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The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major

challenge in modeling intracellular transport is to analyze stochastic processes within complex

environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive

diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the

motion of an overdamped Brownian particle. On the other hand, active transport requires chemical

energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific,

allowing biomolecules to be transported long distances; this is particularly important in neurons due

to their complex geometry. In this review a wide range of analytical methods and models of

intracellular transport is presented. In the case of diffusive transport, narrow escape problems,

diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional

diffusion are considered. In the case of active transport, Brownian ratchets, random walk models,

exclusion processes, random intermittent search processes, quasi-steady-state reduction methods,

and mean-field approximations are considered. Applications include receptor trafficking, axonal

transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and

the self-organization of subcellular structures.
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I. INTRODUCTION

The efficient delivery of proteins and other molecular prod-
ucts to their correct location within a cell (intracellular trans-
port) is of fundamental importance to normal cellular function
and development (Alberts et al., 2008). Moreover, the break-
down of intracellular transport is a major contributing factor to
many degenerative diseases. Broadly speaking, there are two
basic mechanisms for intracellular transport: passive diffusion
within the cytosol or the surrounding plasma membrane of the
cell, and active motor-driven transport along polymerized
filaments such as microtubules and filamentous actin (F-actin)
that comprise the cytoskeleton. Newly synthesized products
from the nucleus are mainly transported to other intracellular
compartments or the cell membrane via a microtubular net-
work that projects radially from organizing centers (centro-
somes). The same network is used to transport degraded cell
products back to the nucleus.Moreover, various animal viruses
including HIV take advantage of microtubule-based transport
in order to reach the nucleus from the cell surface and release
their genome through nuclear pores (Damm and Pelkmans,
2006). The challenges of intracellular transport are particularly
acute for brain cells (neurons),which are among the largest and
most complex cells in biology, in particular, with regards to the
efficient trafficking of newly synthesized proteins from the cell
body or soma to distant locations on the axon or dendrites. In
healthy cells, the regulation of protein trafficking within a
neuron provides an important mechanism for modifying the
strength of synaptic connections between neurons (Bredt and
Nicoll, 2003; Choquet and Triller, 2003; Triller and Choquet,
2005; Newpher and Ehlers, 2008), and synaptic plasticity is
generally believed to be the cellular substrate of learning and
memory. On the other hand, various types of dysfunction in
protein trafficking appear to be a major contributory factor to a
number of neurodegenerative diseases associated with mem-
ory loss including Alzheimers (de Vos et al., 2008).

Over the past 20 years, intracellular transport has been a
major application area within the statistical physics commun-
ity and has driven a large number of papers on the stochastic
modeling and analysis of molecular motors and diffusion in
complex environments. Many excellent reviews have been
written on topics relevant to intracellular transport including
anomalous diffusion (Bouchaud and Georges, 1990; Metzler
and Klafter, 2000, 2004), molecular motors (Julicher, Ajdari,
and Prost, 1997; Keller and Bustamante, 2000; Reimann,
2002; Lipowsky and Klumpp, 2005; Kolomeisky and
Fisher, 2007), reaction kinetics (Hanggi, Talkner, and
Borkovec, 1990), confined diffusion (Burada et al., 2009),
random intermittent search processes (Benichou, Loverdo
et al., 2011), and exclusion processes Evans and Hanney
(2005), Schadschneider, Chowdhury, and Nishinari (2010),
and Chou, Mallick, and Zia (2011). However, as far as we are
aware, there has not been a substantial review in which
intracellular transport itself is the central topic.

The overall goal of the current review is to provide an up to
date and unified perspective on stochastic models of intra-
cellular transport. One of the major aims is to cover a wide
range of models and analytical methods, highlighting links
between themwherever possible. Although it is not possible to
cover every topic in complete detail, sufficient details are
provided tomake the review as self-contained and pedagogical

as possible. Another aim of the review is to highlight aspects of
stochastic processes that are particularly relevant to intracel-
lular transport, some of which have not been emphasized in
other reviews. These include the following:

(1) Since the aqueous environment (cytosol) of a cell is
highly viscous at the length scale of macromolecules
(low Reynolds number), a diffusing particle can be
treated as an overdamped Brownian particle where
inertial effects are ignored.

(2) One of the characteristics of diffusive transport inside
the cell is that often a particle is confined to a domain
with small exits on the boundary of the domain.
Examples include an ion looking for an open ion channel
within the cell membrane (Grigoriev et al., 2002), the
transport of newly transcribedmessengerRNA (mRNA)
from the nucleus to the cytoplasm via nuclear pores
(Gorski, Dundr, and Mistelli, 2006; Mistelli, 2008), the
confinement of neurotransmitter receptors within a syn-
apse of a neuron (Holcman and Schuss, 2004), and the
confinement of calcium and other signaling molecules
within subcellular compartments such as dendritic
spines (Biess, Korkotian, and Holcman, 2011). This
has led to recent interest in using Green’s function and
asymptoticmethods to solve the so-called narrowescape
problem (Grigoriev et al., 2002; Holcman and Schuss,
2004; Singer, Schuss, and Holcman, 2006a, 2006b;
Schuss, Singer, and Holcman, 2007; Benichou and
Voituriez, 2008; Pillay et al., 2010).

(3) A related class of problems involves the search for a
small target within the interior of a cellular domain. In
this case it is necessary to extend the Smoluchowski
theory of diffusion-limited reaction rates to bounded
domains or to more complex transport processes than
simple diffusion.One example is the arrival of a receptor
at a localized reaction site on the surface of an immune
cell, which is a key step in the signaling cascade respon-
sible for activating the cell (Coombs, Straube, andWard,
2009). Another important example is a promotor protein
searching for its binding site on DNA, which is facili-
tated by an intermittent search process in which the
particle switches between 3D and 1D diffusion (Berg,
Winter, and von Hippel, 1981; Coppey et al., 2004;
Halford and Marko, 2004; Mirny et al., 2009;
Kolomeisky, 2011; Sheinman et al., 2012).

(4) The intracellular environment is extremely crowded
with macromolecules, subcellular compartments, and
confinement domains, suggesting that anomalous sub-
diffusion is likely to occur (Dix and Verkman, 2008).
The plasma membrane is also a complex hetero-
geneous environment (Vereb et al., 2003; Kusumi
et al., 2005; Jacobson, Mouritsen, and Anderson,
2007). Thus, many papers model diffusion in such
environments in terms of continuous-time random
walks and fractional Brownian motion. However, it is
still unclear to what extent intracellular diffusion is
anomalous in the long-time limit rather than just at
intermediate times. This motivates studying diffusion
in the presence of obstacles and transient traps
whereby normal diffusion is recovered asymptotically
(Saxton, 1994, 2007; Santamaria et al., 2006;
Bressloff and Earnshaw, 2007).
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(5) Another common form of diffusion within cells is the

transport of particles through a narrow biological

pore or channel (Hille, 2001; Schuss, Nadller, and

Eisenberg, 2001; Roux et al., 2004). Restricting the

volume of the phase space available to the diffusing

particles by means of confining boundaries or ob-

stacles causes striking entropic effects (Burada

et al., 2009). Moreover, various mechanisms of facili-

tated diffusion can occur through interactions between

a diffusing particle and proteins within the channel, as

exemplified by nuclear pore complexes, which are the

sole mediators of exchange between the nucleus

and cytoplasm (Macara, 2001; Rout et al., 2003;

Fahrenkrog, Koser, and Aebi, 2004; Tran and Wente,

2006). When a channel becomes sufficiently narrow,

particles are no longer able to pass each other (single-

file diffusion), which imposes strong constraints on the

diffusive motion. In particular, a tagged particle ex-

hibits anomalous subdiffusion on long time scales

(Harris, 1965; Lebowitz and Percus, 1967; Levitt,

1973; Barkai and Silbey, 2009)
(6) There have been many stochastic models of motor-

driven transport at multiple spatial and temporal

scales, ranging from Brownian ratchet models

(Reimann, 2002) to random walk models (Lipowsky

and Klumpp, 2005; Muller, Klumpp, and Lipowsky,

2008b) to systems of partial differential equations

(PDEs) (Reed, Venakides, and Blum, 1990; Smith

and Simmons, 2001). However, many of these treat-

ments neglect the fact that the goal of such transport is

to deliver molecular cargo to specific sites. This then

naturally leads to a connection with random intermit-

tent search processes (Loverdo et al., 2008; Bressloff

and Newby, 2009; Newby and Bressloff, 2010a,

2010b). It also raises the important question regarding

signaling mechanisms responsible for localizing a mo-

tor complex at a target. Another issue in active trans-

port involves exclusion effects due to multiple motors

moving along the same filament track (Blythe and

Evans, 2007; Schadschneider, Chowdhury, and

Nishinari, 2010; Chou, Mallick, and Zia, 2011).
(7) Most cellular structures including the cytoskeleton and

various organelles are highly dynamic, open systems

that are constantly exchanging energy and molecules

with the cytosol or other compartments. The formation

and maintenance of such dynamic structures have

properties suggestive of far from equilibrium self-

organizing systems (Mistelli, 2001; Heinrich and

Rapoport, 2005; Semplice et al., 2012). One of the

challenges in cellular biology is understanding how the

coupling of diffusive or vesicular transport with chemi-

cal reactions and cell signaling generates self-

organizing structures within a cell. One clear example

is given by the actin and microtubular cytoskeletons,

which not only provide tracks for intracellular trans-

port, but also determine cell shape and polarity

(Lacayo et al., 2007), drive cell motility (Mogilner

and Edelstein-Keshet, 2002; Rafelski and Theriot,

2004), and form the spindle apparatus during cell

division (Eggert, Mitchison, and Field, 2006; Glotzer,

2009). Self-organization of the cytoskeleton and its
regulation by cell signaling also plays a crucial role
in axonal growth and guidance during neurogenesis
and cortical development (Goldberg, 2003; Graham,
Lauchlan, and Mclean, 2006; Suter and Miller, 2011).

The structure of the paper is as follows. In Sec. II,
diffusive transport is developed from the perspective of the
Langevin equation for an overdamped Brownian particle, and
various first-passage time (FPT) problems are considered
(points 1–3). In Sec. III, the anomalous effects of molecular
crowding, trapping, and confinement are discussed (points 4
and 5). The differences in diffusive behavior at multiple time
scales are highlighted. In Sec. IV, the theory of motor-driven
active transport is reviewed, emphasizing the connection with
random intermittent search processes (point 6). A method for
reducing the complexity of molecular motor models is also
described and used to study the effects of local signaling.
Finally, in Sec. V some examples illustrating the role of
intracellular transport in self-organizing systems are pre-
sented (point 7).

II. DIFFUSIVE TRANSPORT: FIRST-PASSAGE PROBLEMS

A. Derivation of the diffusion equation

1. Random walks

Consider a particle that hops at discrete times between
neighboring sites on a one-dimensional (1D) lattice with unit
spacing. At each step, the random walker moves a unit
distance to the right with probability p or to the left with
probability q ¼ 1� p. Let PnðrÞ denote the probability that
the particle is at site r at the Nth time step. The evolution of
the probability distribution is described by the discrete-time
master equation

PNðrÞ¼pPN�1ðr�1ÞþqPN�1ðrþ1Þ; r2Z: (2.1)

If q ¼ p ¼ 1=2 then the random walk is symmetric or un-
biased, whereas for p > q (p < q) it is biased to the right
(left). In order to solve this equation, we introduce the dis-
crete Laplace-Fourier transform

~Pðk; zÞ ¼ X1
N¼0

zN
X1

r¼�1
eikrPðr; NÞ: (2.2)

Applying this transform to the master equation and multi-
plying by an extra factor of z, it is straightforward to show
that

~Pðk; zÞ � X1
r¼�1

P0ðrÞeikr ¼ zðpeik þ qe�ikÞ ~Pðk; zÞ:

Assuming that the particle starts at the origin so that P0ðrÞ ¼
�r;0, we have

~Pðk; zÞ ¼ 1

1� zuðkÞ ; uðkÞ ¼ peik þ qe�ik: (2.3)

Here uðkÞ is the Fourier transform of the single-step hopping
probability. The original probability distribution can now be
reconstructed using the inverse transform
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PNðrÞ ¼
I dz

2�izNþ1
Z �

��
dk

2�
e�ikr ~Pðk; zÞ (2.4)

with the z contour taken around the unit circle. Taylor
expanding the solution for ~Pðk; zÞ in terms of z thus yields

PNðrÞ¼ 1

2�

Z �

��
e�ikruðkÞNdk

¼ 1

2�

Z �

��
e�ikr

XN
m¼0

N

m

 !
pmqN�me�ikðN�2mÞdk

¼ N!

½ðNþrÞ=2�!½ðN�rÞ=2�!p
ðNþrÞ=2qðN�rÞ=2: (2.5)

Using Stirling’s approximation for large N,

logn! � n logn� nþ 1
2 logð2�nÞ;

and assuming p, q � 1=2, it can be shown that

PNðrÞ � 1ffiffiffiffiffiffiffiffiffiffi
2�N
p e½r�Nðp�qÞ�2=2N:

[To be more precise, PNðrÞ should be multiplied by a factor
of 2, since N � rmust be even.] Indeed, the Gaussian form of
PNðrÞ in the large-time limit arises universally whenever the
mean and variance of the displacement �r in a single step are
finite. This is basically a statement of the central-limit theo-
rem. One way to see this is to note that when h�ri and h�r2i
are both finite, uðkÞ has the small-k series expansion

uðkÞ¼1þ ikh�ri� 1
2k

2h�r2iþ����eikh�ri�ð1=2Þk2h�r2i:

Substituting this approximation into the first line of Eq. (2.5)
using the fact that the integral is dominated by the behavior in
the region around k ¼ 0 when N is large, the resulting
Gaussian integral yields the approximation

PNðrÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Nh�r2ip eðr�Nh�riÞ2=2Nh�r2i: (2.6)

Having analyzed the discrete random walk, it is now
possible to take an appropriate continuum limit to obtain a
diffusion equation in continuous space and time. First intro-
duce infinitesimal step lengths �x and �t for space and time
and set PN ¼ �ðx; tÞ�x with x ¼ r�x, t ¼ N�t. Substituting
into the master equation (2.1) gives the following equation for
the probability density �ðx; tÞ:

�ðx; tÞ ¼ p�ðx� �x; t� �tÞ þ q�ðxþ �x; t� �tÞ
� ðpþ qÞ

�
�ðx; tÞ � @�

@t
�t

�

� ðp� qÞ @�
@x

�xþ ðpþ qÞ
2

@2�

@x2
�x2;

where � has been Taylor expanded to first order in �t and to
second order in �x. Note that pþ q ¼ 1. Dividing through
by �t and taking the continuum limit �x, �t! 0 such that the
quantities V, D are finite, where

V ¼ lim
�x;�t!0

ðp� qÞ�x
�t

; D ¼ lim
�x;�t!0

�x2

2�t
;

yields the Fokker-Planck (FP) equation with constant drift

@�ðx; tÞ
@t

¼ �V @½�ðx; tÞ�
@x

þD
@2�ðx; tÞ

@x2
: (2.7)

Note that p ¼ 0:5þ ��x and q ¼ 0:5� ��xwith � ¼ Oð1Þ.
Applying the same continuum limit to the Gaussian distribu-
tion (2.6) gives the density

�ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt
p e�ðx�VtÞ2=4Dt; (2.8)

which is the fundamental solution of Eq. (2.7) under the
initial condition �ðx; 0Þ ¼ �ðxÞ. Although we mainly con-
sider continuum models of diffusion, it should be noted that
random walk models are particularly helpful in developing
theories of diffusion in complex heterogeneous media and
associated phenomena such as anomalous diffusion
(Bouchaud and Georges, 1990; Hughes, 1995; Metzler and
Klafter, 2000); see also Sec. III.A.

2. Langevin equation

Consider a microscopic particle moving in a water solution
such as found in the interior of cells (the cytoplasm). Suppose
that it is subject to some external force of size F. Collisions
with fluid molecules have two distinct effects. First they
induce an apparent diffusive or Brownian motion of the
particle, and second they generate an effective frictional force
that opposes motion induced by the external force. In the case
of microscopic particles, water acts as a highly viscous
medium (low Reynolds number) so that any particle quickly
approaches terminal velocity and inertial effects can be
ignored. The effects of all collisions on the motion of the
particle can then be represented in terms of the Langevin or
stochastic differential equation (Gardiner, 2009)

dXðtÞ
dt
¼ FðXðtÞÞ

�
þ �ðtÞ; (2.9)

where XðtÞ is the stochastic position of the particle at time t, �
is a drag coefficient, and �ðtÞ is a Gaussian noise term with

h�ðtÞi ¼ 0; h�ðtÞ�ðt0Þi ¼ 2D�ðt� t0Þ: (2.10)

Suppose, for the moment, that F is a constant. Formally
integrating Eq. (2.9) with Xð0Þ ¼ 0 shows that

XðtÞ ¼ Vtþ
Z t

0
�ðt0Þdt0

with V ¼ F=� the terminal velocity. Averaging with respect
to the noise then implies that

hXðtÞi ¼ Vt; h½XðtÞ � Vt�2i ¼ 2Dt:

Thus the mean-square displacement about the deterministic
trajectory xðtÞ ¼ Vt is given by h�XðtÞi ¼ 2Dt, which sug-
gests identifying D as a diffusion coefficient. Moreover, XðtÞ
is itself a Gaussian process whose probability density pðx; tÞ
evolves according to the FP equation (2.7). Under the initial
condition pðx; 0Þ ¼ �ðxÞ, this can be solved to give the
Gaussian distribution (2.8).

We now present a more formal derivation of the FP equa-
tion applicable to position-dependent forces FðxÞ. Since XðtÞ
is a stochastic variable, each simulation of the Langevin
equation generates one sample out of the set of all possible
trajectories. This motivates an alternative way of thinking
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about such a stochastic process, namely, in terms of the
conditional probability density pðx; tjx0; t0Þ that the particle
is at x at time t, given that it started at x0 at time t0. Exploiting
the fact that the stochastic process is Markovian, that is,
Xðtþ �tÞ only depends on the state at the previous time
step XðtÞ, it follows that pðx; tjx0; t0Þ satisfies the Chapman-
Kolmogorov equation

pðx; tjx0; t0Þ ¼
Z 1
�1

pðx; tjx0; t0Þpðx0; t0jx0; t0Þdx0 (2.11)

for any t0 2 ½t0; t�. Such an equation is a defining property of
a Markov process. Consider an infinitesimal version of this
equation by taking t! tþ �t, t0 ! t and setting
wðx; t; u; �tÞ ¼ pðxþ u; tþ �tjx; tÞ:

pðx; tþ �tÞ ¼
Z 1
�1

wðx� u; t; u; �tÞpðx� u; tÞdu;

where the initial argument ðx0; t0Þ has been suppressed. Now
suppose that over a sufficiently small time window �t, large
jumps u in position are highly unlikely, so that u can be
treated as a small variable. Performing a Taylor expansion
with respect to u gives

pðx; tþ �tÞ ¼ �0ðx; tÞpðx; tÞ � @x½�1ðx; tÞpðx; tÞ�
þ 1

2@
2
xx½�2ðx; tÞpðx; tÞ� þ � � � ; (2.12)

where

�nðx; tÞ ¼
Z 1
�1

wðx; t;u; �tÞundu: (2.13)

The Langevin equation (2.9) can be used to calculate the
coefficients �n. First, rewrite Eq. (2.9) in the infinitesimal
form

Xðtþ �tÞ ¼ xþ FðxÞ�t=�þ �t�ðtÞ;
given that XðtÞ ¼ x. This implies that the transition probabil-
ity w can be written as

wðx; t; u; �tÞ ¼ h�ðxþ u� Xðtþ �tÞÞi�
¼ h�ðu� FðxÞ�t=�� �t�ðtÞÞi�:

Discretizing time in units of �t means that �ðtÞ becomes a
Gaussian random variable with zero mean and variance
2D=�t. The corresponding probability density is

pð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t=4�D

p
e��2�t=4D:

Hence, averaging with respect to �ðtÞ,

wðx; t; u; �tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4�D�t

s
e�½u�FðxÞ�t=��2=4D�t:

It follows that

�0¼1; �1¼FðxÞ�t=�; �2¼2D�tþ�2
1; (2.14)

and �m ¼ Oð�t2Þ for m> 2. Substituting these results into
Eq. (2.12) and taking the limit �t! 0 finally leads to the FP
equation

@pðx; tÞ
@t

¼ � 1

�

@½FðxÞpðx; tÞ�
@x

þD
@2pðx; tÞ

@x2
: (2.15)

Note that it is straightforward to generalize the above analysis
to higher dimensions. Assuming for simplicity isotropic dif-
fusion and friction, Eq. (2.9) becomes

dXi

dt
¼ FiðXÞ

�
þ �iðtÞ; i ¼ 1; . . . ; d (2.16)

with h�iðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼ 2D�i;j�ðt� t0Þ. The cor-
responding multivariate FP equation is

@pðx; tÞ
@t

¼ � 1

�
r � ½FðxÞpðx; tÞ� þDr2pðx; tÞ: (2.17)

The 1D FP equation (2.15) can be rewritten as a probability
conservation law according to

@pðx; tÞ
@t

¼ � @Jðx; tÞ
@x

; (2.18)

where

Jðx; tÞ ¼ 1

�
FðxÞpðx; tÞ �D

@pðx; tÞ
@x

(2.19)

is the probability flux. An equilibrium steady-state solution
corresponds to the conditions @p=@t ¼ 0 and J � 0. This
leads to the first-order ordinary differential equation (ODE)
for the equilibrium density PðxÞ, DP0ðxÞ � ��1FðxÞPðxÞ ¼
0, which has the solution

PðxÞ ¼N e��ðxÞ=�D: (2.20)

Here �ðxÞ ¼ �R
x FðyÞdy is a potential energy function and

N is a normalization factor (assuming that it exists).
Comparison of the equilibrium distribution with the
Boltzmann-Gibbs distribution of statistical mechanics yields
the Einstein relation

D� ¼ kBT; (2.21)

where T is the temperature (in degrees Kelvin) and kB �
1:4� 10�23 J K�1 is the Boltzmann constant. This formula
relates the variance of environmental fluctuations to the
strength of dissipative forces and the temperature. In the
case of a sphere of radius R moving in a fluid of viscosity
�, Stoke’s formula can be used, that is, � ¼ 6��R. For water
at room temperature, �� 10�3 kgm�1 s�1 so that a particle
of radius R ¼ 10�9 m has a diffusion coefficient D�
100 	m2 s�1.

So far, we have considered diffusivelike motion from the
probabilistic perspective of a single microscopic particle
moving in a fluid medium. However, it is possible to reinter-
pret Eq. (2.15) or (2.17) as a deterministic advection-diffusion
equation for the concentration uðx; tÞ of many particles. That
is, ignoring any interactions or correlations between the
particles, set uðx; tÞ ¼ Npðx; tÞ where N is the total number
of particles (assumed large). Multiplying both sides of
Eq. (2.15) by N then leads to the corresponding advection-
diffusion (or Smoluchowski) equation for uðx; tÞwith NJðx; tÞ
interpreted as the particle flux arising from a combination of
advection and Fickian diffusion. In this review we often
switch between the microscopic probabilistic formulation
of diffusion and the macroscopic deterministic formulation,
which can be viewed as a mean-field limit of the former.
However, the relationship between macroscopic and
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microscopic formulations is more complicated when chemi-
cal reactions are included. Macroscopically, reactions are
described in terms of the deterministic law of mass action,
whereas microscopically they are modeled stochastically us-
ing a chemical master equation. Differences between the two
levels of modeling become significant when the number of
interacting molecules becomes small (Kampen, 1992).

Finally note that another important issue arises in the case
of space-dependent diffusion coefficients. From the macro-
scopic picture of Fickian diffusion, the conservation equation
@tu ¼ �r � J can lead to two different forms of the diffusion
equation, depending on whether Jðx; tÞ ¼ r½DðxÞuðx; tÞ� or
Jðx; tÞ ¼ DðxÞruðx; tÞ. (These are equivalent when D is a
constant.) In order to distinguish between the two cases, it is
necessary to incorporate details regarding the microscopic
dynamics using, for example, kinetic theory (van Milligen,
Carreras, and Sanchez, 2005; Bringuier, 2009). From the
perspective of the FP equation, a space-dependent diffusion
coefficient arises when the corresponding Langevin equation
is driven by multiplicative (state-dependent) noise, and the
position of the diffusion coefficient will depend on whether
the noise is interpreted in the sense of Ito or Statonovich
(Kampen, 1992; Gardiner, 2009). The situation is even more
complicated in anisotropic heterogeneous media, where it is
no longer possible to characterize the rate of diffusion in
terms of a single coefficient. One now needs to consider a
diffusion tensor; see Sec. IV.E.

B. First-passage times

One of the most important ways of quantifying the efficacy
of diffusive transport is in terms of the first-passage time to
reach a target (Redner, 2001; Gardiner, 2009). In the case of
intracellular transport, such a target could represent a sub-
strate for a subsequent biochemical reaction or an exit from
some bounded domain such as a chemical synapse. [Although
we focus on spatially continuous processes, an analogous
theory of first-passage times can be developed for spatially
discrete random walks (Kampen, 1992; Hughes, 1995).]
Consider a particle whose position evolves according to the
1D Langevin equation (2.9) with motion restricted to the
bounded domain x 2 ½0; L�. Suppose that the corresponding
FP equation (2.15) has a reflecting boundary condition at
x ¼ 0 and an absorbing boundary condition at x ¼ L:

Jð0; tÞ ¼ 0; pðL; tÞ ¼ 0: (2.22)

We determine the stochastic time TðyÞ for the particle to exit
the right-hand boundary given that it starts at location y 2
½0; L� at time t. As the first step, we introduce the survival
probability Pðy; tÞ that the particle has not yet exited the
interval at time t:

Pðy; tÞ ¼
Z L

0
pðx; tjy; 0Þdx: (2.23)

It follows that Prob½TðyÞ � t� ¼ 1� Pðy; tÞ and we can de-
fine the FPT density according to

fðy; tÞ ¼ � @Pðy; tÞ
@t

: (2.24)

The FPT density satisfies a backward FP equation, which can
be derived from the Chapman-Kolmogorov equation (2.11)

by differentiating both sides with respect to the intermediate
time t0 and using the forward equation. Using the fact that
@t0pðx; tjx0; t0Þ ¼ �@tpðx; tjx0; t0Þ, which follows from time-
translation invariance, then yields the backward FP equation
for p:

@tpðx; tjx0; t0Þ ¼ Aðx0Þ@x0pðx; tjx0; t0Þ þD@2x0x0pðx; tjx0; t0Þ;
(2.25)

where AðxÞ ¼ FðxÞ=�. Taking x0 ! y, t0 ¼ 0 and integrating
with respect to x shows that Pðy; tÞ, and hence fðy; tÞ, also
satisfy a backward FP equation:

@Pðy; tÞ
@t

¼ AðyÞ @Pðy; tÞ
@y

þD
@2Pðy; tÞ

@y2
: (2.26)

A quantity of particular interest is the mean first-passage
time (MFPT) 
ðyÞ defined according to


ðyÞ ¼ hTðyÞi �
Z 1
0

fðy; tÞtdt ¼ �
Z 1
0

t
@Pðy; tÞ

@t
dt

¼
Z 1
0

Pðy; tÞdt; (2.27)

after integration by parts. Hence, integrating both sides of
Eq. (2.26) shows that the MFPT satisfies the ODE

AðyÞ d
ðyÞ
dy
þD

d2
ðyÞ
dy2

¼ �1: (2.28)

Equation (2.28) is supplemented by reflecting and absorbing
boundary conditions for the backward FP equation:


0ð0Þ ¼ 0; 
ðLÞ ¼ 0: (2.29)

It is straightforward to solve Eq. (2.28) by direct integration
(Gardiner, 2009). First introduce the integration factor

c ðyÞ ¼ exp

�
1

D

Z y

0
Aðy0Þdy0

�
¼ exp½�VðyÞ=kBT�;

where D�1AðyÞ ¼ ðD�Þ�1FðyÞ ¼ �ðkBTÞ�1V 0ðyÞ and VðyÞ
is a potential energy. Equation (2.28) becomes

d

dy
½c ðyÞ
0ðyÞ� ¼ � c ðyÞ

D
;

so that

c ðyÞ
0ðyÞ ¼ � 1

D

Z y

0
c ðy0Þdy0;

where the boundary condition 
0ð0Þ ¼ 0 has been used.
Integrating once more with respect to y and using 
ðLÞ ¼ 0
then gives


ðyÞ ¼
Z L

y

dy0

c ðy0Þ
Z y0

0

c ðy00Þ
D

dy00: (2.30)

In the case of pure diffusion AðxÞ ¼ 0, we have c ðyÞ ¼ 1 and

ðyÞ ¼ ðL2 � y2Þ=2D. It follows that for any finite L� y,

ðyÞ ! 1 as L! 1. Thus, although 1D diffusion is recur-
rent, i.e., the particle surely reaches the origin, the average
time it takes is infinite. (This can also be understood in terms
of the scaling properties of the FPT density; see below.) Now
suppose that L is finite and the particle starts at the left-hand
boundary. The corresponding MFPT is then 
 ¼ L2=D.
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Within the cytosol of cells, macromolecules such as proteins
tend to have diffusivities D< 1 	m2 s�1, which is due to
effects such as molecular crowding; see Sec. III. This implies
that the mean time for a diffusing particle to travel a distance
100 	m is at least 104 s (a few hours), whereas to travel a
distance 1 mm is at least 106 s (10 days). Since neurons,
which are the largest cells in humans, have axonal and
dendritic protrusions that can extend from 1 mm up to 1 m,
the mean travel time due to passive diffusion becomes pro-
hibitively large, and an active form of transport becomes
essential.

It is also possible to extend the above analysis to the case
where the particle can exit from either end (Redner, 2001;
Gardiner, 2009). It is often of interest to keep track of which
end the particle exits, which leads to the concept of a splitting
probability. Let G0ðx; tÞ denote the probability that the parti-
cle exits at x ¼ 0 after time t, having started at the point x.
Then

G0ðx; tÞ ¼ �
Z 1
t

Jð0; t0jx; 0Þdt0; (2.31)

with

Jð0; tjx; 0Þ ¼ Að0Þpð0; tjx; 0Þ �D
@pðy; tjx; 0Þ

@y

��������y¼0
:

Differentiating with respect to t and using the backwards FP
equation (2.25) gives

@G0ðx; tÞ
@t

¼ Jð0; tjx; 0Þ ¼ �
Z 1
t

@Jð0; t0jx; 0Þ
@t0

dt0

¼ AðxÞ @G0ðx; tÞ
@x

þD
@2G0ðx; tÞ

@x2
: (2.32)

The hitting or splitting probability in which the particle exits
at x ¼ 0 (rather than x ¼ L) is �0ðxÞ ¼ G0ðx; 0Þ. Moreover,
the probability that the particle exits at time t through x ¼ 0 is
Prob½T0ðxÞ> t� ¼ G0ðx; tÞ=G0ðx; 0Þ, where T0ðxÞ is the cor-
responding conditional FPT. Since the conditional MFPT
satisfies


0ðxÞ ¼ �
Z 1
0

t
@ProbðT0ðxÞ> tÞ

@t
dt ¼

Z 1
0

G0ðx; tÞ
G0ðx; 0Þ dt;

Eq. (2.32) is integrated with respect to t to give

AðxÞ @�0ðxÞ
0ðxÞ
@x

þD
@2�0ðxÞ
0ðxÞ

@x2
¼ ��0ðxÞ; (2.33)

with boundary conditions �0ð0Þ
0ð0Þ ¼ �0ðLÞ
0ðLÞ ¼ 0.
Finally, taking the limit t! 0 in Eq. (2.32) and noting that
Jð0; 0jx; 0Þ ¼ 0 for x � 0,

AðxÞ @�0ðxÞ
@x

þD
@2�0ðxÞ
@x2

¼ 0; (2.34)

with boundary conditions �0ð0Þ ¼ 1, �0ðLÞ ¼ 0. A similar
analysis can be carried out for exit through the other end
x ¼ L such that �0ðxÞ þ�LðxÞ ¼ 1.

The above formalism extends to higher spatial dimensions.
In particular, suppose that a particle evolves according to the
Langevin equation (2.16) in a compact domain � with
boundary @�. Suppose that at time t ¼ 0 the particle is at
the point y 2 � and let TðyÞ denote the first-passage time to

reach any point on the boundary @�. The probability that the
particle has not yet reached the boundary at time t is then

Pðy; tÞ ¼
Z
�
pðx; tjy; 0Þdx; (2.35)

where pðx; tjy; 0Þ is the solution to the multivariate FP equa-
tion (2.17) with an absorbing boundary condition on @�. The
FPT density is again fðy; tÞ ¼ �dPðy; tÞ=dt which, on using
Eq. (2.17) and the divergence theorem, can be expressed as

fðy;tÞ¼�
Z
@�
½�AðxÞpðx;tjy;0ÞþDrpðx;tjy;0Þ� �d�

with A ¼ F=�. Similarly, by constructing the corresponding
backward FP equation, it can be shown that the MFPT
satisfies

AðyÞ � r
ðyÞ þDr2
ðyÞ ¼ �1 (2.36)

with 
ðyÞ ¼ 0 for y 2 @�.
In the case of 1D diffusion, it is straightforward to calcu-

late the FPT density explicitly. In the absence of boundaries
we can set the conditional probability density pðx; tjx0; 0Þ ¼
pðx� x0; tÞ. Similarly the FPT density of arriving for the first
time at x at time 
 starting from x0 can be written as
fðx; 
jx0; 0Þ ¼ fðx� x0; 
Þ. The densities p and f are related
according to the integral equation

pðx�x0;tÞ¼
Z t

0
pðx�x0;t�
Þfðx0 �x0;
Þd
: (2.37)

Taking Laplace transforms,

~pðx� x0; sÞ ¼ ~pðx� x0; sÞ~fðx0 � x0; sÞ: (2.38)

Laplace transforming the Gaussian distribution (2.8) for
V ¼ 0 yields

~pðx; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Ds
p e�

ffiffiffiffiffiffiffiffiffiffi
x2s=D
p

;

so that

~fðx� x0; sÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þs=D
p

:

The inverse Laplace transform then yields the Levy-Smirnov
distribution

fðx� x0; tÞ ¼ 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2
4�Dt

s
e�ðx�x0Þ2=4Dt: (2.39)

This inverse-Gaussian decays asymptotically as fðx; tÞ �
t�3=2, which immediately establishes that it does not have a
finite first moment, that is, the MFPT from x0 to x diverges.
On the other hand,

R1
0 fðx� x0; tÞdt ¼ 1 so that the diffusing

particle will almost surely hit any point x during its motion.

C. Narrow escape problems

Within the context of intracellular transport, there has been
a growing interest in a particular class of first-passage pro-
cesses, namely, the escape of a freely diffusing molecule from
a 2D or 3D bounded domain through small absorbing win-
dows on an otherwise reflecting boundary (Grigoriev et al.,
2002; Holcman and Schuss, 2004; Schuss, Singer, and
Holcman, 2007; Benichou and Voituriez, 2008). Examples
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include the FPT for an ion to find an open ion channel situated
within the cell membrane or the FPT of a protein receptor to
locate a particular target binding site. Within the context of
intracellular transport in neurons, recent applications include
analyzing the confinement of neurotransmitter receptors
within the synapse of a neuron (Holcman and Schuss, 2004;
Holcman and Triller, 2006; Bressloff and Earnshaw, 2009)
and the role of dendritic spines in confining signaling mole-
cules such as calcium (Holcman, Marchewka, and Schuss,
2005; Biess, Kerkotian, and Holcman, 2007). [A related class
of problems is the FPT for a particle to find a small target
within the interior of a cellular domain. One example con-
cerns the arrival of receptors at a localized reaction site on the
surface of an immune cell, which is a key step in the signaling
cascade leading to the activation of the cell (Coombs,
Straube, and Ward, 2009); see Sec. II.D.] In order to develop
the basic theory, we focus on diffusion in a two-dimensional
domain � 	 R2 whose boundary can be decomposed as
@� ¼ @�r [ @�a, where @�r represents the reflecting part
of the boundary and @�a the absorbing part. We then have a
narrow escape problem in the limit in which the measure of
the absorbing set j@�aj ¼ Oð"Þ is asymptotically small, that
is, 0< "
 1. It follows from the analysis of exit times, see
Eq. (2.36), that the MFPT to exit the boundary @�a satisfies
the equation (in the absence of external forces)

r2
ðxÞ ¼ � 1

D
; x 2 � (2.40)

with boundary conditions


ðxÞ ¼ 0; x 2 @�a ¼ [Nj¼1@�j (2.41)

and

@n
ðxÞ ¼ 0; x 2 @�r: (2.42)

The absorbing set is assumed to consist of N small disjoint
absorbing windows @�j centered at xj 2 @�. In the 2D case,

each window is a small absorbing arc of length j@�jj ¼ "lj
with lj ¼ Oð1Þ. It is also assumed that the windows are well

separated, that is, jxi � xjj ¼ Oð1Þ for all i � j. An example

of a Brownian particle in a 2D unit disk with small absorbing
windows on the circular boundary is illustrated in Fig. 1.

Since the MFPT diverges as "! 0, the calculation of 
ðxÞ
requires solving a singular perturbation problem. There have
been a number of studies of the narrow escape problem using

a combination of singular perturbation theory and Green’s
function methods for a variety of geometries in two and three
dimensions (Holcman and Schuss, 2004; Singer, Schuss, and
Holcman, 2006a, 2006b; Schuss, Singer, and Holcman, 2007;
Benichou and Voituriez, 2008; Cheviakov, Ward, and
Straube, 2010; Pillay et al., 2010; Chevalier et al., 2011).
Here we review the particular approach of Ward and collab-
orators (Ward, 2000; Pillay et al., 2010). The basic idea is to
construct the asymptotic solution for the MFPT in the limit
"! 0 using the method of matched asymptotic expansions.
That is, an inner or local solution valid in a Oð"Þ neighbor-
hood of each absorbing arc is constructed and then these are
matched to an outer or global solution that is valid away from
each neighborhood.

