�4=21 for Wð1Þ � W � Wð2Þ, where Wð1Þ � ��3=4 and
Wð2Þ � ��1=6. The occurrence of the different regimes and
their scaling properties were confirmed by KMC simulations
(Rottler and Maass, 1999; Heinrichs, Rottler, and Maass,
2000).

In extensions of this theory, more complicated cases of
second-layer nucleation can also be treated, including the
presence of metastable clusters and of interaction effects
between adatoms (Heinrichs, Rottler, and Maass, 2000;
Heinrichs and Maass, 2002). Moreover, the same type of
fluctuation effects as discussed here leads to a failure of
mean-field rate equations for describing chemical reaction
kinetics in confined geometries, as, for example, hydrogen
recombination on interstellar dust grains. Similar scaling
arguments can be used to tackle this related problem (Krug,
2003).

B. Applications

The theory of second-layer nucleation allows one to de-
termine phase diagrams where, depending on the two pa-
rameters � and W, it is predicted whether films grow into
smooth or rough topographies. While such phase diagrams
have been validated by KMC simulations (Rottler and Maass,
1999), corresponding experimental studies are still lacking.
For a given adsorbate and substrate, different paths in the
W-� diagram could be explored by changing the flux F and
the temperature T. Care would be needed in analyzing such
studies because changes in i can go along with changes of T.

A further application of second-layer nucleation theory is
the determination of step edge barriers from measurements of
the fraction of covered islands. This supplements other tech-
niques as field ion microscopy (Kellogg, 1994), which can
suffer from the problem that step edges are not resolved with
a sufficient resolution. With STM Bromann et al. (1995a)

4The interval �t should be large compared to !�1
iþ1 and small

compared to time scales of changes of RðtÞ.
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analyzed the fraction of covered islands in homoepitaxial and
heteroepitaxial Ag growth on Ag(111) and Pt(111). They first
generated size-tailored Ag islands with a narrow size distri-
bution around a mean radius R0 by deposition of 10% of a
monolayer and subsequent annealing. Different R0 in the
range 10–100 Å were obtained for different annealing times.
After a subsequent evaporation of again 10% of a monolayer
at different temperatures, the fraction of covered islands
fðR0Þ as a function of the initial radius R0 was determined,
as shown in Fig. 7 for Ag growth on Pt(111). In this system
i ¼ 1 below 90 K (Brune et al., 1994). When assuming �s ¼
�t, an analysis of the measured fðR0Þ with the fluctuation-
dominated rate �flðRÞ from Eq. (30) yields �EES ’ 43 meV,
while the mean-field rate �mfðRÞ would give a too small
value of �EES ’ 30 meV. When taking into account inter-
actions in the form of additional ring barriers between mu-
tually approaching adatoms, as predicted by density
functional theory (DFT) calculations of Fichthorn and
Scheffler (2000), a value �EES ’ 48 meV is obtained [for
details, see Heinrichs and Maass, 2002].

In the case of rough multilayer growth, an alternative way
for determining�EES is to measure the mean radiusRtop of the

top terrace after mound formation in the so-called ‘‘wedding
cake regime’’ (Politi, 1997). During mound growth (see
Fig. 8), the rate F of creating a new layer should balance the
rate of creating a new nucleus on the top terrace, which yields
�ðRtopÞ ’ F as a simple determining equation for Rtop.

Krug (2000) refined this argument, developed an analytical
theory for the size distribution of top terraces, and applied this
theory to themound formation of Pt on Pt(111) shown in Fig. 8.

A strength of the theory of second-layer nucleation is that
it does not depend on microscopic details of the interlayer
transport. What counts is that there is an effective barrier
�EES that hinders the escape of particles from an island.
This generality was demonstrated by Hlawacek et al. (2008)
who applied the theory to mound formation of rodlike

para-sexiphenyl molecules in organic thin-film growth.
Upon deposition of these molecules on an ion-bombarded
mica surface these molecules are going to stand upright on
the surface with some tilt angle. By analyzing Rtop for films

with large thicknesses a value �EES ’ 0:67 eV was deter-
mined by using the stochastic theory with i ¼ 1 in this case.
Using a molecular model, they showed that a large contribu-
tion to this effective barrier stems from the bending of a
molecule when it slides down a step edge, a mechanism
very different from those responsible for �EES in metal
epitaxy. For the first molecular layers a lower value �EES ’
0:26 eV was determined based on an analysis of the critical
radius Rc. This lower value could be traced back to a smaller
tilt angle of the molecules in the first layers and an associated
lowering of the bending barrier (Hlawacek et al., 2008).

