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The homotopy theory of topological defects is a powerful tool for organizing and unifying many

ideas across a broad range of physical systems. Recently, experimental progress was made in

controlling and measuring colloidal inclusions in liquid crystalline phases. The topological

structure of these systems is quite rich but, at the same time, subtle. Motivated by experiment

and the power of topological reasoning, the classification of defects in uniaxial nematic liquid

crystals was reviewed and expounded upon. Particular attention was paid to the ambiguities that

arise in these systems, which have no counterpart in the much-storied XY model or the Heisenberg

ferromagnet.
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I. INTRODUCTION

First identified through the beautiful textures of their
defects, liquid crystalline materials may very well be the
ideal proving grounds for exploring notions of broken
symmetries, associated Goldstone modes, phenomena akin

to the Higgs mechanism, and, of course, topological de-

fects. Indeed, the subjects of topological defects and liquid

crystals are so intertwined that it is difficult to see how a

thorough understanding of one could be garnered without

knowledge of the other. Moreover, it has proven fruitful to

treat the defects as fundamental excitations; solitons in the

sine-Gordon model can be treated as interacting fermions

(Coleman, 1975), vortices in the XY model drive the

Kosterlitz-Thouless phase transition (Kosterlitz and

Thouless, 1973), controlling flux lines is essential for main-

taining superconductivity (Nelson, 1988), and the theory of

magnetic monopoles shows that they can be viewed as

point particles (Coleman, 1988). In all of these cases, the

fluctuations and configurations of the smooth background

field around the defects can be replaced with an effective

interaction between the defects. Thus the elasticity and

statistical mechanics of these systems can be recast in terms

of a discrete set of topological charges. Because of these

successes and physicist’s deeply ingrained love for Gauss’s

law and the connection between flux and charge, we natu-

rally attempt to interpret more complex systems in the same

terms. Unfortunately, these cases are exceptions; in this

Colloquium we emphasize this important point and attempt*kamien@physics.upenn.edu
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to clarify if, when, and how it is appropriate to view defects

as point charges.
Nematics are a prototypical liquid crystalline material,

although a sample will flow like a liquid, owing to the lack

of positional order, the rod-shaped, typically organic or ar-

omatic ring molecules are locally aligned, leading to orienta-

tional order, with widely applied optical consequences.

Defects in a nematic liquid crystal, as in any ordered medium,

are places where the nematic order vanishes and the molecu-

lar direction is thus ill defined. They occur in the form of

isolated points and lines, either system spanning with end

points on the boundaries of the sample or closed up into

loops. We use as our example the three-dimensional uniaxial

nematic, a system that turns out to not be as simple as it might

seem. Not only is it, in some sense, the simplest counter-

example to the ‘‘defects as charges’’ approach, but it is also

now extremely relevant from the experimental point of view

as it has been demonstrated that defects can be manipulated in

nematic cells with great precision and variety allowing com-

plex links and knots to be tied (Kamien, 2011; Tkalec et al.,

2011). Although the history or path dependence of the defect

motion at once spoils the program of reducing the configu-

ration space to discrete data, it simultaneously introduces a

new set of topological degrees of freedom in the three-

dimensional nematic. The path dependence imposes a non-

Abelian structure to the classification of states. In other liquid

crystalline systems, line defects in the biaxial nematic are

anticipated to entangle topologically (Poénaru and Toulouse,

1977) and the interaction between disclinations and disloca-

tions in smectics suffers similar path dependence (Poénaru

and Toulouse, 1977; Chen, Alexander, and Kamien, 2009).

Certain non-Abelian quantum systems have been proposed as

a route to topological codes and computation (Kitaev, 2003;

Nayak et al., 2008).
Although they arise naturally during phase transitions,

defects can also be induced deliberately by local excitation

with a laser (Smalyukh et al., 2010) or through boundary

conditions as with colloidal inclusions, where the anchoring

of molecules at the colloid surface induces the presence of

defects in the surrounding liquid crystal. This is an especially

rich technique allowing for the generation of a wide range of

defects and for studying the interactions between them. For

instance, the defect accompanying a colloid may take the

form of an isolated point (Poulin et al., 1997) or of a

disclination loop encircling the particle in a ‘‘Saturn ring’’

configuration (Terentjev, 1995), while two or more colloids in

close proximity can form a variety of ‘‘entangled’’ structures

where a single disclination loop wraps around both of them

(Guzmán et al., 2003; Ravnik et al., 2007; Ravnik and

Žumer, 2009). These last situations realize the interaction

between line and point defects that is a central aspect of this

Colloquium.
In Sec. II we begin by reviewing the classification of

topological defects by looking at point defects in two-

dimensional nematics and line defects in three-dimensional

nematics. In Sec. III we continue to point defects in three-

dimensional nematics. With all the characters introduced, we

proceed to discuss our main point: that there are only two

types of unlinked disclination loops. What we present is built

on the classic review by Mermin (1979) on topological

defects and a definitive result by Jänich (1987) that finds
the topological classes of uniaxial nematic textures on S3, the
three-dimensional sphere (equivalently, three-dimensional
space with fixed boundary conditions at infinity), with point
and line defects. We also discuss the biaxial nematic phase
and show that it affords additional physical insight into the
analysis of uniaxial defects.

II. CIRCULAR LOOPS AROUND DEFECTS: THE

FUNDAMENTAL GROUP

A common and distinctive experimental procedure for
imaging the orientational order is to place the sample between
crossed polarizers, yielding in nematic materials the charac-
teristic Schlieren texture from which they derived their name.
In Fig. 1 our eyes are drawn to the dark brushes and tend to
follow them toward their intersections. The brushes typically
meet at points in twos or fours; larger numbers are possible
but they too are multiples of two. The dark brushes corre-
spond to regions where the orientation is parallel to either of
the mutually perpendicular polarizer or of the analyzer direc-
tions and the points at which they meet are disclination
defects. Why defect? Because there the orientation is ill
defined, as the brushes tell us to assign two or more different
orientations to that point. We can fix this by removing the
defect point by poking a hole in the material. Physically, of
course, we do not have a hole in our sample, just a place
where we do not know the order. The problem is fixed by
letting the magnitude of the order vanish at the origin. Then
no hole is needed, but there is a point where there is no longer
nematic order and the core is in the isotropic phase. To the
reader acquainted with defects in superfluids and supercon-
ductors, this should sound familiar: In the center of an
Abrikosov vortex in a conventional superconductor

FIG. 1. Cartoon of the director field and the resulting brush pattern

corresponding to the homotopy in Eq. (4). The radial coordinate t
parametrizes the sequence of maps ftð�Þ. Near the defect center, six
brushes are visible so that simply counting gives a winding of 3

2 .

However, away from the defect core, the texture smoothly deforms

to a texture that may be seen to have a winding of 1
2 .
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(Abrikosov, 1957) the superconducting order parameter van-
ishes and there is normal metal, a hole in the superconductor
(Chaikin and Lubensky, 1995). In all these cases we can
detect the existence of a defect without any detailed knowl-
edge of the disordered core: Topological defects are charac-
terized by the boundary conditions at the interface between
the higher symmetry state and the lower symmetry state. In
the Schlieren texture, these boundary conditions can be read
off from the pattern of brushes.

In this section we introduce the basic concepts in the study
of topological defects in this simplest case and connect the
observation of brushes to the presence of defects. We cover
what defects are, the use of measuring surfaces to probe them,
and finally how to combine them. We begin by recalling that
the continuum description of uniaxial nematics is based upon
the assignment of a local ‘‘average molecular orientation’’ to
every point in the sample, called the director field. This
average orientation is that of a rodlike object, rather than an
arrow, so that the nematic director is properly a line field,
rather than a vector field. Moreover, it is only the orientation
of the director that is important, not its magnitude, so that we
can take the director to be a unit vector n, subject to the
condition that n and �n are identified.

A. Two-dimensional director: RP1

First we consider nematic samples in which the director
always lies in the x-y plane, a prototypical thin cell situation.
Equivalently, we consider the projection of a three-
dimensional director onto the x-y plane:

p ¼ Aðx; yÞ½cos�ðx; yÞ; sin�ðx; yÞ�; (1)

where Aðx; yÞ is the nonvanishing magnitude of the projection
and �ðx; yÞ is the angle it makes with the x̂ axis. Just as n and
�n are identified, so too are p and �p or, equivalently,
�ðx; yÞ and �ðx; yÞ þ �. Because the polarizer and analyzer
directions are �=2 apart, each dark brush around a defect
point tells us about a �=2 rotation of the director. The number
of brushes counts the winding of the director field. The fact
that we have defects with two brushes directly tells us that
rotations by � leave the phase invariant and are experimental
proof of the symmetry of the nematic phase (Frank, 1958).
The angle that the director turns on a loop around a defect
divided by the angle 2� of a full turn is commonly referred to
as the strength, or charge, of the disclination and is equal to
�1=4 times the number of brushes. Although the absolute
value of the strength may easily be extracted from counting
the number of brushes, the sign of the winding is not yet
determined. It is a pleasant exercise in visualization to show
that upon rotating the polarizers the brushes will counter-
rotate when the defect has negative winding and will corotate
when the winding is positive.

