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I. INTRODUCTION

The aim of this article is to review, from a historical
perspective, the important role played by radiative corrections
(RC) in precision electroweak physics, in the framework of
both the original Fermi theory of weak interactions and the
renormalizable standard theory of particle physics, usually
referred to as the standard model. Those two areas are dis-
cussed in Secs. II and III, respectively.

Studies of such corrections are closely connected with
important developments in theoretical particle physics, which
are also reviewed. The role of radiative corrections in the
analysis of some important signals of new physics is also
discussed.

As shown in the Table of Contents, six subsections are
based on the Fermi theory of weak interactions and 21
subsections are based on the standard theory of particle
physics. They review important and interesting subjects in
electroweak physics. On the other hand, in view of the
magnitude of the area, encompassing more than 50 years of
physics, it was not possible to cover every conceivable sub-
ject. Taking this into account, we apologize beforehand for
the omission of important and interesting developments that
lie beyond the scope of this article.

There are a number of excellent reviews of gauge theories
in general and the standard theory of particle physics, in
particular. Among them are the following: Abers and Lee
(1973), Bég and Sirlin (1974), Weinberg (1974), Taylor
(1976), Faddeev and Slavnov (1980), Aoki et al. (1982),
Bég and Sirlin (1982), Quigg (1983), Cheng and Li (1984),
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Ellis and Peccei (1986), Pokorski (1987), Alexander et al.
(1988), Altarelli, Kleiss, and Verzegnassi (1989), Einhorn
(1991), Jegerlehner (1991), Donoghue, Golowich, and
Holstein (1992), Bailin and Love (1993), Hollik (1993),
Sirlin (1994a), Bardin, Hollik, and Passarino (1995),
Langacker (1995), Merritt et al. (1995), Bardin and
Passarino (1999), Gunion et al. (2000), Sirlin (2000),
Böhm, Denner, and Joos (2001), Aitchison and Hey (2003),
Sirlin, Marciano, and Chatterjee (2003), Paschos (2007),
Jegerlehner (2008), and Langacker (2010).

II. RADIATIVE CORRECTIONS IN THE FERMI THEORY

OF WEAK INTERACTIONS

The powerful and highly successful relativistic methods
developed by Feynman, Schwinger, Tomonaga, Dyson, and
others to evaluate the radiative corrections in quantum elec-
trodynamics1 were first applied to the weak interactions in the
mid-1950s. In particular, Behrends, Finkelstein, and Sirlin
(1956) studied theOð�Þ electromagnetic corrections to muon
decay in the framework of the four-fermion Fermi theory of
weak interactions.

We recall that in this theory the interaction Lagrangian
density for muon decay is given by

L ¼ �gi½ �c e�
ic ��½ �c ��

�ic �e
� þ H:c:; (1)

where i runs over the scalar (S), vector (V), tensor (T), axial
vector (A), and pseudoscalar (P) interactions. Explicitly, we
have2

�S ¼ 1; ð�VÞ� ¼ ��;

ð�TÞ�� ¼ ���ffiffiffi
2

p ¼ i

2
ffiffiffi
2

p ð���� � ����Þ;

ð�AÞ� ¼ i���5; �P ¼ i�5:

(2)

Equation (1) is the interaction Lagrangian density in the
charge-retention order in which leptons of equal charge are
placed in the same covariant. L can be written also in the
charge-exchange order

L ¼ �~gi½ �c ��
�ic ��½ �c e�ic �e

� þ H:c:; (3)

where ~gi are related to gi by Fierz (1937) transformations.
While Eq. (1) is convenient for actual calculations in the

Fermi theory, Eq. (3) conforms more closely with current
formulations in which � decay arises from charged current
interactions.

TheOð�Þ radiative corrections to muon decay in the Fermi
theory arise from the interchange of a virtual photon between
the � and the e, the electromagnetic field renormalizations of
these particles, and the inner bremsstrahlung contributions.

An important result is that in the charge-retention order of
Eq. (1), the Oð�Þ corrections to muon decay are ultraviolet
(UV) convergent only for the vector and axial vector inter-
actions (Behrends, Finkelstein, and Sirlin, 1956). This can be
readily understood by analogy with quantum electrodynamics
(QED). It is well known that in the scattering of an electron
by an external potential, the UV divergence of the vertex
part cancels against those in the wave-function renormaliza-
tions of the external legs (by the Ward identity). For the
vector coupling in muon decay in the charge-retention order,
we have an analogous situation, except for the fact that the
muon and electron have different masses. However, as
the coefficients of these divergences are independent of the
fermion masses, they also cancel in muon decay. The correc-
tions involving the axial vector coupling in the charge-
retention order can be obtained from those in the vector
case by means of the formal transformation c e ! c 0

e ¼
�5c e, me ! �me in the Lagrangian density. Thus, they
differ only from the vector case by the change me ! �me

and, consequently, the UV divergences cancel also for the
axial vector coupling. In contrast, for the S, T, and P inter-
actions of the charge-retention order, the analogy with QED
is no longer valid and the Oð�Þ corrections are logarithmi-
cally ultraviolet divergent.

A. Nonconservation of parity. The two-component

theory of the neutrino

Lee and Yang (1956) proposed the revolutionary idea that
parity is not conserved in the weak interactions and this was
soon verified by elegant experiments. In order to accommo-
date parity nonconservation, Eq. (1) was generalized to

L ¼ �½ �c e�
ic ��½ �c ��

�iðgi þ g0i�5Þc �e
� þ H:c:; (4)

with an analogous modification of Eq. (3).
To lowest order, Eq. (4) leads to the following expression

for the energy-angle distribution of e� (eþ) from the decay of
a polarized �� (�þ) at rest:

dNðx;�Þ¼ d3p

ð2�Þ4
m�E0A

6

�
3ð1�xÞ

þ2	

�
4

3
x�1�1

3

m2
e

E2
0x

�
þ3


me

E0

ð1�xÞ
x

�P��cos�

�
1�xþ2�

�
4x

3
�1�1

3

m2
e

m�E0

���
;

(5)

where the upper and lower signs refer to �� and �þ,
respectively, � is the angle between the e� momentum and
the spin direction of the ��; x ¼ E=E0, where E is the e�
energy and E0 ¼ ðm2

� þm2
eÞ=2m� its maximum value; p is

the e� momentum, � ¼ p=E, and P is the degree of polar-
ization of ��. The parameter 	 that describes the energy
distribution of e� from unpolarized muons was introduced
long ago by Michel (1950) and is generally referred to as the
Michel parameter. The parameters � and �, which are cur-
rently employed to describe the effects of parity nonconser-
vation, were introduced by Kinoshita and Sirlin (1957a,
1957b). Alternative expressions to Eq. (5), using different

1See, for example, Schwinger (1958), Feynman (1962), Kinoshita

(1990), and Schweber (1994).
2In this paper we used the notational conventions and � matrices

of Bjorken and Drell (1965). We also used ‘‘natural units’’ ℏ¼c¼1.

In Eq. (1) it is understood that the contravariant and covariant

indices are contracted and summed from 0 to 3 as in ½���½���,
½����½����, etc.
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parametrizations, were obtained by Bouchiat and Michel
(1957) and Larsen, Lubkin, and Tausner (1957). Since
E0 � me, the terms proportional to m2

e in the cofactors of
	 and � are very small. For the same reason, the term
proportional to 
 is potentially significant only in the
very low-energy part of the spectrum. For a more detailed
discussion of theoretical and experimental aspects of muon
decay, and the relations between the parameters A, 	, 
, �,
� and the couplings gi and g0i see, for example,3 Kinoshita

and Sirlin (1957a, 1957b), Berman and Sirlin (1962), Sachs
and Sirlin (1975), Sirlin (1980b), and Fetscher and Gerber
(2010).

In 1957, Landau (1957), Lee and Yang (1957), and Salam
(1957) reintroduced the two-component theory of the neu-
trino, an elegant formulation that had been long abandoned
because it leads to parity nonconservation. This theory can be
regarded as a special case of the four-component theory of a
massless neutrino, subject to the subsidiary condition

a�c � ¼ c � (6)

or

aþc � ¼ c �; (7)

where

a� ¼ 1� �5

2
(8)

are the left and right chiral projectors.
If Eq. (6) is satisfied, the massless neutrino has helicity

h ¼ �1 and the corresponding antineutrino has h ¼ 1. If
Eq. (7) is satisfied, the signs are reversed. From measure-
ments of the polarization and angular distribution of high-
energy positrons in �þ decays, it was concluded that ��e and
�� have opposite helicities. Moreover, the helicity of ��e in �

decay was found to be positive. These observations led to the
conclusion that both ��e and ��� have h ¼ þ1, correspond-

ingly �e and �� have h ¼ �1, and therefore Eq. (6) holds.

Comparing Eq. (6) with the Lagrangian density in Eq. (4)
one readily finds

gS ¼ g0S ¼ gT ¼ g0T ¼ gP ¼ g0P ¼ 0; (9)

g0i � �gi ði ¼ V; AÞ: (10)

Namely, in the two-component neutrino theory only the
vector and axial vector couplings of the charge-retention
order survive, precisely the interactions for which the Oð�Þ
radiative corrections had been previously found to be con-
vergent (Behrends, Finkelstein, and Sirlin, 1956).

Comparison of Eqs. (9) and (10) with the general expres-
sions relating 	, �, 
, and � to the coupling constants further
leads to the important conclusions:

	 ¼ � ¼ 3
4; (11)

� ¼ � gVg
�
A þ gAg

�
V

jgV j2 þ jgAj2
; (12)


 ¼ 1

2

�jgAj2 � jgV j2
jgAj2 þ jgV j2

�
: (13)

Thus, in the two-component theory of the neutrino the pa-
rameters 	 and � are sharply predicted, while � and 
 depend
only on gV and gA.

B. Radiative corrections to muon decay in the two-component

theory of the neutrino: Cancellation of mass singularities in

integrated observables

In comparing theory with experiment in muon decay, it is
important to evaluate the Oð�Þ corrections since they play a
significant role. Including those corrections in the framework
of the two-component theory of the neutrino, one obtains the
following expression for the energy-angle distributions of
e�ðeþÞ in the decay of a polarized ��ð�þÞ at rest
(Kinoshita and Sirlin, 1959a):

dNðx; �Þ ¼ d3p

ð2�Þ4
m�E0

3
2ðjgV j2 þ jgAj2Þ

�
3� 2x

� m2
e

E2
0x

þ 6
me

E0

ð1� xÞ
x

þ �

2�
fðxÞ

� P�� cos�

�
1� 2xþ m2

e

m�E0

þ �

2�
gðxÞ

��
;

(14)

where

fðxÞ ¼ ð6� 4xÞRðxÞ þ 6ð1� xÞ lnxþ ð1� xÞ
3x2

� ½ð5þ 17x� 34x2Þð!þ lnxÞ � 22xþ 34x2�;
(15)

gðxÞ ¼ ð2� 4xÞRðxÞ þ ð2� 6xÞ lnx
� 1� x

3x2

�
ð1þ xþ 34x2Þð!þ lnxÞ þ 3� 7x

� 32x2 þ 4ð1� xÞ2 lnð1� xÞ
x

�
; (16)

RðxÞ ¼ 2Li2ðxÞ � �2

3
� 2þ!

�
3

2
þ 2 ln

�
1� x

x

��

� ð2 lnx� 1Þ lnxþ
�
3 lnx� 1� 1

x

�
lnð1� xÞ;

(17)

! ¼ ln

�
m�

me

�
; (18)

and

3In several early papers, including Kinoshita and Sirlin (1957a,

1957b), and Sachs and Sirlin (1975), �5 was defined with a sign

opposite to the one employed in the present article.
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Li2ðxÞ ¼ �
Z x

0
dt

lnð1� tÞ
t

(19)

is the dilogarithm function.4 In Eqs. (15) and (16), we ne-
glected terms of Oð�me=EÞ, although all the contributions of
Oð�Þ not proportional to cos� have been exactly evaluated
(Behrends, Finkelstein, and Sirlin, 1956; Grotch, 1968; Nir,
1989). The terms m2

e=E
2
0x and m2

e=m�E0 in Eq. (14) are very

small and frequently omitted in the literature.
Integrating Eq. (14) over all values of p and �, one obtains

the expression for the muon lifetime �, including Oð�Þ
corrections

1

�
¼ ðjgV j2 þ jgAj2Þm5

�

192�3

�
1� 8m2

e

m2
�

þ 4

me

m�

�

�
�
1þ �

2�

�
25

4
� �2

��
; (20)

where we neglected terms of order ðme=m�Þ4, 
ðme=m�Þ3,
and �me=m�.

The Oð�Þ radiative corrections have a large effect on the
e� spectrum in � decay. In fact, they decrease the decay
probability for large x and increase it for small x. In order to
estimate the magnitude of this effect, it was been pointed out
that if the e� spectrum in Eq. (14) is fitted with an effective
uncorrected formula of the Michel type [cf. Eq. (5)] over the
range 0:3 & x & 0:95, the parameter 	eff obtained in this
manner is 	eff 	 0:71 rather than the value 3=4 of the two-
component theory (Kinoshita and Sirlin, 1959a). Similar
observations hold for the parameter � that governs the x
dependence of the cos� part of the decay probability. Since
current determinations of 	 and � agree with the predictions
of Eq. (11) at the 0.035% and 0.046% levels, respectively
(Bayes et al., 2011), it is clear that the radiative corrections
play a crucial role in verifying the validity of the two-
component theory of the neutrino.

On the other hand, the Oð�Þ corrections to the muon
lifetime given in Eq. (20) amount to only �4:2� 10�3.
The reason why the corrections to the electron spectrum are
quite large while the corrections to � are rather small has

been traced to the cancellation of ‘‘mass singularities’’ in
integrated observables, discovered by Kinoshita and Sirlin
(1959a). In the case of muon decay, it implies that the
corrections to the lifetime and the integrated asymmetry are
finite in the mathematical limit me ! 0. The properties dis-
cussed above can be nicely illustrated by considering the
terms proportional to the large parameter ! ¼ lnðm�=meÞ 	
5:332 in the corrections to the spectrum [cf. Eqs. (14), (15),
and (17)]. They are proportional to

�

2�
!dx

�
ð6� 4xÞx2

�
3

2
þ 2 ln

�
1� x

x

��

þ ð1� xÞ
3

½5þ 17x� 34x2�
�
; (21)

and contain the electron mass singularity since ! diverges in
the me ! 0 limit. When integrated over the full spectrum,
i.e., in the range 1 
 x 
 0, Eq. (21) vanishes, leading to the

cancellation mentioned above. Furthermore, the expression
between curly brackets is negative in the upper part of
the spectrum (x * 0:68) and positive for x & 0:68. Using
Eq. (16), one readily verifies that the terms proportional to
ð�=2�Þ! in the cos� term of Eq. (14) also cancel when
integrated over the full range 1 
 x 
 0. The cancellation
of mass singularities has also been verified in the Oð�Þ
contributions to 1=� proportional to g2S, g

2
T , and g2P in the

general Fermi theory, as well as in the corrections to the
�-decay lifetime in the framework of the V-A theory (see
Sec. II.D). Furthermore, it has provided one of the main
motivations for the Kinoshita-Lee-Nauenberg (KLN) theo-
rem (Kinoshita, 1962; Lee and Nauenberg, 1964).

An observable for which the Oð�Þ corrections become
extremely large is the asymmetry of low-energy e�
(Kinoshita and Sirlin, 1957c). Their effect on the asymmetry
parameter � is also discussed by Kinoshita and Sirlin (1959a).
Another important result of the two-component neutrino
theory was the prediction of the photon spectrum and rate
in radiative muon decay � ! eþ �þ ��þ � before its de-
tection (Kinoshita and Sirlin, 1959b). As an example, for
photons of energy
 20me, the branching ratio was predicted
to be 1.2%.

As emphasized, the two-component theory of the neutrino
leads to the definite predictions 	 ¼ � ¼ 3=4 [cf. Eq. (11)].
In order to measure with high precision these basic parame-
ters (as well as �, 
, and A) in the four-component neutrino
framework of the general Fermi theory [cf. Eq. (5)], one
approach has been to employ the fractional radiative correc-
tions of the two-component neutrino theory which, as dis-
cussed, are finite and well defined. Specifically (Sherwood,
1967), the expression between curly brackets not involving
cos� in Eq. (5) is multiplied by

1þ ½ð�=2�ÞfðxÞ�=½3� 2x�m2
e=E

2
0x

þ 6
ðme=E0Þð1� xÞ=x�;

while the expression proportional to cos� is multiplied by

1þ ½ð�=2�ÞgðxÞ�=½1� 2xþm2
e=m�E0�:

Comparison with Eq. (14) shows that these factors are indeed
the corresponding fractional corrections in the two-
component neutrino theory. The justification for this proce-
dure is that, to a high degree of precision, the current
experimental information is consistent with pure V, A, V 0,
and A0 interactions. Possible deviations which in the four-
component neutrino framework involve quadratic expres-
sions in gi, g

0
iði ¼ S; T; PÞ are expected to be very small

and can therefore be treated at the tree level. The products
of these small deviations with ð�=2�ÞfðxÞ and ð�=2�ÞgðxÞ
are of second order in the small quantities and, therefore, are
not considered significant.

At present, very precise measurements of 	, �, �, and 
 are
carried out in the TWIST (TRIUMF weak interaction sym-
metry test) experiment at TRIUMF (Canada’s national labo-
ratory for particle and nuclear physics) (Bayes et al., 2011),
and an accurate determination of � was made by the Mulan

Collaboration at PSI (Webber et al., 2011a, 2011b).4See, for example, Lewin (1958).
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C. The V-A theory

The discovery of parity nonconservation led to another
important development: by greatly increasing the number of
observables available for experimental and theoretical study,
it opened the way for the determination of the basic phe-
nomenological interaction. This led Sudarshan and Marshak
(1957, 1958) and Feynman and Gell-Mann (1958) to propose
a universal V-A Fermi interaction for charged current pro-
cesses, such as muon decay, � decay, and the semileptonic
decays of hyperons.

In the case of muon decay, this theory implies the validity
of Eqs. (9) and (10) and furthermore states that

gA ¼ �gV: (22)

Using the Fierz transformations (Fierz, 1937), Eqs. (9), (10),
and (22) lead to the following coupling constants ~gi, ~g

0
i in the

charge-exchange order:

~gS ¼ ~g0S ¼ ~gT ¼ ~g0T ¼ ~gP ¼ ~g0P ¼ 0; (23)

~gV ¼ �~gA ¼ gV ¼ �~g0V ¼ ~g0A: (24)

Defining G� � ffiffiffi
2

p
gV , Eqs. (9), (10), and (22)–(24) lead to

L ¼ �G�ffiffiffi
2

p ½ �c ���
�ð1� �5Þc ��

� ½ �c e��ð1� �5Þc �e � þ H:c:

(25)

¼ �G�ffiffiffi
2

p ½ �c e�
�ð1� �5Þc ��

� ½ �c ��
��ð1� �5Þc �e � þ H:c: (26)

Thus, the interaction Lagrangian for muon decay in the V-A
theory has a simple and elegant form that involves a single
coupling constant and is preserved in passing from the
charge-retention to the charge-exchange order. Equations
(9), (10), and (22) lead also to the sharp predictions

	 ¼ � ¼ 3=4; (27)


 ¼ 0; (28)

� ¼ 1; (29)

as can be readily verified by inserting Eq. (22) into Eqs. (12)
and (13).

With the neglect of strong interaction (SI) effects, in the
original version of the V-A theory other four-fermion inter-
action processes were described by Lagrangian densities
of the same form as Eq. (25). For example, for n ! pþ
e� þ ��e, the basic process for � decay, the Lagrangian
density was postulated to be of the form,

L�decay¼�GVffiffiffi
2

p ½ �c p�
�ð1��5Þc n�½ �c e��ð1��5Þc �e

�

þH:c:; (30)

where GV is the vector coupling constant in � decay.

D. Radiative corrections to muon decay in the V-A theory and

the Fermi constant

Taking into account Eqs. (22) and (27)–(29), we see that in
the V-A theory the energy-angle distributions of e� (eþ) in
muon decay are simply obtained by setting jgAj ¼ gV ¼
G�=

ffiffiffi
2

p
, 
 ¼ 0, and � ¼ 1 in the two-component theory ex-

pression [Eq. (14)]. In particular, theOð�Þ corrections are still
governed by the functions fðxÞ and gðxÞ. Furthermore, using
the transformation c e ! c 0

e ¼ �5c e, me ! �me discussed
in Sec. II.A, it can be shown that in the V-A theory there are no
contributions to the differential decay rate [Eq. (14)] that
involve odd powers of me (Roos and Sirlin, 1971). This
implies that corrections of Oðð�=�Þme=m�Þ are absent and

that the leading mass-dependent corrections to the differential
decay rate are of Oðð�=�Þm2

e=m
2
� lnðm2

�=m
2
eÞÞ. On the other

hand, in the calculation of integrated observables such as the
total decay rate, the integration over the electron or positron
momentum gives rise to corrections of Oð�Þ proportional to
ðme=m�Þ3, as well as even powers of me=m� (van Ritbergen

and Stuart, 1999).
Radiative corrections of Oð�2Þ to the electron spectrum

were evaluated by Arbuzov, Czarnecki, and Gaponenko
(2002), Arbuzov and Melnikov (2002), Arbuzov (2003),
and Anastasiou, Melnikov, and Petriello (2007).

