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The control of electrons at the level of the elementary charge e was demonstrated experimentally

already in the 1980s. Ever since, the production of an electrical current ef, or its integer multiple, at a

drive frequency f has been a focus of research for metrological purposes. This review discusses the

generic physical phenomena and technical constraints that influence single-electron charge transport

and presents a broad variety of proposed realizations. Some of them have already proven experimen-

tally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum

metrology of electrical quantities, whereas some others are currently ‘‘just’’ wild ideas, still often

potentially competitive if technical constraints can be lifted. The important issues of readout of single-

electron events and potential error correction schemes based on them are also discussed. Finally, an

account is given of the status of single-electron current sources in the bigger framework of electric

quantum standards and of the future international SI system of units, and applications and uses of

single-electron devices outside the metrological context are briefly discussed.
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I. INTRODUCTION

The future definition of the ampere is foreseen to be based
on manipulating the elementary charge e. Its most direct
realization would be the transport of a known number of
electrons. Over the past quarter of a century, we have wit-
nessed progress toward ever better control of individual
electrons. Since single-electron tunneling is by now a well-
established subject, several reviews of its different aspects
exist in the literature (Averin and Likharev, 1991; Averin and
Nazarov, 1992a; Sohn, Kouwenhoven, and Schön, 1997; van
der Wiel et al., 2002; Durrani, 2009).

Several milestones have been achieved in the progress
toward a single-electron current source since the initial pro-
posals of the single-charge oscillations (Averin, Zorin, and
Likharev, 1985) and of the metrological triangle in the mid-
1980s (Likharev and Zorin, 1985). The single-electron am-
pere is based on transporting an electron with charge e, or
rather a known numberN of electrons Ne in each operation of
a control parameter that is cyclically repeated at frequency f,
so that the output dc current is ideally equal to Nef. The
needs of precision metrology generally state that this opera-
tion has to be performed at a relative error level not larger

than 10�8 and at the same time the current level needs to be

several hundreds of picoamperes (Feltin and Piquemal,
2009). Just a few years after the initial theoretical proposal

of controlled single-electron tunneling (Averin and Likharev,
1986), the first metallic (Geerligs et al., 1990; Pothier, 1991;

Pothier et al., 1992) and semiconducting (Kouwenhoven
et al., 1991a) single-electron turnstiles and pumps demon-

strated currents I ¼ Nef with an error of a few percent, still
orders of magnitude away from what is needed. As often in

precision metrology, the pursuit of higher accuracy has been a

pacemaker for understanding new physics, since the errors
that need to be suppressed are often a result of interesting

physical phenomena. For instance, quantum multielectron
processes and nonequilibrium phenomena have been inten-

sively studied in order to improve the performance of single-
electron sources. In five years, the accuracy of single-electron

pumps was remarkably improved by another 5 to 6 orders of
magnitude (Keller et al., 1996) by effectively suppressing the

so-called cotunneling current, but at the expense of signifi-

cantly increased complexity of the device and reduced overall
magnitude of the output current (a few picoamperes) of the

pump. Alternative ideas were to be found. At the same time,
single-electron conveyors in semiconducting channels using

surface-acoustic wave (SAW) driving yielded promising
results, in particular, in terms of significantly increased

current level (Shilton, Talyanskii et al., 1996). Yet likely
due to overheating effects in the channel, it may turn out to

be difficult to suppress thermal errors to the desired level

using this technique.
Interestingly there was a decade of reduced progress in the

field, until in the 2000s several new proposals and imple-

mentations were put forward. The most promising of these
devices are undeniably the sources based on a quantum dot

(QD) (Blumenthal et al., 2007), with a single-parameter
ac control (Kaestner, Kashcheyevs, Hein et al., 2008),

and a superconductor-insulator–normal metal–insulator-
superconductor (SINIS) turnstile (Pekola et al., 2008), which

is a basic single-electron transistor with superconducting
leads and normal-metal island. These simple devices promise

high accuracy and a possibility to run many of them in

parallel (Maisi et al., 2009). At around the same time, other
promising ideas came out, for example, a quantum-phase-slip

(QPS) based superconducting current standard (Mooij and
Nazarov, 2006). Quantum phase slips provide the mechanism

for the existence of the Coulomb-blockade (CB) effects in
superconducting wires without tunnel barriers (Astafiev et al.,

2012) and could potentially lead to current standards produc-
ing larger currents. Currently we are definitely witnessing a

period of intense activity in the field in a well-founded

atmosphere of optimism.

II. PRINCIPLES OF MANIPULATING SINGLE

ELECTRONS

A. Charge quantization on mesoscopic conductors

We begin by summarizing the essential concepts of

single-electron device physics, with the emphasis on the topics

needed for the subsequent discussion of the quantized current
sources. We focus mostly on metallic devices since those have
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an elaborated theory based on first principles. A brief discus-
sion of how and to what extent the main concepts can be
adapted to semiconductor structures is given in Sec. II.E.

As is well known from the elementary treatments of the
Bohr model in quantum mechanics, the electrostatic energy
of an electron in the hydrogen atom is roughly equal to the
kinetic energy of its confinement in the atomic orbitals.
The fact that the characteristic energy separation of levels
in the confinement energy spectrum decreases much more
rapidly than the electrostatic energy with the size of the
confining region ensures then that in mesoscopic conductors
which are large on the atomic scale, the electrostatic energy
of individual electrons can be large even in the regime where
the separation of the individual energy levels associated with
quantum confinement of electrons is negligible. As a charac-
teristic estimate, the electrostatic energy of charge e of one
electron on a micrometer-size conductor is on the order of a
milli-electron-volt, or 10 K in temperature units, and is many
orders of magnitude larger than the energy separation �E of
electron confinement levels in the same conductor, which
should be about 1 neV, well below all practical temperatures.
As a result, at low but easily reachable temperatures in the
kelvin and subkelvin range, the properties of mesoscopic
conducting islands are dominated by the electrostatic energy
of individual electrons, while small �E provides one of the
conditions that makes it possible to use macroscopic capaci-
tances to quantitatively describe electrostatics of these con-
ductors even in this ‘‘single-electron’’ regime. The charging
energy U of a system of such conductors can be expressed
then as usual in terms of the numbers nj of excess electrons

charging each conductor and the capacitance matrix C
[see, e.g., Landau and Lifshitz (1980a)]:

UðfnjgÞ ¼ e2

2

X
i;j

½C�1�i;jninj; (1)

where the sum runs over all conductors in the structure.
The electrostatic energy (1) creates energy gaps separating

different charge configurations fnjg which provide the possi-

bility to distinguish and manipulate these charge configura-
tions. Historically, one of the first observations of distinct
individual electron charges occurred in Millikan’s experi-
ments on motion of charged micrometer-scale droplets of
oil, which produced the evidence that ‘‘all electrical charges,
however produced, are exact multiples of one definite, ele-
mentary, electrical charge’’ (Millikan, 1911). In those experi-
ments, the oil droplets were, however, charged randomly by an
uncontrollable process of absorption of ions which exist nor-
mally in air. By contrast, in mesoscopic conductors, the charge
states nj can be changed in a controllable way. Besides the

charging energy (1), such a process of controlled manipulation
of individual charges in mesoscopic conductors requires two
additional elements. First are the tunnel junctions formed
between the nearest-neighbor electrodes of the structurewhich
enable the electron transfer between these electrodes, and the
second is the possibility to control the electrostatic energy
gaps by continuous variation of charges on the junctions
(Averin and Likharev, 1986). The simplest way of varying
the charges on the tunnel junctions continuously is by placing
the electrodes in external electrical fields (Büttiker, 1987)
that create continuously varying potential differences between

the electrodes of the structure. Externally controlled gate
voltages produced in this way can be used then to transfer
individual electrons in the system of mesoscopic conductors.

A simple model of the sources of continuously varying
external voltages is obtained by taking some of the electrodes
of the structure described by the energy (1) to have very large
self-capacitance and carry large charge, so that the tunneling
of a few electrons does not affect the potentials created by
them. For instance, the most basic single-electron structure,
the single-electron box (SEB) (Lafarge et al., 1991), can be
simplified to two electrodes, one main island carrying the
charge en, and the electrode with the charge eðN � nÞ creat-
ing the gate voltage Vg (see Fig. 1). Quantitatively, the

structure in Fig. 1 is characterized by the capacitance matrix

C ¼ C0 �Cm

�Cm C�

 !
; (2)

where Cm > 0. In the limit N, C0 ! 1, with eN=C0 ¼ Vg,

C0 and C� have the meaning of the total capacitances of the
gate electrode and the island, respectively, and the energy (1)
of the charges shown in Fig. 1 reduces for the capacitance
matrix (2) to

U ¼ U0 þ ECn
2 � e2nng=C�: (3)

In this equation, U0 is the n-independent energy of creating
the source of the gate voltage, U0 ¼ e2N2=2C0 in this case,
EC � e2=2C� is the charging energy of one electron on the
main electrode of the box, and eng � CgVg is the charge

induced on this electrode by the gate voltage Vg through the

gate capacitance Cg ¼ C� � Cm. As one can see from

Eq. (3), the gate voltage Vg indeed controls the energy gaps

separating the different charge states n of the main island and
therefore makes it possible to manipulate individual electron
transitions changing the island charge en.

Figure 2(a) shows a scanning electron micrograph of a
realistic box structure, in which, in contrast to the schematic
diagram of Fig. 1, one pays attention to satisfying several
quantitative requirements on the box parameters. First, the
capacitance C� needs to be sufficiently small to have signifi-
cant charging energy EC, while the gate capacitance Cg

Electron
tunneling

FIG. 1 (color online). Schematic diagram of the basic circuit

for manipulating individual electrons, the single-electron box

(SEB): a conducting island carrying electric charge en, and

an electrostatically coupled external electrode with the charge

eðN � nÞ producing the gate voltage Vg.
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remains not very small in comparison to C�, to be able to

manipulate the charge en more easily and also to measure it.

To satisfy this requirement, the box in Fig. 2(a) is composed

of two relatively large similar-size islands with very small

overlap between them. Its equivalent electric circuit is shown

in Fig. 2(b). The charging energy of the box is described by

the same expression (3), with en being the charge transferred

from the left to the right island, and C� the total mutual

capacitance between the two islands, C� ¼ Cþ Cg, where

C�1
g ¼ C�1

L þ C�1
R . Connecting the box islands to the source

of gate voltage Vg through the capacitances CL;R on both

sides serves the additional purpose of reducing coupling to

parasitic voltage fluctuations in the electrodes of the struc-

ture, responsible for environment-induced tunneling dis-

cussed below. Generally, a practical geometric structure of

the box islands is determined by the fact that the main

contribution to the capacitance C� comes from the tunnel

junction formed in the area where the ‘‘arms’’ of the islands

[see Fig. 2(a)] overlap. The size of this area should be

minimized to increase EC. At the same time, the islands

themselves can be made much larger than the junctions, to

increase the gate capacitance Cg without strongly affecting

the total capacitance C�. Besides increasing the coupling

to the gate voltage created by the two outside horizontal

electrodes in the box structure shown in Fig. 2(a), a larger

size of the box islands also increases the coupling to the

single-electron transistor (discussed in more detail below)
which measures the charge of the box and can be seen in
the upper right corner of Fig. 2(a).

The main qualitative property of the SEB is that it allows
one to manipulate individual electrons through variation of
the gate voltage Vg. Indeed, at low temperatures T � EC=kB,

the box occupies the ground state of the charging energy (3).
For a given gate-voltage-induced charge ng, the minimum is

achieved when the number n of extra electrons on the island
equals ng rounded to the nearest integer. This dependence of

n on ng means that one electron is added or removed from the

box island, changing n by �1, whenever ng passes through a

degeneracy point, i.e., ng ¼ 1=2 modulo an integer, at which

point the charging energies (3) of the two charge states that
differ by one electron transition, �n ¼ 1, are equal. If the gate
voltage increases monotonically, the dependence nðngÞ has
the shape of the ‘‘Coulomb staircase’’ (Lafarge et al., 1991),
with each step of the staircase corresponding to the addition
of one electron with gate-voltage increase by �ng ¼ 1. If the

gate voltage oscillates in time around the degeneracy point
ng ¼ 1=2, as in Fig. 2(c), with an appropriate amplitude

(�ng � 1), it induces back-and-forth electron transitions be-

tween the two charge states separated by one electron charge,
which can be seen in Fig. 2(c) as the two-level telegraph
signal of the detector measuring the box charge. Thus,
Fig. 2(c) gives a practical example of manipulation of an
individual electron transition in the SEB.

One of the most interesting dynamic manifestations of
the manipulation of individual electrons in a system of
mesoscopic conductors is the possibility to arrange the
system dynamics in such a way that electrons are transferred
through it one by one, in a correlated fashion. This can be
achieved, for instance, if the gate voltage Vg of the SEB

grows in time at a constant rate such that effectively a
constant dc ‘‘displacement’’ current I ¼ e _ng is injected in

the box junction. The same dynamic would be obtained if real
dc current I flows into a mesoscopic tunnel junction. In this
case, correlated successive transfer of electrons one by one
through the junction gives rise to ‘‘single-electron tunneling’’
oscillations (Averin and Likharev, 1986; Bylander, Duty,
and Delsing, 2005) of voltage on the junction, @U=@ðenÞ¼
eðn�ngÞ=C�, with frequency f related to the current by the

fundamental equation

I ¼ ef: (4)

More complex structures than a SEB or an individual tunnel
junction, such as single-electron turnstile (Geerligs et al.,
1990) and pump (Pothier et al., 1992; Keller et al., 1996)
discussed below, make it possible to ‘‘invert’’ this relation and
transfer one electron per period of the applied gate-voltage
oscillation with frequency f. The above discussion of the
manipulation of individual electrons in the SEB shows that
the charge states n, while controlled by the gate voltage Vg,

remain the same in a range of variation of Vg. Physically, such

‘‘quantization of charge’’ results from the fact that an isolated
conductor can contain only an integer total number of
electrons, with the charging energy producing energy gaps
separating different electron number states. Charge quantiza-
tion enables one to make the accuracy of manipulation of

(a)
(b)

(c)

FIG. 2 (color online). Practical SEB. (a) Scanning electron micro-

graph of a realistic box structure, (b) its equivalent electric circuit,

and (c) single-electron transitions in the box illustrating the ‘‘charge

quantization’’: a time-dependent gate voltage VgðtÞ (sinusoidal

curve) of an appropriate amplitude drives individual electron tran-

sitions changing the box state between the two discrete charge

configurations, the electron on the left or on the right island. These

two charge states are detected via the detector shown in the upper

right corner of (a), whose two-level output current is synchronous

with the oscillating VgðtÞ. Adapted from Saira et al., 2010 and Saira,

Yoon et al., 2012.
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individual electron charges in structures such as SEBs
very high, in principle approaching the metrological level.
Potentially metrological accuracy also extends to the trans-
port in turnstiles and pumps, making the current sources
based on single-electron tunneling promising candidates for
creation of the quantum standard of electrical current.

B. Sequential single-electron tunneling

One of the key elements in manipulating individual elec-
trons in systems of mesoscopic conductors is a tunnel junc-
tion, which provides the means to transfer electrons along the
system, thus creating the dc current I through it. A tunnel
junction (Giaever, 1960) is a system of two conductors
separated by a layer of insulator that is sufficiently thin to
allow electrons to tunnel between the conductors (see Fig. 3).
For normal conductors, the current through the junction at
small applied voltages depends linearly on the voltage and is
characterized by the tunnel conductance GT � 1=RT . In
single-electron devices, GT should satisfy two contrasting
requirements. To increase the current I driven through the
structure, e.g., to increase the allowed range of frequencies f
for which Eq. (4) is satisfied accurately, one should maximize
GT . On the other hand, charge quantization on the electrodes
of the structure requires that they are well isolated from each
other, i.e., GT should be small. The latter condition can be
formulated more quantitatively requiring that the character-
istic charging energy EC of the localized charge states is well
defined despite the finite lifetime of these states �GT=C,
where C is the typical junction capacitance in the structure
EC � ℏGT=C. This condition can be expressed as GT �
1=RK, where RK � h=e2 ’ 25:8 k� is the characteristic
‘‘quantum’’ resistance. When this condition is satisfied, the
localized charge states provide an appropriate starting point
for the description of a single-electron structure, while elec-
tron tunneling can be treated as a perturbation. In what
follows, we mostly concentrate on such a regime of ‘‘strong
Coulomb blockade’’ which is necessary for implementation
of precise transport of individual electrons as required for
quantized current sources.

The majority of practical metallic structures employ tunnel
junctions based on barriers formed by either thermal or

plasma oxidation of aluminum. The main reason for this
are the superior properties of the aluminum oxide layer, in
terms of its uniformity and electrical and noise properties.
A typical barrier structure is shown in Fig. 3 that includes a
high-resolution transmission-electron-microscopy (TEM)
image of a cross section of an aluminum-based junction
with amorphous AlxOy tunnel barrier. From the point of

view of the Landauer-Büttiker formula for electric conduc-
tance of a mesoscopic conductor, the junction tunnel con-
ductance can be expressed as GT ¼ ð2=RKÞ

P
jTj, where the

sum is taken over spin-degenerate electron transport channels
propagating across the junction, and Tj is the quantum me-

chanical transmission coefficient of the insulator barrier for
electrons in the jth channel. The condition of the strong
Coulomb blockade GT � 1=RK implies that all individual
transmission coefficients are small, Tj � 1. Although the

transmission coefficients Tj are sensitive to the atomic-scale

structure of the junction, the fact that the aluminum oxide

layer is relatively uniform on an intermediate space scale
larger than the individual atoms (Greibe et al., 2011) allows
transport properties to be estimated semiquantitatively from
the ‘‘bulk’’ properties of the barrier.

Since the tunnel current depends exponentially on the
barrier parameters, the measured electron tunneling rates in

high-resistance junctions and over the large voltage range
allow one to estimate parameters of the aluminum oxide
barrier [see, e.g., Tan et al. (2008)]: they yield a barrier height
U ’ 2 eV and effective electron mass meff ’ 0:5me in terms
of the free electron mass me. While the dimensions of the
typical tunnel junctions need to be small [on the order of
�100 nm, also cf. Fig. 2(a)] in order to make the junction
capacitance sufficiently low, they are still quite large on the
atomic scale. In this regime, discreteness of the spectrum of
the transverse modes j is negligible, and the tunnel conduc-
tance GT is proportional to the junction area A. For the value
of specific junction resistance A=GT � 10 k��m2 typical
for the tunnel junctions, estimates using the barrier parame-
ters and the simplest assumption of ballistic transport in the
junction give for the barrier transparency T � 10�6 corre-
sponding to barrier thickness close to 2 nm (cf. Fig. 3).
A barrier with this thickness effectively transmits only the
electrons impinging on it orthogonally. This ‘‘focusing’’
effect means that the tunnel conductance can be expressed
in terms of one maximum value of the transmission coeffi-
cient GT ¼ N T=RK, where the effective number N of the
transport channels in the junction is not determined directly
by the density of states (DOS) in the electrodes, but depends
also on the characteristic ‘‘traversal energy’’ �0 of the barrier,
which gives the energy scale on which the barrier transpar-
ency changes with energy: N ’ Am�0=2�ℏ2. For the
parameters of the aluminum oxide barrier mentioned, this
gives for the area per transport channel A=N ’ 1 nm2. As

will be discussed in Sec. II.C, some of the higher-order
transitions in the single-electron structures, e.g., Andreev
reflection (AR), depend separately on the barrier transmission
coefficients Tj and on the number N of the transport modes.

In contrast to this, the lowest-order electron tunneling
depends only on the total junction conductance GT .

The most straightforward approach to the description
of tunneling in the single-electron structures in the

AlOx

top Al

bottom Al

FIG. 3. High-resolution TEM image of a cross section of an

aluminum oxide tunnel junction. From Prunnila et al., 2010.
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strong Coulomb-blockade regime is based on the tunnel
Hamiltonian method (Cohen, Falicov, and Phillips, 1962),
in which the junction is modeled with the following
Hamiltonian:

H¼H1þH2þHT; HT¼
X
k;p

½Tkpc
y
k cpþH:c:�: (5)

Here H1;2 are the Hamiltonians of the junction electrodes, HT

is responsible for tunneling, with ck and cp denoting the

electron destruction operators in the two electrodes, respec-
tively, and Tkp are the tunneling amplitudes. In a typical

metallic mesoscopic conductor, when discreteness �E of
the single-particle electron states is negligible, these states
form a continuum with some density of states which in a
normal metal, is constant on a small energy scale of interest
for single-electron transport. In this case, one can treat HT

using Fermi’s golden rule to obtain the rate �ðEÞ of a tunnel-
ing process that changes the charge configuration fnjg on the

system of mesoscopic conductors by transferring one electron
through a tunnel junction between the two conductors. For the
process that changes the electrostatic energy (1) by an amount
E ¼ Uðfnj;ingÞ � Uðfnj;fingÞ, where fnj;ing is the initial and

fnj;fing is the final charge configuration, we obtain

�ðEÞ¼GT

e2

Z
d�fð�Þ½1�fð�þEÞ��1ð�Þ�2ð�þEÞ: (6)

In this expression, fð�Þ is the equilibrium Fermi distribution
function, and �jð�Þ is the density of the single-particle

states in the jth electrode of the junction, j ¼ 1, 2, in units
of the normal density of states �j, which together with

the average of the squares of the tunneling amplitudes deter-
mine the tunnel conductance GT ¼ 4�e2hjTkpj2i�1�2=ℏ.
Equation (6) assumes that the energy E� EC is much smaller
than all internal energies of the junction in the normal state, in
particular, the traversal energy �0, a condition very well
satisfied for practical metallic structures in which EC �
1 meV, while �0 � 1 eV. Using the standard properties
of the Fermi distribution functions, one can see directly that
the rate (6) of tunneling between the two equilibrium elec-
trodes satisfies the necessary detailed balance condition
�1!2ð�EÞ ¼ e�E=kBT�2!1ðEÞ. If, in addition, the densities
of states are symmetric with respect to the chemical potentials
of the electrodes, the tunneling rate is also symmetric,
�1!2ðEÞ ¼ �2!1ðEÞ, and the detailed balance condition
simplifies to �ð�EÞ ¼ e�E=kBT�ðEÞ. The detailed balance
condition makes it possible to express the tunneling rate (6)
in terms of the current-voltage characteristic IðVÞ of the
junction at fixed bias voltage V:

�ðEÞ ¼ IðE=eÞ=eð1� e�E=kBTÞ: (7)

For normal metal–insulator–normal metal (NIN) junctions,
when both electrodes are in the normal (N) states, �jð�Þ � 1,

Eq. (6) gives, in agreement with Eq. (7), for the tunneling rate

�ðEÞ ¼ GT

e2
E

1� e�E=kBT
: (8)

Tunneling of individual electrons with the rate (8) is an irre-
versible dissipative process which converts the electrostatic

energy change E into internal energy of the electron
gas inside the junction electrodes. In accordance with this
understanding, at small temperatures T, the rate (8) vanishes
as eE=kBT for energetically unfavorable transitions with E < 0,
when the energy for the transition is taken from the
thermal fluctuations of the electron reservoirs. In the regime
of allowed transitions E� EC > 0, the magnitude of the typi-
cal transition rate ��GT=C for the realistic values of the
parametersGT � 1 M�, C� 10�16–10�15 F is quite high, in
the gigahertz range.

In superconductor-insulator–normal metal (SIN) junctions,
when one of the junction electrodes is a superconductor (S),
the BCS density of states �1ð�Þ ¼ j�j=ð�2 � �2Þ1=2 for
j�j> �, and vanishing otherwise, implies that at tempera-
tures well below the superconducting energy gap �, the
tunneling rate (6) is strongly suppressed and can be reduced
into the kilohertz and even hertz range. Indeed, evaluating
the integral in Eq. (6) for the SIN junction assuming kBT,
E � �, one gets

�ðEÞ ¼ GT

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��kBT

p
e��=kBT

sinhðE=kBTÞ
1� e�E=kBT

: (9)

Figure 4 shows the tunneling rate (9) measured in an
SIN junction in the configuration of a ‘‘hybrid’’ SEB [see
Fig. 2(a)], in which one of the islands of the box is a super-
conductor (aluminum), the other one being normal metal
(copper). The electrostatic energy change E in the case of
the box follows from Eq. (3) as E¼Uðn¼0Þ�Uðn¼1Þ¼
2ECðng�1=2Þ, i.e., is proportional to the deviation of the

gate voltage of the box from the degeneracy point ng ¼ 1=2.

The measurements can be described well by Eq. (9) with
reasonable values of parameters including the superconduct-
ing energy gap � of aluminum.

Since the tunneling transitions described quantitatively by
the rates (6)–(9) are inherently random stochastic processes,
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FIG. 4 (color online). (a) Measured thermally activated rates of

forward �ðEÞ and backward �ð�EÞ tunneling in a ‘‘hybrid’’ SIN

single-electron box at different temperatures as a function of the

gate-voltage offset from the degeneracy point related to the energy

change E in tunneling as E ¼ 2ECðng � 1=2Þ. Solid lines are the

theory prediction according to Eq. (9) with fitted parameters EC ¼
157 �eV, � ¼ 218 �eV, and 1=GT ¼ 100 M�. (b) The tunneling

rate at degeneracy E ¼ 0 as a function of temperature (squares), and

best fit (solid line) to Eq. (9). Adapted from Saira, Yoon et al., 2012.
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dynamics of the structures in the strong Coulomb-blockade
regime and electron transport properties including the dc
current I, current noise, or even full statistical distribution
of the transferred charge, can be obtained from the time
evolution of the probabilities pðfnjgÞ of various charge con-

figurations fnjg governed by the standard rate equation for the
balance of the probability fluxes. The most basic single-
electron system that allows for the flow of dc current through
it and gives an example of such an equation is the single-
electron transistor (SET) (Averin and Likharev, 1986; Fulton
and Dolan, 1987; Likharev, 1987). The transistor can be
viewed as a generalization of the SEB and consists of a
mesoscopic conducting island connected by two tunnel junc-
tions to the bulk electrodes that provide the transport voltage
V across it. The island is also coupled capacitively to the
source of the gate voltage Vg which controls the flow of

current I through the transistor between the two electrodes.
An equivalent circuit of the transistor is shown in Fig. 5, and
an example of its geometric structure can be seen in the upper
right corner of Fig. 2(a), where it is used to measure the
charge state of the SEB. The charge configuration of the
transistor is characterized simply by the number n of extra
electrons on its central island, and accordingly, the rate
equation describing its dynamics is

_pðnÞ ¼ X
j;�

½pðn� 1Þ�ð�Þ
j ðn� 1Þ � pðnÞ�ð�Þ

j ðnÞ�; (10)

where pðnÞ is the probability distribution of the charge en on

the central island of the transistor, and the rates �ð�Þ
j ðnÞ

describe the tunneling processes in junction j with the tunnel
conductance Gj out of the state n in the direction that

increases (þ) or decreases (�) n by 1. The rates are given
by Eq. (8) or (9), or their generalizations, depending on the
nature of the transistor electrodes. They depend on the indices
of �’s in Eq. (10) through the change E of the charging
energy U of the transistor, which is a function of all these
indices. The transistor energy U consists of two parts, one
that coincides with the charging energy (3) of the SEB in
which C� ¼ C1 þ C2 þ Cg, and the other UV that is created

by the transport voltage V:

UV ¼ �eNV � enVðC2 þ Cg=2Þ=C�: (11)

Here N is the number of electrons that have been transferred

through the transistor. Both the dc current I through the

transistor (Averin and Likharev, 1991) and the current noise
(Korotkov, 1994) can be calculated starting from Eq. (10).

The main physical property of the transistor transport char-

acteristics is that they depend periodically on the gate voltage,

in particular, Iðng þ 1Þ ¼ IðngÞ. This dependence of the

transistor current on the charge eng induced on its central

island makes the SET a charge detector, with subelectron

sensitivity approaching ð10�5–10�6Þ e=Hz1=2 (Zimmerli

et al., 1992; Krupenin, 1998; Roschier et al., 2001). As a

result, the SET is the most standard charge detector for

measurements of, e.g., individual electron dynamics in other
single-electron structures [cf. Fig. 2(a)].

ThehybridSINISornormalmetal–insulator-superconductor-

insulator–normal metal (NISIN) transistors have an additional

important feature that distinguishes them from the SETs with

normal electrodes. They provide the possibility to realize the
regime of the quantized current I [Eq. (4)], when driven by an ac
gate voltage VgðtÞ of frequency f (Pekola et al., 2008). This

property of the hybrid SETs is one of the main topics of this

review and is discussed in detail below.
The basic expression (6) for the tunneling rates assumes that

the electrodes of the tunnel junction are in equilibrium at

temperature T, with the implied assumption that this tempera-
ture coincides with fixed temperature of the whole sample.

Since each electron tunneling event deposits an amount of heat

�U into the electron system of the electrodes, this condition

requires that the relaxation processes in the electrodes are

sufficiently effective to maintain the equilibrium. The relaxa-
tion rates decrease rapidly with decreasing temperature, e.g.,

proportional to T5 for electron-phonon relaxation in an ordi-

nary metal; see, e.g., Giazotto et al. (2006). This makes the

relaxation insufficient and causes the overheating effects to
appear at some low temperature, in practice around 0.1 K.