As defects are points of discontinuity of the director field,
we aim for a classification up to continuous deformations of
their surroundings. When two paths can be continuously
distorted into each other, they are said to be (freely) homo-
topic. It is useful to think of these deformations as time
evolution because it not only allows us to visualize the
distortion but it also reminds us that, under continuous
dynamics, configurations remain in the same homotopy

class. Above we began to think about a defect in terms of
a measuring loop around it; this key idea is what allows us to
probe the properties of a singularity in our texture without
leaving the safety of the well-behaved director field.
Consider the possibilities for the director on a small round
measuring circle in the system. Here is an explicit family of
possible measurements on this circle p=A ¼ cm which ex-
hibit any even number of brushes:

cm ¼ ½cosðm�Þ; sinðm�Þ�; (2)

with m 2 1
2Z a half-integer and � the polar angle around our

circle. These textures are all distinct in that we cannot
continuously deform cn into cm for n � m. Thus within
this family, the half-integer m classifies the possibilities for
the director field. Of course the textures described by Eq. (2)
are special choices, or simplifications, and the director is
rarely of this exact form even very close to the defect line.
However, any director field that we might have measured on
our circle can be homotoped into one of these. The utility of
Eq. (2), therefore, is that these fields capture the possible
windings of a general director field and thereby form a set of
representatives for the behavior outside point defects. Most
placements of our measuring circle will not surround a
defect and hence the director field can be deformed to c0,
which is a constant. On the other hand, if the measuring
circle surrounds a point where two brushes meet, it should
be homotopic to c1=2 or c�1=2.

Although reasonable sounding, the previously stated con-
nection between brush counting and winding number relies
on a hidden assumption. Suppose p ¼ ½cosfð�Þ; sinfð�Þ� on
our measuring circle and f took the form

fð�Þ ¼

8>>><
>>>:

3
2� 0 � �< 2�

3 ;

2�� 3
2�

2�
3 � �< 4�

3 ;

3
2�� 2� 4�

3 � �< 2�;

(3)

where we first go from 0 to �, back to 0, and then back to �.
Now f takes values in the interval ½0; �� with 0 and �
identified due to the p ! �p symmetry. Were we to count
the number of times we landed at �=2, for instance, we would
find 3, as we would for any generic point of ½0; ��. Under
crossed polarizers we would see six brushes. But we can also
smoothly distort the map fð�Þ so that there are only two
brushes through the sequence of maps ftð�Þ, t 2 ½0; 1�:

ftð�Þ ¼

8>>>>>>>><
>>>>>>>>:

�
3
2 � t

�
� 0 � �< 2�

3�2t ;

2��
�
3
2 � t

�
� 2�

3�2t � �< ð4�2tÞ�
3�2t ;�

3
2 � t

�
�þ ð2t� 2Þ� ð4�2tÞ�

3�2t � �< 2�:

(4)

We see that f0ð�Þ ¼ fð�Þ while f1ð�Þ generates the charge
1=2 map c1=2 as � ranges from 0 to 2�. So have we shown

that charge 3=2 is the same as charge 1=2? Certainly not!
Rather, we have learned that we must be more careful about
counting brushes. We assumed in our previous rule of count-
ing brushes to determine angles in which the angle function
was always either increasing or decreasing on our loop. In
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general, when counting the number of times we pass �=2 we
must keep track of the way we pass it; is the angle increasing
or decreasing? We thus look at the net rotation of fð�Þ by
calculating the winding number via the following integral:

w ¼ 1

2�

Z 2�

0
d�

dft
d�

¼ 1

2
; (5)

for all t. In general, the winding number is precisely the
charge of the defect. In actual liquid crystal systems, ener-
getics strongly disfavors extra brushes because these would
correspond to regions of large splay or bend in a nematic.
Thus, the naive counting of brushes works outside of excep-
tional circumstances. Although we framed the discussion
above in terms of a particular measuring circle, the classifi-
cation by winding numbers holds for any measuring loop
disjoint from the defects, just let � be any coordinate which
goes from 0 to 2� as we traverse the loop once. In particular,
the texture on any loop in the sample that lassos just one of
the defects is homotopic to any other; this can also be seen
from the fact that the number of brushes meeting at the defect
is conserved. Similarly, the number of brushes meeting at a
point in a Schlieren texture remains unchanged in time as the
texture evolves except when two defects combine and anni-
hilate each other. The winding number m is a key example of
an essential idea in topology: turning geometric information
into counting. By doing so we get robust measures since, in
particular, integers (or half-integers), being discretely valued,
cannot change continuously.

B. Making precise measurements

We start by putting our above classification into a broader
context. We mentioned several different topological spaces
that we should keep straight. First, we are dealing with
uniaxial nematic textures, so there is a space associated
with the possible ground states of the director field, the
ground state manifold (GSM).1 Here the angle of the director
� lives in the interval ½0; �� with 0 and � identified. This
space is known as the real projective line RP1. As with any
interval of the real line with end points identified, it has the
topology of a circle. Next we have the spaceM making up the
sample volume. For our Schlieren textures, M may be taken
to be a suitable region of the plane. Inside M there is a
subspace, the set of defects � where the order is not defined.
In the last section, � was the set of disclination points. We
obviously have the director field, an RP1-valued field on M
away from the defect set, n: M n� ! GSM. In general, it is
daunting to contemplate the texture on the entire sample
especially if there are many defects. We also want to under-
stand to what extent n may be understood as arising from
its behavior near the defect set. Might there be a way to cut

M n� into more manageable pieces around its defects,

classify those, and then glue them back together? These

considerations motivate the introduction of additional,

‘‘auxiliary’’ spaces: measuring surfaces of fixed topology

contained in the sample. We study the behavior of the director

field on these as we vary their placement relative to the defect

set or as we vary n. Indeed, all the topological ‘‘charges’’ in
this paper are defined with respect to a choice of measuring

surface. Saying that a defect carries a charge is really short-

hand for saying that a small measuring surface which sur-

rounds only that defect measures such a charge. If such a

measuring surface is not present, then the ‘‘charge of a defect’’

is ill defined. Of course, these ambiguities are nothing new

and have been discussed before (Mermin, 1979). However,

with the interest in nematics and cholesterics with embedded

colloids (Muševič et al., 2006; Lintuvuori et al., 2010; Čopar

and Žumer, 2011), these mathematical subtleties are no longer

just about precision or axiomatic rigor; they are absolutely

necessary for the proper interpretation of data. Above we

measured the director on loops (which are topologically

circles, denoted by S1) and observed that the winding number

m was constant during deformations of the loop or the texture

as long as no defects pass through the loop, which essentially

solved our classification problem for single defects in

Schlieren textures. In more mathematical jargon, we saw

that the set of maps from S1 to RP1 up to homotopy (denoted

½S1;RP1�) was equivalent to the set of half-integers 1
2Z.

How can we go from single defects back to the full texture?

We draw a picture of a two-dimensional plane with punctures

at the defects and small measuring loops about each puncture.

Given the winding numbers at the loops, do we know the

classification of the full texture? This picture is actually no

different from one we might draw for the following situation:

Consider a hypothetical Schlieren texture that contains sev-

eral nearby strength �1=2 defects. If we take a measurement

around a circuit that surrounds all the defects, what do we

get? Before we say anything more about the local-to-global

question, we try to find an answer to this natural question:

How can the theory capture the intuitive notion that defects

can combine or split? We almost have it: We know that

measuring circuits around defects are in correspondence

with half-integers, and it happens to be true that any two

half-integers can be added or subtracted. There is just a small

gap between the question and answer now. For one, we need

to define a way to go from two measuring circuits to one. The

natural way to add loops is to concatenate them by forming a

longer loop by running over the first and then running over the

other. But in order to do this, the loops have to start and end at

the same point in sample or they cannot be connected. By the

same token, the two textures traced out on the loops must start

and end at the same point in RP1. Given two arbitrary

measuring loops, there is no reason for the textures on them

to agree at some point. On the other hand, our figure shows

that we can draw a big circle surrounding any pair. Is there a

way to go from two circles to one without having to make

arbitrary choices in the region between the circles? Yes. Since

we are interested only in properties that are preserved under

continuous deformations, we can deform the texture around

one defect so that the value in RP1 agrees at the common

base point in the sample. To visualize this, consider a small

1Recall that the ground states of a nematic are just uniform

textures with the director pointing in some direction, so that in a

general texture the local orientation can always be identified with

one of these ground states. Thus the changing orientation of the

director in a general texture may be thought of as motion on the

ground state manifold. There is not an accepted term for this space

in the literature, where it has also been called the manifold of

internal states and the order parameter space.
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disk around the defect. The homotopy proceeds radially out-
ward by deforming the original texture at the center of the
disk to the new texture at its outer edge.

