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The ongoing experimental and theoretical effort aimed at understanding nonclassical rotational

inertia in solid helium has sparked renewed interest in the supersolid phase of matter, its micro-

scopic origin and character, and its experimental detection. The purpose of this Colloquium is to

provide a general theoretical framework for the phenomenon of supersolidity, review some of the

experimental evidence for solid 4He, and discuss its possible interpretation in terms of physical

effects underlain by extended defects (such as dislocations). Quantitative support to our theoretical

scenarios by means of first-principle numerical simulations is provided. Alternate avenues for the

observation of the supersolid phase, not involving helium but rather assemblies of ultracold atoms,

are also discussed.
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I. INTRODUCTION

The search for exotic phases of matter drives much
of the fundamental research in condensed matter physics.
Of particular interest are phases displaying simultaneously
different types of order. The archetypal example is the so-
called supersolid, an intriguing, conjectured macroscopic

manifestation of quantum mechanics, which has until now
eluded direct, unambiguous experimental observation. In
recent times, the search for this fascinating phase of matter
has focused on solid helium, but alternate avenues to its
possible observation are emerging, notably in the area of
cold atom physics.

At the time of this writing, consensus is still lacking as to
whether the wealth of experimental evidence accumulated for
solid helium (especially over the past eight years) indisput-
ably points to the observation of the supersolid phase of
matter. Among the various proposed theoretical scenarios,
none appears capable of accounting for all the puzzling, often
conflicting experimental findings (Balibar, 2010).

In this Colloquium, we make no attempt to offer the final
word on this subject. Rather, we modestly limit ourselves to
illustrating one theoretical interpretation of some of the ex-
isting helium phenomenology. Specifically, we describe a
theoretical scenario in which extended defects, such as dis-
locations and grain boundaries, play a crucial role. Such a
scenario is born out of, and supported by, first-principle
microscopic calculations, based on quantum Monte Carlo
techniques.

Motivated by the impetuous progress made in the context
of ultracold atom physics, in light of the clear promise that
such a field holds toward the realization of artificial quantum
many-body systems, we discuss the possible observation of
the supersolid phase in ultracold atom assemblies. In this case
too, our theoretical proposals are largely based on numerical
evidence from computer simulations.

A. Basic definitions

What is a supersolid? As it turns out, this concept defies in
part one’s intuition. Although a rigorous theoretical definition
can be provided, it can be tricky at times to establish un-
ambiguously whether a given physical system meets all the
requirements that warrant such a denomination. For this
reason, we first proceed to state those conditions as clearly
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as we can, in order to set up the framework for the rest of our
discussion.

Taken literally, of course, the word supersolid means
‘‘superfluid solid.’’ This implies that a supersolid substance
ought to display the same basic qualities of a conventional
solid, as well as those of a superfluid. This poses an intellectual
challenge right away. One is hard put forming a mental picture
of how the very different and seemingly antithetical solid and
superfluid physical behaviors could be merged into a single
homogeneous phase of matter, at least based on familiar
macroscopic notions. Should one imagine a supersolid to be
a peculiar solid, capable of flowing just like a liquid (and, in
addition, without dissipation)? Or, conversely, something
more like a ‘‘stiff liquid,’’ resisting shear like a solid? While
there are some elements of truth in these tentative descriptions,
a rigorous, consistent definition of the supersolid phase is best
achieved by taking on a microscopic approach, supplemented
by the theoretical notion of long-range order.

In order to keep the discussion as simple and transparent
as possible, we shall for the moment restrict it to
three-dimensional (3D) systems. In this case, both solid and
superfluid phases have well-defined order parameters that
characterize them. In lower-dimensional systems, solid and
superfluid can be defined without reference to order parame-
ters (any such quantity vanishes identically at any finite
temperature). Instead, one must speak of long-range (non-
integrable) power-law correlations in the order parameter
field (Kosterlitz and Thouless, 1973). This difference, how-
ever, is not of fundamental importance to our presentation,
since modifications of theory required to deal with reduced
dimensionality are relatively simple and well understood.

1. Order in a solid

In a crystalline solid, elementary constituents (i.e., atoms
or molecules) are spatially arranged in an orderly fashion,
each occupying one of a discrete set of well-defined sites of a
three-dimensional periodic lattice.1 In order to make a more
formal statement, we introduce the (time-averaged2) local
density �ðrÞ of particles forming the crystal. The average
value of �ðrÞ in a macroscopic sample of crystal of volume�
is given by

�� � 1

�

Z
d3r�ðrÞ: (1)

Let ��ðrÞ � �ðrÞ � �� be the local deviation of the density
from the sample-averaged value ��. In a system that does not
break translation invariance, such as a gas or a liquid, �ðrÞ ¼
�� and ��ðrÞ ¼ 0. In a crystal, on the other hand, translational
invariance is broken, i.e., ��ðrÞ does not vanish identically,
and ordering is expressed through the following condition:

��ðrÞ ¼ ��ðrþ TÞ; (2)

holding for any vector T belonging to the discrete set of
lattice vectors (i.e., vectors connecting any two lattice sites)

defining the crystal. Consider the three-dimensional Fourier
transform of ��ðrÞ:

~�ðkÞ ¼ 1

�

Z
d3r��ðrÞe�ik�r: (3)

Equation (2) implies that ~�ðkÞ, and its squared magnitude
SðkÞ, known as the static structure factor, display peaks in
correspondence of wave vectors G in the so-called reciprocal
lattice, i.e., fulfilling the condition

G � T ¼ 2�n (4)

for any vector T defined as above, with n being an integer.
These peaks in SðkÞ manifest themselves experimentally as
maxima in the intensity of light scattered off a crystalline
sample, at specific angles (Chaikin and Lubensky, 1995).
Because Eq. (2) is assumed to hold for a macroscopic sample,
one speaks of density long-range order (LRO).

Broken translation invariance has the immediate macro-
scopic consequence of imparting to the system the well-
known property of resistance to shear, which a fluid does
not possess. It is important to note that, while LRO implies
broken translation invariance, the converse is not true.
Glasses, for example, are substances which share many of
the macroscopic properties of crystalline solids, in which
translation invariance is broken, but ��ðrÞ fluctuates disor-
derly and no LRO exists. As discussed later, there is in
principle nothing preventing some glassy systems from turn-
ing superfluid; however, the denomination supersolid does
not apply here, due to the lack of density LRO. In these cases,
one ought more properly speak of superglass.

Another point that need be made at the outset is that Eq. (2)
occurs in a solid spontaneously, exclusively as a result
of interactions among elementary constituents, at specific
thermodynamic conditions (i.e., temperature and pressure).
Such a spontaneous breaking of translation symmetry is an
integral part of the definition of supersolid. One could cer-
tainly imagine externally imposing a density modulation to a
superfluid liquid. For instance, this could be accomplished
by adsorbing a few layers of 4He on a strongly attractive
substrate, such as graphite (Crowell and Reppy, 1993). The
local density of successively adsorbed 4He layers inevitably
reflects the corrugation (i.e., LRO) of the underlying graphite
substrate, to a lesser degree for layers increasingly removed
from it. Referring to any superfluid adsorbed 4He layer as a
‘‘supersolid,’’ on account of the density modulation imposed
by a corrugated substrate, is fundamentally incorrect and
constitutes a misnomer.

2. Order in a superfluid

Superfluidity is the property of a substance sustaining
persistent, dissipationless flow. It was first observed in the
liquid phase of the most abundant isotope of helium (4He),
independently by Kapitza (1938) and Allen and Misener
(1938). Its fundamental relevance extends considerably be-
yond the physics of condensed helium. For example, it is now
widely accepted that superconductors are essentially charged
superfluids (Tilley and Tilley, 1990).

A useful phenomenological model introduced by Tisza
shortly after the discovery of superfluidity in liquid 4He

1For simplicity we assume a Bravais lattice.
2In any real crystal, thermal and quantum fluctuations cause the

local density to deviate instantaneously from its time-averaged

value.
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(Tisza, 1938) formally expresses the local density �ðrÞ of a
superfluid system, as a sum of two contributions:

�ðrÞ ¼ �SðrÞ þ �NðrÞ; (5)

where the subscripts S and N stand for ‘‘superfluid’’ and
‘‘normal’’ component. The superfluid component carries no
entropy and can sustain flow indefinitely, whereas the normal
component is subjected to dissipation, as any regular fluid.
Henceforth, we use the notation �S and �N to refer to values
averaged over the whole system. In a translation invariant
system, it is �NðrÞ ¼ �N and �SðrÞ ¼ �S. Superfluid behav-
ior typically sets in through a continuous phase transition at a
temperature Tc, below which �S becomes nonzero and in-
creases monotonically as the temperature T ! 0. In a trans-
lation invariant system, �SðT ¼ 0Þ ¼ ��, i.e., the average
density of the system. Phrased differently, the superfluid
fraction �S= �� approaches unity as T ! 0. On the other
hand, Leggett showed (Leggett, 1970) that, for any superfluid
system breaking translation invariance, it is �SðT ¼ 0Þ< ��.

A wealth of theoretical and experimental work, spanning
now over seven decades, has afforded satisfactory theoretical
understanding of the microscopic origin of superfluidity, in
4He and other systems. In particular, it is now understood that
superfluidity is a macroscopic manifestation of quantum
particles behaving collectively as classical complex fields
(Kosterlitz and Thouless, 1973; Svistunov, 1992), and that
it is crucially underlain by a type of quantum statistics
(Bose) since description in terms of classical fields emerges
in the limit of large occupation numbers (Glauber, 1963;
Langer, 1968, 1969).

In three-dimensional systems, superfluidity is accompa-
nied by Bose-Einstein condensation (BEC) (Leggett, 2006),
a collective phenomenon that takes place at low temperature.
Indeed, there is virtually unanimous agreement that, if super-
fluidity is to occur in a system of identical particles obeying
Fermi statistics, some physical mechanism must be present,
allowing for the formation of pairs [e.g., electronic Cooper
pairs in superconductors, or atomic pairs in 3He (Tilley and
Tilley, 1990) and cold atomic vapors]. These composite
objects act in some sense as bosons and as such can undergo
BEC.3

BEC consists of the occupation of just one quantum-
mechanical single-particle state by a finite fraction of all N
particles in the system.4 In order to be regarded as such, BEC
must take place in a macroscopic sample of matter; mathe-
matically, this is expressed by taking the thermodynamic limit,
i.e., N, � ! 1, but the density �� ¼ N=� remains finite.

