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Spinor Bose gases form a family of quantum fluids manifesting both magnetic order and

superfluidity. This article reviews experimental and theoretical progress in understanding the static

and dynamic properties of these fluids. The connection between system properties and the rotational

symmetry properties of the atomic states and their interactions are investigated. Following a review

of the experimental techniques used for characterizing spinor gases, their mean-field and many-

body ground states, both in isolation and under the application of symmetry-breaking external fields,

are discussed. These states serve as the starting point for understanding low-energy dynamics, spin

textures, and topological defects, effects of magnetic-dipole interactions, and various nonequilib-

rium collective spin-mixing phenomena. The paper aims to form connections and establish

coherence among the vast range of works on spinor Bose gases, so as to point to open questions

and future research opportunities.
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I. INTRODUCTION

Nature has provided us with few quantum fluids, in which
macroscopic characteristics of the fluid derive directly from
quantum coherences. Among such fluids, ones with a non-
trivial internal degree of freedom are even rarer, examples
being the d-wave and p-wave superconductors and certain
phases of superfluid 3He. Ultracold atomic physics has sup-
plied us with a new family of such fluids, degenerate Bose
gases with a spin degree of freedom. These so-called ‘‘spinor
gases’’ are subject to the interplay of magnetism and super-
fluidity, both of which involve quantum phase coherence,
long-range order, and symmetry breaking. These fluids are
interesting in their own right as a newly conceived material
now available for experimental investigation. In addition,
since these atomic gases can be described starting from a
simple theoretical framework, and since their properties can
be readily manipulated and measured in experiments, their
study promises to shed insight on a range of topics such as the
role of symmetry and topology in quantum-ordered materials,
quantum phase transitions, nonequilibrium quantum dynam-
ics, and the entanglement and squeezing of quantum fields.

The study of degenerate spinor Bose gases was sparked in
1998 by experiments on ultracold rubidium (Hall, Matthews,
Ensher et al., 1998; Hall, Matthews, Wieman, and Cornell,
1998; Matthews et al., 1998) and sodium (Stenger et al.,
1998), followed quickly by theoretical investigations of
Bose-Einstein condensation in an interacting spin-1 gas
(Ho, 1998; Ohmi and Machida, 1998). A significant opus of
literature has amassed since those works covering an ex-
tremely wide range of topics. This review is intended to
coalesce the understandings presented in that work and to
focus attention on core physical concepts brought up in the
study of spinor gases. We hope such a discussion will broaden
the impact of spinor-gas research and draw new participants
and perspective to this topic.

A. Internal degrees of freedom of Bose gases

By now, a wide selection of atoms and a few simple
molecules have been produced in gaseous form in the

ultracold regime.1 Such objects carry internal degrees of
freedom, so that the state description of a single molecule
or atom or of a system assembled of many such particles must
describe both the external degrees of freedom, i.e., the center-
of-mass motional state, and also the internal degrees of free-
dom. Quantum fluids composed of such particles can be
described by a multicomponent order parameter. In compari-
son, liquid 4He in its superfluid state is described by a scalar
order parameter. The interplay between the external and
internal degrees of freedom in the multicomponent systems
leads to a range of phenomena unfamiliar from studies of
scalar quantum fluids.

At first glance, it seems that one has an enormous selection
of multicomponent quantum gases from which to choose. In
fact, this plethora is severely depleted by the instability of
most atomic and molecular internal states. Electronic excited
states typically decay due to spontaneous emission on a time
scale much faster than that required for a gas to equilibrate
kinetically through collisions. Short lifetimes are also ex-
pected (or observed) in many instances even within the
electronic ground-state family of states, due to inelastic
collisions that release large amounts of energy.

However, in several cases, one finds one or more sets of
internal states that may coexist for sufficiently long times to
allow experimental studies of equilibrated multicomponent
gases. We discuss three examples.

1. Hyperfine spin manifolds of hydrogenlike atoms

The electronic ground states of hydrogen and alkali-metal
atoms correspond to different orientations of the J ¼ 1=2
electron and of the nuclear spin I. At low magnetic fields,
the hyperfine interaction between these spins dominates, and
the ground-state subspace breaks into manifolds of states with
definite total spin F ¼ I � 1=2. At higher magnetic fields, the
dominance of the electron magnetic moment causes the
eigenstate structure to reorganize as shown in Fig. 1.

The collision properties of mixtures of different atomic
hyperfine states are not always favorable to experiments on
quantum gases. Atoms in the higher hyperfine spin manifold
may undergo hyperfine-relaxation collisions (Görlitz et al.,
2003), leading to significant heating and atom loss. In the
case of 133Cs, atoms in the lower hyperfine spin manifold also
suffer from exothermic collisions (Guéry-Odelin et al., 1998;
Söding et al., 1998) due to scattering resonances (Arndt et al.,
1997; Kokkelmans, Verhaar, and Gibble, 1998). In other
gases, such as 7Li and 85Rb, the s-wave scattering lengths
for several collision channels are negative, implying that a
Bose-Einstein-condensed gas with large atom number ac-
quires a negative compressibility and collapses, leading to
rapid decay (Sackett, Stoof, and Hulet, 1998; Donley et al.,
2001).

1The accepted definition of ‘‘ultracold’’ is time varying. Spurred

by the quest for correlated atomic systems with ever-fewer defects

and ever-subtler types of correlation, physicists are devising new

methods to reach ever-lower temperature regimes. In this review we

define relevant temperature regimes more specifically with respect

to the properties of atomic interactions (Sec. III.A), the onset of

quantum degeneracy (Sec. VII.A), and the expected appearance of

magnetic order in optical lattices (Sec. VII.C).
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Several compatible mixtures of internal states remain. The

main focus of this review is mixtures containing all magnetic

sublevels of a manifold of states with a single value of the

hyperfine spin F. The internal state of an atom in such a

manifold of states is represented as a spherical tensor in spin

space; thus, such gases are called spinor gases. This

spherical-tensor character endows the spinor gas and the

quantum fluid that it attains with an elegant phenomenology

as described in the remainder of this work.
Experimentally, long-lived alkali spinor gases have been

explored in three spin manifolds (Table I): the lower-energy

F ¼ 1 hyperfine spin manifolds of both 23Na (Stamper-Kurn
et al., 1998) and 87Rb (Barrett, Sauer, and Chapman, 2001),
and also the higher-energy F ¼ 2 manifold of 87Rb (Chang
et al., 2004; Kuwamoto et al., 2004; Schmaljohann et al.,
2004). The latter gas is moderately stable against hyperfine-
relaxation collisions on account of fortuitous properties of the
molecular potential of the rubidium dimer (Burke et al.,
1997). In comparison, the spinor gas in the F ¼ 2 upper
hyperfine levels of 23Na was found to decay rapidly
(Görlitz et al., 2003). Several other promising systems still
await experimental exploration, such as the F ¼ 1 spinor
gases of 7Li and 41K, which represent the lower of the two
hyperfine spin manifolds for each atom, and perhaps also the
higher hyperfine spin manifolds of 41K and of hydrogen.
Experiments with radioactive alkali isotopes are also
possible.2

The collisional stability of 87Rb also permits experiments
on mixtures of atoms from both the F ¼ 1 and F ¼ 2 hyper-
fine spin manifolds (Myatt et al., 1997). In particular, the
jF ¼ 1; mz ¼ �1i and jF ¼ 2; mz ¼ þ1i states possess
magnetic moments that are nearly equal at low magnetic field
(identical at a field of 3.23 G). Both species can be confined in
magnetic traps, in which the external potential is nearly state
independent. The magnetic-field insensitivity of the internal
energy difference between these states allows the coherence
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FIG. 1 (color online). Ground-state hyperfine structure of 87Rb. With a nuclear spin of I ¼ 3=2, 87Rb has a total angular momentum

of either F ¼ 1 or F ¼ 2 in the J ¼ 1=2 electronic ground state. At low magnetic fields, F is a good quantum number due to rotational

invariance. The F ¼ 1 and F ¼ 2 spin manifolds are separated by the hyperfine interaction. The Zeeman sublevels, labeled by the magnetic

quantum number mF, have a Zeeman energy that shows a linear variation with field at low magnetic fields (left), but deviates from the

linear dependence strongly when the linear Zeeman shift is comparable to the hyperfine interaction energy (center). Right inset: The net

quadratic Zeeman energy shift is exhibited after subtracting off the zero-field hyperfine splitting, the linear Zeeman term, and the energy

of the jmz ¼ 0i state; thus, the net quadratic shift of the jmz ¼ 0i states is zero by definition. The quadratic shift due to a dc magnetic

field is positive for the F ¼ 1 levels and negative for the F ¼ 2 levels. The hyperfine structure of other hydrogenlike atoms shows

similar features.

TABLE I. Experimental candidates for the study of ultracold
spinor Bose gases. Species are divided according to whether they
are stable at zero magnetic field (information on thulium is lacking),
and whether the dipolar relaxation rate is small enough to allow the
longitudinal magnetization (hFzi) to be conserved in an experiment.
The nature of the spin-dependent contact interactions is indicated in
parentheses (f: ferromagnetic, af: antiferromagnetic, cyc: cyclic or
tetrahedral, ?: unknown). Stable pseudospin-1=2 gases of 87Rb are
indicated, with states labeled with quantum numbers jF;mFi having
the same low-field magnetic moment.

Stable Unstable
hFzi conserved hFzi not conserved
7Li, F ¼ 1 (f) 52Cr, F ¼ 3 (not f) 7Li, F ¼ 2
23Na, F ¼ 1 (af) Dy, F ¼ 8 (?) 23Na, F ¼ 2
41K, F ¼ 1 (f) Er, F ¼ 6 (?) 39K
87Rb, F ¼ 1 (f) 85Rb
87Rb, F ¼ 2 (af or cyc) 133Cs
87Rb pseudospin: Tm, F ¼ 4 (?)

j1; 0i, j2; 0i
j1;�1i, j2;�1i

2In atoms with lifetimes longer than the typical experimental

cycle time of around 10 s, the lower-spin manifolds of the electronic

ground state offer F ¼ 1 gases of 21Na, 43;45K, 77;81;89;91Rb, 121Cs,

and 223;225Fr; F ¼ 2 gases of 25Na, 79;83Rb, 131Cs, and 221Fr; F ¼ 3
gases of 135;137;139;141Cs; and F ¼ 4 gases of 119Cs and
207;209;211;213Fr.
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between them to be probed over seconds-long evolution times
(Harber et al., 2002; Treutlein et al., 2004; Deutsch et al.,
2010). Similarly, mixtures of the magnetic-field-insensitive
jF ¼ 1; mz ¼ 0i and jF ¼ 2; mz ¼ 0i states of 87Rb are sta-
ble in optical traps and show long coherence times (Kleine
Büning et al., 2011). In contrast, for the spinor gases de-
scribed above, the linear Zeeman energy shift between sub-
levels makes this coherence difficult to access as discussed
further in Sec. IV.C. The two internal states of such
pseudospin-1=2 Bose gases are not related by rotational
symmetry in spin space, and so one expects phenomena
associated with ground-state degeneracy and symmetry
breaking to differ from those of spinor gases. These differ-
ences are explored in Sec. III.C.

Other species of ultracold atoms comprise the metastable
3S1 states of helium and the noble gases, and the 3PJ states of

two-electron atoms such as the alkali-earth elements and Yb.
For bosonic isotopes of these elements, all of which have a
nuclear spin I ¼ 0, the electron angular momentum may be
nonzero. Thus, held in optical traps, such atoms offer another
realization of spinor Bose gases. However, the metastability
of these atoms relies on the suppression of collisional decay
to the electronic ground state due to spin polarization.
Experiments on metastable 4He demonstrated that s-wave
collisions between a pair of atoms with total projected angu-
lar momentum of Mpair ¼ 0 lead to strong inelastic losses

(Partridge et al., 2010). Thus, it appears that stable spinor
quantum fluids of such gases are precluded.

2. Many-electron atoms: Spinor gases with strong

dipolar interactions

In condensed-matter systems, magnetic order is estab-
lished by both local interactions, as in the Heisenberg-Dirac
model of magnetism, and also long-range interactions, such
as the magnetic-dipole interaction. Similarly, as discussed
later, magnetic order in degenerate spinor Bose gases is
influenced by both the local spin-dependent contact interac-
tions and also the long-range magnetic dipole-dipole interac-
tion (MDDI). The strength of dipolar interactions increases
with the square of the magnetic moment � of the atoms
forming the spinor gas. For the ground-state alkali gases
discussed previously, neglecting the small nuclear contribu-
tion, the atomic magnetic moment is � ¼ �BF=ðI þ 1=2Þ,
i.e., no larger than one Bohr magneton�B. Dipolar effects are
visible in such gases (Kawaguchi, Saito, and Ueda, 2006b,
2007; Yi and Pu, 2006; Vengalattore et al., 2008), although
the local magnetic order is still selected predominantly by the
contact interaction.

Both the long-range and the local spin-dependent interac-
tions are varied strongly in gases with larger magnetic mo-
ments. For example, quantum-degenerate gases of 52Cr display
strong dipolar effects such as density deformations (Lahaye
et al., 2007) and instability (Lahaye et al., 2008) due to the
anisotropic long-range dipolar interaction. The magnetic mo-
ment of this spin-3 gas is 6�B, yielding dipolar energies that
are at least 36 times higher than those in the alkali gases
(144 times larger than in F ¼ 1 87Rb). Several lanthanide
elements have been laser cooled, presenting new candidates
for high-spin and highly magnetic spinor Bose gases. Thulium
(Sukachev et al., 2010a, 2010b) carries a total spin ofF ¼ 4 in

its ground state, with the magnetic moment of 4�B. Stronger
dipolar interactions are realized in Er (McClelland and
Hanssen, 2006; Berglund, Lee, and McClelland, 2007) and
Dy (Youn et al., 2010) inwhich the atomic angularmomenta of
bosonic species are J ¼ 6 and J ¼ 8, leading to magnetic
moments of 7�B and 10�B, respectively. Bose-Einstein con-
densates (BECs) of both Er and Dy have been produced,
and they show signs of strong magnetic dipolar interactions
(Lu et al., 2011; Aikawa et al., 2012).

The large electron spin of these gases also influences the
short-range interactions between atoms. The presence of sev-
eral molecular potentials, split by the fine structure for differ-
ent configurations of the total electronic spin of the colliding
atoms, and the strong dipolar interaction at molecular dis-
tances, altogether lead to much higher rates for dipolar relaxa-
tion among the Zeeman sublevels (Weinstein et al., 1998;
Hensler et al., 2003) than in the alkali gases. The phenome-
nology of spinor gases for these highly magnetic elements is
thus expected to be different. In the alkali gases, the total spin
of the gas along the direction of an applied magnetic field is
typically constant over the duration of an experiment. In
contrast, the longitudinal magnetization of high-magnetic-
moment spinor gases is dynamic. The enhanced dipolar re-
laxation couples the spin and mass currents of spinor Bose
gases, leading to phenomena such as the Einstein–de Haas
effect (Kawaguchi, Saito, and Ueda, 2006a; Santos and Pfau,
2006; Gawryluk et al., 2007). The anisotropy of the dipolar
interaction also favors low-energy states inwhich the spin state
of the condensate is not spatially uniform; rather, the spin order
parameter varies spatially, producing what is known as a spin
texture. This spin texture spontaneously breaks chiral symme-
try (Kawaguchi, Saito, and Ueda, 2006b; Yi and Pu, 2006).
Strong dipolar relaxation also requires that spinor-gas experi-
ments with these elements occur at precisely controlled, weak
magnetic fields. Such experimental conditions were recently
achieved, allowing for the first observation of spinor-gas phys-
ics with 52Cr (Pasquiou et al., 2011). Dipolar effects in spinor
gases are discussed in Sec. VIII.

3. Orbital degrees of freedom in optical lattices

The physics of spinor Bose gases can also find realization
in systems of atoms in optical lattice potentials. Similar to the
orbital states of electrons within the unit cell of a periodic
crystal, the quantum states of the center-of-mass motion
within a unit cell of a periodic optical lattice can be regarded
as an internal-state space for a lattice-bound atomic gas.
These motional states can have nonzero angular momentum.
In deep optical lattices where the lattice site potentials tend
toward spherical symmetry, the system closely resembles a
spinor Bose gas insofar as the spherical symmetry implies the
presence of ground-state degeneracies and a particular struc-
ture to the interactions between atoms. As the lattice depth is
reduced, the orbital degeneracy is strongly influenced by the
structure and discrete symmetries of the lattice.

A degenerate Bose gas in the superfluid state in such a
shallow lattice can be regarded as analogous to a bulk spinor
Bose-Einstein condensate. Both the kinetic and interaction
energy in the lattice strongly depend on the orbital quantum
state. A simple example of this dependence arises from the
anisotropic tunneling of p-orbital particles in a primitive
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lattice with the tunneling rate being higher for the p orbital
aligned along the direction of tunneling (Isacsson and Girvin,
2005; Liu and Wu, 2006). In terms of orbital magnetism in a
bosonic superfluid, such tunneling gives anisotropic stiffness
of the magnetic order parameter, which can lead to ground-
state ‘‘orbital textures’’ with circulating orbital currents, remi-
niscent of the spin textures that are expected to arise from the
anisotropic spin interactions of dipolar spinor condensates.
Such lattice-gas systems have been realized experimentally
(Müller et al., 2007; Wirth, Olschlager, and Hemmerich,
2011). The interplay of orbital dynamics and spin dynamics
in non-Bravais lattices was also considered (Wagner, Bruder,
and Demler, 2011). However, one must note that orbital mag-
netism comes about from the excitation of high-energy bands,
and, at least for Bose gases, is generally not protected against
decay to the ground band; in contrast, at lowmagnetic fields or
in the absence of dipolar relaxation, nontrivial spin ordering
can persist for long times.

B. General properties of a quantum Bose fluid with internal

symmetry

Consider a scalar Bose-Einstein gas in a box potential. As
the temperature of the gas is lowered into the regime of
quantum degeneracy, why does the condensate form in the
motional ground state of the box?

The answer lies in the influence of bosonic particle-exchange
symmetry on the enumeration of microstates available to the
system. In particular, in comparison with Maxwell-Boltzmann
statistics of distinguishable particles, Bose-Einstein statistics
greatly reduces, by a factor ofN!, the number of nondegenerate
quantum states available to an N-body system. Thus, Bose-
Einstein statistics makes states with macroscopic populations
in single-particle states more likely. Once the system tempera-
ture T is reduced so that the number of single-particle statesM
accessible to the system (roughly the number of states with
energies below kBT) becomes smaller than N, multiply occu-
pied single-particle states become the norm. In ad-dimensional
box potential, this degeneracy occurs at kBTc � E1N

2=d, where
E1 is the energy of the first excited single-particle state in the
box. Note that a large number of single-particle states exist
below the energy scale kBTc, yet a macroscopic number of
particles condense into the lowest single-particle state due to
bosonic enhancement.

To address the question posed above, we consider the
population of atoms in the first excited single-particle state
once the system is cooled below Tc. This population is given
as N1 & kBTc=E1 ¼ N2=d, so that, in three dimensions, with
the scaling exponent 2=d < 1, only the ground state is macro-
scopically occupied. In contrast, for a Maxwell-Boltzmann
gas, the dominant macroscopic occupation of the ground state
occurs only at the temperature TMB ¼ E1=kB. Comparing the
two situations, we see that Bose-Einstein statistics have the
effect of greatly enhancing the effects of extremely small
energy differences (here E1) so as to allow the ground state to
be distinguished already at temperatures that are N2=d higher
than E1=kB.

In degenerate spinor Bose gases, one finds that the spin-
dependent contact and dipolar interactions distinguish between
different spin states of the spinor order parameter. The energy
differences per particle are often minute, far smaller than the

temperatures accessed in experiments; e.g., for the F ¼ 1 gas
of 87Rb, the spin-dependent contact interaction contributes
roughly 1 nK of energy per particle, far lower than the several
100 nK critical temperature for Bose-Einstein condensation.
And yet, due to the quantum-statistical Bose enhancement
effect described above, the gas becomes magnetically ordered
just below the Bose-Einstein condensation temperature. Such
Bose-enhanced magnetization is a novel mechanism for mag-
netism, distinct from the more conventional mechanisms for
localized or itinerant electrons in solids.

However, such Bose enhancement still does not uniquely
determine the state of a quantum-degenerate spinorBose gas. In
the absence of explicit symmetry breaking, e.g., due to applied
magnetic fields or nonspherically symmetric trapping poten-
tials, the internal rotational symmetry of the spinor Bose gas
guarantees that several single-particle spinor states achieve the
same lowest energy of the interacting system. The set of spinor
ground states for the spin-F gas may not retain the full
SUð2Fþ1Þ symmetry owing to spin-dependent interactions,
but the lower-symmetry manifold of spinor ground states is still
guaranteed to be degenerate over a continuous symmetry group.

In condensed-matter magnetic systems, such degeneracies
are often resolved by experimental actualities: extraneous
magnetic bias fields, magnetic defects, stress anisotropy,
etc. In spinor Bose gases, many of these artifacts are absent.
Does the Bose-Einstein-condensed system now break sym-
metry spontaneously and choose a conventional Bose-
Einstein condensate, with just a single macroscopically oc-
cupied single-particle state (Penrose and Onsager, 1956) but
with random magnetization? Or does the system abide by the
postulate of molecular chaos—assuming there are no con-
straints that bar the system from thermalizing—and form an
unbroken-symmetry state with macroscopic populations in
several single-particle spin states (Nozieres and Saint James,
1982)? This question is taken up in Sec. V.B.

The presence of a degenerate ground-state manifold also
influences the dynamics and structure of the degenerate
spinor Bose gas. In a broken-symmetry state, the gas will
possess one or more gapless Goldstone modes. The symmetry
group of the ground-state manifold determines the range of
topological defects that may be found in low-energy spin
textures as discussed in Sec. VI.D

C. Outline of this review

The central characteristic of spinor Bose gases is their
response to geometric transformations such as rotations and
inversions. To visualize the response of a high-spin object to
such transformations, in Sec. II we outline a method, first
developed by Majorana and subsequently reintroduced for the
description of spinor gases, in which quantum states are
represented by the positions of several points on the unit
sphere; for a spin-1=2 state, this method reproduces the
familiar Bloch-sphere representation. We also introduce a
family of high-symmetry spin states, known as inert states
for the reason that they represent extremal energy states for
generic rotationally symmetric spin Hamiltonians.

We then begin the physical description of spinor Bose
gases. Section III illustrates how rotational symmetry is
used to simplify enormously the characterization of interpar-
ticle interactions. After specifying several approximations,
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we find that the spin-dependent interactions within the spinor

gas are determined by the relative strength of the s-wave
scattering lengths for collisions among particles with a given

value of the total spin Fpair of the colliding pair. This sim-

plification sets the spinor gas apart from other multicompo-

nent Bose gases as discussed for the experimentally relevant

pseudospin-1=2 system.
The description of atomic interactions in Sec. III is strictly

valid only when the full rotational symmetry of the gas is

preserved. In fact, the true experimental conditions under

which spinor gases are prepared and studied depart from

such ideal conditions. Thus, before continuing with our ex-

ploration of the physics of spinor Bose gases, we use Sec. IV

to describe these experimental conditions and techniques.
In Sec. V, we describe the spatially uniform ground states

of spinor Bose gases as determined by their spin-dependent

s-wave interaction energies. This discussion includes a re-

view of experimental observations that characterize the

ground states of the F ¼ 1 23Na spinor gas (polar), the F ¼
1 87Rb spinor gas (ferromagnetic), and the F ¼ 2 87Rb spinor
gas (either antiferromagnetic, cyclic-tetrahedral). Ground

states are determined not only via the mean-field (Hartree)

approximation, but also via a many-body quantum treatment

that admits fragmented ground states.
For a nonuniform degenerate spinor Bose gas, long length-

scale variations of the local magnetic order parameters pro-

duce low-energy spin textures. In Sec. VI, we discuss salient

properties of these textures. We highlight the connections

between spatial variation of the spin state (which may repre-

sent spin currents) and the superfluid velocity (i.e., mass

currents), which are required due to the invariance of certain

order-parameter manifolds to combinations of geometric ro-

tations and gauge transformations. We also summarize our

knowledge of topological excitations that are either observed

or are predicted to occur in such spin textures. The coupling

of spin and mass currents is also inherent to several hydro-

dynamic descriptions that have been developed to describe

the low-energy dynamics of spin textures.
Another key characteristic of spinor Bose gases is the onset

of magnetic ordering due to Bose-Einstein statistics and the

enhancement of small single-particle energy differences in

the quantum-degenerate gas. What happens to such magnetic

ordering when the proclivity to Bose-Einstein condensation is

weakened, such as at nonzero temperature, in two- or one-

dimensional systems where finite-temperature Bose-Einstein

condensation does not occur in the thermodynamic limit, or

in periodic potentials where the role of particle interactions is

enhanced? These questions are considered in Sec. VII.
Next, in Sec. VIII, we consider the influence of themagnetic

dipole-dipole interaction on the low-temperature spinor Bose

gas. Such interactions add new features to the spinor gas: a new

source of spin-dependent interactions, which can compete

with the contact interactions to change the local magnetic

order of the gas, and a new long-range interaction that com-

petes with the kinetic-energy-inducted magnetic stiffness of

the spinor gas. Intricate spin textures are predicted to develop

in the ground state to reduce the dipolar energy. Dipolar effects

are expected to strongly influence the nature of spinor gases

composed of atoms with large magnetic moments. However,

even for the less magnetic alkali spinor gases, the long-range

nature of the dipolar interaction is expected to be significant,
and we describe experimental evidence for its effects.

In the next two sections, we discuss the dynamics of degen-
erate spinor Bose gases. Section IX is devoted to coherent spin
mixing. We summarize the observations of spin-mixing oscil-
lations in both microscopic and macroscopic spinor-gas
systems. Spin-mixing collisions also induce dynamical insta-
bilities that can be controlled by varying the single-particle
energies (via the quadratic Zeeman shift) and the initial state of
the degenerate spinor gas. These instabilities provide access to
a rich variety of physical phenomena, such as symmetry break-
ing, quantum atom optics, and spin squeezing.

Whereas the early-time dynamics of a nonequilibrium
spinor condensate may exhibit well-controlled coherent
spin mixing, at longer times one expects the gas to evolve
toward thermal equilibrium via phase-ordering kinetics. In
Sec. X, we summarize several situations where coarsening
and equilibration have been examined.

Following Sec. XI, in which we demonstrate how the
properties of ultracold spinor Bose gases may be useful for
applications in magnetic sensing and imaging, we conclude
by suggesting several open questions to be addressed in future
research (Sec. XII).

Several previous reviews are complementary to this work.
The early round of experiments on spinor Bose-Einstein
condensates of sodium is summarized by Stamper-Kurn and
Ketterle (2001). A more up-to-date review is presented by
Kawaguchi and Ueda (2012), and also briefly by Ueda
(2012), with a focus on theoretical frameworks. Spinor gases
are also treated briefly in Lewenstein et al. (2007), with a
focus on gases in optical lattices. In addition, several of the
topics covered in this review have been discussed separately.
Several reviews on properties of Bose gases with strong
dipolar interactions focus on gases with uniformly oriented
dipole moments (Baranov et al., 2002; Baranov, 2008;
Lahaye et al., 2009). In contrast, the present focus is on
dipolar interactions in spinor gases with a variable dipole
orientation (Sec. VIII). Aspects of topological defects, par-
ticularly of vortices, in spinor condensates are discussed by
Kasamatsu, Tsubota, and Ueda (2005). Several reviews have
summarized the explorations of the Kibble-Zurek mechanism
in condensed-matter systems, both for thermal phase transi-
tions (Zurek, 1996; Arodz, Dziarmaga, and Zurek, 2003) and
for quantum phase transitions (Dziarmaga, 2010). A broader
range of nonequilibrium phenomena is discussed in the
Colloquium by Polkovnikov et al. (2011).

II. QUANTUM STATES OF A Spin-F OBJECT

We begin by introducing and relating several methods for
characterizing the states of a spin-F object.

A. Geometric representation of spinor wave functions

Majorana (1932) invented a geometric representation of a
general spin-F state, which helps illustrate the symmetries
retained by a spinor wave function independent of the special
coordinate system chosen. This representation can be used to
picture the mean-field ground states, dynamics, and topologi-
cal structures of degenerate spinor Bose gases (Barnett,
Turner, and Demler, 2006, 2007; Makela and Suominen,
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2007; Turner et al., 2007; Barnett, Mukerjee, and Moore,
2008; Barnett, Podolsky, and Refael, 2009; Turner and
Demler, 2009; Lamacraft, 2010; Kawaguchi and Ueda,
2011; Marcin and Krzysztof, 2012).

First let us recall that spin-1=2 quantum states may be
represented pictorially as a point on the unit sphere (the
Bloch sphere). That is, given a spin-1=2 state jc i, one can
find a projection of the Pauli spin vector �̂� ¼ �̂ � �, where�
is a unit vector, so that jc i is the þ1 eigenstate of �̂�. Apart
from an overall phase, the state jc i is then represented by a
point on the Bloch sphere at position �. Alternately, one can
instead consider the family of fully magnetized states, defined
by the relation �̂ � �0jc 0i ¼ þjc 0i. We then identify the fully
magnetized state that is orthogonal to jc i, thereby identifying
a unit vector�0 that equivalently represents the state jc i on the
Bloch sphere. In this case we see trivially that � ¼ ��0.

Nowwe extend this pictorial scheme to states of higher spin.
First let us imagine that a spin-F particle is actually composed
of 2F spin-1=2 subparticles, and thatF is the quantum number
of the total spin of these subparticles. A spin-Fwave function,
written in the tensor space of these spin-1=2 subparticles, is
symmetric under the exchange of any two of the subparticles.
The state of each of these subparticles defines a unit vector�r

(r 2 f1; 2; . . . ; 2Fg) in the manner described above for
spin-1=2 states. This set of vectors corresponds to 2F points
on the unit sphere, providing a pictorial representation of the
spin-F state apart from an overall phase.

Alternately, we ask whether the spin-F state jc i is or-

thogonal to the maximum-value eigenstate of F̂ � �0, the
projection of the spin vector along the unit vector �0 whose
angular coordinates are ð�0; �0Þ. Expressing the state jc i in
the F̂z eigenbasis as ðc F; c F�1; . . . ; c�FÞT (T denotes the
transpose), the orthogonality condition produces the follow-
ing polynomial equation:

b0�
2F þ b1�

2F�1 þ � � � þ b2F ¼ 0; (1)

where bj ¼ c �
F�j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2F� jÞ!j!p
, and where � is the stereo-

graphic projection on the equatorial complex plane of the
point ð�0; �0Þ from the south pole:

tanð�0=2Þei�0 ¼ �: (2)

The 2F complex roots of the polynomial equation �1;
�2; . . . ; �2F identify the set of unit vectors �0

r. As in the
spin-1=2 case, these vectors are antipodal to the unit
vectors obtained from the spin-1=2 subparticle approach,
i.e., �r ¼ ��0

r.
In this review, we adopt the convention that a spinor jc i is

represented by the set �r. The state described by the unit
vectors �0

r is generated from jc i by time reversal, by which
one reverses the orientation of each of the spin-1=2 subpar-
ticles of which jc i is composed.

B. Spin moments

The state of a spin-F object, and of the magnetic ordering
produced in an ensemble of such objects, can also be
described by its spin moments. Since the single-particle
density matrix of a spin-F system is a ð2Fþ 1Þ � ð2Fþ 1Þ
square matrix, its full description requires the specification of
spin moments up to rank 2F. The rank-1 moment is the

expectation value of the spin-vector operator F̂. The rank-2
moment is the expectation value of the spin-quadrupole
tensor, defined as

N̂�� ¼ 1
2ðF̂�F̂� þ F̂�F̂�Þ � 1

3F̂
2���; (3)

where � and � specify Cartesian axes. This tensor, and also
its density as defined below, are sometimes referred to as the
nematicity. Throughout this review, both the vector spin

operator F̂ and the spin-quadrupole tensor N̂�� are taken to

be dimensionless with the quantum of angular momentum ℏ
absorbed into the definitions of other terms.