This solution is inspired by the following geometrical fact:
The space between a set of nonintersecting circles in the
plane can be continuously deformed to a set of circles joined
at a single point, called a wedge sum, or bouquet of circles as
shown in Fig. 2. Once we have the texture on the bouquet, the
concatenation of the loops is well defined, and we thus have a
definition of addition in our system. In the case here, we can
form addition by measuring around the loop which hugs the
‘‘outside’’ of the bouquet. By restricting to sets of loops
which pass through the same base point, our set of equiva-
lence classes of maps from S1 to the GSM is enriched with
the additional algebraic structure of a group. Note that based
homotopy is absolutely necessary here, continuous distor-
tions of paths that preserve the base point.

A quick aside on group theory is in order. Recall that a
group requires a way of adding its elements: We just saw that
this is the concatenation of loops. In terms of brush counting,
or the winding number, we need not be concerned with the
details of the rate at which we traverse the GSM, or whether
we pass a brush in the first or last half of the trip. We need
only concern ourselves with the order in which we put the two
paths together. This addition of classes of paths defines the
group addition which may not be commutative but happens to
be in this particular case. A group requires an identity: In a
uniform nematic texture the map from a loop in the sample to
the GSM is always constant, so this provides the identity
under the group addition. Finally, each map has an inverse:
Because we can go around the GSM in the opposite direction

by backtracking our precise path, we also have an inverse.
Together these properties ensure that we have a group, known
as the fundamental group, �1ðGSMÞ, the set of based maps
from a measuring circuit S1 in the sample to the GSM which
are equivalent up to based homotopy. And as the reader
probably has already guessed, this group for the case where
GSM ¼ RP1 is precisely the (half-)integers. A loop that goes
around only one defect in our hypothetical texture will inter-
sect two brushes, giving a winding of �1=2. A larger loop
encircling both will yield a count of four if the defects have
the same sign or zero if they have opposite signs. See
Mermin’s review (Mermin, 1979) for a more detailed and
precise discussion of these properties.

Although the choice of the base point is arbitrary, its
constancy is essential and leads to many of the interesting
phenomena we discuss. The need for a base point is precisely
why standard time zones were developed for trains. It is just a
matter of having a single clock at one location (i.e., one
measuring circuit) to determine the elapsed time at that
spot. Two clocks can be used to measure elapsed time as
long as they are synchronized, that is why we must have a
base point. How are general maps from S1 to the GSM related
to �1ðGSMÞ? In the case of Schlieren textures, we can relax:
½S1;RP1� is simply the underlying set of�1ðRP1Þ, that is, the
set of maps without any addition rule. Even here, however, we
must remember that if we want a topological charge for loops
around defects that satisfies addition, we better pin our loops
on a base point.

We conclude this section by sketching how what we have
done tells us how to go from local measurements around
defects to the full texture. The problem of classifying the
defects on the full texture if we fix a base point is equivalent
to that of classifying the texture on any bouquet of circles to
which it may be retracted.2 For each circle in the bouquet, we
can choose any element of�1ðRP1Þ, so the classification for a
bouquet of k circles is by a k tuple of half-integers. In this
case it turns out that this is also the answer if we allow the
texture at the base point to vary. The complication, as we see
in the following, is that there can be more than one way to tie
together the measuring circuits. When �1ðGSMÞ is non-
Abelian this freedom of choice leads to an ambiguity in
measuring the charge of a defect. This is an important
message of this Colloquium and also emphasizes a possibly
obvious point: The Abelian or non-Abelian nature of defects
comes into play only when there is more than one defect.
Making measurements correctly is, as always, the key to
understanding the physical system.

C. Three-dimensional director: RP2

In our two-dimensional example, we insisted that the
director never point perpendicular to the plane and it was
then possible to describe the texture in terms of idealized
configurations where the director was entirely planar. This
situation is often an accurate description of thin samples
where the bounding surfaces are treated to promote planar

FIG. 2. A wedge sum or bouquet of circles. In order to make

consistent measurements every measurement loop must be con-

nected by a tether to a common base point in both the sample and

the GSM. This way, measurements at different places can be joined

together. Note that each tether is a path from the base point to the

measurement loop and back, so that each of the four measuring

circuits are homotopic to closed loops, encircling the appropriate

defect, yet going through the common base point.

2It can be proved that ‘‘deformation retractions’’ of the sample

onto a smaller space do not change the properties which can be

probed with the tools of homotopy (Hatcher, 2002).
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alignment. However, in bulk samples, the nematic director
can point along any of the directions in three dimensions with
important implications for the topology.

The defects described in this section may still be captured
by a measuring circle in the sample; in a three-dimensional
nematic, these are line defects. By considering a two-
dimensional cross section of a three-dimensional nematic,
we can discuss measuring circles around line defects as
circles surrounding points in the plane, as in the previous
section. Thus the sum of the measuring circles about two line
defects corresponds to the process of merging two parallel
defect segments into one. It is not hard to see that the
constructions explained in the last section have direct analogs
for line defects probed this way, and we leave elaboration on
most of them to the reader. In later sections, we probe line
defects with other measuring surfaces.

The GSM here is a sphere with antipodal points identified
(as n and�n are identified in a line field). In this instance, the
geometry is simple and we are able to see in our mind’s eye
the topology of the GSM. In more general situations, it is
useful to have something more systematic: Indeed, without a
systematic approach we can never be sure that our intuition is
not fooling us. The general framework of the Landau theory
of phase transitions that exploits symmetries and symmetry
breaking not only provides well-known, systematic tools to
our problem, but also emphasizes the essential aspect of
topological defects: a higher symmetry phase surrounded
by a lower symmetry phase.

Recall that any rotation in three dimensions is an element
of SO(3), and one set of coordinates on this space consists of
the three Euler angles. We write the rotation matrices as
R��� ¼ N�M�N�, where the matrices M� and N� are

M� ¼
cos� 0 sin�

0 1 0

� sin� 0 cos�

2
664

3
775;

N� ¼
cos� sin� 0

� sin� cos� 0

0 0 1

2
664

3
775;

(6)

and �, � 2 ½0; 2�Þ, and � 2 ½0; ��. Away from the defect,
the director is a rotation of some fiducial direction, say ẑ, so at
each point ~x in space there are three angles �ð ~xÞ, �ð ~xÞ, and
�ð ~xÞ, and n ¼ R���ẑ. The uniaxial nematic state has two

symmetries. First, because it is uniaxial, rotations around n
leave the system invariant (a phase made of cylinders) and so
we must identify R��� with R���0 so that a rotation around

the original ẑ axis does not change the state. Since we may as
well set �0 ¼ 0, we first see that we can parametrize all
directors by only two angles and we only need to consider
the subspace of SO(3) represented by T�� ¼ R��0. The

group of rotations around a single axis is called SO(2) and
this subspace made by T�� is called SOð3Þ=SOð2Þ, elements

of SO(3) which are identified with each other by SO(2)
rotations. Observe that this is a sphere, the space of configu-
rations of a unit vector, appropriate for a spin in a Heisenberg
magnet, and � and � run over the standard azimuthal and
polar angles on the sphere, respectively. In a nematic, n and
�n are further identified; they are related by a rotation by �

around any axis perpendicular to the director n. Again, we
can prerotate the ẑ direction by � using the diagonal matrix
P ¼ diag½1;�1;�1�, an element of SO(3) with P2 ¼ 1. The
two element group made of 1 and P is called Z2. The nematic
symmetry forces us to identify the two elements T�� and

T��P ¼ T�þ�;���. The resulting space is SOð3Þ=H, where

H is the group of nematic symmetries (the isotropy subgroup)
which includes both SO(2) and Z2. Again, the notation
SOð3Þ=H indicates that we identify two elements of SO(3),
R and R0, if they differ by any element of the group made of
H ¼ fN�;PN�g for all �. Note that PN�P ¼ N�� and so the
product of two elements of H, Pm1N�1

and Pm2N�2
, is

Pm1N�1
Pm2N�2

¼ Pm1þm2N�2þð�1Þm2�1
: (7)

While the total number of flips just adds (m1 þm2), the
rotation angles do not; whether they are added or subtracted
depends on m2. Thus the group addition in H is not just the
group addition of the two different parts Z2 and SO(2)
separately for m and �. H is called the semidirect product
of the two groups and, in this case, is the point symmetry
group D1, the proper symmetries of a right cylinder with a
constant, circular cross section. In any event, the resulting
space SOð3Þ=H has a name, the real projective plane RP2,
and the identification of the spherical angles ð�;�Þ $
ð�� �;�þ �Þ allows us to view it, just as our intuition
suggested, as the sphere with diametrically opposed points
identified, as shown in Fig. 3. However, the way that the
angles add Eq. (7) may not have occurred to the casual
observer without this analysis.3

This analysis demonstrates that based measuring circuits
with the topology of a circle in a three-dimensional nematic
and the one-dimensional defect structures they may encircle
are characterized not by �1ðRP1Þ but rather by �1ðRP2Þ,
which turns out to be a much smaller group. Although when
we traverse our measuring circuit in the sample the final
orientation of the director field must be the same as the initial
one, the final rotation R��� does not have to simply be the

identity, it can be any symmetry transformation of the ne-
matic, i.e., any element of H ¼ D1. This subgroup consists
of two disconnected pieces, the rotations N� and composite
rotations PN�. Homotopies can alter the precise value of the
final rotation but not which connected component it is in.
Consequently, we see that there are two classes of loops
in RP2. Returning to the geometric representation of RP2

in Fig. 3 as the sphere with antipodal points identified, we can
see that these two classes can be identified with loops that
start and end at the same point on the sphere and those that
start and end at antipodal points. The presence of a defect
inside our measuring loop corresponds to the latter class of
paths. In the previous case, we could simply count the number
of brushes to determine that �1ðRP1Þ ¼ 1

