
Leaking chaotic systems

Eduardo G. Altmann

Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

Jefferson S.E. Portela

Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
and Fraunhofer Institute for Industrial Mathematics ITWM, 67663 Kaiserslautern, Germany

Tamás Tél

Institute for Theoretical Physics-HAS Research Group, Eötvös University,
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There are numerous physical situations in which a hole or leak is introduced in an otherwise

closed chaotic system. The leak can have a natural origin, it can mimic measurement devices,

and it can also be used to reveal dynamical properties of the closed system. A unified treatment

of leaking systems is provided and applications to different physical problems, in both the

classical and quantum pictures, are reviewed. The treatment is based on the transient chaos

theory of open systems, which is essential because real leaks have finite size and therefore

estimations based on the closed system differ essentially from observations. The field of

applications reviewed is very broad, ranging from planetary astronomy and hydrodynamical

flows to plasma physics and quantum fidelity. The theory is expanded and adapted to the case of

partial leaks (partial absorption and/or transmission) with applications to room acoustics and

optical microcavities in mind. Simulations in the limaçon family of billiards illustrate the main

text. Regarding billiard dynamics, it is emphasized that a correct discrete-time representation

can be given only in terms of the so-called true-time maps, while traditional Poincaré maps lead

to erroneous results. Perron-Frobenius-type operators are generalized so that they describe true-

time maps with partial leaks.
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I. INTRODUCTION

A. Motivation

Perhaps the most important distinction in the temporal

evolution of a dynamical system is between persistent

(asymptotic) and transient (finite-time) dynamics. The dy-

namical systems theory reflects this division and has devel-

oped specialized methods and tools to investigate persistent

(e.g., strange attractors, asymptotic Lyapunov exponents) and

transient (e.g., chaotic saddle, escape rates) chaotic dynamics

(Ott, 1993; Tél and Gruiz, 2006; Lai and Tél, 2011). These

two approaches become connected when considering the

effect of opening up a hole (or introducing a leak) in an

otherwise closed chaotic system, converting by this persistent

into transient chaos. Transient and persistent dynamics ap-

pear in both conservative and dissipative systems, and it is

important to distinguish leakage (escape or removal of tra-

jectories) from dissipation (contraction in the phase space).

Introducing a leak never generates an extra phase-space

contraction and, e.g., a conservative system remains conser-

vative after becoming leaky.
More than a tool to investigate the relationship between

different theories, problems described by a closed chaotic

system with a leak appear nowadays in a great variety of

fields.

� Room acoustics: The decay of the sound energy charac-

terized traditionally by the so-called reverberation time

can be considered a consequence of leaks: openings and

absorbing surfaces on the room’s boundary (Bauer and

Bertsch, 1990; Legrand and Sornette, 1990b, 1991a;

Mortessagne, Legrand, and Sornette, 1993). Absorbing

surfaces provide examples of partial leaks.
� Chemical reactions: Unimolecular decay of excited

chemical species has been modeled as an escape from

a (chaotic) reactant region through a leak (Dumont

and Brumer, 1992; Ezra, Waalkens, and Wiggins,

2009).
� Hydrodynamical flows and environmental sciences: The

fact that certain regions of flows have special hydro-

dynamical features and might therefore change the

properties of particles advected into these regions can

be described by the so-called resetting mechanism

(Pierrehumbert, 1994), which is a kind of leak from

the point of view of chaotic advection (Neufeld, Haynes,

and Picard, 2000; Schneider, Fernández, and

Hernández-Garcia, 2000; Schneider, Tél, and Neufeld,

2002; Schneider and Tél, 2003; Tuval et al., 2004;

Schneider, Schmalzl, and Tél, 2007).
� Planetary science and cosmology: The (inelastic) col-

lision of a small body with larger planetary objects

leads to a drastic change in its dynamics compared to

that in a point mass approximation of the larger

bodies. In a first approximation the problem can be

treated as a loss due to leaks (Nagler, 2004, 2005).
Similar ideas apply in cosmology (Motter, 2001).

� Optical microcavities: Light rays in dielectric materials

are partially transmitted and reflected (with the excep-
tion of regions where total internal reflection takes

place). Chaotic cavities can be constructed to provide
a strong directionality of emission through such a partial
leak, a requirement for the laser application (Nöckel and

Stone, 1997; Lee et al., 2004; Schwefel et al., 2004;
Ryu et al., 2006; Wiersig and Hentschel, 2008;

Altmann, 2009; Dettmann et al., 2009; Shinohara
et al., 2009, 2010, 2011; Yan et al., 2009; Harayama
and Shinohara, 2011).

� Plasma physics: Particles in magnetic confinement de-

vices are lost through collisions with sensors, antennas,
or the chambers wall itself. These regions therefore play

the role of a leak (Evans, Moyer, and Monat, 2002;
Portela et al., 2007; Wingen et al., 2007; Portela,
Caldas, and Viana, 2008; Viana et al., 2011).

� Wave and quantum signatures of open systems: Features

related to that of a leaking classical dynamics appear in
properties such as the (fractal) distribution of eigenstates
(Casati, Maspero, and Shepelyanski, 1999a; Kuhl,

Stöckmann, and Weaver, 2005; Keating et al., 2006;
Nonnenmacher and Schenk, 2008; Ermann, Carlo, and

Saraceno, 2009; Pedrosa et al., 2009; Novaes, 2012), the
survival probability in simulations and experiments (Alt

et al., 1995, 1996; Fendrik and Wisniacki, 1997; Casati,
Maspero, and Shepelyansky, 1999b; Friedman et al.,
2001; Kaplan et al., 2001), and in the fractal Weyl’s law

(Lu, Sridhar, and Zworski, 2003; Schomerus and
Tworzydło, 2004; Shepelyansky, 2008; Wiersig and

Main, 2008; Ramilowski et al., 2009; Ermann and
Shepelyansky, 2010; Kopp and Schomerus, 2010;
Nonnenmacher, 2011).

In dynamical-systems theory, the idea of leaking an other-
wise closed chaotic systems was first proposed by Pianigiani

and Yorke as early as 1979:

Picture an energy conserving billiard table with

smooth obstacles so that all trajectories are unstable

with respect to the initial data. Now suppose a small

hole is cut in the table so that the ball can fall

through. We would like to investigate the statistical

behavior of such phenomena (Pianigiani and Yorke,

1979).

Their main motivation was precisely to investigate

transient chaos as opposed to persistent chaos. The

leakage procedure was therefore a tool to create transiently

chaotic systems. Interestingly, the development of the theory

of transient chaos happened not to follow this line over

decades.

The importance of this mathematical approach becomes

apparent when one realizes the multitude of situations in

which the leak region has a well-defined physical interpreta-

tion. This aspect was first emphasized by Smilansky and co-

workers, who pointed out that any measurement (both clas-

sical and quantum) leads unavoidably to a leakage of the

system. They wrote in 1992:
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A discrete spectrum is a property of a closed sys-

tem. However, the process of measuring the spec-

trum of a bounded system consists of coupling the

system to an external continuum. Thus, for the

purpose of measurement, the closed system is

turned into a scattering system (Doron and

Smilansky, 1992a).

Physical realizations of the leak can thus be either the
effect of measurement devices or intrinsic properties of the

system, such as, e.g., absorbing boundaries.
Apart from physical leaks, there are also different theo-

retical motivations for considering leaking systems:
� Leakage is a tool to understand the dynamics of

closed systems, providing thus a sort of chaotic spec-

troscopy (Doron and Smilansky, 1992a, 1992b). More

generally, systems with leaks help monitoring or peep-
ing at chaos (Bunimovich and Dettmann, 2007) [see

also Nagler et al. (2007)]. In this context, as in
Pianigiani and Yorke (1979), billiards with leaks were

the first systems investigated because they allow a
natural connection between the classical and quantum

pictures (Bauer and Bertsch, 1990; Alt et al., 1995,
1996).

� Leaking systems have been explored in the context of

synchronization of chaotic oscillators (Jacobs, Ott, and
Hunt, 1998), and of the control of chaos (Paar and

Pavin, 1997; Paar and Buljan, 2000; Buljan and Paar,
2001).

� Leakage reveals the foliations inside the closed system

(Schneider, Tél, and Neufeld, 2002; Aguirre and
Sanjuán, 2003; Sanjuán, Horita, and Aihara, 2003;

Aguirre, Viana, and Sanjuán, 2009) that lead, e.g., to

fractal exit boundaries (Bleher et al., 1988; Ree and
Reichl, 2002; Portela et al., 2007).

� The distribution of Poincaré recurrences, which is

commonly used to quantify properties of closed
Hamiltonian dynamics (Chirikov and Shepelyansky,

1984; Zaslavsky, 2002), is equivalent to the survival
probability in the same system with a leak (Altmann

and Tél, 2008).
� Several quantifications of wave or quantum chaos, such

as Loschmidt echo (Gorin, Prosen, and Seligman, 2006;

Jacquod and Petitjean, 2009) or fidelity decay (Peres,
1984), can be realized physically in configurations that

are analogous to introducing a localized leak in a closed
system (Goussev and Richter, 2007; Goussev et al.,

2008; Höhmann, Kuhl, and Stöckmann, 2008; Ares and
Wisniacki, 2009; Köber et al., 2011).

The common feature in all applications and theoretical

procedures listed above is that one has some freedom
when choosing the opening, i.e., the leak in a well-defined

closed chaotic system (Schneider, Tél, and Neufeld,
2002). This should be contrasted to genuinely open

systems in which the openness is intrinsic, and only slight
parametric changes are physically realistic, which typically

do not allow one to go to the closed-system limit. Although
both classes of systems are dynamically open, one of our

aims is to emphasize the benefits of considering leaking

systems, which are more precisely defined by two key
elements:

(i) the existence of a well-defined closed system which can

be used as a comparison, and
(ii) the possibility of controlling (some) properties of the

leak such as position, size, shape, or reflectivity.
Property (i) guarantees that one can compare transient and

asymptotic dynamics and can be considered as a particular

case of (ii) if the possibility of reducing the leak size

to zero is assured. Leaking systems can be both dissipative

and conservative (Hamiltonian). Within this latter category,

we consider the problem of chaotic scattering [as typically

defined, e.g., by Gaspard (1998)] to be beyond the scope

of this review because it lacks properties (i) and (ii)

above.1

Our main approach in this review article is based on

transient chaos theory, which is applied to the case of leaky

systems and connected to different recent applications. Our

aim is to be understandable by nonspecialists interested in

learning what the implications of dynamical-systems theories

are to specific applications. At the same time, we emphasize

how specific applications pose new questions to the theory.

Thus, we devote special attention to developing a theory

consistent with the following two aspects required by differ-

ent applications:
� Leaks are not necessarily full holes; they might be

‘‘semipermeable,’’ i.e., the energy content of trajectories

entering a leak is partially transmitted and partially

reflected. In such cases the leak is called a partial leak.
� Discrete-time maps of open flows might lead to a loss of

information over the temporal properties, and therefore

it is essential to use the generalized concept of true-time

maps (Kaufmann and Lustfeld, 2001), which will be

defined in Sec. I.C.
We note here that even though our focus and numerical

illustrations are on billiards (Hamiltonian systems), the theo-

retical framework and many of the specific results can be

naturally extended to systems with dissipation.
In the remainder of this section we motivate the general

problem through a historical example and a simple simula-

tion. In Sec. II we confront the simplest theory, based on the

properties of the closed system, with the appropriate tran-

sient chaos theory for open systems. A generalization of this

theory to partial leaks is also given. Section III is devoted to

a Perron-Frobenius–type operator formalism that is able to

describe any kind of leaking dynamics. The main implica-

tions of transient chaos theory are explored in Sec. IV,

including the case of multiple leaks and emission. In

Sec. V we discuss how to describe the generic situation of

weakly chaotic Hamiltonian systems (mixed phase space).

Finally, in Sec. VI we use our results to give a detailed view

on some of the problems we started this section with. Our

conclusions appear in Sec. VII. In Appendixes A, B, C, and

D we discuss some important but technical aspects of open

billiards (like, e.g., different types of measures and

algorithms).

1In some scattering cases it is possible to ‘‘close’’ the inside of the

scattering region (e.g., in the three disk problem, when the disks

touch). However, in these cases the closing procedure is either

arbitrary or unnatural from the point of view of scattering (e.g., the

incoming trajectories are unable to enter the chaotic region).
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B. Classical leaking: Kinetic theory and Sabine’s law

Historically, perhaps the first problem involving systems
with leaks was one related to the kinetic theory of gases.
Consider a container filled with ideal gas. How is the con-
tainer emptied after a small leak I is introduced on its
boundary?

The answer can be obtained from an elementary
application of the kinetic theory. Here we follow basically
the treatment of Joyce (1975) and Bauer and Bertsch
(1990). Let I be a disk of area �A on the surface of the
container and fðv; tÞ be the phase-space density of the parti-
cles, for which

Z
fðv; tÞd3v ¼ NðtÞ

V
; (1)

where NðtÞ is the number of particles in the container
of volume V at time t. The number of particles with velocity
v leaving the system over a short time interval dt is then
dN ¼ dt�Avnfðv; tÞd3v, where n is the normal vector
of the surface at the leak I. The total number is then obtained
by carrying out an integration over all velocities. Thus, the
time derivative of the number NðtÞ of particles inside the
container is

dNðtÞ
dt

¼ ��A
Z

vnfðv; tÞd3v; (2)

where the minus sign indicates that particles are escaping.
Molecular chaos, a basic ingredient of kinetic theory,

implies that an equilibrium phase-space density exists. In
our problem it is homogeneous (location independent)
and isotropic: all velocity directions are equally probable.
In the limit of small �A we can expect that there is a
quasiequilibrium distribution fðv; tÞ in the open system which
sets in on a time scale shorter than the average lifetime. This
quasiequilibrium distribution shares the properties of that of
closed systems. In this case, isotropy guarantees that the
phase-space density depends only on the modulus v of the
velocity, and it is, therefore, convenient to use spherical
coordinates for the integration. With � being the angle be-
tween velocity and the normal vector, v � n ¼ v cos�, Eq. (2)
reads as

dNðtÞ
dt

¼��A
Z 1

0
vfðv;tÞv2dv

Z �=2

0
cos�sin�d�

Z 2�

0
d�:

(3)

The spherical symmetry of the phase-space density applied
to Eq. (1) leads to

Z 1

0
fðv; tÞv2dv4� ¼ NðtÞ

V
; (4)

and implies thatwðvÞ ¼ 4�fðv; tÞv2V=NðtÞ is the probability
density for the velocity modulus v in the gas.

Substituting this into Eq. (3), the first integral is found to be
proportional to the average hvi of the velocity modulus. By
carrying out all integrals, we find

dNðtÞ
dt

¼ ��Ahvi
4V

NðtÞ: (5)

As long as hvi is independent of time2 the decay of the
particle number is thus exponential of the form of
expð��tÞ, with an escape rate

� ¼ �Ahvi
4V

: (6)

For simplicity we focus here on an ensemble of identical
particles with the same velocity v colliding elastically, in
which case hvi � v in Eq. (6).3 The reciprocal of the escape
rate, which turns out to be the average lifetime, can then be
written as

h�i ¼ 1

�
¼ 4V

�Av
: (7)

This is the time needed for the decay of the survivors by a
factor of e. Since the result is linear in �A, and the velocity
distribution is not only isotropic but also homogeneous, i.e.,
independent of the position along the wall, the expression
remains valid for small leaks I of any shape, and �A is then
the total leaking area. Since �A is small, h�i is large, and
hence the assumption of a quasiequilibrium distribution be-
comes justified a posteriori.

An interesting, historically independent development is
Sabine’s law, a central object of architectural acoustics.
This law says that the residual sound intensity in a room
decays exponentially with time (Joyce, 1975; Mortessagne,
Legrand, and Sornette, 1993). The duration to decay below
the audible intensity is called the reverberation time Tr and
was found experimentally by W. C. Sabine in 1898 to be

Tr ¼ 6 lnð10Þ 4V

�Ac
: (8)

Here c is the sound velocity, and�A is the area of the union of
all openings of the room (or of all energy absorbing surfaces
after proper normalization).With c ¼ 340 m=s, the numerical
value ofTr in SI units isT ¼ 0:16V=�A. Sabine’s experiments
also showed that the reverberation time for a pleasant sound
perception is on the order of a few seconds for a good audito-
rium, and he designed concert halls (like, e.g., the Boston
Music Hall) according to this principle.

A comparison of Eqs. (7) and (8) reveals that Sabine’s law
is nothing but an application of the exponential decay of the
particle number evaluated with v ¼ c as the particle velocity.
What is leaving the system in this problem is however not
particles, but the energy of the sound waves. In the geomet-
rical limit of room acoustics, one can consider the decay of
energy as the problem of particles which travel along sound
rays and lose part of their energy upon hitting the leak or the
absorbing surface. The most remarkable property of Eq. (8) is
its universality: the reverberation time is independent of the
location of the sound source and of the shape of the room,
provided the absorption is weak and sound disperses

2In a thermodynamical system the decay of particles eventually

leads to a reduction in thepressure and temperature inside thecontainer

and thus to a reduction of v. Here we are interested in systems with

constant v. The exponential decay is then valid for any t > 0.
3Note that the dynamics of elastic collisions of identical particles

is equivalent to the dynamics of independent particles, as can be

seen by exchanging particle labels at collision.
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uniformly around the room, e.g., due to roughness or irregular
geometry of the walls (Mortessagne, Legrand, and Sornette,
1993). The prefactor 6 lnð10Þ in Eq. (8) results from the fact
that in the acoustic context the decay below the audible
intensity implies 60 dB, i.e., a decay factor of 106, instead
of a factor of e in Eq. (8). Sabine’s law (8), dated back to
1898, appears thus to be the first application of leaking
chaotic dynamical systems in the history of science.

We now take a closer look at the assumptions in the
derivations above from the perspective of the dynamics. In
terms of the modern theory of dynamical systems, the iso-
tropy and homogeneity of the velocity distribution are a
consequence of the following two hypotheses:

H1: the leak size is small, so that the phase-space distri-
bution does not change due to the openness; and

H2: the particle dynamics inside the room is chaotic, more
technically, the dynamics is ergodic and strongly mixing
(implying exponential decay of correlations in time).

Under these assumptions, the exponential decay is valid
also in other dimensions. For instance, the escape rate in two-
dimensional billiards is then found to be

� ¼ �Av

�V
; (9)

where�A is the length of the leak along the perimeter, andV is
the two-dimensional volume, the area, of the billiard table. The
replacement of the factor of 4 by � is due to the geometrical
change from spherical to planar polar coordinates.

It should be noted that in both cases the survival probabil-
ity PðtÞ up to time t is

PðtÞ ¼ e��t; (10)

as obtained from Eq. (5), with initial condition Pð0Þ ¼ 1. The
probability pð�Þ to leave around the escape time � ¼ t is the
negative derivative of PðtÞ and thus

pð�Þ ¼ �e���; (11)

and PðtÞ ¼ R1
t pð�Þd�. Since the exponential decay holds

from the very beginning, the average lifetime

h�i ¼
Z 1

0
t0pðt0Þdt0 ¼

Z 1

0
Pðt0Þdt0 (12)

is found to be h�i ¼ 1=�, which was used in Eq. (7). The
symbol h� � �i can be interpreted as an ensemble average.

Finally, it is instructive to write both Eqs. (6) and (9) of the
escape rate as

� ¼ �ðIÞ
htcolli ; (13)

where �ðIÞ ¼ �A=A is the relative size of the leak compared
to the full wall surface and can therefore be considered as the
measure of the leak (taken with respect to the Lebesgue
measure). The denominator has the dimension of time and
is given by

htcolli ¼ 4V

Av
and htcolli ¼ �V

Av
; (14)

in the three- and two-dimensional cases, respectively. These
htcolli’s turn out to be the precise expressions of the average
collision time between collisions with the wall (or, after a

multiplication by v, the mean-free path), well known for
three- and two-dimensional closed rooms or billiards. As
emphasized by Joyce (1975) and Mortessagne, Legrand,
and Sornette (1993), these results were obtained already in
the late 19th century by Czuber and Clausius. It is the average
collision time that sets the characteristic time with which the
average lifetime should be compared: for small leaks h�i �
htcolli, i.e., the time scales strongly separate.

By definition, htcolli can be expressed as the average over
the local collision times tcollðxÞ for the phase-space coordi-
nates x along the wall as

htcolli ¼
Z

tcollðxÞd�; (15)

where � is the uniform phase-space (Lebesgue) measure
characteristic of conservative systems. All equations found
are taken with respect to the distributions characteristic of the
closed system. This is consistent with the small leak assump-
tion (H1 above) so that the escape rates obtained can be
considered as a leading order result in a perturbation expan-
sion where averages can yet be taken with respect to distri-
butions characterizing the unperturbed (closed) system.

In the modern applications mentioned in Sec. I.A, however,
conditions H1 (small leaks) and H2 (strong chaos) are typi-
cally not met. Here we discuss in detail what happens in such
cases. For instance, in any practical application the leak size
is not, or cannot be made, infinitesimally small so that H1 is
violated and perturbation expansions break down.

We shall see that an exponential decay of the survival
probability typically remains valid for finite leak sizes, at
least after some initial period. The estimation of the escape
rate can be greatly improved by considering a similar ex-
pression as in Eq. (13), the measure of the leak divided by the
average collision time, however, both taken with respect to a
different measure:

�ðIÞ!�cðIÞ; htcolli!htcollic¼
Z
tcollðxÞd�c: (16)

The new relevant measure �c differs from the original
Lebesgue measure � since many particles have left the
system by the time of observation, and what counts is the
set of long-lived particles. With finite leaks, the decay differs
substantially from the naive estimate obtained by using the
original Lebesgue measure, as illustrated for our billiard
example in Fig. 1. Even if precise definitions and further
details appear only later, the conceptual difference between�
and�c is clear [compare Figs. 3(b) and 6 for an illustration of
the dramatic changes in the phase space of the billiard].

The theory of open dynamical systems tells us that this new
measure is the so-called conditionally invariant measure
(c measure for short) introduced by Pianigiani and Yorke
(1979), which is didactically introduced and investigated in
Secs. A, B, C, and D and Appendix A. The violation of
hypothesis H2 of strong chaos leads to even more radical
changes, e.g., to a deviation from the exponential decay for
long times. This case will be investigated in Sec. V.

C. Billiard dynamics and true-time maps

In dynamical-systems theory, the kinetic problem with
fixed velocities and Sabine’s picture of room acoustics are
described as billiard systems, as noticed already by Joyce
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(1975). Billiards are defined as bounded volumes or areas
inside which particles move in a straight line with constant
velocity v between collisions at the boundary, where they
experience specular, elastic reflection (i.e., the angle of inci-
dence is equal to the angle � of reflection and the absolute
value of the velocity v is conserved) (Chernov and Markarian,
2006). A recent sample of the research on billiards can be
found in Leonel, Beims, and Bunimovich (2012).

For numerical and visualization convenience, we illustrate
our results in two-dimensional billiards. In this case the
dynamics can be described in a two-dimensional phase space,
achieved by replacing the continuous-time dynamics by a
corresponding discrete-time system f that maps the position s
along the boundary and angle � of the nth collision into those
of the (nþ 1)th collision at the boundary. By convention, the
map f connects the momenta right after the collisions. This
procedure corresponds to a Poincaré surface of section. The
dimension of the full (four-dimensional) phase space is re-
duced by 2 (using momentum conservation and the condition
of collision). The shape of the billiard’s boundary uniquely
defines the dynamics of the particles, and system-specific
properties depend sensitively on this shape. It is convenient
to write the phase space of the map in terms of Birkhoff
coordinates x ¼ ðs; p � sin�Þ in which case

f: ðxnÞ � ðxnþ1Þ (17)

is area preserving (Berry, 1981; Chernov and Markarian,
2006).

A faithful representation of the temporal dynamics of
billiards requires augmenting Eq. (17) by keeping track of
the information about the time of each trajectory:

tnþ1 ¼ tn þ tcollðxnþ1Þ; (18)

where tn denotes the time of thenth collision at the boundary of
the billiard, and tcoll denotes the time between two
subsequent collisions. In what follows we associate tcoll with
theBirkhoff coordinates of the later collision (xnþ1) in order to
be able to speak about the collision times within the leak when
systems with leaks are considered [see Eq. (20)].

Equations (17) and (18) are called a true-timemap as coined
by Kaufmann and Lustfeld (2001), which is also frequently
used in the billiard context [see, e.g., Bunimovich and
Dettmann (2007)]. More generally, true-time maps provide a
link between discrete-time maps and continuous-time flows in
the same spirit as described by the mathematical concepts of
suspended flows, special flows, or flows under a function
(Katok and Hasselblatt, 1995; Gaspard, 1998). They have
also been used in the context of transport models (Matyas
and Klages, 2004; Matyas and Barna, 2011).

A true-time map is equivalent to the continuous-time rep-
resentation, but leads to faster and more reliable results than a
direct integration of the billiard flow. The different collision
times can be taken into account also in the Perron-Frobenius
representation of the dynamics, as shown in Sec. III.D.

In contrast, the often used Poincaré map, represented by
Eq. (17) alone, provides a distorted image of time. It implies
associating with each pair of collision the same time interval
and thus loses contact with the temporal dynamics of the
continuous-time physical system (e.g., it can overestimate
the importance of events with short collision times). The
Poincaré map generates a measure different from that of the
true-time map and thus leads to erroneous results. When
talking about maps in the billiard context, we, therefore,
always mean true-time maps. (Poincaré maps of billiards
will be mentioned again in Table II and Appendix D to
illustrate the difference to true-time maps.)

D. Example in a chaotic billiard

The main properties of two-dimensional billiards can be
illustrated by the family of limaçon billiards introduced by
Robnik (1983) whose borders are defined in polar coordinates
ðr; �Þ by limaçon-like curves

rð�Þ ¼ Sð1þ " cos�Þ; (19)

where S scales the size and " controls the shape of the
billiard. The ratio S=v defines the unit in which time t is
measured, which is the only effect of S and v on the dynam-
ics. We therefore set S ¼ v ¼ 1 in what follows, which
implies that the perimeter length is A ¼ 8, the billiard’s
area is V ¼ 3�=2, and the mean collision time (14) is thus
htcolli ¼ 3�2=16. For convenience, throughout we use the
convention that the perimeter coordinate s is parametrized
between �1 and þ1 (see, e.g., Figs. 2 and 3).

For " ¼ 0 we recover the circular billiard, exhibiting
regular dynamics. For " ¼ 1, Eq. (19) defines the cardioid
billiard, which is ergodic and strongly mixing (Robnik, 1983;
Wojtkowski, 1986), satisfying the hypothesis of strong chaos
H2 (Sec. I.B). For 0< "< 1, the billiard typically shows
the coexistence of chaotic and regular components in the
phase space (Dullin and Baecker, 2001), and exhibits
weak chaos. The collision time tcollðxÞ needed for the
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FIG. 1 (color online). Escape of particles in a billiard with a finite

leak. The survival probability PðtÞ for the strongly chaotic cardioid

billiard [see Eq. (19) with " ¼ 1] is shown for two different

configurations of the leak I (same effective size 2�s but different

leak positions sl and reflectivity R). The first (bottom) line corre-

sponds to a full leak [see Eq. (20)] centered at the top of the billiard,

sl ¼ 0:5, with size 2�s ¼ 0:1 (5% of the perimeter) as shown in the

left inset. The second (next to the bottom) line corresponds to a

partial leak with R ¼ 0:5 [see Eq. (21)] centered at sl ¼ �0:25 with

a size 2�s ¼ 0:2 as shown in the right inset. The observed escape

rates are � ¼ 0:030 02� 0:000 07 (full leak) and � ¼ 0:029 04�
0:000 03 (partial leak), clearly different from the predictions � ¼
0:0270 (upper full line) based on Sabine’s law (13) and (14), and the

naive estimate �� ¼ 0:0277, Eq. (23) (dashed line) with �ðIÞ ¼
0:05. Initial conditions were uniformly distributed in the phase

space (s, p ¼ sin�, see Fig. 3).
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true-time map (17) and (18) can be determined numerically

and is shown in Fig. 2 for the cardioid case (" ¼ 1).
We now introduce a leak in such a closed billiard and test

the limitations of Sabine’s prediction. For concreteness, con-

sider removing 5% of the perimeter of the strongly chaotic

cardioid billiard, as shown in the left inset of Fig. 1.

