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Massive gravity has seen a resurgence of interest due to recent progress which has overcome its

traditional problems, yielding an avenue for addressing important open questions such as the

cosmological constant naturalness problem. The possibility of a massive graviton has been studied

on and off for the past 70 years. During this time, curiosities such as the van Dam, Veltman, and

Zakharov (vDVZ) discontinuity and the Boulware-Deser ghost were uncovered. These results are

rederived in a pedagogical manner and the Stückelberg formalism to discuss them from the modern

effective field theory viewpoint is developed. Recent progress of the last decade is reviewed,

including the dissolution of the vDVZ discontinuity via the Vainshtein screening mechanism, the

existence of a consistent effective field theory with a stable hierarchy between the graviton mass and

the cutoff, and the existence of particular interactions which raise the maximal effective field theory

cutoff and remove the ghosts. In addition, some peculiarities of massive gravitons on curved space,

novel theories in three dimensions, and examples of the emergence of a massive graviton from extra

dimensions and brane worlds are reviewed.
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I. INTRODUCTION

Our goal is to explore what happens when one tries to give
the graviton a mass. This is a modification of gravity, so we
first discuss what gravity is and what it means to modify it.

A. General relativity is massless spin 2

General relativity (GR) (Einstein, 1916) is by now widely
accepted as the correct theory of gravity at low energies or
large distances. The discovery of GR was in many ways ahead
of its time. It was a leap of insight, from the equivalence
principle and general coordinate invariance, to a fully non-
linear theory governing the dynamics of spacetime itself. It
provided a solution, one more elaborate than necessary, to the
problem of reconciling the insights of special relativity with
the nonrelativistic action at a distance of Newtonian gravity.

Had it not been for Einstein’s intuition and years of hard
work, general relativity would likely have been discovered
anyway, but its discovery may have had to wait several more
decades, until developments in field theory in the 1940s and
1950s primed the culture. But in this hypothetical world
without Einstein, the path of discovery would likely have
been very different and in many ways more logical.*kurthi@physics.upenn.edu

REVIEWS OF MODERN PHYSICS, VOLUME 84, APRIL–JUNE 2012

0034-6861=2012=84(2)=671(40) 671 � 2012 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.84.671


This logical path starts with the approach to field theory

espoused in the first volume of Weinberg’s field theory

text (Weinberg, 1995). Degrees of freedom in flat four-

dimensional spacetime are particles, classified by their spin.

These degrees of freedom are carried by fields. If we wish to

describe long-range macroscopic forces, only bosonic fields

will do, since fermionic fields cannot build up classical

coherent states. By the spin statistics theorem, these bosonic

fields must be of integer spin s ¼ 0, 1, 2, 3, etc. A field c ,

which carries a particle of mass m, will satisfy the Klein-

Gordon equation ðh�m2Þc ¼ 0, whose solution a distance

r from a localized source is similar to�r�1e�mr. Long-range

forces, those without exponential suppression, must therefore

be described by massless fields m ¼ 0.
Massless particles are characterized by how they transform

under rotations transverse to their direction of motion. The

transformation rule for bosons is characterized by an integer

h � 0, which we call the helicity. For h ¼ 0, such massless

particles can be carried most simply by a scalar field �. For a

scalar field, any sort of interaction terms consistent with

Lorentz invariance can be added, and so there are a plethora

of possible self-consistent interacting theories of spin 0

particles.
For helicities s � 1, the field must carry a gauge symmetry

if we are to write interactions with manifest Lorentz symme-

try and locality. For helicity 1, if we choose a vector field A�

to carry the particle, its action is fixed to be the Maxwell

action, so even without Maxwell, we could have discovered

electromagnetism via these arguments. If we now ask for

consistent self-interactions of such massless particles, we are

led to the problem of deforming the action (and possibly the

form of the gauge transformations), in such a way that the

linear form of the gauge transformations is preserved. These

requirements are enough to lead us essentially uniquely to the

non-Abelian gauge theories, two of which describe the strong

and weak forces (Henneaux, 1998).
Moving on to helicity 2, the required gauge symmetry is

linearized general coordinate invariance. Asking for consis-

tent self-interactions leads essentially uniquely to GR and full

general coordinate invariance (Gupta, 1954; Kraichnan,

1955; Weinberg, 1965; Deser, 1970; Boulware and Deser,

1975; Fang and Fronsdal, 1979; Wald, 1986) [see also

Chapter 13 of Weinberg (1995), which shows how helicity 2

implies the equivalence principle]. For helicity � 3, the story
ends, because there are no self-interactions that can be written

(Berends, Burgers, and van Dam, 1984) [see also Chapter 13

of Weinberg (1995), which shows that the scattering ampli-

tudes for helicity � 3 particles vanish].
This path is straightforward, starting from the principles of

special relativity (Lorentz invariance) to the classification of

particles and fields that describe them, and finally to their

possible interactions. The path Einstein followed, on the other

hand, is a leap of insight and has logical gaps; the equivalence

principle and general coordinate invariance, although they

suggest GR, do not lead uniquely to GR.
General coordinate invariance is a gauge symmetry, and

gauge symmetries are redundancies of description, not fun-

damental properties. In any system with gauge symmetry, one

can always fix the gauge and eliminate the gauge symmetry,

without breaking the physical global symmetries (such as

Lorentz invariance) or changing the physics of the system

in any way. One often hears that gauge symmetry is funda-

mental, in electromagnetism, for example, but the more

correct statement is that gauge symmetry in electromagne-

tism is necessary only if one demands the convenience of

linearly realized Lorentz symmetry and locality. Fixing a

gauge will not change the physics, but the price paid is that

the Lorentz symmetries and locality are not manifest.
On the other hand, starting from a system without gauge

invariance, it is always possible to introduce gauge symmetry

by putting in redundant variables. Often this can be very

useful for studying a system and can elucidate properties

which are otherwise difficult to see. This is the essence of

the Stückelberg trick, which we make use of extensively in

our study of massive gravity. In fact, as we will see, this trick

can be used to make any Lagrangian invariant under general

coordinate diffeomorhpisms, the same group under which GR

is invariant. Thus general coordinate invariance cannot be the

defining feature of GR.
Similarly, the principle of equivalence, which demands

that all mass and energy gravitate with the same strength,

is not unique to GR. It can be satisfied even in scalar field

theories, if one chooses the interactions properly. For ex-

ample, this can be achieved by iteratively coupling a canoni-

cal massless scalar to its own energy momentum tensor. Such

a theory in fact solves all the problems Einstein set out to

solve; it provides a universally attractive force which con-

forms to the principles of special relativity, reduces to

Newtonian gravity in the nonrelativistic limit, and satisfies

the equivalence principle.1 By introducing diffeomorphism

invariance via the Stückelberg trick, it can even be made to

satisfy the principle of general coordinate invariance.
The real underlying principle of GR has nothing to do with

coordinate invariance or equivalence principles or geometry,

rather it is the statement: General relativity is the theory of a

nontrivially interacting massless helicity 2 particle. The other

properties are consequences of this statement, and the impli-

cation cannot be reversed.
As a quantum theory, GR is not UV complete. It must be

treated as an effective field theory valid at energies up to a

cutoff at the Planck mass MP, beyond which unknown high

energy effects will correct the Einstein-Hilbert action. For a

given background such as the spherical solution around a

heavy source of mass M such as the Sun, GR has three

distinct regimes. There is a classical linear regime, where

both nonlinear effects and quantum effects can be ignored.

This is the regime in which r is greater than the

Schwarzschild radius r > rS �M=M2
P. For M the mass of

the Sun, we have rS � 1 km, so the classical linear approxi-

mation is good nearly everywhere in the Solar System. There

is the quantum regime r < 1=MP, very near the singularity of

the black hole, where the effective field theory description

breaks down. Most importantly, there is a well-separated

1This theory is sometimes known as the Einstein-Fokker theory,

first introduced in 1913 by Nordström (1913a, 1913b), and later in a

different form (Freund and Nambu, 1968; Deser and Halpern,

1970). It was even studied by Einstein when he was searching for

a relativistic theory of gravity that embodied the equivalence

principle (Einstein and Fokker, 1914).
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middle ground, a classical nonlinear regime 1=MP < r < rS,
where nonlinearities can be summed up without worrying
about quantum corrections, the regime which can be used to

make controlled statements about what is going on inside a
black hole. One of the challenges of adding a mass to the

graviton, or any modification of gravity, is to retain calculable
yet interesting regimes such as this.

B. Modifying general relativity

A theory of massive gravity is a theory which propagates a

massive spin 2 particle. The most straightforward way to

construct such a theory is to simply add a mass term to the
Einstein-Hilbert action, giving the graviton a mass m in such

a way that GR is recovered as m ! 0. This is a modification
of gravity, a deformation away from the elegant theory of

Einstein. Since GR is the essentially unique theory of a
massless spin 2 degree of freedom, it should be remembered

that modifying gravity means changing its degrees of
freedom.

Despite the universal consensus that GR is a beautiful and

accurate theory, there has in recent years arisen a small
industry of physicists working to modify it and test these

modifications. When asked to cite their motivation, they more
often than not point to supernova data (Riess et al., 1998;

Perlmutter et al., 1999) which show that the Universe has
recently started accelerating in its expansion. If GR is correct,

there must exist some dark energy density �� 10�29 g=cm3.
The simplest interpretation is that there is a constant term �
in the Einstein-Hilbert action, which would give ��M2

P�.

To give the correct vacuum energy, this constant has to take
the small value �=M2

P � 10�65, whereas arguments from

quantum field theory suggest a value much larger, up to the
order of unity (Weinberg, 1989). It is therefore tempting to

speculate that perhaps GR is wrong, and instead of a dark
energy component, gravity is modified in the infrared

(Deffayet, 2001; Deffayet, Dvali, and Gabadadze, 2002), in

such a way as to produce an accelerating universe from
nothing. Indeed many modifications can be cooked up which

produce these so-called self-accelerating solutions. For ex-
ample, one well-studied modification is to replace the

Einstein-Hilbert Lagrangian with FðRÞ, a general function
of the Ricci scalar (Sotiriou and Faraoni, 2008; De Felice and

Tsujikawa, 2010), which can lead to self-accelerating solu-
tions (Carroll et al., 2004, 2005). This modification is

equivalent to adding an additional scalar degree of freedom.
These cosmological reasons for studying modifications to

gravity are often criticized on the grounds that they can take

us only so far; the small value of the cosmological accelera-
tion relative to the Planck mass must come from somewhere,

and the best these modifications can do is to shift the fine-
tuning into other parameters [see Batra et al. (2008) for an

illustration in the FðRÞ scalar-tensor case].
While it is true the small number must come from some-

where, there remains hope that it can be put somewhere which

is technically natural, i.e., stable to quantum corrections.
Some small parameters, such as the ratio of the Higgs mass

to the Planck mass in the standard model, are not technically
natural, whereas others, such as small fermion masses, are

technically natural, because their small values are stable

under quantum corrections. A rule of thumb is that a small

parameter is technically natural if there is a symmetry that

appears as the small parameter is set to zero. When this is the

case, symmetry protects a zero value of the small parameter

from quantum corrections. This means corrections due to the

small parameter must be proportional to the parameter itself.

In the case of small fermion masses, it is chiral symmetry that

appears, whereas in the case of the Higgs mass and the

cosmological constant, there is no obvious symmetry that

appears.
Of course, there is no logical inconsistency with having

small parameters, technically natural or not, and nature may

explain them anthropically (Barrow and Tipler, 1988), or may

just employ them without reason. But as practical working

physicists, we hope that it is the case that a small parameter is

technically natural, because then there is hope that perhaps

some classical mechanism can be found that drives the

parameter toward zero, or otherwise explains its small value.

If it is not technically natural, any such mechanism will be

much harder to find because it must know about the quantum

corrections in order to compensate them.
One does not need a cosmological constant problem,

however, to justify studying modifications to GR. There are

few better ways to learn about a structure, whether it is a car, a

computer program, or a theory, than to attempt to modify it.

With a rigid theory such as GR, there is a level of appreciation

that can be achieved only by witnessing how easily things can

go badly with the slightest modification. In addition, deform-

ing a known structure is one of the best ways to go about

discovering new structures, structures which may have un-

foreseen applications.
One principle that comes into play is the continuity of

physical predictions of a theory in the parameters of the

theory. Surely, we should not be able to say experimentally,

given our finite experimental precision, that a parameter of

nature is exactly mathematically zero and not just very small.

If we deform GR by a small parameter, the predictions of the

deformed theory should be very close to GR, to the extent that

the deformation parameter is small. It follows that any un-

desirable pathologies associated with the deformation should

cure themselves as the parameter is set to zero. Thus, we

uncover a mechanism by which such pathologies can be

cured, a mechanism which may have applications in other

areas.
Massive gravity is a well-developed case study in the

infrared modification of gravity, where all of these points

are nicely illustrated. Purely from the consideration of de-

grees of freedom, it is a natural modification to consider,

since it amounts to simply giving a mass to the particle which

is already present in GR. In another sense, it is less minimal

than FðRÞ or scalar-tensor theory, which adds a single scalar

degree of freedom, because to reach the five polarizations of

the massive graviton we must add at least 3 degrees of free-

dom beyond the 2 of the massless graviton.
With regard to the cosmological constant problem, there is

the possibility of a technically natural explanation. The de-

formation parameter is m, the graviton mass, and GR should

be restored as m ! 0. The force mediated by a massive

graviton has a Yukawa profile �r�1e�mr, which drops off

from that of a massless graviton at distances r * 1=m, so one

Kurt Hinterbichler: Theoretical aspects of massive gravity 673

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



hopes to explain the acceleration of the Universe without dark

energy by choosing the graviton mass to be of the order of the
Hubble constant m�H. Of course, this does not eliminate

the small cosmological constant, which reappears as the ratio
m=MP. But there is now hope that this is a technically natural

choice, because deformation by a mass term breaks the gauge

symmetry of GR, which is restored in the limitm ! 0. As we
will see, a small m is indeed protected from quantum correc-

tions (although there are other issues that prevent this, at our
current stage of understanding, from being a completely

satisfactory realization of a technically natural cosmological

constant).
There are also interesting lessons to be learned regarding the

continuity of physical predictions. The addition of a mass term

is a brutality upon the structure of GR and does not go
unpunished. Various pathologies appear, which are represen-

tative of common pathologies associated with any infrared
modification of gravity. These include strong classical non-

linearities, ghostlike instabilities, and a very low cutoff, or
region of trustability, for the resulting quantum effective the-

ory. In short, modifying the infrared often messes up the UV.

New mechanisms also come into play, because the extra
degrees of freedom carried by the massive graviton must

somehow decouple themselves asm ! 0 to restore the physics
of GR.

The study of the massless limit leads to the discovery of the

Vainshtein mechanism, by which these extra degrees of free-
dom hide themselves at short distances using nonlinearities.

This mechanism has already proven useful for model builders

who have long-range scalars, such as moduli from the extra
dimensions of string theory, that they want to shield from

local experiments that would otherwise rule them out.

C. History and outline

The possibility of a graviton mass has been studied off and

on since 1939, when Fierz and Pauli (1939) first wrote the
action describing a free massive graviton. Following this, not

much occurred until the early 1970s, when therewas a flurry of
renewed interest in quantum field theory. The linear theory

coupled to a source was studied by van Dam and Veltman

(1970) and Zakharov (1970) (vDVZ), who discovered the
curious fact that the theory makes predictions different from

those of linear GR even in the limit as the gravitonmass goes to
zero. For example, massive gravity in the m ! 0 limit gives a

prediction for light bending that is off by 25% from the GR

prediction. The linear theory violates the principle of continu-
ity of the physics in the parameters of the theory. This is known

as the vDVZ discontinuity. The discontinuity was soon traced
to the fact that not all of the degrees of freedom introduced by

the graviton mass decouple as the mass goes to zero. The
massive graviton has five spin states, which in the massless

limit become the two helicity states of amassless graviton, two

helicity states of a massless vector, and a single massless
scalar. The scalar is essentially the longitudinal graviton, and

it maintains a finite coupling to the trace of the source stress
tensor even in the massless limit. In other words, the massless

limit of amassive graviton is not amassless graviton, but rather

a massless graviton plus a coupled scalar, and the scalar is
responsible for the vDVZ discontinuity.

If the linear theory is accurate, then the vDVZ disconti-

nuity represents a true physical discontinuity in predictions,

violating our intuition that physics should be continuous in

the parameters. Measuring the light bending in this theory
would be a way to show that the graviton mass is mathemati-

cally zero rather than just very small. However, the linear

theory is only the start of a complete nonlinear theory,

coupled to all the particles of the standard model. The

possible nonlinearities of a real theory were studied several

years later by Vainshtein (1972), who found that the nonline-

arities of the theory become stronger and stronger as the mass
of the graviton shrinks. What he found was that around any

massive source of mass M, such as the Sun, there is a new

length scale known as the Vainshtein radius rV �
ðM=m4M2

PÞ1=5. At distances r & rV , nonlinearities begin to

dominate and the predictions of the linear theory cannot be

trusted. The Vainshtein radius goes to infinity as m ! 0, so
there is no radius at which the linear approximation tells us

something trustworthy about the massless limit. This opens
the possibility that the nonlinear effects cure the discontinu-

ity. To have some values in mind, if we take M the mass of

the Sun and m a very small value, say the Hubble constant

m� 10�33 eV, the scale at which we might want to modify

gravity to explain the cosmological constant, we have

rV � 1018 km, about the size of the Milky Way.
Later the same year, Boulware and Deser (1972) studied

some specific fully nonlinear massive gravity theories and

showed that they possess a ghostlike instability. Whereas the

linear theory has 5 degrees of freedom, the nonlinear theories

they studied turned out to have 6, and the extra degree of

freedom manifests itself around nontrivial backgrounds as a

scalar field with a wrong sign kinetic term, known as the

Boulware-Deser ghost.
Meanwhile, the ideas of effective field theory were being

developed, and it was realized that a nonrenormalizable

theory, even one with apparent instabilities such as massive

gravity, can be made sense of as an effective field theory,

valid only at energies below some ultraviolet cutoff scale �.

In 2003, Arkani-Hamed, Georgi, and Schwartz (2003)

brought to attention a method of restoring gauge invariance
to massive gravity in a way that makes it very simple to see

what the effective field theory properties are. They showed

that massive gravity generically has a maximum UV cutoff of

�5 ¼ ðMPm
4Þ1=5. For Hubble scale graviton mass, this is a

length scale ��1
5 � 1011 km. This is a very small cutoff,

parametrically smaller than the Planck mass, and goes to

zero asm ! 0. Around a massive source, the quantum effects

become important at the radius rQ ¼ ðM=MPlÞ1=3ð1=�5Þ,
which is parametrically larger than the Vainshtein radius at

which nonlinearities enter. For the Sun, rQ � 1024 km.

Without finding a UV completion or some other resumma-

tion, there is no sense in which we can trust the solution inside

this radius, and the usefulness of massive gravity is limited. In

particular, since the whole nonlinear regime is below this

radius, there is no hope to examine the continuity of physical

quantities in m and explore the Vainshtein mechanism in a

controlled way. On the other hand, it can be seen that the mass
of the Boulware-Deser ghost drops below the cutoff only

when r & rQ, so the ghost is not really in the effective theory

at all and can be consistently excluded.
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Putting aside the issue of quantum corrections, there has

been continued study of the Vainshtein mechanism in a purely

classical context. It has been shown that classical nonlineari-

ties do indeed restore continuity with GR in certain circum-

stances. In fact, the ghost degree of freedom can play an
essential role in this, by providing a repulsive force in the

nonlinear region to counteract the attractive force of the

longitudinal scalar mode.
By adding higher order graviton self-interactions with

appropriately tuned coefficients, it is in fact possible to raise

the UV cutoff of the theory to �3 ¼ ðMPm
2Þ1=3, correspond-

ing to roughly ��1
3 � 103 km. In 2010, the complete action

of this theory in a certain decoupling limit was worked out by

de Rham and Gabadadze (2010a), and they show that, re-

markably, it is free of the Boulware-Deser ghost. Recently, it

was shown that the complete theory is free of the Boulware-

Deser ghost. This �3 theory is the best hope of realizing a

useful and interesting massive gravity theory.
The subject of massive gravity also naturally arises in

extra-dimensional setups. In a Kaluza-Klein scenario such
as GR in 5d compactified on a circle, the higher Kaluza-Klein

modes are massive gravitons. Brane world setups such as the

Dvali-Gabadadze-Porrati (DGP) model (Dvali, Gabadadze,

and Porrati, 2000a) give more intricate gravitons with reso-

nance masses. The study of such models has complemented

the study of pure 4d massive gravity and has pointed toward

new research directions.
The major outstanding question is whether it is possible to

UV extend the effective field theory of massive gravity to the

Planck scale and what this UV extension may look like. This

would provide a solution to the problem of making the small

cosmological constant technically natural and is bound to be

an interesting theory in its own right (the analogous question

applied to massive vector bosons leads to the discovery of the

Higgs mechanism and spontaneous symmetry breaking). In

the case of massive gravity, there are indications that a UV

completion may not have a local Lorentz invariant form,
although the issue is not settled. Another long shot, if UV

completion can be found, would be to take them ! 0 limit of

the completion and hope to obtain a UV completion to

ordinary GR.
As this review is focused on the theoretical aspects of

Lorentz invariant massive gravity, we do not have much

to say about the large literature on Lorentz-violating massive

gravity. We also do not say much about the experimental
search for a graviton mass, or what the most likely signals

and search modes would be. There has been much work

in these areas, and each could be the topic of a separate

review.
Conventions: Often we work in an arbitrary number of

dimensions, just because it is easy to do so. In this case, D
signifies the number of spacetime dimension and we stick

to D � 3. d signifies the number of space dimensions d ¼
D� 1. We use the mostly plus metric signature convention

��� ¼ ð�;þ;þ;þ; . . .Þ. Tensors are symmetrized and anti-

symmetrized with unit weight, i.e., Tð��Þ ¼ 1
2 ðT�� þ T��Þ,

T½��� ¼ 1
2 ðT�� � T��Þ. The reduced 4d Planck mass isMP ¼

1=ð8�GÞ1=2 � 2:43� 1018 GeV. Conventions for the curva-

ture tensors, covariant derivatives, and Lie derivatives are

those of Carroll (2004).

II. THE FREE FIERZ-PAULI ACTION

We start by displaying an action for a single massive spin 2
particle in flat space, carried by a symmetric tensor field h��,

S¼
Z
dDx�1

2
@�h��@

�h��þ@�h��@
�h���@�h

��@�h

þ1

2
@�h@

�h�1

2
m2ðh��h

���h2Þ: (2.1)

This is known as the Fierz-Pauli action (Fierz and Pauli,
1939). Our point of view is to take this action as given and
then show that it describes a massive spin 2. There are,
however, some (less than thorough) ways of motivating this
action. To start with, the action above contains all possible
contractions of two powers of h, with up to two derivatives.
The two derivative terms, those which survive when m ¼ 0,
are chosen to exactly match those obtained by linearizing the
Einstein-Hilbert action. The m ¼ 0 terms describe a massless
helicity 2 graviton and have the gauge symmetry

�h�� ¼ @�	� þ @�	�; (2.2)

for a spacetime dependent gauge parameter 	�ðxÞ. This

symmetry fixes all the coefficients of the two-derivative
part of Eq. (2.1), up to an overall coefficient. The mass
term, however, violates this gauge symmetry. The relative
coefficient of �1 between the h2 and h��h

�� contractions is

called the Fierz-Pauli tuning, and it is not enforced by any
known symmetry.

However, the only thing that needs to be said about this
action is that it describes a single massive spin 2 degree of
freedom of mass m. We show this explicitly in what follows.
Any deviation from the form (2.1) and the action will no
longer describe a single massive spin 2. For example, violat-
ing the Fierz-Pauli tuning in the mass term by changing to
� 1

2m
2½h��h

�� � ð1� aÞh2� for a � 0 gives an action de-

scribing a scalar ghost (a scalar with negative kinetic energy)
of mass m2

g ¼ ½ð3� 4aÞ=2a�m2, in addition to the massive

spin 2. For small a, the ghost mass squared goes like�1=a. It
goes to infinity as the Fierz-Pauli tuning is approached,
rendering it nondynamical. Violating the tuning in the kinetic
terms similarly alters the number of degrees of freedom; see
van Nieuwenhuizen (1973a) for a general analysis.

