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This article reviews lattice QCD results for the light hadron spectrum. An overview of different

formulations of lattice QCD with discussions on the fermion doubling problem and improvement

programs is given. Recent developments in algorithms and analysis techniques that render

calculations with light, dynamical quarks feasible on present day computer resources are summa-

rized. Finally, spectrum results for ground state hadrons and resonances using various actions are

summarized.
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I. INTRODUCTION

Already at the beginning of the 19th century, it was
speculated by Prout (1815) that the hydrogen atom was the
basic building block for all other atoms. The mass of the
proton, as mass of the hydrogen atom, was known within a

factor of 2 accuracy already during the late 19th century
(Loschmidt, 1865). Later, the development of mass spectrom-
etry (Goldstein, 1886) allowed a precision measurement of

the e=m ratio of the hydrogen nucleus (Wien, 1902;
Thomson, 1907) and following the discovery of the atomic
nucleus by Rutherford (1911), he showed that hydrogen
nuclei were present in other nuclei (Rutherford, 1919) and

coined for them the name protons.
The neutron was discovered 13 years later by Chadwick

(1932), who also determined its mass with a 2 per mil
accuracy. The first meson to be discovered was the pion
(Lattes et al., 1947), shortly followed by the kaon

(Rochester and Butler, 1947) and the � (Seriff et al.,
1950), the first strange particles. While these discoveries
were made in cosmic ray experiments, the first resonance,
the �, was discovered by Brueckner (1952) at a cyclotron

source. During the following years, these modern accelerators
led to a proliferation of hadronic states and it became obvious
that they could not all be regarded as elementary.

This large number of hadronic states could first be success-
fully described by their quark substructure (Gell-Mann,
1961), for which finally quantum chromodynamics (QCD)

was found as the dynamical theory by Fritzsch, Gell-Mann,
and Leutwyler (1973). With the discovery of asymptotic
freedom (Gross and Wilczek, 1973; Politzer, 1973), which
built on earlier work regarding the renormalizability of non-

Abelian gauge theories by ’t Hooft and Veltman (1972), and
the qualitative understanding of the confinement phenomenon
(Wilson, 1974) a coherent picture of the strong interaction
finally emerged. At energies that are large compared to the

typical QCD scale �QCD � 250 MeV, the coupling is small

and quarks and massless gluons emerge as the fundamental

degrees of freedom. At low energies, however, the spectrum
of QCD consists of quark-gluon bound states that one would
like to identify with the experimentally observed hadrons.
Although this qualitative picture is quite compelling, it is

nevertheless very difficult to solve QCD in the low energy
regime, where it is a strongly coupled theory, and predict,
respectively, postdict the hadron spectrum from first
principles.

In this review, we summarize the current state of the art of

computing the light hadron spectrum, i.e., the spectrum of
hadrons with exclusively up, down, and strange valence
quarks, directly in QCD. In Sec. II we introduce the primary
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tool to study QCD in the nonperturbative regime: lattice

QCD. We review various possible discretizations of contin-

uum QCD in view of their usefulness for ab initio calculations

of light hadron masses with a small and controlled total

uncertainty. In Sec. III we review current methods of extract-

ing hadron masses in lattice QCD. We discuss efficient ways

of extracting ground state masses as well as current methods

to overcome the challenges in singlet and excited state spec-

troscopy. In Sec. IV we review methods for obtaining pre-

dictions at the physical point (the point in parameter space at

which the quark masses have their physical values) in the

infinite volume continuum theory. Finally in Sec. V we

summarize present and notable past results and conclude

with an overview of the present understanding of the hadron

spectrum from lattice QCD. As a convention when quoting

lattice results the first error is statistical and the second one (if

given) is systematic unless explicitly noted otherwise.

II. LATTICE TECHNIQUES

Lattice field theory is in most cases the only known

systematic way of nonperturbatively computing Green’s

functions in quantum field theories. It is especially useful in

contexts where perturbative treatment is usually inadequate,

which is the case in low energy QCD.
Lattice gauge theory was introduced by Wilson (1974)1

and recent overviews include Montvay and Munster (1994),

Gupta (1997), Di Pierro (2000), Smit (2002), Rothe (2005),

DeGrand and Detar (2006), and Gattringer and Lang (2010).2

In general, a nonperturbative lattice calculation proceeds in

three steps. First, one introduces a UV regulator into the

theory by means of a finite spacetime lattice. Then, one

computes Green’s functions in this discretized theory by

means of stochastic integration of the path integral, and

finally one removes the regulator in order to obtain the

continuum result. The last step is possible in theories where

the coupling does not diverge in the UV regime. Because of

asymptotic freedom, QCD does belong to this class of theo-

ries and the cutoff can be removed.
In this section we mainly focus on the first step of the

above procedure, the regularization of QCD on a spacetime

lattice. This regularization is not unique and the ambiguity is

reflected in the wide variety of lattice regularizations of QCD

that are in use today, each carrying various advantages and

disadvantages. We start with a brief introduction to the path

integral formalism in Sec. II.A and the basics of the lattice

discretization of QCD in Sec. II.B. We then introduce the

basic concepts of the stochastic evaluation of the discretized

path integral in Sec. II.C which are necessary to understand

the further developments of Secs. II.D and II.E, where we

discuss how to obtain efficient lattice regularized theories that

actually go over into QCD upon removal of the cutoff.

Finally, in Sec. II.F we briefly discuss anisotropic lattice

regularizations of QCD that are relevant for excited state

spectroscopy.

The need for an efficient regularization arises particularly
due to the smallness of the light quark masses compared to
the intrinsic QCD scale �QCD. On the one hand, the physical

size of the lattice needs to be much larger than the correlation
length of the system which in turn is given by the inverse of
the mass of the lightest particle in the spectrum, the pion. On
the other hand, the lattice cutoff needs to be much larger than
�QCD in order to not miss a substantial fraction of the non-

perturbative dynamics. These two requirements combined
necessitate a large number of lattice points if one wants to
perform nonperturbative lattice QCD calculations at physi-
cally light quark masses. In connection with the fermion
doubling problem the smallness of the light quark masses
causes yet further problems that are discussed in detail in
Sec. II.D.

Because of these effects, lattice QCD calculations until
very recently were restricted to quark masses larger (and in
most cases substantially so) than the physical ones. This in
turn necessitated an extrapolation in the light quark mass to
the physical point in addition to the already necessary con-
tinuum extrapolation. The fact that physically light quark
masses have been reached by reweighting (Aoki et al.,
2010) or directly, at large volumes and several different
values of the cutoff (Durr et al., 2011, 2012), is to a large
extent due to recent advances in the construction of efficient
lattice regularizations that will be reviewed in this section.

A. Basics of the path integral formalism

We start by writing the partition function of a Euclidean
quantum field theory using the path integral formalism
(Dirac, 1933; Feynman, 1948a, 1948b, 1949; Feynman and
Hibbs, 1965) as

Z ¼
Z

D�e�Sð�Þ (1)

with the action Sð�Þ and � generically denoting all fields of
the theory. For bosonic fields one typically introduces peri-
odic boundary conditions, while for fermion fields it is natural
to introduce antiperiodic boundary conditions in the time
direction [see, e.g., Appendix A of Polchinski (1998)].
While this subtlety usually can be ignored, it does play
some role when choosing the parity of interpolating operators
as discussed in Sec. III.B. For a gauge theory with fermions
one specifically has

Z ¼
Z

DA�

Z
DcD �c e�ð �cMcþSGÞ (2)

with the Euclidean gauge action

SG ¼ 1
4F��F��;

F�� ¼ @�A� � @�A� þ ig½A�; A��;
(3)

and the Euclidean Dirac operator in the case of one fermion
flavor

M ¼ ��D� þm; (4)

where the covariant derivative is given by

D� ¼ @� þ igA�: (5)

1Independent developments of Smit and Polyakov were never

published; see, e.g., Wilson (2005).
2See also the classic introductory text by Creutz (1984).
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Note that in the massless case M is anti-Hermitian and,
depending on the gauge field configuration, may have exact
zero modes. These zero modes of the operator are related to
the topology of the underlying gauge field by the Atiyah-
Singer index theorem (Atiyah and Singer, 1968).

