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Magnetic clusters, i.e., assemblies of a finite number (between two or three and several hundred) of

interacting spin centers which are magnetically decoupled from their environment, can be found in

many materials ranging from inorganic compounds and magnetic molecules to artificial metal

structures formed on surfaces and metalloproteins. Their magnetic excitation spectra are determined

by the nature of the spin centers and of the magnetic interactions, and the particular arrangement of

the mutual interaction paths between the spin centers. Small clusters of up to four magnetic ions are

ideal model systems in which to examine the fundamental magnetic interactions, which are usually

dominated by Heisenberg exchange, but often complemented by anisotropic and/or higher-order

interactions. In large magnetic clusters, which may potentially deal with a dozen or more spin

centers, there is the possibility of novel many-body quantum states and quantum phenomena. In this

review the necessary theoretical concepts and experimental techniques to study the magnetic cluster

excitations and the resulting characteristic magnetic properties are introduced, followed by

examples of small clusters, demonstrating the enormous amount of detailed physical information

that can be retrieved. The current understanding of the excitations and their physical interpretation

in the molecular nanomagnets which represent large magnetic clusters is then presented, with a

section devoted to the subclass of single-molecule magnets, distinguished by displaying quantum

tunneling of the magnetization. Finally, there is a summary of some quantum many-body states

which evolve in magnetic insulators characterized by built-in or field-induced magnetic clusters.

The review concludes by addressing future perspectives in the field of magnetic cluster excitations.
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I. INTRODUCTION

Magnetic clusters are defined as systems which consist of a
finite number N of interacting spins that are magnetically
isolated from the environment, where the number N may be
as small as 2 or can be several hundreds. Larger entities of
thousands to a few millions of atoms, which are usually
referred to as nanoscale or ultrafine particles, are excluded
from the present review. Magnetic clusters either occur natu-
rally in pure compounds, where the magnetic isolation of the
clusters is provided by nonmagnetic ligands, or are formed
artificially, e.g., in solid solutions of magnetic and nonmag-
netic compounds. Prototypes of pure compounds are molecu-
lar nanomagnets in which a polynuclear magnetic metal core
is embedded in a diamagnetic ligand matrix. Examples asso-
ciated with cooperative systems are diluted magnetic com-
pounds, in which the magnetic ions are randomly distributed,
so that different types of magnetic clusters (N-mers,
N ¼ 1; 2; 3; . . . ) are simultaneously present.

Many of the characteristic physical properties of magnetic
clusters are determined by their magnetic excitation spectra
which reflect the nature of the fundamental magnetic inter-
actions between the spins in a cluster. The latter can be
quantitatively accounted for by a spin Hamiltonian in which
a bilinear Heisenberg-type exchange interaction is usually the
dominant term, often complemented by additional terms
describing the anisotropic and/or higher-order interactions.
As long as the number N of spins is reasonably small, exact
analytical solutions of the spin Hamiltonian can be obtained.
Accordingly, small magnetic clusters are ideal model systems
in which to experimentally explore the limitations of the
theoretical models. However, the synthesis strategies to
produce molecular magnetic materials have advanced enor-
mously in recent years, making available bounded molecular
magnetic clusters with the number N of magnetic centers
varying from one to several dozens; the record currently
stands at N ¼ 84 in the toruslike molecule Mn84
(Tasiopoulos et al., 2004). In this new class of magnetic
materials, now commonly called molecular nanomagnets
(Gatteschi, Sessoli, and Villain, 2006), clusters with more

than four metal ions are rather the rule than the exception,

shifting the main scientific challenge away from that of

studying the nature of the basic interactions toward that of

exploring the possible consequences of having such inter-

actions in a lattice of exchange-coupled spin centers.
In the past decade, magnetic cluster systems have become

a topic of increasing interest and relevance in condensed

matter science. They are not only interesting in themselves

for determining the origin and the size of the fundamental

magnetic interactions, but they also have important applica-

tions in both technology and science. Molecular nanomagnets

are currently considered among the most promising candi-

dates as the smallest nanomagnetic units capable of storing

and processing quantum information (Troiani et al., 2005). In

particular, magnetic molecules with large-spin ground states

and negative axial anisotropy or single-molecule magnets

were found to exhibit outstanding properties such as slow

relaxation of the magnetization and stepped magnetic hys-

teresis curves due to quantum tunneling of the magnetization

at low temperatures (Chudnovsky and Tejada, 1998; Christou

et al., 2000; Gatteschi and Sessoli, 2003).
Another emerging field concerns transition-metal perov-

skites in which magnetic polarons evolve upon hole doping

and behave like magnetic nanoparticles embedded in a non-

magnetic matrix (Phelan et al., 2006). Furthermore, we

mention the remarkable observations of quantum phase

transitions, Bose-Einstein condensation, and field-induced

three-dimensional magnetic ordering in weakly interacting

antiferromagnetic dimer compounds (Sachdev, 1999;

Giamarchi, Rüegg, and Tchernyshyov, 2008) as well as the

attractive phenomenon of spin-Peierls dimerization in both

organic and inorganic compounds (Bray et al., 1975).

Recently, it became possible to fabricate magnetic cluster

systems directly on surfaces using scanning microscope tech-

niques (Hirjibehedin, Lutz, and Heinrich, 2006). Even in

biology, magnetic metal clusters are important subunits.

Polynuclear iron clusters are contained in proteins such as

adrenodoxin and ferredoxin, which are involved in the photo-

synthetic process that converts light energy into chemical

energy based on electron transfer mechanisms (Griffith,

1972). All these systems have a common property, namely,

the presence of magnetic clusters, whose characterization is

therefore a key issue in both theoretical and experimental

investigations.
An important class of magnetic cluster systems is com-

prised of magnetic nanoparticles containing a few hundreds

of atoms produced by, e.g., sputtering, inert-gas condensation

techniques, direct ball milling, or microemulsion-based syn-

theses. In principle, the spin dynamics exhibits many features

similar to those of the molecular nanomagnets, such as super-

paramagnetic relaxation and quantized spin-wave states.

Pioneering neutron scattering experiments in this area have

been performed for Fe nanoparticles (Hennion et al., 1994)

and for nanocrystallites of hematite (Hansen et al., 1997;

Kuhn et al., 2006). In practice, the interpretation of experi-

mental data on magnetic nanoparticles is made difficult by

line broadening effects due to variations in size and form, and

the presence of a variety of surface spin states. Any discus-

sion of the magnetic properties should consider these aspects,

and for that reason the magnetic nanoparticles are excluded
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from the present review, in particular, as excellent reviews of
the theoretical and experimental aspects exist (Hendriksen,
Linderoth, and Lindgård, 1993; Kodama, 1999).

Our main objective in this review is to introduce the theo-
retical concepts and the experimental techniques applied to the
study of magnetic cluster excitations as well as to give a
snapshot of recent developments achieved for the most im-
portant classes of materials whose properties are largely gov-
erned by the presence of magnetic clusters. The outline of this
review is as follows: Sec. II starts with a summary of the basic
terms of the underlying spin Hamiltonians and with a short
description of the most powerful experimental techniques,
followed by representative examples on small magnetic clus-
ters (dimers, trimers, and tetramers) in Sec. III to demonstrate
the enormous amount of detailed physical information result-
ing from the study of magnetic cluster excitations. Clusters
with a small number N of coupled magnetic ions are excellent
choices for this purpose, as the basic interactions are all
present in them and can be treated exactly; hence a straightfor-
ward comparison between theory and experiment is possible
with little ambiguity. This is no longer the case for the emerg-
ing field of large magnetic clusters discussed in Sec. IV, in
which the number N of magnetic centers can be as large as
several dozen, so that the interpretation and analysis of the
experimental results require the use of sophisticated tools. In
addition, novel physical aspects such as complex many-body
quantum states come into play as a consequence of the large
cluster size. An important subclass of the large magnetic
clusters will be addressed in Sec. V, namely, the single-
molecule magnets in which at low temperatures magnetic
hysteresis or slow magnetic relaxation and quantum tunneling
of the magnetization can be observed. Many methodologies
applied to large magnetic clusters have their origin in the field
of quantum spin systems which are summarized in Sec. VI for
cases where the presence of magnetic clusters is the most
important ingredient in understanding their quantum spin
properties. We conclude with a brief outlook in Sec. VII.
Given the abundant literature on the topic of magnetic cluster
excitations, this review is necessarily incomplete in terms of
both materials covered and references cited. The experimental
results were chosen according to their didactical suitability to
illustrate the concepts, including both historical data from the
pioneering time and data from today’s research.

II. BASICS

A. Spin Hamiltonian

The form of the appropriate spin Hamiltonian of magnetic
cluster systems depends on two essentially independent
terms: the nature of the interacting systems in the absence
of interactions, and the physical nature of the mechanisms
responsible for the interactions (Wolf, 1971). The total
Hamiltonian describing interacting spins can generally be
written as

Ĥ ¼ X
i

Ĥð0Þ
i þX

ij

Ĥij þ
X
i

Ĥð1Þ
i ; (1)

where Ĥð0Þ
i � Ĥij and the terms Ĥð1Þ

i may or may not be

comparable with Ĥij. The classification of different cases

depends on the eigenfunctions of Ĥð0Þ
i which provide a basis

for the description of Ĥij and Ĥð1Þ
i . Since Ĥð0Þ

i is by definition

large, we generally consider only the ground state at any time,
and this may be characterized as one of following types:

Type S: The system has negligible orbital admixtures. The
ionic spins ŝi are good quantum numbers to define the spin
Hamiltonian.

Type Q: The orbital angular momentum is quenched; thus
the spin Hamiltonian can be expressed as for type S.
However, orbital effects such as the ligand field have to be

considered in Ĥð1Þ
i .

Type L: There is orbital degeneracy (or near degeneracy)

with 2li þ 1 states. The (weak) spin-orbit coupling Ĥ ¼
�
P

i l̂i � ŝi has to be considered in Ĥð1Þ
i .

Type J: The spin-orbit coupling is large; thus the total

angular momentum ĵi ¼ l̂i þ ŝi is a good quantum number.
The spin Hamiltonian is expressed as for type-S systems

(replacing ŝi by ĵi).
Types Q and S are also known as systems with ‘‘orbitally

nondegenerate ground terms’’ and type L as systems with
‘‘orbitally degenerate ground terms’’ or ‘‘first-order orbital
angular momentum.’’ In the following we write down Ĥij and

Ĥð1Þ
i for types S and Q which constitute the large majority of

magnetic clusters studied so far.
A widely used approach to describe the spin interactions

Ĥij is the Heisenberg–Dirac–Van Vleck (HDVV) Hamiltonian

(Dirac, 1926; Heisenberg, 1926; Van Vleck, 1932),

Ĥ ¼ �2
X
i<j

Jijŝi � ŝj; (2)

where ŝi is the spin operator of the ith ion in the cluster and Jij
is the exchange parameter which couples the magnetic ions at
sites i and j. In the literature the HDVV Hamiltonian is often
described as �P

Jijŝi � ŝj or þ
P

Jijŝi � ŝj, in contrast to the

convention adopted here. Hence the exchange parameters
given in this work are always adjusted to be in agreement

with Eq. (2). Ĥ commutes with the total spin Ŝ ¼ P
iŝi; thus S

and M are good quantum numbers and the eigenfunctions
can be written as j�SMi, where�S � M � S and � stands for
any other quantum numbers required for distinguishing the
spin multiplets unambiguously. Often labels are omitted for
convenience. Any anisotropic term added to the HDVV
Hamiltonian Eq. (2) lifts the M degeneracy of the spin
states jSMi.

The exchange coupling may not always be isotropic; thus
we extend Eq. (2) to include exchange anisotropy,

Ĥ ¼ �2
X
i<j

ðJxxij ŝixŝjx þ Jyyij ŝiyŝjy þ Jzzij ŝizŝjzÞ: (3)

A special case of anisotropic spin-spin coupling is provided
by the dipole-dipole interaction which is always present in
addition to the exchange interaction Eq. (2),

Ĥ ¼ X
ij

g2�2
B

R3
ij

�
ŝi � ŝj � 3

ðŝi �RijÞðŝj �RijÞ
R2
ij

�
; (4)

where g is the Landé splitting factor, �B is the Bohr magne-
ton, and Rij ¼ Ri �Rj is the vector defining the distance

between the spins at sites i and j located at Ri and Rj.
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In most magnetic clusters the typical distance between metal
ions is 3.0–3.5 Å yielding g2�2

B=R
3
ij � 0:1 K. The dipole-

dipole interaction is hence normally much smaller than the
HDVV interaction and can often be disregarded, although in
some cases it contributes appreciably to the overall magnetic
anisotropy (Abbati et al., 2001). Another type of exchange
anisotropy is described by the Dzyaloshinski-Moriya interac-
tion (Dzyaloshinski, 1958; Moriya, 1960), which, however,
vanishes for the case of inversion symmetry,

Ĥ ¼ X
i<j

dij � ðŝi � ŝjÞ; (5)

where dij is known as the Dzyaloshinski-Moriya vector.

The HDVV Hamiltonian Eq. (2) is based on the bilinear
spin permutation operator (Herring, 1966)

P̂ij ¼ 1
2ð1þ ŝi � ŝjÞ: (6)

A more complete Hamiltonian takes permutations of more
than two spins into account. The relevant terms up to second
order (biquadratic terms) are defined by

P̂2
ij ¼ 1

4½1þ 2ŝi � ŝj þ ðŝi � ŝjÞ2�; (7)

P̂ijP̂jk ¼ 1
4½1þ ŝi � ŝj þ ŝj � ŝk þ ðŝi � ŝjÞðŝj � ŝkÞ�; (8)

P̂ijP̂kl ¼ 1
4½1þ ŝi � ŝj þ ŝk � ŝl þ ðŝi � ŝjÞðŝk � ŝlÞ�; (9)

which refer to two-spin, three-spin, and four-spin inter-
actions, respectively.

The Hamiltonian Ĥð1Þ
i has to be introduced in essentially

two cases. For si � 1=2 systems, single-ion anisotropy must
be considered, which for the case of axial anisotropy reads

Ĥ ¼ X
i

Di

�
ŝ2iz �

1

3
siðsi þ 1Þ

�
(10)

and for planar anisotropy we have

Ĥ ¼ X
i

Eiðŝ2ix � ŝ2iyÞ; (11)

where often Di ¼ D and/or Ei ¼ E for all sites. In cases with
si � 2 higher-order anisotropy terms

Ĥ ¼ X
i

B0
4iÔ

0
4ðsiÞ þ B2

4iÔ
2
4ðsiÞ þ B4

4iÔ
4
4ðsiÞ (12)

may also have to be included, where Ôm
n ðsiÞ are Stevens

operator equivalents built up by fourth-order spin operators
(Hutchings, 1964). Finally, the action of an external magnetic
field B is described by

Ĥ ¼ g�B

X
i

B � ŝi ¼ g�BB � Ŝ: (13)

For systems of types S and Q, the HDVV Hamiltonian
dominates usually over the anisotropic terms in the total spin
Hamiltonian, and a first-order perturbation treatment of the
anisotropy is an excellent starting point (strong-exchange
limit) (Bencini and Gatteschi, 1990). The energy spectrum
is then structured into spin multiplets with a definite value
of S for each of them, and the eigenfunctions are well
described by the j�SMi spin functions. The energies of the
spin multiplets are governed by the HDVV Hamiltonian

(exchange splitting), and each spin multiplet is further split
by the magnetic anisotropy (anisotropy splitting or zero-field
splitting, ZFS). The possible transitions may be distinguished
into intermultiplet (�S � 0) and intramultiplet (�S ¼ 0).
Unless stated otherwise, the strong-exchange limit is always
assumed.

B. Experimental techniques

The spin interactions discussed in the preceding section
give rise to discrete energy levels and wave functions which
can be determined by a variety of experimental methods. The
most powerful techniques are certainly spectroscopic meth-
ods such as inelastic neutron scattering (INS) and optical
spectroscopies, which allow a direct determination of the
spin states. Some information about the spin states can also
be obtained by resonance techniques, e.g., by electron para-
magnetic resonance (EPR) experiments. Information on the
spin states is also contained intrinsically in the thermody-
namic magnetic properties; however, extraction of reliable
parameters is not always possible due to the integral nature of
these properties.

In the following the two spectroscopic methods mainly
applied to the study of magnetic cluster systems are briefly
introduced. These include INS and optical spectroscopies,
which both have their merits and should be considered as
complementary methods. Optical spectroscopies, on the one
hand, can be applied to very small samples of the order of
10 �m3; they provide highly resolved spectra so that small
line shifts and splittings can be detected, and they cover a
large energy range so that intermultiplet transitions can easily
be observed. Neutron scattering, on the other hand, is not
restricted to particular points in reciprocal space, i.e., inter-
actions between the spins can be observed through the wave
vector dependence, the peak intensities can easily be inter-
preted on the basis of the wave functions of the spin states,
and data can be taken over a wide temperature range which is
important when studying linewidth phenomena. Inelastic
neutron scattering as the most widely used spectroscopic
technique is described below in detail, followed by short
descriptions of optical spectroscopies and EPR techniques
as well as by a summary of the thermodynamic magnetic
properties.

1. Inelastic neutron scattering

The principal aim of an INS experiment is the determina-
tion of the probability that a neutron that is incident on the
sample with wave vector k is scattered into the state with
wave vector k0. The intensity of the scattered neutrons is thus
measured as a function of the momentum transfer

ℏQ ¼ ℏðk� k0Þ; (14)

where Q is known as the scattering vector, and the corre-
sponding energy transfer is given by

ℏ! ¼ ℏ2

2m
ðk2 � k02Þ; (15)

where m is the mass of the neutron. Equations (14) and (15)
describe the momentum and energy conservation of the
neutron scattering process, respectively. For jkj ¼ jk0j we
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have from Eq. (15) ℏ! ¼ 0, i.e., elastic scattering. For
inelastic scattering, Q can be decomposed according to
Q ¼ Gþ q, with a reciprocal lattice vector G and a wave
vector q. Inelastic neutron scattering experiments thus allow
us to measure the magnetic excitation energy at any prede-
termined point in reciprocal space, most conveniently by
triple-axis crystal spectrometry (Brockhouse, 1955). In ex-
tended systems this yields the dispersion relation ℏ!ðqÞ. In
magnetic clusters the excitations are dispersionless but the
scattering intensity shows a characteristic dependence on
momentum transfer (Q dependence, discussed later). For
INS experiments on polycrystalline samples various types
of time-of-flight (TOF) spectrometers are usually more
appropriate (Furrer, Mesot, and Strässle, 2009).

The neutron scattering probability for magnetic cluster
excitations can be derived from the master formula for
magnetic scattering (Lovesey, 1987):

d2�

d�d!
¼ CðQÞX

��

�
��� �Q�Q�

Q2

�
S��ðQ; !Þ; (16)

where

CðQÞ ¼ ð�r0Þ2 k
0

k
F2ðQÞe�2WðQÞ (17)

and S��ðQ; !Þ is the magnetic scattering function

S��ðQ; !Þ ¼ X
ij

eiQ�Rij

X
��0

p�h�jŝi�j�0i

� h�0jŝj�j�i�ðℏ!þ E� � E�0 Þ: (18)

Here � ¼ �1:91, r0 ¼ 0:282� 10�12 cm, the classical elec-
tron radius [ð�r0Þ2 ¼ 0:29 barn], FðQÞ is the dimensionless
magnetic form factor defined as the Fourier transform of the
normalized spin density associated with the magnetic ions,
exp½�2WðQÞ� is the Debye-Waller factor, and �, � ¼ x, y,
and z. j�i denotes the initial state of the scatterer, with energy
E� and thermal population factor p� [Eq. (42)], and j�0i its
final state with energy E�0 .

The essential factor in the cross section is the magnetic
scattering function S��ðQ; !Þ discussed in more detail below.

There are two further factors which govern the cross section
for magnetic neutron scattering in a characteristic way: First,
the magnetic form factor FðQÞ which usually falls off with
increasing modulus of the scattering vector Q. Second, the
polarization factor (��� �Q�Q�=Q

2) tells us that neutrons

can couple only to magnetic moments or spin fluctuations
perpendicular to Q, which unambiguously allows one to
distinguish between different polarizations (transverse and
longitudinal) of spin excitations.

The magnetic scattering function S��ðQ; !Þ contains two
important terms: First, the structure factor expðiQ �RijÞ
which directly reflects the geometry of the cluster; second,
the matrix elements h�jŝi�j�0i which determine the strength
of the transition j�i ! j�0i as well as corresponding selection
rules.

For magnetic clusters we describe the eigenstate j�i by
j�SMi. The matrix elements can then be calculated by
introducing irreducible tensor operators (ITOs) T̂1

qðsiÞ of

rank 1, which are related to the spin operators ŝi�:

T̂1
0ðsiÞ ¼ ŝiz; T̂1	1ðsiÞ ¼ 
 1ffiffiffi

2
p ðŝix 	 ŝiyÞ: (19)

In the HDVV model the states jSMi are degenerate with
respect to the magnetic quantum number M, so that
Eq. (18) has to be summed over both M and M0. Using the
Wigner-Eckart theorem

hSMjT̂1
qðsiÞjS0M0i ¼ ð�1ÞS�M

S 1 S0

�M q M0

 !

� hSkT̂1ðsiÞkS0i; (20)

we findX
MM0

hSMjT̂1
qðsiÞjS0M0ihS0M0jT̂1

q0 ðsjÞjSMi

¼ 1

3
hSkT̂1ðsiÞkS0ihS0kT̂1ðsjÞkSi: (21)

The two-row bracket ( � � � ) in Eq. (20) is a Wigner-3j symbol
(Rotenberg et al., 1959). It vanishes unless

�S � S0 � S ¼ 0;	1; (22)

�M � M0 �M ¼ 0;	1; (23)

which establish the selection rule for INS in spin clusters.
Thus, INS experiments allow us to detect not only splittings
of individual spin multiplets (�S ¼ 0), as in EPR experi-
ments (see Sec. II.B.3), but also splittings produced by
magnetic interactions (�S ¼ 	1). The evaluation of the
reduced matrix elements on the right-hand side of Eq. (21)
depends on the details or many-body structure of the spin
functions j�SMi.

Equations (18)–(21) strictly apply to magnetic cluster
systems of types S and Q. A theoretical treatment of the
scattering by L- and J-type ions was given by Johnston
(1966). However, the calculation is complicated, and we
simply quote the result for Q ! 0. In this case the cross

section measures the magnetization �̂i ¼ ��Bðl̂i þ 2ŝiÞ,
i.e., a combination of spin and orbital moments that does
not allow their separation. This clearly contrasts with mag-
netic scattering by x rays. For INS an approximate result can
be obtained for modest values of Q. We replace the spin
operator ŝi by

ŝi ¼ 1
2giĵi; (24)

where

gi ¼ 1þ jiðji þ 1Þ � liðli þ 1Þ þ siðsi þ 1Þ
2jiðj1 þ 1Þ (25)

is the Landé splitting factor.
If ! is a positive quantity in the scattering function

S��ðQ; !Þ, the neutron loses energy in the scattering process

and the system is excited from the initial state � which has
energy ℏ! lower than the final state �0. Consider now the
function S��ðQ;�!Þ, where ! is the same positive quantity.

This represents a process in which the neutron gains energy.
The transitions of the system are between the same states as
for the previous process, but now �0 is the initial state and � is
the final state. The probability of the system being initially in
the higher state is smaller by the factor expð�ℏ!=kBTÞ as
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compared to its probability of being in the lower energy state;
hence

S��ðQ;�!Þ ¼ exp

�
� ℏ!

kBT

�
S��ðQ; !Þ; (26)

which is known as the principle of detailed balance.
Equation (26) has to be fulfilled in experimental data taken
in both energy-gain and energy-loss configurations, which
correspond to the so-called Stokes and anti-Stokes processes,
respectively.

Using the integral representation of the � function the
scattering function S��ðQ; !Þ, Eq. (18), is transformed into

a physically transparent form:

S��ðQ; !Þ ¼ 1

2	ℏ

X
ij

eiQ�Rij

Z þ1

�1
hhŝi�ð0Þŝj�ðtÞiie�i!tdt;

(27)

where hhŝi�ð0Þŝj�ðtÞii is the thermal average of time-

dependent spin operators, or the van Hove pair correlation
function (Van Hove, 1954) for spins. A neutron scattering
experiment measures the Fourier transform of the pair corre-
lation function in space and time, which is clearly what is
needed to describe a magnetic system on an atomic scale.

The van Hove representation of the cross section in terms
of pair correlation functions is related to the fluctuation-
dissipation theorem (Lovesey, 1987):

S��ðQ; !Þ ¼ ℏ
	

�
1� exp

�
� ℏ!

kBT

��
Im
��ðQ; !Þ: (28)

Physically speaking, the neutron may be considered as a
magnetic probe which effectively establishes a frequency-
and wave-vector-dependent magnetic field BðQ; !Þ in the
sample, and detects its response, the magnetization
MðQ; !Þ, to this field, given by

M�ðQ; !Þ ¼ X
�


��ðQ; !ÞB�ðQ; !Þ; (29)

where 
��ðQ; !Þ is the generalized magnetic susceptibility

tensor. This is really the outstanding property of the neutron
in a magnetic scattering measurement, and no other experi-
mental technique is able to provide such detailed microscopic
information about magnetic compounds.

For polycrystalline material Eq. (16) has to be averaged in
Q space, which in zero magnetic field can be performed
analytically (Waldmann, 2003):

d2�

d�d!
¼ CðQÞX

��0
p�

X
ij

�
2

3
j0ðQRijÞ~si � ~sj þ j2ðQRijÞ

�X
q

T2�
q ðRijÞT2

qð~si~sjÞ
�
�ðℏ!þ E� � E�0 Þ:

(30)

j0ðxÞ and j2ðxÞ are the spherical Bessel functions of zeroth
and second order, and ~si ¼ ðh�jŝixj�0i; h�jŝiyj�0i; h�jŝizj�0iÞ.
For an isotropic spin cluster described by only the HDVV
Hamiltonian the second-order term vanishes:

d2�

d�d!
¼ CðQÞ 2

3

X
��0

p�

X
ij

sinðQRijÞ
QRij

hSkT̂1ðsiÞkS0i

� hS0kT̂1ðsjÞkSi�ðℏ!þ E� � E�0 Þ: (31)

The Bessel function sinðQRijÞ=ðQRijÞ is responsible for a

characteristic oscillatory Q dependence of the INS intensity,
which is often very helpful in analysis (Furrer and Güdel,
1977; Waldmann, 2003). Also, a useful rule of thumb is
inferred: For Q ! 0 the scattering intensity of �S ¼ 	1
transitions drops to zero, while for �S ¼ 0 transitions it
becomes maximal.

Analytical results for the INS cross section have been derived
for some cases, i.e., for dimers, trimers, and tetramers (Furrer
and Güdel, 1979; Güdel, Hauser, and Furrer, 1979; Haraldsen,
Barnes, and Musfeldt, 2005) and a pentamer and hexamer
(Haraldsen et al., 2009; Haraldsen, 2011). Explicit expressions
for Eq. (30) can be found in, e.g., Waldmann and Güdel (2005).

In practical applications of INS to magnetic cluster com-
pounds the large incoherent neutron scattering contribution of
hydrogen can easily prevent observation of the magnetic
cluster excitations. Removing or reducing the hydrogen con-
tent by, e.g., deuteration or fluorination is of course the best
solution, but this is often prohibitive, in particular, in
molecular clusters. Fortunately, at transfer energies from
ca. 0.1 to 3 meV a window exists with comparatively small
hydrogen scattering. This is relevant because otherwise most
studies on the cluster excitations in molecular nanomagnets,
for instance, would not have been possible.

Another point to be considered is the nonmagnetic scatter-
ing from the lattice. Besides the ‘‘standard tricks’’ for iden-
tifying the nature of INS features, such as inspecting the
temperature and Q dependencies, a Bose-correction analysis
is often helpful. Here, INS data recorded at sufficiently high
temperature are scaled by the Bose factor and then compared
to the data at lower temperatures. At high temperatures,
where a large part of the energy spectrum is accessed and
the magnetic scattering intensity spread out over essentially
all frequencies, the measured spectrum may reflect the lattice
scattering, whose temperature dependence is governed by
the Bose factor ½1�expðℏ!=kBTÞ��1 (neutron-energy loss).
Accordingly, the Bose-scaled high-temperature data can
estimate the lattice contribution at lower temperatures.
Often this works well, especially in large magnetic clusters
with a dense higher-lying energy spectrum, and allows an
unambiguous identification of magnetic peaks (Ochsenbein
et al., 2008; Dreiser et al., 2010b).

2. Optical spectroscopies

Optical spectroscopies cover a large range of wavelengths
of light. Individual spectrometers are specialized devices that
focus on particular parts of the electromagnetic spectrum
produced by lamps, lasers, or synchrotron sources. They
therefore exist in a wide variety of types for different appli-
cations (Tkachenko, 2006). One major type of optical spec-
troscopy is absorption spectroscopy, where the absorbance of
a system is determined by measuring the photons which pass
through (transmittance spectrum). Another important type is
emission or luminescence spectroscopy. When a system
is excited by an outside energy source such as light, it
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eventually returns back to the ground state by releasing the
excess energy either as radiationless transitions or in the form
of photons as illustrated in Fig. 1.

Avariant of the absorption and luminescence spectroscopies,
associated with initial transitions to discrete excited energy
states, is Raman spectroscopy (Larkin, 2011), where the system
is excited to a virtual energy state and then quickly relaxes back
to a ground-state level. Unlike a luminescence process, Raman
scattering involves no transfer of electron population to the
intermediate state. Several variations of Raman spectroscopy
have been developed in order to enhance the sensitivity [e.g.,
surface-enhanced Raman spectroscopy (Lombardi and Birke,
2008) and resonance Raman spectroscopy (Chao, Khanna, and
Lippincott, 1975)] as well as to improve the spatial resolution
[Raman microscopy (Turrell and Corset, 1996)].

