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Subsequent to the discovery of chirality of organic molecules by Pasteur, living organisms have

been found to utilize biomolecules of only one handedness. The origin of this homochirality in life

still remains unknown. It is believed that homochirality is attained in two stages: the initial creation

of a chirality bias and its subsequent amplification to pure chirality. In the last two decades, two

novel experiments have established the second stage in different fields: Soai and co-workers

achieved the amplification of enantiomeric excess in the production of chiral organic molecules, and

Viedma obtained homochirality in the solution growth of sodium chlorate crystals. These experi-

ments are explained by a theory with a nonlinear evolution equation for the chiral order parameter;

nonlinear processes in reactions or in crystal growth induce enantiomeric excess amplification, and

the recycling of achiral elements ensures homochirality. Recycling drives the system to a state far

from equilibrium with a free energy higher than that of the equilibrium state.
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I. INTRODUCTION: HOMOCHIRALITY IN LIFE

When a three-dimensional object is not superimposable on
its mirror image merely by translation and/or rotation, the

object is said to be chiral, a word first used by Kelvin (1904).
For instance, our left and right hands are chiral. They are
enantiomorphs of each other.

Various chiral substances exist in nature. Quartz crystal is
one such substance. It takes two enantiomorphic shapes as
schematically shown in Fig. 1(a). Two quartz crystals of
different shapes have nearly identical physical properties,
except for their response to light. When linearly polarized
light passes through quartz, the plane of polarization rotates
in the clockwise direction for dextrorotatory d quartz, and in
the counterclockwise direction for levorotatory l quartz. The
property was found by Arago (1811, 1858) and is called
optical activity.

Other examples of crystals with chirality include sodium
chlorate (NaClO3), as shown in Fig. 1(b) (Kipping and
Pope, 1898a, 1898b) and tartrates (Pasteur, 1848a, 1848b).
However, when these two crystals are dissolved in water, they
behave quite differently. The optical activity disappears for
NaClO3, while it remains for tartrates. Because a crystal
decomposes into its constituent molecules or ions in solution,
the above fact indicates that the ions of the NaClO3 molecule
have no chirality (they are achiral), whereas some of the ions
of tartrate molecules are chiral. This particular case of
molecular chirality was first discovered by Pasteur (1848a,
1848b), and thereafter many organic molecules have been
found to be chiral. An organic molecule, by definition, con-
tains a carbon atom. When it is surrounded by four molecular
residues in a tetragonal stereostructure and the four residues
are all different, the tetragonal structure takes one of two
configurations that are mutual mirror images, as exemplified
by the alanine molecule in Fig. 1(c). Two stereoisomers
related by reflection are called enantiomers. In organic chem-
istry, one enantiomer is called the R form (rectus), and the
other, the S form (sinister); however, for amino acids and
sugars, the D/L representation is commonly used.

Amino acids and sugars are vital elements for life. Proteins
consist of linear polymer chains of 20 different amino acids,
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and they function everywhere in our body; they form its

structure, act as enzymes, and so on. One of the common

motifs in the secondary structure of proteins is an � helix

where a polymer coils in a right-handed helical conformation.

Nucleic acids such as DNA and RNA consist of long chains of

nucleotides. Each nucleotide consists of a pentose sugar, a

nitrogenous base, and one or more phosphate groups. In DNA

two long polymers are entwined in the shape of a double right-

handed helix. The double-helix structure is essential for rep-

lication and transcription of the genetic information that DNA

carries. Genetic codes vary from species to species, and there

are differences even within a species. It is remarkable that, in

spite of the vast diversity of proteins and nucleic acids, almost

all the amino acids found in living organisms are of L type and

all sugars are of D type. Thus chiral symmetry is completely

broken in life. This symmetry breaking is called homochirality.
From the point of view of the energy involved, the two

enantiomers are indistinguishable, and they should ideally

exist with equal probability. When chiral organic substances

are synthesized from achiral substances, we usually obtain a

mixture of R and S enantiomers in a ratio of 50:50 (Pasteur,

1875; Japp, 1898). There is no chirality as a whole, and the

mixture is said to be racemic. When NaClO3 crystals are

grown from a solution by evaporating water, the ratio of d to

l crystals is 50:50 (Kipping and Pope, 1898a, 1898b). Again,

the result is a racemic mixture. By examining the statistics of

natural quartz crystals, it is found that they are also racemic

(Frondel, 1978; Klabunovskii and Thiemann, 2000). The

question arises as to why organic molecules in living organ-

isms are homochiral. Pasteur in 1860 stated that homochir-

ality is the demarcating difference between living organisms

and artificial products (or dead matter) (Pasteur, 1875; Japp,

1898). More than a century later, the problem of homochir-

ality in living organisms has remained unsolved. The origin

of this problem is believed to be connected to the origin of life

(Bada, 1995). Homochirality in elementary building blocks

such as sugars and amino acids might be necessary for the

formation of regular and stable structures of DNA and pro-

teins. However, there is no preference for one enantiomer

over the other. For instance, an all-D amino acid enzyme,

artificially synthesized, was shown to have the expected

specificity for mirror image substrates (Milton, Milton, and

Kent, 1992).
It is speculated that homochirality in living organisms

is established in two stages (Bonner, 1991): (1) an initial

creation of chiral bias, and (2) a subsequent amplification of

the small bias to the chiral pure state. The chirality bias is

measured by enantiomeric excess (EE), defined as the ratio of

the concentration difference of the two enantiomers to the

total concentration; EE is unity in a homochiral state.
For creation of the initial chiral bias in biomolecules,

various possibilities have been proposed (Japp, 1898;

Bonner, 1991; Feringa and van Delden, 1999). Because of

the discrete nature of molecules, there is always a statistical

fluctuation such that one type of enantiomer is slightly in

excess compared to the other (Pearson, 1898a, 1898b; Siegel,

1998; Lente, 2006, 2007). The Earth’s rotation around its axis

may affect the initial symmetry breaking. Kovacs, Keszthelyi,

and Goldanskii (1981) simulated rotation by stirring polymer-

izing D and L amino acid solutions clockwise and counter-

clockwise, but they observed no stereoselectivity that exceeds

the fluctuation level. Asymmetric adsorption on quartz sur-

faces affects their biomolecular chirality (Bonner et al.,

1974). However, since the chirality of natural quartz crystals

is random (Frondel, 1978), the biomolecular chirality on

Earth is expected to be random as well (Bonner, 1991).

Circularly polarized light (CPL) has intrinsic chirality and

is capable of stereoselective interactions with chiral mole-

cules. In fact, CPL has been shown to destroy one enantiomer

preferentially (Kuhn and Braun, 1929; Kuhn and Knopf,

1930; Feringa and van Delden, 1999), and this asymmetric

photolysis enhances EE (Balavoine, Moradopour, and Kagan,

1974; Kagan, Balvoine, and Moradpour, 1974). However, it is

questionable whether sufficiently intense CPL is available

from the Sun (Bonner, 1991). When parity conservation is

discovered to be violated (Lee and Yang, 1956; Wu et al.,

1957), the electroweak interactions are expected to induce an

energy difference between two enantiomers, and thus proba-

bly lead to a state with a finite EE (Yamagata, 1966). Several

research groups have evaluated the energy difference by

ab initio calculation (Mason and Tranter, 1985; Bakasov,

Ha, and Quack, 1998), but the results are controversial and

its effect on chirality selection remains an open question

(Bonner, 2000; Wesendrup et al., 2003). Apart from the

terrestrial origin, the idea of extraterrestrial origin has also

been proposed, since amino acids on meteorites are found to

have an excess of L amino acids (Cronin and Pizzarello, 1997;

Engel and Macko, 1997). The origin of this bias is supposed

to be rapidly rotating neutron stars which emit strong CPL

(Bailey et al., 1998). Even if all of these proposals are taken

into account, the initial difference in the amounts of enan-

tiomers (the EE) is much too small to achieve homochirality

(Bonner, 1991; Avalos et al., 2000). For that, one needs

mechanisms to amplify the initial small quantity of EE. Our

primary focus in the remainder of the paper is this amplifi-

cation process.
The second stage is not simply the amplification of the

EE; it is also necessary to maintain a steady and stable

homochiral state. The first simple model for homochirality

was proposed by Frank (1953). His model consisted of a

linear (or first-order) autocatalytic production of enantiomers

with mutual destruction in an open system. If two enantiom-

ers of different chiralities form an inactive product and

flow away from the system, only the initial majority enantio-

mer eventually remains. Subsequently, linear autocatalysis

(a) (b) (c)

FIG. 1 (color online). Examples of chiral substances.

(a) Schematic of d and l quartz. Adapted from Dana, 1915.

(b) Sodium chlorate crystal, courtesy of C. Viedma, and (c) D

(upper) and L (lower) alanine. In (b), d and l crystals are

differentiated by their color under polarized light.
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continues to produce the remaining enantiomer. Following

this classical work by Frank, many theoretical models were

proposed (Calvin, 1969; Kondepudi and Nelson, 1983; Girard

and Kagan, 1998; Plasson, Bersini, and Commeyras, 2004),

and these models have been summarized in many reviews

(Goldanskii and Kuz’min, 1988; Avetisov and Goldanskii,

1996; Kondepudi and Asakura, 2001; Plasson et al., 2007).
It is only recently that real experimental systems have been

discovered which actually show EE amplification or homo-

chirality. In this review we mainly focus on these recent

experiments performed in the last two decades and also on

related theoretical studies. The first experimental system is a

chemical reaction system discovered by Soai et al. (1995).

The system showed EE amplification for the first time, as

shown in Fig. 2; its origin is attributed to nonlinear (or higher-

order) autocatalysis. By iterating the reaction, the EE is

enhanced to more than 99% (Sato, Urabe et al., 2003). It

was theoretically shown later that if a recycling process of an

achiral reactant is included, the system can achieve a homo-

chiral steady state (Saito and Hyuga, 2004).
The second system is the growth from solution of NaClO3

crystals as obtained by Viedma (2005), and he achieved

homochirality. The system itself has been studied since the

19th century, and we summarize these studies in a later

section. The novelty of Viedma’s experiment was that he

prepared a solution with crystallites of both enantiomorphs

and added glass beads. When such a solution is stirred, the

glass beads grind the crystallites into small fragments. If the

initial system has a small enantiomorphic bias, all the crys-

tallites show the same handedness as the initial majority after

a few hours, as shown in Fig. 3; homochirality is accom-

plished by grinding. Later, the grinding method was success-

fully extended to many systems of crystal growth from

solution. In order to elucidate the phenomena involved, vari-

ous theories have been proposed (Uwaha, 2004, 2008; Saito

and Hyuga, 2005a, 2010, 2011; Noorduin, Meeks et al.,

2008). Among them, simulation studies of lattice-gas models

have identified a novel mechanism to achieve homochirality

(Saito and Hyuga, 2010, 2011).