Recently, the TWIST Collaboration (Bayes et al., 2011)
reported very accurate measurements of the parameters 	, �,
and P�

�� in the four-component neutrino framework of the

general Fermi theory (P�
� is the initial degree of polarization

of the muon from � decay):

	 ¼ 0:749 77� 0:000 12ðstatÞ � 0:000 23ðsystÞ; (31)

� ¼ 0:750 49� 0:000 21ðstatÞ � 0:000 27ðsystÞ; (32)

P�
�� ¼ 1:000 84� 0:000 29ðstatÞþ0:001 65

�0:000 63ðsystÞ: (33)

These results are in good agreement with the predictions of
the V-A theory, Eqs. (27) and (29) and P�

� ¼ 1, at a high level

of precision. As mentioned, the RC play a crucial role in the
analysis. They also use these results to derive interesting
bounds for the combinations jðgR=gLÞ�j and ðgL=gRÞm2 in
the generalized left-right symmetry model (gL and gR are the
gauge couplings of WL and WR, � is the mixing angle when
WL andWR are expressed in terms of the mass eigenstatesW1

and W2, and m2 is the mass of W2).
The radiative corrections to the muon lifetime � have

been the subject of great interest and detailed studies. In fact,
the argument given at the end of Sec. II.A can be generalized:
it has been shown that to leading order inG�, but all orders in

�, the radiative corrections to muon decay in the V-A theory
are finite after mass and charge renormalization (Berman and
Sirlin, 1962). The detailed calculations now reach the two-
loop level and lead to

1

�
¼ G2

�m
5
�

192�3
FðxÞ½1þ ���; (34)

where x ¼ m2
e=m

2
�, FðxÞ ¼ 1� 8x� 12x2 lnxþ 8x3 � x4 is

a tree-level phase-space factor, and �� is the radiative

correction.
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Neglecting very small terms proportional to powers of
me=m�, we have

��¼ �

2�

�
25

4
��2

��
1þ2�

3�
ln

�
m�

me

��
þ6:700

�
�

�

�
2þ��� :

(35)

The Oð�Þ term has been known since the end of the 1950s
(Berman, 1958; Kinoshita and Sirlin, 1959a), the logarithmic
term of Oð�2Þ was derived in 1971 (Roos and Sirlin, 1971),
and the last term in 1999 (Steinhauser and Seidensticker,
1999; van Ritbergen and Stuart, 1999, 2000), about 40 years
after the one-loop correction. The two terms of Oð�2Þ nearly
cancel each other. Including very small one- and two-loop
contributions proportional to powers of me=m� (van

Ritbergen and Stuart, 1999; Pak and Czarnecki, 2008), we
have

�� ¼ �4:199 48� 10�3 þ 1:06� 10�6; (36)

where the first and second terms stand for the one- and two-
loop contributions, respectively. This reveals that when the
corrections are expressed in terms of �, as in Eq. (35), the
Oð�2Þ effects are very small, and the original Oð�Þ calcu-
lation turns out to be accurate. Alternatively, �� is frequently

written in the form (Steinhauser and Seidensticker, 1999; van
Ritbergen and Stuart, 1999, 2000)

��¼�ðm�Þ
2�

�
25

4
��2

�
þ6:700

�
�ðm�Þ
�

�
2þCðxÞþ��� ;

(37)

where �ðm�Þ ¼ 1=135:902 628 3 . . . is the running �ð�Þ
parameter at them� scale. In this second form the logarithmic

term of Oð�2Þ has been absorbed in the Oð�ðm�ÞÞ contribu-
tion, and the Oð�2ðm�ÞÞ effects are 	 3:6� 10�5, consid-

erably larger than in Eq. (36). The correction �� has also

been studied using optimization methods that select the
optimal scale in �ð�Þ, permit one to analyze the scheme
dependence of the calculations, and estimate the unknown
terms of Oð�3ðm�ÞÞ (Ferroglia, Ossola, and Sirlin, 1999).

This analysis leads to an estimated error of 	 2:6� 10�7 in
�� due to the truncation of the perturbative series.

CðxÞ in Eq. (37) denotes very small RC proportional to
powers of x. Specifically,

CðxÞ¼�ðm�Þ
�

½xð�12lnx�9�4�2þ16�2x1=2ÞþOðx2Þ�

�
�
�ðm�Þ

�

�
2
0:0784þ���: (38)

The terms of Oð�ðm�Þxl=�Þ (l ¼ 1, 3=2) were derived by

van Ritbergen and Stuart (1999). Their expression differs
from that in Eq. (38) because of the factorization of FðxÞ in
our Eq. (34), which was not employed by van Ritbergen and
Stuart. For clarity, we point out that to the stated level of
accuracy our result for 1=� based on Eqs. (34), (37), and

(38) through the terms of Oð�ðm�Þxl=�Þ is equivalent to that
obtained in their 1999 paper. The contribution of
Oð�ðm�Þ=�Þ2Þ was derived years later (Pak and Czarnecki,

2008) and amounts to �4:3� 10�7. An interesting feature is

that its leading contribution is linear in me=m�:

�½�ðm�Þ=��2ð5=4Þ�2x1=2 ¼ �3:27� 10�7.

Because of the high precision of the � measurement

(Webber et al., 2011a, 2011b) and the theoretical clarity of
Eqs. (34), (35), (37), and (38), GF, the universal Fermi
constant of the weak interactions, is identified with G�.

Inserting the experimental value � ¼ 2 196 980:3ð2:2Þ ps,
Eqs. (34), (37), and (38) lead to �� ¼ �4:198 18� 10�3 and

GF ¼ G� ¼ 1:166 378 8ð7Þ � 10�5 GeV�2; (39)

an important 0.6 ppm determination (Webber et al., 2011a,
2011b).

We note that the evaluation of �� in the � and �ðm�Þ
schemes, namely, ��¼�4:19842�10�3 [see Eq. (36)] and

��¼�4:19818�10�3, respectively, differ by �2:4� 10�7.

This difference is consistent with the estimate of the third
order coefficient in the �ðm�Þ expansion on the basis of the

optimization methods, namely, ðc3Þest 	 �20 (Ferroglia,
Ossola, and Sirlin, 1999). The effect of this difference on
the determination of GF [see Eq. (39)] is also small in
comparison with the current experimental error.

We also note that, in some theoretical discussions of 1=�,

a factor ð1þ 3m2
�=M

2
WÞ that represents the tree-level correc-

tion from theW-boson propagator is applied to the right-hand
side (rhs) of Eq. (34). Since this factor does not arise in the
Fermi theory framework, it is not included in our Eq. (34). It
was pointed out by van Ritbergen and Stuart (1999) that, in
the standard theory calculations, it can be more naturally
included in the electroweak correction �r [cf. Eq. (54)].
More generally, it can be included in the expressions of the
form GFð1� EWCÞ, where EWC denotes a generic electro-
weak correction such as �r̂, �r̂W , and �reff [cf. Eqs. (57),
(58), and (66)]. On the other hand, it is useful to observe that
this factor would amount to an addition of only 	 5� 10�7

to such electroweak correction, which is negligible at the
current level of accuracy.

E. The universality of the weak interactions and the conserved

vector current hypothesis

The principle of universality of the weak interactions is a
concept of enduring significance. In fact, it has motivated, at
least in part, several important developments in particle
physics.

The origin of the idea can be traced to 1947–1949, when
several authors (Pontecorvo, 1947; Klein, 1948; Puppi, 1948,
1949; Lee, Rosenbluth, and Yang, 1949; Tiomno and
Wheeler, 1949) noted that the basic processes �� ! e� þ
�� þ ��e, n ! pþ e� þ ��e, and �� þ p ! nþ �� are

characterized approximately by the same coupling constant,
of magnitude 	 10�5 GeV�2. On this basis they proposed a
universal weak interaction among the doublets ð�e; eÞ,
ð��;�Þ, and ðp; nÞ. In 1951, Enrico Fermi stated that this

similarity is probably not accidental and has a deep meaning
not understood at the time (Fermi, 1951). He also suggested a
possible analogy with the universality of electric charge.

In their paper, Feynman and Gell-Mann (1958) compared
G� with GV , the vector coupling in � decay extracted from
14O decay, a superallowed (0þ ! 0þ) Fermi transition in
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which only the vector current contributes to zeroth order in �.
They found GV ¼ G� within roughly 1%. The result was

surprising, since even if one assumed GV ¼ G� at the

Lagrangian level as a manifestation of universality, a close
equality was not expected because nucleons in � decay are
affected by strong interactions, while this is not the case for
the leptons in muon decay. This prompted Feynman and Gell-
Mann (1958) to invoke the conserved vector current (CVC)
hypothesis, previously discussed by Gershtein and Zeldovich
(1955). Specifically, the hadronic vector current in � decay is
assumed to be conserved in the presence of the strong inter-
actions. Since conservation laws are generally associated with
symmetries of the theory, they further identified it with the
�I3 ¼ 1 isospin current. The near equality GV 	 G� could

then be understood on the basis of two concepts: the principle
of universality that states GV ¼ G� at the Lagrangian level,

and CVC that implies that the strong interactions do not
renormalize GV at q2 ¼ 0 in the limit of isospin invariance.

CVC, in turn, had another important consequence. If the
strangeness conserving (�S ¼ 0) vector current is conserved,
it would be natural to assume that the strangeness noncon-
serving (�S ¼ 1) vector current in semileptonic decays is
also conserved in some suitable limit. This was one of the
main motivations for the search for higher partial symmetries
of the strong interactions. A number of possibilities were
considered (Behrends et al., 1962), culminating with the
phenomenologically successful SUð3Þflavor symmetry (Gell-
Mann, 1962; Gell-Mann and Ne’eman, 1964). Gell-Mann
also noted that a normalization of the hadronic currents is
necessary in order to precisely define the concept of univer-
sality. This was an important motivation for current algebra
(Gell-Mann, 1964a). In fact, the nonlinearity of the basic
current algebra relation

½Ja0 ðxÞ; Jb0 ðyÞ�x0¼y0 ¼ ifabcJc0ðxÞ�3ð ~x� ~yÞ; (40)

where fabcða; b; c ¼ 1; . . . ; 8Þ are the SU(3) structure con-
stants, determines the normalization of the hadronic currents.
SUð3Þflavor also led to the fundamental concept of quarks
(Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative corrections to � decay in the V-A theory

When the CVC hypothesis was formulated, it was natural
to suspect that the 	 1% difference between GV and G� was

due to electromagnetic corrections. Here we have in mind
electromagnetic corrections not contained in Fermi’s
Coulomb function which is automatically included in the
theory of � decay. However, when the Oð�Þ corrections to
the decay probability of neutron � decay were calculated by
Berman (1958) and Kinoshita and Sirlin (1959a) in the V-A
theory [cf. Eq. (30)], a striking result was found: contrary to
the case of muon decay, theOð�Þ corrections to � decay were
logarithmically divergent. In particular, the detailed expres-
sion found by Kinoshita and Sirlin (1959a) for the Oð�Þ
corrections to the electron or positron spectrum is given by

�Pd3p ¼ �

2�
P0d3p

�
6 ln

�
�

mp

�
þ gðE; EmÞ þ 9

4

�
; (41)

gðE; EmÞ ¼ 3 ln

�
mp

me

�
� 3

4
� 4

�
Li2

�
2�

1þ �

�

þ 4

�
tanh�1�

�
� 1

��ðEm � EÞ
3E

� 3

2

þ ln

�
2ðEm � EÞ

me

��
þ tanh�1�

�

�
2ð1þ �2Þ

þ ðEm � EÞ2
6E2

� 4tanh�1�

�
; (42)

where p and E are the momentum and energy of the electron
or positron, Em is the end-point energy, � ¼ p=E, mp is the

proton mass, � is the ultraviolet cutoff, and

P0d3p ¼ 8G2
V

ð2�Þ4 ðEm � EÞ2d3p (43)

is the uncorrected spectrum. In deriving Eq. (41), strong
interactions have been neglected, so these results represent
the corrections to the � decay of ‘‘bare nucleons’’ devoid of
hadronic structure. Very small contributions of OðE=mpÞ
have also been neglected.

The reason why the corrections to � decay are divergent in
the V-A theory while those for muon decay are finite, can be
understood in two ways:

(i) In contrast to the muon decay case, starting with the
interaction Lagrangian of Eq. (30) appropriate to
� decay, it is not possible to bring the two charged
particles into the same covariant while retaining only V
and A interactions. Thus, the analogy with QED dis-
cussed in Sec. II.A is lost in the case of � decay and the
corrections are divergent.

(ii) Using a current algebra formulation, it can be shown
that in the V-A theory the divergent part of the correc-
tions to Fermi transitions is of the form

�

2�
P0d3p3½1þ 2 �Q� lnð�=MÞ; (44)

where �Q is the average charge of the underlying
hadronic fields in the process and M is a relevant
mass. In the case of Eq. (30), the underlying fields
are the neutron and proton so that �Q ¼ 1=2 and the
divergent part is ð�=2�ÞP0d3p6 lnð�=MÞ, in agree-
ment with Eq. (41). In the case of muon decay, the
roles of p and n are played by �� and ��, so that �Q ¼
�1=2 and Eq. (44) vanishes, consistent with the fact
that the corrections to muon decay are finite in the V-A
theory. It is interesting to note that in the corrections
proportional to jMFj2, where MF is the Fermi matrix
element, the terms 3 lnð�=MÞ and 6 �Q lnð�=MÞ in
Eq. (44) arise from the vector and axial vector currents,
respectively. Similarly, in Eq. (41) 3 lnð�=mpÞ þ
gðE; EmÞ is the contribution from the vector current
while the remaining 3 lnð�=mpÞ þ 9=4 emerges from

the axial vector current. Thus, although the axial
vector current does not contribute to the Fermi matrix
element at the tree level, it plays an important role
in Oð�Þ.

The finding that the radiative corrections to � decay in the
V-A theory are divergent, while those to muon decay are
convergent, created a serious theoretical problem since both
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processes are fundamental observables. Originally, Feynman,
Berman, Kinoshita, and Sirlin thought that this conundrum
was due to the fact that strong interactions had been ignored
in the calculations of the �-decay corrections. In fact, it was
easy to imagine that strong interactions could give rise to
form factors that would cut off the high-energy contributions
of the virtual photons. If so, � in Eqs. (41) and (44) was
expected to be of the order of magnitude of the nucleon mass
MN 	 1 GeV. The same point of view was strongly advo-
cated by Källén (1967). A further complication at the time
was that for � * 1 GeV the radiative corrections increased
the difference betweenGV andG�. The situation, as it existed

in 1960, was summarized by Feynman (1960).
The statement of universality was significantly changed

when Cabibbo (1963) proposed his theory of semileptonic
decays, constructed on the basis of SUð3Þflavor currents.
Rather than stating GVð�S ¼ 0Þ ¼ G�, the principle of uni-

versality was expressed as

GVð�S ¼ 0Þ ¼ G� cos�c;

GVð�S ¼ 1Þ ¼ G� sin�c;
(45)

where �c is the Cabibbo angle. Thus, in the new framework
we had

G2
� ¼ G2

Vð�S ¼ 0Þ þG2
Vð�S ¼ 1Þ: (46)

Equation (45) had two important consequences: by adjusting
appropriately sin�c, it successfully described the fact that
�S ¼ 1 semileptonic decays are significantly suppressed
relative to �S ¼ 0 processes and, furthermore, the radiative
corrections with � * 1 GeV had an effect that was at least in
the right direction to comply with Eqs. (45) and (46).

In the 1960s there were other developments that also
contributed significantly to the analysis of universality.
Behrends and Sirlin (1960) showed that if the conservation
of SU(2) vector currents (such as the isospin currents) is
broken by mass splittings, their matrix elements at zero
momentum transfer are not renormalized to first order in
the symmetry-breaking parameters. They also conjectured
the generalization of this theorem to higher symmetries.
The results were confirmed by Terent’ev (1963) on the basis
of a different argument. Ademollo and Gatto (1964) indepen-
dently derived the analogous theorem for SU(3) vector cur-
rents. This nonrenormalization theorem plays an important
role in the analysis of universality: in the SU(2) case it applies
to � decay, while in the SU(3) context it is relevant for the
�S ¼ 1 semileptonic decays.

In 1966, there was another important and surprising devel-
opment. Bjorken (1966), using current algebra methods,
reached the conclusion that the strong interactions do not
tame the logarithmic divergence of the radiative corrections
to the Fermi transitions in � decay. Thus, according to this
approach, the cutoff � did not arise from the strong inter-
actions. The analysis was extended by Abers, Norton, and
Dicus (1967), who studied the divergent part of the correc-
tions to the Fermi amplitude arising from the axial vector
current. In their work, they applied the Bjorken-Johnson-Low
limit (Bjorken, 1966; Johnson and Low, 1966) with a sim-
plified, canonical evaluation of the relevant commutators.
Sirlin (1967a), using a different approach, showed that the

function gðE; EmÞ, which describes the corrections to the

electron or positron spectrum in � decay [cf. Eq. (42)], is

valid in the presence of the strong interactions, provided one

neglects small contributions of Oð�E=MÞ, where M is a

relevant hadronic mass. The approach employed by Sirlin

(1967a), the so-called 1=k method, consists of separating out,

in a gauge-invariant manner, the contributions that behave as

1=k as k ! 0 in the hadronic parts of the Feynman integrals,

where k is the virtual photon four-momentum. Such contri-

butions are not affected by the strong interactions and lead to

the function gðE; EmÞ. The remaining contributions are shown

to fall into two classes: constant amplitudes, independent of E
and Em, which are affected by the strong interactions, but can

be absorbed by suitable redefinitions of the vector and axial

vector coupling constants gV and gA, and very small terms of

Oð�E=MÞ which are neglected. This method was extended to

treat other observables such as the longitudinal polarization

of electrons or positrons (Sirlin, 1967a) and the asymmetry

from polarized nuclei in � decay (Shann, 1971; Yokoo,

Suzuki, and Morita, 1973; Garcia and Maya, 1978; Gluck

and Toth, 1992). The current algebra formulation and the 1=k
method finally overlapped when, in a subsequent paper,

Abers et al. (1968) were able to obtain not only the divergent

parts, but also the corrections to the energy spectrum de-

scribed by the function gðE; EmÞ. In fact, the current algebra

formulation led to the important conclusion that, neglecting

very small contributions of Oð�E=MÞ, the Oð�Þ corrections
to the Fermi amplitude arising from the vector current are not

affected by the strong interactions, and it appeared that the

divergent contributions involving the axial vector current

were also known. Although other methods to evaluate the

radiative corrections to � decay were pursued, most notably

by Källén (1967), the current algebra formulation became the

prevalent approach.
Thus, in 1967 the situation regarding the radiative correc-

tions to � decay was both interesting and perplexing. On the

one hand, the current algebra approach had been the basis of

great technical progress. On the other hand, there was the

great difficulty that in the V-A local Fermi theory the correc-

tions are divergent. At the time, two different solutions to this

serious problem were suggested: (i) Cabibbo, Maiani, and

Preparata (1967a, 1967b) and Johnson, Low, and Suura

(1967) proposed to modify the space-space commutators of

the current algebra of hadronic currents in such a way that the

radiative corrections to � decay become convergent.

(ii) Sirlin (1967b) proposed that the solution to the dilemma

lies instead in an extension of the Fermi theory involving

charged intermediate bosons W�. The argument was that in

this framework the leading divergent contributions to muon

and � decay are the same, so that they can be absorbed in a

universal renormalization of G� and GV , as discussed by

Sirlin (1967b) and Abers et al. (1968). This approach,

however, was not complete since the intermediate boson

theory employed was not renormalizable and, as a conse-

quence, logarithmic divergences with very small coefficients

were not canceled. An additional limitation was that in this

theory the effective cutoff was � 	 mW , and its magnitude

was unknown at the time.
Analogous results were previously obtained by Lee (1962),

Shaffer (1962, 1963), Bailin (1964, 1965), and Dorman (1964),
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who studied the radiative corrections in the intermediate boson
framework in the case of bare nucleons, devoid of strong
interactions. The situation was summarized by Sirlin (1968).

As explained in Sec. III, the solution of the serious problem
affecting the radiative corrections to � decay had to wait until
the emergence of the standard theory, a renormalizable theory
of electroweak interactions.

Recently, a close, analytic correction for theOð�Þ radiative
correction to the ��e (�e) spectrum in allowed � decay was
derived (Sirlin, 2011). The motivation of this calculation is
that knowledge of the ��e (�e) spectrum is currently important
for reactor studies of neutrino oscillations. One finds

dP� ¼ dP0
�

�
1þ

�
�

2�

�
hðÊ; EmÞ

�
; (47)

where

dP0
� ¼ Ap̂ Ê FðZ; ÊÞK2dK (48)

is the zeroth order spectrum,

hðÊ; EmÞ ¼ 3 ln

�
mp

me

�
þ 23

4
� 8

�̂
Li2

�
2�̂

1þ �̂

�

þ 8

�
tanh�1�̂

�̂
� 1

�
ln

�
2Ê �̂

me

�

þ 4
tanh�1�̂

�̂

�
7þ 3�̂2

8
� 2tanh�1�̂

�
; (49)

where mp is the proton mass, K is the ��e energy, Ê ¼ Em �
K, Em the end-point energy of the electron in the � decay,

p̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2 �m2

e

q
, �̂ ¼ p̂=Ê, FðZ; EÞ is the Fermi Coulomb

function, A is a constant independent of K, and Li2ðzÞ is the
dilogarithm function defined in Eq. (19). As in the case of
the Oð�Þ correction to the e� spectrum [cf. Eq. (42)], the
function hðÊ; EmÞ is valid in the presence of the strong
interactions, provided small contributions of Oð�Ê=MÞ are
neglected.

