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Frustration, the presence of competing interactions, is ubiquitous in the physical sciences and is a

source of degeneracy and disorder, which in turn gives rise to new and interesting physical

phenomena. Perhaps nowhere does it occur more simply than in correlated spin systems, where

it has been studied in the most detail. In disordered magnetic materials, frustration leads to spin-

glass phenomena, with analogies to the behavior of structural glasses and neural networks. In

structurally ordered magnetic materials, it has also been the topic of extensive theoretical and

experimental studies over the past two decades. Such geometrical frustration has opened a window

to a wide range of fundamentally new exotic behavior. This includes spin liquids in which the spins

continue to fluctuate down to the lowest temperatures, and spin ice, which appears to retain

macroscopic entropy even in the low-temperature limit where it enters a topological Coulomb

phase. In the past seven years a new perspective has opened in the study of frustration through the

creation of artificial frustrated magnetic systems. These materials consist of arrays of lithograph-

ically fabricated single-domain ferromagnetic nanostructures that behave like giant Ising spins. The

nanostructures’ interactions can be controlled through appropriate choices of their geometric

properties and arrangement on a (frustrated) lattice. The degrees of freedom of the material can

not only be directly tuned, but also individually observed. Experimental studies have unearthed

intriguing connections to the out-of-equilibrium physics of disordered systems and nonthermal

‘‘granular’’ materials, while revealing strong analogies to spin ice materials and their fractionalized

magnetic monopole excitations, lending the enterprise a distinctly interdisciplinary flavor. The

experimental results have also been closely coupled to theoretical and computational analyses,

facilitated by connections to classic models of frustrated magnetism, whose hitherto unobserved

aspects have here found an experimental realization. Considerable experimental and theoretical

progress in this field is reviewed here, including connections to other frustrated phenomena, and

future vistas for progress in this rapidly expanding field are outlined.

DOI: 10.1103/RevModPhys.85.1473 PACS numbers: 75.75.�c, 75.50.Lk, 75.10.Hk

CONTENTS

I. Introduction 1473

II. Context 1474

A. Frustration in water ice and spin ice 1474

B. The ice model and magnetic monopoles 1475

III. Artificial Spin Ice: Basic Structures 1475

A. Artificial square ice 1476

B. Artificial honeycomb ice and its generalizations 1477

IV. Characterizing and Improving Equilibration 1478

A. Artificial spin ice as a nonthermal ensemble 1478

B. Kinetics and disorder 1479

C. Artificial spin clusters 1481

D. Second-generation equilibration schemes 1481

V. True Degeneracy, Monopoles and More 1483

A. The quest for true degeneracy 1483

B. Monopoles and multipoles 1483

C. Collective physics in honeycomb artificial spin ice 1485

VI. Other Artificial Spin Systems 1488

VII. Future Prospects 1488

Acknowledgments 1489

References 1489

I. INTRODUCTION

In many-body physics, complex behavior can arise in the
form of collective phenomena even from simple interactions
between elementary building blocks; superconductivity and
the fractional quantum Hall effect, involving Cooper pairs
and fractionally charged Laughlin quasiparticles, respec-
tively, are prime examples. In fact, the effort to understand
natural materials in terms of new phases and their excitations
emerging at low temperature has dominated condensed mat-
ter physics research over the last decades.

Recently, the study of collective phenomena has begun to
exploit tailor-designed structures of desired properties, which
can also be directly visualized. In the case of magnetic
materials, this new approach uses advances from the nano-
sciences (in lithography, atomic-scale microscopy, and thin
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film growth) to customize nanoscopic magnetic degrees of
freedom and their geometric arrangement, even allowing the
readout of their states microscopically in real time. This field
has taken on the name of artificial frustrated magnetism, on
account of the initial focus on the physics of systems with
competing interactions. It has opened a new window to col-
lective behavior, manifested in thermodynamic and dynamical
properties, both in and particularly out of equilibrium.

‘‘Artificial spin ice’’ (Wang et al., 2006) is a two-
dimensional array of magnetically interacting nanoislands
or nanowire links whose magnetic degrees of freedom can
be visualized directly in real space through a variety of
techniques (e.g., magnetic force microscopy, Lorentz micros-
copy, neutron scattering, Hall effect). Introduced initially to
mimic the frustrated behavior of naturally occurring spin ice
materials and to reproduce celebrated two-dimensional mod-
els of statistical mechanics, it has raised many distinct issues
and developed into its own field of study. Understanding these
systems requires a novel combination of concepts from fields
as diverse as classical correlated spin models, disordered
systems, information theory, granular media, and micromag-
netics, with the ground-state entropy of ice and the dynamics
of magnetic monopole excitations even putting in prominent
appearances. Reflecting its multidisciplinary nature, it has
attracted physicists from a broad range of backgrounds, and
work in the field has evolved with close connections between
experiments and theory.

This Colloquium provides a broad introduction to this
young and rapidly developing area of research. We summa-
rize key experimental and theoretical developments of the last
seven years, along with the conceptual groundwork that has
been laid. We do not aim at an exhaustive survey of the
literature; rather our goal is to provide a solid point of
reference to scientists interested in learning about the
field—establishing a common introduction to, and for, the
heterogeneous artificial frustration community.

This article is organized as follows. We first provide an
overview of the central themes whose interplay gives rise to
new phenomena: tunable degrees of freedom and their geo-
metric arrangement, frustration, and the resulting generation
of low-energy scales and emergent phenomena, the effect of
local constraints on dynamics and equilibration, and finally
the role of disorder.

The remaining material fleshes out this picture by provid-
ing the requisite details. Through an account of the experi-
mental progress that has brought the field into existence, we
lay the groundwork by introducing the model systems and
probes to study them. We then discuss central theoretical and
experimental aspects of artificial frustrated magnets. We
conclude by examining a range of offshoots of artificial
frustrated magnet research as well as considering possible
future directions for the field.

II. CONTEXT

The ability to control degrees of freedom and manipulate
their interactions underpins much of modern applied science.
Advances in the field of semiconductors and lithography now
allow us to nanostructure quasi-two-dimensional materials
with few constraints. In artificial spin ice, such methods are

used to deposit single-domain magnets of submicron dimen-

sion into two-dimensional arrays. By appropriately designing

the shape, size, and composition of the magnetic structures,

we can control properties such as individual magnetic mo-

ments, anisotropy, and coercive field, and therefore tune

interactions and responses to an external field. The geomet-

rical arrangement of multiple such structures in close prox-

imity is the essential step underpinning the collective

behavior, on which we will focus. As in conventional mag-

netism, the geometry of the moment arrangements in a lattice

(square, triangular, honeycomb, or kagome, for instance) has

tremendous ramifications, and here it can be chosen at will.

Particular emphasis has been placed on frustrated arrange-

ments, whose properties have long been of interest.

A. Frustration in water ice and spin ice

Frustration in a physical system emerges from the

impossibility of simultaneously minimizing all interactions.

It can arise from intrinsic structural disorder, as in spin

glasses, or in a regular geometry that carefully balances

competing interactions. Pioneering works on geometrical

frustration date back to the 1920s, when Pauling (1935)

explained Giauque’s (Giauque and Ashley, 1933) measure-

ments of the zero-temperature entropy of water in terms of

multiple choices in allocating hydrogen bonds between H2O
molecules in ice. A given oxygen atom in water ice is situated

at a vertex of a diamond lattice and has four nearest-neighbor

oxygen atoms, each connected via an intermediate proton

(see Fig. 1). The proton is not centered between the two

surrounding oxygen atoms, but rather is positioned closer to

one or the other. The lowest energy state has two protons

positioned close to the oxygen and two protons positioned

farther away, forming a ‘‘two-in—two-out’’ state. Such states

are said to obey an ice rule, which can be mapped to a spin

model possessing an extensive degeneracy of states

(Anderson, 1956). In the 1960s and 1970s, a two-dimensional

analog of the ice system (the six-vertex model) and its many

generalizations were studied extensively and solved exactly

(Lieb, 1967; Wu, 1969; Lieb and Wu, 1971; Baxter, 1982).

Dy
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FIG. 1 (color online). The ice rule: In (cubic) water ice (right) Ic,

oxygen ions are arranged at the sites of a diamond lattice and are

hydrogen bonded by an intermediate proton. The lowest energy

configuration consists of two protons close to each oxygen atom and

two farther away. Such ice states map onto spin configurations (left)

in which a spin pointing toward the oxygen atom represents a close

hydrogen atom. Therefore in the ground state the effective sum of

all the spins in a vertex should be zero: two spins pointing out, two

pointing into a tetrahedron. The spin model captures the behavior of

the spin ice materials, in which ferromagnetically interacting mo-

ments are constrained to point directly into or out of the tetrahedra.