Therefore, the overheating sets a lower limit to the effective

temperature of the transitions, in thisway limiting the accuracy

of control over the individual electron transport.
One more assumption underlying Eq. (9) for the tunneling

rate in SIN junctions is that the electron distribution function

is given by the Fermi function fð�Þ. As known from statistical

mechanics, even in equilibrium, this requires that the total

effective number of particles that participate in forming this

distribution is large. In normal-metal islands, this requirement
is satisfied at temperatures much larger than the single-

particle level spacing, T � �E=kB, as is the case for practi-

cally all metallic tunnel junctions. In contrast to this, in

superconducting islands, this condition can be violated at

temperatures below the superconducting energy gap, T �
�=kB, when the total number of the quasiparticle excitations

in the electrode is no longer large. The temperature scale of

the onset of this ‘‘individual quasiparticle’’ regime can be

estimated from
R1
� d�fð�Þ�ð�Þ=�E� 1. The main qualitative

feature of this regime is the sensitivity of the electron trans-
port properties of a superconducting island to the parity of the

total number of electrons on it (Averin and Nazarov, 1992b;

Tuominen et al., 1992). In particular, the charge tunneling

rate (9) in the SIN junction should be modified in this case
into the rates of tunneling of individual quasiparticles. For

T � �E=kB, these rates are still determined by the sameFIG. 5. Equivalent electric circuit of an SET.
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average hjTkpj2i over many single-particle states of the

squares of the tunneling amplitudes (5) which gives the tunnel
conductance GT , and therefore can be expressed through GT .
In the regime of ‘‘strong’’ parity effects, when T � T	 �
�=kB lnNeff , where Neff ¼ ð2�kBT�Þ1=2=�E is the effective
number of states for the quasiparticle excitations (Tuominen
et al., 1992), an ideal BCS superconductor should reach the
state with no quasiparticles, if the total number N0 of elec-
trons in the superconductor is even, and precisely one
unpaired quasiparticle if N0 is odd. Although many nonequi-
librium processes in realistic superconductors lead to the
creation of a finite density of quasiparticle excitations which
do not ‘‘freeze out’’ at low temperatures [see, e.g., de Visser
et al. (2011)], one can realize the situation with the number of
quasiparticles controlled as in an ideal BCS superconductor,
as, e.g., in Tuominen et al. (1992), Lafarge et al. (1993), and
Saira, Kemppinen et al. (2012). In this regime, the rates of
sequential charge tunneling between the normal-metal elec-
trode and a superconducting island depend on the parity of
the total number N0 of electrons in the island (Schön and
Zaikin, 1994; Maisi et al., 2012). For T � T	, the tunneling
rates both to and from the island are dominated by the one
quasiparticle that exists on the island for odd N0. When this
quasiparticle is equilibrated to the edge of the quasiparticle
spectrum at energy �, the rates of tunneling to and from
the island (i.e., increasing and decreasing the charge en of the
island) coincide, and for jEj � � are independent of the
electrostatic energy change E:

�odd ¼ GT�E

4e2
: (12)

For even N0, when there are no quasiparticles on the island,
tunneling necessarily involves the process of creation of a
quasiparticle, making the tunneling rates dependent on the
energy change E:

�evenðEÞ ¼ �oddNeffe
�ð��EÞ=kBT: (13)

In the hybrid superconductor and normal-metal structures,
these tunneling rates determine the electron transport prop-
erties through a rate equation similar to Eq. (10).

C. Cotunneling, Andreev reflection, and other higher-order

processes

The sequential tunneling discussed previously represents
only the first nonvanishing order of the perturbation theory in
the tunnel Hamiltonian HT (5). In the strong Coulomb-
blockade regime GT � 1=RK, this approximation provides
an excellent starting point for the description of electron
transport, accounting quantitatively for the main observed
properties of these structures. However, a more detailed
picture of the transport should also include the tunneling
processes of higher order in HT , which involve transfers of
more than one electron in one or several tunnel junctions.
Although for GT � 1=RK the rates of these more complex
multistep electron ‘‘cotunneling’’ processes are small in
comparison with the rates of the single-step sequential elec-
tron tunneling, they are frequently important either because
they provide the only energetically allowed transport mecha-
nism or because they limit the accuracy of control of the basic

sequential single-electron transitions. The simplest example
of the cotunneling is the current leakage in the SET in the CB
regime (Averin and Odintsov, 1989; Geerligs, Averin, and
Mooij, 1990), when the bias voltage V is smaller than the CB
threshold and any single-step electron transfer that changes
the charge en on the transistor island by �e (see Fig. 5)
would increase the charging energy (3) and is suppressed. In
this regime, only the two-step cotunneling process that con-
sists of electron transfers in both junctions of the transistor in
the same direction gains the bias energy (11). It achieves this
by changing the number N of electrons transported through
the transistor by 1 without changing the charge en on the
island. Qualitatively, this process represents a quantum tun-
neling through the energy barrier created by the charging
energy. Because of the discrete nature of charge transfer in
each step of the cotunneling, its rate is not suppressed ex-
ponentially as for the usual quantum tunneling, and is smaller
only by a factor GTRK � 1 than the rate of sequential
tunneling processes.

In a hybrid SIN junction, in addition to the charging
energy, the superconducting energy gap � provides an extra
energy barrier to tunneling of individual electrons, suppress-
ing the sequential tunneling rate (9) at low temperatures T �
�=kB. The gap � exists only for individual electrons, while
pairs of electrons with zero total energy and momentum can
enter a superconductor as a Cooper pair, in the process called
Andreev reflection (Andreev, 1964). In tunnel junctions, AR
can be described similarly to the cotunneling, as a perturba-
tive two-step tunneling process, in which the transfer of
the first electron is virtual and only the second electron
transfer makes the process energetically favorable and real.
Quantitatively, the rates of such multistep transitions can be
determined through their higher-order transition amplitudes
constructed according to the standard rules of perturbation
theory [see, e.g., Landau and Lifshitz (1980b)]. For instance,
in the simplest example of a two-step AR process in a hybrid
single-electron box, the elementary amplitude Að�k; �lÞ of the
process that takes two electrons in the normal electrode with
energies �k and �l and transfers them into the superconductor
as a Cooper pair can be written as

Að�k;�lÞ¼
X
p

upvpTkpTlp

�
1

�pþEi��k
þ 1

�pþEi��l

�
:

(14)

The two-step process goes through an intermediate state ob-
tained as a result of the first step of the process. The intermedi-
ate states differ by the order of transfer of the two electrons and
by the single-particle state of energy �p in the superconductor

in which the virtual quasiparticle with excitation energy
�p ¼ ð�2 þ �2pÞ1=2 is created. In addition to �p, the energy

of the intermediate state includes the charging energy barrier
Ei to the transfer of one electron from the normal elec-
trode to the superconductor. The standard BCS factors vp ¼
½ð1 � �p=�pÞ=2�1=2 and up ¼ ½ð1 þ �p=�pÞ=2�1=2 enter

Eq. (14) because vp is the amplitude of state p being empty

in theBCSground state, thus allowing thefirst electron transfer,
while up is the overlap of the doubly occupied orbital state p

with the BCS ground state, which gives the amplitude of return
to the ground state after the second electron transfer. Since no
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trace of the intermediate states is left in the final state obtained
after thewholeARprocess is complete, they should be summed
over coherently, at the level of the amplitude Að�k; �lÞ.
By contrast, the initial states �k and �l of the electrons in
the transition are left empty in the final state and can be used
to distinguish between different transition processes. This
means that they should be summed over incoherently, in the
expression for the tunneling rate �AR. At small temperatures
kBT � �, one can neglect thermal excitations in the
superconductor, obtaining the total AR tunneling rate as

�AR¼2�

ℏ

X
k;l

jAð�k;�lÞj2fð�kÞfð�lÞ�ð�kþ�lþEÞ; (15)

where E is the electrostatic energy change due to the complete
AR tunneling process. The sum over all states p in the super-
conductor in Eq. (14) implies that the contribution of the
individual quasiparticles [which is important in the parity-
dependent transition rates (12) and (13)] is negligible in the
amplitude A, and individual quasiparticles affect �AR only
through the change of the charging conditions for tunneling.

The result of the summation over different single-particle
states in Eqs. (14) and (15) depends on the detailed structure
of the SIN junction. For instance, the quadratic dependence of
the AR amplitude A [Eq. (14)] on the tunneling amplitudes
makes the magnitude of the Andreev reflection sensitive not
only to the total tunnel conductance GT but also to the
distribution of the barrier transmission probabilities. Two
main qualitative features of the aluminum oxide tunnel junc-
tions (see Fig. 3), which are the focus of the main part of this
review, are the relatively thick insulator barrier characterized
by the focusing effect on the tunneling electrons and low
resistance of the junction electrodes. The simplest junction
model that takes into account both features assumes ballistic
electron motion that can be separated into different transport
channels throughout the junction. In this case, the states k
and l in Eq. (15) belong to the same transport channel, and
summation over different channels can be done directly and
gives the effective number N of the channels which, as
discussed in Sec. II.B, is limited by the angular dependence
of the barrier transmission probabilities [see, e.g., Averin and
Bardas (1995)]. In the ballistic approximation, Eqs. (14) and
(15) give for the AR tunneling rate (Hekking et al., 1993;
Averin and Pekola, 2008)

�AR ¼ ℏG2
T�

2

16�e4N

Z
d�fð�� E=2Þfð��� E=2Þ



��������X� að��� Ei � E=2Þ

��������2

; (16)

where

að�Þ � ð�2 � �2Þ�1=2 ln

�
�� �þ ð�2 � �2Þ1=2
�� �� ð�2 � �2Þ1=2

�
:

Equation (16) is well defined if the relevant energies
in the amplitude að�Þ do not approach the edge of the
superconducting energy gap � ’ �, which gives a logarithmi-
cally divergent contribution to �AR. This singularity can be
smeared by many mechanisms, e.g., the nonuniformity of the
gap � or finite transmission probability of the barrier. In the
single-electron tunneling regime, one of the main broadening

mechanisms should be the lifetime of the intermediate charge

state in the AR process and can be accounted for by replacing

in Eq. (14) the energy Ei with Ei � i�=2, where � is the rate

of sequential lowest-order tunneling out of the intermediate

charge configuration.
Experimentally, individual AR processes can be observed

directly in the time domain in the hybrid SEB (Maisi et al.,

2011). This observation allows one to extract the rates of AR

tunneling shown in Fig. 6 as a function of the normalized gate

voltage ng which determines the energies Ei and E of the

transition. Figure 6 also shows the theoretical fit based on

Eq. (16). One can see that Eq. (16) describes very well the

shape of the curves. The fit requires, however, a considerably

smaller (roughly by a factor 15) effective number N of the

transport channels to describe stronger AR tunneling pro-

cesses. In practice, the fact that the magnitude of AR tunnel-

ing rates is larger by roughly a factor of 10 than the

theoretical expectation for a given tunnel conductance GT

is a usual feature of the tunnel junctions [see also, e.g.,

Pothier et al. (1994) and Greibe et al. (2011)], and in principle

can be qualitatively accounted for by the variation of the

barrier thickness over the junction area. Unfortunately, there

is so far no quantitative experimental or theoretical evidence

that the barrier nonuniformity is indeed the reason for the

discrepancy between the magnitude of the lowest-order and

AR tunneling.
In the structures without superconducting electrodes, mul-

tistep electron transitions, in contrast to the AR processes,

involve electron transfers in different directions and/or across

different tunnel junctions, since a transfer of the two electrons

in the same junction and the same direction cannot make the

process energetically favorable in the absence of the pairing

gap �. In the simplest example of the normal metal–

insulator–normal metal–insulator–normal metal (NININ)

SET, the two-step cotunneling process in the CB regime

FIG. 6 (color online). Real-time detection of Andreev tunneling in

an isolated SEB shown in the scanning electron micrograph of (a) and

its schematic in (b). The electrometer is used for counting the single-

electron and Andreev tunneling rates. (c) The tunneling rate for AR

shown as dots for forward and backward directions. The lines are

theoretical calculations where the nonuniformity of the tunnel barrier

is taken into account. Adapted from Maisi et al., 2011.
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discussed qualitatively at the beginning of this section con-
sists of two-electron transfers across the two junctions of the
transistor. Quantitatively, the rate of this process is dominated
by the inelastic contribution �in, in which the single-particle
states �p and �q of electrons in the central island of the

transistor involved in the transfers are different (Averin and
Odintsov, 1989). As a result, the occupation factors of these
states are changed, i.e., electron-hole excitations are created
after the process is completed, a fact that implies that con-
tributions to the tunneling rates from different �p and �q
should be summed over incoherently. The elementary ampli-
tude A of this process consists then only of a sum over the two
possibilities, one in which an electron is first transferred onto
the island increasing the charging energy of the intermediate
state by EðþÞ, and the other, in which an electron tunnels first
from the island still increasing the charging energy but by a
different amount Eð�Þ:

A ¼ TkpTql

�
1

�p þ EðþÞ � �k
þ 1

�l þ Eð�Þ � �q

�
: (17)

The total rate �in is given then by the sum of jAj2 over all
single-particle states involved with the appropriate equilib-
rium occupation factors and can be expressed directly
through the junction conductances as

�inðEÞ¼ℏG1G2

2�e4

Z
d�kd�pd�qd�lfð�kÞfð�qÞ½1�fð�pÞ�


½1�fð�lÞ��ðE��pþ�k��lþ�qÞ


�������� 1

�pþEðþÞ��k
þ 1

�lþEð�Þ��q

��������2

; (18)

where E ¼ eV is the energy gain due to the transfer of
electron charge e through both junctions of the transistor
(see Fig. 5). Equation (18) shows explicitly that the second-
order electron cotunneling that involves one virtual inter-
mediate stage is indeed smaller than the rate (6) of sequential
single-electron tunneling roughly by a factor RKGT � 1. The
derivation above also makes it clear that the rate of the
multistep electron transitions that go through n virtual inter-
mediate stages with larger n would be suppressed much more
strongly by a factor ðRKGTÞn.

If the energy gain E and thermal energy kBT are smaller
than the charging energy barriers Eð�Þ, Eq. (18) for the
inelastic cotunneling rate can be simplified to

�inðEÞ ¼ ℏG1G2

12�e4

�
1

EðþÞ þ
1

Eð�Þ

�
2 E½E2 þ ð2�kBTÞ2�

1� e�E=kBT
:

(19)

This equation shows that, as a result of creation of excitations
in the process of inelastic cotunneling, its rate decreases
rapidly with decreasing E and T. At very low energies, the
process of cotunneling in the NININ transistor will be domi-
nated by the elastic contribution, in which an electron is
added to and removed from the same single-particle state of
the transistor island, without creating excitations on the
island. Because of the restriction on the involved single-
particle states, the rate of such elastic contribution contains
an additional factor on the order of �E=EC (Averin and
Nazarov, 1990) and can win over �in only at very low

temperatures, practically negligible for the structures
based on the micrometer-scale metallic islands considered in
this review.

The approach to multistep electron transitions in the
single-electron structures illustrated in this section with the
examples of Andreev reflection and electron cotunneling can
be directly extended to other higher-order tunneling pro-
cesses, e.g., cotunneling of a Cooper pair and an electron
(Averin and Pekola, 2008), which together with Andreev
reflection and electron cotunneling limit in general the accu-
racy of control over sequential single-electron transitions.

D. Coulomb blockade of Cooper-pair tunneling

In contrast to the tunneling processes considered previ-
ously, which involve electrons in the normal-metal elec-
trodes, tunneling of Cooper pairs in a junction between two
superconductors is intrinsically a dissipationless process
(Josephson, 1962). As such, it should not be characterized
by a tunneling rate but a tunneling amplitude. A quantitative
form of the corresponding term in the junction Hamiltonian
can be written most directly at low energies kBT, EC � �,
when the quasiparticles cannot be excited in the supercon-
ducting electrodes of the junction, and the tunneling of the
Cooper pair is well separated from the tunneling of individual
electrons. In this regime, a superconductor can be thought of
as a Bose-Einstein condensate of a ‘‘mesoscopically’’ large
number of Cooper pairs which all occupy one quantum state.
Transfer of one pair between two such condensates in the
electrodes of a tunnel junction does not have any non-
negligible effects on the condensates apart from changing
the charge Q ¼ 2en on the junction capacitance by �2e.
Therefore, the part of the Hamiltonian describing the tunnel-
ing of Cooper pairs should contain the terms accounting for
the changes of the charge Q. Using the standard notation
�EJ=2 for the amplitude of Cooper-pair tunneling and in-
cluding the charging energy (3), one obtains the Hamiltonian
of a superconductor-insulator-superconductor (SIS) tunnel
junction or, equivalently, Cooper-pair box in the following
form (Averin, Zorin, and Likharev, 1985; Büttiker, 1987):

H ¼ 4ECðn� ngÞ2 � EJ

2

X
�
jnihn� 1j: (20)

Here n is the number of Cooper pairs charging the total
junction capacitance, and ng is the continuous (e.g., gate-

voltage-induced) charge on this capacitance normalized now
to the Cooper-pair charge 2e. Similarly to the sequential
tunneling rates, the Cooper-pair tunneling amplitude in the
Hamiltonian (20) is a macroscopic parameter which receives
contributions from all Cooper pairs in the condensate and
can be expressed directly through the tunnel conductance GT

of the junction EJ ¼ �GT�=2e (Ambegaokar and Baratoff,
1963), in agreement with the simple fact that the amplitude of
the two-electron tunneling should have the same dependence
on the barrier transparency as the rate of tunneling of one
electron. In the situation of the junction (20) realized with the
actual Bose-Einstein condensates of atoms, such a ‘‘Bose-
Josephson junction’’ can contain a relatively small total
number of particles, and the tunnel amplitude varies then
with the difference n of the number of particles in the two
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condensates; see, e.g., Fölling et al. (2007), Averin et al.
(2008), and Cheinet et al. (2008).

The dependence on the ground state of the Hamiltonian
(20) on the induced charge ng allows for qualitatively similar

control of the individual Cooper pairs as for individual
electrons in the normal-state SEB discussed in Sec. II.B. If
EJ � EC, precisely one Cooper pair is transferred through
the junction, changing n by�1, whenever ng passes adiabati-

cally through a degeneracy point ng ¼ 1=2 modulo an inte-

ger. This leads to the same staircase-like dependence nðngÞ as
in the normal case, but with each step corresponding to the
transfer of one more Cooper pair with the increase of ng by 1.

The main new element of the superconducting situation is
that the SIS junction is intrinsically a coherent quantum
system without dissipation, and if extrinsic sources of deco-
herence can be made sufficiently weak, should exhibit revers-
ible dynamics of a simple quantum system. For instance,
close to the degeneracy point ng ¼ nþ 1=2 the two charge

states with the same electrostatic energy, n and nþ 1, are
coupled by coherent quantum mechanical tunneling of a
Cooper pair, and the junction behaves as a very basic quan-
tum two-state system (Bouchiat et al., 1998; Nakamura,
Pashkin, and Tsai, 1999). Such two-state dynamics and gen-
eral coherent quantum dynamics of the Hamiltonian (20)
serve as the basis for the development of superconducting
quantum information devices; for reviews, see, e.g., Averin
(2000) and Makhlin, Schön, and Shnirman (2001).

Superconducting junctions also exhibit the dynamics
similar to the single-electron tunneling oscillations. If the
induced charge ng grows in time at a constant rate, so that

effectively a dc displacement current I ¼ 2e _ng is injected

into the junction, Cooper pairs are transferred through it in a
correlated manner, one by one, giving rise to the ‘‘Bloch’’
oscillations (Averin, Zorin, and Likharev, 1985) of voltage
across the junction, with frequency f related to the current I:

I ¼ 2ef: (21)

The Hamiltonian (20) and its extensions to multijunction
systems can be used to design time-dependent periodic dy-
namics with frequency f which transfer precisely one Cooper
pair per period and therefore produce a dc current quantized
according to Eq. (21). Although the system dynamics em-
ployed for such Cooper-pair pumping can be of different
kinds [see, e.g., Hoehne et al. (2012)], the most typical is
the adiabatic dynamics (Geerligs et al., 1991), in which the
pumped charge is related (Pekola et al., 1999; Aunola and
Toppari, 2003; Möttönen, Vartiainen, and Pekola, 2008)
to Berry’s phase or (Faoro, Siewert, and Fazio, 2003) its
non-Abelian extensions.

E. Single-electron tunneling in semiconductor structures

One of the main features of metallic conductors used in the
discussion of single-electron tunneling is the large density of
free electrons in them, characterized quantitatively by the
average electron-electron distance r that is not much larger
than the Bohr’s radius a0. In this regime, the electrostatic
screening length � ’ ðra0Þ1=2 at low energies is also small,
i.e., comparable to r. This fact has several simplifying con-
sequences for the discussion of single-electron tunneling.

Most importantly, because of the strong screening, electrons
are effectively noninteracting inside conductors at low
energies relevant to the Coulomb-blockade transport. For
normal metals, this makes it possible to describe the tunnel
junction electrodes as reservoirs of noninteracting electrons—
the model adopted above for the discussion of tunneling.
(For superconducting electrodes, only superconducting pair-
ing correlations are important.) Another consequence of a
short, on the order of interatomic distance, screening length
is that for all practical electrodes large on this scale the
electron-electron interaction energy due to charging of the
conductor as awhole is independent of the electron state inside
the conductor and can be accurately described bymacroscopic
capacitances as was done in Eq. (1).

In the case of semiconductor single-electron structures
based on quantum dots formed in two-dimensional conduct-
ing layers (see Sec. III.C for a brief discussion of the typical
structures), the dot parameters, including carrier (usually,
electron) concentration in the dot, can be controlled through
external bias. Despite this control, and variability of the
carrier concentration with the fabrication parameters, one
can take n� 1012 cm�2 as a typical value of concentration,
which corresponds to r� 10 nm. Although this electron-
electron distance is considerably larger than in a good metal,
the Bohr radius a0 ¼ 4���0ℏ2=e2m is also much larger in the
semiconductors, e.g., gallium arsenide or silicon, used to
fabricate quantum dots, because of the dielectric constant
�� 10 and effective mass m smaller than the free electron
mass. This keeps the parameter rs ’ r=a0 which determines
the strength of interaction effects in an electron gas [see, e.g.,
Mahan (1990)] in the same weak-interaction range rs � 1 and
makes it reasonable to describe a quantum dot in the same
approximation as used previously for metallic islands: non-
interacting electron gas inside the dot with the electron-
electron interaction giving rise to the charging energy UðnÞ
that depends only on the total number n of electrons in the dot
and can be expressed through the constant dot capacitance C�

as in Eq. (3). Since quantum confinement of effectively non-
interacting electrons inside the dot potential produces in
addition an energy spectrum �k of the single-particle states,
the total dot Hamiltonian is then

H ¼ UðnÞ þX
k

�kc
y
k ck; n ¼ X

k

cyk ck: (22)

Although this model of a quantum dot is the same as for the
normal-metal islands, an important difference between the
two situations is created by the difference in the absolute
values of characteristic length scales r and a0 which are much
larger for quantum dots. Because of this, already relatively
‘‘large’’ dots with characteristic dimensions d� 100 nm can
contain a small total number of electrons, starting with n ¼ 1,
and have the single-particle level spacing �E comparable to
the charging energy Ec. This difference has two important
consequences which make a quantitative description of
single-electron transport in quantum dots in general more
involved than in metallic structures. The larger level spacing
�E reduces the number of the single-particle energy levels
participating in the single-electron tunneling transitions
through the dot making the nonequilibrium effects in energy
distribution of electrons in the dot more prominent in the
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regime of nonlinear transport. The small number of levels
involved in transport also creates statistical correlations
between occupation factors of different levels even for elec-
trons that are effectively noninteracting inside the dot, as in
the Hamiltonian (22). Combined, all thismeans that in contrast
to metallic islands, the dynamics of the total charge en on the
dot is not decoupled from the electron dynamics in the dot and
depends more strongly on the relaxation processes and the
structure of the energy spectrum �k, both of which are sensitive
to the effect of disorder on the dot confining potential.

For weak tunneling, a quantitative description of single-
electron transport through a quantum dot, in a structure
similar to a single-electron transistor (see Fig. 3), is based
on a kinetic equation similar to Eq. (10) in the metallic regime
(Averin, Korotkov, and Likharev, 1991; Beenakker, 1991).
As qualitatively discussed previously, in the case of a dot,
this equation cannot be formulated directly in terms of the
probability distribution pðnÞ of the charge on the dot, but
requires the probability pðn; k1; . . . ; knÞ that a given set of n
single-particle states of the dot k1; . . . ; kn is occupied by
electrons. [Since we will not be dealing explicitly with
spin-related phenomena, it is assumed for notational simplic-
ity that k includes the spin index of the single-particle states.
Also note that the order of indices of the occupied states in the
argument of pðn; k1; . . . ; knÞ is irrelevant.] Expressed through
this probability, the kinetic equation reads

_pðn; k1; . . . ; knÞ ¼ Stun þ Srel; (23)

where Stun and Srel are, respectively, the probability flows due
to electron tunneling between the dot and external electrodes
which changes the charge en of the dot by �e, and electron
transitions inside the dot (without changing n) due to
electron-phonon or residual electron-electron interactions
which lead to thermalization and energy relaxation of elec-
trons in the dot. The terms Stun are expressed through the rates
of tunneling between state k in the dot and reservoir j, which
similarly to metallic tunnel junctions (5) can be written as
�k;j ¼ 2�hjTkpj2i�j=ℏ, where h� � �i denotes averaging over

the states p in reservoir j which have density �j. In terms of

these rates,

Stun ¼
X
j

� X
k�fkig

�k;j½pðnþ 1; k1; . . . ; kn; kÞ


 ð1� fð�k þ Ej;nþ1ÞÞ� pðn; k1; . . . ; knÞ

 fð�k þ Ej;nþ1Þ� þ

X
k2fkig

�k;j½pðn� 1; fkig � kÞ


 fð�k þ Ej;nÞ � pðn; k1; . . . ; knÞ

 ð1� fð�k þ Ej;nÞÞ�

�
; (24)

where Ej;n is the change of the energy Utot ¼ UðnÞ þUV

which consists of the charging energy UðnÞ [Eq. (3)] and the
bias energy UV [Eq. (11)], due to transfer of one electron into
the jth electrode from the dot carrying charge en.

The relaxation term Srel in the kinetic equation can be
written similarly. For instance, in the case of electron-phonon
relaxation

Srel ¼
X

l�fkig

X
k2fkig

½�ð�l � �kÞpðn; fkig � k; lÞ

� �ð�k � �lÞpðn; k1; . . . ; knÞ�; (25)

where �ð�Þ’s are the rates of the phonon-induced transitions
between the electron states in the dot. These equations show
that the general nonlinear single-electron transport through
the dot depends quantitatively on its microscopic structure, in
particular, energy relaxation rates. In general, sensitivity of
the single-particle level structure of the dot to its geometric
shape and the details of the confining potential [for a review,
see, e.g., Reiman and Manninen (2002)] turns precise quan-
titative characteristics of the dot transport almost into the
fingerprints of an individual quantum dot, even in the simplest
situation of effectively noninteracting electrons in the dot. In
addition, at low electron densities, electron-electron correla-
tions inside the dot can become important, leading to
formation of a finite Wigner crystal in effectively both one-
dimensional and two-dimensional dots; see, e.g., Häusler and
Kramer (1993) and Filinov, Bonitz, and Lozovik (2001) and
references therein. From the point of view of electron trans-
port, the main characteristic feature of such a correlated
electron state is additional energy dependence of the electron
tunneling rates into the dot, with tunneling suppressed by
correlations at low energies (Kane and Fisher, 1992; Averin
and Nazarov, 1993; Matveev and Glazman, 1993).

Despite stronger influence of internal microscopic physics
on the quantum-dot transport, the charging energy EC asso-
ciated with individual electrons still remains typically the
dominant energy in comparison, e.g., to the level spacing
�E, in the case of quantum dots as well. Because of this,
semiconductor quantum dots allow for qualitatively similar
manipulation of individual electrons as do metallic structures.
Moreover, semiconductor structures provide an additional
flexibility in this respect, in that the islands and barriers
defining the quantum dots can be tuned or even formed by
applying external voltages to gate electrodes; see Sec. III.C
for details. This is in contrast to metallic systems which are
usually defined solely by the conducting and insulating re-
gions of the fabricated structure. An example of the single-
electron control in a GaAs/AlGaAs semiconductor structure,
two quantum dots monitored with a quantum-point contact
(QPC) operated as a charge detector (Küng et al., 2012), is
shown in Fig. 7. In this system, the QPC detector distin-
guishes different charge states of the two dots and allows one
to detect transitions of individual electrons between the dots
and to or from the source and drain electrodes. The observed
charge dynamics as seen, e.g., in Fig. 7(c), resembles that in
the metallic SEB shown in Fig. 2. Such correlated single-
electron transitions in semiconductor dots, combined with the
possibility of the gate-voltage control of tunnel barriers, make
it possible to pump electrons by direct periodic modulation of
the two barriers of a dot (Kouwenhoven et al., 1991a).

Attempts to increase the magnitude of pumped current lead
naturally to the situation when the barriers become nearly
completely suppressed, and electrons can cross them not only
by quantum tunneling through the barrier but also by classical
motion over the barrier. Coulomb-blockade correlations
among different charge states survive in this regime
(Zimmerman et al., 2004) which should be, in particular,
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relevant for the ‘‘dynamic’’ quantum dots formed and de-
stroyed by rapidly changing gate voltages; see Blumenthal
et al. (2007) and Fricke et al. (2013) and references therein.
The process of electron transfer through the rapidly created or
destroyed barriers can lead to a stochastic uncertainty in
created charge state of the quantum dot, which is described
with a ‘‘decay-cascade’’ model (Kashcheyevs and Kaestner,
2010). Because of the uncertainty in microscopic dynamics
underlying the electron transfer in quantum dots discussed
above, the precise limits which the varying barriers impose
on the accuracy of electron manipulation in dynamic
quantum dots are still not fully understood (Zimmerman
et al., 2004; Blumenthal et al., 2007; Fujiwara, Nishiguchi,
and Ono, 2008; Kashcheyevs and Timoshenko, 2012; Lin and
Zhang, 2012).

F. Influence of environment on tunneling

Tunneling in small junctions is influenced by the electro-
magnetic environment. The tunneling rates are modified by
photon absorption or emission; Fig. 8 schematically depicts a
process where the tunneling rate in a generic junction is
enhanced by absorption of a photon from the environment.