Extension of second-layer nucleation theories to multi-
component systems is an open problem. Differing mobilities
in the second layer and differing step edge barriers of the
components are expected to give rise to interesting new
effects. For example, under codeposition of two species
with high and low�EES, the species with higher�EES should
enrich on top of the islands. Accordingly island compositions
will depend on temperature and fluxes. In later stages of
growth this may lead to compositional profiles that are tun-
able by experiment.

The essential insight from this section is that for small
critical island sizes i � 2 second-layer nucleation relies on
rare fluctuations in the number of adatoms on top of the
island, which occur within a time domain where �nðRðtÞÞ �
iþ 1. A stochastic theory capturing theses fluctuations re-
veals a nucleation rate differing from mean-field predictions.
Fitting that theory to metal and organic growth experiments
can yield pronounced corrections to the step edge barriers
�EES when compared with predictions from mean-field the-
ory. The criterion distinguishing between 3D island and
smooth surface growth will be modified accordingly.

VI. WHAT DETERMINES OUTER SHAPE AND INNER

STRUCTURE OF ISLANDS?

At thermodynamic equilibrium, cluster shapes for a
given cluster size are governed by the principle of minimal
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FIG. 7. Fraction of covered islands after deposition of 10% of a

monolayer of Ag on a Pt(111) surface with size-tailored islands of

mean radius R0 at three different temperatures (i ¼ 1). The symbols

refer to the measured data by Bromann et al. (1995b), and the solid

and dashed lines (almost identical) refer to fits with the second-layer

nucleation theory under neglect [see Eq. (29) or (30)] and inclusion

of additional ring barriers between mutually approaching adatoms,

respectively. From Heinrichs and Maass, 2002.

FIG. 8. STM image of mound formation of Pt after deposition on

Pt(111). From Krug, Politi, and Michely, 2000.
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interfacial free energy, which involves the familiar Wulff

construction (Wulff, 1901). For two-dimensional islands on

surfaces, it is the step free energy that enters. Under nonequi-

librium conditions, cluster shapes are controlled by atomic or

molecular moves at or near the cluster surface. When attach-

ing to a cluster, adatoms can encounter many different envi-

ronments such as facets, edges, kinks, corners, etc., with

associated changes of elementary jump energies. This leads

to a large variety of outer shapes and inner configurational

arrangements. In the following we discuss some key mecha-

nisms for this kinetically controlled structure formation.

A. Island shapes on (111) surfaces

Shapes of two-dimensional islands on (111) surfaces were

studied for various systems in metal epitaxy, as for Pt/Pt(111)

(Brune et al., 1996), Ag/Pt(111) (Hohage et al., 1996), Al/Al

(111) (Ovesson, Bogicevic, and Lundqvist, 1999), Ag/Ag

(111) (Cox et al., 2005), and Au/Pt(111) (Ogura et al.,

2006). They are widely known and well understood examples

of island structures controlled by nonequilibrium kinetics.
At high temperature, edge and corner diffusion are gen-

erally fast enough to create sharp island edges (‘‘line facets’’).

However, different from what one may intuitively expect,

islands typically do not exhibit hexagonal but triangular

shapes, which implies a breaking of the hexagonal symmetry

of the (111) substrate lattice.
To understand this, one must notice that two boundary

steps of a hexagon, which meet at one corner, are geometri-

cally inequivalent relative to the substrate. These are often

designated as A and B steps, and the distinction between both

becomes clear from Fig. 9(a). If diffusion properties with

respect to these different step types are the same, islands
assume a hexagonal shape. Differences in the diffusion prop-
erties originate primarily from three sources: (i) Stronger
binding of adatoms to, say, A steps. Attaching adatoms then
have a tendency to enrich at A steps (Jacobsen, Jacobsen, and
Norskov, 1996). (ii) Same binding energy, but faster diffusion
of adatoms along A, caused by a lower energy barrier
(Michely et al., 1993). This leads to a faster nucleation of
new atomic rows at A steps (Michely and Krug, 2004).
(iii) Asymmetric corner diffusion, which means that a onefold
coordinated adatom at a corner site goes preferentially to, say,
A steps. Also this effect leads to an enrichment of atoms at A
steps. In all these cases, further atoms are thus accumulating
faster at one step type, chosen as the A step here, and as a
consequence the B steps grow at the expense of A steps.
Eventually triangular islands with prevailing B steps form.