2Z, the half-

integers. In the case of a true three-dimensional director we
see that the group is actually simpler: �1ðRP2Þ ¼ Z2 since

3Note that in our discussion of the two-dimensional nematic we

could have described the GSM as S1 with diameters identified and

gone through the same construction. The resulting space is RP1, but

its topology is identical to that of S1. S2 and RP2 are not

topologically identical; in particular, they have different fundamen-

tal groups.
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any closed path on RP2 can be smoothly deformed (holding
its base point fixed) either to its base point or to a path that
connects antipodes. We write Z2 multiplicatively, so that it
has the two elements f1;�1g. Thus, no distinction can be
made any longer between positive and negative strength
defects; the planar textures c1=2 and c�1=2 can be converted

into each other by a uniform rotation of all of the molecules
by � about some axis in the plane, x̂ say. On the GSM this
rotation simply corresponds to transporting the loop nð�Þ
from one side of the equator to the other by passing it over
the North Pole, as shown in Fig. 4. Equally, there are no
‘‘winding 1’’ defects; the combination of circuits around two
disclination lines in this case is always homotopic to a defect-
free texture. For instance, the combination of the two planar
textures c1=2 produces a loop on the GSM that goes all the

way around the equator and so can be smoothly slid up in
latitude until it shrinks to a point at the North Pole.4

The above homotopy from a loop covering the equator to a
constant loop at the North Pole is actually observed in
cylindrical capillaries treated to give perpendicular anchoring
at the surface. The molecules rotate out of the plane so as to
align along the cylinder axis in the interior, the so-called
‘‘escape in the third dimension’’ (Cladis and Kléman, 1972;
Meyer, 1973; Williams and Bouligand, 1974). Of course, this
escape can proceed in two directions: up or down. If, as
typically happens, the molecules escape up in one section

FIG. 4. The homotopy that takes the aþ 1
2 disclination line in a

three-dimensional nematic into the a� 1
2 disclination line consists

of a uniform rotation of all the molecules by � about the x̂ axis. In

RP2 this homotopy entails sliding the path from the eastern half of

the equator (a) over the North Pole (b) to the western half of the

equator (c). As in Fig. 3 we draw the path in the sample and the

corresponding director at each point below each picture of RP2,

with the arrows on the three curves denoting corresponding points

and orientations.

FIG. 3. The GSM for the three-dimensional nematic is the real

projective plane RP2. Below each hemisphere which represents

RP2 we draw the path in the sample and the corresponding director

at each point, with the arrows on the two curves denoting corre-

sponding points and orientations. Any measurement around a closed

loop in the sample can be mapped to a path in RP2 which belongs to

one of two homotopy classes: (a) trivial and (b) nontrivial. In other

words, �1ðRP2Þ ¼ Z2.

4Strictly this particular homotopy does not preserve the base

point, however, it is easy to construct one that does; simply hold

that point of the loop fixed on the equator, slide the rest over the

North Pole, and shrink it into the base point. In this case too,

½S1;RP2� has the same elements as �1ðRP2Þ. In general ½S1;GSM�
is equal to the underlying set of the group �1ðGSMÞ whenever the
latter is Abelian.
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of the capillary and down in another then there will be a
mismatch in between. This gives rise to a different type of
defect: point defects in three dimensions, known colloquially
in the field as hedgehogs (Polyakov, 1974).

III. HEDGEHOGS

Now that we have been introduced to the line defect, it
behooves us to meet its partner, the hedgehog. Many features
of the description of line defects carry over to the pointlike
hedgehogs. Here we outline what is discussed in this section
by sketching a few ‘‘three-dimensional versions’’ of the
pictures described previously. First, a measuring loop can
link with a defect line, but a loop cannot link with a point.
Just as we need a Gaussian sphere to measure a point charge
in electrostatics, we measure the topological charge of a point
defect on a measuring sphere (denoted S2) in our sample.
Thus what we seek to classify are the set of maps without
base point ½S2;RP2� and the second homotopy group
�2ðRP2Þ. With that knowledge in hand, we consider a piece
of the sample with multiple point defects by imagining a
three-dimensional ball with measuring spheres around punc-
tures at the hedgehogs. This space retracts to a bouquet of
spheres, and the ‘‘sum’’ of the textures on the measuring
spheres in the bouquet is taken to be the texture on a sphere
that shrink wraps the entire thing. Just as for line defects,
this picture relates a defect addition and a local-to-global
construction.

We first study the group structure on �2ðGSMÞ, consisting
of homotopy classes of based maps from the sphere to the
GSM. Here, again, we fix a base point on both the sphere
(which corresponds to the base point in our sample) and the
GSM to define a group addition property. To be precise,
consider the standard latitude and longitude coordinates on
the globe. We choose the North Pole for the standard point on
the sphere and some convenient point, say�0, in the GSM. To
combine elements we imagine the following sequence of
homotopies, depicted in Fig. 5. Consider first a single element
g1 2 �2ðGSMÞ. We can smoothly deform the map by comb-
ing out a neighborhood of the North Pole into a polar cap
which maps entirely to �0. We can keep smoothly deforming
the whole map into a smaller and smaller patch of the sphere,
until we have a small island surrounded by an ocean of points
all mapping to �0. The texture arising on the island from a
standardþ1 hedgehog is a Skyrmion (Rößler, Bogdanov, and
Pfleiderer, 2006; Mühlbauer et al., 2009) and the director
rotates from �0 at the coast all the way to the antipodal
direction ��0 in the interior, covering every orientation in
between. This new map is homotopic to the original map
which corresponded to g1 and so, from the point of view of
�2ðGSMÞ, the new map is the same element g1. Remember
the rate at which we traverse the GSM is not important, only
the places visited. We can make the same smooth maneuver
on a second element g2 2 �2ðGSMÞ, making a second island
in the same ocean. To combine the two elements, we simply
put island one (g1) and island two (g2) in the same ocean on
the same sphere without overlapping the islands. This works
because the boundaries of these islands are all mapped to �0.
We can now smoothly deform this new map as we see fit,
filling the ocean back up with land. In doing so we have

combined the two elements. Since we can move the islands

around before filling in the ocean, there is no way to order the
group addition into �2ðGSMÞ and it follows that �2 is
necessarily Abelian. As in the case of�1, the identity element

is again the equivalence class of the uniform texture that maps
the whole sphere to �0.

Finally, the inverse of any element can be found by de-

forming the original map into an island and then taking the
mirror image of the island through the sphere as in Fig. 6.

Why does this give an inverse? We connect each point on the
Western hemisphere to its reflection through the plane in-

cluding the prime meridian in the Eastern hemisphere. We
choose the value of the map on each of these lines inside the

two sphere to take the value at the end points, identical by
construction. It follows that we can fill the region inside the

sphere with a smooth texture and there can be no defects
inside. Thus the island and its mirror add to zero, shown in

Fig. 6. Alternatively, we can take the map fð�;�Þ � GSM
and create the inverse gð�;�Þ ¼ fð�;��Þ.

We now relate the group structure of �2ðGSMÞ to the
addition of defects in terms of measuring surfaces: Imagine

(as in Fig. 5) that we measure two different regions, each with
a sphere. As for loops, in order to add the sphere measure-

ments, they must be in a bouquet configuration. We can
achieve this by attaching a tubelike tether to each sphere

ending at our base point, but beware. The charges assigned to
hedgehogs (actually, assigned to measuring spheres) will

depend on the choice of tethers, particularly if there are
disclinations in the system. The sum of the textures on these

spheres is equivalent to the texture on a large sphere which
has been deformed so that it snugly wraps around all of the

original spheres. We encourage readers to relate this to the
earlier picture of islands on a single sphere; each sphere in

the bouquet becomes an island, and the base point of the
bouquet is blown up to form the ocean. If no disclination

lines are allowed, i.e., �1ðGSMÞ ¼ f1g, then the tethers can
always be unentangled since you ‘‘cannot lasso a basket-

ball’’ (Coleman, 1988).
Although we have a definition and interpretation of

�2ðRP2Þ, we have not computed it yet. In order to do so,

we generalize the idea of counting brushes in the two-
dimensional nematic. Each brush is a place where the director
points in one of two directions, parallel to the polarizer or

analyzer, and the charge is one-fourth the number of brushes.
Because of the cross polarizers, we are forced to count both

the polarizer and analyzer directions. However, were we
given an explicit map we could, instead, just count the

number of times the map from S1 went to any single element
of RP1 [with sign, as in Eq. (11)], an integer known as the

degree of the map. Then the charge of the defect would be
half the degree. We could try to do the same thing for maps

from S2 to RP2, but the ambiguity of n and �n makes this
problematic.5 Each point of RP2 can be identified with two

antipodal points on S2: We start at the base point �0 and
choose one of the two equivalent points on S2. Given a

choice, we do this for all points in a small neighborhood

5The reader may worry that the same problem plagues us for

�1ðRP1Þ. It does not: RP1 is orientable where RP2 is not, which is

the real issue here.
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consistently so that we locally generate a new smooth map to

S2. The only hitch might be that when taking a long path

around RP2 we may find that we are hung up on a non-

contractible path in the GSM when we return to the same

point.6 However, this is impossible with maps from S2.