We also use the symbols F̂ �ðrÞ and N̂ ��ðrÞ, written as

functions of the spatial position r, to define the densities of
the spin-vector and spin-quadrupole moments. That is, define

the bosonic field operator ĉ mF
ðrÞ for particles in the eigen-

state of the F̂z operator with magnetic quantum number mF.
The � component of the spin-vector density is then given as

F̂ �ðrÞ ¼
X

m1;m2

ĉ y
m1
ðrÞðF�Þm1;m2

ĉ ðrÞ; (4)

where F� is the matrix representation of the corresponding

projection of the spin-vector operator in the F̂z eigenbasis.
The components of the spin-quadrupole tensor density are
written similarly. Both quantities have the units of number
density. The magnetization MðrÞ is found by multiplying the
spin-vector density by the maximum magnetic moment of a
spin-F atom.

The spin moments are expressed in terms of the unit
vectors �r defined in the Majorana representation, although
such expressions become complicated for higher-spin and
higher-rank moments (Barnett, Podolsky, and Refael, 2009).
For the simple case of F ¼ 1, the vector spin is found to be

hF̂i ¼ 2ð�1 þ �2Þ
3þ �1 � �2

(5)

and the spin-quadrupole tensor is expressed as

hN̂i ¼ � I

6
þ 1

6þ 2�1 � �2

�
�1�2 þ �2�1

þ ð�1 þ �2Þð�1 þ �2Þ þ ð�1 � �2Þð�1 � �2Þ
1þ �1 � �2

�
;

(6)

where, in Eq. (6), the matrices in the square brackets are
written as dyadic tensors, and I is the identity matrix.

We consider two examples of Majorana representations for

the simple case of F ¼ 1. For the spinor ð1=2; 1= ffiffiffi
2

p
; 1=2ÞT ,

where T denotes the transpose, the polynomial �2 þ 2� þ
1 ¼ 0 has a double root at � ¼ �1, so that the state is
represented by two overlapping points at the location (� ¼
�=2, � ¼ 0) and has SO(2) symmetry about the x axis.
Geometric rotations of this state are represented by two
overlapping points at the corresponding positions on the
sphere. (Majorana representations of longitudinal ferromag-
netic states are shown in Fig. 5.) States within this manifold

maximize the vector spin jhF̂ij, and so they are known as
‘‘ferromagnetic’’ states. Note that the time-reversed spinor
state is obtained by moving the points representing the state
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to their antipodal positions; indeed, the ferromagnetic states
reverse their orientation under time reversal.

Another manifold of states is obtained starting from the

spinor c ¼ ð1= ffiffiffi
2

p
; 0;�1=

ffiffiffi
2

p ÞT , for which Eq. (1) gives roots
at � ¼ 1 and � ¼ �1. The corresponding points are located
at antipodal points on the unit sphere; an example is shown in
Fig. 5. For this state, we identify x as the nematic director n,
i.e., the axis along which the spinor is the eigenstate of the
spin projection F � n with eigenvalue zero. The state jc i has
both SO(2) symmetry about the x axis and � rotation sym-
metry about any axis on the y-z plane (accompanied by a
gauge transformation not apparent in the geometric represen-
tation). The states obtained from this starting state by rota-
tions are known as ‘‘polar’’ states. They are characterized by
zero magnetization, while their inversion symmetry is re-
flected in their nematicity.

Representations for higher-spin states can be similarly
obtained. Spin-2 states are represented by four points on the
unit sphere. Examples of such states relevant to the zero-field
mean-field ground states of F ¼ 2 condensates (Fig. 7) in-
clude the ferromagnetic state, represented by four overlap-
ping dots; the uniaxial nematic state, represented by two
doubly degenerate dots at antipodal points on the sphere;
the biaxial nematic state, represented by points lying on a
great circle at the vertices of a regular square; and the cyclic-
tetrahedral phase,3 represented by points at the corners of a
regular tetrahedron.

Spin-3 states are represented by six points on the unit sphere
(Barnett, Turner, and Demler, 2006; Kawaguchi and Ueda,
2011). The possible symmetries constructed from six vertices
are octahedron, tetrahedron, dihedral-2,3,4,5,6, and C2;3;4;5;6,

where Cn represents the cyclic symmetry of order n. The
icosahedron symmetry is expected to appear for F � 6.

C. Inert states

There is a special class of states, called ‘‘inert states,’’ which
is defined to be stationary for generic rotationally symmetric,
spin-dependent energy functionals and independent of the
strengths of the interactions (Barton and Moore, 1974, 1975;
Vollhardt andWölfle, 1990;Makela and Suominen, 2007; Yip,
2007). There is a close relationship between the symmetry of
the order parameter and a stationary point of the free-energy
functional (Michel, 1980). This relationship greatly simplifies
the otherwise rather involved calculation of stationary states.
Let g 2 G be an element of the group of operations on the
order parameter c of the system that leaves the free-energy
functional invariant f½gc 	 ¼ f½c 	. Let h 2 H be an element
of the isotropy group H that leaves c unaltered hc ¼ c .
The order-parameter manifold M is then given by a coset
M ¼ G=H. Now take one c and operate every g 2 G on it.
The resulting set of gc is said to constitute an orbit. Now take

another c 0 and find the corresponding orbit by operating every
element ofG. If two orbits share the same isotropy group, they
are said to belong to the same stratum which is defined as the
union of orbits with the same isotropy group. Michel (1980)
asserts that if an orbit is isolated in its stratum, i.e., if it does not
have another orbit in its neighborhood, the corresponding
order parameter is a stationary function of the free-energy
functional. This theorem is useful to find inert states because
they depend only on the symmetry of the system and are
independent of the details of the system’s parameters. As an
illustration, consider the following eigenvalue problem
ei�e�ifz�c ¼ c . For a spin-1 BEC, the solution is c ¼
ð1; 0; 0ÞT , which implies that the ferromagnetic state is an
extremum of the mean-field energy.

The ground states of spinor Bose-Einstein condensates in
the absence of externally imposed symmetry-breaking fields
are inert, as are the A, A1, and B phases of superfluid 3He
(Vollhardt and Wölfle, 1990). It can be shown that the
ferromagnetic and polar states are the only two inert states
of the spin-1 condensate. For the spin-2 condensate, the
ferromagnetic, uniaxial nematic, biaxial nematic, and
cyclic-tetrahedral states are all inert states.

III. BOSE GASES WITH INTERNAL ROTATIONAL

SYMMETRY

In high-energy, condensed-matter, atomic, and molecular
physics alike, the starting point for understanding a new
system is the recognition of its underlying symmetries, by
which one can simplify its energetics, dynamics, topological
structures, and so on. In this spirit, we elucidate how rota-
tional symmetry constrains and simplifies the interactions
present in a spinor Bose gas.

A. Quantum scattering under rotational symmetry

At the low densities of atomic gases, interactions result
almost exclusively from binary collisions and, even in a
many-body system, such interactions can be understood
through the treatment of the two-body quantum scattering
problem. Neglecting the effects of particle confinement, we
treat such scattering in three spatial dimensions. Collisions are
then characterized by the scattering matrix that connects the
incoming and outgoing asymptotic states. Such states are
chosen as product states of the orbital motion and internal
states. We specify the former in the spherical harmonic basis
by the relative wave number k, and the quantum numbers for
the total orbital angular momentum Lpair and its projection on

the quantization axis mL;pair. We specify the latter using basis

states of spinor wave functions c for the colliding particles.
Under the time-independent scattering Hamiltonian, we may
interchange the incident and outgoing quantum states. Also,
the differences between the incident and outgoing kinetic
energies, determined by ki and kf, must be compensated by

changes in the internal energies of the spin states in the
collision; e.g., dipolar relaxation in an applied magnetic field
converts the Zeeman energy into the kinetic energy of the
colliding particles.

The next step in simplifying the scattering problem is to
consider the character of the two-body interaction, which
separates fairly cleanly into short-range and long-range parts,

3The term ‘‘cyclic’’ was introduced by Ciobanu, Yip, and Ho

(2000), referring to earlier classifications of the states of d-wave
superconductors. The term can also refer to the threefold rotational

symmetry of the state. The Majorana representation of the state

clarifies that its symmetry group is that of the tetrahedron, so a

better name for the state may be ‘‘tetrahedral.’’ We use both names

in this review in keeping with previous usage.
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with the divide between these parts occurring at an internu-

clear distance r longer than the effective range of the potential
r0. The long-range part is ultimately dominated by the MDDI,

which falls off as 1=r3. This functional dependence requires

that the dipole interaction be retained explicitly in the inter-

action Hamiltonian. For simplicity, we neglect the long-range

portion at this point, deferring the treatment of dipolar inter-

actions to Sec. VIII.
The short-range portion of the potential is complicated as it

comes about from the interaction among all the constituent

particles within the colliding atoms. This portion also contains

terms that mix the spin and orbital angular momenta of the

colliding particles, such as through second-order spin-orbit

coupling. The short-range interaction also influences the

strength of the MDDI; for example, a scattering resonance

causes the two-body wave function to be enhanced at short

internuclear distances, enhancing the effect of dipolar

interactions.
To treat the quantum scattering due to the short-range

potential, several approximations are commonly made. First

we assume that the incident collision energy is very low, in

the sense that the thermal de Broglie length of the relative

motion of the atoms obeys 	dB 
 r0. In this cold-collision

approximation, only the lowest-order incident partial

waves (Lpair;i ¼ 0) undergo collisions (subscript i indicates

‘‘initial’’); all other partial waves can be ignored.
Second, we make the ‘‘spinor-gas collision’’ approxima-

tion that the short-range potential is rotationally invariant—

such rotations affect both the internal spin degrees of freedom

and also the orbital spatial degrees of freedom. This approxi-

mation is exact in the absence of any external source of

rotational symmetry breaking such as applied magnetic fields,

nonspherical trapping potentials, vector, or tensor ac Stark

shifts in the optical dipole force, etc. In practice, such influ-

ences are rarely completely absent; nevertheless, the spinor-

gas collision approximation still applies at low magnetic

fields, away from magnetic or optical Feshbach resonances

and in the normal Zeeman regime of the ground-state hyper-

fine structure. This approximation guarantees the conserva-

tion of the total angular momentum of the colliding pair,

which is the sum of the total orbital angular momentum L̂pair

and the internal angular momentum (nuclear and electronic)

F̂pair. By the cold-collision approximation, the total angular

momentum of a colliding pair is Fpair;i. However, each source

of angular momentum need not be separately conserved.

Notably, dipolar relaxation can convert internal to orbital

angular momentum; to first order, such a collision promotes

the colliding pair from an incident orbital s wave (Lpair;i ¼ 0)

to an outgoing d-wave (Lpair;f ¼ 2) wave function, with a

concomitant change in Fpair;f, where the subscript f indicates

‘‘final.’’
To simplify further, one commonly makes a third assump-

tion, the ‘‘weak-dipolar approximation,’’ whereby one ne-

glects the spin-orbit coupling through the short-range

molecular potential. Now the orbital and internal angular

momenta are separately conserved: for a colliding atom

pair Lpair;i ¼ Lpair;f ¼ 0 and Fpair;i ¼ Fpair;f ¼ Fpair.

A final approximation is that s-wave collisions do not mix

total hyperfine states of the colliding atoms. For example, in

considering the properties of a spinor gas in an upper hyper-
fine manifold of the electronic ground state (say the F ¼ 2
spinor gas of 87Rb), we neglect collisions by which atoms
undergo hyperfine relaxation to the lower manifold (F ¼ 1).

Only after all these approximations can we conclude that
the myriad collisions among spinor-gas atoms are character-
ized simply by the s-wave scattering lengths aF;pair between

two particles in the collision channel Fpair (Ho, 1998; Ohmi

and Machida, 1998). The parity of Fpair is constrained further

by quantum statistics. The many-body wave function of
identical spin-F particles changes by a factor of ð�1Þ2F under
exchange of any two particles. By the same exchange, the
spin and orbital parts of the wave function change by
ð�1ÞFpairþ2F and ð�1ÞLpair , respectively. To be consistent, we
must have ð�1Þ2F ¼ ð�1ÞFpairþ2F � ð�1ÞLpair ; hence Fpair þ
Lpair must be even. For s-wave collisions, Fpair must be even.

This conclusion holds for both bosons and fermions.
We now construct the Hamiltonian describing the rotation-

ally symmetric s-wave interaction under the approximations
listed above. With the pseudopotential method (Huang and
Yang, 1957), we obtain (Ho, 1998; Ohmi and Machida, 1998)

V ¼ 1

2

X
i�j

�3ðri � rjÞ
X

evenFpair

4�ℏ2aF;pair
M

P̂F;pair; (7)

whereM is the atomic mass and the sum is taken over particle
pairs, labeled i and j. The operator P̂F;pair projects a pair of

atoms [implicitly the pair ði; jÞ] into the total spin-Fpair state,

where only even values of Fpair are now considered.

Table II summarizes the known scattering lengths aF;pair
for several spinor Bose gases that are experimentally acces-
sible. As discussed below, and in Sec. V.A, the different
relations among the scattering lengths for different Fpair yield

different predictions for the spin ordering of the ground state.

TABLE II. Scattering lengths aF;pair for several realizations of
spinor Bose gases. These scattering lengths are calculated
theoretically, using numerical models for the molecular potential
with input parameters that are determined by comparison with
experimental measurements of the positions of Feshbach reso-
nances, of the line strengths of photoassociation resonances, and
of scattering-length differences surmised from the dynamics of
quantum gases. Values for lithium are from Kokkelmans and
Khaykovich (2012), for sodium from Crubellier et al. (1999), for
potassium from Falke et al. (2008) and Lysebo and Veseth (2010)
(we guess errors at the level of 1%), for rubidium from Klausen,
Bohn, and Greene (2001) and van Kempen et al. (2002), for
chromium from Werner et al. (2005) and Pasquiou et al. (2010),
and the value of a0 in chromium is due to Sadeghpour (2012).
Values and standard error estimates (where they are known) are
given in units of the Bohr radius aB.

Spinor gas Scattering lengths (aB)

7Li, F ¼ 1 a0 ¼ 23:9, a2 ¼ 6:8
23Na, F ¼ 1 a0 ¼ 50:0� 1:6, a2 ¼ 55:0� 1:7
41K, F ¼ 1 a0 ¼ 68:5� 0:7, a2 ¼ 63:5� 0:6
87Rb, F ¼ 1 a0 ¼ 101:8� 0:2, a2 ¼ 100:4� 0:1
87Rb, F ¼ 2 a0 ¼ 87:4� 1:0, a2 ¼ 92:4� 1:0,

a4 ¼ 100:5� 1:0
52Cr, F ¼ 3 a0 ¼ 40� 10, a2 ¼ �7� 20,

a4 ¼ 58� 6, a6 ¼ 102:5� 0:4
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B. Spin-dependent s-wave interaction energy

It is convenient to express the s-wave interaction energy
[Eq. (7)] in less opaque nomenclature involving one-particle
and two-particle spin operators, as we demonstrate below for
the spin-1 and spin-2 cases.

1. Spin-1 case

As a starting point, we consider the identity operator for a
system of two spin-F particles:

Î1 � Î2 ¼
X

all Fpair

P̂F;pair; (8)

where we sum over all Fpair 2 f0; 1; 2; . . . ; 2Fg. Here Îi is the
identity operator of the ith particle, and � denotes the tensor
product. From the composition law of spin operators, we
obtain also

F̂1 � F̂2 ¼
X

all Fpair

�
1

2
FpairðFpair þ 1Þ � FðFþ 1Þ

�
P̂F;pair;

(9)

where F̂i is the one-particle vector spin for particle i.
We recall that the restriction to s-wave interactions allows

us to consider only the two-particle spin states that are
symmetric under the exchange of two particles, i.e., for all
two-particle spin operators multiplied by the spatial
� function in Eq. (7), we can eliminate terms with odd Fpair

from the summations. Restricting to such states, we then

identify, for F ¼ 1, ½Î1 � Î2	S ¼ P̂0 þ P̂2, and ½F̂1 � F̂2	S ¼
P̂2 � 2P̂0, where the S subscript reminds us of the
symmetric-state restriction. Combined with Eq. (7), we ob-
tain the interaction Hamiltonian of spin-1 bosons as

V̂ð1Þ ¼ cð1Þ0

2
½Î1 � Î2	S þ cð1Þ1

2
½F̂1 � F̂2	S; (10)

with

cð1Þ0 � 4�ℏ2

M

a0 þ 2a2
3

; (11)

cð1Þ1 � 4�ℏ2

M

a2 � a0
3

: (12)

In second quantization, each identity operator becomes the

number-density operator n̂ðrÞ ¼ P
F
m¼�F ĉ y

mðrÞĉ mðrÞ and

the � component of the spin vector becomes F̂� ¼P
F
m;n¼�F ĉ y

mðrÞðF�Þmn ĉ nðrÞ, where ĉ mF
ðrÞ is the Bose field

operator for the Zeeman state labeled by mF. Thus, the
second-quantized interaction operator is given by

V̂ð1Þ ¼ 1

2

Z
dr½cð1Þ0 :n̂2:þ cð1Þ1 :F̂1 � F̂2:	; (13)

where : : denotes normal ordering. The density and spin
operators are evaluated locally, enforcing the restriction to
symmetric spin states and allowing us to drop the subscript S.

2. Spin-2 case

For F ¼ 2, Eq. (9) gives ½F̂1 � F̂2	S ¼ �6P̂0 � 3P̂2 þ 4P̂4.
Combined with Eqs. (7) and (8) leads to

Vð2Þ ¼ cð2Þ0

2
½Î1 � Î2	 þ cð2Þ1

2
F̂1 � F̂2 þ 5cð2Þ2

2
P̂0; (14)

where

fcð2Þ0 ;cð2Þ1 ;cð2Þ2 g

�4�ℏ2

M

�
4a2þ3a4

7
;
a4�a2

7
;
7a0�10a2þ3a4

35

�
: (15)

The second-quantized form of Eq. (14) is given by

V̂ð2Þ ¼1

2

Z
dr½cð2Þ0 :n̂2:þcð2Þ1 :F̂1 � F̂2:þcð2Þ2 Ây

2 Â2	; (16)

where Â2 � P
2
m¼�2ð�1Þm ĉ m ĉ�m=

ffiffiffi
5

p
is the annihilation

operator of a spin-singlet pair of F ¼ 2 atoms.

C. Pseudospin systems

Any mixture of N condensates may, in principle, be de-
scribed as a fictitious spin-ðN � 1Þ=2 system. For example, a
mixture of condensates occupying the two hyperfine states
jF ¼ 1; mz ¼ �1i and jF ¼ 2; mz ¼ þ1i of 87Rb (Myatt
et al., 1997) constitutes a pseudospin-1=2 system. Unlike
spinor gases, pseudospin systems do not possess rotational
symmetry in spin space, and so many of the simplifications
attained above for describing the interactions and structures
of quantum gases do not apply.

Consider a Bose-Einstein condensate composed of two
internal states of the same atom. Its energetics are described
by the following Gross-Pitaevskii (mean-field) energy
functional:

E ¼
Z

dr

� X
i¼1;2

��
i

�
�ℏ2r2

2M
þ Ui þ 2�ℏ2aii

M
j�ij2

�
�i

þ 4�ℏ2a12
M

j�1j2j�2j2
�
; (17)

where M is the atomic mass, Ui is the trapping potential for
state ji ¼ 1; 2i, and aii and a12 are the intraspecies and
interspecies s-wave scattering lengths. To draw a connection
to the characteristics of spinor Bose-Einstein condensates,
this energy functional can be expressed in the pseudospin
representation as follows. For simplicity, we assume U1 ¼
U2 � U, and decompose the condensate pseudospinor wave

function �i as �iðrÞ ¼
ffiffiffiffiffiffiffiffiffi
nðrÞp


iðrÞ, where nðrÞ is the total
atomic density of atoms and j
1ðrÞj2 þ j
2ðrÞj2 ¼ 1. Using

i, we introduce a unit spin vector S as

Sx

Sy

Sz

0
BB@

1
CCA ¼

2Reð
1

�
2Þ

2 Imð
1

�
2Þ

j
1j2 � j
2j2

0
BB@

1
CCA; (18)

where Re and Im denote the real and imaginary parts, re-
spectively. As defined, S is the expectation value of the Pauli
operators. Then Eq. (17) can be rewritten as

E ¼
Z

dr

�
ℏ2

2M
ðr ffiffiffi

n
p Þ2 þ ℏ2n

8M

X
i¼x;y;z

ðrSiÞ2 þMn

2
v2eff

þUþ n2

2
ðc0 þ c1Sz þ c2S

2
zÞ
�
; (19)
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where veff � ðℏ=mÞImP
i¼1;2ð
�

ir
iÞ, and c0 ¼ 4�ℏ2ða1 þ
a2 þ 2a12Þ=M, c1 ¼ 4�ℏ2ða1 � a2Þ=ð2MÞ, and c2 ¼
�ℏ2ða1 þ a2 � 2a12Þ=M. This result shows that, even at
zero applied magnetic field, the system experiences
interaction-induced effects that break rotational symmetry
when c1 or c2 are nonzero. Differing from the case of spinor
Bose gases, these terms break the SU(2) symmetry of the
nonlinear sigma model (Rajaraman, 1987) in which only theP

i¼x;y;zðrSiÞ2 term exists.

Another generic feature of spinor Bose gases that may be
absent in the pseudospin system is the dynamics of interaction-
induced spinmixing. For example, for theF ¼ 1 spinor gas the
s-wave interaction energy [Eq. (13)] contains the terms

4�ℏ2ða2�a0Þ
3M

Z
d3rðĉ y

0 ĉ
y
0 ĉþ1 ĉ�1þ ĉ y

þ1 ĉ
y
�1 ĉ 0 ĉ 0Þ:

(20)

These terms describe spin-mixing collisions wherein two
atoms in the jmz ¼ 0i state collide to yield atoms in the jmz ¼
þ1i and jmz ¼ �1i states, and vice versa. Such spin mixing is
necessarily present if the s-wave interactions are spin depen-
dent (a2 � a0), and leads to characteristic phenomena such as
coherent spin oscillations, spontaneous magnetization and
symmetry breaking, parametric amplification and spin squeez-
ing, as discussed in Sec. IX. Such phenomena are physical
consequences of the coherence between the different internal-
state components of a Bose-condensed spinor gas. In contrast,
in pseudospin Bose systems, such internal-state dynamics may
be absent. However, the pseudospin Bose-Einstein condensate
may still show spontaneous phase coherence among its
internal-state populations as demonstrated experimentally
by Wheeler et al. (2004). In other words, a spin-F spinor
Bose-Einstein condensate cannot be considered an incoherent
overlap of N ¼ 2F individual condensates, whereas, in many
regards, a pseudospin-F condensate can.

D. Exchange interactions and spin waves

As argued above, a pair of atoms in a spinor gas will
experience a contact interaction only if its total spin Fpair is

even. For two atoms in distinguishable motional states, this
particle-exchange effect leads to an interaction-energy split-
ting between states of even and odd Fpair, even when the

s-wave scattering lengths are all equal, similar to exchange-
energy effects within multielectron atoms. The exchange-
interaction effect is pronounced for a gas in the cold-collision
regime, for which all odd partial wave collisions are frozen
out. Interactions among atoms in a Bose-Einstein condensate
are not affected by this phenomenon as the particles all
occupy the same state of motion. Rather, the exchange inter-
action affects the spin dynamics of nondegenerate gases.

Spin dynamics driven by the exchange effect in the cold-
collision regime were observed in experiments on trapped
hydrogen (Johnson et al., 1984; Bigelow, Freed, and Lee,
1989). The gas was comprised of atoms with a common
electronic spin polarization, but differing nuclear spin orien-
tations. For this particular pseudospin-1=2 system, because
all collisions occur through the electronic-triplet molecular
potential, all s-wave scattering lengths are expected to be the
same. However, nuclear magnetic resonances detected in a
gas cell placed in an inhomogeneous magnetic field showed

narrow resonances ascribed to standing spin-wave modes of
this rarified gas.

In a pseudospin-1=2 gas, the exchange interaction yields a
singlet-triplet splitting that can be understood simply as
causing the spins of two distinguishable atoms to precess
about one another. Similarly, in a mean-field picture, the spin
of an atom passing through a gas that is spin polarized in the e
direction will precess about e at a rate proportional to the
product of the gas density and the s-wave scattering length.
Such an interaction leads to a dynamical coupling between
spin currents and spin polarizations. Solving the gas-kinetic
equations in the presence of such coupling reveals a spectrum
of spin waves, which are damped by particle diffusion
(Lhuiller and Laloe, 1982a, 1982b).

The physics of spin waves arose again in studies of
pseudospin-1=2 rubidium gases for which the s-wave scatter-
ing lengths are, accidentally, all nearly equal. A nondegenerate
gas was prepared in a superposition of two spin states, within a
magnetic trapping potential that differed slightly for the two
states. The slight spin dependence of the trap led to ‘‘anom-
alously’’ rapid spin dynamics, seen as a spatial segregation of
the two spin components (Lewandowski et al., 2002). Such
dynamics were soon explained as a real-space signature of spin
waves (Fuchs, Gangardt, and Laloë, 2002; McGuirk et al.,
2002; Oktel and Levitov, 2002; Williams, Nikuni, and Clark,
2002). Spin waves have also been imaged in two-component
ultracold Fermi gases (Du et al., 2009). Spin-wave dynamics,
also called the identical spin-rotation effect, have been shown
to prevent the dephasing of spins (‘‘spin locking’’) in tightly
confined pseudospin-1=2 gases (Deutsch et al., 2010; Kleine
Büning et al., 2011). The interplay between the strong
spin-wave dynamics of the thermal fraction and the otherwise
languid spin dynamics of the condensed fraction of a
partly condensed pseudospin-1=2 gas was shown to accelerate
the condensate spin dynamics significantly (McGuirk
et al., 2003).

These works on pseudospin gases suggest that exchange
effects in nonzero-temperature spinor Bose gases should be
significant, particularly in situations where the differences
among s-wave scattering lengths aF;pair are small, and also

richer than those observed previously owing to the higher
value of the spin F. Several distinct spin-wave modes have
been predicted, marked by damped oscillations of both the
spin-vector moments and also of the spin-quadrupole mo-
ments due to exchange effects (Nikuni and Endo, 2008). An
examination by Natu and Mueller (2010) suggests that spin
waves should lead to spin-mixing instabilities in nondegen-
erate F ¼ 1 spinor Bose gases. However, the full implications
of exchange effects in nonzero-temperature spinor Bose gases
remain unexplored.

IV. EXPERIMENTAL REALITIES

A. Optical trapping

Experiments on spinor gases commence typically with the
preparation of a spin-polarized, and thus scalar, gas at low
temperature. This spin polarization is established in the
preparation of the atomic gas, for example, by optical pump-
ing and the selective trapping of a single spin state in a
magnetic trap. The spinor properties of the gas become
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relevant once the atoms are held in a trap that accommodates
all spin states and the atomic spin is no longer constrained to
the state of maximum magnetization.

A suitably spin-independent trap is provided by the optical
dipole force of a focused beam of light. An optical trap
confines an atom by dint of the electric dipole moment that

is induced on the polarizable atom by the optical electric field
(Metcalf and Straten, 1999). The trapping potential is ex-
pressed as a dyad of dipole vector operators and is, thus,
composed generally of scalar, vector, and rank-2 tensor terms.
In the case of alkali gases, for light far detuned from atomic
resonance, the relative strengths of these three contributions

scale as 1=�eg, �fs=�
2
eg, and �hfs=�

2
eg, respectively, where

�eg is the detuning of the trapping light from the atomic

resonance, �fs is the excited-state fine-structure splitting, and
�hfs is the excited-state hyperfine-structure splitting. By using
a detuning �eg that greatly exceeds �fs and �hfs, the scalar

light shift can be made to dominate the vector and rank-2
tensor shifts.4 Moreover, by time-reversal symmetry, the
vector term is eliminated for linearly polarized trapping light.
For such conditions, the optical trap potential is regarded as

being insensitive to the atomic spin. Alternately, by reducing
the laser detuning or using elliptically polarized light, the
optical dipole potential becomes a tool for manipulating the
atomic spin.

In optical traps, the confinement strength, and hence the
extent of the trapped gas, along different dimensions can be
varied. An extreme elliptical focus produces pancake-shaped
gases, with the diameter being far smaller along one axis
than along the others (Sadler et al., 2006). A single-beam

red-detuned optical trap with a tight circular focus can
produce prolate gases with high aspect ratios (Stenger
et al., 1998; Schmaljohann et al., 2004). Forming light traps
using two independent intersecting beams allowed for tightly
confining and nearly isotropic traps (Chang et al., 2004;
Scherer et al., 2010). Under such confinement, spatial var-
iations of the spin and also the density of the degenerate

spinor gas can be made energetically prohibited along one,
two, or three dimensions, respectively. Such a dimensional
restriction applies if the spatial dimension of the gas along a
given direction is smaller than the healing lengths, �sp �
ð8�n�aÞ�1=2, and �n � ð8�n �aÞ�1=2, pertinent to the spin
and density, respectively. Here we take into account just the
contact interactions, letting �a characterize the relevant
scattering-length difference that gives rise to the spin-

dependent interaction term and �a (> 0) the scattering length
that gives rise to the compressibility. Under the typical
condition j�aj< �a, the spin dynamics may be restricted to
a lower dimensionality than the density dynamics. Similar
considerations apply to determining whether thermal excita-
tions or the MDDI can lead to spin variations in each spatial

dimension.

B. Effects of applied fields

With the atoms in an optical trap, an experiment is con-
ducted by setting the initial state of the spin distribution and
then allowing this state to evolve, either freely or under
continued perturbation. The chief tool for manipulating
atomic quantum gases, and spinor gases, in particular, is the
application of external electric and magnetic fields. Below we
point out some uses and implications of these applied fields.

1. Static magnetic fields: The constraint of spin conservation

and spin-orbit coupling

The spin-dependent interactions of spinor Bose gases,
defined by characteristic energies on the order of h�
100 Hz, become far smaller than the linear Zeeman energy
splitting between spin states already at magnetic fields of tens
of �G. Under the application of such fields, exothermic
dipolar relaxation collisions allow a spinor Bose gas to evolve
toward the trivial lowest-energy state with uniform magneti-
zation along the field direction. Recent experiments on Cr
spinor gases (Pasquiou et al., 2011), for which the dipolar
relaxation rate is substantial (Weinstein et al., 1998; Hensler
et al., 2003), confirm this evolution toward a single Zeeman
state. Only when the magnetic field is stabilized to very
weak strengths, at which either the thermal energy kBT or
the spin-dependent interaction energy of a condensate
becomes comparable to the Zeeman energy, does the gas
populate additional Zeeman states. Studies of nontrivial
spinor-gas physics in high-magnetic-moment gases will
therefore require fine magnetic-field control and shielding.

However, for alkali spinor gases (Boesten, Moerdijk, and
Verhaar, 1996; Gerton et al., 1999) [other than cesium
(Söding et al., 1998)], dipolar relaxation collisions are rare,
and thus, in a uniform bias field, the magnetization of the gas
along the field direction can be considered a conserved
quantity. In light of the (approximate) conservation of the
longitudinal spin, the theoretical treatments for the ground
states of the spinor Bose gas must be reconsidered.

One approach is to introduce spin conservation into the
many-body Hamiltonian via a Lagrange multiplier 	 (Stenger
et al., 1998). Let the spinor gas in the absence of an applied
magnetic field be described by the Hamiltonian Ĥ0.
Considering also the linear Zeeman energy from a uniform
magnetic field B ¼ Bzz, we substitute

Ĥ0 ! Ĥ0 � ðℏ�Bz � 	ÞX
i

F̂z;i; (21)

where � is the atomic gyromagnetic ratio, and the sum is
taken over the atoms in the gas. We consider the case where
hPiF̂z;ii is constrained to be zero. By symmetry, we expect

	 ¼ ℏ�Bz: the effect of the applied field has disappeared
altogether. Under this global conservation constraint, the
evolution of the spinor-gas magnetization is still quite rich,
so that meaningful studies of the spinor Bose gas are still
possible under nonstringent experimental conditions.