There is a method of constructing Lagrangians such as
Eq. (2.1) to describe any given spin. See, for example, the first
few chapters of Weinberg (1995), the classic papers on higher
spin Lagrangians by Singh and Hagen (1974) and Fronsdal
(1978), and the reviews by Bouatta, Compere, and Sagnotti
(2004) and Sorokin (2005).

A. Hamiltonian and degree of freedom count

We begin our study of the Fierz-Pauli action (2.1)
by casting it into Hamiltonian form and counting the
number of degrees of freedom. We show that it propagates
DðD� 1Þ=2� 1 degrees of freedom in D dimensions
(5 degrees of freedom for D ¼ 4), the right number for a
massive spin 2 particle.
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We start by Legendre transforming Eq. (2.1) only with
respect to the spatial components hij. The canonical momenta

are2

�ij¼ @L

@ _hij
¼ _hij� _hkk�ij�2@ðihjÞ0þ2@kh0k�ij: (2.3)

Inverting for the velocities, we have

_hij ¼ �ij � 1

D� 2
�kk�ij þ 2@ðihjÞ0: (2.4)

In terms of these Hamiltonian variables, the Fierz-Pauli
action (2.1) becomes

S ¼
Z

dDx�ij
_hij �H þ 2h0ið@j�ijÞ þm2h20i

þ h00ð ~r2
hii � @i@jhij �m2hiiÞ; (2.5)

where

H ¼ 1

2
�2

ij �
1

2

1

D� 2
�2

ii þ
1

2
@khij@khij � @ihjk@jhik

þ @ihij@jhkk � 1

2
@ihjj@ihkk þ 1

2
m2ðhijhij � h2iiÞ:

(2.6)

First consider the case m ¼ 0. The timelike components
h0i and h00 appear linearly multiplied by terms with no time
derivatives. We interpret them as Lagrange multipliers en-

forcing the constraints @j�ij ¼ 0 and ~r2
hii � @i@jhij ¼ 0. It

is straightforward to check that these are first class con-
straints, and that the Hamiltonian (2.6) is first class. Thus
Eq. (2.5) is a first class gauge system. For D ¼ 4, the hij and

�ij each have six components, because they are 3� 3 sym-

metric tensors, so together they span a 12-dimensional (for
each space point) phase space. We have four constraints (at
each space point), leaving an eight-dimensional constraint
surface. The constraints then generate four gauge invariances,
so the gauge orbits are four dimensional, and the gauge
invariant quotient by the orbits is four dimensional [see
Henneaux and Teitelboim (1992) for an introduction to con-
strained Hamiltonian systems, gauge theories, and the termi-
nology used here]. These are the two polarizations of the
massless graviton, along with their conjugate momenta.

In the case m � 0, the h0i are no longer Lagrange multi-
pliers. Instead, they appear quadratically and are auxiliary
variables. Their equations of motion yield

h0i ¼ � 1

m2
@j�ij; (2.7)

which can be plugged back into the action (2.5) to give

S ¼
Z

dDx�ij
_hij �H þ h00ð ~r2

hii � @i@jhij �m2hiiÞ;
(2.8)

where

H ¼ 1

2
�2

ij �
1

2

1

D� 2
�2

ii þ
1

2
@khij@khij � @ihjk@jhik

þ @ihij@jhkk � 1

2
@ihjj@ihkk þ 1

2
m2ðhijhij � h2iiÞ

þ 1

m2
ð@j�ijÞ2: (2.9)

The component h00 remains a Lagrange multiplier enforc-

ing a single constraint C ¼ � ~r2
hii þ @i@jhij þm2hii ¼ 0,

but the Hamiltonian is no longer first class. One secondary
constraint arises from the Poisson bracket with the
Hamiltonian H ¼ R

ddxH , namely, fH;CgPB¼½1=ðD�2Þ��
m2�iiþ@i@j�ij. The resulting set of two constraints is sec-

ond class, so there is no longer any gauge freedom. ForD ¼ 4
the 12-dimensional phase space has two constraints for a total
of 10 degrees of freedom, corresponding to the five polar-
izations of the massive graviton and their conjugate momenta.

Note that the Fierz-Pauli tuning is crucial to the appearance
of h00 as a Lagrange multiplier. If the tuning is violated, then
h00 appears quadratically and is an auxiliary variable and no
longer enforces a constraint. There are then no constraints,
and the full 12 degrees of freedom in the phase space are
active. The extra 2 degrees of freedom are the scalar ghost
and its conjugate momentum.

B. Free solutions and graviton mode functions

We now proceed to find the space of solutions of Eq. (2.1)
and show that it transforms as a massive spin 2 representation
of the Lorentz group, showing that the action propagates
precisely one massive graviton. The equations of motion
from Eq. (2.1) are

�S

�h��¼hh���@�@�h
�
��@�@�h

�
�þ���@�@
h

�


þ@�@�h����hh�m2ðh������hÞ
¼0: (2.10)

Acting on Eq. (2.10) with @�, we find, assuming m2 � 0,
the constraint @�h�� � @�h. Plugging this back into

the equations of motion, we find hh�� � @�@�h�
m2ðh�� � ���hÞ ¼ 0. Taking the trace of this we find

h ¼ 0, which in turn implies @�h�� ¼ 0. This, along with

h ¼ 0 applied to the equation of motion (2.10), gives
ðh�m2Þh�� ¼ 0.

Thus the equation of motion (2.10) implies the three
equations

ðh�m2Þh��¼0; @�h��¼0; h¼0: (2.11)

Conversely, it is straightforward to see that these three equa-
tions imply the equation of motion (2.10), so Eqs. (2.10) and
(2.11) are equivalent. The form (2.11) makes it easy to count
the degrees of freedom as well. For D ¼ 4, the first of
Eq. (2.11) is an evolution equation for the ten components
of the symmetric tensor h��, and the last two are constraint

equations on the initial conditions and velocities of h��. The

last determines the trace completely, killing 1 real space
degree of freedom. The second gives four initial value
constraints, and the vanishing of its time derivative,

2Note that canonical momenta can change under integrations by

parts of the time derivatives. We fixed this ambiguity by integrating

by parts such as to remove all derivatives from h0i and h00.
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i.e., demanding that it be preserved in time, implies four more
initial value constraints, thus killing 4 real space degrees of
freedom. In total, we are left with the 5 real space degrees of
freedom of a four-dimensional spin 2 particle, in agreement
with the Hamiltonian analysis of Sec. II.A.

The first equation in Eq. (2.11) is the standard Klein-
Gordon equation, with the general solution

h��ðxÞ ¼
Z ddpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þd2!p

q ½h��ðpÞeip�x þ h���ðpÞe�ip�x�:

(2.12)

Here p are the spatial momenta, !p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and the D

momenta p� are on shell so that p� ¼ ð!p;pÞ.
Next we expand the Fourier coefficients h��ðpÞ over some

basis of symmetric tensors, indexed by �,

h��ðpÞ ¼ ap;� ��
��ðp; �Þ: (2.13)

We fix the momentum dependence of the basis elements
����ðp; �Þ by choosing some basis ����ðk; �Þ at the standard
momentum k� ¼ ðm; 0; 0; 0; . . .Þ and then acting with some
standard boost3 LðpÞ, which takes k into p, p� ¼ LðpÞ��k

�.
This standard boost chooses for us the basis at p, relative to
that at k. Thus we have

����ðp; �Þ ¼ LðpÞ��LðpÞ�
 ���
ðk; �Þ: (2.15)

Imposing the conditions @�h
�� ¼ 0 and h ¼ 0 on

Eq. (2.12) then reduces to imposing

k� ����ðk; �Þ ¼ 0; ��� ��
��ðk; �Þ ¼ 0: (2.16)

The first says that ����ðk; �Þ is purely spatial, i.e., ��0�ðk; �Þ ¼
0. The second says that it is traceless, so that ��iiðk; �Þ ¼ 0
also. Thus the basis need only be a basis of symmetric trace-
less spatial tensors, � ¼ 1; . . . ; dðdþ 1Þ=2� 1. We demand
that the basis be orthonormal,

����ðk; �Þ �����ðk; �0Þ ¼ ���0 : (2.17)

This basis forms the symmetric traceless representation of
the rotation group SOðdÞ, which is the little group for a
massive particle in D dimensions. If R�

� is a spatial rotation,
we have

R�
�0R�

�0 ����ðk; �0Þ ¼ R�0
� ��

��ðk; �0Þ; (2.18)

where R�0
� is the symmetric traceless tensor representation of

R�
�0 . We are free to use any other basis ���ðk; �Þ, related to

the ����ðk; �Þ by
���ðk; �Þ ¼ B�0

� ��
��ðk; �0Þ; (2.19)

where B is any unitary matrix.

Given a particular spatial direction, with unit vector k̂i,
there is an SOðd� 1Þ subgroup of the little group SOðdÞ
which leaves k̂i invariant, and the symmetric traceless
representation (rep) of SOðdÞ breaks up into three reps of
SOðd� 1Þ, a scalar, a vector, and a symmetric traceless
tensor. The scalar mode is called the longitudinal graviton
and has spatial components

�ijL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d

d� 1

s �
k̂ik̂j � 1

d
�ij

�
: (2.20)

After a large boost in the k̂i direction, it goes similar to
�L � p2=m2. As we see later, in the massless limit, or large
boost limit, this mode is carried by a scalar field, which
generally becomes strongly coupled once interactions are
taken into account. The vector modes have spatial components

�ijV;k ¼
ffiffiffi
2

p
k̂ði�jÞ

k ; (2.21)

and after a large boost in the k̂i direction, they go similar to
�L � p=m. In the massless limit, these modes are carried by a
vector field, which decouples from conserved sources. The
remaining linearly independentmodes are symmetric traceless

tensors with no components in the k̂i directions, and they form
the symmetric traceless mode of SOðd� 1Þ. They are invari-

ant under a boost in the k̂i direction, and in the massless limit,
they are carried by a massless graviton. In the massless limit,
we therefore expect that the extra degrees of freedom of the
massive graviton organize themselves into a massless vector
and a massless scalar. We see later explicitly how this comes
about at the Lagrangian level.

Upon boosting to p, the polarization tensors satisfy the
following properties: they are transverse to p� and traceless,

p��
��ðp; �Þ ¼ 0; ����

��ðp; �Þ ¼ 0; (2.22)

and they satisfy orthogonality and completeness relations

���ðp; �Þ����ðp; �0Þ ¼ ���0 ; (2.23)

X
�

���ðp; �Þ���
ðp; �Þ ¼ 1

2
ðP��P�
 þ P�
P��Þ

� 1

D� 1
P��P�
; (2.24)

where P�
 	 ��
 þ p�p
=m2. The right-hand side of the
completeness relation (2.24) is the projector onto the sym-
metric and transverse traceless subspace of tensors, i.e., the
identity on this space. We also have the following symmetry
properties in p, which can be deduced from the form of the
standard boost (2.14):

�ijð�p; �Þ ¼ �ijðp; �Þ; i; j ¼ 1; 2; . . . ; d; (2.25)

�0ið�p; �Þ ¼ ��0iðp; �Þ; i ¼ 1; 2; . . . ; d; (2.26)

�00ð�p; �Þ ¼ �00ðp; �Þ: (2.27)

3We choose the standard boost to be

Li
jðpÞ ¼ �ij þ 1

jpj2 ð�� 1Þpipj;

Li
0ðpÞ ¼ L0

iðpÞ ¼
pi

jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
; L0

0ðpÞ ¼ �;

(2.14)

where

� ¼ p0=m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2=m

q
is the usual relativistic �. See Chapter 2 of Weinberg (1995) for

discussions of this standard boost and general representation theory

of the Poincaré group.
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The general solution to Eq. (2.10) thus reads

h��ðxÞ ¼
Z ddpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þd2!p

q X
�

ap;��
��ðp; �Þeip�x

þ a�p;�����ðp; �Þe�ip�x: (2.28)

The solution is a general linear combination of the follow-
ing mode functions and their conjugates

u
��
p;�ðxÞ	

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þd2!p

q ���ðp;�Þeip�x; �¼1;2; . . . ;d:

(2.29)

These are the solutions representing gravitons, and they have
the following Poincaré transformation properties:

u
��
p;�ðx� aÞ ¼ u

��
p;�ðxÞe�ip�a; (2.30)

��
�0��

�0u
�0�0
p;� ð��1xÞ ¼

ffiffiffiffiffiffiffiffiffi
!�p

!p

s
Wð�; pÞ�0�u

��
�p;�0 ðxÞ;

(2.31)

where Wð�; pÞ ¼ L�1ð�pÞ�LðpÞ is the Wigner rotation,
and Wð�; pÞ�0� is its spin 2 rep, R�

� ! ðB�1RBÞ�0�.
4 Thus

the gravitons are spin 2 solutions.
In terms of the modes, the general solution reads

h��ðxÞ ¼
Z

ddp
X
�

½ap;�u��
p;�ðxÞ þ a�p;�u

���
p;� ðxÞ�: (2.32)

The inner (symplectic) product on the space of solutions to
the equations of motion is

ðh; h0Þ ¼ i
Z

ddxh���ðxÞ@$0h
0
��ðxÞjt¼0: (2.33)

The u functions are orthonormal with respect to this product,

ðup;�; up0;�0 Þ ¼ �dðp� p0Þ���0 ; (2.34)

ðu�p;�; u�p0;�0 Þ ¼ ��dðp� p0Þ���0 ; (2.35)

ðup;�; u�p0;�0 Þ ¼ 0; (2.36)

and we can use the product to extract the a and a� coefficients
from any solution h��ðxÞ,

ap;� ¼ ðup;�; hÞ; (2.37)

a�p;� ¼ �ðu�p;�; hÞ: (2.38)

In the quantum theory, the a and a� become creation and
annihilation operators which satisfy the usual commutation
relations and produce massive spin 2 states. The fields hij and

their canonical momenta �ij, constructed from the a and a�,
will then automatically satisfy the Dirac algebra and con-
straints of the Hamiltonian analysis of Sec. II.A, providing a
quantization of the system. Once interactions are taken into
account, external lines of Feynman diagrams will get a factor
of the mode functions (2.29).

C. Propagator

Integrating by parts, we can rewrite the Fierz-Pauli action
(2.1) as

S ¼
Z

dDx
1

2
h��O��;�
h�
; (2.39)

where

O��
�
 ¼ ð�ð�

��
�Þ

 � �����
Þðh�m2Þ

� 2@ð�@ð���Þ

Þ þ @�@���
 þ @�@
�

��;

(2.40)

is a second order differential operator satisfying

O��;�
 ¼ O��;�
 ¼ O��;
� ¼ O�
;��: (2.41)

In terms of this operator, the equation of motion (2.10) can be
written simply as �S=�h�� ¼ O��;�
h�
 ¼ 0.

To derive the propagator, we go to momentum space,

O��
�
ð@ ! ipÞ ¼ �ð�ð�

��
�Þ

 � �����
Þðp2 þm2Þ

þ 2pð�pð���Þ

Þ � p�p���


� p�p
�
��: (2.42)

The propagator is the operator D�
;
� with the same sym-

metries Eq. (2.41) which satisfies

O��;�
D�
;
� ¼ i

2
ð��


��
� þ ��


�
�
� Þ: (2.43)

4We show the Lorentz transformation property as follows:

��
�0��

�0�
�0�0 ðp; �Þeip���1x ¼ ½�LðpÞ���0 ½�LðpÞ���0��

0�0 ðk; �Þei�p�x

¼ ½Lð�pÞðL�1ð�pÞ�LðpÞÞ���0 ½Lð�pÞðL�1ð�pÞ�LðpÞÞ���0�ðk; �Þ�
0�0ei�p�x

¼ ½Lð�pÞWð�; pÞ���0 ½Lð�pÞWð�; pÞ���0�ðk; �Þ�
0�0ei�p�x:

The little group element is a spatial rotation. For any spatial rotation R�
�, we have

R�
�0R�

�0�
�0�0 ðk; �Þ ¼ R�

�0R�
�0B

�0
� ��

�0�0 ðk; �0Þ ¼ B�0
�R

�00
�0 ����ðk; �00Þ ¼ ðB�1RBÞ�0

��
��ðk; �0Þ:

Plugging back into the above,

��
�0��

�0�
�0�0 ðp; �Þeip���1x ¼ Lð�pÞ��0Lð�pÞ��0Wð�; pÞ�0

��
�0�0 ðk; �0Þei�p�x ¼ Wð�; pÞ�0

��
��ð�p; �0Þei�p�x;

where W is the spin 2 representation of the little group in a basis rotated by B, W ¼ B�1RB.
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The right side is the identity operator on the space of sym-
metric tensors.

Solving Eq. (2.43), we find

D�
;
�¼ �i

p2þm2

�
1

2
ðP�
P
�þP��P

Þ

� 1

D�1
P�
P
�

�
; (2.44)

where P�
 	 ��
 þ p�p
=m
2.

In the interacting quantum theory, internal lines with mo-
mentum p will be assigned this propagator, which for large p
behaves as �p2=m4. This growth with p means we cannot
apply standard power counting arguments [such as those of
Chapter 12 ofWeinberg (1995)] to deduce the renormalizabil-
ity properties or strong coupling scales of a theory.We see later
how to overcome this difficulty by rewriting the theory in away
in which all propagators go similar to �1=p2 at high energy.

The massive graviton propagator (2.44) can be compared
to the propagator for the case m ¼ 0. For m ¼ 0, the action
becomes

Sm¼0 ¼
Z

dDx
1

2
h��E��;�
h�
; (2.45)

where the kinetic operator is

E��
�
¼O��

�
jm¼0

¼ð�ð�
��

�Þ

������
Þh�2@ð�@ð���Þ


Þ
þ@�@���
þ@�@
�

��: (2.46)

This operator has the symmetries (2.41). Acting on a sym-
metric tensor Z�� it reads

���;�
Z�
 ¼ hZ�� � ���hZ� 2@ð�@�Z�Þ� þ @�@�Z

þ ���@�@
Z
�
: (2.47)

The m ¼ 0 action has the gauge symmetry (2.2), and the
operator (2.46) is not invertible. Acting with it results in a
tensor which is automatically transverse, and it annihilates
anything which is pure gauge

@�ð���;�
Z�
Þ¼0; ���;�
ð@�	
þ@
	�Þ¼0:

(2.48)

To find a propagator, we must fix the gauge freedom. We
choose the Lorenz gauge (also called harmonic, or de Donder
gauge),

@�h�� � 1
2@�h ¼ 0: (2.49)

We reach this gauge by making a gauge transformation with
	� chosen to satisfy h	� ¼ �ð@�h�� � 1

2@�hÞ. This condi-
tion fixes the gauge only up to gauge transformations with
parameter 	� satisfying h	� ¼ 0. In this gauge, the equa-

tions of motion simplify to

hh�� � 1
2���hh ¼ 0: (2.50)

The solutions to this equation which also satisfy the gauge
condition (2.49) are the Lorenz gauge solutions to the original
equations of motion.

To the Lagrangian of Eq. (2.45) we add the following
gauge fixing term:

LGF ¼ �ð@�h�� � 1
2@�hÞ2: (2.51)

Quantum mechanically, this results from the Fadeev-Popov
gauge fixing procedure. We have

LþLGF ¼ 1
2h��hh�� � 1

4hhh; (2.52)

whose equations of motion are (2.50). Note, however, that the
classical gauge condition we have been using is not obtained
as an equation of motion and must be imposed separately if
solutions are to be compared.

We can write the gauge fixed Lagrangian as LþLGF ¼
1
2 h��

~O��;�
h�
, where

~O��;�
¼h½12ð�����
þ��
���Þ� 1
2�

����
�: (2.53)

Going to momentum space and inverting, we obtain the
propagator

D�
;
�¼�i

p2

�
1

2
ð��
�
�þ����

Þ� 1

D�2
��
�
�

�
;

(2.54)

which satisfies the Eq. (2.43) with ~O in place of O.
This propagator grows similar to �1=p2 at high energy.
Comparing the massive and massless propagators,
Eqs. (2.44) and (2.54), and ignoring for a second the terms
in Eq. (2.44) which are singular as m ! 0, there is a differ-
ence in coefficient for the last term, even as m ! 0. For
D ¼ 4, it is 1=2 vs 1=3. This is the first sign of a discontinuity
in the m ! 0 limit.

III. LINEAR RESPONSE TO SOURCES

We now add a fixed external symmetric source T��ðxÞ to
the action (2.1),

S¼
Z
dDx�1

2
@�h��@

�h��þ@�h��@
�h���@�h

��@�h

þ1

2
@�h@

�h�1

2
m2ðh��h

���h2Þþ�h��T
��:

(3.1)

Here � ¼ M�ðD�2Þ=2
P is the coupling strength to the source.5

The equations of motion are now sourced by T��,

hh�� � @�@�h
�
� � @�@�h

�
� þ ���@�@
h

�


þ @�@�h� ���hh�m2ðh�� � ���hÞ ¼ ��T��:

(3.2)

In the case m ¼ 0, acting on the left with @� gives identically
zero, so we must have the conservation condition @�T�� ¼ 0

if there is to be a solution. For m � 0, there is no such
condition.

5The normalizations chosen here are in accord with the general

relativity definition T�� ¼ ð2= ffiffiffiffiffiffiffiffi�g
p Þ�L=�g��, as well as the nor-

malization �g�� ¼ 2�h��.
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A. General solution to the sourced equations

We now find the retarded solution of Eq. (3.2), to which the
homogeneous solutions of Eq. (2.2) can be added to obtain the
general solution. Acting on the equation of motion (3.2) with
@�, we find

@�h�� � @�h ¼ �

m2
@�T��: (3.3)

Plugging this back into Eq. (3.2), we find

hh�� � @�@�h�m2ðh�� � ���hÞ
¼ ��T�� þ �

m2
½@�@�T�� þ @�@�T�� � ���@@T�;

where @@T is short for the double divergence @�@�T
��.

Taking the trace of this we find

h ¼ � �

m2ðD� 1ÞT � �

m4

D� 2

D� 1
@@T: (3.4)

Applying this to Eq. (3.3), we find

@�h�� ¼ � �

m2ðD� 1Þ @�T þ �

m2
@�T��

� �

m4

D� 2

D� 1
@�@@T; (3.5)

which when applied along with Eq. (3.4) to the equations of
motion gives

ð@2 �m2Þh�� ¼ ��

�
T�� � 1

D� 1

�
��� �

@�@�

m2

�
T

�

þ �

m2

�
@�@�T�� þ @�@�T��

� 1

D� 1

�
��� þ ðD� 2Þ @�@�

m2

�
@@T

�
:

(3.6)

Thus we have seen that the equation of motion (3.2) implies
the following three equations:

ðh�m2Þh��¼��

�
T��� 1

D�1

�
����

@�@�

m2

�
T

�

þ �

m2

�
@�@�T��þ@�@�T��

� 1

D�1

�
���þðD�2Þ@�@�

m2

�
@@T

�
;

@�h��¼� �

m2ðD�1Þ@�Tþ
�

m2
@�T��

� �

m4

D�2

D�1
@�@@T;

h¼� �

m2ðD�1ÞT�
�

m4

D�2

D�1
@@T: (3.7)

Conversely, it is straightforward to see that these three equa-
tions imply the equation of motion (3.2).

Taking the first equation of (3.7) and tracing, we find

ðh�m2Þ
�
hþ �

m2ðD� 1ÞT þ �

m4

D� 2

D� 1
@@T

�
¼ 0:

Under the assumption that ð@2 �m2Þf ¼ 0 ) f ¼ 0 for any
function f, the third equation is implied. This will be the case

with good boundary conditions, such as the retarded bound-
ary conditions we impose when we are interested in the
classical response to sources. The second equation of (3.7)
can also be shown to follow under this assumption, so that we
may obtain the solution by Fourier transforming only the first
equation of (3.7). This solution can also be obtained by
applying the propagator (2.44) to the Fourier transform of
the source.