Using the rules of Grassmannian integration, one can
generically rewrite Eq. (2) as

Z ¼
Z

DA�

Z
DcD �c e�ð �cMcþSGÞ

¼
Z

DA� detðMÞe�SG : (6)

Averages that correspond to expectation values of time or-
dered operators in the operator formalism are generically
obtained by

hOi ¼ 1

Z

Z
DA�

Z
DcD �cOe�ð �cMcþSGÞ; (7)

where O denotes a generic observable composed of gauge
and fermion fields. The integration over the fermion fields can
again be explicitly performed resulting in the replacement of
fermion bilinears by propagators on a given gauge field
background. For a single fermion bilinear this explicitly reads

Z
DcD �c ½c sf

cf ðyÞ �c si
ci ðxÞ�e� �cMc

¼ detðMÞðM�1Þsfsicfci ðy; xÞ; (8)

while for a general expression it results in the usual combi-
nation of all Wick contractions.

As one can see from Eqs. (2) and (8), virtual fermion
effects (‘‘sea fermions’’) are contained in the detðMÞ factor
after the fermion field integration. Ignoring this detðMÞ factor
results in an uncontrolled approximation to QCD, the
quenched approximation (Marinari, Parisi, and Rebbi,
1981b).

B. QCD regularized on a lattice

The path integral (1) has to be performed over all field
configurations. In order to make it well defined, we regulate it
on a finite spacetime lattice

x� ¼ n�a
ð�Þ with n� 2 f0; . . . ; N� � 1g; (9)

where the að�Þ are the lattice spacings in direction �.
Although more general topologies are possible in principle
[see, e.g., Jersak, Lang, and Neuhaus (1996)], one usually
imposes toroidal boundary conditions x� þ N�a

ð�Þ ¼ x�.

Here we also specialize to the common isotropic case in
which the lattice spacings in all directions are equal
að�Þ ¼ a. The anisotropic case will be discussed separately
in Sec. II.F.

The fermion field c is now a Grassmann vector, defined at
the discrete lattice points x ¼ na. We write the naive discre-
tization of the free fermionic continuum action as

SFðmÞ ¼ a4
X
x¼na

�c ðxÞð��D� þmÞc ðxÞ (10)

with

D� ¼ 1

2a
ðV� � Vy

�Þ (11)

and

ðV�Þxy ¼ �xþ�̂;y: (12)

Note that this action was obtained by replacing the continuum
derivative operator @� with the simple lattice finite difference

operator D�. This choice is not unique and this nonunique-

ness can be exploited to construct efficient fermion regulari-
zations. Another feature of Eq. (10) is that it does not describe
a single fermion flavor even in the continuum limit. The latter
is known as the fermion doubling problem (Karsten and Smit,
1981) and will be discussed in detail in Sec. II.D. In
Sec. II.E.2 we discuss how the ambiguity in the fermion
discretization can be utilized to construct numerically
efficient lattice fermion regularizations.

The action (10) is invariant under a global symmetry
transformation

c ðxÞ ! �c ðxÞ; �c ðxÞ ! �c ðxÞ�y; (13)

with � 2 SUð3Þ for the case of QCD. This symmetry can be
promoted to a local one

c ðxÞ ! �ðxÞc ðxÞ; �c ðxÞ ! �c ðxÞ�yðxÞ (14)

by including a parallel transport U�ðxÞ to the one-hop term

V� and thus replacing Eq. (12) with

ðV�Þxy ¼ U�ðxÞ�xþ�̂;y: (15)

The parallel transport U�ðxÞ is the discretized version of the

path ordered product of continuum gauge fields A�ðxÞ:

U�ðxÞ ¼ Peig
R

xþ�̂

x
dx0�A�ðx0Þ (16)

with g being the coupling constant and transforms as

U�ðxÞ ! �ðxÞU�ðxÞ�yðxþ �̂Þ (17)

under gauge transformations. Note that one could in principle
choose different paths than the direct one in Eq. (16). As long
as the end points remain fixed, the action will be invariant
under local transformations (14). This nonuniqueness will
play a role when constructing efficient fermion discretizations
in Sec. II.E.2.

In order to construct a kinetic term for the gauge field we
first note that the trace over a closed loop of parallel trans-
ports is gauge invariant. The simplest of these loops, the
plaquette, is defined as

U��ðxÞ ¼ U�ðxÞU�ðxþ �̂ÞUy
�ðxþ �̂ÞUy

� ðxÞ (18)

and has a naive continuum limit

U�� ���!a!0
1þ iga2F�� � 1

2g
2a4F2

�� þOða6Þ: (19)

The simplest discretization of the continuum gauge action
therefore reads (Wilson, 1974)

SW ¼ �
X

x;�>�

�
1� 1

6
Tr½Uy

��ðxÞ þ U��ðxÞ�
�
; (20)

with � ¼ 6=g2 which has the continuum limit
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SW ���!a!0 1

4

Z
d4xTr½F��ðxÞF��ðxÞ� þOða2Þ: (21)

We see that Eq. (20) which is known as the Wilson gauge
action or plaquette action has discretization errors of Oða2Þ.
Again, this discretization is not unique and one can utilize this
ambiguity to find gauge actions with higher order discretiza-
tion effects. This will be discussed in detail in Sec. II.E.1. By
combining Eq. (10) with Eqs. (11), (15), and (20) and in-
troducing the dimensionless quantities � ¼ a3=2c , �� ¼
a3=2 �c , m ¼ am, and D� ¼ aD�, we can write the naive

lattice QCD action as

Sn ¼ SW þ XNf

q¼1

SFðmqÞ

¼ �
X

x;�>�

�
1� 1

6
Tr½Uy

��ðxÞ þ U��ðxÞ�
�

þ XNf

q¼1

X
x

��ðxÞð��D� þmqÞ�ðxÞ; (22)

where we have in addition taken the explicit sum over Nf

fermion flavors q.
Before we go into the details of the fermion and gauge field

discretization, we mention briefly how in principle the cutoff
is removed in lattice QCD. As one can see from Eq. (22), the
lattice action exclusively consists of dimensionless quantities.
The parameters of the action are the fermion masses mq and

the coupling �. In order to remove the cutoff, i.e., to take the
limit a ! 0, one therefore has to tune these parameters such
that on the one hand the lattice spacing a goes to zero, while,
on the other hand, a certain set of dimensionful physical
observables that are used to define the physical content of
the theory remain constant. These trajectories in parameter
space of � and the mq along which a set of physical observ-

ables remains constant as the limit a ! 0 is taken are called
lines of constant physics. A detailed discussion of how these
can be defined is given in Sec. IV.

