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This is a review of state-of-the-art theory and experiment of the motion of cold and ultracold atoms

coupled to the radiation field within a high-finesse optical resonator in the dispersive regime of the

atom-field interaction with small internal excitation. The optical dipole force on the atoms together

with the backaction of atomic motion onto the light field gives rise to a complex nonlinear coupled

dynamics. As the resonator constitutes an open driven and damped system, the dynamics is

nonconservative and in general enables cooling and confining the motion of polarizable particles.

In addition the emitted cavity field allows for real-time monitoring of the particle’s position with

minimal perturbation up to subwavelength accuracy. For many-body systems, the resonator field

mediates controllable long-range atom-atom interactions, which set the stage for collective

phenomena. Besides the correlated motion of distant particles, one finds critical behavior and

nonequilibrium phase transitions between states of different atomic order in conjunction with

superradiant light scattering. Quantum-degenerate gases inside optical resonators can be used to

emulate optomechanics as well as novel quantum phases such as supersolids and spin glasses.

Nonequilibrium quantum phase transitions as predicted by, e.g., the Dicke Hamiltonian can be

controlled and explored in real time via monitoring the cavity field. In combination with optical

lattices, the cavity field can be utilized for nondestructive probing Hubbard physics and tailoring

long-range interactions for ultracold quantum systems.

DOI: 10.1103/RevModPhys.85.553 PACS numbers: 42.50.Pq, 67.85.�d, 37.30.+i

CONTENTS

I. Introduction 554

II. Single Atoms in a Cavity 556

A. Mechanical effects of light on atoms in a cavity 556

1. A two-level atom in a cavity 556

2. Dispersive limit 557

3. Semiclassical description of atomic motion 557

B. Cavity cooling 559

1. Cavity cooling with blue-detuned probe light 559

2. Cavity cooling and trapping with far

red-detuned light 560

3. Temperature limit 562

4. Cooling in multimode cavities 562

C. Extensions of cavity cooling 562

1. Cooling trapped atoms and ions 562

2. Cooling nanoparticles and relation to

optomechanics 563

3. Cooling molecules 563

4. Cooling and lasing 564

5. Monitoring and feedback control 564

III. Cold Atomic Ensembles in a Cavity 565

A. Collective coupling to the cavity mode 565

1. Cavity-mediated atom-atom interaction 565

2. Collective cooling, scaling laws 567

3. Backaction, nonlinear dynamics 568

B. Nonequilibrium phase transitions and collective

instabilities 568

1. Spatial self-organization into a Bragg crystal 568

2. Collective atomic recoil laser 570

C. Phase-space and mean-field descriptions for large

particle numbers 572

1. Critical point 573

2. Stability analysis and phase diagram 573

3. Nonequilibrium steady-state distributions 575

IV. Quantum Gases in Optical Cavities 577

A. Experimental realizations 577

B. Theoretical description 578

C. Cavity optomechanics with ultracold atomic

ensembles 580

1. Experimental realizations 581

2. Nonlinear dynamics and bistability for low

photon number 582

3. Quantum-measurement backaction upon

collective atomic motion 584

*helmut.ritsch@uibk.ac.at
†domokos.peter@wigner.mta.hu
‡brennecke@phys.ethz.ch
§esslinger@phys.ethz.ch

REVIEWS OF MODERN PHYSICS, VOLUME 85, APRIL–JUNE 2013

5530034-6861=2013=85(2)=553(49) � 2013 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.85.553


4. Cavity cooling in the resolved-sideband regime 585

D. Nonequilibrium phase transitions 586

1. Self-organization of a Bose-Einstein condensate 586

2. Open-system realization of the Dicke quantum

phase transition 588

3. Phases in highly degenerate cavities 590

E. Extended Hubbard-type models for ultracold atoms

in cavities 591

1. Bose-Hubbard model with cavity-mediated

atom-atom interactions 591

2. Cavity-enhanced light scattering for quantum

measurement and preparation 592

3. Self-consistent Bose-Hubbard models in cavity

mean-field approximation 593

V. Outlook 597

Acknowledgments 597

References 597

I. INTRODUCTION

Laser light is a versatile tool to cool, prepare, and manipu-
late atoms. Laser cooling (Chu, 1998; Cohen-Tannoudji,
1998; Phillips, 1998) and optical pumping (Happer, 1972)
rely on spontaneous emission, which is particularly important
if the laser frequency is tuned close to the energy of an atomic
transition. It is suppressed if the laser frequency is tuned far
from any internal excited atomic state. In this limit coherent
scattering of photons dominates and the resulting light force,
the dipole force, can be derived from an optical potential
proportional to the laser intensity inducing a Stark shift. This
forms the basis for trapping and the manipulation of cold
atoms (Grimm, Weidemüller, and Ovchinnikov, 2000), Bose-
Einstein condensates (BEC) (Cornell and Wieman, 2002;
Ketterle, 2002), quantum gases (Bloch, Dalibard, and
Zwerger, 2008; Giorgini, Pitaevskii, and Stringari, 2008),
and mesoscopic particles (Gordon and Ashkin, 1980), where
spontaneous emission has to be avoided. In free space the
backaction of the particles onto the trapping laser light is
negligible. In a microscopic picture, this means that the
probability of a photon to be scattered by a particle is so
small that the chance for a second scattering event involving
the same photon is negligibly small. Hence, the modifications
of the field are not felt by the particles and the light forms a
conservative optical potential.

The situation changes drastically when the light field
is confined in a high-quality optical resonator. Because of
multiple round trips of intracavity photons not only does the
dipole force get strongly enhanced, but also the backaction of
the atoms on the light gets significant. Since atomic motion
and cavity field dynamics influence each other, they have to
be treated on equal footing. In most cases the dipole force
then can no longer be derived from a conservative potential
(Horak et al., 1997) and the field dynamics become nonlinear
(Vukics, Niedenzu, and Ritsch, 2009).

To get an intuitive picture, consider, for example, a moving
pointlike atom, or an entire atomic cloud, forming a dielectric
medium with refractive index inside a cavity. This induces a
phase shift on the light field that depends on the position
and shape of the medium relative to the resonator mode
structure. Correspondingly, the cavity resonance frequency

is dynamically shifted with respect to the empty cavity. If this

shift is comparable to the cavity linewidth, the cavity field

intensity, induced by an external pump laser, can undergo a

resonant enhancement and so can the backaction on the

motion of the medium. For several atoms this coupled

atom-field dynamics has the character of a long-range inter-

particle interaction. It also generates a strong nonlinear field

response, even if the particles are linearly polarizable, as, e.g.,

atoms in the low saturation regime. Coupling to further light

modes gives rise to interference effects, which are the origin

of collective instabilities and self-organization phenomena.

Photons leaking out of the cavity cause a damping of this

coupled dynamics. This designable decay channel can be

utilized to cool the motion of the medium independent of

its specific characteristics.
Historically, cavity quantum electrodynamics (QED) was

created as a research field devoted to studying the radiation

properties of atoms when boundaries are present (Purcell,

1946; Haroche, 1992; Berman, 1994). Advances in cavity

technology over more than 30 years made it possible to reach,

in both the microwave (Raimond, Brune, and Haroche, 2001;

Walther, 2002) and optical (Kimble, 1998; Mabuchi and

Doherty, 2002) frequency domains, the strong-coupling

regime where the coherent interaction between an atomic

transition and a single radiation field mode dominates over

all dissipation processes. For the next step, cold and slow

atoms have been integrated successfully within optical cavity

QED experiments, which led to significant coupling of the

atomic motion to the cavity field. It is possible to generate

sufficiently strong forces in order to trap an atom in the field

of a single photon (Hood et al., 2000; Pinkse et al., 2000).

Several experiments achieved strong coupling even in the

dispersive regime of cavity QED where the detuning between

the light field and the internal atomic transitions is large.

Although the resonant energy exchange between atom and

field is suppressed in this regime, the position-dependent

cavity frequency shift exceeds the cavity linewidth. Motion-

induced changes of the effective resonator frequency and its

backaction on mechanical motion are also the physical

ground of cavity optomechanics (Kippenberg and Vahala,

2008), which can be considered as an extension of dispersive

cavity QED toward macroscopic objects.
In this review we survey the recent advancements of cavity

QED systems in which coherent momentum exchange

between particles and radiation field is the dominating effect

of the light-matter interaction. The external degree of

freedom of the material component ranges from the center-

of-mass (cm) motion of a single atom, or a cloud of cold

atoms, to the density distribution of a continuous medium

such as the quantized matter-wave field of an ultracold gas.
This review illuminates different generic features of the

cavity-generated optical dipole force and is structured in three

main sections. Briefly summarizing, in Sec. II we discuss the

consequences of the retardation between atomic motion and

the cavity field dynamics. This time delay leads to an irrevers-

ible dynamics that can be the basis of cooling schemes, as

presented for single atoms in a cavity. Section III discusses

how the field modification induced by an atom acts back on the

motion of other atoms moving within the cavity. This cavity-

mediated atom-atom interaction is a source of collective effects
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in atomic clouds. Finally, in Sec. IV we consider the collective

dynamics of an ultracold gas induced by its strong coupling to

the cavity field. Owing to the low temperature, the dynamics

involves a reduced set of motional degrees of freedom, and

the system becomes a realization of various paradigmatic

models of quantum many-body physics and quantum optics

(Lewenstein et al., 2007).
The most elementary situation that we discuss is the dis-

persive atom-field dynamics of a single atom, or polarizable

particle, inside a laser-driven high-finesse cavity (Pinkse and

Rempe, 2002; Domokos and Ritsch, 2003). The cavity field

dynamically responds to the position and velocity of the

particle, thereby generating a time-dependent dipole force

acting back onto the particle motion. It is the finite response

time of the cavity field which gives rise to the velocity-

dependent component of the force. It can have the character

of a friction force shuffling kinetic energy from the particle to

the cavity field and dissipating it via the cavity loss channel

(Vuletić and Chu, 2000). This allows for cooling and self-

trapping of particles in the cavity field (Maunz et al., 2004;

Nussmann, Murr et al., 2005). Subrecoil cavity cooling of an

ultracold atomic cloud was recently achieved (Wolke et al.,

2012), which paves the way toward reaching quantum degen-

eracy without relying on evaporative cooling techniques.

Cavity cooling allows for slowing of any sufficiently polar-

izable particle with small absorption, without the need of a

cycling transition. The possibility of extending the applicabil-

ity of cavity cooling beyond atoms has been the subject

of extensive research in the past years. The light field leaking

out of the cavity carries information on the trajectory of the

particle (Hood et al., 1998; Maunz et al., 2003). Continuous

monitoring of the atomic motion, in turn, can be used for

feedback control (Fischer et al., 2002), which became the

standard tool to capture single atoms inside a cavity for

quantum manipulation (Kubanek et al., 2009).
For cold atomic ensembles inside a laser-driven cavity

(Kruse, Ruder et al., 2003; Elsasser, Nagorny, and

Hemmerich, 2004) the atom-field coupling strength increases

and the dynamics becomes more complex. In many cases the

effective coupling strength between particles and cavity field

scales with the square root of the particle number (Tavis and

Cummings, 1968; Raizen et al., 1989; Sauer et al., 2004;

Tuchman et al., 2006). As a consequence of this, the cooling

of the center-of-mass motion is correspondingly more effec-

tive. Additional complexity arises from the relative motion of

the particles, as the local intensity of the cavity field experi-

enced by one atom depends on the position of all other atoms

(Horak and Ritsch, 2001c). This gives rise to an effective

long-range (Münstermann et al., 2000) or global atom-atom

interaction, described by an overall dispersive shift. The

contribution of each particle to this shift depends on the local

field intensity, which is proportional to the square of the

cavity mode function at the position of the atom. In the low

excitation regime this can be captured by a collective poten-

tial. Furthermore, dissipative forces acting on the relative

motion of the particles have been identified (Chan, Black,

and Vuletić, 2003) and interesting correlations between par-

ticles can build up (Asbóth, Domokos, and Ritsch, 2004).
The cavity-meditated long-range interactions have a

different character when the mode of the driving field is

not identical with the cavity mode. In this case, the atoms

can be considered as sources for the intracavity field and

interference between these sources becomes crucial.

Correspondingly, the effective cavity-driving strength

depends on the position of all atoms within the cavity

mode profile and it is the field amplitude rather than its

intensity that mediates the long-range interaction. For the

case of a transversally laser-driven atomic ensemble in a

linear cavity, the long-range interaction causes a phase

transition to a self-organized phase, in which the atoms

arrange themselves in a checkerboard pattern, thereby

maximizing scattering into the cavity mode (Domokos and

Ritsch, 2002; Black, Chan, and Vuletić, 2003). In a unidir-

ectionally driven ring cavity geometry, collective scattering

between the two counterpropagating cavity modes results in

a collective instability, referred to as collective atomic recoil

lasing (Kruse, von Cube et al., 2003). Various mean-field-

type theories can be used to describe the nonequilibrium

dynamics and asymptotic behavior of large atomic ensem-

bles, including the derivation of scaling laws characterizing

the above described critical phenomena (Asbóth et al.,

2005; Grießer et al., 2010).
Coupling ultracold atomic ensembles or Bose-Einstein

condensates to the radiation field inside a high-finesse reso-

nator requires a quantized description of the atomic motion

and reduces the number of relevant external degrees of free-

dom (Brennecke et al., 2007; Colombe et al., 2007; Gupta

et al., 2007; Slama, Bux et al., 2007). In the case of a laser-

driven cavity, situations can be realized where the cavity field

couples dominantly to a single collective motional mode of

the atomic ensemble, providing a direct analogy to cavity

optomechanics (Brennecke et al., 2008; Murch et al., 2008;

Stamper-Kurn, 2012). Coupling a laser-driven Bose-Einstein

condensate to the vacuum field of a cavity leads to a

quantum phase transition between a superfluid (SF) and a

self-organized phase (Nagy, Szirmai, and Domokos, 2008;

Baumann et al., 2010). This provides an open-system real-

ization of the Dicke Hamiltonian and its quantum phase

transition (Dicke, 1954; Hepp and Lieb, 1973; Dimer et al.,

2007; Nagy et al., 2010). The self-organized state can also be

considered as a supersolid resulting from a broken Ising-type

symmetry. More complex situations occur in highly degen-

erate multimode cavities (Gopalakrishnan, Lev, and Goldbart,

2009, 2012; Strack and Sachdev, 2011).
Ultracold gases in optical lattices are one of the most

intriguing systems in which the power of atomic and laser

physics can be exploited to explore generic phenomena of

solid-state physics (Bloch, Dalibard, and Zwerger, 2008). The

Hubbard model describing the dynamics of periodically

arranged bosons or fermions can be de facto realized with

adjustable parameters and variable dimensionality. When the

optical lattice potential is created by the field sustained by an

optical high-finesse cavity, the corresponding cavity Hubbard

model predicts exotic new phases of matter (Maschler and

Ritsch, 2005; Larson, Damski et al., 2008). In many cases the

cavity fields provide for a convenient, built-in real-time

observation tool. Analyzing the emitted fields allows for

dynamical monitoring of quantum phase transitions with

minimum and well-controlled measurement backaction

(Mekhov, Maschler, and Ritsch, 2007c).
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II. SINGLE ATOMS IN A CAVITY

A central objective of cavity QED is the perfect control of
light-matter interaction at the single-atom and single-photon
levels in the regime of strong coupling where the atom and
cavity field form a single entity. A long lifetime of such an
‘‘atom-photon molecule’’ requires slow and very cold atoms
to ensure long interaction times and precise control of the
atomic position. At sufficiently small kinetic energies, how-
ever, the light forces induced by even a few intracavity
photons influence the atomic trajectory. The first cavity
QED experiments with cold atoms have already manifested
that the cavity light forces guide or deflect slowly moving
atoms. In addition, extra diffusion takes place in cavity-
sustained dipole traps which may remove the atom from
the interaction volume. Clear signatures of such effects have
been observed in transmission spectroscopy experiments
(Mabuchi et al., 1996; Hood et al., 1998; Münstermann
et al., 1999). Time-resolved detection of the transmitted
light signal allowed for the reconstruction of atomic trajec-
tories (Hood et al., 2000; Pinkse et al., 2000). These experi-
ments set the stage to include the atomic center-of-mass
degrees of freedom and the optical forces in the cavity
QED theory. In the following decade, the theoretical and
experimental efforts resulted in an extension of the interac-
tion time from the transit-time range of microseconds to the
range of minutes (Figueroa et al., 2011; Kubanek et al.,
2011).

A. Mechanical effects of light on atoms in a cavity

The theoretical description of the coupled atom-field
dynamics was presented in detail by Domokos and Ritsch
(2003). Here we recapitulate the notations and methods.
Within the vast field of single-atom cavity QED, we restrict
ourselves to the atomic motion in a cavity, in particular, to the
important concept of cavity cooling. We review recent experi-
ments demonstrating cavity cooling of single atoms. It is a
manifestation of the time-delayed action of the electric-dipole
force on atoms within the cavity. The understanding at a
single-atom level nicely complements another facet of cavity
cooling which we encounter in the case of many-atom sys-
tems, where it appears in the form of the imaginary part of the
collective excitation spectrum.

1. A two-level atom in a cavity

We consider a single two-level atom with transition
frequency !A coupled to a single mode of the electromag-
netic field inside an optical resonator with resonance
frequency !C. These frequencies are referenced to the
frequency ! of an external pump laser by defining the
cavity detuning �C ¼ !�!C and the atomic detuning
�A ¼ !�!A. The two relevant atomic states are the
ground state jgi and the excited state jei. We introduce
the atomic raising and lowering operators �y ¼ jeihgj and
� ¼ jgihej. The cavity mode variables are the photon
creation and annihilation operators ay and a, respectively.
In the electric-dipole and the rotating-wave approximations
and in a frame rotating at the angular frequency !, the
atom-field coupling is described by

HJC=ℏ ¼ ��Ca
ya� �AðrÞ�y�

þ ig½�yafðrÞ � f�ðrÞay��; (1)

which is usually referred to as the Jaynes-Cummings (JC)
Hamiltonian (Jaynes and Cummings, 1963) and, in the
quantum optical context, has been reviewed by Shore and
Knight (1993). The emphasis here is on the fact that the
position r of the atom is explicitly taken into account.
The spatial dependence of the atomic detuning �AðrÞ ¼
�A � �SðrÞ may account for a differential ac-Stark shift
�SðrÞ which can be induced by auxiliary, far-detuned opti-
cal trapping fields. The coupling strength in Eq. (1) is
spatially modulated according to the intracavity electric
field strength which is proportional to the cavity mode
function fðrÞ. For the effects reviewed in this paper, it is
sufficient to consider modulations on the optical wavelength
scale, thus writing fðrÞ ¼ cosðkxÞ for a standing-wave
mode of a Fabry-Perot resonator, or fðrÞ ¼ e�ikx for the
running-wave modes sustained by a ring resonator
(k ¼ !=c is the optical wave number). The maximum
coupling strength is given by the single-photon Rabi

frequency g ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ!C=2�0V

q
, where d is the atomic dipole

moment along the cavity mode polarization and V ¼R
d3rjfðrÞj2 denotes the effective cavity mode volume

[the maximum of jfðrÞj is set to 1]. The rotating-wave
approximation relies on the fact that the characteristic
frequencies of HJC are much smaller than the optical
frequency, i.e., (j�Aj, j�Cj, and g � !). The atomic cm
motion is a dynamical component of the system, which is
described by the Hamiltonian

Hmech ¼ p2

2m
þ VclðrÞ; (2)

where m is the mass of the atom and the term Vcl

represents an arbitrary external trapping potential. For the
case of a far off-resonance optical dipole trap, this term,
together with the differential ac-Stark shift �SðrÞ in Eq. (1),
fully describes the effect of the trapping laser. The charac-
teristic frequency of the cm motion is given by the kinetic
energy of an atom carrying one unit of photon momentum
jpj ¼ ℏk. Throughout this paper we use the notion of recoil
frequency (Cohen-Tannoudji, 1992), with the notation

!R � ℏk2

2m
:

The system can be excited with a coherent laser field
at frequency !, which either drives the cavity mode with
driving amplitude � or directly the atomic internal degree of
freedom at Rabi frequency �, described by

Hpump=ℏ ¼ i�ðay � aÞ þ i�hðrÞð�y � �Þ: (3)

For the case of pumping the atom with a standing-wave laser
field from a transverse direction perpendicular to the cavity
axis, the spatial mode function is given by hðrÞ ¼ cosðkzÞ.
Hpump is effectively time independent since we work in the

frame rotating at the angular frequency ! of the monochro-
matic pump laser.

Cavity QED systems in the optical domain are strongly
influenced by dissipative coupling to the vacuum modes of
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the electromagnetic field environment (thermal photons can
be neglected at optical frequencies). Correspondingly, the
dynamics of the system is described by a quantum master
equation (Carmichael, 2003)

_� ¼ � i

ℏ
½H;�� þLcav�þLatom�; (4)

with H ¼ HJC þHmech þHpump and � denoting the density

operator for the atomic (motional and internal) and cavity
degrees of freedom. The dissipative processes are captured by
the Liouville operators in the Born-Markov approximation

Lcav� ¼ ��ðaya�þ �aya� 2a�ayÞ; (5a)

describing decay of the cavity field at rate �, and

Latom� ¼ ��

�
�y��þ ��y�

� 2
Z

d2uNðuÞ�e�ikAu�r�eikAu�r�y
�
; (5b)

describing spontaneous decay of the excited state jei at rate �
accompanied by the emission of a photon into the free-space
modes of the electromagnetic field environment. This process
involves a recoil of kA ¼ !A=c � k opposite to the direction
u of the emitted photon, which is averaged over the direc-
tional distribution function NðuÞ characterizing the given
atomic transition.

In general, the full quantum dynamics of the system
defined by Eq. (4) including all degrees of freedom—the
cm motion, the internal electronic dynamics, and the cavity
photon field—cannot be solved analytically even for a single
atom.

2. Dispersive limit

For a broad class of cavity QED parameters, atomic satu-
ration effects are negligible and the atoms can be considered
as linearly polarizable particles. This holds true when the
internal atomic variables �, �y evolve on a much faster time
scale as compared to the other variables due to a large atomic
detuning �A or a large spontaneous decay rate �. In either
case, following the usual technique of adiabatic elimination,
the atomic polarization operator � can be ‘‘slaved’’ to the
cavity mode and atomic position ‘‘master’’ variables. In the
absence of direct atom driving, i.e., � ¼ 0 in Eq. (3), one
obtains

� � gfðrÞa
�i�A þ �

: (6)

This approximation is valid if the population in the excited
atomic state is negligible (low saturation regime). By insert-
ing the slaved variable � into HJC and into the Liouville
operator Eq. (5b), an effective master equation is obtained. Of
particular interest is the large detuning limit in which the cm
motion and the cavity mode are coupled dispersively by

Heff ¼ �ℏ½�C � U0jfðrÞj2�aya: (7)

It captures, on the one hand, the atom-induced dispersive shift
of the cavity mode resonance frequency which depends on the
momentary position of the atom. On the other hand, the
cavity field gives rise to an optical potential / jfðrÞj2 felt
by the atom whose depth depends on the dynamical photon

number. Dissipation can be treated analogously and the
effective Liouville operator was presented by Domokos,
Horak, and Ritsch (2001). The dispersive and absorptive
effects of the atom are expressed in terms of the parameters

U0 ¼ g2�A

�2
A þ �2

¼ �!C

V
�0; (8a)

�0 ¼ g2�

�2
A þ �2

¼ �!C

V
�00; (8b)

respectively. These relations reveal the connection between
the cavity QED parameters and the complex susceptibility
� ¼ �0 � i�00 of a linearly polarizable object with electric
polarization P ¼ "0�E. With this connection at hand, the
theory presented here can be used to describe a much broader
class of particles than only two-level atoms, and most of the
findings can be applied directly to polarizable particles of
subwavelength size. In Sec. II.C.3, the linear polarizability
picture is refined for the case of molecules.

Using the dispersive interaction Hamiltonian, Eq. (7), the
quantized one-dimensional motion of a single atom strongly
coupled to a single-mode cavity field has been numerically
simulated (Vukics, Janszky, and Domokos, 2005). The cal-
culation confirmed the basic assumption of semiclassical
theories (see Sec. II.A.3), stating that the coherence length
of the atomic wavefunction reduces well below the optical
wavelength after a few irreversible scattering events. This
happens, although in the dispersive limit the coupling to the
environment is provided by cavity photon loss rather than
spontaneous photon scattering into free space. An efficient
numerical code was developed providing a general frame-
work for Monte Carlo wave-function simulations of systems
composed of the ‘‘quantum optical toolbox’’ (Vukics and
Ritsch, 2007; Vukics, 2012).

If the atom is laser driven from a transverse direction, i.e.,
� � 0 in Eq. (3), the adiabatic elimination of the internal
degrees of freedom leads to

� � gfðrÞaþ�hðrÞ
�i�A þ �

: (9)

Consequently, additional terms appear in the effective
adiabatic Hamiltonian equation (7) and the Liouvillean
equation (5b). In particular, coherent photon scattering
between the transverse laser field and the cavity mode gives
rise to the effective cavity pump term

Hpump=ℏ ¼ �effhðrÞ½f�ðrÞay þ fðrÞa�; (10)

with the effective cavity drive amplitude

�eff ¼ �Ag�

�2
A þ �2

:

The atomic recoil accompanied by photon scattering is
accounted for by the spatial dependence of this term.

3. Semiclassical description of atomic motion

In many cavity QED experiments, cold atoms are released
from a magneto-optical trap into the resonator volume. As the
temperature T of the atoms is well above the recoil tempera-
ture kBT 	 ℏ!R, where kB is the Boltzmann constant, one
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can assume that the reduced density matrix is almost diagonal
in both position and momentum representation. This allows
one to treat the position r and momentum p of the atom as
stochastic c-number variables. The regime of ultracold atoms
kBT & ℏ!R is treated in Sec. IV.

a. Langevin-type equation

The separation of the quantized internal and the classical
motional degrees of freedom was developed for the descrip-
tion of laser cooling (Gordon and Ashkin, 1980; Dalibard
and Cohen-Tannoudji, 1985; Cohen-Tannoudji, 1992). This
approach has been adopted to the cavity QED scenario by
extending the internal degrees of freedom to the com-
bined space of the atomic polarization and cavity mode
(Horak et al., 1997; Hechenblaikner et al., 1998). By elimi-
nating the internal degrees of freedom, the dynamics of the
cm variables can be formulated in terms of a stochastic
differential equation

_r ¼ p

m
; (11a)

_p ¼ fþ �
p

m
þ�; (11b)

where f denotes the classical force and � a friction coefficient
in a nonconservative and velocity-dependent force term. In
general, � can be a tensor in the three-dimensional space as
atomic motion along any direction gives rise to friction in all
three spatial directions (Vukics, Domokos, and Ritsch, 2004).
When the eigenvalues of the tensor � (or scalar in 1D) are
negative, one encounters cavity cooling. The noise term �
induces the stochastic behavior. It has vanishing mean value
and is defined via the diffusion matrix D according to

h�ðtÞ 
�ðt0Þi ¼ D	ðt� t0Þ; (12)

where 
 denotes the dyadic product. The exact noise corre-
lation function has a width in the range of the dissipative
parameters � and � of the internal dynamics. Therefore, it can
be approximated by a Dirac 	 function only on the much
slower cm motion time scale set by the inverse of the recoil
frequency !�1

R 	 minf��1; ��1g. The method of calculating

the c-number parameters f, �, and D of the Langevin-type
equation from the master equation concerning the internal
degrees of freedom was presented by Hechenblaikner et al.
(1998) for the one-dimensional case and by Domokos and
Ritsch (2003) for the three-dimensional case. This method
accounts for the quantum effects of the internal dynamics;
hence the full approach is semiclassical.

The practical use of this method is strongly limited: the
nonlinear quantum master equation for the internal and cavity
degrees of freedom has to be solved numerically and for all
atomic positions r. Moreover, the Hilbert space of the photon
field has to be truncated at low photon numbers. This ap-
proach was adopted by Doherty et al. (2000) and Fischer et al.
(2001) to simulate the experiments conducted by Hood et al.
(2000) and Pinkse et al. (2000).

Analytical approximations can be obtained for the low
atomic saturation regime (Murr, 2003), where the atomic
polarization can be replaced by a bosonic operator and hence
the internal dynamics is described by linear equations of
motion. It is then possible to calculate the friction coefficient

� and, corresponding to its sign, the cooling versus heating
regions can be mapped as a function of the detunings �A and
�C, as shown, for example, in Fig. 1.

b. Semiclassical theory in the dispersive limit

In the dispersive limit of atom-cavity coupling presented in
Sec. II.A.2, there is an alternative semiclassical approach
(Domokos, Horak, and Ritsch, 2001). The Wigner quasiprob-
ability distribution function can be defined in the joint phase
space of the atomic cm motion and the cavity field amplitude.
The quantum master equation translates then into a partial
differential equation for the Wigner function. By dropping all
terms containing higher than second-order derivatives, the
resulting Fokker-Planck equation corresponds to the evolu-
tion of classical stochastic variables associated with the
atomic motion and the cavity field. One can consider this
approach as the construction of a semiclassical model which
lies closest to the true quantum dynamics. As compared to
Eq. (11), here large intracavity photon numbers are allowed,
in fact, the validity of this approach requires photon numbers
larger than 1.