Optical spectroscopies are governed by the energy and
momentum conservation laws as in neutron spectroscopy;
see Eqs. (14) and (15). However, as the photon wave vector
is about 103 times smaller than a typical reciprocal lattice
vector, only excitations close to the center of the Brillouin
zone are observed. The calculation of intensities of the
observed transitions is a nontrivial task. This is in contrast
to neutron spectroscopy where the intensities of spin excita-
tions are directly proportional to the square of the magnetic
dipole matrix elements; see Eq. (18). Since optical spectros-
copies often involve intermediate states which are not known,
approximate models have to be employed for the calculation
of transition matrix elements (Lovesey and Collins, 1996).

The polarization of light has great importance particularly
when anisotropic systems are studied. The specific polariza-
tion of both the exciting and the emitted light can be exploited
to obtain extra information concerning the line identification
from the observed energy spectra. More specifically, elec-
tronic states with transition dipole moments perpendicular to
the electric field orientation will not be excited.

3. Electron paramagnetic resonance

In EPR spectroscopy the absorption of a radio-frequency
(rf) magnetic field Brf by a magnetic system is measured

(Abragam and Bleaney, 1986). Absorption can occur when-
ever the energy h� of the radiation matches the energy
difference of two eigenstates j�i and j�0i,

E�0 � E� ¼ 	h�; (32)

and the absorbed power P is calculated in linear response
theory to be

P ¼ Cð!ÞX
��

Brf
�B

rf
�

X
ij

X
��0

p�h�jŝi�j�0ih�0jŝj�j�i

� �ðℏ!þ E� � E�0 Þ; (33)

with Cð!Þ ¼ !½1� expðℏ!=kBTÞ�ðg2�2
BÞ=ð8ℏ	Þ. For mag-

netic cluster systems with eigenstates j�SMi, Eq. (33) can be
further evaluated and the EPR selection rules

�S ¼ 0; (34)

�M ¼ 	1 (35)

established from
P

ih�jŝi�j�0i ¼ h�SMjŜ�j�0S0M0i.
It follows that EPR spectroscopy is a very direct method to

determine anisotropies of the g factor by aligning the external
magnetic field B along different directions. Similarly, anisot-
ropies of the form defined by, e.g., Eqs. (10) and (11), which
lift the degeneracy of a particular spin multiplet, can also be
determined from the positions of the lines in the EPR spectra.
On the other hand, the exchange splittings or parameters Jij
are not directly attainable, but they can be estimated from the
temperature variation of the signal intensities which follow
the Boltzmann populations of the energy levels involved, or
in some fortunate cases through the S-mixing mechanism
(Wilson et al., 2006). Finally we point to the distinctive
hyperfine structure superimposed on an EPR spectrum for
systems with nonzero nuclear spin quantum numbers.

It is instructive to compare Eq. (33) to the corresponding
INS formula Eq. (16) with Eq. (18). The main difference lies
in the structure factor expðQ �RijÞ which is 1 in the case of

EPR, corresponding toQ ¼ 0 in INS. Therefore, EPR affords
the detection of exactly those magnetic transitions that have
INS intensity at Q ! 0, which in the HDVV model are the
�S ¼ 0 transitions. Physically speaking, in contrast to neu-
trons the applied radio frequency establishes a frequency-
dependent but spatially homogeneous magnetic field BðQ; !Þ
with Q ¼ 0.

Modern EPR spectroscopy techniques permit a large com-
bination of frequency and magnetic field values extending up
to the terahertz regime and 25 T, respectively. In principle,
EPR spectra can be generated by either varying the frequency
� while holding the magnetic field constant or doing the
reverse. In commercial EPR instruments it is the frequency
which is kept fixed, and typical frequencies are the X band
(10 GHz) and Q band (35 GHz), butW band (95 GHz) is also
available. However, EPR techniques have progressed enor-
mously, and multifrequency high-field EPR and frequency
domain magnetic resonance spectroscopy experiments are
routinely undertaken in various laboratories. Recent develop-
ments are terahertz EPR experiments using radiation from
synchrotron sources. For reviews, see van Slageren et al.
(2003) and Gatteschi et al. (2006).

FIG. 1 (color online). Sketch of the processes relevant for optical

spectroscopies. A, absorption; L, luminescence; and R, radiationless

transition.
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4. Thermodynamic magnetic properties

The thermodynamic magnetic properties depend explicitly
upon both the energies E� and the eigenfunctions j�i of the
spin excitations. Based on general expressions of statistical
mechanics for the Gibbs free energy F and internal energy U,

F ¼ �kBT lnZ; (36)

U ¼ F� T

�
@F

@T

�
V
; (37)

we obtain, with the Zeeman term as in Eq. (13), the magne-
tization M�, magnetic susceptibility 
��, entropy S, and
Schottky heat capacity cV :

M� ¼ � @F

@B�

¼ �g�B

X
�

p�h�jŜ�j�i; (38)


�� ¼ @M�

@B�

¼ ðg�BÞ2
kBT

�X
�

p�h�jŜ2�j�i �
�X

�

p�h�jŜ�j�i
�
2
�
;

(39)

S ¼ �
�
@F

@T

�
V
¼ kB

�
lnZþ

P
� p�E�

kBT

�
; (40)

cV ¼
�
@U

@T

�
V
¼ 1

kBT
2

�X
�

p�E
2
� �

�X
�

p�E�

�
2
�
: (41)

Here Z and p� are the partition function and Boltzmann
population factor, respectively:

Z ¼ X
�

exp

�
� E�

kBT

�
; p� ¼ 1

Z
exp

�
� E�

kBT

�
: (42)

For a system with magnetic anisotropy the magnetic torque �
also appears as a useful thermodynamic quantity:

� ¼ @F

@�
; � ¼ M� B; (43)

where � denotes the rotation angle around the torque axis
[often the definition � ¼ �@F=@ is used; our convention is
consistent with the usual parametrization of the magnetic
field, e.g., B ¼ Bðsin�; 0; cos�Þ].

For T ! 0, the free energy reduces to the ground-state
energy E0 and the magnetization to the field derivativeM� ¼
�@E0=@B�. As a function of the field the ground state often
undergoes level crossings at characteristic fields, which can
be detected at very low temperatures as steps in the field-
dependent magnetization (torque) curves. The characteristic
fields allow insight into the magnetic excitation spectrum
in a cluster, and low-temperature high-field magnetization
(torque) measurements represent an important experimental
technique (Shapira and Bindilatti, 2002), although the level
crossing can also be detected by other techniques, e.g., proton
nuclear magnetic resonance (Julien et al., 1999). In order to
check the reliability of the model parameters derived from
spectroscopic data, it is however generally useful to compare
the calculated thermodynamic magnetic properties to corre-
sponding experimental data.

III. SMALL MAGNETIC CLUSTERS

The aim of this section is to demonstrate how the various
interactions introduced in Sec. II.A manifest themselves for
different experimental techniques. The presented examples
will be restricted to small clusters built up by N � 4 coupled
magnetic ions, for which the underlying models can be
treated exactly, since only a small number of interactions
are present and cooperative effects do not occur, so that a
straightforward comparison between theory and experiment
is possible with little ambiguity. The examples cover mag-
netic clusters that naturally occur in pure compounds as well
as clusters that are artificially formed in solid solutions of
magnetic and nonmagnetic compounds. Ideal examples of
pure compounds are molecular transition-metal complexes, in
which a polynuclear metal core is embedded in a diamagnetic
ligand matrix. Information more directly associated with
cooperative systems comes from diluted magnetic com-
pounds, in which the magnetic ions are randomly distributed,
so that different types of clusters (N-mers, N ¼ 1; 2; 3; . . . )
are simultaneously present. Among the myriads of small
magnetic cluster systems studied up to the present we choose
as a representative of the pure compounds the dimeric chro-
mium system ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O, which is
the first magnetic cluster system investigated by INS.
Investigation of the class of magnetically diluted systems
was pioneered in INS experiments carried out for the com-
pound KMnxZn1�xF3 (Svensson et al., 1978) and will be
exemplified here by the compound CsMnxMg1�xBr3. The
section ends with further insight into particular physical
aspects resulting from magnetic cluster excitations in some
other compounds.

A. The dimeric chromium compound

½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 �H2O

1. Energy levels

The simplest magnetic cluster system is the dimer
(two coupled spins ŝ1 and ŝ2) for which the HDVV
Hamiltonian equation (2) simplifies to

Ĥ ¼ �2Jŝ1 � ŝ2: (44)

Assuming identical magnetic ions (s1 ¼ s2 ¼ s) the
eigenvalues of Eq. (44) are

EðSÞ ¼ �J½SðSþ 1Þ � 2sðsþ 1Þ�; (45)

with 0 � S � 2s. The energy splittings defined by Eq. (45)
satisfy the Landé interval rule

EðSÞ � EðS� 1Þ ¼ �2JS: (46)

For Cr3þ dimers with s ¼ 3=2 the separation between the
ground-state levels will be 2J, 4J, and 6J (S ¼ 0 to S ¼ 3),
with the state S ¼ 0 being the lowest in the case of antiferro-
magnetic (AFM) exchange J < 0. Observed deviations from
the Landé interval rule are often attributed to the presence of
biquadratic exchange,

Ĥ ¼ �Kðŝ1 � ŝ2Þ2: (47)
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Combination of Eqs. (44) and (47) yields the modified
eigenvalues

EðSÞ ¼ �J�� 1
4K�

2; (48)

� ¼ SðSþ 1Þ � 2sðsþ 1Þ: (49)

2. Structural and magnetic characterization

The compound ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O was
characterized by x-ray diffraction, EPR, and magnetic sus-
ceptibility measurements (Veal et al., 1973). The material
crystallizes in the tetragonal space group P42=mnm with four
formula units in a cell of dimensions a ¼ 16:259ð7Þ �A and
c ¼ 7:411ð7Þ �A. The two Cr3þ ions are coupled by super-
exchange via a Cr-O-Cr bridge with a bridging angle of
165.6(9) and a Cr-O distance of 1.94(1) Å. The analysis of
the x-ray data requires two inequivalent positions of Cr3þ
dimers in the unit cell. Electron paramagnetic resonance
measurements gave a negligibly small upper limit of D �
0:002 meV for the single-ion anisotropy defined by Eq. (10).
The magnetic susceptiblity was measured for a polycrystal-
line sample as shown in Fig. 2. The data were analyzed
according to Eq. (39) with g ¼ 1:99 resulting from the EPR
experiments. The agreement between the observed and cal-
culated data is slightly improved when in addition to the
Heisenberg exchange Eq. (44) a biquadratic term Eq. (47)
is included.

3. Optical spectroscopies

Optical spectroscopies have been applied to single crystals
of ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O (Ferguson and Güdel,
1973). Both polarized absorption and polarized luminescence
spectra provided well-resolved lines from which the ground-
state level scheme could be directly determined. Figure 3
shows a representative polarized luminescence spectrum with
two sets of transitions (A0; B0; C0) and (A00; B00; C00) reflecting
the presence of two inequivalent dimer sites. The emission

starts from an excited state with S ¼ 2. The appearance of
three lines for each of the transitions indicates that the selec-
tion rule �S ¼ 0 is not exact, but transitions also occur for
�S ¼ 	1 (with much smaller intensities) due to the spin-orbit
interaction. The luminescence spectrum accurately determines
the separations between the ground-state levels S ¼ 1, 2, and
3, and the separation between S ¼ 0 and S ¼ 1 was taken
from the absorption spectrum. The ground-state level scheme
slightly deviates from the Landé interval rule, so that the data
analysis was based on Eq. (48). The resulting bilinear and
biquadratic exchange parameters J and K are listed in Table I.
The luminescence spectrum is strongly temperature depen-
dent, and it is completely quenched at room temperature.

4. Inelastic neutron scattering

For the analysis of the neutron data we adjust the magnetic
scattering function Eq. (18) to the dimer case. We start from
the reduced matrix elements introduced in Eq. (21). Since
T̂1ðsiÞ operates only on the ith ion of the coupled system, the
reduced matrix elements can be further simplified:

hSkT̂1ðs1ÞkS0i ¼ ð�1Þ2sþSþ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Sþ 1Þð2S0 þ 1Þ

p (
S S0 1

s s s

)

� hsjkT̂1ðsÞkjsi; (50)

FIG. 2 (color online). Temperature dependence of the magnetic

susceptibilty of ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O. Adapted from

Veal et al., 1973.

TABLE I. Coupling parameters J and K of
½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O determined by different
experimental techniques.

T J K
Technique (K) (meV) (meV)

Magnetic susceptibilitya 7–300 �1:83 0.07
Light spectroscopy

b
7 �1:91ð1Þ 0.02(1)

INSc 30 �1:88ð5Þ 0.03(2)
INSc 165 �1:83ð8Þ 0.02(4)
INSc 293 �1:74ð14Þ 0.03(7)

aVeal et al. (1973).
bFerguson and Güdel (1973).
cGüdel et al. (1981).

FIG. 3. Polarized luminescence spectrum of

½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O taken at T ¼ 7 K. The

corresponding transition diagram is shown at the top. Adapted

from Ferguson and Güdel, 1973.
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hSkT̂1ðs2ÞkS0i ¼ ð�1ÞS0�ShSkT̂1ðs1ÞkS0i; (51)

hsjkT̂1ðsÞkjsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þð2sþ 1Þ

p
: (52)

The two-row brace f� � �g in Eq. (50) is a Wigner-6j symbol
(Rotenberg et al., 1959) which vanishes unless �S ¼ 0, 	1.
From Eqs. (20) and (50) the INS selection rules �M ¼ 0,	1
and �S ¼ 0, 	1 are recovered. By making use of the sym-
metry properties of the reduced matrix elements defined by
Eq. (50), we find the following cross section for the dimer
transition jSi ! jS0i:

d2�

d�d!
¼ CðQÞ exp½�EðSÞ=kBT�

Z

X
�

�
1�

�
Q�

Q

�
2
�

� 2

3
½1þ ð�1Þ�S cosðQ �RÞ�hSkT̂1ðs1ÞkS0i2

� �ðℏ!þ EðSÞ � EðS0ÞÞ; (53)

where R ¼ R1 �R2 is the vector defining the intradimer
separation. The structure factor ½1þ ð�1Þ�S cosðQ �RÞ� is a
powerful means to unambiguously distinguish dimer excita-
tions from other scattering contributions due to its character-
istic oscillating behavior.

For a polycrystalline material Eq. (53) has to be averaged
in Q space:

d2�

d�d!
¼CðQÞexp½�EðSÞ=kBT�

Z

4

3

�
1þð�1Þ�S sinðQRÞ

QR

�
�hSkT̂1ðs1ÞkS0i2�ðℏ!þEðSÞ�EðS0ÞÞ: (54)

The polarization and structure factors combine into the inter-
ference factor ½1þ ð�1Þ�S sinðQRÞ=ðQRÞ�, which produces a
damped oscillatory Q dependence of the intensities.

Figure 4(a) shows the temperature dependence of neutrons
scattered from a polycrystalline sample of deuterated
½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O (Furrer and Güdel, 1977;
Güdel et al., 1981), which demonstrates the successive ap-
pearance of excited-state transitions with increasing tempera-
ture. The data confirm the ground-state splitting pattern
sketched on top of Fig. 3. The resulting parameters based on
Eq. (48) are listed in Table I. The oscillatory behavior of the
intensities versus the modulus of the scattering vector Q
predicted by Eq. (54) is nicely verified, as shown in Fig. 4(b).

5. Comparison of different experimental techniques

Table I lists the results obtained by the different experi-
mental techniques presented in the preceding sections. From
the EPR measurements the anisotropic magnetic effects as-
sociated with the compound ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 �
H2O were established to be negligibly small. This was veri-
fied in subsequent light and neutron spectroscopic investiga-
tions, which did not give evidence for any anisotropy-induced
line splittings. Because of the excellent energy resolution,
light spectroscopies provide at low temperatures rather pre-
cise spin coupling parameters, but information on their tem-
perature dependence is severely hampered because of signal
quenching. This is not the case for inelastic neutron scatter-
ing, which gives evidence for a strong temperature depen-
dence of the bilinear exchange parameter J of the order of
15% upon heating from 7 K to room temperature. The
analysis of the magnetic susceptibility data thus results in a
temperature-averaged parameter J, and it overestimates the
biquadratic coupling parameter K by a factor of 2.

B. Manganese N-mers in CsMnxMg1�xBr3

1. Structural and magnetic characterization

Solid solutions of composition CsMnxMg1�xBr3 are
ideal model systems for various reasons. Both CsMnBr3
and CsMgBr3 crystallize in the hexagonal space group
P63=mmc, and their unit cell parameters are almost
equal: a ¼ b ¼ 7:609ð15Þ �A, c ¼ 6:52ð5Þ �A for CsMnBr3
(Goodyear and Kennedy, 1972) and a ¼ b ¼ 7:610ð2Þ �A,
c ¼ 6:502ð2Þ �A for CsMgBr3 (McPherson, McPherson, and
Atwood, 1980). The structure consists of chains of face-
sharing MBr6 octahedra parallel to the c axis, where M is
Mn2þ (s ¼ 5=2) or Mg2þ (diamagnetic). Spin-wave experi-
ments gave evidence for a pronounced one-dimensional mag-
netic behavior with the intrachain exchange interaction
exceeding the interchain exchange interaction by 3 orders
of magnitude (Breitling et al., 1977; Falk, Furrer, Güdel, and
Kjems, 1987). All the Mn2þ clusters in the mixed compound
CsMnxMg1�xBr3 are thus linear-chain fragments with com-
position MnNBr3ðNþ1Þ (N ¼ 1; 2; 3; . . . ) oriented parallel to

the c axis. TheMn2þ clusters are statistically distributed with
the probability pNðxÞ for N-mer formation given by

pNðxÞ ¼ ð1� xÞxN�1: (55)

For Mn2þ concentrations x < 0:05, monomers and dimers
dominate, but for x > 0:05 trimers, tetramers, etc., have to be
considered. For the ground-state splitting pattern of dimers
see Sec. III.A.1. The energy levels of linear trimers and
tetramers are summarized next.

2. Energy levels of linear trimers and tetramers

The HDVV Hamiltonian of a linear trimer is defined by

Ĥ ¼ �2Jðŝ1 � ŝ2 þ ŝ2 � ŝ3Þ � 2J0ŝ1 � ŝ3: (56)

It is convenient to introduce the spin quantum numbers S13
and S resulting from the spin coupling scheme defined by the

vector sums Ŝ13 ¼ ŝ1 þ ŝ3 and Ŝ ¼ ŝ2 þ Ŝ13 with 0 � S13 �
2s and jS13 � sj � S � ðS13 þ sÞ, respectively, assuming

FIG. 4 (color online). (a) Energy spectra of neutrons scat-

tered from deuterated ½ðNH3Þ5CrOHCrðNH3Þ5�Cl5 � H2O.

(b) Q dependence of the intensity of the j0i ! j1i transition

observed at T ¼ 4:2 K shown in (a). Adapted from (a) Güdel

et al., 1981, and (b) Furrer and Güdel, 1977.
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s1 ¼ s2 ¼ s3 ¼ s. The trimer states are therefore defined by
jS13SMi, and their degeneracy is 2Sþ 1. With this choice of
spin quantum numbers, the Hamiltonian equation (56) is
diagonal and the eigenvalues can thus readily be derived as

EðS13; SÞ ¼ �J½SðSþ 1Þ � S13ðS13 þ 1Þ � sðsþ 1Þ�
� J0½S13ðS13 þ 1Þ � 2sðsþ 1Þ�: (57)

The HDVV Hamiltonian of a linear tetramer is given by

Ĥ ¼ �2Jðŝ1 � ŝ2 þ ŝ2 � ŝ3 þ ŝ3 � ŝ4Þ
� 2J0ðŝ1 � ŝ3 þ ŝ2 � ŝ4Þ � 2J00ŝ1 � ŝ4: (58)

To solve Eq. (58), the total spin Ŝ ¼ ŝ1 þ ŝ2 þ ŝ3 þ ŝ4 is still
a good quantum number, but for a complete characterization
of the tetramer states additional intermediate spin quantum

numbers are needed, e.g., Ŝ12 ¼ ŝ1 þ ŝ2 and Ŝ34 ¼ ŝ3 þ ŝ4
with 0 � S12 � 2s and 0 � S34 � 2s, respectively. The total
spin is then defined by jS12 � S34j � S � ðS12 þ S34Þ, and
the basis states are the wave functions jS12S34SMi. There is
no spin coupling scheme that results in a diagonal
Hamiltonian matrix, so that the eigenvalues of Eq. (58)
have to be calculated numerically or by spin-operator tech-
niques (Judd, 1963).

3. Electron paramagnetic resonance

Single crystals of CsMgBr3 doped with Mn2þ ions
(s ¼ 5=2) were studied by EPR measurements at Q- and
X-band frequencies with the magnetic field parallel and
perpendicular to the c axis (McPherson, Koch, and Stucky,
1974). The EPR spectrum displayed in Fig. 5 shows the
hyperfine and fine structures expected for Mn2þ ions in an
axial environment. The Q-band frequency of � ¼ 35 GHz
produces five resonances A to E whenever the spacing of
adjacent Zeeman-split energy levels corresponds to �E ¼
0:145 meV [see Eq. (32)] as illustrated in Fig. 6. Each
resonance is characterized by six oscillations due to the
hyperfine interaction, since the nuclear spin of manganese
is I ¼ 5=2. The positions of the five resonances do not occur
at equidistant spacings, which indicates the presence of a
nonzero single-ion anisotropy. From the positions of the
resonances the Landé splitting factor g ¼ 2:004ð1Þ and the
axial anisotropy parameter jDj ¼ 0:0115ð2Þ meV were ob-
tained. Note that the sign of D cannot be determined from
EPR experiments at elevated temperatures.

4. Optical spectroscopies

Single crystals of CsMnxMg1�xBr3 (0:04 � x � 0:20)
have been investigated by optical spectroscopies (McCarthy
and Güdel, 1984). In particular, Mn2þ pair excitations were
observed in the absorption spectra as shown in Fig. 7. The
weak absorptions at T ¼ 1:4 K cannot be assigned with
certainty; they are either single-ion absorptions or due to
Mn2þ clusters with N > 3. With increasing temperature addi-
tional bands appear due to the successive population of the
cluster states S ¼ 1 to S ¼ 4. The temperature dependence of
the intensities is best described by using the HDVV
Hamiltonian equation (45) with J ¼ �0:88 meV as illus-
trated in Fig. 7.

5. Inelastic neutron scattering

Inelastic neutron scattering experiments performed on a
single crystal of CsMn0:28Mg0:72Br3 gave evidence for
well-defined Mn2þ dimer transitions as shown in Fig. 8
(Falk et al., 1984). The observed intensities are in excellent
agreement with the predictions from the structure factor
Eq. (53); with R ¼ ð0; 0; 1=2Þ the intensity has a maximum
for Q ¼ ð0; 0; 1Þ and vanishes for Q ¼ ð0; 0; 2Þ. The energies
of the transitions j0i ! j1i, j1i ! j2i, j2i ! j3i, and j3i !
j4i turned out to be 1.80(1), 3.60(1), 5.27(2), and 6.74(3) meV,
which deviate considerably from the Landé interval rule, so
that the data analysis was based on Eq. (48). The resulting
parameters are J ¼ �838ð5Þ �eV and K ¼ 8:8ð8Þ �eV.

Later INS experiments gave evidence for well-defined
Mn3þ trimer and tetramer transitions (Falk, Furrer, Furer
et al., 1987). For evaluation of the differential neutron cross
section see the references in Sec. II.B.1. For a trimer the
selection rules of the transition jS13SMi ! jS013S0M0i are

derived as

�S ¼ 0;	1; (59)
FIG. 5. Q band EPR spectrum of Mn2þ ions in CsMgBr3 at T ¼
77 K. Adapted from McPherson, Koch, and Stucky, 1974.

FIG. 6 (color online). Field dependence of the ground-state levels

of Mn2þ ions in CsMgBr3. The calculations are based on Eqs. (10)

and (13), with D> 0. The double arrows mark the resonances A to

E observed in the EPR spectrum of Fig. 5.
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�S13 ¼ 0;	1; (60)

�M ¼ 0;	1: (61)

The smallest magnetic systems that can identify three-spin
interactions are spin trimers. The bilinear Hamiltonian
equation (56) has to be extended in the following way:

Ĥ ¼ �2Jðŝ1 � ŝ2 þ ŝ2 � ŝ3Þ � 2J0ŝ1 � ŝ3
� K½ðŝ1 � ŝ2Þ2 þ ðŝ2 � ŝ3Þ2� � K0ðŝ1 � ŝ3Þ2
� L½ðŝ1 � ŝ2Þðŝ2 � ŝ3Þ þ ðŝ3 � ŝ2Þðŝ2 � ŝ1Þ�: (62)

K, K0, and L denote biquadratic two-spin and three-spin
exchange parameters, respectively, which give rise to off-
diagonal matrix elements, so that Eq. (62) was diagonalized
in first-order perturbation theory. The biquadratic K0 term is
neglected, since jK0j � jKj. The low-energy part of the
eigenvalues EðS13; SÞ is illustrated in Fig. 9 for the case of
Mn trimer excitations in CsMn0:28Mg0:72Br3, which were
identified in INS experiments according to the characteristic
dependence of the cross section Eq. (16) upon Q and T

(Falk et al., 1986). The observed transitions are marked by

arrows in Fig. 9. Least-squares fits based on Eq. (62) with

different parameter selections gave the results listed in

Table II. The model including only bilinear exchange inter-

actions failed, as expected. The model including the bilinear

and biquadratic terms of the Hamiltonian equation (62) re-

sulted in an improved standard deviation 
2, but only the

least-squares fit including the three-spin interaction was able

to reproduce the observed transitions satisfactorily.
Recent INS experiments performed with increased instru-

mental energy resolution gave evidence for anisotropy-

induced splittings of Mn2þ dimer and tetramer transitions

(Furrer, Juranyi et al., 2011). This is demonstrated in

Fig. 10 for the dimer jS ¼ 0i ! jS ¼ 1i transition. There

are two well-defined lines A and B which according to the

approximate intensity ratio 2:1 can be attributed to the

jS ¼ 0; M ¼ 0i ! jS ¼ 1; M ¼ 	1i and jS ¼ 0;M ¼ 0i !
jS ¼ 1; M ¼ 0i transitions, respectively. A similar

anisotropy-induced splitting was observed for the lowest

tetramer jS ¼ 0i ! jS ¼ 1i transition as well. The dimer

and tetramer data could be rationalized by the combined

action of a single-ion anisotropy parameter D ¼
0:0183ð16Þ meV defined by Eq. (10) and of two-ion aniso-

tropic coupling parameters J ¼ Jxx ¼ Jyy ¼ �0:852ð3Þ meV

and Jzz=J ¼ 0:997ð1Þ defined by Eq. (3). The two-ion

anisotropy is most likely due to the anisotropic part of the

FIG. 7 (color online). (a) Temperature dependence of absorption

spectra resulting from a spin-flip process observed for

CsMn0:20Mg0:80Br3. The successive population of the Mn2þ dimer

states is indicated by S ¼ 1 to S ¼ 4. (b) Observed intensities of the

bands S ¼ 1 to S ¼ 3 as a function of temperature. The lines

correspond to the Boltzmann populations calculated from Eq. (45)

with J ¼ �0:88 meV. Adapted from McCarthy and Güdel, 1984.

FIG. 8. (a) Energy spectra of neutrons scattered from Mn2þ pairs

in CsMn0:28Mg0:72Br3 at T ¼ 30 K. (b) Energy-level sequence of an
antiferromagnetically coupled spin pair. Adapted from Falk et al.,

1984.

FIG. 9. Energy-level splittings of Mn trimers in

CsMn0:28Mg0:72Br3. The arrows denote the observed transitions.

Adapted from Falk et al., 1986.

TABLE II. Parameters resulting from least-squares fits to the
observed Mn trimer transitions in CsMn0:28Mg0:72Br3 (Falk
et al., 1986).

J J0 K L
Model (�eV) (�eV) (�eV) (�eV) 
2

a (K ¼ L ¼ 0) �870ð12Þ �8ð14Þ 0 0 5.22
b (K � 0, L ¼ 0) �786ð7Þ �12ð10Þ 14(2) 0 3.13
c (K � 0, L � 0) �777ð6Þ �11ð9Þ 8(1) 6(1) 1.67
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dipole-dipole interaction Eq. (4). The exchange coupling J is
sufficiently strong to keep the spins ŝi antiferromagnetically
aligned at low temperatures T � jJj=kB, but their direction
with respect to R k c is free to rotate. Therefore, the second
term of Eq. (4) has to be averaged in space:

Ĥ ¼ X
ij

g2�2
B

R3
ij

�
ŝi � ŝj � 3

ðŝi �RijÞðŝj �RijÞ
	2R2

ij

�
: (63)

The dipole-dipole anisotropy calculated from Eq. (63) is
Jzz=J ¼ 0:997, in agreement with the experimental findings.

6. Comparison of different experimental techniques

Table III lists the results obtained by different experimental
techniques presented in the preceding sections. The sign of
the axial anisotropy parameter D could unambiguously be
determined by neutron spectroscopy, in contrast to the EPR
experiments. The parameters D and J exhibit a pronounced
temperature dependence probably due to the lattice expansion
with increasing T, whereas the parameter K remains constant.
Since the analysis of the optical data was based on a model
with K ¼ 0, the resulting exchange parameter J cannot be
compared with the results of the INS experiments. It was
shown by Falk et al. (1984) and Strässle et al. (2004) that the
presence of biquadratic exchange (K � 0) is caused to a

major extent by the mechanism of exchange striction
(Kittel, 1960).

