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I. INTRODUCTION

Earthquakes are large-scale mechanical failure phe-
nomena, which still defy our complete understanding. In
this century, we have already experienced two gigantic earth-
quakes: the 2004 Sumatra-Andaman earthquake (M9.1) and
the 2011 East Japan earthquake (M9.0). Given the disastrous
nature of the phenomena, the understanding and forecasting
of earthquakes remains the most important issue in physics
and geoscience (Carlson, Langer and Shaw, 1994; Rundle,
Turcotte and Klein, 2000; Scholz, 2002; Rundle et al., 2003;
Bhattacharyya and Chakrabarti, 2006; Burridge, 2006; De
Rubies et al., 2006; Ben-Zion, 2008; Kanamori, 2009; Daub
and Carlson, 2010). Although there is some recent progress in
our understanding of the basic physics of fracture and fric-
tion, it is still at a primitive stage (Marone, 1998; Scholz,
1998; Scholz, 2002; Dieterich, 2009; Tullis, 2009; Daub and
Carlson, 2010). Furthermore, our lack of a proper under-
standing of the dynamics of earthquakes poses an outstanding
challenge to both physicists and seismologists.

While earthquakes are obviously complex phenomena,
certain empirical laws are known concerning their statistical
properties, e.g., the Gutenberg-Richter (GR) law for the mag-
nitude distribution of earthquakes, and the Omori law for the
time evolution of the frequency of aftershocks (Scholz, 2002;
Rundle et al., 2003; Turcotte, Shcherbakov, and Rundle,
2009). The GR law states that the frequency of earthquakes
with energy (seismic moment) E decays with E, obeying a
power law, i.e., proportionally to E�ð1þBÞ ¼ E�ð1þ½2=3�bÞ
where B and b ¼ 3

2B are appropriate exponents, whereas the

Omori law states that the frequency of aftershocks decays with
the time elapsed after the mainshock, also obeying a power
law. These laws, both of which are power laws possessing a
scale invariance, are basically of statistical nature, becoming
evident only after examination of a large number of events.
Although it is extremely difficult to give a definitive prediction
for each individual earthquake event, clear regularity often
shows up when one measures the statistical aspects of an
ensemble of many earthquake events. This observation moti-
vates the statistical physical study of earthquakes for the
following two reasons: First, a law appearing after averaging
over many events is exactly the subject of statistical physics.
Second, power laws or scale invariance have been a central
subject of statistical physics for years in the context of critical
phenomena. Indeed, Bak and collaborators proposed the con-
cept of ‘‘self-organized criticality’’ (SOC) (Bak, Tang, and
Wiesenfeld, 1987). According to this view, the Earth’s crust is
always in a critical state which is self-generated dynamically
(Turcotte, 1997; Hergarten, 2002; Turcotte, Shcherbakov, and
Rundle, 2009; Pradhan, Hansen, and Chakrabarti, 2010). It is
possible that the idea of SOC might give an explanation of the
scale-invariant power law behaviors frequently observed in
earthquakes, including the GR law and the Omori law.
However, one should bear in mind that real earthquakes often
exhibit apparently contradictory features, i.e., the features

represented by ‘‘characteristic earthquakes,’’ where an earth-

quake is regarded as possessing a characteristic energy or time

scale (Scholz, 2002; Turcotte, Shcherbakov, and Rundle,

2009).
Earthquakes also possess strong relevance to material

science. It is now established that earthquakes can be re-

garded as a stick-slip frictional instability of a preexisting

fault, and statistical properties of earthquakes are governed by

the physical law of rock friction (Marone, 1998; Scholz,

1998; Scholz, 2002, Dieterich, 2009; Tullis, 2009). The

physical law describing rock friction or fracture is often

called the ‘‘constitutive law.’’ As most of the major earth-

quakes are caused by the rubbing of faults, such friction laws

give the microscopic basis for analyzing the dynamics of

earthquakes. One might naturally ask how the statistical

properties of earthquakes depend on the material properties

characterizing earthquake faults, e.g., the elastic properties of

the crust or the frictional properties of the fault. Answering

such questions would give us valuable information in under-

standing the nature of earthquakes.
In spite of some recent progress, we still do not have

precise knowledge of the constitutive law characterizing the

stick-slip dynamics of earthquake faults. In fact, the law of

rock friction is often quite complicated, depending not just on

the velocity or the displacement, but on the previous history

and the ‘‘state’’ of the contact surface, etc. The rate-and-state

friction (RSF) law is currently the standard friction law in the

field of tectonophysics. Although the RSF law was formu-

lated empirically three decades ago to account for certain

aspects of rock friction experiments (Dieterich, 1979; Ruina,

1983), the underlying physics was not known until very

recently. While the RSF law shows qualitatively good agree-

ment with numerous experiments, it is good only at aseismic

slip velocities (slower than mm=s).
Among some progress made recently in the study of

friction processes, the most fascinating findings might be

the rich variety of mechanochemical phenomena that come

into play at seismic slip velocities. Other important progress

might be the understanding of the friction law of granular

matter. This is also an important point in understanding the

friction law of faults, as they consist of fine powder from

rocks that were ground up by the fault motion of the past.

Investigation of friction phenomena at seismic slip velocities

is now a frontier in tectonophysics. The RSF law no longer

applies to this regime, where many mechanochemical phe-

nomena have been observed in experiments. The most ob-

vious examples are melting due to frictional heat, thermal

decomposition of calcite, silica-gel lubrication, etc. There are

no friction laws that can describe such a varied class of

phenomena, which significantly affect the nature of sliding

friction. In this article, we review recent developments con-

cerning the basic physics of friction and fracture.
Statistical physical study of earthquakes is usually based

on models of various levels of simplification. There are

several advantages in employing simplified models in the

study of earthquakes. First, it is straightforward in a model

study to control various material parameters as input

parameters. A systematic field study of the material-

parameter dependence of real earthquakes meets serious

difficulties, because it is difficult to control, or even get
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precise knowledge of, various material parameters

characterizing real earthquake faults. Second, since an earth-

quake is a large-scale natural phenomenon, it is intrinsically

not ‘‘reproducible.’’ Furthermore, large earthquakes are rare,

say, once in hundreds of years for a given fault. If some

observations are made for a given large event, it is often

extremely difficult to determine how universal they are and to

put reliable error bars on the obtained data. In a model, on the

other hand, it is often quite possible to put reliable error bars

on the data under well-controlled conditions, say, by perform-

ing extensive computer simulations. An obvious disadvantage

of a model study is that the model is not reality, and one has to

be careful in elucidating what aspects of reality are taken into

account or discarded in the model under study.
While numerous earthquake models of various levels of

simplifications have been studied in the past, one may classify

them roughly into two categories: The first one is of the type

possessing an equation of motion describing its dynamics

where the constitutive relation can be incorporated as a form

of ‘‘force.’’ The so-called spring-block or Burridge-Knopoff

(BK) model, which is a discretized model consisting of an

assembly of blocks coupled via elastic springs, belongs to this

category (Burridge and Knopoff, 1967). Continuum models

also belong to this category (Tse and Rice, 1986; Rice, 1993).

The second category encompasses further simplified statisti-

cal physical models, the coupled-lattice models, most of

which were originally introduced as a model of SOC. This

category includes the so-called Olami-Feder-Christensen

(OFC) model (Olami, Feder, and Christensen, 1992), the

fiber-bundle model (Pradhan, Hansen, and Chakrabarti,

2010), and the two-fractal-overlap model (Chakrabarti and

Stinchcombe, 1999; Bhattacharyya, 2005; Bhattacharya

et al., 2009). These models possess extremely simplified

evolution rules, instead of realistic dynamics and constitutive

relations. Yet one expects that this simplicity enables one to

perform exact or precise analysis, which might be useful in

extracting essential qualitative features of the phenomena.
It often happens in practice that, even when the adopted

model appears simple, it is still nontrivial to reveal its statis-

tical properties. Then the strategy in examining the model

properties is often to perform numerical computer simulations

on the model, together with the analytical treatment. In this

article, we review recent developments concerning the prop-

erties of these models mainly studied in statistical physics.
Earthquake forecast is the ultimate goal of any earthquake

study. An important ingredient playing a central role there

might be various kinds of precursory phenomena. We touch

upon the following two types of precursory phenomenon in

this article: The first type is a possible change in statistical

properties of earthquakes which might occur prior to the

mainshocks. The form of certain spatiotemporal correlations

of earthquakes might change due to the proximity effect of

the upcoming mainshock. For example, it has been pointed

out that the power-law exponent describing the GR law might

change before the mainshock, or a doughnutlike quiescence

phenomenon might occur around the hypocenter of the up-

coming mainshock. The second type of precursory phenome-

non is a possible nucleation process which might occur

preceding mainshocks (Dieterich, 2009). Namely, prior to

the seismic rupture of a mainshock, the fault might exhibit

a slow rupture process localized to a compact ‘‘seed’’ area,

with its rupture velocity orders of magnitude lower than the

seismic-wave velocity. The fault spends a very long time in

this nucleation process, and then at some stage exhibits a

rapid acceleration process accompanied by an expansion of

the rupture zone, before getting into the final seismic rupture

of the mainshock. These possible precursory phenomena

preceding mainshocks are of paramount importance in their

own right as well as in possible connection to an earthquake

forecast. We note that a similar nucleation process is ubiq-

uitously observed in various types of failure process in ma-

terial science and engineering.
The purpose of the present article is to help researchers

link different branches of earthquake studies. First, we wish

to link the basic physics of friction and fracture underlying

earthquake phenomena to macroscopic properties of earth-

quakes considered as large-scale dynamical instabilities.

These two features should be inter-related as an ‘‘input versus

output’’ or ‘‘microscopic versus macroscopic’’ relation, but

the true connection is nontrivial and still remains largely

unexplored. It is crucially important in understanding earth-

quakes to develop appropriate constitutive laws describing

earthquake instabilityies and to make a link between such

constitutive relations and the macroscopic properties of earth-

quakes. Second, we want to promote an interaction between

statistical physicists and seismologists. We believe that the

cooperation of scientists in these two areas would be very

effective, and in some sense, indispensable in our proper

understanding of earthquakes.
Recently, there has been some progress made by statistical

physicists in characterizing the statistical aspects of earth-

quake phenomena. These efforts are of course based on

established literature in seismology and the physics of frac-

ture and friction. Also, there has been considerable fusion and

migration of scientists and established knowledge bases be-

tween physics and seismology. In this article, we review the

present state of our understanding regarding the dynamics of

earthquakes and the statistical physical modeling of such

phenomena, starting with fracture and friction.
The article is organized as follows. In Sec. II, we deal with

the basic physics of fracture and friction. After reviewing the

classic Griffith theory of fracture in Sec. II.A, we discuss the

extreme nature of failure statistics in Sec. II.B and then briefly

discuss a theory of fracture as a dynamical phase transition in

Sec. II.C. The rate- and state-dependent friction law is re-

viewed in Sec. II.D, while the recent development beyond the

RSF law is discussed in Sec. II.E. Section II.F is devoted to

some microscopic statistical mechanical theories of friction.

In Sec. III, we deal with statistical properties of a model of

our first type which includes the spring-block Burridge-

Knopoff model (Sec. III.A) and the continuum model

(Sec. III.B). In Sec. III.A, we examine statistical properties

of earthquakes, including precursory phenomena, with em-

phasis on both their critical and characteristic properties,

while, in Sec. III.B, we mainly examine characteristic prop-

erties of earthquakes, includig slow earthquakes, and various

slip behaviors. Implications of RSF laws for earthquake

physics are also discussed in Sec. III.B. In Sec. IV, we deal

with statistical properties of our second type of model, which

includes the OFC model (Sec. IV.A), the fiber-bundle model
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(Sec. IV.B), and the two fractal overlap model (Sec. IV.C). We
also provide a Glossary of some interdisciplinary terms as the
Appendix.

II. FRACTURE AND FRICTION

A. Griffith energy balance and brittle fracture strength of solids

In a solid, stress (�) and strain (S) bear a linear relation in
the Hookean region (small stress). Nonlinearity appears with
further increase of stress, which finally ends in fracture or
failure of the solid. In brittle solids, failure occurs immedi-
ately after the linear region. Hence, linear elastic theory can
be applied to study this essentially nonlinear and irreversible
phenomenon.

The failure process has strong dependence on, among other
things, the disorder properties of the material (Caldarelli,
Castellano, and Petri, 1999). Often, stress becomes concen-
trated around the disorder (Lawn, 1993; Petri et al., 1994;
Chakrabarti and Benguigui, 1997) where microcracks are
formed. The stress values at the notches and corners of the
microcracks can be several times higher than the applied
stress. Therefore, the scaling properties of disorder play an
important role in the breakdown properties of solids.
Although the disorder properties tell us about the location
of instabilities, they do not tell us about when a microcrack
propagates. For that detail, an energy balance study is needed.

Griffith in 1920, equating the released elastic energy (in an
elastic continuum) with the energy of the surface newly cre-
ated (as the crack grows), arrived at a quantitative criterion for
the equilibrium extension of the microcrack already present
within a stressed material (Bergman and Stroud, 1992). The
following analysis is valid effectively for two-dimensional
stressed solids with a single preexisting crack, such as, for
example, the case of a large plate with a small thickness.
Extension to three-dimensional solids is straightforward.

We assume a thin linear crack of length 2l in an infinite
elastic continuum subjected to uniform tensile stress � per-
pendicular to the length of the crack (see Fig. 1). Stress
parallel to the crack does not affect the stability of the crack
and has not, therefore, been considered. Because of the crack
(which cannot support any stress field, at least on its sur-
faces), the strain energy density of the stress field (�2=2Y,
where Y represents the elastic modulus) is perturbed in a
region around the crack, having the dimension of the length
of the crack. We assume here that this perturbed or stress-
released region has a circular cross section with the crack
length as the diameter. The exact geometry of this perturbed
region is not important here, and it determines only an
(unimportant) numerical factor in the Griffith formula [see,
e.g., Lawn (1993)]. Assuming for the purpose of illustration
that half of the stress energy of an annular or cylindrical
volume having internal radius l, outer radius lþ dl, and
length w (perpendicular to the plane of the stress; here the
width w of the plate is very small compared to the other
dimensions), to be released as the crack propagates by a
length dl, one requires this released strain energy to be
sufficient for providing the surface energy of the four new
surfaces produced. This suggests

1
2ð�2=2YÞð2�wldlÞ � �ð4wdlÞ:

Here � represents the surface energy density of the solid,
measured by the extra energy required to create unit surface
area within the bulk of the solid.

We have assumed here that, on average, half of the strain
energy of the cylindrical region having a circular cross
section with diameter 2l is released. If this fraction is differ-
ent or the cross section is different, it will change only some
of the numerical factors, in which we are not very much
interested here. Also, we assume here linear elasticity up to
the breaking point, as in the case of brittle materials. The
equality holds when energy dissipation does not occur, as in
the case of plastic deformation or for the propagation dynam-
ics of the crack. One then gets

�f ¼ �ffiffiffiffiffi
2l

p ; � ¼
�
4ffiffiffiffi
�

p
� ffiffiffiffiffiffiffi

Y�
p

(1)

for the critical stress at and above which the crack of length 2l
starts propagating and a macroscopic fracture occurs. Here �
is called the critical stress-intensity factor or the fracture
toughness.

In a three-dimensional solid containing a single elliptic
disk-shaped planar crack parallel to the applied tensile stress
direction, a straightforward extension of the above analysis
suggests that the maximum stress concentration will occur at
the two tips (at the two ends of the major axis) of the ellipse.
The Griffith stress for the brittle fracture of the solid is
therefore determined by the same formula (1), with the crack
length 2l replaced by the length of the major axis of the
elliptic planar crack. Generally, for any dimension therefore,
if a crack of length l already exists in an infinite elastic
continuum, subject to uniform tensile stress � perpendicular

dl

σ

σ

2l

FIG. 1. A portion of a plate (of thickness w) under tensile stress �
(model I loading) containing a linear crack of length 2l. For a

further growth of the crack length by 2dl, the elastic energy released

from the annular region must be sufficient to provide the surface

energy 4�wdl (extra elastic energy must be released for finite

velocity of crack propagation).
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to the length of the crack, then for the onset of brittle fracture,
Griffith equates (the differentials of) the elastic energy El

with the surface energy Es:

El ’
�
�2

2Y

�
ld ¼ Es ’ �ld�1; (2)

where Y represents the elastic modulus appropriate for the
strain, � the surface energy density, and d the dimension.
Equality holds when no energy dissipation (due to plasticity
or crack propagation) occurs and one gets

�f � �ffiffi
l

p ; �� ffiffiffiffiffiffiffi
Y�

p
(3)

for the breakdown stress at (and above) which the existing
crack of length l starts propagating and a macroscopic frac-
ture occurs. It may also be noted that the above formula is
valid in all dimensions (d � 2).

This quasistatic picture can be extended (Pradhan and
Chakrabarti, 2003a) to fatigue behavior of crack propagation
for �< �f. At any stress � less than �f, the cracks (of length

l0) can still nucleate for a further extension at any finite
temperature kBT with a probability � expð�E=kBTÞ and
consequently the sample fails within a failure time � given by

��1 � exp½�Eðl0Þ=kBT�; (4)

where

Eðl0Þ ¼ Es þ El � �l20 �
�2

Y
l30 (5)

is the crack (of length l0) nucleation energy. One can there-
fore express � as

�� exp

�
A

�
1� �2

�2
f

��
; (6)

where (the dimensionless parameter) A� l30�
2
f=YkBT and �f

is given by Eq. (3). This immediately suggests that the failure
time � grows exponentially for �< �f and approaches in-

finity if the stress � is much smaller than �f when the

temperature kBT is small, whereas � becomes vanishingly
small when the stress � exceeds �f; see, e.g., Politi,

Ciliberto, and Scorretti (2002) and Sornette (2004)
For disordered solids, we model the solid by a percolating

system. For the occupied bond and/or site concentration
p > pc, the percolation threshold, the typical preexisting
cracks in the solid will have the dimension (l) of correlation
length �� �p�� and the elastic strength Y � �pTe (Stauffer
and Aharony, 1992). Assuming that the surface energy den-
sity � scales as �dB , with the backbone (fractal) dimension dB
(Stauffer and Aharony, 1992), by equating El and Es as in
Eq. (2), one gets ð�2

f=2YÞ�d � �dB . This gives

�f � ð�pÞTf ;

with

Tf ¼ 1
2½Te þ ðd� dBÞ�� (7)

for the ‘‘average’’ fracture strength of a disordered solid (of
fixed value) as one approaches the percolation threshold.
Careful extensions of such scaling relations (7) and rigorous

bounds for Tf have been obtained and compared extensively

by Chakrabarti and Benguigui (1997), Herrmann and Roux
(1990), and Sahimi (2003).

B. Extreme statistics of the fracture stress

The fracture strength �f of a disordered solid does not

have self-averaging statistics; the most probable and the
average �f may not match because of the extreme nature

of the statistics. This is because the ‘‘weakest point’’ of a
solid determines the strength of the entire solid, not the
average of weak points. As we model here, the statistics of
clusters of defects are governed by random percolation
processes.

We also discuss how the linear responses, like the elastic
moduli of such random networks, can be obtained from the
averages over the statistics of such clusters. This possible
because of the self-averaging property of such linear re-
sponses, which occurs because the elasticity of a random
network is determined by all the parellel-connected material
portions or paths, contributing their share in the net elasticity
of the sample.

The fracture or breakdown property of a disordered solid,
however, is determined by only the weakest (often the lon-
gest) defect cluster or crack in the entire solid. Except for
some indirect effects, most of the weaker or smaller defects or
cracks in the solid do not determine the breakdown strength
of the sample. The fracture or breakdown statistics of a solid
sample is therefore determined essentially by the extreme
statistics of the most dangerous or weakest (largest) defect
cluster or crack within the sample volume.

We discuss now more formally the origin of this extreme
statistics. We consider a solid of linear size L, containing n
cracks within its volume. We assume that each of these cracks
has a failure probability fið�Þ; i ¼ 1; 2; . . . ; n, to fail or break
(independently) under an applied stress � on the solid, and
that the perturbed or stress-released regions of each of these
cracks are separate and do not overlap. If we denote the
cumulative failure probability of the entire sample, under
stress �, by Fð�Þ, then (Ray and Chakrabarti, 1985;
Chakrabarti and Benguigui, 1997)

1� Fð�Þ ¼ Yn
i¼1

½1� fið�Þ� ’ exp

�
�X

i

fið�Þ
�

¼ exp½�Ld~gð�Þ�; (8)

where ~gð�Þ denotes the density of cracks within the sample
volume Ld (coming from the sum

P
i over the entire volume)

that start propagating at and above the stress level �.
Equation (8) comes from the fact that the sample survives
if each of the cracks within the volume survives. This is the
essential origin of the extreme statistical nature of the failure
probability Fð�Þ of the sample.

Noting that the pair correlation gðlÞ of two occupied sites at
distance l on a percolation cluster decays as exp½�l=�ðpÞ�,
and connecting the stress � with the length l by using
Griffith’s law [Eq. (1)] that ���=la, one gets ~gð�Þ �
expð��1=a=��1=aÞ for p ! pc. On substituting this,
Eq. (8) gives the Gumbel distribution (Chakrabarti and
Benguigui, 1997). If, on the other hand, one assumes a
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power-law decay of gðlÞ, gðlÞ � l�b, then using the Griffith

law (1), one gets ~gð�Þ � ð�=�Þm, giving the Weibull distri-

bution, from Eq. (8), where m ¼ b=a gives the Weibull

modulus (Chakrabarti and Benguigui, 1997). The variation

of Fð�Þ with � in both of the cases has the generic form

shown in Fig. 2. Fð�Þ is nonzero for any stress �> 0 and its

value (at any �) is higher for larger volume (Ld). This is

because the possibility of a larger defect (due to fluctuation)

is higher in a larger volume and consequently its failure

probability is higher. Assuming Fð�fÞ is finite for failure,

the most probable failure stress �f becomes a decreasing

function of volume if extreme statistics is at work.
The precise ranges of validity of the Weibull and Gumbel

distributions for the breakdown strength of disordered solids

are not well established yet. However, analysis of the results

of detailed experimental and numerical studies of breakdown

in disordered solids seems to suggest that the fluctuations of

the extreme statistics dominate for small disorder (Herrmann

and Roux, 1990; Sahimi, 2003). Very near to the percolation

point, the percolation statistics take over and the statistics

become self-averaging. One can argue (Bergman and Stroud,

1992) that, arbitrarily close to the percolation threshold, the

fluctuations of the extreme statistics will probably be sup-

pressed and the percolation statistics should take over and the

most probable breaking stress becomes independent of the

sample volume [its variation with disorder being determined,

as in Eq. (7), by an appropriate breakdown exponent]. This is
because the appropriate competing length scales for the two
kinds of statistics are the Lifshitz scale lnL [coming from the
finiteness of the volume integral of the defect probability,
Ldð1� pÞl finite, giving the typical defect size l� lnL] and
the percolation correlation length �. When � < lnL, the
above scenario of extreme statistics should be observed. For
� > lnL, the percolation statistics are expected to dominate.

C. Fracture as a dynamical phase transition

When a material is stressed, according to the linear elastic
theory discussed above, it develops a proportional amount of
strain. Beyond a threshold, cracks appear, and on further
application of stress, the material is fractured as it breaks
into pieces. In a disordered solid, however, the advancing
cracks may be stopped or pinned by the defect centers present
within the material. So a competition develops between the
pinning force due to disorder and the external force. Up to a
critical value of the external force, the average velocity of the
crack front will disappear in the long-time limit, i.e., the crack
will be pinned. However, if the external force crosses this
critical value, the crack front moves with a finite velocity.
This depinning transition can be viewed as a dynamical
critical phenomenon in the sense that near criticality univer-
sal scaling is observed, independent of the microscopic de-
tails of the materials concerned (Bonamy and Bouchaud,
2011). The order parameter for this transition is the average
velocity �v of the crack front. When the external force fext

approaches the critical value fextc from a higher value, the
order parameter vanishes as

�v� ðfext � fextc Þ�; (9)

where � denotes the velocity exponent. We mention here that
the pinning of a crack front by a disorder potential can occur
at zero temperature (see Fig. 3). At finite temperature, there
can be healing of cracks due to diffusion or there can be
subcritical crack propagation (in the so-called creep regime)
(Bonamy and Bouchaud, 2011). In the latter case, the velocity
is expected to scale as

�v� exp

�
�C

�
fextc

f

�
�
�
: (10)

This subcritical scaling agrees well with results of experi-
ments (Koivisto, Rosti, and Alava 2007 and Ponson 2009). In
Fig. 4, the experimental result for crack propagation in the
Botucatu sandstone (Ponson, 2009) is shown. The average
velocity of the crack is plotted against the mechanical energy
release rate G (f ¼ G� �, where � is the fracture energy).
The subcritical creep regime and the supercriticalpower-law
variations are clearly seen (insets), these results give a veloc-
ity exponent close to � � 0:81.