Consider the generic example of a single atom moving in
one dimension along the axis of an externally driven linear
cavity with the mode function fðxÞ ¼ cosðkxÞ, described by
(Domokos, Horak, and Ritsch, 2001)

_x ¼ p

m
; (13a)

_p ¼ �ℏU0j
j2 @

@x
f2ðxÞ þ �p; (13b)

_
 ¼ �� i½U0f
2ðxÞ � �C�
� ½�þ �0f

2ðxÞ�
þ �
:

(13c)

Apart from the noise terms �p and �
, these equations

coincide with the classical description in the initial cavity
cooling paper by Horak et al. (1997). The force in Eq. (13b)
acting on the atom is formally identical to the gradient of the
optical dipole potential of the cavity mode. The amplitude 
,
however, depends not only on the momentary position of the
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FIG. 1 (color online). Cooling and heating regions as a function of

atom and cavity detunings. Shown are contour plots of the friction

coefficient � (averaged over an optical wavelength) acting along the

cavity axis on a laser-driven atom. Left: Bad-cavity regimes

g ¼ �=2, � ¼ 10�; right: good cavity regimes, g ¼ 3�, � ¼ �,
where the dressed-state picture can be invoked for interpretation.

The different contour lines indicate cooling (C, �< 0) and heating

(H, �> 0) regions. Note that the spatially averaged friction coef-

ficient is shown here; tightly confined atoms localized within a

small fraction of the wavelength can follow completely different

behavior depending on their position.
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atom but has a memory effect because of the finite bandwidth
� of its linear response. The actual force has therefore a
velocity-dependent character which can give rise to a viscous
friction force, that is, cavity cooling. Within this approach the
friction cannot be determined by a single coefficient �; on the
other hand, the friction effect is correctly described for
arbitrary velocity.

The noise sources are taken into account in a consistent
way as imposed by quantum mechanics. This results in non-
trivial correlations h�p�
i � 0. The result for the diffusion

matrix as well as the generalization for several atoms was
given by Asbóth et al. (2005). The general model is used for
numerically studying many-body systems, cf. Sec. III, well
above the temperature of quantum degeneracy.

c. Scattering model

The semiclassical Langevin-type equation (11) can be
constructed without mode decomposition of the radiation
field. This approach is required when, instead of a simple
Fabry-Perot–type cavity geometry, one considers an atom
interacting with the radiation field of an interferometer which
is composed of an arbitrary one-dimensional configuration of
beam splitters. To deal with this situation a scattering model
has been established by Xuereb et al. (2009) and solved for
the force terms acting on a particle as in Eq. (11) by Xuereb
et al. (2010). In the scattering model the atoms and beam
splitters are treated on equal footing as ‘‘scatterers’’ charac-
terized by a single polarizability parameter. Thereby, a uni-
fied framework is created to describe optomechanical systems
in general, revealing the close relationship between cavity
cooling of atoms and radiation-pressure cooling of mirrors
(Metzger and Karrai, 2004; Arcizet et al., 2006; Gigan et al.,
2006; Kleckner and Bouwmeester, 2006; Schliesser et al.,
2009).

B. Cavity cooling

One of the most promising results from the understanding
of the complex cavity QED dynamics involving atomic
motion is the realization of cavity cooling, i.e., the dissipation
of kinetic energy through the cavity photon loss channel in a
controlled manner.

Early ideas about using an optical resonator to enhance the
efficiency of laser cooling relied on the modification of the
spectral mode density of the electromagnetic radiation field
in the presence of spatial boundary conditions (Mossberg,
Lewenstein, and Gauthier, 1991; Lewenstein and Roso,
1993). In the most general form, the notion of cavity cooling
in the perturbative regime was expressed by Vuletić and Chu
(2000). If an atom, placed inside an optical cavity, is laser
driven at a frequency below the cavity resonance �C < 0,
scattering favors the emission of photons at frequencies
higher than the pump frequency due to the increased mode
density around the cavity resonance. The energy needed to
upshift the photon frequency is provided by the loss in kinetic
energy in processes of inelastic scattering. With this very
simple picture, a robust three-dimensional cooling effect can
be interpreted (Vuletić, Chan, and Black, 2001). However, the
picture holds true only in the regime of weak atom-photon
coupling; see the left panel of Fig. 1. When the reabsorption

of a photon starts to become non-negligible, which happens in
a high-finesse cavity, the cooling mechanism substantially
changes. This drastic change is illustrated in Fig. 1, where the
right panel presents the friction coefficient for a ratio g=� in
the single-atom strong-coupling regime. In the case of a
standing-wave cavity, the dynamical cavity cooling effect
can be interpreted in the frequency domain by means of a
Sisyphus-type argument (Horak et al., 1997), using the
dressed-state picture of the strong-coupling regime of cavity
QED (Haroche, 1992); see Fig. 2. For the case of a ring cavity,
interestingly, the intuitive photon scattering picture can be
pursued also in the strong-coupling regime and the full
velocity dependence of the radiation pressure for arbitrary
coupling constant g can be obtained (Murr, 2006).

In the following we survey two regimes where cavity
cooling was demonstrated experimentally and present the
corresponding intuitive pictures of the cooling effect. Both
regimes are in the dispersive limit of the atom-photon inter-
action keeping the atomic saturation low.

1. Cavity cooling with blue-detuned probe light

Cavity cooling of single atoms was first demonstrated by
Maunz et al. (2004) via the observation of extended storage
times and improved localization of single 85Rb atoms in an
intracavity dipole trap. The trap field was red detuned with
respect to the atom; however, the cooling was induced by a
weak, blue-detuned probe field. The cooling rate was esti-
mated to exceed that achieved in free-space cooling methods
by at least a factor of 5, for comparable excitation of the atom.
Maunz et al. (2004) presented an intuitive interpretation of
the cooling effect in terms of the classical notion of the
refractive index. Consider a standing-wave optical cavity
resonantly excited by a weak probe laser �C ¼ 0, which is

x λ
0 1−1

0

ω

ωA

C

⏐+>

⏐−>

FIG. 2. A Sisyphus-type cooling mechanism underlying the

hyperbolic-shaped cooling region in the right panel of Fig. 1. The

atomic motion leads to a modulation of the internal dressed-state

energy levels j�i which are linear combinations of the jg; 1i
and je; 0i states with mixing determined by the mode function

fðxÞ ¼ cosðkxÞ. This amounts to a state-dependent potential for

the cm degrees of freedom. For �A < 0 and �C � ��þ g2=�A,

the transition from the ground state jg; 0i to the lower dressed state

j�i is resonantly excited at an antinode. Thus the excitation happens
more likely at the minimum of the potential wells, whereas sponta-

neous or cavity decay transfers the atom-cavity system back to the

ground state homogeneously in space. From Domokos and Ritsch,

2003.
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blue detuned from the atomic resonance by �A ¼ 2��
35 MHz> 0; see Fig. 3. The resulting light shift parameter,
Eq. (8a), far exceeds the cavity linewidth U0 > 5�, so that
even one atom can significantly influence the optical path
length between the cavity mirrors. Due to Eq. (7), the atom
placed at a node of the standing-wave mode profile does not
couple to the cavity field and the intracavity intensity is
maximum. In contrast, placed at an antinode, the atom shifts
the cavity resonance toward higher frequency, i.e., out of
resonance with the probe laser, resulting in a reduced intra-
cavity intensity. In a high-finesse cavity, however, the inten-
sity cannot drop instantaneously when the atom moves away
from a node. The induced blueshift of the cavity frequency at
almost constant photon number leads to an increase of the
energy stored in the field, before the photons are able to leak
out of the cavity. This occurs at the expense of kinetic energy
of the atoms. The reverse, accelerating effect occurring when
the atom moves from an antinode toward a node is much
weaker, because the cavity is initially out of resonance with
the probe laser and consequently only a small number of
photons are present and undergo a corresponding redshift.
This argument also reveals that the delicate correlation
between the atomic motion and the photon number variation,
underlying the cooling effect, imposes an upper bound on the

atomic velocity kv < �, which sets the velocity capture range
of cavity cooling.

In the experiment, single atoms injected into the cavity are
trapped at the field antinodes of a strong intracavity dipole
trap. To be detectable in cavity transmission of the weak
probe beam, the atoms simultaneously have to be close to
an antinode of the probe field mode. As the probe field
induces cavity cooling, the resulting stronger confinement
can be directly read out of the transmitted signal, as shown
in Fig. 4. Time-resolved detection of the cavity transmission
allowed one to extract a cooling rate of �=m ¼ 21 kHz,
which is large compared to the estimated cooling rate of
4 kHz expected for blue-detuned Sisyphus cooling of a
two-level atom in free space, or with the Doppler cooling
rate of 1.5 kHz at equivalent atomic saturation.

2. Cavity cooling and trapping with far red-detuned light

Far-off-resonance dipole traps are commonly used for
long-time capturing and localization of neutral atoms
(Grimm, Weidemüller, and Ovchinnikov, 2000). The suppres-
sion of spontaneous emission results in an almost conserva-
tive trapping potential. However, with the elimination of
spontaneous emission (j�Aj 	 �), any free-space cooling
mechanism also disappears. The far-off-resonant trapping
scheme was revisited for a strongly coupled atom-cavity
system where the cavity mode provides a new dissipation
channel.

Surprisingly, cavity cooling can remain very efficient in the
limit of large atomic detuning j�Aj ! 1. For optimal cooling
the driving frequency has to be set slightly below the cavity
resonance frequency �C � ��þ U0. Underlying the cool-
ing mechanism is a polariton resonance of the strongly
coupled atom-cavity system (corresponding to the dressed
state j�i in the weak excitation limit where only the lowest
excitations manifold of the Jaynes-Cummings spectrum mat-
ters; see Fig. 2). Even if !A and !C are very different, the
bare cavity resonance is slightly modified because the photon
excitation mixes with a small amount of the atomic excita-
tion. In an inhomogeneous system, the mixing leads to a
dependence of the polariton resonance on the atomic position
(see Fig. 2). Although the modulation is small in amplitude,
the resonance is comparably narrow, having a width in the
range of � for the cavity-type polariton. Thus the system can
be very sensitive to the atomic motion and even slow atom
velocities induce large nonadiabatic modulations of the
steady-state field amplitude (Domokos, Vukics, and Ritsch,
2004; Murr, 2006).

For demonstration, we consider the simplest case of an
atom moving along the cavity axis in the field generated by an
external driving laser. It was shown that the standing-wave
cavity field simultaneously traps and cools the atom (Vukics
and Domokos, 2005). For a standing-wave mode fðxÞ ¼
cosðkxÞ, the cooling rate is given by

�

2�Pe

¼ !R

�
4sin2ðkxÞ

� 2g2½�C � U0cos
2ðkxÞ�½�þ �0cos

2ðkxÞ�
f½�C �U0cos

2ðkxÞ�2 þ ½�þ �0cos
2ðkxÞ�2g2 ;

(14)

FIG. 3. Experimental scheme used for the observation of cavity

cooling. Single atoms are captured by an optical dipole trap formed

by far red-detuned light in a longitudinal cavity mode which is

different from the one used for cavity cooling. The characteristic

parameters of the interaction between the weak probe and the atoms

are ðg; �; �Þ ¼ 2�� ð16; 1:4; 3Þ MHz. From Maunz et al., 2004.

FIG. 4. Demonstration of cavity cooling. Time-resolved reduction

of the averaged cavity transmission of a weak resonant probe beam

indicating improved localization of the atom at the antinodes of a far

red-detuned trapping field. The closer the atom resides at an

antinode, the larger the detuning of the cavity resonance with

respect to the probe frequency. From Maunz et al., 2004.
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where Pe denotes the mean population in the excited state jei.
Choosing the cavity detuning as �C � ��þ U0 leads to the
optimum friction coefficient which, spatially averaged, reads

�

2�Pe

¼ !R

�

�
g

�

�
2
: (15)

On the left-hand side the cooling rate is normalized to the rate
of spontaneous photon scattering. Equation (15) shows that
the friction coefficient at a fixed saturation Pe is independent
of the atomic detuning, which gives rise to the perspective of
cooling molecules or other objects without closed cycling
transition (see Sec. II.C.3).

Further studies revealed that the previous setting of detun-
ings and intensities can be extended to more general geome-
tries, including the motion perpendicular to the cavity axis,
or the external driving of the atom instead of the cavity. What
is required for cooling is an inhomogeneity in the system on
the wavelength scale which leads to a position-dependent
steady state of the coupled atom-cavity system. This inho-
mogeneity can arise from the cavity mode function, as for the
result in Eq. (14), but also from a standing-wave pump field,
or from the spatially modulated ac-Stark shift in a strong
standing-wave laser field (Murr, Nussmann et al., 2006).
All these sources contribute to the cooling efficiency. The
resulting cooling effect was demonstrated experimentally by
Nussmann, Murr et al. (2005), making use of an orthogonal
arrangement of a cooling laser, a trapping laser, and a cavity
vacuum mode (see Fig. 5). This combination gives rise to
friction forces along all three spatial directions. The achieved
cooling efficiency led to microkelvin temperatures and to an
average single-atom trapping time in the high-finesse cavity
as long as 17 s, during which the strongly coupled atom could
be observed continuously; see Fig. 6.

In the experiment (see Fig. 5), a far-detuned standing-
wave dipole trap which is oriented perpendicular to the cavity
axis is used to transport atoms into the cavity (Kuhr et al.,
2003; Dotsenko et al., 2005). The combination of controlled
insertion of single atoms into and retrieval out of a high-
finesse optical resonator with cavity cooling led to a deter-
ministic strategy for assembling a permanently bound and

strongly coupled atom-cavity system. Long storage times

well above 10 s and the controlled positioning of single or

a given small number of atoms on the submicrometer scale

are simultaneously available (Nussmann, Hijlkema et al.,

2005; Khudaverdyan et al., 2008).
The exploration of cavity cooling was a stimulating and

essential step for the experimental achievement of strongly

coupled cavity QED systems combined with the control over

the atomic motion. With the implementation of free-space

laser cooling and trapping techniques in cavity experiments

sufficiently long atom-cavity interaction times were demon-

strated. These achievements led to remarkable experimental

breakthroughs and applications in single-atom cavity QED

recently. For example, high-precision measurements demon-

strated the basic cavity QEDmodel in the optical domain, i.e.,

by resolving the doublet of the lowest-lying excitations of the

atom-cavity system by Boca et al. (2004) and Maunz et al.

(2005), as well as the quantum anharmonic domain of the

Jaynes-Cummings spectrum (Kubanek et al., 2008; Schuster

et al., 2008), where squeezed light can be readily generated

(Ourjoumtsev et al., 2011). Furthermore, the achieved trap-
ping times permitted the development of a deterministic

single-photon source (Kuhn, Hennrich, and Rempe, 2002;

McKeever et al., 2004), for having full polarization control

(Wilk, Webster, Specht et al., 2007), and to realize the

long-time sought atom-photon quantum interface (Boozer

et al., 2007; Wilk, Webster, Kuhn, and Rempe, 2007) and

single-atom quantum memory (Specht et al., 2011). Many

FIG. 5. Transverse pump scheme of cavity QED. Atoms are

transported into the cavity using an optical conveyor belt. Instead

of driving the cavity directly, the atoms are transversely laser driven

giving rise to photon scattering into the cavity mode. The standing-

wave dipole trap yields a large differential ac-Stark shift, i.e., a

modulation of the atomic detuning �AðrÞ; see Eq. (1). In this

geometry the cavity vacuum field, the weak driving laser tuned

according to the optimum choice in Eq. (15), and the trap laser

together form a very efficient three-dimensional cooling scheme.

From Nussmann, Murr et al., 2005.

FIG. 6. Demonstration of cavity cooling and long-time trapping of

a controlled number of atoms inside the cavity. (a) A single trace of

the recorded photon-count rate indicating the capture of an atom

75 ms after switching on the pump laser (see Fig. 5). Within 100 
s,
the scattering rate reaches a steady-state value. (b) The recorded

photon-count rate allows for determining the atom number and the

trapping time. (c) The analysis of 50 traces, each of 6 s duration

and starting with one atom, yields an average lifetime � of

17 s (upper curve), whereas single atoms that are not exposed to

the pump laser reside only for 2.7 s in the cavity volume

(lower curve). From Nussmann, Murr et al., 2005.
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prosperous directions can grow out from the realization of the
elementary case of electromagnetically induced transparency
with a single atom (Kampschulte et al., 2010; Figueroa et al.,
2011) such as, for example, all-optical switching with single
photons.

3. Temperature limit

The extra friction term induced by the cavity is closely
connected to the modification of the zero-point field fluctua-
tions. Indeed, even for large atom-field detuning the diffusion
within a cavity-sustained optical dipole trap can be an order
of magnitude larger than for a free-space field (van Enk et al.,
2001; Murr, Maunz et al., 2006; Puppe, Schuster, Maunz
et al., 2007). The heating rate due to fluctuations can be
explicitly calculated in a semiclassical approach (see
Sec. II.A.3) which allows one to estimate the stationary
temperature attained by the atoms. Under optimal conditions
one finds the intuitive result

kBT � ℏ�; (16)

which is independent of the atomic parameters. This result
was confirmed by numerical simulations (Domokos, Horak,
and Ritsch, 2001) and fits very well with experimental
observations. Interestingly, the result remains largely valid
in the limit where the temperature reaches the recoil limit
kBT � ℏ!R which is not governed by the semiclassical
description anymore. For a particle trapped in a harmonic
potential with vibrational frequency � > � (resolved-
sideband regime) efficient ground-state cooling was proposed
by Zippilli and Morigi (2005a). Quantum interference effects
in the spontaneous emission of a trapped particle in a cavity
allow for ground-state cooling even in the bad-cavity regime
where � < � (Cirac, Lewenstein, and Zoller, 1995). This
prediction does not contradict Eq. (16), since it was made
for a strongly localized trapped atom (Lamb-Dicke regime) at
a precisely given position, whereas the temperature limit
above assumes spatial averaging over the cavity wavelength.

According to Eq. (16), there seems to be no lower bound on
the temperature as long as the cavity finesse can be increased.
However, with decreasing loss rate, the capture range of the
cavity cooling mechanism also shrinks. This relation is
thoroughly discussed by Murr (2006), based on an explicit
expression for the friction force obtained for arbitrary veloc-
ity. When applying very strong cavity fields, 
 	 1, in close
analogy to the mean-field treatment of optomechanical mod-
els (Genes et al., 2008), it is possible to effectively enhance
the weak atom-field interaction appearing at very large
detunings to an effective strong coupling geff ¼ g0
 at the
expense of introducing extra fluctuation terms (Nimmrichter
et al., 2010). This setting can considerably speed up the
cooling process and enhance the capture range, while still
leading to a similar final temperature as given by Eq. (16).

4. Cooling in multimode cavities

The atom-field dynamics qualitatively changes when in-
voking several cavity modes to participate as dynamical
degrees of freedom. In simple terms, not only the magnitude
but also the spatial shape of the optical potential and the
associated light forces become a dynamical quantity.

This can easily be demonstrated at the generic example of
a ring cavity geometry (Gangl and Ritsch, 2000). In the
regime of dispersive atom-field coupling, the atom not only
modifies the resonance frequencies of the two counterpropa-
gating cavity modes, thereby tuning their field amplitudes,
but also gives rise to phase locking by coherent photon
redistribution between the cavity modes. This determines
the position of the nodes and antinodes of the emergent
standing-wave interference pattern of the cavity radiation
field. For a red-detuned pump field �A < 0, the particle is
drawn to an antinode of the field which, at the same time, gets
dragged along with the slowly moving atom (assuming kv <
�, �). Because of the delayed response of the intracavity field,
however, the particle is permanently running uphill and thus
experiences a friction force. The two-mode geometry of a
ring cavity has been shown to result in faster cooling and
larger velocity capture range as compared to a single-mode
standing-wave cavity (Gangl, Horak, and Ritsch, 2000;
Schulze, Genes, and Ritsch, 2010). Moreover, the laser
pump configuration used for polarization gradient cooling
or velocity-selective coherent population trapping can be
envisaged within a ring cavity, for which case very efficient
cavity cooling is predicted without a fundamental lower limit
on the temperature (Gangl and Ritsch, 2001).

The more modes in a cavity are available in the vicinity
of the pump frequency, the smaller is the transverse length
scale on which the field shape gets modulated in the presence
of an atom. On the one hand, this leads to stronger three-
dimensional localization of atoms around their self-generated
intensity maximum (Salzburger, Domokos, and Ritsch,
2002). On the other hand, the cooling time reduces in a highly
degenerate confocal cavity more or less quadratically,
whereas the diffusion increases only linearly with the effec-
tive number of modes involved (Domokos, Salzburger, and
Ritsch, 2002; Nimmrichter et al., 2010).

The scope of cavity-mediated optical manipulation of
atoms significantly enlarges also in the case of many-atom
systems, which we review in Sec. IV.D.3.

C. Extensions of cavity cooling

The general principle of cavity cooling is expected to be
applicable in a broad range of other systems with different
radiation field geometries or other material components.

1. Cooling trapped atoms and ions

There are several experimental systems in which trapped
atoms are strongly coupled to a high-finesse cavity. Ion trap
setups have been combined with high-finesse cavities in the
moderate coupling regime (Keller et al., 2004; Herskind et al.,
2009). There are all-optical schemes, too, where different
longitudinal modes of a standing-wave cavity are used to
separate the optical trap modes from the cooling ones
(Maunz et al., 2004; Schleier-Smith et al., 2011). State-
insensitive cooling and trapping of single atoms employing
light field at magic wavelengths, which induces an almost
identical ac-Stark shift of the two relevant electronic states,
was demonstrated (McKeever et al., 2003). Further, trapping
of atoms in low field regions of a blue-detuned intracavity
dipole potential has been investigated experimentally (Puppe,
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Schuster, Grothe et al., 2007). In a similar intracavity dipole
trap, the axial atomic motion was cooled down to the ground
state by way of coherent Raman transitions on the red vibra-
tional sideband; meanwhile the atomic motion was inferred
from the recorded Raman spectrum by Boozer et al. (2006).

The cavity cooling mechanism operates also in the case of
tightly confined particles. In the Lamb-Dicke regime for

tightly confined particles
ffiffiffiffiffiffiffiffiffiffiffiffi
!R=�

p � 1, where � denotes the
harmonic trap frequency, explicit expressions for the cooling
and heating rates of the cm motion of an atom, trapped in an
optical resonator and driven by a laser field, have been
derived in the regime of both weak and strong atom-cavity
couplings. In the former, a variant of sideband cooling ap-
pears (Cirac, Lewenstein, and Zoller, 1995; Vuletić, Chan,
and Black, 2001). Experimentally, the cavity cooling of a
single trapped 88Srþ ion in the resolved-sideband regime has
been demonstrated and quantitatively characterized recently
(Leibrandt et al., 2009). The spectrum of cavity transmission,
the heating and cooling rates, and the steady-state cooling
limit have been measured in perfect agreement with a rate
equation theory. The final temperature corresponding to
22.5(3) occupied vibrational quanta was limited by the mod-
erate coupling between the ion and the cavity.

Calculations have been extended to the strong-coupling
regime, where higher-order transitions between eigenstates of
the coupled system have been identified and novel nontrivial
parameter regimes leading to cooling have been revealed
(Zippilli and Morigi, 2005a; Blake, Kurcz, and Beige,
2011). In the resolved-sideband regime � 	 �, �, the dis-
creteness of the vibrational spectrum, which is the same for
the electronic ground and excited states, gives rise to inter-
ference between different transition paths in analogy to the
cooling of trapped multilevel atoms (Morigi, Eschner, and
Keitel, 2000). Ground-state cooling is achievable according
to theoretical predictions (Zippilli and Morigi, 2005b).

2. Cooling nanoparticles and relation to optomechanics

The fact that cavity cooling requires only linear polar-
izability suggests that it could be directly applicable to large
objects, such as nanobeads (Chang et al., 2010; Barker and
Shneider, 2010), thin reflective membranes (Genes, Ritsch,
and Vitali, 2009), or even small biological objects such as
viruses (Romero-Isart et al., 2010). Moreover, since mem-
branes, being macroscopic objects, can have large static
polarizability (refractive index), the cooling can be much
more efficient than for single atoms or molecules. Indeed,
there is a strong connection between cavity cooling of atoms
and dispersive cavity optomechanics (Jayich et al., 2008;
Thompson et al., 2008), which can easily be seized in the
framework of scattering models (Xuereb et al., 2009). Cavity
cooling of membranes experimentally shows great success
down to the vibrational quantum ground state (Jayich et al.,
2011).

As the local field strength is strongly enhanced inside a
resonator, optical dipole traps can be operated at very large
detunings, where only the static polarizability of the particle
is relevant (Deachapunya et al., 2008; Nimmrichter et al.,
2010). In such a setting of coupled optical and mechanical
systems, the ring cavity with degenerate pairs of counter-
propagating modes, or other configurations where degenerate

modes are available, can offer the realization of various
effective models.

Consider, for example, a symmetrically pumped ring
cavity. The field can be written as a superposition of the
strongly pumped and thus highly excited cosine mode and
the empty sine mode. The cosine mode fulfills two purposes:
(i) it generates the trapping potential, and (ii) it feeds
the sine mode through photon scattering off the particle
(atom, molecule, membrane). The model Hamiltonian is of
the form (Schulze, Genes, and Ritsch, 2010)

H¼ p2

2m
�ℏ�Cðayc acþays asÞ�ℏUðxÞþiℏð�ayc ���acÞ;

(17)

where UðxÞ is the dispersive interaction potential, and ac (as)
denotes the field amplitudes of the cosine (sine) mode, re-
spectively. Linearizing the position around the trap minimum,
we can recover the standard optomechanical Hamiltonian,

H ¼
�
p2

2m
þ 1

2
m2ℏU0a

y
c acðkxÞ2

�
� ℏð�C � U0Þayc ac

� ℏ�Ca
y
s as � ℏU0

0ðas þ ays Þx; (18)

with quadratic coupling to the cosine trapping mode and
linear coupling to the sine cooling mode. As the particle
couples the two modes there appears an energy splitting
which allows one to extract via inelastic scattering kinetic
energy from the vibrational motion in the optical trap
(Elsasser, Nagorny, and Hemmerich, 2003). As for standard
cavity cooling the final temperature in the classical regime is
again limited by the cavity linewidth kBT � ℏ�. However, in
a very good cavity, when the pump field is sufficiently strong,
one can reach the resolved-sideband regime, where the trap
frequency � exceeds the cavity linewidth, and the final
temperature corresponds to less than a single excitation
kBT < ℏ�. In this ground-state cooling limit one has to resort
to a quantum description of motion and the optical fields.
Interestingly, the sine mode automatically acts as a built-in
monitoring system which continuously observes the vibra-
tional quantum state of the particle in the cosine mode. Hence
close to T ¼ 0 one can observe quantum jumps of the particle
via the sine mode photon counts (Schulze, Genes, and Ritsch,
2010).

3. Cooling molecules

a. Cooling the translational motion of molecules

Molecular structure fundamentally alters and complicates
the picture conceived for laser-cooling two-level atoms. Upon
excitation from the pump field, the molecule can relax by
either Rayleigh scattering back to the ground state jgi at the
rate �Ry or Raman scattering to metastable states at the rate

�Rn. There is a multitude of metastable molecular states
(spin-orbit, rotational, and vibrational) available via inelastic
Raman scattering. The generally low free-space branching
ratio �Ry=�Rn results in population shelving after only a few

photon scattering events, thereby prematurely quenching the
cooling process. Because of the prohibitive expense of build-
ing multiple repumping laser systems, optical cooling of
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molecules via free-space dissipative scattering of photons is

thought to not be practicable.
Since cavity-assisted laser cooling relies on the cavity

dissipation channel, it was suggested as a potential method

to mitigate Raman loss. Spontaneous photon scattering, in

principle, can be entirely suppressed by using large detuning.
However, as discussed in Sec. II.B.2, in order to keep the

cooling efficiency constant, one needs to preserve a given

level of excitation in the atom or molecule. Therefore, merely

the large detuning does not solve the branching ratio pro-
blem of molecules (Lev et al., 2008). To overcome this

severe problem, the use of an optical cavity with coopera-

tivity parameter much larger than unity is mandatory, in

accordance with Eq. (15). In this case the enhanced coherent
Rayleigh scattering into a decaying cavity mode can ensure a

vanishingly small probability of the molecule to Raman

scatter during the cooling time. For CN diatomic molecules,
the cavity cooling process was calculated numerically

(Lu, Zhao, and Barker, 2007).

b. Cooling the rotation and vibration of molecules

While theoretical models and experiments mostly concen-

trated on the center-of-mass motion of structureless polar-

izable particles or two-level atoms, the complex rovibrational
structure of molecules is one of the central obstacles prevent-

ing efficient laser cooling of molecules. In many common

beam sources the initial temperature can be designed to be

low enough to freeze most vibrations and only leave few
rotational quanta (Rangwala et al., 2003). Nevertheless, the

interaction with the cooling laser light will in general start to

redistribute the population within the rovibrational manifolds
strongly altering the optical properties of the molecules

and hampering further cooling. Only a few exceptions of

this rule have been discovered and investigated lately

(Shuman, Barry, and DeMille, 2010). Cavity cooling, how-
ever, can in principle be designed to counteract this heating

process and even further cool the rovibrational energy of

molecule. As an enormous spread of transition frequencies

is required to facilitate this, it proves advantageous to simul-
taneously apply a multitude of different longitudinal cavity

modes (Kowalewski et al., 2007; Morigi et al., 2007).