The general theoretical framework of how this happens
was put forward in seminal works by Devoret et al. (1990)
and Girvin et al. (1990), and later expanded by Ingold
and Nazarov (1992). The golden-rule-type tunneling rates
discussed in the earlier sections get modified as

�¼ 1

e2RT

Z 1

�1

Z 1

�1
dEdE0�1ðE��EÞ�2ðE0Þf1ðE��EÞ


 ½1�f2ðE0Þ�PðE�E0Þ; (26)

where �iðEÞ, i ¼ 1, 2 are the normalized DOSs in the two
electrodes, fiðEÞ are the corresponding energy distributions
in the electrodes, and �E is the energy cost in the tunnel-
ing event. The function PðEÞ can be interpreted as the
probability density to emit energy E to the environment,
which becomes a delta function in the special case of a
junction with perfect voltage bias. The PðEÞ can be calcu-
lated as the following transformation using the phase-phase
correlation function JðtÞ:

PðEÞ ¼ 1

2�ℏ

Z 1

�1
exp

�
JðtÞ þ i

ℏ
Et

�
dt: (27)

By modeling the environment by a frequency !=2� depen-
dent impedance Zð!Þ in thermal equilibrium at temperature
Tenv, one obtains

JðtÞ ¼ 2
Z 1

0

d!

!

Re½Zð!Þ�
RK

�
coth

�
ℏ!

2kBTenv

�
ðcos!t� 1Þ

� i sin!t

�
; (28)

where RK ¼ h=e2 is the resistance quantum.
Often one can assume that the unintentional environment

can be modeled as a wideband dissipative source in the
form of an RC circuit. For a purely resistive and capacitive
environment

Re½Zð!Þ� ¼ R=½1þ ð!RCÞ2�; (29)

where R is the resistance of the environment and C is the
total capacitance including the junction capacitance and par-
allel shunt capacitors. This rather simple model has been
successfully applied to explain several experimental observa-
tions; see, e.g., Martinis and Nahum (1993) and Hergenrother
et al. (1995). For a system with intentionally enhanced
capacitance, it could be used to account for experimental
improvement of the characteristics of a normal metal–-
insulator-superconductor (NIS) junction and of a single-
electron turnstile (Pekola et al., 2010). Further improvements
were obtained by Saira et al. (2010) and Saira, Kemppinen
et al. (2012); see Sec. III.B. We show in Fig. 9 an NIS
junction and its current-voltage characteristics under different
experimental conditions.

Focusing on the single-electron sources, the environment
has at least two effects to be considered. (i) The coupling of

FIG. 7 (color online). Single-electron control in a semiconductor

structure consisting of two lateral quantum dots measured with a

quantum-point-contact (QPC) charge detector. (a) Atomic force

microscope image of the structure. (b) The diagram of the equilib-

rium charge states of the two dots, controlled by voltages on the

gates G1 and G2: empty dots (0); left (L), right (R), or both dots (2),

occupied with one electron. (c) Trace of the output signal of the

QPC detector (conductance GQPC) showing random single-electron

transitions between these states driven by thermal fluctuations close

to the degeneracy point, when the charging energies of the states (0),

(L), and (R) coincide. From Küng et al., 2012.

µ1

PHOTON 
ABSORPTION 
and TUNNELING

µ2

FIG. 8 (color online). A simple schematic showing photon ab-

sorption by a generic tunnel junction, and the inelastic electron

tunneling from the left side of the barrier to the right.
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the blackbody radiation of the hot surrounding environment

can induce photon-assisted tunneling. (ii) The intentionally

fabricated on-chip environment in the immediate vicinity of

the single-electron circuit serves as a filter against external

noise. Moreover, it can influence the tunneling rates in a way
that improves the performance (Zorin et al., 2000; Lotkhov

et al., 2001; Bubanja, 2011). Detailed discussion of the error

processes in pumps, including those due to coupling to the

environment, is given further in this review.

G. Heating of single-electron devices

Single-electron circuits operate optimally at low tempera-
tures. The standard condition is that kBT � EC, where EC is
the characteristic charging energy scale. Another condition in
superconductor-based devices is that kBT � �, where � is
the energy gap of the superconductor. Since thermal errors in
synchronized transfer of electrons are typically proportional
to e�ECR=kBT , where ECR is the characteristic energy (in the
previous examples EC or�), it is obvious that the temperature
needs to be more than an order of magnitude below ECR=kB.
At low temperatures the overheating becomes a critical issue
(Giazotto et al., 2006). The energy relaxation between the
electron system and the bath, typically formed by the pho-
nons, becomes increasingly slow toward low temperatures.
Moreover, the various heating rates are typically not scaling
down similarly with decreasing temperature.

Heat is injected to the electron system, first and foremost,
as Joule heating due to the current in a biased circuit. Other
sources of heat include the application of dissipative gate
voltages or magnetic flux injection, thermal radiation
discussed in Sec. II.F, and shot-noise-induced dissipation by
backaction from a charge or current detector. The steady-state
temperature of the electron system is determined by the
balance between the input powers and the heat currents via
different relaxation channels. The injected energy relaxes to
phonons via electron-phonon relaxation, to the leads by heat
transport through the tunnel junctions, and by radiation to
other dissipative elements in the cold circuit. We discuss
these processes in more detail.

Joule heating and cooling: In a biased circuit, the total
Joule power is P ¼ IV, where V is the overall voltage and I is
the current. This power can, however, be distributed very
unevenly in the different parts of the circuit: in an extreme
example, some parts may cool down whereas the others are
heavily overheated. We now focus on dissipation in biased
tunnel junctions. The basic example is a tunneling process in
a junction between two conductors with essentially constant
density of states, which is the case presented by normal
metals. At the finite bias voltage V the tunneling electron
leaves behind a holelike excitation and it creates an excited
electron in the other electrode, i.e., both electrodes tend to
heat up. Quantitatively we can write the expression of the
power deposited in the, say, right electrode as

PR ¼ 1

e2RT

Z
dEE½fLðE� eVÞ � fRðEÞ�: (30)

Here fL;R refer to the energy distributions on the left (L) and
right (R) sides of the junction, respectively. PR ¼ V2=2RT

when fL ¼ fR, i.e., when the temperatures of the two sides
are equal. By symmetry, or by direct calculation, we can
verify that the same amount of power is deposited into the left
electrode in this situation. Thus the total power dissipation
equals P ¼ PL þ PR ¼ V2=RT ¼ IV, as it should.

If one of the conductors is superconducting, the current-
voltage characteristics are nonlinear and the power deposited
into each electrode is given by

PN;S¼ 1

e2RT

Z
dE ~EN=S�SðEÞ½fNðE�eVÞ�fSðEÞ�: (31)

FIG. 9 (color online). NIS junctions influenced by a hot environ-

ment. (a) Geometry of a NIS junction made of aluminum (low

contrast) as the superconductor and copper (high contrast) as the

normal metal. The tapered ends lead to large pads. (b) Typical I-V
characteristics, measured at 50 mK for a junction with RT ¼ 30 k�.

Linear leakage, i.e., nonvanishing subgap current due to coupling to

the environment, can be observed. The dotted line is the corre-

sponding theoretical line from the PðEÞ theory and RC environment

with dissipation R at Tenv ¼ 4:2 K. (c) Measured I-V curves of an

NIS junction with RT ¼ 761 k� on a ground plane providing a

large protecting capacitance against thermal fluctuations (solid

symbols) and of a similar junction with RT ¼ 627 k� without the

ground plane (open symbols). Solid lines present the theoretical

results for capacitance C ¼ 10 and 0.3 pF. The resistance and the

temperature of the environment are set to R ¼ 2 � and Tenv ¼
4:2 K, respectively. The inset shows I-V curves based on the full

PðEÞ calculation as functions of the shunt capacitance C. The

colored lines are reproduced on this graph from the main figure.

Adapted from Pekola et al., 2010.
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Here ~EN ¼ �ðE� eVÞ and ~ES ¼ E, where N and S now
refer to the normal and superconducting leads, respectively.
The overall heating is again given by IV, but in this case,
under bias conditions eV ’ �, PN on the normal side can
become negative [NIS cooling (Giazotto et al., 2006)] and
PS on the superconductor side is always positive, i.e., it is
heated up.

Finally, if both sides are superconducting, the current-
voltage characteristics are highly nonlinear, but due to
symmetry PL ¼ PR ¼ IV=2 ¼ P=2.

Other heating sources: Overheating of a single-electron
circuit can be caused by various other sources. ac gate voltages
or ac magnetic fluxes can induce dissipative currents and heat-
ing due to dielectric losses, and single-electron electrometry or
electrometry by a quantum-point-contact detector can cause
effective heating due to the shot-noise backaction coupling to
the single-electron circuit, just to mention a few possibilities.

Energy relaxation by conduction to leads: If a difference
between the electronic temperatures TL and TR of the left
and right leads exists, �T � TL � TR, heat PL!R can flow
electronically through the tunnel barrier. In the case of a
normal-normal junction, we have

PL!R¼ 1

e2RT

Z
dEE½fLðEÞ�fRðEÞ�¼ �2k2B

6e2RT

ðT2
L�T2

RÞ;

(32)

where in the last step we assume that the junction is not
biased. For a small temperature difference�T about the mean
T ¼ ðTL þ TRÞ=2 of the two temperatures, we can then write
the thermal conductance Gth � PL!R=�T of a NIN tunnel
junction as

Gth ¼ �2k2BT

3e2RT

; (33)

which is the Wiedemann-Franz law for a conductor with
resistance RT . For either an NIS or SIS junction, heat con-
ductance is exponentially small at low temperatures due to �.
Another mechanism for the heat flow is the diffusion in the
leads. It is discussed, in particular, in superconducting leads
in Sec. III.B.3.

Electron-phonon relaxation: Electron-phonon relaxation is
one of the dominant and in many systems one of the best
understood relaxation mechanisms. For a normal-metal
conductor with a uniform temperature T that differs from
the bath phonon temperature T0, one can write quite generally
(Wellstood, Urbina, and Clarke, 1994)

Pe-p ¼ �V ðT5 � T5
0 Þ; (34)

where� is a material constant of the order of 109 WK�5 m�3

(Giazotto et al., 2006), andV is the volume of the conductor.
This equation holds amazingly well at subkelvin tempera-
tures for various metals, irrespective of their dimensions. In
single-electron devices, we typically consider dissipation in a
small Coulomb-blockaded region, whose volume is small,
and thus, according to Eq. (34), the coupling to the phonon
bath is weak. Because of the small dimensions, one typically
assumes a spatially uniform energy distribution on the con-
ductor; moreover, the assumption of overheating with a well-
defined electron temperature is also justified quite generally.

In some cases these assumptions are not necessarily valid.

An important exception is given by superconductors where

energy relaxation via phonon emission becomes extremely

weak due to the energy gap. At low temperatures the relaxa-

tion is limited by the emission of 2� phonons corresponding

to the recombination of quasiparticles into Cooper pairs

(Rothwarf and Taylor, 1967). In the past few years, several

experiments have measured the relaxation rate in this context

[see, e.g., Barends et al. (2008)], and the corresponding

energy release rate was measured recently by Timofeev,

Garcia et al. (2009). According to the latter measurement

the recombination-related heat flux is strongly suppressed

from that given in Eq. (34), being about 2 orders of magnitude

weaker than in the normal state at the temperature T ¼
0:3TC, where TC is the critical temperature of aluminum.

At even lower temperatures the heat current is further sup-

pressed, eventually exponentially as proportional to e��=kBT .

Besides recombination, the diffusive heat conduction is also

strongly suppressed in a superconductor at T � TC. This

means that a superconductor is a poor material as a lead of

a single-electron source, where nonequilibrium quasiparticles

are injected at the rate f. The situation can be improved

by inserting so-called quasiparticle traps into the circuit,

discussed in Sec. III.B.3. Yet a fully superconducting

Cooper-pair pump can be dissipationless ideally.
Heating and cooling by radiation: Coupling of a junction

to the electromagnetic environment is associated with heat

exchange. A hot environment can induce photon-assisted

tunneling as discussed in Sec. II.F. The basic concept of

radiative heat transport in an electric circuit has been known

since the experiments of Johnson (1928) and Nyquist (1928)

more than 80 years ago. Electromagnetic radiation on a chip

has recently turned out to be an important channel of heat

transport at low temperatures (Schmidt, Schoelkopf, and

Cleland, 2004; Meschke, Guichard, and Pekola, 2006;

Timofeev, Helle et al., 2009). If two resistors R1 and R2 at

temperatures T1 and T2 are connected directly to each other in

a loop, the heat exchange between them can be modeled by a

Langevin-type circuit analysis as indicated in Fig. 10 by the

voltage sources producing thermal noise. Assuming an ideal-

ized quantum limit, where the circuit transmits all frequencies

(a) (b)

FIG. 10. (a) Radiative heat flow is caused by the photons which

carry energy between resistors R1 and R2 at temperatures T1 and T2,

respectively. The heat transport can be modeled by having voltage

fluctuations �Vi as shown in (b). Here we have assumed total

transmission. The assumption can be relaxed by adding a nonzero

impedance to the loop.
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up to the thermal cutoff at !th ¼ kBTi=ℏ, the net heat current
between the two resistors is given by

P� ¼ R1R2

ðR1 þ R2Þ2
�k2B
12ℏ

ðT2
1 � T2

2 Þ: (35)

This is an interesting limit which applies for circuits on a chip
where the stray capacitances and inductances are small enough
such that the circuit low-pass cutoff frequency exceeds !th.
Equation (35) has an important limit for the maximum cou-
pling with R1 ¼ R2 and for small temperature differences
jT1 � T2j, namely, Gth¼P�=ðT1�T2Þ¼�k2BT=6ℏ�GQ, the

so-called quantum of thermal conductance (Pendry, 1983).
Equation (35) can also be applied in the case where one of the
resistors is replaced by an NIN tunnel junction with the
corresponding resistance. Another important case is that of
a hot resistor R at temperature Tenv, discussed in Sec. II.F. In
this limit, with RC cut off as discussed in Sec. II.F, one finds
that the heat absorption rate by a resistor or a normal tunnel
junction (at T�Tenv) is given by (Pekola and Hekking, 2007)

P� ¼ kBTenv

RTC
: (36)

III. REALIZATIONS

A. Normal-metal devices

Single-electron tunneling effects provide a means to
transport electrons controllably one by one. In this respect
the obvious choices are metallic single-electron circuits and
semiconducting quantum dots. The metallic ones can be
either in their normal or superconducting state or as hybrids
of the two. The quantum dots, metallic hybrids, and super-
conducting circuits will be discussed in later sections. The
first single-electron source was a metallic (nonsuperconduct-
ing) turnstile with four tunnel junctions and one active gate
(Geerligs et al., 1990). The word ‘‘turnstile’’ refers to a device
that is voltage biased at Vb between the external leads, but
where the transport of electrons is impeded under idle con-
ditions because of an energy gap. Under the active gate
operation, electrons are transported synchronously one at a
time. The finite voltage determines the direction of charge
transport at the expense that the device is also dissipative. We
discuss a more recent version of a turnstile in Sec. III.B.

The most impressive results of the early days of single-
electron sources were obtained by metallic multijunction
pumps, operating in a nonsuperconducting state. A prototype
of them, featuring the main principle, is the three-junction
pump, with two islands and a gate to each of them; see
Fig. 11(a). This kind of pump was successfully operated in
1991 by Pothier et al. (Pothier, 1991; Pothier et al., 1991,
1992). Figure 11(b) demonstrates the stability diagram of a
three-junction pump, which is essentially the same as that of
the more common double-island quantum-dot circuit. The
two axes here are the two gate voltages ng1, ng2 normalized

by the voltage corresponding to charge displacement of one
electron, i.e., ngi ¼ CgiVg;i=e, where Cgi is the gate capaci-

tance of island i. The stability diagram consists of lines
separating different stable charge states on the islands,
indicated by indices ðn1; n2Þ in the figure. The important
property of this stability diagram is the existence of the nodes

where three different charge states become degenerate; these

are the three states with the lowest energy. The pump is

operated around such a node, setting the working point at

this node by applying dc voltages to the two gates. We focus

here on one such node that at ng1 ¼ ng2 ¼ 1=3. Now if the

temporally varying gate voltages with frequency f added to

these dc gate biases are such that the cyclic trajectory en-

circles the node at ng1 ¼ ng2 ¼ 1=3 counterclockwise, one

electron is transported through the pump from left to right.

The simplest implementation of such a cyclic trajectory is a

circle around the node, which is represented by two equal-

amplitude (in ngi) sinusoidal voltages applied to the two

gates, phase shifted by 90�. We take point A as the starting

point of the cycle. There the system is in the charge state

(0, 0). Upon crossing the first degeneracy line, the new stable

charge state is (1, 0), meaning that an electron has to tunnel

from the left lead to island 1, while moving in this part of the

stability diagram. Reversible pumping is achieved when f is

so slow that the transition occurs right at the degeneracy line.

If, however, the pumping frequency is too fast, the tunneling

does not occur before meeting the next degeneracy line, and

the pumping fails. Roughly speaking, the tunneling process is

stochastic, where the decay time of the Poisson process is

determined by the junction resistance (see Sec. II.B), and if

the pumping frequency becomes comparable to the inverse

decay time for tunneling, the desired event can be missed. In

the successful cycle, on the contrary, the system next crosses

the degeneracy line between charge states (1, 0) and (0, 1), and

FIG. 11. A three-junction pump. Schematics shown in (a), where

the pump is biased by voltage V and with gate voltages U1 and U2.

(b) The stability diagram of the three-junction pump on the plane of

the gate voltages at zero bias voltage. For operation of the pump, see

text. From Pothier, 1991.
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under the same conditions, the system transits to the new stable
charge state by an electron tunneling from the left island to the
right one. In the remaining part of the cycle, on crossing the last
degeneracy line, an electron tunnels from the right island to the
right lead, completing the cycle where charge e (one electron)
has been transported from the left lead to the right one. By
cyclically repeating this path at frequency f, an average
current I ¼ ef runs from right to left, and this current can
be read, for instance, by a regular transimpedance amplifier.

One of the advantages of the three-junction pump over the
early turnstiles is that the device can be operated, in principle,
reversibly, since no external bias voltage is needed. It can
pump even against moderate bias. Another difference be-
tween the pump and the turnstile above is that in the pump
there are no unattended islands on which the charge would be
poorly controlled. Yet early realizations using fully normal-
metal conductors in both the turnstiles and pumps suffered
from other error sources which made these devices relatively
inaccurate, on the level of 1%, even at low operation fre-
quencies. A fundamental error source in this case is cotun-
neling, discussed in Sec. II.C. To circumvent this problem, a
pump with a longer array of junctions is desirable: the error
rate due to cotunneling is effectively suppressed by increasing
the number of junctions in the array.

Theoretical analysis of cotunneling in multijunction pumps
in the form of N junctions in series with nonsuperconducting
electrodes was performed by Jensen and Martinis (1992) and
Averin, Odintsov, and Vyshenskii (1993). Thermal cotunnel-
ing errors were analyzed with a focus on the cases N ¼ 4 and
5. The conclusion of the analysis was that under realistic
experimental conditions, the N ¼ 4 pump fails to produce an
accuracy better than about 10�5, insufficient for metrology,
whereas N ¼ 5 should be sufficiently good at low operation
frequencies, as far as cotunneling is concerned. This is
illustrated in Fig. 12, where a relative error of 10�8 was
predicted for an N ¼ 5 pump at the operation frequency
of f ¼ 1:3 MHz, assuming that the pump junctions have

RT¼500k� and C¼0:6fF, and that the working temperature

is T ¼ 50 mK. All these parameters are quite realistic. In

subsequent experiments (Martinis, Nahum, and Jensen,

1994), an error rate of about 0.5 ppm was achieved, which

is still orders of magnitude above the prediction based on

cotunneling for their circuit parameters and experimental

conditions. Next, focus was turned to an N ¼ 7 pump where

further improved results, 15 ppb, were obtained at pumping

frequencies of about 10 MHz (Keller et al., 1996). This

impressive result, depicted in Fig. 13, was proposed to present

a capacitance standard based on electron counting (Keller

et al., 1999) and it still today stands as the best achievement

in this respect. However, one notes that the frequency at

which such a multijunction pump can be operated is very

low, resulting in currents that are too small for a metrological

redefinition of the ampere.
An analysis of the pump accuracy in the framework of the

orthodox theory including cotunneling was presented by

Martinis, Nahum, and Jensen (1994) for the N ¼ 5 pump,

and by Kautz, Keller, and Martinis (1999) for the N ¼ 7
pump. In both cases, the experimental error rates could be

quantitatively explained by a theory in an intermediate

temperature range, where the majority of the errors was due

to thermally activated single-junction tunneling processes.

The observed low-temperature saturation of the error rates

was conjectured to arise from photon-assisted tunneling and

cotunneling, considered in this context theoretically, e.g., by

Martinis and Nahum (1993) and White and Wagner (1993).

Kautz, Keller, and Martinis (2000) explained quantitatively

the error rates observed in the earlier experiments performed

on pumps with N ¼ 4–7 junctions by including photon-

assisted processes in the model. The dominating error mecha-

nism in the experiments was found to be photon-assisted

single-electron tunneling, with negligible contribution from

cotunneling. Jehl et al. (2003) explained error processes in a

voltage-biased N ¼ 7 pump with the same model.
The rate at which photon-assisted events occur is deter-

mined by the spectral density of voltage fluctuations across

the junction at frequencies fph � �E=h, where �E is the

FIG. 12. Predicted relative cotunneling-induced error vs inverse

temperature for multijunction pumps, with N ¼ 4 (circles) and N ¼
5 (squares). The computer simulations (points) and the predictions

of analytic results (lines) are shown. Parameters are RT ¼ 20RK ,

f ¼ 4
 10�4=RTC, and CV=e ¼ �0:15. Adapted from Jensen and

Martinis, 1992.

FIG. 13. The seven-junction pump. (Left) The schematic of the

pump, with six islands, each with a gate. The electrons are pumped

to and from the external island on the top, and the charge on the

island is detected by a single-electron electrometer. (Middle) The

voltage Vp on the external island vs time when pumping �e with a

wait time of 4.5 s in between. (Right) The pumping error vs

temperature of the measurement, demonstrating the 15 ppb accuracy

at temperatures below 100 mK. Adapted from Keller et al., 1996.
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increase in electrostatic energy for a particular tunneling
process. To explain the observed leakage rates, the authors
in the above studies used SVðfÞ ¼ 	=jfj, with the fitting

parameter 	 assuming values from ð5 nVÞ2 to ð50 nVÞ2.
Kautz, Keller, and Martinis (2000) motivated the f�1 fre-
quency dependence of the power spectrum by the ubiquitous
charge noise present in SET electrometers, typically observed

at frequencies below 1 kHz. (Covington et al. (2000) applied a
calibrated amplitude ofmicrowave radiation to one terminal of
the pump, and the resulting tunneling rates were shown to be
described by the theory of photon-assisted tunneling. They
suggested that the origin of the high-frequency photons

responsible for error events in the pumping experiments is
the presence of fluctuating nonequilibrium charges near the
devices. In addition, we note that recent electron-trapping
results reported by Kemppinen et al. (2011) for a two-junction

SNS-type trap with a series resistor measured in an rf-tight
sample stage seem to indicate a much smaller flux of harmful
photons to the junctions than was observed by, e.g., Covington
et al. (2000).

Another successful line of metallic single-electron pumps
relies on a smaller number of junctions (N ¼ 3 or 5) while

employing a resistive on-chip environment to suppress harm-
ful cotunneling and photon-assisted tunneling (Lotkhov et al.,
2001; Camarota et al., 2012). Suppression of cotunneling by a
high-impedance environment was first demonstrated by Zorin
et al. (2000) through SET I-V measurements, motivated by

the earlier theoretical predictions (Golubev and Zaikin, 1992;
Odintsov, Bubanja, and Schön, 1992).

B. Hybrid superconducting–normal-metal devices

1. Operating principles

The hybrid turnstile, originally proposed and demonstrated

by Pekola et al. (2008), is based on a single-electron transistor
where the tunnel junctions are formed between a supercon-
ductor and a normal metal; see Fig. 14, top left. In principle, it
can be realized in either a SINIS or NISIN configuration

(Averin and Pekola, 2008; Kemppinen, Kafanov et al.,
2009). However, it has turned out for several reasons that
the former one is the only potential choice of the two for
accurate synchronized electron transport purposes (Averin
and Pekola, 2008). One reason is that in the NISIN structure

tunneling strongly heats the island due to Joule power and
weak energy relaxation in the small superconducting island,
whereas in the SINIS case the island is of normal metal, better
thermalized to the bath, and under proper operation, it can be

cooled, too (Kafanov et al., 2009). The NISIN turnstile may
also suffer from unpredictable 1e-2e periodicity issues.
Furthermore, a detailed analysis of the higher-order tunneling
processes shows that cotunneling limits the fundamental
accuracy of the NISIN turnstile, whereas uncertainties below

10�8 are predicted for the SINIS version (Averin and Pekola,
2008). Hence we focus on the SINIS turnstile here.

The stability diagram of a conventional single-electron
transistor is composed of Coulomb diamonds on the gate
voltage Vg–drain-source voltage Vb plane; see Fig. 15. Gate

voltages Vg are again written in dimensionless form, normal-

ized by the voltage corresponding to charge displacement of
one electron ng. In this case the adjacent diamonds touch each

other at a single point at Vb ¼ 0, implying that the charge
state is not locked for all gate-voltage values. The operation
of the SINIS turnstile, on the contrary, is based on the
combined effect of the two gaps: the superconducting BCS
gap expands the stability regions of the charge states and the
neighboring regions overlap. The principle of operation of the
turnstile is illustrated in Fig. 15. When the gate charge ngðtÞ
alternates between two neighboring charge states, electrons
are transported through the turnstile one by one. A nonzero
voltage, which yields a preferred direction of tunneling, can
be applied since the idle current is ideally zero in the range
jeVbj< 2� at any constant gate charge value. If the gate
signal is extended to span kþ 1 charge states, one obtains
current plateaus with k electrons pumped per cycle. However,
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FIG. 14 (color online). The hybrid NIS turnstile. Top left:

A scanning electron micrograph of a SINIS turnstile, which is a

hybrid single-electron transistor with superconducting leads and a

normal-metal island. Top right and bottom: Current of a turnstile

under rf drive on the gate at different operation points with respect

to the dc gate position and the rf amplitude of the gate. Adapted

from Pekola et al., 2008 and Kemppinen, 2009.

FIG. 15 (color online). Schematic picture of pumping (a) with a

normal SET, (b) with a hybrid SET with EC ¼ �, and (c) with a

hybrid SET with EC ¼ 2�. The shaded areas are the stability

regions of the charge states n ¼ 0 and 1. The edges of the normal

SET stability regions are drawn in all figures with dashed black

lines. The long shaded lines represent the transition thresholds from

states n ¼ 0 and 1 by tunneling through the left (L) or the right (R)

junction in the wanted forward (F, solid line) or unwanted backward
(B, dashed line) direction. The thick black line corresponds to

pumping with constant bias voltage eVb=� ¼ 1 and a varying

gate voltage. From Kemppinen, 2009.
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the first plateau around the symmetric (degeneracy of
two neighboring charge states) dc position of the gate is
optimal for metrology. Note that if a nonzero bias voltage
is applied across a normal-state SET, a gate span between
different charge states always passes a region where none of
the states is stable and where the current can freely flow
through the device [white region in Fig. 15(a)]. Hence the
normal-state SET cannot act as a turnstile even in principle,
except for an experimentally infeasible gate sequence where
ng jumps abruptly between its extreme values in the

Coulomb-blockaded parts of the stability diagram.
Figure 14 presents data obtained from a basic turnstile

operated under various conditions (Pekola et al., 2008).
Several wide current plateaus with increasing gate amplitude
Ag can be seen. The gate drive is expressed here as ngðtÞ ¼
ng0 þ AgwðtÞ, where ng0 and Ag are the gate offset and drive

amplitude, respectively. The gate wave form of unit amplitude
is denoted by wðtÞ. The optimal gate drive is symmetric with
respect to the two charge states: therefore in later sections we
assume that ng0 ¼ 1=2. In these first experiments, the accuracy

of a synchronized charge transport as I ¼ Nef, with N the
integer index of a plateau, could be verified within about 1%.

A rough estimate for the optimal bias voltageVb is obtained
by considering the dominant thermal errors (Pekola et al.,
2008). The probability of an electron tunneling against bias,
i.e., ‘‘in the wrong direction’’ is given by � expð�eVb=kBTÞ.
This error would lead to no net charge transferred during a
pumping cycle, but it can be suppressed by increasing Vb. On
the other hand, increasing Vb increases the probability of
transporting an extra electron in the forward direction. The
magnitude of this kind of an error can be estimated as
� exp½�ð2�� eVbÞ=kBT�, since there is an energy cost given
by the voltage distance from the conduction threshold at 2�=e.
Combining these conditions, we obtain a trade-off eVb 
 � as
the optimum bias voltage, where the thermal error probability
is� expð��=kBTÞ. The combined thermal error probability is
�10�9 at realistic temperatures of about 100 mK and with the
BCS gap of aluminum �=kB 
 2:5 K. The exact optimum of
the bias close to the value given here depends on many other
processes to be discussed. Experimentally, however, the choice
eVb ¼ � is a good starting point.

The optimal gate drive amplitude Ag lies somewhere

between the threshold amplitudes for forward and backward
tunneling which are, for the optimum bias voltage, Ag;ft ¼
�=4Ec and Ag;bt ¼ 3�=4Ec, respectively. The subgap leak-

age is maximized at the degeneracy point ng0 ¼ 1=2. In this

respect, a square-wave signal is optimal. On the other hand,
passing the threshold for forward tunneling too quickly tends
to heat the island, whereas a sine signal can also cool it.
Hence the optimal wave form is of some intermediate form.

The SINIS turnstile presents the choice of a single-electron
source which is easy to manufacture and operate, and whose
characteristics can be analyzed theoretically into great detail.
It promises high accuracy as discussed in Sec. III.B.2. Its
operation in a parallel configuration is straightforward thanks
to the simple element of a single turnstile, and therefore it can
yield higher currents than the other fixed-barrier single-
electron sources presented in Sec. III.A. Thus it can be
considered as a promising candidate in providing a realization
of the ampere.

2. Higher-order processes

As for the fully normal-metal pumps, the idealized picture
of electron transport based on single-electron tunneling is
disturbed by simultaneous tunneling of several electrons.
Owing to the gap in the quasiparticle excitation spectrum of
a BCS superconductor, elastic cotunneling takes place only
when the bias voltage over the device exceeds 2�=e. The
turnstile operation is achieved with voltages well below this

threshold and hence cotunneling is suppressed, in contrast to
purely normal-metal devices. As a general rule, any process
that leaves behind an unpaired electron on a superconducting
electrode incurs an energy penalty equal to �.