Theoretical studies of the two different systems, chemical
reaction and crystal growth, have shown that the chiral order
parameter � follows essentially the same time evolution in
both cases (Saito and Hyuga, 2004, 2010). The time evolution
is nonlinear in � with a coefficient depending on the density
of the achiral parent material. The recently proposed activa-
tion, polymerization, epimerization, and depolymerization
(APED) model (Plasson, Bersini, and Commeyras, 2004;
Brandenburg, Lehto, and Lehto, 2007) for homochirality in
life is also found to reduce to the same type of nonlinear
evolution equation. Thus, the homochirality reported in three
different fields, crystal growth, organic chemistry, and bio-
chemistry, is described by a universal nonlinear time evolu-
tion. The specific features of the different systems lie in the
coefficients of the evolution equation.

II. FRANK MODEL

Before describing recent discoveries, we first summarize
the very basic theory of homochirality derived by Frank
(1953). He proposed a chemical reaction model in which an
achiral reactant A turns into chiral products, R or Smolecules.
The system is open such that the achiral reactant A is supplied
from outside and its concentration a is kept fixed. If the
reactant A comes into contact with a chiral R (or S) molecule,
A turns into R (or S) with a rate constant k1,

k1: Aþ R ! 2R; Aþ S ! 2S: (2.1)

The production process is linearly autocatalytic (or of the first
order). When the two opposite enantiomers R and S come
into contact, they annihilate with a rate constant �:

�: Rþ S ! 0: (2.2)

Frank called the process ‘‘mutual antagonism.’’ The two
different enantiomers do not necessarily annihilate each other,
but may form a heterodimer RS, which leaves the system by
evaporation or sedimentation (Girard and Kagan, 1998).

If there is only a mutual destruction � without autocata-
lytic production, i.e., k1 ¼ 0, the asymptotic state is trivially
homochiral such that the initial majority survives whereas the
initial minority is eliminated. With linear autocatalysis with a
finite k1, the remaining molecules of the initial majority
steadily multiply.

FIG. 2. Enantiomeric amplification during consecutive autocata-

lytic Soai reaction. Adapted from Soai et al., 1995.

FIG. 3. Temporal evolution of the ratio of chiral crystals. Initial

majority dominates eventually in the short time of 8 h. Adapted

from Viedma, 2005.
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The reaction is quantified by rate equations. We denote the
concentrations of the R and S enantiomers as r and s,
respectively. The time variation with linear autocatalysis
and mutual antagonism is described by the following rate
equations:

dr

dt
¼ k1ra��rs;

ds

dt
¼ k1sa��rs: (2.3)

Here the concentration of the achiral reactant a is kept
constant since it is assumed to be supplied externally in an
open system.

The system relaxes asymptotically to fixed points
(or steady states) determined by dr=dt ¼ ds=dt ¼ 0. From
Eq. (2.3), one finds a racemic fixed point

r� ¼ s� ¼ k1a=�: (2.4)

However, it is unstable, since the concentration difference
diverges exponentially as r� s ¼ ðr0 � s0Þek1at, where r0
and s0 denote the initial values of r and s, respectively. The
system approaches the racemic fixed point (r�, s�) only if the
initial state is completely achiral, i.e., r0 ¼ s0. If there is
initially a slight chiral bias (r0 � s0), the difference r� s
increases and the majority enantiomer dominates over the
minority. By solving the time evolution equation (2.3)
numerically, the flow is obtained in the r-s phase space, as
shown in Fig. 4(a). The system asymptotically approaches
homochiral states ðr; sÞ ¼ ð0;1Þ or ð1; 0Þ.

The process of chiral symmetry breaking is easy to observe
in terms of the chiral order parameter

� ¼ r� s

rþ s
; (2.5)

or EE defined as j�j. From the time evolution equations (2.3),
we can derive the following equation for the order parameter
�ðtÞ:

d�

dt
¼ �ðrþ sÞ

2
�ð1��2Þ: (2.6)

Here the coefficient of the mutual antagonism � appears
explicitly, thereby indicating that without mutual antagonism
(� ¼ 0) there is no EE variation. The rate constant k1 used
for linear autocatalysis is absent in Eq. (2.6). Its effect is
implicitly expressed in the coefficient through the time-
dependent variables rðtÞ þ sðtÞ. Equation (2.6) appears simi-
lar to the time-dependent Ginzburg-Landau (TDGL) equation
that is well known in the field of phase transition. However,
there is a significant difference from the TDGL equation in

the sense that the coefficient �ðrþ sÞ is time dependent.
Equation (2.6) is not closed in itself; we transformed the
original evolution equations (2.3) into the one for the asym-
metric variable � [Eq. (2.6)] and for the symmetric one (rþ
s), which is not written explicitly.

From Eq. (2.6), we can discuss the possibility of
spontaneous chiral symmetry breaking. Since the coefficient
�ðrþ sÞ=2 is non-negative, the growth rate d�=dt behaves
as a function of �, as shown in Fig. 4(b), at any instant of
time. It is clear that there are three fixed points for � that are
independent of time, i.e., the racemic state (� ¼ 0) and the
two homochiral states (� ¼ �1). If the initial value of the
order parameter �0 is positive but small, the growth rate
d�=dt is positive and � should gradually approach the
homochiral point � ¼ 1. If �1<�0 < 0, then d�=dt < 0
and � decreases to the other homochiral point � ¼ �1.
Thus, the racemic state � ¼ 0 is unstable, and the homo-
chiral states � ¼ �1 are stable as long as the coefficient
�ðrþ sÞ=2 is positive. Symmetry breaking requires the pres-
ence of a finite amount of the chiral products rþ s and
mutual antagonism at any time.

Modified Frank model. A modification to the Frank model
was proposed by Kondepudi and Nelson (1983, 1985), and we
briefly summarize it in the present terminology. In the Frank
model, chiral enantiomers are produced only by the linearly
autocatalytic process. In the modified model, they may also
be produced directly and spontaneously from an achiral
reactant. Reverse reactions to the spontaneous and autocata-
lytic processes are also included in the modified model. Then
it is shown that chiral symmetry breaking is possible only
when the concentration of an achiral reactant a is larger than
the critical value ac, which is a function of the reaction rate
coefficients (Kondepudi and Nelson, 1983).

When a small chiral bias factor g is introduced into the rate
coefficients, the chiral order parameter � is shown to evolve
near the critical point ac as

d�

dt
¼ �A�3 þ Bða� acÞ�þ Cgþ �ðtÞ; (2.7)

where A, B, and C are positive coefficients determined by
the reaction rates, and �ðtÞ is a random force representing
thermal fluctuation (Kondepudi and Nelson, 1985). By nu-
merical solution of this Langevin equation while increasing
the control parameter aðtÞ through the critical value ac, the
chiral order parameter � is found to relax to the value of the
chiral state preferred by the bias g (Kondepudi and Nelson,
1985). This result implies the possibility that a small chiral
bias introduced by the electroweak interactions leads to chiral
symmetry breaking, if the small bias is coupled with an EE
amplification process (Yamagata, 1966).

The difficulty with the above scenario is that no such
chemical system with EE amplification was actually known
until the Soai reaction was discovered (Soai et al., 1995). In
Secs. III and IV, we review recent discoveries of actual
systems which show homochirality and EE amplification.

III. HOMOCHIRALITY IN CRYSTAL GROWTH

Homochirality in crystal growth has been achieved with
various materials. The earliest successful attempt was

(a) (b)

FIG. 4. Time evolution of the Frank model. (a) Flow in r-s phase
space. Adapted from Frank, 1953. (b) The relation between the

chiral order parameter � and its variation d�=dt.
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reported by Viedma (2005) who used an inorganic molecule,
sodium chlorate. After his success, the same method
was applied to organic molecules, and homochiral crystals
have been successfully produced (Noorduin, Izumi et al.,
2008; Noorduin, Meeks et al., 2008; Viedma et al., 2008). In
the following sections, we briefly summarize the history
of the growth from solution of sodium chlorate, and then
describe homochiral crystal growth of organic materials.
Subsequently, we present a theoretical analysis of the homo-
chirality process with simulations (Saito and Hyuga, 2008,
2009, 2010, 2011).

A. Experiments with NaClO3

The spontaneous homochirality of sodium chlorate crystals
has been pursued for a long time. The sodium chlorate
molecule NaClO3 itself is achiral, but it crystallizes into
two enantiomorphs, its d and l forms, in the chiral space
group P213 (Abrahams and Bernstein, 1977).

1. Evaporation (Kipping and Pope)

In the experiment by Kipping and Pope (1898a, 1898b), the
solution of sodium chlorate was not rotated, and as the water
evaporated many crystallites were nucleated spontaneously
and grew. The experiment was repeated many times. For each
sample, numbers of d and l crystallites were counted, and the
ratio of d crystals among them was tabulated. In a later study,
Kondepudi, Kaufman, and Singh (1990) repeated similar
experiments and examined the results thoroughly. They found
that the average crystalline enantiomeric excess (CEE) was
essentially zero, since the frequency distribution of the CEE
was centered at the racemic point with CEE ¼ 0, as shown in
Fig. 5(a).

Kipping et al. also studied the effect of chiral impurities.
They added D glucose to the sodium chlorate solution and
found that the quantity of the d crystal decreased such that the
ratio of the d to l crystals was 30:70. This fact clearly
indicates the interaction between molecular and crystal
chirality.

The spontaneous formation of crystal nuclei in the solution
is called primary nucleation. In addition to the experiments
on primary nucleation in a supersaturated solution, Kipping
et al. also studied secondary nucleation process; they crushed
a crystallite of sodium chlorate into small fragments and
added them to a saturated sodium chlorate solution. The
added fragments acted as secondary nucleation centers, and

all the 290 crystals grown turned out to have the same
chirality. This indicates that the final crystallites were all
descendants of the initially fragmented crystallite and no
primary nucleation occurred during crystal growth.

2. Stirring (Kondepudi)

Kondepudi, Kaufman, and Singh (1990) grew sodium chlo-
rate crystals from a supersaturated solution by evaporation.
During the growth, the solution was stirred with a magnetic
stirrer. After the completion of crystallization, only one
enantiomorph of the crystallites was observed. They repeated
the crystallization experiments several times; the average
CEE was zero, but its frequency distribution showed two
sharp peaks at the homochiral states, as shown in Fig. 5(b).

In order to understand the mechanism of the development
of homochirality, Kondepudi et al. monitored the degree of
supersaturation during crystal growth. Because of the evapo-
ration of water, supersaturation increased at an early stage.
When the first primary nucleation occurred, the supersatura-
tion dropped drastically, and it never again reached the level
necessary for further primary nucleation.