At low temperatures, the strong binding of atoms favors an
aggregation of hit-and-stick type, which leads to fractal-
dendritic island shapes. The overall symmetry and ramifica-
tion of these structures depend again on corner and edge
diffusion properties. A demonstration of edge and corner
diffusion effects was given by Ogura et al. (2006); see
Fig. 9(b). For the islands shown in the upper panel of
Fig. 9, corner diffusion is asymmetric with activation energies
EcB < EcA [cf. Fig. 9(a)], while the island shapes in the lower
panel refer to a situation of symmetric corner diffusion. From
left to right the barrier Eedge [cf. Fig. 9(a)] for edge diffusion

(along both A and B steps) is lowered in both panels. With
decreasing Eedge, attaching atoms can diffuse over longer

distances along the edges and find more favorable binding
sites with higher coordination. As a consequence, the struc-
tures become less ramified and the side arms thicken with
decreasing Eedge. In the sequence of structures a skeleton

dendrite appears, which has triangular or hexagonal symme-
try for asymmetric or symmetric corner diffusion before
eventually the compact triangular or hexagonal shape is
formed at even lower Eedge. Note that an overall triangular

or hexagonal symmetry is also visible for the island shapes
simulated with large Eedge.

It is also possible to obtain compact island shapes with
curved edges, if corner diffusion is suppressed (Brune, 1998).
By comparison with measurements, features such as the
thickness of side branches or the degree of ramification and
further details of compact island shapes can be used to
identify kinetic parameters in specific models for local diffu-
sion at island boundaries (Michely and Krug, 2004).

B. Second-layer induced morphologies

The second-layer occupation can have a significant influ-
ence on the shape and morphology of islands in the first layer.
For example, the A and B steps on (111) surfaces give rise to
different step edge barriers in the second layer. The down-
ward fluxes across A and B steps hence differ, which modifies
the in-plane aspect ratio for island shapes (Li et al., 2008).

Quite unexpected complex morphologies can arise due to
upward transitions from the first to the second layer on
weakly interacting substrates. Such morphologies were re-
cently found for fullerene (C60 molecules) adsorbed on ionic
surfaces (Burke et al., 2007; Burke, Topple, and Grütter,

FIG. 9 (color online). (a) Sketch of atomic movements and energy

barriers involved in diffusion processes along and between island

edges of A and B type on a (111) surface. (b) Simulated island

shapes for T ¼ 300 K, F ¼ 10�3 ML=s, and the barrier for edge

diffusion Eedge decreasing from left to right. In the upper panel,

corner diffusion is anisotropic with EcB ¼ 0:1<EcA ¼ 0:25 eV,

while in the lower panel, corner diffusion is symmetric with EcB ¼
EcA ¼ 0:11 eV. Adapted from Ogura et al., 2006.
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2009; Loske et al., 2010). Figure 10 shows AFM images of

the self-assembly of C60 after deposition on CaF2ð111Þ. At
high temperatures [see Figs. 10(a) and 10(d)] triangular

islands form that are two monolayers high [see Fig. 10(g)],

while at lower temperatures islands with an overall hexagonal

shape emerge [see Figs. 10(b), 10(c), 10(e), and 10(f)] that

have a base of one monolayer [see Fig. 10(h)] and exhibit a

complicated structure with double-layer rims at the island

edges and channels directed toward the interior of the islands.