Despite the absence of gauge symmetry, we will often
be interested in sources which are conserved anyway,
@�T

�� ¼ 0. When the source is conserved, and under the

assumptions in the paragraph above, we are left with just the
equation

ð@2 �m2Þh�� ¼ ��

�
T�� � 1

D� 1

�
��� �

@�@�

m2

�
T

�
:

(3.8)

The general solution for a conserved source is then

h��ðxÞ¼�
Z dDp

ð2�ÞDe
ipx 1

p2þm2

�
�
T��ðpÞ� 1

D�1

�
���þ

p�p�

m2

�
TðpÞ

�
; (3.9)

where T��ðpÞ is the Fourier transform of the source,
T��ðpÞ ¼ R

dDxe�ipxT��ðxÞ. To get the retarded field, we

integrate above the poles in the p0 plane.

B. Solution for a point source

We now specialize to four dimensions so that � ¼ 1=MP,
and we consider as a source the stress tensor of a mass M
point particle at rest at the origin

T��ðxÞ¼M�
�
0 �

�
0�

3ðxÞ; T��ðpÞ¼2�M�
�
0 �

�
0�ðp0Þ:

(3.10)

Note that this source is conserved. For this source, the general
solution (3.9) gives

h00ðxÞ ¼ 2M

3MP

Z d3p

ð2�Þ3 e
ip�x 1

p2 þm2
;

h0iðxÞ ¼ 0;

hijðxÞ ¼ M

3MP

Z d3p

ð2�Þ3 e
ip�x 1

p2 þm2

�
�ij þ

pipj

m2

�
:

(3.11)

Using the formulas

Z d3p

ð2�Þ3 e
ip�x 1

p2 þm2
¼ 1

4�

e�mr

r
;

Z d3p

ð2�Þ3 e
ip�x pipj

p2 þm2
¼ �@i@j

Z d3p

ð2�Þ3 e
ip�x 1

p2 þm2

¼ 1

4�

e�mr

r

�
1

r2
ð1þmrÞ�ij

� 1

r4
ð3þ 3mrþm2r2Þxixj

�
;

(3.12)
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where r 	 ffiffiffiffiffiffiffiffi
xixi

p
, we have

h00ðxÞ ¼ 2M

3MP

1

4�

e�mr

r
; h0iðxÞ ¼ 0;

hijðxÞ ¼ M

3MP

1

4�

e�mr

r

�
1þmrþm2r2

m2r2
�ij

� 1

m2r4
ð3þ 3mrþm2r2Þxixj

�
: (3.13)

Note the Yukawa suppression factors e�mr characteristic of a
massive field.

For future reference, it is convenient to record these ex-
pressions in spherical coordinates for the spatial variables.
Using the formula ½FðrÞ�ij þ GðrÞxixj�dxidxj ¼
½FðrÞ þ r2GðrÞ�dr2 þ FðrÞr2d�2 to get to spherical coordi-
nates we find

h��dx
�dx� ¼ �BðrÞdt2 þ CðrÞdr2 þ AðrÞr2d�2;

(3.14)

where

BðrÞ ¼ � 2M

3MP

1

4�

e�mr

r
;

CðrÞ ¼ � 2M

3MP

1

4�

e�mr

r

1þmr

m2r2
;

AðrÞ ¼ M

3MP

1

4�

e�mr

r

1þmrþm2r2

m2r2
:

(3.15)

In the limit r 
 1=m these reduce to

BðrÞ ¼ � 2M

3MP

1

4�r
;

CðrÞ ¼ � 2M

3MP

1

4�m2r3
;

AðrÞ ¼ M

3MP

1

4�m2r3
:

(3.16)

Corrections are suppressed by powers of mr.
For comparison, we compute the point source solution for

the massless case as well. We choose the Lorenz gauge (2.49).
In this gauge, the equations of motion simplify to

hh�� � 1
2���hh ¼ ��T��: (3.17)

Taking the trace, we find hh ¼ ½2=ðD� 2Þ��T, and upon
substituting back, we get

hh�� ¼ ��

�
T�� � 1

D� 2
���T

�
: (3.18)

This equation, along with the Lorenz gauge condition (2.49),
is equivalent to the original equation of motion in the Lorenz
gauge.

Taking @� on Eq. (3.17) and on its trace, using conserva-
tion of T�� and comparing, we have hð@�h�� � 1

2 @�hÞ ¼ 0,

so that the Lorentz condition is automatically satisfied
when boundary conditions are satisfied with the property
that hf ¼ 0 ) f ¼ 0 for any function f, as is the case
when we impose retarded boundary conditions. We can
then solve Eq. (3.17) by Fourier transforming.

h��ðxÞ¼�
Z dDp

ð2�ÞDe
ip�x 1

p2

�
T��ðpÞ� 1

D�2
���TðpÞ

�
;

(3.19)

where T��ðpÞ ¼ R
dDxe�ip�xT��ðxÞ is the Fourier transform

of the source. To get the retarded field, we integrate above the
poles in the p0 plane.

Now we specialize to D ¼ 4, and we consider as a source
the point particle of mass M at the origin (3.10). For this
source, the general solution (3.19) gives

h00ðxÞ ¼ M

2MP

Z d3p

ð2�Þ3 e
ipx 1

p2
¼ M

2MP

1

4�r
;

h0iðxÞ ¼ 0;

hijðxÞ ¼ M

2MP

Z d3p

ð2�Þ3 e
ipx 1

p2
�ij ¼ M

2MP

1

4�r
�ij:

(3.20)

For later reference, we record this result in spherical
spatial coordinates as well. Using the formula ½FðrÞ�ij þ
GðrÞxixj�dxidxj ¼ ½FðrÞ þ r2GðrÞ�dr2 þ FðrÞr2d�2 to get

to spherical coordinates we find a metric of the form (3.14)
with

BðrÞ ¼ � M

2MP

1

4�r
; CðrÞ ¼ M

2MP

1

4�r
;

AðrÞ ¼ M

2MP

1

4�r
:

(3.21)

C. The vDVZ discontinuity

We now extract some physical predictions from the point
source solution. Assume we have a test particle moving in this
field, and that this test particle responds to h�� in the same

way that a test particle in general relativity responds to the
metric deviation �g�� ¼ ð2=MPÞh��. We know from the

textbooks [see, for example, Chapter 7 of Carroll (2004)]
that if h�� takes the form 2h00=MP ¼ �2�, 2hij=MP ¼
�2c�ij, h0i ¼ 0 for some functions �ðrÞ and c ðrÞ, then
the Newtonian potential experienced by the particle is
given by �ðrÞ. Furthermore, if c ðrÞ ¼ ��ðrÞ for some con-
stant �, called the parametrized post-Newtonian (PPN) pa-
rameter, and if �ðrÞ ¼ �k=r for some constant k, then the
angle for the bending of light at impact parameter b around
the heavy source is given by � ¼ 2ð1þ �Þ=b. Looking at
Eq. (3.20), the massless graviton gives us the values

�¼�GM

r
; c ¼�GM

r
; massless graviton; (3.22)

using 1=M2
P ¼ 8�G. The PPN parameter is therefore � ¼ 1

and the magnitude of the light bending angle for light incident
at impact parameter b is

� ¼ 4GM

b
; massless graviton: (3.23)

For the massive case, the metric (3.13) is not quite in the
right form to read off the Newtonian potential and light
bending. To simplify things, we notice that while the massive
gravity action is not gauge invariant, we assumed that the
coupling to the test particle is that of GR, so this coupling is
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gauge invariant. Thus we are free to make a gauge trans-
formation on the solution h��, and there will be no effect on

the test particle. To simplify the metric (3.13), we go back to
Eq. (3.11) and notice that the pipj=m

2 term in hij is pure

gauge, so we can ignore this term. Thus our metric is gauge
equivalent to the metric

h00ðxÞ ¼ 2M

3MP

1

4�

e�mr

r
;

h0iðxÞ ¼ 0;

hijðxÞ ¼ M

3MP

1

4�

e�mr

r
�ij:

(3.24)

We then have, in the small mass limit,

� ¼ � 4

3

GM

r
;

c ¼ � 2

3

GM

r
�ij; massive graviton:

(3.25)

These are the same values as obtained for the ! ¼ 0 Brans-
Dicke theory. The Newtonian potential is larger than for the
massless case. The PPN parameter is � ¼ 1

2 , and the magni-

tude of the light bending angle for light incident at impact
parameter b is the same as in the massless case,

� ¼ 4GM

b
; massive graviton: (3.26)

If we want, we can make the Newtonian potential agree with
GR by scalingG ! 3

4G. Then the light bending would change

to � ¼ 3GM=b, off by 25% from GR.
What this all means is that linearized massive gravity, even

in the limit of zero mass, gives predictions which are order 1
different from linearized GR. If nature were described by
either one or the other of these theories, we would, by making
a finite measurement, be able to tell whether the graviton
mass is mathematically zero or not, in violation of our
intuition that the physics of nature should be continuous in
its parameters. This is the vDVZ discontinuity (van Dam and
Veltman, 1970; Zakharov, 1970) [see also Iwasaki (1970) and
Carrera and Giulini (2001)]. It is present in other physical
predictions as well, such as the emission of gravitational
radiation (van Nieuwenhuizen, 1973b).

IV. THE STÜCKELBERG TRICK

We have seen that there is a discontinuity in the physical
predictions of linear massless gravity and the massless limit
of linear massive gravity, known as the vDVZ discontinuity.
In this section, we expose the origin of this discontinuity. We
see explicitly that the correct massless limit of massive
gravity is not massless gravity, but rather massless gravity
plus extra degrees of freedom, as expected since the gauge
symmetry which kills the extra degrees of freedom appears
only when the mass is strictly zero. The extra degrees
of freedom are a massless vector and a massless scalar
which couples to the trace of the energy momentum tensor.
This extra scalar coupling is responsible for the vDVZ
discontinuity.

Taking m ! 0 straight away in the Lagrangian (3.1) does
not yield a smooth limit, because degrees of freedom are lost.

To find the correct limit, the trick is to introduce new fields
and gauge symmetries into the massive theory in a way that
does not alter the theory. This is the Stückelberg trick. Once
this is done, a limit can be found in which no degrees of
freedom are gained or lost.

A. Vector example

To introduce the idea, we consider a simpler case, the
theory of a massive photon A� coupled to a (not necessarily

conserved) source J�,

S ¼
Z

dDx� 1

4
F��F

�� � 1

2
m2A�A

� þ A�J
�; (4.1)

where F�� 	 @�A� � @�A�. The mass term breaks the

would-be gauge invariance �A� ¼ @��, and for D ¼ 4 this

theory describes the 3 degrees of freedom of a massive spin 1
particle. Recall that the propagator for a massive vector is
½�i=ðp2 þm2Þ�ð��� þ p�p�=m

2Þ, which is similar to

�1=m2 for large momenta, invalidating the usual power
counting arguments.

As it stands, the limit m ! 0 of the Lagrangian (4.1) is not
a smooth limit because we lose a degree of freedom; for
m ¼ 0 we have Maxwell electromagnetism which in D ¼ 4
propagates only 2 degrees of freedom, the two polarizations
of a massless helicity 1 particle. Also, the limit does not exist
unless the source is conserved, as this is a consistency
requirement in the massless case.

The Stückelberg trick consists of introducing a new scalar
field �, in such a way that the new action has gauge symme-
try but is still dynamically equivalent to the original action. It
will expose a different m ! 0 limit which is smooth, in that
no degrees of freedom are gained or lost. We introduce a field
� by making the replacement

A� ! A� þ @��; (4.2)

following the pattern of the gauge symmetry we want to
introduce (Stückelberg, 1957). This is emphatically not a
change of field variables. It is not a decomposition of A�

into transverse and longitudinal parts (A� is not meant to

identically satisfy @�A
� ¼ 0 after the replacement), and it is

not a gauge transformation [the Lagrangian (4.1) is not gauge
invariant]. Rather, this is creating a new Lagrangian from the
old one, by the addition of a new field �. F�� is invariant

under this replacement, since the replacement looks similar to
a gauge transformation and F�� is gauge invariant. The only

thing that changes is the mass term and the coupling to the
source,

S ¼
Z

dDx� 1

4
F��F

�� � 1

2
m2ðA� þ @��Þ2

þ A�J
� ��@�J

�: (4.3)

We have integrated by parts in the coupling to the source. The
new action now has the gauge symmetry

�A� ¼ @��; �� ¼ ��: (4.4)

By fixing the gauge � ¼ 0, called the unitary gauge (a gauge
condition for which it is permissible to substitute back into
the action, because the potentially lost � equation is implied
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by the divergence of the A� equation), we recover the original

massive Lagrangian (4.1), which means Eqs. (4.1) and (4.3)
are equivalent theories. They both describe the 3 degrees of
freedom of a massive spin 1 in D ¼ 4. The new Lagrangian
(4.3) does the job using more fields and gauge symmetry.

The Stückelberg trick is a terrific illustration of the fact that
gauge symmetry is a complete sham. It represents nothing
more than a redundancy of description. We can take any
theory and make it a gauge theory by introducing redundant
variables. Conversely, given any gauge theory, we can always
eliminate the gauge symmetry by eliminating the redundant
degrees of freedom. The catch is that removing the redun-
dancy is not always a smart thing to do. For example, in
Maxwell electromagnetism it is impossible to remove the
redundancy and at the same time preserve manifest Lorentz
invariance and locality. Of course, electromagnetism with
gauge redundancy removed is still electromagnetism, so it
is still Lorentz invariant and local, it is just not manifestly so.
With the Stückelberg trick presented here, on the other hand,
we are adding and removing extra gauge symmetry in a rather
simple way, which does not mess with the manifest Lorentz
invariance and locality.

We see from Eq. (4.3) that � has a kinetic term, in addition
to cross terms. Rescaling � ! m�1� in order to normalize
the kinetic term, we have

S ¼
Z

dDx� 1

4
F��F

�� � 1

2
m2A�A

� �mA�@
��

� 1

2
@��@��þ A�J

� � 1

m
�@�J

�; (4.5)

and the gauge symmetry reads

�A� ¼ @��; �� ¼ �m�: (4.6)

Consider now the m ! 0 limit. Note that if the current is
not conserved [or its divergence does not go to zero with at
least a power of m (Fronsdal, 1980)], then the scalar becomes
strongly coupled to the divergence of the source and the limit
does not exist. Assuming a conserved source, the Lagrangian
becomes in the limit

L ¼ �1
4F��F

�� � 1
2@��@��þ A�J

�; (4.7)

and the gauge symmetry is

�A� ¼ @��; �� ¼ 0: (4.8)

It is now clear that the number of degrees of freedom is
preserved in the limit. For D ¼ 4 two of the 3 degrees of
freedom go into the massless vector, and one goes into the
scalar.

In the limit the vector decouples from the scalar, and we
are left with a massless gauge vector interacting with the
source, as well as a completely decoupled free scalar. This
m ! 0 limit is a different limit than the nonsmooth limit
we would have obtained by taking m ! 0 straight away in
Eq. (4.1). We have scaled � ! m�1� in order to canonically
normalize the scalar kinetic term, so we are actually using a
new scalar �new ¼ m�old which does not scale withm, so the
smooth limit we are taking is to scale the old scalar degree of
freedom up as we scale m down, in such a way that the new
scalar degree of freedom remains preserved.

Rather than unitary gauge, we can instead fix a Lorentz-
like gauge for the action (4.3),

@�A
� þm� ¼ 0: (4.9)

This gauge fixes the gauge freedom up to a residual gauge
parameter satisfying ðh�m2Þ� ¼ 0. We can add the gauge
fixing term

SGF ¼
Z

dDx� 1

2
ð@�A� þm�Þ2: (4.10)

As in the massless case, quantum mechanically this term
results from the Fadeev-Popov gauge fixing procedure.
Adding the gauge fixing term diagonalizes the Lagrangian,

Sþ SGF ¼
Z

dDx
1

2
A�ðh�m2ÞA� þ 1

2
�ðh�m2Þ�

þ A�J
� � 1

m
�@�J

�; (4.11)

and the propagators for A� and � are, respectively,

�i���

p2 þm2
;

�i

p2 þm2
; (4.12)

which are similar to �1=p2 at high momenta. Thus we have
managed to restore the good high energy behavior of the
propagators.

It is possible to find the gauge invariant mode functions for
A� and �, which can then be compared to the unitary gauge

mode functions of the massive photon. In the massless limit,
there is a direct correspondence; � is gauge invariant and
becomes the longitudinal photon, A� has the usual Maxwell

gauge symmetry and its gauge invariant transverse modes are
exactly the transverse modes of the massive photon.

B. Graviton Stückelberg and origin of the vDVZ discontinuity

Now consider massive gravity,

S ¼
Z

dDxLm¼0 � 1

2
m2ðh��h

�� � h2Þ þ �h��T
��;

(4.13)

where Lm¼0 is the Lagrangian of the massless graviton. We
want to preserve the gauge symmetry �h�� ¼ @�	� þ @�	�

present in them ¼ 0 case, so we introduce a Stückelberg field
A� patterned after the gauge symmetry,

h�� ! h�� þ @�A� þ @�A�: (4.14)

The Lm¼0 term remains invariant because it is gauge invari-
ant and Eq. (4.14) looks like a gauge transformation, so all
that changes is the mass term,

S ¼
Z

dDxLm¼0 � 1

2
m2ðh��h

�� � h2Þ � 1

2
m2F��F

��

� 2m2ðh��@
�A� � h@�A

�Þ þ �h��T
��

� 2�A�@�T
��; (4.15)

where we have integrated by parts in the last term, and where
F�� 	 @�A� � @�A�.
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There is now a gauge symmetry

�h�� ¼ @�	� þ @�	�; �A� ¼ �	�; (4.16)

and fixing the gauge A� ¼ 0 recovers the original massive

gravity action (as in the vector case, this is a gauge condition
for which it is permissible to substitute back into the action,
because the potentially lost A� equation is implied by the

divergence of the h�� equation). At this point, we might

consider scaling A� ! m�1A� to normalize the vector ki-

netic term, and then take the m ! 0 limit. In this limit, we
end up with a massless graviton and a massless photon, for a
total of 4 degrees of freedom (in four dimensions). So at this
point, m ! 0 is still not a smooth limit, since we would be
losing one of the original 5 degrees of freedom.

We go one step further and introduce a scalar gauge
symmetry, by introducing another Stückelberg field �,

A� ! A� þ @��: (4.17)

The action (4.15) now becomes

S ¼
Z

dDxLm¼0 � 1

2
m2ðh��h

�� � h2Þ

� 1

2
m2F��F

�� � 2m2ðh��@
�A� � h@�A

�Þ
� 2m2ðh��@

�@��� h@2�Þ þ �h��T
��

� 2�A�@�T
�� þ 2��@@T; (4.18)

where @@T 	 @�@�T
�� and we have integrated by parts in

the last term.
There are now two gauge symmetries

�h�� ¼ @�	� þ @�	�; �A� ¼ �	�; (4.19)

�A� ¼ @��; �� ¼ ��: (4.20)

By fixing the gauge � ¼ 0 we recover the Lagrangian (4.15).
Suppose we now rescale A� ! ð1=mÞA�, � ! ð1=m2Þ�,

under which the action becomes

S ¼
Z

dDxLm¼0 � 1

2
m2ðh��h

�� � h2Þ � 1

2
F��F

��

� 2mðh��@
�A� � h@�A

�Þ
� 2ðh��@

�@��� h@2�Þ þ �h��T
��

� 2

m
�A�@�T

�� þ 2

m2
��@@T; (4.21)

and the gauge transformations become

�h�� ¼ @�	� þ @�	�; �A� ¼ �m	�;

�A� ¼ @��; �� ¼ �m�;
(4.22)

where we have absorbed one factor on m into the gauge
parameter �.

Now take the m ! 0 limit. [If the source is not conserved
and the divergences do not go to zero fast enough with m
(Fronsdal, 1980), then � and A� become strongly coupled to

the divergence of the source, so we now assume the source is
conserved.] In this limit, the theory now takes the form

S ¼
Z

dDxLm¼0 � 1

2
F��F

�� � 2ðh��@
�@��� h@2�Þ

þ �h��T
��: (4.23)

We see that this has all 5 degrees of freedom: a scalar-tensor
vector theory where the vector is completely decoupled but
the scalar is kinetically mixed with the tensor.

To see this, we unmix the scalar and tensor, at the expense
of the minimal coupling to T��, by a field redefinition.
Consider the change

h�� ¼ h0�� þ ����; (4.24)

where � is any scalar. This is the linearization of a conformal
transformation. The change in the massless spin 2 part is (no
integration by parts here)

Lm¼0ðhÞ ¼ Lm¼0ðh0Þ þ ðD� 2Þ½@��@�h0
� @��@�h

0�� þ 1
2ðD� 1Þ@��@���:

(4.25)

This is simply the linearization of the effect of a conformal
transformation on the Einstein-Hilbert action.

By taking � ¼ ½2=ðD� 2Þ�� in the transformation (4.24),
we can arrange to cancel all the off-diagonal h� terms in the
Lagrangian (4.23), trading them in for a � kinetic term. The
Lagrangian (4.23) now takes the form

S ¼
Z

dDxLm¼0ðh0Þ � 1

2
F��F

�� � 2
D� 1

D� 2
@��@��

þ �h0��T
�� þ 2

D� 2
��T; (4.26)

and the gauge transformations read

�h0�� ¼ @�	� þ @�	�; �A� ¼ 0; (4.27)

�A� ¼ @��; �� ¼ 0: (4.28)

There are now (for D ¼ 4) manifestly 5 degrees of freedom,
two in a canonical massless graviton, two in a canonical
massless vector, and one in a canonical massless scalar.6

Note, however, that the coupling of the scalar to the trace
of the stress tensor survives the m ¼ 0 limit. We exposed the
origin of the vDVZ discontinuity. The extra scalar degree of
freedom, since it couples to the trace of the stress tensor, does
not affect the bending of light (for which T ¼ 0), but it does
affect the Newtonian potential. This extra scalar potential
exactly accounts for the discrepancy between the massless
limit of massive gravity and massless gravity.

As a side note, one can see from this Stückelberg trick that
violating the Fierz-Pauli tuning for the mass term leads to a
ghost. Any deviation from this form, and the Stückelberg
scalar will acquire a kinetic term with four derivatives
�ðh�Þ2, indicating that it carries 2 degrees of freedom,
one of which is ghostlike (de Urries and Julve, 1995, 1998).
The Fierz-Pauli tuning is required to exactly cancel these
terms, up to total derivative.

6Ordinarily the Maxwell term would come with a 1
4 and the scalar

kinetic term with a 1
2 , but we leave different factors here just to

avoid unwieldiness.
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Returning to the action for m � 0 (and a not necessarily
conserved source), we now know to apply the transformation

h�� ¼ h0�� þ 2

D� 2
����;

which yields

S ¼
Z

dDxLm¼0ðh0Þ � 1

2
m2ðh0��h

0�� � h02Þ

� 1

2
F��F

�� þ 2
D� 1

D� 2
�

�
hþ D

D� 2
m2

�
�

� 2mðh0��@
�A� � h0@�A�Þ

þ 2
D� 1

D� 2
ðm2h0�þ 2m�@�A

�Þ þ �h0��T
��

þ 2

D� 2
��T � 2

m
�A�@�T

�� þ 2

m2
��@@T:

(4.29)

The gauge symmetry reads

�h0�� ¼ @�	� þ @�	� þ 2

D� 2
m����;

�A� ¼ �m	�;

(4.30)

�A� ¼ @��; �� ¼ �m�: (4.31)

We can go to a Lorentz-like gauge, by imposing the gauge
conditions (Huang and Parker, 2007; Nibbelink, Peloso, and
Sexton, 2007)

@�h0�� � 1
2@�h

0 þmA� ¼ 0; (4.32)

@�A
� þm

�
1

2
h0 þ 2

D� 1

D� 2
�

�
¼ 0: (4.33)

The first condition fixes the 	� symmetry up to a residual

transformation satisfying ðh�m2Þ	� ¼ 0. It is invariant

under � transformations, so it fixes none of this symmetry.
The second condition fixes the � symmetry up to a residual
transformation satisfying ðh�m2Þ� ¼ 0. It is invariant
under 	� transformations, so it fixes none of this symmetry.