Theoretical predictions of this exponent using functional
renormalizations group methods have placed its value around
� ¼ 0:59 (Chauve, Le Doussal, and Wiese, 2001), but the
experimental findings differ significantly (� � 0:80� 0:15).
Here we mention a numerical study of a model of elastic
crack-front propagation in a disordered solid. The basic idea
is to consider the propagation of the crack front as an elastic
string driven through a random medium. The crack front is

0

1

F
(σ

)

σ

L2 L1

L2 > L1

FIG. 2. Schematic variation of failure probability Fð�Þ with stress

� for a disordered solid with volume Ld
1 or Ld

2 (L2 > L1).

FIG. 3 (color online). The average velocity of the crack front is

plotted against external force (f ¼ G� �, where G is the mechani-

cal energy release rate and � is the fracture energy). For T ¼ 0 a

depinning transition is seen. For finite temperature the subcritical

creep is shown. From Ponson and Bonamy, 2010.
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characterized by an array of integral height (measured in the
direction of the crack propagation) fh1; h2; . . . ; hLg with pe-
riodic boundary conditions, where the unique values for the
height profile suggest that any overhangs in the height profile
are neglected. The forces acting on a site can be written as

fiðtÞ ¼ feli þ fext þ g�iðhiÞ; (11)

where fel is the elastic force due to stretching, fext is the
applied external force, and � is due to disorder. The dynamics
of the driven elastic chain is then given by the simple rule

hiðtþ 1Þ � hiðtÞ ¼ viðtÞ ¼
�
1 if fiðtÞ> 0;
0 otherwise:

(12)

The elastic force may have different forms in various con-
texts. When this force is short ranged (between nearest
neighbors) the well-studied models are the Edwards-
Wilkinson (Edwards and Wilkinson, 1982) [see also Amar
and Family (1990), Csahok et al. (1993)] and Kardar-Parisi-
Zhang models [Kardar, Parisi, and Zhang (1986); Moser,
Kertész, and Wolf (1991); Sasamoto and Spohn (2010)]
[see Barabaśi and Stanley (1995) for extensive analysis].
The long-range versions include those where the force decays
as an inverse square [see, e.g., Duemmer and Krauth (2007)].
The velocity exponent �, as defined before, turns out to be
0:625� 0:005 (Duemmer and Krauth, 2007). Also, mean-
field models (infinite range) are studied in this context
(Leschhorn, 1992; Vannimenus and Derrida, 2001;
Vannimenus, 2002) (with � ¼ 1=2 exactly). An infinite-range
model, where the elastic force depends only upon the total
stretching of the string, has also been studied recently
(Biswas and Chakrabarti, 2011), where the observed velocity
exponent value (� ¼ 0:83� 0:01) is rather close to that found
in some experiments (Ponson, 2009).

D. Rate-dependent and state-dependent friction law

1. General remarks

In a simplified view, an earthquake may be regarded as
the rubbing of a fault. From this standpoint, the friction
laws of faults play a vital role in understanding and predict-
ing earthquake dynamics. In addition, it should be noted
that the Coulomb-Mohr criterion for brittle fracture involves
the (internal) friction coefficient and thus the role of a
friction law in earthquake physics is considerable. In this
section, the phenomenology of friction and its underlying
physical processes are briefly reviewed, with a on the recent
developments. Some recent remarkable progress in experi-
ments will also be introduced, although, unfortunately,
theoretical understanding of such experiments is rather
poor. Thus, we try to propose the problems that need to
be solved by physicists.

Before explaining the knowledge obtained in the 20th and
21st centuries, it is instructive to look at the ancient (16th-and
17th-century) phenomenology, which has been referred to as
the Coulomb-Amonton laws: (i) Frictional force is indepen-
dent of the apparent area of contact. (ii) Frictional force is
proportional to the normal load. (iii) Kinetic friction does not
depend on the sliding velocity and is smaller than static
friction. The first two laws do not need any modification to
this date, whereas the third law needs to be modified and
replaced by the rate-dependent and state-dependent friction
law, which we introduce in the following sections. The
Coulomb-Amonton laws in their original form just represent
a phenomenology involving only macroscopic quantities such
as the apparent contact area and normal load. It is generally
instructive to consider the sublevel (or microscopic) ingre-
dients that underlie this macroscopic phenomenology.

The essential microscopic ingredient in friction is
asperity, which is a junction of protrusions of the surfaces
(Rabinowicz, 1965; Bowden and Tabor, 2001). In other
words, the two macroscopic surfaces in contact are indeed
detached almost everywhere except for asperities. The total
area of asperities defines the true contact area, which is
generally much smaller than the apparent contact area.
Thus, the macroscopic frictional behavior is mainly deter-
mined by the rheological properties of asperity. We write the
area of asperity i as Ai. Then the total area of true contact
reads

Atrue ¼
X
i2S

Ai; (13)

where S denotes the set of asperities. This set depends on the
properties of the surfaces such as topography and is essen-
tially time dependent because the state of the surface is
dynamic due to sliding and frictional healing (Brechet and
Estrin, 1994).

Because of the stress concentration at asperities, molecules
or atoms are directly pushed into contact so that an asperity
may be viewed as a grain boundary, possibly with some
inclusions and impurities (Rabinowicz, 1965; Bowden and
Tabor, 2001). Suppose that each asperity has its own shear
strength �i, above which the asperity undergoes sliding. It
may depend on the degree of grain-boundary misorientation
and on the amount of impurities at the asperity. For simplicity,
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FIG. 4 (color online). Variation of average crack-front velocity

against the mechanical energy release rate is shown for Botucatu

sandstone. The subcritical creep region and supercritical power- law

variations are shown in the top left and bottom right insets,

respectively. For the subcritical regime, the data are fitted with a

function v� e�C=ðG�h�iÞ	 for 	 ¼ 0:60 and h�i ¼ 65 Jm�2. For

the power-law variation [v� ðG�GcÞ�] in the supercritical region,
Gc ¼ 140 Jm�2 and � ¼ 0:80. From Ponson, 2009.
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however, here we assume �i ¼ �Y ; i.e., the yield stress or
shear strength of each asperity is the same. Then the frictional
force needed to slide the surface reads

F ¼ X
i2S

Ai�i ’ �Y

X
i2S

Ai ¼ �YAtrue: (14)

The frictional force is thus proportional to the area of true
contact. Dividing Eq. (14) by the normal force N, one obtains
the friction coefficient 	 � F=N. Using N ¼ AaP, where Aa

is the apparent area of contact and P is the normal pressure,
one gets

	 ¼ X
i2S

Ai

Aa

�i

P
’ Atrue�Y

AaP
: (15)

Alternatively, one can have Atrue=Aa ¼ 	P=�Y . This means
that the fraction of true contact area is proportional to the
pressure normalized by the yield stress, where the friction
coefficient is the proportionality coefficient. Assuming that
the yield stress of the asperity is the same as that of the bulk,
we may set �Y � 0:01G, where G is the shear modulus.
Inserting this and 	 ’ 0:6 into Eq. (15), one has Atrue=Aa �
60P=G. This rough estimate can be confirmed in experiment
and numerical simulation (Dieterich and Kilgore, 1994, 1996;
Hyun et al., 2004), where the proportionality coefficient is on
the order of 10. For example, at a normal pressure on the order
of kilopascals, the fraction of true contact is as small
as 10�5.

In view of Eq. (14), the first two Coulomb-Amonton laws
can be recast in the form that frictional force is proportional
to the true contact area, which is independent of the apparent
contact area but proportional to the normal load. This con-
stitutes the starting point of a theory on friction, which will be
discussed in the following sections. The third Coulomb-
Amonton law is just a crude approximation of what we
know today. It should be replaced by the modern law,
which is now referred to as the rate- and state-dependent
friction law. In the next section, we discuss the RSF law based
on the first two Coulomb-Amonton laws.

2. Formulation

Extensive experiments on rock friction were conducted in
the 1970s and 1980s in the context of earthquake physics. An
excellent review of these experimental works is by Marone
(1998). Importantly, these experiments reveal that kinetic
friction is indeed not independent of sliding velocity. Thus,
the third Coulomb-Amonton law must be modified. Dieterich
devised an empirical law that describes the behavior of the
friction coefficient (for both steady and transient states) based
on his experiments on rock friction (Dieterich, 1979). Later,
the formulation was to some extent modified by Ruina (1983)
who introducing an additional variable(s) other than the
sliding velocity. A new set of variables describes the state
of the frictional surfaces, so that they are referred to as the
state variables. Although in general a state variable(s) may be
a set of scalars, in most cases a single variable is enough for
the purpose. Hereafter, the state variable is denoted by �0.
Using the state variable, the friction law reads

	 ¼ c0 þ a0 log
V

V�
þ b0 log

V��0

L
; (16)

where a0 and b0 are positive nondimensional constants, c0 is a
reference friction coefficient at a reference sliding velocity
V�, and L is a characteristic length scale interpreted to be
comparable to a typical asperity length. In typical experi-
ments, a0 and b0 are on the order of 0.01, andL is of the order
of micrometers. Note that the state variable �0 has the dimen-
sion of time.

The state variable �0 is in general time dependent so that
one must have a time evolution law for �0 together with
Eq. (16). Many empirical laws have been proposed so far in
order to describe time-dependent properties of a friction
coefficient. One of the commonly used equations (Ruina,
1983).

_�0 ¼ 1� V

L
�0; (17)

which is now referred to as the Dieterich’ or aging law. This
describes a time-dependent increase of the state variable even
at V ¼ 0. Meanwhile, other forms of evolution law may also
be possible due to the empirical nature of Eq. (16). For
example, the following is also known to be consistent with
experiments (Ruina, 1983):

_�0 ¼ �V�0

L
log

V�0

L
; (18)

this is referred to as the Ruina or slip law. In a similar manner,
a number of other evolution laws have been proposed so far,
such as a composite of the slowness law and the slip law
(Kato and Tullis, 2001).

Although there have been many attempts to clarify which
evolution law is the most suitable, no decisive conclusions
have been reached. As most of them give the identical result if
linearized around a steady sliding state, the difference be-
tween them becomes apparent only far from a steady sliding
state. One may immediately notice that in Eq. (18) the state
variable is time independent at V ¼ 0 so that it is not very
quantitative in describing friction processes for which the
healing is relevant. On the other hand, Eq. (18) can describe a
relaxation process after an instantaneous velocity switch
(V ¼ V1 to V2) better than Eq. (17), while Eq. (17) predicts
different responses for the changes V ¼ V1 to V2 and V ¼ V2

to V1. (Experimental data suggest that they are symmetric.)
Also, it is known that Eq. (18) can describe a nucleation
process better than Eq. (17) (Ampuero and Rubin, 2008).
However, we do not go further into the details of the experi-
mental validation of evolution laws and leave it to the review
by Marone (1998).

Irrespective of the choice of evolution law, a steady state is
characterized by �0ss ¼ L=V so that the steady-state friction
coefficient at sliding velocity V reads

	ss ¼ c0 þ ða0 � b0Þ logV
V�

: (19)

Note that, as the nondimensional constants a0 and b0 are
typically on the order of 0.01, the velocity dependence of
steady-state friction is very small; a change in sliding velocity
by one order of magnitude results in �0:01 (or even less)
change in the friction coefficient. It is thus natural that people
in the 17th century overlooked this rather minor velocity
dependence. However, this velocity dependence is in fact

846 Kawamura et al.: Statistical physics of fracture, friction, . . .

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



not minor at all but very important in sliding instability
problems, e.g., earthquakes.

We also remark that Eq. (16), together with an evolution
law such as Eq. (17) or (18), well describes the behavior of
the friction coefficient not only for rock surfaces but also for
metal surfaces (Popov et al., 2012), two sheets of paper
(Heslot et al., 1994), etc. In this sense, the framework of
Eq. (16) is rather universal. This universality is partially
because the deformation of asperities involves atomistic pro-
cesses (i.e., creep). One can assume for creep of asperities
�Y ¼ kBT=�logðV=V0Þ, where � is the activation volume
and V0 is a characteristic velocity involving the activation
energy. Then Eq. (15) leads to

	 ’ kBT

�Ptrue

logðV=V0Þ; (20)

where Ptrue ¼ PAa=Atrue is the actual pressure acting on the
asperities. Comparing Eqs. (20) and (16) with b0 ¼ 0 (no
healing), one can infer that a0 ¼ kBT=�Ptrue, as previously
derived (Heslot et al., 1994; Nakatani, 2001; Rice, Lapusta,
and Ranjith, 2001). However, we are unaware of a micro-
scopic expression for b0 to this date. We are also unaware of
any microscopic derivations of evolution laws, such as
Eqs. (17) and (18), although an interesting effort to understand
their physical meaning can be found in Yoshioka (1997).

3. Stability of a steady state within the framework of RSF

As we aim to discuss earthquake dynamics based on the
RSF law, it is essential to discuss frictional instability within
the framework of RSF. For simplicity, we consider a body on
the frictional surface. The body is pulled by a spring at a
constant velocity V,

M €X ¼ �kðX � VtÞ �	N; (21)

where X is the position, M is the mass, k is the spring
constant, and N is the normal load. This may be regarded
as the simplest model of frictional instability driven by
tectonic loading. Suppose that the friction coefficient 	 is
given by the RSF law, Eq. (16), together with an evolution
law. The choice of the evolution law, i.e., Dieterich’s or
Ruina’s, does not affect the following discussions as they
are identical if linearized around a steady state. The motion of
the block is uniform in time if the surface is steady state
velocity strengthening (a0 > b0) or if the spring constant is
sufficiently large. For a steady-state velocity weakening sur-
face the steadysliding state undergoes Hopf bifurcation below
a critical spring constant. A linear stability analysis (Ruina,
1983; Heslot et al., 1994) shows that the steady sliding state
is unstable if

k < kcrit � N

L
ðb0 � a0Þ: (22)

This relation plays a central role in various earthquake mod-
els, in which a constitutive law is given by the RSF law. This
will be discussed in Sec. III. An important consequence
of Eq. (22) is that the tectonic motion is essentially stable if
a0 � b0 > 0. Namely, steady sliding is realized in the region
where a0 � b0 > 0, whereas the motion may be unstable if
a0 � b0 < 0. In addition, smaller L widens the parameter
range of unstable motion.

Although the above analyses involve a one-body system,
the stability condition, Eq. (22), appears to be essentially the
same in many-body and continuum systems. Thus, provided
that Eq. (21) applies, it is widely recognized in seismology
that the seismogenic zone has negative a, b, and smaller L,
whereas the aseismic zone has the opposite tendency.

E. Beyond the RSF law

It should be remarked that the RSF law has a certain limit
of its application. Many experiments reveal that it no longer
holds at high sliding velocities. This may be due to various
mechanochemical reactions that are induced by the frictional
heat, which typically lubricate surfaces to a considerable
degree; the friction coefficient becomes as low as 0.2 or
even less than 0.1 (Tsutsumi and Shimamoto, 1997;
Goldsby and Tullis, 2002; Di Toro, Goldsby, and Tullis,
2004; Hirose and Shimamoto, 2005; Mizoguchi et al.,
2006). If such lubrication occurs in a fault, the fault motion
is considerably accelerated and thus these effects have been
much studied during the last decade. Feedback of frictional
heat may be indeed very important to faults, because the
normal pressure in a seismogenic zone is of the order of
100 MPa. (Note , however, the presence of high-pressure pore
fluid may reduce the effective pressure.) As this area of study
is relatively new, our current understanding of such mecha-
nochemical effects is rather incomplete. Taking the rapid
development of this area into account, here we mention
some of the important experiments briefly.

1. Flash heating

Friction under such high pressure may lead to melting of
rock. There have been some reports of molten rock observed
in fault zones, which implies that the temperature is elevated
up to 2000 K during earthquakes.

A series of pioneering works on frictional melting in the
context of earthquakes has been conducted by Shimamoto
and his co-workers. They devised a facility to study rock
friction at high speed under high pressure and found a
behavior very different from that of the RSF law. The
steady-state friction coefficient typically shows a remarkable
negative dependence on sliding velocity and the relaxation to
steady state is twofold (Tsutsumi and Shimamoto, 1997;
Hirose and Shimamoto, 2005). At higher sliding velocity
(e.g., 1 m=s), the friction coefficient decreases to as low as
0.2 (or even less), whereas the typical value in the quasistatic
regime is around 0.7. We stress that such a large decrease of
the friction coefficient cannot be explained in terms of the
RSF law, where the change of the steady-state friction coef-
ficient is of the order of 0.01 even if the sliding velocity
changes by a few orders of magnitude [recall Eq. (19), where
a0 and b0 are both on the order of 0.01]. Thus, the mechanism
of weakening must be qualitatively different from that of the
RSF law. Indeed, in such experiments, molten rock is pro-
duced on surfaces due to the frictional heat. It is considered
that the melt produced lubricates the surfaces ,resulting in an
unusually low friction coefficient.

In view of Eq. (14), frictional melting must take place at
asperities, where the frictional heat is produced. Thus, before
the entire surface melts, asperities experience very high
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temperature, which may change the constitutive law. Such
asperity heating is also known in tribology and is referred to
as flash heating. Rice applied this idea to fault friction in
order to estimate the feasibility of flash heating in earthquake
dynamics. His argument is as follows (Rice, 2006): The
power input to asperity i is �YAiV, which is to be stored in
the proximity of the asperity. As discussed later, it is essential
to assume here that heat conduction is one dimensional; i.e.,
the temperature gradient is normal to the surface, but uniform
along the transverse directions. The produced heat invades
the bulk over the distance

ffiffiffiffiffiffiffiffiffi
Dtht

p
, where Dth is the thermal

diffusivity. Thus, frictional heat is stored in the small
volume of Ai

ffiffiffiffiffiffi

t

p
. Writing the average temperature of this

hot volume as TðtÞ, the deposited thermal energy reads
cP�Ai

ffiffiffiffiffiffiffiffiffi
Dtht

p ½TðtÞ � T0�, where cP is the isobaric specific
heat, � is the mass density, and T0 is the ambient temperature.
Then the energy balance leads to

TðtÞ � T0 ’ �YV

�cP

ffiffiffiffiffiffiffi
t

Dth

s
: (23)

This indicates that the surface temperature increases with
time as

ffiffi
t

p
. If Tw symbolizes the critical temperature above

which an asperity loses its shear strength, then the duration tw
for the temperature to be elevated up to the critical tempera-
ture reads

tw ¼ Dth

�
�cPðTw � T0Þ

�YV

�
2
: (24)

This heating process is limited to the duration or lifetime of
an asperity contact. If we write the longitudinal dimension of
each asperity asLi, the lifetime of an asperity is estimated as
Li=V. Thus, weakening of an asperity occurs if and only if
tw 	 Li=V. Taking Eq. (24) into account, this condition may
be written as

V � Dth

Li

�
�cPðTw � T0Þ

�Y

�
2
: (25)

Neglecting the statistics of Li, one gets the characteristic
sliding velocity Vw above which weakening occurs,

Vw ¼ Dth

L

�
�cPðTw � T0Þ

�Y

�
2
: (26)

Alternatively, from Eq. (25), the maximum size of asperity
that does not melt at the sliding velocity V is given by

Lmax ¼ Dth

V

�
�cPðTw � T0Þ

�Y

�
2
: (27)

The proportion of nonmelting asperityies may be approxi-
mated by Lmax=L. Assuming that the friction coefficients of
a molten asperity and a nonmelting one are given by

	 ¼
�
f1 ðT < TwÞ;
f2 ðT > TwÞ; (28)

the average friction coefficient reads

	 ¼ f1
Lmax

L
þ f2

�
1�Lmax

L

�
(29)

¼ f2 þ ðf1 � f2ÞVw

V
: (30)

The friction coefficient decreases as V�1 at high slip velocity
V � Vw. Taking 
 ¼ 1 mm2=s, �cP ¼ 4 MJ=m3K,
D ¼ 5 	m, Tw � T0 ¼ 700 K, and �Y ¼ 0:02G–0:1G
ðshear modulusÞ ¼ 0:6 – 3 GPa, the characteristic velocity
Vw is 0.5 – 14 m=s. This does not contradict rock experiments
on melting-induced weakening. Also, Eq. (30) is not incon-
sistent with experiments, although f1 and f2 are fitting
parameters.

Note that the discussion does not depend on the apparent
normal pressure, as the pressure on the asperity is approxi-
mately the yield stress (of uniaxial compression) irrespective
of the apparent normal pressure. Thus, flash melting could
occur in principle even when the apparent pressure is very
low as long as the sliding velocity is larger than Vw given by
Eq. (26). However, in an experiment conducted at relatively
low pressures, the threshold velocity is an order of magnitude
smaller than the prediction of Eq. (26) (Kuwano and Hatano,
2011). This may be because other relevant mechanisms are
responsible for dynamic weakening observed in experiments,
but the answer is yet to be given.

It is also important to note that in this discussion the
assumption of one-dimensional heat conduction is essential;
i.e., the frictional heat is not transferred in the horizontal
directions but only in the normal direction. This assumption
implies that the thermal diffusion length

ffiffiffiffiffiffiffiffi

tw

p
must be

smaller than the height of a protrusion that constitutes an
asperity. Assuming that the height of a protrusion is propor-
tional to a horizontal dimension Li, this condition leads to

Li � Dth�cPðTw � T0Þ
�YV

: (31)

Because it is estimated in general that �cPðTw � T0Þ>�Y ,
Eq. (31) immediately follows from Eq. (25). Thus, the as-
sumption of one-dimensional heat conduction may be sound.

If the asperities are sufficiently small so that the thermal
diffusion length exceeds the height of protrusions, the as-
sumption of one-dimensional heat conduction is violated. A
good example is friction in nanopowders, in which the typical
size of the true contact area is on the order of nanometers
(Han et al., 2011). Interestingly, one can still observe dy-
namic weakening similar to that caused by flash melting, but
Han et al. did not attribute this behavior to flash melting,
because the duration of contact between nanograins was too
short to cause a significant temperature increase. The physical
mechanism of such weakening is still not clear. (Silica-gel
lubrication may be ruled out as the material they used is
silica-free.)

2. Frictional melting and thermal pressurization

There is yet another class of weakening phenomena called
frictional melting; the melt is squeezed out of asperities to fill
the aperture between the two surfaces. Such a situation can
occur if the surfaces are rubbed for a sufficiently long time. If
this process occurs, the melt layer supports the apparent
normal pressure to reduce the effective pressure at asperities,
and ultimately hinders solid-solid contact. This leads to the
disappearance of the asperities; i.e., there are no solid-solid
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contacts between the surfaces but a thin layer of melt under
shear. There are some analyses of such systems assuming
Arrhenius-type viscosity (Fialko and Khazan, 2005; Nielsen
et al., 2008). In such and analysis, one can predict that the
shear traction is proportional to P1=4, where P is the normal
pressure. The quantitative validation of such theories is yet to
be done.

It may be noteworthy here that the viscosity of such a
liquid film involves a rather different problem: nanofluidics.
The melt may be regarded as a nanofluid, the viscosity of
which may be very different from that of ordinary fluids. The
shear flow of very thin layers of melt (under very high
pressure) may be unstable due to partial crystallization
(Thompson, Grest, and Robbins, 1992) Until this date, the
effect of nanofluidics on frictional melting has not been taken
into account and is a problem left open to physicists.

Meanwhile, evidence of frictional melting of a fault is not
very often found in core samples or in outcrops. As faults
generally contain fluid, frictional heat increases the fluid
temperature as well. As a result, the fluid pressure increases
and the effective pressure on solid-solid contact decreases.
Therefore, the frictional heat production generally decreases
in the presence of fluid. In the simplest cases where the fault
zone is impermeable, the effective friction (and the produced
frictional heat) may vanish as the fluid pressure can be as
large as the rock pressure (Sibson, 1973). This is referred to
as thermal pressurization, and a large amount of work has
been devoted to such dynamic interaction between frictional
heat and the fluid pressure. More detailed formulations in-
corporate the effect of fluid diffusion with nonzero perme-
ability of host rocks (Lachenbruch, 1980; Mase and Smith,
1987). In these analyses, the extent of weakening is enhanced
if a fault zone has smaller compressibility and permeability.
Although this behavior is rather trivial qualitatively, some
nontrivial behaviors are found in a model where the perme-
ability is assumed to be a dynamic quantity coupled with the
total displacement (Suzuki and Yamashita, 2010). However, it
is generally difficult to judge the validity of a model from
observations and thus we do not discuss this problem further.

3. Other mechanochemical effects

In some systems, anomalous weakening of friction
(	� 0:2) can be observed at sliding velocities much lower
than the critical velocity for flash heating [Eq. (26)].
Typically, one can observe weakening at sliding velocities
of the order of mm=s. Thus, there might be mechanisms for
great weakening other than frictional melting.