Numerical simulations of the survival probability of trajecto-

ries in this system yield an escape rate � ¼ 0:030, which
differs substantially from the escape rate � ¼ 0:8=3�2 ¼
0:027 obtained from Sabine’s original estimate (13) by using

�ðIÞ ¼ 0:05 and htcolli ¼ 3�2=16. In fact, Sabine’s estimates

holds for infinitesimally small leaks only, and a naive exten-

sion for finite leaks will be presented in Sec. II.A and leads to

Eq. (23), which is a generalization of Sabine’s prediction.

This yields �� ¼ 0:0277 which is still about 10% below the

observed one. Although this difference appears to be small, it

shows up in the exponent of an exponential time dependence.

After 500 time units, the number of observed survivors is a

factor of e0:003�500 ¼ e1:5 	 4:5 times smaller than the one

based on the closed-system estimate. In Fig. 1 it corresponds

to the difference between the dashed (generalized Sabine’s

formula) and the bottom solid (direct simulations) lines.
This very basic observation is just the simplest temporal

manifestation of a series of discrepancies that will be dis-

cussed and that are all originated in the difference between

the dynamics of the closed and of the leaky systems (see
Figs. 3 and 4 for the illustration of the change in the phase
space). All these illustrate the need for a deeper theoretical
understanding of systems with leaks, beyond the results
obtained under simplifying assumptions such as those used
to obtain Sabine’s law in Sec. I.B.

Before exposing the theory in Sec. II, we define in full
generality the problem of introducing a leak in an otherwise
closed system. We emphasize that our motivation for using
two-dimensional billiards is visual convenience and direct
connection to applications. The idea of introducing leaks in
dynamical systems applies to a much broader class of systems
where the results of this paper can also be applied, such as,
e.g., non-billiard-type Hamiltonian systems, dissipative sys-
tems, and also in higher dimensions.

E. Definition of the leak

Consider a closed system described by a map fclosedðxÞ.
Here we are mainly interested in maps fclosed that admit
chaotic motion, but the introduction of a leak is independent
of this requirement. Choose the leak I as a subset of the phase
space �. In its simplest version, a particle is regarded as
having escaped the system after entering the region I. The
dynamics can thus be described by the following map:

xnþ1 ¼ fðxnÞ ¼
� fclosedðxnÞ; if xn =2 I;

escape; if xn 2 I:
(20)

Since escape is considered to occur one step after entering I,
map f is defined in I.

In the example shown in the left inset of Fig. 1, the leak I is
centered at the boundary point sl ¼ 0:5 with width 2�s ¼
0:1. In general, a leak I can be centered at any phase-space
position xl ¼ ðsl; plÞ 2 �. The leak mentioned above corre-
sponds thus to I ¼ ½sl � �s; sl þ �s
 � ½�1; 1
, represent-
ing a rectangular strip parallel to the p axis. A prominent
physical example of leaks represented by strips parallel
to the s axis is that of dielectric cavities. In this case light
rays coming from a medium with higher refractive index
(nin > nout) are totally reflected if they collide with jpj>
pcritical ¼ nout=nin, where pcritical ¼ sinð�criticalÞ is the critical
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FIG. 3 (color online). Dynamics in the closed cardioid billiard

[see Eq. (19) with " ¼ 1]. (a) Configuration space with parametri-

zation of the perimeter s 2 ½�1;þ1
 and collision angle �.
(b) Phase space depicted in Birkhoff coordinates x ¼ ðs; p ¼
sinð�ÞÞ obtained at the collisions with the boundary. Two trajectories
are shown in (a) and (b), one long and one short.
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FIG. 2 (color online). Collision time tcollðxÞ as a function of the

phase-space coordinates x ¼ ðs; pÞ in the cardioid billiard, Eq. (19)

with " ¼ 1. Consistent with the convention in Eq. (18), tcollðxÞ is
defined as the distance (or time, since v � 1) between x and the

previous collision f�1ðxÞ. The discontinuity close to the diagonal

reflects the billiard’s cusp at s ¼ �1; see Fig. 3(a).

FIG. 4 (color online). Dynamics in a leaky cardioid billiard [see

Eq. (19) with " ¼ 1]. (a) Configuration space with the leak I
centered around sl ¼ 0:5 with �s ¼ 0:1 (in the momentum space

pl ¼ 0 and �p ¼ 1). One short-lived and one long-lived orbit are

shown. (b) Phase space of the true-time map with the chaotic saddle

(dots) and the short-lived trajectory.
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momentum (�critical is the critical angle). The leak is then
jpj< pcritical, s arbitrary.

A general leak I can have arbitrary shape (e.g., circular,
square, oval, etc.) and can also be composed of disjoint
regions I ¼ [Ii. In this last case, a natural question is that
of the nature of the set of initial conditions which lead to each
Ii, i.e., of the properties of the escape basins Bi. This problem
will be discussed in Sec. IV.B. For presentational convenience
we focus on leaks at the billiard’s boundary, in which case we
can still faithfully represent the phase space with Birkhoff
coordinates. (For leaks inside the billiard, a representation in
the full phase space is needed.)

There are also physically relevant types of leaks that go
beyond the definition in Eq. (20). For instance, in room
acoustics, or in the above mentioned dielectric cavities, it is
very natural to consider objects with partial reflection and
partial absorption (or transmission). In this case we associate
each particle with an intensity J that monotonically decays
due to collisions at the leak. The dynamics of particles is
given by the closed map xnþ1 ¼ fclosedðxnÞ, but the intensity
of each particle will change as

Jnþ1 ¼
� Jn; if xn =2 I;

RðxnÞJn; if xn 2 I;
(21)

where the reflection coefficient 0 � R< 1 might also depend
on the phase-space position x within the leak. The full leak
defined in Eq. (20) is recovered by taking R � 0 (Jn � J0) in
Eq. (21). Altogether, a leak I is defined by its size, position,
shape, and reflectivity. In Sec. IV we show that all these
different characteristics of the leak affect the observable
quantities of interest.

II. THEORY FOR FINITE LEAKS

A. Theory based on closed-system properties

The spirit behind Sabine’s theory described in Sec. I.B is to
calculate the observable quantities of the open system based
on the properties of the closed system. While the results of
this theory are exact only for infinitesimally small leaks, it is
natural to extend them to systems with finite leaks. As already
shown, the dynamics of two-dimensional billiards can be
conveniently represented by the true-time map (17) and
(18). Since for limaçon billiards both s and p change in
½�1; 1
, f preserves the measure d� ¼ 1

4 cosð�Þd�ds.
Figure 3 illustrates how this map is applied in the case of
the cardioid billiard. Upon the nth collision with the wall the
length sn along the perimeter is determined (measured from
the point lying farthest from the cusp) along with pn ¼ sin�n.
Any trajectory in the configuration space [like the ones in
Fig. 3(a)] is thus mapped on a sequence of points in discrete
time in Fig. 3(b), and the time is monitored via Eq. (18) in the
knowledge of tcollðxÞ shown in Fig. 2.

This billiard is strongly chaotic and the measure � is the
Lebesgue measure. This means that the predictions of the
theory based on the closed system are extremely simple:
trajectories are assumed to follow the natural invariant den-
sity of the closed system, ��ðxÞ ¼ 1

4 , i.e., they are uniformly

distributed in x ¼ ðs; pÞ.

We apply this theory to estimate the escape rate of a
chaotic system with a finite leak. The average collision
time htcolli for the closed system [see Eq. (15)] is independent
of the leak size, and Eq. (14) remains valid. The escape rate
resulting from this estimation will be denoted ��. It again
depends only on the size (measure) of the leak �ðIÞ, but this
time we do not assume �ðIÞ to be small. For instance, a leak
I ¼ ½sl � �s; sl þ �s
 � ½pl � �p; pl þ �p
 has size 2�s
along the s axis, height 2�p in p, area 4�s�p, and a measure
�ðIÞ ¼ �s�p. This is the measure of trajectories escaping on
the time scale htcolli of one collision. The survival probability
after n ¼ t=htcolli collisions can be estimated as

PðtÞ ¼ ½1��ðIÞ
t=htcolli ¼ e���t; (22)

which yields a naive estimate for the escape rate

�� ¼ � ln½1��ðIÞ

htcolli : (23)

This can be considered a generalization of Sabine’s law
because it is a natural extension of Eq. (13) to finite �ðIÞ.
Equation (23) is usually attributed to Eyring’s work in 1930
(Mortessagne, Legrand, and Sornette, 1993), but see Joyce
(1975) for a detailed historical account. The naive prediction
in Fig. 1 was determined with Eq. (23) and still considerably
differs from the measured decay. It is important to note that
while Sabine’s theory is exact for infinitesimally small leaks,
Eq. (23) is just an approximation of the finite-size case.
Although it leads to an improved understanding of the prob-
lem of room acoustics, it neglects the fact that the presence of
a large leak essentially changes the dynamics because only a
small portion of the closed system’s orbits has sufficiently
long lifetime to give a considerable contribution to both the
escape rate and the average collision time. A precise under-
standing of the dynamics in systems with finite leaks, includ-
ing an explanation of the behavior observed in Fig. 1, can be
given only if one abandons the approach based on closed
systems and adopts a description in terms of the theory of
transient chaos (Lai and Tél, 2011).

B. Theory based on transient chaos

The basic idea of transient chaos theory is to look at the
invariant set of orbits that never leave the system for both t !
�1. A key statement of the theory is that there is a non-
attracting chaotic set in the phase space that is responsible for
the transiently chaotic dynamics (Ott, 1993; Tél and Gruiz,
2006; Lai and Tél, 2011). This set is a chaotic saddle and is of
course drastically different from the chaotic set of the closed
system. To illustrate this difference we present in Fig. 4 a
leaky billiard, its chaotic saddle, and a short-lived trajectory.
It is apparent that the long-lived orbits are rather exceptional
and the saddle is very sparse: it is a measure zero object (with
respect to the Lebesgue measure), a set that exhibits a double
fractal character. The difference between the closed system’s
Sabine-type theories and the ones based on transient chaos
can pictorially best be expressed by comparing Figs. 3(b) and
4(b). It becomes evident that transient chaos is based on a
strongly selected and extremely ordered subset of the closed
system’s trajectories. Hence the measures (� and �c) with
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which averages should be taken are fundamentally different
in the two cases.

The saddle is responsible for the exponential decay of the
survival probability

PðtÞ � e��t; (24)

where � indicates an asymptotic equality in t. The escape
rate � is a property of the saddle and is independent of the
initial distribution of the trajectories used to represent an
ensemble.

The invariant set of transient chaos is called a saddle
because it possesses a stable and an unstable manifold. The
stable (unstable) manifold is composed of all trajectories that
approach the chaotic saddle for t ! 1 in the direct (inverted)
dynamics. These manifolds of attracting and repelling char-
acter are extremely important to understand the properties of
the open system. This is the reason why the term chaotic
saddle is more appropriate than the often used term repeller
[see, e.g., Gaspard (1998)], which suggests (erroneously) that
only unstable directions exist.

Here we present, the so-called sprinkler method that can be
used to calculate not only a chaotic saddle but also its stable
and unstable manifolds (Tél and Gruiz, 2006; Lai and Tél,
2011). One starts with N0 � 1 trajectories distributed uni-
formly over the phase space. One then chooses a time t� �
1=� and follows the time evolution of each initial point up to
t�. Only trajectories that do not escape are kept, whose
number is approximately N0e

ð��t�Þ. If �t� is sufficiently
large (but not too large such that only a few points remain
inside), trajectories with this long lifetime come close to the
saddle in the course of dynamical evolution, implying that
their initial points must be in the immediate vicinity of the
stable manifold of the saddle (or of the saddle itself), and
their end points must be close to the unstable manifold of the
saddle. The latter is so because most points still inside after
time t� are about to leave. The points from the middle of
these trajectories (t 	 t�=2) are then in the vicinity of the
saddle. In the spirit of true-time maps, we used a general-
ization of this method (see Appendix C) to generate the
chaotic saddle of Fig. 4(b) and the corresponding manifolds
plotted in Figs. 5(a) and 5(b).

From the construction above it is clear that the particles
being in the process of escape are distributed along the
unstable manifold. When compensating the loss due to escape

by pumping in new particles according to an appropriate way,
which corresponds in practice to multiplying the density by
expð�tÞ, we obtain an invariant density as the one shown in
Fig. 6. This stationary distribution is known to be the condi-
tionally invariant measure.

Traditionally, a measure �c is said to be conditionally
invariant (c measure for short) if for any subset E of the
region of interest� (Pianigiani and Yorke, 1979; Demers and
Young, 2006)

�cðf�1ðEÞÞ
�cðf�1ð�ÞÞ ¼ �cðEÞ: (25)

This means that the c measure is not directly invariant
under the map �cðf�1ðEÞÞ � �cðEÞ, but it is preserved
under the incorporation of the compensation factor
�cðf�1ð�ÞÞ< 1 (the c measure of the set remaining in �
in one iteration).

Although many c measures exist (Collet, Martı́nez, and
Maume-Deschamps, 2000; Demers and Young, 2006), here
we are interested in the natural c measure which is concen-
trated along the saddle’s unstable manifold and has been
demonstrated to be relevant in several transient-chaos-related
phenomena (Lai and Tél, 2011). Figure 6 shows the
c measure over the full phase space of the cardioid and
indicates that the distribution is rather irregular. This should
be compared with the smooth Lebesgue measure character-
izing the closed system.

1. Dimensions of the invariant sets

Both the chaotic saddle and its manifolds are fractal sets, as
can clearly be seen from Figs. 4(b), 5(a), and 5(b). Commonly,
there are (at least) two different dimensions used to quantify
the fractality of these sets: the box-counting dimensions D0

and the information dimensions D1. The former characterizes
the mere geometrical pattern, and the latter also characterizes
the distribution of particles on the pattern (Ott, 1993).

The chaotic saddle of a two-dimensional map has a clear
direct product structure: it can locally be decomposed into
two Cantor-set-like components, one along each manifold.
The dimension along the unstable (stable) manifold is called
the partial dimension in the unstable (stable) direction and is
marked by an upper index 1 (2). None of the partial dimen-
sions can be larger than 1. The dimensions D0 and D1 of the

FIG. 5 (color online). (a) Stable and (b) unstable manifolds of the cardioid billiard shown in Fig. 4, obtained by the sprinkler method

(N0 ¼ 108, t� ¼ 120, �t� ¼ 40, see Appendix C).
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chaotic saddle are the sum of the two corresponding partial
dimensions (Tél and Gruiz, 2006; Lai and Tél, 2011):

D0 ¼ Dð1Þ
0 þDð2Þ

0 ; D1 ¼ Dð1Þ
1 þDð2Þ

1 : (26)

The saddle might also contain very rarely visited, and thus
atypical, regions. Consequently, the information dimension
D1 cannot be larger than the box-counting dimension D0,

which naturally holds for the partial dimensions too: DðjÞ
1 �

DðjÞ
0 , j ¼ 1, 2. The value of the box-counting dimension is

often found to be close to that of the information dimension
and it is then sufficient to use only one of them.

The manifolds are also of direct product structure, but one
component of them is a line segment, an object of partial
dimension 1 [see Figs. 5(a) and 5(b)]. Since the saddle can be
considered as the intersection of its own manifolds, the

dimension DðuðsÞÞ
0;1 of the unstable (stable) manifold is 1 plus

the partial dimension in the stable (unstable) direction

DðuÞ
0;1 ¼ 1þDð2Þ

0;1; DðsÞ
0;1 ¼ 1þDð1Þ

0;1: (27)

It should be noted that the information dimension DðuÞ
1 of the

unstable manifold is nothing but the information dimension
of the c measure that sits on this manifold.

A simplifying feature occurs in Hamiltonian systems: due
to time reversal symmetry the partial dimensions coincide.4

Therefore, in Hamiltonian cases, we have

D0;1 ¼ 2Dð1Þ
0;1;

DðuÞ
0;1 ¼ DðsÞ

0;1 ¼ 1þDð1Þ
0;1 ¼ 1þD0;1=2;

(28)

i.e., all relevant dimensions can be expressed by the partial

dimensions Dð1Þ
0;1 in the unstable direction.

It is an important result of transient chaos theory that this
partial information dimension can be expressed in a simple
way by the escape rate and the average continuous-time
Lyapunov exponent �� on the chaotic saddle:

Dð1Þ
1 ¼ 1� �

��
: (29)

This relation, the Kantz-Grassberger relation (Kantz and
Grassberger, 1985), states that the dimension observed along
the unstable direction deviates from 1 more, the larger the
ratio of the escape rate (a characteristic of the global insta-
bility of the saddle) to the average Lyapunov exponent
(a characteristic of the local instability on the saddle) is.5

2. Implications for systems with leaks

All results described so far are valid for open systems in
general; they are not particular to systems with leaks. In the
latter case, however, the chaotic saddle and its manifolds
depend sensitively on the leak I. This implies that the un-
stable manifold’s dimension, and the c measure in general,
might strongly depend on the size, location, and shape of the
leak.

We assume throughout this work that (a) I is not too large
so that trajectories do not trivially escape after a short time
[PðtÞ � 0, for any t]; and (b) ergodicity and the chaotic
properties of the closed system lead to one and only one
chaotic saddle after the leak is introduced. We also exclude
the possibility of trajectories reentering the billiard after
hitting a leak. This assumption is naturally satisfied in a
convex billiard, but should be enforced in the limaçon billiard
for leaks around the cusp.6

We take advantage of the fact that a leaky system is
obtained from a strongly chaotic closed system. For instance,
it is possible to explicitly construct the chaotic saddle by
extracting from the original phase space all the fclosed images
and preimages of the set used as leak I in f. To see this, in
Fig. 7 leak I of Figs. 4 and 5 is shown together with its
forward and backward images. Compared to Fig. 5, we see
that the white regions in the plot of the stable (unstable)
manifold correspond to the backward (forward) iterates of
the leak.

Because of area preservation and ergodicity of the closed
system, the result of removing infinitely many images can be
a set of measure zero only. The chaotic saddle in a leaking
system is the set of points that remain in the complement of
the leak I and all its images for both forward and backward
iterations. Indeed, the complement of the union of the sets in
Figs. 7(a) and 7(b) already provides a good approximation to
Figs. 5(a) and 5(b), respectively, and the complement of both
panels is a good approximation to Fig. 4(b). The chaotic
saddle is a fractal subset of the original chaotic set (the full
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FIG. 6 (color online). Density of trajectories on the unstable

manifold shown in Fig. 5(b). This distribution corresponds to the

c measure, the measure according to which averages are to be taken

in the transient chaos context. Note that the c measure is defined

within the leak (N0 ¼ 108, t� ¼ 80, �t� ¼ 80, see Appendix C).

4This symmetry explains why Figs. 5(a) and 5(b) are mirror

images of each other with respect to the s axis (after the leak is

removed from the unstable manifold). The closed cardioid has an

additional symmetry ðs; pÞ � ð�s;�pÞ.

5Equation (29) is valid in dissipative cases as well, but the partial

dimension along the stable manifold is then Dð2Þ
1 ¼ Dð1Þ

1
��=j ��0j,

where ��0 is the average negative Lyapunov exponent on the saddle.
6Physically we can imagine that an absorbing material is placed

on the border of the closed billiard so that trajectories crossing the

leak are immediately absorbed.
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phase space in our strongly chaotic example). Furthermore,
all invariant sets of the leaky system (periodic orbits, mani-
folds of the saddle, etc.) are subsets of those in the corre-
sponding closed system.

3. An improved escape rate formula

We now notice that since escape in Eq. (20) is considered
to occur one step after entering I, the map f with leak is
defined in I and thus the unstable manifold of the chaotic
saddle enters I [see Fig. 5(b)]. It is also possible to compute
measures of the leak as indicated in Eq. (16). The region of
interest in Eq. (25) is identified with the closed system’s
phase space �cð�Þ ¼ 1, and the compensation factor in
this equation is obtained as

�cðf�1ð�ÞÞ ¼ �cð�nIÞ ¼ 1��cðIÞ: (30)

We now recall that the c measure is invariant and is
distributed along the unstable manifold. The escape rate can
be estimated by the same simple calculations that lead to
Eq. (23) by replacing the natural measure �ðIÞ by the
c measure �cðIÞ of the leak. Also carrying out the averaging
of the collision times with respect to the c measure [see
Eq. (16)], we find that

�ðIÞ ’ � ln½1��cðIÞ

htcollic ; (31)

where the subscript c stands for the cmeasure of the true-time
map and ’ indicates approximate equality. The validity and
limitations of the improved escape rate formula [Eq. (31)] are
discussed in Sec. III.C, but by now it is instructive to discuss
the implications of this equation. It clearly shows that for
finite leaks the escape rate cannot be obtained from the
properties of the closed system and the c measure should
be used, a measure which deviates essentially from that of the
closed system. The difference between �ðIÞ (the area of I)
and �cðIÞ (the proportion of dots within I) is visually clear
from Fig. 5(b).

We now discuss the case of usual open maps, in contrast to
true-time maps. Their escape rate we denote by 	 (to sharply
distinguish from the continuous-time or true-time map escape
rate �) implying that the discrete-time survival probability
PðnÞ decays as e�	n. The relation for the escape rate

e�	ðIÞ ¼ 1��cðIÞ ! 	ðIÞ ¼ � ln½1��cðIÞ
 (32)

has been known since Pianigiani and Yorke (1979) and can
also be obtained directly from Eq. (30) for leaky maps (Paar
and Buljan, 2000; Altmann and Tél, 2008). It expresses the
fact that the c measure �c of the leak is the proportion of
particles escaping via the leak within an iteration step. Since
starting from the c measure the decay is exponential from the
very beginning, the proportion of the surviving particles
after one time unit is expð�	Þ, of those who escape is
1� expð�	Þ, and thus �cðIÞ ¼ 1� expð�	Þ which is
equivalent to Eq. (32).

Equation (31) leads to Eq. (32) when tcollðxÞ � 1. It shows
also that when using the true time of the system together with
a surface of section at the billiard’s boundary, it is essential to
take into account that the average collision time differs from
htcolli given in Eq. (14). As already anticipated in Eq. (16),
with finite leaks the correct average collision time is given by
htcollic ¼

R
tcollðxÞ�cðxÞdx, where �c is the density of the

c measure characterizing the system in the presence of leak
I. We note that different corrections for � due to the collision
times were suggested by Mortessagne, Legrand, and Sornette
(1993) and Ryu et al. (2006). While Mortessagne, Legrand,
and Sornette (1993) used a Gaussian approximation for the
distribution of the collision times of long-lived trajectories,
Ryu et al. (2006) took into account only the collision times
inside the leak. None of them is equivalent to Eq. (31) or to
the exact expressions in Sec. III.C.

Another general statement we make about systems with
leaks is that when the size of the leak goes to zero, the
properties of the open system tend to those of the closed
system (de Moura and Letelier, 1999; Aguirre and Sanjuán,
2003), i.e., the theory of Sec. II.A becomes correct. In
particular, �cðIÞ ! �ðIÞ ! 0, which implies that � in
Eq. (31) tends to �� in Eq. (23) and both tend to Sabine’s
prediction �ðIÞ ¼ �ðIÞ=htcolli, Eq. (13). In terms of dimen-
sions, D0;1 ! 2. A nontrivial closed-system approximation

D�ð1Þ
1 of the information dimension can be obtained from the

Kantz-Grassberger relation (29) with �ðIÞ ¼ ��, ��ðIÞ ¼ ��
(Lyapunov exponent of the closed system) (Neufeld,
Haynes, and Picard, 2000).

4. Periodic orbits in maps with leaks

We also review the dynamics in general maps with leaks.
Periodic orbits analysis (Cvitanović et al., 2004) is a powerful
method to investigate chaotic systems and also clearly illus-
trates the spirit of leaking systems. Generally, a dense set of

FIG. 7 (color online). Phase space ðs; pÞ of the cardioid billiard showing the (closed system) iterates of the black vertical stripe that

corresponds to I in Figs. 4 and 5. (a) Backward iterates. (b) Forward iterates. In both cases the first, second, and third iterates are shown.
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unstable periodic orbits is embedded into the chaotic saddle
and this set can be used to obtain an expression for the escape
rate of the saddle. As pointed out byAltmann andTél (2009), in
systems with leaks this can be done either using the periodic
orbits of the open system (that never hit the leak) or using only
the periodic orbits of the closed system that hit the leak. To
illustrate the simple arguments that lead to this, we consider the
case of computing the escape rate 	 of a generic discrete

mapping f. First we split the set �ðallÞ
n of all periodic orbits of

length n (i.e., all orbits that have an integer period equal to

n; n=2; n=3; . . . ) of the closed system into two sets:�ðinsideÞ
n , the

orbits that have at least one point inside I, and the comple-

mentary set �ðoutsideÞ
n , i.e., all orbits for which all points are

outside the leak I. In the limit of large n the following relation
holds for hyperbolic systems (Ott, 1993; Dorfman, 1999):

e�
	 ¼ X
i

1

j�ð�ðoutsideÞ
i;n Þj ; (33)

where the sum is over all points i of periodic trajectories in

�ðoutsideÞ
n , and � is the largest eigenvalue of the n-fold iterated

map fn on the orbit.
Next we notice that in the closed system 	 ¼ 0 (no

escape). Therefore,

1 ¼ X
i

1

j�ð�ðallÞ
i;n Þj ; (34)

where the sum is over all points i in �ðallÞ
n . Subtracting Eq. (33)

from Eq. (34) we obtain

1� e�
	 ¼ X
i

1

j�ð�ðinsideÞ
i;n Þj ; (35)

where the sum now is over all points i in �ðinsideÞ
n , i.e., all

points that belong to periodic orbits that have at least one
point in I. Altogether this means that even if we are allowed
to probe the system only through the leak, the identification of
the periodic orbits entering I suffices for the computation of
the main properties of the chaotic saddle that exists inside the
system. This can be applied also to more efficient methods
based on expansions of the zeta function (Artuso, Aurell, and
Cvitanovic, 1990).

A simple relation can be obtained in uniformly expanding
(piecewise linear) maps in which leaks are selected as ele-
ments of a Markov partition. In this case it is possible to prove
that for two different leaks I1 and I2, the relation 	ðI1Þ>
	ðI2Þ holds if and only if the shortest periodic orbit in I1 is
shorter than the one in I2 (Bunimovich, 2012). This follows
also from Eq. (35) with constant � (as in piecewise linear
maps with constant slope).

C. Initial conditions and average escape times

Typical observable quantities in transient chaos theory,
such as � and the fractal dimensions, are independent of
the choice of the density of initial conditions �0ðxÞ because
they are directly related to the properties of the invariant
chaotic saddle. More precisely, the underlying assumption
is that �0ðxÞ overlaps the stable manifold of this saddle. The
stable manifold of the chaotic saddle typically spreads

through the phase space in a filamentary pattern [e.g., as in
Fig. 5(a)] and therefore smooth �0ðxÞ’s typically fulfill this
requirement. Even in this typical case, there are important
quantities that depend on �0ðxÞ such as any quantity averaged
over a large number N of trajectories. The dependence on
initial conditions and the universal asymptotic decay of the
survival probability PðtÞ � e��t can be reconciled by noticing
that for short times t < ts, the escape of trajectories is non-
universal, and PðtÞ � e��t. Even if ts is short, a large fraction
of the trajectories may escape for t < ts.

Here we discuss in more detail the simplest yet represen-
tative case of the average lifetimes (Altmann and Tél, 2009)

h�i�0
� lim

N!1
1

N

XN
i¼1

�i ¼
Z 1

0
�pð�Þd� ¼

Z 1

0
Pðt0Þdt0;

(36)

obtained with different initial densities �0ðxÞ, and hence with
different survival probabilities PðtÞ, where �i is the lifetime of
trajectory i. Here we used p ¼ �dP=dt [see Eq. (12)],
Pð0Þ ¼ 1, and PðtÞ ! 0 faster than 1=t.