Including the Oð�Þ radiative corrections, the theoretical
expressions for the e� and ��e spectra in allowed � decay can
be written in the form

dPe

dE
¼ feðE; EmÞ; dP�

dK
¼ f�ðK;EmÞ; (50)

where

feðE; EmÞ ¼ ApEðEm � EÞ2FðZ; EÞ
�
1þ �

2�
gðE; EmÞ

�
;

(51)

f�ðK;EmÞ ¼ Ap̂ Ê K2FðZ; ÊÞ
�
1þ �

2�
hðÊ; EmÞ

�
; (52)

hðÊ; EmÞ is defined in Eq. (49) and gðE; EmÞ, the function that
describes theOð�Þ radiative correction to the e� spectrum, is
shown in Eq. (42).

Comparing Eqs. (51) and (52), neglecting contributions of
Oð�2Þ, and recalling Ê ¼ Em � K, one finds (Sirlin, 2011)

f�ðK;EmÞ¼feðÊ;EmÞ
�
1þ �

2�
½hðÊ;EmÞ�gðÊ;EmÞ�

�
:

(53)

Equation (53) describes the conversion from the e� spectrum
in a specific decay into the corresponding ��e spectrum when

the Oð�Þ radiative corrections are included. This conversion
procedure is the method currently employed to determine the
��e spectrum from the measured electron spectrum. In turn, as
mentioned, knowledge of the ��e spectrum is important for

reactor studies of neutrino oscillations.
An interesting theoretical property of hðÊ; EmÞ is that its

me ! 0 limit converges and leads to a simple expression (me

is the electron mass). This is in sharp contrast with the
behavior of gðE; EmÞ that diverges as me ! 0. This important
difference can be explained in the following way (Sirlin,

2011). For given K, as me ! 0 all collinear e-� configura-
tions become energy degenerate and generally give rise to
mass singularities. An elementary but powerful theorem in
quantum mechanics on degenerate systems and mass singu-

larities, due to Lee and Nauenberg (1964), leads to the
conclusion that these singularities are canceled in the power
series expansions of transition probabilities if the latter are
summed over an appropriate ensemble of such degenerate

states. In the derivation of the radiative corrections to the ��e

(�e) spectrum, one performs the d3p and d3k integrations,
where p and k are the electron and photon momenta, so
indeed one sums over the set of collinear e-� configurations

that become energy degenerate in the me ! 0 limit.
Therefore, according to this theorem, hðÊ; E0Þ should be
free of lnme singularities, as found in the explicit calculation.
In contrast, this is not the case in the derivation of the

radiative corrections to the e� spectrum, since the d3p in-
tegration is not carried out. As a consequence, the Lee-
Nauenberg theorem is not applicable to gðE; EmÞ and, as is

well known, this function diverges in the me ! 0 limit.
Analogous examples of mass singularities in the Oð�Þ radia-
tive corrections to the differential spectra, and their cancella-
tion in the lifetimes, integrated asymmetries and some partial

decay rates in muon and � decays were extensively discussed
by Kinoshita and Sirlin (1959a).

Pion � decay �þ ! �0 þ eþ þ �e and its charge conju-
gate �� ! �0 þ e� þ ��e are processes of special interest,
since their interpretation is devoid of the complications of
nuclear structures that affect nuclear � decays. In this sense,

they may be regarded as the simplest examples of super-
allowed 0 ! 0 Fermi transitions. On the other hand, their
branching ratio, ð1:036� 0:006Þ � 10�8 (Počanić et al.,
2004; Nakamura et al., 2010), is very small and, conse-

quently, the measurement of their decay rate is much less
precise than in the nuclear transitions.

Recently, Passera, Philippides, and Sirlin (2011) compared
the radiative corrections involving the weak hadronic vector
current in pion � decay, as evaluated in the V-A theory in two

different frameworks: (i) the current algebra formulation, in
which quarks are the fundamental underlying fields, and
(ii) the elementary approach in which pions are regarded as
the fundamental fields. The comparison of the two calcula-

tions revealed a small difference that was shown to arise from
a specific short-distance contribution that depends on the
algebra satisfied by the weak and electromagnetic currents.5

5The fact that this particular contribution is model dependent was

already pointed out by Abers et al. (1968).
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In fact, the space-space components of the algebra are differ-
ent in (i) and (ii) and this was shown to explain the discrep-
ancy discussed previously. The results were also compared
with a recent calculation based on chiral perturbation theory
(�PT) (Cirigliano et al., 2003). Taking into account its
theoretical error, the �PT calculation was found to be con-
sistent with those based on either (i) or (ii). Passera,
Philippides, and Sirlin (2011) also discussed the important
differences between the radiative corrections to pion � decay
as evaluated in the V-A and standard theories.

III. RADIATIVE CORRECTIONS IN THE STANDARD

THEORY OF PARTICLE PHYSICS

The standard theory (ST) originally proposed by Glashow
(1961), Weinberg (1967), and Salam (1968) emerged, with
important contributions from other physicists, in the period
1967–1974. At present, it is a gauge theory of the electromag-
netic, weak, and strong interactions based on the SUð2ÞL �
Uð1Þ � SUð3ÞC symmetry group. Here SUð2ÞL � Uð1Þ is the
symmetry group of the EW sector and SUð3ÞC is that of
quantum chromodynamics (QCD), the current theory of the
strong interactions.

As shown by ’t Hooft (1971), ’t Hooft and Veltman (1972a,
1972b), Lee (1972), Lee and Zinn-Justin (1972, 1973),
Becchi, Rouet, and Stora (1974, 1976), Zinn-Justin et al.
(1975), and others, it is a renormalizable theory. This implies
that the EWC in this theory can be evaluated by perturbative
field theoretic methods, since the ultraviolet divergences
found in the calculations can be absorbed as unobservable
contributions to the masses and couplings of the theory. In the
domain in which the strong interaction running coupling
�sð�Þ is small, the same is true of the QCD corrections.

In 1972, dimensional regularization, an ingenious method
to regularize ultraviolet divergences, was proposed by
’t Hooft and Veltman (1972a), Ashmore (1972), and Bollini
and Giambiagi (1972). It is particularly useful in the context
of gauge theories such as the ST. Dimensional regularization
of infrared divergences was proposed by Gastmans and
Meuldermans (1973) and Marciano and Sirlin (1975a), and
that of mass singularities by Marciano (1975). Dimensional
regularization of infrared and mass singularities is widely
used at present, particularly in QCD calculations.

Once the renormalizability of the ST was recognized, it
was natural to study the EW and QCD corrections of the
theory. The aims of these studies are as follows:

(i) To verify the ST at the level of its quantum corrections.
(ii) To search for discrepancies that may signal the pres-

ence of new physics beyond the ST.

In the EW sector, these are essentially the objectives of what
is now called precision electroweak physics.

A. Early developments

Already in the 1970s there were a number of important
developments:

(i) The evaluation of one-loop EWC to g� � 2 (Bars and

Yoshimura, 1972; Fujikawa, Lee, and Sanda, 1972;
Jackiw and Weinberg, 1972).

(ii) Weinberg (1973) showed that there are no violations of
Oð�Þ to parity and strangeness conservation in strong
interaction amplitudes.

(iii) Gaillard and Lee (1974) studied processes which are
forbidden at the tree level, but occur via loop effects,
and showed that the GIM mechanism (Glashow,
Iliopoulos, and Maiani, 1970) generally suppresses
neutral current amplitudes of OðGF�Þ.

(iv) Bollini, Giambiagi, and Sirlin (1973) studied the can-
cellation of ultraviolet divergences in fundamental
natural relations of the ST.

(v) Using a simplified version of the ST involving integer-
charged quarks, and neglecting the effect of the strong
interactions, Sirlin (1974) showed explicitly that the
one-loop EWC to � decay are indeed finite in the ST
and that the ‘‘cutoff’’ is given by MZ. This leads to
large EWC of Oð4%Þ, a result that has important
consequences in the test of the universality of the
weak interactions. Indeed, this result was one of the
early ‘‘smoking guns’’ of the EW sector of the ST at
the level of its quantum corrections. On the other hand,
as discussed in Sec. III.J, an evaluation of the EWC in
the ‘‘real’’ ST, based on fractionally charged quarks,
and taking into account the effect of the strong inter-
actions, had to wait until the development of the
current algebra formulation of radiative corrections
in gauge theories (Sirlin, 1978).

(vi) Veltman (1977) and Chanowitz, Furman, and
Hinchliffe (1978) discovered that heavy particles do
not generally decouple in the EWC of the ST, and that
a heavy top quark gives contributions of OðGFM

2
t Þ to

the 	 parameter, defined as the ratio of the neutral and
charged current coupling constants at zero momentum
transfer.

B. Input parameters

Three precisely measured constants play a particularly
important role as input parameters in electroweak physics:

(i) The fine structure constant � ¼ 1=137:035 999 679ð94Þ
(Nakamura et al., 2010), with a relative error
�6:9� 10�4 parts per million (ppm), obtained most
precisely from gðeÞ � 2.

(ii) The Fermi constant GF ¼ G� ¼ 1:166 378 8ð7Þ�
10�5 GeV�2, with a relative error of 0.6 ppm (see
Sec. II.D).

(iii) MZ ¼ 91:1876� 0:0021 GeV (Nakamura et al.,
2010), with a relative error of 23 ppm.

This precise determination of MZ required sophisticated
experimental techniques and an accurate study of the Z line
shape, in which QED and EW corrections play an important
role [see, for example, Berends et al. (1989)]

C. The on-shell scheme of renormalization

Toward the end of the 1970s it seemed likely that experi-
mental physicists would search for the W and Z intermediate
vector bosons of the ST and hopefully measure their masses.
This motivated the idea of studying at the loop level the
relation between MW , MZ, GF, �, and the EW mixing
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parameter sin2�W , as well as other fundamental parameters of
the theory, such as the quark masses and the Higgs boson
massMH . The hope was that this analysis would lead to more
accurate predictions for MW and MZ. At the time, GF and �
were accurately known, and sin2�W was determined with less
precision from �-N deep inelastic scattering via the neutral
and charged currents. Thus, it became clear that it was
necessary to evaluate the EWC to the last two processes to
extract sin2�W , and to muon decay to obtain the relation with
GF and �.

Since this required the analysis of a number of processes
involving neutral and charged currents, in order to facilitate
the evaluation of the corresponding EWC, Sirlin (1980a)
proposed a simple, physically motivated framework to renor-
malize the EW sector of the ST. This approach, with impor-
tant contributions from other physicists,6 is currently known
as the on-shell (OS) scheme. In the same 1980 paper, the OS
scheme was applied to evaluate the one-loop EWC to muon
decay in the ST. The analysis leads to the basic OS relations
(Sirlin, 1980a, 1984)

s2c2 ¼ ��ffiffiffi
2

p
GFM

2
Zð1� �rÞ ; (54)

s2 ¼ sin2�W ¼ 1�M2
W

M2
Z

; (55)

where GF ¼ G� is the Fermi constant discussed in Secs. II.D

and III.B, and �r is the EWC to muon decay. From Eq. (55)
we see that in the OS scheme the EW mixing parameter
sin2�W is simply defined in terms of the physical masses
MW and MZ to all orders in perturbation theory. In two
subsequent papers, the OS scheme was applied to the study
of the EWC to �-N deep inelastic scattering via the neutral
current (Marciano and Sirlin, 1980) and via the charged
current (Sirlin and Marciano, 1981). This trilogy of papers
achieved the aim of establishing contact, at the level of the
EWC, between the theory and the expected measurements of
MW and MZ. In fact, using Eqs. (54) and (55) and the
information from �-N scattering, they led to more accurate
predictions of MW and MZ before the actual measurements.
As the experiments on �-N scattering improved, the role of
the EWC became more important. A detailed analysis
(Amaldi et al., 1987) led to the estimates MW ¼ 80:2�
1:1 GeV, MZ ¼ 91:6� 0:9 GeV, with central values that
differ from the current ones by about 0.2 and 0.4 GeV,
respectively. We point out that this closeness is rather acci-
dental (for example, the top-quark mass used in calculations
at the time was much smaller than its present value).
Nonetheless, the early predictions were useful because they
provided what turned out to be realistic mass ranges for the
experimental searches of the W and Z bosons. Furthermore,
as shown by Amaldi et al. (1987), they also turned out to be
in good agreement with the early measurements of theW and
Z masses.

The EWC �r in Eq. (54) depends on various physical
parameters of the ST such as �;MW;MZ;MH;
Mf; �sðMZÞ; . . . , where MH is the Higgs boson mass, Mf is

a generic fermion mass, and �sðMZÞ is the QCD running
coupling evaluated at the scale � ¼ MZ. It follows from
Eqs. (54) and (55) that �r is a physical observable. Equations
(54) and (55) can be viewed as the relation between the
physical parameters of the Fermi theory (low-energy effective
theory), namely, GF and �, and those of the ST (underlying
theory), namely, �;MW;MZ;MH;Mf; . . . , at the level of the

quantum corrections. These relations are currently used to
calculate MW ¼ MWðMHÞ, leading to very sharp constraints
on MH.

The on-shell scheme is also used in the ZFITTER program
(Bardin et al., 2001; Arbuzov et al., 2006) and the GFITTER

project (Flacher et al., 2009), extensively employed in the
analysis of the electroweak precision observables.

D. The modified minimal subtraction scheme of renormalization

Another important and useful approach is the modified
minimal subtraction (MS) renormalization framework, in
which the electroweak mixing parameter is identified with
the running coupling sin2�Wð�Þ ¼ e2ð�Þ=g2ð�Þ evaluated at
the � ¼ MZ scale. [Here g is the SUð2ÞL gauge coupling.]

In this scheme, the renormalization of sin2�Wð�Þ and the
various couplings is implemented by the MS prescription
(Bardeen et al., 1978; Buras, 1980). At the one-loop level,
this involves subtracting

� ¼ 1

n� 4
þ 1

2
½�E � lnð4�Þ� (56)

from the EWC, where the first term is the characteristic pole
in dimensional regularization and �E ¼ 0:5772 . . . is Euler’s
constant. Since at the one-loop level � always appears in
combination with lnð1=�Þ where� is the ’t Hooft mass scale,
an equivalent procedure is to rescale � according to � ¼
�0e�=2=ð4�Þ1=2, subtract only the ðn� 4Þ�1 pole term, and
then set �0, rather �, at the relevant mass scale. This second
formulation can be conveniently generalized to higher-order
EWC and one can define the MS renormalization procedure
as the subtraction of the pole terms ðn� 4Þ�m (m 
 1), and
the identification of the rescaled parameter �0 with the
relevant mass scale.

Although masses can also be defined as running parame-
ters, a hybrid scheme in which couplings and sin2�Wð�Þ are
renormalized by MS subtractions, but masses are still the
physical ones, has proved to be useful and is frequently
employed.

An early application of the MS scheme (Marciano and
Sirlin, 1981) was the derivation of precise SU(5) predictions
for the neutral current amplitude sin2�

exp
W ðq2Þ [defined in

Eq. (60)], and MW and MZ.
It was also employed in the early papers by Llewellyn

Smith and Wheater (1981) and Wheater and Llewellyn Smith
(1982) on the EWC to deep inelastic neutrino and electron
scattering.

Two important relations in this scheme were derived by
Sirlin (1989) and Fanchiotti and Sirlin (1990):

6See, for example, Aoki et al. (1982), Böhm, Spiesberger, and

Hollik (1986), Consoli, Hollik, and Jegerlehner (1989), and Hollik

(1990).
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ŝ2ĉ2 ¼ ��ffiffiffi
2

p
GFM

2
Zð1� �r̂Þ ; (57)

ŝ2 ¼ ��ffiffiffi
2

p
GFM

2
Wð1� �r̂WÞ

; (58)

where ŝ2 � sin2�̂WðMZÞ is the MS electroweak mixing pa-
rameter evaluated at the scale � ¼ MZ, ĉ

2 ¼ 1� ŝ2, and �r̂
and �r̂W are the corresponding EWC. In 1989, Eq. (57) and
the early MZ measurements at the CERN Large Electron-
Positron (LEP) collider were applied to significantly improve

the determination of sin2�̂WðMZÞ (Sirlin, 1989). In fact,

�̂ðMZÞ, sin2�̂WðMZÞ, and �sðMZÞ provide the initial values
for the renormalization group equations (RGEs) satisfied by
the running SUð2ÞL � Uð1Þ � SUCð3Þ gauge couplings,
which play a crucial role in the study of grand unified theories
(GUTs) and in the discovery of supersymmetric grand uni-
fication [see, for example, Langacker and Polonsky (1993,
1995)]. In particular, the 1989 analysis (Sirlin, 1989) found

that the improved value of sin2�̂WðMZÞ was indeed consistent
with supersymmetric grand unification.

A modification of the renormalization prescription for

sin2�̂WðMZÞ was proposed by Marciano and Rosner (1990)
and Marciano (1991, 1993, 1995). According to this prescrip-
tion, aside from the 1=ðn� 4Þ pole terms, the contributions
from particles of mass m>MZ that do not decouple in the
m ! 1 limit are also subtracted from the amplitude multi-

plying sin2�̂WðMZÞ and are therefore absorbed in this renor-
malized parameter. The aim of this prescription is to obtain

values of sin2�̂WðMZÞ from the on-resonance observables
which are insensitive to heavy particles of mass m>MZ, a
property that facilitates the analysis of the evolution of

sin2�̂WðMZÞ to the GUT scale.
The neutral current vertex of the Z boson into a fermion-

antifermion pair (f �f) has the form

hf �fjJ�Z j0i¼Vfðq2Þ �uf��

�
I3fð1��5Þ

2
� k̂fðq2Þŝ2Qf

�
vf;

(59)

where Vfðq2Þ, k̂fðq2Þ, and its OS counterpart kfðq2Þ are

electroweak form factors. I3f and Qf denote the third com-

ponent of the weak isospin and the charge of fermion f,
respectively.

In terms of the k̂f and kf form factors, the neutral current

amplitude sin2�
exp
W ðq2Þ discussed by Marciano and Sirlin

(1981) is

sin2�
exp
W ðq2Þ � k̂fðq2Þŝ2 ¼ kfðq2Þs2: (60)

The MS and OS definitions of the electroweak mixing
angle are related by (Degrassi, Fanchiotti, and Sirlin, 1991)

ŝ2 ¼ s2
�
1þ c2

s2
�	̂

�
; (61)

�	̂ ¼ Re

�
AWWðM2

ZÞ
M2

W

� AZZðM2
ZÞ

M2
Z	̂

�
MS

; (62)

where AWWðq2Þ and AZZðq2Þ are theW-W and Z-Z transverse
self-energies, 	̂ ¼ ð1� �	̂Þ�1, andMS denotes the modified
minimal subtraction renormalization and the choice� ¼ MZ.

The MS scheme is also used in the radiative correction
program GAPP (Erler, 1999a), extensively employed by Erler
and Langacker in their biannual reviews of the electroweak
model and constraints on new physics [see, for example, Erler
and Langacker (2010)].

Early studies of the QCD contributions to EWC include
Djouadi and Verzegnassi (1987), Djouadi (1988), Kniehl
(1990), and Halzen and Kniehl (1991). The incorporation of
QCD effects in the basic EWC �r̂, �r̂W , and �r was im-
plemented by Fanchiotti, Kniehl, and Sirlin (1993) (see also
references therein). They include perturbative Oð��sÞ con-
tributions and t�t threshold effects. Here �s is evaluated at a
relevant mass scale such as MZ or Mt.

E. The effective electroweak mixing parameter

Another useful version of the electroweak mixing parame-

ter is s2eff � sin2�
lept
eff , extensively employed by the electro-

weak working group (EWWG) to analyze the data at the Z
resonance. Here eff and lept are abbreviations for effective
and leptonic, respectively. It is defined by (Rolandi, 1992)

1� 4sin2�
lept
eff ¼ glV

glA
; (63)

where glV and glA are the effective vector and axial vector

couplings of the Z ! l�l amplitude at resonance (q2 ¼ M2
Z)

and l stands for a charged lepton.
The relations between s2eff and ŝ2, s2 were obtained by

Gambino and Sirlin (1994a)

s2eff ¼ Re k̂lðM2
ZÞŝ2 ¼ Re klðM2

ZÞs2; (64)

where k̂lðq2Þ and klðq2Þ are the electroweak form factors
introduced in Eq. (59) and the following lines. Because of a

fortuitous cancellation of EWC, Re k̂lðM2
ZÞ is very close to 1.

Applying the Marciano-Rosner renormalization prescription
(cf. Sec. III.D), Gambino and Sirlin (1994a) found

� ¼ s2eff � ŝ2 	 3� 10�4: (65)

They also pointed out that, if this prescription is not applied,
so that the complete top-quark contribution is included in the

calculation of k̂lðM2
ZÞ, the difference becomes even smaller,

namely, � 	 1� 10�4 for Mt ¼ 173:2 GeV.

Combining Eqs. (57) and (64), and writing Re k̂lðM2
ZÞ ¼

1þ ðê2=ŝ2Þ�k̂ðM2
ZÞ, one finds (Ferroglia, Ossola, and Sirlin,

2001)

s2effc
2
eff ¼

��ffiffiffi
2

p
GFM

2
Zð1��reffÞ

; (66)

�reff ¼ �r̂þ e2

s2eff
�k̂

�
1� s2eff

c2eff

�
ð1þ xtÞ þ � � � ; (67)

where xt ¼ 3GFM
2
t =

ffiffiffi
2

p
8�2 is the leading contribution to

�	̂. Equation (67) includes the complete one-loop EWC, as
well as the two-loop contributions enhanced by factors
ðM2

t =M
2
ZÞn (n ¼ 1, 2). We note that Eq. (66) has a form
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analogous to Eqs. (54) and (57). The one-loop approximation
to Eq. (67) had been previously applied to discuss the mass
scale of new physics in the Higgs-less scenario (Kniehl and
Sirlin, 2000).