In amany-particle system that enjoys translation invariance,
such as a liquid, the single-particle quantum-mechanical state
into which particles can condense is that of a free particle of
momentum ℏk ¼ 0. In order to render the above statement
more quantitative, we introduce the momentum distribution

~nðkÞ � hĉ yðkÞĉ ðkÞi=N; (6)

where h� � �i stands for thermal expectation value and ĉ ðkÞ,
ĉ yðkÞ are Bose annihilation and creation operators of a par-

ticle of momentum ℏk. The operator ĉ yðkÞĉ ðkÞ is the num-
ber operator for particles of said momentum.

In a Bose condensed system, ~nðkÞ will take the form

~nðkÞ ¼ n��ðkÞ þ ~nNCðkÞ: (7)

The first term refers to the condensate, and the quantity n� is
referred to as the condensate fraction. It should not be
confused with the superfluid fraction, namely, the fraction
of the system that can flow without dissipation. These are
two conceptually distinct quantities. In particular, n� is the
square of the amplitude of the complex order parameter for
the superfluid. The second term of Eq. (7) represents the
contribution to the momentum distribution coming from
states of nonzero momentum, none of which is occupied
macroscopically (i.e., by a finite fraction of all the particles
in the system). The condensate fraction approaches a
value close to 100% at low temperature, in a weakly inter-
acting Bose gas. Interactions have the effect of depleting the
condensate; for example, the current experimental estimate
of n� in liquid 4He at zero temperature and at saturated
vapor pressure is about 7.5% (Glyde, Azuah, and Stirling,
2000).

In order to elucidate how a finite condensate fraction
corresponds to a kind of order, consider the Fourier transform
of the momentum distribution, known as the one-particle
density matrix

nðr; r0Þ ¼ hĉ yðrÞĉ ðr0Þi: (8)

Here the field operators ĉ ðrÞ and ĉ yðrÞ annihilate and create
a particle at position r. They are Fourier transforms of ĉ ðkÞ
and ĉ yðkÞ.

In a system enjoying translation invariance, such as a liquid
or a gas, it is nðr; r0Þ ¼ nðr� r0Þ. If translation invariance is
broken, as in a crystal, it is customary to consider, for
simplicity, the spatially averaged function

nðrÞ ¼ 1

�

Z
d3r0nðr0; r0 þ rÞ: (9)

It can be easily shown that Eq. (7) is equivalent to

nðrÞ ! n� as r ! 1; (10)

implying that a state of a system comprising a thermody-
namic number of particles, in which a particle is removed
at a given position r, has a finite quantum-mechanical am-
plitude over a state in which an identical particle is removed
at an arbitrarily large distance away from r. Equation (10)
expresses the presence of a type of order, referred to as off-
diagonal long-range order (ODLRO).

One way to come to terms with the mind-boggling
notion of ODLRO consists of accepting that, because parti-
cles are indistinguishable and can trade place with one an-
other, each particle can be seen as being essentially
delocalized throughout the whole system (Kohn, 1964;
Leggett, 1970).

3The relationship between superfluidity and BEC is straightfor-

ward only in 3D; formally BEC is not required for superfluidity, as

evidenced by finite-temperature superfluidity in two-dimensional

(2D) systems, where BEC is replaced by topological order and

power-law correlations.
4For simplicity, but with no loss of generality, we restrict our

discussion to systems of bosons of spin zero.
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3. Order in a supersolid

Henceforth, we adopt the term ‘‘supersolid’’ to refer to a

homogeneous5 phase of matter in which both LRO and

ODLRO, as defined above, exist simultaneously and appear

spontaneously for the same species of particles. The defini-

tion of ODLRO is the same in a system featuring crystalline

order. Conventional momentum is replaced by crystal

momentum, but BEC, if it occurs, still takes place in the

k ¼ 0 state (up to a reciprocal lattice vector), by symmetry.

Moreover, since a crystal breaks translation invariance, the

superfluid fraction ought to saturate to a value less than unity

as T ! 0.
At first, one might think that the intrinsic localization of

particles characterizing a crystal phase, and the delocalization

ensuing from Eq. (10) (as well as superfluidity) ought to be

incompatible. Indeed, this was the conclusion reached by

Penrose and Onsager, arguably the first to pose the question

of the existence of a supersolid in 1956. In their seminal

paper, they contended that no ODLRO can exist in a crystal-

line solid. Their argument is based on a variational model of a

crystal with atoms ‘‘pinned’’ at equilibrium lattice positions

(Penrose and Onsager, 1956). The statement is that particle

localization, due to crystallization or other causes (e.g., dis-

order), acts to prevent macroscopic quantum-mechanical ex-

changes of indistinguishable particles, thereby de facto

removing all effects of quantum statistics (including BEC).
While seemingly plausible, and, in fact, reiterated even

many years later (Nozières, 1995), the argument of Penrose

and Onsager is no formal proof of the nonexistence of a

supersolid. Indeed, shortly after the publication of the article

by Penrose and Onsager, Gross (1957, 1958) showed that a

superfluid system described by the nonlinear classical field

equation may feature a density wave modulation. This find-

ing, which qualifies as the first theory of the supersolid phase,

was essentially overlooked, in part due to incomplete under-

standing of the conditions leading to the validity of the

calculation by Gross. Yang (1962) proposed that in a crystal

of helium, in which atoms enjoy a high degree of quantum

delocalization, exchanges of adjacent atoms might, in fact, be

significant. Successively, Leggett (1970) revisited Yang’s

argument, suggesting an experiment in which the (presum-

ably small) superfluid response of a 4He crystal could be

measured.
A different, intriguing scenario for the occurrence of super-

solid order in a highly quantum crystal came from Andreev

and Lifshitz (1969) and Chester (1970) and is based on the

predicted high mobility, at low temperature, of point defects

such as vacancies or interstitials, which are thermally acti-

vated in most materials, but may be present even in the

ground state of such quantum many-body systems as 4He.
These delocalized defects are often referred to as ‘‘zero-point

defects,’’ to emphasize the notion that they are not produced

by deliberately removing (adding) atoms from (to) the lattice.

Instead, the lattice period and the unit cell volume �0 are

automatically adjusted to have a noninteger number of parti-

cles per unit cell, ���0, even in the fully equilibrated state.

Conceivably, a gas of such repulsively interacting point

defects ought to undergo BEC, and turn superfluid, at low

temperature. Recently, it was pointed out that the zero-point

defects supersolid scenario is the only one possible in perfect

continuous-space crystals (Prokof’ev and Svistunov, 2005)

because superfluid states are necessarily gapless with respect

to adding and removing particles to and from the system.

Consequently, integer ���0 in a supersolid may occur only as

a zero-measure coincidence.
A crystal of 4He has always been regarded as the most

likely candidate to display supersolidity, arising through any

of the above scenarios, even though no reliable quantitative

predictions have ever been furnished of the magnitude of the

effect, or the transition temperature. This is perhaps the main

reason why, despite an intense experimental effort, no un-

ambiguous experimental observation of supersolid behavior

in 4He was reported for decades, following the original

theoretical predictions. In 1992, a rather sobering assessment

of the prospects of successful observation of a supersolid

phase of helium was offered by Meisel (1992).
An exciting, unexpected turn of events took place in 2004,

with the discovery, by Kim and Chan, of a downward shift in

the period of a torsional oscillator filled with solid 4He, at
temperatures below 250 mK (Kim and Chan, 2004a, 2004b).

The interpretation of these findings in terms of a superfluid

mass decoupling within the helium solid unquestionably

appears legitimate, serious, and plausible. However, as dis-

cussed in the next sections, the final word is yet to be spoken

as to whether the effect first reported by Kim and Chan, and

since then confirmed by a number of other groups, indeed

signals the onset of a new phase of matter.
Irrespective of the above though, there is no question that

the discovery has sparked a renewed interest in the phenome-

non of supersolidity, from which novel, interesting lines of

research have spun. First, achieving a complete, thorough

understanding of the low-temperature phase diagram of solid

helium has proven a surprisingly complicated and surely

intriguing problem on its own, from both the theoretical

and experimental standpoints. Many puzzling, and often

apparently conflicting experimental findings have cast doubts

on the applicability to solid 4He of microscopic pictures such

as that of Andreev, Lifshitz, and Chester. In particular, sig-

nificant attention is being directed to inhomogeneous scenar-

ios, involving such extended defects as grain boundaries, as

well as dislocations.
Second, the search for the supersolid phase of matter has

now extended beyond solid helium, in a new and exciting

direction. The scientific breakthroughs in cold atom physics

that have characterized the past two decades make it now

feasible to investigate novel phases of matter, not only by

providing remarkably clean and controlled experimental

many-particle systems, but also by allowing one to fashion

artificial interparticle potentials, not arising in any known

condensed matter system. The aim here is twofold: on the

one hand, the high degree of control afforded by cold atoms

may render the unambiguous identification of the sought phase

more direct and easier than in solid helium. More fundamen-

tally, the possibility of ‘‘tweaking’’ the interparticle potential

permits one to address basic questions, such as which kind of

interaction, if any, can underlie a supersolid phase?

5As opposed to simple coexistence of two phases, each featuring

only one kind of order.
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B. Experimental detection

Because it is a manifestation of quantum mechanics on a
macroscopic scale, one would be inclined to assume that the
observation of supersolid behavior should be relatively
straightforward and unequivocal, the only issue being
whether the relevant phenomenology occurs at experimental
conditions (e.g., temperature) that are presently accessible.
Observation of superfluidity in liquid 4He is made relatively
simple by the stunning effects that can be produced in
laboratory, all of which exploit the unusual flow of the
superfluid liquid. The situation is more complicated in the
case of a supersolid, which is expected to retain the mechani-
cal properties of a regular solid, notably resistance to shear,
preventing it to flow like a liquid.6

Strictly speaking, some demonstrations of superfluid be-
havior, such as persistent flow, or the well-known fountain
effect (Tilley and Tilley, 1990), should be feasible in a solid as
well, with the important caveat that a supersolid will support
dissipation-free flow only of its own particles; with respect to
any other external object, it will behave as a conventional
solid. Clearly, however, the ease and spectacular immediacy
of the observation of such effects, when they take place in the
liquid superfluid phase, may be difficult to replicate in the
solid. In general, therefore, the supersolid nature of a con-
densed matter system can only be typically ascertained by
means of relatively indirect observations.