The insertion of a Lagrange multiplier is equivalent to
treating the evolution of the spinor Bose gas in a frame
rotating at the Larmor precession frequency !L ¼ ��Bz.
In that rotating frame, the magnetic field appears to be absent,
and the effects of spin-dependent interactions and/or sponta-
neous symmetry breaking are free to determine the ground

4For example, for the 87Rb atom, �hfs is on the order of 108 Hz in

the excited 5P states. The fine-structure splitting of �fs ¼
7� 1012 Hz is determined from the difference in the resonant

wavelengths of 795 and 780 nm for the D1 and D2 lines, respec-

tively. An optical trap with light at a wavelength of 1 �m, or �eg ¼
8� 1013 Hz, satisfies the relation �eg 
 ð�fs;�hfsÞ and is therefore
dominated by the scalar contribution.
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state or other configurations of the quantum fluid. Viewed in
the laboratory frame, however, this configuration undergoes
rapid Larmor precession, with!L typically greatly exceeding
other dynamical frequencies of the gas. This rapid precession
must be taken into account, for example, in probing the
magnetization of the gas (Sec. IV.C.2).

While the linear Zeeman effect of a uniform magnetic field
is effectively eliminated through global spin conservation,
that of a nonuniform field BðrÞ is not. If we neglect spatial
variations in the orientation of the magnetic field, e.g., in the
case that the spinor gas is tightly confined along some
symmetry axis of the magnetic field, the constrained
Hamiltonian of Eq. (21) is simply modified as follows:

Ĥ0 ! Ĥ0 � ½ℏ�BzðrÞ � 		X
i

F̂z;i: (22)

The global constraint provides a uniform adjustment to the
applied magnetic field, but does not cancel out the field
inhomogeneity.

This remnant variation was utilized to reveal features of the
mean-field phase diagram of sodium spinor condensates
(Stenger et al., 1998). Considering just the gradient B0

z of
the field magnitude along the long axis of their quasi-one-
dimensional spinor gas and adopting the local-density ap-
proximation, the spinor state at the axial position z was taken
to represent the constrained equilibrium state for different
values of pðzÞ ¼ 	� ℏ�BzðzÞ ¼ p0 þ p0z, with p0 deter-
mined by the longitudinal magnetization of the sample. By
comparison to the theoretical phase diagram (see Fig. 5, in
which one varies also the quadratic Zeeman shift; see below),
the researchers determined that the F ¼ 1 spinor gas of
sodium experiences antiferromagnetic interactions. Their ap-
proach is among the first applications of the now-common
method of measuring slices through a phase diagram through
local measurements of a gas in an inhomogeneous potential
(Shin et al., 2008; Ho and Zhou, 2010; Horikoshi et al., 2010;
Navon et al., 2010). This method relies on the validity of the
local-density approximation. For the spinor Bose gas, this
approximation holds when the locally determined equilib-
rium spin order varies on length scales larger than the spin
healing length (on the order of microns).

Accounting for the near conservation of longitudinal spin
in a magnetic field with inhomogeneous orientation is more
subtle. It is convenient to describe the spinor wave function in
a spatially dependent basis of spin states, by applying a

spatially dependent spin-rotation operator R̂ðrÞ ¼
exp½�i�ðrÞ � F̂	 so that the basis states correspond to local
eigenstates of the spin projection along the magnetic field.
Applied in this basis, the constrained Hamiltonian has the
form of Eq. (22) and also acquires a gauge field, with the
momentum operator transforming as

P̂ ! P̂�X
�

A�F̂�; (23)

with the sum taken over components of the spin vector. The
gauge field is defined throughX

�

A�F̂� ¼ iℏrrR̂R̂
yðrÞ: (24)

The imposition of additional rotations about the local field
direction in R̂ðrÞ corresponds to a gauge transformation of the

gauge field A. This gauge field generally provides a form of
spin-orbit coupling to the spinor gas. As described by Ho
and Shenoy (1996), such spin-orbit coupling may introduce
vorticity to the ground state of a spinor Bose-Einstein
condensate.

This means of synthesizing a gauge field for a neutral-atom
gas is related to that realized experimentally by the Spielman
group (Lin et al., 2009, 2011). In that work, a pair of
intersecting laser beams drives a steady Raman transition
between hyperfine spin states. In a rotating frame, this
Raman coupling provides a spatially periodic effective mag-
netic field, which then leads to an effective spin-dependent
gauge field by the mechanism described above.

Even in the absence of dipolar relaxation collisions, the
magnetization of the spinor gas is generally no longer con-
served in such inhomogeneous fields. For example, atoms in
magnetic spherical-quadrupole traps may undergo spin flips
when they cannot adiabatically follow the rapidly varying
field orientation near the location of zero field. In the case of
pure magnetic trapping, such spin flips are known as
‘‘Majorana losses’’ (Majorana, 1932), since the spin-flipped
atoms are expelled from the trap. For an optically trapped
spinor gas, such Majorana transitions provide a means of
Zeeman relaxation. However, if the magnetic fields within
the volume of the spinor gas do not vary rapidly in their
orientation, the absence of dipolar relaxation collisions still
permits the longitudinal magnetization (properly defined at
each locale) to be conserved.

2. Quadratic shifts

The Zeeman shift of hyperfine spin states at low magnetic
field is not strictly linear. For alkali gases, one can evaluate
the next-order term in the Zeeman shift given the Breit-Rabi
Hamiltonian (Breit and Rabi, 1931) (Fig. 1). Measuring
energies with respect to the jmz ¼ 0i state, we obtain the
net single-particle quadratic Zeeman energy

Ĥq ¼ �ðgs�B � gI�NÞ2
�Wð1þ 2IÞ2 B2

zF̂
2
z ¼ qF̂2

z ; (25)

where gs ’ 2 is the g factor of the electron, gI�N=ℏ is the
nuclear gyromagnetic ratio, �W is the hyperfine energy
splitting, Bz is the magnitude of the magnetic field, assumed
to be oriented along z, and the hyperfine spin is F ¼ I � 1=2.

A similar quadratic energy shift can be obtained by other
means as well. For instance, a quadratic energy shift for the
F ¼ 1 spinor gas is obtained using the ac Zeeman effect from
a microwave drive tuned near the jF ¼ 1;mz ¼ 0i ! jF ¼
0; 2;mz ¼ 0i hyperfine transition (Gerbier et al., 2006). With
this method, the sign of q can be varied by using either
positive or negative detuning. Additionally, off-resonance
linearly polarized light exerts a quadratic shift (the tensor
portion of the ac Stark shift) along the polarization axis
(Cohen-Tannoudji and Dupont-Roc, 1972; Santos et al.,
2007; Jensen et al., 2009). This optically induced shift can
be spatially tailored at high resolution and rapidly adjusted
using electro-optics.

This quadratic shift (which we call a ‘‘Zeeman’’ shift
regardless of its provenance) breaks rotational symmetry by
favoring one spatial axis, but still preserves the lower SO(2)
symmetry about that axis. This shift gives a significant
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experimental handle on the ground-state phase diagram of
spinor Bose-Einstein condensates (Sec. V.A) and on spin-
mixing dynamics (Sec. IX).

3. Effects of radio-frequency, microwave, and Raman coupling

between spin states

Magnetic fields are also applied to manipulate the spin of
the gas dynamically. Transitions among the magnetic sub-
levels of the spinor gas are driven with radio-frequency (rf)
fields. Given the strong Zeeman sensitivity of the transition

frequencies, the rf excitation is usually either pulsed or
frequency chirped across the spin resonance frequency for
the purpose of rapid adiabatic passage. When the differences
between the various �m ¼ 1 transition frequencies are small
compared to the Rabi frequency and the inverse of the pulse
duration, e.g., at low magnetic fields where the quadratic

Zeeman shift is small, the rf excitation effects a rotation of
the spin. When the different �m ¼ 1 transition frequencies
are resolved, e.g., at high magnetic fields where the quadratic
Zeeman shift is large, rf fields can be used for arbitrary
unitary transformations of the atomic spin (Giorda, Zanardi,

and Lloyd, 2003).
The internal state of the spinor gas may also be manipu-

lated by driving transitions among the different hyperfine spin
manifolds. Here, even at low magnetic fields, hyperfine tran-
sitions for the different magnetic sublevels of the spinor gas
are readily resolved. Thus, chosen unitary transformations
may be imposed without applying large magnetic fields and

contending with the resulting eddy currents or hysteresis in
the experimental chamber.

Internal-state transitions of the spinor gas can also be
achieved optically (Wright, Leslie, and Bigelow, 2008).
This method has the benefit of allowing fine spatial control
over the coupling between states. A striking use of this
capability was the generation of spin-vortex-like structures
in a sodium spinor condensate using Gauss-Laguerre light

beams to impose the necessary phase variation across the gas
(Leslie, Hansen et al., 2009; Wright et al., 2009).

C. Probes

1. Stern-Gerlach and time-of-flight analysis

Characterizing the magnetic order in a spinor gas requires

knowledge of both the populations in and the coherences
among basis states of the atomic spin. A straightforward
method for measuring populations is releasing the gas from
its optical confinement, using a magnetic-field gradient to
separate atoms in different magnetic sublevels into different
spatial regions, and then imaging the separated portions of the

gas; this is an amalgam of the Stern-Gerlach experiment
(Gerlach and Stern, 1924) and time-of-flight analysis (Fig. 2).
In typical experiments, the magnetic field is varied adiabati-
cally from the uniform field applied during optical trapping to
the gradient field applied during the Stern-Gerlach separation;

thus, one obtains a projective measurement of the distribution
of atoms among the Zeeman sublevels in the trap.

Additionally, as in measurements of scalar quantum
gases, the time-of-flight images carry information on the
spatial, momentum, and energy distribution of atoms in
the trap (Ketterle, Durfee, and Stamper-Kurn, 1999). The

measurement resolution for the in-trap spatial distribution is
limited by the minimum time of flight needed to separate
the spin components, a minimum established not only by the

maximum available magnetic-field gradients, but also by
the need to allow the gas to expand before applying field

gradients so as to avoid interparticle scattering as the com-
ponents separate.

By scattering many photons off each atom being imaged,
the populations in the different sublevels can be determined

with arbitrarily high accuracy. Sub-Poisson measurement
uncertainty, i.e., with an imprecision �N <N1=2 for mea-

surements on N atoms, has been achieved by several groups
(Bookjans, Hamley, and Chapman, 2011; Gross et al., 2011;

Lücke et al., 2011; Hamley et al., 2012) to probe correlations
predicted from solutions for the many-body spin Hamiltonian
(Sec. V.B) and the spin squeezing expected to result from

spin-mixing instabilities (Sec. IX.D).

2. Dispersive optical measurements

To achieve higher spatial resolution while imaging the
trapped and usually optically dense gas, it is advantageous

to turn to dispersive imaging using off-resonant light, for
which the refractive index of the cold gas is dominantly

real (Andrews et al., 1996). The dispersion of light passing
through the sample conveys information not only on the
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FIG. 2. Stern-Gerlach and time-of-flight analysis reveals the axial

spin-state distribution of an elongated 23Na spinor Bose-Einstein

condensate, 50 ms after a quench from positive to negative quadratic

Zeeman shift. The trapped condensate is prolate, with radial and

axial dimensions of 4 and 270 �m (Thomas-Fermi radii). The

optical trap is extinguished, after which the condensate expands

rapidly in the radial direction (vertical in image), so that the in situ

axial spin distribution (horizontal in image) is nearly preserved.

During the free expansion, a magnetic-field gradient separates the

Zeeman populations onto separate portions of the image plane (a),

allowing the column density (b) of each population to be quantified.

Here a condensate prepared initially in the jmz ¼ 0i state undergoes
a dynamical instability, evolving toward the transversely aligned

polar state (as indicated by the correlation between the jmz ¼ �1i
distributions). Adapted from Bookjans, Vinit, and Raman, 2011.
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density of the atomic gas, but also on its spin polarization.
The real part of the linear optical susceptibility 
 (which is
dimensionless) for monochromatic illumination is a tensor
quantity related to the reduced one-body, local density matrix
ðrÞ as


ijðrÞ ¼ 1

4��0
Tr

�
ðrÞX

g;e

1

ℏ�eg

d̂ijeihejd̂jjgihgj
�
; (26)

where i, j denote Cartesian directions, d̂ is the electric dipole
operator, and �0 is the vacuum permittivity. Here we assume
the population is entirely in the electronic ground-state mani-
fold. The sum runs over the energy eigenstates of the ground-
state manifold (labeled with g) and those of the electronic
excited states (labeled with e), with �eg ¼ !�!eg indicat-

ing the optical detuning for each transition.
To simplify this expression further, we assume the excited

states are divided into several manifolds of well-defined an-
gular momentum, and make the approximation that the detun-
ing for transitions between the ground states (taken as a single
spin manifold) and each of the excited-state manifolds is
independent of the magnetic quantum numbers of each. This
approximation is well suited to spinor gases, studied under
conditions of small Zeeman and Stark shifts compared to the
optical detuning. The susceptibility now becomes


ijðrÞ ¼ 1

4��0
Tr

�
ðrÞd̂i

�X
e

jeihej
ℏ�eg

�
d̂j

�
; (27)

where the operator in square brackets is scalar. As the expec-
tation value of a dyadic tensor, the optical susceptibility is

identified as a sum of spherical tensors of ranks 0, 1,
and 2, i.e.,


ijðrÞ¼
ð0Þ�ijnðrÞþ
ð1Þi�ijkF kðrÞþ
ð2ÞN ijðrÞ: (28)

Thus, the scalar, rank-1, and rank-2 components of the optical
susceptibility tensor relate directly to the density nðrÞ, the
vector magnetization F ðrÞ, and nematicity N i;jðrÞ, respec-
tively, of the spinor gas. The vector and tensor contributions
give rise to circular and linear birefringence, respectively. This
optical sensitivity summarizes magneto-optical properties of
atomic gases (Budker et al., 2002; Suter, 2005) and was ex-
pressed in relation to studies of spinor gases by Carusotto and
Mueller (2004).

One means of measuring the susceptibility tensor is to send
collimated monochromatic probe light through the spinor gas.
In passing through a thin slice of the gas, the electric field of
probe light propagating along the z direction is modified as

Eðx; y; zþ dzÞ ¼ f1þ ik½1þ 1
2
?ðx; y; zÞ	dzg �Eðx; y; zÞ;

(29)

where k is the wave number in vacuum. The electric field lies
in the x-y plane, and only the x, y elements of the suscepti-
bility tensor are retained in 
?, owing to the transverse nature
of the optical field. When the dispersive phase shifts are
small, and applying the thin-lens approximation, the field of
the light after passing through the entire gas is approximated
as

Eoutðx; yÞ ’ ei
��

2
41þ i

2
k0


ð2Þ
2 ½ ~N xxðx; yÞ � ~N yyðx; yÞ	 i
ð1Þ ~F zðx; yÞ þ 
ð2Þ ~N xyðx; yÞ

�i
ð1Þ ~F zðx; yÞ þ 
ð2Þ ~N xyðx; yÞ � 
ð2Þ
2 ½ ~N xxðx; yÞ � ~N yyðx; yÞ	

0
@

1
A
3
5 � Ein; (30)

where the common phase shift is �� ¼ ðk0=2Þ�
½
ð0Þ~nþ 
ð2Þð ~N xx þ ~N yyÞ=2	 and the tilde denotes the
column-averaged quantity along the optical axis.

Dispersive optical detection has been used to measure the
magnetization dynamics of F ¼ 1 spinor gases of 23Na (Liu,
Jung et al., 2009) and 87Rb (Higbie et al., 2005). The sodium
experiments highlighted the capacity for performing weak
continuous measurements on a single trapped spinor gas.
Strong optical confinement constrained the sodium spinor
condensate to a single spatial mode. Far detuned linear
polarized light was passed once through the sample and
then through a linear polarizer rotated �=4 with respect to
the incident polarization in order to determine the circular
birefringence. Through Eq. (30) and consistent with the stated

assumptions, the measured signal is proportional to k0

ð1Þ ~F z,

giving the magnetization component of the gas along the
optical axis. By imposing a magnetic field transverse to this
axis, the rapid Larmor precession of the magnetization al-
lowed both components of the transverse magnetization to be
detected as a temporal oscillation of the optical rotation
signal. The amplitude of this oscillation (Fig. 3) gave a
continuous measure of spin-mixing dynamics in the polar
spinor condensate (Liu, Jung et al., 2009). In experiments on
nondegenerate gases, it was demonstrated that a continuous

Faraday rotation measurement, supplemented with imposed
linear and quadratic Zeeman effects, can be used for complete
characterization of the spin density matrix for arbitrary spin
(Smith et al., 2004). This powerful method can be extended to
the study of spinor gases in future works.

Applications of dispersive birefringent imaging to rubidium
gases highlighted the ability to measure the vector magneti-
zation at high spatial resolution. Circular polarized light was
sent through the gas (along the y axis), and a polarization-
independent phase-contrast method (Hecht, 1989) was used to
convert the dispersive signal into an intensity image (Higbie
et al., 2005). Following Eq. (30), the signal is proportional to


ð0Þ~nþ
ð1Þ ~F yþ
ð2Þð ~N xxþ ~N zzÞ=2. To isolate the magne-

tization signal, a series of images was taken while the atomic
spins underwent Larmor precession in a transverse applied
magnetic field (along z), with each probe pulse lasting a small
fraction of the Larmor precession period. The pixel-by-pixel
amplitude and phase of the signal variation at the Larmor
precession frequency (aliased by the slower frequency at
which images were taken) gave a detailed spatial map of
both the magnitude and orientation of the transverse magne-
tization (Fig. 4). In later work, a spatial map of the longitu-
dinal magnetization was obtained also by applying a �=2 rf
pulse in the middle of the imaging sequence (Vengalattore
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et al., 2010). The nematicity signal, precessing at twice the
Larmor frequency and with 
ð2Þ being small for the imaging
settings, was ignored.

3. Fundamental limits to dispersive measurements

The backaction of optical measurements of the atomic spin
influences the gas being probed, necessitating a compromise
between measurement precision and the fidelity of repeated
measurements. When measurements are made of several spin
moments of the gas, the limitations to measurement fidelity
are fundamental, arising from the noncommutativity of the
measured observables. These limitations have been studied
extensively for measurements of the vector spin for gases of
spin-1=2 atoms (Takano et al., 2009) and also higher-spin
atoms (Kuzmich, Bigelow, and Mandel, 1998; Kuzmich,
Mandel, and Bigelow, 2000), and for pseudospin-1=2 systems
(Esteve et al., 2008; Appel et al., 2009; Gross et al., 2010;
Hammerer, Sorensen, and Polzik, 2010; Riedel et al., 2010;
Schleier-Smith, Leroux, and Vuletic, 2010). For measure-
ments on a spinor gas that is fully magnetized along the e
axis, standard quantum limits apply to measurements of the
two magnetization projections transverse to e, defining the
condition when the requisite backaction from measurements
of one projection contributes significant fluctuations to the

other. This limit to the measurement variance is given as
ð�M?Þ2 ¼ nVF=2, where n is the atomic density, F is the
(dimensionless) quantum number of the total angular mo-
mentum, and V is the volume over which the magnetization is
measured.

Dispersive measurements on optically thick gases are ca-
pable, in principle, of surpassing the standard quantum limits
for spin detection nondestructively. Dispersive measurements
on spinor gases have yet to achieve this precision, being
limited by collective optical scattering from the optically
dense gas (Vengalattore et al., 2007). However, the prospect
of doing so is compelling. Analyzing the fluctuations in a
low-noise dispersive optical measurement may distinguish
between the many-body correlated spin states of spinor gases
(Eckert, Zawitkowski, Sanpera et al., 2007). Similar to the
cases cited above for spin- and pseudospin-1=2 atoms, quan-
tum nondemolition measurements of the atomic spin provide
a means to spin squeezing. Achieving such measurements in
high-resolution dispersive imaging allows one to transform a
spinor Bose-Einstein condensate into a nonclassical, spatially
extended quantum field (Sau et al., 2010). It is interesting to
consider how dispersive imaging, or other nondestructive
detection methods, can achieve squeezing and entanglement
that is specific to ensembles of high-spin particles, criteria for
which have been specified by Vitagliano et al. (2011) (see
also Sec. IX.D).

4. Cavity aided detection and manipulation

Placing a dispersive medium inside an optical resonator
leads to an enhancement of the dispersive optical phase shift
by the cavity finesse. The cavity-enhanced detection of the
magnetization of a cold atomic gas enabled a recent imple-
mentation of magnetic resonance imaging for optically
trapped ultracold atomic gases. The atomic magnetization
was measured with an imprecision below the Poisson limit,
although not as a quantum nondemolition measurement due
to perturbations to the atomic motional states (Brahms et al.,
2011). This sensitivity is sufficient to detect quantum-
correlated ground states of spinor Bose-Einstein condensates
according to recent proposals (Cui, Wang, and Zhou, 2008;
Zhang et al., 2009).

Optical cavities have also been examined as a means to
influence the dynamics of spinor Bose gases. Variations in the
atomic spin populations alter the optical susceptibility of the
gas, changing the resonance frequency of differently polar-
ized optical cavity modes. In turn, for an externally driven
cavity, these changes modulate the cavity fields and thereby
act back on the atomic spin dynamics through the varying ac
Stark shifts. This coherent backaction is predicted to lead to
nonlinearities and bistability in spin-mixing dynamics (Zhou
et al., 2009, 2010).

Missing from these theoretical descriptions is a full ac-
counting for the effects of quantum noise and quantum
measurement. Aside from influencing the atomic spin dy-
namics, the cavity field also effects a continuous measure-
ment of the atomic spin. Such measurement requires a
backaction on the atomic spin, which typically comes from
the quantum-optical (shot noise) fluctuations of the cavity
field. Some aspects of this backaction, in terms of disrupting
the otherwise coherent spin-mixing dynamics, are discussed
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FIG. 3 (color). Faraday rotation measurement, revealing spin-

mixing dynamics in a 23Na spinor Bose-Einstein condensate.

(a) Magnetization along the probe light axis causes the optical

linear polarization to rotate as measured by a photocurrent differ-

ence in a polarization analyzer. With the condensate exposed to a

magnetic field perpendicular to the imaging axis, the rotation signal

measures the transverse magnetization, which oscillates at the

Larmor precession frequency. (b), (c) The Larmor precession am-

plitude is recorded for a condensate that is prepared in the trans-

versely magnetized state and allowed to evolve at constant q. (b) For
low jqj, attained at low magnetic field, the spin-dependent inter-

actions cause the spin-mixing oscillations to follow an orbital

trajectory around the transversely magnetized state; the condensate

remains mostly magnetized, and, thus, the Larmor precession

amplitude varies only slightly. (c) In contrast, for high jqj, the

condensate undergoes complete orientation-to-alignment conver-

sion as expected in the absence of interactions. This is indicated

by the periodic oscillation between large precession amplitude,

characteristic of the oriented (magnetized) state, and zero preces-

sion amplitude, characteristic of the aligned (unmagnetized) state.

Adapted from Liu, Jung et al., 2009.
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by Zhang et al. (2011). Cavity quantum electrodynamics
offers a clean setting in which to explore such measurement
backaction effects in future experiments.

V. GROUND-STATE PROPERTIES OF SPINOR BOSE

GASES

A. Mean-field ground states

Gathering energy terms discussed in the previous sections,
and continuing to ignore the MDDI (see later discussion in
Sec. VIII.C), the total Hamiltonian of the spinor Bose gas is
given by

Ĥ ¼
Z

dr
X
m

ĉ y
mðrÞ

�
�ℏ2r2

2M
þ UðrÞ

�
ĉ mðrÞ þ ĤZ þ V̂;

(31)

where U is the trapping potential, assumed to be scalar,
and ĤZ describes the linear and quadratic Zeeman effects
given by

ĤZ ¼
Z

dr
X
m1m2

ĉ y
m1
ðrÞ½pF̂z þ qF̂2

z	m1;m2
ĉ m2

ðrÞ; (32)

where we assumed that the magnetic field is oriented uni-
formly along z, and that the quadratic Zeeman shift also
selects the z axis.

To focus only on the spin-dependent energies, we make the
single-mode approximation (SMA) (Law, Pu, and Bigelow,

1998) whereby we express field operators as ĉ mðrÞ ¼
�ðrÞĉ m, with �ðrÞ defining the spatial mode of the Bose-
Einstein condensate. This approximation is valid so long as
the energetic cost of spatial variations in the spin state of the
gas exceeds any consequent reductions in the spin-dependent

energies, or, equivalently, if the system’s size is much
smaller than the spin healing length �sp. By the discussion

of Sec. IV.A, such a condensate is zero dimensional for
spin degrees of freedom. When the system’s size is larger
than �sp, the SMA can also be applied locally within the

local-density approximation. The ground states obtained
under the SMA can thus clarify how spin-dependent inter-
actions are locally minimized, even in spatially extended
samples.

1. Spin-1 case

Within the SMA, the spin-dependent part of the
Hamiltonian for a spin-1 Bose gas reads as

Ĥð1Þ ¼ cð1Þ1 n

2

X
m1 ;m2
m3 ;m4

ĉ y
m1
ĉ y

m2
Fm1m3

� Fm2m4
ĉ m3

ĉ m4

þ X
m1;m2

ĉ y
m1
½pFz þ qF2

z 	m1;m2
ĉ m2

; (33)

where n ¼ R
d3rj�4j=R d3rj�2j / N is the average density,

proportional to the number of atoms in the gas N.
If we ignore quantum fluctuations, and take expectation

values with respect to the mean values of the mode operators,
we obtain the mean-field energy functional

Eð1Þ ¼ cð1Þ1 n

2
hF̂i2 þ phF̂zi þ qhF̂2

zi: (34)

The spin-dependent interaction term is rotationally sym-

metric. For cð1Þ1 > 0, as for the F ¼ 1 spinor gas of 23Na, this

term favors the manifold of polar states, for which jhF̂ij ¼ 0.
Such interactions are often denoted as ‘‘antiferromagnetic,’’
although unlike in solid-state antiferromagnets, there is no
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FIG. 4 (color). Repeated polarization-contrast imaging is used to measure both components of the transverse magnetization of a spin-1 87Rb

gas. (a) Polarization-rotation images are takenwhile the transversemagnetization undergoes Larmor precession between image frames. (b) Such

precession is seen in data selected froma common location in each image frame (yellowboxes in a). (c)Analyzingdata fromeach image pixel, one

extracts the spatially varying Larmor precession amplitude and phase, or, equivalently, the two components of the transverse magnetization ~Fx

and ~Fy. These are represented either in gray scale or in a color scale with brightness indicating amplitude and hue indicating orientation

(color wheel shown in Fig. 6). This image analyzes a degenerate gas equilibrating to a ferromagnetic state. From Guzman et al., 2011.
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Néel order. For cð1Þ1 < 0, pertinent to the F ¼ 1 spinor gas of
87Rb, this term favors the manifold of ferromagnetic states,

for which jhF̂ij ¼ 1. Both manifolds of states are inert be-

cause they depend only on the sign and not on the magnitude

of cð1Þ1 .

The application of external fields, described by the effec-

tive linear and quadratic Zeeman energies p and q, respec-
tively, breaks rotational symmetry. The minimum-energy

states of Eð1Þ are represented in Fig. 5.
We consider the case ofp ¼ 0, on which many experiments

have focused. Three classes of inert states attain extremal

values of the quadratic Zeeman term and are thus identified

as extrema of Eð1Þ: the longitudinal ferromagnetic states c ¼
ð1; 0; 0ÞT and ð0; 0; 1ÞT , the longitudinal polar state c ¼
ð0; 1; 0ÞT , and the transverse polar states c ¼ ð1; 0; ei�ÞT= ffiffiffi

2
p

for arbitrary�. In the regime jqj< q0 ¼ j2cð1Þ1 nj, we identify

an additional, noninert energy extremum of partial transverse

magnetization that arises from the competition between the

spin-dependent interaction and quadratic Zeeman effect. The

energies of these extremal states are evaluated in Fig. 5.

For ferromagnetic coupling, the noninert transversely

magnetized state emerges as the lowest-energy state at

q ¼ q0, marking the point of a second-order phase transition

that breaks axial symmetry. At q ¼ 0, we observed a tran-

sition between easy-plane (q > 0) and easy-axis (q < 0)

ferromagnetism.
Both transitions have been observed experimentally. The

onset of transverse ferromagnetism at q ¼ q0 was observed

by the Chapman group (Chang et al., 2004, 2005). In a first

experiment, the Zeeman populations of an F ¼ 1 87Rb con-

densate were measured after the gas was prepared with zero

longitudinal magnetization and allowed to equilibrate for
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FIG. 5 (color online). Mean-field phase diagram for F ¼ 1 spinor Bose-Einstein condensates with (a), (c) antiferromagnetic or (b),

(d) ferromagnetic s-wave interactions. (a), (c) Ground states for variable linear (p) and quadratic Zeeman shifts (q) as derived by Stenger

et al. (1998). For the antiferromagnetic case, the solid curve parametrized by p ¼ � ffiffiffiffiffiffi
2q

p
(0< q< 1=2) and p ¼ �ðqþ 1=2Þ (q > 1=2) marks

the sudden (first-order) transition from the longitudinal polar state (jmz ¼ 0i) to either one (jpj � 1) or a superposition of both (jpj< 1, shaded
region) longitudinal ferromagnetic states. The dashed lines indicate smooth (second-order) transitions in state composition. For the ferromagnetic

case, the dashed linesp ¼ �q (q > 0) andp ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðq� 2Þp

(q > 2) bound the regionswhere the ground state transforms smoothly between the

longitudinal polar and the longitudinal ferromagnetic states. (c), (d) Extrema of themean-field energy functional forp ¼ 0, plotted for three inert

states—the longitudinal ferromagnetic (dashed line), the longitudinal polar (dotted), and the transverse polar states (dot-dashed)—and the

noninert extremal state for jqj< 2 (solid). The antiferromagnetic ground state is either a longitudinal or transverse polar state for positive or

negative q, respectively. The ferromagnetic ground state is either the longitudinal polar state (q > 2), the partially magnetized state (0< q< 2),

or the longitudinal ferromagnetic state (q < 0). Majorana representations are shown. In quench experiments, a condensate is prepared in the

longitudinal polar state at low q, an extremal high-energy state that is subject to dynamical instabilities. All energies are scaled by jcð1Þ1 nj.
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several seconds at variable q. At high q, the condensate

equilibrated with its entire population in the jmz ¼ 0i state,
while in the range 0> q> q0 this fractional population

diminished to about one-half, as predicted by the mean-field

treatment (Chang et al., 2004). A second experiment provided

evidence that this state of mixed Zeeman populations was

indeed transversely magnetized. For this, the equilibrium

state at low q was coherently manipulated by briefly pulsing

a higher value of q, launching spin-mixing dynamics, as

described in Sec. IX. Such dynamics depend on the coherence

between Zeeman populations and confirm the magnetized

nature of the initial state (Chang et al., 2005).
The transition between easy-axis and easy-plane ferro-

magnetism at q ¼ 0 was measured by the Berkeley group,

who applied in situ magnetization-sensitive imaging to probe

the spin structures formed in 87Rb spinor condensates

after several seconds of equilibration (Fig. 6). The observed

textures contained large commonly magnetized spin do-

mains with the predicted spin-space anisotropy (Guzman

et al., 2011).
The antiferromagnetic interactions of F ¼ 1 23Na conden-

sates were identified by allowing such condensates to equili-

brate in the presence of a magnetic-field gradient. Stenger

et al. (1998) observed that, for sufficiently large q > 0, the
spatial extent of the jmz ¼ 0i population of the condensate

was larger than predicted for spin-independent interactions,

demonstrating that spin-dependent interactions make the lon-

gitudinal polar state lower in energy than the longitudinal

ferromagnetic states.
A second signature of antiferromagnetic interactions is the

immiscibility of the jmz ¼ 0i and jmz ¼ �1i (or jmz ¼ þ1i)
states (Stenger et al., 1998; Miesner et al., 1999). This

immiscibility (Fig. 22) results from the relation aij >ffiffiffiffiffiffiffiffiffiffiffiffi
aiiajj

p
between the self- and cross-scattering s-wave scat-

tering lengths for two equal-mass distinguishable atomic

states labeled i and j. For the F ¼ 1 spinor system, a�1�1 ¼
a0;�1 ¼ a2 and a00 ¼ ð2a2 þ a0Þ=3. For antiferromagnetic

interactions, a0 > a2 and the immiscibility condition holds;
in the diagrams of Fig. 5, this immiscibility is reflected in the
sharp transitions between the jmz ¼ �1i and jmz ¼ 0i
phases (for q > 0).