Along these lines of constant physics it is clear that
correlation lengths in physical units will go to a finite limit
and therefore will diverge in units of the lattice spacing a. In
order to possess a continuum limit it is therefore necessary for
a lattice field theory to exhibit a second order phase transition.
Problems can arise if the bare coupling constant diverges at a
finite cutoff, the so-called Landau pole (Landau, 1955). In
that case the only line of constant physics that does not show a
divergence at finite cutoff is the one with vanishing coupling,
i.e., the trivial theory. In order for theories with a Landau pole
problem to have a nonvanishing renormalized coupling (i.e.,
to be nontrivial) one must retain a finite cutoff which prevents
one from taking the continuum limit. Such theories can,
however, still serve as effective theories. Consequences for
the lattice formulation of this class of theories are discussed,
e.g., by Gockeler et al. (1998a), Arnold et al. (2003), Espriu
and Tagliacozzo (2003), and Kogut and Strouthos (2005).

Because of asymptotic freedom (Gross and Wilczek, 1973;
Politzer, 1973), however, no such problems are expected to
arise in lattice QCD. The perturbative expectation of the
vanishing of the QCD coupling constant at large scales has
been confirmed by nonperturbative lattice calculations in

various settings (Bowler et al., 1986; Gupta et al., 1988;
Luscher et al., 1994; Bode et al., 2001; Della Morte et al.,
2003; Sommer, Tekin, and Wolff, 2010; Tekin, Sommer, and
Wolff, 2010). The most recent result for Nf ¼ 4 QCD is

plotted in Fig. 1.

C. Numerical evaluation of the path integral

Before we return to the task of constructing a lattice
regularization of QCD, we need to discuss some basics of
the numerical evaluation of the path integral (7). In terms of
dimensionless lattice quantities, Eq. (7) can be written as

hOi ¼ 1

Z

Z
DU�

Z
D�D ��Oe�½ ��MðUÞ�þSGðUÞ�; (23)

with a generic gauge action SGðUÞ and fermion operator
MðUÞ, which in general depends on the gauge field U. We
now perform the integration over both the fermion fields ��
and � and the gauge field U. Using Eq. (8) and its general-
ization for fermion multilinears, we explicitly perform the
integration over fermion fields. With the understanding that
we have to replace fermion multilinears by the sum over all
Wick contractions, we may thus cast Eq. (23) into the form

hOi ¼ 1

Z

Z Y
x;�

dU�ðxÞ detMðUÞOe�SGðUÞ: (24)

Generally and for QCD, in particular, it is not possible to
perform the remaining integration over the gauge fields U� in

closed form. While both strong (Wilson, 1974) and weak
[see, e.g., Capitani (2003)] coupling expansions are possible,
neither allows for a detailed quantitative understanding of the
nonperturbative dynamics of the system.

From a numerical perspective, Eq. (24) is a high dimen-
sional integral over 4�Q

�N� copies of the gauge group,

which in the case of QCD is SU(3). The only categories of
numerical methods that are suitable to perform such a high

FIG. 1 (color online). Nonperturbative running coupling constant

of four flavor QCD in units of the QCD scale � from a lattice

calculation of Sommer, Tekin, and Wolff (2010) compared to

perturbative calculation. Figure courtesy of Rainer Sommer.
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dimensional integral are stochastic or Monte Carlo (MC)meth-
ods in which the space to be integrated over is randomly
sampled, i.e., where observables are averaged over on randomly
drawn gauge field configurations U�ðxÞ. As Monte Carlo inte-

gration is stochastic in nature, there is always a statistical error
associated with it. This error has to be estimated in a lattice
calculation, which is typically achieved via the jackknife or
bootstrap methods [see, e.g., Press et al. (2007)].

A straight Monte Carlo integration of Eq. (24) in which the
gauge configurations U� are randomly produced with equal

weight is, however, extremely inefficient. For interesting
parameter choices, all but a very small subset of relatively
smooth configurations are exponentially suppressed by the
exponent of the gauge action SGðUÞ and the fermion deter-
minant detMðUÞ. In order to circumvent this problem, one
can produce gauge field configurations with a probability that
is proportional to detMðUÞ � e�SGðUÞ and compute the ex-
pectation value of an observable as an unweighted average
over these configurations. This technique, known as impor-
tance sampling, requires an algorithm that produces gauge
field configurations with the proper weight. Typically this is
achieved via a Markov chain process, where a time series of
gauge field configurations is produced in which the nth

configuration UðnÞ
� depends on the previous one Uðn�1Þ

� .
A Markov chain is characterized by the transition

probability

pðm; nÞ ¼ PðUmjUnÞ; (25)

where the Ui are all possible gauge configurations, and the
conditional probability PðUmjUnÞ is understood in the sense
that it denotes the probability of the system to go over from a
configuration Un to Um in one time step. The transition
probability p acts on the space of all gauge configurations.
It fulfills the two basic relations

8 m; n: pðm; nÞ � 0;
Z

dmpðm; nÞ ¼ 1; (26)

where
R
dm denotes the integration over all possible gauge

field configurations. If in addition the transition probability
(25) fulfills the detailed balance condition

8 m; n: pðn;mÞ�m ¼ pðm; nÞ�n (27)

with the desired equilibrium distribution �n ¼ detMðUnÞ �
e�SGðUnÞ=Z, then one can easily show the following two
properties:

(1) The transition probability maps the equilibrium distri-
bution onto itself

�m ¼
Z

dnpðm; nÞ�n: (28)

(2) Defining a distance dðw; vÞ ¼ R
dnjwn � vnj in the

space of probability distributions, the application of
the transition probability moves every probability dis-
tribution closer to the equilibrium distribution

dðpw; �Þ � dðw; �Þ: (29)

If in addition to Eqs. (28) and (29) the system is ergodic, i.e.,
if any configuration Ui may be reached from any other

configuration Uj with nonvanishing probability in a finite
number of time steps, then it is guaranteed that starting
from an arbitrary initial probability distribution we end up
with the desired equilibrium distribution �.

The time until the equilibrium distribution � is reached (in
the sense that no statistically relevant drift toward the equi-
librium expectation value can be seen in any monitored
observable) is usually called the thermalization phase and
its shortness is an important quality criterion of an algorithm.
Once the system is thermalized, i.e., the equilibrium distri-
bution has been reached, it is advantageous if consecutive
configurations have as little correlation as possible. In order
to have a quantitative handle, it is customary to monitor the
autocorrelation time of certain observables within a Markov
chain.

In the case of a pure gauge theory or the quenched ap-
proximation where the fermion determinant factor detMðUÞ
is missing and the weight factor is proportional to the ex-
ponent of the gauge action e�SGðUÞ, the update algorithms that
produce the next element in the Markov chain usually exploit
the locality of the gauge action SGðUÞ. As pioneered by
Creutz, Jacobs, and Rebbi (1979a, 1979b), one can pick a
certain gauge link U�ðxÞ from the current gauge configura-

tion U and produce a suggested new gauge configuration U0
by multiplying U�ðxÞ with an element of the gauge group.

Since the gauge action SGðUÞ is a sum of local terms, the
change in the action �S ¼ SGðU0Þ � SGðUÞ is readily eval-
uated by recomputing those few terms that contain the flipped
gauge link. One can then perform a Metropolis (Metropolis
et al., 1953) step, i.e., accept the gauge configuration U0 as
the next gauge configuration in the Markov chain with proba-
bility e��S if the action has increased �S > 0 or with proba-
bility 1 otherwise. It is readily seen that this algorithm
satisfies the detailed balance condition (27). Another fre-
quently used local update algorithm for pure gauge theories
is the heat bath (Creutz, 1980b; Kennedy and Pendleton,
1985). Supplemented by overrelaxation steps (Adler, 1981,
1988; Brown and Woch, 1987; Creutz, 1987; Fodor and
Jansen, 1994), these algorithms are still the state of the art
for pure gauge theories.