McBride and Carter (1991) filmed the solidification pro-
cess, and they found that a magnetic stir bar stroked the first
nucleated crystal, thereby breaking the crystal into small
fragments. They acted as secondary nucleation centers and
subsequently grew into new crystals. In such a case of
secondary nucleation, the supersaturation drops greatly and
subsequent primary nucleation is suppressed. Kondepudi
et al. (1993) quantitatively confirmed the scenario by a
theoretical analysis with stochastic kinetic equations. Since
only the descendants of the first parent crystal remained, they
accordingly had the same chirality (McBride and Carter,
1991; Kondepudi et al., 1993; Martin, Tharrington, and
Wu, 1996). Instead of contact with a stir bar, convection in
the fluid has also been proposed to induce secondary nuclea-
tion (Buhse et al., 2000; Cartwright et al., 2004). Chiral
symmetry breaking induced by the secondary nucleation is
observed in crystallization of other compounds from solution
with stirring, such as 1, 10-binaphthyl (Kondepudi, Laudadio,
and Asakura, 1999), and it is summarized by Kondepudi and
Asakura (2001).

3. Grinding (Viedma)

Viedma (2005) placed both d and l crystallites of sodium
chlorate in water as the solvent. Some of the crystallites

FIG. 5. Distribution of crystalline enantiomeric excess (CEE) for (a) unstirred and (b) stirred crystallizations. From Kondepudi and

Asakura, 2001.
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dissolved, but excess crystallites of both enantiomorphs re-
mained in the saturated solution. Therefore, the scenario of a
single parent crystal could not be valid in this case. Glass
beads were added to the solution, and it was strongly stirred
with a magnetic stirrer. The glass beads ground the existing
crystallites into small pieces. After a few hours, all the
crystals existing in the reactor turned out to have the same
chirality. The enantiomorph initially in the majority domi-
nated over the minority, and the latter eventually disappeared;
thereby the compound attained a homochiral state, as shown
in Fig. 3. We analyze this grinding-induced homochirality,
called Viedma grinding or Viedma deracemization, in a
theoretical Sec. III.C.

B. Experiments with organic crystals

After homochirality was successfully obtained in the
growth of the inorganic crystal sodium chlorate (Viedma,
2005), the grinding method was applied to grow homochiral
crystals of organic molecules (Noorduin, Izumi et al., 2008;
Viedma et al., 2008; Tsogoeva et al., 2009).

Chiral organic molecules can crystallize in twoways. When
the cohesion between unlike enantiomer molecules is stronger
than that between like enantiomer molecules, different enan-
tiomers are incorporated into a single crystal, and a racemic
compound or a racemate is formed. In the opposite case, when
the cohesion between like enantiomer molecules is stronger
than that between unlike enantiomers, each enantiomer crys-
tallizes into its respective single crystal. A crystal thus formed
is called a conglomerate. We consider the latter conglomerate
system, where crystallization is chiroselective. After comple-
tion of the usual solution growth of conglomerate crystals
without grinding, there remain equal amounts of small crys-
tallites of the two enantiomers in the reactor, and as a whole
the system is racemic. However, the process of grinding alters
this situation, thereby leading to homochirality.

1. Chirality conversion in solution (Noorduin et al.)

Noorduin, Izumi et al. (2008) succeeded in homochiral
crystal growth of a chiral organic molecule, the imine
of 2-methyl-benzaldehyde and phenylglycinamide. The con-
stituent molecules are chiral, and they form a conglomerate.
A molecule can change its chirality only when it is isolated in
the solution as a monomer, provided that the solution contains
a particular additive. In contrast, once a molecule is incorpo-
rated in a crystal cluster, it can no longer change its chirality.

Using the method of grinding with glass beads, Noorduin
et al. observed that all the molecules switch their chirality to a
single enantiomer; homochirality at the molecular level was
achieved. They observed that the EE increases exponentially
in time until it reaches unity.

The process was also successfully applied to the crystal-
lization of an amino acid (Viedma et al., 2008).

2. Reaction in solution (Tsogoeva et al.)

Tsogoeva et al. (2009) crystallized another organic mole-
cule that forms a conglomerate. However, in this case, the
monomer in the solution changes its chirality through a
reversible chemical reaction via achiral reactants. Even with

this complex process of chirality conversion, homochirality

was achieved after crystal growth from a stirred solution.

C. Theoretical models

There are many theories to explain homochirality based

on rate equations (Uwaha, 2004, 2008; Saito and Hyuga,

2005a; McBride and Tully, 2008). Nonlinearity in these

studies is introduced by assuming that small chiral units are

formed and are incorporated in crystallites, even when the

monomers are chiral (Uwaha, 2008). As another possibility

for elucidation of homochirality in crystal growth under

grinding, especially in order to identify the origin of nonline-

arity, Saito and Hyuga (2008, 2009, 2010, 2011) proposed

simple lattice-gas models and studied them using kinetic

Monte Carlo (KMC) simulations.

1. ARS model

The simplest model is the one in which achiral molecules

crystallize into chiral crystal clusters (Saito and Hyuga,

2010). On a square lattice, each site is occupied by an achiral

molecule A, or a chiral molecule R or S, or by a solvent

molecule. Since the solvent is inactive and acts only as the

background, the site occupied by the solvent is denoted as

‘‘empty’’ hereafter. Double occupancy of a site is forbidden.

The total concentration of active molecules A, R, and S is

fixed at c.
The initial state is chosen achiral such that only Amolecules

are distributed randomly in the simulation box. These A
molecules jump to arbitrary empty sites. The long-ranged

jump mimics the process of strong stirring during crystal

growth, and diffusional transport plays a negligible role.

When two A molecules happen to be positioned at the

nearest-neighbor (NN) sites, they can bond and form a dimer

which is assumed to acquire chirality to become either R2 or

S2. The rate of dimer formation k0 is equal for the two

enantiomers. Chiral clusters are assumed to be immobile for

simplicity, and they grow in size by converting achiral mole-

cules at their periphery to chiral molecules with the same

chirality that they have. For simplicity, temperature is assumed

so low that chiral clusters once formed will not dissociate; the

crystal growth is irreversible. With this irreversible growth,

there is no possibility of Ostwald ripening.
With only irreversible crystal growth, it is clear that crys-

tallization stops when all the achiral molecules become chi-

ral, R or S. Since the growth of R and S crystal clusters is

equivalent, a racemic mixture of R and S crystallites is

obtained, as shown in Fig. 6(a). The value of the CEE j�j
remains fairly small.

Grinding greatly changes the situation. It crushes crystal

clusters into many small fragments and redistributes them.

The fragmentation and redistribution effects are modeled in

the following manner in simulations. First the whole system is

divided into small square cells, and each cell is further

divided by diagonals into four triangles. Then the upper and

lower or left and right triangles of each cell are randomly

exchanged, and finally all the cells are randomly rearranged

in position. Because of this grinding procedure, growing

crystals are cut into small fragments, sometimes even to the

608 Yukio Saito and Hiroyuki Hyuga: Colloquium: Homochirality: Symmetry breaking . . .

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013



level of a monomer. Since a monomer has no chirality, it is
recycled back into an achiral molecule A.

In KMC simulations with grinding, the time evolution of
the population numbers NA, NR, and NS of A, R, and S
molecules is divided into three stages, as shown in Fig. 7.
In the early stage NR and NS increase rapidly at almost
identical rates at the expense of NA. In the intermediate stage,
NR is almost the same as NS, and they remain constant. In this
period, R and S enantiomorphs are in competition. In the last
stage, one enantiomorph starts to dominate over the other.
The population of the winner increases at the cost of that of
the loser. There is no preference for the choice of the winner;
it is random.

The final configuration under grinding is shown in
Fig. 6(b). There are many small chiral clusters R and S and
a finite number of achiral molecules A. The population
densities of the two chiral clusters are clearly different; chiral
symmetry is broken. However, in Fig. 6(b), a small amount of
minority enantiomorph still remains, and the system is not
homochiral. This is due to the recycled achiral monomer A,
since the random spontaneous dimerization inevitably pro-
duces both R and S enantiomorphs. The quantity of the
minority enantiomorph decreases as the spontaneous nuclea-
tion rate k0 decreases.

We now examine the mechanism for this chiral symmetry
breaking. The characteristic feature in Fig. 6(b) is that the
crystal clusters are small and exhibit almost identical size
irrespective of the chirality. In addition, due to the recycling
effect, there are many achiral monomers A remaining.
Another feature apparent in Fig. 7 is that in the intermediate
stage when the two enantiomorphs are competing, the number
of neighboring RS pairs NRS increases. This means that the R
and S crystal clusters often come in contact. Consequently,
we suppose the following scenario. A crystal cluster grows by
incorporating achiral molecules A at its periphery. Since the
size of the clusters is constant on average, the total perimeter
of chiral clusters is proportional to the total number of chiral
molecules or their concentrations r and s. Therefore, the
concentration increase per unit time is linearly proportional
to the product of the concentration of r or s and that of the
achiral molecule a. The achiral molecule is consumed during
crystallization, but it is constantly supplied by grinding; it is
recycled from chiral crystals. On the other hand, when the
numbers of R and S molecules or clusters increase, the
number of RS contacts increases, as shown in Fig. 7. When
two clusters of opposite enantiomorphs come in contact, as

shown in Fig. 8, the growth points at cluster peripheries are
covered, and these points are not available to the achiral
molecule A. The growth rates of both enantiomorphs are
suppressed, and this corresponds to the mutual antagonism
proposed by Frank (1953).

We formulate the above scenario into rate equations.
For the growth of R and S crystals with concentrations r
and s, we have

dr

dt
¼ ~k0a

2 þ ~k1ar� �r� ~�ars;

ds

dt
¼ ~k0a

2 þ ~k1as� �s� ~�ars:

(3.1)

The first term on the right-hand side (rhs) represents
the nucleation of a chiral dimer from two neighboring
achiral molecules A. The second term corresponds to the
peripheral incorporation of achiral molecules into chiral
clusters, the third corresponds to grinding-induced recycling
of achiral molecules, and the last term corresponds to mutual
antagonism due to the proximity of opposite enantiomorphic
clusters. The concentration of the achiral molecule a is
determined by the conservation of the total concentration c ¼
aþ rþ s, and it varies as da=dt ¼ �ðdr=dtþ ds=dtÞ. With
appropriate choice of the values of the rate constants ~k0, ~k1, �,
and ~�, the relaxation of the population numbers of the various

(a) (b)

FIG. 6 (color online). Final configuration of two enantiomers, R
(open square) and S (filled square), and an achiral molecule A
(cross) in the ARS model. (a) Without and (b) with grinding. From

Saito and Hyuga, 2010.
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FIG. 7 (color online). Time variation of the population numbers of

A, R, and S molecules as well as the number of RS pairs when the

crystals are ground. Curves represent fits by the rate equation (3.1).