These low-temperature morphologies are very different from

the fractal-dendritic island shapes found in metal epitaxy.
The emergence of these morphologies can be understood

from a mechanism of facilitated dewetting (Körner et al.,

2011). Facilitated dewetting means that a C60 molecule on an

edge site in the second layer lowers the energy barrier for an

upward transition of another molecule to a neighboring edge

site in the second layer. At high temperatures a first upward

transition over a bare dewetting barrier typically occurs early

during growth of an island, when it consists of only a few C60

molecules. C60 molecules in the second layer subsequently

lower the energy barrier for further upward transitions to

neighboring sites, and as a consequence islands grow as

double layers. The fact that these double-layer islands evolve

into triangular rather than hexagonal shapes has its origin,

similar to the island growth on (111) surfaces in metal epitaxy

(cf. Sec. VI.A), in a symmetry breaking effect associated with

A and B steps. The distinction between these steps has no

meaning here for monolayer islands because of the large

diameter of the C60 molecules compared to the lattice con-

stant of the CaF2ð111Þ substrate. The two types of steps can

be distinguished, however, in the second layer. As illustrated

in Fig. 11, upward transitions of C60 at A steps are more

frequent than at B steps, because they require only two rather

than three C60 molecules in the first layer. Accordingly,

triangular shapes with prevailing B steps result.
At low temperatures upward transition of C60 over the bare

dewetting barrier becomes rare events and large islands with

overall hexagonal shape form. For these large islands, depo-

sition on top of islands is the dominating process of second-

layer occupation with nucleation kinetics as described in

Sec. V (for i ¼ 1 and large step edge barriers). An island

initially one layer high can evolve into two different types of

morphologies I and II, depending on whether the first stable

cluster of C60 in the second layer is nucleated close to an edge

or close to the center of the island.
Growth of a stable second-layer cluster close to the island

boundary soon leads to a contact with an edge, which triggers

the process of facilitated dewetting. Starting from the point of

contact, double-layer rims are growing along the island edges

due to facilitated upward transitions of C60. During the period

of C60 deposition, these rims do not succeed in surrounding

the island, because the island area extends faster by newly

attaching C60 to the rim-free edges than to the edges with rim,

where facilitated dewetting leads to a broadening of the rim.

In the postdeposition regime, however, the ends of the rim

grow farther by facilitated upward transitions of C60 that stem

from the rim-free edges and diffuse along the island edges. If

the two ends of the rim eventually approach each other along

the same edge, a funnel starts to form and further growth of

this funnel leads to a trench extending toward the interior of

the island together with the rim. This leads to morphology I

with a typical example shown in Fig. 10(e).
If a stable second-layer cluster nucleates close to the island

center, a dendritic-skeletal cluster shape evolves, which re-

sembles the simulated morphology in the second-to-last

structure (from left to right) of the upper panel of Fig. 9(b).

In the postdeposition period the skeletal dendrite grows very

slowly by rare upward transitions of C60 over the bare

dewetting barrier until one of the three finger tips reaches

an island edge. At this moment facilitated dewetting transi-

tions set in and a rim starts to grow along both sides of the

finger terminus at the island edge. The formation of the rim is

accompanied by a loss of C60 molecules at the rim-free edges

causing one of the two other finger tips of the dendrite to

reach an island edge. A rim then starts to grow also from this

finger terminus and thereafter also the third finger tip reaches

the island edge with subsequent rim formation. Eventually the

297K(c)

865 nm

319K(a)

865 nm

(b)

865 nm

(f) Type II

110 nm

Type I(e)

87 nm

(h)

(d)

87 nm

(g)

(h)

0 100 200 300

line / nm

0

1

2

h
ei

g
h

t 
/ n

m

1 layerst

2 layernd

(g)

0
0

1

2

100 200 300

line / nm

h
ei

g
h

t 
/ n

m

1 layerst

2 layernd

308K

FIG. 10 (color online). (a)–(c) AFM images of C60 islands on

CaF2ð111Þ at three different growth temperatures. (d)–(f) Magnified

images of single islands: a compact triangle (d), and hexagonal

islands with morphologies I (e) and II (f). (g), (h) Height profiles

along line scans shown in (d) and (e). From Körner et al., 2011.

FIG. 11 (color online). Sketch of elementary upward jump pro-

cesses facilitating the growth of a double-layer triangle. The pro-

cesses at the A step and the corner between the A and B step involve

only two C60 and are, therefore, more likely than the process at the

B step involving three C60 molecules. From Körner et al., 2011.
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three growing rims move toward each other close to edge

points located halfway between the tip termini, where funnels
form and subsequently trenches grow toward the island in-

terior. As a result, morphology II with an approximate three-

fold symmetry is obtained with a typical example shown in
Fig. 10(f).