Such experiments are typically conducted with complex
materials like a fault gouge taken from a natural fault so that
there may be many different mechanisms of weakening
depending on the specific compositions of rock species.
Among them, a mechanism that might bear some robustness
is lubrication by silica-gel production (Goldsby and Tullis,
2002; Di Toro, Goldsby, and Tullis, 2004). In several experi-
ments on silica-rich rock such as granite, scanning election
microscope observation of the surfaces reveals a silica gel
layer that experienced shear flow. The generation of silica gel
may be attributed to chemical reactions between silica and
water in the environment. This silica gel intervenes between
the surfaces, resulting in lubrication of the fault. Although the

details of the chemical reactions are not very clear, the
mechanics of weakening may be essentially the same as
that of flash heating and melting, because in both cases the
cause of weakening is some soft material (or liquid) that is
produced by shear and intervenes at asperities. However, in
the case of silica-gel formation, the thixotropic nature of
silica gel may result in peculiar behaviors of friction, as
observed in the experiment by Di Toro, Goldsby, and Tullis
(2004).

In addition, we to add several other mechanisms that lead
to anomalous weakening. Han et al. (2007) found a friction
coefficient as low as 0.06 in marble under relatively high
pressure (1.1–13.4 MPa) and high sliding velocity (1:3 m=s).
Despite the utilization of several techniques for microstruc-
tural observation, they could not observe any evidence of
melting such as glass or amorphous texture, but only a layer
of nanoparticles produced by thermal decomposition of cal-
cite due to frictional heating. Mizoguchi et al. (2006) also
found a friction coefficient as low as 0.2 in a fault gouge taken
from a natural fault, where they also could not find any
evidence for melting. To this date, the mechanism of such
frictional weakening at higher sliding velocity is not clear.

It is important to note that these samples inevitably include
a large amount of submicrometer grains that are worn down
by high-speed friction (Han et al., 2007; Hayashi and
Tsutsumi, 2010). They may play an important role in weak-
ening at high sliding velocities. The grain size distribution of
the fault gouge is typically well fitted by a power law with
exponent �2:6 to �3:0 (Chester and Chester, 1998) so that
smaller grains cannot be neglected in terms of volume frac-
tion. The exponent appears to be common to laboratory
(Marone and Scholz, 1989) and numerical experiments of
wear (Abe and Mair, 2009). The rheology of such fractal
grains has not been investigated in a systematic manner,
notwithstanding a pioneering computational work (Morgan,
1999). We discuss the influence of grains on friction in detail
in the next section.

4. Effect of a third body: Granular friction

Previously, we considered the situation where two surfaces
were in contact only at asperities. This is generally not the
case if the asperities are worn down to free particles that
intervene between the two surfaces. In this case, the system
can be regarded as granular matter that is sheared by the two
surfaces. The core of a natural fault always consists of
powdered rock (Chester and Chester, 1998), which is pro-
duced by the fault motion of the past. Thus, friction on a fault
is closely related to the rheology of granular rock.

As is briefly mentioned in the previous section, earthquake
physics involves a wide range of sliding velocities (or shear
rates) ranging from the tectonic (e.g., nm=s) to the coseismic
time scale (m=s). It is thus plausible that the rheological
properties of granular matter are qualitatively different de-
pending on the range of sliding velocities. Here we define two
regimes for granular friction: the quasititatic and dynamic
regimes. In the quasistatic regime, the frictional properties of
granular matter are described by the RSF law. However, some
important properties will be remarked that are not observed
for bare surfaces. In the dynamic regime, one may expect
dynamic strengthening as observed in numerical simulations
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(Midi, 2004; da Cruz et al., 2005). However, at the same time

one may also expect weakening due to various mechano-

chemical reactions (Mizoguchi et al., 2006; Hayashi and

Tsutsumi, 2010). The rheological properties that are experi-

mentally observed are determined by the competition of these

two ingredients. Here we review the essential rheological

properties of granular matter in these two regimes.
In experiments on quasistatic deformation, friction of

granular matter seems to obey the RSF law. However, some

important properties that are different from those of bare

surfaces should be remarked.
(1) Velocity dependence of steady-state friction appears to

be affected by the layer thickness. In particular, the

value of a0 � b0 in Eq. (19) is an increasing function of
the layer thickness.

(2) The value of a0 � b0 appears to have negative depen-

dence on the total displacement applied to a system.

This is true for both granular matter and bare surfaces.
(3) Transient behaviors can be described by either

Dieterich’s or Ruina’s law, as in the case of bare

surfaces. The characteristic length in an evolution

law is proportional to the layer thickness.

These experimental observations are well summarized and

discussed in detail by Marone (1998). We thus shall not

repeat them here and just note the essential points described

above.
As to the first point, there is no plausible explanation to this

date. It appears that the second point could be merged into the

first point if the effective layer thickness (i.e., the width of the

shear band) decreases as the displacement increases.

However, we remark that it is also true in the case of bare

surfaces, where the effective layer thickness is not a simple

decreasing function of the displacement. Thus, the second

point cannot be explained in terms of the thickness. The third

point indicates that the shear strain is a more appropriate

variable than the displacement of the boundary for the de-

scription of the time evolution of the friction coefficient. This

may be reasonable as the duration of contact between grains

is inversely proportional to the shear rate. However, the

derivation of evolution laws (either Dieterich’s or Ruina’s)

from the grain dynamics is not known to this date. To con-

struct a theory that can explain these three properties based on

the nature of granular matter is still a challenge to statistical

physicists.
Next we discuss the dynamic regime. The rheology of

granular matter in the dynamic regime is extensively inves-

tigated in statistical physics (GDRMidi, 2004; da Cruz et al.,

2005). As to the steady-state friction coefficient, the shear-

rate dependence is also one of the main interests in statistical

physics. There are many ingredients that potentially affect the

friction coefficient of granular matter: the grain shape, degree

of inelasticity (coefficient of restitution), friction coefficient

between grains, stiffness, pore fluid, etc. Shape dependence is

very important to granular friction, but theoretical under-

standing of this effect is still very poor. Thus, for simplicity,

we neglect the shape effect and consider only spherical

grains. Furthermore, we limit ourselves to the effects of shear

rate, stiffness, mass and diameter of grains, coefficient of

restitution, and intergrain friction. This means that we neglect

time- or slip-dependent deformation of the grain contacts,

such as wear (Marone and Scholz, 1989) or frictional healing
(Bocquet et al., 1998). The effects of pore fluid are also
neglected; i.e., we discuss only dry granular matter here. With
such idealization, one can make a general statement on a
constitutive law by dimensional analysis. The friction coeffi-
cient of granular matter is formally written as

	 ¼ 	ðP;m; d; _�; Y;	e; eÞ; (32)

where P is the normal pressure, m is the mass, d is the
diameter, _� is the shear rate, Y is the Young’s modulus of
grains, 	e is the intergrain friction coefficient, and e is the
coefficient of restitution. [It should be noted that one assumes
a single characteristic diameter d in Eq. (32).] From the
viewpoint of dimensional analysis, the arguments on the
left-hand side of Eq. (32) must be nondimensional numbers,

	 ¼ 	ðI; 
;	e; eÞ; (33)

where I ¼ _�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=Pd

p
and 
 ¼ Y=P. Thus, the friction coef-

ficient of granular matter depends in principle on these four
nondimensional parameters. Many numerical simulations re-
veal that 	 is rather insensitive to 
 and �, and the shear-rate
dependence is mainly described by I. This nondimensional
number I is referred to as the inertial number. Importantly, the
dependence on I is positive in numerical simulations (Midi,
2004; da Cruz et al., 2005; Hatano, 2007); namely, the shear-
rate dependence is positive. It is important to note that the
negative shear-rate dependence that is ubiquitously observed
in experiments, cannot be reproduced in numerical simula-
tion. This is reasonable because the origin of the negative
velocity dependence is the time-dependent increase in true
contact, whereas in simulation the parameters are time
independent.

Experiments in the context of earthquake physics are con-
ducted at relatively high pressures at which the frictional heat
affects the physical state of granular matter. In some experi-
ments (Mizoguchi et al., 2006; Hayashi and Tsutsumi, 2010),
remarkable weakening (	� 0:1) is observed. Because such
anomalous behaviors may involve shear banding as well as
various chemical reactions such as thermal decomposition or
silica-gel formation, the frictional properties should depend
on the detailed composition of the rock species contained in
the granular matter. These weakening behaviors must be
further investigated by extensive experiments.

So far we have discussed the steady-state friction coeffi-
cient, but the description of transient states is also important
in understanding the frictional instability (and earthquake
dynamics). The evolution law for the quasistatic regime is
indeed essentially the same as that for bare surfaces; namely,
the aging or slip law (Marone, 1998). The evolution law in the
dynamic regime is well described by the linear relaxation
equation even for relatively large velocity change (Hatano,
2009):

_	 ¼ ���1½	ðtÞ �	ss�; (34)

where 	ss is the steady-state friction coefficient, which de-
pends on the sliding velocity and � is the relaxation time. � is
the relaxation time of the velocity profile inside granular

matter and it scales with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=Pd

p
. Thus, importantly, the

inertial number, which describes steady-state friction may,
be written using � as I ’ � _�; i.e., the shear rate multiplied by
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the velocity relaxation time. Note that the inertial number is
an example of a Deborah number, which is in general the
internal relaxation time normalized by the experimental time
scale.

Note the difference from the conventional evolution law in
the framework of the RSF law, Eqs. (17) and (18): Eq. (34)
does not contain any length scale but only the time scale. This
means that the relaxation process of high-speed granular
friction takes time rather than the slip distance. However,
we stress that the validity of Eq. (34) has been found only in
simulations on dry granular matter and it has not been verified
in physical experiments.

F. Microscopic theories of friction

Many attempts have been made to explain friction from an
atomistic point of view. Of course, such efforts are meaningful
only when the surfaces are smooth and the atomistic proper-
ties determine friction. This approach has gained importance
in recent years, because of advancement of technology in this
field. With atomic force microscopy, etc., sliding surfaces can
now be probed down to atomic scales. Also, present day
computers allow large-scale molecular dynamics simulations
that help in understanding the atomic origin of friction. In this
approach, the atomic origins of friction forces are investigated
[see also Bhushan, Israelachvili, and Landman (1995); Braun
and Naumovets (2006); and Hölscher, Schirmeisen, and
Schwarz (2008)]. For this purpose, two atomically smooth
surfaces are taken and by writing down the equations of
motion, friction forces are calculated. The effects of inhomo-
geneity, impurity, lubrication, and disorder in terms of vacan-
cies of atoms are also considered.

One of the foremost attempts to model friction from an
atomic viewpoint was by Tomlinson (1929). In this model,
only one atomic layer of each surface in contact is considered.
In particular, the lower surface is considered to be rigid and to
provide a periodic (sinusoidal) potential for the upper body.
The contact layer of the upper body is modeled by mutually
disconnected beads (atoms), which are attached elastically to
the bulk above. This model is, of course, oversimplified. The
main drawback is that no interaction between the atoms of the
upper body is considered.

1. Frenkel-Kontorova model

The Frenkel-Kontorova (Frenkel and Kontorova, 1938)
model overcomes some of these difficulties. In this model,
the surface of the sliding object is modeled by a chain of
beads (atoms) connected harmonically by springs. The base is
again represented by a sinusoidal potential. The Hamiltonian
of the system can, therefore, be written as

H ¼ XN
i¼1

�
1

2
Kðxiþ1 � xi � aÞ2 þ VðxiÞ

�
; (35)

where xi is the position of the ith atom, a is the equilibrium
spacing of the chain, and VðxÞ ¼ �V0 cosð2�x=bÞ. Clearly,
there are two competing lengths in this model, viz., the
equilibrium spacing of the upper chain (a) and the period
of the substrate potential (b). While the first term tries to keep
the atoms in their original positions, the second term tries to

bring them into the local minima of the substrate potential.
Simultaneous satisfaction of these two forces is possible
when the ratio a=b is commensurate. The chain is then
always pinned to the substrate in the sense that a finite force
is always required to initiate sliding. Below that force, the
average velocity vanishes at large times. However, interesting
phenomena occur when the ratio a=b is incommensurate. In
that case, up to a finite value of the amplitude of the substrate
potential, the chain remains ‘‘free.’’ In that condition, for
arbitrarily small external force, sliding is initiated. The hull
function (Peyrard and Aubry, 1983) remains analytic. Beyond
the critical value of the amplitude, the hull function is no
longer analytic and a finite external force is now required to
initiate sliding. This transition is called the breaking-of-
analyticity transition or the Aubry transition (Peyrard
and Aubry, 1983) [for extensive details see Braun and
Kivshar (2004)].

2. Two-chain model

The Frenkel-Kontorova model has been generalized in
many ways, viz, extension to higher dimensions, effects of
impurity, the Frenkel-Kontorova-Tomlinson model, etc. [see
Braun and Naumovets (2006) and references therein]. But
one major shortcoming of the Frenkel-Kontorova model is
that the substrate or the surface atoms of the lower substance
are considered to be rigidly fixed in their equilibrium posi-
tion. But for the same reason that the upper surface atoms
should relax, the lower surface atoms should relax too. In the
two-chain model of friction (Matsukawa and Fukuyama,
1994) this question is addressed. In this model, a harmoni-
cally connected chain of atoms is pulled over another. The
atoms have only one degree of freedom in the direction
parallel to the external force. The equations of motion of
the two chains are

ma�að _xi � h _xiiÞ ¼ Kaðxiþ1 þ xi�1 � 2xiÞ

þ XNb

j2b

FIðxi � yjÞ þ Fex; (36)

mb�bð _yi�h _yiiÞ¼Kbðyiþ1þyi�1�2yiÞ

þXNa

j2a

FIðyi�xjÞ�Ksðyi�icbÞ; (37)

where xi and yi denote the equilibrium positions of the upper
and lower chain, respectively, m’s represent the atomic
masses, �’s represent the dissipation constants, K’s the
strengths of the interatomic force, N’s the number of atoms
in each chain, c’s the lattice spacing, and the subscript a
denotes upper chain and b the lower chain. Fex is the external
force and FI is the interchain force between the atoms, which
is derived from the following potential:

UI ¼ �KI

2
exp

�
�4

�
x

cb

��
; (38)

where KI is the interaction strength.
It is argued that the frictional force is of the form

�X
i

X
j

hFIðxi � yjÞit ¼ NahFexit: (39)
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It is then shown by numerical analysis that the velocity
dependence of the kinetic frictional force becomes weaker

as the static friction increases (tuned by different K’s). The

velocity dependence essentially vanishes when the static fric-

tional force is increased, giving one of the Amonton-

Coulomb laws.
In this case, the lower-chain atoms, which form the sub-

strate potential, are no longer rigidly placed. Still, the

breaking-of-analyticity transition is observed. Figure 5 shows

the variation of the maximum static frictional force with

interaction potential strength. For different values of the

rigidity with which the lower chain is bound (Ks), different
curves are obtained. This indicates a pinned state even for

finite rigidity of the lower chain.

3. Effect of fractal disorder

The effects of disorder and impurity have been studied in

the microscopic models of friction. Also there have been
efforts to incorporate the effect of self-affine roughness in

friction. Eriksen, Biswas, and Chakrabarti (2010) consider

the effect of disorder on static friction. A two-chain version of

the Tomlinson model is considered. The self-affine roughness

is introduced by removing atoms and keeping the remaining

ones arranged in the form of a Cantor set. The Cantor set is a

simple prototype of fractals. Instead of considering the regu-

lar Cantor set, here a random version of it is used. A line

segment [0,1] is taken. In each generation, it is divided into s
equal segments and s� r of those are randomly removed. In

this way, a self-similar disorder is introduced, which is

present only in the statistical sense, rather than in a strict
geometric arrangement.

This kind of roughness is introduced in both the chains.

Then the interchain interaction is taken to be of very short-

range type. Only when there is one atom exactly over another

(see Fig. 6) is there an attractive interaction. In this way, the
maximum static friction force can be calculated by estimating
the overlap of these two chains. It turns out that the static
friction force has a distribution that is qualitatively different
from what is expected if a random disorder or no disorder is
present. The scaled (independent of generation) distribution
of overlap or static friction is (Eriksen, Biswas, and
Chakrabarti, 2010)

fs;rðx=RÞ=R ¼ Xr
j¼1

~cs;rðjÞðfs;r . . . j� 1 terms . . . fs;rÞðxÞ;

(40)

where R ¼ r2=s and ~cs;rðxÞ ¼ rCs�r
x Cr�x=sCr. For a particu-

lar (s, r) combination (9,8), the distribution function is shown
in Fig. 7. It clearly shows that the distribution function is

FIG. 6. Schematic representation of the two-chain version of the

Tomlinson model with (a) no disorder, (b) Cantor set disorder, and

(c) the effective substrate potential. From Eriksen, Biswas, and

Chakrabarti, 2010.

FIG. 7 (color online). The overlap distribution for s ¼ 9, r ¼ 8 is

shown. The dotted curve shows the average distribution with

random offset and the continuous curve is that without random

offset. The distribution is qualitatively different from the Gaussian

distribution expected for random disorder. From Eriksen, Biswas,

and Chakrabarti, 2010.

FIG. 5. The variations of the maximum static friction with the

amplitude (KI) of the interchain potential for different values of

the lower-chain stiffness (Ks). The limit Ks ! 1 corresponds to the

Frenkel-Kontorova model. But it is clearly seen that even for finite

Ks (i.e., when the lower chain can relax) there is a finite value of

interchain potential amplitude up to which the static friction is

practically zero and after which it increases , signifying the Aubry

transition. From Matsukawa and Fukuyama, 1994.
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qualitatively different from the Gaussian distribution ex-
pected if the disorder were random.

III. EARTHQUAKE MODELS AND STATISTICS I:

BURRIDGE-KNOPOFF AND CONTINUUM MODELS

In the previous section, we reviewed the basic physics of
friction and fracture, which constitutes a microscopic basis

for our study of macroscopic properties of an earthquake as a
large-scale frictional instability. Some emphasis was put on

the RSF law now regarded as the standard constitutive law in
seismology. In this and following sections, we review the
present status of our research on various types of statistical

physical models of earthquakes introduced to represent their
macroscopic properties.

A. Statistical properties of the Burridge-Knopoff model

1. The model

One of the standard models widely employed in the
statistical physical study of earthquakes is the Burridge-

Knopoff model (Rundle et al., 2003; Ben-Zion, 2008). The
model was first introduced by Burridge and Knopoff (1967).
Then, Carlson, Langer, and collaborators performed a pio-

neering study of the statistical properties of the model
(Carlson and Langer, 1989a; 1989b; Carlson et al., 1991;

Carlson, 1991a; 1991b; Carlson, Langer, and Shaw, 1994),
paying particular attention to the magnitude distribution of
earthquake events and its dependence on the friction

parameter.
In the BK model, an earthquake fault is simulated by an

assembly of blocks, each of which is connected via elastic
springs to the neighboring blocks and to the moving plate. Of

course, the space discretization in the form of blocks is an
approximation to the continuum crust, which could in prin-
ciple give rise to an artificial effect not realized in the con-

tinuum. Indeed, such a criticism against the BK model
employing a certain type of friction law, e.g., the purely
velocity-weakening friction law to be defined below in

Sec.III.A.2, was made in the past (Rice, 1993); we shall
return to this later.

In the BK model, all blocks are assumed to be subjected
to friction force, the source of nonlinearity in the model,

which eventually realizes an earthquakelike frictional in-
stability. As mentioned in Sec. II, the standard friction law
in modern seismology might be the RSF law. In order to

facilitate its computational efficiency, even simpler friction
laws have also been used in simulation studies made in the

past.
We first introduce the BK model in one dimension (1D).

Extension to two dimensions (2D) is straightforward. The 1D
BK model consists of a 1D array of N identical blocks, which
are mutually connected with the two neighboring blocks via

elastic springs of elastic constant kc, and are also connected to
the moving plate via springs of elastic constant kp, and are

driven with a constant rate: See Fig. 8. All blocks are sub-
jected to the friction force �, which is the only source of

nonlinearity in the model. The equation of motion for the ith
block can be written as

m €Ui ¼ kpð�0t0 � UiÞ þ kcðUiþ1 � 2Ui þ Ui�1Þ ��i;

(41)

where t0 is the time,Ui is the displacement of the ith block, �0
is the loading rate representing the speed of the moving plate,
and �i is the friction force at the ith block.

In order to make the equation dimensionless, the time t0 is
measured in units of the characteristic frequency! ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kp=m

q
and the displacement Ui in units of the length L� ¼ �0=kp,

�0 being a reference value of the friction force. Then, the
equation of motion can be written in the dimensionless
form as

€ui ¼ �t� ui þ l2ðuiþ1 � 2ui þ ui�1Þ ��i; (42)

where t ¼ t0! is the dimensionless time, ui � Ui=L
� is the

dimensionless displacement of the ith block, l �
ffiffiffiffiffiffiffiffiffiffiffiffi
kc=kp

q
is

the dimensionless stiffness parameter, � ¼ �0=L�! is the
dimensionless loading rate, and �i � �i=�0 is the dimen-
sionless friction force at the ith block.

The corresponding equation of motion of the 2D BKmodel
is given in the dimensionless form by

€ui;j ¼ �t� ui;j þ l2ðuiþ1;j þ ui;jþ1

þ ui�1;j þ ui;j�1 � 4ui;jÞ ��i;j;
(43)

where ui;j � Ui;j=L
� is the dimensionless displacement of the

block (i, j). It is assumed here that the displacement of each
block occurs only along the direction of the plate drive. The
motion perpendicular to the plate motion is neglected.

Often (but not always), the motion in the direction opposite
to the plate drive is also inhibited by imposing an infinitely
large friction for _ui < 0 (or _ui;j < 0) in either case of 1D or

2D. It is also often assumed in both 1D and 2D that the
loading rate � is infinitesimally small, and � ¼ 0 during an
earthquake event, a very good approximation for real faults
(Carlson et al., 1991). Taking this limit ensures that the
interval time between successive earthquake events can be
measured in units of ��1 irrespective of particular values of �.
Taking the � ! 0 limit also ensures that, between an ongoing
event, no other event takes place at a distant place indepen-
dently of this ongoing event.

2. The friction law

The friction force �: causing a frictional instability is a
crucially important element of the model. Here we refer to the
following two forms for�: (A) a velocity-weakening friction
force (Carlson and Langer, 1989a) and (B) a rate-dependent

FIG. 8 (color online). The Burridge-Knopoff (BK) model in one

dimension.
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and state-dependent friction law (Dieterich, 1979; Ruina,
1983; Marone, 1998; Scholz, 1998; Scholz, 2002).

(A) With this velocity-weakening friction force, one sim-
ply assumes that the friction force � ¼ �ð _uiÞ is a unique
function of the block velocity _ui. In order for the model to
exhibit a frictional instability corresponding to earthquakes,
one needs to assume a velocity-weakening force �ð _uiÞ that
needs to be a decreasing function of _ui. The detailed form of
�ð _uiÞ is irrelevant. The form originally introduced by Carlson
and Langer has widely been used in many subsequent works,
that is (Carlson et al., 1991),

�ð _uiÞ ¼
� ð�1; 1� for _ui 	 0;

1��
1þ2
 _ui=ð1��Þ for _ui > 0; (44)

where the maximum value corresponding to the static friction
has been normalized to unity. This normalization condition
�ð _ui ¼ 0Þ ¼ 1 has been utilized to set the length unit L�. The
friction force is characterized by the two parameters � and 
.
�, introduced by Carlson et al. (1991) as a technical device
facilitating the numerics of simulations, represents an instan-
taneous drop of the friction force at the onset of the slip, while

 represents the rate of weaking of the friction force on
increasing the sliding velocity. As emphasized by Rice
(1993), this purely velocity-weakening friction law applied
to the discrete BK model did not yield a sensible continuum
limit. To achieve a sensible continuum limit, one then needs
to introduce an appropriate short-length cut off by introduc-
ing, e.g., the viscosity term as was done by Myers and Langer
(1993): See also the discussion in Sec. III.A.6.

We note that, in several simulations on a BK model, a slip-
weakening friction force (Ida, 1972; Shaw, 1995; Myers,
Shaw, and Langer, 1996), where the friction force is assumed
to be a unique function of the slip distance�ðuiÞ, was utilized
instead of the velocity-weakening friction force. The statisti-
cal properties of the corresponding BK model, however, seem
not so different from those of the velocity-weakening friction
force.

The real constitutive relations is of course more complex,
neither purely velocity weakening nor purely slip weakening.
As discussed in Sec. II, the RSF friction law was introduced
to account for such experimental features, which we now
refer to.

(B) From Eq. (16), the friction force in the BK model is
given by

�i ¼
�
c0 þ a0 log

�
v0
i

v0�

�
þ b0 log

v0��0i
L

�
N ; (45)

where N is the effective normal load; see Sec. II.D for the
other quantities and parameters. Among the several evolution
laws, we use the aging (slowness) law [Eq. (17)]

d�0i
dt0

¼ 1� v0
i�

0
i

L
: (46)

Under the evolution law above, the state variable �0i grows
linearly with time at a complete halt v0

i ¼ 0, reaching a very

large value just before seismic rupture, while it decays very
rapidly during the seismic rupture.