The asymptotic behaviors for large Mt, MH , of the basic
corrections �r, �r̂, and �reff are instructive. At the one-loop
level, we have

�r�� 3�

16�s4
M2

t

M2
Z

þ 11�

24�s2
ln

�
MH

MZ

�
þ � � � ; (68)

�reff 	 �r̂�� 3�

16�ŝ2ĉ2
M2

t

M2
Z

þ �

2�ŝ2ĉ2

�
5

6
� 3

4
ĉ2
�
ln

�
MH

MZ

�
þ � � � : (69)

Equations (68) and (69) reveal a quadratic dependence onMt,
and a logarithmic dependence on MH . The asymptotic be-
haviors inMt andMH have opposite signs, a fact that helps to
explain a well-known Mt �MH correlation, namely, increas-
ing (decreasing) values of Mt favor increasing (decreasing)
values ofMH. The cofactor ofM

2
t =M

2
Z in�r is approximately

larger by c2=s2 	 3:5 than in �r̂, �reff . This implies that �r
is significantly more sensitive to Mt than �r̂ and �reff .

The asymptotic behavior for largeMt of the neutral current
amplitude is

N:C:ampl:� GF

1� xt
; (70)

where xt is defined after Eq. (67).
Additional contributions to �r and �reff lead to shifts

�MW=MW 	 �0:205�ð�rÞ, �s2eff=s2eff 	 1:52�ð�reffÞ.
Current values for the three versions of the electroweak

mixing parameter discussed above are

sin2�W ¼ 0:222 90ð29Þ; sin2�
lept
eff ¼ 0:231 53ð16Þ;

sin2�̂2WðMZÞ ¼ 0:231 23ð16Þ: (71)

The value of sin2�W was obtained using Eq. (55) and the
experimental values MZ ¼ 91:1876ð21Þ GeV (see Sec. III.B)
and MW ¼ 80:385ð15Þ GeV (the average of the Fermilab

Tevatron and CERN LEP2 measurements). The sin2�
lept
eff

value is the average of the values obtained from all the
asymmetries measured at LEP and at the Stanford Linear
Collider (SLC), and dates back to 2005. The value of

sin2�̂WðMZÞ has been derived from that of sin2�
lept
eff taking

into account Eq. (65).
The values of the QCD coupling and the MS fine structure

constant at the scale � ¼ MZ are given by (Dissertori et al.,
2010; Erler and Langacker, 2010)

�sðMZÞ¼0:1184ð7Þ; �̂ðMZÞ¼½127:916ð15Þ��1: (72)

F. Renormalization schemes: General observations

As discussed in Secs. III.C–III.E, the EWC have been
evaluated in specific renormalization schemes. An interesting
feature is that each scheme is associated with a specific
definition of the renormalized electroweak mixing parameter.

Two of the most frequently employed schemes are as
follows:

(i) The OS scheme, discussed in Sec. III.C. It is ‘‘physi-
cal,’’ since it identifies renormalized couplings and
masses with physical, scale-independent observables,
such as GF, �, MW , MZ, MH, Mf; . . . . It has also

provided the framework for very accurate calculations
such as the complete two-loop evaluation of �r and

sin2�
lept
eff (cf. Sec. III.N). As mentioned in Sec. III.C, it

is used in the ZFITTER and GFITTER programs,
extensively employed by the LEP EW and GFITTER

groups in the analysis of the precision electroweak
observables.

(ii) The MS scheme, discussed in Sec. III.D. It has good
convergence properties. In fact, in this scheme one
essentially subtracts the pole terms, and therefore the
calculations follow closely the structure of the un-
renormalized theory. In this way it avoids large finite
corrections that are often induced by renormalization.
It employs scale-dependent couplings such as �ð�Þ,
ŝ2ð�Þ, which play a crucial role in the study of grand
unification. On the other hand, the use of such cou-
plings generally leads to a residual scale dependence
in the evaluation of observables, due to the truncation
of the perturbative series. As explained in Sec. III.D, it
is used in the GAPP program, extensively employed by
Erler and Langacker in their biannual contributions to
the Review of Particle Physics.

More recently, a novel approach, called the effective
scheme, was proposed by Ferroglia, Ossola, and Sirlin
(2001). It employs scale-independent parameters such as
s2eff , GF;MW;MZ; . . . . Consequently, the calculation of ob-

servables is strictly scale independent in finite orders of
perturbation theory. Furthermore, it shares the good conver-
gence properties of theMS scheme, a fact that is related to the
numerical closeness of s2eff and ŝ2ðMZÞ [cf. Eq. (65)].

The comparative evaluation of the EWC using different
renormalization schemes is often very useful, because it
provides an estimate of the theoretical error due to the
truncation of the perturbative series.

G. The running of �ð�Þ and sin2�W ð�Þ

An important contribution to the EWC is associated with
the running of � to the MZ scale via vacuum polarization
contributions, an effect usually parametrized as

�ðMZÞ
�

¼ 1

1���
: (73)

The leptonic contribution is

��l ¼ 314:976 86� 10�4 ’ 0:031 50: (74)

This result includes three-loop contributions evaluated by
Steinhauser (1998). The contribution of the five lightest
quarks (u� b) is evaluated using dispersion relations
involving the experimental cross section for eþe� !
hadrons at low

ffiffiffi
s

p
and perturbative QCD (PQCD) at largeffiffiffi

s
p

. Important studies of these effects were carried out by
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Eidelman and Jegerlehner (1995) and Jegerlehner
(2003) (and references therein). Recent, accurate values in-

clude ��ð5Þ
h ¼ 0:027 50ð33Þ (Burkhardt and Pietrzyk,

2011), ��ð5Þ
h ¼ 0:027 626ð138Þ (Hagiwara et al., 2011),

and ��ð5Þ
h ¼ 0:027 57ð10Þ (Davier et al., 2011). The smaller

error in the last reference is partly due to the use of PQCD in
the

ffiffiffi
s

p
range between 1.8 and 3.7 GeV. Combining the result

obtained in that reference with ��l [cf. Eq. (74)], one finds
the accurate value

�� ¼ ��l þ ��ð5Þ
h ¼ 0:059 07ð10Þ: (75)

Equation (75) does not include the top-quark contribution,
which is evaluated perturbatively, amounts to

��top ¼ �0:72� 10�4; (76)

and is usually taken into account together with other
Mt-dependent EWC.

Running versions of the electroweak mixing parameter
were proposed by Czarnecki and Marciano (2000) and by
Ferroglia, Ossola, and Sirlin (2004). For q2 < 0, Czarnecki
and Marciano define

sin2�WðQ2Þ ¼ �ðQ2Þsin2�̂WðMZÞ; (77)

where Q2 ¼ �q2 and �ðQ2Þ is identified with the MS form

factor k̂eð�Q2Þ [cf. Eq. (59) in the case f ¼ e]. Czarnecki
and Marciano (2000) found that the EWC lead to �ð0Þ ¼
1:0301� 0:0025, and pointed out that this þ3% increase in
the value of the electroweak mixing parameter, appropriate
for low Q2, gives rise to a 38% reduction in the left-right
polarization asymmetry ALR in Møller scattering. The reason
is that ALR is proportional to 1� 4sin2�WðQ2Þ, a factor close
to zero, and a small shift in the value of the electroweak
mixing parameter has a pronounced effect. In the same work,
sin2�WðQ2Þ was evaluated and displayed over a large range

0  Q  1 TeV, where Q � ffiffiffiffiffiffi
Q2

p
.

Ferroglia, Ossola, and Sirlin (2004) proposed an alterna-
tive ‘‘running’’ version of the electroweak mixing parameter.
Specifically, they define

sin2�̂Wðq2Þ ¼
�
1� ĉ

ŝ

a�Zðq2;MZÞ
q2

�
ŝ2; (78)

where ŝ2 ¼ sin2�̂WðMZÞ (cf. Sec. III.D) and a�Zðq2;MZÞ is
the ‘‘pinch technique’’ (PT) �Z self-energy evaluated
at � ¼ MZ.

We recall that the pinch technique (Cornwall, 1981, 1982;
Cornwall and Papavassiliou, 1989; Papavassiliou, 1990) is a
prescription that combines the conventional self-energies
with ‘‘pinch parts’’ from vertex and box diagrams in such a
manner that the modified self-energies are gauge independent
and are endowed with desirable theoretical properties. The
PT self-energies in the electroweak sector of the ST were
derived by Degrassi and Sirlin (1992). In the same paper it
was shown that the pinch parts can be identified with ampli-
tudes involving appropriate equal-time commutators of
currents, which explains the fact that they are process inde-
pendent and are not affected by the strong interactions.
Ferroglia, Ossola, and Sirlin (2004) evaluated and displayed

sin2�̂Wðq2Þ in both the spacelike (q2 < 0) and timelike
(q2 > 0) domains, appropriate to e�-e� and eþ-e� colliders,
respectively. In the second case a�Zðq2;MZÞ is generally

complex and sin2�̂Wðq2Þ is defined by the real part of the
rhs of Eq. (78).

Interestingly, they obtained

1� 4sin2�̂Wð0Þ ¼ 0:0452� 0:023; (79)

which is close to 0:0450� 0:023� 0:0010, the result previ-
ously found by Czarnecki and Marciano (1996) for the
complete one-loop EWC to ALR at Q2 ¼ 0:025 GeV2 and
y � Q2=s ¼ 1=2, appropriate to the SLC experiment E158
(Kumar et al., 1995). Setting q2 ¼ M2

Z in Eq. (78), one finds

sin2�̂WðM2
ZÞ ¼ 0:230 48, which is lower than sin2�

lept
eff ¼

0:231 53 by 0.45%; although not in precise agreement, the
two parameters are rather close.

It is also interesting to note that the running both of � and
of the weak mixing angle has been derived directly in theMS
scheme (Erler, 1999b; Erler and Ramsey-Musoff, 2005,
respectively).

H. The Mt prediction

An important example of the successful interplay between
theory and experiment was the prediction of the top-quark
mass Mt and its subsequent measurement.

Before 1995, the top quark could not be produced directly,
but it was possible to estimate its mass because of its virtual
contributions to the EWC. In 1994, a global analysis by the
EWWG led to the indirect determination (Pietrzyk, 1994)

Mt ¼ 177� 11þ18
�19 GeV; (80)

where the central value corresponds to MH ¼ 300 GeV, the
first error is experimental, and the second represents the shift
in the central value assumingMH ¼ 65 GeV (� 19 GeV), or
MH ¼ 1 TeV (þ 18 GeV). This can be compared with the
current experimental valueMt ¼ 173:2� 0:9 GeV (Tevatron
Electroweak Working Group, 2011).

This successful prediction was possible because of the
sensitive Mt dependence of the basic EWC [cf. Eqs. (68)
and (69)].

I. Evidence for electroweak corrections

(a) Evidence for EWC beyond the running of � (Sirlin,
1994b). Using the experimental values of �, GF,
MZ, MW ¼ 80:385� 0:015 GeV (LEP Electroweak
Working Group, 2012; Tevatron Electroweak Working
Group, 2012), and Eqs. (54) and (55), one finds

ð�rÞexp ¼ 0:035 06� 0:000 90: (81)

The contribution to �r from the running of � is �� ¼
0:059 07� 0:000 10 [cf. Eq. (75)]. Thus, the contribu-
tion to �r beyond the running of � is

ð�rÞexp � �� ¼ �0:024 01� 0:000 91; (82)

which differs from 0 by 26�.
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An alternative argument is to compare the values

of sin2�
lept
eff ¼ 0:231 53� 0:000 16 and sin2�W ¼

0:222 90� 0:000 29 [cf. Eq. (71) and following discus-
sion]. The difference is 0:008 63� 0:000 33, also 26�,
and it arises from EWC not including ��. Indeed, the
difference is mainly due to the EWC c2�	̂ in Eq. (61).

(b) Evidence for electroweak bosonic corrections
(EWBC) (Gambino and Sirlin, 1994b). They include
loops involving the bosonic sectors W, Z, H, and
unphysical scalars. They are subleading numerically
relative to the fermionic contributions, but important
conceptually. Strong evidence for the EWBC can be
found by measuring �reff . Using the experimental

values of �, GF, MZ, sin
2�

lept
eff , and Eq. (66) one finds

ð�reffÞexp ¼ 0:060 59� 0:000 45: (83)

Subtracting the contribution of the EWBC from the
theoretical expression for �reff given in Eq. (67),
but retaining the fermionic EWC, the theoretical value

is ð�reffÞðfÞtheor ¼ 0:050 45� 0:000 56. The difference

ð�reffÞexp�ð�reffÞðfÞtheor¼0:01014�0:00072 provides

an estimate of the EWBC to �reff . Thus, they differ
from 0 by 14�.

J. Precise test of Cabibbo-Kobayashi-Maskawa unitarity

Since the Cabibbo-Kobayashi-Maskawa (CKM) matrix Vij

is unitary, a fundamental prediction is that
X
j

jVijj2 ¼ 1;
X
i

jVijj2 ¼ 1: (84)

In particular, in the three-generation case, the elements of
the first row must satisfy the equality

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (85)

jVudj2, the dominant term in Eq. (85), is obtained most
precisely from the 0þ ! 0þ superallowed Fermi transitions
in � decay. Using the current algebra formulation to evaluate
theOð�Þ EWC in the standard theory, one finds the following
expression for the probability of these important transitions
(Sirlin, 1978):

Pd3p ¼ P0d3p

�
1þ �

2�

�
3 ln

�
MZ

mp

�
þ gðE; EmÞ

þ 6 �Q ln

�
MZ

M

�
þ 2CþA �g

��
; (86)

P0d3p ¼ G2
FðVudÞ2
8�4

jMFj2FðZ; EÞðEm � EÞ2d3p; (87)

where p, E, and Em are the momentum, energy, and end-point
energy of the electron or positron in the decay, FðZ; EÞ is the
Fermi Coulomb function, gðE; EmÞ is defined in Eq. (42) in
Sec. II.F, and MF is the matrix element of the weak hadronic
vector current between the initial and final nuclei. For iso-
triplet transitions jMFj2 ¼ 2.

The terms between square brackets in Eq. (86) represent the
Oð�Þ corrections not contained in FðZ; EÞ in the approxima-
tion of neglecting contributions of Oðð�=�ÞE=mpÞ. The first

two terms in that expression arise from the weak hadronic
vector current and are not affected by the SI. In particular, the
proton massmp cancels in the sum.We recall that the function

gðE; EmÞ describes the Oð�Þ radiative corrections to the elec-
tron or positron spectrum in � decay in the presence of the SI
(cf. Sec. II.F). The third term is a short-distance contribution to
the Fermi amplitude arising from the weak hadronic axial
vector current and �Q is the average charge of the fundamental
doublet involved in the transition. In the ST this is the u-d
doublet and �Q ¼ ð2=3� 1=3Þ=2 ¼ 1=6.M is a hadronic mass
of Oð1 GeVÞ. The 2C term is the corresponding nonasymp-
totic part and A �g 	 �0:34 is a very small asymptotic QCD

contribution proportional to�sðMZÞ. Although the axial vector
current does not contribute to the Fermi amplitude at the tree
level, we see that it gives rise to an important EWC in Eq. (86).

The EWCs to� decay are dominated by a large logarithmic
term, ð3�=2�Þ lnðMZ=2EmÞ. For example, in the superallowed
14O decay, Em ¼ 2:3 MeV, and this contribution amounts to
3.4%. As we will see, such large correction is phenomenolog-
ically crucial to verify Eq. (85). As mentioned in Sec. III.A,
this result was one of the early smoking guns of the EW sector
of the ST at the level of its quantum corrections.

Contributions of OðZ�2Þ and OðZ2�3Þ are denoted by �2

and �3. In particular, in the mid-1980s a reevaluation of �2

played an important role in the test of the CVC hypothesis. In
fact, at the time the analysis of eight accurately measured
superallowed Fermi transactions showed a significant depar-
ture from CVC expectations. Simple theoretical arguments
strongly suggested that the problem arose in the evaluation of
the two-loop �2 that had been done numerically long before.
The correction was then evaluated analytically by Sirlin and
Zucchini (1986) and Sirlin (1987) and, when applied to the
eight transitions, led to good agreement with CVC, a result
confirmed by a new numerical evaluation (Jaus and Rasche,
1987). One finds that �2 varies from 0.22% for 14O decay to
0.50% for the 54Co transition, while �3 is much smaller (Jaus
and Rasche, 1987).

There is also a correction �c that describes the lack of
perfect overlap between the wave functions of the parent and
daughter nuclei due to Coulomb forces and configuration
mixing effects in the shell-model wave functions, as well as
a nuclear-structure-dependent correction �NS. They have
been extensively discussed in the literature [see Towner and
Hardy (2008) and references therein].

Over the years, a number of refinements have been
incorporated in the evaluation of the EWC. For example,
leading logarithmic contributions Oð�nlnnðMZ=mpÞÞ and

Oð�nlnnðmp=2EmÞÞ have been summed via a renormalization

group analysis by Marciano and Sirlin (1986) and Czarnecki,
Marciano, and Sirlin (2004). They lead to the replacements

1þ
�
2�

�

�
ln

�
MZ

mp

�
! Sðmp;MZÞ ¼ 1:022 48; (88)

1þ
�
3�

2�

�
ln

�
mp

2Em

�
! Lð2Em;mpÞ; (89)

where ð3�=2�Þlnðmp=2EmÞ is a leading contribution to

gðE;EmÞ. In the case of neutron � decay, for example,
Lð2Em; mpÞ ¼ 1:020 94. Sirlin (1982) showed that all
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semileptonic processes mediated by the W boson are
enhanced by a short-distance EWC analogous to Eq. (88),
namely, of the form 1þ ð2�=�Þ lnðMZ=MÞ ! SðM;MZÞ,
where M is a relevant hadronic mass. Interesting examples
include the hadronic decays of the  (Marciano and Sirlin,
1988), �l2 decays (Marciano and Sirlin, 1993), and muon
capture (Czarnecki, Marciano, and Sirlin, 2007), where
short-distance effects of this type play an important role in
the EWC. More recently, Marciano and Sirlin (2006) devel-
oped a new method to compute hadronic effects on EWC to
low-energy weak interaction semileptonic processes. It em-
ploys high-order perturbative QCD results originally derived
for the Bjorken sum rule for polarized electroproduction, as
well as a large N QCD-motivated interpolating function that
matches long- and short-distance EWC. When applied to the
superallowed Fermi transitions, it improves the evaluation of
the axial vector current contribution in Eq. (86) and reduces
by a factor of 2 the theoretical loop uncertainty in the extrac-
tion of Vud.

A critical survey (Hardy and Towner, 2009) examined 20
superallowed 0þ ! 0þ � decays. The analysis leads to the
evaluation of the F t values for the 20 transitions, where F is
a phase-space factor that includes the Fermi Coulomb func-
tion, the electroweak corrections, and the nuclear corrections
�c and �NS, and t is the partial half-life.

The CVC hypothesis predicts that the F t values should be
the same for all these transitions, a demanding test that is well
satisfied by the results. For the weighted average of the 13
most accurate F t values (those with errors less than �0:4%)

they obtained F t ¼ 3071:87� 0:83 s, a result that leads to
the important determination

jVudj ¼ 0:974 25ð22Þ: (90)

The value of jVusj can be determined from Kl3 decays and
that of jVusj=jVudj from the ratio of Kþ ! �þ� and �þ !
�þ� decay rates. Combining the two inputs they found

jVusj ¼ 0:225 34ð93Þ: (91)

Inserting Eqs. (90) and (91) and jVubj ¼ ð3:93� 0:35Þ �
10�3 (Amsler, 2008), Hardy and Towner (2009) obtained

jVudj2 þ jVusj2 þ jVubj2 ¼ 0:999 95ð61Þ; (92)

an impressive 0.06% test of the three-generation ST at the
level of its quantum corrections. It is interesting to note that
the overall EWCs to Eq. (92) are of Oð4%Þ, i.e., 66 times
larger than the 0.061% error.

EWCs of Oð�Þ to neutron � decay were included in the
classic work of Wilkinson (1982). A number of refinements
were introduced by Czarnecki, Marciano, and Sirlin (2004).
Since the axial vector current is not conserved, in the case of
the Gamow-Teller amplitude the current algebra analysis of
the EWC does not lead to a simple expression, independent of
the SI, in contrast with the corrections involving the vector
current [cf. Eq. (86) and the discussion following that equa-
tion]. The strategy followed was to define gA ¼ GA=GV

(GV � GFjVudj) in terms of the neutron lifetime n by
means of

1

n
¼ G2

FjVudj2
2�3

m5
eð1þ 3g2AÞfð1þ RCÞ; (93)

where f ¼ 1:6887 is a phase-space factor that includes the
Coulomb Fermi function contribution, as well as smaller
corrections, and 1þ RC is identified with the well-known
EWC involving the vector current. This implies that some
EWC are absorbed in this definition of gA and, therefore,
GA. An interesting point is that the correction 1þ
ð�=2�ÞgðE; EmÞ (Sirlin, 1967a) and the short-distance con-
tribution 1þ 2ð�=�Þ lnðMZ=mpÞ (Sirlin, 1982) affect both

the Fermi and Gamow-Teller transitions, so they are well
described by the factorization of the EWC in Eq. (93). It
follows that the same is true of the large logarithmic term
ð3�=2�Þ lnðmp=2EmÞ contained in ð�=2�ÞgðE; EmÞ.