For maps, the averaged discrete lifetime is

h�i�0
¼ X1

n0¼0

n0pðn0Þ; (37)

where pðnÞ is the probability to escape in the nth step. Note
that for true-time maps [Eqs. (17) and (18)], in general,
h�i�0

� h�i�0
htcollic, with htcollic given by Eq. (16). Instead,

h�i�0
¼ limN!1

1

N

XN
i¼1

X�i

j¼1

tcollðxði;jÞÞ

¼ limN!1
1

N

XN
i¼1

�i �t
ðiÞ
coll ¼ h��tcolli�0

;

where �i is the total number of collisions along the ith
trajectory, xði;jÞ is the position of the jth collision (j ¼
1; . . . ; �i) of trajectory i that has initial condition xði;0Þ, �tðiÞcoll �
ð1=�iÞ

P�i

j¼1 tcollðxði;jÞÞ is the mean collision time of trajectory

i, and the average h� � �i is taken over i ¼ 1; . . . ; N trajecto-

ries. The reason for this difference is that for short times �tðiÞcoll
differs significantly from htcollic.

We want to see if h�i�0
and h�i�0

can be expressed as a

function of other easily measurable quantities. We also try to
find a relation between h�i�0

and h�i�0
for the following

particular initial densities �0ðxÞ.

1. Conditionally invariant density �c

We take initial conditions according to the c measure
�0ðxÞ ¼ �cðxÞ. As explained in Sec. II.B, �cðxÞ describes
the escaping process and is achieved by rescaling the surviv-
ing trajectories from an arbitrary smooth initial density.
Therefore, for �0ðxÞ ¼ �cðxÞ we find pðtÞ ¼ �e��t for all
t > 0 and from Eqs. (31) and (36) the simple relation

h�ic ¼ 1

�
’ � htcollic

ln½1��cðIÞ
 (38)

follows.

880 Altmann, Portela, and Tél: Leaking chaotic systems

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013



For maps with escape rate 	, the normalization of pðnÞ
implies

P1
n¼1 pðnÞ ¼ 1, and thus pðnÞ ¼ ðe	 � 1Þe�	n (since

e	 � 1 	 	 for 	  1). This leads to a different result
(Altmann and Tél, 2009)

h�ic ¼ 1

1� e�	 ¼ 1

�cðIÞ : (39)

In the last equality we used Eq. (32). It is important to note
that for maps obtained from flows, the c densities �c of the
map and flow (or true-time map) are usually different due to
the nontrivial collision time distribution.

2. Recurrence density �r

As pointed out by Altmann and Tél (2008, 2009), there is
an initial density �0ðxÞ ¼ �rðxÞ connected to the problem of
Poincaré recurrences that leads to simple results for h�ir and
h�ir. The Poincaré recurrence theorem asserts that in a closed
dynamical system with an invariant measure �, almost any
trajectory (with respect to �) chosen inside a region I with
�ðIÞ> 0 will return to I an infinite number of times. The
times Ti’s between two consecutive returns are called
Poincaré recurrence times, a central concept in dynamical-
systems theory (Haydn, Lacroix, and Vaienti, 2005). The
(cumulative) distribution of recurrence times PrðTÞ is also
used to quantify chaotic properties of specific systems
(Chirikov and Shepelyansky, 1984). Figure 8 illustrates the
Poincaré recurrence setup in billiard systems. Using the
notation introduced in Fig. 8, the average recurrence time �T
of a single long trajectory is calculated as

�T ¼ 1

N

XN
i¼1

Ti ¼ ttotal
N

¼ Ncollhtcolli
N

¼ htcolli
�ðIÞ ; (40)

where Ti is the ith recurrence time along the trajectory, htcolli
is the average collision time of a typical trajectory starting
inside the leak that, due to ergodicity, coincides with the
closed system htcolli given by Eq. (15), Ncoll is the total
number of collisions up to time ttotal, N is the number of
such collisions inside I, and �ðIÞ ¼ N=Ncoll is the fraction

of collisions on I. Equation (40) is valid for large ttotal, N,
and Ncoll.

For maps, analogously, we obtain that the average discrete

recurrence time �N is given by

�N ¼ 1

�ðIÞ : (41)

The inverse relation between measure and recurrence time
shown in Eqs. (40) and (41) is known as Kac’s lemma (Kac,
1959; Zaslavsky, 2002). For higher moments of the return
time distribution see Cristadoro, Knight, and Degli Esposti
(2012).

The connection to systems with leaks is achieved by
identifying the recurrence region and the leak I. One can
find an appropriate initial density �0ðxÞ ¼ �rðxÞ for the open
case for which the survival probability in the presence of leak
I coincides with the recurrence time distribution to I in the
closed system

PrðTÞ ¼ PðtÞ (42)

for any t ¼ T. This can be done by using the positions x 2 I of
theN recurrent points as initial conditions (see Fig. 8). Because
of the ergodicity of the closed chaotic system, in the limit of
long times, the points of this single trajectory are distributed
according to the natural density ��ðxÞ of the closed system,

justifying the notation �ðIÞ in the equation above. In the case
of the billiard systems discussed here, �rðxÞ corresponds to
initial conditions in the leak, uniformly distributed in x ¼
ðs; pÞ, but with velocities pointing inward, i.e., not escaping
through the leak. Physically, this corresponds to shooting
trajectories into the billiard through the leak.

If time is counted discretely, �rðxÞ corresponds to the next
iteration of the uniform distribution [natural measure of
closed system ��ðxÞ] of initial conditions in x 2 I. In the

general case of an invertible map f this is obtained by
applying the Perron-Frobenius (Gaspard, 1998; Dorfman,
1999) operator as (Altmann and Tél, 2009)

�rðxÞ ¼
��ðf�1ðxÞ \ IÞ

J ðf�1ðxÞ \ IÞ�ðIÞ for x 2 fðIÞ; (43)

where f�1ðxÞ \ I denotes the points that come from I, J is
the Jacobian of the map, and the factor �ðIÞ ensures normal-
ization. Note that the single iteration introduced in the defi-
nition of �r is compensated at the end because the escape is
considered also one time step after entering I; see Eq. (20).
With �0ðxÞ ¼ �rðxÞ, PðtÞ ¼ PrðT ¼ tÞ for all t � 0, showing
that the problem of Poincaré recurrence can be interpreted as
a specific problem of systems with leaks. In particular,
PrðTÞ � e��T with the escape rate � of the system opened
up in I. The average lifetime is given by Eq. (40) as

h�ir ¼ �T ¼ htcolli
�ðIÞ �

htcollic
�cðIÞ � � htcollic

ln½1��cðIÞ
 :

For maps, Eq. (41) implies that

h�ir ¼ �N ¼ 1

�ðIÞ �
1

�cðIÞ :

Note that both relations above reveal that for �r there is no
difference in the dependence on the measure for maps and
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FIG. 8. Schematic illustration of Poincaré recurrences in a closed

billiard. The symbols indicate the times t of the nth collision with

the boundary of a single trajectory. The recurrence times Ti’s are

defined as the times between successive collisions in I. In the total

time ttotal there are Ncoll collisions, out of which N collisions are

inside the region I.
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flows, in contrast to Eqs. (38) and (39) obtained with �c as the
initial density.

3. Closed-system density ��, or any smooth �s

The most popular initial condition for systems with leaks is
by far ��. This corresponds to introducing the leak after the

trajectories have reached equilibrium inside the system.
While this is sometimes implicitly assumed as natural, the
results of this section show that �� is not the only possibility

and certainly not the simplest one. For �� and any other

smooth initial distribution �0 ¼ �s, the surviving trajectories
relax toward the c density �cðxÞ, the natural density of the
open system. The numerical investigations of Altmann and
Tél (2009) indicate that results with �� or other smooth

densities �s are usually similar to those obtained by �c, and
more different from those obtained by �r. This can be under-
stood by noting that the hyperbolicity of the chaotic saddle
leads to a fast convergence �0ðxÞ ! �cðxÞ. While a conver-
gence also holds for �r, it is made much slower by �r’s lack
of any overlap with the chaotic saddle, with orbits taking,
therefore, a longer time to approach the saddle (Altmann and
Tél, 2009).

The results of this section are summarized in Table I. All
formulas here were confirmed within a 3% error in the
cardioid billiard with a finite leak (see Table II). In the limit
of a small leak, the simple case h�i ¼ 1=� discussed in
Eq. (12) and Sabine’s law in the form of Eq. (13) are
recovered, independent of the initial distribution.

D. Extension to partial leaks

So far we have restricted our theory to the case of full leaks
that completely transmit the trajectories falling on them. At
the end of Sec. I.E we emphasized the need to extend the
theory to leaks that partially transmit and partially reflect
trajectories. This problem can be handled by associating with

each trajectory i an intensity JðiÞn that decreases with time

JðiÞnþ1 ¼ RðxÞJðiÞn due to collisions at the leak regions with

reflectivity RðxÞ< 1, as described by Eq. (21). Here we
show how the results of Sec. II.B can be extended to this case.

For simplicity, we consider that all N trajectories of the
initial ensemble start with intensity J0 ¼ 1. Nonhomogeneous
energy intensities can be achieved bymanipulating the density
of initial trajectories �0ðxÞ, as discussed in Sec. II.C. For
longer times the energy density depends not only on the density

of trajectories�ðx; tÞ but also on their intensities, which can be
thought of as weights 0 � J � 1 attributed to each trajectory.
The survival probability PðtÞ of trajectories is physically
reinterpreted as the fraction ~PðtÞ of the total energy still inside
the system. In strongly chaotic systems, ~PðtÞ is expected to
decay asymptotically as

PðtÞ � e�~�t;

with ~� as the energy escape rate. In practice, ~PðtÞ can be
obtained as a sum over all N trajectories

~PðtÞ 	 1

N

XN
i¼1

JðiÞt ¼
Z
�
JtðxÞ�ðx; tÞdx �

Z
�
~�ðx; tÞdx;

(44)

where �ðx; tÞ is the density and JtðxÞ is the intensity of
trajectories in x at time t. The intensity of each trajectory i at

time t is given by JðiÞt ¼ ��iðtÞ
j¼1RðxðiÞ

j Þ, with �iðtÞ the number of

collisions of trajectory i until time t and xðiÞ
j the position of

these collisions. We defined the combined density

~� � �J; (45)

which is, by convention, not normalized for t > 0. The appear-
ance of ~� in Eq. (44) reflects the more general fact that the
division between trajectories and intensities has no observable
consequence, despite their natural interpretation in physical
terms and their natural implementation in ray simulations. It is
only their combination, Eq. (45), that leads to a physically
relevant density for the case of partial leaks, both for the
c measure and for estimations based on �. A mathematical
description coherent with this interpretation considers opera-
tors acting on densities and is given in Sec. III. In the remainder
of this section we consider how partial leaks modify the closed
system (see Sec. II.A) and transient chaos (see Sec. II.B)
theories discussed above.

We start with a straightforward extension of the naive
estimate of the escape rate. When estimating the transmission
happening through the leak one has to account for the partial
transmission because for a trajectory in x 2 I only a fraction
1� RðxÞ of its intensity is lost. Therefore, the measure of the
leak [�ðIÞ ¼ R

I d�] used in Eq. (23) to compute the naive

estimate � ¼ �� has to be replaced by

TABLE I. Dependence of the average lifetime h�i and h�i for flows and maps, respectively, on the initial distribution �0ðxÞ, and expressions
for the escape rate �, 	. The natural invariant measure of the leak (closed system) �ðIÞ and the conditionally invariant measure �cðIÞ of the
leak I coincide only in the limit of small leaks. From Altmann and Tél, 2009.

Large leaks Limit of small leaks
Finite �ðIÞ � �cðIÞ �cðIÞ ¼ �ðIÞ ! 0

�0ðxÞ c measure: �c Recurrence: �r Natural, smooth: ��;s �r;c;�;s

Mean time
Continuous, t h�ic ¼ 1

� ’ �htcollic
ln½1��cðIÞ
 h�ir ¼ htcolli

�ðIÞ ¼ h�irhtcolli � 1
� h�i�;s 	 1

� h�i ¼ htcolli
�ðIÞ

Discrete, n h�ic ¼ 1
1�e�	 ¼ 1

�cðIÞ h�ir ¼ 1
�ðIÞ h�i�;s 	 1

�cðIÞ h�i ¼ 1
�ðIÞ ¼ 1

	
Escape rate
Continuous, t � ’ � ln½1��cðIÞ


htcollic � ln½1��ðIÞ

htcolli ¼ �� � ¼ �ðIÞ

htcolli ¼ 1
h�i

Discrete, n 	 ¼ � ln½1��cðIÞ
 � � ln½1��ðIÞ
 � 	� 	 ¼ �ðIÞ ¼ 1
h�i
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mðIÞ ¼
Z
I
½1� RðxÞ
d�

¼
Z
I
½1� Rðs; �Þ
 1

4
cos�d�ds; (46)

where RðxÞ is the (position dependent) reflection coefficient.
The argument of Sec. II.A leads to the naive estimate

~�� ¼ � ln½1�mðIÞ

htcolli ; (47)

see also Joyce (1975) and Ryu et al. (2006). This shows that
the closed-system estimation for a leak with R ¼ 0:5 is the
same as the one for a leak of half the size, which was tested in
Fig. 1 (and proved to be inaccurate).

The essential extension of the transient chaos theory is to
consider a (modified) c density ~�c which should be normal-
ized. As �c, ~�c can also be achieved by rescaling. Here the
intensity should be multiplied by a factor e~�t to compensate
the global decay of ~PðtÞ. This rescaling implies that the
c measure ~�cðEÞ of a region E 2 � in a partially open
system is the fraction of the intensity at time t ! 1 that is
in E. A more proper estimate of the escape rate ~� from this
measure has to include, as in Eq. (46), the partial transmission
through the leak as (Altmann, 2009)

mcðIÞ ¼
Z
I
½1� RðxÞ
d ~�c ¼

Z
I
½1� RðxÞ
~�cðxÞdx:

(48)

The analog of the improved escape rate formula (31) for a
system with partial leaks is thus

~� ’ � ln½1�mcðIÞ

htcolli~c ; (49)

where ~c in htcolli~c indicates the average taken with respect
to ~�c.

The complete extension of the transient chaos theory
presented in Sec. II.B is considerably more subtle and
requires the extension of the invariant sets discussed above
(chaotic saddle and its invariant manifolds). We illustrate our

general considerations introducing uniform reflectivity R ¼
0:1 in the leak of the cardioid billiard of Figs. 4 and 5. The
procedures used previously (see Figs. 4–6) were employed to
obtain Fig. 9, but now the intensities of the trajectories were
used as weights attached to each trajectory; see Appendix B
for details. The energy escape rate was found numerically to
be ~� ¼ 0:058, obviously less than � ¼ 0:066 for the full leak
case of the same size. The support of the regions with non-
negligible densities shown in Fig. 9 shows the stable mani-
fold, chaotic saddle, and unstable manifold, respectively. In
the case of partial leaks it is important to distinguish the
manifold of the trajectories from the manifold of the (trajec-
tories weighted with) intensities J. Whenever the reflection
coefficient is nonvanishing, RðxÞ � 0 for all x 2 �, trajec-
tories survive forever (and correspond thus to that of the
closed problem). The chaotic set of trajectories is then the
full phase space; its manifolds are also space filling and are
not very informative. The interesting patterns present in all
panels of Fig. 9 motivate us to interpret the results in terms of
manifolds of the (trajectories weighted with) intensities. This
generalizes the case of full leak (R ¼ 0 for x 2 I).

Consider first the case of the stable manifold WS. While in
the full leak case WS

full is obviously outside the leak [e.g., in

Fig. 5(a)], in the partial leak case ~WS should certainly include
trajectories which start in the leak and never return. These
new trajectories are nothing but the closed map preimage of
WS

full in I. Indeed, in Fig. 9(a) the filamentary structure

extends inside I (with much lower intensity). These new
trajectories modify the manifolds in the whole phase space
because their preimages can be outside the leak. More gen-
erally, it is natural to considerWS

full as the set of all points that

carry a nonvanishing intensity J for arbitrarily large t
(Altmann, 2009)

x2 ~WS, for t!þ1; JtðxÞ!Jþ1ðxÞ>0; (50)

where J1ðxÞ is the asymptotic intensity. The same reasoning
applies to the unstable manifold ~WU, in which case the limit
t ! �1 is taken in Eq. (50). The presence of new orbits,
compared to the case with full leak, is clearly seen when
comparing Figs. 6 and 9(c). Figure 9(c) shows the c density
~�cðxÞ of the partial leak case. The chaotic saddle (CS) is
shown in Fig. 9(b) and should be compared to Fig. 4(b).
Again, it can be thought of as CS ¼ ~WS \ ~WU, i.e., the points
that remain with J > 0 for t ! �1. The natural extensions of
the concepts of chaotic saddle and its invariant manifolds are
expected to hold in all systems with partial leaks [see also
Wiersig and Main (2008)].

A complete description of distributions such as those
shown in Fig. 9 cannot be achieved by simply including the
new trajectories mentioned above. For instance, trajectories
that collide infinitely many times with R < 1 but still less
frequently than other trajectories might also contribute to the
asymptotic properties. Indeed, it appears natural that the
support of the distributions such as those shown in Fig. 9 fills
an area of the phase space and therefore has a trivial fractal
dimension D0 ¼ 2 (the same as that of the chaotic set of the
trajectories). Given the peaked structures of the densities, we
speculate that the information dimension D1 and the gener-
alized dimension Dq with q > 0 might be below 2 [see Tél

and Gruiz (2006) for simple examples of sets with trivial D0

TABLE II. Numerical results for the average lifetime in the
cardioid billiard with a leak sl ¼ 0:5, �s ¼ 0:1 (as in Figs. 4–6
and 42–44). Other data: htcolli ¼ 1:850 55, �ðIÞ ¼ 0:1, �cðIÞ ¼
0:1175, and htcollic ¼ 1:916. In order to illustrate the case of
maps, instead of the true-time map, exclusively for this simulation
we have used the Poincaré map of the billiard. In order to minimize
the effect of sliding orbits (see Appendix D) we used in all
simulations the following restrictions: a cutoff in the maximum
collision time at 83 collisions (t ¼ 158 in Fig. 43), and �s is taken to
be constant in s 2 ½�1; 1
, p 2 ½�0:9; 0:9
. �c was built by iterat-
ing �s. For 	Pmap we used a more restrictive cutoff 2h�i�;s, because

it is more sensitive to the sliding orbits. The quantities �cðIÞ and
htcollic were calculated using Eq. (B3).

�0ðxÞ �c �r ��;s

Mean time
Continuous, t h�ic ¼ 15:24 h�ir ¼ 18:50 h�i�;s ¼ 14:23
Discrete, n h�ic ¼ 8:28 h�ir ¼ 10:0 h�i�;s ¼ 7:78
Escape rate
Continuous, t � ¼ 0:065 59 � �� ¼ 0:056 93
Discrete, n 	Pmap ¼ 0:1286 � 	� ¼ 0:1054
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and nontrivial D1]. It remains, however, to be verified
whether Eqs. (27)–(29) are applicable to systems with partial
leaks.

In Sec. III we introduce a formalism based on Perron-
Frobenius operators that directly calculates the (normalized)
density ~�c and the artificial (nonobservable) distinction be-
tween J and �c becomes superfluous.

III. OPERATOR FORMALISM

In the previous sections we used extended trajectories
which depend not only on the phase-space coordinate x of
the map but also on the true-time t and on the intensity J.
These two quantities are labels which are attached to each
trajectory and change depending on (but do not affect) the
sequence of collisions xi, i ¼ 0; . . . ; n. Here we develop
a more elegant formalism based on operators acting on den-
sities �ðx; tÞ that naturally accounts for both of these aspects,
allowing for a more rigorous treatment. In the spirit of systems
with leaks, and similarly to Sec. II, we start with the case of
closed systems that will be used for comparison with the
leaking case.

Before discussing how densities evolve in time, it is essen-
tial to clarify the relationship between the different character-
istic densities in billiard systems. Here we search for exact
relationships between the measure �F of the flow and the
measure � of the true-time map (for more details see
Appendix B). In closed Hamiltonian systems the natural
measure � is the Lebesgue measure.

A trajectory of the billiard flow can be represented by the
Birkhoff coordinates x ¼ ðs; pÞ of its next collision with the
boundary and the time r after the previous collision, as
illustrated in Fig. 10 [see Chernov and Markarian (2006)
for a rigorous mathematical formulation]. We call r the
coordinate time and it also corresponds to a distance in
the billiard, since the velocity of the particle has been chosen
to be unity. Of course, the coordinate time fulfills 0 � r �
tcollðxÞ, where the collision time tcollðxÞ is defined as the time
t between the collision in x and the last collision.7

A. Closed system

In the time-continuous representation, let �Fðx; rÞ denote
the probability density for finding a flow trajectory at ðx; rÞ.
The corresponding invariant measure d�F of the flow can
then be written as

d�F ¼ �Fðx; rÞdxdr: (51)

Consider now the true-time map in standard Birkhoff
coordinates x ¼ ðs; pÞ. Let ��ðxÞ denote the probability

density of the invariant measure in this map, which is a
constant as seen in Fig. 3. The corresponding measure d� is

d� ¼ ��ðxÞdx: (52)

We want to connect � to �F. Since the dynamics between
collisions is a uniform motion of unit velocity, �F is inde-
pendent of r and, therefore, the flow density in variable x is
proportional to that of the map

�Fðx; rÞ ¼ A��ðxÞ; (53)

FIG. 9 (color online). Invariant densities for the cardioid billiard considered in Figs. 4–6 with partial leak R ¼ 0:1 for x 2 I. The different

panels show the densities associated with (a) the stable manifold, (b) the chaotic saddle, and (c) the unstable manifold. The densities were

obtained considering the intensity weighted trajectories at times 1=~�� < 60< t < 80 and plotting at (a) their initial conditions, (b) their

positions around the time t=2, and (c) their positions over the time interval 60< t < 80. See Appendix C for details.

(s,p)

 t
coll (s,p)

r

f -1
(s,p)

f -2
(s,p)

FIG. 10 (color online). Schematic illustration of flow and map

coordinates for billiards. We use the convention that a particle in the

flow (j) has coordinates ðs; p; rÞ ¼ ðx; rÞ. Note that x is the end

point of a flight within the billiard. Because of the specular nature of

the reflection, the p coordinate does not change during a collision,

x � ðs; pÞ corresponds thus to the map coordinate denoted by d at

the boundary of the billiard defined right after collisions. Smaller

dots represent other particles in the flow that move along the same

trajectory.

7These definitions are convenient because they assure that tcollðxÞ
and the c measure are defined inside the leak x 2 I.
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where A is a constant. Its value follows from the normaliza-
tion of the measure

R
d�F ¼ 1:

Z
�Fðx; rÞdrdx ¼

ZZ tcollðxÞ

0
A��ðxÞdrdx

¼ A
Z

tcollðxÞ��ðxÞdx ¼ 1: (54)

Since the integral in the last equality equals the average
collision time in the closed system’s true-time map, we have

A ¼ 1

htcolli : (55)

From this relation, and Eqs. (51)–(53), it follows that the flow
measure and the map measure are related as

d�F ¼ dr

htcolli d�: (56)

This is a well-known relation connecting flows and maps in
closed billiards [see, e.g., Chernov and Markarian (2006)].
Recalling that htcolli can be related to simple geometric
properties of the billiard as in Eq. (14), this formula shows
that the mean collision time provides a simple and elegant
connection between properties of the flow and the map. For
instance, Lyapunov exponents of the flow are equal to those
of the true-time map divided by htcolli.

From Eq. (56) one can also estimate the escape rate by
assuming that the existence of such a leak does not influence
the validity of this relation. The rate of change of �F over
coordinate time r is in this type of perturbation approach

F ¼ d�F

dr
¼ d�

htcolli ; (57)

and this rate is independent of coordinate time r. The fraction
of trajectories escaping through leak I over a time unit can be
computed as F ðIÞ ¼ R

I dxF . Consider a time interval of the

length of the average collision time htcolli. The decay of
surviving trajectories is exponential PðtÞ ¼ e��t for any
time t for trajectories distributed according to the c density,
which is then approximately ��ðxÞ. We can thus estimate �

using Eq. (57) and writing the proportion of particles that
escape the billiard in a time t ¼ htcolli as 1� e��htcolli:

F ðIÞhtcolli ¼ �ðIÞ ¼ 1� e��htcolli: (58)

This leads to the naive estimate �� ¼ � ln½1��ðIÞ
=htcolli
stated in Eq. (23).

Finally, the dynamics of densities in closed maps can be
rewritten in terms of the Perron-Frobenius operators
(Gaspard, 1998; Dorfman, 1999; Lai and Tél, 2011)

�nþ1ðx0Þ ¼ �nðxÞ
jJ ðxÞjj

x2f�1 ðx0 Þ

; (59)

where J ðxÞ is the Jacobian at point x. In Hamiltonian
systems J ðxÞ ¼ 1, and the constant Lebesgue density
��ðxÞ ¼ const is a stable fixed point of Eq. (59). Since there

is no escape, the largest eigenvalue of the Perron-Frobenius
operator is unity. In the next section we repeat the procedures
presented above for systems with large leaks, i.e., we derive a
connection between flow and map measures, an expression
for the escape rate, and establish a Perron-Frobenius

formalism. A direct connection between the Perron-
Frobenius operator Eq. (59) of the open and leaky systems
has recently been investigated for cases with Markov parti-
tions by Froyland and Stancevic (2010).

B. Flow and map measures in billiards with leaks

From the point of view of the escape process, the analog of
the natural measure is the c measure. Even if the c-measure
definition in Eq. (25) applies for maps (x coordinates), it is
essential to extend this concept to flows and true-time maps
(x and r coordinates) in order to take the real time of
trajectories into account. Indeed, it is known that averages
taken with respect to flows (or true-time maps) and to tradi-
tional maps differ considerably in open systems (Kaufmann
and Lustfeld, 2001).

The main difference with respect to the closed case is the
dependence of the c measure �Fc of the flow on the coor-
dinate time r. The survival probability decays in time t as
e��t, independent of the x coordinate. It is thus natural to
associate the coordinate time r with t so that �Fc decays as
e��r. Therefore, Eq. (53) has to be replaced by

�Fcðx; rÞ ¼ Ac�cðxÞe��r; (60)

where �Fc is the density of the flow’s cmeasure, and �c is the
density of the true-time map c measure �c. This latter is the
measure we used in the main part of this paper. The density
�cðxÞ is independent of r, as seen in Eq. (60), and thus it can
be thought of as remaining constant from the previous colli-
sion (r ¼ 0) until the collision at x [r ¼ tcollðxÞ; see Fig. 10].
This constant value is proportional to �Fcðx; r ¼ 0Þ. The
proportionality factor Ac follows from

R
d�Fc ¼ 1 asZ

�Fcðx;rÞdrdx¼
ZZ tcollðxÞ

0
Ac�cðxÞe��rdrdx

¼Ac

Z
�cðxÞ1�ð1�e��tcollðxÞÞdx¼1:

(61)
This yields

Ac ¼ �

1� he��tcollic ; (62)

which tends to 1=htcolli for � ! 0 as in Eq. (55). The map and
flow c measure �Fc and �c are related as

d�Fc ¼ Ace
��rdrd�c: (63)

This is the generalization to open systems of Eq. (56). In
contrast to the case of the closed billiard, the relation between
the flow and the true-time map is not given by htcolli (or
htcollic) alone, but includes an explicit dependence on � and
the coordinate time r. In Appendix B we also connected �Fc

and �c to the flow measure projected to the billiard’s
boundary.