For hybrid structures, the lowest-order tunneling process
where the energy cost of breaking a Cooper pair can be
avoided is Andreev tunneling (Andreev, 1964), i.e., a com-
plete Cooper-pair tunneling through a junction. Andreev tun-
neling has been studied thoroughly with single NIS junctions
(Blonder, Tinkham, and Klapwijk, 1982; Eiles, Martinis, and

Devoret, 1993; Lafarge et al., 1993; Hekking and Nazarov,
1994; Pothier et al., 1994; Rajauria et al., 2008; Greibe et al.,
2011; Maisi et al., 2011) as well as in so-called Cooper-pair
splitters where the electrons of a Cooper pair tunnel to differ-
ent normal-metal regions (Hofstetter, Csonka, and Nygrd,
2009; Herrmann et al., 2010; Wei and Chandrasekhar,
2010). In the case of a SINIS turnstile, Andreev tunneling
manifests itself as two electrons being added to or removed
from the island. Consecutively, increasing the charging energy

of a device makes Andreev tunneling energetically unfavor-
able, suppressing it (Averin and Pekola, 2008; Maisi et al.,
2011). The impact of Andreev tunneling on the accuracy of a
turnstile has been directly observed on the pumped current
(Aref et al., 2011). In Figs. 16(a) and 16(b), stability diamonds
for single-electron and Andreev tunneling are shown for
high-EC and low-EC devices, respectively. The pumping pla-
teau of the high-EC device, shown in Fig. 16(c), is free of

Andreev tunneling whereas the low-EC sample exhibits it as
seen in Fig. 16(d).

For high-charging energy devices where Andreev tunneling
is suppressed, the process limiting the accuracy of the SINIS
turnstile is cotunneling of a Cooper pair and a single electron
(Averin and Pekola, 2008). In this process, the island will be
charged or discharged by a single electron while another
electron effectively passes through the device. The net energy
change is that of the corresponding single-electron process,
plus the energy gained in transporting theCooper pair fromone
electrode to another, which equals 2eVb in the forward direc-

tion. Hence, the process cannot be made energetically unfav-
orable in a working turnstile. However, it can be suppressed
relative to the first-order processes by making the junctions
opaque enough. Ideally, to obtain an accuracy of 10�7, one
needs to limit the speed of an aluminum-based turnstile to a
few tens of pA (Averin and Pekola, 2008). This theoretically
predicted maximum operation speed is expected to slow down
by an additional factor of 3 due to nonuniformity of the tunnel

barriers (Aref et al., 2011; Maisi et al., 2011). Thus 10 pA is
expected to be the optimum yield per aluminum-based turn-
stile. In addition to the Cooper-pair electron cotunneling, the
cotunneling of two Cooper pairs through the device increases
the leakage current (Zaikin, 1994). In optimized devices
discussed above, the Cooper-pair electron cotunneling is
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nevertheless the dominant process limiting the accuracy since
its threshold is exceeded in the turnstile operation and it is of
lower order than the Cooper-pair cotunneling.

3. Quasiparticle thermalization

Single-electron tunneling to or from a superconductor
will generate quasiparticle excitations. Once created, the
excitations carry an energy of �, which enables them to cross
the tunnel barrier to the normal metal if the electrostatic
energy cost is lower than �. Hence, they constitute a potential
source of pumping errors for the hybrid turnstile. Typically
the excitations are injected close to the gap edge. Also, the
quasiparticles relax quickly internally compared to the weak
recombination rate, so that at low temperatures we can
assume them to lie close to the gap edges and have a
temperature Tqp which is higher than the phonon bath tem-

perature of the system. With this assumption, we calculate the
density of the quasiparticle excitations to be

nqp ¼ 2DðEFÞ
Z 1

�
dE�SðEÞe�
E ¼ ffiffiffiffiffiffiffi

2�
p

DðEFÞ� e�
�ffiffiffiffiffiffiffiffi

�

p ;

(37)

where 
 ¼ 1=kBTqp, and we assumed e�
� � 1 and a neg-

ligible branch imbalance (Clarke, 1972). The tunneling rate
caused by the excitations can be calculated from the orthodox
theory expressions (see Sec. II.B). It depends linearly on the

density and is independent of the biasing at low energies
�qp ¼ nqp=½2e2RTDðEFÞ�. It should be compared to the rate

at which we pump electrons. As discussed, we obtain roughly
10 pA from a turnstile free of higher-order tunneling errors at
an accuracy of 10�7. The tunneling resistance of such a device
is approximatelyRT ¼ 1 M�. To ensure that the quasiparticle
excitations do not cause errors on this level, we require the
tunneling rate to satisfy �qp < 10�7 
 10 pA=e. With

parameter values DðEFÞ ¼ 1:45
 1047 J�1 m�3 and � ¼
200 �eV, we need nqp < 0:04 �m�3. Such a level is demon-

strated in an experiment without active driving of the system
(Saira, Kemppinen et al., 2012) and is sensitive to the filtering
and shielding of the sample. Also, the trapping of quasipar-
ticles was shown to be important in this experiment.

Next we consider the relaxation of the quasiparticles.
In turnstile operation, injection of hot quasiparticles through
the tunnel junction drives the quasiparticle system of the
superconductor actively out of equilibrium. We model the
quasiparticle relaxation in the superconductor in terms of
heat flow and obtain a diffusion equation for nqp. Such an

approach has been used to model several experiments (Ullom,
Fisher, and Nahum, 1998; Rajauria, Courtois, and Pannetier,
2009; O’Neil et al., 2011; Peltonen et al., 2011; Knowles,
Maisi, and Pekola, 2012). The heat flow of quasiparticles J
follows the equation r � J ¼ �p, where p is the power per
unit volume removed from the quasiparticles. We use
Fourier’s law of heat conduction J ¼ ��SrTqp, where

�S ¼ 6

�2

L0Tqp

�n

ð
�Þ2e�
�

is the heat conductivity of a superconductor (Bardeen,
Rickayzen, and Tewordt, 1959). Here L0 is the Lorenz num-
ber and �n is the resistivity in the normal state. By taking the
derivatives only over strong exponential dependences and
using Eq. (37), we obtain a diffusion equation

Dr2nqp ¼ p; (38)

where the coefficient

D ¼
ffiffiffi
2

p ðkBTqp�Þ1=2ffiffiffiffi
�

p
e2�nDðEFÞ

is assumed to be constant. To write down the source term on
the right side of Eq. (38), we consider the available mecha-
nisms of heat conduction. Electron-phonon coupling is an
inherent relaxation mechanism for quasiparticles inside a
superconductor. However, it is so weak that the resulting
decay length of nqp is usually on the millimeter scale

(Martinis, Ansmann, and Aumentado, 2009; Peltonen et al.,
2011). Typically, to enhance the relaxation, one uses so-
called quasiparticle traps (Pekola et al., 2000; Rajauria,
Courtois, and Pannetier, 2009; O’Neil et al., 2011), which
are normal-metallic regions connected to the superconductor
either directly or via an oxide layer. Once the hot quasipar-
ticles enter the trap, the stronger electron-phonon relaxation
in a normal metal removes their excess energy. A perfect
quasiparticle trap forces the quasiparticle temperature at the
interface to equal the electronic temperature of the normal
metal. In the context of Eq. (38), this can be implemented as a
boundary condition for nqp. The boundary condition at the

FIG. 16 (color online). (a) Stability diamonds for single-electron

tunneling (solid lines) and Andreev tunneling (dotted lines) for a

sample with EC > �. (b) Stability diamonds for EC < �. (c) The
first pumping plateau of the high-EC device as a function of the

gate-voltage amplitude Ag. The solid symbols show pumped current

with f ¼ 10 MHz and three different bias voltages. Dotted lines are

the simulated traces with the corresponding biasing. (d) The same

data as in (c) but now for the low-EC device showing excess current

due to Andreev tunneling. Adapted from Aref et al., 2011.
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junction is obtained by setting the heat flow equal to the
power injected by the quasiparticle current.

When the trap is connected via an oxide barrier, the heat is
carried by quasiparticle tunneling. The orthodox theory result
for the source term in such a configuration is

p ¼ 2�T

e2d

Z 1

�
dEEnSðEÞðe�
E � e�
0EÞ

¼ �T

e2DðEFÞd
ðnqp � nqp0Þ; (39)

which is obtained by setting the chemical potential difference
of the trap and the superconductor to zero and assuming the
diffusion to take place in two dimensions which is well
justified for the thin films typically used in the samples. We
also assumed kBTqp � �. Here �T is the electrical conduc-

tance per unit area of the trap, d is the thickness of the
superconducting film, 
 ¼ 1=kBTqp, and 
0 ¼ 1=kBT0,

where T0 is the temperature of the normal-metal electrons.
We denote by nqp0 the quasiparticle density of a fully

thermalized superconductor, i.e., one where Tqp ¼ T0.

We consider some typical geometries of superconducting
leads used in devices. First take a lead with a constant cross
section as shown in Fig. 17(a). We assume that a heat flow Pinj

is injected at one end of the line, and that the other end is
thermally anchored by a direct trap. For the lead itself, we
assume a trap connected via an oxide barrier to be located on
top. We can solve Eqs. (38) and (39) analytically in one
dimension to obtain

nqpðxÞ¼ 1

D
ffiffiffi
k

p ðe
ffiffi
k

p ð2l�xÞ �e
ffiffi
k

p
xÞðe2

ffiffi
k

p
lþ1Þ�1

Pinj

wd
þnqp0:

Here

k ¼
ffiffiffiffi
�

p
�n�T�ffiffiffi

2
p ðkBTqp�Þ1=2d

;

and x is the coordinate along the wire starting at the injection
side (x ¼ 0) and ending at the direct trap (x ¼ l). In Fig. 17(c),
we show the quasiparticle density for various values of�T . The
lowest �T corresponds to the case where the quasiparticles
diffuse only through the wire and then relax at the direct
contact. At higher transparencies, the oxide trap starts to
help for the relaxation as well. If we use parameter values
d ¼ 50 nm, w ¼ 100 nm, l ¼ 1 �m, and Tqp ¼ 130 mK,

which are typical for fabricated samples, we see that a typical
injection power ofPinj ¼ 2 fW yields nqp � nqp0 ¼ 10 �m�3

without the oxide trap and even with the highest transparency
�T ¼ ð100 ��m2Þ�1that is possible to fabricate without
pinholes (Brenning, Kubatkin, and Delsing, 2004), we get
only an order of magnitude improvement.

To decrease the quasiparticle density to the acceptable
level discussed, one needs to optimize the lead geometry as
well. Therefore, we consider a lead that widens as shown in
Fig. 17(b). In this case, we can solve a one-dimensional
diffusion equation in polar coordinates. The junction is as-
sumed to be located at radius r ¼ r0, and the direct contact
trap to begin at radius r ¼ rt. Thickness of the lead and the
overlaid trap are as in the previous example. The solution of
Eqs. (38) and (39) can be expressed with modified Bessel
functions I	 and K	 as

nqpðrÞ ¼ nqp0 þ 1

D
ffiffiffi
k

p Pinj


r0d

��
K1ð

ffiffiffi
k

p
r0Þ

þ K0ð
ffiffiffi
k

p
rtÞ

I0ð
ffiffiffi
k

p
rtÞ

I1ð
ffiffiffi
k

p
r0Þ
��1

K0ð
ffiffiffi
k

p
rÞ

þ
�
I1ð

ffiffiffi
k

p
r0Þ þ I0ð

ffiffiffi
k

p
rtÞ

K0ð
ffiffiffi
k

p
rtÞ

K1ð
ffiffiffi
k

p
r0Þ
��1

I0ð
ffiffiffi
k

p
rÞ
�
:

In Fig. 17(d), we show nqpðrÞ for various transparencies of the
oxide trap. The lowest transparencies, again, correspond to a
pure diffusion limit. Note that the quasiparticle density at the
junction depends only weakly on the transparency of the trap:
Because of the logarithmic dependence, changing the trans-
parency by several orders of magnitude makes less than an
order of magnitude difference to nqpðr0Þ. In a widening lead,

heat sinking is made efficient by spreading the heat to a larger
volume, and the area of the trap contact is also increased. By
using realistic parameter values d ¼ 50 nm, 
 ¼ �=2, r0 ¼
50 nm, rt ¼ 5 �m, Tqp ¼ 130 mK, �n ¼ 10 n�m, and

Pinj ¼ 2 fW, we see that it is possible to reach nqp <

1 �m�3 at the junction even without an oxide trap.
Increasing the thickness of the electrode by a factor of 10
would then start to be sufficient for the metrological accuracy
requirements.

Several experiments (Ullom, Fisher, and Nahum, 1998;
Rajauria, Courtois, and Pannetier, 2009; O’Neil et al.,
2011; Knowles, Maisi, and Pekola, 2012) show that the above
diffusion model is valid for quasiparticle densities of the
order of nqp � 10 �m�3. A smaller quasiparticle density

required for metrological applications implies that the abso-
lute number of quasiparticles in the conductors becomes very
small. With a typical volume of a lead 100 nm
 100 �m2,
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FIG. 17 (color online). Two typical geometries for a supercon-

ducting bias lead: (a) A lead having a constant cross section

determined by the thickness d and width w. The length of the

line is l. (b) A sector-shaped lead characterized by an opening angle


, initial radius r0, and final radius rt. For the picture 
 is set to

180�. The colored parts on top denote a quasiparticle trap connected
via an oxide barrier. (c) Quasiparticle density nqp along a constant-

cross-section line with various oxide trap transparencies k, and

(d) along an opening line. In the plots, nqp is scaled by ni ¼
DlPinj=Ai, where the injection area Ai equals wd for (c) and 
r0d

for (d). For the leads in (b) and (d), we also use the notation x ¼
ðr� r0Þ=l with l ¼ rt � r0 and have used values r0 ¼ 20 nm and

rt ¼ 5 �m.
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the quasiparticle number is N < 1 with nqp < 0:1 �m�3. It is

not currently obvious if such a situation can be treated with
the diffusion model or whether a more elaborated theory is
required. Pumping experiments on metrological accuracy can
provide a way to shed light on such a situation.

C. Quantum-dot-based single-electron pumps and turnstiles

In this section, we introduce semiconducting quantum dots
and review their applications as single-electron current
sources, concentrating on the experimental developments.
For an overview of the related theory, we refer to Sec. II.E.

1. Introduction to quantum dots as electron pumps

In contrast to conventional three-dimensional bulk con-
ductors or more exotic two-dimensional conductors such as
quantum Hall systems or graphene, semiconducting quantum
dots can be regarded as zero-dimensional conductors, for
which the electrons are tightly confined in all three spatial
dimensions. Thus quantum dots show truly discrete excitation
spectra that are reminiscent of those of natural atoms. One
of the early key experiments on these artificial atoms
(Kastner, 1993) was the observation of discrete quantum
levels (Reed et al., 1988; Johnson et al., 1992; Su,
Goldman, and Cunningham, 1992) and the shell structure in
the filling of the electron states (Tarucha et al., 1996).

As discussed in Sec. II.E, the conceptual difference be-
tween small metallic islands studied in the previous sections
and quantum dots is that the Fermi level and hence the
conduction electron density in the metallic islands is high,
making the energy spacing between the spatially excited
electron states extremely small. The metallic system can be
typically described by a constant density of states as opposed
to the strongly peaked density of states in quantum dots.
Furthermore, quantum dots can contain a low number of
electrons in the conduction band ranging from zero
(Ashoori et al., 1993; Elzerman et al., 2003; Lim et al.,
2009) to more than hundreds, similar to natural atoms,
whereas the corresponding number is orders of magnitude
higher for metallic systems. In fact, the sharp potential
created by a single donor atom in silicon can also be consid-
ered to be an ultrasmall quantum dot. By connecting such
natural atoms to electron reservoirs, for example, SETs
(Lansbergen et al., 2008; Tan et al., 2010; Fuechsle et al.,
2012) and electron pumps (Lansbergen, Ono, and Fujiwara,
2012; Roche et al., 2012) have been fabricated.

Figure 18 shows different types of quantum-dot architec-
tures. The most conventional quantum dots are based on a
two-dimensional degenerate electron gas (2DEG) that either
forms naturally, for example, at the interface between
AlGaAs and GaAs (Chang, Esaki, and Tsu, 1974) or is
induced at the interface between silicon and silicon oxide
by an external gate (Ando, Fowler, and Stern, 1982).
Alternatively, quantum dots can be fabricated from epitax-
ially grown nanowires (Ohlsson et al., 2002; Fasth et al.,
2007; Nadj-Perge et al., 2010) or from lithographically
defined graphene islands (Connolly et al., 2012). In the
conventional dots, the confinement is very strong in the
direction perpendicular to the interface. Etching techniques,
local anodic oxidation (Held et al., 1997), pattern-sensitive

oxidation (Takahashi et al., 1995), or metallic electrodes
[see Figs. 18(c) and 18(d)] can be employed to provide the
electrostatic potential defining the well for the electrons in the
plane of the interface. The in-plane diameter of this type of
dot can vary from tens of nanometers to several micrometers.
Thus there are plenty of atoms and electrons in the region of
the dot but most of them lie in the valence band and require an
energy of the order of 1 eV to be excited. Since the relevant
energy scales for the spatial excitations and the single-
electron charging effects are orders of magnitude lower, the
occupation of the valence states can be taken fixed.

In the effective mass approximation (Ando, Fowler, and
Stern, 1982), the details of the electrostatic potential and the
effects of the valence electrons in the solid are coarse grained
such that only the electrons in the conduction band are taken
into account, and these electrons are treated as particles in the
smooth potential defining the dot. This description has proved
to reproduce several important experimental findings both
qualitatively and quantitatively (Ando, Fowler, and Stern,
1982), and it provides insight into the single-electron phe-
nomena in quantum dots. In particular, the potential barriers
arising from the gates defining the dot can be visualized just
for the small number of electrons in the conduction band.

2. Pioneering experiments

Although quantum dots hold a much smaller number of
electrons than metallic islands, probably their greatest benefit
is that the tunnel barriers can be formed by electrostatic
potentials and controlled externally by gate voltages. Thus
the height of the potential barrier, through which the electrons
tunnel to the source and drain reservoirs, can be controlled
in situ. This property provides fruitful grounds for electron
pumping since the dependence of the tunneling rate on the
barrier height and hence on the voltage of the gate electrode is
typically exponential.

The first experiments employing quantum dots for
frequency-locked single-electron transport were reported by
Kouwenhoven et al. (1991a, 1991b) [see also Kouwenhoven
(1992)]. Here they used surface-gated GaAs dots as shown in
Fig. 19(a). The negativevoltages on gatesC,F, 1, and 2 deplete
the 2DEG that is located 100 nm below the surface, thus
defining the quantum dot in the center with a radius of about
300 nm and charging energy 2EC ¼ e2=C� ¼ 0:67 meV.
(Gates 3 and 4 are grounded and do not deplete the 2DEG.)

FIG. 18 (color online). (a) Lateral and (b) vertical quantum-dot

arrangements. All quantum-dot pumps and turnstiles discussed are

in the lateral arrangement. The electrons tunnel between the dot and

the source and drain reservoirs. The tunnel barriers between the dot

and the reservoirs are created either by the electrostatic potentials of

nearby gate electrodes or by different materials such as AlGaAs.

The gate arrangement for (c) the accumulation and (d) depletion

mode quantum dots in the lateral arrangement.
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In addition to dc voltages defining the dot, 180�-phase-
shifted sinusoidal rf drive is superimposed on gates 1 and 2,
lowering one barrier at a time. This rf drive induces a turnstile
operation as shown in Figs. 19(b) and 19(c) for negative bias
voltage on the left side of the dot: when the voltage at gate 1 is
high (low tunnel barrier) and low at gate 2 (high tunnel
barrier), an excess electron enters the dot through the left
barrier [see Fig. 19(b)], and when the voltage at gate 1 is low
and high at gate 2, the electron escapes through the right
barrier [see Fig. 19(c)]. Thus the average dc current through
the device in the ideal case is given by Ip ¼ ef, where f is the

operation frequency. For bias voltages greater than the charg-
ing energy jeVj � EC, more than a single electron can be
transported in a cycle yielding ideally Ip ¼ nef, where n is

an integer. Signatures of this type of current quantization
were observed in the experiments (Kouwenhoven et al.,
1991a, 1991b; Kouwenhoven, 1992) and are illustrated in
Fig. 19(d). The current through the device as a function of the
bias voltage tends clearly to form a staircaselike pattern with
the step height ef. This was the first experimental demon-
stration of current quantization in quantum-dot structures.
Note that in addition to the turnstile operation, Fig. 19(d)
also shows the pumping of electrons against the bias voltage
for certain phase differences of the driving signals. The error
in the pumped current is a few percent, falling somewhat
behind the first experiments on metallic structures reported by
Geerligs et al. (1990).

The second set of experiments on single-electron turnstiles
based on quantum dots was published by Nagamune et al.
(1994). Here the quantum dot forms a gallium arsenide 2DEG
that is wet etched into the shape of a 460-nm-wide wire as
illustrated in Fig. 20(a). Two 230-nm-wide metallic gates are
deposited perpendicular to the wire at a distance of 330 nm.
This different barrier gate configuration and the higher charg-
ing energy of 2EC ¼ 1:7 meV resulted in a clear improve-
ment of the staircase structure as shown in Fig. 20(b).
However, they reported that a parallel channel forms due to
the rf operation and the effect of this channel is subtracted
from Fig. 20(b). They estimated the accuracy of their device
to be about 0.4% if the correction from the parallel channel is
taken into account.

In 1997–2001, a series of experiments was carried out
on so-called multiple-tunnel junction devices as electron
pumps (Tsukagoshi et al., 1997; Tsukagoshi, Alphenaar,
and Nakazato, 1998; Altebaeumer and Ahmed, 2001;
Altebaeumer, Amakawa, and Ahmed, 2001). Here the most
common device was based on either �-doped GaAs or
phosphorus-doped silicon that was etched such that a central
region is connected to source and drain reservoirs by narrow
strips as shown in Fig. 21(a). The side gates near the strips are
set to a constant potential and an rf drive on the central side
gate induces a current that depends linearly on frequency as
shown in Fig. 21(b). The explanation of this type of operation
is that the dopants and disorder in the strips function as
Coulomb-blockade devices themselves rather than as single
tunnel junctions, which gives rise to the term multiple-tunnel
junction. Since these experiments were more motivated by
applications in information processing (Ono et al., 2005) with
only a few electrons rather than finding a metrological current
source, the accuracy of the device was not studied in detail.

3. Experiments on silicon quantum dots

The first step toward single-electron pumping in silicon
was taken by Fujiwara and Takahashi (2001) as they pre-
sented an ultrasmall charge-coupled device and demonstrated
that it could be used to trap and move individual holes
controllably at the temperature of 25 K. This device was
fabricated with silicon-on-insulator techniques (Takahashi
et al., 1995) and had two adjacent polysilicon gates acting
as metal-oxide-semiconductor field-effect transistors
(MOSFETs). Subsequently, a rather similar device with
charging energy 2EC ¼ 30 meV shown in Fig. 22(a) was
utilized for electron pumping by Ono and Takahashi (2003)

FIG. 19. The first single-electron current source based on quantum

dots by Kouwenhoven et al. (1991b), 1991a). (a) SEM image of the

device from the top; (b), (c) operation principle; and (d) measured

I-V curves reported. The gate configuration corresponds to the case

in Fig. 18(d). The different I-V curves are measured while driving

the turnstile with different center-gate [gate C in (a)] voltages, rf

amplitudes, and phase differences. The curves are not offset and the

dashed lines show the current levels nef with n ¼ �5; . . . ; 5.

Adapted from Kouwenhoven et al., 1991b, 1991).
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FIG. 20. (a) Schematic illustration of the device and (b) observed

current plateaus during the turnstile operation. From Nagamune

et al., 1994.

FIG. 21. (a) SEM image of the device and (b) pumped current

through it in the experiments by Altebaeumer and Ahmed (2001).

Different values of the current correspond to different dc voltages

VG1 [see (a)]. Adapted from Altebaeumer and Ahmed, 2001.
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at the temperature of 25 K. They obtained an accuracy of the

order of 10�2 up to 1 MHz pumping that was also the

limitation set by the calibration of their measurement equip-

ment. Here the electron pumping was based on two sinusoidal

driving signals that are offset by less than 180�, which causes
the chemical potential of the dot to move during the cycle.

In addition to pumping, Ono et al. (2003) utilized the

device shown in Fig. 22(a) as a single-electron turnstile.

The operational principle is the same as in the pioneering

experiments with GaAs quantum dots described in Figs. 19(b)

and 19(c). Ono et al. (2003) observed current steps of ef up to

f ¼ 1 MHz operation frequencies [see Fig. 23(a)]. The flat-

ness of the plateaus was of the order of 10�2 measured at

25 K. In these experiments, the tunnel barrier was formed by

the combination of the gate voltages and the oxidation pro-

cess developed by Takahashi et al. (1995) limiting the pump-

ing frequencies. The first fully gate-tunable turnstile in silicon

was demonstrated by Fujiwara et al. (2004) at 20 K with

2EC ¼ 16 meV and the relative uncertainty in the pumped

current of the order 10�2 at the maximum applied pumping

frequency 100 MHz. This was a clear improvement in the

speed of quantum-dot electron pumps.
Chan et al. (2011) used metallic aluminum gates to define a

silicon quantum dot in the electron accumulation layer of the

device as shown in Fig. 23(b). Although the relative variation

of the current at the plateau they measured was below 10�3

for a broad range of source-drain voltages [see Fig. 23(c)],

they could not strictly claim lower than 2% relative uncer-

tainty in the current at 60 MHz pumping frequency due to the

inaccurate calibration of the gain of the transimpedance

amplifier employed. These experiments were carried out

with 2EC ¼ 2:8 meV at 300 mK phonon temperature but

the sequential tunneling model used to fit the data by Chan

et al. (2011) suggested that the electron temperature of

the dot rose up to 1.5 K. It is to be studied whether 1.5 K

was due to power dissipated at the surface mount resistors in

the vicinity of the sample or due to the direct heating of the

2DEG from the electrostatic coupling to the driven gate

potentials.
Fujiwara, Nishiguchi, and Ono (2008) introduced a

single-electron ratchet based on a silicon nanowire quantum

dot with two polysilicon gates working as MOSFETs

[Fujiwara et al. (2004) also employed this type of device].

In general, ratchets generate directional flow from a non-

directional drive due to the asymmetry of the device. Here an

oscillating voltage is applied to one of the gates such that an

electron is captured through it near the maximum voltage,

i.e., minimum barrier height, and ejected through the other

barrier near the minimum voltage. In fact, the number of

electrons pumped per cycle depends on the applied dc

voltages and current plateaus up to 5ef were reported.

Furthermore, a nanoampere pumped current was observed

at the 3ef plateau with the pumping frequency f ¼ 2:3 GHz.
The error in the current was estimated to be of the order of

10�2 for the experiment carried out at 20 K temperature.

Whereas in the conventional multiparameter pumps, the

pumping errors arise mostly due to missed or excess tunnel-

ing events in a quasistatic Coulomb-blockade regime, the

errors in the single-parameter pumps are taken to be domi-

nated by a dynamic process, in which electrons tunnel out of

the dot to the source lead.
Recently, Jehl et al. (2012) reported on frequency-locked

single-electron pumping with a small quantum dot formed in

metallic NiSi nanowire interrupted by two MOSFETs con-

trolled by barrier gates. With rf drives on the barrier

FIG. 22. (a) SEM image of the device and (b) observed current

plateaus up to 1 MHz pumping frequency on a silicon quantum dot.

From Ono and Takahashi, 2003.
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FIG. 23 (color online). (a) Measured current plateaus for different

frequencies of the turnstile operation with the device shown in

Fig. 22(a). From Ono et al., 2003. (b) SEM image of the silicon

quantum-dot device and a schematic measurement setup employed

in the experiments by Chan et al. (2011). (c) Measured current

plateaus (solid line) and the corresponding theoretical curve (dashed

line) by Chan et al. (2011). The insets show zooms at the n ¼ 0
(bottom) and n ¼ 1 (top) plateaus. The dashed lines show �10�3

relative deviation from the ideal ef level. From Chan et al., 2011.
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gates, they were able to pump currents beyond 1 nA but the
accuracy of the pump was not studied in detail. The MOSFET
channels in this device had very sharp turn-on characteristics
requiring only about 4.2 mV of gate voltage to change the
conductivity of the channel by a decade, which can be
important in reducing unwanted effects from the gate-voltage
drive such as heating.

The first error- counting experiments in silicon were car-
ried out by Yamahata, Nishiguchi, and Fujiwara (2011) [see
also Nishiguchi et al. (2006)]. In contrast to the pioneering
error-counting experiments by Keller et al. (1996), only a
single silicon nanowire quantum dot was used as the current
source and the electrons were steered into and out of a
quantum dot coupled to a charge sensor. By opening the
MOSFET separating the node from the drain reservoir, it
was possible to use the same device as a dc current source.
The observed pumping error was of the order of 10�2 and was
reported to be dominated by thermal errors at the 17 K
temperature of the experiments. Furthermore, electron-
counting experiments were recently carried out by Fricke
et al. (2013) in a quantum-dot array. Further details of
error-counting schemes are discussed in Sec. III.H.2.

4. Experiments on gallium arsenide quantum dots

After the pioneering experiments discussed in Sec. III.C.2,
the focus on single-electron sources based on gallium arsen-
ide moved toward the idea of using SAWs to drive the single
electrons in a one-dimensional channel—a topic to be dis-
cussed in Sec. III.D. In this section, we focus on gate-
controlled GaAs pumps for dc current. A similar device to
the ones discussed here has also been applied in the search for
an ac-current standard which is the topic of Sec. III.G.1.

