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Multiphoton interference reveals strictly nonclassical phenomena. Its applications range from

fundamental tests of quantum mechanics to photonic quantum information processing, where a

significant fraction of key experiments achieved so far comes from multiphoton state manipulation.

The progress, both theoretical and experimental, of this rapidly advancing research is reviewed. The

emphasis is given to the creation of photonic entanglement of various forms, tests of the

completeness of quantum mechanics (in particular, violations of local realism), quantum informa-

tion protocols for quantum communication (e.g., quantum teleportation, entanglement purification,

and quantum repeater), and quantum computation with linear optics. The scope of the review is

limited to ‘‘few-photon’’ phenomena involving measurements of discrete observables.
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I. INTRODUCTION

In his 1704 treatise, Opticks Newton claimed that light is
composed of particles, and strongly opposed Huygens wave

picture. Later on with Young’s double-slit interference ex-
periments, the wave picture seemed to be correct and suffi-

cient. This view was further strengthened by Maxwell’s
electrodynamics. Yet, 201 years after Newton, during his

annus mirabilis Einstein reintroduced lichtquanten (light
particles) and in this way explained the photoelectric effect
(Einstein, 1905).1 The ultimate consequences of Einstein’s

ideas, after fundamental works of Bohr, Heisenberg, and
Schroedinger, gave birth to quantum mechanics in 1925.

Quantum electrodynamics, the final theory of light, in which
photons are elementary excitations of the quantized electro-

magnetic field interacting with charges, was given by Dirac
(1927), and its internal consistency was proved by Dyson,

Feynman, Schwinger, and Tonomaga around 20 years later.
According to these theories, photons, as all quantum
particles, reveal both wavelike and particlelike properties, a

phenomenon known as wave-particle duality. The wave
nature is revealed by interference, while the particle nature

can be recognized in absorption and detection events, or
more generally in the statistics of counts. The interference

patterns involving single photons or, equally well, the light
intensity does not reveal strictly nonclassical phenomena.

Some of the most counterintuitive effects begin with two or

more photon interference and in intensity correlation mea-
surements: a plethora of classically impossible phenomena
occurs, most of them completely incomprehensible with any
classical concepts, neither particle nor wave. As always, in
the history of human scientific endeavor, harnessing of new
phenomena leads to new applications. The aim of this review
is to describe the recent theoretical and experimental advan-
ces in multiphoton interference, entanglement, manipulation,
and their applications in quantum communication and
computation.

A. Quantum optics

An intensive research of the quantum properties of light
started around half a century ago. Its advances allow one to
gain a coherent control of quantum optical systems, enabling
true quantum engineering. As a result, quantum optical
methods made possible to actually perform gedanken experi-
ments concerning the foundations of quantum theory. This
control of quantum phenomena further allows one to search
for novel information-processing protocols, which now prom-
ise new technologies based on quantum information science.

Soon after Einstein’s introduction of light quanta, Taylor
(1909) tried to find some new effects in a two-slit Young-type
experiment using extremely faint light, so faint that on aver-
age only one photon at a time was inside the apparatus. No
deviation from the classical interference was observed. Now,
with a fully developed theory of quantized light, we know that
experiments of this type cannot differentiate between the
classical explanation (based on the interference of electric
field waves) and the quantum explanation (based on the
interference of probability amplitudes for photons passing
through either of the two slits). The inherently ‘‘quantum
nature of the electromagnetic field,’’ as we know now, is
revealed directly in multiphoton experiments which were
not possible earlier.

Still, quantum interference of truly individual photons is
certainly a fascinating phenomenon. The first precise experi-
ment aimed at exactly this was performed by Grangier,
Roger, and Aspect (1986). They used photon pairs emitted
in atomic cascades, one of the photons was used as a trigger,
and the other was fed into a Mach-Zehnder interferometer.
When detectors are placed in the two arms of the interfer-
ometer, besides background noise, no simultaneous detection
(i.e., coincidence) in both detectors was observed,2 i.e., the
photon was found only in one of the two arms, a typical
particlelike behavior. However, after overlapping the two
arms by the output beam splitter of the interferometer the
usual (wavelike) interference pattern was observed. Recently,
Braig et al. (2003) demonstrated that, when also observing
interference depending on the phase difference between both
arms, the light from the interferometer output exhibited the
characteristic single-photon antibunching.

Modern quantum optics was effectively born in 1956 when
Hanbury Brown and Twiss (1956) introduced intensity
interferometry. It was the first serious attempt to study the

1The current term photon was introduced by Lewis (1926).

2As a matter of fact some coincidence was observed, however it

was below the case that was to be expected if the photons were

treated as classical wave packets
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correlations between intensities recorded at two separated
detectors. It motivated more sophisticated photon counting
and correlation experiments. The quantum theory of optical
coherence of Glauber (1963) gave theoretical clues to search
for unambiguously quantum optical phenomena. Carmichael
and Walls (1976a, 1976b) predicted photon antibunching in a
resonance fluorescence, which was observed experimentally
by Kimble, Dagenais, and Mandel (1977). The early experi-
ments used atomic beams as sources. Thus, atomic number
(and emission statistics) fluctuations were unavoidable. Later,
Diedrich and Walther (1987) realized such experiments using
a single trapped ion and observed photon antibunching as
well as sub-Poissonian statistics in the system. Squeezed
states of light were experimentally generated by using a
four-wave mixing in atomic sodium (Slusher et al., 1985)
and in optical fibers (Shelby et al., 1986), or by using an
optical parametric oscillator (Wu et al., 1986). Interested
readers may find excellent reviews in Mandel and Wolf
(1995), Scully and Zubairy (1997), Walls and Milburn
(1994), and Lounis and Orrit (2005).

The study on photon statistics and photon-counting tech-
niques enables direct examination of some fundamental dis-
tinctions between quantum and classical concepts of light.
Parallel developments in neutron, atomic, and molecular
interferometry, as well as modern methods of cooling and
trapping ions, etc., allowed one to probe ever deeper the
properties of individual quantum systems and to realize
many of the gedanken (thought) experiments testing the
foundations quantum physics.

B. The essence of the quantum world: Entanglement

Entanglement is a property of more than one quantum
system such that the state of one system cannot be seen
independent of the other’s system. It forms the basis for the
most remarkable, purely quantum effects and is the main
resource for the many applications of quantum information
processing. Initially, it was used by Einstein, Podolsky, and
Rosen (1935) to show that quantum mechanics is incomplete.
The trio, Einstein, Podolsky, and Rosen (EPR), argued that
the outcome of a measurement on any physical system is
determined prior to and independent of the measurement
(realism) and that the outcome cannot depend on any actions
in spacelike separated regions (Einstein’s locality).3 This
EPR criterion of, what is now called, ‘‘local realism’’ should
be fulfilled by every physical description of nature, and,
indeed, it looks quite reasonable to us, particularly as all
our classical world and experience fully adhere to it. They
used the perfect correlations of entangled states (thus often
called EPR states) to define ‘‘elements of reality,’’ a notion
which according to them was missing in quantum theory.
Elements of reality are deterministic predictions for a mea-
surement result, which can be established without actually
performing the measurement, and without physically disturb-
ing the (sub)system to which they pertain. As elements of
reality in the studied case were argued to exist necessarily
even for pairs of noncommuting observables, they claimed
they are contradicting the Heisenberg uncertainty relation.

The EPR paradox and with it the entanglement of quantum
states remained a philosophical issue (Feynman, Leighton,
and Sands, 1963), and seemed experimentally untestable for
almost 30 years. The breakthrough happened when Bell
(1964) derived his remarkable inequalities which revealed
that two-particle correlations for the two spin- 12 singlet

disagree with any local realistic model. The pioneering
‘‘Bell experiment’’ was done by Freedman and Clauser
(1972), followed by the famous ones by Aspect, Grangier,
and Roger (1981, 1982) and Aspect, Dalibard, and Roger
(1982) and many others.4 The early experiments used
polarization-entangled photon pairs from atomic cascades
(Clauser and Shimony, 1978). In late 1980s, parametric
down-conversion was discovered as a convenient and robust
method to produce entangled photons (see Sec. V).

A quarter of century after Bell’s paper, it turned out that the
conflict of local realism with quantum mechanics is even
more striking for certain three or more particle entangled
states. The Greenberger-Horne-Zeilinger (GHZ) theorem
(Greenberger, Horne, and Zeilinger, 1989; Greenberger
et al., 1990; Mermin, 1990a) showed that the concept of
EPR’s elements of reality is self-contradictory. That is, there
are situations for which local realism and quantum mechanics
make completely opposite predictions, even for perfectly
correlated results, which were the starting point of the EPR
argumentation. The GHZ paper showed that three or more
particle interferometry is a rich untested area, full of exciting
classically paradoxical phenomena. However, at that time no
effective sources of three-photon or four-photon entangle-
ment were present. Thus, a new chapter in experimental
multiphoton quantum optics was opened, but had to wait
for new ideas and experimental techniques.

C. Sources of photonic entanglement

The standard source of entangled-photon pairs is nowadays
the nonlinear optical process of spontaneous parametric
down-conversion (SPDC) ([for a pioneering observation,
see Burnham and Weinberg (1970)], the inverse of frequency
doubling and up-conversion. In SPDC, photons from a pump
laser beam, within a nonlinear crystal, can spontaneously be
converted into pairs that are momentum and frequency en-
tangled, and in the so-called type II process can also be
polarization entangled (Kwiat et al., 1995). Today, SPDC
sources of entangled-photon pairs of high quality and bright-
ness can be routinely realized using various methods.

However, since the GHZ paper, and even more after the
birth of quantum information, three or more photon entangle-
ment was in demand. It turned out that using the primary
two-photon entanglement, by a procedure which is called
entanglement swapping, one can entangle without any direct
interaction particles which were independent of each other
or, what is more important for us, construct entanglement of
higher order (Żukowski, et al., 1993). Since photons basi-
cally do not interact with each other, this method is of
special importance for schemes aimed at creating multipho-
ton entanglements. Practical versions of this technique
(Rarity, 1995; Zeilinger et al., 1997; Żukowski, Zeilinger,

3A more detailed discussion of the EPR paradox is in Sec. V. 4See Aspect (1999); Tittel and Weihs (2001) for a recent survey.
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and Weinfurter, 1995) are thus the basis of all experiments

with three or more entangled photons, as well as of many
realizations of quantum information protocols, up to

measurement-based quantum computation.

D. Applications in quantum information

Experimental quantum information processing was started

right after new experimental techniques allowed one to con-
trol individual or compound quantum systems like atoms in

traps, pairs of entangled photons, etc., and to observe a new
set of classically impossible phenomena. As always, new

controllable phenomena lead to new practical applications,

especially in information transfer and processing. Quantum
information processing harnesses the superposition principle

and nonclassical correlations of quantum mechanics and
employs them in communication and computation. In quan-

tum cryptography [Bennett and Brassard (1984); Wiesner
(1983); Ekert (1991); for a review see Gisin et al. (2002)]

complementary measurements on quantum systems are used

to establish a secret key shared by two partners, thus enabling
for the first time a provably secure communication. Quantum

teleportation (Bennett et al., 1993) enables a faithful transfer
of an unknown quantum state from one location to another,

using entangled states as a quantum channel. Quantum com-

puters promise to greatly increase the efficiency of solving
problems such as factoring large integers, database search,

and simulation of some quantum phenomena.
Photons are the fastest information carrier, have a very

weak coupling to the environment, and are thus best suited for

quantum communication tasks. Thanks to this property, quan-
tum key distribution with photons has now went long beyond

the first few-meter laboratory demonstrations, to free-space

or fiber-based distributions over 100 km [see, e.g., Rosenberg
et al. (2007) and Ursin et al. (2007)], and is rapidly com-

mercialized into real life intercity cryptographic networks. To
ultimately extend the range of quantum communication to a

global scale, a collection of quantum toolkits still has to be

developed. A quantum repeater (Briegel et al., 1998) would
allow in principle an efficient long-distance high-fidelity

transmission of entanglement. Several ingredients of this
scheme have been already demonstrated: entanglement swap-

ping (Pan et al., 1998), purification (Pan, Gasparoni, Ursin
et al., 2003), quantum memory (Yuan et al., 2008), etc.

Despite the difficulty to ‘‘localize’’ photons, there has been

a considerable interest in linear-optical quantum computing.

This is motivated by the photon’s robustness against decoher-
ence and the relative ease with which it can be manipulated

with high precision. Remarkably, by exploiting the nonline-
arity induced by measurement, Knill, Laflamme, and Milburn

(KLM) showed that scalable quantum computation is in
principle possible with linear optics, single-photon sources,

and detectors. A new and probably more practical approach is

the concept of a ‘‘one-way quantum computer’’ (Raussendorf
and Briegel, 2001; see Sec. VII.B.1). In this approach, one

starts with the so-called ‘‘cluster states’’ (Briegel and
Raussendorf, 2001). The computation algorithm is then per-

formed by applying a sequence of one-qubit measurements.

Optical quantum computing proposals (Browne and Rudolph,
2005) based on the one-way model reduce the computational

resource overhead by three orders of magnitudes compared to
the KLM scheme. Cluster states up to six entangled photons
have been realized (Kiesel, Schmid, Toth, et al., 2005;
Walther, Resch, Rudolph et al., 2005; Lu et al., 2007),
and applied to demonstrate elementary quantum gates and
algorithms (Walther, Resch, Rudolph et al., 2005).

The rapid growth of literature on photonic realizations of
quantum information processing still continues. One can
expect much more exciting new developments.

E. Related reviews

The earlier stages of the research of photonic entanglement
have been reviewed in Clauser and Shimony (1978) Mandel
and Wolf (1995), and Mandel (1999). They contain a collec-
tion of descriptions of experiments demonstrating the very
nature of quantum mechanics. Because of a limit of space, we
shall not discuss these experiments in this review. We start
our description more or less at the stage of developments at
which these earlier reviews ended. For detailed discussions
on quantum entanglement, see Alber et al. (2001) and
Horodecki et al. (2008). Reviews on Bell’s theorem can be
found in Laloë (2001), Werner and Wolf (2001a), and
Genovese (2005). For an introduction to quantum information
and quantum computation; see Bennett and DiVincenzo
(2000), Preskill (1998), Nielsen and Chuang (2000), and
Bouwmesster, Ekert, and Zeilinger (2001). Quantum cryp-
tography has been reviewed by Gisin et al. (2002). Linear-
optical quantum computing with photonic qubits has been
reviewed by Kok et al. (2007), O’Brien (2007), O’Brien,
Furasawa, and Vuckovic (2009), and Ralph and Pryde (2010).
Weinfurter (2000) and Zeilinger et al. (2005) gave a concise
review on experimental progress on photon interference and
quantum information applications.

F. Our aims

In this review, we describe the progress in the last two
decades or so, both theoretical and experimental, in multi-
photon interferometry, and its applications ranging from
fundamental tests of quantum mechanics to photonic quan-
tum information processing. Emphasis will be put on creation
and control of photonic entanglement with linear optics
and its application in quantum communication and computa-
tion. We limit the scope of our review to ‘‘few-photon’’
phenomena involving measurements of discrete observables,
thus many fascinating experiments involving continuous
variables will be not discussed here.

II. INTERFERENCE AND QUANTUM ENTANGLEMENT

Classical interference is a macroscopic expression of the
quantum one, i.e., the coherent or thermal states of the
electromagnetic fields can also be described with Maxwell’s
laws. The interference phenomena in the quantum realm are
richer and more pronounced. We discuss here the basic
differences between the classical interference understood as
interference of electromagnetic waves in space, and the
quantum one which is interference of various operationally
indistinguishable processes.
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A. Classical interference

In classical physics interference results from the superpo-
sition of waves. It may express itself in the form of intensity
variations or intensity correlations.

Consider two quasimonochromatic plane waves linearly
polarized in the same direction, described by

Ejðr; tÞ ¼ Eje
i½kj�r�!t��jðtÞ� þ c:c: (1)

where Ej is the real amplitude of one of the fields, kj is the

wave vector, ! is the frequency of both waves, j ¼ 1, 2 the
index numbering the fields, and finally c.c. denotes the com-
plex conjugate of the previous expression. The intensity of
the superposed fields at a certain point in space is given by

Iðr; tÞ ¼ E2
1 þ E2

2 þ 2E1E2 cos½�12k � r� �12�ðtÞ�;
(2)

where �12 is the difference of the respective parameters for
the two fields, e.g., �12�ðtÞ ¼ �1ðtÞ ��2ðtÞ. For �12�ðtÞ
constant in time, or of values varying much less than �, this
formula (after averaging over time) describes a Young-type
interference pattern. In the opposite case, of widely fluctuat-
ing �12�ðtÞ no interference can be observed because the
pattern is washed out. In the case of E1 ¼ E2, one has
maximal possible interference. This can be quantified in
terms of the interferometric contrast, or visibility, V ¼
ðImax � IminÞ=ðImax þ IminÞ, which in the aforementioned
case equals 1.

The Hanbury-Brown and Twiss experiment introduced
intensity correlation measurements to optics. Such correla-
tions between two points in space and two moments of time,
for two classical fields, are described by an intensity corre-
lation function

Gð2Þðr1; t1; r2; t2Þ ¼ hIðr1; t1ÞIðr2; t2Þiav: (3)

The average is taken over an ensemble, and for stationary
fields this is equivalent to the temporal average. Even when
no intensity variations are observable (i.e., for averaged
intensity constant in space), the intensity correlations can
reveal interference effects. Assume that the phases of the
two fields fluctuate independently of one another. Then for
t1 ¼ t2, the G

ð2Þ function still exhibits a spatial modulation or
maximal visibility of 50% as exhibited by

Gð2Þðr1; t; r2; tÞ ¼ ðI1 þ I2Þ2 þ 2I1I2 cos½ð�12kÞðr1 � r2Þ�;
(4)

where Ii ¼ E2
i , i ¼ 1, 2. This formula can be easily reached

by noting that the temporal average of

cos½�þ �12�ðtÞ� cos½�0 þ �12�ðtÞ�; (5)

where �12�ðtÞ ¼ �1ðtÞ ��2ðtÞ is given by

cos� cos�0hcos2�12�ðtÞiav þ sin� sin�0hsin2�12�ðtÞiav
� 1

2 sinð�þ �0Þhsin2�12�ðtÞiav; (6)

and due to the random nature of �12�ðtÞ only the first
two terms survive because both hcos2�12�ðtÞiav and
hsin2�12�ðtÞiav give 1

2 , whereas hsin2�12�ðtÞiav ¼ 0.

In addition to the phase fluctuations, one can also take into
account amplitude fluctuations. Nevertheless, the basic fea-
tures of the earlier formula must be retained. Amplitude
fluctuations tend to lower the visibility of the intensity corre-
lations patterns even further. Thus, the visibility of intensity
correlations for fields with fluctuating phase differences is
never full, maximally 50%. As we shall see, there is no bound
on visibility in the quantum case. For a broader treatment of
these matters, see Paul (1986) and Belinskii and Klyshko
(1993).

B. Quantum interference

Quantum interference rests on the concept of superposition
of probability amplitudes of processes that contribute to the
given phenomenon.

1. Single-particle quantum interference

Single-particle interference looks almost identical to the
classical one. We replace the fields (waves) by amplitudes
Aðx; tÞ, which differ only by the fact that they must be
suitably normalized, if one wants to compute the probabil-
ities. Suppose that the (not normalized) amplitude to detect a
photon at x is given by

Ab1
ðx; tÞ ¼ ei½k1�ðx�b1Þþ�x;b1

ðtÞ� (7)

if it originates from point b1, and by

Ab2
ðx; tÞ ¼ ei½k

0
1
�ðx�b2Þþ�x;b2

ðtÞ� (8)

if it originates from b2. The quantum mechanical probability
density that a particle is detected at x is given by

Pðx; tÞ � jAb1
ðx; tÞ þ Ab2

ðx; tÞj2
� 1þ cos½�k1 � xþ�0 þ�x;b1

ðtÞ ��x;b2
ðtÞ�;
(9)

where �k1 ¼ k1 � k0
1, and �0 is an irrelevant constant

phase. Thus if the phase difference �x;b1
ðtÞ ��x;b2

ðtÞ is

stable, one can have the Young-type interference patterns of
up to 100% visibility. Such a stable phase difference can be
observed with single photons in, e.g., a double-slit experi-
ment. Also, in the case of a classical wave description and
classical-like fields the observed intensity is proportional to
the probability density Pðx; tÞ, that is in this respect nothing
changes.

Nevertheless, the above description differs drastically from
the classical particle picture, in which one would expect that
a process originating with state A and with possible inter-
mediate stages B1; . . .BN , leading to an event C, would be
described by

PðCjAÞ ¼ XN
j¼1

PðCjBjÞPðBjjAÞ: (10)

In the quantum case PðCjAÞ ¼ jhCjAij2, where

hCjAi ¼ XN
j¼1

hCjBjihBjjAi; (11)
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this means one sums over amplitudes not probabilities. For a
double slit, we have N ¼ 2, and hAjB1i � hAjB2i give the
amplitudes to reach the slits. Finally, one has hCjBji ¼ Abj

.

Please note that for classical particles the terms of the sum-
mation PðCjBjÞ etc., are real numbers, while in the quantum

case the amplitudes hCjBji are complex numbers. Thanks to

that interference effects can be predicted.
The difference between Eqs. (10) and (11) is in the as-

sumption, inherent in Eq. (10), that the particle had to be in
one of the intermediate situations (states) Bi. In the quantum
case any attempt to verify by measurement5 which of the
situations actually took place puts one back to the classical
formula (10). The formula (11) leads to interference phe-
nomena, and may be thought as a manifestation of a wave
nature of quantum particles, whereas, if we make measure-
ments discriminating events Bi, we learn by which way
(welcher weg) the particles travel. The ‘‘which-way informa-
tion’’ is a clear signature of the particle nature.

2. Two-particle quantum interference

All this becomes much more puzzling once we consider a
two-particle experiment. Already Einstein, Podolsky, and
Rosen (1935) pointed out some strange features of such a
case. Schrödinger (1935a) noticed that these features are
associated with what he called ‘‘entangled states,’’ which
will be discussed in detail later. Consider now these as super-
positions of fully distinguishable products of single-particle
states, i.e., that there is a specific pair of local measurements
for which the results of the respective measurements on the
two subsystems are perfectly correlated (a result of a mea-
surement on one subsystem reveals the unique value of the
corresponding observable for the second subsystem).

Consider such a correlation: assume that if particle 1 is at
b1, then particle 2 is also at b1, and whenever 1 is at b2 then
particle 2 is at b2. Later on the particles are detected at two
different points, x1 and x2. Then, according to the rules given
above

Pðx1;x2; tÞ � jAb1ðx1; tÞAb1ðx2; tÞ þ Ab2 ðx1; tÞAb2 ðx2; tÞj2
� 1þ cosð�k1 � x1 þ �k2 � x2 þ ��b1;b2 Þ;

(12)

with

��b1;b2 ¼ ��x1;bðtÞ þ��x2;bðtÞ þ�0
o; (13)

where the amplitudes for the second particle are given by
formulas (7) and (8), with x2 replacing x1 and k2 replacing
k1, and��xi;bðtÞ ¼ �xi;b1ðtÞ ��xi;b2 ðtÞ, with i ¼ 1, 2. Thus,

if the phase relation between the two amplitudes is stable, one
can have absolutely noiseless interference with 100% visibil-
ity, while there is no single-particle interference

Pðx1; tÞ ¼
Z

dx2Pðx1;x2; tÞ ¼ const: (14)

As we shall see, the unbounded visibility is not the only
feature by which two-particle interference differs from the
classical one.

C. Quantum entanglement

Entanglement according to Schrödinger (1935a, 1935b,
1935c, 1935d) contains ‘‘the essence of quantum mechanics.’’
Consider a spin-0 particle which decays into two spin-1=2
particles (Bohm, 1951). The quantum state is such that along
any chosen direction, say the z axis, the spin of particle 1
when measured can be either up or down, which in turn, by
angular momentum conservation, implies that for particle 2 it
is, respectively, down or up. The state of the two spins is the
rotationally invariant singlet

jc i12 ¼ 1ffiffiffi
2

p ðj "i1j #i2 � j #i1j "i2Þ; (15)

where j "i1 (j #i1) describes the state of particle 1 with its spin
up (down) along the z direction. The minus sign is necessary
to get the rotational invariance. The state describes a coherent
superposition of the two product states: there is no informa-
tion in the whole Universe on which of the two possibilities
will be detected at the measurement stage. None of those two
possibilities is the actual case. Actualization can happen only
via a measurement. This superposition, like any other, e.g., in
the double-slit experiment, survives as long as no measure-
ment actualizing one of those possibilities is performed, and
any possible interaction of the particles with an environment
does not destroy it. While none of the two possibilities
actually can be assigned without measurement, both of
them affect the predictions for all measurements. Another
property of the state (15) is that it does not make any
prediction about the result of spin measurement on only
one of the two particles: the result is random. The spin state
of one of the particles is described by a reduced density
operator,6 which is a totally random state 1

2 Ik, where k ¼ 1,

2 is indexing the subsystems, and Ik ¼ j "ikkh" j þ j #ikkh# j is
the unit operator for a given subsystem. All information
contained in the state in Eq. (15) defines only joint properties
(Schrödinger, 1935d). The joint property can be put as fol-
lows: the two spins, if measured with respect to the same
direction, will be found opposite. As a matter of fact, this

5Or by securing the possibility of a postponed measurement

(which could be made by correlating our particle, while it is at

the intermediate stage Bi, with another system, which could be

measured later).

6Reduced density matrices (fully) describe states of subsystems.

Take two subsystems, 1 and 2. The average of any observable of the

composite system, say Â12, is given by Tr12ðÂ12%12Þ, where %12 is

the density matrix of the full system 12. If the observable acts only

on system 2, that is, it is of the form Â12 ¼ Î1 � B̂2, where Î1 is the
unit operator for system 1, one has Tr12ð%12Î1 � B̂2Þ ¼
Tr2ðB̂2Tr1%12Þ. This relation holds because, to calculate the trace,

one can always use a basis which consists of tensor products of basis

states of the two subsystems, jaii1jbji2, with ranges of the indices i,

j defined by the dimensions of the subsystems (trace is basis

independent). Thus it is evident that the average is effectively

defined by %2 ¼ Tr1%12, which is the density matrix describing

all predictions concerning system 2 alone (disregarding its possible

correlations with system 1). This is the reduced density matrix of

system 2.
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property for any pair of complementary measurement settings
fully defines the singlet state.

Imagine that the two particles can be separated far apart,
one in Alice’s laboratory and the other one in Bob’s. As soon
as Alice measures the value of a spin projection along some
axis, new information is gained, and for her the state of Bob’s
particle is a well-defined pure one. This is independent of
the spatial separation between them. Thus a state like
Eq. (15) is a perfect case to study (and to reveal) the EPR
paradox.7 Basically, all earlier studies of entanglement con-
centrated on entangled states of spins 1=2 or photonic polar-
izations; for a review, see Clauser and Shimony (1978). Much
later, we saw an emergence of research on entanglement of
three or more particles, practically together with the advent of
quantum information.

Theoretical methods for entanglement analysis: The most
important tool for the analysis of pure states of two subsys-
tems is the so-called Schmidt decomposition. For any pure
state j�i of a pair of subsystems, one described by a Hilbert
space of dimension N, the other by a space of dimension M,
say N � M, one can find preferred bases, one for the first
system, the other one for the second, such that the state is a
sum of bi-orthogonal terms, i.e.,

j�i ¼ XN
i¼1

rijaii1jbii2 (16)

with nhxijxjin ¼ �ij, for x ¼ a, b and n ¼ 1, 2. The coef-

ficients ri are real and positive. The appropriate single sub-
system bases, here jaii1 and jbji2, depend upon the state. A

proof8 of the Schmidt decomposition can be found in Peres
(2002). A generalization of the Schmidt decomposition to
more than two subsystems is not straightforward; see, e.g.,
Carteret, Higuchi, and Sudbery (2000). It is easy to show that
the two reduced density matrices of Eq. (16) are endowed
with the same spectrum. This does not hold for three or more
particle subsystems.

Every pure state of two spins 1=2 can be put into the
following form:

cos�j "i1j "i2 þ sin�j #i1j #i2;
where the states j "in and j #in, n ¼ 1, 2, are the eigenstates of
the zðnÞ � �ðnÞ operator. The unit vectors zðnÞ are individually
defined for each of the observers’ particles. They define the
basis for the Schmidt decomposition for each of the
subsystems.

The theory of entanglement of mixed states is more com-
plicated. A state (pure or mixed) described by a density
matrix �AB of a composite quantum system consisting of
two subsystems A and B is separable if and only if �AB is a
convex combination of products density matrices ��

A and ��
B

of the two subsystems, namely, �AB ¼ P
�p��

�
A � ��

B, where

p� � 0 and
P

�p� ¼ 1. Otherwise, �AB is entangled (Werner,
1989). For composite systems of more than two subsystems
this definition can be generalized in a straightforward way.

Basic structural criteria, which decide whether a given
density operator represents an entangled state, were first
given by Peres (1996) and in the full form by Horodecki,
Horodecki, and Horodecki (1996). The full set of separable
mixed states is a bounded convex set in a multidimensional
real space of Hermitian operators. Thus, any entangled state
is separated from the set of separable states by a hyperplane.
The equation of such a hyperplane is defined by an element of
the space, namely, a Hermitian operator Ŵ, which is called an
‘‘entanglement witness’’ (Horodecki, Horodecki, and
Horodecki, 1996; Lewenstein et al., 2000; Terhal, 2000;
Bruß et al., 2002; Bourennane, Eibl, Kurtsiefer, et al.,
2004). Since the scalar product in the operator space is given

by TrðÂyB̂Þ, the equation of a hyperplane in the space is
given by TrðŴ%Þ ¼ const. A Hermitian operator Ŵ is an
entanglement witness if for all separable states one has
TrðŴ%sepÞ � 0, whereas there exists an entangled state for

which one has TrðŴ%entÞ< 0. Thus, via measurement of a
suitably chosenwitness operator, one can detect entanglement.

The original idea of Peres was the observation that pos-
itivity of a partial transposition (PPT) of a density matrix (i.e.,
its transposition for just one subsystem) is a necessary con-
dition for a state to be separable. This was extended by the
Horodecki family to a fully general necessary and sufficient
condition for separability, which is that a density matrix after
any positive transformation (map) on one of the subsystems
should remain a density operator.9 The spin offs of such
considerations are measures of entanglement via the negativ-
ity of the eigenvalues of a partial transpose of the density
matrix, etc. Other methods that give a quantitative measure
of the degree of entanglement of bipartite entangled states
include the entanglement of formation (Bennett, DiVincenzo,
Smolin, and Wootters, 1996; Wootters, 1998a), concurrence
(Hill and Wootters, 1997), and tangle (Wootters, 1998b;
Coffman, Kundu, and Wootters, 2000). For more

7Following Bohm (1951), one could apply the EPR reality

criterion to the singlet state (15): ‘‘If, without in any way disturbing

a system, we can predict with certainty (i.e., with probability equal

to unity) the value of a physical quantity, then there exists an

element of physical reality corresponding to this physical quantity.’’

This would imply that to any possible spin measurement on any one

of our particles we can assign such an element of physical reality on

the basis of a corresponding measurement on the other particle.

Whether or not we can assign an element of reality to a specific spin

component of one of the systems must be independent of which

measurement we actually perform on the other system and even

independent of whether we care to perform any measurement at all

on that system. This approach was shown to be leading to a class of

theories incompatible with quantum mechanics (Bell, 1964). The

concept of elements of reality was shown to be strictly self-

contradictory via the GHZ theorem (see further on).
8The crux of the proof is that the greatest of the coefficients is

given by Maxjai1jbi2 jh�jai1jbi2j and after finding it and the states

that give the maximization, say ja1i1 and jb1i2, one searches for the
second greatest coefficient by performing maximization over the

linear subspace to which ja1i1 and jb1i2 do not belong. This is

recursively continued to get next coefficients and basis states, till the

procedure halts.

9Partial transposition is a positive operation but is not ‘‘com-

pletely positive,’’ while, e.g., the most general quantum evolution of

a subsystem is always represented by a ‘‘completely positive map,’’

as such map leads from one density matrix to another one for the

compound system even if the subsystem is entangled with another

one.
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details on the entanglement theory, see Alber et al. (2001),
Mintert et al. (2005), Gühne and Toth (2009), and Horodecki
et al. (2008).

An interesting feature of the theory of entanglement of
mixed states is that for two three-dimensional systems, or for
more complicated ones, one can find states which are en-
tangled, but from which no maximally entangled state can be
distilled10 (Horodecki, Horodecki, and Horodecki, 1998).
Such states are called bound entangled.

D. Interferometry with entangled two-photon

and multiphoton states

Entanglement can manifest itself in strictly quantum inter-
ference phenomena, that is, these phenomena can neither be
explained by a classical wave nor by a classical particle
picture. To show this, below we present the basics of multi-
particle interferometry.

1. EPR interferometry

Recall that in a single-particle interferometer, as in
Young’s double-slit experiment, the interference pattern ap-
pears only if the particle’s two paths are indistinguishable.
However, for interferometers involving two or more particles,
dramatically new features arise. Figure 1 is a sketch of the
generalization of the concept of a Mach-Zehnder interfer-
ometer to two-photon interferometry (Horne and Zeilinger,
1986; Żukowski and Pykacz, 1988; Horne, Shimony, and
Zeilinger, 1989; Horne, Shimony, and Zeilinger, 1990;
Rarity and Tapster, 1990; Greenberger, Horne, and
Zeilinger, 1993). We assume that a central source emits two
photons in an entangled state

jc i12 ¼ 1ffiffiffi
2

p ðjai1ja0i2 þ jbi1jb0i2Þ: (17)

Here jai and jbi (ja0i and jb0i) are two different spatial modes
of photon 1 (photon 2). The entanglement of jc i12 is actually
called momentum entanglement (Horne and Zeilinger, 1986;

Rarity and Tapster, 1990), whose creation will be described in
Sec. IV. Before being combined at a 50:50 beam splitter (BS)
and then subject to single-photon detections, the two paths of
each photon acquire a relative phase shift.

By taking into account the phase shifts �1 and �2 and the
action of the two beam splitters, the probabilities of the
coincidence detections of two photons at the detector pairs
ðD1c=d;D2c=dÞ read

p1c;2dð�1; �2Þ ¼ p1d;2cð�1; �2Þ
¼ 1

4½1þ cosð�1 ��2Þ�;
p1c;2cð�1; �2Þ ¼ p1d;2dð�;�2Þ ¼ 1

4½1� cosð�1 ��2Þ�:
(18)

Thus, by simultaneously monitoring the detectors on both
sides of the interferometer, while varying the phase shifts �1

and �2, the interference fringes will be observed as shown
by the sinusoidal terms. In contrast, for any single detector
the count rate shows no interference at all. For example,
p1c ¼ p1c;2cð�1; �2Þ þ p1c;2dð�1; �2Þ ¼ 1

2 , independent of

�1 and �2.