In order to construct an inner solution near the jth absorb-
ing arc, Eq. (2.40) is rewritten in terms of a local orthogonal
coordinate system ðz; sÞ, in which s denotes arc length along
@� and z is the minimal distance from @� to an interior point
x 2 �, as shown in the inset of Fig. 1. Now introduce
stretched coordinates ẑ ¼ z=" and ŝ ¼ ðs� sjÞ=", and write

the solution to the inner problem as 
ðxÞ ¼ wðẑ; ŝÞ.
Neglecting terms of Oð"Þ, it can be shown that w satisfies
the homogeneous equation (Pillay et al., 2010)

@2w

@2ẑ
þ@2w

@2ŝ
¼0; 0<ẑ<1; �1<ŝ<1; (2.43)

with the following boundary conditions on ẑ ¼ 0:

@w

@ẑ
¼0 for jŝj>lj=2; w¼0 for jŝj<lj=2: (2.44)

The resulting boundary value problem can be solved by
introducing elliptic cylinder coordinates. However, in order
to match the outer solution we need only specify the far-field
behavior of the inner solution, which takes the form

wðxÞ�Aj½logjyj� logdjþoð1Þ� as jyj!1; (2.45)

where dj ¼ lj=4, jyj ¼ jx� xjj=" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 þ ŝ2

p
, and Aj is an

unknown constant (that is determined by matching with the
outer solution).

As far as the outer solution is concerned, each absorbing
arc shrinks to a point xj 2 @� as "! 0. Each point xj

effectively acts as a point source that generates a logarithmic
singularity resulting from the asymptotic matching of the
outer solution to the far-field behavior of the inner solution.
Thus the outer solution satisfies

r2
ðxÞ ¼ � 1

D
; x 2 �; (2.46)

with reflecting boundary condition

@n
 ¼ 0 for x 2 @�nfx1; . . . ;xNg (2.47)

and


ðxÞ�Aj

	j

þAj logjx�xjj asx!xj; j¼1; . . . ;N;

(2.48)

where

	j � � 1

logð"djÞ : (2.49)
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εl2

εl3

εl4

Ω

∂Ωr

x

z

sj

s

FIG. 1. Example trajectory of a Brownian particle moving in a 2D

unit disk with small absorbing windows on an otherwise reflecting

circular boundary. Inset: A local coordinate system around the jth arc.
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This can be solved in terms of the Neumann Green’s function,
defined as the unique solution of

r2Gðx;x0Þ ¼ 1

j�j � �ðx� x0Þ; x 2 �; (2.50a)

Gðx;xjÞ � � 1

�
logjx� xjj þ Rðxj;xjÞ;

as x! xj 2 @�; (2.50b)

@nGðx;x0Þ ¼ 0; x 2 @�;Z
�
Gðx;xjÞdx ¼ 0; (2.50c)

where Rðx;x0Þ is the regular part of Gðx;x0Þ. It follows that
the outer solution can be expressed in terms of the Green’s
function G and an unknown constant �,


ðxÞ ¼ ��XN
j¼1

AiGðx;xjÞ þ �: (2.51)

Integrating both sides of Eq. (2.51) shows that � is the MFPT
averaged over all possible starting positions:

� ¼ �
 � 1

j�j
Z
�

ðxÞdx: (2.52)

The problem has reduced to solving N þ 1 linear equations
for N þ 1 unknowns Ai, �. The first N equations are obtained
by matching the near-field behavior of the outer solution as
x! xj with the far-field behavior of the corresponding inner

solution (2.45). After cancellation of the logarithmic terms,
we have

� �AjRj � �
X
i�j

AiGji þ � ¼ Aj

	j

; (2.53)

for j ¼ 1; . . . ; N, where Gji � Gðxj;xiÞ and Rj � Rðxj;xjÞ.
The remaining equation is obtained by noting that r2
ðxÞ ¼
��PN

j¼1 Ajr2Gðx;xjÞ and, hence,

�j�j�1 XN
j�1

Aj ¼ 1

D
: (2.54)

In the case of a single absorbing window of arc length 2"
(d ¼ 1=2), Eqs. (2.53) and (2.54) are easily solved to give
A1 ¼ �j=�D and


ðxÞ�j�j
D

�
� 1

�
logð"=2ÞþRðx1;x1Þ�Gðx;x1Þ

�
; (2.55)

�
� j�j
D

�
� 1

�
logð"=2Þ þ Rðx1;x1Þ

�
:

All that remains is to calculate the regular part of the
Neumann Green’s function Rðx;xjÞ, which depends on the

geometry of the domain �. In certain cases such as the unit
disk or a rectangular domain, explicit formulas for R can be
obtained, otherwise numerical methods are required
(Holcman and Schuss, 2004; Singer, Schuss, and Holcman,
2006a, 2006b; Pillay et al., 2010). The Green’s function for a
unit disk when the source xj is on the unit circle has the well-

known formula

Gðx;xjÞ ¼ � 1

�
logjx� xjj þ jxj

2

4�
� 1

8�
: (2.56)

It immediately follows that Rðxj;xjÞ¼1=8� (since jxjj2 ¼ 1)

and

�
 ¼ 1

D
½� logð"Þ þ log2þ 1=8�: (2.57)

For a rectangular domain of width L2 and height L1, the
Green’s function can be solved using separation of variables
and expanding the result in terms of logarithms; see Pillay
et al. (2010) and Bressloff and Newby (2011).

D. Diffusion-limited reaction rates

Another important type of first-passage process arises in
Smoluchowski rate theory for diffusion-controlled reactions
(Smoluchowski, 1917; Collins and Kimball, 1949; Keizer,
1982; Rice, 1985; Redner, 2001). The simplest version of the
theory concerns the bimolecular reaction Aþ B! AB for
which the concentrations evolve according to the following
law of mass action:

d½AB�
dt

¼ k½A�½b�: (2.58)

We assume that an A molecule and a B molecule react
immediately to form the complex AB when they encounter
each other within a reaction radius, so that the speed of
reaction k is limited by their encounter rate via diffusion.
(Also note that k has units of volume s�1.) One can then
formulate the problem as an idealized first-passage process,
in which one molecule is fixed and treated as the target, while
the other reactants diffuse and are absorbed if they hit the
target. It is assumed that the density of the particles is
sufficiently small, so that reactions among the diffusing
particles can be neglected, that is, a reaction occurs only if
one of the background diffusing particles comes within the
reaction radius of the target molecule. The steady-state flux to
the target (if it exists) is then identified as the reaction rate k.
Let � denote the target domain (which is often treated as a
sphere of radius a) and @� its absorbing boundary. We then
need to solve the diffusion equation for the concentration
cðx; tÞ of background molecules exterior to the domain �:

@cðx; tÞ
@t

¼ Dr2cðx; tÞ;
cðx 2 @�; tÞ ¼ 0;

cðx; 0Þ ¼ 1;
(2.59)

subject to the far-field boundary condition cðx; tÞ ¼ 1 for
x! 1. The flux through the target boundary is

J ¼ D
Z
@�

rc � dS: (2.60)

Note the sign, which is due to the fact that the flux is from the
exterior to interior of the target.

Let d denote the spatial dimension of the target. For d > 2,
a diffusing particle is transient, which means that there is a
nonzero probability of never reaching the target. Hence, the
loss of reactants by target absorption is balanced by their
resupply from infinity. It follows that there exists a steady
state in which the reaction rate is finite. On the other hand, for
d � 2, reactants are sure to hit the target (recurrent diffusion)
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and a depletion zone continuously develops around the target
so that the flux and reaction rate decay monotonically to zero
with respect to time. Although a reaction rate does not strictly
exist, it is still useful to consider the time-dependent flux as a
time-dependent reaction rate. The two-dimensional case is
particularly important when considering interactions of mole-
cules embedded in the plasma membrane of a cell or the lipid
bilayer surrounding an intracellular compartment.

First consider the case of a spherical target of radius
a (d ¼ 3). Exploiting the radial symmetry of the problem,
it is possible to set uðr; tÞ ¼ rcðr; tÞ such that the 3D diffusion
equation for c reduces to a 1D diffusion equation for u
(Redner, 2001):

@uðr; tÞ
@t

¼ D
@2uðr; tÞ
@r2

(2.61)

with uðr; 0Þ ¼ r, uða; tÞ ¼ 0, and uðr; tÞ ¼ r as r! 1.
Laplace transforming this equation gives s~uðr; sÞ � r ¼
D~u00ðr; sÞ, which has the solution

~uðr; sÞ ¼ 1

s
½r� ae�ðr�aÞ

ffiffiffiffiffiffiffi
s=D
p

�:

Since the inverse Laplace transform of s�1½1� e�r
ffiffiffiffiffiffiffi
s=D
p

� is
the error function erfðr= ffiffiffiffiffiffiffiffiffi

4Dt
p Þ, one finds that

cðr; tÞ ¼
�
1� a

r

�
þ a

r
erf

�
r� affiffiffiffiffiffiffiffiffi
4Dt
p

�
: (2.62)

It follows that the time-dependent flux is

JðtÞ ¼ 4�a2D
@c

@r

��������r¼a
¼ 4�aD

�
1þ affiffiffiffiffiffiffiffiffiffi

�Dt
p

�
!
t!14�aD:

(2.63)

Hence, we obtain the Smoluchowski reaction rate k ¼ 4�aD.
As highlighted by Redner (2001), it is straightforward to
generalize the steady-state result to other three-dimensional
targets by making a connection with electrostatics. That is,
setting 
ðxÞ ¼ 1� cðxÞ in steady state, it follows that 

satisfies Laplace’s equation with 
 ¼ 1 on the target bound-
ary and 
 ¼ 0 at infinity, so that 
 is equivalent to the
electrostatic potential generated by a perfectly conducting
object � held at unit potential. Moreover, the steady-state
reaction rate k ¼ 4�DQ where Q is the total charge on the
surface of the conductor, which for a unit potential is equal to
the capacitance Q ¼ C. Thus, determining the reaction rate
for a general 3D target is equivalent to finding the capacitance
of a perfect conductor with the same shape; see also
Cheviakov, Ward, and Straube (2010).

Although it is possible to calculate the exact time-
dependent flux for d � 2, a much simpler method is to use
a quasistatic approximation (Redner, 2001). Consider, for
example, a target disk of radius r ¼ a. The region exterior
to the disk is divided into a near zone that extends a distanceffiffiffiffiffiffi
Dt
p

from the surface and a complementary far zone. In the
near zone, it is assumed that diffusing particles have sufficient
time to explore the domain before being absorbed by the
target so that the concentration in the near zone can be treated
as almost steady or quasistatic. Conversely, it is assumed that
the probability of a particle being absorbed by the target is
negligible in the far zone, since a particle is unlikely to

diffuse more than a distance
ffiffiffiffiffiffi
Dt
p

over a time interval of
length t. Thus, cðrÞ � 1 for r >

ffiffiffiffiffiffi
Dt
p þ a. The near zone

concentration is taken to be a radially symmetric solution
of Laplace’s equation, which for d ¼ 2 is cðrÞ ¼ Aþ B logr.
Matching the solution to the boundary conditions cðaÞ ¼ 0
and cð ffiffiffiffiffiffi

Dt
p Þ ¼ 1 then gives (for

ffiffiffiffiffiffi
Dt
p � a)

cðr; tÞ � logðr=aÞ
logð ffiffiffiffiffiffi

Dt
p

=aÞ : (2.64)

The corresponding time-dependent flux is

JðtÞ � 2�D

logð ffiffiffiffiffiffi
Dt
p

=aÞ : (2.65)

Over the years there have been various generalizations of
Smoluchowski’s rate theory. For example, Collins and
Kimball (1949) considered the case where molecules in
proximity to each other do not react immediately. Thus, the
target is assumed to act like an imperfect absorber, which can
be taken into account by modifying the boundary condition at
the surface of the (spherical) target:

4�a2D
@cðr; tÞ
@r

��������r¼a
¼ k0cða; tÞ; (2.66)

where k0 is the intrinsic reaction rate. Incorporating this
modified boundary condition into Smoluchowki’s theory
leads to a new expression for the diffusion-controlled reaction
rate of the form

k ¼ 4�Dak0
4�Daþ k0

: (2.67)

Another important extension was developed by Keizer
(1982), who used the theory of nonequilibrium pair correla-
tion functions to include many-body effects that become
important at higher concentrations of reactants.

So far it has been assumed that the diffusion of the
background reactants occurs in an unbounded domain with
a uniform concentration at infinity. The analysis becomes
considerably more involved when the boundary of the domain
is taken into account. Recently, however, Straube, Ward, and
Falcke (2007) showed how methods similar to the analysis of
the narrow escape problem (see Sec. II.C) can be used to
determine the reaction rate in the asymptotic limit where the
target is much smaller than the domain size. Here we sketch
the basic steps of their analysis. Consider a target disk �" of
radius "
 1 and center x0 that is located in the interior of a
rectangular domain � of size Oð1Þ. The calculation of the
reaction rate can be formulated in terms of the solution to the
following diffusion equation:

@cðx; tÞ
@t

¼ Dr2cðx; tÞ; x 2 �n�"; (2.68)

with @nc ¼ 0 on the exterior boundary @� and c ¼ 0 on the
interior boundary @�". The initial condition is taken to be
cðx; 0Þ ¼ 1. Following Straube, Ward, and Falcke (2007), we
seek a solution in the form of an eigenfunction expansion,

cðx; tÞ ¼X1
j¼0

cj
jðxÞe��jDt; (2.69)

where the eigenfunctions 
jðxÞ satisfy the Helmholtz

equation
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r2
j þ �j
j ¼ 0; x 2 �n�" (2.70)

subject to the same boundary conditions as cðr; tÞ. The
eigenfunctions are orthogonalized asZ

�n�"


iðxÞ
jðxÞdx ¼ �i;j: (2.71)

The initial condition then implies that

cj ¼
Z
�n�"


jðxÞdx: (2.72)

Taking the limit "! 0 results in an eigenvalue problem in
a rectangular domain without a hole. It is well known that the
eigenvalues are ordered as �0 ¼ 0< �1 � �2 � � � � . This
ordering will persist when 0< "
 1 so that in the long-time
limit, the solution will be dominated by the eigenmode with
the smallest eigenvalue:

cðx; tÞ � c0
0ðxÞe��0t: (2.73)

It can also be shown that the principal eigenvalue has an
infinite logarithmic expansion (Ward, Henshaw, and Keller,
1993):

�0 ¼ ��1 þ �2�2 þ � � � ; � � � 1

log"
: (2.74)

Moreover, the eigenfunction 
0ðxÞ will develop a boundary
layer in a neighborhood of the target, where it changes rapidly
from zero on the boundary @�" to a value ofOð1Þ away from
the target. This suggests dividing the domain into inner and
outer regions, and using matched asymptotics along analo-
gous lines to the study of the narrow escape problem.

Therefore, introduce stretched coordinates y ¼ ðx� x0Þ="
and write the inner solution of the principal eigenfunction as
’ðyÞ ¼ 
0ð"yÞ. Using the logarithmic expansion of �0 shows
that the right-hand side of the rescaled eigenvalue equation is
of Oð"2�2Þ ¼ oð�kÞ for all k � 0. Thus to logarithmic accu-
racy, it follows that r2’ðyÞ ¼ 0 on R2nS1, where S1 is the
unit circle centered about the origin, and ’ ¼ 0 on jyj ¼ 1.
Hence, ’ðyÞ ¼ A logjyj and the inner solution has the far-
field behavior

’� A logðjx� x0j="Þ: (2.75)

The outer solution satisfies the equation

r2
0 þ �0
0 ¼ 0; x 2 �nfx0g; 
0 � A logðjx� x0j="Þ; x! x0;
Z
�

2

0ðxÞdx ¼ 1: (2.76)

Following the analysis in Sec. II.C, the outer problem can be solved in terms of the Neumann Green’s function for the
Helmholtz equation:

r2Gðx;x0;�0Þ þ �0Gðx;x0;�0Þ ¼ ��ðx� x0Þ; x 2 �; (2.77a)

@nGðx;x0;�0Þ ¼ 0; x 2 @�; (2.77b)

Gðx;x0;�0Þ � � 1

2�
logjx� x0j þ Rðx0;x0;�0Þ; x! x0: (2.77c)

That is,


0ðxÞ ¼ �2�AGðx;x0;�0Þ: (2.78)

Matching the near-field behavior of the outer solution with
the far-field behavior of the inner solution then yields a
transcendental equation for the principal eigenvalue:

Rðx0;x0;�0Þ ¼ � 1

2��
: (2.79)

Finally, the normalization condition for 
0 determines the
amplitude A according to

4�2A2
Z
�
Gðx;x0;�0Þ2dx ¼ 1: (2.80)

The Helmholtz Green’s function and its regular part can be
calculated along similar lines to Sec. II.C. Here it is sufficient
to note that, since 0< �0 
 1 for a small target, the Green’s
function has the expansion

Gðx;x0;�0Þ¼� 1

�0j�0jþG1ðx;x0Þþ�0G2ðx;x0Þ

þOð�2
0Þ (2.81)

with
R
� Gjðx;x0Þdx ¼ 0. The regular part Rðx;x0;�0Þ can

be expanded in an identical fashion. Hence, neglecting

terms of Oð�0Þ and higher, substitute Rðx;x0;�0Þ �
�ð�0j�0jÞ�1 þ R1ðx;x0Þ into the transcendental equation
(2.79). This yields a linear equation for �0 such that

�0 � 2��

j�0j
1

1þ 2��R1ðx0;x0Þ : (2.82)

Substituting the expansion (2.81) into Eq. (2.80) shows that to
leading order in �0,

A �
ffiffiffiffiffiffiffiffiffiffij�0j

p
�0

2�
: (2.83)

Moreover, using Eqs. (2.78) and (2.80) and
R
� GjðxÞdx ¼ 0,

the coefficient c0 is

c0 ¼ �2�A
Z
�
Gðx;x0;�0Þdx ¼ 2�A

�0

: (2.84)

We now have all the components necessary to determine
the time-dependent reaction rate kðtÞ. That is, using the
inner solution ’ðxÞ ¼ A logðr="Þ, r ¼ jx� x0j, we combine
Eqs. (2.73), (2.83), and (2.84) to obtain the result (Straube,
Ward, and Falcke, 2007)

JðtÞ ¼ Dc0e
��0t

Z 2�

0

�
r
@’

@r

���������r¼"
d� ¼ 2�Dc0e

��0tA

� c0j�0j�0e
��0Dt: (2.85)
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Note that Straube, Ward, and Falcke (2007) applied the above
analysis to the particular problem of protein receptor cluster-
ing on a cylindrical surface membrane. The only modification
to the rectangular domain � is that the left and right side
boundaries are identified by replacing the reflecting boundary
conditions with periodic boundary conditions. This generates
the topology of a cylinder and modifies the form of the
Helmholtz Green’s function accordingly.

E. Diffusive search for a protein-DNA binding site

A wide range of cellular processes is initiated by a single
protein binding a specific target sequence of base pairs (target
site) on a long DNA molecule. The precise mechanism
whereby a protein finds its DNA binding site remains unclear.
However, it has been observed experimentally that reactions
occur at very high rates, of around k ¼ 1010 M�1 s�1
(Richter and Eigen, 1974; Riggs, Bourgeois, and Cohn,
1970). This is around 100 times faster than the rate based
on the Smoluchowski theory of diffusion-limited reaction
rates (see Sec. II.D), and 1000 times higher than most known
protein-protein association rates. [Note, however, that some
protein-protein association rates are also much larger than the
predictions of Smoluchowski theory (Schreiber, Haran, and
Zhou, 2009).] This apparent discrepancy in reaction rates
suggests that some form of facilitated diffusion occurs. The
best known theoretical model of facilitated diffusion for
proteins searching for DNA targets was originally developed
by Berg, Winter, and von Hippel (BHW) (Berg, Winter, and
von Hippel, 1981; Winter and von Hippel, 1981; Berg and
von Hippel, 1985), and subsequently extended by a number of
groups (Coppey et al., 2004; Halford and Marko, 2004;
Slutsky and Mirny, 2004; Hu, Grossberg, and Shklovskii,
2006; Hu and Shklovskii, 2006; Mirny et al., 2009). The
basic idea of the BHW model is to assume that the protein
randomly switches between two distinct phases of motion, 3D
diffusion in solution, and 1D diffusion along DNA (sliding);
see Fig. 2. Such a mechanism is one example of a random

intermittent search process; see Sec. IV.B. The BHW model
assumes that there are no correlations between the two trans-
port phases, so that the main factor in speeding up the search
is an effective reduction in the dimensionality of the protein
motion. However, as recently reviewed by Kolomeisky
(2011), there are a number of discrepancies between the
BHW model and experimental data, which has led to several
alternative theoretical approaches to facilitated diffusion. We
first review the BHW model and then briefly discuss these
alternative models.

A simple method for estimating the effective reaction rate
of facilitated diffusion in the BHW model is as follows
(Slutsky and Mirny, 2004; Mirny et al., 2009). Consider a
single protein searching for a single binding site on a long
DNA strand of N base pairs, each of which has length b.
Suppose that on a given search, there are R rounds labeled
i ¼ 1; . . . ; R. In the ith round the protein spends a time T3;i

diffusing in the cytosol followed by a period T1;i sliding along

the DNA. The total search time is thus T ¼ P
R
i¼1ðT3;i þ T1;iÞ,

and the mean search time is 
 ¼ rð
3 þ 
1Þ. Here r is the
mean number of rounds and 
3 and 
1 are the mean durations
of each phase of 3D and 1D diffusion. Let n denote the mean
number of sites scanned during each sliding phase with
n
 N. If the binding site of DNA following a 3D diffusion
phase is distributed uniformly along the DNA, then the
probability of finding the specific promoter site is p ¼
n=N. It follows that the probability of finding the site after
R rounds is ð1� pÞR�1p. Hence, the mean number of rounds
is r ¼ 1=p ¼ N=n. Assuming that 1D sliding occurs via
normal diffusion, then nb ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
D1
1
p

, where D1 is the 1D
diffusion coefficient, and we have (Mirny et al., 2009)


 ¼ N

n
ð
1 þ 
3Þ; n ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
D1
1

p
=b: (2.86)

Since 
3 depends primarily on the cellular environment and is
thus unlikely to vary significantly between proteins, it is
reasonable to minimize the mean search time with respect
to 
1 while 
3 is kept fixed. Setting d
=d
1 ¼ 0 implies that

the optimal search time occurs when 
1 ¼ 
3 with 
opt ¼
2N
3=n ¼ Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=D1

p
. Comparing with the expected search

time for pure 3D diffusion by setting 
1 ¼ 0, n ¼ 1 gives

3D ¼ N
3. Thus facilitated diffusion is faster by a factor
n=2. Further insights into facilitated diffusion may be ob-
tained by using the Smoluchowski formula for the rate at
which a diffusing protein can find any one of N binding sites
of size N, namely, 
�13 ¼ 4�D3Nb. Using this to eliminate N
shows that the effective reaction rate of facilitated diffusion is
(Mirny et al., 2009)

k � 
�1 ¼ 4�D3

�

3


1 þ 
3

�
nb: (2.87)

This equation identifies two competing mechanisms in facili-
tated diffusion. First sliding diffusion effectively increases the
reaction cross section from 1 to n base pairs, thus accelerating
the search process compared to standard Smoluchowski the-
ory. This is also known as the antenna effect (Hu, Grossberg,
and Shklovskii, 2006). However, the search is also slowed
down by a factor 
3=ð
1 þ 
3Þ, which is the fraction of the
time the protein spends in solution. That is, a certain amount

protein

3D diffusion

sliding

target

DNA

x=-M x=Lx=0

(a)

(b)

FIG. 2 (color online). (a) Mechanism of facilitated diffusion in-

volving alternating phases of 3D diffusion and 1D diffusion (sliding

along the DNA). (b) 1D representation of facilitated diffusion.
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of time is lost by binding to nonspecific sites that are far from
the target.

A more complicated analysis is needed in order to take into
account the effects of boundaries, for example. Here we
review the particular formulation of Coppey et al., which
generalizes the original analysis of Berg, Winter, and
von Hippel (1981). Suppose that DNA is treated as a finite
track of length l ¼ LþM with reflecting boundaries at
x ¼ �M and x ¼ þL and a pointlike target at x ¼ 0; see
Fig. 2. Rather than modeling 3D diffusion explicitly, each
time the protein disassociates from DNA it simply rebinds at
a random site at a time t later that is generated from an
exponential waiting time density. This is based on the as-
sumption that 3D excursions are uncorrelated in space. It
might be expected that excursions would be correlated due to
the geometric configuration of DNA. However, in solution
DNA is a random coil so that even short 3D trips can generate
long displacements relative to the linear position of the
protein along the DNA strand, resulting in decorrelation of
excursions. If P3ðtÞ denotes the probability density that the
protein in solution at time t ¼ 0 binds to the DNA at time t at
a random position, then

P3ðtÞ ¼ �3e
��3t; (2.88)

where 
3 ¼ 1=�3 is again the mean time spent in solution.
Next let P1ðt; xÞ be the conditional probability density in
which the protein disassociates from the DNA at time t
without finding the target, given that it is at linear position
x along the DNA at time t ¼ 0:

P1ðx; tÞ ¼ �1e
��1tPðx; tÞ; (2.89)

where 
1 ¼ 1=�1 is the mean time of each sliding phase, and
Pðt; xÞ is the conditional probability density in which the
protein starting at x has not met the target at time t. Finally,
let Q1ðx; tÞ be the conditional probability density in which the
protein starting at x finds the target at time t:

Q1ðx; tÞ ¼ e��1tfðx; tÞ; (2.90)

where fðx; tÞ ¼ �dPðx; tÞ=dt is the FPT density associated
with diffusion along the DNA strand. That is fðx; tÞdt is the
probability that starting at x at t ¼ 0, the protein finds the
target during a single phase of sliding diffusion in the time
interval ½t; tþ dt�. (Protein-DNA binding is assumed to be
diffusion limited so that as soon as the protein reaches the
target site it reacts.)

Suppose that in a given trial, a protein starting at x at time
t ¼ 0 executes n� 1 excursions before finding the target
with t1; . . . ; tn the residence times on DNA and 
1; . . . ; 
n�1
the excursion times. The probability density for such a se-
quence of events with t ¼ P

n
i¼1 ti þ

P
n�1
i¼1 
n is

Pnðx; fti; 
igÞ ¼ Q1ðtnÞP3ð
n�1ÞP1ðtn�1Þ � � �P1ðt2Þ
� P3ð
1ÞP1ðx; t1Þ; (2.91)

where P1ðtÞ ¼ hP1ðx; tÞi, Q1ðtÞ ¼ hQ1ðx; tÞi, and hgðx; tÞi �
ðLþMÞ�1 RL

�M gðx; tÞdx for an arbitrary function g. In order
to determine the FPT density Fðx; tÞ for finding the target, it is
necessary to sum over all possible numbers of excursions and
intervals of time, given the constraint t ¼ P

n
i¼1 ti þ

P
n�1
i¼1 
n.

Thus, setting FðtÞ ¼ hFðx; tÞi, one finds that

FðtÞ¼X1
n¼1

Z 1
0
dt1 ���dtnd
1 ���d
n�

�Xn
i¼1

tiþ
Xn�1
i¼1


n� t

�

�Q1ðtnÞ
Yn�1
i¼1

P3ð
iÞ
Yn�1
i¼1

P1ðtiÞ: (2.92)

Finally, Laplace transforming this equation gives (Coppey
et al., 2004)

~FðsÞ¼ ~fð�1þsÞ
�
1� 1� ~fð�1þsÞ
ð1þs=�1Þð1þs=�3Þ

��1
; (2.93)

with ~fðsÞ ¼ R1
0 e�sthfðx; tÞidt. Given ~FðsÞ, the MFPT to find

the target (averaged over the starting position x) is then


 ¼
Z 1
0

tFðtÞdt ¼ � d ~FðsÞ
ds

��������s¼0
; (2.94)

which can be evaluated to give


 ¼ 1� ~fð�1Þ
~fð�1Þ

ð��11 þ ��13 Þ: (2.95)

All that remains is to determine ~fðx; sÞ averaged with
respect to x. If x < 0 (x > 0), then one simply needs to
determine the FPT density for a 1D Brownian particle on
the interval ½�M; 0� (½0; L�) with a reflecting boundary at x ¼
�M (x ¼ L) and an absorbing boundary at x ¼ 0. Recall
from Sec. II.B that fðx; tÞ satisfies the backward FP equation

@fðx; tÞ
@t

¼ D1

@2fðx; tÞ
@x2

; (2.96)

with fðx; 0Þ ¼ 0, fð0; tÞ ¼ �ðtÞ, and @xfðL; tÞ ¼ 0 or
@xfð�M; tÞ ¼ 0. Taking Laplace transforms,

s~fðx; sÞ ¼ D1

@2 ~fðx; sÞ
@x2

; (2.97)

with ~fð0; sÞ ¼ 1, @x ~fðL; sÞ ¼ 0, or @x ~fð�M; sÞ ¼ 0. The

general solution is ~fðx; sÞ ¼ Ae�
ffiffiffiffiffiffiffiffi
s=D1

p
x þ Be�

ffiffiffiffiffiffiffiffi
s=D1

p
x with

the coefficients A, B determined by the boundary conditions.
Solving for A, B separately when x < 0 and x > 0 and
averaging with respect to x finally gives

~fðsÞ ¼ 1

LþM

ffiffiffiffiffiffi
D1

�1

s h
tanh

�
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=D1

q �

þ tanh
�
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=D1

q �i
:

Thus, setting 
i ¼ 1=�i, i ¼ 1, 3,


 ¼
� ðLþMÞ= ffiffiffiffiffiffiffiffiffiffiffi


1D1

p
tanhðL= ffiffiffiffiffiffiffiffiffiffiffi


1D1

p Þ þ tanhðM=
ffiffiffiffiffiffiffiffiffiffiffi

1D1

p Þ � 1

�
ð
1 þ 
3Þ;

which recovers the original result of Berg, Winter, and von
Hippel (1981). It also recovers Eq. (2.86) when L=

ffiffiffiffiffiffiffiffiffiffiffi

1D1

p
,

M=
ffiffiffiffiffiffiffiffiffiffiffi

1D1

p � 1.
There have been a number of extensions of the BHW

model that incorporate various biophysical effects. For ex-
ample, sequence-dependent protein-DNA interactions gener-
ate a rugged energy landscape during sliding motion of the
protein (Slutsky and Mirny, 2004; Hu and Shklovskii, 2006;
Mirny et al., 2009); see also Sec. III.C. This observation then
leads to an interesting speed-stability paradox (Mirny et al.,
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2009; Sheinman et al., 2012). On the one hand, fast 1D
search requires that the variance �2 of the protein-DNA
binding energy be sufficiently small, that is, �� kBT,
whereas stability of the protein at the DNA target site requires
�� 5kBT. One suggested resolution of this paradox is to
assume that a protein-DNA complex has two conformational
states: a recognition state with large � and a search state with
small � (Slutsky and Mirny, 2004; Mirny et al., 2009). If the
transitions between the states are sufficiently fast then target
stability and fast search can be reconciled. [For a recent
review of the speed-stability paradox and its implications
for search mechanisms see Sheinman et al. (2012).] Other
effects include changes in the conformational state of DNA
and the possibility of correlated association or disassociation
of the protein (Hu, Grossberg, and Shklovskii, 2006;
Benichou, Chevalier et al., 2011), and molecular crowding
along DNA (Li, Berg, and Elf, 2009) or within the cytoplasm
(Isaacson, McQueen, and Peskin, 2011). Molecular crowding
will be considered in Sec. III.B.

The BHW model and its extensions provide a plausible
mechanism for facilitated diffusion that has some support
from experimental studies, which demonstrate that proteins
do indeed slide along DNA (Winter and von Hippel, 1981;
Gowers, Wilson, and Halford, 2005; Gorman and Greene,
2008; Tafvizi et al., 2008; Li, Berg, and Elf, 2009). In
particular, recent advances in single-molecule spectroscopy
means that the motion of flourescently labeled proteins along
DNA chains can be quantified with high precision, although it
should be noted that most of these studies have been per-
formed in vitro. A quantitative comparison of the BHW
model with experimental data leads to a number of discrep-
ancies, however. For example, it is usually assumed that
D1 � D3 in order to obtain a sufficient level of facilitation.
On the other hand, single-molecule measurements indicate
thatD1 
 D3 (Yang, Austin, and Cox, 2006; Elf, Li, and Xie,
2007). Such experiments have also shown that 
1 � 
3,
which is significantly different from the optimal condition

1 ¼ 
3. Hence the intermittent search process could actually
result in a slowing down compared to pure 3D diffusion (Hu,
Grossberg, and Shklovskii, 2006). The BHW model also
exhibits unphysical behavior in certain limits. These issues
have motivated a number of alternative models of facilitated
diffusion, as recently highlighted by Kolomeisky (2011).

Electrostatic interactions.—One alternative hypothesis is
that the observed fast association rates are due to electrostatic
interactions between oppositely charged molecules and thus
do not violate the 3D diffusion limit (Halford, 2009). This is
motivated by the theoretical result that the maximal associa-
tion rate in Smoluchowski theory when there are long-range
interactions between the reacting molecules is

k ¼ 4�Da=�; � ¼
Z 1
a

eUðrÞ=kBT
dr

r2
; (2.98)

where UðrÞ is the interaction potential. The standard result is
recovered when UðrÞ ¼ 0 for r > a; see Eq. (2.63). It follows
that long-range attractive interactions can significantly in-
crease diffusion-limited reaction rates. It has been further
argued that in vitro experiments tend to be performed at
low salt concentrations so that the effects of screening could
be small. However, experimentally based estimates of the

Debye length, which specifies the size of the region where
electrostatic forces are important, indicate that it is compa-
rable to the size of the target sequence. Hence, electrostatic
forces are unlikely to account for facilitated diffusion.

Colocalization.—Another proposed mechanism is based
on the observation that, in bacteria, genes responsible for
producing specific proteins are located close to the binding
sites of these proteins. This colocalization of proteins and
binding sites could significantly speed up the search process
by requiring only a small number of alternating 3D and 1D
phases (Mirny et al., 2009). However, such a mechanism
might not be effective in eukaryote cells, where transcription
and translation tend to be spatially and temporally well
separated. Moreover, colocalization breaks down in cases
where proteins have multiple targets on DNA.

Correlations.—Yet another theoretical mechanism in-
volves taking into account correlations between 1D sliding
and 3D bulk diffusion. These correlations reflect the fact that
attractive interactions between a protein and nonspecific
binding sites means that there is a tendency for a protein to
return back to a neighborhood of the DNA site from which it
recently disassociated (Zhou, 2005; Cherstvy, Kolomeisky,
and Kornyshev, 2008). Although such interactions tend to
slow down proteins moving along DNA, they also increase
the local concentration of proteins absorbed to DNA. This
suggests that facilitated diffusion can occur at intermediate
levels of protein concentration and intermediate ranges of
protein-DNA interactions.

III. DIFFUSIVE TRANSPORT: EFFECTS OF MOLECULAR

CROWDING, TRAPS, AND CONFINEMENT

A. Anomalous diffusion

In normal (unobstructed) diffusion in d dimensions, the
mean-square displacement (MSD) of a Brownian particle is
proportional to time hR2i ¼ 2dDt, which is a consequence of
the central-limit theorem. A general signature of anomalous
diffusion is the power-law behavior (Bouchaud and Georges,
1990; Metzler and Klafter, 2000)

hR2i ¼ 2dDt�; (3.1)

corresponding to either subdiffusion (�< 1) or superdiffu-
sion (�> 1). Because of recent advances in single-particle
tracking methods, subdiffusive behavior has been observed
for a variety of biomolecules and tracers within living cells.
Examples include messenger RNA molecules (Golding and
Cox, 2006) and chromosomal loci (Weber, Spakowitz, and
Theriot, 2010) moving within the cytoplasm of bacteria, lipid
granule motion in yeast cells (Jeon et al., 2011), viruses
(Seisenberger et al., 2001), telemores in cell nuclei
(Bronstein et al., 2009), and protein channels moving within
the plasma membrane (Weigel et al., 2011).

There are currently three subcellular mechansims thought
to generate subdiffusive motion of particles in cells, each with
its own distinct type of physical model (Weber, Spakowitz,
and theriot, 2010). The first mechanism, which is typically
modeled using the continuous-time random walk (CTRW)
(Scher and Montroll, 1975; Hughes, 1995), involves transient
immobilization or trapping; see Sec. III.C. That is, if a
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diffusing particle encounters a binding site then it will pause
for a while before disassociating and diffusing away. Multiple
binding events with a range of rate constants can generate
long tails in the waiting time distribution leading to subdiffu-
sive behavior (Saxton, 1996, 2007). In addition to having a
heavy-tailed waiting time distribution, the CTRW is weakly
nonergodic; the temporal average of a long particle trajectory
differs from the ensemble average over many diffusing par-
ticles (He et al., 2008; Jeon et al., 2011; Weigel et al., 2011;
Jeon and Metzler, 2012). The second mechanism for subdif-
fusion in cells is obstructed diffusion (OD) due to molecular
crowding or cytoskeletal networks that impose obstacles
around which diffusing molecules have to navigate; see
Sec. III.B. If the concentration of obstacles is sufficiently
high, then subdiffusive behavior occurs, in which the domain
of free diffusion develops a fractal-like structure (Saxton,
1994). Diffusion on a fractal is a stationary process and is
thus ergodic. The final mechanism involves the viscoelastic
properties of the cytoplasm due to the combined effects
of macromolecular crowding and the presence of elastic
elements such as nucleic acids and cytoskeletal filaments.
As a particle moves through the cytoplasm, the latter
‘‘pushes back,’’ thus generating long-time correlations in
the particle’s trajectory. This memory effect leads to subdif-
fusive behavior that can be modeled in terms of fractional
Brownian motion (FBM) or the fractional Langevin equation
(FLE) (Mandelbrot and Ness, 1968; Burov et al., 2011). In
contrast to CTRW and diffusion on fractals, the probability
density for unconfined subdiffusion in FBM and FLE is a
Gaussian (with a time-dependent diffusivity). Moreover,
FBM and FLE are ergodic systems, although under confine-
ment time-averaged quantities behave differently from their
ensemble-averaged counterparts (Jeon and Metzler, 2012).

Determining which type of model best fits experimental
data is a nontrivial task, particularly since CTRW, OD, and
FBM and FLE generate similar scaling laws for ensemble-
averaged behavior in the long-time limit. Thus other mea-
sures such as ergodicity are being used to help identify which
model provides the best characterization for anomalous dif-
fusion in living cells. A number of recent studies provide
examples where FBM and FLE appear to give a better fit to
the data than CTRW (Magdziarz et al., 2009; Szymanski and
Weiss, 2009; Weber, Spakowitz, and theriot, 2010). However,
other studies suggest that both ergodic (OD or FBM and FLE)
and nonergodic processes (CTRW) can coexist (Jeon et al.,
2011; Weigel et al., 2011).