We add two corresponding gauge fixing terms to the action,
resulting from either Fadeev-Popov gauge fixing or classical
gauge fixing,

SGF1 ¼
Z

dDx�
�
@�h0�� � 1

2
@�h

0 þmA�

�
2
; (4.34)

SGF2 ¼
Z

dDx�
�
@�A

� þm

�
1

2
h0 þ 2

D� 1

D� 2
�

��
2
:

(4.35)

These have the effect of diagonalizing the action,

Sþ SGF1 þ SGF2

¼
Z

dDx
1

2
h0��ðh�m2Þh0��

� 1

4
h0ðh�m2Þh0 þ A�ðh�m2ÞA�

þ 2
D� 1

D� 2
�ðh�m2Þ�þ �h0��T

��

þ 2

D� 2
��T � 2

m
�A�@�T

�� þ 2

m2
��@@T:

(4.36)

The propagators of h0��, A�, and � are now, respectively,

�i

p2 þm2

�
1

2
ð��
�
� þ ����

Þ � 1

D� 2
��
�
�

�
;

1

2

�i���

p2 þm2
;

D� 2

4ðD� 1Þ
�i

p2 þm2
; (4.37)

which all behave as �1=p2 for high momenta, so we may
now apply standard power counting arguments.

With some amount of work, it is possible to find the gauge
invariant mode functions for h0��, A�, and �, which can then

be compared to the unitary gauge mode functions of Sec. II.B.
In the massless limit, there is a direct correspondence; � is
gauge invariant and its 1 degree of freedom is exactly the
longitudinal mode (2.20), the A� has the usual Maxwell

gauge symmetry and its gauge invariant transverse modes
are exactly the vector modes (2.21), and finally the h0�� has

the usual massless gravity gauge symmetry and its gauge
invariant transverse modes are exactly the transverse modes
of the massive graviton.

V. NONLINEAR INTERACTIONS

Up to this point, we have studied only the linear theory of
massive gravity, which is determined by the requirement that
it propagates only one massive spin 2 degree of freedom. We
now turn to the study of the possible interactions and non-
linearities for massive gravity.

A. Massive general relativity

What we want in a full theory of massive gravity is some
nonlinear theory whose linear expansion around some back-
ground is the massive Fierz-Pauli theory (2.1). Unlike in GR,
where the gauge invariance constrains the full theory to be
Einstein gravity, the extension for massive gravity is not
unique. In fact, there is no obvious symmetry to preserve,
so any interaction terms whatsoever are allowed.

The first extension we consider would be to deform GR by
simply adding the Fierz-Pauli term to the full nonlinear GR
action, that is, choosing the only nonlinear interactions to be
those of GR,

S ¼ 1

2�2

Z
dDx

�
ð ffiffiffiffiffiffiffiffi�g
p

RÞ

�
ffiffiffiffiffiffiffiffiffiffi
�g0

q 1

4
m2gð0Þ��gð0Þ�
ðh��h�
 � h��h�
Þ

�
:

(5.1)
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Here there are several subtleties. Unlike GR, the Lagrangian

now explicitly depends on a fixed metric gð0Þ��, which we call

the absolute metric, on which the linear massive graviton

propagates. We have h�� ¼ g�� � gð0Þ�� as before. The mass

term is unchanged from its linear version, so the indices on
h�� are raised and traced with the absolute metric. The

presence of this absolute metric in the mass term breaks the
diffeomorphism invariance of the Einstein-Hilbert term. Note
that there is no way to introduce a mass term using only the
full metric g��, since tracing it with itself just gives a

constant, so the nondynamical absolute metric is required to
create the traces and contractions.

Varying with respect to g�� we obtain the equations of

motion

ffiffiffiffiffiffiffiffi�g
p �

R���1

2
Rg��

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q
m2

2
ðgð0Þ��gð0Þ�
h�
�gð0Þ�
h�
gð0Þ��Þ¼0:

(5.2)

Indices on R�� are raised with the full metric, and those on

h�� with the absolute metric. We see that if the absolute

metric gð0Þ�� satisfies the Einstein equations, then g�� ¼ gð0Þ��,

i.e., h�� ¼ 0, is a solution. When dealing with massive

gravity and more complicated nonlinear solutions thereof,
there can be at times two different background structures.
On the one hand, there is the absolute metric, the structure
which breaks explicitly the diffeomorphism invariance. On
the other hand, there is the background metric, which is a
solution to the full nonlinear equations, about which we may
expand the action. Often the solution metric we are expanding
around will be the same as the absolute metric, but if we were
expanding around a different solution, say a black hole, there
would be two distinct structures, the black hole solution
metric and the absolute metric.

If we add matter to the theory and agree to use only
minimal coupling to the metric g��, then the absolute metric

does not directly influence the matter. It is the geodesics and
lengths as measured by the full metric (i.e., the solution of the
field equations) that we care about. In massive gravity, unlike
in GR, if we have a solution, we cannot perform a diffeo-
morphism on it to obtain a second solution to the same theory.
What we obtain instead is a solution to a different massive
gravity theory, one in which the absolute metric is related to
the original absolute metric by the same diffeomorphism.

Going to more general interactions beyond Eq. (5.1), our
main interest will be in adding interaction terms with no
derivatives, since these are most important at low energies.
The most general such potential which reduces to Fierz-Pauli
at quadratic order involves adding terms cubic and higher in
h�� in all possible ways

S ¼ 1

2�2

Z
dDx

�
ð ffiffiffiffiffiffiffiffi�g
p

RÞ �
ffiffiffiffiffiffiffiffiffiffi
�g0

q 1

4
m2Uðgð0Þ; hÞ

�
;

(5.3)

where the interaction potential U is the most general one that
reduces to Fierz-Pauli at linear order,

Uðgð0Þ; hÞ ¼ U2ðgð0Þ; hÞ þ U3ðgð0Þ; hÞ þ U4ðgð0Þ; hÞ
þ U5ðgð0Þ; hÞ þ � � � ; (5.4)

U2ðgð0Þ; hÞ ¼ ½h2� � ½h�2; (5.5)

U3ðgð0Þ; hÞ ¼ þC1½h3� þ C2½h2�½h� þ C3½h�3; (5.6)

U4ðgð0Þ; hÞ ¼ þD1½h4� þD2½h3�½h� þD3½h2�2
þD4½h2�½h�2 þD5½h�4; (5.7)

U5ðgð0Þ; hÞ ¼ þF1½h5� þ F2½h4�½h� þ F3½h3�½h�2
þ F4½h3�½h2� þ F5½h2�2½h�
þ F6½h2�½h�3 þ F7½h�5;

..

.
: (5.8)

The square bracket indicates a trace, with indices raised with
gð0Þ;��, i.e., ½h� ¼ gð0Þ��h��, ½h2� ¼ gð0Þ��h�
g

ð0Þ
�h��, etc.
The coefficients C1, C2, etc. are generic coefficients. Note
that the coefficients in Unðgð0Þ; hÞ for n > D are redundant by
1, because there is a combination of the various contractions,
the characteristic polynomial LTD

n ðhÞ (see the Appendix),
which vanishes identically. Thus one of the coefficients in
Unðgð0Þ; hÞ for n > D (or any one linear combination) can be
set to zero.

If we want, we can reorganize the terms in the potential by
raising and lowering with the full metric g�� rather than the
absolute metric gð0Þ��,

S ¼ 1

2�2

Z
dDx

�
ð ffiffiffiffiffiffiffiffi�g
p

RÞ � ffiffiffiffiffiffiffiffi�g
p 1

4
m2Vðg; hÞ

�
; (5.9)

where

Vðg; hÞ ¼ V2ðg; hÞ þ V3ðg; hÞ þ V4ðg; hÞ þ V5ðg; hÞ
þ � � � ; (5.10)

V2ðg; hÞ ¼ hh2i � hhi2; (5.11)

V3ðg; hÞ ¼ þc1hh3i þ c2hh2ihhi þ c3hhi3; (5.12)

V4ðg; hÞ ¼ þd1hh4i þ d2hh3ihhi þ d3hh2i2
þ d4hh2ihhi2 þ d5hhi4; (5.13)

V5ðg; hÞ ¼ þf1hh5i þ f2hh4ihhi þ f3hh3ihhi2
þ f4hh3ihh2i þ f5hh2i2hhi
þ f6hh2ihhi3 þ f7hhi5;

..

.
; (5.14)

where the angled brackets are traces with the indices raised
with respect to g��. It does not matter whether we use
potential (5.3) with indices raised by gð0Þ��, or the potential
(5.9) with indices raised by g��. The two carry the same
information and we can easily relate the coefficients of the
two by expanding the inverse full metric and the full deter-
minant in powers of h�� raised with the absolute metric,
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g�� ¼ gð0Þ�� � h�� þ h��h�
� � h��h�


h

� þ � � � ;

(5.15)

ffiffiffiffiffiffiffiffi�g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð0Þ

q �
1þ 1

2
h� 1

4

�
h��h�� � 1

2
h2
�
þ � � �

�
:

(5.16)

The following is useful for this purpose:

hhni ¼ X1
l¼0

ð�1Þl lþ n� 1
l

� �
½hlþn�: (5.17)

While the zero derivative interaction terms we have written
in Eq. (5.3) are general, the two derivative terms are not, since
we have demanded they sum up to the Einstein-Hilbert form.
The potential has broken the diffeomorphism invariance, so
there is no symmetry reason for the two derivative interaction
terms to take the Einstein-Hilbert form. We could deviate
from it if we wanted, but we will see later that there are good
reasons why it is better not to. We may also conceivably add
general interactions with more than two derivatives, but we
omit these for the same reasons we omit them in GR, because
they are associated with higher order effective field theory
effects which we hope will be small in suitable regimes.

B. Spherical solutions and the Vainshtein radius

We now look at static spherical solutions. We specialize to
four dimensions, and for definiteness we pick the action (5.1)
with the minimal mass term. We attempt to find spherically
symmetric solutions to the equation of motion (5.2), in the
case where the absolute metric is flat Minkowski in spherical
coordinates,

gð0Þ��dx�dx� ¼ �dt2 þ dr2 þ r2d�2:

We consider a spherically symmetric static ansatz for the
dynamical metric7

g��dx
�dx� ¼ �BðrÞdt2 þ CðrÞdr2 þ AðrÞr2d�2:

(5.18)

Plugging this ansatz into the equations of motion, we get the
following from the tt equation, rr equation, and �� equation
(which is the same as the �� equation by spherical symme-
try), respectively,

4BC2m2r2A3 þ ½2BðC� 3ÞC2m2r2

� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
ðC� rC0Þ�A2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
½2C2 � 2rð3A0 þ rA00ÞCþ r2A0C0�A

þ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
r2ðA0Þ2 ¼ 0; (5.19)

4ðBþ rB0ÞA2 þ ½2r2A0B0 � 4BðC� rA0Þ�Aþ Br2ðA0Þ2
A2BC2r2

� 2ð2Aþ B� 3Þm2ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p ¼ 0; (5.20)

�2B2C2m2rA4�2B2C2ðBþC�3Þm2rA3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
f2C0B2þ½rB0C0 �2CðB0 þrB00Þ�B

þCrðB0Þ2gA2

þB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
½CrA0B0 þBð4CA0 �rC0A0 þ2CrA00Þ�A

�B2C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2BC

p
rðA0Þ2¼0: (5.21)

In the massless case, AðrÞ could be removed by a coordinate
gauge transformation, and the last equation was redundant; it
was a consequence of the first two. With nonzero m, there is
no diffeomorphism invariance, so no such coordinate change
can be made, and the last equation is independent.

We expand these equations around the flat space solution

B0ðrÞ ¼ 1; C0ðrÞ ¼ 1; A0ðrÞ ¼ 1: (5.22)

We introduce the expansion

BðrÞ ¼ B0ðrÞ þ �B1ðrÞ þ �2B2ðrÞ þ � � � ;
CðrÞ ¼ C0ðrÞ þ �C1ðrÞ þ �2C2ðrÞ þ � � � ;
AðrÞ ¼ A0ðrÞ þ �A1ðrÞ þ �2A2ðrÞ þ � � � :

(5.23)

Plugging into the equations of motion and collecting like
powers of �, theOð0Þ part gives 0 ¼ 0 because B0, C0, and A0

are solutions to the full nonlinear equations. At each higher
order in � we obtain a linear equation that lets us solve for the
next term. At Oð�Þ we obtain

2ðm2r2 � 1ÞA1 þðm2r2 þ 2ÞC1

þ 2rð�3A0
1 þC0

1 � rA00
1 Þ ¼ 0; (5.24)

� 1

2
B1m

2 þ
�
1

r2
�m2

�
A1 þ rðA0

1 þ B0
1Þ � C1

r2
¼ 0;

(5.25)

rA1m
2 þ rB1m

2 þ rC1m
2 � 2A0

1 � B0
1 þ C0

1

� rA00
1 � rB00

1 ¼ 0: (5.26)

One way to solve these equations is as follows. Algebraically
solve them simultaneously for A1, A

0
1, and A

00
1 in terms of B1 ’s

and C1’s and their derivatives. Then write the equations
ðd=drÞA1ðB;CÞ ¼ A0

1ðB;CÞ and ðd=drÞA0ðB;CÞ ¼ A00ðB;CÞ.
Solve these two equations for C1 and C0

1 in terms of B1 ’s

derivatives. Then write ðd=drÞC1ðBÞ ¼ C0
1ðBÞ. What is left is

� 3rB1m
2 þ 6B0

1 þ 3rB00
1 ¼ 0: (5.27)

7In general, when there are two metrics staticity and spherical

symmetry are not enough to put both in diagonal form. An r

dependent off-diagonal drdt term can remain in one of them. We

will not seek such off-diagonal metrics and will limit ourselves to

the diagonal ansatz.
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There are two integration constants in the solution to
Eq. (5.27); one is left arbitrary and the other must be sent
to zero to prevent the solutions from blowing up at infinity.
We then recursively determine C1 and A1. Thus the whole
solution is determined by two pieces of initial data.8

The solution is

B1ðrÞ ¼ � 8GM

3

e�mr

r
; (5.28)

C1ðrÞ ¼ � 8GM

3

e�mr

r

1þmr

m2r2
; (5.29)

A1ðrÞ ¼ 4GM

3

e�mr

r

1þmrþm2r2

m2r2
; (5.30)

where we have chosen the integration constant so that we
agree with the solution (3.15) obtained from the Green’s
function.

We can now proceed to Oð�2Þ. Going through the same
procedure, we find for the solution, when mr 
 1,

BðrÞ � 1 ¼ � 8

3

GM

r

�
1� 1

6

GM

m4r5
þ � � �

�
; (5.31)

CðrÞ � 1 ¼ � 8

3

GM

m2r3

�
1� 14

GM

m4r5
þ � � �

�
; (5.32)

AðrÞ � 1 ¼ 4

3

GM

4�m2r3

�
1� 4

GM

m4r5
þ � � �

�
: (5.33)

The dots represent higher powers in the nonlinearity parame-
ter �. We see that the nonlinearity expansion is an expansion
in the parameter rV=r, where

rV 	
�
GM

m4

�
1=5

(5.34)

is known as the Vainshtein radius. As the mass m approaches
0, rV grows, and hence the radius beyond which the solution
can be trusted gets pushed out to infinity. As argued by
Vainshtein (1972), this perturbation expansion breaks down
and says nothing about the true nonlinear behavior of massive
gravity in the massless limit. Thus there was reason to hope
that the vDVZ discontinuity was merely an artifact of linear
perturbation theory, and that the true nonlinear solutions
showed a smooth limit (Vainshtein, 1972; Deffayet et al.,
2002; Porrati, 2002; Gruzinov, 2005).

One might hope that a smooth limit could be seen by
setting up an alternative expansion in the mass m2. We take
a solution to the massless equations, the ordinary
Schwarzschild solution, with metric coefficients B0, C0, and
A0, and then plug an expansion,

BðrÞ ¼ B0ðrÞ þm2B1ðrÞ þm4B2ðrÞ þ � � � ;
CðrÞ ¼ C0ðrÞ þm2C1ðrÞ þm4C2ðrÞ þ � � � ;
AðrÞ ¼ A0ðrÞ þm2A1ðrÞ þm4A2ðrÞ þ � � � ;

(5.35)

into the equations of motion. Collecting powers of m yields a
new perturbation equation at each order, but in this case the
equations are generally nonlinear. Even the equation we
obtain at Oðm2Þ for the first correction to Schwarzschild is
nonlinear, so working with this expansion is much more
difficult than working with the linearized expansion.

The linearity expansion is valid is the region r � rV . If
general relativity is restored at distances near the source, the
mass expansion should be valid in the opposite regime
r 
 rV , and the full solutions should interpolate between
the two expansions. There have been several extensive nu-
merical studies of the full nonlinear solutions in Damour,
Kogan, and Papazoglou (2003), in the decoupling limit in
Babichev, Deffayet, and Ziour (2009b), and more extensively
in the full theory in Deffayet (2008), Babichev, Deffayet, and
Ziour (2009a, 2010), with the final result being that the
nonlinearities can, in fact, work to restore continuity with
GR. We see later the mechanism by which this occurs. Some
analytic solutions in various cases are given by Berezhiani
et al. (2008), Comelli et al. (2011), Koyama, Niz, and
Tasinato (2011a, 2011b), and Nieuwenhuizen (2011).

C. Nonlinear Hamiltonian and the Boulware-Deser mode

We now study the Hamiltonian of the nonlinear massive
gravity action (5.1) with flat absolute metric ���,

S ¼ 1

2�2

Z
dDx

�
ð ffiffiffiffiffiffiffiffi�g
p

RÞ

� 1

4
m2�����
ðh��h�
 � h��h�
Þ

�
: (5.36)

We saw in Sec. II.A that the free theory carries 5 degrees of
freedom in D ¼ 4, due to the fact that the time components
h00 appeared as a Lagrange multiplier in the action. We see
that this no longer remains true once the nonlinearities of
Eq. (5.36) are taken into account, so there is now an extra
degree of freedom.

A particularly nice way to study gravity Hamiltonians is
through the Arnowitt-Deser-Misner (ADM) formalism
(Arnowitt, Deser, and Misner, 1960, 1962). A spacelike slic-
ing of spacetime by hypersurfaces �t is chosen, and we
change variables from components of the metric g�� to the

spatial metric gij, the lapse Ni, and the shift N, according to

g00 ¼ �N2 þ gijNiNj; (5.37)

g0i ¼ Ni; (5.38)

gij ¼ gij: (5.39)

Here i; j; . . . are spatial indices, and gij is the inverse of
the spatial metric gij (not the ij components of inverse

metric g��).
The Einstein-Hilbert part of the action in these variables

reads [see Poisson (2004) and Dyer and Hinterbichler (2009)
for detailed derivations and formulas]

1

2�2

Z
dDx

ffiffiffi
g

p
N½ðdÞR� K2 þ KijKij�; (5.40)

8Naively, it is a second order equation in A1 and B1, first order in

C1, and we think this requires five initial conditions, but, in fact, it is

a degenerate system, and there are second class constraints bringing

the required boundary data to 2.
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where ðdÞR is the curvature of the spatial metric gij. The

quantity Kij is the extrinsic curvature of the spatial hyper-

surfaces, defined as

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (5.41)

where the dot means a time derivative, and the covariant
derivatives are with respect to the spatial metric gij. We

then Legendre transform the spatial variables gij, defining

the canonical momenta

pij ¼ �L

� _gij
¼ 1

2�2

ffiffiffi
g

p ðKij � KgijÞ; (5.42)

and writing the action in Hamiltonian form

2�2L ¼
�Z

�t

ddxpij _gij

�
�H; (5.43)

where the Hamiltonian H is defined by

H ¼
�Z

�t

ddxpab _gab

�
� L ¼

Z
�t

ddxNCþ NiCi;

(5.44)

and the quantities C and Ci are

C ¼ ffiffiffi
g

p ½ðdÞRþ K2 � KijKij�;
Ci ¼ 2

ffiffiffi
g

p rjðKij � KgijÞ;
(5.45)

and here Kij should be thought of as a function of p
ij and gij,

obtained by inverting Eq. (5.42) for _gij and plugging into

Eq. (5.41),

Kij ¼ 2�2ffiffiffi
g

p
�
pij � 1

D� 2
pgij

�
: (5.46)

All traces and index manipulations are performed with gij
and its inverse.

For m ¼ 0, the action is pure constraint, and the
Hamiltonian vanishes, a characteristic of diffeomorphism
invariance. The shift N and lapse Ni appear as Lagrange
multipliers, enforcing the Hamiltonian constraint C ¼ 0 and
momentum constraints Ci ¼ 0. It can be checked that these
are first class constraints, generating the D diffeomorphism
symmetries of the action. In D ¼ 4, we have 12 phase space
metric components, minus four constraints, minus four gauge
symmetries, leaves 4 phase space degrees of freedom, the
same counting as in the linear theory. The nonlinear theory
contains the same number of degrees of freedom as the
linearized theory.

Now looking at the mass term, in ADM variables we have

�����
ðh��h�
 � h��h�
Þ
¼ �ik�jlðhijhkl � hikhjlÞ þ 2�ijhij

� 2N2�ijhij þ 2Niðgij � �ijÞNi; (5.47)

where hij 	 gij � �ij. The action becomes

S ¼ 1

2�2

Z
dDxpij _gij � NC� NiCi

�m2

4
½�ik�jlðhijhkl � hikhjlÞ þ 2�ijhij

� 2N2�ijhij þ 2Niðgij � �ijÞNi�: (5.48)

In the m � 0 case, the Fierz-Pauli term brings in contri-
butions to the action that are quadratic in the lapse and shift
(but still free of time derivatives). Thus the lapse and shift no
longer serve as Lagrange multipliers, but rather as auxiliary
fields, because their equations of motion can be algebraically
solved to determine their values,

N ¼ C
m2�ijhij

; Ni ¼ 1

m2
ðgij � �ijÞ�1Cj: (5.49)

When these values are plugged back into Eq. (5.48), we
have an action with no constraints or gauge symmetries at all,
so all the phase space degrees of freedom are active. The
resulting Hamiltonian is

H ¼ 1

2�2

Z
ddx

1

2m2

C2

�ijhij
þ 1

2m2
Ciðgij � �ijÞ�1Cj

þm2

4
½�ik�jlðhijhkl � hikhjlÞ þ 2�ijhij�; (5.50)

which is nonvanishing, unlike in GR. In four dimensions, we
thus have 12 phase space degrees of freedom, or 6 real
degrees of freedom. The linearized theory had only 5 degrees
of freedom, and we have here a case where the nonlinear
theory contains more degrees of freedom than the linear
theory. It should not necessarily be surprising that this can
happen, because there is no reason nonlinearities cannot
change the constraint structure of a theory or that kinetic
terms cannot appear at higher order.

As argued by Boulware and Deser (1972), the
Hamiltonian (5.50) is not bounded, and since the system is
nonlinear, it is not surprising that it has instabilities
(Gabadadze and Gruzinov, 2005). The nature of the instabil-
ity, i.e., whether it is a ghost of a tachyon, what backgrounds
it appears around, and its severity, is hard to see in the
Hamiltonian formalism. But in Sec. VII.B we see that this
instability is a ghost, a scalar with a negative kinetic term, and
that its mass around a given background can be determined. It
turns out that around flat space, the ghost degree of freedom is
not excited because its mass is infinite, but around nontrivial
backgrounds its mass becomes finite. This ghostly extra
degree of freedom is referred to as the Boulware-Deser ghost
(Boulware and Deser, 1972).

There is still the possibility that adding higher order inter-
action terms such as h3 terms and higher can remove the
ghostly sixth degree of freedom. Boulware and Deser ana-
lyzed a large class of various mass terms, showing that the
sixth degree of freedom remained (Boulware and Deser,
1972), but they did not consider the most general possible
potential. This was addressed by Creminelli et al. (2005),
where the analysis was done perturbatively in powers of h.
The lapse is expanded around its flat space values N ¼
1þ �N. In this case, �N plays the role of the Lagrange
multiplier, and it is shown that at fourth order, interaction
terms involving higher powers of �N cannot be removed. It
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was concluded by Creminelli et al. (2005) that the Boulware-
Deser ghost is unavoidable, but this conclusion is too quick. It
may be possible that there are field redefinitions under which
the lapse is made to appear linearly. Alternatively, it may be
possible that after one solves for the shift using its equation of
motion, then replaces into the action, the resulting action is
linear in the lapse, even though it contained higher powers of
the lapse before integrating out the shift. It is also possible
that the lapse appears linearly in the full nonlinear action,
even though at any finite order the action contains higher
powers of the lapse. [For discussions and examples of these
points, see de Rham and Gabadadze (2010a) and de Rham,
Gabadadze, and Tolley (2010)).]