From Castelnovo, Moessner, and Sondhi, 2012.
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Experimental studies of frustration received a further boost

in the early 1990s. Certain magnetic materials displayed

unusual behavior characterized by lack of conventional mag-

netic ordering down to very low temperatures, sometimes

orders of magnitude below the energy scale of the interactions

among the magnetic moments, as a consequence of geomet-

rical frustration; for reviews from differing perspectives,

see Ramirez (1994), Moessner and Ramirez (2006), Balents

(2010), and Lacroix, Mendels, and Mila (2011). Some of

these materials exhibit spin-glass-like behavior, such as his-

tory and time dependent properties, at the lowest tempera-

tures—even in the presence of apparently only minimal levels

of the structural disorder that has traditionally been associ-

ated with such glassiness (Mydosh 1993). Other materials

display strong spin fluctuations down to the lowest accessible

temperatures, thus suggesting a new sort of ‘‘spin liquid’’

phase. Most of these materials have antiferromagnetic inter-

actions mainly between pairs of neighboring spins, i.e., with

an exchange interaction for a pair of spins minimized when

the spins are oppositely oriented.
Harris et al. (1997) initiated a study of a group of pyro-

chlore materials such as Ho2Ti2O7 that appeared to break the

mold. Unlike other geometrically frustrated magnets, the

moments exhibit a net ferromagnetic interaction between

nearest-neighbor spins, i.e., the spins energetically preferred

to have their moments aligned. Such ferromagnetic interac-

tions are usually considered antithetical to frustration, but the

low-temperature state of the moments was not ordered, in-

dicating that strong frustration did exist in this system. This

frustration arises because the magnetic moments reside on a

lattice of corner-sharing tetrahedra, and they are constrained

to point directly either toward or away from the center of a

tetrahedron (and consequently away from or toward the

center of the neighboring tetrahedron). Geometrically, this

is exactly the same configuration as the spin model of hydro-

gen ion positions in water (see Fig. 1): with the ferromagnetic

interaction, the low-energy state of any tetrahedron obeys the

ice rule, with two spins pointing in and two spins pointing

out. Harris et al. noted this similarity, which was confirmed

by measurements of the residual state entropy by Ramirez

et al. (1999).
The spins in these spin ice materials (which include a range

of Dy and Ho pyrochlores) have large moments, so that they

can often be described classically (Siddharthan et al., 1999).

They have emerged as important model systems with exotic

field-induced phase transitions and unusual glassiness. The

theoretical investigation of this system has also revealed a

range of surprises, including the discovery that the effective

nearest-neighbor ferromagnetic interaction arises in part from

dipolar coupling among the spins in the system (Siddharthan

et al., 1999; Bramwell and Gingras, 2001). Perhaps most

exciting, the fundamental spin excitations in these materials

behave like magnetic monopoles (Castelnovo, Moessner, and

Sondhi, 2008), linked by effective ‘‘Dirac strings’’ of reversed

magnetization and exhibiting amagnetic Coulomb interaction.

The inverted commas aroundDirac strings are in order here, as

the reversed magnetization is observable, and hence these

strings, unlike those envisioned by Dirac, do not, e.g., impose

any conditions on the quantization of electric charge. These

excitations have since been probed experimentally (Bramwell

et al., 2009; Fennell et al., 2009; Kadowaki et al., 2009;Morris
et al., 2009). For a review, see Castelnovo, Moessner, and
Sondhi (2012).

B. The ice model and magnetic monopoles

While clarifying the physics of ice, a substance that our
ancestors had reason to think about long before the advent of
micromagnetics, Lieb’s solution of the ice model in two
dimensions was an important milestone in the study of critical
phenomena. It provided a concrete example of a two-
dimensional phase transition not belonging to the Ising uni-
versality class (Lieb, 1967). Most importantly in the present
context, the ice models present the simplest setting in which
phenomena of great conceptual importance, such as residual
entropies and emergent gauge structures, appear in transpar-
ent yet nontrivial ways.

Ice models involve Ising spins residing on the bonds of a
lattice. They are also called vertex models because an assign-
ment of energy is given to configurations of spins converging
in a vertex. For instance, in the square lattice, the ice rule
specifies that half the arrows point into, and the other half out
of, each vertex, and the model of configurations satisfying
this constraint is called the six-vertex model (Baxter, 1982). If
one considers the spins as dumbbells of magnetic charge, then
the ice rule guarantees charge neutrality in each vertex, and
excitations above the ice-rule manifold correspond to mag-
netic monopoles (a subject that is expanded upon later).

Different generalizations of the ice rule have been pro-
posed in lattices with odd coordination number z, before
artificial spin ice came into existence. There it is not possible
to have local charge neutrality, as a sum of an odd number of
þ1’s and�1’s cannot add up to zero. One generalization is to
consider states with a maximally balanced number of bonds
pointing in and out (Will, Ballou, and Lacroix, 2002): each
vertex must have minimal charge, either þ1 or �1. Another
one, applicable to bipartite lattices only, is more stringent: the
demand is for one sublattice to have chargeþ1, and the other
sublattice �1 throughout (Udagawa, Ogata, and Hiroi, 2002;
Moessner and Sondhi, 2003). We see below that these rules
define different phases (ice I and ice II) of the so-called
honeycomb artificial spin ice.

III. ARTIFICIAL SPIN ICE: BASIC STRUCTURES

While research on geometrically frustrated magnetic ma-
terials was developing rapidly, the spin ice systems with their
large spins and almost classical behavior suggested a new
approach to the study of geometrical frustration, based on the
lithographic creation of magnetic nanoislands. Such islands,
which are usually a few tens of nanometers thick and have
lateral dimensions of the order of 100 nm, are typically
fabricated using electron beam lithography. The study of
magnetic properties of single nanoislands had already
reached a considerable level of maturity both experimentally
and theoretically (Bader, 2006).

In such small structures, the shape anisotropy, in which a
separation of scales in the demagnetizing field in different
directions creates an easy axis, can determine the size and
moment direction of the ferromagnetic domains, i.e., of the
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regions in which the atomic moments are all aligned along a
particular direction (Imre et al., 2006). For example, in a
sufficiently small, elongated ellipsoidal island or a nanowire
link in a network, the magnetostatic energy is minimized
when the moments align along the long axis. Such islands
or links therefore effectively behave as large spins, parame-
trized by the Ising variable S ¼ �1, which encodes which
direction they point along the long axis.

In the particular case of single-domain ferromagnetic is-
lands, the islands can be placed in close proximity to each
other and arranged geometrically in virtually any two-
dimensional configuration. The magnetostatic coupling be-
tween neighboring islands can then influence the relative
moment directions, and an array of closely spaced islands
constitutes an interacting many-body spin system.

The concept of artificial spin ice came with the recogni-
tion that such a system of ferromagnetic islands could
replicate much of the physics of the spin ice systems in a
two-dimensional model system of ferromagnetic islands.
However, these systems proved to be much more complex
and revealing than expected.

A. Artificial square ice

Wang et al. (2006) created such arrays of islands from thin
films of permalloy, an iron-nickel alloy with isotropic mag-
netic properties, in a square geometry shown in Fig. 2. If one
considers a single vertex of four islands, then the lowest
magnetostatic energy states have two moments oriented in
toward the center and two oriented away from the center, in
direct analogy to the tetrahedra of spin ice materials. For this
square artificial spin ice, the intrinsic frustration is similar to
that of the two-dimensional square ice model (Baxter, 1982),
with the important feature that perpendicular islands interact
more strongly than parallel ones, so that degeneracy of the ice

rule is lifted. This leads to a unique antiferromagnetic ground

state and therefore to an absence of residual entropy. In this

sense, when only the interactions at the vertex are considered,

artificial square ice is a physical realization of a generalized

F model (Rys, 1963; Lieb, 1967; Wu, 1969; Lieb and Wu,

1971) rather than of the ice model.
Wang et al. produced square arrays of different lattice

constants, all with the same island size, and subjected them

to rotational demagnetization (the details of this method of

preparation will be discussed later) (Wang et al., 2006, 2007;

Ke, Li, Nisoli et al., 2008). They then directly imaged the

orientation of magnetic moments via magnetic force micros-

copy (MFM). By counting the different kinds of vertices, they

demonstrated a suppression of non-ice vertices and hence an

excess of ice vertices (see Fig. 3) (Wang et al., 2006). An

analysis of correlations between spins confirmed that nearest-

neighbor correlations are dominant and long-range order is

absent.
These early experiments on square ice established the

possibility of producing two-dimensional magnetic nanoar-

rays in which the islands interact with sufficient strength to

display collective phenomena. Indeed, a simple estimate of

the interaction energies (depending on geometry and material

of realizations, the moment of each island is approximately

3� 107 Bohr magnetons, estimated from permalloy, and the

separation between islands is of the order of tens of nano-

meters) yields an energy scale of around 104–105 K. An

analysis of the equilibrium properties of the corresponding

effective ice model showed that the experimental system

should be well into its ordered state (Möller and Moessner,

2006) at room temperature, at which the experiments were

undertaken. This implied that the actual experimental state of

the system is athermal because, as detailed below, thermal

fluctuations at reasonable working temperatures could not

induce spin flips. An explanation of experiment thus needs

FIG. 2 (color online). Artificial spin ice (shown on the top left as an atomic force microscopy image) allows for direct visualization of its

magnetic degrees of freedom through MFM (top center) and other techniques (see the text). Energetically favorable and unfavorable dipole

interactions are described in the top right. Bottom: four-legged vertices have 24 ¼ 16 possible moment configurations, which separate into

four symmetry-distinct types, shown here with the relative frequency, which corresponds to random assignation of the moments and grouped

in clusters of increasing energy, from left to right. Note that even in the low-energy configurations, some interactions are frustrated, but the

lack of degeneracy beside spin inversion in type I vertices provides an ordered antiferromagnetic ground state. From Wang et al., 2006.
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to take into account the dynamics of the ac demagnetization

to which the artificial spin ice was subjected.
Dynamical studies of these systems were initiated by

Möller and Moessner (2006), who proposed an approach

that assumed islands flip independently, provided that the

energy gain from flipping in the applied (rotating) field ex-

ceeds a threshold value, as implied by a nonzero coercive field.