The seminal work by Blumenthal et al. (2007) took gate-
controlled GaAs quantum dots a leap closer to a metrological
current source, namely, they reported 547 MHz (87.64 pA)
single-electron pumping with one-standard-deviation (1�)
relative uncertainty of 10�4 (see Fig. 24). However, they
did not report the full dependence of the pumping errors as
functions of all control parameters. As the device, they
employed a chemically etched AlGaAs-GaAs wire with
overlapping metallic gates as shown in Fig. 24. Only
the three leftmost gates L, M, and R were used such that
180�-phase-shifted sinusoidal driving signals were applied to
gates L and R in addition to dc voltages applied to all three
gates. The amplitudes of the rf signals were chosen asym-
metric such that the device can work as a pump rather than a
turnstile. The charging energy of the device was estimated to
be 2EC ¼ 1 meV, and the experiments were carried out at the
bath temperature of 300 mK.

With a similar device architecture as shown in Fig. 24 but
using only two gates instead of three, Kaestner, Kashcheyevs,
Amakawa et al. (2008) demonstrated that frequency-locked
single-electron pumping can be carried out with a single
sinusoidal driving voltage, thus decreasing the complexity
of the scheme. This type of single-parameter pumping with
two gates is employed in the remainder of the works dis-
cussed in this section. Maire et al. (2008) studied the current
noise of a similar single-parameter pump at f ¼ 400 MHz
and estimated based on the noise level that the relative
pumping error was below 4%. Kaestner, Kashcheyevs,

Hein et al., 2008 studied the robustness of the current plateaus
as functions of all control parameters of the pump except the
source-drain bias. They showed that single-parameter pump-
ing is robust in the sense that wide current plateaus appear in
the parameter space but their measurement uncertainty was
limited to about 10�2, and hence a detailed study of the
behavior of the accuracy as a function of these parameters
was not available.

Wright et al. (2008) made an important empirical obser-
vation that the accuracy of the single-parameter pump can
be improved by an application of perpendicular-to-plane
magnetic field [see also Wright et al. (2009) and
Fig. 25(b)]. They applied fields up to 2.5 T and demonstrated
that the n ¼ 1 plateau as a function of the dc voltage on the
nondriven gate widens noticeably with increasing magnetic
field. In further studies by Kaestner et al. (2009) and Leicht
et al. (2011) up to magnetic fields of 30 T, a great widening
on the plateau was observed, but it essentially stopped at
5 T. On the contrary, high-resolution measurements on
the pumped current up to 14 T by Fletcher et al. (2011)
showed a continuous improvement on the pumping accuracy
with increasing field [see also Fig. 25(b)]. This discrepancy
is possibly explained by the different samples used in the
different sets of experiments.

Giblin et al. (2010) employed a magnetic field of 5 T and
reported 54 pA of pumped current with 1� ¼ 15 ppm
relative uncertainty with a single-parameter sinusoidal drive.
They were able to measure at such a low uncertainty with a
room-temperature current amplifier since they subtracted a
reference current from the pumped current and passed less
than 100 fA through the amplifier. Thus the uncertainty in
the gain of the amplifier did not play a role. The reference
current was created by charging a low-loss capacitor and was
traceable to primary standards of capacitance.

To date, the most impressive results on single-electron
pumping with quantum dots have been reported by

FIG. 24. Current plateau in the electron pumping experiments as a

function of the middle-gate voltage at 547 MHz operation fre-

quency. The dashed lines show � ¼ �10 fA uncertainty in the

electrometer calibration. The top left inset shows the device used as

the electron pump. The top right inset shows current plateaus at

1 GHz pumping frequency and the bottom inset shows the pumped

current as a function of the operation frequency. From Blumenthal

et al., 2007.
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Giblin et al. (2012). Compared with the previous results of
Giblin et al. (2010), they made several changes to improve
the results. They used a higher magnetic field of 14 T and an

advanced generation of samples with a lithographically de-
fined place for the quantum dot in both directions in the plane
[see Fig. 25(a)]. Instead of using sinusoidal wave forms, they

also tailored the drive voltage so that the cycle time was
distributed more evenly for the different parts of the cycle. To
make traceable measurements, a reference current was

created by an accurate temperature-controlled 1 G� resistor,
a voltage source, and a high-precision voltmeter. The volt-
meter and the resistor were calibrated through intermediate

steps against the Josephson voltage standard and the quantum
Hall resistance (QHR) standard, respectively. In this work,
Giblin et al. (2012) reported 150 pA pumped current with

relative 1� uncertainty of 1.2 ppm [see Fig. 25(c)]. Most of
the uncertainty, 0.8 ppm, arose from the calibration of the
1 G� resistor. Thus it is possible that the electron pumping

was actually even more accurate, as suggested by fitting the
results to a so-called decay-cascade model (Kashcheyevs and
Kaestner, 2010). However, there can be processes that are

neglected by the model and since there is no experimental
evidence on lower than 1.2 ppm uncertainty, it remains the
lowest demonstrated upper bound for relative pumping errors

for quantum-dot single-electron pumps. Error counting,
as demonstrated in silicon by Yamahata, Nishiguchi, and
Fujiwara (2011) and in aluminum by Keller et al. (1996), is

a way to measure the pumping errors to a very high precision
independent of the other electrical standards and remains to
be carried out in the future for the GaAs quantum-dot pumps.

D. Surface-acoustic-wave-based charge pumping

After the pioneering experiments on single-electron
sources based on GaAs discussed in Sec. III.C.2, the focus

in this field moved toward the idea of using SAWs to drive

single electrons in a one-dimensional channel (Shilton, Mace

et al., 1996). Here the sinusoidal potential created for the

electrons in the piezoelectric GaAs by a SAW forms a moving

well that can trap an integer number of electrons and transport

them in a one-dimensional channel.
The first experiments of this kind of SAW electron pumps

were carried out by Shilton, Talyanskii et al., (1996). They

employed a SAW frequency of 2.7 GHz and observed a

corresponding n ¼ 1 current plateau at 433 pA with the

uncertainty of the order of 10�2 at 1 K temperature.

Talyanskii et al. (1997) carried out more detailed experiments

on similar samples at two different SAW frequencies and

the results were in agreement with the ef scaling law.

Furthermore, several current plateaus were observed as a

function of the gate voltage corresponding to different integer

values of pumped electrons per cycle. However, the experi-

mental uncertainty at the plateau was again of the order

of 10�2 and sharp current peaks were observed at various

gate-voltage values.
After these first experiments, Janssen and Hartland

(2000a, 2000b) studied the accuracy of the SAW pump

and reported a 431 pA current at the center of the plateau

with 200 ppm relative deviation from the ideal value.

Ebbecke et al. (2000) demonstrated SAW pumping up to

4.7 GHz frequencies and with two parallel channels to

increase the current, but the measurement accuracy was

rather limited here. To improve the quality of the plateau

Janssen and Hartland (2001) decreased the width of the one-

dimensional channel, which helps in general. However, they

observed that the required rf power to drive the electrons

increases with decreasing channel width, causing severe rf

heating of the sample. This heating caused the quality of the

plateau to drop and the conclusion was that materials with

lower losses due to rf are needed [see also Utko, Lidelof, and

Gloos (2006)]. In fact, Flensberg, Niu, and Pustilnik (1999)

and Ebbecke et al. (2003) reported that the accuracy of the

SAW current is fundamentally limited in one-dimensional

channels because of tunneling of electrons out from a

moving dot.
To overcome the limitation pointed out by Ebbecke et al.

(2003), the charging energy was increased in the system by

defining a quantum dot with surface gates rather than utilizing

an open one-dimensional channel (Ebbecke et al., 2004).

Thus the applied SAWs modulate both the tunnel barriers

between the dot and the reservoirs and the electrochemical

potential at the dot. With this technique, current plateaus were

observed at a SAW frequency of 3 GHz and the reported

relative deviation from the ideal value was of the order of

10�3. Although the results by Janssen and Hartland (2000a,

2000b) remain the most accurate ones reported to date with

SAW electron pumps, and hence are not valuable for a

metrological current source, single-electron transfer with

SAWs can be useful in other applications. For example,

McNeil et al. (2011) showed that an electron taken by

SAWs from a quantum dot can be captured by another dot

at a distance. This kind of electron transport can potentially

be used to transport single spins working as quantum bits in a

spin-based quantum computer (Hanson et al., 2007; Morello

et al., 2010).

FIG. 25 (color online). (a) SEM image of the device with a

schematic measurement setup. (b) Current plateaus obtained by

using a sine wave drive at different frequencies and magnetic fields.

(c) Relative difference of the pumped current from ef using a sine

wave form and a tailored arbitrary wave form at different frequen-

cies. The rightmost data point denoted by an asterisk shows the

result with the potential of the entrance gate shifted by 10 meV from

the optimal operation point. From Giblin et al., 2012.
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E. Superconducting charge pumps

The envisioned advantage in pumping Cooper pairs instead
of electrons is that the supercurrent produced by the Cooper-
pair pumps is inherently dissipationless and the BCS gap
protects the system from microscopic excitations. Thus the
operation frequency of the pump can possibly be high with
the system still remaining at very low temperature. Another
advantage of the supercurrent is that it can sustain its coher-
ence, and hence be virtually noiseless, in contrast to the
single-electron current that is based on probabilistic tunnel-
ing. Furthermore, since the charge of a single Cooper pair is
2e, single-Cooper-pair pumps yield twice the current com-
pared with single-electron pumps operated at the same fre-
quency. Despite these advantages, the lowest uncertainties in
the achieved Cooper-pair current is at the percent level
(Vartiainen et al., 2007; Gasparinetti et al., 2012). One reason
for this is the low impedance of the device, rendering it
susceptible to current noise.

Two types of Cooper-pair pumps exist in the literature:
arrays of superconducting islands (Geerligs et al., 1991) with
source and drain leads, all separated by single Josephson
junctions with fixed tunnel couplings, and a so-called sluice
(Niskanen, Pekola, and Seppä, 2003; Niskanen et al., 2005)
that is composed of a single island connected to the leads by
two SQUIDs that function as tunable Josephson junctions; see
Fig. 26. As in the case of single-electron pumps, the device
operation is based on Coulomb-blockade effects allowing the
controlled transfer of individual Cooper pairs, which means in
the case of array pumps that the fixed Josephson energies of the
junctions must be much lower than the Cooper-pair charging
energy of the corresponding islands. In the sluice, it is suffi-
cient that the minimum obtainable Josephson energy is much
lower than the charging energy. For the arrays, the thermal
energy kBTmust bemuch lower than the Josephson energy that
defines the energy gap between the ground state and the excited
state of the quantum system at charge degeneracy. For the
sluice, the maximum Josephson energy of the SQUIDs yields
the minimum energy gap of the system, thus relaxing the
constraint on temperature.

The first experiment demonstrating Cooper-pair pumping
was performed by Geerligs et al. (1991). The device is a
linear array of three Josephson tunnel junctions. The two
superconducting islands separated by the junctions are ca-
pacitively coupled to individual gate electrodes. Except in the
vicinity of the charge degeneracy points in the gate-voltage
space, the number of Cooper pairs on these islands is rather
well defined by the gate voltages because the Coulomb-
blockade regime is employed. By biasing the device and
applying sinusoidal ac voltages with appropriate amplitudes
to the gates, one obtains a continuously repeated cycle, during
which a Cooper pair is transferred through the device, i.e.,
Cooper pairs are pumped one by one. Ideally, this yields a dc
current I ¼ 2ef that is proportional to the pumping frequency
f. The driving voltage at each gate should have the same
frequency and a phase difference of �=2. The pumping
direction can be reversed if the difference is changed by �.
Thus the pumping principle is the same as for a normal pump
discussed in Sec. III.A. The height of the measured current
plateau follows rather well the predicted relation I ¼ 2ef at
low pumping frequencies, but deviates strongly at higher

frequencies. This is explained by several mechanisms. The
pumping uncertainty of the device was not assessed in detail

but it seems to lie at least on the percent level with

picoampere currents. One of the error mechanisms is the

Landau-Zener tunneling when the system is excited to the

higher-energy state without transferring a Cooper pair. This

was the dominant mechanism at the high end of the studied
pumping frequencies in the experiment by Geerligs et al.

(1991) thus imposing an upper limit on the operation fre-

quency of the device. Other error sources in the device are the

tunneling of nonequilibrium quasiparticles, photon-excited

tunneling, and relaxation of the excited states produced by

Landau-Zener tunneling. In addition, cotunneling of Cooper
pairs through the two junctions produces a steplike feature

in the current plateaus, thus reducing the pumping accuracy.

Later, a similar three-junction Cooper-pair pump was studied

by Toppari et al. (2004) and essentially the same conclusions

on the pumping accuracy were made. In both experiments,
no 2e periodicity was observed in the dc measurements,

which suggests a substantial presence of nonequilibrium

quasiparticles in the system.

FIG. 26. (a) Scanning electron micrograph of the sluice used in

the experiments by Vartiainen et al. (2007) with a simplified

measurement setup. (b) Magnified view of the island of the device

shown in (a) with four Josephson junctions. (c) Measured pumped

current with the sluice (solid lines) as a function of the magnitude of

the gate-voltage ramp such that n corresponds to the ideal number

of elementary charges e pumped per cycle. The inset shows the

steplike behavior observed in the pumped current. From Vartiainen

et al., 2007.
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The effect of quasiparticles on Cooper-pair pumping was

also observed in the seven-junction Cooper-pair pump

(Aumentado, Keller, and Martinis, 2003). The device is

basically the same as the one used for pumping single

electrons in the earlier experiments in the normal state

(Keller et al., 1996). The pump consists of 6 �m-scale

aluminum islands linked by aluminum-oxide tunnel barriers.

Investigation of this circuit in the hold and pumping modes

revealed that besides 2e tunneling events, there is a significant
number of 1e events associated with the quasiparticle tunnel-

ing. All these experiments show that in order to obtain

accurate Cooper-pair pumping, one must suppress unwanted

quasiparticle tunneling. Leone and Lévy (2008) and Leone,

Lévy, and Lafarge (2008) proposed topological protection in

pumping Cooper pairs. The charge is expected to be strictly

quantized determined by a Chern index. To our knowledge,

this idea has not been tested experimentally.
In order to increase the output dc current and accuracy of a

single pump, the sluice pump was introduced by Niskanen,

Pekola, and Seppä (2003) and Niskanen et al. (2005). In the

pumping cycle, the two SQUIDs separating the single island

work in analogy with valves of a classical pump and the gate

voltage controlling the island potential is analogous to a

piston. At each moment of time, at least one SQUID is closed,

i.e., set to minimum critical current. The gate voltage is used

to move Cooper pairs through open SQUIDs with maximum

critical current. If the pairs are taken into the island through

the left SQUID and out of the island through the right

SQUID, the resulting dc current is ideally I ¼ N2ef, where
the number of pairs transported per cycle N is determined by

the span of the gate-voltage ramp. In practice, the critical

current of the SQUIDs is controlled by flux pulses generated

by superconducting on-chip coils. Since each operation

cycle can transfer up to several hundreds of Cooper pairs,

Vartiainen et al. (2007) managed to pump roughly 1 nA

current with uncertainty less than 2% and pumping frequency

of 10 MHz; see Fig. 26. The investigated high-current

Cooper-pair pump demonstrated steplike behavior of the

pumped current on the gate voltage; however, its accuracy

was affected by the residual leakage in the tunnel junctions

and the fact that the SQUIDs did not close completely due to

unequal Josephson junctions in the structure.
The leakage current in the sluice can be suppressed by

working with a phase bias instead of a voltage bias, as was

applied by Niskanen et al. (2005) and Vartiainen et al. (2007).

The only experiment reported for a phase-biased pump was

carried out by Möttönen, Vartiainen, and Pekola (2008). They

connected a sluice in a superconducting loop with another

Josephson junction. By measuring the switching behavior of

this junction from the superconducting state to the normal

branch with forward and backward pumping, they were able

to extract the pumped current of the sluice. However, this type

of current detection did not turn out to be as sensitive as the

direct measurement with a transimpedance amplifier used in

the case of voltage bias. A potential way to improve the

sensitivity is, instead of the switching junction, to use a

cryogenic current comparator (CCC) coupled inductively to

the superconducting loop. This type of an experiment has not

been carried out to date. Instead, Gasparinetti et al. (2012)

measured a sluice in the vicinity of vanishing voltage bias,

where they demonstrated single-Cooper-pair pumping pla-
teaus in both the bias voltage and dc level of the gate voltage;
see Fig. 27. The quasiparticle poisoning was reported to be
suppressed compared with the previous experiments, and
hence they observed clear 2ef spacing of the current plateaus.

In addition to the above-mentioned pumping schemes,
Nguyen et al. (2007) studied how a superconducting quantum
bit referred to as a quantronium can be used to detect the gate
charge ramp arising from a current bias on the gate electrode
of the island of the device. The accuracy of this technique in
converting the bias current into frequency remains to be
studied in detail. Hoehne et al. (2012) studied another type
of quantum bit, a charge qubit, for pumping Cooper pairs
nonadiabatically. The aim here was to increase the pumping
speed compared to adiabatic schemes but due to the accumu-
lation of the errors from one pumping cycle to another, a
waiting period between the cycles needed to be added.
Furthermore, Giazotto et al. (2011) showed experimentally
how phase oscillations can drive Cooper pairs in a system
with no tunnel junctions. However, this kind of pumping was
found to be very inaccurate in this proof-of-the-concept
experiment.

F. Quantum phase slip pump

There is a proposal to build a source of quantized current
based on the effect of QPSs in nanowires made of disordered
superconductors (Mooij and Nazarov, 2006). Phase slip
events occur in thin superconducting wires where thermody-
namic fluctuations of the order parameter become significant
(Arutyunov, Golubev, and Zaikin, 2008). During the phase
slip, the superconducting order parameter vanishes at a cer-
tain instance and position in the wire, and the phase differ-
ence between the wire ends changes by 2�. This gives rise to
a voltage pulse in accordance with the Josephson relation. If
the phase slips happen frequently, they produce a finite dc
voltage or a finite resistance.

Phase slips caused by thermal activation broaden the tem-
perature range of superconducting phase transitions and

1.5

1.0

0.5

0.0
-0.5 0.0

ng
0

∆n
g

Q   /2ep
0.0 0.4 0.8 1.2 1.6 2.0

FIG. 27 (color online). Pumped average charge by Gasparinetti

et al. (2012) for a single pumping cycle of a sluice pump near

vanishing voltage bias as a function of the gate charge offset ng and

span during the pumping cycle �ng. From Gasparinetti et al., 2012.
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produce a resistive tail below the critical temperature of a
superconductor (Tinkham, 1996). At sufficiently low tem-
peratures quantum fluctuations take over, and the residual
temperature-independent resistivity of a nanowire can be
attributed to the quantum phase slips [see Arutyunov,
Golubev, and Zaikin (2008) and references therein].
Thermally activated phase slips are inherently incoherent.
Quantum phase slips may be coherent provided dissipation
associated with every switching event is suppressed. This can
be achieved in superconductors with strong disorder in which
Cooper pairs localize before the superconducting transition
takes place (Feigel’man et al., 2007). Such a localization
behavior has been observed by scanning tunneling micros-
copy in amorphous TiN and InOx films (Sacépé et al., 2010,
2011), which are believed to be the most promising materials
for the observation of QPSs.

The key parameter describing a nanowire in the quantum
phase slip regime is the QPS energy EQPS ¼ ℏ�QPS, where

�QPS is the QPS rate. Consider a superconducting nanowire of

length L and sheet resistance Rh, and made of a supercon-
ductor with the superconducting transition temperature Tc,
and coherence length � ¼ ð�0‘Þ1=2, where �0 is the BCS
coherence length and ‘ is the electron mean free path
(‘ � �0). Although there is no commonly accepted expres-
sion for �QPS, it is agreed (Mooij and Harmans, 2005;

Arutyunov, Golubev, and Zaikin, 2008) that

�QPS / exp

�
�0:15A

RK

2Rh�

�
;

where A is a constant of order unity and RK ¼ h=e2. Clearly
the exponential dependence of �QPS on the wire resistance on

the scale of �, R� ¼ Rh�, requires extremely good control of

the film resistivity as well as the wire cross-sectional dimen-
sions. For the nanowires to be in the quantum phase slip
regime rather than in the thermally activated regime, EQPS

should exceed the energy of thermal fluctuations kBT. For a
typical measurement temperature of 50 mK, �QPS=2� should

be higher than 1 GHz. Although the exact estimation of R� is

rather difficult, especially in the case of strongly disordered
films, the experimental data presented by Astafiev et al.
(2012) for InOx films agrees with the following values:
�QPS=2� 
 5 GHz, R� ¼ 1 k�, and � ¼ 10 nm.

The first experiment reporting the indirect observation
of coherent QPS in nanowires was performed by Hongisto
and Zorin (2012). They studied a transistorlike circuit con-
sisting of two superconducting nanowires connected in series
and separated by a wider gated segment. The circuit was
made of amorphous NbSi and embedded in a network of on-
chip 30-nm-thick Cr microresistors ensuring a high external
electromagnetic impedance. The NbSi film had a supercon-
ducting transition temperature of 
 1 K and normal-state
sheet resistance of about 550 � per square. Provided the
nanowires are in the regime of QPSs, the circuit is dual to
the dc SQUID. The samples demonstrated appreciable
Coulomb-blockade voltage (the analog of the critical current
of the dc SQUID) and periodic modulation of the blockade by
the gate voltage. Such behavior was attributed to the quantum
interference of voltages in two nanowires that were in the
QPS regime. This is completely analogous to the quantum
interference of currents in a dc SQUID.

An unambiguous experimental evidence of a coherent QPS

was provided in the work by Astafiev et al. (2012). Coherent
properties of quantum phase slips were proven by a spectros-

copy measurement of a QPS qubit, which was proposed
earlier by Mooij and Harmans (2005). The qubit was a loop

that had a 40-nm-wide and about 1-�m-long constriction.
The loop was made of a 35-nm-thick superconducting

disordered InOx film with Tc ¼ 2:7 K and a sheet resistance
of 1:7 k� per square slightly above Tc. The qubit was

coupled inductively to a step-impedance coplanar waveguide
resonator, which was formed due to the impedance mismatch

between an indium oxide strip and Au leads to which it was
galvanically connected. The ground planes on both sides of

the strip were made of Au. At the qubit degeneracy point at a
flux bias ðmþ 1=2Þ�0, where m is an integer, there is an

anticrossing in the qubit energy spectrum with a gap EQPS ¼
ℏ�QPS. At this flux bias, the two quantum states jmi and

jmþ 1i corresponding to the loop persistent currents circu-
lating in the opposite directions are coupled coherently,

which gives a gap EQPS between the lowest-energy bands of

the qubit. With the flux offset �� from degeneracy, the gap

evolves as �E ¼ ½ð2Ip��Þ2 þ E2
QPS�1=2, where Ip is the

persistent current in the loop. This gap was revealed in the

spectroscopy measurements by monitoring the resonator
transmission as a function of the external magnetic field

and microwave frequency. When the microwave frequency
matched the qubit energy gap, a dip in the transmission was

observed. The width of the dip �260 MHz close to the
degeneracy point indicated rather strong decoherence whose

origin is still to be understood.
Based on the exact duality of the QPS and the Josephson

effects, it is argued that it should be possible to build a QPS

electric current standard, which is dual to the existing
Josephson voltage standard (Mooij and Nazarov, 2006).

When biased resistively and irradiated by a high-frequency
signal, QPS junctions exhibit current plateaus, which could

provide the basis for the fundamental standard of the electric
current. When an ac signal of frequency f is applied to a

Josephson junction, Shapiro voltage steps Vn ¼ nðhf=2eÞ,
where n is an integer, are observed. Similarly, when an ac

signal is applied to a QPS junction, an equivalent of Shapiro
steps will occur in the form of plateaus at constant current

levels In ¼ n2ef. One should note, however, that error
mechanisms have not yet been analyzed for this type of

quantized current source: thus it is not clear at the moment
how accurate this source will be.

From a practical point of view, the realization of a QPS
current source looks rather challenging because it requires

fabrication of nanowires with an effective diameter �10 nm
as well as precise control of the sheet resistance Rh of the

nanowire, which is in the exponent of the expression for EQPS.

Various approaches to the nanowire fabrication including the

step decoration technique, sputtering of a superconductor on
a suspended carbon nanotube, trimming of a nanowire by

argon milling, etc. are described by Arutyunov, Golubev, and
Zaikin (2008). Another issue is the overheating of the nano-

wire electron system. Assuming that the phase slip region
becomes normal (which is true, for example, for Ti nano-

wires), for the estimation of the electron temperature,
one can use Eq. (34) for the power transfer from electrons
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to phonons. A nanowire with the cross-sectional dimensions
20
 20 nm2, sheet resistance 1 k� per square, and carrying
a dc current of 100 pA will have the effective electron
temperature of the order of 250 mK, which is high enough
to smear the current plateaus.

One of the first attempts to observe current plateaus on the
current-voltage characteristics of superconducting nanowires
under rf radiation was reported by Lehtinen, Zakharov, and
Arutyunov (2012). The nanowires were made of Ti and had
length up to 20 �m and effective diameter from 40 nm down
to about 15 nm. The nanowire sheet resistance varied from
about 20 � up to 1:9 k� per square. They were biased
through high-Ohmic Ti or Bi leads having total resistance
of 15 k� and 20 M�, respectively. The low-Ohmic samples
biased through 15 k� exhibited a weak Coulomb blockade.
The estimated EQPS was ’ 0:1 �eV only. More resistive

nanowires (Rh ¼ 180 �, effective diameter 
 24 nm)
biased through 20 M� leads had a pronounced Coulomb
blockade with a critical voltage of up to 0.4 mV. The thinnest
nanowires (Rh ¼ 1:9 k�, effective diameter � 18 nm) ex-
hibited a Coulomb gap of a few hundred millivolts with the
largest gap exceeding 600 mV. These gaps did not vanish
above Tc of Ti, from which the authors concluded that some
weak links were unintentionally formed in the thinnest nano-
wires. Despite the fact that the nanowires had large variations
of parameters, all their current-voltage or dV=dI character-
istics exhibited some quasiregular features under the external
rf radiation. Those features were interpreted as being current
steps formed due to the phase locking of intrinsic oscillations
by the external signal.

It is interesting to note that the physics of QPSs in super-
conducting nanowires resembles the physics of QPSs in
Josephson junction arrays (Fisher, 1986). A nanowire can
be modeled as a 1D array of small superconducting islands
connected by Josephson junctions. The formation of isolated
superconducting regions within a nominally uniform disor-
dered film was confirmed experimentally (Sacépé et al.,
2010, 2011). Such a weakly connected array of superconduct-
ing islands is characterized by the junction Josephson energy
EJ and the island charging energy Ec. The phase and charge
dynamics of the 1D array depends on the ratio EJ=Ec. In the
experiment by Pop et al. (2010) EJ=Ec in a SQUID array was
tuned in situ by applying a uniform magnetic flux through all
SQUIDs. The state of the array was detected by an extra shunt
Josephson junction. They deduced the effect of the quantum
phase slips on the ground state of the array by measuring the
switching current distribution of the entire Josephson circuit
as a function of the external magnetic flux for different values
of EJ=Ec,

G. Other realizations and proposals

In this section we cover various ideas that have been
brought up for experimental demonstration. Although their
metrological relevance is still to be proven, we present them
for their complementarity, potential, and for completeness.

1. ac-current sources

The current pumps described in Secs. III.A–III.C can be
considered as single-electron injectors generating dc current.

Coulomb blockade ensures a good control of the electron

number on an island during the charge transfer.
A time-controlled single-electron source generating ac

current was reported by Fève et al. (2007). The source was

made of a GaAlAs/GaAs quantum dot tunnel coupled to

a large conductor through a quantum point contact

(see Fig. 28). A magnetic field B 
 1:3 T was applied to

the sample so as to work in the quantum Hall regime with no

spin degeneracy. The discrete energy levels of the quantum

dot were controlled by the pulse voltage Vexc applied to the

top gate and by the QPC dc gate voltage Vg, which also

controlled the transmission D of a single edge state. The dot

addition energy �þ e2=C 
 2:5 K was determined by the

energy-level spacing � as the Coulomb energy e2=2C was

negligibly small. As proposed by Gabelli et al. (2006), this

circuit constitutes an effective quantum-coherent RC circuit

with the effective quantum resistance R and capacitance C
defined as R ¼ h=2e2 and C ¼ e2ðdN=d"Þ, where dN=d" is

the local density of states of the mode propagating in the dot,

taken at the Fermi energy (Prêtre, Thomas, and Büttiker,

1996).
The single-charge injection was achieved by the applica-

tion of a high-amplitude excitation voltage Vexc � �=e to the

top gate, which leads to the electron escape from the dot at a

typical tunnel rate ��1 ¼ D�=h, where �=h is the attempt

frequency. Typically, the tunnel rates are in the nanosecond

time scales, and this makes single-shot charge detection a

challenging task. To increase the signal-to-noise ratio, a

statistical average over many individual events was used by

repeating cycles of single-electron emission with period T
followed by single-electron absorption (or hole emission) as

shown in Fig. 28. This was done by applying a periodic

square-wave voltage of amplitude 
 �=e to the top gate.
When the charge on the dot is well defined, repeatable

single-electron injection leads to quantization of the ac

FIG. 28 (color online). Schematic of the single-charge injector

and its operation principle. Starting from step 1 where the Fermi

energy level of the conductor lies in between two energy levels of

the dot, its potential is increased by � by moving one occupied dot

level above the Fermi energy (step 2). One electron then escapes

from the dot. After that the potential is brought back to the initial

value (step 3), where one electron can enter the dot, leaving a hole

in the conductor. One edge channel of the quantum RC circuit is

transmitted into the dot, with transmission D tuned by the QPC gate

voltage VG. From Fève et al., 2007.
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current. jI!j as a function of Vexc for two values of the dc dot
potential at D 
 0:2 and D 
 0:9 is shown in Fig. 29. The
transmission D 
 0:2 is low enough and the electronic states
in the dot are well resolved, as shown in the inset of Fig. 29
(left). On the other hand, the transmission is large enough for
the escape time to be shorter than T=2. When the Fermi
energy lies exactly in the middle of the density-of-states
valley (rightmost vertical line in the left inset), a well-
pronounced jI!j ¼ 2ef current plateau is observed centered
at 2eVexc=� ¼ 1. It is claimed that the current uncertainty at
the plateau is 5% due to the systematic calibration error. In
contrast, if, with the same transmission, the Fermi energy lies
on the peak (middle vertical line in the left inset), there is still
a current plateau, but it is not as flat and it is sensitive to
parameter variations. When transmission is increased, the
charge fluctuations become stronger and the plateau gets
narrow and finally nearly vanishes at D 
 0:9 even for the
optimal working point, as seen from Fig. 29 (right). The
experimental results (dots) are compared with the theoret-
ical model, the solid lines [1D modeling of the circuit de-
scribed by Gabelli et al. (2006) was used], showing excellent
agreement between the two.