Because of the nonlocal nature of the fermion determinant
detMðUÞ an update in a theory with dynamical fermions is
substantially more complex and computationally demanding.
For a lattice with N ¼ Q

�N� sites, MðUÞ is typically a

ð12� NÞ2 matrix3 and therefore a direct computation of
detMðUÞ is prohibitively expensive for even moderately sized
lattices. Although alternative suggestions have been made
(Berg and Forster, 1981; Fucito et al., 1981; Scalapino and
Sugar, 1981; Kuti, 1982; Polonyi and Wyld, 1983; Montvay,
1984; Luscher, 1994; Slavnov, 1996), one usually proceeds by
introducing a bosonic (complex scalar) pseudofermion field
� (Weingarten and Petcher, 1981). The fermion determinant
may thus be written as

detMðUÞ ¼
Z

D�yD�e��yMðUÞ�1�: (30)

3Note that in the staggered fermion formulation the size of the

matrix is reduced to ð3� NÞ2. For a detailed discussion, see

Sec. II.D.1.
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The catch here is of course the appearance of the inverse
fermion matrix MðUÞ�1 in Eq. (30) which is again a nonlocal
object. In addition, the kernel operator MðUÞ�1 has to exist
[i.e., the matrix MðUÞ needs to be invertible] and be positive
definite Hermitian in order to ensure the convergence of all
Gaussian integrals over the pseudofermion field in Eq. (30).
From Eq. (22) we see, however, that the naive fermion
operator is not Hermitian and neither will be the fermion
operators we construct later on. As long as detM is real and

positive definite, however, one may use the identity detM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMyMÞ

p
to rewrite an arbitrary power of the fermion

determinant as

detMðUÞ2� ¼
Z

D�yD�e��y½MyðUÞMðUÞ����: (31)

The path integral can now be formulated in terms of bosonic
variables only with an additional term in the action

SF ¼ �y½MyðUÞMðUÞ���=2�: (32)

Note that for actions whereMyðUÞMðUÞ does not couple even
and odd lattice sites one may choose to keep the pseudofer-
mion fields �e on even lattice sites only and thereby obtain

detMðUÞ� ¼
Z

D�y
eD�ee

��y
e ½MyðUÞMðUÞ����e : (33)

In order to efficiently integrate the system of pseudofer-
mions and gauge fields we follow the work of Callaway and
Rahman (1982, 1983); Polonyi and Wyld (1983); Batrouni
et al. (1985); Duane (1985); Duane and Kogut (1985, 1986);
and Duane et al. (1987) and reinterpret the total action of the
system

S ¼ SG þ�y½MyðUÞMðUÞ��=2�� (34)

as the potential part of a fictitious Hamiltonian

H ¼ 1
2�

2 þ Sð	Þ (35)

with conjugate momenta �, where 	 collectively denotes all
pseudofermion and gauge fields. One can then proceed to
choose some initial momenta and integrate the canonical
equations of motion

_	 ¼ �; _� ¼ � @S

@	
; (36)

numerically in a fictitious time 
 along a ‘‘classical’’ path.
The classical partition function corresponding to the set of all
such classical trajectories is given by

Z ¼
Z

D�D	e�H ¼
Z

D�e�ð1=2Þ�2
Z

D	e�S:

(37)

As the Gaussian integration over the momenta � gives only
an irrelevant prefactor, Eq. (37) reproduces the correct proba-
bility distribution in the original theory. Assuming ergodicity,
one can obtain the correct distribution of classical paths (37)
by periodically refreshing the momenta � with a random
value from a Gaussian distribution. The expectation value
of an observable can thus be obtained by averaging it along
all classical trajectories in the update chain. The inexact
nature of the numerical integration introduces a systematic

error, which, however, can be corrected by a final
Monte Carlo accept or reject step of the complete trajectory
[see Duane et al. (1987)]. This is known as the hybrid
Monte Carlo (HMC) algorithm.

The Hamiltonian in Eq. (35) is readily constructed in the
case where � in Eq. (31) or (33) is a positive integer. For a
general fractional power � one can resort to a polynomial
(Frezzotti and Jansen, 1997; de Forcrand and Takaishi, 1997)
or rational (Clark and Kennedy, 2004; Clark, Kennedy, and
Sroczynski, 2005) approximation of the desired fractional
power ofMyðUÞMðUÞ. These versions of the HMC algorithm
are known as polynomial HMC (PHMC) and rational HMC
(RHMC) algorithms, respectively.

In order to integrate the equations of motion (36) numeri-
cally, one has to compute the derivative of the action (34)
with respect to the gauge field

@S

@U�ðxÞ ¼
@SG

@U�ðxÞ þ�y @½MyðUÞMðUÞ���

@U�ðxÞ �: (38)

This derivative is commonly known as the force term. The
computationally expensive part of Eq. (38) is the second term,
the fermionic force term. In the special case � ¼ 1 and
using the shorthand notation MðUÞ ¼ MyðUÞMðUÞ it can
be written as

�y @MðUÞ�1

@U�ðxÞ � ¼ ��yMðUÞ�1 @MðUÞ
@U�ðxÞ MðUÞ�1�:

(39)

We see that a single inversion of MðUÞ on a pseudofermion
vector is required to compute Eq. (39). For general fractional
exponents � one can introduce a rational approximation

rðMðUÞÞ ’ MðUÞ��; (40)

with

rðxÞ ¼ X
i

�i

xþ �i

: (41)

In this case, the fermion force can be written as

�yrðMðUÞÞ�

¼�X
i

�y�i½MðUÞþ�i��1@MðUÞ
@U�ðxÞ ½MðUÞþ�i��1�;

(42)

which can be computed using one single multilinear matrix
inversion (Frommer et al., 1995; Glassner et al., 1996;
Jegerlehner, 1996; de Forcrand, 1996) on a single vector.

An alternative integration scheme, the hybrid molecular
dynamics R algorithm, was proposed by Gottlieb et al.
(1987b). Although it has seen considerable use in the past,
it has largely been replaced by the RHMC algorithm. It is a
pure molecular dynamics algorithm that, in contrast to pseu-
dofermion algorithms, does not allow for a final MC step to
correct for finite step size errors accumulated along the
integration trajectory. Because of this feature, detailed bal-
ance is fulfilled by the R algorithm only in the limit of a
vanishing step size in contrast to HMC-type algorithms that
are exact even at finite step size.
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An efficient HMC algorithm has to simultaneously satisfy
two criteria: On the one hand, the acceptance rate should be
high (one typically aims for �80%–90%), and, on the other
hand, the autocorrelation time should be small. The autocor-
relation between successive configurations can be decreased
by a longer integration trajectory separating them. This,
however, leads to larger numerical integration errors and
consequently to a lower acceptance rate. A trivial remedy
consists of decreasing the time step in the numerical integra-
tion, which, however, is computationally expensive because
the fermion force has to be computed more often. It is there-
fore advantageous to use higher order integration schemes
(Omelyan, Mryglod, and Folk, 2002a, 2002b, 2003; Takaishi
and de Forcrand, 2006) that allow a larger time step in the
numerical integration while keeping the acceptance rate high.