In this review we focus on biophysical models of the
cellular environment and how it effects diffusive transport
via molecular crowding, trapping, and confinement, rather
than on generic models of anomalous transport such as
CTRW and FBM or FLE. The reasons are twofold: (i) there
are already a number of comprehensive reviews of such
models (Mandelbrot and Ness, 1968; Scher and Montroll,
1975; Metzler and Klafter, 2000; Kou, 2008; Tothova et al.,
2011), and (ii) it is still unclear to what extent intracellular
diffusion is anomalous in the long-time limit rather than just
at intermediate times. This motivates studying diffusion in the
presence of obstacles and transient traps whereby normal
diffusion is recovered asymptotically. However, before pro-
ceeding, we briefly sketch the basic structure of CTRW and
FBM and FLE models.

The CTRW considers a particle performing random jumps
whose step length is generated by a probability density with
finite second moments. However, the waiting times between
jumps are assumed to be distributed according to a power law
(rather than an exponential waiting time density characteristic
of Markovian random walks). The resulting heavy-tailed
waiting times generate subdiffusive behavior. Consider, for
example, a 1D CTRW generated by a sequence of indepen-
dent identically distributed (iid) positive random waiting
times T1; T2; . . . ; Tn, each having the same probability density
function 
ðtÞ, and a corresponding sequence of (iid) random
jumps X1; X2; . . . 2 R, each having the same probability
density wðxÞ. Setting t0 ¼ 0 and tn ¼ T1 þ T2 þ � � � þ Tm

for positive integers n, the random walker makes a jump of
length Xn at time tn. Hence, its position is x0 ¼ 0 for 0 �
t < T1 and xn ¼ X1 þ X2 þ � � � þ Xn for tn � t < tnþ1. It
follows that the probability density pðx; tÞ in which the
particle is at position x at time t satisfies the integral equation

pðx; tÞ ¼ �ðxÞ�ðtÞ
þ
Z t

0

ðt� t0Þ

�Z 1
�1

wðx� x0Þpðx0; t0Þdx0
�
dt0;

(3.2)

where �ðtÞ ¼ R1
t 
ðt0Þdt0 is the survival probability that at

time t the particle has not yet moved from its initial position
at x ¼ 0. In the special case of an exponential waiting time
density 
ðtÞ ¼ 
�1e�t=
, we can differentiate both sides of
Eq. (3.2) to obtain



@pðx; tÞ

@t
¼
�
�pðx; t0Þ þ

Z 1
�1

wðx� x0Þpðx0; t0Þdx0
�
:

Setting wðxÞ ¼ 0:5�ðx� �xÞ þ 0:5�ðxþ �xÞ then yields a
spatially discrete version of the diffusion equation. On the
other hand, anomalous subdiffusion occurs if 
ðtÞ � t���1
with 0<�< 1 (Metzler and Klafter, 2000).

In order to motivate the FLE, recall that a molecule moving
through a fluid is subject to a frictional force and a random
fluctuating force originating from random collisions between
the Brownian molecule and particles of the surrounding fluid.
In the Langevin equation (2.9), the random fluctuations are
represented by a zero-mean Gaussian noise term with a two-
point correlation function taken to be a Dirac function.
Moreover, the amplitude squared of the noise (diffusion
coefficient) is related to the friction coefficient via the
Einstein relation, which is an example of the fluctuation-
dissipation theorem. It has been suggested that the
Langevin equation can be generalized to the case of diffusion
in complex heterogeneous media such as the cytoplasm or
plasma membrane by considering a Brownian particle subject
to frictional and fluctuating forces with long-time correlations
that exhibit power-law behavior (Wang and Lung, 1990;
Wang, 1992; Porra, Wang, and Masoliver, 1996; Lutz,
2001). For example, consider the following generalized
Langevin equation for a Brownian particle with unit mass
moving in a 1D medium (Wang and Lung, 1990):

_XðtÞ ¼ VðtÞ; (3.3a)

€XðtÞ þ
Z t

0

ðt� t1ÞVðt1Þdt1 ¼ FðtÞ; (3.3b)
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where 
ðtÞ represents a friction memory kernel with

ðtÞ ¼ 0 for t < 0. The Gaussian noise term FðtÞ satisfies
hFðtÞi ¼ 0; hFð0ÞFðtÞi ¼ CðtÞ: (3.4)

Following Wang and Lung (1990) and Wang (1992), the
correlation function CðtÞ is governed by a power law,

CðtÞ ¼ F0ð�Þt��; t > 0; (3.5)

with 0<�< 1 for subdiffusive behavior and Cð�tÞ ¼ CðtÞ.
Using a generalized fluctuation-dissipation theorem, the func-
tions 
ðtÞ, CðtÞ are related according to

CðtÞ ¼ kBT
ðtÞ; t � 0: (3.6)

We now show how to derive a FP equation for the gener-
alized Langevin equation following Wang (1992). Since the
fluctuating force is described by a Gaussian process then so is
the random variable XðtÞ. Let pðx; tÞ denote the probability
density for XðtÞ ¼ x and introduce the characteristic function
or Fourier transform

�ðk; tÞ � heikXðtÞi ¼
Z 1
�1

pðx; tÞeikxdx: (3.7)

It follows that � is given by the Gaussian

�ðk; tÞ ¼ eik
�XðtÞ�k2�2ðtÞ=2; (3.8)

where

�XðtÞ ¼ hXðtÞi; �2ðtÞ ¼ h½XðtÞ � �XðtÞ�2i: (3.9)

The mean and variance can be determined from Laplace
transforming the generalized Langevin equation (3.3):

s ~XðsÞ � Xð0Þ ¼ ~VðsÞ; (3.10a)

s2 ~XðsÞ � Vð0Þ � sXð0Þ þ ~
ðsÞVðsÞ ¼ ~FðsÞ: (3.10b)

Rearranging Eq. (3.10b) gives

~XðsÞ � s�1Xð0Þ � ~HðsÞVð0Þ ¼ ~HðsÞ ~FðsÞ;
where

~HðsÞ ¼ 1

s½sþ ~
ðsÞ� : (3.11)

Inverting the equation for ~XðsÞ thus yields

XðtÞ�Xð0Þ�Vð0ÞHðtÞ¼
Z t

0
Hðt� t1ÞFðt1Þdt1: (3.12)

It immediately follows from Eq. (3.12) that

�XðtÞ ¼ Xð0Þ þ Vð0ÞHðtÞ: (3.13)

Calculation of the variance is a little more involved. First,
using Eqs. (3.12) and (3.13),

�2ðtÞ ¼
Z t

0
dt1

Z t

0
dt2Hðt1ÞHðt2ÞhFðt� t1ÞFðt� t2Þi

¼
Z t

0
dt1

Z t

0
dt2Hðt1ÞHðt2ÞCðt1 � t2Þ

¼ 2
Z t

0
dt1

Z t1

0
dt2Hðt1ÞHðt2ÞCðt1 � t2Þ

¼ 2kBT
Z t

0
dt1

Z t1

0
dt2Hðt1ÞHðt2Þ
ðt1 � t2Þ:

The last two lines follow from the fact that CðtÞ is an even
function and the generalized fluctuation-dissipation theorem,
respectively. The final step is to note that

Aðt1Þ �
Z t1

0
Hðt2Þ
ðt1 � t2Þdt2!L ~AðsÞ ¼ ~HðsÞ ~
ðsÞ

¼ 1

s
� 1

sþ ~
ðsÞ !
L�1

Aðt1Þ ¼ 1� dHðt1Þ
dt1

;

whereL denotes the Laplace transform operator. Substituting
back into the expression for �2 gives (Wang, 1992)

�2ðtÞ ¼ kBT

�
2
Z t

0
Hð
Þd
�HðtÞ2

�
: (3.14)

The final step in the analysis is to substitute Eqs. (3.13) and
(3.14) into Eq. (3.8) and to differentiate the resulting expres-
sion for �ðk; tÞ with respect to time t. This gives

@�ðk; tÞ
@t

¼ fikVð0ÞhðtÞ � k2kBTHðtÞ½1� hðtÞ�g�ðk; tÞ;
(3.15)

where hðtÞ ¼ dHðtÞ=dt. Finally, carrying out the inverse
Fourier transform gives the FP equation

@pðx; tÞ
@t

¼ �hðtÞVð0Þ @pðx; tÞ
@x

þ kBTHðtÞ½1� hðtÞ� @
2pðx; tÞ
@x2

: (3.16)

For a given choice of correlation function CðtÞ and the
asymptotic properties of Laplace transforms in the small s
limit, one can determine the large t behavior of the FP
equation. For example, if CðtÞ ¼ F0ð�Þt��, it can be shown
that when t! 1 and 0<�< 1, the FP equation has the
asymptotic form (Wang, 1992)

@pðx; tÞ
@t

¼ �a1ð�ÞVð0Þt��2Vð0Þ @pðx; tÞ@x
b1ð�ÞkBTt��1

� @2pðx; tÞ
@x2

; (3.17)

for �-dependent coefficients a1, b1. Note, in particular, that
the diffusion coefficient is time dependent and there is a drift
term when Vð0Þ � 0. Both of these reflect the non-Markovian
nature of the process. Given the initial condition pðx; 0Þ ¼
�ðxÞ, the asymptotic FP equation has the solution

pðx;tÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�D0t

�
p exp½�ðxþat��1Þ2=4D0t

��; (3.18)

where D0 ¼ b1kBT=� and a ¼ a1Vð0Þ=ð�� 1Þ. It can also
be shown that the mean-square displacement h½XðtÞ � �X�2i ¼
2D0t

�, thus signifying anomalous subdiffusion.
Finally note that one can construct a FBM model that

exhibits the same Gaussian behavior as the FLE in the
long-time limit (Lutz, 2001). The former considers a particle
evolving according to a Langevin equation of the form

dX

dt
¼ �kX þ �ðtÞ; (3.19)

which is driven by fractional Gaussian noise of zero mean and
a slowly decaying, power-law autocorrelation function (t � t0)
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h�ðtÞ�ðt0Þi � �ð�� 1ÞKjt� t0j��2: (3.20)

In contrast to FLE, this process is driven by external noise
without considering the fluctuation-dissipation theorem. Note
that the Gaussian solution of FBM breaks down for the case of
confined motion.

B. Molecular crowding

One of the characteristic features of the interior aqueous
environment of cells (cytoplasm) and intracellular com-
partments such as the endoplasmic reticulum and mito-
chondria is that they are crowded with macromolecules
and skeletal proteins, which occupy 10%–50% of the
volume (Fulton, 1982; Luby-Phelps, 2000; Dix and
Verkman, 2008). Cell membranes are also crowded envi-
ronments containing lipids (molecules consisting of non-
polar, hydrophobic hydrocarbon chains that end in a polar
hydrophylic head), which are often organized into raft
structures, and various mobile and immobile proteins
(Kusumi et al., 2005). One consequence of molecular
crowding, which we will not consider further here, is
that it can drastically alter biochemical reactions in cells
(Schnell and Turner, 2004; Zhou, Rivas, and Minton,
2008). That is, volume or area exclusion effects increase
the effective solute concentration, thus increasing the
chemical potential of the solute. Another consequence
of molecular crowding is that it hinders diffusion,
although there is an ongoing debate regarding to what
extent this results in anomalous diffusion rather than a
simple reduction in the normal diffusion coefficient
(Weiss et al., 2004; Banks and Fradin, 2005; Dix and
Verkman, 2008).

One of the difficulties in experimentally establishing the
existence of anomalous diffusion is that the behavior of hR2i
can depend on the spatial or temporal scale over which
observations are made. Consider, for example, the effects of
obstacles on protein diffusion (Saxton, 1994; Sung and
Yethiraj, 2008). The presence of obstacles reduces the space
available for diffusion, and consequently decreases the effec-
tive diffusion coefficient. As the volume or area fraction of
obstacles 
 is increased, there is a fragmentation of the
available space in the sense that many paths taken by a
diffusing protein terminate in a dead end and thus do not
contribute to diffusive transport. The region of free diffusion
develops a fractal-like structure resulting in anomalous dif-
fusion at intermediate times hR2i � t� and �< 1. (For suffi-
ciently small times

ffiffiffiffiffiffi
Dt
p 
 �, where � is the mean distance

between obstacles, so that diffusion is normal.) However,
assuming that the volume or area fraction is below the
percolation threshold, diffusion is expected to be normal on
sufficiently long time scales hR2i � t. On the other hand,
above the percolation threshold, proteins are confined and
hR2i saturates as t! 1. The time it takes to cross over from
anomalous to normal diffusion increases with the volume or
area fraction 
, and diverges at the percolation threshold 
c

where hR2i � t� for all times.
Another difficulty in interpreting experimental data is that

there are certain practical limitations of current methods (Dix
and Verkman, 2008). The most effective method for describ-
ing membrane diffusion is single-particle tracking (SPT).

This involves the selective labeling of proteins or lipids
with fluorophores such as quantum dots, green fluorescent
protein, or organic dyes so that continuous high resolution
tracking of individual molecules can be carried out. SPT can
yield nanometer spatial resolution and submillisecond tem-
poral resolution of individual trajectories. However, it is not
currently suitable for measuring diffusion in three dimensions
due to the relatively rapid speed of 3D diffusion and the
problems of imaging in depth. Hence, in the case of diffusion
within the cytosol, it is necessary to use a method such as
fluorescence recovery after photobleaching (FRAP). Here
fluorescently labeled molecules are introduced into the cell
and those in some specified volume are bleached by a brief
intense laser pulse. The diffusion of unbleached molecules
into the bleached volume is then measured. FRAP is limited
because it provides only ensemble-averaged information of
many fluorescent particles, and it also has a restricted mea-
surement time, making it difficult to capture long-tail phe-
nomena expected in anomalous subdiffusion.

Recently, homogenization theory was used to develop a
fast numerical scheme to calculate the effects of excluded
volume due to molecular crowding on diffusion in the cyto-
plasm (Novak, Kraikivski, and Slepchenko, 2009). The basic
idea is to model the heterogeneous environment in terms of
randomly positioned overlapping obstacles. (Note, however,
that this is an oversimplification, since single-particle track-
ing experiments indicate that the cytoplasm is more properly
treated as a dynamic, viscoelastic environment.) Although
obstacles do not overlap physically, when the finite size of a
diffusing molecule (tracer) is taken into account, the effective
volume excluded by an obstacle increases so that this can
result in at least partially overlapping exclusion domains; see
Fig. 3(a). In the absence of any restrictions on the degree of
overlap, the fraction of inaccessible volume is 
 ¼ 1� e�V ,
where V is the sum of the individual obstacles per unit
volume. A simple argument for this (Novak, Kraikivski,
and Slepchenko, 2009) is to consider a set of N identical
overlapping objects placed in a box of total volume j�j. Let �
denote the volume of each obstacle. The probability PðxÞ in
which a randomly selected point x 2 � is outside any given
obstacle is 1� �=j�j. Hence, the probability for that point to
be outside all obstacles is PðxÞN ¼ ð1� �=j�jÞN . The vol-
ume fraction of accessible space at fixed number density n ¼
N=j�j is then

lim
N!1ð1� �=j�jÞN ¼ lim

N!1ð1� �n=NÞN ¼ e�n� ¼ e�V

and the result follows. The mean distance between obstacles
can then be determined in terms of 
 and the geometry of
each obstacle.

As previously discussed, three regimes of diffusion are
expected below the percolation threshold 
<
c as illus-
trated in Fig. 3(b). For sufficiently short times there is un-
obstructed diffusion, for intermediate times there is
anomalous diffusion, and for long times there is normal
effective diffusion. Novak, Kraikivski, and Slepchenko
(2009) used homogenization theory to estimate the effective
diffusion coefficient D in the last regime. The starting point
for their analysis is to consider a periodic arrangement of
identical obstacles in a large rectangular box of volume �
with accessible volume �1 and 
 ¼ 1� j�1j=j�j. The
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spatial periods of the arrangement in Cartesian coordinates
are aj, j ¼ 1, 2, and 3 such that the ratio

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23

q
=
ffiffiffiffiffiffiffiffi
j�j3

p

 1: (3.21)

The heterogeneous diffusion coefficient is

D�ðxÞ ¼
	D0 if x 2 �1;

0 otherwise:
(3.22)

Inhomogeneous Dirichlet conditions are imposed on the
boundaries of the box in order to maintain a steady-state
diffusive flux. In the case of a heterogeneous diffusion coef-
ficient, the flux is determined by the steady-state diffusion
equation for the tracer distribution uðxÞ:

r � ½D�ðxÞruðxÞ� ¼ 0: (3.23)

The basic idea of the homogenization method is to represent
the diffusive behavior of a tracer on two different spatial
scales (Torquato, 2002; Pavliotis and Stuart, 2008): one in-
volving a macroscopic slow variable x and the other a micro-
scopic fast variable y � x=� so that u is periodic with respect
to y. Thus, we write

u ¼ uðx; yÞ; ru ¼ rxuðx; yÞ þ ��1ryuðx; yÞ:

Also D�ðxÞ � Dðx=�Þ ¼ DðyÞ with D and u having the same
periodicity in y.

A solution to Eq. (3.23) is then constructed in terms of the
asymptotic expansion

u ¼ u0ðx; yÞ þ �u1ðx; yÞ þ �2u2ðx; yÞ þ � � � : (3.24)

Collecting terms of the same order in � then yields a hier-
archy of equations, which up to Oð1Þ are as follows:

ry � ½DðyÞryu0ðx; yÞ� ¼ 0; (3.25a)

ry � ½DðyÞryu1ðx; yÞ� ¼ �ry � ½DðyÞrxu0ðx; yÞ� � rx � ½DðyÞryu0ðx; yÞ�; (3.25b)

ry � ½DðyÞryu2ðx; yÞ� ¼ �rx � ½DðyÞrxu0ðx; yÞ� � ry � ½DðyÞrxu1ðx; yÞ� � rx � ½DðyÞryu1ðx; yÞ�: (3.25c)

Equation (3.25a) and periodicity with respect to y estab-
lishes that u0ðx; yÞ � u0ðxÞ, that is, u0 corresponds to an
homogenized solution. It follows from Eq. (3.25b) that

ryDðyÞ � rxu0ðxÞ þ ry � ½DðyÞryu1ðx; yÞ� ¼ 0;

which has the solution

u1ðx; yÞ ¼
X3
i¼1

@u0ðxÞ
@xi

wiðyÞ; (3.26)

with wiðyÞ a periodic function satisfying

@DðyÞ
@yi

þX3
j¼1

@

@yj

�
DðyÞ @wiðyÞ

@yj

�
¼ 0: (3.27)

Finally, averaging both sides of Eq. (3.25c) with respect to
y over a unit volume j!0j=�3 of the periodic structure,
using the divergence theorem, and expressing u1 in terms
of u0 yields the homogenized diffusion equation

X3
i;j¼1

~Deff;ij

@2u0ðxÞ
@xi@xj

¼ 0; (3.28)

with the anisotropic diffusion tensor

~Deff;ij¼ �3

j!0j
Z
!0

�
DðyÞ�i;jþDðyÞ@wiðyÞ

@yj

�
dy: (3.29)

Finally, rewriting the diffusion tensor in a more symmetric
form using Eq. (3.27) and integration by parts gives
(Novak, Kraikivski, and Slepchenko, 2009)

~Deff;ij¼ D0

j!0j
Z
!1

X3
k¼1

�
�i;kþ@ŵiðxÞ

@xk

��
�j;kþ

@ŵjðxÞ
@xk

�
dx;

where !1 is the accessible region of the fundamental
domain!0. The function wðxÞ has been rescaled according
to ŵðxÞ ¼ �wðx=�Þ so that
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FIG. 3. (a) Diffusion of a finite size particle (tracer) between

obstacles of volume � (left) can be modeled as diffusion of a point

particle between effective obstacles of volume �0 (right). Effective
obstacles can partially overlap. (b) Sketch ofMSD hR2i against time t,
illustrating three different diffusion regimes: unobstructed

diffusion (I), anomalous intermediate diffusion (II), and normal

effective diffusion (III). (c) Illustrative plot of the normalized effective

diffusion coefficient Dð
Þ=D0 for random spheres. The scale of the

curves in (b) and (c) are based on the results of Novak, Kraikivski, and

Slepchenko (2009).
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@D�ðxÞ
@xi

þX3
j¼1

@

@xj

�
D�ðxÞ@ŵiðxÞ

@xj

�
¼ 0 (3.30)

over a unit cell with periodic boundary conditions.
Note that the concentration u0ðxÞ is defined only in free
space so that the macroscopic concentration is actually
uðxÞ ¼ ð1�
Þu0ðxÞ and the macroscopic diffusion tensor
is Deff;ij ¼ ~Deff;ij=ð1�
Þ. In the case of isotropic peri-
odic structures Deff;ij ¼ D�i;j.

Novak, Kraikivski, and Slepchenko (2009) numerically
extended the homogenization method to a random arrange-
ment of obstacles by approximating the disordered medium
with a periodic one, in which the unit cell consists of N
randomly placed obstacles. N is taken to be sufficiently large
so that, for a given density of obstacles, one obtains a
statistically stationary D. Comparing the homogenized
diffusion coefficient with that obtained from Monte Carlo
simulations, Novak et al. showed that the numerical homoge-
nization method yielded reasonable agreement for N ¼
Oð100Þ. One of the interesting results of their study was
that the variation of D with the excluded volume fraction 

can be approximated by the power law

Dð
Þ ¼ D0

ð1�
=
cÞ	
1�


; (3.31)

where the parameters 
c and 	 depend on the geometry of
the obstacles. For example, for randomly arranged spheres,

c � 0:96 and 	 � 1:5. A typical plot of Dð
Þ is shown in
Fig. 3(c). Previously, the above power-law behavior had been
predicted close to the percolation threshold (Bouchaud and
Georges, 1990), but these results suggest it also holds for a
wider range of volume fractions.

C. Diffusion-trapping models

In the Smoluchowski theory of reaction kinetics, it is
assumed that when a diffusing particle reacts with the
target it disappears, that is, we have the trapping reaction
Aþ B! B where A denotes a diffusing particle and B
denotes an immobile trap. However, within the context of
intracellular transport, there are many examples where there
is transient trapping of diffusing particles, resulting in anoma-
lous diffusion on intermediate time scales and normal diffu-
sion on long time scales. This was elucidated by Saxton
(1996, 2007), who carried out Monte Carlo simulations of
random walks on a 2D lattice with a finite hierarchy of
binding sites, that is, binding sites with a finite set of energy
levels. This means that there are no traps that have an infinite
escape time so that diffusing particles ultimately equilibrate
with the traps and diffusion becomes normal. On the other
hand, in the case of infinite hierarchies, arbitrarily deep traps
exist but are very rare, resulting in a nonequilibrium system in
which anomalous subdiffusion occurs at all times (Bouchaud
and Georges, 1990). The latter process can be modeled in
terms of a continuous-time random walk; see Sec. III.A. Here
we consider some examples of diffusive transport in the
presence of transient immobile traps. Note that a related
application is calcium buffering, where freely diffusing cal-
cium molecules bind to large proteins in the cytosol that can

either be mobile or immobile. In particular, mobile buffering
can lead to a nonlinear advection-diffusion equation that
changes many properties of the basic diffusion model, as
detailed by Keener and Sneyd (2009).

1. Sequence-dependent protein diffusion along DNA

We begin by considering a 1D random walk model used to
study sequence-dependent protein diffusion along DNA
(Barbi et al., 2004a, 2004b). This concerns the important
problem of how a site-specific DNA binding protein locates
its target binding site on DNA. As discussed in Sec. II.E, such
a search process is thought to involve a combination of
mechanisms, including one-dimensional sliding along the
DNA and uncorrelated 3D diffusion (Berg, Winter, and von
Hippel, 1981; Halford and Marko, 2004). Barbi et al. (2004a,
2004b) modeled the sliding phase of protein movement in
terms of a 1D random walk, in which the step probability to
neighboring sites depends on an energy landscape that re-
flects sequence-dependent protein-DNA interactions; see
Fig. 4. This is motivated by the idea that the protein needs
to ‘‘read’’ the underlying sequence of base pairs (bps) as it
slides along the DNA in order to be able to detect the target
site. Thus each nonspecific site on DNA acts as a potential
trap for the sliding protein.

The sequence of the target site usually consists of a few (r)
consecutive bps, and sequence recognition is often mediated
by hydrogen bonds to a set of four specific binding sites on
each base pair. Some binding sites form a hydrogen bond as
an acceptor, some as a donor, and some do not form a bond.
Barbi et al. assumed that, at each site n of DNA, the protein
attempts to form hydrogen bonds with the local sequence of r
base pairs. Hence, each potential binding site n is represented
as a sequence of r vectors fbn;bnþ1; . . . ;bnþr�1g, one for
each bp in the sequence, according to the rule

bn ¼
	 ð1;�1; 1; 0ÞT for AT ð0; 1;�1; 1ÞT for TA;

ð1; 1;�1; 0ÞT for GC ð0;�1; 1; 1ÞT for CG;

where þ1, �1, and 0 denote, respectively, an acceptor, a
donor, and a missing hydrogen bond on a given bp. The
protein is then represented by a so-called (r� 4) recognition
matrixR describing the pattern of hydrogen bonds formed by

DNA

protein base pair

target sequence

FIG. 4 (color online). Schematic illustration of random walk

model of sequence-dependent protein diffusion along DNA. Each

lattice site corresponds to a base pair with four binding sites that can

potentially make hydrogen bonds with the diffusing protein: accep-

tor sites (black dots), donor sites (gray dots), and missing sites

(white dots). In this example, the protein interacts with a base pair

sequence of length r ¼ 2. The energy of protein-DNA interactions

determines the transition rates to nearest neighbor lattice sites. From

Barbi et al., 2004a, 2004b.
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the protein and DNA at the target site where there is optimal
matching. The protein-DNA interaction energy is then
defined by counting the matching and unmatching bonds
between the recognition matrix and the DNA sequence at
site n:

EðnÞ ¼ ��Tr½R � B�; (3.32)

where B is the matrix whose r columns are given by the
vectors fbn;bnþ1; . . . ;bnþr�1g, and � denotes each hydrogen
bond energy.

Given the above energy landscape, Barbi et al.modeled the
dynamics of protein sliding motion along DNA as a 1D
random walk, in which the protein is represented as a particle
hopping to its nearest neighboring lattice sites with rates

rn!n0 ¼ 1

2

e��En!n0=kBT; n0 ¼ n
 1; (3.33)

where �En!n0 is the effective energy barrier between neigh-
boring sites, kB is the Boltzmann constant, and T is the
temperature. Various models can be considered relating the
barrier energy to the site-dependent energy EðnÞ (Barbi et al.,
2004b). The simplest is to take �En!n0 ¼ max½Eðn0Þ �
EðnÞ; 0�. Monte Carlo simulations may then be used to study
the dynamics of the resulting randomwalk with transient traps
(Barbi et al., 2004a, 2004b). In the large time limit, a popu-
lation of noninteracting randomwalkers will reach a stationary
Boltzmann distribution of the form �ðnÞ � e�EðnÞ=kBT and the
associated dynamics will exhibit normal diffusion. However,
for large enough values of �=kBT, some sites along the DNA
could trap a protein for significant times, suggesting that
anomalous behavior could be observed at intermediate times.
This is indeed found to be the case. Defining the MSD accord-
ing to h�n2i ¼ N�1

PN
i¼1½niðtÞ � nið0Þ�2, whereN is the num-

ber of proteins in the population, it was found numerically that
h�n2i � t�, �< 1 at intermediate times, with a crossover to
normal diffusion (� ¼ 1) at large times. Moreover, using
experimentally based model parameters, Barbi et al. showed
that the crossover time was sufficiently large that anomalous
diffusion occurred on time scales comparable to the typical
sliding phase of target search (Barbi et al., 2004a, 2004b). This
suggests that anomalous diffusion is likely to dominate.

2. Diffusion along spiny dendrites

Another recent example of anomalous diffusion in the
presence of transient traps was considered by Santamaria
et al. (2006). They used a combination of experimental and
computationalmodeling to study how the presence of dendritic
spines affects the 3D diffusion of signaling molecules along
the dendrites of neurons. Neurons are among the largest and
most complex cells in biology. Their intricate geometry
presents many challenges for cell function, in particular,
with regard to the efficient delivery of newly synthesized
proteins from the cell body or soma to distant locations on
the axon or dendrites. The axon contains ion channels for
action potential propagation and presynaptic active zones for
neurotransmitter release, whereas each dendrite contains post-
synaptic domains (or densities) where receptors that bind the
neurotransmitter tend to cluster; see Fig. 5. At most excitatory
synapses in the brain, the postsynaptic density (PSD) is located
within a dendritic spine, which is a small, submicrometer

membranous extrusion that protrudes from a dendrite (Sorra

and Harris, 2000); see Fig. 6. Typically spines have a bulbous

head that is connected to the parent dendrite through a thin
spine neck, and there can exist thousands of spines distributed

along a single dendrite. It is widely thought that spines act to

compartmentalize chemical signals generated by synaptic

activity, thus impeding their diffusion into dendrites (Yuste,

Majewska, and Holthoff, 2000; Sabatini, Maravall, and
Svoboda, 2001). Conversely, in the case of signaling mole-

cules diffusing along the dendrite, the spines act as transient

dendrite

soma

axon

u(t)

V(t)

j

i

wij

synapse

AP

FIG. 5 (color online). Basic structure of a neuron. (The inset shows

a synaptic connection of strengthwij from an upstream or presynaptic

neuron labeled j and a downstream or postsynaptic neuron labeled i.)
Neurons in the brain communicate with each other by transmitting

electrical spikes [action potentials (AP)]. An AP propagates along the

axon of a neuron until it reaches a terminal that forms the upstream or

presynaptic component of the synaptic connection to a downstream or

postsynaptic neuron. The arrival of the action potential induces the

release of chemical transmitters into the synapse. These subsequently

bind to protein receptors in the postsynapticmembrane resulting in the

opening of various ion channels. This generates a synaptic current that

flows along the dendritic tree of the postsynaptic neuron and combines

with currents from other activated synapses. If the total synaptic

current uðtÞ forces the membrane potential VðtÞ at a certain location

within the cell body to cross some threshold, then the postsynaptic

neuron fires an action potential and the process continues. One can

thus view the brain as a vast collection of synaptically coupled

networks of spiking neurons. Moreover, the strength of synaptic

connectionswithin and between networks ismodifiable by experience

(synaptic plasticity).

FIG. 6 (color online). An example of a piece of spine studded

dendritic tissue (from rat hippocampal region CA1 stratum radia-

tum). The dendrite on the right-hand side is�5 	m in length. From

SynapseWeb, Kristen M. Harris, PI, http://synapses.clm.utexas.edu/.
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traps as illustrated in Fig. 7(a). Following along similar argu-

ments to the case of diffusion in the presence of obstacles,

normal diffusion is expected at short and long times and

anomalous subdiffusion at intermediate times. Anomalous

subdiffusion was indeed observed by Santamaria et al.

(2006), such that the mean-square displacement hx2ðtÞi �
D0t

2=� at intermediate times with �> 2 and D0 the free

diffusion coefficient. As might be expected, � increases

(slower diffusion) with increasing spine density. � also in-

creases when the volume of the spine head is increased relative
to the spine neck, reflecting the fact there is an enhanced

bottleneck. Note that anomalous diffusion can occur at all

times if the reactions within each spine are taken to have a

nonexponential waiting time density (Fedotov et al., 2010);

see also Sec. III.A.
A related problem is the diffusive transport of neurotrans-

mitter protein receptors within the plasma membrane of a

dendrite, with each spine acting as a transient trap that local-

izes the receptors at a synapse. The majority of fast excitatory

synaptic transmission in the central nervous system is medi-

ated by �-amino-3-hydroxy-5-methyl-4-isoxazole-propionic

acid (AMPA) receptors, which respond to the neurotransmitter
glutamate. There is now a large body of experimental evidence

that the fast trafficking of AMPA receptors into and out of

spines is a major contributor to activity-dependent, long-

lasting changes in synaptic strength (Bredt and Nicoll, 2003;

Collinridge, Isaac, and Wang, 2004; Shepherd and Huganir,

2007; Henley, Barker, and Glebov, 2011). Single-particle

tracking experiments suggest that surface AMPA receptors

diffuse freely within the dendritic membrane until they enter

a spine, where they are temporarily confined by the geometry

of the spine and through interactions with scaffolding proteins

and cytoskeletal elements (Choquet and Triller, 2003; Groc

et al., 2004; Triller and Choquet, 2005; Ehlers et al., 2007;

Newpher and Ehlers, 2008; Gerrow and Triller, 2010). A

surface receptor may also be internalized via endocytosis

and stored within an intracellular pool, where it is either

recycled to the surface via exocytosis or degraded (Ehlers,

2000); see Fig. 7(b). Endocytosis is the physical process

whereby vesicles are formed within the plasma membrane

and then internalized, and exocytosis is the complementary

process in which intracellular vesicles fuse with the plasma

membrane and release their contents (Doherty and McMahon,

2009). Molecular motors transport internalized vesicles to

intracellular compartments that either recycle vesicles to the

cell surface (early endosomes and recycling endosomes) or

sort them for degradation (late endosomes and lyososomes)

(Maxfield and McGraw, 2004; Soldati, 2006). A number of

single spine models explored the combined effects of diffu-

sion, trapping, receptor clustering, and recycling on the num-

ber of synaptic AMPA receptors (Shouval, 2005; Earnshaw

and Bressloff, 2006; Holcman and Triller, 2006; Burlakov

et al., 2012; Czondora et al., 2012). In such models, the

synapse is treated as a self-organizing compartment in which

the number of AMPA receptors is a dynamic steady state that

determines the strength of the synapse; activity-dependent

changes in the strength of the synapse then correspond to shifts

in the dynamical set point. When receptor-receptor interac-

tions are included a synapse can exhibit bistability between

a nonclustered and clustered state (Shouval, 2005), which can

be understood in terms of a liquid-vapor phase transition

(Burlakov et al., 2012).
It is also possible to develop a diffusion-trapping model of

receptor trafficking at multiple spines by considering a 2D

version of the Santamaria et al. (2006) model, in which

receptors diffuse on the surface of a cylindrical dendrite con-

taining multiple disklike traps; when a receptor transiently

enters a trap it can undergo various reactions corresponding to

processeswithin a spine such as receptor recycling and binding

to anchoring proteins. Using asymptotic methods similar to

those of Straube, Ward, and Falcke (2007) (see Sec. II.D), one

can show that the 2Dmodel is well approximated by a reduced

1D cable model in which dendritic spines are treated as point-

like sources or sinks (Bressloff, Earnshaw, and Ward, 2008).

The advantage of the 1D model is that the associated 1D

Green’s function is nonsingular. Therefore, consider a popu-

lation of N identical spines distributed along a uniform den-

dritic cable of length L and circumference l, with xj,

j ¼ 1; . . . ; N, the position (axial coordinate) of the jth spine.

Let pðx; tÞ denote the probability density (per unit area) that a
surface receptor is located within the dendritic membrane at

position x at time t. Similarly, let RjðtÞ, SjðtÞ denote the

probability that the receptor is trapped at the surface of the

jth spine or within an associated intracellular pool, respec-

tively. A simple version of the 1D diffusion-trapping model of

AMPA receptor trafficking takes the form (Bressloff and

Earnshaw, 2007; Earnshaw and Bressloff, 2008)

normal
diffusion

anomalous
diffusion

dendrite

dendritic spines

(a)

(b)

lateral
diffusion

degradation

AMPA receptor

scaffolding protein

recycling

FIG. 7 (color online). (a) Schematic illustration of the anomalous

diffusion model of Santamaria et al. (2006), who carried out

detailed 3D simulations of diffusion in a spiny dendrite treated as

a system of connected cylinders with the following baseline pa-

rameter values: spine neck diameter 0:2 	m, neck length 0:6 	m,

head length and diameter 0:6 	m, dendrite diameter 1 	m, and a

spine density of 15 spines=	m. The dendritic spines act as transient

traps for a diffusing particle within the dendrite, which leads to

anomalous diffusion on intermediate time scales. (b) Schematic

illustration of various pathways of AMPA receptor trafficking at a

dendritic spine.
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@p

@t
¼ D0

@2p

@x2
�XN

j¼1
�½pj � Rj=A��ðx� xjÞ; (3.34a)

dRj

dt
¼ �½pj � Rj=A� � kRj þ �Sj; (3.34b)

dSj
dt
¼ ��Sj þ kRj; (3.34c)

where D0 is the surface diffusivity and pjðtÞ ¼ pðxj; tÞ. The
term �ðpj � Rj=AÞ with A the surface area of a spine repre-

sents the probability flux into the jth spine with� an effective
hopping rate. [This rate depends on the detailed geometry of
the dendritic spine (Ashby et al., 2006).] It is assumed that
surface receptors within the jth spine can be recycled with
respect to the intracellular pool with k, � the rates of endocy-
tosis and exocytosis, respectively. Equation (3.34a) is supple-
mented by reflecting boundary conditions at the ends of the
cable: D@xpð0; tÞ ¼ 0 and D@xpðL; tÞ ¼ 0.

The effective diffusivity of a receptor in the long-time
limit, which takes into account the effects of trapping at
spines, can be determined by calculating the MFPT 
ðXÞ to
travel a distance X from the soma. Introducing an absorbing
boundary condition at x ¼ X, the function

PðX; tÞ � l
Z X

0
pðx; tÞdxþXNX

j¼1
½RjðtÞ þ SjðtÞ� (3.35)

is then the probability that t < 
ðXÞ; i.e., the probability that a
receptor which was initially at the origin has not yet reached
the point x ¼ X in a time t. Here NX is the number of spines
in the interval ½0; XÞ. The MFPT is then 
ðXÞ ¼ R1

0 PðX; tÞdt.
It follows that the MFPT can be expressed in terms of Laplace
transforms,


ðXÞ ¼
Z X

0
~pðx; 0ÞdxþXNX

j¼1
½ ~Rjð0Þ þ ~Sjð0Þ�; (3.36)

where ~fðzÞ�R10 e�ztfðtÞdt. Laplace transforming Eqs. (3.34a)

and (3.34c) and using the initial conditions gives

�z~pþD0

@2 ~p

@x2
¼XNX

j¼1
�½~pj� ~Rj=A��ðx�xjÞ� l�1�ðxÞ;

(3.37a)

z ~Rj¼�½~pj� ~Rj=A��k ~Rjþ�~Sj; (3.37b)

z~Sj¼��~Sjþk ~Rj; (3.37c)

where ~pjðzÞ ¼ ~pðxj; zÞ. In the limit z! 0, Eqs. (3.37b) and

(3.37c) imply that A~pjð0Þ ¼ ~Rjð0Þ ¼ �~Sjð0Þ=k, and

Eq. (3.37a) becomes

lD0

@2 ~pðx; 0Þ
@x2

¼ ��ðxÞ: (3.38)

Imposing the boundary conditions at x ¼ 0,X gives l~pðx; 0Þ ¼
ðX � xÞ=D0. Combining these results,


ðXÞ ¼ X2

2D0

þ �

D0

XNX

j¼1
ðX � xjÞ; (3.39)

where� ¼ Að1þ k=�Þ=l. Thefirst termon the right-hand side
of this equation is the MFPT in the absence of any spines,

whereas the remaining terms take into account the effects of
being temporarily trapped at a spine.