Fortunately, maps from S2 to any space X have a special

property owing to the topology of the sphere. Consider a

closed loop � on S2 and the loop it produces on X and watch

how the latter changes as we smoothly deform �. Because �
can be shrunk to a point on S2, its image on X can also be

shrunk to a point and to one value in X. For the case of RP2

this is convenient: The image of any loop � on S2 must be

homotopic to the identity map on RP2, so we never get hung
up. Once again, we cannot lasso a basketball and so we can
always ‘‘lift’’ the map from RP2 to S2 globally and turn it
into a map from S2 to S2. Therefore, after fixing the lift of�0

(for definitiveness, we take it to lie in the Northern hemi-
sphere), �2ðRP2Þ is the same as �2ðS2Þ, which we can
calculate.

Each map gives us a unit vector nð�;�Þ at each point of the
measuring sphere. Similar to the winding number, there is an
integral that measures the number of times our map wraps
around the sphere, also known as the degree or hedgehog
charge

d ¼ 1

4�

Z
S2

d�d�n � ½@�n� @�n�: (8)

Remarkably, it is an integer: The integrand is just the
Jacobian of the map from S2 to S2 and so it counts the

FIG. 5. How do you combine two hedgehog charges (a)? The key lies in based homotopy theory. First we comb the texture on the

measuring surface so that the defect is confined to a small island within an ocean of uniform director field, which we identify as the base

point (b). In order to compare the relative charges of two hedgehogs, their respective measuring surfaces must originate from the same base

point, forming the bouquet of spheres described in the text (c). A new measuring surface, a sphere which has been shrink-wrapped around the

bouquet of spheres, now contains both islands (d) and may be deformed into a single sphere containing the sum of both hedgehogs (e).

6This is the distinction between the identity and �1 in �1ðRP2Þ:
When paths in RP2 are lifted to paths in S2, paths in the equiva-

lence class of the identity are closed, and paths in the class �1 are

not.
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area swept out on the target sphere. Dividing by 4� simply
gives us the number of times we visit each point on the target.
Moreover, because we do not take the absolute value of the
Jacobian, we measure positive and negative area and thus will
properly count the analog of increasing and decreasing as
needed in Eq. (5) for the winding number. See, for instance,
Kamien (2002) for the derivation of this Jacobian and its
connection to Gaussian curvature. Therefore, we see that
maps from S2 to S2 are classified by a degree and that this
degree can be any integer, positive or negative. Thus
�2ðRP2Þ ¼ �2ðS2Þ ¼ Z, and there are an infinite number of
topologically distinct point defects in nematic liquid crystals.
Representatives of each homotopy class are given by the maps

ndð�;�Þ¼ ½sinð�Þcosðd�Þ;sinð�Þsinðd�Þ;cosð�Þ�; (9)

which exhibit a d-fold winding on the equator and may be
thought of similar to the textures cm of Eq. (2) as providing an
idealized description of the director field near a hedgehog.

Just one point remains to straighten out: the question of the
choice of lift. This will also tell us about the difference
between the free homotopy classes, the set ½S2;RP2�, and
the second homotopy group �2ðRP2Þ. Suppose we had in-
stead chosen to lift the base point �0 into the Southern
hemisphere of S2. What would be different? We would still
be able to identify each element of �2ðRP2Þ with one in
�2ðS2Þ and define a degree d through Eq. (8). However, when
we would have used the vector nð�;�Þ to specify our texture
we now use�nð�;�Þ. Since Eq. (8) is odd in n the degree we
now measure would be�d instead of d. This is not to say that
the textures labeled by d and �d are the same. The identi-
fication we made between �2ðRP2Þ and �2ðS2Þ is one to one;
it is just that there are two identifications that we can make,
differing in whether we lift the base point to the Northern or

Southern hemisphere, and these are not the same.7 So long as

we make our choice of lift consistently, hedgehogs with

charge d and �d are distinct, but it is up to us which sign

we associate with which hedgehog.8

However, under free homotopy maps from the sphere to

RP2 labeled by d and �d do become equivalent. Take the

texture of Eq. (9) and rotate uniformly by � around the ŷ axis,
and then take n to �n to change d to �d. It follows that

½S2;RP2� is the set of non-negative integers, which is not the

set of elements in �2ðRP2Þ. Thus even with the same spheri-

cal measuring surface, the classification of hedgehog defects

can be different depending on how we make the lift from RP2

and S2. As long as we do not try to extend the local

measurements to a global texture, the ‘‘local-to-global prob-

lem,’’ we need not be careful. However, if we specify free

homotopy classes on spheres about defects and then attempt

to fill the remaining space, we run into ambiguities or trouble.

Were we to probe each hedgehog individually by calculating

the degree on a small sphere around it, we would only be

measuring its charge up to a sign, and we are assigning it to

one of the maps ½S2;RP2�. The ease with which we do this

extracts a penalty; we can no longer add defects since we

have lost the group structure of �2ðRP2Þ without the use of a
base point. For instance, a pair of spheres with jdj ¼ 1 on

both might induce either jdj ¼ 0 or 2. We cannot know the

relative signs unless we have a common reference coming

from a fixed base point.
To understand the global structure it is especially illustra-

tive to view the sample as a bouquet of spheres attached at a

single point, the base point of the sample, that maps to the

base point of the GSM. If we have k point defects then the

texture becomes a map from a bouquet of k spheres to RP2.

Were we to measure the charge on each sphere using the base

points, we would end up with a k tuple of elements of

�2ðRP2Þ labeled by their degree ðd1; d2; . . . ; dkÞ. There is

always a global ambiguity when we lift to S2 since the GSM

base point can be taken to lie in either the Northern or

Southern hemisphere. If we now choose to consider the free

homotopy classes of samples with k defects, we identify

ðd1; d2; . . . ; dkÞ with ð�d1;�d2; . . . ;�dkÞ, not

ð�d1;�d2; . . . ;�dkÞ. In other words, it is possible to go

from a based measurement of a single defect to a based

measurement of a collection of defects to an unbased mea-

surement of many defects. However, it is not possible to make

an unbased measurement of many defects from unbased mea-

surements of single defects. This is the crux of the local-to-

global problem and is why local information is not always

enough to understand the topology of the whole texture.

FIG. 6. The inverse of an element consists of taking the mirror

image of its island and placing this new island on the sphere. The

sum of these two elements must add so that the sphere contains no

defects. In the interior of the sphere, the texture is constant along

chords connecting identical points on the original island and its

mirror. Because no defects are introduced, the entire texture on the

sphere may now be smoothly deformed to the base point.

7The reader might be concerned that the same ambiguity arises

for �1ðRP1Þ. However the two choices of lift from RP1 to S1 differ

by a � rotation, i.e., to replacing ftð�Þ with ftð�Þ þ � in Eq. (5),

which does not change the winding number w. In this case both lifts

yield the same identification of �1ðRP1Þ with �1ðS1Þ.
8The prevailing convention in the literature is to consider the

purely radial texture, Eq. (9) with d ¼ 1, to have positive charge,

the choice of lift being that the director field points outward. The

base point on the measuring sphere would be the North Pole and the

base point in RP2 is the vertical direction, which is then chosen to

lift to the North Pole in S2.
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IV. DISCLINATION LOOPS

We have now described disclination lines and hedgehogs
separately, but in any typical texture both will be present
simultaneously, and we are forced to think about how they
interact with each other. When we discussed defect lines
previously, we merely generalized point defects into a third
direction and classified them by measuring circuits which
ensnare the defect lines. However, these measurements could
not determine whether or not the disclination itself is a loop or
a knot, or linked with other disclinations. Indeed, part of the
appeal of colloidal systems is precisely that they provide a
natural setting for illustrating the topological interplay be-
tween disclinations and hedgehogs and enable the braiding
and tangling of the disclination lines (Tkalec et al., 2011). If
the colloid is treated to promote radial anchoring of the
molecules at its surface then it will appear as a unit strength
hedgehog and this topological charge will have to be com-
pensated by a companion defect in the liquid crystal so as to
satisfy the global boundary conditions. Another way of say-
ing this is that the homotopy class of the texture on a
measuring sphere which surrounds just the colloid differs
from the one on a much larger measuring sphere on which,
say, the texture is determined by the global boundary con-
ditions. This implies the existence of another defect set. One
way of achieving this balance is to place an opposite strength
point defect close to the colloid so that together they form a
dipole pair (Poulin et al., 1997). Multiple dipolar colloids
interact with each other elastically through the distortions
they produce in the liquid crystal and can as a consequence
assemble into chains or two-dimensional colloidal crystals
(Muševič et al., 2006; Škarabot et al., 2007).