Another method for speeding up HMC-type algorithms
consists of introducing different time steps for pseudofer-
mions and gauge fields (Sexton and Weingarten, 1992).
Splitting off the UV modes of the spectrum by mass precon-
ditioning (Hasenbusch, 2001; Hasenbusch and Jansen, 2003)
or via domain decomposition (Luscher, 2003, 2004, 2005)
and integrating IR and UV parts with different time steps
leads to a substantial additional speedup. This speedup is
especially large if combined with the suppression of UV
modes and other improvements of the fermion regularization
that will be discussed in Sec. II.E.2.

As noted in Sec. II.A, ignoring the effects of the fermion
determinant results in the quenched approximation. Since it
bypasses the most computationally demanding part of the
ensemble generation, it was extensively used in the early
years of lattice QCD and is still useful for certain conceptual
studies. Although it is an uncontrolled approximation, it may
be justified by noting that it becomes exact in the large Nc

limit. Furthermore, by choosing the proper scale setting
observable (see Sec. IV) a large part of the dynamical fermion
corrections might cancel and effectively be absorbed into a
redefinition of the coupling constant.4

D. The fermion doubling problem and its solutions

We now return to the free, naive fermion action (22)

��ð��D� þmÞ�: (43)

The fermion operator reads

M ¼ ��D� þm; (44)

which in Fourier space becomes

MðpÞ ¼ i

a

X
�

�� sinðap�Þ þm: (45)

The momentum space propagator is consequently given by

DðpÞ ¼ M�1ðpÞ ¼
�ði=aÞP

�
�� sinðap�Þ þm

½ð1=aÞP
�
sinðap�Þ�2 þm2

; (46)

which in addition to the physical pole at p2 ¼ �m2 has 15
additional poles located at the edges of the Brillouin zone.
The poles are located at ðp��Þ2 ¼ �m2, where� is any of
the 16 four-momenta

� ¼ ðp0; p1; p2; p3Þ; with p� 2 f0; �=ag: (47)

This rather fundamental obstacle of putting fermion fields on
the lattice is known as the doubling problem. Physically, we
can trace this problem back to the well-known axial anomaly
of a continuum theory. In the massless limit, a classical
fermionic theory is invariant under the chiral transformation

�ðxÞ ! �0ðxÞ ¼ ei	�5�ðxÞ;
��ðxÞ ! ��0ðxÞ ¼ ��ðxÞei	�5 :

(48)

As demonstrated by Adler (1969) and Bell and Jackiw
(1969), the conservation of the corresponding Noether cur-
rent, the axial vector current, is destroyed by quantum fluc-
tuations. In a lattice regulated theory however the existence of
a classical symmetry implies a conserved current. The anom-
aly of the physical fermion axial vector current is canceled by
the anomaly of unphysical doublers as demonstrated by
Karsten and Smit (1981).5

It was later shown by Nielsen and Ninomiya (1981a,
1981b, 1981c), that no lattice fermion regularization exists
that fulfills all of the following conditions at the same time:

(i) absence of doubler fermions,
(ii) continuum chiral symmetry in the massless case,
(iii) locality in a sense that Mðx; yÞ ! 0 vanishes expo-

nentially as x� y ! 1, and
(iv) correct continuum limit.
This result can be understood by noting that a general

lattice fermion operator M which anticommutes with �5 in
the m ¼ 0 case can be written as

MðpÞ ¼ mþ i
X
�

��P�ðapÞ þ
X
�

���5R�ðapÞ: (49)

The requirement that it reproduces the correct continuum
theory implies that for small a the lattice momentum P�

goes over into the continuum momentum p� while R� ! 0.

Additionally, P� is periodic in every direction with period

2�=a. As shown in Fig. 2, these restrictions on P� imply

either that it has a second root in the first Brillouin zone,
which gives an additional pole in the propagator, i.e., a
doubler fermion, or that it has at least one discontinuity,
which makes the fermion operator Mðx; yÞ nonlocal. Note
that in comparison the discretized version of the continuum
action of a scalar field

S	 ¼ 1
2	

yð@�@� �m2Þ	 (50)

in momentum space reads

4Another attempt to justify the use of the quenched approxima-

tion was made by Anthony, Llewellyn Smith, and Wheater (1982)

and Duffy, Guralnik, and Weingarten (1983). They suggested to

extrapolate to a positive number of quark flavors by computing

observables in the quenched approximation and at an effective

negative number of quark flavors. 5See also Chodos and Healy (1977) and Kerler (1981).
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S	 ¼ � 1

2
	y

�
m2 þX

�

ðP2Þ�
�
	; (51)

which only depends on the discretized momenta squares

ðP2Þ� ¼ 2

a2
ð1� cosap�Þ: (52)

These are naturally periodic with a period of 2�=a as dis-
played in Fig. 2(b).

One therefore has to give up on any one of the above
requirements for lattice regularizations of fermions.
Obviously, one cannot give up the requirement (iv) of a
correct continuum limit. Giving up the locality requirement
(iii), on the other hand, was suggested, among others, by
Drell, Weinstein, and Yankielowicz (1976) who proposed

P� ¼ p� (53)

by Rebbi (1987), who suggested

P� ¼ sinap�

2
P
�
sinðap�=2Þ

a
P
�
sinap�

; (54)

and by Gross, Lepage, and Rakow (1987) whose construction
involves nonsymmetric difference operators and contains
nonrenormalizable terms in the continuum limit. However,
all of these approaches turned out to be problematic and have
been abandoned.

Among the remaining two options, we first discuss lattice
fermion regularizations that give up on the requirement (i)
and therefore describe more than a single flavor in the con-
tinuum limit. Among these, Karsten (1981), Wilczek (1987),
Borici (2008), and Creutz (2008) suggested different imple-
mentations of minimally doubled fermions, i.e., lattice

fermions which have one single doubler only. As this single
doubler has to be placed somewhere within the Brillouin
zone, all of these formulations share the characteristic that
in Fourier space there is a distinguished direction, namely, the
direction from the physical particles pole to the pole of the
single doubler fermion. Therefore, a number of discrete
lattice symmetries are broken (Bedaque et al., 2008) result-
ing in a more complicated renormalization pattern and, ge-
nerically, in a fine-tuning of the parameters of the action
(Capitani et al., 2010). Currently fundamental properties of
minimally doubled fermions are still being clarified and
applications to hadron spectroscopy or other phenomenolog-
ically relevant computations are not yet available in the
literature.

1. Staggered fermions

A less minimal but more symmetric way of putting dou-
blers on the lattice is given by the staggered fermion for-
mulation that was developed in a series of papers by Kogut
and Susskind (1975), Banks, Susskind, and Kogut (1976), and
Susskind (1977). Staggered fermions are obtained from the
naive fermion action (43) by noting a fourfold exact degen-
eracy (in the interacting theory) that can be exposed by a spin
diagonalization

�ðxÞ ¼ �ðxÞ�ðxÞ; ��ðxÞ ¼ ��ðxÞ�yðxÞ; (55)

with

�ðxÞ ¼ Y
�

�
ðx�=aÞ
� : (56)

In terms of �� and �, Eq. (43) can be written as

��ð��D� þmÞ�; ��ðxÞ ¼ ð�1Þ
P
�>�

x�

; (57)

where ��ðxÞ is a pure phase factor making explicit the

decoupling of the four spin components of �. Defining �
on a single component only, we have reduced the fermion
content of the theory by a factor of 4, from 16 four-
component spinors to 16 single component modes that are
still symmetrically distributed over the Brillouin zone at the
momenta � given in Eq. (47).