They proceeded then to evaluate a number of higher-
order EWC to Eq. (93): the sum of the corrections of
Oð�nlnnðMZ=mpÞÞ and Oð�nlnnðmp=2EmÞÞ according to

Eqs. (88) and (89), the contribution of �2, and next-to leading
log corrections of Oð�2 lnðMZ=mpÞÞ and Oð�2 lnðmp=mfÞÞ
arising from fermion vacuum polarization insertions in loops
with photon propagators. The analysis led to

jVudj2ð1þ 3g2AÞn ¼ 4908� 4 s: (94)

Using the experimental averages n ¼ 885:7ð7Þ s and gA ¼
1:2720ð18Þ (from the polarized neutron decay asymmetry),
Eq. (94) leads to

jVudj ¼ 0:9729ð12Þ ðneutron decayÞ; (95)

which is consistent with Eq. (90), but much less precise.
Equation (94) can also be applied to calculate gA using the
accurate jVudj value from the superallowed Fermi transitions
and the experimental value of n. In this way they obtained
the precise prediction

gA ¼ 1:2703ð8Þ; (96)

which was compared with the experimental values derived
from the asymmetry.

Over the years, the test of unitarity of the CKM matrix
shown in Eq. (85) has been used to set bounds on certain
forms of new physics. The strategy is to attribute to the new
physics the deviation from unity of the experimental value ofP

3
i¼1 jVuij2, so that exact CKM unitarity is satisfied; see, for

example, Sirlin (1995).
(i) Fourth generation. For a long time, the determination ofP

3
i¼1 jVuij2 led to values smaller than unity by about

2�. This suggested the possibility of a fourth genera-
tion (Marciano and Sirlin, 1986) and the derivation of
an upper bound for Vub0 , where b0 denotes the addi-
tional down quark. Since the current result [Eq. (92)] is
in excellent agreement with three-generation unitarity,
at present this test does not provide a signal for a fourth
generation. Nonetheless, if a fourth generation exists,
from Eq. (92) one finds jVub0 j  0:03 (90% C.L.),
which is not very restrictive since jVubj ’ 4� 10�3.

(ii) Z0 bosons. In some models with additional U(1) fac-
tors, the new Z0 bosons have different couplings to
quarks and leptons and, consequently, give rise to
EWC involving box diagrams that distinguish � and
semileptonic decays (Marciano and Sirlin, 1987). As a
consequence, the experimental value of

P
3
i¼1 jVuij2 is

modified by a contribution that depends on the ratio
MZ0=MW , whereMZ0 is the Z0 mass. The analysis leads
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to lower bounds for MZ0 . Typically, they are of the
order of a few hundred GeV and are not competitive
with the bounds from direct searches, precision elec-
troweak data, or atomic parity violation (Erler et al.,
2009; del Aguila, de Blas, and Perez-Victoria, 2010;
Erler and Langacker, 2010), which are of Oð1 TeVÞ.

(iii) Compositness. It is frequently discussed in terms of a
residual four-fermion interaction with a coupling
1=�2, where � represents the composite mass scale.
If we assume that the new interaction involves
only particles of the same generation, it would affect
� transitions but not muon decay. If we further as-

sume that it is of the form of Eq. (30) with GV=
ffiffiffi
2

p
replaced by 1=�2, G2

V=G
2
� ¼ V2

ud is modified to

V2
udð1þ 2

ffiffiffi
2

p
=GV�

2Þ. Using Eq. (92) one then obtains
the bound 2

ffiffiffi
2

p
Vud=G��

2 < 9:7� 10�4 or �>

16 TeV (90% C.L.).
(iv) Left-right symmetry. In the ‘‘manifest’’ left-right sym-

metry models (Bég et al., 1977), there are two small
parameters: the mixing angle � that relates theW1 and
W2 mass eigenstates to the left- and right-handed
fields WL and WR, and � ¼ ðm1=m2Þ2, where mi (i ¼
1, 2) are the corresponding masses. Corrections linear
in the small parameter � contribute to GV and G�, but

cancel in their ratio. This can be shown using the
results of Bég et al. (1977). In particular, if terms
of second and higher order in the small parameters �
and � are neglected, one finds GV=G� ¼ ð1� �ÞVud,

with analogous shifts for the other semileptonic de-
cays. [For other predictions in the manifest left-right
symmetric model, see also Holstein and Treiman
(1977).] As a consequence, Eq. (92) becomes

X3
j¼1

jVujj2 ¼ 0:999 95� 0:000 61þ 2�ðVudÞ2:

(97)

Thus, CKM unitarity [Eq. (85)] leads to

� ¼ ð0:3� 3:2Þ � 10�4: (98)

K. Electroweak corrections to muon capture

The study of muon capture by nuclei, ��N ! ��N
0, has

played an important role in the development of weak inter-
action physics; see, for example, Primakoff (1959),
Mukhopadhyay (1977), and Gorringe and Fearing (2003).

In 2007, the MuCap Collaboration (Andreev et al., 2007)
reported a precise measurement of the 1S singlet capture rate
in hydrogen:

�ð��p!��nÞsinglet1S ¼725:0�13:7�10:7s�1: (99)

A major aim of the experiment is an accurate determi-
nation of the induced pseudoscalar coupling gPðq2Þ in the
matrix element of the axial vector current between nucleon
states:

hnjA�jpi¼ �unðp2Þ
�
gAðq2Þ���5þgPðq2Þ q�

m�

�5

�
upðp1Þ;

(100)

where q ¼ p2 � p1. On the theoretical side, the partially
conserved axial current and chiral perturbation theory predict
(Kaiser, 2003 and references therein)

gPðq20Þ ¼ 8:2� 0:2; (101)

where q20 ¼ �0:88m2
�, as appropriate for �� capture in H.

Comparing Eq. (99) with the theoretical expression used at
the time for the capture rate (which did not take into account
the EWC), it was found that g

exp
P ðq20Þ ¼ 6:0� 1:2, which is

about 2� below the prediction in Eq. (101).
In order to advance the theory of muon capture to a higher

level of precision, Czarnecki, Marciano, and Sirlin (2007)
incorporated the EWC in the theoretical expression for the
capture rates. They found that they enhance the capture rates
for H and 3He by 2.8% and 3.0%, respectively. It turns out that
the gP values extracted by comparing the theoretical and
experimental results are very sensitive to the effect of the
EWC. In fact, in the case of H, when the EWC are included,
they found

g
exp
P ðq20Þ ¼ 7:3� 1:2 ðHÞ; (102)

an increase of g
exp
P ðq20Þ by about þ22%. Furthermore,

Eq. (102) agrees, within the error, with the theoretical pre-
diction of Eq. (101). The implications of the EWC in the case
of 3He capture, ��3He ! �3H, were also analyzed.

L. Electroweak corrections to neutrino-lepton scattering

Before the advent of the ST, the QED corrections to the
process �e þ e ! �e þ e were studied by Lee and Sirlin
(1964). After the emergence of the ST, neutrino-lepton scat-
tering became a subject of special interest. Aside from the
fact that they are fundamental processes, they provide in-
structive and interesting examples of scattering reactions in
the weak interactions. In particular, their theory is relatively
simple: at the tree level, they are not affected by the strong
interactions and, at the one-loop EW level, they are less
sensitive to strong interactions than �N and eN scattering,
and eþ þ e� ! fþ �f annihilation.

Including the EWand QED corrections ofOð�Þ, and using
the MS scheme of renormalization, the differential cross
section for �� þ e ! �� þ e is given by (Sarantakos,

Sirlin, and Marciano, 1983)

d�

dz
¼ 2G2

Fð	ð�;lÞ
N:C:Þ2ðp1 � p2Þ

�½1� ðq2=M2
ZÞ�2

�
"2�ðq2Þ

�
1þ �

�
f�ðzÞ

�

þ "2þðq2Þð1� zÞ2
�
1þ �

�
fþðzÞ

�

� "þðq2Þ"�ðq2Þ m2
e

ðp1 � p2Þ z
�
1þ �

�
fþ�ðzÞ

��
;

(103)

where p1 is the four-momentum of the incident neutrino, p2

and p0
2 are the four-momenta of the initial and final electrons,

q2 ¼ ðp2 � p0
2Þ2,
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z ¼ � q2

2ðp1 � p2Þ ¼
E0
e �me

E�

; (104)

	ð�;lÞ
N:C: ¼ 1þ �̂

4�ŝ2

�
3

4ŝ2
lnc2 � 7

4
þ 2ĉZ

ĉ2

þ 3

4
�

�
lnðc2=�Þ
c2 � �

þ 1

c2
ln�

1� �

�
þ 3

4

M2
t

M2
W

�
; (105)

"�ðq2Þ ¼ 1
2½1� 2�̂ð��;lÞðq2Þŝ2�; (106)

"þðq2Þ ¼ ��̂ð��;lÞðq2Þŝ2; (107)

�̂ð��;lÞðq2Þ¼1� �

2�ŝ2

�X
i

ðC3iQi�4ŝ2Q2
i ÞJiðq2Þ

�2J�ðq2Þþ lnc

�
1

2
�7ĉ2

�
þ ĉ2

3
þ1

2
þ ĉ�

ĉ2

�
;

(108)

Jiðq2Þ ¼
Z 1

0
dxxð1� xÞ ln

�
m2

i � q2xð1� xÞ
M2

Z

�
; (109)

ĉZ ¼ 19

8
� 7

2
ŝ2 þ 3ŝ4; (110)

ĉ� ¼ 19

8
� 17

4
ŝ2 þ 3ŝ4: (111)

In these expressions terms of Oð�q2=M2
ZÞ have been ne-

glected. In this approximation, we see from Eq. (105) that

	ð�;lÞ
N:C: is independent of q

2. It is also independent of the � and

charged lepton flavors. In contrast, �̂ð��;lÞðq2Þ depends on q2.
It also depends on the incident neutrino flavor via the term
�2J�ðq2Þ in Eq. (108) (which arises from the ‘‘�� charge

radius’’ diagrams). As in previous sections, s2 ¼ 1� c2 ¼
sin2�W [cf. Eq. (55)] and ŝ2 ¼ 1� ĉ2 ¼ sin2�̂WðMZÞ
(cf. Sec. III.D). In Eq. (105), �̂ ¼ �̂ðMZÞ ’ 1=127:9 is the
MS QED coupling at scale � ¼ MZ and � ¼ M2

H=M
2
Z. In

Eq. (108), the sum is over the charged leptons and quarks (in
the quark sector

P
i ¼ 3

P
f where f denotes the flavors and

the factor 3 represents the color degrees of freedom), and mi,
Qi, and C3i are the mass, charge (in units of the proton charge
ep), and twice the third component of the weak isospin of the

ith fermion, respectively. In Eq. (104), E0
e and E� are the

energies of the outgoing electron and the incident neutrino in
the rest frame of the incoming electron. Thus, in that frame,
z ¼ T=E�, where T is the kinetic energy of the scattered
electron.

The expressions for �̂ð��;lÞðq2Þ in Eq. (108) and Jiðq2Þ in
Eq. (109) have been updated from those presented by
Sarantakos, Sirlin, and Marciano (1983) to take into account

the use of sin2�̂WðMZÞ in Eqs. (106) and (107), while the early
work employed sin2�̂WðMWÞ.

The functions f�ðzÞ, fþðzÞ, and fþ�ðzÞ in Eq. (103)
describe QED corrections. The first two functions have
been evaluated analytically in the relativistic approximation
(Sarantakos, Sirlin, and Marciano, 1983), assuming me=Ee,
me=E�, and me=ðEmax � EeÞ � 1. Exact expressions for
f�ðzÞ and fþðzÞ can be obtained from Ram (1967); fþ�ðzÞ
was evaluated exactly by Passera (2001). However, these

expressions are long and complicated and are best treated
using numerical tabulations.

The differential cross sections for ��� þ e ! ��� þ e, �e þ
e ! �e þ e, and ��e þ e ! ��e þ e are obtained from the
�� þ e ! �� þ e case by making simple changes explained

by Sarantakos, Sirlin, and Marciano (1983). In particular, in
�e þ e ! �e þ e there are two distinct classes of contribu-
tions, one involving the neutral currents as in �� þ e !
�� þ e, and the other mediated by the W boson.

If the tree-level propagator factors ð1� q2=M2
WÞ�2 and

ð1� q2=M2
ZÞ�2 are ignored (i.e., if q2=M2

W � 1), in passing

from �� þ e ! �� þ e to �e þ e ! �e þ e the only changes

are as follows:
(i) "�ðq2Þ in Eq. (106) is changed to

"�ðq2Þ ¼ 1

2
½1� �̂ð�e;lÞðq2Þŝ2� � 1

	ð�;lÞ
N:C:

; (112)

where 	ð�;lÞ
N:C: is defined in Eq. (105),

(ii) "þðq2Þ in Eq. (107) is changed to

"þðq2Þ ¼ ��̂ð�e;lÞðq2Þŝ2: (113)

(iii) �̂ð�e;lÞðq2Þ is obtained from �̂ð��;lÞðq2Þ by replacing
�2J�ðq2Þ ! �2Jeðq2Þ in Eq. (108).

We note that the additional ð�	ð�;lÞ
N:C:Þ�1 term in Eq. (112)

reflects the tree-level contribution of the W mediated ampli-
tude, and the change in (iii) arises from the charge radius
diagrams that depend on the neutrino flavor.

The results discussed in this section have been applied to
the study of the electron recoil-energy spectra and the total
cross sections for neutrino-electron scattering by solar neu-
trinos (Bahcall, Kamiokowski, and Sirlin, 1995). This paper
also presents simple modifications of the relativistic expres-
sions for the QED functions f�ðzÞ and ð1� zÞ2fþðzÞ so that
they can be applied approximately in the nonrelativistic
domain. An approximate expression for fþ�ðzÞ (a function
that had not been calculated previously) is also included.

As mentioned, the expressions in Eqs. (103)–(113) have
been derived in the MS scheme of renormalization. If the
analysis is carried out, instead, in the OS scheme, the ex-

pression for 	ð�;lÞ
N:C: is essentially the same as Eq. (105), except

that ŝ2, ĉ2, and �̂ are changed to s2, c2, and �. On the other
hand, the OS form factor �ð��;lÞðq2Þ (Marciano and Sirlin,
1980; Sarantakos, Sirlin, and Marciano, 1983) that multiplies
sin2�W in the EWC has a considerably more complex
structure than the MS form factor �̂ð��;lÞðq2Þ given in
Eq. (108). In particular, in Oð�Þ, �ð��;lÞðq2Þ depends on
MH , while �̂ð��;lÞðq2Þ does not. This more complex structure
can be traced to the contributions of the counterterm
ðc2=s2ÞRe½AZZðM2

ZÞ=M2
Z � AWWðM2

WÞ=M2
W� present in

�ð��;lÞðq2Þ [we recall that AZZðq2Þ and AWWðq2Þ are the Z
and W transverse self-energies].

M. Electron-positron annihilation

Since LEP was an e�-eþ collider, the study of the annihi-
lation process into fermion-antifermion pairs, e� þ eþ !
fþ �f, became a subject of great interest.
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Passarino and Veltman (1979) examined the EW and QED

corrections to e� þ eþ ! �� þ�þ. They also introduced a

method to reduce one-loop tensor integrals to scalar ones,

which has been frequently employed in the calculation of the

EWC to several important processes. Since that time, detailed

studies of EW, QED, and QCD corrections to e� þ eþ !
fþ �f were carried out by several; see, for example, Ellis and

Peccei (1986) and references therein; Alexander et al. (1988)

and references therein; and Altarelli, Kleiss, and Verzegnassi

(1989), Kühn (1989), and Bardin, Hollik, and Passarino

(1995) and references therein. Degrassi and Sirlin (1991)

analyzed the EWC to cross sections, asymmetries, and Z
partial widths using both the on-shell and the MS renormal-

ization frameworks. The results of the partial widths and

asymmetries for some final-state modes were then compared

numerically with those obtained in the formulation of

Consoli, Hollik, and Jegerlehner (1989) and Hollik (1990).

The corrections to the Zb �b vertex involved a significant M2
t

dependence and played an important role in the indirect

determination of the top-quark mass before the discovery of

this fundamental particle (Akhundov, Bardin, and Riemann,

1986; Beenakker and Hollik, 1988; Bernabeu, Pich, and

Santamaria, 1991).
The asymmetries measured at LEP and SLC are of special

interest because they provide themost precise determination of

sin2�
lept
eff (cf. Sec. III.E). They include (a) the measurement at

LEP of the forward-backward asymmetriesA0;f
FB (for f ¼ e,�,

, s, and b), the � polarization asymmetry P in e
� þ eþ !

� þ þ, and the forward-backward asymmetryQhad
FB between

positive and negative charge in hadronic Z events; (b) the

measurements at SLC of the left-right e�-polarization
asymmetry A0

LR and the combined forward-backward

e�-polarization asymmetries A0FB
LR , separately analyzed for

hadronic and leptonic final states. For a recent discussion,

see Erler and Langacker, 2010, particularly Sec. 10.4.
For a long time, there has been an intriguing difference at

the 3� level between the values of sin2�
lept
eff derived from

the leptonic and hadronic asymmetries. In fact, one finds

ðs2effÞl ¼ 0:231 13ð21Þ from the leptonic asymmetries

ðA0;l
FB; A

0ðPÞ; A0
LR; A

0;FB
LR Þ (l ¼ e, �, and ) and ðs2effÞh ¼

0:232 22ð27Þ from the hadronic asymmetries ðA0;q
FB ; Q

had
FB Þ

(q ¼ s, c, and b). Furthermore, the results within each group

are in good agreement with each other. The intriguing ques-

tion remains of whether the difference between ðs2effÞl and
ðs2effÞh is due to a statistical fluctuation or arises from new

physics involving perhaps the third generation of quarks.

The second scenario is difficult to implement because of

the constraints imposed by the Z ! b �b branching ratio. In

the first case, a possible approach to take into account the

difference is to enlarge the error, as discussed by Gurtu

(1996), Degrassi et al. (1998), and Ferroglia et al.

(2002). For example, if the sin2�
lept
eff error is increased by a

factor ½�2=DOF�1=2 following the Particle Data Group pre-

scription (Barnett et al., 1996), one obtains the value ~s2eff ¼
0:231 53ð25Þ. The discrepancy discussed above is of particu-

lar significance for the indirect estimate of MH, which is

sensitive to the precise value of sin2�
lept
eff . Since this issue

has not been resolved, the usual procedure is to employ the

average value obtained from all the asymmetries.

N. Estimates of the Higgs boson mass

The Higgs boson is the fundamental missing piece of the

ST. Thus, an important question is to what extent can MH be

estimated using the precision electroweak data and the theo-

retical expressions for the relevant observables, which depend

on MH via EWC. In fact, such estimates may provide useful

information for explorations at the CERN Large Hadron

Collider (LHC), since one of its main objectives is the search

for this fundamental particle.
At the one-loop level, for large MH , the dependence of the

EWC onMH is proportional to lnðMH=MZÞ [cf. Eqs. (68) and
(69)], a slowly varying function.7 Thus, precise calculations

are needed. Theorists distinguish two classes of errors:

(a) parametric, such as �MW; �s
2
eff ; �Mt; ���

ð5Þ
h ; . . . ;

(b) uncertainties due to the truncation of the perturbative

series (i.e., uncalculated higher-order effects). As mentioned

at the end of Sec. III.F, estimates of the second class of errors

are often obtained by comparing the evaluation of the EWC

using different renormalization schemes. In the case when the

expansion parameters are scale dependent, as in the MS
scheme of renormalization, errors of the second class are

frequently estimated by examining the scale dependence of

the calculations.
The comparison of the accurate experimental values ofMW

and sin2�
lept
eff with their theoretical calculations have been

subjects of particular interest, since they provide important

information about MH .
Over the years, a number of higher-order EWCs were

incorporated in the theoretical calculations. Contributions

of Oð�Þ, Oð�nlnnMZ=MWÞ, and Oð�2 lnMZ=MfÞ (where f

is a generic quark or lepton) were analyzed in the period

1979–1984. Those of Oð�2ðMt=MWÞ4Þ, Oð��sÞ, and

Oð��2
sðMt=MWÞ2Þ were studied from the late 1980s to the

middle 1990s. EWCs of O½�2ðMt=MWÞ2� were evaluated by

Degrassi, Gambino, and Vicini (1996), Degrassi, Gambino,

and Sirlin (1997), Degrassi et al. (1998), and Degrassi and

Gambino (2000); (see also references in those papers).
Simple analytic formulas for the theoretical calculation of

sin2�
lept
eff , MW , and the leptonic partial widths �l of the Z

boson were presented by Ferroglia et al. (2002). They

accurately reproduced the results of the detailed calculations

in the on-shell, MS, and effective schemes (cf. Sec. III.F) as

functions ofMH ,Mt,��
ð5Þ
h , and �sðMZÞ, over the range 20 

MH  300 GeV. In particular, they incorporated the com-

plete one-loop EWC, as well as the two-loop contributions

enhanced by factors ðM2
t =M

2
ZÞn (n ¼ 1, 2) that had been

studied previously. These simple formulas were applied to

7It is interesting to note that the evaluation of higher-order

corrections to the 	 parameter has a long history, starting with

van der Bij and Veltman (1984), where the contributions of

Oð�2M2
HÞ were obtained. The important two-loop QCD and EW

contributions to the 	 parameter were evaluated by Djouadi and

Verzegnassi (1987), Fleischer et al. (1994), and Chetyrkin, Kühn,

and Steinhauser (1995). Later developments include calculations, at

the three- and four-loop levels, of pure EWand mixed EWand QCD

corrections in the large MH or Mt limits (van der Bij et al., 2001;

Faisst et al., 2003; Boughezal, Tausk, and van der Bij, 2005;

Boughezal and Czakon, 2006; Chetyrkin et al., 2006).
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estimate MH and its 95% C.L. upper bound M95
H using either

ðs2effÞexp, ðMWÞexp, or, simultaneously, ðs2effÞexp, ðMWÞexp, and
ð�lÞexp as input parameters.