2. Greenberger Horne Zeilinger interferometry

After many years of studying only two-particle entangle-
ments, in 1989 a generalization of the EPR interferometry to
three photons was proposed [Greenberger, Horne, and
Zeilinger (1989), later refereed to as GHZ]. The most ele-
mentary case is shown in Fig. 2. Though such a step from 2 to
3 seems to be small, it nevertheless leads to profound impli-
cations, one of which is the GHZ theorem (Greenberger,
Horne, and Zeilinger, 1989; Greenberger et al., 1990;
Mermin, 1990a).

At the center of the interferometer is a source emitting
three photons in a so-called GHZ-entangled state

jGHZi123 ¼ 1ffiffiffi
2

p ðjai1ja0i2ja00i3 þ jbi1jb0i2jb00i3Þ: (19)

Here each photon has two different spatial modes, which are
for photon 1 jai and jbi. By taking into account the actions of
the relative phase shifts and the 50:50 beam splitters (for their

FIG. 1. A two-photon interferometer with variable phase shifts �1

and �2. Before being combined at the 50:50 beam splitter (BS) and

then subject to single-photon detections, the two paths of each

photon acquire a relative phase shift. For experimental realization of

such a two-photon interferometer, see Fig. 11. Adapted from Horne,

Shimony, and Zeilinger, 1989.

FIG. 2. A three-photon interferometer with variable phase shifts

�1, �2, and �3. Adapted from Greenberger, Horne, and Zeilinger,

1989.

10Distillation is the process in which two or more parties obtain

some amount of maximally entangled states out of a more numerous

set of copies of less entangled states by making only local opera-

tions and classical communication (Bennett, Bernstein, Popescu,

and Schumacher, 1996; Bennett, DiVincenzo, Smolin, and

Wootters, 1996; Bennett et al., 1996).

784 Jian-Wei Pan et al.: Multiphoton entanglement and interferometry

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



properties see Sec.II.E), one can deduce novel features of
three-particle interference (Greenberger et al., 1990). First,
the respective threefold coincidence detection probability for
the output modes [ð1c; 2c; 3cÞ; ð1d; 2d; 3dÞ; etc.] reads

p1c;2c;3cð�1; �2; �3Þ ¼ 1
8½1þ sinð�1 þ�2 þ�3Þ�;

p1d;2c;3cð�1; �2; �3Þ ¼ 1
8½1� sinð�1 þ�2 þ�3Þ�; etc:

(20)

The threefold coincidence rates given in Eq. (20) display
sinusoidal oscillations depending on the sum �1þ�2þ�3.
Second, this three-particle interferometer does not exhibit
any two-particle fringes. For example, if only two-particle
coincidences 2c-3c are detected, while the modes 1c and
1d are ignored, the observed rate will be constant
p1c;2c;3cð�1; �2; �3Þ þ p1d;2c;3cð�1; �2; �3Þ ¼ 1

4 , and com-

pletely independent of the phases.11 Finally, a similar argu-
ment shows that, of course, no single-particle fringes can be
observed. Actually, an n-particle interferometer generalized
along the above reasoning will only exhibit n-particle fringes,
but no ðn� 1Þ�; ðn� 2Þ�; . . . , single-particle fringes
(Greenberger et al., 1990).

The above two-photon and three-photon interferometry
was described using the photon’s path degrees of freedom.
However, similar interference effects can be observed using
any of the photon’s degrees of freedom, e.g., polarization.
Moreover, the above argument should be understood as a
special case of a wider concept indicating that entangled
massive particles (e.g., electrons and atoms) could also dis-
play multiparticle interference.

E. Interferometry with multiport beam splitters

Novel interferometric effects can be obtained with N-port
beam splitters, which are devices which split light into more
than two output beams [for a general theory of such devices,
see Reck et al. (1994)]. Such devices can be utilized in
multiparticle interferometry (Zeilinger et al., 1993). With
current technology, such experiments are becoming feasible.

III. PHOTONIC QUBITS AND LINEAR OPTICS

The possibility of performing quantum information-
processing tasks with photons is based on the fact that
quantum information can be encoded in quantum states of
certain degrees of freedom (e.g., polarizations) of individual
photons, and that individual photons can be manipulated
either by simple optical elements (e.g., wave plates and
interferometers) or by letting them interact with matter
(trapped ions, atoms, etc.) at an atom-photon interface.
Here we show to what extent a photon can carry a qubit,
and the simplest elements that are used to manipulate it. To
this end, we begin with a formal definition of photons and
their quantum states.

The formal theory of quantization of electromagnetic fields
was formulated by Dirac (1927). Here we only give its basic
mathematical devices for completeness; for detailed treat-

ment, see standard textbooks on quantum optics, e.g., Walls
and Milburn (1994), Mandel and Wolf (1995), Scully and
Zubairy (1997), and especially Bialynicki-Birula and
Bialynicka-Birula (1975).

A single-photon pure state can be characterized by a
specific wave packet profile g�k, i.e., by the quantum ampli-
tudes for a given momentum k and polarization �. According
to the Born rule, jg�kj2 gives the probability density of having
the single photon with the momentum ℏk and polarization �.
Thus, one has

P
�¼1;2

R
dkjg�kj2 ¼ 1. The wave packet

profiles are vectors in a Hilbert space with a scalar product
given by

hgjhi ¼ X
�¼1;2

Z
dkg	�kh�k: (21)

One can introduce an arbitrary orthonormal basis gl�k,
where l are natural numbers and hgnjgmi ¼ �nm. Two differ-
ent orthonormal bases, to be denoted, respectively, as primed
and unprimed, are related by a unitary operation: g0m ¼P1

l¼1 Umlg
l. The complex numbers Ulm satisfyP1

l¼1 UmlU
	
kl ¼

P1
l¼1 U

	
lmUlk ¼ �mk. One can choose a spe-

cific basis of the wave packet profiles of the single photon,
say gl, and with each element of such a basis one associates a
quantum oscillatorlike construction to introduce number
states, namely, the Fock states. One introduces the vacuum
state j�i 
 j0; 0; 0; . . .i, the state with no photons at all for
any modes. Next, for a chosen basis one associates a pair of
operators satisfying the usual relations for creation and anni-

hilation operators, namely, ½âl; âyl � ¼ 1 and requires that for

all l âlj�i ¼ 0. Using the standard oscillator algebra, one

constructs states like ðâynll =
ffiffiffiffiffiffi
nl!

p Þj�i, which is a state of the

electromagnetic field in which one has nl identical photons of
the same wave packet profile gl, and no other photons what-
soever. This is denoted by j0; . . . ; 0; nl; 0; 0; . . .i. Finally, one
assumes that ½ân; âm� ¼ 0 and ½ân; âym� ¼ �nm, that is, crea-
tion and annihilation operators of photons with orthogonal
wave packet profiles always commute. A general (normal-
ized) basis state of the Fock space is therefore of the follow-
ing form:

jn1; n2; n3; . . .i ¼
Y1
l¼1

â
ynl
lffiffiffiffiffi
n!

p j�i: (22)

All vectors of the Fock space are linear combinations of the
above basis states, which have a finite total number of
photons. It is easy to see that if one defines the creation
operators with respect to an alternative basis of wave packet
profiles (here the primed ones), one has

â0ym ¼ X1
n¼1

Umnâ
y
n : (23)

The vacuum state is invariant with respect to such trans-
formation, i.e., one still has â0mj�i ¼ 0. For more details,
see Bialynicki-Birula and Bialynicka-Birula (1975).

A. Photonic qubits

A quantum bit, or qubit is the most elementary unit of
quantum information. It is a generalization of the classical bit,
which has two distinguishable states ‘‘0’’ and ‘‘1.’’ Similarly,

11This holds only for observables dependent on �i, like those

shown in the Fig. 2.
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we can have a qubit in two distinguishable, i.e., orthogonal
states j0i and j1i. However, in contradistinction to its classical
counterpart, a qubit can be prepared as, or transformed to any
superposition of these two states (normalization requires
�2
0 þ �2

1 ¼ 1)

j�qubiti ¼ �0j0i þ �1j1i: (24)

Any isolated two-level system consisting of a pair of
orthogonal quantum states represents a qubit. Photons, mass-
less spin 1 particles, have only two eigenvalues of their spin
along the direction of their propagation (wave vector), �ℏ.
These two spin values correspond to right-handed and left-
handed circular polarization. Thus this property makes the
photon an ideal candidate for a qubit. However, there are
other degrees of freedom of a photon that can be used to
encode qubit information.

Polarization qubits. The most commonly used photonic
qubits are realized using polarization. In this case, arbitrary
qubit states can be �0jHi þ �1jVi, where H and V stand for
horizontal and vertical polarizations, respectively. The advan-
tage of using polarization qubits stems from the fact that they
can easily be created and manipulated with high precision by
simple linear-optical elements such as polarizing beam split-
ters (PBS), polarizers, and wave plates. Photon polarization
states and spin states of a spin 1=2 particle are perfect qubits
given by nature, no human invention is required.

Spatial qubits–A single photon can also appear in two
different spatial modes or paths a and b: the general state
reads �0jai þ �1jbi. This may occur if a single photon exits a
BS, with two output modes a and b. Any state of spatial
qubits can be prepared by using suitable phase shifters and
BS. A disadvantage of using spatial qubits is that the coher-
ence between jai and jbi is sensitive to the relative phase
between the paths a and b, and this is difficult to control in
long-distance cases.

Time-bin qubits–For a more robust long-distance trans-
mission of quantum information, one may use time-bin qu-
bits. The computational basis12 consists of two states which
are of the same spectral shape, but time shifted by much more
than the coherence time.13 Time-bin qubits can be realized by
sending a single photon through an unbalanced Mach-
Zehnder interferometer. Its wave packet is split by the first
BS, with transmission coefficient T ¼ j�0j2 and reflection
coefficient R ¼ j�1j2 into two coherent parts. The transmit-
ted one propagates along the short arm, and the reflected one
along the long arm. If the wave packet extension is shorter
than the arm length difference, the output from the ports of
the second, 50:50 BS is two wave packets well separated in
time. If no photon is registered in, say output port I, in the
other output one has a single photon in a coherent superpo-
sition of two time-bin states �0jearlyi þ �1jlatei. The phase
relation can be controlled with a phase shifter in one of the

arms of the interferometer. For more details, see Bennett
(1992) and Gisin et al. (2002).

While in this review we are mainly concerned with the
above three implementations of photonic qubits, one should
keep in mind that other implementations are possible.
Frequency qubits have first been implemented in quantum
cryptography (Sun, Mazurenko, and Fainman, 1995;
Mazurenko, Giust, and Goedgebuer, 1997) and also more
recently in entangled atom-photon systems (Madsen et al.,
2006).

Quantum d-level (high-dimensional) systems (‘‘qudit’’)
can also be realized using, e.g., orbital angular momentum
states of photons (Mair et al., 2001), or using simultaneously
two or more degrees of freedom listed above. For instance, for
the latter case a polarized single photon in a coherent super-
position of two spatial modes can be thought of as a quantum
system in a four-dimensional Hilbert space (Boschi et al.,
1997; Michler, Weinfurter, and Żukowski, 2000; Chen et al.,
2003; Kim, 2003).

Two-photon polarization-entangled states–The so-called
Bell states14 form a basis in the four-dimensional two-qubit
Hilbert space. Bell states of photonic polarization qubits can
be, for example,

jc�i12 ¼ 1ffiffiffi
2

p ðjHi1jVi2 � jVi1jHi2Þ; (25)

j��i12 ¼ 1ffiffiffi
2

p ðjHi1jHi2 � jVi1jVi2Þ: (26)

As we shall see, such entangled states serve as a central
physical resource in various quantum information protocols
like quantum cryptography, quantum teleportation, entangle-
ment swapping, and in tests aimed at excluding hidden-
variable models of quantum mechanics.

B. Simple linear-optical elements

In the photonic domain, quantum states of photons can be
easily, and with high precision, manipulated by simple pas-
sive linear-optical devices. These linear-optical elements in-
clude BSs, PBSs, wave plates, and phase shifters. Classically,
such devices conserve energy: The total input energy equals
the total output energy, and there is no energy transfer
between different frequencies. A passive linear-optical device
is described by a unitary transformation of annihilation
operators for the same frequency

âoutm ¼ X
m

Umnâ
in
n ; (27)

where U is a unitary matrix, and the indices denote a basis of
orthogonal modes.

The BS is one of the most important optical elements. It
has two spatial input modes a and b and two output modes c
and d (Fig. 3). The theory of the lossless BS was developed
by Zeilinger (1981) and Fearn and Loudon (1987), for

12A basis of a qubit is called computational if one associates

logical 0 and 1 to its two orthogonal states
13The coherence time is the time over which the relative phase of a

propagating wave remains stable. It can be approximately estimated

as � � �2

c�� , where � is the central wavelength of the source, �� is

the spectral width of the source, and c is the speed of light in

vacuum.

14Please note, that the term ‘‘Bell state’’ was earlier used with a

completely opposite meaning. E.g., Mann, Revzen and Schleich

(1992) define a Bell state as ‘‘a pure state which when split in any

way cannot violate Bell’s inequality.’’
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lossy BS; see Barnett et al. (1998). In a simplified theory of
BS, one assumes identical action for every relevant fre-
quency. The most commonly used BS is the symmetric
50:50 BS characterized by the following transformation:

â ! 1ffiffiffi
2

p ĉþ iffiffiffi
2

p d̂; b̂ ! iffiffiffi
2

p ĉþ 1ffiffiffi
2

p d̂: (28)

In such a case, an outgoing particle can be found with equal
probability (50%) in either of the output modes c and d, no
matter through which single input beam it came. The factor i
in Eq. (28) is a consequence of unitarity. It describes a phase
jump upon reflection (Zeilinger, 1981).

Using two 50:50 BS and a phase shifter, one can build a
Mach-Zehnder interferometer, which in fact can be used as a
universal BS of a variable transmitivity and reflectivity [see
Fig. 1(b)]. The phase shifter can be some glass plate, a
birefringent optical crystal, or a path-length tuner (e.g., an
optical trombone). Together with additional phase shifters in
the input and output ports, the Mach-Zehnder interferometer
can perform an arbitrary SU(2) unitary transformation on a
qubit encoded in the two spatial modes [see, e.g., Englert,
Kurtsiefer, and Weinfurter (2001)].

Another important component is the PBS (see Fig. 4). A
standard PBS transmits the horizontal and reflects the vertical
polarization. The transformations between the incoming
modes (a and b) and the outgoing modes (c and d) are as
follows:

âH ! ĉH and âV ! id̂V ;

b̂H ! d̂H and b̂V ! iĉV :
(29)

For polarization qubits, any single-qubit operation can be
accomplished by using a sequence of suitably oriented
quarter-wave and half-wave plates. Simply, a half-wave plate
retarding the 45� polarization acts on the H and V modes
exactly as a certain 50:50 BS, etc. Now, the input modes are
two orthogonal polarizations, instead of two spatial input
modes of a Mach-Zehnder interferometer.

With these simple optical elements, large optical networks
can be constructed, mapping an input state onto an output
state via a linear transformation determined by the networks’
unitary transformation. As a possible generalization of the
usual interferometers with two ports, an N-port interferome-
ter was proposed by Reck et al. (1994), which can realize any
UðNÞ transformation for N optical spatial modes by using an
arrangement of BS, phase shifters, and mirrors. Weihs et al.

(1996) realized an all-fiber three-path Mach-Zehnder inter-
ferometer, which is based on the idea of symmetric unbiased
multiport BS (Zeilinger et al., 1993).

C. Two-photon interference due to indistinguishability

of photons

Quantum interference15 may also occur entirely due to
indistinguishability of particles. We describe this phenome-
non in the case of photons, i.e., bosons. One can obtain all
effects due to indistinguishability by a suitable symmetriza-
tion of the amplitudes for elementary processes, for which we
do not know which particle ended up in which final state (for
bosons amplitudes do not change sign when particles are
interchanged). However, it is much more convenient to use
the formalism of bosonic creation and annihilation operators,
as its algebra directly takes into account the symmetrization.
Here we present the most elementary optical effect due to the
indistinguishability of photons, the Hong-Ou-Mandel inter-
ference (Hong, Ou, and Mandel, 1987) behind a 50:50 BS.

As seen previously, upon reflection off a symmetric 50:50
BS a photon picks a phase shift i. We denote the input modes
as a and b and output modes as c and d. If we have two
spectrally identical photons (of the same polarization) each
entering at exactly the same moment an opposite input port of

the BS, the initial state âyb̂yj�i is transformed into

1ffiffiffi
2

p ðĉy þ id̂yÞ 1ffiffiffi
2

p ðd̂y þ iĉyÞj�i ¼ i

2
ðĉy2 þ d̂y2Þj�i:

(30)

FIG. 4. The operation of a polarizing beam splitter (PBS). (a) In

the usual configuration, the PBS transmits horizontal, and reflects

vertical, polarization. (b) Two photons, each entering via a different

input: If the two photons incident onto the PBS have identical

polarization, then they will always go out along different directions,

so there will be one photon in each of the two output modes. (c) If

the two incident photons have opposite polarizations, they will

always go out along the same direction, so there will be two photons

in one of the two outputs and none in the other. In essence, a PBS

can thus be used as a polarization parity checker. From Pan et al.,

1998; Pan, Simon, Brukner, and Zeilinger, 2001.

FIG. 3. The function of a BS. (a) The BS coherently transforms

two input spatial modes (a), (b) into two output spatial modes (c),

(d). (b) A Mach-Zehnder interferometer consists of two 50–50 BSs,

mirrors and phase shift (as a whole it forms a universal tunable

beam splitter).

15See Mandel (1999) for a review on a series of pioneering

parametric down-conversion experiment revealing quantum effects

in one-photon and two-photon interference. Our present review can

be treated as a direct continuation of Mandel’s review.
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The two terms, which describe the cases in which each

photon exits by a different exit port cancels each other,

ĉ d̂�d̂ ĉ ¼ 0. This cancellation occurs if the two photons

are perfectly indistinguishable in terms of all of their other

degrees of freedom such as frequency, time, or polarization.

The two photons exit the BS paired via only one (random)

output port. This is a bunching effect due to the bosonic

character of photons. Thus, there are no coincidences be-

tween the output ports.16 Another (and more graphical) way

to look at this is shown in Fig. 5(a).
If the photons are at least partially distinguishable (in this

case we label the annihilation operators of the photons with

different subscripts as â1 and b̂2), the initial state ây1 b̂
y
2 j�i

is transformed by a perfect 50:50 BS via the relations in

Eq. (28) into

1ffiffiffi
2

p ðĉy1 þ id̂y1 Þ
1ffiffiffi
2

p ðd̂y2 þ iĉy2 Þj�i: (31)

Since ĉ1 � ĉ2 and d̂1 � d̂2, the terms that contribute to
the cases in which each photon exits by a different exit

port, namely 1
2 ðĉy1 d̂y2 � d̂y1 ĉ

y
2 Þj�i, do not cancel with each

other.
We use 	 to denote the degree of distinguishability be-

tween photon 1 and 2. The probability of finding a coinci-
dence count at exits c and d, which is given by the square

of the norm of 1
2 ðĉy1 d̂y2 � d̂y1 ĉ

y
2 Þj�i, is ð1=2Þj	j2. Thus, if

j	j ¼ 1 (the photons â and b̂ are fully distinguishable), this
probability reads 1=2; if 	 ¼ 0 (the photons are indistin-
guishable), it vanishes. Therefore, the Hong-Ou-Mandel ef-
fect depends critically on the distinguishability of photons.
The distinguishability was tuned in the original experiments
with the temporal delay between the two photons [Fig. 5(b)].

The original Hong-Ou-Mandel experiment used the two
photons of the same signal-idler pair from parametric down-
conversion (see Sec. IV.A). Later experiments of this kind
evolved into observations of a Hong-Ou-Mandel dip for
photons originating from two sources, which were progres-
sively more and more independent of each other. This was
motivated by both fundamental issues, such as whether
independent photons indeed interfere, and practical ones;
interference of photons emerging from different sources
must be harnessed if one wants to build complicated schemes
realizing quantum protocols, e.g., quantum repeaters
(see Sec. VI.F) and distributed quantum computing (see
Sec. VII). Rarity, Tapster, and Loudon (1996) observed the
interference between independent photons, one of which was
a triggered single photon from a down-converted pair, and the
other one was in an attenuated beam17 derived from the
pumping laser light. Interference of two triggered single
photons created via parametric down-conversion by the
same pump pulse passing twice through a nonlinear crystal
was achieved in the Innsbruck teleportation experiment
(Bouwmeester et al., 1997); for more details see Sec. VI.B.
With a similar method of triggering, Keller, Rubin, and Shih
(1998) used photons generated by two mutually coherent but
time-separated pulses from the same mode-locked laser.
Experiments aimed at observing the Hong-Ou-Mandel dip
for fully independently emitted photons, like the one of
Kaltenbaek et al. (2006), will be described in Sec. VI.C.

The Hong-Ou-Mandel interference provides a powerful
tool to estimate the degree of indistinguishability of two
separately emitted photons. For instance, two single photons
successively emitted from a single quantum dot or a single
trapped atom were overlapped on a BS and the Hong-Ou-
Mandel effect was observed (Santori et al., 2002; Legero
et al., 2004). Other examples include single photons from
independent trapped atoms and ions (Beugnon et al., 2006;
Maunz et al., 2007), and from remote cold atomic ensembles
(Yuan et al., 2007) or independent, tunable quantum dots
(Patel et al., 2010). The interference of indistinguishable
photons enables a process called entanglement swapping and

FIG. 5. (a) Individually incoming photons can be transmitted or

reflected. However, since the two photons are identical, we cannot

distinguish between the two cases when both are transmitted or both

reflected. The BS introduces a phase difference of � between the

two amplitudes describing such possibilities. This leads to a de-

structive interference. Thus, no coincidence detection can be found.

(b) Data from Hong, Ou, and Mandel (1987): Pairs of photons

impinging on a BS are produced by spontaneous parametric down-

conversion (see Sec. IV.A) and have the same polarization and

frequency distributions. The measured number of coincidence

counts as a function of relative path displacement (temporal dis-

tinguishability) shows a ‘‘Hong-Ou-Mandel’’ dip, for equal optical

paths. From Hong, Ou, and Mandel, 1987.

16If the two incident photons are in an antisymmetric polarization-

entangled state j��i, the amplitudes for photons to exit via different

ports interfere constructively, as in this case their spatial wave

function has to be antisymmetric, too (Weinfurter, 1994). For proper

path length, one has a coincidence peak (instead of a dip) (Mattle

et al., 1996). This observation is crucial for discriminating the j��i
using a BS (see the ‘‘Bell-state analyzer’’ Sec. III.E). For a color (at

frequency !1 and !2) entangled state, one can further observe

‘‘spatial quantum beating,’’ where the two-photon detection exhibits

a modulation of the form cosð!1 �!2Þ� [see, e.g., Ou and Mandel

(1988a)].

17The beam was in a pulsed weak coherent state: for each pulse

there was only a very small probability for it to contain a single

photon.
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teleportation (Żukowski, et al., 1993, see Sec. VI.C), which
in turn opens up prospects distributing of entanglement be-
tween distant matter qubits such as ions (Moehring et al.,
2007) and atomic ensembles (Yuan et al., 2008).

A characteristic feature of the Hong-Ou-Mandel interfer-
ence is that it is sensitive to path length changes on the order
of the coherence length of the photons, while in a Mach-
Zehnder interferometer one has subwavelength sensitivity.
The photon’s coherence length can range from a few hundred
micrometers, in pulsed parametric down-conversion, to a few
meters for trapped ions. This makes the Hong-Ou-Mandel
interferometers very stable.

D. Postselection of entanglement and quantum erasure

We now discuss other tricks and states obtainable with a
single BS on which a pair of photons impinges.

Note first that according to Eq. (30), in a Hong-Ou-Mandel
interferometer, the electromagnetic field emerging from the
BS associated with the pair of photons is in an entangled state

½ðĉyÞ2 þ ðd̂yÞ2�j�i ¼ j2c0di þ j0c2di, a so-called N00N
state (see Sec. IV.C), with N ¼ 2. This state has interesting
interferometric properties which will be discussed later.

With the simple device, one can also produce effects
characteristic for a maximally entangled polarization state.
Ou and Mandel (1988b) and Shih and Alley (1988) were the
first to achieve this. In their experiments, the two photons
entering the BS, each by a different input port, were indis-
tinguishable in all degrees of freedom, except that they were
oppositely polarized [say, one horizontally polarized H and
the other vertically polarized V, see Fig. 6(a)]. After being
superposed on the BS and leaving the two output ports c and
d, the photons emerged in a polarization-tagged two-photon
state

1
2½

ffiffiffi
2

p jc�icd þ iðj�þicc þ j�þiddÞ�:

A coincident detection at the two outputs c and d can occur
only due the entangled jc�icd component of the total state.
As in the case of the Hong-Ou-Mandel interferometer, the
visibility of this polarization interference is reduced once the
photons are partially distinguishable. For example, by vary-
ing the relative optical paths before the photons reach the BS,
the overlap of the photon wave packets behind the beam
splitter may be controlled, up to a total distinguishability.
The full effect occurs for perfect overlap. This kind of post-
selected entanglement was used to violate Bell’s inequality,18

in the experiments of both Ou and Mandel (1988b) and Shih
and Alley (1988). The effect was later demonstrated for two
indistinguishable photons from quasi-independent sources
(Pittman and Franson, 2003; Fattal et al., 2004).

Figure 6(b) shows another setup for generating entangle-
ment, in a similar spirit, however using a PBS [such an effect
was used in a proposal for obtaining multiphoton entangle-
ment by Zeilinger et al. (1997); see Sec. IV.D]. As a PBS
customarily transmits H and reflects V polarization, a

coincidence detection between the two outputs can originate
only if either both photons are transmitted (resulting in a
jHHi case) or both are reflected (jVVi case). The two cases

are quantum mechanically indistinguishable, if the photons
are indistinguishable. Thus again, an entangled state j��icd
can be generated using postselection. As in the case of the
Hong-Ou-Mandel interferometer, the entanglement quality is
sensitive to optical path length changes of the order of the
photons’ coherence length. Such interferometers play a cru-

cial role in creation, manipulation, and projection of various
multiphoton entangled states.

When analyzing the above experiments, one could be
mislead to suppose that the interference arises due to the
fact that the wave packets of the two photons overlap at the
BS. Indeed the Hong-Ou-Mandel dip is presented as a func-
tion of the temporal delay between the two photons, i.e.,
effectively in terms of the overlap [Fig. 5(b)]. However, it
is important to note that essentially the origin of this inter-

ference is due to the indistinguishability of two-photon am-
plitudes describing the various alternatives leading to a
coincidence count. To dispel a misconception that the pho-
tons must arrive at the BS at the same time for some type of
classical local ‘‘agreement,’’ Pittman et al. (1996) performed
a ‘‘postponed compensation’’ two-photon Shih-Alley type

experiment. Interference is observed, even though the pho-
tons were arriving at the BS at different times. In the experi-
ment, the optical path of one input light beam was much
longer than of the other one with a difference exceeding the
photon’s coherence length. However, after the interferometer,
this delay was compensated (using a polarization-selective

unbalanced Mach-Zehnder interferometer) in such a way that
the firing times of the two detectors did not provide any
information whatsoever concerning which of the two-photon
processes led to the coincidence detection. The experimental
results confirmed that the quantum interference can indeed be
revived. A discussion of related ‘‘quantum erasure’’ experi-

ments can be found in Scully, Englert, and Walther (1991);
Kwiat, Steinberg, and Chiao (1992); and Michler et al.
(1996).

E. Entangled-state analyzers

The projection of two photons into a Bell state lies at the
heart of many quantum information-processing protocols,

FIG. 6. (a) Shih-Alley type polarization entanglement. One com-

bines two orthogonally polarized photons at a BS and registers the

coincidence events behind it. (b) In a similar way, by superposing

two (Hþ V) polarized photons at a PBS, one can observe an

entangled state jHicjHid þ jVicjVid in the postselected coincidence
counts. From Ou and Mandel, 1988b; Shih and Alley, 1988.

18There was a controversy whether such a kind of experiment can

constitute a true Bell test. It was positively resolved in Popescu,

Hardy, and Żukowski (1997).
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such as quantum dense coding (Bennett and Wiesner, 1992),
quantum teleportation (Bennett et al., 1993), and entangle-
ment swapping (Żukowski, et al., 1993). A deterministic
controlled-NOT (CNOT) gate19 would make such a the Bell-
state measurement possible. However, CNOT gates are diffi-
cult to realize with linear optics and single photons (see
Sec. VII). Nevertheless, by exploiting quantum interference
effects due to the bosonic nature of photons discussed above,
photonic Bell-state and GHZ-state analyzers can be realized
in a probabilistic way.

1. Bell-state analyzer

A linear-optical Bell-state analyzer was suggested by
Weinfurter (1994) and Braunstein and Mann (1995). It is
based on the two-photon interference effect at a 50:50 BS
and via a coincidence analysis can distinguish two of the four
Bell states. As shown in Fig. 7(a), the setup consists of a BS
followed by two-channel polarizers in each of its output
beams. As the polarization state jc�i is antisymmetric, it
results in a coincidence detection at the outputs of the BS
(i.e., a coincidence at detectors DH1 and DV2 or at DH2 and
DV1). In fact, the state jc�i can be encoded with any degree
of freedom [e.g., color encoding, see Moehring et al. (2007)]
and can be pinpointed by a two-channel coincidence behind a
BS. This property can be easily checked by reversing the
action of the Shih-Alley interferometer. The minus sign in
jc�i leads to a cancellation of the photon bunching ampli-
tudes, that is to ‘‘fermionic-like’’ behavior. For the remaining
three states, both photons exit via the same output port of the
BS. The state jcþi can be distinguished from the other two
by the fact that the emerging photons have different polar-
izations.20 This results in a coincidence counts at detectors
DH1 and DV1 or at DH2 and DV2. The two states j�þi and
j��i both lead to a two-photon event at a single detector, and
thus cannot be distinguished.

A modified version of a Bell-state analyzer, which can
directly be generalized to the N-particle case, was introduced
by Pan and Zeilinger (1998). Consider the arrangement of
Fig. 7(b). Two spectrally identical photons enter the Bell-state
analyzer by modes a and b. Assume that they arrive at PBSab
simultaneously, so that their wave functions overlap behind it.
The properties of a PBS depicted in Fig. 4, and a coincidence
detection in modes 1 and 2, allow one to distinguish j�þi12
and j��i12 polarization Bell states. Specifically, for the

incident state ð1= ffiffiffi
2

p ÞðjHiajHib þ jViajVibÞ we always ob-
serve a coincidence between either detectors DH1 and DH2 or
DV1 and DV2. On the other hand, if the incident state is

ð1= ffiffiffi
2

p ÞðjHiajHib � jViajVibÞ, we observe coincidence at
detectors DH1 and DV2 or DV1 and DH2. The other two Bell
states would lead to no coincidence at detectors in modes
1 and 2.

Finally, we mention that by taking advantage of the prop-
erties of hyperentanglement one can implement a complete
Bell-state analysis (Kwiat and Weinfurter, 1998; Walborn,
Pádua, and Monken, 2003). Such a scheme was experimen-
tally realized (Schuck et al., 2006) and was used to beat the
channel capacity limit for linear photonic superdense coding
[Barreiro, Wei, and Kwiat (2008), see Sec. VI.A for more
details on dense coding].

2. GHZ-state analyzer

Bell-state measurement schemes can be generalized to the
N-particle case. One can construct a GHZ-state analyzer (Pan
and Zeilinger, 1998), with which one can identify two out of
the 2N maximally entangled GHZ states.

In the case of three spectrally indistinguishable identical
photons, eight maximally entangled polarization GHZ states
could be given by

j��
0 i ¼

1ffiffiffi
2

p ðjHijHijHi � jVijVijViÞ; (32)

j��
1 i ¼

1ffiffiffi
2

p ðjVijHijHi � jHijVijViÞ; (33)

j��
2 i ¼

1ffiffiffi
2

p ðjHijVijHi � jVijHijViÞ; (34)

j��
3 i ¼

1ffiffiffi
2

p ðjHijHijVi � jVijVijHiÞ: (35)

FIG. 7. (a) A Bell-state analyzer using a BS. (b) A modified Bell-

state analyzer. The angle between the half-wave plate axis and the

horizontal direction is 22.5�. It corresponds to a 45� rotation of the

polarization. (c) A GHZ-state analyzer. Adapted from Pan et al.,

1998.

19The quantum CNOT gate, a fundamental quantum circuit, is a

two-qubit gate acting on a target qubit j�it and a control qubit j	ic.
It flips the target qubit (j0it ! j1it, j1it ! j0it) if the control qubit

is in logic j1ic, and does nothing if the control qubit is j0ic. Note
that if the control qubit is in a superposition ð1= ffiffiffi

2
p Þðj0i þ j1iÞ, the

action of a CNOT gate produces a maximally entangled state of the

target and control qubits.
20In addition to the fermionic-like antibunching for the state jc�i

and ‘‘boson-like’’ bunching behavior of the state jcþi, there are

also intermediate behaviors observed by tuning the phase between

the two Bell statejc�i, which could be used to simulate anyons

(Michler et al., 1996).
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The notation used is such that the index i in j��
i i designates a

GHZ state with the property that the polarization of photon i,
in each of the terms of the superposition, is different from the
polarization of the other two. Consider now the setup of Fig. 7
and suppose that three photons enter the GHZ analyzer by
modes a, b, and c. The polarization beam splitters transmit H
and reflect V polarizations, thus a coincidence detection at the
three outputs can only originate from the case that either all
photons are transmitted (this corresponds to the input state
jHijHijHi) or all reflected (jVijVijVi). The two cases are
fully indistinguishable if the photons perfectly overlap spa-
tially and temporally. Thus, two GHZ states, namely j��

0 i ¼
jHijHijHi � jVijVijVi, can be filtered out of the eight. One
can further tell apart the states j��i by placing a polarizer
after each PBS, setting it to distinguish the þ=� polarization
basis (by þ=� here we denote �45� linear polarizations). In
such a case, the state j�þ

0 i leads to coincidences þþþ,

þ��, �þ�, and ��þ, while j��
0 i causes totally

different events: þþ�, þ�þ, �þþ, and ���. The
success probability of the GHZ analyzer is thus 1=4.

IV. EXPERIMENTAL REALIZATIONS OF PHOTONIC

ENTANGLEMENT

Sources of entangled photons play a central role in the
experimental study of foundations of quantum mechanics and
are an essential resource in optical quantum information
processing. The early Bell-test experiments used entangled
photons from atomic cascades; see Clauser and Shimony
(1978). Such a source has some drawbacks. The directions
of entangled-photon emissions are uncorrelated. This causes
very low collection efficiency. Moreover, the entanglement is
only perfect for photons that are emitted back to back, a
loophole that could allow a local hidden-variable model to
explain the experimental data (Santos, 1991). Meanwhile, it
was discovered that the process of spontaneous parametric
down-conversion allows pairs of entangled photons to be
collected in clearly specified directions, with reasonable
intensity and with very high purity.