In order to calculate an effective diffusivity, consider
the simple example of identical spines distributing uniformly
along the cable with spacing d. That is, xj ¼ jd, j ¼ 1; . . . ; N

such that Nd ¼ L and NX ¼ X=d for X� d. Equation (3.39)
then becomes (for NX � 1)


ðXÞ � X2

2D
¼ X2

2D0

þ �

D0

XNX

j¼1
ðX � jdÞ:

Using the approximation

XNX

j¼1
ðX � jdÞ ¼ NXX� ðNX þ 1ÞNXd

2
� X2

2d

finally gives (Bressloff and Earnshaw, 2007)

D ¼ D0

�
1þ A

ld

�
1þ k

�

���1
: (3.40)

As expected, the presence of traps reduces the effective
diffusivity of a receptor. In particular, the diffusivity is re-
duced by increasing the ratio k=� of the rates of endocytosis
and exocytosis or by increasing the surface area A of a spine
relative to the product of the spine spacing d and circum-
ference of the cable l. Interestingly, D does not depend on the
hopping rate �. Taking typical measured values of the dif-
fusivity (D ¼ 0:1 	m2 s�1) (Groc et al., 2004; Ashby et al.,
2006), the area of a spine (A ¼ 1 	m2), the spacing between
spines (d ¼ 1 	m), and the circumference of a dendrite
(l ¼ 1 	m) (Sorra and Harris, 2000), it follows that D ¼
0:5D when k ¼ �, whereas D
 D0 when k� �. There is
experimental evidence that the rates of exocytosis and endo-
cytsosis are activity dependent (Ehlers et al., 2007) so that
the ratio k=�, and henceD, may be modifiable by experience.

There have been various generalizations of the above
model to include the effects of binding and unbinding to
cytoskeletal proteins (Earnshaw and Bressloff, 2008) and
dendritic branching (Bressloff, 2009). In the latter case,
homogenization theory can be used to replace the discrete
distribution of spines by a continuum density. One major
simplification of the diffusing-trapping model is that it ne-
glects the detailed structure of a spine and the associated
PSD. A more comprehensive model would need to take in the
complex organization of the PSD, interactions with scaffold-
ing proteins, and the geometry of the spine (Sekimoto and
Triller, 2009; Freche et al., 2011; MacGillavry, Kerr, and
Blanpied, 2011; Kerr and Blanpied, 2012). Finally, note that
the coupling between exocytosis and endocytosis during
AMPA receptor recycling is one example of a more general
transport mechanism that occurs in neurons (and other secre-
tory cells) via the so-called endocytic pathway (Gundelfinger,
Kessels, and Qualmann, 2003). Other examples include the
insertion and removal of membrane proteins during axonal
elongation and guidance (Bloom and Morgan, 2011) (see also
Sec. V.A), and the stimulus-induced release of secretory
molecules (neurotransmitters) at the presynaptic terminal of
a synapse (see Fig. 5). The latter is regulated by the exocy-
tosis of synaptic vesicles; endocytic processes then have to be
coordinated so that there is an efficient reuptake of vesicles in
order to restore functionality of the synapse. For a detailed
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discussion of whole cell kinetic models of receptor recycling

and its role in chemical signaling, see Lauffenburger (1996)

and Wiley, Shvartsman, and Lauffenburger (2003).

3. Diffusion in the plasma membrane

At the simplest level, the plasmamembrane can be treated as

a 2D lipid sheet into which proteins are embedded. In the fluid

mosaic model of Singer and Nicolson (1972), the membrane

lipids are treated as the solvent (water concentrations are very

low within the membrane) into which proteins are dissolved.

One of the consequences of the fluid mosiac model is that

protein clustering, which alters the effective size of a diffusing

particle, has only a weak effect on diffusion in the plasma

membrane. This follows from the hydrodynamic membrane

diffusion model of Saffman and Delbruck (1975), which im-

plies that the diffusion coefficient for a cylinder of radius r in a
2D membrane varies as logr. Although the diffusion of lipids

appears to be Brownian in pure lipid bilayers, single-particle

tracking experiments indicate that lipids and proteins undergo

anomalous diffusion in the plasma membrane (Feder et al.,

1996; Saxton and Jacobson, 1997; Kusumi et al., 2005). This

led to a modification of the original fluid mosaic model,

whereby lipids and transmembrane proteins undergo confined

diffusion within, and hopping between, membrane microdo-

mains or corrals (Vereb et al., 2003; Kusumi et al., 2005,

2010); the corraling could be due to ‘‘fencing’’ by the actin

cytoskeleton or confinement by anchored-protein ‘‘pickets’’;

see Fig. 8. These microdomains could also be associated with

lipid rafts (Jacobson,Mouritsen, and Anderson, 2007; Kusumi

et al., 2010).
Partitioning the membrane into a set of corrals implies that

anomalous diffusion of proteins will be observed on inter-

mediate time scales, due to the combined effects of confine-

ment and binding to the actin cytoskeleton. However, on time

scales over which multiple hopping events occur, normal

diffusion will be recovered. A rough estimate of the corre-

sponding diffusion coefficient is D� L2=
, where L is the

average size of a microdomain and 
 is the mean hopping rate
between microdomains. A typical range of values for various
types of mammalian cell are L� 30–240 nm and 
�
1–20 ms. In the case of confinement by anchored-protein
pickets, 
 can be estimated by treating each corral as a
domain with a set of small holes (gaps) between anchored
proteins, and solving the narrow escape problem (Holcman
and Schuss, 2004; Holcman and Triller, 2006). [Another
approach to estimating 
 was developed by Kalay, Parris,
and Kenkre (2008) and Kenkre, Giuggioli, and Kalay (2008),
based on a random walker moving on a 1D lattice with either
periodically or randomly distributed semipermeable barriers.]
On the other hand, the membrane cytoskeleton surrounding a
corral is usually modeled as an effective energy barrier over
which a diffusing protein must escape. For example, Saxton
(1995) carried out a computational study of a particle diffus-
ing inside a corral surrounded by a static energy barrier. It
was assumed that when the particle hit the barrier it had a
fixed probability of escape. The MFPT out of the corral was
numerically determined for a wide range of corral sizes,
shapes, and escape probabilities. In earlier work, Saxton
(1989, 1990) considered a static fence model in which a
protein could move only from one corral to another if the
particular barrier separating the two corrals was dissociated.
In this particular model, large-scale diffusion occurs only if
there exists a percolation network. However, estimates of the
density of the actin cytoskeleton in red blood cells (erythro-
cytes), for example, suggest that the fraction of disassociated
cytoskeleton is below the percolation threshold. Hence, it is
necessary to modify the percolation model by considering
time-dependent, fluctuating energy barriers.

Consider, for example, the spatially homogeneous stochas-
tic gating model of Brown et al. (2000) and Leitner, Brown,
and Wilson (2000). Let PnðtÞ denote the probability that there
are n free particles within the corral at time t. Denote the
time-dependent rates of protein influx and loss by �ðtÞ and
	ðtÞ, respectively. The probability distribution is then taken
to evolve according to the master equation

dPn

dt
¼�ðtÞPn�1þ	ðtÞðnþ1ÞPnþ1ðtÞ�½�ðtÞþ	ðtÞn�Pn;

(3.41)

with n � 0 and P�1ðtÞ � 0. The positive terms on the right-
hand side represent the various transitions into the state (n),
whereas the negative terms represent the various transitions
from the state (n). The initial condition is Pnð0Þ ¼ �n;n0 ; i.e.,

at time t ¼ 0 there are n0 free particles within the corral. In
the model of Brown (2000) and Leitner, Brown, and Wilson
(2000), the escape of a protein from the corral is controlled by
a stochastic gate that can be in two states, an open state for
which 	ðtÞ ¼ 	o > 0 and a closed state for which 	ðtÞ ¼
	c ¼ 0. The opening and closing of the stochastic gate is
governed by the rate equations

dP o

dt
¼ ���P o þ �þP c;

dP c

dt
¼ ��P o � �þP c;

(3.42)

where P oðtÞ [P cðtÞ] is the probability that the gate is open
(closed) at time t, and �
 are the transition rates between
the two states. Thus the time-dependent escape rate 	ðtÞ

membrane skeleton anchored proteins

Membrane-skeleton (fence) Anchored-protein (picket)

(a) (b)

FIG. 8 (color online). Picket-fence model of membrane diffusion.

The plasma membrane is parceled up into compartments whereby

both transmembrane proteins and lipids undergo short-term con-

fined diffusion within a compartment and long-term hop diffusion

between compartments. This corralling is assumed to occur by two

mechanisms. (a) The membrane-cytoskeleton (fence) model: trans-

membrane proteins are confined within the mesh of the actin-based

membrane skeleton. (b) The anchored-protein (picket) model:

transmembrane proteins, anchored to the actin-based cytoskeleton,

effectively act as rows of pickets along the actin fences.
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describes a dichotomous noise process. From detailed balance,
the rate at which receptors enter the PSD is then taken to be
�ðtÞ ¼ C	ðtÞwithC fixed. (At equilibriumC can be identified
with the mean number of particles in the corral.) One possible
interpretation of the stochastic gate is that it represents the
random opening and closing of a small hole within the bound-
ary of the PSD. This suggests that one could consider a multi-
state version of the stochastic gate, which corresponds to the
random opening and closing of multiple small holes within
the PSD boundary. The master equation (3.41) is solved
for a single realization of the stochastic process described by
Eq. (3.42). As a consequence, different realizations of 	ðtÞ
yield different probability distributions Pn.

In order to analyze the above model, introduce the gen-
erating function

Gðu; tÞ ¼ X1
n¼0

unPnðtÞ: (3.43)

It follows from the master equation (3.41) that G satisfies the
first-order linear partial differential equation

@G

@t
þ	ðtÞðu� 1Þ @G

@u
¼ �ðtÞðu� 1ÞG (3.44)

with initial conditionGðu; v; 0Þ ¼ un0 . Equation (3.44) can be
solved using the method of characteristics (Kampen, 1992):

Gðu; tÞ ¼ ½1þN ðtÞðu� 1Þ�n0eC½1�N ðtÞ�ðu�1Þ; (3.45)

where

N ðtÞ ¼ exp

�
�
Z t

0
	ðt0Þdt0

�
: (3.46)

GivenGðu; tÞ, the mean and variance of n can be calculated
according to the formulas

E	ðnÞ ¼ @G

@u

��������u¼v¼1
; E	ðn2 � nÞ ¼ @2G

@u2

��������u¼v¼1
;

where the subscript 	 indicates that these means are calcu-
lated with respect to a single realization of the random
variable 	 only, and may therefore take on different values
for different realizations of 	. Calculating these derivatives
yields

E	ðnÞ ¼ ðn0 � CÞN ðtÞ þ C;

Var	ðnÞ ¼ E	ðnÞ � n0N ðtÞ2:
A more useful characterization of the means and variances
can be obtained by averaging N ðtÞ with respect to all
possible stochastic realizations of the gate, which is denoted
by hN i. This can be performed using a method originally
developed by Kubo (1962) in the study of spectral line broad-
ening in a quantum system, and subsequently extended to
chemical rate processes with dynamical disorder by Zwanzig
(1990). One thus finds that the	-averaged mean and variance
are

EðnÞ ¼ ðn0 � CÞhwi þ C;

EðNÞ ¼ EðnÞ þ L;

VarðnÞ ¼ EðnÞ � n0hw2i þ ðn0 � CÞ2ðhw2i � hwi2Þ;

where

hwðtÞji ¼ 1

1

 !
T

exp

�
�t j	o þ �� ��þ

��� �þ

 !� �o

�c

 !

for j ¼ 1, 2. Here �l, l ¼ o, c are the stationary probability
distributions for the dichotomous noise process of Eq. (3.42):

�o ¼ �þ
�þ þ ��

; �c ¼ ��
�þ þ ��

:

The averages hwji, j ¼ 1, 2, approach zero as time increases,
hence the steady-state means and variances are E1ðnÞ ¼
Var1ðnÞ ¼ C. There have been a number of extensions of
the stochastic gating model. For example, Bressloff and
Earnshaw (2009) considered the effects of proteins binding
to scaffolding proteins within a corral, whereas Reingruber
and Holcman (2010) analyzed the narrow escape problem for
a particle that can switch between different conformational
states and can only exit a domain in one of these states.

D. Diffusion in confined geometries

Another common form of diffusion within cells is the
transport of particles through a narrow biological pore or
channel. Examples include membrane transport through ion
channels and pumps (Hille, 2001), and the translocation of
structured polynucleotides through nanopores (Peskin, Odell,
and Foster, 1993), which is an important technique for inves-
tigating the translocation dynamics of biologically relevant
macromolecules (Gerland, Bundschuh, and Hwa, 2004;
Keyser et al., 2006). In such examples, changes in the motion
of a particle occur mainly in the axial direction along the
channel, whereas local equilibrium is rapidly reached in the
transverse directions. Thus transport is quasi one dimensional
and the effects of the boundaries of the channel can be
incorporated by introducing an entropic barrier into the dy-
namics of a Brownian particle, leading to the so-called Fick-
Jacobs equation (Jacobs, 1967; Zwanzig, 1992; Reguera and
Rubi, 2001; Kalinay and Percus, 2006; Burada et al., 2007,
2009; Rubi and Reguera, 2010). Typically a 3D narrow
channel is represented by a cylinder that extends axially in
the x direction and has a periodically varying cross section
that is rotationally symmetric about the x axis; see Fig. 9(a).
Denoting the space-dependent radius by wðxÞ, the cross
section varies as AðxÞ ¼ �wðxÞ2. In the case of a correspond-
ing 2D channel, wðxÞ represents the half-width of the channel.
An extreme version of confined diffusion along a channel is
single-file diffusion, in which the channel is so narrow that
particles cannot pass each other. In other words, the longitu-
dinal motion of each particle is hindered by the presence of its
neighbors, which act as moving obstacles; see Fig. 9(b).
Hence, interparticle interactions can suppress Brownian mo-
tion and lead to subdiffusive behavior (Jepsen, 1965; Levitt,
1973; Percus, 1974; Rodenbeck, Karger, and Hahn, 1998;
Taloni and Marchesoni, 2006; Barkai and Silbey, 2009).

1. Fick-Jacobs equation

We begin by deriving the Fick-Jacobs equation for a
Brownian particle diffusing in a 2D channel as shown in
Fig. 9(a). We follow the particular derivation of Zwanzig
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(1992); see also Reguera and Rubi (2001). It is assumed that
the channel walls at y ¼ 
wðxÞ confine the motion of the
particle but do not exchange energy with it. Thus the proba-
bility flux normal to the boundary is zero. This condition can
be imposed by introducing a confining potential Uðx; yÞ such
thatUðx;yÞ¼0 for jyj<wðxÞ andUðx; yÞ ¼ 1 for jyj � wðxÞ.
Let pðx; y; tÞ denote the probability that the particle is
located at position x ¼ ðx; yÞ at time twith periodic boundary
conditions in the longitudinal direction, pðxþ L; y; tÞ ¼
pðx; y; tÞ. For a general potential Uðx; yÞ, the 2D FP equation
takes the form

@p

@t
¼ � 1

�

�
@½Fxp�
@x

þ @½Fyp�
@y

�
þD0

�
@2p

@x2
þ @2p

@y2

�
;

where Fx ¼ �@xU and Fy ¼ �@yU. Using the Einstein

relations D0� ¼ kBT ¼ ��1, the FP equation can be rewrit-
ten as

@p

@t
¼ D0

@

@x
e��Uðx;yÞ

@

@x
e�Uðx;yÞpðx; y; tÞ

þD0

@

@y
e��Uðx;yÞ

@

@y
e�Uðx;yÞpðx; y; tÞ: (3.47)

In order to reduce to a 1D equation, first integrate both sides
of the FP equation with respect to the transverse coordinate y:

@Pðx;tÞ
@t

¼D0

@

@x

Z wðxÞ

�wðxÞ
e��Uðx;yÞ

@

@x
e�Uðx;yÞpðx;y;tÞdy;

where Pðx; tÞ is the reduced probability density

Pðx; tÞ ¼
Z wðxÞ

�wðxÞ
pðx; y; tÞdy: (3.48)

The major step in the reduction is to assume that the proba-
bility density reaches equilibrium in the transverse direction.
That is, pðx; y; tÞ is assumed to factorize as follows:

pðx; y; tÞ � Pðx; tÞ�ðx; yÞ; (3.49)

where �ðx; yÞ is a normalized Boltzmann-Gibbs probability
density:

�ðx;yÞ¼ e��Uðx;yÞ

A0e
��F ðxÞ ; e��F ðxÞ ¼ 1

A0

Z wðxÞ

�wðxÞ
e��Uðx;yÞdy;

(3.50)

where A0 ¼ 2
R
L
0 wðxÞdx and F ðxÞ interpreted as an effective

x-dependent free energy. Under this factorization the aver-
aged FP equation becomes

@Pðx; tÞ
@t

� D0

@

@x
e��F ðxÞ

@

@x
e�F ðxÞPðx; tÞ: (3.51)

This holds for a general potential energy function Uðx; yÞ
(Reguera and Rubi, 2001).

If U is now taken to be the confining potential of the
channel boundary, then e��F ðxÞ ¼ 2wðxÞ=A0 � �ðxÞ and
we obtain the Fick-Jacobs equation

@Pðx; tÞ
@t

¼ @

@x
D0�ðxÞ @@x

Pðx; tÞ
�ðxÞ : (3.52)

The same equation is obtained in 3D with �ðxÞ ¼ AðxÞ=A0

with AðxÞ ¼ �wðxÞ2 and A0 the mean cross-sectional area.
The Fick-Jacobs equation is valid provided that jw0ðxÞj 
 1.
However, it has been shown that the introduction of an
x-dependent diffusion coefficient into the Fick-Jacobs equa-
tion can considerably increase the accuracy of the reduced FP
equation and thus extend the domain of validity (Zwanzig,
1992; Reguera and Rubi, 2001; Kalinay and Percus, 2006):

DðxÞ ¼ D0

½1þ w0ðxÞ2�� ; (3.53)

with � ¼ 1=3 and 1=2 for 2D and 3D, respectively. Note that
in the absence of any external forces, the effective free energy
F ðxÞ ¼V ðxÞ, where V ðxÞ � �kBT log½AðxÞ=A0� reflects
the existence of an entropic barrier to diffusion (Reguera
and Rubi, 2001). That is, using the standard thermodynamic
definition of free energy F ¼ E� TS, where E is internal
energy and S is the entropy, it follows that SðxÞ � logAðxÞ
where AðxÞ is the cross-sectional area of the channel at x. This
is consistent with the microcanonical ensemble definition of
entropy. That is, in equilibrium there is a uniform probability
density �0 in the channel, so that the equilibrium x-dependent
density PeqðxÞ ¼ �0AðxÞ=A0 and the number of microstates

available to a diffusing particle at location x is proportional to
the area of the channel. It also follow that when there is a
constant external force F0 in the x direction, then Eq. (3.51)
still holds except that F ðxÞ ¼ �F0x� kBT log�ðxÞ.

Given an external force F0 and the periodic entropic barrier
potential V ðxÞ, it remains to determine the mean and vari-
ance of the particle position in the long time limit, which
naturally leads to the following definitions of the drift mo-
bility and diffusion coefficient of the particle:

	ðF0Þ � h
_Xi

F0

; h _Xi ¼ lim
t!1
hXðtÞi

t
; (3.54)

and

DðF0Þ ¼ lim
t!1
hXðtÞ2i � hXðtÞi2

2t
: (3.55)

Note that the relationship between h _Xi and the long time limit
of hXðtÞi=t is a consequence of ergodicity (Reimann, 2002).
In order to determine 	 and D, it is necessary to extend the
classical problem of Brownian motion in a periodic potential
with tilt (Stratonovich, 1958; Hanggi, Talkner, and Borkovec,
1990; Reimann et al., 2002; Burada et al., 2007); see
also Sec. III.D.2. The force dependence of the mobility and

w(x)

x

(a)

(b)

FIG. 9. Confined diffusion in a narrow cylindrical channel with a

periodically modulated boundary wðxÞ in the axial direction.

(a) Small diffusing particle. (b) Single-file diffusion.
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diffusion coefficient have been studied both analytically and
numerically in the case of a sinusoidal boundary function
(Reguera et al., 2006; Burada et al., 2007)

wðxÞ ¼ a½sinð2�x=LÞ þ b�; a > 0; b > 1: (3.56)

The basic results are sketched in Fig. 10. A number of
interesting observations emerge from this study. First, the
mobility depends only on the temperature via the dimension-
less parameter F0L=kBT. Hence, increasing the temperature
reduces the mobility. Second, as the force is increased the
effective diffusion coefficient DðF0Þ exceeds the free diffu-
sion coefficient D0. Using scaling arguments, it can also be
shown that the analysis based on the Fick-Jacobs equation
begins to break down at a critical force F0;c where (Burada

et al., 2009)

F0;cL

kBT
� 1

2ð1þ bÞ2
�
L

a

�
2
: (3.57)

The Fick-Jacobs equation represents diffusion through a
narrow channel in terms of a 1D overdamped Brownian
particle moving in an effective potential UðxÞ that arises
from entropic effects. Such a 1D model has also been the
starting point for a series of studies of channel-facilitated
membrane transport, where now UðxÞ reflects the construc-
tive role of attractive interactions between permeating parti-
cles and proteins forming the channel pore (Bezrukov et al.,
2000; Berezhkovskii, Pustovoit, and Bezrukov, 2002, 2003;
Berezhkovskii and Bezrukov, 2005). In these studies, mixed
boundary conditions are assumed at the ends x ¼ 0, L of
the channel: Jð0; tÞ ¼ ��0Pð0; tÞ and JðL; tÞ ¼ ��LPðL; tÞ.
The probability of crossing the channel and the mean time
in the channel can then be calculated using the standard
theory of first-passage times and splitting probabilities; see
Sec. II.B. It can be shown that there is an optimal form of the
interaction potential that maximizes the flux through the
channel and involves a play off between increasing the trans-
location probability through the channel and decreasing the
average time particles spend in the channel (Berezhkovskii
and Bezrukov, 2005). For a complementary approach to
studying channel-facilitated transport that is based on spa-
tially discrete stochastic site-binding models, see Chou
(1999) and Kolomeisky (2007). Finally note that stochastic
models of confined diffusion through channels have also been

developed for charged particles flowing through a nanopore
connected to two large reservoirs of electrolyte solutions
(Schuss, Nadller, and Eisenberg, 2001; Nadler et al.,
2004). The motion of the ions is sensitive to the specific
nanoscale geometry and the charge distribution around the
channel so that standard continuum mean-field models break
down. Two of the most common mean-field models are the
equilibrium Poisson-Boltzmann equation and the nonequilib-
rium Poisson-Nernst-Planck equation (Roux et al., 2004).
These equations assume a constitutive relation between the
average ion flux and an effective mean-field potential that
satisfies Poisson’s equation for the average charge concen-
trations. We will not consider ion transport further in this
review. See, for example, Keener and Sneyd (2009) for a
detailed discussion of the role of ion transport in cell
physiology.

2. Brownian motion in a periodic potential with tilt

Motivated by the problem of a particle diffusing in a
narrow channel with a periodically varying boundary, con-
sider the 1D FP equation

@p

@t
¼ D0

�
1

kBT

@½V 0ðxÞ � F0�p
@x

þ @2p

@x2

�
; (3.58)

where VðxÞ is an L-periodic potential, Vðxþ LÞ ¼ VðxÞ for
all x, and F0 is a constant external force; see Fig. 11. For the
moment, we take the diffusion coefficient to be constant.
Within the context of motion through a narrow channel
VðxÞ can be identified with the entropic potential V ðxÞ ¼
�kBT log½AðxÞ=A0�. However, there are many other impor-
tant applications where a periodic potential arises, including
Brownian ratchet models of molecular motors (Reimann,
2002); see Sec. IV.A.1. Again we focus on spatially continu-
ous processes. Note, however, that an alternative approach
has been developed in a seminal paper by Derrida (1983),
which is concerned with calculating the effective diffusion
and velocity of particles on a discrete lattice, and is a spatially
discrete version of the processes considered here. The ap-
proach of Derrida has many applications, including motor
protein modeling (Kolomeisky and Fisher, 2007).
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FIG. 10. Illustrative sketches of how mobility and diffusivity vary

with nondimensionalized applied force F0L=kBT in the case of a 2D

channel with a sinusoidally varying half-width (3.56). (a) Effective

mobility 	 in units of �. In the limit F0 ! 1, 	! ��1.
(b) Diffusion coefficient D in units of free diffusivity D0. In the

limit F0 ! 1, D! D0. Sketches are based on numerical results of

Reguera et al. (2006) for a ¼ L=2� and b ¼ 1:02.

F0 = 0
V(x)

V(x)−F0x

F0 > 0

x

FIG. 11 (color online). Brownian particle moving in a periodic

potential VðxÞ. In the absence of tilt (F0 ¼ 0) the mean velocity in

the long time limit is zero. On the other hand, in the presence of a

tilt ðF0 � 0Þ the net motion of the particle is in the direction of the

force.
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We begin by considering the standard Stratonovich-based
calculation of the mean velocity (Stratonovich, 1958; Hanggi,
Talkner, and Borkovec, 1990). Introduce the effective poten-
tial or free energy F ðxÞ ¼ VðxÞ � F0x and note that F 0ðxÞ is
periodic even though F is not. Next consider the reduced
probability density and currents

p̂ðx; tÞ ¼ X1
n¼�1

pðxþ nL; tÞ;

Ĵðx; tÞ ¼ X1
n¼�1

Jðxþ nL; tÞ;
(3.59)

with

Jðx; tÞ ¼ �D0

�
1

kBT
F 0ðxÞpþ @p

@x

�
:

It immediately follows that

p̂ðxþ L; tÞ ¼ p̂ðx; tÞ;
Z L

0
p̂ðx; tÞdx ¼ 1: (3.60)

Moreover, multiplying both sides of the FP equation by x and
integrating with respect to x gives

dhXðtÞi
dt

¼
Z 1
�1

Jðx; tÞdx ¼
Z L

0
Ĵðx; tÞdx: (3.61)

[Using the identity Jðx; tÞ ¼ h _XðtÞ�ðx� XðtÞÞi and integrat-
ing both sides with respect to x, it follows that h _XðtÞi ¼
dhXðtÞi=dt (Reimann, 2002).] The periodicity of F 0ðxÞ im-
plies that if pðx; tÞ is a solution of the FP equation, then so is
pðxþ nL; tÞ. The principle of superposition for a linear PDE
then shows that p̂ satisfies the FP equation

@p̂ðx; tÞ
@t

þ @Ĵðx; tÞ
@x

¼ 0; (3.62)

with

Ĵðx; tÞ ¼ �D0

�
1

kBT
F 0ðxÞp̂þ @p̂

@x

�
(3.63)

and periodic boundary conditions at x ¼ 0, L. There exists a
stationary solution p̂0 of the reduced FP equation with con-
stant flux Ĵ0 such that

d

dx
½eF ðxÞ=kBTp̂0ðxÞ� ¼ � Ĵ0

D0

eF ðxÞ=kBT: (3.64)

Integrating this equation from x to xþ L and using period-
icity yields the stationary solution

p̂0ðxÞ ¼ Ĵ0N ðxÞ
1� e�F0L=kBT

; (3.65)

where

N ðxÞ ¼ 1

D0

e�F ðxÞ=kBT
Z xþL

x
eF ðyÞ=kBTdy: (3.66)

Finally, Ĵ0 is determined by imposing the normalization
condition on p̂0. Since h _XðtÞi ¼ LĴ0 for constant current,

h _XðtÞi ¼ L
1� e�F0L=kBTR

L
0 N ðxÞdx

: (3.67)

It can be seen that there is no net motion in a purely periodic
potential, since the numerator vanishes when F0 ¼ 0.

Moreover, the net direction of motion for F0 � 0 is in the
direction of the applied force. Note that in the case of a space-
dependent diffusion coefficient DðxÞ, the above analysis is
easily extended with N ðxÞ now given by (Burada et al.,
2007)

N ðxÞ ¼ e�F ðxÞ=kBT
Z xþL

x

1

DðyÞ e
F ðyÞ=kBTdy: (3.68)

The calculation of the diffusion coefficient is considerably
more involved. However, an elegant method for determining
D (as well as the mobility 	) is to exploit a well-known
recursion relation for the moments of the first-passage time
(Reimann et al., 2002; Reguera et al., 2006; Burada et al.,
2007). Let Tðx0 ! bÞ denote the first-passage time for the
diffusing particle to reach the point b given that it started at x0
with x0 < b. The nth moment of the first-passage time is

nðx0 ! bÞ ¼ hTnðx0 ! bÞi. It can then be shown that for the
stochastic process described by the FP equation (3.58), the
moments satisfy the recursion relation (Hanggi, Talkner, and
Borkovec, 1990)


nðx0!bÞ¼ n

D0

Z b

x0

dxeF ðxÞ=kBT
Z x

�1
dyeF ðyÞ=kBT
n�1ðy!bÞ;

n¼1;2;...; (3.69)

with 
0ðy! bÞ ¼ 1. Note for n ¼ 1, x0 ¼ y, and b ¼ L we
recover Eq. (2.30) (after taking the left-hand boundary to
�1). The basic derivation proceeds as follows. First it can
be shown that Tðx0!x0þlLÞ, integer l is statistically equiva-
lent to a sum of (iid) random variables Tðx0!x0þLÞ;
Tðx0þL!x0þ2LÞ;...;T½x0þðl�1ÞL!x0þlL�. Hence, for
large l, the central-limit theorem (Gardiner, 2009) implies
that the FPT Tðx0 ! x0 þ lLÞ approaches a Gaussian distri-
bution with mean l
1ðx0 ! x0 þ LÞ and variance l�
2ðx0 !
x0 þ LÞ where �
2 ¼ 
2 � 
21. Second, since 	 and D are

defined in the large t limit, the evaluation of hxðtÞi and hx2ðtÞi
can be partitioned into a set of large but finite steps over
which the statistics of the corresponding FPT is well approxi-
mated by a Gaussian distribution. This has the important
implication that if any two stochastic processes described
by an FP equation of the form (3.58) have the same mean

1ðx0 ! x0 þ LÞ and variance �
2ðx0 ! x0 þ LÞ, then they
have the same h _Xi and D. It finally follows that (Reimann
et al., 2002)

h _Xi¼ L


1ðx0!x0þLÞ ; D¼L2

2

�
2ðx0!x0þLÞ
½
1ðx0!x0þLÞ�3 :

The proof of the last step simply consists of verifying that
these formulas hold when VðxÞ ¼ 0 (no periodic potential),
for which h _Xi ¼ F=� and D ¼ kBT=�. Having obtainedD in
terms of the first and second order moments of the FPT,
Eq. (3.69) can now be used to calculateD. After some algebra
[see Appendix A of Reimann et al. (2002)], one finds that

D ¼ D0

R
x0þL
x0

N ðxÞ2N ðxÞdx=L
½Rx0þL

x0
N ðxÞdx=L�3 ; (3.70)

with N ðxÞ given by Eq. (3.66) and

�N ðxÞ ¼ 1

D0

eF ðxÞ=kBT
Z x

x�L
e�F ðyÞ=kBTdy: (3.71)
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3. Single-file diffusion

When a pore or channel becomes sufficiently narrow,

particles are no longer able to pass each other, which imposes

strong constraints on the diffusive motion. An idealized

model of single-file diffusion considers a 1D collection of

diffusing particles with hard-core repulsion. The many-body

problem of single-file diffusion was originally tackled by

relating the dynamics of the interacting system with the

effective motion of a free particle (Harris, 1965; Jepsen,

1965; Lebowitz and Percus, 1967; Levitt, 1973; Percus,

1974). In particular, in the case of an infinite system and a

uniform initial particle density, it was shown that a tagged

particle exhibits anomalous subdiffusion on long time scales,

hX2ðtÞi � t1=2. (On the other hand, the center of mass of the

system of particles exhibits normal diffusion.) More recently,

a variety of complementary approaches to analyzing single-

file diffusion have been developed (Rodenbeck, Karger,

and Hahn, 1998; Lizana and Ambjornsson, 2008; Taloni

and Lomholt, 2008; Barkai and Silbey, 2009; Centres and

Bustingorry, 2010). Here we review the particular formula-

tion of Barkai and Silbey (2009), which develops the analysis

of a tagged particle in terms of classical reflection and trans-

mission coefficients.
Suppose that the tagged particle is initially at the origin

with N particles to its left and N particles to its right; see

Fig. 12(a). The motion of each particle in the absence of hard-

core interactions is taken to be overdamped Brownian motion

as described by the Langevin equation (2.9) or the corre-

sponding FP equation (2.15). As a further simplification, the

potential energy function VðxÞ ¼ R
x Fðx0Þdx0 is taken to be

symmetric, VðxÞ ¼ Vð�xÞ, as is the initial distribution of

particles. That is, if the initial position x0 of a particle is

drawn from fRðx0Þ for x0 > 0 and from fLðx0Þ for x0 < 0,
then fRðx0Þ ¼ fLð�x0Þ. This reflection symmetry ensures

that hXðtÞi ¼ 0, where XðtÞ is the stochastic position of the

tagged particle at time t. The main underlying idea is to map

the many-body problem to a noninteracting one by allowing

particles to pass through each other and keeping track of the

particle label; see Fig. 12(b). That is, assuming that collisions

are elastic and neglecting n-body interactions for n > 2, it

follows that when two particles collide they exchange mo-
menta and this is represented as an exchange of particle
labels. The probability density for the tagged particle to be
at XðtÞ ¼ XT at time t then reduces to the problem of finding
the probability that the number of free particle trajectories
that started at x0 < 0 and are now to the right of XT is
balanced by the number of free particle trajectories that
started at x0 > 0 and are now to the left of XT .

Thus, let PLLðx�j0 Þ [PLRðx�j0 Þ] denote the probability that

the jth free particle trajectory starting from x�j0 < 0 at t ¼ 0

is to the left (right) of XT at time t. Similarly, let PRRðxj0Þ
[PRLðxj0Þ] denote the probability that the jth free particle

trajectory starting from xj0 > 0 at t ¼ 0 is to the right (left)

of XT at time t. Let � be the net number of free particle
trajectories that are on the opposite side of XT at time t
compared to their starting point (with left to right taken as
positive). The associated probability distribution for � given
2N untagged particles is (Barkai and Silbey, 2009)

PNð�Þ ¼ 1

2�

Z �

��

YN
j¼1

�ð
; x�j0 ; xj0Þei�
d
; (3.72)

where

�ð
; x�j0 ; xj0Þ ¼ ei
PLRðx�j0 ÞPRRðxj0Þ þ PLLðx�j0 ÞPRRðxj0Þ
þ PLRðx�j0 ÞPRLðxj0Þ
þ e�i
PLLðx�j0 ÞPRLðxj0Þ: (3.73)

The integration with respect to 
 ensures that the net number
of crossings is �, that is,

R
��� ei
n ¼ �n;0. Since the trajecto-

ries are independent and the initial conditions are (iid) ran-
dom variables, PNð�Þ can be averaged with respect to the
initial conditions to give

hPNð�Þi ¼ 1

2�

Z �

��
h�ð
ÞiNei�
d
; (3.74)

where

h�ð
Þi ¼ ðhPRRi þ e�i
hPRLÞðhPLLi þ ei
hPLRiÞ:
(3.75)

The averages hPLRi, etc. can be calculated using the Green’s
function Gðx; x0; tÞ of the corresponding FP equation (2.15)
with Gðx; x0; 0Þ ¼ �ðx� x0Þ. For example,

hPLRi ¼
Z 0

�l
fLðx0Þ

Z l

XT

Gðx; x0; tÞdxdx0; (3.76)

where 2l is the length of the 1D domain, which can be taken
to be infinity.

Equation (3.74) takes the form of the generating function
for a discrete random walk of N steps and a net displacement
of �. Hence, for large N, application of the central-limit
theorem leads to the Gaussian approximation

PNð0Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�N�2
p expð�N	2

1=2�
2Þ; (3.77)

where �2 ¼ 	2 �	2
1 and 	1, 	2 are the first two moments

of the structure function:

h�ð
Þi ¼ 1þ i	1
� 1
2	2


2 þOð
3Þ: (3.78)
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2
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1

FIG. 12. (a) Single-file diffusion of a tagged particle surrounded

by other impenetrable particles. (b) Equivalent noninteracting pic-

ture, in which each trajectory is treated as a noninteracting

Brownian particle by keeping track of the exchange of particle label.
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Hence,

	1 ¼ hPLRi � hPRLi;
�2 ¼ hPRRihPRLi þ hPLLihPLRi: (3.79)

Since hXðtÞi ¼ 0 and N is assumed to be large,	1 and �
2 can

be Taylor expanded with respect to XT about XT ¼ 0.
Reflection symmetry then implies that

hPLLijXT¼0 ¼ hPRRijXT¼0 �R;

hPLRijXT¼0 ¼ hPRLijXT¼0 � T ¼ 1�R;

@XT
hPLRijXT¼0 ¼ �@XT

hPRLijXT¼0 � J :

The time-dependent functions R and T may be interpreted
as reflection and transmission coefficients determining
whether or not a free particle trajectory crosses XT ¼ 0.
The resulting mean and variance are

	1 ¼ �2JXT þOðX2
TÞ;

�2 ¼ 2Rð1�RÞ þOðXTÞ:
(3.80)

Thus, hPNð�Þi for � ¼ 0 reduces to a Gaussian distribution
for the position XðtÞ ¼ XT :

PðXT; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hXðtÞ2ip exp

�
� X2

T

2hXðtÞ2i
�
; (3.81)

with

hXðtÞ2i ¼Rð1�RÞ
2NJ 2

: (3.82)

Finally, using Eq. (3.76),

R ¼
Z l

0
fðx0Þ

Z l

0
Gðx; x0; tÞdxdx0; (3.83)

J ¼
Z l

0
fðx0ÞGð0; x0; tÞdx0: (3.84)

In the special case of zero external forces, the free particle
Green’s function is

Gðx; x0; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt
p e�ðx�x0Þ2=4Dt: (3.85)

Taking a uniform initial distribution fðx0Þ ¼ 1=l with l! 1
and fixed particle density � ¼ N=l, one finds anomalous
subdiffusion for large times t (Harris, 1965):

hXðtÞ2i � 2ffiffiffiffi
�
p

ffiffiffiffiffiffi
Dt
p
�

: (3.86)

On the other hand, for particles initially centered at the origin
fðx0Þ ¼ �ðx0Þ, diffusion is normal

hXðtÞ2i � �Dt

2N
: (3.87)

In the case of a bounded domain or a Gaussian initial
condition, anomalous diffusion occurs at intermediate times
only (Barkai and Silbey, 2009).