The equation of motion can be made dimensionless by
taking the length unit to be the characteristic slip distance L

and the time unit to be the rise time of an earthquake, !�1 ¼
ðm=kpÞ1=2. Then, one has

d2ui
dt2

¼ ð�t� uiÞ þ l2ðuiþ1 � 2ui þ ui�1Þ
� ½cþ a logðvi=v

�Þ þ b logðv��iÞ�; (47)

d�i
dt

¼ 1� vi�i; (48)

where the dimensionless variables are defined by t ¼ !t0,
ui ¼ u0i=L, vi ¼ v0

i=L!, v� ¼ v0�=L!, �i ¼ !�0i, � ¼
�0=L!, a ¼ a0N =kpL, b ¼ b0N =kpL, and c ¼
c0N =kpL, while l � ðkc=kpÞ1=2 is the dimensionless stiff-

ness parameter defined above. In some numerical
simulations, a slightly different form is used for the a term,
where the factor inside the a term, v=v�, is replaced by
1þ v=v�, i.e.,

d2ui
dt2

¼ ð�t� uiÞ þ l2ðuiþ1 � 2ui þ ui�1Þ

�
�
cþ a log

�
1þ vi

v�

�
þ b log�i

�
; (49)

where the constant factor c in Eq. (49) is shifted by b logv�
from c in Eq. (48).

This replacement enables one to describe the system at a
complete halt, whereas, without this replacement, the system
cannot stop because of the logarithmic anomaly occurring at
v ¼ 0. A similar replacement is sometimes made also for the
b term, i.e., � to 1þ �.

The values of various parameters of the model describing
natural faults have been estimated (Ohmura and Kawamura,
2007). Typically, !�1 corresponds to the rise time of an
earthquake event and is estimated from observations to be a
few seconds. Although the characteristic slip distance L
remains largely ambiguous, an estimate of order a few milli-
meters or centimeters was given by Tse and Rice (1986) and
by Scholz (2002). The loading rate associated with the plate
motion is typically a few cm=y, and the dimensionless load-
ing rate � ¼ �0=L! is of order � ’ 10�8. The dimensionless
quantity kpL=N was roughly estimated to be of order 10�4.

The dimensionless parameter c should be of order 103–104,
and the a and b parameters are one or two orders of magni-
tude smaller than c.

3. The 1D BK model with short-range interaction

The simplest version of the BK model might be the 1D
model with only nearest-neighbor interblock interaction.
Since this model was reviewed in an earlier RMP review
article by Carlson, Langer, and Shaw (1994), we keep the
discussion here to a minimum, focusing mainly on recent
results obtained after that review.

Earlier studies on the 1D BK model have revealed that,
while smaller events persistently obeyed the GR law, i.e.,
staying critical or near critical, larger events exhibited a
significant deviation from the GR law, being off critical or
characteristic (Carlson and Langer, 1989a; 1989b; Carlson
et al., 1991; Carlson, 1991a; 1991b; Schmittbuhl, Vilotte, and
Roux, 1996).
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In Fig. 9, we show recent data for the magnitude distribu-
tion (Mori and Kawamura, 2005; Mori and Kawamura,
2006). The magnitude of an event, M, is defined by

M ¼ ln

�X
i

�ui

�
; (50)

where the sum is taken over all blocks involved in the event.
As can be seen from Fig. 9, the form of the calculated

magnitude distribution RðMÞ depends on the value of the
velocity-weakening parameter 
. The data for 
 ¼ 1 lie on
a straight line fairly well, apparently satisfying the GR law,
which may be called near-critical behavior. The value of the
exponent B describing the power-law behavior is estimated to
be B ’ 0:50, corresponding to the b value b ¼ 3

2B ’ 0:75. By

contrast, the data for larger 
 deviate from the GR law at
larger magnitudes, exhibiting a pronounced peak structure,
while the power-law feature still remains for smaller magni-
tudes; see Fig. 9(a). These features of the magnitude distri-
bution were observed in many simulations (Carlson and
Langer, 1989a; 1989b; Carlson et al., 1991). This means
that, while smaller events exhibit self-similar critical proper-
ties, larger events tend to exhibit off-critical or characteristic
properties, which may be called ‘‘supercritical.’’ The data for
smaller 
< 1 exhibit considerably different behaviors from
those for 
> 1. Large events are rapidly suppressed, which
may be called ‘‘subcritical’’ behavior. For 
 ¼ 0:25, in par-
ticular, all events are almost exclusively small; see Fig. 9(b).
Here the words critical, supercritical, and subcritical have
been defined on the basis of the shape of the magnitude-
frequency relationship.

As an example of properties other than the magnitude
distribution, we show in Fig. 10 the recurrence-time distribu-
tion (Mori and Kawamura, 2005; 2006). The recurrence time
T is defined here locally for large earthquakes with M �
Mc ¼ 3 or Mc ¼ 4, i.e., a subsequent large event is counted
when a large event occurs with its epicenter in the region
within 30 blocks from the epicenter of the previous large
event. As can be seen from the figure, the tail of the distri-
bution is exponential at longer T irrespective of the value of

. Such an exponential tail of the distribution has also been
reported for real seismicity (Corral, 2004). By contrast, the

distribution at shorter T is nonexponential and is greatly
different for 
 ¼ 1 and 
> 1. For 
> 1, the distribution
has an eminent peak corresponding to a characteristic recur-
rence time, which suggests the near-periodic recurrence of
large events, as has been reported for several real faults
(Nishenko and Buland, 1987; Scholz, 2002). For 
 ¼ 1, by
contrast, the peak located close to the mean �T is hardly
discernible. Instead, the distribution has a pronounced peak
at a shorter time, just after the previous large event. In other
words, large events for 
 ¼ 1 tend to occur as ‘‘twins.’’ A
large event for the case of 
 ¼ 1 often occurs as a ‘‘unilateral
earthquake’’ where the rupture propagates only in one direc-
tion, hardly propagating in the opposite direction.

Possible precursory phenomena exhibited by the model are
of much interest, since they might open a way to an earth-
quake forecast. In fact, certain precursory features were

FIG. 10 (color online). The local recurrence-time distribution of

the 1D BK model with nearest-neighbor interaction for various

values of the frictional parameter 
. Large events withM>Mc ¼ 3
or 4 are considered. The parameters l and � are l ¼ 3 and � ¼ 0:01.

The recurrence time T is normalized by its mean �T. The total

number of blocks is N ¼ 800. The inset represents semilogarithmic

plots including the tail part of the distribution. From Mori and

Kawamura, 2005.
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FIG. 9 (color online). The magnitude distribution of earthquake events of the 1D BK model with nearest-neighbor interaction for various

values of the friction parameter 
: (a) for larger 
 ¼ 1, 2, 3, 5, and 10, and (b) for smaller 
 ¼ 0:25, 0.5, 0.75, and 1. The parameters l and �
are fixed to be l ¼ 3 and � ¼ 0:01. The system size is N ¼ 800. From Mori and Kawamura, 2006.
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observed in the 1D BK model. Shaw, Carlson, and Langer

examined the spatiotemporal patterns of seismic events pre-

ceding large events, observing that the seismic activity accel-

erates as the large event approaches (Shaw, Carlson, and

Langer, 1992). Mori and Kawamura observed that the fre-

quency of smaller events is gradually enhanced preceding the

mainshock, whereas, just before the mainshock, it is sup-

pressed in a close vicinity of the epicenter of the upcoming

event (Mori and Kawamura, 2005; 2006), a phenomenon

closely resembling the ‘‘Mogi doughnut’’ (Mogi, 1969;

1979; Scholz, 2002). Figure 11 represents the space-time

correlation function between the large events and the preced-

ing events of arbitrary size (dominated in number by smaller

events). It represents the conditional probability that, pro-

vided that a large event of M>Mc ¼ 3 occurs at a time t0
and at a spatial point r0, an event of arbitrary size occurs at a

time t0 � t and at a spatial point r0 � r. As can be seen from

the inset of Fig. 11, seismic activity is gradually accelerated

toward the mainshock either spatially or temporally. As can

be seen from the main panel, however, the seismic activity is

suppressed just before the mainshock in a close vicinity of the

epicenter of the mainshock; see the dip developing around

r ¼ 0 for t 	 0:01.
It turned out that the size of the quiescence region was

always of only a few blocks, independent of the size of the

upcoming mainshock (Mori and Kawamura, 2006). This may

suggest that the quiescence is closely related to the discrete

nature of the BK model; see Sec. III.A.6. Thus, the size of the

quiescence region cannot be used in predicting the size of the

upcoming mainshock. Instead, a correlation was observed

between the size of the upcoming mainshock and the size

of the seismically active ‘‘ring’’ region surrounding the qui-

escence region (Pepke, Carlson, and Shaw, 1994; Mori and

Kawamura, 2006). Such a correlation was also reported in a

real seismic catalog (Kossobokov and Carlson, 1995).

An aftershock sequence obeying the Omori law, although a
common observation in real seismicity, is not observed in the
BK model, at least in its simplest version (Carlson and
Langer, 1989a; 1989b; Mori and Kawamura, 2006).
Interestingly, Pelletier reported that the inclusion of the vis-
cosity effect in the form of ‘‘dashpots’’ in the 2D BK model,
together with the introduction of inhomogeneity of friction
parameters, could realize an aftershock sequence obeying the
Omori law (Pelletier, 2000). The frictional force employed by
Pelletier was a very simple one, i.e., a constant dynamical vs
static friction coefficient. Further analysis is desirable to
establish the occurrence of an aftershock sequence obeying
the Omori law in the BK model.

We note in passing that the 1D BK model has also been
extended in several ways, e.g., by taking account of the effect
of the viscosity (Myers and Langer, 1993; Shaw, 1994; De
and Ananthakrisna, 2004; Mori and Kawamura, 2008b),
modifying the form of the friction force (Myers and
Langer, 1993; Shaw, 1995; Cartwright, Garcia, and Piro,
1997; De and Ananthakrisna, 2004), and driving the system
only at one end of the system (Vieira, 1992; Vieira, 1996).
The effect of the long-range interactions introduced between
blocks was also analyzed; we review this effect in
Sec. III.A.4.

4. The 2D BK model with short-range interaction

Real earthquake faults are 2D rather than 1D. Hence, it is
clearly desirable to study the 2D version of the BK model in
order to further clarify the statistical properties of earth-
quakes. The 2D BK model taken up here is to be understood
as representing a fault plane that is itself 2D, where the
direction orthogonal to the fault plane is not considered
explicitly in the model (Carlson, 1991b). The other possible
version is the one where the second direction of the model is
taken to be orthogonal to the fault plane (Myers, Shaw, and
Langer, 1996).

Extensive numerical studies have revealed that statistical
properties of the 2D BK model are more or less similar to
those of the 1D BK model reviewed in the previous section, at
least qualitatively. The magnitude distribution RðMÞ of the
2D BK model has been studied by several groups (Carlson
and Langer, 1989a; 1989b; Carlson et al., 1991; Kumagai
et al., 1999; and Mori and Kawamura, 2008a). In Fig. 12, we
show typical behaviors of the magnitude distribution of the
2D BK model with variation of the frictional parameter 

(Mori and Kawamura, 2008a). For smaller 
 & 0:5, RðMÞ
bends down rapidly at larger magnitudes, exhibiting a sub-
critical behavior. Only small events of M & 0:5 occur in this
case. At 
 * 0:5, large earthquakes of magnitude M ’ 8
suddenly appear, while earthquakes of intermediate magni-
tude, say, 2 & M & 6, remain rather scarce. Such a sudden
appearance of large earthquakes at 
 ¼ 
c1 ’ 0:5 coexisting
with smaller ones has a feature of a discontinuous or first-
order transition.

In this context, it might be interesting to point out that
Vasconcelos observed that a single-block system exhibited a
first-order transition at 
 ¼ 0:5 from a stick-slip to a creep
mechanism (Vasconcelos, 1996), whereas this discontinuous
transition becomes apparently continuous in many-block sys-
tems (Vieira, Vasconcelos, and Nagel, 1993; Clancy and

FIG. 11 (color online). The event frequency preceding the large

event of M>Mc ¼ 3 vs the distance from the epicenter of the

upcoming mainshock of the 1D BK model with nearest-neighbor

interaction. The parameters 
, l, and � are 
 ¼ 1, l ¼ 3, and � ¼
0:01. The data are shown for several time periods before the

mainshock. The inset represents similar plots with longer time

intervals. The system size is N ¼ 800. From Mori and

Kawamura, 2006.
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Corcoran, 2005). The first-order transition observed at 
 ¼

c1 ’ 0:5 in the 2D model may have some relevance to the
first-order transition of a single-block system observed by
Vasconcelos, although events observed at 
< 
c1 in the
present 2D model are not really creeps, but rather are stick-
slip events of small size.

With further increase in 
, the frequency of earthquakes of
intermediate magnitude gradually increases. Figure 12(b)
exhibits RðMÞ for larger 
. In the range of 1 & 
 & 10,
RðMÞ exhibits a pronounced peak structure at larger magni-
tude, deviating from the GR law, while it exhibits a near
straight-line behavior corresponding to the GR law at smaller
magnitudes (supercritical behavior). As 
 increases further,
the peak at a larger magnitude becomes less pronounced. At

 ¼ 
c2 ’ 13, RðMÞ exhibits a near straight-line behavior for
a rather wide magnitude range, although RðMÞ falls off
rapidly at still larger magnitudes M * 7, indicating that the
near-critical behavior observed for 
 ¼ 
c2 ’ 13 cannot be
regarded as truly asymptotic, since this rapidfalloff of RðMÞ
at very large magnitudes is bulk property, not a finite-size
effect.

A ‘‘phase diagram’’ of the model in the elasticity parame-

ter l versus the friction parameter 
, as reported by Mori and

Kawamura (2008a) is shown in Fig. 13. The regions or the

phases called supercritical, near critical, and subcritical are

observed. The straight-line behavior of RðMÞ, i.e., the GR

law, is realized only in a restricted region in the phase

diagram along the phase boundary between the supercritical

and subcritical regimes. Even along the phase boundary, the

GR relation is characterized by a finite cutoff magnitude

above which larger earthquakes cease to occur. Hence, the

GR relation, as observed in a ubiquitous manner in real faults,

is not realized in this model. Since each phase boundary has a

finite slope in the 
-l plane, one can also induce the

subcritical-supercritical transition by varying the l value for

a fixed 
 (Espanol, 1994; Vieira and Lichtenberg, 1996).
As for other quantities, the recurrence-time distribution of

the 2D model exhibits a behavior similar to that of the 1D

model. As in the case of 1D, an aftershock sequence obeying

the Omori law is not observed even in the 2D model, at least

in its simplest version. The 2D model also exhibits precursory

phenomena similar to the ones observed in the 1D model

(Mori and Kawamura, 2008a). Acceleration of seismic activ-

ity prior to the mainshock is observed in the supercritical

regime, while it is not realized in the subcritical regime. As in

the case of 1D, mainshocks are accompanied by the Mogi-

doughnut-like quiescence in both supercritical and subcritical

regimes.
As another signature of the precursory phenomena, we

show in Fig. 14 the time-resolved local magnitude distribu-

tion calculated for time periods before the large event in the

supercritical regime of 
 ¼ 1 and l ¼ 3 (Mori and

Kawamura, 2008a). Only events with their epicenters lying

within five blocks of the upcoming mainshock of magnitude

M � Mc ¼ 5. As can be seen from the figure, fine apparent B
value describing the samaller-magnitude region gets smaller

as the mainshock is approached, i.e., it changes from

B ’ 0:89 of the long-time value to B ’ 0:65 in the time range

t� 	 0:1 before the mainshock. In real seismicity, an appre-

ciable decrease of the B value has been reported preceding

large earthquakes (Suyehiro, Asada, and Ohtake, 1964;

Jaume and Sykes, 1999; Kawamura, 2006). Obviously, a

FIG. 12 (color online). The magnitude distribution RðMÞ of the

2D BK model with nearest-neighbor interaction for various values

of the friction parameter 
. The other parameters are l ¼ 3 and � ¼
0:01. (a) RðMÞ for smaller values of the friction parameter 0 	 
 	
3, (b) RðMÞ for larger values of the friction parameter 3 	 
 	 1.

The system size is 60
 60. From Mori and Kawamura, 2008a.

FIG. 13. Phase diagram of the 2D BK model with nearest-

neighbor interaction in the plane of the friction parameter 
 versus

the elastic parameter l. The parameter � is � ¼ 0:01. From Mori

and Kawamura, 2008a.
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possible change in the magnitude distribution preceding the
mainshock possesses potential importance in earthquake
forecasting.

5. The BK model with long-range interaction

So far, we have assumed that the interaction between
blocks works only between nearest-neighboring blocks.
This may correspond to the situation where a thin isolated
plate is subject to friction force and is driven by shear force
(Clancy and Corcoran, 2006). However, a real fault is not
necessarily a thin isolated plate, and the elastic body extends
in directions away from the fault plane. Indeed, the BK model

extended in the direction orthogonal to the fault plane has
also been studied (Myers, Shaw, and Langer, 1996).

Considering the effect of such an extended elastic body

adjacent to the fault plane under certain conditions amounts
to considering the effective interblock interaction as long
ranged. Thus, taking account of the effect of long-range
interaction might make the model more realistic. Rundle
et al. studied the properties of the 2D cellular automaton
version of the BK model with the long-range interaction
decaying as 1=r3 (Rundle et al., 1995). Xia et al. studied

the 1D BK model with a variable-range interaction where a
block is connected to its R neighbors with a rescaled spring
constant proportional to 1=R (Xia et al., 2005; Xia et al.,
2008). The long-range model considered by Xia et al. may be
regarded as of mean-field type, since the model reduces to the
mean-field infinite-range model in the R ! 1 limit.

One can also derive the relevant long-range interaction
based on an elastic theory (Mori and Kawamura, 2008b).
Suppose that the 3D elastic body in which the 2D BK model
lies is isotropic, homogeneous, and infinite, and a fault

surface is a plane lying in this elastic body and slipsping
along one direction only. Then, a static approximation for an
elastic equation of motion for the elastic body would give rise
to a spring constant between blocks decaying with their
separation r as 1=r3. This static assumption is justified

when the velocity of the seismic-wave propagation is high
enough compared with the velocity of the seismic-rupture
propagation.

Properties of the 2D BK model with the long-range power
law interaction derived from an elastic theory, i.e., decaying
as 1=r3, were investigated by Mori and Kawamura, 2008b.
The interaction between the two blocks at sites (i, j) and
(i0, j0) is given in the dimensionless form by�

l2x
ji0 � ij2

r5
þ l2z

jj0 � jj2
r5

�
ðui0 ;j0 � ui;jÞ; (51)

which falls off with distance r as 1=r3. Then, the dimension-
less equation of motion for the 2Dlong-range interaction can
be written as

€ui;j ¼ �t� ui;j þ
X

ði0 ;j0Þ�ði;jÞ

�
l2x
ji0 � ij2

r5
þ l2z

jj0 � jj2
r5

�


 ðui0;j0 � ui;jÞ ��i;j: (52)

If one restricts the range of interaction to nearest neighbors
and takes the spatially anisotropic spring constant to be
isotropic, lx ¼ lz ¼ l, one recovers the isotropic nearest-
neighbor model described by Eq. (42). The ‘‘isotropy’’ as-
sumption lx ¼ lz is equivalent to a vanishing Lamé constant.
In fact, in the short-range model, such spatial anisotropy of
the 2D BK model turned out to hardly affect the statistical
properties of the model in the sense that the properties of the
anisotropic model were quite close to those of the corre-
sponding isotropic model characterized by the mean spring
constant l ¼ ðlx þ lzÞ=2 (Mori and Kawamura, 2008a).

One might also consider the 1D BK model with long-range
interaction (Mori and Kawamura, 2008b). One possible way
to construct the 1D model might be to impose the condition
on the corresponding 2D model that the systems is com-
pletely rigid along the z direction, corresponding to the depth
direction, i.e., uðx; z; tÞ ¼ uðx; tÞ. This yields an effective
interblock interaction decaying with distance r as 1=r2,

l2
1

ji� i0j2 ðui0 � uiÞ; (53)

with the dimensionless equation of motion

€ui ¼ �t� ui þ l2
P
i0�i

ui0�ui
ji�i0j2 ��i: (54)

In Figs. 15(a) and 15(b), we show the magnitude distribu-
tion RðMÞ of the long-range 2D BK model for smaller and
larger values of 
, i.e., (a) 0 	 
 	 10 and (b) 10 	 
 	 1
(Mori and Kawamura, 2008b). As in the short-range case,
three distinct regimes are observed depending on the 
 value.
The intermediate-
 region corresponds to the supercritical
regime where RðMÞ exhibits a pronounced peak at a larger
magnitude, showing a characteristic behavior. A major dif-
ference from the short-range case is that the subcritical
behavior realized in the short-range model in the smaller-

and larger-
 regions is now replaced by near-critical behavior
in the long-range model. Namely, for smaller 
< 
c1 � 2
and for larger 
> 
c2 � 25, RðMÞ exhibits a near straight-
line behavior over a rather wide magnitude range, and drops
off sharply at larger magnitudes. The associated B value is
estimated to be B ’ 0:59 ð
< 
c1Þ and B ’ 0:55 ð
> 
c2Þ,

FIG. 14 (color online). The local magnitude distribution preced-

ing a mainshock of M>Mc ¼ 5 of the 2D BK model with nearest-

neighbor interaction. The parameters are 
 ¼ 1, l ¼ 3, and

� ¼ 0:01. The data are shown for several time periods before the

mainshock. The system size is 60
 60. From Mori and Kawamura,

2008a.
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which is rather insensitive to the 
 value. This straight-line

behavior of RðMÞ cannot be regarded as truly critical, since

RðMÞ drops off sharply at very large magnitudes. As in the
short-range case, the change from the supercritical to the

near-critical behavior at 
 ¼ 
c2 ’ 25 is continuous, while

it is discontinuous at 
 ¼ 
c1 ’ 2.
Such near-critical behavior realized over a wide parameter

range is in sharp contrast to the behavior of the corresponding
short-range model, where RðMÞ at smaller and larger 

exhibits only a down-bending subcritical behavior, while a

straight-line near-critical behavior is realized only by fine-

tuning the 
 value to a special value 
 ’ 
c2. The robustness
of the near-critical behavior of RðMÞ observed in the 2D long-

range model might have an important relevance to real

seismicity, since the GR law is ubiquitously observed for

different types of faults. Note also that the associated B value
observed here turns out to be close to the one observed in real

seismicity (Mori and Kawamura, 2008b).
In Fig. 16, the behavior of RðMÞ is summarized in the form

of a phase diagram in the plane of the friction parameter 

versus the elastic parameter l (Mori and Kawamura, 2008b).
As can be seen from the figure, the phase diagram of the long-

range model consists of three distinct regimes, two of which

are near-critical while one is supercritical. The phase bound-
ary between the smaller-
 near-critical regime and the su-
percritical regime represents a discontinuous transition, while
the one between the larger-
 near-critical regime and the
supercritical regime represents a continuous transition. For
comparison, the corresponding phase boundary of the short-
range model is also shown. The near-critical phases in the
long-range model are replaced by subcritical phases in the
short-range model.

Note that the system in different phases of Fig. 16 really
shows different properties. For example, we show in Fig. 17
the magnitude dependence of the mean displacement ��u at a
seismic event (Mori and Kawamura, 2008b). As can be
seen from the figure, the data in the two near-critical regimes
(the data in the upper horizontal branch and in the lower
horizontal branch) are grouped into two distinct branches,

FIG. 15 (color online). The magnitude distribution RðMÞ of the

2D BK model with long-range interaction for various values of the

friction parameter 
. The other parameters are l ¼ 3 and � ¼ 0:01.
(a) RðMÞ for smaller values of the frictional parameter 0 	 
 	 10.
(b) RðMÞ for larger values of the frictional parameter 10 	 
 	 1.

The system size is 60
 60. From Mori and Kawamura, 2008b.

FIG. 16 (color online). The phase diagram of the 2D BK models

with long-range interaction in the plane of the friction parameter 

vs elastic parameter l, compared with that of the 2D BK model with

short-range interaction. The parameter � is set to � ¼ 0:01. From
Mori and Kawamura, 2008b.

FIG. 17 (color online). The magnitude dependence of the mean

displacement ��u at each seismic event of the 2D BK model with

long-range interaction. In the main panel, the friction parameter 
 is

varied with a fixed system size 60
 60, while in the inset the

system size N is varied for the case of 
 ¼ 30. The parameters l and
� are fixed to l ¼ 3 and � ¼ 0:01. From Mori and Kawamura,

2008b.
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while the data in the supercritical regime (the data in be-
tween) exhibit a significantly different behavior. Interestingly,
the mean displacement in the near-critical regimes hardly
depends on the event magnitude.