From Saito and Hyuga, 2010.

FIG. 8 (color online). Schematic picture of incorporation of achi-

ral molecules on the periphery of a crystal cluster. When two

opposite enantiomers are in proximity, the incorporation is mutually

suppressed. From Saito and Hyuga, 2011.
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molecules obtained in KMC simulation is reproduced, as
shown by the smooth curves in Fig. 7.

The development of homochirality is most explicitly ob-
served by transforming the rate equations (3.1) into the time
evolution of the chiral order parameter� defined by Eq. (2.5).
It is written as

d�

dt
¼ � 2~k0a

2

rþ s
�þ ~�aðrþ sÞ

2
�ð1��2Þ; (3.2)

with a ¼ c� ðrþ sÞ. The first term represents a decrease in
the chiral order parameter due to spontaneous dimerization
with the coefficient ~k0, since it produces both enantiomorphs
at random. The process is important in the initial achiral stage
when there are no chiral molecules. Once chiral molecules
are present, the mutual antagonism introduces a nonlinear
effect that is represented by the second term with ~�. The
nonlinear term resembles that of the Frank model Eq. (2.6),
and it leads to chiral symmetry breaking as long as the
coefficient ~�aðrþ sÞ=2 is positive. However, without recy-
cling, the achiral molecules are consumed such that a ! 0
during the growth. Therefore, to maintain a nonvanishing
concentration a of the achiral molecules, the recycling pro-
cess due to grinding is indispensable.

In actual experiments on growth from solution, the crystal
growth occurs in diffusion boundary layers around crystal
clusters. If the boundary layers of crystallites of opposite
enantiomorphs overlap, the crystal growth of both clusters
is suppressed, as anticipated in the mutual antagonism sce-
nario. Therefore, mutual antagonism might explain the ob-
served homochirality in the growth from solution of sodium
chlorate crystals under grinding.

Cartwright, Piro, and Tuval (2007) simulated crystal
growth in a solution confined in a gap between two rotating
eccentric cylinders (Metcalfe and Ottino, 1994). Primary
nucleation changes achiral monomers into chiral monomers,
and they grow in size by incorporating achiral monomers
within crystallization range. Because of the shear stress in the
chaotic flow, chiral clusters diminish their size by emitting
chiral monomers. Chiral monomers lose their chirality and
become achiral. (The last process is a recycling process of
achiral monomers rather than the Ostwald ripening that
Cartwright et al. assumed.) The simulation ends up in a
homochiral state. We believe that the origin of homochirality
in this case is again the mutual antagonism induced by the
overlapping of the crystallization zones around different
chiral clusters.

2. RS model

A similar lattice-gas model has been constructed for the
crystal growth of chiral organic molecules (Saito and Hyuga,
2008, 2009). A site on a square lattice is occupied by chiral R
or S molecules, or by a solvent (empty). Chiral monomers
randomly jump a long distance to mimic stirring. When two
chiral molecules of the same handedness come in contact at
NN sites, they can bond and form a conglomerate crystal
cluster. It is assumed that no mixed crystals are formed.
Crystal cohesion is modeled by assigning a lower jump rate
to a molecule with more NN bonds, so that molecules in a
crystal cluster will not easily jump out of it. Chirality con-
version is allowed only for isolated monomers as in the

experiments (Noorduin, Izumi et al., 2008), and the rate is
set as �0. Simulation starts from an achiral initial state with
equal amounts of R and S monomers.

Without grinding, several small clusters are nucleated at an
early stage [see Fig. 9(a)], and they coarsen by Ostwald
ripening (OR) among like enantiomeric crystals; larger clus-
ters dominate over smaller ones due to the curvature effect.
Consequently, two large crystal clusters of different enan-
tiomers remain, as shown in Fig. 9(b). Further OR between
the two remaining clusters of different enantiomers is very
slow since it is limited by dissolution of clusters to emit
monomers and by subsequent slow chirality conversion of
monomers [see Fig. 9(c)]. A similar slow OR process is
actually observed in experiments (Noorduin, Meeks et al.,
2008).

With grinding the system is found to settle fairly rapidly to
the homochiral state, as shown in Fig. 10(b) (Saito and
Hyuga, 2009). In the early racemic stage, there are many
small crystal clusters of similar sizes [see Fig. 10(a)]. During
chirality competition, until the final homochiral state, the
average size of these clusters remains constant, as shown in
Fig. 10. Chirality conversion occurs such that the population
density of the crystal clusters of one enantiomeric type
increases at the cost of that of the opposite type.

We now consider the mechanism of chiral symmetry
breaking to homochirality in terms of the relevant rate equa-
tions. The role of the achiral molecule A in the ARS model is
now shared by the monomers of the chiral enantiomers R and
S. Therefore, the concentrations of monomers should be
treated separately from the concentrations of chiral molecules
incorporated in crystal clusters; the former are denoted as r1
and s1, and the latter as rc and sc. Monomers change their
chirality with a rate �0. When two monomers of the same
chirality come in contact, they form the nucleus of a crystal

(a) (b) (c)

FIG. 9 (color online). Without grinding, homochirality is

accomplished by Ostwald ripening after a long time. From Saito

and Hyuga, 2009.

(a) (b)

FIG. 10 (color online). Cluster configuration under grinding (a)

in the intermediate racemic state, and (b) the final homochiral state.

From Saito and Hyuga, 2009.
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cluster. Clusters grow by incorporating monomers of the
same enantiomeric type at their periphery. Since the sizes
of crystal clusters are constant on average, their peripheral
length is proportional to the concentrations of the enantiom-
ers in crystal clusters, rc and sc. The monomers are recycled
by grinding crystal clusters. The process of mutual antago-
nism introduced in the previous section for the ARS model
still holds in this RS model, since the proximity of the
opposite enantiomeric clusters shields the peripheries of
both types of crystal cluster. All these processes are summa-
rized in the following rate equations:

dr1
dt

¼ ��0ðr1 � s1Þ � drc
dt

;

drc
dt

¼ ~k0r
2
1 þ ~k1r1rc � �rc � ~�r1rcsc;

ds1
dt

¼ �0ðr1 � s1Þ � dsc
dt

;

dsc
dt

¼ ~k0s
2
1 þ ~k1s1sc � �sc � ~�s1rcsc:

(3.3)

When the racemization rate �0 is very large, or at a steady
state when there is no time variation of any concentration
( _r1 ¼ _rc ¼ _s1 ¼ _sc ¼ 0), the concentrations of the mono-
mers of the two enantiomers should be equal, i.e., r1 ¼ s1.
Consequently, Eq. (3.3) will have the same final state of
spontaneously broken chiral symmetry as that in the case of
the ARS system; the concentration of the achiral molecule a
is replaced by the concentrations of the chiral monomers
r1 ¼ s1, and the concentrations of the chiral molecules r
and s are replaced by those in chiral crystals, rc and sc.
The rate equations (3.3) produce a good fit to the time
evolution of the population numbers of the chiral molecules
obtained in a KMC simulation if appropriate values of the
various rate constants are chosen, as shown in Fig. 11 (Saito
and Hyuga, 2011).

The steady state thus obtained under grinding, shown in
Fig. 10, consists of many small crystal clusters, and it is
unfavorable with respect to the surface free energy. The
true equilibrium state should be the state with a single large
crystal [as shown in Fig. 9(c)] after Ostwald ripening.
The grinding keeps the system away from equilibrium by
introducing the energy necessary to break the crystals and
create new surfaces.

IV. CHIRALITY SELECTION IN CHEMICAL REACTIONS

It was 40 years before the model proposed by Frank was

realized as a practical chemical reaction system. Such a

chemical reaction system that involves an autocatalytic

process was discovered by Soai et al. (1995). In the Soai

reaction, the EE was amplified, although the system did not

attain homochirality. We first briefly summarize these experi-

mental results and then present theoretical studies on how to

achieve homochirality (Saito and Hyuga, 2004) and further

analysis on its stochastic aspects (Saito, Sugimori, and

Hyuga, 2007).

A. Soai reaction

1. Soai reaction

The Soai reaction is an alkylation of aldehydes in which an

aldehyde A reacts with a metallic compound B to produce an

alcohol C (Soai et al., 1995). Examples of such substances

are 2-alkynylpyrimidine-5-carbaldehyde (A), diisopropylzinc
(B), and 2-alkynyl-5-pyrimidyl alkanol (C) (Sato et al.,

2001). Although the reactant molecules A and B are achiral,

the product molecule C has a chirality; ðRÞ-C and ðSÞ-C,
simply called R and S hereafter. The reactants A and B are

dissolved in a solvent, and to them is added a small amount of

an R and S mixture that has a small imbalance or initial bias

in the EE, j�0j. When the reaction is complete, the reactant

molecules A and B afford product C with high yield, and the

final EE value j�1j is found to be larger than the initial value
j�0j. Thus the EE is amplified, although the final EE is not

100%. The initially added products act as an enantioselective

catalyst for the production of the same type of enantiomers. In

order to amplify the EE value further, Soai et al. used a

product with higher EE as a new catalyst, and the reaction

was iterated several times, as shown in Fig. 2. They were able

to obtain an EE value of more than 99% (Sato, Urabe et al.,

2003).
Soai et al. also proved that chirality selection is very

sensitive to the chiral initiators, which are different from

the products themselves. They found, for example, that quartz

(Soai et al., 1999), NaClO3 (Sato, Kadowaki, and Soai,

2000), and polarized light (Kawasaki et al., 2005) are very

good chiral initiators to select one enantiomer over the other

with a high EE amplification. Recently, it was shown that

even isotopes can trigger EE amplification (Kawasaki et al.,

2009). These experiments clearly indicate that homochirality

is readily accomplished from a small initial chirality bias if an

EE amplification mechanism is provided.

2. Second-order autocatalysis

Since the discovery of EE amplification, the molecular

mechanism for the EE amplification has been studied; the

homodimer is supposed to act as the catalyst (Blackmond

et al., 2001; Sato et al., 2001; Gridnev et al., 2003; Sato,

Omiya et al., 2003; Blackmond, 2004). We explain the

autocatalytic mechanism by considering the description pro-

vided by Sato et al. (2001) and Sato, Omiya et al. (2003).