All these complicated structures found in experiment were

successfully modeled by a kinetic growth model based on the
mechanism of facilitated dewetting (Körner et al., 2011).

C. Segregation and ordering effects

Questions concerning the inner structure of clusters are
most relevant for 3D binary systems, produced by codeposi-

tion of different atomic species. Compositional fluctuations in

these systems are characterized primarily in terms of atomic
short- or long-range order in the cluster’s interior, and in

terms of surface segregation, i.e., in the enrichment of one

atomic species at the cluster surface. At equilibrium these two
features generally compete with each other (Polak and

Rubinovich, 2000). This can be understood intuitively be-

cause strong ordering interactions inside the ‘‘bulk’’ will
enforce atomic order up to the surface and hence impede

surface segregation. Conversely, surface interactions favoring

segregation will suppress ordering tendencies, at least in the
near-surface region.

For cluster growth outside equilibrium, these arguments

remain qualitatively valid, but the degree of ordering and
segregation diminishes. Although atomic diffusion, necessary

for equilibration, is often frozen in the bulk, some remanent

bulk order can develop, as a result of previous diffusion steps
of surface atoms before being buried by the external flux. So

the question arises: What kind of metastable compositional

fluctuations are generated below the advancing surface of a
3D nanocluster under the condition of active surface but

frozen bulk kinetics?
Theoretically, the relationship between surface kinetics

and emerging frozen bulk structure has remained largely

unexplored. Some aspects were recently studied with the

help of an analytically solvable model for 1D growth
(Einax and Dieterich, 2008). Quite obviously, remanent

bulk order depends on the ratio between the time scales for

surface diffusion and atomic deposition. Coming from high
temperatures, ordering will initially improve upon cooling,

but near some blocking temperature, where those two time

scales match, it will pass a maximum and drop down to zero
as T ! 0 (see Fig. 12 for an example). In this limit both bulk

and surface kinetics get frozen, leading to random

compositions.
Particularly interesting is the structure of alloy clusters

with magnetic components. Attempts to generate perpendicu-

lar magnetic anisotropy (PMA), where the easy axis of
magnetization is perpendicular to the substrate plane, have

received special attention. This requires the magnetocrystal-

line perpendicular anisotropy to be stronger than the shape
anisotropy due to dipolar interactions, which generally favor

in-plane magnetization. PMA is well known to occur in

multilayer films (Johnson et al., 1996) and has been exploited
to increase storage capacities in magnetic devices. Its occur-

rence in nanoclusters was detected, for example, in FePt or

CoPt alloy clusters. Depending on the technique and on the
conditions of growth, the experiments suggest an anisotropic
short-range (Liscio et al., 2010) or layer L10-type long-range
order (Zeng et al., 2002; Andersson et al., 2006; Moulas
et al., 2008; Perumal et al., 2008) to be associated with
the PMA.

Magnetocrystalline anisotropies are caused by quantum-
mechanical effects, which lead to a preferential alignment of
magnetic moments along symmetry directions in the crystal
lattice. Most important are hybridization of d electron states
between neighboring atoms and a strong spin-orbit coupling.
A theoretical description requires sophisticated ab initio cal-
culations for the electronic structure together with the Dirac
equation to include relativistic effects [see, e.g., Šipr et al.
(2010)].

To get an understanding of the connection between the
compositional structure of clusters and the occurrence of
PMA, one can adopt a simplified bond picture (Néel, 1954;
Victora and MacLaren, 1993). For an AB binary alloy nano-
cluster with vacancies V the magnetocrystalline anisotropy
energy is then expressed as

HA ¼ �X
hi;ji

X
�;	

A�	ð�̂�
i � �̂ijÞ2m�

i m
	
j ; (32)

where the sum runs over all cluster sites i and their nearest-
neighbor sites j, connected by bond vectors �ij; m�

i are

occupation numbers (m�
i ¼ 1 if site i is occupied by species

� or zero else, � ¼ A, B, V), and ��
i are the magnetic

moments (�V
i ¼ 0); �̂ij and �̂�

i designate unit vectors. The

parameters A�	 quantify the magnetic anisotropy energies

for moments ��
i associated with an occupation of neighbor-

ing sites by 	 species. They can be estimated from experi-
ments or determined from ab initio calculations. Note that
Eq. (32) represents the lowest order term of an expansion in