The device above has been described as an electron analog
of the single-photon gun. It is not a source of quantized dc
current as the dot emitting the electron can be recharged only
though the reverse process of electron absorption. Using a
similar technique of electron emission with fast pulses, but
adding one more lead, one can produce a highly accurate dc
current (Giblin et al., 2012) as described in Sec. III.C.4.
Recent correlation experiments on electron guns have been
reported in Bocquillon et al. (2012).

2. Self-assembled quantum dots in charge pumping

The idea of using self-assembled quantum dots for charge
pumping is based on conversion of optical excitation into
deterministic electric current; see Nevou et al. (2011). In the
experiment of Nevou et al. (2011) a plane of self-assembled
InAs quantum dots is coupled to an InGaAs quantum-well
reservoir through an Al0:33Ga0:67As barrier [see Figs. 30(a)–
30(c)]. The structure is sandwiched between two n-doped
GaAs regions. The device basically works as a strongly
asymmetric quantum-dot infrared photodetector (Nevou
et al., 2010). In the absence of any optical excitation,

electrical conduction is inhibited by the AlGaAs barrier.

When a laser pulse ionizes the quantum dots, a fixed number

of electrons are excited out of the dot and then swept away by

the applied bias voltage, giving rise to a photocurrent. After

that, the dots will be refilled from the electron reservoir by

tunneling through the AlGaAs barrier. If the process is re-

peated at a frequency f, the current will be given by I ¼ nef,
where n is determined by the number of dots and the number

of electrons per dot. To obtain the desired pumping accuracy,

the laser pulse duration time must be much shorter than the

refilling time, and f should not exceed the kilohertz range.

Even with such a low repetition frequency, currents in the

nanoampere range can be generated as the number of dots

running in parallel in a typical device is tens of millions.

There are error sources arising from the uncertainty in the

number of quantum dots contained in one device, as well as

FIG. 29 (color online). ac quantization. jIwj as a function of

2eVexc=� for different dot potentials at D 
 0:2 (left) and D 

0:9 (right). Dots are measured values and lines are theoretical

predictions. Insets schematically show the dot density of states

Nð"Þ. The vertical lines indicate the dot potential for the

corresponding experimental data. From Fève et al., 2007.

FIG. 30 (color online). (a) Schematic layout of the self-assembled

quantum-dot electron pump, (b) transmission electron microscopy

image of the quantum dots, (c) 3D sketch of the conduction band

profile of the structure under zero bias, and (d) saturation current for

two different pump wavelengths (� ¼ 6:7 �m: curve A and � ¼
10 �m: curve B). The difference provides a current plateau that

should be2ef (thick horizontal line). Inset:Variations of themeasured

current with respect to the average value. From Nevou et al., 2011.
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the variability in the quantum-dot transition energy. These
errors were of the order of 10% of the pumped current in the
experiment of Nevou et al. (2011).

3. Mechanical single-electron shuttles

Besides charge pumps with entirely electronic control,
there is a group of devices in which a mechanical degree of
freedom is involved. They are called mechanical charge
shuttles, because they transfer either single charges (electrons
or Cooper pairs) or portions of charges between the two
electrodes due to the mechanical back-and-forth motion of
a small island between the electrodes. This results in current
flow, either incoherent or coherent. The concept of the me-
chanical electron shuttle was introduced by Gorelik et al.
(1998) and Isacsson et al. (1998).

The proposed device has a small conducting island, which
is mechanically attached to electrical leads with the help of an
elastic insulator. The dc voltage applied between the leads
and elastic properties of the insulator together with charging
and discharging of the island creates instability and makes the
island oscillate; see Fig. 31(a). For the proper operation of
the shuttle, two assumptions were made: the amplitude of the
mechanical oscillations is much larger than the electron
tunneling distance, and the number of electrons on the island
is limited. With these assumptions the island motion and
charge fluctuations become strongly coupled. Depending on
the shuttle details, two regimes can be distinguished: classical
(Gorelik et al., 1998; Isacsson et al., 1998; Weiss and
Zwerger, 1999) and quantum mechanical (Armour and
MacKinnon, 2002; Fedorets et al., 2004; Johansson et al.,
2008; Cohen, Fleurov, and Kikoin, 2009). The shuttle, when
made superconducting, can transfer not only electrons but
also Cooper pairs (Gorelik et al., 2001; Shekhter et al., 2003).

The first experimental realization of a mechanical charge
shuttle that operated due to a shuttle instability was reported
by Tuominen, Krotkov, and Breuer (1999). This was a rather
bulky device even though it was scaled down considerably in
size and operating voltage in comparison to the earlier
electrostatic bell versions. The observed jumps of the current
as a function of the bias voltage as well as hysteresis in the
transport characteristics were the main indications of the
shuttling regime of the device. A nanoscale version of
the instability-based electron shuttle was implemented by
Kim, Qin, and Blick (2010); see Fig. 31(b). The device was
a Si pillar covered on top with a thick gold layer and placed in
the gap between two electrodes, the source and the drain, of
the central line of a coplanar waveguide. For reference, they
also fabricated and measured a similar device without a pillar
in the gap. The samples were measured at room temperature
in vacuum. The pillar was actuated by applying a small rf
signal together with a dc bias voltage across the source and
drain electrodes. A clear frequency dependence was observed
for the sample with a pillar in the gap, with the resonance
frequency of 10.5 MHz and quality factor of about 2.5. It was
estimated that the device shuttles on average 100 electrons
per cycle.

Another realization of the nanoelectronic shuttling device
was reported by Moskalenko et al. (2009a, 2009b). It had the
configuration of a single-electron transistor, whose island was
a gold nanoparticle placed in between the Au source and

drain electrodes by means of an atomic force microscope.

Current-voltage characteristics of the devices were measured

at room temperature, and characteristic current jumps in the

current-voltage curves were observed, which were attributed

to the shuttling effect. They also compared characteristics of

the working shuttle device from which the nanoparticle was

removed. After this procedure, the current through the device

dropped below the noise level.
The effect of the mechanical vibrational modes on charge

transport in a nanoelectronic device was observed in a C60

single-electron transistor (Park et al., 2000). In this device, a

single C60 molecule was placed in the narrow gap between the

two gold electrodes. It was found that the current flowing
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FIG. 31 (color online). (a) Model of the shuttle device proposed

by Gorelik et al. (1998)). (Top) Dynamic instabilities occur since in

the presence of a sufficiently large bias voltage V the grain is

accelerated by the electrostatic force toward the first electrode, then

toward the other one. A cyclic change in direction is caused by the

repeated loading of electrons near the negatively biased electrode

and the subsequent unloading of the same charge at the positively

biased electrode. As a result, the sign of the net grain charge

alternates, leading to an oscillatory grain motion and charge trans-

port. (Bottom) Charge variations on a cyclically moving metallic

island. The dashed lines in the middle describe a simplified trajec-

tory in the charge-position plane, when the island motion by �x and

discharge by 2�q occur instantaneously. The solid trajectory de-

scribes the island motion at large oscillation amplitudes. Periodic

exchange of the charge 2q ¼ 2CV þ 1 between the island and the

leads results in the net shuttle current I ¼ 2�qf, where f is the

shuttle frequency Adapted from Gorelik et al., 1998. (b) Scanning

electron micrograph of a nanopillar between two electrodes. From

Kim, Qin, and Blick, 2010. (c) Electron micrograph of the quantum

bell: The Si beam (clapper) is clamped on the upper side of the

structure. ac gates G1 and G2 are used for the actuation of the

clapper C. Electron transport is measured from source S to drain D

through the island on top of the clapper. From Erbe et al., 2001.

(d) A false-color SEM image of the nanomechanical SET. A gold

island is located at the center of a doubly clamped freely suspended

silicon nitride string. The gold island can shuttle electrons between

the source and drain electrodes when excited by ultrasonic waves.

From Koenig, Weig, and Kotthaus, 2008.
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through the device increases sharply whenever the applied
voltage was sufficient to excite vibrations of the molecule.
Although mechanical vibrations were observed in this
structure, they are not related to the shuttling of electrons.

Externally driven resonant shuttles may be easier to imple-
ment in comparison to the instability-based shuttles, because
a much larger displacement amplitude can be achieved.
However, the drawback of using a mechanical resonator is
the discrete set of eigenfrequencies, which are determined by
geometry and materials. Therefore, only a limited number of
frequencies are available for electron transfer. In the experi-
ment performed by Erbe et al. (1998) a Si nanomechanical
resonator was placed in between two contacts. The whole
device, being a scaled-down version of the classical bell, was
functioning as a mechanically flexible tunneling contact
operating at radio frequencies. The contact was driven by
�-shifted oscillating voltages applied on two gates. The
current-frequency dependence of the device contained strong
peaks, which were interpreted as being due to the mechanical
resonances of the beam, indicating that shuttling was occur-
ring. The peaks had low quality factors, ranging from 100 to
15 only. The number of electrons N shuttled per cycle was
estimated from the current peak height I using the N ¼ I=ef.
Below 20 MHz, 103–104 electrons were shuttled in each
cycle. On the 73 MHz peak the number was decreased to
about 130 electrons per cycle.

The same group (Erbe et al., 2001) fabricated a singly
clamped beam with a metal island on its end [see Fig. 31(c)].
It was found at 300 K that there was no detectable current
through the device unless a driving ac voltage (� 3 V) was
applied to the driving gates. Under the external drive, the
current exhibited several peaks, similar to those in the earlier
device (Erbe et al., 1998), which was attributed to the beam
motion. The background current was explained by the ther-
mal motion of the beam. At 4.2 K all the current peaks were
suppressed except one at about 120 MHz with much smaller
height (only 2.3 pA). This corresponded to shuttling on
average of 0.11 electron per cycle.

Koenig, Weig, and Kotthaus (2008) implemented electro-
mechanical single-electron transistors with a metallic island
placed on a doubly clamped SiN beam [see Fig. 31(d)], which
was measured at a temperature of 20 K. The observed reso-
nance features in the SET dc current were attributed to the
mechanical resonances. It was argued that the mechanical
motion of the resonator was strongly nonlinear. This was
imposed by the side electrodes constituting the impacting
boundary conditions. The nonlinear nature of the system
resulted in a shape of the resonance curves different
from Lorentzian. Although the expected steplike dependence
of the SET current on the source-drain voltage was not
observed (because of the high measurement temperature as
compared to the charging energy), they made an optimistic
conclusion that the device may be useful for quantum
metrology.

4. Electron pumping with graphene mechanical resonators

An electron pump based on a graphene mechanical reso-
nator in the fundamental flexural mode was introduced by
Low et al. (2012). The resonator is actuated electrostatically
by a gate electrode. Time-varying deformation of graphene

modifies its electronic energy spectrum and in-plane strain.
Cyclic variation of these two properties constitutes the
scheme for quantum pumping. To have a nonzero pumping
current, spatial asymmetry must be introduced. It is assumed
that the contacts between the graphene layer and the left and
right electrodes are not equivalent, which is modeled by
different densities of states. This can be achieved in the
experiment by using different materials for the two elec-

trodes. It is emphasized that Coulomb-blockade effects will
favor the transfer of an integer number of electrons per cycle,
so that the relation between current and frequency will be
quantized. This is just a proposal and the applicability of this
approach for quantum metrology is still to be verified.

5. Magnetic- field-driven single-electron pump

Another proposal, not implemented though, is based on
using a ferromagnetic three-tunnel-junction device for elec-
tron pumping (Shimada and Ootuka, 2001). Its islands and
leads are made of ferromagnetic metals with different coer-
cive forces. Such a device can be operated as a single-electron
pump if controlled by ac magnetic fields, and not by the gate
voltages. In addition to the charging effects, it makes use of
the magnetic-field-induced shift of the chemical potential and
magnetization reversal in the ferromagnetic electrode.

The proposed device has intrinsic limitations of the pump-
ing speed, which are determined by the physical time con-
straints of the ferromagnet. The pump operation frequency
must be much lower than the characteristic relaxation times.
The prospects of this type of an electron pump for quantum

metrology are still to be understood.

6. Device parallelization

As discussed in Sec. III.A, it is possible to reach precise
electron pumping with a normal-metal single-electron pump
consisting of a sufficiently long array of islands. With six
islands and seven junctions, the accuracy of the pumped
current is at the 10�7 level. However, the maximum current
is limited to a few picoamperes. To get the current scaled up
to the 100 pA level, a requirement for practical metrological
applications (see Sec. IV.D.1), approximately 100 pumps
should be operated in parallel. The main reason why paral-
lelization is impractical for normal-metal devices is the tun-
ing of the offset charges (Keller et al., 1996; Camarota et al.,
2012). Each island has an individual offset charge that has to
be compensated separately. Therefore, a metrological current

source implemented as parallellized normal-metal pumps
would require of the order of 1000 dc lines.

Compared to normal-metal pumps, quantum-dot-based
pumps allow for higher pumping speeds using fewer control

lines thanks to their tunability; see Sec. III.C. Accuracy of
1.2 ppm at an output current of 150 pA has already been
demonstrated with a single quantum dot (Giblin et al., 2012).
Therefore, parallelization of such pumps may not even be
required if the accuracy can be improved without a loss in
speed. Nevertheless, parallelization of semiconducting
pumps has been considered in the literature. With two pumps,
invariance with respect to gate variations has been shown to
be below the 20 ppm level (Wright et al., 2009) with output
current exceeding 100 pA. In this case, all signals were
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individually tuned for each device requiring two dc and one rf
signals per device. However, it is possible to use common

signals for rf drive and for the barrier voltages (Mirovsky
et al., 2010). In this case, only one dc voltage per device
is required for tuning the other barrier and possible

offset charges. The obtainable accuracy, depending on device
uniformity, is still an open question for this approach.

For the hybrid NIS turnstiles, the maximum current per
device is limited to a few tens of picoamperes, as discussed in

Sec. III.B.2. Hence, at least ten devices are to be run in
parallel, which has been shown to be experimentally feasible
(Maisi et al., 2009). In Fig. 32 we show a scanning electron

micrograph of a sample used in that work and the main
experimental findings. The turnstiles in these experiments
suffered from photon-assisted tunneling due to insufficient

electromagnetic protection (see Sec. II.F), and hence the
quantization accuracy was only on the 10�3 level.
Improved accuracy is expected for a new generation of turn-

stile devices (Pekola et al., 2010). For parallel turnstiles, a
common bias voltage can be used as it is determined by the

superconducting gap �, which is a material constant and

varies only very little across a deposited film. Also, the rf
drive can be common if the devices have roughly equal RT ,
EC, and coupling from the rf line to the island. As the error
processes that set the ultimate limit on a single turnstile
accuracy are not yet determined, the exact requirements on
device uniformity cannot be fully resolved.

H. Single-electron readout and error correction schemes

1. Techniques for electrometry

The electrometer used to detect the presence or absence
of individual charge quanta is a central component in
schemes for assessing pumping errors and error correction.
Figure 33(a) introduces the essential components of an
electron-counting setup. In order to observe proper charge
quantization, the counting island is connected to other con-
ductors only via low-transparency tunnel contacts. The elec-
trometer is capacitively coupled to the counting island and
biased in such a manner that the small voltage drop of the
counting island due to change of its charge state by one
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FIG. 32 (color online). (a) Scanning electron micrograph of par-

allel turnstiles. The turnstiles are biased with a common bias Vb and

driven with a common rf gate voltage Vrf . Gate offset charges are

compensated by individual gate voltages Vg;i. (b) Output current I

for ten parallel devices tuned to the same operating point producing

current plateaus at I ¼ 10Nef. The curves are taken at different Vb

shown in the top left part of the panel. From Maisi et al., 2009.
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FIG. 33. (a) Circuit diagram of a charge-counting device. Electric

charge Q on the island on the left is monitored. The island is

coupled to an electrometer island via capacitor Cx and also tunnel

coupled to an external conductor. The single-electron box configu-

ration illustrated here requires only one tunnel junction with ca-

pacitance Cj. In addition, there is capacitance C0 to ground, which

accounts also for gate electrodes and any parasitic capacitances. The

probing current Idet through the detector is sensitive to the charge on

the coupling capacitor, which is a fraction Cx=C� of the total charge

Q, where C� ¼ Cx þ C0. The detector is a single-electron tunneling

transistor based on Coulomb blockade, and hence the total capaci-

tance of the detector island Cdet is of the order of 1 fF or less.

(b) Circuit diagram of a general noisy electrical amplifier that can

also be adapted to describe the electrometers of single-electron

experiments. From Devoret and Schoelkopf, 2000. For the configu-

ration shown in (a), one has for input impedance Zinð!Þ ¼ 1=j!Cin,

where C�1
in ¼ C�1

x þ C�1
det . The input voltage is related to the island

charge Q through Vin ¼ Q=C�. The noise source IN represents

backaction and VN the noise added by the electrometer at the output

referred to the input. The gain of the amplifier is given by G. The

output impedance Zout equals the differential resistance at the

amplifier operation point.
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electron induces a measurable change in the electrical trans-
port through the detector. The readout performance can be
characterized in terms of response time (bandwidth), charge
sensitivity, and backaction to the system under measurement.
In the present context of electron counting, we define
backaction to include all mechanisms by which the presence
of the detector changes the charge transport in the measured
system.

The two basic electrometer realizations providing suffi-
cient charge sensitivity for electron-counting applications are
the SET (Fulton and Dolan, 1987; Kuzmin et al., 1989) and
the QPC (Berggren et al., 1986; Thornton et al., 1986; Field
et al., 1993). From a sample fabrication point of view, it is
convenient when the electrometer and the charge pump can
be defined in the same process; hence, the QPC is the natural
charge detector for quantum dots in semiconductor 2DEGs,
whereas metallic single-electron devices are typically probed
with SETs. Studies also exist where a metallic superconduct-
ing SET has been used as the electrometer for a semiconduc-
tor QD (Lu et al., 2003; Fujisawa et al., 2004; Yuan et al.,
2011; Fricke et al., 2013), and the SET can be realized in the
2DEG as well (Morello et al., 2010).

The charge sensitivity �q is determined by the noise of the
system as a whole (Korotkov, 1994) and is conveniently

expressed in units of e=
ffiffiffiffiffiffi
Hz

p
for electrometry applications.

For metallic SETs, output voltage fluctuations �Vout can be
related to the charge coupled to the electrometer according to
�q ¼ Cg�Vout=ð@Vout=@VgÞ, where Vg is the voltage of the

SET gate electrode and Cg is its capacitance to the SET island

(Kuzmin et al., 1989). Here Cg can be determined reliably in

the experiment from the period of Coulomb oscillations.
Similar calibration cannot be performed for a QPC and hence
the charge sensitivity is expressed in relation to the charge of
the neighboring QD (Cassidy et al., 2007), corresponding
to Q in Fig. 33(a). Variations of Q and q are related as
�q ¼ ��Q, where � ¼ Cx=C� is the fraction of the island
charge that is coupled to the electrometer. For charge-
counting applications, the relevant parameter is �Q. The
rms charge noise for a given detection band is given by

�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d!SQout

ð!Þ
q

, which reduces to �q
ffiffiffiffi
B

p
in the white

noise limit, where B is the readout bandwidth. It is possible to
pose the charge detection problem in the language of quan-
tum linear amplifiers as shown in Fig. 33(b) (Devoret and
Schoelkopf, 2000; Averin, 2003; Clerk et al., 2010). When
such a detector is modeled as a linear voltage amplifier, IN
and VN characterize the input and output noise, respectively,
and the quantum theory limit for the spectral density of

fluctuations at signal frequency ! reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SVð!ÞSIð!Þp �

ℏ!=2. Information about the electronic backaction is
contained in the correlator h�VinðtÞ�Vinðt0Þi of the induced
voltage fluctuations on the counting island. Denoting the
total capacitance of the counting island by C�, the fluctua-
tions in the output charge signal are given by �Qoutð!Þ ¼
C�VNð!Þ, and the voltage fluctuations on the counting
island by �Vinð!Þ ¼ INð!Þ=j!C�. One thus findsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SQout

ð!ÞSVin
ð!Þ

q
� ℏ=2 as the quantum limit.

In theory, a quantum-limited operation can be achieved
with normal-state SETs operated in the cotunneling regime
(Averin, 2001), superconducting SETs (Zorin, 1996, 2001),

and QPCs (Korotkov, 1999; Clerk, Girvin, and Stone, 2003;
Averin and Sukhorukov, 2005). In practical devices, however,
the noise spectrum up to 1–100 kHz depending on the setup is
dominated by 1=f-like charge noise that is intrinsic to the
sample but whose microscopic physical origin is still debated
(Starmark et al., 1999; Vandersypen et al., 2004; Buehler
et al., 2005). Above 1 kHz, the charge noise level is usually
set by the preamplifier noise, but studies exist where the
intrinsic shot noise of the electrometer was comparable to
the noise of the readout electronics (Brenning et al., 2006;
Kafanov and Delsing, 2009). For the normal-state SET, sen-

sitivities of the order of 10�7 e=
ffiffiffiffiffiffi
Hz

p
are attainable in theory

with present-day fabrication technology, where the intrinsic
noise is due to stochastic character of the tunneling processes
and includes both shot and thermal noise (Korotkov, 1994;
Korotkov and Paalanen, 1999). The best charge sensitivities
reported to date for a single-electron transistor by Brenning
et al. (2006) were almost identical in normal and supercon-

ducting states, namely, 1.0 and 0:9
 10�6 e=
ffiffiffiffiffiffi
Hz

p
, respec-

tively, at a signal frequency of 1.5 MHz. Xue et al. (2009)
also measured the backaction of a superconducting SET and
the product of noise and backaction was found to be 3.6 times
the quantum limit. For QD charge detection with QPCs,

charge sensitivity of 2
 10�4 e=
ffiffiffiffiffiffi
Hz

p
referred to the QD

charge has been demonstrated (Cassidy et al., 2007). It
appears to be easier to realize large charge coupling fraction
� with metallic SETs than with QPCs (Yuan et al., 2011).

We now discuss the backaction mechanisms in more detail;
see a schematic illustration in Fig. 34. Despite the above
quantum theory result connecting backaction and noise, the
electronic backaction of the electron counter can be addressed
in principle independently of its charge noise, as the readout
bandwidth (at most 100 MHz, see below) is much below the
microwave frequencies that can promote charge transfer errors:
Overcoming even a modest 100 �V energy barrier requires
photon frequencies above 24 GHz if multiphoton processes are
neglected. Nevertheless, voltage fluctuations induced by the
shot noise of the detector usually have a non-negligible spectral
density at microwave frequencies. A fraction � of the voltage
fluctuations of the SET island are coupled back to the counting
node. This mechanism can dominate the equilibrium thermal

Q
SET

or

QPC

-DC bias variation
-high freq: PAT

EM:

Phononic/photonic 
heat conduction

Pump

FIG. 34. Detector backaction mechanisms. The backaction can

originate by direct electromagnetic (EM) coupling either by

variations in pump biasing or by high-frequency photon-assisted

tunneling (PAT). Another source of backaction is via heat conduc-

tion. The detector located in proximity of the device typically heats

up. The heat can then be conducted to the device by either phononic

or photonic coupling.
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noise from resistive components at the sample stage; cf.
Martinis and Nahum (1993). A full quantum calculation of
the backaction of anSETelectrometer on aCooper-pair boxhas
been presented by Johansson, Käck, and Wendin (2002).
Lotkhov and Zorin (2012) measured the effect of photon
irradiation by a nearby SET on the hold time of an electron
trap. They found that the rate of electron escape events was
proportional to the theoretically calculated emission rate of
photons having an energy larger than the energy barrier of the
trap. Saira, Kemppinen et al. (2012) suggest attenuating the
high-frequency backaction by replacing the capacitive
coupling by a lossy wire that acts as a low-pass filter for
microwaves but does not affect the charge signal. For QPCs,
Coulombic backaction can be divided into shot noise, which
can be in principle eliminated by circuit design and fundamen-
tal charge noise (Aguado and Kouwenhoven, 2000; Young and
Clerk, 2010).

The low-frequency part of detector backaction manifests
itself as variation of the dc bias of the pump or turnstile
device. The case of an SET electrometer coupled to a single-
electron box was studied by Turek et al. (2005). In the limit of
small coupling capacitance Cx, the voltage swing on the
counting island due to loading and unloading the detector
island is given by �Vin ¼ �e=Cdet. We note that this is just a
fraction Cx=Cdet < 1 of the voltage swing from loading or
unloading the actual counting island with an electron. Hence,
dc backaction of the detector does not necessarily place an
additional constraint on the design of the electron-counting
circuit.

In addition to the electronic backaction described above,
one needs to consider the phononic heat conduction from the
detector to the charge pump. For reaching the ultimate
accuracy, the charge pumps typically require temperatures
of the order of 100 mK or lower, where small on-chip
dissipation can raise the local temperature significantly due
to vanishing heat conductivity in the low-temperature limit
(Kautz, Zimmerli, and Martinis, 1993; Giazotto et al., 2006);
see also Sec. II.G. The average power dissipated by the
detector is given by P ¼ hIdetVdeti, and it needs to be trans-
ported away by the substrate phonons or electronically via the
leads. Requirement for a sufficiently large charge coupling
coefficient � limits the distance by which the detector and
charge pump can be separated. The temperature increase by
dissipated power has been studied on a silicon substrate by
Savin et al. (2006) and they give

T ¼
�
T4
0 þ

2fP

�r2�v

�
1=4

; (40)

where T is the substrate temperature at distance r from a point
source of heating power P, T0 is the bath temperature, �v ¼
3600 Wm�2 K�4 is the material parameter, and f ¼ 0:72 is a
fitting parameter for their experimental observations. For an
illustrative example, we estimate that the dissipated power at
the electrometer in the original rf-SET paper (Schoelkopf
et al., 1998) was 120 fW based on the published numbers.
According to Eq. (40), this will heat the substrate underneath
nearby junctions (r ¼ 200 nm) to 140 mK, which is high
enough to deteriorate the performance of many single-
electron devices below the metrological requirements.
Sillanpää, Roschier, and Hakonen (2004) coupled the readout

to the Josephson inductance of a superconducting SET in-

stead of conductance, reducing the dissipation by 2 orders of

magnitude. Usually it is possible to assess the severity of

detector backaction effects in the experiment by measuring

the tunneling rates using different values of Idet [see, e.g.,
Kemppinen et al. (2011), Lotkhov et al. (2011), and Saira,

Kemppinen et al. (2012)], so that any variation of the ob-

served rates can be attributed to backaction. The picture is

somewhat different in 2DEG systems due to significantly

weakened electron-phonon coupling. Experimental study of

phononic backaction in 2DEGs is presented by Schinner et al.

(2009) and Harbusch et al. (2010).
The bandwidth of the readout, B, is commonly defined as

the corner frequency of the gain from gate charge to output

voltage (Visscher et al., 1996). The performance require-

ments for the charge readout depend on the particular

charge-counting scheme, but in general the bandwidth B
places a limit on the fastest processes that can be detected

and hence constrains the magnitude of the electric current that

can be reliably monitored. In practice, B is limited by the

inverse RC constant of the electrometer’s differential resist-

ance and the capacitive loading on its outputs. Both the QPC

and SET electrometers have an impedance of the order of

RK ¼ h=e2 
 25:8 k�. For the SET, R * RK is required to

realize strong Coulomb blockade according to the orthodox

theory of single-electron tunneling (Averin and Likharev,

1991; Ingold and Nazarov, 1992). For a QPC, the most

charge-sensitive operation point is around a bias point where

@V=@I ¼ RK, midway between the first conductance plateau

and pinch-off (Cassidy et al., 2007). As the barrier capaci-

tance is of the order of 1 fF or less for the devices, the intrinsic

bandwidth is in the gigahertz range. In practice, the capaci-

tance of the biasing leads and the input capacitance of the

preamplifier dominate. When the preamplifier is located

at room temperature as in the pioneering experiments

(Fulton and Dolan, 1987; Kuzmin et al., 1989), the wiring

necessarily contributes a capacitance of the order of 0.1–1 nF

and henceforth limits the readout bandwidth to the kilohertz

range (Pettersson et al., 1996; Visscher et al., 1996). Readout

by a current amplifier from a voltage-biased SET avoids the

RC cutoff on the gain, but the usable bandwidth is not

substantially altered as current noise increases at high fre-

quencies where the cabling capacitance shorts the current

amplifier input (Starmark et al., 1999).
In order to increase the effective readout bandwidth, the

SET impedance has to be transformed down toward the cable

impedance, which is of the order of 50 �. Bandwidths up to

700 kHz have been achieved by utilizing a high-electron-

mobility transistor (HEMT) amplifier with a low impedance

output at the sample stage (Pettersson et al., 1996; Visscher

et al., 1996). The dissipated power at the HEMT in these

studies was 1–10 �W depending on the biasing, which can

easily result in overheating of the electrometer and/or the

coupled single-electron device. The best readout configura-

tion to date is the rf reflectometry technique, applicable to

both SETs (Schoelkopf et al., 1998) and QPCs (Qin and

Williams, 2006), where the electrometer is embedded in a

radio frequency resonant circuit and the readout is achieved

by measuring the damping of the resonator. A readout band-

width of 100 MHz was achieved in the original demonstration
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(Schoelkopf et al., 1998). They also note that their charge

sensitivity of 1
 10�5 e=
ffiffiffiffiffiffi
Hz

p
yields �q ¼ 0:1e for the full

detection bandwidth, i.e., electron counting at 100 MHz
would have been possible in a scenario where the charge
coupling fraction � was close to unity.