Along the p ¼ 0 axis, the antiferromagnetic F ¼ 1 spinor
condensate should always favor a polar ground state. Its
alignment varies from longitudinal, for q > 0, to transverse,
for q < 0, as has been observed experimentally (Bookjans,
Vinit, and Raman, 2011).

2. Spin-2 case

As in the spin-1 case, we assume that the system is
spatially uniform and ignore the kinetic energy. Within the
SMA and neglecting the MDDI, we can write the spin-
dependent part of the mean-field energy functional as
(Ciobanu, Yip, and Ho, 2000; Koashi and Ueda, 2000;
Ueda and Koashi, 2002)

Eð2Þ ¼cð2Þ1 n

2
hF̂i2þcð2Þ2 n

2
jhÂ2ij2þphF̂ziþqhF̂2

zi: (35)

Compared with the spin-1 case, the energy functional in-

volves an additional term Â2 �
P

2
m¼�2ð�1Þm ĉ m ĉ�m=

ffiffiffi
5

p
which is the annihilation operator of a spin-singlet pair of
F ¼ 2 atoms.

The mean-field phase diagram of a spin-2 Bose-Einstein
condensate is summarized in Table III and Fig. 7. Consider
first the ground-state phases in the absence of the quadratic

Zeeman energy. When cð2Þ1 < 0 and cð2Þ2 > 4cð2Þ1 , the interac-

tion energy is minimized by maximizing the magnetization
and minimizing the spin-singlet amplitude, so that the ground

state is ferromagnetic. When cð2Þ2 < 0 and cð2Þ2 < 4cð2Þ1 , the

interaction energy is minimized by maximizing the spin-
singlet amplitude and minimizing the magnetization, so that
the ground state is antiferromagnetic with the spinor given by
ð0; 0; 1; 0; 0ÞT (and the family of states generated therefrom by
rotations). It is not appropriate to call this state polar because
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FIG. 6 (color). Transverse (top) and longitudinal (bottom) magnetization of an F ¼ 1 87Rb spinor Bose gas that was prepared initially in a

nondegenerate incoherent ð1=3; 1=3; 1=3Þ population mixture of the Zeeman states and then cooled to quantum degeneracy. The degenerate

spin texture evolves for a variable time at a quadratic shift of (a) q=h ¼ �5, (b) 0 , and (c) 5 Hz before the column density of the vector

magnetization is measured. The transverse magnetization is represented using the color wheel shown, where the hue indicates the

magnetization orientation and the brightness its magnitude. The longitudinal magnetization is represented by the color bar. The maximum

brightness is set by a fully polarized condensate at 2 s evolution time. Textures form small domains of commonly oriented magnetization and

then coarsen to where only a few domains span the condensate. The late-time images show a spin-space anisotropy; for positive q the

transverse magnetization appears brighter while for negative q the opposite trend is observed. The condensates contain �106 atoms and are

two dimensional with respect to spin dynamics. From Guzman et al., 2011.
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it has no polarity. In fact, the order parameter of this phase is
proportional to the m ¼ 0 component of the spherical har-
monic function of rank 2: Y0

2 ð�;�Þ / 3cos2�� 1 which is

even under � ! �þ �. In contrast, the spin-1 polar state
ð0; 1; 0ÞT features polarity, changing sign upon a rotation by �
about a transverse axis.

The order parameter for the nematic phase is given by
(Ueda and Koashi, 2002)

�N ¼
�
sin�ffiffiffi

2
p ; 0; cos�; 0;

sin�ffiffiffi
2

p
�
T
: (36)

Depending on the value of �, this order parameter describes
the uniaxial nematic (UN) phase (� ¼ 0), the biaxial nematic
(BN) phase (� ¼ �=6), and the dihedral-2 phase (otherwise)
(Uchino, Kobayashi, and Ueda, 2010). Although these states
are degenerate at the mean-field level, zero-point fluctuations
in the Bogoliubov modes lift the degeneracy, causing a first-
order quantum phase transition between the UN phase with

cð2Þ1 > 0 and the BN phase with cð2Þ1 < 0 (Song, Semenoff, and

Zhou, 2007; Turner et al., 2007). It is interesting to note that
the parameter � characterizes the geometric shape of the
order parameter, as seen, for example, in the Majorana rep-
resentations of the various states in Fig. 7. However, it is not
related to a symmetry of the Hamiltonian, and thus does not
lead to a conserved current, even though the eigenspectrum is
degenerate with respect to �.

When cð2Þ1 > 0 and cð2Þ2 > 0, neither ferromagnetic nor

antiferromagnetic order is energetically favorable. Rather

the zero-field ground state is the state ð1=2; 0;�i=
ffiffiffi
2

p
;

0; 1=2ÞT and the set of states generated therefrom by rota-
tions. This state, called either the cyclic or the tetrahedral
state, has the symmetry of a tetrahedron under rotations. As in
the F ¼ 1 polar state, these discrete geometric operations
must be accompanied by gauge transformations to leave the
state unchanged, a fact that we discuss further in Sec. VI. The
cyclic-tetrahedral phase has neither spin-singlet amplitude
nor magnetization, but it breaks time-reversal symmetry.

In the presence of an external magnetic field, the quadratic
Zeeman term lifts the degeneracy between the UN and BN
phases in favor of the UN (BN) phase for q > 0 (q < 0). The
quadratic Zeeman effect also lifts the degeneracy of the two
cyclic-tetrahedral phases described above, distorting these

states into either �C ¼ ðsin�= ffiffiffi
2

p
; 0;�i cos�; 0; sin�=

ffiffiffi
2

p Þ
with cos2� ¼ 1=2þ 5q=cð2Þ2 n or �M ¼ ðcos�; 0; 0; sin�; 0Þ

with cos2� ¼ 1=3� q=3cð2Þ1 n in different portions of the

phase diagram (Saito and Ueda, 2005). These phases retain

either the original threefold (�M) or fourfold (�C) symmetries,

but they are distorted along the z direction by the quadratic

Zeeman effect (see Fig. 7). The phase �C remains nonmag-

netic, whereas �M acquires magnetization proportional to

2cos2�� sin2� ¼ �q=3cð2Þ1 n; the ‘‘mixed’’ phase is named

after such magnetic hybridization.
At present, the only experimentally realized spin-2

spinor Bose-Einstein condensate is a 87Rb condensate

(Chang et al., 2004; Kuwamoto et al., 2004; Schmaljohann

et al., 2004). Although this state is in the upper hyperfine

manifold, the lifetime is as long as a few hundreds of

milliseconds. A theoretical calculation of the interaction

parameters predicts that this condensate lies slightly on the

antiferromagnetic side of the phase boundary between

antiferromagnetic and cyclic-tetrahedral phases, i.e., that

cð2Þ1 > 0 and cð2Þ2 is only slightly positive (Klausen, Bohn,

and Greene, 2001).

The coupling constant cð2Þ1 characterizes the spin-mixing

processes with �mF ¼ �1, while cð2Þ2 characterizes the pro-

cesses with�mF ¼ �2. Schmaljohann et al. (2004) observed

the time evolution of theF ¼ 2 condensate by startingwith the
condensate with all atoms in the jmz ¼ 0i state. The subse-

quent evolution shows that the mz ¼ �1 components first

appear, followed by the appearance of the mz ¼ �2 compo-

nents, indicating that cð2Þ1 is significantly larger than cð2Þ2 . They

also investigated the stability of various initial states against

spin-mixing collisions and found that the antiferromagnetic

configuration jmz ¼ 2i þ jmz ¼ �2i is stable and that the

cyclic-tetrahedral configuration shows nearly no spin dynam-

ics, suggesting that the ground state is slightly on the anti-

ferromagnetic side of the phase boundary. However, it should

be noted that their experiments were performed in the presence

of the quadratic Zeeman effect of the order of a few nK which

may well stabilize the antiferromagnetic configuration.
By placing a pair of atoms in each site of an optical

lattice and letting them undergo spin-mixing oscillations,

Widera et al. (2006) were able to determine the values of

scattering-length differences within the 87Rb F¼1 and F¼2
manifolds. They suggested that ‘‘the data points toward the

antiferromagnetic ground state’’ for the F ¼ 2 state with the

reservation that the cyclic-tetrahedral ground state cannot be

excluded because of the error bars.

TABLE III. Definitions of the various states and those of the parameter regions in which they are expected to be the ground state, where F, BN,
M, C, BA, and UN stand for ferromagnetic, biaxial nematic, mixed, cyclic, broken-axisymmetric, and uniaxial nematic phases, respectively, q is

the quadratic Zeeman coefficient, and cos�M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3� q=3cð2Þ1 n

q
and cos�C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ 5q=cð2Þ2 n

q
(Saito and Ueda, 2005). The phase boundary

between the BA and UN phases and the components a, b, c are determined numerically (Uchino, Kobayashi, and Ueda, 2010).

Phase Order parameter Parameter region

F (q < 0) ð1; 0; 0; 0; 0Þ cð2Þ2 > 4cð2Þ1 , cð2Þ1 < jqj=2n
BN (q < 0) ð1= ffiffiffi

2
p

; 0; 0; 0; 1=
ffiffiffi
2

p Þ cð2Þ2 < 4cð2Þ1 , cð2Þ2 < 2jqj=n
M (q < 0) ðcos�M; 0; 0; sin�M; 0Þ cð2Þ2 > 4cð2Þ1 , cð2Þ1 > jqj=2n,
C ðsin�C=

ffiffiffi
2

p
; 0;�i cos�C; 0; sin�C=

ffiffiffi
2

p Þ cð2Þ2 < 4cð2Þ1 , cð2Þ2 > 2jqj=n
BA (q > 0) ð�a; b; c; b;�aÞ þ (�) sign for cð2Þ1 < 0 ð>0Þ
UN (q > 0) ð0; 0; 1; 0; 0Þ Numerically determined
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B. Exact ground states and fragmentation

In the previous discussion, we assume a priori that the

spinor Bose gas forms a Bose-Einstein condensate with a

single macroscopically occupied single-particle ground state,

described by the mean-field condensate spinor wave function.

However, in the presence of spin-dependent interactions, is it

necessarily the case that such a mean-field, coherent spin-

state condensate correctly describes the gas?
In the theory of scalar Bose-Einstein condensates, the

validity of the mean-field assumption was quantified by

Bogoliubov (1947). Because of interparticle scattering, the

many-body ground state of the Bose gas includes a nonzero

population in the excited single-particle states. However, this

excited-state population is kept small because of the addi-
tional single-particle energy required to occupy such states.
The fraction of atoms found outside the single-particle
ground state, called the quantum depletion, remains small
as long as the typical excited-state energy (scaling with
density as n2=3) is much larger than the typical interaction
energy (scaling as na).

However, for spinor Bose-Einstein condensates, the ener-
getic barrier against the interaction-induced mixing of differ-
ent many-body spin states is absent. For example, the spin-1
many-body Hamiltonian contains the spin-mixing term given
in Eq. (20). The mean-field state of an N-atom, polar F ¼ 1
condensate aligned with the z axis, written as j0; N; 0i in the
Fock-state F̂z eigenbasis, couples by spin mixing with the
state j1; N � 2; 1i. The latter state overlaps with the polar
mean-field state canted slightly from the z axis, a state that,
for q ¼ 0, is equal in energy to the initial state. Thus, spin
mixing is seen to couple degenerate coherent spin states.
Following the arguments of Bogoliubov regarding the scalar
Bose gas, one might therefore expect the quantum depletion
due to such spin mixing to be massive.

Without making the a priori mean-field approximation,
Law, Pu, and Bigelow (1998) showed that, within the SMA,
the many-body Hamiltonian of a spin-1 condensate can be
diagonalized exactly. The spin-dependent interactions are
symmetric both under rotation and under particle exchange;
thus, naturally, the many-body s-wave spin-dependent scat-
tering Hamiltonian can be written in terms of the total spin

operator F̂tot ¼
P

iF̂i as

Ĥ ¼ cð1Þ1 n

2

�
F̂2
tot

N
� 2

�
: (37)

The ground states of this Hamiltonian can be read off
immediately. An N-atom ferromagnetic F ¼ 1 condensate
has a ground-state manifold described by the states of maxi-
mum Ftot ¼ N. A constraint on the total longitudinal spin,
e.g., Fz;tot ¼ MF, is accommodated by selecting the corre-

sponding magnetic sublevel of the Ftot ¼ N manifold.
For example, in the case of strictly zero longitudinal magne-
tization, the exact ferromagnetic ground state is jFtot ¼
N;MF ¼ 0i. This state differs from the transversely oriented
mean-field state by the exact equality between the jmz ¼ þ1i
and jmz¼�1i single-particle Zeeman-state populations.

The ground state of an antiferromagnetic F ¼ 1 conden-
sate is more subtle. At zero magnetization, the ground state,
in the case that N is even, is the unique state with Ftot ¼ 0.
Unlike the mean-field ground states, this many-body state
retains rotational symmetry. The character of this state is
clarified by constructing the many-body spin state using the
two-particle spin-singlet creation operator (for F ¼ 1 atoms)

Ây
1 ¼ ðĉ y2

0 � 2ĉ y
þ1 ĉ

y
�1Þ=

ffiffiffi
3

p
. Generally one finds the many-

body spin state with atom number N ¼ Ftot þ 2N2, spin Ftot,
and longitudinal spin MF is written as (Ho and Yip, 2000;
Koashi and Ueda, 2000)

jN;Ftot;MFi¼Z�1=2ðÂy
1 ÞN2F̂Ftot�MF� ðĉ y

þ1ÞFtot jvaci; (38)

where F̂� is the collective spin lowering operator, Z is a
normalization constant, and jvaci is the zero-particle state.

The state with jFtot ¼ 0; MF ¼ 0i / ðÂy
1 ÞN=2jvaci is thus seen

UN

C
BA

(b)   

M
C

BN

F

(a)   

(not inert)

(not inert)

(not inert)

FIG. 7 (color online). Phase diagrams of spin-2 Bose-Einstein

condensates in the presence of the quadratic Zeemen energy q.
(a) Case of q < 0, where BN, C, F, and M stand for the biaxial

nematic, cyclic, ferromagnetic, and mixed phases, respectively. In

the absence of an external magnetic field (q ¼ 0), the C and M

states can be transformed to each other by a rotation in space.

(b) The case of q > 0, where the UN and BA stand for the uniaxial

nematic and broken-axisymmetric phases, respectively. The broken-

axisymmetric phase has a transverse magnetization and a spin-

singlet pair amplitude, both of which depend on q, as in the case

of the spin-1 broken-axisymmetric phase. The thick lines show the

phase boundaries. The Majorana representation is inserted in each

phase. Adapted from Uchino, Kobayashi, and Ueda, 2010.
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as one in which all particles form spin-singlet pairs. From the

form of Ây
1 , one sees that all single-atom magnetic sublevels

in the many-body spin state are equally populated, a result
also understood from the isotropy of the spin-singlet state.
This distribution is distinctly different from that expected for
a mean-field polar state. The sublevel populations of the
many-body ground state also exhibit large fluctuations, with
the standard deviation of the order of N (Ho and Yip, 2000).

According to the definition of Penrose and Onsager (1956),
a system is Bose-Einstein condensed if one of the eigenvalues
of the reduced single-particle density matrix is extensive, i.e.,
of the order of the number of particles. Nozieres and Saint
James (1982) pointed out the possibility that there is more
than one such macroscopic eigenvalue and called that state a
fragmented Bose-Einstein condensate. The F ¼ 1 spinor

condensate with cð1Þ1 > 0 at zero magnetic field is thus frag-

mented. Indeed, this state can be characterized as a superpo-
sition of mean-field Bose-Einstein condensate states (Mueller
et al., 2006),

jFtot ¼ 0; MF ¼ 0i /
Z

d�j�;�i; (39)

where j�;�i is the polar coherent spin state aligned with the
axis specified by the polar and azimuthal angles � and �.

More generally, it was shown that the spin state of an
F ¼ 1 condensate within the SMA can be expressed
in the form (Barnett, Sau, and Das Sarma, 2010; Barnett
et al., 2011)

Z
d�c ð�;�Þj�;�i; (40)

where c ð�;�Þ is a properly normalized probability ampli-
tude function on the unit sphere. The state of the condensate
is thus mapped onto that of a quantum rotor. When the
quadratic Zeeman term q is absent, c ð�;�Þ distributes uni-
formly over the entire unit sphere and the state (40) reduces to
Eq. (39). When q > 0 and the number of atoms is large,
c ð�;�Þ tends to be localized, and the mean-field polar
solution is favored. It has been shown that the complete
spectrum of the many-body Hamiltonian of Eq. (37) with

cð1Þ1 > 0 agrees with the lowest set of eigenvalues of a quan-

tum rotor Hamiltonian. A similar representation was devel-
oped for spin-2 condensates (Barnett et al., 2011).

It has been argued that fragmented Bose-Einstein conden-
sates are fragile against symmetry-breaking perturbations
(Mueller et al., 2006). In the present case, it can be shown
that when the longitudinal spin of the system is MF, the
population of the jmz ¼ 0i Zeeman state is calculated to be
(Ho and Yip, 2000; Koashi and Ueda, 2000)

hN0i ¼ N �MF

2MF þ 3
: (41)

This result suggests that if the isotropy of the system is
broken and the system acquires magnetization MF, the mz ¼
0 population decreases rapidly; it decreases to

ffiffiffiffi
N

p
as MF

increases to
ffiffiffiffi
N

p
and the distribution of populations rapidly

approaches a mean-field result ðN=2; 0; N=2Þ. Thus the
mean-field theory breaks down when the system is exactly
isotropic, but it is rapidly restored in the presence of
symmetry-breaking perturbations.

VI. SPIN TEXTURES OF DEGENERATE SPINOR GASES

A single coherent (i.e., unfragmented) Bose-Einstein con-
densate can be described by the order parameter which is
given by the eigenfunction corresponding to the largest and
extensive eigenvalue of the reduced single-particle density
matrix. Here by extensive we mean that the eigenvalue, which
gives the number of condensate particles, is proportional to
the total number of particles. Apart from the particle-number
density distribution, a scalar Bose gas has only the phase
degree of freedom whose spatial variation gives rise to mass
current. A degenerate spinor Bose gas has the additional
degrees of freedom of spin whose spatial variation produces
not only mass currents but also spin currents.

Spatial variations of the spin configuration are called spin
textures. Spin textures can vary over space and time in
response to an external magnetic field and boundary condi-
tions as well as due to spin-dependent contact interactions
and the MDDI. Their rich structure allows spinor gases to
accommodate a variety of topological excitations such as
vortices, monopoles, skyrmions, and knots.

A. Order-parameter manifolds

Within the SMA phase diagrams developed above
(Sec. V.A), each condensate phase is represented by a stan-
dard spinor c 0. For example, the ferromagnetic and polar
phases of a spin-1 BEC are represented by ð1; 0; 0ÞT and
ð0; 1; 0ÞT , respectively. In the absence of an external magnetic
field and neglecting the MDDI, the free energy of the system
is invariant under the U(1) gauge transformations and the
SO(3) rotations in spin space. The entire group of symmetry
transformations that leave the free-energy invariant is given
by G ¼ Uð1Þ � SOð3Þ. Therefore, a general order parameter
is given by performing a gauge transformation by the phase�
and rotating c 0 to an arbitrary direction specified by Euler
angles �, �, and �: c ¼ei�Uð�;�;�Þc 0, where Uð�;�;�Þ¼
e�iFz�e�iFy�e�iFz�; below, we will use the subscript S to
denote such geometric (spin) rotations. The dependences of
�, �, �, and � on space and time characterize spin textures.

Each phase of the condensate has distinct symmetry charac-
terized by the isotropy group H, whose elements h leave c
unaltered: hc ¼c . Then, the order-parameter space is given
by the coset M¼G=H. Acting every element m of M on the
standard spinor generates a complete set of spinors, called
an orbit, which represent the order-parameter manifold
(Mermin, 1979).

We consider the order-parameter manifolds for several
spinor condensate phases. The order parameter of the F ¼
1 ferromagnetic condensate transforms under arbitrary gauge
transformations and spin rotations as

�F¼ei�Uð�;�;�Þ
1

0

0

0
BB@

1
CCA¼eið���Þ

e�i�cos2�2
1ffiffi
2

p sin�

ei�sin2�2

0
BBB@

1
CCCA: (42)

The crucial observation here is that the gauge angle� and the
rotation angle � about the spin direction appear as a linear
combination �� �, so that the order parameter is invariant
under the simultaneous gauge transformation and the spin

1212 Dan M. Stamper-Kurn and Masahito Ueda: Spinor Bose gases: Symmetries, magnetism, and . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



rotation about its orientation by the same amount. Therefore,
H ¼ Uð1Þ�þS� , where the subscript �þ S� is displayed

to emphasize the combined nature of the group operations.
The order-parameter manifold is given by (Ho, 1998)

MF ¼ Uð1Þ� � SOð3ÞS
Uð1Þ�þS�

¼ SOð3Þ�;S: (43)

The polar phase of the F ¼ 1 spinor condensate transforms
as follows:

�P ¼ ei�Uð�;�; �Þ
0

1

0

0
BB@

1
CCA ¼ ei�

� e�i�ffiffi
2

p sin�

cos�

ei�ffiffi
2

p sin�

0
BBB@

1
CCCA: (44)

This expression illustrates that the polar state has a Uð1Þ
symmetry with respect to rotation about the quantization
axis because �P does not depend on �. Also we see that
rotating the jmz ¼ 0i polar state by � about the y axis
generates a minus sign, as can be seen by making the change
� ! �þ � in Eq. (44). Combining this rotation with a gauge
transformation by � returns the original state. Thus the polar-
state manifold has a discrete Z2 symmetry. Altogether the
isotropy group is given as H ¼ Uð1ÞS� � ðZ2Þ�;S� and the

order-parameter manifold is given by (Zhou, 2001)

MP ¼ Uð1Þ� � SOð3ÞS
Uð1ÞS� � ðZ2Þ�;S�

¼ Uð1Þ� � S2S
ðZ2Þ�;S�

: (45)

We note here that the spin and gauge remain coupled in a
discrete manner. As discussed in Sec. VI.D, this discrete spin-
gauge symmetry causes the polar-state manifold to support
half-quantum vortices (Leonhardt and Volovik, 2000).

Spin-2 condensates have even richer order-parameter
manifolds. The ferromagnetic phase with c 0 ¼
ð1; 0; 0; 0; 0ÞT has the same symmetry as that of the spin-1
case except that the order-parameter manifold [Eq. (43)] is
divided by ðZ2Þ�;S (Makela, Zhang, and Suominen, 2003)

because the phase winding is doubled compared with the
spin-1 case. The uniaxial nematic phase with c 0 ¼
ð0; 0; 1; 0; 0ÞT looks similar in form to the polar phase of a
spin-1 condensate, but has one important difference. Both of
these systems have the spin inversion symmetry about an
arbitrary axis perpendicular to the quantization axis, but only
the spin-1 order parameter changes sign upon inversion.
Thus, only the spin-1 condensate can couple the spin inver-
sion with the gauge and generate a half-quantum vortex
accompanied by mass circulation. The biaxial nematic phase
with c 0 ¼ ð1; 0; 0; 0; 1ÞT has fourfold symmetry about the
quantization axis and � rotation symmetry about four per-
pendicular axes. Therefore the isotropy group is the dihedral-
four group ðD4Þ�;S, and the order-parameter manifold is given

by (Song, Semenoff, and Zhou, 2007)

Mbiaxial ¼ Uð1Þ� � SOð3ÞS
ðD4Þ�;S

: (46)

The cyclic-tetrahedral phase has the tetrahedral symmetry
with the isotropy group H ¼ T. The order-parameter mani-
fold is thus given by (Makela, Zhang, and Suominen, 2003;
Semenoff and Zhou, 2007)

Mcyclic ¼ Uð1Þ� � SOð3ÞS
ðTÞ�;S

: (47)

In both these cases, as in the polar case, geometric rotations
are accompanied by gauge transformations to return to the
original quantum state. Because two elements in dihedral-
four and tetrahedral groups do not commute in general, some
vortices created in these phases are non-Abelian (Kobayashi
et al., 2009). A list of symmetry groups of spin-1 and spin-2
condensates as well as liquid crystals and superfluid 3He
systems is given by Kobayashi et al. (2012).

B. Superflow and spin-gauge symmetry

In a spatially extended spinor Bose-Einstein condensate,
the spin order parameter can everywhere minimize the local
spin-dependent interactions that arise from s-wave scattering,
but still be characterized by spatial variation in the order
parameter within its degenerate manifold. In the absence of
magnetic dipole-dipole interactions, the resulting spatial pat-
tern, a spin texture, is a low-energy phenomenon, with excess
energy due only to the kinetic energy. As exhibited in Eq. (42)
for the F ¼ 1 ferromagnetic case, the combined spin-gauge
symmetry of the order-parameter manifold implies that local
spin rotations (spatially varying Euler angles) can be regarded
equivalently as local variations in the condensate phase � to
which the condensate responds by supercurrent flow (Ho and
Shenoy, 1996). Conversely, a supercurrent can decay by
forming a spin texture.

For the F ¼ 1 ferromagnetic spinor gas, this connection is
exhibited in the expression for the superfluid velocity:

vFs ¼ ℏ
M

½rð�� �Þ � cos�r�	; (48)

where M is the atomic mass. Unlike for the scalar Bose-
Einstein condensate, in which the superflow is irrotational
(r� vs ¼ 0). Here, vFs satisfies the Mermin-Ho relation
(Mermin and Ho, 1976):

r� vFs ¼ ℏ
M

sin�r��r�: (49)

This result implies that the superflow in the ferromagnetic
phase is not a potential flow, and hence the mass circulation
alone is not quantized. Rather the difference between the
circulation along an arbitrary contour C and the Berry phase
enclosed by it is quantized:

I
C
vFs dr� ℏ

M

I
C
ð1�cos�Þr�dr¼ ℏ

M
� integer: (50)

For the F ¼ 1 polar phase, the superfluid velocity is
calculated to give

vPs ¼ ℏ
M

r�; (51)

which is irrotational, and hence the circulation alone is
quantized. It should be noted that although Eq. (51) assumes
the same form as that of scalar condensates, the quantum
of circulation is h=2M which is half of the latter. This is
because if the phase � changes only by � around a loop, the
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single-valuedness condition can be met if the Euler angle �
changes by � simultaneously as can be seen from Eq. (44).

C. Spin current and spin nematicity

A spin current can flow in the absence of a mass current by
carrying the same number of particles with different spin
states in the opposite directions. In the absence of an external
magnetic field and the MDDI, the magnetization satisfies the
continuity equation

@F �

@t
þr � jspin� ¼ 0; (52)

where

j
spin
� ¼ ℏ

2Mi

XF
m;n¼�F

ðF�Þmn½c �
mrc n�ðrc �

mÞc n	 (53)

is the spin current. However, additional terms that break spin
conservation appear on the right-hand side of Eq. (52) in the
presence of an external magnetic field or the MDDI (Kudo
and Kawaguchi, 2010):

@F �

@t
þr � jspin� ¼ cdd

ℏ
ðb�F Þ� þ p

ℏ
ðz�F Þ�

þ 2q

ℏ
��z�N z�; (54)

where cdd is the strength of the MDDI, b is the dipole field, p
and q are the strengths of the linear and quadratic Zeeman
effects, respectively, ��z� is the Levi-Civita tensor, andN ��

is the nematicity tensor. This equation shows that the dipole
field and the linear Zeeman term generate spin torques
and cause spin precessions, while the quadratic Zeeman
term combined with nematicity produces a spin-
nonconserving term. This last term implies that even if the
initial state of the system is nonmagnetic, a system having
spin nematicity can dynamically develop transverse magne-
tization. Once the transverse magnetization grows, the MDDI
leads to longitudinal magnetization due to the first term on the
right-hand side of Eq. (54).

D. Topological excitations

Topological excitations are the defects that are stable
against weak perturbations. Such stability is ensured by dis-
crete quantum numbers that characterize the topology of the
order-parameter manifold. Naturally, the types of topological
excitations depend crucially on the properties of the order-
parameter manifold which, in turn, is determined by the phase
of the condensate. A rich variety of order-parameter manifolds
of spinor condensates allows many distinct types of topologi-
cal excitations. Examples include integer and fractional vorti-
ces (Yip, 1999; Leonhardt and Volovik, 2000; Isoshima,
Machida, and Ohmi, 2001; Zhou, 2001; Makela, Zhang, and
Suominen, 2003; Semenoff and Zhou, 2007), non-Abelian
vortices (Kobayashi et al., 2009), ’t Hooft–Polyakov (Stoof,
Vliegen, and Al Khawaja, 2001) and Dirac monopoles (Blaha,
1976; Ruostekoski and Anglin, 2003; Volovik, 2003), sky-
rmions (particlelike solitons) (Shankar, 1977; Volovik and
Mineyev, 1977; Al Khawaja and Stoof, 2001), and knots
(Kawaguchi, Nitta, and Ueda, 2008).

The underlying physics that supports fractional vortices is

discrete spin-gauge symmetries. Consider, for example, the

polar state of a spin-1 condensate whose order parameter

changes its sign upon inversion in spin space. Now we

consider a closed loop in real space and assume that the order

parameter undergoes inversion in spin space as one circum-

navigates the loop. The single valuedness of the order pa-

rameter is met if the order parameter has an additional phase

change of �, which is realized if the winding number of the

state is a half integer. Therefore, under such circumstances,

the system possesses half-quantum or Alice vortices

(Leonhardt and Volovik, 2000). Next consider the cyclic-

tetrahedral phase of a spin-2 condensate. As discussed earlier,

the order parameter has a threefold symmetry with respect to

2�=3 and 4�=3 geometric rotations about the symmetry axes

of the tetrahedron. This geometric rotation adds a phase of

2�=3 or 4�=3 to the spinor wave function. Consider a loop

in real space and assume that the order parameter rotates

FIG. 8 (color). (a) Three-dimensional configuration of the n field

(shown as arrows) of a knot with the unit linking number, where

n ¼ ðnx; ny; nzÞT gives the normalized spinor order parameter as

ei�ðð�nx þ inyÞ=
ffiffiffi
2

p
; nz; ðnx þ inyÞ=

ffiffiffi
2

p Þ. Only n on the x, y, and z

axes are shown. The dashed circle follows the direction n ¼
ð0; 0;�1ÞT . The color represents the value of nz according to the

scale shown. (b) The torus shows the isodensity surface of jc�1j2 ¼
0:47 with the color showing the phase of c�1 according to the color

gauge on the left. The white and black tubes on the right are

the cutouts on which n points in the directions ð0; 0;�1ÞT ,
ðnz <�0:95Þ, and ð1; 0; 0ÞT (nx > 0:95Þ, respectively, The two tubes
cross once (linking number 1). (c) Cross sections of the density of

the m ¼ �1 (left) and m ¼ 0 (right) components in the x-y plane.

The linked tori of the m ¼ �1 components manifest themselves as

double rings in the cross section, which can serve as the signature of

a knot. Adapted from Kawaguchi, Nitta, and Ueda, 2008.
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geometrically by 2�=3 as one makes a complete circuit of the
loop. The single valuedness of the order parameter is met only
if the gauge phase changes by an integer multiple of 2�=3.
Thus, the cyclic-tetrahedral phase can accommodate vortices
with circulations of one-third or two-thirds of h=M
(Semenoff and Zhou, 2007).

The biaxial nematic and cyclic-tetrahedral phases of a spin-
2 condensate can host non-Abelian vortices because their
isotropy groups are non-Abelian (Kobayashi et al., 2009).
The unique feature of non-Abelian vortices lies in the fact
that the generators of vortices do not commutewith each other.
Consequently, when two vortices collide, they cannot recon-
nect or pass through each other. Rather, they form a rung vortex
that sticks the two vortices together. This implies that a col-
lection of vortices will eventually form an interwoven network
in sharp contrast to the case of Abelian vortices which usually
reconnect upon collisions and tend to produce vortices with
smaller scales. Such a distinction is expected to lead to amajor
difference in statistical properties of quantum turbulence.