It was observed that the mean stress drop at a seismic event
also hardly depends on the event magnitude in the near-
critical regimes of the 2D long-range BK model (Mori and
Kawamura, 2008b). A similar independence was also re-
ported in the mean-field-type 1D long-range BK model
(Xia et al., 2005; Xia et al., 2008) and in the 1D long-range
BK model (Mori and Kawamura, 2008b).

6. Continuum limit of the BK model

Although the BK model has been widely used as a useful
tool to investigate statistical properties of earthquakes, the
block discretization inherent to the model construction is a
crude approximation of the original continuum earthquake
fault. It introduces a short-length cutoff scale into the prob-
lem. Therefore, in order to check the validity of the model, it is
crucially important to examine the continuum limit of the BK
model carefully. Indeed, Rice criticized the discrete BKmodel
with the velocity-weakening friction law as ‘‘intrinsically
discrete,’’ lacking in a well-defined continuum limit (Rice,
1993). Rice argued that the spatiotemporal complexity ob-
served in the discrete BK model was due to the inherent
discreteness of the model and should disappear in the contin-
uum. Indeed, he applied the RSF law, which possesses an
intrinsic length scale corresponding to the characteristic slip
distance, and showed that the system tended to exhibit a
quasiperiodic behavior if the grid spacing d0 was taken smaller
than the characteristic length scale, while if the grid spacing d0
was taken longer than that, the system exhibited an apparently
complex or critical behavior. This problem of the continuum
limit of the BK model was also addressed by Myers and
Langer (1993) within the velocity-weakening friction law;
they introduced a Kelvin viscosity term to produce a small
length scale, which allowed a well-defined continuum limit.
Myers and Langer, and subsequently Shaw (1994), observed
that the added viscosity term smoothed the rupture dynamics,
apparently giving rise to the continuum limit accompanied by
spatiotemporal complexity. More recently, the continuum
limit of the 1D BK model with and without viscosity was
examined by Mori and Kawamura within the velocity-
weakening friction law (Mori and Kawamura, 2008c).

Thus, two different ways of taking the continuum limit of
the BK model have been tried so far, each introducing a short
length scale via (A) the viscosity term or (B) the RSF law. In
this section, we examine the former (A), while the latter (B) is
discussed in the next section.

As mentioned, the naive continuum limit of the discrete
BK model with a velocity-weakening friction force without
viscosity has a problem in that the pulse of the slip tends to
become increasingly narrow in the limit, i.e., the dynamics
becomes sensitive to the grid spacing d0 ! 0. One way to
circumvent this problem is to introduce the viscosity term
�0@3Ui=@x

02@t0 into Eq. (41) to produce a small length scale,
where �0 is the viscosity coefficient. Myers and Langer
showed that, owing to the added viscosity term, the system
becomes independent of the grid spacing d0 as long as the new
small length scale �0, defined by

�0 ¼ �

ffiffiffiffiffiffiffiffi
�0


!

s
; (55)

is sufficiently larger than the grid spacing d0 (Myers and
Langer, 1993). With �0 being the wave velocity in the con-
tinuum limit, this small length scale �0 can also be given in
dimensionless form as

� � �0=ð�0=!Þ ¼ �

ffiffiffiffi
�




r
; (56)

where � � �0=ð�02=!Þ is the dimensionless viscosity coeffi-
cient. The dimensionless distance r between the blocks i and
i0 is measured by

r ¼ dji� i0j; (57)

where d � d0=ð�0=!Þ is the dimensionless grid spacing. The
continuum limit corresponds to taking the limit d ! 0 with
fixed L ¼ Nd and r, which means N ! 1 and l ! 1. Thus,
taking the continuum limit in the BK model corresponds to
making the model infinitely rigid, l ! 1. Numerically, vari-
ous observables were calculated with successively smaller d
to examine its asymptotic d ! 0 limit.

Shaw showed, by adding the viscosity term to the 1D BK
model, that the magnitude distribution becomes independent
of the grid spacing d0 for sufficiently small d0 (Shaw, 1994).
Mori and Kawamura studied the 1D BK model with succes-
sively smaller grid spacings d0 to examine how various
statistical properties of the model changed and approached
the continuum limit for both cases of nonzero (�> 0) and
zero (� ¼ 0) viscosity (Mori and Kawamura, 2008c). It was
then observed that, in the viscous case, the results converged
to the continuum limit when the condition d < � was met,
whereas, in the nonviscous case, such a convergence was
obscure.

As an example, we show in Fig. 18 the convergence of the
magnitude distribution function RðMÞ for 
 ¼ 1 (a) and

 ¼ 3 (b), in the viscous case (� ¼ 0:02). For both cases
of 
 ¼ 1 and 3, the continuum limit seems to be well reached,
i.e., RðMÞ seems to converge to an asymptotic form for
smaller d, except that the minimum magnitude continuously
gets lower as the grid spacing d gets smaller. A similar result
was reported by Shaw (1994). From Fig. 18(a), one also sees
that a nonzero viscosity tends to weaken the GR character of
the magnitude distribution somewhat. Such a deviation from
the GR law at smaller magnitudes probably originates from
the fact that the viscosity tends to make the relative displace-
ment of neighboring blocks smoother, enhancing the corre-
lated motion of neighboring blocks, which considerably
reduces the frequency of smaller events of one or a few
blocks (Mori and Kawamura, 2008c).

The small length-cutoff scale � as given by Eq. (56) is
estimated here to be � ’ 0:44 and 0.26 for 
 ¼ 1 and 3,
respectively. As can be seen from Figs. 18(a) and 18(b),
RðMÞ converges to an asymptotic form for d values smaller
than d ’ 1=4 and 1=8 for 
 ¼ 1 and 3, respectively, which is
consistent with the expected condition of the continuum limit
d < �.

As mentioned in Sec. III.A.3, the BK model generally
gives rise to a seismic quiescence phenomenon prior to
mainshock, i.e., the Mogi doughnut. Then, a natural question
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is whether the doughnutlike quiescence observed in the dis-
crete BK model survives the continuum limit, or it is a
phenomenon intrinsically originating from the short cutoff-
length scale of the model. This question was addressed by
Mori and Kawamura (2008c). Figure 19 exhibits the time-
dependent spatial correlation functions before the mainshock
in the case of the viscous model with 
 ¼ 1. As the grid
spacing d gets smaller, the spatial range of the quiescence
gets narrower, tending to vanish for small enough d; see the
inset of Fig. 19. This observation strongly suggests that the
doughnutlike quiescence might vanish altogether in the con-
tinuum limit d ! 0. Thus, the doughnutlike quiescence ob-
served in the discrete BK model is likely to be a phenomenon

closely related to the short length-cutoff scale of the model.

This seems fully consistent with the observation that the one-

block events are responsible for the observed doughnutlike

quiescence (Mori and Kawamura, 2006; 2008a).
The observation might have some implications to real

seismicity. While the real crust is obviously a continuum, it

is often not very uniform, and possibly has a short-length

cutoff. In any case, in real earthquakes the Mogi doughnut is

occasionally reported to occur (Mogi, 1969; 1979; Scholz,

2002), although establishing its statistical significance is

sometimes not easy. Thus, our present result may suggest

that, if the real crust possesses a cutoff length scale due to the

inhomogeneity of the crust, the ‘‘Mogi doughnut’’ quiescence

might occur at such a length scale. In other words, spatial

inhomogeneity might be an essential ingredient for the Mogi

doughnut to occur in real seismicity (Mori and Kawamura,

2008c).

7. The BK model with RSF law

So far, we mostly assumed a simple velocity-weakening

friction law where the friction force is a single-valued func-

tion of the velocity. As detailed in Sec. II and in III.A.2, the

RSF law is now regarded in seismology as the standard

constitutive law.
Tse and Rice employed this RSF constitutive relation in

their numerical simulations of earthquakes (Tse and Rice,

1986). They studied the stick-slip motion of a two-

dimensional strike-slip fault within an elastic continuum

theory, assuming that the fault motion is rigid along the strike.

It was then observed that large events repeated periodically.

Since then, similar RSF constitutive laws have been widely

used in numerical simulations (Stuart, 1988; Horowitz and

Ruina, 1989; Rice, 1993; Ben-Zion and Rice, 1997; Kato and

Hirasawa, 1999a; Kato, 2004; Bizzarri and Cocco, 2006a,

2006b). A somewhat different type of slip-dependent and

state-dependent constitutive law has also been used

(Cochard and Madariaga, 1996).
Cao and Aki performed a numerical simulation of earth-

quakes by combining the 1D BK model with a RSF law in

FIG. 19 (color online). The event frequency in the time period

t� ¼ 0–0:01 immediately before the mainshock of M>Mc ¼ 2 of

the 1D viscous BK model (� ¼ 0:02) with 
 ¼ 1 plotted vs r, the

distance from the epicenter of the upcoming mainshock. The

dimensionless grid spacing d is varied in the range 1=4 � d �
1=32. The parameter � is fixed to � ¼ 0:01. The system size is L ¼
dN ¼ 200. The inset represents the peak position of the event

frequency, corresponding to the range of the doughnutlike quies-

cence, as a function of the dimensionless grid spacing d. The

doughnutlike quiescence vanishes in the continuum limit d ! 0.
From Mori and Kawamura, 2008c.

FIG. 18 (color online). The magnitude distribution RðMÞ of earthquake events of the 1D viscous BK model (� ¼ 0:02) with � ¼ 0:01. The
dimensionless grid spacing d is varied in the range 1 � d � 1=32. (a) and (b) represent the cases of 
 ¼ 1 and 3, respectively. The system

size is L ¼ dN ¼ 200. From Mori and Kawamura, 2008c.
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which various constitutive parameters were set nonuniformly

over blocks (Cao and Aki, 1986). Ohmura and Kawamura

extended an earlier calculation by Cao and Aki to study the

statistical properties of the 1D BK model combined with RSF

constitutive law with uniform constitutive parameters

(Ohmura and Kawamura, 2007). Clancy and Corcoran also

performed a numerical simulation of the 1D BK model based

on a modified version of the RSF law (Clancy and Corcoran,

2009).
Rice and collaborators argued that the slip complexity of

the BK model might be caused by its intrinsic discreteness

(Rice, 1993; Ben-Zion and Rice, 1997). In this context, it is

important to clarify the statistical properties of the model

where the discrete BK structure is combined with the RSF

law, to compare its statistical properties with those of the

standard BK model with the velocity-weakening or slip-

weakening friction law reviewed in the previous sections.
A recent study by Morimoto and Kawamura revealed that

the model exhibits very different behaviors depending on

whether the frictional instability is ‘‘strong’’ or ‘‘weak’’

(Morimoto and Kawamura, 2011). The condition of strong

or weak frictional instability is given by b > 2l2 þ 1 or b <
2l2 þ 1, respectively, for the 1D BK model. In the case of a

weaker frictional instability, the model exhibits a precursory

process where a slow nucleation process occurs prior to the

mainshock. In the next section, we discuss such a precursory

process realized in the BKmodel in more detail. Interestingly,

the presence or absence of such a nucleation process also

affects statistical properties of the model. From a simulation

point of view, the case of a weaker friction instability is much

harder to deal with, since a slow and long-standing nucleation

process prior to the mainshock generally requires a lot of

CPU time.
The statistical properties of the 1D BK model with the RSF

law Eq. (47) [or Eq. (49)] and Eq. (48) were investigated by

Ohmura and Kawamura for the case of a strong frictional

instability (Ohmura and Kawamura, 2007), and by Yamamoto

and Kawamura for the case of a weak frictional instability

(Yamamoto and Kawamura, 2011). Typical behaviors of the

magnitude distribution are, respectively, shown in Figs. 20(a)

and 20(b). As can be seen from the figure, when the frictional

instability is strong, an almost flat distribution spanning from

small to large magnitudes is realized, while, as the critical

value is approached, the peak at larger magnitude becomes

more pronounced, giving rise to an enhanced characteristic

behavior. In the weak frictional instability regime, the distri-

bution has no weight at smaller magnitudes, with a pro-

nounced peak only at a large magnitude. This means that

only large earthquakes of more or less similar magnitude

occur in the regime of a weak frictional instability.
The statistical properties of the corresponding 2D model

were investigated by Kakui and Kawamura for both cases of

weak and strong frictional instabilities (Kakui and

Kawamura, 2011). In the 2D BK model, the condition of

strong or weak frictional instability is given by b > 4l2 þ 1 or
b < 4l2 þ 1, respectively. Typical behaviors of the magnitude

distribution are shown in Figs. 21(a) and 21(b) for the cases of

strong and weak instabilities, respectively. As can be seen

from the figure, when the frictional instability is strong, a

behavior more or less close to the GR law, characterized by an

exponent close to B� 2=3, is realized, although there is a

weak shoulderlike structure superimposed at larger magni-

tudes. The observation of a near-critical behavior close to the

GR law would be of much interest in conjunction with real

seismicity. As the critical value is approached, on the other

hand, the peak at larger magnitude is further developed,

giving rise to an enhanced characteristic behavior. In the

weak frictional instability regime, the distribution has double

peaks, exhibiting more characteristic behavior; see Fig. 21(b).

8. Nucleation process of the BK model

In this section, we touch upon the nucleation process as a

precursory phenomenon prior to the mainshock as realized in

the BK model obeying the RSF law. It was observed that the

nucleation process is realized even in the BK model with the

RSF law for both cases of 1D and 2D, if the model lies in

the regime of a weak frictional instability (Morimoto and

Kawamura, 2011; Kakui and Kawamura, 2011). Namely,

prior to seismic rupture, the system exhibits a slow rupture

process localized to a compact seed area with its rupture

velocity orders of magnitude smaller than the seismic-wave

ν
ν
ν
ν
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 )
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FIG. 20 (color online). The magnitude distribution of the 1D BK

model with the RSF law, for the cases of (a) a strong frictional

instability b > bc and (b) a weak frictional instability b < bc, with
bc ¼ 2l2 þ 1. The parameter values are a ¼ 0, c ¼ 1000, � ¼
10�8, v� ¼ 1, and l ¼ 3 in (a) and a ¼ 1, b ¼ 5, c ¼ 1000,

v� ¼ 1, and l ¼ 5 in (b). The borderline b value is bc ¼ 19 in

(a) and bc ¼ 51 in (b). The system size is N ¼ 800 in (a) and

N ¼ 1200 in (b). (a) From Ohmura and Kawamura, 2007. (b) From

Morimoto and Kawamura, 2011.
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velocity. The system spends a very long time in this nuclea-
tion process, and then, at some stage, exhibits a rapid accel-
eration process accompanied by a rapid growth of the rupture
velocity and a rapid expansion of the rupture zone, finally
getting into the final seismic rupture or a mainshock
(Dieterich, 2009). Such a nucleation process has also been
observed and extensively studied in the continuum model;
see, e.g., Ampuero and Rubin (2008). We illustrate in Fig. 22
a typical example of seismic events realized in the 1D BK
model with the RSF law for each case of a weak frictional
instability (b) and of a strong frictional instability (a). As can
be seen from the figure, a slow nucleation process with a long
duration time is observed only in (b), while such a nucleation
process is absent in (a).

As mentioned, the condition for the appearance of such a
nucleation process is given by b < bc ¼ 2l2 þ 1 in 1D and by
b < bc ¼ 4l2 þ 1 in 2D (for a square array of blocks).
Indeed, Morimoto and Kawamura found that the critical
nucleation size at which the slow nucleation process ends
and the acceleration stage begins is given by Xc ¼
�farccos½1� ðb� 1Þ=2l2�g � 1 in units of block size
(Morimoto and Kawamura, 2011). Indeed, this length Xc

corresponds in its physical meaning to the length h� of
Rice (1993), although its detailed functional form, e.g., the
dependence on b, is somewhat different from the standard

one. The condition of this critical nucleation size being

greater than the block size, Xc > 1, yields the condition of

weak frictional instability b < bc. In other words, when

b > bc, the nucleation process cannot be realized in the BK

model due to its intrinsic discreteness. Indeed, this is exactly

the situation discussed by Rice (1993).
This observation means that, if one takes the continuum

limit of the BK model with the RSF law, the system should

necessarily lie in the limit of a weak frictional instability,

since the continuum limit means l ! 1. Hence, at least as

long as one considers a uniform fault obeying the RSF law

without any discretization short length scale, earthquakes

should exhibit characteristic properties rather than critical

properties. This fully corroborates an earlier criticism by

Rice against the SOC view of earthquakes based on the BK

model (Rice, 1993). Indeed, in seismology the concept of

earthquake cycles has been used in long-term probabilistic

earthquake forecasts (Scholz, 2002; Nishenko and Buland,

1987; Working Group on California Earthquake Probabilities,

1995). Of course, a big issue to understand is what is then the

true origin of the GR law, which is widely observed in real

seismicity.

B. Continuum models

As discussed in Sec. III.A.6, Rice (1993) criticized inher-

ently discrete models, where simulated earthquake sequences

depend on the computation grid size. He confirmed in nu-

merical simulations that complex earthquake sequences
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FIG. 21 (color online). The magnitude distribution of the 2D BK

model with the RSF law, for the case of (a) a strong frictional

instability b > bc, and of (b) a weak frictional instability b < bc,
with bc ¼ 4l2 þ 1. The parameter values are a ¼ 1, c ¼ 1000, � ¼
10�8, v� ¼ 1, and l ¼ 2 in (a), and a ¼ 1, c ¼ 1000, � ¼ 10�8,

v� ¼ 1, and l ¼ 2 in (b). The borderline value is bc ¼ 17 in both (a)
and (b). The system size is N ¼ 60
 60 in (a), and N ¼ 30
 30 in
(b). From Kakui and Kawamura, 2011.
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FIG. 22 (color online). The typical rupture process realized in the

1D BK model with the RSF law for (a) a strong and (b) a weak

frictional instability, corresponding to (a) b > bc and (b) b < bc
with bc ¼ 2l2 þ 1. The color represents the rupture velocity. The

parameter values are a ¼ 1, c ¼ 1000, � ¼ 10�2, v� ¼ 1, and l ¼
5 for both (a) and (b), corresponding to bc ¼ 51, whereas b ¼ 60 in

(a) and b ¼ 3 in (b). From Morimoto and Kawamura, 2011.
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disappear when the grid size is sufficiently smaller than the
critical size of the slip nucleation zone for almost spatially
uniform frictional properties. Moreover, he argued that geo-
metrical and/or material disorder is the origin of complexity
of earthquakes. The models with sufficiently small grid sizes
may be called continuum models, which generate simulation
results independent of the grid size, in contrast to inherently
discrete models. Note that if a model does not have a finite
critical size for nucleating unstable slip, such as a model with
constant static and dynamic friction, it is always inherently
discrete. In this section, we discuss continuum models of
earthquakes, especially models using the rate- and state-
dependent friction law. In the RSF law, the critical size of
slip nucleation can be defined as a function of frictional
constitutive parameters, and the computation grid sizes are
sufficiently smaller than the critical size in the studies men-
tioned below. We use elastic continuum models below, in
contrast to spring-block models in the previous section. The
‘‘continuum model’’ is thus used in two senses.

The RSF law has commonly been used in models for
understanding earthquake phenomena (Scholz, 2002;
Dieterich, 2009). These models were sometimes constructed
for reproducing and understanding particular earthquakes,
earthquake cycles, or sliding processes observed by seismom-
eters, strainmeters, global positioning systems (GPS), etc. We
will see deterministic aspects of earthquake phenomena, in
addition to statistical characteristics of earthquakes. Note that
comprehensive reviews were presented by Ben-Zion (2008),
Rundle et al. (2003), and Turcotte, Shcherbakov, and Rundle
(2009) for models of statistical properties of earthquakes
using friction laws other than the RSF law.

1. Earthquake cycles, asperities, and aseismic sliding

Before introducing earthquake models, we briefly review
observational facts about earthquakes and fault slip behavior.
Earthquakes repeatedly occur at the same fault segment. At
the Parkfield segment along the San Andreas fault, California,
interplate earthquakes of magnitude about 6 have occurred at
recurrence intervals of 23� 9 yr since 1857 (Sykes and
Menke, 2006). Great earthquakes of magnitude 8 have re-
peatedly occurred along the Nankai trough, where the
Philippine Sea plate subducts beneath southwestern Japan,
every 100 years (Sykes and Menke, 2006). Quasiperiodic
earthquake recurrence has been used for long-term forecasts
of earthquakes (Working Group on California Earthquake
Probabilities, 1995; Matthews, Ellsworth, and Reasenberg,
2002). One of the most remarkable examples of regularity of
earthquakes was found off Kamaishi, where the Pacific plate
subducts beneath northern Honshu, Japan. Earthquakes of
magnitude of 4:8� 0:1 have repeatedly occurred at recur-
rence intervals of 5:5� 0:7 yr in the same region since 1957.
Okada, Matsuzawa, and Hasegawa (2003) estimated coseis-
mic slip distributions of recent Kamaishi earthquakes from
seismic waveform data and found that they overlap with each
other (Fig. 23). Although many smaller earthquakes occur
around the source area of the Kamaishi earthquakes, no
comparable or larger earthquakes occur there. This observa-
tion suggests that aseismic sliding surrounds the source area
of the Kamaishi earthquakes, where stick-slip motion occurs,
and steady loading by the surrounding aseismic sliding to the

source area leads to the quasiperiodic recurrence of earth-

quakes of almost the same magnitude. It has been suggested

that the variance in the recurrence interval came from tem-

poral variation of the aseismic sliding rate surrounding the

earthquake source (Uchida et al., 2005). The significant

afterslip of the 2011 great Tohoku-oki earthquake

(M ¼ 9:0) rapidly loaded the source area of the Kamaishi

earthquake, generating earthquakes at much shorter recur-

rence intervals. Recurrences of small earthquakes in the same

source areas in mainly creeping (aseismic sliding) regions

have been found in many places and these earthquakes are

FIG. 23 (color online). (a) Recurrence of Kamaishi earthquakes

of nearly the same magnitudes and recurrence intervals.

(b) Cumulative seismic moment of Kamaishi earthquakes.

(c) Coseismic slip distribution of the 1995 and 2001 Kamaishi

earthquakes estimated from seismic waveforms. Broken contours

and blue contours denote the seismic slip of the 1995 and 2001

earthquakes, respectively. From Okada, Matsuzawa, and Hasegawa,

2003.
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called small repeating earthquakes (Nadeau and Johnson,

1998; Igarashi, Matsuzawa, and Hasegawa, 2003). Although

small earthquakes occur, most strain is released by aseismic

sliding on these fault planes. The seismic coupling coefficient

is defined by the long-term average of the ratio of seismic slip

to total (seismic and aseismic) slip expected from relative

plate motion. The seismic coupling coefficient is variable,

dependent on the locality. It is close to unity at some seg-

ments in Chile and the Aleutians, indicating little aseismic

sliding and nearly complete locking during interseismic peri-

ods, and is nearly equal to zero in the Marianas, indicating no

or few large interplate earthquakes (Pacheco, Sykes, and

Scholz 1993). These facts show that aseismic sliding is a

common phenomenon and plays an important part in strain

release at plate boundaries and that frictional properties differ

from place to place.
A patch where stick-slip motion occurs, that is, a fault

region where earthquakes repeatedly occur, is often called an

asperity, from the rock mechanics term for a contact spot

between sliding surfaces as used in Sec. II.D. Note that an

asperity of an earthquake occupies a considerable part of the

earthquake fault area and its size is orders of magnitude larger

than the amount of seismic slip. In contrast, an asperity of a

sliding surface is much smaller and its size may be compa-

rable to the slip amount. The asperity model has been devel-

oped for explaining spatial heterogeneity in seismic slip on

faults and complex source processes of earthquakes

(Kanamori and McNally, 1982; Lay, Kanamori, and Ruff,

1982; Thatcher, 1990). When the asperity model was devel-

oped around 1980, sliding behavior surrounding asperities

had not been clarified from observations because aseismic

sliding cannot be detected by seismometers. To detect aseis-

mic sliding, geodetic observations as by GPSs are required.