Another potential problem lies in the fact that, as men-
tioned, in the low-temperature limit neither the superfluid nor
the condensate fractions of a supersolid will approach 100%,
due to interactions among particles and the lack of translation
invariance. Rather they will both saturate to values that could
conceivably be very small, rendering the measurement of any
‘‘superfluid signal’’ problematic.

1. Nonclassical rotational inertia

Perhaps the simplest way of detecting experimentally
supersolid behavior was suggested by Leggett in 1970
(Leggett, 1970) and consists of measuring a reduction of
the moment of inertia of a solid sample, with respect to its
classical value. This effect is commonly referred to as non-
classical rotational inertia, or NCRI. Consider a cylindrical
vessel (cell), filled with a given substance, and let the cell be
connected to a torsion rod, allowing it to execute small
harmonic oscillations about its axis, as shown in Fig. 1.
This experimental setup is typically referred to as a torsional
oscillator (TO).

The measurable resonant period of oscillations is propor-
tional to the square root of the moment of inertia of the
system, which of course includes a contribution from the
vessel itself, as well as from the substance enclosed in it.

If below a given temperature, the resonant period shows a
monotonic, continuous decrease, one way to interpret this is
to assume superfluid mass decoupling from the rotation of
part of the sample inside the vessel. In other words, a fraction

thereof (normal) keeps oscillating together with the appara-
tus, while the remaining (superfluid) part remains at rest,
therefore not contributing to the rotational moment of inertia.
Formally,

IðTÞ ¼ Iclass½1� �sðTÞ= ���; (11)

where Iclass is the classical moment of inertia, regarding the
whole sample as normal. Thus, a measurement of the reso-
nant period is a measurement of the superfluid fraction of the
system, as long as Iclass and the elastic properties of the entire
apparatus remain constant as the temperature is lowered.

The NCRI technique is particularly well suited to probe
possible superfluidity of a solid as it does not require any
extra circuitry to produce relative flow between the normal
and superfluid components. However, the NCRI-TO experi-
ment is not without some ambiguity, in part precisely because
it is indirect, i.e., it does not involve any actual measurement
of mass flow out of the system. Indeed, a number of different
physical mechanisms have been proposed, not involving a
superfluid transition of the helium crystal, that could con-
ceivably cause a change in the oscillation period, thereby
giving rise to a spurious NCRI signal (Clark, Lin, and Chan,
2006). An example of such a mechanism is given by a
possible structural transformation taking place in the crystal
at low temperature. For these reasons, careful, concurrent
control measurements on similar, nonsuperfluid systems7

are required, in order to ascertain by comparison whether
what is being observed is indeed a genuine superfluid
transition.

There are a number of puzzling observations, connected
with the onset of NCRI, which have so far eluded a satisfac-
tory explanation. We come back to this point below, when
discussing experimental evidence of supersolidity of 4He that
is available at this time, NCRI measurements constituting the
bulk thereof. We propose a possible theoretical interpretation
of (at least some of) the phenomenology in that context in
Sec. II.

FIG. 1 (color online). Schematic of the experimental torsional

oscillator setup aimed at measuring nonclassical rotational inertia.

The cell is filled with a sample of condensed matter, whose

superfluid fraction affects the moment of inertia of the overall

system.

6Flow arising as a result of plastic deformation of a supersolid is

expected to be radically different from that in a regular solid. The

corresponding theory, however, is still far from being complete (see

also below)

7For example, in the case of solid 4He an obvious control

experiment consists of performing the same measurement on solid
3He, a Fermi system not expected to undergo a supersolid transition,

certainly not at the same temperature as 4He.
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2. Mass transport through a supersolid

A different way of detecting supersolid behavior is based
on flow, not of the supersolid, but through the supersolid.
Consider the experimental setup schematically shown in
Fig. 2. One wants to establish flow of a fluid through a
pipe, a section of which is filled with solid of the same
substance. The most obvious example, one with which we
are all familiar, is that of a water duct. During cold winter
months, water can freeze in a section of the duct. As we know
from experience, water flow (for example, in the direction
shown by the arrows in Fig. 2) ceases as soon as ice (solid
water) clogs the duct. There is, of course, nothing peculiar
about water in this regard; the same observation will be made
if any other substance fills the pipe, as long as freezing takes
place as shown. Indeed, not even superfluid liquid helium
may flow through the same section of the pipe, if filled with
normal solid helium.

On the other hand, some flow will take place through
supersolid helium. In other words, a superfluid liquid will
flow through a supersolid made of the same elementary
constituents. The above experiment allows one to gain an
intuitive, vivid understanding of the somewhat cryptic idea of
ODLRO, as expressed by Eq. (10); for one may think of
helium atoms in the superfluid phase, flowing toward the
frozen blockage (left part of Fig. 2), essentially ‘‘reemerg-
ing’’ on the right side of it, through a process of long
exchanges with (indistinguishable) atoms in the supersolid.
Thus, ‘‘flow’’ through a supersolid necessarily must involve
identical particles as it is underlain by quantum exchanges.
An impurity, namely, a particle distinguishable from those
that make the supersolid will not move through it any more
than through a regular crystal. In this respect, a supersolid
acts very differently from a superfluid, which allows a foreign
particle to move through it with very little drag (no drag at all
at T ¼ 0).

Experiments such as the one described above have been
performed on solid helium only relatively recently (Ray and
Hallock, 2008). They are also not without drawbacks, e.g., the
difficulty of inferring a reliable value for the superfluid
fraction. We describe the main results of these experiments
and the progress they afforded on the understanding of super-
solidity in 4He in Sec. II.

3. Momentum distribution

The momentum distribution ~nðkÞ [Eq. (6)] can in prin-
ciple expose in full the supersolid character of a system.

For a crystal of ‘‘Boltzmannons,’’ namely distinguishable

quantum particles, ~nðkÞ is a Gaussian, whose semiwidth is
determined by zero-point motion. Particle indistinguishabil-

ity and quantum statistics cause measurable deviations of

the momentum distribution from the Gaussian behavior.
Specifically, the one-body density matrix nðrÞ, which is

the Fourier transform of ~nðkÞ, decays exponentially in a

normal (i.e., nonsupersolid) Bose crystal, conferring to ~nðkÞ
a much slower decay with k than the Gaussian one

(Boninsegni, 2009).
In the presence of ODLRO, nðrÞ settles asymptotically on

the finite value n� at large r. In the case of a supersolid,

however, it must also take on an oscillatory behavior, reflect-

ing lattice periodicity. This is because in a solid, long many-
particle exchanges which underlie ODLRO involve particles

situated preferentially at lattice sites. That means that nðkÞ in
a supersolid will feature satellite peaks at reciprocal lattice
vectors.

Thus, in principle a measurement of ~nðkÞ could provide the
most direct assessment of whether a system is supersolid or

not as both types of order are probed simultaneously. In
practice, however, the feasibility of such a determination

depends on the strength of the signal, i.e., n�, as well as on
the inherent sensitivity of the measuring apparatus.

For example, the momentum distribution of solid helium

can be studied experimentally by deep inelastic neutron

scattering. The resolution of the most advanced experimen-
tal facilities available nowadays, as well as the uncertainty

associated with the analysis of the raw data and the ex-

pected, sheer feebleness of the supersolid signal, make it all
but out of the question to address the issue of supersolidity

of 4He at the present time. Moreover, there exist more

robust techniques (e.g., x-ray diffraction) that allow one
to establish unambiguously whether a condensed matter

system of interest has crystal order; it therefore makes

sense to carry out separate measurements, aimed at probing
individually superfluidity and density LRO. Because in the

presence of interactions the superfluid fraction is usually
greater in magnitude than the condensate fraction, there is

generally a preference among experimentalists for measur-

ing the former.
In different physical contexts, however, the measurement

of ~nðkÞ is inarguably the most efficient way of establishing

the supersolid nature of underlying many-particle systems.

This is typically the case for assemblies of cold atoms,
whose momentum distribution lends itself to direct imag-

ing, by means of time-of-flight measurements (Greiner

et al., 2002).

C. Theoretical studies

From a theoretical standpoint, the investigation has pro-
ceeded along several fronts. This Colloquium is not aimed

at providing an overview and/or critical comparison of all

the different theories. For example, we shall not review
nor discuss any of the scenarios which attribute the ob-

served NCRI to effects that are mechanical in origin,

and/or in any case not associated to any superfluid response
of solid 4He (Yoo and Dorsey, 2009; Reppy, 2010;

Pratt et al., 2011). Likewise, we shall not review the

FIG. 2. Schematic of an experiment measuring mass flow through

a supersolid. Superfluid liquid flows across the central section filled

with supersolid, of the same substance. The setup as shown can

work only at the melting pressure. In the case of 4He, modifications

involving Vycor segments and temperature gradients allow one to

extend measurements to higher pressures. From Ray and Hallock,

2008.
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‘‘vortex liquid’’ theory8 (Anderson, 2007, 2008). All of
these theoretical proposals are the subject of intense current
debate, and interested readers should check the pertinent
references. Instead, we restrict our discussion to scenarios
that attempt to connect experimental observations to first-
principle calculations, carried out on increasingly realistic
models of a helium crystal.

1. First-principle calculations

The expression ‘‘first principle,’’ in this Colloquium,
means that one starts from a quantum-mechanical many-
body Hamiltonian Ĥ for a system of N identical particles,
namely,

Ĥ ¼ � ℏ2

2m

X
i

r2
i þ Vðr1; r2; . . . ; rNÞ; (12)

wherem is the mass of each particle in the system and V is the
potential energy of interaction. In all cases of interest here, V
can be expressed as the sum of terms involving pairs of
particles, i.e.,

Vðr1; r2; . . . ; rNÞ ¼
X
i<j

vðri; rjÞ; (13)

where the function vðri; rjÞ is known from either accurate

ab initio quantum chemistry calculations [e.g., the interaction
between two helium atoms by Aziz et al. (1979)] or, in the
case of cold atoms, can be as simple and fundamental as the
potential of interaction between two electric dipoles.