Simulations show that the rovibrational cooling can be com-
bined with motional cooling, e.g., in a trap (Kowalewski

et al., 2011), to get a cold molecular gas in all degrees

of freedom. At this point a practical implementation

would require precooling by other methods, such as the
optoelectrical scheme proposed by Zeppenfeld et al. (2009),

to achieve sufficient interaction times and densities within the

cavity mode volume.

4. Cooling and lasing

Collective coherent emission of a laser-driven atomic en-

semble into the field of an optical cavity accompanied by a
very fast and efficient cooling of atomic motion was observed

in an experiment conducted by Chan, Black, and Vuletić

(2003). Although the effect has not yet been fully understood,

it is attributed to Raman gain within a Zeeman manifold. The
combination of cavity cooling with intracavity gain is an

intriguing prospect. It was initially suggested by Vuletić

(2001) to transform a bad cavity effectively into a good cavity
with fast cooling toward an even lower temperature. While
the principle idea proves to be correct, a more realistic and
detailed modeling, which accounts for fluctuations to consis-
tently treat the gain, gives a higher limit of the achievable
temperature (Salzburger and Ritsch, 2006). This observation
was also confirmed in the optomechanical regime of cavity
cooling, where intracavity gain leads to faster cooling but a
higher final temperature (Genes, Ritsch, and Vitali, 2009).

In a standard setup, the intracavity gain could be generated
by an additional inverted medium placed within the cavity.
This would lead to a technically challenging setup, if one
aims to operate in the strong-coupling regime. Interestingly, it
turns out that in a conceptually much simpler configuration,
the gain can also be provided by the same atomic medium
which is aimed to be cooled in the setup. Of course, such a
scheme requires a suitable pumping mechanism which trans-
fers atoms from the lower to the upper level of the cooling
transition, without introducing too much extra noise. In the
ultimate limit one can envisage a single atom, which is
externally pumped within a high-finesse cavity. Stimulated
emission into the cavity mode provides gain to create a
trapping potential for the atom. For a blue-detuned cavity
this gain simultaneously extracts motional energy from the
particle and thus provides cooling (Salzburger and Ritsch,
2004). Fortunately, an inverted atom is a high-field seeker in
the blue-detuned light field, so that it will be trapped close to
optimal gain. Hence this setup provides for lasing, trapping,
and cooling of a single atom within a resonator forming the
most minimalistic implementation of a laser (Salzburger,
Domokos, and Ritsch, 2005). The system can be generalized
to several particles, which strongly reduces the requirements
on the pump mechanism (Salzburger and Ritsch, 2006). In the
limit of ultracold gases in an optical lattice, stimulated optical
gain occurs concurrent with Bose enhanced coherent popu-
lation of the lowest energy band. While for a pulsed setup this
constitutes in principle a very fast and efficient cooling
method, a cw setup could provide a possible route toward
the realization of a cw atom laser (Salzburger and Ritsch,
2007, 2008).

5. Monitoring and feedback control

Starting from the early days of cavity QED, a strongly
coupled atom-cavity system was considered as a number-
resolving neutral particle detector (Mabuchi et al., 1996), a
concept which is still being developed and implemented in
miniaturized devices (Teper, Lin, and Vuletić, 2006). Going
one step further, the high-finesse resonator acts as a micro-
scope with which the trajectory of individual atoms can be
reconstructed from the recorded cavity transmission with
high spatial (<
m) and temporal (<
s) resolution (Hood
et al., 2000). The method can be considerably improved with
the use of multimode cavities. The particle not only modifies
the phase and intensity of the intracavity field, but redistrib-
utes light between the different spatial modes. The output
field imaged on a CCD camera therefore allows one to
directly monitor and in real time the motion of the particle
(Horak et al., 2002; Maunz et al., 2003). Note that even for
incomplete position information at any given time, the most
likely trajectory of single atoms can be reconstructed with the
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help of inversion algorithms based on the coupled equations

of motion.
Once the position and motion of the particle are known, it

is straightforward to apply feedback on the motion of a single

atom by adjusting the pump lasers to steer the particle motion

within the cavity and increase its trapping time (Fischer et al.,

2002). The cavity field both provides particle detection and

mediates the feedback force. This method was successfully

refined by several groups and resulted in an increase of

single-particle trapping times by several orders of magnitude

(Kubanek et al., 2009, 2011). By applying controlled and

delayed feedback forces on the particle, its kinetic energy can

be reduced as well. This kind of feedback cooling resembles

stochastic cooling techniques applied in high-energy physics.

Strongly enhanced cooling was predicted when the feedback

scheme, consisting of time-dependent switching of the trap-

ping field as a function of the intracavity intensity, is operated

in the dispersive bistability regime (Vilensky, Prior, and

Averbukh, 2007). This method also gives new prospects to

optomechanical setups.

III. COLD ATOMIC ENSEMBLES IN A CAVITY

New research directions opened in cavity QED when cold

and ultracold atomic ensembles were successfully prepared

within high-finesse optical resonators. In the many-body

configuration, the common coupling of atoms to the cavity

field creates a wealth of new possibilities to implement

tailored atom-atom interactions over large distances, an in-

gredient which usually is absent in free-space cold atom

experiments.
The atom-atom coupling is mediated by the cavity radia-

tion field between the ac electric-dipole moments. However,

its nature is inherently different from the free-space dipole-

dipole interaction. In a cavity, the interaction strength does

not decay with the interatomic distance and depends only

on the local coupling of the atoms to the cavity field.

Fundamentally, the interaction is not binary: the ensemble

of atoms collectively acts onto the state of the radiation field

which then reacts back on the individual atoms. This scenario

is generally referred to as global coupling. The range of the

interaction is given by the size of the cavity mode, which can

be macroscopic. In cases where single-atom strong coupling

is not achieved, the collective energy exchange can still be

dominated by coherent interaction.
After discussing the nature of the long-range atom-atom

interaction mediated by a cavity field in various geometries,

we consider first the many-body influence on the cavity

cooling scheme. Then we address the most spectacular

collective effects realized by cold atoms within linear and

ring cavities. Critical phenomena, instability thresholds, and

scaling laws are discussed by means of various mean-field

theories at the end of this section.

A. Collective coupling to the cavity mode

Resonant coherent coupling between an ensemble of N
two-level atoms and a single standing-wave cavity mode is

described by the many-body generalization of Eq. (1):

H=ℏ ¼ ��Ca
ya�X

j

�AðrjÞ�y
j �j

þX
j

igfðrjÞð�y
j a� ay�jÞ; (19)

where j ¼ 1; . . . ; N labels the atoms, and the mode function
fðrÞ, for simplicity, is real. The atomic ensemble can be
represented by a single collective dipole with effective
coupling strength only if (i) the atomic motion can be aver-
aged out, (ii) only the cavity mode is laser driven, and (iii) the
atoms are in the low saturation regime. In this case the atoms
collectively couple to the cavity mode with an effective

strength of geff ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jf
2ðrjÞ

q
(the summation index runs

from 1 to N). Correspondingly, an N-fold enhancement
appears for the many-atom system in terms of the single-
atom cooperativity C ¼ g2=ð2��Þ, which measures the ratio
of light scattering into cavity mode versus surrounding vac-
uum modes (Tuchman et al., 2006). For example, the strong
distortions of the single-atom normal-mode splitting in the
cavity transmission spectrum induced by a thermal beam of
atoms crossing the cavity could be interpreted by such a
collective mode picture (Raizen et al., 1989). Employing an
optical conveyor belt, an adjustable number, N ¼ 1–100, of
cold atoms has been transported into a microcavity, and
large nonlinearities have been achieved as evidenced by the
observation of absorptive optical bistability in the real-time
transmission spectrum (Sauer et al., 2004).

In general, however, one has to consider the many-body
system composed of a large number of internal and motional
degrees of freedom. We exhibit this in the following at the
simplest nontrivial case of two atoms in the same mode.

1. Cavity-mediated atom-atom interaction

We now discuss the character of the cavity-mediated atom-
atom interaction in two different pump geometries, namely,
pumping the cavity field either directly or indirectly via light
scattering off the laser-driven atoms.

a. Cavity pumping

Consider N atoms moving in the field of a laser-driven
optical cavity. The detuning between the driving laser and the
dispersively shifted cavity resonance depends on the position
of all atoms, which in turn experience the optical dipole force
of the intracavity field. For small atomic velocities and in the
low saturation limit, an adiabatic potential can be deduced
(Fischer et al., 2001)

Vðr1; . . . ; rNÞ ¼ ℏ�Aj�j2
�A�þ �C�

atan
��� �A�C þ g2eff

�A�þ�C�
;

(20)

which is analogous to the Born-Oppenheimer approximation
used for describing the motion of nuclei in molecules in the
averaged electronic potential. The potential V depends on
the atomic positions solely via the collective coupling
strength geff , and thus is valid for any number of atoms.
This is not surprising as the adiabatic force is calculated by
freezing the atomic motion. The resulting cavity-mediated
long-range atom-atom interaction gives rise to an asymmetric
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deformation of the normal-mode splitting as observed experi-
mentally by Münstermann et al. (2000).

In the case of two atoms with positions x1 and x2 the

interaction potential landscape Vðx1; x2Þ along the cavity
axis is shown in Fig. 7 for two different parameter settings.

The upper graph corresponds to the experimental parameters
used by the Garching group (Münstermann et al., 2000).

Although the single-atom light shift is comparable with the
cavity linewidth jU0j � �, the effective interaction between

the atoms is relatively weak and the potential resembles the
familiar ‘‘egg-carton’’ surface proportional to sin2ðkx1Þ þ
sin2ðkx2Þ. For ‘‘artificially’’ enlarged atom-field coupling
g ¼ 20�, shown in Fig. 7 (lower graph), the atom-atom

interaction strongly affects the potential landscape felt by

the second atom, depending on the position of the first
atom and vice versa. For this parameter setting the single-

atom light shift is sufficiently large, U0 	 �, so that remov-
ing one atom from the cavity antinode makes the potential

experienced by the other atom vanish. Note that the trap is
deeper for the smaller coupling of the upper graph.

Interestingly, as shown by Asbóth, Domokos, and Ritsch
(2004), the motion of the two atoms gets correlated even

for the parameter setting of the upper graph as a consequence
of additional nonconservative forces (see Sec. III.A.2).

b. Atom pumping

The situation drastically changes if the atoms are laser
driven from a direction perpendicular to the cavity axis.
Intracavity photons are then created by Rayleigh scattering
of laser photons into the cavity mode. Because of light
interference, the scattered intracavity field exhibits a sensitive
dependence on the interatomic distance. For two atoms
separated by odd integer multiples of the half-wavelength,
the corresponding scattering amplitudes into the mode have
the same magnitude but opposite sign, resulting in destructive
interference and a vanishing cavity field amplitude. On the
other hand, for atoms separated by even integer multiples of
the half-wavelength, the field components scattered off the
two atoms interfere constructively. Compared to the field
intensity created by a single scatterer, the latter case yields
a fourfold enhancement of the intensity, referred to as super-
radiance (Dicke, 1954; DeVoe and Brewer, 1996).

In the case of directly pumping the atoms the force along
the cavity axis acting on the individual atoms due to light
scattering cannot be expressed as a gradient of a collective
potential, at variance to Eq. (20). One can admit this by
checking that riFj � rjFi, where ri is the gradient with

respect to the coordinate ri, and Fj is the force acting on

atom j. If there was a potential V such that Fj ¼ �rjV, the

two sides should be equal as they are the second derivatives of
the potential and the order of taking the derivatives is irrele-
vant according to Young’s theorem. The fact that the force
cannot be derived from a potential is not so surprising, in
hindsight, as we are dealing with an open system with
continuous energy exchange with the environment and an
unlimited energy resource in the form of the pump laser.
Actually, the existence of a potential Eq. (20) for the
cavity-driving geometry is the exceptional case.

Approximately, in the limit of U0, �0 ! 0, more precisely
N2U0 � ð�; j�CjÞ, the motion of atoms is governed by the
collective potential

Vðr1; . . . ;rNÞ¼ℏ
�2
eff�C

�2
Cþ�2

 XN
j¼1

cosðkxjÞcosðkzjÞ
!
2

; (21)

where cosine mode functions were assumed for the cavity and
the pump laser field. The interference effect is manifest:
When scanning the atom-atom distance over a wavelength,
the contrast of the interference in the cavity field intensity is
unity regardless of the atom-cavity coupling constant g. This
is not the case for cavity pumping, where, in the limit of small
coupling constant g, the atoms cause only a small modulation
of the cavity intensity. Therefore, the atom pumping geome-
try lends itself to observe spectacular many-body effects even
in the weak-coupling regime.

The superradiant light scattering into the cavity is the basis
of various collective dynamical effects, which have been
more profoundly studied theoretically. Although we mostly
neglect atomic saturation effects in this review, it is important
to reveal modifications of the interference effect in the col-
lective scattering when a small but finite atomic saturation is
taken into account. Since the saturation also depends on the
relative distance of the particles, new types of nonlinear
behavior take place. For example, as shown in Fig. 8, the
destructive interference for a separation of half-wavelength
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FIG. 7. The adiabatic cavity potential V as a function of the

atomic positions x1 and x2. The cavity is quasiresonantly excited

by a pump laser with detuning �C ¼ ��þU0. The detuning from

the atomic resonance is set to �A ¼ �50� to ensure the suppression

of spontaneous photon scattering. In the upper graph, typical

experimental cavity parameters (� ¼ �=2, g ¼ 5�) (Münstermann

et al., 2000) have been used, whereas in the lower graph g was

increased fourfold. In the first case, the potential is well approxi-

mated by a sum of two single-particle potentials. In the second case,

both atoms either are trapped or free. From Asbóth, Domokos, and

Ritsch, 2004.
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between the atoms is no longer perfect and the photon
scattering generates a nonclassical cavity field with zero
amplitude but finite photon number (Zippilli, Asboth,
Morigi, and Ritsch, 2004; Vidal, Zippilli, and Morigi, 2007).

2. Collective cooling, scaling laws

As discussed in Sec. II.B.1, the cavity cooling force on
single atoms stems from a delicate correlation between the
atomic motion and the retarded dynamics of the cavity field.
In a many-atom system it is at first unclear what happens to
these correlations in the presence of other moving atoms.
Furthermore, the cavity-mediated crosstalk between atoms
has a component sensitive to the atomic velocities (Domokos
and Ritsch, 2003), i.e., atom 1 moving at velocity v1 induces a
linear friction force on atom 2, which might yield correlations
in velocity space. To answer this question, one can straight-
forwardly generalize the semiclassical model, presented in
Sec. II.A.3, for many atoms. In general, however, this leads
to an analytically intractable problem. The dynamics of the
many-atom system cannot be reduced to that of an effective
mode, as was the case for the adiabatic potential Eq. (20) for
atoms at rest. The two-atom case was discussed in detail by
Asbóth, Domokos, and Ritsch (2004), who found, using the
parameter regime of Fig. 7, top panel, a buildup of strong
correlations in the motion of two atoms due to the velocity-
dependent cavity forces.

The scaling of the cavity cooling efficiency with the number
of particles was studied by means of numerical simulations for
N ¼ 1; . . . ; 100 in the limit of a weakly driven single-mode
field, where the optical dipole potential negligibly perturbs the
free motion of atoms along the cavity axis (Horak and Ritsch,
2001c). If the parameter U0 is chosen sufficiently small so that
the collective light shift is still below the cavity linewidth,
NU0 < �, the rate of kinetic energy dissipation is independent
of the number of atoms. This suggests that the individual atoms
in the cloud are cooled independently from each other,
although they are all coupled to the same cavity mode. This
holds only in the weak-coupling limit which is not practical for
cooling since the cooling time is long.

When the collective coupling to the cavity mode is signifi-
cant with respect to the linewidth �, the scaling behavior of
cooling with the number of atoms was studied by keeping

NU0 and �=
ffiffiffiffi
N

p
constant while varying the atom number N.

The former ensures an identical maximum collective light
shift induced by the atoms, and the latter amounts to a nearly
constant optical potential depth (proportional to U0�

2=�2).
With this rescaling of the parameters, the effect of individual
atoms on the cavity field diminishes as the number of atoms
increases. The final temperature was found invariant; how-
ever, the cooling time increases linearly with the atom num-
ber N. As long as the driving � is weak enough to result in a
shallow optical potential depth, in which the atoms move
almost freely, all the motional degrees of freedom along the
cavity axis are cooled.

In the limit of tightly confined atoms, both theoretical
calculations (Asbóth, Domokos, and Ritsch, 2004; Nagy,
Asbóth, and Domokos, 2006) and experiments (Schleier-
Smith et al., 2011) proved that only the center-of-mass
motion is damped by the cavity-induced friction force
(Gangl and Ritsch, 1999, 2000). An efficient sideband cool-
ing scheme was proposed by Elsasser, Nagorny, and
Hemmerich (2003) for particles confined in the optical lattice
potential generated by two counterpropagating degenerate
modes of a ring cavity. The scheme relies on the collective
atom-field coupling which lifts the degeneracy and creates
two standing-wave modes phase locked by the backscattering
of light. The lower-lying mode sustains the optical lattice
with an intensity adjusted such that the upper-lying mode
becomes resonant with the vibrational anti-Stokes Raman
transition. The sideband cooling allows the atoms to reach
the vibrational ground state.

A collective enhancement of friction on the center-of-mass
motion was demonstrated experimentally in the transverse
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FIG. 9. Observation of collective friction force on the center-of-

mass motion. The cavity output power (thin line, left scale) is shown

during illumination of a freely falling atomic cloud (initial velocity

15 cm=s) with a transverse laser beam. The initial increase signifies

the self-ordering into a Bragg-scattering lattice (see Sec. III.B.1).

Deceleration of the center-of-mass motion is recorded via the beat

signal recorded over 300 
s. The modulation stems from the spatial

variation of the atom-cavity coupling with period �=2, whereby

atoms cannot scatter at a node of the intracavity standing wave. The

changing modulation frequency indicates the atomic deceleration

(thick line, right scale). The inset shows the density profile (a.u.)

of the atomic cloud after free expansion without (gray line) and

with (black line) a 400 
s exposure to the pump beam. A fraction

of about one-third of the atoms is delayed significantly in accor-

dance with the measured deceleration. Here the pump I=Is ¼ 420

(Is ¼ 1:1 mW=cm2 is the D line saturation intensity of Cs),

�A=2� ¼ �1:58 GHz, and �C=2� ¼ �10 MHz. The atom num-

ber is N ¼ 2:6� 107. From Black, Chan, and Vuletić, 2003.
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pump configuration, as an accompanying effect of the self-
organization into a Bragg-scattering lattice (see Sec. III.B.1).
Peak decelerations of �103 m=s2 have been observed
(see Fig. 9), and the damping effect has been demonstrated
with light-atom detunings up to �A=2� ¼ �6 GHz. For
smaller detunings �A=2� � �160 MHz, similar large
velocity-dependent friction forces (up to decelerations of
�1500 m=s2 and temperatures as low as 7 
K) were
observed in another set of experiments (Chan, Black, and
Vuletić, 2003). Neither the large friction nor the low
temperature can be explained in terms of the interaction
between single atoms and the cavity field. In this detuning
regime a theoretical description is more involved because the
entire hyperfine manifold has to be taken into account and
the interaction can lead to Raman lasing between different
magnetic sublevels.

3. Backaction, nonlinear dynamics

In general, the interplay between the mechanical effect of
light on the atomic motion and light scattering inside the cavity
off the spatial atomic density distribution can lead to highly
nonlinear dynamics. Having a large atomic ensemble organ-
ized in a lattice structure, for example, the collective Bragg
scattering, much more efficiently redistributes the light be-
tween modes than Rayleigh scattering from the individual
atoms. The enhancement factor, being on the order of the
number of atoms, can give rise to significant sensitivity of
light scattering to small variations of the spatial distribution.
As an example, the backscattering between the counterpropa-
gating modes (denoted byþ and�) of a ring cavity was found
to depend strongly on the bunching parameter of the atomic
distribution around the trapping sites of an optical lattice. In
experiments performed by the Hamburg group (Nagorny,
Elsasser, and Hemmerich, 2003; Elsasser, Nagorny, and
Hemmerich, 2004), the amplitude 
þ in one of the modes
was actively stabilized by a feedback loop _
þ ¼ 0, and thus
the other mode obeyed the nonlinear equation of motion

_
� ¼ iNU0B

2�

þ

� �
� � iNU0
þB� þ ��: (22)

Here �� denotes the driving amplitude of this mode and
B ¼ he�2ikzi the bunching parameter (see also Sec. III.B.2).
For a thermal cloud the atomic bunching approximately follows

B / 
��=j
�j expf�const=
ffiffiffiffiffiffiffiffiffiffij
�j

p g. The resulting nonlinear
dynamics was exemplified by a new kind of optical bistability
in the dispersive atom-field coupling regime, which is outside
the range of optical bistability effects relying on the nonlinear-
ity of the internal atom-field coupling (Lugiato, 1984).
Subsequent experiments (Klinner et al., 2006) also revealed
the mechanical effect of light on the atomic distribution in the
dispersive regime through the normal-mode splitting.

B. Nonequilibrium phase transitions and collective instabilities

The nonlinear collective dynamics of thermal atoms in a
high-finesse resonator can give rise to nonequilibrium phase
transitions and collective instabilities. In the following we
present two experimentally evidenced examples which have
been theoretically studied both in the thermodynamic limit
and by means of microscopic models.

1. Spatial self-organization into a Bragg crystal

A thermal cloud of cold atoms interacting with a single
mode of a high-finesse Fabry-Perot cavity undergoes a phase
transition upon tuning the power P of a far-detuned laser
beam (wavelength �), which illuminates the atoms from a
direction perpendicular to the cavity axis (Domokos and
Ritsch, 2002; Asbóth et al., 2005). Below a threshold power
Pcr, the thermal fluctuations stabilize the homogeneous den-
sity distribution of the atomic cloud, and light which is
scattered off the atoms into the cavity destructively interferes,
rendering the mean cavity field amplitude to zero. Above
threshold, P > Pcr, the atoms self-organize into a �-periodic
crystalline checkerboard order which is bound by the inter-
ference between the pump field and the macroscopic cavity
field, resulting from Bragg scattering into the cavity mode.

This self-organization effect can be described in terms of a
semiclassical model similar to Eq. (13), generalized to many
atoms. A set of variables pj and rj is introduced, with the

index j ¼ 1; . . . ; N labeling the atoms. For simplicity, the
atomic motion is considered in two dimensions spanned by
the cavity axis and the pump laser direction, with coordinates
x and z, respectively. The equation of motion for the coherent
cavity field amplitude 
 is given by

_
¼ i

�
�C�U0

X
j

cos2ðkxjÞ
�

�

�
�þ�0

X
j

cos2ðkxjÞ
�



� i�eff

X
j

cosðkxjÞcosðkzjÞþ�
; (23a)

where the effective pumping strength of the cavity mode is
denoted by �eff ¼ �g�A=ð�2

A þ �2Þ; see Eq. (10). Because

of the interference term
P

j cosðkxjÞ cosðkzjÞ light scattering
into the cavity vanishes for a homogeneous atomic density
distribution. It can be small even if all the atoms are maxi-
mally coupled but the signs of the summands alternate. The
light forces exerted on the individual atoms along the cavity
and pump direction are given by

_pxj ¼ �ℏU0j
j2 @

@xj
cos2ðkxjÞ � ℏ�effð
þ 
�Þ

� @

@xj
cosðkzjÞ cosðkxjÞ þ �xj; (23b)

_pzj ¼ �ℏU0ð�=gÞ2 @

@zj
cos2ðkzjÞ � ℏ�effð
þ 
�Þ

� @

@zj
cosðkxjÞ cosðkzjÞ þ �zj: (23c)

These equations include Langevin noise terms �
, �xj, and

�zj, defined by the nonvanishing second-order correlations,

h��

�
i¼�þXN

j¼1

�0cos
2ðkxjÞ; (24a)

h�n�
i¼ iℏ�0@nEðrjÞcosðkxjÞ; (24b)

h�n�mi¼2ℏ2k2�0jEðrjÞj2 �u2n	nm

þℏ2�0½@nE�ðrjÞ@mEðrjÞþ@nEðrjÞ@mE�ðrjÞ�;
(24c)

with indices n, m ¼ xj, and zj. The noise terms associated

with different atoms are not correlated. The complex
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dimensionless electric field is given by EðrÞ ¼ cosðkxÞ
þ
cosðkzÞ�=g.

In Fig. 10 a numerical simulation of the trajectories of

40 atoms during the first 50 
s of illumination is shown.
The initial configuration is given by an ensemble of thermal

atoms with random positions from a uniform distribution

and velocities from a thermal distribution. The cavity mode

initially is in the vacuum state (
 ¼ 0). With the right

choice of parameters the emergence of a periodic pattern
in the spatial density distribution of the atoms is observed,

accompanied by the buildup of a coherent cavity field

amplitude (see Fig. 11). In the emerging configuration,

assuming a red-detuned pump laser, the trapped atoms are
oscillating about the intensity maxima of the interfering

pump-cavity field. Along the cavity and pump directions

these are separated by even multiples of the optical wave-

length. Since only the black or white fields of the under-

lying checkerboard lattice pattern are occupied, constructive
interference leads to efficient Bragg scattering of pump

photons into the cavity.
As shown later in more detail, the process of self-

organization relies on the right choice of the detuning 	C ¼
�C � NU0=2 between the pump laser and the dispersively
shifted cavity resonance �C. For the case 	C < 0, the poten-
tial term cosðkxjÞ cosðkzjÞ in Eqs. (23b) and (23c) attracts

atoms toward the ‘‘majority’’ sites and repels them from the
‘‘minority’’ sites, providing positive feedback. Initiated by

density fluctuations, one of the two possible Bragg lattices is

then formed in a runaway process. For the case 	C > 0, the
scattered cavity field creates potential maxima (minima) at

the positions of the majority (minority) sites, counteracting

the amplification of density fluctuations and preventing a
dynamical instability. Furthermore, in this regime the delayed

cavity response causes cavity heating of the atomic motion

which obscures an equilibrium situation for lack of other

dissipative processes.
For �C � NU0 < 0, the initial fast buildup of a coherent

cavity field continues over a longer time scale. The kinetic

energy of the oscillating and the untrapped atoms dissipates

owing to the cavity cooling mechanism, which leads to an

increase of the number of trapped atoms and a stronger

localization in the potential wells. This further improves
coherent scattering into the cavity, as indicated by the slow

increase in the cavity field intensity shown in Fig. 11.

Comparing the time evolution of the intracavity photon

number for the self-organization process of 40 and

160 atoms (rescaled in Fig. 11 by a factor of 16) demon-
strates the superradiance effect, i.e., the field intensity

scales cooperatively as the square of the particle number.

The bottom panel of the figure shows that the cooling rate,

described by the decrease of the phase-space density of the

atoms, is also similar for N ¼ 40 and N ¼ 160 and that the
self-organization leads to smaller phase-space densities than

the homogeneous distribution below threshold.

FIG. 10 (color online). Self-organization of laser-driven atoms in

a cavity. Numerically simulated two-dimensional trajectories during

the first 50 
s of transverse illumination. A checkerboard pattern of

trapped atoms emerges, in which the occupied trapping positions are

separated by even multiples of �=2 ð¼ 1 edgeÞ. The grid lines

indicate points of maximum coupling to the standing-wave cavity

or pump field. There is a possible complementary configuration

with atoms occupying the other set of intersections. Parameters:

� ¼ 20=
s, ðg; �Þ ¼ ð2:5; 0:5Þ�, atomic detuning �A ¼ �500�,

cavity detuning �C ¼ ��þ NU0, and the pumping strength

� ¼ 50�. From Asbóth et al., 2005.
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FIG. 11 (color online). Cavity cooling in the self-organized phase.