Today, essentially all entangled-photon sources employ the
second order optical nonlinearity leading to SPDC or more
recently also the third order Kerr nonlinearity in four-wave
mixing in optical fibers. Such processes can be realized with
an increasing quality and brightness. For instance, Altepeter,
Jeffrey, and Kwiat (2005) reported an entangled-photon pair
source with an impressive count rate of over 1
 106 per
second and a fidelity of 97.7%. In this section, we shall focus
on the creation of photonic entanglement of various forms.

A. Spontaneous parametric down-conversion

If one shines strong laser light on a nonlinear crystal, the
pump photons have some probability to split into correlated
pairs of lower energy. This is called spontaneous parametric
down-conversion. The new photons, customarily called
‘‘signal’’ and ‘‘idler,’’ satisfy the following relations: for the
wave vectors within the crystal one has k0 � ki þ ks where
subscripts 0, s, and i denote, respectively, pump, signal, and
idler wave vectors, and the respective frequencies satisfy
!0 � !i þ!s. This is usually called phase matching.

It governs the directional correlations of the emissions. It
also implies the emerging photon pairs have entangled fre-
quencies and linear momenta. There are two different types of
the process: either signal and idler photons share the same
polarization (type I) or they have perpendicular polarizations
(type II).

The quantum nature of SPDC was first studied by Klyshko
and Zel’dovich (Klyshko, 1967, 1988; Zel’dovich and
Klyshko, 1969). With the works of Mollow (1973) and
Hong and Mandel (1985) the theory reached its final form
(see the Appendix). The predicted strong quantum correla-
tions between the photon pairs created in SPDC were first
experimentally observed by Burnham and Weinberg (1970).
Quantum interference of (type I) SPDC photons was first used
to violate Bell’s inequality by Ou and Mandel (1988b) and
Shih and Alley (1988). The process was shown to be a ready
source of (path) entangled pairs by Horne, Shimony, and
Zeilinger (1989). This was demonstrated independently by
Rarity and Tapster (1990). Polarization entanglement in the
type II process was discovered by Kwiat et al. (1995). For a
survey of SPDC, see Shih (2003).

We give a brief description of the SPDC process in the
Appendix and show below how to create photons entangled in
various degrees of freedom.

Polarization entanglement–Currently, the standard method
to produce polarization-entangled photons is the noncollinear
type II SPDC process (Kwiat et al., 1995). Its principle is
described in Fig. 8.

The state emerging through the two beams A and B is a
superposition of jHijVi and jVijHi, namely,

1ffiffiffi
2

p ðjHiAjViB þ ei�jViAjHiBÞ; (36)

where the relative phase � is due to the birefringence. Using
an additional birefringent phase shifter (or even slightly
rotating the down-conversion crystal itself), the value of �
can be set as desired, e.g., to 0 or �. A net phase shift of �
may be obtained by a 90� rotation of a quarter-wave plate in
one of the paths. A half-wave plate in one path can be used to
change horizontal polarization to vertical and vice versa. One
can thus produce any of the four Bell states in Eq. (26)
(Mattle et al., 1996).

The birefringence of the nonlinear crystal introduces com-
plications. Since the ordinary and extraordinary photons have
different velocities and propagate along different directions,
the resulting longitudinal and transverse walk-offs between
the two terms in the state (36) are maximal for pair creation
near the entrance face. This results in a relative time delay
�T ¼ Lð1=uo � 1=ueÞ (L is the crystal length, and uo and ue
are the ordinary and extraordinary group velocities, respec-
tively) and a relative lateral displacement d ¼ L tan� (� is
the angle between the ordinary and extraordinary beams
inside the crystal). If the coherence time �c of the down-
converted light is shorter than �T, the terms in Eq. (36)
become, in principle, distinguishable, and no two-photon
polarization interference and thus no entanglement is observ-
able. Similarly, if d is larger than the coherence width, the
terms can become partially labeled by their spatial location.
Fortunately, because the photons are produced coherently
along the entire length of the crystal, one can completely
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compensate for the longitudinal walk-off (Rubin et al.,
1994). After the compensation, interference occurs pairwise
between processes in which the photon pair is created at
distances �x from the middle of the crystal. The ideal
compensation is therefore to use two crystals, one in each

path, which are identical with the down-conversion crystal,
but only half as long. If the polarizations are rotated by 90�
(e.g., with a half-wave plate), the retardations of the o and e
components are exchanged and temporal indistinguishability

is restored. The method also provides reasonable compensa-
tion for the transverse walk-off effect.

An alternative method is using type I SPDC in two orthog-
onally oriented crystals. Two-photon states of tunable purity
and degree of entanglement can be produced (White et al.,
1999; Cinelli et al., 2004; Peters et al., 2004). Periodic
poling of nonlinear crystals modifies the phase-matching

conditions for SPDC and thus allows one to exploit the
material’s nonlinear properties more efficiently compared to
bulk crystals. Kim, Fiorentino, and Wong (2006) proposed
and implemented a polarization Sagnac interferometric con-
figuration with bidirectional pumping of a type II phase-

matched periodically poled KTiOPO4 crystal. A pulsed
(Kuzucu and Wong, 2008), and narrow band (0.15 nm),
wavelength tunable entangled-photon source based on such
a configuration with a spectral brightness up to 273 000 pairs

ðsmWnmÞ�1 has been reported (Fedrizzi et al., 2007). In a
further development, via four-wave mixing in a photonic
crystal fiber Fulconis et al. (2007) developed a bright, pulsed
source of photon pairs.

Temporal entanglement–If the crystal is pumped by a
continuous wave (CW) laser with a coherence time of �Lc,
the time at which pair emission happens is undefined and
phase stable within �Lc. Now imagine that each of the
photons is sent to a different unbalanced Mach-Zehnder
interferometer. We assume that the interferometers have an
identical arm-length difference �L much longer than the
coherence length of the photons, but shorter than the coher-
ence length of the pump laser (see Fig. 9). The coincidence
count rates at the outputs of both interferometers show a
sinusoidal interference pattern, which depends on the sum
of the local phase shifts. If the coincidence gate is much
shorter than �Lc, only the following coherent processes are
selected and contribute to the interference:

1ffiffiffi
2

p ðjlongi1jlongi2 þ ei�jshorti1jshorti2Þ; (37)

where jshorti and jlongi denote the photon in short or long
arm of the given local interferometer. This is the principle of
Franson-type interferometry (Franson, 1989).21 The predicted
interference phenomena were observed by Brendel, Mohler,
and Martienssen (1992) and Kwiat, Steinberg, and Chiao
(1993), many other experiments followed.

A pulsed-pump version of Franson interferometry uses so-
called time-bin entanglement (Brendel et al., 1999; Gisin
et al., 2002; Marcikic et al., 2002) (see Fig. 10). A short,
ultraviolet pump pulse is first sent through an unbalanced
Mach-Zehnder interferometer (the pump interferometer) cre-
ating two mutually coherent pump pulses �jshortip þ
	jlongip, and next through a beta barium borate (BBO)

crystal. Then, if via SPDC a pump photon is converted into
a pair, the latter is in the state

�jshorti1jshorti2 þ 	jlongi1jlongi2: (38)

The two entangled photons can be separated and subjected to
local measurements in unbalanced interferometers with �L
identical as in the pump interferometer [for more details, see
Gisin et al. (2002)]. By varying the parameters of the beam
splitters and phases in the pump interferometer, all two-qubit

FIG. 8 (color). Type II parametric down-conversion. Inside a

specially cut (birefringent) nonlinear crystal (e.g., BBO), a pump

photon can convert spontaneously into a pair of photons of lower

frequencies. The polarization of signals is orthogonal with respect to

the one of idlers. One can attempt to pick only photons of frequency

which is one-half of the frequency of the pumping field. In such a

case, if the crystal is suitably oriented, H polarized photons are

emitted into one cone (in the figure, the lower one), while V
polarized photons are emitted into the other cone, and the two

cones intersect. Due to the phase-matching pairs of photons pop up

only along an intersection of a plane containing the pump beam with

the cones, emissions along the directions at which the two cones

intersect have undefined polarizations. However, as one of the

photons is from the upper cone and the other one is from the lower

one, and due to the indistinguishability of the two processes, we

have no way to establish which is which (except from a direct

polarization measurement), photons in beams A and B are polar-

ization entangled. This holds under condition that one erases all

possible distinguishing features of upper and lower cone photons

(which arise because one of them is an ordinary ray and the other

one an extraordinary one) which can easily be done via compensa-

tion methods described in the text.

FIG. 9. A Franson-type experiment allowing interference of time-

entangled photon pairs (under the condition of a strict coincidence).

The main feature of the scheme is a pair of two identical unbalanced

Mach-Zehnder interferometers. Adapted from Franson, 1989.

21The original motivation for this type of interferometry was to

have an alternative method of obtaining correlations that lead to

violations of Bell inequalities. However, as shown by Aerts et al.

(1999), the postselection inherent in this type of experiment makes

this connection much more complicated: the original scheme in its

ideal form has an explicit local hidden-variable model. One has to

modify the experiment, and use nonstandard Bell inequalities to

make it a valid Bell test.
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entangled time-bin states can be generated. An advantage of
the time-bin entanglement is that it is insensitive to polariza-
tion fluctuations. Using reference laser pulses to actively lock
the phase, it can be robustly distributed over long distances in
optical fibers. Note that because the pulses are only separated
on the order of a few nanoseconds, and this is much shorter
than the time scale of any phase drifts in the fiber, the drifts do
not affect the quality of entanglement. An experiment by
Marcikic et al. in 2004 demonstrated the distribution of
time-bin entanglement over 50 km in optical fibers.

Path entanglement–Entanglement experiments involving
path (momentum) entanglement were proposed by Horne
and Zeilinger (1986), and their feasible version by
Żukowski and Pykacz (1988). Finally, Horne, Shimony, and
Zeilinger (1989) proposed that SPDC is an ideal source in
case of such experiments. This was realized independently by
Rarity and Tapster (1990). Because of the phase-matching
relation, idler and signal photons of given frequencies are
correlated in emission directions. One can use apertures, see
Fig. 11, to select only two pairs of spatially conjugate modes
(directions). The photon pairs then emerge via the apertures
such that they are either in the upper amode (a1) and lower b
mode (b2) or in the lower a mode (a2) and upper b mode
(b1). The resulting state is thus

j�i ¼ 1ffiffiffi
2

p ðei�b ja1ijb2i þ ei�a ja2ijb1iÞ: (39)

The a modes enter a BS via opposite inputs, so do b modes.
Behind the BS upper and lower paths cannot be distinguished,
leading to two-photon interference, which depends on the
difference of the relative phase shifts in a and b modes.

B. Photonic entanglement in higher dimensions

1. Entangled qudits

Photonic entanglement in higher dimensions can in prin-

ciple be generated by SPDC processes in a form of general-

ization of path or temporal entanglement into more than two

conjugate pairs of beams or time bins, respectively (Zeilinger

et al., 1993), and analyzed with N-port beam splitters (Reck

et al., 1994). As shown by Żukowski, Zeilinger, and Horne

(1997) such configuration can lead to new types of EPR

correlations, and can be used for tests of local realism

[which are more discriminating than two qubit tests; see

Kaszlikowski et al. (2000)].
Another route is to use the photons’ orbital angular mo-

mentum. Orbital angular momentum eigenstates of photons

are states of the electromagnetic field with phase singular-

ities. They can be utilized for observation of higher-

dimensional entanglement (Mair et al., 2001; Vaziri,

Weihs, and Zeilinger, 2002; Vaziri et al., 2003). This

approach has advantages in certain quantum communication

protocols (Vaziri, Weihs, and Zeilinger, 2002; Molina-Terriza

et al., 2004; Gröblacher et al., 2006). High-dimensional

entangled qudits have also been created by transverse spatial

correlations of two SPDC photons (Neves et al., 2005), or

using transverse momentum and position entanglement of

photons emitted in SPDC, in a form called pixel entanglement

(O’Sullivan-Hale et al., 2005).

2. Hyperentanglement

As shown earlier, the SPDC photons are entangled in

energy and momentum, and, if suitably selected, can be

also entangled in polarization or path. If one selects

pairs which are entangled not only in polarization but

also in some other degree(s) of freedom, this specific

entanglement is called hyperentanglement (Kwiat, 1997).

Hyperentanglement may have interesting applications such as

Bell-state analysis (Kwiat and Weinfurter, 1998; Walborn,

Pádua, and Monken, 2003; Schuck et al., 2006), two-particle

GHZ-type tests of local realism (Michler, Weinfurter, and

Żukowski, 2000; Chen et al., 2003), implementations of

single-photon two-qubit CNOT gate (Fiorentino and Wong,

2004), two-qubit swap gates (Fiorentino, Kim, and Wong,

2005), and quantum cryptography (Chen, Z.-B., et al., 2006).

FIG. 10. Schematic of the pulsed time-entangled twin-photon

source. The interferometers are represented by curvy lines. This

is to stress that practical realizations of this type of interferometers

are usually built out of optical fibers and couplers. From Brendel

et al., 1999.

FIG. 11. The Rarity-Tapster experiment with momentum entan-

glement from a type I SPDC. Using double apertures A two

correlated pairs of modes are selected from the emission spectrum

of a type I down-conversion source. On each of the two BS beams of

the same wavelength are superimposed. The detectors Da3, Db3,

Da4, and Db4 register two-photon coincidences between the a and b
outputs. From Rarity and Tapster, 1990.
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Polarization-path entanglement–Polarization-path entan-
glement can be generated by a double pass of a pump laser
through a BBO crystal (Chen et al., 2003). The pump passes
the crystal and is reflected to pass it again. While the polar-
ization state in each of the two possible emission processes is
given by the respective SPDC setting, the path state of

the pairs is jc�ð�Þipath ¼ ð1= ffiffiffi
2

p ÞðjuiAjdiB � ei�jdiAjuiBÞ,
where the two orthonormal kets jdi and jui denote the two
path states of photons. By properly adjusting the distance
between the mirror and the crystal such that � ¼ 0, one gets

j�i ¼ jc�ipol � jc�ð0Þipath; (40)

which is a two-photon state maximally entangled in both
polarization and path. It was independently realized by
Barbieri et al. (2005) using type I nonlinear crystals, and
by Yang et al. (2005) using a type II nonlinear crystal.

Polarization-time entanglement—A more robust distribu-
tion of hyperentanglement is possible with photon pairs
which are entangled both in time (i.e., time-bin entanglement)
and in polarization (Genovese and Novero, 2002; Chen,
Z.-B., et al., 2006; Schuck et al., 2006). To create such a
polarization-time entanglement, we similarly combine the
creation of polarization entanglement with the method to
obtain temporal entanglement. That is, either by using a short,
ultraviolet laser pulse sent first through an unbalanced Mach-
Zehnder interferometer (the pump interferometer), to have
two pulses well separated in time, or by taking advantage of
the long coherence time of a CW-pump laser. Using a ‘‘time-
path transmitter’’ introduced by Chen, Z.-B., et al. (2006),
one can realize a transformation between polarization-path
and polarization-time hyperentanglement.

Entanglement in multiple degrees of freedom–In an experi-
ment by Barreiro et al. (2005), besides the entanglement in
polarization and in energy, photon pairs from a single non-
linear crystal were also entangled in orbital angular momen-
tum. The experimental setup is shown in Fig. 12. By pumping
two BBO crystals with optical axes aligned in perpendicular
planes, a two-photon ð2 � 2Þ � ð3 � 3Þ � ð2 � 2Þ-dimensional
hyperentangled state was produced, approximately described
by

ðjHHi þ jVViÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
polarization

� ðj1;�1iLG þ �j0; 0iLG þ j � 1; 1iLGÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spatial

� ðjEEi þ jLLiÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
energy time

: (41)

Here � describes the orbital-angular-momentum spatial mode
balance, which is due the properties of the source (Torres,
Alexandrescu, and Torner, 2003) and the selection via the
mode-matching conditions.

C. Twin-beam multiphoton entanglement

It is also possible to produce entangled states involving
large numbers of photons, approaching the macroscopic do-
main. Such entanglement is related to experiments on twin
beams (Smithey et al., 1992) and could be called a twin-
beam multiphoton entanglement. It is different from multi-
photon entanglement in which each spatially separated

photon represents a qubit, and can be individually manipu-
lated and observed.

The twin-beam multiphoton entanglement can be gener-
ated via standard SPDC, but with a strong pump pulse.
Stimulated SPDC (Lamas-Linares, Howell, and
Bouwmeester, 2001; Simon and Bouwmeester, 2003) can
be seen as an extension of interferometrically enhanced
SPDC (Herzog et al., 1994) and may show an onset of a
laserlike emission of entangled photons, i.e., we can have an
(‘‘entanglement laser’’) in the sense that a (spontaneously
created) photon pair in two polarization-entangled modes
stimulates, inside a nonlinear gain medium, emission of addi-
tional pairs.

A simplified Hamiltonian22 responsible for generation of
polarization-entangled SPDC photons can be given as

H0 ¼ i
ðayHbyV � ayVb
y
HÞ þ H:c:. Horizontally (H) and verti-

cally (V) polarized photons occupy two spatial modes (a and
b); 
 is a coupling constant that depends on the nonlinearity
of the crystal and the intensity of the pump pulse. After
the interaction time t the resulting photon state is given by
jc i ¼ e�itH0 j0i (Kok and Braunstein, 2000; Lamas-Linares,
Howell, and Bouwmeester, 2001; Simon and Bouwmeester,
2003), and in the number state representation reads

jc i ¼ 1

cosh2�

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
tanhn�jc�

n i;

jc�
n i ¼

Xn
m¼0

ð�1Þmffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jn�m;m;m; n�mi: (42)

The ket jn�m;m;m; n�mi denotes a number state in the
respective modes aH , aV , bH, and bV , and � ¼ 
t is the
interaction parameter. To avoid multipair emission events,
most SPDC experiments are restricted to � � 0:1. By going
to higher values, bipartite entangled states constituting of
large numbers of photons are generated. The state jc i is a
superposition of the states jc�

n i of n indistinguishable photon
pairs. Each jc�

n i is an analog of a singlet state of two
spin-n=2 particles, thus jc i is invariant under joint rotations
of the polarization bases of both modes. The polarization of
each beam is completely undetermined, but the polarizations

FIG. 12. (a) Experimental setup for the creation and analysis of

hyperentangled photons. (b) Spatial filtration (spa): hologram (holo)

and single-mode fiber (smf). (c) Energy time transformation (e–t):

thick quartz decoherer (dec) and liquid crystal (LC). (d) Polarization

filtration (poln): quarter-wave plate (qwp), half-wave plate (hwp),

and polarizer (pol). From Barreiro et al., 2005.

22It is interesting to note that this simplified Hamiltonian and the

state generated thereby [Eq. (42)] are closely related to squeezing

and continuous-variable entanglement, see Braunstein and van

Loock (2005) for a review.
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of the two beams are always anticorrelated. The average
photon-pair number is hni ¼ 2sinh2�.

Out of such states one can extract, for example, the follow-
ing two-pair term of Eq. (42):

jc�
2 i ¼

1ffiffiffi
3

p ðj2; 0; 0; 2i � j1; 1; 1; 1i þ j0; 2; 2; 0iÞ; (43)

which can be treated as a singlet state of two (compo-
site) spin-1 systems [see Howell, Lamas-Linares, and
Bouwmeester (2002) for a test of Bell’s inequality by en-
tangled states of spin-1-like systems].

The theory of an entanglement laser was developed by
Simon and Bouwmeester (2003). The basic principle of a
stimulated entanglement creation was first experimentally
demonstrated in the few-photon regime (Lamas-Linares,
Howell, and Bouwmeester, 2001). Later, twin-beam entan-
glement of up to 12 photons (Eisenberg et al., 2004) was
experimentally observed.

A special twin-beam entanglement is the so-called ‘‘high
N00N’’ type (Bouwmeester, 2004) state of two beams
(Dowling, 1998; Kok et al., 2001; Kok, Lee, and Dowling,
2002)

jN00Ni ¼ jN; 0; 0; Ni ¼ 1ffiffiffi
2

p ðjNiaj0ib þ j0iajNibÞ:
(44)

It was experimentally realized for N ¼ 3 (Mitchell, Lundeen,
and Steinberg, 2004) and N ¼ 4 (Walther et al., 2004)
[for N ¼ 2, see, e.g., Rarity et al. (1990); Edamatsu,
Shimizu, and Itoh (2002); and Sun et al. (2006)]. These
experiments demonstrated an interesting feature of N00N
states: the effective de Broglie wavelength of the multiphoton
state is by 1=N shorter than the wavelength of the single
photon (Jacobson et al., 1995). Nagata et al. (2007) not
only measured the reduced de Broglie wavelength of four-
entangled photons, but also obtained a visibility that ex-
ceeds the threshold to beat the standard quantum limit
(Fig. 13). See Fig. 13(a) for more details. If we put two

single photons in each input of the Mach-Zehnder interfer-
ometer (j11iab), the state after the first BS is, due to the

Hong-Ou-Mandel effect, ðj20icd þ j02icdÞ=
ffiffiffi
2

p
, which then

evolves to ðj20i þ ei2’j02iÞ= ffiffiffi
2

p
. After the second BS, the

probability of detecting two photons in the output modes e
and f is P ¼ ð1� cos2’Þ=2 which shows a phase super
resolution [for the experimental data see Fig. 13(c)]. If two
photons are fed into in each input of the interferometer

(j22iab), after the first BS we get
ffiffiffiffiffiffiffiffi
3=8

p ðj40icd þ j04icdÞ þ
ð1=2Þj22icd: a generalized multiphoton Hong-Ou-Mandel in-
terference phenomenon. After the second BS, the probability

of detecting three photons in one output e and one in f is P ¼
1� ð3=8Þ cos4’ [see Fig. 13(d) for data]. The high-precision
optical phase measurements have many important applica-
tions, e.g., overcoming the diffraction limit for classical light
(Boto et al., 2000; Kok et al., 2001).

D. Multiphoton entanglement

The original motivation to observe entanglement of more

than two particles, with measurements on the particles per-
formed at spatially separated stations, stems from the obser-
vation by GHZ that three-particle entanglement leads to a
dramatic conflict between local realism and EPR’s ideas with
predictions of quantum mechanics (Greenberger, Horne, and
Zeilinger, 1989; Greenberger et al., 1990; Mermin, 1990a);
see Sec. V.B.1. However, in 1989 no ready sources of three or

more particle entanglement were available. Yurke and Stoler
(1992a, 1992b) showed that in theory multiparticle entangle-
ment effects should in principle be observable for particles
originating from independent sources. A general method for
making such an interference observable, and also to swap
entanglement, was given by Żukowski, et al. (1993); Rarity

(1995); Żukowski, Zeilinger, and Weinfurter (1995); and
Zeilinger et al. (1997). In the following, we first present
the basic methods followed by numerous experiments in
which multiphoton entanglement was observed. Once one is
able to entangle two photons that never interacted, one can

FIG. 13 (color online). Super-resolving phase measurement with N00N states. (a) A schematic of the experimental setup of Nagata et al.

(2007): a Mach-Zehnder interferometer consisting of two 50:50 beam splitters. (b) Single-photon count rate in mode e as a function of phase

plate (PP) angle with single-photon input j10iab. (c) Two-photon count rate in modes e and f for input state j11iab. (d) Four-photon count rate
of three photons in mode e and one photon in mode f for the input state j11iab. The visibility of the fringes is 0.91(6), greater than the

threshold to beat the standard quantum limit. Adapted from Nagata et al., 2007.
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construct many types of entanglement (Zeilinger et al.,
1997), which in turn can be utilized in many ways (Bose,
Vedral, and Knight, 1998).

1. Entanglement construction

We have at hand only photon sources of two-particle
entanglement. We show in detail an operational method to
swap entanglement of two pairs of particles (Żukowski,
Zeilinger, and Weinfurter, 1995), which has been used in
many experiments [the pioneering one was the Innsbruck
teleportation (Bouwmeester et al., 1997)]. The technique
of essentially erasing which source information can be ap-
plied in many other configurations, e.g., in the case of a
double pair emission from a single source, etc. It even works
for totally independent emissions (provided they are
synchronized).

Entangling two independent particles: the principle–
Figure 14 shows a configuration for obtaining interference
effects for two pairs of particles originating from two inde-
pendent sources. Assume that the sources of path-entangled
states in Fig. 14, A and B, each spontaneously emits a pair of
particles in an entangled state (all particles are supposed to be
identical) at nearly the same moment of time, and the states of

the pairs are j�Ai ¼ ð1= ffiffiffi
2

p Þðjaijdi þ ja0ijc0iÞ for source A

and j�Bi ¼ ð1= ffiffiffi
2

p Þðjb0ijd0i þ jbijciÞ for source B (the letters
represent beams taken by the particles in Fig. 14, and hejfi ¼
�ef). The beams x and x0, where x ¼ a, b, c, or d are

superposed at 50:50 BSs. Behind the BSs, we place detectors
in the output ports xð�Þ. In all unprimed beams, one can
introduce a phase shift of �x. The detector stations differ in
their role: að�Þ and bð�Þ observe radiation coming from one
source only, but this is not so for stations dð�Þ and cð�Þ. For
instance, if a single particle is detected by dðþÞ, its origin
may be, under suitable conditions, completely unknown. If it
cannot be determined, even in principle, which source pro-
duced the particle which activated the detectors, say dðþÞ and
cðþÞ, then four-particle interference effects may occur.

Assume that detectors aðþÞ and bðþÞ also fired.
Simultaneous firings of the four detectors can exhibit inter-
ference effects provided the two contributing processes are
indistinguishable: detection of the particles from soure A in
dðþÞ and aðþÞ, and detection of the particles from B in cðþÞ
and bðþÞ; detection of the particles from source A in cðþÞ

and aðþÞ, and detection of the particles form B in dðþÞ
and bðþÞ. Note that depending on the phase shifts the detec-
tion at, e.g., cðþÞ and dðþÞ, acts like a Bell-state measure-
ment, projecting the two photons into the state

ð1= ffiffiffi
2

p Þðjc0ijd0i þ eið�cþ�dÞjcijdiÞ. The other two photons

are, due to this event, in the state ð1= ffiffiffi
2

p Þðjb0ija0iþ
e�ið�cþ�dÞjbijaiÞ. This process is called entanglement
swapping.

Enforcing source indistinguishability–Imagine now that
the sources of entangled states are two crystals pumped by
independent, pulsed lasers operating synchronously. Assume
that the time separation between two pulses is much larger
than all other time scales of the experiment, i.e., we study the
radiation generated in each crystal by a single pulse. We omit
retardation effects by assuming equal optical paths. We as-
sume that we pick the SPDC radiation with frequencies close
to 1

2!
o
p, where !

o
p is the central frequency of the pump pulse.

Suppose that the four SPDC photons are detected in almost
the same moment of time (up to a few nanosecond window),
one in each of the detectors aðþÞ, bðþÞ, cðþÞ, and dðþÞ. One
could determine that the photon detected at dðþÞ came from
crystal A (B) by noting the near simultaneity of the detection
of photon dðþÞ and one of the photons at aðþÞ or bðþÞ [the
detection times of a true SPDC pair are extremely tightly
correlated, see the Appendix, Eq. (A18) and the discussion
after it]. To ensure that the source of photons is unknowable,
the (initially spectrally broadband) photons should be de-
tected behind a narrow-band filtering system (to be called
later simply a filter) whose inverse of the bandwidth (coher-
ence time) clearly exceeds the pulse duration � (e.g., by an
order of magnitude). Then, the temporal separation of true
SPDC pairs, all created within �, spreads over times much
longer than � and thereby prevents identifying the source of
the photon by comparison of the arrival times. Note that
filtering is necessary only in modes c and d, while no filtering
is required in front of the detectors að�Þ and bð�Þ.23

One can estimate the maximal visibility expected for the
interference process, using the results presented in the
Appendix, where the basic properties of the SPDC radiation
are derived. The amplitude of the four-photon detections at,
say, detectors aðþÞ, bðþÞ, cðþÞ, and dðþÞ at times ta, tb, tc,
and td, is proportional to

eið�aþ�bþ�cþ�dÞAadðta; tdÞAcbðtc; tbÞ
þ Ab0d0 ðtb; tdÞAa0c0 ðta; tcÞ; (45)

where �i, i ¼ a, b, c, and d, is the local phase shift in the
given beam. The probability amplitude Aðt; t0Þ to detect one
photon of a SPDC pair at t and the other one at t0, is the one
given by Eq. (A20). To get an overall probability of the
process, one has to integrate the square of the modulus of
the amplitude over the detection times. Since typical time
resolution of the detectors is of the order of nanoseconds,
which is much longer than the coherence times of typical

FIG. 14 (color online). Four-particle interference effects for two

pairs of particles originating from two independent sources.

Adapted from Żukowski et al., 1993.

23This method also precludes the possibility of inferring the source

of the photon from the frequency correlations. The frequency of the

photons reaching dðþÞ is better defined than the pumping pulse

frequency, and it is the spread of the latter one that limits the

frequency correlations of the idler-signal pair from one source.
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filters and the width of femtosecond (fs) pump pulses, the
integrations over time can be extended to infinity. The joint
probability to have counts in the four detectors behaves as

1� Vð4Þ cos
� X
x¼a;b;c;d

�x

�

and the visibility Vð4Þ is given by

Vð4Þ ¼
R
d4tjAadðta; tdÞAbcðtb; tcÞAb0d0 ðtb; tdÞAa0c0 ðta; tcÞjR

d4tjAadðta; tdÞAbcðtb; tcÞj2
;

(46)

where d4t ¼ dtadtbdtcdtd. Assume that the filter functions in

all beams are of identical Gaussian form: FfðtÞ ¼
e� i

2!
o
ptjFfðtÞj, whereas the pump beam is described by GðtÞ ¼

e�i!o
ptjGðtÞj. Here !o

p is the central frequency of the pulse,

and jFj and jGj functions are given by Fourier transforms of
exp½� 1

2 ð!��Þ2=�2�, where � ¼ 1
2!

o
p (for jFj) or !o

p (for

jGj), and � is the respective spectral width. One gets

Vð4Þ ¼
�

�2
p

�2
p þ �2

F�
2
f=ð�2

p þ �2
F þ �2

fÞ
�
1=2

; (47)

where �p is the spectral width of the pulse, �f is the spectral

width of the filters in beams a, a0, b, b0, and the spectral width
of the filters in c and d is �F. If one removes the filters
in beams a, a0, b, and b0, the formula simplifies to Vð4Þ ¼
½�2

p=ð�2
p þ �2

FÞ�1=2; see Żukowski, Zeilinger, and Weinfurter

(1995). Namely, narrow filters in paths a, a0 and b, b0 are not
necessary to obtain high visibility. The other filters, for
detectors which observe radiation from both sources, should
be always sufficiently narrow.

The influence of photon statistics–The visibility of the four-
particle fringes in the setup of Fig. 14 can be impaired by the
statistical properties of the emission process. The statistics of
a single beam of a down converter is thermal-like. The state
of idler-signal pairs emerging via a pair of (perfectly phase
matched) pinholes is given by

jc i ¼ N�1
X1
m¼0

zmjm; sijm; ii; (48)

where z is a number dependent on the strength of the pump,
jm; si (jm; ii) denotes an m-photon state in the signal (idler)
mode, and N is the normalization constant. It can be shown
(Żukowski et al., 1999) that the visibility is reduced below

50% if jzj2 > ð ffiffiffiffiffiffi
17

p � 3Þ=8 � 0:140. Thus, to have high visi-
bility the ratio of the probability of each pulse to produce a
single down-converted pair to the probability of not produc-
ing anything must be less than 14%. This threshold is at quite
high pump powers. Nevertheless, this puts a strong limitation
as how many particles can be entangled using such methods.
Simply, creation of entanglement for many particles requires
more and more initial entangled pairs, thus one pumps
stronger. However, a strong pump leads to lower visibility
of quantum interference, which may prohibit to observe the
correlations due to the desired multiphoton entanglement
(Laskowski et al., 2009). Recently, several experiments
were performed to identify and quantify the experimental
imperfections that contribute error to the produced

multiphoton states [see Barbieri et al. (2009) and Weinhold
et al. (2008)].

Note that source indistinguishability in principle can also
be achieved with an ultracoincidence technique, which does
not require a pulsed pump, but an extremely good detection
time resolution �T much sharper that the coherence time of
the filtered SPDC radiation, and rejection of all events at cðþÞ
and dðþÞwhich are detected with time difference higher than,
say, 2�T [see Żukowski, et al. (1993)]. In such a case, the
pumping lasers may be CW ones.24

2. New methods

The methods described above require a femtosecond
pulsed laser pump. Unfortunately, a femtosecond pulse
pumped SPDC shows relatively poor quantum interference
visibilities (Keller and Rubin, 1997). The following methods
are used to increase the quantum interference visibility: (i) a
thin nonlinear crystal (Sergienko et al., 1999), (ii) narrow-
band spectral filters in front of detectors, as shown above (Di
Giuseppe et al., 1997; Grice and Walmsley, 1997; Grice
et al., 1998), and (iii) an interferometric technique (Branning
et al., 1999, 2000) without spectral and amplitude postselec-
tion, which is making the spectral wave function of the two
photons much more symmetric.25 The first two methods
reduce the intensity of the entangled-photon pairs signifi-
cantly and cannot achieve perfect overlap of the two-photon
amplitudes. For the theoretical and experimental details of the
last method, see Kim, Kulik, and Shih (2001).

A method gaining great importance is tuning the properties
of the down-conversion source and the pump such that one
obtains frequency uncorrelated pairs of photons; see, e.g.,
Grice, U’Ren, and Walmsley (2001); U’Ren, Banaszek, and
Walmsley (2003); Walton et al. (2003, 2004); Torres, Macià,
and Torner (2005); Garay-Palmett et al. (2007); Mosley
et al. (2008); and Halder et al. (2009) who demonstrated a
source of photon pairs based on four-wave mixing in photonic
crystal fibers [see also Fulconis et al. (2007)]. Engineering of
the phase-matching conditions in the fibers allowed creation
of photon pairs at 597 and 860 nm in an intrinsically factor-
able state of frequencies. Thus there were almost no spectral
correlations. The source is narrow band and bright. Two
separate sources of such a kind were used to generate a
Hong-Ou-Mandel interference. The idlers were used to herald
the singles. The observed interference, conditioned on a joint
detection event of two idlers, had a raw visibility of 76.1%.
Since narrow-band filtering is unnecessary in case of such

24See, e.g., an experiment reported by Halder et al. (2007) who

use single-photon detectors with a time resolution of�70 ps, which
is much shorter than the coherence length (� 350 ps) of the tightly
filtered photons in the experiment (see Sec. VI.C.3). Using an atom-

cavity system, Legero et al. (2004) generated single photons with

coherence time of �500 ns exceeding the time resolution of

employed photon detectors by 3 orders of magnitude, and observed

quantum beat between photons of different frequencies with a near-

unity visibility.
25The method rests on two distinct processes for emission of a

down-converted pair, which are coherently overlapped. The axes of

polarization are switched between the two processes. This gives a

symmetrization of the spectral properties.
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sources, one can achieve a higher collection efficiency than in
the case of using passive filtering [see Kim, Kulik, and Shih
(2001) and Yao et al. (2012) where the collection efficiency
was reported to be about twice as high than in measurements
using 3 nm filters].

