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This article reviews many manifestations and applications of dual representations of pairs of groups

primarily in atomic and nuclear physics. Examples are given to show how such paired representa-

tions are powerful aids in understanding the dynamics associated with shell-model coupling

schemes and in identifying the physical situations for which a given scheme is most appropriate.

In particular, they suggest model Hamiltonians that are diagonal in the various coupling schemes.

The dual pairing of group representations has been applied profitably in mathematics to the study of

invariant theory. Parallel applications to the theory of symmetry and dynamical groups in physics

are shown to be equally valuable. In particular, the pairing of the representations of a discrete group

with those of a continuous Lie group or those of a compact Lie group with those of a noncompact

Lie group makes it possible to infer many properties of difficult groups from those of simpler

groups. This review starts with the representations of the symmetric and unitary groups, which are

used extensively in the many-particle quantum mechanics of bosonic and fermionic systems. It

gives a summary of the many solutions and computational techniques for solving problems that

arise in applications of symmetry methods in physics and which result from the famous Schur-Weyl

duality theorem for the pairing of these representations. It continues to examine many chains of

symmetry groups and dual chains of dynamical groups associated with several coupling schemes in

atomic and nuclear shell models and the valuable insights and applications that result.
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I. INTRODUCTION

The value of exploiting the symmetries and algebraic
structures of a physical system in attempting to understand
its properties is nowadays much more widely appreciated
than when distinguished physicists were making disparaging
remarks about das Gruppenpest. In fact, it has become evi-
dent that group theory and the related theory of Lie algebras
underlie quantum mechanics and provide the essential lan-
guage for the interpretation of physical phenomena in quan-
tum mechanical terms.

A common strategy in seeking to understand a physical
system is to start by accumulating a large body of data that
relates to the phenomena of interest and examining it from
many perspectives until it falls into recognizable patterns.
The second step is to interpret the patterns in terms of a
phenomenological model; this provides some predictive
capability and facilitates the search for new data that can be
used to refine and develop the model. The challenge is then to
understand the model, and hence the data it describes, in
terms of a fundamental theory of the system.

The problems faced in each of these steps are tailor-made
for applications of group theory, the study of symmetries and
algebraic structures, which provides a natural language for
describing the properties of physical systems and the relation-
ships between physical and mathematical models of such
systems. It is nowadays well recognized that solvable models
invariably have simple algebraic structures; it is why they are
solvable. Moreover, the challenge of mapping a phenomeno-
logical algebraic model into a much grander algebraic
scheme, such as that of many-particle quantum mechanics,
is appropriately viewed as a problem in group representation
theory.

A central problem considered in this review is to take a
successful phenomenological model of some subdynamics of
a many-particle system and give it a microscopic interpreta-
tion by identifying it with a submodel of many-particle
quantum mechanics. Another is to derive simple phenome-
nological models that exhibit the dynamics associated with
particular coupling schemes for the microscopic theory. It

turns out that the algebraic methods of group theory and, in
particular, the complementary concepts of symmetry groups
and dynamical groups provide the basic tools needed for
these objectives.

A. Algebraic models in quantum mechanics

In quantum mechanics, the observables of a model are
represented by Hermitian linear operators on a Hilbert space.
In this review, we focus on algebraic models for which there
exist a basic set of observables that span a finite-dimensional
Lie algebra that we denote by g. Thus, if X̂ and Ŷ are
operators in g representing model observables and Ẑ is
defined by the commutation relation

½X̂; Ŷ� ¼ X̂ Ŷ�Ŷ X̂ ¼ iẐ; (1)

then Ẑ is also an element of g. (Note that the factor i ¼ ffiffiffiffiffiffiffi�1
p

is needed in quantum mechanics because the commutator
½X̂; Ŷ� is skew Hermitian when X̂ and Ŷ are Hermitian.)
Other observables for the model are now given by
Hermitian polynomials in the elements of g with commuta-
tion relations inferred from the identity

½A; BC� ¼ ½A; B�Cþ B½A; C�: (2)

We then say that the full algebra of observables for such a
model is finitely generated, i.e., it is generated by the finite-
dimensional subalgebra g.

Now observe that many-particle quantum mechanics is an
algebraic model with a finitely generated Lie algebra of
observables. For example, the position and momentum ob-
servables fxni; pni; n ¼ 1; . . . ; N; i ¼ 1; 2; 3g of an N-particle
system of spinless particles in three-space R3 are represented
in quantum mechanics as operators fx̂ni;p̂ni;n¼1;...;N;
i¼1;2;3g on a Hilbert space H of normalizable wave func-
tions according to the basic equations of quantum mechanics

x̂nj�ðxÞ ¼ xnj�ðxÞ; p̂nj�ðxÞ ¼ �iℏ
@

@xnj
�ðxÞ:

(3)

These basic observables obey commutation relations

½x̂nj; x̂mk� ¼ ½p̂nj; p̂mk� ¼ 0;

½x̂nj; p̂mk� ¼ iℏ�n;m�j;k;
(4)

which close on a Heisenberg-Weyl Lie algebra. The Hilbert
space of the N-particle system then carries a unitary irreduc-
ible representation (irrep) of this algebra, i.e., an irrep in
which x̂ni and p̂ni are Hermitian operators. For a system of
many particles with intrinsic spin, it is necessary to augment
this algebra by the addition of suitable spin operators.

B. Symmetry groups and dynamical groups

A symmetry group of a system is, by definition, a group of
transformations of the system that leave its Hamiltonian
invariant. For example, a symmetry group for a system with
a Hamiltonian that is rotationally invariant is the rotation
group SO(3) [or SU(2) if particles with intrinsic spin are
involved]. A given Hamiltonian may have more than one
symmetry group and a given system may have many possible
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choices of Hamiltonian. Thus, a system may have several
possible symmetry groups. Note that by a ‘‘system’’ we mean
any self-contained model or theory of a physical system; thus
different models of a physical system are regarded as distinct
systems.

Variations on the definition of a dynamical group for a
quantummechanical system have been given, for example, by
Iachello and Arima (1987), Bohm, Ne’eman, and Barut
(1988), Isacker (1999), and Wulfman (2011). We adopt the
definition that a dynamical group for a system is a Lie group
of transformations of the Hilbert space H of the system such
that H carries an irreducible unitary representation of the
dynamical group. Essentially this ensures that the dynamical
group is rich enough to relate all parts of the system. This is
appropriate because if a system has parts that are not related
in some way, then the parts are more usefully regarded as
belonging to distinct systems.

It is also useful to define a dynamical group for a
Hamiltonian Ĥ of a system to be a Lie group of transforma-
tions of the Hilbert spaceH of the system such thatH is a sum
of irreducible unitary representations of this group with each
irreducible subspace being spanned by eigenstates of Ĥ. The
irreps of the dynamical group for Ĥ then describe the states of
the system but fail to describe the relationships between states
belonging to different irreps; for this one needs the full
dynamical group of the system.

Consider, for example, a two-level BCS model of super-
conductivity (Bardeen, Cooper, and Schrieffer, 1957) with a
Hamiltonian

Ĥ ¼ X2
k¼1

"kŜ
k
0 �

X2
i;k¼1

gikŜ
iþŜk�; (5)

where for each k¼1, 2, Ŝk�¼ Ŝkx�iŜky, Ŝ
k
0¼ Ŝkz , and fŜkx;Ŝky;Ŝkzg

are basis elements of an suð2Þk (so-called quasispin) Lie
algebra. When the model Hilbert space is the space of a single
irreducible SUð2Þ1 � SUð2Þ2 representation, then the group
G ¼ SUð2Þ1 � SUð2Þ2 is a dynamical group for both the
model and the Hamiltonian. However, when the Hilbert space
for the model carries a sum of two or more inequivalent irreps
of G, then G is a dynamical group for the Hamiltonian Ĥ but
not for the model with this Hamiltonian. It is also seen that
the subgroup Uð1Þ � SUð2Þ1 � SUð2Þ2 with a single infini-

tesimal generator Ŝ0 ¼ Ŝ10 þ Ŝ20 is a symmetry group for this
Hamiltonian.

Note that a system can have many dynamical groups. A
particularly useful choice is one for which the important
observables of the system have simple expressions in terms
of its Lie algebra g, e.g., as linear or quadratic polynomials of
the algebra’s operators. Different choices may suit different
situations, as illustrated in the following.

C. Coupling schemes

Dynamical groups are used in the construction of basis
states for the Hilbert space of a system. A good basis is one
for which the representation theory of a dynamical group, and
especially that of its Lie algebra, facilitates the calculation of
matrix elements of physically relevant operators. For large
(especially infinite-dimensional) Hilbert spaces, it is also

useful if truncations of the Hilbert space to subspaces
spanned by suitable subsets of basis states give accurate
approximations for states of interest.

Desirable basis states are given by a coupling scheme
defined by a subgroup chain

G � K � Gsym; (6)

where G is a dynamical group for the system, K is a dynami-
cal group for some class of Hamiltonians for this system, and
Gsym is a symmetry group of transformations that leave these

Hamiltonians invariant. Basis states for the system in a given
irrep of G are then given by state vectors fj�����ig for a
unitary irrep of G, where � labels an irrep of K that occurs
with multiplicity indexed by �, � labels an irrep of Gsym with

multiplicity index �, and � indexes a basis for the irrep �.
From the definitions of K and Gsym, it then follows that � and

� are good quantum numbers for the eigenstates of any
Hamiltonian Ĥ for which K is a dynamical group. Also �
and � are good quantum numbers when Gsym is a symmetry

group for Ĥ. To determine the eigenstates of Ĥ, it then
remains to diagonalize the �- and �-independent matrices

M��
��0 ¼ h�����jĤj���0��i: (7)

Special cases arise when the spectrum of a Hamiltonian
does not depend on the multiplicity indices � and �. This can
happen because the irreps of Gsym in H are uniquely defined

by the quantum numbers � and � so that multiplicity indices
are not needed, or because one is interested in a class of
Hamiltonians for which the basis states fj�����ig are eigen-
states for any choices of � and �. In either case,

Ĥj�����i ¼ E��j�����i (8)

for a subset of Hamiltonians, and the coupling scheme is said
to diagonalize Hamiltonians in this subset. A subgroup chain
is often said to define a so-called dynamical symmetry for the
class of Hamiltonians that it diagonalizes (Iachello and
Arima, 1987). Thus coupling schemes defined by subgroup
chains make it possible to determine the spectra of corre-
sponding classes of Hamiltonians by purely algebraic meth-
ods. Conversely, the interpretation of a coupling scheme
defined by a subgroup chain in terms of the class of
Hamiltonians that it diagonalizes provides important insights
into its physical significance.

In general, there will be more than one coupling scheme
for a given system with a given symmetry group Gsym,

inasmuch as there may be more than one intermediate group
K betweenG andGsym in the subgroup chain (6). However, in

general, because of multiplicities, there may not exist a
coupling scheme, defined by a subgroup chain G � K �
Gsym, for which an arbitrary Hamiltonian for a system with

symmetry group Gsym will automatically be diagonal. The

challenge is then to diagonalize the Hamiltonian in a basis
defined by some convenient coupling scheme. The careful
choice of coupling scheme is often important, particularly
in infinite-dimensional spaces such as those of the atomic
and nuclear shell models, for which approximations are
inevitable.

A coupling scheme defined by a subgroup chain is best
understood by an example. Consider the BCS model of

D. J. Rowe, M. J. Carvalho, and J. Repka: Dual pairing of symmetry and dynamical groups . . . 713

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



superconductivity with Hamiltonians of the form (5) for
which a dynamical group is given by G ¼ SUð2Þ1 � SUð2Þ2
and a symmetry group by Gsym ¼ Uð1Þ, where U(1) is the

group with infinitesimal generator Ŝ0 ¼ Ŝ10 þ Ŝ20. This
model has two coupling schemes defined by the subgroup
chains

SUð2Þ1 � SUð2Þ2 � Uð1Þ1 � Uð1Þ2 � Uð1Þ; (9)

SUð2Þ1 � SUð2Þ2 � SUð2Þ � Uð1Þ; (10)

where SU(2) is the group with Lie algebra spanned by

fŜx; Ŝy; Ŝzg with Ŝa ¼ Ŝ1a þ Ŝ2a for a ¼ x, y, and z. The first

of these coupling schemes diagonalizes the subset of
Hamiltonians of the form

Ĥ1 ¼
X2
k¼1

½"kŜk0 � gkŜ
kþŜk��; (11)

and the second diagonalizes Hamiltonians of the form

Ĥ2 ¼ "
X2
k¼1

Ŝk0 � g
X2
i;k¼1

ŜiþŜk�: (12)

In the two-level BCS model, the first coupling scheme de-
scribes the weakly coupled limit of two paired fermion states
and models the normal phase of a superconductor, whereas
the second coupling scheme describes the strong-coupling
limit and models the superconducting phase.

The study of coupling schemes and the Hamiltonians they
diagonalize is a profitable way to expose the dynamical
content of a system. The interacting boson model (Iachello
and Arima, 1987), which has a U(6) dynamical group, has
been well studied in this way. It is a model with three
coupling schemes that diagonalize subsets of rotationally
invariant Hamiltonians. A remarkable result of these studies
is the observation that, for arbitrary rotationally invariant
Hamiltonians and relatively large boson numbers, the low-
energy eigenstates of this model exist predominantly in one
of the three possible phases characteristic of its dynamical
symmetries. Similar results have also been observed in
other systems (Rowe, 2004b). This is remarkable because it
happens even when the Hamiltonians contain significant
interaction terms that mix different dynamical symmetries.
Reviews of such studies have been given in Sec. 7 of
Rosensteel and Rowe (2005) and by Cejnar, Jolie, and
Casten (2010) in which they are interpreted in terms of
quasidynamical symmetries (see Sec. IX.C).

D. Complementary symmetry groups and dynamical groups

It is useful if a symmetry group and a dynamical group for
a Hamiltonian Ĥ are subgroups of a dynamical group for the
whole system. However, although a dynamical group for Ĥ
usually contains a symmetry group of the Hamiltonian as a
subgroup, as in Eq. (6), it will not generally contain a
maximal symmetry group. As a consequence, a given choice
of a dynamical group may not make it possible to take full
advantage of the symmetries of the Hamiltonian in seeking its
eigenstates. An optimal symmetry group is as close to a

maximal symmetry group as possible, whereas an optimal
dynamical group for a Hamiltonian is the simplest that
enables the spectrum of the Hamiltonian to be computed
easily. Augmenting the symmetry group while decreasing
the dynamical group becomes possible if one gives up the
constraint that it must be a subgroup of the dynamical group.
However, if this is to be useful, the symmetry group and
the dynamical group must remain compatible in such a way
that the two groups can effectively complement each
other. Such a compatibility is achieved if the symmetries of
the Hamiltonian are a combination of subgroups of a
dynamical group and groups that commute with the dynami-
cal group.

The rationale for seeking commuting dynamical and sym-
metry groups is as follows. Suppose that � labels a unitary
irrep of a symmetry group GSym of a Hamiltonian Ĥ and �

labels a basis for this irrep. Let Hð��Þ denote the subspace of
all states in H with the quantum numbers � and �. Then if it
should happen that each subspace Hð��Þ carries a unitary
representation of a group GDyn, this group will be of major

assistance in determining the spectra and other properties of
any Hamiltonian for which the commuting group GSym is a

symmetry group. Moreover, the identification of a groupGDyn

whose action on a Hilbert space of interest commutes with
that of a desired symmetry group provides a potentially useful
way of constructing simply solvable models.

E. Dual pairs of group representations

Suppose a given Hilbert space H carries commuting rep-
resentations of GSym and GDyn. A particularly valuable situ-

ation arises when the unitary representation of GDyn carried

by every subspace Hð��Þ, as defined above, is irreducible and
defined uniquely by �. In this case, a basis for the whole
Hilbert space is given by a set fc ���g, where � indexes a

basis for an irrep � ofGSym and� indexes a basis for the irrep

of GDyn, which can now also be labeled by �. The pair of

groups GSym and GDyn are then said to have dual representa-

tions on the Hilbert space H.
Situations of this kind might appear to be rare. In fact, as

this review shows, they are common and occur for all the
standard coupling schemes of the atomic and nuclear shell
models. They prove to be of profound importance.
Moreover, it is possible to benefit from the widespead study
of the dual pairing of group representations in the mathe-
matical field known as invariant theory (see Sec. II). From
such studies, several of which were initiated in nuclear
physics, some remarkable relationships have been discov-
ered between the properties of very different groups that
happen to have dual representations on some Hilbert spaces
of relevance to physics. Some of these properties are well
known. For example, it is common practice to speak of a
unitary representation of a many-particle system as having a
given symmetry, where the symmetry referred to is a repre-
sentation of the symmetric group of permutations of the
particles, i.e., a group with representations that are dual to
those of a unitary group. This duality, known as Schur-Weyl
duality, leads to the Young diagram and many other powerful
techniques that give simple solutions to problems that arise
in physics.
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Dual representations of a pair of Lie groups are defined
precisely as follows.

Two groups G1 and G2 are said to have dual representa-
tions on a spaceH if the following conditions are met: (i)H is
the carrier space for fully reducible representations of both
G1 and G2; (ii) the actions of G1 and G2 on H commute;
(iii) the representation � of the direct product group G1 � G2

onH, defined by the actions ofG1 andG2 onH, is multiplicity
free; and (iv) each irrep of G1 that occurs in the decompo-
sition of H is paired with a single irrep of G2, and vice versa.

Condition (i) restricts consideration to representations of
G1 and G2 that are expressible as direct sums of irreps. Thus,
for present purposes, we exclude representations of some
noncompact groups that are direct integrals of irreps. For
the purposes of this review, we also restrict consideration to
representations that are unitary.

Condition (iii) states that, in the decomposition of the
representation � of G1 �G2 on H to a direct sum of irreps,
no irrep appears more than once. Condition (iv) guarantees
that, in such a decomposition, it is possible to identify, with a
common label, paired irreps of the two groups [e.g., by the
angular-momentum label l in the SUð1; 1Þ � SOð3Þ example
given below].

Simple proofs of the duality theorems on which this review
is based are given elsewhere (Rowe, Repka, and Carvalho,
2011).

F. A simple example

Suppose we want to determine the spectrum of a central-
force Hamiltonian for a particle moving in ordinary three-
space or for the relative motion of a diatomic molecule
moving about its center of mass. A standard practice is to
seek eigenfunctions of the Hamiltonian in a basis of spherical
harmonic-oscillator wave functions. Basis wave functions for
the Hilbert space H of a spherical harmonic oscillator are
given by products

c nlmðr; �; ’Þ ¼ RnlðrÞYlmð�; ’Þ; (13)

where fRnlg are radial wave functions and fYlmg are spherical
harmonics. The subset of wave functions fc nlmg with n fixed
span a Hilbert space HðnÞ � H that carries an irrep of the
U(3) symmetry group of a harmonic-oscillator Hamiltonian.
The subset fc nlmg with fixed values of n and l span a Hilbert
space HðnlÞ � HðnÞ � H that carries an irrep of the rotation
group SO(3). Thus, the basis wave functions fc nlmg are
those of the coupling scheme defined by the irreps of the
symmetry groups of a harmonic oscillator in the subgroup
chain

Uð3Þ � SOð3Þ � SOð2Þ:
n l m

(14)

As well as being a symmetry group for the spherical
harmonic oscillator, the group U(3) is also a dynamical
group inasmuch as its irreps are spanned by eigenstates of
this Hamiltonian. We now enquire as to whether or not there
is a group that commutes with the SO(3) symmetry group
that could serve as a dynamical group for a general central-
force Hamiltonian. We find that SU(1,1) is such a group and

that it has a unitary irrep on each of the Hilbert spaces
HðlmÞ spanned by the harmonic-oscillator wave functions
fc nlmg with fixed values of l and m. Thus, the representation
theory of the group SO(3) and its SO(2) subgroup deter-
mines the spherical harmonics with the quantum numbers l
and m. Moreover, the representation theory of the dynamical
group SU(1,1) and its Lie algebra can be used to determine
the radial wave functions for a general central-force
Hamiltonian.

The group SU(1,1) is defined as follows. From the vector
operators r̂ ¼ ðx̂1; x̂2; x̂3Þ and p̂ ¼ ðp̂1; p̂2; p̂3Þ for a particle
in three-space, we can form the SO(3)-invariant (i.e., scalar)
operators r̂2 ¼ r̂ � r̂ and p̂2 ¼ p̂ � p̂. A linear combination of
these scalars is a harmonic-oscillator Hamiltonian

Ĥ ¼ 1

2m
p̂2 þ 1

2
m!2r̂2; (15)

and the commutator

½r̂2; p̂2� ¼ 2iℏðr̂ � p̂þ p̂ � r̂Þ (16)

is another SO(3) scalar. Further commutators produce no
new operators, which means that the operators fr̂2; p̂2; r̂ � p̂þ
p̂ � r̂g are a basis for a Lie algebra. This is the Lie algebra
su(1,1) of the group SU(1,1) which is now observed to be a
dynamical group for any central-force Hamiltonian

Ĥ ¼ 1

2m
p̂2 þ V̂ðrÞ; (17)

where V is a rotationally invariant potential energy.
The remarkable property of this SU(1,1) group is that,

although its elements commute with those of SO(3), its irreps
on the Hilbert space of a particle in three-space are uniqely
defined by the SO(3) angular-momentum quantum number l.
Moreover, any wave function in H that has angular momen-
tum lmust belong to irreps of both SO(3) and SU(1,1) labeled
by l. This is a deep result which has its origins in the
centrifugal coupling of the radial and rotational motions of
the particle.

G. Outline of the review

Section II gives an historical review of the major contri-
butions to the development and applications of dual group
representations of which we are aware.

Section III presents the duality relationship, known as
Schur-Weyl duality, between the unitary and symmetric
groups on the Hilbert spaces of many particles. This duality
gives rise to the Young diagram methods and relationships
between characters which are of enormous practical impor-
tance in the use of these groups in physics.

Section IV shows the power of Schur-Weyl duality in
deriving the branching rules and tensor products that are
needed in atomic and nuclear physics.

Section V presents duality relationships between pairs of
unitary groups. These duality relationships are applied to the
construction of fully antisymmetric combinations of space
and spin wave functions and of space, spin, and isospin wave
functions. Such methods are needed in atomic, nuclear, and
elementary particle physics.
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Section VI introduces methods of second quantization
which provide simple ways of ensuring that wave functions
of multiple identical bosons or fermions are automatically
symmetric or antisymmetric, respectively.

Section VII applies duality techniques to many-boson
systems. It shows the underlying algebraic structures of
central-force problems and the main models of nuclear col-
lective motion, e.g., the Bohr model, interacting boson model,
and the microscopic symplectic model.

Section VIII applies duality techniques to many-fermion
systems. It shows the relationship between pairing models
and corresponding single-j- and multi-j-shell coupling
schemes. Similar relationships are shown for LST coupling
models.

Section IX gives a brief review of other related develop-
ments in group theoretical methods.

Section X gives a summary and some possibilities for
further development and/or pursuits of methods described
in the review.

II. HISTORICAL PERSPECTIVE

Dual pairs of group representations were first used in the
context of invariant theory by Schur (1901, 1927). In con-
structing the finite-dimensional irreps of general linear
groups, Schur discovered what is now called Schur-Weyl
duality, which he reported in his 1901 doctoral dissertation
(Schur, 1901). Weyl developed the theory and applied it to
diverse physical problems (Weyl, 1946). In his book, origi-
nally published in 1928, Weyl (1950) gave wide publicity to
Young’s work [cf. Robinson (1977)] on the symmetric groups
(including coining the term Young tableau), extended the
work of Schur (e.g., to include Weyl’s character formula),
and applied Schur’s discovery in quantum mechanical
contexts.

Subsequent to these seminal works, Schur-Weyl duality
has been used to develop branching rules and tensor-product
decompositions for a wide range of groups of interest to the
physics community. In a series of publications, Littlewood
(1950) used Schur-Weyl duality and particularly Schur func-
tion techniques to advance the theory of group characters.
Work done on branching rules up to the mid-1960s was
summarized by Whippman (1965).

In more recent times, King (1975), Wybourne (1993),
Macdonald (1995, 1998), and colleagues further developed
the character theory ofLie groups and, in the process, exhibited
the power of Schur function techniques. The publications from
King (1970, 1971, 1975), Black, King, and Wybourne (1983),
and Black andWybourne (1983) provide entry points into their
work on the character theory of compact Lie groups. Schur
function techniques have also been used to extend the appli-
cation of Schur-Weyl duality to the character theory of non-
compact Lie groups (King andWybourne, 1985, 1998, 2000a,
2000b; Rowe, Wybourne, and Butler, 1985; Grudzinski and
Wybourne, 1996; Thibon, Toumazet, and Wybourne, 1997),
Hecke algebras (Wybourne, 1991; King, 1993), and supersym-
metry (Borodin and Rozhkovskaya, 1995; Cheng and Wang,
2000, 2001; Cheng and Zhang, 2004).

Haase and Butler (1984a, 1984b) used Schur-Weyl duality
to derive relationships among coupling coefficients of

symmetric and unitary groups. Also noteworthy is the work

of D’Hoker (1984) and Koike and Terada (1987), in which

Young diagram techniques for unitary groups are systemati-

cally extended to various classical Lie groups, and the work of

Brauer (1937) which extended the theory from the symmetric

group to the commutants of orthogonal and symplectic groups

on tensor-product spaces with applications to quantum

groups, knots, and links (Benkart, 1996).
In addition to the many examples already listed, a recent

application of duality to error correction in quantum com-

puting was given by Junge, Kim, and Kribs (2005). This

underscores the fact that Schur-Weyl duality is not only

useful in the construction of wave functions with specified

permutation symmetries, it is also useful when one wants to

classify the symmetry properties of more general composite

systems.
The second duality relationship to be discovered was the

duality between the representations of pairs of unitary groups,

the so-called unitary-unitary duality. The application of this

duality relationship, which follows directly from Schur-Weyl

duality, has been widely used in the classification of nuclear

shell-model states following the introduction of Wigner’s

U(4) supermultiplet group (Wigner, 1937). In this classifi-

cation, representations of the U(4) supermultiplet group,

which contains a U(2) isospin subgroup and a U(2)

intrinsic-spin subgroup for spin-1=2 nucleons, are com-

bined with contragredient irreps of a UðnÞ group of trans-

formations of spatial wave functions to form the totally

antisymmetric states required for a many-nucleon system.
To our knowledge, the next duality relationship to be

discovered was the compact symplectic-symplectic duality.

The utility of compact symplectic groups in the atomic shell

model was brought to the attention of the physics community

by Racah (1943). It was later applied to the classification of

nuclear shell-model states in jj coupling by Flowers (1952a,

1952b, 1952c), who introduced extra group theoretical struc-

tures to account for the nucleon’s isospin degrees of freedom.

In the process, Flowers recognized and exploited many dual-

ity relationships. The symplectic-symplectic duality theorem

underlying these relationships was formulated and proved,

using character theory, by Helmers (1961), who described

what he had discovered as group complementarity.

Independently, Kerman (1961) introduced the related and

much used concept of a quasispin group which proved to

be a special case of Helmers’ theorem. The concept of

USp-USp duality was reviewed in works directed to phys-

icists by Parikh (1978) and Lipkin (2002). It has been widely

applied to fermion-pair coupling phenomena, in both nuclear

systems and superconductivity. Recent applications are de-

scribed in Lorazo (1970), Engel et al. (1997), Van Isacker

(1999), Palchikov, Dobeš, and Jolos (2001), Rowe and

Rosensteel (2001), Dean and Hjorth-Jensen (2003),

Sviratcheva, Georgieva, and Draayer (2003), and Rosensteel

and Rowe (2003).
A duality relationship between the representations of pairs

of orthogonal groups was similarly identified in the classifi-

cation of nuclear shell-model states in LS coupling. In this

case, the discovery emerged from two quite distinct methods

for the construction of shell-model basis states that diagonal-

ize a simple LS-coupling pairing Hamiltonian. Bayman
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(1960) gave the basis states in terms of the irreps of a
symmetry group for the Hamiltonian and, independently,
Flowers and Szpikowski (1964) gave the same basis states
in terms of the irreps of a distinct dynamical group. Although
the duality of these complementary approaches has long been
understood, the orthogonal-orthogonal duality theorem
underlying them has only recently been formulated and
proved in physics (Kota and Alcarás, 2006; Rowe and
Carvalho, 2007; Rowe, Repka, and Carvalho, 2011).

Independent of the discoveries in physics, the theory of
dual group representations has been developed in mathemat-
ics and given a rigorous basis within the framework of
invariant theory. The oscillator Weil representation of the
noncompact symplectic groups was particularly influential
in this development. Following the construction of the oscil-
lator representations of the noncompact symplectic groups by
Segal (1959), Shale (1962), and Weil (1964), the well-known
SUð1; 1Þ � Oð3Þ duality relationship (discussed in the
Introduction) was recognized as a special case of a more
general symplectic-orthogonal duality relationship. This du-
ality relationship was introduced into physics following its
discovery by Moshinsky and Quesne (1969, 1970), based on
results in Chacón’s thesis (Chacón, 1969), and derived, to-
gether with other such relationships, by Kashiwara and
Vergne (1978). In fact, apart from Schur-Weyl duality, the
duality relations described in this review are all special cases
of the so-called dual reductive pairs identified in a paper by
Howe (1989) that was written in 1976 and widely circulated
but not published at that time. Examples of dual reductive
pairs were given by Gelbart (1973) and Howe (1985) and
many authors have contributed to the subject. In addition to
the duality relationships considered in this review, more are
known in mathematics. Reviews of invariant theory and dual
group representations in mathematics are given by Howe
(1995), Li (2000), and Goodman (2004). For example, there
are duality relationships between Uðp; qÞ and UðnÞ
(Kashiwara and Vergne, 1978), between the compact sym-
plectic and noncompact SO�ð2nÞ group (Leung and Ton-That,
1995), between pairs of noncompact groups [Oðp; qÞ,
Spðm;RÞ] (Adams, 1983), and also between Oðp; qÞ and an
orthosymplectic group. The latter dual pair is shown by Lu
and Howe (2010) to be relevant to Maxwell’s equations.
Howe duality has been extended to the realm of exceptional
Lie groups (Dvorsky and Sahi, 1998) and quantum groups
(Green, 1999), and has also been applied to gauge theories
(Schmidt, 1999) and the quantization of constrained systems
(Landsman, 1999). Its use in deriving branching rules for the
harmonic series of Spðn;RÞ was initiated by Rowe,
Wybourne, and Butler (1985) and followed by a similar
derivation of branching rules for Uðp; qÞ and SO�ð2nÞ by
King and Wybourne (1985). Branching rules for many clas-
sical pairs of Lie groups have been derived by Howe, Tan, and
Willenbring (2004).