The calculation of cogent physical quantities, character-
izing equilibrium thermodynamic phases of many-body
systems modeled as in Eq. (12), can be carried out to a
remarkable degree of accuracy by means of numerical
simulations, based on quantum Monte Carlo techniques
[see, for instance, Boninsegni, Prokof’ev, and Svistunov
(2006)]. This computational methodology is fairly mature
and thoroughly described in the literature; we therefore
refer interested readers to the original references. What is
important to stress here is that these methods allow one to
obtain direct, unbiased numerical estimates of all the quan-
tities that are relevant in the study of the supersolid phase
of matter, namely, the one-body density matrix nðrÞ, the
superfluid fraction �SðTÞ, and the static structure factor
(standard finite-size scaling procedures allow one to ex-
trapolate results to the thermodynamic limit). Essentially
all of the theoretical results presented and discussed in the
following sections are obtained by means of quantum
Monte Carlo simulations.

2. Lattice supersolids

A different approach, also affording fundamental insight
into the nature of the supersolid phase, the transition to a

supersolid from a normal solid or from a superfluid, and the

role of point defects, makes use of much simpler models

than Eq. (12), wherein particles are confined to moving on

discrete lattices. In this case, spontaneous breaking of

translation invariance is defined with reference to the dis-

crete translation symmetry of the Hamiltonian. The sim-

plicity of the models utilized, and the possibility of carrying

out very accurate numerical calculations, make it possible

to address a number of theoretical issues relevant to the

problem of supersolidity, in some cases offering a valuable

guide to the experimental investigation. Indeed, some of the

earliest microscopic theoretical investigations aimed at as-

sessing the possible existence of a supersolid phase of 4He
made use of lattice Hamiltonians (Matsuda and Tsuneto,

1970; Liu and Fisher, 1973). Moreover, while for a long

time lattice models were regarded as little more than a

useful theoretical device, impressive advances in optical

lattice technology render it now possible to synthesize

and investigate in the laboratory artificial many-body sys-

tems, very accurately realizing the physics embedded in

those models. Therefore, one may conceivably be able to

carry out a direct comparison of theory and experiment,

enjoying a degree of accuracy not attainable in solid helium

experiments.
There exist, however, fundamental differences between

continuous space and lattice supersolids, which inevitably

limit the understanding that any one of them can afford of

the physics of a system in continuous space. A lattice

‘‘crystal’’ is one in which basis vectors are linear combi-

nations of those of the underlying lattice. Such a solid

period cannot be varied continuously, i.e., a lattice crystal

is by definition incompressible. Consequently, supersolid

phases can be obtained in a rather trivial way, simply by

doping the insulating crystal with holes or particles [pro-

vided that no phase separation occurs of the doped system

into a superfluid and an undoped crystal (Batrouni and

Scalettar, 2000)]. While continuous-space crystals can

lower their energy by eliminating vacancies and intersti-

tials, using complete atomic layers and adjusting the lattice

constant accordingly, an analogous mechanism is forbidden

if crystalline sites must remain pinned to an underlying

space lattice. Consequently, in lattice crystals point defects

can be introduced ‘‘by hand’’; their presence is not neces-

sarily of zero-point origin, and their number is conserved.

The second crucial difference between continuous and

pinned lattice solids is the absence in the latter of long-

range elastic forces between point defects. Thus far, all

lattice supersolids studied in the literature (in fact, we are

not aware of a single counterexample) belong to the cate-

gory of doped insulators, which is fundamentally different

from the zero-point defect picture relevant for continuous-

space systems. Heretofore, we restrict our discussion to

continuous-space supersolids, making use of lattice systems

occasionally, for illustration purposes only (e.g., in

Sec. II.B). Readers interested in lattice supersolids are

referred to the vast literature on this subject, of which

Batrouni and Scalettar (2000), Hébert et al. (2001),

Boninsegni (2003), Boninsegni and Prokof’ev (2005),

Heidarian and Damle (2005), Melko et al. (2005),

Sengupta et al. (2005), Wessel and Troyer (2005), Chen

8It is worth mentioning that, while the vortex liquid theory, which

assumes a superfluid ground state for an ideal 4He crystal, is in

direct contradiction with existing numerical evidence, it contains

some of the same mesoscopic phenomenology present in the so-

called Shevchenko state (Shevchenko, 1987), discussed below.
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et al. (2008), and Dang, Boninsegni, and Pollet (2008) are
just a representative sample.

In the following two sections, we (a) review the present
status of the theoretical and experimental research on super-
solidity in 4He, and (b) discuss theoretical predictions for
supersolid behavior in systems of cold atoms.

II. SUPERSOLIDITY IN 4He

The experimental search for the supersolid phase of matter
focused over the last four decades almost exclusively on the
most quantum solid in nature, whose elementary constituents
obey Bose statistics, namely, 4He. Helium, unlike any other
naturally occurring substance, remains a liquid under the
pressure of its own vapor, all the way down to zero tempera-
ture. It solidifies under some moderate pressure (approxi-
mately 25 atm), forming a hexagonal close-packed (hcp)
crystal. Two aspects that complicate the unambiguous detec-
tion of supersolid behavior in a helium crystal are worth
noticing up front. The first is the resilience of superfluidity
in the liquid phase, which is predicted to remain superfluid in
the low-temperature limit at high density, i.e., in the meta-
stable overpressurized liquid (Moroni and Boninsegni, 2004).
Thus, any manifestations of superfluid behavior of a crystal of
helium may be inherently difficult to disentangle from the
response of persistent pockets of liquid. The second is the
presence in an ordinary helium crystal of highly mobile,
extended defects.

Initial attempts to detect the possible supersolid character
of solid 4He yielded negative outcomes (Meisel, 1992).
However, some of those experiments were based on the
misconception that a supersolid would act exactly as a
superfluid, e.g., eliminate any pressure differences between
two cells connected by a narrow channel (‘‘superleak’’) or
allow the motion of macroscopic external objects through
the crystal. As discussed in Sec. I.B, a true supersolid will
allow only dissipation-free flow of its own constituent
particles; with respect to any other object, its behavior is
no different from that of a regular solid. For example, a
steel ball will not sink under gravity to the bottom of a
vessel filled with supersolid; nor will a pressure gradient
disappear, established either within the supersolid sample or
between two connected chambers, as long as the lattice
structure itself remains kinematically stable. Of course,
pressure differences result in the redistribution of the su-
perfluid component, so as to ensure constancy of chemical
potential throughout the system, for a given pressure field
PðrÞ. However, if the superfluid fraction is small, such a
redistribution will only result in small corrections to the
original pressure gradients rPðrÞ ! rPðrÞð1� �S= ��Þ. This
is, in essence, an analog of the fountain effect, but with an
additional ingredient that the normal component is immo-
bile even in the bulk (excluding plastic flow from the
picture).

At the time of this writing, there is no coherent under-
standing of the observed period shift in torsion oscillator
experiments. There exist a number of experimental obser-
vations which render a straightforward interpretation of
Kim and Chan’s findings in terms of supersolid 4He prob-
lematic. For example, it is found that the period shift occurs

in concomitance with a stiffening of the crystal (Day and
Beamish, 2007; Day, Syshchenko, and Beamish, 2009); that
it is sensitive to the resonant frequency of the apparatus;
that it lacks the characteristic critical behavior at the
alleged superfluid transition temperature; that it is present
in TO experiments in which blockages are inserted, which
should radically affect the superfluid response; that it is
affected by the presence of small concentrations of 3He
impurities, as well as by dc rotation; and that it can be
even incorrectly identified, due to the delicacy of high-
temperature ‘‘background’’ subtraction (Reppy, 2010).

We focus in this paper on what we believe to be reliable
theoretical results for hcp crystals of 4He, and on the possible
scenario of an interconnected superfluid network in structur-
ally disordered crystals as a plausible explanation for at least
some of the present experimental evidence. This scenario is
also supported by recent mass transport experiments by Ray
and Hallock (2008).

A. Perfect hcp crystals of 4He

Figure 3 shows the one-particle density matrix nðrÞ of an
ideal hcp 4He crystal at low temperature T ¼ 0:2 K, com-
puted by Monte Carlo simulations at two densities, i.e., near
the melting curve and at relatively high pressure. By ‘‘ideal,’’
we mean a commensurate crystal, i.e., one with exactly two
atoms per unit cell; no point defects such as vacancies or
interstitials, nor extended defects such as dislocations,
disclinations, or grain boundaries are included. These
simulations are based on a microscopic model of helium
[Eq. (12)], making use of the accepted Aziz pair potential
(Aziz et al., 1979).

FIG. 3. One-body density matrix nðrÞ, computed by Monte Carlo

simulation, of solid (hcp) near (density �� ¼ 0:0292 �A�3) and away

from (density �� ¼ 0:0359 �A�3) the melting curve at a low tem-

perature T ¼ 0:2 K. Results obtained at lower temperature (as low

as 0.1 K) are not distinguishable from those shown here, within the

statistical uncertainties of the calculation. The exponential decay of

nðrÞ signals no off-diagonal long-range order (i.e., Bose-Einstein

condensation) in the system. From Boninsegni, Prokof’ev, and

Svistunov, 2006b.
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The results for nðrÞ shown above are independent of
temperature (below 2 K, down to at least 0.1 K), as well as
on the number of particles in the crystal, at least for distances
r < L=2, where L is the linear system size (Boninsegni,
Prokof’ev, and Svistunov, 2006b). The observed
temperature-independent exponential decay constitutes ro-
bust evidence that the system is insulating in the ground state
(i.e., nonsuperfluid). Such an exponential decay has been
observed in every single calculation of the one-particle den-
sity matrix in commensurate solid 4He, based on unbiased
quantum Monte Carlo methods. This includes not only finite-
temperature calculations (Clark and Ceperley, 2006; Rota and
Boronat, 2011), but also those based on ground state projec-
tion (Galli and Reatto, 2008). It is important to note that
considering a commensurate number of particles cannot have
any effect on the properties of the supersolid phase, in which
the number of particles is a continuous function of the
chemical potential. Insulating crystals, on the contrary, can
change particle number in response to small changes in �, at
constant volume, only by adding or removing complete
atomic layers. In other words, they (i) always stay commen-
surate, and (ii) have zero isochoric compressibility since the
process of adding and removing atomic layers is kinemati-
cally frozen in an ordered state.