A spin-1 polar condensate is predicted to accommodate knot
excitations as illustrated in Fig. 8 (Kawaguchi, Nitta, and
Ueda, 2008). Here the objects that form knots are field lines
alongwhich local spins point in a given direction. Suppose that
a polar condensate is held in an optical trap and then a
quadrupole magnetic field is applied on the condensate.
Then the magnetic moment of each atom undergoes Larmor
precession according to the local magnetic field. Numerical
simulations show that one after another knot, which consists of
two loops linking together with unit linking number, enters the
condensate from its periphery. Experimentally such a knot
formation can be probed by performing a Stern-Gerlach ex-
periment on a sliced condensate; if there is a knot, one observes
a double-ring density distribution on every spin component.

Experimental efforts to create and study these myriad topo-
logical objects are ongoing. Investigations have thus far revealed
three such objects: the polar-core spin vortex (Sadler et al.,
2006), skyrmions (Choi, Kwon, and Shin, 2012), and Mermin-
Ho textures (Leslie, Hansen et al., 2009; Jae-yoon et al., 2012).

The polar-core vortex was observed in F ¼ 1 87Rb con-
densates following a quench of an jmz ¼ 0i condensate to a
setting of the quadratic Zeeman shift q that favored ferro-
magnetic ordering; the relevant phase diagram is shown in
Fig. 5 and the dynamics of such a quantum quench are
detailed in Sec. IX. Summarizing, the quench leads to a
dynamical instability that introduces spontaneous spin cur-
rents within the initially uniform condensate. The spontane-
ous symmetry breaking occurs independently in different
regions of the condensate. Altogether this spontaneously
generated spin-current field is then expected to contain cir-
culating spin currents. The polar-core spin vortex represents
one quantum of spin-current circulation. An isolated polar-
core spin vortex can be described by the following condensate
wave function [in cylindrical coordinates ðr; �Þ]:

c ðr; �Þ ¼
fðrÞ � ei�

gðrÞ � 1

hðrÞ � e�i�

0
BB@

1
CCA: (55)

The radial functions fðrÞ, gðrÞ, and hðrÞ have the asymptotic

values limr!1ðf;g;hÞ¼ð1=2;1= ffiffiffi
2

p
;1=2Þ and limr!0ðf;g;hÞ¼

ð0;1;0Þ. The former limit yields a transversely magnetized

texture away from the vortex core, a configuration that is

locally in the ground state for the ferromagnetic F ¼ 1 con-
densate with q ’ 0. The latter limit applies because the jmz ¼
�1i components have nonzero circulation, and thus theymust

vanish at the origin. However, the nonrotating jmz ¼ 0i com-
ponent remains within the vortex core, where the spinor

condensate remains in the higher-energy polar state. That is,

such a topological defect captures the ‘‘false vacuum’’ repre-
sented by the prequench state of the condensate. A polar-core

spin vortex of opposite circulation is described by replacing
� ! �� in Eq. (55).

The polar-core vortex was identified using in situ

magnetization-sensitive imaging (Fig. 9). A closed path

within the condensate texture was identified as having non-
zero transverse magnetization along the entire path, with the

magnetization orientation winding by �2�. Within that
closed path, the magnetization was found to be consistent

with zero, allowing this magnetization winding to be identi-

fied as a polar-core spin vortex, which has a nonmagnetic
core, rather than as a Mermin-Ho texture, which would be

longitudinally magnetized at its core. The polar-core spin
vortex represents the spontaneous breaking of chiral symme-

try and is reproduced in numerical simulations of such

quench experiments (Saito, Kawaguchi, and Ueda, 2006).
Two-dimensional skyrmion spin textures were generated in

an antiferromagnetic F ¼ 1 spinor condensate in the polar

state. Such a skyrmion is defined as a defect in which the
entire order-parameter manifold is mapped continuously onto

the plane, in such a manner that the order parameter is

identical at the periphery of the two-dimensional system—
or at infinity in an infinitely extended sample. Such a

skyrmion was created by preparing the condensate in a

|Mxy|

φ

φ

(c)

(d)

(a) (b)

30 µm 10 µm

(e)

|Mxy|

|Mz|

candidates:

Mermin-Ho vortex

polar-core spin vortex

mz=0 core

FIG. 9 (color online). In situ detection of a polar-core spin vortex.

Spatial maps of the transverse magnetization (a) magnitude (jMxyj)
and (b) orientation (�) are shown for a gas imaged 156 ms after

being quenched from the polar to the ferromagnetic state. Data from

a portion of the image are magnified, showing the transverse

magnetization (c) magnitude and (d) orientation and also (e) the

magnitude of the longitudinal magnetization (jMzj). The transverse

magnetization orientation along a closed path shows a net winding

of 2�, revealing the presence of a spin-vortex defect. The core

(within the closed path) shows no significant longitudinal magne-

tization, identifying the defect as a polar-core spin vortex. Gray

scale for images (a), (c), and (e) is the same. Adapted from Sadler

et al., 2006.
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spatially uniform polar state with the nematic director n
aligned with the z axis and then rotating the condensate

spin in a coherent, spatially dependent manner to generate a

texture with n ¼ þz at the center and n ¼ �z at the outer

edge of the gas. To effect such a rotation, following earlier

realizations of a similar technique with ferromagnetic tex-

tures (Nakahara et al., 2000; Leanhardt et al., 2002), Choi,

Kwon, and Shin (2012) produced a spherical-quadrupole

magnetic field of the form B ¼ B0½xxþ yy � 2zz	, where
the Cartesian coordinates are defined with respect to the

location of zero field. The location of the zero field was

gradually translated perpendicular to and across an optically

trapped 23Na condensate (Fig. 10). Everywhere within the

condensate, the magnetic field reverses its orientation about

an axis that varies with the azimuthal angle � in the plane of

the condensate. Far from the trajectory of the field zero, the

field is always strong and the atomic spin follows the rotating

field adiabatically, rotating the director n by � radians. At the

location of the field zero, the magnetic field changes its

direction diabatically; the atoms cannot follow this field

reversal, and thus their nematic director remains unchanged.

At intermediate distances from the field zero, the spin texture

smoothly interpolates between these settings, generating a

continuous skyrmion texture.
The texture was characterized by time-of-flight measure-

ments of the Zeeman-state distributions, preceded by rf

pulses which allowed for a characterization of the phase

winding in each of the spin components. The skyrmion was

stable for about 100 ms. The mechanism for its decay has yet

to be identified.
Applying a similar procedure to an F ¼ 1 condensate

prepared initially in a uniform ferromagnetic state produces

a Mermin-Ho spin texture (Nakahara et al., 2000; Leanhardt
et al., 2002; Jae-yoon et al., 2012). This texture differs from a

skyrmion because the edge of the condensate, while magne-

tized in a common direction, carries a 4� phase winding. This
difference between the polar and ferromagnetic states is

reflective of the fact that the SO(3) group does not support

two-dimensional skyrmions.
A texture similar to the Mermin-Ho ferromagnetic texture

was produced in an untrapped F ¼ 2 87Rb spinor gas using

optical Raman transitions (Leslie, Hansen et al., 2009).
Starting with a gas that is spin polarized in the jmz ¼ 2i
state, circular polarized light was used to drive �mF ¼ 2
transitions, populating the jmz ¼ 0i and jmz ¼ �2i states.

One of the beams used for this transition was in the first-order
Laguerre-Gaussian mode, so that the Raman transition also

imprinted a þ2� phase winding onto the product Zeeman

state. The spin configuration produced with such Raman
transitions resembled the Mermin-Ho textures of ferromag-

netic F ¼ 1 spinor condensates, which are composed of

mz ¼ ðþ1; 0;�1Þ states with circulations of (0,1,2) quanta.
Topological excitations are also expected to appear upon

rotating spinor condensates. Ferromagnetic spin-1 conden-

sates are expected to accommodate rotation by forming

Mermin-Ho textures, which are shown to be stabilized by
such rotation (Mizushima, Machida, and Kita, 2002b;

Mueller, 2004). Under certain circumstances, such spinor

condensates may also adopt nonaxisymmetric vortices, ones
in which all Zeeman components are circulating, but in which

the vortex cores of the components do not overlap. Such spin
configurations are no longer fully ferromagnetic (Mizushima,

Machida, and Kita, 2002a). Antiferromagnetic spin-1 con-

densates are expected to store angular momentum in the form
of half-quantum vortices (Isoshima and Machida, 2002;

Mueller, 2004). The landscape of spin condensates under

rapid rotation is expected to be very complex (Kita,
Mizushima, and Machida, 2002; Mizushima, Kobayashi,

and Machida, 2004).

E. Hydrodynamic description

The Gross-Pitaevskii equation deals with the order

parameter, from which physical quantities such as magneti-
zation, nematicity, mass current, and spin current can be

calculated. Alternately one may develop descriptions that

are equivalent to the Gross-Pitaevskii equation and deal
directly with the quantities of experimental interest. Such

hydrodynamic theory has been instrumental in describing

scalar condensates, and it is of interest to ask if it is possible
to describe spinor condensates in terms of observable

quantities only.
To produce manageable equations of motion, one may

confine the description to low-energy variations within the

order-parameter manifold. Lamacraft (2008) derived such a

set of low-energy hydrodynamic equations for the case of a
spin-1 ferromagnetic condensate. When the particle density is

constant and the system is locally fully magnetized, the
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50 ms

100 ms

300 ms
m  = 0zm  = -1z m  = 1z

(b)

x

z

(a)

FIG. 10 (color online). Creation of a skyrmion in a two-

dimensional antiferromagnetic F ¼ 1 spinor condensate. (a) A

spherical-quadrupole magnetic field, with field orientations shown

by arrows, is translated from being centered above to below the

Bose-Einstein condensate (shaded horizontal region at the center).

The nematic director n follows the rotating field at large distances

from where the magnetic-field zero crosses the condensate and

remains fixed near the crossing, generating the skyrmion texture.

(b) Stern-Gerlach absorption imaging shows the jmz ¼ 0i compo-

nent is divided between an inner region (where n ¼ þz) and an

outer ring (where n ¼ �z). Between these regions, the nematic

director lies in the transverse plane; the state is thus a superposition

of the jmz ¼ �1i sublevels as seen in the data. The skyrmion

decays after 100 ms. At long times, the entire gas returns to the

jmz ¼ 0i state. From Choi, Kwon, and Shin, 2012.
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normalized magnetization vector F obeys a modified
Landau-Lifshitz equation that describes an advection of the
magnetization by a superfluid velocity v:

ð@t þ v � rÞF ¼ 1
2F�r2F; (56)

where the superfluid velocity satisfies the incompressibility
condition r � v ¼ 0. A self-contained set of hydrodynamic
equations that are equivalent to the spin-1 Gross-Pitaevskii
equation involve the spin-quadrupole tensor in addition to the
particle density, spin density, and mass current (Yukawa and
Ueda, 2012).

The spin-gauge coupling of the spinor wave function
permits some arbitrariness as to how the overall phase of
the wave function is apportioned between variations of the
spin texture orientation and variations of the superfluid phase.
The choice of such apportionment defines a vector potential
a, which enters into the definition of the superfluid velocity
v ¼ r�� a, where � is the superfluid phase. As in the
vector potential in electromagnetism, this vector potential
has an arbitrariness of the gradient of a scalar potential, but
its curl is fixed by the Mermin-Ho relation:

r� a ¼ �F

2
�ijkFirFj �rFk: (57)

In analogy of electromagnetism, the right-hand side may be
interpreted as an effective magnetic field which is generated
by spin textures.

In addition to the vector potential, we also introduce a
scalar potential � via the Berry connection � ¼ ihc j@tjc i.
The set ða; �Þ then forms a four-vector a�, and, by analogy
with electromagnetism, we introduce the electromagnetic
tensor f�� ¼ @�a� � @�a� whose time and space compo-

nents give the electric and magnetic fields, respectively, and
the right-hand side of the Landau-Lifshitz equation (56) now
includes an analog of the Lorentz force (Volovik, 1987;
Barnett, Podolsky, and Refael, 2009).

Including the effects of the MDDI changes the hydrody-
namic description because it permits nonlocal spin-spin in-
teractions. Takahashi et al. (2007) included the MDDI in a
hydrodynamic description of classical spins (ignoring spin-
gauge coupling). A hydrodynamic treatment for the ferro-
magnetic condensate including the MDDI and the quadratic
Zeeman energy is discussed by Kudo and Kawaguchi (2010).

VII. EXAMINING THE CONNECTION BETWEEN

MAGNETIC ORDER AND BOSE-EINSTEIN

CONDENSATION

Magnetism in solid-state systems can be ascribed broadly
to two different origins: the interaction among local magnetic
moments or the interaction among itinerant fermions. In
spinor Bose gases, we encounter magnetic ordering that
occurs in a system of itinerant bosons. We argue that this
magnetization occurs due to Bose-Einstein condensation, by
which the influence of weak interactions is amplified through
bosonic enhancement.

Here we explore the question of how this statistically
enhanced magnetic order responds when the effects of
bosonic enhancement are weakened. We consider three
scenarios: increasing the temperature toward or above the

Bose-Einstein condensation temperature, restricting the
dimensionality of the system to one or two dimensions so
as to enhance the role of quantum and thermal fluctuations,
and placing the spinor Bose gas within a periodic potential so
as to increase the low-energy density of states and enhance
the role of interactions.

A. Spinor Bose gases at nonzero temperature

The magnetic properties of a gas of noninteracting bosons
can be derived from basic statistical mechanics (Yamada,
1982). A phase diagram evaluated as a function of the applied
magnetic field B and the temperature T, given in Fig. 11
specifically for a spin-1 gas, shows two notable features. First,
the quantum degeneracy temperature varies with the mag-
netic field. This occurs because the Zeeman energy differ-
entiates the chemical potential of the different Zeeman
sublevels, increasing the fractional population, and hence
the phase-space density, in the lowest-energy Zeeman
state. Thus, the Bose-Einstein condensation temperature Tc

increases by a maximum factor of ð2Fþ 1Þ2=3 in the limit in
which the Zeeman splitting greatly exceeds the thermal
energy. Second, ferromagnetism accompanies Bose-Einstein
condensation as evident in the diverging zero-field suscepti-
bility of the gas below the Bose condensation temperature. It
can be said that ferromagnetism is a ‘‘parasitic’’ phenome-
non, taking advantage of the zero entropy of the condensed
fraction to establish magnetic order. Refined treatments of
this system, e.g., utilizing renormalization-group theory and
evaluating critical exponents, support the picture that the two
phenomena of condensation and magnetization occur through

1 32/3

T/Tc

µB/kBTc

Magnetization +1-1

normal
paramagnet

superfluid
ferromagnet

superfluid
ferromagnet

(0)

(0)

FIG. 11 (color). Phase diagram for a uniform noninteracting

F ¼ 1 spinor Bose gas as a function of applied magnetic field B

and temperature T. The normal density for the mz Zeeman sublevel

is determined by its chemical potential �0 ��Bmz=kBT, where �
is the magnetic moment and �0 is determined by number conser-

vation. The unmagnetized gas at B ¼ 0 condenses at the critical

temperature Tð0Þ
c ¼ ð2�ℏ2=mkBÞ½n�ð3=2Þ=3	2=3 determined by the

density n=3 of each Zeeman sublevel. For j�B=kBT
ð0Þ
c j 
 1,

the critical temperature (solid black line) increases by a factor

ð2Fþ 1Þ2=3 (indicated by the dashed line). Contours show the

longitudinal magnetization with color bar shown. The superfluid

state is ferromagnetic as indicated by the discontinuous magnetiza-

tion at B ¼ 0 and T < Tð0Þ
c .
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the same transition (Frota, Silva, and Rosa, 1984; Caramico

D’Auria, De Cesare, and Rabuffo, 1996; Simkin and Cohen,

1999; Gu, 2003).
In the case considered here, the ferromagnetic phase (as

opposed to nematic, cyclic-tetrahedral, or other phases) is

selected due to the application of a symmetry-breaking mag-

netic field and the absence of spin-dependent interactions. This

ferromagnetic tendency persists even under arbitrary spin-

independent interactions as can be shown for both

pseudospin-1=2 (Siggia and Ruckenstein, 1980; Yang and

Li, 2003) and higher-spin systems (Eisenberg and Lieb, 2002).
This basic thermodynamic picture was confirmed in experi-

ments with chromium gases (Pasquiou et al., 2012). Because

of the large dipolar relaxation rate in this gas, the longitudinal

magnetization is a free parameter, determined by thermody-

namics and by spin-dependent interactions. The Bose-Einstein

condensation temperature was observed to vary with magnetic

field, and hencewith the magnetization of the gas, as predicted

(Fig. 12). Below the Bose-Einstein condensation temperature,

the gas adopts a magnetization that is determined by both the

linear Zeeman effect and the spin-dependent interactions in the

gas (Pasquiou et al., 2011): at higher magnetic field, where

the Zeeman energy dominates, the condensate is fully magne-

tized, while at lower magnetic field, where the nonferromag-

netic spin-dependent interaction dominates, the condensate

occupies multiple Zeeman states.
In the absence of dipolar relaxation, such as for the alkali

spinor Bose gases, the equilibrium states of spinor gases need

to be evaluated under the constraint of constant longitudinal

magnetization, rather than as occurring at constant magnetic

field. To the extent that the magnetization in Fig. 11 spans all

values for T > Tð0Þ
c , the constrained equilibrium state can be

taken as that which occurs at the value of B (now a Lagrange
multiplier) that gives the correct longitudinal magnetization.

However, for T < Tð0Þ
c , the equilibrium diagram of Fig. 11

fails to describe spinor Bose gases within a range of longitu-
dinal magnetization around zero. In this case, a gas of non-
zero longitudinal magnetization is predicted to undergo a
sequence of Bose-Einstein condensation transitions
(Isoshima, Ohmi, and Machida, 2000; Zhang, Yi, and You,
2004; Kis-Szabo, Szepfalusy, and Szirmai, 2007). A first

condensation, at T > Tð0Þ
c , produces a purely longitudinally

polarized condensate. Below this temperature, the noncon-
densed populations in all Zeeman states approach a common

value, whereupon, at T < Tð0Þ
c , Bose-Einstein condensation

occurs into multiple Zeeman sublevels. The magnetic order
of that low-temperature condensate depends on the character
of the spin-dependent interactions.

Experimental evidence of this two-step condensation phe-
nomenon was obtained by the Paris group working with
sodium condensates of nonzero magnetization (Gerbier,
2012). Two-step condensation can also occur due to the
quadratic Zeeman shift, which, similarly, can imbalance the
distribution of atoms within the noncondensed gas so as to
initiate Bose-Einstein condensation into a single Zeeman
sublevel (the jmz ¼ 0i state if q > 0) before condensation
can occur into other states as well (Phuc, Kawaguchi, and
Ueda, 2011).

The role of spin-dependent interactions on theBose-Einstein
condensation transition has been debated. In a mean-field
description, magnetic order in the noncondensed or the con-
densed gas produces a Weiss field through the spin-dependent
s-wave interaction. Calculating thermodynamic functions in
the presence of this molecular field indicates that, in the case of

a ferromagnetic F ¼ 1 spinor gas (cð1Þ1 < 0), a ferromagnetic

state has a lower free energy than the paramagnetic state at the
Bose-Einstein condensation temperature, i.e., ferromagnetism
occurs separately and before Bose-Einstein condensation, even
for a weak ferromagnetic s-wave interaction (Gu and Klemm,
2003;Gu,Bongs, andSengstock, 2004;Kis-Szabo, Szepfalusy,
and Szirmai, 2005; Tao et al., 2008).

However, Natu and Mueller (2011) pointed out that such a
calculation neglects the dominant effect of exchange inter-
actions. As discussed in Secs. III.A and III.D, zero-range
interactions take place between identical bosons and fermions
if their total spin Fpair is even. For example, for two electrons

in an atom, the strong Coulomb repulsion at short range is
thereby minimized for spin-triplet states. For two bosons, the
repulsion due to a strong spin-independent s-wave interaction
is minimized by pairing the bosons in an odd spin state. This
direct bosonic exchange effect disfavors ferromagnetism in
the nondegenerate gas, and thus a weak spin-dependent in-
teraction cannot yield ferromagnetism before condensation.
For condensed atoms, the direct exchange is absent, and weak
spin-dependent interactions can indeed dictate the magnetic
order of the gas.

The magnetic properties of spinor Bose gases close
to the Bose-Einstein condensation transition were examined
experimentally by Vengalattore et al. (2010). A nonmagne-
tized gas was prepared well above the Bose-Einstein

FIG. 12 (color online). Thermodynamic phase diagram of a chro-

mium spinor Bose gas. The large dipolar relaxation rate of chro-

mium allows the longitudinal magnetization (abscissa, defined as

the per-atom spin divided by ℏ) to achieve its thermodynamic

equilibrium value as a function of the applied magnetic field and

the gas temperature (ordinate, scaled by the transition temperature

Tc0 of a fully magnetized gas). The Bose-Einstein condensate

transition temperature increases with magnetization, as predicted

(see Fig. 11). Below the condensation temperature, the Bose-

Einstein condensate is either fully magnetized (region B) or par-

tially magnetized (region C), according to whether the Zeeman

energy is larger or smaller than the nonferromagnetic spin-

dependent interaction energy. From Pasquiou et al., 2012.

1218 Dan M. Stamper-Kurn and Masahito Ueda: Spinor Bose gases: Symmetries, magnetism, and . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013



condensation transition and then gradually cooled by evapo-
ration from an optical trap. A time-of-flight analysis indicated
the formation of a low-momentum, quantum-degenerate gas

at the temperature Tð0Þ
c expected given the atom number per

Zeeman state and the presence of a harmonic confining
potential. In situ imaging revealed local magnetic ordering

at all temperatures below Tð0Þ
c . However, the experimental

sensitivity to magnetization and the level of control over the
gas temperature were insufficient to settle the question of
whether magnetization appeared exactly at, or else slightly

above, Tð0Þ
c .

B. Two- and one-dimensional systems

Another interesting arena in which to examine the connec-
tion between magnetic order and superfluidity is in low-
dimensional systems. For example, in a scalar Bose fluid in
two dimensions, the link between superfluidity and conden-
sation is severed. Below the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition, the fluid becomes suddenly super-
fluid, via a jump in the superfluid stiffness, but the gas
eschews off-diagonal long-range order and is thus not Bose-
Einstein condensed. The transition can be understood from
the behavior of topological defects in the scalar fluid (vortices
of single positive or negative quantum of circulation) that are
bound below the BKT transition and unbound above it.
Signatures of the BKT transition have been observed in
atomic gases, where the presence of a trap transforms the
transition into a gradual crossover, and where the low-
temperature phase is indeed Bose-Einstein condensed in
that the coherence length becomes as large as the finite size
of the gas (Hadzibabic and Dalibard, 2011).

Topological structures in spinor Bose-Einstein condensates
differ from those of scalar condensates, and thus one expects
different behavior in two dimensions. Identifying the correct
symmetry group of the F ¼ 1 polar spinor Bose-Einstein
condensate, Mukerjee, Xu, and Moore (2006) discussed the
role of half-quantum vortices in the behavior of such a gas in
two dimensions. From analytical arguments and supported by
numerical studies, they identified a BKT-like transition from
a normal to a superfluid state. Given the lower kinetic energy
of the half-quantum vortex, they predicted such a transition is
characterized by a larger jump in the superfluid stiffness than
is observed in the scalar case, a telltale sign to be sought in
future experiments. It is important to note that this larger
jump was predicted much earlier in considerations of classi-
cal two-dimensional nematic films (de Gennes, 1971) and of
p-wave superfluids (Korshunov, 1985).

Remarkably, this topological phase transition leads to a gas
that is superfluid, but still lacking in long-range spin order.
This phenomenon can be understood by considering the
Hamiltonian of the gas in the form (James and Lamacraft,
2011)

H ¼
Z

d2r ½tnðrnÞ2 þ t�ðr�Þ2 � qn2z	: (58)

Here the gas is restricted to the ground-state manifold and
thus defined by the locally varying director nðrÞ of the polar
state and by the superfluid phase �ðrÞ. The quantities tn and
t� denote the magnetic and phase stiffness (kinetic energy) of

the gas, derived, for example, from a lattice model of the
fluid. In the q ¼ 0 case considered by Mukerjee, Xu, and
Moore (2006), the dynamics of n and� are decoupled, owing
to the lack of spin-gauge coupling for the polar state, except
for the topological linking of nematic disclinations and vor-
ticity of the two fields, respectively, by the half-quantum
vortices. Below the BKT transition, the half-quantum vortices
of opposite charge become bound to each other, and the two
fields become unlinked from one another. Algebraic order
develops in the quantity e2i�, yielding superfluidity without
condensation. However, the director n, which explores the
larger space of rotations, cannot order according to the
Mermin-Wagner-Hohenberg theorem, and thus no nematic
spin order is obtained.

The application of a quadratic Zeeman energy breaks the
rotational symmetry of the polar-state manifold. For q > 0,
one expects the spins to order at sufficiently low temperature
at an Ising-type phase transition (Fig. 13). A polar superfluid
is expected also at q < 0, although such a scenario was
considered only under the additional influence of tuning
tn and t� separately (Podolsky, Chandrasekharan, and

Vishwanath, 2009). Numerical simulations were performed
taking into account the finite size of a trapped polar gas,
revealing similar spatial variations between coherent and
incoherent portions of the gas as observed for trapped scalar
gases, although the precision of such calculations is difficult
to assess without a reliable nonzero-temperature theory for
the spinor Bose gas (Pietila, Simula, and Mottonen, 2010).

In one dimension, the scalar Bose gas is described by
Luttinger liquid theory, and, for delta-function interactions,

FIG. 13 (color online). Phase diagram for a two-dimensional F ¼
1 polar spinor Bose gas vs temperature and quadratic Zeeman shift.

The dashed line indicates the BKT transition from the normal to the

spin-disordered superfluid state (PS), marked by the binding of half-

quantum vortices (Mukerjee, Xu, and Moore, 2006). A nonzero

quadratic Zeeman shift favors the longitudinal polar state. A spin

texture containing a bound half-quantum-vortex pair necessitates

regions where the polar-state director deviates from the z axis; these
regions acquire a domain-wall width and tension defined by q. At

high temperature, in the PS state, these domain walls proliferate,

causing the spin texture of the superfluid to be disordered. Below an

Ising-type phase transition (solid line), the domain walls are con-

fined, allowing for long-range spin ordering and a conventional 2D

superfluid (S). Here t is the hopping energy in a discrete lattice

model of the 2D gas. From James and Lamacraft, 2011.
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can also be treated exactly by the coordinate and thermody-
namic Bethe ansätze. At high density, the low-temperature
phase is a quasicondensate, essentially described by mean-

field theory but lacking true long-range order. At low density,
in the Tonks-Girardeau regime, the gas properties resemble
those of noninteracting fermions as the repulsive interactions
suppress the short-range two-body correlation function
(Cazalilla et al., 2011).

A one-dimensional Bose gas with spin still admits an exact

solution in the case of fully symmetric delta-function inter-
actions. For example, for the F ¼ 1 spinor gas with SU(3)

symmetric s-wave interactions (corresponding to cð1Þ1 ¼ 0),
the ground state is a ‘‘color ferromagnetic’’ liquid: the pho-
non excitations and phase coherence properties are those of

the scalar Luttinger liquid, while the spin sector shows local
magnetic order and free-particle-like (/k2) excitations
(Li, Gu, and Ying, 2003).

Significantly different behavior is seen for antiferromag-
netic spin-dependent interactions. As discussed for the low-
temperature 2D polar gas, the dynamics of the gas separate

into the charge-phase dynamics and the nematicity-director
dynamics. The zero-temperature state shows a power-law
decay in the spin-singlet amplitude A1, a state which can be
regarded as a spin liquid that is gapped against spin-triplet
excitations (Cao, Jiang, andWang, 2007; Essler, Shlyapnikov,

and Tsvelik, 2009).
The separated dynamics of the charge and spin degrees of

freedom hark to the phenomenon of spin-charge separation
expected for one-dimensional Fermi systems. Here the mass
and spin degrees of freedom of the spinor Bose gas evolve
separately, showing, for example, differing sound velocities
(Essler, Shlyapnikov, and Tsvelik, 2009). However, in the

Bose system, this separation is not unique to one dimension,
appearing also in three-dimensional gases.

Adding a nonzero magnetization to the gas transforms the
polar spin-liquid state into a ferromagnetic liquid state. Lee
et al. (2009) suggested that, between these two limits, the two
liquids coexist as a two-component Luttinger liquid. In this

regime, the spin excitations of the liquid are no longer
gapped.

C. Spinor Bose gases in optical lattices

An optical lattice makes it possible to control the filling
fraction (the number of atoms per lattice site) realizing an
artificial carrier-doped many-body quantum system that

features, among other things, the superfluid-Mott-insulator
(SF-MI) transition (Jaksch et al., 1998; Greiner et al., 2002).
The fluctuations in the number of atoms per lattice site are
controlled by changing the ratio of the tunneling amplitude t
to the on-site Hartree interaction (charge gap) U0. At zero

temperature, if the ratio t=U0 is below a critical value, the
system is in the MI phase; otherwise, the system is in the
superfluid phase. With a spinor gas of spin-F atoms loaded
into the lattice, new energy scales concerning spin-dependent
interactions Ui (i ¼ 1; . . . ; F) come into play, making the

system an ideal playground to study quantum magnetism.
The dynamics of spinor gases in optical lattices also offers
unique possibilities because spin-mixing dynamics can be
coupled with density dynamics such as Bloch oscillations

and self-trapping (Li et al., 2010). An optical lattice loaded
with spinor gases can also be utilized to determine various
scattering lengths of spinor gases precisely (Widera et al.,
2006) and for quantum information processing (Widera et al.,
2005).

A spinor gas in a spin-independent optical lattice can be
described with the Bose-Hubbard Hamiltonian (Jaksch et al.,
1998) supplemented by the spinor interaction at each lattice
site. For the spin-1 case, the Hamiltonian is given by

Ĥ ¼ �t
X
hiji;m

ðĉ y
im ĉ jm þ ĉ y

jm ĉ imÞ þ U0

2

X
i

n̂iðn̂i � 1Þ

þ U1

2

X
i

ðF̂2
i � 2niÞ ��

X
i

n̂i; (59)

where ĉ im is the annihilation operator of a boson in the

magnetic sublevel mF ¼ 1, 0, �1 at site i, n̂i ¼P
m ĉ

y
im ĉ im, and � is the chemical potential that controls

the filling fraction of the system. The spin operator F̂i has

three components F̂i� ¼ ĉ y
imðF�Þmn ĉ in (� ¼ x, y, z), where

F� is the � component of the spin-1 operator. The ratio
U1=U0 is about 0.04 for 23Na and �0:005 for 87Rb (see
Table II). The control parameters that determine fundamental
properties of the system are t=Ui, filling fraction, dimension-
ality, and size of the atomic spin.

When the number of atoms per lattice site is large and
U1 < 0, a ferromagnetic minicondensate on each lattice has a
large magnetic moment and interacts with other condensates
through the MDDI. Such an array of large spins is predicted
to yield ferromagnetism (Pu, Zhang, and Meystre, 2001) and
magnetic solitons (Xie et al., 2004; Li et al., 2005) in one
dimension and domain structures in higher dimensions (Gross
et al., 2002).

When the number of atoms per lattice site is small, the
MDDI can be ignored. Then, ferromagnetic condensates are
expected to show similar behavior as scalar condensates with
respect to the MI-SF transition. For the antiferromagnetic
case, the state in each Mott lobe is expected to show proper-
ties such as a nematic insulator and a spin-singlet insulator
(Demler and Zhou, 2002; Imambekov, Lukin, and Demler,
2003), where the nematic state corresponds to the polar state
of a bulk condensate. The nematic state breaks spin-rotation
symmetry but preserves time-reversal symmetry and has
gapless spin-wave excitations, while the spin-singlet state
has spin-rotation symmetry and gapped excitations (spin
gap). A remarkable feature of the antiferromagnetic MI is
an even-odd parity effect in which even fillings stabilize the
MI state because all particles can then form spin-singlet pairs
with the spin gap in addition to the charge gap (Demler and
Zhou, 2002; Tsuchiya, Kurihara, and Kimura, 2004).