A second fitting parameter, the attempt rate for island flips,

allowed accounting for the experimental data quantitatively,

as depicted in Fig. 3: there the dotted line displays the best fit

for a model of thin dipolar needles. This systematically over-

estimates the frequencies of type I vertices at the expense of
those of type II. By using parameters determined from micro-
magnetic simulations (Wang et al., 2006; Nisoli et al., 2007)
rather than the simple dipolar needle model, the discrepancy
with the data disappears as shown by the dashed line in Fig. 3
(Möller and Moessner, 2006). Budrikis and collaborators then
pursued this line of modeling to simulate the effects of dis-
order (Budrikis, Politi, and Stamps, 2010, 2011; Budrikis,
2012). In a different approach, Nisoli and co-workers at-
tempted to frame the issue in the context of the statistical
mechanics of a granular material (Nisoli et al., 2007, 2010)
and found a description in terms of an effective temperature,
controlled by the external magnetic drive.

B. Artificial honeycomb ice and its generalizations

Around the same time, Tanaka et al. (2006) performed a
study on a continuous honeycomb network of ferromagnetic
wires, which was published only a month after the work of
Wang et al. (2006). Each vertex in this structure connects three
nanowire links, and the magnetostatic energy of the vertex is
minimized when it obeys a pseudoice rule which dictates that
two moments point in and one points out, or vice versa.

This geometry and interaction is known as the honeycomb
ice system and was later closely studied both theoretically
and experimentally (Sec. V). Its various phases can be mod-
eled as a hexagonal vertex model obeying the pseudoice rule,
or as a kagome lattice of interacting dipoles, or as a hexagonal
lattice of magnetic charges (see Fig. 4). All these are useful

FIG. 4 (color online). Honeycomb ice. (a)–(d) Possible moment configurations at a vertex. (e) The spins in honeycomb ice (dashed lines)

are arranged at the vertices of a kagome lattice (solid line). Because of the odd coordination of the lattice, vertices of the honeycomb, which

form a hexagonal lattice, harbor a positive (white) or negative (black) net magnetic charge, which can be revealed in the MFM (f).

(g) Schematics of the honeycomb lattice obeying the pseudoice rule (two in–one out and vice versa). From Tanaka et al., 2006.
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FIG. 3 (color online). Suppression of non-ice vertices in artificial

spin ice. The excess percentages of different vertex types compared

to a random arrangement, plotted as a function of the lattice spacing

of the underlying square array, approach zero for the largest lattice

spacing, i.e., weakest interactions. Symbols: experimental data from

Wang et al. (2006); lines: theoretical data from dynamical modeling

of Möller and Moessner (2006).
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descriptions of its various regimes (see below) and have

therefore led to some degree of confusion in the nomencla-

ture, with the arrangement being called honeycomb, or hex-

agonal, or kagome spin ice. In this review we stick with the

intuitive name honeycomb that readily reflects its actual

structure and declares no special description.
Tanaka and collaborators both examined the magnetic

moment configuration and pioneered magnetoresistance mea-

surements of these systems. Their measurements of magne-

toresistance revealed sudden drops corresponding to spin

switching, which suggested an ice-type interaction at the

vertices of their honeycomb. To corroborate this intuition

they performed an MFM analysis, which, however, in a net-

work of connected nanowires, could reveal only the net

magnetic charge at the vertices. These results were consistent

with the hypothesis that the system obeyed the ice rules,

although not without ambiguity, as demonstrated by Qi,

Brintlinger, and Cumings (2008). They followed Tanaka’s

work with a study involving direct visualization via Lorenz

microscopy (Qi, Brintlinger, and Cumings, 2008), which

demonstrated rigid adherence to the honeycomb pseudoice

rule after rotational demagnetization, as well as the absence

of long-range order, in analogy to the square ice results. Qi

and co-workers also found that the measured correlations

were invariably of higher absolute value than the ones ob-

tained from pure nearest-neighbor modeling. The signs of the

correlations were consistent with the effect of the long-range

dipole interaction computed via magnetostatics.
In later years, a number of experimental studies explored

other manifestations of artificial spin ice, both on connected

networks andon separated islands. It is nowpossible to realize a

variety of thermodynamic ensembles of artificial spin ice and to

image them through a wide range of techniques. Of particular

experimental interest has been the response of these systems to

appliedmagnetic fields (Remhof et al., 2008;Westphalen et al.,

2008; Schumann et al., 2010, 2012; Mengotti et al., 2011;

Branford et al., 2012; Huegli et al., 2012), issues of thermal-

ization (Morgan et al., 2011a, 2011b, 2013), the nature of

different lattice geometries (Ke, Li, Zhang et al., 2008; Li,

Ke et al., 2010; Zhang et al., 2011), and the influence of

disorder (Daunheimer et al., 2011; Kohli et al., 2011).
The contiguous arrays mentioned above (Tanaka et al.,

2006; Qi, Brintlinger, and Cumings, 2008) proved useful

for further developments in magnetotransport measures

(Branford et al., 2012), although they pose issues in the direct

visualization of magnetic spins through MFM imaging. On

the other hand, arrays of separated nanoislands are readily

imaged through MFM (Li, Ke et al., 2010; Nisoli et al.,

2010). Contiguous honeycomb ice is also associated with a

lesser degree of disorder (Daunheimer et al., 2011). By

comparing experimentally measured spin correlations with

the predictions of a model based purely on the nearest-

neighbor pseudoice rule, Qi also suggested evidence for the

effects of long-range dipolar interactions in this system. Later

we discuss how theoretical descriptions of the honeycomb

lattice that go beyond a purely vertex model predict lower

entropy states, involving rearrangement of magnetic charges

as well as an ordered loop state.
While square and honeycomb artificial spin ice differ in both

topology and energetics, the brickwork lattice is intermediate

between the two. It shares the topology of the honeycomb
lattice while, as in square ice, the interactions between spins
are not equivalent. From the point of view of pure vertex
energy, it possesses a ground state, equivalent to that of the
square artificial spin ice antiferromagnetic tiling. Li, Ke et al.
(2010) compared the population of lowest energy vertices of
brickwork artificial spin ice (after ac demagnetization) with
that of both honeycomb and square artificial spin ice and found
that brickwork behaves in ways much similar to the latter. That
the local symmetry of the vertex might play a larger role than
the topology of the array is perhaps not surprising: without a
locally degenerate energy profile to start with, the global
ground state is unlikely to exhibit extensive entropy.

A recent series of experiments (Zhang et al., 2012)
considered honeycomb and kagome lattices of magnetic mo-
ments pointing out of the substrate plane. As far as nearest-
neighbor interactions are concerned, these evidently map onto
an antiferromagnetic Ising model: the honeycomb is not
frustrated while the kagome is. The out-of-plane kagome, in
particular, if described at the first nearest-neighbor level, can
be mapped onto the in-plane honeycomb artificial spin ice.
However, the profile of the long-range tail of the magnetic
interactions is completely different: it is isotropic and leads to
an effectively antiferromagnetic interaction at all distances r
and orientations (decaying as r�3). Yet, quite strikingly, when
Zhang and co-workers compared the pair spin correlation
extracted from the two systems after ac demagnetization,
they found that they almost matched. It seems therefore that
field-driven ensembles in these frustrated spin systems are
dominated by lattice topology and nearest-neighbor interac-
tions, with the long-range tail having little effect.

IV. CHARACTERIZING AND IMPROVING

EQUILIBRATION

The insight in which the artificial frustrated arrays exhibit a
nonthermal ensemble (Möller and Moessner, 2006) is at the
root of two central conceptual questions that have since
received much attention. First, is there any way to equilibrate
the arrays thermally? And, second, what is the novel physics
involved in these intrinsically nonequilibrium systems? To
these we turn next.