C. Exact escape rate formula

We can now obtain an exact formula for the escape rate
following the arguments used for closed systems at the end of
Sec. III.A. From Eq. (63) one can again introduce the rate of
change over coordinate time r as F c ¼ d�Fc=dr which is, in
contrast to Eq. (57), not independent of coordinate time r.
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From Fig. 10 and Eq. (60), the true-time density flowing out
at x is given by �FcðfðxÞ; r ¼ 0Þ ¼ Ac�cðfðxÞÞ. Therefore
the fraction of trajectories that escapes through leak I in time

htcollic is
Rhtcollic
0 F cðfðIÞÞdr, with fðIÞ ¼ “escape” as given in

Eq. (20). In view of Eqs. (62) and (63), Eq. (58) turns into

Z htcollic
0

F cðfðIÞÞdr ¼ �cðfðIÞÞ 1� e��htcollic

1� he��tcoll ic
¼ 1� e��htcollic : (64)

Here in the last equality we used again the fact that for the
c measure the fraction of trajectories escaping up to time t is
1� expð��tÞ. Since the escape happens immediately [i.e.,
tcollðescapeÞ ¼ 0 and thus �cðfðIÞÞ ¼ �cðIÞ], we obtain an
implicit relation for � as

he��tcoll ic ¼ 1��cðIÞ: (65)

This formula, which is a new result and will be derived more
formally in Sec. III.D, establishes a relation between the
average of an expression containing � times the collision
time and the measure of the leak, both averages taken with
respect to the c measure of the true-time map. It is thus a
generalization of the Pianigiani-Yorke formula (32), valid for
usual maps, which is recovered from Eq. (65) in the limit of
tcoll � 1. It is an exact expression, the culmination of differ-
ent approximations of � discussed previously, as summarized
in Table III.

It is worth applying the cumulant expansion to the left-
hand side of Eq. (65):

lnðhe��tcoll icÞ¼
X1
r¼1

ð��Þr
r!

CrðtcollÞ¼ ln½1��cðIÞ
; (66)

where CrðyÞ are the cumulants of y [C1 ¼ hyic, C2 ¼ �2
cðyÞ,

etc.]. Keeping only the first term of the expansion, we find a
first order approximation �1 of the escape rate as

ln½1��cðIÞ
 ¼ ��1htcollic:
This is the improved escape rate formula (31), obtained in
Sec. II as a generalization (based on the theory of transient
chaos) from the naive estimate (23).

We estimate the deviation between �1 and � by including
the second term of expansion (66). For the second order
approximant �2, a quadratic equation is obtained:

ln½1��cðIÞ
 ¼ ��2htcollic þ �2
2

2
�2

tcoll;c ;

where �2
tcoll;c is the second cumulant of the collision time

distribution tcollðxÞ taken with respect to the c measure �c.
This yields the explicit form for �2:

�2 ¼ fhtcollic �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htcolli2c þ 2�2

tcoll;c ln½1��cðIÞ

q

g=�2
tcoll;c

	 �1

�
1þ �1

2

�2
tcoll;c

htcollic
�
; (67)

where the approximation is valid for small variance �tcoll;c of

collision times. In a similar spirit, corrections due to the
uneven distribution of tcoll have also been obtained by
Mortessagne, Legrand, and Sornette (1992); see also Joyce
(1975).

The approximation �2 	 �1 is valid for

�2
tcoll ;c

htcolli2c
ln½1��cðIÞ
  1: (68)

Our numerical simulations (see Appendix B) yield indepen-
dent estimations for � and �1;2. In our typical configuration

(see Fig. 5), the agreement between �1 and �2 was on the
order of 0.6% and between �2 and � of 0.06% (below the
precision of the results reported in Table II). From Eq. (68)
we see that there are two effects that can make �1 a good
approximation of �: (a) small leak �cðIÞ  1, and
(b) �tcoll ;c=htcollic  1. The latter corresponds to a small

variance of the collision time distribution and is the limit
under which the true-time map reduces to a usual map [and
Eq. (32) is recovered]. Note, however, that the naive estimate
��, Eq. (23), does not follow in any order of the cumulant
expansion. As previously noted by Joyce (1975, 1978), ��
coincides with � only under the physically unrealistic con-
ditions that (i) the distribution in the room is uniform �c ¼
��, e.g., nonspecular collisions immediately randomize the

trajectories or absorption is uniformly distributed, and (ii) tcoll
is constant. If only condition (i) is satisfied, Eqs. (65) and (67)
could be applied using � instead of �c. Joyce also pointed
out that an analog of Eq. (67) was published by Kuttruff in the
1970s. The �� estimate (23) is thus the result of a not fully
consistent argumentation: it intends to correct for the finite
size of the leak, but fully forgets about changing the measure
to the c measure, a correction of comparable magnitude. The
naive estimate �� was also obtained by Bunimovich and
Dettmann (2007) as the first term of an expansion in the
leak size.

Partial leaks.—We are now in a position to heuristically
generalize Eq. (65) for systems with partial leaks R � 0
discussed in Sec. II D. The key observation is that the left-
and right-hand sides of Eq. (65) can be interpreted as global
and local quantities, respectively. The global quantity in the
partial leak case remains unchanged: in one iteration of the
true-time map the c density at position x decays as e�~�tcollðxÞ,
and the global estimation of the proportion S of the remaining
energy after a time tcoll is obtained simply as the average of
this factor over the full phase space �:

S ¼
Z
�
~�cðxÞe�~�tcollðxÞdx ¼ he�~�tcoll i~c: (69)

We denote the c density of problems with partial leaks as ~�c,
and index ~c refers to such c densities. The same quantity is

TABLE III. Summary of the escape rate formulas for strongly
chaotic systems with a leak I. The measures are �ðIÞ ¼ R

I ��ðxÞdx
and �cðIÞ ¼

R
I �cðxÞdx. The averages h� � �i and h� � �ic correspond

to averages � and �c, respectively. The corresponding formulas for
systems with partial leaks are given in Eqs. (47), (49), and (71).

Escape rate formula � Equation

Sabine’s estimate �ðIÞ
htcolli (13)

Naive (Eyring) estimate (��) � ln½1��ðIÞ

htcolli (23)

Improved estimate (�1) � ln½1��cðIÞ

htcollic (31)

Exact expression he��tcoll ic ¼ 1��cðIÞ (65)
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obtained in a local approach by considering the proportion
of trajectories not crossing the leak in one iteration of the
true-time map. In the full leak case this is 1� R

I �cðxÞdx ¼
1��cðIÞ which appears on the right-hand side of
Eq. (65). When the leak is partially reflecting, the portionR
I RðxÞ~�cðxÞdx of the leak’s measure enhances the number

of survivors. The full proportion S is

S ¼ 1�
Z
I
~�cðxÞdxþ

Z
I
RðxÞ~�cðxÞdx

¼ 1�
Z
I
½1� RðxÞ
~�cðxÞdx ¼ hRðxÞi~c; (70)

where we used the fact that the last integral [which is exactly
mcðIÞ of Eq. (48)] can be written as an integral over the full
phase space

R
�½1� RðxÞ
~�cðxÞdx, since outside the leak

R � 1, and we used the normalization
R
� ~�cðxÞdx ¼ 1.

This means that the remaining energy portion is the full
phase-space average of the reflection coefficient hRi~c.
Equating the global (69) and local (70) expressions we obtain

he�~�tcoll i~c ¼ hRi~c: (71)

This is a general exact relationship for the energy escape rate
~� that applies to all cases and is one of our main new results.
In Sec. III.D we provide a derivation of this expression based
on Perron-Frobenius operators. Equation (71) goes over into
Eq. (65) for full leaks, i.e., for R ¼ 0 inside the leaks.

Finally it should be noted that the value of our escape rate
relations (65) and (71), just like that of the Pianigiani-Yorke
formula (32), is conceptual. They do not provide an efficient
way for determining the escape rate (that is well handled
numerically); rather they illustrate how the escape rate of the
flow follows from properties of the true-time map.

D. Operators for true-time maps with partial leaks

Consider an invertible open map f. Its escape rate 	 is
known to appear as the largest eigenvalue of an operator, the
Perron-Frobenius operator. This operator is defined (Tél,
1987; Lai and Tél, 2011) by the iteration scheme of a density
function �:

e�	�nþ1ðx0Þ ¼ �nðxÞ
jJ ðxÞjj

x2f�1 ðx0 Þ

; (72)

where J ðxÞ is the Jacobian at point x. By considering the
right-hand side to be the result of an operator acting on
function �, the left-hand side shows that e�	 is an eigenvalue
(in the space of positive �s, the largest eigenvalue) of this
operator. Equation (72) expresses that the total probability in
a small region at step n is the same as in the image of that
region under map f, when taking into account a factor e	 for
compensating the escape. The escape rate follows from the
requirement that the integral of �n over a fixed phase-space
region containing the chaotic saddle remains finite in the limit
n ! 1. The limit distribution �1 is then the density �c of the
conditionally invariant measure concentrated on the unstable
manifold of the chaotic saddle. This is the well-known picture
for open maps (Tél, 1987; Lai and Tél, 2011).

As a generalization of this idea, in a true-time problem
where the distribution of collision times tcollðx0Þ is known, the

continuous-time escape rate � is determined by the iteration
scheme

e��tcollðx0Þ�nþ1ðx0Þ ¼ �nðxÞ
jJ ðxÞjj

x2f�1ðx0 Þ

: (73)

In this equation the true-time property is incorporated on the
left-hand side in the multiplicative factor containing the
escape rate, consistent with our convention for tcoll in
Eq. (18). This is a higher-dimensional extension of the true-
time formalism used for one-dimensional maps by Kaufmann
and Lustfeld (2001) and, in a slightly different context, by
Gaspard (1996, 1998).

The escape rate � again can be considered as an eigenvalue,
and its value follows from the requirement that the integral of
�n over a fixed phase-space region containing the chaotic
saddle remains finite in the limit n ! 1. The limit distribution
�1 is the density �c of the conditionally invariant measure of
the true-time map. Equation (73) is consistent with the prop-
erties of the flow and map measures in billiards discussed in
Sec. III.B. A nonzero stationary c density of the map can exist
only if we compensate the exponential loss of the densities in
time t (and coordinate r). This can be achieved by applying an
instantaneous ‘‘kick’’ to the flow density in the form of a
multiplicative factor Kðx;x0Þ> 1 applied when the billiard
wall is reached at ðx; r ¼ tcollðxÞÞ � ðx0; r ¼ 0Þ. The flow
density right after the collision can then be written as

�Fcðx0; r ¼ 0Þ ¼ Ac�cðx0Þ ¼ Kðx;x0Þ�Fcðx; r ¼ tcollðxÞÞ
¼ AcKðx;x0Þ�cðxÞe��tcollðxÞ:

This is consistent with Eq. (73) applied to the limit distribution
of billiards (J � 1) if Kðx;x0Þ ¼ e�½tcollðxÞþtcollðx0Þ
.

The problem of maps with partial leaks can be treated as a
further generalization. Since the dynamics of trajectories is
then closed, we write the map as fclosed. The energy escape
rate ~� for partial leaks follows from an iteration scheme in
which the reflection coefficient RðxÞ also appears, in a similar
spirit as in Tanner’s work on ray dynamics with transmission
and reflection in periodically driven problems (Tanner, 2009;
Chappell et al., 2013; Chappell and Tanner, 2013). In our
notation, R shows up on the right-hand side since there is an
immediate loss of density wherever R is different from unity.
If collision times are also taken into account, we find

e�~�tcollðx0Þ ~�nþ1ðx0Þ ¼ RðxÞ~�nðxÞ
jJ ðxÞjj

x2f�1
closed

ðx0 Þ

: (74)

The limit distribution ~�1 is the density ~�c of the condition-
ally invariant measure in the true-time map of the partially
leaking system. (One might also have leaks in a naturally
open system, in which case the open map f should be used in
the relation above.) Full leaks can also be seen as partial leaks
with RðxÞ ¼ 0 for x 2 I. For traditional maps with leaks,
tcollðxÞ ¼ 1, Eq. (74) yields the escape rate ~	 of such maps:
~� � ~	. It is interesting to see from Eqs. (73) and (74) that in
closed systems (R � 1, � ¼ 0) the Perron-Frobenius operator
coincides with the classical form (59). There is then no
essential difference between the true-time and the map pic-
ture due to the simple proportionality of the flow’s and the
map’s measure as expressed by Eq. (53).
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The operator formalism for true-time maps with partial
leaks developed above is a new result of our paper. It unifies
and generalizes all previous approaches. In fact, Eq. (74)
suggests that the physically rather different phenomena of
collision times and of reflection (without taking into account
collision times) are described by essentially the same mathe-
matical mechanism: the density ~�ðxÞ in Eq. (74) should be
multiplied by a function of the phase-space coordinates x. As
a consequence, the inclusion of the collision time distribution
has effects on the iteration similar to those of a reflection
coefficient larger than unity. We note that Eq. (74) is a
particular case of the generalized operators considered in
the mathematical literature [see, e.g., Faure, Roy, and
Sjoestrand (2008)], augmented here with a well-defined
physical interpretation.

It is now straightforward to obtain an exact relation for ~�.
Consider the c density ~�cðxÞ of a system with full or partial
leaks, i.e., the limit distribution of Eq. (74). By integrating
both sides over the full phase space, we obtain

he�~�tcoll i~c �
Z
�
dx0e�~�tcollðx0Þ ~�cðx0Þ

¼
Z
�
dx0 RðxÞ~�cðxÞ

jJ ðxÞjj
x2f�1

closed
ðx0 Þ

¼
Z
�
dxRðxÞ~�cðxÞ ¼ hRi~c; (75)

where we used jJ ðxÞj¼jdx0j=jdxj, and fclosedð�Þ ¼ �.
This provides a proof of our exact formula (71).8 Although
Eqs. (71) and (75) are identical, it is worth emphasizing that
Eq. (71) was obtained from a qualitative argument based on
properties of billiard dynamics. Since Eqs. (73) and (74) are
valid for any true-time map, the derivation presented here
shows that Eq. (75) is not restricted to billiards; it holds for
leaky systems in general.

E. Examples in leaky baker maps

In order to illustrate our formalism in simple examples, we
consider area-preserving baker maps. This is motivated not
only by the possibility of an analytic treatment, but also by
the fact that several previous publications (Nonnenmacher
and Zworski, 2005; Keating et al., 2006; Novaes et al., 2009;
Pedrosa et al., 2009, 2012; Ermann et al., 2012) use leaky
versions of these maps to investigate quantum systems (see
Sec. VI.E.2).

First we consider the triadic area-preserving baker map
defined on the unit square ðx; yÞ 2 ½0; 1
 � ½0; 1
:

ðxnþ1;ynþ1Þ¼
�
1
3xn;3yn

�
; for yn�1=3;

ðxnþ1;ynþ1Þ¼
h
1
3ðxnþ1Þ;3yn�1

i
; for 1=3�yn<2=3;

ðxnþ1;ynþ1Þ¼
h
2
3ðxnþ2Þ;3yn�2

i
; for yn�2=3; (76)

with a simple choice of the leak: I is a band of height 1=3 in
the expanding (y) direction in the middle of the square. In this
model there are no partial leaks present. The collision times
take on two values only: tcoll ¼ �1 if the point is mapped into
the column x < 1=3, and tcoll ¼ �2 if the particle is mapped
into the column x > 2=3.

We start from a constant distribution �0 � 1 on the unit
square. Since the Jacobian is unity, Eq. (73) tells us that the
measure (under �0) of the lower band y < 1=3 is mapped on
the column x < 1=3with the measure on it multiplied by e��1 .
Similarly, the measure of the right column 2=3< x< 1 will
be e��2=3. The measure from the midband is not mapped
anywhere because it is in the leak.

This construction extends to finer scales in a self-similar
manner due to the simple choice of the leak. The measure
converges to the c measure, which therefore has to remain
(conditionally) invariant under the above iteration. The value
of the escape rate therefore follows by prescribing the invari-
ance of the c measure. In this case it is sufficient to consider
the measure projected on the x axis because the density is
constant along y. By construction, this measure is originally
1, and after one step it is the sum of the two values just
determined, and thus

e��1 þ e��2 ¼ 3: (77)

This is an (irrational) equation for the escape rate �. The
validity of the new equation (65) can be easily verified:

he��tcollic ¼ e���1
e��1

3
þ e���2

e��2

3
¼ 2=3;

which corresponds to 1��cðIÞ since the leak has height 1=3
and �c is independent of y.

In the limit of traditional maps, �1 ¼ �2 ¼ 1, Eq. (77)
yields � ! 	 ¼ lnð3=2Þ. Since the stretching rate is 3 every-
where in the phase space, the maps average Lyapunov ex-
ponent is �� ¼ ln3. The Kantz-Grassberger formula (29) then

yields Dð1Þ
1 ðIÞ ¼ ln2= ln3, i.e., the unstable manifold of this

leaky baker map carries the structure of the classical triadic
Cantor set.

As a more complex example, consider the dyadic baker
map

ðxnþ1;ynþ1Þ¼ð12xn;2ynÞ; foryn�0:5;

ðxnþ1;ynþ1Þ¼
�
1�ð1�xnÞ

2
;1�2ð1�ynÞ

�
; foryn>0:5;

(78)

with collision times taking on again two values only: tcoll ¼
�1 if for the image point x0 < 1=2, and �2 otherwise, but with
partial leaks. These leaks are introduced with reflection co-
efficients R1; . . . ; R4 on four horizontal strips of height 1=4, as
Fig. 11 illustrates.

8Consider defining the collision time as a function of the initial

coordinate f�1ðxÞ as t̂collðf�1ðxÞÞ ¼ tcollðxÞ, or t̂collððxÞÞ ¼ tcollðfðxÞÞ.
It is then natural to shift the factor e��t̂collðxÞ to the right-hand side of

Eq. (74), and the same argument that led to Eq. (75) leads to

hRe�t̂coll iĉ ¼ 1. For the full leak case, Eq. (71) becomes he�t̂coll iĉ ¼
1þ�cðIÞ, as shown by Altmann, Portela, and Tél (2013). The

distance from f�1ðxÞ to x [i.e., tcollðxÞ] is the same as from x to

f�1ðxÞ. The latter distance is obtained along a trajectory that starts at
ðs;�pÞ and ends at fðs;�pÞ. By introducing the operator AðxÞ ¼
Aðs; pÞ ¼ ðs;�pÞ, this distance is t̂collðAðxÞÞ. We thus find the simple

relation t̂collðxÞ ¼ tcollðAðxÞÞ and, since f�1 ¼ AfA and A2 ¼ 1,
tcollðfðxÞÞ ¼ tcollðAðxÞÞ and tcollðAðf�1ðxÞÞÞ ¼ tcollðxÞ.
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We again consider �0 � 1. After one iteration one finds
that four different c densities appear in the four quadrants of
the unit square. The next iteration refines the picture, but one
feature remains: the c measure coarse grained on these four
quadrants has four different densities. The values on the four
rectangles change as iteration goes on, but the four-value
structure remains unchanged.

In order to find an analytic expression for the energy
escape rate, it proves to be sufficient to deal with the
coarse-grained c density ~�cðyÞ projected on the expanding
(y) axis. As follows from above, after a large number of
iterations, this c density is piecewise constant and has a
jump at y ¼ 1=2. We therefore assume its form as

~�cðyÞ ¼
� 2� c; for 0< y< 0:5;

c; for 0:5 � y � 1;
(79)

which fulfills normalization
R
1
0 ~�cðyÞdy ¼ 1 for any c. The

values of c and ~� follow from the requirement that this
projected measure remains invariant after one more time step.

The lowest horizontal strip of height 1=4 [and of cmeasure
ð2� cÞ=4] is mapped, in view of Eq. (74), on the bottom left
quarter of the square with a new measure expð~��1ÞR1ð2�
cÞ=4 (note that the Jacobian is unity). The second horizontal
strip is mapped on the top left quarter with c measure
expð~��1ÞR2ð2� cÞ=4. The third and fourth strips come into
the remaining quarters with weights expð~��2ÞR3c=4 and
expð~��2ÞR4c=4, respectively (the last one representing the
top right quarter).

The criterion of the invariance of the projected measure
is that the total c measure in the two bottom (top) quarters is
the same as the integral of Eq. (79) over 0< y � 1=2
(1=2< y � 1). Thus, we find two equations

1� c

2
¼ 1

4
½e~��1R1ð2� cÞ þ e~��2R3c
;

c

2
¼ 1

4
½e~��1R2ð2� cÞ þ e~��2R4c
:

(80)

After rearrangement, we obtain

4� 2e~��1R1 � 2e~��2R4 þ e~�ð�1þ�2ÞðR1R4 � R2R3Þ ¼ 0

(81)

and

c¼ 4�2e~��1R1

2�e~��1R1þe~��2R3

¼ 2e~��1R2

2�e~��2R4þe~��1R2

: (82)

Equation (81) is an implicit equation for the escape rate,
while Eq. (82) provides the value of c determining the

jump in the c measure (79) projected onto the y axis. We
verified that ~� obtained from such implicit relations agrees
with direct numerical simulations of the baker map including
the intensity Jn and real time tn.

To have more analytic insight, now we focus on the
particular case of �1 ¼ �2 ¼ 1 (map with partial leaks).
Equation (81) leads then to a quadratic expression for escape
rate ~	:

4� 2ðR1 þ R4Þe~	 þ ðR1R4 � R2R3Þe2~	 ¼ 0: (83)

As a simple particular case, we assume that there is a full
leak over the uppermost horizontal band and no partial leak
anywhere: R4 ¼ 0, R1 ¼ R2 ¼ R3 ¼ 1. From Eqs. (82) and

(83) we obtain e	 ¼ ffiffiffi
5

p � 1, c ¼ 3� ffiffiffi
5

p
. Since the average

Lyapunov exponent in this uniform baker map is �� ¼ ln2,
the stable manifold’s information dimension is, in view of
Eqs. (27) and (29),

DðsÞ
1 ¼ 2� lnð ffiffiffi

5
p � 1Þ
ln2

;

clearly below 2. The numerically generated unstable manifold
of this map can be seen in the left panel of Fig. 12 and
confirms the fractal property. The right panel shows the
projected c measure which clearly exhibits a jump at y ¼
1=2. The plateau values agree well with the theoretical
predictions.

Had we taken the leak with R1 ¼ 0 (R2 ¼ R3 ¼ R4 ¼ 1),
the same result would have been obtained. The situation is
different, however, for R2 ¼ 0 or R3 ¼ 0. In the first case, we
see from Eq. (82) that c ¼ 0, implying a vanishing c measure
for the entire upper half square. The escape rate is then 	 ¼
ln2 which implies DðsÞ

1 ¼ 1. Fractality is then lost, and the

stable and unstable manifolds are one dimensional. The
dynamics is fully leaked, there is no chaos, and a single
unstable fixed point, the one at (0, 0), governs the escape
dynamics (hence 	 ¼ ��). For R3 ¼ 0, c ¼ 2, the c measure
vanishes in the bottom half square, and the situation is
otherwise the same. These observations again illustrate that
the location of a leak of the same area is very important, and
even chaos can be lost if they do not overlap with a period-1
orbit.

FIG. 11 (color online). Illustration of the dynamics of a dyadic

true-time area-preserving baker map with partial leaks. The right

square is obtained by applying baker map (78) to the left panel.
FIG. 12 (color online). Numerical results for the dyadic baker

map with a full leak I over the uppermost strip of height 1=4: R4 ¼
0, R1 ¼ R2 ¼ R3 ¼ 1, and �1 ¼ �2 ¼ 1. Left panel: Unstable

manifold obtained as the end point of particles surviving up to n ¼
30 iterations. Right panel: Distribution of the c density projected on

the y axis �cðyÞ. The straight lines are the analytical results 2� c ¼ffiffiffi
5

p � 1 for y < 0:5 and c ¼ 3� ffiffiffi
5

p
for y > 0:5.
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Now we consider the more general case of a partial leak of
arbitrary reflection coefficient over the uppermost strip
R4 � 1 (R1 ¼ R2 ¼ R3 ¼ 1). The solution of Eqs. (82) and
(83) leads to

e~	 ¼ 2� c; c ¼ R4 � 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
4 � 2R4 þ 5

q
R4 � 1

:

We took here the þ root because for the � root the density
2� c for y 2 ½0; 0:5
 would be negative. Using the result
above and Eq. (83) with R1 ¼ R2 ¼ R3 ¼ 1 it is not difficult
to confirm the validity of Eq. (71) for this partial leak case. As
expected, for R4 ! 1 we obtain c ¼ 2� c ¼ 1 and ~	 ¼ 0.

IV. IMPLICATIONS IN STRONGLY CHAOTIC SYSTEMS

A. Dependence of the escape rate on the leak

The main message of Sec. II is that for systems with finite
leaks the naive theory based on the closed dynamics differs
from the correct theory based on open systems.One of themost
striking and best studied effects arising due to this difference is
the dependence of the escape rate on the position of a fixed-size
leak (Paar and Pavin, 1997; Schneider, Tél, andNeufeld, 2002;
Altmann, da Silva, and Caldas, 2004; Bunimovich and
Dettmann, 2007; Afraimovich and Bunimovich, 2010;
Bunimovich and Yurchenko, 2011; Demers and Wright,
2011). This result is shown in Fig. 13 for the cardioid billiard
with a leak I ¼ ½sl � �s; sl þ �s
 � ½pl � �p; pl þ �p

with fixed size �s ¼ 0:1, �p ¼ 0:2, pl ¼ 0, and different
positions sl. Physically this type of leak, illustrated in
Figs. 13(a) and 13(b), could be realized in optical systems by

replacing the perfect mirror boundaries in the region

½sl � �s; sl þ �s
 by dielectric material with refraction index

n ¼ 1= sinð�pÞ. The results in Fig. 13(c) confirm the non-

trivial dependence of � on sl, which can take values

both smaller and larger than the naive estimation �� ¼
� lnð1� �s�pÞ=htcolli given by Eq. (23). The theory devel-

oped in Sec. II.B tells us that � depends on �cðIÞ and htcollic
through the improved escape rate formula [Eq. (31)].

Figures 13(d) and 13(e) show that both factors �cðIÞ and

htcollic contribute to � � �� but the variation of �cðIÞ is the
stronger factor in the dependence of � on sl (at least for this
size of the leak). The results also indicate that the improved

escape rate formula [Eq. (31)] provides an excellent approxi-

mation of the numerical results [and to Eq. (65)] in this

example.
Apparently the first to report the dependence of the maps

escape rate 	 on leak position were Paar and Pavin (1997).

The most pronounced effect shown for the doubling map (see

Fig. 14) was the relationship between small values of 	 and

positions of the leak around short periodic orbits of the

system [see also Altmann, da Silva, and Caldas (2004) and

Bunimovich and Yurchenko (2011)]. This effect is less pro-

nounced but also visible in Fig. 13, where local minima of the

� vs sl curve are obtained when the leak is placed around the

lowest periodic orbits of the billiard: the horizontal orbit at

ðs ¼ 0; p ¼ 0Þ � ðs ¼ �1; p ¼ 0Þ and the vertical orbit

ðs ¼ �0:5; p ¼ 0Þ � ðs ¼ 0:5; p ¼ 0Þ.
An intuitive explanation of these results is found by look-

ing at the images and preimages of leak I (Paar and Pavin,

1997; Buljan and Paar, 2001). The surviving trajectories at

iteration n correspond to all trajectories that are not in any of
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FIG. 13 (color online). Dependence of the escape rate on the position of the leak. (a) Cardioid billiard with a leak centered at some position

sl with pl ¼ 0. (b) Phase-space representation showing the leak I ¼ ½sl � �s; sl þ �s
 � ½pl � �p; pl þ �p
 with �p ¼ 0:2, �s ¼ 0:1,
pl ¼ 0, and sl 2 ½0; 1
. (c) The escape rate � obtained from numerical simulations such as the ones in Fig. 1. (d) The c measure of the leak

�cðIÞ and (e) the inverse of the mean collision time. Results in (d) and (e) were calculated from �cðs; pÞ as described in Appendix B. Using

these values to compute � through Eq. (31) leads to results indistinguishable from those of (c). The estimates based on the closed billiard

theory of Sec. II.A are shown as horizontal lines and correspond to the following: in (c) the naive estimate �� given by Eq. (23), in

(d) �ðIÞ ¼ �s�p, and in (e) htcolli given by Eq. (14). The y axis on the right edges of (c)–(e) indicates the relative deviation between these

values and the actual data.
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the n preimages of I. Now, if preimages overlap repeatedly,

there are more surviving trajectories for increasing n, and
therefore the escape rate is smaller. The overlap between the

leak and its images (or preimages) is obviously increased

when the leak is around periodic orbits. We already learned in

Sec. II.B that the escape rate can be calculated in terms of the

periodic orbits inside the leak through Eq. (35). In this

formalism, orbits with low period play an important role,

with weights inversely proportional to their instability. If

periodic orbits with low period (in particular, those with small

expansion rates) are in the leak, they appear in the sum (35)

and reduce 	.
This qualitative argument has been rigorously extended for

different classes of strongly chaotic systems, such as 1D

expanding linear maps (Keller and Liverani, 2009;

Afraimovich and Bunimovich, 2010; Bakhtin and

Bunimovich, 2011; Bunimovich and Yurchenko, 2011;

Bunimovich, 2012; Ferguson and Pollicott, 2012). An impor-

tant feature in these approaches is that all systems investi-

gated admit a Markov partition and the holes are chosen to

coincide with one element of the partition. For small leak

sizes, a fractal dependence of the escape rate 	 has been

observed (Bunimovich and Yurchenko, 2011; Knight et al.,

2012) [see also Altmann and Endler (2010)]. As noticed by

Bakhtin and Bunimovich (2011) and Bunimovich and

Yurchenko (2011), the position dependence of 	 might be

so strong that there are cases in which a hole 2 times larger

than another one can have a smaller escape rate. These results

can also be understood in the exact expansions developed and

applied to strongly chaotic billiards with finite but small leaks

in Bunimovich and Dettmann (2007) and Dettmann (2013).
Beyond the Markovian approach, an alternative explana-

tion based on recurrence times and Kac’s lemma appears in

Altmann, da Silva, and Caldas (2004). While a great number

of analytical results can be obtained in 1D Markov systems,

the results shown above in the cardioid billiard (area-

preserving true-time map) appear to show a smoother depen-

dence on position.