III. THE SYMMETRIC AND UNITARY GROUPS

The symmetric group SN is the group of permutations of
the indices that label the particles of an N-particle system,
and the unitary groups are transformations that preserve the
orthogonality relationships of quantum mechanical states.

These groups are indispensable in quantum mechanics. The
symmetric group is a fundamental symmetry of the quantum
mechanics of identical particles. Moreover, the Schur-Weyl
duality theorem shows that the subgroup of all unitary trans-
formations of a many-particle system that commute with the
symmetric group is the so-called group of one-body unitary
transformations. It also shows that this subgroup and the
symmetric group have dual representations on a many-
particle Hilbert space. Thus, it identifies the group of one-
body unitary transformations as the fundamental dynamical
group of many-particle quantum mechanics.

Elementary particles are considered to be either bosonlike
or fermionlike, which means that their many-particle wave
functions are totally symmetric or totally antisymmetric,
respectively, under permutation. However, wave functions
often have several components. For example, fermion wave
functions may be combinations of spatial, spin, and isospin
wave functions which need not be separately antisymmetric.
Thus, in calculations, it is necessary to keep track of the way
the separate components transform under permutation of the
particle indices so that they can be put together in antisym-
metric combinations. This awe-inspiring task is much sim-
plified by use of the Schur-Weyl theorem.

Suppose a space of single-particle wave functions is
n-dimensional and that UðnÞ is the group of unitary trans-
formations of this space. The Schur-Weyl theorem shows that
there is a duality relationship between the irreps of the unitary
group UðnÞ and those of the symmetric group SN for an
N-particle system. Thus, not only do the fully antisymmetric
states of a many-fermion system carry a corresponding irrep
of UðnÞ but the states of any specified permutation symmetry
carry a UðnÞ irrep. This is a remarkable result that provides
basic tools for the application of group theory to many-
particle systems and, in particular, to the development and
interpretation of phenomena in terms of the various shell-
model coupling schemes. In fact, as this section shows,
Schur-Weyl duality implies that many of the well-known
properties of the discrete SN group can be used to infer
corresponding properties for the continuous UðnÞ Lie group
and vice versa. Thus, numerous parallel techniques have been
developed for the simultaneous study of the symmetric and
unitary groups, e.g., within the framework of Young diagram
methods and character theory.

This section makes substantial use of the review of
Young’s diagram and related Schur function techniques given
by Wybourne (1970). Sections III.A–III.C closely follow
those of Rowe and Wood (2010).

A. The Schur-Weyl duality theorem

Let Hn denote an n-dimensional Hilbert space and let

HN
n ¼ H	N

n ¼ Hn 	 � � � 	Hn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N copies

(18)

denote the tensor product of N copies of Hn. The following
Schur-Weyl theorem is naturally understood ifHn andH

N
n are

interpreted as spaces of single-particle and N-particle wave
functions, respectively.
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Theorem 1 (Schur-Weyl duality): The groups SN and UðnÞ
have dual representations on HN

n .
1

Let fc 1; c 2; . . . ; c ng denote an orthonormal basis of
single-particle wave functions for Hn. The group UðnÞ then
has a defining n-dimensional irrep Ûf1g on Hn given by
transformations of its single-particle wave functions

Ûð1ÞðgÞc � ¼ X
�

c �g��; g 2 UðnÞ: (19)

The corresponding Hilbert space HN
n has an orthonormal

basis given by the N-particle wave functions

��1����N
¼ c �1

	 c �2
	 � � � 	 c �N

; (20)

and carries a reducible UðnÞ tensor-product representation
ÛN given for g 2 UðnÞ by

ÛðNÞðgÞ��1����N
¼ X

�1����N

��1����N
g�1�1g�2�2

� � � g�N�N
:

(21)

For any positive integer N, this UðnÞ representation and its
irreducible subrepresentations are referred to as tensor rep-
resentations of degree N.

The Hilbert space HN
n also carries a reducible representa-

tion P̂ of the symmetric group SN , defined by the permuta-
tions of the N indices of the f��1�2����N

g basis; e.g., if

	12 2 SN is the permutation that exchanges particles 1 and
2, then

P̂ð	12Þ��1�2����N
¼ ��2�1����N

: (22)

A proof of the Schur-Weyl duality theorem can be found,
for example, in Chapter V of Weyl and Robertson (1950),
Chapter 5 of Sternberg (1994), and Chapter 6 of Fulton and
Harris (1991). Here we highlight and explain the main points
of the theorem, some of which are immediately evident. For
example, it is readily ascertained that the actions of SN and
UðnÞ commute:

P̂ð	ÞÛfNgðgÞ��1����N
¼ ÛfNgðgÞP̂ð	Þ��1����N ; (23)

for all g 2 UðnÞ and all 	 2 SN . Thus, the direct product
group SN � UðnÞ has a reducible representation T̂ on HN

n for
N > 1 and n > 1, defined by

T̂ð	; gÞ��1����N ¼ P̂ð	ÞÛfNgðgÞ��1����N ; (24)

for 	 2 SN and g 2 UðnÞ. Every irrep of SN � UðnÞ is then
expressed as an ‘‘outer product’’ T̂ ¼ P̂ � Û, where P̂ and

Û are, respectively, irreps of SN and UðnÞ, and
T̂ð	;gÞ¼ P̂ ð	Þ�ÛðgÞ; 	2SN; g2UðnÞ: (25)

(In the mathematics literature, the irrep P̂ � Û is denoted

P̂ 	 Û. However, we avoid this notation because of the
potential confusion with the use of 	 for the standard tensor
product for irreps of a single group.)

By condition (iv) of the definition of duality, the
Schur-Weyl theorem affirms that all irreps occurring in
the decomposition of T̂ are of the form

T̂� ¼ P̂ð�Þ � Ûf�g; (26)

where P̂ð�Þ and Ûf�g are, respectively, SN and UðnÞ irreps that
are uniquely defined by a common label �. Moreover, every
irrep of SN appears in the above decomposition, provided that
N 
 n. Some SN irreps do not occur if N > n; for example, it
is not possible to form a totally antisymmetric N-particle
wave function with fewer than N linearly independent single-
particle wave functions. Thus, we learn from the Schur-Weyl

theorem that every SN irrep P̂ð�Þ, with N 
 n, is uniquely

associated with a corresponding tensor irrep Ûf�g of UðnÞ.
Conversely, every tensor irrep Ûf�g of degree N of UðnÞ is
uniquely associated with an SN irrep P̂ð�Þ. Although well
known and often taken for granted, we emphasize again
that these are remarkable results because they mean that
much of the representation theory of a family of continuous
Lie groups, namely, the unitary groups and their subgroups,
can be inferred from the representation theory of the finite
symmetric groups.

B. Characterization of UðnÞ � SN representations

A UðnÞ tensor irrep is characterized in two standard ways:
by its highest weight relative to a Cartan subalgebra and by its
SN symmetry. The relationship between these alternative
characterizations exposes the duality relationship between
SN and UðnÞ representations.

The group UðnÞ of n� n unitary matrices has the property
that a matrix g 2 UðnÞ can be expressed as an exponential
g ¼ eiX, where X is an n� n Hermitian matrix. Moreover,
every physical observable is represented in quantum mechan-
ics by a Hermitian operator. Thus, it is customary in physics
to define the Lie algebra uðnÞ of the group UðnÞ as the set of
Hermitian n� n matrices.

Let C�� denote a matrix that has the entry 1 at the

intersection of row � with column � and 0 everywhere
else, i.e.,

ðC��Þij ¼ ��;i�j;�: (27)

These matrices have commutation relations

½C��; C��� ¼ ��;�C�� � ��;�C�� (28)

and span the complex extension of the uðnÞ Lie algebra. A
basis for uðnÞ is then given, in terms of them, by the
Hermitian linear combinations

C��þC��; iðC���C��Þ; 1
�;�
n: (29)

They have N-particle tensor representations given by

C�� ! Ĉ�� ¼ XN
i¼1

c �ðiÞ @

@c �ðiÞ ; (30)

where @=@c �ðiÞ is a functional derivative with respect to a
single-particle wave function c �ðiÞ in the ith factor in the
tensor-product space HN

n of Eq. (18).

1The theorem is somewhat more general than stated here. This is

because GLðn;CÞ is the complex extension of UðnÞ and, as a

consequence, the representations of UðnÞ extend to (nonunitary)

representations of GLðn;CÞ. However, for present purposes, we

restrict consideration to the UðnÞ � GLðn;CÞ subgroup.
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Useful basis states for an irrep of UðnÞ and its Lie algebra
uðnÞ are given by the simultaneous eigenstates of the subset of
commuting operators that represent the diagonal matrices of a
Cartan subalgebra of uðnÞ. We call these operators Cartan
operators. A basis of Cartan operators for the tensor repre-
sentations and corresponding raising and lowering operators
are given by

fĈ��; � ¼ 1; . . . ; ng ðCartan operatorsÞ; (31)

fĈ��; 1 
 �< � 
 ng ðraising operatorsÞ; (32)

fĈ��; 1 
 � < � 
 ng ðlowering operatorsÞ: (33)

If a state j�i of aUðnÞ representation is an eigenstate of the
Cartan operators, i.e.,

Ĉ��j�i ¼ ��j�i; � ¼ 1; . . . ; n; (34)

then the set of eigenvalues � ¼ ð�1; �2; . . . ; �nÞ is said to be
the weight of the state j�i.

A weight � ¼ ð�1; �2; . . . ; �nÞ is said to be higher than a
weight �0 ¼ ð�0

1; �
0
2; . . . ; �

0
nÞ if �1 > �0

1, or if �1 ¼ �0
1 and

�2 > �0
2, etc. For convenience, commas and trailing zeros are

usually omitted in specifying a weight when it would be
unambiguous to do so. Thus, a highest weight (2,1,0,0) is
written as (21), and a highest weight (1,0,0,0,0) is written as
(1). However, a weight (21,0,0) is written explicitly.

BecauseUðnÞ is compact, all its irreps are unitary and finite
dimensional. Thus, a UðnÞ irrep has a highest weight. An
important property of Lie algebra structure theory is that a
finite-dimensional irrep of any semisimple or reductive Lie
algebra has a state with a uniquely defined highest weight; in
the case of the unitary algebra uðnÞ, the components �i of the
highest weight � satisfy the inequality

�1 � �2 � � � � � �n; (35)

where, for a tensor irrep, �n � 0. It follows that a UðnÞ irrep
is completely defined by its highest weight.

Consider, for example, the highest-weight state for the
N ¼ 3 irrep of U(3) with highest weight ð13Þ � ð111Þ. It
must be a linear combination of wave functions of the form
fc ið1Þc jð2Þc kð3Þg, where i, j, and k index three distinct

single-particle states. The particular linear combination
that is annihilated by the raising operators is given (to within
a normalization factor) by the fully antisymmetric wave
function

�ð13Þ
h:wt:ð1; 2; 3Þ ¼ D123

123; (36)

where D123
123 is the so-called Slater determinant of a 3� 3

matrix

D123
123 ¼

�����������
c 1ð1Þ c 1ð2Þ c 1ð3Þ
c 2ð1Þ c 2ð2Þ c 2ð3Þ
c 3ð1Þ c 3ð2Þ c 3ð3Þ

�����������: (37)

On the other hand, highest-weight states for the N ¼ 3 irreps
f3g and f21g have wave functions given by

�ð3Þ
h:wt:ð1; 2; 3Þ ¼ D1

1D
1
2D

1
3; (38)

�ð21Þ
h:wt:ð1; 2; 3Þ ¼ D12

12D
1
3; (39)

where D1
i ¼ c 1ðiÞ and

D12
ij ¼

�������� c 1ðiÞ c 1ðjÞ
c 2ðiÞ c 2ðjÞ

��������: (40)

A highest-weight state for an arbitrary UðnÞ irrep is similarly
expressed in terms of Slater determinants

D12���k
i1i2���ik ¼

��������������������

c 1ði1Þ c 1ði2Þ � � � c 1ðikÞ
c 2ði1Þ c 2ði2Þ � � � c 2ðikÞ
� � � � � � � � � � � �

c kði1Þ c kði2Þ � � � c kðikÞ

��������������������
: (41)

For example, a highest-weight state for the N ¼ 7 irrep of
U(3) with highest weight (421) is given by

�ð421Þ
h:wt: ð1; 2; 3; 4; 5; 6; 7Þ ¼ D123

123D
12
45D

1
6D

1
7: (42)

It can be seen that the wave function �ð421Þ
h:wt: is a sum of

tensor products of seven single-particle wave functions cor-
responding to four particles with wave function c 1, two
particles with wave function c 2, and one particle with
wave function c 3. Thus, it is of weight (421). Moreover,
from its structure as a product of highest-weight Slater deter-
minants, it is of highest weight.

The above construction gives a highest-weight state for any
UðnÞ tensor irrep. However, there are many such highest-
weight states in the N-particle Hilbert space HN

n for a given
highest weight, �. These many highest-weight states corre-
spond to the many possible permutations of the particle
indices. For example, the wave function

�ð421Þ
h:wt: ð1; 2; 7; 6; 5; 4; 3Þ ¼ D123

127D
12
65D

1
4D

1
3; (43)

obtained by permuting the particle indices in Eq. (42) is of
UðnÞ highest weight (421) but is distinct from that given by
Eq. (42). Clearly the set of all such wave functions of UðnÞ
highest weight (421), obtained by permutations of the particle
indices, spans a representation of the symmetric group S7.
More significantly, the Schur-Weyl theorem shows that this
S7 representation is irreducible and dual to theUðnÞ irrep with
highest weight (421). In general, the Schur-Weyl theorem
implies that the highest weight � for any tensor irrep of
UðnÞ on HN

n defines a dual irrep of SN with N ¼ j�j,
where j�j ¼ P

n
i¼1 �i.

The above example shows how an integer highest weight
�, i.e., one with non-negative integer components that satisfy
the inequality (35), determines both aUðnÞ tensor irrep and an
SN irrep, where N is the sum N ¼ j�j ¼ P

n
i¼1 �i of the

components of �. Such a highest weight is described as an
ordered partition of N and we write � ‘ N. If such a partition
has p nonzero parts, with p 
 n, it is said to have length
lð�Þ ¼ p.

C. Classification of SN and UðnÞ irreps by Young diagrams

The duality relationship between SN irreps and UðnÞ tensor
irreps is clarified by Young diagram techniques. As the above
N ¼ 7, n ¼ 3 example illustrates, both a tensor irrep of UðnÞ
and the corresponding SN irrep are characterized by an
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ordered partition � ‘ N. It is conventional to label the SN and
UðnÞ irreps corresponding to an ordered partition � by (�) and
f�g, respectively. The Schur-Weyl theorem can then be ex-
pressed as the statement that the representation T̂N

n of the
direct product group SN � UðnÞ carried by the tensor-product
space HN

n is a direct sum of irreps given by

T̂N
n ¼ Mlð�Þ
n

�‘N
ð�Þ � f�g: (44)

The irreps of SN and U nð Þ corresponding to an ordered
partition � ‘ N are equivalently characterized by a so-called
Young diagram Yð�Þ, which is an array of left adjusted boxes
with �1 boxes in the first row, �2 in the second row, . . ., �p in

the pth row. For example, the partition � ¼ ð421Þ is identified
with the Young diagram

The boxes of a Young diagram can be regarded as contain-
ers for indices that label particles for SN and single-particle
wave functions for UðnÞ. Such numbered diagrams are called
Young tableaux. For example, for the wave function

�ð421Þ
h:wt: ð1; 2; 3; 4; 5; 6; 7Þ of the highest-weight state given by

Eq. (42), we can put the particle-number indices 1; . . . ; 7 into
an S7 diagram and the single-particle state indices into a U(3)
diagram as follows:

where the columns of the tableaux correspond to the deter-
minantal factors in the wave function of Eq. (42):

The tableaux in Eq. (46) are special because the first
represents a so-called leading state of the S7 irrep (421)
and the second represents a state of highest weight for the
U(3) irrep f421g, as constructed above. The leading state is
defined, somewhat arbitrarily, to be one for which the particle
indices 1; 2; . . . ; 7 are entered sequentially down columns,
starting with the first column. The Young tableau for a UðnÞ
highest-weight state is one for which the integer i fills all
boxes of row i. Other basis states are obtained by putting the
numbers into the boxes in different ways, subject to the
condition that all the particle indices must be distinct.
However, simple rules must be followed to avoid getting an
overcomplete set. For example, inspection of the wave func-

tion �ð421Þ
h:wt: shows that the numbers in corresponding columns

of the S7 and U(3) tableaux, respectively, give the particle and
state indices of the single-particle wave functions of a Slater
determinant. Interchanging their order, in either tableau, can
at most change the sign of the wave function. To obtain a

linearly independent set of states, it is therefore appropriate to
impose the rule that the numbers in any column must always
increase strongly from top to bottom (increasing strongly
simply means that no number is repeated, whereas increasing
weakly means not decreasing). A second, less obvious rule, is
that, to obtain linearly independent states, the numbers in any
row of boxes should also increase [weakly in the case of a
UðnÞ tableau and strongly in the case of SN] from left to right.
Note also that, while state indices may be repeated, the
particle indices must all be distinct.

It is easy to check that the above rules work out in given
situations. For example, the four-dimensional space HN¼2

n¼2 is

spanned by three states of the � ¼ ð2Þ irrep of S2 � Uð2Þ and
one state of the � ¼ ð11Þ irrep:

Note that to determine the state with the Young tableau

for U(2), one applies the lowering operator Ĉ21, defined by
Eq, (30), to the state with tableau , i.e.,

Ĉ21c 1ð1Þc 1ð2Þ ¼ c 1ð1Þc 2ð2Þ þ c 2ð1Þc 1ð2Þ: (50)

Similarly, the eight-dimensional space HN¼3
n¼2 is spanned by

four states of the � ¼ ð3Þ irrep of S3 � Uð2Þ and four states of
the � ¼ ð21Þ irrep:

D. The relationship between SN and UðnÞ characters

A first application of Schur-Weyl duality is to obtain an
algorithm for deriving characters of the unitary groups from
those of the symmetric groups. Such characters are frequently
needed because UðnÞ plays a central role in the decomposi-
tion of tensor products of various group representations and in
the reduction of an irrep of a group on restriction to a
subgroup. These are frequently occurring problems in the
application of symmetry to many-particle physics.

The character 
 of a representation T̂ of a group G is a
complex-valued function 
: G ! C whose value for a group
element g 2 G is the trace

720 D. J. Rowe, M. J. Carvalho, and J. Repka: Dual pairing of symmetry and dynamical groups . . .

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012




ðgÞ ¼ Tr½T̂ðgÞ�: (52)

Characters take the samevalues for all elements of a group that
belong to a common conjugacy class, because, if two elements
g1 and g2 of a group G are conjugate, they are related by
g1 ¼ gg2g

�1 for some g 2 G. The identity Tr½T̂ðg1Þ�¼
Tr½T̂ðgg2g�1Þ�¼Tr½T̂ðgÞT̂ðg2ÞT̂ðgÞ�1Þ�¼Tr½T̂ðg2Þ� then im-
plies that


ðg1Þ ¼ 
ðg2Þ: (53)

For the symmetric group SN , all elements that belong to the
same conjugacy class have the same cycle structure. This is
readily seen by expressing a general permutation as a product
of cyclic permutations. An arbitrary element g 2 SN can be
expressed as

g ¼ 1 2 3 � � �
g1 g2 g3 � � �

� �
;

which denotes the permutation of a set of N objects in which
the object in slot i is moved to slot gi. Consider, for example,
the particular element

g0 ¼ 1 2 3 4 5
3 4 5 2 1

� �

of S5. It corresponds to a sequence of two cyclic permutations
g0 ¼ ð1 ! 3 ! 5 ! 1Þð2 ! 4 ! 2Þ that can be expressed
efficiently with the notation

g0 � ð1; 3; 5Þð2; 4Þ: (54)

Such a product of a three-cycle and a two-cycle is said to have
a (3,2) cycle structure. It is then readily seen that the con-
jugate of g0 by g (for any g 2 S5) is the element

gg0g�1 ¼ ðg1; g3; g5Þðg2; g4Þ (55)

that has the same cycle structure as g0. The converse is also
true: two elements of SN with the same cycle structure are
conjugate. Thus, we identify a class � of SN with a so-called
cycle structure ð�1; �2; . . .Þ, where �i is the length of a
cycle. For example, the class containing all permutations
fgð1; 2; 3Þð4; 5Þg�1; g 2 S5g has a cycle structure (3,2). It
may also be noted that if the lengths of the cycles defining
a class are ordered such that

�1 � �2 � �3 � � � � ; (56)

then the class label � � ð�1; �2; . . .Þ is an ordered partition of
N. It follows from this result that the number of classes of the
group SN is equal to the number of ordered partitions of N
which, in turn, is equal to the number of inequivalent irreps of
SN . However, a partition defines a class whether or not it is
ordered. Thus, it is often useful to denote a class by the set
� � firi g, where ri denotes the number of cycles of length i.

The values of an SN character f
�g for the classes of SN are

conventionally displayed in tables in which each row corre-
sponds to an irrep of SN . Thus, for example, because S3 has
three irreps, labeled by � ¼ ð3Þ, (21), and ð13Þ, and three
classes, � ¼ ð13Þ, (2,1), and (3), its character table is a 3� 3
array f
�

�g as shown in Table I. The irreducible SN characters

satisfy the orthogonality relations

X
�‘N

n�

�
�


�0
� ¼ N!��;�0 ; (57)

where n� is the number of elements of SN in the class �.

The number n� is determined as follows. The number of

elements of the group SN is equal to N!, which is the number
of ways of ordering the integers 1; 2; . . . ; N. Thus, the number
of elements of SN in a class is the total number of inequivalent
ways of distributing the N particle indices over the cycle
structure of the class. There are a total of N! distributions.
However, different distributions that correspond simply to a
permutation of cycles of the same length correspond to the
same element of SN . For example, the distributions (5,6,7)
(1,2)(3,4) and (5,6,7)(3,4)(1,2) over the cycle structure (3,2,2)
denote identical permutations. Thus, it is necessary to divide
N! by the number of orderings of the cycles of the same
length. If ri denotes the number of cycles of length i in the
cycle structure �, this number is r1!r2! � � � rN!. Also, all
cyclic permutations of the numbers within a cycle correspond
to the same permutation, e.g., (1,3,5), (3,5,1), and (5,1,3) are
identical permutations as can be seen from the definition of
Eq. (54). The number of identical permutations obtained in
this way is 1r12r2 � � �NrN . Thus, the number of permutations
n� in the class � � firi g of SN is given by

n� ¼ N!

r1!r2! � � � rN!1r12r2 � � �NrN
: (58)

We now consider the characters of the group UðnÞ. First
recall that every UðnÞ matrix can be brought to diagonal form
by a unitary transformation. Such a unitary transformation
does not change the trace of a matrix. Consequently, every
UðnÞ matrix is conjugate to a diagonal matrix of the form
given by

z ¼
z1

z2
. .
.

zn

0
BBBB@

1
CCCCA; jzij ¼ 1: (59)

And each UðnÞ class contains a representative diagonal ma-
trix with diagonal entries that we denote by a set of complex
numbers z ¼ fzig. For such a UðnÞ matrix, it is seen from
Eq. (19) that

Ûð1ÞðzÞc � ¼ z�c �; (60)

and from Eq. (20) for an N-particle tensor-product wave
function that

ÛðNÞðzÞ��1�2����N
¼

�YN
j¼1

z�j

�
��1�2����N

: (61)

TABLE I. The character table for S3 (n� is the number of group
elements in the class �).

Class (13) (2,1) (3)

n� 1 3 2


ð3Þ 1 1 1

ð21Þ 2 0 �1

ð13Þ 1 �1 1
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Thus, for an N-particle state �ð�Þ of weight �, of a UðnÞ
tensor representation, it is determined that

ÛðNÞðzÞ�ð�Þ ¼ ðz1Þ�1 ðz2Þ�2 � � � ðznÞ�n�ð�Þ: (62)

The character of a UðnÞ representation is therefore a
function of the n complex variables fzig. For example,
the fundamental UðnÞ irrep f1g has character

s1 ¼
Xn
i¼1

zi: (63)

The character s� of a general tensor irrep of UðnÞ, with
highest weight regarded as a partition � ‘ N, is now obtained
from the character 
� of the dual SN irrep as follows. First
determine the character of the reducible SN � UðnÞ represen-
tation T̂ on HN

n . This is easy in the basis defined by Eq. (20)
because the action of a group element ð	; zÞ 2 SN � UðnÞ,
with z diagonal, is simply to permute the basis functions and
multiply them by z-dependent factors. For example, the
identity

T̂ð	12; zÞ��1�2�3 ¼ z�1
z�2

z�3��2�1�3
(64)

implies that (after normalizing, as necessary, so that f��1�2�3
g

is an orthonormal basis)

h��1�2�3
; T̂ð	12; zÞ��1�2�3

i ¼ ��1;�2z
2
�1
z�3

; (65)

and hence

X
�1;�2;�3

h��1�2�3
; T̂ð	12; zÞ��1�2�3 i ¼ p2ðzÞp1ðzÞ; (66)

where pkðzÞ, for any positive integer k, is the so-called power
sum

pkðzÞ ¼
Xn
i¼1

zki : (67)

It will be noted that the permutation 	12 2 S3 belongs to the
class with cycle structure (2,1). In general, one finds that the
character �N of the reducible representation T̂ of SN � UðnÞ
on HN has values

�Nð�; zÞ ¼ p�ðzÞ; (68)

where, for � ¼ firi g,
p�ðzÞ ¼ ½p1ðzÞ�r1 ½p2ðzÞ�r2 ½p3ðzÞ�r3 � � � : (69)

Now, if s� denotes the character of theUðnÞ irrep of highest
weight � ‘ N, it follows from Eq. (44) of the Schur-Weyl
theorem that

�Nð�; zÞ ¼ X
�‘N


�
�s�ðzÞ: (70)

Thus, we obtain the simple identity

X
�‘N


�
�s�ðzÞ ¼ p�ðzÞ: (71)

Use of the orthogonality relation (57) together with Eq. (71)
leads to the well-known expression for UðnÞ characters

s�ðzÞ ¼ 1

N!

X
�‘N

n�

�
�p�ðzÞ; (72)

first derived by Schur (1901).
Characters of the UðnÞ polynomial irreps, denoted by s�,

are known as Schur functions or S functions. They were
studied as sets of orthogonal symmetric polynomials long
before they were determined by Schur to be characters of the
unitary groups (Macdonald, 1995). Some of the above rela-
tionships also appear to have been known long ago in differ-
ent contexts. For example, as pointed out by Ledermann
(1987) and Fulton and Harris (1991), Eq. (71) can also be
derived from a formula given by Frobenius (1900) for SN
characters. What is remarkable is how simply and easily
Schur’s formula, Eq. (72), follows from a consideration of
the dual actions of the groups SN and UðnÞ on the space HN

n .
It is worth noting that Eq. (72) has the remarkable and

valuable property of not only relating characters of SN and
UðnÞ irreps for all positive integer values of N and n, but of
doing so in an N- and n-independent way. Thus, many results
arising from character theory and Schur-Weyl duality are N
and n independent.

The particular significance of Schur-Weyl duality for the
nuclear and atomic shell model is that it enables the Pauli
constraints on systems of identical particles to be taken into
account by simply restricting to appropriate combinations of
unitary group representations, as the following section will
show. Further information about the many varied uses of
Schur functions in physics are given in the works of
Wybourne (1970) and King (1975).

IV. APPLICATIONS OF SCHUR-WEYL DUALITY

In addition to the character formula (72), the one-to-one
correspondence between irreps of the unitary and symmetric
groups also implies a linkage between other important opera-
tions on irreps of these groups, e.g., branching rules and
tensor products, which we now consider. Such linkages,
which are thematic of duality, enable results derived for the
irreps of one group to be applied to the irreps of the other.
Later sections will include examples from other dual-pair
situations.

Recall that a representation T̂ of a group G automatically
defines a representation of any subgroupH  G known as the
restriction of the representation T̂ to the subgroup. However,
even if a representation T̂ is irreducible as a representation of
G, its restriction to a subgroup H � G is generally reducible.
Branching rules give expansions of the restriction of irreps of
a group as direct sums of subgroup irreps. For example, on
restriction to an SO(2) subgroup, an irrep [L] of the rotation
group SO(3), labeled by a positive integer-valued angular-
momentum quantum number L, branches to a direct sum of
(2Lþ 1) SO(2) irreps labeled by integer-valued components
of the angular momentum M ¼ �L;�Lþ 1; . . . ;þL about
the axis of SO(2) rotations. This well-known result is ex-
pressed formally by the branching rule

SOð3Þ # SOð2Þ : ½L� # ML
M¼�L

½M�: (73)
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A. Branching rules for symmetric and unitary groups

This section shows that several branching rules for sym-
metric and unitary groups are expressed directly in terms of
the coefficients appearing in decompositions of SN and UðnÞ
tensor products.

Let ð�Þ, ð�Þ, and ð�Þ denote irreps of SN , each defined by an
ordered partition ofN. The reduction of the tensor products of
pairs of SN irreps then defines a set of f�

��g coefficients, with
integer values, by the expansion

ð�Þ 	 ð�Þ ¼ M
�

�
��ð�Þ: (74)

Similarly, if f�g, f�g, and f�g denote UðnÞ tensor irreps,
defined by ordered partitions of integers, the tensor products
of such UðnÞ irreps determine integer-valued f��

��g coeffi-
cients (known as Littlewood-Richardson coefficients) by the
expansion

f�g 	 f�g ¼ M
�

��
��f�g: (75)

In the latter case, if � ‘ N1, � ‘ N2, and � ‘ N3, then ��
�� is

zero unless N3 ¼ N1 þ N2, i.e., unless j�j ¼ j�j þ j�j. The
above equations can be expressed equivalently in terms of
characters, i.e.,


�
�


�
� ¼ X

�

�
��


�
�; (76)

s�ðzÞs�ðzÞ ¼
X
�

��
��s�ðzÞ: (77)

Because the characters of SN and UðnÞ are known, the
coefficients �

�� and ��
�� can be computed and various meth-

ods exist for their computation. For example, the �
�� coef-

ficients are readily computed by use of the orthogonality
property of SN characters and the ��

�� coefficients can be
determined by manipulation of Young diagrams using the so-
called Littlewood-Richardson rule (Hamermesh, 1962).

We now consider branching rules.
Theorem 2: The coefficients appearing in the expansions of

the branching rules

SN1þN2
# SN1

� SN2
:

ð�Þ # M
�‘N1;�‘N2

��
��ð�Þ � ð�Þ; (78)

UðmnÞ # UðmÞ � UðnÞ :
f�g # M

�‘j�j;�‘j�j
�
��f�g � f�g; (79)

Uðmþ nÞ # UðmÞ � UðnÞ :
f�g # M

N1þN2¼j�j

M
�‘N1;�‘N2

��
��f�g � f�g; (80)

for the symmetric and unitary groups are identical to the
coefficients in the SN and UðnÞ tensor-product reductions of
Eqs. (74) and (75).