In one dimension, antiferromagnetic spin-1 systems with
odd fillings and small t=U0 are predicted to be dimerized in
such a manner that adjacent atoms tend to form spin-singlet
dimers with an excitation gap (Demler and Zhou, 2002; Yip,
2003; Zhou and Snoek, 2003). The underlying physics is that
virtual hopping to neighboring sites gives rise to an effective
antiferromagnetic coupling between adjacent sites. Since
each atom has two nearest neighbors to be dimerized, the
dimer phase has twofold degeneracy and breaks lattice trans-
lational symmetry. A renormalization-group method confirms
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that for odd fillings the insulating phase is always dimerized
(Rizzi et al., 2005), although the obtained dimer amplitude is
very small and the state might be quantum nematic near the
SO(3)-symmetric point (Lauchli, Schmid, and Trebst, 2006).
On the other hand, quantum Monte Carlo calculations show
that the entire first Mott lobe has the dimerized ground state
up to a relatively large t=U0 which may be probed by Bragg
spectroscopy with peaks locating at half-integer multiples of
the inverse lattice vector (Apaja and Syljuasen, 2006). A
Monte Carlo study also shows that the SF-MI transition is
first order for even fillings due to the spin gap of spin-singlet
pairs, whereas it is second order for odd fillings as in the
ferromagnetic case (Batrouni, Rousseau, and Scalettar, 2009).

The spin-1 system with small t=Ui can be described with
an effective Hamiltonian called the bilinear-biquadratic
Hamiltonian (Imambekov, Lukin, and Demler, 2003; Yip,
2003; De Chiara, Lewenstein, and Sanpera, 2011;
Rodriguez et al., 2011)

Ĥ ¼ J
X
hiji

½ðF̂i � F̂jÞ cos�þ ðF̂i � F̂jÞ2 sin�	 þD
X
i

ðF̂izÞ2;

(60)

where the cos� term arises from the virtual second-order
hopping to neighboring sites, andD characterizes the strength
of the quadratic Zeeman effect. In one dimension, this
model describes many different phases such as the Haldane
phase including the Affleck-Kennedy-Lieb-Tasaki point
(De Chiara, Lewenstein, and Sanpera, 2011).

In higher dimensions, insulating states with an odd number
of atoms per site are predicted to be nematic, whereas those
with an even number are either nematic or spin singlet with a
first-order transition between them (Imambekov, Lukin, and
Demler, 2003). Based on the mean-field or Gutzwiller ap-
proximation, it was shown (Kimura, Tsuchiya, and Kurihara,
2005; Krutitsky, Timmer, and Graham, 2005) that the SF-MI
transition may be first order around the tip of each Mott lobe.
This is in sharp contrast with the ferromagnetic case in which
the phase boundary is always second order, as in the scalar
case (Fisher et al., 1989). The physical origin of the first-order
transition is that in the MI phase the spin state is fixed,
whereas in the superfluid phase it is not; thus the spin
symmetry can have a discontinuity at the phase boundary.
A possible experimental signature of the first-order transition
is a discontinuous jump in the transverse magnetization from
zero in the MI phase to a nonzero value in the SF phase
(Kimura, Tsuchiya, and Kurihara, 2005). The spin gap in the
MI phase for even fillings leads to quantized magnetization
plateaus, while the second-order virtual hopping of spinor
atoms induces an effective quadrupolar interaction between
spins (Imambekov, Lukin, and Demler, 2003; Snoek, Song,
and Zhou, 2009) [see the second term in Eq. (60)] which leads
to a canted nematic order in which magnetization is not
quantized but changes continuously as a function of an
external magnetic field (Imambekov, Lukin, and Demler,
2004). As the ratio U1=U0 increases, even Mott lobes expand
and odd Mott lobes shrink until the latter disappear at
a critical value around U1=U0 ¼ 0:5 (Ła̧cki et al., 2011),
presumably because the spin gap due to spin-singlet pair
formation works in favor of the even Mott lobes. At unit
filling, phase diagrams in the presence of the quadratic

Zeeman effect were investigated based on the density-matrix
renormalization method and Lanczos diagonalization
(Rodriguez et al., 2011), showing the field-induced transition
between the transverse and longitudinal magnetization (or
nematic) for the ferromagnetic (or antiferromagnetic) case.

For the case of spin-2 atoms, we expect even richer phase
diagrams (Zhou and Semenoff, 2006). The phase diagram
was studied by treating the intersite hopping perturbatively
(Hou and Ge, 2003; Eckert, Zawitkowski, Leskinen et al.,
2007) and by a variational approach (Snoek, Song, and Zhou,
2009). In one dimension, a trimerized state was predicted
(Chen et al., 2012). The SF-MI transition in spin-3 conden-
sates with dipolar interactions was also discussed (Bernier,
Sengupta, and Kim, 2007).

We note that these theoretical predictions for quantum
magnetism in optical lattices are extremely appealing, but
also very challenging to achieve. The spin-dependent ener-
gies between atoms trapped at low filling within optical
lattices are typically much smaller than the on-site interaction
energies that have produced the Mott insulating states studied
to date. The task of lowering the temperature of lattice-
trapped gases to the point where such energy scales dominate,
without the aid of the Bose enhancement which makes spinor
Bose-Einstein condensates accessible, is a major hurdle.
Moreover, opening the spin degree of freedom for lattice-
trapped gases can add a large amount of entropy per particle
that may be difficult to reduce thereafter by evaporation or
other techniques. In this regard, it is worthwhile to mention
two major experimental advances: the demagnetization gra-
dient cooling method demonstrated by the MIT group
(Medley et al., 2011) and the Pomerantchuk-type cooling
observed with spinful fermions of Yb by the Kyoto group
(Sugawa et al., 2011).

VIII. DIPOLAR SPINOR GASES

The magnetic dipole-dipole interaction (MDDI) couples
the spin degrees of freedom with the orbital degrees of free-
dom. For magnetic dipoles �1 and �2 separated by the
relative coordinate r, the interaction energy is

VddðrÞ ¼ cdd
�1 ��2 � 3ð�1 � r=rÞð�2 � r=rÞ

r3
: (61)

The MDDI is invariant under simultaneous rotation of
spins and coordinates, but not under the separate rotation of
each. Therefore, in the presence of the MDDI, the constraint
of global spin conservation, assumed frequently above, no
longer strictly holds. The MDDI conserves the total angular
momentum, and, thus, a dipole-induced relaxation of the spin
angular momentum can lead to a change in the orbital angular
momentum, causing a previously stationary spinor gas to
begin rotating (Kawaguchi, Saito, and Ueda, 2006a). This
phenomenon is analogous to the Einstein–de Haas effect
in a ferromagnet (Einstein and de Haas, 1915), where the
spin angular momentum is converted to a mechanical rota-
tion. Conversely, a rotation of the system can lead to its
magnetization—a phenomenon known as the Barnett effect
(Barnett, 1915).

In many experiments on cold atomic gases, the MDDI is
negligible. To assess its importance, one can compare the
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MDDI to the spin-independent contact interaction, which
determines the compressibility and excitation spectrum of a
spin-polarized Bose-Einstein condensate. To make such a
comparison, recall that the magnetic field inside a sphere
with uniform magnetization M is B ¼ ð2=3Þ�0M, where
�0 is the vacuum permeability. Setting M ¼ �n for a gas
of atoms with magnetic moment � and density n, the
magnetic-dipole energy per atom Edd ¼ ð1=3Þ�0�

2n shows
the same scaling with density as the mean-field interaction
energy per atom E ¼ 4�ℏ2an=M with a being the scattering
length and M the atomic mass. The ratio of the dipolar to the
contact interaction energy is thus independent of density:

�dd;a ¼ �0�
2M

12�ℏ2a
: (62)

For alkali atoms, this ratio is quite small away from
Feshbach resonances where the interaction energy can be
tuned near zero (Fattori et al., 2008; Pollack et al., 2009);
for example, for 87Rb in the F ¼ 1 state, �dd;a ¼ 0:002. Thus,
the long-range dipole interaction can typically be neglected in
experiments on scalar alkali gases. In contrast, for Cr (�dd;a ¼
0:15), and even more so for Dy (�dd;a ’ 1 for a typical

scattering length), the dipolar interaction is an important
factor in the structure and stability of a spin-polarized gas
[see reviews by Baranov et al. (2002), Baranov (2008), and
Lahaye et al. (2009)].

However, for spinor Bose gases, the MDDI can have
significant effects, both because it is spin dependent and
because it is long ranged. As a spin-dependent interaction,
the MDDI may compete with the spin-dependent contact
interaction to determine the local spin ordering of the degen-
erate spinor gas. Here the importance of the MDDI may be
assessed by examining the ratio of the dipolar to the spin-
dependent contact interaction energy, given as �dd;�a in which
we now use the scattering-length difference �a that governs
the spin-dependent interactions. For example, in the F ¼ 1
manifold of 87Rb, considering �a ¼ ða2 � a0Þ=3 ¼ 0:25 �A,
we find �dd;�a ¼ 0:4, so that we can expect dipolar interac-

tions to play a significant role as first pointed out by Yi, You,
and Pu (2004) and as discussed in Sec. VIII.C.

Even if the MDDI does not disrupt the local spin order
selected by the spin-dependent contact interaction, it may
nevertheless dictate the long-range spin ordering of the gas.
Here the proper comparison is between the MDDI and the
quantum confinement energy ℏ2=ð2ml2Þ. Equivalently, one
may define a dipolar healing length �dd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=2MEdd

p
and

compare it to the length l of the condensed gas. As a result,
for spatially extended samples, the ground-state spin configu-
rations are predicted to be inhomogeneous spin textures that
spontaneously rotate (Kawaguchi, Saito, and Ueda, 2006b; Yi
and Pu, 2006) as discussed in Sec. VIII.D.

A. Dipolar interactions in the cold-collision regime

The s-wave approximation cannot be used to treat the
MDDI, owing to its peculiar scattering properties in three
dimensions. The scattering phase shift �‘ðkÞ for the ‘th
partial wave is proportional to the wave vector k in the
low-energy limit k ! 0, regardless of ‘. This implies that
all partial waves contribute to the low-energy scattering

(Landau and Lifshitz, 1977). Moreover, the anisotropy of
the MDDI induces coupling between different partial waves.

Rather the MDDI is retained explicitly in the interaction
Hamiltonian. At low magnetic fields, where the hyperfine
spin F is a good quantum number, the matrix elements of the
magnetic-dipole operator are given by hF;mj�jF;m0i ¼
gF�BFmm0 , where gF is the Landé g factor. The MDDI is
then written in second quantization as

V̂dd¼cdd
2

ZZ
dr1dr2:

�
F �F�3ðF �r=rÞðF �r=rÞ

r3

�
: (63)

where in the integral r ¼ r1 � r2, and cdd ¼ �0ðgF�BÞ2=4�.
The coupling between different hyperfine manifolds can be
ignored because the hyperfine splitting �100 mK is much
larger than the �1 nK energy scale of the MDDI.

B. Interactions between rapidly precessing dipoles

The rapid precession of the gas magnetization under a
strong applied magnetic field alters the effective form of
the MDDI. For conditions where the strength of the dipolar
field, on the order of B� gF�0�Bn, is much smaller than the
applied field, we account for the rapid precession in the
interaction between two spatially fixed dipoles by identifying
the dipole moments �ðrotÞ in the Larmor precessing frame as

�ðrotÞ
z ¼ �z and �ðrotÞ

� � �ðrotÞ
x � i�ðrotÞ

y ¼ e�i!Lt��, where
we specified z as the magnetic-field axis b. Taking the time
average, we obtain the effective interaction as

Veff
dd ðrÞ ¼

�0

4�

�ðrotÞ
1 � �QðrÞ ��ðrotÞ

2

r3
; (64)

where

�Q��ðrÞ ¼ 1� 3½ðr=rÞ � b	2
r3

3b�b� � ���

2
: (65)

The effective MDDI, written now for arbitrary orientation
of the magnetic field, distinguishes the longitudinal from the
transverse magnetization, and expresses a nonlocal XXZ-type
interaction between atomic spins. This interaction can effect
variations in the magnetization even when the dipolar field is
small compared to the applied field for the reason that the
dipolar field produced by a transversely magnetized region of
the gas is modulated at precisely the Larmor precession
frequency. This time-varying field can cause resonant Rabi
nutation of the magnetization in another portion of the gas.

C. Dipolar interactions in the single spatial-mode regime

We revisit the mean-field description of spinor Bose-
Einstein condensates in the single-mode approximation,
presented above in Sec. V.A, wherein the condensate spin
character is described simply by a spatially independent
spinor wave function.

Accounting for the MDDI introduces a new spin-
dependent energy, potentially changing the local order pre-
ferred by the gas. Within the SMA, this additional energy is
determined by taking the spatial integral of Vdd (or, in the
presence of rapid Larmor precession, of Veff

dd ) over the

condensate density distribution. Considering a density
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distribution that is cylindrically symmetric about the z axis,
the spatial integral of Vdd yields the following addition to the
energy functional (Yi, You, and Pu, 2004):

Edd ¼ c0ddnð2hFzi2 � hFxi2 � hFyi2Þ;

c0dd ¼
cdd
n

ZZ
dr1dr2

nðr1Þnðr2Þ2
jr1 � r2j ð1� 3cos2�12Þ;

where nðrÞ is the condensate density, and �12 is the polar
angle of the vector r1 � r2.

We see that the dipolar interaction adds an energy similar
to that of the spin-dependent contact interactions, so that local
effects of the MDDI can be regarded, roughly, as changing
the value of c1. However, the MDDI energy term is aniso-
tropic, i.e., the coupling between spin and orbital degrees of
freedom causes the spatial anisotropy in the density of the
condensate, determined by the trapping geometry, to translate
into spin-space anisotropy. By varying the trapping geometry,
one can change the sign of c0dd and thus tune the effective sign
of the spin-dependent dipolar energy.

Yi, You, and Pu (2004) examined the impact of dipolar
interactions on the exact many-body ground state predicted
for the F ¼ 1 case by Law, Pu, and Bigelow (1998) (see
Sec. V.B). For ferromagnetic interactions, the dipolar interac-
tion breaks spin-rotational symmetry, so that the ground state
becomes the state of maximum spin jFtot ¼ N;Fz;tot ¼ MFi,
where now MF ¼ N for c0dd < 0 (prolate) and MF ¼ 0 for

c0dd > 0 (oblate). The dipolar interaction also stabilizes these

maximal-spin states as the ground state even in the presence of
weak antiferromagnetic interactions. A similar stabilization of
the ferromagnetic ground states was noted by Kjall, Essin, and
Moore (2009), who considered also the impact of the quadratic
Zeeman shift on the F ¼ 1mean-field phase diagram. Dipolar
interactions, treated within the single-mode approximation,
are also predicted to affect the dynamics of the condensate
magnetization under applied magnetic fields (Yasunaga and
Tsubota, 2011), an effect which ultimately affects the accuracy
of spinor-gas based magnetometers (Vengalattore et al., 2007)
(discussed in Sec. XI).

The dipolar interaction introduces additional spin-mixing
terms to the Hamiltonian, e.g., terms of the form

ĉ y
0 ĉ

y
0 ĉþ1 ĉ�1 þ ĉ y

þ1 ĉ
y
�1 ĉ 0 ĉ 0 for the case of the F ¼ 1

spinor gas. Thus, the MDDI modifies the spin-mixing
dynamics, such as coherent oscillations and dynamical insta-
bilities, discussed in Sec. IX. For example, dipolar interac-
tions can induce a transition across the separatrix that divides
two types of spin-mixing trajectories, so that the spin-mixing
dynamics from a given initial spin state depend strongly on
the trapping geometry (Rong, Liang, and Yunbo, 2005).
Dipolar interactions are also predicted to break the rotational
symmetry of dynamically unstable modes in single-mode and
spatially extended jmz ¼ 0i condensates quenched to low
values of the quadratic Zeeman shift. This dipole-induced
anisotropy makes the critical quadratic Zeeman shift q0
governing the instability depend on the orientation of the z
axis with respect to the trap shape and should also produce
anisotropic patterns of spin domains after the quench (Sau
et al., 2009).

D. Flux-closure relation

The MDDI favors spin waves and magnetic domain
structures. This can be seen by expressing it in momentum
space:

hV̂ddi /
Z

d3k ½3jFðkÞ � k=kj2 � jFðkÞj2	; (66)

where FðkÞ is the Fourier transform of the magnetization
vector FðrÞ. The dipole interaction energy is minimized by
minimizing the first term and maximizing the second term
on the right-hand side. The latter is achieved by placing a
large weight on a particular spin-wave component FðkÞ,
while the former can be achieved by requiring that k be
perpendicular to FðkÞ. In real space, this condition is written
as r � FðrÞ ¼ 0, which implies that no net magnetic flux
emanates from any point in real space; that is, the magnetic
flux closes upon itself. This is known as the flux-closure
relation (Landau, Lifshits, and Pitaevski’i, 1984), which fa-
vors magnetic domain structures in solid-state ferromagnets
to minimize the magnetic-field energy.

In addition to the flux-closure relation, a ferromagnetic
Bose-Einstein condensate features spin-gauge symmetry (see
Sec. VI.B) that induces supercurrent when the spin texture of
the system is nonuniform. As discussed in Sec. VI.E, the spin
textures also give rise to vorticity via the Mermin-Ho relation
[Eq. (57)]. Since trapped systems in general produce nonuni-
form spin textures via the MDDI, we can expect a super-
current to flow even in the ground state. In fact, the F ¼ 1
ferromagnetic Bose-Einstein condensates may undergo sym-
metry breaking into at least three different phases that feature
inhomogeneous spin textures and circulating currents
(Fig. 14). These phases are selected by changing the atom
number and trap frequencies (Kawaguchi, Saito, and Ueda,
2006b; Huhtamäki et al., 2010).

The phase diagram of dipolar spinor condensates at zero
magnetic field has also been examined as a function of the
dipole-dipole interaction and trap aspect ratio for both ferro-
magnetic and antiferromagnetic cases by Yi and Pu (2006),
and spin textures are predicted to emerge in a pancake trap
and relatively strong dipole-dipole interactions. Spin textures
in the MDDI-dominated regime are discussed by Takahashi
et al. (2007) under the assumption that the spin behaves as a
classical vector.

E. Experimental signature

Effects of the MDDI may have been observed in the
dynamics of spin textures studied by the Berkeley group
(Vengalattore et al., 2008). A ferromagnetic F ¼ 1 87Rb
condensate in a quasi-two-dimensional trap was prepared in
a uniform transversely magnetized state. Thereupon, a gra-
dient of the magnitude of the magnetic field was briefly
applied. Larmor precession in the presence of this gradient
gave rise to a helical spin texture, in which the orientation
angle � of the magnetization in the transverse-spin plane
increased linearly with distance along the direction of the
field gradient. The pitch of the helix was determined by
the strength and duration of the pulsed gradient. Thereafter,
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the texture was allowed to evolve under a uniform applied

magnetic field before the gas was imaged.
Considering just the s-wave interactions, a spin helix

with a long pitch 	 is a low-energy texture, with excess

energy per particle given just by the kinetic energy

ℏ2=2m	2. It was therefore surprising that such a helix under-

went a rapid evolution toward a finely modulated spin

texture (Fig. 15) in which, given the short typical length scale

of spin domains, the kinetic energy is much larger than its

initial value.
The MDDI provides an additional source of energy to the

spinor Bose-Einstein condensate and may account for the

observed dynamics. To test this possibility, a rapid sequence

of rf pulses with random spacing was applied to randomize

the orientation of the atomic spins with respect to spatial

coordinates. Such rf pulses had the effect of diminishing the
strength of the short length-scale modulation, supporting
the picture that the MDDI causes such modulation to emerge.
We note that rf-pulse techniques have been suggested also
as a way to isolate and emphasize, rather than to suppress,
the effects of the MDDI in spinor gases (Yasunaga and
Tsubota, 2008).

The stability of the helical texture was explored theoreti-
cally, both from the perspective of a low-energy hydrody-
namic theory of the ferromagnetic state (Lamacraft, 2008)
and using a Bogoliubov treatment (Cherng et al., 2008).
The spectrum of modulational instability was found to re-
flect the anisotropy of dipolar interactions, suggesting a
mode-softening toward a spatially periodic ground-state tex-
ture (Cherng and Demler, 2009). The possible emergence
of modulated ground-state spin textures due to dipolar
interactions was explored, focusing on the balance between
the quadratic Zeeman effect and the MDDI (Kjall, Essin,
and Moore, 2009; Kawaguchi et al., 2010; Zhang and Ho,
2010). When the quadratic Zeeman energy is positive and
stronger than the MDDI, the longitudinal magnetization is
suppressed, and the transverse magnetization forms a helix.
In the opposite case in which the MDDI dominates the
quadratic Zeeman energy, the longitudinal magnetization
forms a domain structure to minimize the MDDI.
However, these works have not yet provided a consistent
explanation for the experimental findings (Kawaguchi
et al., 2010).

IX. NONEQUILIBRIUM QUANTUM DYNAMICS

Cold atomic gases, and specifically spinor Bose gases,
allow one to examine nonequilibrium dynamics in a manner
that would be difficult with solids or liquids. In contrast with
condensed-matter systems, which are studied typically near
equilibrium, cold-atom materials can be prepared far from
equilibrium by applying state preparation techniques or rap-
idly changing the system Hamiltonian. Atomic gases equili-
brate slowly. The kinetic degrees of freedom relax on
millisecond time scales defined by the rate of elastic colli-
sions. The internal degrees of freedom in spinor gases
equilibrate even more slowly. The decay of the total longitu-
dinal magnetization is either slow (as for 52Cr) or nearly
imperceptible (as for many alkali gases). The weak spin-
dependent contact and dipolar interactions also produce dy-
namics over time scales (many milliseconds) that are long
compared to the time needed to vary the trapping potential,
the applied fields, or to probe the system.

In addition, unlike condensed-matter materials, cold-atom
systems generally lack true reservoirs with which to exchange
energy, angular momentum, or magnetization. This raises the
question of whether cold-atom systems equilibrate at all,
whether equilibration is achieved within a given time frame
for certain properties and not for others, and, if an equilibrium
state is achieved, whether that state differs from a straightfor-
ward thermal equilibrium state.

Here we highlight studies on spin-mixing dynamics in
degenerate spinor Bose gases. Such dynamics are associated
with redistribution of atomic populations among spin states,
the formation of spin domains and spin textures, symmetry
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FIG. 14 (color). (a) Phase diagram of a ferromagnetic spinor-
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�dd, and RTF denote the spin healing length, the dipole healing

length, and the Thomas-Fermi radius, respectively. The solid curve

and dashed line show the first-order and second-order phase

boundaries, respectively. The total angular momentum J per particle

is 0 for PCV, and 1 for CSV and FL. The red and black circles with

arrows show mass and spin circulations, respectively. The F ¼ 1
87Rb spinor gas traces the dotted line indicated as ‘‘Rb line.’’ (b)–(d)

Typical spin texture in each phase. The top and bottom panels show

the unit spin vector projected onto the x-z and x-y planes, respec-

tively. The color of the arrows represents the magnitude of the

normalized spin density according to the bottom scale. Adapted

from Kawaguchi, Saito, and Ueda, 2006b.
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breaking and phase transitions, and nonlinear matter-wave
optics.

A. Coherent spin mixing in single-mode experiments

1. Microscopic spin dynamics

The spin-dependent contact interactions in a spinor gas can
cause temporal oscillations of spin-state populations. To
exhibit this effect, consider a system with two F ¼ 1 atoms
in the ground state of a tightly confining trap for which we
make the single-mode approximation. Consider an initial
state c ð0Þ ¼ j0; 2; 0i written as a Fock state in the eigenbasis
of a projection of the single-particle angular momentum with
magnetic quantum numbers mF ¼ f1; 0;�1g, respectively.
Owing to its being a superposition of Ftot ¼ 0 and Ftot ¼ 2
states, the initial state evolves as

c ðtÞ¼e�i!0t

�
2þe�i!1t

3
j0;2;0i�

ffiffiffi
2

p ð1�e�i!1tÞ
3

j1;0;1i
�
;

(67)

where !0¼ðcð1Þ0 þcð1Þ1 Þn=2ℏ and !1 ¼ 3cð1Þ1 n=2ℏ with n
being the average density. In a spin-mixing collision, a pair
of atoms in the jmz ¼ 0i spin state scatter inelastically into
the jmz ¼ þ1i and jmz ¼ �1i states. This interaction is
coherent, leading to periodic variation of the spin composi-
tion of the system.

Such coherent microscopic spin-mixing oscillations were
observed by Widera et al. (2005) (Fig. 16). Pairs of atoms
were held in sites of an optical lattice, prepared with rf and
microwave pulses, allowed to interact for a fixed time, and
then probed by a Stern-Gerlach analysis. Each atom pair
serves as a clean microscopic laboratory to measure the
strength of the spin-mixing terms (Widera et al., 2006),
potentially also sensitive to the magnetic-dipole interaction
between individual cold atoms (Sun et al., 2006). Spin-
mixing oscillations were observed within both the F ¼ 1
and F ¼ 2 manifolds of states of 87Rb. The experiments
also explored the impact of quadratic Zeeman shifts

(Gerbier et al., 2006), adding a controlled energy difference
between the j0; 2; 0i and j1; 0; 1i two-atom spin states. When
this difference exceeds the spin-mixing interaction strength,
the oscillations increase in frequency and decrease in ampli-
tude, as expected for off-resonant Rabi oscillations.

2. Single-mode mean-field dynamics

Remarkably, the coherence of microscopic collisional
dynamics of atom pairs is retained also in the spin-mixing

FIG. 15 (color). Dissolution of helical spin textures in a ferromagnetic F ¼ 1 87Rb spinor Bose-Einstein condensate. A transient magnetic-

field gradient is used to prepare transversely magnetized (b) uniform or (a), (c) helical magnetization textures. The transverse magnetization

column density after a variable time T of free evolution, in a homogeneous magnetic field, is shown in the imaged plane, with orientation

indicated by hue and amplitude by brightness (color wheel shown). (b) A uniform texture remains homogeneous for long evolution times,

while (c) a helical texture with pitch 	 ¼ 60 �m dissolves over �200 ms, evolving into a sharply spatially modulated texture. From

Vengalattore et al., 2008.
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FIG. 16 (color online). Spin-mixing oscillations of two trapped

F ¼ 1 87Rb atoms. (a) An atom pair is prepared in the lowest

motional state of an optical lattice site, in the initial state j0; 2; 0i.
Spin-mixing collisions convert the atom pair to the state j1; 0; 1i,
which is offset in energy from the initial state by the quadratic

Zeeman energy 2q / B2. Spin mixing occurs in a large ensemble of

such two-atom systems. (b) Population oscillations are measured by

Stern-Gerlach and time-of-flight imaging. (c) Several coherent spin-

mixing oscillations are observed, (d) the frequency of which varies

with the quadratic Zeeman shift. The frequency differs from that

expected based on the scattering lengths calculated by van Kempen

et al. (2002) [theory curved (dashed), with systematic uncertainty

indicated by shading]; indeed, 20% discrepancies remain among

reported values of a2 � a0 for the F ¼ 1 87Rb system. Adapted

from Widera et al., 2006.
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dynamics of macroscopic collections of atoms. Such dynam-
ics in tightly confined Bose-Einstein condensates can be
treated in a single-spatial-mode mean-field theory, i.e., spec-
ifying the condensate wave function � ¼ �ðrÞc ðtÞ as a
product of a common, fixed spatial wave function and a
time-varying spin state. We consider the ensuing spin-mixing
dynamics in the presence of the contact interaction and a
quadratic Zeeman shift q along z. For an F ¼ 1 spinor gas,
while the spinor wave function c is specified by six real
parameters, the dynamics is constrained by the overall U(1)
gauge symmetry of the spinor wave function (associated with
conservation of the norm of c ) and rotational symmetry
about a given direction, say, z (associated with conservation
of the z projection of the spin, defined as m ¼ jcþ1j2 �
jc�1j2 per atom), leaving just two dynamical variables
(Pu et al., 1999; Romano and de Passos, 2004; Kronjager
et al., 2005; Zhang et al., 2005; Kronjager, Sengstock, and

Bongs, 2008). Following Zhang et al., we define 0 ¼ c y
0 c 0

as the fractional population of the jmz ¼ 0i Zeeman state, and
use the phase difference � ¼ argðcþ1c�1c

�
0c

�
0Þ which

controls the degree of magnetization or nematicity. The
spin-dependent energy functional for the uniform spin-1
spinor gas given in Eq. (34) is then expressed as

Eð1Þ ¼ cð1Þ1 n0

h
ð1� 0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0Þ2 �m2

q
cos�

i
þ qð1� 0Þ: (68)

This energy functional implicitly describes coherent spin
dynamics in a single spin mode. The dynamical variables 0

and � satisfy canonical relations, yielding equations of motion
as _� ¼ ð2=ℏÞ@E=@0 and _0 ¼ �ð2=ℏÞ@E=@�. The energy E
is conserved under such dynamics; thus, the trajectory of 0

and � follows a constant-energy contour (Fig. 17). The energy
extrema are thus identified as stationary states. We discuss
extensively the stability of the higher-energy stationary states.

Spin mixing occurs in two distinct dynamical regimes.
Consider the case of zero longitudinal magnetization

(m ¼ 0). For jqj> 2jcð1Þ1 jn, in the so-called ‘‘Zeeman re-

gime’’ (Kronjager et al., 2006), all trajectories are running
solutions in �, and the spin undergoes oscillatory orientation-
to-alignment conversion (alternating between magnetized
and nematic states) as expected for high-spin objects under
quadratic spin Hamiltonians (Fano and Macek, 1973). For

jqj< 2jcð1Þ1 jn, the so-called ‘‘interaction regime,’’ phase

space is divided in two dynamical regions: one region con-
tains oscillations that are bounded in � (akin to oscillatory
pendular motion), and the other contains running solutions in
� (similar to over-the-top pendular motion). Indeed, several
works have drawn analogies between such spin-mixing dy-
namics and those of nonrigid pendulums and (internal)
Josephson oscillations (Chang et al., 2005, 2007; Zhang
et al., 2005; Jing, Jiang, and Meystre, 2009; Yasunaga and
Tsubota, 2010a, 2010b). However, one should note the dif-
ference in topology between the phase space of a pendulum
and that of the spin-1 spinor gas under this representation.
The phase space of a pendulum has the topology of an infinite
cylinder: periodic in the angle and unbounded in the angular
velocity. In contrast, the 0-� phase space has the topology of
a cone (for nonzero longitudinal magnetization) or a sphere
(for zero longitudinal magnetization).

The transition between the Zeeman and interaction re-

gimes is signified dramatically in the frequencies of small-

amplitude spin oscillations. Consider the case with m ¼ 0,
and a state initialized near the transverse magnetized state

(0 ¼ 1=2, � ¼ 0). Deep in the Zeeman regime, Eð1Þ is

dominated by the term qð1� 0Þ, whence we obtain _� ’
�2q=ℏ as expected for single-atom dynamics. In the inter-

action regime, for q ¼ 0, the deviations �0 ¼ 0 � 1=2
and � from the transverse magnetized state remain

small. To lowest order in these deviations, we find €� ¼
�ð2cð1Þ1 n=ℏÞ2�, so that spin-mixing oscillations occur at the

frequency 2jcð1Þ1 jn=ℏ determined by the spin-dependent con-

tact interaction. Between these regimes, the spin dynamics

are slowed, reaching a ‘‘spin-mixing resonance’’ at jqj¼
2jcð1Þ1 jn, where the spin-mixing period diverges (Chang

et al., 2005; Kronjager et al., 2006; Black et al., 2007).
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FIG. 17 (color). Energy functional Eð1Þ of an F ¼ 1 spinor

Bose-Einstein condensate with zero longitudinal magnetization

(m ¼ 0). Here 0 ¼ c y
0 c 0 and � ¼ argðcþ1c�1c

�
0c

�
0Þ for the

spinor ðcþ1; c 0; c�1ÞT written in the F̂z eigenbasis. For antiferro-

magnetic (ferromagnetic) interactions, minimum energies are

shaded in blue (red). Spin mixing causes the spinor gas to evolve

along constant-energy contours (gray lines). In the interaction

regime (jq=cð1Þ1 nj< 2), a noninert energy extremum emerges

(marked by black dots) and also a separatrix (dashed curves), lying

at Eð1Þ ¼ q (Eð1Þ ¼ 0) for positive (negative) q=cð1Þ1 n, separates the

bounded and running spin-mixing trajectories.
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The resonance value of q varies with magnetization m
(Black et al., 2007).