The staggered fermion operator

M ¼ ��D� þm (58)

is anti-Hermitian in the massless case, i.e., its eigenvalues are
restricted to the imaginary axis for m ¼ 0. Therefore any
finite mass m> 0 provides an IR cutoff and the operator is
invertible. In addition, the massless staggered fermion opera-
tor preserves a remnant of the chiral symmetry of the naive
fermion operator (48):

�ðxÞ ! �0ðxÞ ¼ ei	�ðxÞ;
��ðxÞ ! ��0ðxÞ ¼ ��ðxÞei	; (59)

where  ¼ ð�1Þ
P

�
x� . For the staggered fermion operator (58)

this implies that

M ¼ My (60)

FIG. 2. (a) In the fermionic case, periodicity of the lattice mo-

mentum P� requires a second root (doubler) or jump within the

Brillouin zone (nonlocality). (b) In the bosonic case, only the

squared lattice momentum is required to be periodic which can

be fulfilled without a jump or an additional root.
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is Hermitian. Therefore, the eigenvalues of M come in com-
plex conjugate pairs and detM is real and positive.
Furthermore, we see that

MyM ¼ ��D
y
���D� þ jmj2 (61)

does not couple odd and even sites so that the pseudofermion
representation (33) may be used for the fermion determinant.

As demonstrated by Sharatchandra, Thun, and Weisz
(1981), Gliozzi (1982), Kluberg-Stern et al. (1983), van
den Doel and Smit (1983), Golterman and Smit (1984b),
and Daniel and Kieu (1986), these 16 spinor components
may again be interpreted as four fermion flavors (also referred
to as tastes in the literature), each one described by a four-
component spinor. Following Golterman (1986), we split the
lattice coordinate x ¼ yþ h into a piece y that describes the
origin of the elementary 24 hypercube that x is located in and
an offset h that describes the location of x within this hyper-
cube. We construct

XðyÞ ¼ 1

4

X
h

�ðhÞUðyþ h; yÞ�ðyþ hÞ; (62)

where h� 2 f0; ag and Uðyþ h; yÞ is any parallel transport

from yþ h to y. Interpreting XðyÞ as a 16 component vector,
we can define an arbitrary fermion bilinear with spin structure
�s and flavor structure �f as

�Xð�s � �fÞX ¼ Trð �X�sX�
y
f Þ (63)

and the staggered fermion action (57) can be written as

�X½ð1 � 1Þmþ ð�� � 1ÞD̂� þ ð�5 � ���5ÞĈ��X; (64)

with the first and second derivative operators on the coarse
lattice

D̂� ¼ 1
4ðV̂� � V̂y

�Þ; Ĉ� ¼ 1
4ðV̂� � 21þ V̂y

�Þ;
(65)

where

ðV̂�Þxy ¼ U�ðxþ �̂ÞU�ðxÞ�xþ2�̂;y: (66)

Note that the third term in Eq. (64) that implies a mixing of
the four remaining flavors (tastes) is an artifact of the taste
assignment (62) which does not respect the full set of sym-
metries of the staggered action. In fact, for the noninteracting
case, Adams (2005) found a taste assignment that is diagonal
in the tastes and local.

A massless four-flavor continuum theory has a classical
U(4) chiral symmetry that gets reduced to SU(4) by the
anomaly. This implies a 15-plet of massless pseudoscalar
Goldstone particles (pions) and an additional massive one
(�0). As seen in Eq. (59), staggered fermions retain a U(1)
subgroup of this symmetry. In the spin-flavor basis, the
remnant staggered chiral symmetry reads

XðyÞ ! X0ðyÞ ¼ ei	ð�5��5ÞXðyÞ;
�XðyÞ ! �X0ðyÞ ¼ �XðyÞei	ð�5��5Þ:

(67)

This symmetry is spontaneously broken implying a single
Goldstone particle, the pseudoscalar in taste space, that is
exactly massless.

In order to obtain one, respectively, two flavors in the
functional integral (24), it is customary to take the quartic,
respectively, square root of the four-flavor staggered func-
tional determinant detM. This procedure, commonly referred
to as rooting, was introduced by Marinari, Parisi, and Rebbi
(1981b) in the context of the Schwinger model. On a technical
level this is realized in a pseudofermion based algorithm by a
fractional power � ¼ 1=4, respectively, � ¼ 1=2 in Eq. (33).

On a more fundamental level, the validity of rooted stag-
gered fermions relies upon the assumption that there exists a
local lattice fermion operator that squared or to the fourth
power has the same functional determinant detM as the four-
flavor staggered operator. In fact, Adams (2005) demon-
strated that in the massive free case such an operator can be
found. In the interacting case, however, the situation is more
complex. As Durr and Hoelbling (2005b) demonstrated,
rooted staggered fermions are in the wrong universality class
in the strictly massless case m ¼ 0 implying that the chiral
m ! 0 limit does not commute with removing the cutoff
a ! 0, a result already anticipated by Smit and Vink
(1987). This observation reflects the fact that the staggered
chiral symmetry (63) and (72) is not anomalously broken. In
fact, the staggered chiral symmetry is retained even in the
single flavor rooted theory implying an exactly massless �0
for m ¼ 0 and as demonstrated by Bernard (2006), Prelovsek
(2006), Bernard, DeTar et al. (2007), and Bernard,
Golterman et al. (2007), nonunitarity of the rooted theory
at finite cutoff. On the other hand, there is some numerical
indication that out of the chiral limit rooted staggered fermi-
ons do indeed have correct continuum behavior for many
observables (Aubin et al., 2004; Davies et al., 2004, 2005;
Durr and Hoelbling, 2004; Durr, Hoelbling, and Wenger,
2004; Durr and Hoelbling, 2005b; Follana et al., 2008;
Bazavov et al., 2010a, 2010b). More formally, Bernard,
Golterman, and Shamir (2006) showed by a symmetry argu-
ment that rooted staggered fermions cannot be described by a
local operator. However, analytical calculations (Bernard,
Golterman, and Shamir, 2006, 2008; Giedt, 2007; Shamir,
2007) indicated that the nonlocal terms vanish in the contin-
uum limit and consequently that rooted staggered fermions
have the correct continuum limit as long as the proper order
of limits is observed. Implications of the delicate nature of the
staggered fermion continuum limit were also extensively
discussed (Bernard, 2005; Durr and Hoelbling, 2006;
Hasenfratz and Hoffmann, 2006; Bernard, Golterman
et al., 2007; Creutz, 2007a, 2007b). For recent reviews see,
e.g., Durr (2006) and Sharpe (2006).

The representation of the spin-taste structure by different
points within an elementary hypercube (56) and (62) and the
taste breaking term in the action (64) imply some additional
complications for extracting hadron masses with staggered
fermions that will be discussed further in Sec. III.

2. Wilson fermions

We now turn our attention to lattice fermion formulations
that fully lift the naive flavor degeneracy and are able to
naturally describe a single flavor theory in the continuum
limit. It was first realized by Wilson (1975) that the fermion
doubling problem can be solved by adding a Laplacian term
to the naive fermion operator (43)
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SW ¼ ��

�
��D� þmþ r

2
h

�
�; (68)

where

h ¼ X
�

C�; C� ¼ V� � 2þ Vy
�; (69)

with the parallel transport V� defined in Eq. (15) and the

Wilson parameter r that is usually set to 1. The additional
term in the action, the so-called Wilson term, may be inter-
preted as a momentum dependent mass term. Note that in
contrast to naive and staggered fermions, the Wilson fermion
operator is generally not normal due to the additional
Laplacian term, although it still is in the free case. The free
Wilson operator

MW ¼ ��D� þmþ r

2
h (70)

in momentum space reads

MWðpÞ ¼ i

a

X
�

�� sinðap�Þ þm� r

a

X
�

½cosðap�Þ � 1�:

(71)

Comparing Eq. (71) to the naive operator (45) we see that the
additional term ðr=aÞP�½cosðap�Þ � 1� vanishes as OðaÞ for
any fixed physical momentum p. On the other hand, for a
fixed lattice momentum ap the additional term gives a con-
tribution that is divergent as Oð1=aÞ except for p ¼ 0. In
particular, all doubler modes with n momentum components
�=a receive an additional mass of 2rn=a thus effectively
removing them from the spectrum in the continuum limit.