As it turns out, it is, in fact, possible to add appropriate
interactions that eliminate the ghost (Hassan and Rosen,
2011a, 2011c). In D dimensions, there is a D� 2 parameter
family of such interactions. We study these in Sec. VIII,
where we see that they also have the effect of raising the
maximum energy cutoff at which massive gravity is valid as
an effective field theory.9 This class of theories solves the
problem of the Boulware-Deser ghost.10.

VI. THE NONLINEAR STÜCKELBERG FORMALISM

In this section we extend the Stückelberg trick to full
nonlinear order. This is a powerful tool with which to eluci-
date the nonlinear dynamics of massive gravity. It allows us to
trace the breakdown in the linear expansion to strong cou-
pling of the longitudinal mode. It also tells us about quantum
corrections, the scale of the effective field theory and where it
breaks down, as well as the nature of the Boulware-Deser
ghost and whether it lies within the effective theory or can be
consistently ignored.

A. Stückelberg for gravity and the restoration of

diffeomorphism invariance

We now construct the full nonlinear gravitational
Stückelberg. This method was brought to our attention by
Arkani-Hamed, Georgi, and Schwartz (2003) and Schwartz
(2003), but was, in fact, known previously from work in string
theory (Green and Thorn, 1991; Siegel, 1994).

The full finite gauge transformation for gravity is

g��ðxÞ ! @f�

@x�
@f


@x�
g�
ðfðxÞÞ; (6.1)

where fðxÞ is the arbitrary gauge function, which must be a
diffeomorphism. In massive gravity this gauge invariance is
broken only by the mass term. To restore it, we introduce a
Stückelberg field Y�ðxÞ, patterned after the gauge symmetry
(6.1), and we apply it to the metric g��,

g��ðxÞ ! G�� ¼ @Y�

@x�
@Y


@x�
g�
ðYðxÞÞ: (6.2)

The Einstein-Hilbert term
ffiffiffiffiffiffiffiffi�g

p
R will not change under this

substitution, because it is gauge invariant, and the substitution
looks similar to a gauge transformation with gauge parameter
Y�ðxÞ, so no Y fields are introduced into the Einstein-Hilbert
part of the action.

The graviton mass term, however, will pick up dependence
on Y’s in such a way that it will now be invariant under the
following gauge transformation:

g��ðxÞ ! @f�

@x�
@f


@x�
g�
ðfðxÞÞ;

Y�ðxÞ ! f�1ðYðxÞÞ�
(6.3)

with fðxÞ the gauge function. This is because the combination
G�� is gauge invariant (not covariant). To see this, first

transform11 g��,

@�Y
�@�Y


g�
ðYðxÞÞ
! @�Y

�@�Y

@�f

�jY@
f
jYg�
ðfðYðxÞÞÞ (6.7)

[here jY means the function is evaluated at YðxÞ] and then
transform Y,

9Note that merely finding a ghost free interacting Lorentz invari-

ant massive gravity theory is not hard totake; for instance,

Uð�; hÞ ¼ �2½detð��
� þ h�

�Þ � h� in Eq. (5.3), while letting the

kinetic interactions be those of the linear graviton only. A

Hamiltonian analysis just like that of Sec. II.A shows that h00
and h0i both remain Lagrange multipliers. The problem is that this

theory does not go to GR in the m ! 0 limit, it goes to massless

gravity. The real challenge is to construct a ghost free Lorentz

invariant massive gravity that reduces to GR.
10The objections of Alberte, Chamseddine, and Mukhanov (2011),

Folkerts, Pritzel, and Wintergerst (2011), and Kluson (2011) are

addressed by Hassan and Rosen (2011a), de Rham, Gabadadze, and

Tolley (2011a, 2011c), respectively.

11The transformation of fields that depend on other fields is

potentially tricky. To get it right, it is sometimes convenient to

tease out the dependencies using delta functions. For example,

suppose we have a scalar field �ðxÞ, which we know transforms

according to �ðxÞ ! �ðfðxÞÞ. How should �ðYðxÞÞ transform? To

make it clear, write

�ðYðxÞÞ ¼
Z

dy�ðyÞ�ðy� YðxÞÞ: (6.4)

Now the field � appears with coordinate dependence, which we

know how to deal with,

!
Z

dy�ðfðyÞÞ�ðy� YðxÞÞ ¼ �ðfðYðxÞÞÞ: (6.5)

Going through an identical trick for the metric, which we know

transforms as

g��ðxÞ ! @f�

@x�
@f


@x�
g�
ðfðxÞÞ;

we find

g�
ðYðxÞÞ ! @�f
�jY@
f
jYg�
ðfðYðxÞÞÞ: (6.6)
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! @�½f�1ðYÞ��@�½f�1ðYÞ�
@�f�jf�1ðYÞ
� @
f


jf�1ðYÞg�
ðYðxÞÞ
¼ @�½f�1��jY@�Y�@�½f�1�
jY

� @�Y
�@�f

�jf�1ðYÞ@
f
jf�1ðYÞg�
ðYðxÞÞ
¼ ��

��


� @�Y

�@�Y
�g�
ðYðxÞÞ

¼ @�Y
�@�Y


g�
ðYðxÞÞ: (6.8)

We now expand Y about the identity,

Y�ðxÞ ¼ x� þ A�ðxÞ: (6.9)

The quantity G�� is expanded as

G�� ¼ @Y�ðxÞ
@x�

@Y
ðxÞ
@x�

g�
ðYðxÞÞ

¼ @ðx� þ A�Þ
@x�

@ðx
 þ A
Þ
@x�

g�
ðxþ AÞ

¼ ð��
� þ @�A

�Þð�

� þ @�A


Þ
�
g�
 þ A�@�g�


þ 1

2
A�A�@�@�g�
 þ � � �

�
¼ g�� þ A�@�g�� þ @�A

�g�� þ @�A
�g��

þ 1

2
A�A
@�@
g�� þ @�A

�@�A

g�


þ @�A
�A
@
g�� þ @�A

�A
@
g�� þ � � � :
(6.10)

We now look at the infinitesimal transformation properties
of g, Y, G, and Y, under infinitesimal general coordinate
transformations generated by fðxÞ ¼ xþ 	ðxÞ. The metric
transforms in the usual way,

�g�� ¼ 	�@�g�� þ @�	
�g�� þ @�	

�g��: (6.11)

The transformation law for the A’s comes from the trans-
formation of Y,

Y�ðxÞ ! f�1ðYðxÞÞ� � Y�ðxÞ � 	�ðYðxÞÞ;
�Y� ¼ �	�ðYÞ;
�A� ¼ �	�ðxþ AÞ

¼ �	� � A�@�	
� � 1

2A
�A
@�@
	

� � � � � :
(6.12)

The A� are the Goldstone bosons that nonlinearly carry the
broken diffeomorphism invariance in massive gravity. The
combination G��, as we noted before, is gauge invariant

�G�� ¼ 0: (6.13)

We now have a recipe for Stückelberg-ing the general
massive gravity action of the form (5.3). We leave the
Einstein-Hilbert term alone. In the mass term, we write all
the h��’s with lowered indices to get rid of the dependence on

the absolute metric, and then we replace all occurrences of
h�� with

H��ðxÞ ¼ G��ðxÞ � gð0Þ��ðxÞ; (6.14)

where gð0Þ��ðxÞ is the absolute metric, which here is also the
background metric. We then expandG�� as in Eq. (6.10), and

Y� as in Eq. (6.9). To linear order in h�� ¼ g�� � gð0Þ�� and

A�, the expansion reads

H�� ¼ h�� þrð0Þ
� A� þrð0Þ

� A�; (6.15)

where indices on A are lowered with the background metric.
This is exactly the Stückelberg substitution we made in the
linear case.

In the case where the absolute metric is flat, gð0Þ�� ¼ ���,

we have from Eq. (6.10),

H�� ¼ h�� þ @�A� þ @�A� þ @�A
�@�A� þ � � � :

(6.16)

Here indices on A� are lowered with ��� and the ellipsis are

terms quadratic and higher in the fields and containing at least
one power of h. This takes into account the full nonlinear
gauge transformation.

As in the linear case, we usually want to do another
scalar Stückelberg replacement to introduce a Uð1Þ gauge
symmetry,

A� ! A� þ @��: (6.17)

Then the expansion for the flat absolute metric takes the form

H�� ¼ h�� þ @�A� þ @�A� þ 2@�@��þ @�A
�@�A�

þ @�A
�@�@��þ @�@

��@�A�

þ @�@
��@�@��þ � � � ; (6.18)

where again the ellipsis are terms quadratic and higher in the
fields and containing at least one power of h. The gauge
transformation laws are

�h�� ¼ @�	� þ @�	� þL	h��;

�A� ¼ @��� 	� � A�@�	� � 1
2A

�A
@�@
	� � � � � ;
�� ¼ ��: (6.19)

This method of Stückelberging can be extended to any
number of gravitons and general coordinate invariances, as
done by Arkani-Hamed, Georgi, and Schwartz (2003) and
Arkani-Hamed and Schwartz (2004), in analogy with the
gauge theory little Higgs models and dimensional decon-
struction (Arkani-Hamed, Cohen, and Georgi, 2001a,
2001b). When multiple gravitons are present, all but one
must become massive, since there are no nontrivial interac-
tions between multiple massless gravitons (Boulanger et al.,
2001) [see Bachas and Petropoulos (1993) and Kiritsis (2006)
for string theory and holographic proofs of this], and these
gravitons mimic the Kaluza-Klein spectrum of a discrete
extra dimension. Other work in this area, including applica-
tions to bigravity and multigravity models, can be found in
Jejjala, Leigh, and Minic (2003), Kan and Shiraishi (2003),
Deffayet and Mourad (2004), Groot Nibbelink and Peloso
(2005), Nibbelink, Peloso, and Sexton (2007), and Deffayet
and Randjbar-Daemi (2011).
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B. Another way to Stückelberg

In the last section, we introduced gauge invariance and the
Stückelberg fields by replacing the metric g�� with the gauge

invariant object G��. This is well suited to the case where we

have a potential arranged in the form (5.3), because all the
background gð0Þ��’s appearing in the contractions and deter-
minant of the mass term do not need replacing. The drawback
is that the Stückelberg expansion involves an infinite number
of terms higher order in h��. If we wish to keep track of the

h��’s, this is not very convenient.

Instead, we develop another method, which is to introduce

the Stückelberg fields through the background metric gð0Þ��,

and then allow g�� to transform covariantly. This method will

be better suited to a potential arranged in the form (5.9) and
will have the advantage that the Stückelberg expansion con-
tains no higher powers of h��.

We make the replacement

gð0Þ�� ! gð0Þ�
@�Y
�@�Y


: (6.20)

The Y�ðxÞ that are introduced are four fields, which despite
the index � are to transform as scalars under diffeomor-
phisms

Y�ðxÞ ! Y�ðfðxÞÞ; (6.21)

or infinitesimally,

�Y� ¼ 	�@�Y
�: (6.22)

This is to be contrasted with the transformation rule �Y� ¼
	�@�Y

� � ð@�	�ÞY� which would hold if Y� were a vector.

Given this scalar transformation rule for Y�, the replaced gð0Þ��

now transforms similar to a metric tensor. If we now assign
the usual diffeomorpshim transformation law to the metric

g�� (so that it is now covariant), quantities such as gð0Þ��g��

and other contractions will transform as diffeomorphism
scalars. We can take any action which is a scalar function

of gð0Þ�� and g��, and introduce gauge invariance in this way.
12.

This is convenient when we have a potential of the form
(5.9). First we lower all indices on the h��’s in the potential.

Now the background metric gð0Þ�� appears only through h�� ¼
g�� � gð0Þ��, so we replace all occurrences of h�� with

H�� ¼ g�� � gð0Þ�
@�Y
�@�Y


: (6.23)

Note that we do not need to make a replacement on the g��’s
used to contract the indices, nor on the

ffiffiffiffiffiffiffiffi�g
p

out front of the

potential in Eq. (5.9).
Expanding

Y� ¼ x� � A�; (6.24)

and using g�� ¼ gð0Þ�� þ h��, we have

H�� ¼ h�� þ gð0Þ��@�A
� þ gð0Þ��@�A

� � gð0Þ�
@�A
�@�A


:

(6.25)

Note the difference in sign for the term quadratic in A�

compared with Eq. (6.16).
Under infinitesimal gauge transformations we have

�A� ¼ �	� þ 	�@�A
�; (6.26)

�h�� ¼ rð0Þ
� 	� þrð0Þ

� 	� þL	h��; (6.27)

where the covariant derivatives are with respect to gð0Þ�� and

the indices on 	� are lowered using gð0Þ��. To linear order, the
transformations are

�A� ¼ �	�; (6.28)

�h�� ¼ rð0Þ
� 	� þrð0Þ

� 	�; (6.29)

which reproduces the linear Stückelberg expansion.

In the case of a flat background gð0Þ�� ¼ ���, the replace-

ment is

H�� ¼ h�� þ @�A� þ @�A� � @�A
�@�A�; (6.30)

with indices on A� lowered by ���. Notice that this is the

complete expression; there are no higher powers of h��,

unlike Eq. (6.16).
We often follow this with the replacement A� ! A� þ

@�� to extract the helicity 0 mode. The full expansion thus

reads

H�� ¼ h�� þ @�A� þ @�A� þ 2@�@��þ @�A
�@�A�

þ @�A
�@�@��þ @�@

��@�A� þ @�@
��@�@��:

(6.31)

Under infinitesimal gauge transformations,

�h�� ¼ @�	� þ @�	� þL	h��; (6.32)

�A� ¼ @��� 	� þ 	�@�A�; (6.33)

�� ¼ ��: (6.34)

Yet another way to introduce Stückelberg fields is advo-
cated by Alberte, Chamseddine, and Mukhanov (2010, 2011)
and Chamseddine and Mukhanov (2010), in which they make
the inverse metric g�� covariant through the introduction of
scalars g�� ! g�
@�Y

�@
Y
�. There have also been many

studies, initiated by ’t Hooft, of the so-called gravitational
Higgs mechanism, which is also essentially a Stückelberging
of different forms of massive gravity (Kirsch, 2005; Leclerc,
2006; ’t Hooft, 2007; Kakushadze, 2008a, 2008b; Demir and
Pak, 2009; Kluson, 2010; Oda, 2010a, 2010b). All of these

12This is essentially the technique of spurion analysis, where a

coupling constant is made to transform as a field. A quantity which

is normally a background quantity, a coupling constant in the case of

spurions, or the background gð0Þ�� in this case, is made to transform in

some way that gives the action more symmetries. Note that this

method of introducing gauge invariance can be carried out on any

Lorentz invariant action, even one that does not contain a dynamical

metric g��. For example, a plain old scalar field in flat space can be

made diffeomorphism invariant in this way. This highlights the fact

that general coordinate invariance is not the critical ingredient that

leads one to a theory of gravity, since it can be made to hold in any

theory.
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are equivalent to the theories we study, as can be seen simply
by going to unitary gauge (Berezhiani and Mirbabayi, 2010).
At the end of the day, Eq. (5.3) is the most general Lorentz
invariant graviton potential, and any Lorentz invariant mas-
sive gravity theory will have a unitary gauge with a potential
which is equivalent to it for some choice of the coefficients
C1, C2, etc.

VII. STÜCKELBERG ANALYSIS OF INTERACTING

MASSIVE GRAVITY

In this section, we set D ¼ 4 and apply the Stückelberg
analysis to the massive GR action (5.1) in the case of a flat
absolute metric. The mass term reads

Smass ¼ �M2
P

2

m2

4

Z
d4x�����
ðh��h�
 � h��h�
Þ:

(7.1)

The Stückelberg analysis instructs us to make the replace-
ment (6.18),

h�� ! H��

¼ h�� þ @�A� þ @�A� þ @�A
�@�A� þ 2@�@��

þ @�@
��@�@�� � � � : (7.2)

The extra terms with h in the ellipsis will not be important for
this theory, as we will see.

At the linear level, this replacement is exactly the linear
Stückelberg expansion of Sec. IV. We have to canonically
normalize the fields here to match the fields of the linear
analysis. Using a hat to signify the canonically normalized
fields with the same coefficients as used in Sec. IV (although
there we omitted the hats), we have

ĥ ¼ 1
2MPh; Â ¼ 1

2mMPA; �̂ ¼ 1
2m

2MP�:

(7.3)

We also get a whole slew of interaction terms, third order
and higher in the fields, suppressed by various scales. We
always assume m<MP. � always appears with two deriva-
tives, A always appears with one derivative, and h always
appears with none, so a generic term, with nh powers of h��,

nA powers of A�, and n� powers of �, reads

�m2M2
Ph

nhð@AÞnAð@2�Þn�
��

4�nh�2nA�3n�
� ĥnhð@ÂÞnAð@2�̂Þn� ; (7.4)

where the scale suppressing the term is

�� ¼ ðMPm
��1Þ1=�; � ¼ 3n� þ 2nA þ nh � 4

n� þ nA þ nh � 2
:

(7.5)

The larger �, the smaller the scale, since m<MP. We have
n� þ nA þ nh � 3, since we are only considering interaction

terms. The term suppressed by the smallest scale is the cubic
scalar term n� ¼ 3, nA ¼ nh ¼ 0, which is suppressed by the

scale �5 ¼ ðMPm
4Þ1=5,

� ð@2�̂Þ3
�5

5

; �5 ¼ ðMPm
4Þ1=5: (7.6)

In terms of the canonically normalized fields (7.3), the
gauge symmetries (6.19) read

�h�� ¼ @�	̂� þ @�	̂� þ 2

MP

L	̂ĥ��;

�Â� ¼ @��̂�m	̂� þ 2

MP

	̂�@�Â�

� 2

mM2
P

Â�Â
@�@
	̂� � � � � ;

�� ¼ �m�̂;

(7.7)

where we rescaled �̂ ¼ ðmMP=2Þ� and 	̂� ¼ ðMP=2Þ	�.
Finally, note that since the scalar field � always appears

with at least two derivatives in the Stückelberg replacement
(7.2), the resulting action is automatically invariant under the
global Galilean symmetry

�ðxÞ ! cþ b�x
�; (7.8)

where c and b� are constants. In addition, the action is

automatically invariant under global shifts in A� !
A� þ c� for constant c�. It will persist even in limits where

the gauge symmetries on A� and � no longer act.

A. Decoupling limit and breakdown of linearity

As seen in Sec. IV.B, the propagators have all been made to
go as �1=p2, so normal power counting applies, and the
lowest scale �5 is the cutoff of the effective field theory. To
focus in on the cutoff scale, we take the decoupling limit

m ! 0; MP ! 1; T ! 1; �5;
T

MP

fixed:

(7.9)

All interaction terms go to zero, except for the scalar cubic
term (7.6) responsible for the strong coupling, which
we calculate using the replacement H�� ¼ 2@�@��þ
@�@

��@�@�� since we do not need the vector and tensor

terms. As discussed in Sec. IV.B, we must also do the
conformal transformation h�� ¼ h0�� þm2����. This will

diagonalize all the kinetic terms (except for various cross
terms proportional to m which are eliminated with appropri-
ate gauge fixing terms, as discussed in Sec. IV.B, and which
go to zero anyway in the decoupling limit).

After all this, the Lagrangian for the scalar reads, up to a
total derivative,

S� ¼
Z

d4x� 3ð@�̂Þ2 þ 2

�5
5

½ðh�̂Þ3 � ðh�̂Þð@�@��̂Þ2�

þ 1

MP

�̂T: (7.10)

The free graviton coupled to the source via ð1=MPÞĥ0��T
��

also survives the limit, as does the free decoupled vector.
We can now understand the origin of the Vainshtein radius

at which the linear expansion breaks down around heavy
point sources. The scalar couples to the source through the
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trace, ð1=MPÞ�̂T. To linear order around a central source of
mass M, we have

�̂� M

MP

1

r
: (7.11)

The nonlinear term is suppressed relative to the linear term by
the factor

@4�̂

�5
5

� M

MP

1

�5
5r

5
: (7.12)

Nonlinearities become important when this factor becomes of
order 1, which happens at the radius

rV �
�
M

MP

�
1=5 1

�5

�
�
GM

m4

�
1=5

: (7.13)

When r & rV , linear perturbation theory breaks down and
nonlinear effects become important. This is exactly the
Vainshtein radius found in Sec. V.B by directly calculating
the second order correction to spherical solutions.

In the decoupling limit, the gauge symmetries (7.7) reduce
to their linear forms,

�h�� ¼ @�	̂� þ @�	̂�; �Â� ¼ @��̂; �� ¼ 0:

(7.14)

Even though � is gauge invariant in the decoupling limit, the
fact that it always comes with two derivatives means that the
global Galileon symmetry (7.8) is still present, as is the shift
symmetry on A�.

B. Ghosts

Note that the Lagrangian (7.10) is a higher derivative
action, and its equations of motion are fourth order. This
means that this Lagrangian actually propagates two
Lagrangian degrees of freedom rather than one, since we
need to specify twice as many initial conditions to uniquely
solve the fourth order equations of motion (de Urries and
Julve, 1998), and by Ostrogradski’s theorem (Ostrogradski,
1850; Woodard, 2007), one of these degrees of freedom is a
ghost. The decoupling limit contains 6 degrees of freedom:
two in the massless tensor, two in the free vector, and two in
the scalar. This matches the number of degrees of freedom in
the full theory as determined in Sec. V.C, so the decoupling
limit we have taken is smooth. The extra ghostly scalar
degree of freedom is the Boulware-Deser ghost. Note that
at linear order, the higher derivative scalar terms for the scalar
are not visible, so the linear theory has only 5 degrees of
freedom.

Following Creminelli et al. (2005), let us consider the
stability of the classical solutions to Eq. (7.10) around a
massive point source. We have a classical background �ðrÞ,
which is a solution of the �̂ equation of motion, and we
expand the Lagrangian of Eq. (7.10) to quadratic order in the

fluctuation ’ 	 �̂��. The result is schematically

L’ ��ð@’Þ2 þ ð@2�Þ
�5

5

ð@2’Þ2: (7.15)

There is a four-derivative contribution to the ’ kinetic term,
signaling that this theory propagates 2 linear degrees of
freedom. As shown in Sec. 2 of Creminelli et al. (2005),
one is stable and massless, and the other is a ghost with a
mass of the order of the scale appearing in front of the higher
derivative terms. So in this case the ghost has an r-dependent
mass

m2
ghostðrÞ �

�5
5

@2�ðrÞ : (7.16)

This shows that around a flat background, or far from the
source, the ghost mass goes to infinity and the ghost freezes,
explaining why it was not seen in the linear theory. It is only
around nontrivial backgrounds that it becomes active. Notice,
however, that the backgrounds around which the ghost be-
comes active are perfectly nice, asymptotically flat configu-
rations sourced by compact objects such as the Sun, and not
disconnected in any way in field space (this is in contrast to
the ghost in DGP, which occurs around only asymptotically
de Sitter solutions).

We are working in an effective field theory with a UV
cutoff �5; therefore we should not worry about instabilities
until the mass of the ghost drops below �5. This happens at
the distance rghost where @

2�c ��3
5. For a source of massM,

at distances r � rV the background field is similar to�ðrÞ �
ðM=MPÞð1=rÞ, so

rghost �
�
M

MP

�
1=3 1

�5

� rV �
�
M

MP

�
1=5 1

�5

: (7.17)

rghost is parametrically larger than the Vainshtein radius rV .

As we see in Sec. VII.D, the distance rghost is the same

distance at which quantum effects become important.
Whatever UV completion takes over should cure the ghost
instabilities that become present at this scale, so we will be
able to consistently ignore the ghost. We see already that we
cannot trust the classical solution even in regions parametri-
cally farther than the Vainshtein radius. The best we can do is
make predictions outside rghost, and we have more to say

about this later.