Proof: First we prove the branching rule (78) starting with
the observation that if N ¼ N1 þ N2 then

HN
n ¼ HN1

n 	HN2
n : (81)

The space HN1
n carries a representation

T̂N1
n ¼ M

�‘N1

ð�Þ � f�g (82)

of the group SN1
� UðnÞ and the space HN2

n carries a repre-

sentation

T̂N2
n ¼ M

�‘N2

ð�Þ � f�g (83)

of the group SN2
� UðnÞ. Thus, HN

n carries a representation

T̂N1;N2
n ¼ M

��

ð�Þ � ð�Þ � ðf�g 	 f�gÞ

¼ M
���

��
��ð�Þ � ð�Þ � f�g; (84)

with � ‘ N1 and � ‘ N2, of the product group SN1
� SN2

�
UðnÞ. We also know that the Hilbert space HN

n carries a
representation

T̂N
n ¼ M

�

ð�Þ � f�g (85)

of the group SN � UðnÞ. Combining Eqs. (84) and (85), we
obtain the branching rule

SN � UðnÞ # SN1
� SN2

� UðnÞ : T̂N
n # T̂N1;N2

n ; (86)

and, hence, the branching rule for SN # SN1
� SN2

given by

Eq. (78). This branching rule is equivalently expressed in
terms of characters by the identity


�
�1�2

¼ X
�;�

��
��


�
�1

�
�2
; (87)

where �1 and �2 are, respectively, classes of SN1
and SN2

, and

�1�2 is regarded as a class of SN ¼ SN1þN2
.

To prove the branching rule of Eq. (79), consider the
product Hilbert space

HN
mn ¼ ðHm 	HnÞN ¼ HN

m 	HN
n ; (88)

where Hm is of dimension m and Hn is of dimension n.
According to the Schur-Weyl theorem, the Hilbert

spaces HN
m and HN

n carry representations of SN � UðmÞ
and SN � UðnÞ given, respectively, by

T̂N
m ¼ Mlð�Þ
m

�‘N
ð�Þ � f�g; T̂N

n ¼ Mlð�Þ
n

�‘N
ð�Þ � f�g: (89)

It follows that HN
mn carries a representation

T̂N
m;n ¼ Mlð�Þ
m

�‘N

Mlð�Þ
n

�‘N
½ð�Þ 	 ð�Þ� � f�g � f�g

¼ M
�

Mlð�Þ
m

�‘N

Mlð�Þ
n

�‘N
�
��ð�Þ � f�g � f�g (90)

of the direct product group SN � UðmÞ � UðnÞ, where �
��

is the coefficient of � in the reduction of the tensor
product ð�Þ 	 ð�Þ given by Eq. (74). We also know from
the Schur-Weyl theorem that the Hilbert space HN

mn carries
a representation of SN � UðnmÞ given by
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T̂N
mn ¼ Mlð�Þ
mn

�‘N
ð�Þ � f�g: (91)

From these two expressions we obtain the branching rule

SN � UðmnÞ # SN � UðmÞ � UðnÞ : T̂N
mn # T̂N

m;n; (92)

and, hence, the branching rule for UðmnÞ # UðmÞ � UðnÞ
given by Eq. (79).

Finally, to prove the third branching rule, Eq. (80), first
observe that when restricted to the subgroup UðmÞ � UðnÞ,
the Uðmþ nÞ character for the irrep f�g is given by s�ðx; yÞ,
where ðx; yÞ denotes the elements ðx1; . . . ; xm; y1; . . . ; ynÞ of
a diagonal Uðmþ nÞ matrix. From Eq. (72) we have the
identity

s�ðx; yÞ ¼ 1

N!

X
�

n�

�
�p�ðx; yÞ: (93)

Now by making use of Eq. (58) for n� and Eq. (69) for p�,

we have

s�ðzÞ ¼ 1

N!

X
�

N!

r1!r2!r3! � � � 1r12r23r3 � � �
� 
�

�½p1ðzÞ�r1½p2ðzÞ�r2½p3ðzÞ�r3 � � � ; (94)

where ri denotes the number of cycles of length i in the
cycle structure ð1r1 ; 2r2 ; 3r3 ; . . .Þ of the class �. Thus, with
z ¼ ðx; yÞ and the definition pkðzÞ ¼

P
n
i¼1 z

k
i [cf. Eq. (67)],

it follows that

pkðzÞ ¼ pkðx; yÞ ¼ pkðxÞ þ pkðyÞ; (95)

and that

½pkðzÞ�rk ¼
X

skþtk¼rk

rk!

sk!tk!
½pkðxÞ�sk ½pkðyÞ�tk : (96)

Hence,

p�ðx;yÞ¼
X
�;�

r1!r2!r3!���
s1!s2!s3!���t1!t2!t3!���p�ðxÞp�ðyÞ; (97)

where the sum is over all classes � with cycle structure
ð1s1 ; 2s2 ; 3s3 ; . . .Þ of the symmetric group SN1

and all classes

� with cycle structure ð1t1 ; 2t2 ; 3t3 ; . . .Þ of the symmetric
group SN2

for any N1, N2 satisfying N1 þ N2 ¼ N and sk þ
tk ¼ rk for all k. Inserting Eq. (97) into Eq. (93), with the
identity

n� ¼ N1!

s1!s2! � � � sN!1s12s2 � � �NsN
; (98)

from Eq. (58), yields

s�ðx; yÞ ¼
X
�;�

n�n�
N1!N2!


�
��p�ðxÞp�ðyÞ; (99)

and, with the expansion (87), we obtain

s�ðx; yÞ ¼
X

N1þN2¼N

X
�;�

�‘N1 ;�‘N2

n�n�
N1!N2!

��
��


�
�
�

�p�ðxÞp�ðyÞ

¼ X
N1þN2¼N

X
�‘N1;�‘N2

��
��s�ðxÞs�ðyÞ; (100)

where the second equality follows from Eq. (72). This is
the expression of the branching rule (80) in terms of

characters and completes the proof of Theorem 2. j

The branching rules given by Theorem 2 are remarkable
because they show that coefficients defined for the tensor

products of one group determine the branching rules of a
different group. Even Eq. (79), which at a superficial glance

might appear to be simply the inverse of Eq. (75), is seen to
involve outer products of distinct unitary groups in contrast to
Eq. (75) which is concerned with tensor products of a single

unitary group.
It is useful to note that the above relationships between

tensor products and branching rules for the symmetric and

unitary groups hold for all values of N and n. However, one
must be mindful of the fact that results of calculations involv-
ing symmetric group characters may lead to labels for UðnÞ
irreps that do not exist for particular n values. Consider, for
example, the following application of the Littlewood-

Richardson rule: f12g 	 f1g ¼ f21g � f13g. This is correct for
all UðnÞ for which n � 3. But f13g does not exist as an irrep of
U(2). The irrep label f13g is therefore discarded and the correct
relation for U(2) is f12g 	 f1g ¼ f21g.

B. Symmetrized tensor products: Plethysms

The concept of a plethysm as a symmetrized tensor power

was conceived by Littlewood (1936) in a natural general-
ization of the Schur-Weyl theorem. Littlewood denoted the

plethysm operation symbolically by f�g 	 f�g. However, in
the following, we use the symbol sp instead of 	, which we

reserve for a tensor product. Plethysm was introduced into the

mainstream of physics by Smith and Wybourne (1967, 1968)
and Wybourne (1970) and subsequently employed by many

for branching rule calculations and other applications, nota-
bly in atomic and nuclear spectroscopy.

Suppose, for example, that H is a space of single-particle
wave functions that carries an irrep of a group such as

U(3) and one wants to know what representation of SN �
Uð3Þ is carried by the corresponding tensor-product space

HN ¼ H	N of N-particle wave functions. When H is three
dimensional and the irrep of U(3) carried by H is the

defining representation, the answer is already given by
the Schur-Weyl theorem. In general it is given by an expan-

sion of irreps determined by the plethysm operation.
However, as in the decomposition of a tensor product of
SU(2) representations as sums of irreps obtained by the use

of Clebsch-Gordan coefficients, it is not generally important
to know how to derive the coefficients in the expansion of a

plethysm because computer programs are available for that
purpose. It is more important to understand what the coef-

ficients are and how to use them. Thus, the value of ple-
thysms lies in the availability of computer programs to

evaluate them; cf. Carvalho and D’Agostino (2001a,
2001b), and references therein. Thus, as soon as the answer
to a problem is expressed as a plethysm, it is effectively

solved.
If Hm is an m-dimensional Hilbert space, it carries the

defining irrep f1g of the group UðmÞ and the tensor product

HN
m of N copies of Hm carries a reducible representation

of SN � UðmÞ, denoted here by T̂N
1 . According to the
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Schur-Weyl theorem, this representation is a direct sum of
irreps given by

T̂N
1 ¼ M

�‘N
ð�Þ � f�g; (101)

where the sum over partitions of N is restricted to � with no
more than m parts. It is then meaningful to regard the UðmÞ
irrep f�g as the cofactor of the SN irrep ð�Þ in the expansion
(101). Thus, we say that f�g is a symmetrized tensor power of
the irrep f1g, and denote it by the so-called plethysm

f1gsp f�g ¼ Pð�ÞT̂N
1 ¼ f�g; (102)

where Pð�Þ is a projection operator that picks out the cofactor
of the SN irrep (�) in a representation of SN � UðmÞ. This
equation is equivalent to Eq. (101). However, its value is that
it leads to a powerful generalization of the Schur-Weyl
theorem. For, if Hm is also the carrier space for an
m-dimensional irrep f�g of a group UðnÞ for some n < m
and T̂N

� is the corresponding reducible representation of
SN � UðnÞ carried by HN

m then, by definition, the cofactor
of the SN irrep (�) in the expansion of this irrep defines a
general plethysm for any � ‘ N by

f�gsp f�g ¼ Pð�ÞT̂N
� : (103)

A plethysm defined in this way can be evaluated using SN
characters. Let �N

� denote the character of the SN � UðnÞ
representation T̂N

� carried by HN
m. Using the orthogonality

relationship (57) for SN characters,


� � 
� ¼ 1

N!

X
�

n�

�
�


�
� ¼ ��;�; (104)

Equation (103) is expressed in terms of characters by

s� sp s� ¼ 
� ��N
� : (105)

For example, with the character �N
1 given by Eq. (68), one

regains the previously derived identity

s� ¼ s1 sp s� ¼ 
� ��N
1 ¼ 1

N!

X
�

n�

�
�p�: (106)

We also obtain a useful and insightful expression for the
plethysm s� sp s� from the observation that the unitary irrep

f�g of UðnÞ on Hm can be regarded as a map from UðnÞ to
UðmÞ, i.e., to the fundamental m-dimensional irrep f1g of
UðmÞ. Recall that the character of a UðmÞ matrix is given
by its trace. Thus, the character s1 of the fundamental UðmÞ
irrep f1g is a function

s1ðzÞ ¼
Xm
i¼1

zi (107)

of a set of variables fz1; . . . ; zmg corresponding to the diagonal
entries of UðmÞ matrices. Because each class of a unitary
group contains a diagonal matrix, we can restrict considera-
tion to subsets of diagonal matrices. Thus, we consider a
diagonal UðnÞ matrix

MðnÞðxÞ ¼ diag½x1; x2; . . . ; xn�: (108)

In a suitable basis for an m-dimensional UðnÞ irrep f�g, this
matrix maps to the m�m matrix

MðmÞðzð�ÞðxÞÞ ¼ diag½zð�Þ1 ðxÞ; zð�Þ2 ðxÞ; . . . ; zð�Þm ðxÞ�: (109)

It follows that the character of the irrep f�g is given by

s�ðxÞ ¼
Xm
i¼1

zð�Þi ðxÞ ¼ s1ðzð�ÞðxÞÞ: (110)

It also follows that �N
� ð�; xÞ ¼ �N

1 ð�; zð�ÞðxÞÞ and hence,

because 
� ��N
1 ¼ s�, that

½s� sp s��ðxÞ ¼ s�ðzð�ÞðxÞÞ: (111)

As an example, let n ¼ 3 and f�g ¼ f2g. The U(3) irrep f2g
has dimension m ¼ 6 and character given by

s2ðxÞ¼
X3
i
j

xixj¼x21þx22þx23þx1x2þx2x3þx1x3:

(112)

It is equal to the U(6) character s1ðzÞ ¼
P

6
i z

ð2Þ
i ðxÞ with

zð2Þ1 ðxÞ¼x21; zð2Þ2 ðxÞ¼x22; zð2Þ3 ðxÞ¼x23;

zð2Þ4 ðxÞ¼x1x2; zð2Þ5 ðxÞ¼x2x3; zð2Þ6 ðxÞ¼x1x3:
(113)

Thus, the plethysm s2 sp s2 for U(3) is given by

½s2 sp s2�ðxÞ ¼ s2ðzð2ÞðxÞÞ ¼
X6
i
j

zð2Þi ðxÞzð2Þj ðxÞ

¼ x41 þ x21x
2
2 þ x21x

2
3 þ x31x2 þ x21x2x3

þ x31x3 þ � � � : (114)

Then from a knowledge of the S functions and their orthogo-
nality properties (Macdonald, 1995), one obtains

s2 sp s2 ¼ s4 þ s22 : (115)

Plethysms provide powerful tools for numerous operations
arising in the applications of symmetry to quantum mechani-
cal systems. An early use of plethysms in the nuclear shell
model by Elliott (1958a, 1958b) made use of laborious hand
calculations by Ibrahim (1951, 1952) to determine which
SU(3) irreps occur in the nuclear (2s1d) shell and with
what SN symmetries. Such calculations can now be carried
out quickly and easily by use of the available computer
codes. As discussed in Sec. V, a knowledge of the SN
symmetry of an SU(3) irrep is required in order that the
SU(3) wave functions, in nuclear physics, can be com-
bined with spin and isospin wave functions of comple-
mentary SN symmetry to form totally antisymmetric states.
Because a U(3) irrep remains irreducible on restriction to its
SU(3) subgroup, the first problem was to classify the U(3)
irreps that occur in the (2s1d) shell by their SN � Uð3Þ sym-
metries. A single nucleon in the (2s1d) shell belongs to the
six-dimensionalU(3) irrep f2g and so theN-nucleon stateswith
SN symmetry (�) with � ‘ N span a U(3) representation given
by f2gsp f�g. For example, using the code of Carvalho and

D’Agostino (2001b), we obtain the U(3) plethysm

f2gsp f32g ¼ f541g � f442g � f532g � f64g � 2f622g
� f73g � f721g � f82g � f631g: (116)
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Thus, the space of N ¼ 5 nucleons in the (2s1d) shell with S5
symmetry (32) is a sum of U(3) irreps f�1�2�3g and, hence, of
SU(3) irreps ð��Þ ¼ ð�1 � �2; �2 � �3Þ given by the SU(3)
plethysm

ð2Þsp f32g ¼ ð13Þ � ð02Þ � ð21Þ � ð24Þ � 2ð40Þ � ð43Þ
� ð51Þ � ð62Þ � ð32Þ; (117)

in agreement with a result given by Elliott (1958a, 1958b).
[Note that the round brackets in this equation denote SU(3)
irreps rather than SN ireps as used elsewhere.]

An important application of plethysms is to the evaluation
of branching rules. The above definition of a plethysm
shows that, whereas a Hilbert space Hm that carries an
m-dimensional irrep f�g of a group UðnÞ is also the carrier

space for an irrep f1g of the group UðmÞ, a subspace Hf�g
m �

HN
m that carries a UðmÞ irrep f�g, with � ‘ N is the carrier

space for a (generally reducible) representation f�gsp f�g of
UðnÞ. Thus, if UðnÞ is a subgroup of UðmÞ with an
m-dimensional irrep �, the restriction of the UðmÞ irrep f�g
toUðnÞ is given by the plethysm f�gsp f�g. In other words, the
branching rule

UðmÞ # UðnÞ : f1g # f�g (118)

implies the general rule

UðmÞ # UðnÞ : f�g # f�gsp f�g: (119)

In fact, the above example of computing the symmetrized
tensor products of SU(3) irreps was viewed by Elliott (1958a,
1958b) as a calculation of the Uð6Þ # Uð3Þ branching rules
required for the classification of (2s1d)-shell states that
reduce the subgroup chain

Uð6Þ � Uð3Þ � SOð3Þ � SOð2Þ: (120)

Thus, because U(3) is a subgroup of the U(6) group whose
defining six-dimensional irrep f1g satisfies the branching rule
Uð6Þ # Uð3Þ : f1g # f2g it follows, for example, that the U(6)
irrep f32g restricts to the U(3) representation f2gsp f32g.

Plethysms are also used for calculating the properties of
other groups that are subgroups or contain subgroups of
general linear or unitary groups. For example, if a group G
contains some UðnÞ group as a subgroup one can restrict the
characters of G to UðnÞ and thereby express them as sums of
S functions. In this way, calculations involving characters of
irreps of a given group can be evaluated by means of opera-
tions on S functions and the results reexpressed in terms of
characters of the group under study. Conversely, if the group
is a subgroup of a unitary group, the characters of its irreps
can be regarded as linear combinations of S functions with
their arguments restricted to the subgroup. For example, on
restriction of U(3) to its SO(3) subgroup, we have the branch-
ing rules

Uð3Þ # SOð3Þ : f2g # ½L ¼ 2� � ½L ¼ 0�; (121)

: f0g # ½L ¼ 0�: (122)

Thus, if f2g is now used to denote the restriction of the U(3)
irrep f2g to SO(3), we can make the identification

½L ¼ 2� � f2g � f0g: (123)

This device was introduced by Littlewood (1944a). It makes
the most sense when the formulas for plethysms are written in
terms of S functions because, while it is not clear what the
negative of a group representation means, the negative of a
Schur function is well defined.

In many applications there is a need to apply plethysms
sequentially and to representations which may be expressed
as tensor products of other representations or linear combi-
nations of irreps. Moreover, as Eq. (123) illustrates, one
encounters applications in which combinations of irreps oc-
cur with negative coefficients. Rules for expressing plethysms
of algebraic combinations of Schur functions in terms of
sums and products of simple plethysms were determined by
Littlewood (1944b) and extended by Smith and Wybourne
(1967, 1968) and others. The following rules, expressed in
terms of functions A, B, and C, which may be any combina-
tions (sums and sums of products) of S functions, are taken
from the book of Wybourne (1970). The first rule

ðAsp BÞsp C ¼ Asp ðBsp CÞ (124)

shows that while plethysms are not commutative, they are
associative. It is next observed that a plethysm is distributive
on the right with respect to addition, subtraction, and multi-
plication, i.e., it satisfies the identities

Asp ðBCÞ ¼ ðAsp BÞðAsp CÞ; (125)

Asp ðB� CÞ ¼ Asp B� Asp C: (126)

Plethysms are not distributive on the left but obey the combi-
nation rules

ðAþ BÞsp f�g ¼ X
��

��
��ðAsp f�gÞðBsp f�gÞ; (127)

ðA� BÞsp f�g ¼ X
��

ð�1ÞN���
��ðAsp f�gÞðBsp f~�gÞ;

(128)

ðABÞsp f�g ¼ X
��

�
��ðAsp f�gÞðBsp f�gÞ; (129)

where �
�� and ��

�� are, respectively, the coefficients appear-

ing in the SN and UðnÞ branching rules (74) and (75), N� ¼P
i�i, and f~�g denotes the irrep defined by the partition of N�

conjugate to � as defined by Eq. (132). The above rules
are consistent with the relationships, which follow from
Eq. (105),

s� sp ðs�s�Þ ¼
X
�

��
��s� sp s�; (130)

ðs�s�Þsp s� ¼
�X

�

��
��s�

�
sp s�: (131)

The partition ~� ‘ N� appearing in Eqs. (128) and (129) is
conjugate to the partition � ‘ N�, defined such that the Young
diagram for ~� is obtained from the diagram for � by inter-
changing rows with columns; e.g.,
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The characters of the SN�
irreps (�) and (~�) are related by the

equation


~�
� ¼ 
1N

� 
�
� ¼ ð�1Þ�
�

�; (133)

with ð�1Þ� ¼ �1, according as � is a class of even or odd
permutations.

V. UNITARY-UNITARY DUALITY

An important use of Schur-Weyl duality is to derive rules
for constructing basis wave functions for systems of indis-
tinguishable particles when the particle-wave functions be-
long to tensor-product spaces. For example, each particle
might have space and spin wave functions; its wave functions
would then belong to a tensor product of spatial and spin
Hilbert spaces. If the particles are bosonlike, with integer
intrinsic spins, then according to the spin-statistics theorem,
their total wave functions should be symmetric under permu-
tations. On the other hand, if they are fermionlike, and so
have half-odd integer spins, they should be antisymmetric
under odd permutations. The spin wave functions and the
spatial wave functions separately can have other symmetries
so long as their combinations are symmetric (for bosons) or
antisymmetric (for fermions). The use of Schur-Weyl duality
to construct symmetric and antisymmetric many-particle
wave functions in tensor-product spaces gives rise to
UðnÞ � UðmÞ duality relationships which play a central role
in the construction of coupling schemes for many-particle
calculations in atomic and subatomic physics.

A. The unitary-unitary duality theorem

Let

Hmn ¼ Hm 	Hn (134)

denote a tensor product of Hilbert spaces, of (say) spatial and
spin wave functions for a single particle, of dimension m and
n, respectively. Then Hm carries the m-dimensional irrep f1g
of UðmÞ, Hn carries the n-dimensional irrep f1g of UðnÞ, and
Hmn carries the mn-dimensional irrep f1g of UðmnÞ. We

distinguish these irreps by Ûf1g
m , Ûf1g

n , and Ûf1g
mn, respectively.

The question now arises: How does one build up symmet-
ric and antisymmetric many-particle basis wave functions
for irreps of UðmÞ � UðnÞ from single-particle wave func-
tions in Hmn? The answer is given by the unitary-unitary
duality theorem. Let HN

mn denote the tensor product of N
copies of Hmn

HN
mn ¼ Hmn 	 � � � 	Hmn|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

N copies

¼ HN
m 	HN

n : (135)

According to the Schur-Weyl theorem, the subspace HfNg
mn of

fully symmetric N-particle wave functions in HN
mn carries

an irrep ðNÞ � fNg of the direct product group SN � UðmnÞ.
However, the fully symmetric irrep (N) of SN is one-

dimensional. It follows that the subspace of fully symmetric

N-particle wave functions HfNg
mn � HN

mn is the carrier space

for the UðmnÞ irrep fNg. Similarly, the subspace Hf1N g
mn of

fully antisymmetric N-particle wave functions in HN
mn is the

carrier space for the UðmnÞ irrep f1Ng. The converse of
these observations is given by the following theorem.

Theorem 3 (unitary-unitary duality): The groups UðmÞ and
UðnÞ have dual representations on the fully symmetric and
fully antisymmetric subspaces of HN

mn in accordance with the
branching rules:

UðmnÞ # UðmÞ � UðnÞ : fNg # M
�‘N

f�g � f�g; (136)

: f1Ng # M
�‘N

f�g � f~�g; (137)

where the sum in Eq. (136) extends over all partitions � ‘ N
of length lð�Þ 
 minðm; nÞ and the sum in Eq. (137) extends
over all partitions � ‘ N for which lð�Þ 
 m and lð~�Þ 
 n,
where ~� is defined by Eq. (132).

A direct proof of Theorem 3 is given by Rowe, Repka, and
Carvalho (2011). The following proof shows that it is implied
by the Schur-Weyl theorem.

Proof: According to the Schur-Weyl theorem, the Hilbert

space HN
mn carries the SN � UðmnÞ representation T̂N

mn ¼Llð�Þ
mn
�‘N ð�Þ � f�g. Thus, according to the branching rule of

Eq. (79), this representation restricts to the representation

T̂N
m;n ¼ M

�

Mlð�Þ
m

�‘N

Mlð�Þ
n

�‘N
�
��ð�Þ � f�g � f�g (138)

of SN � UðmÞ � UðnÞ. The component of this representation
with SN symmetry (�) is then

T̂ð�Þ
m;n ¼ Mlð�Þ
m

�‘N

Mlð�Þ
n

�‘N
�
��ð�Þ � f�g � f�g: (139)

The tensor product of two SN irreps ð�Þ 	 ð�Þ contains a copy
of the identity irrep (N) if and only if � ¼ � (Hamermesh,
1962). Similarly, it contains a copy of the antisymmetric irrep
ð1NÞ if and only if � ¼ ~� (the conjugate of �). Moreover, no
tensor product of two SN irreps contains more than one copy
of either (N) or (1N). Thus,

N
�� ¼ ��;�; 1N

�� ¼ ��;~�; (140)

and we obtain

T̂ðNÞ
m;n ¼ Mlð�Þ
m;lð�Þ
n

�‘N
ðNÞ � f�g � f�g; (141)

T̂ð1N Þ
m;n ¼ Mlð�Þ
m;�1
n

�‘N
ð1NÞ � f�g � f~�g: (142)

Comparing these results with those of the Schur-Weyl ex-
pression for the representation of SN � UðmnÞ carried by the
symmetric and antisymmetric components of HN

mn, for which

T̂ðNÞ
mn ¼ ðNÞ � fNg; T̂ð1N Þ

mn ¼ ð1NÞ � f1Ng; (143)

leads to the results of the theorem. j
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Corollary 3: Let HS
mn ¼ L1

N¼0 H
fNg
mn denote the sum of the

Hilbert spaces that carry the fully symmetric irreps fNg of
UðmnÞ and let HAS

mn ¼ L1
N¼0 H

f1Ng
mn denote the sum of the

Hilbert spaces that carry the fully antisymmetric irreps f1Ng
of UðmnÞ. The groups UðmÞ and UðnÞ then have dual repre-
sentations on HS

mn given by
L

�f�g � f�g and on HAS
mn given

by
L

�f�g � f~�g.
Proof: The corollary follows from the observation that

each f�g is a partition of a non-negative integer N, i.e.,
� ‘ N, and occurs once and only once in the sum. j

As the following examples illustrate, unitary-unitary dual-
ity can be employed directly at an operational level to con-
struct appropriately symmetrized wave functions for an
N-particle system.

B. Symmetric and antisymmetric space-spin wave functions

The above duality relationships show that if Hm and Hn

are, respectively, Hilbert spaces of spatial and spin wave
functions for a particle, then the combinations of these
wave functions, appropriate for a system of N bosons
(with integer spins), belong to the fully symmetric subspace
of the tensor-product space HN

mn ¼ HN
m 	HN

n . This sub-
space contains only wave functions that are invariant under
any permutation P 2 SN .

We first consider a simple case in which fc �
i g and f’�

j g
denote orthonormal bases for SN irreps ð�Þ and ð�Þ, respec-
tively. There is known to be precisely one SN-invariant bi-
linear combination of these basis functions for each � ¼ �. If
the bases correspond, it is given by �� ¼ P

ic
�
i 	 ’��

i ,

where the � denotes complex conjugation.2 This follows
from the observation that, under a permutation P 2 SN ,

�� ! P̂�� ¼ X
ijk

c �
j 	 ’��

k Mð�Þ
ji ðPÞMð�Þ�

ki ðPÞ; (144)

where Mð�ÞðPÞ is the matrix representing the permutation
P 2 SN , relative to the basis fc �

i g or f’�
i g. Thus, because

the irrep (�) is unitary, we determine that P̂�� ¼ ��.
It is important to note that it is always possible, and indeed

natural, to choose bases for SN irreps such that the matrices
Mð�ÞðPÞ are real. The SN invariants are then given by �� ¼P

ic
�
i 	 ’�

i .

Now, for arbitrary values of m and n, let fc �
i�g denote an

orthonormal basis for HN
m, where � ‘ N labels an SN � UðmÞ

irrep, i indexes a basis for the SN irrep (�), and � indexes a
basis for the UðmÞ irrep f�g. Let f’�

j�g denote a similarly

defined basis forHN
n which reduces the group SN � UðnÞ. The

product functions fc �
i� 	 ’�

j�g are then a basis for the tensor-

product space HN
m 	HN

n . Thus, from the above results, an
orthonormal basis for the totally symmetric subspace ofHN

m 	
HN

n , appropriate for a system of bosons, is given by the linear
combinations

��
�� ¼ 1ffiffiffiffiffiffi

d�
p X

i

c �
i� 	 ’�

i�; (145)

with � running over the ordered partitions of N for which
lð�Þ 
 m and lð�Þ 
 n, and d� is the dimension of the SN
irrep (�). These��

�� wave functions have the useful property

that they reduce the subgroup chain

UðmnÞ � UðmÞ � UðnÞ
N � �

: (146)

The bilinear combinations of N-particle spatial wave func-
tions in HN

m with N-particle spin wave functions in HN
n ,

appropriate for fermions, span the subspace of the tensor-
product space HN

m 	HN
n that is antisymmetric under the

action of the symmetric group SN .
As noted following Theorem 3, for every SN irrep corre-

sponding to a partition � ‘ N there is a so-called conjugate
irrep, corresponding to the partition ~� ‘ N defined by
Eq. (132). Bases for such conjugate irreps fc �

i g and f’~�
i g

are naturally put into one-to-one correspondence, such that
the matrices for these irreps are related by the identity

Mð~�Þ
ki ðPÞ ¼ ð�1ÞPMð�Þ

ki ðPÞ; (147)

with ð�1ÞP ¼ �1 according to whether P is an even or
odd permutation. It is also observed that, if fc �

i g and f’�
j g

are orthonormal bases for SN irreps, it is only possible to
form antisymmetric bilinear combinations of these basis
functions fc �

i� 	 ’�
j�g if � ¼ ~�. The transformation of the

combination �� ¼ P
ic

�
i 	 ’~�

i under a permutation P 2 SN
is then given by

�� ! P̂�� ¼ X
ijk

c �
j 	 ’~�

kM
ð�Þ
ji ðPÞMð~�Þ

ki ðPÞ: (148)

Thus, by choosing phases such that the matrices Mð�ÞðPÞ are
both real and unitary, it follows that P�� ¼ ð�1ÞP��.
Similarly, for arbitrary values of m and n, an orthonormal
basis for the antisymmetric subspace of HN

m 	HN
n is given by

the linear combinations

��
�� ¼ 1ffiffiffiffiffiffi

d�
p X

i

c �
i� 	 ’~�

i� (149)

that reduce the subgroup chain

UðmnÞ � UðmÞ � UðnÞ;
1N � ~�

(150)

with � running over the ordered partitions of N for which
lð�Þ 
 m and lð~�Þ 
 n.

C. Antisymmetric space-spin-isospin wave functions

The UðmÞ � UðnÞ duality of representations can be applied
to situations where products of more than two wave functions
occur. Such situations arise, for example, in the nuclear shell
model when nucleon wave functions are products of three
components, spatial, spin, and isospin, or in elementary
particle physics when many-quark systems, for example,
have flavor, spin, and color degrees of freedom.