The time evolution of the photon number in the cavity (upper panel)

and the phase-space density of the atoms (bottom panel) on a long

time scale, for N ¼ 40 and N ¼ 160 atoms (different vertical

scalings are used for illustrating the superradiance j
j2 / N2). In

the bottom panel, the dashed curve fluctuating around a constant

value corresponds to uniformly distributed N ¼ 40 atoms driven

below the self-organization threshold. The parameters are the same

as in Fig. 10. From Asbóth et al., 2005.
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Self-organization of laser-cooled atoms was observed in

experiments of the MIT group with N � 107 Cs atoms

prepared at a temperature of 6 
K in a nearly confocal

Fabry-Perot cavity (Black, Chan, and Vuletić, 2003). Above

a threshold intensity of the transverse pump beam, collective

emission of light into the cavity was observed at a rate which

exceeds the free-space single-atom Rayleigh scattering rate

by a factor of up to 103. This experiment demonstrated the

process of spontaneous symmetry breaking by measuring

� jumps in the phase of the emitted cavity field relative to

the transverse pump field, corresponding to self-organization

into the black or white lattice sites of a checkerboard pattern

(see Fig. 12). Retardation between the cavity field and the

atomic motion resulted in a collective friction force on the

center-of-mass degree of freedom. A deceleration of up to

1000 m=s2 has been achieved with atom-cavity detunings as

large as �A ¼ �2�� 1:58 GHz.
For finite atom number N and finite measurement time, an

interesting hysteresis effect accompanies self-organization, as

shown in Fig. 13. The thermodynamic limit N ! 1 is ap-

proached by simulations of Eq. (23) with the atomic density

N=V / Ng2 and the cavity loss rate kept constant. The

percentage of defect atoms after 4 ms of simulation time as

a function of the pumping laser strength clearly shows the

transition. However, the transition point is dependent on

N and on whether the initial positions were uniformly dis-

tributed (‘‘up’’) or at ‘‘odd’’ points of maximal coupling

(‘‘down’’). The breadth of the hysteresis increases with the

atom number, but decreases with the measurement time. This

behavior can be explained by taking into account statistical

fluctuations arising from the finite atom number N. Assuming

that the self-organization from a uniform distribution

(up curves) is triggered when the fluctuating energy differ-

ence between the even and odd sites momentarily exceeds

the mean kinetic energy, a scaling Ng4 of the threshold

with the pump intensity was found in accordance with the

numerical results of the plot. The disappearance of the lattice

pattern for decreasing pump power (down curves) when the

system is started from the ordered phase occurs at the half of

the mean-field threshold [see Eq. (33)], independent of the

atom number N.
Self-organization of laser-driven atoms occurs also in a

transversally driven ring-resonator geometry supporting two

running-wave modes (Nagy, Asbóth, Domokos, and Ritsch,

2006). In contrast to the linear single-mode cavity case, here

the transition from the homogeneous to the organized density

distribution involves spontaneous breaking of a continuous

(rather than a discrete) translational symmetry (see also

Sec. IV.D.3).

2. Collective atomic recoil laser

Collective atomic recoil lasing (CARL) is the prominent

many-body instability effect in a ring cavity, originally pre-

dicted by Bonifacio et al. (1994). An ensemble of cold atoms

couples to two counterpropagating modes of a unidirection-

ally pumped high-finesse ring cavity. Light scattering off the

atomic ensemble between these cavity modes leads to a

collective instability corresponding to an exponential gain

for the backpropagating field mode amplitude in conjunction

with an atomic bunching at the antinodes of a self-organized

optical lattice. In the presence of dissipation of the atomic

kinetic energy, a steady-state operation of CARL can be

achieved with a self-determined atomic drift velocity and

backreflected light frequency.
The CARL scheme involves an interplay between the

influence of the atomic motion on the Rayleigh scattering

of light and, reversely, the mechanical effect of light upon the

atomic motion. The former effect was previously seen, for

example, as the so-called recoil induced resonance (RIR) in

the transmission spectrum of a probe beam making a small

angle with a one-dimensional lin ? lin optical molasses

(Courtois et al., 1994), and also in a optical dipole trap

formed by counterpropagating modes of a ring cavity

(Kruse, Ruder et al., 2003). This narrow, dispersionlike

resonance around the pump field frequency originates from
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FIG. 12. Observation of spontaneous symmetry breaking in the

self-organization phase transition. Simultaneous time traces of the

(a) intracavity intensity (in arbitrary units) and (b) the relative

pump-cavity phase. Drops in the intensity correspond to time

intervals during which the beams of the magneto-optical trap

(MOT) are switched on forcing the atomic density distribution to

randomize. After switching off the MOT beams, the atoms self-

organize again into one of the two possible checkerboard patterns,

as indicated by the relative phase signal. Experimental parameters

are N ¼ 8:2� 106, �A ¼ �2�� 1:59 GHz, �C¼�2��20MHz,
and I=Isat ¼ 440. From Black, Chan, and Vuletić, 2003.

FIG. 13 (color online). Hysteresis effect for finite measurement

time. Ratio of atoms in the ‘‘defect’’ positions against pumping

strength �, 4 ms after the loading of the trap with a uniform (‘‘up’’)

or organized (‘‘down’’) gas of atoms. The different curves show the

approach toward the thermodynamic limit. The parameters are

� ¼ �=2, �A ¼ �500�, Ng2 ¼ 200�2, �C ¼ ��� Ng2=j�Aj,
and kBT ¼ ℏ�. From Asbóth et al., 2005.
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a two-photon Raman transition between different momentum
states of the atoms. Different populations of the correspond-
ing momentum states lead to gain or attenuation of a probe
beam. For a thermal velocity distribution, a probe frequency
tuned slightly below the pump frequency gives rise to gain,
whereas for negative detuning there is an attenuation of the
probe. The probe transmission spectrum measurement pro-
vides information about the temperature and even more about
the velocity distribution (Brzozowska et al., 2006).

It has been predicted that, based on the RIR gain effect, a
weak probe field injected in the direction opposite to the
strong pump field would exponentially amplify due to the
self-bunching of a part of the atoms into a lattice which
reflects the strong pump beam by Bragg scattering more
efficiently than single atoms (Bonifacio et al., 1994).
However, one needs a long enough interaction time so that
backaction of the light scattering on the velocity distribution
can have a significant effect (Berman, 1999). This can be
accomplished, for example, by confining the light modes into
a cavity. Lasing mediated by the collective atomic recoil
between the counterpropagating modes of a unidirectionally
ring cavity has been observed (Kruse, von Cube et al., 2003).
Backaction on the atomic motion was demonstrated by
detecting the displacement of the atoms accelerated by the
momentum transfer process. The self-consistent solution is
an accelerating Bragg lattice of atoms comoving with the
standing wave formed by the pump and the backreflected
component having a Doppler-shifted frequency �! ¼ 2kv
with respect to the pump. The phase dynamics of the coun-
terpropagating modes can be monitored as a beat signal
between the outcoupled beams, which reveals the accelera-
tion by an increasingly red-detuned probe as a function of
time (see Fig. 14).

The runaway process can be counteracted by introducing
some external friction force on the atom motion. The
dissipation gives rise to a steady-state solution which involves
a constant drift of the entire atomic cloud at a speed v.
Accordingly, we transform the atomic position variables
such as zj ¼ ~zj þ vt, and the coherent field amplitude of

the running-wave field mode propagating opposite to the
pumped field mode as 
� ¼ ~
�e2ikvt. The drift velocity v
is to be determined in a self-consistent manner. The semi-
classical equations describing atomic motion are given by

_pj ¼ ��

m
pj þ ℏU02ikð
�þ ~
�e�2ik~zj � ~
��
þe2ik~zjÞ;

(25a)

where � represents the linear friction arising, e.g., from
collisions with a buffer gas (Bonifacio, 1996; Perrin, Lippi,
and Politi, 2001) or laser cooling in an optical molasses
(Kruse, von Cube et al., 2003). The cavity field amplitudes
evolve as

_
þ ¼ ði	C � �Þ
þ � iNU0B~
� þ �; (25b)

_~
� ¼ ½ið	C � 2kvÞ � ��~
� � iNU0B
�
þ; (25c)

where 	C ¼ �C � NU0 is the effective detuning of the pump
frequency from the atoms-shifted cavity resonance. The
atomic positions enter through the bunching parameter

B ¼ 1

N

XN
j¼1

e�2ik~zj � be�i’: (25d)

A closed set of equations can be formed in which the atomic
cloud is characterized by the three real parameters v, b, and
�. A trivial solution of these equations corresponds to the
case where the atoms are uniformly distributed in space
(b ¼ 0, v ¼ 0) and the counterpropagating field mode
amplitude vanishes (
� ¼ 0). A nontrivial steady-state solu-
tion can be obtained numerically from the coupled algebraic
equations (time derivatives set to zero). This solution can be
approximated analytically by assuming perfect bunching
b ¼ 1 and ’ ¼ 0. The only remaining free parameter is
then given by the steady-state drift velocity v which obeys
the algebraic equation

2kv ¼ 8
m!R

�
NU2

0

�j�j2
jDj2 ; (26)

whereD ¼ ði	C � �Þ½ið	C � 2kvÞ � �� þ N2U2
0b

2. In order

to gain insight into the solution, the following simplifications
can be made: (i) neglect in D the last U2

0 term originating

from (second-order) scattering of the 
� mode back into
the pumped 
þ one, and (ii) consider resonance 	C ¼ 0.

FIG. 14. Observation of lasing mediated by collective atomic

recoil. (a) Recorded time evolution of the observed beat signal

between the 
þ and 
� cavity modes of a ring cavity. Initially both

modes are pumped to form an optical lattice of N ¼ 106 atoms. The

initial drop is due to the decay of the unpumped mode after

switching off the 
� pump at t ¼ 0. Well beyond the ring-down

time of about 10 
s, the persisting oscillations demonstrate the

coherent backscattering of the pumped mode. (b) Numerical simu-

lation with the temperature adjusted to 200 
K. (c) The symbols

(�) trace the evolution of the beat frequency after switch off

(dotted line is from numerical simulation). The increase of the

beat frequency corresponds to the acceleration of the Bragg lattice

of backreflecting atoms, which lasts until the Doppler-shifted

frequency drops out of cavity resonance. Absorption images of a

cloud of 6� 106 atoms recorded at (d) 0 ms and (e) 6 ms after

switching off the probe beam pumping. All images are taken after a

1 ms free expansion time. (f) Image obtained by subtracting from

(e) an absorption image taken 6 ms after switch off with low cavity

finesse for which no collective recoil is expected. The intracavity

power has been adjusted to the same value as in the high-finesse

case. From Kruse, von Cube et al., 2003.

Ritsch et al.: Cold atoms in cavity-generated dynamical . . . 571

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013



Then one can identify the typical solutions of two different
regimes. In the limit of a large Doppler shift kv 	 �, the drift
velocity and the backreflected power scale with the atom
number as v / N1=3 and j
�j2 / N4=3, respectively. This is
referred to as the CARL limit in the literature. In the opposite
limit of a small Doppler shift kv � �, the velocity obeys
v / N and the intensity exhibits superradiant behavior
j
�j2 / N2, corresponding in this geometry to Bragg retro-
reflection. The relation between these two kinds of super-
radiant instabilities in the collective interaction of light with
an atomic gas was established experimentally by Slama, Bux
et al. (2007) and Slama, Krenz et al. (2007). While super-
radiant Rayleigh scattering from atomic clouds is normally
observed only at very low temperatures, i.e., well below
1 
K (Inouye et al., 1999), the presence of the ring cavity
enhances cooperativity and allows for superradiance with
thermal clouds as hot as several 10 
K.

In the experiments of the Tübingen group (Kruse, von
Cube et al., 2003; Cube et al., 2004), an optical molasses
has been used to impose a motional damping force on the
atoms. In such a viscous CARL system, there is a steady-state
operation with a self-consistent drift velocity, according to
Eq. (26), at which the friction compensates the acceleration
due to backscattering of photons. The Fourier spectrum of the
beat signal between the pumped mode and the counterpropa-
gating one in steady state is shown in Fig. 15(a) for various
pump strengths. The drift velocity can be deduced from the

Doppler shift of the backreflected field as shown in Fig. 15(b),
and the corresponding range of velocities is from 7 to
13 cm=s. The beat frequency as well as the drift frequency
varies as a function of the pump power. However, the dra-
matic feature of Fig. 15 is the clear appearance of a threshold:
the self-bunching and backscattering starts only above a well-
defined threshold pump power. This measurement provides
thus an experimental evidence of a phase transition to a
state of synchronized atomic motion (Cube et al., 2004).
Underlying the critical behavior is the diffusion accompany-
ing friction: the spontaneous photon scattering of the molas-
ses laser beams leads to a random heating force which
stabilizes the homogeneous distribution and thereby can
prevent the formation of a Bragg lattice for weak pump power
(Robb et al., 2004). Above threshold, the dissipation and the
fluctuations together lead to a position distribution which
exhibits a finite bunching parameter. These effects are dis-
cussed in the framework of various mean-field theories for the
atomic position distribution (see Sec. III.C).

We note that the CARL system and its phase transition has
also been studied in the case where the atomic transition
frequency is close to resonance with the pump laser field
(Perrin, Lippi, and Politi, 2001). Then the atomic polarization
plays a dynamical role and the transition does not require
spatial bunching but the emergence of coherent polarization
grating (Perrin, Ye, and Narducci, 2002).

The viscous CARL transition exhibits an analogy with
that of the generic Kuramoto model which describes the
self-synchronization of coupled oscillators with different
frequencies (Kuramoto, 1975; Strogatz, 2000). To reveal the
analogy, one can transform the CARL equations using the
following assumptions: (i) the motion is overdamped
( _pj¼0); (ii) the pumped field amplitude 
þ is a constant of

time (
þ � �=�); (iii) the counterpropagating mode ampli-
tude is stationary, oscillating at frequency !0, i.e., effectively
_~
� ¼ �i!0 ~
� with the frequency !0 determined by the
constant drift velocity; and (iv) � � !0. With these assump-
tions and by using the notation �j ¼ 2k~zj, Eqs. (25) simplify to

_�j ¼ 2k

m�
�þ Kb sinð’� �jÞ; (27)

which is formally equivalent to the Kuramoto model. The
Langevin-type random noise �, associated with the friction
term ��p in Eq. (25a), introduces the random frequencies
present in the Kuramoto-type systems. The coupling strength
is K ¼ 2!RNU2

0j
þj2=!0�. The mean-field character is ob-

vious: each oscillator couples only to the mean-field quantities
b and’. The phase �j is pulled toward themean-field phase’,

which increases the order parameter b. The coupling is
proportional to b, which sets a positive feedback loop. With
the increasing coherence b, even more oscillators can be
recruited to the synchronized pack (those being within the
bandwidth Kb), further increasing b. Such a runaway process
starts only above a critical coupling K.

C. Phase-space and mean-field descriptions for large

particle numbers

Because of the nonlinearity of the coupled atom-field
dynamics, exact analytic results for atomic ensembles
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FIG. 15. Pump power threshold for the collective atomic recoil

lasing. (a) Sectionwise Fourier transform of the interference signal

Pbeat with the pump laser power being ramped down and up (the

dotted line is proportional to the pump laser power). At t ¼ 0 the

system is in the ordered CARL phase; by gradually decreasing

the power the drift velocity decreases (the peaks in the Fourier

spectra shift downward) until the backreflection ceases at a thresh-

old pump power. Ramping up the pump power from about t ¼ 5 ms,

the appearance of a peak is delayed and occurs at about the same

threshold value of the pump power. (b) Dependence of the CARL

frequency on the intracavity pump power. (c) Dependence of the

probe field intensity on the pump power. The CARL laser threshold

is around Pþ ¼ 4 W intracavity power. The fitted curves are based

on a Fokker-Planck theory outlined in Sec. III.C.1. (d) Calculated

bunching parameter. The parameters are � ¼ 4�, N ¼ 106 atoms,

�A ¼ �2�� 1:7 THz, and T ¼ 200 
K. From Cube et al., 2004.
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coupled to optical cavities are rather sparse and the computa-
tional demand often hinders simulations at realistic particle
numbers (Deachapunya et al., 2008; Salzburger and Ritsch,
2009). In the following, we present mean-field methods
which allow us to predict instability thresholds and to model
the effective dynamics in the thermodynamic limit. Starting
with the assumption of a quasithermal distribution, the criti-
cal behavior can be revealed and the threshold for criticality
can be approximated. We continue by adopting phase-space
methods that can account for general position and velocity
distributions. A Vlasov-type equation allows for a more
accurate estimation of the threshold and also for performing
stability analysis and setting up a phase diagram. This analy-
sis leads to such intriguing predictions in which the cavity-
mediated interaction combined with the cavity cooling effect
can be the basis of a generally applicable sympathetic cool-
ing scheme. Finally, a Fokker-Planck–type equation can be
constructed in order to determine the steady state of the
nonequilibrium systems in the thermodynamic limit. The
methods show similarities with plasma physics where equally
complex, coupled dynamics of particles and fields occurs
(Montgomery, 1971).

1. Critical point

The simplest mean-field model is based on the assump-
tion that the atomic motion is overdamped and the distribu-
tion function of the atomic positions �ðx; tÞ is a thermal
distribution. The critical points of the CARL instability
(see Sec. III.B.2) and that of the self-organization (see
Sec. III.B.1) can be calculated with this approach.

a. Dynamical equations

The motional damping is characterized by a linear friction
coefficient � (half of the kinetic energy damping rate is �=m
with m the atomic mass) and a temperature T. Then the mean
atom density distribution obeys the Smoluchowski equation

@�ðx; tÞ
@t

¼ � 1

�

@

@x

�
FðxÞ�ðx; tÞ � kBT

@�ðx; tÞ
@x

�
: (28)

In the ring cavity geometry of CARL (Kruse, von Cube
et al., 2003), for example, the force FðxÞ is given by the last
term on the right-hand side of Eq. (25a). It contains the field
mode amplitudes which couple back to the atomic density
distribution via the bunching parameter B,

_~
� ¼ ��~
� � iU0
þB; (29a)

with

B ¼
Z �

0
dx�ðx; tÞe2ikx: (29b)

For simplicity, the center-of-mass velocity and the detuning
	C were set to zero. Linear perturbation calculus leads to the
instability threshold of the homogeneous solution (Robb
et al., 2004). Since the spatial coupling functions are sinu-
soidal, only a few Fourier components are involved in the
initial dynamics. In particular, in order to determine the
instability of the homogeneous distribution, only the single-
mode function e�ikx of the counterpropagating cavity mode
needs to be taken into account. In the so-called CARL limit

(see Sec. III.B.2), one obtains the following threshold condi-
tion for the cavity pump amplitude:

�2 �
�
kBT

ℏ

�
3=2

ffiffiffiffiffiffiffiffiffiffiffi
m!R

�

s
�5=2

NU2
0

: (29c)

b. Canonical distribution

A further simplification can be made in the mean-field
approach if � is the largest rate in the dynamics. Adiabatic
elimination of the cavity field dynamics then results in a self-
consistent optical potential VðxÞ in which the spatial density
�ðxÞ of the atoms is determined by a canonical distribution,

�ðxÞ ¼ 1

Z
exp½�VðxÞ=kBT�; (30)

with the partition function Z ¼ R
exp½�VðxÞ=kBT�dx ensur-

ing normalization of �ðxÞ to unity. The temperature could be
identified with the one which is achieved in cavity cooling
kBT � ℏ�, but in general it can be set by other means, e.g., by
laser cooling in an external optical molasses. The nonlinearity
enters the equations through the dependence of the potential
VðxÞ on the atomic density �ðxÞ itself, i.e., V ¼ Vðx; �ðxÞÞ.

In principle, the optical force acting on the atoms in the
cavity does not derive from a potential when the backaction
of the atomic motion on the radiation field amplitude is
significant. As noted by Asbóth and Domokos (2007), dy-
namical equations based on forces, such as Eqs. (28) and
(29a), have to be used. However, in the spirit of the mean-
field approach, the effect of an individual atom on the field
amplitude is negligible with respect to the summed effect of
all the others. In the limit of many atoms with small single-
atom coupling, the motion of a single atom is well described
by an effective potential determined by the many-body
ensemble.

For the example of self-organization in a standing-wave
cavity (see Sec. III.B.1), the light potential along the cavity
axis is given by

VðxÞ ¼ U2cos
2ðkxÞ þ U1 cosðkxÞ; (31)

which is composed of the sum of a �=2-periodic potential
stemming from the cavity field and a �-periodic one arising
from the interference between cavity and pump fields. The
depths of these potentials are

U2 ¼ N2hcosðkxÞi2ℏI0U0; (32a)

U1 ¼ 2NhcosðkxÞiℏI0ð�C � NU0hcos2ðkxÞiÞ; (32b)

where I0 is a dimensionless single-atom scattering parameter
I0 / �2. Equation (30) has to be solved in a self-consistent
manner by iteration. Asbóth et al. (2005) analytically deter-
mined the threshold to be

�2
eff;c ¼

kBT

ℏ
�2 þ 	2

C

Nj	Cj : (33)

2. Stability analysis and phase diagram

In the following we explicitly account for the effect of the
velocity distribution on the dynamics and on the instability
threshold. A mean-field model based on the Vlasov equation
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for the phase-space distribution fðx; v; tÞ has been derived
from a microscopic theory for the infinite system size by
Grießer et al. (2010). For one-dimensional motion along the
cavity axis, the dynamical equation reads

@f

@t
þ v

@f

@x
� @x�ðx; 
Þ @f

@v
¼ 0; (34)

where �ðx; 
Þ is the potential corresponding to a momentary
field amplitude 
. For the generic example of a laser-driven
cold atomic cloud in a single-mode standing-wave resonator
with mode function cosðkxÞ, the potential is

�ðx; 
Þ ¼ 2ℏ
m

�
U0

4
j
j2 cosð2kxÞ þ �eff Reð
Þ cosðkxÞ

�
:

(35)

Similar to the adiabatic potential, Eq. (31), there is a �=2-
and a �-periodic term, and this latter originates from
interference between the transverse pump laser and the
intracavity field. However, in this more general approach
the cavity field amplitude is kept dynamical obeying the
self-consistent equation

_
 ¼ ð��þ i	CÞ
þ �

� i

NU0

2

Z 1

�1
dv

Z �

0
cosð2kxÞfðx; v; tÞdx

� iN�eff

Z 1

�1
dv

Z �

0
cosðkxÞfðx; v; tÞdx; (36)

where 	C ¼ �C � NU0=2. This approach based on the
Vlasov equation is well suited to study the mean-field
dynamics at short times in order to test the stability of
stationary states. Over longer time scales, statistical
fluctuations have to be taken into account in the framework
of a Fokker-Planck equation for the velocity distribution,
presented in Sec. III.C.3.

a. Nonlinear response of a cold atomic cloud

in a driven Fabry-Perot cavity

For cavity pumping only (�eff ¼ 0, � � 0), the self-
consistent steady-state solution exhibits a strong nonlinear
optical response. Underlying the nonlinearity, the particle
distribution and thus the effective refractive index of
the cloud depend on the cavity pump intensity. Above a
sufficient pump strength, multiple stationary solutions
appear, reminiscent of optical bistability. One can perform
a systematic stability analysis of these solutions by study-
ing the dynamics of small fluctuations of the field and
the particle distribution (Grießer and Ritsch, 2011). As
shown in Fig. 16, the stability analysis reveals regions of
bistability as well as parameter ranges where no stable
solutions exist.

In the parameter regions of instability, the numerical
solution of the dynamical Vlasov equation reveals a limit
cycle behavior with subsequent appearance of higher
frequencies than the fundamental cycle (Grießer and Ritsch,
2011). In the quantum regime essentially the same behavior is
retrieved with the recoil frequency determining the oscillation
frequencies � � 4!R (Ritter et al., 2009); see Sec. IV.C.

b. Self-organization of a laser-driven cloud of atoms

For a purely transverse pump geometry (� ¼ 0, �eff � 0),
one can systematically recalculate the critical pump ampli-
tude �eff;c that marks the transition from the stable regime to

the unstable one, where small fluctuations are amplified and
grow exponentially.

The Vlasov equation (34) together with the equation
for the coherent cavity field amplitude 
 possesses an
infinite number of stationary solutions with a spatially
homogeneous density distribution and zero cavity field
but different velocity distribution, which, however, are
not necessarily stable against fluctuations. Indeed, any
symmetric velocity distribution gðv=vTÞ ¼ LvTfðvÞ for
	C < 0 is stable only if

Nj�effj2
kBT

vp
Z 1

�1
g0ð�Þ
�2�

d� <
	2
C þ �2

ℏj	Cj ; (37)

where vp denotes the Cauchy principal value. Here we
defined the thermal velocity v2

T ¼ 2kBT=m; L denotes the
cavity length. For a Gaussian distribution the integral
evaluates to 1, and the condition is equivalent to Eq. (33).

Figure 17 shows the results of a numerical simulation
of Eqs. (34)–(36), initialized with a perturbed Gaussian
distribution

fðx; v; 0Þ ¼ 1

�
ffiffiffiffi
�

p
vT

e�v2=v2
T ½1� � cosðkxÞ�; (38)

with � � 1 for the case of a transversely pumped ring
cavity, where light can be scattered into a superposition of
two resonant cavity modes. Apart from possessing continuous
translational symmetry, the dynamics is qualitatively similar
to the single-mode case (Grießer et al., 2010) shown in
Fig. 11. One clearly recognizes the striking difference in
the dynamical behavior for positive and negative values of
	C. While we have an instability in both cases, self-
organization is found only for 	C < 0.

(a) (b)

FIG. 16 (color online). Normalized solutions for the steady-state

photon number I0 ¼ j
j2 vs effective cavity detuning 	 ¼ 	C �
NU0 for a thermal gas in a driven standing-wave cavity. The driving

strengths are (a) � ¼ 13� and (b) � ¼ 18�. ( Those parts of the

response curve that lie inside the instability region (shaded areas)

are depicted by dashed lines and correspond to linearly unstable

steady states. The intervals designated A correspond to bistability,

and the interval designated B supports no stable steady state at all.

The parameters are N ¼ 105, U0 ¼ 0:04�, � ¼ 18�, � ¼ 2000!R,

and kBT ¼ ℏ�. From Grießer and Ritsch, 2011.
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c. Sympathetic self-ordering and cooling

Self-organization and collective coherent light scattering
into a high-finesse cavity in principle allows for trapping and
cooling of any kind of polarizable particles. In practice,
however, the required phase-space densities and laser inten-
sities to initiate the ordering process are hard to achieve for
atomic species, molecules, or nanoparticles which cannot be
efficiently optically precooled (Deachapunya et al., 2008;
Lev et al., 2008). As an alternative approach, the self-
organization threshold can be achieved by inserting different
species simultaneously into an optical resonator.

The Vlasov-type model can be generalized to a dilute gas
of various kinds of Ns polarizable point particles of mass ms

illuminated by a single transverse standing-wave laser field.
For the threshold value, a condition analogous to Eq. (37) can
be obtained (Grießer, Niedenzu, and Ritsch, 2012). The
homogeneous distribution is unstable if and only if

XS
s¼1

ℏNs�
2
s

kBTs

�
vp
Z 1

�1
g0sðuÞ
�2u

du

�
>

�2 þ 	2
C

j	Cj ; (39)

where kBTs ¼ msv
2
s=2. Note that the right-hand side of

Eq. (39) depends only on cavity parameters, and all terms
in the sum on the left-hand side are positive and proportional
to the pump intensity. This guarantees that inserting any
additional species into the cavity always increases the total
light scattering rate and thus lowers the minimum power

needed to start the self-organization process, regardless of
temperature and polarizability or density of the additional
particles. Moreover, the different species can be located at
different regions within the cavity. Assisted self-organization
of a species which, alone, would be pumped below threshold
is shown in Fig. 18.

Below the self-organization threshold cooling occurs
thereby equalizing the stationary momentum distributions
for all species. Figure 19 exhibits the enhanced decay of
the kinetic energy of the heavy particles in the presence of
the cavity field and a cold species. Although the distributions
become independent in stationary equilibrium, the cooling
process itself involves energy exchange between different
species. Thus if any of the species is cold or can be cooled
by different means, the other components are sympathetically
cooled in parallel.

3. Nonequilibrium steady-state distributions

Over longer time scales, diffusion has to be accounted
for in terms of a nonlinear Fokker-Planck equation for the
statistically averaged velocity distribution. This allows for
calculations of cooling time scales and the unique steady-
state distribution.

a. Transverse pump configuration below threshold

Below the instability threshold, Eq. (37), the mean spatial
distribution f is homogeneous, i.e., independent of x.