2. Electron-counting schemes

Realization of a current standard based on electron
counting has been one of the key motivators for development
of ultrasensitive electrometry (Schoelkopf et al., 1998;
Gustavsson et al., 2008; Keller, 2009). First we see why
direct current measurement of uncorrelated tunneling events,
like those produced by a voltage-biased tunnel junction,
cannot be used for a high-precision current standard:
Assume a noise-free charge detector that yields the charge
state of the counting island with time resolution � ¼ 1=B, and
that Markovian (uncorrelated) tunneling events occur at the
rate � � B. With probability ��, a single tunneling event
occurs during the time � and is correctly counted by the
detector. With probability ð��Þ2=2, two tunneling events
occur within � and constitute a counting error. Hence, to
achieve a relative error rate p, one needs �< 2pB. Even
with a noiseless 100 MHz rf SET, one could not measure a
direct current greater than 2e=s at metrological accuracy p ¼
10�8 in this manner. Would it be practical to account statis-
tically for the missed events in a manner similar to Naaman
and Aumentado (2006) assuming truly Poissonian tunneling
statistics and a well-characterized detector? The answer is
unfortunately negative: If N tunneling events are observed,
the number of missed eventsM is a Poissonian variable with a

mean of N��=2 and standard deviation �M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N��=2

p
.

Requiring �M < pN gives N > ��=ð2p2Þ. For � ¼ 1 MHz
and � and p as above, one has to average over N > 5
 1013

events, which is impractical. A more detailed calculation
based on Bayesian inference presented by Gustavsson et al.
(2009) results in the same N dependence.

Charge transport through a 1D array of tunnel junctions can
take place in the form of solitons depending on device pa-
rameters (Likharev, 1988; Likharev et al., 1989). Propagation
of the solitons promotes time correlation in the electron
tunneling events, allowing the accuracy limitations of count-
ing uncorrelated electrons presented above to be lifted.
A proof-of-concept experimental realization has been pre-
sented by Bylander, Duty, and Delsing (2005). The array is
terminated at the middle island of an SET, allowing for unity
charge coupling, and a signal centered around frequency fc ¼
I=e is expected. They claim a possible accuracy of 10�6 based
on the charge sensitivity of their electrometer only. However,
the spectral peaks in the experimental data appear too wide for
an accurate determination of the center frequency. Factors not
included in the accuracy estimate are the instability of the bias
current and SET background charge fluctuations.

Single-electron electrometry can be used to count the much
rarer pumping errors instead of the total pumping current.
Such an approach has been used to study the accuracy of
metallic multijunction pumps that are used in the electron-
counting capacitance standard (ECCS) (Keller et al., 1999;
Keller, Zimmerman, and Eichenberger, 2007). A circuit dia-
gram of an ECCS experiment is shown in Fig. 35. Two
cryogenic needle switches are required to operate the device

in different modes: determining coupling capacitances and
tuning the pump drive signal (NS1 and NS2 closed), operating
the pump to charge Ccryo (NS1 closed, NS2 open), and

comparing Ccryo with an external traceable capacitor (NS1

open, NS2 closed). The SET electrometer is used as part of a
feedback loop that maintains the voltage of the node at the end
of the pump constant. With NS1 open, the pump can be
operated in a shuttle mode: a charge of e is repeatedly pumped
back and forth across the pump at the optimal operation
frequency (which is above the detector bandwidth), and
pumping errors appear as discrete jumps in the electrometer
output.

An error rate of 1:5
 10�8 relative to the used shuttling
frequency of 5.05 MHz was demonstrated in the NIST
ECCS setup (Keller et al., 1996). In this experiment, the
seven-junction pump illustrated in Fig. 13 was used. At
Physikalisch-Technische Bundesanstalt (PTB), a relative
error rate of the order of 10�7 was reported (Camarota
et al., 2012) for a five-junction R pump operated at a shuttling
frequency of 0.5 MHz. Recently, the PTB group improved
their relative error rate to 4:4
 10�8 (Scherer et al., 2012).
They also argued that in order to account for the possibility of
pumping errors in opposite directions to cancel out each
other, the proper measure of the pump accuracy in an

ECCS experiment is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�err=�t

p
=f, where �err is the absolute

rate at which pumping errors occur, �t is the time spent at
charging the capacitor, and f is the pumping frequency.
Using this methodology, they inferred a relative accuracy of
1:5
 10�8 for their pump. A complete ECCS experiment has
not been performed with a semiconducting pump to date.
Yamahata, Nishiguchi, and Fujiwara (2011) described a
single-electron shuttling experiment performed on a Si nano-
wire, but the reported error rates are rather high, at the 10�2

level. In semiconductor realizations, the memory node can be
isolated from the rest of the lead by a FET switch that is
defined with the same lithography process as the pump,
eliminating the need for the needle switch.

Wulf (2012) proposed an error-accounting architecture,
where a few modestly accurate charge pumps are connected

FIG. 35. Circuit diagram of a practical implementation of the

electron-counting capacitance standard. Switches NS1 and NS2

are cryogenic needle switches. From Camarota et al., 2012.

Jukka P. Pekola et al.: Single-electron current sources: Toward a . . . 1457

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



in series, and electrometers are used to observe the charge on
memory nodes situated in between the pumps. Assuming that
the error rate of the pumps is small in comparison to the
readout bandwidth, the sign of individual pumping errors can
be reliably inferred from the electrometer response. Hence,
the accuracy of the pumped current can then be improved
beyond the accuracy of the constituent pumps.

To date, an error-counting or -accounting algorithm inte-
grated with continuously operating series-connected pumps
has not been demonstrated experimentally. Measurements of
two series-connected semiconductor QD pumps with a QPC
electrometer coupled to a node in the middle were presented
by Fricke et al. (2011), although quantized pumping errors
were not observed. Recently, an initial report of on-demand
single-electron transfer in a device consisting of three QD
pumps and two metallic SET electrometers was presented
(Fricke et al., 2012, 2013). Although no detectable current
was produced in this experiment due to a low repetition rate
of 5 Hz, they were able to distinguish between different types
of pumping errors from the electrometer signature.

I. Device fabrication

Fabrication of charge pumps, regardless of their opera-
tional principle, requires advanced nanofabrication methods.
These include, for example, electron-beam lithography,
various dry etching techniques, and molecular-beam epitaxy
growth of semiconductor heterostructures. In general, pump-
ing devices can have small feature sizes in multiple layers that
must be accurately aligned with each other. We begin with the
description of the fabrication procedure for the metallic
single-electron and Cooper-pair pumps and turnstiles
described in Secs. III.A, III.B, and III.E. Subsequently, we
present the fabrication methods for quantum-dot pumps and
turnstiles, the operation of which is discussed in Sec. III.C.

1. Metallic devices

Metallic single-electron and Cooper-pair pumps and turn-
stiles are typically made by the angle deposition technique,
which was first introduced by Dolan (1977) for the photoli-
thography process and then later adapted by Dolan and
Dunsmuir (1988) for the electron-beam lithography process.
We note that there is a myriad of different ways of fabricating
these devices. Below we describe only a certain fabrication
process for these devices in great detail instead of giving a
thorough study of all possible variations.

The process starts with the deposition of an Au layer on an
Si wafer covered by a native silicon oxide. The Au pattern is
formed by a standard photolithography and lift-off process
using photoresist S1813 and contains contact pads and on-
chip wiring as well as alignment markers for the deposition
of the subsequent layers. Next, a trilayer resist structure
is built (from bottom to top): copolymer/Ge/poly-methyl-
methacrylate (PMMA) with the thicknesses 200, 20, and
50 nm, respectively [see Fig. 36(a)]. The polymer layers are
spin coated on the wafer and baked in a nitrogen oven, and the
Ge layer is deposited in an electron gun evaporator. The wafer
is then cleaved into smaller pieces which are exposed and
processed separately. After the exposure of the top PMMA
layer on one of the pieces in the electron-beam writer,

e.g., JEOL JBX-5FE, the piece is developed at room tempera-

ture in isopropyl alcohol mixed with methyl isobutyl ketone at

a ratio of 3:1. Thus, a desired pattern is formed in the PMMA
layer [see Fig. 36(b)]. The pattern is transferred into the Ge

layer by reactive ion etching in CF4 [see Fig. 36(c)]. The

sample is then placed in an electron cyclotron resonance

(ECR) etcher, in which an undercut is formed by oxygen
plasma. The undercut depth is controlled by the tilt of the

sample stage in the ECR machine. At the same time, the top

PMMA layer is etched away. At this stage, each chip has a Ge

mask supported by the copolymer layer [see Fig. 36(d)]. Some
parts of the mask are suspended, forming the Dolan bridges.

Although we described above a method with three layers, in

many cases a bilayer mask composed of copolymer and

PMMA resists is sufficient.
The chips with masks are placed in an electron gun

evaporator equipped with a tilting stage. Two consecutive

depositions of metal through the same mask are carried out at

different angles to create a partial overlap between the metal

layers [see Fig. 36(e)]. If the surface of the bottom layer
(typically Al) is oxidized by introducing oxygen into the

evaporation chamber, after the deposition of the top electrode,

the sandwich structure composed of the overlapping metal

layers with a thin oxide in between forms small tunnel
junctions [see Fig. 36(f)].

The normal-metal or superconducting charge pumps are

made entirely of Al, which can be turned normal at low

temperatures by an external magnetic field [see Geerligs
et al. (1990, 1991), Pothier et al. (1992), Keller et al.

(1996), and Vartiainen et al. (2007)]. In the case of the hybrid

(a)

(b)

(c)

(d)

(e)

( f )

FIG. 36 (color online). Fabrication of metallic devices.

(a) Buildup of a trilayer resist structure and exposure in the

electron-beam writer; (b) development of the top PMMA layer;

(c) transfer of the pattern formed in the resist into the Ge layer by

reactive ion etching; (d) creation of the undercut in the bottom resist

and removal of the top resist by oxygen plasma; (e) angle deposition

of metals with an oxidation in between; (f) the resulting structure

after the lift-off process.
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structures described in Pekola et al. (2008), Kemppinen,

Kafanov et al. (2009), Kemppinen, Meschke et al. (2009),

and Maisi et al. (2009), the bottom electrode was Al and the

top one was either Cu or AuPd.

2. Quantum dots

The gate structure of the charge pumps based on quantum

dots is also fabricated using electron-beam lithography. The

main differences in the fabrication compared with metallic

devices are the following: Ohmic contacts have to be made

between metallic bonding pads on the surface of the chip and

the 2DEG located typically �100 nm below the surface.

Furthermore, the 2DEG has to be either depleted with

negative gate voltage from the unwanted positions in the

case of GaAs devices [see Fig. 18(d)] or accumulated with

positive gate voltage in the case of MOS silicon devices

[see Fig. 18(c)]. For GaAs, also etching techniques have

been employed to dispose of some parts of the 2DEG leading

to a smaller number of required gates [see Fig. 20(a)]. In

GaAs devices, typically a single deposition of metal through a

monolayer PMMA resist is sufficient to create the gate

structure. For MOS silicon dots, several aligned layers of

gate material are often used. However, only a single layer is

typically deposited with each mask in contrast to metallic

devices employing angle evaporation.
We now describe in detail a fabrication process for

MOS silicon quantum dots. We begin with a high-resistivity

(� > 10 k� cm at 300 K) near-intrinsic silicon wafer.

Phosphorus atoms are deposited on the silicon surface using

standard photolithography and they diffuse to a depth of

roughly 1:5 �m during the growth of a 200-nm-field silicon

oxide on top. All the following process steps involving

etching or deposition have to be aligned with the previous

ones with the help of alignment markers, a routine we do not

discuss separately. Then a window with size 30
 30 �m2 is

opened to the field oxide and replaced by an 8-nm-thick high-

quality SiO2 gate oxide that is grown in an ultradry oxidation

furnace at 800 �C in O2 and dichloroethylene. This thin oxide

window overlaps by a few micrometers with the ends of the

metallic phosphorous-rich nþ regions. The field oxide is

etched selectively above the other ends of the nþ regions

formed in the previous process. The Ohmic contacts and the

bonding pads are made by depositing metal on these etched

regions, forming a connection to the nþ silicon. Subsequent

annealing is employed to avoid the formation of Schottky

barriers.
At this stage, we have bonding pads connected to the

metallic nþ regions that extend some 100 �m away from

the pads to the thin oxide window with the linewidth of 4 �m.

Electron-beam lithography with a 200 nm PMMA resist and

metal evaporation with an electron gun evaporator is em-

ployed to deposit the first layer of aluminum gates inside the

window and their bonding pads outside the window. After the

lift-off, the gates are passivated by an AlxOy layer formed by

oxidizing the aluminum gates by either oxygen plasma or

thermally on a hot plate (150 �C, 5 min). The oxide layer

electrically completely insulates the following overlapping

layers of aluminum gates that are deposited in the same way

with alignment accuracy of �20 nm.

At least one gate has to overlap with areas where nþ
regions extend to the thin oxide window. By applying positive
voltage on these reservoir gates, the electrons from the nþ are
attracted to the Si=SiO2 interface below the reservoir gates,
forming the source and drain reservoirs of the device. For
example, the device shown in Fig. 23(b) is composed of one
or two layers of gates: one top gate that induces the source
and drain reservoir, two barrier gates below the top gate
defining the quantum dot, and a plunger gate in the same
layer with the barrier gates. Finally, a forming gas (95%N2,
5%H2) anneal is carried out for the sample at 400 �C for
15 min to reduce the Si=SiO2 interface trap density to a level
of �5
 1010 cm�2 eV�1 near the conduction band edge.
Silicon quantum dots can also be fabricated with an all-
silicon process, in which the aluminum gates are replaced
by conducting polysilicon gates shown in Fig. 23(a).

IV. QUANTUM STANDARDS OF ELECTRIC QUANTITIES

AND THE QUANTUM METROLOGY TRIANGLE

The ampere is one of the seven base units of the
International System of Units (SI) (Bureau International des
Poids et Mesures, 2006) and is defined as follows: ‘‘The
ampere is that constant current which, if maintained in two
straight parallel conductors of infinite length, of negligible
circular cross section, and placed 1 m apart in vacuum, would
produce between these conductors a force equal to 2
 10�7

newton per meter of length.’’ The present definition is prob-
lematic for several reasons: (i) The experiments required for
its realization are beyond the resources of most of the
National Metrology Institutes. (ii) The lowest demonstrated
uncertainties are not better than about 3
 10�7 (Clothier
et al., 1989; Funck and Sienknecht, 1991). (iii) The definition
involves the unit of newton, kg
m=s2, and thus the proto-
type of the kilogram, which is shown to drift in time (Quinn,
1991). In practice, electric metrologists are working outside
the SI and employing quantum standards of voltage and
resistance, based on the Josephson and quantum Hall effects,
respectively.

A. The conventional system of electric units

According to the ac Josephson effect, V ¼ ðh=2eÞ@�=@t,
the voltage V applied over the Josephson junction induces
oscillations of the phase difference � over the junction
(Josephson, 1962). Phase locking � by a high-frequency
(fJ) signal results in quantized voltage plateaus

VJ � nJfJ
KJ

’ nJ
h

2e
fJ; (41)

which are often called Shapiro steps (Shapiro, 1963). Here nJ
is the integer number of cycles of 2� in which � evolves
during one period of the high-frequency signal. The propor-
tionality between VJ and fJ is denoted by the Josephson
constant KJ. According to theory, KJ ¼ 2e=h, but as dis-
cussed, this assumption is sometimes relaxed in metrology.

The Josephson voltage standards (JVS) have been used in
electric metrology since the 1970s; see, e.g., Kohlmann, Behr,
and Funck (2003) and Jeanneret and Benz (2009) for
reviews. The first standards consisted of a single junction
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and generated voltages only up to about 10 mV. Arrays of
more than 10 000 junctions with the maximum output of 10 V
were developed in the 1980s. They were based on hysteretic
junctions where Shapiro steps with different nJ can exist at
the same bias current. Since the 1990s, the research has
focused on arrays of nonhysteretic junctions where nJ can
be chosen by the applied current bias. Arrays divided in
sections of 2m junctions (m ¼ 0; 1; 2; . . . ) are called program-
mable since one can digitally select any multiple of fJ=KJ up
to the number of junctions as the output voltage (Hamilton,
Burroughs, and Kautz, 1995; Kohlmann et al., 2007). They
are practical for dc voltage metrology, but are especially
developed for generating digitized ac voltage wave forms
up to about 1 kHz, which is an active research topic (Behr
et al., 2005). Voltage wave forms at higher frequencies can be
generated by pulse-driven Josephson junction arrays where
the desired ac wave form is synthesized by the delta-sigma
modulation of fast voltage pulses, each having the time
integral of one flux quantum h=ð2eÞ (Benz and Hamilton,
1996).

The QHR standard consists of a two-dimensional electron
gas, which, when placed in a high perpendicular magnetic
field, exhibits plateaus in the Hall voltage VH ¼ RHI over the
sample in the direction perpendicular to both the field and the
bias current I. Here

RH � RK

iK
’ 1

iK

h

e2
(42)

is the quantized resistance, which is proportional to the
von Klitzing constant RK and inversely proportional to
the integer iK (von Klitzing, Dorda, and Pepper, 1980). As
in the case of the JVS, the theoretical equality RK ¼ h=e2 is
sometimes relaxed in metrology. The plateau index iK can be
chosen by tuning the magnetic field. Usually the best results
are obtained at iK ¼ 2.

Quantum Hall standards based on Si MOSFETs or GaAs/
AlGaAs heterostructures were harnessed in routine metrology
quickly during the 1980s; see, e.g., Jeckelmann and Jeanneret
(2001), Poirier and Schopfer (2009), and Weis and von
Klitzing (2011) and issue 4 of C. R. Physique, Vol. 369
(2011) for reviews. Different resistances can be calibrated
against the QHR by using the CCC. It is essentially a trans-
former with an exact transform ratio due to the Meissner
effect of the superconducting loop around the windings
(Harvey, 1972; Gallop and Piquemal, 2006). Another way
to divide or multiply RH are parallel or series quantum Hall
arrays, respectively, which are permitted by the technique of
multiple connections that suppresses the contact resistances
(Delahaye, 1993). One rapidly developing research topic is ac
quantum Hall techniques, which can be used in impedance
standards to expand the traceability to capacitance and in-
ductance (Schurr et al., 2011). An important recent discovery
is that graphene can be used to realize an accurate and very
robust QHR standard (Zhang et al., 2005; Novoselov et al.,
2007; Tzalenchuk et al., 2010; Janssen et al., 2011).

The most precise measurement of KJ within the SI was
performed by a device called a liquid-mercury electrometer
with the uncertainty 2:7
 10�7 (Clothier et al., 1989). The SI
value of RK can be obtained by comparing the impedance of
the QHR and that of the Thompson-Lampard calculable

capacitor (Thompson and Lampard, 1956; Bachmair, 2009).
The lowest reported uncertainty of such comparison is
2:4
 10�8 (Jeffery et al., 1997). However, both the JVS
and QHR are much more reproducible than their uncertainties
in the SI; see Sec. IV.B. Therefore, the consistency of electric
measurements could be improved by defining conventional
values for RK and KJ. Based on the best available data by
June 1988, the member states of the Metre Convention made
an agreement of the values that came into effect in 1990:

KJ-90 ¼ 483 597:9 GHz=V;

RK-90 ¼ 25 812:807 �:
(43)

Since then, electric measurements have in practice been
performed using this conventional system which is some-
times emphasized by denoting the units by V90, �90, A90,
etc., and where the JVS and QHR are called representations
of the units.

B. Universality and exactness of electric quantum standards

A theory can never be proven by theory, but, as argued by
Gallop (2005), theories based on very general principles such
as thermodynamics and gauge invariance are more convinc-
ing than microscopic theories such as the original derivation
of the Josephson effect (Josephson, 1962). There are rather
strong theoretical arguments for the exactness of the JVS:
Bloch has shown that if a Josephson junction is placed in a
superconducting ring, the exactness of KJ can be derived
from gauge invariance (Bloch, 1968, 1970). Furthermore,
Fulton showed that a dependence of KJ on materials would
violate Faraday’s law (Fulton, 1973). For quantum Hall
devices, early theoretical works argued that the exactness of
RK is a consequence of gauge invariance (Laughlin, 1981;
Thouless et al., 1982). However, it is very complicated to
model real quantum Hall bars, including dissipation, inter-
actions, etc., and thus the universality and exactness of the
QHR has sometimes been described as a ‘‘continuing sur-
prise’’ (Mohr and Taylor, 2005; Keller, 2008). Extensive
theoretical work, e.g., on topological Chern numbers, has
strengthened the confidence in the exactness of RK; see
Avron, Osadchy, and Seiler (2003), Bieri and Fröhlich
(2011), and Doucot (2011) for introductory reviews. Recent
theoretical work based on quantum electrodynamics (QED)
predicts that the vacuum polarization can lead to a magnetic
field dependence of both RK (Penin, 2009, 2010a) and KJ

(Penin, 2010b), but only at the level of 10�20. The case of
single-electron transport has been studied much less and there
are no such strong theoretical arguments for the lack of any
corrections for the transported charge (Gallop, 2005; Stock
and Witt, 2006; Keller, 2008).1

On the experimental side, comparisons between Si and
GaAs quantum Hall bars show no deviations at the experi-
mental uncertainty of �3
 10�10 (Hartland et al., 1991).
Recently, an agreement at the uncertainty of 8:6
 10�11 was
found between graphene and GaAs devices (Janssen et al.,

1A condensed-matter correction of �10�10e for the charge of the

electron was suggested by theory based on QED (Nordtvedt, 1970),

but it was refuted by Hartle, Scalapino, and Sugar (1971) and

Langenberg and Schrieffer (1971).
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2011). This is an extremely important demonstration
of the universality of RK because the physics of the charge
carriers is notably different in graphene and semiconductors
(Goerbig, 2011). Comparisons between the JVSs have been
summarized recently by Wood and Solve (2009). The lowest
uncertainties obtained in comparisons between two JVSs are
in the range of 10�11. Even much smaller uncertainties have
been obtained in universality tests of the frequency-to-voltage
conversion by applying the same frequency to two different
junctions or junction arrays and detecting the voltage
difference by a SQUID-based null detector. Several accurate
experiments have indicated that the conversion is indepen-
dent of, e.g., the superconducting material and the junction
geometry. The lowest demonstrated uncertainty is astonish-
ing: 3
 10�19 (Clarke, 1968; Tsai, Jain, and Lukens,
1983; Jain, Lukens, and Tsai, 1987; Kautz and Lloyd,
1987).

The reproducibility and universality of the quantum stan-
dards are an indication that Eqs. (41) and (42) are exact, but a
proof can be obtained only by comparison to other standards.
Any one of the electric quantities V, I, or R can be compared
to the other two in a quantum metrology triangle (QMT)
experiment (Likharev and Zorin, 1985); see Sec. IV.D. It is a
major goal in metrology, but the insufficient performance of
single-electron devices has to date prevented the reaching of
low uncertainties. However, the exactness of Eqs. (41) and
(42) can also be studied in the framework of the adjustment of
fundamental constants. The most thorough treatment has
been performed by the Committee on Data for Science and
Technology (CODATA). Updated papers are nowadays pub-
lished every four years; see Mohr and Taylor (2000, 2005),
and Mohr, Taylor, and Newell (2008, 2012).2 Karshenboim
(2009) provided a useful overview. We review here the most
accurate (< 10�7) routes to information on the electric quan-
tum standards. They are also illustrated in Fig. 37. Most of the
equations in this section assume that Eqs. (41) and (42) are
exact, but when referring to possible deviations, we describe
them by symbols �J;K;S:

KJ ¼ ð1þ �JÞ 2eh ; RK ¼ ð1þ �KÞ h
e2

;

QS ¼ ð1þ �SÞe:
(44)

In this context, the current generated by the single-electron
current source is IS ¼ hkSiQSf, where hkSi is the average
number of electrons transported per cycle.

There are a number of fundamental constants that are
known with much smaller uncertainties than those related
to electric metrology. Some constants, e.g., permeability,
permittivity, and the speed of light in vacuum, and the molar
mass constant,�0, �0, c, andMu ¼ 1 g=mol, respectively, are
fixed by the present SI. Examples of constants known with an
uncertainty� 10�10 are the Rydberg constant R1 and several
relative atomic masses, e.g., that of the electron ArðeÞ. In the
past few years, there has been tremendous progress in
the determination of the fine structure constant 	. First the
electron magnetic moment anomaly ae was measured with
high accuracy. A separate calculation based on QED gives the
function 	ðaeÞ. Together these results yield a value for 	
with an uncertainty 0:37
 10�9 (Hanneke, Fogwell, and
Gabrielse, 2008). Soon after, a measurement of the recoil
velocity of the rubidium atom, when it absorbs a photon,
yielded a value for 	 with an uncertainty of 0:66
 10�9

(Bouchendira et al., 2011). These two results are in good
agreement. Together they give a validity check for QED
since the first result is completely dependent and the latter
practically independent of that theory.

The fine structure constant is related to RK by the exact
constants �0 and c:

	 ¼ �0ce
2

2h
¼ �0c

2RK

: (45)

This relationship means that when RK is measured with a
calculable capacitor, it also yields an estimate for 	. Thus, a
measurement of RK could also test QED, but in practice, the
atomic recoil measurement is more accurate by about a factor
of 30. A metrologically more important interpretation of this
relation is that a comparison between 	 and the weighted
mean of the measurements of RK yields an estimate of �K ¼
ð29� 18Þ 
 10�9 (Mohr, Taylor, and Newell, 2012). There is
thus no proof of a nonzero �K, but several groups are devel-
oping calculable capacitors in order to determine RK with
uncertainty below 10�8 (Poirier and Schopfer, 2009; Poirier
et al., 2011).

The existing data that yield information on �J are more
discrepant. As described, �J is related to measurements of
gyromagnetic ratios [see Mohr and Taylor (2000) for a de-
tailed description] and to the efforts for the redefinition of the
kilogram (Mohr, Taylor, and Newell, 2008, 2012). The gyro-
magnetic ratio � determines the spin-flip frequency f of a
free particle when it is placed in a magnetic field B: � ¼
2�f=B. The gyromagnetic ratios of a helium nucleus and a
proton are accessible in nuclear and atomic magnetic reso-
nance experiments. These ratios can be related to the gyro-
magnetic ratio of an electron that is linked to 	 and h. There
are two methods to produce the magnetic field: In the low-
field method, it is generated by an electric current in a coil
and determined from the current and the geometry. In the
high-field method, the field is generated by a permanent

FIG. 37. Simplified sketch of the most accurate routes to infor-

mation on �J;K. Direct measurement of RK together with an

independent measurement of the fine structure constant (	) yields
a value for �K . Values for the sum of �J and �K can be obtained

from the combination of the so-called watt balance experiment

(K2
JRK) and a measurement of the Avogadro constant (NA), or

from the combination of 	 and measurements of low-field gyro-

magnetic ratios (�lo). Less accurate information is provided by

measurements of high-field gyromagnetic ratios KJ and the Faraday

constant F ¼ eNA, and by the QMT.

2The adjustments are named after the deadline for the included

data, e.g., CODATA-10 is based on experimental and theoretical

results that were available by 31 December 2010. The values of the

constants and much more information are available at the Web site

physics.nist.gov/constants/.
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magnet and measured from a current induced in a coil. When
the electric current is determined in terms of the JVS and

QHR, the product KJRK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0c=h	

p
appears in either the

numerator or the denominator of �, depending on which
method is used. In the low-field method, h cancels out from
the equations of the gyromagnetic ratios, and the experiment
yields a value for 	. The high-field results also depend on 	,
but since it is known much more precisely than h, they
essentially yield a value for h. The high-field results on h
are in good agreement with other experiments, albeit their
uncertainty is not better than about 10�6. However, the
low-field results are discrepant from the CODATA value of
	. By substituting Eqs. (44) into the observational equations
of the low-field data, one obtains the estimate �J þ �K ¼
ð�254� 93Þ 
 10�9 (Cadoret et al., 2011; Mohr, Taylor, and
Newell, 2012). Since the measurements of RK yield a much
smaller value for �K, the gyromagnetic data seem to imply
a significant negative �J. However, as explained below, a
positive �J can be found from measurements aiming at the
redefinition of the kilogram.

There are essentially two candidate methods for the future
realization of the kilogram: the watt balance and silicon
sphere methods. The first, suggested by Kibble (1975), relates
electric power to the time derivative of the gravitational
potential energy:

mgv ¼ V2

R
/ 1

K2
JRK

¼ h=4: (46)

When the mass m, its velocity v, and the gravitational
acceleration g are traceable to the SI, the watt balance yields
a value for h. Watt balance results have already been pub-
lished by four national metrology institutes, and several
devices are under development; see, e.g., Li et al. (2012),
Steiner (2013), and Stock (2013) for reviews. The silicon
sphere approach is so demanding that it is employed only by
the International Avogadro Coordination (IAC). The results
were published in 2011; see Andreas et al. (2011a, 2011b)
and the entire issue No. 2 of Metrologia, Vol. 48 (2011). This
project determines the Avogadro constant NA by fabricating
spheres of enriched 28Si whose mass is compared to the
prototype of the kilogram and whose volume is measured
by laser interferometry. The lattice parameter and the relative
atomic mass of 28Si are measured in different experiments,
and the ratio of the relative and absolute mass densities
yields NA.