They assumed the following set of chemical reactions:

0

1000

2000

3000

4000

0 2000 4000 6000 8000 10000 12000

N

t

NR

NS

FIG. 11 (color online). Time variation of the population numbers

of R and S molecules. Curves represent the fit to the rate

equation (3.3). From Saito and Hyuga, 2011.
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homo: Rþ R $ RR; Sþ S $ SS; (4.1a)

hetero: Rþ S $ RS; (4.1b)

k: Aþ Bþ RR ! Rþ RR;

Aþ Bþ SS ! Sþ SS; (4.1c)

k0: Aþ Bþ RS ! Rþ RS;

Aþ Bþ RS ! Sþ RS: (4.1d)

Equations (4.1a) and (4.1b) represent the formation of
homodimers (RR and SS) and heterodimers (RS), respec-
tively. These reactions are reversible and assumed to occur
sufficiently quickly that the dimer concentrations [RR], [RS],
and [SS] are quasistationary, i.e., d½RR�=dt ¼ d½SS�=dt ¼
d½RS�=dt ¼ 0. Consequently, they are determined by the
monomer concentrations r and s as

½RR� ¼ Kr2; ½SS� ¼ Ks2; ½RS� ¼ K0rs (4.2)

with the equilibrium constants K and K0. Under the
quasistationary assumption Eq. (4.2), the rate equations for
the concentrations r and s of the chiral monomers R and S are
derived as

dr

dt
¼ kKabr2 þ k0K0abrs; (4.3a)

ds

dt
¼ kKabs2 þ k0K0abrs: (4.3b)

In Eq. (4.3a), which describes the variation of the concentra-
tion of the R enantiomer, the first term on the rhs represents
the autocatalytic process of a homodimer, and it is of the
second order such that two R enantiomers are required in the
production of an R enantiomer from achiral reactants A and
B. The second term corresponds to the autocatalytic reaction
of a heterodimer, and it is of the first order for R and S
enantiomers. The conservation of materials requires that the
concentrations a and b of achiral reactants A and B should
satisfy the relations aþ rþ s ¼ const and bþ rþ s ¼
const.

The time evolution of the yield rþ s and of the EE
value j�j observed in the experiments is well repro-
duced by fitting the solution of the rate equations (4.3a) and
(4.3b) with appropriate values of the reaction rates k and k0 as
well as the equilibrium constants K and K0 (Sato, Omiya
et al., 2003). In some cases, the effect of a heterodimer is
negligible, i.e., k0K0 ¼ 0, or it should at least be small
compared to the contributions from the homodimers, i.e.,
k0K0 < kK (Blackmond et al., 2001; Sato et al., 2001;
Buhse, 2003; Sato, Omiya et al., 2003). Thus autocatalysis
via homodimers or that of the second order seems to explain
the EE amplification in the experiments. More detailed stud-
ies of the molecular mechanism of autocatalysis are currently
under way (Blackmond, 2004; Gridnev and Brown, 2004;
Islas et al., 2005; Ercolani and Schiaffino, 2011).

3. Soai reaction without chiral initiator

Many researchers have performed the Soai reaction start-
ing from a completely achiral initial state (Singleton and Vo,
2002, 2003; Soai et al., 2003; Gridnev, 2006; Kawasaki
et al., 2006). After repetition of the experiment with many
samples, it is found that the final EE value varies from sample

to sample. Sometimes the R enantiomer is the majority, and
sometimes the S enantiomer is. The value of the order
parameter � can be positive or negative. Its distribution has
two peaks at almost symmetric points, as shown in Fig. 12
(Soai et al., 2003).

To study the corresponding probability distribution, as
presented in experiments (Soai et al., 2003; Kawasaki et al.,
2006), the rate equation approach is not valid, and a stochastic
analysis is necessary. The analysiswas initiated byLente (2004)
up to first-order autocatalytic processes, and it was extended to
second order by Saito, Sugimori, and Hyuga (2007).

B. Theoretical analyses

To understand the essential features of EE amplification
observed in the Soai reaction and to search for possible ways
to attain homochirality, Saito and Hyuga (2004) studied a
simple chemical reaction model. In this model, it is assumed
that there is an ample amount of achiral reactant B so that its
time variation is discarded, and only the achiral molecule A is
considered. Consequently, the conservation of the total ma-
terial imposes the condition

aþ rþ s ¼ c ¼ const: (4.4)

With the restriction that the concentration variables r, s, and
a ¼ c� r� s are all non-negative, the r-s phase space is
limited to the triangular region defined by 0 � r, s, and rþ
s � c.

Chiral enantiomers are irreversibly produced
(a) spontaneously, (b) by a linear (or first-order) autocatalytic
process, and (c) by a nonlinear (or second-order) autocatal-
ysis. It will be shown later that these processes are sufficient to
explain EE amplification, but for the establishment of homo-
chirality (d) the recycling process which converts chiral prod-
ucts R and S enantiomers to an achiral reactant A is necessary.
All together, the relevant reaction schemes are described as

k0: A ! R; A ! S; (4.5a)

k1: Aþ R ! 2R; Aþ S ! 2S; (4.5b)

k2: Aþ 2R ! 3R; Aþ 2S ! 3S; (4.5c)

�: R ! A; S ! A; (4.5d)

with respective rate constants k0, k1, k2, and �.

FIG. 12. Frequency of the enantiomeric excess of the alkanol

produced without initial chiral ingredients. Adapted from Soai

et al., 2003.
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The rate equations for the concentrations r and s of the R
and S enantiomers, respectively, are written as

dr

dt
¼ ðk0 þ k1rþ k2r

2Þa� �r; (4.6a)

ds

dt
¼ ðk0 þ k1sþ k2s

2Þa� �s: (4.6b)

From Eqs. (4.6a) and (4.6b), we derive the time evolution of
the chiral order parameter � ¼ ðr� sÞ=ðrþ sÞ as follows:

d�

dt
¼ �k0

a

rþ s
�þ k2

aðrþ sÞ
2

�ð1��2Þ: (4.7)

This equation appears similar to that of the Frank model,
Eq. (2.6), and crystal growth, Eq. (3.2). The coefficients of
neither the linear autocatalysis, k1, nor the recycling process,
�, appear explicitly in Eq. (4.7). They are hidden in the time
dependence of the achiral concentration aðtÞ and the sym-
metric combination rðtÞ þ sðtÞ [ ¼ c� aðtÞ]. Since a and
rþ s are non-negative, the spontaneous production, denoted
by k0, leads to decay of the chiral order parameter �. Only
nonlinear autocatalysis, denoted by k2, can provide the am-
plification of �. However, for homochirality to be achieved,
the coefficient of the nonlinear term k2aðrþ sÞ=2 should
remain positive at all times.

Comparison of Eqs. (4.6a) and (4.6b) with Eqs. (4.3a) and
(4.3b) shows that k2 corresponds to kKb of the homodimer
autocatalysis. When the heterodimer also acts as a catalyst,
the coefficient of the nonlinear term in Eq. (4.7) is modified
to ðkK � k0K0Þabðrþ sÞ=2, thereby indicating the racemiza-
tion effect of the heterodimer. The heterodimer’s racemiza-
tion effect should be smaller than the deracemaization
effect of the homodimer, k0K0 < kK, for EE amplification
or homochirality.

1. Without recycling: EE amplification

Equation (4.7) ensures the amplification of the chiral
order parameter as long as the coefficient k2aðrþ sÞ=2 is
positive. However, the Soai reaction is performed in a closed
reactor without recycling (� ¼ 0), and the reaction proceeds
irreversibly in the forward direction. Eventually, the achiral
reactant is exhausted (a ¼ 0), and the reaction stops. The
state with a ¼ 0 or rþ s ¼ c corresponds to a line of fixed
points (dr=dt ¼ ds=dt ¼ 0) of the rate equations (4.6a) and
(4.6b), if � ¼ 0. When the reaction stops, so does the EE
amplification. Therefore, EE amplification occurs, but a ho-
mochiral state cannot be achieved without recycling.

For a few simple cases, the trajectory of the reaction flow
in the r-s phase space can be easily calculated by integrating
dr=ds obtained from Eqs. (4.6a) and (4.6b).

a. Spontaneous production (k0 > 0, k1 ¼ k2 ¼ � ¼ 0)

The flow trajectory in r-s phase space is a line r ¼ sþ
r0 � s0 that terminates at the fixed line rþ s ¼ c. Here r0
and s0 are initial concentrations. The EE value j�j decreases
in time, since the numerator (r� s) in the definition (2.5) of
� remains constant, while the denominator (rþ s) increases
as the reaction proceeds.

b. Linear autocatalysis (k1 > 0, k0 ¼ k2 ¼ � ¼ 0)

The trajectory r ¼ ðr0=s0Þs is a line radiating from
the origin. Since the ratio r=s does not change in time, the
chiral order parameter remains constant. Linear autocatalysis
promotes the production of the same enantiomeric type, but
the majority-to-minority ratio does not change. Enantiomeric
excess amplification is not possible with only linear
autocatalysis.

c. Nonlinear autocatalysis (k2 > 0, k0 ¼ k1 ¼ � ¼ 0)

With only nonlinear autocatalysis k2, the flow trajectory is
a hyperbola passing through the origin, 1=r� 1=s ¼ 1=r0 �
1=s0, and terminates on the fixed line, as shown in Fig. 13(a).
If r0 > s0, the trajectory bends toward larger r values, and the
chiral order parameter � increases with EE amplification.
This is evident from the relation of the final value of the EE
order parameter j�1j versus its initial value j�0j, shown in
Fig. 14.

2. With recycling: Homochirality

Without recycling the EE amplification stops at an inter-
mediate level because the achiral reactant is completely
consumed (a1 ¼ 0). If one could supply an achiral reactant,
then EE amplification would continue and homochirality
would be achieved. Supply is possible by recycling the
achiral reactant A from the chiral products R and S. This is
the process with a coefficient � in Eqs. (4.6a) and (4.6b), even
though it does not explicitly affect the time evolution of �, as
indicated by Eq. (4.7).

(a) (b)

FIG. 13. Flow diagrams in the r-s phase space with nonlinear

autocatalysis (a) without and (b) with recycling. From Saito and

Hyuga, 2004.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

φ∞

φ0

FIG. 14. Final value of the chiral order parameter �1 vs initial

value �0 with nonlinear autocatalysis but without recycling.

Initially, achiral molecules comprise 80% of all reactive substances.
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The recycling process drastically alters the flow trajectory
in the r-s phase space. The line rþ s ¼ c is no longer a line
of fixed points, but the system has several fixed points.

a. Spontaneous production (� > 0, k0 > 0, k1 ¼ k2 ¼ 0)

There is only a racemic fixed point at r� ¼ s� ¼
k0c=ð2k0 þ �Þ. This is consistent with the evolution equa-
tion (4.7), which indicates that � should reduce to zero.

b. Linear autocatalysis (� > 0, k1 > 0, k0 ¼ k2 ¼ 0)

The system has a trivial and unstable fixed point r ¼ s ¼
0, and a fixed line which is shifted to a ¼ �=k1. This fixed
line is structurally unstable such that with small spontaneous
production k0, the fixed line collapses to a racemic fixed
point.

c. Nonlinear autocatalysis (� > 0, k2 > 0, k0 ¼ k1 ¼ 0)

If the recycling coefficient � is small enough (� < k2c
2=8),

the system has seven fixed points, as shown in Fig. 13(b).
Four of them are unstable, and three are stable. One stable
fixed point is a trivial one ðr; sÞ ¼ ð0; 0Þ. The other two stable
fixed points are homochiral at ðr; sÞ ¼ ðX; 0Þ or ð0; XÞ with
X ¼ ðcþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4�=k2
p Þ=2. Thus, homochirality is achieved

by introducing the recycling process, as already anticipated
from Eq. (4.7).