With mastering these phase-matching tune-up techniques,
one can expect that in future they may replace the ones based
on passive filtering, as a new method for entanglement swap-
ping and related processes.

3. First proposals

In the 1990’s, many proposals were made for observations
of multiphoton entanglement (Żukowski, et al., 1993; Rarity,
1995; Żukowski, Zeilinger, and Weinfurter, 1995; Zeilinger
et al., 1997; Pan and Zeilinger, 1998; see also Sec. III.E.2), or
involving atoms (Cirac and Zoller, 1994; Haroche, 1995;
Sleator and Weinfurter, 1995).

The generic idea of observing photonic GHZ entangle-
ment, later put into practice, was given by Zeilinger et al.
(1997); 26 see Fig. 15. Assume that sources A and B simul-
taneously emit a photon pair each. Pairs in beams x, y (1, 3,

and 2, 4) are in identical polarization states ð1= ffiffiffi
2

p Þ

ðjHx;Hyi þ jVx; VyiÞ. The state of the four particles, after

the passage of 2 and 3 via PBS1, and provided the photons
are indistinguishable (which can be secured using the meth-
ods as described earlier), reads

1
2ðjH1; H2; H3; H4i þ jV1; V2; V3; V4i þ jH1; H3; V3; V4i

þ jV1; V2; H2; H4iÞ: (49)

Only the superposition jH1; H2; H3; H4i þ jV1; V2; V3; V4i,
which is a GHZ state, leads to fourfold coincidence.
Therefore, fourfold coincidences can reveal four-particle
GHZ correlations.

The scheme in Fig. 15 also allows one to generate uncondi-
tional three-particle GHZ states27 via a method based on the
notion of entangled entanglement (Krenn and Zeilinger,
1996). For example, one could analyze the polarization state
of photon 2 by passing it through a PBS selecting 45� and
�45� polarizations. Then the polarization state of the remain-

ing three photons 1, 3, and 4 will be projected into ð1= ffiffiffi
2

p Þ

ðjH1; H3; H4i þ jV1; V3; V4i, if and only if detector DT1 de-
tects a single photon. A similar superposition, however with a
minus sign, is obtained once detector DT2 detects a single
photon. The detection of photon 2 excludes the last two terms
in Eq. (49), and projects the remaining three photons into a
spatially separated and freely propagating GHZ state.
However, the scheme works only with photon-number dis-
criminating detectors, and if both EPR sources emit only a
pair each without double pair (or more) emission events.

Unfortunately, this is not the case in the actual SPDC

experiments. Because of the absence of perfect pair sources
and perfect single-photon detectors, in the experiments both

three-photon and four-photon entanglement (Bouwmeester,
et al., 1999; Pan et al., 2001; Eibl et al., 2003; Zhao et al.,
2003; see also Sec. IV.D.4) is observed only under the

condition that there is one and only one photon in each of
the four outputs. As there are other detection events where

two photons appear in the same output port, this condition
might raise doubts about whether such a source can be used

for a valid GHZ test of local realism (Sec. V.B.2). By further
developing the ideas of Yurke and Stoler (1992a), Żukowski

(2000) showed that the above procedure indeed permits a
valid GHZ test.

4. Experimental realizations

The first experiment involving techniques of forcing indis-

tinguishability of photons from different parametric down-
conversion pairs was the teleportation experiment by

Bouwmeester et al. (1997). This, however, will be discussed
later in the context of quantum communication (Sec.VI). A

GHZ-type entanglement among three spatially distributed
photons, using the above methods of entanglement construc-

tion, was first observed by Bouwmeester et al. (1999). The
main idea behind this experiment, as was put forward in
Zeilinger et al. (1997), is to transform two pairs of

polarization-entangled photons into three entangled photons.
The fourth photon served the role of a trigger. Figure 16

illustrates the experimental setup. Two pairs of polarization-
entangled photons are generated via a pulsed SPDC. The

probability per pulse to create a single pair in the desired
modes was on the order of a few 10�4 with a correspondingly

smaller probability to create four photons and negligible for
three pair events. The source was aligned to emit photon pairs

in the state ð1= ffiffiffi
2

p ÞðjHa; Vbi � jVa;HbiÞ.

FIG. 15 (color online). A three-photon polarization-entanglement

source. The photon sources A and B are pumped by short pulses.

The PBS1 transmits 45� polarization and reflects �45� polariza-

tion, F is a narrow filter, and DT1 and DT2 are two single-photon

detectors. A single-photon trigger event in one of the detectors

signals that coincident detections in channels 1, 2, and 3 would re-

sult in GHZ correlations. The setup can also be used for observation

of four-photon GHZ interference. From Zeilinger et al., 1997.

26Earlier proposals, Żukowski, et al. (1993) and Żukowski,

Zeilinger, and Weinfurter (1995), are essentially showing an explicit

operational method to realize the ideas of Yurke and Stoler (1992a,

1992b). They involved techniques which required more complicated

optical setups and more sources, however the basic principles were

the same.
27The original proposal for the realization of three-photon GHZ

states in Zeilinger et al. (1997) makes use of a slightly different

interferometric setup.
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The experimental arrangement was such that the GHZ

entanglement could be observed under the condition that

both the trigger photon and the three entangled photons are

detected. This is usually called a ‘‘postselection’’ (sometimes

also called ‘‘conditional detection’’ or ‘‘observation in coin-

cidence basis’’). We now go into more details on how this

works. As initially there were four photons, provided that

each of them is detected in a different output, one can infer

that the two photons in mode a were horizontally and verti-

cally polarized. The photon of polarizationH was transmitted

through the PBS and detected by the trigger detector T, and
the other one, V polarized, must have been reflected by the

PBS and consequently rotated by the half-wave plate (HWP)

into state ð1= ffiffiffi
2

p ÞðjHi þ jViÞ. Concerning the two photons in

mode b, they must have been one of polarization H and the

other of V, in order to match the polarizations in mode a.
After a random distribution by the BS, one photon can be

detected by the detector D3 while the other one can be

combined on a PBS with the photon from mode a.
Therefore, if each of the three detectors D1, D2, and D3

detects a photon, there are only two possible polarization
combinations: jH1H2V3i and jV1V2H3i. Bouwmeester et al.
adjusted the two path lengths such that the two photons
arrived simultaneously at the last PBS. The photons were
spectrally filtered, with �� ¼ 4:6 nm, and monitored by
single-mode, fiber-coupled single-photon detectors. The fil-
tering process stretched the coherence time so that it was
substantially larger than the pump pulse duration (� 200 fs).
These processes erase the possibility of distinguishing the
photons from different pairs by their arrival time or spatial
modes (see previous sections). Thus the resulting counts
originate from a superposition between jH1H2V3i and
jV1V2H3i, that is, the three-photon GHZ state

1ffiffiffi
2

p ðjHi1jHi2jVi3 þ jVi1jVi2jHi3Þ: (50)

To test whether one indeed dealt with a the three-photon
GHZ state, Bouwmeester et al. performed a polarization
analysis (with polarizing filters in front of each detector,
not shown in Fig. 16). They first compared the counts of all
eight possible polarization combinations HHH; . . . ; VVV.
The results showed that the intensity ratio between the de-
sired events (HHV and VVH) and the six other undesired
ones was about 12:1. The dominance of the two terms is a
necessary but not yet sufficient condition for demonstrating a
GHZ entanglement, as there could, in principle, be just a
statistical mixture of the two states. Next, to test whether the
one indeed dealt with a coherent superposition of the two
terms, Bouwmeester et al. performed measurements in the
‘‘diagonal’’ basis þ=� ¼ H � V. A result þ at detector D1
should effectively project the state of the other photons to

ð1= ffiffiffi
2

p Þðjþi2jþi3 � j�i2j�i3Þ. The obtained data are consis-
tent with this prediction, as can be seen from Fig. 16(b). This
is so only within a short interval of delay between the
photons, while for path length differences larger than the
coherence length of the detected photons the coherence
between the two GHZ-terms vanishes. Further control experi-
ments were done by setting the polarizer in front of detector
D1 at 0� such that the GHZ state (50) is projected into a
separable state jVi2jHi3. In this case, the results in Fig. 16(c)
show no correlation.

By extending the above technique, GHZ-type entangle-
ment among more particles was observed. A four-photon
GHZ state was first observed by Pan et al. (2001) and its
genuine entanglement was confirmed by Zhao et al. (2003).
Later on, five-photon entanglement was demonstrated by
interfering a four-photon GHZ state (Pan et al., 2001) with
a source of pseudosingle photons from an attenuated laser
light (Zhao et al., 2004). With further improvements in high-
power pump source and photon collection efficiency, GHZ
entanglement among six photons (Lu et al., 2007) and eight
photons (Yao et al., 2012) was also observed. The number of
GHZ-like entangled qubits climbed up to ten by entangling
both the polarization and momentum degrees of freedom of
five photons (Gao, Lu, et al., 2010).

SPDC is quite versatile, as it enables one to observe a
number of other, genuinely multipartite entangled states.
Emission of two photons into each of two modes gives
already a highly entangled state and is significantly different
from simply emitting two pairs (Weinfurter and Żukowski,

FIG. 16 (color online). Entanglement among three single photons.

(a). Experimental setup for observing three-photon GHZ entangle-

ment. The UV-pulse incident on the BBO crystal produces four

photons, two in each mode. Conditioned on the registration of one

photon at the trigger detector T, the three photons registered at D1,

D2, and D3 exhibit the desired GHZ correlations. (b). Experimental

data. The photon at D1 polarized at 45� and the photon at detector

D2 polarized at �45�. The two curves show the fourfold coinci-

dences for a polarizer in front of detector D3 oriented at �45� and

45�, respectively, as a function of the spatial delay in path a. (c).

Experimental data for the case of the polarizer in front of detector

D1 set to 0�. Adapted from Bouwmeester et al., 1999.
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2001). After beam splitting of these two modes into four

modes and again conditioning on detection of one photon in
each of the four modes, the observed state can be written as a
superposition of a four-photon GHZ state and a product of

two EPR pairs. This state, first observed by Eibl et al. (2003),
is the extension of the singlet state j��i to four photons

and is thus invariant under equal unitary transformations in
the four output modes. This enables a decoherence-free

communication of a qubit encoded in four-photon states
(Bourennane, Eibl, Gaertner, et al., 2004). By splitting the

two emission modes into three output modes the six-photon
singlet was also observed recently by Radmark, Zukowski,

and Bourennane (2009), with visibility of the six-photon
interference as high as 85%. The high visibility is possible

because the distinctive feature of this scheme is that it does
not involve interferometric overlaps; only beam splitting is

necessary.
Another important multipartite entangled state, the sym-

metric Dicke state, can be obtained by using collinear type II

SPDC and splitting the four (six) photons into four (six)
output modes (Kiesel et al., 2007; Prevedel et al., 2009;

Wieczorek, Krischek, Kiesel, Schmid, 2009; Wieczorek
et al., 2009). The high symmetry of this state makes it an

ideal resource to synthesize a number of different multipartite
entangled states by projection as shown above for the GHZ

states (Wieczorek, Kiesel, Schmid, Weinfurter, 2009), but
also for entanglement enhanced subshot-noise measurements.
Finally, all the above states can also be observed by a single,

tunable setup. There, a wave plate rotating the polarization in
one of the two emission modes of SPDC, followed by a PBS

combining these two emission modes, serves to set any
superposition between a GHZ state and the product of two

entangled pairs [Wieczorek et al. (2008); see also Lanyon
and Langford (2009)].

To characterize the created multiphoton entangled states,

various methods have been introduced. Quantum state tomog-
raphy [for an introduction, see James et al. (2001)] uses

projective measurements on an ensemble of identically pre-
pared quantum states each probing the state from a different

‘‘perspective.’’ It is a tool to fully reconstruct the density
matrix of a quantum system.28 Experimentally, this technique

was used for two-photon, three-photon, four-photon polariza-
tion states, and also hyperentangled photon pairs (White

et al., 1999; Barreiro et al., 2005; Resch et al., 2005;
Walther, Resch, Rudolph et al., 2005). A disadvantage

of such a method, however, is that the number of measure-
ments grows exponentially with the number of photons,

thus the reconstruction of a n-photon state necessitates 4n

n-fold coincidence measurements which is experimentally

demanding.
Entanglement witnesses–The method of entanglement wit-

nesses (Horodecki, Horodecki, and Horodecki, 1996;
Lewenstein et al., 2000; Terhal, 2000; Bruß et al., 2002)

allows one to detect entanglement via measuring a suitable
observable. One speaks of genuine multipartite entanglement

(Tóth and Gühne, 2005) whenever the state involves quantum

correlations of all subsystems, such that there is no subsystem
which is just classically correlated with the other particles.
Detection of a genuine multiparticle entanglement with ap-
propriate witnesses usually requires an experimental effort
that increases only polynomially with the number of qubits. A
toolbox for efficient witness operator construction has been
created for some multiparticle states [such as GHZ, cluster,
and W state, see, e.g., Gühne et al. (2007)], and applied in a
number of multiphoton experiments [see, e.g., Bourennane,
Eibl, Kurtsiefer, et al. (2004); Kiesel, Schmid, Toth, et al.
(2005); Lu et al. (2007), and Wieczorek, et al., 2009]. We
refer the interested reader to Horodecki et al. (2008) and
Gühne and Toth (2009) for more details.

V. FALSIFICATION OF A REALISTIC WORLD VIEW

With a detailed analysis of the work of EPR and its
extension by Bohm (1951), in a trailblazing paper Bell
(1964) proved, that despite the hopes of Einstein et al., there
is a deep conflict between quantum mechanics and local
realistic theories. Not only a conceptual one, which was
stressed by EPR is their claims concerning incompleteness
of quantum mechanics, but one which straightforwardly leads
to drastically different predictions concerning two-particle
interference phenomena.

Realism, the cornerstone of classical physics, is a view that
for any physical system (also a subsystem of a compound
system), one can find a theoretical description (deterministic
or probabilistic) which involves all results of all possible
experiments that can be performed upon it no matter which
experiment actually was performed. Evidently, this directly
contradicts the Bohr’s complementarity principle. A theory is
local if it assumes that information, and influences, cannot
travel faster than light. By assuming that local measurement
events are determined by other events (i.e., causes) in their
backward light cone, the term local realism could be replaced
by local causality.

Bell’s famous theorem is of profound scientific and phil-
osophical consequences. It also showed that the previously
ignored class of entangled states is very important in experi-
mentally distinguishing between the classical and the quan-
tum. We first present the formal aspects of Bell’s theorem as
well as other forms of ‘‘no-go theorems’’ for hidden-variable
theories.29 Next, we present the most important photonic tests
invalidating classes of such theories.

An important line of research was opened with the discov-
ery of the GHZ theorem, which pertains to three or more
particle systems, and reveals a contradiction between
quantum mechanics and local realistic theories, even for

28A similar technique, called quantum process tomography, has

been used to fully characterize the quantum CNOT gates (O’Brien

et al., 2004).

29Hidden variables are those hypothetical parameters that suppos-

edly influence the results of individual measurement acts, but are

not present in the standard mathematical structure of quantum

mechanics. This is why they are called hidden. If one introduces

to the theory expressions containing algebraic functions of results

of, e.g., pairs of, noncommeasurable variables, this is tantamount to

the introduction of hidden variables (such operations are impossible

in quantum mechanics). Also, as causes of individual measurement

events do not appear in the quantum formalism, they are hidden

variables as well.
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definite predictions. This result was the initial motivation for
experimental efforts to produce entanglement of more than
two particles. With the advances in multiphoton entangled-
state preparation, discussed in the previous section, a new
class of tests of the validity of local realistic theories became
possible. Note that, as any classical information processing,
or communication, has a local realistic model, the theorems
and experiments that reveal phenomena impossible to de-
scribe by such formalism clearly indicate existence of a
different method of processing and transferring information.
That is why quantum information processing is able to per-
form tasks impossible with the classical methods.

A. Bell’s inequality

Consider pairs of photons simultaneously emitted in oppo-
site directions. They arrive at two very distant measuring
devices A and B operated by Alice and Bob, respectively.
Their apparatuses have a ‘‘knob,’’ which specifies which
dichotomic (i.e., two valued, yes no) observable they mea-
sure.30 One can assign to the two possible results (eigen)
values�1 (for yes or no).31 Alice and Bob are at any time free
to choose the knob settings (also in a ‘‘delayed-choice’’
mode, after an emission).

Assuming realism allows one to introduce and compare
values of results of all possible experiments that can be
performed on an individual system, without caring which
measurement would be actually done on the system.
According to locality, random choices and the consecutive
observations made by Alice and Bob, which can be simulta-
neous in certain reference frames, cannot influence each
other, and the choice made on one side cannot influence the
results on the other side, and vice versa.

To test local realism Alice chooses randomly, with equal

probability, to measure either observable Â1 or Â2, and Bob
either B̂1 or B̂2. Denote the hypothetical results that they may

get for the jth pair by Aj
1 and Aj

2 for Alice’s two possible

choices,32 and Bj
1 and Bj

1 for Bob’s choices. The numerical

values of these can be �1. The assumption of local realism

allows one to treat Aj
1 and Aj

2 on equal footing as two

numbers, one of them revealed in the experiment, the second
one unknown, but still either �1. Thus, their sum and differ-
ence always exist, and are algebraic expressions with two
unknowns. For the dichotomic values for all the possible
measurement results, one obtains either the combination

jAj
1 � Aj

2j ¼ 2 and jAj
1 þ Aj

2j ¼ 0, or jAj
1 � Aj

2j ¼ 0 and

jAj
1 þ Aj

2j ¼ 2, and similarly for Bob’s values. Thus, the

following trivial relation holds:

X
s1¼�1

X
s2¼�1

Sðs1; s2ÞðAj
1 þ s1A

j
1ÞðBj

1 þ s2B
j
2Þ ¼ �4;

(51)

where Sðs1; s2Þ is an arbitrary ‘‘sign’’ function of s1 and s2,
that is, one always has jSðs1; s2Þj ¼ 1. Imagine now that N
pairs of photons are emitted, pair by pair, and N is sufficiently

large,
ffiffiffiffiffiffiffiffiffi
1=N

p � 1. The average value of the products of the
local values for a joint test (the Bell correlation function),
during which, for all photon pairs, only one pair of observ-

ables (say, Ân and B̂m) is chosen, is given by

EðAn; BmÞ ¼ 1

N

Xj¼N

j¼1

Aj
nB

j
m; (52)

where n ¼ 1, 2 and m ¼ 1, 2. Equation (51) after averaging
implies, together with Eq. (52), that for the four possible
choices the following inequalities33 must be satisfied for local
realistic descriptions [see Weinfurter and Żukowski (2001)
and Werner and Wolf (2001b)]:

� 4 � X
s1¼�1;s2¼�1

Sðs1; s2Þ½EðA1; B1Þ þ s2EðA1; B2Þ

þ s1EðA2; B1Þ þ s1s2EðA2; B2Þ� � 4: (53)

If one chooses a nonfactorizable function Sðs1; s2Þ, say,
1
2 ð1þ s1 þ s2 � s1s2Þ, the famous Clauser, Horne,

Shimony, and Holt (CHSH) (Clauser, et al., 1969) in-
equality is recovered34

SBell 
 jEðA1; B1Þ þ EðA1; B2Þ þ EðA2; B1Þ � EðA2; B2Þj
� 2: (54)

We now discuss one more assumption, sometimes provo-
catively called of free will. For the actual experiment, we
assume that choices of actual observables are random and
independent from all other processes in the experiment. Note
that only in a part of the cases (around 1=4) the given pair of
observables [see Eq. (52)] would be measured. However, asN
is large, the correlation function obtained on a randomly
preselected subensemble35 of pairs, due to the aforemen-
tioned randomness and independence, cannot differ too
much from the one that would have been obtained for the
full ensemble (say, by �2=

ffiffiffiffi
N

p
), as we deal with two statis-

tically independent processes. Therefore, the results of the

30E.g., for a device consisting of a polarizing beam splitter and two

detectors behind its outputs, this knob specifies the orientation of the

polarizer, etc.
31We assume, that we have a perfect situation in which the

detectors never fail to register a photon.
32Note that if the results were depending also on the settings a

Bob’s side, one would use a two index notation Aj
a;b, with a, b ¼ 1,

2, where a and b index Alice’s and Bob’s choices of the settings. As

index b is missing, this is tantamount to the locality assumption.

33All such inequalities boil down to just a single one
P

s1¼�1P
s2¼�1jEðA1;B1Þþs2EðA1;B2Þþs1EðA2;B1Þþs1s2EðA2;B2Þj�4.
34The simple algebra to reach this result rests on the fact thatP
sj¼�1sj ¼ 0, while

P
sj¼�1s

2
j ¼ 2.

35Note that the subensemble is selected by the choice of observ-

ables made by Alice and Bob before the actual measurements. If the

choices are statistically independent of any other processes in the

experiment, which is equivalent to Alice and Bob having free will,

expectation values of correlation functions conditioned on a par-

ticular choice of local settings do not differ from the unconditional

ones, like Eq. (52). For more details see (Gill et al., 2002).
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actually chosen measurements, under all the three assump-
tions, must satisfy a Bell inequality in the form of Eq. (54), up
to minor statistical fluctuations of the order of 1=

ffiffiffiffi
N

p
. Note

that the Bell-type argument presented above avoids any ex-
plicit introduction of hidden variables, other than the hypo-
thetical local realistic values.

Some quantum processes involving entangled states vio-
late the inequality.36 For example, the predictions for the
spin-1=2 singlet give correlations for which SBell can acquire

the maximal value 2
ffiffiffi
2

p
allowed by quantum mechanics,

known as the Cirel’son37 bound (Cirel’son, 1980; Landau,
1987). In fact, predictions for any pure, nonfactorisable (i.e.,
not necessarily maximally entangled) two-system state lead
to violations (Gisin and Peres, 1992). This is also the case for
a wide range of mixed states (Horodecki, Horodecki, and
Horodecki, 1995).

Experimental tests of Bell’s inequality: The initial experi-
ments using photon pairs produced in an atomic cascade to
test Bell’s inequalities [Freedman and Clauser (1972);
Aspect, Dalibard, and Roger (1982); Aspect, Grangier, and
Roger (1982); see also Clauser and Shimony (1978) for more
experiments], falsified Bell’s inequalities, and thus chal-
lenged the local realistic world view. However, this falsifica-
tion was up to certain loopholes, which are due to
experimental imperfections, and still allow one to build local
realistic models for the measurement results obtained in the
experiments.

The locality loophole is present in experiments which do
not have independent, i.e., space-time separated measurement
settings, can be guaranteed only with random and fast switch-
ing of the local measurement settings. In such a case, one of
the assumptions behind Bell’s inequalities, full certainty of
the independence of Alice’s results on Bob’s settings, or vice
versa, is not enforced. The efficiency loophole emerges due to
low collection and detection efficiency of the particles. For an
efficiency lower than about 83%, one can show that one
cannot derive a (generalized) CHSH-type inequality that is
violated by quantum predictions; see, for example, Garg and
Mermin (1987) and Eberhard (1993) managed to lower this
threshold to 67% by effectively, employing, the Clauser and
Horne (1974) inequalities, albeit for nonmaximally entangled
states only.38 In the analysis of experiments with efficiency
loophole, many authors usually use the so-called fair sam-
pling assumption, which states that one expects that the fact

whether a detector registers a particle or not is statistically

independent of all other processes in the experiment.39 Of

course, such an assumption is highly questionable. One can

find many ad hoc local realistic models that violate it; see,

e.g., Cabello and Santos (1996). For example, for qubits one

could assign three possible local outcomes: þ=� 1 and no

count, or in the case of polarization experiments, one could

expect the response of the detection systems might depend on
the photon’s polarization, even without turning to hidden-

variable approaches. In case of some experiments, especially

the early cascade ones, the polarization state of the photons

depends on the direction of emission, etc.
The famous Aspect et al. experiments were the pioneering

attempt to address the locality loophole. To close the locality

loophole, one must freely and rapidly choose the directions of

local analyzers and register the particles in such a way that it

is impossible for any information about the setting and the

detection to travel via any (possibly unknown) causal channel

to the other observer before he or she, in turn, chooses the

setting and finishes the measurement. Thus, the selection of

analyzer directions has to be completely unpredictable, which
necessitates a (quantum) physical random number generator.

A numerical pseudorandom number generator would not do:

its state at any time is predetermined. Furthermore, to achieve

a complete independence of both observers, one should avoid

any common context, as would be a conventional use of

coincidence circuits. Individual events should be registered

on both sides completely independently, and compared only

long after the measurements are finished. This requires inde-

pendent and highly accurate time bases on both sides.
Aspect’s experiments were the first to use fast but periodic

switching of the local polarization analyzers. Although the

settings were quickly varying, they were derived from inde-

pendent function generators with certain correlation times
and thus not fully random as it is assumed in the derivation

of Bell inequalities. This independent randomness was ex-

perimentally realized by Weihs et al. (1998). The observers

‘‘Alice’’ and ‘‘Bob’’ were spatially separated by 400 m across

the Innsbruck University science campus. The individual

measurements were finished within a time much shorter

than 1:3 �s, which is the distance of the two observation

stations in light seconds. The actual orientation for local

polarization analysis was determined independently by a

quantum physical random number generator (Jennewein

et al., 2000). The employed generator had a light-emitting

diode illuminating a BS whose two outputs were monitored

by a pair of photomultipliers. Upon receiving a pulse from

one photomultiplier a 0 was produced, whereas the pulse
coming form the other one was giving a 1. This results in a

set of binary random numbers (Fig. 17). The polarization-

entangled photon pairs were distributed to the observers

through long optical fibers. A typical observed value of

SBell, the right side of inequality (54), was as high as 2:73�
0:02. In 10 s 14 700 coincidence events were collected. This

36The CHSH inequality was the first experimentally testable Bell

inequality. The original Bell (1964) inequality, since it assumes

perfect correlations of the singlet state, cannot be tested experimen-

tally, as in such a case correlations are never perfect. A general-

ization of the original inequality to the imperfect case leads to the

CHSH inequality. Nevertheless, the original inequality clearly

reveals the conflict between local realism and quantum theory.
37In the meantime, the transliteration of this surname was changed

to Tsirelson.
38All of these results are derived under the usual assumption that

efficiency of all detectors is independent of the locally measured

observable, and equal for all detectors. E.g., a local model explain-

ing correlations of a maximally entangled state in which detector

efficiency is dependent on the measured observables was proposed

by Selleri and Zeilinger (1988). For a more recent discussion of the

efficiency loophole, see, e.g., Vertesi, Pironio, and Brunner (2010).

39When discussing experiments which were not directly aimed at

closing the detection loophole, we shall give an analysis of the

experimental data which always would tacitly assume the fair

sampling assumption. However, we shall not repeat this statement

ad nauseam. This pertains also to the locality loophole.
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corresponds to a violation of the local realistic threshold of 2

by 30 standard deviations. Still the experiment had a detec-

tion efficiency well below the required minimum allowing

one to avoid the fair sampling assumption.
Meanwhile, there were many ideas to close the detection

loophole; see, e.g., Eberhard (1993) and Kwiat et al. (1994).

It was first closed in an ion-trap experiment by Rowe et al.

(2001) utilizing the nearly perfect detection efficiency of

fluorescence detection of single ions. However, as the two

entangled ions were separated by approximately 3 �m, the

locality loophole was left widely open. A recent experiment

by Matsukevich et al. (2008) involved two separate ion traps

(1 m distance) and an entanglement-swapping procedure

involving the photons emitted by the ions. The detection

loophole was again perfectly closed. This method gives

hope for a future experiment simultaneously closing both

loopholes (Simon and Irvine, 2003; Rosenfeld et al.,

2009). Violation of Bell’s inequality was also demonstrated

using Josephson phase qubits with deterministic entangled-

state preparation and single-shot readout (Ansmann et al.,

2009).
Other aspects of entanglement have been demonstrated

distributing entanglement over long distances. For example,

over 10.5 km free space in Hefei by Peng et al. (2005), or

in an asymmetric arrangement, in the case of which one

photon is sent over 144 km between the islands of

La Palma and Teneriffe (Ursin et al., 2007). Bell experi-

ments were also performed using fiber-based entangled-

photon sources, from which two photons were distributed

over a distance of more than 10 km apart; see, e.g., Tittel

et al. (1998) and Zbinden et al. (2001). The later experi-

ment and the subsequent ones (Stefanov et al., 2002, 2003)

were done with moving reference frames. These Bell tests

in ‘‘relativistic configurations’’ stress the oddness of quan-
tum correlations.40

B. GHZ theorem

1. Impossibility of deriving realism via perfect quantum

correlations and locality

If there are N > 2 maximally entangled quantum systems
(qubits), and if measurements on them are performed in N
mutually spatially separated regions by N independent ob-
servers, the correlations in such an experiment violate bounds
imposed by local realism much stronger than in the two-
particle case. More remarkably, instead of purely statistical
reasoning for deriving Bell’s inequality, one can fully follow
the spirit of the EPR paper, and first try to define ‘‘elements of
reality’’ based on specific perfect correlations of the en-
tangled state. In a further step, one then can show contra-
dicting predictions between local realistic theories and
quantum mechanics with precisely those quantum predictions
which were used to define the ‘‘elements of reality’’
(Greenberger, Horne, and Zeilinger, 1989).

Take the GHZ experiment, Fig. 2. Assume that a click at
the local detector Dx1 , where x ¼ d, e, f is described as a

result of value þ1, whereas clicks at Dx2 are ascribed �1.

According to the quantum probabilities (20), the average
values of the product of local results reads

Eð�a;�b; �cÞ ¼
X

i;j;k¼1;2

ð�1Þiþjþkþ1pdiejfk ð�a;�b;�cÞ

¼ sinð�A þ�B þ�cÞ: (55)

Here pdiejfk ð� � � �Þ is the probability for a detection of one

photon by detectors di, ej, and fk, given the phase settings

�a � � � . Therefore, if �a þ�b þ�c ¼ �=2þ k� (where k
is an integer), one has perfect correlations and perfect pre-
dictability of the common measurement result. For instance,
for �a ¼ �=2, �b ¼ 0, and �c ¼ 0, whatever may be the
results of local measurements of the observables for, say, the
particles belonging to the nth triple represented by the GHZ
quantum state, they have to satisfy

Anð�=2ÞBnð0ÞCnð0Þ ¼ 1; (56)

where Xnð�Þ (X ¼ A, B, or C) is the value of a local
measurement, by Alice, Bob, and Cecil, respectively, that
would have been obtained for the nth particle triple, if the
setting of the measuring device is �. Locality assumption
forces one to assume that Xnð�Þ depends solely on the local
phase. Equation (56) indicates that we can predict with

FIG. 17 (color). One of the two observation stations. A random

number generator is driving the electrooptic modulator. Silicon

avalanche photodiodes are used as detectors. A ‘‘time tag’’ is stored

for each detected photon together with the corresponding random

number 0 or 1 and the code for the detector ‘‘þ’’ or ‘‘�’’

corresponding to the two outputs of the polarizer. From Weihs

et al., 1998.

40As in a properly performed Bell experiment, the measurement

events have to be spatially separated, in the relativistic meaning of

this word (the space-time interval between them has to be of the

spatial type), they are simultaneous in a certain reference frame.

However, if the detectors move with respect to each other and the

source, the detection events cease to be simultaneous in the rest

reference frames of respective detectors, etc. One can have various

temporal sequences. The experiments showed that even with mov-

ing detectors the expected quantum correlations occur.
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certainty the result of measuring the observable pertaining to
one of the particles (say, C) by choosing to measure suitable
observables for the other two. Hence, in a local realistic
model the values Xnð�Þ for the angles specified in the equal-
ity are EPR’s elements of reality.

Similarly, when measuring different settings, according to
Eq. (55), one would obtain

Anð0ÞBnð0ÞCnð�=2Þ ¼ 1; (57)

Anð0ÞBnð�=2ÞCnð0Þ ¼ 1: (58)

Now, in a local realistic model, from these results we
can deduce a further correlation by simply multiplying
Eqs. (56)–(58). Since Xnð0Þ2 ¼ þ1, regardless of whether
Xnð0Þ ¼ þ1 or �1, we obtain

Anð�=2ÞBnð�=2ÞCnð�=2Þ ¼ 1: (59)

This, however, is in a full contradiction with the quantum
mechanical prediction obtained from Eq. (55) which reads

Anð�=2ÞBnð�=2ÞCnð�=2Þ ¼ �1: (60)

Thus, the EPR elements of reality program breaks down,
because it leads to a 1 ¼ �1 contradiction. Introduction of
EPRs elements of reality leads to a prediction concerning one
of the perfect correlations, Eq. (59), which is opposite with
respect to the quantum prediction. We have a ‘‘Bell theorem
without inequalities’’ (Greenberger et al., 1990), which
destroys any hopes to derive realism from locality and perfect
correlations of the EPR type, as a necessary condition for
any reasoning to be logically valid is that it does not lead
to a 1 ¼ �1 contradiction.

Multiparticle Bell inequalities–In a laboratory one cannot
expect perfect correlations, and even if they were possible,
any necessarily finite sample would be endowed with a finite,
nonzero uncertainty. Thus, any test of local realism based on
the GHZ correlations has to resort to some Bell-type inequal-
ities. Series of such inequalities were discovered by Mermin
(1990b), Ardehali (1992), and Belinskii and Klyshko (1993).
To get the full set of such inequalities, for correlation func-
tions involving the product of the result of all parties, it is
enough to generalize Eq. (52) to the situation in question. For
example, extending Eq. (51) for three partners one hasX

s1;s2;s3¼�1

Sðs1; s2; s3ÞðAn
1 þ s1A

n
2ÞðBn

1 þ s2B
n
2Þ


 ðCn
1 þ s3C

n
2Þ ¼ �8: (61)

This leads to the following Bell inequality (Weinfurter and
Żukowski, 2001; Werner and Wolf, 2001b):X

s1;s2;s3¼�1

j X
k;l;m¼1;2

s1s2s3EðAk; Bl; CmÞj � 8; (62)

which is the necessary and sufficient condition for correlation
functions EðAk; Bl; CmÞ to have a local realistic model [for
proofs, see Werner and Wolf (2001b) and Żukowski and
Brukner (2002)]. The reasoning is trivially generalizable to

an arbitrary number of parties.41 The noise resistance42 of
violations of such inequalities by N-qubit GHZ states is
growing exponentially with N. This is an important fact,
because usually one expects noise to increase with the num-
ber of photons involved in an interferometric experiment (due
to the increasing complications and alignment problems).
Thus, nonclassicality of the GHZ correlations can be signifi-
cant even for many particles (Mermin, 1990b; Roy and Singh,
1991; Klyshko, 1993; Żukowski, 1993; Gisin and Bechmann-
Pasquinucci, 1998).