Spin-mixing oscillations in both ferromagnetic (87Rb)
and antiferromagnetic (23Na) F ¼ 1 spinor Bose-Einstein

condensates have been observed. The Chapman group initi-

ated spin-mixing oscillations of 87Rb in the interaction re-

gime by preparing condensates in spin states that were neither

ferromagnetic nor polar, making use of microwave transitions

between hyperfine levels. From time-of-flight based measure-

ments of 0, the consequent trajectory in spin space was

revealed to undergo several complete revolutions through

0-� phase space before the system relaxed to the predicted

ground state (Chang et al., 2005). The Hamburg group fo-

cused on oscillations in the Zeeman regime, using �=2
rf pulses to rotate the atomic spin prior to Stern-Gerlach

analysis, thereby permitting the observation of orientation-

to-alignment oscillations (Kronjager et al., 2006). Finally,

working with 23Na condensates, the NIST group employed

both Stern-Gerlach analysis and also dispersive optical de-

tection (Sec. IV.C.2) to measure both 0 and �, respectively
(Black et al., 2007; Liu, Jung et al., 2009). Altogether these

measurements enabled a determination of the spin-mixing

energy from dynamics in the interaction regime (Chang

et al., 2005; Black et al., 2007) and the observation of the

spin-mixing resonance at nonzero quadratic Zeeman shifts

(Kronjager et al., 2006; Black et al., 2007; Liu, Jung

et al., 2009).
Spin-mixing dynamics in F ¼ 2 spinor gases are richer

owing to the larger phase space spanned by such dynamics.

As noted by Kronjager, Sengstock, and Bongs (2008), in

addition to the aforementioned gauge and rotational symme-

tries, the equations of motion for the spin state are invariant

under rotations by � about a transverse-spin axis, with the

substitution m ! �m. For the F ¼ 2 case, this additional

nontrivial symmetry reduces the number of dynamical vari-

ables to four. Deep in the interaction and Zeeman regimes

(the limits of jqj being either much smaller or much larger

than the spin-dependent interactions) the spin mixing again

shows simple oscillatory behavior as confirmed by both

experiments and theoretical approximations (Kuwamoto

et al., 2004; Kronjager et al., 2006). In the interaction regime

(small jqj), the specific trajectory of spin-mixing dynamics

depends on the relative strengths of the spin-dependent inter-

action parameters cð2Þ1 and cð2Þ2 , providing an experimental

means to determine such relative strengths (Saito and Ueda,

2005). Intriguingly, between the interaction and Zeeman

regimes, where one obtains a spin-mixing resonance in the

F ¼ 1 case, here the mean-field theory predicts the onset of

chaotic motion at the mean-field level (Kronjager, Sengstock,

and Bongs, 2008).
Finally we mention several studies of spin-mixing dynam-

ics in driven spinor-gas systems. Pu, Raghavan, and Bigelow

(2000) and Zhang et al. (2001, 2002) considered theoretically

the stability of spin-mixing oscillations in the presence

of external field noise to assess whether experimental limita-

tions on such noise would bar the observation of coherent

spin-mixing dynamics. It will be interesting to revisit such

calculations in light of the prediction for chaotic dynamics in

high-spin spinor gases. They also assessed the response of the

spinor gas to a periodic magnetic field, finding regimes where

the conventional Rabi oscillations of noninteracting spins
give way to dynamical spin localization, akin to the physics
of Josephson junctions [see also Yasunaga and Tsubota
(2010b)]. Dynamical localization is also predicted in the
case in which the spin-dependent scattering length is periodi-
cally modulated (Zhang et al., 2010). Pulsed magnetic
excitation is predicted to lead to chaotic spin dynamics,
even in the F ¼ 1 case (Cheng, 2010), similar to quantum
chaotic phenomena observed in other pulsed spin systems
(Nakamura, 1994).

3. Many-body single-mode dynamics

For F ¼ 1 spinor gases, a many-body single-spatial mode
treatment of spin-mixing dynamics at q ¼ 0 is obtained
directly from the exact energy spectrum derived by Law,
Pu, and Bigelow (1998), as explained in Sec. V.B. Indeed
an analytic Heisenberg-picture solution for spin-mixing dy-
namics based on this spectrum was obtained (Chen, Qiu, and
Wang, 2008). To compare with mean-field theory, we con-
sider the specific case of spin-mixing dynamics for a state
prepared initially near a ferromagnetic state. As in experi-
ments (Chang et al., 2005), we consider the evolution of the
Zeeman populations in the jmz ¼ 0i state. Such populations,
considered above at the mean-field level, are determined from
the many-body spin states as the expectation value of a sum of
single-atom projection operators. This sum is an operator of
rank 2, so the temporal oscillations of the jmz ¼ 0i state
population occur at the frequency determined by the energy
difference between many-body states of total angular mo-
mentum L and L� 2:

�N
sm ¼ cð1Þ1 n

2ℏN
ð4L� 2Þ: (69)

This result reproduces both the two-atom result (Sec. IX.A.1)
and also, for large atom number N and with L ¼ N near the
ferromagnetic initial state, the mean-field result discussed
above (Sec. IX.A.2).

At longer evolution times, the anharmonicity of the energy
spectrum becomes evident (Law, Pu, and Bigelow, 1998).
Consider a state initialized in a coherent spin state that, if
substantially different from the ferromagnetic state, repre-
sents a superposition of angular momentum eigenstates span-
ning a range �L� ffiffiffiffi

N
p

. Spin-mixing dynamics now involve a
range of Bohr frequencies spanning a bandwidth of �!�
�N

smN
�1=2. After an evolution time t > ð�!Þ�1, the coherent

spin-mixing oscillations predicted by mean-field theory are
lost to ‘‘quantum phase diffusion,’’ similar to that discussed in
the physics of scalar Bose-Einstein condensates (Lewenstein
and You, 1996; Wright, Walls, and Garrison, 1996; Pitaevskii,
1997). However, given that all Bohr frequencies remain in-
teger multiples of a common factor, even beyond the collapse
of mean-field dynamics, the exact many-body dynamics
nevertheless exhibit remarkable structure as seen in the
predicted probability distribution for measurements of
Zeeman-state populations (Diener and Ho, 2006). The
experimental observation of such many-body effects awaits
the creation of well-controlled mesoscopic spinor Bose-
Einstein condensates.
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B. Spin-mixing instability

In the interaction regime, the energy functional of Eq. (68)
contains also energy maxima. As a specific example, for a

ferromagnetic F ¼ 1 system, with 0< q  2jcð1Þ1 jn the high-

energy state with 0 ¼ 1 (inert state) is, at the mean-field
level, stationary. Whereas the mean-field ground state has a
nonzero magnetization oriented in the transverse-spin plane,
the 0 ¼ 1 stationary state does not select a transverse-spin
orientation.

Experiments and theory have shown that this mean-field
stationary state is, in fact, dynamically unstable. Akin to a
marble placed at the apex of a convex potential landscape, the
collective spin state will diverge exponentially from the
unstable stationary state on a trajectory initiated by even
microscopic fluctuations. Starting from an unbroken-
symmetry state, identified by zero-valued expectations of
the relevant magnetic moments, the system evolves toward
states of strong nonzero transverse magnetization and broken
symmetry. The relevance of such dynamics to topics such as
quantum noise, quantum amplification, symmetry breaking,
and phase transitions has led to many studies of the spin-
mixing instability in both single-mode and spatially extended
spinor Bose gases.

To discuss this full range of topics, we consider the dy-
namics of the inert jmz ¼ 0i condensate under the
Bogoliubov approximation, retaining terms up to second
order in the fluctuations atop the condensate wave function.
We find it convenient to work in the Cartesian or polar-state
basis, with c � being the jm� ¼ 0i eigenstate for the F̂� spin
operator (� 2 fx; y; zg). The spin-dependent Hamiltonian is
approximated as follows:

Ĥ ¼ X
�¼fx;yg

Z
d3r ĉ y

�½H0 þ cð1Þ1 nðrÞ	ĉ �

� cð1Þ1 nðrÞ
2

½ĉ y
�
2ðrÞ þ ĉ �

2ðrÞ	: (70)

Here we account for spatial variation of the spinor conden-

sate: nðrÞ is the density of the initial-state condensate, and ĉ �

is the field operator for particles in the initially unoccupied
polar states labeled by �. Such particles experience the
single-particle Hamiltonian of the form H0 ¼ �ℏ2r2=2mþ
VðrÞ þ q where, for simplicity, we assume all particles ex-
perience the same potential VðrÞ.

Now we simplify the problem by considering the dynamics
of a single spin-excitation (magnon) mode, with two polar-
izations as labeled by �. Such a mode can be identified either
as a discrete magnon mode in the single-spatial-mode regime
discussed above, as a linear combination of momentum
eigenstates in the case of a homogeneous condensate, or by
careful consideration of the appropriate Bogoliubov–
de Gennes equations for this problem (Baraban et al., 2008;

Sau et al., 2009, 2010). Letting ĉ � now be the creation

operator for particles in this magnon mode, the dynamics
obey the following Hamiltonian:

Ĥ¼X
�

ð�þqþ �nÞĉ y
� ĉ ��cð1Þ1 �n

2
ðĉ y 2

� þ ĉ �
2Þ; (71)

where the energy � gives the kinetic and potential energy of
the magnon mode.

Following the analogy of a marble rolling downhill, we

define Hermitian operators Ẑ� ¼ ðĉ y
� þ ĉ �Þ=2 and P̂� ¼

iðĉ y
� � ĉ �Þ=2, and now obtain (Lamacraft, 2007)

H ¼ X
�

½ð�þ qÞẐ2
� þ ð�þ qþ 2cð1Þ1 �nÞP̂2

�	: (72)

In the case that the coefficients of Ẑ2
� and P̂2

� have the same

sign, as obtained in the Zeeman regime when jqj dominates
the other energy scales, each polarization of the magnon
mode evolves stably, precessing in the phase space spanned

by the Ẑ� and P̂� operators at a frequency given as ! ¼ffiffiffiffiffiffi
E2

p
=ℏ with E2 ¼ ð�þ qÞð�þ qþ 2cð1Þ1 �nÞ> 0. In contrast,

when the coefficients have opposite sign, which occurs when

�þ q lies between 0 and �2cð1Þ1 �n, the magnon mode repre-

sents a dynamical instability of the initial-state condensate.
While hẐ�i ¼ hP̂�i ¼ 0 in the initial state, the fluctuations

of these operators become amplified parametrically: one

quadrature of the Ẑ�-P̂� phase space grows exponentially

at the rate ! ¼ þ
ffiffiffiffiffiffiffiffiffiffi
�E2

p
=ℏ, while the other quadrature is

attenuated.
This dynamical instability was noted first by a high sensi-

tivity to noise in numerical simulations of spin-mixing
dynamics (Pu et al., 1999), prompting investigations of the
effects of field fluctuations on such dynamics (Pu, Raghavan,
and Bigelow, 2000). A more focused study by Robins et al.
(2001) was informed by the analogy between coherent
matter-wave dynamics and optical four-wave mixing (Deng
et al., 1999). Robins et al. examined the evolution of spatially
uniform inert states of an F ¼ 1 condensate—either the
polar state (case 1 in their work) or the magnetized state
(cases 2–4), in the absence of a quadratic Zeeman shift. A
modulational instability is observed only for ferromagnetic
interactions and for the polar state, at modulation wave
vectors k for which � ¼ �k ¼ ℏ2k2=2M gives E2 < 0 as
defined previously. The instability was predicted to cause
an exponential rise in the population of previously unoccu-
pied Zeeman states and strong spatial modulation of the
condensate spinor wave function.

The predicted transfer of Zeeman populations was ob-
served in the first experiments on dynamics of ferromagnetic
F ¼ 1 condensates (Chang et al., 2004). A condensate pre-
pared in the jmz ¼ 0i state at low q evolved slowly for several
hundred milliseconds before rapidly tending toward a mixture
of Zeeman states. Similar dynamics were observed also for

antiferromagnetically interacting spinor gases (cð1Þ1 > 0) at

negative quadratic shifts. For example, the stability analysis
for a 87Rb F ¼ 2 condensate prepared in the jmz ¼ 0i initial
state is similar to that of the F ¼ 1 antiferromagnetic gas.
Such condensates were found to undergo collision-induced
spin mixing at low dc magnetic fields, for which q < 0 in the
F ¼ 2 87Rb spin manifold. The dynamics are substantially
faster than that for the F ¼ 1 manifold, owing to the larger
spin-dependent interaction strength (Kuwamoto et al., 2004;
Schmaljohann et al., 2004). The spin-mixing instability was
also demonstrated recently for the antiferromagnetic F ¼ 1
23Na condensate, for which off-resonant microwaves were
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used to induce a negative quadratic Zeeman shift (Bookjans,
Vinit, and Raman, 2011).

Spinor Bose-Einstein condensates display other instabil-
ities as well. Returning to the single-mode energy functional
for the F ¼ 1 system [Eq. (68)], the energy extremum
defined by � ¼ 0 [dubbed the ‘‘phase-matched state’’ in
Matuszewski, Alexander, and Kivshar (2008)] and 0 ¼
½1� q=ð2cð1Þ1 nÞ	=2, which exists for jqj< j2cð1Þ1 nj, is an en-

ergy maximum under antiferromagnetic interactions [denoted
by the black line in Fig. 5(c)]. Awave-mixing analysis shows
that this stationary state is also subject to modulational
instability (Matuszewski, Alexander, and Kivshar, 2008)
that can produce intricate spin domain structures
(Matuszewski, 2010). Modulational instability was observed
experimentally in a similar system (the transversely magne-
tized F ¼ 2 87Rb spinor condensate) generating spin domain
structures with a periodicity controlled by the quadratic
Zeeman shift (Kronjäger et al., 2010) (Fig. 18).

C. Quantum quench dynamics and the Kibble-Zurek

mechanism

Considering the jmz ¼ 0i energy extremum for the ferro-
magnetic F ¼ 1 single-mode spin energy, we observed a
transition from dynamical stability to instability coincident
with the state’s transition from an energy minimum to a

maximum, i.e., with a second-order zero-temperature phase

transition. The evolution of systems prepared initially

at the extremal state thereby exemplifies the dynamical re-

sponse of a system quenched rapidly across a phase transi-

tion, evolving from a state of unbroken symmetry [here SO(2)

axisymmetry] toward a manifold of broken-symmetry ground

states.
In classical systems rapidly quenched across a finite-

temperature phase transition, symmetry breaking occurs

inhomogeneously, with different portions of the system

adopting different symmetry-broken phases. Such a process

was considered by Kibble (1976), in the context of symmetry

breaking in the early Universe, and by Zurek (1985), in the

context of low-energy laboratory experiments on material

systems. Their treatment, known as the ‘‘Kibble-Zurek

mechanism,’’ translates the phenomenology of critical scaling

of equilibrated systems near phase transitions into predictions

regarding the typical size of the symmetry-broken phases.

Their theory also discusses the types of topological defects

produced in such a quench, their initial density (related to the

aforementioned typical size), and their subsequent evolution.

Laboratory experiments have explored aspects of the Kibble-

Zurek mechanism, e.g., using liquid crystals (Chuang et al.,

1991; Bowick et al., 1994), pressure-quenched 4He (Hendry

et al., 1994), neutron-bombarded 3He (Bauerle et al., 1996;

Ruutu et al., 1996), and Josephson junctions (Carmi,

Polturak, and Koren, 2000; Monaco, Mygind, and Rivers,

2002).
Given theoretical progress in understanding quantum

phase transitions, and experimental progress in preparing

isolable low-temperature quantum systems, the Kibble-

Zurek idea was naturally extended to the quench of a system

across a quantum phase transition (Dziarmaga, 2005;

Polkovnikov, 2005; Zurek, Dorner, and Zoller, 2005). For

an ideal experiment, the quench dynamics are now quantum

mechanical in that quantum fluctuations (rather than thermal

or technical ones) are amplified into coherent superpositions

of macroscopically distinct, broken-symmetry states.

Ultracold atomic gases are unique materials with which to

study such ideal quantum quenches.
The evolution of a quenched spinor Bose-Einstein conden-

sate was studied experimentally by Sadler et al. (2006). A

large F ¼ 1 87Rb spinor condensate, spatially extended in

two dimensions, was prepared in the jmz ¼ 0i initial state at a
high quadratic Zeeman shift. Following a rapid reduction of

the quadratic Zeeman shift, which initiated the spin-mixing

instability, the gas evolved for a variable time before it was

probed by dispersive magnetization-sensitive imaging. The

gas showed little magnetization for tens of milliseconds, after

which an inhomogeneous magnetization landscape sponta-

neously emerged (Fig. 19).
For the sudden quench studied in this experiment, the

spatial spin correlations of the inhomogeneously magnetized

condensate are determined by, and are, therefore, reflective

of, the spin-mixing amplification spectrum (Lamacraft,

2007). Considering the simplest case of a homogeneous

initial state, at early times after the onset of the spin-mixing

instability, the evolution of the initial spin fluctuations

at each wave vector can be considered independently accord-

ing to Eq. (72), where the temporal evolution is defined

FIG. 18 (color). Spontaneous pattern formation from modula-

tional instability of a transversely magnetized F ¼ 2 87Rb spinor

condensate. The condensate is prepared in a quasi-one-dimensional

optical trap. (a) The initial state and (b)–(f) saturated spin patterns

arising for increasing magnetic field are determined from Stern-

Gerlach and time-of-flight images that reveal the in-trap axial

density distributions of the five Zeeman-state populations. (b) and

(c) Represent the interaction regime (small q), while (e) and

(f) represent the Zeeman regime (large q). The characteristic length
scale of the spin modulation varies strongly with q. From Kronjäger

et al., 2010.
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through the magnon dispersion relation E2ðk; qÞ ¼
ð�k þ qÞð�k þ qþ 2cð1Þ1 nÞ. For a quench to q ’ 0, the

highest temporal gain occurs at the wave vector kmax ¼
1=�sp, leading to domains with dominant size ��sp, where

�sp ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcð1Þ1 n

q
is the spin healing length for this system,

and with time constant of � ¼ ℏ=cð1Þ1 n. These predictions

were in rough agreement with experiment. However, details

of the spatial spin correlation function were unexplained by

the purely quantum, homogeneous theory of Lamacraft

(2007). Refined theories were constructed that account ex-

plicitly for the anisotropy of the trapped condensate by

defining the proper magnon modes for that case (Baraban

et al., 2008). Numerical simulations obtained agreement with

measurements by varying the spatial Fourier spectrum of the

initial noise (Saito, Kawaguchi, and Ueda, 2007b), perhaps

indicating technical imperfections in the initial-state

preparation.

Following this work, several theoretical papers considered
the realization of the Kibble-Zurek mechanism in spin-
ordering transitions of the ferromagnetic F ¼ 1 spinor
Bose-Einstein condensate. Lamacraft (2007) distinguished

between deep quenches ðq < jcð1Þ1 jnÞ in which spin domains

emerge at a length scale determined by the depth of the

quench, and shallow quenches (jcð1Þ1 jn < q < 2jcð1Þ1 jn) for

which spin correlations show ‘‘light-cone’’ dynamics and
expand linearly in time. The latter behavior is reminiscent
of the Lieb-Robinson expansion of quasiparticle correlations
and entanglement predicted for quantum quenches that do not
necessarily cross phase transitions (Bravyi, Hastings, and
Verstraete, 2006; Calabrese and Cardy, 2006; Cramer et al.,
2008). Gradual linear quenches across the phase transition
were considered, essentially by considering evolution under
the magnon dispersion E2ðk; qðtÞÞ with qðtÞ varying linearly
in time, and scaling laws for the characteristic domain length
and spin-vortex density were obtained (Damski and Zurek,
2007; Lamacraft, 2007; Saito, Kawaguchi, and Ueda, 2007a;
Uhlmann, Schutzhold, and Fischer, 2007). Saito, Kawaguchi,
and Ueda (2007a) noted that the spin-mixing instability has
the special feature of local spin conservation; while this
conservation requires that regions of spin anticorrelation exist
at short range [as observed by Sadler et al. (2006)], the
standard Kibble-Zurek mechanism still applies over longer
length scales.

D. Parametric spin amplification

In describing the experiments discussed above as quantum
quenches, what is meant specifically by the word ‘‘quan-
tum’’? Subsequent work by Leslie, Guzman et al. (2009)
explored this question by testing whether the macroscopic
magnetization patterns observed after the quench could in-
deed be ascribed to the quantum-limited parametric amplifi-
cation of quantum noise. In the spatially extended systems
which they studied, the spin-mixing instability is represented
as a spatially broadband parametric amplifier, i.e., one with a
wavelength-dependent amplification, the spatial spectrum of
which is defined by the magnon dispersion relation E2ðk; qÞ.
That amplification spectrum is detected experimentally by
quenching to different values of q, feeding spatially white
noise at the input of the amplifier and detecting the postam-
plification output via the spatial Fourier spectrum of the
magnetization. The amplification spectrum was indeed ob-
served to vary with q, with shallow quenches amplifying
longer wavelength features, while deeper quenches produced
small length scale spin domains (Leslie, Guzman et al., 2009;
Sau et al., 2009). However, the experiments did not verify the
quantum nature of the seeding and amplification due to
uncertainties of the spin-dependent interaction energies for
87Rb (Klausen, Bohn, and Greene, 2001; van Kempen et al.,
2002; Chang et al., 2005; Widera et al., 2006).

Stronger evidence for fully quantum-mechanical evolution
was obtained in single-spatial-mode experiments, performed
with spinor Bose gases in tightly confining optical traps. The
Hannover group studied the spin-mixing instability of the
jmz ¼ 0i state for the F ¼ 2 87Rb spinor condensate in a
situation where discrete spin-excitation modes were sepa-
rated energetically by gaps, on the order of the transverse

(a) (b) (c)

66 96 126 156 21618636 ms

φ
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30 µm

FIG. 19 (color). Spontaneous symmetry breaking in a ferromag-

neticF ¼ 1 87Rb spinor Bose-Einstein condensate quenched across a

phase transition.A condensate is prepared in the jmz ¼ 0i state at high
q, after which q is suddenly reduced to q < jcð1Þ1 jn0 where spin-

dependent interactions favor a transverse ferromagnetic state (n0 is

the central column-averaged condensate density). (a) The transverse

column-integrated magnetization, measured for condensates at vari-

able times after the quench (indicated on top), is shown with the

magnetization orientation (�) indicated by hue, and magnitude (A)
indicated by brightness. The maximum brightness, indicated by the

color wheel at left, corresponds to full magnetization of the conden-

sate center. For the data at 216 ms, the (b) magnetization density and

(c) orientation are shown separately. The spin texture at position I is

characterized by an extended region with magnetization of nonzero

magnitude and slowly varying orientation. Smallermagnetic domains

at position II are divided by domain walls with zero magnetization.

The gray scale in (c) covers the range 0 to 2�. Regions outside the

condensate are indicated in black. From Sadler et al., 2006.
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trapping energy, that were made larger than the spin-mixing
energy. By tuning the quadratic Zeeman shift to match the
excitation energies �, the spin-mixing instability led to
the amplification of discrete spin-excitation modes for which
the amplification gain was largest. Comparing the Zeeman
populations generated after a fixed duration of spin mixing
for the various magnon modes, they concluded that higher-
order spatial modes were less contaminated by technical
noise, such as that due to imperfect purification of the
initial spin state, potentially to the level where the initial
fluctuations of those higher-order modes was due to vacuum
fluctuations alone (Klempt et al., 2009, 2010). In their
cylindrically symmetric trap, spin-excitation modes are

labeled by radial and angular quantum numbers, with the
states ðn;�lÞ being degenerate. Remarkably they observed
the amplification of spin fluctuations selected a coherent
superposition of such states which varied between runs of
the experiment (Fig. 20), representing a spontaneous breaking
of spin and spatial rotational symmetries (Scherer et al.,
2010).

E. Quantum spin-nematic squeezing

Distinctly quantum-mechanical evolution was observed in
recent experiments on spin squeezing generated by the spin-
mixing instability. The concept of spin squeezing was derived
most extensively with reference to the collective spin state of
an ensemble of spin-1=2 particles. In the absence of inter-
particle correlations, such an ensemble is described by the
one-body density matrix and, thereby, defined by its net

vector spin Ftot ¼ hF̂toti, where F̂tot is the symmetric sum
of vector spin operators over the ensemble’s particles.
Allowing the orientation of Ftot to define the z axis, the
uncertainty relation hð�FxÞ2ihð�FyÞ2i � hFzi2=4 is satisfied

by partitioning the uncertainties equally between the two
transverse-spin components. Correlations among the particles
allow one to apportion the uncertainty unevenly, allowing the
measurement uncertainty of one transverse-spin component
to be lower than the standard quantum limit hð�F?Þ2iSQL ¼
jhFzij=2 (Wineland et al., 1992; Kitagawa and Ueda, 1993).
Such squeezed states can provide sub-quantum-limited per-
formance for atom-based sensors such as atomic clocks
(Appel et al., 2009; Schleier-Smith, Leroux, and Vuletic,
2010), magnetometers (Koschorreck et al., 2010), and inter-
ferometers (Gross et al., 2010).

Spin squeezed states can be generated naturally by the
evolution of an ensemble under a system Hamiltonian that
contains terms quadratic in the spin operators (Kitagawa and
Ueda, 1993). Such terms are generated by binary collisional
interactions, e.g., in Bose-Einstein condensates, as pointed
out by Sörensen et al. (2001) and recently realized for a
pseudospin-1=2 condensate in a state-dependent potential
(Riedel et al., 2010). Naturally researchers suggested that
spin squeezing would be generated by the spin-dependent
interactions in spinor Bose-Einstein condensates (Duan,
Cirac, and Zoller, 2002). However, the spin-1=2 theory of
vector spin squeezing is clearly inadequate for describing
squeezing in higher-spin spinor Bose gases, since the
single-particle density matrix is characterized by more ob-
servables than just the vector spin.

Several frameworks have been suggested for describing
spin squeezing in this context. Duan, Cirac, and Zoller (2002)
suggested that the definition of spin squeezing for spin-1=2
systems can be adapted to the higher-spin case by selecting
any two orthogonal single-particle states, or, equivalently, any
two orthogonal bosonic modes based on those single-particle
states, and denoting them as pseudospin þ1=2 and �1=2
states, respectively.

A similar approach was taken by Sau et al. (2010), who
pointed out that for any coherent spin state of a spin-F
ensemble, in which all particles occupy the single-particle
spinor jc i, one can select 2F spinors j��i that form
an orthonormal set with jc i. Based on these, one defines

mF

+1

(c)

(a)

(d)

(e)

(f)

-1

+1

-1

(b)

FIG. 20. For a spinor condensate trapped in the single spatial-

mode regime, the spin-mixing instability can be tuned to discrete

spin-excitation modes by varying the quadratic Zeeman shift.

(a) The fraction of atoms transferred into the jmz ¼ �1i sublevels
from the initial jmz ¼ 0i state, within 18.5 ms of the onset of

dynamical instability [determined from images such as (b)], shows a

multiresonant structure; here experiments are performed with F ¼ 2
87Rb atoms for which q is negative for dc magnetic fields. The

labels ðn; lÞ give the radial and angular quantum numbers of

transverse spatial output modes. Resonances occur when q matches

the output mode energy (theoretical predictions shown by gray

bars). The spatial structure of the output modes matches the

predicted patterns for averages over many realizations (c: experi-

ment, d: theory), and for single realizations (e: experiment, f:

theory). The single realizations show spontaneous breaking of

both spin and spatial symmetry as particular superpositions of

degenerate output modes are selected at random. From Scherer

et al., 2010.
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spin-fluctuation observables Mð1Þ
� ¼ P

jðj��ihc j þ jc ih��jÞj
andMð2Þ

� ¼ P
jiðj��ihc j � jc ih��jÞj, where the sum is taken

over all particles in the ensemble. These observables, each of

which has an expectation value of zero and variance equal to

the standard quantum limit for the coherent spin state jc i,
represent 2F independent polarizations of spin fluctuations

and play the role of transverse-spin operators for independent

pseudospin-1=2 systems.
For a spinor Bose-Einstein condensate prepared initially in

the jc i ¼ jmz ¼ 0i spin state, choosing the orthogonal states
fj��ig ¼ fjc xi; jc yig from the polar-state basis, one finds the

two polarizations of spin-fluctuation observables to be

(Mð1Þ
x ¼ �Nxz, M

ð2Þ
x ¼Fy) and (Mð1Þ

y ¼ �Nyz, M
ð2Þ
y ¼ �Fx).

That is, in contrast to the vector spin squeezing familiar for

spin-1=2 particles, here spin squeezing implies the reappor-

tionment of fluctuations between conjugate spin-vector (Fx

and Fy) and spin-quadrupole components (Nyz and Nxz)

(Leslie, Guzman et al., 2009; Sau et al., 2010). Recently, a

rigorous set of criteria for squeezing and entanglement in

high-spin gases was provided by Vitagliano et al. (2011).
Such spin-nematic squeezing was recently observed

(Fig. 21). An jmz ¼ 0i condensate prepared in a tight optical

trap was evolved under the spin-mixing instability for several

spin-mixing times. To observe the squeezed quadrature, the

gas was first exposed to a pulsed quadratic Zeeman shift,

which rotates spin fluctuations in the spin-nematic phase

space, and then the transverse spin was measured by applying

a �=2 spin rotation and then measuring Fz via Stern-Gerlach

analysis. Significant squeezing, at the level of around 8 dB

below the standard quantum limit, was observed when prob-

ing the squeezed quadrature (Gross et al., 2011).
Similar experiments were conducted by Gross et al.

(2011), working with a sample of several hundred condensed

atoms in the F ¼ 2 manifold of 87Rb. They interpreted the
measurement of coherences between the initial jmz ¼ 0i state
and the jmz ¼ �1i states produced by the dynamical insta-
bility as a form of homodyne measurement akin to those
performed in quantum optics. However, sub-shot-noise
squeezing was not detected in this work due to technical
limitations.

Spin-nematic squeezing records the coherence generated
between the particles emitted by spin mixing (in the jmz � 1i
states) and the condensate from which they are produced.
Alternately, one can focus on the correlations generated
between the emitted particles themselves. By spin conserva-
tion, the populations generated by spin mixing in the jmz ¼
�1i states should be strictly identical; indeed, experimental
measurements of such populations have shown sub-
Poissonian, resolution-limited differences in their populations
(Chang et al., 2004; Bookjans, Hamley, and Chapman, 2011;
Lücke et al., 2011). However, such number correlations do
not, on their own, imply any quantum correlations or entan-
glement. Rather, to detect such correlations, one probes
whether the particles emitted by spin mixing inhabit two
(one for each spin state) common bosonic modes. Under
such conditions, the jmz ¼ �1i atomic populations are rep-
resented as a superposition of twin Fock states (Duan et al.,
2000; Pu and Meystre, 2000; Mias, Cooper, and Girvin,
2008), jNþ; N�i, with Nþ ¼ N�, similar to the photonic
states produced by parametric downconversion.

One feature of this twin Fock state is that the variance in
the population difference between the two modes is initially
minimal, but grows rapidly if one first applies a coherent
rotation by an angle � between the two modes (similar to the
action of an optical beam splitter on light). This feature was
observed in recent experiments by the Hannover group, who
point out that the rapid increase in measurement variance

FIG. 21 (color online). Observation of spin-nematic squeezing. An F ¼ 1 87Rb condensate in the single-mode regime is prepared in the

jmz ¼ 0i initial state and allowed to evolve under a spin-mixing dynamical instability. The gas is then probed by first using a brief pulse with

variable q (controlled by a microwave drive with detuning shown on the top axis) to rotate the spin state in the transverse spin-nematic plane

(by the quadrature phase shift ��), and then using a �=2 spin rotation and Stern-Gerlach analysis to measure one component of the transverse

spin. (Left) Choosing �� to measure the quadrature that is squeezed by the dynamical instability, the measurement variance is found to be

below the atomic shot-noise level by as much as 8.6 dB. (Right) From measurements at all quadrature angles one reconstructs the Wigner

function in the spin-nematic phase space produced following (a) 15, (b) 30, (c) 45, and (d) 65 ms of parametric amplification by the spin-

mixing instability. The squeezed and antisqueezed quadratures are clearly observed. Black ellipses indicate the 1=
ffiffiffi
e

p
measurement width

calculated from theory. From Hamley et al., 2012.
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gives a quantum-enhanced sensitivity to the rotation angle �
(Lücke et al., 2011). An additional feature, pointed out by

Mias, Cooper, and Girvin (2008), is that, in the twin-Fock-

state superposition, the populations Nþ ¼ N� should show

thermal-like fluctuations even though the emitted particles

inhabit a zero-entropy quantum state. Such fluctuations,

analogous to Hawking radiation, have not yet been studied

experimentally.