To illustrate the role of duality in such cases, consider a
single-nucleon Hilbert space,

H ¼ HL 	HS 	HT; (151)

2Note that SN irreps are self-contragredient and, as a conse-

quence, their Hilbert spaces are invariant under complex

conjugation.
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that is a tensor product of spaces HL (for spatial wave
functions), HS (for spin wave functions), and HT (for isospin
wave functions). Because a nucleon has spin 1=2 and isospin
1=2, the spaces HS and HT have dimension two, and each
carries a defining irrep of U(2). Denoting the dimension of
HL by n, it follows that H is of dimension 4n, that it carries
the defining irrep f1g of Uð4nÞ, and that it remains irreducible
on restriction to the UðnÞ � Uð4Þ subgroup.

A typical shell-model problem is to define a basis for the

nuclear subspaceHf1N g of fully antisymmetric wave functions
in HN and to classify such a basis by the quantum numbers
associated with irreps of UðnÞ, Uð2ÞS, and Uð2ÞT and other
useful groups. There are many possible coupling schemes.

The so-called Wigner supermultiplet scheme (Wigner,
1937; Hecht and Pang, 1969) of LST coupling starts with
the four-dimensional spin-isospin space

HST ¼ HS 	HT; (152)

which carries the standard irrep of U(4). The construction of a
basis for the totally antisymmetric subspace of

HN ¼ HN
L 	HN

ST (153)

is thereby reduced to the standard problem, discussed in the
first application, for which UðnÞ � Uð4Þ duality applies.
Thus, the branching rule of the duality theorem, Eq. (137),

Uð4nÞ # UðnÞ � Uð4Þ : f1Ng # M
�‘N

f�g � f~�g; (154)

implies that the fully antisymmetric irreps of UðnÞ � Uð4Þ are
given by the tensor product f�g � f ~�g irreps carried by sub-

spaces of the fully antisymmetric subspace Hf1N g � HN .
A natural basis for U(4) is one that reduces the subgroup

chain

Uð4Þ � SUð2ÞS � SUð2ÞT � Uð1ÞS � Uð1ÞT:
~� S T MS MT

(155)

A desirable choice for UðnÞ is one that reduces the subgroup
chain

UðnÞ � SOð3ÞL � SOð2ÞL;
f�g L ML

(156)

where SOð3ÞL is the standard rotation group. These choices

then give basis states for Hf1Ng that reduce the chain

Uð4nÞ � UðnÞ�Uð4Þ � SOð3ÞL�SUð2ÞS�SUð2ÞT:
1N � ~� � L;ML S;MS T;MT

(157)

Note that the label � is included to denote the additional
labels needed to provide a complete classification of basis
states. Additional labels are provided, for example, by in-
cluding an intermediate subgroup between UðnÞ and SOð3ÞL.
One possibility is to include the group OðnÞ in the chain

UðnÞ � OðnÞ � SOð3ÞL � SOð2ÞL: (158)

An alternative, for a suitable choice ofHL, is to include in the
chain the group U(3), as in Elliott’s shell model of nuclear
rotational states (Elliott, 1958a, 1958b),

UðnÞ � Uð3Þ � SOð3ÞL � SOð2ÞL; (159)

where U(3) is the symmetry group of the spherical harmonic
oscillator.

D. Unitary-unitary duality in boson systems

The above examples of the use of unitary-unitary duality
for fermions have parallels in bosonic systems with multiple
degrees of freedom. For example, in the interacting boson
model with two kinds of boson, corresponding to neutron
pairs and proton pairs of which each carries an irrep f1g of
U(6), the states of N such bosons carry an irrep fNg of
U(12). The N boson states can then be classified by the
irrep labels in the subgroup chain Uð12Þ � Uð6Þ � UFð2Þ
which, in accordance with Theorem 3, are given by the
branching rule of Eq. (136) for which � ¼ fN=2þ
F;N=2� Fg, where F is known as F spin [see, for ex-
ample, Isacker et al. (1986) for more details].

VI. METHODS OF SECOND QUANTIZATION

The techniques of second quantization were invented for
the quantization of fields. However, they prove to be equally
powerful and insightful in the many-body quantum mechan-
ics of indistinguishable particles and in the theory of Lie
algebras. At the time the terminology was introduced, it was
common to regard standard quantum mechanics, in which the
dynamics of particles was replaced by wave mechanics, as
first quantization. On the other hand, field theory, which
considers particles as the quanta of fields, was regarded as
second quantization.

Quantization of the electromagnetic field was achieved by
Born, Heisenberg, and Jordan (1926). Their theory can be
understood, at an elementary level, as extending the
Hamiltonian for a system of harmonic oscillators

Ĥ ¼ X
�

ℏ!�

�
cy�c� þ 1

2

�
; (160)

with raising and lowering operators that satisfy commutation
relations

½cy�; cy�� ¼ ½c�; c�� ¼ 0; ½c�; cy�� ¼ ��
�; (161)

to an infinite number of oscillators characterized by contin-
uously variable frequencies. The raising operators for states
of the electromagnetic field are then interpreted as creation
operators for photons. This provides the fundamental link
between the wave and particle theories of light. Note that we

use lower indices for creation operators fcy� g and upper
indices for annihilation operators fc�g. This is to emphasize
the fact that, whereas the creation operators transform as a
basis for the standard irrep of a unitary group UðnÞ, where n is
the number of indices, the annihilation operators transform as
a basis for the contravariant irrep; i.e., if a creation operator

cy� transforms under an element g 2 UðnÞ according to the

equation cy� ! P
�c

y
�g��, then the corresponding annihila-

tion operator transforms c� ! P
�c

�g���.

At first sight, it would appear that the quantum mechanical
interpretation of the particle-wave duality for fermions
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(e.g., electrons) of nonzero rest mass is different. Unlike
quantum electrodynamics, nonrelativistic quantum mechan-
ics begins with particles and by means of the Schrödinger
equation assigns wave functions to them to describe their
states. Thus, it was not obvious what could be achieved by a
second quantization of the fields (i.e., wave functions) to
regain the particles. In retrospect, it is now realized that a
field theory of electrons is provided by the Dirac equation
(Dirac, 1928a, 1928b). Moreover, the derivation of the Dirac
equation by factorization of the relativistic Hamiltonian for
an electron has similarities with the factorization of the
harmonic-oscillator Hamiltonian which gives the quantiza-
tion of the electromagnetic field. However, because of the
somewhat misleading particle-hole interpretation of the Dirac
equation, the parallel was not recognized at the time. The
vital step toward a fermionic field theory was taken a few
years later by Jordan and Wigner (1928), who introduced

operators fay�g and fa�g that, respectively, create and annihi-
late fermions. Their success was based on a recognition that
the Pauli principle, which states that two identical fermions
cannot occupy the same state, is automatically accommo-
dated if the fermion operators are required to satisfy anti-
commutation relations

fay�; ay�g ¼ fa�; a�g ¼ 0; fay�; a�g ¼ ��
�; (162)

rather than commutation relations. This follows simply from
the observation that

fay� ; ay�g ¼ 2ay�ay� ¼ 0: (163)

One of the many advantages of using the methods of
second quantization in nonrelativistic quantum mechanics is
that it ensures the exchange symmetries of identical particles
are respected without the need for labeling indistinguishable
particles and symmetrizing (or antisymmetrizing) their wave
functions. Thus, when expressed in terms of creation opera-
tors that commute with one another, the many-boson wave
functions for identical bosons are automatically symmetric
under exchange. Similarly, when expressed in terms of
creation operators that anticommute with one another, the
many-fermion wave functions for identical fermions are
automatically antisymmetric under exchange. For example,
the sets of three-boson and three-fermion states

j���iB ¼ cy�c
y
�c

y
�j0i; (164)

j���iF ¼ ay�a
y
�a

y
�j0i; (165)

where j0i is the zero-particle vacuum state are automati-
cally symmetric and antisymmetric, respectively; e.g.,
j���iB ¼ j���iB and j���iF ¼ �j���iF.

Another huge advantage of the second-quantization for-
malism is that it provides a powerful framework for the
manipulation of Lie algebras and their representations from
which the duality relationships discussed in this review
emerge naturally. Consider a basis fX�;�g for the complex

extension of the Lie algebra uðnÞ of the group UðnÞ with
commutation relations

½X�;�; X�0;�0 � ¼ ��;�0X�;�0 � ��0;�X�0;�: (166)

It follows from the boson commutation relations Eq. (161)
that this Lie algebra has a boson realization

X�;� ! X̂�;� ¼ cy�c�: (167)

This realization automatically extends the defining irrep f1g
of UðnÞ on the Hilbert spaceH to the symmetric irreps fNg on
symmetric subspaces HfNg � HN for positive integer values

of N. Thus, whereas the one-boson states fcy� j0i; � ¼
1; . . . ; ng are a basis for the UðnÞ irrep f1g, the set of

N-boson states fcy�1
cy�2 ; . . . ;c

y
�N
j0i;�1;�2; . . . ;�N ¼1; . . . ;ng are

a basis for the UðnÞ irrep fNg.
It follows from these results that the unitary-unitary duality

theorem has a natural expression in the language of second
quantization. This is seen for the boson operators by regard-

ing fcyi�g and fci�g, with commutation relations

½ci�;cyj��¼�i
j�

�
� ; ½cyi�;cyj��¼ ½ci�;cj��¼0; (168)

as creation and annihilation operators for the single-particle
states of the tensor-product space H ¼ Hm 	Hn, with i ¼
1; . . . ; m indexing a basis for Hm and � ¼ 1; . . . ; n indexing a
basis for Hn. The Lie algebras uðmnÞ, uðmÞ, and uðnÞ are then
realized by the operators

X̂ðmnÞ
i�;j� ¼ cyi�cj�; X̂ðmÞ

i;j ¼ X
�

cyi�cj�;

X̂ðnÞ
�;� ¼ X

i

cyi�ci�: (169)

Highest-weight states for the N-boson UðmÞ � UðnÞ irreps
given by the unitary-unitary branching rule

UðmnÞ # UðmÞ � UðnÞ : fNg # M
�‘N

f�g � f�g (170)

are constructed as follows. Let i ¼ 1; 2; . . . ; m and � ¼
1; 2; . . . ; n, respectively, index basis states for the f1g irreps
of UðmÞ and UðnÞ in order of decreasing weight. And let BK

denote the determinant of boson operators

BK ¼

��������������������������

cy11 cy12 � � � cy1K
cy21 cy22 � � � cy2K

..

. ..
. � � � ..

.

cyK1 cyK2 � � � cyKK

��������������������������
(171)

defined in parallel with the Slater determinants of Eq. (37). If
j0i is the boson vacuum state and ~� is the partition conjugate
to �, then the state

jf�g; h:wt:i ¼ B~�1B~�2B~�3 � � � j0i (172)

is observed to be of highest weight � relative to both UðmÞ
and UðnÞ.

Similar results for the antisymmetric representations of
UðmnÞ are obtained for the fermion realizations starting
from the observation that the UðnÞ commutation relations
(166) are also satisfied by the fermion realization

X�;� ! X̂�;� ¼ ay�a�: (173)

However, while the one-fermion states fay� j0i; � ¼ 1; . . . ; ng
are a basis for the UðnÞ irrep f1g, the N-fermion states

fay�1
ay�2 ; . . . ; a

y
�N j0i; �1; �2; . . . ; �N ¼ 1; . . . ; ng now span the

UðnÞ irrep f1Ng.
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In parallel with Eq. (169), the Lie algebras uðmnÞ, uðmÞ,
and uðnÞ also have fermion realizations

X̂ðmnÞ
i�;j�¼ayi�aj�; X̂ðmÞ

i;j ¼X
�

ayi�aj�; X̂ðnÞ
�;�¼

X
i

ayi�ai�:

(174)

However, the analogous extension of the irrep f1g of UðmnÞ
with fermions gives an antisymmetric irrep f1Ng of UðmnÞ on
Hf1N g for N > 1, which according to the Schur-Weyl theorem
satisfies the branching rule

UðmnÞ # UðmÞ � UðnÞ : f1Ng # M
�‘N

f�g � f~�g; (175)

where ~� is the partition conjugate to �.
Highest-weight states for these UðmÞ � UðnÞ irreps are

constructed in terms of fermion operators as follows. As for
the boson basis, let i ¼ 1; 2; . . . ; m and � ¼ 1; 2; . . . ; n index
basis states for the UðmÞ and UðnÞ f1g irreps, respectively, in
order of decreasing weight. Then, let FK denote the product
of fermion operators

FK
i ¼ ayi1a

y
i2 � � � ayiK: (176)

Unlike its boson counterpart, this simple product already
satisfies the antisymmetry requirement. Thus, the state

jf�g; h:wt:i ¼ F
~�1

1 F
~�2

2 F
~�3

3 � � � j0i (177)

is observed to be of highest weight relative to both UðmÞ and
UðnÞ.

In addition to the unitary-unitary duality (stated in
Theorem 3, see Sec. V.A), we will see in the following
sections how the powerful formalism of second quantization
plays a relevant role in identifying other dualities of impor-
tance in physical applications.

VII. DUAL REPRESENTATIONS ON

HARMONIC-OSCILLATOR BOSON SPACES

In many-body theory, one is primarily interested in many-
fermion systems. However, the position and momentum
coordinates of fermions obey the boson commutation rela-
tions of a Heisenberg-Weyl Lie algebra. For example, nucle-
ons in a nucleus are described in a zero-order approximation
as independent particles in a harmonic-oscillator potential.
Thus, in nonrelativistic quantum mechanics, in which nucle-
ons are neither created nor destroyed in their interactions with
one another, the excitations of a system of nucleons can be
described in terms of harmonic-oscillator quanta. Similarly,
the vibrational excitations of a condensed matter system are
often appropriately described in terms of phonons which,
similar to harmonic-oscillator quanta, are bosonic.
Moreover, composite systems of tightly bound fermions,
such as alpha particles, behave as bosons at low densities
(see Sec. IX.A). The essential quality of a boson is that its
creation and annihilation operators obey the same boson
commutation relations as those of harmonic-oscillator
quanta.

Several pairs of groups can be found with dual representa-
tions on a given multidimensional harmonic-oscillator space.
Paramount to these dualities is the following theorem.

Theorem 4 (symplectic-orthogonal duality): The groups
OðNÞ and Spðm;RÞ have dual representations on the Hilbert
space of the Nm-dimensional oscillator.

Note that the group denoted here by Spðm;RÞ is the real
noncompact symplectic group of rank m. Many authors
denote this same group by Spð2m;RÞ. Note also that when
N is odd the Spðm;RÞ representation is a projective repre-
sentation, i.e., a double-valued (spinor) representation. It is a
genuine representation of the twofold cover of Spðm;RÞ
known as a metaplectic group. Nonetheless, here both the
genuine and projective oscillator representations of Spðm;RÞ
will be referred to without qualification as ‘‘representations.’’

Proofs of this and other duality theorems were given by
Kashiwara and Vergne (1978) and Howe (1989). Less mathe-
matically sophisticated proofs of this and the other duality
theorems featured in this review were also given recently
(Rowe, Repka, and Carvalho, 2011) in which complete sets of
extremal (highest or lowest weight) states were identified for
dual pairs of representations. Special cases are proven below
to illustrate the significance of this theorem.

From Theorem 4 (together with the unitary-unitary duality
theorem), it follows that the Hilbert space of an
Nm-dimensional harmonic oscillator carries dual representa-
tions of the pairs of groups shown as direct products in the
following chains:

SpðNm;RÞ � Oð1Þ
[ \

SpðN;RÞ � OðmÞ
[ \

UðNÞ � UðmÞ
[ \

OðNÞ � Spðm;RÞ
[ \

Oð1Þ � SpðNm;RÞ:

(178)

All the above direct product groups have realizations on
the space of an Nm-dimensional harmonic oscillator. This
space can be viewed as that of N particles in an
m-dimensional harmonic-oscillator space or as that of m
particles in an N-dimensional space. Sometimes it is useful
to think of the space of Nm simple harmonic oscillators or of
a single Nm-dimensional harmonic oscillator. The many
possibilities for the interpretation of N and m mean that the
above chains of duality relationships have many applications,
examples of which are explored in this section.

The subspace of one-quantum states of the
Nm-dimensional harmonic oscillator is spanned by the states

fcy�kj0i;� ¼ 1; . . . ; N; k ¼ 1; . . . ; mg. This space carries an

irrep f1g of the group UðNmÞ as studied in Sec. V.A.

Because the boson operators fcy�kg are symmetric under

exchange, the space of W harmonic-oscillator quanta carries
an irrep fWg of UðNmÞ. Thus, by the Corollary to Theorem 3,
the Hilbert space of the Nm-dimensional harmonic oscillator
carries a dual representation of the direct product UðNÞ �
UðmÞ given by

L
�f�g � f�g.

A remarkable characteristic of the duality relationships
between the pairs of groups listed in Eq. (178) is the seesaw
relationship between the paired subgroup chains. For
example, whereas the representation of UðNÞ is dual to that
of UðmÞ on the Nm-dimensional harmonic-oscillator space,
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the representation of the orthogonal subgroup OðNÞ of UðNÞ
is dual to that of an Spðm;RÞ group of which UðmÞ is a
subgroup. We find that such chains of dual pairs of group
representations provide powerful tools for a useful classifica-
tion of states of a Hilbert space.

A. Oð1Þ � Spðm;RÞ duality

Starting with the lowest pair in the chain and setting
N ¼ 1, we have a dual representation of the groups O(1)
and Spðm;RÞ on the Hilbert space of the m-dimensional
harmonic oscillator. The group O(1) is a discrete group
with only two elements: the identity element and an element
represented as a parity inversion operator. Thus, O(1) has two
distinct one-dimensional irreps: one spanned by a state of
positive parity and the other by a state of negative parity.
However, each of these O(1) irreps occurs in the
m-dimensional harmonic-oscillator space an infinite number
of times. Thus, according to Theorem 4, all the positive parity
states of the m-dimensional harmonic oscillator carry an irrep
of the noncompact group Spðm;RÞ and all the negative parity
states carry another irrep. These Spðm;RÞ irreps are under-
stood as follows.

Let fcyi ; ci; i ¼ 1; . . . ; mg denote the creation and annihila-

tion operators of quanta for the m-dimensional harmonic
oscillator. The Lie algebra of the group Spðm;RÞ then has a
complex extension spanned by subsets of raising and low-
ering operators

Âij ¼ cyi c
y
j ; B̂ij ¼ cicj; (179)

together with the commutators of these operators

½B̂ij;Âkl� ¼ �j;kc
y
i c

l þ �j;lc
y
i c

k þ �i;kc
lcyj þ �i:lc

kcyj :

(180)

Thus, it has a uðmÞ subalgebra spanned by Hermitian linear
combinations of the operators

Ĉij ¼ 1
2ðcyi cj þ cjcyi Þ ¼ cyi cj þ 1

2�i;j: (181)

A state j�i for an irrep of this Lie algebra that satisfies the
following equations:

B̂ijj�i ¼ 0; 1 
 i; j 
 m; (182)

Ĉijj�i ¼ 0; 1 
 i < j 
 m; (183)

Ĉiij�i ¼ �ij�i; 1 
 i 
 m; (184)

is then a lowest-weight state for an Spðm;RÞ irrep with lowest
weight � ¼ f�1; . . . ; �mg. Such an Spðm;RÞ irrep is denoted
by the symbol h�i.

It is now seen that the two Spðm;RÞ irreps on the Hilbert
space of the m-dimensional harmonic oscillator have lowest-
weight states given by the harmonic-oscillator ground state

j0i and the one-quantum state cy1 j0i. The corresponding irreps
are then denoted by hð12Þmi and h32 ; ð12Þm�1i. To simplify the

notation, Spðm;RÞ irreps are sometimes denoted more simply
by the U(1) and SUðmÞ quantum numbers h�mð�1 � �m; �2 �
�m; . . .Þi. Then, the above two irreps are denoted by

h12ð0Þi � hð12Þmi; h12ð1Þi � h32; ð12Þm�1i: (185)

B. OðNÞ � Spð1;RÞ duality

In this section we consider the UðNÞ � UðmÞ and OðNÞ �
Spðm;RÞ dualities with m ¼ 1. These direct product groups
then simplify to UðNÞ � Uð1Þ and OðNÞ � SUð1; 1Þ [with
Spð1;RÞ isomorphic to SU(1,1)]. Thus, we consider the
paired subgroups of the chains

UðNÞ � Uð1Þ
[ \

OðNÞ � SUð1; 1Þ
(186)

and show that they relate to the orbital and radial dynamics of
a particle in an N-dimensional space (discussed briefly for
N ¼ 3 in Sec. I).

Let H denote the Hilbert space of the N-dimensional

harmonic oscillator and let fcy�; c�;� ¼ 1; . . . ; Ng denote
the boson creation and annihilation operators of harmonic-
oscillator quanta. The Hilbert space H is then a direct sum

H ¼ M1
n¼0

HðnÞ; (187)

where HðnÞ � H is the subspace of states of n quanta. Each
HðnÞ is invariant under the U(1) group, whose infinitesimal
generator is the boson number operator

n̂ ¼ cy � c ¼ X
�

cy�c�: (188)

Each HðnÞ is also invariant and irreducible under the group
UðNÞ and hence under its Lie algebra, whose complex ex-

tension is spanned by fĈ�� ¼ cy�c�g. Moreover, n̂ commutes

with all elements of UðNÞ and any state of H having n quanta
belongs to an irrep fng � fng ofUð1Þ � UðNÞ. This is a simple
application of the bosonic unitary-unitary duality relationship
of the previous section. However, the OðNÞ subgroup of UðNÞ
has a more interesting dual partner, namely, SU(1,1). Note,
however, that when N is odd, the representation of SU(1,1) is
projective.

The relevant OðNÞ group is the subgroup of UðNÞ trans-
formations that leave the scalar product cy � cy ¼ P

�c
y
�c

y
�

invariant. A basis for the Lie algebra of this OðNÞ group,
identical to the Lie algebra soðNÞ of SOðNÞ, is given by the
operators

L̂�� ¼ �iðcy�c� � cy�c
�Þ; � < �; (189)

which are the analogs, in N-dimensional space, of the stan-
dard angular-momentum operators. Thus, an OðNÞ irrep is
labeled (not always uniquely, as we shall see) by its highest
weight ½v1; v2; . . . ; vr� relative to the ordered basis of the
usual Cartan subalgebra of soðNÞ,

ĥ1¼ L̂12; ĥ2¼ L̂34; . . . ; hr¼ L̂2r�1;2r; (190)

where N ¼ 2r or N ¼ 2rþ 1.
Recall that in addition to the subgroup SOðNÞ � OðNÞ, the

group OðNÞ also contains the discrete inversion subgroup.
Thus, an extra label is often required in addition to the soðNÞ
highest weight to characterize the inversion properties
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(i.e., parity) of an OðNÞ irrep. However, when m ¼ 1 and
N > 2, this extra label is not needed because the inversion
properties of an OðNÞ irrep contained within the space
of the N-dimensional harmonic oscillator are then uniquely
defined by the highest weight of the irrep. For example, the
parity of a single-particle state of the three-dimensional
harmonic oscillator with SO(3) angular momentum l is equal
to ð�1Þl.

The one-dimensional space Hð0Þ, spanned by the vacuum
state j0i (the harmonic-oscillator ground state), carries the
identity irrep [0] of OðNÞ as well as the identity irrep f0g of
UðNÞ. The space Hð1Þ, which carries the defining
N-dimensional irrep f1g of UðNÞ, likewise carries the
N-dimensional irrep [1] of OðNÞ. The highest-weight state
for the latter OðNÞ irrep is determined from the observation
that

½ĥi; cy1 þ icy2 � ¼ �i;1ðcy1 þ icy2 Þ; (191)

where ĥ1; ĥ2; . . . ; ĥr are the soðNÞ Cartan operators of
Eq. (190). Thus, the state

EQ-TARGET ;temp:intralink-;d192;76;491j1i ¼ 1ffiffiffi
2

p ðcy1 þ icy2 Þj0i (192)

has OðNÞ weight ½1; 0; 0; . . . ; 0� � ½1�, given by the eigen-
values of the Cartan operators, and is the highest-weight
state for the OðNÞ irrep [1].

The two-quantum space Hð2Þ, which carries an irrep f2g of
the group UðNÞ, is reducible as the carrier space for an OðNÞ
representation. It contains an OðNÞ highest-weight state

j2i ¼ 1ffiffiffi
8

p ðcy1 þ icy2 Þ2j0i (193)

for an irrep [2]. However, it also contains the state cy � cyj0i
which, because cy � cy is OðNÞ invariant, spans a one-
dimensional irrep [0] isomorphic to the irrep spanned by
the state j0i. Continuing the pattern, the space HðnÞ, which
carries the UðNÞ irrep fng, contains a unique (normalized)
state of maximal OðNÞ highest weight given by

jni ¼ 1ffiffiffiffiffiffiffiffiffiffi
2nn!

p ðcy1 þ icy2 Þnj0i: (194)

This state is an eigenstate of the soðNÞ Cartan operators,

ĥijni ¼ 1ffiffiffiffiffiffiffiffiffiffi
2nn!

p ½ĥi; ðcy1 þ icy2 Þn�j0i

¼ �i;1njni; i ¼ 1; . . . ; r; (195)

and the highest-weight state for the OðNÞ irrep [n].
However, there are other OðNÞ irreps in HðnÞ as indicated

by the branching rule

UðNÞ # OðNÞ : fng # ½n� � ½n� 2� � ½n� 4��
� � � � ½1� or ½0�: (196)

The highest-weight states of these OðNÞ irreps are given, to
within norm factors, by

jni; ðcy � cyÞjn� 2i; ðcy � cyÞ2jn� 4i;
. . . ; ðcy � cyÞkjn� 2ki; . . . ; (197)

thus illustrating how the reduction of a UðNÞ irrep on
restriction to OðNÞ is obtained by factoring out OðNÞ
scalars.

The decomposition of the harmonic-oscillator space H is
illustrated in Fig. 1. Each horizontal line corresponds to one
of the subspaces HðnÞ labeled by n on the vertical axis. The
decomposition of HðnÞ into irreducible OðNÞ subspaces is
shown by the horizontal line segments, each of which rep-
resents an OðNÞ irrep [v], characterized by a value of v
which, for each value of n, takes either even or odd integer
values between n and zero in accordance with the branching
rule (196). Equivalent OðNÞ irreps, i.e., irreps sharing a
common value of v, are placed one above the other in a
column labeled at the bottom by the value of v. It can be seen
that the pattern of OðNÞ irreps obtained in this way is
independent of N. For example, Fig. 1 gives the familiar
spectrum of O(3) irreps of the three-dimensional harmonic
oscillator.

Now observe that the operator cy � cy is the raising opera-
tor of an su(1,1) Lie algebra, whose complex extension is
spanned by the OðNÞ-invariant operators

Ŝþ ¼ 1

2
cy � cy; Ŝ� ¼ 1

2
c � c;

Ŝ0 ¼ 1

4
ðcy � cþ c � cyÞ ¼ 1

2

�
n̂þ N

2

�
;

(198)

where n̂ is the number operator for harmonic-oscillator
quanta, as defined by Eq. (188). These su(1,1) operators
satisfy the commutation relations

½Ŝ�; Ŝþ� ¼ 2Ŝ0; ½Ŝ0; Ŝ�� ¼ �Ŝ�: (199)

Observe also that the states fjvi;v ¼ 0; 1; 2; . . .g, defined
(with v ¼ n) by Eq. (194), are all annihilated by the su(1,1)
lowering operator. Thus, the state jvi is simultaneously of
highest UðNÞ weight fvg, of OðNÞ highest weight [v], and of
SU(1,1) lowest weight h�ðvÞi, where �ðvÞ ¼ vþ N=2 is an

eigenvalue of 2Ŝ0, i.e., jvi satisfies
Ŝ�jvi¼0; Ŝ0jvi¼ 1

2�ðvÞjvi¼ 1
2ðvþN=2Þjvi: (200)

FIG. 1. Irreps of OðNÞ in the Hilbert space of the N-dimensional

harmonic oscillator shown as horizontal lines. Equivalent OðNÞ
irreps are placed in a common column and connected by the

su(1,1) raising operator Ŝþ. Equivalent OðNÞ irreps are distin-

guished by the uð1Þ � suð1; 1Þ quantum number �. The set of

OðNÞ irreps at a constant level n comprise a UðNÞ irrep fng with
n ¼ vþ 2�. The carrier space of this UðNÞ irrep fng is HðnÞ, the
space spanned by the states with n harmonic-oscillator quanta.
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By construction, the OðNÞ irrep with highest-weight state jvi
lies lowest on a column of equivalent OðNÞ irreps (cf. Fig. 1).
Moreover, it is seen that the highest-weight states for the
successively higher OðNÞ irreps of a column are given, to
within norm factors, by the states

jvi; ðcy � cyÞjvi; ðcy � cyÞ2jvi;
. . . ; ðcy � cyÞ�jvi; . . . : (201)

Thus, the set of allOðNÞ highest-weight states in a column span
an irrep h�ðvÞi of SU(1,1) and all the states of a column span an
irrep h�ðvÞi � ½v� of the direct product groupSUð1; 1Þ � OðNÞ
labeled by v, with v taking the values 0; 1; 2; . . . in successive
columns.

Finally, observe that every irrep h�ðvÞi � ½v� of SUð1; 1Þ �
OðNÞ is multiplicity free and every irrep h�ðvÞi of SU(1,1) is
uniquely paired with an irrep [v] of OðNÞ. These are the
properties required to demonstrate the duality of SUð1; 1Þ
and OðNÞ representations on the Hilbert space H of the
N-dimensional harmonic-oscillator space.

C. Applications of OðNÞ � SUð1; 1Þ duality

The duality of the representations of OðNÞ and SU(1, 1) on
the Hilbert space H of the N-dimensional harmonic oscillator
leads to many useful relationships in physics (Rowe, 2005).
This is because H, the space L2ðRNÞ of square integrable
functions on the real N-dimensional Euclidean space RN , is
also the Hilbert space for numerous other systems of interest.