We mention that strong dependences are observed also by
varying other parameters of the leaks such as the orientation
of (asymmetric) leaks, as observed for Hamiltonian systems
in Schneider, Tél, and Neufeld (2002). Interestingly, similarly
complicated even fractal dependences with the position of the
leak have also been observed in the diffusion coefficient
(Klages, 2007; Knight et al., 2012). Exponential decay and
leaks with different shapes were investigated in detail in the
periodic Lorentz gas in Demers, Wright, and Young (2010).

Complementary to the position dependence of �, the de-
pendence on the leak size is illustrated in Fig. 15 (Schneider,
Tél, and Neufeld, 2002; Altmann, da Silva, and Caldas, 2004;
Bunimovich and Dettmann, 2007). We change the size of
the leak I ¼ ½sl � �s; sl þ �s
 � ½pl � �p; pl þ �p
 by
changing �p ¼ �s at a fixed sl ¼ 0:4, pl ¼ 0, as illustrated
in Figs. 15(a) and 15(b). The dependence of � on �s depicted
in Fig. 15(c) follows roughly the dependence of �� [straight
diagonal line in (c)] but a nontrivial behavior is observed
apart from this trend. Again, both the measure�cðIÞ shown in
Fig. 15(d) and the mean collision time htcollic shown in
Fig. 15(e) are clearly different from the closed-system pre-
diction (straight lines). The oscillations in �cðIÞ are stronger
than the ones in htcollic (at least for the leak sizes considered
here) and provide the strongest contribution to � � ��. In 1D
piecewise-linear chaotic maps it was shown that the main
properties (escape rate, entropy, fractal dimensions) of the
leaky map vary nonsmoothly with the leak size (as the devil’s
staircase) (Życzkowski and Bollt, 1999; Lai, Życzkowski,
and Grebogi, 1999; Demers and Wright, 2011) and position
(Georgiou, Dettmann, and Altmann, 2012). Note that in view
of the dependence of � on the leak position discussed above,
one can easily find situations in which larger leaks have
smaller escape rates not only in the case of Markov leaks.

One particularly important limit is the case of vanishingly
small leaks �s, �p ! 0. This is the traditional limit mathe-
maticians are interested in (e.g., in the context of Poincaré
recurrences) (Haydn, Lacroix, and Vaienti, 2005). It is inter-
esting to see what happens with the position dependence of 	
in the limit �ðIÞ ! 0. For the case of the doubling map with
Markov leaks, the escape rate 	 depends only on the periodic
orbit of the lowest period p inside the leak and is given in
leading order by [see, e.g., Keller and Liverani (2009) and
Bunimovich (2012)[

	 ¼ �ðIÞð1� 2�pÞ; (84)

for arbitrary small �ðIÞ. In this limit almost every leak
position will have p ! 1 so that Sabine’s result is recovered
in�—almost every case. Indeed also the results in Figs. 15(c)
–15(e) show that all quantities converge to the closed sys-
tem’s prediction (straight lines) in this limit. The dashed line
in Fig. 15(c) shows that the relative difference ð�� ��Þ=�� is
of the order of 10% for�ðIÞ 	 0:1 but that it also consistently
decays for small �s. Altogether these convergences are
physically relevant, particular manifestations of the more
general convergence �cðs; pÞ ! ��ðs; pÞ for �ðIÞ ! 0, dis-

cussed in Sec. II.B. For finite but small leaks, an approxima-
tion which improves Eq. (84) was obtained by Georgiou,
Dettmann, and Altmann (2012) for maps with complete
symbolic dynamics; see Fig. 14. It considers not only the
period p but also the full symbolic dynamics of the periodic
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2nd order approximation
True valuep=1

p=2
p=3p=3 p=3

FIG. 14 (color online). Dependence of the escape rate 	 on the

location of the leak in the strongly chaotic doubling map xnþ1 ¼
2xnðmod 1Þ. Leaks have �ðIÞ ¼ 2�7 and are placed in nonoverlap-

ping positions starting at x ¼ 0 (Markov partitions). The periods p
of the shortest unstable periodic orbits are marked at the positions x
of leaks containing these orbits. The approximations to the true 	
(squares) correspond to 	� ¼ � ln½1��ðIÞ
 as in Eq. (23) (hori-

zontal line), Eq. (84) (squares, first order), and the corrected results

obtained by Georgiou, Dettmann, and Altmann (2012) (circles,

second order). Data by O. Georgiou.
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orbits inside I and shows that the average of 	 taken over all
(Markovian) leak positions is larger than �ðIÞ (and 	�),
contrary to what Eq. (84) suggests. An alternative approach
which leads to an optimal expansion of � versus the leak size
was developed by Bunimovich and Dettmann (2007) and
applied to billiards. See also Bunimovich and Webb (2012)
and Cristadoro, Knight, and Degli Esposti (2012) for recent
alternative approaches.

B. Multiple leaks and basins of escape

The idea of introducing more than one leak into the system
is very natural in numerous circumstances (Bleher et al.,
1988). Quantum systems often have more than one leak due
to input, output, transmission, reflection, or antennas, and
multiple leaks in chaotic systems have also been considered
(Buljan and Paar, 2001; Bunimovich and Dettmann, 2005,
2007; Portela et al., 2007; Dettmann and Georgiou, 2011b).
The results of Sec. IV.A show that the c measure depends
sensitively on the position of the leak. As a consequence, the
results for multiple leaks are not only different from those
obtained in the closed-system approximation, but also cannot
be easily obtained from the results for each leak alone. For
instance, with two leaks I1 and I2, the escape rate is, in
general, different from the sum of the single leak case:

�ðI1 þ I2Þ � �ðI1Þ þ �ðI2Þ: (85)

This result is not surprising in view of the nontrivial depen-
dence of � on the leak size, reported in Fig. 15, in which case it
was clear that doubling the leak size does not imply doubling
�. Indeed, the difference reported in Eq. (85) has been under-
stood in terms of the overlap of the preimages of the two leaks

(Buljan and Paar, 2001; Pikovsky and Popovich, 2003) and has
been developed more systematically by Bunimovich and
Dettmann. They found that �ðI1 þ I2Þ can be expressed as
�ðI1Þ þ �ðI2Þ plus a series of correlation terms (with decreas-
ing importance) (Bunimovich and Dettmann, 2007).

In contrast to the escape rate, the dimensions of the
invariant sets of the system opened with multiple leaks can
be estimated from the dimensions of the invariant sets with
single leaks. Consider the case of two leaks I1 and I2. The
saddle (or the manifolds) obtained for the case in which I1
and I2 are simultaneously opened corresponds to the inter-
section of the saddle (manifold) when only I1 is opened with
the saddle (manifold) obtained when only I2 is opened. Very
generally, fractal dimensions DðI1 þ I2Þ of the intersection
are given by (Falconer, 1985)

DðI1 þ I2Þ ¼ DðI1Þ þDðI2Þ �Dembedding;

whereDðI1Þ [DðI2Þ] is the dimension of the set obtained when
only I1 (I2) is opened and Dembedding is the dimension of the

embedding space. For full leaks, the dimension and the
escape rate are related to the Lyapunov exponent through
Eq. (29). The argument above can trivially be extended to
more then two leaks. It is not valid, however, in cases when
the saddles of the two leaks are trivially connected to each
other (e.g., I2 � I1 or I2 is an image of I1).

The interesting phenomenology of multiple leaks is better
illustrated through an example. We consider the cardioid
billiard with two leaks I1 and I2 of the same size �ðI1Þ ¼
�ðI2Þ ¼ 0:04 but at different positions, as depicted in
Fig. 16. We first consider the effect of each of these leaks
separately. Following the procedures described in Fig. 13,
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FIG. 15 (color online). Dependence of the escape rate on the size �s�p of the leak. (a) Cardioid billiard with a leak centered at sl ¼ 0:4,
pl ¼ 0 and variable size. (b) Phase-space representation showing the leak I ¼ ½sl � �s; sl þ �s
 � ½��p;þ�p
, with �p ¼ �s 2
½0; 1= ffiffiffi

5
p 
. (c) Escape rate � as a function of �s�p. The improved estimate (31) again provides a good approximation to the numerical

results. (d) The c measure of the leak �cðIÞ, and (e) the inverse of the mean collision time. Results from (d) and (e) were calculated from

�cðs; pÞ as described in Appendix B. Bold lines: numerical results. Thin lines: estimates based on the closed billiard theory of Sec. II.A: in

(c) the naive estimate �� given by Eq. (23), in (d) �ðIÞ ¼ �s�p, and in (e) htcolli given by Eq. (14). Dashed lines: relative deviation between

thin and thick lines; see the y axis at the right edge of (c) and (d).
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we obtain the results reported in the first two columns of
Table IV.

We now consider the case when both leaks are simulta-
neously open. The result reported in Table IV confirms in-

equality (85). Similarly, we compute�cðIiÞ, the cmeasure for
both leaks open calculated at Ii. The mean collision time is not
defined with respect to a given leak as it depends on �c in the

whole phase space, hence the identical values in Table IV. A
natural question is that of the nature of the sets of initial
conditions which escape through each Ii, i.e., of the properties
of the escape basins Bi, as the ones depicted in Fig. 16. The

border between the two escape regions contains the stable

manifold of the chaotic saddle (Lai and Tél, 2011). Note that

the total area of the basins corresponds to the amount of initial

conditions that escape through each leak, while �cðI1Þ and
�cðI2Þ are proportional to the rate of escape through each leak
for large times. Note that the escape rate should be independent

of the leak through which the particle flux is monitored when

both leaks are opened simultaneously. The obtained � values

are indeed the same within the numerical precision (three

columns on the right). Apart from the standard c measure (in

�c and htcollic),which considers normalization in the full phase

space, we have also computed the c measure restricted to the

set of points ðxÞ which escape through leak Ij. These results

appear in the last two rows of Table IVand carry a superscript

y; j. In addition, it is interesting to note that all values are

consistent with those obtained from � ’ � lnð1��cÞ=htcollic
with �y;j

c ðIjÞ, htcolliy;jc .

It was shown by Bunimovich and Yurchenko (2011) that it
is possible to construct examples in which arbitrarily small

escape rates are achieved even in the presence of leaks of

arbitrarily large sizes. This surprising claim can be under-

stood intuitively from the results of this section. Starting from

a system with an arbitrarily small leak, consider expanding

the leak in such a way that the new leak also contains many

images (and/or preimages) of the original leak. This new leak

can take an arbitrarily large proportion of the phase space
without affecting the saddle and thus the escape dynamics

which is by construction slow.

C. Emission

The most natural observable quantity in the configuration

space of leaking systems is the emission of trajectories

through the leak. Here we provide a representative configu-

ration in which emission plays an important role and con-

nect the observed quantities to our theoretical formulation.
Consider that detectors are placed around a circle far away

from the cardioid billiard, as usually considered in optical

microcavities. We introduce a leak on the right-hand side of

the cardioid billiard with sl ¼ 0, pl ¼ 0, �s ¼ 0:5, and

�p ¼ 0:2. The detectors collect the intensity of light emitted

through the leak under different polar angles � measured

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

p

s

I1 I2

FIG. 16 (color online). Escape basins for two leaks in the cardioid

billiard. Leak I1 is centered at sl ¼ �0:5, pl ¼ 0 with �s ¼ �p ¼
0:2, and I2 at sl ¼ 0:6, pl ¼ 0 with �s ¼ 0:04, and no restriction in

the collision angle is applied (i.e., �p ¼ 1). Both leaks have the

same area in the phase space; nevertheless, 41% of the trajectories

escape through leak I1 (dark region) while 59% of the trajectories

escape through leak I2 (light region) when both leaks are open.

Different characteristic values obtained for this system are reported

in Table IV.

TABLE IV. Measurements in the system depicted in Fig. 16. The superscripts y; j in the last two rows indicate that the c measure was
restricted to the set of points x which escape through leak Ij. The �’s in the three last columns are consistent with each other and with the

values obtained from �1 ¼ � lnð1��cÞ=htcollic with �y;j
c ðIjÞ, htcolliy;jc (the values in the last two rows of these columns). Obviously, �y;j

c ¼
�c whenever only Ij is open (Ij ¼ fI1; I2; I1 þ I2g, compare rows 5 and 6 to 7 and 8). For the computation procedures; see Fig. 42 [for the y; j
cases the set Sðt�Þ was divided into two subsets according to the leak through which trajectories escape]. Error bars are of order 5 in the last
digit.

Leaks open during experiment: Only I1 Only I2 Both I1 and I2
Measurement ( # ) applied in leak Ij ¼ ð!Þ I1 I2 I1 þ I2 I1 I2

�ðIjÞ 0.04 0.04 0.08 0.04 0.04

� 0.016 07 0.023 60 0.037 76 0.037 80 0.037 73

�cðIjÞ 0.028 56 0.043 32 0.066 97 0.027 66 0.039 31

htcollic 1.805 9 1.879 9 1.842 4 1.842 4 1.842 4

�y;j
c ðIjÞ 0.028 56 0.043 32 0.066 97 0.069 99 0.065 00

htcolliy;jc 1.805 9 1.879 9 1.842 4 1.927 3 1.786 9
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from the center of the billiard. Numerically, we distribute a
large number of trajectories with an initial density �0ðxÞ in
the phase space and record the emission angle � of escaped
trajectories in the configuration space. The proportion of
trajectories escaping in a small interval around � is mea-
sured. For short times, the distributions are very irregular and
depend strongly on the initial distribution �0ðxÞ of the tra-
jectories inside the cavity. After a transient period of the time
�ðx; tÞ ! �cðxÞ, the total intensity decays exponentially and
the shape of the spatial distribution remains the same.
Figure 17 shows the spatial distribution as a function of �,
the so-called far-field emission. A multipeaked nonuniform
emission is observed. The spatial density of light rays for
t � 1 is shown in Fig. 18.

For long times, the emission is fully described by the
c density �cðxÞ inside the leak (x 2 I). For instance, the
emission angle � is a geometrical function of x ¼ ðs; pÞ
in the leak, � ¼ �ðxÞ, and the far-field intensity %ð�Þ is

%ð�Þ �
Z
I
�cðxÞð���ðxÞÞdx: (86)

Figure 19 shows �cðxÞ in I for our example. The leak placed
only on the right side of the billiard s 2 ½�0:5; 0:5
 and
the nonuniform distribution of �cðxÞ are responsible for the
peaked and nonuniform emission in Figs. 17 and 18. The
filamentary structure of �cðxÞ inside I seen in Fig. 19 reflects
the filamentary pattern of the unstable manifold of the chaotic
saddle, as discussed in Sec. II.B. After performing the pro-
jection by �cðs; pÞ as indicated in Eq. (86), these filaments
give rise to the zigzagged far-field emission shown in Fig. 17.
In Sec. VI.D we see that similar emission properties can be
experimentally observed in lasing microcavities, in which
case the factor 1� RðxÞ has to also be included in Eq. (86)
in order to account for the partial reflection-transmission
property of the leak (see also Sec. II D).

V. EXTENSION TO WEAKLY CHAOTIC SYSTEMS

A. Closed-system phase space

So far we have focused on the case of strongly chaotic
systems and used the cardioid billiard to illustrate the theory.
While these results apply to a broad class of (Hamiltonian and
dissipative) systems, there is an evident need to expand them to
the larger class of weakly chaotic systems. For instance, in
closed Hamiltonian systems stable periodic orbits and, around
them, quasiperiodic Kolmogorov-Arnold-Moser (KAM) tori
form regions of regular motion in the phase space. These
regions coexist with regions of chaotic motion. The situation
is illustrated in Fig. 20 for the limaçon billiard (19) with " ¼
0:46. Such mixed-phase-space systems are generic among all
Hamiltonian systems andwe focus on this type of nonlinearity.
This is the typical case for billiards whose boundaries are
defined by arbitrary (smooth) curves. Famous examples are
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FIG. 17 (color online). Far-field emission for the cardioid billiard

with a leak I centered at ðsl; plÞ ¼ ð0; 0Þ, with �s ¼ 0:5 and �p ¼
0:2. The far-field intensity distribution is computed by collecting the

number of trajectories emitted in the asymptotic direction given by

the angle � (upper inset), measured over the time interval

(t0; . . . ;1) with t0 � 1. The lower inset displays the leak with

the phase-space positions corresponding to a fixed emission angle�
(gray curve). The initial density was uniform in the full phase space

�0ðxÞ ¼ ��ðxÞ, and 1000 bins in � 2 ½��;�
 were used.

FIG. 18 (color online). Emission from the cardioid billiard de-

scribed in Fig. 17 over the full configuration space. The color code

indicates the density of trajectories outside the billiard at large times

t > 50. Figure 17 is obtained by summing up all the intensities in a

given direction. 108 initial conditions were used and data are

presented on a grid of 200� 200.

FIG. 19 (color online). Invariant density �cðs; pÞ inside the leak of
Figs. 17 and 18. The emission patterns are ultimately determined by

�cðs; pÞ, e.g., the zero density around ðs; pÞ ¼ ð�0:5; 0Þ leads to the

zero emission around � ¼ ��=2 in Fig. 17.
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the limaçon (Robnik, 1983) billiard for any " � 1 in Eq. (19)
and the annular billiard (Saito et al., 1982).

The arguments above emphasize that the closed system is

not ergodic: the phase space is divided in multiple indepen-

dent components. One can imagine that the dynamics inside

any chaotic component are described by the theory above. In

reality, the situation is more involved because KAM tori are

sticky surfaces that can be thought to affect trajectories in the

surrounding chaotic component. Because of the smoothness

of the dynamics, the local finite-time Lyapunov exponent

close to the border of the KAM islands approaches zero

(the Lyapunov exponent of the tori). A trajectory in the

chaotic region that comes near some KAM surface wanders

close to that surface for a long time before leaving it and

showing intermittent bursts of chaos. This effect is called

stickiness and the dynamics is said to be weakly chaotic

(references are given Sec. V.B). Stickiness is typical in non-

hyperbolic dynamical systems and can be thought of as a

consequence of the vanishing local Lyapunov exponent in the

sticky region. The independence of this effect from non-

ergodicity becomes evident by noting that even zero measure

sets can lead to stickiness and weak chaos (e.g., the bouncing

ball orbits discussed below).
When a leak is introduced in a mixed-phase-space system,

only the ergodic components that intersect the leak will

be affected. Here we focus on leaks placed in chaotic

components and, accordingly, the estimations of the measure

of the leak �ðIÞ has to be normalized by the measure of the

chaotic sea �ð�chaosÞ. This usually involves estimating the

measure of the regions of regular motion �ð�regularÞ and

subtracting from �ð�Þ � 1 because typically �ð�Þ ¼
�ð�chaosÞ þ�ð�regularÞ. Beyond this trivial correction ac-

counting for the nonergodicity of the system, weak chaos

and stickiness is manifested in the survival probability PðtÞ.

B. Decay of the survival probability in open systems

The most important effect of the presence of sticky regions

on the survival probability PðtÞ is that it modifies the asymp-

totic decay from exponential to power lawPðtÞ � t�z, where z

is the algebraic decay exponent related to the properties of
chaotic regions close to regular ones. This power-law scaling

of PðtÞ can be related to other observables such as Poincaré
recurrences (Chirikov and Shepelyansky, 1984; Zaslavsky,

2002) (as in Sec. II.C), long-term correlations (Karney,
1983; Chirikov and Shepelyansky, 1984, 1999), 1=f spectrum

(Geisel, Zacherl, and Radons, 1987), Lyapunov exponents
(Kantz and Grassberger, 1987; Artuso and Manchein, 2009),
and anomalous transport (Karney, 1983; Geisel, Zacherl, and

Radons, 1988). Thevalue z ¼ 2 can be obtained analytically in
leaking billiards with bouncing balls or marginally unstable

(parabolic) periodic orbits (Gaspard and Dorfman, 1995;
Altmann et al., 2008), such as the Sinai (Bauer and Bertsch,

1990; Legrand and Sornette, 1990a; Fendrik and Sánchez,
1995; Kokshenev and Nemes, 2000), the stadium (Vivaldi,
Casati, and Guarneri, 1983; Dumont and Brumer, 1992; Alt

et al., 1996; Armstead, Hunt, and Ott, 2004; Nagler et al.,
2007; Dettmann and Georgiou, 2009), the mushroom

(Altmann, Motter, and Kantz, 2005; Tanaka and Shudo,
2006; Miyaguchi, 2007; Dettmann and Georgiou, 2011a),

and other billiards (Fendrik and Wisniacki, 1997; Altmann
et al., 2008), and also for area-preserving maps with sharply
divided phase space (Fendrik and Wisniacki, 1997; Altmann,

Motter, and Kantz, 2006; Akaishi and Shudo, 2009). Even a
singlemarginally unstable point in an area-preservingmap can

lead to stickiness (Artuso and Prampolini, 1998), allowing
for a direct connection to one-dimensional (Pommeau-
Manneville–type) intermittent maps (Artuso, Cavallasca, and

Cristadoro, 2008). Stickiness also appears in higher-
dimensional Hamiltonian systems (Ding, Bountis, and Ott,

1990; Fendrik and Sánchez, 1995; Altmann and Kantz,
2007). In area-preserving maps different stickiness scenarios

can be distinguished (Zaslavsky, 2002, 2005), but there are
examples of billiards with divided phase space for which
stickiness is absent (Bunimovich, 2008). For the generic

KAM scenario strong fluctuations are observed due to the
presence of Cantori (Meiss, 1992) acting as a partial barrier

to the transport of particles. The universality of z in the KAM
scenario is an old problem that has not been completely solved

despite different approaches and substantial advance in the last
30 years (ChirikovandShepelyansky, 1984, 1999, 2002;Meiss
and Ott, 1985, 1986; Weiss, Hufnagel, and Ketzmerick, 2002;

Cristadoro and Ketzmerick, 2008; Venegeroles, 2009). The
most recent results (Cristadoro andKetzmerick, 2008) indicate

the universal exponent to be z 	 1:57.
Even if for long times the decay is expected to be power

law due to the tori, there are interesting preasymptotic re-
gimes of PðtÞ for systems with mixed phase space. For very

short times t < ts, initial-condition and system-dependent
fluctuations are typical and may play a predominant role in

specific applications (Dumont and Brumer, 1992; Dietz,
Friedrich et al., 2006; Tanaka and Shudo, 2006; Grete and

Markus, 2007; Altmann and Tél, 2008). Furthermore, when
the leak is far away from any KAM tori and the chaotic
component is large,9 typical trajectories will exit before

having the chance of approaching the KAM islands. These
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FIG. 20 (color online). Limaçon billiard defined by Eq. (19) with

" ¼ 0:46. (a) Configuration space and (b) phase space of the closed

billiard. The trajectory (V-shaped curve and �) is a stable period-4

orbit around which a KAM island exists. A chaotic trajectory is

shown as gray lines in (a) and as black dots in (b). The dashed line

in (b) indicates the leak used in Figs. 21 and 22.

9This situation is important in high-dimensional systems for

which the measure of the regular regions decreases (but is still

different from zero).
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trajectories will experience an effective hyperbolic system
and render an intermediate-time exponential decay as re-
ported in different systems (Jung, Tél, and Ziemniak, 1993;
Gaspard and Dorfman, 1995; Alt et al., 1996; Kokshenev and
Nemes, 2000; Zaslavsky, 2002; Altmann and Tél, 2008;
Dettmann and Georgiou, 2009, 2011a).

Based on the different decay regimes discussed above, we
can write the survival probability as (Altmann and Tél, 2008)

PðtÞ 	
8><
>:
irregular; for 0< t < ts;

ae��t; for ts < t < tz;

ae��t þ bð�tÞ�z; for tz < t;

(87)

where tz corresponds to the time needed for the first trajecto-
ries to approach the sticky region, a=b is proportional to the
ratio of the measure of the chaotic and of the regular compo-
nents of the phase space, and ts; tz depend on the initial
condition �0ðxÞ. Even if trajectories are started in the sticky
region (see Sec. V.C), both power-law and exponential re-
gimes are seen because for large chaotic components
ae�� � b��z. These regimes are clearly observable in the
example of the limaçon billiard as Fig. 21 illustrates.

An actual crossover time tcross between the exponential and
the algebraic decay can be defined as (Altmann and Tél, 2008;
Akaishi and Shudo, 2009)

ae��tcross ¼ bð�tcrossÞ�z; (88)

which is the time when the contributions from the hyperbolic
and the nonhyperbolic components are of equal importance.

We can easily estimate the dependence of the crossover
time on the size of the leak �ðIÞ assuming that the ratio b=a
depends at most weakly on � for small �ðIÞ. From Eq. (88)
we obtain that (Altmann and Tél, 2008)

tcross � 1=�� 1=�ðIÞ: (89)

A logarithmic correction to this relation was found by
Akaishi and Shudo (2009) as tcross � 1=�ðIÞ � ½logð�ðIÞÞþ
1
=�ðIÞ. For exact calculations and simulations in specific
systems see also Kokshenev and Nemes (2000), Dettmann
and Georgiou (2009, 2012), and Altmann, Leitao, and Lopes
(2012). Taking this correction into account, after the usual
rescaling of time t � t� and in the limit �ðIÞ ! 0, we find
that in the rescaled units � ! 1 and tcross ! 1, i.e., the
exponential decay always dominates PðtÞ. This provides an
example of precise statements for infinitely small leaks that
mask an interesting dynamical phenomenon (the power law)
because for any finite leak a transition to power-law decay
exists. Instead, here we do not apply any rescaling and discuss
the dependence of the intermediate-time regimes in Eq. (87)
on leak size and other parameters. Alternatively, one could
take a different rescaling of time, e.g., t � t�ðIÞ= log�ðIÞ,
that would not suppress the crossover.

C. Dependence on the initial distribution

The connection between escape time in open systems and
recurrence time in closed systems described in Sec. II.C
remains valid for weakly chaotic systems as well. In particu-
lar, the intermediate-time decay of PðtÞ in Eq. (87) appears in
the (cumulative) distribution PrðTÞ of the Poincaré recurrence

times T: PrðTÞ � PðtÞt¼T . With initial condition �rðxÞ (in the
image of leak I taken with respect to fclosed as in Sec. II.C) the
entire distributions coincide PrðTÞ ¼ PðtÞt¼T . In area-
preserving cases �r is a uniform distribution over the image
fclosedðIÞ of the leak.