A comment is in order at this point, since in this
Colloquium we only discuss numerical evidence such as the
one displayed in Fig. 3. In our opinion, these results qualify as
proof (although not in a strict mathematical sense) that a
perfect 4He crystal does not possess off-diagonal long-range
order. Most numerical studies have well-known limitations,
chiefly the finite size of the system that can be simulated
using modern computing facilities. There exist, however,
well-defined ways (i.e., finite-size scaling analysis) to deal
with such limitations and essentially remove them by assess-
ing their effects on the physical results obtained in the
thermodynamic limit. It seems objectively difficult to dismiss
outright the results of quantum Monte Carlo simulations in
light of the quantitative accuracy with which they have been
shown to reproduce many measurable properties of helium
and other quantum solids [see, for instance, Ceperley (1995)].
Although the validity of the prediction of the absence of
ODLRO based on simulations has been called into question
(Anderson, 2009), it seems fair to state that, given the diffi-
culty of obtaining a formal analytical proof, numerical results
such as those quoted here presently constitute the strongest
foundation, on which as unbiased as possible a statement can
be made, without making any a priori assumption on the
physics of the system.

The exponential decay of the density matrix is consistent
with finite energy gaps for creating vacancies and interstitials.
These are readily inferred from the exponential decay of the
single-particle imaginary-time (Matsubara) Green’s function,

Gðp; �Þ ¼ �hT ½ĉ ðp; �Þĉ yðp; 0Þ�i; (14)

where T is the imaginary-time ordering operator and ĉ ðr; �Þ
is a time-dependent field [see, for instance, Fetter and
Walecka (1971)]. The above quantity was also computed by
Monte Carlo methods, giving at the melting density �V �
13 K and �I � 23 K for vacancy and interstitial formation
gaps, respectively (Boninsegni et al., 2006a). The insulating

gap �I þ �V was found to increase with pressure, as
expected.

The Andreev-Lifshitz supersolid scenario is based on gap-
less vacancies or interstitials, with repulsive interactions. The
large values of �V and �I, by themselves, all but rule it out.
Moreover, effective interactions among vacancies9 are found
to be strongly attractive (Boninsegni et al., 2006a), causing
the formation of bound states of two, three, etc., vacancies.
Attractive interactions among vacancies will lead to their
collapse, the resulting final state depending on vacancy con-
centration and/or system density. For initial densities below
freezing, i.e., �� < �f � 0:0259 �A�3, the final state will be all

liquid; for initial density between freezing and melting, i.e.,
�f < �� < �m � 0:0287 �A�3, one will observe phase separa-

tion into liquid and solid domains; finally, for densities �� >
��m, the final state will contain dislocation loops produced by
coalescing vacancies. Even if out-of-equilibrium vacancies
are introduced into the crystal at some small finite density,
they will not be able to form a long-lived metastable conden-
sate, similar to that which exists in cold atomic gases. The
crucial difference between the two systems lies in the pres-
ence of the solid matrix in helium, playing the role of ‘‘third
body’’ required to satisfy energy and momentum conserva-
tion in recombination processes leading to clustering of
vacancies.

The above results constitute strong evidence that a perfect
hcp crystal of 4He is an insulating solid. By ‘‘perfect’’ we
mean a single crystal without extended structural defects such
as dislocations, disclinations, and grain boundaries. In turn,
this suggests that if a hcp crystal does have the ability of
supporting dissipationless flow of its own atoms, this must
necessarily take place along extended structural defects.

B. Superfluidity of crystalline defects

Consider a many-body system in which the motion of
particles is confined to one or two spatial dimensions. For
example, one could imagine an assembly of cold atoms with
tight optical confinement in one or two spatial directions, or a
helium film adsorbed on a substrate, or a superconducting
wire. In these cases, the rationale for ignoring the dimensions
that are ‘‘blocked’’ is that the systems are either in vacuo or
embedded in insulating materials made of different atoms or
molecules. When it comes to extended, structural defects in a
crystal, however, which can be regarded as many-body sys-
tems in reduced dimensions, superfluid properties are insepa-
rable from those of the insulating bulk system. This is
because the same particles, which form an insulating state
in the bulk, are responsible for superfluidity in the lower-
dimensional defect structure.

Realistic systems are rarely perfect on the macroscopic
scale; domain walls form naturally in the out-of-equilibrium
cooling process across the transition temperature. One may
wonder whether transport properties of extended defects in
quantum solids are fundamentally different from those of the
matrix in which they are embedded. An insulating state is
typically the result of competition between kinetic and

9The same results obtained for vacancies are found for interstitials

too. Henceforth, we restrict our discussion to vacancies.
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increasing potential energy terms. One can imagine cases

when in some finite vicinity of the liquid-to-solid transition

in the bulk system, even small changes in the arrangement of

atoms change the balance in favor of particle delocalization.

For example, potential barriers for moving atoms along the

structural defect may be substantially lower than in the bulk.
In order to gain some understanding of this physical

mechanism, consider a model of lattice hard-core bosons,

with a repulsive interaction V between two particles occupy-

ing adjacent lattice sites. Let �t be the value of the matrix

element of the Hamiltonian corresponding to the hopping of a

particle to a nearest-neighboring site. In a square lattice

geometry and at half filling (i.e., at a density corresponding

to one particle every two sites), a ‘‘checkerboard’’ lattice will

form when V > Vc ¼ 2t.
Figure 4 shows a domain wall in a checkerboard crystal

(Burovski et al., 2005; Soyler et al., 2007). Such a defect

automatically appears in this lattice model if periodic bound-

ary conditions are adopted and an odd number of columns is

assumed, as in Fig. 4. When an atom in the configuration

shown is shifted to a nearest-neighbor position in the bulk, the

potential energy goes up by 3V. Shifting an atom by one

atomic distance along the wall will increase potential energy

only by V. Clearly, these considerations crucially depend on

both the bulk and the defect structure, as well as the type of

motion considered.
It is also easy to see from this example an intricate

connection between the motion of atoms along the defect

and the motion of the defect itself in the bulk. If we take the

classical picture shown in Fig. 4(a) and shift up by one atomic

distance up all atoms nearest and to the left of the dashed line

then the wall position will shift to the left in the transverse

direction; see Fig. 4(b). As we see shortly, this brings about

interesting physics relating superfluidity, roughening, and

quantum plasticity.
Finally, superfluidity along structural defects which form

an interconnected three-dimensional network may be consid-

ered as yet another scenario for obtaining the supersolid state.

The corresponding state clearly breaks both translation

and U(1) symmetries even though it is not in thermal equi-

librium. Still, since extended defects such as domain walls,

grain boundaries, and dislocations are protected by the lattice

topology, the lifetime of their structural relaxation may easily

exceed all relevant experimental time scales.

C. Domain walls

Most transitions into the solid phase are first order in nature
and, in general, there is no reason why domain walls or grain

boundaries in solids should have superfluid properties. It is

the right combination of light atomic mass, weak interatomic
forces, and degree of structural frustration which allows

atoms to establish long-range coherence at the defect core.

For the domain wall shown in Fig. 4(a) one can argue,
however, that at least for V � Vc � t superflow of atoms

along the domain wall will surely take place (Burovski et al.,
2005). This is because for a system of hard-core bosons with

nearest-neighbor interactions, the superfluid-solid transition

is marginally first order. That is, the critical point itself has
the same extended SU(2) symmetry as the isotropic

Heisenberg model.
As the interparticle interaction is increased beyond a

threshold value VW [VW ¼ 3:57ð3Þt in d ¼ 2 and VW ¼
2:683ð3Þt in d ¼ 3 (Soyler et al., 2007)], one observes the

superfluid-to-insulator (SF-I) transition within the wall, with
the concomitant disappearance of gapless sound excitations.

In the limit of large V=t, the classical picture of an Ising-type
domain wall shown in Fig. 4(a) is recovered. For two-

dimensional walls in 3D solids, no obvious reason seems to

exist for relating superfluidity to structural transformations of
walls and grain boundaries at the SF-I transition point.

The same considerations apply to any domain wall, twin,

or generic grain boundary in solids, with an important caveat:
most solids form through a strong first-order transition, and

the resulting crystalline structures are typically very efficient

at localizing atoms. For example, even in the highly quantal
helium crystals at the melting curve, the smallest exchange

cycles are suppressed relative to the liquid phase, by several

orders of magnitude (despite the large zero-point motion of
individual atoms). As a figure of merit, one can mention the

energy scale for the tunneling matrix element of 3He impurity
in a 4He solid, J34 � 10�4 K (Guyer, Richardson, and Zane,

1971; Richards et al., 1975). It is more than 5 orders of

magnitude smaller than the Debye frequency characterizing
large zero-point motion of atoms, leading to an effective mass

of a 3He impurity which is about 4 orders of magnitude
heavier than a helium atom in vacuum. In other words,

structural order emerging from first-order transitions in

most solids is so strong that grain boundaries and other
extended defects are likely to end up on the insulating side.

Helium is a unique element in this regard, since it is the only

one remaining in the liquid phase at saturated vapor pressure.
Though experimental evidence for superfluidity of grain

boundaries in 4He is rather incomplete (Balibar and Caupin,
2008), quantum Monte Carlo simulations indicate that this

possibility is real (Pollet et al., 2007).
One-dimensional walls in 2D solids allow for an interest-

ing connection between superfluidity and roughening, at least
in some cases. Naively, one might think of these two phe-

nomena as being completely unrelated, as they pertain to
different types of motion (i.e., along and perpendicular to

the wall direction). However, in some cases they may have

FIG. 4. (a) Domain wall in the checkerboard solid. (b) When an

atom is moved along the wall by one atomic distance, the wall

position shifts in the perpendicular direction while the kink on the

wall moves along the wall by two atomic distances.
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exactly the same microscopic origin when neither is possible
without the other. As shown in Fig. 4(b), the simplest, and
energetically least expensive deformation which results in the
displacement of the wall in the x direction consists of creating
a ‘‘kink and antikink’’ pair by shifting atoms along the wall.
Clearly, from such a deformation mass transfer along the wall
inevitably ensues. This suggests the intriguing possibility that
superfluidity may occur in concomitance with a roughening
transition. By ‘‘rough’’ we imply a line with large mean
square shape fluctuations ð�xÞ2 (actually diverging in the
thermodynamic limit). More quantitatively, if the instanta-
neous wall coordinate is described by xðy; tÞ then

ð�xÞ2 ¼
�
L�1

Z Ly

0
dy½xðy; tÞ � �x�2

�
; with

�x ¼ L�1
Z Ly

0
dyxðy; tÞ;

(15)

where the average is taken over the statistical ensemble. The
line is in the so-called ‘‘smooth’’ state, wherein ð�xÞ2 is
system size independent.