Since the additional Laplacian term in Eq. (68) does not
anticommute with �5, the exact chiral symmetry of naive
fermions (48) is broken as required by the Nielsen-Ninomiya
theorem (Nielsen and Ninomiya, 1981a, 1981b, 1981c). In
fact, the Laplacian term commutes with �5 due to its trivial
spin structure. Consequently, the Wilson operator obeys the
relation

My
W ¼ �5MW�5; (72)

which is known as �5 Hermiticity. It implies that the operator

�5MW ¼ ð�5MWÞy (73)

is Hermitian and the eigenvalues of MW are either real or
come in complex conjugate pairs. Consequently, detðMWÞ is
real. In order for the pseudofermion representation (31) to be
well defined, detðMWÞ needs to be positive definite in addi-
tion, which is guaranteed if m> 0. However, due to the
breaking of chiral symmetry the fermion mass is not pro-
tected against additive renormalization. The bare fermion
mass receives corrections that are divergent in the continuum
limit and needs to be renormalized. Because of this additive
renormalization, the bare fermion mass corresponding to a
physically interesting renormalized mass often turns out to be
negative. While pairs of complex conjugate eigenvalues still
give a positive contribution to detðMWÞ in this case, the real
eigenmodes only do so if the number of negative ones is even.
Furthermore, even eigenmodes that are positive but very
small pose serious problems for matrix inverters. In the
case of an exact zero eigenmode, it is not possible to define

the fermion determinant in terms of the pseudofermion fields
according to Eq. (31). Hitting such a configuration within
numerical precision will result in a failure of the matrix

inversion to properly converge (Bardeen et al., 1998).
These configurations are known as ‘‘exceptional’’ and the
appearance of even a single exceptional configuration in a
Markov chain indicates that one is not able to properly
sample a relevant region in configuration space. Ensembles

exhibiting an exceptional configuration therefore have to be
discarded.

In practice, exceptional configurations therefore set a
lower limit to the masses one can reach with Wilson-type
fermions. One has to make sure that all eigenmodes of the
fermion matrix are sufficiently separated from zero. While
these restrictions were initially very severe, they do not

present a substantial obstacle for current state of the art lattice
calculations. The use of large physical volumes, small lattice
spacings, improved gauge actions (see Sec. II.E.1), and
smeared link fermion actions (see Sec. II.E.2) all reduce the
probability of exceptional configurations appearing in a
simulation.

Because of the strong correlation between the condition

number of the fermion matrix and the iteration count of the
inverter and because the relative fluctuations of the largest
eigenvalue are small, one can use the distribution of the
inverse iteration count instead of the distribution of the lowest
eigenmode. A tail of this distribution that extends toward the
origin is a clear and direct indication of problems with excep-

tional configurations while a clear separation from 0 demon-
strates the absence of exceptional configurations and
positivity of the fermion determinant. Such a distribution is
plotted in Fig. 3 for a recent study with light Wilson-type
fermions (Durr et al., 2011c).

The dominance of low modes in the computational cost of
inverting a Wilson-type Dirac operator has led to efforts of

preconditioning the inversion by removing or effectively
projecting out a relatively small number of low modes.
These techniques are generally known as deflation methods

Inverse iteration count (1000/Ncg)

β=3.31, Mπ≈135 MeV

0  0.04  0.08  0.12

β=3.5, Mπ≈130 MeV

β=3.61, Mπ≈120 MeV

 0  0.04  0.08  0.12

β=3.7, Mπ≈180 MeV
β=3.8, Mπ≈220 MeV

FIG. 3 (color online). Inverse iteration count of the fermion

matrix inverter for Wilson-type fermions and a number of different

ensembles with bare couplings � and approximate pion massesM�.

The lower tail of the distributions shows a clear separation from 0

indicating the absence of exceptional configurations in the ensem-

bles. From Durr et al., 2011c.
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(de Forcrand, 1996; Neff et al., 2001; Giusti et al., 2003,
2004; DeGrand and Schaefer, 2004; Luscher, 2007;
Stathopoulos and Orginos, 2007; Darnell, Morgan, and
Wilcox, 2008). They can lead to a large decrease in the cost
of computing propagators on gauge configurations, especially
in circumstances where one needs to compute many propa-
gators on the same gauge configuration. In this case, one can
perform a rather expensive eigenmode projection step since it
has to be performed only once for each gauge configuration.
For a further discussion see also Sec. III.B.

On a more fundamental level, real modes of the Wilson
operator are related to the topological charge of the gauge
configuration by the index theorem (Atiyah and Singer,
1968). In the continuum limit, real modes become exactly
degenerate zero modes that are tied to the gauge field topol-
ogy (Smit and Vink, 1987; Setoodeh, Davies, and Barbour,
1988; Vink, 1988; Bardeen et al., 1998; Gattringer and Hip,
1998; Hasenfratz, Laliena, and Niedermayer, 1998).

Recently it was proposed to construct a Wilson-like opera-
tor that instead of lifting the flavor degeneracy of the naive
operator (44) lifts the taste degeneracy of the staggered
operator (58) (de Forcrand, Kurkela, and Panero, 2010;
Adams, 2011; Hoelbling, 2011) [for earlier work in this
direction see also Becher and Joos (1982), Mitra (1983),
Mitra and Weisz (1983), Gockeler (1984), Golterman and
Smit (1984a, 1984b), and Golterman (1986)]. Conceptual
aspects of this formulation are still being studied and no
application to hadron spectroscopy or other phenomenolog-
ically relevant computations are available in the literature yet.

3. Twisted mass fermions

Twisted mass fermions (Frezzotti et al., 2001) are a variant
of the Wilson fermion formulation that has recently gained
attention. The basic idea is to perform a chiral rotation, that is
not affected by an anomaly, on the mass term. Because the
transformation has to be anomaly free, the number of flavors
to be chirally rotated has to be even. In the simplest case of
two flavors the mass term reads

�mei��5
3 ¼ mþ i��5
3; (74)

where

tanð�Þ ¼ �

m
; �m ¼ m2 þ�2; (75)

and 
3 is the diagonal Pauli matrix in flavor space. Because of
the opposite twist angles between the two flavors, the anom-
aly cancels and the chiral rotation of the mass term (74) may
be absorbed into a chiral rotation of the fermion fields

�� ! ��ei�=2�5
3 ; � ! ei�=2�5
3�; (76)

provided that the massless part of the fermion operator is
invariant under the chiral transformation (76). For Wilson
fermions, however, chiral symmetry is explicitly broken.
Replacing the standard mass term in Eq. (70) with a twisted
mass term of the form (74) therefore results in a different
theory where the two-flavor fermion matrix is given by

Mtm ¼ ��D� þ r

2
hþmþ i��5
3: (77)

This represents the twisted mass fermion matrix in the so-
called twisted basis. The basis is called twisted because
Eq. (77) describes the physically uninteresting case of a
complex mass term. In order to obtain physically interesting
predictions for a theory with a real mass term from Eq. (77),
the chiral rotation in the mass term has to be supplemented by
an equivalent transformation of the fermion fields (76). In the
new basis, Eq. (77) describes the physically interesting case
of real mass fermions. This rotated basis of the fermion fields
is therefore usually referred to as the physical basis.