3. Origin of recycling

What is the origin of the recycling process and how can it
be introduced in a reaction system? The reverse chemical
reaction is found to be inappropriate as a candidate for the
recycling process, since it always leads to an equilibrium state
which is racemic (Saito and Hyuga, 2005b; Blackmond and
Matar, 2008). Therefore, the system has to be driven out of
equilibrium (Saito and Hyuga, 2005b; Plasson, 2008).

a. Reverse reactions

Since the recycling process from the chiral products R or S
to the achiral reactant A corresponds to the reverse of the
spontaneous production from A to R or S, the reverse chemi-
cal reaction is a natural candidate for the recycling process.
However, one has to be careful about the microscopic pro-
cesses involved in chemical reactions (Blackmond and Matar,
2008). In the reaction coordinate that represents the variation
of chemical potential as a function of molecular states, as
shown in Fig. 15(a), the chemical reaction proceeds such that
a reactant A with a high chemical potential�A passes through
a transition state with a higher chemical potential to the
product R or S with the lower chemical potential �R ¼ �S.
The forward reaction rate k0 through path (i) in Fig. 15(a) is
controlled by the thermal activation process needed to cross
the intermediate energy barrier. The rate of the reverse reac-

tion kð�Þ
0 is smaller than the forward rate k0, because of an

additional energy barrier due to the chemical potential dif-

ference �� ¼ �A ��R; the reverse reaction rate is kð�Þ
0 ¼

k0e
���=kBT . With kð�Þ

0 the states with broken chiral symmetry

(r � s) remain stable, as long as k0 is very small compared to
the rate of the autocatalytic process k2c

2.

However, a catalyst is considered to enhance the chemical
reaction by lowering the energy barrier at the intermediate
transition state, as schematically presented by path (ii) in
Fig. 15(a). Consequently, the homodimer catalyst enhances
not only the forward reaction, Eq. (4.5c), but also its reverse
reaction

kð�Þ
2 : 3R ! Aþ 2R; (4.8)

where the rate constants are related as (Saito and Hyuga,
2005b; Blackmond and Matar, 2008)

kð�Þ
2

k2
¼ e���=kBT ¼ kð�Þ

0

k0
: (4.9)

If the nonlinear autocatalysis k2 dominates the spontaneous
production k0, then the dominant reverse process should

be associated with kð�Þ
2 rather than kð�Þ

0 . If we consider only

the two processes with rates k2 and kð�Þ
2 , then the rate

equations are

dr

dt
¼ k2r

2a� kð�Þ
2 r3;

ds

dt
¼ k2s

2a� kð�Þ
2 s3: (4.10)

It is noteworthy that a ¼ c� r� s. Besides the trivial fixed
point ðr; sÞ ¼ ð0; 0Þ, there are homochiral fixed points

M1: ðXh; 0Þ and M2: ð0; XhÞ with Xh ¼ k2c=ðk2 þ kð�Þ
2 Þ, and

a racemic fixed point S: ðXr; XrÞ with Xr ¼ k2c=ð2k2 þ kð�Þ
2 Þ,

as depicted in the flow diagram in Fig. 15(b). It is easy to
show that the trivial and homochiral fixed points are unstable,
and only the racemic fixed point S is stable. Thus, with the

reverse reaction kð�Þ
2 , the system relaxes to the final equilib-

rium state, which is racemic. Chiral symmetry cannot be
broken in equilibrium. The time evolution of the chiral order
parameter is now described as

d�

dt
¼ ðrþ sÞ�

2
½k2að1��2Þ � kð�Þ

2 ðrþ sÞð1þ�2Þ�;
(4.11)

thereby indicating that the reverse reaction kð�Þ
2 always

reduces the amplitude of �.

b. Flow in an open system

Since the reverse chemical process is not appropriate for
recycling, a physical process under an open system has been

k

k

k
0

2

(-)
0

k

(i)

(ii)

R

A
(-)
2

(a) (b)

FIG. 15. System with reverse reactions. (a) Reaction paths in a

free energy landscape in a reaction coordinate. (i) Spontaneous

production of R from A with a rate constant k0 and its reverse with a

rate kð�Þ
0 . (ii) Second-order autocatalysis Aþ 2R ! 3R with a rate

constant k2 and its reverse with a rate kð�Þ
2 . (b) Flow diagram with

nonlinear autocatalysis and its reverse reactions (ii).

614 Yukio Saito and Hiroyuki Hyuga: Colloquium: Homochirality: Symmetry breaking . . .

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013



considered (Saito and Hyuga, 2005b). Imagine that the
achiral reactant flows into the chemical reactor such that
its concentration increases by a quantity F per unit time,
as shown in Fig. 16. Simultaneously, the solution with the
reactant and products flows out at a constant rate � such that
�a, �r, and �s molecules leave the reactor (see Fig. 16). In
the reactor, only the forward reactions equations (4.5a)–(4.5c)
occur irreversibly. When the variation in the concentration a
of the achiral reactant is included, the rate equations are

dr

dt
¼ kðrÞa� �r;

ds

dt
¼ kðsÞa� �s;

da

dt
¼ �½kðsÞ þ kðrÞ�aþ F� �a;

(4.12)

where the autocatalytic rate coefficient is denoted as
kðxÞ ¼ k0 þ k1xþ k2x

2 with x ¼ r or s. The first terms on
the rhs of the rate equations (4.12) represent chemical
reactions, and the remaining terms represent flow contribu-
tions. Upon adding the three equations, the total concentra-
tion c ¼ aþ rþ s varies as dc=dt ¼ F� �c. In a steady
state, the total concentration remains constant, i.e., c ¼ F=�.
Thus a reaction system with recycling is effectively con-
structed by bringing the system to a steady state under an
open flow.

This constant flow to achieve a homochiral state is similar
to the iterative enhancement of EE found in the actual Soai
experiments (Sato, Urabe et al., 2003). In the first run, Sato
et al. added a small amount of an enantiomeric mixture with
low EE to achiral reactants, and obtained an EE-amplified
final mixture. Subsequently, by using a small amount of the
final mixture as an additive to the next achiral reactants, they
obtained further enhancement of the EE. The proposed flow
scheme appears to be the continuum version of this discrete
iteration process. Instead of refilling the reactants after com-
pletion of each production process, the flow continuously
supplies reactants and removes the product, and the EE is
amplified to the limit of unity.

Under the flow, the system is no longer closed but is open.
A reactant A with a high chemical potential is supplied
externally, and the products R and S with low chemical
potentials are drained out of the reactor apparatus. In order
to maintain the system in a symmetry-broken state, the
system requires the introduction of external energy in the
form of a flow.

The possibility of recycling by chemical means was
proposed by Plasson (2008). To supply the energy difference
associated with the recycling process from the low-energy
products R and S to the high-energy reactant A, R and S are
supposed to react with a fuel molecule X with a high chemical
potential as

Rþ X ! Aþ Y; Sþ X ! Aþ Y: (4.13)

Here the waste molecule Y has a low chemical potential.
Recycling by physical or chemical means requires a supply of
external energy to the system.

4. Stochastic analysis of the Soai reaction without chiral initiator

With nonlinear autocatalysis k2, the chiral order parameter
� increases according to Eq. (4.7), as long as the initial bias
�0 is finite. However, if the initial state is achiral with �0 ¼
0, the rate equations (4.6a) and (4.6b) are inadequate since the
order parameter � remains zero. On the other hand, experi-
ments show that the final EE value fluctuates for each experi-
mental trial (Singleton and Vo, 2003; Soai et al., 2003;
Gridnev, 2006; Kawasaki et al., 2006). The system should
be described by a probability distribution (Soai et al., 2003;
Kawasaki et al., 2006). Therefore, a theoretical analysis
based on a stochastic approach is necessary (Lente, 2004,
2005; Saito, Sugimori, and Hyuga, 2007).

For the stochastic analysis, we abandon the macroscopic
description of the system in terms of concentrations. Instead,
we use a microscopic description in terms of population
numbers NA, NR, and NS of the molecules A, R, and S,
respectively, in a reactor of volume V. The total numbers of
molecules N ¼ NA þ NR þ NS is kept constant during
chemical reactions. The probability that the system is found
in a stateX ¼ ðNA;NR; NSÞ at a time t is denoted as PðX; tÞ. A
chemical reaction causes a state change fromX toXþ qwith
the transition probability WðX; qÞ. Here q ¼ ðqA; qR; qSÞ de-
notes the change of state. For example, when a chiral enan-
tiomer R is produced from an achiral reactant A, the state
change is q ¼ ð�1;þ1; 0Þ, and the transition probability for
R production is

WðNA; NR; NS;�1;þ1; 0Þ ¼ �ðNRÞNA; (4.14)

with

�ðNRÞ ¼ k0 þ �1NR þ �2N
2
R: (4.15)

Here �1 ¼ k1=V and �2 ¼ k2=V
2 are stochastic rate coeffi-

cients. The spontaneous production process with rate k0 is
necessary to produce chiral molecules from a completely
achiral initial condition without any chiral products; i.e.,
NR ¼ NS ¼ 0 at t ¼ 0. The recycling from R to A is de-
scribed by q ¼ ðþ1;�1; 0Þ with the transition probability

WðNA; NR; NS;þ1;�1; 0Þ ¼ �NR: (4.16)

For the other enantiomer S, there are corresponding produc-
tion and recycling transition probabilities. The probability
PðX; tÞ varies according to the master equation

dPðx; tÞ
dt

¼ X
q

½WðX� q; qÞPðX� q; tÞ

�WðX; qÞPðX; tÞ�: (4.17)

The initial state is set to be achiral with only achiral
A molecules and the probability distribution is Pi ¼
PðX; t ¼ 0Þ ¼ �ðNA � NÞ�ðNRÞ�ðNSÞ, where �ðxÞ ¼ 1 for
x ¼ 0 and zero otherwise. Then chirality selection is deter-
mined by the final probability Pf. If there is a recycling

process (� > 0), the previous rate equation analysis suggestsFIG. 16. Reaction system with an open flow.
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a unique final state. Thus, by assuming a detailed balance
condition such that the two terms in the square brackets on the
rhs of Eq. (4.17) are equal, the final probability distribution is
determined as

PfðNA;NR; NSÞ ¼ N
N!