FIG. 17 (color online). Laser illuminated cold gas in a ring cavity: time evolution of the intracavity field intensity (left), and the

instantaneous spatial nðxÞ (upper right) and velocity FðvÞ (lower right) distributions of the particles along the cavity axis at times t ¼ 0 and

te ¼ 28=� for 	C ¼ �� (upper row) and 	C ¼ � (bottom row). For 	C < 0, after a transient exponential growth, the field intensity saturates

accompanied by the trapping of atoms in the self-organized pattern. By contrast, for 	C > 0 the transient exponential growth is followed by

oscillations. Parameters are N ¼ 104, U0 ¼ ��=N, �eff ¼ 0:05�, kvT ¼ �, and vR ¼ vT=5. From Grießer et al., 2010.
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The statistical fluctuations of the potential and the actual
atomic distribution become important. For the spatially aver-
aged distribution, a lengthy calculation (Niedenzu, Grießer,
and Ritsch, 2011) leads to a nonlinear Fokker-Planck equa-

tion for the velocity distribution Fðv; tÞ ¼ fðx; v; tÞ,

@

@t
Fþ @

@v
ðA½F�FÞ ¼ @

@v

�
B½F� @

@v
F

�
; (40)

with coefficients

A½F� ¼ 2ℏk	C��
2
eff

m

kv

jDðikvÞj2 ; (41a)

B½F� ¼ ℏ2k2�2
eff�

2m2

�2 þ 	2
C þ k2v2

jDðikvÞj2 : (41b)

These functionals depend on hFi via the dispersion relation

DðsÞ ¼ ðsþ �Þ2 þ 	2
C � iℏk	C

NL�2
eff

2m

�
Z 1

�1
dv

�
F0ðvÞ
sþ ikv

� F0ðvÞ
s� ikv

�
; (42)

which encodes all cavity-mediated long-range particle inter-
actions. Far below threshold the dispersion relation reduces to
DðikvÞ ’ ðikvþ �Þ2 þ 	2

C, which corresponds to the case of

independent particles.
Steady-state solutions of Eq. (40) exist only for negative

detuning 	C < 0, where light scattering is accompanied by
kinetic energy extraction from atomic motion. Below thresh-
old one obtains nonthermal q Gaussian velocity distribution
functions (de Souza and Tsallis, 1997):

FðvÞ /
�
1� ð1� qÞ mv2

2kBT

�
1=1�q

; (43)

with q ¼ 1þ!R=j	Cj and the effective temperature

kBT ¼ ℏ
�2 þ 	2

C

4j	Cj � ℏ�
2

: (44)

The minimum temperature is reached for 	C ¼ ��.
The magnitude of the detuning j	Cj=!R determines the
shape of the distribution. For j	Cj ¼ !R, it is a Lorentzian
distribution, whereas for j	Cj=!R ! 1, i.e., q ! 1, it con-
verges to a Gaussian distribution with kinetic temperature
kBTkin ¼ mhv2i.

Inserting the steady-state q Gaussian distribution (43) into
the threshold condition (37) gives a self-consistent stability
criterion. As a result, the homogeneous distribution is stable
only if

ffiffiffiffi
N

p
�eff 
 �

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3� q

s
; (45)

where the equality is reached for 	C ¼ ��, i.e., for optimum
cavity cooling given by Eq. (14). The stability criterion can be
rewritten in the intuitive form

NjU0jVp 
 �2; (46)

where Vp ¼ �2=�A is the optical potential depth created by

the pump laser, and NU0 is the total dispersive shift of the
cavity resonance. Note that even if the initial temperature is
too high for the homogeneous distribution to be unstable,
cavity cooling induced self-organization is possible.

b. Transverse pump configuration above threshold

Above the self-organization threshold, the inhomogeneous
spatial distribution can still be derived from a Fokker-Planck
equation similar to Eq. (40) by using action-angle variables
(Luciani and Pellat, 1987; Chavanis, 2007). In the limit of

FIG. 18 (color online). Simultaneous self-organization of two

species. The system is started from a perturbed uniform state above

the instability threshold, Eq. (39), in such a way that species one

(two) itself would be pumped 6 times above (far below) the critical

point. (a) The position distributions in the final state, (c) and (d) the

momentum distributions initially (dashed lines) and after self-

organization (solid line). Solid lines depict the results of stochastic

trajectory simulations for ensembles of particles as in Eq. (23b),

while open circles show the predictions of the corresponding Vlasov

model. (b) The time evolution of the two order parameters �1ð2Þ
approaching theoretical steady-state values. Parameters are N1 ¼
104, N2 ¼ 500, m2 ¼ 10m1, kBT1 ¼ 104ℏ�, kBT2 ¼ 2:5� 105ℏ�,
�1 ¼ 2:4�, �2 ¼ 27:4�, and !R ¼ 10�2�. From Grießer,

Niedenzu, and Ritsch, 2012.

FIG. 19 (color online). Sympathetic cavity cooling. Time evolu-

tion of the kinetic temperatures of a heavy and a light species. The

dashed line represents the heavy particle alone and the solid line the

enhanced cooling in the presence of a lighter species below self-

organization threshold. Parameters are m2 ¼ 200m1, N1 ¼ 200,

N2 ¼ 200,
ffiffiffiffiffiffi
N1

p
�1 ¼ 134!R,

ffiffiffiffiffiffi
N2

p
�2 ¼ 134!R, � ¼ 200!R, and

	C ¼ ��. From Grießer, Niedenzu, and Ritsch, 2012.
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deep trapping and a harmonic approximation for the poten-
tial, the steady state is a thermal distribution with a tempera-
ture depending both on the effective trap frequency!0 and on
the cavity linewidth �,

kBT ¼ ℏ
�2 þ 	2

C þ 4!2
0

4j	Cj �	C¼�!0
ℏ!0: (47)

The effective trap frequency !0 can be approximated by

!2
0 ’

ffiffiffiffi
N

p
�eff!R

0
@ �eff
�eff;c

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
eff

�2
eff;c

� 1

s 1
A; (48)

which is valid in the regime j	Cj 	 !R with �eff;c given by

the equality of Eq. (45). As the temperature depends explic-
itly on the pump strength, a stronger pump laser beam results
in more confined particles with increased kinetic energy. The
system has the interesting property that the more particles we
add, the deeper the optical potential gets, which shows anal-
ogy to self-gravitating systems (Posch and Thirring, 2005).

Finally, putting all this together one obtains the self-
consistent phase diagram for self-organization which ac-
counts for cavity cooling; see Fig. 20.

IV. QUANTUM GASES IN OPTICAL CAVITIES

Quantum gases are considered as ideal model systems to
study quantum many-body phenomena under well-controlled
experimental conditions. The possibilities which arise from
loading ultracold atomic ensembles of different particle sta-
tistics into various optical potential landscapes and to tune the
strength of the contact atom-atom interaction make these
system well suited for quantum information and simulation
research (Bloch, Dalibard, and Zwerger, 2008). The merger
of the field of ultracold gases with that of cavity QED
provides a set of additional possibilities. Cavity-mediated
atom-atom interactions can be tailored by choosing different
resonator and pump geometries and give rise to novel quan-
tum phases. Closely related, the atomic backaction upon the

cavity-generated lattice potentials can be significant, which

paves the way to study phonon or soft-condensed matter
physics with ultracold gases (Lewenstein et al., 2007).

Further, coherent scattering into the cavity field can be used

for nondestructive and real-time probing of different many-
body phases.

The coupling between a Bose-Einstein condensate and an

optical cavity is conceptually fundamental since a single
mode of a matter-wave field interacts with a single mode of

the light field: as all atoms occupy the same motional quan-
tum state they couple identically to the optical cavity field.

This situation can substantially reduce the number of degrees

of freedom necessary to describe the system. Therefore the
experimental situation can often be almost perfectly de-

scribed by fundamental Hamiltonians of matter-light inter-

action. These include the Tavis-Cummings or Dicke model,
as well as the generic model for cavity optomechanics.

A. Experimental realizations

Experimentally, there have been different approaches to

realize and study Bose-Einstein condensates or bosonic

atomic ensembles close to quantum degeneracy in optical
high-finesse cavities (Brennecke et al., 2007; Colombe et al.,

2007; Gupta et al., 2007; Slama, Bux et al., 2007; Purdy
et al., 2010). So far, all groups used 87Rb atoms. In the

Tübingen group (Slama, Bux et al., 2007) a Bose-Einstein

condensate was loaded for the first time into a ring cavity with
large mode volume using magnetic trapping and transport.

This experiment extended prior work on the collective atomic

recoil laser (see Sec. III.B.2) with laser-cooled atoms (Kruse,
von Cube et al., 2003; Cube et al., 2004) into the ultracold

regime.
Loading ultracold quantum gases or Bose-Einstein con-

densates into ultrahigh finesse optical cavities of small mode

volume, which operate in the single-atom strong-coupling

regime of cavity QED, has been achieved by applying differ-
ent concepts. The Berkeley group (Gupta et al., 2007) pre-

pared an ultracold gas of up to 105 atoms within an ultrahigh
finesse Fabry-Perot resonator by loading it into a vertically

oriented, deep intracavity optical lattice potential; see

Fig. 21(a). A cavity with similar parameters was used in the
approach of the Zürich group (Brennecke et al., 2007). Here

Bose-Einstein condensates of typically 2� 105 atoms were
transported into the mode volume of the optical cavity using

an optical elevator formed by two counterpropagating laser

beams with controlled frequency difference; see Fig. 21(b).
The Paris group (Colombe et al., 2007) used an atomic chip to

produce Bose-Einstein condensates of up to 3000 atoms and

control its position on a subwavelength scale within a novel
type of fiber-based Fabry-Perot cavity with high mirror cur-

vature and reduced mode volume; see Fig. 21(c). Also the
Berkeley group (Purdy et al., 2010) achieved subwavelength

positioning of Bose-Einstein condensates of a few thousand

of atoms inside a conventional small-volume high-finesse
optical cavity using an atomic chip.

A novel BEC-cavity system operating in an interesting and

so far unexplored parameter regime was presented recently
by the Hamburg group (Wolke et al., 2012). Here Bose-

Einstein condensates of typical 2� 105 atoms are prepared
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FIG. 20 (color online). Schematic view of the phase diagram in

the weak-coupling limit (NjU0j � �) for � ¼ 100!R. Equilibrium

solutions exist only for 	C <�!R=2, and a Lorentzian steady-state

velocity distribution is realized for the case j	Cj ¼ !R. For large

negative values of the detuning 	C, strongly organized equilibrium

solutions exist already for pump strengths slightly above the critical

value. Adapted from Niedenzu, Grießer, and Ritsch, 2011.
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and transferred magnetically into the field of a 5-cm-long
near-concentric Fabry-Perot resonator resulting in a large
single-atom cooperative C 	 1 and a very narrow cavity
bandwidth on the order of the recoil frequency !R; see
Fig. 21(d).

The lowest electronic excitation spectrum of degenerate
and nondegenerate atomic samples strongly coupled to the
cavity field was studied by Brennecke et al. (2007) and
Colombe et al. (2007). The presence of N atoms which

collectively couple to the cavity field results in an enhanced

collective coupling which scales as
ffiffiffiffi
N

p
. A correspondingly

large vacuum Rabi splitting was measured in the experiments

(Brennecke et al., 2007; Colombe et al., 2007). The energy

spectrum of a coupled BEC-cavity system together with the

square-root dependence of the energy splitting on the atom

number is shown in Fig. 22.
The electronic excitation spectrum is sensitive to the

effective number of atoms coupled maximally to the cavity

mode, i.e., it depends on the density distribution of the atoms

integrated over the cavity mode profile. However, the above

described measurements of the electronic excitation spectrum

have an energy resolution given by the excited state and

cavity lifetimes, which is too large to probe the low-energy

excitations of the external degree of freedom of a Bose-

Einstein condensate. Probing quantum statistics and quantum

correlations in atomic many-body states using the dispersive

coupling to far-detuned laser and cavity fields is discussed

in Sec. IV.E.2.

B. Theoretical description

This section provides the theoretical basis for a quantum

many-body description of a coupled and laser-driven

(a) (b)

(c)

(d)

FIG. 21 (color online). Different experimental schemes for

preparing ultracold atoms and Bose-Einstein condensates inside

high-finesse optical Fabry-Perot resonators. (a) Ultracold atoms

are prepared in a magnetic trap, formed using electromagnets

coaxial with the vertically oriented high-finesse cavity (length ¼
194 
m) and delivered along the x axis toward the cavity center.

Once overlapping with the cavity mode, the atoms are loaded into a

deep intracavity lattice potential provided by a far-detuned cavity

pump field. Adapted from Murch et al., 2008. (b) Ultracold atoms,

prepared in a magnetic trap placed above the optical resonator, are

loaded into a vertically oriented optical lattice potential and trans-

ported into the cavity by controlled frequency chirping the counter-

propagating laser beams. Once in the cavity (length ¼ 176 
m), the

atoms are loaded into a crossed-beam harmonic dipole trap where

Bose-Einstein condensation is achieved. From Brennecke et al.,

2007. (c) A Bose-Einstein condensate is prepared in an atom-chip-

based magnetic trap and positioned afterward with subwavelength

precision in the mode of a fiber-based Farby-Perot cavity which has

a length of 39 
m. From J. Reichel. (d) A magnetic trap is used to

prepare and to transfer a Bose-Einstein condensate into the field of a

vertically oriented Fabry-Perot resonator with a length of 5 cm.

From A. Hemmerich.
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FIG. 22 (color online). Collective vacuum Rabi splitting of a

coupled BEC-cavity system. The displayed data were obtained by

cavity transmission spectroscopy using a weak probe laser beam

(Brennecke et al., 2007). The detuning of the probe beam with

respect to the frequency !A of the jF ¼ 1i ! jF0 ¼ 1i transition of

the D2 line of 87Rb is denoted by �p. Two orthogonal circular

polarizations of the transmitted light were recorded and are

displayed as circles (�þ) and triangles (��). (a) Position of the

probed resonances as a function of the detuning �c between the

empty-cavity resonance and the atomic transition frequency !A for

2:2� 105 atoms. Bare atomic resonances are shown as dotted lines,

whereas the empty-cavity resonance of the TEM00 is plotted as a

dash-dotted line. The solid lines are the result of a theoretical model

including the influence of higher-order cavity modes. (b) Shift of the

lower resonance of the coupled BEC-cavity system from the bare

atomic resonance as a function of atom number for �c ¼ 0. The
solid lines are fits of the square-root dependence on the atom

number N. Adapted from Brennecke et al., 2007.
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BEC-cavity system at zero temperature. For simplicity, we
consider two different pump laser fields with equal frequency
! which propagate along and transverse to the axis of a
Fabry-Perot resonator. A similar many-body description for
the case of a BEC in a driven ring cavity was presented, e.g.,
by Moore, Zobay, and Meystre (1999). The Hamiltonian is
composed of an atomic, a cavity, and an atom-field inter-
action part

H ¼ HA þHC þHAC: (49)

In the following, we assume a sufficiently large detuning of
the cavity frequency !C and the pump laser frequency !
from the atomic transition frequency !A, so that the atom-
field interaction is of purely dispersive nature; see Sec. II.A.2.
In this case all excited states can be adiabatically eliminated
and the atom resides most of the time in its electronic ground
state. Correspondingly, the motional degree of freedom is
captured by a scalar matter-wave field operator �ðrÞ.

The atomic many-body Hamiltonian is given by

HA ¼
Z

d3r�yðrÞ
�
H ð1Þ þ u

2
�yðrÞ�ðrÞ

�
�ðrÞ; (50)

where u ¼ 4�ℏ2as=m denotes the strength of the short-range
s-wave collisions with scattering length as (Pitaevskii and
Stringari, 2003). Here the single-atom Hamiltonian,

H ð1Þ ¼ p2

2m
þ VclðrÞ; (51)

includes an external trapping potential VclðrÞ which also
incorporates the potential caused by the transverse pump
laser field.

The dynamics of a single, coherently laser-driven cavity
mode with mode function cosðkxÞ and resonance frequency
!C is described in a frame rotating at the pump laser fre-
quency ! by the Hamiltonian

HC ¼ �ℏ�Ca
yaþ iℏ�ðay � aÞ: (52)

As before, the detuning between the pump laser frequency
and the cavity resonance frequency is denoted by �C ¼
!�!C. The generalization to multimode cavities is dis-
cussed in Sec. IV.D.3.

The dispersive interaction between the pump and cavity
radiation fields and the atoms reads (in the frame rotating
at !)

HAC ¼
Z

d3r�yðrÞ½ℏU0cos
2ðkxÞaya

þ ℏ�eff cosðkxÞ cosðkzÞðay þ aÞ��ðrÞ: (53)

The first term arises from the absorption and stimulated
emission of cavity photons with U0 ¼ g2=�A denoting the
maximum atomic light shift for a single intracavity photon.
As before, g denotes the maximum atom-cavity coupling

strength and �A ¼ !�!A the pump-atom detuning. The
second term corresponds to the coherent redistribution of
photons between the standing-wave transverse pump laser
[with mode function cosðkzÞ] and the cavity field. The
maximum scattering rate for a single atom is given by the
two-photon (vacuum) Rabi frequency �eff ¼ �g=�A, where
� is the Rabi frequency of the transverse pump laser. Both
interaction terms in Eq. (53) can be viewed as a four-wave
mixing of light and matter wave fields (Rolston and Phillips,
2002).

The system is subject to dissipation due to photon leakage
through the cavity mirrors. The corresponding irreversible
evolution can be modeled by the Liouville terms in the master
equation (5a), or, equivalently, by a Heisenberg-Langevin
equation (Gardiner and Zoller, 2004) for the cavity field
operator a,

d

dt
a ¼ �i½a;H� � �aþ � (54)

with cavity field decay rate �.1 The Gaussian noise operator �
maintains the commutation relation for the photon operators
in the presence of cavity decay. In the optical domain, the
temperature of the bath of electromagnetic field modes can be
set to zero. Correspondingly, � has zero mean value and the
only nonvanishing correlation function reads

h�ðtÞ�yðt0Þi ¼ 2�	ðt� t0Þ; (55)

according to the fluctuation-dissipation theorem. Further
possible dissipation channels can, for example, act directly
on the atomic cloud.

As the cavity field mediates a global coupling among all
atoms, a mean-field approach is well suited to solve the above
set of equations (Horak, Barnett, and Ritsch, 2000; Horak and
Ritsch, 2001a; Nagy, Szirmai, and Domokos, 2008). The
mean-field description assumes the presence of a macroscopi-
cally populated matter wave field ’ðrÞ ¼ h�ðrÞi (condensate
wave function) and a coherent cavity field with amplitude

 ¼ hai which can be separated from the quantum fluctua-
tions according to

a ! 
þ 	a; (56a)

�ðrÞ ! ffiffiffiffiffiffi
Nc

p
’ðrÞ þ 	�ðrÞ: (56b)

Here Nc denotes the number of condensate atoms with ’ðrÞ
normalized to 1. Quantum fluctuations are assumed to
be small and their mean values vanish by definition, i.e.,
h	ai ¼ 0 and h	�ðrÞi ¼ 0. The dynamical equations of
motion resulting from Eqs. (56) contain a hierarchy of terms
according to the different powers of the fluctuation operators.
To zeroth order in the fluctuations, one obtains a Gross-
Pitaevskii–type equation for the condensate wave function
’ðr; tÞ coupled to an ordinary differential equation for 
ðtÞ:

1It is important to note that the original problem is intrinsically

time dependent because of the external laser driving, although this

time dependence has been formally eliminated by going into a

rotating frame. Nevertheless, the coupling to the reservoir occurs at

the high, optical frequency range and thus the simple form of the

loss description can be used irrespective of the low-frequency

dynamics imposed by the effective Hamiltonian.
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iℏ
@

@t
’ðr; tÞ¼

�
�ℏ2r2

2m
þV0ðrÞþNcuj’ðr; tÞj2þℏU0j
ðtÞj2cos2ðkzÞþ2ℏ�effRef
ðtÞgcosðkxÞcosðkzÞ

�
’ðr;tÞ; (57a)

i
@

@t

ðtÞ¼ ½��CþNcU0hcos2ðkzÞi� i��
ðtÞþ i�þNc�effhcosðkxÞcosðkzÞi; (57b)

where we used the notation hfðrÞi ¼ R
d3rfðrÞj’ðr; tÞj2.

The Gross-Pitaevskii equation contains potential-like
terms which depend on the amplitude 
 and intensity
j
j2 of the cavity field and express the mechanical effect
of the cavity light upon the atoms. The dynamics of the
cavity field involves spatial averages over the condensate
density distribution. Because of cavity decay, the time
evolution leads to a self-consistent stationary solution for
the mean fields, which usually is obtained only numerically
(Nagy, Szirmai, and Domokos, 2008).

For a given condensate wave function and coherent cavity
field amplitude in steady state, the quantum fluctuations
to leading order form a linear system, which provides the
energy spectrum of excitations. With the notation R ¼
½	a; 	ay; 	�ðrÞ; 	�yðrÞ�, the time evolution of the fluctua-
tion operators takes the compact form

@

@t
R ¼ MRþ�; (58)

where M is the linear stability matrix of the mean-field
solution (Nagy, Szirmai, and Domokos, 2008), and the term
� ¼ ½�; �y; 0; 0� accounts for the quantum input noise of the
cavity field. In general, the matrix M is non-normal, i.e.,
it does not commute with its Hermitian adjoint. Therefore it
has different left and right eigenvectors, denoted by lðkÞ and
rðkÞ, that form a bi-orthogonal system with scalar product
ðlðkÞ; rðlÞÞ ¼ 	k;l. The decoupled quasinormal excitation

modes defined by �k ¼ ðlðkÞ;RÞ are mixed excitations of
the photon and the matter wave fields.

The spectrum of excitations was analyzed first from a
cavity cooling point of view in the cavity pumping geometry
(� � 0, �eff ¼ 0). The imaginary part of the spectrum
revealed that excitations of the ultracold atomic gas can be
damped through the cavity loss channel (Gardiner, Gheri, and
Zoller, 2001; Horak and Ritsch, 2001a), provided the decay
rate � is on the order of the recoil frequency !R. The
excitation spectrum was used in further studies to describe
critical phenomena, such as the dispersive optical bistability
in the cavity pumping geometry (Szirmai, Nagy, and
Domokos, 2010) and the self-organization phase transition
(Nagy, Szirmai, and Domokos, 2008; Kónya, Szirmai, and
Domokos, 2011) in the atom pumping geometry (�eff � 0,
� ¼ 0); see Secs. IV.C and IV.D.

In the stable regime, a first-order correlation function can
be derived from Eq. (58). Importantly, there can be a non-
vanishing population of the atomic excited modes,
h	�yðrÞ	�ðrÞi � 0, even at zero temperature. This quantum
depletion of the condensate is independent of collisional
interactions, which are known to cause a finite population
of the Bogoliubov modes (Pitaevskii and Stringari, 2003). At
variance, here the condensate depletion arises from the
cavity-mediated atom-atom interactions as well as the dis-
sipative process associated with cavity decay. The quantum
noise accompanying the photon loss process couples into the

atomic system and excites atoms out of the condensate mode.
Formally, it stems from the term containing the photon
creation operator ay in the equations of motion of �ðrÞ.
This noise amplification mechanism is analogous to the
Petermann excess noise factor in lasers with unstable cavities
(Grangier and Poizat, 1998). Szirmai, Nagy, and Domokos

(2009) showed that a depletion on the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

C þ �2
q

=!R

can be expected rather independently of the atom-field cou-
pling, even for U0 ! 0 and �eff ¼ 0. It is a signature of the
global coupling that the quantum depletion is independent of
the total atom number N. In most of the experiments with
linear cavities, the ratio �=!R is large (� 103). Since cavity
decay can also be interpreted as a continuous weak measure-
ment of the cavity photon number, the depletion can be
attributed to quantum backaction upon the atomic many-
body state, as discussed in Sec. IV.C.3. It is also interesting
to note that the first-order correlation function reveals an
entanglement between the matter-wave and the cavity field
modes (Szirmai, Nagy, and Domokos, 2010).

C. Cavity optomechanics with ultracold atomic ensembles

In this section we focus on the dispersive interaction
between the collective motion of a quantum gas and a
single-mode Fabry-Perot cavity, which is coherently driven
with amplitude � by a laser field at frequency !. In this case
the dispersive matter-light interaction, Eq. (53), is given by

HAC ¼
Z

d3r�yðrÞ½ℏU0cos
2ðkxÞaya��ðrÞ: (59)

On the one hand, the atomic medium experiences a periodic
potential, whose depth is proportional to the intracavity
photon number aya. The potential depth for a single cavity
photon isU0 ¼ g2=�A and can be tuned in the experiment via
the detuning �A between the cavity pump frequency ! and
the atomic transition frequency. On the other hand, the atom-
light interaction causes a dispersive shift of the empty cavity
frequency, which is determined by the spatial overlap be-
tween the atomic density �yðrÞ�ðrÞ and the cavity intensity
mode function cos2ðkxÞ. A change in the atomic density
distribution caused by the intracavity dipole force can there-
fore dynamically act back on the intracavity field intensity by
shifting the cavity resonance with respect to the driving field.

In general, the interplay of these two effects results in a
highly nonlinear evolution of the coupled atom-cavity sys-
tem. For certain limiting situations, however, the system can
effectively be described in the framework of cavity opto-
mechanics (Kippenberg and Vahala, 2008), which studies
the radiation-pressure interaction between a harmonically
suspended mechanical element and the field inside an elec-
tromagnetic resonator. In a frame rotating at ! this is
described by the generic cavity optomechanics Hamiltonian

HOM¼ℏ!mc
yc�ℏð	C�GXÞayaþiℏ�ðay�aÞ; (60)
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where cy and c denote creation and annihilation operators of

the mechanical oscillator at frequency !m. The mechanical

element couples via its position quadrature X ¼ ðcþ cyÞ= ffiffiffi
2

p
with coupling strength G to the intracavity photon number

aya. The detuning between the driving laser and the cavity

resonance frequency for zero displacement X is denoted by

	C. Configurations in which the harmonic oscillator couples

quadratically in X to the cavity field were recently realized

(Thompson et al., 2008; Purdy et al., 2010). This offers the

possibility to detect phonon Fock states of the mechanical

element and to prepare squeezed states of the mechanical

oscillator or the optical output field.

1. Experimental realizations

Particular experimental situations allow one to realize the

optomechanics Hamiltonian equation (60) with an atomic

ensemble dispersively coupled to the field inside an optical

cavity. This relies on the fact that the cavity field affects

and senses predominantly a single collective motional

mode, which matches the spatial cavity mode profile and

plays the role of the harmonically suspended mechanical

element. Two different approaches for realizing cavity op-

tomechanics with ultracold atoms have so far been realized

experimentally.

a. Collective center-of-mass motion in the Lamb-Dicke regime

In experiments performed by the Berkeley group (Gupta

et al., 2007; Murch et al., 2008), ultracold atoms are loaded

into the lowest band of a far-detuned intracavity lattice

potential, forming a stack of hundreds of tightly confined

atom clouds (see Fig. 23). Each atom cloud is harmonically

suspended with oscillation frequency !m and extends along

the cavity axis by only a fraction of the optical wavelength,

thus realizing the Lamb-Dicke regime. A cavity mode, whose

periodicity differs from that of the trapping lattice potential,

couples strongly to a single collective center-of-mass mode of

the atomic stack. All remaining collective modes decouple

from the cavity field and can be considered as a heat bath to

which the distinguished collective mode is only weakly

coupled via, e.g., collisional atom-atom interactions. The

system realizes the linear optomechanics Hamiltonian equa-

tion (60), with the optomechanical coupling strength given by

G ¼ ffiffiffiffiffiffiffiffiffi
Neff

p
kU0Xho. Here k is the cavity wave vector, Xho ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2m!m

p
denotes the harmonic oscillator length with

atomic mass m, and Neff � N=2 with total atom number N.
The quadratic coupling regime of optomechanics with

ultracold atoms was realized in an atom-chip-based setup

(Purdy et al., 2010) which allows for subwavelength position-

ing of a tightly confined ultracold ensemble. By preparing

as low as two atomic clouds, tightly confined at adjacent

lattice sites of a far-detuned intracavity lattice potential,

and controlling their center-of-mass position along the cavity

axis both linear and quadratic optomechanical coupling

can be realized, providing an atom-based realization of

the ‘‘membrane-in-the-middle’’ approach (Thompson et al.,

2008).

b. Collective density oscillations in a Bose-Einstein condensate

A different route to realize linear cavity optomechanics

with an ultracold atomic ensemble was experimentally ex-

plored by the Zürich group (Brennecke et al., 2008). A Bose-

Einstein condensate of typically 105 atoms is prepared in an

external harmonic trapping potential, extending over several

periods of the cavity standing-wave mode structure (see

Fig. 24). In contrast to the Lamb-Dicke regime considered

before, here a momentum picture is more appropriate.