A. Artificial spin ice as a nonthermal ensemble

As mentioned, in early experiments artificial spin ice was
prepared via ac demagnetization: as frustration often leads to
the absence of magnetization, it appeared reasonable to de-
magnetize the arrays in order to reveal the underlying frus-
trated manifold. ac demagnetization has a long history, and it
had been employed routinely to modify the domain structures
in bulk ferromagnets. Artificial spin ice provided an oppor-
tunity to investigate how demagnetization relates to energy
minimization at a constituent level. As the dominant interac-
tion energy involves different islands sharing the same vertex,
one can approximate the total energy of the array by assign-
ing a vertex energy to artificial spin ice (Evert ¼

P
ni�i,

where �i is the energy of a vertex of type i and ni its
frequency, which can be extracted from MFM images)
(Baxter, 1982; Nisoli et al., 2007). Thus, one needs to study
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the effect of ac demagnetization on the vertex frequencies,

rather than just the macroscopic magnetization.
Early protocols of rotational demagnetization for artificial

spin ice were able to disorder the vertices without in fact

reducing their overall energy (Wang et al., 2006, 2007; Nisoli
et al., 2007). Improved protocols consistently return ensem-

bles of desired energy, but it proved impossible to lower the

energy of square ice beyond a limit far above the ground state
(Ke, Li, Nisoli et al., 2008). The most effective protocol

found by Ke et al. involves rotating the sample in a magnetic
field of alternating polarity and decreasing amplitude. The

idea behind the protocol is that the external magnetic field

anneals artificial spin ice only when it visits a certain window
of opportunity, centered on the island coercive field, and

whose size is given by the local field—controlled in turn by

the lattice constant of the array. One expects that, by decreas-
ing the amplitude of the steps, one can map that window ever

more finely, hence (hopefully) perform a better annealing. A
poorly understood issue of the protocol is worth mentioning

here: for optimal performance, the magnetic field needs to

switch sign, which should be irrelevant given that the sample
is rotating anyway. This suggests that peaks in the temporal

rate of the magnetic field might be essential to the process and

underlines the well-known fact that navigating complex en-
ergy landscapes is a highly nontrivial problem in itself.

Of course, direct inspection of microscopic degrees of

freedom through MFM images provides much richer infor-
mation about the microstate than its energy alone. Alongside

the experimental effort, Nisoli et al. (2007, 2010) developed a
simple theoretical treatment of ac demagnetization as a sto-

chastic process, based on the assumption that ac demagne-

tized artificial spin ice can be treated as an externally driven
granular material. Because of the complexity of its energy

landscape and the fact that its microscopic degrees of free-

dom can be read directly via MFM scans, artificial spin ice
can in principle provide a more robust and general validation

for effective thermodynamics formalisms that have been
more generally pioneered in studies of simpler granular

materials (Cugliandolo, Kurchan, and Peliti, 1997; Sollich

et al., 1997; Behringer, 2002; Colizza, Barrat, and Loreto,
2002; Abate and Durian, 2008; Cugliandolo, 2011) as well as

in the theory of topological defects in materials (Langer,

Bouchbinder, and Lookman, 2010).
Assuming that the process of ac demagnetization can pro-

duce a well-defined statistical ensemble, the final microstate

can be computed as the most likely outcome of that stochastic
process. The optimization of suitable effective entropy, ob-

tained by combinatorics and constrained to an energy mani-
fold, defines an effective temperature and allows for prediction

of the vertex frequencies (see Fig. 5). The effective tempera-

ture can be controlled by the external drive and its reciprocal is
linear in the amplitude of themagnetic step sizewith which the

field is reduced (Nisoli et al., 2007, 2010).

B. Kinetics and disorder

While controllable to a certain degree, any attempted

magnetoagitation of square ice resulted in frozen disorder
in which small grains of type I vertices were visually dis-

cernible in MFM images. The portion of ground-state vertices

increased from a relative occurrence of 12% to a maximum of
55% (see Fig. 5).

The kinetics of the process is still not fully understood,
which is hardly surprising since the relevant phenomena in-
clude jamming, kinetic constraints, and glassiness. Clearly
annealing out excited vertices cannot be done locally: two
vertices of opposite magnetic charge need to meet so that they
can annihilate in pairs. This amounts to a reaction annihilation
problem supplemented by kinematic constraints. These con-
straints restrict themotion ofmonopole excitations toward one
another, which can even get stuck to each other without being
able to annihilate (Castelnovo, Moessner, and Sondhi, 2010;
Levis andCugliandolo, 2012).Different computational studies
have attempted to explain the failure to reach the square ice
ground state via a variety of models of the demagnetization
dynamics (Mól et al., 2009;Budrikis, Politi, and Stamps, 2010,
2012; Budrikis, 2012; Budrikis et al., 2012; Lammert, Crespi,
and Nisoli, 2012).

Disorder is a candidate cause for the lack of complete
annealing of square ice through ac demagnetization. Islands
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FIG. 5 (color online). ac demagnetization at different magnetic

field step sizes returns widely different magnetic spin ensembles.

The process can be seen as an external drive acting on a granular

material, and its outcome can be described in terms of an effective

temperature, which depends on the magnetic drive. (a) Relative

frequencies of different vertices of square ice (see Fig. 2) from square

arrays of different lattice constants, annealed at different step sizes, are

plotted against their effective reciprocal temperature. Lines show

theoretical predictions based on an effective thermodynamics.

(b) Linear dependence between the extracted reciprocal effective

temperature and the magnetic field step size. FromNisoli et al., 2010.
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have slight variations in shape, height, and relative position,
which in turn translate into variations of the coercive field and
interaction energy. This effect is naturally more pronounced
in artificial spin ice than in natural spin ice since it consists of
lithographically fabricated islands instead of identical atomic
spins.

Disorder in the coercive field of the nanoisland was re-
vealed through magneto-optical Kerr effect measurements of
the global magnetization of square arrays (Kohli et al., 2011).
Comparing the strong and nonmonotonic angular dependence
of the arrays’ coercive field with micromagnetic simulations
for arrays of different lattice constants, Kohli and collabora-
tors concluded that global coercitivity was strongly affected
by a collective behavior rooted in the disorder of the islands’
individual intrinsic coercive fields. Islands with lower intrin-
sic coercive field activate cascades of reversals, which reduce
the global coercivity of the array. As expected, the effect was
more pronounced at small lattice constant, where interisland
interactions are stronger.

To explore the role of disorder in the coercive field and in
the interisland interaction, as well as of finite size effects on
ac demagnetization, Budrikis et al. (Budrikis, Politi, and
Stamps, 2010; Budrikis, 2012) carried out an extensive pro-
gram of numerical investigation on square ice, although

employing rotating fields of constant strength, in contrast to
the stepped fields described earlier. They simulated the ef-
fects of a rotational magnetic field at different intensities
close to the coercive field of the islands. The field switches
spins randomly if the total magnetic field (applied and local)
exceeds the coercive field, and simulations run until a sta-
tionary state is achieved. Their findings seem to point to a
major role played by the strength rather than the origin of the
disorder (see Fig. 6). In particular, they identified a weak
disorder regime in which the effect of disorder is perturbative
only in the sense that the frequencies of the vertices are
slightly altered while their dependence on the field is quali-
tatively unchanged, and a strong disorder regime in which the
population of ground-state vertices as a function of the
applied rotational magnetic field is qualitatively altered
from the perfect system.

While disorder is a good candidate to explain lack of
annealing, recent more advanced equilibration techniques,
discussed below, were shown to be capable of producing
large crystallites of the square lattice ground state (Morgan
et al., 2011a). We see later that disorder plays a major role in
nucleating spin flips and activating cascades in artificial spin
ice under magnetization reversal (Mengotti et al., 2011; Shen
et al., 2012).

(a) (b)

(c) (d)

(e) (f)

FIG. 6 (color online). Numerical simulations of the field-induced dynamics of artificial spin ice suggest that the strength of disorder is more

relevant than its kind. The mean energy �1 standard deviation of types IV, III, II, I vertices when disorder comes from to (a) pairwise energy,

(b) orientation, and (c) position. Crossing of types II and III bands is taken as transition between weak and strong disorder. (d) The mean

�1 standard deviation of the external field required to convert a type II to a type III vertex (upper band) and the reverse (lower band). Plots of

the relative frequencies of type I vertices as a function of the applied rotational fields (e), (f ) show that weak disorder accounts only for small

perturbation (e), whereas strong disorder qualitatively changes the annealing profile, in a way independent from its kind (f). From Budrikis,

Politi, and Stamps, 2012.
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C. Artificial spin clusters

One way to understand the collective behavior of magnetic

islands in artificial spin ice is to decompose it into its sub-

systems and study them as isolated nanoclusters. This shows

evidence of peculiar properties of frustration, chirality, or

lack thereof in those constituents.
We have seen that ac demagnetization can be employed to

lower the vertex energy of square ice, yet it never reaches its

ground state this way. We also saw that, while it can access the

kagome I phase, in which all vertices have chargeþ1 or�1, it
cannot readily access any of the lower entropy phases induced

by the long range of the dipolar interactions (Möller and

Moessner, 2009; Chern, Mellado, and Tchernyshyov, 2011),

beside weak signatures in correlations (Qi, Brintlinger, and

Cumings, 2008; Lammert et al., 2010; Rougemaille et al.,

2011). To investigate the role that frustration plays in such

mesoscopic systems,Mengotti et al. (2008, 2009) decomposed

honeycomb artificial spin ice into clusters of one, two, and three

rings (see Fig. 7), subjected them to ac demagnetization, and

visualized the magnetic degrees of freedom via x-ray magnetic

circular dichroism (XMCD) to study the configurations of

lowest energy.
Clearly, the one-ring clusters are nonfrustrated. Perhaps

not surprisingly it was found that at sufficient dipolar strength

almost all (94%) of the cluster moments were arranged in the

head-to-tail loop configuration that comprises the lowest

energy configuration. Once one adds more clusters, three-

legged frustrated vertices appear. Experiment shows that the

ground state was reached only in about one-half (48%) of the

two ring clusters and one-third (31%) of the three-ring clus-

ters, corresponding to a suppression of the lowest energy

configuration. As for extended arrays, ac demagnetization

can always anneal the nearest-neighbor interaction at the

vertex level, so the pseudoice rule is always respected. But

as the clusters grow in size, the ability to reach the lowest

energy configuration dictated by the comparatively weak

energy differences due to the long-range part of the dipolar

interaction is lost. These results are consistent with findings
from ac demagnetization of the extended honeycomb lattice,
in which the pseudo-ice-rule manifold is always reached yet
the nondegenerate ground state, in which the degeneracy is
lifted by long-range dipolar interactions, is never achieved.
These insights are also relevant for recent experiments on
magnetotransport (Branford et al., 2012), in which chirality is
suspected to arise from the formation of loop configurations
at the edge of the array.