2. GHZ theorem for laboratory measurement

The first laboratory test of the GHZ-type paradox was done
by Pan et al. (2000). The experiment used a three-photon
GHZ state

j�i ¼ 1ffiffiffi
2

p ðjHi1jHi2jHi3 þ jVi1jVi2jVi3Þ: (63)

The data obtained in the form of the (necessarily imperfect)
GHZ correlations were shown to violate local realism.

The GHZ state (63) satisfies the following eigen equations:

x̂1ŷ2ŷ3j�i ¼ �j�i; ŷ1x̂2ŷ3j�i ¼ �j�i;
ŷ1ŷ2x̂3j�i ¼ �j�i; x̂1x̂2x̂3j�i ¼ j�i; (64)

where x̂ denotes the observable discriminating between j45�i
and j135�i polarizations, whereas ŷ discriminates between
left and right circular polarizations. In both cases, the as-
cribed eigenvalues are 1 and �1, respectively. With these
settings, one can get a GHZ paradox falsifying the elements
of reality of the form described in the previous section.

Demonstration of the conflict between local realism and
quantum mechanics for GHZ entanglement consists of four
experiments. In the experiment by Pan et al. (2000), the
measured values for x̂1ŷ2ŷ3, ŷ1x̂2ŷ3, and ŷ1ŷ2x̂3 followed the
values predicted by quantum physics in a fraction of 0:85�
0:04 of all cases. The fourth experiment, measuring x̂1x̂2x̂3,
was also performed, and yielded results as shown in Fig. 18.
The data again agree with quantum mechanics for the same
fraction of events. The results are in a clear disagreement with
a prediction range that can be made with the data of the three
first measurements using a local realistic model.

The experimental results confirmed the quantum predic-
tions, within an experimental uncertainty. The obtained
average visibility43 of ð71� 4Þ% clearly surpasses the
threshold of 50%, necessary for a violation of local realism
in three-particle GHZ experiments (Mermin, 1990b; Roy and

41As a matter of fact, this single inequality either implies all earlier

derived tight inequalities, e.g., those of Mermin (1990b).
42As indicated by the decreasing threshold visibility for mixed

states of the form ð1� VÞ 1
2N
Î þ VjGHZNihGHZNj, which is suffi-

cient to violate the inequalities.
43The imperfect visibilities, which are typical in multiphoton

experiments, are mainly caused by two reasons (see also

Sec. IV.D.1). First, higher-order emissions of entangled photons

give rise to the undesired components in the multiphoton states.

Second, the partial distinguishability of photons from different

emissions or sources causes some degree of incoherence. There

may be also alignment problems.
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Singh, 1991; Ryff, 1997; Żukowski and Kaszlikowski,
1997).

Four-photon entanglement was later demonstrated by Pan
et al. (2001) and Eibl et al. (2003), and used for a corre-
sponding multiphoton falsification of local realism [see also
Zhao et al. (2003)].

3. Two-observer GHZ-like correlations

Interestingly, the GHZ reasoning can be reduced to a two-
party (thus two spacelike separated regions) case while its all-
versus-nothing feature is still retained. One option is to
encode three two-state quantum systems in distinct degrees
of freedom of only two photons. Thereby, a GHZ-type argu-
ment, now also necessarily involving noncontextuality,44 can
be applied in this two-particle scheme (Żukowski, 1991;
Michler, Weinfurter, and Żukowski, 2000). The second option
is to find suitable EPR elements of reality in the two-particle
case, and to show that they are internally inconsistent.
Such an approach has been taken by Bernstein et al.
(1993) for a (spinless) two-particle interferometer. Later, after

considerable debate (Cabello, 2001a; Cabello, 2001b;
Lvovsky, 2002; Cabello, 2003; Chen et al., 2003;
Marinatto, 2003), it was shown that an all-versus-nothing
violation of local realism can be shown for two-particle
four-dimensional entangled systems. In this new refutation
of local realism, one recovers EPR’s original situation of two-
party perfect correlations, but with much less complexity. This
becomes possible with a new approach for defining elements
of reality, which nevertheless strictly follows the EPR criteria.

A third protocol of the two-observer GHZ-like theorem
uses a two-photon hyperentanglement (Chen et al., 2003).
Because of the specific properties of the hyperentanglement,
nine variables for each party can be regarded as simultaneous
EPR elements of reality. The nine variables can be arranged
in three groups of three, and the three variables of each group
can be measured by one and the same apparatus. This elim-
inates the necessity of an argument based on noncontextuality
as it is not necessary to assume any of these variables to be
independent of local experimental context. Experimental
demonstrations of such a protocol were done by Cinelli
et al. (2005) and Yang et al. (2005)45 using a two-photon
hyperentangled state in Eq. (40) (for hyperentanglement see
Sec. IV.B.2).

4. Hardy’s paradoxes

Hardy’s thought experiment (Hardy, 1993) provides an
alternative way to demonstrate a violation of local realism
without inequalities for two spin-half particles, or equiva-
lently for polarizations of two photons. A crucial distinguish-
ing feature in Hardy’s thought experiment is that the two
particles are nonmaximally entangled. In such a case, in the
ideal situation, for a specific set of measurements quantum
mechanics predicts that approximately 9% of the pairs of
photons must give measurement results in a form of coinci-
dence counts absolutely not allowed by local realism.46 The
original proposal was experimentally demonstrated by
Torgerson et al. (1995) and White et al. (1999); as in the
GHZ-type experiments, the results of the experiments were
fed into specific inequalities, specially derived to take into
account experimental imperfections (under the fair sampling
assumption, of course). Their violation indicates underlying
Hardy’s contradiction between local realism and quantum
mechanics. Hardy’s scheme was later scaled up, so that
ð50� hÞ% of photon pairs lead to coincidence events pro-
hibited by local realism (where h is any small finite number).
The effect was demonstrated in an experiment by Boschi
et al. (1997).

Another proposal suggested by Hardy (1992) was imple-
mented using a pair of Mach-Zehnder interferometers that
couple via the bosonic photon bunching effect at a beam
splitter (Irvine et al., 2005). The original idea was based
on a double Mach-Zehnder interferometer that involved
particles that annihilate each other (say, electron and

FIG. 18. (a) Predictions of quantum mechanics and (b) of local

realism, and (c) observed results for the final x̂1x̂2x̂3 measurement in

the first GHZ-type experiment. H0 and V0 denote here diagonal and
antidiagonal linear polarizations. From Pan et al., 2000.

44See Sec. V.D for a discussion of this concept.

45Unfortunately, the experimental configuration in the former

experiment did not eliminate the necessity of the noncontextuality

assumption. Nevertheless, upon a permutation in the setup one

could get an arrangement avoiding this problem.
46Note that in the GHZ scenario, one has situations in which 100%

coincidences are not allowed by local realism.
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positron). The right internal path of the electron interferome-

ter is at some place partially overlapping with the left internal

path of the positron interferometer. The individual interfer-

ometers are tuned such that if only one of the particles is fed

to its interferometer, it would always exit by the left exit port.

However, if both electron and positron are simultaneously fed

into their interferometers, there is a nonzero probability

amplitude of their annihilation. This is related to both parti-

cles being in the overlapping arms of the interferometers

(within the story, in such a case the annihilation is assumed

to happen with probability 1). The two particles act on each

other like (two) bombs of the Elitzur and Vaidman (1993)

paradox.47 Thus, if one treats in a realistic way the presence,

or the absence, of the particles in the internal paths of the

interferometers, they can never be registered both in the right

exit ports of their interferometers, because this would mean

for each of them that the other particle was traveling via the

overlapping arm. That is, both of them were there, thus

annihilation must occur. Still, quantum prediction gives a

probability of 1=16 of both particles emerging via the right

exit ports. Of course, all that is a gedanken experiment per se.

To formulate a feasible version of it, Irvine et al. resorted to

photons, and a pair of Mach-Zehnder interferometers with

one of their internal mirrors replaced by a shared 50–50 beam

splitter. Instead of annihilation, they relied on the Hong-Ou-

Mandel bunching effect: if two indistinguishable photons

enter the shared beam splitter, such that each enters by a

different input port, they exit randomly via just one port (see

Sec. III.C). Thus, if two photons meet (instead of annihila-

tion) one of the interferometers looses the light traveling

through it, and no detection is possible in its exit ports.

Using a similar realistic reasoning as before, this leads to

the conclusion that no joint detection in the right exit ports of

the two interferometers is possible. The quantum prediction is

different, and the experiment gave results agreeing with it.

C. Refutation of a class of nonlocal realistic theories

Violation of local realism implies that either locality or

realism, or both, cannot provide a foundational basis for

quantum theory (provided the freedom assumption of ran-

domness and independence of setting choices holds). In a

novel approach, Leggett (2003) discussed a broad class of

nonlocal hidden-variable theories, which, based on a very

plausible type of realism, provide an explanation for all

existing Bell-type experiments. Nevertheless, they are in

conflict with quantum predictions as shown theoretically by

Leggett (2003), and experimentally by Gröblacher et al.
(2007). Subsequently, a reformulation enabled one to reduce
the dependence on auxiliary assumptions as shown indepen-
dently by Paterek et al. (2007) and by Branciard et al. (2007)
[see also Romero et al. (2010)].

We now discuss the description of the polarization of
photons within such theories. The following assumptions
are made: (L1) realism, (L2) physical states are statistical
mixtures of subensembles with definite polarizations, and
(L3) local expectation values for polarization measurements
taken for each subensemble obey Malus’ law.

Importantly, locality is not assumed. Measurement out-
comes may depend on whatever the parameters in spacelike
separated regions are. It can be shown that such theories can
explain some important features of entangled states of two
particles: first, by assumption (L3), they do not allow infor-
mation to be transmitted faster than at the speed of light;
second, they are capable to reproduce perfect anticorrela-
tions, a fundamental feature of the Bell singlet state; and
third, they provide a model for all Bell-type experiments in
which the CHSH inequality was violated. Nevertheless, theo-
ries based on assumptions ðL1Þ–ðL3Þ deliver predictions dif-
ferent from the quantum ones for certain other measurement
outcomes.

We now discuss a general mathematical structure of such
models. We concentrate on the description of events at
Alice’s side; events at Bob’s side must follow a similar model.
Assumption (L1) allows an individual binary measurement
outcome A for any possible polarization measurement along
any direction a (that is, whether a single photon is transmitted
or absorbed by a polarizer set at a specific angle) to be a well-
defined function of some set of hidden variables �, and, by
(L2), of a three-dimensional vector48 u. As locality is not
assumed, A can depend on some set of other possibly non-
local parameters � and the remote setting of Bob, b. That is,
the measurement outcome A depends on these five variables
A ¼ Að�;u;a; �;bÞ, and can take values �1 (two distinct
measurement outcomes). According to assumption (L3),
particles with the same u but with different �s and �s build
up subensembles of ‘‘definite polarizations’’ described by a
probability distribution �uð�; �Þ, and the local expectation
value �AðuÞ, obtained by averaging over � and �, ful-
fills Malus’ law, that is, �AðuÞ ¼ R

d�d��uð�;�Þ
Að�;u;a; �;bÞ ¼ u � a. Finally, with assumption (L2), the
measured expectation value for a general physical state is
given by averaging over a distribution FðuÞ of the subensem-
bles, that is, hAi ¼ R

duFðuÞ �AðuÞ. Of course, one introduces
a similar dependence for Bob’s measurement outcomes,
B ¼ Bð�; v;b; �0; aÞ, now depending on Bob’s vector v.

The correlation function of measurement results for a
source emitting well-polarized photons is defined as the
average of the products of the individual measurement out-
comes:

ABðu; vÞ ¼
Z

d�d�d�0�u;vð�;�; �0ÞAð�;u; a; �;bÞ

 Bð�; v;b; �0; aÞ: (65)

47Imagine again a Mach-Zehnder interferometer, tuned in such a

way that all photons emerge via its ‘‘left’’ exit. Just a single photon

enters it. In the meantime, somebody may put an ultrasensitive light

detector into one of the paths, a bomb triggered by light in the

Elizur-Vaidman anecdote. If the bomb is there, then we either have

an explosion, or the photon emerges with equal probability from

both outputs of the interferometer (if the bomb does not register the

photon it must be propagating in the other internal path). In the case

it exits via the ‘‘right’’ exit, we have detected the bomb, using light

(photon), without igniting it. This is often called ‘‘interaction-free

measurement.’’ If there is no bomb, nothing changes, and all

photons emerge via the left exit.

48We use here the Bloch sphere, or spin-1=2-like, parametrization

of polarization states and measurement settings.
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For a general source producing mixtures of polarized pho-
tons, the observable correlations are averaged over a distri-
bution of the polarizations Fðu; vÞ, and the general correlation
function E is given by

E ¼ hABi ¼
Z

dudvFðu; vÞABðu; vÞ: (66)

It is an important trait of this model that there exist sub-
ensembles of definite polarizations (independent of measure-
ments) and that the predictions for the subensembles agree
with Malus’ law. It is clear that other classes of nonlocal
theories, possibly even fully compliant with all quantum
mechanical predictions, might exist that do not have this
property when reproducing entangled states. Such theories
may, for example, include additional communication or di-
mensions. A specific case deserving comment is Bohm’s
theory (Bohm, 1951). There the nonlocal correlations are a
consequence of the nonlocal quantum potential, which exerts
suitable torque on the particles leading to experimental re-
sults compliant with quantum mechanics (Dewdney, Holland,
and Kyprianidis, 1987).

Following Leggett (2003) one can use the following iden-
tity, which holds for any numbers A ¼ �1 and B ¼ �1:

� 1þ jAþ Bj ¼ AB ¼ 1� jA� Bj: (67)

This, plus the above assumptions, implies a Leggett-type
inequality [for details of the derivation see Gröblacher
et al. (2007)] of the following form:

SNLHV 
 jE11ð’Þ þ E23ð0Þj þ jE22ð’Þ þ E23ð0Þj

� 4� 4

�

��������sin
’

2

��������; (68)

where Eklð’Þ is a uniform average of all correlation func-
tions, defined in the plane of ak and bl, with the same relative
angle ’. Inequalities avoiding the averaging were also
derived and tested (Branciard et al., 2007; Paterek et al.,
2007). For the inequality to be applicable, the vectors a1 and
b1 necessarily have to lie in a plane orthogonal to the one
defined by a2 and b2. This contrasts with the CHSH inequal-

ity. Thus, if, as it is experimentally most easy, ~a1, ~a2, and ~b1
correspond to linear polarizations, then ~b2 must correspond to
an elliptical polarization.

Quantum theory violates inequality (68). Consider quan-

tum predictions for the polarization singlet state, jc�iAB ¼
ð1= ffiffiffi

2
p Þ½jHiAjViB � jViAjHiB�. The quantum correlation

function for the local measurements defined by ak and bl

depends only on the relative angles between the vectors:
Ekl ¼ �ak � bl ¼ � cos’. Thus, the left-hand side of in-
equality (68), for quantum predictions, reads j2ðcos’þ 1Þj.
The maximal violation of inequality (68) is for’max ¼ 18:8�:
the bound given by inequality (68) equals 3.792 whereas the
quantum value is 3.893.

The Leggett-type inequality valid for nonlocal realistic
theories of the discussed type was experimentally tested by
Gröblacher et al. (2007). In the experiment a SPDC source of
high-fidelity two-photon entangled states was used, with
visibilities �99:0� 1:2% in the H=V basis, �99:2� 1:6%
in the �45� basis, and �98:9� 1:7% in the R=L basis. At
that time it was the highest reported visibility for a pulsed

SPDC entanglement source, and was well beyond the thresh-
old of 97.4% which is required for testing the Leggett-type
inequality. The observed SNLHV ¼ 3:8521� 0:0227 violates
inequality (68) by 3.2 standard deviations (see the data shown
in Fig. 19). At the same time, measurements gave SBell ¼
2:178� 0:0199, which violates the CHSH inequality by �9
standard deviations. This way, the Gröblacher et al. experi-
ment excluded a broad class of nonlocal hidden-variable
theories.

D. Noncontextual hidden-variable theories

Another class of theorems, which show the drastic differ-
ence between the classical and the quantum, are the no-go
theorems for noncontextual hidden-variable (NCHV) inter-
pretations of quantum mechanics [Specker (1960); Bell
(1966); Kochen and Specker (1967); Mermin, N.D. (1990);
for a survey, see Mermin (1993)]. Such realistic theories
assume that hidden variables fix the values of measurement
results of all possible observables for the given system, and
that such values are independent of the measurement context.
That is, they do not depend on which other observables are
measured together with them.49 It is interesting that already in
the lowest dimension of 3 for which a degenerate observable

FIG. 19 (color online). The experimental violation of Leggett-type

nonlocal realism in Gröblacher et al. (2007). The dashed line shows

the bound of inequality (68) for the particular class of nonlocal

realistic theories. The solid line is the quantum prediction reduced

to fit the experimentally achieved visibility. The experimental data

were taken for various difference angles of localmeasurement settings

(parametrized as on the Poincaré sphere). From Gröblacher et al.,

2007.

49The measurement context is defined by a maximal observable.

An observable is maximal if it has a fully nondegenerate spectrum,

that is for a d dimensional system it is of the form M̂ ¼P
d
i¼1 �ijbiihbij, where jbii are the eigenstates and �i the eigenval-

ues of the observable, which are such that �i � �j for all pairs of

the indices. A degenerate observable D̂ does not satisfy this last

requirement. That is, one has at least one pair of indices, say i ¼ 1,

2, such that �1 ¼ �2. Thus, for our example D̂ ¼ �1

P
i¼1;2jbii


hbij þ
Pd

i¼3 �ijbiihbij. The observable commutes with an infinite set

of different maximal observables. This is due to the fact thatP
i¼1;2jbiihbijÞ ¼

P
i¼1;2jb0iihb0ijÞ, where the primed eigenvectors

are any pair of orthogonal normalized states in the two-dimensional

subspace spanned by the pair jb1i and jb2i.
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can exist (only such observables can be measurable in differ-
ent contexts) noncontextual hidden-variable models of quan-
tum mechanics are impossible (Kochen and Specker, 1967).50

Bell’s theorem is a case of a no-go theorem for NCHV in
which noncontextuality is given ‘‘for free’’ by the locality
assumption. As locality forbids the result on Alice’s side to
depend on the actual observable chosen to be measured by
Bob, etc., the required noncontextuality is enforced by the
relativistic causality. This is very appealing, because relativ-
ity is generally assumed to be a principle setting theory for
causal links. Noncontextuality, without the help from relativ-
istic principles, seems to be a much stronger assumption, as it
is difficult to argue why nature has to obey it.51 Nevertheless,
both NCHV theories and local realistic ones can be reduced
to the assumption of the existence of a joint probability
distribution for noncommuting observables. Note that such
distributions are impossible in the quantum formalism.

We now present an example of a Kochen-Specker type
problem. Recently, Cabello (2009) showed that if nine ob-
servables A, B, C, a, b, c, �, 	, and 
 have predefined
noncontextual outcomes �1, they must satisfy the following
inequality:

S ¼ hABCi þ habci þ h�	
i þ hAa�i
þ hBb	i � hCc
i � 4; (69)

where hABCi denotes the ensemble average of the product of
the three outcomes of measuring the mutually compatible
observables A, B, and C. For any four-dimensional quantum
system, one can find a set of observables for which the
prediction of quantum mechanics is S ¼ 6, irrespectively of
the actual state. This inequality was violated in an experiment
by Amselem et al. (2009), where the chosen observables had
the form

A¼ �ð1Þ
z ; B¼ �ð2Þ

z ; C¼ �ð1Þ
z ��ð2Þ

z ;

a¼ �ð2Þ
x ; b¼ �ð1Þ

x ; c¼ �ð1Þ
x ��ð2Þ

x ;

�¼ �ð1Þ
z ��ð2Þ

x ; 	¼ �ð1Þ
x ��ð2Þ

z ; 
¼ �ð1Þ
y ��ð2Þ

y :

(70)

The above operators �i (i ¼ x, y, z) are the usual Pauli
operators, for two subsystems, 1 and 2. This set has the
following properties (Peres, 2002): all operators have spec-
trum �1, all operators in each row commute, and so do all
operators in each column. However, any two operators be-
longing to different columns and rows do not commute. Thus,
each operator belongs to two different contexts explicitly
displayed in this array. Furthermore, each operator is the
product of the other ones in the column or in the row to
which it belongs, with the sole exception that in the case of
the last column each operator is also such a product but times
�1. Thus, there is no way that these nine operators behave
like real numbers upon multiplication. In other words, if one
ascribes to each of the operators whatever realistic values,
either þ1 or�1, independent of the row or column, one runs

into a contradiction with quantum formalism. The trick used

by Anselem et al. is to treat as subsystem 1 the polarization

degree of freedom of a photon, and as subsystem 2 the path

degree of freedom, as it was the case in Żukowski (1991),

Michler, Weinfurter, and Żukowski (2000), and Simon et al.

(2000). This allowed the construction of six elaborate inter-

ferometers equivalent to measurements of all the terms in the

inequality (69). The observed value of the left-hand side of

inequality (69) was for all 20 tested states close to 5.45, with

the highest measurement error at 0.0032. After averaging over

all states the standard deviation was just 0.0006, thus the

violation of the inequality was as high as by 655 standard

deviations. The discrepancy between the ideal quantum value

6 was due to imperfections in the complicated interferometers

(note that each one had eight exit ports), and the effective

observables were slightly deviating from the ideal ones con-

sidered in the theoretical reasoning of Cabello. Most recently,

a proposal by Klyachko et al. (2008) for a single qutrit

contextuality experiment involving only six different mea-

surements was experimentally realized for photons prepared

in superposition of three modes (Lapkiewicz et al., 2011).

VI. QUANTUM COMMUNICATION

Quantum communication ultimately aims at absolute se-

curity and faithful transfer of information, classical or quan-

tum. Photons are the fastest information carrier, and due to

their very weak coupling to the environment are an obvious

choice for quantum communication, especially for long dis-

tances. Hence, the ability of manipulating the quantum fea-

tures (such as coherence and entanglement) of photons is a

precious resource.
In this section, we review several breakthroughs in the field

of quantum communication52: By exploiting entanglement

one can efficiently encode classical messages (Bennett and

Wiesner, 1992; Sec. VI.A), transfer quantum information to a

remote location (Bennett et al., 1993; Sec. VI.B), entangle

two remote particles that have no common past (Żukowski,

et al., 1993; Sec. VI.C), and purify a large ensemble in a less

entangled states into a smaller ensemble with higher entan-

glement (Bennett et al., 1996; Deutsch et al., 1996; Gisin,

1996; Horodecki, Horodecki, and Horodecki, 1996; Pan,

Simon, Brukner, and Zeilinger, 2001; Sec. VI.D).
Needless to say, one of the ultimate dreams is long-

distance or even global (103–104 km) quantum communi-

cation. As a combination of the ideas of entanglement

purification and swapping, the quantum repeater protocol

(Briegel et al., 1998, see Sec. VI.F) is an efficient method

for beating decoherence and photon losses in attempts to

create long-distance high-quality entanglement.
In Sec. VI.E, we discuss steps on the road toward satellite-

based quantum communication and its first step, i.e., free-

space distribution of entangled-photon pairs over a distance

of 10 km achieved in 2005 (Peng et al., 2005; Resch et al.,

2005) and, more recently, over 144 km (Ursin et al., 2007;

Fedrizzi et al., 2009).

50For dimension 2, a degenerate observable is just a constant.
51However, please note that expectation values of all quantum

observables are noncontextual.

52We exclude quantum cryptography, which has been extensively

reviewed by Gisin et al. (2002).
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A. Quantum dense coding

One can encode two bits of classical information with two

qubits in such a way that each qubit carries a single bit. To

this end, in the case of two qubits represented by polarization

states, one could use states HH, HV, VH, and VV. The idea
of quantum dense coding introduced by Bennett and Wiesner

(1992) is that, by manipulating only one of the two particles

in a Bell state, one can also encode two bits of information.
The procedure runs as follows:
Step 1: Sharing maximal entanglement. A maximally en-

tangled qubit pair (say, in the state jcþiAB) is shared by Alice
and Bob. They agree in advance that jc�iAB, j��iAB,
j�þiAB, and jcþiAB represent the binary numbers 00, 01,

10, and 11, respectively.
Step 2: Coding of the message. According to the value Bob

wants to transmit to Alice, he performs one out of four

possible unitary transformations (identity operation Î, �x,

�y, and �z) on his qubit B alone. The three nonidentity

operations transform, in an one-to-one way, the original state

jcþiAB, respectively, into j�þiAB, j��iAB, and jc�iAB.
Once this is done, Bob sends his qubit to Alice. Note that

this possibility of transforming any of the four basis states to
any other by only manipulating one of the two qubits holds

only for the maximally entangled states. For product (and

classical) states it is always necessary to have control over

both qubits (bits) to encode two bits in four distinguishable

states.
Step 3: Decoding of the message. Upon reception, Alice

performs a Bell-state measurement, distinguishing between

the four code states and thus allowing her to read out both bits

of information. The quantum dense coding doubles the infor-

mation capacity of the transmission channel: what is actually

sent is only one qubit. This more efficient way of coding

information at first glance seems to be at odds with Holevo
(1973), which states that maximally one bit can be encoded

on a single qubit. Entanglement, a property of pairs of qubits,

allows one to circumvent this theorem and to encode infor-

mation entirely in the relative properties of the pair, i.e., in

their correlations.
The first experimental realization of quantum dense coding

was reported by Mattle et al. (1996). The experimental setup
is shown in Fig. 20. The preparation of the polarization-

entangled photon pairs, the single-qubit operations at Bob’s

station, and Alice’s Bell-state analyzer can all be done with

the SPDC and linear-optical techniques presented in the

previous sections. In the Innsbruck experiment, each of the

two jc�iAB states could be distinguished, and they could be
distinguished from j��iAB. However, with interferometric

Bell-state analysis, there was no possibility to tell which of

the states �� caused the given detection event. Thus, three

different messages could be operationally encoded by ma-

nipulating a single qubit only.53 Thus, an increase of channel

capacity to log23 ’ 1:58 bits was possible, the highest value

achievable using linear optics and classical communications;
see Lütkenhaus, Calsamiglia, and Suominen (1999) and

Vaidman and Yoran (1999). However, the observed

signal-to-noise ratio reduced the actual channel capacity to
on average 1.13 bit for the cases of successful transfers.
Nevertheless, the classical and Holevo values of 1 were
breached.

Schuck et al. (2006) realized a complete linear-optical
Bell-state analyzer which is able to distinguish all four Bell
states, provided the initial pair is entangled in two degrees of
freedom (hyperentangled), in this case polarization entangle-
ment plus the intrinsic time-energy correlation of SPDC
photons (Kwiat and Weinfurter, 1998). With this ability, the
dense coding protocol was implemented for all four Bell
states in the polarization degree of freedom, achieving an
overall channel capacity of 1.18(3) bits per photon. Later
developments were using the observation that with hyper-
entanglement in at least two degrees of freedom four Bell
states in one of the degrees of freedom can be distinguished
by local measurements (Walborn, Pádua, and Monken, 2003).
Barreiro, Wei, and Kwiat (2008) exploited pairs of photons
simultaneously entangled in spin and orbital angular momen-
tum and achieved a channel capacity of 1.630(6) bits, finally
beating the channel capacity limit of 1.58 bits of the conven-
tional linear-optics implementations.

B. Quantum teleportation

The fascinating possibility of quantum teleportation was
discovered by Bennett et al. (1993). Quantum teleportation is
indeed not only a critical ingredient for many more quantum
communication protocols and for quantum computation
(Gottesman and Chuang, 1999; Knill, Laflamme, and
Milburn, 2001), its experimental realization allows new stud-
ies of the fundamentals of quantum theory.

1. Theory: Qubit teleportation involving an EPR channel and

two bit transfer

The idea of quantum teleportation is illustrated in
Fig. 21(a). Suppose particle 1 carries a qubit in the state
j�i which Alice should teleport to Bob, that is to transfer
it to his particle. Consider pure states and we represent our
discussion in terms of qubits carried by polarization states
of photons. We assume that j�i1 ¼ �jHi1 þ 	jVi1 is the

FIG. 20. Experimental setup for quantum dense coding. From

Mattle et al., 1996.

53The states jc�iAB carried two different values, while j��iAB the

third.
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original polarization state of particle 1. Alice does not

know the state of this qubit. Thus, the trivial idea that

Alice performs certain measurements on j�i1 by which she

would obtain all the information necessary for Bob to

reconstruct the state is ruled out: an experiment on a qubit

can give only one bit of information. This only suffices to

determine which state can be ruled out, but is insufficient

to reconstruct the actual state. To this end, we need

infinitely many measurements on identical copies of the

state. The projection postulate makes it impossible to fully

determine the state of a single quantum system, or, from

another point of view, the no-cloning principle (Wootters

and Zurek, 1982) excludes the possibility to create addi-

tional high-fidelity replicas of the original state.

Still, according to Bennett et al. there is a way out. Suppose
that an ancillary pair of photons 2 and 3 is shared by Alice
and Bob, and that it is in the polarization-entangled state
jc�i23. The entire system, comprising of the unknown state
of particle 1 and the entangled pair, is in a state j�i1jc�i23.
By expanding the state of particles 1 and 2 (they are in the
hand of Alice) in the Bell basis, one gets

j�i1jc�i23 ¼ 1
2½jc�i12ð��jHi3 � 	jVi3Þ þ jcþi12

ð��jHi3 þ 	jVi3Þ þ j��i12ð�jVi3
þ 	jHi3Þ þ j�þi12ð�jVi3 � 	jHi3Þ�:

(71)

Now, if Alice performs a polarization Bell-state measurement
on her two particles then the four possible outcomes are
equally likely, regardless of the unknown state j�i1.
However, once particles 1 and 2 are projected into one of
the four entangled states, the polarization state of particle 3 is
instantaneously projected into one of the four pure states
appearing in Eq. (71). They can be rewritten in the following
form:

� j�i3; ��̂zj�i3; �̂xj�i3; �̂yj�i3; (72)

where the hatted symbols represent Pauli operators, which act
as unitary transformations. Each of these possible resultant
states of Bob’s particle 3 is related in a one-to-one way with
the original state j�i1, which Alice wanted to teleport. In the
case of the first (singlet) outcome, the state of polarization of
particle 3 is the same as the initial state of particle 1 (except
for an irrelevant phase factor), so Bob does not need to do
anything to finish the transfer of the original state of polar-
ization of particle 1. In the other three cases, Bob can apply
one of the unitary transformations of Eq. (72) to convert the
state of particle 3 into the original one of particle 1. However,
all this is possible only if he additionally receives via a
classical communication channel a two-bit information on
the Bell-state measurement result obtained by Alice.54 After
Bob’s unitary operation, the final state of polarization of
particle 3 becomes the new carrier of Alice’s unknown state,
j�i1. The original state of Alice’s particle 1 is irrecoverably
erased by the Bell-state measurement, as the Bell-state mea-
surement does not reveal any information on the properties of
any of the particles prior to the measurement. This is why
quantum teleportation circumvents the no-cloning theorem.

The transfer of quantum information from particle 1 to
particle 3 can happen over arbitrary distances. It is not
necessary for Alice to know where Bob is (although they
do need to share some reference frame information in order
for the protocol to work). Furthermore, as quantum telepor-
tation is a linear operation applied to j�i1, it works for mixed
states, or entangled states, equally well; the initial state j�i1
can be completely unknown not only to Alice but to anyone.
A fascinating case is that j�i1 could even be quantum me-
chanically completely undefined at the time the Bell-state
measurement takes place. This is the case when, as already
remarked by Bennett et al. (1993), particle 1 itself is a

FIG. 21 (color). Experimental quantum teleportation. (a) Principle

of quantum teleportation. Alice has particle 1, whose qubit state she

wants to teleport to Bob. Alice and Bob share an ancillary entangled

pair of qubits carried by particles 2 and 3. Alice performs a Bell-

state measurement jointly on particles 1 and 2. She sends a two-bit

classical information informing Bob about the result of her mea-

surement. Based on this, he performs one of four unitary trans-

formations (U) on his ancillary particle. The transformations are

such that particle 3 ends up in the state identical to the original state

of particle 1. (b) Setup of the Innsbruck teleportation experiment. A

pulse of ultraviolet light passing through a nonlinear crystal creates

an ancillary pair of entangled photons 2 and 3 in a polarization state

jc�i12. The pulse is reflected, and during its second passage

through the crystal another pair of photons can be created. One of

them plays the role of particle 1. The other one serves as a trigger

indicating that photon 1 is under way. Alice looks for coincidences

after the BS at which photons 1 and 2 are superposed. Upon

receiving a classical information indicating that Alice obtained a

coincidence count in detectors f1 and f2, which implies a collapse

into jc�i12, Bob knows that his photon 3 is in the original

polarization state of photon 1. He can check whether this is indeed

so by a polarization analysis with a PBS and the detectors d1 and d2

behind it. From Bouwmeester et al., 1997.

54Note that Alice and Bob before the teleportation must agree on

choice of the basis of her Bell-state measurement.
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member of an entangled pair, ultimately leading to entangle-

ment swapping (Żukowski, et al., 1993; Bose, Vedral, and

Knight, 1998). Quantum teleportation does not violate cau-

sality: a transfer of two bits of classical information is

absolutely necessary to conclude the process.
Generally speaking, the basic criteria to achieve a bona fide

qubit55 teleportation are (1) the experimental scheme without

any changes is capable of teleporting any pure or mixed qubit

state, this includes the possibility of entanglement swapping;

(2) a fidelity better than the classical one of 2=3, see Massar

(1995) can be achieved; (3) at least in principle, the scheme

should be extendable to long distances; and (4) the state to be

teleported should be of external nature, that is, it is carried by

a particle which plays no role in the preparation of the

quantum part of the teleportation channel (essentially the

EPR pair). This in principle allows one to teleport any

unknown qubit state delivered by some outside party.

2. Experimental quantum teleportation

Figure 21(b) is a schematic of the Innsbruck experimental

setup of Bouwmeester et al. (1997).56 A pulse of ultraviolet

laser passing back and forth through a BBO crystal (type II)

creates two polarization-entangled EPR pairs. The pair used

as the ancillary one, labeled here as photons 2 and 3, is

distributed to Alice and Bob. Photon 1 of the other pair passes

a polarizer which prepares it in the initial state to be tele-

ported, and photon 4 is a trigger indicating that photon 1 is

under way. After photon 1 is given to Alice, she combines it

with her photon 2 and performs the Bell-state analysis.
To demonstrate that teleportation is allowed by Nature, it is

sufficient to identify one of the four Bell states. Bell-state

measurement on photons 1 and 2 is done with the use of a BS.

As explained in Sec. III.E.1, if there is a coincidence detec-

tion between the two outputs of the beam splitter, then the

photons are projected to the antisymmetric state jc�i12. The
Bell-state analysis relies on the interference of two indepen-

dently created photons. Therefore, one has to guarantee that

behind the BS the information which photon came from

which source is completely erased. This was done using the

methods described in Sec. IV.D.1 (Żukowski, Zeilinger, and

Weinfurter, 1995). In the experiment, the UV-pump pulse had

a duration of 200 fs. By using narrow bandwidth filters

(�� ¼ 4 nm) in front of the detectors registering photons 1

and 2, a coherence time of about 500 fs could be obtained,

which was sufficiently longer than the pump pulse duration,

so that one could not infer anymore during which passage

through the crystal which of the two photons was created.