E. Nuclear transport

The nucleus of eukaryotes is surrounded by a protective
nuclear envelope within which are embedded nuclear pore
complexes (NPCs). The NPCs are the sole mediators of

exchange between the nucleus and cytoplasm. In general
small molecules of diameter �5 nm can diffuse through the
NPCs unhindered, whereas larger molecules up to around
40 nm in diameter are excluded unless they are bound to a
family of soluble protein receptors known as karyopherins

(kaps); Macara (2001), Rout et al. (2003), Fahrenkrog,
Koser, and Aebi (2004) and Tran and Wente (2006). Within
the cytoplasm kap receptors bind cargo to be imported via a
nuclear localization signal that results in the formation of a
kap-cargo complex. This complex can then pass through an

NPC to enter the nucleus. A small enzyme RanGTP then
binds to the kap, causing a conformational change that re-
leases the cargo. The sequence of events underlying the
import of cargo is shown in Fig. 13(a). In the case of cargo
export from the nucleus, kaps bind to cargo with a nuclear
export signal in the presence of RanGTP, and the resulting

complex passes through the NPC. Once in the cytoplasm,
RanGTP undergoes hydrolysis to form RanGDP, resulting in
the release of the cargo. The export process is illustrated in
Fig. 13(b). Finally, RanGDP is recycled to the nucleus by
another molecule NFT2 and is reloaded with guanosine

triphosphate (GTP) to begin another import or export cycle.
This cycle allows a single NPC to support a very high rate of
transport on the order of 1000 translocations/s (Ribbeck and
Gorlich, 2002). Since the transportation cycle is directional
and accumulates cargo against a concentration gradient, an

energy source combined with a directional cue is required.
Both of these are provided by the hydrolysis of RanGTP and
the maintenance of a concentration gradient of RanGTP
across the NPC. The RanGTP gradient is continuously re-
generated by GTP hydrolysis in the cytoplasm, translocation

of RanGDP into the nucleus by NFT2, and replacement
of guanosine diphosphate (GDP) by GTP in the nucleus.
It is important to note that the energy generated

importing
karyopherin

NLS-cargo

nuclear envelope

RanGTP

kap-Cargo
complex

NPC

NPC

exporting
karyopherin

kap-Cargo
complex

NES-cargo

RanGTD

hydrolysis

CYTOPLASM NUCLEUS

(a)

(b)

FIG. 13 (color online). Schematic illustration of the (a) import

and (b) export process underlying the karyopherin-mediated trans-

portation of cargo between the nucleus and cytoplasm via a nuclear

pore complex (NPC). See text for details.
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from RanGTP hydrolysis is ultimately used to create a

concentration gradient of kap-cargo complexes between the

nucleus and cytoplasm, so that the actual translocation across

the NPC occurs purely via diffusion.
Although the above basic picture is now reasonably well

accepted, the detailed mechanism underlying facilitated dif-

fusion of kap-cargo complexes within the NPC is still not

understood. The NPC is composed of about 30 distinct

proteins known collectively as nucleoporins (nups). It has

emerged in recent years that individual nups are directly

related to a number of human diseases including influenza

and cancers such as leukemia (Cronshaw and Matunis, 2004),

as well as playing an important role in viral infections by

providing docking sites for viral capsids (Whittaker, Kann,

and Helenius, 2000). Associated with many of the nups are

natively unfolded phenylalanine-glycine (FG) repeats, known

collectively as FG repeats. The FG repeats set up a barrier to

diffusion for large molecules so that the key ingredient in

facilitated diffusion through the NPC is the interaction be-

tween kap receptors with the FG repeats. In essence, the

major difference between the various theoretical models of

NPC transport concerns the built in assumptions regarding

the properties and spatial arrangements of FG repeats within

the NPC, and the nature of interactions with kaps during

translocation through the NPC (Becskei and Mattaj, 2005).

Current models include the entropic gate model (Rout et al.,

2003; Zilman et al., 2007), the selective phase models

(Ribbeck and Gorlich, 2002; Bickel and Bruinsma, 2002;

Kustanovich and Rabin, 2004), the dimensionality reduction

model (Peters, 2005), and the polymeric brush model (Lim

et al., 2006, 2007). A number of computational models and

molecular-based simulations are also being developed

(Grunwald and Singer, 2012; Moussavi-Baygi et al., 2011).

Here we review the first two types of model in more detail.
Entropic gate model.—Recall from Sec. III.D that a mac-

romolecule diffusing in a confined geometry (such as a

nuclear pore) experiences an entropic barrier due to excluded

volume effects. Within the NPC this would be enhanced by

the densely packed FG repeats. One way to counteract the

effects of the entropic barrier is for the kaps to have an affinity

for and bind to the FG-repeat regions (Rout et al., 2003;

Zilman et al., 2007), thus lowering the effective Gibbs free

energy of the cargo complex within the NPC. The degree of

affinity has to be sufficiently high to overcome the entropic

barrier but not too high; otherwise the complex can be trapped

within the NPC and the rate of translocation would be too

small. One possible solution is to have a large number of low-

affinity binding sites within the nuclear pore. Recently, a

mathematical model for the effects of binding on diffusion

within the NPC was developed by Zilman et al. (2007), based

on diffusion through an effective energy landscape. This is

based on the assumption that the binding and unbinding rates

are relatively fast compared to the diffusion rate. The simplest

version of the model is illustrated in Fig. 14 for the case of

nuclear import. The effective potential energy UðXÞ is taken
to be a flat potential well of depth E along an NPC, and zero

outside the NPC. Absorbing boundary conditions are placed

at the points x ¼ 0, L a distance R from either side of the

NPC, which has length L� 2R. The left-hand boundary takes
into account the fact that not all complexes entering the NPC

will reach the nucleus, that is, some will eventually return to
the cytoplasm. Diffusion within the NPC is described by a
standard Smoluchowski equation for the density of cargo
complexes �ðxÞ, x ¼ ½0; L�; see Sec. II.A.2:

@�

@t
¼ � @J

@x
; J ¼ �D@�

@x
�D�

@U

@x
; (3.88)

with U measured in units of kBT. This equation is supple-
mented by the boundary conditions �ð0Þ ¼ �ðLÞ ¼ 0.

The steady-state solution is obtained by assuming that
there are constant fluxes J0 in ½0; R�, JL in ½L� R; L�, and
�J in ½R; L� R� with J0 < 0. These fluxes are related accord-
ing to JS ¼ �J � jJ0j and �J ¼ JL þ Je, where JS is the total
flux of complexes injected into the NPC from the cytoplasm,
which is proportional to density of complexes in the cyto-
plasm, and Je denotes the flux due to active removal of
complexes from the nucleus end of the NPC by RanGTP.
The latter depends on the number of complexes at the nuclear
exit, the rate Jran at which RanGTP molecules hit the exit:
Je ¼ Jran�ðL� RÞR. The steady-state rate of transport �J can
now be determined by solving for �ðxÞ in terms of J0, JL, and
�J in each of the three domains and imposing continuity of the
density at x ¼ R and x ¼ R� L. The result is that the
fraction of complexes reaching the nucleus is given by
(Zilman et al., 2007)

P ¼ �J

JS
¼
�
2� K

1þ K
þ 1

R

Z L�R

R
eUðxÞdx

��1
; (3.89)

with K ¼ JranR
2=D. It follows that for a sufficiently deep

well (large E), where the integral term is negligible, and for
sufficiently large K (large Jran), the probability of transloca-
tion is P � 1. On the other hand, ifK is small so that RanGTP
does not facilitate entry of complexes into the nucleus then
Pmax ¼ 0:5. As previously indicated, it is not possible to
arbitrarily increase the affinity of binding sites and thus the
well depth E, since this will lead to trapping of the complexes
so that they accumulate within the NPC, resulting in molecu-
lar crowding and an unrealistically long time for an individual
molecule to pass through the NPC. Thus there is some
optimal well depth that balances an increase of transport
probability P with increased time spent in the NPC (Zilman
et al., 2007). Finally note that the model is robust with regard
to the particular shape of the potential well. For example, one
could represent transport through the NPC as diffusion in an
array of overlapping potential wells that represent flexible

potential U(x)

R R

x=0 x=L

J

J

NPC

J0

absorbing boundary

absorbing boundary

Je

JL

FIG. 14 (color online). Model of Zilman et al. (2007). Transport

of cargo complex through the NPC is modeled as diffusion in an

energy landscape. See text for details.
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FG-repeat regions. The shape of each well will depend on the
number and affinity of binding sites on each FG repeat, and
the degree of flexibility of the polymers which will determine
the entropic costs of bending and stretching the FG repeats. It
can be shown that for relatively fast binding and unbinding,
the multiwell potential can be replaced by a single well along
the lines of Fig. 14.

Selective phase models.—The basic assumption of these
models is that the NPC can be treated as a channel filled with
a hydrophobic medium consisting of a concentrated polymer
solution; the latter is composed of the natively unfolded,
flexible protein domains of FG repeats (Ribbeck and
Gorlich, 2002; Bickel and Bruinsma, 2002; Kustanovich
and Rabin, 2004; Reichenbach, Franosch, and Frey, 2006);
see Fig. 15. The FG repeats form weak bonds with each other
suggesting that they act approximately like a weak reversible
gel. Particles smaller than the mesh size of the network can
diffuse freely through the NPC, whereas nonselective macro-
molecules larger than the mesh size cannot. On the other
hand, kap-cargo complexes can ‘‘dissolve’’ in the gel due to
the presence of hydrophobic domains on the surface of the
kap receptors, and then diffuse through the pore by breaking
the weak bonds of the reversible gel (Ribbeck and Gorlich,
2002). However, as pointed out by Bickel and Bruinsma
(2002), the observed high permeability of the NPC with
respect to the transport of kap-cargo complexes is inconsis-
tent with the basic theory of reversible gels. The argument
proceeds as follows [see Bickel and Bruinsma (2002)]. For a
homogeneous pore filled with reversible gel, the flux of
particles through the pore is given by J ¼ D�
=L, where
L is the length of the pore, D is the diffusivity of dissolved
complexes, and �
 ¼ 
L �
R is the difference in concen-
trations of dissolved complexes at the ends of the pore. The
permeability�, however, is defined in terms of the difference
in concentrations of exterior particle reservoirs on either side
of the pore �c ¼ cL � cR. That is, J ¼ ��c. In order to
relate �c and �
, it is necessary to consider the fluxes
entering and exiting the pore. Equating the fluxes at
the left and right ends gives

J ¼ kincL � kout
L ¼ kout
R � kincR: (3.90)

This allows one to express �
 in terms of �c such that

� ¼ kin
2þ koutL=D

: (3.91)

From detailed balance the ratio of the rates is kin=kout ¼
e��F, where �F is the free energy gain (assuming �F > 0)
of entering the gel. Ignoring other contributions to the free
energy, �F ¼ n�, where n is the number of interactions of
strength � between a kap receptor and the gel. It can also be
shown that the diffusivity of a spherical kap-cargo complex
moving through a reversible gel is

D ¼ D0ð1þ e�n�Þ�1 � D0e
��n�: (3.92)

Suppose that in the high affinity regime kout is given by the
Arrhenius law kout � ðD=�Þe���F, where � is taken to be the
size of the boundary layer at either end of the pore.
Combining all of these results then shows that (Bickel and
Bruinsma, 2002)

� ¼ D0

Lþ 2�e�n�
: (3.93)

Thus the permeability decreases with the number of sites n,
implying that increasing the affinity of the complex moving
in a reversible gel should decrease the permeability; this
contradicts the high permeabilities seen experimentally
(Ribbeck and Gorlich, 2002). One suggestion for modify-
ing the original selective phase model is to assume that the
polymer gel is under tension due to pinning of the poly-
mers to the container walls (Bickel and Bruinsma, 2002).
Thermal fluctuations would then lead to local rearrange-
ments of the stretched polymer network, resulting in rear-
rangements of the associated tension field. This, in turn,
could generate force fluctuations on a dissolved macro-
molecule that could enhance its effective diffusivity. Such
a mechanism has not yet been confirmed experimentally.
However, single-particle tracking of individual complexes
moving through the NPC shows that cargo bound to more
kap receptors diffuse more freely (Lowe et al., 2010). This
is consistent with the tensile gel model but inconsistent
with the entropic gate model, for which greater affinity
implies slower transport of individual complexes.

Chaperone-assisted translocation of polymers through
nanopores.—Finally note that here and in Sec. III.D we
considered diffusion of particles that are smaller than or
comparable in size to the diameter of the channel.
However, there are many examples where it is necessary to
consider translocation of an unfolded (or partially folded)
polymer through a nanopore, including the translocation of
RNA through the nuclear pore membrane, as well as newly
synthesized proteins into the endoplasmic reticulum (see also
Sec. V.B). Polymer translocation through a nanopore involves
a large entropic barrier due to the loss of many conforma-
tional states, so that some form of driving force is required.
One suggested driving mechanism involves the binding of
chaperone proteins to the translocating polymer on the far
side of the nanopore, which prohibits the polymer diffusing
backward through the pore, thus speeding up translocation
(Matlack et al., 1999). This rectified stochastic motion was
originally analyzed in terms of a Brownian ratchet by Peskin,
Odell, and oster (1993), and has subsequently been developed
in a number of studies (Elston, 2000b; Ambjornsson and

NucleusCytoplasm

NPC

FIG. 15. Selective phase model (Ribbeck and Gorlich, 2002;

Bickel and Bruinsma, 2002), in which the FG repeats within a

NPC are treated as a reversible polymer gel. See text for details.
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Metzler, 2004; D’Orsogna, Chou, and Antal, 2007; Krapivsky
and Mallick, 2010).

IV. ACTIVE INTRACELLULAR TRANSPORT

A. Modeling molecular motors at different scales

Diffusion inside the cytosol or along the plasma membrane

of a cell is a means by which dissolved macromolecules can
be passively transported without any input of energy.
However, there are two main limitations of passive diffusion

as a mechanism for intracellular transport. First, it can take
far too long to travel the long distances necessary to reach
targets within a cell, which is particularly acute in the case of

the axons and dendrites of neurons. Second, diffusive trans-
port tends to be unbiased, making it difficult to sort resources
to specific areas within a cell. Active intracellular transport

can overcome these difficulties so that movement is both
faster and direct specific, but does so at a price. Active

transport cannot occur under thermodynamic equilibrium,
which means that energy must be consumed by this process,
typically via the hydrolysis of adenosine triphosphate (ATP).

The main type of active intracellular transport involves the
molecular motors kinesin and dynein carrying resources
along microtubular filament tracks. Microtubules are polar-

ized polymeric filaments with biophysically distinct (þ) and
(� ) ends, and this polarity determines the preferred direction
in which an individual molecular motor moves. In particular,

kinesin moves toward the (þ) end whereas dynein moves
toward the (�) end (Howard, 2001). Each motor protein
undergoes a sequence of conformational changes after react-

ing with one or more ATP molecules, causing it to step
forward along the microtubule in its preferred direction.
Thus, ATP provides the energy necessary for the molecular

motor to do work in the form of pulling its cargo along the
microtubule in a biased direction.

The movement of molecular motors and motor or cargo
complexes occur over several length and time scales

(Julicher, Ajdari, and Prost, 1997; Keller and Bustamante,
2000; Lipowsky and Klumpp, 2005; Kolomeisky and Fisher,
2007). In the case of a single motor there are at least three

regimes: (i) the mechanicochemical energy transduction pro-
cess that generates a single step of the motor, (ii) the effective
biased random walk along a filament during a single run, and

(iii) the alternating periods of directed motion along the
filament and diffusive or stationary motion when the motor
is unbound from the filament. A popular model for the

stochastic dynamics of a single motor step in regime (i) is
the so-called Brownian ratchet (Reimann, 2002), which ex-

tends the theory of overdamped Brownian motion in periodic
potentials that was reviewed in Sec. III.D.2. In the case of
dimeric or double-headed kinesin, a single step is of length

8 	m and the total conformational cycle takes around 10 ms.
In the second regime (ii), multiple steps are taken before a
motor disassociates from the filament. For example, kinesin

takes around 100 steps in a single run, covering a distance of
around 1 	m. Walking distances can be substantially in-
creased if several molecular motors pull the cargo. In the

third motility regime (iii), molecular motors repeatedly un-
bind and rebind to filaments. In the unbound state a motor

diffuses in the surrounding aqueous solution with a diffusion
coefficient of the order 1 	m2 s�1. However, molecular
crowding tends to confine the motor so that it stays close to
its detachment point. At these longer length and time scales,
the motion of the motor can be represented in terms of a
system of PDEs. This combines a discrete Markov process for
the transitions between bound and unbound states with an FP
equation for the advective or diffusive motion in the different
states (Reed, Venakides, and Blum, 1990; Smith and
Simmons, 2001; Newby and Bressloff, 2010b). In bidirec-
tional transport, there may be more than one type of bound
state.

1. Brownian ratchets

In performing a single step along a filament track, a
molecular motor cycles through a sequence of conforma-
tional states before returning to its initial state (modulo the
change in spatial location). Suppose that there is a total of M
conformational states in a single cycle labeled i ¼ 1; . . . ;M.
Given a particular state i, the motor is modeled as an over-
damped, driven Brownian particle moving in a periodic
potential ViðxÞ. The Langevin equation for the location of
the particle XðtÞ assuming that it remains in the given state is

dX

dt
¼ �V 0iðXÞ

�
dtþ �ðtÞ; (4.1)

with h�ðtÞi ¼ 0 and h�ðtÞ�ðt0Þi ¼ 2Dt�ðt� t0Þ. The corre-
sponding FP equation is

@piðx; tÞ
@t

¼ � @Jiðx; tÞ
@x

; (4.2)

where piðx; tÞ is the probability density that the motor particle
is in internal state i and at location x at time t, and Jiðx; tÞ is
the probability flux

Jiðx; tÞ ¼ 1

�

�
�V0iðxÞ � kBT

@

@x

�
piðx; tÞ: (4.3)

If the state transitions between the conformational states are
now introduced according to a discrete Markov process, then
it is necessary to add source terms to the FP equation:

@piðx;tÞ
@t

¼�@Jiðx;tÞ
@x

þX
j�i

½!ijðxÞpjðx;tÞ�!jiðxÞpiðx;tÞ�;

(4.4)

where !ijðxÞ is the rate at which the motor switches from

state j to state i.
In order to develop the basic theory, consider the simple

case of two internal states N ¼ 2 following along the lines of
Prost et al. (1994), Julicher, Ajdari, and Prost (1997), and
Parmeggiani et al. (1999). Then

@p1ðx; tÞ
@t

þ @J1ðx; tÞ
@x

¼ �!1ðxÞp1ðx; tÞ þ!2ðxÞp2ðx; tÞ;
(4.5a)

@p2ðx; tÞ
@t

þ @J2ðx; tÞ
@x

¼ !1ðxÞp1ðx; tÞ �!2ðxÞp2ðx; tÞ:
(4.5b)
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Note that adding the pair of equations together and setting
p ¼ p1 þ p2, J ¼ J1 þ J2 leads to the conservation equa-
tions @tpþ @xJ ¼ 0. An example of l-periodic ratchet
(asymmetric) potentials V1ðxÞ, V2ðxÞ is shown in Fig. 16,
with l the basic step length of a cycle along the filament
track. The analysis of the two state model proceeds along
similar lines to the one state model considered in Sec. III.D.2.
That is, set

p̂jðx; tÞ ¼
X1

n¼�1
pjðxþ nl; tÞ;

Ĵjðx; tÞ ¼
X1

n¼�1
Jjðxþ nl; tÞ:

(4.6)

The total probability flux can then be written as

Ĵðx;tÞ ¼�1

�

�
V 01ðxÞp̂1ðx;tÞþV 02ðxÞp̂2ðx;tÞþkBT

@p̂ðx;tÞ
@x

�
:

(4.7)

Consider the steady-state solution for which there is a con-
stant total flux Ĵ0 so that

V01ðxÞp̂1ðxÞ þ V 02ðxÞp̂2ðxÞ þ kBT
@p̂ðxÞ
@x

¼ �Ĵ0�:

Defining �ðxÞ ¼ p̂1ðxÞ=p̂ðxÞ, this equation can be rewritten as

V 0ðxÞp̂ðxÞ þ kBT
@p̂ðxÞ
@x

¼ �Ĵ0�; (4.8)

where

VðxÞ ¼
Z x

0
f�ðyÞV 01ðyÞ þ ½1� �ðyÞ�V 02ðyÞgdy: (4.9)

Suppose that the system is in thermodynamic equilibrium so
that detailed balance holds. That is, the state transition rates
and steady-state probabilities satisfy

!1ðxÞ
!2ðxÞ ¼ e½V1ðxÞ�V2ðxÞ�=kBT ¼ p2ðxÞ

p1ðxÞ : (4.10)

Therefore,

�ðxÞ ¼ 1

1þ e�½V1ðxÞ�V2ðxÞ�=kBT ; (4.11)

and, in particular, �ðxÞ reduces to an l-periodic function. It
follows that VðxÞ in Eq. (4.8) is also an l-periodic potential
and hence there is no net motion in a particular direction

(in the absence of an external force or tilt); see Sec. III.D.2. In
conclusion, in order for a molecular motor to sustain directed
motion that can pull against an applied load, we require a net
positive supply of chemical energy that maintains the state
transition rates away from detailed balance; this is the role
played by ATP.

Therefore, consider the situation in which transitions be-
tween the two states occur as a result of chemical reactions
involving ATP hydrolysis. Denoting the two conformational
states of the motor by M1, M2, the scheme is taken to be
(Parmeggiani et al., 1999)

ATPþM1⇋
�1

�2
M2 þ ADPþ P;

ADPþ PþM1⇋
�1

�2
M2 þ ATP;

M1⇋
�1

�2

M2;

with �j, �j, �j and x dependent. The first reaction pathway

involves ATP hydrolysis with chemical free energy gain �	
and a corresponding transition from state 1 to state 2; the
second involves hydrolysis in the opposite direction, while
the third involves thermal state transitions without any change
in chemical potential. Basic chemical kinetics implies that

�1

�2

¼ eðV1�V2þ�	Þ=kBT;

�1

�2

¼ eðV1�V2��	Þ=kBT;

�1

�2

¼ eðV1�V2Þ=kBT:

(4.12)

It follows that the net transition rates between the two con-
formational states are

!1 ¼ �2e
ðV1�V2þ�	Þ=kBT þ �2e

ðV1�V2��	Þ=kBT

þ �2e
ðV1�V2Þ=kBT; (4.13)

!2 ¼ �2 þ �2 þ �2: (4.14)

Clearly detailed balance no longer holds. In general, it is now
necessary to determine the steady-state solution of the pair of
Eqs. (4.5) numerically. Given such a solution, the efficiency
of the motor doing work against a load F may be determined
as follows. First the flux (4.3) has an additional term of the
form Fpiðx; tÞ=�. The mechanical work done per unit time
against the external force is then _W ¼ Fv, where v ¼ lĴ0 is
the velocity of the motor. On the other hand, the chemical
energy consumed per unit time is _Q ¼ r�	, where r is the
steady-state rate of ATP consumption:

r ¼
Z l

0
f½�1ðxÞ � �1ðxÞ�p̂1ðxÞ � ½�2ðxÞ

� �2ðxÞ�p̂2ðxÞgdx:
The efficiency of the motor is then defined to be (Julicher,
Ajdari, and Prost, 1997) � ¼ Fv=r�	.

It is often convenient to simplify the generalized ratchet
model further by taking the transition-rate functions to be
localized at the discrete set of positions x ¼ xk, k ¼ 1; . . . ; K,
and to replace the continuum diffusion and drift terms by
hopping rates between nearest lattice sites (Lipowsky and
Klumpp, 2005; Liepelt and Lipowsky, 2007). The resulting

V1(x)

x

V2(x)

ω1 ω2

FIG. 16 (color online). Brownian ratchet model of a molecular

motor that can exist in two internal states with associated l-periodic
potentials V1ðxÞ and V2ðxÞ. State transition rates are denoted by !1

and !2.
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discrete Brownian ratchet model can be mapped on to a
stochastic network of KM states as shown in Fig. 17; see
Kolomeisky and Fisher (2007) for an alternative approach to
stochastic network models of molecular motors. The stochas-
tic dynamics is now described by a master equation, an
example of which is

dPkmðtÞ
dt

¼ X
n�m

½PknðtÞWkm;kn � PkmðtÞWkn;km�

þ Pkþ1;1ðtÞWkM;kþ1;1 þ Pk�1;MðtÞWk1;k�1;M

� Pk;1ðtÞWk�1;M;k;1 � Pk;MðtÞWkþ1;1;k;M;
(4.15)

where PkmðtÞ ¼ pmðxk; tÞ and for ‘‘vertical’’ transitions
Wkm;kn ¼ !mnðxkÞ. In this example steps along the filament

(power strokes) occur only between states m ¼ 1 and
m ¼ M. Observing a molecular motor’s motion along a
filament on longer time scales (several cycles) suggests that
its macroscopic dynamics can be approximated by diffusion
with constant drift (Peskin and Oster, 1995; Wang et al.,
1998). That is, in the long-time limit, the probability density
�ðx ¼ k�x; tÞ ¼ P

M
m¼1 PkmðtÞ satisfies the FP equation

@�

@t
¼ �V @�

@x
þD

@2�

@x2
: (4.16)

Such an equation can be derived analytically (Elston, 2000a)
by considering the vector Fðz; tÞ with components Fmðz; tÞ ¼P1

k¼�1 PkmðtÞzk. This is related to the probability generating

function Fðz; tÞ ¼ P
M
m¼1 Fmðz; tÞ for the moments of the dis-

crete location KðtÞ. The vector Fðz; tÞ satisfies a matrix
equation of the form @tFðz; tÞ ¼ AðzÞFðz; tÞ such that the
long-time behavior of Fðz; tÞ is dominated by the leading
eigenvalue �0ðzÞ of the matrix AðzÞ. From this it can be shown
that to leading order the drift V ¼ �00ð1Þ�x and the diffusion

coefficient D ¼ �x2½�000 ð1Þ þ �00ð1Þ�=2 (Elston, 2000a).

2. PDE models of active transport

Over much longer time scales a molecular motor alternates
between phases where it is bound to a filament and under-
going several cycles of mechanicochemical transduction, and
phases where it is unbound and diffusing in the cytosol. As a
further level of complexity, several molecular motors may be
attached to a vesicular cargo at the same time, which means

that the active transport of the motor and/or cargo complex

will exhibit different velocity states depending on which

combination of motors are currently bound to the filament

(Mallik and Gross, 2004; Welte, 2004). Indeed, experimental

observations of the dynamic behavior of motor and/or cargo

complexes transported along microtubules reveal intermittent

behavior with constant velocity movement in both directions

along the microtubule (bidirectional transport), interrupted by

brief pauses or fast oscillatory movements that may precede

localization at specific targets (Knowles et al., 1996; Rook,

Lu, and Kosik, 2000; Bannai et al., 2004; Gennerich and

Schild, 2006; Dynes and Steward, 2007). In the axon and

distal end of dendrites one finds that microtubule filaments all

have the same polarity, with the (þ ) end oriented away from

the cell body (Goldstein and Yang, 2000). This suggests a

model of bidirectional transport in which kinesin and dynein

motors transport a cargo in opposite directions along a single

track. On the other hand, dendritic microtubules located close

to the cell body tend to have mixed polarities (Baas et al.,

1988), suggesting a model in which motors of the same

directional preference are distributed among two parallel

microtubules of opposite polarity. In both of the above sce-

narios, there has to be some mechanism for coordinating the

action of the various motors as part of a larger motor com-

plex. One possibility is that the motors interact through a tug-

of-war competition, where individual motors influence each

other through the force they exert on the cargo (Welte, 2004;

Kural et al., 2005; Muller, Klumpp, and Lipowsky, 2008a,

2008b; Soppina et al., 2009; Hendricks et al., 2010); see

Sec. IV.B. When a force is exerted on a motor opposite to its

preferred direction, it is more likely to detach from its micro-

tubule. Ultimately the motion of the cargo is determined by

the random attachments and force-dependent detachments

from the microtubule of each motor in the motor complex.

(An alternative coordination mechanism could involve a fast

molecular switch that alternatively turns off kinesin and

dynein.)
When considering the active transport of intracellular

cargo over relatively long distances, it is often convenient

to ignore the microscopic details of how a motor performs a

single step (as described by Brownian ratchet models), and to

focus instead on the transitions between different types of

motion (e.g., anterograde versus retrograde active transport,

diffusion versus active transport). This has motivated a class

of mesoscopic models that take the form of a system of PDEs

(Reed, Venakides, and Blum, 1990; Smith and Simmons,

2001; Friedman and Craciun, 2006; Kuznetsov and

Avramenko, 2008; Loverdo et al., 2008; Bressloff and

Newby, 2009; Jung and Brown, 2009; Newby and Bressloff,

2010b). For the sake of illustration, consider a simple three-

state model of a particle moving on a 1D track of length L.
Such a track could represent a single microtubular filament.

Within the interior of the track, 0< x < L, the particle is

taken to be in one of three states labeled by n ¼ 0, 
:
unbound from the track and diffusing (n ¼ 0), bound to the

track and moving to the right (anterograde) with speed vþ
(n ¼ þ), or bound to the track and moving to the left (retro-

grade) with speed �v� (n ¼ �). For simplicity, take v
 ¼
v > 0. Transitions between the three states are governed by a

discrete Markov process. Let ZðtÞ andNðtÞ denote the random

3 3 3

2 2 2

1 1 1

k-1 k k+1

∆x

FIG. 17. State transition diagram for a discrete Brownian ratchet

that cycles through M ¼ 3 internal states and makes a single step of

length �x.
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position and state of the particle at time t and define Pðx; n; t j
y; m; 0Þdx as the joint probability that x � ZðtÞ< xþ dx and
NðtÞ ¼ n given that initially the particle was at position
Zð0Þ ¼ y and was in state Nð0Þ ¼ m. Setting

pnðx; tÞ �
X
m

Pðx; t; nj0; 0; mÞ�m (4.17)

with initial condition pnðx; 0Þ ¼ �ðxÞ�n,
P

n
m¼1 �m ¼ 1, the

evolution of the probability is described by the following
system of PDEs for t > 0:

@pþ
@t
¼ �v@xpþ � �þpþ þ �p0; (4.18a)

@p�
@t
¼ v@xp� � ��p� þ �p0; (4.18b)

@p0

@t
¼ �þpþ þ ��p� � 2�p0 þD0

@2p0

@x2
: (4.18c)

Here �, �
 are the transition rates between the stationary and
mobile states. Equation (4.18) is supplemented by an appro-
priate boundary condition at x ¼ 0, L. For example, a reflect-
ing boundary at x ¼ 0 and an absorbing boundary at x ¼ L
means that

p�ð0; tÞ ¼ pþð0; tÞ; p�ðL; tÞ ¼ 0: (4.19)

In the general case in which the velocities v
 in the two
directions are different, the transport will be biased in the
anterograde (retrograde) direction if vþ=�þ > v�=��
(vþ=�þ < v�=��).

It is straightforward to generalize the three-state model to
the case of n distinct velocity states as found, for example, in
the tug-of-war model; see Sec. IV.B. Introducing the
n-component probability density vector pðx; tÞ 2 Rn the cor-
responding system of PDEs takes the form

@p

@t
¼ ApþLðpÞ; (4.20)

where A 2 Rn�n specifies the transition rates between each
of the n internal motor states and the differential operator L
has the structure

L ¼

L1 0 � � � 0
0 L2 0 � � � 0

..

. . .
. ..

.

Ln�1 0
0 � � � 0 Ln

2
66666664

3
77777775; (4.21)

where the scalar operators are given by

Lj ¼ ½�vj@x þD0;j@
2
x�: (4.22)

Here vj is the velocity of internal state j and D0;j is the

corresponding diffusivity.

B. Tug-of-war model of bidirectional transport

Suppose that a certain vesicular cargo is transported along
a one-dimensional track via Nþ right-moving (anterograde)
motors and N� left-moving (retrograde motors). At a given
time t, the internal state of the cargo-motor complex is fully
characterized by the numbers nþ and n� of anterograde and
retrograde motors that are bound to a microtubule and thus

actively pulling on the cargo. Assume that over the time
scales of interest all motors are permanently bound to the
cargo so that 0 � n
 � N
. The tug-of-war model of Muller,
Klumpp, and Lipowsky (2008a, 2008b) assumes that the
motors act independently other than exerting a load on motors
with the opposite directional preference. [However, some
experimental work suggests that this is an oversimplification;
that is, there is some direct coupling between motors (Driver
et al., 2010).] Thus the properties of the motor complex can
be determined from the corresponding properties of the
individual motors together with a specification of the effec-
tive load on each motor. There are two distinct mechanisms
whereby such bidirectional transport could be implemented
(Muller, Klumpp, and Lipowsky, 2008a). First, the track
could consist of a single polarized microtubule filament (or
a chain of such filaments) on which up to Nþ kinesin motors
and N� dynein motors can attach; see Fig. 18. Since individ-
ual kinesin and dynein motors have different biophysical
properties, with the former tending to exert more force on a
load, it follows that even when Nþ ¼ N� the motion will be
biased in the anterograde direction. Hence, this version is
referred to as an asymmetric tug-of-war model. Alternatively,
the track could consist of two parallel microtubule filaments
of opposite polarity such that Nþ kinesin motors can attach to
one filament and N� to the other. In the latter case, if Nþ ¼
N� then the resulting bidirectional transport is unbiased
resulting in a symmetric tug-of-war model.

When bound to a microtubule, the velocity of a single
molecular motor decreases approximately linearly with force
applied against the movement of the motor (Visscher,
Schnitzer, and Block, 1999). Thus, each motor is assumed
to satisfy the linear force-velocity relation

vðFÞ ¼
	
vfð1� F=FsÞ for F � Fs;
vbð1� F=FsÞ for F � Fs;

(4.23)

where F is the applied force, Fs is the stall force satisfying
vðFsÞ ¼ 0, vf is the forward motor velocity in the absence of

an applied force in the preferred direction of the particular
motor, and vb is the backward motor velocity when the
applied force exceeds the stall force. The original tug-of-
war model assumes the binding rate is independent of the
applied force, whereas the unbinding rate is taken to be an
exponential function of the applied force:

�ðFÞ ¼ �0; �ðFÞ ¼ �0e
F=Fd ; (4.24)

FIG. 18 (color online). Schematic diagram of an asymmetric tug-

of-war model. Two kinesin and two dynein motors transport a cargo

in opposite directions along a single polarized microtubule track.

Transitions between two possible motor states are shown.
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where Fd is the experimentally measured force scale on
which unbinding occurs. The force dependence of the un-
binding rate is based on measurements of the walking dis-
tance of a single motor as a function of load (Schnitzer,
Visscher, and Block, 2000), in agreement with Kramers rate
theory (Hanggi, Talkner, and Borkovec, 1990). Let Fc denote
the net load on the set of anterograde motors, which is taken
to be positive when pointing in the retrograde direction.
Suppose that the molecular motors are not directly coupled
to each other so that they act independently and share the
load; however, see Driver et al. (2010). It follows that a single
anterograde motor feels the force Fc=n�, whereas a single
retrograde motor feels the opposing force�Fc=nþ. Equation
(4.24) implies that the binding and unbinding rates for both
types of motor take the form

�̂ðn; FcÞ ¼ n�ðFc=nÞ; �̂ðnÞ ¼ ðN � nÞ�0: (4.25)

The parameters associated with kinesin and dynein motors
will be different, so that it is necessary to add the subscript

to these parameters. The cargo force Fc is determined by the
condition that all the motors move with the same cargo
velocity vc. Suppose that Nþ � N� so that the net motion
is in the anterograde direction, which is taken to be positive.
In this case, the forward motors are stronger than the
backward motors so that nþFsþ > n�Fs�. Equation (4.23)
implies that

vc ¼ vfþð1� Fc=nþFsþÞ ¼ �vb�ð1� Fc=n�Fs�Þ:
(4.26)

This generates a unique solution for the load Fc and cargo
velocity vc:

Fcðnþ; n�Þ ¼ ½F nþFsþ þ ð1�F Þn�Fs��; (4.27)

where

F ¼ n�Fs�vf�
n�Fs�vf� þ nþFsþvb�

(4.28)

and

vcðnþ; n�Þ ¼ nþFsþ � n�Fs�
nþFsþ=vfþ þ n�Fs�=vb�

: (4.29)

The corresponding expressions when the backward motors
are stronger, nþFsþ < n�Fs�, are found by interchanging vf

and vb.
The original study of Muller, Klumpp, and Lipowsky

(2008a, 2008b) considered the stochastic dynamics associ-
ated with transitions between different internal states
ðnþ; n�Þ of the motor complex, without specifying the spatial
position of the complex along a 1D track. This defines a
Markov process with a corresponding master equation for the
time evolution of the probability distribution Pðnþ; n�; tÞ.
They determined the steady-state probability distribution of
internal states and found that the motor complex exhibited at
least three different modes of behavior: (i) the motor complex
spends most of its time in states with approximately zero
velocity; (ii) the motor complex exhibits fast backward and
forward movement interrupted by stationary pauses, which is
consistent with experimental studies of bidirectional trans-
port; and (iii) the motor complex alternates between fast

backward and forward movements. The transitions between
these modes of behavior depend on motor strength, which
primarily depends upon the stall force. More recently, Newby
and Bressloff (2010a, 2010b) constructed a system of PDEs
describing the evolution of the probability density
pðnþ; n�; x; tÞ in which the motor complex is in the internal
state ðnþ; n�Þ and has position x at time t. This version of the
tug-of-war model simultaneously keeps track of the internal
state of the motor complex and its location along a 1D track.
In order to write the model in the general form (4.22), it is
convenient to introduce the label iðnþ; n�Þ ¼ ðNþ þ 1Þn� þ
ðnþ þ 1Þ and set pðnþ; n�; x; tÞ ¼ piðnþ;n�Þðx; tÞ. This then

gives an n-component probability density vector p 2 Rn

with n ¼ ðNþ þ 1ÞðN� þ 1Þ, which satisfies Eq. (4.20). The
internal velocity of internal state j ¼ jðnþ; n�Þ is vj ¼
vcðnþ; n�Þ, and the diffusivities Dj are taken to be zero

unless all motors are detached from the microtubule Di ¼
D0�i;1. The components ai;j, i; j ¼ 1; . . . ; n, of the state

transition matrix A are given by the corresponding binding
and unbinding rates of Eqs. (4.25). That is, setting i ¼
iðnþ; n�Þ, the nonzero off-diagonal terms are

ai;j¼�þðnþ�1Þ; for j¼ iðnþ�1;n�Þ; (4.30a)

ai;j¼��ðn��1Þ; for j¼ iðnþ;n��1Þ; (4.30b)

ai;j¼�þðnþþ1;FcÞ; for j¼ iðnþþ1;n�Þ; (4.30c)

ai;j¼��ðn�þ1;FcÞ; for j¼ iðnþ;n�þ1Þ: (4.30d)

The diagonal terms are then given by ai;i ¼ �
P

j�iaj;i.