Li, Zhang et al. (2010) also investigated the lack of
annealing into the ground state in square ice clusters and its
possible relationship with frustration and jamming in ac
demagnetization. They suggested that a kinetic bottleneck
between near-degenerate states, rather than only strong dis-
order, is responsible for the lack of annealing in the extended
square arrays.

D. Second-generation equilibration schemes

Since large interisland interactions (104–105 K) and intrin-
sic coercive fields (102 Oe) make artificial spin ice insensitive
to thermal fluctuations, most of the early experiments in-
volved subjecting the arrays to an oscillating magnetic field.
As explained, this method, widely employed for material
demagnetization and therefore disordering, was optimized
to produce a certain degree of order at the vertex level.
However, a finer control over the magnetic ensembles, in-
cluding the ability to equilibrate them in different thermalized
states, is still highly desirable. After all, these systems were
designed initially to replicate celebrated models of statistical
mechanics.

Clearly, high coercive energies are a consequence of the
nanoscopic size of the islands. A route to attack this problem is
to notice that the islands thermalize as they grow during
fabrication. One assumes that when the islands are below a
critical height (which is dictated by temperature), artificial spin
ice visits an energy region in which the magnetic interactions
and the coercive energies are of the order of the thermal energy
or smaller; then their spins should be thermally equilibrated.
This was in fact realized experimentally by Morgan et al.
(2011a). They grew a square lattice of permalloy nanoislands
on a silicon substrate. When island growth was complete,
MFM imaging revealed that the island magnetic moments
were effectively frozen into a patchwork of large crystallites
(of �10 �m or about 25 lattice constants) of chessboard
tilings of type I vertices (the square ice ground state) separated
by grain boundaries of types II and III vertices (see Fig. 8).
Growth-induced equilibrium seems validated by the observa-
tion of aBoltzmann distribution in the sparse vertex excitations
inside the domains. Interestingly, they observed a scarcity of
excitations consisting of a pair of type III vertices separated by
a long, straight string of type II vertices and an excess of closed
loops of type II vertices—a phenomenon they attributed to
attraction between defect pairs.

Since the magnetic degrees of freedom of an as-grown
thermalized array seem to form an equilibrated ensemble, it
should be possible to control the effective temperature by
tuning thermodynamic parameters at fabrication. It was sug-
gested theoretically (Nisoli, 2012) and then confirmed numeri-
cally (Greaves and Muraoka, 2012) that ensembles of lower
entropy might be achieved (somewhat counterintuitively) by

Three ringsTwo rings

X-ray direction

One ring

500 nm

FIG. 7 (color online). Decomposing artificial spin ice into increas-

ingly frustrated clusters can help understand the magnetic ensemble

of an extended array. Here x-ray magnetic circular dichroism

(XMCD) has been used to image the magnetic moments. From

Mengotti et al., 2008.
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raising the temperature during deposition, as fabrication at
higher temperatures would extend the dynamical range during

growth. In particular, if the geometry is conducive to a phase
transition, then there will be a temperature threshold at fabri-

cation above which the lowest energy phase is reached.

Morgan’s technique could then allow the exploration of the
numerically predicted but as-yet unobserved magnetic-

charge-ordered and ground-state phases of the honeycomb

lattice (Möller and Moessner, 2009; Chern, Mellado, and
Tchernyshyov, 2011) (Sec. V.C).

The as-grown technique returns a nondynamical, frozen-in

ensemble of spins and, in this sense, it is via spatial self-
averaging of the system that the statistics of a Gibbs ensemble

arises. This can be probed by MFM imaging. In the presence

of (small) external fields, phenomena such as dissociation of
magnetic charges or string avalanches starting from a ther-

malized ensemble can be investigated—something that has
not been attempted so far.

On the other hand, as the experimental search for

magnetic monopoles in natural spin ice proceeded from
monopole observation (Bramwell et al., 2009; Fennell

et al., 2009; Jaubert and Holdsworth, 2009; Morris

et al., 2009) to measurements of ‘‘magnetricity’’ (Giblin
et al., 2011), a newer, more dynamical artificial spin

ice is required to implement effects associated with

monopole propagation and as a potential medium for mag-
netic circuitry.

Dynamical artificial spin ice can be realized by � doping Pd
(Fe) to engineer nanoislands of low Curie temperature, as

recently demonstrated by Kapaklis et al. (2012). They per-
formed measurements of magnetic hysteresis loops using the

magneto-optical Kerr effect (MOKE) at temperatures ranging

from 5 to 300 K, both on a continuous film and on a dynamical
artificial spin ice of square geometry. Because of the applied

field, the energetics of the vertices shown in Fig. 2 changes:

Type II vertices, polarized along the field, become energeti-
cally favorable, leaving as a ground state a magnetized tes-

sellation of type II vertices, with type I vertices as excitations.
This leads to a remnant magnetization in the hysteresis curves,

which is indeed what is found at lower temperature.
Yet as temperature grows to about 200 K, the magnetiza-

tion of the �-doped Pd (Fe) square ice is strongly reduced and
rapidly drops to zero before the Curie temperature (230 K) of

the thin film of the same height (see Fig. 9). They interpret
this result as melting of the ground state due to thermal

excitation of energetically unfavorable vertices whose mag-

netization is either zero (type I) or at least not aligned to the
applied field. Of course one must exclude melting of the

individual island moment to invoke collective melting of
artificial spin ice. In a later work they added direct visual-

ization to their technique to exclude that possibility (Arnalds

et al., 2012).
These new methods present the possibility of producing

thermal ensembles for the artificial spin ices. Such thermal

T2T1 T3T3

10 µm

3Z

DW 1

2L

1

DW 2
GS

FIG. 8 (color online). Large domains of the ground state of square artificial ice can be reached via growth as can be seen in this MFM

image: North and south poles are represented by the shaded areas. Antiferromagnetlike domain boundaries are visible as well as localized

elementary excitations. The magnified region shows elementary excitations on the ground state (types I, II, and III, see also Fig. 2). From

Morgan et al., 2011a.
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ensembles are essential for the study of magnetic monopoles
and the lower temperature phases of honeycomb ice. The two
approaches can be mixed and matched: as mentioned, square
artificial spin ice could be prepared, in a frozen thermalized
ensemble, and then probed with fields, to study, e.g., mono-
pole pair dissociation. Alternatively, in a dynamical artificial
spin ice, the temperature could be fine-tuned to investigate the
response to external fields in a glassy regime of slow
dynamics.

V. TRUE DEGENERACY, MONOPOLES AND MORE

A. The quest for true degeneracy

The asymmetry of the dipolar interaction between col-
linear and perpendicular islands converging into the same
vertex (see Fig. 2) endows artificial square ice with a well-
defined and nondegenerate ground state. This same asymme-
try is clearly absent in the four-legged vertices of the three-
dimensional pyrochlore lattice of spin ice (see Fig. 1). The
asymmetry of the two-dimensional case translates into a
preference for type I vertices and the resulting ground-state
order. How can the frustration-induced degeneracy be pre-
served down to lower temperatures or stronger couplings?

A simple strategy to make square ice degenerate was
proposed early on by Möller and Moessner (2006). A sym-
metric arrangement of four points requires a third dimension
(i.e., a tetrahedron); see Fig. 10. Therefore, it was proposed to
generate a quasi-three-dimensional array by placing islands
pointing in the x and y directions on different heights, so that
their end points form a tetrahedron. As the end points of the
islands approach each other, the ice-rule degeneracy becomes
increasingly accurate, despite the presence of complex further
neighbor interactions. This is also interesting as it is a first
step toward a three-dimensional version of artificial spin ice,

which has not been attempted yet. [This model was further

studied numerically by Mól, Moura-Melo, and Pereira
(2010).]

A different approach toward generating stable degeneracy

does not involve the third dimension, which might present
problems in nanofabrication, but instead invokes a naturally

degenerate degree of freedom. Rather than engineering the

degeneracy in the vertex energetics, one can use nondegen-
erate vertices, yet arrange them in such a way that frustration

and therefore degeneracy results from the impossibility to

place all of them simultaneously in their lowest energy
configuration (Morrison, Nelson, and Nisoli, 2013). Besides

residual entropy, such ‘‘vertex-frustrated lattices’’ seem, at

least theoretically, to be able to access novel exotic states,
such as smectic and sliding phases.