Since dense GPS networks were established in the 1990s

(Segall and Davis, 1997), many aseismic sliding phenomena

have been reported, such as afterslip (postseismic sliding) and

slow (silent) earthquakes. The source areas of afterslip are

usually located near coseismic slip areas (asperities), and the

afterslip area and the asperity do not overlap, as shown in

Fig. 24 (Yagi, Kikuchi, and Nishimura, 2003; Miyazaki

et al., 2004; Johnson, Bürgmann, and Larson, 2006), which

also supports spatial heterogeneity of frictional properties. It

was confirmed that locations of asperities of large earth-

quakes are locked during interseismic periods from geodetic

observations (Chlieh et al., 2008; Hashimoto et al., 2009;

Perfettini et al., 2010). For instance, Fig. 25 clearly shows

that the seismic slip areas of large interplate earthquakes off

the island of Sumatra coincide with the locked areas during

interseismic periods. For the 2011 great Tohoku-oki earth-

quake (M ¼ 9:0), a significant peak of seismic slip larger

than 30 m was estimated from inversions of seismic wave-

form and tsunami data (Koketsu et al., 2011). This also

suggests nonuniform friction on the plate interface.
The spatial distribution of asperities on plate boundaries

has been estimated from source areas of past large interplate

earthquakes, and earthquakes repeatedly occurred on the

same asperities (Yamanaka and Kikuchi, 2004). This suggest

that the locations of asperities are unchanged for at least

a few earthquake cycles. Apparently complex earthquake

cycles, where earthquake rupture areas are variable, may be

understood by a change in the combination of simultaneously
ruptured asperities. For example, two adjacent asperities are
simultaneously ruptured, resulting in a large earthquake in
some cases, and one of them is ruptured to generate a smaller
event in other cases. Note that some researchers do not accept
persistent asperities, on the basis of seismic waveform analy-
ses (Park and Mori, 2007).

2. Models for nonuniform fault slip using the RSF law

The asperity model indicates that spatial heterogeneity of
material properties is important, and it is compatible with the
RSF law discussed in Sec. II.D. Regions of velocity-
weakening friction (a� b < 0) correspond to asperities,
where stick-slip occurs, and aseismic sliding occurs at regions
of velocity-strengthening friction (a� b > 0). Afterslip oc-
curs in velocity-strengthening areas, and it slowly relaxes the
stress increases generated by nearby earthquakes. Using a
single-degree-of-freedom spring-block model, Marone,
Scholtz, and Bilham (1991) obtained a theoretical slip time
function uðtÞ for afterslip, occurring on a fault with velocity-
strengthening friction (a� b > 0), as follows:

uðtÞ ¼ ða� bÞ�n

k
ln

�
kVcs

ða� bÞ�n

tþ 1

�
þ V0t; (58)

where �n is the normal stress on the fault plane, k is the
spring stiffness, Vcs is the coseismic slip velocity, V0 is
the preseismic slip rate, and the time t is measured from
the earthquake occurrence time. A quantitative comparison

FIG. 24 (color online). Spatial distribution of cumulative slip for

30 days of afterslip of the 2003 Tokachi-oki earthquake (M ¼ 8:0),

off Hokkaido, northern Japan, estimated from GPS data (color

contours) by Miyazaki et al. (2004). Black contours with an

0.5 m interval show seismic slip in the 1973 Nemuro-oki (right),

1968 Tokachi-oki (left), and 2003 Tokachi-oki (center) earthquakes

(Yamanaka and Kikuchi, 2004). The black star and small circles

denote the epicenter and aftershocks of the 2003 earthquake.
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between afterslip observations and models indicates that the
RSF law well explains afterslip (Perfettini and Avouac, 2004;
Freed, 2007).

When the stiffness is larger than the critical stiffness
defined by Eq. (22) for a velocity-weakening fault, it is called
conditionally stable (Scholz, 1998). Although aseismic slid-
ing usually occurs under quasistatic loading for a condition-
ally stable case, rapid stress increase may generate seismic
slip (Gu et al., 1984). This fact indicates that sliding behavior
at a fault is not determined only by the fault properties but by
a loading condition, suggestive of variable sliding behavior of
a fault. Note that the effective stiffness of a fault may be
related to fault size as will be shown in the next section.

Since the RSF law takes into consideration a time-
dependent healing process, it can be used in simulations of
earthquake cycles. Tse and Rice (1986) first published an
earthquake cycle model for a strike-slip fault in an elastic
continuum using the RSF law to successfully explain stick-
slip behavior at a shallower part of a fault, continuous stable
sliding at a deeper part, and afterslip at intermediate depths.
In the simulation, the quasidynamic equilibrium between
frictional stress and elastic stress generated by fault slip and
relative plate motion is numerically solved. The assumption
of Tse and Rice of a depth dependence of a� b is consistent
with laboratory data, which indicate that a� b changes from
negative to positive at about 300� C (Blanpied, Lockner, and
Byerlee, 1995). Similar models have been presented for
earthquake cycles in particular regions to compare the simu-
lations with observed earthquake recurrence and/or crustal
deformation. Figure 26 shows an example simulation result of
spatiotemporal evolution of the slip velocity on a model plate
interface, where great interplate earthquakes repeatedly occur
at a shallower part and stable sliding at a deeper part (Hori
et al., 2004).

If a single asperity exists on a fault plane without any
interactions with other asperities, regular stick-slip at a con-
stant recurrence interval is expected to occur. Note that when
the asperity size is close to the critical nucleation zone size,
an irregular stick-slip cycle is observed even for a single-
asperity model (Liu and Rice, 2007). When some asperities
exist close together, they interact with each other, resulting
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FIG. 25 (color online). Spatial distribution of interplate coupling

estimated from geodetic data (colored circles) along the Sunda

trench, where the Australian plate subducts beneath the island of

Sumatra. Dark circles indicate that the plate interface is nearly

locked and strain is accumulated during an interseismic period, and

light circles indicate that continuous aseismic sliding occurs and

strain is not accumulated. Contours with a 5 m interval show

seismic slip in the 2004 Sumatra-Andaman (M ¼ 9:1) and the

2005 Nias-Simeulue (M ¼ 8:7) earthquakes. Lines show the ap-

proximate source are as of the 1797 and 1833 great earthquakes.

From Chlieh et al., 2008.

FIG. 26 (color online). Snapshots of simulated slip rate V on the model plate interface normalized by the relative plate velocity Vpl in a

model for recurrence of great earthquakes along the Nankai trough, central Japan. Different colors show seismic slip rates, stable sliding with

sliding velocity nearly equal to the plate velocity, and nearly locked, respectively. Adapted from Hori et al., 2004.
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in complex earthquake sequences including single- and

multiple-asperity ruptures. Numerical simulations of com-

plex earthquake sequences due to interactions between

some asperities have been carried out by Kato and

Hirasawa (1999b), Kato (2004), Lapusta and Liu (2009),

and Kaneko, Avouac, and Lapusta (2010). In these studies,

friction obeying the RSF law was assumed and different

values of friction parameters (a0, b0, L) are assigned for

model asperities with velocity-weakening friction, to repro-

duce compound earthquakes, where some asperities are rup-

tured simultaneously or with some time delays, which

resembles some observations. Kato (2008), for instance,

reproduced a complex earthquake cycle similar to that ob-

served in the Sanriku-oki region, northeastern Japan, where

simulated earthquakes included the 1968 Tokachi-oki earth-

quake (M ¼ 8:2) and the 1994 Sanriku-oki earthquake

(M ¼ 7:7) and its largest aftershock (M ¼ 6:9) and afterslip.

These studies suggest that spatial distribution of asperities or

friction parameters controls the regularity and complexity of

earthquake recurrence. This further suggests that numerical

forecasts of earthquakes may be possible if we can obtain a

detailed map of friction parameters on a fault. Friction pa-

rameters have actually been estimated through comparison of

observed data and simulations in California (Johnson,

Brgmann, and Larson, 2006) and Japan (Miyazaki et al.,

2004; Fukuda et al., 2009) from afterslip data.
Preseismic sliding, which is aseismic sliding during a slip

nucleation process, is expected from the RSF law before

earthquake occurrence. It is almost ubiquitously observed in

laboratory experiments, where the amount of preseismic

sliding is of the order of micrometers (Ohnaka and Shen,

1999). Using a spring-block system implemented with the

RSF law, one can show that the preseismic sliding amount is

approximately given byL (Popov et al., 2012). Some model

studies with the RSF law discussed the crustal deformation

expected from preseismic sliding for particular earthquakes

(Stuart and Tullis, 1995; Kuroki, Ito, and Yoshida, 2002).

However, it is difficult to predict precise amplitudes of crustal

deformation, because friction parameters that influence pre-

seismic sliding are not well constrained by the presently

available data. There are some reports of observations of

preseismic sliding, although insignificant or questionable

observations are included (Wyss, 1997). For example, close

and dense geodetic observations of the Parkfield segment of

the San Andreas fault could not detect any precursory slip

prior to the 2004 earthquake, although it should be remarked

that observation of the tremor may suggest accelerated creep

on the fault �16 km beneath the eventual earthquake hypo-

center (Shelly, 2009). Kanamori and Cipar (1974) detected

precursory signals in long-period strain seismograms before

the occurrence of the 1960 great Chilean earthquake

(M ¼ 9:5). Since no earthquake that could explain the ob-

served strain signals was detected, they inferred that the

signals were caused by preseismic sliding on a deeper ex-

tension of the mainshock fault plane. Linde and Sacks (2002)

examined crustal deformation data before the occurrence of

the 1944 Tonankai (M ¼ 8:0) and 1946 Nankai (M ¼ 8:1)
earthquakes, southwestern Japan, to construct a model for

preseismic sliding of these earthquakes. Their model indi-

cates that preseismic sliding took place at a deeper extension

of the mainshock fault plane. However, in models with the
common RSF law, accelerating preseismic sliding just before
the earthquake occurrence takes place within the source area
of seismic slip because spontaneous accelerating slip can be
nucleated only in the velocity-weakening region, being in-
consistent with these models of preseismic sliding. Kato
(2003a) proposed a model for earthquake cycles at a sub-
duction zone to explain large preseismic sliding at deeper
extensions of the seismogenic plate interface. He assumed
velocity-weakening friction (d	ss=d lnV < 0) at low veloc-
ities and velocity-strengthening friction (d	ss=d lnV > 0) at
high velocities, where 	ss is the steady-state friction coeffi-
cient given by Eq. (19). Preseismic sliding relaxes regional
stresses, which may decrease seismic activity, while it in-
creases stresses around the edges of the slipped region, which
tends to increase seismic activity (Kato, Ohatake, and
Hirasawa, 1997). This may explain precursory seismic quies-
cence observed for some large earthquakes (Kanamori, 1981;
Wyss, Klein, and Johnston, 1981). Preseismic sliding perturbs
the regional stress field, resulting in an increase or decrease of
seismicity. Taking this effect into consideration, Ogata (2005)
systematically researched seismicity changes in Japan to find
possible crustal stress changes due to preseismic sliding.

3. Slow earthquakes

Slow earthquakes are episodic fault slip events that gen-
erate few or no seismic waves because their source durations
are longer than the periods of observable seismic waves. Slip
events without seismic wave radiation are often called silent
earthquakes or slow slip events. Slow earthquakes have been
studied by using records of very-long-period seismographs
(Kanamori and Stewart, 1979), creepmeters that directly
detect fault creep at the ground surface (King, Nason, and
Tocher, 1973), and strainmeters (Linde et al., 1996).
Afterslip and the preseismic sliding mentioned earlier may
be included in slow earthquakes.

Recent development of dense geodetic observation net-
works including GPS networks and borehole tiltmeters has
accelerated studies of slow earthquakes (Schwartz and
Rokosky, 2007). Hirose et al. (1999) found from GPS data
that episodic aseismic slip with duration of about 300 days
took place in 1997 on the plate boundary in the Hyuganada
region, southwestern Japan. The estimated slip and source
area indicated that it released a seismic moment correspond-
ing to a magnitude of 6.6. Later, almost the same-size aseis-
mic slip events occurred at the same area in 2003 and 2010. In
the Tokai region, central Japan, another large slow earthquake
from 2000 to 2005 released a seismic moment nearly equal to
that of anM ¼ 7:0 earthquake (Ozawa et al., 2002; Miyazaki
et al., 2006). The source area of this slow earthquake was
estimated to be at the deeper extension of the locked plate
boundary, where a magnitude-8 interplate earthquake is
expected to occur. In almost the same area, smaller slow
earthquakes, corresponding to moment magnitudes of about
6.0, with shorter durations of a few days, were found to
occur repeatedly (Hirose and Obara, 2006). These slow earth-
quakes are often called short-term slow-slip events (SSEs), to
be discriminated from long-term SSEs of durations of
several months or longer. Furthermore, Hirose and Obara
(2006) found low-frequency tremors, which radiate seismic
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waves with long durations, from high-sensitivity borehole
seismometer array data. These events are clearly distin-
guished from long durations of wave trains and lack of
high-frequency components of seismic waves. Short-term
SSEs and low-frequency tremors occur simultaneously in
almost the same locations. Synchronized occurrence of
short-term SSEs and low-frequency tremors were observed
in other regions such as the Cascadia subduction zone, North
America (Rogers and Dragert, 2003), and Shikoku, south-
western Japan (Obara et al., 2004).

These findings of slow earthquakes and low-frequency
tremors force us to reconsider the simple view of earthquakes
as brittle fracture. Many mechanical models for slow earth-
quakes has been proposed. Since both seismic and aseismic
slips can be easily modeled with the RSF law, it is natural to
consider that slow earthquakes can be modeled with the RSF
law. In fact, sustaining aseismic oscillation, similar to the
recurrence of slow earthquakes, occurs in a single-degree-of-
freedom spring-block model if the spring stiffness k is equal
to the critical stiffness kcrit given by Eq. (22) (Ruina, 1983).
Using a more realistic elastic continuum model, Kato (2004)
showed that slow earthquakes occur when the size of the
velocity-weakening region is close to the critical size of the
slip nucleation zone. The effective stiffness keff of a fault may
be defined by

keff ¼ ��=�u; (59)

where �� is the shear-stress change on the fault due to slip
�u (Dieterich, 1986). For a circular fault of radius r with a
constant stress drop in an infinite uniform elastic medium
with Poission ratio ¼ 0:25, keff is given by

keff ¼ 7�

24

G

r
; (60)

where G is the rigidity. Recalling that unstable slip occurs for
k < kcrt for a spring-block model, unstable slip is expected to
occur for keff < kcrt on a fault in an elastic medium. This leads
to the condition for occurrence of unstable slip: that the fault
radius r is larger than the critical fault size rc given by

rc ¼ 7�

24

G

ðb0 � a0Þ�n

L; (61)

where�n is the normal stress. Note that the critical nucleation
zone size rc obtained by considering the stability around
steady-state sliding may not be realistic in natural conditions
during earthquake cycles. Other forms of critical nucleation
zone sizes were obtained by considering more realistic con-
ditions (Dieterich, 1992; Rubin and Ampuero, 2005). It is
confirmed in numerical simulations that the usual earth-
quakes with short slip duration occur for a circular fault
with r > rc, continuous stable sliding for r � rc, and slow
earthquakes for r� rc, where slip duration increases with a
decrease in r=rc as shown in Fig. 27 (Kato, 2003b; 2004). The
same idea was adopted by Liu and Rice (2007) in their model
for slow earthquakes at a subduction zone, where they
showed that high pore fluid pressure in the fault zone is
required to explain the observed recurrence intervals and
slip amounts of slow earthquakes. Although these models
are simple and plausible, slow earthquakes may occur under

limited conditions of r� rc. This seems to be inconsistent

with the observations that slow earthquakes are common

phenomena in some regions. Using a two-degree-of-freedom

spring-block model, Yoshida and Kato (2003) showed that

slow earthquakes may occur under wider conditions by con-

sidering the interaction between an unstable block where the

usual earthquakes repeatedly occur and a conditionally stable

block where slow earthquakes occur. Shibazaki and Iio

(2003) and Shibazaki and Shimamoto (2007) introduced a

cutoff velocity to the state evolution effect in Eq. (16) to

obtain the frictional properties of velocity weakening

(d	ss=d lnV < 0) at low velocities and of velocity strength-

ening (d	ss=d lnV > 0) at high velocities, which is similar to

the model of Kato (2003a) for deep preseismic sliding.

Similar complex frictional behavior with d	ss=d lnV depend-

ing on velocity was actually observed in the laboratory for

halite (Shimamoto, 1986) and for serpentine (Moore et al.,

1997). In this case, slip is accelerated at low velocities with

d	ss=d lnV < 0 and is decelerated at high velocities with

d	ss=d lnV > 0, leading to slow earthquakes. Repeated

slow earthquakes at transition depths from a shallow locked

zone to a deeper stable sliding zone were simulated in

Shibazaki and Iio (2003) and Shibazaki and Shimamoto

(2007). This kind of model was further extended to simulate

short and long-term SSEs and their interaction with shallower

large interplate earthquakes (Matsuzawa et al., 2010). A

weakness of these models is that experimental data for the

velocity dependence of d	ss=d lnV are insufficient, and fric-

tional properties at depths where slow earthquakes occur are

unknown. Rubin (2008) reviewed models for slow earth-

quakes based on the RSF law and pointed out that the existing

models seem to be unable to explain the common occurrence

of slow earthquakes at subduction zones. He suggested that

variation of pore-fluid pressure due to inelastic dilation of the

fault zone and fluid diffusion is required for generating slow

earthquakes.
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4. Origin of complexities of earthquakes and

aftershock decay law

Rice (1993) claimed that complex earthquake sequences
simulated in inherently discrete models may be artifacts and
geometrical and/or material heterogeneity is required to ex-
plain the observed complexity of earthquakes. Continuum
models with relatively homogeneous frictional properties
produce simple patterns of earthquakes such as the periodic
recurrence of large earthquakes that break the entire seismo-
genic zone. Using a continuum model with the RSF law,
Ben-Zion and Rice (1995) introduced heterogeneity in the
effective normal stress on the fault and successfully produced
moderately complex earthquake sequences. They pointed out
that abrupt change in the effective normal stress is necessary
to produce complex earthquakes. Hillers et al. (2007) intro-
duced spatial heterogeneity in the characteristic slip distance
L in the model of a vertical strike-slip fault to produce
complex earthquake sequences that include a wide range of
earthquake magnitudes. The obtained relation between earth-
quake magnitude and frequency mimics the Gutenberg-
Richter law, and the statistical properties of simulated earth-
quakes depend on the degree of heterogeneity in L. These
authors also found temporal clustering of simulated earth-
quakes and a tendency for nucleation sites of smaller L.
Hillers and Miller (2007) introduced spatial variation of
pore pressure to generate complex earthquake sequences.

An important fact about the relation between the magni-
tude and frequency of earthquakes obtained in observations is
that the GR law may not always be valid for each individual
fault. For some faults and plate boundaries, the number of
small earthquakes is fewer than expected from the GR law
and the frequency of large earthquakes that rupture the entire
fault, indicating violation of the GR law (Stirling,
Wesnousky, and Shimazaki, 1996; Ishibe and Shimazaki,
2009). This behavior of fewer small earthquakes than ex-
pected from the frequency of large earthquakes is referred to
as the characteristic earthquake model. The highly coupled
plate interface in the Tokai region, central Japan, is nearly
quiescent, while many small earthquakes occur in the over-
riding plate and subducting oceanic plate (Matsumura, 1997).
This suggests that except for great earthquakes, few small
earthquakes occur at the plate interface in the Tokai region.
Considering large earthquakes along the San Andreas fault,
California, and smaller earthquakes at secondary faults
around the San Andreas, Turcotte (1997) argued that the
observed GR law comes from a fractal distribution of faults
and characteristic earthquakes at each fault.

Another important empirical law that demonstrates the
complexities of earthquakes is the modified Omori (Omori-
Utsu) law for decay in the aftershock occurrence rate
(Utsu, Ogata, and Matsuura, 1995). The aftershock rate n at
time t from the occurrence of the mainshock is well approxi-
mated by

nðtÞ ¼ K

ðtþ TMOLÞp ; (62)

where K, TMOL, and p are constants. The constant p is�1 for
many cases. For TMOL ¼ 0, this relation is simply referred to
as the Omori law. Aftershocks have been thought to be a
manifestation of relaxation of stress generated by the

mainshock. To explain the delay times of aftershocks, sub-
critical cracking due to stress corrosion (Yamashita and
Knopoff, 1987) and the variation of effective normal stress
due to diffusion of pore fluid, whose pressure is perturbed by
the mainshock (Bosl and Nur, 2002), have been invoked.
Dieterich (1994) considered the responses of many fault
patches, where friction is assumed to obey the RSF law, to
instantaneous stress change due to the mainshock. He further
assumed that a constant seismicity rate is achieved under a
constant loading rate without any stress perturbation. This
model successfully explains the power-law decay of the
seismicity rate for p ¼ 1, which is consistent with observa-
tions, and has been applied to analyses of aftershocks of some
large earthquakes (Toda et al., 1998). Another important
model for aftershocks using the RSF law is related to after-
slip. Afterslip perturbs stresses around its source area, caus-
ing aftershocks. Differentiating the slip function Eq. (58) of
afterslip with respect to time, we have a slip rate approxi-
mately proportional to ðtþ cÞ�1, which may be related to the
stress rate and therefore seismicity rate (Perfettini and
Avouac, 2004). This expected seismicity rate coincides with
the Omori-Utsu formula with p ¼ 1. Moreover, afterslip
propagates outward from a mainshock slip area, leading to
expansion of the aftershock area (Kato, 2007). The aftershock
expansion pattern obtained from a numerical model with the
RSF law is consistent with observed expansions of aftershock
areas (Tajima and Kanamori, 1985; Peng and Zhao, 2009).

5. Earthquake dynamics: Critical slip distance

Here we consider the dynamics of unstable motion. The
unstable slip of a spring-block system given by Eq. (21) is
accompanied by a drop in the frictional force. If one plots the
frictional force as a function of the slip distance (Fig. 28), one
can define the distance Dc over which the frictional force
drops. This behavior of decreasing frictional force with in-
creasing slip is referred to as the slip-weakening model (Ida,
1972; Andrews, 1976), and the slip distance Dc is called the
critical slip distance in seismology.Dc is on the same order of
(or at most several tens of) the characteristic length L in an
evolution law (Bizzarri and Cocco, 2003). This is so irre-
spective of the number of degrees of freedom: discrete or
continuum.
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FIG. 28. Schematic diagram of the relation between frictional

force and slip distance during the slip-weakening process, where

Fi, Fp, Fd, and Dc denote the initial force, the peak frictional force,

the dynamic frictional force, and the critical slip distance, respec-

tively. The shaded area indicates the fracture energy Gc.
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Importantly, one can estimate Dc of earthquakes by ana-
lyzing the seismic wave. Such analyses show thatDc is on the
order of several tens of centimeters or a meter (Ide and Takeo,
1997). Note that the fracture energy Gc, which is equal to
twice the surface energy density �, can rather stably be
estimated from seismic waveform data, although accurate
estimate of Dc is difficult because of poor resolution of
rupture process modeling from seismic waves (Guatteri and
Spudish, 2000). The characteristic slip distance L estimated
for afterslip of a large interplate earthquake by GPS data is on
the order of millimeters (Fukuda et al., 2009). This makes
quite a contrast to laboratory experiments, where L is typi-
cally estimated as several micrometers. Because L is a
typical longitudinal dimension of the true contact patch,
application of the RSF law to a natural fault implies that
the natural fault also consists of true contact patches, the
linear dimension of which is several tens of centimeters.
Although the aperture of a fault is not empty but filled with
fluid and gouge, a fault generally has nonplaner structure
(e.g., jogs) that can interlock to resist displacement. Such jogs
may effectively act as the true contact area. However, it is not
obvious at all if the RSF law still holds for such true contact
area on a macroscopic scale.

At least, we believe that the RSF law should not be used
except for very-low speed friction. Namely, the RSF law no
longer holds at seismic slip rates due to physical processes
caused by frictional heat: flash heating, melting, mechano-
chemical effects, etc. In such cases, the critical slip distance
Dc is proportional to �c=P, where �c is the critical energy per
unit area for a weakening process (e.g., melting) to occur and
P is the normal stress. (As the frictional force is proportional
to P, the produced heat is proportional to P and to the slip
distance D. Thus, the weakening process may occur if PD is
on the order of �c.) Namely, the critical slip distance is
inversely proportional to the normal pressure. This implies
that the critical slip distance must be smaller for deeper faults.
However, unfortunately, such depth dependence has not been
observed so that the mechanism that determines the critical
slip distance must be different.

Another important process that affects the critical slip
distance is off-fault fracture accompanied by crack propaga-
tion on the fault. Andrews (2005) analyzes a model for slip
propagation on a fault supplemented with the Coulomb yield
condition for off-fault material. He finds that the effective
critical slip distance depends on the distance from the crack
initiation point. This is because the plastic zone is wider for
larger cracks. Thus, the critical slip distance is essentially
scale dependent, which is consistent with the observational
facts.