C. Resolution of the vDVZ discontinuity and the Vainshtein

mechanism

We are now in a position to see the mechanism by which
nonlinearities can resolve the vDVZ discontinuity. This is
known as the Vainshtein mechanism. It turns out to involve
the ghost in a critical role.

Far outside the Vainshtein radius, where the linear term of
Eq. (7.10) dominates, the field has the usual Coulombic 1=r
form. But inside the Vainshtein radius, where the cubic term
dominates, it is easy to see by power counting that the field
gets an r3=2 profile,

�̂�
8><
>:

M
MP

1
r ; r � rV;�

M
MP

�
1=2

�5=2
5 r3=2; r 
 rV:

(7.18)

At distances much below the Vainshtein radius, the ghost
mass (7.16) becomes very small, and the ghost starts to
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mediate a long-range force. Usually a scalar field mediates an
attractive force, but due to the ghost’s wrong sign kinetic
term, the force mediated by it is repulsive. In fact, it cancels
the attractive force due to the longitudinal mode, the force
responsible for the vDVZ discontinuity, and so general rela-
tivity is restored inside the Vainshtein radius.

We now see this more explicitly. Following Deffayet and
Rombouts (2005), some field redefinitions can be done on the
scalar action (7.10), and the result is an action schematically
of the form

L ¼ �ð@ ~�Þ2 þ ð@c Þ2 þ�5=2
5 c 3=2 þ 1

MP

~�T

þ 1

MP

cT:

Here ~� is the healthy longitudinal mode, c is the ghost mode,

and the original scalar can be found from �̂ ¼ ~�� c . Both
are coupled gravitationally to the stress tensor. Note that the
self-interactions appear in these variables as a peculiar non-
analytic c 3=2 term (we can also see that the ghost mass

around a background hc i will be �5=2
5 =hc i1=2). The ~� field

is free and has the profile ~�� ðM=MPÞð1=rÞ everywhere,
mediating an attractive force.

The c field, however, has two competing terms, which
become comparable at the Vainshtein radius. The linear term
dominates at radii smaller than the Vainshtein radius, so
c � ðM=MPÞð1=rÞ for r 
 rV . This profile generates a re-
pulsive Coulomb force that exactly cancels the attractive
force mediated by ~�, so in sum there are no extra forces
beyond gravity in this region. [The leading correction to the
profile is found by treating the c 3=2 term as a perturbation,
c � c 0 þ c ð1Þ þ � � � , with c 0 � ðM=MPÞð1=rÞ, plugging

in the equation of motion @2c ð1Þ þ�5=2
5 c 1=2

ð0Þ ¼ 0 obtaining

c ð1Þ � ðM=MPÞ1=2�5=2
5 r3=2, in agreement with Eq. (7.18).]

The funny nonlinear term dominates at radii larger than the
Vainshtein radius, so c � ðM=MPÞ21=�5

5r
6 for r � rV , and

so the ghost profile is negligible in this region compared to
the ~� profile. Thus the ghost ceases to be active beyond the
Vainshtein radius, and the longitudinal mode generates a fifth
force. This is known as a screening mechanism, a mechanism
for rendering a light scalar inactive at short distances through
nonlinearities [see the Introduction and references in
Hinterbichler and Khoury (2010) and Hinterbichler,
Khoury, and Nastase (2010), and in a different context
(Gabadadze and Iglesias, 2008)].

One can think of this as a kind of classical version of a
weakly coupled UV completion via a Higgs. Above the
Vainshtein radius (low energies), there is only the long dis-
tance scalar, which starts to become nonlinear (strongly
coupled) around the Vainshtein radius, so one can think of
this regime in terms of an effective field theory with cutoff of
the Vainshtein radius. Below the Vainshtein radius (high
energies), a new degree of freedom, the ghost (analogous to
the physical Higgs in the standard model), kicks in. Much
below the Vainshtein radius, everything is again linear and
weakly coupled, with the difference that there are now 2 active
degrees of freedom, so one can think of this as a classical UV
completion of the effective theory.

Of course, this ghostly mechanism for restoring continuity
with GR relies on an instability, which would become
apparent were we to investigate small fluctuations beyond
the gross-scale features described here. Furthermore, as we
see in the next section, the ghost issue is moot, since the
classical mechanism described in this section occurs outside
the regime of validity of the quantum effective theory and is
swamped by unknown quantum corrections.

D. Quantum corrections and the effective theory

Quantum mechanically, massive gravity is an effective
field theory, since there are nonrenormalizable operators sup-
pressed by the mass scale �5. The amplitude for �� ! ��
scattering at energy E, coming from the cubic coupling in
Eq. (7.10), is similar to A� ðE=�5Þ10. This amplitude
should correspond to the scattering of longitudinal gravitons.
The wave function of the longitudinal graviton (2.20) for a
large boost is proportional to m�2, while the largest term at
high momentum in the graviton propagator (2.44) is propor-
tional to m�4, so naive power counting suggests that the
amplitude at energies much larger than m is similar to A�
E14=M2

Pm
12. However, as recognized by Arkani-Hamed,

Georgi, and Schwartz (2003) and calculated explicitly by
Aubert (2004), there is a cancellation in the diagrams so
that the result agrees with the result of the Stückelberg
description. We encounter these kinds of cancellations again
in loops, and part of the usefulness of the Stückelberg de-
scription is that they are made manifest.

The amplitude becomes of the order of 1 and hence
strongly coupled when E��5. Thus �5 is the maximal
cutoff of the theory. We expect to generate all operators
compatible with the symmetries, suppressed by appropriate
powers of the cutoff. In the unitary gauge, there are no
symmetries, so we generate all operators of the form

cp;q@
qhp: (7.19)

We determine the scales in the coefficient cp;q.

After Stückelberging, the decoupling limit theory contains

only the scalar �̂ and the single coupling scale �5. In

addition, there is the Galileon symmetry �̂ ! �̂þ cþ
c�x

�. Quantum mechanically, we expect to generate in the

quantum effective action all possible operators with this
symmetry, suppressed by the appropriate power of the cutoff

�5. The Galileon symmetry forces each �̂ to carry at least
two derivatives,13 so the general term we can have is

� @qð@2�̂Þp
�3pþq�4

5

: (7.20)

13Actually, there are a finite number of terms which have fewer

than two derivatives per field, the so-called Galileon terms (Nicolis,

Rattazzi, and Trincherini, 2008) which change by a total derivative

under the Galileon symmetry (Nicolis, Rattazzi, and Trincherini,

2008). However, there is a nonrenormalization theorem that says

these are not generated at any loop by quantum corrections

(Hinterbichler, Trodden, and Wesley, 2010), so we need not include

them. We encounter them later when we raise the cutoff to �3.
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To compare with Eq. (7.19), we go back to the original

normalization for the fields by replacing �̂�m2MP� and
recall that @�@�� comes from an h�� to find that in unitary

gauge the coefficients cp;q are similar to

cp;q ���3p�qþ4
5 Mp

Pm
2p ¼ ðm16�4q�2pM2p�qþ4

P Þ1=5:
(7.21)

This comparison is possible because the operations of taking
the decoupling limit and computing quantum corrections
should commute.

Notice that the term with p ¼ 2, q ¼ 0 is a mass term,
�ðM2

Pm
4=�2

5Þh2, corresponding to a mass correction �m2 ¼
m2ðm2=�2

5Þ. This is down by a factor of m2=�2
5 from the tree

level mass term. Thus a small mass graviton m 
 �5 is
technically natural, and there is no quantum hierarchy prob-
lem associated with a small mass. This is in line with the
general rule of thumb that a small term is technically natural
if a symmetry emerges as the term is dialed to zero. In this
case, it is the diffeomorphism symmetry of GR which is
restored as the mass term goes to zero. The quantum mass
correction will also generically ruin the Fierz-Pauli tuning,
but its coefficient is small enough that ghosts and tachyons
associated with the tuning violation are postponed to the
cutoff; indeed the resulting ghost mass, using the relations
in Sec. II, is ��5.

It is important that there are no nonparametric modifica-
tions to the kinetic structure of the Einstein-Hilbert term, even
though the lack of gauge symmetry suggests that we are free
to make such modifications. Suppose we try to calculate the
mass correction directly in unitary gauge. The graviton mass
term contributes no vertices but alters the propagator so that
its high energy behavior is �k2=m4 (the next leading terms
are similar to 1=m2 and then 1=k2). At one loop, there are
two one-particle irreducible diagrams correcting the mass:

one containing two cubic vertices ð1=MPÞ@2ĥ3 from the
Einstein-Hilbert action and two propagators, and another

containing a single quartic vertex ð1=M2
PÞ@2ĥ4 from the

Einstein-Hilbert action and a single propagator. Cutting off
the loop at the momenta kmax ��5, the first diagram gives
the largest naive correction �m2 � ð1=M2

Pm
8Þ�12

5 ��2
5. (The

second diagram gives a smaller correction.) This is at the
cutoff, dangerously higher than the small correction �m2 �
m2ðm2=�2

5Þ we found in the Stückelberg formalism.

This means that there must be a nontrivial cancellation of
this leading divergence in unitary gauge, so that we recover
the Stückelberg result. This cancellation happens because the
kinetic interactions of Einstein-Hilbert are gauge invariant,
implying that the dangerous k�k�k�k
=m4 terms in the
graviton propagator do not contribute. Without these terms,
the propagator is similar to 1=m2 and the estimate for the first
diagram is �m2 � ð1=M2

Pm
4Þ�8

5 �m2ðm2=�2
5Þ, in agreement

with the Stückelberg prediction (again the second diagram
again gives a smaller correction). Nonparametrically altering
the coefficients in the kinetic structure would spoil this
cancellation and the resulting technical naturalness of the
small mass (although such alterations could be done without
spoiling technical naturalness if the alterations to the kinetic
terms are parametrically suppressed by appropriate powers of
m). These kinds of cancellations can be seen explicitly in the

calculations of Aubert (2004). Some loop calculations for
massive gravity have been done by Park (2010a, 2010b).

In summary, in unitary gauge the theory (5.1) in D ¼ 4 is a
natural effective field theory with a cutoff parametrically
larger than the graviton mass, with the effective action

S ¼
Z

d4x
M2

P

2

� ffiffiffiffiffiffiffiffi�g
p

R�m2

4
ðh2�� � h2Þ

�
þX

p;q

cp;q@
qhp; (7.22)

and a cutoff �5 ¼ ðm4MPÞ1=5.
We take into account the effect that the unknown quantum

operators have on the solution around a heavy source. Given

that the linear field is similar to �̂� ðM=MPÞð1=rÞ, the radius
rp;q at which the term (7.20) becomes comparable to the

kinetic term ð@�̂Þ2 is

rp;q �
�
M

MPl

�ðp�2Þ=ð3pþq�4Þ 1

�5

: (7.23)

This distance increases with p and asymptotes to its highest
value

rQ �
�
M

MPl

�
1=3 1

�5

: (7.24)

Thus we cannot trust the classical solution at distances
below rQ, since quantum operators become important there.

This distance is parametrically larger than the Vainshtein
radius, where classical nonlinearities become important.
Unlike the case in GR, there is no intermediate regime where
the linear approximation breaks down but quantum effects are
still small, so there is no sense in which a nonlinear solution
to massive gravity can be trusted for making real predictions
in light of quantum mechanics.

In particular, the entire ghost screening mechanism of
Sec. VII.C is in the nonlinear regime, and so it becomes
swamped in quantum corrections. Thus there is no regime
for which GR is a good approximation; the theory transitions
directly from the linear classical regime with a long-range
fifth force scalar, to the full quantum regime. Note that it is
the higher dimension operators that become important first,

FIG. 1. Regimes for massive gravity with cutoff�5 ¼ ðMPm
4Þ1=5,

and some values within the Solar System (i.e., M is the solar mass

and m is taken to be the Hubble scale), for which ��1
5 � 1011 km.

Note that rQ is a bit larger than the observable universe, i.e., this

theory makes no observable predictions within its range of validity.
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so there is no hope of finding the leading quantum correc-
tions. Finally, the radius rQ is the same as the radius rghost,

where the ghost mass drops below the cutoff, so it is con-
sistent to ignore the ghost since it lies beyond the reach of the
quantum effective theory. The various regions are shown in
Fig. 1. Note that in the decoupling limit we are working in,
the Schwarzschild radius (and the radii associated to all scales
larger than �5) are sent to zero, while the scale r� 1=m
where Yukawa suppression takes hold is sent to infinity.

VIII. THE �3 THEORY

We have seen that the theory (5.1) containing only the
linear graviton mass term has some undesirable features,
including a ghost instability and quantum corrections that
become important before classical nonlinearities can restore
continuity with GR. In this section, we consider the higher
order potential terms in Eq. (5.3) and ask whether they can
alleviate these problems. It turns out that there is a special
choice of potential that cures all these problems, at least in the
decoupling limit.

This choice also has the advantage of raising the cutoff.
With only the Fierz-Pauli mass term, the strong coupling
cutoff was set by the cubic scalar self-coupling

�ð@2�̂Þ3=�5
5. The cutoff �5 ¼ ðMPm

4Þ1=5 is very low, and

as we see generically any interaction term will have this
cutoff. But by choosing this special tuning of the higher order
interactions, we end up raising the cutoff to the higher scale
�3 ¼ ðMPm

2Þ1=3.
Arkani-Hamed, Georgi, and Schwartz (2003) already rec-

ognized that if the scalar self-interactions could be elimi-
nated, the cutoff would be raised to �3. This was studied
more fully by Creminelli et al. (2005), where the cancellation
was worked through and it was (mistakenly) concluded that
ghosts would be unavoidable once the cutoff was raised.
Motivated by constructions of massive gravity with auxiliary
extra dimensions (Gabadadze, 2009; de Rham, 2010; de
Rham and Gabadadze, 2010b), this was revisited by de
Rham and Gabadadze (2010a) and de Rham, Gabadadze,
and Tolley (2010), where the decoupling limit Lagrangian
was calculated explicitly and was seen to be ghost free. The
full theory was shown to be ghost free by Hassan and Rosen
(2011a, 2011c).

A. Tuning interactions to raise the cutoff

Looking back at the scales (7.5), the term suppressed by the
smallest scale is the cubic scalar term, which is suppressed by
the scale �5 ¼ ðMPm

4Þ1=5,

� ð@2�̂Þ3
MPm

4
: (8.1)

The next highest scale is �4 ¼ ðMPm
3Þ1=4, carried by a

quartic scalar interaction, and a cubic term with a single
vector and two scalars,

� ð@2�̂Þ4
M2

Pm
6
; � @Âð@2�̂Þ2

MPm
3

: (8.2)

The next highest is a quintic scalar, and so on. The only terms
which carry a scale less than �3 ¼ ðMPm

2Þ1=3 are terms with

only scalars ð@2�̂Þn, and terms with one vector and the rest

scalars @Âð@2�̂Þn.
The scale �3 is carried only by the following terms:

� ĥð@2�̂Þn
Mn�1

P m2n�2
; �ð@ÂÞ2ð@2�̂Þn

Mn
Pm

2n
: (8.3)

All other terms carry scales higher than �3.
It turns out that we can arrange to cancel all of the scalar

self-couplings by appropriately choosing the coefficients of
the higher order terms. Wework with the form of the potential
in Eq. (5.9) where indices are raised with the full metric, and
the Stückelberg formalism of Sec. VI.B. We do so because we
eventually want to keep track of powers of h, so the form of
the Stückelberg replacement in Sec. VI.B is simpler. We are
interested only in scalar self-interactions, so we may make the
replacement (6.31) with the vector field set to zero,

H�� ! 2@�@��� @�@��@�@
��: (8.4)

The interaction terms are a function of the matrix of second
derivatives ��� 	 @�@��. As reviewed in the Appendix,

there is at each order in � a single polynomial in ��� which

is a total derivative. By choosing the coefficients (5.9) cor-
rectly, we can arrange for the � terms to appear in these total
derivative combinations. The total derivative combinations
have at each order in � as many terms as there are terms in
the potential of Eq. (5.9), so all the coefficients must be fixed,
except for one at each order which becomes the overall
coefficient of the total derivative combination.

The choice of coefficients in the potential (5.9) which
removes the scalar self-interactions is, to fifth order (de
Rham and Gabadadze, 2010a),

c1 ¼ 2c3 þ 1
2; c2 ¼ �3c3 � 1

2; (8.5)

d1 ¼ �6d5 þ 1
16ð24c3 þ 5Þ;

d2 ¼ 8d5 � 1
4ð6c3 þ 1Þ;

d3 ¼ 3d5 � 1
16ð12c3 þ 1Þ;

d4 ¼ �6d5 þ 3
4c3;

(8.6)

f1 ¼ 7
32 þ 9

8c3 � 6d5 þ 24f7;

f2 ¼ � 5
32 � 15

16c3 þ 6d5 � 30f7;

f3 ¼ 3
8c3 � 3d5 þ 20f7;

f4 ¼ � 1
16 � 3

4c3 þ 5d5 � 20f7;

f5 ¼ 3
16c3 � 3d5 þ 15f7;

f6 ¼ d5 � 10f7:

(8.7)

At each order, there is a one-parameter family of choices that
works to create a total derivative. Here c3, d5, and f7 are
chosen to carry that parameter at order 3, 4, and 5, respec-
tively. Note, however, that at order 5 and above (orDþ 1 and
above if we were doing this in D dimensions), there is one
linear combination of all the terms, the characteristic poly-
nomial of h mentioned below Eq. (5.8) that vanishes identi-
cally. This means that one of the coefficients is redundant,
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and we can, in fact, set d5 and its higher counterparts to any
value we like without changing the theory. Thus there is only
a two parameter family (D� 2 parameter in dimension D) of
theories with no scalar self-interactions. This can be carried
through at all orders, and at the end there will be no terms
�ð@2�Þn.

The only terms with interaction scales lower than �3 were

the scalar self-interactions ð@2�̂Þn, and terms with one vector

and the rest scalars @Âð@2�̂Þn. We succeeded in eliminating
the scalar self-interactions, but since these always came from

combinations (A� þ @�) the terms @Âð@2�̂Þn are automati-

cally of the form @�A�XðnÞ
��, where the XðnÞ

�� are the functions

of @�@�� described in the Appendix, which are identically

conserved @�XðnÞ
�� ¼ 0. Thus, once the scalar self-interactions

are eliminated, the @Âð@2�̂Þn terms are all total derivatives
and are also eliminated.

Now the lowest interaction scale will be due to the terms in
Eq. (8.3),

� ĥð@2�̂Þn
Mnþ1

P m2nþ2
; �ð@ÂÞ2ð@2�̂Þn

Mnþ2
P m2nþ4

; (8.8)

which are suppressed by the scale �3 ¼ ðMPm
2Þ1=3, so the

cutoff has be raised to �3, carried by the terms (8.8).
This theory can, in fact, be resummed in an interesting

way, using an action involving square roots (de Rham,
Gabadadze, and Tolley, 2010; Hassan and Rosen, 2011b).

The decoupling limit is now

m ! 0; MP ! 1; �3 fixed; (8.9)

and the only terms which survive are those in Eq. (8.3). To
find these terms we must now go back to the full Stückelberg
replacement (6.31), and we must also expand the inverse
metric and determinant in the potential of Eq. (5.9) in powers
of h. The hð@2�Þn terms, up to quintic order in the decoupling
limit, and up to total derivatives are (de Rham and
Gabadadze, 2010a)

S ¼
Z

d4x
1

2
ĥ��E��;�
ĥ�
 � 1

2
ĥ��

�
�4Xð1Þ

��ð�̂Þ

þ 4ð6c3 � 1Þ
�3

3

Xð2Þ
��ð�̂Þ þ 16ð8d5 þ c3Þ

�6
3

Xð3Þ
��ð�̂Þ

�

þ 1

MP

ĥ��T
��: (8.10)

Here the XðnÞ
�� are the identically conserved combinations of

@�@��̂ described in the Appendix. The ð@AÞ2ð@2�Þ terms are

found to cubic order by de Rham and Gabadadze (2010b).
The terms with A’s can in any case be consistently set to zero
at the classical level, since they never appear linearly in the
Lagrangian, so we focus only on the terms involving h and�.
de Rham, Gabadadze, and Tolley (2010) used a nice trick to
show that the decoupling limit Lagrangian (8.10) is exact to
all orders in the fields, that is, there are no further terms
hð@2�Þn for n � 4. Properties of this Lagrangian, including
its cosmological solutions, degravitation effects, and
phenomenology are studied by de Rham et al. (2010).
Spherical solutions are studied by Chkareuli and
Pirtskhalava (2011). The cosmology of a covariantized ver-
sion was studied by de Rham and Heisenberg (2011).

In terms of the canonically normalized fields (7.3), the
gauge symmetries (6.34) of the full theory are

�Â� ¼ @��̂�m	̂� þ 2

MP

	̂�@�Â�; (8.11)

�h�� ¼ @�	̂� þ @�	̂� þ 2

MP

L	̂ĥ��; (8.12)

�� ¼ �m�̂; (8.13)

where we rescaled �̂ ¼ ðmMP=2Þ� and 	̂� ¼ ðMP=2Þ	�. In
the decoupling limit (8.9), this gauge symmetry reduces to its
linear form

�Â� ¼ @��̂; (8.14)

�h�� ¼ @�	̂� þ @�	̂�; (8.15)

�� ¼ 0: (8.16)

The Lagrangian (8.10) should be invariant under the decou-
pling limit gauge symmetries (8.16). Indeed, the identity

@�XðnÞ
�� ¼ 0 ensures that it is. The scalar � is gauge invariant

in the decoupling limit, but the fact that it always comes with
two derivatives means that the global Galileon symmetry
(7.8) is still present, as is the shift symmetry on A�.

Note that for the specific choices c3 ¼ 1=6 and d5 ¼
�1=48, all the interaction terms disappear. This could mean
that the theory becomes strongly coupled at some scale larger
than �3, or there could be no lowest scale, since there are
scales arbitrarily close to but above �3. In the latter case, the
theory would have no nonlinear behavior, and so no mecha-
nism to recover continuity with GR, and it would therefore be
ruled out observationally.

B. The appearance of Galileons and the absence of ghosts

We partially diagonalize the interaction terms in Eq. (8.10)
by using the properties (A.18). First we perform the confor-
mal transformation needed to diagonalize the linear terms,

ĥ�� ! ĥ�� þ �̂���, after which the Lagrangian takes the

form

S ¼
Z

d4x
1

2
ĥ��E��;�
ĥ�


� 1

2
ĥ��

�
4ð6c3 � 1Þ

�3
3

X̂ð2Þ
�� þ 16ð8d5 þ c3Þ

�6
3

X̂ð3Þ
��

�

þ 1

MP

ĥ��T
�� � 3ð@�̂Þ2 þ 6ð6c3 � 1Þ

�3
3

ð@�̂Þ2h�̂

þ 16ð8d5 þ c3Þ
�6

3

ð@�̂Þ2ð½�̂�2 � ½�̂2�Þ þ 1

MP

�̂T:

(8.17)

Here the brackets are traces of �̂�� 	 @�@��̂ and its powers

(the notation is explained at the end of the Introduction).
The cubic h�� couplings can be eliminated with a field

redefinition

ĥ�� ! ĥ�� þ 2ð6c3 � 1Þ
�3

3

@��̂@��̂;
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after which the Lagrangian reads

S ¼
Z

d4x
1

2
ĥ��E��;�
ĥ�
 � 8ð8d5 þ c3Þ

�6
3

ĥ��X̂ð3Þ
��

þ 1

MP

ĥ��T
�� � 3ð@�̂Þ2 þ 6ð6c3 � 1Þ

�3
3

ð@�̂Þ2h�̂

� 4
ð6c3 � 1Þ2 � 4ð8d5 þ c3Þ

�6
3

ð@�̂Þ2ð½�̂�2 � ½�̂2�Þ

� 40ð6c3 � 1Þð8d5 þ c3Þ
�9

3

ð@�̂Þ2ð½�̂�3 � 3½�̂2�½�̂�

þ 2½�̂3�Þ þ 1

MP

�̂T þ 2ð6c3 � 1Þ
�3

3MP

@��̂@��̂T��:

(8.18)

There is no local field redefinition that can eliminate the
h��� quartic mixing (there is a nonlocal redefinition that
can do it), so this is as unmixed as the Lagrangian can get
while staying local.