Results for h and NA can be compared precisely with the
help of the molar Planck constant

NAh ¼ 	2 ArðeÞMuc

2R1
: (47)

Its uncertainty is only 0:7
 10�9 (Mohr, Taylor, and Newell,
2012) and depends mainly on those of ArðeÞ and 	.
Equation (47) can be derived from the definition of the
Rydberg constant by writing the inaccurate absolute mass
of the electron in terms of its relative mass and NA which
links microscopic and macroscopic masses. The IAC 2011
result resolved the discrepancy of 1:2
 10�6 between watt
balances and the Avogadro constant determined from a
sphere of natural Si that had puzzled metrologists since
1998 (Mohr and Taylor, 2000). Especially after the newest

results by Steele et al. (2012) there is no longer any clear
discrepancy between the two methods, but the two most

accurate watt balances deviate by a factor of 260
 10�9

which is 3.5 times the uncertainty of their difference

(Steiner et al., 2007; Steele et al., 2012). Also the measure-
ments of the isotope ratio of the silicon sphere spread more

than expected (Yang et al., 2012). Nevertheless, by combin-
ing the Planck constants obtained from the watt balance (hw)
and silicon sphere experiments (hAvo), we obtain an estimate
of �J þ �K=2 ’ ðhAvo=hw � 1Þ=2 ¼ ð77� 18Þ 
 10�9. Here
we neglected correlations between experiments. A more de-

tailed analysis on the existence of �J;K can be found from the

CODATA papers of Mohr, Taylor, and Newell (2008, 2012);
see also Keller (2008). They executed the least-squares analy-

sis of fundamental constants several times, allowing either
nonzero �K or �J, and including only part of the data. When

they excluded the lowest-uncertainty but discrepant data,
the remaining higher-uncertainty but consistent data yielded
the conservative estimates �K ¼ ð28� 18Þ 
 10�9 and �J ¼
ð150� 490Þ 
 10�9. Thus the exactness of the quantum Hall
effect is confirmed much better than that of the Josephson

effect.

C. The future SI

Modernizing the SI toward a system based on fundamental
constants or other true invariants of nature has long been a

major goal, tracing back to a proposal by Maxwell in the 19th
century; see, e.g., Flowers (2004) and references therein.

Atomic clocks and laser interferometry permitted such a
revision of the second and the meter. The development of

quantum electric standards, watt balance experiments, the
Avogadro project, and measurements of the Boltzmann con-
stant have made the reform of the ampere, kilogram, mole,

and kelvin realistic in the near future. In particular, sugges-
tions by Mills et al. (2005) launched an active debate among

metrologists (Mills et al., 2006; Becker et al., 2007; Milton,
Williams, and Bennett, 2007). Soon it was agreed that the

SI should not be altered before there are at least three
independent experiments (from both watt balance and
Avogadro constant calculations) with uncertainties � 50

10�9 that are consistent within the 95% confidence intervals,
and at least one of them has the uncertainty � 20
 10�9

(Gläser et al., 2010). There have also been requests to await
better results from single-electron and QMT experiments

(Bordé, 2005; Milton, Williams, and Bennett, 2007), and to
solve the discrepancy of low-field gyromagnetic experiments

(Cadoret et al., 2011).
There is already a draft chapter for the SI brochure that

would adopt the new definitions: BIPM (2010); see also the
whole issue 1953 in Phil. Trans. Royal Soc., A Vol. 369

(2011), especially Mills et al. (2011). In this draft, the whole
system of units is scaled by a single sentence that fixes seven

constants. The most substantial changes are that the base units
ampere, kilogram, mole, and kelvin are defined by fixed
values of e, h, NA, and kB, respectively. The new definition

for the ampere reads ‘‘The ampere, A, is the unit of electric
current; its magnitude is set by fixing the numerical value of

the elementary charge to be equal to exactly 1:602 17X 

10�19 when it is expressed in the units of second and ampere,
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which is equal to coulomb.’’ The new definitions do not imply
any particular methods for the realizations of the units. They
are guided by mises en pratique, e.g., the ampere could be
realized with the help of the JVS and QHR (CCEM
Collaboration, 2012).

The new SI would significantly lower the uncertainties of
many fundamental constants; see, e.g., Mills et al. (2011) for
evaluations. One should note, however, that choosing the
optimal set of fixed constants is always a trade-off. For
example, since 	 is a dimensionless number and thus inde-
pendent of the choice of units, one can see from Eq. (45) that
fixing e and h would make �0 (and �0) a quantity that is
determined by a measurement of 	. Presently, �0 and �0 are
fixed by the definition of an ampere. However, their uncer-
tainty would be very low, the same as that of 	, which is
0:32
 10�9 (Mohr, Taylor, and Newell, 2012). One alter-
native suggestion is to fix h and the Planck charge qp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0hc

p
, which would keep �0 and �0 exact (Stock and Witt,

2006). It is also worth noting that out of h, NA, and the molar
mass of carbon-12, Mð12CÞ ¼ Arð12CÞMu, only two can be
fixed. The suggested SI would release the equality Mð12CÞ ¼
0:012 kg=mol, which has raised criticism. In particular, there
have been claims that the definition of the kilogram based on
h would not be understandable for the wider audience, and a
definition based on the mass of a number of elementary
particles would be better in this respect (Becker et al.,
2007; Milton, Williams, and Bennett, 2007; Leonard, 2010;
Hill, Miller, and Censullo, 2011). Milton, Williams, and
Forbes (2010) studied two alternatives, fixing either NA and
h or NA and the atomic mass constant mu ¼ Mu=NA, and
showed that this choice has little effect on the uncertainties of
fundamental constants, mainly because the ratio h=mu is well
known from atomic recoil experiments.

D. Quantum metrology triangle

Phase-locked Bloch (Averin, Zorin, and Likharev, 1985)
and SET (Averin and Likharev, 1986) oscillations in super-
conducting and normal-state tunnel junctions, respectively,
were proposed as a source of quantized electric current in the
mid-1980s, soon after the discovery of the QHR. Already
Likharev and Zorin (1985) suggested that the quantum cur-
rent standard could provide a consistency check for the
existing two electric quantum standards in an experiment
they named the ‘‘quantum metrology triangle.’’ However,
the quantized current turned out to be a much greater chal-
lenge than the JVS and QHR. Still, after a quarter of a
century, quantum current standards are yet to take their place
in metrology. On the other hand, the progress in knowledge of
KJ and RK has also been rather slow: in CODATA-86 the
uncertainties were 300
 10�9 and 45
 10�9, respectively
(Cohen and Taylor, 1987). These uncertainties are essentially
on the same level as in CODATA-10 if the discrepancy of the
data is taken into account.

The QMT experiment and its impact has been discussed,
e.g., by Piquemal and Geneves (2000), Zimmerman and
Keller (2003), Piquemal (2004), Gallop (2005), Keller
(2008), Keller et al. (2008), Feltin and Piquemal (2009),
and Scherer and Camarota (2012). In this review, we use
the terms QMT setup, experiment, or measurement for any
experimental setups that pursue a metrological comparison

between JVS, QHR, and a quantum current source.
Development of such setups is a challenge in itself and not
necessarily related to any specific single-electron source.
However, as a closure of the QMT, we consider only experi-
ments which include error counting of the single-electron
device. The reason is that they are far more sensitive to errors
than the JVS and QHR. Error counting allows one to separate
the contribution of the average number of transported charge
quanta hkSi from the current of the single-electron source
IS ¼ hkSiQS. Only then can the QMT measurement yield
information on fundamental constants.

The QMT setups can be divided into two categories: those
that apply Ohm’s law V ¼ RI or so-called ECCSs which
utilize the definition of capacitance C ¼ Q=V. They are
sometimes called direct and indirect QMTs, respectively.

1. Triangle by Ohm’s law

Applying Ohm’s law is the most obvious way to compare
the three quantum electric standards. It can be realized
either as a voltage balance VJ � RHIS or as a current
balance VJ=RH � IS. In both cases, substituting Eqs. (44)
into VJ ¼ RHIS yields

nJiK
2hkSi

fJ
fS

’ 1þ �J þ �K þ �S: (48)

The major difficulty in QMT experiments is outlined as
follows. Consider the ideal case where the noise of the
experiment is dominated by the Johnson noise of the resistor.
The relative standard deviation of the measurement result is

�IS
IS

¼
ffiffiffiffiffiffiffiffiffiffiffi
4kBT

tRI2S

s
: (49)

By substituting realistic estimates t ¼ 24 h and T ¼ 100 mK
for the averaging time and the temperature of the resistor,
respectively, and by assuming that R ¼ RK=2 and IS ¼
100 pA, one obtains the uncertainty �IS=IS 
 7
 10�7. In
practical experiments, the 1=f noise and the noise of the null
detection circuit make the measurement even more demand-
ing, but this simple model demonstrates that the magnitude of
the current should be at least 100 pA.

Another problem is that the product RHIS yields a very
small voltage, e.g., 12:9 k�
 100 pA ¼ 1:29 �V.3 Even
the voltage of a JVS with only one junction is typically of
the order of 70 GHz=KJ 
 140 �V. Such low voltages are
also vulnerable to thermoelectric effects. One way to over-
come this problem is to multiply the current of the SET by a
CCC with a very high winding ratio�10 000 as suggested by
Hartland et al. (1991), Sese et al. (1999), and Piquemal and
Geneves (2000); see Fig. 38(a). It allows room-temperature
detection, and that JVS, SET, and QHR can be operated in
different refrigerators. This type of effort has been described
by Piquemal (2004), Feltin and Piquemal (2009), Feltin et al.
(2011), and Devoille et al. (2012). Another approach is to use
a high-value cryogenic resistor that is calibrated against the
QHR with the help of a CCC (Elmquist, Zimmerman, and
Huber, 2003; Manninen et al., 2008). All parts of Ohm’s law

3A quantum voltage standard based on integrating a semiconduct-

ing pump with the QHR was pioneered by Hohls et al. (2011).

Jukka P. Pekola et al.: Single-electron current sources: Toward a . . . 1463

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013



are in the same cryostat which can reduce thermoelectric
effects; see Fig. 38(b). Only the difference current VJ=Rcryo �
IS needs to be amplified. Despite persistent efforts, the
experimental realizations of these approaches have so far
produced only preliminary results. Recently, a promising
outcome was obtained by Giblin et al. (2012) who used a
CCC with high winding ratio to calibrate a precision 1 G�
room-temperature resistor which was used in a QMT setup;
see Fig. 38(c). This experiment benefited from the relatively
large current of 150 pA that was generated by a semiconduct-
ing quantum-dot pump. The uncertainty of the QMT experi-
ment was 1:2
 10�6, but since there was no error counting, it
should be interpreted as a characterization of the electron
pump, not as a closure of the QMT.

2. Electron-counting capacitance standard

The ECCS experiment was first suggested by Williams,
Ghosh, and Martinis (1992). A single-electron current source
is used to charge a cryogenic capacitor Ccryo by a known

number NS of electrons. The generated voltage is compared
to the JVS. The result

Ccryo ¼ NSQS

V
(50)

thus yields a quantum capacitance standard. The ECCS
experiment was pioneered by Keller et al. (1999) [see
Fig. 38(d)], where an uncertainty of 0:3
 10�6 was obtained
for the ECCS capacitance. In this approach, the ECCS was
compared to a calculable capacitor. Then the observational
equation corresponding to Eq. (48),

�0cnJfJC

4	NS

¼ 1þ �J þ �S; (51)

does not include �K. However, calculable capacitors have
been compared to QHR with very low uncertainty, and ac
QHR techniques (Schurr et al., 2011; Camarota et al., 2012)
allow Ccryo to be compared directly against RK. One should

thus obtain an uncertainty of �10�8 before there is any
significant difference between the implications of the two
QMT versions. An important strength of this QMT version is
that the feedback electrometer also allows error counting
through shuttle pumping; see Sec. III.H.2.

A major weakness of the ECCS is that it calibrates Ccryo at

�0:01 Hz, but commercial capacitance bridges that are used
to compareCcryo to the calculable capacitor (and also ac QHR)

operate at �1000 Hz. Zimmerman, Simonds, and Wang
(2006) presented a model for the dielectric dispersion of
insulating films at the surface of the electrodes of the capaci-
tor. They fit this model to measurements of the frequency
dependence and its temperature dependence in the ranges
100–3000 Hz and 4–300 K. The frequency dependence de-
creases at low temperatures. They evaluate that it yields an
uncertainty component of 0:2
 10�6 for the QMT. Keller,
Zimmerman, and Eichenberger (2007) used this estimate to
finish the uncertainty budget of the NIST ECCS experiment
that closes the QMT at the uncertainty of 0:9
 10�6.

Recently, PTB reached the uncertainty of 1:7
 10�6 in an
ECCS experiment (Camarota et al., 2012); see Sec. III.H.2.
PTB presented their result as ‘‘preliminary’’ and planned both
a more detailed uncertainty budget and several improvements
to the experiment. Besides NIST and PTB, the ECCS has
been pursued at METAS (Rüfenacht, Jeanneret, and Lotkhov,
2010).

3. Metrological implications of single-electron

transport and QMT

So far, QMT has been closed with a reasonable uncertainty
(�10�6) only in the ECCS experiments of NIST (Keller,
Zimmerman, and Eichenberger, 2007) and PTB (Camarota
et al., 2012). As shown in Sec. IV.B, an uncertainty of
& 0:02
 10�6 is required to yield information on �K,
and an uncertainty of �0:1
 10�6 would strengthen the
knowledge of �J. Thus, the NIST and PTB results can be
expressed in terms of �S only: �S ¼ ð�0:10� 0:92Þ 
 10�6

and �S ¼ ð�0:3� 1:7Þ 
 10�6, respectively (Keller, 2008).
Milton, Williams, and Forbes (2010) analyzed a scenario

where �J is an adjusted parameter and �S ¼ �K ¼ 0. They
studied the effect of QMTon the uncertainties of fundamental
constants and showed that when the QMT is inaccurate, the
uncertainties of h, e, and mu are mainly determined by the
Avogadro experiment. When the QMT is improved, their
uncertainties will be dominated by those of the watt balance
and the direct measurement of RK.

One problem of the QMT is that it gives only a value for
the sum of the errors of the quantum standards, and, in
principle, they could cancel each other. It is thus useful to
have independent tests for each standard, and those for the
JVS and QHR are discussed in Sec. IV.B. A test for the
current standard only, i.e., an SI value forQS, can be obtained
by combining results from three experiments: QMT, a

FIG. 38. (a)–(c) Variants of Ohm’s law triangles where the quan-

tized current (IS) is compared to resistance (R) calibrated against

QHR and to JVS. (a) The quantized current is magnified by a CCC,

which allows room-temperature null detection of the voltage dif-

ference (�V). (b) Triangle with a high-value cryogenic resistor. The

current balance �I can be determined, e.g., with the help of a CCC.

(c) QMT experiment where the null detection is performed by a

room-temperature transimpedance amplifier. (d) ECCS experiment.

In the first phase (A), the electron pump charges the cryocapacitor

C 
 2 pF. An SET electrometer (E) is used to generate a feedback

voltage (V) that maintains the potential of the island at zero. Hence

all the charge is accumulated to the cryocapacitor and not to the

stray capacitance. The feedback voltage constitutes the third part of

the Q ¼ CV type triangle. In the second phase (B), the cryocapa-

citor is calibrated against the reference Cref which is traceable to a

calculable capacitor. From Keller et al., 1999.
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measurement of RK by a calculable capacitor, and watt
balance (Keller et al., 2008). Applying Eqs. (46) and (50),
and substituting R by 1=!C, one obtains

QS ¼ 1

NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgvC

!

s
: (52)

Also the Ohm’s law triangle can be used to yield a similar
result, but in a less direct way. One should note that JVS and
QHR are used here only as transfer standards. Keller et al.
(2008) derived a result based on the NIST ECCS: QS ¼
1:602 176 3
 10�19 � 1:5
 10�25 C. This could be com-
pared to the CODATA value for e, which, however, depends
strongly on h and the exactness of KJ and RK. Instead, it
is better to compare QS to another value of e that is inde-

pendent of JVS and QHR: e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	3ArðeÞMu=�0R1NA

p
(Feltin and Piquemal, 2009). Its uncertainty �0:015
 10�6

is dominated by that of NA. Using the NIST ECCS
result and the NRC or IAC values for NA, one obtains
�S ¼ ð�0:2� 0:9Þ 
 10�6.

We note that according to Eq. (51), the QMT also yields a
value for 	 independently of the QHR, which was one of the
early motivations for the ECCS (Williams, Ghosh, and
Martinis, 1992). This fact, however, has little importance
until the uncertainty is competitive with the atomic recoil
experiments (< 10�9Þ. Then the QMT would strengthen the
verification of QED.

Although single-electron transport would be conceptually
themost straightforward realization of the ampere in the future
SI, it is not likely that it would replace the JVS and QHR as the
typical realization in the near future. The exception is naturally
the growing field of metrology for small electric currents,
where single electronics is expected to yield major improve-
ments of uncertainty. On the other hand, when the accuracy of
single-electron transport improves, it can yield vital informa-
tion on other standards and fundamental constants.

V. PERSPECTIVES AND OTHER APPLICATIONS

The quantum-dot pump (Kaestner, Kashcheyevs, Hein
et al., 2008; Giblin et al., 2012) discussed in Sec. III.C has
definitely proven its potential to be the basis of the future
quantum standard of the ampere. The verified uncertainty of
the 150 pA output current on the level of 1 ppm and the
theoretically predicted 0.01 ppm uncertainty of the present
device are truly remarkable figures ofmerit. On the other hand,
a few important questions remain to be answered before one
can realize the ampere with the quantum-dot pump: Superior
device performance depends critically on applying a strong
* 10 T magnetic field on it. This dependence is not fully
understood, and the exact magnetic field characteristics seem
sample dependent. The reproducibility of the highly accurate

pumping results with samples from different fabrication runs
remains to be shown. Importantly, error-counting experiments
on the dot samples have not been carried out, which also
prevents one from studying possible errors of other quantum
standards in the QMT [see, however, recent results in Fricke
et al. (2013)]. Future experiments will likely show whether all
the relevant error processes have been accounted for in pre-
dicting the obtainable accuracy to be on the level of 10�8.
However, even if not in the case of a bare device, the quantum-
dot pump may perhaps be applicable to the realization of the
ampere, if the error correction techniques that were described
in Sec. III.H become feasible experimentally.

Another important development and potential future real-
ization of the ampere is the SINIS turnstile introduced in
Sec. III.B. Although presently inferior to the quantum-dot
pump in the level of current output, and consequently with
less definite assessment of proven accuracy (present verified
uncertainty below 10�4), this device does not suffer from
known obstacles in the way of achieving the required
accuracy. Currently, the main error mechanisms have been
assessed theoretically and experimentally, including photon-
assisted tunneling, Andreev current, cotunneling, residual and
generated quasiparticles, and possible residual density of
states in a superconductor. Positive conclusions can be drawn
from individual experiments with respect to suppressing them
in an optimized device. Sample fabrication and reproducibil-
ity is currently on a high level, and it has been demonstrated
that the requested magnitude of current can be achieved by
running many turnstiles in parallel. For the SINIS turnstile, as
for the quantum-dot pump, the ultimate test would be an
error-counting experiment and the quantum metrological
triangle. Currently, such experiments have not been per-
formed. As a summary of the high-accuracy pumps, we
present Table I where the obtainable output current, the
accuracy, and the possibility for parallelization are compared.

Presently several other new proposals are being pushed
toward critical tests to study their applicability in current
metrology: these include superconducting phase-slip wires,
Josephson junction arrays, and mechanical shuttles, just to
mention a few less conventional ideas. Although it is not on
the horizon at present, it is possible that eventually one of
these devices will beat the present Coulomb-blockade-based
realizations both in current yield and in their robustness
against transfer errors.

Developing ever more accurate current sources has con-
stantly been a driving force for understanding the underlying
physical phenomena. On the other hand, the studies for the
precise control of single electrons and Cooper pairs have
created special expertise that is also applicable in a variety
of other research topics.

In addition to the charge degrees of freedom, the electrons
hold information in their spin states which have been

TABLE I. Summary of high-accuracy single-electron sources. Iexpt is the experimentally achieved
current with uncertainty �Iexpt. �Itheory is a theoretical prediction for the uncertainty.

Name Iexpt (pA) �Iexpt=I �Itheory=I Parallelization

Chain of normal metallic islands 1.5 1:5
 10�8 � 10�8 Not feasible
Quantum-dot pump 150 <2
 10�6 � � � Not needed
SINIS turnstile 3 <1
 10�4 10�8 Possible
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envisioned (Kane, 1998; Hollenberg et al., 2006) to be uti-

lized (Morello et al., 2010) for quantum information process-

ing. Although the electron transport is typically incoherent in

the electron pumps, the spin-encoded information can poten-

tially remain coherent, and hence this information can possi-

bly be transported from the memory cell of the computer to

the qubit-qubit interaction cell and back. The transport cycle

has to be carried out with high accuracy for fault-tolerant

computing to be possible, which creates a close connection to

the metrological electron pumps.
Geometric phases (Shapere and Wilczek, 1989) in quantum

mechanics have been studied extensively due to both funda-

mental scientific curiosity and their applications in geometric

quantum computing (Zanardi and Rasetti, 1999). The simplest

geometric quantum phase, the Berry phase, has already been

measured in the superconducting sluice pump (Möttönen et al.,

2006; Möttönen, Vartiainen, and Pekola, 2008) thanks to the

development of the sluice for metrology. Some theoretical

work on the more complex phases referred to as holonomies

has been put forward in the framework of Cooper-pair pumps

(Pirkkalainen et al., 2010; Solinas, Pirkkalainen, and

Möttönen, 2010) but it remains to be seen if these ideas will

be implemented experimentally. The main obstacle in practice

is perhaps the high level of precision required for the control

signals of thepumps, a problem that canpossibly be solvedwith

the help of the work on the metrological current source.
Detecting single electrons and Cooper pairs by single-

electron transistors and quantum point contacts has been

largely motivated by the need for tests of the charge-transport

errors in metrology. During the past decade, these techniques

have also been successfully implemented, e.g., in experiments

on full counting statistics and noise of charge transport. The

experiments on the full counting statistics of current fluctua-

tions in a semiconductor quantum dot by real-time detection of

single-electron tunneling with a quantum point contact have

been successfully performed for instance by Gustavsson et al.

(2006, 2007). In these experiments, moments of current up to

the fifth and beyond could be reliably measured. Recently,

single-charge-counting experiments have been applied to

study energy fluctuation relations (Evans, Cohen, and

Morriss, 1993; Jarzynski, 1997; Crooks, 1999; Averin and

Pekola, 2011) in statistical mechanics. Experiments in

steady-state nonequilibrium were performed by Küng et al.

(2012), and the Jarzynski and Crooks relations were recently

tested by Saira, Yoon et al. (2012). Single-charge-counting

experiments allow one to test fundamental statistical mechan-

ics and thermodynamics of classical and quantum systems.
The variety of spin-offs from the development of single-

charge current sources for metrology is certainly expanding.

In this way the benefits of this research will be obvious not

only for the community interested in the system of units and

in traceable measurements, but also for other researchers

working in basic and applied sciences looking for new tools

for measurements that need precise control.
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and J. S. Tsai, 2012, Phys. Rev. B 85, 140504.

Hofstetter, L., S. Csonka, and J. a. S. C. Nygrd, 2009, Nature

(London) 461, 960.

Hohls, F., A. C. Welker, C. Leicht, L. Fricke, B. Kaestner, P.

Mirovsky, A. Müller, K. Pierz, U. Siegner, and H.W.

Schumacher, 2011, arXiv:1103.1746.

Hollenberg, L. C. L., A.D. Greentree, A.G. Fowler, and C. J.

Wellard, 2006, Phys. Rev. B 74, 045311.

Hongisto, T. T., and A. B. Zorin, 2012, Phys. Rev. Lett. 108, 097001.

Ingold, G. L., and Y.V. Nazarov, 1992, Single Charge Tunneling,

NATO ASI Series B, Vol. 294 (Plenum Press, New York), p. 21.

Isacsson, A., L. Y. Gorelik, M.V. Voinova, B. Kasemo, R. I.

Shekhter, and M. Jonson, 1998, Physica (Amsterdam) 255B, 150.

Jain, A. K., J. E. Lukens, and J. S. Tsai, 1987, Phys. Rev. Lett. 58,

1165.

Janssen, T. J. B.M., N. E. Fletcher, R. Goebel, J.M. Williams, A.

Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, and V. I.

Falko, 2011, New J. Phys. 13, 093026.

Janssen, T. J. B.M., and A. Hartland, 2000a, Physica (Amsterdam)

284B–288B, 1790.

Janssen, T. J. B.M., and A. Hartland, 2000b, IEE Proceedings—

Science, Measurement and Technology 147, 174.

1468 Jukka P. Pekola et al.: Single-electron current sources: Toward a . . .

Rev. Mod. Phys., Vol. 85, No. 4, October–December 2013

http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.57.885
http://dx.doi.org/10.1103/PhysRevB.60.R16291
http://dx.doi.org/10.1103/PhysRevB.60.R16291
http://arXiv.org/abs/1107.4560
http://dx.doi.org/10.1126/science.1102156
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1103/PhysRevB.83.193306
http://dx.doi.org/10.1103/PhysRevLett.110.126803
http://dx.doi.org/10.1038/nnano.2012.21
http://dx.doi.org/10.1063/1.1691491
http://dx.doi.org/10.1063/1.2837544
http://dx.doi.org/10.1063/1.2837544
http://dx.doi.org/10.1038/35069023
http://dx.doi.org/10.1063/1.1650036
http://dx.doi.org/10.1103/PhysRevB.7.981
http://dx.doi.org/10.1103/PhysRevLett.59.109
http://dx.doi.org/10.1109/TIM.1990.1032905
http://dx.doi.org/10.1109/TIM.1990.1032905
http://dx.doi.org/10.1126/science.1126940
http://dx.doi.org/10.1098/rsta.2005.1638
http://dx.doi.org/10.1103/PhysRevB.86.060502
http://dx.doi.org/10.1103/PhysRevB.86.060502
http://dx.doi.org/10.1103/PhysRevLett.65.3037
http://dx.doi.org/10.1103/PhysRevLett.65.3037
http://dx.doi.org/10.1103/PhysRevLett.64.2691
http://dx.doi.org/10.1103/PhysRevLett.64.2691
http://dx.doi.org/10.1007/BF01307630
http://dx.doi.org/10.1007/BF01307630
http://dx.doi.org/10.1103/PhysRevLett.5.147
http://dx.doi.org/10.1103/RevModPhys.78.217
http://dx.doi.org/10.1038/nphys2053
http://dx.doi.org/10.1038/ncomms1935
http://dx.doi.org/10.1088/1367-2630/12/7/073013
http://dx.doi.org/10.1103/PhysRevLett.64.3183
http://dx.doi.org/10.1088/0026-1394/47/4/007
http://dx.doi.org/10.1016/j.crhy.2011.04.012
http://dx.doi.org/10.1016/0375-9601(92)90830-F
http://dx.doi.org/10.1038/35078027
http://dx.doi.org/10.1103/PhysRevLett.80.4526
http://dx.doi.org/10.1103/PhysRevLett.106.097001
http://dx.doi.org/10.1103/PhysRevB.75.075314
http://dx.doi.org/10.1103/PhysRevLett.96.076605
http://dx.doi.org/10.1016/j.surfrep.2009.02.001
http://dx.doi.org/10.1016/j.surfrep.2009.02.001
http://dx.doi.org/10.1063/1.2892679
http://dx.doi.org/10.1109/19.377816
http://dx.doi.org/10.1109/19.377816
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1103/PhysRevLett.100.120801
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://dx.doi.org/10.1103/PhysRevLett.66.969
http://dx.doi.org/10.1103/PhysRevB.3.1778
http://dx.doi.org/10.1103/PhysRevB.3.1778
http://dx.doi.org/10.1063/1.1685508
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevLett.70.4138
http://dx.doi.org/10.1103/PhysRevB.49.6847
http://dx.doi.org/10.1103/PhysRevB.49.6847
http://dx.doi.org/10.1063/1.120137
http://dx.doi.org/10.1103/PhysRevB.51.9407
http://dx.doi.org/10.1103/PhysRevLett.104.026801
http://dx.doi.org/10.1088/0026-1394/48/3/002
http://dx.doi.org/10.1103/PhysRevB.85.140504
http://dx.doi.org/10.1038/nature08432
http://dx.doi.org/10.1038/nature08432
http://arXiv.org/abs/1103.1746
http://dx.doi.org/10.1103/PhysRevB.74.045311
http://dx.doi.org/10.1103/PhysRevLett.108.097001
http://dx.doi.org/10.1016/S0921-4526(98)00463-3
http://dx.doi.org/10.1103/PhysRevLett.58.1165
http://dx.doi.org/10.1103/PhysRevLett.58.1165
http://dx.doi.org/10.1088/1367-2630/13/9/093026
http://dx.doi.org/10.1016/S0921-4526(99)02978-6
http://dx.doi.org/10.1016/S0921-4526(99)02978-6
http://dx.doi.org/10.1049/ip-smt:20000449
http://dx.doi.org/10.1049/ip-smt:20000449


Janssen, T. J. B.M., and A. Hartland, 2001, IEEE Trans. Instrum.

Meas. 50, 227.

Jarzynski, C., 1997, Phys. Rev. Lett. 78, 2690.

Jeanneret, B., and S. P. Benz, 2009, Eur. Phys. J. Special Topics 172,

181.

Jeckelmann, B., and B. Jeanneret, 2001, Rep. Prog. Phys. 64, 1603.

Jeffery, A.-M., R. Elmquist, L. Lee, J. Shields, and R. Dziuba, 1997,

IEEE Trans. Instrum. Meas. 46, 264.

Jehl, X., M.W. Keller, R. L. Kautz, J. Aumentado, and J.M.

Martinis, 2003, Phys. Rev. B 67, 165331.

Jehl, X., B. Voisin, M. Sanquer, R. Wacquez, and M. Vinet, 2012,

unpublished.

Jensen, H. D., and J.M. Martinis, 1992, Phys. Rev. B 46, 13 407.
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Pekola, 2012, Phys. Rev. Lett. 109, 180601.

Savin, A.M., J. P. Pekola, D.V. Averin, and V.K. Semenov, 2006, J.

Appl. Phys. 99, 084501.

Scherer, H., and B. Camarota, 2012, Meas. Sci. Technol. 23,

124010.

Scherer, H., B. Camarota, M.W. Keller, and S. V. Lotkhov, 2012,

unpublished.

Schinner, G. J., H. P. Tranitz, W. Wegscheider, J. P. Kotthaus, and S.

Ludwig, 2009, Phys. Rev. Lett. 102, 186801.

Schmidt, D. R., R. J. Schoelkopf, and A.N. Cleland, 2004, Phys.

Rev. Lett. 93, 045901.

Schoelkopf, R. J., P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and

D. E. Prober, 1998, Science 280, 1238.

Schön, G., and A. Zaikin, 1994, Europhys. Lett. 26, 695.
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