An important advance has been the calculation of the
complete two-loop contribution to �r in the OS scheme of
renormalization. It includes the fermionic contribution, which
involves diagrams with one or two closed fermion loops
(Freitas et al., 2000, 2002) and the purely bosonic two-
loop contribution8 (Awramik and Czakon, 2002; Awramik
et al., 2003; Onishchenko and Veretin, 2003). Since �r is the
quantum correction in the relation of MW with �, GF, and
MZ, this result directly provides the two-loop EWC in the
theoretical calculation of MW .

Another important achievement has been the calculation,
also in the OS scheme, of the complete two-loop EWC in the

theoretical evaluation of sin2�
lept
eff (Awramik et al., 2004;

Hollik, Meier, and Uccirati, 2005, 2006, 2007; Awramik,
Czakon, and Freitas, 2006a, 2006b).

Simple analytic formulas that accurately incorporate the
contribution of the one- and two-loop EWCs in the theoretical

calculations ofMW and sin2�
lept
eff , as functions ofMH,Mt, ��,

�sðMZÞ, andMZ, were given, respectively, by Awramik et al.
(2004) and Awramik, Czakon, and Freitas (2006b).

Next we illustrate the application of these accurate for-
mulas to the estimate of the Higgs boson mass MH and its
95% C.L. upper bound M95

H . We use as inputs MW ¼
80:385ð15Þ GeV (LEP Electroweak Working Group, 2012;
Tevatron Electroweak Working Group, 2012), MZ ¼
91:1876ð21Þ GeV (see Sec. III.B), Mt ¼ 173:2ð0:9Þ GeV
(Tevatron Electroweak Working Group, 2011), sin2�

lept
eff ¼

0:231 53ð16Þ [cf. Eq. (71)], �� ¼ 0:059 07ð10Þ [cf. Eq. (75)
], and �sðMZÞ ¼ 0:1184ð7Þ (Dissertori et al., 2010). On this
basis, we obtain the following estimates:

MH ¼ 98þ25
�21 GeV; M95

H ¼ 142 GeV ðMW þ s2effÞ;
(114)

MH ¼ 81þ28
�24 GeV; M95

H ¼ 131 GeV ðMWÞ; (115)

MH ¼ 129þ53
�38 GeV; M95

H ¼ 226 GeV ðs2effÞ: (116)

Equation (114) was obtained by means of a �2 analysis based

on theoretical expressions for both MW and sin2�
lept
eff , while

Eqs. (115) and (116) were derived from the separate appli-

cation of the MW and sin2�
lept
eff formulas, respectively.

As a comparison, a recent standard global fit to the
EW data (Baak et al., 2012) employs the inputs
MW¼80:399ð23ÞGeV, MZ¼91:1875ð21ÞGeV, Mt ¼
173:3ð1:1Þ GeV, sin2�lepteff ¼0:23153ð16Þ, ��¼0:05899ð10Þ,
and �sðMZÞ ¼ 0:1193ð28Þ, and derives the estimate MH ¼
96þ31

�24 GeV, M95
H ¼ 169 GeV (this last value includes the

effect of the estimated theoretical error).
Since the inputs in our calculations are somewhat different

(particularly in the case of MW for which we use a more
recent and precise value), for comparison purposes we repeat
our calculation of Eq. (114) employing the same inputs as in
the global fit. This leads to MH ¼ 103þ32

�26 GeV, M95
H ¼

160 GeV, which can be compared with the values MH ¼
96þ31

�24 GeV, M95
H ¼ 169 GeV obtained in the global fit with

the same input parameters. Thus, we see that the estimates
obtained by combining the theoretical expressions for MW

and sin2�
lept
eff are rather close to those obtained in the global fit,

an observation that illustrates the importance and sensitivity
of these two observables in the prediction of MH and M95

H .

We note that the central values ofMH in both Eq. (114) and
the global fit are well below the 95% C. L. lower bound

ðMHÞL:B: ¼ 114:4 GeV; (117)

inferred from the direct experimental searches of the Higgs
boson at LEP and the Tevatron. On the other hand, the two
MH estimates are compatible with Eq. (117) when their errors
are taken into account.

In Sec. III.M, we pointed out that, for a long time, there has
been an intriguing difference, at the 3� level, between the

values of sin2�
lept
eff derived from the leptonic and hadronic

asymmetries, namely, ðs2effÞl ¼ 0:231 13ð21Þ and ðs2effÞh ¼
0:23222ð27Þ. In order to illustrate the potential effect of this
dichotomy, we give the MH and M95

H estimates obtained by

separately using these values, as well as their combinations
with the theoretical expression for MW :

MH ¼ 54þ33
�21 GeV; M95

H ¼ 117 GeV ½ðs2effÞl�; (118)

MH ¼ 71þ23
�18 GeV; M95

H ¼ 111 GeV ½MW; ðs2effÞl�; (119)

MH ¼ 513þ387
�212 GeV ½ðs2effÞh�; (120)

MH ¼ 117þ32
�27 GeV; M95

H ¼ 173 GeV ½MW; ðs2effÞh�: (121)

We see that the estimates based on ðs2effÞl, either by itself

[see Eq. (118)] or in combination withMW [see Eq. (119)],

are very low. In fact, at the 1� level, they disagree with

ðMHÞL:B: [see Eq. (117)]. We also note that M95
H in

Eq. (118) is barely compatible with ðMHÞL:B:, while its

value in Eq. (119) is lower. Thus, in an hypothetical

scenario in which the ðs2effÞl-ðs2effÞh discrepancy were to

8For clarity, we point out that in the recent higher-order calcu-

lations �r is introduced by s2c2 ¼ ð��= ffiffiffi
2

p
GFM

2
ZÞð1þ �rÞ, with

�r in the numerator, which coincides with the expression originally

derived by Sirlin (1980a). Of course, at the one-loop level, this

expression and Eq. (54) are equivalent.
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settle on the leptonic side, for example, by bringing the
value of ðs2effÞh close to the present determination of ðs2effÞl,
a serious discrepancy would arise between the MH, M

95
H

estimates and ðMHÞL:B:.
In contrast, ðs2effÞh leads to considerably larger estimates

of MH and M95
H [cf. Eqs. (120) and (121)]. We note that

in Eq. (120) we have not included the value of M95
H . The

reason is that the range of validity of the simple analytic

formulas is 10 GeV  MH  1 TeV, while their application
to Eq. (120) leads to a value of M95

H considerably larger than

1 TeV.
Finally we consider the estimates of MH, M

95
H based on

~s2eff ¼ 0:231 53ð25Þ, the value obtained from the weighted

average of ðs2effÞl and ðs2effÞh by enlarging the error according

to the Particle Data Group prescription (cf. the discussion

toward the end of Sec. III.M):

MH ¼ 129þ89
�54 GeV; M95

H ¼ 302 GeV ð~s2effÞ; (122)

MH ¼ 90þ27
�22 GeV; M95

H ¼ 137 GeV ðMW; ~s
2
effÞ: (123)

As expected, the central value in Eq. (122) is the same as in
Eq. (116), but the errors and M95

H are larger. On the other
hand, the central value and M95

H in Eq. (123) are smaller
than in Eq. (114). The reason is that the increased error in
~s2eff gives greater weight to the MW contribution, which
favors smaller values of MH and M95

H .
In February 2012, the ATLAS Collaboration at LHC

(ATLAS Collaboration, 2012a) reported that their com-

bined search for the ST Higgs boson excludes the MH

ranges 112.9–115.5, 131–238, and 251–466 GeV at
95% C.L. Thus, subject to that exclusion, the still-allowed

domains are 115.5–131, 238–251, and 
 466 GeV. On the

same day, the CMS Collaboration at LHC (CMS

Collaboration, 2012a) reported that their combined search

excludes the MH range 127–600 GeV at 95% C.L. and

129–525 GeV at 99% C.L. Thus, subject to the 95% C.L.

exclusion, the still-allowed regions are 114.4–127 and


 600 GeV. At the same time, the ATLAS Collaboration

reported an excess of events above the expected ST

background around MH � 126 GeV with a local signifi-
cance of 3:5�, while the CMS Collaboration found an

excess at MH ¼ 124 GeV with a local significance of

3:1�. Both collaborations expect to collect a considerable

amount of additional data in 2012 in order to ascertain

whether the observed excesses represent real signals of the

Higgs boson or they simply reflect statistical fluctuations

of the ST background. For the moment, we observe that,

when the 1� errors are taken into account, the estimates

in both Eq. (114) and the global fit are compatible with a

Higgs boson in the neighborhood of MH ¼ 125 GeV.
There are also interesting theoretical upper and lower

bounds for MH , Mmaxð�Þ, and Mminð�Þ, where � is the scale

up to which the ST is assumed to be valid. Mmaxð�Þ is

obtained from the requirement that the Higgs self-coupling

does not exhibit a Landau pole below �.Mminð�Þ is obtained
from considerations of vacuum stability. If � ¼ MP,

MmaxðMPÞ 	 175 GeV [cf. Bezrukov et al. (2012) and refer-

ences therein]. Since the recent Higgs boson searches at LHC

exclude the range 129–525 GeV at 99% C.L., this result

indicates that, in the absence of new physics, the ST is a

weakly coupled theory up to MP. Recent analyses of
MminðMPÞ include Bezrukov et al. (2012) and Elias-Miró

et al. (2012). Bezrukov et al. found Mmin¼129�6GeV,
which overlaps with the allowed region in the recent

searches. Elias-Miró et al. derive both stability and

metastability bounds. For their central values, they found
MminðMPÞ¼130�3GeV and Mmetas

min ðMPÞ¼111�3GeV.
The metastability bound is derived by requiring that the
lifetime of the electroweak vacuum is larger than the age of
the Universe. Combining the results explained above, and
assuming that the Higgs boson is discovered in the range
115:5  MH  127 GeV currently allowed by the direct
searches at the LHC, Bezrukov et al. (2012) concluded the
following:

(a) a new energy scale between the Fermi and Planck
scales is not necessarily required,

(b) in the absence of such scale, the EW theory remains
weakly coupled up to MP,

(c) and the EW vacuum has a lifetime larger than the age
of the Universe.

On 4 July 2012, the ATLAS (ATLAS Collaboration,
2012b) and CMS (CMS Collaboration, 2012b)
Collaborations at the LHC announced the discovery at the
5� level of a boson in the mass interval 124–126 GeV. There
is a widespread belief in the physics community that this is
the long-sought Higgs boson. To ascertain whether this is the
case, further analyses are in progress to determine whether
the spin of the newly discovered particle is indeed 0 as befits
the Higgs boson, and whether its production and decay rates
conform with the ST expectations.

O. The muon g� � 2

The anomalous magnetic moment of the muon, a� ¼
ðg� � 2Þ=2, is one of the most interesting and precisely

measured observables in particle physics. In fact, since each
sector of the ST contributes in a significant way to its
theoretical prediction, the a� measurement by the E821

experiment at the Brookhaven National Laboratory (Bennett
et al., 2002, 2004, 2006; Roberts, 2010), with a remarkable
precision of 0.5 ppm, permits one to test the entire ST and
examine possible new physics effects (Czarnecki and
Marciano, 2001; Stöckinger, 2007). It is important to note
that even more precise measurements are planned at the
Fermilab experiment P989 and J-PARC with anticipated
errors that are smaller than the current one by factors of 4
and 5.4, respectively.

The ST prediction of a� includes QED, EW, and hadronic

(leading- and higher-order) contributions aST� ¼ aQED� þ
aEW� þ aHLO� þ aHHO� . The QED contribution, computed to
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four loops and estimated to five,9 currently stands at aQED� ¼
116 584 718:08ð15Þ � 10�11 (Laporta and Remiddi, 1993,
1996; Kinoshita and Nio, 2004, 2006a, 2006b; Kataev,
2006; Aoyama et al., 2007, 2008, 2008a, 2008b, 2010,
2011a, 2011b, 2011c, 2012a, 2012b; Passera, 2007;
Aoyama, Hayakawa, Kinoshita, and Nio, 2010), while the
EW effects, suppressed by a factor ðm�=MWÞ2, amount to

aEW� ¼ 154ð2Þ � 10�11 (Czarnecki, Krause, and Marciano,

1995, 1996; Degrassi and Giudice, 1998; Czarnecki et al.,
2003).

Recent calculations of the hadronic leading-order contri-
bution, based on the hadronic eþe� annihilation data, include
aHLO� ¼ 6949:1ð42:7Þ � 10�11 (Hagiwara et al., 2011),

aHLO� ¼ 6903ð53Þ � 10�11 (Jegerlehner and Nyffeler, 2009),

and aHLO� ¼ 6923ð42Þ � 10�11 (Davier et al., 2011). The

three results agree within errors. A recent analysis by
Jegerlehner and Szafron (2011) found good agreement be-
tween the calculations based on the eþe� annihilation and 
decays data leading to aHLO� ¼ 6909:6ð46:5Þ � 10�11.

The higher-order hadronic contribution is divided into
two parts: aHHO� ¼ aHHO� ðvpÞ þ aHHO� ðlblÞ. The first one

aHHO� ðvpÞ ¼ �98ð1Þ � 10�11 (Hagiwara et al., 2007) is the

Oð�3Þ contribution of diagrams containing hadronic vacuum
polarization insertions. The second one, also of Oð�3Þ, is the
hadronic light-by-light contribution; since it cannot be de-
rived from data, its evaluation is based on specific models.
Two of the most recent determinations, 116ð39Þ � 10�11

(Jegerlehner and Nyffeler, 2009; Nyffeler, 2009) and
105ð26Þ � 10�11 (Prades, de Rafael, and Vainshtein, 2009),
are in good agreement. If one adds the latter to aHLO� ¼
6949:1ð42:7Þ � 10�11 and the rest of the ST contributions,
one obtains aST� ¼ 116 591 828ð50Þ � 10�11. The difference

with the experimental value a
exp
� ¼ 116 592 089ð63Þ � 10�11

(Roberts, 2010) is �a� ¼ a
exp
� � aST� ¼ 261ð80Þ � 10�11,

i.e., þ3:3� (all errors have been added in quadrature). A
somewhat larger discrepancy 3:6� is obtained if one employs
aHLO� ¼ 6923ð42Þ � 10�11.

It has been pointed out that supersymmetry (SUSY) may
provide a natural explanation for the ð3–4Þ� discrepancy
between a

exp
� and aST� [for a review, see Stöckinger (2007)].

Assuming, for simplicity, a single mass MSUSY for the super-
symmetric particles that contribute to aSUSY� , one finds

(Kosower, Krauss, and Sakai, 1983; Yuan et al., 1984;
Moroi and Moroi, 1996; Ibrahim and Nath, 2000;
Heinemeyer, Stöckinger, and Weiglein, 2004a, 2004b)

aSUSY� ’ sgnð�Þ�130�10�11

�
100GeV

MSUSY

�
2
tan�; (124)

where tan�> 3–4 is the ratio of the two scalar vacuum
expectation values and sgnð�Þ is the sign of the � term in
SUSY models. Assuming that aSUSY� cancels the discrepancy,

so that aSUSY� ¼ �a�, and using, for example, the value

�a� ¼ 261ð80Þ � 10�11, one finds sgnð�Þ ¼ þ and

MSUSY ’ 71þ14�9

ffiffiffiffiffiffiffiffiffiffi
tan�

p
GeV: (125)

For tan�� 4–50, Eq. (125) leads to the rough estimate
124  MSUSY  601 GeV. On the other hand, signals of
supersymmetric particles have not been uncovered so far.
Other new physics explanations of the a� discrepancy have

also been discussed (Czarnecki and Marciano, 2001).
In an alternative approach, not involving new physics,

Passera, Marciano, and Sirlin (2008, 2009, 2010) considered
whether an increase in the hadroproduction cross section �ðsÞ
in low-energy eþe� collisions, due to hypothetical experi-
mental errors, could bridge the a� discrepancy. They found

that this is unlikely in view of the current experimental error
estimates. If, nonetheless, this turns out to be the explanation
of the discrepancy, it has an interesting consequence: the

increase in �ðsÞ also increases ��ð5Þ
hadðMZÞ which, in turn,

affects the estimate of MH . They found that, in this hypo-
thetical scenario, the 95% C.L. upper bound on the Higgs
boson mass is reduced to about 135 GeV which, in conjunc-
tion with ðMHÞLB ¼ 114:4 GeV, leaves a narrow window for
the mass of this fundamental particle. This window is slightly
larger than the range allowed by the very recent LHC direct
searches (cf. the previous to last pararaph in Sec. III.N).

P. Atomic parity violation

The interference of the electromagnetic and weak neutral
current amplitudes leads to parity violating effects in atomic
transitions that have been the subject of ingenious experi-
ments and detailed theoretical studies.

The pseudoscalar component of the electron-quark inter-
action, arising from the Z boson exchange at q2 ¼ 0, is
usually expressed in the form

H PV ¼ G�ffiffiffi
2

p f½C1u �u�
�uþ C1d

�d��d�½ �e���5e�

þ ½C2u �u�
��5uþ C2d

�d���5d�½ �e��e� þ � � �g;
(126)

where the ellipsis represents heavy-quark contributions
(q ¼ s, c, b, and t).

The C2i (i ¼ u, d) are suppressed by a factor 1�
4sin2�̂WðMZÞ ’ 0:075 that arises from the electron’s vector
coupling to the Z boson. Also, the C1i (i ¼ u, d) terms are of
primary importance for heavy atoms because they add up
coherently over all quarks in the nucleus. As a consequence,
parity violating effects are dominated by contributions pro-
portional to the weak charge

QWðZ; AÞ � 2½ðAþ ZÞC1u þ ð2A� ZÞC1d�; (127)

where Z and A are the atomic and mass numbers of the atom.
The dominance of the C1i (i ¼ u, d) terms is also theo-

retically fortunate, because the corresponding hadronic cur-
rents are conserved and therefore are not affected by the
strong interactions at q ¼ 0.

As pointed out by Bouchiat and Bouchiat (1974), parity
violating effects in heavy atoms scale roughly as Z3 (one Z
factor reflects the coherence effect in QW , while the others
arise from the electron wave function and momentum near
the nucleus).

9After this paper was submitted for publication, the calculations

of the five loop contributions to ae and a� were completed (Aoyama

et al., 2012c, 2012d), leading to aQED� ¼ 116 584 718:845ð37Þ �
10�11 and �a� ¼ 260ð80Þ � 10�11.
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Electroweak corrections of Oð�̂Þ to the C1i and C2i

(i ¼ u, d) coefficients were evaluated in the MS scheme by
Lynn (1982), and Marciano and Sirlin (1983, 1984).

For the dominant coefficients C1i (i ¼ u, d), Marciano and
Sirlin expressed their results in the form

C1u ¼ 	0
PV

2

�
1� 8

3
�0
PVð0Þsin2�̂ðMWÞ

�
; (128)

C1d ¼ �	0
PV

2

�
1� 4

3
�0
PVð0Þsin2�̂ðMWÞ

�
: (129)

The constants 	0
PV and �0

PVð0Þ contain the Oð�̂Þ EWC, which

depend on Mt, MH, MW , and MZ, and are normalized so that
	0
PV ¼ �0

PVð0Þ ¼ 1 at the tree level. The detailed expressions

for 	0
PV and �0

PVð0Þ are given by Marciano and Sirlin (1983,

1984). A more recent version of these results, that employs

sin2�̂WðMZÞ instead of sin2�̂WðMWÞ, was presented by
Marciano (1995).

Measurements of atomic parity violation have been made
in bismuth, lead, thallium, and cesium [for reviews, see
Masterson and Wieman (1995), Bouchiat and Bouchiat
(1997), and Ginges and Flambaum (2004)]. The most precise
so far have been measurements of QW in cesium, at the 0.4%
level. The analysis of the data requires detailed atomic phys-
ics calculations (Blundell, Johnson, and Sapirstein, 1995;
Porsev, Beloy, and Derevianko, 2009) and QED corrections
(Ginges and Flambaum, 2004). A recent result (Porsev,
Beloy, and Derevianko, 2009) is QWðCsÞ ¼ �73:16ð29Þexp �
ð20Þth, in impressive agreement with the ST expectation
QWðCsÞST ¼ �73:15ð2Þ (Erler and Langacker, 2010).

QW is insensitive to the T parameter and thus provides a
direct probe of the S parameter, as emphasized by Marciano
and Rosner (1990) and Marciano (1991, 1995) (cf. Sec. III.T).

Recently, sharp lower bounds on the mass of Z0 bosons
associated with interesting models beyond the ST have been
derived from atomic parity violation measurements (Diener,
Godfrey, and Turan, 2012). They also set constraints on the Z0
couplings.

Q. Radiative corrections in flavor physics: The b ! s� case

Over the years, flavor physics played a crucial role in
shaping our understanding of the interactions of elementary
particles. The study of weak decays, including flavor and CP
violating meson decays, led physicists to discover the GIM
mechanism (Glashow, Iliopoulos, and Maiani, 1970) and the
CKM matrix (Cabibbo, 1963; Kobayashi and Maskawa,
1973), both of which are essential elements in establishing
the particle content of the ST.