The power-law exponent shows an important dependence
on the initial condition �0ðxÞ. In fact, z in Eq. (87) character-
izes ‘‘scattering’’ cases, i.e., situations in which the support of
�0ðxÞ is far away from KAM surfaces. For �0ðxÞ inside the
sticky region, arbitrarily close to KAM islands, the escape
process—called a transient chaos situation (Pikovsky,
1992)—can be shown to be characterized by a survival
probability Ptr for which

PtrðtÞ � t�ztr ; for large t; (90)

with a different decay exponent ztr. As shown by Pikovsky
(1992) and Meiss (1997) and explained below, ztr is smaller
than z with unit difference

ztr ¼ z� 1: (91)

The impact of such a slower decay of the survival proba-
bility can be clearly seen in Fig. 21 since the support of
�r remains far away from KAM islands, but this is not the
case for ��.

The similarity between a properly opened up dynamics and
the Poincaré recurrences in the closed system can be used to
explain the difference between the algebraic decay exponents
z and zr (Altmann, Motter, and Kantz, 2006). Consider first
initial conditions touching the sticky region, the case of
transient chaos, and examine the time a trajectory takes to
escape to a region far away from the sticky region. The
survival probability distribution Ptrð�Þ is proportional to the
natural measure �ð�Þ of the region of the phase space to
which the trajectories stick for a time longer than �. Because
of ergodicity, we can write

Ptrð�Þ ��ð�Þ ¼ t�
ttotal

; (92)

where t� is the total time spent in the sticky regions (in events
with recurrences time T > �) within the total observation
time ttotal; see Fig. 8.

For the recurrence problem with a single trajectory of
length ttotal initialized far away from the sticky region, the
cumulative probability Prð�Þ to find recurrence times T larger
than � can be expressed as

Prð�Þ ¼ N�

N
� Pð�Þ; (93)

where N� is the number of recurrences with recurrence times
larger than � and N is the total number of recurrences
observed in the time interval ttotal. The right-hand side ex-
presses the above mentioned connection between recurrence
and escape times. Since the total observation time can be
estimated as N times the mean recurrence time �T [Eq. (40)],
we have ttotal � N �T. Similarly, the total time t� spent inside
the sticky region is approximately the number N� of recur-
rences with times longer than �multiplied by �: t� � N��. As
�T is a constant, independent of �, these allow us to write
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Pð�Þ � N�

N
� t�=�

ttotal= �T
¼ t� �T

ttotal�
� Ptrð�Þ

�
; (94)

from which the shift of algebraic decay exponent by 1,
Eq. (91), immediately follows from the asymptotics of
Eqs. (87) and (90).

D. Hyperbolic and nonhyperbolic components of chaotic saddles

A theory based on invariant sets has to consider that in this
case the chaotic saddle responsible for transient cases en-
circles KAM tori; moreover, it comes arbitrarily close to the
tori (Lau, Finn, and Ott, 1991; Christiansen and Grassberger,
1993). The survival probability in Eq. (87) suggests that the
invariant sets governing the temporal decay of weakly chaotic
systems can be divided in hyperbolic and nonhyperbolic
components (Jung, Tél, and Ziemniak, 1993; Fendrik,
Rivas, and Sánchez, 1994). The intermediate-time (ts < t <
tz) exponential decay is the manifestation of the hyperbolic
component of the chaotic saddle, and the power-law decay,
becoming observable for long times t > tcross, of the non-
hyperbolic component.

In Fig. 22 we show numerical approximations of the
chaotic saddle and its unstable manifold in the hyperbolic
and nonhyperbolic regimes. We employed the same proce-
dures as used before for the case of strongly chaotic systems
(see Appendix C), but varied the effective time t� used in the
simulation. For intermediate values of t� the exponential
decay dominates PðtÞ in Eq. (87), and the obtained saddle
and its unstable manifolds are disjoint from the region con-
taining the KAM island and show the structure typical of
hyperbolic systems. For large times t� > tcross the asymptotic
dynamics is governed by the nonhyperbolic regions, and the
saddle and unstable manifold concentrate around the islands.
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FIG. 21 (color online). Survival probability PðtÞ inside the limaçon billiard depicted in Fig. 20 with a leak I centered around sl ¼ 0:5,

pl ¼ 0 with �s ¼ 0:05, �p ¼ 1. Two different initial ensembles �0ðxÞ are taken: �rðxÞ on the image of I (continuous lines), and ��ðxÞ
uniform in the chaotic component (the regions outside KAM tori) of the closed billiard (dashed lines). The exponential curve (dotted lines)

fits PðtÞ between times 1=� and 2=�. (a) Log-linear representation; inset: magnification for short times. (b) Log-log representation. PðtÞ
decays with intermediate escape rate � 	 0:0057ð3Þ, and with a power law PðtÞ � t�z for t > tcross 	 1600 [see Eq. (87)]. Straight lines with

scalings z ¼ 1:75 and ztr ¼ 0:75 are shown for comparison.

FIG. 22 (color online). (a), (c) Chaotic saddles and (b), (d) the

corresponding unstable manifolds computed at different times t� for
the leaky billiard in Fig. 20. The color code indicates the phase-

space density �ðs; pÞ and is valid for all panels. (a), (b) For short

times t� 	 1=� 	 175< tcross 	 1600 the hyperbolic component of

the saddle is dominant and � exhibits the characteristic fractal or

filamentary patterns (compare with Fig. 6). (c), (d) For long times

t� 	 2tcross the nonhyperbolic component is dominant and the

densities stick to the KAM islands responsible for the power-law

decay in Eq. (87). See Sec. C for details on the simulation.
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We assumed, as in Sec. II.B, that a single chaotic saddle
exists. An interesting and nontrivial example that violates this
assumption was reported by Dettmann and Georgiou (2011b)
in the stadium billiard with two full leaks Ii at the boundary:
I1 in the flat and I2 in the circular component of the billiard’s
boundary. With only one of these leaks, PðtÞ � t�2 as re-
viewed in Sec. V.B. Consider now the survival probability

Pj
i ðtÞ of particles that start in leak i and leave through leak j

(i ¼ j corresponds to a reflection survival probability and
i � j to a transmission survival probability). From the four

Pj
i ðtÞ in the example above, only P1

1ðtÞ shows the expected

power-law tail. P2
1ðtÞ, P1

2ðtÞ, and P2
2ðtÞ decay exponentially.

This surprising result is a consequence of the sticky region
due to the parallel walls in the stadium billiard, which cannot
be approached from all positions of the phase space if a leak
is placed along these parallel walls. More generally, this
example shows that the ergodicity of the closed system is
not automatically transferred to the leaky system.

An interesting effect beyond the results of this paper was
reported by Custódio and Beims (2011): the shape of the leak
(rounded, squared, etc.) introduced at the border of the
billiard can modify the dynamics of the billiard (e.g., create
sticky or chaotic motion). Similarly, openness in optical
systems can lead to a modification of the dynamics of the
reflected rays due to nonspecular reflection close to the angle
of total internal reflection (Schomerus and Hentschel, 2006;
Altmann, Del Magno, and Hentschel, 2008; Song et al.,
2010). Here we consider only leaks for which the trajectory
either escapes or is reflected as in the closed system.

Finally, we discuss further examples which go beyond the
setup considered in this section. In integrable cases, leaks (or
recurrence regions) in billiards (Bauer and Bertsch, 1990;
Vicentini and Kokshenev, 2001; Bunimovich and Dettmann,
2005) and maps (Buric et al., 2003) lead to a power-law
decay of PðtÞ with z ¼ 1. This is due to stickiness caused by
families of marginally unstable periodic orbits (e.g., parallel
walls) and is consistent with Eq. (91) since there is no chaotic
region and hence all initial conditions are close to sticky
regions. Leaks placed inside regular islands will lead to
similar observations. Leaks (or recurrence regions) centered
in periodic orbits have been considered by Hu et al. (2004).
For leaks centered at the border of regular and chaotic
regions, a weighted sum of exponential and power-law es-
capes was found by Buric et al. (2003). A similar composi-
tion was also reported by Vicentini and Kokshenev (2001)
and Kokshenev and Vicentini (2003) for the case of leaking
polygonal billiards, which are neither integrable nor chaotic.
Dettmann and Leonel (2012) and Leonel and Dettmann
(2012) reported a decay of survival probability with a
stretched exponential PðtÞ � expð��t�Þ when a leak is in-
troduced in the open bouncer model (vibrating billiard),
which exhibits mixed phase space and Fermi acceleration in
the closed version.

VI. APPLICATIONS

We now present different applications for which the results
of the previous sections are relevant to understand the specific
phenomena and observations. Accordingly, the models dis-
cussed intend to capture the essential dynamical aspects of

the system but do not intend to describe all details of a given
experimental configuration. The extent to which dynamical
systems provide an appropriate description of reality has been
the subject of discussion in the context of wave dynamics for
a long time. For instance, in acoustics the dynamical-systems
description corresponds to the ray approach, which has been
repeatedly debated (Joyce, 1975) but systematically used
nevertheless. Two recent advances that confirm the validity
of the ray picture are (i) the derivation of Sabine’s law in the
wave picture (Legrand and Sornette, 1991b; Dennis, 2010),
and (ii) the recognition of the relevance of classical periodic
orbits in room acoustics (Berry, 2010). Similar considerations
involving ray and wave pictures apply to the quantum and
optics applications below, while the astronomy, fluids, and
plasma applications also have simplifying assumptions and
regimes of validity of their own.

A. Planetary astronomy

Chaotic systems with leaks might play a role in one
of the most traditional problem of celestial mechanics, the
three-body problem (three masses interacting through gravi-
tational forces). This has been noted in Bleher et al. (1988)
and explored in detail for particular cases in Nagler (2002,
2004, 2005). The most natural leakage mechanism corre-
sponds to collisions of the finite-size celestial bodies, a
realistic possibility even in our Solar System (Laskar and
Gastineau, 2009).

The simplest case discussed by Nagler (2004) corresponds
to two main bodies with equal mass M moving along the
same circle around their center of mass, and a test body of
mass m  M (circular restricted three-body problem). In the
corotating reference frame centered at the center of mass, this
problem can be described by a four-dimensional time-
independent system. By using the conservation of energy
and employing a suitable Poincaré surface of section, one
can reduce the dynamics to a two-dimensional discrete-time
problem, as the billiard systems considered here. For a fixed
energy, confined trajectories coexist with trajectories that
escape to infinity. The system is nonintegrable, with regular
and chaotic trajectories coexisting in the phase space.

Leakage is introduced by considering that the masses of
the two main bodies are not concentrated in a point and
therefore collisions occur whenever the pointlike test
particle approaches one of the bodies to a distance r < R,
where R is the radius of the main bodies (the velocity can be
arbitrary). The size of the leak in the configuration space is
proportional to the radius R of the main bodies, and the
position of the leak is given by the positions of the main
bodies, which is fixed in the corotating frame. This situation
corresponds to the problem of systems with more than one
coexisting leak discussed in Sec. IV.B. In fact, at a given
energy, particles can also go to infinity; therefore here there
are two leaks in an otherwise open system. Figure 23 illus-
trates how the basin of escape to infinity and the basin of
collision with each of the main bodies varies as a function of
the leak size R. The typical fractal-like structures observed in
Fig. 16 are clearly seen and coexist with smooth boundaries
(Nagler, 2004). Nagler (2005) extended this analysis to the
case of different masses and different circular orbits for the
main bodies.
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B. Hydrodynamical flows

The advection of tracer particles in hydrodynamical flows
represents an important application of dynamical system’s
theory. Since molecular diffusion is typically negligible on
the relevant time and length scales, the equation of motion for
an idealized particle of zero size and zero mass expresses the
fact that the particle velocity _r coincides, at any instant of
time, with the flow velocity uðr; tÞ. The velocity field is
assumed to be known and the advective dynamics is thus
described by

_rðtÞ ¼ u½rðtÞ; t
: (95)

The solution to this differential equation is the path rðtÞ of the
particle.

Chaos is typical in two-dimensional time-dependent flows
and in any kind of three-dimensional flows, leading to the
phenomenon of chaotic advection (Aref, 1984). Indeed, the
main physical mechanism for fluid stirring is advection,
whose efficiency can be greatly enhanced by chaotic dynam-
ics. The spreading of pollutants on large scales is also domi-
nated by advection. Potential applications of chaotic
advection thus range from laboratory investigations of fluid
dynamics to the study of large-scale environmental flows, and
these aspects are well reviewed in the literature (Ottino, 1989;
Aref and Naschie, 1995; Lai and Tél, 2011).

The existence of a leak in a flow implies a sink for fluid
elements. In such cases the amount of fluid in a finite con-
tainer is decreasing in time, and this leads to a qualitative
change of the dynamics sooner or later. Here we focus on a
less evident, but physically more appealing, realization of
leaking dynamics, which is related to advected particles and
to the first arrival to certain regions of the flow. The problem
of reactions in fluid flows provides an interesting example.
Reactive particles have typically no considerable influence on
flow; therefore the velocity field remains the same uðr; tÞ as
without reactions. The reactive dynamics, represented, e.g.,
by a temporal change of certain particle properties, is thus
superimposed on the advection problem (95). The change
might happen upon entering a region of the flow. The most
important examples of activities in flows involve chemical
(e.g., Aþ B ! CþD) and biological (e.g., Aþ B ! 2A)
reactions. The combination of reaction and advection pro-
vides a realistic model for a plethora of applications (Tél
et al., 2005; Neufeld and Hernández-Garcia, 2009). Next we
discuss two particular problems in which leaking is intro-
duced in a closed hydrodynamical flow by allowing particles

to enter or also react in preassigned fluid regions (that play the
role of leaks).

1. Spreading of pollutants in the environment

Imagine that a pollutant is released in an observation
region within a water basin. A typical problem in the pre-
vention of environmental pollution is to determine which
coastal region the pollutant will be advected to so that one
can estimate which parts are most likely to be affected by the
pollution release. This is one particular example of the gen-
eral problem of partitioning the initial conditions in an ob-
servation region of a closed flow according to the first arrival
of advected particles to predetermined subregions of interest.
The boundary between the different partitions typically
shows fractal patterns that correspond to the stable manifold
of the chaotic saddle formed by tracers that never reach any of
the target regions. The target regions act as leaks for the
dynamics of the tracers [following Eq. (95)], but not for the
velocity field uðr; tÞ.

Figure 24 shows an example in a square-shaped wind-
driven lake of 4 km2. The boundaries are vertical walls of
height 2 m, and below this depth the lake has a pyramidal
form with the deepest point at a depth of 2.5 m in the middle.
The water flow is generated by wind stress. A similar problem
was studied by Károlyi et al. (2010) by applying a shallow-
water approximation in which layers of different depths are
assumed to move in a synchronized manner. In Fig. 24 the
flow is obtained from a numerical solution of the hydro-
dynamical equations in three dimensions (Cioffi, Gallerano,
and Napoli, 2005). A wind of strength 12 m=s changes
periodically in time, with a period of T ¼ 8 h. It blows
from the southwest (lower left corner) for T=2, changes
abruptly to the southeast, and after an interval of length
T=2 it changes back again, etc.

The region of observation is the full lake area outside
narrow bands along the coasts. Layers at different depths
are investigated. Each point in a layer is colored according
to which of the coastal bands (of width 100 m and height
2 m) along the four vertical walls at the shores will be
reached by the tracer first (the vertical coordinate of the
first arrival is not recorded). The results in Fig. 24 indicate
a strong height dependence. In the uppermost layer, pollu-
tants released in the lake are most dangerous for the north-
ern shore (Szanyi, 2012). The western shore is somewhat
less polluted than the eastern one. The southern coast is
hardly affected. This is consistent with the fact that the
average wind direction is southerly, and particles are thus

FIG. 23 (color online). The configuration space of the small body in the restricted three-body problem in a frame corotating with the main

bodies. This section of the phase space is obtained at a fixed energy under the condition that the particle’s velocity toward the origin vanishes,

and the angular velocity is negative. The colors correspond to trajectories colliding with main body 1 (white), colliding with main body 2

(gray), and escape to infinity (dark to light, from short to long escape times). From left to right the diameter of the two main bodies is

increased, which corresponds to increasing the size of the leaks (not visible in this section) and the collision probability. From Nagler, 2004.
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pushed mainly northward. Considerable deviations from
this pattern occur when going to deeper and deeper layers.
The pollution of the northern coast is becoming less and
less strong, while the southern one becomes heavily pol-
luted. This is due to the development of an overturning
circulation that has an overall southward component in the
deeper regions. The hazard for the four shores thus strongly
depends on the level in which pollution is released. The
boundaries between different colors contain the stable
manifold of a three-dimensional chaotic saddle residing in
the region of observation. The main result obtained from
this example is that a two-dimensional shallow-water ap-
proximation might lead to an oversimplification of the
three-dimensional flow and also of the advection patterns
since the observed height dependence in the pollutant
distribution cannot appear then.

2. Reactivity in flows, resetting

Perhaps the simplest model of reactions is provided by
what was invented and called by Pierrehumbert (Ngan and
Pierrehumbert, 2000) as the resetting mechanism. Whenever
a tracer enters a preselected region of the flow, a given
property of the tracer such as concentration (or color) is reset
to a value associated with that region, regardless of its
previous value (Neufeld, Haynes, and Picard, 2000; Matyas
and Gaspard, 2005). This mimics a situation where dye is
introduced by diffusion from a solid surface and is maintained

at the saturation concentration in a diffusive boundary layer.

An atmospheric example of the resetting mechanism is pro-

vided by the dynamics of water vapor. Water vapor is re-

moved from an air parcel whenever it enters a region where

the local humidity is lower than that of the parcel. Its humid-

ity is then reset to this lower value and the difference is rained

out. When a parcel of low humidity comes into a humid

region (typically close to the Earth’s surface), its water vapor

content is reset to a high value. The water vapor distribution

in the atmosphere is similar indeed to the ones obtained from

resetting models (Pierrehumbert, Brogniez, and Roca, 2007).

As in the example of Sec. VI.B.1, the leaking mechanism

always refers to the particles of a given type (color), and not

to the fluid, as fluid is never lost from the system.
In two-dimensional incompressible flows r � u ¼ 0, and

the advective dynamics (95) is area preserving. The resetting

problem provides thus a close analog of a leaky 2D billiard.

Chaotic advection in closed flows is characterized by space-

filling chaos, and correspondingly by space-filling stable and

unstable manifolds. Nonhyperbolic regions might also exist

around KAM tori. The resetting mechanism reveals the folia-

tions of the dynamics, in a similar spirit as a leak, because in

both cases a particle can be considered to be lost after enter-

ing a preselected region. The advective dynamics with the

leak is typically transiently chaotic. Particles never escaping

the complement of the leak(s), both forward and backward in

time, form a chaotic saddle. The manifolds of this saddle are

FIG. 24 (color online). Spreading of pollutants in a model of a wind-driven lake. The wind field is periodic with period T. Positions x, y are
colored according to which of the four coastal regions (bands along the boundaries, also colored) a tracer starting with initial condition x, y [at
time t ¼ 0 ðmodTÞ] is advected to. Tracers that do not reach any of the bands along the shores over 60 h of observation are colored white. (a)–
(d) represent layers at depths 0.7, 1.0, 1.3, and 1.6 m. Picture by S. Szanyi.
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subsets of the closed system’s manifolds since the advective

dynamics outside the leak is exactly the same as in the closed

system.
With two or more resetting regions, tracers of different

concentrations or different colors come close to each other

along fractal-like boundaries. An example is shown in Fig. 25

where the flow is chosen as the alternating sinusoidal shear

flow model (Pierrehumbert, 1994). The dark (light) dots are

obtained as initial conditions of trajectories reaching the dark

(light) region when iterated backward in time. Particles close

to the boundary have long lifetimes outside the resetting

regions and therefore they come close to the saddle in the

time-reversed dynamics. The boundaries trace thus out here

the unstable manifold of the chaotic saddle. The resetting

pattern is a fingerprint of the chaotic saddle underlying the

leaking advection dynamics, where the leak is the union of the

resetting regions. Figures 25(a)–25(c) show that resetting

regions of the same area lead to different patterns and also to

different average lifetimes in full agreement with what we

saw for strongly chaotic billiards in Sec. IV. Figures 25(d) and

25(e) represent a case where the average fluid velocity is

smaller and four elliptic islands appear with a nonhyperbolic

component of the chaotic saddle around the outermost

KAM tori.
Resetting-like methods have been applied to visualizing

the foliations of three-dimensional model flows (Tuval et al.,

2004) and they also have applications in geophysics

(Schneider, Fernández, and Hernández-Garcia, 2000;

Schneider, Schmalzl, and Tél, 2007).

C. Magnetic confinement of plasma

The research on plasma confinement devices in the last

60 years has been driven by the expectation of designing

controlled fusion reactors. One of the best studied and most

promising strategies is to use magnetic confinement machines

with toroidal shape as illustrated in Fig. 26. These machines

are called tokamaks. Here we describe the dynamics in lowest

order approximation only, when the charged particles follow

the magnetic field lines while being within the tokamak

(Wesson, 1987). A chaotic layer at the border of the plasma

is long known to enhance the confinement of particles to the

core. This enhancement is accomplished by controlling

plasma wall interactions in the tokamak (Engelhardt and

Feneberg, 1978). Chaos is present whenever the ideal toroidal

symmetry is broken, which can be achieved by generating

weak electric currents along the toroidal vessel via the so-

called ergodic magnetic limiters shown in Fig. 26 (left). In

any specific tokamak the wall is fixed and the efforts to

control plasma wall interactions concentrate on manipulating

the magnetic structure at the plasma edge (Schmitz, 2012).
Here we are interested in the dynamics of the magnetic

field lines and of the charged particles. These lines are

divergence free and thus correspond to trajectories of volume

preserving flows. They can therefore be described by time-

dependent Hamiltonian systems where, for the tokamak ge-

ometry, the toroidal angle� of the trajectories corresponds to

the time variable of the flow and slices of them can be

described by area-preserving maps (Morrison, 2000).

FIG. 25 (color online). Tracer distributions with resetting in a closed time-periodic flow. The particles’ color (concentration) is set to dark

and light at two resetting bands with total area 0.14 placed (a), (d) vertically, (b), (e) horizontally, and (c), (f) as a triangle at the corners. In the

full phase space the two colors come arbitrarily close to each other along a filamentary pattern. In (a)–(c) the bands foliate a strongly chaotic

flow, while in (d)–(f) the fluid flow is slower and KAM islands (white) appear outside the resetting regions. Data by G. Drótos.

FIG. 26. Construction of an area-preserving map of the magnetic field lines in a tokamak. From left to right: main geometrical parameters

of a tokamak with an ergodic magnetic limiter, a torus in which the magnetic field lines are confined, and the surface of a section at fixed

toroidal angle � used to construct the discrete-time map. Black dots on this map represent field line trajectories with many iterates confined

to the torus. They correspond to long-lived charged particles. Trajectories are shown both in polar ðr; �Þ and in rectangular coordinates

(x ¼ �=2�, y ¼ r=b).
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Figure 26 illustrates the steps that map the magnetic field line

dynamics into a discrete map between two successive inter-

sections with the Poincaré surface of section with fixed

toroidal angle �; see Portela, Caldas, and Viana (2008) for

a recent review. Iterations in these maps correspond to toroi-

dal turns and are thus proportional to the magnetic field line

length. The connection to systems with leaks is established by

noting that the evolution of the particles is interrupted at the

vessel’s wall and at any obstacle inside the tokamak chamber,

like probes and antennas. Here we concentrate on the main

loss of particles in tokamaks, which is due to collisions with

the chamber’s wall located at y ¼ 1. Although being ideally

mainly confined to the torus, the magnetic field extends out-

side the tokamak wall as well. The chaos in the field lines is

thus not limited to y � 1. For the charged particles, it is

therefore essential to consider a modified map in which the

wall acts as a leak of the field line map. Since the wall can be

considered to not affect the magnetic field lines, the particle

map is identical to the field line map but is restricted to y � 1.
Even if the position of the leak in a map is fixed at y ¼ 1, it
can effectively be controlled by changing other control pa-

rameters of the map. For instance, in Fig. 26 this could be

achieved by choosing a different wall position (parameter b)
or current in the ergodic magnetic limiter.

The asymptotic particle dynamics of the leaky system is

governed by a chaotic saddle and its manifolds. Figure 27

shows an approximation of the corresponding invariant sets

for the so-called Ullmann-Caldas map (Ullmann and Caldas,

2000), based on the manifolds of a single fixed point em-

bedded into the chaotic saddle (Portela et al., 2007. From the

results of Sec. IV we conclude that for more general situ-

ations the invariant sets depend sensitively on the particular

choice of the leak. Viana et al. (2011) provided a detailed

review of the role of the chaotic saddle and fractal structures

in plasma confinement devices. We emphasize that the

chaotic saddle is nonhyperbolic due to the presence of

KAM islands, as discussed in Sec. V.
Experimental signatures of the invariant sets of the leak-

ing dynamics appear in the heat flux into the tokamak’s wall

(Evans, Moyer, and Monat, 2002; da Silva et al., 2002;

Wingen et al., 2007; Viana et al., 2011). It was noticed

that the heat flux is not uniform in the poloidal angle

(proportional to x in Fig. 26) (Shen et al., 1989;

Takamura et al., 1989). Apart from the dispersion caused

by collisional effects (Schelin et al., 2011), the charged

particles leave the system closely following the unstable

manifold of the chaotic saddle of the leaky system and are

deposited at the positions where this manifold intersects the

wall. Such lines survive for a long time and reach deeper

inside the torus (hot plasma) (Abdullaev, Eich, and Finken,

2001). Note that the plasma current in the � direction

implies that particles with different electrical charge follow

the magnetic field lines in opposite directions. Recalling

that time corresponds to the length of the magnetic field

lines, we see that this implies that while the positively

charged particles escape following the unstable manifold,

FIG. 27 (color online). The saddle, stable, and unstable manifolds

in the Ullmann-Caldas tokamak map. The coordinates x, y are as in

Fig. 26. The (stable) unstable manifold was obtained as the 80th

(pre-)image of a small ball of initial conditions around the unstable

periodic point indicated as a small square at �ð0:49; 0:78Þ. The
intersection of both manifolds approximates the chaotic saddle for

the leaky particle dynamics. The intersection of the manifolds with

the line y ¼ 1 can be considered as ‘‘footprints’’ on the wall. From

Portela et al., 2007.

FIG. 28 (color online). Comparison between experimental and

numerical results for the heat flux pattern in tokamaks. Upper panel:

Experimental measurements of the heat flux (color scale) through

different poloidal coordinates (proportional to x in Fig. 26) shown

for different edge safety factors qa. Lower panel: Numerical

simulations indicating the length (in toroidal turns) of the field lines

that hit the tokamak wall vs qa. From Wingen et al., 2007.
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the negatively charged particles follow the stable manifold
of the same chaotic saddle. Altogether, this reasoning pre-
dicts that the heat flux at the wall should be enhanced at the
position of the intersection of these manifolds with the wall
and thus be proportional to the length of the magnetic field
lines within the tokamak. Figure 28 shows experimental and
numerical results that confirm this prediction. In the upper
panel the concentration of the heat flux in specific poloidal
angles is shown for different edge safety factors qa, a
control parameter that is inversely proportional to the
plasma current. In the lower panel we observe that the
same patterns are observed in the length of the field lines.

Here, again, similar to the advection and resetting problem,
we have a chance to see a direct fingerprint of transient chaos
in the configuration space, since the phase space and the
configuration space coincide in both cases.

D. Optical microcavities

Optical microcavities are used in applications ranging
from dynamic filters in optical communications to quantum
electrodynamics [see Vahala (2003) for a review]. Here we
focus on the case of optical microcavities used as lasers.
Besides the practical applications, these cavities allow for
fundamental scientific investigations (e.g., in quantum chaos)
in systems in which only partial leaks are present. An ex-
ample of an optical microcavity is given in Fig. 29 from
Shinohara et al. (2010, 2011), a system used here to illustrate
the achievements of the last 15 years of intense research
(Nöckel and Stone, 1997; Lee et al., 2004; Schwefel
et al., 2004; Ryu et al., 2006; Tanaka et al., 2007; Wiersig
and Hentschel, 2008; Altmann, 2009; Dettmann and
Georgiou, 2009; Yan et al., 2009; Harayama and
Shinohara, 2011).