In extended antiferromagnets the observation of the spin-
wave dispersion by single-crystal INS experiments is usually
the most common approach to determining exchange parame-
ters. By applying the spin-wave formalism to Ĥ from Eq. (62),
which includes higher-order exchange terms, we find

ℏ!ðqÞ ¼ 4sjJeffj sinðqcÞ; (64)

Jeff ¼ �
�������� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JðJ � 4J0Þ
p

þ 5s

2
ðKþ 2LÞ

��������; (65)

whereq is thewave number of the spinwavepropagating along
the c axis. From spin-wave experiments performed for the
one-dimensional antiferromagnet CsMnBr3 (s ¼ 5=2) the ex-
change coupling was determined to be Jeff ¼ �0:89ð2Þ meV
(Breitling et al., 1977; Falk, Furrer, Güdel, and Kjems, 1987).
The analysis of the spin-wave dispersion yields just an effec-
tive exchange parameter Jeff , but the individual sizes of the
bilinear and biquadratic exchange parameters cannot be de-
termined. This is in contrast to experiments on small magnetic
clusters as discussed in the preceding sections. A numerical
comparison of the Jeff values obtained from the three models
listed in Table II is interesting. Using Eq. (62) and s ¼ 5=2we
find Jeff ¼ �0:89ð2Þ, �0:90ð3Þ, and �0:92ð3Þ meV for mod-
els a, b, and c, respectively. The three values are identical
within experimental error, and they agree excellentlywell with
Jeff determined from spin-wave experiments. They also agree
with Jeff ¼ �0:88 meV derived from optical spectroscopies
applied to Mn2þ dimer excitations; see Table III. Jeff is ob-
viously independent of the geometric size of the coupled
magnetic ions and can therefore be regarded as a measure of
the magnetic energy per Mn2þ ion in the AFM state of
CsMnBr3.

C. Further insights from magnetic cluster excitations

1. Exchange parameters from high-field magnetization steps

Steplike features in high-field magnetization data result
from level crossings associated with the ground state of
magnetic clusters and thereby provide information about
the exchange parameters. This is demonstrated here for the
tetrameric nickel compound ½Mo12O28ðOHÞ12fNiðH2OÞ3g4� �
13H2O, henceforth abbreviated as fNi4Mo12g. The

FIG. 10 (color online). Energy spectra of neutrons scattered from

CsMnxMg1�xBr3. The energy resolution amounts to 55 �eV. For

clarity, the data for x ¼ 0:14 and 0.28 are shifted by 10 and 20

intensity units, respectively. The lines refer to Gaussian peak fits

with equal linewidths for both transitions A and B. Adapted from

Furrer, Juranyi et al., 2011.

TABLE III. Axial anisotropy parameter D and spin coupling
parameters J and K of Mn2þ dimers in CsMnx Mg1�xBr3 deter-
mined by different experimental techniques.

T D J K
Technique (K) (meV) (meV) (meV)

EPRa 77 	0:0115ð2Þ � � � � � �
Opticalb 13 � � � �0:88 � � �
INSc 30 � � � �0:838ð5Þ 0.0088(8)
INS

d
50 � � � �0:823ð1Þ 0.0087(2)

INSe 1.5 0.0183(16) �0:852ð3Þ 0.0086(2)

aMcPherson, Koch, and Stucky (1974).
bMcCarthy and Güdel (1984).
cFalk et al. (1984).
dSträssle et al. (2004).
eFurrer, Juranyi et al. (2011).
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magnetization is enhanced from zero up to the saturation
value of 8�B in steps of 2�B at the fields 4.5, 8.9, 20.1, and
32 T as illustrated by the differential magnetization data in
Fig. 11 (Schnack et al., 2006).

The four antiferromagnetically coupled Ni2þ ions (s ¼ 1)
in fNi4Mo12g are arranged in a slightly distorted tetrahedron,
i.e., the Ni(2)-Ni(3) and Ni(2)-Ni(4) distances are slightly
shorter than the other four Ni-Ni distances, as shown in the
inset of Fig. 12; thus the spin Hamiltonian is described by

Ĥ ¼ �2Jðŝ1 � ŝ2 þ ŝ1 � ŝ3 þ ŝ1 � ŝ4 þ ŝ3 � ŝ4Þ
� 2J0ðŝ2 � ŝ3 þ ŝ2 � ŝ4Þ; (66)

which can be brought to diagonal form by choosing the
spin quantum numbers according to the vector couplings

Ŝ34 ¼ ŝ3 þ ŝ4, Ŝ234 ¼ ŝ2 þ Ŝ34, and Ŝ ¼ ŝ1 þ Ŝ234 with 0 �
S34 � 2s, jS34 � sj � S234 � ðS34 þ sÞ, and jS234 � sj �
S � ðS234 þ sÞ, respectively. The eigenvalues of Eq. (66)
for s1 ¼ s2 ¼ s3 ¼ s4 ¼ s are then given by

EðS34; S234; SÞ ¼ �J½SðSþ 1Þ � S234ðS234 þ 1Þ
� S34ðS34 þ 1Þ� � J0½S234ðS234 þ 1Þ
� S34ðS34 þ 1Þ � sðsþ 1Þ�: (67)

Figure 12 displays the energy levels EðS34; S234; SÞ nor-
malized to J (assuming AFM coupling J < 0) as a function of
the ratio x ¼ J0=J. For x ¼ 1 the energy levels are degenerate
with respect to the total spin S, and the energy splittings
follow the Landé rule Eq. (46). On application of a magnetic
field the ground state changes in steps from S ¼ 0 to S ¼ 4
for the field values corresponding to the maxima of the
dM=dH data displayed in Fig. 11.

INS spectra measured for a polycrystalline sample of
fNi4Mo12g are shown in Fig. 13, from which two ground-
state transitions can be identified at ca. 0.5 and 1.7 meV
(Nehrkorn et al., 2010). The former is composed of two
subbands at 0.4 and 0.6 meV attributed to a ZFS caused by
magnetic anisotropy. An excited-state transition appears at
1.2 meV. From Fig. 12 we can readily conclude that the
singlet j2; 1; 0i has to be the ground state. Moreover, the
first excited state has to be the triplet j2; 1; 1i centered at
0.5 meV, since transitions between S ¼ 0 states are not
allowed. The observed splitting of the triplet j2; 1; 1i into
two components can be ascribed to an axial single-ion an-
isotropy defined by Eq. (10), which has the effect of splitting
the states jS34S234Si into the states jS34S234SMi. A least-
squares fit to the energy spectra of Fig. 13 on the basis of
the Hamiltonian equations (66) and (10) converged to the
parameters J ¼ �0:25ð2Þ meV, J0 ¼ �0:53ð4Þ meV, and
D ¼ 0:22ð5Þ meV (Furrer et al., 2010) which nicely repro-
duce the high-field magnetization data; see Fig. 11. The
resulting low-energy splitting pattern is sketched in the inset
of Fig. 13.

FIG. 11 (color online). High-field differential magnetization of

fNi4Mo12g. The circles represent the experimental data taken at

0.44 K, and the line a calculation based on the Hamiltonian

equations (10), (11), and (66), with the model parameters listed in

the text. Adapted from Schnack et al., 2006.

FIG. 12 (color online). Energy levels of S ¼ 1 tetramers calcu-

lated from Eq. (67) with J < 0. The lowest states of a given S value

are marked by bold lines. The jS34S234Si states are identified on the

right-hand side. The inset shows the coupling parameters in a

slightly distorted tetrahedron as realized for the compound

fNi4Mo12g.

FIG. 13 (color online). Energy spectra of neutrons scattered from

polycrystalline fNi4Mo12g with an incident neutron energy of

3.27 meV. The inset attributes the observed transitions to the low-

energy part of the splitting pattern. Adapted from Nehrkorn et al.,

2010.
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2. Pressure dependence of exchange parameters

By using external pressure the exchange parameters J can

be determined for varying distance R between the magnetic

ions. This is of importance for testing and improving theo-

retical models of the exchange interaction, where the distance

usually enters in a straightforward manner. A detailed under-

standing of the exchange interaction is, for instance, indis-

pensable for the engineering of spintronics devices made of

magnetic semiconductors. In an effort to shed light on this

issue, the pressure dependence of J was investigated for

antiferromagnetically coupled Mn2þ dimers in the semicon-

ducting compound Mn0:02Zn0:98Te (Kolesnik et al., 2006).

The corresponding energy-level scheme is indicated in Fig. 8.

Inelastic neutron scattering experiments performed for pres-

sures of p ¼ 0 and 0.4 MPa gave evidence for an appreciable

pressure-induced upward shift of the observed dimer excita-

tions, as illustrated for the j2i ! j1i transition with energy

4jJj in Fig. 14. The pressure-induced change of J amounts to

dJ ¼ �0:040ð9Þ meV, accompanied by a 0.49% decrease of

the intradimer distance R, resulting in a linear distance

dependence jdJ=dRj ¼ 1:8ð4Þ meV= �A for dR � R. Similar

INS experiments performed for CsMn0:28Mg0:72Br3 gave evi-
dence for a much stronger distance dependence of J with

jdJ=dRj ¼ 3:6ð3Þ meV= �A (Strässle et al., 2004).

3. Doping dependence of exchange parameters

It has been shown that a magnetic semiconductor can be

converted by hole doping from its intrinsic AFM state to a

ferromagnet (Ferrand et al., 2001). It is still an open question

whether the holes are localized or itinerant. The doping

dependence of the exchange parameters may shed light on

this issue. Neutron spectroscopic measurements were
performed for single crystals of MnxZn1�xTe, one with
x ¼ 0:05 and doped with P to a level of 5� 1019 cm�3,
and another undoped reference sample with x ¼ 0:02 (Kepa
et al., 2003). The experiments were similar to those described
in Sec. III.C.2 and gave evidence for a distinct doping-
induced downward shift of the observed Mn2þ dimer excita-
tions as illustrated for the j2i ! j1i transition with energy
4jJj in Fig. 15. The doping-induced change of the exchange
energy J amounts to dJ ¼ 0:013ð3Þ meV, in reasonable
agreement with dJ ¼ 0:010 meV calculated from the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which
indicates that the ferromagnetic exchange is mediated by
weakly localized holes.

4. Anisotropic exchange interactions

Exchange anisotropy can generally be expected for type-L
and type-J compounds where orbital degeneracy is present.
This is exemplified here for the type-L compound
K10½Co4ðD2OÞ2ðPW9O34Þ2� � 20D2O which contains a tetra-
meric Co2þ cluster as sketched in Fig. 16. The combined
action of spin-orbit and crystal-field interactions splits the 4T1

single-ion ground state of the Co2þ ions into six anisotropic
Kramers doublets (Carlin, 1986). By considering only the
lowest single-ion level, an effective spin Hamiltonian of the
Co2þ tetramer with s ¼ 1=2 for all ions can be written as

Ĥ ¼ �2J½ŝ1;xŝ3;x þ ŝ1;xŝ4;x þ ŝ2;xŝ3;x þ ŝ2;xŝ4;x

þ ŝ1;yŝ3;y þ ŝ1;yŝ4;y þ ŝ2;yŝ3;y þ ŝ2;yŝ4;y

þ �ðŝ1;zŝ3;z þ ŝ1;zŝ4;z þ ŝ2;zŝ3;z þ ŝ2;zŝ4;zÞ�
� 2J0ðŝ1;xŝ2;x þ ŝ1;yŝ2;y þ �0ŝ1;zŝ2;zÞ: (68)

It turns out that for this particular system the eigenfunctions
are approximately given by the spin functions jS12S34SMi
constructed through the spin coupling scheme Ŝ12 ¼ ŝ1 þ ŝ2,

Ŝ34 ¼ ŝ3 þ ŝ4, and Ŝ ¼ Ŝ12 þ Ŝ34, with less than 1%
S mixing.

FIG. 14 (color online). Pressure dependence of the j2i ! j1i
transition associated with Mn2þ dimers in Mn0:02Zn0:98Te measured

by INS. The lines denote Gaussian fits to the data. Adapted from

Kolesnik et al., 2006.

FIG. 15 (color online). Doping dependence of the j2i ! j1i tran-
sition associated with Mn2þ dimers in MnxZn1�xTe measured by

INS. The lines denote Gaussian fits to the data. Adapted from Kepa

et al., 2003.

Albert Furrer and Oliver Waldmann: Magnetic cluster excitations 381

Rev. Mod. Phys., Vol. 85, No. 1, January–March 2013



Inelastic neutron scattering experiments gave evidence for
well-defined transitions associated with the Co2þ tetramer as
shown in Fig. 16 (Clemente et al., 1997). The data analysis
based on Eq. (68) provided the exchange parameters J ¼
0:52 meV, � ¼ 2:4, J0 ¼ 0:11 meV, and �0 ¼ 4:6, resulting
in the energy-level scheme indicated in Fig. 16. Both interac-
tions J and J0 are ferromagnetic, thus leading to an M ¼ 	2
ground state, in agreement with magnetic susceptibility and
EPR experiments (Gomez-Garcia, Coronado, and Borras-
Almenar, 1992). The exchange anisotropy is rather large as
expected from the anisotropy of the Landé g matrix with
components in the range 2.6–7.0 observed by EPR experiments.

5. Higher-order single-ion anisotropies

Anisotropy-induced ground-state level splittings are essen-
tial to understand the steplike magnetic hysteresis curves and
the related relaxation and spin reversal phenomena observed
in single-molecule magnets (see Sec. V). Electron paramag-
netic resonance is the experimental tool of choice to deter-
mine ground-state level splittings, but because of the typically
large ZFS parameters D high magnetic fields and/or high
frequencies are needed to obtain sufficiently resolved spectra.
Inelastic neutron scattering experiments offer a valuable
alternative in zero field, as will be demonstrated here for
the tetrameric iron compound [Fe4ðOCH3Þ6ðdpmÞ6] (Hdpm =
dipivaloylmethane), or Fe4 in short, which has an S ¼ 5
ground state and shows slow relaxation of the magnetization
below 1 K (Barra et al., 1999). The four iron atoms lie

exactly in a plane, with the inner Fe atom being in the center
of an isosceles triangle. Electron paramagnetic resonance
experiments (Bouwen et al., 2001) showed that the single-
ion anisotropies defined by Eqs. (10) and (11) are not suffi-
cient to reproduce the observed signals in the ground-state
multiplet; higher-order anisotropy terms as given in Eq. (12)
are needed. The anisotropy parameters resulting from the
EPR experiments are listed in Table IV.

It can be seen from Table IV that D is the dominant
anisotropy parameter which splits the S ¼ 5 ground state
into a sequence of five doublets (M ¼ 	5, 	4, 	3, 	2,
and 	1) and a singlet (M ¼ 0) with energies DM2 according
to Eq. (10). The other anisotropy parameters produce a slight
mixing of the jMi states and/or give rise to small energy
shifts. Nevertheless, the relevant selection rule in INS experi-
ments, �M ¼ 	1, is retained with good accuracy, as dem-
onstrated by the data displayed in Fig. 17 (Amoretti et al.,
2001). The transition j�M ¼ 	1i ! j�M ¼ 0i could not be
resolved from the elastic line due to the decreasing energy
spacing with decreasing energy transfer. The anisotropy pa-
rameters resulting from the INS experiments are listed in
Table IV. The value of E is twice that obtained by the EPR
measurements. Small discrepancies between the parameters
determined by INS and EPR are frequently observed and are
probably due to the high magnetic fields used by the latter
technique, producing a rather large Zeeman splitting so that a
mixing of the ground and the excited spin multiplets cannot
be neglected.

6. Dzyaloshinski-Moriya interactions

The compound SrCu2ðBO3Þ2 is a two-dimensional spin-
gap system with tetragonal unit cell. It consists of alternately
stacked Sr and CuBO3 planes. The latter are characterized by
a regular array of mutually perpendicular Cu2þ dimers
(s ¼ 1=2) as illustrated in Fig. 18. The gap associated with
the singlet-triplet dimer excitations was determined by INS
experiments to be 3.0 meV (Kageyama et al., 2000). An
almost perfect center of inversion at the middle of the dimer
bonds forbids the Dzyaloshinski-Moriya (DM) interaction
[Eq. (5)] between the two spins of a dimer. However, each
dimer is separated from the neighboring dimer by a BO3 unit,
for which there is no center of inversion, so that the DM
interaction is allowed between the next-nearest-neighbor
(NNN) Cu2þ spins as described by the Hamiltonian

Ĥ ¼ X
NNN

	 dec � ðŝi � ŝjÞ; (69)

where the sign depends on the bond (see Fig. 18), and ec is
the unit vector in the c direction (Cépas et al., 2001). The
effect of Eq. (69) is to split the �M ¼ 	1 transition asso-
ciated with the singlet-triplet splitting into four branches

FIG. 16 (color online). Energy spectrum of neutrons scattered

from K10½Co4ðD2OÞ2ðPW9O34Þ2� � 20D2O at T ¼ 1:7 K. The insets

show a sketch of the tetrameric Co2þ unit and the resulting energy-

level scheme, labeled with the dominant component jS12S34S;	Mi
of the wave function. The highest states j1; 1; 1; 0i and j1; 1; 0; 0i
located at 5.04 and 5.79 meV, respectively, are not shown. Adapted

from Clemente et al., 1997.

TABLE IV. Anisotropy parameters determined for Fe4 (isomer AA) by EPR (Bouwen et al., 2001)
and INS (Amoretti et al., 2001) experiments.

D E B0
4 B2

4 B4
4

(�eV) (�eV) (�eV) (�eV) (�eV)

EPR �25:5ð2Þ 1.2(4) �1:4ð3Þ � 10�3 �1:0ð4Þ � 10�2 �0:ð4Þ � 10�4

INS �25:3ð2Þ �2:5ð2Þ �1:5ð3Þ � 10�3 � � � � � �
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under the application of a magnetic field parallel to the

c axis. This prediction was verified by EPR measurements

(Nojiri et al., 1999) and later confirmed by INS experiments

(Cépas et al., 2001) as shown in Fig. 19. In addition to the

four �M ¼ 	1 branches, the field-independent �M ¼ 0
transition was observed in the INS measurements. The DM

parameter resulting from these investigations turned out to be

d � 0:18 meV, which roughly compares with the estimated

value d ¼ ð�g=gÞJNNN � 0:5 meV.

7. A novel tool for local structure determination

Conventional crystallography is the standard tool for struc-

ture determination, and a periodic lattice is a prerequisite for

such studies. However, complex materials are often charac-

terized by local deviations from perfect periodicity which

may be crucial to their properties. The most prominent bulk

methods for local structure determination are x-ray absorp-

tion fine structure, nuclear magnetic resonance, and atomic

pair-distribution function analysis. All these methods provide

a spatial resolution of typically 0.1 Å, and their performance

can hardly be improved. Magnetic cluster excitations are able

to push the spatial resolution beyond the present limits

through the dependence of the exchange coupling J on the
interatomic distance R, which for most materials is governed

by the linear law dJ=dR ¼ � as long as dR � R. Modern

FIG. 17 (color online). Energy spectrum of neutrons scattered

from Fe4 at T ¼ 6:5 K. The transitions j 	Mi ! j 	M0i within

the S ¼ 5 ground-state multiplet are marked for each observed

peak. Adapted from Amoretti et al., 2001.

FIG. 18 (color online). Structural arrangement of the Cu2þ dimers

(balls connected with solid black lines) in SrCu2ðBO3Þ2 including

the Dzyaloshinski-Moriya interactions whose vectors are perpen-

dicular to the ða; bÞ plane. The arrows show the order of the spins in

the expression dðŝi � ŝjÞ. Adapted from Cépas et al., 2001.

(a) (b)

FIG. 19 (color online). (a) Magnetic field dependence (Bkc) of the
singlet-triplet excitations observed in SrCu2ðBO3Þ2 by EPR

(open dots) and INS (solid dots) experiments. (b) INS spectrum

of SrCu2ðBO3Þ2 at Q ¼ ð1; 0; 0Þ and B ¼ 6 T ðBkcÞ. Adapted from

Nojiri et al., 1999, and Cépas et al., 2001.

(a)

(b)

FIG. 20 (color online). (a) Energy distribution of the jS ¼ 0;
M ¼ 0i ! jS ¼ 1;M ¼ 1i Mn2þ dimer transition observed for

CsMn0:1Mg0:9Br3 at T ¼ 1:6 K. (b) Sketch of statistical distribu-

tions of Mn2þ and Mg2þ ions along the c axis. m is the number of

Mn2þ ions replacing Mg2þ ions outside the central Mn2þ dimer

embedded in the shaded area. Adapted from Furrer, Strässle et al.,

2011.
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spectroscopies measure exchange couplings with a precision
of dJ=J � 0:01; thus spatial resolutions of dR � 0:01 �A can
be achieved as demonstrated below.

We turn to Fig. 10, which displaysMn2þ dimer excitations
in CsMnxMg1�xBr3. The total linewidths of the transitions A
and B show an x-dependent increase beyond the instrumental
energy resolution (FWHM ¼ 55 �eV), which was further
investigated by high-resolution INS experiments with
FWHM ¼ 15 �eV (Furrer, Strässle et al., 2011). As shown
in Fig. 20(a), the energy spectrum observed for transition
A exhibits marked deviations from a normal Gaussian distri-
bution. It is best described by the superposition of
five individual bands which correspond to specific Mn2þ
dimer configurations with particular exchange couplings
Jm (m ¼ 0; 1; 2; 3; 4). The linear law dJ=dR ¼ � was estab-
lished for CsMnxMg1�xBr3 with � ¼ 3:6 meV= �A (Strässle
et al., 2004); thus each of the five Jm values can be associated
with a particular local distance Rm as listed in Table V.

How can the discrete nature of the local Mn-Mn distances
be explained? In Fig. 20(b) different configurations along the
Mn chain structure are sketched, where m is the number of
peripheralMn2þ ions replacing theMg2þ ions. The introduc-
tion of additional Mn2þ ions exerts some internal pressure
within the chain, since the ionic radii of theMn2þ (high spin)
and Mg2þ ions are different with rMn ¼ 0:83> rMg ¼
0:72 �A (Shannon, 1976), so that the atomic positions have
to rearrange. In particular, the Mn-Mn bond distance of the
central Mn2þ dimer is expected to shorten gradually with
increasing number of Mn2þ ions as compared to the case
m ¼ 0. For any number m there is a myriad of structural
configurations, resulting in a continuous distribution of local
distances Rm. This view, however, is in contrast to the ob-
served energy spectrum displayed in Fig. 20(a), which is
clearly not continuous. In other words, the bond distance is
not smoothly adjusted to its surroundings but locks in at a few
specific values Rm. Obviously the realization of discrete local
distances Rm is governed by the number m of peripheral
Mn2þ ions and not by their specific arrangement in the chain.
This surprising result is due to the one-dimensional character
of the compound CsMnxMg1�xBr3 in which the mixed
MnxMg1�x chains behave like a system of hard-core particles
(Krivoglaz, 1996). In conclusion, the use of high-resolution
spectroscopies allows a rather direct determination of local
interatomic distances in small magnetic clusters, in contrast

to other techniques which usually have to be combined with

simulations.

IV. LARGE MAGNETIC CLUSTERS

A. Introduction

In Sec. III, the scientific questions addressed by studying

small magnetic clusters focused on demonstrating and eluci-

dating the nature of the various basic interactions between the

spin centers in condensed matter systems. However, in large

magnetic clusters, or molecular nanomagnets in the context

of this review, the large size of the Hilbert space makes a

complete experimental characterization of the magnetic clus-

ter excitations (usually) impossible. Accordingly, the fine

details in the spin interactions such as exchange anisotropy

are not detected, and the modeling of the data can with much

success be based on spin models taking into account only the

dominant interactions, which in most cases include the

Heisenberg exchange. The spectroscopic experiments typi-

cally reveal the low-lying excitations or the low-energy sector

of these spin models, and one is hence naturally directed

toward questions concerning the nature of the ground state

and elementary excitations.
The key distinguishing feature as compared to the previous

section is the many-body structure of the wave functions in

the large magnetic clusters, and what novel quantum states

are realized and which physical concepts allow us to ration-

alize them could be formulated as main goals. At this point

the close ties to the field of, e.g., quantum spin systems

become apparent, and indeed methodologies developed there

are often applied to molecular nanomagnets. Most of the

examples presented in this section will elaborate on that.
However, distinguishing novel aspects also come into play

as a consequence of the fact that the molecular nanomagnets

are not extended. For instance, phase transitions, either clas-

sical or quantum, are not possible in a strict sense.

Conceptually most important, however, is that the wave

vector q ceases to be a useful quantum number. One can

actually expect that exactly those lattice topologies which

cannot be expanded into an extended lattice will exhibit the

most interesting novel complex quantum states and magnetic

phenomena. Research into this direction has just started,

however, and only preliminary results are available at the

time of the writing of this review. A further important point

not emphasized yet is that the spins of the magnetic centers in

molecular nanomagnets are generally rather large, with si ¼
3
2 , 2, and

5
2 being most often found, in contrast to quantum spin

systems, where much focus is on spin- 12 systems. Typical

metal ions would be Cr3þ andMn4þ (si ¼ 3
2 ),Mn3þ (si ¼ 2),

and Mn2þ and Fe3þ (si ¼ 5
2 ). The quantum-classical corre-

spondence hence enters naturally in the discussion of the

magnetic excitations in molecular nanomagnets.
In the following those classes of molecules will be dis-

cussed for which considerable insight into the magnetic

cluster excitations has been obtained. Important classes

such as odd-membered wheels (Cador et al., 2004; Yao

et al., 2006; Hoshino, Nakano et al., 2009), ferromagnetic

clusters (Clemente-Juan et al., 1999; Low et al., 2006;

TABLE V. Analysis of the INS spectrum of CsMn0:1Mg0:9Br3
given in Fig. 20(a). Em and Iobsm denote the energy transfers and
the normalized intensities of the individual bands m, respectively.
The intensities Icalcm were calculated according to a statistical model
described by Furrer, Strässle et al. (2011). Relative error bars are
given for the exchange couplings Jm and for the local Mn-Mn
distances Rm.

Em Jm Rm

m (K) Iobsm Icalcm (meV) (Å)

0 1.762(2) 0.081(22) 0.119 �0:8321ð10Þ 3.2311(3)
1 1.780(2) 0.302(25) 0.289 �0:8408ð10Þ 3.2287(3)
2 1.794(2) 0.383(22) 0.310 �0:8477ð10Þ 3.2268(3)
3 1.811(2) 0.173(22) 0.193 �0:8563ð10Þ 3.2244(3)
4 1.826(3) 0.061(18) 0.089 �0:8637ð14Þ 3.2224(4)
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Stuiber et al., 2011), disks (Koizumi et al., 2007; Hoshino,
Ako et al., 2009), and others are not mentioned.

An important subclass of molecular nanomagnets are the
single-molecule magnets (SMMs), which have received the
most attention in the past and could be described as having
created the molecular nanomagnets as a research field. The
above questions are also relevant, but the most interesting
phenomena in SMMs, such as quantum tunneling of magne-
tization, are mainly related to magnetic anisotropy. The
SMMs will be discussed in Sec. V.

B. Theoretical description

1. Spin Hamiltonian

As mentioned, experimental results on large magnetic
clusters can often be reproduced well by spin Hamiltonians
which include only the most dominant terms. For clusters
containing only type-S and type-Q metal ions, on which we
focus in this review, these are the HDVV Hamiltonian equa-
tion (2), the single-ion anisotropy equations (10) and (11),
and the Zeeman term equation (13). However, in molecular
nanomagnets the site symmetries of the individual spin cen-
ters in the cluster are very low, if they have symmetry at all.
Accordingly, the single-ion anisotropy and g factors should in
general be described as tensors. Also, in molecular nano-
magnets often different kinds of metal centers are incorpo-
rated. This gives rise to the spin Hamiltonian

Ĥ ¼ �2
X
i<j

Jijŝi � ŝj þ
X
i

ŝi �Di � ŝi þ�B

X
i

ŝi � gi � B;

(70)

which in the following will be referred to as the microscopic
Hamiltonian in order to clearly distinguish it from effective
models which also appear. The dipole-dipole interaction
Eq. (4) has also to be included, but its effect on the energy
spectrum and magnetic behavior is very similar to that of
the single-ion anisotropy term and may hence be lumped
into the single-ion parameters. Experimental D and E
values which were derived with the dipole-dipole interaction
explicitly included in Eq. (70) will be indicated by a super-
script ‘‘lig.’’

In contrast to the sites, the molecule itself may exhibit, or
closely approximate, a high molecular symmetry. In fact,
clusters with a particular symmetry are appealing for physical
studies and are thus preferred objects of investigations. The
microscopic Hamiltonian then simplifies enormously and
includes only a few parameters.

Usually the HDVV Hamiltonian dominates over the single-
ion anisotropy, and the strong-exchange limit (see Sec. II.A)
is an excellent starting point. Although the magnetic anisot-
ropy cannot be ignored in the analysis of experimental data,
the physics of interest in these cases is (usually) related to the
Heisenberg interactions, and the discussion focuses on the
corresponding Heisenberg spin models (notable exceptions
are the SMMs discussed in Sec. V). The magnetic anisotropy
may, however, also be so large that important effects ap-
pear which are not covered by the strong-exchange limit
(S mixing) (Liviotti, Carretta, and Amoretti, 2002;
Waldmann and Güdel, 2005) or may need completely differ-
ent physical concepts for their description. The examples

selected below will demonstrate this point. It is added that

from the values of magnetic parameters, such as J and D, it is

usually not possible to infer a priori whether the strong-

exchange limit is obeyed or not. The ratio D=J is generally

small in molecular nanomagnets, and a case-by-case analysis

is needed to determine which case is realized.
The dimension of the Hilbert spaces encountered in large

magnetic clusters poses a major obstacle, similar to that

found in other areas such as quantum spin systems, and the

same conceptual ideas are applied to tackle it. Indeed, essen-

tially any technique developed in the context of quantum spin

systems is also of interest for large magnetic clusters.