Initially, all condensate atoms are prepared, relative to the

recoil momentum ℏk, in the zero-momentum state jp ¼ 0i.

FIG. 23 (color online). Scheme for cavity optomechanics with

ultracold atoms confined in the Lamb-Dicke regime. A high-finesse

cavity supports two longitudinal modes: one with wavelength of

about 780 nm that is near the D2 line of 87Rb, and another with

wavelength of about 850 nm. The latter produces a one-dimensional

optical lattice potential, with trap minima, in which ultracold 87Rb

atoms are confined within the lowest vibrational band. The atomic

clouds induce, depending on their trapping position zi, dispersive
frequency shifts on the 780 nm cavity resonance, as shown in the

bottom line. In turn, the cavity field exerts a position-dependent

force f, as indicated by the arrows. In the Lamb-Dicke regime,

the collective atoms-cavity interaction reduces to the generic opto-

mechanics Hamiltonian wherein a single collective mode of

harmonic motion linearly couples to the cavity field. From Botter

et al. (2009).

collective
density

oscillation

(a) (b)

p/ k
20

4 ωR

-2

FIG. 24 (color online). Cavity optomechanics with a weakly

confined Bose-Einstein condensate dispersively coupled to the field

of an optical high-finesse resonator. (a) A collective density

excitation of the condensate with periodicity �=2 ¼ �=k acts

as a mechanical oscillator with oscillation frequency 4!R.

Optomechanical coupling to the cavity field is provided by the

dependence of the optical path length on the atomic density

distribution within the spatially periodic cavity mode structure.

(b) Condensate atoms initially prepared close to zero momentum

p ¼ 0 are scattered off the intracavity lattice potential into the

symmetric superposition of states with momentum p ¼ �2ℏk.
Matter-wave interference with the macroscopic zero-momentum

component results in a harmonic density oscillation evolving at

frequency 4!R. Adapted from Brennecke et al., 2008.
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The dispersive interaction with the cavity field diffracts

atoms into the symmetric superposition of momentum states

j � 2ℏki along the cavity axis. Matter-wave interference

between the macroscopically occupied zero-momentum com-

ponent and the recoiling component results in a spatial

modulation of the condensate density with periodicity �=2,
which oscillates in time at the frequency 4!R ¼ 2ℏk2=m.

As long as diffraction into higher-order momentum modes

can be neglected, the dynamics of the coupled system is

again captured by the simple optomechanics Hamiltonian

equation (60). Here collective excitations of the recoiling

momentum mode play the role of phonon excitations of a

mechanical mode with oscillation frequency !m ¼ 4!R. The

coupling rate G ¼ ffiffiffiffi
N

p
U0=2 again scales with the square root

of the atoms number, indicating the collective nature of the

atom-light interaction. The realization of an optomechanical

system employing the collective motion of a Bose-Einstein

condensate triggered subsequent theoretical studies along this

direction (Zhang et al., 2009; Chen et al., 2010, 2011;

De Chiara, Paternostro, and Palma, 2011).
Further realizations of cavity optomechanics with atomic

ensembles were proposed theoretically by dispersively

coupling a quantum-degenerate Fermi gas (Kanamoto and

Meystre, 2010) or the internal spin degrees of freedom of a

quantum gas (Brahms and Kurn, 2010; Jing et al., 2011) to

the field of an optical cavity. The latter system has been

shown to exhibit a formal analogy with a torsional oscillator

coupled quadratically to the cavity mode. It provides an ideal

nondestructive tool for the control of quantum spin dynamics

and was proposed to resolve the quantum regime of an

antiferromagnetic spin-1 condensate.
The realization of an optomechanical system using

ultracold atoms offers direct access to the quantum regime

of cavity optomechanics. In contrast to solid-state realizations

of optomechanics, evaporative cooling techniques available

for atomic gases allow for a natural and very pure preparation

of the mechanical oscillator mode in its quantum ground

state. Correspondingly, these systems pave the way to directly

study quantum effects of the optomechanical interaction

(Murch et al., 2008; Brahms et al., 2012; Brooks et al., 2012).
The easy tunability of system parameters such as, e.g.,

the mechanical oscillator frequency !m (via the external

confining potential), the optomechanical coupling strength G
(via the atom number or the pump-atom detuning), or the

initial temperature of the mechanical oscillator allows one to

explore the transition between different regimes of optome-

chanics. Most important, the coupling strengths G achievable

with atomic systems open access to the ‘‘granular’’ regime of

optomechanics (Ludwig, Kubala, and Marquardt, 2008;

Murch et al., 2008), where single excitations in either of

the two subsystems have a non-negligible effect upon the

dynamics of the other. This can be measured by the gran-

ularity (or quantum) parameter which is defined as � ¼ G=�.
For � ¼ 1, already a single excitation of the mechanical mode

shifts the cavity resonance by half its linewidth, and already a

single photon entering the cavity imparts one excitation

quantum in the mechanical oscillator. In future research,

this might allow the generation and detection of quantum

correlations between the mechanical and light degrees of

freedom. Further research possibilities based on atom-based

realizations of optomechanics are given by possible imple-
mentations of precision sensors of forces or devices to
manipulate light fields on a quantum level.

2. Nonlinear dynamics and bistability for low photon number

The optomechanical interaction, Eq. (60), being intrinsi-
cally nonlinear gives rise to dispersive optical bistability and
nonlinear dynamics of the coupled system. Optical bistability
(Lugiato, 1984), a well-studied phenomenon in nonlinear
optics, refers to the coexistence of two stable steady-state
solutions when, e.g., driving an optical cavity filled with a
medium whose refractive index depends on the light intensity.
In typical nonlinear Kerr media and solid-state realizations
of optomechanics, the occurrence of bistability typically
requires large intracavity power in order to significantly alter
the system’s optical properties. The large coupling strength
achieved in the atomic-ensemble realizations of optome-
chanics induces optical bistability at a mean-intracavity pho-
ton level below 1 (Gupta et al., 2007; Ritter et al., 2009). This
achievement is desirable for applications ranging from optical
communication to quantum computation (Cirac et al., 1997;
Imamoglu et al., 1997).

The occurrence of bistability in optomechanical systems
can be understood from the corresponding semiclassical
equations of motion for the oscillator displacement X and
the coherent intracavity field amplitude 
 derived from
Hamiltonian equation (60)

€X þ!mX ¼ �!mGj
j2
_
 ¼ ½ið	C � GXÞ � ��
þ �:

(61)

In the bad-cavity regime � 	 !R, the atoms move on a
time scale which is large compared to the lifetime ð2�Þ�1

of intracavity photons. Correspondingly, the cavity field
adiabatically follows the atomic dynamics according to

j
j2 ¼ �2

�2 þ ð	C �GXÞ2 : (62)

Retardation effects resulting in dynamical backaction cooling
or heating of the mechanical element are neglected in this
approximation. Inserting this expression into the equation of
motion for X, Eq. (61), yields €X ¼ �ðd=dXÞVOMðXÞ. The
optomechanical potential given by

VOMðXÞ ¼ 1

2
ℏ!mX

2 � ℏ�2

�
arctan

�
�ðXÞ
�

�
(63)

captures the combination of the harmonic confinement and
the cavity dipole forces. Here �ðXÞ ¼ 	C � GX denotes the
detuning between the driving laser and the atoms-shifted
cavity resonance.

The optomechanical potential provides an intuitive picture
to understand the steady state as well as the dynamical
behavior of the coupled system; see Fig. 25. Above a critical
cavity pump strength �cr, determined by

�2
cr ¼ 8

3
ffiffiffi
3

p !m�
3

G2
;

the optomechanical potential exhibits (within a certain detun-
ing range) two local minima, which correspond to different
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intracavity light intensities as shown in the bistable resonance

curve; see Fig. 25(e).
Depending on the direction into which 	C is adiabatically

tuned, the system remains in either of the two local minimum

of VOM, following the upper or lower bistable resonance

branch. When reaching the critical detuning, where one of

the local minima turns into a saddle point, the system starts to

perform transient oscillations in the remaining potential mini-

mum, which translate into a periodically modulated cavity

light intensity. Because of damping of the collective atomic

motion, the system finally relaxes to the steady state in the

remaining potential minimum.
Optical bistability induced by collective atomic motion

was observed at a low intracavity photon number in both

the Berkeley group (Gupta et al., 2007) and the Zürich group

(Ritter et al., 2009). The lower and upper bistability branches

were observed in single experimental runs by slowly sweep-

ing the frequency of the driving laser twice across resonance,

first with increasing detuning and then with decreasing

detuning; see Fig. 26. Upon increasing the probe strength,
the cavity transmission profile becomes more and more
asymmetric and exhibits hysteresis.

Dispersive optical bistability with collective atomic motion
was also studied in the regime of quadratic optomechanical
coupling (Purdy et al., 2010). Here, instead of displacing
the center-of-mass motion of the mechanical element, the
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FIG. 25 (color online). Optomechanical potential and bistability. (a)–(d) Optomechanical potential landscape VOMðXÞ for different pump-

cavity detunings 	C, indicated by the dashed lines in (e). The shaded regions show the resonance profile of the cavity. (e) Mean-intracavity

photon number j
j2 in steady state. Open and closed circles correspond to the situation shown in (b). Parameters are G ¼ 0:42� and

� ¼ ffiffiffi
5

p
�cr.

FIG. 26 (color online). Dispersive optical bistability with

collective atomic motion. (a) Observed cavity line shapes for

increasing cavity input power at low intracavity photon number �n
and model line shapes, based on the Voigt profile of the bare cavity

line (inset). �pc denotes the detuning between the probe laser

frequency and the empty-cavity frequency. (b) Lower and upper

branches of optical bistability observed in single sweeps across

resonance. From Gupta et al., 2007.
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FIG. 27 (color online). Nonlinear dynamics of a driven BEC-

cavity system. (a) Sweeping the driving laser frequency across the

bistable resonance curve (indicated by dashed lines, scaled by a

factor of 4) excites large-amplitude density oscillations in the

condensate. (b) The magnified cavity transmission signal indicates

how the density oscillations tune the cavity frequency periodically

in and out of resonance with the driving laser. The mean-intracavity

photon number on resonance was 7.3 corresponding to a photon-

count rate of 5.8 MHz. Adapted from Brennecke et al., 2008.
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intracavity dipole forces increase or decrease the rms width of
the compressible atomic ensemble, depending on whether the
atoms are confined at a maximum or a minimum of the
intracavity probe lattice potential. The corresponding change
of the dispersive cavity shift leads again to bistable resonance
curves as observed in the experiment (Purdy et al., 2010).

Dynamical optomechanical effects arise in small-
amplitude oscillations of the system around steady state. As
a result of the optomechanical interaction the frequency of
such oscillations is shifted with respect to the bare oscillation
frequency !m, in the literature often referred to as the ‘‘opti-
cal spring effect.’’ In the case of linear optomechanical
coupling this can be inferred from a quadratic expansion
around the steady-state minima of the optomechanical poten-
tial VOM; see Fig. 25. Experimentally, the optomechanical
frequency shift for the collective atomic motion was observed
and quantified in agreement with theory in both the linear and
quadratic coupling regimes (Purdy et al., 2010). Highly
nonlinear oscillations in the optomechanical potential with
relatively large amplitude have been excited and observed in
cavity transmission either by a sudden displacement of the
optomechanical potential (Gupta et al., 2007) or by crossing
the instability point of the bistable curves (Brennecke et al.,
2008); see Fig. 27.

3. Quantum-measurement backaction upon

collective atomic motion

The accuracy of any position measurement of a mechanical
element is limited by quantum mechanics. Referred to as the
standard quantum limit, this was extensively studied in con-
nection with the development of gravitational-wave detectors
(Caves, 1980). In a generic optomechanical setup, which
allows for high-precision measurements of the position of a
mechanical element, the standard quantum limit arises from
the balance between two noise terms: (i) detection shot noise,
given by the random arrivals of photons on the detector, and
(ii) radiation-pressure induced displacement noise caused by
the quantum fluctuations of the intracavity photon number.
Whereas detection noise can be decreased by increasing
the light power, this comes at the expense of increased
radiation-pressure force fluctuations. The optimal sensitivity
is achieved if these two noise contributions are balanced. A
direct experimental observation of the intracavity photon
number fluctuations requires large optomechanical coupling
strengths between the intracavity field and the mechanical
element in combination with the suppression of thermal
or technical noise sources which perturb the mechanical
motion.

The utilization of collective atomic motion of an ultracold
gas strongly coupled to the field inside a Fabry-Perot resona-
tor allowed for the first observation of measurement-induced
backaction upon a macroscopic mechanical element formed
of 105 atoms, caused by intracavity quantum force fluctua-
tions (Murch et al., 2008). In the nongranular regime
� ¼ G=� � 1, the spectral density of intracavity photon
number fluctuations (Marquardt et al., 2007; Nagy et al.,
2009) agrees with that in an empty driven cavity and reads

Snnð!Þ ¼ 2 �n�

�2 þ ½�ðXÞ þ!�2 : (64)

Here �n ¼ j
j2 denotes the steady-state mean-intracavity pho-
ton number given in Eq. (62). These photon number fluctua-
tions are transmitted into the momentum of the mechanical
element via the optomechanical interaction, giving rise to a
diffusionlike increase of the phonon number

d

dt
hcyci ¼ �2�2Snnð�!mÞ; (65)

as can be derived, e.g., from an effective master equation for
the mechanical oscillator (Nagy et al., 2009).

Murch et al. (2008) measured the corresponding heating
rate of the atomic ensemble in a bolometric way by
quantifying the evaporative atom loss; see Fig. 28. After
preparing the mechanical oscillator close to its ground
state, the cavity transmission of a weak probe beam at
fixed frequency is monitored on a single-photon counting
module. Continuous background atom loss tunes the atom-
shifted cavity frequency in resonance with the driving laser.
The atom loss rate is deduced from the comparison be-
tween the recorded transmission curve and the empty-cavity
resonance curve. The corresponding single-atom heating
rate is found to exceed the free-space spontaneous heating
rate, which was deduced by measuring the atom loss rate
far from the cavity resonance, by a factor of 40, in agree-
ment with the theoretical expectation. As cavity-mediated
coherent amplification and damping of the mechanical
oscillator is negligible in the experiment, the observation
of backaction heating can be interpreted as a direct mea-
surement of photon number fluctuations in a coherently
driven cavity.

Another direct signature of quantum backaction of
light upon collective atomic motion was obtained by

FIG. 28. Observing measurement-induced backaction upon the

collective motion of an ultracold atomic ensemble. (a) Mean-

intracavity photon number �n (points), monitored as the system is

brought across the cavity resonance due to evaporative atom loss.

The expected photon number including (solid line) and excluding

(dashed line) measurement backaction is shown. (b) Total atom

number N as a function of time as inferred from data shown in (a),

using the empty-cavity line shape and the linear relation between

atom number and dispersive cavity shift (inset). From Murch et al.,

2008.
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monitoring the Stokes and anti-Stokes sidebands of the
cavity transmission subsequent to the preparation of the
collective motional degree of freedom close to its ground
state (Brahms et al., 2012); see Fig. 29. The observed
sideband asymmetry provides a direct measurement of the
quantized collective motion and serves as a record of the
energy exchanged between motion and light in agreement
with a continuous backaction limited quantum position
measurement.

The disturbance of collective atomic motion via the
intracavity quantum force fluctuations acts back again
onto the intracavity light field. In particular, the resulting
motional-induced modulation of the cavity field can interfere
with the coherent or vacuum cavity input field giving rise to
nonlinear optical parametric amplification and, for negligible
technical or thermal fluctuations, to ponderomotive squeezing
(Fabre et al., 1994; Mancini and Tombesi, 1994). Only
recently, these effects were observed for the first time by
the Berkeley group utilizing the optomechanical coupling
between collective atomic motion and an optical cavity field
(Brooks et al., 2012).

4. Cavity cooling in the resolved-sideband regime

For the small-volume cavities which were employed in the
experiments performed by the Berkeley and Zurich groups,
the cavity decay rate � exceeds the mechanical oscillation
frequency !m of the collective atomic degrees of freedom by
more than 1 order of magnitude. In this nonresolved-sideband
regime of cavity optomechanics cooling of the mechanical

oscillator into its ground state utilizing cavity dissipation is

not possible.2 Rather the minimal steady-state occupation

number when driving the cavity field with a laser field which

is red detuned by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m þ �2
p

from the cavity resonance is

given by �=2!m 	 1 for weak optomechanical coupling

strength (Marquardt et al., 2007).
Ground-state cooling becomes possible only in the

resolved-sideband regime, where !m 	 � (Kippenberg and

Vahala, 2008). Here the cavity is able to resolve the

Stokes (anti-Stokes) sidebands which correspond to adding

(removing) motional quanta from the mechanical degree of

freedom. The large asymmetry between these processes

which is achieved by driving the cavity near the anti-Stokes

sideband results in a steady-state phonon occupation number

of ð�=2!mÞ2 � 1 (Marquardt et al., 2007). Optomechanical

cooling in the resolved-sideband regime is equivalent to

optical Raman sideband cooling of tightly confined atoms

or ions.
Cavity cooling in an optomechanical-type BEC-cavity

system which ranges in the good cavity regime � <!m ¼
4!R was demonstrated recently by Wolke et al. (2012).

By driving the cavity field selectively close to the Stokes or

anti-Stokes sidebands atoms were transferred via cavity-

stimulating backward scattering from the macroscopically

populated zero-momentum state into a superposition of

momentum states j � 2ℏki and back; see Fig. 30. This ex-

periment paves the way toward the achievement of quantum

degeneracy starting from a thermal gas without relying on

evaporative cooling techniques.

FIG. 29 (color online). Optical detection of quantization of

collective atomic motion in the cavity output spectrum. Shown

are measured Stokes sidebands (left panels) and anti-Stokes side-

bands (right panels) for increasing intracavity photon number

(bottom to top) together with the theoretical prediction (solid lines).

The observed Stokes asymmetry provides a calibration-free measure

for the mean occupation number of the mechanical oscillator, which

was deduced for the lowest graph to be 0.49. The mechanical

oscillation frequency was !m ¼ 2�� 110 kHz. From Brahms

et al., 2012.

FIG. 30 (color online). Observation of subrecoil cavity cooling

with a 87Rb BEC in a narrow-bandwidth Fabry-Perot resonator.

Shown are atomic momentum distributions after driving the

cavity field with a far-detuned laser field at 803 nm. First, a

400 
s long pulse, blue detuned from the cavity resonance,

transfers atoms into the momentum states j � 2ℏki (left), sub-

sequently a 200 
s long red-detuned pulse transfers the atoms

back into the zero-momentum state. Binary atomic collisions

result in a substantial depletion of the �2ℏk-momentum state

populations visible as a diffusive halo. From Wolke et al.,

2012.

2Indeed, in those experiments the preparation of the mechanical

degree of freedom close to its ground state was directly achieved by

evaporative cooling.
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D. Nonequilibrium phase transitions

Self-organization of a laser-driven atomic ensemble inside

an optical resonator, as considered for thermal atoms in

Sec. III.B.1, was extended both theoretically and experimen-

tally into the ultracold regime, where atomic motion becomes
quantized. Correspondingly, the transition point to the

self-organized phase is not determined anymore by thermal

density fluctuations, rather by the competition between

kinetic energy cost and potential energy gain associated

with a spatial modulation of the atomic matter wave in the
cavity-induced lattice potential. In the case of a weakly

interacting Bose-Einstein condensate, the reduced number

of momentum states accompanying in the dynamics allows

for a simplified description in terms of a collective spin

degree of freedom, providing a direct link between self-
organization and an open-system realization of the Dicke

quantum phase transition.

1. Self-organization of a Bose-Einstein condensate

Self-organization of a dilute BEC, which is located in a

single-mode optical cavity and illuminated transversally to

the cavity axis by a far-detuned laser field, was studied

theoretically by Nagy, Szirmai, and Domokos (2008). In

terms of a mean-field description, the steady state of the

system was obtained from the equations of motion for the
coherent cavity field amplitude 
 and the atomic mean field

’ðrÞ [see Eqs. (57b) and (57a)], setting the on-axis pump

strength � to zero. For simplicity only atomic motion along

the cavity axis was taken into account. The numerical solu-

tion for the steady-state order parameter � ¼ h’j cosðkxÞj’i,
obtained by numerically propagating the equations of motion

into imaginary time, is shown in Fig. 31. Above a critical two-

photon Rabi frequency �eff , the order parameter takes a

nonzero value indicating self-organization of the atoms in
a �-periodic density pattern. A stability analysis of the non-
organized steady state � ¼ 0 yields the following analytic
expression for the critical point:

ffiffiffiffi
N

p
�eff;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	2

C þ �2Þð!R þ 2
0=ℏÞ
�2	C

s
; (66)

where 
0 denotes the chemical potential of the homogeneous
condensate and 	C the detuning of the pump laser from
the dispersively shifted cavity resonance. In contrast to the
thermal case Eq. (33), the critical transverse pump power
scales in the zero-temperature limit with the recoil frequency
(and the chemical potential), which reflects the fact that the
homogeneous phase is stabilized by the kinetic energy (and
atom-atom collisions).

A deeper understanding of the process of self-organization
is gained from the collective excitation spectrum on top of the
steady-state mean-field solution. This was calculated by
Nagy, Szirmai, and Domokos (2008) and Kónya, Szirmai,
and Domokos (2011) using a Bogoliubov-type approach
based on the separation ansatz Eq. (56). The eigenvalues of
the linearized equations for condensate and cavity fluctua-
tions, Eq. (58), yield the energy spectrum of excitations
(polaritons) shown in Fig. 32. For the considered case where
the pump-cavity detuning 	C is large compared to the recoil
frequency !R, the excitations separate into two classes,
according to whether they are dominantly cavitylike or atom-
like. The occurrence of self-organization is recognized in a
characteristic softening of the atomlike excitation mode
which matches the spatial interference pattern between cavity
and transverse pump mode (see Fig. 32, solid line).

Self-organization of a Bose-Einstein condensate was ob-
served by the Zurich group (Baumann et al., 2010). A BEC of

FIG. 31 (color online). Self-organization of a driven Bose-

Einstein condensate in a standing-wave cavity. The steady-state

order parameter � plotted as a function of the effective cavity pump

strength �eff , as obtained from a numerical solution of the mean-

field equations. Parameters are NU0 ¼ �100!R, �C ¼ �300!R,

� ¼ 200!R, and 
0 ¼ 10ℏ!R in the homogeneous phase.

According to Eq. (66) the homogeneous phase is stabilized in this

parameter regime dominantly by collisional interaction energy. The

inset shows the condensate wave functions (solid lines) forffiffiffiffi
N

p
�eff ¼ 100!R (thick solid line) and 300!R (thin solid line)

and the corresponding optical dipole potentials (dashed lines).

Adapted from Nagy, Szirmai, and Domokos, 2008.

FIG. 32 (color online). Collective excitation spectrum of the

transversally driven condensate-cavity system. Shown are the ei-

genfrequencies of the lowest six collective atomlike and the first

cavitylike (divided by 5) excited states as a function of the trans-

verse pump amplitude. For vanishing pump amplitude the

Bogoliubov spectrum �n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2!Rðn2!R þ 2
0Þ

p
for a condensate

in a 1D box potential of size � is retained. Self-organization

is indicated by the softening of the lowest-lying collective mode

toward the critical pump amplitude
ffiffiffiffi
N

p
�eff;c � 65:5!R. Parameters

are the same as in Fig. 31. From Nagy, Szirmai, and Domokos,

2008.
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about 105 atoms, harmonically confined inside a high-finesse

optical Fabry-Perot resonator, was illuminated by a far

red-detuned standing-wave laser beam. By gradually increas-

ing the power of the transverse laser beam, the transition

to the self-organized phase was observed in a sharp rise

of the intracavity light intensity accompanied by the buildup

of macroscopic populations in the momentum states

ðpx; pzÞ ¼ ð�ℏk;�ℏkÞ; see Fig. 33. Above the critical

pump power, the relative phase �� between pump field

and cavity field is observed to stay constant, which demon-

strates that the system reached a steady state. By controlling

the transverse pump power, the system can be transferred

repeatedly from the normal in the self-organized phase and

back (see Fig. 33).
The process of symmetry breaking at the transition point

was studied by Baumann et al. (2011). In repeated realiza-

tions of the self-organized phase, two possible values of the

relative phase �� with a difference of � were observed,

according to self-organization into either the even [uðx;zÞ>1]
or odd [uðx; zÞ< 1] sites of the underlying mode interference

mode profile uðx; zÞ ¼ cosðkxÞ cosðkzÞ (see Fig. 34). The

finite spatial extent of the atomic cloud results in a small

imbalance between the even-odd populations in the nonor-

ganized phase. This effectively acts as a symmetry breaking

field, which favors the realization of one particular organized

pattern as observed in the experiment. The influence of the

symmetry breaking field could be overcome by increasing the

speed at which the transition is crossed in accordance with a

simple model description based on the adiabaticity condition

(Baumann et al., 2011).

In the limit where the cavity field adiabatically follows the
atomic motion, the process of self-organization can also be
understood as a result of the cavity-mediated atom-atom
interactions; see Sec. III.A.1. On a microscopic level, these
are induced by the virtual exchange of cavity photons be-
tween different laser-driven atoms, accompanied by the cre-
ation of atom pairs recoiling with momentum ℏk along the
pump and cavity direction. The resulting �-periodic density
correlations in the atomic cloud energetically compete with
the cost in kinetic energy, which gives rise to a characteristic
roton-type softening in the dispersion relation of the conden-
sate at momenta ð�ℏk;�ℏkÞ; see also Fig. 32. Once the
softened excitation energy reaches the ground-state energy,
the system self-organizes by macroscopically occupying
those momentum states. Such mode softening was observed
by the Zurich group (Mottl et al., 2012) using a variant of
Bragg spectroscopy (Stenger et al., 1999), where the cavity
field was probed with a weak laser pulse whose frequency
was detuned by a variable amount from the transverse pump

FIG. 34 (color online). Observation of symmetry breaking at the

self-organization transition with a BEC. The relative pump-cavity

phase �� monitored on a heterodyne detector while repeatedly

entering the self-organized phase by tuning the transverse pump

power P (dashed) is shown. The system organizes into one out of

two possible checkerboard patterns corresponding to the two ob-

served phase values differing by �. From Baumann et al., 2010.

FIG. 33 (color online). Observation of self-organization with a

Bose-Einstein condensate. Simultaneous time traces of the mean-

intracavity photon number (middle panel) and the relative pump-

cavity phase �� (lower panel) while ramping the transverse pump

power twice across the critical point at � 0:35 mW. The absorption

images (upper panel) show the atomic momentum distribution

for the indicates times. The line of sight is perpendicular to the

pump-cavity plane. Parameters are �C ¼ �2�� 20 MHz, � ¼
2�� 1:3 MHz, and N ¼ 105. Adapted from Baumann et al.,

2010, 2011.

FIG. 35 (color online). Observation of mode softening induced

by cavity-mediated atom-atom interactions in a Bose-Einstein con-

densate. The motional atomic excitation energy at momenta

ð�ℏk;�ℏkÞ along the cavity and pump direction as a function of

the transverse laser power P, which sets the modulus jVj of the

cavity-mediated atom-atom interaction, is shown. The sign of V is

determined by the sign of 	C. For negative interaction strength V,

the system organizes at the critical pump power Pcr, while for

positive interaction an increased excitation energy is observed in

accordance with the absence of a phase transition. From Mottl

et al., 2012.
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laser field. The observed excitation spectrum as a function of
sign and modulus of the cavity-mediated atom-atom inter-
action strength V is depicted in Fig. 35. The vanishing of the
excitation gap at the transition point toward the organized
phase is accompanied by a diverging susceptibility of the
system to �-periodic density perturbations (Mottl et al.,
2012). As theoretically considered by Öztop et al. (2012),
the softened excitation spectrum can also be probed para-
metrically via amplitude modulation of the transverse
pump laser.

Conceptually, the self-organized BEC can be regarded
as a supersolid (Leggett, 1970; Gopalakrishnan, Lev, and
Goldbart, 2009), similar to those proposed for two-
component systems (Büchler and Blatter, 2003). Nontrivial
diagonal long-range order is induced by the cavity-mediated
long-range interactions, which restricts the periodic density
modulation to two possible checkerboard patterns, in contrast
to traditional optical lattice experiments with laser fields
propagating in free space. Simultaneously, the organized
phase exhibits off-diagonal long-range order which is not
destroyed while crossing the phase transition. Only when
deeply entering the organized phase, tunneling between
different sites of the optical checkerboard potential gets
suppressed and phase coherence is lost (Vidal et al., 2010).