The scalar self-interactions in Eq. (8.18) are given by the
following four Lagrangians:

L2 ¼ �1
2ð@�Þ2; L3 ¼ �1

2ð@�Þ2½��;
L4 ¼ �1

2ð@�Þ2ð½��2 � ½�2�Þ;
L5 ¼ �1

2ð@�Þ2ð½��3 � 3½��½�2� þ 2½�3�Þ:
(8.19)

These are known as the Galileon terms (Nicolis, Rattazzi, and
Trincherini, 2008) [see also Sec. II of Hinterbichler, Trodden,
and Wesley (2010) for a summary of the Galileons]. They
share two special properties: their equations of motion are
purely second order (despite the appearance of higher deriva-
tive terms in the Lagrangians), and they are invariant up to a
total derivative under the Galilean symmetry (7.8), �ðxÞ !
�ðxÞ þ cþ b�x

�. As shown by Nicolis, Rattazzi, and

Trincherini (2008), the terms (8.19) are the only polynomial
terms in four dimensions with these properties.

The Galileon was first discovered in studies of the DGP
brane world model (Dvali, Gabadadze, and Porrati, 2000a),
for which the cubic Galileon L3 was found to describe the
leading interactions of the brane bending mode (Luty, Porrati,
and Rattazzi, 2003; Nicolis and Rattazzi, 2004). The rest of
the Galileons were then discovered by Nicolis, Rattazzi, and
Trincherini (2008), by abstracting the properties of the cubic
term away from DGP. They have some other very interesting
properties, such as a nonrenormalization theorem [see, e.g.,
Sec. VI of Hinterbichler, Trodden, and Wesley (2010)], and a
connection to the Lovelock invariants through brane embed-
ding (de Rham and Tolley, 2010). Because of these unex-
pected and interesting properties, they have since taken on a
life of their own. They have been generalized in many
directions (Deffayet, Deser, and Esposito-Farese, 2009,
2010; Deffayet, Esposito-Farese, and Vikman, 2009;
Padilla, Saffin, and Zhou, 2010; Deffayet et al., 2011;
Goon, Hinterbichler, and Trodden, 2011; Khoury, Lehners,
and Ovrut, 2011) and are the subject of much recent activity
[see, for instance, the many papers citing Nicolis, Rattazzi,
and Trincherini (2008)].

The fact that the equations are second order ensures that,
unlike Eq. (7.10), no extra degrees of freedom propagate. In

fact, as pointed out by de Rham and Gabadadze (2010a), the
properties (A.17) of the tensors X�� guarantee that there are

no ghosts in the Lagrangian (8.10) of the decoupling limit
theory.14 By going through a Hamiltonian analysis similar to
that of Sec. II.A, we see that h00 and h0i remain Lagrange
multipliers enforcing first class constraints [as they should
since the Lagrangian (8.10) is gauge invariant]. In addition,
the equations of motion remain second order, so the decou-
pling limit Lagrangian (8.10) is free of the Boulware-Deser
ghost and propagates 3 degrees of freedom around any
background.

Once the 2 degrees of freedom of the vector A� are

included, and if there are no ghosts in the vector part or its
interactions, the total number of degrees of freedom goes to 5,
the same as the linear massive graviton. The vector interac-
tions were shown to be ghost free at cubic order by de Rham
and Gabadadze (2010b). de Rham, Gabadadze, and Tolley
(2010) showed that the full theory beyond the decoupling
limit, including all the fields, is ghost free, up to quartic order
in the fields. This guarantees that any ghost must carry a mass
scale larger than �3 and hence can be consistently excluded
from the quantum theory. Finally, Hassan and Rosen (2011a,
2011c) showed, using the Hamiltonian formalism, that the
full theory, including all modes and to all orders beyond the
decoupling limit, carries 5 degrees of freedom. The�3 theory
is therefore free of the Boulware-Deser ghost, around any
background. This can also been seen in the Stückelberg
language (de Rham, Gabadadze, and Tolley, 2011a).

C. The �3 Vainshtein radius

We now derive the scale at which the linear expansion
breaks down around heavy point sources in the �3 theory. To
linear order around a central source of massM, the fields still
have their usual Coulomb form

�̂; ĥ� M

MP

1

r
: (8.20)

The nonlinear terms in Eqs. (8.10) or (8.18) are suppressed
relative to the linear term by a different factor than in the �5

theory,

@2�̂

�3
3

� M

MP

1

�3
3r

3
: (8.21)

Nonlinearities become important when this factor becomes of
the order of 1, which happens at the radius

rð3ÞV �
�
M

MP

�
1

�3

�
�
GM

m2

�
1=3

: (8.22)

This is parametrically larger than the Vainshtein radius found
in the �5 theory.

It is important that the decoupling limit Lagrangian is
ghost free. To see what could go wrong if there were a ghost,

expand around some spherical background �̂ ¼ �ðrÞ þ ’

14This is contrary to Creminelli et al. (2005) who claims that a

ghost is still present at quartic order. As remarked, however, by de

Rham and Gabadadze (2010a), they arrive at the incorrect decou-

pling limit Lagrangian, which can be traced to a minus sign mistake

in their Eq. 5, which should be as in Eq. (8.4).
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and similarly for h��. The cubic coupling and quartic cou-

plings could possibly give fourth order kinetic contributions
of the schematic form, respectively,

1

�3
3

�ð@2’Þ2; 1

�6
3

�@2�ð@2’Þ2: (8.23)

These would correspond to ghosts with r-dependent masses,

m2
ghostðrÞ �

�3
3

�
;

�6
3

�@2�
; (8.24)

or, given that the background fields are similar to ��
ðM=MPÞð1=rÞ,

m2
ghostðrÞ �

MP

M
�3

3r;

�
MP

M

�
2
�6

3r
4: (8.25)

Thus the ghost mass sinks below the cutoff �3 at the radius

rð3Þghost �
�
M

MP

�
1

�3

;

�
M

MP

�
1=2 1

�3

: (8.26)

As happened in the �5 theory, these radii are parametrically
larger than the Vainshtein radius. This is a fatal instability
which renders the whole nonlinear region inaccessible, unless
we lower the cutoff of the effective theory so that the ghost
stays above it, in which case unknown quantum corrections

would also kick in at �rð3Þghost, swamping the entire nonlinear

Vainshtein region.

D. The Vainshtein mechanism in the �3 theory

In the �5 theory, the key to the resolution of the vDVZ
discontinuity and recovery of GR was the activation of the
Boulware-Deser ghost, which canceled the force due to the
longitudinal mode. In the �3 theory, there is no ghost (at least
in the decoupling limit), so there must be some other method
by which the scalar screens itself to restore continuity with
general relativity. This method uses nonlinearities to enlarge
the kinetic terms of the scalar, rendering its couplings small.

To see how this works, consider the Lagrangian in the
form (8.17). Set d5 ¼ �c3=8, c3 ¼ 5=36 to simplify coeffi-
cients, and ignore for a second the cubic h�� coupling, so
that we have only a cubic � self-interaction governed by the
Galileon term L3,

S¼
Z
d4x�3ð@�̂Þ2� 1

�3
ð@�̂Þ2h�̂þ 1

M4

�̂T: (8.27)

This is the same Lagrangian studied by Nicolis and Rattazzi
(2004) in the DGP context.

Consider the static spherically symmetric solution

�̂ðrÞ around a point source of mass M, T �M�3ðrÞ. The
solution transitions, at the Vainshtein radius rð3ÞV 	
ðM=MPlÞ1=3ð1=�3Þ, between a linear and nonlinear regime.

For r � rð3ÞV the kinetic term in Eq. (8.27) dominates over the

cubic term, linearities are unimportant, and we get the usual

1=r Coulomb behavior. For r 
 rð3ÞV , the cubic term is domi-

nant, and we get a nonlinear
ffiffiffi
r

p
potential,

�̂ðrÞ �
8<
:
�3

3r
ð3Þ2
V ð r

rð3ÞV

Þ1=2 r 
 rð3ÞV ;

�3
3r

ð3Þ2
V ðrð3ÞV

r Þ r � rð3ÞV :
(8.28)

We can see the Vainshtein mechanism at work already by
calculating the ratio of the fifth force due to the scalar to the
force from ordinary Newtonian gravity,

F�

FNewton

¼ �̂0ðrÞ=MP

M=M2
Pr

2
�
8<
:
ð r

rð3Þ
V

Þ3=2 r 
 rð3ÞV ;

1 r � rð3ÞV :

(8.29)

There is a gravitational strength fifth force at distances much
farther than the Vainshtein radius, but the force is suppressed
at distances smaller than the Vainshtein radius.

This suppression extends to all scalar interactions in the
presence of the source. To see how this comes about, we study
perturbations around a given background solution �ðxÞ.
Expanding

�̂ ¼ �þ ’; T ¼ T0 þ �T; (8.30)

we have after using the identity ð@�’Þh’ ¼ @�½@�’@�’�
1
2�

��ð@’Þ2� on the quadratic parts and integrating by parts

S’¼
Z
d4x�3ð@’Þ2þ 2

�3
ð@�@������h�Þ@�’@�’

� 1

�3
ð@’Þ2h’þ 1

M4

’�T: (8.31)

Note that expanding the cubic term yields new contributions
to the kinetic terms, with coefficients that depend on the
background. Unlike the �5 Lagrangian (7.10), no higher
derivative kinetic terms are generated, so no extra degrees
of freedom are propagated on any background. This is a
property shared by all the Galileon Lagrangians (8.19)
(Endlich et al., 2010).

Around the solution (8.28), the coefficient of the kinetic

term in Eq. (8.31) is Oð1Þ at distances r � rð3ÞV , but goes as

ðrð3ÞV =rÞ3=2 for distances r 
 rð3ÞV . Thus the kinetic term is

enhanced at distances below the Vainshtein radius, which
means that after canonical normalization the couplings of
the fluctuations to the source are reduced. The fluctuations ’
effectively decouple near a large source, so the scalar force
between two small test particles in the presence of a large
source is reduced, and continuity with GR is restored. A more
careful study of the Vainshtein screening in the �3 theory,
including numerical solutions of the decoupling limit action,
can be found in Chkareuli and Pirtskhalava (2011).

E. Quantum corrections in the �3 theory

As in Sec. VII.D, we expect quantum mechanically the
presence of all operators with at least two derivatives per �,
now suppressed by the cutoff�3 (we ignore for simplicity the
scalar-tensor interactions),

� @qð@2�̂Þp
�3pþq�4

3

: (8.32)

These are in addition to the classical Galileon terms in
Eq. (8.18), which have fewer derivatives per � and are of
the form

� ð@�̂Þ2ð@2�̂Þp
�3p

3

: (8.33)
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An analysis similar to that of Sec. VII.D shows that the terms
(8.32) become important relative to the kinetic term at the
radius r� ðM=MPlÞ1=3ð1=�3Þ. This is the same radius at
which classical nonlinear effects due to Eq. (8.33) become
important and alter the solution from its Coulomb form. Thus
we must instead compare the terms (8.32) to the classical
nonlinear Galileon terms (8.33). We see that the terms (8.32)
are all suppressed relative to the Galileon terms (8.33) by
powers of @=�3, which is�1=�3r regardless of the nonlinear
solution. Thus, quantum effects do not become important
until the radius

rQ � 1

�3

; (8.34)

which is parametrically smaller than the Vainshtein radius
(8.22).

This behavior is much improved from that of the�5 theory,
in which the Vainshtein region was swamped by quantum
correction. Here there is a parametrically large intermediate
classical region in which nonlinearities are important but
quantum effects are not, and in which the Vainshtein mecha-
nism should screen the extra scalar. In this region, GR should
be a good approximation; see Fig. 2.

As in the �5 theory, quantum corrections are generically
expected to ruin the various classical tunings for the coeffi-
cients, but the tunings are still technically natural because the
corrections are parametrically small. For example, cutting off

loops by�3, we generate the operator�ð1=�2
3Þðh�̂Þ2, which

corrects the mass term. The canonically normalized �̂ is

related to the original dimensionless metric by h�
ð1=�3

3Þ@@�̂, so the generated term corresponds in unitary

gauge to �4
3h

2 ¼ M2
pm

2ð�3=MpÞh2, representing a mass

correction �m2 �m2ð�3=MpÞ. This mass correction is para-

metrically smaller than the mass itself and so the hierarchy
m 
 �3 is technically natural. This correction also ruins the
Fierz-Pauli tuning, but the pathology associated with the
detuning of Fierz-Pauli, the ghost mass, is m2

g �
m2=ð�m2=m2Þ ��2

3, safely at the cutoff.

We mention another potential issue with the �3 theory. It
was found by Nicolis, Rattazzi, and Trincherini (2008) that
Lagrangians of the Galileon type inevitably have superlumi-
nal propagation around spherical background solutions. No
matter what the choice of parameters in the Lagrangian, if the
solution is stable, then superluminality is always present at
distances far enough from the source [see also Osipov and

Rubakov (2008)]. It was argued that such superluminality is a
sign that the theory cannot be UV completed by a standard
local Lorentz invariant theory (Adams et al., 2006), though
this remains controversial and others have argued that this is
not a problem (Babichev, Mukhanov, and Vikman, 2008). In
addition, the analysis of Nicolis, Rattazzi, and Trincherini
(2008) was for pure Galileons only, and the scalar-tensor
couplings of the massive gravity Lagrangian can potentially
change the story. These issues have been studied within
massive gravity by Gruzinov (2011) and de Rham,
Gabadadze, and Tolley (2011b).

IX. BRANE WORLDS AND THE RESONANCE GRAVITON

So far, we have stuck to the effective field theorist’s
philosophy. We have explored the possibility of a massive
graviton by simply writing down the most general mass term
a graviton can have, remaining agnostic as to its origin.
However, it is important to ask whether such a mass term
has a top down construction or embedding into a wider
structure, one which would determine the coefficients of all
the various interactions. This goes back to the question of
whether it is possible to UV complete (or UV extend) the
effective field theory of a massive graviton.

One way in which a massive graviton naturally arises is
from higher dimensions. We now study one of these higher
dimensional scenarios, the DGP brane world model, showing
how massive gravitons emerge in a 4d description.

The DGP model (Dvali, Gabadadze, and Porrati, 2000a) is
an extra-dimensional model which has spawned a great deal
of interest [see the many papers citing Dvali, Gabadadze, and
Porrati (2000a)]. It provides another, more novel realization
of a graviton mass. Unlike the Kaluza-Klein scenario, in DGP
the extra dimensions can be infinite in extent, although there
must be a brane on which to confine standard model matter
[see (Gabadadze (2003) for discussion on large extra dimen-
sions]. By integrating out the extra dimensions, we can write
an effective 4d action for this scenario which contains a
momentum dependent mass term for the graviton. This pro-
vides an example of a graviton resonance, i.e., a continuum of
massive gravitons.

Another model that has received a great deal of attention is
the Randall-Sundrum brane world (Randall and Sundrum,
1999), in which there is a brane floating in large warped extra
dimensions. This model is not as interesting from the point of
view of massive gravity at low energies, since the 4d spec-
trum is similar to ordinary Kaluza-Klein theory, containing
ordinary Einstein gravity as a zero mode, and then massive
gravitons as higher Kaluza-Klein modes. See Langlois
(2002), Brax, van de Bruck, and Davis (2004), Kiritsis
(2005), and Maartens and Koyama (2010) for other reviews
on aspects of brane world gravity and cosmology.

A. The DGP action

DGP is the model of a ð3þ 1Þ-dimensional brane (the 3-
brane) floating in a ð4þ 1Þ-dimensional bulk spacetime.
Gravity is dynamical in the bulk and the brane position is
dynamical as well, and the action contains both 4d and 5d
parts,

FIG. 2. Regimes for massive gravity with cutoff �3 ¼ ðMPm
2Þ1=3

(i.e., M is the solar mass and m is taken to be the Hubble scale) and

some values within the Solar System. The values are much more

reasonable than those of the �5 theory.
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S ¼ M3
5

2

Z
d5X

ffiffiffiffiffiffiffiffiffi�G
p

RðGÞ þM2
4

2

Z
d4x

ffiffiffiffiffiffiffiffi�g
p

RðgÞ þ SM:

(9.1)

Here XA, A, B; . . . ¼ 0, 1, 2, 3, and 5 are the 5d bulk
coordinates, GABðXÞ is the 5d metric, and M5 is the 5d
Planck mass. x�, �, �; . . . ¼ 0, 1, 2, and 3 are the 4d brane
coordinates, g��ðxÞ is the 4d metric which is given by

inducing the 5d metric GAB onto the brane, and M4 is the
4d Planck mass. SM is the matter action, which we imagine to
be localized to the brane,

SM ¼
Z

d4xLMðg; c Þ; (9.2)

where c ðxÞ are the 4d matter fields. Because of the presence
of a brane Einstein-Hilbert term, this scenario is also
called brane induced gravity (Gabadadze, 2007) [see
Kiritsis, Tetradis, and Tomaras (2001) and Antoniadis,
Minasian, and Vanhove (2003) for attempts at string theory
realizations].

The dynamical variables are the 5d metric depending on
the 5d coordinates, the embedding XAðxÞ of the brane depend-
ing on the 4d coordinates, and the 4d matter fields depending
on the 4d coordinates

GABðXÞ; XAðxÞ; c ðxÞ: (9.3)

The 4d metric is not independent, but is fixed to be the
pullback of the 5d metric,

g��ðxÞ ¼ @�X
A@�X

BGABðXðxÞÞ: (9.4)

Note that the dependence of the action on the XA enters only
through the induced metric g��.

The action (9.1) has a lot of gauge symmetry. First, there
are the reparametrizations of the brane given by infinitesimal
vector fields 	�ðxÞ, under which the XA transform as scalars
and the matter fields transform as tensors (i.e., with a Lie
derivative),

�	X
A ¼ 	�@�X

A; �	c ¼ L	c : (9.5)

Second, there are reparametrizations of the bulk given by
infinitesimal vector fields �AðXÞ, under which GAB trans-
forms as a tensor and the XA shift,

��GAB¼rA�BþrB�A; ��X
A¼��AðXÞ: (9.6)

The induced metric g�� transforms as a tensor under �	, and

is invariant under ��
15.

We first proceed to fix some of this gauge symmetry. In
particular, we freeze the position of the brane. Note that the
brane coordinate functions XAðxÞ are essentially Goldstone
bosons since they shift under the bulk gauge symmetry,
XAðxÞ ! XAðxÞ ��AðXðxÞÞ. We can thus reach a sort of
unitary gauge where the XA are fixed to some specified
values. We set values so that the brane is the surface
X5 ¼ 0, and the brane coordinates x� coincide with the
coordinates X�; thus we set

X�ðxÞ ¼ x�; � ¼ 0; 1; 2; 3; (9.9)

X5ðxÞ ¼ 0: (9.10)

There are still residual gauge symmetries which leave this
gauge choice invariant. Acting with the two gauge trans-
formations �	 and �� on the gauge conditions and demand-

ing that the change be zero, we find

��X
5ðxÞ þ �	X

5ðxÞ
¼ ��5ðXðxÞÞþ 	�@�X

5 !
X5ðxÞ¼0

��5ðXðxÞÞ

) �5ðXðxÞÞ ¼ 0: (9.11)

��X
�ðxÞþ�	X

�ðxÞ
¼���ðXðxÞÞþ	�@�X

�ðxÞ
!

X�ðxÞ¼x�
���ðXðxÞÞþ	�ðxÞ

)��ðXðxÞÞ¼	�ðxÞ: (9.12)

The residual gauge transformations are bulk gauge trans-
formations that do not move points onto or off of the brane,
but only move brane points to other brane points.
Furthermore, the brane diffeomorphism invariance is no
longer an independent invariance but is fixed to be the diffeo-
morphisms induced from the bulk.

We now fix this gauge in the action (9.10), which is
permissible since no equations of motion are lost. This means
that the induced metric is now

g��ðxÞ ¼ G��ðx; X5 ¼ 0Þ: (9.13)

We split the action into two regions, region L to the left of the
brane, and region R to the right of the brane, with outward
pointing normals, as in Fig. 3. We call the fifth coordinate
X5 	 y. The brane is at y ¼ 0:

S ¼ M3
5

2

�Z
L
þ
Z
R

�
d4xdy

ffiffiffiffiffiffiffiffiffi�G
p

RðGÞ þ
Z

d4xL4;

(9.14)

where L4 	 ðM2
4=2Þ ffiffiffiffiffiffiffiffi�g

p
RðgÞ þLMðg; c Þ is the 4d part of

the Lagrangian. To have a well-defined variational principle,
we must have Gibbons-Hawking terms on both sides (Dyer
and Hinterbichler, 2009), corresponding to the outward point-
ing normals. Adding these, the resulting action is

15To see invariance under ��, transform

��GAB ¼ ��ð@�XA@�X
BGABðXðxÞÞÞ

¼ �@��
A@�X

BGABðXðxÞÞ� @�X
A@��

BGABðXðxÞÞ
þ @�X

A@�X
B��GABðXðxÞÞ;

(9.7)

then in transforming GAB, remember that both the function and the

argument are changing,

��GABðXðxÞÞ ¼ L�GABðXðxÞÞ��C@CGAB: (9.8)

Putting all this together, we find ��GAB ¼ 0.
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S ¼ M3
5

2

��Z
L
þ
Z
R

�
d4xdy

ffiffiffiffiffiffiffiffiffi�G
p

RðGÞ

þ 2
I
L
d4x

ffiffiffiffiffiffiffiffi�g
p

KL þ 2
I
R
d4x

ffiffiffiffiffiffiffiffi�g
p

KR

�

þ
Z

d4xL4; (9.15)

where KR and KL are the extrinsic curvatures relative to the
normals nR and nL, respectively.

We now go to spacelike ADM variables (Arnowitt, Deser,
and Misner, 1960, 1962) adapted to the brane [see Poisson
(2004) and Dyer and Hinterbichler (2009) for detailed deri-
vations and formulas]. The lapse and shift relative to y are
N�ðx; yÞ and Nðx; yÞ, and the 4d metric is g��ðx; yÞ. The 5d

metric is

GAB ¼ N2 þ N�N� N�

N� g��

 !
: (9.16)

The 4d extrinsic curvature is taken with respect to the positive
pointing normal nL and is given by

K�� ¼ 1

2N
ðg0�� �r�N� �r�N�Þ; (9.17)

where a prime means a derivative with respect to y. The
action is now16

S ¼ M3
5

2

�Z
L
þ
Z
R

�
d4xdyN

ffiffiffiffiffiffiffiffi�g
p ½RðgÞ þ K2 � K��K

���

þ
Z

d4xL4: (9.20)

It can be checked that a flat brane living in flat space is a
solution to the equations of motion of this action. This is
called the normal branch. There is another maximally

symmetric solution with a flat 5d bulk, which contains a
de Sitter brane with a 4d Hubble scale H �M3

5=M
2
4. This is

called the self-accelerating branch and has caused much
interest because the solution exists even though the brane
and bulk cosmological constants vanish.

B. Linear expansion

To see the particle content of DGP, we expand the action
(9.20) to linear order around the flat space solution and then
integrate out the bulk to obtain an effective 4d action. We
start by expanding the 5d graviton about flat space

GAB ¼ �AB þHAB: (9.21)

We use the lapse, shift, and 4d metric variables, with their
expansions around flat space,

g�� ¼ ��� þ h��; N� ¼ n�; N ¼ 1þ n:

(9.22)

We have the relations, to linear order in h��, n�, and n,

H�� ¼ h��; H�5 ¼ n�; H55 ¼ 2n: (9.23)

We first expand the DGP action (9.20) to quadratic order in
h��, n�, and n. We then solve the 5d equations of motion,

subject to arbitrary boundary values on the brane and going to
zero at infinity. We then plug this solution back into the action
to obtain an effective 4d theory for the arbitrary brane
boundary values.