However, some of them have been of particular use and are

mentioned next.

2. Numerical techniques

A most straightforward approach is to numerically solve

the spin Hamiltonian for its energies and eigenfunctions,

which is achieved in two steps, setting up the Hamiltonian

matrix and then diagonalizing it.
The major decision in the first step is the choice of the basis

set, which could be the product states jfMigi (with an obvious
shorthand notation) or the spin functions j�SMi, where �
denotes the intermediate spin quantum numbers generated

in a particular spin coupling scheme. The product states

are most easily handled in computer code, yield sparse

Hamiltonian matrices, and are eigenfunctions of Ŝz which

allows a block factorization for magnetic clusters with uni-

axial symmetry. On the other hand, for the spin functions it is

numerically demanding to calculate matrix elements (a num-

ber of Wigner symbols need to be calculated) and the matri-

ces are dense, but they have the intrinsic advantage of being

eigenfunctions of the total spin operator Ŝ which results in a

very effective block factorization for the HDVV Hamiltonian.

Interestingly, nearly all numerical work in the field of quan-

tum spin systems has been based on product states; spin

functions are rarely used. However, for large magnetic clus-

ters diagonalization using spin functions has been used with

much success (Delfs et al., 1993; Waldmann et al., 1999;

Guidi et al., 2004; Baran et al., 2008), and efficient ITO-

based techniques have been developed for calculating matrix

elements (Gatteschi and Pardi, 1993) and employing spatial

symmetries (Waldmann, 2000; Schnalle and Schnack, 2010).
Complete information on the system is obtained by a full

exact diagonalization, and several canned computer codes are

available (Bai et al., 2000). The largest dimension of the

Hilbert space which can be handled is ca. 100 000 on a

supercomputer, or about 15 000 on a (32-bit) personal com-

puter. If symmetries are systematically taken into account,

quite large magnetic clusters can be treated on personal

computers, e.g., a mixed-valent Mn-½3� 3� grid molecule

with a Hilbert space dimension of 4 860 000 (Waldmann,

Güdel et al., 2006).
If full exact diagonalization is not possible, one may

attempt to obtain the energies and eigenfunctions in a sub-

space. A first approach is to truncate the space of basis

functions, but the success of the procedure obviously depends

on how well the selected basis states represent the sought-

after eigenfunctions (Schnalle and Schnack, 2009).
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A set of very efficient diagonalization methods is given by
the sparse matrix diagonalization techniques, which allow an
exact numerical calculation of a small number (� 100) of
selected energies and/or eigenstates, typically the low-lying
states (Bai et al., 2000). In physics the most prominently
used variant is the Lanczos method, while in chemistry the
Jacobi-Davidson algorithm is more often applied. However,
for the specific purpose of calculating the low-temperature
observables of large magnetic clusters, the simpler subspace-
iteration techniques turn out to be quite powerful, since they
provide both energies and eigenfunctions even in the presence
of degeneracies with very comparable convergence rates.

These techniques employ an iterative process and work
best for sparse matrices. Because of the latter it is most
natural to use the product states, although spin functions
have been applied in a few cases (Guidi et al., 2004). The
iterative process consists of repeatedly applying the
Hamiltonian matrix H to a vector x,

xnþ1 ¼ ðH� �1Þ � xn; (71)

where � introduces a shift which allows one to optimize
the convergence rate, and the starting vector x0 may be a
random vector. If more than one eigenpair is searched,
the iteration is applied to a subspace of vectors X.
For a practical algorithm, some further improvements are
suggested (Bai et al., 2000). The Lanczos and Jacobi-
Davidson algorithms are also based on matrix-vector multi-
plications H � x, but employ more sophisticated algorithms
to extract the information on the eigenpairs from the gen-
erated vectors (Bai et al., 2000).

Besides these approaches a number of numerical tech-
niques exist which aim at calculating observables directly
without evaluating eigenpairs explicitly. Among these are,
e.g., quantum Monte Carlo, Chebyscheff expansion, dynamic
and finite-temperature Lanczos, transfer matrix, and (dynami-
cal) density matrix renormalization group (DMRG) methods.
However, although promising, these methods have not yet
been applied systematically to the analysis of large magnetic
clusters as defined in this review, although a few applications
have been reported (Exler and Schnack, 2003; Engelhardt,
Luban, and Schröder, 2006; Torbrügge and Schnack, 2007;
Schnack and Wendland, 2010; Ummethum et al., 2012).
More efforts in this direction are desirable.

3. Effective Hamiltonian techniques

Another approach describing the relevant low-energy ex-
citations in a particular spin model is to replace the micro-
scopic Hamiltonian by an effective spin Hamiltonian
(mapping), which acts in a Hilbert space of (significantly)
reduced dimension. It is emphasized that the states in the
Hilbert space of the effective Hamiltonian do not have to be
identical to those of the microscopic Hamiltonian. An effec-
tive Hamiltonian may be constructed from various proce-
dures, but the following simple technique is particularly
useful for rationalizing the magnetism in a number of large
magnetic clusters.

The method can be described as a first-order perturbation
treatment, as integrating out a degree of freedom, or as a
mean-field argument and is guided by physical intuition. It
starts with combining a subset of the spins ŝi into a collective

spin Ŝ� ¼ P
i2�ŝi, where � stands for the set of sites i, and

selecting the sector of interest via the value of the quantum

number S� associated with Ŝ�, which is usually the minimal

or maximal value. Then it holds that

ŝi ¼ ciŜ�; (72)

with a projection coefficient ci, which depends on si and S�.

For the sector where all spins in the subset � are ferromag-
netically aligned and S� assumes its maximal value S� ¼P

isi it holds that ci ¼ si=S�. The effective Hamiltonian is

then finally obtained by inserting Eq. (72) in the microscopic
Hamiltonian, which removes the spins ŝi of the subset � and

replaces them by the collective spin Ŝ�.

A typical situation where the above scheme could
be applied is a cluster with one or a few ferromagnetic
exchange couplings that are much larger than the others.
Then the spins linked by a strong ferromagnetic coupling
can be combined into one collective spin which replaces
them in the spin Hamiltonian. Another situation is an anti-
ferromagnetic bipartite lattice, where the spins on each
sublattice A or B are ferromagnetically aligned with respect
to each other in the ground state. This suggests the intro-

duction of two sublattice spins ŜA and ŜB, and transforma-
tion of the Hamiltonian according to Eq. (72). The following
sections provide examples for the practical application of the
scheme.

4. Condensed matter techniques

Sophisticated techniques for calculating properties of
extended (quantum) spin systems have been developed.
Some of them can directly be applied to large magnetic
clusters as they work for any number N of spin centers, i.e.,
the thermodynamic limit is not assumed a priori but taken
after completion of the calculation. However, in magnetic
clusters translational invariance is not present, and it is hence
a characteristic feature of the application of these techniques
to clusters that they have to be adapted to work in real space
and not momentum space as in extended systems, which may
bring in novel aspects. This area is still largely unexplored,
but two of the simpler techniques in this class of methods
have been applied with some success. They both elaborate on
the observation that in molecular nanomagnets the spins si
are relatively large.

Spin-wave theory (SWT), or the set of techniques em-
braced by this acronym such as linear SWT, interacting
SWT, or modified and finite-size SWT (Rado and Suhl,
1963; Takahashi, 1987; Hirsch and Tang, 1989; Zhong and
Sorella, 1993; Ivanov and Sen, 2004), is certainly a most
successful theory in magnetism. All variants have in common
that they start from a classical spin configuration in the
ground state and expand around it by approximating the
single-site spin operators ŝi. They are hence semiclassical
in nature, and, technically, can be applied to any type of
lattice, and, in particular, to large magnetic clusters when
formulated in real space (Cépas and Ziman, 2005). It is
necessary to distinguish between SWTs for ferromagnetic
and antiferromagnetic clusters. For ferromagnetic clusters,
SWT allows us to calculate the zero-temperature excitation
spectrum exactly for any arbitrary cluster. However, since
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SWT breaks spin rotational invariance it is conceptually
inappropriate for antiferromagnetic systems with disordered
ground states, such as one-dimensional (1D) systems or
magnetic clusters. Nevertheless, it is often found to produce
significant results, e.g., for excitation energies (Ivanov and
Sen, 2004), but the reliability of the results should be checked
carefully case by case. The fundamental questions with re-
gard to the applicability of SWT to antiferromagnetic clusters
are not addressed in this review, but results of a few case-by-
case checks will be reported. For the technical implementa-
tion of SWT for magnetic clusters see Waldmann (2007) and
Stuiber et al. (2011).

The large spins in molecular nanomagnets suggest an
entirely classical description, where each spin operator ŝi
is replaced by a classical vector si of appropriate length, or a
unit vector ei times a prefactor ~si, si ¼ ~siei. A subtlety
arises here with regard to the appropriate value of ~si, which

can be argued to be best taken as ~si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siðsi þ 1Þp

(Joyce,
1967; Luscombe and Luban, 1997) or ~si ¼ si (Fisher, 1964).
With this replacement the Hamiltonian becomes a classical
functional, and the ground-state energy and spin configura-
tion are obtained by minimization. Also, thermodynamic
quantities can be calculated for quite large magnetic clusters
of hundreds of sites, and it is here where the classical
approach is mostly applied to molecular nanomagnets
(Müller et al., 2001; Schröder, Nojiri et al., 2005; Yao
et al., 2006). The calculation of dynamic quantities is also
possible (Luscombe and Luban, 1997; Luscombe, Luban,
and Borsa, 1998), and the intensity of the excitations in
magnetic clusters can be approximated reasonably well
(Mentrup et al., 2000). However, the discrete energies at
which the excitations occur can of course not be obtained in
these calculations. Hence the classical calculations are not
actually suited to reproduce experimental spectroscopic data,
but nevertheless can provide significant insight into the
physics of the excitations in a large magnetic cluster through
the quantum-classical correspondence (Schröder et al.,
2005a), which is probably the most important aspect.

C. Even-membered antiferromagnetic molecular wheels

Molecular wheels are species in which the metal ions form
almost perfect ringlike structures. The decanuclear wheel
[Fe10ðOCH3Þ20ðO2CCH2ClÞ10], or Fe10 for short, was the first
wheel whose magnetic properties were studied (Gatteschi
et al., 1994; Taft et al., 1994). Since then, because of their

aesthetic appeal and unprecedented magnetism, the class of
molecular wheels has grown enormously and dozens of
wheels with nuclearity ranging from N ¼ 6 to 18 have been
synthesized. In Fig. 21 the crystal structures of five represen-
tatives are displayed. The physics in the molecular wheels,
and their relatives such as the modified wheels (see
Sec. IV.D), turned out to be surprisingly rich. The presenta-
tion here is hence necessarily limited.

The even-membered antiferromagnetic wheels have been
the subject of intense research. In this section, homonuclear
wheels will be discussed with si ¼ s for all i. In view of the
high molecular symmetry, which in hexanuclear wheels can
be a crystallographic S6 symmetry and in octanuclear wheels
a C4 symmetry, the magnetism should be expected to be very
well described by the generic spin Hamiltonian

Ĥ ¼ �2J

�XN�1

i¼1

ŝi � ŝiþ1 þ ŝN � ŝ1
�

þD
X
i

�
ŝ2iz �

1

3
siðsi þ 1Þ

�
þ�BgŜ � B: (73)

Additional terms describing, e.g., a variation of the exchange
constants along thewheel, tilted single-site anisotropy tensors,
or higher-order terms, should in principle also be present, but
these are difficult to resolve in experiment. Sometimes a
planar term E

P
iðŝ2ix � ŝ2iyÞ has to be added to Eq. (73) (as

described later), and evidence for weak Dzyaloshinski-Moriya
interactions was reported (Cinti, Affronte, and Jansen, 2002;
Lante et al., 2009). However, the latter manifests itself only in
specific experiments and is not further considered here. The
Hamiltonian equation (73) (plus sometimes an E term) gen-
erally provides a very good description.

The exchange coupling 2J is typically on the order of a few
meV, and the single-ion anisotropy is weak, jDj< 0:1 meV.
In most cases it is of the easy-axis type (D< 0), with the
exception of Fe18, where D> 0 (see below). The ratio D=J is
small in the antiferromagnetic wheels, but the strong-
exchange limit does not necessarily apply. In fact, the effect
of the anisotropy is rather determined by ðNsÞ2jD=Jj
(Chiolero and Loss, 1998; Waldmann, 2002), and antiferro-
magnetic wheels should be classified according to whether
the anisotropy is ‘‘weak’’ or ‘‘strong’’ by the different physics
in the two limits.

The magnetic susceptibility data have conclusively pointed
toward a S ¼ 0 ground state in the antiferromagnetic wheels,
which is intuitively anticipated from the expected alternating

FIG. 21 (color online). Molecular structures of the five even-membered antiferromagnetic wheels NaFe6, Cr8, CsFe8, Fe10, and Fe18 (for the

chemical compositions see the text).
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up- and down-spin configuration in the classical ground state.
The first general insight into the excitation spectrum was
obtained from low-temperature magnetization curves on the
Fe10 wheel, which are reproduced in Fig. 22. A sequence of
magnetization steps is seen as a function of field, where at
each step the magnetization changes by 2�B, and which
occur in regular field intervals of ca. 4.2 T. This demonstrates
that as a function of field the ground state changes from S ¼ 0
to S ¼ 1 at the first step, S ¼ 1 to S ¼ 2 at the second step,
and so on, as sketched in Fig. 23. From the fields of the
magnetization steps or ground-state level crossings one can
infer the zero-field energies of the states (Shapira and
Bindilatti, 2002), with the result

EðSÞ ¼ �

2
SðSþ 1Þ: (74)

The excitation spectrum consists hence of a set of spin
multiplets with S ¼ 0; 1; 2; . . . whose energies satisfy the
Landé rule Eq. (46); see also Fig. 23, where � is the energy
gap between the singlet and triplet. Such a spectrum is also

generated by a Heisenberg dimer ĤAB ¼ �ŜA � ŜB, with
appropriate spins SA and SB. The Hamiltonian ĤAB appears
hence as an effective spin Hamiltonian for the antiferromag-
netic Heisenberg model on a ring. There is, however, some
deeper physics here, which will be mentioned in Sec. IV.C.1.

The role of magnetic anisotropy in antiferromagnetic

wheels was elucidated by EPR (Pilawa et al., 1998, 2001,

2003; van Slageren et al., 2002) and measurements of the

magnetic torque (Cornia et al., 1999; Cornia, Jansen, and

Affronte, 1999; Waldmann et al., 1999). The first INS

experiment on a wheel was performed on the cluster

Na½Fe6fNðCH2CH2OÞ3g6�Cl, or NaFe6 (see Fig. 21)

(Waldmann et al., 1999). The experimental data are repro-

duced in Fig. 24 and are characterized by two cold

transitions I and II, and a hot transition III. The interpretation

of the observed transitions is straightforward: Peaks I and II

correspond to transitions from the S ¼ 0 ground state to the

FIG. 22. (a) Magnetization vs field and (b) differential magneti-

zation dM=dB at a temperature of 0.6 K of the antiferromagnetic

wheel Fe10. The data show the sequence of magnetization steps,

traced here for fields up to 40 T. Adapted from Taft et al., 1994.

FIG. 23 (color online). Sketch of the low-lying energies in even

antiferromagnetic molecular wheels. The Heisenberg interactions

give rise to spin multiplets S ¼ 0; 1; 2; . . . which split in a magnetic

field and lead to level crossings in the ground state, which changes

from jS ¼ 0;M ¼ 0i to j1;�1i, j1;�1i ! j2;�2i, etc., and steps

in the magnetization curve. The magnetic anisotropy splits the spin

multiplets in zero field, as indicated to the left. Some allowed INS

transitions are indicated by arrows.

FIG. 24. Neutron energy-loss spectrum of NaFe6 at the indicated

temperatures (Q ¼ 1:0 �A�1). The transition i could be assigned to

an impurity species in the sample. Adapted from Waldmann et al.,

1999.
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zero-field-split S ¼ 1 multiplet, and peak III to a transition
from the jS ¼ 1;M ¼ 0i level to the S ¼ 2 multiplet, as
indicated in Fig. 23. The INS energies yield directly 2J ¼
�2:0 meV and D ¼ �0:038 meV, in excellent agreement
with magnetic susceptibility and magnetic torque measure-
ments, which puts NaFe6 in the weak-anisotropy category.

Sections IV.C.1, IV.C.2, and IV.C.3 are organized by the
‘‘strength’’ of the magnetic anisotropy or parameter
ðNsÞ2D=J. First, the physics in the weak-anisotropy case,
which is that of the L- and E-band picture, is considered,
followed by the intermediate-anisotropy case. Finally, wheels
with strong anisotropy which may display quantum tunneling
of the Néel vector (QTNV) are discussed.

1. Antiferromagnetic wheels with weak anisotropy

and the L and E band

Most antiferromagnetic wheels fall into the weak-
anisotropy category. The anisotropy leads to a zero-field
splitting of the spin multiplets, which is detected in, e.g.,
INS experiments as shown by the example of NaFe6, but the
physics of the magnetic excitations is not affected by it.
Hence, the appropriate model for the discussion of the phys-
ics is that of the antiferromagnetic Heisenberg ring (AFMHR)
or Eq. (73) with D ¼ 0.

Initially, the wheels were regarded as models for 1D anti-
ferromagnetic chains with the implication that the physical
concepts, which are characterized by strong 1D quantum
fluctuations, should also apply to AFMHRs. However, the
experimental and theoretical work suggested a very different
picture of the excitations, which is denoted here as the L- and
E-band concept. This concept has its roots in Anderson’s
1952 paper on antiferromagnetic spin waves (Anderson,
1952), and emerged in the course of several works
(Anderson, 1984; Bernu, Lhuillier, and Pierre, 1992;
Caneschi et al., 1996; Chiolero and Loss, 1998; Schnack
and Luban, 2000; Waldmann, 2001; Lhuillier, 2002). The L-
and E-band concept is classical in nature, although some
subtleties are present, and the meaning of ‘‘classical’’ in
this context is in fact not yet completely understood. It rather
seems that in magnetic clusters of the size discussed here the
line between classical and quantum physics is blurred
(Konstantinidis et al., 2011). Fundamental questions hence
remain. However, from a practical point of view the L- and
E-band concept seems to apply whenever the classical spin
structure appears to well describe the ground state and has
allowed rationalization of the magnetism in a number of
different classes of molecules. The molecular wheel
[Cr8F8fO2CCðCH3Þ3g16], or Cr8 (see Fig. 21), has played an
important role in this context, as it was the first system for
which a detailed, and indeed complete, experimental demon-
stration of the concept was achieved by exploiting the full
power of INS.

Descriptions of the L- and E-band concept are available
(Waldmann, 2005a); only major aspects are mentioned here.
The key ingredient is the notion of rotational bands, where a
rotational band is a sequence of spin multiplets with S ¼
Smin, Smin þ 1, Smin þ 2; . . . whose energies increase accord-
ing to the Landé rule EðSÞ / SðSþ 1Þ. The analogy of this

spectrum with that of a rigid rotor Ĥ ¼ L̂2=ð2IÞ, where L̂ is
an angular momentum and I is the moment of inertia, is not

coincidental. The L- and E-band concept can be summarized
as follows:

(1) In an energy-vs-S plot, the low-energy sector is char-
acterized as a set of rotational modes; the lowest-lying
mode is called the L band and a number nE of
higher-lying modes is called the E band. The next
higher-lying states are collectively denoted as
quasicontinuum.

(2) The classification of the energy states in (1) is justified
by a selection rule: Spin transitions from the L band
into the quasicontinuum are forbidden. Hence, at low
temperatures only INS transitions between states of the
L band or from the L to the E band are allowed.

It is important that these points have to come together
(Waldmann, 2001). The presence of a rotational mode is by
itself not sufficient to ensure the validity of the L- and E-band
concept and its consequences. In Fig. 25 are shown the energy
spectrum and spin-spin autocorrelation function Cz

0ð!Þ of an

(a)

(b)

FIG. 25 (color online). (a) Simulated energy spectrum for a N ¼
8, s ¼ 3

2 AFMHR with 2J ¼ �1:46 meV as for Cr8. The low-lying

levels form rotational bands. The L band can be rationalized as

(quantized) rotation of the Néel vector. The next higher-lying bands

are denoted collectively as the E band and may be regarded as

(discrete) antiferromagnetic spin waves. Some INS transitions are

indicated by arrows with associated labels. The numbers in brackets

indicate the shift quantum number q for some spin multiplets.

(b) Simulated spin-spin autocorrelation function Cz
0ð!Þ in units of

2jJj for various temperatures. The L- and E-band transitions

indicated in (a) are identified. Adapted from Waldmann, 2001,

and Waldmann et al., 2003.
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N ¼ 8, s ¼ 3
2 AFMHR. The structure of the energies detailed

in (1) is clearly seen. Also, the correlation function demon-
strates, e.g., that transitions from the S ¼ 0 ground state into
the quasicontinuum do not occur. The above two points
completely define the concept, but some further comments
are in order.

L band: The L band is intimately related to the occurrence
of long-range Néel order. For lattices which can be expanded
to infinity, the presence of the L band in the spectrum is a
necessary but not sufficient requirement for an ordered Néel
ground state in the infinite lattice (Bernu, Lhuillier, and
Pierre, 1992). It is hence also related to the corresponding
antiferromagnetic Goldstone mode, and the L-band states
have spatial symmetries consistent with the ordered Néel
state. An excellent discussion is found in Lhuillier (2002).
Qualitatively, the L band reflects the rotational degree of
freedom of the classical antiferromagnetic spin configuration
in the ground state, or (quantized) rotation of the Néel vector.
The L band is also known as the tower of states or quaside-
generate joint states.

E band: The E band is deeply related to spin waves. For
lattices which can be expanded to infinity, the E band evolves
into the familiar antiferromagnetic spin waves in the infinite
lattice [where we deviate from the usual notation by not
regarding the Goldstone mode or antiferromagnetic Bragg
peak as a spin wave; see Ref. 25 in Waldmann (2007)]. In
finite clusters, the spin-wave spectrum becomes of course
discretized. It then consists of nE energies, and each of them
corresponds to one of the nE rotational modes in the E band.
Although originating from extended lattices, the concept of
spin waves can be carried over in an obvious manner to any
lattice which obeys the L- and E-band concept, not only those
characterized by a wave vector (Cépas and Ziman, 2005).
Qualitatively, the E band reflects the possible higher-energy
internal spin structures which result as excitations from the
classical antiferromagnetic ground-state spin configuration.

In an AFMHR the cyclic symmetry gives rise to a shift
quantum number q defined via the shift operator T̂jqi ¼
eiqjqi with q ¼ 0;	2	=N; . . . ; 	 by which the excitations
can be classified. A complete theory does not exist but
phenomenologically the energies of the L and E bands for
S � 1 can then be approximated by

EðS; qÞ ¼ 1
2�ð	ÞSðSþ 1Þ þ �ðqÞ � �ð0Þ (75)

with q ¼ 0, 	 for the L band. �ðqÞ can be regarded as the
finite-size version of the spin-wave dispersion relation
(Dreiser, Waldmann, Dobe et al., 2010). Indeed, in the
infinite chain q would become the wave vector, and �ðqÞ
would agree with the familiar spin-wave dispersion
(Anderson, 1952). However, it is emphasized again that the
L- and E-band concept is not limited to clusters with cyclic or
a similar high symmetry; it can also be observed in clusters
with different point group symmetries or no symmetry at all
(as we discuss later).

We now turn to discussing the molecular wheel Cr8. In this
molecule, eight Cr3þ ions (s ¼ 3=2) form an almost perfect
planar octagon. The system crystallizes in space group
P4212, and the molecule nominally exhibits C4 symmetry.
However, disorder in some pivalate ligands and tert-butyl
groups is present, suggesting that the individual molecules

are slightly distorted. Inelastic neutron scattering data yielded

the exchange parameter 2J ¼ �1:46ð4Þ meV and anisotropy

D ¼ �0:038ð5Þ meV (Carretta et al., 2003), consistent with

thermodynamic and EPR results (van Slageren et al., 2002).

A variation of the exchange and anisotropy parameters along

the wheel as allowed by a C4 symmetry was not detected.

Evidence for a weak rhombic term with E=D � 0:11 was

found.
A careful analysis of the INS data provided a detailed

picture of the excitations in Cr8 (Waldmann et al., 2003).

The experimental INS spectra, corrected for nonmagnetic

scattering, are compiled in Fig. 26. Comparison with the

theoretical result shown in Fig. 25 will be made. The L0

transition, or transition from the S ¼ 0 ground state to the

lowest S ¼ 1 multiplet, is split into two close peaks because

of the zero-field splitting from the anisotropy, exactly as

discussed before for NaFe6. The splitting is, however, small

demonstrating the weak-anisotropy case in Cr8 and justifying

an analysis in terms of the AFMHR model. This is further

corroborated by comparing the experimental INS spectra to

the theoretical correlation function, which agree in any detail,

demonstrating the validity of the above point (1).
The INS data also allowed a detailed comparison of the

excitation intensities or oscillator strengths jh�kT̂ð1ÞðsiÞk�0ij2,
and very good agreement between experiment and theory was

found. Furthermore, magnetic scattering intensity at energies

higher than that corresponding to transition E2 in Fig. 25 was

not observed, demonstrating the selection rule in point (2).
Finally, also the Q dependence of the peak intensities was

analyzed. The experimental results for the L0 and E1 tran-

sitions and the theoretical expectations are presented in

Fig. 27. The good agreement is obvious. However, most

important, the Q dependence provides a fingerprint of the

underlying many-body structures of the quantum states in-

volved in a transition. Hence, the observed different Q de-

pendences of the L0 and E1 transitions directly demonstrate

the different physical nature of the excitations in the L band

(rotations of the Néel vector) and the E band (spin waves).
Having demonstrated the L- and E-band picture for Cr8,

the question arises of how general it is. A conclusive

answer is not yet available, but the results so far suggest

that the L- and E-band concept works better the larger s and
the smaller N as indicated in Fig. 28 (Waldmann, 2001;

Engelhardt, Luban, and Schröder, 2006). The crossover is

FIG. 26 (color online). Neutron energy-loss spectrum of Cr8 at the
indicated temperatures. Adapted from Waldmann et al., 2003.
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qualitatively determined by comparing the size N of the

cluster to a length � characterizing the decay of the antifer-

romagnetic correlations with distance, as indicated in Fig. 28.

A precise definition of � can be subtle (Haldane, 1983a;

Affleck et al., 1987), but in any (disordered) system the
correlations decay on a characteristic length scale, which is

what is meant by �. The spin length enters then through the

dependence of � on s, which, from Haldane’s and other

results (Haldane, 1983a, 1983b; Affleck et al., 1987), is
roughly exponential. Since for s ¼ 1

2 , � is about six sites, it

is concluded that large s ¼ 1
2 clusters are distinguished from

those with s > 1
2 in that the L- and E-band picture is never

obeyed in them.
The L- and E-band concept has some useful consequences,

valid not only for the AFMHR. First, the L band can well be

reproduced by an effective Hamiltonian which may be con-

structed along the lines outlined in Sec. IV.B.3. This is carried

out now for the example of the even antiferromagnetic
wheels. Their lattice is bipartite and the introduction of two

sublattices A and B is natural, with the spins on each

sublattice ferromagnetically aligned. Then an effective
Hamiltonian is obtained by combining the spins on each

sublattice to give ŜA ¼ P
i2Aŝi and ŜB ¼ P

i2Bŝi, and insert-

ing ŝi ¼ ð2=NÞŜA or ŝi ¼ ð2=NÞŜB, depending on the spin’s
sublattice, into the microscopic Hamiltonian, which results in

ĤAB ¼ �2jŜA � ŜB; (76)

with j ¼ a1J. For a1 one finds a1 ¼ aAB1 , where aAB1 � 4=N.

The two-sublattice Hamiltonian ĤAB produces an energy
spectrum according to Eq. (74), immediately explaining the
steplike magnetization curves (see Fig. 22) and the L band in
the energy spectrum. The approximation can be improved to
yield nearly exact results if a1 is slightly corrected to account
for the weak quantum fluctuations (Waldmann, 2002). For
Cr8 one obtains a1 ¼ a

qm
1 with a

qm
1 ¼ 0:5586.

Second, the nature of the E band suggests applying SWT to
the calculation of its energies. This route was explored in
recent years, but the status is not yet clear and more work is
needed. However, it seems that, despite the conceptual prob-
lems of antiferromagnetic SWT, the standard interacting
SWTs do, at least for bipartite lattices, produce reasonable
results for the energies of the E-band states in the S ¼ 1
sector. For instance, for the AFMHR the ‘‘dispersion rela-
tion’’ �ðqÞ in Eq. (75) is obtained, as discussed later.

2. Antiferromagnetic wheels with intermediate anisotropy

In antiferromagnetic wheels with substantial magnetic
anisotropy the ground state and lowest excitation may better
be described by quantum tunneling of the Néel vector (see
Sec. IV.C.3), but for the next-higher-lying levels the L- and
E-band picture is still appropriate, although S mixing occurs
as a novel feature. In the following the effects of a significant
anisotropy on the excitations will be discussed using the
example of CsFe8, as it is one of the best characterized large
magnetic clusters and the generic Hamiltonian equation (73)
has been confirmed with high precision.