A separate possibility is to have the charge of the colloid
compensated by a disclination loop, encircling the particle in
a Saturn ring configuration (Terentjev, 1995). These too
interact elastically and aggregate to form chains and crystals
(Škarabot et al., 2008). However, they also allow for a variety
of intriguing entangled structures where a single disclination
loop wraps around two or more colloids, balancing their
collective charge (Guzmán et al., 2003; Ravnik et al.,
2007; Ravnik and Žumer, 2009). This naturally begs the
question of how to describe the topological properties of
such disclination loops, which may be probed as both line
and point defects. Although this makes sense from the per-
spective of conserving total charge, hedgehog charge, it turns
out is not a homotopy invariant of a the full measuring surface
of a disclination loop: a torus.

A. Measuring with spheres

Consider a based measuring sphere in our sample which
does not surround any defect. The nematic texture can be
deformed so that the sphere has one island with a þ1 charge
and a mirror island with charge �1. As shown in Fig. 7, we
can imagine distorting the sphere into a dumbbell shape with
one island on each end. As we pinch off the tether connecting
the two ends, each island comes to reside on its own sphere,
Sþ and S�, surrounding a plus and minus hedgehog, respec-
tively, which we realize were necessarily created during the
process. Suppose that elsewhere in the sample there is a 1=2

disclination line. What happens if we drag the �1 hedgehog

around that disclination? More precisely, we keep the texture

fixed on Sþ so that the degree integral is unchanged but begin

deforming S� so that it wraps once around the disclination line

and returns to its original position, leaving a tail tethered
around the disclination line. Now the most natural sphere

around the �1 hedgehog, S0�, is one that does not have the

tether and is the one which wewould likely use to measure the

charge locally.What is the relation between the textures on S�
and S0�? It can be difficult to visualize this operation, which

involves a homotopy of a three-dimensional line field, but if we

return to the original undeformed texture, the texture on S0� is

in fact equivalent to the one on S� except that we then have
attached a loop to it which goes around the disclination line in

the ‘‘opposite direction’’ to the base point. Roughly speaking,

S� and S0� clasp the hedgehog from different sides of the line

defect.We call this set of operationsmaneuverX. Such a tether
picks up the� rotation of the disclination and we are forced to

change n to �n on most of the sphere, in particular, over the

island, when we lift the texture on S0� from RP2 to S2. Thus

when we calculate the degree on S0� via integration, d will

go to �d. We have reversed the degree of the map on the
sphere around the hedgehog by moving it around a discli-

nation. Note that we had to carefully compare two distinct

measuring spheres around the hedgehog in question in order

to make sense of this. We started with total charge 0 around

the two hedgehogs and ended with total charge �2, because
we changed the measuring surfaces; just as the total charge

in a Gaussian measuring box cannot change, neither can the

charge in a fixed measuring circuit.
We can also interpret maneuver X from the point of view of

‘‘islands on the globe.’’ Imagine a disclination loop that ap-

proaches the globe. We may poke an island on the sphere

through this loop, and while performing this process the loop

leaves an image in the shape of an atoll in the �0 ocean.

Although the value in RP2 can be the same inside and outside

the atoll, whenwe lift toS2 wemust change the sign of nwhen

we cross the atoll, as this is equivalent to wrapping around the
disclination loop. If the atoll is surrounding only a region of

open ocean, this is not a problem.We can shrink it to a point and

effectively make thewhole region of the ‘‘wrong’’ ocean of ��0

disappear. But given an island carrying a nontrivial hedgehog

charge, when we lift to S2 we will be forced to match the

island’s coastline to a lagoon of ��0. No problem, just lift the

island to�n instead ofn. Is there a singularity of the texture on
the atoll?No. For concreteness take�0 to be theNorth Pole and
so ��0 is the South Pole. Topologically, the atoll is an annulus.

The inner ring of the annulus points south and the outer ring

points north. It is no problem to have the director smoothly

rotate along the radius of the annulus from south to north. This

texture will not contribute to the degree. By stretching the

measuring surface this becomes precisely the picture in Fig. 7

where the atoll becomes the tubelike tether. Again, this so-

called ‘‘action’’ of �1 on �2 preserved the island’s class in the

set of unbased maps ½S2;RP2�, but not in �2ðRP2Þ.

B. Measuring with tori

Hedgehog charge is a homotopy invariant of a sphere, the

natural measuring surface for a point defect. But the natural

Alexander et al.: Colloquium: Disclination loops, point . . . 507

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



measuring surface for a disclination loop is not a sphere but a

torus T2, a thin tube sheathing the singular line. The classi-

fication of disclination loops can therefore be based on the

homotopy invariants of the texture on this torus, that is, on

maps from T2 to RP2. There are multiple measures of these

maps, two corresponding to elements of �1ðRP2Þ measured

on the cycles of the torus and a more refined quantity, a global

defect index (Jänich, 1987; Nakanishi, Hayashi, and Mori,

1988; Bechluft-Sachs and Hien, 1999) which captures some

aspect of hedgehog charge. A torus surrounding a simple,

circular disclination loop, shown in Fig. 8, has two cycles: a

meridional loop that goes around the disclination line which

always measures the nontrivial element of �1ðRP2Þ, and the
loop that follows the contour of the disclination line along the
longitude of the torus records another element of �1ðRP2Þ.9
If this is also nontrivial then it means that our disclination
loop itself goes around another defect, linked loops, while if it
is the trivial element then our disclination loop is either

FIG. 7. (a) A sphere with a plus and minus island has zero net hedgehog charge. (b) The two islands can be separated to create two spherical

bulges Sþ and S� for the plus and minus pair. If we pull one sphere around the disclination and insist on keeping the base point ocean fixed then

the entire � rotation of the director must occur in the space between the two spheres. This makes it impossible to bring the spheres together

while deforming the nematic continously. Bringing the two oceans in contact would require an even more rapid twist in the nematic which

would render the texture discontinuous. Therefore, it is necessary to have the � rotation occur somewhere else if we want to join the spheres to

create a single measuring surface. Thus there will be some region that can be pushed onto the tether where there is a� twist. (c) This rotation of

the ocean from ‘‘up’’ to ‘‘down’’ allows us to combine the spheres but changed the overall degree measured on one of the two spherical bulges,

so as the minus hedgehog is carried around a disclination line its orientation reverses and the natural final measuring circuit (S0�) records the
opposite hedgehog charge. (d) If the two hedgehogs are now recombined and the tether is ignored, their total charge will be �2.

9The reader may worry about which longitudinal path to follow if

the disclination loop has a more complicated shape or is knotted. A

canonical choice is provided by any path that has zero linking

number with the defect loop itself (Jänich, 1987).
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isolated or linked an even number of times. For now we

assume that this element is trivial and that our disclination

loop is unlinked.
What is the homotopy classification of this subset of

textures on a torus? One naive guess would be that we would

have an additional choice of integer n, which we might get by

repeatedly merging hedgehogs into the line defect, in a way

analogous to our way of merging two hedgehogs together (via

a bouquet construction). However, we can show that adding

two hedgehogs to our disclination is the same as not adding

any by using maneuver X, as in Fig. 9. We have a texture on

the torus called f; we now show that f0 arising from adding

twoþ1 islands to the torus by merging in a sphere that carries

þ2 hedgehog charge is homotopic to f. Move one of the þ1
islands on f0 on a loop around the meridian. As we pull the

island around a circle of longitude it accumulates a concentric

series of borders around the island which rotate the coastline

by �. As before this is the action of the group element �1 2
�1ðRP2Þ on the group elementþ1 2 �2ðRP2Þ. This island is
now homotopic to�1 2 �2ðRP2Þ, as argued before. Now we

have a �1 pair of islands on the torus which we can cancel

against each other just as we could for a pair of such islands

on a sphere. This results in a texture on the torus which is

homotopic to the one we started with. From another point of

view, performing maneuver X does not require any discon-

tinuous changes on the torus; the hedgehog moves through

the handle without piercing the measuring surface. As a

result, we can smoothly transform the texture on T2 while

changing the hedgehog charge of the surrounding space by

�2. Hence, we can classify tori surrounding disclination

loops as carrying either even or odd hedgehog charge. The

reader might ask how we can be sure that there are no moves

that can change this charge by�1, an issue that we explain in
the next section.

In what follows we state some interesting results that fill

out most of the rest of the story about disclination loops. The

complete classification of textures on tori labels textures with

one of the four pairs ða; bÞ where a, b ¼ �1 are the homo-

topy classes (of �1) on the meridian and longitude cycles,

respectively. For the three cases where a and b are not both

þ1, it turns out there are two subclasses of textures within

those that are labeled with ða; bÞ, which correspond to even

and odd numbers of þ1 islands on the torus, just as for

the case ð�1;þ1Þ we explained above. When a and b are

both þ1, there are an infinite number of classes; without a

FIG. 8. The measuring surface T2 has two cycles, either of which

may contain nontrivial winding. For the unlinked disclination loop

shown the winding is nontrivial around the meridian and trivial

around the equator.

FIG. 9. (a) Two þ1 islands on a torus surrounding a disclination

loop, representing the addition of two hedgehogs. We can always

tether the two islands together to measure the combined charge.