This generated high visibility of the multiphoton interference.

Furthermore, single-mode fiber couplers acting as spatial

filters were used to guarantee good mode overlap of the

detected photons.
To experimentally demonstrate that an arbitrary unknown

quantum state can be teleported, it is sufficient to show that

the scheme works for all mutually orthogonal axes of the

polarization (Poincaré) sphere. The experimental results for
teleportation of photon 1 polarized under þ45� (� 45�) is
shown in the left (right) column of Fig. 22. Bouwmeester
et al. demonstrated that quantum teleportation works for
orthogonal states jHi and jVi as well as for jHi þ jVi, jHi �
jVi, and jHi þ ijVi. Thus, teleportation was tested for an
exhaustive set of mutually unbiased (in other words, fully
complementary) bases of polarization (qubit) states. The
average fidelities measured for these states were 0.81(1),
well above the 2=3 threshold.

3. Teleportation onto freely flying photons

Most applications of quantum teleportation include the
subsequent manipulation of the teleported photon. Thus, a
freely propagating output state, which is teleported with
high fidelity, is strongly desired. In the Innsbruck experi-
ment, however, owing to the probabilistic nature of SPDC,
there was also the chance to register a pf1f2 coincidence
[Fig. 21(b)], seemingly indicating the preparation of a
single photon and the identification of a jc�i12, which could
occur unfortunately due to an unwanted event of two-pair
emission during the second passage of the UV pulse, with no
emission in the first passage. In such a case, no photon
propagates to Bob. Thus, in the experiment, a successful
teleportation act had to be confirmed by a detection event at
Bob’s side. Because of this fact, Braunstein and Kimble
(1998) classified the experiment as involving a ‘‘postselec-
tion,’’ and implied that the fidelity of the process therefore
was not sufficient. Bouwmeester et al. (1998) pointed out
that the situation should be interpreted as reducing the

FIG. 22. The measured threefold coincidence rates at d2f1f2

(þ 45�) and d1f1f2 (� 45�) for two cases of the state to be

teleported being polarized under þ45� (a) and (b) or �45� (c)

and (d), respectively. The coincidence rates are plotted as a function

of the delay (in �m) between the arrival of photon 1 and 2 at Alice’s

BS [see Fig. 21(b)]. The threefold coincidence rates are plotted after

subtracting the spurious threefold background contribution. The

data, together with similar results for other polarizations, constitute

a positive result of a test for teleportation of an arbitrary state. From

Bouwmeester et al., 1997.

55For a higher dimensional system this set of conditions has an

extension.
56An operational blueprint for such an experiment is first put

forward in Żukowski, et al. (1993).
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efficiency of teleportation rather than its quality. Possible
solutions (Braunstein and Kimble, 1998; Kok and
Braunstein, 2000) could include the discrimination of one-
photon and two-photon events at detector p [Fig. 21(b)], a
quantum nondemolition measurement of the photon number
in mode 3. It should be noted that if one uses a single-photon
source or entangled pairs from a single quantum emitter,
e.g., from a quantum dot [cf. Akopian et al. (2006) and
Stevenson et al. (2006)], one in principle does not need to
worry about the double pair emission of SPDC at least up to
the antibunching quality of the source. However, due to the
lack of appropriate technology, such a scheme has not been
thus far realized.

In the experiment of Pan, Gasparoni, Aspelmeyer, et al.
(2003) such problems were basically removed. The scheme
was such that a coincident registration of photons at the Bell
measurement station was heralding that with a high proba-
bility one has a propagating photon carrying the teleported
state; see Fig. 21(b). Such a process was called ‘‘teleportation
into freely propagating photons.’’ The basic idea of this
experimental method is that the entangled ancillary pair
was provided much more frequently than the photon to be
teleported [a similar idea was also used in the teleportation
experiment using time-bin entanglement carried out by
Marcikic et al. (2003)]. Thus, when a qubit which was to
be teleported arrived, the teleportation machinery was almost
always ready. Technically, the main idea was to reduce the
number of unwanted f1-f2 coincidence counts. This was
accomplished by attenuating the beam 1 by a factor of 
,
while leaving the intensity in modes 2–3 unchanged. With
such an arrangement, a threefold coincidence f1-f2-p occurs
with probability 
p2 for a successful teleportation (p is the
probability of having a single pair creation during a SPDC
process). With a significantly lower probability ð
pÞ2 one has
spurious coincidences without a photon at Bob’s side. Thus,
for a sufficiently low 
 it is not necessary to actually detect
photon 3 to be certain that teleportation occurred. Photon 3
gives us a freely propagating beam of teleported qubits.

To demonstrate a nonconditional teleportation, a series of
neutral filters were inserted in mode 1, showing that the
probability of a successful teleportation conditioned on an
f1-f2-p threefold coincidence increases with decreasing filter
transmission 
 (e.g., the observed probability of success was
0:138� 0:002 for 
 ¼ 0:05). The average fidelity for the
unconditional teleportation for three mutually unbiased bases
was �0:80ð2Þ.

4. Teleportation of a qubit carried by a photon of the ancillary

EPR pair

It is well known that with standard optical devices (passive
linear optics plus detectors) one can measure any observable
associated with a single photon. Thus, if the photon carries
two qubits, any two-qubit measurement can be performed,
including a Bell-state measurement, involving states of two
different photon ‘‘degrees of freedom,’’ e.g., polarization and
path. Thus, as teleportation is from an algebraic point of view
a three-qubit operation, and as there is no easy solution for a
Bell-state measurement for two photons, each carrying a
qubit, one can resort to the following. One can have a scheme
in which a single photon carries two qubits, the qubit to be

teleported and one of the qubits of the EPR maximally
entangled pair. This effectively boils down to an emulation
of the third particle (subsystem) in the process [for such an
emulation in the case of GHZ correlations see Żukowski
(1991) and the experiment Michler, Weinfurter, and
Żukowski (2000)]. However, the fact that one of the particles
is emulated does not allow one to teleport a qubit state of an
independently arriving particle, and it is difficult to imagine
an entanglement swapping process which leaves as a result
two spatially separated qubits, previously independently
emitted, in a maximally entangled state. Thus, the compara-
tive straightforwardness of a Bell-state measurement has a
trade off: the process is not fully versatile, and in some
respects does not mirror the original idea.

In the protocol with the emulation, the quantum state to be
teleported can prepared by performing a unitary operation on
an additional degree of freedom of one of the EPR particles of
the quantum channel. A protocol of this kind has been pro-
posed by Popescu (1995) and was experimentally realized by
Boschi et al. (1998) with a teleportation fidelity of 0.85(1). As
the protocol does not involve interference of photons from
two separate emissions, and as only one EPR pair is manipu-
lated, it avoids many difficulties. Just one SPDC source is
needed, and it works with just a one pair-emission process.

The main idea (see the experimental setup in Fig. 23) is to
use the spatial and polarization degrees of freedom of pho-
tons. One emulates the particle which carries the to be tele-
ported qubit with the use of an additional degree of freedom
of an EPR particle sent to Alice. The first step is to produce
two photons entangled in their directions of propagation (this
will serve as the EPR pair), i.e., entangled in momentum, but
each with a well-defined polarization. Thus, one starts with

1ffiffiffi
2

p ðja1i1ja2i2 þ jb1i1jb2i2ÞjHi1jVi2: (73)

The area indicated as ‘‘EPR source’’ in Fig. 23 shows how
this can be achieved.57 On the way to Alice, photon 1 is
intercepted by the preparer P who changes the polarization
from H to an arbitrary quantum superposition

j�i1 ¼ �jHi1 þ 	jVi1: (74)

This is the quantum state that Alice will transmit to Bob. The
preparer transforms the polarization in both paths a1 and b1 in
the same way. The total state j�i of the two photons after his
or her action is

j�i ¼ 1ffiffiffi
2

p ðja1i1ja2i2 þ jb1i1jb2i2Þj�i1jVi2; (75)

which is a formal analogue of the initial state in Eq. (71).
Next, Alice performs a Bell-state-like measurement on the

two degrees of freedom of her (single) particle. The four
‘‘Bell states’’ are represented by the following correlated
polarization-path states of the photon:

57One first generates a two-photon polarization-entangled state

jcþi12. As a PBS transmits (deflects) H (V) photons, jcþi12 is then
transformed into momentum entanglement in Eq. (73), in which the

photons with label 1 (2) are H (V) polarized.
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j �c�i1 ¼ 1ffiffiffi
2

p ðja1i1jVi1 � jb1i1jHi1Þ;

j ���i1 ¼ 1ffiffiffi
2

p ðja1i1jVi1 � jb1i1jHi1Þ:
(76)

The measurement of photon 1 with respect to this basis can in
principle be achieved with 100% success rate. (A photon
detection by D1, D2, D3, or D4 corresponds directly to a
projection onto one of the four Bell states; see Fig. 23.)

Since, in terms of the four single-photon Bell states, one
has

j�i ¼ 1
2½j �cþi1ð	ja2i2 þ �jb2i2ÞjHi2 þ j �c�i1ð�ja2i2
þ 	jb2i2ÞjHi2 þ j ��þi1ð�ja2i2 � 	jb2i2ÞjHi2
þ j ���i1ð	ja2i2 � �jb2i2ÞjHi2; (77)

the final step of the protocol is that Alice informs Bob which
detector clicked. With this information, Bob can reproduce
the initial polarization state by transforming the momentum
superposition of photon 2 [see Eq. (77)] into a corresponding
polarization state, and applying suitable polarization trans-
formations (following the two bit classical information from
Alice). They represent the unitary corrections necessary to
put his photons into the polarization state that was set by the
preparer at the other EPR photon.

5. Teleportation with various physical systems

Each teleportation experiment done thus far has advan-
tages and disadvantages [for a comparison between various
methods, see Bouwmeester, Pan, Weinfurter, and Zeilinger
(2000)]. Quantum teleportation of continuous-variable states
(Furusawa et al., 1998; Braunstein and van Loock, 2005) has
the advantage that full Bell-state analysis is possible with
linear optics (within the experimental bandwidth). Yet, it is
hard to extend to a long-distance case. The unavoidable
degradation of squeezed-states sets in during longer-distance
transfers. This consequently leads to a rapid lowering of the
quality of squeezed-state entanglement. Quantum teleporta-
tion using nuclear magnetic resonance (Nielsen, Knill, and
Laflamme, 1998) or trapped atoms (Barrett et al., 2004;
Chiaverini et al., 2004) has an obvious advantage in that
the input quantum state can be teleported with an efficiency
of 100%. Yet, it is difficult (if not impossible) to implement it
over long distances.

The Innsbruck teleportation technique with its later im-
provements enables one to aim at a long-distance teleporta-
tion (Marcikic et al., 2003; Ursin et al., 2004) and toward
more complicated schemes (Zhao et al., 2004; Zhang, Q.
et al., 2006). There are other interesting developments.
Marcikic et al. (2003) realized a teleportation of qubits at
telecommunication wavelengths over a fiber length of 2 km.
Adopting Boschi et al.’s protocol, Jin et al. (2010) emulated
free-space quantum teleportation over 16 km.

6. More-involved teleportations

Open-destination quantum teleportation The so-called
open-destination teleportation of Karlsson and Bourennane
(1998) is a protocol allowing to transfer a state to one of several
potential recipients. It can be decided who gets the state even
after the initial to be teleported state j�i is wiped out in a Bell-
state measurement. Such a teleportation scheme was experi-
mentally demonstrated for N ¼ 3 by Zhao et al. (2004).

Figure 24 shows the basic scheme. One uses a quantum
channel in form of a N þ 1 qubit GHZ state, say for N ¼ 3
and for polarization qubits:

j�i2345 ¼ 1ffiffiffi
2

p ðjHi2jHi3jHi4jHi5 þ jVi2jVi3jVi4jVi5Þ;
(78)

and requires, as always, a transfer of two bits of classical
information. The polarization state to be teleported j�i1 ¼
�jHi1 þ 	jVi1 is first encoded into an N-particle coherent
superposition of these GHZ particles. By making a Bell-state
measurement on, say, photons 1 and 2, one projects the
remaining photons into one of four states. For example.,
whenever the result of the Bell-state measurement is a cþ
state, one gets

1ffiffiffi
2

p ð	jHi3jHi4jHi5 þ �jVi3jVi4jVi5Þ: (79)

The state j�i can be read out at any of the three particles, by
performing a suitable projection measurement on N � 1 of
them, here on 2, and a unitary transformation dependent of
the received two bits of data, which is carried out on one
of the GHZ particles.58 Assume that we want to transfer our

FIG. 23. Experimental setup for the ‘‘two qubit at one subsystem

scheme’’ of quantum teleportation. From Boschi et al., 1998.

FIG. 24 (color). The principle of open-destination teleportation.

Adapted from Zhao et al., 2004.

58Either on the remaining one, upon which no measurement is

done, or on any one of them before the N � 1 measurements are

done. Further on, we shall describe the first option, as it is simpler.
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state to particle 5. To this end upon the receipt of information
concerning the result of the Bell-state measurement (BSM),
the partner 5 must perform on his particle a �x transforma-
tion, which interchanges polarizations H and V. The partners

3 and 4 make measurements in the j�i ¼ ðjHi � jViÞ= ffiffiffi
2

p
basis. The recipient of the state is informed about the mea-
surement results.59 Once the recipient gets this additional
information, only if there was just one result associated
with a projection to j�i, he or she performs the sign flipping
�z transformation. The state is recovered.

In contrast to the original teleportation scheme, after the
encoding operation the destination of teleportation is left
open until we perform a polarization measurement (‘‘decod-
ing’’) on two of the remaining three photons. This implies
that, even though photons 3, 4, and 5 are far apart, one can
still choose which particle should finally carry the teleported
state. No prior agreement on the final destination of the
teleportation is necessary.

In the Zhao et al. (2004) experiment, the required four-
photon GHZ entanglement was generated (conditional upon
joint detection) using the techniques of Secs. IV.D.3, and the
pseudo-single photon state to be teleported was in the form of
polarization of an attenuated laser beam containing on aver-
age 0.05 photons per pulse. They detected fivefold coinci-
dence with a rate of 12 per hour and measured fidelities of
teleportation from photon 1 to photon 5 and from photon 1 to
photon 4. For þ=� linear and R=L circular polarization
states, these were �0:80ð4Þ.

Quantum teleportation of composite two-qubit states–
Zhang, Q. et al. (2006) demonstrated a teleportation of
two-qubit states with a six-photon interferometer. Suppose
Alice wants to send an unknown state of a composite system
consisting of qubits 1 and 2:

j�i12 ¼ �jHi1jHi2 þ 	jHi1jVi2 þ 
jVi1jHi2
þ �jVi1jVi2 (80)

to a distant receiver Bob (Fig. 25). Before teleportation, Alice
and Bob share two ancillary entangled-photon pairs (photon
pairs 3–5 and 4–6), which are both prepared in a Bell state,

say, j�þi ¼ ðjHHi þ jVViÞ= ffiffiffi
2

p
. Following the standard tel-

eportation protocol, Alice first teleports the state of photon 1
to photon 5 by consuming the entangled pair 3–5. The result
of this step is j�i52. Similarly, Alice can also teleport the state
of photon 2 to photon 6 by consuming the entangled pair 4–6.
After a successful implementation of the two steps, the
original two-qubit state j�i12 is teleported to qubits 5 and 6
in j�i56.

The teleportation of two-qubit states was realized by tele-
porting two photonic qubits individually. Thus, neither the
two original qubits nor the teleported qubits have to be in the
same place. Such a flexibility is desired in distributed quan-
tum information processing such as quantum telecomputation
and quantum state sharing. The method can be easily gener-
alized to teleport a state of an N-qubit composite system.

Zhang, et al. (2006) managed to obtain 105 photon pairs
per second from each EPR source. As a result, on average 10
six-photon events per minute were registered. The two-qubit
teleportation protocol was implemented for three different
initial states jXiA ¼ jHi1jVi2, jXiB ¼ ðjHi1 þ jVi1ÞðjHi2 �
ijVi2Þ=2, and jXiC ¼ ðjHi1jVi2 � jVi1jHi2Þ=

ffiffiffi
2

p ¼ jc�i.
The measured fidelity for jXiA, jXiB, and jXiC was 0.86(3),
0.75(2), and 0.65(3), respectively. All the measured fidelities
were well beyond the state estimation limit of 0.40 for a two-
qubit system [for a derivation of the limit see Hayashi,
Hashimoto, and Horibe (2005)].

C. Entanglement swapping

1. Theory

Entanglement swapping (Żukowski, et al., 1993) provides
a method of entangling two particles that never interacted or
even have no common past. It can also be interpreted as
teleportation of entanglement, i.e., teleportation of undefined
states of a particle entangled with another subsystem (Bennett
et al., 1993). We mention that one of the original motivations
of entanglement swapping is the so-called ‘‘event-ready de-
tection’’ of the entangled particles, a concept suggested by
Bell (Clauser and Shimony, 1978; Bell, 1987). Entanglement
swapping, together with entanglement purification, is a key
element of the quantum repeater protocol (Briegel et al.,
1998; Dür et al., 1999; see also Sec. VI.F) and opens a way to
efficiently distribute entanglement for massive particles
(Bose, Vedral, and Knight, 1998).

Consider the arrangement of Fig. 26. We have two EPR
sources. Assume that each source emits a pair of entangled
photons in a state, say, jc�i so that the total state of the four
photons is j�i1234 ¼ jc�i12jc�i34. While pairs 1–2 and 3–4
are entangled, there is no entanglement of any of the photons
1 or 2 with any of the photons 3 or 4.

Next, one performs a Bell-state measurement on photons 2
and 3. According to the expansion

j�i1234 ¼ 1
2ðjcþi14jcþi23 � jc�i14jc�i23
� j�þi14j�þi23 þ j��i14j��i23Þ; (81)

FIG. 25 (color). Two-qubit quantum teleportation. Adapted from

Zhang, Q. et al., 2006.

59The basis of measurement is earlier agreed by the partners of the

protocol.
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this measurement always projects photons 1 and 4 also onto

a Bell state. For example, if the result of the Bell-state

measurement of photons 2 and 3 is jc�i, then the resulting

state for photons 1 and 4 is also jc�i. In all cases, photons 1

and 4 emerge entangled despite the fact that they never

interacted in the past. In Fig. 26, entangled particles are

indicated by the same degree of darkness of the lines. Note

that particles 1 and 4 become entangled after the Bell-state

measurement on particles 2 and 3. Without knowing which

result of the BSM measurement occurred, however, the state

of photons 1 and 4 would remain maximally mixed.
Given an ideal arrangement with sources that emit only a

single pair of entangled photons each, the process of entan-

glement swapping also gives a means to generate event-ready

entanglement. Namely, as soon as Alice completes the Bell-

state measurement on particles 2 and 3, we know that pho-

tons 1 and 4 are on their way, ready for detection in an

entangled state. In this way, one has the possibility to perform

an event-ready test of Bell’s inequality (Bell, 1987;

Żukowski, et al., 1993). For a further discussion on event-

ready entanglement, see Sec. VII.B.1.

2. First experimental demonstration

The above scheme was realized using an SPDC source as

shown in Fig. 27, by Pan et al. (1998). As in the Innsbruck

teleportation experiment, only the antisymmetric Bell state

jc�i23 was detectable in this Bell-state measurement. After

such a detection event, signaled by a coincidence behind the

BS, according to the entanglement-swapping rules, photon 1

and 4 is projected into the same entangled state jc�i14. This
entanglement was tested by analyzing the polarization corre-

lations between photons 1 and 4 conditioned on coincidences

between the detectors of the Bell-state analyzer. When vary-

ing the analysis angle� for the photons going to detector D4,

the coincidences with Dþ
1 and D�

1 should follow two com-

plementary sine curves in dependence on �. The observed

sinusoidal behavior (the interference pattern) of the coinci-

dence rates had a visibility of 0.65(2), which clearly surpasses

the 0.5 limit for a classical interference for coincidence

measurements. A later experiment (Pan et al., 2001)

achieved a visibility of �0:84, which is sufficient for violat-

ing a Bell inequality (the threshold is 0.71) for photons 1 and

4. Further advancements were achieved by Jennewein et al.

(2001) by implementing a 2-state Bell analyzer. Using a fiber

coupler, an ideal spatial mode overlap was obtained. A Bell

inequality, for measurements on photons 1 and 4, was vio-

lated by the factor of 1.211(45), i.e., by 4.6 standard

deviations.

A test of Bell’s inequality involving swapping of entangle-

ment has some appealing features, aside from being an

‘‘event-ready’’ one.60 In addition, it can be performed in a

delayed-choice mode, as suggested by Peres (2000) and

realized by Jennewein et al. (2001). In such an experiment,

one delays the instant of time at which the Bell-state mea-

surement is performed on photons 2 and 3. Thus, entangle-

ment between photons 1 and 4 in subensembles associated

with a specific result for 2 and 3 is revealed, a posteriori, after

they have already been measured and may no longer exist.

Recently, an experiment with active switching and spacelike

separation of the relevant decision was carried out by Ma

et al. (2011).

3. Other experiments on entanglement swapping

Recently, entanglement-swapping experiments with an in-

creased complexity involving pairs of entangled photons have

been demonstrated: multistage entanglement swapping

(Goebel et al., 2008) and multiparticle entanglement swap-

ping (Lu, Yang, and Pan, 2009).
If one aims to build a quantum repeater (Briegel et al.,

1998, see also Sec. VI.F), one has to achieve entanglement

swapping with synchronized entangled-photon sources

among all distributed segments. It thus requires stable inter-

ference between two independently emitted photons.

Kaltenbaek et al. (2006), Yang et al. (2006), and

FIG. 26. Principle of entanglement swapping. From Pan et al.,

1998.

FIG. 27. Experimental setup of entanglement swapping. The gen-

eration scheme for photon pairs 1–2 and 3–4, and the Bell-state

measurement identifying the jc�i23 state is identical as in the

Innsbruck teleportation experiment. The Bell-state measurement

on photons 2 and 3 projects the two remaining photons 1 and 4

onto an entangled state. To analyze their entanglement, one looks at

coincidences between detectors D1þ and D4, and between detectors

D1� and D4, for different polarization angles�. Note that, since the

detection of coincidences between detectors D1þ and D4 and

D1� and D4 are conditioned on the detection of the jc�i23 state

(which happens whenever one has a coincidence behind the beam

splitter), one in fact is looking for fourfold coincidences to signify

the event of entanglement swapping. Narrow bandwidth filters (F)

are positioned in front of each detector to make photons from

different emissions indistinguishable. From Pan et al., 1998.

60A successful BSM measurement defines the ensemble of photon

pairs, 1 and 4, which are subject to a Bell test.
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Kaltenbaek et al. (2009) successfully realized the necessary

technique using synchronized fs lasers to solve the above

problem. Kaltenbaek et al. (2006)61 reported an active

synchronization method: the two independent fs pulsed lasers

pumping the two separate SPDC sources were electronically

synchronized to emit pulses at the same time. To enable

interference the two photons registered behind the BS cannot

be distinguished in any way. To this end, the now standard

methods suggested in Żukowski, Zeilinger, and Weinfurter

(1995) and discussed in Sec. IV.D were used.
The entangled photons generated via the usual SPDC, as

used in the above experiments, have broadband linewidth

(usually on the order of several THz) determined by the

phase-matching condition. Thus, there the challenge was to

achieve sufficiently sharp synchronization of the photons.

Halder et al. (2007) took a different approach to achieve

entanglement swapping by a precise time measurement. The

photon detector used in the experiment was a niobium nitride

superconducting single-photon detector with a time resolu-

tion of 74 ps.62 The photons were filtered using 10 pm-

bandwidth filters, which corresponds to a coherence time of

350 ps well above the temporal resolution of the detectors.

Hence, ultracoincidence photon timing could be obtained,

and pulsed sources could be replaced by continuous-wave

sources, which do not require any synchronization.
The passive filtering used by Halder et al. is, however,

extremely inefficient (the 10 pm-filter transmits <1% only of

all down-converted photons). Thus, a very bright narrow-

band entangled-photon source is highly desirable. A recent

experiment (Bao et al., 2008) realized such a source with a

linewidth of 9.6 MHz. Because of the long coherence time,

synchronization for such sources is unnecessary, while coin-

cidence measurements with time resolution of several nano-

second with current commercial single-photon detectors will

be sufficient to see interference of photons originating from

independent sources.
Entanglement swapping provides a tool to entangle qubits

without direct interaction. An interesting application is that

we can entangle distant, independent matter qubits through

photon-mediated entanglement swapping. Imagine we start

with two entangled atom-photon pairs (Blinov et al., 2004;

Volz et al., 2006). By implementing a Bell-state measure-

ment of the two photons, we can project the two atomic qubits

into an maximally entangled state. Proof-of-principle experi-

ments have been performed by Moehring et al. (2007) who

entangled two trapped atomic ions separated 1 m apart using

entanglement swapping exploiting interference of photons

emitted by the ions, and by Yuan et al. (2008) in atomic

ensembles. These experiments still suffer from low success
probability and imperfect state fidelity. For instance, the
Moehring et al. (2007) experiment had a success probability
of 3:6
 10�9 and the fidelity of the states of the entangled
ions was 0.63(3). The ion-ion entanglement fidelity was
improved to be 0.81 in a later experiment by Matsukevich
et al. (2008). Together with the high efficiency of the mea-
surement of the quantum state of an ion, this high fidelity
allowed one to observe a Bell-inequality violation with an
efficiency high enough to close the detection loophole.

D. Beating noisy environment

So far, significant experimental progress has been achieved
in small-scale realizations of quantum information process-
ing. However, interesting challenges arise in bringing quan-
tum information processing to technologically useful scales.
This is primarily due to the unavoidable decoherence63

caused by a coupling between the quantum system and the
environment. In quantum communication, it is the noisy
quantum channel that degrades the quality of entanglement
between particles the further they propagate. Yet, the imple-
mentation of any of the quantum communication schemes (as
reviewed above) over large distances requires that two distant
parties share entangled pairs with high quality. Similarly,
during quantum computation the coherence of a quantum
system also decreases exponentially with an increasing op-
eration time, consequently leading to failure in the quantum
computation. It is therefore necessary to overcome decoher-
ence in any realistic large-scale realization of quantum infor-
mation processing.

An important tool to overcome the noise in the quantum
communication channel is entanglement distillation, concen-
tration, and purification, proposed by Bennett, Bernstein,
Popescu, and Schumacher (1996); Bennett et al. (1996);
Bennett, DiVincenzo, Smolin, and Wootters (1996); and
Deutsch et al. (1996). A linear-optical implementation of
entanglement purification was suggested and experimentally
demonstrated by Pan, Simon, Brukner, and Zeilinger (2001)
and Pan, Gasparoni, Ursin et al. (2003). Quantum repeater
(Briegel et al., 1998; Dür et al., 1999), based on entangle-
ment purification and entanglement swapping, would provide
an efficient way to generate highly entangled states between
two distant locations. Remarkably, the quantum repeater
protocol tolerates general errors on the percent level, which
is reachable using entanglement purification based on linear
optics (Pan, Simon, Brukner, and Zeilinger, 2001; Pan,
Gasparoni, Ursin et al., 2003). It has been shown that, despite
of local noise and/or errors on the percent level, the quantum
repeater can be used to establish a private and/or secure
quantum communication channel (Aschauer and Briegel,
2002). A study (Dür and Briegel, 2003) showed that entan-
glement purification can also be used to increase, by several
orders of magnitude, the quality of logical operations
between two qubits. In essence, this implies that the threshold
for tolerable errors in quantum computation is within reach
using entanglement purification and linear optics.

61The original purpose of the experiment was to demonstrate that

independently emitted photons do interfere. Thus, the team used

two independently pumped parametric down-conversion crystals.

The only link between the two pumping lasers was via an electronic

pulse synchronization. A recording of a pair of idlers heralded that

two signals were on the way to the BS at which the Hong-Ou-

Mandel coincidence dip was observed. The visibility was well

surpassing the classical limit. Thus, nonclassical interference of

entirely independent photons was observed.
62Conventional room-temperature silicon detectors have a time

jitter of �500 ps.

63For general aspects on decoherence, we refer the reader to a

review by Zurek (2003).
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1. Entanglement distillation and concentration

Entanglement concentration aims to obtain with a nonzero

probability a higher entanglement from pure states with a

lower entanglement. There are two methods to achieve this.

The first is the so-called Procrustean method (Bennett,

Bernstein, Popescu, and Schumacher, 1996). It requires that

the photon pairs are all in a pure nonmaximally entangled

state, say, j�inonmax ¼ �jHijVi þ 	jVijHi, where � and 	
are two known amplitudes. In this case, the scheme only

involves local filtering operations (Gisin, 1996; Horodecki,

Horodecki, and Horodecki, 1996) on single pairs. Second, the

Schmidt decomposition scheme (Bennett, Bernstein,

Popescu, and Schumacher, 1996) works for photon pairs

that are all in a pure but unknown nonmaximally entangled

state j�inonmax. In practice, this scheme is more difficult to

implement as it requires simultaneous collective measure-

ments on many photons.
Kwiat et al. (2001) used the Procrustean method to

demonstrate experimentally distillation of maximally en-

tangled states from nonmaximally entangled inputs. Using

partial polarizers, they performed a filtering process to max-

imize the entanglement of pure polarization-entangled photon

pairs generated by SPDC. The method was also applied to

initial states that were partially mixed [see also Wang et al.

(2006) for a later experiment]. After filtering, the distilled

states show violations of a Bell’s inequality, while the initial

states do not have this property. For some special two-qubit

mixed states, Verstraete, Dehaene, and DeMoor (2001) con-

structed the optimal local filtering operations for distilling

entanglement from the mixed state, with an experimental

demonstration done by Wang et al. (2006).
The Schmidt decomposition scheme becomes practically

feasible after the proposal of a linear-optical implementation

of entanglement concentration (Yamamoto, Koashi, and

Imoto, 2001; Zhao, Pan, and Zhan, 2001). Two independent

experiments (Yamamoto et al., 2003; Zhao, Yang, Chen,

Zhang, Pan, 2003) were reported for linear-optical entangle-

ment concentration.

2. Entanglement purification

The underlying idea of entanglement purification is that,

by using local operations and classical communication only,

to extract from multiple copies of imperfect states (arbitrary

mixed states) fewer copies of entangled state asymptotically

to near-unity fidelity. Schemes of entanglement purification

ware introduced by Bennett, Bernstein, Popescu, and

Schumacher (1996) and Bennett, DiVincenzo, Smolin, and

Wootters, 1996; Deutsch et al. (1996), as illustrated in

Fig. 28(a). However, a drawback of these theoretical schemes

is that they require CNOT operations. In the context of long-

distance quantum communication, the probability of errors

caused by the CNOT operation must be within a few percent,

which, unfortunately, is somewhat beyond the current experi-

mental techniques. A more feasible purification scheme was

proposed by Pan, Simon, Brukner, and Zeilinger (2001). They

showed that purification does not have to entirely rely

on CNOT operations. In some cases, a simple linear-optical

element, a polarizing beam splitter, suffices [see

Fig. 28(b)].

The linear-optical purification scheme [shown in Fig. 28(b)]
will be presented here using a specific example. Our initial
state is

�ab ¼ Fj�þiabh�þj þ ð1� FÞjc�iabhc�j; (82)

where jc�iab is an unwanted admixture. The subscripts a and
b indicate the particles at Alice’s and Bob’s locations,
respectively.

Alice and Bob share a large number of pairs described by
�ab. They start by picking at random two such pairs. Each of
them superimposes their photons on a PBS. An essential step
in the purification scheme is to select those cases for which
there is exactly one photon in each of the four spatial output
modes. We shall refer to them as ‘‘four-mode cases.’’ This
corresponds to a projection onto the subspace in which two
photons at the same experimental location (Alice’s or Bob’s)
have equal polarization. This is similar to the bilateral CNOT
operation of the original scheme. Note that the polarizations
at two different locations do not have to be the same. After
performing the purification procedure (selection of four-mode

FIG. 28 (color). Scheme of entanglement purification by Bennett,

Bernstein, Popescu, and Schumacher (1996); Pan, Simon, Brukner,

and Zeilinger (2001). (a). Two poorly entangled (source and target)

pairs are initially shared by Alice and Bob. They both perform a

(local) CNOT operation on the two particles at their hands, measure

the particles belonging to the target pair in the 0=1 basis, and

compare the measured results via classical communication. If the

results are the same, then the remaining pair will have a higher

degree of entanglement than the original two pairs. In this case, they

keep the source pair. In the case of obtaining opposite results, they

discard it. By repeating the same procedure, always starting from

the pairs produced in the former purification step, it is possible to

distill pairs of arbitrarily high entanglement quality [for more

details, see Bennett, Bernstein, Popescu, and Schumacher (1996)].

(b). An alternative and more feasible scheme which does not require

a CNOT operation but only polarizing beam splitters. The PBS

transmits horizontal (jHi), and reflects vertical (jVi), polarization.
By selecting only those events for which there is one, and only one,

photon in each output mode of the PBS, one can project two photons

input from different spatial modes into the subspace spanned by

jHijHi and jVijVi (for more details see text). Adapted from Pan,

Simon, Brukner, and Zeilinger, 2001.
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cases, measurements in modes a4 and b4 in the þ=� basis,
and local operations conditional on the measurement results),
Alice and Bob will finally create a new ensemble described
by the density operator

�0
ab ¼ F0j�þiabh�þj þ ð1� F0Þjc�iabhc�j; (83)

with a larger fidelity F0 ¼ F2=½F2 þ ð1� FÞ2� (for F > 1=2)
of pairs in the desired state than before the purification.

Though it seems that only a rather special example, single
bit-flip error, has been considered, the same method actually
applies to the arbitrary mixed states �ab, provided that they
contain a sufficiently large fraction F > 1=2 of photon pairs
in a maximally entangled state. This works as follows: one
can first purify away single bit-flip errors; phase errors can
then be easily transformed into bit-flip errors by a 45�
polarization rotation and treated in a subsequent purification
step.

An experimental demonstration of the entanglement puri-
fication scheme has been reported by Pan, Gasparoni, Ursin
et al. (2003). The setup is shown in Fig. 29. For each run two
pairs of an initial, mixed state (82) were prepared with SPDC
and half-wave plates. Next, the two photons at Alice’s (Bob’s)
side in the mode a1–a2 (b1–b2) were interfered at a PBS.
After the four photons’ passage through the two PBS, and
under the condition that one detects one and only one photon
polarized along the � basis in each of the modes a4 and b4,
the two photons in the mode a3–b3, according to quantum
mechanical calculations, have a higher fidelity to be in the
pure entangled state. There is, however, a complication in the
actual experiment. Owing to the probabilistic nature of
SPDC, with a probability of the same order of magnitude,
two photon pairs can be emitted into a one mode pair.
Fortunately, as pointed out by Simon and Pan (2002), this
does not ruin the purification protocol. Simply, for the
higher-order emissions causing a four-mode detection case
the photons in a3-b3 are projected, due to interference, to the
entangled state. The scheme requires a fine stabilization of
the phases between the amplitudes of the four-mode
contributions.