IV. EARTHQUAKE MODELS AND STATISTICS II: SOC

AND OTHER MODELS

A. Statistical properties of the OFC model

1. The model

In the previous section, we reviewed the properties of
statistical physical models of earthquakes such as the
spring-block BK model and the continuum model. In the
present section, we deal with further simplified statistical

physical models of earthquakes (Turcotte, 1997; Hergarten,

2002; Turcotte, Shcherbakov, and Rundle, 2009). Many of

them are coupled-map lattice models originally introduced as

SOC models (Bak, Tang, and Wiesenfeld, 1987; Bak and

Tang, 1989; Ito and Matsuzaki, 1990, Nakanishi, 1990;

Brown, Scholz, and Rundle, 1991; Olami, Feder, and

Christensen, 1992; Hainzl, Zöllar, and Kurths, 1999; Hainzl

et al., 2000; Hergarten and Neugebauer, 2000; Helmstetter,

Hergarten, and Sornette, 2004).
The one introduced by Olami, Feder, and Christensen as a

further simplification of the BK model, now called the OFC

model, is particularly popular (Olami, Feder, and

Christensen, 1992). It is a two-dimensional coupled-map

lattice model where the rupture propagates from a lattice

site to its nearest-neighboring sites in a nonconservative

manner, often causing multisite ‘‘avalanches.’’ Extensive

numerical studies have also been devoted to this model,

mainly in the field of statistical physics, which we review

in the present section (Christensen and Olami, 1992;

Grassberger (1994); Middleton and Tang (1995); Bottani

and Delamotte (1997); de Carvalho and Prado (2000);

Pinho and Prado, 2000; Lise and Paczuski (2001); Miller

and Boulter (2002); Hergarten and Neugebauer (2002);

Boulter and Miller (2003); Helmstetter, Hergarten, and

Sornette (2004); Peixoto and Prado (2004, 2006); Wissel

and Drossel (2006); Ramos, Altshuler, and Maloy (2006);

Kotani, Yoshino, and Kawamura (2008); Jagla (2010) and

Kawamura et al. (2010)).
In the OFC model, a ‘‘stress’’ variable fi ðfi � 0Þ is

assigned to each site on a square lattice with L
 L sites.

Initially, a random value in the interval [0, 1] is assigned to

each fi, while fi is increased with a constant rate uniformly

over the lattice until, at a certain site i, the fi value reaches a
threshold, fc ¼ 1. Then, the site i ‘‘topples,’’ and a fraction of
stress 
fi (0<
< 0:25) is transmitted to its four nearest

neighbors, while fi itself is reset to zero. If the stress of some

of the neighboring sites j exceeds the threshold, i.e., fj �
fc ¼ 1, the site j also topples, distributing a fraction of stress


fj to its four nearest neighbors. Such a sequence of top-

plings continues until the stress of all sites on the lattice

becomes smaller than the threshold fc. A sequence of top-

pling events, which is assumed to occur instantaneously,

corresponds to one seismic event or an avalanche. After an

avalanche, the system goes into an interseismic period where

uniform loading of f is resumed, until some of the sites reach

the threshold and the next avalanche starts.
The transmission parameter 
 measures the extent of

nonconservation of the model. (This 
 should not be

confused with 
 describing the velocity-weakening friction

force employed in the study of the BK model of Sec. III.A.

We are using 
 as a conservation parameter of the OFC

model throughout Sec. IV.A.) The system is conservative

for 
 ¼ 0:25, and nonconservative for 
< 0:25. The unit

of time is taken to be the time required to load f from zero

to unity.
In the OFC model, boundary conditions play a crucial role.

For example, the SOC state is realized under open or free

boundary conditions but not under periodic boundary con-

ditions. Thus, most of the studies made in the past employed

open (or free) boundary conditions.
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2. Properties of the homogeneous model

Earlier studies concentrated mostly on the event size dis-
tribution of the model (Olami, Feder, and Christensen (1992);
Cristensen and Olami (1992); Grassberger (1994); de
Carvalho and Prado (2000); Lise and Paczuski (2001);
Miller and Boulter (2002); Boulter and Miller (2003);
Wissel and Drossel, 2006). The avalanche size s is defined
by the total number of topples in a given avalanche, which
could be larger than the number of toppled sites because
multitoppling is possible in a given avalanche. (In fact, it is
observed that multitoppling rarely occurs in the model except
in the conservation limit or in the regime very close to it.) It
turns out that the size distribution of the model exhibits a
power-law-like behavior close to the GR law. Yet there still
remains controversy concerning whether the model is strictly
critical (Lise and Paczuski, 2001) or only approximately so
(de Carvalho and Prado (2000); Miller and Boulter (2002);
Boulter and Miller (2003); Wissel and Drossel, 2006).

In Fig. 29, we show the size distribution of the model under
open boundary conditions for several values of the trans-
mission parameter 
 (Kawamura et al., 2010). As can be
seen from the figure, a near-straight-line behavior corre-
sponding to a power law is observed. The slope representing
the B value is not universal, varying from ’ 0:90 to ’ 0:22 as

 is varied from 0.17 to 0.245. The power-law feature is
weakened as one approaches the conservation limit.

Hergarten and Neugebauer (2002) observed that the OFC
model also exhibits another well-known power-law feature of
seismicity, i.e., the Omori law (inverse Omori law) describing
the time evolution of the frequency of aftershocks (fore-
shocks) (Hergarten and Neugebauer, 2002; Helmstetter,
Hergarten, and Sornette, 2004). We show in Fig. 30(a) on a
log-log plot the frequency of aftershocks as a function of the
time elapsed after the mainshock, t (Kawamura et al., 2010).
The slope representing the Omori exponent p is again not
universal, depending on the parameter 
, as p ¼ 0:84, 0.69,
and 0.03 for 
 ¼ 0:17, 0.20 and 0.23, respectively. Since the
p value is known to be around unity in real seismicity, the p
value of the OFC model is not necessarily close to reality.
Similar results are obtained also for foreshocks; see Fig. 30(b)
. Aftershocks and foreshocks are defined here as events of

arbitrary sizes which occur in the vicinity of the mainshock

with epicenters lying at distance r 	 rc (the range parameter

rc is taken to be rc ¼ 10 in Fig. 30). As one approaches the

conservation limit 
 ¼ 0:25, both aftershocks and foreshocks
tend to go away.

As mentioned, the properties of the model depend on the

applied boundary conditions. Middleton and Tang observed

that the model under open boundary conditions goes into a

special transient state where events of size 1 (single-site

events) repeat periodically with period 1� 4
 (Middleton

and Tang, 1995). These single-site events occur in turn in a

spatially random manner, but after time 1� 4
, the same site

topples repeatedly. Although such a periodic state consisting

of single-site events is a steady state under periodic boundary

conditions, it is not a steady state under open boundary

conditions because of the boundary. Indeed, clusters are

formed near the boundary, within which the stress values

are more or less uniform, and gradually invades the interior,

destroying the periodic state. Eventually, such clusters span

the entire lattice, giving rise to a SOC-like steady state.

Middleton and Tang pointed out that such clusters might be

formed via synchronization between the interior site and the

boundary site, the latter having a slower effective loading rate
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FIG. 30 (color online). The time dependence of the frequency of

aftershocks (a) and of foreshocks (b) of the OFC model under open

boundary conditions on a log-log plot for several values of the

transmission parameter 
. Mainshocks are events of size greater

than s � sc ¼ 100. The time t is measured with the occurrence of a

mainshock as the origin. The range parameter is rc ¼ 10. From
Kawamura et al., 2010.
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due to the boundary. Large-scale synchronization occurring

in the steady state of the OFC model was further investigated

by Bottani and Delamotte (1997).
In contrast to the aforementioned critical properties of the

model, recent studies also unraveled the characteristic fea-

tures of the OFC model (Ramos, Altshuler, and Maloy, 2006;

Kotani, Yoshino, and Kawamura, 2008; Kawamura et al.,

2010). By investigating the time series of events, Ramos

found the nearly periodic recurrence of large events

(Ramos, Altshuler, and Maloy, 2006). Kotani et al. studied

the spatiotemporal correlations of the model and identified in

the OFC model a phenomenon resembling an asperity

(Kotani, Yoshino, and Kawamura, 2008; Kawamura et al.,

2010). They computed the local recurrence-time distribution,

PðTÞ of the model. The computed PðTÞ, shown in Fig. 31,

exhibits a sharp �-function-like peak at T ¼ T� ¼ 1� 4
,
indicating that many (though not all) events of the OFC

model are repeated with a fixed time interval T ¼ T�.
While the peak at T ¼ T� is sharp, it is not infinitely sharp

with a finite intrinsic width; see the inset. The peak position

turned out to be independent of the range parameter rc, the
size threshold sc, and the lattice size (as long as it was not too
small). As 
 is increased toward 
 ¼ 0:25, the �-function
peak is gradually suppressed, keeping its position strictly at

T ¼ 1� 4
. The �-function peak of PðTÞ goes away toward

the conservation limit 
 ¼ 0:25; see Fig. 31.
In the longer time regime T > T�, PðTÞ exhibits behaviors

close to power laws (Kotani, Yoshino, and Kawamura, 2008;

Kawamura et al., 2010). Furthermore, the periodic events

contributing to a sharp peak of PðTÞ (‘‘peak events’’) possess

a power-law-like size distribution very similar to those ob-

served for other aperiodic events (Kotani, Yoshino, and

Kawamura, 2008; Kawamura et al., 2010). Hence, in earth-

quake recurrence in the model, the characteristic or periodic

feature, i.e., a sharp peak in PðTÞ at T ¼ T�, and the critical

feature, i.e., power-law-likebehaviors of PðTÞ at T > T� and
power-law-like size distribution, coexist.

3. Asperity-like phenomena

In fact, it turns out that the �-function peak of PðTÞ is

created by ‘‘asperitylike’’ events, i.e., events which rupture

repeatedly with almost the same period 1� 4
 and with a

common rupture zone and a common epicenter. In seismol-

ogy, the concept of asperity is now quite popular. A typical

example might be the one observed along the subduction

zone in northeastern Japan, particularly in repeating earth-

quakes off Kamaishi (Matsuzawa, Igarashi, and Hasegawa,

2002; Okada, Matsuzawa, and Hasegawa, 2003).
In Fig. 32, we show typical examples of such asperity-like

events as observed in the OFC model (Kawamura et al.,

2010). In the upper panel, we show for the case of 
 ¼ 0:2
typical snapshots of the stress-variable distribution immedi-

ately before and after a large event which occurs at time

t ¼ t0. A discontinuous drop of the stress associated with a

rupture of a synchronized cluster is discernible. Then, at time

t ¼ t0 þ T�, the same cluster (except for a minor difference)

ruptures again. In the lower panel, we show snapshots of the

stress-variable distribution immediately before and after this

subsequent avalanche occurring at t ¼ t0 þ T�. In this par-

ticular example, a rhythmic rupture of essentially the same

cluster is repeated more than ten times.
The asperitylike events go away in the conservation limit


 ! 1=4 (Kawamura et al., 2010). It is also observed that an

epicenter site tends to lie at the tip or at the corner of the

rupture zone rather than in its interior (Kawamura et al.,

2010). The asperitylike events observed in the OFC model

closely resemble those familiar in seismology (Scholz, 2002),
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FIG. 31 (color online). Log-log plots of the local recurrence-time

distributions of large avalanches of their size s � sc ¼ 100 for a

fixed range parameter rc ¼ 10, with variation of the transmission

parameter 
. The arrow in the figure represents the expected peak

position for 
 ¼ 0:245 corresponding to the period T� ¼ 1� 4
 ¼
0:02. The inset is a magnified view of the main peak for the case of


 ¼ 0:17. From Kawamura et al., 2010.

FIG. 32 (color online). Snapshots of the stress-variable distribu-

tion of the OFC model under open boundary conditions for the case

of 
 ¼ 0:2: (a) immediately before a large event at time t ¼ t0,
(b) immediately after this event, (c) immediately before the follow-

ing event which occurs at time t ¼ t0 þ T� ðT� ¼ 0:2Þ, and (d)

immediately after this second event. The two events are of sizes

s ¼ 15 891 and 15 910 on an L ¼ 256 lattice. The region sur-

rounded by bold lines represents the rupture zone, while the star

symbol represents an epicenter site which is located at the tip of the

rupture zone. From Kawamura et al., 2010.
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in the sense that almost the same spatial region ruptures

repeatedly with a common epicenter site and with a common

period.
In fact, not all large events of the OFC model occur in the

form of asperities. Many clusters forming large events are left

out of the rhythmic recurrence and rupture more critically

with widely distributed recurrence times, thereby bearing the

observed power-law-like part of PðTÞ.
A key ingredient in the asperity formation is a self-

organization of the highly concentrated stress state

(Kawamura et al., 2010). The stress-variable distribution in

the asperity region tends to be ‘‘discretized’’ to certain values.

In Fig. 33, we show for the case of 
 ¼ 0:17 the stress-

variable distribution DðfÞ of the asperity sites immediately

before (a) and after (b) an avalanche, averaged over asperity

events. As can be seen from the figure, DðfÞ now consists of

several ‘‘spikes’’ located at appropriate multiples of the trans-

mission parameter 
, i.e., at 1� n
 before the rupture and at

f ¼ n
 after the rupture, with n being an integer.

Furthermore, as the asperity events repeat, the tendency to

stress-variable concentration is more and more enhanced. In

Fig. 34, we show the time sequence of the stress-variable

distribution at the time of toppling for the asperity events. As

the asperity events repeat, the stress-variable distribution
tends to be narrower, being more concentrated on the thresh-

old value fc ¼ 1 (Kawamura et al., 2010; Hergarten and

Krenn, 2011).
In fact, one can prove that the stress-variable distribution at

the time of toppling tends to be more concentrated on the

threshold value fc ¼ 1 as the asperity events repeat

(Kawamura et al., 2010). Namely, once each site starts to

topple at more or less similar stress values close to the
threshold value fc ¼ 1, this tendency evolves more and

more as the asperity events repeat. The stress-variable con-

centration tends to be self-organized. Such a stress-variable

concentration immediately explains why the interval time of

the asperity events is equal to 1� 4
, and why the same site

becomes an epicenter in the asperity sequence (Kawamura

et al., 2010). For example, the reason why the interval time is

1� 4
 when all sites topple at a stress value close to the
threshold fc ¼ 1 in the asperity events can easily be seen just
by remembering the conservation law of the stress, i.e., the

stress variable dissipated at the time of toppling, which is

1� 4
 per site if the toppling occurs exactly at f ¼ 1, should
match the stress loaded during the interval time T; see

Kawamura et al. (2010), for further details. More recently,

Hergarten and Krenn further analyzed this stress-

concentration phenomenon, demonstrating that the mean
stress excess representing the extent of the stress concentra-

tion approaches zero exponentially with a certain decay time

which is dependent on the number of ‘‘internal’’ sites (the

sites contained in the rupture zone) connected to an epicenter

site (Hergarten and Krenn, 2011). Thus, the epicenter site

with the smallest number of internal nearest-neighbor sites,

i.e., the one lying at the tip of the rupture zone, has the longest

decay time and turns out to be the most stable. This obser-
vation gives an explanation of the finding of Kawamura et al.

(2010) that the majority of epicenter sites of the asperitylike

events are located at the tip of the rupture zone.

FIG. 33 (color online). The stress-variable distribution DðfÞ of each site contained in the rupture zone of an asperity event of the OFC

model under open boundary conditions, just before (a) and after (b) the asperity event. An asperity event is defined here as an event of size

greater than s � sc ¼ 100 belonging to the main peak of the local recurrence-time distribution function. The transmission parameter is


 ¼ 0:17. The inset is a magnified view of the main peak. From Kawamura et al., 2010.

FIG. 34 (color online). The time sequence of the stress-variable

distributionDðfÞ at the time of toppling of each site contained in the

rupture zone of the asperity events. An asperity event is defined here

as an event of size greater than s � sc ¼ 100 belonging to the main

peak of the local recurrence-time distribution function. The trans-

mission parameter is 
 ¼ 0:17. As the events repeat, the stress-

variable distribution at the time of toppling becomes more and more

concentrated on the borderline value fc ¼ 1. From Kawamura

et al., 2010.

Kawamura et al.: Statistical physics of fracture, friction, . . . 873

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



Although the origin of the asperity is usually ascribed in
seismology to possible inhomogeneity of the material prop-
erties of the crust or of the external conditions of that
particular region, we stress that, in the present OFC model,
there is no built-in inhomogeneity in the model parameters
nor in the external conditions. The asperity in the OFC model
is self-generated from the spatially uniform evolution rule
and model parameters.

As mentioned, the asperity in the OFC model is not a
permanent one: In the long term, its position and shape
change. After all, the model is uniform. Nevertheless, recov-
ery of spatial uniformity often takes a long time, and the
asperity exists stably over many earthquake recurrences.
Although one has to be careful in immediately applying the
present result for the OFC model to real earthquakes, it might
be instructive to recognize that the observation of asperitylike
earthquake recurrence does not immediately mean that the
asperity region possesses different material properties or
different external conditions from other regions.

Thus, critical and characteristic features coexist in the OFC
model in an intriguing manner. Although the critical features
were emphasized in earlier works, the model certainly in-
cludes the eminent characteristic features as well. Thus, the
OFC model, though an extremely simplified model, may
capture some of the essential ingredients necessary to under-
stand the apparent coexistence of critical and characteristic
properties in real earthquakes.

4. Effects of inhomogeneity

Note that the original OFC model is a spatially homoge-
neous model, where homogeneity of an earthquake fault is
implicitly assumed. Needless to say, a real earthquake fault is
more or less spatially inhomogeneous, which might play an
important role in real seismicity. A natural next step is to
extend an original homogeneous OFC model to an inhomo-
geneous one where the evolution rule and/or the model
parameters are taken to be random from site to site.

Spatial inhomogeneity can be either static or dynamic. As
a cause of possible temporal variation of spatial inhomoge-
neity, one may consider two distinct processes, i.e., the fast
dynamical process during earthquake rupture changing the
fault state via, e.g., wear, frictional heating, melting, etc., and
many slower processes taking place during the long inter-
seismic period until the next earthquake, e.g., water migra-
tion, plastic deformation, chemical reactions, etc. (Scholz,
2002). Thus, to introduce spatial inhomogeneity into the OFC
model, there are two possible extreme methods: First, one
might assume that the randomness is quenched in time,
namely, spatial inhomogeneity is fixed over many earthquake
recurrences. In the other extreme, spatial inhomogeneity is
assumed to vary with time in an uncorrelated way over
earthquake recurrences.

Several studies have been made on the inhomogeneous
OFC model for both types of inhomogeneity. For the first type
of inhomogeneity, i.e., quenched or static randomness, Janosi
and Kertesz introduced spatial inhomogeneity into the stress
threshold and found that the inhomogeneity destroyed the
SOC of the model (Jánosi and Kertész, 1993). Torvund and
Froyland studied the effect of spatial inhomogeneity in the
stress threshold and observed that the inhomogeneity induced

a periodic repetition of system-size avalanches (Torvund and

Froyland, 1995). Ceva introduced defects associated with the
transmission parameter 
 and observed that the SOC was

robust against a small number of defects (Ceva, 1995).
Mousseau and Bach et al. introduced inhomogeneity into

the transmission parameter at each site. They observed that

the bulk sites were fully synchronized in the form of a
system-wide avalanche over a wide parameter range of the

model (Mousseau, 1996; Bach, Wissel, and Drossel, 2008).
For the second type of inhomogeneity, i.e., the dynamical

randomness, Ramos et al. considered the randomness asso-

ciated with the stress threshold, and observed that the nearly
periodic recurrence of large events persisted (Ramos,

Altshuler, and Maloy, 2006). More recently, Jagla studied

the same stress-threshold inhomogeneity, to find that the GR
law was weakened by randomness (Jagla, 2010). An interest-

ing observation by Jagla is that, once the slow structural
relaxation process is added to the inhomogeneous OFC

model, both the GR law and the Omori law are realized
with exponents that are stable against the choice of the model

parameter values and are close to the observed values.

Yamamoto et al. studied the dynamically inhomogeneous
model with a variety of implementations of the form of the

inhomogeneities and found the general tendency that critical
features in the original homogeneous OFC model, e.g., the

Gutenberg-Richter law and the Omori law, were weakened or

suppressed in the presence of inhomogeneity, whereas the
characteristic features of the original homogeneous OFC

model, e.g., the near-periodic recurrence of large events and
the asperitylike phenomena, tended to persist (Yamamoto,

Yoshino, and Kawamura, 2010).
Thus, the properties of the dynamically inhomogeneous

models are quite different from those of the static or quenched

inhomogeneous models. In the latter case, introduced inho-

mogeneity often gives rise to a full synchronization and a
periodic repetition of system-size events. Such a system-wide

synchronization is never realized in the dynamically
homogeneous models. Presumably, temporal variation of

the spatial inhomogeneity may eventually average out the

inhomogeneity over many earthquake recurrences, giving rise
to behavior similar to that of the homogeneous model.

B. Fiber bundle models

The fiber bundle model, initiated by Peirce (1926) in the

context of testing the strength of cotton yarns, represents

various aspects of fracture processes of disordered systems,
through its self-organized dynamics [for a detailed review,

see Pradhan, Hansen, and Chakrabarti (2010)]. The fiber
bundle (see Fig. 35) consists of N fibers or Hookean springs,

each having an identical spring constant 
. The bundle sup-
ports a loadW ¼ N� and the breaking threshold ð�thÞi of the
fibers is assumed to be different for different fibers (i). For the
equal-load-sharing model we consider here, the lower plat-
form is absolutely rigid, and therefore no local deformation

and hence no stress concentration occurs anywhere around
the failed fibers. This ensures equal load sharing, i.e., the

intact fibers share the applied loadW equally and the load per

fiber increases as more and more fibers fail. The strength of
each of the fibers ð�thÞi in the bundle is given by the stress
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value it can bear and beyond which it fails. The strengths of
the fibers are taken from a randomly distributed normalized
density �ð�thÞ within the interval 0 and 1 such that

Z 1

0
�ð�thÞd�th ¼ 1:

The equal-load-sharing assumption neglects ‘‘local’’ fluctua-
tions in stress (and its redistribution) and renders the model as
a mean-field one.

The breaking dynamics starts when an initial stress � (load
per fiber) is applied on the bundle. The fibers having strength
less than � fail instantly. Because of this rupture, the total
number of intact fibers decreases and the rest of the (intact)
fibers have to bear the applied load on the bundle. Hence the
effective stress on the fibers increases and this compels some
more fibers to break. These two sequential operations,
namely, stress redistribution and further breaking of fibers,
continue until an equilibrium is reached, where the surviving
fibers are either strong enough to bear the applied load on the
bundle or all fibers fail.

This breaking dynamics can be represented by recursion
relations in discrete time steps. For this, we consider a very
simple model of fiber bundles where the fibers (having the
same spring constant 
) have a white or uniform strength
distribution �ð�thÞ up to a cutoff strength normalized to unity,
as shown in Fig. 36: �ð�thÞ ¼ 1 for 0 	 �th 	 1 and
�ð�thÞ ¼ 0 for �th > 1. We also define Utð�Þ to be the
fraction of fibers in the bundle that survive after (discrete)
time step t, counted from the time t ¼ 0 when the load is
applied (the time step indicates the number of stress redis-
tributions). Thus, Utð� ¼ 0Þ ¼ 1 for all t and Utð�Þ ¼ 1 for
t ¼ 0 for any �; Utð�Þ ¼ U�ð�Þ � 0 for t ! 1 and �< �f,

the critical or failure strength of the bundle, and Utð�Þ ¼ 0
for t ! 1 if �> �f.

Therefore, Utð�Þ follows the simple recursion relation (see
Fig. 36)

Utþ1 ¼ 1� �t; �t ¼ W

UtN
; or

Utþ1 ¼ 1� �

Ut

:

(63)

In the equilibrium state (Utþ1 ¼ Ut ¼ U�), the above relation
takes a quadratic form of U�:

U�2 � U� þ � ¼ 0:

The solution is

U�ð�Þ ¼ 1
2 � ð�f � �Þ1=2; �f ¼ 1

4:

Here �f is the critical value of initial applied stress beyond

which the bundle fails completely. The solution with the
þ sign is the stable one, whereas the one with the � sign
gives an unstable solution (Pradhan and Chakrabarti,
2001; Pradhan, Bhattacharyya, and Chakrabarti, 2002;
Bhattacharyya, Pradhan, and Chakrabarti, 2003). The quan-
tity U�ð�Þmust be real valued as it has a physical meaning: it
is the fraction of the original bundle that remains intact under
a fixed applied stress � when the applied stress lies in the
range 0 	 � 	 �f. Clearly, U

�ð0Þ ¼ 1. Therefore, the stable

solution can be written as

U�ð�Þ ¼ U�ð�fÞ þ ð�f � �Þ1=2;
U�ð�fÞ ¼ 1

2 and �f ¼ 1
4:

(64)

For �> �f, we cannot get a real-valued fixed point as the

dynamics never stops until Ut ¼ 0, when the bundle breaks
completely.

a. At �< �f–Note that the quantity U�ð�Þ � U�ð�fÞ
behaves as an order parameter that determines a transition
from a state of partial failure (� 	 �f) to a state of total

failure (�>�f):

O � U�ð�Þ �U�ð�fÞ ¼ ð�f � �Þ� � ¼ 1
2: (65)

To study the dynamics away from criticality (� ! �f from

below), we replace the recursion relation (63) by a differential
equation

δ

W

FIG. 35. The fiber bundle consists initially of N fibers attached in

parallel to a fixed and rigid plate at the top and a downwardly

movable platform from which a load W is suspended at the bottom.