(b) However, moving one of the islands around the meridian of the

torus reverses its orientation, turning it into a charge �1 island.

(c) If the two islands are then merged they carry zero net charge,

illustrating the homotopy between disclination loops with hedgehog

charge n and n� 2. As in Fig. 7, there must be a � rotation of the

director somewhere on the tether in (b) and (c).
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disclination loop in the torus, we cannot cancel out pairs of
islands anymore.10 We therefore can add a subscript in either
fe; og (even or odd) or Z to this ordered pair to complete the
classification.

This peculiar set of homotopy classes has some interesting
additional structure: We may do much more with tori than just
merge them with spheres, as we did above. We present below
simply one example, which corresponds to merging two
disclination loops (i.e., tori with a ¼ �1) ‘‘side to side’’
(Jänich, 1987; Bechluft-Sachs and Hien, 1999).
Unfortunately, a precise explication of the other group which
emerges when we merge two unlinked tori (i.e., with b ¼ 1)
‘‘top to bottom’’ (Nakanishi, Hayashi, and Mori, 1988) is
outside the scope of this paper. Given two tori with textures
such that a ¼ �1 on both, we cut them along a meridional
circle, resulting in two cylinders and then reglue them so that
we have a single torus. This results in a Z4 group structure on
the homotopy classes of such textures on a torus, where the
mapping is ½0� ¼ ð�1; 1Þe, ½1� ¼ ð�1;�1Þo, ½2� ¼ ð�1; 1Þo,
and ½3� ¼ ð�1;�1Þe, where we write Z4 additively so that
½m� þ ½n� ¼ ½mþ n mod4�. It is natural for ð�1; 1Þe to be
the identity element; it is both unlinked and may contain no
hedgehogs, which makes adding it a bit like adding a ‘‘con-
stant’’ segment of disclination line.

We summarize these and the results of the last three
sections in Table I.

V. BIAXIAL NEMATICS AND THE ODD HEDGEHOG

In the last section, we argued that by a smooth deformation
a map from T2 to RP2 could absorb hedgehog charge in pairs
so that the hedgehog charge could be only even or odd. Here
we probe this further and use the insight provided by deco-
rating the uniaxial textures with a small amount of biaxial
order. This biaxial point of view both highlights the under-
lying topology of the uniaxial phase and clarifies the way in
which the even and odd classes of uniaxial disclination loops
are distinct.

Recall in our discussion of the nematic we discovered, via
some matrix algebra, that the ground state manifold was RP2.
This was appropriate for a uniaxial nematic, which had rota-
tional symmetry around its long axis, the rotational symmetry

responsible for the SO(2) factor in H. A biaxial nematic has a
lower symmetry, that of a brick or rectangular cuboidwith three
unequal lengths. Not just a mathematical construct, biaxial
liquid crystalline phases have been known for many decades.
In the past few years, discovery of thermotropic biaxial phases
has renewed interest in their defect structures. Moreover, chi-
rality and biaxiality are intimately connected (Priest and
Lubensky, 1974; Harris, Kamien, and Lubensky, 1999), and
studies of blue phases (Grebel, Hornreich, and Shtrikman,
1983; Wright and Mermin, 1989; Dupuis, Marenduzzo, and
Yeomans, 2005) often utilize a biaxial description.

Returning to the notation and discussion in Sec. II.C, we
start with the biaxial molecule with long axis along ẑ and a
second axis along x̂ (the third axis is along ŷ and all three are
distinguishable: ‘‘triaxial nematic’’ might be more apt). The
symmetry of the brick involves only three discrete rotations
of � around each of x̂, ŷ, and ẑ. Ignoring those symmetries for
the moment, we see that the original rotation matrices R���

represent an arbitrary rotation of the brick. With the symme-
tries, we must now identify � with �� �, so that the isotropy
subgroup Hb becomes

Hb ¼ f1;P;N�;PN�g; (10)

where the addition of elements, multiplication of the matrices
in Eq. (6), is as before. Note that PN� ¼ M�, so that a
rotation around ẑ of � followed by a similar rotation about
x̂ yields a � rotation around ŷ. For all three of these elements,
we are never sure whether these rotations are by � or��. Of
course, the reader might think that these lead to the same
group elements, which they do. However, a loop in SO(3) that
starts at 0 rotation and ends at a 2� rotation is not contractible
and leads to a nontrivial element of �1½SOð3Þ=Hb�. This fact,
one might recall, is often demonstrated in a class on quantum
mechanics by someone who takes off their belt or holds a
filled coffee cup with one hand and performs an elegant
gyration of their arm.11 It is why spinors must change sign
under rotations by 2� and why the spin and statistics of
particles are interrelated. Now that we have introduced the
notion of a lift when discussing the hedgehog charge, it is
simplest to demonstrate this fact with yet another lift.

The Pauli matrices,

�1 ¼
0 1

1 0

" #
; �2 ¼

0 �i

i 0

" #
; �3 ¼

1 0

0 �1

" #
;

(11)

TABLE I. A summary of classifications of textures on various measuring surfaces, their physical relevance, and how they may be combined.
If free or based is not specified, the underlying sets for the classifications are the same.

Physical system GSM Measuring circuit Classification and notes

Point defects in Schlieren texture RP1 S1 1
2Z, when based, can be added (see Sec. II.A).

Disclination lines in 3D nematics RP2 S1 Z2, when based, can be multiplied (see Sec. II.C).
Point defects in 3D nematics RP2 S2 N when free, Z and may be added when based (see Sec. III). For

based textures, attaching a tether which runs over �1 2
�1ðRP2Þ takes d to �d (see Sec. IV).

Disclination loops in 3D nematics RP2 T2 ffi S1 � S1 ða; bÞp, where a, b ¼ �1, and p ¼ even, odd if a, b are not both
1, if a ¼ b ¼ 1, then p 2 Z if based, or N if free (see Sec. IV).

10Free and based homotopy classes have the same classification for

the first three classes where a, b are not both trivial, since multi-

plying by �1 does not change evenness or oddness of the hedgehog

charge on the islands. For the ðþ1;þ1Þ case, the based classification
is all integers, and the free classification is only non-negative

integers, just as for textures on a sphere.

11Some readers may have even been subjected to ‘‘spinor

spanners.’’
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satisfy �i�j ¼ i�ijk�k þ �ij1 as follows from their commu-

tators and anticommutators. This can be used to form a simple
way to parametrize rotations in three dimensions. Write any
vector ~x ¼ ½x1; x2; x3� as the matrix x ¼ xk�k where we
employ the summation convention over repeated indices.
Then x2 ¼ j ~xj21 is the unit matrix times the squared length
of the vector. Moreover, if U is any 2� 2 unitary matrix, then
if we define the similar matrix x0 ¼ UyxU, we find that
ðx0Þ2 ¼ Uyj ~xj21U ¼ x2, so under a unitary transformation
the magnitude of the matrix is unchanged, precisely what

we need for rotations. We finally note that for small ~�, the

matrix Uð ~�Þ ¼ 1� i 12 �k�k generates infinitesimal rotations

of x since to linear order in ~� (note that these angles are not
the same as the Euler angles �, �, and �):

UyxU ¼
�
1þ i

1

2
�k�k

�
xi�i

�
1� i

1

2
�j�j

�

¼ xþ ixi�k�k�i � ixi�k�i�k

2
þOð�2Þ

¼ ½xj þ xi�k�ikj��j þOð�2Þ; (12)

resulting in precisely the expression for the rotated vector.
The full rotation is12

U ¼ e�i�k�k=2 ¼ cos
j ~�j
2

 !
1� i sin

j ~�j
2

 !
�k

j ~�j�k: (13)

Thus, each rotation in SO(3) can be identified with a 2� 2
unitary matrix with unit determinant, the group SU(2).
However, both U and �U generate the same rotation or, in

other words, ~� and � ~� generate the same rotation, and thus,
similar to the lift of RP2 to S2, we have a sign ambiguity.

Starting at ~� ¼ 0, we can move along �1, holding �2 ¼
�3 ¼ 0. In this case as �1 goes from 0 to 2�, Uð0; 0; 0Þ ¼
�Uð2�; 0; 0Þ. We end up at the identical place in SO(3), but
at a different place in SU(2). It follows that this loop is not
contractible to a point and so the map from the measuring
circuit to SO(3) which winds by 2� is one of the nontrivial
elements of �1½SOð3Þ�, traditionally denoted as �1.

Dividing out by Hb yields additional defects akin to the
stable nematic defects of charge 1

2 . In this case, however,

there are � rotations around each of x̂, ŷ, and ẑ. Lifting those
to SU(2), we find that they correspond to �i�1, �i�2, and
�i�3, respectively, where the sign ambiguity corresponds to
the same lifting ambiguity as above. These group elements
are difficult to deal with; they do not commute, so a rotation

of � around x̂ followed by a rotation of � around ŷ, followed
by a rotation of �� around x̂ gives ½i�1��1½i�2�½i�1� ¼
i�1�2�1 ¼ �i�2. This means that the combination of paths
on SO(3) that begin and end at one of the elements of Hb do
not commute and �1½SOð3Þ=Hb� is non-Abelian.