The connection to leaking chaotic systems is based on the
observation that the shape of the microlaser matters: while the
regular trajectories present in spherical and circular shaped
cavities provide the good confinement necessary for lasing
(high-Q modes), deformation of these geometries leading to
chaotic dynamics (Mekis et al., 1995; Nöckel and Stone,
1997) can add to the good confinement of other desired
properties such as the directionality of the emission
(Nöckel and Stone, 1997; Gmachl et al., 1998; Liu and
Lai, 2002; Schwefel et al., 2004; Lebental et al., 2007;
Tanaka et al., 2007; Wiersig and Hentschel, 2008; Dettmann

and Howard, 2009; Song et al., 2009; Yan et al., 2009). Even

if these systems are often far from the limit of vanishing

wavelength (geometrical optics), the so-called ray-wave cor-

respondence applies in a surprisingly large number of cases;

see Harayama and Shinohara (2011) for a recent review. A

description based on rays makes robust numerical simulations

possible and provides intuitive interpretations of experimen-

tal observations that can be directly connected to orbits and

the geometry of the corresponding billiard.
The ray model in optical cavities is equivalent to the dy-

namics in closed billiards with partial leaks. Figure 30 shows

the phase space of the system used by Shinohara et al. (2010,

2011). As mentioned in Secs. I.E and II D, the partial leak

has a natural physical origin in the collisions inside the cavity

(with refractive index nin > nout � 1). Rays with angles

smaller than the critical angle of total internal reflection

[p < pc ¼ sin�c ¼ 1=nin, dashed line in Fig. 30(c)] are par-

tially transmitted (with angles given by Snell’s law) and

partially reflected. The intensities of the reflected and trans-

mitted rays are given by Fresnel’s law (Nöckel and Stone,

1997; Lee et al., 2004; Schwefel et al., 2004; Ryu et al., 2006;

Tanaka et al., 2007;Altmann, 2009;Harayama and Shinohara,

2011). For rays with p > pc no transmission takes place.
Interestingly, limaçon shaped microlasers such as the ones

used in the main part of this review have also been used in

experiments and simulations (Wiersig and Hentschel, 2008;

Shinohara et al., 2009; Song et al., 2009; Yan et al., 2009).

An important additional aspect of lasing cavities is the gain

medium that continuously pumps energy into the system

enhancing the intensity of long-living trajectories (a precise

modeling of this effect is beyond our scope). For corrections
FIG. 29. Scanning electron microscope image of a microlaser with

deformed-disk shape. From Shinohara et al., 2010.

FIG. 30 (color online). Ray model of the microlaser depicted in

Fig. 29. (a) Definitions of the coordinates. (b) A stable periodic

orbit. (c) Phase space of the closed billiard. The upper edge of the

partial leak is indicated by the dashed (horizontal) line in (c). From

Shinohara et al., 2011.
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to the ray model due to wave effects, see Schomerus and

Hentschel (2006) and Altmann, Del Magno, and Hentschel

(2008).
The main relevant observable is the far-field emission

intensity, as computed in Fig. 17 (see also Sec. IV.C). A

comparison between experimental results and ray-dynamics

simulations is presented in Fig. 31. The agreement is remark-

able, in particular, if one takes into account that the system is

far from the formal semiclassical limit of small wavelength;

see Shinohara et al. (2010, 2011) and Redding et al. (2012)

for further evidence of the robustness of ray results. The

important and somehow surprising aspect of the emission in

Fig. 31 is the concentration of the emission in specific

directions, even if the leak lies in a region where the closed

system is more or less uniformly chaotic.
The specific directions of emission have been explained

using the unstable manifold of a single unstable periodic orbit

close to the border of the leak region, first by Schwefel et al.

(2004). Another important theoretical development was the

proposal of the existence of a so-called quasistationary energy

distribution in the classical ray dynamics; see Lee et al. (2004)

and Ryu et al. (2006). As noticed by Altmann (2009), and

better explained in Secs. II D and III, these two important

concepts can more generally be expressed, respectively, as

the unstable manifold of the chaotic saddle (which aligns

with the unstable manifold of specific periodic orbits) and

the cmeasure distributed along it. In as much as the ray model

provides a good description of the laser, these two key concepts

of the theory of dynamical systems have direct observable

consequences for the far-field emission of lasing microcav-

ities. Here the results of Sec. V have to be taken into account

because microlasing cavities are typically not strongly chaotic

(Liu and Lai, 2002). The main effect of weak chaos is that the

long-living modes (high-Q factors) are usually concentrated

inside KAM islands and regions of regular motion. It remains

to be seen to what extent the effect of weak chaos described in

Sec. V can be detected experimentally.
Recent developments show links to many other results

discussed in this review. For instance, while dielectric micro-

cavities have leaks restricted in the p direction, recent experi-

ments use waveguides that restrict the leak also in the other

direction. Additional leaks are constructed around positions

sl that showed to be efficient in channeling the rays out of the
cavity (Redding et al., 2012; Song et al., 2012). Such

coexistence of different leaks was discussed in Sec. IV.B.
Another example is the periodic-orbit formula for the reso-

nance spectrum of dielectric cavities proposed by
Bogomolny, Dubertrand, and Schmit (2008) and experimen-

tally verified in regular (Bittner et al., 2010) and chaotic
(Bittner et al., 2012) systems. The main novelty in this

formula is the incorporation of partial leakage as a multi-

plicative term proportional to the product of the reflection
coefficients at collisions along periodic orbits, in a

similar manner as the reflection coefficient appears in the
operator (74).

E. Quantum and wave chaos in systems with leaks

The quantum and wave analogs of classically chaotic sys-

tems with leaks appear in theoretical analyses, controlled

experiments, and real-world systems. Quantum mechanically,
themajor differences to closed systems originate from the non-

HermitianHamilton operator (nonunitarian scatteringmatrix).
The intrinsic openness of any quantum mechanical experi-

ment, highlighted in a quote from the early 1990s in Sec. I, has
already been fully discussed (Stockmann, 1999). Still, an

important question influencing the research in quantum and
wave chaos in the last decade was the effect of openness on

results known for closed systems. A driving force are experi-

ments in quantum dots, microwaves, optics, acoustics, etc.
These more recent developments appear in essays on open

quantum systems: Kuhl, Stöckmann, and Weaver (2005) re-
viewed spectral and scattering properties with a focus on

classical waves (microwaves and sound waves); Fyodorov,
Savin, and Sommers (2005) used a formalism based on corre-

lation and distribution functions that goes beyond random
matrices; Rotter (2009) used a Feshbach projection operator

formalism to non-Hermitian Hamiltonian operators;

Nonnenmacher (2011) reviewed the mathematical results
and methods of semiclassical theories of wave operators in

scattering systems; andNovaes (2012) gave an overview of the
properties and recent research on the eigenstates of leaky

quantum-chaotic maps.
The results of these review papers are to a great extent

valid for scattering systems in general, with the main dis-

tinction being between, as they call, ‘‘weak and strong ab-
sorption’’ (coupling to the environment). Throughout we

distinguished leaking from genuinely open systems based
on the key elements: (i) the possibility of comparing the

results to a closed-system and (ii) the control over properties
of the leak (see Sec. I.A). These two elements affect spectral

properties, which were recently observed in experiments

(Barthélemy, Legrand, and Mortessagne, 2005; Dietz, Heine
et al., 2006; Xeridat et al., 2009) and fully analyzed theo-

retically (Savin, Legrand, and Mortessagne, 2006; Poli et al.,
2009). Point (i) is used, for instance, when the universal

distribution of nearest neighbor levels observed in strongly
chaotic closed systems (Stockmann, 1999) is compared to the

results obtained in leaking systems (Poli, Luna-Acosta, and
Stöckmann, 2012). Point (ii) is related to the importance of

the localization of the leak or perturbation in the phase space,

FIG. 31 (color online). Far-field emission observed experimen-

tally (solid line) and predicted by the ray model (dashed line). From

Shinohara et al., 2011.
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a recent observation that was summarized by Savin, Legrand,
and Mortessagne as

Open wave-chaotic systems in the presence of en-

ergy losses (absorption) are nowadays under intense

experimental and theoretical investigations. . . . Most

of the works concern the case of uniform absorption

which is responsible for homogeneous broadening

�hom of all themodes (resonance states). However, in

some experimentally relevant situations. . . one

should take into account also localized-in-space

losses which lead to an inhomogeneous part �inh of

the widths which varies from mode to mode (Savin,

Legrand, and Mortessagne, 2006).

The use of antennas and measurement devices typically ful-
fills properties (i) and (ii) mentioned above.

Next we focus on three measurable properties of quantum
systems which can be directly connected to classical proper-
ties and the main results of this paper.

1. Loschmidt echo (fidelity)

The absence of well-defined trajectories in quantum me-
chanics makes it difficult to precisely define chaos
(Berry, 1987), a concept usually based on the exponential
instability of classical trajectories under small perturbations
of initial conditions (one positive Lyapunov exponent).
The effects of classical chaos in quantum and wave systems
can be observed following an idea by Peres (1984), who
proposed to compare the evolution of a wave packet with its
evolution in a perturbed Hamiltonian. A central concept here is
the Loschmidt echo, also known as fidelity. It is defined as the
overlap between two quantum states: the first state is obtained
froman initial state j�i in the course of its evolution up to time t
under a Hamiltonian H, and the second state results from the
same initial state by evolving up to the same time with a
perturbed Hamiltonian H0. The measure of this overlap is

MðtÞ ¼ jh�jeiH0t=ℏe�iHt=ℏj�ij2;
where ℏ is Planck’s constant. This quantity can also be inter-
preted as the overlap of the initial state and the state obtained by
first propagating this state up to time t with H, and then back-
ward in time, up to�t underH0.MðtÞ equals unity at t ¼ 0 and
typically decays in time.

The term Loschmidt echo refers to the debates in the 19th
century about the irreversibility of thermodynamical systems
and the foundations of statistical mechanics (in which
Loschmidt participated). Similar echo concepts are important
in classical systems (Eckhardt, 2003), with applications in
sensing techniques (Taddese et al., 2010), and have recently
been extended to relativistic quantum systems (Sadurnı́ and
Seligman, 2008). The term fidelity is used mainly in the field
of quantum information. The overlap MðtÞ is known to
quantify the robustness of systems to perturbations and has
nowadays numerous applications in quantum information,
statistical physics, and quantum chaos (Gorin, Prosen, and
Seligman, 2006).

The first and most natural investigations in quantum chaos
considered global perturbations (e.g., H0 ¼ H þ "V with V

acting globally). Global perturbations affect all (or a domi-

nant part of) the phase space accessible to the quantum

particle in the course of its time evolution. It was shown

that the decay ofMðtÞ with t has a variety of regimes, many of

them reflecting classical properties of the closed system (e.g.,

Lyapunov exponents). See Gorin, Prosen, and Seligman

(2006) and Jacquod and Petitjean (2009) for reviews, and

Garcı́a-Mata and Wisniacki (2011) for limitations of the

Lyapunov regime.
More recently, experimental realizations in billiards

(Höhmann, Kuhl, and Stöckmann, 2008) emphasized the

importance of the case of quantum mechanically local per-

turbations (Goussev and Richter, 2007; Goussev et al., 2008;

Ares and Wisniacki, 2009; Köber et al., 2011). Next we

review recent results on local perturbations that show that in

this case the decay of MðtÞ has an important regime domi-

nated by properties of the corresponding classical system

with leak (e.g., the escape rate).
Figure 32 illustrates the concept of local perturbations on

the example of a chaotic billiard. The perturbation consists of

a deformation of width w localized in a region ~B1 of the

boundary. The rest of the boundary B0 is unaffected by the

perturbation. Three trajectories starting from the same loca-

tion r0 (and reaching point r afterward) are shown. The two

nearby trajectories S1 and �S1 marked by continuous and

dashed lines correspond, respectively, to an evolution with

the unperturbed and perturbed Hamiltonians. In a semiclas-

sical approximation, the action difference between these

trajectories should be determined. The third trajectory (S0)
hits the boundary only at B0. For this case the perturbed and

unperturbed trajectories coincide; hence the action difference

of this pair is zero.
The quantum mechanical implementation and interpreta-

tion of the Loschmidt echo with a localized perturbation is

illustrated in Fig. 33. The evolution of a wave packet is shown

in the original billiard up to time t. At this time the perturba-

tion along the boundary is introduced, and the dynamics is

followed in the time-reversed evolution up to the same time.

Gray shading represents the probability distribution. The

initial Gaussian wave packet appears thus as a dot in the

upper left panel. The arrow in this panel marks the momen-

tum direction of the wave packet. The lower left panel shows

that the original form is only partially recovered after the full

process, and the overlap is thus incomplete MðtÞ< 1.

FIG. 32. Schematic diagram of a billiard with a local perturbation
~B1 along its boundary and three classical trajectories between r0 and
r. From Goussev and Richter, 2007.
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Goussev and Richter (2007) considered a classically weak
but quantum mechanically strong perturbation in a region of
the boundary of a strongly chaotic billiard. More precisely,
the length w and depth r of the perturbed boundary should be
much smaller than the length of the billiard boundary, and the
perturbation is considered quantum mechanically strong if w
and r are much larger than the de Broglie wavelength �- . Their
main result is that in such cases there is a long time interval
for which the Loschmidt echo decays as

MðtÞ � expð�2�tÞ; (96)

where � is the classical escape rate of the billiard with a leak I
extending precisely through the perturbation region of length
w along the original boundary. The time interval over which
decay (96) is valid extends from the mean collision time
(flight time) htcolli to a saturation time ts ¼ �1=ð2�Þ lnM1,
where M1 ¼ �-�=ð2�AÞ, with � as the wave packet size at
t ¼ 0, and A as the area of the billiard (Gutiérrez and
Goussev, 2009). Note that ts can be even larger than the
Heisenberg time tH � 1=ℏ. This result is obtained by showing
that, in this regime, the main contribution to MðtÞ is due to
trajectories that do not collide with the perturbation region
(collisions there would radically change the dynamics of the
trajectories). In our formulation, this means that such trajec-
tories start from the stable manifold of the saddle character-
izing the billiard with this leak. Figure 34 shows results of
numerical simulations in the billiard depicted in Fig. 33. The
quantityMðtÞ is plotted for different depths r, and its decay is
governed by the classical escape rate � of the billiard with a
leak of length w, independent of the value of r. Time is
normalized by the classical mean collision time htcolli.

These results have been refined and generalized to pertur-
bations which are quantum mechanically not necessarily
strong. The decay of MðtÞ then remains exponential, but the
decay rate is a factor � times the classical escape rate:

MðtÞ � expð���tÞ: (97)

For pistonlike perturbations, semiclassical expressions have
been derived for the coefficient� (Goussev et al., 2008). As a
function of the perturbation strength, � turns out to be an
oscillatory function converging to 2 for large perturbations.

These results were confirmed in recent experiments in
microwave cavities (Köber et al., 2011). The correspondence
between the Helmholtz equation (describing 2D microwave
cavities) and the Schrödinger equation makes microwave
cavities a unique tool for the experimental investigation of
quantum chaos (Richter, 1999; Stockmann, 1999), including
the exploration of the effect of classical trajectories in chaotic
systemswith leaks (Dembowski et al., 2004). Figure 35 shows
the configuration used by Köber et al. (2011) for the experi-
mental investigation of Loschmidt echo decays. For not very
strong perturbations, good agreement was found with the
semiclassical coefficient � in Eq. (97). On the experimental
side, the investigation of the strong perturbation case remains a
challenge since the signals are then expected to be rather weak.

Altogether these results on Loschmidt echoes show that
there is increasing recent interest in systems with leaks, not

only in applications but also on the side of fundamental

properties of quantum chaos. In the semiclassical limit such
systems reflect the properties of the underlying classical

systems, including semiclassical corrections to the classical

FIG. 33. Forward-time wave packet evolution in an unperturbed

diamond billiard up to time t corresponding to about 10htcolli,
followed by the time-reversed evolution in the perturbed billiard.

The width of the localized perturbation is w ¼ 60, 15% of the

length L of the horizontal edge, and the de Broglie wavelength is

�- ¼ 4:8 in the same units. From Goussev and Richter, 2007.
FIG. 34 (color online). The decay ofMðtÞ in the diamond billiard of

Fig. 33 for four different values of depth r at w ¼ 60. Time is scaled

with htcolli � tf as given in Eq. (14). The solid straight line corre-

sponds to expð�2�tÞ with the escape rate given by Eq. (9), Sabine’s

result. The inset presents the decay of �MðtÞ, the Loschmidt echo

averaged over several values of r. From Goussev and Richter, 2007.

FIG. 35 (color online). Geometry of the chaotic billiard used in

the experiments of Köber et al. (2011). The local perturbation is

pistonlike, of width w and of depth h. The measuring antenna is

placed at location a. The rotatable ellipsis is used to perform

ensemble averages, and the additional elements are introduced to

reduce the influence of bouncing balls. From Köber et al., 2011.
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escape rate (Sieber and Richter, 2001; Waltner et al., 2008;
Gutiérrez et al., 2009).

2. Fractal distribution of eigenstates

Another signature of chaos in open quantum systems is
provided by the fractality of certain invariant sets of the
corresponding classical systems. The eigenstates of the quan-
tum system turn out to be distributed along the manifolds of
the classical chaotic saddle10 discussed in Sec. II.B (Casati,
Maspero, and Shepelyanski, 1999a). Open quantum systems
are characterized by nonunitary evolution operators having a
set of right and left decaying nonorthogonal eigenfunctions.
The left and right eigenstates of the nonunitary propagator
concentrate in the limit of ℏ ! 0 on the stable and unstable
manifolds of the chaotic saddle, respectively (Keating et al.,
2006). This affects the statistical properties of energy levels
(e.g., Weyl’s law discussed next).

Classical maps can be quantized (Berry et al., 1979).
Quantized area-preserving baker maps with leaks (often
called open baker maps in the quantum chaos community)
nicely exemplify the results mentioned above and can be
directly related to the findings reported in Sec. III.E.
Keating et al. (2006) studied the ternary baker map (76)
with a leak, exactly as in Sec. III.E. Figure 36 shows their
results: the long-lived (right) eigenstates concentrate in the
semiclassical limit on the unstable manifold (horizontal fila-
ments parallel to the q axis). Correspondingly, the momentum
representation of any long-lived right eigenstate is supported
on a Cantor set which is the projection of the unstable
manifold on the momentum (p) axis. This is apparent in
Fig. 37, which also shows a magnification that reveals the
self-similar character of this distribution.

In another study, Pedrosa et al. (2009) considered the
quantized version of the binary baker map (78) with leaks as
stripes along the p � x axis, centered at ql � yl and of width
�q. In the classical version, they found a similar strong
dependence of the escape rate on the leak position ql (for
any fixed finite �q), as discussed in Sec. IV.A. The influence
of the shortest periodic orbit falling into the leak was also
noticed. Looking for a quantum mechanical analog of this,
they determined the distribution of eigenvalues of the quan-
tum evolution operator in the complex plane, as shown in
Fig. 38. Since the map is open, moduli are less than 1, and the
eigenvalues fall thus all inside the unit circle. For a leak with
smaller escape rate, the distribution of eigenvalues is found to
be dense at the outer ring, while the distribution is charac-
terized by an increase of density near the origin for a case
with faster escape. The strong dependence of the classical
escape rate on the position of the leak is thus found to be
reflected in the eigenvalue distribution of the quantum evo-
lution operator.

Weyl’s law states that in closed systems the number NðkÞ
of energy levels with wave number smaller than k grows as

FIG. 37. Probability density of the leaky ternary baker map in

momentum space from right eigenstates averaged over the longest-

lived states. The magnification (right panel) illustrates the self-

similar Cantor set character. From Keating et al., 2006.

FIG. 36 (color online). Representations of the long-lived right

eigenstates in the leaky ternary baker map. The classical map is

described by Eq. (76) but the variables are p � x and q � y. The
scale of ℏ is 0.0005. Because of symmetry, here only one-ninth of

the phase space is shown, outside the leak (a central vertical strip of

area one-third). Left panel: The average of the so-called Husimi

function. Right panel: The corresponding Wigner function average.

From Keating et al., 2006.

FIG. 38. Eigenvalues of the leaky binary baker map in the

complex plane. In the upper panels the dimension of the Hilbert

space is N ¼ 602, while in the lower ones N ¼ 2048. In the left

(right) column ql ¼ 0:3 (ql ¼ 0:5) with classical escape rate 	 ¼
0:090 (	 ¼ 0:165). �q ¼ 0:1, �p ¼ 0:5 in all cases. From Pedrosa

et al., 2009.

10In spite of the fact that repellers (i.e., unstable sets with only

expanding directions) cannot exist at all in Hamiltonian systems,

this misleading term is often also used in the quantum literature to

refer to the chaotic saddle (Lu, Sridhar, and Zworski, 2003b; Novaes

et al., 2009; Pedrosa et al., 2009; Ramilowski et al., 2009;

Eberspächer, Main, and Wunner, 2010).

Altmann, Portela, and Tél: Leaking chaotic systems 907

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013



NðkÞ � k�W ; (98)

where the exponent �W is an integer proportional to the
dimension of the system (e.g., for d-dimensional symplectic
maps �W ¼ d=2). In open chaotic maps the number NðkÞ of
resonances with wave numbers of real part smaller than k
scales with an exponent (Lu, Sridhar, and Zworski, 2003):

�W ¼ D0

2
¼ Dð1Þ

0 ; (99)

where D0 is the fractal dimension of the underlying classical

chaotic saddle, and Dð1Þ
0 ¼ Dð2Þ

0 is the partial box-counting

dimension [see Eq. (28)]. Equation (99) shows that the
original Weyl law is converted into a fractal Weyl law (Lu,
Sridhar, and Zworski, 2003; Schomerus and Tworzydło,
2004; Nonnenmacher and Zworski, 2005; Shepelyansky,
2008; Wiersig and Main, 2008; Ramilowski et al., 2009;
Eberspächer, Main, and Wunner, 2010; Ermann and
Shepelyansky, 2010; Kopp and Schomerus, 2010; Spina,
Garcia-Mata, and Saraceno, 2010; Nonnenmacher, 2011;
Novaes, 2012; Pedrosa et al., 2012; Körber et al., 2013).
An investigation of this property was also carried out
(Pedrosa et al., 2009). As Fig. 39 shows, they determined
the fraction of eigenvalues N� with modulus � > 0:3 as a
function of the Hilbert’s space dimension N for different
leaks. The prediction of the fractal Weyl law for this case is

logN� �Dð1Þ
0 logN, which is fulfilled for all graphs. An ex-

perimental investigation of fractal Weyl’s law on open mi-
crowave cavities was recently reported by Potzuweit et al.
(2012). It confirms a noninteger scaling of Eq. (98) and
discusses the origin of potential deviations from the classical
prediction.

3. Survival probability and quantum Poincaré recurrences

In Sec. II.C we related the escape of trajectories in systems
with leaks to the problem of Poincaré recurrences. In the

same spirit, Casati, Maspero, and Shepelyansky (1999b) used
the quantum survival probability PqðtÞ to investigate what

they define as quantum Poincaré recurrences. This is per-
formed introducing absorbing boundary conditions (the leak)
in quantized area-preserving maps in the weakly chaotic
regime. The quantum decay PqðtÞ is identical to the classical

decay PqðtÞ ¼ PðtÞ up to a time tq �
ffiffiffiffiffiffiffiffi
1=ℏ

p
. This time is

larger than the Ehrenfest time tE � lnð1=ℏÞ (Casati,
Maspero, and Shepelyansky, 1997); see also Schomerus and
Tworzydło (2004) and Waltner et al. (2008) for important
effects on the tE time scale. For times longer than the
Heisenberg time t > tH � 1=ℏ, one finds PqðtÞ � 1=t. This

is valid up to a maximum time tmax � expð1=ℏÞ after which
an exponential decay sets in, whose rate is, however, different
from the classical escape rate.

The origin of the new quantum decay regimes can be
understood following (Wimberger, Krug, and Buchleitner,
2002, see also references therein) and writing

PqðtÞ ¼
X
j

!j expð��jtÞ; (100)

where �j > 0 is the decay rate of the eigenstates jc ji and !j

is the expansion coefficient !j ¼ jh’0jc jij2 for the initial

state j’0i. The asymptotic exponential decay corresponds to
the smallest �j with !j � 0. In a mixed phase space this

longest living state is localized in the center of a KAM island
and has !j � 0 due to chaotic tunneling. KAM islands (or

sticky regions) are not the only source of power-law decays in
PqðTÞ, which can be originated through genuine quantum

effects such as the quantum mechanical (or dynamical) lo-
calization of states due to chaos (Stockmann, 1999). In
particular, even classical systems showing exponential tails
in PðtÞ have power-law tails in PqðtÞ (Alt et al., 1995, 1996;

Fendrik and Wisniacki, 1997; Casati, Maspero, and
Shepelyansky, 1999b). The full description of PqðtÞ has to

consider the effect of the localization of many states, not only
in the chaotic and regular components of the phase space but
also at the hierarchical border of the KAM islands
(Ketzmerick et al., 2000). In general, Pq depends both on

the distribution of the decay rates [�’s in Eq. (100)] and on the
initial condition (!j), as seen from Eq. (100) and emphasized

by Wimberger, Krug, and Buchleitner (2002). The existence
of regimes of power-law decay is generic, but exponents
different from PqðtÞ � 1=t are also typically found

(Skipetrov and van Tiggelen, 2006). Altogether, the decay
of PqðtÞ and the previously mentioned Loschmidt echo (fi-

delity) decay show that the classical decay is still observed in
quantum systems, but quantum effects dominate the large and
asymptotic behavior. These quantum effects are unfortunately
not easy to detect in experiments [for more discussions on the
time when PqðtÞ deviates from PðtÞ, see Savin and Sokolov

(1997) and Puhlmann et al. (2005)].
The most detailed experiments of the survival probability

are on atom-optics billiards as reported by Friedman et al.
(2001) and Kaplan et al. (2001). In these experiments the
survival probabilities of atoms inside cavities were measured
for different boundaries and leak positions. The connection to
classical billiards becomes evident when comparing the es-
cape from integrable (circular) and strongly chaotic billiards

FIG. 39 (color online). Logarithmic plot of the fraction of eigen-

states N� for � > 0:3 as a function of the dimension N of the Hilbert

space in the leaky binary baker map. Lines correspond to the

prediction of the fractal Weyl law. The different slopes reflect the

sensitivity of the classical saddle to the position ðql; plÞ and size

ð�q;�pÞ of the leak. In the upper (lower) panel ql ¼ 0:3 (ql ¼ 0:5),
and circles correspond to �q ¼ 0:05, squares to �q ¼ 0:1, and
triangles to �q ¼ 0:2 (pl ¼ 0, �p ¼ 0:5 in all cases). From

Pedrosa et al., 2009.
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(tilted stadium billiard11). The measurements shown in the
upper panel of Fig. 40 confirm that a much faster
(exponential-like) decay is observed for the chaotic case
than for the integrable one. A subsequent study (Kaplan
et al., 2001) considered the effect of soft walls along the
boundaries of the (tilted) stadium billiard, which generically
lead to the creation of KAM islands. The lower panels of
Fig. 40 show the experimental survival probabilities. They
confirm a slower decay for soft walls, which was shown to be
related to the stickiness of trajectories around the islands (see
Sec. V.B). A strong dependence on the leak position is also
found. If the leak corresponds to a region of the phase space
that fully contains the island(s), no stickiness effect can be
observed [see Fig. 40, lower panel].

VII. SUMMARY AND OUTLOOK

There are many different configurations in which a leak is
introduced in a chaotic system, but in all cases the simplest

theoretical approaches rely on the same principle: the proper-

ties of the leaky systemcan be compared to the properties of the

closed system. Simple estimates based on this principle led to

Sabine’s law for acoustical reverberation at the end of the 19th

century and,more than a century later, were used to explain the

emission patterns of microlasers [see, e.g., Lebental et al.