2. Open-system realization of the Dicke quantum

phase transition

Self-organization of a laser-driven BEC in an optical
resonator can be considered as an open-system realization
of the Dicke quantum phase transition, where the quantized
atomic motion acts as a macroscopic spin which strongly
couples to the cavity field. The Dicke model goes back to the
pioneering work of R.W. Dicke (Dicke, 1954) and describes
the collective interaction between matter and the electromag-
netic field. Consider N two-level systems with transition
frequency !0, forming a collective spin variable J, which
couples identically to a single resonator mode at frequency
!a. This system can be described in terms of the Dicke
Hamiltonian [also referred to as the Tavis-Cummings model
(Tavis and Cummings, 1968)]

HDicke=ℏ ¼ !aa
yaþ!0Jz þ �ffiffiffiffi

N
p ðJþ þ J�Þðaþ ayÞ

(67)

with the collective coupling strength denoted by � / ffiffiffiffi
N

p
.

The ladder operators J� ¼ Jx � iJy describe the creation and

annihilation of collective atomic excitations.
According to Dicke (1954) a collectively excited medium,

which carries correlations among the different atomic
dipoles, decays within a much shorter time into its ground
state than a single atom. This phenomenon, termed super-
radiance (or superfluorescence), originates from spontaneous
phase locking of the different radiators resulting in a short
radiation burst whose intensity is proportional to the number
of atoms squared. Superradiant emission of laser-excited
media has been studied extensively in the past (Gross and
Haroche, 1982).

In contrast to this transient phenomenon, the Dicke
Hamiltonian equation (67) was shown in 1973 to exhibit

also a ground-state version of superradiance (Carmichael,
Gardiner, and Walls, 1973; Hepp and Lieb, 1973; Wang and
Hioe, 1973; Lambert, Emary, and Brandes, 2004). When
the collective coupling strength � reaches the critical value
�cr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

!a!0
p

=2, the Dicke model undergoes a quantum

phase transition from a normal into a superradiant phase,
which is characterized by a macroscopic cavity field ampli-
tude hai and a macroscopic polarization hJ�i of the atomic
medium. Apart from its fragility upon the inclusion of the A2

term originating from the minimal coupling Hamiltonian
(Rzażewski, Wódkiewicz, and Żakowicz, 1975), the experi-
mental realization of the superradiant Dicke phase transition
with direct dipole transitions was obscured in the past
due to practical limitations in the available dipole coupling
strengths.

The proposal by Dimer et al. (2007) circumvents these
issues by considering a pair of stable atomic ground states
which are coupled via two different Raman transitions
involving a single ring cavity mode and external laser fields.
This scheme realizes the Dicke model through an effective
Hamiltonian in an open-system dynamics, including external
driving and cavity loss, where the critical coupling strength
can be reached for realistic experimental parameters.

The transversally driven BEC-cavity system is formally
equivalent to this proposal upon replacing the electronic
atomic states by a pair of motional atomic states, as shown
by Baumann et al. (2010) and Nagy et al. (2010). The two
motional states are given by the flat condensate mode
jpx; pzi ¼ j0; 0i and the coherent superposition of the four
momentum states j � ℏk;�ℏki, where x and z denote the
cavity and pump directions, respectively. Coherent light
scattering between the transverse pump beam and the cavity
mode couples these two momentum states via two distin-
guishable Raman channels, resulting in a dipole-type inter-
action between the cavity mode and the corresponding
collective spin degree of freedom; see Eq. (67). The parame-
ters ð!0; !a; �Þ of the corresponding realization of the Dicke
Hamiltonian are given by the energy difference 2!R between
the two momentum modes (neglecting atom-atom collisions),
the effective detuning �	C between the pump laser fre-
quency and the dispersively shifted cavity mode frequency,
and the collective two-photon Rabi frequency

ffiffiffiffi
N

p
�eff=2

between pump laser and cavity mode, respectively. In the
experiment (Baumann et al., 2010), 	C exceeds the recoil
frequency by 3 orders of magnitude, thus realizing the dis-
persive regime of the Dicke model. Higher-order momentum
modes do not contribute in the phase transition dynamics
itself and are populated only when deeply entering the self-
organized phase (Kónya, Szirmai, and Domokos, 2011).

From the analogy to the Dicke model the following ex-
pression for the critical coupling strength is obtained upon
including cavity decay (Dimer et al., 2007):

�cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ!2

aÞ!0

4!a

s
: (68)

In the absence of atom-atom collisions, this condition agrees
with the result obtained from the stability analysis of the
mean-field equations, Eq. (66). Experimentally (Baumann
et al., 2010), the phase boundary was mapped out as a
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function of pump-cavity detuning �C in agreement with the

theoretical prediction; see Fig. 36.
It is instructive to contrast the Dicke quantum phase

transition, realized with a BEC in a single-mode cavity,

with the occurrence of free-space superradiant Rayleigh scat-

tering off an elongated BEC which is driven by off-resonant

laser light (Inouye et al., 1999). In this experiment, a super-

radiant light pulse was emitted along the axial direction of the

atomic cloud accompanied by the creation of recoiling

matter-wave components, once the pump intensity exceeded

a critical value. This dynamical effect is equivalent to Dicke

superradiance of a collectively excited medium (Dicke,

1954), where matter-wave amplification phase locks the

spontaneous emission events into the continuum of optical

field modes. The minimal pump intensity required for super-

radiance to occur is determined by the balance between loss

and gain processes. In contrast, light scattering off the BEC

into a single cavity mode is a reversible process and the

critical pump strength dominantly results from the finite

pump-cavity detuning.
In the self-organized phase the detuning 	C between pump

laser and the dispersively shifted cavity resonance becomes a

dynamic quantity. This effect is not taken into account by the

description in terms of the Dicke model equation (67) which

is a valid approximation as long as the maximum dispersive

cavity shift U0N is small compared to the pump-cavity

detuning j�Cj. In the case where U0N exceeds j�Cj the

system can exhibit dynamically frustrated behavior charac-

terized by a periodic sign change of the effective pump

detuning from the dispersively shifted cavity resonance,

as observed by Baumann et al. (2010); see Fig. 36(c).

Theoretically, the influence of the additional nonlinear dis-

persive term �U0Jza
ya appearing in the Dicke model equa-

tion (67) upon the dynamics of the coupled BEC-cavity

system was investigated by Keeling, Bhaseen, and Simons

(2010b), Liu et al. (2011), and Bhaseen et al. (2012).

Employing a semiclassical description, Bhaseen et al.

(2012) revealed a rich phase diagram including distinct super-

radiant fixed points, bistable and multistable coexistence

phases and regimes of persistent oscillations, and explored

the time scales for reaching these asymptotic states. It was

emphasized that the behavior of the open system is controlled

by the stable attractors, which do not necessarily coincide

with the points of minimal free energy. As such, there is a

crucial distinction between the � ! 0 limit of the dynamical

system and the equilibrium behavior at � ¼ 0. A similar

conclusion can be drawn in the quantum case as discussed

in the following.
The coupling of the cavity field to the electromagnetic field

environment, causing cavity decay, amounts to a weak mea-

surement of the coupled BEC-cavity system. The correspond-

ing quantum backaction results in a diffusionlike depletion of

the ground state of the Dicke Hamiltonian, even at zero

temperature. The underlying physics is similar to that de-

scribed in Sec. IV.C.3, with the important difference that the

system gets increasingly susceptible to quantum backaction

when approaching the critical point.
The rate at which the ground state of the Dicke

Hamiltonian initially gets depleted due to cavity decay was

calculated by Nagy et al. (2010) based on the Langevin

equation approach (58). In the dispersive regime j	Cj	!R,

the ground-state depletion happens mostly in the atomic

space and the corresponding diffusion rate can be approxi-

mated below threshold by !R�=j	Cjð�=�crÞ2. Per atom, this

corresponds for j	Cj 	 � to a heating rate of ��2
eff=	

2
C. Note

the formal equivalence of this result with the spontaneous

heating rate in a far-detuned dipole trap. Importantly, the use

of a large detuning j	Cj removes the time limitation imposed

by measurement-induced backaction.
Measurement-induced backaction drives the BEC-cavity

system into a steady state which is a dynamical equilibrium

between diffusion and damping. It is interesting that this

limiting state is not the same as the equilibrium state of the

system, i.e., for � ¼ 0 the ground state at T ¼ 0. Namely, the

order of the two limiting procedures t ! 1 and � ! 0 cannot
be interchanged. The steady-state (t ! 1 limit) occupation

of the cavity field and the excited momentum state were

calculated by Nagy, Szirmai, and Domokos (2011). Flux

and second-order time correlations of the cavity output signal

were investigated theoretically by Öztop et al. (2012). The

mean field obtained in the thermodynamic limit is a smooth

function of � and the steady-state solution tends to that of the

ground state of Eq. (67) for � ! 0. By contrast, comparison

of the quantum fluctuations present in the ground state of the

Dicke model and in the steady state of the damped-driven

system exhibits a significant difference. In the ground state of

Eq. (67) the second-order correlation functions diverge to-

ward the critical point with the exponent �1=2, indicating a

mean-field-type transition, whereas in the nonequilibrium

case the quantum fluctuations exhibit a divergence with

exponent �1 (see Fig. 37). At the same time, the singularity

of the ground-state entanglement (Lambert, Emary, and

Brandes, 2004) between the cavity and the atomic sub-

system is regularized at the critical point by the quantum

noise associated with cavity decay. The nonvanishing

FIG. 36 (color online). Dicke-model phase diagram. (a) The re-

corded mean-intracavity photon number �n as a function of the

transverse pump power P and the pump-cavity detuning �C.

A sharp phase boundary is observed in agreement with a mean-

field description (dashed line). The dispersively shifted cavity

resonance for the nonorganized BEC is indicated by a horizontal

arrow. (b), (c) Time traces of �n while gradually increasing the pump

power to 1.3 mW for the indicated pump-cavity detuning. From

Baumann et al., 2010.
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entanglement, however, shows that the quantum character
of the Dicke quantum phase transition (self-organization at
zero temperature) is not fully destroyed in the case of an
open-system dynamics, and it cannot be exactly mapped to a
thermal noise-driven phase transition.

3. Phases in highly degenerate cavities

Self-organization of polarizable particles into periodic
structures induced and stabilized by the intracavity light field
resembles the process of crystallization. In a cavity with only
a single standing-wave mode tuned into resonance with the
pump field, only the amplitude of the cavity field is a
dynamical quantity. The formation of a periodic crystal
from a spatially homogeneous distribution breaks the discrete
symmetry corresponding to the even and odd antinodes of
the standing-wave mode profile. Already in the two-mode
setting of a ring cavity sustaining two degenerate counter-
propagating modes, the self-organization is accompanied by
spontaneous breaking of a continuous translational symmetry
(Nagy, Asbóth, Domokos, and Ritsch, 2006; Niedenzu et al.,
2010), which induces rigidity against lattice deformations.

In the case of highly degenerate multimode cavities the field
has much more freedom to adjust locally to the particle
distribution.

The general structure of the resulting complex phase dia-
gram was studied by Gopalakrishnan, Lev, and Goldbart
(2009); see also Ritsch (2009). In general such setups allow
one to realize conceptually novel systems and to explore and
discover properties of crystalline and liquid-crystalline order-
ing, including intrinsic effects such as dislocations, the
growth and arrangement of crystal grain boundaries (see
Fig. 38), and the nature of the phonon spectrum. Multimode
cavities also offer a natural connection to models developed
in the field of neural networks such as the Hopfield model or
similar spin models with infinite range statistical couplings.
First ideas about this relation have been presented recently by
Gopalakrishnan, Lev, and Goldbart (2011, 2012) and Strack
and Sachdev (2011). Extensions to fermionic atoms in multi-
mode cavities were considered by Müller, Strack, and
Sachdev (2012).

Gopalakrishnan and co-workers generalized and adapted a
field-theoretical framework, also successfully used in solid-
state physics, to describe many-body systems coupled to a
multitude of degenerate modes of a high-finesse cavity
(Gopalakrishnan, Lev, and Goldbart, 2010; Keeling,
Bhaseen, and Simons, 2010a). For a quasi-two-dimensional
cloud of atoms confined in the equatorial plane of a concen-
tric optical cavity, the transition from the homogeneous
distribution into a spatially modulated one is of the
Brazovskii type (Brazovskii, 1975), which describes the
phase transitions from isotropic to striped structures in liquid
crystals. The description is based on an effective equilibrium
theory which is valid when the effective cavity loss rate
��2

eff=�
2
C is smaller than the recoil frequency !�1

R ; see

Sec. IV.D.2. Here the dispersive cavity shift was assumed to
be much smaller than the pump-cavity detuning �C. Unlike
the Landau theory of crystallization, here the free energy of
the system does not have a cubic term that breaks the
symmetry at the phase transition. The transition persists at
zero temperature; hence it realizes a quantum phase transition
of an unusual university class. The nonequilibrium extension
of this theory, which includes the effect of photon leakage

FIG. 37 (color online). Criticality in the closed- and open-system

Dicke phase transitions. The mean values (thick, right axes) and the

incoherent excitation numbers (thin, left axes) of the (a) photon and

(b) atomic fields are plotted as a function of relative coupling

strength y=ycr ¼ �=�cr. The incoherent excitation numbers in

steady state for the open system (thin solid) diverge at the critical

point with exponent �1 in contrast to the ground-state number of

excitations for the closed system (thin solid), which diverges with

the mean-field exponent �1=2. From Nagy, Szirmai, and Domokos,

2011.

FIG. 38 (color online). Self-ordered states in a concentric multi-

mode cavity forming two-dimensional patterns. The diagram shows

a regime near threshold, with domains locally populating distinct

TEMxy cavity modes in the equatorial plane. Domains can be

punctuated by dislocations (shown in the left half of the figure),

but might also show textural variation in space (right half of the

figure). The black lines represent nodes of the cavity field, which

separate ‘‘even’’ and ‘‘odd’’ antinodes. As the atoms are Bose

condensed, the atomic population per site is not fixed. From

Gopalakrishnan, Lev, and Goldbart, 2009.
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out of the cavity as a perturbation, leads to the conclusion that
the photon loss corresponds to an effective temperature and
quantum correlations are washed out by decoherence on time
scales longer than the cavity decay time. Note that the
Bogoliubov-type mean-field model description of the open-
system Dicke model in a single-mode cavity also predicts the
depletion of the ground state (Nagy et al., 2010) due to
measurement-induced backaction (Murch et al., 2008), or,
in other words, due to the diffusion induced by fluctuations
accompanying cavity photon loss (Nagy et al., 2009).
However, unlike the Brazovskii transition, the Dicke-model
system is driven into a steady state, significantly different
from the ground state, which has a critical point (Nagy,
Szirmai, and Domokos, 2011).

Similar to the case of the single-mode experiment
performed by the Zurich group (Baumann et al., 2010), the
emergent crystalline state in a transversally driven multimode
cavity can be considered as a supersolid phase where crys-
talline order and off-diagonal long-range order (long-range
phase coherence) coexist. The phase diagram, schematically
shown in Fig. 39 for a multimode cavity, is strikingly different
from the single-mode case in that a region with direct uniform
superfluid-to-normal phase transition occurs, whereas in the
single-mode cavity there is always a supersolid state between
the uniform and the normal solid phases (Vidal et al., 2010).
It is also observed that, for a strongly layered three-
dimensional structure, the interlayer frustration precludes
global ordering and the system breaks up into inhomogeneous
domains.

E. Extended Hubbard-type models for ultracold atoms

in cavities

The theoretical description of the quantum many-body dy-
namics of ultracold atoms confined in optical lattices and
strongly interacting with a quantized cavity field can be based
on a sophisticated extension of the Bose-Hubbard (BH) model
(Fisher et al., 1989). In static optical lattices, the BH model
properly accounts for the quantum statistical properties of
bosonic atoms at the lattice sites, as well as the interparticle
quantumcorrelations (Bloch,Dalibard, andZwerger, 2008). The
basic assumption, valid in the limit of very low temperature, is
that the dynamics can be restricted to the lowest (or lowest few)
Bloch bands of the periodic optical potential. Correspondingly,
the many-body wave function can be expressed in terms of
Wannier functions localized at individual lattice sites.

However, if the optical lattice potential is sustained by the
mode of a high-finesse cavity, thus becoming a dynamical
degree of freedom, it gets a highly nonlinear problem to deter-
mine theWannier functions themselves and thereby the ground
state of the many-body system. For example, in the case of a
laser-driven cavity, the atoms dispersively shift the cavity
resonance and have an effect on the intracavity field amplitude
which itself determines the optical lattice potential depth.
Hence the optical lattice potential and the state of the atoms
have to be evaluated in a self-consistent way (Maschler and
Ritsch, 2005; Larson, Damski et al., 2008; Maschler, Mekhov,
and Ritsch, 2008; and Vidal et al., 2010) as will be presented
later. We focus on the most studied particular case of spinless
bosons and mention only that the cases of fermions and spin
particles are expected to lead to interesting novel effects
(Larson, Morigi, and Lewenstein, 2008; Sun et al., 2011).

1. Bose-Hubbard model with cavity-mediated

atom-atom interactions

Consider an ensemble of N bosonic particles subject to
an optical lattice potential which is generated by the field
of an optical resonator and possibly by an additional, far off-
resonant standing-wave laser field. The latter is represented
by the external potential term VclðrÞ in the single-atom
Hamiltonian equation (51). Restricting the motional dynam-
ics to the lowest energy band (lowest vibrational state), we
expand the atomic field operator

�ðrÞ ¼ XM
i¼1

biwðr� riÞ (69)

in the Wannier basis of atomic states localized at sites
i ¼ 1; . . . ;M, where bi denotes the associated annihilation op-
erator. Upon inserting this expansion into Eq. (49), one obtains

H ¼ X
m

ð�ℏ�C;ma
y
mam þ iℏ�mðaym � amÞÞ

þ XM
i;j¼1

ðEi;j þ VclJ
cl
i;jÞbyi bj

þ ℏ
�A

X
l;m

glgma
y
l am

� XM
i;j¼1

Jlmi;j b
y
i bj

�

þ U

2

XM
i¼1

byi biðbyi biÞ; (70)
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FIG. 39. Schematic zero-temperature phase diagram for a BEC in

a concentric cavity. The control parameters are the atomic scattering

length a and the inverse effective atom-cavity coupling ��1 with

� ¼ �2
eff=�C. For weak, repulsive interactions and increasing atom-

cavity coupling, the superfluid first undergoes self-organization via

the Brazovskii transition, thus forming a supersolid. If the transverse

laser intensity is increased further, the supersolid undergoes a

transition into a normal solid (i.e., a Mott insulator). For strong,

repulsive interactions, the uniform BEC can lose phase coherence

concurrently with a first-order self-organization transition. This

situation is to be contrasted with that for the case of a single-

mode cavity (inset), in which there should always be a supersolid

(SS) region separating the uniform fluid (SF) and normal solid (S)

regions. First- and second-order transitions are marked by 1 and 2,

respectively. From Gopalakrishnan, Lev, and Goldbart, 2010.
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where several cavity modes with mode functions fmðrÞ and
corresponding photon annihilation operators am are considered.
The coefficients Ei;j and Jclij are defined as in the standard BH

Hamiltonian

Ei;j ¼
Z

d3rwðr� riÞ
�
�ℏ2r2

2m

�
wðr� rjÞ; (71a)

Jcli;j ¼
Z

d3rwðr� riÞfclðrÞwðr� rjÞ; (71b)

where we separated the characteristic magnitude Vcl of the
classical trapping potential (difference between maximum and
minimum) from its spatial form fclðrÞ. The last term of Eq. (70)
describes the on-site interaction with U ¼ ð4�asℏ2=mÞ�R
d3rjwðrÞj4. Of primary interest are the extra couplings gen-

erated by the cavity modes with matrix elements

Jlmi;j ¼
Z

d3rwðr� riÞf�l ðrÞfmðrÞwðr� rjÞ: (71c)

From the cavity field point of view, the diagonal elements
l ¼ m correspond to the atomic state-dependent dispersive
shifts of the cavity mode frequency !C;m, whereas the off-

diagonal elements l � m describe photon scattering between
different cavity modes. The Wannier functions wðr� riÞ ap-
pearing in these integrals in principle depend on the dynamic
potential terms generated by the cavity field. This renders the
problem highly nontrivial.

In the most general case, the Wannier functions have to be
calculated for each photon number state to define a corre-
sponding manifold of parameters in the BH model, Eq. (70).
In other words, the couplings Jlmi;j are replaced by operators

which can be easily expressed in a Fock basis. Such a brute
force approach is necessary if the effect of the cavity field on
the trapping potential is significantly different for adjacent
Fock states (Horak and Ritsch, 2001b). Typically, numerical
simulations have to be performed to study, e.g., microscopic
processes underlying many-body effects that are understood
in the mean-field limit (Maschler et al., 2007; Vukics,
Maschler, and Ritsch, 2007; Niedenzu et al., 2010).
Obviously, this approach is limited to small system sizes of
a few particles moving in a few cavity modes. Most of the
works, however, used approximations to treat the cavity-
generated optical potential in which the localized Wannier
functions are defined in a self-consistent manner.

2. Cavity-enhanced light scattering for quantum measurement

and preparation

Before addressing the problem of dynamical cavity-
induced potentials within the framework of the BH model,
we note that a lot of applications have been developed based
on the coupling of quantized cavity field modes to trapped,
ultracold atomic systems in a simple scattering regime, as
reviewed by Mekhov and Ritsch (2012). In the scattering
scenario, the external lattice potential VclðrÞ is taken strong
enough to solely define the localized Wannier functions, and
their modification due to the cavity light forces is negligible.
The quantized cavity field modes are a perturbative probe
which can yield a mapping between quantum properties of
atomic many-body states and light observables. This system
gives, for example, a means to determine the quantum state of
ultracold atoms by light scattering (Miyake et al., 2011).

A typical quantum-measurement scheme involving a
single cavity mode is depicted in Fig. 40. It was shown
that various quantum states of ultracold bosons trapped in
the lowest band of an optical lattice and having equal mean
densities can be distinguished (Chen, Meiser, and Meystre,
2007; Mekhov, Maschler, and Ritsch, 2007a). As a character-
istic example, the different transmission spectra of the Mott
insulator (MI) and the SF states are exhibited in Fig. 41.
In contrast to standard techniques this measurement is
nondestructive, limited only by quantum-measurement
backaction. Depending on the chosen geometry, light scatter-
ing is sensitive to the global and local atom number fluctua-
tions (Mekhov, Maschler, and Ritsch, 2007b; Chen and
Meystre, 2009; Bhattacherjee, Kumar, and Mohan, 2010),
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FIG. 41 (color online). Cavity transmission spectra showing the

atom number distribution of an ultracold gas in the intracavity part

of an optical lattice; see Fig. 40. Transmission profiles as a function

of the probe-cavity detuning �p of a MI and a SF state for (a) a

good cavity with � ¼ 0:1U11 and (b) a bad cavity with � ¼ U11,

where U11 ¼ g21=�A. In (b) the satellites are not resolved but the

spectra for SF and MI states are still different. Parameters are N ¼
M ¼ 30 and K ¼ 15. (c) Spectra for a SF state with N ¼ M ¼ 70
and a different number of illuminated lattice sites K. From Mekhov,

Maschler, and Ritsch, 2007c.

FIG. 40 (color online). Scheme for quantum nondemolition mea-

surement of atomic many-body states in an optical lattice. N atoms

are trapped in a one-dimensional lattice potential (M lattice sites)

which partially overlaps with a cavity mode a1 and a transverse

probe mode a0. The number of illuminated lattice sites is denoted

by K. Depending on their many-body state the atoms act as a

quantum refractive index whose statistical distribution with respect

to the probe and cavity modes can be mapped out via transmission

or diffraction spectroscopy as a function of the probe-cavity detun-

ing or the angles �0 and �1.
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or to long-range correlations between two or more lattice sites
(e.g., four-point correlations) (Mekhov, Maschler, and Ritsch,
2007c; Bux et al., 2011).

The backaction of repeated quantum nondemolition mea-
surements drives the atomic many-body state toward specific
states (Mekhov and Ritsch, 2009). This is in full analogy with
microwave cavity QED experiments (Brune et al., 1990;
Guerlin et al., 2007) where, complementarily, the field state
is driven into nonclassical Fock states by measuring the state
of a train of atoms crossing the cavity.

3. Self-consistent Bose-Hubbard models in cavity mean-field

approximation

Genuine cavity-induced dynamical effects appear when the
excited cavity modes significantly modify the trapping with
respect to the external potential VclðrÞ. Even without notice-
ably reshaping the Wannier functions at the trapping sites, the
perturbative light probe can modify the tunneling rates as
shown for free-space Bragg scattering by Rist, Menotti, and
Morigi (2010). In a cavity, local changes of the atomic
distribution influence the whole cavity-sustained optical lat-
tice potential. Thereby a new type of long-range interaction
between the particles appears and gives rise to resonant non-
local cotunneling or momentum space pairing (Mekhov,
Maschler, and Ritsch, 2007b), effects which go far beyond
the standard Bose-Hubbard model.

When the Wannier functions themselves are dynamically
influenced by the cavity, a self-consistent mean-field ap-
proach, similar to the one in Sec. IV.B, has been broadly
adopted to describe the nonlinear dynamics of trapped, ultra-
cold atoms in a cavity (Maschler and Ritsch, 2005; Larson,
Fernández-Vidal et al., 2008; Maschler, Mekhov, and Ritsch,
2008; Chen et al., 2009; Larson and Lewenstein, 2009;
Nimmrichter et al., 2010; Vidal et al., 2010). Splitting the
cavity field amplitude a ¼ hai þ 	a into its mean value and
fluctuations, the main assumption is that only the highly
excited mean field can modify the trapping potential, whereas
the fluctuations amount to a perturbative probe. Since the
cavity mean-field amplitude hai depends on the momentary
atomic quantum state, so does the depth and shape of the on-
site potential. Therefore, the Wannier functions in Eq. (69)
and hence the coefficients Eq. (71) in the Hubbard-type
Hamiltonian equation (70) have to be determined self-
consistently in conjunction with the proper cavity mean field
hai. It is noteworthy that, often, the self-consistent calculation
does not lead to a unique solution.

a. Phases in dynamical optical lattices

Consider a linear cavity with only a single mode being
driven and overlapping with a static optical lattice potential
VclðrÞ. Assuming only nearest-neighbor hopping to be rele-
vant we keep adjacent hi; ji pairs from the double sum over
indices i and j in Eq. (70). The corresponding many-body
Hamiltonian is given by

H ¼ E0N̂ þ EB̂þ ðℏU0a
yaþ VclÞðJ0N̂ þ JB̂Þ

� ℏ�Ca
ya� iℏ�ða� ayÞ þ U

2
Ĉ: (72)

The relevant atomic degrees of freedom are the total atom
number N̂ and the collective nearest-neighbor coherence B̂
defined as

N̂ ¼ XM
i¼1

byi bi; B̂ ¼ XM
i¼1

byi biþ1 þ byiþ1bi; (73)

respectively, and the operator Ĉ ¼ P
ib

y
i biðbyi bi � 1Þ for the

two-body on-site interaction. The coefficients E0, E, J0, and J
derive from Eq. (71) contracted to a single cavity mode and
assuming uniform coupling along the lattice.

To exhibit the underlying physics one may neglect the
photon number dependence of the Wannier functions and
adiabatically eliminate the cavity field via the Heisenberg
equation of motion

_a ¼ fi½�C � U0ðJ0N̂ þ JB̂Þ� � �gaþ �: (74)

This is a good approximation as long as the cavity field
decays fast compared to the time scale of atomic motion.
Since tunneling in deep lattice potentials is slow compared to
the recoil frequency, this applies widely in experimental
setups.

An effective atomic Bose-Hubbard model, formally iden-
tical to the usual one but with coefficients J0 and J depending
on the many-body state, has been considered systematically
in the thermodynamic limit. By evaluating the stability of the
Mott insulator states, the phase diagram has been constructed.
As shown in Fig. 42, the model predicts the existence of
competing Mott insulator states (Larson, Damski et al., 2008;
Larson, Fernández-Vidal et al., 2008). The overlapping Mott
lobes indicate the possibility of bistability in this laser-driven,
nonlinear system; see Sec. IV.C.2. The state of the system can
be controlled by fine-tuning the pump parameters near the
shifted cavity resonance. For certain parameters a state with
two atoms per site can lead to a much higher photon number
and thus deeper optical potential, so that its energy falls
below that of the state with unity filling.