X. COARSENING AND EQUILIBRATION

The equilibration of a quenched system, such as a ferro-

magnet quenched suddenly below its Curie point or a binary

alloy undergoing phase separation, consists generally of two

stages of evolution: an initial stage dominated by the fastest

time scales for establishing locally ordered regions, and an

ensuing coarsening stage during which the order parameter

becomes ordered on length and time scales that grow ever

longer. In degenerate spinor Bose gases, the former evolution

is described well in terms of the coherent quantum dynamics

of collective spin mixing following a quantum quench. The

nature of the latter stage of evolution, the long-time relaxation

of spin-mixing oscillations and the phase-ordering kinetics of

spin textures, remains largely unexplored. Here we describe

several aspects of relaxation and equilibration.

A. Relaxation of spin-mixing oscillations

Spinor Bose-Einstein condensates prepared in nonequilib-

rium spin states undergo coherent spin-mixing dynamics,

marked by the deterministic initial evolution of both the

mean-field spinor wave function and its many-body quantum

fluctuations. At longer times, however, the signatures of this

coherent evolution are lost. This behavior is exhibited most

clearly in two experimental reports. Studying spin-mixing

dynamics of an F ¼ 1 87Rb condensate, the Chapman group

observed coherent oscillations of the Zeeman populations

that were damped out after a few oscillations (Chang et al.,

2005). The observed damping coincided with the appearance

of spatial structure along the long axis of their prolate gas

samples. In those experiments, the comparison between the

condensate radii of ð3:2; 3:6; 36Þ �m and the expected size of

spin domains ��sp ¼ 9 �m supports the notion that the

observed damping can be explained as resulting from inho-

mogeneous broadening of the spin-mixing frequency along

the long axis of the gas (Mur-Petit et al., 2006).
A second experiment, by the NIST group, probed the spin-

mixing oscillations of F ¼ 1 23Na condensates (Liu, Gomez

et al., 2009). For that work, the condensate was prepared with

spatial dimensions (radii ranging from 6 to 8 �m) roughly

equal to the expected size of spin domains (��sp ¼ 8 �m),

so that the single-mode approximation applies. Experiments

were conducted with a small quadratic Zeeman shift, for

which the mean-field spin-mixing dynamics divided between

the closed-orbit trajectories (in 0-� space; see Sec. IX.A.2)

of the higher-energy spin states and the running trajectories of

the lower-energy spin states. These two dynamical regions

are divided by a separatrix marked by large, slow variations in

the jmz ¼ 0i Zeeman population (Black et al., 2007).

The spinor gases were prepared initially in the high-energy,
transverse ferromagnetic state. The ensuing spin-mixing dy-

namics, monitored by observing the Zeeman populations, in-
dicated that the spin system underwent ‘‘orbital decay,’’
evolving from high- to low-energy spin-mixing trajectories.
They modeled this decay phenomenologically by adding a

damping term to the mean-field dynamical equations.
However, the true nature of this damping remains unclear.
Endo and Nikuni (2011) provided a framework for describing

dissipation of spin-mixing dynamics through damped colli-
sional dynamics of the noncondensate fraction. However, a
quantitative prediction has not yet been derived from this

framework to test its applicability to the experimental situation.

B. Elements of coarsening dynamics

Far outside the single-mode regime, the equilibration dy-
namics of a spinor gas that is quenched across either a
quantum or thermal phase transition can be explained using

the theories of phase-ordering kinetics and dynamical critical
phenomena that have been developed to describe a wide
variety of systems (Hohenberg and Halperin, 1977; Bray,

2002). Elements of such theories include the hypothesis
that domain structures and correlation functions at different
times in the equilibration process differ only in the overall
length scale, and that this length scale grows in time by the

power law lðtÞ / t1=z, with z being a dynamical critical
exponent. Such scaling has been examined numerically,
and, to a limited extent, experimentally in several models

of relaxation dynamics that differ in the symmetry of the
order parameter and in the presence of conserved quantities.
Scaling dynamics can often be related to the behavior of
topological structures, such as vortices and domain walls.

In this sense, studies of topological structures in spinor Bose
gases shed light on their coarsening dynamics.

The mechanisms of equilibration in spinor Bose gases
were explored in experiments on the appearance of sharp

domain walls in F ¼ 1 spinor condensates of sodium and on
their role in impeding phase ordering of the gas (Miesner
et al., 1999; Stamper-Kurn et al., 1999). Radio-frequency
pulses were used to prepare a condensate in a superposition of

the jmz ¼ 0i and jmz ¼ 1i Zeeman sublevels, at a high value
of the quadratic Zeeman shift where spin mixing into the
jmz ¼ �1i state is energetically suppressed so that the num-

ber of atoms in each Zeeman state is conserved. In accor-
dance with the phase diagram of Fig. 5, with the relation

a01 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a00a11

p
between s-wave scattering lengths in the case

of antiferromagnetic F ¼ 1 interactions, the initially over-
lapping states underwent rapid phase separation (Fig. 22).
Such dynamics can be described as due to a dynamical

instability that is most dominant at the wave vector equal to
the inverse spin healing length (Goldstein and Meystre, 1997;
Graham and Walls, 1998; Timmermans, 1998; Isoshima,
Machida, and Ohmi, 1999). This experiment represents an-

other ‘‘quantum quench,’’ in which a system is prepared in the
nonequilibrium admixed state under conditions that favor the
breaking of an Ising symmetry by the process of phase

separation. The observed dynamics resemble the classical
spinodal decomposition of binary alloys (Ao and Chui,
1998, 2000).
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The condensates in these experiments were extremely

prolate so as to be effectively one dimensional with respect

to spin dynamics. Accordingly, the textures formed after the

quench showed only axial variations in spin composition,

comprised of single-component domains of length �40 �m
separated by sharp domain walls.

In the case of a conserved order parameter, classical phase

ordering proceeds by diffusion, which drives particles from

the surface-tension-induced high chemical potential of small

domains to the lower chemical potential of larger domains

(Bray, 2002). In the phase-separated, quantum-degenerate

Bose gas, such diffusion describes the evaporation of con-

densed atoms from one portion of the gas, and the reconden-

sation of the normal fluid into another portion of the gas

(where the chemical potential is lower). The quantum-

degenerate gas also features a second means of transport:

quantum tunneling of the superfluid across the potential

barriers erected by domains and domain walls (Stamper-

Kurn et al., 1999).
Both these modes of coarsening were observed by prepar-

ing gases initially in the simpler starting condition of having

just one large domain of each component. A magnetic-field

gradient was then applied, which favored the spatially re-

versed rearrangement of spin domains along the long axis of

the trap. In this case, the chemical potential difference that

drives particle motion is controlled by the strength of the field

gradient, rather than by surface tension.
The quantum tunneling current across the spin domain wall

is regulated by the height of the potential barrier, which is

proportional to the spin-dependent mean-field energy (and

hence to the condensate density), and by its width, which is

inversely proportional to the magnetic-field gradient. At high

condensate density and weak magnetic-field gradients, parti-

cle transport was dominated by the diffusion and reconden-

sation of the thermal gas. The particle current due to this

recondensation was slow and was relatively insensitive to the

field gradient. At lower condensate densities and stronger

field gradients, transport was dominated by the direct quan-

tum tunneling of the superfluid. The rapid (exponential)

variation of the tunneling rate led to a rapid rearrangement

of the gas once the gradually decaying condensate density fell
below a threshold value.

Upon allowing for spin mixing among all substates of the

spinor gas, one expects transport and coarsening mechanisms
to differ from those studied in the aforementioned experi-

ments. For example, in the F ¼ 1 spinor gas at low quadratic
Zeeman shift, the jmz ¼ 0i population is no longer a locally

conserved quantity. Thus, domains of jmz ¼ 0i atoms can be

transformed by spin mixing into the jmz ¼ �1i states. This
transformation is seen in quench experiments with both

ferromagnetic (Sadler et al., 2006; see Sec. IX.C) and anti-

ferromagnetic (Bookjans, Vinit, and Raman, 2011; see Fig. 2)
F ¼ 1 condensates when the jmz ¼ 0i gas is made locally

unstable. The MIT group studied the fate of jmz ¼ 0i do-

mains under conditions where the domains are locally stable
(due to a positive quadratic Zeeman shift), but globally

energetically unstable (due to a magnetic-field gradient)
against spin mixing (Miesner et al., 1999). The jmz ¼ 0i
domain evaporated via thermally activated spin mixing,

with the spin-mixing products eventually recondensing into
the jmz ¼ �1i spin domains that flank the jmz ¼ 0i domain

on either side.

C. Long-time equilibration dynamics

While some of the elemental processes in coarsening have

been studied, our understanding of the mechanisms and time
scales for equilibration remains incomplete and poses vexing

problems for future research. Indeed recent experiments on
relaxation and coarsening in spatially extended F ¼ 1 87Rb
condensates (Vengalattore et al., 2010; Guzman et al., 2011)

raise the question of whether spinor Bose gases can be
reliably equilibrated within experimentally accessible time

scales. These experiments were motivated by observations
made on degenerate spinor gases that had undergone dynami-

cal instabilities, brought about either by rapid sweeps of the
quadratic Zeeman shift (Sadler et al., 2006; Leslie, Guzman

et al., 2009) or by the imposition of a helical spin texture

(Vengalattore et al., 2008) and allowed to evolve for several
times the dynamical instability time scale. Under a variety of

initial conditions, such gases developed long-lasting spatial
modulations of the spin texture, comprised typically of

�10 �m long domains of alternating magnetization.
Following the realization that the MDDI should significantly

influence the structure of low-energy spin textures in rubid-
ium spinor condensates, the question arose whether these

spatial modulations could be characteristic of the thermal

equilibrium state.
This question was explored in two works in which un-

magnetized, nondegenerate spinor gases were produced,

cooled gradually by evaporative cooling to below the degen-
eracy temperature, and then held at constant temperature

for a variable equilibration time before being probed by either
time-of-flight or in situ imaging. The first study (Vengalattore

et al., 2010), which was limited to moderate equilibration
times of several 100 ms, explored the textures produced

at variable temperature and for compositions of the non-

degenerate gas that differed in the fractional population of
the jmz ¼ 0i state. For atoms prepared in an initial

FIG. 22. A two-component 23Na spinor Bose-Einstein condensate

is quenched by preparing it in a uniform superposition of the jF ¼
1; mz ¼ 0;þ1i Zeeman sublevels in a narrow, quasi-one-

dimensional optical trap, and at a high quadratic Zeeman shift for

which spin mixing into the unoccupied jmz ¼ �1i state is strongly
suppressed. Stern-Gerlach imaging is used to determine the spin-

state distribution at a variable time after the state preparation. The

gas undergoes phase separation, initially in the narrow radial

direction (10 ms) but soon settling into a distribution of pure-spin

domains along the long axis of the gas (vertical in image), with

domain lengths of 40 �m or less. At the low temperatures of this

experiment (no noncondensed gas is discernible) and without a

magnetic-field gradient to induce directed diffusion or quantum

tunneling, no significant coarsening occurs over the few-second

lifetime of the trapped gas. From Miesner et al., 1999.
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ð1=3; 1=3; 1=3Þ population mixture of the mz ¼ ðþ1; 0;�1Þ
Zeeman substates, the fine-scale magnetization modulations

were observed at all temperatures below the degeneracy

temperature. In contrast, for atoms prepared in the

ð1=4; 1=2; 1=4Þ initial state, the modulated spin textures

were observed at the lowest temperatures, while at higher

temperatures the degenerate gases were nearly uniformly

transversely magnetized.
The persistence of the observed spin textures was exam-

ined theoretically, primarily by computing either the ground

state or the temporal evolution determined by the zero-

temperature Gross-Pitaevskii equation, accounting for both

the spin-dependent s-wave interactions and the MDDI.

Cherng and Demler (2009) found that uniformly magnetized

rubidium condensates were subject to a rotonlike instability

with particular wave vectors and spatial anisotropy, suggest-

ing an instability toward the formation of a spatially periodic

ground-state texture. The possibility that the observed struc-

tures were long-lived spin-vortex lattices was suggested by an

imaginary-time calculation for the ground-state spin texture

(Zhang and Ho, 2010), but belied by computations of the real-

time dynamics (Kawaguchi et al., 2010). Equilibrium phases

with striped magnetization patterns were predicted to be

generated by the competition of the kinetic-energy stiffness

of the condensate magnetic order parameter and the MDDI

(Kjall, Essin, and Moore, 2009); however, as with the other

theory works, the predicted length scale of the ground-state

modulation was several times larger than that observed

experimentally.
The mismatch between experiment and theory was partly

explained by the fact that these finely modulated textures

were nonequilibrium states, which coarsen over several

seconds to form larger-scale magnetic domains (Fig. 6).

Studying spinor condensates produced at the lowest tempera-

tures, Guzman et al. (2011) found that the equilibration time

for condensates with different initial spin compositions to

reach the same final steady-state spin compositions depended

strongly on the quadratic Zeeman energy: for small jqj &
h� 10 Hz, condensates arrived at a common steady-state

spin distribution within several seconds, while for larger

jqj, their equilibration was dramatically slowed (Fig. 23).

The equilibration dynamics at small jqj was marked by

four trends: First, the Zeeman populations were observed to

evolve from their initial values to a common final steady state.

Second, the degenerate gas became increasingly magnetized

as measured by the mean value of jF2ðrÞj. Third, the spin

texture developed a spin-space anisotropy, marked by the

difference between the longitudinal (jF2
zðrÞj) and transverse

ð½jF2
xðrÞj þ jF2

yðrÞj	=2Þ magnetizations, where z denotes the

axis defined by the quadratic Zeeman shift. As predicted

by mean-field theory, the textures showed predominantly

transverse magnetization (easy plane) for q > 0 and longitu-

dinal magnetization (easy axis) for q < 0. Fourth, the

size of the commonly magnetized regions coarsened over

time from the l� 10 �m domain length seen at short equili-

bration times to a final length comparable to the overall size

of the trapped samples. All four trends occurred on a similar

time scale of a few seconds, although the mechanisms that

determine the time scales for each of these trends are

unknown.

An ambitious target for future experiments is to relate

these observed trends quantitatively to the predictions for

phase-ordering kinetics. The presence of a Bose-Einstein

condensate and the condition of locally conserved magneti-

zation from the rotationally symmetric s-wave interactions

(ignoring the MDDI) qualify the F ¼ 1 spinor Bose gas as

obeying the ‘‘model F’’ description of coarsening, as defined

by Hohenberg and Halperin (1977). This assignment is sup-

ported by numerical comparisons between the coarsening

dynamics predicted by the stochastic time-dependent

Landau-Ginzburg equation and the energy-conserving

Gross-Pitaevskii equation (Mukerjee, Xu, and Moore,

2007). Such a comparison is valid in the q < 0 region, where

a ferromagnetic F ¼ 1 condensate should develop longitudi-

nal magnetization with long-range Ising-type order. The

growth of the characteristic domain size lðtÞ was reported

by Guzman et al. (2011), but it is doubtful whether a
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FIG. 23 (color). Equilibration of condensate Zeeman populations

following the preparation of an unmagnetized thermal gas and

evaporative cooling to below the quantum degeneracy temperature.

The F ¼ 1 87Rb gas is held in a quasi-two-dimensional optical

potential, well outside the single spatial-mode regime. The average

population in the jmz ¼ �1i states, ðPþ1 þ P�1Þ=2, is determined

at various evolution times t ¼ 200 ms (purple circles), 1 s (red

squares), and 3 s (black diamonds) for initial thermal spin popula-

tions of (a) ð1=3; 1=3; 1=3Þ or (b) ð1=4; 1=2; 1=4Þ in the mz ¼
ð1; 0;�1Þ states. (c) The long-time (2 s) Zeeman populations are

shown for the initial spin mixtures of (a) (green triangles), (b) (blue

circles), and for the populations (0,1,0) (yellow squares). For a

narrow range jqj=h & 10 Hz (shaded), Zeeman populations evolve

toward a common steady state that is qualitatively in accord with

mean-field predictions [solid line in (c)] based on the spin-

dependent contact interaction. Outside that range, initial population

differences persist throughout the experimentally accessed equili-

bration times. From Guzman et al., 2011.
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meaningful comparison to the predicted power-law growth
[lðtÞ / t1=3] can be made over the limited time and length
scales accessed in that work.

For ferromagnetic condensates evolving in two dimensions

with 0  q < 2jcð1Þ1 jn, one does not expect long-range order

to develop at thermal equilibrium. Numerical studies suggest
that the dynamics of such gases following a quantum (or
thermal) quench may show a long-lived ‘‘prethermalized’’
state with well-characterized correlations that differ from
those at thermal equilibrium (Barnett, Polkovnikov, and
Vengalattore, 2011).

XI. APPLICATION OF SPINOR GASES TO

MAGNETOMETRY

Aside from being objects of fundamental interest, spinor
Bose gases also lend themselves to the application of
magnetic-field sensing with high sensitivity and high spatial
resolution. Atomic Bohr frequencies ! may generally be
measured using an atomic ensemble by the following proce-
dure: First, the ensemble is prepared in a common polarized
state, e.g., through optical pumping or Stern-Gerlach separa-
tion. Next, to initiate the measurement, all atoms are placed in
a coherent superposition of internal states, with a relative
phase � between the internal states. During the measurement
time �, � advances by an amount � ¼ !�. To conclude the
measurement, the phase � is estimated by a single projective
measurement or several weak measurements.

Subdividing the ensemble spatially allows one to measure
the spatial inhomogeneity of the Bohr frequency, which
may come about from an inhomogeneous environmental
variable, such as the magnetic field. For an uncorrelated
initial state, the measurement within a single measurement
pixel is limited by atomic shot noise to the imprecision
�!ðlÞ ¼ ½NðlÞDt	�1=2, where NðlÞ / ldn is the number of
atoms within a pixel of length l and dimension d, n is the
relevant (volume, column, or line) density, D is the measure-
ment duty cycle, and t is the total time allotted to the
measurement.

Several features of spinor Bose-Einstein condensates
qualify them for use in such spatially resolving sensors.
The Bose-Einstein condensate is a high-density, low-energy
medium. The high density reduces the atomic shot noise
as defined above. The low energy permits the use of
shallow optical traps, which are benign to the atomic spin
and from which spontaneous scattering is minimal. The
absence of thermal diffusion implies that atoms remain
well localized for long times. Finally the rotational symmetry
of the s-wave interactions ensures that Larmor precession
of a fully magnetized gas under a linear Zeeman shift
is unaffected by interactions. Altogether these qualities
allow for small measurement imprecision and systematic
error.

High-resolution magnetometry with two-dimensional spa-
tial resolution was demonstrated using an F ¼ 1 87Rb spinor
Bose-Einstein condensate (Vengalattore et al., 2007). The
gas was prepared in a transversely magnetized state and
allowed to Larmor precess for � ¼ 250 ms before the pre-
cession phase was read out using magnetization-sensitive
phase-contrast imaging. The sensor was tested by quantify-

ing the measurement noise in both the absence and the
presence of a short length-scale magnetic signal, which

was generated via the vector ac Stark shift of a focused,

circularly polarized, off-resonant light beam (Fig. 24). The
Allan deviation, measured for measurement areas A ¼ l2 in

the range 6–400 �m2, was limited by photon shot noise at a

level slightly higher than the atomic shot-noise limit. Even in
this proof-of-principle experiment, the achieved measure-

ment sensitivity was comparable to that achieved with
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FIG. 24 (color). Spatially resolved magnetometry with a spinor

Bose-Einstein condensate. A transversely magnetized condensate

undergoes Larmor precession before the precession phase is

measured by magnetization-sensitive imaging. (a) Repeated im-

ages of one component of the transverse magnetization from

which (b) the Larmor precession phase (indicated by color) and

(c) the magnetic field is spatially resolved across the gas. (d) The

field sensitivity determined from imaging noise (gray line, assum-

ing unity duty cycle) agrees well with the photon shot-noise limit

(PSN) on magnetization imaging and remains above the atomic

shot-noise limit (ASN). The sensitivity determined also from

measurements of the light-induced magnetic field (a)–(c) is

plotted for the actual (filled circles) or for unity duty cycle

(open circles). Also shown are the quantum noise limit for super-

conducting quantum interference device (SQUID) magnetometers

(dot-dashed), and the sensitivities achieved in dc SQUID magneto-

meters (triangles) of Kirtley et al. (1995) and Lee, Dantsker, and

Clarke (1996). The dotted line indicates the worsening of sensi-

tivity due to atomic motion, an effect that can be avoided by use of

an optical lattice. From Vengalattore et al., 2007.
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low-noise SQUID-based magnetic microscopes at similar

spatial resolution.5

Magnetic-field sensing was also demonstrated using scalar

Bose-Einstein condensates, based on the observation that
spatial variations of the magnetic field on the order of 1 nT

produce variations in the magnetic potential energy, which
then lead to visible density variations in the compressible

condensed gas (Wildermuth et al., 2005). However, the de-
tection of Larmor precession allowed for measurements of far

smaller field variations that were in the 1 pT range. Spatially
resolved Larmor precession in a cold, optically trapped, non-

condensed gas was recently demonstrated, but was limited to
poorer spatial resolution (l2 > 1000 �m2) and short mea-

surement times (� < 1 ms) (Koschorreck et al., 2011).
Several measurement targets for such a cold-atom sensor

have been suggested. The aforementioned scalar condensate

magnetometer has been used to image the magnetic-field
corrugations generated by current flow through a disordered
thin conductor (Aigner et al., 2008). This measurement es-

tablished the fact that cold atoms can be used as a direct probe
of solid-state science. Cold atomic gases have also been used

as a ‘‘scanning-probe microscope’’ to visualize three-
dimensional microstructures and nanostructures (at micron-

scale resolution) (Hunger et al., 2010; Gierling et al., 2011).
Mechanically vibrating structures that are either ferromag-

netic or carry current will produce time-varying magnetic
fields that can induce spin flip transitions in nearby spinor

gases, allowing for detection of small scale motion and,
perhaps, for coherent coupling between the two systems

(Treutlein et al., 2007; Kálmán et al., 2012; Steinke et al.,
2011). Alternately, sensing temporal fluctuations in the

Larmor precession frequency may provide a means to sense,
and, indeed, to image vortices migrating through thin super-

conducting films (Scheel, Fermani, and Hinds, 2007).
Several extant or foreseeable technological advances may

make such spinor-based magnetometry more practical and

powerful. The duty cycle of the sensor, which was just D ¼
0:003 in the work of Vengalattore et al. (2007), can be

increased by shortening the time required to form the spinor
condensate (to around 1 s) and by increasing the measure-

ment time; indeed, the Berkeley group recently observed
coherent Larmor precession in a spinor condensate lasting
over 3 s. The apparatus required for producing large spinor

condensates can be shrunk and simplified significantly, e.g.,
as demonstrated by Salim et al. (2011). Thin membranes can

be employed to separate the spinor gas from its measurement
target, similar to methods used to probe room-temperature

objects using cryogenic-temperature SQUID microscopes
(Lee, Dantsker, and Clarke, 1996), so that the measurement

target need not be UHV compatible and can be rapidly
exchanged. Additional improvements stem from utilizing

the physical properties of the spinor condensates themselves.
For example, spin-mixing instabilities are used to amplify

weak spatially varying signals (Leslie, Guzman et al., 2009),
allowing higher sensitivity measurement even at low optical-

detection efficiency. Spatially multimode spin-nematic

squeezing, generated either by atomic interactions or by
measurement, can provide measurement resolution below
the atomic shot-noise limits (Leslie, Guzman et al., 2009;
Sau et al., 2010).

XII. CONCLUSIONS

Several concepts regarding spinor Bose gases were
emphasized in this review. First, we emphasized the proper-
ties of spinor gases that are necessitated by rotational sym-
metry. In contrast to generic multicomponent quantum fluids,
which can be represented formally in terms of a pseudospin
internal-state wave function, spinor gases are comprised of
particles whose internal-state wave function responds under
geometric rotations as a spherical tensor. If it were not
for experimental conditions that break symmetry, the
Hamiltonian of a self-interacting spinor gas would neces-
sarily be invariant under rotations.

In Sec. III, we discussed how this rotational invariance
constrains the interactions among spinor-gas atoms. If we first
neglect magnetic dipolar interactions, the ultracold nature of
spinor gases indicates the use of partial waves to describe
interparticle scattering, with only the lowest partial wave
contributing to low-energy collisions. By rotational symme-
try, such s-wave binary collisions are distinguished only by
the total spin of the colliding pair, not by its orientation. By
Bose symmetry, s-wave collisions occur only when this total
spin is even. Altogether the interaction Hamiltonian is enor-
mously simplified by these symmetries.

The symmetries of this interaction Hamiltonian are re-
flected also in its mean-field stationary solutions and its exact
many-body ground states. In Sec. II, we presented a scheme
to visualize these solutions graphically. Rotational invariance
of the Hamiltonian implies that these stationary states reside
in a degenerate manifold of states, and we outlined conse-
quences of this fact in describing some of the unusual textures
and topological defects that occur in spinor Bose-Einstein
condensates (Sec. VI.D) and in treating their low-energy
dynamics (Sec. VI.E). Finally the rotational symmetry of
interactions implies that, for certain internal states, the dy-
namics of interacting spinor Bose gases under applied mag-
netic fields are the same as those of free particles. On the one
hand, in the absence of dipolar relaxation, this fact allows one
to gauge away the effects of uniform magnetic fields and
study low-energy dynamics of certain spinor gases even in the
presence of substantial and uncontrolled magnetic fields
(discussed in Sec. IV.B.1). On the other hand, the immunity
of Larmor precession to interaction effects makes the spinor
Bose gas suitable for magnetic-field sensing (Sec. XI).

A second concept central to this review is the interplay
between magnetic order and superfluidity. Both phenomena
signify phase coherence among atoms in the fluid: magnetic
order stems from the phases controlling internal-state coher-
ences, while superfluidity, at least in three dimensions, stems
from coherence of the global phase of the gas-particle wave
functions. The long-range phase coherence of a superfluid
implies that a spinor Bose gas displays also magnetic order,
although the converse implication does not necessarily hold.
The question of whether Bose-Einstein condensation and
magnetic ordering must occur simultaneously was taken up

5Hot-atom magnetometers achieve much better field sensitivity

(Budker and Romalis, 2007), but are limited in spatial resolution at

the millimeter scale.
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in Sec. VII where we considered three scenarios in which

long-range coherence and the influence of Bose statistics are

weakened, namely, nonzero temperature, restriction of the

spinor gas to lower dimensions, and the effects of optical

lattice potentials.
The connection between superfluid and magnetic order

was discussed also in the context of spin textures in

Sec. VI. We highlighted the relation between superflow and

the spin-rotation symmetry of the ground-state manifolds of a

spinor Bose-Einstein condensate (Sec. VI.B), a relation fa-

miliar from studies of superfluid 3He that is manifest in the

properties of the varied textures and defects predicted for

spinor condensates. This relation also arose in the description

of low-energy hydrodynamics of spinor Bose-Einstein con-

densates, as discussed in Sec. VI.E.
A third focus of this review was nonequilibrium quantum

dynamics. Quantum-degenerate atomic gases are a new class

of materials, and many of the scientific concepts explored in

research on such gases are similar to those explored with

condensed matter. On the one hand, the short lifetime of the

gas, its isolation from a thermal environment, and the pres-

ence of conserved quantities make it challenging to associate

the observed behavior of the gas with a state of thermal

equilibrium. On the other hand, these same properties make

the gaseous systems particularly appealing for studies of

nonequilibrium dynamical effects that would be hard to

simulate in denser solids and liquids. Focusing on nonequi-

librium spin dynamics is particularly appealing because the

spin state of the gas can be initialized with very high fidelity

at noise levels much smaller than might be expected at

thermal equilibrium given the nK-scale kinetic temperatures

of the gas.
In Sec. IX we discussed the nonequilibrium phenomena of

coherent spin-mixing oscillations and instabilities. We high-

lighted the connection between few-body, many-body,

and mean-field treatments of such dynamics, illustrated by

experimental examples. In discussing the rich area of spin-

mixing instabilities, we drew connections to four-wave mix-

ing of optical and matter waves, the dynamics of systems near

quantum phase transitions, symmetry breaking in closed

quantum systems, and the dynamical generation of correlated

quantum spin states of practical use for metrology.
We conclude this review by enumerating some outstanding

issues. One important goal is to make a quantitative test of

mean-field and Bogoliubov theories on which so many theo-

retical studies are based. This can be done most straightfor-

wardly by measuring the collective modes. An equally

pressing issue is to understand why nonequilibrium states

persist so long in spinor gases. This persistence marks a sharp

contrast with scalar gases which relax to their equilibrium

states quickly and also raises the question of whether it is

experimentally feasible to explore equilibrium properties of

spinor Bose gases, and, if so, under what circumstances. The

question of equilibration also hinges on the properties of

spinor Bose gases at nonzero temperature, which remain

poorly understood and unexplored.
Another inviting research target is the characterization of

correlated spin states produced either dynamically or at

equilibrium in spinor Bose-Einstein condensates. Recent

studies on spin-nematic squeezing (Lücke et al., 2011;

Hamley et al., 2012) have opened this line of investigation.
The prediction of a fragmented ground state for antiferro-
magnetic spinor condensates by Law, Pu, and Bigelow (1998)
can be confirmed by many of the same techniques used in
recent experiments.

Topological aspects are also worthwhile to investigate
because spinor condensates are among the rare systems
for which the needed manipulations to prepare topological
objects are experimentally available. The evolution of topo-
logical structures in spin textures and their role in determin-
ing the character of a spinor Bose gas in restricted dimensions
offer important examples and fresh perspectives on the
dynamics of quantum fields. New topological structures
are also found at interfaces between different phases of the
spinor Bose gas; for example, it would be interesting to ask
whether such interfaces could accommodate topological de-
fects such as a boojum, which is a point singularity on a
surface in superfluid helium-3 (Bhattacharyya, Ho, and
Mermin, 1977).

The topic of spinor gases in optical lattices is especially
rich. Such lattices add new twists to the physics of spinor
gases because the dimensions, filling fraction, and geometry
of the lattices can introduce strong correlations, phase tran-
sitions, and spin frustration in the same system. Together with
newly developed techniques for synthesizing gauge fields and
for generating more complex, spin-dependent, lattice poten-
tials, such lattice-trapped spinor gases offer a new paradigm
for exploring quantum phenomena and simulations.
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88, 230404.

Gawryluk, K., M. Brewczyk, K. Bongs, and M. Gajda, 2007, Phys.

Rev. Lett. 99, 130401.

Gerbier, F., 2012 (private communication).

Gerbier, F., A. Widera, S. Folling, O. Mandel, and I. Bloch, 2006,

Phys. Rev. A 73, 041602.

Gerlach, W., and O. Stern, 1924, Ann. Phys. (Berlin) 379, 673.

Gerton, J.M., C. A. Sackett, B. J. Frew, and R.G. Hulet, 1999, Phys.

Rev. A 59, 1514.

Gierling, M., P. Schneeweiss, G. Visanescu, P. Federsel, M.

Haeffner, D. P. Kern, T. E. Judd, A. Guenther, and J. Fortagh,

2011, Nat. Nanotechnol. 6, 446.

Giorda, P., P. Zanardi, and S. Lloyd, 2003, Phys. Rev. A 68, 062320.

Goldstein, E., and P. Meystre, 1997, Phys. Rev. A 55, 2935.

Görlitz, A., T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P.
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Kleine Büning, G., J. Will, W. Ertmer, E. Rasel, J. Arlt, C. Klempt,
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Phys. Rev. Lett. 107, 240502.
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