The chemical formula of CsFe8 is
Cs½Fe8fNðCH2CH2OÞ3g8�Cl. Eight Fe3þ ions (s ¼ 5

2 ) form

an almost perfect octagon with a Csþ ion at the center (see
Fig. 21). Depending on the synthesis, the system cocrystal-
lizes with different solvent molecules in space groups P4=n,
Pna21, and P21=n (Saalfrank et al., 1997), and the molecule
exhibits ideal or approximate C4 symmetry, but a dependence
of the magnetic excitations on the solvent was experimentally
not observed. CsFe8 is a member of a family of wheels which
are distinguished by the templating central alkaline-earth
ion, and a magnetostructural correlation was established
(Waldmann et al., 2001; Pilawa et al., 2003). The magnetic
excitations in CsFe8 were studied by low-temperature high-
field torque magnetometry, single-crystal high-frequency
EPR at Q-band and 190 GHz frequencies, single-crystal
nuclear magnetic resonance (NMR) (Schnelzer et al.,
2007), and several INS experiments covering energies up to
25 meV (Waldmann et al., 2001, 2005; Waldmann, Dobe
et al., 2006; Schnelzer et al., 2007; Dreiser, Waldmann,
Carver et al., 2010; Dreiser, Waldmann, Dobe et al., 2010).

The data analysis could be accomplished by solving the
microscopic Hamiltonian equation (73) using the numerical
sparse matrix techniques described in Sec. IV.B.2. However,

(a) (b)

FIG. 27 (color online). Q dependence of the integrated neutron

scattering intensity of Cr8 for the peaks (a) L0 and (b) E1. Both

peaks arise from transitions from the S ¼ 0 ground state into the

S ¼ 1 sector, but the final spin multiplets involved differ by their

shift quantum number q, as indicated in the panels. The solid lines

represent the theoretical curves. Adapted from Waldmann et al.,

2003.

FIG. 28 (color online). Physical properties of the antiferromag-

netic Heisenberg ring as a function of its size N and the spin length

s. In the shaded area quantum fluctuations are weak and the spin

structure is essentially classical. Here the L- and E-band concept

becomes valid and ĤAB is a good effective spin Hamiltonian. This

classical regime is reached when size N is significantly smaller than

a characteristic correlation length �, which roughly increases ex-

ponentially with s. Adapted from Waldmann, 2001.
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the Hilbert space dimension is 1 679 616 and the task can
become time consuming. Hence, approximate schemes are
desired, with the advantage that their accuracy can always be
checked by comparing with the exact results from Eq. (73) for
a few cases. The lowest-level description built on the strong-
exchange limit works well for, e.g., EPR experiments, but
involves many parameters and furthermore misses important
effects [for a detailed description of the strong-exchange limit
approach see Bencini and Gatteschi (1990), or Dreiser,
Waldmann, Carver et al. (2010)]. However, if only the energy
levels in the L-band sector, to use the language of the
previous section, are desired, a high-accuracy higher-level
description is provided by the sublattice Hamiltonian ap-
proach. Applying the ideas used for the HDVV term (see
Sec. IV.C.1) to the anisotropy (and Zeeman) term in the
microscopic Hamiltonian yields the sublattice Hamiltonian

ĤAB ¼ �2jŜA � ŜB þ dðŜ2A;z þ Ŝ2B;zÞ þ g�BŜ � B; (77)

with j ¼ a1J and d ¼ b1D, where a1 ¼ aAB1 and b1 ¼ bAB1
[bAB1 � ð2s� 1Þ=ðNs� 1Þ]. The approximation can again be

improved by adjusting a1 and b1 to account for the weak
quantum fluctuations, which results in essentially exact en-
ergies and yields transition intensities to within 10% accuracy
(Waldmann, 2002; Waldmann et al., 2006). For CsFe8,
a
qm
1 ¼ 0:5536 and b

qm
1 ¼ 0:1870. The energy spectrum of

CsFe8 is nearly identical to that of Cr8 shown in Fig. 25,
and the labeling of states and transitions is carried over.

Inelastic neutron scattering experiments allowed the ob-
servation of all L-band states up to S ¼ 5 at an energy of
14.4 meV (transitions L0-L4 with respect to Fig. 25). The data
could be simulated very accurately; see Fig. 29. Also, the
EPR transitions observed in angle-resolved high-frequency
EPR in the field range of 0–12 T could be described with high
accuracy; see Fig. 30. In the EPR experiments the L-band
states up to S ¼ 4were probed. In the fits to the data only two
free parameters, 2J and D, were involved. The determined
values are given in Table VI [(INS No. 2 and high-frequency
EPR (HFEPR)].

The excitation spectrum in CsFe8 was also probed for
energies up to 25 meV in a high-energy INS experiment
(Dreiser, Waldmann, Dobe et al., 2010). Results are shown
in Fig. 31. At lower energies the transitions within the L band
are again observed; however, at energies of ca. 7.5 and
10 meV two further cold transitions are detected, which can

unambiguously be related to the discrete spin-wave excita-

tions E1 and E2 expected in an octanuclear antiferromagnetic

wheel. Above transition E2 no magnetic scattering intensity is

observed, confirming the selection rule associated with the

L- and E-band picture in Sec. IV.C.1. The determined 2J and

D values are listed in Table VI (INS No. 3).
The INS data were recorded on a nondeuterated polycrys-

talline sample. This may explain the large nonmagnetic scat-

tering in Fig. 31, which is typically observed in molecular

nanomagnets above energies of ca. 2–3 meV. For CsFe8 it

could, however, very well be accounted for using a Bose-

correction analysis (see Sec. II.B.1), which allowed the un-

ambiguous identification of themagnetic peaks; see Fig. 31(a).
Table VI compiles the determined 2J and D values, in-

cluding those obtained by torque and high-resolution INS

(INS No. 1) (Waldmann et al., 2001, 2005). The consistency

is excellent, in particular, considering the large range of

energy scales probed in the experiments (� 0:01 meV in

35 GHz EPR, �10 meV in high-energy INS). Efforts were

made to infer the significance of further terms in the micro-

scopic spin Hamiltonian not included in Eq. (73). A J1-J2
modulation of the exchange constants along the wheel was

found to be smaller than 20%, and the rhombic anisotropy to

be negligible, E ¼ 0:0000ð3Þ meV (Dreiser, Waldmann,

Carver et al., 2010; Dreiser, Waldmann, Dobe et al., 2010).
The 2J value determined in the EPR experiment deserves

a comment. The EPR selection rules do not allow a

direct observation of exchange splittings (see Sec. II.B.3).

FIG. 29 (color online). Neutron energy-loss spectrum in CsFe8,
after background correction, at T ¼ 17 K, and best-fit curve calcu-

lated from Eq. (77). Adapted from Waldmann, Dobe et al., 2006.

FIG. 30 (color online). Experimental (crosses) and simulated

(dotted lines) EPR transitions as observed in angle-resolved EPR

experiments on single crystals of CsFe8 at frequencies of (a) the

Q band (35 GHz) (T ¼ 25 K) and (b) 190 GHz (T ¼ 5 and 15 K).

Adapted from Dreiser, Waldmann, Carver et al., 2010.
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Exchange constants may though be determined indirectly,
through the temperature dependence of the EPR resonance
intensities, which however in large clusters is challenging, or
through the S-mixing mechanism (Liviotti, Carretta, and
Amoretti, 2002; Waldmann and Güdel, 2005; Wilson et al.,
2006; Barra et al., 2007; Piligkos et al., 2009), which was
the case in CsFe8. In the strong-exchange limit, the anisot-
ropy splitting produces the ‘‘normal’’ zero-field splitting
pattern, e.g., a D term in the microscopic spin Hamiltonian
produces a zero-field splitting of the spin multiplet, which

follows the M2 behavior corresponding to Ŝ2z . However, if
anisotropy is stronger, as compared to the exchange J, then
the pattern is modified and deviations from M2 occur. In
perturbation theory this corresponds to higher-order terms

ðŜ2zÞn with n > 1 coming in, with weights proportional to
ðD=JÞn. Detecting these shifts in the zero-field splitting pat-
tern allows the indirect determination of the strength of the
exchange. The excellent agreement of the EPR 2J value
demonstrates hence that the generic Hamiltonian equation
(73) also describes the subtle S-mixing effects very well in
CsFe8.

Comparison of the INS and EPR experiments reveals
another interesting aspect of the excitations in antiferromag-
netic wheels. According to the INS selection rules the tran-
sition jS ¼ 1; M ¼ 0i $ jS ¼ 1; M ¼ 	1i, or � henceforth,
is allowed and should be detected at appropriate tempera-

tures, yet it is not observed in INS experiments, albeit in EPR

experiments (see Fig. 32). It turns out that intramultiplet

transitions, such as �, are orders of magnitude weaker than

intermultiplet transitions because of the particular many-body

structure of the wave functions, which is that of a bipartite

lattice of two mesoscopically sized spins on each sublattice

(SA ¼ SB ¼ 10 in CsFe8) (Waldmann et al., 2005). For that

reason the intramultiplet transitions become too weak to be

observed by INS. CsFe8 provides a convincing example,

since here the transition � should have easily been detected

by INS; see Fig. 32. Hence, the combined INS and EPR data

directly demonstrate a hallmark feature of antiferromagnetic

wheels, namely, the mesoscopic antiferromagnetic sublattice

structure.
Although anisotropy is appreciable in CsFe8, the energies

of the spin-wave excitations E1 and E2 are actually little
affected. This, and fundamental interest, motivated an analy-

sis of the elementary excitations of the N ¼ 8, s ¼ 5
2 AFMHR

model using different variants of SWT. All models provide

predictions for the E-band states or the dispersion relation

�ðqÞ in Eq. (75), but only the last three also yield estimates for

the singlet-triplet gap � ( ¼ a1j2Jj) or indeed the L band.

The findings are compared in Fig. 33 to the exact energies.

Interestingly, all SWT models roughly reproduce the spin-

wave excitation spectrum, which supports the notion that the

L- and E-band concept is essentially classical. However,

significant differences exist, and the interacting SWT

(ISWT) and linear SWT ðLSWTÞ þ�c models do best for

TABLE VI. Comparison of the magnetic parameters for CsFe8 obtained by different experimental
techniques.

2J D
Technique (meV) (meV) Reference

Torque �1:90ð10Þ �0:045ð3Þ Waldmann et al. (2001)
INS No. 1 �1:78ð4Þ �0:048ð1Þ Waldmann et al. (2005)
INS No. 2 �1:80ð2Þ �0:050ð1Þ Waldmann, Dobe et al. (2006)
INS No. 3 �1:79ð5Þ �0:050ð7Þ Dreiser, Waldmann, Dobe et al. (2010)
HFEPR �1:87ð25Þ �0:0493ð1Þ Dreiser, Waldmann, Carver et al. (2010)
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FIG. 31 (color online). Neutron energy-loss spectrum in CsFe8
(T ¼ 5 K). (a) Q-sliced INS data (open circles), with curves offset

for clarity (the Q ranges are 1:0–2:5 �A�1, 2:5–4:0 �A�1, and

4:0–5:5 �A�1 for the lower, middle, and upper curves, respectively).

The solid circles represent the INS data recorded at T ¼ 58 K after

the Bose correction. The solid line represents the best-fit simulation

of the INS spectrum. (b) SðQ;!Þ plot. Adapted from Dreiser,

Waldmann, Dobe et al., 2010.

FIG. 32 (color online). 190 GHz EPR spectrum of a single crystal

of CsFe8. The intramultiplet transition � is clearly observed. The

inset to the left depicts the three lowest energy levels and the

allowed INS transitions I, II, and �. The inset to the right shows

INS data recorded at T ¼ 9:7 K in which the transition � should

have been observed if it were of appreciable intensity. Adapted from

Dreiser, Waldmann, Carver et al., 2010.
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the E-band excitations. With regard to the singlet-triplet gap,

the linear modified SWT (LMSWT) and interacting modified

SWT (IMSWT) give estimates that are almost a factor of 2

too small. LSWTþ �c comes closest, to within 7%. A

similar analysis for the larger Fe18 wheel (N ¼ 18, s ¼ 5
2 )

confirmed the observations (Ummethum et al., 2012).

3. Antiferromagnetic wheels with strong anisotropy

and quantum tunneling of the Néel vector

The possibility of QTNV in antiferromagnetic materials

has attracted a large amount of interest (Barbara and

Chudnovsky, 1990; Krive and Zaslavskii, 1990; Gider

et al., 1995; Gunther and Barbara, 1995; Chudnovsky and

Tejada, 1998; Shpyrko et al., 2007), and initial attempts to

establish QTNV concentrated on ferritin proteins
(Awschalom et al., 1992; Garg, 1996; Gider et al., 1996;

Tejada, 1996). The prediction that coherent QTNV might also

be realized in antiferromagnetic molecular wheels with

strong anisotropy (Chiolero and Loss, 1998) stimulated

intense research. In this context the molecules Fe10
(see Sec. IV.C), CsFe8 (see Sec. IV.C.2), and Fe18 appeared

as promising candidates (see Fig. 21). Reviews and follow-up

articles on the QTNV scenario in antiferromagnetic wheels

are available (Meier and Loss, 2001b; Leuenberger, Meier,
and Loss, 2003; Konstantinidis et al., 2011).

The following discussion refers to Eq. (73). Because of the

anisotropy the spin functions jSMi are mixed strongly and S
loses its significance as a good quantum number. This also

changes the dynamics of the Néel vector, defined as n̂ ¼
ðŜA � ŜBÞ=ðSA þ SBÞ, which is then no longer that of a

rotation but tunneling. In the quantum spectrum this may

be seen by the fact that the two lowest levels (ground state and

first excitation) approach each other but are separate from the

next-higher-lying levels, as shown exemplarily in Fig. 34(d):
�01 becomes smaller than, e.g., �12.

A semiclassical theory provided a clear description

(Chiolero and Loss, 1998; Meier and Loss, 2001b).

Depending on the magnetic parameters and strength and

orientation of the magnetic field, several scenarios occur;
we focus on two: (case A) D< 0 and zero magnetic field,
and (case B) D> 0 and large magnetic fields with B along
the x axis. In both cases, the Néel vector is strongly localized
along two directions, namely (case A) n ¼ 	z and
(case B) n ¼ 	y. Classically, the ground state is then char-
acterized by the spin configurations with Néel order sketched
in Figs. 34(a) and 34(b), respectively, and rotation is ham-
pered by an energy barrier, corresponding to a potential VðnÞ
with minima at the corresponding orientations [see Fig. 34(c)
]. However, quantum fluctuations allow for tunneling of the
Néel vector, which lifts the classical degeneracy and opens a
tunneling gap �QTNV in the energy spectrum, which then

corresponds to �01.
The Néel-vector dynamics is characterized by the tunnel-

ing action S0=ℏ, attempt frequency ℏ!0, barrier height �U,
and tunneling amplitude �0,

S0=ℏ ¼ Ns
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jD=ð2JÞj

q
; (78)

FIG. 33 (color online). Zero-temperature excitation spectrum of

the N ¼ 8, s ¼ 5
2 AFMHR, as a function of the shift quantum

number q calculated using exact numerical diagonalization (stars)

and the indicated SWTs (lines) (in the latter q was assumed as

continuous for clarity). LSWT indicates linear SWT, ISWT inter-

acting SWT, IMSWT full-diagonalization interacting modified

SWT, and LSWTþ �c linear SWT with a shift. Adapted from

Dreiser, Waldmann, Dobe et al., 2010.
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FIG. 34 (color online). Classical ground-state spin configuration

for an (a) N ¼ 8, (b) and an N ¼ 18 antiferromagnetic wheel with

the Néel vector (long arrow) pointing along (a) z and (b) y.
(c) Shape of the potential VðnÞ in the case (B). The two tunneling

paths from n ¼ þy to �y are indicated. Simulated low-lying

energies of an N ¼ 8, s ¼ 5
2 antiferromagnetic wheel vs D=ð2JÞ

in zero field (M is then an exact quantum number). Transitions I and

II are observed in INS experiments (see Fig. 35). Energy scheme as

given by semiclassical theory for (e) Fe18, (f) CsFe8, and (g) Fe10.
Adapted from Waldmann et al., 2005, 2009, and Konstantinidis

et al., 2011.
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ℏ!0 ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8jDð2JÞj

q
; (79)

�U ¼ Ns2jDj; (80)

�0 ¼ 8ℏ!0

ffiffiffiffiffiffiffiffiffiffiffi
S0=ℏ
2	

s
expð�S0=ℏÞ: (81)

The two cases (A) and (B) need to be distinguished
now, which we do through a parameter (A) c ¼ 2 and
(B) c ¼ 1. The ground-state energy is then given as
cℏ!0=2, and the tunneling splitting as c�0 [in case (A) the
tunneling gap has to our knowledge not yet been calculated,
but numerical results suggest �QTNV � 2�0]. The semiclas-

sical theory for QTNV becomes valid for large tunneling
actions ð1=2cÞS0=ℏ � 1, which is equivalent to stating that
the ground-state energy is smaller than the barrier height,
�U � cℏ!0=2, or the Néel vector strongly localized,
h0jn̂z=yj1i2 ! 1, where the matrix element is given as

h0jn̂z=yj1i2 � 1� c=ðS0=ℏÞ, with (A) z or (B) y the respective
Néel-vector component.

In regard to applying the semiclassical theory, some points
are worth noting. First, it turned out that the J andD values as
they appear in Eq. (73) or through a

qm
1 and b

qm
1 in Eq. (77)

should not be inserted in the semiclassical formulas, but
‘‘corrected’’ J, D values as they are obtained by using asc1 �
4=N and bsc1 � 2Ns2=½NsðNsþ 2Þ � 3� (Waldmann et al.,

2009) [for a detailed discussion, see Konstantinidis et al.
(2011)]. Not doing so leads to, e.g., significantly overesti-
mated tunneling actions, which unfortunately went unnoticed
in early works. Furthermore, the crossover from weak to
strong anisotropy, or from rotation to tunneling of the Néel
vector, is continuous and not abrupt [see Fig. 34(d)], and the
QTNV scenario is hence necessarily approximate (Santini
et al., 2005). This introduces some ambiguity, and different
criteria for when QTNV is realized can be given, e.g., that the
tunneling levels should fall below the top of the barrier or that
the tunneling splitting should be exponentially small. It is
noted in passing that since the semiclassical theory as it
stands is an approximate theory, agreement with semiclassi-
cal theory is a sufficient but not necessary criterion for QTNV.

The low-lying excitations in zero field have been mea-
sured by INS for Fe10, CsFe8, and Fe18 (Santini et al.,
2005; Waldmann et al., 2005, 2009). Fe10 and CsFe8 were
described before. The chemical formula of Fe18 is
½Fe18ðpdÞ12ðpdHÞ12ðO2CC2H5Þ6ðNO3Þ6� ðNO3Þ6 � xCH3CN
(x � 48, pdH2 ¼ 1; 3-propanediol); the 18 Fe3þ (s ¼ 5=2)
ions are arranged (see Fig. 21) in a cycle (King et al., 2006).
The system crystallizes in space group R�3 and the molecule
exhibits crystallographic S6 symmetry. One nitrate and
ca. 8MeCN solvent molecules are disordered. Inelastic neu-
tron scattering data for the three wheels are shown in Fig. 35.
The lowest excitation I could clearly be detected as well as
several higher excitations (for CsFe8 see Sec. IV.C.2), which
facilitated a precise determination of the magnetic parame-
ters. In Fe10 a substantial rhombic term jE=Dj ¼ 0:21 was
found, and structural disorder had to be included in the
analysis. In Fe18 a high-energy INS experiment evidenced a
modulation of the exchange constants along the ring consis-
tent with the C3 symmetry (Ummethum et al., 2012).

Notably, the ratio of the excitation energies of transitions I
and II decreases in the sequence of Fe10, CsFe8, and Fe18. For
better comparison of the wheels, the magnetic parameters
reported in the original works were converted to 2j and d of
ĤAB, Eq. (77) (in the case of Fe10 the rhombic contribution
was neglected and for Fe18 the appropriate averaged J was
used). The results are listed in Table VII.

For both CsFe8 and Fe10 one finds d < 0 or D< 0, while
for Fe18, D> 0. Hence, in CsFe8 and Fe10 [case (A)] the
transition I observed by INS directly corresponds to the Néel-
vector tunneling gap if QTNV is realized in them. The
tunneling gaps estimated by the semiclassical theory roughly
agree with the observed gaps, but the other parameters com-
piled in Table VII indicate that QTNV is not well realized in
Fe10, and that CsFe8 is borderline. For D> 0 as in Fe18
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FIG. 35 (color online). Neutron energy-loss spectra for (a) Fe10
(T ¼ 2, 5, and 10 K); (b) CsFe8 (T ¼ 2:4 K); and (c) Fe18 (T ¼ 1:9
and 4.2 K) showing transition I, which in the QTNV regime

corresponds to the Néel-vector tunneling splitting �01. Adapted

from Santini et al., 2005, and Waldmann et al., 2005, 2009.
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QTNV does not occur at low fields (Chiolero and Loss, 1998),
but in the high-field regime, which in Fe18 is reached above
10.6 T [case (B)]. Here, QTNV is well realized in Fe18 as,
e.g., indicated by the exponentially small tunneling gap. The
situation in the three wheels is probably most clearly dem-
onstrated by the energy diagrams shown in Figs. 34(e)–34(g).

The high-field Néel-vector tunneling gap in Fe18 was not
directly observed via spectroscopic techniques, but the field-
dependent oscillations in the Néel-vector tunneling gap due to
quantum interference were detected in low-temperature high-
field magnetic torque measurements (Waldmann et al.,
2009). In the semiclassical theory for case (B) the phase of
the ground-state wave function contains a topological term
	Ng�BB=j4ð2JÞj, which is proportional to the field. Hence,
in increasing fields the phase is repeatedly tuned through
destructive and constructive interference, which gives rise
to an oscillation of the tunneling splitting according to

�ðBÞ ¼ �QTNV

��������sin
�
	
Ng�BB

4j2Jj
���������: (82)

Since the tunneling splitting also affects the ground-state
energy E0ðBÞ ¼ �ðBÞ þ �ðBÞ=2, where �ðBÞ is a smooth
function, the oscillations can be detected by magnetization
or torque measurements at low temperatures. Indeed, the
observed wiggles in the torque curve (see Fig. 36) directly
correspond to the oscillations in the tunneling gap, which is
demonstrated, e.g., by comparing the numerically calculated
curves for the torque and the tunneling gap (see inset to
Fig. 36). The analysis also showed that the semiclassical
theory yields highly accurate results, which underpins the
notion of QTNV in Fe18.

It is noted that wiggles in the torque as a function of the
field can also occur due to a first-order mixing of the
jS;M ¼ �Si and jSþ 1; M ¼ �S� 1i spin levels at
the field-induced level-crossing points by the magnetic an-
isotropy; an example for this S-mixing mechanism is pre-
sented in Sec. IV.D.1. However, theoretically QTNV cannot
be described by S mixing of two spin levels, reflecting its
different underlying physics, and experimentally also, the two
mechanisms can unambiguously be distinguished from each
other. For instance, the dependence on the angle between
magnetic field and anisotropy axis z allows a clear-cut deci-
sion: In the S-mixing scenario the wiggles occur for both
nearly parallel and perpendicular fields, in contrast to the
observations in Fe18, where ordinary staircaselike profiles are

observed for parallel fields, as predicted by the QNVT

scenario.

D. ‘‘Modified’’ antiferromagnetic molecular wheels

The ring topology considered in Sec. IV.C can be varied in

a number of ways, by ‘‘slight’’ modifications. The topologies

addressed here can be put into four categories. First, one of

the magnetic metal ions in the ring, which carry spin s, is
replaced by another magnetic metal ion with different spin

s0 � s. These clusters are denoted as ‘‘doped wheels,’’ and

the foreign s0 ion as impurity. Second, the cyclic boundary

conditions are changed to open boundaries, e.g., by replacing

one of the magnetic ions in the ring with a diamagnetic ion or

by removing one metal center. These clusters are denoted as

‘‘short chains.’’ Third, a magnetic ion is added at the center of

the ring with coupling paths such that the lattice remains

bipartite. And fourth, a magnetic ion is added at the center

with the coupling paths introducing spin frustration, then

called ‘‘disks.’’ Representative examples are Cr7Ni, Cr6,
Mn-½3� 3�, and the Fe7 molecule, shown in Fig. 37.

Much interest in such systems came from the theoretical

suggestion that an uncompensated spin introduced into an

antiferromagnetic wheel, e.g., by doping, may act as a tracer

spin for the quantum tunneling of the Néel vector, which in

this way could experimentally be observed and possibly

manipulated by EPR methods, which otherwise would not

be possible (Meier and Loss, 2001a, 2001b). Furthermore, the

excess spin may have S0 ¼ 1
2 , which then suggests application

of the cluster as a quantum bit (qubit) (Meier, Levy, and Loss,

2003a, 2003b; Troiani et al., 2005). Use of such ‘‘mesoscopic

spin- 12’’ clusters as ‘‘spin cluster qubits’’ could provide ad-

vantages such as easier addressing. Significant progress in

this direction has been made on the Cr7Ni wheel, e.g., long
coherence times were observed, magnetic coupling between

two Cr7Ni clusters introduced, and entanglement demon-

strated (Ardavan et al., 2007; Timco et al., 2009; Candini

et al., 2010). Reviews are available (Affronte et al., 2005,

2006). Since the physics is related mainly to the ground state,

these exciting developments will not be discussed. We focus

TABLE VII. Experimental values and characteristic parameters of
QTNV for Fe18 (c ¼ 1), CsFe8 (c ¼ 2), and Fe10 (c ¼ 2). Adapted
from Konstantinidis et al., 2011.

Fe18 CsFe8 Fe10

2j (K) �5:1 �11:1 �6:31
d (K) 0.021 �0:104 �0:0276
�01 (K) Not measured 5.92 3.83

S0=ℏ 5.90 4.03 3.42
�U (K) 22.2 22.5 9.25
c
2ℏ!0 (K) 7.52 22.3 10.8
c�0 (K) 0.320 5.08 4.18

ðS0=ℏÞ=c 2.95 1.01 0.96
h0jn̂z=yj1i2 0.83 0.50 0.42
�QTNV=�U 0.014 � 0:23 � 0:45 FIG. 36 (color online). Magnetic torque vs field for B nearly

perpendicular to z (angle ¼ 80:5, T ¼ 0:1 K), showing wiggles

due to the oscillations of the Néel-vector tunneling gap. The inset

shows the simulated field-dependent torque and the tunneling gap as

calculated quantum mechanically and semiclassically. Adapted

from Waldmann et al., 2009.
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here on the basic question of the impact of topology on
magnetic cluster excitations. The Mn-½3� 3� grid molecule
is considered first, followed by the doped wheels and short
antiferromagnetic chains. An abundance of disks has been
synthesized (Hoshino, Ako et al., 2009), but detailed studies
of the cluster excitations have not been reported to our
knowledge.

1. The Mn-½3� 3� grid molecule

Molecular [n�m] grids have attracted considerable
interest in chemistry, for the preprogrammed self-assembly
synthesis strategy employed and for their physical properties.
For reviews, see Ruben et al. (2004) and Dawe, Shuvaev,
and Thompson (2009); the magnetic properties were re-
viewed by Waldmann (2005a). The Mn-½3� 3� grid
(Zhao et al., 2000) is most interesting from the perspective
of cluster excitations. The molecule may be crystallized with
different counterions and solvents, yielding, e.g.,
½Mn9ð2POAP-2HÞ6�ðClO4Þ6 � 3:75CH3CN � 11H2O (1) or
½Mn9ð2POAP-2HÞ6�ðNO3Þ6 � H2O (2) [for the ligand POAP
see Zhao et al. (2000)]. Nine Mn2þ (s ¼ 5

2 ) metal ions are

arranged on the vertices of a 3� 3 grid (see Fig. 37). They
crystallize in space group C2=c, and the molecules exhibit a
slightly distorted D2d symmetry with the S4 symmetry axis
(¼ z axis) perpendicular to the grid plane. Considering the
symmetry, the appropriate spin Hamiltonian for describing
the magnetism reads

Ĥ ¼ �2JR

�X7
i¼1

ŝi � ŝiþ1 þ ŝ8 � ŝ1
�

� 2JCðŝ2 þ ŝ4 þ ŝ6 þ ŝ8Þ � ŝ0

þDR

X8
i¼1

ŝ2i;z þDCŝ
2
0;z þ g�BŜ � B; (83)

where the spins are numbered as given in Fig. 37. In principle,

the D values for the corner and edge Mn ions could be

different, but this was not found to significantly affect the

magnetism.
From magnetization measurements, antiferromagnetic ex-

change interactions and an S ¼ 5
2 ground state were inferred,

which can be rationalized by considering the classical spin

configuration, where corner and central spins point up and

edge spins point down. The excitation spectrum up to ener-

gies of 4 meV was studied by INS (Guidi et al., 2004). Some

results are presented in Fig. 38(a). The dimension of the

Hilbert space is 10 077 696, and sophisticated numerical

approaches had to be developed for analyzing the data.

Good agreement was obtained for 2JR ¼ 2JC ¼
�0:43 meV and DR ¼ DC ¼ �0:012 meV. The higher-

lying excitations revealed a small deviation of the exchange

constants from the S4 symmetry assumed in Eq. (83). The

calculated energy spectrum with DR and DC set to zero is

presented in Fig. 38(b). The two lowest transitions � and �
stem from the zero-field splitting of the S ¼ 5

2 ground state, as

sketched in Fig. 38(b). Peaks Ia, Ib, and Ic correspond to

transitions from the zero-field splitting levels of the ground

multiplet to the next higher-lying S ¼ 7
2 multiplet, and peaks

E1a and E1b go from the ground multiplet to the lowest S ¼ 3
2

multiplets.
Besides the fact that the INS data of such a large cluster as

Mn-½3� 3� were successfully interpreted, the inspection of

the determined energy spectrum is interesting: As in antifer-

romagnetic wheels, the excitations may be classified as L
and E bands, or Néel-vector rotation and spin waves. This

Cr7Ni Cr6

Mn-[3×3] Fe7

5

1

2

3 4

6

78

0

FIG. 37 (color online). Molecular structures of the doped

wheel Cr7Ni, short chain Cr6, Mn-½3� 3� grid representing a wheel

with magnetic center, and disk Fe7 (for the chemical compositions

see the text).