One of the useful features of the tug-of-war model is that it
allows various biophysical processes to be incorporated into
the model (Posta, D’Orsogna, and Chou, 2009; Newby and
Bressloff, 2010a, 2010b); see also Sec. IV.H.2. For example, a
convenient experimental method for changing the stalling
force (and hence the mode of motor behavior) is to vary the
level of ATP available to the motor complex. At low [ATP]
the motor has little fuel and is weaker, resulting in mode (i)
behavior; then as [ATP] increases and more fuel is available,
mode (ii) behavior is seen until the stall force saturates at high
values of [ATP] where mode (iii) behavior takes over. Thus,
[ATP] provides a single control parameter that tunes the level
of intermittent behavior exhibited by a motor complex. There
are a number of models of the [ATP] and force-dependent
motor parameters that closely match experiments for both
kinesin (Visscher, Schnitzer, and Block, 1999; Schnitzer,
Visscher, and Block, 2000; Fisher and Kolomeisky, 2001;
Mogilner, Fisher, and Baskin, 2001) and dynein (King and
Schroer, 2000; Gao, 2006). It is found that [ATP] primarily
affects the stall force, forward motor velocity, and unbinding
rate. For example, based on experimental data, the forward
velocity may be modeled using Michaelis-Menten kinetics

vfð½ATP�Þ ¼
vmax
f ½ATP�
½ATP� þ Kv

; (4.31)

where vmax
f ¼ 1 	m=s, Kv ¼ 79:23 	M for kinesin, and

vmax
f ¼ 0:7 	m=s, Kv ¼ 38 	M for dynein. (The backward

velocity of both kinesin and dynein is small, vb �

0:006 	m=s, so that the [ATP] dependence can be ne-
glected.) The binding rate is determined by the time neces-
sary for an unbound motor to diffuse within range of the
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microtubule and bind to it, which is assumed to be indepen-
dent of [ATP]. The unbinding rate of a single motor under
zero load can be determined using the [ATP] dependent
average run length Lkð½ATP�Þ ¼ Lmax

k =ð½ATP� þ KuÞ. The

mean time to detach from the microtubule is
vfð½ATP�Þ=Lkð½ATP�Þ so that

�0ð½ATP�Þ ¼
vmax
f ð½ATP� þ KuÞ

Lmax
k ð½ATP� þ KvÞ ; (4.32)

where Lmax
k ¼ 0:86 	m, Ku ¼ 3:13 	M for kinesin, and

Lmax
k ¼ 1:5 	m, Ku ¼ 1:5 	M for dynein. Finally, a model

for the [ATP]-dependent stall force of kinesin is

Fsð½ATP�Þ ¼ F0
s þ ðF

max
s � F0

s Þ½ATP�
Ks þ ½ATP� ; (4.33)

where F0
s ¼ 5:5 pN, Fmax

s ¼ 8 pN, Ks ¼ 100 	M for kine-
sin and F0

s ¼ 0:22 pN, Fmax
s ¼ 1:24 pN, Ks ¼ 480 	M for

dynein.

C. Quasi-steady-state reduction of PDE models

of active transport

Two important quantities characterizing the effectiveness
of motor-driven active transport are the hitting probability
and MFPT to deliver cargo to a specific target within a cell;
see Sec. IV.H. In the case of the three-state model (4.18), in
which the number of internal states of the motor-cargo com-
plex is sufficiently small, it is possible to derive exact ana-
lytical expressions for the MFPTand hitting probability using
Laplace transforms or solving a corresponding system of
backward equations (Benichou et al., 2005; Bressloff and
Newby, 2009). However, if the number of internal velocity
states becomes large, as in the tug-of-war model, then some
form of approximation is needed. This also holds for active
transport in higher spatial dimensions where the direction of
motion is random; see Sec. IV.E. In this section, we review a
quasi-steady-state (QSS) method for reducing equations of
the general form (4.20) to a scalar FP equation under the
assumption that the state transition rates are faster than the
velocity of motile states on an appropriate length scale
(Newby and Bressloff, 2010a, 2010b). Many analyzed such
equations in this regime. For example, Reed, Venakides, and
Blum (1990) used singular perturbation theory to show that
the transport of a chemical along an axon can be analyzed in
terms of an approximate traveling-wave solution of a scalar
advection-diffusion equation for the chemical concentration.
Subsequent work rigorously established the validity of this
scalar reduction for a wide range of PDE models of active
transport (Brooks, 1999; Friedman and Craciun, 2006;
Friedman and Hu, 2007). Recently, Newby and Bressloff
(2010a, 2010b) carried out a QSS reduction of the tug-of-
war model and used this to study the efficiency of intra-
cellular active transport within the context of random inter-
mittent search processes; see also Sec. IV.H. For a more
general discussion of the QSS and projection methods for
reducing the dimensionality of stochastic models, also re-
ferred to as adiabatic reduction, see Gardiner (2009).

The first step in the QSS reduction is to fix the units
of space and time by setting l ¼ 1 and l=v ¼ 1, where
v ¼ maxni¼1vi. This corresponds to nondimensionalizing

Eq. (4.18) by performing the rescalings x! x=l and t!
tv=l. Furthermore, suppose that for the given choice of units
aij ¼ Oð1="Þ, whereasLij ¼ Oð1Þ for some small parameter

"
 1, and set A ¼ "�1Â. Equation (4.18) can then be rewrit-
ten in the dimensionless form (after dropping the hat on Â)

@p

@t
¼ 1

�
ApþLðpÞ: (4.34)

The transition matrix A is assumed to be irreducible and
conservative so that c ¼ ð1; 1; . . . ; 1ÞT is in the null space
N ðATÞ. Moreover, A has one zero eigenvalue and the remain-
ing eigenvalues have negative real part. Let pss 2N ðAÞ and
choose pss so that c Tpss ¼ 1. The next step is to introduce
the decomposition p ¼ upss þ w, where u � c Tp and
c Tw ¼ 0. Thus u is the component of p in the left null space
of A, whereasw is in the orthogonal complement. Multiplying
both sides of Eq. (4.34) by c T yields

@tu ¼ c TLðupss þ wÞ: (4.35)

Substituting p ¼ upss þ w into Eq. (4.34) gives

@twþ ð@tuÞpss ¼ 1

�
Aðwþ upssÞ þLðwþ upssÞ:

Using Eq. (4.35) and the fact thatpss is in the right null space of
A shows that

@tw ¼ 1

�
Awþ ðIn � pssc TÞLðwþ upssÞ; (4.36)

where In is the n� n identity matrix.
Now introduce an asymptotic expansion for w:

w� w0 þ �w1 þ �2w2 þ � � � : (4.37)

Substituting this expansion into Eq. (4.36) and collecting
Oð��1Þ terms gives Aw0 ¼ 0. Since w is in the orthogonal
complement of the left null space of A, it follows that w0 ¼ 0.
Now collecting terms of Oð1Þ yields the equation

Aw1 ¼ �ðIn � pssc TÞLðupssÞ: (4.38)

The orthogonal projection In � pssc T ensures that the
right-hand side of the above equation is in the range of A,
and a unique solution for w1 is obtained by requiring that
c Tw1 ¼ 0. It is convenient to define the mean of an n vector
z with respect to the stationary distribution pss according to
hzi � zTpss Substituting w� "w1 into Eq. (4.35) then yields

@tu ¼ �hvi@xuþ hD0i@2xuþ "
Xn
j¼1

Ljw1;j: (4.39)

From Eq. (4.38) it can be seen that the components of w1 are
linear combinations of @xu and @2xu so that

w1;j ¼ ��j@xuþ qj@
2
xu; (4.40)

where �j and qj, j ¼ 1; . . . ; n are u independent. Collecting

@xu terms in Eq. (4.38) yields an equation for � ¼
ð�1; . . . ; �nÞT ,

A� ¼ �ððhvi � v1Þpss
1 ; . . . ; ðhvi � vnÞpss

n ÞT: (4.41)

The condition c Tw1 ¼ 0 implies that c T� ¼ 0 and hence
there exists a unique solution for �. Likewise the equation for
q is given by
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Aq ¼ �ððhD0i �D0;1Þpss
1 ; . . . ; ðhD0i �D0;nÞpss

n ÞT:
Finally, assuming that the diffusivity D0;j ¼ Oð"Þ and keep-

ing only lowest order terms leads to the scalar FP equation
(Newby and Bressloff, 2010a, 2010b)

@u

@t
¼ �V @u

@x
þD

@2u

@x2
; (4.42)

with

V¼hviþOð"2Þ; D¼hD0iþ"vT�þOð"2Þ: (4.43)

In order to compute the Oð"Þ contribution to D, the rank
deficient equation (4.41) can be solved numerically using the
full singular value decomposition of the matrix A. The proba-
bility density function u is the total probability of being in any
motor state at position x and time t. Suppose that the particle
was initially injected on to the track at x ¼ 0 and �m ¼ pss

m in
Eq. (4.17) so that the initial state lies in the slow manifold.
The initial condition for u is then uðx; 0Þ ¼ �ðxÞ. Similarly,
typical boundary conditions for u on a finite track of length L
will be Vu�D@xujx¼0 ¼ 0 (reflecting) and uðL; tÞ ¼ 0 (ab-
sorbing). These boundary conditions follow from substituting
p ¼ upss þ "w1 into the corresponding boundary conditions
of Eq. (4.34).

QSS reduction of three-state model.—In the case of the
three-state model given by Eq. (4.18), the steady-state proba-
bility distribution is

pss ¼ 1

�

1
�þ
1
��
1
�

0
BBB@

1
CCCA; � ¼ 1

�þ
þ 1

��
þ 1

�
: (4.44)

The resulting two-rank system of equations for the 3-vector
w1, Eq. (4.38), can be solved up to the arbitrary element ½w1�0
using Gaussian elimination:

½w1�
¼�1�hvi
�2
�

@xuþ��

�

; ½w1�0¼�; (4.45)

where

hvi ¼ v

�

�
1

�þ
� 1

��

�
:

� is determined by imposing the condition c Tw ¼ 0:

�� ¼ 1

�2

�
1� hvi
�2þ

� 1þ hvi
�2�

�
@xu: (4.46)

Substituting Eqs. (4.44) and (4.46) into Eq. (4.35) yields the
FP equation (4.42) with [to Oð�2Þ]

D ¼ �D0

�
þ �

�ðv� hviÞ2
��2þ

þ ðvþ hviÞ
2

��2�

�
: (4.47)

QSS reduction of tug-of-war model.—The reduction of the
tug-of-war model presented in Sec. IV.B is more involved
(Newby and Bressloff, 2010a, 2010b). In particular, it is
necessary to compute the vector � by solving Eq. (4.41),
which has the general form A� ¼ b. The standard numerical
method for solving a rank deficient linear system using
singular valued decomposition must be modified slightly.
The Fredholm alternative theorem implies that a solution to

Eq. (4.41) exists but is not unique. In the case of a standard
least squares solution, uniqueness is obtained by requiring the
solution to be orthogonal to the null space of A. However, in
this case a unique solution must be obtained by requiring the
solution be orthogonal to the null space of AT . The following
procedure may be used. Let U	HT ¼ A be a full singular
value decomposition of A. Let z ¼ UTb and y ¼ HT� so that
	y ¼ z. It follows that yi ¼ zi=�i, i ¼ 1; . . . ; n� 1, where
�i are the nonzero singular values of A. The last component
yn is arbitrary since �n ¼ 0. The standard least squares
solution is obtained by setting yn ¼ 0. To determine yn
here, one requires that

P
n
i¼1 �i ¼ 0. Since � ¼ Hy,

�i ¼
Xn�1
j¼1

hijyj þ hinyn; (4.48)

where hij are the components of the matrix H. SinceP
n
i¼1 �i ¼ 0, it follows that

yn ¼ �
P

n
i¼1

P
n�1
j¼1 hijyjP

n
i¼1 hin

: (4.49)

The QSS reduction determines the generic parameters V and
D of the scalar FP equation (4.42) as functions of the various
biophysical parameters of the tug-of-war model. These in-
clude the stall force Fs, the detachment force Fd, the maxi-
mum forward and backward velocities vf and vb, and the

single motor binding and unbinding rates �0 and �0. These in
turn depend on environmental factors such as the concentra-
tion of [ATP] and various signaling molecules; see also
Sec. IV.H.2.

D. Fast and slow axonal transport

Axons of neurons can extend up to 1 m in large organisms
but synthesis of many of its components occurs in the cell
body. Axonal transport is typically divided into three main
categories based upon the observed speed (Sheetz et al.,
1998; Brown, 2003): fast transport (1–9 	m=s) of organelles
and vesicles and slow transport (0:004–0:6 	m=s) of soluble
proteins and cytoskeletal elements. Slow transport is further
divided into two groups; actin and actin-bound proteins are
transported in slow component A while cytoskeletal polymers
such as microtubules and neurofilaments are transported in
slow component B. It had originally been assumed that the
differences between fast and slow components were due to
differences in transport mechanisms, but direct experimental
observations now indicate that they all involve fast motors but
differ in how the motors are regulated. Membranous organ-
elles, which function primarily to deliver membrane and
protein components to sites along the axon and at the axon
tip, move rapidly in a unidirectional manner, pausing only
briefly. In other words, they have a high duty ratio: the
proportion of time a cargo complex is actually moving. On
the other hand, cytoskeletal polymers and mitochondria move
in an intermittent and bidirectional manner, pausing more
often and for longer time intervals, as well as sometimes
reversing direction. Such transport has a low duty ratio.

Neurofilaments are space-filling cytoskeletal polymers
that increase the cross-sectional area of axons, which then
increases the propagation speed of action potentials.
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Radioisotopic pulse-labeling experiments provide information
about the transport of neurofilaments at the population level,
which takes the form of a slowly moving Gaussian-like wave
that spreads out as it propagates distally. Many modeled this
slow transport in terms of a unidirectional mode similar to the
three-state model of Eqs. (4.18) (Blum and Reed, 1989; Reed,
Venakides, and Blum, 1990; Craciun, Brown, and Friedman,
2005). For example, Blum and Reed (1989) considered the
following system on the semi-infinite domain 0 � x <1:

�

�
@p1

@t
� v

@p1

@x

�
¼Xn

j¼1
A1jpj; (4.50a)

�
@pi

@t
¼Xn

j¼1
Aijpj; 1< i � N; (4.50b)

where p1 represents the concentration of moving neurofila-
ment proteins, and pi; i > 1 represent the concentrations in
n� 1 distinct stationary states. Conservation of mass implies
that Ajj ¼ �

P
i�jAij. The initial condition is piðx; 0Þ ¼ 0 for

all 1 � i � n, 0< x <1. Moreover, p1ð0; tÞ ¼ 1 for t > 0.
Reed, Venakides, and Blum (1990) carried out an asymptotic
analysis of Eqs. (4.50) that is related to the QSS reduction
method of Sec. IV.C. Suppose that p1 is written in the form

p1ðx; tÞ ¼ Q�

�
x� utffiffiffi

�
p ; t

�
;

where u is the effective speed, u ¼ vpss
1 =

P
n
j¼1 pss

j , and p
ss is

the steady-state solution for which Apss ¼ 0. They then
showed that Q�ðs; tÞ ! Q0ðs; tÞ as �! 0, where Q0 is a
solution to the diffusion equation

@Q0

@t
¼ D

@2Q0

@x2
; Q0ðs; 0Þ ¼ Hð�sÞ;

with H the Heaviside function. The diffusivity D can be
calculated in terms of v and the transition matrix A. Hence
the propagating and spreading waves observed in experiments
could be interpreted as solutions to an effective advection-
diffusion equation. Recently, Friedman and Craciun (2005,
2006) developed a more rigorous analysis of spreading waves.

In contrast to the above population models, direct obser-
vation of neurofilaments in axons of cultured neurons using
fluorescence microscopy demonstrated that individual neuro-
filaments are actually transported by fast motors but in an
intermittent fashion (Wang et al., 2000; Wang and Brown,
2001). Hence, it was proposed that the slow rate of movement
of a population is an average of rapid bidirectional move-
ments interrupted by prolonged pauses, the so-called stop-
and-go hypothesis (Brown, 2000; Jung and Brown, 2009; Li,
Jung, and Brown, 2012). Computational simulations of an
associated system of PDEs shows how fast intermittent trans-
port can account for the slowly spreading wave seen at the
population level. One version of the model assumes that the
neurofilaments can be in one of six states (Brown, 2000; Li,
Jung, and Brown, 2012): anterograde moving on track (state
a), anterograde pausing on track (a0 state), anterograde
pausing off track (state ap), retrograde pausing on track (state

r0), retrograde pausing off track (state rp), and retrograde

moving on track (state r). The state transition diagram is
shown in Fig. 19.

E. Active transport on microtubular networks

In the case of axonal or dendritic transport in neurons, the

microtubles tend to be aligned in parallel (Goldstein and

Yang, 2000) so that one can treat the transport process as
effectively 1D. On the other hand, intracellular transport

within the soma of neurons and most nonpolarized animal

cells occurs along a microtubular network that projects radi-

ally from an organizing center (centrosome) with outward

polarity (Alberts et al., 2008). This allows the delivery of

cargo to and from the nucleus. Moreover, various animal

viruses including HIV take advantage of microtubule-based

transport in order to reach the nucleus from the cell surface

and release their genome through nuclear pores (Damm and

Pelkmans, 2006; Lagache, Dauty, and Holcman, 2009a). In

contrast, the delivery of cargo from the cell membrane or

nucleus to other localized cellular compartments requires a

nonradial path involving several tracks. It has also been found

that microtubules bend due to large internal stresses, resulting

in a locally disordered network. This suggests that in vivo

transport on relatively short length scales may be similar to

transport observed in vitro, where microtubular networks are

not grown from centrosomes, and thus exhibit orientational
and polarity disorder (Salman et al., 2005; Kahana et al.,

2008). Another example where a disordered microtubular

network exists is within the Drosophila oocyte (Becalska

and Gavis, 2009). Kinesin and dynein motor-driven transport

along this network is thought to be one of the mechanisms for

establishing the asymmetric localization of four maternal

mRNAs, gurken, oskar, bicoid, and nanos, which are essen-

tial for the development of the embryonic body axes.
A detailed microscopic model of intracellular transport

within the cell would need to specify the spatial distribution

of microtubular orientations and polarity, in order to specify

which velocity states are available to a motor-cargo complex

at a particular spatial location. However, a simplified model

can be obtained under the ‘‘homogenization’’ assumption that

the network is sufficiently dense so that the set of velocity

states (and associated state transitions) available to a motor

complex is independent of position. In that case, one can
effectively represent the active transport and delivery of cargo

to an unknown target within the cell in terms of a two- or

three-dimensional model of active transport (Benichou et al.,

2007; Loverdo et al., 2008; Benichou, Loverdo et al., 2011).

This also provides motivation for extending the QSS analysis

of Sec. IV.C to higher dimensions (Bressloff and Newby,

2011).

a ra0
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k off k offk on onk

π
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FIG. 19 (color online). Transition diagram of the ‘‘stop-and-go’’

model for the slow axonal transport of neurofilaments. See text for

definition of different states.
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For simplicity, consider a disordered 2D microtubular net-
work as illustrated in Fig. 20. (The extension to 3D networks
is relatively straightforward.) Suppose that after homogeni-
zation a molecular motor at any point r ¼ ðx; yÞ in the plane
can bind to a microtubule with any orientation �, resulting in
ballistic motion with velocity vð�Þ ¼ vðcos�; sin�Þ and � 2
½0; 2�Þ. If the motor is unbound then it acts as a Brownian
particle with diffusion coefficientD0. Transitions between the
diffusing state and a ballistic state are governed by a discrete
Markov process. The transition rate � from a ballistic state
with velocity vð�Þ to the diffusive state is taken to be inde-
pendent of �, whereas the reverse transition rate is taken to be
of the form �Qð�Þ with R

2�
0 Qð�Þd� ¼ 1. Suppose that at

time t the motor is undergoing ballistic motion. Let
ðXðtÞ; YðtÞÞ be the current position of the searcher and let

ðtÞ denote the corresponding velocity direction. Introduce
the conditional probability density pðx; y; �; tÞ such that
pðx; y; �; tÞdxdyd� is the joint probability in which ðx; y; �Þ<
ðXðtÞ; YðtÞ;
ðtÞÞ< ðxþ dx; yþ dy; �þ d�Þ given that the
particle is in the ballistic phase. Similarly, take p0ðx; y; tÞ to
be the corresponding conditional probability density if the
particle is in the diffusive phase. (For the moment the initial
conditions are left unspecified.) The evolution of the proba-
bility densities for t > 0 can then be described in terms of the
following 2D system of PDEs (Bressloff and Newby, 2011):

@p

@t
¼�r � ½vð�Þp���

�
pðr;�;tÞþ�Qð�Þ

�
p0ðr;tÞ;

(4.51a)

@p0

@t
¼�D0r2p0þ�

�

Z 2�

0
pðr;�0;tÞd�0 ��

�
p0ðr;tÞ:

(4.51b)

In the case of a uniform density,Qð�Þ ¼ 1=ð2�Þ, Eqs. (4.51a)
and (4.51b) reduce to the 2D model considered Benichou
et al. (2007), Loverdo et al. (2008), and Benichou, Loverdo
et al. (2011). In order to carry out a QSS reduction of
Eqs. (4.51a) and (4.51b) (see Sec. IV.C), we have fixed the
units of space and time according to l ¼ 1 and l=v ¼ 1,
where l is again a typical run length. Furthermore, for the
given choice of units, we assumed that there exists a small
parameter �
 1 such that all transition rates are Oð��1Þ, the
diffusivity is Oð�Þ, and all velocities are Oð1Þ.

In the limit �! 0, the system rapidly converges to the
space-clamped (i.e., rp ¼ rp0 ¼ 0) steady-state distribu-
tions ðpssð�Þ; pss

0 Þ where

pss
0 ¼

�

�þ�
�b; pssð�Þ¼�Qð�Þ

�þ�
�aQð�Þ: (4.52)

The QSS approximation is based on the assumption that for
0< �
 1, solutions remain close to the steady-state solu-
tion. Hence,

pðr; �; tÞ ¼ uðr; tÞpssð�Þ þ �wðr; �; tÞ; (4.53)

p0ðr; tÞ ¼ uðr; tÞpss
0 þ �w0ðr; tÞ; (4.54)

where

uðr; tÞ �
Z 2�

0
pðr; �; tÞd�þ p0ðr; tÞ (4.55)

and Z 2�

0
wðr; �; tÞd�þ w0ðr; tÞ ¼ 0: (4.56)

Furthermore, the initial conditions are taken to be

uðr;0Þ¼�ðr�r0Þ; wðr;0Þ¼w0ðr;0Þ¼0; (4.57)

which are equivalent to the following initial conditions for the
full probability densities:

pðr;�;0Þ¼�ðr�r0Þpssð�Þ; p0ðr;0Þ¼�ðr�r0Þpss
0 :

(4.58)

Thus, the initial internal state of the motor [diffusive or
ballistic with velocity vð�Þ] is generated according to the
steady-state distributions pssð�Þ and pss

0 . In other words,

the motor starts on the slow manifold of the underlying
dynamics. If this were not the case, then one would need to
carry out a multiscale analysis in order to take into account
the initial transient dynamics transverse to the slow manifold
(Gardiner, 2009).

Perturbation and projection methods can now be used to
derive a closed equation for the scalar component uðr; tÞ
(Bressloff and Newby, 2011). First integrating Eq. (4.51a)
with respect to � and adding Eq. (4.51b) yields

@u

@t
¼�D0r2p0�hhv �rpii
¼�bD0r2u�ahvi �ru��hhv �rwiiþOð�2Þ; (4.59)

where hfi ¼ R
2�
0 Qð�Þfð�Þd� and hhfii ¼ R

2�
0 fð�Þd� for

any function or vector component fð�Þ. Next, substituting
Eqs. (4.53) and (4.54) into Eqs. (4.51a) and (4.51b) yields

aQð�Þ @u
@t
þ �

@w

@t
¼ �vð�Þ � r½aQð�Þuþ �w�
� �wþ �Qð�Þw0 (4.60)

and

b
@u

@t
þ�

@w0

@t
¼�D0r2ðbuþ�w0Þþ�hwi��w0: (4.61)

Now substitute Eq. (4.59) into Eqs. (4.60) and (4.61).
Collecting terms to leading order in � and using Eq. (4.56)
then gives

w0ðr; tÞ � ab

�þ �
½hvi � ru� (4.62)

(a) (b)

FIG. 20 (color online). Active transport on a disordered micro-

tubular network. (a) Random orientational arrangement of microtu-

bles. (b) Effective 2D random intermittent search in which a particle

switches between diffusion and ballisticmotion in a randomdirection.
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and

wðr; �; tÞ �Qð�Þ
�
½a2ð1þ bÞhvi � avð�Þ� � ru: (4.63)

Finally, substituting Eqs. (4.62) and (4.63) into Eq. (4.59)
yields to Oð�Þ the FP equation

@u

@t
¼ �r � ðVuÞ þ �bD0r2uþ �r � ðDruÞ: (4.64)

The diffusion tensorD has componentsDkl, k ¼ x, y, l ¼ x, y,

Dkl � a

�
ðhvkvli � hvkihvli þ b2hvkihvliÞ; (4.65)

to lowest order in �, while the effective drift velocity is given
by V � ahvi.

In the case of a uniform direction distribution Qð�Þ ¼
1=ð2�Þ, the diffusion tensor reduces to a scalar. This follows
from the fact that vx ¼ v cos�, vy ¼ v sin� so that hvxi ¼
hvyi ¼ hvxvyi ¼ 0 and to leading order

Dxx ¼ av2

2�
¼ Dyy; Dxy ¼ 0: (4.66)

More generally, assuming that Qð�Þ is sufficiently smooth,
we can expand it as a Fourier series,

Qð�Þ¼ 1

2�
þ 1

�

X1
n¼1
½!n cosðn�Þþ!̂n sinðn�Þ�: (4.67)

Assume further that !1 ¼ !̂1 ¼ 0 so there is no velocity
bias, i.e., hvxi ¼ hvyi ¼ 0. Then

Dxx¼av2

�

Z 2�

0
cos2ð�ÞQð�Þd�¼av2

2�
ð1þ!2Þ;

Dyy¼av2

�

Z 2�

0
sin2ð�ÞQð�Þd�¼av2

2�
ð1�!2Þ;

Dxy¼av2

�

Z 2�

0
sinð�Þcosð�ÞQð�Þd�¼av2

2�
!̂2:

(4.68)

It follows that only the second terms in the Fourier series
expansion contribute to the diffusion tensor.

An alternative formulation of transport on disordered mi-
crotubular networks was developed by Kahana et al. (2008)
in terms of random velocity fields (Zumofen, Klafter, and
Blumen, 1990; Ajdari, 1995; Redner, 1997). In order to
describe the basic idea, consider the simplified model ana-
lyzed by Zumofen, Klafter, and Blumen (1990). The latter
model consists of a set of equally spaced parallel tracks along
the say x axis; see Fig. 21. The tracks are assigned random
polarities 
1 with equal probabilities corresponding to
quenched polarity disorder. A particle undergoes a random
walk in the y direction, whereas when a particle attaches to a
certain track it moves ballistically with velocity
1 according
to the track’s polarity. It is assumed that when a particle hops
to a neighboring track it binds immediately. Let XðtÞ denote
the displacement of a random walker in the longitudinal
direction at time t:

XðtÞ ¼
Z t

0
v½yðt0Þ�dt0: (4.69)

Taking the continuum limit in the y direction means that

pðy; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt
p e�y2=4Dt;

where D is the diffusion coefficient, and the velocity field
is � correlated hvðyÞvðy0Þic ¼ v2��ðy� y0Þ. Here averaging
is taken with respect to the quenched polarity disorder and
� is the infinitesimal spacing between tracks. Now consider
the second moment hhX2ðtÞii of the stochastic process aver-
aged with respect to the quenched disorder and realizations of
the random walk:

hhX2ðtÞii ¼ 2
Z t

0
dt1

Z t1

0
dt2hhv½yðt1Þ�v½yðt2Þ�ii; (4.70)

where

hhv½yðt1Þ�v½yðt2Þ�ii¼
Z 1
�1

dy1
Z 1
�1

dy2hvðy1Þvðy2Þic
�pðy2;t2Þpðy1�y2;t1�t2Þ: (4.71)

Using Laplace transforms and the velocity correlation func-
tion,

hh ~X2ðsÞii ¼ 2v2�

s
~pð0; sÞ

Z 1
�1

~pðy; sÞdy; (4.72)

with

~pðy; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4Ds
p e�jyj

ffiffiffiffiffiffiffi
s=D
p

:

Performing the integration with respect to y thus shows that
hh ~X2ðsÞii ¼ v2�D�1=2s�5=2, which upon inverting the Laplace
transform gives

hhX2ðtÞii ¼ 4v2�

3
ffiffiffiffiffiffiffiffi
�D
p t3=2: (4.73)

An equivalent formulation of the problem is to treat hhX2ðtÞii
as the solution to the differential equation (Kahana et al.,
2008)

d2

dt2
hhX2ðtÞii ¼ 2v2�ypð0; tÞ; (4.74)

where �pð0; tÞ is the probability of turn to the origin at time t

within a single lattice spacing �, and pð0; tÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt
p

. In

FIG. 21 (color online). Random velocity model of a microtubular

network with quenched polarity disorder. Particles move ballisti-

cally along parallel tracks in a direction determined by the polarity

of the given track. They also hop between tracks according to an

unbiased random walk.
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conclusion, the random velocity model supports anomalous
superdiffusion in the x direction.

Kahana et al. (2008) extended the above construction to
2D (and 3D) disordered networks where there are parallel
tracks in the x and y directions. The distributions of polarities
are unbiased in both directions. A self-consistent description
of the dynamics is obtained by taking

d2

dt2
hhX2ðtÞii¼2v2�pyð0;tÞ; d2

dt2
hhY2ðtÞii¼2v2�pxð0;tÞ;

(4.75)

where px and py are the probability densities of the x and y

coordinates. From the symmetry of the network, pxð0; tÞ ¼
pyð0; tÞ. Hence, assuming that pxð0; tÞ ¼ ChhX2ðtÞii�1=2 for

some constant C, and setting 
ðtÞ ¼ hhX2ðtÞii gives


1=2 d2

dt2

 ¼ 2Cv2�: (4.76)

It follows that 
ðtÞ � t4=3 so that the diffusion is less en-
hanced than in the case of parallel tracks in one direction.
Finally note that active transport on the randomly oriented
network of Fig. 20 exhibits normal rather than anomalous
diffusion. A major difference from the random velocity
model is that the latter has quenched polarity disorder,
whereas the former has dynamical polarity disorder.

F. Virus trafficking

An interesting example of active transport in 2D or 3D is
given by virus trafficking. An animal virus typically invades a
mammalian cell by first undergoing membrane endocytosis
from the exterior to the interior of the cell. It then has to
navigate the crowded cytoplasm without being degraded in
order to reach a nuclear pore and deliver its DNA to the cell
nucleus (Damm and Pelkmans, 2006). Single-particle track-
ing established the fact that virus trajectories within the
cytoplasm consist of a succession of free or confined diffusion
and ballistic periods involving active transport along micro-
tubules or actin networks (Brandenburg and Zhuang, 2007).
A macroscopic computational model of the trafficking of a
population of viruses was developed based on the law of mass
action, which takes into account cell geometry but neglects
stochastic effects (Dinh, Theofanous, and Mitragotri, 2005;
Dinh et al., 2007). Recently, Holcman and collaborators
(Holcman, 2007; Lagache and Holcman, 2008; Lagache,
Dauty, and Holcman, 2009a, 2009b) developed a stochastic
model of a single virus trafficking inside a cell, which in-
volves reducing an intermittent search model (see Sec. IV.H)
to an effective Langevin equation, and using the latter to
calculate the mean time to reach a nuclear pore based on a
narrow escape problem (see Sec. II.C). The basic structure of
a 2D version of the latter model is shown in Fig. 22.

Following Lagache and Holcman (2008), the cell is treated
as a radially symmetric disk consisting of an annular region of
cytoplasm of outer radius R and inner radius �, surrounding a
central nuclear disk. N microtubules radiate outward from the
nucleus to the cell membrane and are assumed to be distrib-
uted uniformly so that the angle between two neighboring
microtubules is 
 ¼ 2�=N. (A two-dimensional description
of a cell would be reasonable in the case of cultured cells that

are flattened due to adhesion to the substrate.) The motion of
a virus particle alternates between diffusive motion within a

wedge region �̂ subtending an angle 
 at the origin and
binding to one of the two microtubules at the boundary of the
wedge. Suppose that a virus particle starts at some radius
r0 < R and arbitrary angle within such a wedge. Let 
ðr0Þ
denote the MFPT for the particle to bind to a microtubule, and
let �ðr0Þ be the mean radial position on the microtubule.
Suppose that the particle moves with a fixed speed v for a
time T toward the nucleus before being released to a new
position with radius r1 and arbitrary angle within another
wedge. It follows that r1 ¼ �ðr0Þ � vT. Treating the domain

�̂ as an open wedge by ignoring the reflecting boundary at
r ¼ R, it can be shown that if 

 1 then (Lagache, Dauty,
and Holcman, 2009a)


ðr0Þ � r20

2=12D; �ðr0Þ � r0ð1þ
2=12Þ:

The reduction method of Lagache and Holcman (2008) and
Lagache, Dauty, and Holcman (2009a) is to assume that on a
coarse-grained time scale the random intermittent motion of
the virus can be approximated by a Langevin equation with a
radial drift vector:

dr

dt
¼ bðrÞ rjrj þ

ffiffiffiffiffiffiffi
2D
p

d�dt: (4.77)

In order to estimate the drift function bðrÞ, the MFPT 
̂ðr0Þ
for the effective Langevin particle to start at r0 and end at r1 is
calculated using the standard theory of first-passage times
[see Sec. II.B and Redner (2001)], and then compared to

ðr0Þ. First, 
̂ðr0Þ satisfies

Dr2
̂� bðrÞr
̂ ¼ �1;
with boundary conditions

d
̂

dr
ðrÞ ¼ 0; 
̂ðr1Þ ¼ 0:

As a further simplification, it is assumed that bðrÞ varies
slowly with r so that bðrÞ � bðr0Þ, leading to the solution

microtubule

nuclear
pore

FIG. 22 (color online). Diagram of a 2D radially symmetric cell

with radially equidistant microtubles. A virus trajectory is shown

that alternates between ballistic motion along a microtubule and

diffusion of the cytoplasm. Trajectory starts at the cell membrane

and ends at a nuclear pore. From Lagache and Holcman, 2008.
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̂ðr0Þ ¼
Z r0

r1

Z R

v

ue�bðr0Þ½u�v�=D

Dv
dudv:

Assuming that D
 1 the Laplace method can be used
to evaluate the integral with respect to u, giving 
̂ðr0Þ �
ðr0 � r1Þ=bðr0Þ. Finally, setting 
̂ðr0Þ ¼ 
ðr0Þ þ T yields

bðr0Þ ¼ r0 � r1

ðr0Þ þ T

¼ d� r0

2=12

T þ r20

2=12D

: (4.78)

A more detailed calculation of the effective drift function bðrÞ
under less restrictive assumptions can be found in Lagache,
Dauty, and Holcman (2009a).

Having reduced the effective motion of the virus to a
Langevin equation, the probability that the virus arrives at a
nuclear pore before being degraded at a rate k0 can now be
calculated by solving a narrow escape problem. The asso-
cated FP equation takes the form

@p

@t
¼ Drpðr; tÞ � r � bðrÞpðr; tÞ � k0pðr; tÞ2 (4.79)

on the annular region � of Fig. 22, together with the bound-
ary conditions

pðr; tÞ ¼ 0; r 2 @Na;

Jðr; tÞ � n ¼ 0; r 2 @�� @Na:

The boundary @� of the annulus is taken to be reflecting
everywhere except for the surface @Na of the nucleus occu-
pied by nuclear pores, which are taken to be perfect absorb-
ers. Asymptotic analysis then shows that the hitting
probability P and conditional MFPT T are (Lagache and
Holcman, 2008; Lagache, Dauty, and Holcman, 2009a)

P ¼ bð�Þ
bð�Þ þ 2�k0�

; T ¼ 2��

2�k0�þ bð�Þ ; (4.80)

where � ¼ logð1=�Þ with � the fraction of the nucleus cov-
ered by nuclear pores.

G. Exclusion processes

So far we have considered a single molecular motor or
motor and cargo complex moving along a filament track.
However, in practice there could be many active particles
moving along the same track, which could interact with each
other and exhibit some form of collective behavior. This has
motivated a number of studies that model the movement of
multiple motor particles as an asymmetric exclusion process
(ASEP) (Kolomeisky, 1998; Lipowsky, Klumpp, and
Nieuwenhuizen, 2001; Evans, Juhasz, and Santen, 2003;
Klumpp and Lipowsky, 2003; Parmeggiani, Franosch, and
Frey, 2003, 2004; Popkov et al., 2003; Nowak, Fok, and
Chou, 2007a; Pronina and Kolomeisky, 2007). In the simplest
version of such models, each particle hops unidirectionally at
a uniform rate along a 1D lattice; the only interaction between
particles is a hard-core repulsion that prevents more than one
particle occupying the same lattice site at the same time. This
so-called totally asymmetric exclusion process (TASEP) is
combined with absorption and desorption (Langmuir) ki-
netics, in which individual particles can bind to or unbind
from the track; see Fig. 23. The TASEP has become the
paradigmatic model of nonequilibrium stochastic processes,

and a variety of analytical methods have been developed to
generate exact solutions for the stationary state; see Blythe
and Evans (2007), Schadschneider, Chowdhury, and
Nishinari (2010), and Chou, Mallick, and Zia (2011) and
references therein. However, when Langmuir kinetics or
other biologically motivated extensions of TASEP are in-
cluded, it is no longer possible to obtain exact solutions so
that some form of mean-field approximation is required.