1. Central-force problems

Suppose, for example, that Ĥ is an OðNÞ-invariant
Hamiltonian on H that one wishes to diagonalize in a
harmonic-oscillator basis. Such a basis is defined by the irrep
labels of the subgroup chain

UðNÞ � OðNÞ � SOð3Þ � SOð2Þ;
n v � L M

(202)

where we have assumed that N � 3, so that the standard
rotation group SO(3) can be defined as a subgroup of OðNÞ,
and � is an additional quantum number to distinguish any
multiplicity of SO(3) irreps that occur within a given irrep [v]
of OðNÞ. As a result of the OðNÞ � SUð1; 1Þ duality, the basis
states fjnv�LMig also reduce the subgroup chain

SUð1; 1Þ � OðNÞ � Uð1Þ � SOð3Þ � SOð2Þ;
� v � � L M

(203)

where U(1) is the subgroup of SU(1,1) with infinitesimal

generator Ŝ0. The above results show that the quantum num-
bers of the two chains are related by

� ¼ vþ 1
2N; n ¼ vþ 2�; (204)

where v and � run over all non-negative integer values.
The classification of states by the subgroup chain (203) is

particularly useful because the direct product structure of the
two commuting groups SU(1,1) and OðNÞ makes it natural
to exploit the factorization of the wave functions for basis
states into products of radial and orbital wave functions.
Moreover, when the Hamiltonian is OðNÞ invariant, as it is

for a generalized central-force problem, the orbital wave func-
tions are simply SOðNÞ spherical harmonics (Rowe, Turner,
and Repka, 2004), and the radial wave functions are eigenfunc-
tions of a one-dimensional Schrödinger equation. In fact, as a
consequence of theOðNÞ � SUð1; 1Þ duality, the spectral prop-
erties of many central-force Hamiltonians can be derived by
algebraic methods using an su(1,1) Lie algebra as a spectrum
generating algebra (Rowe, 2005). This is seen by expressing the
harmonic oscillator raising and lowering operators in terms of
Cartesian coordinates fxi; i ¼ 1; . . . ; Ng for RN:

ci¼ 1ffiffiffi
2

p
�
axiþ1

a

@

@xi

�
; cyi ¼

1ffiffiffi
2

p
�
axi�1

a

@

@xi

�
; (205)

where a is an inverse unit of length. The su(1,1) operators
are then obtained in the form

Ŝ� ¼ 1
4½a�2r2 þ a2r2 � ðr � r þ r � rÞ�; (206)

Ŝ0 ¼ 1
4½�a�2r2 þ a2r2�; (207)

where r2 ¼ r � r ¼ P
ix

2
i and r2 ¼ P

i@
2=@x2i is the

Laplacian on L2ðRNÞ.
The representations of SU(1,1) have been well studied; cf.,

for example, Wybourne (1974), Čı́žek and Paldus (1977),
Rowe and Bahri (1998), and Rowe (2005). The harmonic
series of SU(1,1) irreps are given by

Ŝ0j��i ¼ 1
2ð�þ 2�Þj��i;

Ŝþj��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ�Þð�þ 1Þ

q
j�;�þ 1i;

Ŝ�j��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ�� 1Þ�

q
j�;�� 1i;

(208)

with � ¼ vþ N=2 and v ¼ 0; 1; 2; . . . . The operator Ŝ0 de-
fined by Eq. (207) is proportional to a harmonic-oscillator
Hamiltonian (160). Moreover, r2 and r2 are elements of the
su(1,1) Lie algebra and expressible as linear combinations of

Ŝ� and Ŝ0 with known matrix elements in an suð1; 1Þ � uð1Þ
coupled basis. Matrix elements of potential-energy functions
of the form

VðrÞ ¼ X
i

PiðrÞe��ir
2
; (209)

where each Pi is an even polynomial, can also be computed
with relative ease in such a basis. Thus, the dynamical group
SU(1,1) very much simplifies the computation of matrix
elements of a Hamiltonian

Ĥ ¼ � ℏ2

2M
r2 þ VðrÞ; (210)

when the potential VðrÞ is of the form (209).
Applications of SU(1,1) as a spectrum generating algebra

for central-force problems have been considered; see e.g.,
Wybourne (1974), Čı́žek andPaldus (1977)or, for a pedagogical
review,CookeandWood (2002). The fact that these applications
are valid for any positive integer N and many discrete series
irreps of SU(1,1) makes them particularly useful. The devel-
opment of factorization methods and algebraic methods for
the evaluation of matrix elements of SOðNÞ tensor operators
makes it possible to extend the algebraic method to a much
wider class of Hamiltonian (Rowe, 2005). By such means,
SUð1; 1Þ � SOð5Þ has been used successfully as a dynamical
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group in the development of an algebraic version of the Bohr
model for collective quadrupole vibrations and rotations in
nuclear physics (Rowe, Turner, and Repka, 2004; Rowe,
2004a; Rowe and Turner, 2005; Rowe, Welsh, and Caprio,
2009; Welsh and Rowe, 2012).

2. States for a six-dimensional harmonic oscillator

TheHilbert space of the six-dimensional harmonic oscillator
L2ðR6Þ is a tensor product L2ðR5Þ 	L2ðRÞ of Hilbert spaces

for five-dimensional and one-dimensional harmonic oscillators.

In the spirit of the interacting bosonmodel (Iachello andArima,

1987), to which this example applies, we may consider the

boson creation operators of these harmonic oscillators as com-

prising five fdym;m ¼ 0;�1;�2g operators, which create

harmonic-oscillator quanta of angular momentum L ¼ 2 in

L2ðR5Þ, and one sy operator, which creates L ¼ 0 (angular-

momentum-zero) quanta inL2ðRÞ. We then have the following

dual pairs of group representations:

L2ðR6Þ ¼ L2ðR5Þ 	 L2ðRÞ

½Uð6Þ � Uð1Þ6�
[ \

½Oð6Þ � SUð1; 1Þ6�

½Uð5Þ � Uð1Þ5�
[ \

½Oð5Þ � SUð1; 1Þ5�

½Uð1Þ1 � Uð1Þ1�
[ \

½Oð1Þ1 � SUð1; 1Þ1�:

(211)

Note that, for logical consistency, we show a direct product
of two copies ofUð1Þ1 although, in fact, the representations
of these two groups are dual to each other in a trivial way,
i.e., they are identical. Note also that, because the irreps of
one member of a dual pair are uniquely partnered with
corresponding irreps of the other, we need only to specify
the representations for one member of each pair. Thus, we
label the paired irreps by common indices as follows:

Uð6Þ�Uð1Þ6 Uð5Þ�Uð1Þ5 Uð1Þ1�Uð1Þ1
N n N�n

Oð6Þ�SUð1;1Þ6 Oð5Þ�SUð1;1Þ5 Oð1Þ1�SUð1;1Þ1
� v 	:

(212)

Note that there are only two irreps of SUð1; 1Þ1 on the one-
dimensional harmonic-oscillator Hilbert space: one carried
by states of even numbers of oscillator quanta and one by
states of odd numbers of quanta. The discrete group O(1)
also has only two irreps of parity 	 ¼ �1. In L2ðRÞ, the

even and odd boson number SUð1; 1Þ1 irreps are paired
with the 	 ¼ 1 and 	 ¼ �1 irreps of Oð1Þ1, respectively.

The interacting boson model has exactly solvable limits in
which particular classes of Hamiltonians are diagonalized in
bases that reduce corresponding subgroup chains. In particu-
lar, there are two exactly solvable classes of O(5)-invariant
Hamiltonians: one that diagonalizes the chain

Uð6Þ � Uð5Þ�Oð1Þ1 � Oð5Þ � SOð3Þ � SOð2Þ
N n 	 v � L M

(213)

and another that diagonalizes the chain

Uð6Þ � Oð6Þ � Oð5Þ�Oð1Þ1 � SOð3Þ � SOð2Þ
N � v 	 � L M

:

(214)

By using the duality relationships indicated above, we find
that the basis states fjNn	v�LMig that reduce the subgroup
chain (213) simultaneously reduce the chain

SOð3Þ � SUð1; 1Þ1 � SUð1; 1Þ5 � SOð2Þ � Uð1Þ1 � Uð1Þ5 � Uð1Þ6
L 	 � ¼ vþ 5

2 M N � n n N
; (215)

and the basis states fjN�v	�LMig that reduce the subgroup chain (214) simultaneously reduce the chain

SOð3Þ � SUð1; 1Þ1 � SUð1; 1Þ5 � SOð2Þ � SUð1; 1Þ6 � Uð1Þ6
L 	 � ¼ vþ 5

2 M � ¼ �þ 3 N
; (216)

where SUð1; 1Þ6 is the subgroup of SUð1; 1Þ1 � SUð1; 1Þ5
whose Lie algebra is spanned by the sums Ŝ6k ¼ Ŝ1k þ Ŝ5k,
where fŜ1kg and fŜ5kg are bases for SUð1; 1Þ1 and SUð1; 1Þ5,
respectively.

The equivalence of alternative subgroup chains for classi-
fying basis states means that one can choose whichever is the
simplest for the purposes of diagonalizing a corresponding
Hamiltonian. Thus, although the subgroup chains (213) and
(214) are natural dynamical subgroup chains for diago-
nalizing an O(5)-invariant Hamiltonian on a U(6)-invariant

subspace of the six-dimensional harmonic oscillator, it is
generally much easier to use their SU(1,1) counterparts in
Eqs. (215) and (216) (Rowe, 2004c).

It is also worth noting that one would sometimes like to
know the unitary transformation between the U(5) and O(6)
bases, i.e., the bases that, respectively, diagonalize the sub-
groups chains of Eqs. (213) and (214). The transformation
coefficients are the �LM-independent overlaps

hNnv	�LMjN�v	�LMi ¼ hNnvjN�vi: (217)
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Knowledge of these coefficients immediately gives an alge-
braic expression for matrix elements of any mixture of
Hamiltonians that are known in either the U(5) or O(6) bases.
These coefficients can be computed with some effort by
diagonalizing the O(6) Casimir operator in the U(5) basis
as shown by Castaños et al. (1979). However, as the equiva-
lent SU(1,1) chains reveal (Rowe, 2004c; Rowe and
Thiamova, 2005), they are simply equal to already-known
SU(1,1) Clebsch-Gordan coefficients: in the
ðk1; n1; k2; n2jk; nÞ notation of Van der Jeugt (1997)

hNnvjN�vi¼
�
vþ5=2

2
;
n�v

2
;
1

4
;
N�n

2

���������þ3

2
;
N��

2

�
;

(218)

for N � v even, and

hNnvjN�vi¼
�
vþ5=2

2
;
n�v

2
;
3

4
;
N�n�1

2

���������þ3

2
;
N��

2

�
;

(219)

for N � v odd.
As considered further in Sec. X, this example is a prototype

of many possible uses of dual subgroup chains to relate the

basis states of one coupling scheme for a many-particle
system to those of another. Thus, it can provide solutions to
challenging problems, e.g., in the calculation of matrix ele-
ments of a Hamiltonian that contains mixtures of interactions
that are diagonal in different coupling schemes.

An extension of the O(5)-invariant interacting boson
model, that benefits even more from these duality relation-
ship, is a model with mixed U(6) irreps, proposed by
Lehmann and Jolie (1995). In this model, spherical neutron
states mix with deformed states generated by the excitation of
a proton pair into the active shell-model space from an
otherwise inert closed subshell. The spherical states of this
model are classified by the subgroup chains

Uð6Þ � Uð5Þ � Oð5Þ
N n5 v

; (220)

and the deformed states, with the addition of two excited
protons, are classified by the chain

Uð6Þ � Oð6Þ � Oð5Þ
N þ 2 � v

; (221)

with the inclusion of multiplicity labels as needed. These
states are equivalently classified by the dual subgroup chains

SUð1; 1Þ1 � SUð1; 1Þ5 � Uð1Þ1 � Uð1Þ5 � Uð1Þ6
	 � ¼ vþ 5

2 N � n5 n5 N
; (222)

SUð1; 1Þ1 � SUð1; 1Þ5 � SUð1; 1Þ6 � Uð1Þ6
	 � ¼ vþ 5

2 � N þ 2
: (223)

The mixing of these states is then simply described by an
interaction of the form

V̂ ¼ �ðŜð1Þþ þ Ŝð1Þ� Þ þ �ðŜð5Þþ þ Ŝð5Þ� Þ; (224)

where Ŝð1Þ� and Ŝð5Þ� are, respectively, raising and lowering
operators for SUð1; 1Þ1 and SUð1; 1Þ5.
3. The vibron model and its q-deformed extension

A parallel application by Alvarez, Bonatsos, and Smirnov
(1994) of the OðNÞ � SUð1; 1Þ duality is to the classification
of states of a four-dimensional harmonic oscillator used in the
vibron model of the vibrations and rotations of diatomic
molecules (Iachello, 1981). In this application, the Hilbert
space of the four-dimensional harmonic oscillator is regarded
as a tensor product L2ðR4Þ ’ L2ðR3Þ 	L2ðRÞ of Hilbert
spaces for three-dimensional and one-dimensional harmonic
oscillators. Thus, it is determined that basis states for this
model that reduce the subgroup chain

Uð4Þ � Uð3Þ � Uð1Þ � Oð3Þ � Oð1Þ � SOð2Þ (225)

simultaneously reduce the dual chain

SOð2Þ � SUð1; 1Þ1 � SUð1; 1Þ3
� Uð1Þ1 � Uð1Þ3 � Uð1Þ4: (226)

Similarly, basis states that reduce the subgroup chain

Uð4Þ � Oð4Þ � Oð3Þ � Oð1Þ � SOð2Þ (227)

simultaneously reduce the dual chain

SOð2Þ � SUð1; 1Þ1 � SUð1; 1Þ3 � SUð1; 1Þ4 � Uð1Þ4:
(228)

This formulation of the vibron model was used by Alvarez,
Bonatsos, and Smirnov (1994) to show that, because the
su(1,1) Lie algebra has a known q deformation (Kulish and
Reshetikhin, 1983) to a so-called quantum algebra, the vibron
model also has a q-deformed extension. A similar observation
applies to the interacting boson model in its U(5) and O(6)
dynamical symmetry limits.

D. OðNÞ � Spðm;RÞ duality

We now consider applications of the general OðNÞ �
Spðm;RÞ duality relationship to the dynamics of a system
of N particles in an m-dimensional configuration space.

Let fcy�i;�¼1;...;N;i¼1;...;mg and fc�i;�¼1; . . . ;N;
i¼1; . . . ;mg denote boson creation and annihilation operators
for an Nm-dimensional harmonic oscillator. The unitary
groups UðNÞ and UðmÞ then have dual representations on
the Hilbert space of this harmonic oscillator with infinitesi-
mal generators defined, respectively, by
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ĈðNÞ
�� ¼ Xm

i¼1

cy�ic�i; ĈðmÞ
ij ¼ XN

�¼1

cy�ic�j; (229)

cf. Eq. (169). The group OðNÞ is the subgroup of all real
orthogonal transformations in UðNÞ that leave the scalar
products,

Âij ¼ cyi � cyj ¼ X
�

cy�ic
y
�j; i; j ¼ 1; . . . ; m; (230)

invariant. This group contains all SOðNÞ rotations, for which
infinitesimal generators are given by the generalized angular-
momentum operators

L̂�� ¼ �iðĈðNÞ
�� � ĈðNÞ

��Þ; � < �; (231)

and an inversion operator that maps all the boson creation and
annihilation operators to their negatives. The group Spðm;RÞ,
dual to OðNÞ, is a simple Lie group for which infinitesimal
generators are given by Hermitian linear combinations of the
OðNÞ scalar operators

Âij ¼
X
�

cy�ic
y
�j; B̂ij ¼

X
�

c�ic�j;

Ĉij ¼ ĈðmÞ
ij þ 1

2N�i;j; (232)

for i; j ¼ 1; . . . ; m. Note that Ĉij and ĈðmÞ
ij , related as in

Eq. (232), are infinitesimal generators of isomorphic UðmÞ
groups.

The Hilbert space of any Nm-dimensional harmonic oscil-
lator carries a direct sum of Spðm;RÞ irreps known as a
positive harmonic series, which are irreps with lowest but
not highest weights. An Spðm;RÞ irrep on an
Nm-dimensional harmonic-oscillator space is therefore con-
veniently characterized by a lowest-weight state j�i that
satisfies the following equations:

B̂ijj�i ¼ 0; 1 
 i 
 j 
 m; (233)

Ĉijj�i ¼ 0; 1 
 i < j 
 m; (234)

Ĉiij�i ¼ ð�i þ 1
2NÞj�i; i ¼ 1; . . . ; m: (235)

To simplify the notation, we denote such an irrep with lowest
weight ð�1 þ 1

2N; �2 þ 1
2N; . . . ; �m þ 1

2NÞ by h12Nð�Þi. Note
that the Spðm;RÞ lowest-weight state j�i, defined in this way,
is also the highest-weight state for an irrep f�g of the UðmÞ
group defined by Eq. (229).

Several copies of the Spðm;RÞ irrep h12Nð�Þi appear in

the N-particle, m-dimensional harmonic-oscillator space.
However, because of the unitary-unitary duality relation-
ship, Theorem 3, the UðmÞ highest-weight state j�i can be
made unique by requiring that, in addition to satisfying
Eqs. (233)–(235), it is also a UðNÞ highest-weight state,
i.e., it satisfies the following equations:

ĈðNÞ
��j�i ¼ 0; � < �; (236)

ĈðNÞ
��j�i ¼ ��j�i; � ¼ 1; . . . ; N; (237)

where �� ¼ 0 for �>m.

There is no duality relationship between the irreps of
Spðm;RÞ and those of UðNÞ because the irrep of UðNÞ with
highest weight � also contains states that are not of Spðm;RÞ
lowest weight, i.e., states that are not annihilated by the B̂ij

lowering operators. However, because the B̂ij lowering op-

erators are OðNÞ invariant, the subset of states of the UðNÞ
irrep of highest weight � that are also of Spðm;RÞ lowest
weight carries a representation of OðNÞ. Moreover, by
Theorem 4, such an OðNÞ representation is irreducible.
Thus, the state j�i is the highest-weight state for an OðNÞ
irrep and, simultaneously, a lowest-weight state for a dual
Spðm;RÞ irrep. This can be seen, for m ¼ 1, in Fig. 1 which
shows that only the rightmost OðNÞ irrep belonging to a
single UðNÞ irrep lies at the bottom of a column of equivalent
OðNÞ irreps that together span an Spð1;RÞ irrep.

E. Applications of OðNÞ � Spðm;RÞ duality

1. Relationships between branching rules

The following example shows how the seesaw relationship
between the unitary-unitary and orthogonal-symplectic dual
pairs

UðNÞ � UðmÞ
[ \

OðNÞ � Spðm;RÞ
(238)

is used to determine Spðm;RÞ # UðmÞ branching rules from
known UðNÞ # OðNÞ branching rules. This is important for
two reasons: one is that a knowledge of the Spðm;RÞ # UðmÞ
branching rules is needed for nuclear shell-model calcula-
tions in an Spð3;RÞ � SUð3Þ � SOð3Þ coupling scheme, ap-
propriate for the microscopic theory of nuclear collective
states; a second is that it serves as a prototype of ways to
infer branching rules for a noncompact group from those of a
compact group.

Note that the UðmÞ � Spðm;RÞ subgroup, Eq. (235), has
infinitesimal generators fĈij ¼ ĈðmÞ

ij þ 1
2N�i;jg that differ

from the infinitesimal generators fĈðmÞ
ij g of the UðmÞ group

defined by Eq. (229). The commutation relations of the fĈijg
and fĈðmÞ

ij g operators are exactly the same. But they generate

different, although simply related, representations when act-
ing on the same states. Thus, when acting on a UðmÞ highest-
weight state j�i, defined by the equations

ĈðmÞ
ij j�i ¼ 0; 1 
 i < j 
 m; (239)

ĈðmÞ
ii j�i ¼ �ij�i; i ¼ 1; . . . ; m; (240)

the UðmÞ � Spðm;RÞ operators satisfy Eqs. (234) and (235).
Thus, they generate a UðmÞ irrep with a shifted highest weight
�ðNÞ having components �ðNÞ

i ¼ �i þ 1
2N.

According to the unitary-unitary duality theorem, the
Hilbert space H of the Nm-dimensional harmonic oscillator
carries a direct sum

L
�f�g � f�ðNÞg of UðNÞ � UðmÞ irreps.

From orthogonal-symplectic duality, H also carries a direct
sum

L
�½�� � h12Nð�Þi of OðNÞ � Spðm;RÞ irreps. To relate

the UðNÞ # OðNÞ and Spðm;RÞ # UðmÞ branching rules, we
express them in the form
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UðNÞ # OðNÞ : f�g # M
�

P��½��; (241)

Spðm;RÞ # UðmÞ : h12Nð�Þi # M
�

P ��f�ðNÞg: (242)

The OðNÞ � UðmÞ representation carried by H can now be
expressed as a direct sum of irreps in two ways. One branch-
ing rule gives

UðNÞ � UðmÞ # OðNÞ � UðmÞ:M
�

f�g � f�ðNÞg # M
�;�

P��½�� � f�ðNÞg: (243)

The other gives

OðNÞ � Spðm;RÞ # OðNÞ � UðmÞ:M
�

½�� � h12Nð�Þi # M
�;�

P ��½�� � f�ðNÞg: (244)

Thus, comparison of these two results reveals that

P �� ¼ P��: (245)

In this way, the Spðm;RÞ # UðmÞ branching rules were
determined (Rowe, Wybourne, and Butler, 1985) from
the UðNÞ # OðNÞ branching rules of King (1975).

Cases for which N � 2m turn out to be particularly simple.
For example, in the symplectic shell-model theory of nuclear
collective motion, m ¼ 3 is the dimension of ordinary
3-space and N is the nucleon number of the nucleus. Thus,
for medium to heavy nuclei, for which the theory is most
relevant, N is large compared to 2m ¼ 6. When N � 2m, the
UðNÞ � UðmÞ duality relationship implies that anyUðNÞ irrep
f�g carried by a subspace of the Hilbert space of the
Nm-dimensional harmonic oscillator is labeled by a partition
� having at most m 
 N=2 parts. For such an irrep, the
UðNÞ # OðNÞ branching rule has a particularly simple expres-
sion (King, 1975). The dual Spðm;RÞ # UðmÞ branching rule
is then equally simple and given by

Spðm;RÞ # UðmÞ : h12Nð�Þi # f�ðNÞg 	 fDmg; (246)

where fDmg ¼
P1

n¼0f2g sp f2ng is the direct sum of the infi-

nite sequence of UðmÞ irreps given by partitions whose parts
are all even non-negative integers, i.e.,

fDmg ¼ f0g � f2g � f4g � f22g � f6g
� f42g � f23g � f8g � f64g � � � � ; (247)

with the understanding that the number of parts must not
exceed m.3

2. Model spaces

A model space for a Lie group G, and/or its Lie algebra, is
defined (Bernshtein, Gel’fand, and Gel’fand, 1975) as a

Hilbert space that carries precisely one copy from every
equivalence class of a specified set of irreps of G. For
example, a model space for SU(3) is obtained as a subspace
of all states of the Hilbert space H for the six-dimensional
harmonic oscillator that are annihilated by the raising
operator of a dual U(2) group. This follows because
H ¼ L

� H
f�g is the Hilbert space for a direct sumL

�f�g � f�g of all irreps of Uð2Þ � Uð3Þ that are labeled
by partitions f�g ¼ f�1�2g with no more than two integer
parts. The subspace of H that is annihilated by U(2) raising
operators is a model space for SU(3) because the branching
rule for the restriction of U(3) to its SU(3) subgroup,

Uð3Þ # SUð3Þ : f�1�2�3g # f�1 � �2; �2 � �3g (248)

implies that the set of U(3) irreps with �3 ¼ 0 restricts to a
complete set of SU(3) irreps. Such a model is useful for the
calculation of the subset of Clebsch-Gordan coefficients for
the U(3) couplings

f�1�2g 	 f�1�2g ¼
M
�

f�1�2�3g (249)

for which �3 ¼ 0 (see further comments in Sec. X).
A similar example is given by the Hilbert space H of the

2m2-dimensional harmonic oscillator on which all the
holomorphic discrete series irreps of Spðm;RÞ are realized
(see footnote 3). The subspace of states in H that are
annihilated by the Spðm;RÞ lowering operators is a model
space for Oð2mÞ and, conversely, the subspace of all states of
H that are annihilated by the Oð2mÞ raising operators is a
model space for the holomorphic discrete series irreps of
Spðm;RÞ. These model spaces were used in a study by
Gelbart (1973).

3. The microscopic theory of nuclear collective dynamics

The OðAÞ � Spð3;RÞ duality is central to the microscopic
theory of nuclear collective dynamics in (Rowe, 1985) which
Spð3;RÞ is a dynamical group for an A-nucleon collective
model Hamiltonian and OðAÞ is a symmetry group.

A group G of canonical transformations of a classical
many-particle phase space is said to generate collective
motions if it transforms the phase-space coordinates of
all particles in the same way. Thus, if an element g 2 G
maps a set of phase-space coordinates � ¼ ðx; y; z; px; py; pzÞ
for a particle to a new set, denoted by g � �, the corresponding
collective transformation of an A-particle system is given
by

ð�1; �2; . . . ; �AÞ ! ðg � �1; g � �2; . . . ; g � �AÞ: (250)

Thus, by definition, a group of collective transformations of a
many-particle system is a representation of a group of trans-
formations of a single-particle phase space.

For a classical dynamical system described by Hamilton
equations of motion, the possible motions are generated by
groups of canonical (i.e., symplectic) transformations. Such
dynamics satisfy Liouville’s theorem, i.e., they preserve vol-
umes in phase space, and are said to be Hamiltonian. Thus,
the Spð3;RÞ symplectic group, defined as the set of all linear
canonical transformations of the phase space of a single
particle in 3-space, is fundamental to the theory of collective
structure.

3These Spðm;RÞ irreps are the subset of positive harmonic series

irreps that belong to the discrete series. It also follows from these

results that all of the positive holomorphic discrete series of

Spðm;RÞ irreps (not including its double-valued metaplectic irreps)

are realized within the Hilbert space of N ¼ 2m particles in an

m-dimensional harmonic oscillator [cf. Gelbart (1973)].
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Infinitesimal generators of Spðm;RÞ are defined by
Eq. (232) in terms of harmonic oscillator raising and lowering
operators. However, their physical significance is more ap-
parent when expressed in terms of particle position and
momentum coordinates. Thus, if fxi; i ¼ 1; 2; 3g are
Cartesian coordinates for a single particle in R3 and fpi; i ¼
1; 2; 3g are corresponding momentum coordinates, the basis
for a unitary representation of the Lie algebra spð3;RÞ is
given by the operators

K̂ij¼ p̂ip̂j; Q̂ij¼ x̂ix̂j; T̂ij¼ x̂ip̂jþ p̂jx̂i; (251)

on the single-particle Hilbert space HL ¼ L2ðR3Þ, where x̂i
and p̂i satisfy the standard commutation relations

½x̂i; x̂j� ¼ ½p̂i; p̂j� ¼ 0; ½x̂i; p̂j� ¼ iℏ�i;j: (252)

Now, if fxni; n ¼ 1; . . . ; A; i ¼ 1; 2; 3g are Cartesian coordi-
nates for A particles and fpni; n ¼ 1; . . . ; A; i ¼ 1; 2; 3g are
corresponding momentum coordinates, infinitesimal genera-
tors for an A-particle representation of Spð3;RÞ are given by
the OðAÞ scalar operators on L2ðR3AÞ

K̂ij ¼
X
n

p̂nip̂nj; Q̂ij ¼
X
n

x̂nix̂nj;

T̂ij ¼
X
n

ðx̂nip̂nj þ p̂njx̂niÞ:
(253)

The group Spð3;RÞ proves to be just what is needed for a
practical microscopic theory of nuclear collective motion. It
has the particularly valuable property that the full many-
particle kinetic energy ð1=2MÞPnip̂

2
ni is an element of its

Lie algebra. Potential-energy functions of the nuclear quad-
rupole moments fQijg can then be added to this kinetic energy
to form collective model Hamiltonians. The spð3;RÞ Lie
algebra also contains the Hamiltonian of the spherical har-
monic oscillator

ĤHO ¼ 1

2M

X
ni

p̂2
ni þ

1

2
M!2

X
ni

x̂2ni; (254)

which means that it provides a natural unification of the
collective model with the harmonic-oscillator shell model.
Combined with the fact that Spð3;RÞ is a simple Lie group
and that the representations and coupling coefficients of its
SOð3Þ � Uð3Þ subgroups are already well known, these
properties mean that it is straightforward to compute the
matrix elements for irreps of the spð3;RÞ Lie algebra
in the harmonic-oscillator representations of Spð3;RÞ;
they are most simply computed by so-called vector-
coherent-state methods (Rowe, 1984; Rowe, Rosensteel,
and Carr, 1984) as outlined by Rowe (1985) (see Sec. IX.B
of this review).

We now show that the OðAÞ � Spð3;RÞ duality on the
Hilbert space L2ðR3AÞ of spatial wave functions for A parti-
cles facilitates the construction of a shell-model coupling
scheme with basis states that are products of center-of-mass
states and antisymmetric combinations of spin, isospin, and
spatial states in an Spð3;RÞ basis.

Separation of center-of-mass states is accomplished by
the factorization L2ðR3AÞ ¼ L2ðR3Þ 	L2ðR3ðA�1ÞÞ, where
L2ðR3Þ is the Hilbert space of center-of-mass states and
L2ðR3ðA�1ÞÞ is the complementary space for A nucleons

relative to their center of mass. It remains to characterize
the Spð3;RÞ irreps in L2ðR3ðA�1ÞÞ by their SA symmetries
so that they may be combined with spin-isospin irreps
of conjugate symmetry to form totally antisymmetric
states. This is achieved by standard shell-model techniques
for Spð3;RÞ irreps for which the center of mass is in its
harmonic-oscillator ground state. More generally, it is made
possible by the OðA� 1Þ � Spð3;RÞ duality relationship.

By duality, L2ðR3ðA�1ÞÞ carries a multiplicity-free direct
sum of irreps of the group OðA� 1Þ � Spð3;RÞ. Because the
symmetric group SA is a subgroup of OðA� 1Þ, it is then
possible to construct basis states for L2ðR3ðA�1ÞÞ that reduce
the subgroup chain

½ OðA� 1Þ � SA � � Spð3;RÞ
½�� ð�Þ h12 ðA� 1Þð�Þi (255)

and carry SA irreps corresponding to partitions � ‘ A. Thus,
Spð3;RÞ irreps are determined with well-defined SA symme-
try and can be coupled to spin-isospin irreps of conjugate SA
symmetry. The OðA� 1Þ # SA branching rules needed for this
purpose have been given by Butler and King (1973), Dehuai
and Wybourne (1981), and Carvalho (1990).