FIG. 38 (color online). (a) Neutron energy-loss spectra of

Mn-½3� 3� (2) at 2.5 K in two different energy ranges.

(b) Simulated energy spectrum with anisotropy neglected. The

observed INS transitions are indicated by arrows. The inset sketches

the observed transitions within the S ¼ 5
2 ground and first excited

S ¼ 7
2 multiplet. Adapted from Guidi et al., 2004.
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observation can be linked to the bipartite topology of the grid
lattice, suggesting a ‘‘classical’’ spin structure.

The L band has been demonstrated in magnetic torque
measurements (Waldmann et al., 2004). At very low tem-
peratures the torque exhibits an oscillatory field dependence
(see Fig. 39), which can be related to a sequence of level
crossings, where the ground state changes from S ¼ 5

2 to S ¼
7
2 ,

7
2 ! 9

2 , and so on, similar to the situation in the wheels

sketched in Fig. 23. In the experiments all states of the L band
up to S ¼ 23

2 were observed, and the energies of the multiplets

as determined from the level-crossing fields do indeed follow
the Landé pattern SðSþ 1Þ, as displayed in the inset to
Fig. 39. Hence, the L band (or tower of states or quasidegen-
erate joint states), which is the precursor to long-range Néel
ordering in the infinite lattice (Bernu, Lhuillier, and Pierre,
1992), has been experimentally demonstrated for the square-
lattice topology.

These findings suggest the construction of an effective spin
Hamiltonian for antiferromagnetic 3� 3 grids. Application
of the procedure used for the antiferromagnetic wheels to the
eight metal ions on the periphery yields

ĤABC ¼ �2jRŜA � ŜB � 2JCŝ0 � ŜB þ dRðŜ2A;z þ Ŝ2B;zÞ
þDCŝ

2
0;z þ g�BŜ � B; (84)

with the sublattices A ¼ f1; 3; 5; 7g and B ¼ f2; 4; 6; 8g, and
jR¼0:526JR and dR¼0:197DR for theMn-½3� 3� grid. ĤABC

was indeed demonstrated to produce highly accurate results
and was found crucial in the analysis of experimental data
(Waldmann et al., 2004;Waldmann, 2005b;Datta et al., 2007).

The oscillations in the torque signal originate from an
interesting quantum-mixing mechanism (Carretta, Santini
et al., 2003; Waldmann et al., 2004). A magnetic anisotropy
is generally expected to induce mixing of spin multiplets (S
mixing), which often may be treated perturbatively, implying
a ‘‘small’’ effect (but see also Sec. IV.C.3). However, if two
states are close in energy, i.e., essentially degenerate, then
standard (nondegenerate) perturbation theory will obviously
break down, and the effect of the perturbation will not be
small or mixing of the states large. The anisotropy thus

produces a strong mixing of the jS;M ¼ �Si and jSþ 1;
M ¼ �S� 1i states involved at a level crossing, and the
ground state is described as a superposition

jgi / aðBÞjSi þ bðBÞjSþ 1i; (85)

where the field-dependent a and b become equal at the level
crossing (an obvious shorthand notation for the states was
used; a2 þ b2 ¼ 1). Since states with different total spin are
mixed, the total spin will fluctuate strongly, an effect also
called quantum oscillations of the total spin (Carretta, Santini
et al., 2003). This mixing is directly related to the oscillatory
torque curve observed in experiment, which hence provides
evidence for this phenomenon.

S mixing should in principle also enable a direct detection
of exchange splittings through EPR experiments, since the
EPR selection rule �S ¼ 0 would not hold exactly. However,
the mixing is usually not strong enough for such EPR tran-
sitions to gain sufficient intensity, but through this mechanism
the S ¼ 5

2 ! S ¼ 7
2 transition could directly be observed in

Mn-½3� 3� as a function of the field in a multifrequency
single-crystal EPR experiment (Datta et al., 2007).

2. Doped even-membered antiferromagnetic wheels

A series of octanuclear heteronuclear wheels of general
chemical formula ½H2NR2�½Cr7MFe8fO2CCðCH3Þ3g16�, or
Cr7M for short, with, e.g., M ¼ Cu2þ, Ni2þ, or Mn2þ and
various end groups R, were synthesized (Larsen et al., 2003a;
Laye et al., 2005; Affronte et al., 2007; Baker et al., 2011b),
and their excitations studied by different techniques, among
which were low-temperature torque magnetometry (Carretta
et al., 2005), high-frequency EPR (Piligkos et al., 2009), and
INS (Caciuffo et al., 2005; Baker et al., 2011b). An
analogous Fe7Mn cluster was also investigated using INS
(Guidi et al., 2007). The molecule Cr7Ni has attracted the
most interest, because of its potential use in quantum infor-
mation, and it is focused on here.

The synthesis strategy resulting in Cr7Ni is ex-
tremely flexible, and many derivatives of Cr7Ni poten-
tially exist (Affronte et al., 2007). The material used
in INS experiments was of chemical formula
½H2NðC2D5Þ2� ½Cr7NiF8fO2CCðCD3Þ3g16� and crystallizes in
space group P4, without solvent molecules in the crystal
lattice. Seven Cr3þ (s ¼ 3

2 ) ions and one Ni2þ (s0 ¼ 1) ion

form a ring as shown in Fig. 37. The material has two
advantageous properties for INS; it can be deuterated to a
large extent and large single crystals can be grown. The
appropriate generic spin Hamiltonian reads

Ĥ ¼ �2J
X6
i¼1

ŝi � ŝiþ1 � 2J0ðŝ1 þ ŝ7Þ � ŝ0

þD
X7
i¼1

ŝ2i;z þD0ŝ20;z þ g�BŜ � B; (86)

where the spins ŝ1 to ŝ7 refer to the Cr3þ ions, and ŝ0 is the
spin of the Ni2þ ion. In view of the molecular symmetry, a
rhombic term

P
iEiðŝ2i;x � ŝ2i;yÞ is also expected and was

evidenced in EPR experiments (Piligkos et al., 2009), but
was not resolved in magnetic torque and INS experiments
(Caciuffo et al., 2005; Carretta et al., 2005).

FIG. 39 (color online). Magnetic torque vs field (upper curve) and

the field derivative (lower curve) for Mn-½3� 3� (1) with B nearly

perpendicular to the magnetic z axis (angle ¼ 80:5, T ¼ 0:1 K),

showing the oscillatory torque behavior. The inset shows the

energies of the spin multiplets as extracted from the level-crossing

fields. From Waldmann, Thompson, and Sheikin, 2011.
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The exchange interactions in Cr7Ni are antiferromagnetic
and the ground state is S ¼ 1

2 , consistent with the expectation

from the classical spin configuration with Néel order. The
magnetic excitations were studied by two INS experiments,
described in the following. In the first experiment excitations
up to energies of �4 meV were detected (Caciuffo et al.,
2005). A spectrum is presented in Fig. 40(a). One large cold
feature, with a double-peak structure, is observed at
1.27 meV, and a hot peak at 2.08 meV. At higher energies
evidence for further magnetic scattering intensity is observed.
The lowest feature can be associated with the transition from
the S ¼ 1

2 ground state to the lowest-lying S ¼ 3
2 multiplet,

and the double-peak structure of this feature to a zero-field
splitting in the S ¼ 3

2 level. The zero-field splitting

(0.15 meV) is much smaller than the center of gravity of
the S ¼ 3

2 multiplet (1.27 meV); anisotropy is hence weak in

this molecule, which is of relevance for its potential applica-
tion as a qubit (Troiani et al., 2005). The 2.08 meV feature
corresponds to an S ¼ 3

2 ! 5
2 transition. The data could well

be simulated using Eq. (86), yielding 2J ¼ �1:46, 2J0 ¼
�1:69, Dlig ¼ �0:03, and Dlig0 ¼ �0:6 meV. The simulated
energy spectrum with anisotropy neglected is shown in
Fig. 40(b). The spectrum reveals again an L-band structure,
which is confirmed by the INS experiment and high-field

torque magnetometry (Carretta et al., 2005). The E-band
states are also detected in the INS data.

The unique advantage of the Cr7Ni system, that large
deuterated single crystals can be grown, allowed the direct
experimental observation by INS of the level-crossing behav-
ior as a function of a magnetic field (Carretta et al., 2007). In
this experiment, a crystal of 0.4 g weight was measured at
T ¼ 66 mK with magnetic field applied in the range of
0–11.5 T and at an angle of � ¼ 50 with respect to the z
axis. Experimental results are shown in Fig. 41. At the level
crossing at Bc ¼ 10:5 T a small gap of 0.12 meV is observed,
i.e., an avoided level crossing, which originates from the S
mixing induced by the weak-anisotropy effects. As explained
in Sec. IV.D.1, at the level crossing where states become
almost degenerate, the mixing effect will be strong, the wave
function described by Eq. (85) has jaj ¼ jbj, and the total
spin oscillates. This INS experiment hence provides direct
evidence for the quantum oscillations of the total spin in
Cr7Ni at the level crossing.

3. Short antiferromagnetic chains

The synthesis strategy which allowed us to generate the
doped antiferromagnetic wheels described in Sec. IV.D.2 also
afforded the generation of short antiferromagnetic chains,
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FIG. 40 (color online). (a) Neutron energy-loss spectra of Cr7Ni at
T ¼ 2 and 12 K. The circles represent the experimental data; the

lines represent the simulation result. Adapted from Caciuffo et al.,

2005. (b) Simulated energy spectra with anisotropy neglected.

Observed INS transitions are indicated.

(a)

(b)

FIG. 41 (color online). (a) High-resolution neutron energy-loss

spectra on a crystal sample of Cr7Ni as a function of the magnetic

field (T ¼ 66 mK, � ¼ 50). (b) Simulated low-lying energy levels

as a function of the magnetic field (lines) with all observed INS

transition energies included (squares). Adapted from Carretta et al.,

2007.
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either by replacing one magnetic metal ion in the ringlike
structure by a diamagnetic ion such as Zn2þ or Cd2þ or by
modifying the synthesis method to yield structures called
‘‘horseshoes’’ (Affronte et al., 2007). The members of this
family of clusters were studied, in addition to the thermody-
namic techniques, by EPR (Piligkos et al., 2007), x-ray
magnetic circular dichroism (Ghirri et al., 2009), NMR
(Micotti et al., 2006; Amiri et al., 2010), and INS
(Caciuffo et al., 2005; Ochsenbein et al., 2007, 2008;
Bianchi et al., 2009; Baker et al., 2011a). Short antiferro-
magnetic chains were also obtained through doping the Fe18
wheel (see Sec. IV.C.3) with diamagnetic Ga3þ (Henderson
et al., 2008).

From the viewpoint of the physics of magnetic excitations,
comparison of short antiferromagnetic chains with even-
membered antiferromagnetic wheels, or of chains with open
and periodic boundary conditions, should prove interesting
(Ochsenbein et al., 2007), as well as comparison of anti-
ferromagnetic chains with even and odd numbers of metal
centers (Ochsenbein et al., 2008). A large body of literature
exists on one-dimensional quantum spin chains, and finite
chains have also been studied (Hagiwara et al., 1990; Di Tusa
et al., 1994; Fujiwara et al., 1998; Bogani et al., 2004). It
appears natural that the physical pictures developed there can
also be extended to the short antiferromagnetic chains con-
sidered here. However, there are indications that this expec-
tation is not fulfilled and the situation in the antiferromagnetic
chains is much more involved (Konstantinidis et al., 2011). A
definitive answer is not available at the moment. In the
following we describe the molecular horseshoe Cr6, which
represents a short antiferromagnetic chain with length N ¼ 6,
exhibiting S ¼ 0 ground states.

The generic spin Hamiltonian for short antiferromagnetic
chains is

Ĥ ¼ �2J
XN�1

i¼1

ŝi � ŝiþ1 þD
XN
i¼1

ŝ2i;z þ g�BŜ � B; (87)

with si ¼ s for all ions. From molecular symmetry a rhombic
term

P
iEiðŝ2i;x � ŝ2i;yÞ and a modulation of the exchange

coupling constant, in particular at the ends of the chain,
may also be present. The presence of next-nearest-neighbor
exchange was also suggested (Bianchi et al., 2009).
However, these effects are considerably smaller than those
due to the leading terms given in Eq. (87).

Various derivatives of Cr6 have been synthesized
and studied by INS (Larsen et al., 2003b; Ochsenbein
et al., 2007, 2008; Baker et al., 2011a). Here the cluster
½NH2R�3½Cr6F11fO2CCðCH3Þ3g10ðH2OÞ� with end groups R is
considered (Larsen et al., 2003b). It crystallizes in space
group P21=c, and the anion forms a string of six Cr3þ (s ¼ 3

2 )

ions; see Fig. 37. Using INS the magnetic excitation spectrum
up to energies of 5 meV was studied (Ochsenbein et al.,
2007); results are shown in Fig. 42(a). Three cold features I,
IV, and V are observed, and two hot transitions II and III.
The data analysis yielded 2J ¼ �1:27 meV and D ¼ 0 in
Eq. (87). The model was later refined to 2J ¼ �1:4, 2Jedge ¼
�1:1,D ¼ �0:028, and jEj ¼ 0:005 meV, where Jedge refers

to the coupling strengths of the outer coupling paths
(Ochsenbein et al., 2008).

Figure 42(b) shows the simulated energy spectrum for Cr6,
using the parameters of the simplified model, and for com-

parison the energy spectrum of a hypothetical s ¼ 3
2 antifer-

romagnetic wheel. The L- and E-band picture is immediately

recognized in Cr6, and the observed INS transitions demon-

strate the L- and E-band states. In contrast to the wheel,

however, the E band consists of two subgroups with an energy

gap �	 in the S ¼ 1 sector. This splitting can be associated

with the formation of standing spin waves in the chain, as

opposed to running waves in the wheel. The basic argument is

simple and familiar from textbooks. In the hexanuclear wheel

the spin waves with shift quantum numbers q and �q,
corresponding to left- and right-running waves, are degener-

ate because of cyclic symmetry. However, the open boundary

in the chain or missing link acts as a perturbation, lifting the

degeneracy, resulting in the formation of symmetric and

antisymmetric linear combinations of the wave functions

jqi and j � qi, or standing waves indeed. The mechanism is

sketched in Fig. 42(a). Hence the splitting of the E-band
transitions into peaks IV and V observed in experiment

directly demonstrates the standing spin waves in the Cr6
antiferromagnetic chain.

(a)

(b)

FIG. 42 (color online). (a) Neutron energy-loss spectra on Cr6.
The solid lines represent simulations. The inset shows the formation

of standing spin waves in a chain and the link to the gap in the spin-

wave spectrum. (b) Simulated energy spectra for Cr6 and a hypo-

thetical N ¼ 6, s ¼ 3
2 antiferromagnetic wheel. The observed INS

transitions and the gap in the E band are indicated. Adapted from

Ochsenbein et al., 2007.
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These conclusions are supported by linear SWT

(Anderson, 1952), which can approximate the energies of

the E-band states in the S ¼ 1 sector (Waldmann, 2001;

Ochsenbein et al., 2007). The result for the Cr6 horseshoe

and the same hypothetical N ¼ 6, s ¼ 3
2 wheel as before is

drawn in Fig. 43(a), demonstrating the gap in the E-band
spectrum because of the open-chain topology. This motivated

an analysis of the exact quantum spectrum in Cr6 by different
variants of SWT and a newly suggested spin-level SWT,

which adds quantum corrections to Eq. (76) in first order

(Ochsenbein et al., 2007). Obviously, interacting SWT does

best in reproducing the exact energies, but the accuracy is a

modest 8%. The results of a similar analysis for the CsFe8 and
Fe18 antiferromagnetic wheels in Sec. IV.C.2 are recalled

(Dreiser, Waldmann, Dobe et al., 2010; Ummethum et al.,

2012).
However, as mentioned, the physics of the magnetic ex-

citations in short antiferromagnetic chains, although display-

ing an L- and E-band structure in the energy spectrum,

presents some subtleties which are difficult to understand

(Konstantinidis et al., 2011). In the eight-membered short

chain Cr8Zn, for instance, a detailed analysis of the wave

functions indicated a significant mixing of the L- and E-band
states (Bianchi et al., 2009).

E. Spin frustration in antiferromagnetic molecular clusters

In the previous sections clusters with antiferromagnetic

HDVV interactions on a bipartite lattice were discussed, but

the study of quantum spin-frustration effects in large clusters

is obviously also of great interest. In fact, since the possible

geometrical arrangements of metal ions and ligand linkages

are not restricted by the constraint of translational invariance

in ‘‘zero-dimensional’’ clusters, competing interaction paths
are almost always present in polynuclear magnetic molecules,
and bipartite magnetic molecules are rather the exception
than the rule. However, the research on magnetic excitations
in spin-frustrated systems has concentrated on a few model
systems.

Regular antiferromagnetic spin triangles and lattices in-
corporating triangular units are most often considered in this
context. The HDVV Hamiltonian of a triangle was given in
Eq. (56), where for a regular triangle si ¼ s for all ions and
J0 ¼ J. For s ¼ 1

2 , the energy spectrum consists of a doublet

of two S ¼ 1
2 spin multiplets in the ground state, which

transforms according to the irreducible representation E of
the D3 symmetry group, and a higher-lying S ¼ 3

2 multiplet at

energy 3
2 j2Jj. The degeneracy of the two S ¼ 1

2 multiplets is

(often) considered as the criterion for spin frustration.
However, small deviations such as distortions of the triangle
leading to J0 � J or Dzyaloshinski-Moriya interactions lift
the degeneracy in the ground state, opening a gap � (see
Fig. 44). The ratio �=j2Jj may here be considered as a figure
of merit.

This structure of low-lying energy levels has attracted
much interest for a variety of reasons. Spin frustration is
one of them, but the corresponding clusters are also attractive
models for studying the Landau-Zener-Stückelberg transi-
tions or dissipation and decoherence in general (Landau,
1932; Stückelberg, 1932; Zener, 1932; Leggett et al., 1987;
Chiorescu et al., 2000; Dobrovitski, Katsnelson, and
Harmon, 2000), or for applications as qubits (Wernsdorfer
et al., 2004), and Rabi oscillations have indeed been observed
(Bertaina et al., 2008). Many molecular trinuclear clusters
are available and have been studied, also by INS, for their
excitations. However, usually distortions are strong; the real-
ization of regular triangles in bounded clusters is apparently
not preferred by nature. The V15 molecule is one of the best

FIG. 43 (color online). (a) Spin-wave dispersion as obtained in

linear SWT for Cr6 and a hypothetical N ¼ 6, s ¼ 3
2 antiferromag-

netic wheel. (b) Exact excitation energies in the S ¼ 1 sector of Cr6
and comparison to the results of various variants of SWT. LSWT,

linear SWT; ISWT, interacting SWT; MSWT, modified linear SWT;

MISWT, modified interacting SWT; SLSWT, spin-level SWT.

Adapted from Ochsenbein et al., 2007.
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FIG. 44 (color online). (a) Sketch of the energy-level scheme of

an antiferromagnetic spin- 12 triangle. (b) Structure of the anion of

V15. The thick lines indicate the two hexagons, and the triangular

area the spin triangle. (c) Sketch of the exchange interactions in the

V15 molecule. Adapted from Chaboussant, Ochsenbein et al., 2004,

and Tarantul, Tsukerblat, and Müller, 2007.
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realizations of a regular triangle, according to its �=j2Jj, and
its magnetic excitations are discussed in Sec. IV.E.1.

Topologies with higher nuclearity, which also incorporate
triangular units and are of high symmetry, such as the
cubeoctahedron or icosidodecahedron, have also been in-
tensely studied, although mostly in theory (Cépas and
Ziman, 2005; Schröder et al., 2005b; Rousochatzakis,
Läuchli, and Mila, 2008; Konstantinidis, 2009; Schnack,
2010). Only a few experimental spectroscopic investigations
of the cluster excitations are available. We focus here on the
magnetic Keplerate molecule Fe30, which has become a main
representative in this field of research, partly because of its
relationship to the kagome lattice (’’kagome on a sphere’’)
(Schnack, Luban, and Modler, 2001; Rousochatzakis,
Läuchli, and Mila, 2008; Schnack, 2010).

Many more molecules such as tetranuclear ‘‘butterfly’’ and
heptanuclear disklike molecules or odd-membered antiferro-
magnetic wheels and cycles have been synthesized and
studied for spin-frustration effects.

1. The V15 molecule

The cluster ½V15As6O42ðH20Þ�K6 � 8H2O, or V15 for
short, contains 15 V4þ ions (s ¼ 1

2 ) whose arrangement can

be described as two hexagons sandwiching a triangle; see
Figs. 44(a) and 44(b) (Müller and Döring, 1988; Gatteschi
et al., 1991). The system crystallizes in space group R�3c, and
the molecule exhibits a nominal crystallographic D3 sym-
metry; however, a water molecule is at the center of
V15. Magnetic susceptibility measurements demonstrated
that the exchange interactions in V15 indicated in Fig. 44(b)
are antiferromagnetic and strong (2J1 � 2J4 � �13, 2J2 �
2J3 � �26, and 2J5 � �70 meV), such that the hexagons
are in a singlet state at temperatures below ca. 100 K and do
not contribute to the magnetic moment. At low temperatures
the magnetism can hence be described as that of a regular spin
triangle with an effective antiferromagnetic interaction of
2J ¼ �0:211ð2Þ meV (Chaboussant et al., 2002).

This picture was confirmed by detailed magnetization
measurements at low temperatures (Tarantul, Tsukerblat,
and Müller, 2007). However, a small gap in the S ¼ 1

2

ground-state doublet was detected. Magnetization data indi-
cated � ¼ 7ð2Þ �eV (Barbara et al., 2002) and low-
frequency EPR � ¼ 3 �eV (Kajiyoshia et al., 2007), while
from INS a gap of � ¼ 35ð2Þ �eV was determined
(Chaboussant et al., 2002). The origin of the gap has been
controversial; most often it has been associated with
Dzyaloshinski-Moriya interactions, but also with a distortion
by, e.g., the central water molecule.

Evidence for the latter came from an INS experiment
performed on a fully deuterated polycrystalline sample of
V15 at ultralow temperatures and with magnetic fields applied
(Chaboussant, Ochsenbein et al., 2004). The field depen-
dence of the observed INS peaks and their assignment are
presented in Figs. 45(a) and 45(b), respectively, confirming
spectroscopically the expected energy spectrum. The INS
energies could be fitted excellently well and yielded 2J ¼
�0:212ð2Þ meV and � ¼ 27ð3Þ �eV. A careful analysis
of the magnetic field and Q dependence of the INS
peak intensities, shown in Figs. 45(c) and 45(d), allowed
discrimination between Dzyaloshinski-Moriya interactions

and distortions. It was concluded that the gap � comes
from a slightly distorted triangle, with exchange interactions

2J12 ¼ �0:21, 2J23 ¼ �0:23, and 2J13 ¼ �0:20 meV.

2. The Fe30 Keplerate molecule

The Fe30 molecule ½Mo72Fe30O252ðMo2O7ðH2OÞÞ2-
ðMo2O8H2ðH2OÞÞðCH3COOÞ12ðH2OÞ91� � 150H2O consists of

30 antiferromagnetically coupled Fe3þ ions (s ¼ 5
2 ) which

are located at the vertices of an icosidodecahedron (Müller

et al., 1999). The molecular structure is displayed in

Fig. 46(a) and the iron metal core in Fig. 46(b). The spin

arrangement clearly supports pronounced quantum spin-
frustration effects; however, the large s ¼ 5

2 spins also suggest

classical or semiclassical approaches (Müller et al., 2001).

The dimension of the Hilbert space in this molecule is a
staggering 2:2� 1023 and understanding its magnetic excita-

tion spectrum is obviously challenging. Fe30 has in fact

become an ideal test ground for developing theoretical
schemes and physical concepts.

Classically, the antiferromagnetic ground state is charac-

terized by three sublattices A, B, and C, and is highly

degenerate (Axenovich and Luban, 2001). Figure 46(b) de-
picts one of the possible classical ground-state spin configu-

rations. For the quantum spectrum a rotational-band model

with a three-sublattice structure was conjectured (Schnack,
Luban, and Modler, 2001), and based on ideas such as those

in Sec. IV.B.3 a Hamiltonian was derived,

FIG. 45 (color online). (a) Field dependence of the INS peak

energies observed in V15 at T ¼ 45 mK. Lines are fits to the

data. (b) Derived energy spectrum and assignment of INS transi-

tions. (c) Q dependence of the intensities of peaks IIIþ IVþ V in

zero field. (d) Q dependence of the intensity of transitions IIIþ
IVþ V at 0 T (circles) and transition I at 1 T (squares). Lines are

fits to the data. Adapted from Chaboussant, Ochsenbein et al., 2004.
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ĤABC ¼ � 2J

5
ðŜA � ŜB þ ŜB � ŜC þ ŜC � ŜAÞ; (88)

where ŜA, ŜB, and ŜC describe the three sublattices, with spin
lengths SA ¼ SB ¼ SC ¼ 25. The predicted low-lying energy
spectrum is presented in Fig. 46(c) and shows an L- and
E-band structure, similar to the antiferromagnetic wheels (see
Sec. IV.C.1). However, the degeneracies and spatial symme-
try labels are of course different. For the existence of the
L band in Fe30, solid evidence came from the experimental
magnetization curve, which increases linearly with the mag-
netic field up to saturation at a critical field Bc ¼ 17:7 T
consistent with an SðSþ 1Þ energy dependence of the lowest
states in each spin sector [see inset to Fig. 46(d)]. From the
critical field the interaction strength has be estimated as 2J ¼
�0:134 meV. The L band was also produced in a DMRG
calculation; see Fig. 46(d) (Exler and Schnack, 2003).

The higher-lying magnetic excitations in Fe30 were probed
by INS experiments on a deuterated polycrystalline sample.
An experimental spectrum is displayed in Fig. 47, showing a
broad magnetic feature in the energy range 0.3–1.1 meV. The
INS data could qualitatively be interpreted using Eq. (88) as
associated with the E band. Its excitation energy is predicted
as ð26=5Þj2Jj ¼ 0:67 meV [see Fig. 46(c)] in rough agree-
ment with the maximum in the neutron scattering intensity
(see inset to Fig. 47). The detailed analysis yielded 2J ¼
�0:108 meV. The width of the magnetic feature, however,
remained unexplained.

In order to get better insight the magnetic excitation
spectrum was also calculated using modified linear SWT
(Cépas and Ziman, 2005). The predicted spectrum is shown
in Fig. 48(a). This theory suggests magnetic scattering in the
energy range of 3:5j2Jj–5:5j2Jj and hence accounts at least
partially for the observed broadening. A novel spin-level
SWT, which implements a first-order quantum correction to
Eq. (88), yielded an excitation spectrum in the range of
3:8j2Jj–7:4j2J [see Fig. 48(a)], and allowed reproduction of
most of the observed magnetic scattering using 2J ¼
�0:125 meV [see Fig. 48(b)], consistent to within 7% with
the finding from the magnetic data (Waldmann, 2007).
However, a peaklike magnetic scattering at ca. 0.3 meV is
not reproduced.

It was pointed out that these SWT techniques, when
applied to tri (and higher-) partite systems, have conceptual
drawbacks (Waldmann, 2007). The spin-level SWT was later
extended to higher orders (Schnalle, Laeuchli, and Schnack,
2009), further emphasizing this point. A fully satisfying
understanding of the magnetic excitations in Fe30 is still
lacking (Garlea et al., 2006).
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FIG. 46 (color online). (a) Molecular structure of Fe30. (b) Fe
3þ

core forming an icosidodecahedron. The spin orientations in the

classical ground state are represented by the arrows, the colors refer

to the sublattices A, B, and C, respectively. (c) Low-lying energy

spectrum as a function of total spin S as predicted in the rotational-

band model equation (88), showing the L and E bands. (d) Lowest

energy in each sector Sz as calculated by DMRG (squares) and

comparison to the L band in the rotational-band model (line). The

two curves are essentially superimposed, confirming the SðSþ 1Þ
energy dependence of the lowest eigenstates in Fe30. The inset

shows the experimental magnetization curve. (a), (b), and (d)

courtesy of J. Schnack; (c) adapted from Garlea et al., 2006.
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FIG. 47 (color online). Neutron energy-loss spectrum of Fe30 at

T ¼ 65 mK. The solid line represents the estimated background,

and the determined magnetic scattering is displayed in the inset.

Adapted from Garlea et al., 2006.

FIG. 48 (color online). (a) Low-temperature excitation spectrum

of Fe30 as predicted by linear SWT (LSWT), modified linear SWT

(MSWT), and spin-level SWT (SLSWT). (b) Experimental INS

spectrum of Fe30 (points) and simulated spectrum using SLSWT

(line). Inset: Experimental minus simulated spectrum, providing

evidence for magnetic scattering at ca. 0.3 meV, which the SLSWT

model does not take into account. Adapted from Waldmann, 2007.
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V. SINGLE-MOLECULE MAGNETS

A. Introduction

The SMMs are a special subclass of molecular nanomag-
nets. Some prominent examples are shown in Fig. 49. The
SMMs are distinguished by exhibiting slow relaxation of the
magnetization or magnetic hysteresis at low temperatures,
below a blocking temperature TB. This phenomenon is not
due to a long-range-ordered magnetic ground state as in
conventional magnets, but arises from an energy barrier for
spin reversal at the molecular level. Furthermore, quantum
phenomena such as quantum tunneling of the magnetization
are observed as characteristic steps in the magnetic hysteresis
curves. These unique magnetic properties discovered about
15 years ago stimulated large amounts of research and
allowed addressing fundamental questions in quantum me-
chanics as well as suggesting applications in information
technology as classical or quantum bits or in molecular
spintronics. Many authoritative reviews and books were writ-
ten, including Chudnovsky and Tejada (1998), Barbara and
Gunther (1999), Christou et al. (2000), Gatteschi and
Sessoli (2003), Leuenberger, Meier, and Loss (2003), del
Barco et al. (2005), Gatteschi, Sessoli, and Villain (2006),
Bogani and Wernsdorfer (2008), and Friedmann and Sarachik
(2010).