(2007)] and the survival probability of cold atoms (Friedman

et al., 2001;Kaplan et al., 2001). Herewe presented a transient

chaos based theory of the problem of leaky systems that goes

beyond the closed-system approximation (see Sec. II.A) and

leads to a proper treatment of finite leaks (see Sec. II.B and

Table III), partial reflection (see Secs. II D and III), and weak

chaos (see Sec. V).
Another aim of this review has been to illustrate the

abundance of applications of leaky systems (see Secs. I and

VI). In the regimes in which dynamical-system models apply,

the results reviewed show that all important quantities of the

transient chaos theory of leaky systems (see Secs. II.B, III.D,

and IV) have direct consequences to experiments and appli-

cations of contemporary physics research:
� The escape rate (see Sec. III.C) dominates some re-

gimes of the Loschmidt echo (see Sec. VI.E.1) and was

directly measured in cold-atom experiments (see

Sec. VI.E.3).
� The chaotic saddle and its invariant manifolds (see

Sec. II.B) leave direct fingerprints on astronomical

problems (see Sec. VI.A), hydrodynamical flows (see

Sec. VI.B), magnetic field lines inside tokamaks (see

Sec. VI.C), optical microcavities (see Sec. VI.D), and

the distribution of eigenstates in quantum systems (see

Sec. VI.E.2). Many of these examples include weakly

chaotic systems, where the observations often become

easy to interpret in view of the division of the chaotic

saddle in hyperbolic and nonhyperbolic components

(see Sec. V.D).
� The stickiness due to the nonhyperbolic component (see

Sec. V.B) becomes observable in transport properties

(see Sec. V.D) and in quantum systems (see

Sec. VI.E.3).
� The dependence on leak position, size, and shape (see

Sec. IV.A) is clearly observable in hydrodynamical

problems (see Sec. VI.B), in optical microcavities (see

Sec. VI.D), and in quantum experiments (see

Sec. VI.E.3).
� Basins of escape (see Sec. IV.B), shaped by an under-

lying chaotic saddle, prove to be concepts usefully

applicable to the three-body problem (see Sec. VI.A),

in asymmetric transport (see Sec. V.D), and in the

plasma problem (see Sec. VI.C).
� Far-field emission (see Sec. IV.C) and partial reflection

(see Sec. II D) play a crucial role in experiments on

optical microcavities (see Sec. VI.D) and in room acous-

tics (see Sec. I.B).

Our review also contains new results. They mainly arise

within the framework of our operator description of true-time

maps with partial leaks (see Sec. III). The general formula

(71) relates averages taken with the c measure to the energy

escape rate he�~�tcoll i~c ¼ hRi~c. The idea of a partial reflection

or absorption is not incorporated in traditional descriptions of

dynamical systems, despite being physically very natural, and

FIG. 40. Survival probability of ultracold rubidium atoms confined

by anoptical potential.Upper panel:Diamonds (circles) correspond to

the experimental results for a circular (stadium) billiard with a leak at

the bottom, as shown in the upper (lower) insets. Lower panels:

Different potentials along the boundary of the stadium billiard, with

two different positions (a) and (b) of the leak. In both panels results

with harder (�) and softer (þ) billiard walls are shown. Full and

dotted lines correspond to numerical simulations and the dashed lines

indicate Sabine prediction � ¼ �ðIÞ=htcolli, Eq. (13). From Friedman

et al., 2001 and Kaplan et al., 2001.

11The usual parallel walls of the stadium billiard were tilted in order

to avoid the influence of the bouncing ball orbits discussed in Sec.V.B.
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also of easy implementation in ray simulations. Here we have

shown that reflectivity can be naturally incorporated into the

operator formalism that avoids the artificial factorization of

the total energy density ~� in ray density � and intensity J.
More generally, the approach makes superfluous the attaching

of labels (e.g., intensity or true time) to trajectories that are

modified at each collision. Also the numerical procedures

(see Appendix B) to estimate the different measures of leaky

billiards should be relevant not only for simulations but also

in experiments for which data can be collected within a

snapshot (as in the S set) or during some time interval (as

in the Q set).
The significance of these results is not restricted to billiards

or even to Hamiltonian systems; they apply to any true-time

map obtained from a Poincaré surface of section. The colli-

sion times are then to be replaced by the return times to the

Poincaré section. It is a widespread practice to assume that

results for maps extend immediately to flows or true-time

maps. While this holds for stroboscopic maps of periodically

driven systems, autonomous problems, or more generally

problems with Poincaré maps, are different. Our results

further emphasize the message of Kaufmann and Lustfeld

(2001) that the connection between true-time and discrete-

time maps in open systems is different from the case of closed

systems and often involves surprising nontrivial results (e.g.,

see Table III).
Finally we discuss unsolved problems and future research

directions. First we note that leaky systems are intimately

related and provide further motivation to fundamental prob-

lems in dynamical systems. In particular, in Hamiltonian

systems we mention the understanding of the mechanisms

of stickiness in higher dimensions and its connection to

Arnold diffusion (Bunimovich, 2008), and a formal treatment

of the division of the chaotic saddle in hyperbolic and non-

hyperbolic components [see, e.g., Altmann and Tél (2008)].

Among the questions directly related to leaky systems, and in

addition to Dettmann (2011), the following general problems

claim for further investigations.

� Adapt and extend current results on the sensitivity on

the leak position to more generic situations. For in-

stance, the most rigorous mathematical results about

the escape rate (see Sec. IV.A) are demonstrated for

one-dimensional systems with leaks in Markov parti-

tions. A similarly nongeneric feature is the standard

explanation of directional emission in 2D optical micro-

cavities (see Sec. VI.D), which relies on the existence of

an unstable periodic orbit close to the leak. There is an

evident need for extending these results to generic leak

positions and chaotic saddles.
� Find the conditions for the existence of a single chaotic

saddle (with a single physically relevant cmeasure) after

a leak is introduced (Collet, Martı́nez, and Maume-

Deschamps, 2000; Demers and Young, 2006). The hy-

pothesis of the existence of a single saddle was used in

our theory (see Sec. II.B). To explore the cases in which

this is violated (Claus and Gaspard, 2001; Dettmann and

Georgiou, 2011b) remains a task for the future.
� Consider novel configurations of leakage such as intro-

ducing a temporal dependence or a random choice on

the properties of the leak (Bahsoun and Vaienti, 2012;

Georgiou, Dettmann, and Altmann, 2012; Nándori and

Szász, 2012).
� Explore the implications of partial leak and true time

(see Sec. III.D) in operator approaches based on Ulam’s

method, which have been applied to the usual Perron-

Frobenius operator (Kovács and Tél, 1992; Bunimovich

and Webb, 2012; Cristadoro, Knight, and Degli Esposti,

2012; Georgiou, Dettmann, and Altmann, 2012) and

received renewed interest in relation to the concept of

almost invariant sets (Froyland and Pradberg, 2009;

Froyland and Stancevic, 2010).
� Recent works suggest that certain nontraditional (e.g.,

location dependent) boundary conditions in problems of

wave chaos can be interpreted as a generalization of

leakage (Berry, 2009). It remains to be explored how

this can be related to the traditional leakage discussed

here.
� Further investigate the connection to transport proper-

ties (Kuhl, Stöckmann, and Weaver, 2005; Dettmann

and Georgiou, 2011b; Knight et al., 2012) and the effect

of stochastic perturbations (Faisst and Eckhardt, 2003;

Dettmann and Howard, 2009; Altmann and Endler,

2010; Altmann, Leitao, and Lopes, 2012; Bodai,

Altmann, and Endler, 2013).
� Partial leaks: clarify the nature of the spectrum of

dimensions of the invariant sets (as mentioned in

Sec. II D), and relate these dimensions to the escape

rate and to the Lyapunov exponent. Extend the results to

noninvertible systems and develop efficient algorithms

for the computation of chaos characteristics (e.g., es-

cape rate, dimensions, and Lyapunov exponents). For

first results, see Altmann, Portela, and Tél (2013).
� Quantum partial leaks: deepen the connection between

quantum systems with absorption and classical dynami-

cal systems with partial leaks. First results already

revealed interesting phenomena, such as, e.g., a drastic

modification of the fractal Weyl’s law (Nonnenmacher

and Schenk, 2008; Wiersig and Main, 2008; Schenck,

2009; Novaes, 2012) and changes in the localization of

eigenfunctions (Lippolis et al., 2012). Additional inter-

esting developments can be expected in view of the

results presented in Sec. II D and Altmann, Portela,

and Tél (2013) and Arnoldi, Faure, and Weich (2013).

Besides these general problems, a clear future research line

is to adapt the models to make them more realistic to specific

applications. This involves including new features in the

dynamics, e.g., gain medium in lasing cavities, reactions of

particles, or properties of the wave systems [e.g., modified

collision laws (Schomerus and Hentschel, 2006; Altmann,

Del Magno, and Hentschel, 2008; Song et al., 2010)]. The

challenge here is to show how to connect experiments and

observations to the theory proposed here. Also important is to

show to what extent and to what level of detail the models

match the experiments, e.g., to what extent nonhyperbolic

properties of chaotic dynamical systems play a role in the

experimental results. In turn, these adaptations toward appli-

cations bring new problems and inspiration for theoreticians,

a virtuous circle illustrated here by the case of partial leaks.

We are convinced that the collection of problems that can be
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modeled as a leaky chaotic system will keep growing and
pushing the research forward also in unforeseeable directions.
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APPENDIX A: PROJECTED MEASURE AND AVERAGES

We now turn to the c measure �Pc of the dynamics
obtained by projecting the flow on the boundary. This de-
scribes, in an ensemble of escaping trajectories, the proba-
bility of the occurrence of collisions with Birkhoff
coordinates x irrespective of the time of collision. Let the
corresponding density be denoted as �PcðxÞ, then

d�Pc ¼ �PcðxÞdx: (A1)

The projected measure is obtained by integrating the flow
measure d�Fc in Eq. (63) over coordinate time up to its
maximum tcollðxÞ (see Fig. 10). This measure can thus be
written as

d�Pc ¼
Z tcollðxÞ

0
d�Fc ¼

Z tcollðxÞ

0
Ace

��rdrd�c

¼ 1� e��tcollðxÞ

�
Acd�c: (A2)

The relation between the densities is then

�PcðxÞ ¼ �cðxÞ 1� e��tcollðxÞ

�
Ac ! ��ðxÞ tcollðxÞhtcolli� ;

(A3)

where the arrow indicates the limit of closed systems (� !
0). Equivalently,

�Fcðx; rÞ ¼ �PcðxÞ �e��r

1� e��tcollðxÞ !
�PcðxÞ
tcollðxÞ : (A4)

Using these relations, we can write average values in the
projected and flow measures as a function of those in the true-
time map measure. Particularly interesting is the case of the
average collision time. In the flow measure it is obtained as
the average of the coordinate time r

htcolliFc ¼
Z

dx
Z tcollðxÞ

0
drre��rAc�cðxÞ

¼
Z

dx
1� e��tcollðxÞ ��tcollðxÞe��tcollðxÞ

�2
Ac�cðxÞ

¼ 1�he��tcoll ic�h�tcolle��tcoll ic
�2

Ac ! ht2colli
2htcolli :

(A5)

In the projected measure the average collision time is ob-
tained from Eq. (A3) as

htcolliPc ¼
Z

dxtcollðxÞ�PcðxÞ

¼ Ac

Z
dx

tcollðxÞð1� e��tcollðxÞÞ
�

�cðxÞ

¼ htcollic � htcolle��tcoll ic
�

Ac ! ht2colli
htcolli ¼ 2htcolliF:

(A6)

The difference between the average collision time in the
projection and in the true-time map is then

htcolliPc � htcollic ¼ ðhtcolliche��tcoll ic � htcolle��tcollðxÞicÞ

� Ac

�
! �2

tcoll

htcolli ; (A7)

where �2
tcoll is the second cumulant of the distribution of the

collisions times in the closed map. The difference between
the two averages is thus due to the inhomogeneity of the
collision time distribution.

An even simpler relation can be obtained between the
averages taken in the true-time map and the projected repre-
sentation. Rearranging Eq. (A3) and using the fact that �c is
normalized, we obtain

Z
�cðxÞdx ¼ 1 ¼

Z
�PcðxÞ 1

Ac

�

1� e��tcollðxÞ dx;

(A8)

from which it follows that

1

1� he��tcollic ¼
�

1

1� e��tcoll

�
Pc
: (A9)

For closed systems this relation goes over into

1

htcolli ¼
�

1

tcoll

�
P
: (A10)

APPENDIX B: ALGORITHMS FOR OPEN BILLIARDS

We describe the numerical simulations of open billiards.
For the limaçon billiard considered map f was obtained using
the standard geometric techniques (Robnik, 1983; Bäcker and
Dullin, 1997): given a collision position x ¼ ðx; yÞ and ve-
locity v [correspondingly coordinates ðs; pÞ], the next colli-
sion position is obtained as the first intersection of the ray
xþ vt with the billiard boundary. That is achieved by impos-
ing that the point xþ vt satisfies Eq. (19) of the cardioid,
which can be written for S ¼ 1 as ðx2 þ y2 � "xÞ2 � ðx2 þ
y2Þ ¼ 0. The smallest solution of the resulting fourth order
polynomial in t yields the collision time tcollðx0Þ and the next
collision position x0 ¼ xþ vtcollðx0Þ.

We search for numerically efficient procedures to compute
observable quantities in true-time open maps. In Sec. II.B we
learned that asymptotic quantities and invariant properties of
the escape process are given by the density �cðxÞ of the
c measure. Next we describe how this density can be ap-
proximated in numerical simulations, related to the different
representations of invariant measures.

For the billiard, �c is approximated by taking all trajecto-
ries in an initial ensemble that survive up to a large time t�.
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Mathematically, t� ! 1, but in practice, for t� > 2=� a good
approximation of �c is obtained. For true-time maps, we have
only the Birkhoff coordinates xn ¼ ðsn; pnÞ and the time tn of
collisions. It is natural to take for each trajectory surviving up
to time t� the values sn� and pn� , where n� is the smallest n
such that tn� � t�. Figure 41 illustrates this procedure. Note
that n� is different for each trajectory and depends on the
whole history of each trajectory [through Eq. (18)]. The
points x� � ðsn� ; pn� Þ obtained through this procedure group
together all points that at t ¼ t� have coordinates x� irre-
spective of their coordinate time r after the last collision
(small dots in Fig. 10). Therefore, these points are then
sampled according to �PcðxÞ, the projected density [which
is insensitive to sliding orbits, see Eq. (A3)]. This means
that the average hBiPc of any observable BðxÞ [e.g., BðxÞ ¼
tcollðxÞ] can be numerically obtained as

hBiPc 	 1

N�
X
Sðt�Þ

Bðx�Þ;

where Sðt�Þ denotes the set of trajectories that survives inside
the billiard up to time t�. Qualitatively speaking, the use of
the x� coordinates belonging to set Sðt�Þ corresponds to an
instantaneous observation of the system. In a simulation using
N initial conditions, let the size of Sðt�Þ be denoted by N�.
The survival probability can then be estimated as Pðt�Þ ¼
N�=N. Furthermore, it is possible to use Eq. (A3) and this
numerical procedure to efficiently compute the true-time map
average value of any observable BðxÞ as

hBic �
Z

dx�cðxÞBðxÞ

¼
Z

dx
1� he��tcollic
1� e��tcollðxÞ �PcðxÞBðxÞ

	 1

N�
X
Sðt�Þ

1� he��tcoll ic
1� e��tcollðx�Þ Bðx�Þ; (B1)

where the last relation is valid for N�, t� � 1. In particular,
with the choice BðxÞ � 1, one recovers Eq. (A9). Equation
(A6) is recovered with the choice BðxÞ ¼ tcollðxÞ�
ð1� e��tcollðxÞÞ=�. Once the value of he��tcoll ic is known,
Eq. (B1) can be directly applied to an arbitrary observable.
The measure of the leak �cðIÞ is computed, e.g., by choosing
B ¼ 1 for x 2 I and B ¼ 0 for x =2 I.

For partial leaks discussed in Sec. II D, Eq. (B1) is gener-
alized to

hBi~c 	 1

J�
X
Sðt�Þ

Jt�
1� he�~�tcollic
1� e�~�tcollðx�Þ Bðx

�Þ; (B2)

where Jt� is the intensity of the trajectory over which sum-
mation runs, and J� ¼ P

N�
i Jt� is the total intensity of the rays

in Sðt�Þ (i.e., of all trajectories in the system at time t�), which
are all trajectories if RðxÞ � 0. The advantage of this proce-
dure, and of any application using the Sðt�Þ set, or of pro-
jected densities, is that we can have good control on the time
t ¼ t� at which the measures are approximated numerically.
This is particularly important for systems with mixed phase
space discussed in Sec. V, where a crossover from exponen-
tial to power-law decay is observed in PðtÞ.

An alternative procedure for generating averages in the
true-time map is based on sampling a set of collision points
according to the density �c of the map. This is done by
collecting in a set Qðt�;�t�Þ all collisions in a time interval
�t� ¼ ½t�; t� þ �t�
 for �t� >maxftcollðxÞg and over all N
trajectories. The use of the Q set assumes an observation of
the system over an extended time period.

To see how this procedure generates the c measure, first
consider q different time instants t�j 2 �t�, j ¼ 1; . . . ; q, and

let Sqðt�Þ ¼ fSðt�j Þgqj¼1. Since �Pc is independent of time,

points in all Sðt�j Þ’s and in Sqðt�Þ are distributed according

to �Pc. However, the coordinates x� of a single trajectory i
will typically appear multiple times in Sqðt�Þ because differ-
ent time instants t� 2 �t� may have the same n�. This can be
seen by considering two close-by values of t� in Fig. 41. (For
t�j � t�jþ1 < htcollic, most trajectories will lead to repeated

values of x�.) For q ! 1, the number of times a given x�

appears in Sqðt�Þ is proportional to Rtcollðx�Þ
0 e��tdt.

A point x� of a single trajectory is included only once in
Qðt�;�t�Þ and possibly many times in Sqðt�Þ. Therefore,
noting that the S set is sampled according to �Pc, we find
that points in Qðt�;�t�Þ are sampled according to

�QðxÞ ¼ �PcðxÞ
Ac

RtcollðxÞ
0 e��tdt

¼ �

Acð1� e��tcollðxÞÞ�PcðxÞ;

where Ac is the normalization constant (62). Comparing to
Eq. (A3), we obtain �QðxÞ � �cðxÞ. [Numerically it is effi-

cient to consider the case Qðt�Þ � Qðt�;�t� ! 1Þ, i.e., to
consider all collisions until escaping the system.] Using this
sampling procedure, Eq. (B1) is rewritten as

hBic 	 1

NQ

X
Qðt�Þ

Bðx�Þ; (B3)

where NQ � 1 is the number of points in the set Qðt�Þ. The
case of partial leak (B2) is in this case simply
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(s*,p*)

t
coll

(s*,p*)

}

S(t*=35)

i = 1, 4, ..., N

i = 2, 3, ...

FIG. 41 (color online). Schematic illustration of the numerical

procedure to obtain the true-time c measure in open billiards. The

time instants of collisions at the boundary are plotted, with black

dots, for different trajectories. Trajectories i ¼ 2 and i ¼ 3 belong

to Sðt� ¼ 35Þ (inset) and have n�ði ¼ 2Þ ¼ 17 and n�ði ¼ 3Þ ¼ 13.
Sðt�Þ denotes the set of trajectories that survive inside the billiard

up to time t� at least. Trajectories i ¼ 1, 4, N do not belong to

Sðt� ¼ 35Þ.
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hBi~c 	 1

JQ;t�

X
Qðt�Þ

Jt�Bðx�Þ; (B4)

where JQ;t� is the sum of the intensities of all collisions in the

set Q.
In our simulations we used the set Q for calculating �cðIÞ

and htcollic, as illustrated in Fig. 42. While the set Q provides
better statistics and should typically be used, the results for
the set S are conceptually interesting and may find applica-
tions in different simulations or experimental applications.

APPENDIX C: COMPUTATION OF INVARIANT

MANIFOLDS AND DENSITIES

Numerical approximations of the invariant sets of transi-
ently chaotic maps can be obtained using the sprinkler
method (Tél and Gruiz, 2006; Lai and Tél, 2011). The idea
is to use initial conditions distributed uniformly in the phase
space and keep track of the trajectories that never escape up to
a time t�. Coherent with the notation of Appendix B, t�
corresponds to the transient time needed for the convergence
to �cðxÞ. For t� � 1=�, the surviving trajectories necessarily
start close to the stable manifold of the saddle (at t ¼ 0),
approach the saddle (at t 	 t�=2), and most of them will be
about to leave the system through the unstable manifold of the
saddle (at t ¼ t�). The invariant sets are approximated by the
position of these surviving trajectories at the times ts ¼
f0; t�=2; t�g. More precisely, the stable manifold, the chaotic
saddle, and the unstable manifolds build the support of
densities �ðx; tsÞ obtained from the position of the trajectories

xðtsÞ at the different times ts ¼ f0; t�=2; t�g, respectively. For
ts ¼ t� we recover the c density �cðxÞ.

Modifications of the methods above are needed to address
true-time maps with partial leaks. In order to address the true-
time aspect of the map, the modifications discussed in
Appendix B are needed. In the simulations shown we con-
sidered an approach based on the Q set, with a fixed t� �
1=� and a finite �t� >maxftcollðxÞg. From trajectories sur-
viving up to t�, the positions x of all collisions (until escape)
in the time interval t 2 ½ts; ts þ�t�
 with ts ¼ f0; t�=2; t�g
generate the densities �ðx; tsÞ. This procedure ensures that the
requirement of surviving up to time t� is satisfied by all
considered points. (Note that when initial distributions reach
the saddle relatively fast within the chosen interval �t�, the
initial positions are a better approximation to the stable
manifold than the positions in the time interval t 2
½0;�t�
.) For the case of partial leaks the same procedure is
employed, and the position x of each collision with t 2
½ts; ts þ�t�
 is counted with a weight given by the intensity
Jðt� þ t� tsÞ (at a given time t > t�, the same intensity is
used for the computation of the densities along the saddle,
stable, and unstable manifolds). Note that for the case of full
leak (R ¼ 0) and fixed collision time (tcoll ¼ 1) the usual
definitions are practically recovered. This general procedure
was employed to compute Figs. 6 and 9.

APPENDIX D: DIFFERENCE BETWEEN POINCARÉ AND

TRUE-TIME MAPS

The distinction between the usual Poincaré map and the
true-time map is crucial in all open systems because the
c measures in both maps are different (Kaufmann and
Lustfeld, 2001). This difference becomes dramatic in the
case of billiards with concave borders such as the limaçon
billiard considered here, because of the existence of trajecto-
ries with tcollðxÞ ¼ 0 sliding along the boundaries (whisper-
ing gallery) characterized by p 	 �1. In the Poincaré map,
these orbits build one-parameter families (the boundary) of
nonhyperbolic trajectories. However, these orbits have little
influence on the flow, where time is counted by t and not by
the number n of collisions.

The flow of the closed cardioid billiard is proved to be
ergodic and strongly mixing (Robnik, 1983; Wojtkowski,
1986), and we expect a well-defined c measure in the leaky
case both in the flow and in the true-time map. Figure 43
shows that the usual Poincaré map is not fully (uniformly)
hyperbolic due to the sliding trajectories. They convert the
long time decay to nonexponential in the leaky case. The
c measure of the Poincaré map is thus ill defined. From this
example it is clear that the simple correspondence nhtcollic �
t between the physical time t and the number of iterations n of
the map is not able to explain the qualitative difference
between the (physically meaningful) survival probability
PðtÞ and the discrete-time survival probability PðnÞ, defined
as the fraction of initial conditions that survive inside the
system up to n collisions at least. From Fig. 43 one can have
the impression that the differences appear only for long times.
In Fig. 44 we present, however, �c of the Poincaré map
numerically obtained as usual, which should be compared
to the true-time map result shown in Fig. 6. There is a
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0.12

0.125

µ c(I)

Confidence Interval

 µc(I) = 0.11745(6)

〈tcoll〉c = 1.9161(4)

FIG. 42 (color online). Convergence of the numerical estimation

of �cðIÞ and htcollic. These results were obtained using Eq. (B3) for

the cardioid billiard [" ¼ 1 in Eq. (19)] with the leak as in Fig. 4

using 2:5� 107 initial conditions uniformly distributed in the full

phase space ½�1; 1
 � ½�1; 1
. Short time fluctuations are present

during the convergence to the c measure. The results �cðIÞ ¼
0:117 45� 0:000 06 and htcollic ¼ 1:9161� 0:0004 follow as the

mean and the standard deviation of the values obtained for integers

t� in the interval t� 2 ½1=��; 4=��
 with the naive estimate �� ¼
0:056 93 obtained with Eq. (23) using �ðIÞ ¼ 0:10 and htcolli ¼
3�2=16 ¼ 1:850 55 . . . . The Q sets at each time t� include all

collisions for t > t�ð�t� ¼ 1Þ. The actual decay rate � was ob-

tained through a direct fit of PðtÞ (not shown) and resulted in � ¼
0:065 59� 0:000 01. The procedures described here have been used

with finite �t�’s in all computations throughout.
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disagreement which can be clearly seen in (but is not re-
stricted to) the region of the sliding orbits (jpj 	 1).

The c measures of the Poincaré map and of the true-time
map are generically different (even in the absence of sliding
orbits) � � 	Pmap=htcollic, and there is no simple relationship

between � of the flow and 	Pmap. For the cardioid billiard

	Pmap is not even defined, as PðnÞ decays asymptotically as a

power law. If, nevertheless, we consider an effective 	Pmap

extracted from the intermediate-time behavior in Fig. 43, we
obtain that 	Pmap and �htcollic differ by about 2%, as can be

seen from Table II and the data reported in the caption.
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Alt, H., H.-D. Gräf, H. Harney, R. Hofferbert, H. Rehfeld, A.

Richter, and P. Schardt, 1996, Phys. Rev. E 53, 2217.

Altmann, E., and T. Tél, 2008, Phys. Rev. Lett. 100, 174101.

Altmann, E., and T. Tél, 2009, Phys. Rev. E 79, 016204.

Altmann, E. G., 2009, Phys. Rev. A 79, 013830.

Altmann, E. G., E. C. da Silva, and I. L. Caldas, 2004, Chaos 14,

975.

Altmann, E. G., and A. Endler, 2010, Phys. Rev. Lett. 105,

255102.

Altmann, E. G., T. Friedrich, A. E. Motter, H. Kantz, and A. Richter,

2008, Phys. Rev. E 77, 016205.

Altmann, E. G., and H. Kantz, 2007, Europhys. Lett. 78, 10008.

Altmann, E. G., J. C. Leitao, and J. V. Lopes, 2012, Chaos 22,

026114.

Altmann, E. G., G. Del Magno, and M. Hentschel, 2008, Europhys.

Lett. 84, 10008.

Altmann, E. G., A. E. Motter, and H. Kantz, 2005, Chaos 15,

033105.

Altmann, E. G., A. E. Motter, and H. Kantz, 2006, Phys. Rev. E 73,

026207.

Altmann, E. G., J. S. E. Portela, and T. Tél, 2013, unpublished.

Aref, H., 1984, J. Fluid Mech. 143, 1.

Aref, H., and M. E. Naschie, 1995, Chaos Applied to Fluid Mixing

(Pergamon, New York), 1st ed.

Ares, N., and D.A. Wisniacki, 2009, Phys. Rev. E 80, 046216.

Armstead, D.N., B. R. Hunt, and E. Ott, 2004, Physica

(Amsterdam) 193D, 96.

Arnoldi, J.-F., F. Faure, and T. S. Weich, 2013, arXiv:1302.3087.

Artuso, R., E. Aurell, and P. Cvitanovic, 1990, Nonlinearity 3,

361.

Artuso, R., L. Cavallasca, and G. Cristadoro, 2008, Phys. Rev. E 77,

046206.

Artuso, R., and C. Manchein, 2009, Phys. Rev. E 80, 036210.

Artuso, R., and A. Prampolini, 1998, Phys. Lett. A 246, 407.
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