What about point defects in a biaxial nematic? As it turns
out, there are no point defects in the biaxial system, so
�2½SOð3Þ=Hb� ¼ f1g is the trivial group of one element. To
see this requires only a little more work and a theorem that we
will not prove but is covered in standard texts (Hatcher,
2002), including the gold standard by Mermin (1979). First
we ask what does SU(2) look like as a manifold? Fortuitously,
we have the answer in the above algebra. Note that we can
consider a general matrix depending on the four real parame-
ters ~x ¼ ðx0; ~xÞ 2 R4:

V ¼ x01þ ixk�k ¼
x0 þ ix3 ix1 þ x2

ix1 � x2 x0 � ix3

" #
; (14)

so detV ¼ x20 þ j ~xj2 is the squared length of the vector ~x in

four dimensions. Since all elements U 2 SUð2Þ are of this
form and detU ¼ 1, we see that SU(2) can be identified with
the three-dimensional sphere S3. So what do maps from S2 to
S3 look like? They are all the same; just as �1ðS2Þ vanishes
because we can shrink every loop on the sphere to a point, so
too can we shrink every two-sphere on a three-sphere to a
point. Thus �2ðS3Þ ¼ �2½SUð2Þ� ¼ f1g. To calculate
�2½SOð3Þ=Hb�, we need only use the theorem in which
�2ðGÞ ¼ �2ðG=HÞ if H is a discrete group.13 Note that we
saw this with S2 and RP2; they both shared the same �2.

Precisely because the biaxial nematic does not support
point defects, it serves to illuminate our previous discussion
of disclination loops and their relation to hedgehogs. To see
what we have gained it suffices to consider the simplest
example: a disclination loop surrounding a single colloid in
a Saturn ring configuration, illustrated in Fig. 10. As usual the
meridional cycle of a torus sheathing the disclination records
the nontrivial element of �1ðRP2Þ and here, since the dis-
clination is not linked with another, the longitudinal cycle
records the trivial element. However, this cycle is still inter-
esting. Note, in particular, that the director field on the inside
of the torus (the part closest to the colloid) undergoes a 2�
rotation as we traverse this longitudinal cycle. Thus, if we
were to decorate the uniaxial texture with a perpendicular
short axis to produce a biaxial nematic then we would find
that this cycle corresponded to a noncontractible loop in
SOð3Þ=Hb, recording the element �1 of �1½SOð3Þ=Hb�.
The Saturn ring was linked with another disclination after
all: an all but invisible one only revealed by adding a small
amount of biaxiality. This additional biaxial defect is not
present for all defect loops: It is associated, as anticipated
at the end of the last section, with a disclination loop that

12To establish this exponential formula, consider the unitary

matrix S which diagonalizes the Hermitian matrix t ¼ �k�k=2 ¼
S�Sy, where � is the diagonal matrix of eigenvalues. Then T ¼
expfitg ¼ expfiS�Syg ¼ S expfi�gSy. Since Tr� ¼ Trt ¼ 0,
� ¼ diag½	;�	�, and it follows that

T ¼ S
ei	 0

0 e�i	

" #
Sy

¼ cosð	Þ1þ i
sinð	Þ
	

S�Sy;

¼ cosð	Þ1þ i sinð	Þ t
	
:

Since �	2 ¼ det� ¼ dett ¼ �j ~�j2=4, the identity follows.

13For the cognoscenti recall that there is a long exact sequence of

homotopy groups

� � � ! �2ðHÞ ! �2ðGÞ ! �2ðG=HÞ ! �1ðHÞ ! � � � ;
and if H is discrete then �2ðHÞ ¼ �1ðHÞ ¼ f1g, from which it

follows that �2ðGÞ ¼ �2ðG=HÞ.
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carries odd hedgehog charge, of which the Saturn ring is the
simplest example.

It is useful to explore this connection a little further.
Suppose we remove the colloid, leaving behind just the
disclination loop and the texture on the torus surrounding it.
Could we fill things back in differently, say without the
hedgehog? Note that the configuration on the inside of the
torus is just the same as on a cylindrical capillary with
perpendicular anchoring. Thus to avoid a singularity the
director will have to escape in the third dimension, just as it
does in a capillary. However, if we have biaxial order then the
singularity cannot be avoided; although the long axis is well
defined along the capillary axis the two shorter axes are not
and we have a �1 disclination.14 We assume that the texture
is uniform at large distances so that this defect too closes up
to form a loop. Technically, we are considering textures with
defects on S3, the usual three-dimensional Euclidean space
with a point at infinity added. The biaxial�1 disclination can
also be surrounded by a torus, whose meridian records a 2�
winding and longitude records the �winding of our original 12
loop with which it is linked. Now by escaping in the third
dimension the long axis can be made regular on any local
section of the�1 defect, but this cannot be extended globally
since the long axis is required to undergo a � rotation along
any path encircling the 1

2 disclination. This � rotation reverses

the orientation of the director and converts an initial escape
‘‘up’’ into an escape ‘‘down’’ so that there must be a mis-
match somewhere. Just as in the cylindrical capillary this
mismatch marks the location of a point defect in the uniaxial
nematic, the odd hedgehog.

VI. CONCLUSION

In the hope of avoiding to provide only a poor imitation of
the many excellent reviews of the homotopy theory of defects
already available (Mermin, 1979; Michel, 1980; Trebin, 1982;
Kurik andLavrentovich, 1988),we focused our discussion on a
single physical system, nematic liquid crystal colloids, rather
than provide a general survey and have eschewed, as far as
possible, all of the formalities of algebraic topology.

A recurring issue is the necessity of a base point to induce
the group structure on the set of homotopy classes. From a
physical perspective the base point is really fiction, a conve-
nience introduced for its useful computational attributes rather
than because it conveys any deep significance. As mentioned
in Sec. II the choice of base point for this purpose is entirely
arbitrary so that any choice we make should yield the same
results as any other. Fortunately, it is a simple exercise, proven
in all of the standard reviews (Mermin, 1979), to show that the
homotopy groups �kðGSM;�0Þ and �kðGSM;�0

0Þ, defined
with base points�0 and�

0
0, respectively, are isomorphic. The

physical properties of defects should be independent of any
choice of base point that we may make and the isomorphism
between homotopy groups with different base points assures
this. More importantly, however, a continuous deformation of
a liquid crystal texture need not, in general, hold any point on
anymeasuring circuit fixedwhile all others can freely vary. No
physical distinction should be ascribed to defects that are
nonhomotopic when a base point is used, but that become
homotopic when all points are allowed to freely vary. This is
an issue for hedgehogs where, as we saw in Sec. III, dragging a
point defect around a disclination line required us to carefully
keep track of the base point. Although at the end of the process
the base point returned to its original value inRP2, the journey
was not uneventful and resulted in the reversal of the sign of
the hedgehog charge. Thus while d and�d are distinct when a
base point is held fixed, theymay be freely converted into each
other if all points on the measuring circuit are allowed to vary.
Without the base point the group structure is lost and since, as
we have argued, it is more natural to dowithout the base point,
the combination of defects in condensed matter does not
normally follow the laws of group composition15; cases such
as the XY or Heisenberg models are exceptions to this norm.
Of course the group composition can be regained, but only at
the expense of keeping track of paths that the defects move
along, the tethers of Sec. IV.

Throughout this Colloquium we avoided discussing any
details of how the defects themselves appear and disappear.
Indeed, when we have tried to observe liquid crystal textures
under the microscope, we noted, upon cooling, the sudden
appearance of many defects followed by a coarsening of
defects too rapid for us to photograph.16 The coarsening is
a situation in which the defects become dynamical objects.
Not only do they move, they coalesce into defect and
antidefect pairs and disappear. Although the addition rules

FIG. 10 (color). Schematic of biaxial order on a colloid with

radial anchoring conditions for the long axis. The two shorter

axes undergo a 2� rotation at the North and South Poles and the

particle is threaded by a �1 disclination denoted by a black line

running between the two poles. It follows that the Saturn ring defect

accompanying the colloid is linked with this biaxial disclination.

14This transferral of winding from one axis to a perpendicular one

is the Mermin-Ho relation (Mermin et al., 1976).

15This is even more vivid in systems with broken translational

symmetry such as smectic liquid crystals (Chen, Alexander, and

Kamien, 2009).
16This may reflect more the experimental abilities of the authors

than the true nature of liquid crystals.
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afforded by the general homotopy group structure are
preserved, the sample itself changes. Since defects are
places in which the local order is ill defined, we can count
the number of defects as well as measuring their charge.When
defects annihilate the defect number changes. To account for
this we have to perform ‘‘surgery’’ where we remove an
arbitrarily small region of the sample along an incision and
replace it with a new region that matches the texture smoothly
along the cut. A proper formulation of this problem is beyond
the scope of this review and will appear elsewhere (Chen
et al.).

We intended to bring to light the subtleties of the theory of
topological defects in experimentally realizable systems.
With the advent of recent experimental work on colloidal
inclusions in liquid crystals, these issues are no longer purely
academic.
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