The magnetic spectrum in the SMMs is in principle also
described by the microscopic spin Hamiltonian equation (70).
However, the most fascinating SMM phenomena such as
quantum tunneling of the magnetization are related to the
ground-state multiplet and the anisotropy splittings in it. The

effective spin Hamiltonian, which is known as the ‘‘rigid’’-
spin or ‘‘giant’’-spin or ‘‘single’’-spin model, then reads

Ĥ ¼ Ĥz þ Ĥ? (89)

¼ DŜ2z þ B0
4Ô

0
4ðSÞ

þ EðŜ2x � Ŝ2yÞ þ B2
4Ô

2
4ðSÞ þ B4

4Ô
4
4ðSÞ; (90)

where S is the total spin of the ground-state multiplet. The
terms were separated into Ĥz and Ĥ? according to whether

they commute with Ŝz or not, and only the usually most
relevant higher-order terms were listed [terms up to sixth
order were demonstrated in high-precision experiments
(Barra et al., 2007); compare also with Sec. III.C.5].

In a magnetic field the Zeeman terms �BgzŜzBz and

�BðgxŜxBx þ gyŜyByÞ have to be added to Ĥz and Ĥ?,
respectively. In principle the giant-spin model can be derived
perturbatively from Eq. (70).

In a SMM the uniaxial anisotropy, which is the dominant
zero-field splitting term in Eq. (89), has to be of an easy-axis
type or D< 0. The energy levels jMi of the ground-state spin
multiplet then organize into a parabolic band according to
DM2, with the M ¼ 	S levels being lowest and separated
by an energy barrier of heightU ¼ jDjS2 for integer andU ¼
jDjðS2 � 1=4Þ for half-integer S (see inset to Fig. 50). This
energy barrier is responsible for the slow relaxation of the
magnetization. The noncommuting terms contained in Ĥ?
induce a mixing between the jMi levels or, indeed, quantum
tunneling.

With regard to spectroscopy, the major goal is the
precise determination of the parameters in the giant-spin
Hamiltonian, where, in particular, the noncommuting terms
in Ĥ? are of the most interest, because of their relation to the
quantum tunneling rates. As the relevant transitions are intra-
multiplet with �S ¼ 0, many experimental techniques can
accomplish the task. Electron paramagnetic resonance is one
of them, and high-frequency high-field EPR has indeed
played a most important role (Gatteschi et al., 2006).
Inelastic neutron scattering has also been very valuable, add-
ing the advantage of a zero-field spectroscopy.

FIG. 49 (color online). Molecular structures of three prominent

SMMs: (a) Mn12, (c) Fe8, and (d) Mn6 (for the chemical compo-

sitions see the text). (b)The metal core in the Mn12 molecule, the

exchange coupling paths, and the classical ground-state spin con-

figuration.

FIG. 50 (color online). Inelastic neutron scattering spectrum of

Fe8 at 9.6 K. Circles represent the experimental data, the dashed

lines represent Gaussian fits, and the solid line represents a simu-

lation. The transitions are labeled according to j 	Mi ! j 	M0i.
The inset shows the parabolic energy spectrum with the allowed

INS transitions indicated by arrows. Adapted from Caciuffo et al.,

1998.
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Figure 50 shows an INS spectrum recorded on a
nondeuterated sample of the compound ½Fe8O2ðOHÞ12-
ðtacnÞ6�Br8 � 9H2O (tacn = 1,4,7-triazacyclononane), or Fe8
henceforth (Caciuffo et al., 1998). Themolecule contains eight
Fe3þ ions (s ¼ 5

2 ) in a butterflylike arrangement; see Fig. 49(c).

It crystallizes in space group P1 and exhibits approximate D2

molecular symmetry (Wieghardt et al., 1984). The frustrated
AFM interactions in the molecule result in an S ¼ 10 ground
state. In the experimental INS data in Fig. 50 the allowed
�M ¼ 	1 transitions are observed, demonstrating the zero-
field splitting in this spin multiplet. The ‘‘picket-fence’’ INS
spectrum, which is typical for SMMs, results from the fact that
the transition energies given by the dominantD term in Eq. (89)
vary as jDjð2M� 1Þ, or linearly in M. Slight deviations from
the regular pattern are seen, however, which relate to the other
terms in Eq. (89), and precise values for its five parameters
could be determined (Caciuffo et al., 1998). Besides the
scientific impact of this work, it also showed that excellent
INS data can be recorded on nondeuterated samples of molecu-
lar nanomagnets, which established the basis for much of the
subsequent INS work in this area.

Most of the SMMs which have been synthesized so far are
based on 3d metal ions, and several of them were studied by
INS, but mostly for the transitions within the ground-state
multiplet [for reviews, see Basler et al. (2003) and Bircher
et al. (2006)]. However, being related to anisotropy and not
the exchange splittings, these studies are not further discussed
here; Fe8 may serve as a representative example. The poten-
tial of INS to also detect exchange splittings has been applied
to only a very few SMMs, such as Fe4 (Carretta, Santini
et al., 2004), Fe8 (Carretta et al., 2006), Mn12, and Mn6, and
their derivatives. In the following the situation in Mn12 and
Mn6 is presented.

In the last few years the focus shifted from 3d-based
SMMs to 3d-4f or 4f SMMs 5d ions also became of interest).
Since 4f ions are of type J and bring in significant anisotropy,
while exchange interactions are weak, the analysis of experi-
mental data is typically more involved than in 3d-based type
S and Q clusters. Inelastic neutron scattering work on
lanthanide-containing SMMs has just begun (Klokishner
et al., 2009b; Dreiser et al., 2012), but promises exciting
results in the future.

B. The Mn12 cluster

The compound ½Mn12O12ðCH3COOÞ16ðH2OÞ4�, or Mn12
for short, was the first molecule for which SMM behavior
and quantum tunneling of the magnetization were observed
below a blocking temperature of ca. 3.5 K (Gatteschi, Sessoli,
and Villain, 2006), and it became the prototype SMM. The
system crystallizes in space group I4, and the molecule
exhibits S4 symmetry (Lis, 1980). It contains an inner tetra-
hedral core of four Mn4þ ions (s ¼ 3

2 ) and an outer ring of

eightMn3þ ions (s ¼ 2); see Fig. 49(a). The nearest-neighbor
Heisenberg exchange interactions in the cluster result in a
total spin S ¼ 10 ground state, whose classical spin structure
can be depicted as displayed in Fig. 49(b). The molecule’s
properties in its S ¼ 10 ground-state multiplet have been
thoroughly investigated (Gatteschi, Sessoli, and Villain,
2006), and also by INS (Hennion et al., 1997; Mirebeau

et al., 1999; Zhong et al., 1999; Bircher et al., 2004; Sieber
et al., 2005; Waldmann, Carver et al., 2006).

However, an understanding how the competing Heisenberg
interactions in the molecule give rise to the S ¼ 10 ground
state is also of great interest, since through the S-mixing
effects induced by the anisotropy the higher-lying spin mul-
tiplets can also significantly affect the S ¼ 10 ground-state
multiplet and tunneling rates (Carretta, Liviotti et al., 2004;
Barra et al., 2007). Several attempts have been made to infer
the values of the exchange constants J1, J2, J3, and J4 [see
Fig. 49(b)] with controversial conclusions (Sessoli et al.,
1993; Hartmann-Boutron, Politi, and Villain, 1996; Raghu
et al., 2001; Regnault et al., 2002).

The issue was targeted by high-energy INS experiments on
a deuterated sample of Mn12 (Chaboussant, Sieber et al.,
2004). Inelastic neutron scattering spectra are shown in
Fig. 51. A peak at ca. 1.2 meV is found, which originates
from the j 	 10i ! j 	 9i transition within the S ¼ 10
ground-state multiplet [D ¼ �0:057 meV (Bircher et al.,
2004)]. Besides that, several intermultiplet transitions reflect-
ing the exchange splittings were observed in the energy range
up to 35 meV. From a detailed analysis of the experimental
data the energy-level scheme presented in Fig. 52 was
derived. Interestingly, the anisotropy splittings in Mn12 are
not significantly smaller than the exchange splittings, as
expected in the strong-exchange limit, which can be seen in
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FIG. 51. Neutron energy-loss spectra of Mn12 recorded in two

energy regimes. Data were recorded at the direct TOF spectrometer

MARI at Rutherford Appleton Laboratory ISIS. Adapted from

Chaboussant, Sieber et al., 2004.
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Fig. 52(a) from the fact that the lowest level of the lowest
S ¼ 9 multiplet falls below the top of the S ¼ 10 ground-
state multiplet. Hence, S mixing plays a relevant role, which
was later confirmed in a high-precision EPR experiment on
the S ¼ 10 ground state (Barra et al., 2007). Using numerical
large-scale calculations, the exchange coupling constants
were determined as 2J1 ¼ �5:79, 2J2 ¼ �5:33, 2J3 ¼
�0:67, and 2J4 ¼ �0:48 meV.

The exchange couplings J3 and J4 are 1 order of magnitude
smaller than J1 and J2, and spin frustration is hence small in
the Mn12 molecule, which justifies the interpretation of the
S ¼ 10 ground state in terms of the classical spin configura-
tion shown in Fig. 49(b) and suggests a topological relation
to AFM wheels (Waldmann, 2005a). In the context of
Sec. IV.C.1, this implies that the L- and E-band concept is
also realized in the Mn12, which was underlined by a suc-
cessful linear SWT analysis of the INS excitation spectrum
(Chaboussant, Sieber et al., 2004).

C. The Mn6 clusters

The SMM [Mn6O2ðC2H6-saoÞ6ðO2CC6H5ðCH3Þ2Þ2-
ðC2H6OHÞ6] (sao2� is the dianion of salicylaldoxime or
2-hydroxybenzaldeyhyde oxime), or Mn6 henceforth, which
was synthesized 14 years after the initial discovery of SMM
behavior in Mn12 (Sessoli et al., 1993), was yet the first
molecule found to exhibit a higher anisotropy barrier than
that in Mn12 (Milios, Vinslava et al., 2007). It contains six
Mn3þ ions (s ¼ 2), which are arranged into two triangles
linked by oxygen atoms; see Fig. 49(d). It crystallizes in
space group P21=n and the molecule exhibits C2h symmetry
(Milios, Vinslava et al., 2007). Several derivates of this
molecule have been synthesized and a magnetostructural

correlation for the exchange couplings established (Milios,
Inglis et al., 2007).

Magnetic measurements demonstrated an S ¼ 12 ground
state due to overall FM exchange interactions in the cluster.
The zero-field splitting parameter in the S ¼ 12 ground state
was estimated to be D � �0:054 meV, corresponding to an
energy barrier of jDjS2 � 7:7 meV. The exchange couplings,
however, were determined to be 2J � 0:4 meV, hence sug-
gesting that in Mn6 S mixing is very strong and the strong-
exchange limit or giant-spin model breaks down.

This has indeed been convincingly confirmed in an INS
experiment on a nondeuterated sample of Mn6 (Carretta
et al., 2008). Experimental INS data recorded in two energy
windows are presented in Fig. 53(a). At low energies, at
1.1 meV and below, the picket-fence spectrum characteristic
for the transitions within the ground-state multiplet of a SMM
is observed; see inset to Fig. 53(a). However, already at
slightly higher energies (1.9 meV) the first intermultiplet
transition appears, followed by several more in the experi-
mental energy range of 6 meV. This directly points to the fact
that several higher-lying spin multiplets are partially nested
with the ground-state multiplet.

The data analysis was based on the Hamiltonian

Ĥ ¼ �2
X
i<j

Jijŝi � ŝj þ
X
i

½Diŝ
2
iz þ B0

4iÔ
0
4ðsiÞ�; (91)

where three exchange coupling paths J1, J2, and J3 were
assumed as displayed in Fig. 54. The ligand-field parameters
for sites 1 and 10, 2 and 20, and 3 and 30 are identical by
symmetry; those of sites 2, 3, 20, and 30 were assumed to

FIG. 52. Energy-level scheme as derived from the experimental

INS data. (a) A zoom into the low-energy spectrum. Adapted from

Chaboussant, Sieber et al., 2004.

FIG. 53 (color online). (a) Neutron energy-loss spectra in Mn6
recorded for two energy regimes up to 6 meV at the indicated

temperatures (symbols). The lines represent simulations using

Eq. (91) and the parameters given in the text. (b) Calculated energy

spectrum as a function ofM. The shading represents the value of the

expectation value hŜ2i. Adapted from Carretta et al., 2008.

406 Albert Furrer and Oliver Waldmann: Magnetic cluster excitations

Rev. Mod. Phys., Vol. 85, No. 1, January–March 2013



be equal, and B0
4;1=B

0
4;2 ¼ D1=D2 was employed. The

experimental data could be excellently reproduced with the

best-fit parameters 2J1 ¼ 0:84ð5Þ, 2J2 ¼ 0:59ð3Þ, 2J3 ¼
�0:01ð1Þ, D1 ¼ �0:20ð1Þ, D2 ¼ �0:76ð2Þ, and B0

4;1 ¼
�0:0010ð3Þ meV. The resulting simulated energy spectrum

is shown in Fig. 53(b), which demonstrates that the energies

of the jMi states of the S ¼ 12 ground-state multiplet do not

follow the generic parabolic M2 curve but deviate strongly

from it at higher energies, and that indeed several higher-

lying S ¼ 11 multiplets fall below the top of the S ¼ 12
multiplet. Carretta et al. (2008) further demonstrated that

this unique structure of the energy spectrum has significant

effects on the magnetic relaxation rates.

VI. QUANTUM SPIN SYSTEMS

A. Introduction

Quantum spin systems have been attracting much attention

due to numerous magnetic features which cannot be inter-

preted by conventional spin models (Sachdev, 2008). In
particular, classical magnetic phases such as ferromagnetism

and Néel antiferromagnetism are prevented by (strong) quan-

tum fluctuations, which are present in magnetic compounds if

some of the following conditions are fulfilled:
(i) The spin quantum number of the magnetic ions is low,

i.e., si ¼ 1
2 or 1.

(ii) The dimensionality of the magnetic system is low, i.e.,

d ¼ 1 or 2.
(iii) The connectivity of the network of magnetic ions (i.e.,

the number of spins to which each spin is coupled) is

low.
(iv) The interactions between the magnetic ions are geo-

metrically frustrated.

Representatives of the categories (i) and (ii) have been the

subject of detailed investigations for a long time. They in-

clude one-dimensional magnets such as KCuF3 (Hutchings,

Ikeda, and Milne, 1979; Lake et al., 2005) and two-

dimensional magnets such as La2CuO4 (Vaknin et al.,

1987; Coldea et al., 2001; Headings et al., 2010), the latter
being of tremendous interest due to the observation of

doping-induced superconductivity (Bednorz and Müller,

1986). Recently, novel materials have been synthesized

which are formed by two and three magnetically coupled

spin chains, e.g., two-leg spin ladders as in SrCu2O3 (Azuma

et al., 1994) and ðC5H12NÞ2CuBr4 (Rüegg et al., 2008;

Thielemann et al., 2009) as well as three-leg spin ladders
as in Sr2Cu3O5 (Azuma et al., 1994). Typical realizations of

category (iii) are weakly coupled dimer-based compounds
including KCuCl3 (Kato et al., 1998; Cavadini et al., 1999),

TlCuCl3 (Oosawa et al., 2002; Rüegg et al., 2003),
NH4CuCl3 (Kurniawan et al., 1999; Rüegg et al., 2004),

BaCuSi2O6 (Jaime et al., 2004; Sebastian et al., 2005;
Rüegg et al., 2007), SrCu2ðBO3Þ2 (Kageyama et al., 2000;

Kodama et al., 2002), Cs3Cr2Br9 (Leuenberger et al., 1985;

Grenier et al., 2004), Sr3Cr2O8 (Quintero-Castro et al.,
2010; Wang et al., 2011), and Ba3Mn2O8 (Uchida et al.,

2002; Stone et al., 2008). Trimer-based compounds such as
La4Cu3MoO12 (Qiu et al., 2005) as well as the compound

SrCu2ðBO3Þ2 (characterized by an array of mutually perpen-
dicular dimers) fulfill in addition criterion (iv).

According to the topic of this work, we consider here only

compounds for which the presence of magnetic clusters is the
most important ingredient to understand their quantum spin

properties. The following sections focus first on weakly
interacting AFM dimer systems, for which quantum phase

transitions involving gapless excitations and Bose-Einstein

condensation have been observed most convincingly
(Giamarchi, Rüegg, and Tchernyshyov, 2008). Second, the

phenomenon of a spin-Peierls transition is described that
occurs in quasi-one-dimensional antiferromagnets due to

the formation of spin pairs as a result of dimerization of the
regular array of magnetic ions (Bray et al., 1975). Third, the

formation of magnetic polarons observed in transition-metal
perovskites is discussed; these evolve upon hole doping and

behave like magnetic clusters embedded in a nonmagnetic

matrix (Phelan et al., 2006).

B. Dimer-based antiferromagnets

In dimer-based compounds the two magnetic ions are
antiferromagnetically coupled according to the spin

Hamiltonian equation (44). In contrast to the isolated dimer
systems discussed in Sec. III, the coupling between the

dimers cannot be neglected, but the intradimer exchange
coupling J0 is larger than the coupling between the dimers

J1 ¼ J0=�. As long as � � 1, the thermodynamic magnetic

properties resemble those of isolated dimer systems, i.e., the
dimer ground state jS;Mi is a singlet j0; 0i, and so preserves

full rotational invariance, unlike the Néel state of a square-
lattice antiferromagnet with � ¼ 1. The singlet state is sepa-
rated from the excited triplet states j1;þ1i, j1; 0i, and j1;�1i
by an energy gap � ¼ 2jJ0j. This picture is confirmed by the

magnetic susceptibility measured for the dimer compound
KCuCl3 (Tanaka et al., 1997) as shown in Fig. 55(a), which

readily allows the determination of the gap energy, as in the

analysis of Fig. 2. However, the high-field magnetization data
(Oosawa et al., 2002) displayed in Fig. 55(b) are basically

different from those observed for isolated cluster systems.
The latter exhibit sharp steplike enhancements of the mag-

netization (see Figs. 11 and 22), which are absent forKCuCl3.
Instead, the magnetization increases rather slowly above the

critical field Bc � 23 T, and the saturation moment of
1�B=Cu

2þ is reached at the saturation field Bs � 53 T, far
above Bc. This is due to the interdimer coupling J1 giving rise

FIG. 54 (color online). The core of Mn6 with the labeling of the

Mn3þ sites and the assumed coupling paths indicated. Adapted from

Carretta et al., 2008.
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to energy dispersion of the singlet-triplet excitations which
may be called triplons. The triplon dispersion can be calcu-
lated in the random phase approximation (Jensen and
McIntosh, 1991), since perturbation theory in 1=� is well
defined. For the case of dimers forming a square lattice we
find

EMðkÞ ¼ �2J0 � 2J1½cosðkxdÞ þ cosðkydÞ� þ g�BBM;

(92)

where k ¼ ðkx; kyÞ is the quasiparticle wave vector, d is the

lattice constant, B is an external magnetic field, and M ¼ 0,
	1. In zero field the three triplons are degenerate. With
increasing field the triplons are split into three branches
with M ¼ þ1, 0, and�1 as shown in Fig. 56(a). At a critical
magnetic field Bc, the energy of the lowest triplet component
j1;þ1i intersects the ground-state singlet j0; 0i and the
ground state changes; thus Bc is a quantum critical point
separating a gapped spin-liquid state (B< Bc) from a field-
induced magnetically ordered state (B> Bc). The triplet
components j1;þ1i can be regarded as bosons with hard-
core repulsion; thus Bose-Einstein condensation occurs at the
quantum critical point Bc, i.e., the gas of triplet bosons

undergoes a phase transition into a novel condensate state
with macroscopic occupation of the single-particle ground
state.

The state of an individual dimer at position r is well
approximated by a linear combination of the singlet j0; 0i
and the triplet j1;þ1i,

j�i ¼ uj0; 0i � v exp½iðk � r� Eþ1tÞ�j1;þ1i; (93)

where Eþ1 is defined by Eq. (92), and the amplitudes u and v
depend on the magnetic field (Matsumoto et al., 2002, 2004).
The expectation values of the spin-operator components of
the dimer in the state equation (93) are

hŝ1;xi ¼ �hŝ2;yi / uv

2
cosðk � r� Eþ1tÞ; (94)

hŝ1;yi ¼ �hŝ2;xi / uv

2
sinðk � r� Eþ1tÞ; (95)

hŝ1;zi ¼ �hŝ2;zi / v2

2
: (96)

The condensate at B > Bc can be associated with the trans-
verse order parameters hŝi;xi and hŝi;yi, which are oppositely

aligned at the dimer sites 1 and 2 due to the AFM dimer
coupling J0. The rotational symmetry Oð2Þ of the underlying
spin Hamiltonian is spontaneously broken for B > Bc, giving
rise to a dramatic change in the nature of the magnetic
excitation spectrum. According to Eq. (92), the mode asso-
ciated with the lowest triplet j1;þ1i exhibits a quadratic
dispersion around the wave vector k0 ¼ ð	=a; 	=aÞ and
becomes gapless at the critical field Bc, but for B > Bc it
transforms in a fully isotropic system into a gapless
Goldstone mode with a soundlike linear dispersion

EðkÞ ¼ ℏsjk� k0j; (97)

where s is a velocity (Matsumoto et al., 2002, 2004).
One of the most widely studied dimer-based antiferromag-

nets is the monoclinic compound TlCuCl3, in which the Cu
2þ

ions are arranged in centrosymmetric pairs. The intradimer
coupling J0 ¼ �2:7 meV dominates the interdimer coupling
jJ1j< 1 meV. Inelastic neutron scattering experiments con-
firmed the singlet-triplet nature of the magnetic excitations by
application of an external magnetic field as visualized in
Fig. 56 (Rüegg et al., 2003). For B > 0 the singlet-triplet
excitation is clearly split into three lines due to the Zeeman
effect, with the central �M ¼ 0 line being twice as intense as
the �M ¼ 	1 side lines, as predicted by Eq. (18). The
triplons are well characterized by a three-dimensional exten-
sion of Eq. (92) with a quadratic dispersion around Q ¼
ð0; 0; 1Þ as shown in Fig. 57(a). The spin gap has a minimum
value � � 0:70 meV at the zone center (0,0,1). With increas-
ing field strength, the lowest triplet state j1;þ1i is continu-
ously reduced in energy and overcomes the spin gap for a
critical field Bc ¼ 5:7 T; see Fig. 56(a). Since a finite number
of triplet states j1;þ1i is created at Bc, the system undergoes
a phase transition to a magnetically ordered state. This con-
densation of triplet states at T � 0 is therefore a prototype of
a quantum phase transition.

What is the experimental proof that TlCuCl3 is Bose-
Einstein condensed at Bc? Important evidence is provided

(a) (b)

FIG. 55 (color online). (a) Magnetic susceptibility measured for

KCuCl3 with B ¼ 0:5 T oriented perpendicular to the cleavage

plane ð1; 0;�2Þ. Adapted from Tanaka et al., 1997.

(b) Magnetization measured for KCuCl3 at T ¼ 1:7 K with B

perpendicular to the cleavage plane. Adapted from Oosawa

et al., 2002.

(a) (b)

FIG. 56 (color online). Selected results obtained from INS experi-

ments on TlCuCl3. (a) Field dependence of the magnetic excitation

energies measured at Q ¼ ð0; 4; 0Þ. The solid lines reflect a linear

Zeeman model. The critical field is Bc ¼ 5:7 T. Adapted from

Rüegg et al., 2003. (b) Splitting of the singlet-triplet excitation

measured at Q ¼ ð�0:5; 0; 2Þ and T ¼ 1:5 K. The asymmetric line

shapes are typical resolution effects. Adapted from Cavadini et al.,

2002.
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by the critical exponent  in the field dependence of the

critical temperature TcðBÞ / ðBc � BÞ. The theory for a

three-dimensional Bose gas predicts a universal value

 ¼ 2
3 [see, e.g., Giamarchi and Tsevlik (1999)], which was

experimentally confirmed, e.g., for the dimer compounds

BaCuSi2O6 (Jaime et al., 2004) and TlCuCl3 (Tanaka

et al., 2007) in particular temperature range. The ultimate

proof for Bose-Einstein condensation in TlCuCl3, however, is
offered by the properties of the magnetic excitation spectrum

above Bc according to Eq. (97). This theoretical prediction

was observed for the first time by INS experiments in

TlCuCl3 as shown in Fig. 57(b) (Rüegg et al., 2003); thus

the presence of a spin-wave-like mode with a linear disper-

sion is a convincing signal for the existence of the Bose-

Einstein condensate.
The singlet-triplet gap of TlCuCl3 can also be closed by the

application of hydrostatic pressure (thereby modifying the

parameter �) which occurs at a critical pressure pc �
0:1 GPa. In contrast to the field-induced case, all the triplet

components can condense into the singlet ground state at the

quantum critical point pc. The magnetic excitation spectrum

has again the nature of a gapless Goldstone mode

(Matsumoto et al., 2004) which was experimentally con-

firmed in the pressure-induced ordered phase as shown in

Fig. 57(b) (Rüegg, Furrer et al., 2004). In later INS experi-

ments, it was demonstrated that only the longitudinal and one

transverse triplet component soften at pc, whereas the other

transverse triplet component retains a finite gap at pc (Rüegg

et al., 2008). For p > pc, the gap energies of both transverse

components remain constant, whereas that of the longitudinal

component gradually increases. The data could consistently

be interpreted by using a mainly linear pressure dependence

of the exchange parameters as well as a small exchange

anisotropy. The gap energy of the longitudinal mode in-

creases with the ordered magnetic moment above pc, with a

fundamental ratio of
ffiffiffi
2

p
between the gaps in the ordered and

disordered states, thereby providing a nontrivial experimental

test of the S’ field theory (Sachdev, 2011). Such an amplitude

mode is not present in a classical description of ordered

magnets, but is a direct consequence of the underlying quan-
tum criticality.

Up to the present, the compound TlCuCl3 has remained a
prototype of a quantum antiferromagnet in which evidence
for the Bose-Einstein condensation was given by many tech-
niques. The concept of a Bose-Einstein condensation has
been applied to some other dimer-based compounds men-
tioned in Sec. VI.A as well, but often factors such as the large
values of the exchange parameters as well as the presence of
anisotropies violating the rotational symmetry prevent the
complete softening of the lowest triplet component j1;þ1i
at Bc. The influence of anisotropies, which can be determined
rather precisely by EPR techniques [see, e.g., Kolezhuk et al.
(2004)], was discussed elsewhere (Giamarchi, Rüegg, and
Tchernyshyov, 2008).

Dimerized antiferromagnetic chain systems are closely
related to the ACuCl3 (A ¼ K, Tl) compounds discussed
above. A well-studied example is copper nitrate, CuðNO3Þ2 �
2:5ðD2OÞ, in which the spin- 12 Cu2þ ions are arranged as

chains of copper pairs. Each pair has a singlet ground state
separated from a triplet at j2J0j ¼ 0:44 meV. The weak
interdimer coupling J1 ¼ J0=� with � � 4 yields triplet
excitations that propagate coherently along the chain (Xu
et al., 2000). The experimental data displayed in Fig. 58
are well described by the one-dimensional variant of
Eq. (92) with k ¼ ðkx; 0Þ, where x denotes the chain direc-
tion. Above the singlet-triplet gap there is a second gap to the
multimagnon continuum. Two-magnon bound states with
S ¼ 1 are visible in INS experiments (Tennant et al., 2003,
2012) and have a dispersion (Uhrig and Schulz, 1996;
Schmidt and Uhrig, 2003)

EBSðkÞ ¼ �2J0 � J1
2
½1þ 4cos2ðkxdÞ�; (98)

as shown in Fig. 58. These S ¼ 1 bound states exist only over
the range jn	� kxdj � 	=3, where n is an odd integer.

(a) (b)

FIG. 57 (color online). (a) Energy dispersion of the triplons

observed in TlCuCl3 at T ¼ 1:5 K and B ¼ 5:5 T. The lines

correspond to model expectations based on a three-dimensional

extension of Eq. (92). Adapted from Cavadini et al., 2002.

(b) Energy dispersion of the low-lying magnetic excitations ob-

served in TlCuCl3 at different temperatures, fields, and pressures.

The lines denote the linear behavior of the Goldstone mode

according to Eq. (97). Adapted from Rüegg et al., 2003, 2004.
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FIG. 58 (color online). Excitation spectra of copper nitrate at

T ¼ 0:12 K. (a), (c) Background-subtracted two- and one-magnon

INS data, respectively, and (b), (d) the simulated T ¼ 0 spectra.

Adapted from Tennant et al., 2012.
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C. Spin-Peierls dimerization

For a compound built up of identical atoms the elastic

energy is lowest if the atoms are equally spaced. However,

there are compounds where the atoms move from an equally

spaced crystal to one in which the spacing alternates, i.e., the

atoms form pairs. This is called dimerization [first proposed

for one-dimensional systems by Peierls in the 1930s (Peierls,

2001)], which is made possible through lowering of the free

energy of the electronic subsystem by this maneuver. The

early examples mainly included polymerlike organic materi-

als, characterized by antiferromagnetic Heisenberg chains,

first discovered in the compound TTF-CuS4C4ðCF3Þ4 (TTF =

tetrathiafulvalinium) (Bray et al., 1975) and afterwards

in MEM-ðTCNQÞ2 (MEM = methyl-ethyl-morpholinium)

(Huizinga et al., 1979) and in DEM-ðTCNQÞ2 (DEM =

N-ethyl-N-ethyl-morpholinium and TCNQ = tetracyanoqui-

nodimethane) (Schwerdtfeger, Odstra, and Sawatzky, 1982).