In recent years, flavor physics observables were measured
with great accuracy at several experimental facilities.
Currently, one of the experiments at LHC, named LHCb, is
primarily devoted to the measurement of the properties of
hadrons containing a bottom quark. A second forthcoming
experiment at CERN, called NA62, will measure very rare
decays of charged kaons. Two new super-B factories will be
built in Frascati (Italy) and at KEK (Japan). While experi-
ments at high-energy colliders allow physicists to search for
new physics beyond the ST by attempting to produce new
particles, precise flavor physics experiments exploit the high

luminosity of flavor factories in order to search for the effects
of new physics in rare events. In this sense, the direct searches
at high-energy colliders are complementary to the indirect
searches at flavor factories, which are sensitive to energy
scales as high as �104–105 TeV.

An extended description of all of the observables in weak
decays goes beyond the scope of the present review; the
interested reader can find a comprehensive introduction to
this topic in the classic Les Houches lectures by Buras (1998).
Here we focus on a single representative example: the in-
clusive radiative decay of the B meson mediated by the
partonic decay process b ! s�. There are three reasons for
this choice:

(i) As all flavor-changing neutral current (FCNC) pro-
cesses, the b ! s� decay is a loop-induced process in
the ST. As such, it is sensitive to new physics contri-
butions, which can be of the same order in the coupling
constants as the leading-order contribution in the ST.

(ii) As will be shown, inclusive decays are theoretically
clean processes since they are not sensitive to non-
perturbative effects and can be calculated with great
accuracy within perturbation theory.

(iii) The measurements of this process, which was carried
out at CLEO (Cornell), BELLE (KEK Tsukuba), and
BABAR (Stanford), are precise; in order to match the
current experimental accuracy it was necessary to
consider, in calculating the branching ratio, the effects
of next-to-leading order (NLO) and next-to-next-to-
leading order (NNLO) QCD corrections, as well as
the effect of NLO electroweak corrections.

At the hadron level, the processes of interest are the
inclusive radiative decays of B mesons into a photon and an
arbitrary hadronic state of total strangeness �1, �B ! Xs�,
where �B denotes a �B0 or B� meson, while Xs indicates an
inclusive hadronic state not containing charmed particles. At
the parton level, these processes are induced by a FCNC
decay of the b quark contained in the �B meson. The b quark
decays into a photon and a strange quark plus other partons,
collectively indicated by the symbol X

parton
s . In the ST, such a

decay first takes place at one-loop order through diagrams
involving heavy particles; for example, through a triangle
loop with two virtual top quarks and a virtual W boson. Such
diagrams are now commonly referred to as ‘‘penguin’’
diagrams.

In contrast with the exclusive decay modes, inclusive
decays of B mesons are theoretically clean observables; in
fact, it is possible to prove that the decay width �ð �B ! Xs�Þ
is well approximated by the partonic decay rate �ðb !
X
parton
s �Þ:

�ð �B ! Xs�Þ ¼ �ðb ! X
parton
s �Þ þ�nonpert: (130)

The second term on the rhs of Eq. (130) represents non-
perturbative corrections. The latter are small, since they are
suppressed at least by a factor ð�QCD=mbÞ2, where mb is the

b-quark mass and �QCD � 200 MeV. Equation (130) is

known as the heavy-quark expansion [reviews of this topic
and on heavy-quark effective theory can be found in Neubert
(1994) and Manohar and Wise (2000)].

The partonic process can be studied within the context of
perturbative QCD. However, the first-order QCD corrections
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to the partonic process are very large. The large corrections
originate from hard gluon exchanges between quark lines of
the one-loop electroweak graphs. In general, Feynman dia-
grams involving different mass scales depend on logarithms
of the ratios of these scales. If there is a strong hierarchy
among the mass scales, then the logarithms are numerically
large. In the case of QCD corrections to the partonic process
b ! X

parton
s �, the mass scales involved are MW , Mt, and mb.

MW and Mt are of the same order of magnitude �W �
100 GeV, while the b-quark mass is considerably smaller:
mb � 5 GeV. Consequently, one finds that �sðmbÞ�
lnð�2

W=m
2
bÞ � 1; therefore, the perturbative expansion is

spoiled, and the large logarithmic corrections must be re-
summed to all orders.

The easiest way to implement the resummation of the
logarithms is to work within the context of a
renormalization-group-improved effective theory with five
active quarks. In such a theory, the heavy degrees of freedom
involved in the decay under study are integrated out. By
means of an operator product expansion, it is possible to
factorize the contribution of the short-distance and long-
distance dynamics in the decay of the B meson. In the ST,
the short-distance dynamics is characterized by mass scales
of the order of the top-quark or W-boson mass, while the
long-distance dynamics is characterized by the b-quark mass.
The boundary between short distance and long distance is
chosen at a low-energy scale �b, such that mb ��b � MW .
The scale �b is unphysical, and therefore physical quantities
cannot depend on it: This fact is employed in order to obtain
RGEs satisfied by the various factors in the calculation. The
large logarithmic corrections are resummed by solving these
RGEs.

The Lagrangian employed in calculating the b ! X
parton
s �

decay rate can be written as

L ¼ LQED�QCDðu; d; c; s; bÞ

þX8
i¼1

4GFffiffiffi
2

p V�
tsVtbCið�;�WÞQið�Þ þO

�
mb

MW

�
:

(131)

In Eq. (131) LQED�QCD represents the usual QED and QCD

Lagrangians with five active quark flavors, while Qi are eight
effective operators of dimensions five and six. Operators with
dimensions larger than 6 are suppressed by inverse powers of
the W-boson mass and are ignored. The short-distance dy-
namics is encoded in the ‘‘coupling constants’’ that multiply
the effective operators, which are called Wilson coefficients
and are indicated by Ci in Eq. (131). The Wilson coefficients
are the only elements of the Lagrangian which depend on the
heavy particle masses MW and mt. The eight effective opera-
torsQi appearing in the Lagrangian in Eq. (131) are listed, for
example, in Misiak and Steinhauser (2007).

Any perturbative calculation of the b ! X
parton
s � decay

rate within the context of the renormalization-group-
improved perturbation theory applied to the Lagrangian in
Eq. (131) involves three different steps:

(1) The first step, called matching, consists of fixing the
value of the Wilson coefficients at the high-energy
scale �W �MW , mt. This is achieved by requiring
that Green’s functions calculated in the full ST and

in the effective theory provide the same result up to
terms suppressed by the ratio between the external
momenta and �W . At the scale �W , QCD corrections
are free of large logarithmic corrections and can there-
fore be evaluated in finite-order perturbation theory.

(2) Second, once the value of the Wilson coefficient at the
electroweak scale has been obtained from the matching
step, it is then necessary to obtain the value of the
Wilson coefficients at the low-energy scale �b �mb.
This can be achieved by solving the system of RGE
satisfied by the Wilson coefficient. The RGE system
has the following form:

�
d

d�
Cið�Þ ¼ �jið�ÞCjð�Þ; (132)

where the summation over j is implied. The matrix �
in Eq. (132) is the anomalous dimension matrix of the
effective operators. The elements of the matrix have
perturbative expansions in powers of �s. Since the
various operators mix under renormalization, this
step of the calculation is called mixing. By solving
the RGE, it is possible to resum the large logarithms of
the ratio �W=�b to all orders in �s in the Wilson
coefficients.

(3) Finally, it is necessary to calculate on-shell matrix
elements of the partonic process in the effective theory.
QCD radiative corrections to the matrix elements do
not include large logarithms, since the dependence on
the heavy degrees of freedom is completely encoded
within the Wilson coefficients.

Radiative decays of the B meson were first experimentally
observed in the exclusive B ! K�� decay mode by the
CLEO Collaboration at Cornell in 1993. Nowadays, the
branching ratio of the inclusive decay �B ! Xs� has been
measured by several collaborations. The current world aver-
age obtained by averaging the CLEO, BELLE, and BABAR
measurements (Asner et al., 2010) is

Bð �B ! Xs�ÞexpE�>E0
¼ ð3:55� 0:24� 0:09Þ � 10�4:

(133)

In Eq. (133), the first error is due to statistical and systematic
uncertainty, while the second is due to the theoretical input on
the b-quark Fermi motion. In order to eliminate irreducible
backgrounds, experimental collaborations impose a lower cut
on the photon energy. The value in Eq. (133) refers to a lower
cut E0 ¼ 1:6 GeV.

The measurement in Eq. (133) has an experimental error of
7% and must be compared with an equally accurate theoreti-
cal prediction within the ST. In renormalization-group-
improved perturbation theory, NmLO QCD calculations of
this process involve the resummation of �n

s ln
n�mðm2

b=�
2
WÞ

logarithms, as well as the evaluation of Oð�m
s Þ corrections to

the Wilson coefficients at the scale �W and to the matrix
elements. In order to obtain theoretically reliable predictions
and to match the current experimental accuracy, it was nec-
essary to evaluate both the NLO (i.e.,m ¼ 1) and NNLO (i.e.,
m ¼ 2) QCD corrections, as well as the NLO electroweak
corrections [i.e., Oð��n

s ln
nðm2

b=�
2
WÞÞ].

The fascinating history of the calculation of the radiative
corrections to the �B ! Xs� process was recently reviewed by
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Buras (2011). The calculation of the LO QCD (i.e., m ¼ 0)
corrections in renormalization-group-improved perturbation
theory was carried out in the period 1988–1993. An interest-
ing technical feature of this calculation is that, in order to
obtain the anomalous dimensions, one needs to evaluate two-
loop Feynman diagrams already at LO QCD. Once these LO
QCD corrections became available (Ciuchini et al., 1993,
1994; Cella et al., 1994a, 1994b), it was pointed out that their
renormalization scale dependence is very large (Ali, Greub,
and Mannel, 1993): by varying�b in the rangemb=2<�b <
2mb, the predicted branching ratio changed by �60%.
Consequently, the evaluation of the NLO QCD corrections
was necessary (Buras et al., 1994).

The evaluation of the NLO QCD corrections was a chal-
lenging task involving several groups in the calculation of the
matching, mixing, and matrix elements; it was completed at
the beginning of the last decade. Comprehensive reviews of
this effort, along with complete lists of references to the
contribution of the various groups, were written by Buras
and Misiak (2002) and Hurth (2003). It is worth emphasizing
that NLO determinations of the branching ratio include elec-
troweak effects of Oð�Þ (Czarnecki and Marciano, 1998;
Baranowski and Misiak, 2000; Gambino and Haisch, 2000).

While the calculation of the NLO QCD and electroweak
corrections considerably reduces the scale dependence of the
�B ! Xs� branching ratio in the ST, Gambino and Misiak
(2001) pointed out that this calculation is affected by a�10%
theoretical uncertainty related to the choice of the charm
quark mass in the two-loop matrix elements of the four-quark
operators. Consequently, in order to reduce this uncertainty,
an evaluation of the NNLO QCD corrections became neces-
sary. A first estimate of the NNLO branching ratios, including
all the numerically dominant effects, was completed by
Misiak et al. (2007) and Misiak and Steinhauser (2007).
Reviews of the NNLO calculation, including references to the
contributions of various groups, can be found, for example, in
Ferroglia (2008), Haisch (2008), and Misiak (2011).

One finds that the NLO QCD, NNLO QCD, and NLO
electroweak contributions amount to approximately 30%,
10%, and 4% of the LO QCD result, respectively. The
predicted value in the ST was found to be

Bð �B ! Xs�ÞSTE�>1:6 GeV ¼ ð3:15� 0:23Þ � 10�4;

(134)

which agrees with the world average of the experimental
measurements within 1:2�. The error on the theoretical
estimate is about 7% and was obtained by combining four
different uncertainties in quadrature: parametric uncertainty
(3%), uncertainty due to missing higher-order corrections
(3%), uncertainty due to nonperturbative corrections (5%),
and uncertainty due to the mc-interpolation ambiguity in the
calculation of Misiak and Steinhauser (2007, 2010) (3%). The
result in Eq. (134) is affected by a theoretical uncertainty
which is approximately of the same magnitude as the experi-
mental one. Additional perturbative NNLO corrections to the
branching ratio were recently evaluated by Ewerth (2008),
Asatrian et al. (2010), Ferroglia and Haisch (2010), and
Misiak and Poradzinski (2011); although these corrections
are not included in the calculation leading to Eq. (134), their
numerical impact is expected to be marginal. Additional work

within perturbation theory is still required to eliminate the
mc-interpolation ambiguity (Boughezal, Czakon, and
Schutzmeier, 2007).

The current theoretical error is dominated by the uncer-
tainty associated with nonperturbative effects, estimated to be
about 5% (Misiak et al., 2007). The nonperturbative uncer-
tainty primarily arises from corrections of Oð�s�QCD=mbÞ,
which are difficult to evaluate; they were analyzed by Lee,
Paz, and Neubert (2007) and Benzke et al. (2010).

New physics contributions to the partonic process can
modify the matching conditions for the Wilson coefficients
of the operators in the low-energy effective theory and can
also induce new operators besides those already present in the
ST. Therefore, the good agreement between the ST prediction
and the measured value of the �B ! Xs� branching ratio sets
strong constraints on the parameters of some new physics
models. For example, an analysis of the decay within the
type II two-Higgs-doublet model leads one to set a lower
bound on the mass of the charged Higgs boson: MH� >
295 GeV at 95% confidence level (Misiak et al., 2007).

R. Unstable particles

In the early 1990s, Sirlin (1991a) found that the conven-
tional definitions of the mass and width of the Z0 vector
boson, namely,

M2 ¼ M2
0 þ ReAðM2Þ; (135)

M� ¼ � ImAðM2Þ
1� ReA0ðM2Þ ; (136)

whereM0 is the bare mass,M is the on-shell mass, and AðsÞ is
the transverse self-energy, are gauge dependent in NNLO,
i.e., at the two- and three-loop levels, respectively. By ex-
tension, analogous conclusions hold true for other unstable
particles. This led to a serious theoretical problem because, in
the context of gauge theories, a fundamental requirement is
that physical observables should be gauge independent.

The original argument was based on the observation that
the complex-valued position �s of the propagator’s pole must
be gauge independent, since it is a singularity of the analyti-
cally extended S matrix. In the case of bosons, the inverse
propagator is proportional to

�ðsÞ ¼ s�M2
0 � AðsÞ; (137)

where s ¼ q2 is the square of the four-momentum transfer.
Thus, the pole position is

�s ¼ M2
0 þ Að�sÞ: (138)

Writing �s ¼ m2
2 � im2�2, where m2 and �2 are real, gauge-

independent parameters, one has

m2
2 ¼ M2

0 þ ReAð�sÞ; (139)

m2�2 ¼ �ImAð�sÞ: (140)

If one expands Að�sÞ about m2
2 and retains only leading

terms in �2, Eqs. (139) and (140) lead back to Eqs. (135) and
(136). On the other hand, if terms of higher order in �2

are retained, the comparison of Eqs. (139) and (140) with
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Eqs. (135) and (136) show that indeed M2 and � are gauge
dependent in higher orders. At the two-loop level, the analysis
shows that the gauge dependence of M2 occurs only in a
restricted range of the gauge parameter � and, as a conse-
quence, it is bounded. In fact, later Passera and Sirlin (1996)
showed that the maximum shift in M due to the gauge
dependence at the two-loop level is about 2 MeV. Although
a small effect, it is of the same magnitude as the 2.1 MeV
experimental error. However, at the three-loop level and
higher, the gauge dependence is unbounded, so that M and
� [cf. Eqs. (135) and (136)] are not only inconsistent with
basic principles, but their numerical values depend in an
arbitrary manner on the choice of �.

In fact, the comparison of the pole definitions of the mass
and width ðm2;�2Þ with the conventional ones ðM;�Þ leads to
the conclusion that the gauge dependences of the latter are
numerically very large, particularly in the case of a heavy
Higgs boson (Kniehl and Sirlin, 1998a, 1998b).

At this stage, it is instructive to point out the conceptual
difference between the gauge-independent parameter m2

2 and

the gauge-dependentM2. While m2
2 is the real part of the zero

of the inverse propagator, M2 is the zero of the real part, an
important difference.

In a second 1991 contribution, Sirlin (1991b) analyzed
specific physical amplitudes and derived an independent
proof of the need for additional higher-order gauge-
dependent counterterms in Eq. (135), a result that gives
additional support to the arguments and conclusions of the
first paper.

It has also been emphasized that Eq. (136) leads to serious
unphysical singularities if AðsÞ is not analytic in the neigh-
borhood of M2. This occurs when M2 is very close to a
physical threshold, as discussed by Fleischer and
Jegerlehner (1981), Bardin et al. (1991), Kniehl (1991,
1992a, 1992b, 1994), Bhattacharya and Willenbrock (1993),
and Kniehl, Palisoc, and Sirlin (2000, 2002), or, in the
resonance region, when the unstable particle is coupled to
massless quanta, as in the cases of the W vector boson and
unstable quarks. In particular, it was pointed out that the on-
shell mass of an unstable quark has an unbounded gauge
dependence of Oð�sð�g � 3Þ�Þ, where �g is the gluon gauge

parameter and � is the width (Passera and Sirlin, 1998a,
1998b; Sirlin, 1999).

In order to solve the serious problems raised by the gauge
dependence of M and � [cf. Eqs. (135) and (136)], Sirlin
(1991a) proposed to define the mass and width of the Z0

vector boson by means of the gauge-independent parameters

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ �2
2

q
; �1 ¼ m1�2

m2

: (141)

As emphasized in the same work, the advantage of the
ðm1;�1Þ definitions relative to the ðm2;�2Þ is that m1 and
�1 can be identified with the Z0 mass and width measured
at LEP.

Formal proofs of the gauge independence of �s and the
gauge dependence ofM and �, based on the Nielsen identities
that describe the gauge dependence of Green’s functions
(Nielsen, 1975), have been presented by Gambino and
Grassi (2000) and Grassi, Kniehl, and Sirlin (2001, 2002).

Applying the Nielsen identities to �ðs; �kÞ [cf. Eq. (137)],
one finds

@

@�l

�ðs; �kÞ ¼ 2�lðs; �kÞ�ðs; �kÞ; (142)

where we indicated explicitly the dependence on the gauge
parameters �k and �lðs; �kÞ is a complex, amputated, one
particle irreducible, two point Green’s function of Oðg2Þ
involving the gauge field, its Becchi-Rouet-Stora-Tyutin
variation, and the gauge fermion.

As �s is the zero of �ðs; �kÞ, it follows that
�ð�s; �kÞ ¼ 0: (143)

Differentiating Eq. (143) with respect to �l:

@ �s

@�l

@

@ �s
�ð�s; �kÞ þ @

@�l

�ð�s; �kÞ ¼ 0: (144)

Equations (142) and (143) imply that the second term
on the left-hand side (lhs) of Eq. (144) vanishes. As
ð@=@ �sÞ�ð�s; �kÞ ¼ 1þOðg2Þ, Eq. (144) leads to

@ �s

@�l

¼ 0; (145)

which expresses the gauge independence of �s. It is important
to note that this conclusion is valid to all orders in perturba-
tion theory.

Instead, taking the real part of Eq. (142):

@

@�l

Re�ðs; �kÞ ¼ 2½Re�lðs; �kÞRe�ðs; �kÞ

� Im�lðs; �kÞIm�ðs; �kÞ�: (146)

Recalling that the on-shellM2 is the zero of the Re�ðs; �kÞ, it
follows that

Re�ðM2; �kÞ ¼ 0: (147)

Differentiating Eq. (147) with respect to �l and using
Eqs. (146) and (147), one obtains

@M2

@�l

Re�0ðM2;�kÞ�2Im�lðM2;�kÞIm�ðM2;�kÞ¼0;

(148)

where the prime stands for a derivative with respect to M2.
Noting that Re�0ðM2; �kÞ ¼ Oð1Þ and that both
Im�lðM2; �kÞ and ImðM2; �kÞ are Oðg2Þ, Eq. (148) implies
that @M2=@�l ¼ Oðg4Þ. Thus, M2 is gauge dependent at the
two-loop level, i.e., in NNLO, the same conclusion reached
by Sirlin (1991a, 1991b).

Similarly, for the conventional expression of the width
[cf. Eq. (136)], a somewhat lengthier derivation leads in
leading order to

d

d�l

Im�ðM2;�kÞ
Re�0ðM2;�kÞ

¼2fIm�lðM2;�kÞ½Im�ðM2;�kÞ�2g0

þOðg8Þ; (149)

where d=d�l stands for the total derivative with respect to �l.
Since Im�l and Im� are both of Oðg2Þ, Eq. (149) implies
that Eq. (136) is gauge dependent in Oðg6Þ, i.e., in NNLO, in
agreement with the earlier conclusions (Sirlin, 1991a, 1991b).
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S. Renormalization of the Cabibbo-Kobayashi-Maskawa matrix

An important problem associated with the CKM matrix
(Cabibbo, 1963; Kobayashi and Maskawa, 1973) is its renor-
malization. An early analysis (Marciano and Sirlin, 1975b)
focused on the renormalization of UV divergences in the two-
generation case. Since the CKM matrix is one of the funda-
mental cornerstones of the weak interactions and, by exten-
sion, of the ST, it is important to develop renormalization
schemes that treat both the finite and divergent contributions
with well-defined renormalization conditions. Over the last
two decades several papers addressed this basic problem at
various levels of generality and complexity (Denner and
Sack, 1990; Kniehl and Pilaftsis, 1996; Gambino, Grassi,
and Madricardo, 1999; Barroso, Brucher, and Santos, 2000;
Kniehl, Madricardo, and Steinhauser, 2000; Diener and
Kniehl, 2001; Yamada, 2001; Espriu, Manzano, and
Talavera, 2002; Pilaftsis, 2002; Zhou, 2003, 2004; Denner,
Kraus, and Roth, 2004; Liao, 2004; Kniehl and Sirlin, 2006a,
2006b, 2009; Almasy, Kniehl, and Sirlin, 2009).