In the first purification experiment, a mixed state as in
Eq. (82) with fidelity of F ¼ 0:75 was prepared. The
preparation was positively tested by measuring fractions
both in the H=V and in the þ=� bases, as shown in
Figs. 30(a) and 30(b), respectively.

The measured results in Figs. 30(c) and 30(d) show a
significant improvement of entanglement fidelity to the value
of F0 ¼ 0:92� 0:01 for the purified subensemble. In a second
experiment, entanglement purification was performed for a
mixed state with F ¼ 0:80. After purification, the observed
entanglement fidelity for the subensemble in modes a3 and b3
was about 0:94� 0:01. For each initial mixed state the
purification scheme worked. The two-photon interference
visibility of the original mixed states was 50% and 60%,
respectively. In a single purification step it was increased to
84% and 88%. This is well above the threshold to violate a
Bell inequality. In a subsequent development, a Bell experi-
ment with purified states was performed (Walther, Resch,
Brukner et al., 2005). The states of initially poorly entangled
photons, below thresholds to violate a Bell-CHSH inequality,
were prepared by a controllable decoherence. After a

purification, SBell ¼ 2:29� 0:13 was measured. This violates

the inequality by 2.2 standard deviations.
If one estimates the accuracy of local operations at the

used PBSs, one obtains theoretical values of fidelity better

than 98% for the process itself, or equivalently an error
probability of at most 2%. Entanglement purification with
such a high quality is important not only for quantum

communication, but also for quantum computation. With
linear optics the accuracy of single-photon operations on

polarization and spatial degrees of freedom can be ex-
tremely high (a typical accuracy of commercial products

is �10�3). These facts, together with the experimental
realization of high-fidelity teleportation (Pan, Gasparoni,

Aspelmeyer, et al., 2003), imply that the threshold of
tolerable error rates for quantum repeaters could be

achieved.
Although the efficiency of this entanglement purification

scheme (Pan, Simon, Brukner, and Zeilinger, 2001) is in

theory 1=4, the actual success probability in the experiment
(Pan, Gasparoni, Ursin, et al., 2003) was much lower as it

relied on the SPDC to probabilistically create two pairs of
entangled photons, thus only a small fraction of photons

FIG. 29. Experimental setup for entanglement purification. UV

laser pulses pass through a BBO crystal twice to produce two

polarization-entangled photon pairs, i.e., pair 1 in a1–b1 and

pair 2 in a2–b2. Four compensators (Comp.) are used to offset the

birefringent effect caused by the BBO crystal during parametric

down-conversion. The photons in modes b1 and b2 pass through a

half-wave plate (�=2) to simulate a noise that reduces the entangle-

ment quality. Next, the two pairs are sent via local PBSs. This

results in entanglement purification. Adjusting the positions of the

delay mirrors �1 and �2 tunes the optical paths in such a way that

the photons at local measurement stations arrive at their PBS

simultaneously. Detections of exactly one photon in each of the

four outputs (a3, a4, b3, and b4) behind a 45� polarizer (Pol.) lead to

a successful purification act. From Pan, Gasparoni, Ursin et al.,

2003.

818 Jian-Wei Pan et al.: Multiphoton entanglement and interferometry

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



actually went through the purification system. In addition to
the low efficiency, another weakness of this experiment is
that, due to double pairs emission events in SPDC, a phase

stabilization was required. This is unfeasible in long-distance
quantum communication. Considering possible applications
of entanglement purification, these two problems can be
solved by using entangled-photon pairs deterministically
generated using quantum dots or other emitters.

E. Long-distance entanglement distribution

The ultimate goal of quantum communication is to work

at long distances. A summary of the recent experimental
progress is listed in Table I [the distance for the distribu-
tion of entanglement in optical fibers was extended from
50 km (Marcikic et al., 2004) to the order of �100 km
(Honjo et al., 2007; Hübel et al., 2007; Takesue et al.,

2007)].
For real life applications of fiber-based quantum commu-

nication, one has to face several major limiting factors
including photon loss and photon detection noise (mainly
dark counts). For quantum key distribution, the rate for dark
counts, etc., for a given photon detector is constant, while
the key rate decreases with increasing fiber length.

Therefore, the signal-to-noise ratio decreases exponentially
with the length of the fiber. At a certain fiber length, the
signal-to-noise ratio is so low that secure keys cannot be
generated. A further extension of the distance over which
reliable quantum communication is possible requires detec-

tors of lower noise, fiber links of lower loss, quantum
communication systems of faster working rates, etc.
In summary, the present-day technology puts a strong
limitation on the distance for practical fiber-based

quantum communication.64 This underlines the necessity
of developing quantum repeaters.

A promising way to realize long-distance quantum com-
munication is to exploit satellite-based free-space distribution
of single photons, or entangled-photon pairs (Aspelmeyer,
Jennewein, et al., 2003). In the scheme, the photonic quan-
tum states are sent from Earth’s surface and reflected from
one satellite to another, and finally sent back to the Earth.
Since the effective thickness of the atmosphere is on the order
of 5–10 km, while the outer space photon loss and decoher-
ence is negligible, with the help of satellites one can achieve
global free-space quantum communication, provided the
quantum states survive the passage through the aerosphere.

Along these lines, an important experimental progress has
been made in the free-space transmission of attenuated laser
pulses [over 23.4 km, see Kurtsiefer et al. (2002); over
144 km, see Schmitt-Manderbach et al. (2007)], of triggered
single photons from entangled-photon pairs [over 7.8 km, see
Resch et al. (2005); and over 144 km, see Ursin et al.
(2007)], of entangled-photon pairs [over 144 km, see Fedrizzi
et al. (2009)], and distribution of entangled-photon pairs to
different locations [over 600 m, see Aspelmeyer et al. (2003);
over 13 km, see Peng et al. (2005), see Table I for a
summary].

More recently, a 144-km free-space link was built between
two Canary Islands and used for transmission of one photon
of an entangled pair (Ursin et al., 2007), and later, both
photons (Fedrizzi et al., 2009). The final photon states were
found to preserve excellent, noise-limited fidelity, even
though they experienced extreme attenuation due to mainly
turbulent atmospheric effects. The total channel loss of 64 dB
corresponded to the estimated attenuation regime for a two-
photon satellite quantum communication scenario. The en-
tanglement of the received two-photon states was confirmed
by violating the CHSH inequality by more than 5 standard
deviations. From a fundamental point of view, this means that
the photons are subject to virtually no decoherence during
their 0.5 ms long flight through air. For those aiming at a
world-wide quantum communication this is an encouraging
development. The photon-pair flight time of �0:5 ms

FIG. 30. Experimental results. (a), (b) Measured fractions, in the

H=V and in the þ=� bases, for the original mixed state. (c),

(d) Measured fractions for the purified state in modes a3 and b3,

in the same pair of bases. A comparison of the fractions in (a) and

(b), with the results shown in (c) and (d) indicates entanglement

purification. From Pan, Gasparoni, Ursin et al., 2003.

64In the context of quantum cryptography, recently revolutionary

progress has been achieved by introducing the idea of decoy states

(Hwang, 2003; Lo, 2004, 2005; Wang, 2005). The decoy-state

scheme, which is designed such that Alice randomly sends some

of her laser pulses with a lower average photon number can be used

to detect a photon-number-splitting attack, as Eve has no way to tell

which pulses are signal and which decoy. Thus, using classically

attenuated laser pulses, one can extend the secure quantum com-

munication distance from �30 km, as in the conventional scheme

(Waks, Zeevi, and Yamamoto (2002), to� 100 km with the decoy-

state protocol, and still gets higher key generation rates. Such a

scheme was experimentally realized via optical fiber (Peng et al.

(2007); Rosenberg et al. (2007) and via free-space links (Schmitt-

Manderbach et al., 2007). The decoy-state protocol allows the same

security level as in the case of true single-photon sources. Taking

the advantage of ultra-low loss fibers and low-noise superconduct-

ing detectors Korneev et al. (2007) and Marsili et al. (2008)

created a prototype of quantum key distribution working at a

distance of 250 km.
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represents the longest lifetime of photonic Bell states re-

ported so far.

F. Quantum memory and quantum repeaters

We have shown that entanglement purification enables one

to overcome the degradation of the quality of photon entan-

glement. Still, a major drawback of schemes for communi-

cation between distant nodes is the exponential scaling of the

error probability with the length of the connecting channels.

The quantum repeater protocol (Briegel et al., 1998; Dür

et al., 1999) provides a blueprint of a general framework to

remedy this problem by nesting entanglement purification

and swapping steps. Once constructed, it would enable one

to establish high-quality long-distance entanglement with

resources increasing only polynomially with transmission

distance.
A quantum memory for single photons, with the ability of

interconverting between stationary and flying qubits (see

Sec. VI.F.2), is a crucial element in the quantum repeater

scheme. There are several candidates for localized qubits. For

instance, one may use atomic internal states to store local

information. Mapping between the atomic and photonic qu-

bits requires a strong coupling between atoms and photons

via high-finesse cavities (Raimond, Brune, and Haroche,

2001; Leibfried et al., 2003; Walther et al., 2006) or initial

atom-photon entanglement together with entanglement swap-

ping. Below we focus on the atomic-ensemble based schemes

[Duan et al. (2001); Duan, Cirac, and Zoller (2002); Chen

et al. (2007); Jiang, Taylor, and Lukin (2007); Zhao et al.

(2007); see also Sangouard et al. (2009) for a review].
We emphasize that quantum memories have applications

not only in long-distance quantum communication, but they

also provide a route to a more efficient multiphoton entangle-

ment (see Sec. IV.D) or linear-optics quantum computing (see

Sec. VII). So far, the majority of the reported multiphoton

interferometry experiments face the problem of random

arrivals of SPDC photon pairs. Thus, scalability of this

approach is questionable. Given a quantum repeater,

ideally with long storage time, high writing, and retrieval

efficiencies,65 the randomly generated SPDC photon pairs

can be stored and synchronized with the arrival of other

photon pairs. This would, for instance, enable efficient gen-
eration of multiphoton states in a time which increase only

polynomially with number of involved qubits.

1. Quantum repeater protocol

In classical communication, the problem of exponential

attenuation can be overcome by using repeaters at certain
points in the channel. They amplify the signal and restore it to

its original shape. In analogy to fault-tolerant quantum com-
puting (Preskill, 1998; Nielsen and Chuang, 2000), the quan-

tum repeater proposal (Briegel et al., 1998; Dür et al., 1999)
is a cascaded entanglement purification protocol for commu-

nication systems.
The quantum repeater protocol comprises three elements:

(i) A method for creation of entanglement between particles

at distant nodes, which uses auxiliary particles at intermediate
‘‘connection points’’ and a nested purification protocol.

(ii) Entanglement purification, even with imperfect means.

(iii) A protocol for which the time needed for entanglement
creation scales polynomially, whereas the required material

resources per connection point grow only logarithmically
with the distance, as show in Fig. 31.

Here we describe a scheme for the physical realizations of

a quantum repeater which has been proposed by Duan, Lukin,
Cirac, and Zoller (Duan et al., 2001).66 The ensembles

suggested atomic ensembles as local memory qubits. They
have a collectively enhanced coupling to light, even without

the aid of high-finesse cavities. The scheme incorporates
entanglement swapping, built-in entanglement purification,

and quantum memory.
Figure 32 is a schematic of a setup for entangling two

atomic ensembles (optically thick atomic cells of Na identical

atoms), L and R, which are spatially separated within the

channel attenuation length. A pair of metastable lower states
jgi and jsi can correspond to hyperfine or Zeeman sublevels

of electronic ground states of alkali atoms. Long lifetimes for
relevant coherences in such systems have been observed

TABLE I. Summary of some recent experimental advances on entanglement distribution over long
distances. For the details on different settings, see the text. S refers to the Bell-CHSH parameter. V
refers to the single-photon transmission and visibility of the interference.

Year Reference Distance S/Visibility Rate (Hz)
Via free-space

2003 Aspelmeyer, et al.(2003) 600 m S ¼ 2:41ð10Þ >15
2005 Resch, et al. (2005) 7.8 km S ¼ 2:27ð2Þ 84
2005 Peng, et al. (2005) 13 km S ¼ 2:45ð9Þ 150
2007 Ursin, et al.(2007) 144 km S ¼ 2:508ð37Þ 20–40
2009 Fedrizzi, et al. (2009) 144 km S ¼ 2:612ð114Þ 0.071

Via optical fiber
2004 Marcikic, et al. (2004) 50 km S ¼ 2:185ð12Þ 5
2007 Takesue, et al. (2007) 60 km V ¼ 75:8% 0.3
2007 Honjo, et al. (2007) 100 km V ¼ 81:6% 1.4

65Extensive efforts still need to be undertaken to make a quantum

memory usable for this purpose; see Sec. VI.F.2.

66Other physical implementations include the quantum repeater

based on solid-state photon emitters (Childress et al., 2005;

Childress et al., 2006) and a hybrid quantum repeater using bright

coherent light and electronic and nuclear spins (van Loock et al.,

2006).

820 Jian-Wei Pan et al.: Multiphoton entanglement and interferometry

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



both in a room-temperature dilute atomic gas (Phillips et al.,
2001) and in a sample of cold trapped atoms (Liu et al.,
2001).

All the atoms are initially prepared in the ground states
jgii. A sample is illuminated by a short, off-resonant laser
pulse that induces Raman transitions into states jsii.
Particularly important is the forward-scattered Stokes light
(the signal mode â). It is uniquely correlated with the exci-

tation of the symmetric collective atomic mode Ŝ 

ð1= ffiffiffiffiffiffi

Na

p ÞPijgiiihsj, where the summation is taken over all
the atoms. The light-atom interaction generates, after the

interaction time t�, a two-mode (â and Ŝ) squeezed state
(Braunstein and van Loock, 2005), with the squeezing pa-
rameter rc proportional t�. If t� is very small, the two-mode
squeezed state can be written in the perturbative form

j�i ¼ j0aij0pi þ ffiffiffiffiffiffi
pc

p
Ŝyâyj0aij0pi þOðpcÞ; (84)

where pc ¼ tanh2rc � 1 is the small excitation probability
and OðpcÞ represents the terms with more excitations, whose
probabilities are equal or smaller than p2

c. The Hilbert space

vectors j0ai and j0pi are, respectively, the atomic and pho-

tonic vacuum states with j0ai 

N

i jgii. For a large Na, the
collectively enhanced signal-to-noise ratio may strongly
boost the efficiency of the scheme.

This setup enables one to generate entanglement between
two distant ensembles, L and R, using the configuration
shown in Fig. 32. If two laser pulses excite both ensembles
simultaneously, the whole system is described by the state
j�iL � j�iR, where j�iL and j�iR are given by Eq. (84). The
subscripts L and R denote the respective cells [in Eq. (84) one
should add such subscripts to all mathematical objects]. The
forward-scattered Stokes signal from both ensembles is com-
bined at the BS and a photodetector click in either D1 or D2

measures the combined radiation from two samples, âyþâþ or

ây�â� with â� ¼ ðâL � ei’âRÞ=
ffiffiffi
2

p
. The symbol ’ denotes

an unknown difference of the phase shifts in the two channels.
Depending on which detector clicks, one applies âþ or â� to
the whole state j�iL � j�iR. The resulting projected state of
the ensembles, L and R, is nearly maximally entangled. It
reads [we neglect OðpcÞ terms]

j�’i�LR ¼ ðŜyL � ei’ŜyRÞ=
ffiffiffi
2

p j0aiLj0aiR: (85)

For each round, the probability for getting a click is given by
pc. Thus, we need to repeat the process about 1=pc times to
warrant a successful preparation of entanglement. The aver-
age preparation time is given by T0 � t�=pc.

The entanglement generation (as well as entanglement
connection) in the DLCZ scheme is based on single-photon
interference at photodetectors,67 which requires a stable long-
distance interferometric stability. The fluctuations of the
relative phase ’ caused by the environment would wash
out the coherence (i.e., entanglement) in Eq. (85). For in-
stance, to maintain path-length phase stability at the level of
�=10 (� is the wavelength) for single photons, typically of
�� 1 �m, generated from atomic ensembles (Eisaman
et al., 2005) requires a precise control of timing jitter at a
subfemtosecond level, which is almost experimentally im-
possible (Holman et al., 2005). For more detailed analysis on
the phase-stability problem of the DLCZ scheme, see Chen
et al. (2007).

The phase-stability problem can be overcome by interfer-
ing two photons, one coming from each remote ion or atom in
a cavity (Bose et al., 1999; Browne, Plenio, and Huelga,
2003; Feng et al., 2003; Simon and Irvine, 2003), which was
experimentally implemented by Maunz et al. (2007) and
Moehring et al. (2007). A robust implementation of a
quantum repeater using atomic ensembles was proposed by
Chen et al. (2007); Jiang, Taylor, and Lukin (2007); and
Zhao et al. (2007). With the help of two-photon interference
it eliminates the stringent requirement of long-distance phase
stabilization.

Though the DLCZ scheme does not meet all the criteria for
long-distance quantum communication, it provides a prom-
ising approach to a fully controllable single-photon source
based on atomic ensembles, which seems to be much easier
for experimental demonstrations. We now summarize the

FIG. 31 (color online). Quantum repeater scheme. (a) Creation of

a sequence of entangled pairs. (b) Nested purification protocol

which combines the methods of entanglement swapping and puri-

fication, assisted with repeated creation of auxiliary pairs.

(c) Purification of entangled pairs stored in distant locations.

Adapted from Briegel et al., 1998.

FIG. 32 (color). Schematic of a setup for generating entanglement

between the two atomic ensembles L and R in the DLCZ scheme.

The inset shows the relevant level structure of the atoms in the

ensemble with the ground state, jgi, the metastable state for storing

a qubit, jsi and the excited state, jei. The transition jgi ! jei is

coupled by a classical laser light, with the Rabi frequency �. The

forward-scattered Stokes light comes from the transition jei ! jsi.
An off-resonant coupling with a large detuning � is assumed.

Adapted from Duan et al., 2001.

67Such a method was first proposed to entangle single atoms (Bose

et al., 1999; Cabrillo et al., 1999).
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basic ideas behind it. The atomic ensemble generates a

correlated state in Eq. (84), which is an exact analog of the

SPDC radiation. By measuring the forward signal mode

with a single-photon detector, under the condition that the

detector clicks, the collective atomic mode is projected to a

single-excitation state. Such excitations can be stored for a

reasonably long time in metastable states (the so-called

ground-state manifold) of the atoms. On demand the single-

atomic excitation can be transferred to a single photon (still

within the storage time) with a method described in the next

section. This is with fully controllable properties: the emit-

ted single-photon pulse is directed forward; the emission

time is controllable by the repumping time; and the pulse

shape is controllable by varying the time dependence of the

Rabi frequency of the repumping pulse.
So far, significant advances have been achieved along these

lines. For a partial list,68 we mention the following: control-

lable generation, storage and retrieval of single photons with

tunable frequency, timing and bandwidth (Chou et al., 2004;

Eisaman et al., 2004; Chanelière et al., 2005; and Eisaman

et al., 2005), a deterministic single-photon source using

measurement-based feedback protocol (Chen, S., et al.,

2006; Laurat et al., 2006; Matsukevich et al., 2006b);

conditional control of two atomic memories (Felinto et al.,

2006), entanglement of two atomic ensembles (Matsukevich

et al., 2006a) and its distribution between two quantum nodes

located 3 meters apart (Chou et al., 2007), mapping photonic

entanglement into and out of an atomic-ensemble-based

quantum memory (Choi et al., 2008), optimal control of

light pulse storage and retrieval (Novikova et al., 2007), and

the Hong-Ou-Mandel interference of photon pairs from two

independent ensembles (Chanelière et al., 2007). A quantum

repeater node following the robust protocol (Chen et al.,

2007; Zhao et al., 2007) was experimentally demonstrated by

Yuan et al. (2008). These experiments are currently limited

by the relatively short coherence time (� 20 �s) of the

memory qubits and the low conversion efficiency (� 15%)

between photonic and atomic states. See Kimble (2008) for a

more in-depth review on this topic.

2. Quantum state transfer between matter and photons

The technique of quantum state transfer between matter

and photons is indispensable for both long-distance quantum

communication and large-scale optical quantum computing

(see Sec. VII). In such applications, the matter itself should be

endowed with a long storage time. This makes atoms strong

candidates for localized photonic information carriers. The

early proposals (Cirac et al., 1997; van Enk, Cirac, and

Zoller, 1997) along these lines use the strong coupling of

photons and single atoms in high-finesse cavities.
The basic idea of quantum light memory is in transferring a

photonic state to the excitations of atomic internal states. In

such a way, it can be stored. After some controllable time, it

should be possible to transfer back the excitations to photons

restoring the original quantum state. The experimentally

challenging technology at the interface of photons and single

atoms motivated search for alternative routes to matter-light

quantum interfaces. Along this line, theoretical ideas on
quantum light memory have been proposed (Fleischhauer
and Lukin, 2000; Kozhekin, Mølmer, and Polzik, 2000;
Lukin, Yelin, and Fleischhauer, 2000; Duan et al., 2001;
Duan, Cirac, and Zoller, 2002; Fleischhauer and Lukin, 2002;
Chen et al., 2007) and the relevant experimental advances
(Kash et al., 1999; Liu et al., 2001; Schori et al., 2002;
Phillips et al., 2001; Bajcsy, Zibrov, and Lukin, 2003; van der
Wal et al., 2003; Julsgaard et al., 2004; Matsukevich and
Kuzmich, 2004; Hétet et al., 2008) have been reported.69

The atomic-ensemble-based quantum memory consists of
a coherently driven atomic ensemble (N � 1 atoms) of large
optical thickness with a level structure shown in the inset of
Fig. 33. The jci-jei transition is coherently driven by a
classical field of Rabi frequency �ðtÞ, and the jbi-jei tran-
sition is coupled to a quantized single-mode (the multimode
case is similar) light field (described by an annihilation
operator â). The coupling constant is denoted by g. Under
the two-photon resonance (i.e., the two detunings for the two
transitions shown in the inset of Fig. 33 are both equal to �),
the classical driving field can induce transparency for the
quantized light field and a substantial group-velocity reduc-
tion, and even the complete stopping of the light [for reviews,
see Lukin and Imamoğlu (2001), Lukin (2003), and
Fleischhauer, Imamoglu, and Marangos (2005)]. The
Hamiltonian of the whole system (N atoms plus the quantized
light field), in a frame rotating at the optical frequency,

FIG. 33 (color). Quantum memory for photonic polarization qu-

bits. Two identical ensembles are identically driven by a classical

field, which is equally right-circularly and left-circularly polarized.

Classical and quantized light fields are fed into the first PBSR=L
(‘‘rotated’’ PBS which reflects left-circular photons and transmits

right-circular photons) and leave at two different outputs of the

second PBSR=L. Two half-wave plates (HWP), enabling the trans-

formation jRi $ jLi, are placed along the jLi output of the first

PBSR=L. As the atomic cell r (cell l) works as a quantum memory

for single photons with right-circular (left-circular) polarization, via

the adiabatic transfer method, the whole setup is therefore a

quantum memory of any single-photon polarization states. The inset

shows the relevant level structure of the atoms, with the ground state

jbi, the storage metastable state jci, and the excited state jei. From
Chen et al., 2007.

68For a comprehensive review, see Sangouard et al. (2009).

69For comprehensive reviews, see Sangouard et al. (2009) and

Hammerer, Sorensen, and Polzik (2010).
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reads H ¼ ℏ�ðtÞŜec þ ℏg
ffiffiffiffi
N

p
âŜeb þ H:c:, where Ŝec ¼P

N
i jeiiihcj, Ŝeb ¼ ð1= ffiffiffiffi

N
p ÞPN

i jeiiihbj, and H:c: denotes a

Hermitian conjugate of the previous expression. This
Hamiltonian has its zero-energy eigenstates, the so-called
‘‘dark states.’’ When the atom number is much larger than
the photon number, the dark states represent elementary
excitations of bosonic quasiparticles, i.e., the dark-state
polaritons. For more details on this concept, see
Fleischhauer and Lukin (2000, 2002) and Lukin, Yelin,
and Fleischhauer (2000).

By adiabatically changing �ðtÞ between the two limiting
cases [�ðtÞ � g

ffiffiffiffi
N

p
, or �ðtÞ � g

ffiffiffiffi
N

p
] one can coherently

map dark-state polariton states onto either purely atomlike
states where the photons are stored or purely photonlike
states, which corresponds to the release of the stored photons.
In principle, a quantum memory based on the adiabatic trans-
fer method is reversible, preserves a pulse shape of the stored
photons (Fleischhauer and Lukin, 2000, 2002), and may have
an efficiency very close to unity. As there is no excited atomic
state in the dark-state subspace, the storage time can be very
long.

The original quantum memory was proposed for storing a
coherent superposition of photon-number states. However,
two atomic ensembles can be entangled by storage of two
entangled light fields (Lukin, Yelin, and Fleischhauer, 2000).
Recent experiments achieved single quantum excitation
memory times of 1 ms using cold atomic ensembles (Zhao,
B. et al., 2009), 6 ms using atomic rubidium confined in a
one-dimensional optical lattice (Zhao, R. et al., 2009), and
0.1 s using quantum memory confined in an optical lattice
with laser compensation of the lattice light shifts (Radnaev
et al., 2010).

VII. PHOTONIC QUANTUM COMPUTING

As we have seen in the above section, the photon, thanks to
its high transmittance through air and glass fibers and its
extremely long decoherence time, has arguably been the best
candidate for quantum communication. However, things be-
come trickier when we come to the field of quantum compu-
tation. The weak interaction between photons, which is of a
significant benefit in quantum communication, turns out to be
a drawback where nontrivial two-qubit quantum gates are
essential. For a long time it seemed obvious that linear-optical
two-photon gates can be done only in a nondeterministic
fashion and thus quantum computing cannot be scalable.
However, in 2001, Knill, Laflamme, and Milburn (2001)
proved that scalable optical quantum computing is possible
using only single-photon sources, linear-optical elements,
and photon-number resolving detectors. The KLM scheme
subsequently spurred new experiments demonstrating proba-
bilistic controlled two-photon gates. Despite the efforts of
KLM, the resource overhead required for optical quantum
computing is daunting. Several improvements of this proto-
col, particularly those based on cluster states or error encod-
ing, have dramatically reduced this worrying resource
overhead, and started to bridge the gap between the theoreti-
cal scalability and practical implementations.

We witnessed considerable theoretical and experimental
progress in optical quantum computing in these years. This

topic has been reviewed earlier by Kok et al. (2007);

O’Brien (2007); O’Brien, Furasawa, and Vuckovic (2009);
and Ralph and Pryde (2010). This section serves as a

supplement to these previous reviews. Thus, we skip
some theoretical details and mainly focus on recent experi-

mental advances.

A. Linear-optical two-qubit logic gates

Knill, Laflamme, and Milburn (2001) showed that the

success rate of the logic gates can be arbitrarily close to 1.
To this end, one can use ancilla photons and detectors. A

similar conclusion has been independently obtained by
Koashi, Yamamoto, and Imoto (2001). Their solution was

based on entangled ancilla photons. A novel aspect of this
protocol is that, despite the lack of the photon-photon

interaction, quantum measurements with photon-number
resolving detectors can induce effective nonlinearity suffi-

cient for the realization of two-qubit gates. The original

KLM scheme was only very recently implemented in a
sophisticated setup up using polarization encoding and

Sagnac interferometers for increased stability (Okamoto
et al., 2010).

Further improvements reduced the complexity and im-

proved the efficiency of the original scheme by introducing
certain assumptions and restrictions, enabling a series of

experiments and demonstrations. Hofmann and Takeuchi
(2002) and independently Ralph et al. (2001, 2002) proposed

quantum gates working under the restriction of what is here
called a two-mode or four-mode case. That is, the successful

operation of the gate can be verified if the two photons
involved are detected in certain outputs (this is also called

‘‘detection in coincidence basis’’ or ‘‘conditioned detec-

tion’’). Essentially a single two-photon interference is
enough, together with a state-dependent filtering, to perform

probabilistic CNOToperations. The restriction does not allow
further operations on the two photons involved and thus limits

the depth of calculations, however, the simplicity of the gate
makes it a useful and reliable tool if no further joint opera-

tions on the two photons are required. The original proposal
used dual-rail encoding and was first implemented by

O’Brien et al. (2003). With polarization encoding, the

CNOT gate and conditional phase shift operations were
also demonstrated (Pittman, et al., 2003; Sanaka, et al.,

2004). An even simpler setup becomes possible with polar-
ization encoding (Kiesel, Schmid, Weber, et al., 2005;

Langford et al., 2005; Okamoto et al., 2005) which in
turn could be already applied, e.g., to observe cluster states

for one-way quantum computing [see, Kiesel, Schmid, Toth,
et al. (2005)]. Exploiting hyperentanglement, Lanyon, et al.

(2008) demonstrated a three-qubit Toffoli gate. More

recently, Politi et al. (2008) reported high-fidelity silica-
on-silicon integrated optical realizations of key quantum

photonic circuits. Laing et al. (2010) reported a two-photon
quantum interference visibility of 99.5(4)%, a CNOT gate

[the obtained average fidelity of logical basis was 96.9(2)%]
and a path-entangled two-photon state (with fidelity of

>92%). Coffman, Kundu, and Wootters (2010) reported the
first probabilistic logic gates on integrated circuits for polar-
ization qubits.
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In a separate development, Koashi, Yamamoto, and Imoto
(2001) and Pittman, Jacobs, and Franson (2001) showed that
by using entangled pairs of photons as ancilla, the success of
the gate operation can be inferred by the detection of photons
in ancilla outputs. This enables one to perform the gate
operation in a nondestructive manner. Such gates, assisted
by entangled or unentangled photon pairs, were reported
using four or five photons; see Gasparoni et al. (2004);
Zhao et al. (2005); Bao et al. (2007); Tokunaga et al.
(2008); and Gao, Yao, et al. (2010).

In this section, we present, for pedagogical purposes, the
working principle and a proof-of-principle demonstration
(Zhao et al., 2005) of a nondestructive CNOT gate for two
independent photons. Pittman, Jacobs, and Franson (2001)
suggested that a successful operation of the gate can be
indicated by detection acts of measured ancilla photons.
Such information is feed forwardable. This is an important
feature for both the circuit model and the one-way model of
scalable optical quantum computing.

Suppose that one aims to perform a CNOT gate on an
arbitrary two-qubit state j�i25 [Eq. (80)] using an ancilla
entangled-photon pair in the Bell state jc�i34. Note that
PBS2 in Fig. 34(a) transmits jH þ Vi while it reflects
jH� Vi polarization. The output state of the whole apparatus
is (Pittman, Jacobs, and Franson, 2001)

j�i25jc�i34 ! 1

4
½jV0i30 jVi40 ðCNOT2050 j�i2050 Þ

þ jH0i30 jVi40 ðẑ50CNOT2050 j�i2050 Þ
þ jH0i30 jHi40 ðx̂50 ẑ50CNOT2050 j�i2050 Þ
þ jV 0i30 jHi40 ðx̂50CNOT2050 j�i2050 Þ�

þ
ffiffiffi
3

p
2

j . . .inot four-mode cases: (86)

Consider a detection of a pair of photons at the output modes
30 and 40, only one photon at each output (the four-mode

case). Depending on the registered polarizations, up to a
specific unitary transformation, a nondestructive CNOT
gate operation is then performed on j�i2050 .

B. Cluster-state quantum computing

Another significant step is the discovery of ‘‘cluster-state
quantum computing’’ (Raussendorf and Briegel, 2001;
Raussendorf, Browne, and Briegel, 2003; Briegel et al.,
2009), which is based on the preparation of highly entangled
multiqubit states, the so-called ‘‘cluster states’’ (Briegel and
Raussendorf, 2001) and adaptive one-qubit measurements.
Besides its thought-provoking theoretical structure, this
model also brings a number of practical advantages for
physical realization of quantum computation. In scenarios
in which quantum gates can be performed directly in, at best,
a nondeterministic fashion, the one-way model is particularly
useful. Linear-optical cluster-state quantum computation is
the most prominent example. For existing, short surveys of
the topic, see O’Brien (2007) and Briegel et al. (2009).

Cluster states can be created by a controllable Ising-type
interaction (Briegel and Raussendorf, 2001; Raussendorf and
Briegel, 2001; Raussendorf, Browne, and Briegel, 2003). It
was recently shown that an efficient preparation of cluster
states is possible with probabilistic two-qubit controlled
phase flip gates (Duan and Raussendorf, 2005; Chen, Q.,
et al., 2006). Few-photon cluster states were created in
several recent experiments (Kiesel, Schmid, Toth, et al.,
2005; Walther, Resch, Rudolph et al., 2005; Zhang, A.-N.
et al., 2006; Lu et al., 2007; Tokunaga et al., 2008).

1. Constructing photonic cluster states

By combing the one-way model with linear-optical quan-
tum computing, recent theoretical proposals require much
less resources and effectively replace the original KLM
scheme [see Nielsen (2004); Browne and Rudolph (2005);
Bodiya and Duan (2006); Chen, Zhao, and Pan (2008); and an
efficient parity-encoded optical quantum computing model
by Gilchrist, Hayes, and Ralph (2007)]. Nielsen showed that
efficiency can be greatly enhanced by building photonic
cluster states using easy nondeterministic gates. The resource
overhead (Bell states, operations, etc.) for a reliable entan-
gling gate in Nielsen’s scheme is �103, and thus about 2
orders of magnitude less than the original KLM protocol.
Furthermore, by introducing two linear-optical fusion opera-
tions, Browne and Rudolph (2005) achieved a greater degree
of efficiency (� 102) and in a simpler scheme than the
previous proposals. Matter qubits can also be constructed
into cluster states using linear optics and photon interference,
as proposed by Barrett and Kok (2005). Here we focus on a
linear-optical architecture for one-way quantum computing.

a. Linear-optical architecture

The Browne-Rudolph scheme has an important practical
advantage. It requires stable interferometry over only the
coherence length of the photons, i.e., the interferometer
path lengths differences only need to be kept constant to
within tens of microns, not fractions of a wavelength. Its
two basic operations are the type I and type II ‘‘two-qubit

FIG. 34 (color). A quantum CNOT gate for photonic qubits. (a) A

nondestructive CNOT gate constituting of a PBS, half-wave plates

(HWP) and using an ancilla entangled photon pair jc�i34 (Pittman,

Jacobs, and Franson, 2001). (b) Experimental results of two-photon

CNOT gate. From Zhao et al., 2005.
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fusion’’ operations (Fig. 35). The physical mechanism of
type I fusion is again two-photon interference at the PBS,
which is used as a parity check (Cerf, Adami, and Kwiat,
1998; Pan et al., 1998; Pan, Simon, Brukner, and Zeilinger,
2001; Pittman, Jacobs, and Franson, 2001). As displayed in
Fig. 36, starting from a supply of two qubit polarization
cluster states 1

2 ðjHHi þ jVHi þ jHVi � jVViÞ (which are

equivalent to a Bell state and can be created via the methods
described in Sec. VII.B.1), the type I fusion operation allows
one to efficiently generate arbitrarily long linear cluster
states. If the type I fusion is applied to the end qubits of
linear (i.e., one-dimensional) clusters of lengths n and m,
successful outcomes (with a probability of 50%) generate a
linear cluster of length nþm� 1. The type I fusion

operation fails (also with a probability of 50%) when zero
or two photons of either polarization are detected. The failure
outcomes have the effect of measuring both input qubits in
the �z eigenbasis, which leaves the remaining qubits in a
cluster state of the same layout as before the measurement,
but now with all the bonds broken to the measured qubit.
Browne and Rudolph (2005) also showed that one can finally
prepare a square-lattice cluster of N qubits with a temporal
overhead scaling logarithmically with N, and with an opera-
tional overhead (i.e., number of fusion operations) scaling as
�N lnN (Chen, Zhao, and Pan, 2008). The described protocol
is a linear-optical realization of the Duan and Raussendorf
(2005) proposal, and combines the advantages of the Browne-
Rudolph scheme, whose overall efficiency is thereby
demonstrated. A crucial element for a realistic realization is
quantum memory for polarization qubits, which was dis-
cussed in Sec. VI.F.2.

b. Event-ready entangler

In the above linear-optical architecture, two-photon en-
tangled pairs are the basic resources. In the case of SPDC,
one usually does not know when a pair is emitted. Only a
firing of photon detectors informs one that a spontaneous
emission act happened. However, most schemes of optical
quantum computation, including the nondestructive CNOT
gates, scalable fusion of cluster states, require that the photon
pairs should be created in an ‘‘event-ready’’ (or heralded)
way.