Here we exemplify the phenomenon of a spin-Peierls tran-

sition for the linear-chain compound CuGeO3 (Nishi, Fujita,

and Akimitsu, 1994), followed by a discussion of the three-

dimensional compound CeRu2Al10, in which recently occur-

rence of a dimerization was suggested (Robert et al., 2010).
CuGeO3 is a linear-chain Cu2þ (si ¼ 1

2 ) compound crys-

tallizing in the orthorhombic space group Pbmm with a ¼
4:81 �A, b ¼ 8:47 �A, and c ¼ 2:941 �A at room temperature

(Völlenkle, Wittmann, and Nowotny, 1967). The coupling of

the Cu2þ ions positioned at ð12 ; 0; 0Þ is strong along the c axis,
giving rise to physical properties typical of a one-dimensional

magnet. The magnetic susceptibility rapidly drops to zero

below Tc ¼ 14 K (Hase, Terasaki, and Uchinokura, 1993),

which points to the opening of a finite energy gap associated

with a singlet ground state. This can be understood in terms of

lattice dimerization, i.e., the formation of Cu2þ pairs resulting

in a spin-Peierls ground state. Neutron diffraction experi-

ments indeed gave evidence for Cu-Cu dimerization along

the c axis below Tc with an interatomic separation of 2.926 Å,

compared to 2.941 Å in the high-temperature structure

(Hirota et al., 1994), accompanied by shifts in the position

of the O(2) ions in the ða; bÞ plane as illustrated in Fig. 59.

Since the coupling between two Cu2þ ions in the c direction

is mainly due to a superexchange interaction through O(2),

the dimerization is clearly driven by the O(2) shifts, which

results in two unequal and alternating exchange parameters
along the c direction:

J1;2ðTÞ ¼ Jc½1	 �ðTÞ�: (99)

The existence of the spin-Peierls gap was verified by INS
experiments as shown in Fig. 60(a) (Nishi, Fujita, and
Akimitsu, 1994). At T ¼ 4 K a sharp peak corresponding
to the singlet-triplet transition appears at an energy transfer of
2.5 meV for Q ¼ ð0; 1; 0:52Þ which is close to the Brillouin
zone center (0, 1, 0.5). With increasing temperature the peak
moves to lower energies and broadens (T ¼ 12 K), while at
T ¼ Tc ¼ 14 K the energy gap vanishes as expected. The
dispersion of the singlet-triplet transition is shown in
Fig. 60(b). The energy at the zone boundary (z ¼ 1

2 ) directly

yields the intrachain exchange parameter Jc ¼ 10:4 meV
from the formula 	Jc=2 ¼ 16:3 meV derived by Des
Cloizeaux and Pearson (1962). This information is useful
for deriving the value of �ðTÞ in Eq. (99). Mean-field theory
gives

�ðTÞ ¼ �ðTÞ
pJc

; (100)

with p ¼ 1:637 (Bray et al., 1975). Substitution of
�ð0Þ ¼ 2:1 meV by extrapolation of the gap energy
�ð4KÞ ¼ 2:5 meV [see Fig. 60(a)] to zero temperature yields
�ð0Þ ¼ 0:12 and J1ð0Þ=J2ð0Þ ¼ 1:27 from Eq. (99).

Recently the ternary compound CeRu2Al10 has attracted
much attention because of a phase transition taking place at
T0 ¼ 27 K whose origin remained unclear initially (Strydom,
2009). CeRu2Al10 crystallizes in the orthorhombic space
group Cmcm in which the Ce3þ ions are separated from
each other by an exceptionally large distance of 5.2 Å, so
that the interpretation of T0 as a magnetic phase transition has
to be discarded. Alternative mechanisms such as a charge-
ordered state as well as spin-density-wave formation
also have serious shortcomings (Matsumara et al., 2009;
Nishioka et al., 2009). Tanida et al. (2010a, 2010b) sug-
gested the formation of Ce dimers within the ða; cÞ
plane, bearing some similarities to a spin-Peierls transition.

(a) (b)

FIG. 59 (color online). Schematic representation of the structure

of CuGeO3. The arrows denote the AFM spin alignment of the Cu2þ

ions. The dashed lines mark the Cu-O(2)-Cu superexchange bonds.

(a) T > Tc ¼ 14 K. (b) Copper dimerization for T < Tc indicated

by the dashed boxes.

(a) (b)

FIG. 60. (a) Energy scan profiles of the magnetic excitation

observed for CuGeO3 at Q ¼ ð0; 1; 0:52Þ for various temperatures.

The solid and dashed lines denote Gaussian fits to the data obtained

at T ¼ 4 and 12 K, respectively. (b) Dispersion of the magnetic

excitation observed in CuGeO3 along the c direction at T ¼ 4 K.
Adapted from Nishi, Fujita, and Akimitsu, 1994.
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Neutron scattering experiments confirmed the latter interpre-

tation (Robert et al., 2010). Neutron diffraction measure-
ments gave evidence for a displacement of the Al atoms

below T0, resulting in a spin-Peierls transition along the
one-dimensional Ce-Al zigzag chains accompanied by a
dimerization of the Ce3þ ions as sketched in Fig. 61.

The final proof of the Ce3þ dimerization is provided by the
results of INS experiments performed forCeRu2Al10 as shown
in Fig. 62(a) (Robert et al., 2010). At temperatures T < T0

there is no spectral weight at low energies. There is a well-

defined peak at 8 meV corresponding to the gap energy. With
increasing temperature the gap shifts to lower energies. The
peak at 8 meV can therefore be identified as the singlet-triplet

excitation associated with the formation ofCe3þ dimers below
T0; this interpretation is supported by the oscillatory
Q dependence of the intensities according to the dimer cross

section Eq. (3.9) as illustrated in Fig. 62(b). From the peak
position and Eq. (3.3) the effective intradimer exchange cou-
pling results as Jeff ¼ �4 meV, which was considered to be

unrealistically large (Robert et al., 2010). However, this value
is based on a truncated basis with s ¼ 1

2 . The true exchange

coupling between the Ce3þ ions results from scaling with the

de Gennes factor � ¼ ðg� 1Þ2jðjþ 1Þ, where j is the total
angular momentum. For Ce3þ with g ¼ 6

7 and j ¼ 5
2 we have

� ¼ 0:18, and for an s ¼ 1
2 system (g ¼ 2, j ¼ 1

2 ) we find

� ¼ 0:75; thus the correction by the de Gennes factor reduces
the true exchange coupling to JCe-Ce � �1 meV.

D. Polarons

In complex materials, competing interactions can lead to
the spontaneous formation of nanosized regions of a different
phase. If an additional charge is introduced into the material
by doping, a fermionic quasiparticle called a polaron can be

formed. The resulting lattice polarization and deformation
acts as a potential well that decreases the mobility of the
charge. Polarons have spin, although two polarons close to

each other are spinless. They are referred to as a bipolaron,
whose existence was the driving idea behind the discovery of
high-temperature superconductivity in the copper oxide per-

ovskites (Bednorz and Müller, 1986). In the meantime the
existence of charge-ordered stripes was postulated (Zaanen
and Gunnarsson, 1989) and experimentally verified (Lucarelli

et al., 2003). The stripes are superconducting regions, sepa-
rated by AFM regions which act as Josephson junctions
through the proximity effect.

The existence of polarons is the key in understanding the
rich phase diagrams of the giant-magnetoresistive manganese

and cobalt perovskites upon doping (Salamon and Jaime,
2001; Phelan et al., 2006). This is demonstrated here for
the hole-doped lanthanum cobaltates of type La1�xSrxCoO3.

The ground state of the parent compound LaCoO3 is non-
magnetic, corresponding to a low-spin state of Co3þ ions with
si ¼ 0. It was widely believed that the addition of each hole

into pristine LaCoO3 through the substitution of a Sr2þ ion
for the La3þ ion creates a Co4þ ion in the lattice which has a
nonzero value of si in any spin-state configuration, thereby

inducing a magnetic moment in the system. However, already
lightly doped cobaltates with x � 0:002 give rise to an order
of magnitude larger magnetic susceptibility than expected

(Yamaguchi et al., 1996). It was proposed that the holes
introduced by Sr doping do not remain localized at the nearby
Co site; instead, each hole is distributed among several
neighboring Co sites, leaving the latter in the intermediate

FIG. 61 (color online). Schematic representation of the Ce-Al

zigzag chains in CeRu2Al10. The Ce3þ dimerization for T < T0 is

indicated by the dashed boxes.

(a) (b)

FIG. 62 (color online). (a) Temperature dependence of the energy

spectra of neutrons scattered from CeRu2Al10 for Q ¼ 1:5 �A�1.

The lines denote least-squares fits. (b) Q dependence of the intensity

of the peak at 8 meV. The line corresponds to the dimer cross

section Eq. (3.9) with R ¼ 5:2 �A. Adapted from Robert et al.,

2010.

FIG. 63. Energy spectra of neutrons scattered from

La0:998Sr0:002CoO3 at T ¼ 1:5 and 10 K. The open circles corre-

spond to the nonmagnetic reference compound LaCoO3. For clarity,

the intensities of the T ¼ 10 K data are shifted by 400 neutron

counts. Adapted from Podlesnyak et al., 2008.
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Co3þ state (with si ¼ 1) and thereby forming a multisite
magnetic polaron. Such spin-state polarons behave like
ferromagnetic nanoparticles with a very large total spin in
an insulating nonmagnetic matrix.

The existence of spin-state polarons was confirmed by
inelastic neutron scattering experiments as shown in Fig. 63.
A magnetic excitation is observed for La0:998Sr0:002CoO3 at an
energy transfer of 0.75 meV, which is absent for the undoped
parent compound LaCoO3 (Podlesnyak et al., 2008). The
ground state of Co3þ in the intermediate spin state is an
orbitally degenerate triplet which is split by a small trigonal
ligand field into a singlet and a doublet. The transition be-
tween these two levels is the source of the peak observed at
0.75 meV. The peak intensity diminishes with increasing
temperature, in agreement with the Boltzmann population
factor Eq. (42) for a singlet-doublet transition. The
Q dependence of the intensity of the observed excitation
exhibits a clear oscillatory behavior as shown in Fig. 64,
which reflects the size as well as the shape of the polaron
through the structure factor. The neutron cross section of a
cluster comprising N magnetic ions can be approximated for
polycrystalline material by an extension of Eq. (31):

d2�

d�d!
/ F2ðQÞ XN

i<j¼1

�
hSjjT̂ð1ÞðsiÞjjS0i2 þ 2

sinðQRijÞ
QRij

� hSjjT̂ð1ÞðsiÞjjS0ihS0jjT̂ð1ÞðsjÞjjSi
�
: (101)

For the special case of a �S ¼ 0 transition (which is relevant
in the present context), the reduced matrix elements can be
factorized and set to 1. The lines in Fig. 64 correspond to
calculated cross sections for different Co clusters sketched in
the inset. We clearly see that the Q dependence of the cross
section is an unambiguous fingerprint of the geometry of the
multimers; in particular, the data observed for the 0.75 meV
transition in La0:998Sr0:002CoO3 are perfectly explained by the
scattering from an octahedrally shaped Co heptamer. The total
moment of this heptamer, consisting formally of one central

Co4þ ion (si ¼ 1=2) and six surrounding Co3þ ions (si ¼ 1),
is 13�B, in good agreement with the magnetic susceptibility
data (Yamaguchi et al., 1996).

The result of the above experiment gives a clear micro-
scopic explanation as to why hole doping of as little as 0.2%
dramatically affects the overall magnetic properties of the
entire system, i.e., the magnetic susceptibility is an order of
magnitude larger than expected. Additional charge carriers
increase the number of such spin-state polarons, which form a
percolative network, resulting in a metallic state with long-
range ferromagnetic order at the critical Sr concentration
xc ¼ 0:18 (Phelan et al., 2006). The formation of spin-state
polarons may be a common mechanism present in other Mn-
and Co-based oxide perovskites as well.

VII. CONCLUSIONS

In this review we provided an impression of the physics
which one encounters in magnetic spin clusters, and their
relevance to a variety of different physical systems. The
presentation has been limited to examples whose magnetic
excitations are already very well or comparatively well
understood. Many of the important scientific questions which
are under current research or will possibly become of rele-
vance in the future have, however, not been addressed,
although some of them were indicated at a few places in
the text. We conclude here by discussing them further.

Small magnetic clusters have been demonstrated to be ideal
experimental systems for studying the basic mechanisms of
the magnetic interactions between spins and the underlying
physical principles. The research on them started at least six
decades ago and many fundamental questions have been
addressed (see Sec. III). However, despite this long history,
the research field is not yet exhausted, but continuously in-
creases due to the ongoing improvements of the experimental
equipment. For instance, for many fascinating extended mag-
netic compounds, corrections to the HDVV model such as the
weaker anisotropic and/or higher-order exchange interactions
have to be known with accuracy as they can be crucial for
understanding the phase diagrams. However, the higher-order
interactions are intrinsically hidden in the commonly applied
analyses of spin-wave dispersion relations, but become acces-
sible by studying the cluster excitation spectra in related
diluted materials; an example was given in Sec. III.B.6.

For most magnetic systems the conventional HDVV
model, possibly including the weaker corrections to it, is
perfectly appropriate, which is not surprising for magnetic
ions of types S and Q. The basic assumptions underlying the
HDVV picture are phenomenological, but there was little
clear-cut experimental evidence in the past for an eventual
failure of this model. The situation is quite different for
clusters with magnetic type-L and type-J ions, where the
exchange in general has to be described by more involved
interaction terms. An obvious extension of the HDVV cou-
pling is to introduce multipole interactions based on standard
tensor operator techniques or to replace the exchange pa-
rameter Jij by an exchange tensor Jðmi;mj;m

0
i; m

0
jÞ, with mi

andm0
i being the spin quantum numbers of the initial and final

ionic states, respectively; the latter formalism was verified in
the dimeric Ho3þ compound Cs3Ho2Br9 (Furrer et al., 1990).

FIG. 64 (color online). Q dependence of the intensity of the

transition observed at 0.75 meV in La0:998Sr0:002CoO3. The inset

sketches different types of Co multimers. The lines are the result of

structure factor calculations based on Eq. (101). Adapted from

Podlesnyak et al., 2008.
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This topic will certainly become more important in the future,

e.g., magnetic molecules incorporating 4f metal ions are

currently under intense study (Klokishner et al., 2009a).
The observed existence of three-spin interactions in mag-

netic systems discussed in Sec. III.B.5 is of particular rele-

vance in the general context of many-body interactions,

which already fascinated Kopernikus (1473–1543) and

Kepler (1571–1630) in their investigations of the mutual

gravitational interaction between three planets. There has

been ample experimental evidence for many-body interac-

tions in the past, notably in studies of ultracold gases of

alkaline-earth atoms (Büchler, Micheli, and Zoller, 2007),

the stability of molecules such as ozone (Zhaunerchyk

et al., 2007), four-atom exchange in 3He (McMahan and

Wilkins, 1975), chirality in magnetic compounds (Grigoriev

et al., 2005), ring-exchange (Coldea et al., 2001) and three-

body correlations of vortex states (Menon et al., 2006) in

high-temperature superconductors, or domain-wall fluctua-

tions in (anti)ferromagnets (Shpyrko et al., 2007). Novel

quantum phases with intriguing physical properties can arise

from many-body interactions, which are usually described on

the basis of pair potentials Gðr; tÞ. However, it would be

highly desirable to extend the analytic tools beyond

van Hove’s theory (Van Hove, 1954) to include higher-order

correlation functions in both space and time, for which

approximate solutions exist, e.g., for Gðr; r0; tÞ (Hu, 2007),
Gðr; t; t0Þ (Word and Trammell, 1981), and Gðr; r0; t; t0Þ (van
Zon and Schofield, 2001). Adequate experimental techniques

should be developed as well to provide direct access to

higher-order correlation functions. Indeed, novel neutron

scattering techniques have been suggested for this purpose,

including neutron interferometry (Rauch and Suda, 1997) and

spin-echo techniques (Grigoriev, Kraan, and Rekveldt, 2004).
Besides the small magnetic clusters, the ground state and

excitation spectrum in large magnetic clusters, as they

have been called in this review, have emerged as an attractive

research field in the last 15 years. The scientific questions

encountered in them are ultimately related to the possibility

of many-body (quantum) effects, with links to the field

of quantum spin systems. However, as compared to the

system sizes considered in the latter area, in which one-,

two-, and three-dimensional lattices of interacting quantum

spins are considered, the sizes of the ‘‘large magnetic clus-

ters’’ have to be considered as small as they are (far) away

from the finite-size scaling regime, in which the magnetic

properties start to resemble those in the thermodynamic limit

N ! 1 (exceptions are spin- 12 clusters because of the short

correlation length for si ¼ 1
2 ; see Sec. IV.C and Fig. 28). In

this sense the large magnetic clusters should be called zero

dimensional and belong to the class of mesoscopic systems.
A typical consequence of that could be described as the

‘‘loss’’ of the wave vector as a good quantum number, since

translational symmetry or a finite-size version of it such as the

cyclic symmetry in wheels is generally not present in the

large clusters. On the one hand, this implies that concepts

which are developed for extended lattices may have to be

adapted or interpreted in novel ways if applied to large

clusters. The application of spin-wave theory to antiferro-

magnetic wheels and short chains (see Secs. IV.C.1 and

IV.D.2) represents a showcase.

For antiferromagnetic Heisenberg rings or molecular

wheels the cyclic symmetry allows the introduction of a shift

quantum number q which emerges into a wave vector in the

thermodynamic limit. Therefore the available literature re-

sults for the spin-wave dispersion relation in the antiferro-

magnetic chain, as they have been derived from the various

spin-wave theories (Ivanov and Sen, 2004), can be taken over

directly with the wave vector replaced by the discrete values

of q. As demonstrated in Sec. IV.C.2 for the CsFe8 molecular

wheel, this yields the energies in the E band with some

accuracy. However, despite this success, important funda-

mental issues remain. For instance, spin-wave theories do

a priori violate the spin rotational invariance of the HDVV

Hamiltonian, and their applicability to large clusters with

their disordered ground states is hence fundamentally flawed,

yet they can produce reasonable energies and one may ask

why. Also, since the wave vector becomes discretized, mag-

netic excitations with long wavelengths do not exist in mo-

lecular wheels (and large magnetic clusters in general), which

raises the question of whether the excitations in the E band,

albeit their energies can be derived by spin-wave theory,

should actually be interpreted as spin waves. This is a sen-

sible question, and the notion of ‘‘cluster spin waves’’ may be

introduced (Stuiber et al., 2011). We adopted here a prag-

matic view and called any excitation which is obviously

related to a spin-wave energy a spin wave.
The situation becomes even more involved in the short

antiferromagnetic chains. At the level of linear spin-wave

theory the literature results for the finite antiferromagnetic

chain can again be directly carried over, but this does not

work for the more sophisticated spin-wave theories such as

interacting spin-wave theory since the open boundaries result

in site-dependent corrections. That is, these theories have to

be formulated in real space and not momentum space.

Furthermore, a description of the excitations in classical

terms, which is at the center of the L- and E-band concept

and motivated the application of spin-wave theories, is ac-

tually not obvious in the short chains as the wave functions do

not significantly overlap with the semiclassical configura-

tions. Surprisingly, their ground state is in fact in neither

the classical nor the quantum regime, and the intuitively clear

distinction between these two regimes becomes blurred

(Konstantinidis et al., 2011).
The loss of the wave vector, on the other hand, is also

indicative of the possibility of lattice topologies in large

clusters which are not possible in extended systems. In

fact, most magnetic molecules that have been synthesized

have a complex topology which cannot systematically

be expanded into an infinite lattice. The V15 or Mn12 mole-

cules presented in Secs. IV.E.1 and V.B are examples. For

obvious reasons, the research on the many-body aspects of

magnetic cluster excitations has concentrated on lattice

topologies or magnetic molecules with an ‘‘appealing’’ sym-

metry, but the most interesting magnetic phenomena may be

overlooked this way. In this sense only the simplest systems

have been studied so far, yet the understanding of their

excitations can be challenging and the case of Fe30 estab-

lishes a dramatic example. The large number of lattice

topologies available through the class of molecular nano-

magnets, which, thanks to the productivity of chemists, will
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certainly grow further, obviously presents a wide area for

future research.
Except for two cases (Waldmann, Carver et al., 2006;

Carretta et al., 2007) (see also Sec. IV.E.1), the INS work on

molecular nanomagnets used powder and polycrystalline

samples. Experiments on single crystals offer new possibil-

ities to unravel the many-body physics in the cluster excita-

tions, e.g., the spin-pair correlation function can be mapped

out more directly than is possible with powder samples.

Single-crystal INS experiments have become state of the art

in the last decade for inorganic compounds. The current

improvements in the INS technique make such experiments

possible now also for molecular nanomagnets (which are

challenging because of the small number of magnetic centers

as compared to the many nonmagnetic ligand atoms). Single-

crystal INS work on molecular nanomagnets will certainly be

seen more often in the coming years.
Magnetic cluster systems have also been considered as

promising units for quantum computing. Much effort went

into mesoscopic spin- 12 clusters or antiferromagnetic cluster

qubits, i.e., large clusters which exhibit a total spin S ¼ 1
2

ground state and may be used as qubits at low temperatures,

where only the ground state is thermally populated (Meier,

Levy, and Loss, 2003a, 2003b). Such clusters may present

advantages over atomic-scale qubits, such as easier address-

ing and readout. Significant progress was made, e.g., coher-

ence times long enough for quantum computations could be

achieved in the Cr7Ni doped antiferromagnetic wheel

(Ardavan et al., 2007) and two molecular ‘‘qubits’’ could

be linked such as to provide entanglement between them,

suggesting the possibility of two-qubit operations (Affronte

et al., 2005, 2006; Candini et al., 2010). However, the

multilevel structure of the low-lying energies as can be

provided only by magnetic clusters has also been explored.

The particular structure of the ground-state spin multiplet in

the single-molecule magnets was theoretically shown to al-

low for an implementation of Grover’s search algorithm or to

build dense and efficient memory devices (Leuenberger and

Loss, 2001). Furthermore, by also accessing higher-lying

levels near to the ground state Rabi oscillations could be

observed in the V15 molecule and the Fe4 single-molecule

magnet (Bertaina et al., 2008; Schlegel et al., 2008). Finally,

the spin frustration or orbital degeneracy in the ground state

of regular spin triangles has been theoretically shown to allow

for a coupling of the spin degree of freedom to electric fields

and currents (spin electric currents), such that the spin qubit

can be manipulated through currents supplied to a cluster by,

e.g., scanning tunneling microscope (STM) techniques

(Lehmann et al., 2007; Trif et al., 2008; Georgeot and

Mila, 2010). These examples indicate that the cluster excita-

tions as present in magnetic clusters may provide novel

quantum computation schemes, and exciting results in this

direction can be expected in the future. For instance, the

many-body nature of the large magnetic clusters suggests

the possibility of decoherence-free subspaces in them, which

to our knowledge has not yet been explored.
Magnetic clusters also play a role in the emerging field of

molecular spintronics (Rocha, 2005; Sanvito and Rocha,

2006; Bogani and Wernsdorfer, 2008). Significant success

was first obtained with molecules containing one metal ion,

which have been incorporated into break junctions or

contact leads produced by electromigration. For instance,

the Kondo effect could be observed in the molecule

½CoðterpyðCH2Þ5-SHÞ2�2þ in this way (Park et al., 2002).

However, the current-voltage characteristics of magnetic

clusters of two metal centers or even the single-molecule

magnet Mn12 have also been measured in experiment

(Heersche et al., 2006). Many further schemes are currently

under investigation (Bogani and Wernsdorfer, 2008). As in

the context of quantum computation, it can also be envisioned

for molecular spintronics that the unique energy-level struc-

tures or complex many-body states provided by magnetic

cluster systems will open novel opportunities and allow for

functionalities not currently considered.
The molecular nanomagnets represent a valuable resource

of (large) magnetic clusters, but in recent years not only has

the chemical route toward large clusters been advanced, but

several examples of artificially engineered spin clusters also

emerged (Jamneala, Madhavan, and Crommie, 2001). Here

ensembles of magnetic metal ions experiencing nearest-

neighbor exchange interactions were fabricated directly on

surfaces using STM techniques, and their magnetic excita-

tions measured through recording the current-voltage curves.

For instance, short antiferromagnetic chains of Mn2þ metal

ions with chain lengths of N ¼ 1–10 were produced and the

magnetic ground as well as first excited state were observed

in this way (Hirjibehedin, Lutz, and Heinrich, 2006).

Apparently in both areas, those of molecular nanomagnets

and artificially engineered spin clusters, one faces very simi-

lar scientific questions, yet the technological challenges in

using them in real-world applications are complementary. In

comparison with the artificially formed clusters, the molecu-

lar nanomagnets are available in an abundance of different

lattice topologies assuming complex many-body states, and

their excitations can be studied in detail using powerful

experimental techniques such as inelastic neutron scattering.

However, the artificial nanostructures are available directly

on surfaces and have already been proven to maintain their

magnetic properties and their addressability function on the

surface. The molecular nanomagnets and the artificially en-

gineered spin systems are hence complementary in the sense

that the advantages of each class may help the other to

overcome its problems (Konstantinidis et al., 2011).
Furthermore, magnetic cluster excitations are of funda-

mental importance in a variety of other systems. For instance,

the clusters may be linked together by a network of weak

magnetic intercluster exchange interactions, such that the

cluster excitations may ‘‘travel’’ through the network and

become dispersive. This can lead to novel quantum phases,

and the Bose-Einstein condensation in dimer-based com-

pounds, which was presented in Sec. VI.B, is a striking

example. However, such networks may obviously be built

not only from dimers, but also from trimers or tetramers,

which can additionally introduce spin frustration and possess

unprecedented behavior. At this point a further link between

molecular nanomagnets and quantum spin systems emerges,

as not only small clusters may be incorporated into the net-

work but also large clusters or molecular nanomagnets, which

should be expected to result in an interesting interplay be-

tween the complex quantum states realized within a cluster
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and the complex phases generated in extended lattices.

Indeed, the synthesis of extended exchange-coupled networks

of, e.g., Cu3 molecular units or single-molecule magnets has

already been reported (Miyasaka et al., 2006; Morimoto

et al., 2009; Ivanov et al., 2010). All in all, the competition

between the quantum states in a magnetic cluster and the

cooperativity introduced through an extended network of

intercluster interactions should continue to be an attractive

playground for research.
Finally, clusters of magnetic ions are relevant in biology as

they constitute the active sites in many metalloproteins. They

are ubiquitous in living matter and contain sites with one to

eight metal atoms, sometimes with multiple occurrence of the

smaller clusters in the same protein molecule. The primary

function of, e.g., the iron-sulfur clusters lies in mediating one-

electron redox processes and as such they are integral com-

ponents of respiratory and photosynthetic electron transfer

chains. So far the understanding of the electronic ground- and

excited-state properties has relied on magnetic susceptibility,

magnetic circular dichroism, EPR, Mössbauer, and resonance

Raman scattering measurements, which provided information

on the anisotropy of the g factor, the valence state of the iron

atoms, the total spin quantum number of the ground state, and

sometimes the intracluster exchange interactions (Beinert,

Holm, and Münck, 1997). The latter are often determined

from experiments on model systems as demonstrated, e.g., by

magnetic susceptibility measurements of a cubane-type Fe4S4
cluster, giving J ¼ �18 meV for the exchange parameter of

the two semi-independent ðFe2S2Þ2þ dimers (Yoo et al.,

1997). To our knowledge, the INS technique has not yet

been applied to the study of metalloproteins, since prohibi-

tively large deuterated samples with volumes of typically

1 cm3 would be needed. However, with the advent of third-

generation neutron sources and novel beam-focusing tech-

niques, reducing the requested sample size by several orders

of magnitude, such experiments will become feasible in the

near future.
As so often, improvements in the experimental techniques

are a main driving force for scientific progress, and it is finally

mentioned that the development of the instrumentation used

for studying magnetic cluster excitations has been impressive

in the last decade and should be expected to be so also in the

future. Neutron scattering can serve as a representative ex-

ample. Neutron facilities such as the high-flux reactor HFR at

the Institute Laue-Langevin (ILL) in Grenoble (France) and

the spallation neutron source ISIS at the Rutherford Appleton

Laboratory in Didcot (UK) which are both presently under-

going significant upgrades as well as the successful commis-

sioning or planing of new third-generation neutron sources

such as the Spallation Neutron Source (SNS) at the Oak

Ridge National Laboratory (USA), the spallation neutron

source at J-PARC in Tokai (Japan), and the European

Spallation Source (ESS) in Lund (Sweden) open truly excit-

ing possibilities to unravel the many unsolved questions in the

area of magnetic cluster excitations.
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Mutka, and P. Vorderwisch, 2002, Phys. Rev. B 65, 132415.
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Coronado, H.U. Güdel, H. Büttner, and G. Kearly, 1997, Inorg.

Chem. 36, 2244.

Clemente-Juan, J.M., H. Andres, J. J. Borrás-Almenar, E.
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Rüegg, C., D. F. McMorrow, B. Normand, H.M. Ronnow, S. E.

Sebastian, I. R. Fisher, C. D. Batista, S. N. Gvasaliya, C.

Niedermayer, and J. Stahn, 2007, Phys. Rev. Lett. 98, 017202.
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