The 5d equations of motion away from the brane are
simply the vacuum Einstein equations, which read, to linear
order,

�2RABðGÞlinear ¼ hð5ÞHAB þ @A@BH � @C@AHBC

� @C@BHAC

¼ 0: (9.24)

We solve Eq. (9.24) in the de Donder gauge,

@BHAB � 1
2@AH ¼ 0: (9.25)

With this, Eq. (9.24) is equivalent to

hð5ÞHAB ¼ 0; (9.26)

along with the de Donder gauge condition (9.25). In terms of
the ADM variables, Eq. (9.26) becomes

hh�� þ @2yh�� ¼ 0; (9.27)

hn� þ @2yn� ¼ 0; (9.28)

hnþ @2yn ¼ 0; (9.29)

where h is the 4d Laplacian. These have the following
solutions in terms of boundary values h��ðxÞ, n�ðxÞ,
and nðxÞ:

h��ðx; yÞ ¼ e�y�h��ðxÞ; (9.30)

n�ðx; yÞ ¼ e�y�n�ðxÞ; (9.31)

FIG. 3. Splitting the DGP action.

16The Ricci scalar and metric determinant are

ð5ÞR¼ð4ÞRþ ðK2 � K��K
��Þ þ 2rAðnBrBn

A � nAKÞ; (9.18)

ffiffiffiffiffiffiffiffiffi�G
p ¼ N

ffiffiffiffiffiffiffiffi�g
p

: (9.19)

The total derivatives coming from 2rAðnBrBn
A � nAKÞ in the

Einstein-Hilbert part of the action exactly cancel the Gibbons-

Hawking terms.
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nðx; yÞ ¼ e�y�nðxÞ: (9.32)

Here the operator � is the formal square root of the 4d
Laplacian,

� 	 ffiffiffiffiffiffiffiffiffi�h
p

: (9.33)

The A ¼ � and A ¼ 5 components of the gauge condition
(9.25) are, respectively,

@�h�� � 1
2@�hþ @yn� � @�n ¼ 0; (9.34)

@�n� � 1
2@yhþ @yn ¼ 0: (9.35)

For these to be satisfied everywhere, it is necessary and
sufficient that the boundary fields satisfy the following at
y ¼ 0:

@�h�� � 1
2@�h� �n� � @�n ¼ 0;

@�n� þ 1
2�h� �n ¼ 0:

(9.36)

These should be thought of as constraints determining some
of the boundary variables in terms of the others.17 We at this
point imagine that we have solved these constraints, and that
the action is really a function of the independent variables.

The de Donder gauge is preserved by any 5d gauge trans-
formation �A satisfying

hð5Þ�A ¼ 0: (9.38)

The component�5 must vanish at y ¼ 0 because the position
of the brane is fixed. Equation (9.38) then implies that �5

vanishes everywhere. The other components can have arbi-
trary values ��ðx; 0Þ ¼ 	�ðxÞ on the brane, which are then
extended into bulk in order to satisfy Eq. (9.38),

��ðx; yÞ ¼ e�y�	ðxÞ: (9.39)

The residual gauge transformations acting on the boundary
fields are then

�h�� ¼ @�	� þ @�	�;

�n� ¼ ��	�;

�n ¼ 0:

(9.40)

The constraints (9.36) are invariant under these gauge trans-
formations. The 4d effective action must and will be invariant
under Eq. (9.40).

The 5d part of the action reads

S5 ¼ M3
5

2

Z
d4xdyN

ffiffiffiffiffiffiffiffi�g
p ½RðgÞ þ K2 � K��K

���:
(9.41)

We want to expand this to quadratic order in h��, n�, and n

and then plug in our solution. We need the expansion of K��

to first order,

K�� ¼ 1
2ð@yh�� � @�n� � @�n�Þ: (9.42)

Expanding, we have (after much integration by parts in 4d)

2

M3
5

S5 ¼
Z

d4xdyn@�@�h
�� � nhhþ 1

2
@�h��@

�h��

� 1

2
@�h@�h

�� � @yh@�n
� þ 1

2
ð@�n�Þ2

þ @yh��@
�n� þ 1

2
n�hn�

1

4
h��hh��

� 1

4
@yh��@yh

�� � 1

4
hhhþ 1

4
ð@yhÞ2:

Now, in the last line, integrate by parts in y, picking up a
boundary term at y ¼ 0, and use Eq. (9.26) to kill the bulk
part,

2

M3
5

S5 ¼
Z

d4xdyn@�@�h
�� � nhhþ 1

2
@�h��@

�h��

� 1

2
@�h@�h

�� � @yh@�n
� þ 1

2
ð@�n�Þ2

þ @yh��@
�n� þ 1

2
n�hn� þ

Z
d4x� 1

4
h@h

þ 1

4
h��@yh

��:

We now insert the following term into the action:

SGF ¼ �M3
5

4

Z
d5X

�
@BHAB � 1

2
@AH

�
2
: (9.43)

The 5d equations of motion solve the de Donder gauge
condition, so this term contributes 0 to the action (thought
of as a function of the unconstrained variables) and we are
free to add it. However, we write it in terms of the uncon-
trained 4d variables for now,

2

M3
5

SGF ¼
Z

d4xdy

� 1

2

�
@�h�� � 1

2
@�hþ @yn� � @�n

�
2
(9.44)

� 1

2

�
@�n

� � 1

2
@yhþ @yn

�
2
: (9.45)

Adding this to the previous 5d term, we find that after using
the 5d Laplace equations, the entire action can be reduced to a
boundary term at y ¼ 0,

2

M3
5

ðS5 þ SGFÞ ¼
Z

d4x� 1

4
h���h

�� þ 1

8
h�h

� 1

2
n�n� 1

2
n��n

� þ 1

2
h�n

þ n�
�
�@�n� 1

2
@�hþ @�h��

�
:

(9.46)

17Note that we cannot think of them as determining n�, n in terms

of h��. Acting with @� on the first equation, � on the second, and

then adding, we find the equation

@�@�h
�� �hh ¼ 0; (9.37)

which is precisely the statement that the 4d linearized curvature

vanishes (which is, in turn, the linearized Hamiltonian constraint in

general relativity). Thus, we must think of these constraints as

determining some of the components of the metric.

704 Kurt Hinterbichler: Theoretical aspects of massive gravity

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



Now a crucial point. We have been imagining solving the
constraints (9.36) for the independent variables. But now,
consider the action (9.46) as a function of the original vari-
ables h��, n

�, and n. Varying with respect to n� and n, we

recover precisely the constraints (9.36). Thus, we can rein-
troduce the solved variables as auxiliary fields, since the
constraints are then implied. The action now becomes a
function of h��, n

�, and n.

Now add in the 4d part of the action,

S ¼ M2
4

2

Z
d4x

ffiffiffiffiffiffiffiffi�g
p

RðgÞ þ SM þ 2ðS5 þ SGFÞ; (9.47)

where SM is the 4dmatter action and the factor of 2 in front of
the 5d parts results from taking into account both sides of the
bulk (through boundary conditions at infinity we have thus
implicitly imposed a Z2 symmetry).

Expanded to quadratic order,

S ¼
Z

d4x
M2

4

4

1

2
h��E��;�
h�


þM2
4m

4

�
� 1

2
h���h

�� þ 1

4
h�h� n�n� n��n

�

þ h�nþ n�ð�2@�n� @�hþ 2@�h��Þ
�

þ 1

2
h��T

��; (9.48)

where E��;�
 is the massless graviton kinetic operator (2.46),
and

m 	 2M3
5

M2
4

(9.49)

is known as the DGP scale.
It is invariant under the gauge transformations (9.40),

under which n� plays the role of the vector Stückelberg field.
n plays the role of a gauge invariant auxiliary field. To get this
into Fierz-Pauli form, first eliminate n as an auxiliary field by
using its equation of motion. Then use Eq. (9.40) to fix the
gauge n� ¼ 0. The resulting action is

S ¼
Z

d4x
M2

4

4

�
1

2
h��E��;�
h�


� 1

2
mðh���h

�� � h�hÞ
�
þ 1

2
h��T

��; (9.50)

which is of the Fierz-Pauli form, with an operator dependent
mass term m�.

One can go on to study interaction terms for DGP, and the
longitudinal mode turns out to be governed by interactions
which include the cubic Galileon term �ð@�Þ2h� (Luty,
Porrati, and Rattazzi, 2003; Nicolis and Rattazzi, 2004;
Gabadadze and Iglesias, 2006) and are suppressed by the
scale �3 ¼ ðM4m

2Þ1=3 (in fact, this was where the Galileons
were first uncovered). In this sense, DGP is analogous to the
nicer�3 theories of Sec. VIII. The theory is free of ghosts and
instabilities around solutions connected to flat space (Nicolis
and Rattazzi, 2004), but changing the asymptotics to the self-
accelerating de Sitter brane solutions flips the sign of the
kinetic term of the longitudinal mode, so there is a massless
ghost around the self-accelerating branch (Koyama, 2007).

This branch is completely unstable, which is bad news for
doing cosmology on this branch. In addition to ghosts,
there are other issues with other nontrivial branches, such as
superluminal fluctuations (Hinterbichler, Nicolis, and Porrati,
2009), and uncontrolled singularities and tunneling (Gregory,
2008).

C. Resonance gravitons

The operator dependent mass term in Eq. (9.50) is known
as a resonance mass, or soft mass (Dvali, Gabadadze, and
Porrati, 2000b; Dvali et al., 2001a, 2001b; Gabadadze, 2004;
Gabadadze and Shifman, 2004; Dvali, 2006; Dvali, Hofmann,
and Khoury, 2007; Lopez Nacir and Mazzitelli, 2007;
Gabadadze and Iglesias, 2008; Patil, 2010). To see the parti-
cle content of this theory, we decompose the propagator into a
sum of massive gravity propagators. The linear Stückelberg
analysis, leading to the propagators (4.37), goes through
identically, with the replacement m2 ! m�. The momentum
part of the propagators now reads

�i

p2 þm
ffiffiffiffiffiffi
p2

p : (9.51)

Setting z ¼ �p2, the propagator has a branch cut in the z
plane from ð0;1Þ, with discontinuity

� 2mffiffiffi
z

p ðzþm2Þ : (9.52)

A branch cut can be thought of as a string of simple poles,
in the limit where the spacing between the poles and
their residues both go to zero. The function fðzÞ ¼R1
�1 d��ð�Þ=ðz� �Þ has a cut along the real axis everywhere

that � is nonzero, with discontinuity �2i��ðzÞ. We can see
this by noting

disc fðzÞ ¼
Z 1

�1
d��ð�Þ 1

z� �þ i�
� 1

z� �� i�

¼
Z 1

�1
d��ð�Þ½�2�i�ðz� �Þ�:

Using all this, and the fact that analytic functions are
determined by their poles and cuts, we can write the propa-
gator in the spectral form

�i

p2 þm
ffiffiffiffiffiffi
p2

p ¼
Z 1

0
ds

�i

p2 þ s
�ðsÞ;

�ðsÞ ¼ m

�
ffiffiffi
s

p ðsþm2Þ> 0: (9.53)

The spectral function is greater than zero, so this theory
contains a continuum of ordinary (nonghost, nontachyon)
gravitons, with masses ranging from 0 to 1. This is what
would be expected from dimensionally reducing a noncom-
pact fifth dimension. The Kaluza-Klein tower has collapsed
down into a Kaluza-Klein continuum.

In the limit m ! 0, where the action becomes purely four
dimensional, the spectral function reduces to a delta function,

�ðsÞ ! 2�ðsÞ; (9.54)

and the propagator reduces to �i=p2 representing a single
massless graviton, vector, and scalar, as can be seen from
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Eq. (4.37) (the extra factor of 2 is taken care of by noting that
the integral is from 0 to 1, so only half of the delta function
actually gets counted). This theory therefore contains a vDVZ
discontinuity.

The potential of a point source of mass M sourced by
this resonance graviton displays an interesting crossover
behavior. Looking back at Eq. (3.11) with the momentum

space replacement m2 ! m
ffiffiffiffiffiffi
p2

p
, and using the relation � ¼

�h00=M4 for the Newtonian potential, we have

�ðrÞ ¼ �2M

3M2
4

Z d3p

ð2�Þ3 e
ip�x �1

p2 þmjpj
¼ 2

3

M

M2
42�

2r

�
sin

�
r

r0

�
ci

�
r

r0

�

þ 1

2
cos

�
r

r0

��
�� 2si

�
r

r0

��	
; (9.55)

where

siðxÞ 	
Z x

0

dt

t
sint;

ciðxÞ 	 �þ lnxþ
Z x

0

dt

t
ðcost� 1Þ;

(9.56)

� � 0:577 . . . is the Euler-Masceroni constant, and the length
scale r0 is

r0 	 1

m
¼ M2

4

2M3
5

: (9.57)

The potential interpolates between 4d� 1=r and 5d� 1=r2

behavior at the scale r0,

VðrÞ¼
8><
>:

2
3

M
M2

4
4�r

þ M
3�2M2

4

1
r0
½��1þ lnð rr0Þ�þOðrÞ; r
 r0;

2
3

M
M3

5
4�2r2

þOð 1
r3
Þ; r� r0:

(9.58)

Physically, we think of gravity as being confined to the brane
out to a distance �r0, at which point it starts to weaken and
leak off the brane, becoming five dimensional. This is the
behavior that is morally responsible for the self-accelerated
solutions seen in DGP (Deffayet, Dvali, and Gabadadze,
2002). It has been suggested that corrections to the
Newtonian potential for r 
 r0 may be observable in lunar
laser ranging experiments (Dvali, Gruzinov, and Zaldarriaga,
2003; Lue and Starkman, 2003).

The resonance massive graviton can also be generalized
away from DGP, by replacing the mass term with an arbitrary
function of the Laplacian (Gabadadze and Shifman, 2004;
Dvali, 2006; Dvali, Hofmann, and Khoury, 2007),

m2 ! m2ðhÞ: (9.59)

[See Dvali, Pujolas, and Redi (2008) for even further general-
izations.] At large distances, where we want modifications to
occur, the mass term has a leading Taylor expansion

m2ðhÞ ¼ L2ð��1Þh�; (9.60)

with L being a length scale and � being a constant. In order to
modify Newtonian dynamics at large scales, @ 
 1=L, the
mass term should dominate over the two derivative kinetic

terms, so we should have �< 1. Additionally, there is the
constraint that the spectral function (9.53) should be positive
definite, so that there are no ghosts. This puts a lower bound
� � 0 (Dvali, 2006). It turns out that degravitation can be
made to work only for �< 1=2 (Dvali, Hofmann, and
Khoury, 2007). DGP corresponds to � ¼ 1=2, and so it just
barely fails to degravitate, but by extending the DGP idea to
higher codimension (Kiritsis, Tetradis, and Tomaras, 2001; de
Rham, 2008; Hassan, Hofmann, and von Strauss, 2011) or to
multibrane cascading DGP models (de Rham et al., 2008; de
Rham, 2009; de Rham, Khoury, and Tolley, 2010), �< 1=2
can be achieved and degravitation made to work (de Rham
et al., 2008). Some N-body simulations of degravitation and
DGP have been done by Chan and Scoccimarro (2009),
Khoury and Wyman (2009), and Schmidt (2009).

X. CONCLUSIONS AND FUTURE DIRECTIONS

Massive gravity remains an active research area, one which
may provide a viable solution to the cosmological constant
naturalness problem. As seen, many interesting effects arise
from the naive addition of a hard mass term to Einstein
gravity. There is a well-defined effective field theory with a
protected hierarchy between the cutoff and the graviton mass,
and a screening mechanism which nonlinearly hides the new
degrees of freedom and restores continuity with GR in the
massless limit.

A massive graviton can screen a large cosmological con-
stant, and a stable theory of massive gravity with a small
protected mass offers a solution to the problem of quantum
corrections to the cosmological constant. It is a remarkable
fact that the �3 theories of Sec. VIII exist and are ghost free,
and that they are found simply by tuning some coefficients in
the generic graviton potential.

There are many interesting outstanding issues. One is the
nature of the �3 theory. Is there a symmetry or a topological
construction that explains the tunings of the coefficients
necessary to achieve the �3 cutoff? Is there some construc-
tion free of prior geometry that would contain this theory? Is
there an extra-dimensional construction?

There are also many questions related to the quantum
properties of these theories. Apart from the order of magni-
tude estimates presented in this review and a few sporadic
calculations, the detailed quantum properties of this theory
and others remain relatively unexplored. The same goes for
nonperturbative quantum properties, such as how a massive
graviton would modify black hole thermodynamics, Hawking
radiation, or holography (Babak and Grishchuk, 2003;
Aharony, Clark, and Karch, 2006; Katz, Lewandowski, and
Schwartz, 2006; Kiritsis, 2006; Kiritsis and Niarchos, 2009;
Niarchos, 2009; Capela and Tinyakov, 2011).

The cutoff �3 is still rather low, however, so at best this
theory in its current perturbative expansion can provide only a
partial solution to the cosmological constant naturalness
problem. Finding more natural constructions of these theories
would go a long way toward solving the major issue, which is
that of UV completion; is it possible to find a standard UV
completion for a massive graviton, analogous to what the
Higgs mechanism provides for a massive vector? Or is there
some incontrovertible obstruction that forces any UV
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completion to violate Lorentz invariance, locality, or some

other cherished property? If so, there may be a nonstandard

UV completion, or it could be that massive gravity really is

inconsistent, in the sense that there really is no way what-

soever to UV complete it. There has been work on holography

of massive gravitons in anti–de Sitter/conformal field theory

(AdS/CFT) (Aharony, Clark, and Karch, 2006; Kiritsis, 2006;

Kiritsis and Niarchos, 2009; Niarchos, 2009), which provides

a UV completion for theories in AdS space containing mas-

sive gravity.
Even a partial UV completion, one that raises the cutoff to

MP, would be extremely important, as this is all that is

required to offer a solution to the cosmological constant

naturalness problem. One possibility is that the scale �3,

while indicating a breakdown in perturbation theory, does

not signal the activation of any new degrees of freedom, so

that the theory is already self-complete up toMP. Since there

are multiple parameters in the theory, it is likely that there is

some other expansion, such as a small m expansion, which

reorganizes the perturbation theory into one which yields

perturbative access to scales above �3. If this is true, it is

important that the �3 theory is ghost free beyond the decou-

pling limit.
It should also be noted that massive gravitons already exist

in nature, in the form of tensor mesons which carry spin 2.

There is a nonet of them, which at low energies can be

described in chiral perturbation theory as a multiplet of

massive gravitons (Chow and Rey, 1998). Here we know

that these states find a UV completion in QCD, where they

are simply excited states of bound quarks.
In this review we focused on theories with a vacuum that

preserves Lorentz invariance, but there is a whole new world

that opens up when one allows for Lorentz violation. There

exist theories that explicitly break Lorentz invariance, and

theories such as the ghost condensate (Arkani-Hamed et al.,

2004) which have Lorentz invariance spontaneously broken

(Arkani-Hamed et al., 2005) by some non-Lorentz invariant

background. In the former case, a systematic study of the

possible mass terms and their degrees of freedom, generaliz-

ing the Fierz-Pauli analysis to the case where the mass term

preserves only rotation invariance, is performed by Dubovsky

(2004). For examples of the latter case, see Berezhiani et al.

(2007) and Blas, Deffayet, and Garriga (2007). See also

Rubakov (2004), Gabadadze and Grisa (2005), Rubakov

and Tinyakov (2008), Bebronne (2009b), and Mironov

et al. (2010) for reviews.
There is still much to be learned about massive gravitons

on curved spaces and cosmologies. For instance, does a

generalization exist of the higher cutoff �3 theory around

curved backgrounds? Is there a consistent fully interacting

theory of the partially massless theories on de Sitter space?

Are there consistent theories with cosmological backgrounds,

and, in particular, can they nonlinearly realize the screening

of a large bare cosmological constant while maintaining

consistency with Solar System constraints?
Finally, a topic worthy of a separate review is the observ-

able signatures that would be characteristic of a massive

graviton. What would be the signatures of a cosmological

constant screened by a graviton mass? For some examples of

various proposed signatures, see Dubovsky, Tinyakov, and

Tkachev (2005), Bebronne (2009a), Bessada and Miranda
(2009a, 2009b), Dubovsky et al. (2010), and Wyman
(2011). We end this review by quoting the tantalizing current
experimental limits on the mass of the graviton (under some
hypotheses, of course) m & 7� 10�32 eV (Goldhaber and
Nieto, 2010; Nakamura et al., 2010), about an order of
magnitude above the Hubble scale, the value needed to
theoretically explain the cosmological constant naturalness
problem.
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APPENDIX: TOTAL DERIVATIVE COMBINATIONS

Define the matrix of second derivatives

��� ¼ @�@��: (A.1)

At every order in �, there is a unique (up to overall constant)
contraction of �’s that reduces to a total derivative18,

LTD
1 ð�Þ ¼ ½��; (A.2)

LTD
2 ð�Þ ¼ ½��2 � ½�2�; (A.3)

LTD
3 ð�Þ ¼ ½��3 � 3½��½�2� þ 2½�3�; (A.4)

LTD
4 ð�Þ ¼ ½��4;�6½�2�½��2 þ 8½�3�½��

þ 3½�2�2 � 6½�4�;
..
.
; (A.5)

where the brackets are traces. LTD
2 ðhÞ is just the Fierz-Pauli

term, and the others can be thought of as higher order general-
izations of it. They are characteristic polynomials, terms in
the expansion of the determinant in powers of H,

detð1þ�Þ ¼ 1þLTD
1 ð�Þ þ 1

2
LTD

2 ð�Þ þ 1

3!
LTD

3 ð�Þ

þ 1

4!
LTD

4 ð�Þ þ � � � : (A.6)

The term LTD
n ð�Þ vanishes identically when n > D, with D

the spacetime dimension, so there are only D nontrivial such
combinations, those with n ¼ 1; . . . ; D.

18The proof of this fact is the same as the proof showing the

uniqueness of the Galileons in Nicolis, Rattazzi, and Trincherini

(2008). See also Creminelli et al. (2005).
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They can be written explicitly as

LTD
n ð�Þ ¼ X

p

ð�1Þp��1pð�1Þ��2pð�2Þ � � ���npð�nÞ

� ð��1�1��2�2
� � ���n�nÞ: (A.7)

The sum is over all permutations of the � indices, with ð�1Þp
the sign of the permutation.

They satisfy a recursion relation

LTD
n ð�Þ ¼ � Xn

m¼1

ð�1Þm ðn� 1Þ!
ðn�mÞ! ½�

m�LTD
n�mð�Þ;

(A.8)

with LTD
0 ð�Þ ¼ 1.

In addition, there are tensors XðnÞ
�� that we construct out of

��� as follows19:

XðnÞ
�� ¼ 1

nþ 1

�

����

LTD
nþ1ð�Þ: (A.9)

The first few are

Xð0Þ
�� ¼ ���; (A.10)

Xð1Þ
�� ¼ ½����� ����; (A.11)

Xð2Þ
�� ¼ ð½��2 � ½�2�Þ��� � 2½����� þ 2�2

��;

(A.12)

Xð3Þ
�� ¼ ð½��3 � 3½��½�2� þ 2½�3�Þ���

� 3ð½��2 � ½�2�Þ��� þ 6½���2
�� � 6�3

��;

..

.
: (A.13)

The following is an explicit expression:

XðnÞ
�� ¼ Xn

m¼0

ð�1Þm n!

ðn�mÞ!�
m
��LTD

n�mð�Þ: (A.14)

They satisfy the recursion relation

XðnÞ
�� ¼ �n��

�Xðn�1Þ
�� þ��
Xðn�1Þ

�
 ���: (A.15)

Since LTD
n ð�Þ vanishes for n > D, XðnÞ

�� vanishes for n �
D.

The XðnÞ
�� satisfy the following important properties.

� They are symmetric and identically conserved and are
the only combinations of ��� at each order with these

properties:

@�XðnÞ
�� ¼ 0: (A.16)

� For spatial indices i, j and time index 0,

XðnÞ
ij has at most two time derivatives;

XðnÞ
0i has at most one time derivative;

XðnÞ
00 has no time derivatives:

(A.17)

Finally, we have the following relations involving the
massless kinetic operator (2.46):

E��
�
ð���
Þ ¼ �ðD� 2ÞXð1Þ

��;

E��
�
ð@��@
�Þ ¼ Xð2Þ

��:
(A.18)
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