VIII. DUAL REPRESENTATIONS ON FERMION SPACES

We now consider duality relationships that are specific to
fermions. A primary difference between the dual representa-
tions expressed in terms of boson operators and those ex-
pressed in terms of fermion operators is that the latter usually
involve finite-dimensional representations. Thus, the fermi-
onic counterparts of the bosonic duality relationships on
harmonic-oscillator spaces involve groups with dual repre-
sentations on a finite fermion Fock space FðwNÞ spanned by
multifermion states

j0i; ay�j0i; ay�ay�j0i; . . . ; ay1a
y
2 ���aywNj0i: (256)

Pairs of groups with dual representations of relevance
to fermion systems are found among the chains of subgroups

SOð2wNÞ � Oð1Þ
[ \

USpð2wÞ � USpðNÞ
[ \

UðwÞ � UðNÞ
[ \

Uð1Þ � UðwNÞ;

(257)

for N even, and

SOð2wNÞ � Oð1Þ
[ \

SOð2wÞ � OðNÞ
[ \

UðwÞ � UðNÞ
[ \

Uð1Þ � UðwNÞ;

(258)
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for N even or odd. The groups SOð2wNÞ � Oð2wNÞ are
defined below as groups of Bogoljubov-Valatin transforma-
tions and the group UðwNÞ has a Lie algebra whose complex
extension is spanned by the operators fay�a�g.

The duality of UðwÞ and UðNÞ representations on FðwNÞ
follows once again from Theorem 3. The dualities between
representations of USpð2wÞ and USpðNÞ for N even, and
between representations of SOð2wÞ and OðNÞ for N even or
odd, are established, respectively, in the following two theo-
rems whose proofs are given elsewhere (Helmers, 1961;
Rowe, Repka, and Carvalho, 2011).

Theorem 5 (Helmers): The groups USpð2wÞ and USpðNÞ
have dual representations on FðwNÞ for N even.

Theorem 6: The groups SOð2wÞ and OðNÞ have dual
representations on FðwNÞ for N even or odd.

Before discussing the relevance of these dual pairs in
physical applications, we first define the group of
Bogoljubov-Valatin transformations, Oð2wNÞ.

A. The group of Bogoljubov-Valatin transformations

Let fay�; a�;� ¼ 1; . . . ; wNg denote a set of fermion crea-
tion and annihilation operators that satisfy the anticommuta-
tion relations

fa�; ay�g ¼ �
�
� ; fay�; ay�g ¼ fa�; a�g ¼ 0; (259)

and the Hermiticity relations

ða�Þy ¼ ay�: (260)

The group of Bogoljubov-Valatin transformations G is then
the subset of complex-linear transformations

ay� ! X
�

ðay�u�� þ a�v��Þ;

a� ! X
�

ðay�v�
�� þ a�u���Þ;

(261)

that preserve the fermion anticommutation relations (259)
and the Hermiticity relationship.

To identify this group, consider its application to the
Hermitian operators

Q̂� ¼ 1ffiffiffi
2

p ðay� þ a�Þ; P̂ � ¼ iffiffiffi
2

p ðay� � a�Þ; (262)

which satisfy the anticommutation relations

fQ̂�;Q̂�g¼ fP̂�;P̂ �g¼���; fQ̂�;P̂ �g¼0: (263)

If R2wN is the real vector space spanned by the operators

fẐig ¼ fQ̂1; Q̂2; . . . ; P̂ 1; P̂ 2; . . .g, then G is the set of linear
transformations of R2wN that preserve the anticommutation
relations fẐi; Ẑjg ¼ �i;j. These transformations must be real;

otherwise they would not preserve the Hermiticity of the

fQ̂�g and fP̂ �g operators. It follows that G is the subgroup
of real linear transformations, Ẑ � Ẑg, that satisfy the
condition�X

i

Ẑigij;
X
k

Ẑkgkl

�
¼ X

i

gijgil ¼ �j;l: (264)

This is the real orthogonal group Oð2wNÞ.

A representation of this Oð2wNÞ group, of relevance to the
quantum mechanics of many-fermion systems, is carried by
the Fock space FðwNÞ. In this representation, the Lie algebra
soð2wNÞ of the group Oð2wNÞ, known as the fermion-pair
algebra, is spanned by the Hermitian linear combinations of
the operators

ay�a
y
�; a�a�; ay�a� � a�ay�: (265)

The Bogoljubov-Valatin group can be extended to a full
dynamical group Oð2wN þ 1Þ for the fermion system that
includes both the even and odd fermion states of the Fock

space FðwNÞ, by the addition of the operators fQ̂�g and fP̂ �g to
its Lie algebra. Such an addition was proposed by Fukutome,
Yamamura, and Nishiyama (1977) based on the observation
that the commutator ½ay�; a�� ¼ ay�a� � a�ay� of a fermion

creation and a fermion annihilation operator is in the complex
extension of soð2wNÞ.

Note that if we replace the index �, that labels a single-
fermion state, by a double index� ! ð�mÞ, where � andm take
w andN values, respectively, the space FðwNÞ is seen as a tensor
product. For example, � might index the isospin states, � ¼
�1=2, of an isospin T ¼ 1=2 nucleon and m might index
a nucleon’s angular-momentum states, m¼�j;jþ1;...;þj
with j a half-odd positive integer. In this case w¼2Tþ1¼2,
and N ¼ 2jþ 1 is an even integer. In another example, �
might index the four spin-isospin states of a nucleon (with
spin and isospin S ¼ 1=2, T ¼ 1=2) and m might index the
orbital angular-momentum states with labels �l; . . . ;þl,
where l is a non-negative integer. In this case w ¼ 4, and
N ¼ 2lþ 1 is an odd integer.

B. Pair-coupling schemes for fermions of a single species

The special case of a USpð2wÞ � USpðNÞ duality, with
w ¼ 1 and N ¼ 2jþ 1, where j (a half-odd positive integer)
is the angular momentum of a single fermion (a neutron,
proton, or electron), is of historical significance because, as
far as we know, it was the first duality relationship, indepen-
dent of Schur-Weyl duality, to be identified (Helmers, 1961).
Because of its simplicity, the USpð2jþ 1Þ � Uð2jþ 1Þ
subgroup chain defines the coupling scheme most commonly
used in the atomic shell model (Racah, 1949) and in the
nuclear shell model for nuclei with either neutron or proton
closed shells (Flowers, 1952a, 1952b, 1952c; French, 1960;
Talmi, 1993). It also plays a central role in models of
pairing and superconductivity in atomic and nuclear physics
in which USpð2jþ 1Þ is dual to a so-called SUð2Þqs ’ USpð2Þ
quasispin group (Anderson, 1958; Kerman, 1961; Kerman,
Lawson, and Macfarlane, 1961). The Lie algebra suð2Þqs is
important for understanding situations in which the coupling
of fermions to form angular-momentum-zero (Cooper) pairs
is energetically favored over other couplings.

A system of n identical fermions of angular momentum j
carries a fully antisymmetric irrep f1ng of Uð2jþ 1Þ with n
restricted to the range 0 
 n 
 2jþ 1. Thus, if the
Hamiltonian is rotationally invariant, we seek basis states
for this irrep that reduce the rotation subgroup SUð2ÞJ �
Uð2jþ 1Þ and have conserved angular-momentum quantum
numbers. [Note that the rotation group for fermions is SU(2)
rather than SO(3).] As observed by Racah (1949), additional
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quantum numbers are supplied by inclusion of the group
USpð2jþ 1Þ in the subgroup chain

Uð2jþ 1Þ � USpð2jþ 1Þ � SUð2ÞJ � Uð1ÞJ
n v J M

:

(266)

Now from the paired subgroups of Oð2ð2jþ 1ÞÞ with dual
representations on the Fock space Fð2jþ1Þ shown in Eq. (257),
it is seen that USpð2jþ 1Þ has dual representations with an
SUð2Þqs ’ USpð2Þ quasispin group and that Uð2jþ 1Þ has

dual representations with the subgroup Uð1Þqs � SUð2Þqs. It
follows that the basis states of the coupling scheme (266) are
identical with basis states of the Fock space Fð2jþ1Þ that
reduce the dual subgroup chain

SUð2Þqs � SUð2ÞJ � Uð1Þqs � Uð1ÞJ
s J s0 M

: (267)

We show in the following that the quantum numbers for these
two chains are related by

sðvÞ ¼ 1
2ðjþ 1

2 � vÞ; s0ðnÞ ¼ 1
2ðn� j� 1

2Þ: (268)

[Note that the lowest-weight SUð2Þqs state for the v ¼ 0 irrep

is the n ¼ 0 state for which s0 ¼ �s.] We also show that the
USpð2jþ 1Þ group in the chain (266) has the physical sig-
nificance of being the subgroup of Uð2jþ 1Þ transformations
that leave the creation operator for a Cooper pair (i.e., an
angular-momentum-zero fermion pair) invariant. Moreover,
this pair-creation operator and the corresponding annihilation
operator are shown to generate the Lie algebra suð2Þqs of the
group SUð2Þqs that commutes with USpð2jþ 1Þ. It follows
that USpð2jþ 1Þ is a symmetry group of any Hamiltonian
that is defined in terms of the suð2Þqs pair operators. Thus, we
have two groups, SUð2Þqs and USpð2jþ 1Þ, with commuting

actions on the Fock space Fð2jþ1Þ, of which SUð2Þqs is a

dynamical group and USpð2jþ 1Þ is a symmetry group for
a class of pairing model Hamiltonians.

1. The suð2Þqs and uspð2jþ 1Þ Lie algebras

The fermion-pair creation operator used to define the
USpð2jþ 1Þ group is the operator

Â ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p X
m

ðj;�m; j;mj00Þaymay�m

¼ X
m

ð�1Þjþmaymay�m; (269)

where faym;m ¼ �j; . . . ;þjg is a set of 2jþ 1 creation op-
erators for fermions of angular momentum j and
ðj;�m; j;mj00Þ ¼ ð�1Þjþm is an SU(2) Clebsch-Gordan co-

efficient. The operator Â is the raising operator of the suð2Þqs
quasispin Lie algebra spanned by the operators

Ŝþ ¼ 1

2
Â ¼ X

m>0

aymay�m; Ŝ� ¼ X
m>0

a �mam;

2Ŝ0 ¼
X
m>0

ðaymam � a �may�mÞ ¼ n̂� 1

2
ð2jþ 1ÞÎ;

(270)

where

ay�m � ð�1Þjþmay�m; a �m � ð�1Þjþma�m; (271)

n̂ ¼ Pj
m¼�j a

y
mam is the fermion number operator, and Î is

the identity operator.4 The quasispin operators satisfy the
commutation relations

½Ŝþ; Ŝ�� ¼ 2Ŝ0; ½Ŝ0; Ŝ�� ¼ �Ŝ�: (272)

We now identify the operators of the uspð2jþ 1Þ Lie
algebra. First observe that for each m the fermion creation

and annihilation operators aym and a �m are� 1
2 components of a

quasi-spin-12 tensor �̂m ¼ ðaym; a �mÞ as can be seen from the

commutation relations

½Ŝþ;a �m�¼aym; ½Ŝ�;aym�¼a �m; ½Ŝ0;a �m�¼�1
2a

�m;

½Ŝ0;aym�¼ 1
2a

y
m; ½Ŝþ;aym�¼0; ½Ŝ�;a �m�¼0;

(273)

which apply for any �j 
 m 
 þj. Next observe that pairs
of these quasi-spin-12 tensors can be coupled with SU(2)

Clebsch-Gordan coefficients to quasi-spin-scalar operators,

i.e., ½�̂m 	 �̂p�0 ¼ ðayma �p � a �maypÞ=
ffiffiffi
2

p
. Moreover, to

within numerical constants given, for example, by the anti-

commutators faym; amg ¼ 1, these are the only bilinear
combinations of the fermion creation and annihilation opera-
tors that can commute with the suð2Þqs operators. Thus, in the
present context, the uspð2jþ 1Þ Lie algebra is spanned by
the Hermitian linear combinations of the quasispin scalar
operators

Âmp ¼ ayma �p þ aypa �m; m � p > 0; (274)

Ĉmp ¼ aymap � ay�pa �m; m; p > 0 (275)

B̂mp ¼ ay�map þ ay�pam; m � p > 0: (276)

A basis for the Cartan subalgebra for this realization of
uspð2jþ 1Þ is given by the operators

Ĉmm ¼ aymam � ay�ma �m; m > 0: (277)

2. Labels for SUð2Þqs and USpð2jþ 1Þ irreps
Quantum numbers for basis states defined by subgroup

chains are given as usual by the labels for the irreps of the
groups in the chain. Irreps of SUð2Þqs and USpð2jþ 1Þ are
conveniently labeled by their lowest and highest weights,
respectively. A complete set of states in the Fock space
Fð2jþ1Þ that are simultaneously of lowest SUð2Þqs and highest

USpð2jþ 1Þ weight are the states

4The bar operation aym ! ay�m is equivalent to a rotation through

angle 	. Therefore, because 2j is odd, applying it twice changes the

sign of a fermion operator, i.e., ay��m ¼ �aym and a ��m ¼ �am.
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j0i; j1i ¼ ayj j0i; j2i ¼ ayj a
y
j�1j0i; . . . ;

jvi ¼ ayj a
y
j�1 � � � ayj�vþ1j0i; . . . ; jjþ 1

2i; (278)

for v an integer in the range 0 
 v 
 jþ 1
2 , which we

describe as extremal states.
A USpð2jþ 1Þ irrep with highest-weight state jvi has

highest weight defined by

hvjĈmmjvi ¼
8<
:
1 for j � m � j� vþ 1;

0 for 1
2 
 m< j� vþ 1:

(279)

Thus, it has highest weight h1vi and states of this irrep are
labeled by the quantum number v. On the other hand, an
SUð2Þqs irrep with lowest-weight state jvi has highest weight
defined by the quasispin

sðvÞ ¼ �hvjŜ0jvi ¼ 1
2ðjþ 1

2 � vÞ; (280)

consistent with Eq. (268). The quantum number of the

Uð1Þqs � SUð2Þqs subgroup with infinitesimal generator Ŝ0
is similarly given, by Eq. (268), i.e., s0ðnÞ ¼ 1

2 ðn� j� 1
2Þ.

The integer v, which labels the extremal states of Eq. (278)
and both the SUð2Þqs and USpð2jþ 1Þ irreps, is known as

the seniority quantum number; it takes the values v ¼
0; . . . ; jþ 1

2 and has a physical interpretation as the number

of unpaired particles in any state of an SUð2Þqs � USpð2jþ 1Þ
irrep; it is equal to the number of particles in an SUð2Þqs
lowest-weight state. This can be seen in Fig. 2.

3. A specific example and some general results

Suppose, for example, that j ¼ 9=2. The states available to
a many-fermion system (either protons, neutrons, or elec-
trons) occupying the single-particle states of a j ¼ 9=2 nu-
clear or atomic shell are shown in Fig. 2, by short lines, as
subsets of states that span irreps of USp(10). The subsets
belonging to equivalent USp(10) irreps are linked by dashed
lines and together span irreps of USpð10Þ � SUð2Þqs. By

Uð1Þqs � Uð10Þ duality, all states belonging to a column of

USp(10) irreps of particle number n belong to the single
U(10) irrep f1ng that is determined by the Uð1Þqs irrep fng.
Thus, the figure shows that a subset of Uð10Þ # USpð10Þ
branching rules are given, for n 
 5, by

f1ng # h1ni � h1n�2i � � � � � h1i or h0i; (281)

and for n > 5 by

f1ng # h110�ni � h18�ni � � � � � h1i or h0i: (282)

In fact, the duality relationships between the subgroup chains
SUð2Þqs � Uð1Þqs and Uð2jþ 1Þ � USpð2jþ 1Þ imply that

the coefficients in the two sets of branching rules

SUð2Þqs # Uð1Þqs : ðsð�ÞÞ #
M
n

kvnfs0ðnÞg; (283)

Uð2jþ 1Þ # USpð2jþ 1Þ : f1ng # M
v

kvnh1vi (284)

are identical for any value of j. Thus, from the known
coefficients for the SUð2Þqs � Uð1Þqs branching rules it is

determined that a subset of UðNÞ # USpðNÞ branching rules
is given, for any positive integer N, by

f1ng #
� h1ni � h1n�2i � � � � � h1i or h0i; for n 
 N=2;
h1N�ni � � � � � h1i or h0i; for n > N=2:

(285)

Branching rules such as these provide powerful tools for
deriving many needed results in shell-model and other appli-
cations. For example, they make it possible to infer the
angular-momentum states contained within a USpð2jþ 1Þ
irrep h1ni from a knowledge of the Uð2jþ 1Þ # SUð2ÞJ
branching rules. Suppose these branching rules are expressed
for n 
 jþ 1

2 by

Uð2jþ 1Þ # SUð2ÞJ : f1ng # M
J

Fn
J ðJÞ; (286)

where we use the symbol (J) to denote an SUð2ÞJ irrep of
angular momentum J [corresponding to the U(2) irrep f2Jg].
It follows from Eq. (285) that, for n 
 jþ 1

2 ,

USpð2jþ1Þ #SUð2ÞJ : h0i # ð0Þ
: h1i # ðjÞ
: h1ni #M

J

ðFn
J �Fn�2

J ÞðJÞ: (287)

This relationship is confirmed for j ¼ 9=2 from Fig. 2.
The Fn

J coefficients can be evaluated by means of a ple-

thysm. First observe that the single-particle n ¼ 1 states all
have angular momentum J ¼ j. This means that they span a
U(2) irrep labeled by the partition f2jg and that the restriction
of the fundamental Uð2jþ 1Þ irrep f1g to U(2) satisfies the
branching rule

FIG. 2. The spectrum of USp(10) irreps in the j ¼ 9=2 shell

labeled by values of the seniority quantum number v. The combined

states of all USp(10) irreps having a common value of the particle

number n span the U(10) irrep f1ng. The combined USp(10) irreps

having a common value of the seniority v, connected by dotted

lines, span an SUð2Þqs � USpð10Þ irrep.

TABLE II. The spectrum of angular-momentum states contained
in the USp(10) irreps of the j ¼ 9=2 shell.

v s J

0 5
2 0

1 2 9
2

2 3
2 2, 4, 6, 8

3 1 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ,

17
2 ,

21
2

4 1
2 0, 2, 3, 42, 5, 62, 7, 8, 9, 10, 12

5 0 1
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ,

13
2 ,

15
2 ,

17
2 ,

19
2 ,

25
2
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Uð2jþ 1Þ # Uð2Þ : f1g # f2jg: (288)

It follows that n-particle irreps of Uð2jþ 1Þ contain the
angular-momentum states given by the plethysm

Uð2jþ 1Þ # Uð2Þ : f1ng # f2jgsp f1ng: (289)

Each U(2) irrep f�1�2g then restricts to an SUð2ÞJ irrep of
angular momentum J ¼ 1

2 ð�1 � �2Þ.
For example, using the plethysm code of Carvalho and

D’Agostino (2001a), it is determined that

Uð10Þ # Uð2Þ : f12g # f17; 1g � f15; 3g � f13; 5g
� f11; 7g � f9; 9g; (290)

and, hence, that

Uð10Þ #SUð2ÞJ : f12g # ð8Þ�ð6Þ�ð4Þ�ð2Þ�ð0Þ: (291)

It follows from Eq. (287) that

USpð10Þ # SUð2ÞJ : h12i # ð8Þ � ð6Þ � ð4Þ � ð2Þ: (292)

Repeating this process for other values of n and v, we obtain
the spectrum of angular-momentum states contained in the
USp(10) irreps of the j ¼ 9=2 shell shown in Table II.

The above results show the duality relationship between
the irreps ofUSpð2jþ 1Þ and SUð2Þqs to be effective at giving
a simple pairing model a microscopic expression within the
framework of the many-nucleon shell model. They also
reveal the more general circumstances under which the
USpð2jþ 1Þ symmetry of a pair-coupling model is pre-
served. In particular, a number-conserving interaction that
is expressible as a polynomial in the uspð2jþ 1Þ and suð2Þqs
Lie algebras cannot mix states belonging to different
USpð2jþ 1Þ irreps. Such an interaction therefore conserves
the seniority quantum number (French, 1960; Talmi, 1993;
Rosensteel and Rowe, 2003). A remarkably large number of
nuclear interactions have this property. For example, Fig. 3
shows the low-lying states of three isotones of neutron
number N ¼ 50 with their energy levels modeled in terms

of 2, 4, and 6 protons in j ¼ 9=2 single-particle states, outside
of an N ¼ 50, Z ¼ 40 closed-shell core, and with states
described by Uð10Þ � USpð10Þ � SUð2ÞJ � Uð1ÞJ quantum
numbers. The Hamiltonian used to fit the energy levels was
chosen to comprise rotationally invariant and seniority-
conserving two-body interactions that fit the lowest J ¼ 0,
2, 4, and 8 states. Figure 3 shows the success of such a
Hamiltonian in predicting the excitation energies of the other
observed low-lying energy levels.

C. Dual groups for a multishell BCS Hamiltonian

The above coupling scheme for a single j shell has an
interesting extension to a multishell (also called multilevel)
scheme. Multilevel pair-coupling models have long been of
interest in both nuclear and condensed matter physics as
models of superconductivity. They are typically solved in
the BCS approximation (Bardeen, Cooper, and Schrieffer,
1957) which is an approximation that violates particle-
number conservation and other symmetries of the model.
However, it was recently rediscovered that a method pro-
posed by Richardson and Sherman (1964) and Richardson
(1965) and pursued from a different perspective by Gaudin
(1976) and Cambiaggio, Rivas, and Saraceno (1997) shows
that a class of BCS Hamiltonians is integrable and has
formally exact solutions.5 The Richardson-Gaudin (RG)
method and its many applications have been reviewed by
Dukelsky, Pittel, and Sierra (2004).

A general BCS pairing Hamiltonian is of the form

Ĥ ¼ Xp
k¼1

"kŜ
k
0 �

Xp
i;k¼1

gikŜ
iþŜk�; (293)
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FIG. 3. Low-lying energy levels of some N ¼ 50 isotones. The four parameters of a seniority-conserving interaction between protons in a

g9=2 shell were chosen to fit the energies of the lowest J ¼ 0, 2, 4, and 8 states shown by light (theory) lines for each nucleus. The remaining

energy levels shown by heavy (theory) lines were then predicted for these interactions. From Rosensteel and Rowe, 2003.

5Solutions to the RG equations are described as ‘‘formally exact’’

because the equations can be solved only numerically.
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where Ŝk0 and Ŝk� span the complex extension of a quasispin
algebra SUð2Þk and k indexes the levels of the system. Such a
Hamiltonian has a dynamical group

G2 ¼ SUð2Þ1 � SUð2Þ2 � � � � � SUð2Þp: (294)

With the quasispin operators Ŝk� interpreted as creation and
annihilation operators for a pair of particles in level k, as
defined by Eq. (270), Ĥ conserves the total particle number
of the system. Thus, the Uð1Þ � G2 subgroup, with infini-

tesimal generator Ŝ0 ¼
P

kŜ
k
0, is a symmetry group of Ĥ.

However, the Hamiltonian Ĥ has a much larger symmetry
group

G1 ¼ USpð2j1 þ 1Þ � � � � � USpð2jp þ 1Þ; (295)

where jk is the angular momentum of a particle in level k
that is dual to the dynamical group G2. Thus, because the
groups U(1) and UðPkð2jk þ 1ÞÞ form a dual pair, it is
determined that a BCS Hamiltonian is diagonal in a basis
that simultaneously reduces the subgroup chains G2 � Uð1Þ
and UðPkð2jk þ 1ÞÞ � G1.

These observations indicate ways to extend single-j sub-
shell coupling schemes to multi-j subshell schemes. For weak
pairing correlations, i.e., when the off-diagonal elements gik
are negligible for i � k, the eigenstates of Ĥ diagonalize the
dynamical subgroup chain

G2 � Uð1Þ1 � � � � � Uð1Þp � Uð1Þ: (296)

The dual chain that defines a corresponding shell-model
coupling scheme is then the subgroup chain

U

�X
k

ð2jk þ 1Þ
�
� Y

k

Uð2jk þ 1Þ � G1: (297)

This is a standard shell-model coupling scheme. However, in
the strong-coupling limit when "k and gik take i- and
k-independent values, the eigenstates of Ĥ diagonalize the
dynamical subgroup chain

G2 � SUð2Þ � Uð1Þ; (298)

where SUð2Þ � G2 is the subgroup with infinitesimal gener-

ators Ŝi ¼
P

kŜ
k
i . They also simultaneously diagonalize the

dual subgroup chain of the shell-model coupling scheme
defined by

U

�X
k

ð2jk þ 1Þ
�
� USp

�X
k

ð2jk þ 1Þ
�
� G1: (299)

Other possible coupling schemes are available when more
than two j subshells are involved in which some subshells are
coupled strongly and others weakly. These several coupling
schemes enable the selection of basis states for shell-model
calculations that can be effectively truncated to include the
dominant states coupled by an interaction with strong pairing
components.

D. Isospin-invariant pair coupling in nuclei

In this section, we extend the duality relationships relevant
for a valence shell of neutrons, protons, or electrons to a
system of neutrons and protons. We show that such a system,
with w ¼ 2 and N ¼ ð2jþ 1Þ, provides a USpð4Þ �
USpð2jþ 1Þ duality on a nuclear Fock space Fð2ð2jþ1ÞÞ. The
group USpð4Þ ffi SOð5Þ is a straightforward extension of the
USpð2Þ ffi SUð2Þ quasispin group for pair coupling of a
single-nucleon species to a dynamical group for an isospin-
invariant neutron-proton pairing model. The duality of its
representations with those of USpð2jþ 1Þ provides a
practical interpretation and useful relationships for the
application of the standard shell model in the jj- and
isospin-coupled basis of Flowers (1952a, 1952b, 1952c) and
French (1960).

To track the symmetries of a system of neutrons and
protons, it is appropriate to regard neutrons and protons as
different states of nucleons of isospin T ¼ 1=2, labeled by
T0 ¼ �1=2, respectively. A basis for the Fock space Fð2ð2jþ1ÞÞ
is then one that reduces the subgroup chain

Uð2ð2jþ 1ÞÞ � Uð2jþ 1Þ � Uð2ÞT � USpð2jþ 1Þ � SUð2ÞT � SUð2ÞJ
n � ~� � TT0 JM

(300)

with quantum numbers defined by the representation
labels shown. The group Uð2ÞT in this chain is the group
of unitary transformations in two-dimensional isospin
space.

From the paired subgroups of Oð4ð2jþ 1ÞÞ with dual rep-
resentations on the Fock space Fð2ð2jþ1ÞÞ shown in Eq. (257), it
is now seen that USpð2jþ 1Þ and the USpð4Þ ’ SOð5Þ qua-
sispin group have dual representations as do Uð2jþ 1Þ and
the isospin subgroup Uð2ÞT � SOð5Þ. It follows that the basis
states of the coupling scheme (300) are identical to basis
states of the Fock space Fð2ð2jþ1ÞÞ that reduce the dual sub-
group chain

SOð5Þ � SUð2ÞJ � Uð2ÞT � SUð2ÞT � Uð1Þ
ðv; tÞ JM ~� TT0 n

;

(301)

where v and t are related, as shown in the following, to the
elements of the partition �.

1. The Lie algebras of SO(5) and USpð2jþ 1Þ and their irreps

The so(5) Lie algebra is the natural extension of suð2Þqs to
include all J ¼ 0 pair-creation operators that become pos-
sible when there are two kinds of fermions: neutrons and
protons. Thus, its complex extension is spanned by the
angular-momentum J ¼ 0 operators

Â�� ¼
X
m>0

ðay�may� �m þ ay�may� �mÞ; (302)

B̂�� ¼
X
m>0

ða� �ma�m þ a� �ma�mÞ; (303)

Ĉ�� ¼
X
m>0

ðay�ma�m � a� �may� �mÞ

¼ X
m

ay�ma�m � 1

2
ð2jþ 1Þ��;�; (304)
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where

ay� �m�ð�1Þjþmay�;�m; a� �m�ð�1Þjþma�;�m;

�;�¼1;2; m¼�j; . . . ;þj:
(305)

The uð2ÞT � soð5Þ subalgebra is spanned by the Hermitian

linear combinations of the fĈ��g operators.
The operators of the uspð2jþ 1Þ Lie algebra are now

realized as the subset of uð2jþ 1Þ operators that commute
with these so(5) operators. They are simply obtained by
adding an infinitesimal generator of a neutron realization
of uspð2jþ 1Þ to the corresponding infinitesimal generator
of a proton realization. For example, a basis for the Cartan
subalgebra of a combined neutron-proton realization of
uspð2jþ 1Þ is given by

Ĉmm ¼ X
�

ðay�ma�m � ay� �ma
� �mÞ; m > 0: (306)

A dual pair of SO(5) and USpð2jþ 1Þ irreps on the Fock
space Fð2ð2jþ1ÞÞ, labeled by a USpð2jþ 1Þ highest weight �, is
defined by a state

j�i ¼ ay1;ja
y
1;j�1 � � � ay1;jþ1�~�1

j0i; (307)

when ~�2 ¼ 0, and by

j�i ¼ ðay1;jay1;j�1 � � �ay1;jþ1�~�1
Þðay2;jay2;j�1 � � �ay2;jþ1�~�2

Þj0i;
(308)

when ~�2 � 1, where ~� is the two-row partition conjugate to
�. Such a state is simultaneously of lowest SO(5) weight and
highest USpð2jþ 1Þ weight. Its SO(5) lowest weight is given
by the nonzero expectation values of the uð2ÞT operators

h�jĈ��j�i ¼ h�jX
m

ay�ma�m � 1

2
ð2jþ 1Þj�i

¼ ~�� � 1

2
ð2jþ 1Þ; for � ¼ 1; 2; (309)

and its USpð2jþ 1Þ highest weight is given by the expecta-
tion values of

�k ¼ h�jĈjþ1�k;jþ1�kj�i; k ¼ 1; . . . ; jþ 1
2: (310)

Thus, it is ascertained that

�k ¼
8><
>:
2 for 1 
 k 
 ~�2;

1 for ~�2 < k 
 ~�1;

0 for k > ~�1:

(311)

The equivalent seniority and reduced isospin labels v ¼
~�1 þ ~�2 and t ¼ 1

2 ð~�1 � ~�2Þ are understood physically as the

particle number and isospin of the extremal state j�i.

2. Tabulation of basis states in jj coupling

The quantum numbers of basis states defined by the sub-
group chain (300) signify irreps of the corresponding groups
in the chains as follows. The n-nucleon HilbertHðnÞ carries an
irrep f1ng of Uð2ð2jþ 1ÞÞ. According to Theorem 3, it also
carries a direct sum of irreps of the direct product group
Uð2jþ 1Þ � Uð2ÞT given by the branching rules

Uð2ð2jþ1ÞÞ #Uð2jþ1Þ�Uð2ÞT : f1ng #
M
�‘n

f�g�f~�g;

(312)

with � and ~� restricted to partitions having no more than
2jþ 1 and 2 parts, respectively. The range of values of the
SUð2ÞT isospin quantum number T is given by the branch-
ing rule

Uð2ÞT # SUð2ÞT : f~�g # T ¼ 1
2ð~�1 � ~�2Þ: (313)

The Uð2jþ 1Þ irreps and isospins for j ¼ 3=2 and n 
 4
are shown, for example, in the first column of Table III.