In order to gain insight into the nature of atom-atom
coupling via the cavity field, a simple effective Hamiltonian
can be constructed. The adiabatic field amplitude can be
expanded to second order in the small tunneling matrix
element J

a � �

�� i	C

�
1� i

U0J

�� i	C

B̂� ðU0JÞ2
ð�� i	CÞ2

B̂2

�
; (75)

where the effective detuning 	C ¼ �C � U0J0N was intro-
duced, and the atom number was set to N. Inserting this
solution back into the Hamiltonian equation (72) and the
Liouville operator equation (5a), which accounts for cavity
damping, leads to an effective adiabatic model. It comprises
the nonlinear Hamiltonian

Had ¼ ðEþ JVclÞB̂þ U

2
Ĉ

þ ℏU0J�
2

�2 þ 	C
2

�
B̂þ U0J	C

�2 þ 	C
2

�2 � 3	C
2

�2 þ 	C
2
B̂2

�
;

(76a)

and Liouville operator
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Lad% ¼ �U2
0J

2�2

ð�2 þ 	C
2Þ2 ð2B̂%B̂� B̂2%� %B̂2Þ; (76b)

which describes decoherence in the basis of the eigenstates of
the operator B̂. Note that the adiabatic elimination procedure
described above is not rigorous mathematically, since we
adiabatically approximated the solution of a nonlinear dy-
namical equation inEq. (75), which appears also as an ordering
ambiguity of the involved operators (Larson, Fernández-Vidal
et al., 2008; Maschler, Mekhov, and Ritsch, 2008).

For a small, numerically tractable system, the lowest
energy eigenstate ofHad can be calculated. As a key example,
the SF-to-MI quantum phase transition in an optical lattice
sustained entirely by a quantized standing-wave cavity field
was analyzed (Maschler, Mekhov, and Ritsch, 2008). The

dynamical response of the photon number to the atomic

motion is able to strongly modify atomic number fluctuations
and hence to drive the phase transition. Depending on the

cavity parameters (e.g., the detuning between cavity and

external pump laser), the photon fluctuations can either sup-
press or enhance atomic fluctuations and hopping, therefore

pushing the system toward or away from the MI or SF states.

Accordingly, as depicted in Fig. 43, the position of the
SF-to-MI phase transition in a cavity optical lattice potential

can be shifted (keeping the mean potential depth constant)

toward either smaller or larger values of the collisional atom-
atom interaction strengths, depending on whether the pump-

cavity detuning is chosen positive [Fig. 43(a)] or negative

[Fig. 43(b)].
Figure 44 demonstrates the importance of the photon

number fluctuations in a quantum potential by testing the

FIG. 43 (color online). Mott insulator (MI) to superfluid (SF)

phase transition in a cavity optical lattice. The probabilities pMI

and pSF to find the atoms in the states j�MIi and j�SFi as a function
of the dimensionless 1D on-site interaction strength g1D=dER (d is

the lattice constant, ER ¼ ℏ!R is the recoil energy) are compared

for two cases: first, for an optical lattice sustained by the quantum

field of a cavity mode (Vcl ¼ 0), and second, for a purely classical

optical lattice (�1 ¼ 0). We choose � such that in each of the two

examples (a) and (b) both potentials have equal depth for zero on-

site interaction g1D. The quantum (QM) and classical (class) cases

are depicted with solid and dashed lines, respectively. Parameters

are ðU0; �; �Þ ¼ ð�1; 1=
ffiffiffi
2

p
;
ffiffiffiffiffiffiffiffi
5; 5

p Þ!R. The detuning between the

probe and dispersively shifted cavity frequencies affects the position

of the phase transition. In (a) [(b)] this detuning is positive, �C �
U0N ¼ � (negative �C �U0N ¼ ��) and the transition point is

shifted toward smaller (higher) interaction strengths in comparison

to that in a classical lattice. From Maschler, Mekhov, and Ritsch,

2008.

FIG. 42. Phase diagram with overlapping Mott insulator states.

Boundaries of different Mott lobes (shaded regions) as a function of

the rescaled chemical potential ~
 and the inverse of the pump

strength � (in units of �) in the 1D cavity lattice potential of

K ¼ 50 sites. Parameters are (a) ð�C;U0Þ ¼ ð2�;�2�Þ and

(b) ð�C;U0Þ ¼ ð0; 2�Þ. The Mott lobes are labeled by the number

of atoms per site n0. The dashed lines show the boundaries of zones

which are hidden. Outside the shaded parameter regions, the state of

the system is superfluid in most cases. From Larson, Damski et al.,

2008.
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stability of the Mott phase in a potential of fixed average
depth but different mean photon number. While in an almost
classical field (highly excited coherent state with many pho-
tons) the Mott phase is stable, photon number fluctuations
(uncertainty) inherent in a weak coherent state of few photons
enhance tunneling and decay of the perfect order.

This is explicitly shown in Fig. 44 depicting the decay of
an initially prepared perfectly ordered atomic state. We
choose different mean-intracavity photon numbers and keep
the average depth of the potential constant by readjusting the
coupling strength U0. In the classical limit (very large photon
number and small atom-cavity coupling), the system remains
in the initially prepared MI state. For smaller photon numbers
�n� 20, the initial MI state only slowly degrades in time.
However, when the photon number fluctuations become
comparable to the mean, i.e., for mean photon numbers as
small as �n� 1, the system quickly escapes from the MI state
via fluctuation induced tunneling. Note that in order to keep
the average optical potential constant, lower photon numbers
are connected to a larger potential per photon, so that the
potential fluctuations are additionally enhanced at low photon
numbers. The classical limit is also approached in the bad-
cavity limit � 	 !R, where number fluctuations occur so fast
that particles see only the average and do not have the time to
tunnel during an intensity fluctuation.

The quantum properties of the cavity light become
predominant if already single intracavity photons create an
optical potential of considerable depth, capable of trapping
numerous atoms. As quantum mechanics allows for the
existence of superpositions of photon number states, one
may obtain superpositions of several potentials with different
depths (Horak and Ritsch, 2001b).

The complete phase diagram of ultracold atoms in two-
band BH models coupled to a cavity light field has been
calculated by Silver et al. (2010) by means of a variational

approach and the analogy to the Dicke-model superradiant
phase transition has been pointed out; see Sec. IV.D.2.

b. Self-organization within the Hubbard-model approach

A possible influence of quantum statistical properties
on the spatial self-organization process, described in
Secs. III.B.1 and IV.D, can be studied within the framework
of an extended BH model. For simplicity, the geometry is
modified in comparison with the generic case of self-
organization, as depicted schematically in Fig. 45. Atoms
are confined in a static optical lattice potential which is
oriented perpendicular to the cavity axis. As before, large
atom-laser detuning and negligible atomic saturation are as-
sumed. The laser fields providing the optical lattice potential
are considered to be tuned close to resonance with a cavity
mode, therefore inducing coherent cavity driving via Rayleigh
scattering off the atoms. The single-atom Hamiltonian corre-
sponding to this geometry reads (Maschler et al., 2007)

H ¼ p2

2m
þ Vclcos

2ðkxÞ � ℏð�C � U0Þaya

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏVclU0

p
cosðkxÞðaþ ayÞ; (77)

where Vcl denotes the depth of the static lattice potential, �C

the detuning between the lattice laser and the cavity resonance,
and U0 the light shift of the cavity resonance frequency per
atom. In a simple and intuitive picture the dynamic cavity field
plays the role of a seesaw potential. Interference between the
cosðkxÞ potential, generated through photon scattering, and the
static cos2ðkxÞ potential determines the overall potential felt
by the atoms. The spatial symmetry of the system allows
for the emergence of two possible ordered configurations,
with all atoms residing at either odd [ cosðkxÞ ¼ 1] or even
[ cosðkxÞ ¼ �1] lattice sites.

FIG. 44 (color online). Effect of photon number granularity upon

the Mott insulator (MI) state for two atoms in a cavity-sustained

optical lattice. The time evolution of the occupation probability pMI

of the MI state is shown for various mean-intracavity photon

numbers n. The atom-cavity coupling g is adjusted such that the

average potential depth (8ER) is identical for all curves, whereas for

a static optical lattice potential of equal depth the system remains in

the initially prepared MI state (solid line); photon number fluctua-

tions for low n deplete the MI state. From Maschler, Mekhov, and

Ritsch, 2008.

(a)

(b)

FIG. 45 (color online). Self-organization as a quantum seesaw

effect. (a) Atoms that are trapped in a free-space 1D lattice potential

with two adjacent sites (left and right) tunnel with rate J between

the corresponding Wannier states jli and jri. (b) Coupling the atoms

in addition to the field of a cavity whose axis is perpendicular to the

optical lattice induces light scattering between the optical lattice

laser and the cavity field with opposite phases from the two sites.

The modified potential resulting from the interference of the lattice

field and the cavity field discriminates the two sites and causes

positive feedback and atomic ordering into one of them. The process

starts by spontaneous symmetry breaking and depends on the

quantum statistics of the initially prepared many-body state.
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The many-body Bose-Hubbard Hamiltonian, Eq. (70),
adapted to this scheme reads

H ¼ X
i;j

Ji;jb
y
i bj � ℏ

�
�C � U0

X
i

byi bi
�
aya

þ ðaþ ayÞX
i;j

ℏ~Ji;jb
y
i bj: (78)

Here the standard matrix elements for the kinetic and
potential energy p2=2mþ Vclcos

2ðkxÞ between sites i and j
are denoted by Ji;j, whereas ~Ji;j gives the matrix elements of

the interference term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0Vcl=ℏ

p
cosðkxÞ. On-site interactions

are neglected at this point and, for consistency, we require
weak coupling per atom, i.e., ℏjU0j � jVclj.

Essential dynamical properties of this system beyond
the mean-field approximation become evident already for
two atoms. Monitoring the microscopic physics of self-
organization as shown in Fig. 46, the process resembles the
decay of a homogeneously filled lattice with one particle per
site on average to the self-ordered state, where both particles
occupy even or odd sites. Following the decay of the proba-
bility for the two atoms sitting in different wells (hnlnri), we
first note that the formation of the self-organized state is
accompanied by a fast growth of atom-field entanglement.
Most importantly, however, one finds a striking dependence
of the self-organization dynamics on the initial quantum
fluctuations. A SF state with both atoms prepared in the

symmetric superposition of the two wells 1
2 ðbyl þ byr Þ2j0i

self-organizes much faster than a perfectly ordered MI state

byl b
y
r j0i with exactly one atom per well. In the latter case, the

cavity field remains in the vacuum state until a tunneling
event induces atomic coherence between the left and right

lattice sites, triggering the decay of the MI state toward the

self-organized state.
Under some approximations this model can be extrapo-

lated to the thermodynamic limit where quantum phase tran-

sitions similar to the one predicted in the mean-field approach

can be studied. Among various other properties this leads to

the coexistence of diagonal long-range order and long-range

coherence (Vidal et al., 2010), indicating new phases to

appear in the gaps between Mott-like states with different

integer filling factors.

c. Ring cavity

When several independent cavity modes are dynamically

interacting with the atoms, not only the depth but also the

shape and the spatial periodicity of the potential can change. In

the generic case of a ring cavity the depth and the longitudinal

position of the lattice are dynamical.While already in standard

optical lattices the validity of the lowest-band assumption is

often doubtful and corrections are necessary, this approxima-

tion loses its meaning in a ring cavity. Expansions based on a

single set of Wannier functions cannot be consistently formu-

lated since the lowest-band Wannier functions for a given

position contain contributions from a large number of higher

bands for a slightly shifted position. Hence small lattice shifts

immediately involve many higher-order bands.
The simplest example of two cavity modes sustained by a

ring cavity reveals that a naive crude truncation of the Bose-

Hubbard model with respect to the pumped cosine mode at

the lowest band decouples the atoms from the associated sine

mode. This immediately eliminates central dynamical effects

of the system as overall momentum conservation and non-

local correlated hopping (Niedenzu et al., 2010).
As an example, Fig. 47 shows that a quantum jump in the

lattice photon number is accompanied by a sudden change of

FIG. 46 (color online). Entanglement-assisted self-organization in

a quantum optical lattice potential; see Fig. 45. Atom-light entan-

glement (solid lines), mean cavity photon number (dot-dashed

lines), and the two-site atom-atom correlation function (dotted lines)

for two atoms in two adjacent lattice wells, denoted by left (l) and
right (r). Lines with extra circles show the case of exactly one atom

in each well at the start (MI state), while the other lines show the

evolution for an initially symmetric superposition state for each

atom (SF state). The parameters are U0 ¼ �2�, �C ¼ �6�,

J ¼ �=100, and ~J ¼ 1:6�. From Maschler et al., 2007.

FIG. 47 (color online). Correlated photon jumps and tunneling of

an atom in a symmetrically driven ring cavity. The sample trajec-

tory, showing the position expectation value hkxi (left axis) and the

mean photon number hayai of the undriven sine mode (right axis),

presents two quantum jumps occurring at !Rt � 70 and � 100.
They lead to a simultaneous change of the photon number and the

atomic band excitation corresponding to different tunnel oscillation

frequencies. In a higher band much faster oscillations are obtained

between neighboring sites. This generates a higher effective

hopping amplitude and heating on average. The parameters are

U0 ¼ �2!R, 
c ¼
ffiffiffi
6

p
(field amplitude of the driven cosine mode),

�C ¼ U0 � �, and � ¼ 500!R. From Niedenzu et al., 2010.
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the tunneling rate between adjacent sites. After the second
jump in the trajectory shown in the figure, the system returns
to the original mean values; however, both the position and
photon number quantities exhibit much larger noise, which
demonstrates the effect of heating stemming from the photon
number fluctuations.

V. OUTLOOK

After almost two decades of active research in optical
cavity QED with cold and ultracold atoms, initially domi-
nated by theoretical investigations, the field presently exhibits
fast growth with several experimental groups demonstrating
spectacular effects. Single atoms are routinely cavity cooled
and trapped over seconds within optical high-finesse resona-
tors, providing a well-controlled quantum system for quan-
tum information science. Ultracold quantum gases prepared
in magnetic or optical traps are now reliably coupled to high-
quality cavity modes. Even in the far dispersive regime, these
systems are governed by strong backaction effects of the
collective atomic motion on the cavity field degrees of free-
dom. Cavity decay offers a unique channel to monitor the
complex coupled atom-light dynamics nondestructively and
in real time. Many central atomic variables can be accessed
by quantum nondemolition measurements which minimize
quantum backaction.

With the aim of trapping and cooling ensembles, nano-
scopic and even microscopic particles or arrays of thin mem-
branes, the research field of cavity QED, overlaps and unifies
more and more with the rapidly growing field of optome-
chanics (Stamper-Kurn, 2012). Trapping and cooling arrays
of membranes in cavities is only one striking example
(Xuereb, Genes, and Dantan, 2012). Practical applications
such as ultrasensitive detectors of mass, acceleration, or
magnetic fields or even tests of general relativity seem within
the range of current technology.

Initiated by theoretical studies and early experiments with
cold atomic ensembles, a nonequilibrium quantum phase
transition between a superfluid and a supersolid phase has
been investigated experimentally. Recently, theoretical inves-
tigations opened new directions and possibilities toward con-
trolled preparation and investigations of the physics of spin
glasses, more complex supersolid and superglass phases
(Gopalakrishnan, Lev, and Goldbart, 2012; Strack and
Sachdev, 2011). Further prominent solid-state Hamiltonians
involving phonons or polarons could be studied with unpre-
cedented control and observation possibilities (Mekhov and
Ritsch, 2012).

A recent breakthrough experiment demonstrating subrecoil
cavity cooling toward quantum degeneracy (Wolke et al.,
2012) opens the prospect of replacing evaporative cooling
techniques by cavity cooling and direct preparation of exotic
quantum states from a thermal gas. This also paves the way
toward implementing a continuous atom laser as a new tool in
ultracold atom physics (Salzburger and Ritsch, 2007).

Still, important challenges such as cooling and trapping of
molecular samples or large suspended objects have not been
experimentally demonstrated. The prospects of multispecies
implementations in multimode cavity environments still have
to be fully evaluated. Apart from this point, experiments seem

ahead of theoretical and numerical simulation possibilities,
where theory has to be improved and better suited models
need to be developed.

For a long term vision, cavity-sustained light fields allow
one to couple hybrid systems of very different physical nature
such as superconducting qubits, cold quantum gases, and
micromechanical oscillators without destroying quantum
coherence of the systems, brought about by any classical
coupling of such systems. In this way cavity-based setups
with ultracold gases could develop into an important building
block for quantum information processing or other quantum-
based future technologies (Henschel et al., 2010) or a route to
an even better atomic lattice clock (Nicholson et al., 2012).
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Figueroa, E., M. Mücke, J. Bochmann, C. Hahn, K. Murr, S. Ritter,

C. Villas-Boas, and G. Rempe, 2011, in Quantum

Communication, Measurement and Computing (QCMC), edited

by T. Ralph and P. K. Lam, AIP Conf. Proc. No. 1363 (AIP,

New York), p. 389.

Fischer, T., P. Maunz, P.W.H. Pinkse, T. Puppe, and G. Rempe,

2002, Phys. Rev. Lett. 88, 163002.

Fischer, T., P. Maunz, T. Puppe, P.W.H. Pinkse, and G. Rempe,

2001, New J. Phys. 3, 11.

Fisher, M. P.A., P. B. Weichman, G. Grinstein, and D. S. Fisher,

1989, Phys. Rev. B 40, 546.

Gangl, M., P. Horak, and H. Ritsch, 2000, J. Mod. Opt. 47, 2741.

Gangl, M., and H. Ritsch, 1999, Phys. Rev. A 61, 011402.

Gangl, M., and H. Ritsch, 2000, Phys. Rev. A 61, 043405.

Gangl, M., and H. Ritsch, 2001, Phys. Rev. A 64, 063414.

Gardiner, C.W., and P. Zoller, 2004, Quantum Noise: A Handbook

Of Markovian And Non-markovian Quantum Stochastic Methods

with Applications to Quantum Optics (Springer, Berlin/

Heidelberg), 3rd ed.

Gardiner, S. A., K.M. Gheri, and P. Zoller, 2001, Phys. Rev. A 63,

051603.

Genes, C., H. Ritsch, and D. Vitali, 2009, Phys. Rev. A 80, 061803.

Genes, C., D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer,

2008, Phys. Rev. A 77, 033804.

Gigan, S., H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B.

Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A.

Zeilinger, 2006, Nature (London) 444, 67.

Giorgini, S., L. P. Pitaevskii, and S. Stringari, 2008, Rev. Mod. Phys.

80, 1215.

598 Ritsch et al.: Cold atoms in cavity-generated dynamical . . .

Rev. Mod. Phys., Vol. 85, No. 2, April–June 2013

http://dx.doi.org/10.1016/0030-4018(95)00585-4
http://dx.doi.org/10.1103/PhysRevA.50.1716
http://dx.doi.org/10.1103/PhysRevLett.97.083602
http://dx.doi.org/10.1103/PhysRevLett.98.193601
http://dx.doi.org/10.1103/PhysRevLett.108.133601
http://dx.doi.org/10.1103/PhysRevA.82.041804
http://dx.doi.org/10.1038/nature06120
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1038/nature11325
http://dx.doi.org/10.1038/nature11325
http://dx.doi.org/10.1103/PhysRevLett.65.976
http://dx.doi.org/10.1103/PhysRevA.73.063414
http://dx.doi.org/10.1103/PhysRevLett.91.130404
http://dx.doi.org/10.1103/PhysRevLett.106.203601
http://dx.doi.org/10.1016/0375-9601(73)90679-8
http://dx.doi.org/10.1016/0375-9601(73)90679-8
http://dx.doi.org/10.1103/PhysRevLett.45.75
http://dx.doi.org/10.1103/PhysRevLett.90.063003
http://dx.doi.org/10.1103/PhysRevLett.90.063003
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1016/j.physa.2006.11.078
http://dx.doi.org/10.1103/PhysRevA.84.055802
http://dx.doi.org/10.1103/PhysRevA.84.055802
http://dx.doi.org/10.1103/PhysRevA.81.053833
http://dx.doi.org/10.1103/PhysRevA.75.023812
http://dx.doi.org/10.1103/PhysRevA.75.023812
http://dx.doi.org/10.1103/PhysRevA.79.043801
http://dx.doi.org/10.1103/PhysRevA.80.011801
http://dx.doi.org/10.1103/RevModPhys.70.685
http://dx.doi.org/10.1103/PhysRevA.51.1650
http://dx.doi.org/10.1103/PhysRevA.51.1650
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/RevModPhys.70.707
http://dx.doi.org/10.1038/nature06331
http://dx.doi.org/10.1103/RevModPhys.74.875
http://dx.doi.org/10.1103/RevModPhys.74.875
http://dx.doi.org/10.1103/PhysRevLett.72.3017
http://dx.doi.org/10.1103/PhysRevLett.72.3017
http://dx.doi.org/10.1103/PhysRevLett.93.083601
http://dx.doi.org/10.1103/PhysRevLett.93.083601
http://dx.doi.org/10.1088/0022-3700/18/8/019
http://dx.doi.org/10.1140/epjd/e2007-00301-8
http://dx.doi.org/10.1140/epjd/e2007-00301-8
http://dx.doi.org/10.1103/PhysRevA.83.052324
http://dx.doi.org/10.1103/PhysRevA.83.052324
http://dx.doi.org/10.1016/S0378-4371(96)00395-0
http://dx.doi.org/10.1103/PhysRevLett.76.2049
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.63.013401
http://dx.doi.org/10.1088/0953-4075/34/2/306
http://dx.doi.org/10.1103/PhysRevLett.89.253003
http://dx.doi.org/10.1364/JOSAB.20.001098
http://dx.doi.org/10.1364/JOSAB.20.001098
http://dx.doi.org/10.1103/PhysRevA.66.043406
http://dx.doi.org/10.1103/PhysRevA.66.043406
http://dx.doi.org/10.1103/PhysRevLett.92.103601
http://dx.doi.org/10.1103/PhysRevLett.92.103601
http://dx.doi.org/10.1103/PhysRevLett.95.033002
http://dx.doi.org/10.1103/PhysRevA.67.051401
http://dx.doi.org/10.1103/PhysRevA.67.051401
http://dx.doi.org/10.1103/PhysRevA.69.033403
http://dx.doi.org/10.1103/PhysRevA.69.033403
http://dx.doi.org/10.1103/PhysRevA.49.1337
http://dx.doi.org/10.1103/PhysRevLett.88.163002
http://dx.doi.org/10.1088/1367-2630/3/1/311
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1080/09500340008232194
http://dx.doi.org/10.1103/PhysRevA.61.011402
http://dx.doi.org/10.1103/PhysRevA.61.043405
http://dx.doi.org/10.1103/PhysRevA.64.063414
http://dx.doi.org/10.1103/PhysRevA.63.051603
http://dx.doi.org/10.1103/PhysRevA.63.051603
http://dx.doi.org/10.1103/PhysRevA.80.061803
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215


Gopalakrishnan, S., B. L. Lev, and P.M. Goldbart, 2009, Nat. Phys.

5, 845.

Gopalakrishnan, S., B. L. Lev, and P.M. Goldbart, 2010, Phys. Rev.

A 82, 043612.

Gopalakrishnan, S., B. L. Lev, and P.M. Goldbart, 2011, Phys. Rev.

Lett. 107, 277201.

Gopalakrishnan, S., B. L. Lev, and P.M. Goldbart, 2012, Philos.

Mag. 92, 353.

Gordon, J. P., and A. Ashkin, 1980, Phys. Rev. A 21, 1606.

Grangier, P., and J.-Ph. Poizat, 1998, Eur. Phys. J. D 1, 97.

Grießer, T., W. Niedenzu, and H. Ritsch, 2012, New J. Phys. 14,

053031.

Grießer, T., and H. Ritsch, 2011, Opt. Express 19, 11 242.

Grießer, T., H. Ritsch, M. Hemmerling, and G. R.M. Robb, 2010,

Eur. Phys. J. D 58, 349.

Grimm, R., M. Weidemüller, and Y. B. Ovchinnikov, 2000, Adv. At.

Mol. Opt. Phys. 42, 95.

Gross, M., and S. Haroche, 1982, Phys. Rep. 93, 301.

Guerlin, C., J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr,

M. Brune, J.-M. Raimond, and S. Haroche, 2007, Nature

(London) 448, 889.

Gupta, S., K. L. Moore, K.W. Murch, and D.M. Stamper-Kurn,

2007, Phys. Rev. Lett. 99, 213601.

Happer, W., 1972, Rev. Mod. Phys. 44, 169.

Haroche, S., 1992, in Fundamental Systems in Quantum Optics,

Proceedings of the Les Houches Summer School, Session LIII,

edited by J. Dalibard, J.-M. Raimond, and J. Zinn-Justin (North-

Holland, Amsterdam), p. 165.

Hechenblaikner, G., M. Gangl, P. Horak, and H. Ritsch, 1998, Phys.

Rev. A 58, 3030.

Henschel, K., J. Majer, J. Schmiedmayer, and H. Ritsch, 2010, Phys.

Rev. A 82, 033810.

Hepp, K., and E.H. Lieb, 1973, Ann. Phys. (N.Y.) 76, 360.

Herskind, P. F., A. Dantan, J. P. Marler, M. Albert, and M. Drewsen,

2009, Nat. Phys. 5, 494.

Hood, C. J., M. S. Chapman, T.W. Lynn, and H. J. Kimble, 1998,

Phys. Rev. Lett. 80, 4157.

Hood, C. J., T.W. Lynn, A. C. Doherty, A. S. Parkins, and H. J.

Kimble, 2000, Science 287, 1447.

Horak, P., S.M. Barnett, and H. Ritsch, 2000, Phys. Rev. A 61,

033609.

Horak, P., G. Hechenblaikner, K.M. Gheri, H. Stecher, and H.

Ritsch, 1997, Phys. Rev. Lett. 79, 4974.

Horak, P., and H. Ritsch, 2001a, Phys. Rev. A 63, 023603.

Horak, P., and H. Ritsch, 2001b, Eur. Phys. J. D 13, 279.

Horak, P., and H. Ritsch, 2001c, Phys. Rev. A 64, 033422.

Horak, P., H. Ritsch, T. Fischer, P. Maunz, T. Puppe, P.W.H. Pinkse,

and G. Rempe, 2002, Phys. Rev. Lett. 88, 043601.

Imamoglu, A., H. Schmidt, G. Woods, and M. Deutsch, 1997, Phys.

Rev. Lett. 79, 1467.

Inouye, S., A. P. Chikkatur, D.M. Stamper-Kurn, J. Stenger, D. E.

Pritchard, and W. Ketterle, 1999, Science 285, 571.

Jayich, A., J. Sankey, A. Petrenko, and J. Harris, 2011, in Quantum

Electronics and Laser Science Conference (Optical Society of

America) p. QThM3 [http://www.opticsinfobase.org/abstract.cfm?

URI=QELS-2011-QThM3].

Jayich, A.M., J. C. Sankey, B.M. Zwickl, C. Yang, J. D. Thompson,

S.M. Girvin, A.A. Clerk, F. Marquardt, and J. G. E. Harris, 2008,

New J. Phys. 10, 095008.

Jaynes, E. T., and F.W. Cummings, 1963, Proc. IEEE 51, 89.

Jing, H., D. S. Goldbaum, L. Buchmann, and P. Meystre, 2011,

Phys. Rev. Lett. 106, 223601.

Kampschulte, T., W. Alt, S. Brakhane, M. Eckstein, R. Reimann,

A. Widera, and D. Meschede, 2010, Phys. Rev. Lett. 105, 153603.

Kanamoto, R., and P. Meystre, 2010, Phys. Rev. Lett. 104, 063601.

Keeling, J., J. Bhaseen, and B. Simons, 2010a, Physics 3, 88.

Keeling, J., M. J. Bhaseen, and B.D. Simons, 2010b, Phys. Rev.

Lett. 105, 043001.

Keller, M., B. Lange, K. Hayasaka, W. Lange, and H. Walther, 2004,

Nature (London) 431, 1075.

Ketterle, W., 2002, Rev. Mod. Phys. 74, 1131.

Khudaverdyan, M., W. Alt, I. Dotsenko, T. Kampschulte, K.

Lenhard, A. Rauschenbeutel, S. Reick, K. Schörner, A. Widera,

and D. Meschede, 2008, New J. Phys. 10, 073023.

Kimble, H. J., 1998, Phys. Scr. T76, 127.

Kippenberg, T. J., and K. J. Vahala, 2008, Science 321, 1172.

Kleckner, D., and D. Bouwmeester, 2006, Nature (London) 444, 75.

Klinner, J., M. Lindholdt, B. Nagorny, and A. Hemmerich, 2006,

Phys. Rev. Lett. 96, 023002.

Kónya, G., G. Szirmai, and P. Domokos, 2011, Eur. Phys. J. D 65,

33.

Kowalewski, M., G. Morigi, P.W.H. Pinkse, and R. de Vivie Riedle,

2011, Phys. Rev. A 84, 033408.

Kowalewski, M., G. Morigi, P.W.H. Pinkse, and R. de Vivie-Riedle,

2007, Appl. Phys. B 89, 459.

Kruse, D., M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann,
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