NA!NR!NS!
�NAfðk0; �1; �2;NRÞ

� fðk0; �1; �2;NSÞ (4.18)

with

fðk0; �1; �2;MÞ ¼
� 1 for M ¼ 0;Q

M�1
m¼0 �ðmÞ for M � 1;

(4.19)

and a normalization constant N .
With only spontaneous production k0, Pf has a

simple form, given by counting the number of combinations,

as Pf ¼ ðN!=NA!NR!NS!Þ�NAk
NRþNS

0 =ð�þ 2k0ÞN , which has

only a racemic peak at N�
R ¼ N�

S ¼ k0N=ð2k0 þ �Þ, as shown
in Fig. 17(a). The peak position corresponds to the fixed point
of the rate equation (see Sec. IV.B.2.a). In the limit of no
recycling, � ! 0, the final probability is a binomial distribu-
tion Pf ¼ 2�NN!=NR!ðN � NRÞ! on the fixed line NA ¼ 0

or NR þ NS ¼ N.
By adding a linear autocatalytic process, the final proba-

bility distribution broadens sideways, as shown in Fig. 17(b),
but there is only a racemic central peak. In the limit of no
recycling, � ! 0, the probability is finite only on the fixed
line NA ¼ 0, and its form reduces to

Pfð0;NR;N�NRÞ

¼ N!

NR!ðN�NRÞ!
fðk0;�1;0 :NRÞfðk0;�1;0 :N�NRÞ

fð2k0;�1;0 :NÞ :

(4.20)

This final probability (4.20) agrees with the one pre-
viously obtained by Lente (2004). The specific feature of
this final probability is that it becomes completely flat as
Pf ¼ 1=ðN þ 1Þ when �1 ¼ k0. Further, for �1 � k0, Pf has

sharp peaks at the two homochiral points ðNR; NSÞ ¼ ðN; 0Þ
and ð0; NÞ. This reflects the fact that by starting from
a completely achiral state NA ¼ N with NR ¼ NS ¼ 0,
there is a lengthy interval of time 	ðk0NÞ�1 until the first
enantiomer is produced spontaneously. The subsequent rapid
autocatalytic process �1 converts all the achiral reactant
molecules A to the first-produced enantiomer type before
the second spontaneous production occurs. The situation
corresponds to the single-parent scenario.

When nonlinear autocatalysis occurs in addition to sponta-
neous production, the final probability has double peaks, as
shown in Fig. 17(c). The double-peak structure is an indica-
tion of phase transition to the chiral state. Indeed, starting
from a slightly chiral initial condition, the probability distri-
bution ultimately has a single peak which is off centered, as
shown in Fig. 17(d). The other peak observed in Fig. 17(c) is
absent.

However, in the absence of recycling, i.e., � ¼ 0, the final
probability Pf calculated by numerically integrating the mas-

ter equation (4.17) in time differs from the one obtained from
Eq. (4.18) in the limit of no recycling, � ! 0. Actually, if the
recycling process is absent, the detailed balance condition is
no longer valid, and the form (4.18) is not necessarily correct.
Therefore, another analysis is necessary, using a directed
random walk model. Without recycling, the system consumes
only an achiral reactant, and the numbers NR or NS of R or S
enantiomers increase. Upon plotting the state change in the
NR-NS phase space, as shown in Fig. 18, the state at ðNR;NSÞ
jumps to the right by the production of an R enantiomer or up
by the production of an S enantiomer. Thus, the chemical
reaction is mapped to the directed random walk where a

FIG. 17. Probability distribution with recycling. (a) Spontaneous reaction, (b) linear autocatalysis, (c) nonlinear autocatalysis, and (d) with a

slightly chiral initial state. From Saito, Sugimori, and Hyuga, 2007.
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walker moves randomly on a square lattice in the NR-NS

phase space. Since the total number of molecules is fixed as
N ¼ NA þ NR þ NS, the phase space is limited to a triangu-
lar region (see Fig. 18).

The random walker located at a lattice site ðNR; NSÞ waits
for a time

	ðNR;NSÞ ¼ 1

NA½�ðNRÞ þ �ðNSÞ� (4.21)

before it jumps. Then it jumps to the right with a probability
of wrðNR;NSÞ ¼ �ðNRÞ=½�ðNRÞ þ �ðNSÞ� and up with
a probability of wuðNR;NSÞ ¼ �ðNSÞ=½�ðNRÞ þ �ðNSÞ�,
as indicated in Fig. 18. The transition probability to increase
the R enantiomer per unit time is WðNr; NS;þ1; 0Þ ¼
	ðNR;NSÞ�1wrðNR; NSÞ, in agreement with Eq. (4.14). For
spontaneous or linear autocatalytic production, the deno-
minator of the waiting time 	 depends only on the total
number of enantiomeric products as �ðNRÞ þ �ðNSÞ ¼ 2k0 þ
�1ðNR þ NSÞ. Thus, many random walkers which started at
the origin NR ¼ NS ¼ 0 arrive on the diagonal line NR þ
NS ¼ N at the same time t ¼ PN�1

n¼0 ½ðN � nÞð2k0 þ �1nÞ��1.

The distribution Pf on this line is simply calculated by

counting the possible ways to reach the state ðNR;NSÞ from
the origin, and it agrees with Eq. (4.20).

With nonlinear autocatalysis, the time when the random
walker reaches the diagonal NR þ NS ¼ N depends on NR

and NS. However, by disregarding the time development, we
can still obtain the final distribution PfðNR;NSÞ by knowing

the Pf’s of the neighboring sites before the jump occurred.

These can be determined from the master equation,

PfðNR;NSÞ¼wrðNR�1;NSÞPfðNR�1;NSÞ
þwuðNR;NS�1ÞPfðNR;NS�1Þ: (4.22)

This relation is valid because only forward jumps occur. The
calculated final probability Pf agrees with the one obtained

by numerically integrating the original master equation (4.17)
(Saito, Sugimori, and Hyuga, 2007). A characteristic feature
of Pf in the case of nonlinear autocatalysis is that the profile

depends on the total number of reacting molecules N as
shown in Fig. 19(a). For a small N value, Pf has only a

racemic central peak, whereas for a large N, it has off-
centered double peaks at symmetric points. The existence
of symmetric double peaks agrees with the experimental
findings (Soai et al., 2003; Kawasaki et al., 2006).

As the total number of molecules N increases, the peak
position varies in the NR-NS phase space, as shown in
Fig. 19(b). For a small value of N, there is a single peak on
the racemic line NR ¼ NS. At the critical number Nc, the
peak splits into two, and thereafter the two resulting peaks are
nearly parallel to the two axes. The trace of the probability
maxima in Fig. 19(b) indicates that the population of the
majority enantiomer increases, whereas that of the minority
remains almost constant, i.e., the production of the minority
species is almost stopped. This means that the EE value
increases to homochirality, i.e., j�j ! 1 as N increases.
The critical number Nc is found to depend on the ratio of
the reaction rates �2=k0. For a small �2, a large critical value
Nc is required. From numerical studies, Nc is found to be
proportional to ð�2=k0Þ�3=4. The result is analytically eluci-
dated as a crossover in dominant production processes from
the spontaneous to the nonlinear autocatalytic process (Saito,
Sugimori, and Hyuga, 2007).

V. MODELS FOR HOMOCHIRALITY IN LIFE

In thermal equilibrium, amino acids are known to undergo
racemization so that enantiomeric monomers change their
chirality over a long period, and the system relaxes to the
racemic equilibrium state (Bada, 1985). To sustain homochir-
ality in life or in biomolecules, some external drive is neces-
sary. However, in contrast to the crystal growth or Soai
reaction experiments, we have not yet an appropriate experi-
ment that realizes a homochiral state of amino acids or sugars
(or nucleotides). Therefore, we restrict our description here to
recent progress in various theoretical models. These models
are classified into two types depending on whether the auto-
catalytic process is explicitly required or not.

A. Polymerization model

Amino acids undergo polymerization to form proteins.
Nucleotides that contain sugars also polymerize to form
DNA and RNA chains. DNA and protein are vital for the
present activity of life. After the discovery of the enzymatic
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activities of RNA (Kruger et al., 1982; Guerrier-Takada
et al., 1983), the RNA world hypothesis was proposed for
the origin of life (Gilbert, 1986; Orgel, 2004), because some
RNA may carry information and catalytic functions in a
single chain. There are other candidates for prebiotic poly-
mers which are simpler than RNA (Orgel, 2004), such as
peptide nucleic acid (PNA) (Nelson, Levy, and Miller, 2000)
or threose nucleic acid (TNA) (Schoning et al., 2000).

Consequently, various polymerization scenarios for the
origin of homochirality have been proposed (Sandars, 2003;
Brandenburg et al., 2005; Nilsson et al., 2005; Saito and
Hyuga, 2005b), even though PNA is achiral. In oligomeriza-
tion experiments involving a chiral polymer, it is found that a
monomer of the same chirality as the chain can be incorpo-
rated readily to extend the chain, whereas that of opposite
chirality is found to terminate the chain (Joyce et al., 1984;
Feringa and van Delden, 1999). Therefore, polymerization
models include the effect of cross inhibition such that when
an unlike enantiomer polymerizes at one end of the chain, the
polymerization at this end is terminated. The process is
thought to correspond to the idea of mutual antagonism in
the Frank model. Another feature that is taken into account in
polymerization models is autocatalysis, since proteins and
some RNA molecules act as enzymes to catalyze chemical
reactions. Therefore, theories assume that a long homopol-
ymer acts as a catalyst for the production of an enantiomeric
monomer of the same type. With these two features, the
model appears analogous to Frank’s model, and numerical
calculations show chiral symmetry breaking (Sandars, 2003).

B. APED model

The problem with the polymerization model is that the
catalytic effect normally appears only for very long and
complex polymers. Therefore, a model that does not
explicitly require autocatalysis has been proposed by
Plasson, Bersini, and Commeyras (2004). Instead of autoca-
talysis, the model incorporates the fact that a monomer in a
heterodimer can change its chirality due to its opposite
partner. This process is called epimerization, and it is known
to occur with amino acids in peptides or proteins (Kriausakul
and Mitterer, 1978).