To date, the only experimentally attempted version of a

truly degenerate artificial spin ice is the honeycomb lattice

described above. Here degeneracy is achieved at the vertex
level when the islands are arranged along the bonds of a

honeycomb lattice, so that their midpoints form a kagome

lattice (see Fig. 4). The ground state of a vertex is degenerate,
since all three ‘‘legs’’ converge in a vertex at the same relative

120� angle and thus have equivalent interactions. The ground
state is characterized by the pseudoice rule, a two-in–one-out

or two-out–one-in rule that provides maximum satisfaction of

the frustrated interactions (Möller and Moessner, 2006). For
the full lattice, this is strongly reminiscent of the actual ice

rule on a pyrochlore lattice, but the change from tetrahedra to

triangles is less innocuous (and leads to richer physics) than at
first appears.

As a net magnetic moment and indeed even a net magnetic

charge can be assigned to the odd-legged vertices, the long-

range interactions (see Fig. 10) between these give rise to four
regimes which were recently investigated theoretically and

numerically (Möller and Moessner, 2009; Chern, Mellado,

and Tchernyshyov, 2011) as previously described in detail
(see Fig. 10): a high-temperature paramagnet, the ice I and

ice II phases already mentioned above, as well as a low-
temperature ordered state. The second-generation equilibra-

tion schemes might be employed to investigate the kagome

ice II and loop phases, which have not yet been experimen-
tally observed.

B. Monopoles and multipoles

Despite much searching (Goldhaber, 1990; Beringer et al.,
2012), no convincing experimental evidence has emerged for

the existence of elementary magnetic monopoles (Dirac,

1931). To explore how monopole excitations appear in arti-
ficial spin ice, we first consider what is meant by an emergent

magnetic monopole.
Consider first the simple idea of a magnetic charge: some-

thing that sets up an appropriate divergence in the magnetic

field, leading to a magnetostatic interaction in the form of a

Coulomb law. One can idealize the island-shaped real dipole
as a thin uniform needle [see Fig. 10(a)], which is in turn

equivalent to a dumbbell of moment � and length d and

therefore of equal and opposite magnetic charge of size �=d
(Jackson, 1998). These are monopoles for bookkeeping pur-

poses only, i.e., to compute energies and fields, not a priori

FIG. 9 (color online). MOKE hysteresis cycles, performed at

different temperatures on square artificial spin ice made from a

material of low Curie temperature, show the disappearance of the

remnant magnetization at temperatures below the Curie point. This

signals a ‘‘melting’’ of the macrospin degrees of freedom in square

artificial ice, likely due to thermally activated flips of island macro-

spins, in thermally activated dynamics. The inset shows normalized

magnetic loops in the two directions, the [10] and the [11], at

T ¼ 12 K. From Kapaklis et al., 2012.
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related to any collective low-energy physics. As the end

points of the islands are close to each other, the leading

term in the energy would like the end points of the islands

impinging on a joint vertex to have a minimal total charge.

This motivates a change of variables: instead of considering

dipolar islands on the links of a lattice, one can analyze the

energetics conveniently as charge distributions on the vertices

of the lattice. While modeling not dipolar islands, but atomic

dipoles in the rare earth spin ice compounds, Castelnovo,

Moessner, and Sondhi (2008) proposed this dumbbell model.

It was already known that defects violating the ice rule

naturally live on the vertices of the lattice (Moessner and

Sondhi, 2003), and Ryzhkin (2005) pointed out that such

defects coupled to an applied magnetic field as if they carried

a magnetic charge.
The dumbbell model demonstrated that these defects in-

teract via a magnetic Coulomb law (Castelnovo, Moessner,

and Sondhi, 2008) and can be separated with finite energy

expenditure: they are genuinely deconfined fractionalized

excitations—the emergent magnetic monopoles.
Thinking of each bond carrying a unit of flux, the ice rule

implies that the flux field so defined is divergence free. This

emergent conservation law lies at the base of what makes

these ice models interesting. Incidentally, it also establishes

the connection to gauge theories, whose link variables (elec-

tric fluxes in that language) in turn satisfy Gauss’s law

divE ¼ �, and magnetic monopoles are then located at

vertices violating the ice rule.
The reason they are magnetic monopoles is related to the

fact that the link variables carry real magnetic moments in

natural and artificial spin ice. If they were built of electric

dipoles, the defects would instead be electrically charged.

Magnetic monopoles precisely capture this leading-order

physics in natural spin ice materials. Yet subleading terms

also play a crucial role in lifting degeneracies as we see

below; formally, these correspond to higher-order multipoles.
In the case of even lattice coordination (e.g., the square

lattice), imposing the ice rules amounts to demanding charge

neutrality on each vertex (as verified in numerical work);

while for odd coordination, each vertex harbors an odd

charge, i.e., at least �q. Here the magnetic charges appear

as degrees of freedom, capable of considerably simplifying

the low-temperature energetic description and providing an

efficient way of bookkeeping.
There now are further demands on bona fide monopoles as

quasiparticles: they must exist as independently mobile dy-

namical degrees of freedom, e.g., as sparse excitations which

can move on top of a background of vertices satisfying the ice

rules; and they must interact through a Coulomb potential as

in the case of the rare earth spin ice compounds mentioned

above; for a review, see Castelnovo, Moessner, and Sondhi

(2012).
The situation is considerably more complex in the case of

artificial spin ice. For completeness, we note that in thermal

equilibrium monopoles also experience an emergent entropic,

two-dimensional, logarithmic Coulomb interaction, which

therefore in principle precludes deconfinement anyway. The

interplay between magnetic and emergent entropic charge is

discussed in Moessner and Sondhi (2010).
For square ice, the ice rule corresponds to charge neutral-

ity, yet the asymmetry of the magnetic interaction in 2D lifts

the degeneracy, and as discussed provides a unique antiferro-

magnetic ground state of type I vertices (see Fig. 2). Flipping

a spin in the ground state produces two nearby opposite
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FIG. 10 (color online). (a) A thin, uniform dipolar needle of moment� and length d is equivalent to a pair of magnetic charges of equal and

opposite strength�=d at its ends: pictorially, the needle is a string of small bar magnets whose adjacent charges cancel everywhere except at the

ends. (b) In a square geometrywhen the endpoints of the needles sharing avertex aremuch closer to each other than the needles’ length, the energy

of a configuration is dominated by the interaction between nearby charges. Introducing an appropriate height offset h between perpendicular

needles places these charges at the corners of a tetrahedron, whose high symmetry renders types I and II ice vertices approximately degenerate.

(c) For honeycomb ice, an odd number of needles share a vertex, and vertices necessarily carry nonzero, odd charge. (d) As vertices are not

rotationally symmetric, they also carry a dipole moment with respect to their midpoint, denoted by the black arrows. In ice I, charge jqj ¼ 3

vertices are energetically penalized and vertices have (predominantly) charge jqj ¼ 1. The long-range dipolar interaction generates Coulomb

interactions between the charges on different vertices, leading to simple charge ordering characteristic of ice II: charges þ1 reside on one

sublattice of the honeycomb lattice, and charges �1 on the other. Ice II still has nonzero entropy, related to that of a triangular lattice dimer

model (d), as described in the text. Interactions between the vertex dipole moments drive a final ordering transition that breaks translational

symmetry. (e) The phase diagram as a function of " ¼ 1� l=a, where l is the island length, and a is the lattice constant, with temperature in units

of the nearest-neighbor interaction constant J1. (f ) In the limit of small ", the four different thermodynamic regimes (paramagnet, ice I, ice II, and

ordered) are identifiable through plateaus in the entropy. From Möller and Moessner, 2009.
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magnetic charges (type III vertices), but further flips to

separate them generate a string of excited vertices (type II).

This string is endowed with a thermodynamic line tension,

essentially arising from the energetic cost of the defects it

consists of, but renormalized by thermal fluctuations, as

verified in numerical work [see, e.g., Mól et al. (2009)]. In

the absence of an experimentally thermal ensemble in the

artificial spin ices, a disordering transition in which the string

loses its tension has not yet been witnessed experimentally.
The case of honeycomb spin ice differs yet further (see

Fig. 10). Because of the odd coordination number, a single

vertex cannot carry zero magnetic charge, and instead has to

have q ¼ �1 or �3. It should be noted that the artificial spin

ice literature follows a convention whereby such entities

(vertices with nonzero magnetic charge) are also frequently

referred to as magnetic monopoles. In the materials physics

and exotic magnetism literature, by contrast, the stricter

definition mentioned above for emergent fractionalized de-

confined quasiparticles interacting via a magnetic Coulomb

interaction is more frequently used to make a distinction with

the ‘‘bookkeeping’’ magnetic charges. [On top of all this, the

term (magnetic) monopole is also used abstractly in the gauge

theory literature without any direct reference to Maxwell

electromagnetism.]
As emphasized, all jqj ¼ 1 (in units of �=d) vertices are

degenerate in isolation, but this degeneracy is lifted by long-

range interactions as next described. The pseudo-ice-rule

manifold (two in, one out, and vice versa) arises upon cooling

when the energetically costly all-in or all-out vertices dis-

appear. This ice I regime is effectively a collection of mag-

netic charges q ¼ �1, which can achieve its lowest energy

when opposite charges crystallize on neighboring vertices in

a manner similar to the cations and anions in rock salt.
The charge-ordered regime, ice II, retains a nonzero residual

entropy since many microstates are consistent with a given

charge state. Their number can be enumerated by amapping to

the exactly soluble dimer model on the honeycomb lattice

(Möller andMoessner, 2009): by coloring in each islandwhich

contributes the minority charge�q on a vertex of net charge q
at its ends, one obtains a hard-core dimer covering (see

Fig. 10). The degeneracy of ice II is further lifted because

the vertices not only have a net charge jqj ¼ 1 but also higher-
order multipoles. On account of the lack of rotational symme-

try of the charge distribution on a given vertex, the dipole

momentvwith respect to its center points along an axis joining

the vertex to its minority charge [black arrows in Fig. 10(d)].