Interestingly enough, roughening helps to stabilize the
superfluid phase. One might think, by looking at the classical
picture of a straight wall shown in Fig. 4(a) that checkerboard
order in the bulk de facto doubles the size of the unit cell, and
therefore the effective occupation number in the wall is
integer. Notice, however, that the bulk potential is shifted
by half a period when the wall is displaced by one lattice
spacing in the x direction, meaning that for rough walls the
average potential still retains the translation symmetry of the
original lattice. Thus, the effective filling factor remains half-
integer. This significantly increases the parameter range
within which superfluidity survives. Numerically, one indeed
finds that superfluid and roughening transitions coincide
(Soyler et al., 2007).

D. Screw and edge dislocations in 4He

There are infinitely many distinct dislocation lines in the
solid structure. It was conjectured by Shevchenko (1987) that
edge dislocations in 4Hemay be superfluid, but in the absence
of first-principle simulations it is impossible to predict which
edge dislocations, if any, have that property. It is found by
Monte Carlo simulations, however, that most edge disloca-
tions are, in fact, insulating due to their core splitting into two
partials. A split-core configuration substantially reduces frus-
tration in the atomic arrangement and locks atoms in an
insulating state (Pollet et al., 2008). Instead, the most basic
screw dislocation, oriented along the c axis of the hcp struc-
ture, is found by simulations to support strong superfluid flow
along the dislocation line (Boninsegni et al., 2007). At the
melting point, the effective one-dimensional superfluid den-
sity is about �1D

S � 1 �A�1 corresponding to a superfluid tube

at the core of diameter � 6 �A. The corresponding Luttinger
liquid parameter K � 4:9ð5Þ is large enough to ensure that
superfluidity of screw dislocations is stable against weak
disorder or a commensurate potential.

Since screw dislocations are very common in crystals, and
often facilitate crystal growth, it is not unreasonable to expect
that a network of superfluid pipes penetrating the insulating
bulk may exist in real samples of solid 4He, capable of

conducting mass currents of 4He atoms, without measurable
dissipation. An obvious issue that any theoretical scenario
based on a network of dislocations must address is whether
different types of dislocations with comparable superfluid
properties may exist, in order for a fully connected three-
dimensional network to be established. As it turns out, edge
dislocations with Burgers vector along the hcp c axis and the
dislocation core along the x axis in the basal plane also
display in simulations a finite, albeit weak, superfluid re-
sponse (Soyler et al., 2009). In this case, the core is split
into two partials separated by extremely large distance (pos-
sibly as large as 150–200 �A) and the superfluid signal is
‘‘marginal,’’ i.e., the corresponding Luttinger parameter is
close to the critical value K ¼ 2 (with a large uncertainty) for
which a commensurate potential becomes a relevant pertur-
bation. The large separation between the two half-cores is
explained by the very small (practically unmeasurable) sur-
face energy of the stacking fault defect in the hcp structure,
leading to a very weak linear potential confining partials. The
unusual split-core structure may have interesting consequen-
ces for how edge dislocations move, anneal, and are pinned in
quantum crystals; these issues still need to be fully explored
at the time of this writing.

Superfluidity in the cores of edge dislocations has impor-
tant consequences in terms of how solids react to chemical
potential differences, leading to a novel physical behavior,
referred to as ‘‘quantum metallurgy’’ (though helium is ob-
viously not a metal).10 At temperatures well below�V , i.e., in
the absence of activated vacancies, nonsuperfluid edge dis-
locations cannot move in the climb direction perpendicular to
their axis and Burgers vector. For such a climb corresponds to
the growth of an atomic layer which, in turn, requires mass
transfer. Since activated vacancies are the only mechanism of
atomic mass transport in insulating solids, one concludes that
standard edge dislocations ought not to climb. This, in par-
ticular, means that insulating crystals are isochorically in-
compressible, � � ðd ��=d�ÞV � 0; in other words, the
density �� of the crystal does not change atom by atom11 in
response to infinitesimal, quasistatic changes in �.

If cores of edge dislocations in the network are superfluid,
then efficient transport of atoms throughout the sample is
possible, and superfluid edge dislocations may climb (or
superclimb). Correspondingly, the crystal density ought to
react continuously to small changes in chemical potential,
and an anomalous isochoric compressibility of a material
which is insulating in the absence of structural defects should
be observable. This description precisely matches the obser-
vation of Ray and Hallock, who carried out an experiment
wherein 4He atoms (superfluid liquid) were fed into the
crystal through implanted Vycor rods (Ray and Hallock,
2008, 2009). In such a setup, the chemical potential � is
the physical quantity relevant to the external perturbation
applied to the crystal. Also the increase in the crystal density

10We attribute this term to A. Dorsey.
11In the absence of vacancies and interstitials, the density of a

crystal can react dynamically to small changes in the chemical

potential �� only by creating or removing crystalline layers. This

requires nucleation times exponentially large in j��j�1.
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was correlated with the ability of solid samples to conduct
atoms between the Vycor rods.

E. Superglass

As mentioned, extended structural defects are metastable
excited states of the system, which are protected by topology
of the crystal. One may wonder to what degree this picture
may continue to hold, as the number of defects increases, to
the point where the original solid structure may barely be
recognizable; to take this one step further, one may even
consider a metastable, glassy phase arising from the applica-
tion of an instantaneous compression to a superfluid.

Such a highly disordered state may be short lived and
quickly relax to a polycrystal with a clearly identifiable
mesoscopic solid structure (here ‘‘quickly’’ is defined with
respect to a relevant experimental time scale). However, this
need not be necessarily the outcome, for a glass produced
from a sudden compression, such as described above, may
actually be stable on the relevant experimental (or any mean-
ingful) time scale.12

According to conventional wisdom, at low temperature
glasses are insulators. If atoms were allowed to move around,
then the system would quickly discover a (poly)crystalline
arrangement lower in energy. However, the underlying as-
sumption that any kind of atomic delocalization will even-
tually lead to formation of polycrystalline seeds is not
justified. There is actually no fundamental reason to assume
that jamming of structural relaxation should be incompatible
with superflow. In fact, one can imagine a system where these
two types of atomic displacements occur on vastly different
time scales, in such a way that the glass may remain struc-
turally stable and superfluid under realistic experimental
conditions. The resulting metastable phase breaks translation
invariance, as the density profile averaged over characteristic
time scales of interest is inhomogeneous; it simultaneously
features superfluid order. As mentioned in the Introduction,
however, since it lacks density LRO order, the name super-
glass (SG) is more appropriate than supersolid for such a
phase. At the phenomenological level, one may view the SG
as a special limit of Tisza’s two-fluid picture, wherein the
normal fluid component freezes into a glass instead of form-
ing a quasiparticle gas.

The first observation of SG was reported in numerical
quantum Monte Carlo simulations of solid 4He samples,
quenched from the normal liquid state at relatively high13

temperature and density �� ¼ 0:0359 �A�3 to low temperature
(�0:2 K) (Boninsegni, Prokof’ev, and Svistunov, 2006b). A
similar outcome is achieved when samples are prepared by
squeezing the low-temperature superfluid liquid into a
smaller volume. When only local updates of atomic trajecto-
ries are employed in simulations, thus prepared samples of
about 800 atoms remain in the SG phase with inhomogeneous
density profile and no density LRO. Although a direct con-
nection with experiments is hard to make with regards to the

sample preparation protocols, it seems that broad metastabil-
ity limits for the SG state of solid 4He are guaranteed by
simulations.

Further support for the SG concept comes from the possi-
bility of ‘‘designing’’ a quantum system which is guaranteed
to have a SG as an excited state (Biroli, Chamon, and
Zamponi, 2008). The idea is based on two key observations:

(1) Given a many-body ‘‘Jastrow’’ wave function for a
system of bosons, namely, an expression of the form (the
notation is standard)

�ðJÞ
G ¼ Y

i<j

exp

�
� 1

2
uðrijÞ

�
; (16)

with u being an arbitrary function of the distance rij � jri �
rjj between two particles, one can construct a Hamiltonian

HJ with contact two- and three-body interactions, for which

�ðJÞ
G is the exact ground state wave function. One may check

by direct substitution that �ðJÞ
G is a solution of the

Schrödinger equation for the many-body Hamiltonian

HJ ¼
XN
i¼1

p2
i

2mi

þ Uðr1; . . . ; rNÞ; (17)

with

U¼� ℏ2

2m

�X
i<j

r2uðrijÞ�
X

i<j;i<k

ruðrijÞ �ruðrikÞ
�
; (18)

with energy eigenvalue equal to zero [the spectrum of
Eq. (17) is non-negative].

(2) The square of the Jastrow wave function can be
straightforwardly interpreted as the Boltzmann-Gibbs statis-
tical weight for a classical system with pairwise potential
V ¼ uT. This correspondence extends to all eigenstates
which are common for the Hamiltonian (17) and the
Fokker-Planck operator governing the evolution of the clas-
sical probability distribution within the framework of the
stochastic Langevin-type dynamics

mi

dri
dt

¼ � 1

2

X
i<j

riuðri � rjÞ þ �iðtÞ; (19)

where �iðtÞ is the thermal Gaussian white noise characterized

by the correlation function h��
i ðtÞ�	

i ðt0Þi¼mi�ij��	�ðt� t0Þ.
Here we omit the derivation which can be found in standard
statistical mechanics text; see Biroli, Chamon, and Zamponi
(2008) for details.

The Jastrow wave function can describe a supersolid for
the following reasons: (a) Its square is isomorphic to a
classical distribution, and classical many-particle systems
have a crystalline ordered state for specific interactions and
density. (b) It can be shown to correspond to a quantum
many-particle state with a finite condensate fraction.

Quantum-to-classical correspondence can be used to
compute both static and dynamic correlation functions at
zero temperature by using known classical counterpart re-
sults. This observation directly links the well-studied jam-
ming phenomenon in classical systems to the long-lived
metastable amorphous density profiles in the quantum case.
As far as superfluidity is concerned, it is guaranteed to exist

12Many amorphous solids are among the strongest in nature, with

respect to mechanical shear or deformation.
13The reader is reminded that the density of the solid at the T ¼ 0

melting line is �m ¼ 0:0287 �A�3
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by construction. Admittedly, there are serious drawbacks in

the theoretical construction (17), originating from pathologi-

cal properties of the resulting Hamiltonian HJ. This

Hamiltonian always has the same ground state energy eigen-

value (zero), regardless of the system density (which implies

an infinite compressibility), a quadratic dispersion relation for

elementary excitations, and a SG only appears as an excita-

tion above a supersolid ground state. Nevertheless, the above

argument furnishes a proof of principle of the existence of SG

and can be made more physical by adding weak standard

pairwise potentials to Eq. (17), with the expectation that the

overall picture may not change.