The original model (Plasson, Bersini, and Commeyras,
2004) consists of 11 elementary processes, but later studies
show that the five processes shown in Fig. 20 are essential

(Brandenburg, Lehto, and Lehto, 2007). We explain the
model in the latter simplified version by first presenting the
reaction schemes, followed by the explanations of each pro-
cess. In the original paper, D=L representation is used since
Plasson, Bersini, and Commeyras were referring to amino
acids. However, here we use the R=S representation to unify
the notation:

The reaction processes are

kA: R ! R�; S ! S�; (5.1a)

kP: R
� þ R ! RR; S� þ S ! SS; (5.1b)

�kP: R
� þ S ! RS; S� þ R ! SR; (5.1c)

kE: RS ! SS; SR ! RR; (5.1d)

kD: RR ! Rþ R; SS ! Sþ S: (5.1e)

Activation (5.1a): Polymerization is possible only when the
enantiomeric monomers are activated externally.

Polymerization (5.1b) and (5.1c): The activated monomer
polymerizes to the unactivated enantiomer from one side.
This reflects the fact that the two termini of polymers are
inequivalent; the heterodimers RS and SR are different. For
simplicity, the polymerization level is limited to dimers in the
model. Heterodimers in Eq. (5.1c) are assumed to be pro-
duced less efficiently than homodimers in Eq. (5.1b).
Therefore, the parameter � lies between 0 and 1.

Epimerization (5.1d): In heterodimers epimerization oc-
curs only with the enantiomer at the left terminus. Because of
this epimerization, heterodimers will change to homodimers
after a while.

Depolymerization (5.1e): Homodimers decompose to un-
activated monomers. The depolymerization process recycles
the monomers, and this process is necessary to achieve
homochirality. Otherwise, the system stops evolution when
whole monomers are dimerized. Since the model consists of
essentially four processes (activation, polymerization, epi-
merization, and depolymerization), it is called the APED
model.

The rate equations for the various concentrations are
written as

dr=dt ¼ �kAr� kPrr
� � �kPrs

� þ 2kD½RR�;
dr�=dt ¼ kAr� kPrr

� � �kPr
�s;

d½RR�=dt ¼ kPrr
� þ kE½SR� � kD½RR�;

d½SR�=dt ¼ �kPs
�r� kE½SR�;

(5.2)

and the corresponding equations for s, s�, [SS], and [RS] are
similarly written. The total concentration of the R enantiomer
is rt ¼ rþ r� þ 2½RR� þ ½SR� þ ½RS�, and that of the S
enantiomer is st ¼ sþ s� þ 2½SS� þ ½SR� þ ½RS�. Since
the chirality conversion occurs only by epimerization and
the total concentration c ¼ rt þ st is conserved, the chirality
variation is given by

drt=dt ¼ kEð½SR� � ½RS�Þ ¼ �dst=dt: (5.3)

When the depolymerization and epimerization processes
are very fast (kD; kE � kPc), the dimer concentrations relax
quickly to the steady state at which d½SR�=dt¼d½RR�=dt¼0.
The concentration of the heterodimer SR is determined

FIG. 20. Simplified APED model. Adapted from Brandenburg,

Lehto, and Lehto, 2007.
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by the monomer concentrations as ½SR� ¼ ð�kP=kEÞs�r.
Further, by assuming that polymerization is fast when com-
pared to the external activation (kPc � kA), the concentra-
tions of the activated enantiomers relax to the steady state at
which dr�=dt ¼ ds�=dt ¼ 0 with a steady-state value s� ¼
kAs=kPð�rþ sÞ. Consequently, the heterodimer concentra-
tions are determined as functions of the unactivated monomer
concentrations r and s as

½SR� ¼ kA
kE

�rs

�rþ s
; ½RS� ¼ kA

kE

�rs

rþ �s
: (5.4)

The concentration [RS] is obtained by substituting r $ s in
the formula for [SR]. The two heterodimers have different
steady-state concentrations because the polymerization rate
differs for homopolymers and heteropolymers; i.e., polymer-
ization is chirality sensitive. In this quasisteady state where
kD,kE � kPc � kA, the concentrations of the dimers and
activated molecules are negligible when compared with that
of the unactivated monomers. Then drt=dt ¼ dr=dt and the
slow evolution of the unactivated monomer concentrations
reduces to

dr

dt
¼ �kArs

�
1

�rþ s
� 1

rþ �s

�
¼ � ds

dt
: (5.5)

Since 0<�< 1, the difference in Eq. (5.5) is positive when
r > s. Thus the concentration of the majority enantiomer
increases at the cost of the minority. Also, the chiral order
parameter is written as � ¼ ðr� sÞ=ðrþ sÞ with its evolu-
tion as

d�

dt
¼ 2�ð1� �Þ

ð1þ �Þ2 � ð1� �Þ2�2
kA�ð1��2Þ: (5.6)

The evolution given by Eq. (5.6) is similar to Eq. (2.6) in the
Frank model, to Eq. (3.2) for crystal growth, and to Eq. (4.7)
for the Soai reaction. The racemic state with � ¼ 0 is un-
stable, and homochirality with j�j ¼ 1 is eventually
achieved. Further, Eq. (5.6) shows that homochirality is
induced by the external activation process of enantiomers, kA.

VI. CONCLUSION AND DISCUSSION

We reviewed recent experimental and theoretical develop-
ments on chiral symmetry breaking to homochirality that
occurred in the last two decades. The subject is multidiscipli-
nary, and the studies span a wide range of fields including
crystal growth, organic chemistry, and biochemistry. Various
theoretical models for these systems have shown that the
approach to homochirality is essentially described by the
universal time evolution equation for the chiral order parame-
ter �, written as

d�

dt
¼ AðtÞ�ð1��2Þ: (6.1)

From the symmetry point of view, this is the simplest form
of evolution to homochirality. By including reverse or spon-
taneous production processes, it is modified to Eq. (2.7) and
the system may eventually relax to a state with a broken
chiral symmetry (� � 0) (Kondepudi and Nelson, 1985). A
well-known example which leads to symmetry breaking is
the time-dependent Ginzburg-Landau equation for the

equilibrium phase transition. However, there is a great differ-

ence between the TDGL equation and Eq. (6.1). The present

Eq. (6.1) is derived kinetically, whereas the TDGL equation is

based on the minimization of the free energy involved. The

coefficient A in Eq. (6.1) sometimes depends on time, reflect-

ing that the systems that show homochirality are externally

driven far from equilibrium.
Since the form of the nonlinear time evolution, as given by

Eq. (6.1), is almost trivial if symmetry breaking occurs, a

theory has to identify the mechanism that establishes non-

linearity for a specific system or a model. For the classical

Frank model, mutual antagonism leads to nonlinearity

(Frank, 1953). For crystal growth in solution under grinding,

it is the mutual screening of active growth zones around the

crystal periphery when two crystallites of opposite enantio-

morphs come into proximity (Saito and Hyuga, 2010). The

growth of both enantiomorphs is suppressed in a manner

similar to the Frank model’s mutual antagonism. In a chemi-

cal reaction, the origin of nonlinearity is an autocatalytic

process mediated by homodimers that promote the produc-

tion of enantiomers of their respective types (Blackmond

et al., 2001; Sato et al., 2001). For the APED model of

homochirality in life, nonlinearity is induced by chiroselec-

tive polymerization and epimerization processes (Plasson,

Bersini, and Commeyras, 2004). The autocatalytic process

is not necessary for this case.
Nonlinearity in the system is not sufficient to make the

system homochiral. The coefficient A should not vanish. In

both crystal growth and organic chemical systems, A is found

to be proportional to the product of the concentrations of the

achiral reactant and the total chiral products. In crystal

growth, attrition or grinding constantly recycles the achiral

reactant, and homochirality is established as shown in the

experiment by Viedma (2005). In contrast, in the Soai chemi-

cal reaction, the reaction proceeds irreversibly and the achiral

reactant is consumed to extinction. Therefore, even though

the enantiomeric excess is amplified, homochirality cannot be

achieved in this experiment (Soai et al., 1995). In order to

establish homochirality, one has to supply achiral reactants by

recycling. This supply can be provided by an open steady

flow (Saito and Hyuga, 2005b) or by chemical activation

(Plasson, 2008). In the APED model for biomolecular sys-

tems, the depolymerization process recycles enantiomeric

monomers. Here the coefficient A is independent of time

but is proportional to the rate of external activation, thereby

indicating that the system has to be driven externally away

from equilibrium.
All these examples indicate that the system has to be

driven out of equilibrium to maintain a finite value of the

coefficient A. Recycling supplies achiral reactants or mono-

mers that have higher free energy than the reaction products

or grown crystals. In the APED model, free energy input

is necessary to activate monomers to cause polymerization.

Thus, an external supply of free energy to the system is required

to maintain homochirality (Plasson and Brandenburg, 2010).

Viedma and Cintas (2011) recently proposed another means

to supply energy to the system. By thermally cycling the

solution with d and l NaClO3 crystals between hot and cool

zones, the initial racemic mixture was found to be converted

into a solid of single chirality. A similar thermal cycle was
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successfully applied to replicate RNA (Krammer, Möller, and
Braun, 2012).

We now consider other possibilities to achieve homochir-
ality. Even though Eq. (6.1) is the simplest, it is by no means a
unique equation to establish homochirality. For example, the
model proposed by Uwaha (2004) for homochiral crystal
growth yields another set of chirality evolution equations.
He described the model in terms of mass fractions of chiral
crystals x and y as well as those of chiral units xu and yu, and
that of achiral molecules z, as shown in Fig. 21. Their
evolution in a simplified case (McBride and Tully, 2008;
Uwaha, 2008) can be easily transformed into those of two
chiral order parameters � ¼ ðx� yÞ=ðxþ yÞ and �u ¼
ðxu � yuÞ=ðxu þ yuÞ as

d�u

dt
¼ �ku

xþ y

2
�ð1��2

uÞ þ �u

xþ y

xu þ yu
ð���uÞ;

d�

dt
¼ ku

xu þ yu
2

�uð1��2Þ; (6.2)

where ku denotes the growth rate of chiral crystals by incor-
porating chiral units, and �u denotes the recycling rate of
chiral units from chiral crystals. It is clear that there are
racemic, i.e., � ¼ �u ¼ 0, and homochiral, � ¼ �u ¼ �1,
fixed points. As long as �u > kuðxu þ yuÞ=2, the racemic
fixed point is linearly unstable, and homochirality is attained.
There may be many other possibilities for the mechanism of
homochirality in life, such as the polymerization models, and
for the novel time evolution of chiral order parameters.
Homochirality in life still remains a mystery, and further
studies are required in this direction.

Thus far, we stressed the academic interest in homochir-
ality; finally, we comment on the practical importance of the
study of homochirality. Since living organisms are homochi-
ral, two enantiomers react differently to living matter; it is
possible that one enantiomer can be medically useful while
the other might be harmful. Therefore, the control of the
chirality of organic molecules at the production stage has
practical and technological importance. The chirality of the
product is usually controlled by chiral catalysts, but it may be
useful if we can control chirality by external physical pro-
cesses such as grinding or a thermal cycle.
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