Note that the dipole moment � of the vertices is distinct from

the dipole moment � of the islands.
The dumbbell model can thus be extended to include not

only the leading Coulomb interaction between the charges,

but also the full multipole expansion of the interaction en-

ergies of different islands (Möller and Moessner, 2009). In

this multipole expansion, one encounters the following en-

ergy scales: First, E�, the on-site vertex energy; next, Ec ¼
�0q

2=4�a (a is the lattice constant), the strength of the

nearest-neighbor interactions between magnetic charges;

and finally, Ed ¼ �0�
2=a3, the corresponding dipolar energy

scale. In the case where the magnetic islands almost touch at

the vertices, i.e., when their length d equals ð1� "Þa, one can
construct a controlled perturbation theory in ", with

E�Oð1="Þ, EcOð"0Þ, and EdOð"2Þ, since the dipoles have

strength jvj � "aq.
The phase diagram is shown in Fig. 10. For T � E�, the

system is a conventional high-T paramagnet. For E� � T �
Ec, vertices of charge �3 are expelled, reaching (Wills’s)
kagome ice, ice I. This phase is, from a symmetry perspec-

tive, identical to the paramagnet. For Ec � T � Ed, mag-

netic charge ordering occurs, via an Ising transition, resulting
in a state of charges þ1 on one sublattice of the honeycomb

lattice formed by the vertices, and charges �1 on the other.

This is the second kagome ice, ice II. Finally, as Ed � T, the
dipoles order by a transition breaking translational symmetry,

relieving the system of its remaining entropy. Note that a

similar ordering transition is observed in Monte Carlo simu-
lations of (but not in experiments on) the spin ice compounds

(Siddharthan et al., 1999, Melko, den Hertog, and Gingras,

2001). This is due to corrections (Isakov, Moessner, and
Sondhi, 2005) to the dumbbell model, which are due to either

multipolar or superexchange effects. Similarly, the ordering

in artificial square ice can be thought of as a deviation from
the ideal degenerate case (Möller and Moessner, 2006, 2009).

Away from the limit of small ", these scales are no longer

well separated, and the resulting phase diagram is rich (Chern,
Mellado, and Tchernyshyov, 2011).Whereas the charge order-

ing always occurs via an Ising transition, the phase transition at

lower temperature turns fromKosterlitz-Thouless into a three-
state Potts model as defects in the charge order destroy the

algebraic correlations of the intermediate phase.
In the presence of a sufficiently strong applied field, the

ground state turns out to be a different one: like in an ordinary
magnet, the dipoles align, and one ends up with the maxi-

mally polarized state (Möller and Moessner, 2009; Chern,

Mellado, and Tchernyshyov, 2011). Such ground-state selec-
tion is well known in the rare earth spin ices (Moessner

and Sondhi, 2003) as even a uniform field couples nontri-

vially to the moments on account of their noncollinear axes
(Moessner, 1998). This turns out to be highly relevant to the

monopole experiments described below.
As mentioned, the kagome ice II and ground-state phases

have not yet been observed experimentally in honeycomb

spin ice, although subtle suggestions of magnetic charge

correlations have been reported in athermal ensembles ob-
tained via ac demagnetization (Qi, Brintlinger, and Cumings,

2008; Lammert et al., 2010; Rougemaille et al., 2011).

Clearly better annealing techniques are needed to explore
the phase space for honeycomb ice. In general, two comple-

mentary experimental strategies can be attempted. One is to

consider thermalized model systems and work toward their
experimental realization by building on methods described in

Sec. IV.B; the other is to look for signatures of mobile

magnetic charges in the athermal ensemble, ‘‘nonequilibrium
monopoles,’’ as in the experiments described next.

C. Collective physics in honeycomb artificial spin ice

We now move on to the experimental monopole search,

taking a short detour into the basics of the dynamics of the

arrays. It has been a surprise that the frustrated microarrays
provide a new instance of nonequilibrium physics, one that can

bemanipulated externallywhile being probedmicroscopically.
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Our aim will therefore be to capture the observed nonequilib-

rium dynamics in at least a semiquantitative way, in two steps:

understanding the elementary dynamical process of a single

moment reversing its magnetization (see Fig. 11) and the col-

lective dynamics of such moment reversals, which turn out to

give rise to avalanches (see Figs. 12 and 13) with rather special

properties, on account of the appearance of one-dimensional

Dirac strings as natural degrees of freedom. It is at this point the

community of artificial spin ice is at its most interdisciplinary,

combining micromagnetics with the study of disordered sys-

tems, real-time nonequilibrium dynamics, and more.
Shen et al. (2012) discussed the flipping of a single moment

in continuous honeycomb networks in considerable detail. We

do not expose here the dynamical process itself, which affects

the flipping, but do note that, in the effective picture of dipolar

needles underpinning the dumbbell model, it has a simple

description. The flipping process consists of the positive

(say) end of the needle emitting a chargeþ2q leaving behind

a negative charge �q to satisfy charge conservation (see

Fig. 11). The emitted charge travels down the needle and

finally combines with the negative charge at the other end,

leaving behind a flipped moment, and potentially inducing the

nextmoment to flip. This process requires an activation energy,

which depends on the detailed properties (such as geometry

and anisotropy) of the structure under consideration.
With this in hand, we consider the pair of prominent

experiments (Ladak et al., 2010; Mengotti et al., 2011) which

studied magnetization reversal in order to unearth real-space

evidence of the nonequilibrium monopoles, as well as to

provide detailed insights into the nonequilibrium process of

magnetization reversal. The basic idea is to prepare the

system in a saturated state by applying a field and then

monitoring the response to a reversed field. This problem is

well studied in the case of a conventional ferromagnetic

material, where a one-dimensional domain wall that separates

the oppositely magnetized domains is swept across the sys-

tem. In contrast, for systems in the class considered here, it is

strings, one-dimensional objects (Kasteleyn, 1963), which

effect magnetization reversal, since the maximally polarized

ice state is not connected to other ice states by local island

flips (Moessner and Sondhi, 2003). Indeed, as a field drives

nonequilibrium monopoles of opposite charge in opposite
directions, complex energetic and topological interactions
emerge between them, the strings they create, and the polar-
ized background.

The achievement of these experiments is to image not
only those strings but also their end points, at which the
charge pattern breaks that established in the transition to
the ice II phase: magnetization reversal changes both monop-
olar and dipolar ordering. In analogy to spin ice (Castelnovo,
Moessner, and Sondhi, 2008), these charged excitations were
termed monopoles, and the string of reversed dipole Dirac
strings. Ladak et al. (2010) were the first to present a study of
their field-driven motion using an MFM to image a nano-
structure of cobalt wires arranged in honeycomb patterns.
Such an arrangement reveals the�Q ¼ �2 charges at the end
of each string on top of the �q charged background.
Performing imaging via synchrotron XMCD on a permalloy
array of nanoislands, Mengotti et al. (2011) provided direct
visualization of both the charges and their Dirac strings (see
Fig. 13) and revealed processes of nucleation and dissociation
through string avalanches.

(a) (b) (c)

(d) (e) (f)

FIG. 11 (color online). Inside a vertex element of artificial spin ice

realized by connected wires. (a)–(c) Magnetization first adjusts

adiabatically to an applied magnetic field. (c)–(f) When the applied

field reaches a critical value, the reversal proceeds via propagation

of a detached domain wall while the field value remains essentially

unchanged. From Shen et al., 2012.

0.92 Hc 

0.85 Hc  

0.99 Hc 

FIG. 12 (color online). Field reversal in a fully polarized honey-

comb lattice proceeds by creation and propagation of avalanches of

pairs of opposite magnetic charges separated by a Dirac string,

observed directly via XMCD (left panels). (Right panels) The asso-

ciated�Qmap, showing theprogressive changeofmagnetic chargeon

vertices. (Top to bottom) Progressive reversal at applied field which is

85% to 99% of the coercive field Hc. From Mengotti et al., 2011.
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Crucially, the detailed information on the profile of magne-

tization reversal provided a first semiquantitative handle on the
disorder present in the artificial spin ices. By monitoring mag-
netization profile and defect density, it was possible to compare

experimental results to microscopic numerical simulations that
found satisfactory agreementwith simplemodels of the disorder
with typically only a fitting parameter for the overall disorder

strength (Ladak et al., 2010; Mengotti et al., 2011).
Later, Daunheimer et al. (2011) offered a more sensitive

method to directly extract the distribution of coercivities
directly from experimental data, without relying on

Monte Carlo simulations. They applied the reversal magnetic
fields at 120� and 100� in the direction of the initial polar-
ization, rather than 180�, conditions in which magnetization

reversal proceeds independently of their neighbors and with-
out formation of avalanches. An interesting finding is that a

connected honeycomb artificial spin ice, such as the one

employed by Tanaka et al. (2006), shows much smaller
coercive disorder.