The main difficulties in the CKM renormalization arise
from external-leg mixing self-energy corrections. For in-
stance, for an outgoing quark, these EWC are of the form

�Mleg
ii0 ¼ �uiðpÞ�ii0 ð6pÞ 1

6p�mi0
; (150)

where i denotes the outgoing quark of momentum p and mass
mi, i

0 the virtual quark of massmi0 , and�ii0 ð6pÞ the self-energy.
In the following, we outline the strategies followed in two

of the most recently proposed on-shell schemes to renormal-
ize the CKM matrix at the one-loop level.

(A) Using a simple procedure based on Dirac algebra,
Kniehl and Sirlin (2006a, 2006b) separated the
contributions to �ii0 ð6pÞ=ð6p�mi0 Þ into two classes:
(1) gauge-independent self-mass (sm) contributions
proportional to ð6p�mi0 Þ�1 with a cofactor that in-
volves the chiral projectors a� ¼ ð1� �5Þ=2, but not
6p; (2) gauge-dependent wave-function renormaliza-
tion (wfr) contributions in which the virtual quark
propagator ð6p�mi0 Þ�1 has been canceled.

Furthermore, using the unitarity relation VlmV
y
mn ¼

�ln satisfied by the CKM matrix elements Vlm, one
finds that the wfr have an important property: all the
gauge-dependent and all the UV-divergent wfr contri-
butions to the physical amplitude W ! qi �qj depend

only on an overall factor Vij and the external quark

masses mi and mj, a property shared by the one-loop

proper vertex contributions. This leads to the cancel-
lation of the gauge dependence and UV divergence of
the wfr contributions to W ! qi þ �qj with those aris-

ing from the one-loop vertex corrections, exactly as in
the unmixed, single generation case.
The renormalization of the sm contributions is imple-
mented using the mass counterterms

�c Qð�mQðþÞaþþ�mQð�Þa�Þc Q ðQ¼U;DÞ;
(151)

where U (D) stands for the up (down) quarks, and
�mQð�Þ are nondiagonal matrices subject to the
Hermiticity condition �mQðþÞ ¼ �mQð�Þy.

The UV-divergent sm contributions obey the
Hermiticity condition, so they can be canceled by
the �mQð�Þ in all ii0 channels. However, this is not
the case for some of the finite parts. For this reason,
they used a specific renormalization prescription: the
�mQð�Þ were adjusted to cancel the full sm contribu-
tions in all diagonal (i ¼ i0) channels, as well as the
uc, ut, and ct channels for the U quarks and the sd,
bd, and bs channels for the D quarks. This implies
that there are residual sm contributions in the reverse
cu, tu, tc, ds, db, and sb channels, but they are finite,
gauge independent, and very small. In fact, since these
residual sm contributions converge in the limit mi0 !
mi, they may be regarded as additional finite and
gauge-independent contributions to wfr that happen
to be small. An attractive feature of this renormaliza-
tion prescription is that the external-leg sm contribu-
tions are fully canceled when the external particle is a
u, d, �u, or �d quark, a useful property since Vud is by far
the most precisely determined CKM matrix element
[cf. Eq. (90)].
The renormalization procedure outlined presents in-
teresting similarities with the approach followed by
Feynman (1949, 1962) in QED. Thus, it may be
regarded as a generalization of Feynman’s approach
to the case in which the self-energy �ii0 ð6pÞ contains
nondiagonal as well as diagonal components.
In the same work, Kniehl and Sirlin (2006a, 2006b)
showed that an equivalent and interesting formulation
of the same renormalization scheme is obtained by
diagonalizing the complete mass matrix m�
�mQðþÞaþ � �mQð�Þa� (m is the diagonal, renormal-
ized mass matrix) by biunitarity transformations act-
ing on the up and down quark spaces. This procedure
generates an explicit CKM counterterm matrix �V,
which automatically satisfies the following important
properties: it is gauge independent, preserves unitarity
in the sense that both the renormalized and bare CKM
matrices V and V0 ¼ V � �V are unitary at the one-
loop level, and leads to renormalized amplitudes that
are nonsingular in the limit in which any two quarks
become mass degenerate. In this alternative formula-
tion, the off-diagonal UV-divergent sm contributions
are canceled by �V while, as usual, the diagonal sm
contributions are canceled by the mass counterterms
that are also diagonal.
The renormalization scheme outlined has been gener-
alized to the case of an extended lepton sector that
includes Dirac and Majorana neutrinos in the frame-
work of the seesaw mechanism (Almasy, Kniehl, and
Sirlin, 2009).

(B) A second on-shell renormalization scheme (Kniehl
and Sirlin, 2009) is based on explicit mass counterterm
matrices

�mQ
ii0 ¼�mQðþÞ

ii0 aþþ�mQð�Þ
ii0 a� ðQ¼U;DÞ;

(152)

where �mQðþÞ
ii0 and mQð�Þ

ii0 are defined in terms of the

Lorentz-invariant self-energy functions and obey two
important properties: (i) they are gauge independent,
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and (ii) they automatically satisfy the Hermiticity

condition �mQðþÞ
ii0 ¼ mQð�Þy

ii0 of the mass matrix. The

second property implies that they can be applied
directly to all diagonal and off-diagonal amplitudes
and, in this sense, they are ‘‘flavor democratic’’ since
they do not single out particular flavor channels. As in
the case of scheme (A), diagonalization of the com-
plete mass matrices leads to a gauge-independent
CKM counterterm matrix �V that preserves unitarity
and now satisfies another highly desirable theoretical
property, namely, ‘‘flavor democracy.’’

T. S, T, and U parameters

‘‘New physics,’’ i.e., physics beyond the ST, may contrib-
ute to EWC. If the new physics is associated with a high-mass
scale and contributes mainly to the self-energies, the idea has
been proposed to parametrize its contributions in terms of
three amplitudes S, T, and U introduced by Peskin and
Takeuchi (1990); see also Lynn, Peskin, and Stuart (1986),
Holdom and Terning (1990), Kennedy and Langacker (1990,
1991), Altarelli and Barbieri (1991), Golden and Randall
(1991), and Peskin and Takeuchi (1992).

In the MS scheme we have (Marciano and Rosner, 1990;
Marciano, 1991, 1995; Sirlin, 1993, 1994a)

�r̂ ¼ ð�r̂ÞST þ �̂

4ŝ2ĉ2
SZ � �̂T; (153)

�r̂W ¼ ð�r̂WÞST þ �̂

4ŝ2
SW; (154)

�̂

4ŝ2ĉ2
SZ ¼

�
AZZðM2

ZÞ � AZZð0Þ
M2

Z

�
new

MS
; (155)

�̂

4ŝ2
SW ¼

�
AWWðM2

WÞ � AWWð0Þ
M2

W

�
new

MS
; (156)

�̂T ¼
�
AWWð0Þ
M2

W

� AZZð0Þ
M2

Z

�
new

MS
: (157)

In Eqs. (155)–(157), the A functions are the unrenormalized
self-energies defined according to the conventions of
Marciano and Sirlin (1980), MS means that the MS renor-
malization has been implemented and � ¼ MZ chosen, and
‘‘new’’ denotes new physics contributions. In Eqs. (155) and
(156), we applied the MS renormalization prescription for

�̂ðMZÞ and sin2�̂WðMZÞ proposed by Marciano and Rosner
(1990), which excludes new-heavy-physics contributions in
Anew
�� ðq2Þ and Anew

�Z ðq2Þ. Consequently, these two self-energies

are not included in the definitions of SZ and SW . We recall that

ŝ2 ¼ 1� ĉ2 ¼ sin2�̂WðMZÞ is the MS electroweak mixing
parameter evaluated at the scale � ¼ MZ, �r̂ and �r̂W are
the EWC in Eqs. (57) and (58), respectively (cf. Sec. III.D),
while ð�r̂ÞST and ð�r̂WÞST are their values in the ST. �̂ is the
MS fine structure constant at � ¼ MZ (cf. Sec. III.E).

Alternatively, one defines S � SZ, U � SW � SZ. T and U
are primarily sensitive to isodoublet mass splittings (gener-
ally, U � T), while S probes contributions from mass-
degenerate fermion doublets.

In conjunction with Eqs. (57) and (58), the modifications of
�r̂ and �r̂W displayed in Eqs. (153) and (154), induce the
linear shifts

ŝ2 ¼ ðŝ2ÞST þ �̂

4ðĉ2 � ŝ2Þ ½S� 4ŝ2ĉ2T�; (158)

MW ¼ðMWÞST
�
1þ �̂ĉ2

2ðĉ2� ŝ2ÞTþ
�̂

8ŝ2
U� �̂

4ðĉ2� ŝ2ÞS
�
;

(159)

where EWC of Oð�2Þ have been neglected.
Combining Eqs. (158) and (159), one can solve for SW :

�̂

4ŝ2
SW ¼ 2Bþ C; (160)

where

B ¼ MW

ðMWÞST � 1; C ¼ ŝ2

ðŝ2ÞST
� 1: (161)

In the case U ¼ 0, i.e., SW ¼ SZ � S, we also have

�̂ĉ2T ¼ 2½Bþ ðŝ2ÞSTC�; (162)

where we neglected a second-order term C2½ðŝ2ÞST=ŝ2� on the
rhs of the equation. In Eqs. (158)–(162), ðMWÞST and ðŝ2ÞST
are calculated using the EWC of the ST (cf. Sec. III.N) and a
chosen reference value for MH, while MW is identified with
the measured mass of the W boson. In turn, ŝ2 is evaluated

using the experimental value of sin2�
lept
eff , obtained from the

Z-pole asymmetries and applying Eq. (65).
In order to obtain the dependence of the neutral current

observables on S and T, one expresses the corresponding
amplitudes in terms of GF and the ST EWC evaluated at
the chosen reference value for MH, multiplies them by
	ð0Þnew ¼ 1þ �̂T, and inserts the expression for ŝ2 given
in Eq. (158). In particular, the weak charge QWðCsÞ, mea-
sured in atomic parity violation, is insensitive to T and thus
provides a direct probe of S (Marciano and Rosner, 1990;
Marciano, 1991, 1995).

A recent global analysis (Baak et al., 2012) employs the
reference values MH;ref ¼ 120 GeV and Mt;ref ¼ 173 GeV
and obtains

S ¼ 0:04� 0:10; T ¼ 0:05� 0:11;

U ¼ 0:08� 0:11;
(163)

while, assuming U ¼ 0, the results are

SjU¼0¼0:07�0:09; TjU¼0¼0:10�0:08: (164)

We see that the results in Eq. (163) are in good agreement
with the ST predictions S ¼ T ¼ U ¼ 0. By comparison, a
fourth generation of mass-degenerate fermions leads to
S ¼ 4=6� 	 0:21 [cf. Bertolini and Sirlin (1984)],
while technicolor models roughly contribute S 	
ð0:05–0:10ÞNTND þ 0:12, where NT and ND are the number
of technicolors and isodoublets, respectively (Marciano,
1995). Therefore, for one generation with NT ¼ ND ¼ 4
one expects S 	 0:9–1:7, values significantly larger than
the S result shown in Eq. (163). Bertolini and Sirlin (1991)
showed that Majorana neutrinos can give large negative
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contributions to the T parameter, i.e., of opposite sign to those
from the top quark and Dirac neutrinos.

An alternative formulation of the S, T, U analysis is based
on the �i (i ¼ 1, 2, 3, b) parameters, defined in terms of the

physical quantities MW , �l, AðlÞ
FB, and �b �b (Altarelli and

Barbieri, 1991; Altarelli et al., 1992; Altarelli, Barbieri,
and Caravaglios, 1993a, 1993b; Altarelli, 1994).

The applications of the S, T, and U formalism focused
mainly on new physics fermionic contributions to the self-
energies. On the other hand, new physics bosonic contribu-
tions are also of general interest. However, this poses a
theoretical problem: as pointed out by Degrassi, Kniehl,
and Sirlin (1993), in contrast with the fermionic case, the
bosonic contributions to the S, T, and U parameters, defined
in terms of the conventional self-energies [cf. Eqs. (155)–
(157)], are gauge dependent in the ST; furthermore, T and U
are divergent unless a constraint is imposed among the gauge
parameters. It is natural to expect that the same theoretical
problems arise in the bosonic new physics contributions. In
order to circumvent this problem, Degrassi, Kniehl, and Sirlin
(1993) proposed to replace the conventional self-energies in
Eqs. (155)–(157) by their pinch-technique counterparts
(Cornwall, 1981, 1982; Cornwall and Papavassiliou, 1989;
Papavassiliou, 1990; Degrassi and Sirlin, 1992), which are
gauge independent. Thus, this modification leads to a gauge-
independent formulation of S, T, and U in the bosonic sector.

U. Supersymmetry

In Sec. III.T we pointed out that a recent global fit leads to
values of the S, T, and U parameters that are in good
agreement with the ST expectations S ¼ T ¼ U ¼ 0. Thus,
at present, the analysis of the precision electroweak data does
not lead to clear signals of new physics beyond the ST.

However, there are powerful theoretical arguments that
strongly suggest the presence of new physics. The most
obvious one is that the ST does not incorporate gravity, one
of the fundamental forces of nature. In fact, the unification of
gravity with the ST, in particular, and quantum mechanics in
general, is one of the most important unsolved problems in
theoretical particle physics. At present, there is a widespread
belief among theorists that string theory provides the most
hopeful framework to achieve this major goal. On the other
hand, string theory leads to a landscape with an enormous
number of possible vacua (Bousso and Polchinski, 2000;
Susskind, 2003), without clear selection criteria, except per-
haps for anthropic arguments.

Another powerful argument, involving RC, is the Higgs
boson mass hierarchy problem. This involves the important
fact that the RC to M2

H are quadratically divergent. Thus, the

relation of the physical, renormalized mass MH, and the bare
mass M0

H, is of the form

M2
H ¼ ðM0

HÞ2 þOð�; g2; h2FÞ�2 þ � � � ; (165)

where g is the SUð2ÞL gauge couplings, � is the quartic Higgs

self-coupling, hF ¼ mf=v, mf is the mass of fermion f, v ¼
ð1= ffiffiffi

2
p

GFÞ1=2 ¼ 246 GeV is the vacuum expectation value of
the Higgs field, and � is the cutoff introduced to regularize
the UV divergence. The second term in Eq. (165) is the

quadratically divergent part of the self-mass RC and the
ellipsis represents ln� contributions as well as finite terms.10

Within the ST, the presence of theOð�2; ln�Þ þ � � � terms
on the rhs of Eq. (165) does not cause difficulties: as in all
renormalizable theories, they are canceled by the divergent
part of the mass counterterm��M2 ¼ ðM0

HÞ2 �M2
H . In such

an approach, ðM0
HÞ2 and the RC are regarded as unobservable

quantities and only M2
H has a physical meaning. However, if

we assume that the ST is embedded in a larger theory that cuts
off the momentum integral in the RC at its own finite scale, �
acquires a physical meaning. Specifically, � in Eq. (165) is
then identified with the scale of the new physics. For ex-
ample, if the new physics beyond the ST is gravity, � is

identified with the Planck mass � ¼ MP ¼ G�1=2
N ¼

1:2221� 1019 GeV, where GN is Newton’s gravitational
constant.

To illustrate the effect of these considerations on Eq. (165),
we consider a leading quadratically divergent contribution to
the RC arising from the diagram H ! top loop ! H.
Employing Eq. (8.6) in Langacker (2010) with mt ¼
173:2 GeV and � ¼ v ¼ 246 GeV, we find that this diagram
contributes 	 �3:8� 10�2�2. Using the gravity scale, � ¼
1:221� 1019 GeV, one obtains a RC 	 �5:6� 1036 GeV2.
Since, in absolute value, this is enormously larger than the
expected value of M2

H, there must be an extraordinarily fine-

tuned cancellation between ðM0
HÞ2 and the RC. As an illus-

tration, if we assume MH ¼ 125 GeV, the level of the re-
quired fine-tuning is

ðM0
HÞ2 � 5:6� 1036 GeV2

5:6� 1036 GeV2
¼ ð125Þ2

5:6� 1036

¼ 2:8� 10�33;

namely 3 parts in 1033. Such fine-tuning is generally regarded
as unnatural. On the other hand, if we demand a relatively
small level of fine-tuning, the same RC employed before
leads to a value of MH rather close to �. For example, if
we assume that the level of fine-tuning is 10%, we have
MH ¼ 0:75� 1018 GeV 	 MP=16. This is usually referred
to as the hierarchy problem. Namely, assuming a relatively
small level of fine-tuning, the quadratically divergent RC
push the value of MH from the electroweak scale to a value
within an order of magnitude of the gravitational scale.

The same problems occur when one considers the RC to
the vacuum expectation value of the Higgs field h0jHj0i:

v2 ¼ v2
0 þOð�; g2; h2FÞ�2 þ � � � ; (166)

where v ¼ 246 GeV defines the electroweak scale. Again,
if � ¼ MP, very large RC emerge, so that an unnaturally
fine-tuned cancellation between v0 and the RC must take
place. On the other hand, if one demands a relatively small
level of fine-tuning, the value of the weak scale vmoves close
to MP.

10Rules of correspondence between the poles’ positions in dimen-

sional regularization and UV cutoffs in four-dimensional calcula-

tions with L loops were stated by Veltman (1981) for quadratic

divergences, and derived by Ossola and Sirlin (2003), on the basis of

a heuristic argument, for quadratic and higher divergences.
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One frequently invoked solution of the Higgs boson mass

hierarchy problem is TeV scale supersymmetry. As is well

known, this theory, based on elegant symmetry principles,

postulates that every fermion (boson) particle has boson

(fermion) supersymmetric partners with the same quantum

numbers and masses. Since mass-degenerate partners of

known particles have not been found, it is clear that in nature

supersymmetry is broken.
An important property of supersymmetry is that the quad-

ratically divergent RC to M2
H arising from the fermion and

boson loops cancel each other, leaving only much smaller

supersymmetry-breaking contributions. Thus, if TeV scale

supersymmetry is an approximate symmetry of nature, such

cancellation would provide an elegant solution to the Higgs

boson mass hierarchy problem, based on fundamental sym-

metry principles.
In fact, over the last several years, supersymmetric scenar-

ios such as the minimal-supersymmetric standard model

(MSSM) have emerged as leading candidates for theoretical

frameworks beyond the ST. It involves five Higgs bosons: two

neutral CP-even scalars h and H (Mh <MH), one neutral

CP-odd pseudoscalar A, and one charged pair H�.
An interesting property is that, at the tree level, Mh  MZ,

which is ruled out by direct searches at 95% C.L. This is also

in contrast with the ST, where there is no tree-level upper

limit on MH, except for perturbativity and unitarity bounds.

On the other hand, for large stop masses, there are sizable RC,

dominated by top and stop loops, that significantly increase

the upper bound forMh. At present, the analysis yieldsMh &
135 GeV (Haber, 2010). Thus, we see that RC indeed play a

crucial role in ensuring the phenomenological consistency of

the MSSM.
In the MSSM, supersymmetric contributions decouple if

the superpartners’ masses are much larger than MZ. In that

regime, the fits are of the same general quality as in the case

of the ST. If some of them are of OðMZÞ, the fits are worse,

leading to constraints in the MSSM parameter space.
Another important result of supersymmetry is that the

unification of gauge couplings is much more successful

when they are extrapolated using the MSSM � functions,

with the couplings intersecting at MGUT � 3� 1016 GeV,
than when employing the ST � functions. On the other

hand, at present the agreement is not perfect: using �̂ðMZÞ
and sin2�̂WðMZÞ as inputs, one finds the prediction �sðMZÞ 	
0:13, which is slightly larger than the observed value 	 0:12.

As discussed in Sec. III.O, the possible contribution of

supersymmetric partners of low mass may provide a natural

explanation for the �3:5� discrepancy between the experi-

mental and ST values of a� ¼ ðg� � 2Þ=2.
Notwithstanding the impressive successes of supersymme-

try, it is important to remember that the existence of super-

symmetric partners, its most direct and compelling

prediction, has not been established so far.
It is also important to note that a much more egregious

hierarchy problem emerges in the analysis of the cosmologi-

cal constant �c ¼ 8�GN	, where 	 is the vacuum energy

density of the Universe. Assuming that the observed accel-

eration of the Universe is due to �c, the observed vacuum

energy density is 	 ¼ Oð10�47 GeV4Þ, while estimates of the

contribution to 	 of elementary particles range roughly from

OðTeV4Þ in TeV supersymmetry to Oðð1019 GeVÞ4Þ ¼
Oð1076 GeV4Þ if the UV cutoff in the quartically divergent
integrals is identified with MP. Thus, there is mismatch of
roughly 59 to 123 orders of magnitude between the estimates
of �c from particle physics and the observed value. This
implies that a cancellation between the bare cosmological
constant �0

c and the contributions from elementary particles
would require an extremely large and unnatural level of fine-
tuning. At the moment, it seems that there are no compelling
explanations for the observed value of �c, based on funda-
mental principles. In their absence, anthropic arguments are
sometimes invoked: namely, the value of �c should be in the
relatively small range that allows the formation of galaxies, a
crucial requirement for the existence of life itself (Weinberg,
1989). Such anthropic arguments may serve, for example, as
a selection criterion to choose among the multitude of vacua
in the string landscape. Nonetheless, if a more fundamental
explanation of the observed value of �c is not found, it seems
clear that the requirement of natural fine-tuning faces a great
challenge in the �c hierarchy problem.
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