FIG. 12 (color online). Chemical order for CoPt3 clusters (grains)
grown on WSe2ð0001Þ and CoPt3 films grown on Pt(111) as a

function of the growth temperature. L12-type ordering sets in below

the bulk disorder or order transition temperature T ’ 686 
C, and
vanishes at lower temperatures when the bulk kinetics becomes

frozen. For clusters, the vanishing of L12-type ordering occurs at a

lower temperature because atomic rearrangements at the advancing

surface allow some degree of chemical order in the interior to be

built. The occurrence of PMA is schematically indicated for both

clusters and films. Adapted from Maier et al., 2002.
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powers of magnetic moments implied by symmetry

arguments.
Using Eq. (32), the structural magnetic anisotropy energy

of a fully magnetized cluster is given by Estr ¼
HAfall ��

i in planeg �HAfall ��
i out of planeg. This can

be reduced to calculating the numbers n�	k and n�	? of in-

plane and out-of-plane �-	 bonds with direction parallel to

the substrate and with components perpendicular to it,

respectively.
The procedure has been applied to study the occurrence of

PMA for chemically disordered CoPt3 clusters, which were

grown on a van der Waals substrate (Albrecht et al., 2001,

2002). These clusters are at low temperature in a metastable

state, where the formation of L12-type chemical order is

kinetically suppressed. PMA occurs below and near the onset

of L12 ordering; see Fig. 12. As observed for films, one can

expect that this PMA vanishes for even lower temperatures

and hence occurs in a temperature window. Using values

reported for Co and Pt moments as well as experimental

results for Co-Pt multilayers and theoretical results for the

Co-vacuum interfaces, one can estimate that the dominant

contribution in Eq. (32) comes from Co-Pt bonds with

ACoPt ’ 250 �eV, and accordingly Estr / nCoPt? � nCoPtk
(Heinrichs, Dieterich, and Maass, 2007). Taking into account

the strong surface segregation of Pt caused by its larger size

compared to Co (Gauthier et al., 1992), a mechanism for the

PMA as depicted in Fig. 13 is conceivable. At low T, flat
clusters with extended top and small side facets occur and

surface segregation is kinetically suppressed. At high T the

side facets become comparatively large. Depending on details

of the interactions, an intermediate temperature range can

exist, where the cluster is still fairly flat and the surface

segregation is sufficiently strong. In this case the contribution

to the magnetic anisotropy energy coming from the out-of-

plane Co-Pt bonds at the top facet can be larger than the

contribution from the in-plane Co-Pt bonds at the side facets.

Accordingly, PMA is expected to occur.
Indeed, this mechanism for the occurrence of PMA could

be corroborated by KMC simulations of an AB3 alloy with

nearest-neighbor interactions VAA, VBB, and VAB adjusted to

equilibrium properties of CoPt3 (Heinrichs, Dieterich, and

Maass, 2006, 2007). The substrate was modeled by a weak

attractive substrate potential. Growth of the clusters in time
proceeds by codeposition of Co and Pt atoms, vacancy-
assisted nearest-neighbor hopping, and by direct exchange
between unlike low-coordinated atoms on top of terraces or
step edges. Such direct exchange processes are often ob-
served in heteroepitaxial growth, and, in particular, were
seen for Co deposited on Pt(111) (Gambardella et al., 2000;
De Santis et al., 2002). As the model is fully three dimen-
sional, interlayer diffusion and Ehrlich-Schwoebel barriers
are automatically taken into account.

Figure 14 shows model results for the magnetic anisotropy
energy, both for its structural contribution Estr and for the
total energy Etot ¼ Estr þ Edip obtained by adding the (nega-

tive) dipolar contribution. The maximum Estr ’ 40 meV at
T ’ 145 
C was shown to originate from the interplay of Pt
surface segregation, facilitated by direct exchange processes,
with T-dependent cluster shapes. It hence reflects the mecha-
nism sketched in Fig. 13 so that PMA indeed is a surface
effect.