1. Asymmetric exclusion process and the hydrodynamic limit

We consider in more detail the system shown in Fig. 23,
which consists of a finite 1D lattice of N sites labeled
i ¼ 1; . . . ; N. The microscopic state of the system is given
by the configuration C that specifies the distribution of iden-
tical particles on the lattice. That is, C ¼ fn1; . . . ; nNg where
each occupation number ni ¼ 1 if the ith site is occupied by a
single particle and ni ¼ 0 if the site is vacant. Exclusion
effects preclude more than one particle at any site. Thus,
the state space consists of 2N configurations. Let P ðC; tÞ
demote the probability of finding a particular configuration
C at time t. The evolution of this probability distribution is
described by a master equation:

dP ðC;tÞ
dt

¼ X
C0�C

½WC0!CP ðC0;tÞ�WC!C0P ðC;tÞ�: (4.81)

The transition rate WC!C0 from configuration C to C0 is
determined from the following set of rules (Parmeggiani,
Franosch, and Frey, 2003): (a) at sites i ¼ 1; . . . ; N � 1, a
particle can jump to site iþ 1 at a unit rate if the latter is
unoccupied; (b) at site i ¼ 1 (i ¼ N), a particle can enter
(exit) the lattice at a rate � (�) provided that the site is
unoccupied (occupied); and (c) in the bulk of the lattice, a
particle can detach from a site at a rate !D and attach to an
unoccupied site at a rate !A.

Rules (a) and (b) constitute a TASEP with open boundary
conditions, whereas rule (c) describes Langmuir kinetics. It
follows that the evolution of the particle densities hnii away
from the boundaries is given by the exact equation

dhnii
dt
¼ hni�1ð1� niÞi � hnið1� niþ1Þi þ!Ah1� nii
�!Dhnii: (4.82)

Here hniðtÞi ¼
P

CniP ðC; tÞ, etc. Similarly, at the boundaries

dhn1i
dt
¼�hn1ð1�n2Þiþ�h1�n1i�!Dhn1i; (4.83a)

dhnNi
dt
¼hnN�1ð1�nNÞiþ!Ah1�nNi��hnNi: (4.83b)

Note that in the absence of any exclusion constraints,
Eq. (4.82) reduces to a spatially discrete version of the

α

βω
ω

D
A

FIG. 23 (color online). Schematic diagram of TASEP with

Langmuir kinetics, in which particles can spontaneously detach

and attach at rates !D and !A, respectively.
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unidirectional PDE equation (4.18a), with pþðni�x; tÞ ¼
hnii, �þ ¼ !D, p0� ¼ !A, and vþ=�x ¼ 1. The goal is to
find a nonequilibrium stationary state for which the current
flux J along the lattice is a constant. It then follows that J has
the exact form

J¼�h1�n1i¼ hnið1�niþ1Þi¼�hnNi; i¼ 1;N�1:

Equations (4.82) and (4.83) constitute a nontrivial many-
body problem, since in order to calculate the time evolution
of hnii it is necessary to know the two-point correlations
hni�1ð1� niÞi. The latter obey dynamical equations involv-
ing three-point and four-point correlations. Thus, there is an
infinite hierarchy of equations of motion. However, progress
can be made by using a mean-field approximation and a
continuum limit in order to derive a PDE for the density of
particles (Evans, Juhasz, and Santen, 2003; Parmeggiani,
Franosch, and Frey, 2004). The mean-field approximation
consists of replacing two-point correlations by products of
single-site averages:

hninji ¼ hniihnji:
Next introduce the infinitesimal lattice spacing � and set
x ¼ k�, �ðx; tÞ ¼ �kðtÞ � hnkðtÞi. The continuum limit is
then defined according to N ! 1 and �! 0 such that the
length of the track L ¼ N� is fixed. (Fix length scales by
setting L ¼ 1.) Expanding �k
1ðtÞ ¼ �ðx
 �; tÞ in powers of
� gives

�ðx
�;tÞ¼�ðxÞ
�@x�ðx;tÞþ 1
2�

2@xx�ðx;tÞþOð�3Þ:
Finally, rescaling the absorption and desorption rates accord-
ing to !A ¼ �A�, !D ¼ �D�, and rescaling time 
 ¼ �t,
Eq. (4.82) becomes to Oð�Þ

@�

@

¼�

2

@2�

@x2
�ð1�2�Þ@�

@x
þ�Að1��Þ��D�: (4.84)

Similarly, Eq. (4.83) reduces to the boundary conditions
�ð0Þ ¼ �, �ð1Þ ¼ 1� �. In the continuum limit the flux
takes the form

Jðx; tÞ ¼ � �

2

@�

@x
þ �ð1� �Þ: (4.85)

Note that it is also possible to extend the mean-field approxi-
mation to ASEP with slowly spatially varying hopping rates,
although now the effective diffusivity in the hydrodynamic
limit depends on the density (Lakatos, O’Brien, and Chou,
2006).

The next step is to find a stationary nonequilibrium state
for which the current J is constant and to determine the
corresponding stationary density profile. This then generates
a phase diagram with respect to the parameters �, � and fixed
�A, �D. In the case of a pure TASEP, the phase diagram can
be calculated explicitly (Krug, 1991; Blythe and Evans,
2007). Set�A ¼ �D ¼ 0 in Eq. (4.84) and consider constant
current solutions Jðx; tÞ ¼ J. Rewrite Eq. (4.85) in the form

@�

@x
¼ � 2

�
ð�� rþÞð�� r�Þ; (4.86)

with

r
 ¼ 1
2½1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4J0

p �: (4.87)

Equation (4.86) is easily integrated from the left-hand bound-
ary, say, to give

½�ðxÞ � rþ� ½�ð0Þ � r��
½�ðxÞ � r�� ½�ð0Þ � rþ� ¼ e�2ðrþ�r�Þx=�; (4.88)

with �ð0Þ ¼ �. The unknown current J is obtained by setting
x ¼ 1 and using the boundary condition �ð1Þ ¼ 1� �. The
stationary density profile can then be constructed explicitly
by carrying out an asymptotic expansion with respect to the
small parameter �. First suppose that J < 1=4 so r
 are real.
Denote the Oð1Þ approximation of the current by J0. If rþ �
1� � so that J0 ¼ �ð1� �Þ and r� � �, then the bulk of
the domain is in a high-density (HD) phase. Since rþ > r� it
follows that �< 1=2. Equation (4.86) implies that the density
profile is flat except for a boundary layer close to x ¼ 0.
Similarly, there exists a low-density (LD) phase when r� �
�, for which J0 ¼ �ð1� �Þ, �þ � ð1� �Þ, and �< 1=2;
there is now a boundary layer at x ¼ 1. Finally, in the case
J > 1=4 (so r
 are complex) one finds that the density profile
consists of a flat region at the center of the domain where � �
1=2 and J0 ¼ 1=4 with boundary layers now at both ends.

Moreover, writing J ¼ 1=4þ �J it can be seen that rþ �
r� ¼ i

ffiffiffiffiffiffiffi
�J
p

. In order to avoid fast spatial oscillations in the
profile (4.88), one requires �J ¼ Oð�2Þ. Carrying out a
perturbation expansion of Eq. (4.85) in powers of � then
establishes that �ðxÞ � 1=2 varies as 1=x as one moves
away from the left-hand boundary. A schematic illustration
of the phase diagram for pure TASEP is shown in Fig. 24.

2. Method of characteristics and shocks

Equation (4.84) is mathematically similar in form to the
viscous Burger’s equation with additional source terms
(Ockendon et al., 2003). Thus, one expects singularities
such as shocks in the density � to develop in the inviscid or
nondissipative limit �! 0þ. This can be investigated more
directly by setting � ¼ 0 in Eq. (4.84), which then takes the
form of a standard quasilinear PDE

α

β

HD

LD MC

1/2

1/2

J =1/4

J =β(1−β)

J =α(1−α)

0

1

1

0

00

FIG. 24 (color online). Mean-field phase diagram for the TASEP

showing the regions of � and � parameter space where the low-

density (LD), high-density (HD), and maximal-current (MC) phases

exist. Schematic illustrations of the density profiles in the various

regions are shown as curves.
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@�

@

þ ð1� 2�Þ @�

@x
¼ �Að1� �Þ ��D�: (4.89)

A well-known method for studying such equations is to
construct characteristic curves x ¼ xð
Þ along which �ð
Þ �
�ðxð
Þ; 
Þ satisfies

d�

d

¼ @�

@

þ dx

d


@�

@

:

Comparison with Eq. (4.89) leads to the characteristic equa-
tions (Kolomeisky et al., 1998; Evans, Juhasz, and Santen,
2003)

dx

d

¼ 1� 2�;

d�

d

¼ �Að1� �Þ ��D�: (4.90)

These equations can be interpreted as kinematic waves that
propagate changes in density that move at a variable speed
1� 2�.

In order to illustrate the basic method of analysis, we return
to a pure TASEP where �A ¼ �D ¼ 0. Equation (4.89) then
simplifies to the kinematic wave equation

@�

@

þ @J0ð�Þ

@x
¼ 0; J0ð�Þ ¼ �ð1� �Þ; (4.91)

and the characteristics become straight lines along which � is
constant. Ignoring boundary effects for the moment, the
density profile at time t is determined by the propagation of
the initial density �ðx; 0Þ along characteristics as illustrated in
Fig. 25. Since higher densities propagate more slowly than
lower densities, an initial linear density profile steepens until
a shock is formed at the points of intersection where pairs of
characteristics meet. In general, a shock propagates with a
speed vS determined by the so-called Rankine-Hugonoit
condition (Ockendon et al., 2003):

vS ¼ J0ð�2Þ � J0ð�1Þ
�2 � �1

¼ 1� �1 � �2; (4.92)

where �1 and �2 are the densities on either side of the shock.
For the particular initial density profile shown in Fig. 25,
�1 ¼ 0 and �2 ¼ 1 so that the shock is stationary (vS ¼ 0).

The possibility of stationary shocks reflects the fact that the
current J0ð�Þ ¼ �ð1� �Þ has a maximum, which means that
two different densities can have the same current on either
side of the shock.

The method of characteristics and kinematic wave theory
yields insights into the dynamics underlying the formation of
the various stationary phases shown in Fig. 24 (Krug, 1991;
Kolomeisky et al., 1998; Blythe and Evans, 2007). The basic
idea is to consider kinematic waves propagating from the left-
hand and right-hand boundaries, respectively, which act as
particle reservoirs with corresponding densities �ð0Þ ¼ � and
�ð1Þ ¼ 1� �. A kinematic wave propagates from the left-
hand (right-hand) boundary with speed 1� 2� ð2�� 1Þ.
Hence, if �< 1=2, �< 1=2, both waves propagate into the
interior of the domain and meet somewhere in the middle to
form a shock that propagates with speed vS ¼ �� �. If �>
� then the shock moves to the right-hand boundary and the
bulk of the domain is in a LD state with � � �< 1=2. On the
other hand, if �< � then the shock moves to the left-hand
boundary and the bulk of the domain is in a HD state with
� � 1� �> 1=2. Note that the line separating the HD and
LD phases, � ¼ �< 1=2, is a coexistence line. The system
consists of a low-density region separated from a high-density
region by a shock. Once higher order dissipative effects are
included, this shock diffuses freely between the ends of the
domain, so that the average density profile is linear. In the
case �> 1=2 or �> 1=2, the kinematic wave associated
with that boundary does not propagate into the interior so
that the density associated with the other boundary domi-
nates. Finally, if both �> 1=2 and �> 1=2 then the steady-
state bulk solution has the maximal-current density �m ¼
1=2. In order to show this, and to determine how bulk
solutions match the boundary conditions, it is necessary to
include dissipation effects as in the previous section.

The above analytical arguments can be extended to the full
molecular motor model that combines TASEP with Langmuir
kinetics (Evans, Juhasz, and Santen, 2003; Parmeggiani,
Franosch, and Frey, 2003, 2004). When �A, �D � 0 the
characteristics are curves in the x-t plane. For example,
consider the propagation of density fluctuations along a
characteristic starting at the left boundary with � ¼
� < 1=2 and �<K=ðK þ 1Þ, whereK ¼ �A=�D. It follows
from Eq. (4.90) that initially the fluctuation propagates along
the characteristic with decreasing speed and increasing den-
sity. If K=ð1þ KÞ< 1=2 then � will approach the constant
value � ¼ K=ðK þ 1Þ and the speed approaches a constant
value. However, if K=ð1þ KÞ> 1=2 then after a finite time
the density reaches � ¼ 1=2 and propagation ceases. A simi-
lar analysis holds for characteristics propagating from the
right boundary. Furthermore, characteristics propagating
from opposite boundaries can again intersect, implying multi-
valued densities and thus a breakdown of the quasilinear
equation. The resulting shock has the same wave speed as
pure TASEP. Of particular interest are stationary solutions for
which the current J ¼ �ð1� �Þ is constant so that any shock
solution is stationary (vS ¼ 0). To a first approximation, these
can be obtained by finding steady-state solutions of the mean-
field equation (4.89):

ð1� 2�Þ @�
@x
��D½K � ð1þ KÞ�� ¼ 0: (4.93)

x

t shock

ρ = 1
ρ = 0
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1
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FIG. 25. Formation of a shock for Eq. (4.91). The characteristics

are straight lines of speed 1� 2� with � constant along a character-

istic. The initial density profile evolves into a stationary shock

solution.
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The occurrence of stationary shocks is consistent with the
observation that this is a first-order ODE but there are two
boundary conditions. One thus proceeds by integrating from
the left boundary where �ð0Þ ¼ � to obtain a density profile
�LðxÞ and then integrating from the right boundary where
�ð1Þ ¼ 1� � to obtain a second density profile �RðxÞ. The
full solution is constructed by matching the two profiles at a
shock whose position also has to be determined. If the shock
lies outside the unit interval, then it is necessary to include at
least one boundary layer. A detailed analysis of the steady-
state solutions with coexisting low- and high-density phases,
and the corresponding phase diagram with respect to the
parameters (�, �, �D, and �A) can be found in Evans,
Juhasz, and Santen (2003) and Parmeggiani, Franosch, and
Frey (2004). If the effects of dissipation are also taken into
account then the sharp interfaces and boundary layers become
smooth fronts of size Oð1=�Þ.

3. mRNA translation by ribosomes

One of the first examples of a TASEP model in biology was
proposed by Gibbs and collaborators in their study of the
translation of mRNA by ribosomes during protein synthesis
(MacDonald, Gibbs, and Pipkin, 1968; MacDonald and
Gibbs, 1969). Proteins are macromolecules formed from
chains of amino acids, and the blueprint for how these
proteins are synthesized is contained in the DNA of the cell
nucleus. Protein synthesis involves two stages: transcription
of genetic information from DNA to mRNA by RNA poly-
merase, and translation from mRNA to proteins through
ribosome translocation. The mRNA carries genetic informa-
tion, encoded as triplets of nucleotides known as codons.
Since there are four nucleotides (A, U, C, G), there are 64
distinct codons, e.g., AUG, CGG, most of which code for a
single amino acid. The process of translation consists of
ribosomes moving along the mRNA without backtracking
(from one end to the other, technically known as the 5’ end
to the 3’ end) and is conceptually divided into three major
stages: initiation, elongation, and termination. Each elonga-
tion step invokes translating or reading of a codon and the
binding of a freely diffusing transfer RNA (tRNA) molecule
that carries the specific amino acid corresponding to that
codon. The basic translation machinery is illustrated in
Fig. 26.

The simplest model of translation is a pure TASEP.
However, as originally highlighted by MacDonald, Gibbs,
and Pipkin (1968) and MacDonald and Gibbs (1969) and
recently reviewed by Chou, Mallick, and Zia (2011) and Zia,
Dong, and Schmittmann (2011), this considerably oversim-
plifies the biology. For example, ribosomes are large mole-
cules so that they extend over several codons or lattice sites
(around l ¼ 12); see Fig. 27. In order to extend TASEP to
multisite particles, it is first necessary to specify the rules for
entry and exit of a ribosome. One possibility is ‘‘complete
entry, incremental exit,’’ which assumes that a ribosome
enters completely provided the first l lattice sites are vacant,
whereas it exits one step at a time (Chou and Lakatos, 2003).
Inclusion of extended objects considerably complicates the
analysis even though the basic structure of the phase diagram
is preserved (Chou and Lakatos, 2003; Shaw, Zia, and Lee,
2003). In contrast to pure TASEP, no exact solution currently

exists, although mean-field approximations provide useful in-

sights. A second biologically motivated modification of

TASEP is to include site-dependent hopping rates

(Kolomeisky, 1998; Chou and Lakatos, 2004; Dong,

Schmittmann, and Zia., 2007; Foulaadvand, Kolomeisky,

and Teymouri, 2008). This is motivated by the fact that the

local hopping rate depends on the relative abundance of spe-

cific amino-acid carrying tRNA. Using a combination of

Monte Carlo simulations and mean-field theory it can be

shown, for example, that two defects (regions of slow hopping

rates) decrease the steady-state current more when they are

close to each other. Finally, note that a number of researchers

have developed models that take into account intermediate

steps in the translocation of a ribosome along the mRNA,

including the binding of tRNA to the ribosome and hydrolysis

(Reichenbach, Franosch, and Frey, 2006; Basu and

Chowdhury, 2007; Garai, Chowdhury, and Ramakrishnan,

2009; Ciandrini, Stansfield, and Romano, 2010).

H. Motor transport and random intermittent search processes

So far we have considered models of motor-driven intra-

cellular transport without any reference to the process

whereby the cargo or load carried by one or more motors is

delivered to the correct location within a cell. It is unlikely

that a target is selected according to where a microtubular

track terminates, since a cargo could be released from its

associated motors at any point along the track. Moreover,

targeted delivery probably uses the same microtubular ‘‘high-

way’’ as more general, nontargeted intracellular trafficking. It

would also be difficult to establish global chemical concen-

tration gradients aimed at guiding a motor-driven cargo to a

specific target, as such signals would be drowned out by the

many other signals originating from additional intracellular

targets. Therefore, instead of thinking of motor-driven cargo

transport as a direct path to a given target, the random

intermittent motion of motor-driven cargo observed in experi-

ments suggests that the cell maintains a distribution of mobile

cargo throughout its interior, and that delivery of a cargo to a

specific target is a stochastic process (Loverdo et al., 2008;

FIG. 26 (color online). Diagram showing how the translation of

the mRNA and the synthesis of proteins is made by ribosomes.

[From LadyofHats (Public domain), via Wikimedia Commons.
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Bressloff and Newby, 2009; Newby and Bressloff, 2010b).

Some of the molecular mechanisms that cause a cargo to

attach or detach from a molecular motor have been identified

(Goldstein, Wang, and Schwarz, 2008). In most cases, a

protein dissolved in the cytosol reacts with an adaptor protein

that binds a cargo to the motor, causing the cargo to be

released. However, when a cargo is pulled at a relatively

high velocity it does not have much time to explore local

space and is therefore much less likely to participate in such a

reaction. Therefore, one possible interpretation of the fre-

quent pauses observed during motor transport is that it pro-

vides a mechanism to improve the reaction kinetics required

to localize the cargo to its target by giving it more time to

explore local space. This then leads to a simple model of

cargo delivery in which there are transitions of the internal

state of the motor complex between directed movement states

and stationary or slowly diffusing searching states. If the

transitions between these states are governed by chemical

reactions under the influence of thermodynamic fluctuations,

then the model becomes a random intermittent search

process.
Random search has recently been used to model a wide

range of problems (Benichou, Loverdo et al., 2011), includ-

ing the behavior of foraging animals (Bell, 1991;

Viswanathan et al., 1999, 2011; Benichou et al., 2005)

and the active transport of reactive chemicals in cells

(Loverdo et al., 2008; Bressloff and Newby, 2009). The

facilitated diffusion of protein-DNA interactions can also be

thought of as a random intermittent search process; see

Sec. II.E. Random intermittent search falls within a class of

random processes characterized by a particle with both an

‘‘internal’’ and ‘‘external’’ state. The external state typically

represents the spatial location or position of the particle, and

one or more boundary conditions may apply to the process

that represents the physical domain in which it moves. The

motion of the particle depends on its internal state, which can

be continuous but is usually discrete. For example, the tug-of-

war model from Sec. IV.B is a process where the position, or

external state, changes deterministically at a constant veloc-

ity, while the velocity depends upon the discrete internal

state, the randomly changing number of motors bound to

the microtubule. In general, the external state need not change

deterministically, but could also fluctuate. For example, one

could include diffusion of the cargo and add a continuous

noise term whose amplitude depends on the internal state.
In order to formulate motor-cargo transport as a random

intermittent search process, consider a single particle moving

on a 1D track of length L as shown in Fig. 28. In contrast to

the models considered in Secs. IV.A–IV.G,, we now assume

that there exists a hidden target of width 2l centered at X
within the interior of the domain. We also assume that if the

particle is within range of the target and is in a slowly moving

search state then it can ‘‘find’’ the target at a rate k. Within the
context of motor-driven cargo transport, it is assumed that
when the target is found the particle is immediately removed
from the system, that is, the cargo (with or without its
associated set of molecular motors) is delivered to the target.
Hence, the target is treated as a partially absorbing trap. One
possible application of a 1D model would be to vesicular
transport along the axons and dendrites of neurons, where
microtubules are aligned in parallel with the (þ) end oriented
away from the cell body. (In the case of dendritic domains
close to the cell body, the polarities may be randomly dis-
tributed.) The hidden target could then be a synapse, an
intracellular compartment such as an endosome, or the
growth cone of an elongating axon; see Sec. IV.D. In general,
the transport process is expected to be biased, with newly
synthesized macromolecules transported away from the cell
body (anterograde transport) while products requiring degra-
dation are transported back to the cell body (retrograde
transport).

It is straightforward to incorporate a hidden target into the
general n-state PDE model (4.20) of a motor complex moving
in a 1D domain by taking

@p

@t
¼ ApþLðpÞ; (4.94)

where A 2 Rn�n again specifies the transition rates between
each of the n internal motor complex states, and the diagonal
operator L now has the modified form

Lj ¼ ½�vj@x þD0;j@
2
x þ kj�ðx� XÞ�: (4.95)

As before, vj is the velocity of internal state j and D0;j is the

corresponding diffusivity. The additional term takes into
account the probability flux into the target with kj the rate

for internal state j and � is the indicator function

�ðxÞ ¼
	 1; ifjxj< l;

0; otherwise:
(4.96)

In general kj will only be nonzero for a subset of states. For

example, in the three-state model of Eqs. (4.18), kj ¼ k�j;0;

that is, the unbound stationary or diffusing state is identified
as the search state.

In the case of the more biophysically realistic tug-of-war
model (see Sec. IV.B), the identification of the search states is
more complicated. The simplest scenario is that the cargo

α
β

FIG. 27 (color online). A TASEP with extended particles of size

l ¼ 3.

target

motor-cargo
complex

microtubule

+

l

x=0

kv

F

FIG. 28 (color online). A motor-cargo complex performing a

random intermittent search for a hidden target on a one-dimensional

track of length L. The motor-cargo complex is transported along a

microtubule by two populations of molecular motors with opposing

directional preferences. When equal numbers of each type of motor

are bound to the microtubule, the motor-cargo complex is in a

slowly moving search state and can find the target provided that it

lies within the target domain of width 2l centered at x ¼ X. Target
detection rate is k.
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locates its target after it becomes fully detached from the
microtubule and diffuses within distance of its target, where it
binds to scaffolding proteins and is separated from its mo-
lecular motors. However, if many molecular motors are
bound to the cargo, the waiting time between diffusive
searching events can be too large to reliably deliver the cargo.
Moreover, if the cargo is large so that its diffusivity is low or
the cargo is moving through a crowded and confined domain,
diffusive motion may be restricted, preventing the cargo from
reaching the target. Another possibility is that subcellular
machinery is present to detach the cargo from its motors or
inhibit the activity of the motors so that scaffolding proteins
can bind to and sequester the cargo. Delivery then changes
from a diffusion-limited reaction to a waiting time that
depends on a reaction occurring between the motor-cargo
complex and biomolecules (either freely diffusing or an-
chored) local to the target while it is moving along the
microtubule. If details of the localization mechanism are
unknown then the simplest model is to assume that this
waiting time is approximately exponential and to associate
a target detection rate kj with each motor state. The model

can be simplified further by assuming that detection is un-
likely while only one species of motors is engaged and pull-
ing the cargo at its maximum (forward or backward) velocity.
This suggests assigning a single target detection rate k to
those states that have sufficiently low speeds (Newby and
Bressloff, 2010c). Thus, kðnþ;n�Þ ¼ k
ðvh � vðnþ; n�ÞÞ,
where vðnþ; n�Þ denotes the velocity when nþ kinesin and
n� dynein motors are attached to the track and vh is a
velocity threshold.

The efficiency of a given search process can be character-
ized in terms of two important quantities. The first is the hitting
probability � in which a particle starting at x0 at time t ¼ 0
finds the target; that is, the particle is absorbed somewhere
within the domain X � l � x � X þ l. The second is the
conditional MFPT T for the particle to find the target given
that it is eventually absorbed by the target. Let JðtÞ denote the
probability flux due to absorption by the target at X,

JðtÞ ¼Xn
j¼1

kj
Z Xþl

X�l
pjðx; tÞdx; (4.97)

wherewe have suppressed the initial conditions. It follows that

� ¼
Z 1
0

JðtÞdt; T ¼
R1
0 tJðtÞdtR1
0 JðtÞdt : (4.98)

In the case of the three-state model, it is possible to calculate
these quantities directly from the system of PDEs (4.94)
(Benichou et al., 2005, 2007; Bressloff and Newby, 2009;
Benichou, Loverdo et al., 2011). For more complicated
models, the QSS reduction technique presented in Sec. IV.C
can be used to reduce the system of PDEs to a scalar FP
equation. The target detection terms then lead to an inhomoge-
neous term in the reduced FP equation:

@u

@t
¼ � @

@x
ðVpÞ þ @

@x

�
D
@u

@x

�
� ��ðx� XÞu; (4.99)

with � ¼ P
n
j¼1 kjpss

j , and the vector pss
j is the space-clamped

steady-state distribution (see Sec. IV.C). For the three-state
model,

� ¼ kpss
0 ¼ k

�
1=�

1=�þ þ 1=�� þ 1=�

�
: (4.100)

There are then three effective parameters that describe the
random search process: the drift V, the diffusivity D, and the
target detection rate �. Each of these parameters are them-
selves functions of the various cargo velocities, transition
rates, and target detection rates contained in the full model.
The hitting probability andMFPTare still given by Eqs. (4.98)
except that now the flux is

JðtÞ ¼ �
Z Xþl

X�l
uðx; tÞdx: (4.101)

1. Mean-field model

Further simplification can be obtained by considering a
population of searchers and taking a mean-field limit
(Bressloff and Newby, 2012). That is, consider N indepen-
dent, identical searchers that all start at the origin at time
t ¼ 0. Each searcher evolves according to the system of
PDEs (4.94) or the corresponding FP equation (4.99).
Denote the FPT to find the target of the jth searcher by Tj,

j ¼ 1; . . . ; N, with each Tj an independent, identically

distributed random variable drawn from the single-searcher
first-passage time distribution Fð1ÞðtÞ ¼ R

t
0 JðsÞds. The ran-

dom time T to fill the trap is then given by T ¼
minðT1; T2; . . . ; TNÞ, and the distribution for T is

FðNÞðtÞ ¼ ProbðT < tÞ ¼ 1� ProbðT > tÞ
¼ 1� ProbðT1 > t; T2 > t; . . . ; TN > tÞ
¼ 1� ½1� Fð1ÞðtÞ�N:

Furthermore, suppose that the rate of detection for a single
searcher in internal state j scales as kj ¼ �j=N with �j

independent of j. Set JðtÞ ¼ J0ðtÞ=N with JðtÞ given by
Eq. (4.94). It follows that

FðNÞðtÞ ¼ 1�
�
1� �

N

Z t

0
J0ðsÞds

�
N
: (4.102)

In the limit N ! 1, the detection rates kj ! 0 so that the

probability density functions pjðx; tÞ decouple from the tar-

get. Moreover, taking the large N limit shows that the FPT
distribution for a population of identical searchers is

F1ðtÞ � lim
N!1F

ðNÞðtÞ ¼ 1� e�	ðtÞ; (4.103)

with

	ðtÞ ¼
Z t

0
J0ðsÞds ¼

Xn
j¼1

�j

Z t

0

Z Xþl

X�l
pjðx; sÞdxds:

(4.104)

The corresponding hitting probability that at least one particle
finds the target in the mean-field limit is

� ¼ lim
t!1F1ðtÞ ¼ 1� e�	ð1Þ: (4.105)

Thus, �< 1 if 	ð1Þ<1. The corresponding conditional
MFPT is
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T ¼
R1
0 t	0ðtÞe�	ðtÞ
1� e�	ð1Þ

: (4.106)

Combining the mean-field approximation with the QSS
reduction leads to the FPT distribution (4.103) with

	ðtÞ ¼ �̂
Z t

0

Z Xþl

X�l
uðx; sÞdxds (4.107)

and �̂ ¼ P
n
j¼1 �jp

ss
j . Here uðx; tÞ is the solution to the FP

equation (4.99) with � ¼ 0. On a semi-infinite domain with a
reflecting boundary at the origin, the method of images can
then be used to obtain the explicit solution

uðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
�Dt
p e�ðx�VtÞ2=4Dt � V

2D
exV=Derfc

�
xþ Vt

2
ffiffiffiffiffiffi
Dt
p

�
:

(4.108)

Unfortunately, it is not possible to derive an explicit
analytical solution for 	ðtÞ, although the integral expressions
can be evaluated numerically. Nevertheless, it is possible to
determine the hitting probability � and the large-time be-
havior of the waiting time density f1ðtÞ ¼ dF1ðtÞ=dt under
the approximation l
 X for which

	ðtÞ ¼ c
Z t

0
uðX; sÞds; c ¼ 2l�̂: (4.109)

First taking the Laplace transform of uðx; tÞ gives (Bressloff
and Newby, 2012)

~uðx; sÞ ¼ e�½�ðsÞ�V=2D�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sD
p

�
2� V

D

1

�ðsÞ þ V=2D

�

with

�ðsÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV=DÞ2 þ 4s=D

q
: (4.110)

Assuming that l
 X, it follows that

	ð1Þ � 2l�̂ lim
s!0

~uðX; sÞ ¼ c

V
: (4.111)

Thus the corresponding hitting probability �< 1 for V > 0
and� ¼ 1 for V ¼ 0 (pure diffusion). Second, the large-time
behavior of the waiting time density can be obtained by using
the following asymptotic expansion of the complementary
error function:

erfcðzÞ ¼ e�z2ffiffiffiffi
�
p

z

�
1� 1

2z2
� � �

�
:

Applying this to Eq. (4.108) with z ¼ ðxþ VtÞ=ð2 ffiffiffiffiffiffi
Dt
p Þ �

V
ffiffi
t
p

=ð2 ffiffiffiffi
D
p Þ for large t and V > 0 leads to the approximation

uðX; tÞ � 2c
ffiffiffiffi
D
p

V2
ffiffiffiffiffiffiffiffi
�t3
p e�V2t=4D; (4.112)

which is independent of target location X. Substituting this
expression into Eq. (4.109) gives

	ðtÞ �	ð1Þ � 2c

V
ffiffiffiffi
�
p

�
4D

tV2

�
3=2

e�V2t=4D: (4.113)

On the other hand, for V ¼ 0,

	ðtÞ ¼ c
Z t

0

1ffiffiffiffiffiffiffiffiffiffi
�Dt
p e�X2=4Dt � 2c

ffiffiffiffiffiffiffiffiffiffiffiffi
t=�D

p
; (4.114)

assuming that e�X2=4Dt � 1 for large t. The large-time asymp-
totic approximation for 	ðtÞ determines how the waiting time
density f1ðtÞ scales with time. For V ¼ 0,

f1ðtÞ / t�1=2e�ĉ
ffiffi
t
p
; (4.115)

with ĉ ¼ 2c=
ffiffiffiffiffiffiffiffi
�D
p

, and for V > 0

f1ðtÞ / t�1=2e�V2t=4D: (4.116)

For illustration, consider the three-state model of
Eqs. (4.18), for which V, D, and � are given by Eqs. (4.47)
and (4.100). In the case of a single random intermittent
searcher on a finite track of length L with reflecting boundary
conditions at both ends x ¼ 0, L (so that � ¼ 1) and un-
biased transport (�þ ¼ �� ¼ �), it can be shown that there
exists an optimal search strategy in the sense that there exists
a unique set of transition rates �, � for which the MFPT is
minimized (Benichou et al., 2005, 2007; Benichou, Loverdo
et al., 2011). On the other hand, for directed intermittent
search (�þ >��) on a semi-infinite domain or a finite
domain with an absorbing boundary at x ¼ L (so that
�< 1), a unique optimal strategy no longer exists
(Bressloff and Newby, 2009; Newby and Bressloff, 2010b).
One finds that a similar situation holds if there is a population
of N independent searchers (Bressloff and Newby, 2012).
First consider an unbiased random intermittent search process
in the mean-field population model, for which N ! 1 and
�þ ¼ �� ¼ � (V ¼ 0). In Fig. 29(a) the MFPT is plotted as
a function of (i) the average duration of the search phase 1=�,
and (ii) the average duration of the ballistic phase 1=�. In
both cases there exists a minimum MFPT for a particular
choice of �, � consistent with the single-searcher regime.

Next consider how the search process changes as more
searchers are added. In particular, the first-passage time
density is approximated by Monte Carlo simulations for
different values of N, and the results are compared to the
analytical mean-field results. This illustrates how the single-
searcher process (N ¼ 1) is related to the mean-field popu-
lation search process (N ! 1). In Fig. 29(b) the unbiased
case is shown. The most significant difference is found in the
large-time behavior, with power-law scaling t�3=2 for the
single search and the so-called stretched exponential scaling

e�ĉ
ffiffi
t
p

[see Eq. (4.115)] for the mean-field N ! 1 limit. A
similar plot showing the first-passage time density for
a biased search (�þ <�� so that V > 0) is shown in
Fig. 29(c). In this case, adding more searchers has little
qualitative effect on the first-passage time density, each
case having the same exponential large-time scaling [see
Eq. (4.115)]. In both cases, the results show that adding
more searchers decreases the mean search time and the
variance. The analysis of the mean-field model showed that
the hitting probability is less than unity when the velocity bias
is positive (i.e., when �þ <�� so that V > 0). In Fig. 29(d),
the MFPT is plotted against the hitting probability for differ-
ent values of N. Each curve is parametrized by �þ, the rate
of leaving the forward-moving state, with 0<�þ <��.
By changing the value of �þ, any hitting probability can be
achieved. As �þ ! �� the searcher’s motion becomes
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unbiased, and the hitting probability increases to unity.

However, as the searchers become more unbiased the

MFPT also increases, in other words, an optimal search

strategy no longer exists. Analytical results for the single-

searcher case (N ¼ 1) and the mean-field limit (N ¼ 1) are
shown as solid curves and to connect the two, averaged

Monte Carlo simulations are shown (as dots) for different

values of N ¼ 1, 2, 3, 4, and 25 (each dot is colored in gray

scale from N ¼ 1 to N ¼ 25). Ten different sets of

Monte Carlo simulations are run corresponding to ten differ-

ent values of �þ, and in each set the hitting probability

decreases and the MFPT increases as more searchers are

added.

2. Local target signaling

In the case of directed intermittent search there is a playoff

between minimizing the MFPT and maximizing the hitting

probability. One way to enhance the efficiency of the search

process would be for the target to generate a local chemical

signal that increases the probability of finding the target

without a significant increase in the MFPT. This issue was

recently explored using the QSS reduction of the tug-of-war
model (Newby and Bressloff, 2010b, 2010c). Two potential
signaling mechanisms were considered, the second of which
we review in more detail here. The first was based on the
observation that the stall force and other single motor pa-
rameters are strongly dependent on the level of [ATP]; see
Sec. IV.B. Since ATP concentration ([ATP]) is heavily buf-
fered, a small region of intense ATP phosphorylation around a
target could create a sharp, localized [ATP] gradient, which
would significantly slow down a nearby motor complex, thus
increasing the chances of target detection. The second signal-
ing mechanism involved microtubule associated proteins
(MAPs). These molecules bind to microtubules and effec-
tively modify the free energy landscape of motor-microtubule
interactions (Tokuraku et al., 2007; Telley, Bieling, and
Surrey, 2009). For example, tau is a MAP found in the
axon of neurons and is known to be a key player in
Alzheimer’s disease (Kosik, Joachim, and Selkoe, 1986).
Another important MAP, called MAP2, is similar in structure
and function to tau, but is present in dendrites (Shaft-Zagardo
and Kalcheva, 1998); MAP2 has been shown to affect den-
dritic cargo transport (Maas et al., 2009). Experiments have
shown that the presence of tau or MAP2 on the microtubule
can significantly alter the dynamics of kinesin, specifically by
reducing the rate at which kinesin binds to the microtubule
(Vershinin et al., 2007). Moreover, the tau- and MAP2-
dependent kinesin binding rates have the same form (Seitz
et al., 2002). It has also been shown that, at the low tau
concentrations affecting kinesin, dynein is relatively unaf-
fected by tau (Dixit et al., 2008).