F. Shevchenko state

At the time of this writing, the most promising theoretical

proposal accounting for transport phenomena observed by

Ray and Hallock in solid 4He seems to be the 3D network

formed by interconnected one-dimensional superfluid chan-

nels. We start the discussion with a fictitious system of pipes

running along bonds of a simple cubic lattice; see Fig. 5.

Assume that pipes are of diameter d ¼ 1 mm, filled with low-

temperature (T � T
) helium-II, and the bond length L is

such that L 	 d2=a, where a is the interatomic distance, say

L ¼ 106 km. The reader might think that the thermodynamic

transition temperature to the SF phase, in this quasi-one-

dimensional setup, should be strongly suppressed, relative

to the 
 point in bulk helium-II. However, it is obvious that at,

say, T < T
=2, this network will support frictionless, low-

velocity flows, with persistent currents whose characteristic

decay times exceed the age of the Universe. Indeed, at this

temperature helium-II already has strong local order (defi-

nitely on a millimeter scale) in the phase field, which prevents

large vortex excitations from nucleating and proliferating in

the space occupied by helium.
Both expectations are correct and not in conflict with each

other. Simply, one is dealing here with an extreme case,

wherein one kinetic time scale rapidly becomes so large

that in an actual experiment the ergodic hypothesis, upon

which all equilibrium thermodynamic ensemble calculations

are based, is violated. To make this statement more quantita-

tive, consider the kinetic energy of a current-carrying state

corresponding to a phase winding worth 2� around one

elementary plaquette, regarded as isolated from the rest of
the system. A simple calculation based on the integration of
the energy density � ¼ ð�S=2mÞðr’Þ2 ¼ ð�S=mÞð�2=8L2Þ
gives

Epl ¼ �Sa�
3

8m

d2

La
� T


d2

La
; (20)

which is much smaller than T
 for L 	 d2=a (for parameters
mentioned above this energy is in the micro-Kelvin range). In
the 3D network, currents are not confined to elementary
plaquettes. The minimal phase defect which can be imagined
is a small ‘‘vortex ring’’ type configuration depicted in Fig. 5.
Although vortexes are not even defined on length scales
smaller than �L, and the best microscopic description is
provided by phase gradients along bonds, the topology of
phase windings is still easiest to picture using hypothetical
vortex lines. Nevertheless, Eq. (20) sets the scale for the
energy cost of circulating currents in the network. As long
as Epl � T the thermodynamic equilibrium state remains

normal because on all scales the closed-contour integralsHðr’Þ � dr take nonzero values.

The normal-to-superfluid transition temperature can be
estimated from the condition Epl � T, at which point pla-

quette currents become thermodynamically unfavorable. This
condition leads to

Tc � T


d2

La
/ 1

L
ðL 	 d2=aÞ: (21)

The same estimate for Tc follows from the condition
that 1D phase fluctuations on the length scale L are reduced
to a value of order unity: by introducing an effective one-
dimensional superfluid stiffness �ð1DÞ��Sd

2=m we find that
h½’ð0Þ � ’ðlÞ�2i � TL=�s. Once phase fluctuations along the
pipe length become small the three-dimensional order in the
network sets in. The universality class of the transition is not
altered by the quasi-one-dimensional microscopic geometry;
in particular, the�SðTÞ curve startswith an infinite derivative at
Tc. By counting the amount of superfluid liquid in the pipes we
also find �SðT ¼ 0Þ � 1=L2 � T2

c .
Clearly the thermodynamic transition discussed above is of

purely academic interest, i.e., one does not expect to observe
it experimentally. At temperatures below T
, the notion of
thermal equilibrium quickly becomes irrelevant because any
given distribution of persistent currents is kinetically frozen
and cannot change in response to temperature variations or
slow rotation. In other words, in terms of observed behavior,
the state is indistinguishable from the genuine superfluid,
despite the fact that typically one finds large circulating
currents on most plaquettes. This is the essence of the state
introduced by Shevchenko (1987) to describe the possible
superfluid properties of a dislocation network in the tempera-
ture interval Tc � T � T
, under the hypothesis that edge
dislocations in 4He feature superfluid cores.

An important quantitative difference between the fictitious
‘‘pipelines’’ example and dislocation network is that in the
latter the pipe diameter is of the order of the interatomic
distance d� a. The condition L 	 d2=a is modified into
L 	 a and thus is easily satisfied under realistic experimen-
tal conditions except, maybe in a glassy phase.
Correspondingly, one may expect that Tc � T
, i.e., that

FIG. 5. The minimal phase defect in the network is obtained by

imagining a vortex ring winding around the pipe and creating 
2�

phase windings in elementary plaquettes.
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there should be a broad temperature interval where the
Shevchenko state may be realized. Another distinction is
that narrow superfluid pipes at low temperature should be
described by the Luttinger liquid theory with relatively small
values of K, i.e., their superfluid response is rather fragile,
with stability of circulating currents being no longer pro-
tected by the robust superfluid order on large length scales
across the channel. Long relaxation times �LLðTÞ for equili-
bration and redistribution of plaquette currents leading
to the Shevchenko state within the Luttinger liquid theory
are described by the power-law dependence (not mentioning
backscattering matrix elements leading to momentum non-
conservation)

�LLðTÞ /
�
T�
T

�
2K�1

; (22)

where T� �mc2 is the characteristic energy scale based on
the one-dimensional sound velocity c below which the
Luttinger liquid behavior sets in (Kashurnikov et al.,
1996). For dislocations in solid helium T� � T
. At tempera-
tures T � T
, one finds relatively short relaxation times
ensuring normal state behavior at experimental time scales
�exper. However, at low temperatures, say for K � 5 found for

screw dislocations, it is possible to observe a dynamic cross-
over to the superfluid state when �LLðTÞ 	 �exper. The cross-

over might be rather sharp and easily accessible
experimentally for large values of K. Note also that typical
values of the Luttinger parameter for ultracold atomic
systems in the absence of the optical lattice are enormous,
of the order of a hundred or larger. The question of dynamic
crossover did not arise for the fictitious ‘‘helium pipelines’’
system because the corresponding Luttinger parameter is
proportional to the channel diameter squared K � ðd=aÞ2
and the phase-slip dynamics is frozen right below the 
 point.

III. SUPERSOLIDITY IN ULTRACOLD ATOMIC SYSTEMS

Regardless of how the current controversy over the inter-
pretation of the present 4He experiments is eventually re-
solved, it seems fair to state that solid helium does not afford
a direct, simple, and clear observation of the supersolid
phenomenon. The question then arises of which other physi-
cal system may allow one to make a relatively easy, unam-
biguous experimental identification of this novel phase.

Among all simple atomic or molecular condensed matter
systems, helium offers by far the most favorable combination
of large quantum delocalization of its constituent (Bose)
particles, owing to the light mass of its atoms and weakness
of the interatomic potential. The closest condensed matter
system that may enjoy similar properties is molecular hydro-
gen (H2), also an assembly of Bose particles. Indeed, the mass
of a H2 molecule is one-half that of a helium atom, which
would lead one to expect even higher quantum effects.
However, the attractive well of the interaction between two
hydrogen molecules is about 3 times deeper than that of two
helium atoms. As a result, liquid hydrogen crystallizes at a
relatively high (14 K) temperature, significantly above that at
which BEC and SF are expected to occur; although quantum
effects, including those of Bose statistics, are detectable
in the momentum distribution of the liquid near melting

(Boninsegni, 2009). Although superfluid (and even super-

solid) behavior has been predicted for small clusters of para-

hydrogen (Mezzacapo and Boninsegni, 2006, 2007, 2011), in

general, the behavior of solid molecular hydrogen is much

closer to that of a classical crystal than to solid helium. No

experimental evidence for possible superfluid behavior of

solid hydrogen has so far been reported (Clark, Lin, and

Chan, 2006).
The behavior predicted for solid 4He, as it emerges from

first-principle quantum simulations, is largely determined by

the strong repulsive core of the interatomic potential at short

distance (less than�2 �A).While the attractive (van derWaals)

long-range part of the interaction is responsible for the exis-

tence of the condensed phase, it is the repulsive core (which is a

result of the Pauli exclusion principle, acting so as to prevent

electronic clouds of different atoms from overlapping) that

determines most of the thermodynamic properties of con-

densed helium and other quantum solids and liquids. For

example, a very simplemodel of Bose hard spheres reproduces

surprisingly accurately the phase diagram of condensed

helium.
Computer simulation studies of classical crystals, making

use of the Lennard-Jones potential, yielded evidence of the

same vacancy phase separation observed in the quantum

system (Ma et al., 2008). This suggests that the origin of

the thermodynamic instability of a gas of point defects lies in

the strong interaction among particles, which quantum deloc-

alization cannot overcome. One is therefore led to consider

systems characterized by a different type of pairwise inter-

action, possibly with a softer core at short distance. The

question is, of course: Where, in nature, does such an inter-

action arise? The basic features of the helium interatomic

potential, chiefly the strong repulsion at short distance, are

common to any molecular or atomic interaction.
One route consists of searching for the supersolid phase in

systems in which the elementary constituents are composite

particles, e.g., Cooper pairs in superconducting Josephson

junction arrays (Roddick and Stroud, 1995), or excitons in

electron-hole bilayers (Joglekar, Balatsky, and Sarma, 2006).

In this case, particles dynamically form and disappear due to

pair breaking and recombination effects; the interaction be-

tween two such objects is of the effective kind, i.e., induced

by the medium in which these particles are embedded, and

has an important time-dependent component. On the other

hand, if one wishes to retain the simple picture of elementary

particles interacting via a static pair potential, dilute assem-

blies of spatially confined ultracold atoms appear to offer a

viable option.
Seventeen years after the first successful observation of

BEC in a spatially confined assembly of rubidium atoms,

cooled down to temperature in the nano-Kelvin range

(Anderson et al., 1995; Pethick and Smith, 2005), impressive

scientific and technological advances have made the field of

ultracold atoms the natural playground, where fundamental

issues in condensed matter and many-body systems can be

addressed. Dilute assemblies of cold atoms constitute an

almost ideal many-body system (a) virtually free from the

imperfections and ‘‘background noise’’ that mask subtle

physical effects in a real solid, and (b) upon which a remark-

able degree of control can be achieved. In particular, there
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exist a number of techniques allowing one to vary the inter-
action between atoms or molecules, rendering it essentially
an adjustable parameter. The simplest, and so far most com-
monly utilized such technique, takes advantage of the so-
called Feshbach resonance [see, for instance, Pethick and
Smith (2005)], whereby the strength of a (short-ranged)
interaction between two atoms or molecules can be varied,
and even its sign reversed (i.e., turned from repulsive to
attractive, or vice versa).