Simulations with varying cluster size N show that Estr /
N2=3, so that PMA indeed is a surface effect. The
N dependence of the total anisotropy energy therefore is
given by

Etot ¼ Estr þ Edip ¼ KstrN
2=3 � KdipN (33)

with anisotropy constants Kstr and Kdip. Equation (33) was

shown to represent the KMC data very well. It predicts an
optimal mean cluster size, where PMA is strongest, and a
critical mean cluster size, above which the magnetization
switches to an in-plane orientation (when Etot < 0). These
predictions have yet to be confirmed in experiments. For
cluster sizes N ’ 1200, as used in the measurements by
Albrecht et al. (2001), Etot calculated from the model has
the right order of magnitude when compared with the experi-
mental one. Also shown in Fig. 14 is the structural order
parameter for L12 ordering, which quantifies the preferential
occupation of one of the four simple cubic sublattices of
the fcc lattice by Co atoms. While L12 ordering remains
kinetically suppressed up to room temperature, it becomes

FIG. 13 (color online). Sketch of changes in the structure and

shape of binary alloy nanoclusters (e.g., CoPt3) with temperature.

Atoms of the two components are marked (light) (e.g., Co) and

(dark) (e.g., Pt), where the latter tend to segregate at the cluster

surface. With increasing T the fraction of side facets increases

relative to the top facet and the surface segregation becomes

stronger. The two competing effects for PMA lead to a temperature

window of its occurrence.
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FIG. 14 (color online). Magnetic anisotropy energies Etot (solid

line), Estr (dotted line), and the chemical order parameter (dash-

dotted line) vs temperature of simulated CoPt3 nanoclusters with

1000 atoms for strong surface segregation of Pt (VPtPt � VCoCo ¼
180 meV) and high exchange rates of Co and Pt at the cluster

surface. Adapted from Heinrichs, Dieterich, and Maass, 2007.
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significant only at higher temperatures, where PMA has al-
ready passed its maximum. These trends obviously agree with
the experimental behavior displayed in Fig. 12.

We remark that measurements of the local order in CoPt3
nanostructures on a van der Waals substrate confirmed pref-
erential Co-Pt and Co-Co binding out of plane and in plane
as the origin of PMA at room temperature (Liscio et al.,
2010), but in addition uncovered structural details which go
beyond the above model. We further note that Maranville,
Schuerman, and Hellman (2006), using simulations on a more
microscopic level, were able to interpret PMA in ultrathin
continuous CoPt3 films occurring at elevated temperatures in
terms of Co segregation along step edges.

In this section our main focus was on examples of unex-
pected cluster shape and structure formation, as discovered in
recent experiments. Specific mechanisms were identified that
can explain these experiments. For fullerenes (C60) adsorbed
on a weakly interacting substrate (see Sec. VI.B), a distinc-
tion between A and B steps and anisotropic growth arises
through second-layer occupation. This is in contrast to
Sec. VI.A, where the distinction between A and B steps is
due to the substrate. In turn, a new mechanism of second-
layer facilitated dewetting was proposed, which explains the
triangular to hexagonal shape transition of fullerene islands,
followed in the postdeposition regime by the evolution of
complex morphologies.

To reveal the possible origins of PMA in nanoclusters,
CoPt3 nanocluster growth on a van der Waals substrate was
considered in Sec. VI.C. It turned out that PMA occurs as a
result of an anisotropic atomic short-range order in the clus-
ter. Important features in the clusters’ atomic structure and
their magnetic properties were interpreted by a mechanism
based on active surface but frozen bulk kinetics and a con-
comitant competition between cluster shapes and Pt surface
segregation.

VII. CONCLUDING REMARKS

Cluster growth on surfaces is a field that connects funda-
mental studies of nonequilibrium phenomena with questions
related to the development of nanomaterials of practical use.
Modern topics such as the growth of organic molecules and of
nanoalloys with functional properties make it necessary to
reanalyze specific questions which are central to this field. In
this Colloquium we summarized basic concepts of surface
growth kinetics and showed for a number of examples how
these can be extended and further developed to tackle open
problems of current interest.

An important basis for describing cluster growth on sur-
faces is laid by the rate equation approach. Extending this
approach to binary alloys or, more generally, to multicompo-
nent adsorbates provides an accurate framework for the
analysis of future experiments on the submonolayer kinetics
driven by codeposition of two (or more) atomic species. We
hope that this framework, presented in Sec. III, will stimulate
experimental tests of our findings and eventually will help to
control nanoalloy surface growth.