To determine the USpð2jþ 1Þ irreps h�i in a given
Uð2jþ 1Þ irrep f�g, one needs the coefficients in the

Uð2jþ 1Þ # USpð2jþ 1Þ : f�g # M
�

F��h�i (314)

branching rule. These can be obtained from the corre-
sponding SOð5Þ ’ USpð4Þ # Uð2ÞT branching rules or,
more simply, from an algorithm given by King (1975)
[and summarized by Rowe and Wood (2010)] which
then determines the SOð5Þ # Uð2ÞT branching rules. The
values of v and t for each USpð2jþ 1Þ irrep equal the
values of n and T, respectively, for the lowest value of n
for which the USpð2jþ 1Þ irrep h�i occurs. This irrep
contains an SOð5Þ � USpð2jþ 1Þ extremal state and is
noted in the last column of Table III by an asterisk.

The SUð2ÞJ irreps contained in an USpð2jþ 1Þ irrep can
be obtained recursively from the Uð2jþ 1Þ # USpð2jþ 1Þ
and Uð2jþ 1Þ # Uð2ÞJ branching rules, where the latter is
given by the plethysm

Uð2jþ 1Þ # Uð2ÞJ : f1g # f2jg (315)

: f�g # f2jg sp f�g: (316)

TABLE III. Irreps of the subgroups in the chains (300) and (301)
to which the states of nucleon number n ¼ 1; . . . ; 4 and j ¼ 3=2
belong. For n ¼ 5; . . . ; 8, the states are mirror images of the n ¼
4; . . . ; 1 states, as can be seen in Fig. 4. Lowest-nmultiplets of states
of an SOð5Þ � USpð4Þ irrep are denoted by an asterisk in the last
column. These are the lowest-n multiplets of states among sets of
states linked by dotted lines in Fig. 4. These lowest-n multiplets of
states contain a lowest-weight state for an SOð5Þ � USpð4Þ irrep.
n f�g T h�i v t J l.wt.

0 f00g 0 h00i 0 0 0 *

1 f10g 1
2 h10i 1 1

2
3
2 *

2 f20g 0 h20i 2 0 1, 3 *
2 f12g 1 h00i 0 0 0
2 f12g 1 h11i 2 1 2 *

3 f21g 1
2 h10i 1 1

2
3
2

3 f21g 1
2 h21i 3 1

2
1
2 ,

5
2 ,

7
2 *

3 f13g 3
2 h10i 1 1

2
3
2

4 f22g 0 h00i 0 0 0
4 f22g 0 h11i 2 1 2
4 f22g 0 h22i 4 0 2, 4 *
4 f212g 1 h20i 2 0 1, 3
4 f212g 1 h11i 2 1 2
4 f14g 2 h00i 0 0 0
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Suppose, for example, that we have already determined the
USpð2jþ 1Þ # SUð2ÞJ branching rules for the USpð2jþ 1Þ
irreps that occur for n < 4 and we now wish to determine the
rules for n ¼ 4. The Uð2jþ 1Þ # USpð2jþ 1Þ branching rule
for the f22g irrep is given by

f22g # h22i � h12i � h0i (317)

and by the plethysm of Eq. (316), we derive

Uð2jþ 1Þ # SUð2ÞJ : f22g # ð0Þ � 2ð2Þ � ð4Þ: (318)

Thus, knowing the branching rules for n ¼ 0 and 2

USpð2jþ 1Þ # SUð2ÞJ : h12i # ð2Þ; (319)

: h0i # ð0Þ; (320)

it follows that

USpð2jþ 1Þ # SUð2ÞJ : h22i # ð2Þ � ð4Þ: (321)

Note that for any n only one new USpð2jþ 1Þ irrep ever
occurs in any given Uð2jþ 1Þ irrep.

By the above means, we obtain a complete classification of
shell-model states in any jn configuration. For example, each
USpð2jþ 1Þ irrep h�i, listed for j ¼ 3=2 in Table III, is
shown as a short line in Fig. 4 with equivalent irreps linked
by dotted lines. In combination, the states of each set of
equivalent USpð2jþ1Þ irreps span an SOð5Þ � USpð2jþ 1Þ
irrep. The seniority v, reduced isospin t, and angular-
momentum values are shown for these USpð2jþ 1Þ irreps
and the extremal state is given explicitly for each SOð5Þ �
USpð2jþ 1Þ irrep. The weight diagrams for the SO(5) irreps
defined by the horizontal rows of Fig. 4 are shown in Fig. 5.

3. A simple SO(5) model

The subgroup chain (301) diagonalizes a simple isospin-
invariant pairing model with Hamiltonian

Ĥ ¼ "n̂� 

X
��

A��B��; (322)

where 
 is a coupling constant; Ĥ has eigenvalues (Rowe and
Wood, 2010) given in terms of the quantum numbers of the
chain (301) by

EvtnJT ¼ "n� 
½tðtþ 1Þ � TðT þ 1Þ þ 3
2ðn� vÞ

� 1
4ðn� vÞðnþ v� 4j� 2Þ�: (323)

This model may provide an acceptable description of some
doubly open-shell nuclei in which seniority and isospin are
expected to be approximately conserved. However, its pri-
mary value is to give a physical interpretation of the kind of
Hamiltonian that is diagonalized by the classification of
nuclear shell-model states in the jj-coupling scheme
(Flowers, 1952a, 1952b, 1952c; French, 1960) defined by
the subgroup chain (300). This coupling scheme is most
commonly used in the nuclear shell model because it is the
simplest and is one for which fractional parentage coefficients
are readily available. Moreover, the SO(5) model gives a
direct indication of the kinds of shell-model configurations
needed to describe pairing correlations in doubly open-shell
nuclei, which is important to know about even when these
correlations are not dominant.

As shown for the SU(2) quasispin pairing model in
Sec. VIII.C, the above SO(5) model has a multishell exten-
sion and corresponding shell-model coupling schemes.
Interest in such extensions is stimulated by the recent obser-
vation that some such SO(5) models are integrable (Links
et al., 2002; Dukelsky et al., 2006).

E. Pairing in LST coupling

In LST coupling, a many-nucleon wave function is a
combination of spatial, spin, and isospin wave functions.
There is more than one LST coupling scheme, as discussed
in the following section. Here we consider the coupling
scheme for nucleons occupying a single subshell of fixed
orbital angular momentum l.

The primary objective is to construct wave functions that
are totally antisymmetric and at the same time have good total
angular momentum and isospin. This is achieved by use of

FIG. 4. The spectrum of USpð2jþ 1Þ irreps, shown as lines, for j ¼ 3=2. Each USpð2jþ 1Þ irrep, labeled by h�i, contains states with the

angular-momentum values J as shown on the right side of the figure. These irreps are also labeled by the SO(5) quantum numbers: seniority

v, and reduced isospin t. The basis states for each SO(5) irrep are labeled by isospin T (shown above each level), and nucleon number n. Note

that all the USp(4) irreps corresponding to lines at the same horizontal level and connected by dotted lines share common values of v and t,
and common distributions of J values. They combine to span an SOð5Þ � USpð2jþ 1Þ irrep with j ¼ 3=2. SO(5) lowest-weight states lie in
the leftmost USp(4) irreps (shown as thick lines). Thus, it is shown that the many-nucleon states of a j ¼ 3=2 shell fall into six distinct

SOð5Þ � USpð2jþ 1Þ irreps.
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Wigner’s supermultiplet theory in concert with duality rela-
tionships as follows.

For nucleons of spin s ¼ 1
2 and isospin t ¼ 1

2 , so that

ð2sþ1Þð2tþ1Þ¼4, the space of single-particle wave
functions of orbital angular momentum l is of dimension
4ð2lþ 1Þ. Thus, whereas in jj coupling the wave functions

for n nucleons of angular momentum j transform according

to an irrep f1ng of the unitary group Uð2ð2jþ 1ÞÞ, the

LST-coupled wave functions that we now consider transform

according to an irrep f1ng of the unitary group Uð4ð2lþ 1ÞÞ.
A desirable basis for the corresponding Fock space Fð4ð2lþ1ÞÞ
is one that reduces the subgroup chain

Uð4ð2lþ 1ÞÞ � Uð2lþ 1Þ � Uð4Þ � Oð2lþ 1Þ � SUð2ÞS � SUð2ÞT � Oð3ÞL
n � ~� � S T 	LM

; (324)

where U(4) is Wigner’s supermultiplet group (Wigner,
1937; Hecht and Pang, 1969), i.e., the group of unitary
transformations of the spin-isospin states of a nucleon.
This subgroup chain was proposed for the definition
of an LST coupling scheme by Bayman (1960). The
orbital L and spin S angular momenta can now be
coupled to good total angular momentum J in the
knowledge that the antisymmetric requirement is looked
after.

The dynamical content of this coupling scheme can be
understood from a consideration of the dual subgroup chain.
From the paired subgroups of Oð8ð2lþ 1ÞÞ with dual repre-
sentations on the Fock space Fð4ð2lþ1ÞÞ shown for w ¼ 4 in
Eq. (258), it is seen thatOð2lþ1Þ and anSO(8) group have dual
representations and thatUð2lþ 1Þ and theU(4) supermultiplet
group have dual representations. It follows that the basis states
of the coupling scheme (324) are identical to basis states for the
Fock space Fð4ð2lþ1ÞÞ that reduce the subgroup chain

Oð3ÞL � SOð8Þ � Uð4Þ � Uð1Þ � SUð2ÞS � SUð2ÞT
	LM 1

2dð~�Þ 1
2dð~�Þ n S T

; (325)

where 1
2dð~�Þ and 1

2dð~�Þ, with d ¼ 2lþ 1 label highest
weights for SO(8) and U(4) irreps, respectively, as de-
scribed below.

As mentioned in Sec. II, the discovery that the two sub-
group chains (324) and (325) define common basis states
followed the formulation of an SO(8) pairing model by
Flowers and Szpikowski (1964) who subsequently learned
of Bayman’s LST coupling scheme.

1. The Lie algebras of SO(8) and Oð2lþ 1Þ and their irreps

Let fay�m;� ¼ 1; . . . ; 4;m ¼ �l; . . . ;þlg denote nucleon

creation operators, where � indexes the spin-isospin state of a

nucleon and m denotes the projection of its orbital angular

momentum l onto the axis of quantization. The group

Oð2lþ 1Þ is then the subgroup of Uð2lþ 1Þ transformations

that leave invariant the L ¼ 0 pair-creation operators

FIG. 5. Weight diagrams for the states of SOð5Þ ’ USpð4Þ irreps whose lowest-weight states have no more than four particles. States are

characterized by dots and labeled by their Uð2ÞT � Uð1Þ quantum numbers, i.e., the nucleon number n, isospin T, and component of isospin

T0. Weights with a multiplicity of two are denoted by dots with circles around them. For example, the n ¼ 4 states of the h00i irrep contain

two states of n ¼ 4 and T0 ¼ 0; one has isospin T ¼ 0 and the other T ¼ 2.
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Â��¼
X
m

ð�1Þlþmay�may�;�m¼�Â��; �;�¼1; . . . ;4:

(326)

In parallel with all the coupling schemes considered to this
point, these L ¼ 0 pair-creation operators and the corre-

sponding pair-annihilation operators B̂��, given by their
Hermitian adjoints, generate the Lie algebra of a group that
commutes with the group Oð2lþ 1Þ. They are in fact the
raising and lowering operators of an so(8) Lie algebra, the
complex extension of which has a basis given by the L ¼ 0
angular-momentum-coupled operators

Â�� ¼
X
m

ay�may� �m; (327)

B̂�� ¼
X
m

a� �ma�m; (328)

Ĉ�� ¼
X
m

ay�ma�m � 1

2
ð2lþ 1Þ��;�; (329)

where

ay� �m¼ð�1Þlþmay�;�m; a� �m¼ð�1Þlþma�;�m: (330)

The Lie algebra soð2lþ 1Þ of the group Oð2lþ 1Þ is the
subalgebra of uð2lþ 1Þ elements that commute with the Â��

operators of Eq. (327) and, hence, with all operators of the
so(8) Lie algebra. In parallel with previous examples [see
Eq. (277)], the Cartan subalgebra of soð2lþ 1Þ is spanned
by the subset of uð2lþ 1Þ operators,

Ĉmm¼X
�

ðay�ma�m�ay� �ma
� �mÞ; m¼1; . . . ;l: (331)

If an soð2lþ 1Þ irrep has highest weight � ¼ ð�1; . . . ; �lÞ,
where �m is the eigenvalue of the Cartan operator Ĉmm on
the highest-weight state for the irrep, the irrep of soð2lþ 1Þ
and of its Lie group SOð2lþ 1Þ is denoted by [�]. In
addition to elements of its SOð2lþ 1Þ subgroup, the group
Oð2lþ 1Þ also contains reflections and inversions whose
matrices have negative determinants. Thus, if we denote
by ‘‘det’’ the one-dimensional irrep of Oð2lþ 1Þ, in which
an element g 2 Oð2lþ 1Þ is simply mapped to detðgÞ, then
the irreps of Oð2lþ 1Þ occur in associated pairs, [�] and
½���, that are related by

½��� ¼ det	½��: (332)

In the more convenient notation of Littlewood (1950), if an
irrep of OðNÞ is denoted by [�], the associated irrep ½��� is
denoted by the partition ½�0�, whose conjugate ~�0 is defined
by

~�0
1 ¼ N � ~�1; ~�0

i ¼ ~�i; for i � 1: (333)

Note that in replacing ½��� by ½�0� in this way, the length
lð�0Þ ¼ ~�0

1 of the partition �0 will generally exceed N=2,
which is the maximum length of an SOðNÞ highest weight.
Thus, in the Littlewood convention, the restriction ~�i 

N=2 on an OðNÞ weight is extended to allow all weights
for which

~�0
1 þ ~�0

2 
 N: (334)

The branching rules for the restriction of the irreps of UðNÞ
to OðNÞ, compatible with the Littlewood convention, have
been given, for example, by King (1975).

A dual pair of SO(8) and Oð2lþ 1Þ irreps on the Fock
space F½4ð2lþ1Þ�, labeled by an Oð2lþ 1Þ highest weight �, is
defined generically by a state

j�i ¼ ðay1;lay1;l�1 � � � ay1;lþ1�~�1
Þ

� � � ðay4;lay4;l�1 � � � ay4;lþ1�~�4
Þj0i; (335)

where ~� is the four-row partition conjugate to �. Such a state
is of highest weight for an Oð2lþ 1Þ irrep, denoted in the
Littlewood convention by [�], and of lowest weight for an
SO(8) irrep of weight given by

h�jĈ��j�i ¼ ~�� � 1
2ð2lþ 1Þ: (336)

Thus, if we denote the SO(8) irrep with this lowest weight
by [ 12 dð~�Þ] with d ¼ 2lþ 1, it is seen that each irrep of

Oð2lþ 1Þ � SOð8Þ on a subspace of F½4ð2lþ1Þ� is defined by
a unique partition �.

2. Tabulation of basis states in LST coupling

The quantum numbers of basis states defined by the sub-
group chain (325) signify irreps of the corresponding groups
in the chain as follows. For a given nucleon number n, the
labels � and ~� of the Uð2lþ 1Þ � Uð4Þ irreps are given by the
branching rules

U½4ð2lþ 1Þ� # Uð2lþ 1Þ � Uð4Þ: f1ng # M
�‘n

f�g � f~�g;

(337)

with � and ~� restricted to partitions having no more than
2lþ 1 and 4 parts, respectively.

To determine the Oð2lþ 1Þ irreps [�] in a given Uð2lþ 1Þ
irrep f�g, one needs the coefficients in the known

Uð2lþ 1Þ # Oð2lþ 1Þ : f�g # M
�

F0
��½�� (338)

branching rules (King, 1975; Rowe and Wood, 2010).
Because of the duality relationships, the same coefficients
appear in the

SOð8Þ # Uð4Þ : h12dð~�Þi #
M
�

F0
��f12dð~�Þg (339)

branching rules with d ¼ 2lþ 1.
The Uð4Þ # SUð2ÞS � SUð2ÞT branching rules are deter-

mined sequentially from the known branching rules for

Uð4Þ # Oð4Þ # SOð4Þ ’ SUð2Þ � SUð2Þ: (340)

For example, if an SUð2Þ � SUð2Þ irrep is denoted by ðS; TÞ,
the Oð4Þ # SUð2Þ � SUð2Þ reduction is given by

½~�1
~�2� #

�~�1 þ ~�2

2
;
~�1 � ~�2

2

�
�
�~�1 � ~�2

2
;
~�1 þ ~�2

2

�

(341)

for ~�2 � 0 and

½~�1; 0� # ð12 ~�1;
1
2
~�1Þ; (342)

the reduction for a ½~�1
~�2�� irrep is identical, e.g.,
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Uð4Þ # Oð4Þ : f312g # ½3�� � ½21� � ½1��; (343)

and

Oð4Þ # SUð2Þ � SUð2Þ : ½3� # ð32; 32Þ
: ½21� # ð32 ; 12Þ � ð12; 32Þ
: ½1� # ð12; 12Þ (344)

give

Uð4Þ # SUð2Þ � SUð2Þ :
f312g # ð32; 32Þ � ð32; 12Þ � ð12; 32Þ � ð12; 12Þ: (345)

As an illustration, the classification of states for l ¼ 1 by
the quantum numbers defined for the subgroup chains (324)
and (325) is given in Table IV. From this table, the set of U(4)
irreps that comprise each SO(8) irrep is determined by listing

all the U(4) irreps f ~�g that occur in combination with a given
Oð2lþ 1Þ irrep [labeled for Oð2lþ 1Þ ¼ Oð3Þ by L	] as
shown in Table V.

3. A simple SO(8) model

The dynamical subgroup chain (325) enables the construc-
tion of simply solvable spin- and isospin-invariant pairing
models. Consider, for example, the Hamiltonian

Ĥ ¼ "n̂� 1

4



X2
�;�¼1

Â��B̂��; (346)

where Â�� and B̂�� are, respectively, so(8) raising and
lowering operators. Ĥ could also include terms in the
Casimir invariant of the SU(2) subalgebras of U(4). Such a
Hamiltonian can be expressed in terms of Casimir operators
of SO(8) and those of its subgroups. Its spectrum is then

TABLE IV. Spectrum of nucleon states in the l ¼ 1 shell classified by nucleon number n, for n ¼
0; . . . ; 6, Uð2lþ 1Þ ¼ Uð3Þ symmetry f�g, orbital angular momentum L, parity 	 ¼ ð�1Þn, U(4)
symmetry f~�g, spin S, and isospin T.

n f�g L 	 f~�g (S, T)

0 f0g 0 þ f0g (0, 0)

1 f1g 1 � f1g ð12 ; 12Þ
2 f2g 0, 2 þ f12g (1, 0), (0, 1)

f12g 1 þ f2g (0, 0), (1, 1)

3 f3g 1, 3 � f13g ð12 ; 12Þ
f21g 1, 2 � f21g ð12 ; 12Þ, ð12 ; 32Þ, ð32 ; 12Þ
f13g 0 � f3g ð12 ; 12Þ, ð32 ; 32Þ

4 f4g 0, 2, 4 þ f14g (0, 0)
f31g 1, 2, 3 þ f212g (0, 1), (1, 0), (1, 1)
f22g 0, 2 þ f22g (0, 0), (0, 2), (2, 0), (1, 1)
f212g 1 þ f31g (0, 1), (1, 0), (1, 1), (1, 2), (2, 1)

5 f41g 1, 2, 3, 4 � f213g ð12 ; 12Þ
f32g 1, 2, 3 � f221g ð12 ; 12Þ, ð12 ; 32Þ, ð32 ; 12Þ
f312g 0, 2 � f312g ð12 ; 12Þ, ð12 ; 32Þ, ð32 ; 12Þ, ð32 ; 32Þ
f221g 1 � f32g ð12 ; 12Þ, ð12 ; 32Þ, ð32 ; 12Þ, ð12 ; 52Þ, ð52 ; 12Þ, ð32 ; 32Þ

6 f42g 0, 22, 3, 4 þ f2212g (1, 0), (0, 1)
f412g 1, 3 þ f313g (0, 0), (1, 1)
f33g 1, 3 þ f23g (0, 0), (1, 1)
f321g 1, 2 þ f321g (0, 1), (1, 0), (0, 2), (2, 0), 2(1, 1), (1, 2), (2, 1)
f23g 0 þ f32g (0, 1), (1, 0), (0, 3), (3, 0), (1, 2), (2, 1)

TABLE V. The partitions f~�g defining the Uð4Þ � SOð8Þ subrepresentations f32 ð~�Þg contained in the SOð8Þ � Oð2lþ 1Þ irreps for l ¼ 1 and
even values of n. The Oð2lþ 1Þ ¼ Oð3ÞL irreps are labeled by [�] and equivalently by L	. SO(8) irreps are labeled by their highest-weight
U(4) subirreps, ½32 ð~�Þ�highest.
n f~�g f~�g f~�g f~�g f~�g
0 {0}
2 f12g f2g f12g
4 f14g, f22g f212g, f31g f14g, f212g, f22g f212g f14g
6 f2212g, f32g f313g, f23g, f321g 2f2212g, f321g f2212g, f313g, f23g f2212g
8 f24g, f3212g f3221g, f322g f24g, f3221g, f3212g f3221g f24g
10 f3222g f331g f3222g
12 f34g
½�� [0] ½12� � ½1�� [2] ½31� � ½3�� [4]

L	 0þ 1þ 2þ 3þ 4þ

½32 ð~�Þ�highest ½32 ; 32 ; 32 ; 32� ½32 ; 32 ; 12 ;� 1
2� ½32 ; 32 ; 12 ; 12� ½32 ; 12 ; 12 ;� 1

2� ½12 ; 12 ; 12 ; 12�
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immediately determined. As shown by Rowe and Carvalho
(2007) [see also Rowe and Wood (2010)], the eigenvalues of
the Hamiltonian (346) are given explicitly in terms of their
SO(8) and U(4) labels by

E�� ¼ "n� 1

4


X
�

��
~�� � 1

2
d

��
~�� � 1

2
dþ 2� 2�

�

�
�
~�� � 1

2
d

��
~�� � 1

2
dþ 2� 2�

�	
: (347)

A primary value of the SO(8) pair-coupling model is to
give a physical interpretation of the kind of Hamiltonian that
is diagonalized by the classification of nuclear shell-model
states in the LS-coupling scheme, defined by the subgroup
chain (324). In parallel with the SU(2) quasispin and SO(5)
pairing models, the SO(8) model has an extension to a multi-
shell pairing model together with corresponding shell-model
coupling schemes. Such extensions are important for several
reasons: one reason is that some such models are integrable
[see Lerma et al. (2007)]; another, as we now discuss, is that
they raise the possibility of exploring the competition be-
tween pairing and deformation correlations in nuclei.

F. The SU(3) and Spð3;RÞ LST-coupling models

In addition to the Uð2lþ 1Þ � Uð4Þ � Oð2lþ 1Þ coupling
scheme, two other LST-coupling schemes are of special
interest. The first is based on the subgroup chain

UðNÞ � Uð4Þ � SUð3Þ � Oð4Þ
� SOð3Þ � SUð2ÞS � SUð2ÞT; (348)

where N ¼ P
lð2lþ 1Þ is a sum over the l values that occur in

a single harmonic-oscillator shell, e.g., l ¼ 0 and 2 for the
(2s1d) shell and l ¼ 1 and 3 for the (2p1f) shell. The second
is based on the subgroup chain

Spð3;RÞ � Uð4Þ � SUð3Þ: (349)

These coupling schemes are important for the microscopic
description of nuclear collective states. The latter was dis-
cussed in Sec. VII.E.3. The former coupling scheme corre-
sponds to Elliott’s SU(3) model of rotational states in light
nuclei.

It is now apparent that the two coupling schemes, given by
Eq. (348) and by

UðNÞ � Uð4Þ � OðNÞ � Oð4Þ
� SOð3Þ � SUð2ÞS � SUð2ÞT; (350)

define shell-model basis states that diagonalize Hamiltonians
for nuclei with deformation and pairing correlations, respec-
tively. Thus, they provide useful bases for a study of the
competition between these correlations.

A preliminary study of this competition (Rosensteel and
Rowe, 2007) determined the spectra of (2s1d)-shell nuclei,
for which N ¼ 6, for a Hamiltonian

Ĥ ¼ ��Ĉsuð3Þ � ð1� �ÞĈsoð6Þ þ �Ĉsoð3Þ; (351)

where Ĉsuð3Þ, Ĉsoð6Þ, and Ĉsoð3Þ are Casimir operators for the

respective subalgebras of u(6) and 0 
 � 
 1. A remarkable

result was found; for � & 0:4 the spectrum of low-energy
states and their properties were characteristic of an O(6)
phase and for � * 0:6 they became characteristic of an
SU(3) phase. Such behavior has been seen in numerous
similar studies and has been termed quasidynamical
symmetry (see Sec. IX.C).

IX. OTHER DEVELOPMENTS IN THE APPLICATION OF

SYMMETRY METHODS IN PHYSICS

From among the many developments in symmetry meth-
ods of importance in physics, we mention a few of particular
relevance to the topic of this review.

A. Boson mappings

In low-density situations, systems of even fermion number
often behave like bosons. For example, alpha particles are
meaningfully approximated as bosons in the interpretation of
superfluidity and Bose-Enstein condensation (Griffin, Stoke,
and Stringari, 1995; Griffin, Nikuni, and Zaremba, 2009).
Such quasiboson approximations to algebraic models can be
obtained by group contraction methods (İnönü and Wigner,
1953) They are widely used in many-body theory (Sawada,
1957); early approaches in nuclear physics were described,
for example, by Rowe (1970) and Ring and Schuck (1980).

Thus, it is natural to seek corrections to these approxima-
tions in terms of exact boson mappings as given by the
Holstein and Primakoff (1940) representation of su(2)

Ĵ0 ¼ �jþ cyc; Ĵþ ¼ cy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j� cycÞ

q
;

Ĵ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j� cycÞ

q
c;

(352)

for an arbitrary spin j, where c and cy satisfy the boson
commutation relations ½c; cy� ¼ 1. A comprehensive review
of the many approaches to boson realizations of Lie algebras,
initiated by Belyaev and Zelevinsky (1962), was given by
Klein and Marshalek (1991).

Boson realizations are synonymous with coherent-state
representations. This is apparent from the Bargmann repre-
sentation of the Heisenberg-Weyl algebra (Bargmann, 1961)
in which boson operators are represented in terms of a com-
plex variable z by

cy � z; c � d=dz: (353)

Coherent-state representations are defined for many Lie
algebras. For example, according to Perelomov (1972, 1986),
SU(2) coherent states are defined by jzi ¼ expðz�ĴþÞjj;�ji,
where z is a complex variable, and a coherent-state wave
function for a state jc i 2 H is defined as the overlap function

c ðzÞ ¼ hzjc i ¼ hj;�jjezĴ�jc i: (354)

A component of SU(2) angular momentum Jk then has
coherent-state representation defined by

�ðJkÞc ðzÞ ¼ hj;�jjezĴ� Ĵkjc i
¼ hj;�jjðezĴ� Ĵke�zĴ�ÞezĴ�jc i: (355)

Thus, an expansion of ezĴ� Ĵke
�zĴ� in terms of Ĵ0 and Ĵ�, and

the identities
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hj;�jjĴ0ezĴ�jc i ¼ �jc ðzÞ; (356)

hj;�jjĴ�ezĴ�jc i ¼ @

@z
c ðzÞ; (357)

hj;�jjĴþezĴ�jc i ¼ 0; (358)

leads to the su(2) representation

�ðJ0Þ ¼ �jþ zd=dz; �ðJ�Þ ¼ d=dz;

�ðJþÞ ¼ zð2j� d=dzÞ: (359)

This representation is now transformed into the Bargmann
form of the Holstein-Primakoff representation

�ðJ0Þ ¼ �jþ zd=dz; �ðJ�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j� d=dzÞ

q
d=dz;

�ðJþÞ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j� d=dzÞ

q
;

(360)

by a similarity transformation.
More generally, if an irrep of a Lie algebra on a Hilbert

space H has a lowest weight that is uniquely defined for the
vacuum of a commuting set of lowering operators fB̂kg and
the eigenvalues of a set of weight operator fĈig, i.e., by the
formulas

B̂kj0i ¼ 0; Ĉij0i ¼ �ij0i; (361)

then coherent-state wave functions are defined in terms of a
set z ¼ fzkg of complex variables, for each state jc i 2 H, by

c ðzÞ ¼ h0j exp
�X

k

zkB̂k

�
jc i: (362)

Corresponding coherent-state representations of the Lie alge-
bra are defined as illustrated above for su(2). Such coherent-
state representations were used to determine exact boson
mappings for a large variety of semisimple Lie algebras by
Dobaczewski (1981a, 1981b, 1982).

The standard theory of coherent states and coherent-state
representations has been reviewed by Klauder and
Skagerstam (1985) and by Perelomov (1986).

B. More general scalar and vector-coherent-state

representations

Coherent-state methods are extraordinarily powerful. In
their most general forms (Rowe and Repka, 1991), they
provide simple and versatile constructions of Lie group and
Lie algebra representations, which include the methods of
induced representations of Mackey (1968). They also provide
an interface between classical and quantum mechanics
(Bartlett, Rowe, and Repka, 2002a, 2002b; Bartlett and
Rowe, 2003; Gazeau, 2009; Rowe, 2012.

However, the standard construction of coherent-state rep-
resentations is limited to representations with lowest- and/or
highest-weight states that are uniquely defined by sets of
commuting raising operators.

Two extensions overcame this limitation. The first exten-
sion is from scalar to vector-coherent-state (VCS) irreps. Let
fB̂kg be a set of commuting lowering operators for an irrep of

a semisimple Lie algebra g on Hilbert spaceH and let fj�ig be
an orthonormal basis for the subspace H0 � H of states that
are annihilated by the lowering operators. Subject to certain
conditions, a vector-valued coherent-state wave function,

�ðzÞ ¼ X
�

j�ih�j exp
�X

�

zkB̂k

�
jc i; (363)

can then be defined for a state jc i 2 H and a corresponding
construction of a coherent-state representation of an element
X 2 g is defined by

�ðXÞ�ðzÞ ¼ X
�

j�ih�j exp
�X

�

zkB̂k

�
X̂jc i: (364)

The construction is useful if the subset of commuting low-
ering operators is such that the subspace H0 carries a finite-
dimensional unitary irrep of a subalgebra g0 � g.

Such VCS irreps were introduced (Rowe, 1984; Rowe,
Rosensteel, and Carr, 1984; Rowe, Rosensteel, and
Gilmore, 1985) for the purpose of calculating matrix ele-
ments of the noncompact symplectic algebra spð3;RÞ in an
SUð3Þ � SOð3Þ basis as needed in the nuclear symplectic
model. A partial coherent-state theory, which went some
way toward solving this problem, was also proposed for
this purpose (Deenen and Quesne, 1984, 1985). The VCS
construction was then applied to calculate the explicit matri-
ces for the irreps of numerous Lie algebras and even some
superalgebras, as reviewed by Hecht (1987). It was also
shown (Rowe and Repka, 1991) that VCS irreps are induced
representations (Mackey, 1968) in which an irrep of g is
induced from an irrep of a subalgebra h � g.