‘‘Fashioning’’ artificial interparticle potentials, not arising
in any known condensed matter system, allows one to address
a key theoretical question, namely, which two-body interac-
tion potential(s), if any, can lead to the occurrence of a
supersolid phase.

In the next two sections we discuss two physical systems,
both realizable in the laboratory using cold atoms or mole-
cules, which may provide a direct pathway to the stabilization
and presumably straightforward observation of a supersolid
phase, owing to the particular interactions among elementary
constituents.

A. Rydberg blockade and soft-core potentials

The Rydberg blockade is a physical mechanism that was
initially introduced as a way to manipulate quantum infor-
mation stored in collective states of mesoscopic ensembles
(Lukin et al., 2001). It was recently proposed as a way to
engineer a novel type of interaction potential between cold
atoms. Specifically, the modified interaction ‘‘flattens off’’
and remains essentially constant below some characteristic
‘‘cutoff’’ distance a (Henkel, Nath, and Pohl, 2010). In
particular, it is vðr ! 0Þ ¼ V, finite and not much larger
than the characteristic energies at play.14

What is the connection between such a potential and the
supersolid phase?

Within the classical complex field description based on the
Pitaevskii-Gross equation, the answer was first provided by
E. Gross more than half a century ago (Gross, 1957), and
more recently quantified by Josserand, Pomeau, and Rica
(2007) who observed that at sufficiently high density the
system will break translation invariance and develop solid
LRO. As in any other classical field model, the ground state is
necessarily superfluid, since the lowest energy configuration
corresponds to perfectly ordered phases. Note that the notion
of a particle is completely lost within the classical field
description, and thus this study corresponds to the limit of
infinite number of particles (and vacancies) per unit cell. Such
a treatment is tantamount to regarding a supersolid as a
superfluid with a density modulation. Similar results were
obtained by Henkel, Nath, and Pohl (2010).

Consider for definiteness a simple model in which particles
behave as soft spheres, namely, interact via a barrier potential,
equal to some energy V > 0 if two particles are at a distance r
from each other less than their effective diameter a, and zero

otherwise. These above considerations suggest that, if V is

small, and the number of particles per unit cell is large, a

supersolid phase will be stable if the dimensionless coupling

parameter g ¼ ðVma2=ℏ2Þ ��a3 is greater than unity (not too

large, or the system will behave essentially as a classical

crystal). At the microscopic level, one can intuitively under-

stand why, as a consequence of the constance of the potential

at short distance, at sufficiently high density the system will

find it energetically favorable to form crystals with relatively

large numbers of particles per unit cell. As a simple illustra-

tion, consider the one-dimensional crystal shown in Fig. 6(a).

Assume again the simple soft-sphere model described above.

Clearly, at a density 1=a each particle can be made to touch

just two others, as shown in Fig. 6(a), at a total energy cost of

V per particle. The system can lower its potential energy by

slightly displacing every other particle (i.e., moving pairs of

particles closer together) and creating a crystal of lattice

constant 2a, with two particles per unit cell, as shown in

Fig. 6(b). As the density is increased, the number of particles

per unit cells also increases.
The outstanding questions, vis-à-vis the predictions made

by Josserand, Pomeau, and Rica (2007) and Henkel, Nath,

and Pohl (2010) are (a) how large a number of particles per

unit cell one might require in practice, and (b) what would be

the physical nature of such a supersolid phase?
In order to have a fully quantum-mechanical quantitative

solution of the problem, Cinti et al. (2010) investigated by

quantum Monte Carlo simulations the low-temperature phase

diagram of a two-dimensional assembly of Bose particles,

interacting via a number of different potentials of the general

form vðrÞ � 1=rn for r > a, but either equal to a constant or

slowly varying for r < a, in any case smoothly approaching a

finite value for r ! 0. In those studies, n was taken equal to 3

and 6. As it turns out, the main physical results are indepen-

dent of the behavior of the potential for r > a. Indeed, recent
work by Saccani et al. shows that the simple model of ‘‘soft

spheres’’ described above, in two dimensions, features the

same basic physics outlined below (Saccani, Moroni, and

Boninsegni, 2011).
A typical result is shown in Fig. 7. Displayed are snapshots

of Feynman’s trajectories in imaginary time from a computer

simulation. In the particular case shown, the average inter-

particle distance is approximately a=2, and the values of the

temperature [which decrease from (a) to (d)] are such that

each is an order of magnitude higher (lower) than the next

(previous) one [see Cinti et al. (2010) for details]. As T is

decreased, particles bunch into mesoscopic droplets, in turn

forming a regular (triangular) crystal. We henceforth refer to

FIG. 6. One-dimensional crystal of particles interacting via a soft-

sphere potential, equal to some energy V > 0 if the distance

between two particles is less than their effective diameter a, and
zero if it is greater. As the density equals 1=a, (b) becomes

energetically advantageous over (a), as its cost is V=2 per particle,

as opposed to V as in (a).

14For comparison, one may note that the most accurate model

potential between two helium atoms (Aziz et al., 1979) is also finite

in the r ! 0 limit, but its value, of the order of 106 K, greatly
exceeds any energy scale relevant to ordinary condensed matter

physics.
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this phase as the droplet-crystal phase. The formation of such

droplets is a purely classical effect; indeed, simple (but

remarkably accurate) estimates of the average number Nd

of particles per droplet can be obtained based on purely

classical potential energy minimization, for the various po-

tentials considered.
In the T ! 0 limit, long exchanges of identical particles

can take place, as a result of particles tunneling from one

droplet to an adjacent one. In turn, long exchanges of parti-

cles can result in a finite superfluid response throughout the

whole system, and indeed a bulk superfluid signal is observed

at low temperature, roughly in correspondence with an inter-

particle distance rs of the order of (slightly less than) the

potential cutoff radius. The number Nd of particles per drop-

let for which a supersolid phase is observed is variable, but

can be as low as�4, for specific choices of rs and a. Because
superfluidity arises in concomitance with the droplet-crystal

structure, the denomination supersolid seems indisputable in

this case. Supersolid behavior in this system originates from

tunneling of particles between droplets which are themselves

individually superfluid, as simulation results show. This is

reminiscent of the phase-locking mechanism in a (self-

assembled) array of Josephson junctions.

B. Dipolar systems

The supersolid phase described in the previous section is a

direct consequence of the ‘‘flatness’’ of the potential at short

distance, while the long-range behavior is largely irrelevant.

On the other hand, supersolid behavior can also be underlain

by long-ranged interactions. We consider here the case of

atoms or molecules possessing a finite electric dipole mo-

ment. These particles can be confined to quasi-2D, by means

of an external harmonic potential in the direction perpendicu-
lar to the motion (the so-called ‘‘pancake’’ geometry). Upon
aligning all dipoles in the direction perpendicular to the
plane, by means of a strong electric field, one can study a
system of bosons interacting via a purely repulsive potential
(Buchler et al., 2007) of the form 1=r3.

What renders such a system particularly intriguing is the
existence of an exact theoretical result (Spivak and Kivelson,
2004), excluding the occurrence of first-order phase transi-
tions involving a density change �n (such as liquid solid), in
2D systems with such an interaction. The reasoning goes as
follows: a first-order phase transition is characterized by the
coexistence of two phases of different density, separated by a
macroscopic interface. However, a straightforward calcula-
tion shows that the energy of such an interface contains a
negative term, which diverges logarithmically in the thermo-
dynamic limit.

An immediate consequence of the above result is that, on
approaching the transition from the low-density (liquid)
phase, the system will lower its free energy by embedding
sufficiently large solid domains (i.e., macroscopic ‘‘bub-
bles’’) inside the liquid. At T ¼ 0 two effects are expected
to occur, namely (a) the transition of the liquid to a superfluid,
and (b) the crystallization of solid bubbles into a lattice
superstructure, resulting in a global supersolid phase [in
fact, a whole set of different such phases (Spivak, private
communication)].

An intrinsic subtlety of this scenario is the competition
between the positive contribution to the surface tension �þ,
originating from short-range physics, and the negative scale-
dependent contribution ��ðRÞ / �ð�nÞ2 lnðR�1=2Þ, where R
is the droplet size. For small density differences (and quan-
tum Monte Carlo calculations seem to indicate that this is
indeed the case) the relevant length scale for having negative
surface tension �ðRÞ ¼ �þ þ �� might be astronomically
large and outside the reach of realistic experimental and
numerical setups.

IV. CONCLUSION

The investigation of the possible supersolid phase of matter
in helium is ongoing, and at the time of this writing no single
theoretical framework has emerged as the accepted interpre-
tation of the puzzling and controversial phenomenology. In
this Colloquium, we presented one possible scenario, which
is based on the superfluid properties of extended defects,
chiefly dislocations. This scenario is based on first-principle
microscopic calculations, whose main quality, in our view, is
the lack of any a priori assumption on the physical behavior
of the system. It seems consistent with at least an important
part of the phenomenology, while attempting to establish a
connection between it and microscopic mechanisms.
Whether it will stand the test of time hinges on its ability to
offer quantitatively more accurate microscopic predictions,
e.g., on the supersolid transition temperature, if it is ulti-
mately established that what has been observed in the labo-
ratory is indeed a signature of superfluidity of the helium
crystal. It should be mentioned that, since its introduction,
there has been further, independent theoretical work on the
Shevchenko state (or very similar theoretical pictures) by

FIG. 7. Snapshots from computer simulations of a system of

bosons interacting via a power-law potential flattening off at short

distances [see Cinti et al. (2010)) for details]. Snapshots are taken

at four different temperatures, decreasing from (a) to (d); each

snapshot is taken at a temperature an order of magnitude lower than

the immediately previous one. From Cinti et al., 2010.
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others who adopted a different, macroscopic approach (Toner,
2008; Goswami et al., 2011).

We also discussed the possibility of realizing the super-
solid phase in a different context, namely, cold atoms. This is
motivated by our belief that such a physical setting may well
afford the unambiguous experimental observation of this
intriguing phase, more directly (and with less controversy)
than in solid helium.
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