Even for one-component metallic growth the exact behav-
ior of the ISD is still not known, not even in the D=F ! 1
limit. Section IV provides evidence from simulations that rate

equations based on ‘‘correct’’ capture numbers do have pre-

dictive power for the ISDs. With respect to extensions to

multicomponent systems, this feature is expected to remain

valid. However, for predicting ISDs from the rate equations,

no analytical theory of sufficient accuracy exists so far for the

capture numbers. Promising approaches for resolving this

problem are theories for joint probabilities of island size

and capture area. Further developments of such theories

may provide a route also to account for coverage dependen-

cies of scaled ISDs in the D=F ! 1 limit.
Nucleation of stable islands in confined geometries can be

dominated by rare fluctuations with the consequence that

mean-field-type descriptions fail. This fact is particularly

important for the problem of second-layer nucleation when

the size of the critical nucleus is one or two (see Sec. V).

Stochastic methods developed for treating rare fluctuations

proved applicable also to organic thin-film growth, when

bending energies are involved in the passing of step edges,

and they were useful for making progress in other contexts

such as chemical reaction kinetics. There is more to be

explored. For example, rare fluctuations should play an im-

portant role also for island nucleation on reconstructed sur-

faces, and different Ehrlich-Schwoebel barriers for different

types of atoms should have a relevant influence on island

shapes, similar to different barriers associated with A and B
steps on (111) surfaces (Evans, Thiel, and Bartelt, 2006).

Alloy cluster formation under nonequilibrium growth con-

ditions allows one to generate new atomic configurations that,

while not relaxed in thermal equilibrium, are nevertheless

long living due to frozen kinetics. This is of particular interest

when materials with new functional properties can be created.

An example is the occurrence of PMA in alloy nanoclusters

with components carrying magnetic moments (see Sec. VI). It

was predicted that PMA can be enhanced when clusters are

grown in an external perpendicular magnetic field (Einax,

Heinrichs et al., 2007a; 2007b), but this has not yet been

confirmed by experiment. For AB3 alloys, which show

L12-type ordering at equilibrium, this enhancement is ex-

pected to be small. It may become significant, however, for

AB alloys exhibiting L10-type ordering, as, for example, CoPt

or FePt (Lyubina et al., 2011). At equilibrium, these alloys

display a transition to a layer structure with alternating Co

(Fe)- and Pt-rich layers. L10-type ordering implies that the

magnetic anisotropy becomes a bulk property, much larger

than that in CoPt3. Since the appearance of the L10 phase

requires relatively high annealing temperatures (Perumal

et al., 2008; Makarov et al., 2009), the temperature range

below the onset of long-range chemical order is of practical

interest as well. Regarding growth experiments under such

conditions, these materials seem to be promising candidates

for detecting a substantial magnetic field-induced enhance-

ment of PMA. More experimental and theoretical studies of

the inner structure of metastable alloy clusters grown by

atomic deposition appear to be necessary in order to exploit

the full potential of these systems in materials science.
For organic thin-film growth, the established concepts of

submonolayer growth kinetics should be revisited in order to

incorporate intermolecular interaction effects such as


 stacking and hydrogen bonding, which are absent in metal

and semiconductor adsorbates. In addition, new degrees of
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freedom, such as rotation and bending of molecules, need to

be considered. Because of orientational constraints for bond-

ing and strong incommensurabilities of molecular sizes (or of

sizes of molecular subgroups) with substrate lattice constants,

critical nuclei can be composed of quite a large number of

molecules. These larger sizes of critical nuclei may be con-

sidered as an intermediate case (Schwarz et al., 2012) be-

tween the small critical nuclei in metal growth and the large

critical nuclei in three-dimensional crystallite formation from

solution. Theoretical descriptions of the consequences of

these and other features of molecular adsorbates for the

growth kinetics are only at the beginning. Novel island

morphologies can emerge already due to weak substrate-

molecule interactions and an associated upward transport of

molecules from the first to the second layer. An unsettled

question is to what degree second-layer facilitated dewetting

transitions, as found for fullerenes on insulting surfaces, are a

rather generic mechanism influencing shapes of molecular

clusters.
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