A second extension makes use of other kinds of coherent
states besides those generated by exponentiating lowering (or
raising) operators. It was introduced because a standard
coherent-state irrep of su(3) enables its matrix elements to
be computed in an SU(2) basis whereas, in applications with a
rotationally invariant Hamiltonian, one needs a basis that
reduces the SOð3Þ � SUð3Þ subgroup. However, as shown
by Elliott (1958a, 1958b), the rotated states fj�i ¼
R̂ð�Þj��i;� 2 SOð3Þg, where j��i is a highest-weight state
for a generic su(3) irrep, span the Hilbert space for that irrep.
Moreover, they are generalized coherent states, as defined by
Perelomov (1986). Thus, an arbitrary jc i 2 H has a scalar
coherent-state wave function defined by the overlap function

c ð�Þ ¼ h��jR̂ð�Þjc i: (365)

The corresponding coherent-state irrep of the su(3) Lie alge-
bra is then defined as usual by

�ðXÞc ð�Þ ¼ h��jR̂ð�ÞX̂jc i: (366)

It is interesting to note that, whereas a standard coherent-
state representation gives a boson realization of a ð�; 0Þ irrep
of SU(3) in an SU(2) basis, the new construction leads to a
rotor realization of a generic (��) irrep in an SO(3) basis.
Thus quasiboson and quasirotor approximations are obtained,
respectively, in large � and/or � contraction limits. The latter
extension can be applied with other groups besides SO(3) and
also within the framework of the VCS extension so that there
is now a wealth of possibilities for handling a large variety of
situations.
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C. Quasidynamical symmetry

Although dynamical symmetry is of immense significance,
as illustrated by its many applications mentioned in this
review, it is in fact an idealization that is only achieved to
some level of approximation in realistic situtations. What is
remarkable is the extent to which models based on assumed
dynamical symmetries are successful. Thus, as suggested by
Hess et al. (2002), they should really be regarded as effective
dynamical symmetries. Quasidynamical symmetry was intro-
duced (Rochford and Rowe, 1988) as a mechanism for under-
standing the nature of these effective symmetries.

Quasidynamical symmetry is an approximate realization of
the precise mathematical concept of an embedded represen-
tation (Rowe, Rochford, and Repka, 1988) loosely defined as
follows. LetH be a Hilbert space for a representation T that is
a direct sum of irreps of a Lie algebra g and let H0 � H be a
subspace. If the matrix elements hc jX̂jc 0i of all X̂ ¼ TðXÞ,
with X 2 g, and all jc i and jc 0i in H0 should happen to be
equal to those of a representation of g, we say that this
representation is an embedded representation of g.

Subrepresentations and linear combinations of equivalent
representations are trivial examples of embedded representa-
tions. However, there are nontrivial examples for Lie algebras
with irreps that are scale related such as rotor-model algebras.
Consider, for example, a set of irreps of some Lie algebra g
labeled by f�g with basis states fj�LMig, where L and M are
SO(3) angular-momentum quantum numbers and suppose
that elements fXig of g have matrix elements in this basis
that scale in a manner given by the equation

h�LMjX̂ij�0L0M0i ¼ ��;�0f�i�0
h�0LMjX̂ij�0L

0M0i;
(367)

where f�i�0
is a real proportionality constant. Matrix elements

between states given for each LM by

jLMi ¼ X
�

C�j�LMi; (368)

where C� is an LM-independent set of coefficients, are then
equal to those of an average irrep �� for which

f
��
i�0

¼ X
�

jC�j2f�i�0
: (369)

Only a limited number of Lie algebras have irreps that
scale precisely in this way. However, most algebras of im-
portance in physics have contraction limits with this property
and so admit embedded representations approximately. Thus,
quasidynamical symmetries as approximate embedded repre-
sentations are common and particularly important for the
interpretation of symmetry-related phases of physical sys-
tems and the transitions between them. Several examples
were given by Rowe (2004b). Other applications and per-
spectives have been given by Hess et al. (2002), Yépez-
Martı́nez, Cseh, and Hess (2006), Macek, Dobeš, and
Cejnar (2009), and Bonatsos, McCutchan, and Casten
(2010). A review of quantum phase transitions and the use
of quasidynamical symmetry in understanding them has been
given by Cejnar, Jolie, and Casten (2010).

D. Partial dynamical symmetry

In realistic situations, approximate dynamical symmetries
may only be acceptable for a limited number of states

of a system. In fact, mixed symmetry studies have shown
that one symmetry may be dominant at low energies (in a

quasidynamical symmetry sense) and another at higher
energies (Caprio, Cejnar, and Iachello, 2008). Thus, a theory
of partial dynamical symmetry (which also applies to quasi-

dynamical symmetry) was introduced by Alhassid and
Leviatan (1992). The occurrence of partial symmetry conser-
vation in nuclear models has subsequently been considered

by several authors and interesting examples have been dis-
covered, e.g., by Zamick and colleagues (Escuderos and

Zamick, 2006; Zamick and Isacker, 2008). Such examples
and the development of efficient models of partial dynamical
symmetry have been reviewed recently by Leviatan (2011).

X. DISCUSSION AND SUMMARY

Examples have been given in this review of many results,

of importance in physics and mathematics, that follow from
the duality of various group representations. Examples have
been drawn primarily from applications in nuclear and atomic

spectroscopy. However, many more applications of this ex-
traordinarily powerful concept are known and undoubtedly

more remain to be discovered.
We focused primarily on the subgroup chains of symmetry

groups for sequences of Hamiltonians of increasing complex-
ity which define coupling schemes for many-particle systems.

Subgroup chains define basis states for Hilbert spaces that
diagonalize Hamiltonians such as those given by combina-
tions of the Casimir and other invariants of the groups in the

chain. Moreover, they provide basis states for the description
of more general Hamiltonians of interest. Thus, the study of
such subgroup chains of potential symmetry groups for a

system is an important step in understanding the range of
possible dynamics that the system can exhibit. This approach

was emphasized in the many studies of the interacting boson
model (Iachello and Arima, 1987), where such chains of
groups are said to define the dynamical symmetries of a

model.
A primary motivation for studying dual subgroup chains is

that they reveal associations of many phenomenological
models of nuclear physics with shell-model coupling

schemes. Thus, we showed that for many of the groups in a
subgroup chain that define a coupling scheme, there are
frequently other groups with dual representations on the

same or an enlarged Hilbert space of the system. It then
follows, as explained and illustrated in this review, that if

one group is a dynamical group for a class of Hamiltonians its
dual (if it has one) is a symmetry group for the same class of
Hamiltonians. In this situation, the pair of groups with dual

representations is of considerably greater value than either
group separately. An even more useful situation arises when

each of the several groups of a subgroup chain that defines a
coupling scheme is partnered with a dual group belonging to
another so-called dual subgroup chain. For then, if one sub-

group chain defines a chain of symmetry groups for a se-
quence of Hamiltonians of decreasing symmetry, the dual

752 D. J. Rowe, M. J. Carvalho, and J. Repka: Dual pairing of symmetry and dynamical groups . . .

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



subgroup chain consists of dynamical groups for the same

sequence of Hamiltonians, albeit in reversed order (i.e., in

order of increasing dynamical symmetry). When such dual

chains exist, they augment the tools available for studying the

dynamical content of a system considerably. For example, it

means that combinations of the elements of the Lie algebras

of both a group and its dual will leave the irreps of both of the

groups invariant. This property was used (Rosensteel and

Rowe, 2003), for example, to identify subsets of two-body

interactions that conserve seniority.
The relationship between algebraic models and shell-

model coupling schemes is shown to be invaluable for em-

bedding models, such as pairing models and collective

models, into a more fundamental microscopic theory. The

examples given were chosen to highlight the application of

dual pairs of group and subgroup chain representations in the

construction of simply solvable algebraic models and for

providing useful basis states and coupling schemes for a

general theory. In addition to providing a microscopic inter-

pretation of successful phenomenological models, they also

provide the means to identify the appropriate shell-model

coupling scheme for a microscopic description of phenomena

that have a simple model explanation.
We have given many examples of the use of duality

relationships to infer the properties of one group from those

of another. For example, Schur-Weyl duality relates the

characters of unitary group irreps to irreps of symmetric

groups. This relationship yields the extraordinarily valuable

result that the characters of different UðnÞ groups are given by
a common set of Schur functions which are defined by their

SN symmetries and take the same form, for each � ‘ N,

independent of the number n of variables. Parallel relation-

ships exist between the characters of other dual pairs of group

representations and can be used, for example, to determine

many branching rules from simpler known rules. The branch-

ing rules for the representations of classical Lie groups were

reviewed by King (1975), and many of them are related by

duality relationships. For example, recall in Sec. VII.E that

the duality of the groups in the chain SpðN;RÞ � UðNÞ with
those in the chain OðmÞ � UðmÞ on the space of an

Nm-dimensional harmonic oscillator enables one to calcu-

late the branching rules for the restriction SpðN;RÞ # UðNÞ
from the known UðmÞ # OðmÞ branching rules (Rowe,

Wybourne, and Butler, 1985). This approach was extended

by King and Wybourne (1985) to include branching rules

for Uðp; qÞ and SO�ð2nÞ to their respective UðpÞ � UðqÞ
and UðnÞ subgroups. Such branching rules, which give the

restrictions of the characters of a group to a unitary sub-

group, can be more useful than explicit expressions for the

characters of a noncompact group, such as SpðN;RÞ, whose
unitary irreps are infinite dimensional. This is because one

knows far more about the characters of the unitary and

symmetric groups than about those of other groups. A

review of many branching rules for dual reductive group

and subgroup pairs was given by Howe, Tan, and

Willenbring (2004) in terms of the Littlewood-Richardson

coefficients for the tensor products of symmetric and uni-

tary group characters (cf. Sec. IV.A). Examples are given in

this review of how the tensor products of various groups of

importance in many-particle spectroscopy can be derived as

sums of irreps by methods that result from duality
relationships.

It is known that the Clebsch-Gordan coefficients and more
general Wigner-Racah algebras for one subgroup chain are
related to those for a dual subgroup chain (Hecht, Le Blanc,
and Rowe, 1987; Le Blanc, 1987; Le Blanc and Hecht, 1987).
A prototype of such a relationship was given by Rowe
(2004c) and Rowe and Thiamova (2005) and discussed in
Sec. VII.C.2. The example showed that the transformation of
basis states between a Uð6Þ � Uð5Þ � Oð5Þ coupling scheme
for a six-dimensional harmonic oscillator and a Uð6Þ �
Oð6Þ � Oð5Þ coupling scheme is given simply by SU(1,1)
Clebsch-Gordan coefficients which make the dual trans-
formations from SUð1; 1Þ � SUð1; 1Þ � SUð1; 1Þ � Uð1Þ
coupled states to SUð1; 1Þ � SUð1; 1Þ � Uð1Þ � Uð1Þ �
Uð1Þ coupled states. As observed, in an analysis of the phase
transition from an O(6) to a U(5) coupling scheme with a
change of a parameter in the interacting boson model (Rowe,
2004c), the availability of such transformation coefficients
enables matrix elements that are diagonal in one coupling
scheme to be expressed simply in another. The possibility of
such relationships has the potential for relating the various
coupling schemes in shell-model calculations. An example,
given in Sec. VIII.C, is an extension of the single-shell
Uð2jþ 1Þ � USpð2jþ 1Þ coupling scheme, relevant for
Hamiltonians with strong pairing interactions, to multishell
coupling schemes. Such extensions are similarly made for
other shell-model coupling schemes.

It is mentioned, although it is not discussed in this review,
that the Casimir operators of dual pairs of Lie groups are also
simply related. This is to be expected because all multilinear
combinations of the elements of a Lie algebra are invariants
of a dual Lie algebra. In particular, the Casimir invariant of
one Lie algebra is an invariant of the dual Lie algebra.
Moreover, it was seen that the highest weights for dual irreps
of a pair of semisimple or reductive Lie algebras are related.
Thus, the eigenvalues of Casimir and other invariants for dual
irreps of such groups, which are expressible in terms of
related highest weights, are likewise related. For example,
the Casimir invariant of uðnÞ,

ĈðuðnÞÞ ¼ X
ij

ĈijĈji

¼ X
i
j

ð2ĈjiĈij þ Ĉii � ĈjjÞ þ
X
i

ĈiiĈii; (370)

is determined to have eigenvalue

CðnÞ
f�g ¼

Xn
i¼1

�ið�i þ nþ 1� 2iÞ (371)

for an irrep with highest weight �. Thus, a dual pair of U nð Þ
and U mð Þ irreps with common highest weights, having the
property that lð�Þ does not exceed eitherm or n, have Casimir
invariants with distinct but closely related values. The
Casimir invariants of semisimple Lie algebra are described
and their values given in terms of highest weights by
Wybourne (1974).

In spite of the simple origin of the relationships between
Casimir invariants, the results can nevertheless be useful.
For example, a simply solvable model with a Hamiltonian
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expressed in terms of the Casimir invariants of chains of
subgroups can also be expressed in terms of the Casimir
invariants of a dual subgroup chain. This can be useful for
the same reason that embedding a simple model in a much
richer microscopic theory makes it possible to explore many
more properties of the system being modeled.

Also not mentioned in this review is the duality between
two copies of a single compact group G acting on L2ðGÞ by
the left and right regular representations. The assertion of this
duality is essentially the Peter-Weyl theorem. An explicit
example is given by the regular representation of the rotation
group SO(3). The Hilbert space L2½SOð3Þ� for this represen-
tation is spanned by the so-called Wigner D functions
fDL

KM;L ¼ 0; 1; 2; . . . ;K ¼ �L; . . . ;þL;M ¼
�L; . . . ;þLg, defined in terms of a basis fjLMi;M ¼
�L; . . . ;þLg for the irrep of angular momentum L by

T̂ðLÞð�ÞjLMi¼X
K

jLKiDL
KMð�Þ; �2SOð3Þ: (372)

The left and right regular representations of SO(3) are then
defined, respectively, for ! 2 SOð3Þ by

L̂Regð!ÞDL
KMð�Þ ¼ DL

KMð!�1�Þ
¼ X

N

DL
NMð�Þ½DL

NKð!Þ��; (373)

R̂Regð!ÞDL
KMð�Þ ¼ DL

KMð�!Þ
¼ X

N

DL
KNð�ÞDL

NMð!Þ; (374)

where ½DL
NKð!Þ�� is the complex conjugate of DL

NKð!Þ. It is
seen that the Wigner DL functions for any given value of L
form a basis for an irrep DL� �DL of the direct product
group SOð3Þ � SOð3Þ relative to the left and right actions,
respectively, of these SO(3) groups. Thus, the two copies of
SO(3) have dual representations on the Hilbert space of the
SO(3) regular representation. This example has important
applications for the representations of the rotor model in
nuclear physics, in which the right representations of SO(3)
correspond to rotations relative to a space-fixed reference
frame and the left representations correspond to intrinsic
rotations relative to a frame of reference fixed in the body
of the rotor.

An aspect of dual group representations that merits further
investigation is the related geometry of the systems to which
they apply. It is known, for example, that the dynamics of a
central-force Hamiltonian for a system with a Euclidean
configuration space Rn can be regarded as a combination of
rotations and radial motions. For such a system the symmetry
group OðnÞ of rotations and inversions and the dynamical
group SU(1,1) associated with the radial dynamics are deter-
mined to have dual representations on the Hilbert space
L2ðRnÞ of the system. This dual pair of groups reflects the
underlying geometrical structure of the Euclidean space as a
product manifold of a radial line and a unit (n� 1) sphere.
Thus, if fxi; i ¼ 1; . . . ; ng is a set of Cartesian coordinates, the
group OðnÞ is the set of all linear transformation of Rn that
leave the squared radius of a point r2 ¼ P

ix
2
i invariant.

Moreover, the set of points generated by all OðnÞ transforma-
tions of a point in Rn at distance r ¼ 1 from the origin is an

(n� 1)-dimensional unit sphere. Together, the radial coordi-
nate r and a set of coordinates for the unit sphere define
spherical polar coordinates for the points of Rn.

A generalization of this geometric structure is observed for
the collective dynamics of an N-particle system with a
Euclidean configuration space RNm (Gelbart, 1973). For
such a system, the symmetry group of the Hamiltonian is
the group OðNÞ and the dynamical group is Spðm;RÞ. These
groups have been shown to have dual representations on the
Hilbert spaceL2ðRNmÞ. If fxni; n ¼ 1; . . . ; N; i ¼ 1; . . . ; mg is
a set of Cartesian coordinates for RNm, then OðNÞ is seen as
the set of all linear transformations of RNm that leave the
quadrupole moments Qij ¼ PN

n¼1 xnixnj invariant. The set of

points generated by all OðNÞ transformations of a point in
RNm of unit quadrupole moment is then the generalization of
a unit sphere in RN to a so-called Stieffel manifold

SN;m ¼
�
x 2 RNm;

X
n

xnixnj ¼ �i;j

�
: (375)

Thus, a set of quadrupole moments (elements of m�m
symmetric matrices) and coordinates for the Stieffel manifold
provide a system of collective and intrinsic coordinates for
RNm. The geometrical structure underlying these coordinates
introduced by Gelbart (1973) in a study of the representations
of Spðm;RÞ on L2ðRNmÞ proves to be of considerable sig-
nificance for the development of the nuclear collective model
(Rosensteel and Rowe, 1977, 1980; Rowe, 1985; Rowe and
Repka, 1998). Moreover, it transpires that the intertwining of
the representations of the symplectic and orthogonal groups
on these spaces accounts for the centrifugal coupling of the
dynamics on these two spaces. In particular, it leads to an
understanding of the role of vorticity degrees of freedom.

The examples chosen in this review to illustrate the range
of results that can be obtained from a consideration of dual
group representations are primarily from nuclear and atomic
physics. This is the area of physics most familiar to us and the
one in which many of the known duality relationships have
been discovered. However, they are far from complete.
Indeed, we are optimistic that applications in other fields of
physics will be brought to light by others. There are certainly
potential applications in quantum optics. The fascinating
concept of dual models in statistical mechanics (Girvin,
1996) also suggests interesting possibilities. While different
systems with common algebraic structures can be expected to
exhibit parallel properties, the concept of dual representations
of different groups indicates a similarly close parallel be-
tween systems with dual algebraic structures. We are also
aware that many other duality relations are known for which
there are undoubtedly applications; cf., for example,
Kashiwara and Vergne (1978), Gelbart (1979), Adams
(1983), Howe (1985), and Leung and Ton-That (1994).
Duality relationships are also known to exist for quantum
groups and supersymmetric groups. For example, Lu and
Howe (2010) recently explored an application of a duality
relationship between O(3,1) and the orthosymplectic super-
algebra osp(2,2) to Maxwell’s equations.
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Palchikov, Y.V., J. Dobeš, and R.V. Jolos, 2001, Phys. Rev. C 63,

034320.

Parikh, J. C., 1978, Group Symmetries in Nuclear Structure (Plenum

Press, New York/London).

Perelomov, A.M., 1972, Commun. Math. Phys. 26, 222.

Perelomov, A.M., 1986, Generalized Coherent States and Their

Applications (Springer-Verlag, Berlin).

Racah, G., 1943, Phys. Rev. 63, 367.

Racah, G., 1949, Phys. Rev. 76, 1352.

Richardson, R.W., 1965, J. Math. Phys. (N.Y.) 6, 1034.

Richardson, R.W., and N. Sherman, 1964, Nucl. Phys. 52, 221.

Ring, P., and P. Schuck, 1980, The Nuclear Many-Body Problem

(Springer-Verlag, New York).

Robinson, G. d. B., 1977, Ed., The Collected Papers of Alfred Young,

Mathematical Expositions Vol. 21 (University of Toronto Press,

Toronto).

Rochford, P., and D. J. Rowe, 1988, Phys. Lett. B 210, 5.

Rosensteel, G., and D. J. Rowe, 1977, Phys. Rev. Lett. 38, 10.

Rosensteel, G., and D. J. Rowe, 1980, Ann. Phys. (N.Y.) 126, 343.

Rosensteel, G., and D. J. Rowe, 2003, Phys. Rev. C 67, 014303.

Rosensteel, G., and D. J. Rowe, 2005, Nucl. Phys. A759, 92.

Rosensteel, G., and D. J. Rowe, 2007, Nucl. Phys. A797, 94.

Rowe, D. J., 1970, Nuclear Collective Motion: Models and Theory

(Methuen, London) (reprinted in 2010 by World Scientific,

Singapore).

Rowe, D. J., 1984, J. Math. Phys. (N.Y.) 25, 2662.

Rowe, D. J., 1985, Rep. Prog. Phys. 48, 1419.

Rowe, D. J., 2004a, Nucl. Phys. A735, 372.

Rowe, D. J., 2004b, in Computational and Group-Theoretical

Methods in Nuclear Physics, edited by J. Escher, O. Castaños,

756 D. J. Rowe, M. J. Carvalho, and J. Repka: Dual pairing of symmetry and dynamical groups . . .

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012

http://dx.doi.org/10.1016/0029-5582(61)90285-1
http://dx.doi.org/10.1140/epja/i2002-10064-2
http://dx.doi.org/10.1140/epja/i2002-10064-2
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1090/S0002-9947-1989-0986027-X
http://dx.doi.org/10.1090/S0002-9947-04-03722-5
http://dx.doi.org/10.1090/S0002-9947-04-03722-5
http://www.ams.org/jourcgi/jrnl_toolbar_nav/tran_all
http://www.ams.org/jourcgi/jrnl_toolbar_nav/tran_all
http://dx.doi.org/10.1016/0009-2614(81)85262-1
http://dx.doi.org/10.1093/qmath/3.1.50
http://dx.doi.org/10.1073/pnas.39.6.510
http://dx.doi.org/10.1073/pnas.39.6.510
http://dx.doi.org/10.1088/0034-4885/62/12/202
http://dx.doi.org/10.1016/0003-4916(86)90002-3
http://dx.doi.org/10.1016/0003-4916(86)90002-3
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1063/1.1824213
http://dx.doi.org/10.1063/1.1824213
http://dx.doi.org/10.1007/BF01389900
http://dx.doi.org/10.1016/0003-4916(61)90008-2
http://dx.doi.org/10.1103/PhysRev.124.162
http://dx.doi.org/10.1103/PhysRev.124.162
http://dx.doi.org/10.1063/1.1665059
http://dx.doi.org/10.1063/1.1665778
http://dx.doi.org/10.1088/0305-4470/8/4/004
http://dx.doi.org/10.1088/0305-4470/18/16/015
http://dx.doi.org/10.1088/0305-4470/31/31/013
http://dx.doi.org/10.1063/1.533389
http://dx.doi.org/10.1063/1.533389
http://dx.doi.org/10.1063/1.533431
http://dx.doi.org/10.1063/1.533431
http://dx.doi.org/10.1103/RevModPhys.63.375
http://dx.doi.org/10.1016/0021-8693(87)90099-8
http://dx.doi.org/10.1016/j.nuclphysa.2005.09.011
http://dx.doi.org/10.1007/BF01084171
http://dx.doi.org/10.1007/BF01084171
http://dx.doi.org/10.2991/jnmp.1999.6.2.4
http://dx.doi.org/10.1088/0305-4470/20/14/037
http://dx.doi.org/10.1088/0305-4470/20/14/009
http://dx.doi.org/10.1016/0375-9474(95)00045-3
http://dx.doi.org/10.1103/PhysRevLett.99.032501
http://dx.doi.org/10.1103/PhysRevLett.99.032501
http://www.ams.org/journals/proc/1994-120-01/S0002-9939-1994-1165060-9/home.html
http://www.ams.org/journals/proc/1994-120-01/S0002-9939-1994-1165060-9/home.html
http://www.ams.org/journals/proc/1995-123-04/S0002-9939-1995-1227520-2/home.html
http://www.ams.org/journals/proc/1995-123-04/S0002-9939-1995-1227520-2/home.html
http://dx.doi.org/10.1016/j.ppnp.2010.08.001
http://dx.doi.org/10.1088/0305-4470/35/30/317
http://dx.doi.org/10.1088/0305-4470/35/30/317
http://dx.doi.org/10.1098/rsta.1944.0003
http://dx.doi.org/10.1112/jlms/s1-11.1.49
http://dx.doi.org/10.1098/rsta.1944.0001
http://dx.doi.org/10.1016/0375-9474(70)90770-0
http://www.degruyter.com/view/product/177072
http://www.degruyter.com/view/product/177072
http://dx.doi.org/10.1103/PhysRevC.80.014319
http://dx.doi.org/10.1016/0370-2693(69)90027-6
http://dx.doi.org/10.1063/1.1665304
http://dx.doi.org/10.1063/1.1665304
http://dx.doi.org/10.1103/PhysRevC.63.034320
http://dx.doi.org/10.1103/PhysRevC.63.034320
http://dx.doi.org/10.1007/BF01645091
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.76.1352
http://dx.doi.org/10.1063/1.1704367
http://dx.doi.org/10.1016/0029-5582(64)90687-X
http://dx.doi.org/10.1016/0370-2693(88)90337-1
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1016/0003-4916(80)90180-3
http://dx.doi.org/10.1103/PhysRevC.67.014303
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.144
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.004
http://dx.doi.org/10.1063/1.526497
http://dx.doi.org/10.1088/0034-4885/48/10/003
http://dx.doi.org/10.1016/j.nuclphysa.2004.02.018


J. G. Hirsch, S. Pittel, and G. Stoitcheva (World Scientific,

Singapore), p. 165.

Rowe, D. J., 2004c, Nucl. Phys. A745, 47.

Rowe, D. J., 2005, J. Phys. A 38, 10181.

Rowe, D. J., and C. Bahri, 1998, J. Phys. A 31, 4947.

Rowe, D. J., and M. J. Carvalho, 2007, J. Phys. A 40, 471.

Rowe, D. J., 2012, ‘‘Vector Coherent State Representations and

Their Inner Product’’ J. Phys. A (to be published).

Rowe, D. J., and J. Repka, 1991, J. Math. Phys. (N.Y.) 32,

2614.

Rowe, D. J., and J. Repka, 1998, J. Math. Phys. (N.Y.) 39,

6214.

Rowe, D. J., J. Repka, and M. J. Carvalho, 2011, J. Math. Phys.

(N.Y.) 52, 013507.

Rowe, D. J., P. Rochford, and J. Repka, 1988, J. Math. Phys. (N.Y.)

29, 572.

Rowe, D. J., and G. Rosensteel, 2001, Phys. Rev. Lett. 87, 172501.

Rowe, D. J., G. Rosensteel, and R. Carr, 1984, J. Phys. A 17,

L399.

Rowe, D. J., G. Rosensteel, and R. Gilmore, 1985, J. Math. Phys.

(N.Y.) 26, 2787.

Rowe, D. J., and G. Thiamova, 2005, Nucl. Phys. A760, 59.

Rowe, D. J., and P. S. Turner, 2005, Nucl. Phys. A753, 94.

Rowe, D. J., P. S. Turner, and J. Repka, 2004, J. Math. Phys. (N.Y.)

45, 2761.

Rowe, D. J., T. A. Welsh, and M.A. Caprio, 2009, Phys. Rev. C 79,

054304.

Rowe, D. J., and J. L. Wood, 2010, Fundamentals of Nuclear

Models: Foundational Models (World Scientific, Singapore).

Rowe, D. J., B. G. Wybourne, and P. H. Butler, 1985, J. Phys. A 18,

939.

Sawada, K., 1957, Phys. Rev. 106, 372.

Schmidt, M., 1999, J. Geom. Phys. 29, 283.

Schur, I., 1901, Ph.D. thesis, Berlin University (reprinted in Schur’s

collected papers: I. Schur: Gesammelte Abhandlungen. Band I,

English translation by Alfred Brauer und Hans Rohrbach,

Springer-Verlag, Berlin, New York, 1973).

Schur, I., 1927, S’ber. Akad. Wiss., Berlin, p. 58 (reprinted in

Schur’s collected papers: I. Schur: Gesammelte Abhandlungen.

Band III, English translation by Alfred Brauer und Hans

Rohrbach, Springer-Verlag, Berlin, New York, 1973).

Segal, E., 1959, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 31,

No. 12, 1.

Shale, D., 1962, Trans. Am. Math. Soc. 103, 149.

Smith, P. R., and B.G. Wybourne, 1967, J. Math. Phys. (N.Y.) 8,

2434.

Smith, P. R., and B.G. Wybourne, 1968, J. Math. Phys. (N.Y.) 9,

1040.

Sternberg, S., 1994, Group Theory and Physics (Cambridge

University Press Cambridge, England).

Sviratcheva, K. D., A. I. Georgieva, and J. P. Draayer, 2003, J. Phys.

G 29, 1281.

Talmi, I., 1993, Simple Models of Complex Nuclei: The Shell Model

and Interacting Boson Model (Harwood Academic Publishers,

Chur, Switzerland).

Thibon, J.-Y., F. Toumazet, and B.G. Wybourne, 1997, J. Phys. A

30, 4851.

Van der Jeugt, J., 1997, J. Math. Phys. (N.Y.) 38, 2728.

Van Isacker, P., 1999, Rep. Prog. Phys. 62, 1661.

Weil, A., 1964, Acta Math. 111, 143.

Welsh, T. A., and D. J. Rowe, 2012 (unpublished).

Weyl, H., 1946, The Classical Groups, Their Invariants and

Representations (Princeton University Press, Princeton, NJ),

2nd ed.

Weyl, H., 1950, The Theory of Groups and Quantum Mechanics

(Dover, New York, originally published in 1928 in German),

2nd ed. (English edition 1, translated by H. P. Robertson,

published by Methuen in 1931).

Whippman, M. L., 1965, J. Math. Phys. (N.Y.) 6, 1534.

Wigner, E., 1937, Phys. Rev. 51, 106.

Wulfman, C. E., 2011, Dynamical Symmetry (World Scientific,

Singapore).

Wybourne, B. G., 1970, Symmetry Principles and Atomic

Spectroscopy (Wiley, New York).

Wybourne, B. G., 1974, Classical Groups for Physicists (Wiley,

New York).

Wybourne, B. G., 1991, in Symmetry and Structural Properties of

Condensed Matter, edited by W. Florek, T. Lulek, and M. Mucha

(World Scientific, Singapore), p. 187.

Wybourne, B. G., 1993, in Symmetry and Structural Properties of

Condensed Matter, edited by W. Florek, D. Lipinski, and T. Lulek,

The Second International School of Theoretical Physics, Poznan,

Poland (World Scientific, Singapore), p. 79.
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