Newby and Bressloff (2010c) modeled the effects of tau by
introducing into the tug-of-war model the tau concentration-
dependent kinesin binding rate (see Sec. IV.B)

�0ð
Þ ¼ �max
0

1þ e��ð
0�
Þ
; (4.117)

where 
 is the dimensionless ratio of tau per microtubule
dimer and �max

0 ¼ 5 s�1. The remaining parameters are

found by fitting the above function to experimental data
(Vershinin et al., 2007), so that 
0 ¼ 0:19 and � ¼ 100.
Carrying out the QSS reduction of the tug-war-model then
leads to the FP equation (4.99) with 
-dependent drift V,
diffusivity D, and capture rate � as illustrated in Fig. 30. The
most significant alteration in the behavior of the motor com-
plex is the change in the drift velocity V as a function of 
.
The drift velocity switches sign when 
 is increased past a
critical point. That is, by reducing the binding rate of kinesin,
the dynein motors become dominant, causing the motor
complex to move in the opposite direction. The effects of
local changes in 
 concentration on the efficiency of random
search can now be determined by assuming that within range
of the target jx� Xj< l, and 
 ¼ 
1 > 
0, whereas 
 ¼ 
0
outside the target jx� Xj> l. Carrying out the QSS
reduction of the tug-of-war model then leads to the FP
equation (4.99) with x-dependent drift and diffusivity:

VðxÞ¼V0þ�V�ðxÞ; DðxÞ¼D0þ�D�ðxÞ; (4.118)

where �ðxÞ is the indicator function defined in Eq. (4.96),
V0 ¼ Vð
0Þ, D0 ¼ Dð
0Þ, �V ¼ Vð
1Þ � V0, and �D ¼
Dð
1Þ �D0. Solving the piecewise-continuous FP equation
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FIG. 29. (a) Unbiased ð�þ ¼ �� ¼ �Þ random intermittent

search in the mean-field population model. The MFPT vs (i) the

average search time 1=� with � ¼ 1=� and (ii) the average duration

1=� of the moving (forward and backward) state with � ¼ 2=�.
Each curve has a minimum MFPT for a given value of � and �.

Parameter values used are � ¼ 0:1, k ¼ 5=N, X ¼ 50, and l ¼ 0:25.
(b) First-passage time density for an unbiased search with the same

parameters as (a). The solid curve shows the analytical density

function in the mean-field limit and the remaining curves are

histograms obtained from 104 Monte Carlo simulations for different

numbers of searchers N. (c) Corresponding first-passage time

density for a biased search with � ¼ 1=�, �þ ¼ 1=�, �� ¼ 2=�,

� ¼ 0:1, k ¼ 5=N, X ¼ 50, and l ¼ 0:25. (d) The MFPT vs hitting

probability for population model. Each curve is parametrized by

0 � �þ � ��. Analytical results are shown as lines, with the single
searcher in gray and the mean-field limit (N ¼ 1) in black.

Averaged Monte Carlo simulations (104 simulation each) are shown

as symbols, sets ranging from gray to black, with a different value of

N used in each set. From gray to black there are six sets of

simulations with N ¼ 1, 2, 3, 4, 5, and 25, respectively.

Parameter values are the same as (c).
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then determines the hitting probability � and MFPT T as

functions of 
1 for fixed 
0. In Fig. 31, the hitting probability

� and the MFPT T are plotted as a function of 
1. As 
1 is
increased above the critical level 
0 ¼ 0:19, there is a sharp

increase in � but a relatively small increase in the MFPT,

confirming that 
 can improve the efficacy of the search

process.
Another interesting effect of a local increase in 
 is that it

can generate stochastic oscillations in the motion of the motor

complex (Newby and Bressloff, 2010c). As a kinesin driven

cargo encounters the tau-coated trapping region the motors

unbind at their usual rate and cannot rebind. Once the dynein

motors are strong enough to pull the remaining kinesin

motors off the microtubule, the motor complex quickly tran-

sitions to (�) end directed transport. After the dynein-driven

cargo leaves the tau-coated region, kinesin motors can then

reestablish (þ) end directed transport until the motor com-
plex returns to the tau-coated region. This process repeats
until the motor complex is able to move forward past the tau-
coated region. Interestingly, particle tracking experiments
have observed oscillatory behavior during mRNA transport
in dendrites (Rook, Lu, and Kosik, 2000; Dynes and Steward,
2007). In these experiments, motor-driven mRNA granules
move rapidly until encountering a fixed location along the
dendrite where they slightly overshoot and then stop, move
backward, and begin to randomly oscillate back and forth.
After a period of time, lasting on the order of minutes, the
motor-driven mRNA stops oscillating and resumes fast
ballistic motion. The duration of the oscillations can be
estimated by noting that the FP equation obtained by carrying
out the QSS reduction describes a Brownian particle moving
in an effective potential well �ðxÞ ¼ R

x
X�l Vðx0Þdx0, where

the drift VðxÞ of Eq. (4.118) is reinterpreted as a piecewise
constant force; see Fig. 32. Depending on the length of the
region influenced by the trap, and the magnitude of the drift
velocities, the time spent in the potential well can be quite
long. Suppose that a Brownian particle starts at the bottom of
the potential well. The corresponding mean exit time (MET)
[see (2.30)] is

MB ¼
Z Xþl

X�l
exp

�
��ðyÞ

DðyÞ
�
dy

Z y

�1
exp½�ðzÞ=DðzÞ�

DðzÞ dz

¼ 2lD2

�
ðe�=D2 � 1Þ

�
1

V1

þ 2l

�

�
� 4l2

�
;

where � ¼ �V22l is the depth of the well. In general, the
MET will be an exponentially increasing function of the
depth of the well. This means that any error generated by
the QSS approximation will also grow exponentially. This is
typical of large-deviation behavior in a stochastic process
where it is well known that diffusion approximations break
down. One can still obtain an approximation of the MET
using perturbation methods, but they must be applied to the
full Chapman-Kolmogorov equation (Keener and Newby,
2011; Newby and Keener, 2011).

I. Active transport on DNA

So far we have considered the case where ATP hydrolysis
by a molecular motor facilitates active transport along a fixed
track. However, it is also possible for ATP hydrolysis by a
track to facilitate active transport. Active transport occurs
when waves of ATP hydrolysis along the track push a passive
element much like ocean waves push a surfer toward the

FIG. 30 (color online). Effects of tau concentration on the tug-of-

war model with Nþ kinesin motors and N� dynein motors. The stall

force FS, forward velocity vf, and unbinding rate �0 are given by

Eqs. (4.31), (4.32), and (4.33) with ½ATP� ¼ 103 	M. The other

single motor parameters are (Muller, Klumpp, and Lipowsky,

2008b) Fd¼3pN, �0¼1s�1, �0¼5s�1, and vb ¼ 0:006 	m=s.

The corresponding parameters of the FP equation are obtained using

a QSS reduction and plotted as a function of 
. (a) Effective capture
rate �. (b) Drift velocity V. (c) Diffusivity D.
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FIG. 31 (color online). Effect of adding tau to the target on the

capture probability � and MFPT T using parameters from Fig. 30.

(a) The analytical approximation P (solid line) and results from

Monte Carlo simulation. (b) The analytical approximation T along

with averaged Monte Carlo simulations. The synaptic trap is located

at X ¼ 10 	m, the trapping region has radius l ¼ 2 	m, and

the microtubular track (MT) has length L ¼ 20 	m. The capture

rate is taken to be k0 ¼ 0:5 s�1.
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FIG. 32 (color online). The effective potential well created by a

region of tau coating a MT, and a representative trajectory showing

random oscillations.
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shore. Several studies examined track-induced transport (Antal
and Krapivsky, 2005; Saffarian et al., 2006; Morozov, Pronina,
and Kolomeisky, 2007; Artyomov, Morozov, and Kolomeisky,
2008). Here we discuss directed transport of a Holliday
junction along DNA (Lakhanpal and Chou, 2007).

A Holliday junction is a site where two segments of double
stranded DNA (dsDNA) bind and exchange one of their
strands in what is known as a genetic recombination.
Strands with complimentary base pairs bind and form a
junction. The junction then moves along both segments
until it reaches a termination point. It is well known that
translocation of this junction is an active transport process,
requiring energy from ATP hydrolysis. A protein called RecA
forms a helical polymer wrapped around a segment of DNA,
and interactions between the RecA polymer and the dsDNA
drive junction translocation (Klapstein and Bruinsma, 2000).
When RecA monomers hydrolyze ATP, the nucleoprotein
filament shifts into a different conformational state where
the two strands rotate around each other. We refer to this as
the activated state.

One possibility for how the Holliday junction moves along
dsDNA is by hydrolysis waves along the nucleoprotein fila-
ment. This reaction proceeds in waves because activated
RecA preferentially catalyzes ATP hydrolysis by the adjacent
monomer on the 30 side. That is, a monomer hydrolyzes ATP
much more rapidly when its neighboring monomer (on the 50
side) is activated. This asymmetry creates waves of hydroly-
sis, with a resulting mechanical effect, from the 50 to the 30
end (hereafter specified as the forward direction) of the DNA
strand. It is the mechanical stretching and unwinding of the
DNA induced by the hydrolysis wave that propels the junc-
tion forward. Consider a model of Holliday junction transport
along an infinite lattice of RecA monomers surrounding a
dsDNA. Each lattice site can be in one of two states: activated
or unactivated. Let Sj be a random variable associated with

the jth lattice site. In the activated state Sj ¼ 1, and in the

unactivated state Sj ¼ 0. Transitions between these two states

are governed by a Markov switching process,

ðSj ¼ 0Þ ! 
�ðSj�1Þ

k0
ðSj ¼ 1Þ: (4.119)

The rate of transitioning to the activated state depends on
the state of the lattice site to the left, that is, �ð0Þ ¼ k� and
�ð1Þ ¼ kþ, with kþ > k� (see Fig. 33). Because of the
coupling between neighboring lattice sites, one must consider
transitions between states of the full system. If the track
contains a finite number of n sites then the total number of
states in the system is 2n, with each possible state given by the
different sequences of 0s and 1s. In other words, the state

space corresponds to all of the possible binary words of
length n.

As the first step, before including the motion of the junc-
tion on the track, one wants to characterize the steady-state
properties of the hydrolysis waves on the track. However,
analytical solutions are possible only in thermodynamic equi-
librium, where directed transport is not possible. Therefore an
approximation must be found, and one approach is to use a
mean-field approximation. From the master equation govern-
ing the process, one can derive a hierarchy of equations for
the moments of Sj. This system of equation is not closed so

that the equation for the mean �j � hSji depends upon terms

such as hSj�1Sji. The mean-field approximation assumes that

hSj�1Sji � �j�1�j, and with this assumption, one obtains a

system of n equations for each �j. However, since we must

consider the n! 1 limit, solving the system of nonlinear
differential equations is impractical. The simplest mean-field
approximation is to assume that �j�1 � �j ¼ �, which

yields

� ¼ kþ � 2k� � k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ � k0Þ2 þ 4k�k0

p
2ðkþ � k�Þ : (4.120)

When compared to Monte Carlo simulation results, this
approximation is only in qualitative agreement, which sug-
gests that accounting for correlations between adjacent sites
is necessary to correctly capture the steady-state behavior.

It is a reasonable assumption that the correlations between
sites are short ranged. This motivates an approach called the
finite segment mean-field theory (FSMFT) approximation
(Nowak, Fok, and Chou, 2007b). Consider a small segment
within the track containing m sites so that the number of
states in the system is M ¼ 2m. Clearly, it is much simpler to
enumerate the master equation for this segment than for an
infinite lattice. Define the probability density vector p ¼
ðp0; . . . ; pM�1ÞT where each pj corresponds to a different

state of the track segment. The master equation is dp=dt ¼
Ap. The simplest mapping of the binary state to the index j is
the binary representation of base-ten numbers. For example,
if m ¼ 2 then j ¼ 0 corresponds to the state ð0 � 0Þ, j ¼ 1
corresponds to ð0 � 1Þ, j ¼ 2$ ð1 � 0Þ, and j ¼ 3$ ð1 � 1Þ.
In this example, the matrix of transition rates is

A¼

�2k���� k0 k0 0

k� �k0�k���� 0 k0

k�þ�� 0 �kþ�k0 k0

0 k��� kþ �2k0

2
666664

3
777775;

where � ¼ kþ � k�. Recall that the rate of activation for
each site depends upon the state of its neighbor to the left. The
approximation made by the FSMFT is to set the activation
rate of the leftmost site in the finite segment to k�ð1� �Þ þ
kþ�, where 0 � � � 1 is the mean activation level of the site
immediately to the left of the segment. One way to determine
� is to set it equal to the mean activation level of the right-
most site in the segment. This results in the auxiliary equation

hSmi ¼
XM�1
j¼0
jodd

pj ¼ �: (4.121)

+kk kkk 00

1

FIG. 33 (color online). Stochastic hydrolysis dynamics.
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To find the steady-state hydrolysis activity, one first solves
the linear system of equations for the null space of A
using standard methods. Then, combining the result with
Eq. (4.121) results in a nonlinear equation to solve for �.
Notice that the simplest mean-field approximation (4.120) is
recovered by setting m ¼ 1.

The movement of the Holliday junction can be incorpo-
rated into the model by considering a segment (with m odd),
centered on the position of the junction that moves with the
junction. For simplicity take m ¼ 3. The frame shifts when-
ever a wall passes through the junction. When the frame
shifts, the state of the new site is determined by the far-field
mean activity �. This requires modification of transition from
states (1.0.0), (1.0.1), and (0.0.1) to appropriate frame-shifted
states after activation of the center cite. Let the master

equation be dq=dt ¼ Âq, where qðtÞ is the probability dis-
tribution for the activation state of the sites surrounding the
junction, with indexing the same as for p. Assume that the
only way to reach the ð1 � 1 � 1Þ state, where the center cite is
activated, is from ð1 � 0 � 1Þ; this transition does not result in
movement of the junction. Note that transitions where the
shifted segment has the same state as the original do not
appear in the modified transition-rate matrix. For example,
suppose a wall moves the junction to the right via a transition
from ð1 � 0 � 0Þ when the center cite is activated. The shifted
segment can be either ð1 � 0 � 1Þ or ð1 � 0 � 0Þ. Transition to
state ð1 � 0 � 1Þ occurs at a rate kþ�, and transition to
ð1 � 0 � 0Þ at a rate kþð1� �Þ, but the transition to ð1 � 0 � 0Þ
does not appear in the modified transition-rate matrix because
it has the same activation state as the preshifted segment.

Let qþ correspond to state ð1 � 0 � 0Þ and q� to state
ð0�0�1Þ (or the sum of qj over appropriate states if m> 3).

Then the steady-state velocity and effective diffusivity of the
junction are V ¼ kþqþ � k�q� and D ¼ kþqþ þ k�q�. As
long as m is chosen large enough so that � is close to the
far-field bulk value, the FSMFT approximation accurately
captures the correlations near the junction; in practice they
found them ¼ 5 is a good choice. One expects the velocity of
the junction to depend strongly upon the catalyzed hydrolysis
rate kþ. As this rate is increased, the asymmetry should
increase the speed of the forward hydrolysis waves. While
this is true for small values of kþ, the velocity begins to
decrease after a critical value of kþ where the velocity is
maximal. This is due to an increase in the total fraction of
activated sites. A high fraction of activated sites means that
the junction is more likely to be trapped within a long seg-
ment of purely activated sites where it does not move.

V. TRANSPORT AND SELF-ORGANIZATION IN CELLS

A. Axonal elongation and cellular length control

During neural development, the formation of synapses
involves the elongation of an axon of one cell to locate the
dendrites of another cell. Axon elongation is a consequence
of the interplay between force generation at the growth cone
that pulls the axon forward, pushing forces due to micro-
tubule and actin polymerization and depolymerization, the
rate of protein synthesis at the cell body, and the action
of cytoskeletal motors (Mitchison and Kirschner, 1988;

Lamoureux, Buxbaum, and Heidemann, 1989; Baas and
Ahmad, 2001; Goldberg, 2003; O’Toole et al., 2008; Suter
and Miller, 2011). Several models of axonal elongation fo-
cused on the sequence of processes based on the production
of tubulin dimers at the cell body, the active transport of these
proteins to the tip of the growing axon, and microtubule
extension at the growth cone (van Veen and van Pelt, 1994;
Miller and Samulels, 1997; McLean and Graham, 2004;
Kiddie et al., 2005; Graham, Lauchlan, and Mclean, 2006).
One motivation for identifying the polymerization of micro-
tubules as a rate limiting step is that axonal growth occurs at a
similar rate to the slow axonal transport of tubulin, namely,
around 1 mm per day. [It is possible that short, freshly
nucleated microtubles are also actively transported into axons
(Baas and Buster, 2004)]. For the sake of illustration, consider
a continuum model of the active transport of tubulin (McLean
and Graham, 2004; Graham, Lauchlan, and Mclean, 2006).
Let cðx; tÞ denote the concentration of tubulin at position x
along the axon at time t. Suppose that at time t the axon has
length lðtÞ so that x 2 ½0; lðtÞ�. The transport of tubulin is
modeled macroscopically in terms of an advection-diffusion
equation with an additional decay term representing degra-
dation at a rate g:

@c

@t
¼ D

@2c

@x2
� V

@c

@x
� gc: (5.1)

Such a model can be derived from a more detailed stochastic
model of active transport as detailed in Sec. IV.C, with V the
effective drift due to motor-driven transport and D the effec-
tive diffusivity. It is assumed that there is a constant flux of
newly synthesized tubulin from the cell body at x ¼ 0 so that

@c

@x
¼ ��0c0 at x ¼ 0: (5.2)

The flux at the growing end x ¼ lðtÞ is equal to the difference
between the fluxes associated with microtubule assembly and
disassembly:

@c

@x
¼ ��lcþ �l at x ¼ lðtÞ: (5.3)

Finally the rate of growth is also taken to be proportional to
the difference between these two fluxes according to

dl

dt
¼ �½�lc� �l�; x ¼ lðtÞ: (5.4)

The constant� depends on the size of each tubulin dimer, the
number of microtubules at the tip, and the cross-sectional area
of the axon.

It is straightforward to determine the steady-state length L
of the axon (McLean and Graham, 2004). First dl=dt ¼ 0
implies that cðLÞ ¼ cL � �l=�l and @c=@x ¼ 0 at x ¼ L.
The steady-state concentration profile takes the form cðxÞ ¼
Ae�þx þ Be��x with �
 ¼ ðV=2DÞ½1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4h
p � and h ¼

Dg=V2. The coefficients A and B are determined from the
boundary conditions at x ¼ L. Finally a transcendental equa-
tion for the steady-state length L is obtained by imposing the
boundary condition (5.2):

FðLÞ � e���L � e��þL ¼ D�0
g

c0
cL
ð�þ � ��Þ; (5.5)
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having used �þ�� ¼ �g=D. For small L, the exponentials
can be Taylor expanded to give L � ðD�0=gÞc0=cL, whereas
for large L the first exponential is dominant and L ¼ ðV=gÞ�
log½ðD�0=gÞc0=cL�. The last equation follows from taking
h
 1 so that �þ � V=D and �� � �g=V. In the first
regime diffusion is dominant, whereas in the other active
transport is dominant. Numerical simulations of the full
time-dependent model show that these steady states are stable
and in both regimes the approach to steady state is over-
damped. On the other hand, for intermediate values of L
damped oscillations occur resulting in overshoot (Graham,
Lauchlan, and Mclean, 2006).

There are a number of simplifications assumed in the above
model (Goldberg, 2003; Vitriol and Zheng, 2012). First, the
rate of elongation is based on the average rate of assembly
and disassembly of a bundle of microtubules, which neglects
the stochastic switching between periods of elongation and
rapid contraction exhibited by individual microtubules
(Mitchison and Kirschner, 1984). Second, tensile forces act-
ing on the microtubules within the growth cone due to
interactions with the actin cytoskeleton are neglected (Suter
and Miller, 2011). Third, there are a number of other pro-
cesses that could act as rate limiting steps in axonal growth,
namely, the recycling of lipid membrane and the maintenance
of the energy needs at the growth tip via the transport of
mitochondria (Morris and Hollenbeck, 1993; Miller and
Sheetz, 2004; Hollenbeck and Saxton, 2005; O’Toole
et al., 2008). A recent stochastic model incorporates a number
of these features (Atanasova et al., 2009). The rate of growth
of the axon tip is determined by the rates at which newly
delivered membrane proteins are inserted into the tip via
exocytosis and are removed via endocytosis. Meanwhile,
microtubules grow via polymerization until they reach the
axon tip, where they are stabilized by interactions with the
actin cytoskeleton. This in turn reduces the rate of endocy-
tosis of membrane vesicles.

Axonal length control is one example of how cells regulate
the size of their organelles and internal structures. Size
control mechanisms, which are critical for proper cell func-
tion, can be distinguished according to whether the under-
lying structure is static [remains intact once assembled
(Katsura, 1987; Keener, 2005)] or dynamic. Dynamic struc-
tures are constantly turning over so that in order for them to
maintain a fixed size there must be a balance between the
rates of assembly and disassembly. If these rates depend on
the size in an appropriate way then there will be a unique
balance point that stabilizes the size of the organelle. Recent
experimental work suggests that such a dynamic mechanism
may also occur in eukaryotic flagella (Marshall and
Rosemblum, 2001; Marshall et al., 2005; Ishikawa and
Marshall, 2011). These are microtubule-based structures
that extend to about 10 	m from the cell and are surrounded
by an extension of the plasma membrane. They are at least an
order of magnitude longer than bacterial flagella. Flagellar
length control is a particularly convenient system for studying
organelle size regulation, since a flagellum can be treated as a
1D structure whose size is characterized by a single length
variable. The length of a eukaryotic flagellum is important for
proper cell motility, and a number of human diseases appear
to be correlated with abnormal length flagella (Gerdes and
Kasanis, 2005).

Radioactive pulse labeling has been used to measure pro-
tein turnover in the flagella of Chlamydomonas, a unicellular
green alga with genetics similar to budding yeast (Marshall
and Rosemblum, 2001). Such measurements suggested that
turnover of tubulin occurs at the distal þ end of flagellar
microtubules, and that the assembly part of the turnover is
mediated by intraflagellar transport (IFT). This is a motor-
assisted motility within flagella in which large protein com-
plexes move from one end of the flagellum to the other
(Kozminski et al., 1993; Scholey, 2003). Particles of various
size travel to the flagellar tip (anterograde transport) at
2:0 	m=s, and smaller particles return from the tip (retro-
grade transport) at 3:5 	m=s after dropping off their cargo of
assembly proteins at the þ end. A schematic diagram of IFT
transport is shown in Fig. 34. Immunoflourescence analysis
indicates that the number of IFT particles (estimated to be in
the range 1–10) is independent of length (Marshall and
Rosemblum, 2001; Marshall et al., 2005). If a fixed number
of transport complexesM move at a fixed mean speed �v, then
the rate of transport and assembly should decrease inversely
with the flagellar length L. On the other hand, measurements
of the rate of flagellar shrinkage when IFT is blocked indicate
that the rate of disassembly is length independent. This
motivated the following simple deterministic model for
length control (Marshall and Rosemblum, 2001):

dL

dt
¼ a �vM

2L
� V; (5.6)

where a is the size of the precursor protein transported
by each IFT particle and V is the speed of disassembly.
Equation (5.6) has a unique stable equilibrium given by L� ¼
a �vM=2V. Using the experimentally based values M ¼ 10,
�v ¼ 2:5 	m=s, L� ¼ 10 	m, and V ¼ 0:01 	m=s, the ef-
fective precursor protein size is estimated to be a � 10 nm.
A stochastic version of a model for flagellar length control
was also developed using the theory of continuous-time
random walks (Bressloff, 2006).

B. Cooperative transport of proteins in cellular organelles

The extensive secretory pathway of eukaryotic cells pro-
vides an alternative system for transporting newly synthe-
sized lipids and proteins along axons and dendrites (Kennedy
and Ehlers, 2006; Ramirez and Couve, 2011; Valenzuela,
Jaureguiberry-Bravo, and Couve, 2011). One major organelle
of the secretory pathway is the endoplasmic reticulum (ER),

IFT particle

flagellum
+

v+

v

V

l(t)

cargo
insertion

degradation

FIG. 34 (color online). Schematic diagram of intraflagellar trans-

port (IFT), in which IFT particles travel with speed v
 to the 
 end

of a flagellum. When an IFT particle reaches the þ end it releases

its cargo of protein precursors that contribute to the assembly of the

flagellum. Disassembly occurs independently of IFT transport at a

speed V.
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which tends to be dispersed throughout the cytoplasm of a
cell (Lippincott-Schwartz, Roberts, and Hirschberg, 2000);
see Fig. 35. Proteins and lipids destined for the plasma
membrane enter the ER from the nucleus as they are trans-
lated by ER-associated ribosomes, where they fold into their
proper 3D structure. The ER can be partitioned into the rough
ER (RER), which is rich in ribosomes, and the smooth ER
(SER), which has only a few sparse ribosomes and tends to
form a tubular structure. In neurons, the RER is present in the
soma and proximal dendritic compartments, whereas the SER
is distributed in distal dendrites (including some dendritic
spines) and axons. The diffusivity of proteins within the
tubularlike SER is 3–6 times smaller than within the cyto-
plasm. However, the ER is constantly being remodeled by
motor-driven sliding along microtubules, for example, which
could add an active component to protein transport (Ramirez
and Couve, 2011; Valenzuela, Jaureguiberry-Bravo, and
Couve, 2011). Moreover, the thin tubular structure of the
SER reduces the effective spatial dimension of diffusion,
thus enhancing progression along a dendrite. Another impor-
tant aspect of the secretory pathway is that it is tightly
regulated (Lippincott-Schwartz, Roberts, and Hirschberg,
2000). Proteins accumulate at specific exit sites and leave
the ER in vesicles that transfer the cargo to organelles form-
ing the Golgi network where final packaging and sorting for
target delivery is carried out. In most eucaryotic cells the
Golgi network is confined to a region around the nucleus
known as the Golgi apparatus, whereas in neurons there are
Golgi ‘‘outposts’’ distributed throughout the dendrite. Thus it
is possible that some proteins travel long distances within the
SER (rather than via active transport along microtubules)
before being sorted for local delivery at a synapse.

One of the significant features of the secretory pathway is
that there is a constant active exchange of molecules between
organelles such as the ER and Golgi apparatus, which have
different lipid and protein compositions. Such an exchange is
mediated by motor-driven vesicular transport. Vesicles bud
from one compartment or organelle, carrying various lipids

and proteins, and fuse with another compartment. Transport

in the anterograde direction has to be counterbalanced by
retrograde transport in order to maintain the size of the

compartments and to reuse components of the transport
machinery. Since bidirectional transport is expected to equal-

ize the composition of both compartments, there has been
considerable interest in understanding the self-organizing

mechanisms that allow such organelles to maintain their
distinct identities while constantly exchanging material

(Mistelli, 2001); see Fig. 35. One model for generating stable,

nonidentical compartments was proposed by Heinrich and
Rapoport (2005) [see also Binder et al. (2009), Gong et al.

(2010), Dmitrieff and Sens (2011), and Klann, Koeppl, and
Reuss (2012)], based on the observation that vesicular trans-

port involves a complex network of molecular interactions
between vesicles, transported molecules, and recipient organ-

elles (Barlowe, 2000; Pelham, 2001; Lippincott-Schwartz and
Phair, 2010). That is, the rates of vesicle exchange between

compartments are influenced by their composition. An intui-

tive understanding of the basic mechanism can be obtained
by considering the exchange of four types of protein

[soluble NSF attachment protein receptor (SNARES)],
X, U, Y, and V say, between two compartments. Suppose

that in steady state many vesicles with a low content of X and
U move in one direction (from the first to the second compart-

ment), whereas a few vesicles with a large content of X and U
move in the opposite direction so that the total protein fluxes

are balanced. This reflects differences in composition of X
and U in the two compartments. However, lipid balance is not
maintained because there is a net flux of vesicles in one

direction. However, a balance of lipid fluxes can also be
achieved by having a complementary transport of Y and V
molecules in the opposite direction. The asymmetric states
are stabilized by taking the rates of budding and fusion to

depend on interactions between vesicles and compartments
mediated by the protein pairs (X, U) and (Y, V) (Heinrich and
Rapoport, 2005).

C. Cell polarity

Many cellular processes depend critically on the stable

maintenance of polarized distributions of signaling proteins
on the plasma membrane. These include cell motility,

epithelial morphogenesis, embryogenesis, and stem cell dif-
ferentiation. In many cases cell polarity can occur sponta-

neously in the absence of preexisting spatial cues. Various

experimental studies suggest that there are at least two inde-
pendent but coordinated positive feedback mechanisms that

can establish cell polarity (Wedlich-Soldner et al., 2004).
One involves the reinforcement of spatial asymmetries by the

directed transport of signaling molecules along the cytoske-
leton to specific locations on the plasma membrane (Marco

et al., 2007; Altschuler et al., 2008; Layton et al., 2011),
whereas the other involves the coupling of membrane diffu-

sion with bistable enzymatic dynamics (Mori, Jilkine, and

Edelstein-Keshet, 2008; Gamba et al., 2009; Semplice et al.,
2012).

One example of the first class of model is shown in Fig. 36.
Here the asymmetric distribution of a signaling molecule

within the plasma membrane @� and the orientation of actin

C1 C2

C1 C2

FIG. 35 (color online). Left: Diagram of secretory pathway in-

cluding nucleus, ER and Golgi apparatus. 1. Nuclear membrane,

2. nuclear pore, 3. RER, 4. SER, 5. ribosome, 6. protein, 7. transport

vesicles, 8. Golgi apparatus, 9. Cis face of Golgi apparatus, Trans

face of Golgi apparatus, 11 cisternae of Golgi apparatus, 12. secre-

tory vesicle, 13. plasma membrane, 14. exocytosis, 15 cytoplasm,

16. extracellular domain. From WikiMedia Commons. Right: When

two compartments continually exchange products via vesicular

transport, a symmetry breaking mechanism is needed to maintain

nonidentical compartments (C1 � C2).
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filaments are mutually enhanced through a positive feedback
loop (Marco et al., 2007). Let uðr; tÞ denote the concentration
of signaling molecules within the plasma membrane. Then u
depends on six physically interpretable quantities: (i) the
membrane diffusivity D; (ii) the index function �ðrÞ indicat-
ing the region of the plasma membrane to which cytoskeletal
tracks are attached, that is, the cluster within which u is high;
(iii) the total amount of signaling molecule Ntot; (iv) the rate
of directed transport h; (v) the endocytosis rate k within the
cluster; and (vi) the endocytosis rate K outside the cluster
with K < k. The density u evolves according to the macro-
scopic equation (Marco et al., 2007)

@u

@t
¼ D�u� ½k�þ K ���uþ hNcyt

�R
@� �dr

; (5.7)

where � is the Laplace-Beltrami operator for diffusion in the
membrane, ��ðrÞ ¼ 1� �ðrÞ, and Ncyt is the total amount

number of signaling molecules within the cytoplasm Ncyt ¼
Ntot �

R
@� udr. The cytoplasmic pool is assumed to be

homogeneous due to the fast dispersion of vesicles in the
cytosol. Numerical simulations show that a stable spatially
asymmetric distribution of signaling molecules within the
plasma membrane can be maintained. Moreover, the degree
of polarization can be optimized by varying the rates of
endocytosis. One limitation of the model, however, is that
the packaging of signaling molecules into discrete vesicles is
ignored, that is, the model treats transport as a continuous flux
of proteins. As highlighted by Layton et al. (2011), incor-
porating vesicular transport into the model makes cell polar-
ization more difficult to sustain. A simple argument for this
proceeds as follows. Exocytic vesicles need to have higher
concentrations of the signaling molecule than the polarization
site in order to enhance the concentration. A dynamic equi-
librium of recycling can be maintained only if endocytic
vesicles also have an enhanced concentration of signaling
molecules. This appears to put unrealistically strong con-
straints on the mechanisms for loading vesicles with cargo
prior to transport.

The second basic mechanism for establishing cell polarity
does not depend on active transport and can be modeled in
terms of a reaction-diffusion system. One example of such a
model is described in Fig. 37 (Gamba et al., 2009; Semplice

et al., 2012). Consider a macroscopic version of the model, in
which 

 denote the concentration of activated and inacti-
vated signaling molecules within the plasma membrane. Let
xc and yc be the concentration of the counteracting enzymes
in the cytosol (which is assumed to be homogeneous), let x0
and y be the concentrations of membrane associated enzymes
activated by �þ and ��, respectively, and let x00 denote the
concentration of membrane associated enzyme activated by a
distribution of receptors s. The model equations take the form
(Semplice et al., 2012)

@

=@t ¼ D�

 
 gð
þ; 
�; x0; x00; yÞ; (5.8a)

@x0=@t ¼ k0asx0c � k0dx
0; (5.8b)

@x00=@t ¼ k00a
þxc � k0dx
00; (5.8c)

@y=@t ¼ ka

�yc � kdy: (5.8d)

Here � is the Laplace-Beltrami operator, k0a, k00a, ka and k0d,
k00d, kd are the forward and backward reaction rates of the

signaling and feedback pathways, and

g ¼ k0c
x0
�

K0 þ
�
þ k00c

x00
�

K00 þ
�
� kc

y
þ

K þ
�
(5.9)

is the enzymatic conversion rate of �þ to ��. The total
amount of �þ and �� is conserved, 
þ þ
� ¼ c, as are
the total amounts of each enzyme X and Y. Using a time-scale
separation in which the equilibria for the concentrations x0,
x00, y, xc, and yc are reached much faster than the equilibria
for the surface distributions 

, the dynamics for the con-
centration difference 
 ¼ 
þ �
� reduces to the system
(Semplice et al., 2012)

@


@t
¼ D�
þ V 0ð
Þ; (5.10)

where

V 0ð
Þ ¼ ðc2 �
2Þ½�0ð
Þ þ �00ð
Þ þ �ð
Þ�; (5.11)

with

actin filaments

signaling
molecule

membrane diffusion

endocytosis

recycling

FIG. 36 (color online). Signaling molecules can attach and orient

actin filaments that deliver vesicles carrying the signaling molecule

from the cytoplasm to the plasma membrane. The additional signal-

ing molecules orient more actin filaments that transport more

molecules in a positive feedback loop. The local orientation of

actin filaments also increases the rate of endocytosis within the

cluster. From Marco et al., 2007.

Φ Φ+−

Y

X

S

membrane

cytosol

extracellular(a) (b)

Φ - rich domain
−

Φ - rich domain+

cytosol

FIG. 37 (color online). (a) A set of receptors transduce an external

distribution of chemotactic cues into an internal distribution of

activated enzymes X that catalyze the switch of a signaling mole-

cule from an unactivated state �� to an activated state �þ. A
counteracting enzyme Y transforms �þ back to ��. Amplifying

feedback loops, in which �þ activates X and �� activates Y, result
in chemical bistability. The signaling molecules are permanently

bound to the plasma membrane, where they exhibit lateral diffusion,

while the enzymes are free to move between the membrane and the

cytosol. (b) Cell polarization occurs when there is phase separation

into two stable chemical states. From Semplice et al., 2012.
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�0 ¼ 2ðk0ck0a=k0dÞxcs
ð2K0 þ c�
Þðcþ
Þ ;

�00 ¼ 2ðk00ck00a=k00dÞxc
2K00 þ c�


;

� ¼ 2ðkcka=kdÞyc
2K þ c�


:

Under the adiabatic approximation, the dynamics can be
written in the variational form

@


@t
ðr; tÞ ¼ � �F ½
�

�
ðr; tÞ (5.12)

with F an effective energy functional

F ½
� ¼
Z
@�
½Dðr
Þ2 þ Vð
Þ�dS: (5.13)

Here integration is with respect to the membrane surface.
Stable homogeneous solutions correspond to minima
of the potential Vð
Þ for which V0ð
Þ ¼ 0. One finds that
for a range of parameter values, the system exhibits bista-
bility. That is, there exist two stable equilibria ’
 corre-
sponding to phases enriched in �
 separated by an unstable
equilibrium.

The polarization of the cell membrane can now be under-
stood in terms of the theory of phase separation kinetics
familiar from the study of condensed matter systems
(Gamba et al., 2009; Semplice et al., 2012). A polarized
state exists when the cell membrane is divided into two
complementary regions [see Fig. 37(b)] that correspond to
two distinct stable chemical phases, separated by a thin
diffusive interface. Such a spatially inhomogeneous solution
has to minimize both terms in the functional (5.13). One
condition for stability is phase coexistence, that is,

�V ¼ Vð’þÞ � Vð’�Þ ¼
Z ’þ

’�
V 0ð
Þd
 ¼ 0: (5.14)

A second condition is that the diffusive ‘‘energy’’ associated
with the interface is minimized. Even when a stable polarized
state exists, the evolution to such a state involves a complex
process of nucleation and competitive growth of heteroge-
neous patches. Suppose, for example, that the membrane is
initially in a metastable state consisting of the ’� phase.
External stimulation may make the ’þ phase energetically
more favorable but there is an energy barrier to overcome,
which blocks a continuous transition to the ’þ phase.
Instead, patches of the ’þ phase are nucleated by thermal
fluctuations and start expanding due to front propagation; see
also Mori, Jilkine, and Edelstein-Keshet (2008). In fact, one
finds that only patches larger than a critical size rc � 1=�V
can expand into the background ’� phase with a front
velocity ��V. However, the growth of the ’þ phase de-
creases xc and increases yc, resulting in a reduction of the
barrier height. Thus, growth slows, the critical radius in-
creases, and large patches grow at the expense of smaller
patches until only a single ’þ patch remains, which coexists
with the ’� phase. A microscopic version of the model was
also developed (Semplice et al., 2012), in which the cell
membrane is represented by a 2D lattice with sites populated
by a discrete number of molecules of each chemical species.

The probability distribution of the discrete populations
evolves according to a master equation that keeps track of
all possible chemical reactions and diffusive jumps.

VI. CONCLUSION

In this review we focused on analytically tractable micro-
scopic and macroscopic models of intracellular transport. A
complementary approach is to develop more biologically
realistic multiscale computational models, which include de-
tails of the structure of individual macromolecules, the bio-
chemical network of signaling pathways, the aqueous
environment of the cytoplasm, the mechanical properies of
the cytoskeleton, and the geometry of the cell. One major
challenge in stochastic simulations is how to efficiently
couple stochastic chemical reactions with diffusion in com-
plex environments (Andrews and Bray, 2004; Bhalla, 2004a,
2004b; Turner, Schnell, and Burrage, 2004; Isaacson and
Peskin, 2006; Erban and Chapman, 2009). Many approaches
are based on spatial extensions of the Gillespie algorithm for
well-mixed chemical reactions (Gillespie, 1977, 2001;
Gibson and Bruck, 2000). Several stochastic simulation
packages have also been developed including MCELL

(Franks, Bartol, and Sejnowski, 2001, 2002) and SMOLDYN

(Andrews, 2012). In addition to the example of phase sepa-
ration during cell polarity, macroscopic reaction-diffusion
systems can exhibit complex spatiotemporal dynamics in-
cluding coherent oscillations, wave propagation, and Turing
pattern formation (Igoshin et al., 2001; Falcke, 2003; Keener
and Sneyd, 2009; Lenz and Sogaard-Andersen, 2011; Loose,
Kruse, and Schwille, 2011). These are thought to play an
important role in a variety of cellular processes including
morphogenesis, cell division, and embryogenesis (Murray,
2002). Understanding the affects of noise at the microscopic
level on reaction-diffusion dynamics is an active area of
current research.
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