In the equal-load-sharing model considered here, the platform is

absolutely rigid and the load W is consequently shared equally by

all the intact fibers.

10

1

σthσt

ρ(σth )

FIG. 36. The simple model considered here assumes uniform

density �ð�thÞ of the fiber strength distribution up to a cutoff

strength (normalized to unity). At any load per fiber level �t at

time t, the fraction �t fails and 1� �t survives.
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� dU

dt
¼ U2 � Uþ �

U
:

Close to the fixed point we write Utð�Þ ¼ U�ð�Þ þ � (where
� ! 0). This, following Eq. (65), gives

� ¼ Utð�Þ � U�ð�Þ � expð�t=�Þ; (66)

where � ¼ 1
2 ½12 ð�f � �Þ�1=2 þ 1�. Near the critical point we

can write

� / ð�f � �Þ�
; 
 ¼ 1
2: (67)

Therefore the relaxation time diverges following a power law
as � ! �f from below.

One can also consider the breakdown susceptibility �,
defined as the change of U�ð�Þ due to an infinitesimal incre-
ment of the applied stress �:

� ¼
��������dU�ð�Þ

d�

��������¼ 1

2
ð�f � �Þ��; � ¼ 1

2
(68)

from Eq. (65). Hence the susceptibility diverges as the ap-
plied stress � approaches the critical value �f ¼ 1

4 . Such a

divergence in � was already observed in numerical studies.
b. At � ¼ �f–At the critical point (� ¼ �f), we observe a

different dynamic critical behavior in the relaxation of the
failure process. From the recursion relation (63), it can be
shown that the decay of the fraction Utð�fÞ of unbroken

fibers that remain intact at time t follows a simple power law,

Ut ¼ 1

2

�
1þ 1

tþ 1

�
; (69)

starting from U0 ¼ 1. For large tðt ! 1Þ, this reduces to
Ut � 1=2 / t��, � ¼ 1; a strict power law which is a robust
characterization of the critical state [see, however, Zapperi
et al. (1997)].

1. Universality class of the model

The universality class of the model has been checked with
two other types of fiber strength distributions: (I) linearly
increasing and (II) linearly decreasing density distribution
within the (�th) limits 0 and 1. One can show that while �f

changes with different strength distributions;�f ¼ ffiffiffiffiffiffiffiffiffiffiffi
4=27

p
for

case I and �f ¼ 4=27 for case II, the critical behavior

remains unchanged: 
 ¼ 1=2 ¼ � ¼ �, � ¼ 1 for all
these equal-load-sharing models (Pradhan, Hansen, and
Chakrabarti, 2010).

2. Precursors of global failure in the model

In any such failure case, it is important to know when the
failure will take place. In this model, there exist several
precursors. The growth of susceptibility � with �, following
Eq. (68), indeed suggests one such possibility: ��1=2 de-
creases linearly with increasing � to 0 at � ¼ �f. Pradhan

and Hemmer (2009) studied the rate RðtÞ ( � �dUt=dt) of
failure of fibers following dynamics as in Eq. (63) for �> �f

and found that the rate becomes minimum at a time t0, which
is half of the failure time tf of the bundle (see Fig. 37). This

relation is shown to be independent of the breaking strength
distribution of the fibers. A similar relation was also found

(Pradhan and Hemmer, 2011) for the rate of energy released
in a bundle. This is, of course, easier to measure using
acoustic emissions.

3. Strength of local-load-sharing fiber bundles

So far, we have studied models with fibers sharing the
external load equally. This type of model shows (both analyti-
cally and numerically) the existence of a critical strength
(nonzero �f) of the macroscopic bundle beyond which it

collapses. The other extreme model, i.e., the local-load-
sharing model has proved to be difficult to tackle analytically.

It is clear, however, that the extreme statistics come into
play for such local-load-sharing models, for which the
strength �f ! 0 as the bundle size (N) approaches infinity.

Essentially, for any finite load (�), depending on the fiber
strength distribution, the size of the defect cluster can be
estimated using the Lifshitz argument (see, Sec. II.A) as lnN,
giving the failure strength �f � 1=ðlnNÞa, where the expo-

nent a assumes a value appropriate for the model [see, e.g.,
Pradhan and Chakrabarti (2003b)]. If a fraction f of the load
of the failed fiber goes for global redistribution and the rest
(the fraction 1� f) goes to the fibers neighboring the failed
one, then we see that there is a crossover from extreme to self-
averaging statistics at a finite value of f [see, e.g., Pradhan,
Hansen, and Chakrabarti (2010)].

4. Burst distribution: Crossover behavior

In fiber bundle models, when the load is slowly increased
until a new failure occurs, a burst can be defined as the
number (�) of fiber failures following that failure. The
distribution of such bursts [Dð�Þ] shows power-law behavior.
It was shown for a generic case (independent of threshold
distribution) that the form of this distribution (for continuous
loading) is

Dð�Þ=N ¼ C��� (70)

in the limit N ! 1.

104

105

106

107

0.25 0.5 0.75 1.0

R
(t

)

t/tf

FIG. 37. The breaking rate RðtÞ vs the rescaled step variable tf=t
for the uniform threshold distribution for a bundle of N ¼ 107

fibers. Different symbols are for different excess stress levels

�� �f: 0.001 (circles), 0.003 (triangles), 0.005 (squares), and

0.007 (crosses). From Pradhan and Hemmer, 2009.
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The burst exponent � has a value 5
2 on average over all �

(¼ 0 to �f) and it is universal (Hemmer and Hansen, 1992).

However, the burst exponent value depends, e.g., on the

details of the loading process and also from which point of

the loading the burst statistics are recorded. If the

burst distribution is recorded only near the critical point

(� & �f), the burst exponent (�) value becomes 3=2

(Pradhan, Hansen, and Hemmer, 2005). For the equal-load-

sharing model with uniform strength distribution, the burst

distribution is shown (Fig. 38) for recording that starts from

different points of effective loading denoted by x0, where xt ¼
�=Ut is the elongation or the effective loading (for linear

elastic behavior) at any point t. The crossover behavior is

clearly seen. In these studies, the load increase rate is ex-

tremely slow and the increase is assumed to stop once a fiber

fails. The consequent avalanches are studied at that load. Once

the avalanche stops, the load is increased again. This process

is realistic in the case of earthquakes where stress accumu-

lation takes place over years. However, if the increase in load

is fixed (d�), then the above exponent value of � becomes 3:

�� dð1� U�Þ=d�, giving ��2 ¼ �� �f [from Eq. (64)]

and since Dð�Þd�� d�, Dð�Þ � d�=d�� ��� , � ¼ 3
(Pradhan, Bhattacharyya, and Chakrabarti, 2002).

In fact, the earthquake frequency statistics may indeed

show the crossover behavior mentioned above: If the event

frequency is denoted by DðMÞ, then it is known that DðMÞ �
M�� , where M denotes the magnitude (which may be as-

sumed to be related to avalanche size� in the models) and the

� value is found (Kawamura, 2006) to be larger (� � 0:9) for
statistics over a smaller time period (before the mainshock),

compared to the long-time average value (� � 0:6); see

Fig. 39.

C. Two-fractal-overlap models

The common geometrical property observed in seismic

faults is its fractal nature. It is now well known that, like

other fractured surfaces, fault surfaces also posses self-affine

roughness [see, e.g., Santucci et al. (2007) and references
therein]. Therefore, it is worth investigating if earthquake
phenomena can be modeled as the outcome of relative move-
ment of two self-affine surfaces over each other. Chakrabarti
and Stinchcombe (1999), in a simplistic model, studied the
overlap statistics of two Cantor sets in order to understand the
underlying physics of such phenomena.

The Cantor set is a prototype example of a fractal. In order
to construct a triadic Cantor set, in the first step the middle
third of a base interval [0,1] is removed. In successive steps,
the middle thirds of the remaining intervals (½0; 1=3� and
½2=3; 1� and so on) are removed. After n such steps, the
remaining set is called a Cantor set of generation n. When
this process is continued ad infinitum, i.e., in the limit n ! 1,
it becomes a true fractal.

In this model, the solid-solid contact surfaces of both the
Earth’s crust and the tectonic plate are considered as average
self-affine surfaces (see Fig. 40). The strain energy growing
between the two surfaces due to a stick period is taken to be
proportional to the overlap between them. During a slip event,
this energy is released. Considering that such slips occur at
intervals proportional to the length corresponding to that area,
a power law for the frequency distribution of the energy
release is obtained. This compares well with the GR law
[see, e.g., Bhattacharyya and Chakrabarti (2006)].

1. Renormalization group study: Continuum limit

Let the sequence of generators Gn define the Cantor set in
the nth generation within the interval [0,1]: G0 ¼ ½0; 1�,
G1 � RG0 ¼ ½0; a� [ ½b; 1�; . . . ; Gnþ1 ¼ RGn; . . . . The mass
density of the set Gn is represented by DnðrÞ, i.e., DnðrÞ ¼ 1
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D
(∆

)

∆

∆−3/2

∆−5/2

x0 = 0.0
x0 = 0.1
x0 = 0.2
x0 = 0.3
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FIG. 38. The burst size distribution for different values of x0 in the
equal-load-sharing model with uniform threshold distribution. The

number of fibers is N ¼ 50000. From Pradhan, Hansen, and

Hemmer, 2006.

FIG. 39 (color online). Crossover signature in the local magnitude

distribution of earthquakes in Japan. During the 100 days before the

mainshock the exponent is 0.60, much smaller than the average

value 0.88. From Kawamura, 2006.

FIG. 40. (a) Schematic representation of the rough Earth surface

and a tectonic plate. (b) The one-dimensional projection of the

surfaces, forming overlapping Cantor sets.
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if r is in any of the occupied intervals of Gn and 0 elsewhere.
The overlap magnitude between the sets at any generation
n is then given by the convolved form snðrÞ ¼R
dr0Dnðr0ÞDnðr� r0Þ (for symmetric fractals). One can ex-

press the overlap integral s1 in the first generation by the
projection of the shaded region along the vertical diagonals in
Fig. 41(a). That gives the form shown in Fig. 41(b). For
a ¼ b 	 1=3, the nonvanishing s1ðrÞ regions do not overlap
and are symmetric on both sides, with the slope of the middle
curve being exactly double those on the sides. One can then
easily check that the distribution �1ðsÞ of overlap s in this
generation is given by Fig. 41, with both c and d greater than
unity, maintaining the normalization condition with cd ¼
5=3. The successive generations of the density �nðsÞ may
therefore be represented by Fig. 42, where

�nþ1ðsÞ ¼ ~R�nðsÞ � d

5
�n

�
s

c

�
þ 4d

5
�n

�
2s

c

�
: (71)

In the infinite-generation limit of the renormalization
group equation, if ��ðsÞ denotes the fixed point distribution
such that ��ðsÞ ¼ ~R��ðsÞ, then assuming ��ðsÞ � s�� ~�ðsÞ,
one gets ðd=5Þc� þ ð4d=5Þðc=2Þ� ¼ 1. Here ~�ðsÞ represents
an arbitrary modular function, which also includes a loga-
rithmic correction for large s. This agrees with the normal-
ization condition cd ¼ 5=3 for the choice � ¼ 1, giving

��ðsÞ � �ðsÞ � s��; � ¼ 1: (72)

This analysis is for the continuous relative motion of the
overlapping fractals. For discrete steps, the contact area
distribution can be found exactly for two Cantor sets having
the same dimension ( log2= log3) (Bhattacharyya, 2005). The
step size is taken as the minimum element in the generation at
which the distribution is found.

2. Discrete limit

Let snðtÞ represent the amount of overlap between two
Cantor sets of generation n at time t. Initially (t ¼ 0) the
two identical Cantor sets are placed on top of each other,
generating the maximum overlap (2n for the nth-generation
sets). Then in every time step (discrete) the length of the shift
is chosen to be 1=3n for the nth generation, such that a line
segment in one set either completely overlaps with one such
segment on the other set or does not overlap at all, i.e., partial
overlap of two segments of the two sets is not allowed.
Periodic boundary conditions are assigned in both of the
sets. The magnitude of overlap [snðtÞ], therefore, in this
discrete version, is given by the number of overlapping pairs
in the line segment of the two sets. Because of the structure of
the Cantor sets, the overlap magnitudes can only have certain
discrete values which are in geometric progression: sn ¼
2n�k, k ¼ 0; . . . ; n.

Let NrðsnÞ denote the number of times an overlap sn has
occurred in one period of the time series for the nth genera-
tion (i.e., 3n time steps). It can be shown that (Bhattacharyya
and Chakrabarti, 2006)

Nrð2n�kÞ¼n Ck2
k; k ¼ 0; . . . ; n: (73)

Now, if ProbðsnÞ denotes the probability that after time t there
are sn overlapping segments, then for the general case of sn ¼
2n�k, k ¼ 0; . . . ; n, it is given by

Probð2n�kÞ ¼ Nrð2n�kÞP
n
k¼0 Nrð2n�kÞ ¼

2k

3n
nCk

¼ nCn�k

�
1

3

�
n�k

�
2

3

�
k
: (74)

3. Gutenberg-Richter law

Since the allowed values of the overlap are sn ¼ 2n�k,
k ¼ 0; . . . ; n, one can write log2sn ¼ n� k. Then Eq. (74)
becomes

ProbðsnÞ ¼ nClog2sn
ð13Þlog2snð23Þn�log2sn � Fðlog2snÞ:

(75)

Near the maxima it may be written as

FðMÞ ¼ 3

2
ffiffiffiffiffiffiffi
n�

p exp

�
� 9

4

ðM� n=3Þ2
n

�
; (76)

where M ¼ log2sn. To obtain the GR law analog from this
distribution we have to integrate FðMÞ from M to 1:

FcumðMÞ ¼
Z 1

M
FðM0ÞdM0

¼
Z 1

M

3

2
ffiffiffiffiffiffiffi
n�

p exp

�
� 9

4

ðM0 � n=3Þ2
n

�
dM0:

(77)

Substituting p ¼ ð3=2 ffiffiffi
n

p ÞðM0 � n=3Þ, we get

FcumðMÞ ¼ 1ffiffiffiffi
�

p
Z 1

3
2
ffiffi
n

p ðM�n=3Þ
expð�p2Þdp: (78)

On simplification, this gives

FIG. 41. (a) Two Cantor sets along the axes r and r� r0. (b) The
overlap s1ðrÞ along the diagonal. (c) The corresponding density

�1ðsÞ.

FIG. 42. The overlap densities (probabilities) �ðsÞ at various

generations; (a) zeroth, (b) first, (c) second, and (d) infinite

generation.
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FcumðMÞ ¼ 1

3

ffiffiffiffi
n

�

r
exp

�
� 9

4

ðM� n=3Þ2
n

�
ðM� n=3Þ�1:

(79)

FcumðMÞ in the above equation suggests that the ‘‘average’’
quakes are of magnitude n=3, while

FcumðMÞ � exp½�ð9=4ÞðM� n=3Þ2=n� (80)

can be simplified for large M. Using e�a2 ¼ ð1= ffiffiffiffiffiffiffi
2�

p Þ
Rþ1
�1 e�x2=2þ ffiffi

2
p

axdx and
Rþ1
�1 e�fðxÞdx� e�fðx0Þ, where x0

refers to the extremal point with @f=@xjx¼x0 ¼ 0, one

finds FcumðMÞ�e�ð9=4Þ½Mðm0=nÞ�2M=3��e�3M=4, where x0 ¼
ð3= ffiffiffiffiffiffi

2n
p Þm0; m0 ¼ n. It gives (Bhattacharya et al., 2009)

logFcumðMÞ ¼ A� 3
4M; (81)

where A is a constant depending on n. This is the Gutenberg-
Richter law in the model and clearly holds for the high-
magnitude end of the distribution. Also, one can equate easily
the magnitude M with the released energy E by noting that
M ¼ log2s here. The overlap s is related to the energy E and
hence the relation M� logE, giving Fcum � E�3=4.

Similar to the outcome of the simple fractal models con-
sidered here, a power-law behavior for the overlap distribu-
tion also occurs for two overlapping random Cantor sets,
Sierpinsky gaskets and Sierpinsky carpets overlapping on
their respective replicas (Pradhan et al., 2003), and one
fractional Brownian profile overlapping on another
(De Rubeis et al., 1996,). In view of the generality of the
power-law distribution and the fractal geometry of the fault
surfaces, it is suggested that the GR law owes its origin to a
significant extent to the fractal geometry of the fault surfaces.
It may be noted that, by identifying the aftershocks as these
adjusted overlaps, with average size given by Eq. (79), one
can define an average magnitude (n=3) dependent on the
fractal geometry generator fraction ( ¼ 1=3 here) and the
generation number (n). This agrees with the observed data
quite satisfactorily [see Bhattacharya, Chakrabarti, and
Kamal (2011)].

4. Omori law

Let NðM0ÞðtÞ denote the cumulative number of aftershocks
(of magnitude M � M0, where M0 is some threshold) after
the mainshock. Then the Omori law states that

dNðM0ÞðtÞ
dt

¼ 1

tp
: (82)

The value of the exponent p is close to unity for a tectonically
active region, although a range of p values is also observed
[for review see Bhattacharya et al. (2009)]. In practice, a
particular value of p is observed when the threshold M0 is
given. For this model, when the threshold is fixed at the
minimum (i.e., M0 ¼ 1), then p ¼ 0 due to the fact that
aftershock occurs at every step in this model. However,
interesting facts are seen when the threshold is set at the
second highest possible value n� 1 (recall that the second
highest overlap was 2n�1). Then for t ¼ 2:3r1 (where
r1 ¼ 0; . . . ; n� 1) there is an aftershock of magnitude
n� 1. Therefore, neglecting the prefactor 2, an aftershock
of magnitude n� 1 occurs in a geometric progression with

the common ratio 3. Therefore, we get the general rule
Nð3tÞ ¼ NðtÞ þ 1, leading to

NðtÞ ¼ log3ðtÞ: (83)

On integration, the Omori law gives NðtÞ ¼ t1�p, and there-
fore from this model we get p ¼ 1, which is the value
suggested by the Omori law for p. The model therefore gives
a range of p values between 0 and 1 which systematically
increases within the range of threshold values.

V. DISCUSSION AND CONCLUSIONS

Earthquakes, due to their devastating consequences, have
been the subject of extensive studies in various disciplines,
ranging from seismology to physics. Although the efforts
were not always commensurate [see also Kagan (2006) for
a critical view of the inherent difficulties of the present
approach in theoretical physics], in the last decade consid-
erable progress has been made in studying different aspects of
this vast topic. In this review, the progress in such studies is
discussed from the point of view of statistical physics.

Because an earthquake is mainly a large-scale dynamic
failure process, it is necessary to formulate the background of
friction and fracture in order to understand the physics of
earthquakes. In Sec. II such issues are discussed: After
describing the Griffith theory for crack nucleation and the
fracture stress statistics of disordered solids, we discuss the
RSF law and microscopic models for solid-solid friction.
The effects that could lead to violations of RSF laws are
also discussed.

Several statistical approaches to model earthquake dynam-
ics are discussed. The BK model is discussed in one and two
spatial dimensions, as well as its long-range version. In
Sec. III.A.6, the continuum limit is also discussed, which
gives ‘‘characteristic’’ earthquakes. The BK model has also
been discussed in terms of the RSF law. In addition to
relatively complex modeling like that of BK models and
continuum models, we also discuss simplistic models such
as OFC models, fiber bundle models, and purely geometrical
models like the two-fractual-overlap model. While many
details are lost in any such model, they still capture the
complex nature of the dynamics and the different statistical
aspects, helping us to gain new insights.

As one can easily see, in spite of considerable progress in
the study of such an important and complex dynamical
phenomenon as an earthquake, our knowledge is far short
of any satisfactory level. We believe major collaborative
efforts, involving physicists and seismologists, in particular,
are urgently necessary to unfold the dynamics and allow us to
employ our knowledge of the precursor events to save us from
catastrophic disasters in the future.

GLOSSARY

aftershocks: Small earthquakes that follow a large earth-
quake (main shock).

afterslip: Aseismic sliding that follows an earthquake.

asperity: (a) A region where stick-slip motion occurs on a
fault or a plate boundary. Strain energy is accumulated at an
asperity during a stick stage between earthquakes and it is
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released by seismic slip at the occurrence of an earthquake.
(b) Junction of protrusions of the two contacting surfaces.

Cantor set: Start with the set of real numbers in the interval
[0:1], divide the set into a few subsets, and remove one of the
subsets in the first step. As the removal scheme is repeated
ad infinitum, one is left with a dust of real numbers called the
Cantor set. It is a fractal object.

characteristic earthquakes: Earthquakes that repeatedly
rupture approximately the same segment of a fault. The
magnitudes and slip distributions of characteristic earth-
quakes are similar to one another.

dynamical critical phenomena: Critical behaviors that are
associated with the dynamical properties of the system, rather
than the equilibrium properties (e.g., the thermal transition in
the Ising model), are called dynamical critical phenomena
(e.g., the depinning transition of a fracture front, the time-
dependent field-induced transitions in the Ising model, etc.).

fiber bundle model: Originating from textile engineering,
the fiber bundle model is often used as a prototype model for
fracture dynamics. In its simplest form, it consists of a large
number of fibers or Hooke springs. The bundle hangs from a
rigid ceiling and supports a load via a platform at the bottom.
Each fiber has identical spring constants but the breaking
stress for each differs. Depending on the breaking stress of the
fibers, the fibers fail and successive failures occur due to load
redistribution, showing complex failure dynamics.

fractals: A fractal is a geometrical object having self-
similarity in its internal structure.

fractional Brownian profile: Fractional Brownian motion
(FBM) is a continuous-time random walk with zero mean.
However, the directions of the subsequent steps of a FBM are
correlated (positively or negatively). A fractional Brownian
profile is the trajectory of such a walk. It is self-similar.

Gutenberg-Richter (GR) law: The power law describing
the magnitude-frequency relation of earthquakes. The fre-
quency of earthquakes of energy (seismic moment) E decays

with E proportionally to E�ð1þBÞ ¼ E�ð1þ2
3bÞ where B and

b ¼ 3
2B are appropriate exponents.

Hamiltonian: It is essentially the total energy of a system.
For a closed system, is the sum of kinetic and potential
energies.

Omori law: The power law describing the decay of the
number (frequency) of aftershocks with the time elapsed after
the mainshock.

power law distribution: (Also called a ‘‘scale free distribu-
tion’’) A distribution of the generic form PðxÞ � x
. Note that
there is no length scale associated with this type of distribu-
tion, since a transformation like x ! x=b would keep the
functional form unchanged. Observables (e.g., magnetization,
susceptibility, etc.) show power-law behavior near criticality.
Therefore, it is often considered as a signature of critical
behavior.

slow earthquakes: Fault slip events that produce little or no
seismic-wave radiation. Rupture propagation velocities and
slip velocities of slow earthquakes are much smaller than
those of ordinary earthquakes. Slow earthquakes without
seismic wave radiation are often called silent earthquakes.

quenched randomness: This is the randomness in a system
that is not in thermal equilibrium with the same reservoir as
the system and does not fluctuate.

rate- and-state rate-and state-dependent friction (RSF)
law: An empirical constitutive law describing the dynamic
friction coefficient in either steady or transient states.

self-organized criticality (SOC): When the dynamics of a
system leads it to a state of criticality (where scale invariance
in time and space is observed) without any need of a external
tuning parameter, the system is said to have self-organized to
a critical state. This phenomenon, where a critical point is an
attractor of the dynamics, is called self-organized criticality.

self-similarity and self-affinity: Self-similarity refers to a
property of an object that it is similar (exactly or approxi-
mately) to one or more of its own part(s). Self-affinity refers
to the properties of those objects which, in order to be self-
similar, are to be scaled by different factors in the x and y
directions (for a 2D object).

Sierpinski gasket and Sierpinski carpet: A Sierpinski car-
pet is a fractal object embedded in a 2D surface. Its construc-
tion is as follows: First a square is taken and divided into nine
equal squares. Then the square in the middle is removed and a
similar operation is performed upon the eight remaining
squares. This process is continued ad infinitum to obtain
what is called a Sierpinski carpet. The Sierpinski gasket
(also called the Sierpinski triangle) is again a fractal object.
Its construction is as follows: First an equilateral triangle is
taken and is divided into four equilateral triangles of the same
sizes; the middle one is removed. Then the same operation is
performed upon the three remaining triangles. When this
process is continued ad infinitum, one is left with what is
called the Sierpinski gasket.

universality class: Phase transitions are characterized by a
set of critical exponent values. The values of these exponents
are independent of the microscopic details of the system and
depend only on the symmetry and dimensionality of the order
parameter. Therefore, a large class of systems often have the
same critical exponent values. A universality class is a group
of systems having the same critical exponent values.
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