While the application of an external field is a clever way to
overcome the coercive barrier toward spin flipping, an in vivo
feedback of the structural changes is clearly desirable.

Branford et al. (2012) recently pioneered one approach: in
coincidence with field sweep, they performed measurements
of magnetotransport, in particular, monitoring the Hall signal.

In measurements of magnetoresistance in the armchair direc-
tion of the honeycomb lattice, withmagnetic fieldB pointing in

the same direction and voltage V along the zigzag direction,
they observed an anomalous Hall signal at temperatures below
50K, in the field range associatedwith flipping of themagnetic

moment (see Fig. 14). Such a signal is absent in nonpatterned
films. Their results point to the spontaneous appearance of

Hx=-48.8mT

Hx=-51.2mT

Hx=-50 mT Hx=-54.7 mT

Hx=-52.4 mT

Hx=-62.2 mT

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 13 (color online). Experimental observation of magnetically charged defects and their motion through the system in the process of

magnetic reversal in cobalt honeycomb artificial spin ice: MFM images rendered as arrow cartoons (left and right panels, respectively) as the

field strength is increased. (a) Two defect pairs with j�Qj ¼ 2 (Q ¼ 3 and Q ¼ �3). Colored arrows denote the strings of flipped spins.

(b) Motion of the magnetic charges involves extending the strings, with the field pushing defects to the left or right. (c) Arrival of a new

defect, (d) which moves left (f) until it is blocked by the string left behind by another defect. From Ladak et al., 2010.

FIG. 14 (color online). Raw magnetotransport data on a cobalt honeycomb spin ice. Resistance vs field with positive (filled squares) and

negative (open circles) sweep directions. Data were taken at 100 K (left) and 2 K (middle). (Right) Schematics of the measurement geometry,

which eliminates the conventional Hall effect. Note the unusual peak emerging at low temperatures. No such component is observed in an

unpatterned film. From Branford et al., 2012.
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chirality as the islands flip. In the absence of out-of-plane field
or magnetization or a relative nonzero angle between the field
and average current direction, this signal should vanish by
symmetry. Their micromagnetic simulations point toward the
formation of oriented loops of island moments at the edge of
the sample as the origin of the nonzero chirality. This seems
consistent with the numerical results for the ice II phase of
honeycomb ice as it approaches the ordered state (Möller and
Moessner, 2009; Chern,Mellado, andTchernyshyov, 2011), as
well as with Mengotti’s experiments on honeycomb nano-
clusters (Mengotti et al., 2008, 2009).

Taken together, the works described in this section have
provided a pleasingly complete picture of dynamics and
thermodynamics of honeycomb artificial spin ice, including
its unconventional emergent degrees of freedom, while in-
dicating a generic route to exotic states in artificial spin ice.

VI. OTHER ARTIFICIAL SPIN SYSTEMS

In addition to the artificial frustrated magnet systems com-
posed of magnetic materials, there have been substantial ef-
forts in constructing and studying analogous systems based on
other physical phenomena. Prominent among these are studies
of frustrated arrays of superconducting loops, a line of work
that was initiated in the mid 1990s (Davidovic et al., 1996,
1997). They demonstrated clear evidence for local antiferro-
magnetic correlations, and further work studied both frustrated
and unfrustrated arrays of Josephson junctions (Hilgenkamp
et al., 2003; Kirtley et al., 2005). Both systems were affected
by intrinsic structural disorder, although this was less of a
factor in the Josephson junction arrays. Even in those systems,
however, only short-range correlations were observed and
there were no clear distinctions between frustrated and unfrus-
trated arrays.

Geometric frustration leading to spin ice behavior has been
explored in macroscopic systems as well. Confined layers of
colloidal particles naturally form a triangular lattice, and their
offset above and below the average layer height creates an
Ising-like system (with thermal fluctuations and strength of
interactions tunable through density and temperature) (Han
et al., 2008). In addition, Mellado, Conchas, and Mahadevan
(2012) recently realized a macroscopic two-dimensional hon-
eycomb array of magnetic rotors which obeys the pseudoice
rule. Such a macroscopic system possesses the advantage of
allowing an explicit study of nonlinear dynamics, with
emerging domain walls and novel solitons, although it does
not allow for the thermalization and electrical transport stud-
ies that have recently emerged for the nanoscale systems.

In addition to these experimentally realized artificial spin
ice systems, there have been theoretical proposals for spin ice
analogs elsewhere, such as nanostructured superconductors
and optical traps (Libal, Reichhardt, and Reichhardt, 2006;
Libal, Olson, and Reichhardt, 2009). As these variants offer
additional flexibility in how icelike systems can be probed
and how fluctuations and disorder can be introduced, they
hold great promise as complements to the magnetic systems.

VII. FUTURE PROSPECTS

The study of artificial spin ice is still in its early days, and
there are a number of directions into which the field is likely

to move in the coming years. The fabrication of these systems

is becoming easier with advancing lithography techniques,

and experience from the initial years of study provides a

strong foundation on which to probe the physics more deeply.
From the experimental side, we expect a wider search for

exotic physics in nontrivial lattices other than the square and

honeycomb (Chern, Morrison, and Nisoli, 2012; Morrison,

Nelson, and Nisoli, 2013) for in- and out-of-plane spins

(Zhang et al., 2012). Furthermore, the ability to realize a

more docile and dynamical material, that responds to tem-

perature while still being directly imaged, underlies the pos-

sibility of further thermodynamic studies, as well as of

transport phenomena of magnetic charges.
One of the most important areas of artificial spin ice

research in the near future will be to further probe the impacts

of disorder in these systems. Disorder can take the form of

variations in the nanoscale structure and surfaces of the

islands and wires that form the constituent elements of these

systems. While the above-mentioned recent studies have

probed the impact of such disorder both experimentally and

theoretically, there remain enormous opportunities offered by

controlling the nature and level of such disorder through

lithography. Libal et al. (2012) predicted that artificial spin

ice systems should exhibit return point memory, which has

implications for the study of disorder and domain wall pin-

ning. Disorder can also be introduced through local variations

in the frustrated lattices—either altering individual islands to

make them of different shape or simply making lattices with

occasional islands missing. The physical phenomena associ-

ated with disorder in spin ice materials and other geometri-

cally frustrated magnetic materials have been a topic of

considerable interest for years [see, e.g., Villain, 1979;

Villain et al., 1980; Henley, 1989; Schiffer and Daruka,

1997; Revell et al., 2013], and the artificial spin ice systems

offer new opportunities to fine-tune the disorder and locally

probe the consequences.
A host of new probes will also be applied to these systems,

complementing the static imaging probes that have been used

to date. In particular, significant advances are expected with

electrical transport studies of connected networks—a tech-

nique that has already yielded important insights (Tanaka

et al., 2006; Branford et al., 2012). The artificial spin ice

field also has a natural connection to the emerging topics

around magnonics, probing magnetic nanostructures with

microwaves with frequencies that are tuned to correspond

to magnetic excitations in the structures (Jain, Kostylev, and

Adeyeye, 2010; Kruglyak, Demokritov, and Grundler, 2010).

These new probes will be especially important as the field

starts to examine new materials and systems in which the

moments have thermal dynamics—the impact of which has

already begun to appear (Morgan et al., 2011a, 2011b, 2013;

Branford et al., 2012; Kapaklis et al., 2012). Dynamic probes

will be especially important as new techniques allow the

systems to be scaled down in size to where room-temperature

thermal fluctuations may become important (Khajetoorians

et al., 2012). As small ac currents of magnetic monopole

excitations have been claimed to be realized experimentally

in the pyrochlore materials (Giblin et al., 2011), one can

easily imagine artificial spin ice to be realized as a medium

for possible magnetricity by design.
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The interplay of interactions and disorder has been a staple
of condensed matter physics for decades, yet it is still among
the less understood aspects of the field. The artificial spin ices
and their microscopically observable real-time dynamics, in a
setting where dynamical and quenched disorder feed off each
other, places this family of materials snugly in between
glasses and granular materials on one side, and the real-
time thermally excited dynamics of cold atomic systems on
the other.
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Note added in proof.—After this manuscript was written,
four publications appeared that merit mention as they have
considerably pushed the boundaries of possible thermaliza-
tion of artificial spin ice. Porro et al. and Zhang have reported
on high temperature thermalization of artificial spin ice of
square (Porro et al., 2013; Zhang et al., 2013) and honeycomb
(Zhang et al., 2013) arrays, the latter employing a protocol to
show incipient magnetic charge crystallization. Meanwhile
Farhan et al. (2013a, 2013b) fabricated artificial spin clusters
and spin ice from very thin islands that have sufficiently fast
dynamics at room temperature in which the thermal kinetics
could be visualized directly. These advances promise new
connections between thermodynamics and the statistical me-
chanics of these systems that can be directly imaged.
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