Zhang et al. (2008) proposed a way to generate one pair of
event-ready entangled photons from four single photons, with
a method that requires only linear optics and photon-number-
discriminating detectors and performed an experimental
simulation using four photons from SPDC. Another scheme
of generating triggered photon pairs, which does not need true
single-photon sources but totally rests upon SPDC, was
proposed by Sliwa and Banaszek (2003). Following this
proposal, in two experiments, Barz et al. (2010) and
Wagenknecht et al. (2010), have demonstrated heralded
generation of photon states that are maximally entangled in
polarization.

Probably a more promising realization of a triggered
entangled-photon source will come from the biexciton (two
electron-hole pairs) radiative decay in a self-assembled quan-
tum dot. This was demonstrated by Stevenson et al. (2006).
A quantum dot can emit a single pair of entangled photons on
demand, with a probability close to 1. However, it has a very
low extraction efficiency. Recently, Dousse et al. (2010) used
a carefully fabricated cavity to increase the collection effi-
ciency, and created a source of polarization-entangled photon
pairs with a state fidelity of 0.67 and a rate of 0.12 per an
excitation pulse.

C. Few-photon quantum computing experiments

In recent years, we also witnessed a number of proof-of-
principle demonstrations of quantum computing involving
several photons and linear optics (experimental realizations
of photonic CNOT gates are been discussed in Sec. VII.A).
For example, Mohseni et al. (2003) and Tame et al. (2007)
demonstrated the two-qubit Deutsch-Josza algorithm in a

FIG. 36 (color online). Construction of two-dimensional cluster

states using photon fusion (Browne and Rudolph, 2005; Duan and

Raussendorf, 2005). (a) Certain measurements on a cluster qubit

will leave the remaining qubits in a new cluster state with a different

layout. (b) The effect of type I and type II fusion operations on

successful connection of two linear cluster states. (c) One method of

efficient construction of two-dimensional cluster states [see also

Duan and Raussendorf (2005)].

FIG. 35 (color online). Nondeterministic photonic qubit fusion

gates. The type I fusion gate combines two input single photons

on a PBS and one of the outputs is measured in the H� V basis.

The type II fusion gate combines two photons on a 45� rotated PBS

(that is, both inputs and outputs are rotated using a HWP), and both

outputs are detected. Adapted from Browne and Rudolph, 2005.
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circuit and a one-way model. The Grover’s search algorithm
(Grover, 1997) has been realized by Kwiat et al. (2000) by
designing an optical circuit, and later by Walther, Resch,
Rudolph et al. (2005); Chen, K. et al. (2007); Prevedel,
Walther et al. (2007); and Vallone, Pomarico, and Martini
(2008), who used four-qubit cluster states.

In the experiment of Walther, Resch, Rudolph et al. (2005)
via a SPDC a four-photon polarization-entangled cluster state
was created (with a fidelity of F ¼ 0:63� 0:02):

j�ci ¼ 1
2ðjHi1jHi2jHi3jHi4 þ jHi1jHi2jVi3jVi4
þ jVi1jVi2jHi3jHi4 � jVi1jVi2jVi3jVi4Þ: (87)

With local unitary operations j�ci can be arranged to various
cluster shapes j�lin4i, j�⊏4i, j�⊐4i, and j�h4i (see Fig. 37).
Using the cluster state j�ci, a universal set of quantum logic
operations, single-qubit rotations, and nontrivial two-qubit
gates were demonstrated. In addition, Walther et al. also
implemented a two-qubit Grover’s quantum search algorithm
using the box cluster j�h4i. The measured probability of the
quantum computer to determine the correct outcome was
about 90%. A drawback of the experiment is that no feed
forward was used. This reduced the success rate of the
computation by a factor of 2 for every measurement. An
improved experiment by Prevedel, Walther et al. (2007)
incorporated active fast feed forward, so that the earlier
measurement outcomes could change the setting of a future
measurement in real time. Particularly, the computational
step (i.e., the individual feed-forward cycle) could be oper-
ated in less than 150 ns using electrooptical modulators.

Shor’s quantum algorithm provides a way of factoring
large integers in polynomial time, a task for which no
efficient classical method is known. Recently, a compiled
version of Shor’s algorithm has been demonstrated using

four photonic qubits by Lanyon et al. (2007) and Lu,

Browne, Yang, and Pan (2007). Aiming to solve the easiest
case of Shor’s algorithm (15 ¼ 3
 5), these two experiments

designed a simplified linear-optical network to implement the
quantum circuits of the modular exponential execution. The

results yielded a high success probability (� 0:99) of factor-
ing. It is notable that in these optical experiments during the
computation genuine multiparticle entanglement and multi-

path interference were observed, which did not appear in the
previous implementations using nuclear magnetic resonance

(Vandersypen et al., 2001). Optical implementations of

Shor’s algorithm later moved into an integrated photonic
chip devices (Politi, Matthews, and O’Brien, 2009).

Another interesting avenue of the ongoing multiphoton

experiments is to exploit the preliminary photonic quantum
computers for simulation of many-body physics, a powerful

application of quantum computers proposed in the early
1980s. Following proposals by Han, Raussendorf, and Duan

(2007) and Pachos (2007), four-qubit and six-qubit graph
states were created to mimic the ground state of the Kitaev

spin-lattice model (Kitaev, 2003). Using the photonic graph

states to simulate the creation and braiding of the anyons in
the Kitaev model, a phase shift of � related to the anyon

braiding was observed, confirming the predictions for the
fractional statistics of Abelian 1=2 anyons (Lu et al., 2009;

Pachos et al., 2009). Recently, Lanyon et al. (2010) em-

ployed a photonic quantum computer to solve a quantum
chemistry problem: calculation of the energies of the hydro-

gen molecule. In their experiment, the iterative phase estima-
tion quantum algorithm was performed in full. With the

assistance of a classical computer, it was possible to calculate

the complete energy spectrum, up to 20 bits of precision. Ma
et al. (2011) used polarization states of four photons to

simulate a frustrated Heisenberg spin system: a spin-1=2
tetramer.

D. Toward scalable optical quantum computing

While in small-scale tests of optical quantum computing,
we have witnessed a progress, serious problems exist in

scaling up this technique. Here, we briefly discuss the key
challenges and the ongoing efforts in designing fault-tolerant

architectures, fighting against experimental noise, and im-
proving single-photon sources and detectors.

Quantum computers will be very susceptible to noise,

which rapidly destroys the fragile quantum information.

Much effort has been devoted to the understanding of the
scalability under realistic noise models. The threshold theo-

rem has established that if the noise is below some value, an
arbitrarily long quantum computation can be realized. Several

fault-tolerant architectures for optical quantum computing
have been proposed. Nielsen and Dawson (2005) showed

that the thresholds are respectively <3
 10�3 and <10�4

for photon loss and depolarizing noise [see also Dawson,
Haselgrove, and Nielsen (2006)]. In addition, there are pro-

posals of one-way quantum computing in decoherence-free
subspaces (Tame, Paternostro, and Kim, 2007; Jiang et al.,

2009) and topological cluster-state quantum computing

(Raussendorf, Harrington, and Goya, 2006; Raussendorf,
Harrington, and Goya, 2007). The latter proposal achieved

FIG. 37 (color online). Few-qubit cluster states and the quantum

circuits they implement. For each three-qubit and four-qubit cluster,

its quantum state (j�lin3i, j�lin4i, j�⊏4i, j�⊐4i, or j�h4i) and the

computation carried out in the one-way quantum computer model is

shown. Adapted from Walther, Resch, Rudolph et al., 2005.
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a high error threshold of 0:75
 10�3, the highest known for a

local architecture. For photon loss alone, Ralph, Hayes, and

Gilchrist (2005), Varnava, Browne, and Rudolph (2006), and

Varnava, Browne, and Rudolph (2008) have designed

loss-tolerant quantum computer schemes within the circuit

model and one-way model; the latter scheme can tolerate an

overall optical loss, including source inefficiency and collec-

tion loss, up to an impressive 33%. Gong et al. (2010)

proposed a new scheme where the efficiency threshold for

loss tolerance requires the product of source and detector

efficiencies to be >50%. Despite the progress, one should

note that when the losses are high, the resource requirements

become impractically high. Moreover, unfortunately, these

loss-tolerant codes tend to amplify the depolarizing errors

(e.g., bit flips and phase flips); the trade off has been

discussed and new schemes have been designed which

tolerate both errors in Rohde, Ralph, and Munro (2007).
Some basic quantum error correction codes have been

tested in optical experiments. O’Brien et al. (2005) demon-

strated a two-qubit code for correction of a Z-measurement

error. With a continuous-variable encoding, Aoki et al.

(2009) realized a nine-qubit Shor’s code, which is able to

correct an arbitrary single-qubit error. Decoherence-free sub-

spaces, a type of passive error-preventing codes, have been

experimentally realized using two photons by Kwiat et al.

(2000) and four photons by Bourennane, Eibl, Gaertner, et al.

(2004). Furthermore, the decoherence-free subspace ap-

proach was applied in an optical demonstration of the

Deutsch-Jozsa algorithm (Mohseni et al., 2003), and for

reliable measurement-based one-way information transfer

(Prevedel, Tame et al., 2007). To fight against the qubit-

loss error, an especially serious problem for photonic qubits,

Lu et al. (2008) demonstrated a four-qubit Grassl erasure

correction code [for the theoretical proposals see Grassl,

Beth, and Pellizzari (1997) and Ralph, Hayes, and Gilchrist

(2005)], and a tree-shaped graph state (Varnava, Browne, and

Rudolph, 2006). The tested method is applicable both in the

quantum circuit model and in the one-way model.
Despite the progress, the fault-tolerant thresholds are still

well beyond what is achievable with today’s technology.

Optical quantum computing makes critical use of sources of

on-demand single photonswhich are indistinguishable and can

be collected efficiently. The majority of experimental demon-

strations so far have relied on the SPDC photons, which suffers

from undesired higher-order photon emissions [Weinhold

et al. (2008), this has been considered as the major source of

error for most experiments reviewed here, see Sec. IV.D.1],

large bandwidth, and the probabilistic manner of photon pair

emission. Newgenerations of single-photon sources have been

developed: they are based on solid-state devices, atoms, mole-

cules, ions, etc. [see Lounis and Orrit (2005) for a recent

review]. These new single-photon emitters include single

quantum dots (Michler et al., 2000; Pelton et al., 2002;

Santori et al., 2002; Bennett et al., 2005; Englund et al.,

2007; Shields, 2007; Strauf et al., 2007), nitrogen-vacancy

color centers (Brouri et al., 2000; Kurtsiefer et al., 2000),

neutral atoms (Kuhn, Hennrich, and Rempe, 2002; McKeever

et al., 2004; Darquié, M. J. et al., 2005), ions (Keller et al.,

2004), and molecules (Brunel et al., 1999; Lounis and

Moerner, 2000). Solid-state sources of single photons hold

the promise of a ready integration, and much experimental
effort has recently been devoted to improving the single-
photon quality, collection efficiency, and interference of
photons from remote independent quantum dots. Other con-
trollable single-photon sources can be devised using trapped
single atoms in high-finesse optical cavities, which are spec-
trally narrow and have a well-defined spatial mode. However,
there are problems associated with low out-coupling effi-
ciency. Single photons emitted by atomic ensembles, as we
discussed in Sec. VI.F, are another promising source. This type
of single-photon sources naturally enjoys a very narrow
(�MHz) line width and good indistinguishability. However,
in addition to the low photon extraction efficiency, much work
needs to be done to improve the retrieval efficiency (converting
atomic collective excitations into photons) up to unity.

To meet the stringent demands of scalable optical quantum
computing, one faces yet another challenge: new single-
photon detectors that have near-unity efficiencies, high repe-
tition rates, low dark count rates, and the ability to resolve the
photon number. Currently, mostly used room-temperature
silicon single-photon detectors can be operated at 10 MHz
with a peak efficiency of 65%, a dark count rate of about
100 Hz, and a timing jitter of typically 500 ps; work is in
progress to improve these parameters [see, e.g., Kardynal,
Yuan, and Shields (2008)]. Significant progress (Rosenberg
et al., 2005; Divochiy et al., 2008; Lita, Miller, and Nam,
2008) has been made on superconducting detectors capable of
resolving photon number, with an ultralow dark count rate
(0.15 Hz at the wavelength of 1:3 �m), and high efficiency up
to 95%. See Hadfield (2009) for more details.

Finally, it is worth mentioning that chip-scale waveguide
quantum circuits have been created recently, and used to
demonstrate high-visibility Hong-Ou-Mandel interference,
CNOT gates, a realization of an elementary Shor’s algorithm
(Politi et al., 2008; Politi, Matthews, and O’Brien, 2009), and
quantum walk (Peruzzo, 2010). Current silica waveguide
circuits have dimensions of about 1 cm per logic gate. This
is a step toward integrated optics architecture for improved
performance, miniaturization, and scalability. An open chal-
lenge is to integrate such devices with single-photon sources
and detectors.

VIII. CONCLUDING REMARKS

We reviewed the principles and experimental techniques
for manipulation of multiphoton entangled states, which have
enabled a series of pioneering experiments in the field of
quantum information. A number of important applications
have been highlighted: Laboratory tests demonstrating the
contradiction between quantum mechanics and local realism
performed with entangled photons, that is, the Bell and
Greenberger-Horne-Zeilinger experiments (Weihs et al.,
1998; Pan, Simon, Brukner, and Zeilinger, 2001). Quantum
teleportation, the transfer and reconstruction of quantum
states over arbitrary distances, which became an experimental
reality with four-photon interferometry (Bouwmeester et al.,
1997; Marcikic et al., 2003). A variation of teleportation,
entanglement swapping (Pan et al., 1998), which together
with entanglement purification (Pan, Gasparoni, Ursin et al.,
2003) and quantum memory [see, e.g., Yuan et al. (2008)] are
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the essential components of quantum repeaters necessary for
quantum networking and long-distance quantum communi-
cation. Proof-of-principle demonstrations of linear-optics
quantum computing [see, e.g., O’Brien et al. (2003);
Walther, Resch, Rudolph et al., (2005); Lu et al. (2008);
and Lanyon et al. (2010)] and super-resolving phase mea-
surements [see, e.g., Nagata et al. (2007)] with multiphoton
devices.

The ultimate goals are long-distance quantum communi-
cation and scalable optical quantum computing. However,
many technological challenges remain. Parametric down-
conversion (Kwiat et al., 1995; White et al., 1999) has
been serving as the main workhorse for the multiphoton
experiments reviewed here; up to eight entangled photons
have been observed (Yao et al., 2012). However, due to its
intrinsic limitations, there is a bottleneck with regard to the
attainable brightness and fidelity of multiphoton states based
on it. This calls for the development of a next generation of
more reliable and scalable single-photon sources (Lounis and
Orrit, 2005). Other challenges include efficient coupling and
detection of single photons and quantum memories for pho-
tons with long storage times and a high retrieval efficiency,
etc. Continuing effort is devoted in this direction and encour-
aging results have been obtained. For instance, single photons
and entangled photons have been generated from self-
assembled quantum dots embedded in a microcavity, with
extraction efficiency up to 80% (Dousse et al., 2010). In the
case of a long-lived quantum memory based on atomic
ensembles, storage times were reported to reach up to 8 ms
(Zhao, R. et al., 2009). Employment of cavities in this case
may lead to additional potential improvements. Armed with
these new techniques, the control of multiphoton states will
reach a higher level. In any event, we expect that the tech-
niques reviewed in this article will be in the forthcoming
future in the mainstream of further progress of experimental
multi-photon interferometry.
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APPENDIX A: THE TWO-PHOTON STATES PRODUCED

BY SPDC

Crystal-field interaction–In the interaction Hamiltonian of
the electromagnetic field with an atom or a molecule, the

dominating part is Ĥa�f � �̂e �Eðx; tÞ, i.e., scalar product of
the dipole moment� of the atoms or molecules with the local
electric field. Since the electric polarization pðx; tÞ of a
medium is given by the mean dipole moment of the atoms
or molecules per unit volume, the principal term of the field-
crystal interaction Hamiltonian Hint is proportional toR
V pðx; tÞ �Eðx; tÞd3x, where V is the volume of the crystal.

One can assume that Eðx; tÞ interacts with pðx; tÞ only in the
point x, thus the ith component of polarization is in the most
general case given by

piðx; tÞ ¼
X3
j¼1

�ð1Þ
ij ðxÞEjðx; tÞ

þ X3
j;k¼1

�ð2Þ
ijkðxÞEjðx; tÞEkðx; tÞ þ � � � ; (A1)

where �ð1Þ
ij and �ð2Þ

ijk are the (macroscopic) polarizability

tensors. For any crystal with centrosymmetric structure the
quadratic term of the polarizability vanishes. Thus, as we
shall see, the SPDC effect exists only for birefringent media

having a nonzero value of �ð2Þ. If one assumes that �ð2Þ
ijkðxÞ has

the same value for all points within the crystal, one gets

Hint�
Z
V
pðx;tÞ �Eðx;tÞd3x

¼
Z
V
plinðx;tÞ �Eðx;tÞd3xþ

Z
V
pnlðx;tÞ �Eðx;tÞd3x;

where plin (pnl) is the linear (nonlinear) term of polarization.
The nonlinear (NL) part of the Hamiltonian is

HNL �
Z
V

X
ijk

�ð2Þ
ijkEiðx; tÞEjðx; tÞEkðx; tÞd3x: (A2)

The quantized electric field can be expressed (in the inter-
action picture) as

Eðx;tÞ¼X2
�¼1

Z
d3k

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ð2�Þ3p �̂ðk;�Þaðk;�Þeiðk�x�!tÞþH:c:

¼EðþÞðx;tÞþEð�Þðx;tÞ; (A3)

where Eð�Þðx; tÞ ¼ ½EðþÞðx; tÞ�y, and the summation is over
two orthogonal linear polarizations, H.c. denotes the
Hermitian conjugate of the previous term, and �̂ðk; �Þ is a
unit vector defining the linear polarization. The symbol
aðk; �Þ denotes the annihilation operator of a monochromatic
photon with wave vector k and polarization �̂ðk; �Þ. The
principal commutation rules for such creation and annihi-
lation operators are given by70 ½aðk; �Þ; ayðk0; �0Þ� ¼
��;�0�ð3Þðk� k0Þ, ½ayðk; �Þ; ayðk0; �0Þ� ¼ 0, and

½aðk; �Þ; aðk0; �0Þ� ¼ 0.
The relevant terms in the Hamiltonian–One can neglect the

depletion of the laser field and assume that the total field is
ELaserðx; tÞ þEðx; tÞ, where ELaser is a classical field. The
quantum field E describes the emitted photons. The down-
conversion takes place, thanks to only the terms in Eq. (A2) of
the form

70These new operators are linked with the ones discussed earlier

(see Sec. III) by the relation al ¼ P
�

R
d3kgl�kaðk; �Þ.
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Z
V

X
ijk

�ð2Þ
ijkE

Laser
i Eð�Þ

j Eð�Þ
k d3x: (A4)

Simply, only Eð�Þ contains the creation operators, and thus
acting on the vacuum state j�i can give rise to a two-photon
state. Thus, we forget about all other terms and analyze only
HNL in the form of Eq. (A4) plus its Hermitian conjugate.

We now describe the laser field as a monochromatic plane
wave ẑE0ðeiðk0�x�!0t��Þ þ c:c:Þ, where E0 is the field ampli-
tude.71 Then, from Eq. (A4), one gets for HNL

�
Z
V
d3x

X
jk

f�ð2Þ
3jkE0½eiðk0�x�!0t��Þ þ c:c:�


X
�

Z
d3kfð!Þ�̂jðk;�Þayðk;�Þe�iðk�x�!tÞ


X
�0

Z
d3k0fð!0Þ�̂kðk0;�Þayðk0;�Þe�iðk�x�!0tÞ0 þH:c:;

(A5)

with fð!Þ a factor dependent on !. Its specific structure is
irrelevant here. Extracting only those elements of the above
expressions which contain x and t, one sees that their overall
contribution to HNL is given by �ð�k0 � k�
k0Þe�ið�!o�!�!0Þt, where ��ð. . .Þ ¼

R
V d

3xeið�k0�k�k0Þ�x.
The terms with the time dependent factors eið!oþ!þ!0Þt aver-
age out in any time integration (see below), and thus we can
drop them. If we assume that our crystal is a cube L
 L
 L,
then for L ! 1, �� approaches �ð�k0 � k� k0Þ. Thus,
emission of the photon pairs is possible only for the directions
for which the condition k0 � kþ k0 is met. Finally, one has

HNL�X
�;�0

Z
d3k

Z
d3k0�ðk0�k�k0ÞAeff

�;�0e�ið!0�!�!0Þt


ayðk;�Þayðk0;�0ÞþH:c:; (A6)

where Aeff
�;�0 ¼ P

j;kE0�
ð2Þ
3jk�̂jðk; �Þ�̂kðk0; �0Þ is the effective

strength of the laser-crystal coupling. Henceforth, we shall
replace the symbol Aeff

�;�0 by Foðk0Þ.
The state of photons emitted in the SPDC process–The

pump-crystal coupling is weak. The evolution of the state
j�DðtÞi (in the interaction picture) is given by
iℏðd=dtÞj�DðtÞi ¼ HNLðtÞj�DðtÞi. In the first order in the
perturbation expansion

j�DðtÞi ’ j�Dðt0Þi þ 1

iℏ

Z t

t0

HNLðt0Þj�Dðt0Þidt0: (A7)

Put t0 ¼ �1, and take the vacuum state (no photons) j�i as
the initial state j�ð0Þi. Only in the term with the integral can
one find creation of pairs of photons. For t ! 1 it contains an
integral of the following form:

Rþ1
�1 dt0eit0ð!þ!0�!0Þ, which is

2��ð!þ!0 �!0Þ. Thus, the two-photon component of the
state, at t ¼ 1, is effectively given by

X
�;�0

Z
d3k

Z
d3k0Foðk0Þ�ðk0 � k� k0Þ�ð!þ!0

�!0Þayðk; �Þayðk0; �0Þj�i; (A8)

and the frequencies of the emissions satisfy the relation72

!0 ¼ !þ!0.
Directions of emissions–Since ! ¼ jkjc=nð!; �Þ, where

c=nð!; �Þ ¼ cð!; �Þ is the speed of light in the given me-
dium, which depends on frequency and polarization, the
condition for frequencies becomes jk0jcð!0Þ ’ jkjcð!; �Þ þ
jk0jcð!0; �0Þ. This together with k0 ’ ks þ ki fixes the pos-
sible emission directions, frequencies, and polarizations.73

Time correlations–The probability of a detection of a
photon, of, e.g., the horizontal polarization H, at a detector
situated at point x and at time t, is proportional to

�Tr½%ðtÞEð�Þ
H ðx; tÞEðþÞ

H ðx; tÞ�, where � is the coefficient which

characterizes the quantum efficiency of the detection process,
% is the density operator, and EH is the horizontal component
of the field in the detector. For the above relation to be true,
we also assume that only photons of a specified direction of
the wave vector enter via the aperture of the detector. For a

pure state, this reduces to pðx; t; HÞ ’ hc jEð�Þ
H EðþÞ

H jc i. The
probability of a joint detection of two photons, of polarization
H, at the locations x1 and x2, and at the moments of time t and
t0, is proportional to

pðx1; t; x2; t0Þ
� hc jEð�Þ

H ðx1; tÞEð�Þ
H ðx2; t0ÞEðþÞ

H ðx2; t0ÞEðþÞ
H ðx1; tÞjc i:

(A9)

If the detectors are very far away from each other, and from
the crystal, then the photon field reaching them can be treated
as free evolving. We put into Eq. (A9) the photon state
Eq. (A8). Let t ¼ t1 and t0 ¼ t2, and jc i ¼ jc ðt ¼ 1Þi,
then Eq. (A9) can be written down as

pðx1; tjx2; t0Þ ’ hc jEð�Þ
H ðx1; tÞEð�Þ

H ðx2; t0Þ

 EðþÞ

H ðx1; tÞEðþÞ
H ðx2; t0Þjc i: (A10)

To simplify the description, we replace the annihilation
and creation operators, which were used above, with new
operators aið!Þ and their conjugates, which describe ‘‘uni-
directional’’ excitations of the photon field [i.e., we assume
that the detectors see only the photons of a specified direction
of propagation, a good assumption if the detectors are far
from the crystal, and the apertures are narrow, see Fearn and
Loudon (1987)]. The index i defines the direction (fixed) of
the wave vector. The new operators satisfy commutation
relations, which are a modification of those given above to

the current specific case ½aið!Þ; ayj ð!0Þ� ¼ �ij�ð!�!0Þ,
½aið!Þ; ajð!0Þ� ¼ 0. If we choose just two propagation

71Since an arbitrary electromagnetic field is a superposition of the

plane waves, starting with this trivial case it is very easy to get the

general description.

72One should add here a note that in reality this relation is not

absolutely sharp. The molecular polarization was treated here

phenomenologically. Still, once a more refined model is used, the

relationship is sharp enough, so that the deviations from perfect

equality are beyond the resolution of the present measuring setups.
73If one has ! ’ !0, then we have a frequency degenerate SPDC,

and if k̂ ’ k̂0, then we have a colinear one.
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directions that fulfill the phase-matching conditions, then
effectively one can put

EðþÞ
H ðxi; tÞ ¼

Z
d!e�i!tfið!Þaið!Þ (A11)

with i ¼ 1, 2, and where f1 and f2 are the frequency response
functions of the filter-detector system.

We assume that the maxima of the functions agree with the
frequencies given by the phase-matching conditions.
Introducing a unit operator Î ¼ P1

i¼0 jbiihbij, where jbii is
a basis states, into Eq. (A10), we obtain

pðx1; tjx2; t0Þ ’ hc jEð�Þ
H ðx1; tÞEð�Þ

H ðx2; t0ÞÎEðþÞ
H ðx1; tÞ


 EðþÞ
H ðx2; t0Þjc i: (A12)

Since EðþÞ
H contains only the annihilation operators, they

transform the two-photon state j�i into the vacuum state.
Thus, Eq. (A12) can be put as (Mollow, 1973)

pðx1; tjx2; t0Þ ’ hc jEð�Þ
H E0ð�Þ

H j�ih�jEðþÞ
H E0ðþÞ

H jc i;
(A13)

where the primed expressions pertain to the moment of time t0
and the position x2. Thus, we have pðx1; tjx2; t0Þ ’
jA12ðt; t0Þj2, where A12ðt; t0Þ ¼ h�jEðþÞ

H ðx1; tÞE0ðþÞ
H ðx2; t0Þjc i.

With the use of the new creation operators, the state j�i
can be approximated by

j�iþ
Z
d!1

Z
d!2Fo�ð!�!1�!2Þay1 ð!1Þay2 ð!2Þj�i:

(A14)

Therefore, one gets the following formula for the detection
amplitude:

A12ðt;t0Þ
¼ h�j

Z
d!0e�i!0t0f2ð!0Þa2ð!0Þ

Z
d!e�i!tf1ð!Þa1ð!Þ



Z
d!1

Z
d!2Fo�ð!0�!1�!2Þay2 ð!2Þay1 ð!1Þj�i:

(A15)

Since the creation and annihilation operators for different
modes commute, and since one can use

h�jaið!0Þayj ð!Þj�i ¼ �ij�ð!0 �!Þ, we get

A12ðt; t0Þ ¼ Foe
�i!0t

0 Z
d!e�i!ðt�t0Þf2ð!0 �!Þf1ð!Þ;

(A16)

and we have

pðx1; tjx2; t0Þ � jA12ðt; t0Þj2

’
��������
Z

d!e�i!ðt�t0Þf2ð!0 �!Þf1ð!Þ
��������

2

;

(A17)

i.e., the probability depends on the difference of the detection
times.

For instance, assume that f1 ¼ f2 ¼ f, and that they are

Gaussian, fð!Þ ¼ Ce�ð!c�!Þ2=�2
, with the central frequency

!c ¼ !0=2. Then we have f1ð!Þ ¼ f2ð!0 �!Þ ¼ fð!Þ.

The probability of detection of two photons at the moments
t and t0 reads

pðx1; tjx2; t0Þ

�
��������
Z

d!e�i!ðt�t0ÞC2e�2½ð!c�!Þ2=�2�
��������

2�e�ð�2=2Þðt�t0Þ2 :

(A18)

As � ! 1, Eq. (A18) approaches �ðt� t0Þ. We have a
perfect time correlation. For a realistic case of final band-
widths, the degree of time correlation of the detection of the
SPDC photons depends entirely on the frequency response of
the detectors (plus interference filters, if any, in front of
them).

The output state of pulsed pumped SPDC–Since the pump
pulse is a superposition of monochromatic waves, the output
state for this case is an integral of the monochromatic
case over the momentum profile of the pulse: jc pulsei ¼R
d3k0jc ðFoðk0ÞÞi, where jc ðFoðk0ÞÞi is the state for the

monochromatic case with wave vector k0 and field amplitude
Foðk0Þ. Since the frequency of the pulse and the wave vector
are not strictly defined, if the pulse is too short the SPDC
photons are less tightly correlated directionally.

The two-photon state produced by a SPDC process is given
by (in the unidirectional approximation)

j�i ¼
Z

d!0Foð!0Þ
Z

d!1

Z
d!2�ð!0 �!1 �!2Þ


 ay1 ð!1Þay2 ð!2Þj�i; (A19)

where we have replaced the effective pump amplitude by the
spectral decomposition of the laser pulse Foð!0Þ.

Two-photon detection amplitude: the pulsed-pump case–If
we have a pulsed pump, we have to integrate the amplitude
(A16) over the frequency content of the pump [just like it is in
the case of the state (A19)]:

Aðt; t0Þ ¼
Z

d!oFoð!oÞe�!ot
0



Z

d!e�i!ðt�t0Þf2ð!o �!Þf1ð!Þ

¼
Z

dtpFoðtpÞf1ðt� tpÞf2ðt0 � tpÞ; (A20)

where FoðtÞ is the Fourier transformation (time profile) of
Foð!Þ. Namely, the time correlation of the detections is
defined by the resolution of the respective filters, while the
events happen at times dictated by the pulse. This is clearly
visible in the case of no filters and broad band radiation.
The (unphysical) limiting case is reached by replacing fs
by �ðt� tpÞ and �ðt0 � tpÞ. This gives FðtÞ�ðt0 � tÞ.
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Fiore, 2008, Nature Photon. 2, 302.

Dousse, A., J. Suffczynski, A. Beveratos, O. Krebs, A. Lematre, I.

Sagnes, J. Bloch, P. Voisin, and P. Senellart, 2010, Nature

(London) 466, 217.

Dowling, J., 1998, Phys. Rev. A 57, 4736.

Duan, L.-M., J. Cirac, and P. Zoller, 2002, Phys. Rev. A 66, 023818.

Duan, L.-M., M. Lukin, J. Cirac, and P. Zoller, 2001, Nature

(London) 414, 413.

Duan, L.-M., and R. Raussendorf, 2005, Phys. Rev. Lett. 95,

080503.

Dür, W., and H.-J. Briegel, 2003, Phys. Rev. Lett. 90, 067901.

Dür, W., H.-J. Briegel, J. Cirac, and P. Zoller, 1999, Phys. Rev. A 59,

169.

Eberhard, P., 1993, Phys. Rev. A 47, R747.

Edamatsu, K., R. Shimizu, and T. Itoh, 2002, Phys. Rev. Lett. 89,

213601.

Eibl, M., S. Gaertner, M. Bourennane, C. Kurtsiefer, M. Zukowski,

and H. Weinfurter, 2003, Phys. Rev. Lett. 90, 200403.

Einstein, A., 1905, Ann. Phys. (Leipzig) 322, 132.

Einstein, A., B. Podolsky, and N. Rosen, 1935, Phys. Rev. 47, 777.
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Żukowski, M. Aspelmeyer, and A. Zeilinger, 2007, Nature

(London) 446, 871.

Grover, L., 1997, Phys. Rev. Lett. 79, 325.

Gühne, O., C. Lu, W. Gao, and J. Pan, 2007, Phys. Rev. A 76,

030305.

Gühne, O., and G. Toth, 2009, Phys. Rep. 474, 1.

Hadfield, R. H., 2009, Nature Photon. 3, 696.

Halder, M., A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H.

Zbinden, 2007, Nature Phys. 3, 692.

Halder, M., J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J.

Wadsworth, and J. G. Rarity, 2009, Opt. Express 17, 4670.

Hammerer, K., A. Sorensen, and E. Polzik, 2010, Rev. Mod. Phys.

82, 1041.

Han, Y.-J., R. Raussendorf, and L.-M. Duan, 2007, Phys. Rev. Lett.

98, 150404.

Hanbury Brown, R. and R.Q. Twiss, 1956, Nature (London) 177,

27.

Hardy, L., 1992, Phys. Rev. Lett. 68, 2981.

Hardy, L., 1993, Phys. Rev. Lett. 71, 1665.

Haroche, S., 1995, Ann. N.Y. Acad. Sci. 755, 73.

Hayashi, A., T. Hashimoto, and M. Horibe, 2005, Phys. Rev. A 72,

032325.

Herzog, T. J., J. G. Rarity, H. Weinfurter, and A. Zeilinger, 1994,

Phys. Rev. Lett. 72, 629.
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