Wilson fermions with a twisted mass term do not obey
standard time reversal and parity transformation symmetries
but modified versions thereof. However, standard CPT sym-
metry is fulfilled and the behavior with regard to chiral and
flavor symmetry is the same as for standard Wilson fermions,
i.e., chiral symmetry is broken while flavor symmetry is
exactly conserved in the twisted basis. In the physical
basis (76), however, a subset of the flavor and axial symme-
tries gets transformed into each other. Consequently, flavor
symmetry is broken while part of the chiral symmetry is
restored at maximal twist � ¼ �=2. This implies that at
maximal twist, on the one hand, there are isospin breaking
cutoff effects (Scorzato, 2004; Bar, 2010), while, on the other
hand, the cutoff terms are generally of Oða2Þ (Aoki and Bar,
2004; Frezzotti and Rossi, 2004a). Note that the bare mass is
not protected against additive renormalization and therefore
the mixing angle � gets renormalized. In order to achieve
maximal renormalized twist, the bare mass needs to be tuned.
This tuning is routinely done as part of any twisted mass
calculation [see, e.g., Baron et al. (2010a)].

Introducing a pair of nondegenerate quarks is usually done
with the help of an additional mass term that carries a non-
diagonal flavor structure 
1 resulting in a nondegenerate
two-flavor fermion operator of the form

M̂tm ¼ ��D� þ r

2
hþmþ i��5
3 þ 
1 (78)

(Frezzotti and Rossi, 2004b; Chiarappa et al., 2007). An
alternative suggestion was proposed by Pena, Sint, and
Vladikas (2004).

From Eq. (77) it follows that the two-flavor operator has a
determinant which is bounded from below by �2 (Frezzotti
et al., 2001) and a spectral gap of size � around the real axis
(Gattringer and Solbrig, 2005). Furthermore, the twisted
mass fermion matrix fulfills a generalized form of the
�5-Hermiticity condition of the Wilson operator (72)

My
tm ¼ �5
1Mtm
1�5 (79)

that similarly implies the appearance of eigenmodes in
complex conjugate pairs. In contrast to Wilson fermions
however there are no real eigenmodes due to the spectral
gap (Gattringer and Solbrig, 2005) and therefore no excep-
tional configurations. Note that Eq. (79) also holds for the
nondegenerate M̂tm from Eq. (78).

Numerical evidence was found with twisted mass fermions
for a line of first order phase transition in the bare quark mass
that extends into the twisted mass direction (Farchioni et al.,
2005a, 2005b). This observation can be understood in terms
of the phase structure of lattice QCD with Wilson fermions as
proposed by Sharpe and Singleton (1998) from analysis of the
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effective chiral potential. It represents one of two possibilities
of finding a minimum, the other one being the appearance of
an unphysical phase where parity and flavor are spontane-
ously broken (Aoki, 1984; Aoki, Kaneda, and Ukawa, 1997).
Evidence for the Aoki phase was found at coarser lattice
spacings (Ilgenfritz et al., 2004; Sternbeck et al., 2004).

In general, it is mandatory for all simulations with Wilson-
type fermions to avoid being too close to the line of first order
phase transition. The situation is particularly challenging to
twisted mass fermions at maximal twist, however, since the
line of first order phase transition opens up in the twisted
mass direction at the critical bare mass. The minimum pion
mass one can reach with twisted mass fermions at a given
lattice spacing is estimated by Shindler (2008) to be
�300 MeV at a� 0:07–0:1 fm which is roughly consistent
with recent numerical results (Baron et al., 2010).

For further details about twisted mass fermions we refer
the interested reader to a recent review (Shindler, 2008).

4. Chirally symmetric fermions

Although the Nielsen-Ninomiya theorem does not allow
one to retain the continuum form of chiral symmetry for local,
doubler free fermions, an exact symmetry may be found at
finite lattice spacing that goes over into the continuum chiral
symmetry upon removal of the cutoff (Ginsparg and Wilson,
1982; Narayanan and Neuberger, 1995; Hasenfratz, Laliena,
and Niedermayer, 1998; Luscher, 1998). The continuum form
of chiral symmetry implies that the massless fermion operator
M anticommutes with �5. One can generalize that relation by
introducing a modified

�̂5 ¼ �5ð1� 2aRMÞ (80)

and demanding that

�5MþM�̂5 ¼ 0: (81)

The condition (81) is known as the Ginsparg-Wilson relation
(Ginsparg and Wilson, 1982) and the operator R in Eq. (81)
has to be local and is known as the Ginsparg-Wilson kernel.
From Eq. (80) one can see that the action

SGW ¼ ��M� (82)

is invariant under the chiral symmetry

�� ! ��ð1þ i�5Þ; � ! ð1þ i�̂5Þ�: (83)

The continuum form of chiral symmetry can be regained in
observables by constructing them with the chirally rotated
fermion field

�̂ ¼ ~1�; ~1 ¼ 1� aRM; (84)

instead of the bare �. As the full chiral symmetry is pre-
served by Ginsparg-Wilson fermions, all consequences of this
symmetry such as the appearance of exact zero modes, an
exactly conserved axial current (Kikukawa and Yamada,
1999), and the anomalous breaking of the flavor singlet part
of the symmetry are also retained. It was proven by Horvath
(1998) and Bietenholz (1999) that chirally symmetric lattice
fermion operators cannot be ultralocal, i.e., they cannot be
realized by couplings to a finite number of nearest neighbors.
It is therefore necessary to prove the locality of chiral fermion

actions in the sense that the coupling decreases exponentially
with distance with an exponent that is on the order of the
cutoff and not a physical mass.

Different fermion operators fulfilling the Ginsparg-Wilson
relation have been suggested. The overlap operator
(Narayanan and Neuberger, 1993a, 1993b, 1994, 1995;
Neuberger, 1998b, 1998c) is an explicit construction that
corresponds to the unitary part of a Wilson operator at
negative bare mass ��. In the massless case, the fermion
matrix is given by

Mo ¼ �1þ
0
B@ MWð��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

My
Wð��ÞMWð��Þ

q
1
CA; (85)

and a real mass term may be added as

MoðmÞ ¼ Mo þ ~1m: (86)

The overlap operator (85) obeys the Ginsparg-Wilson relation
with an ultralocal R ¼ 1=2�. Locality of the overlap operator
was established numerically (Hernandez, Jansen, and
Luscher, 1999) [see also Golterman and Shamir (2003)].
Note that by construction the overlap operator is normal.

Overlap fermions are numerically extremely demanding.
In contrast to all previously discussed fermion discretizations,
the fermion operator Mo is not sparse. The multiplication of
Mo on a vector has to proceed via approximating the inverse
matrix square root in Eq. (85). While it is possible to do this
with polynomial (Giusti et al., 2003) or rational (Neuberger,
1998a; Edwards, Heller, and Narayanan, 1999; van den Eshof
et al., 2002) approximations, it typically requires at least
Oð100Þ applications of the kernel Wilson operator to perform
one matrix-vector multiplication with Mo.

Because of the exact chiral symmetry, overlap fermions are
free of exceptional configurations at finite mass. This leads,
however, to a nontrivial technical problem for dynamical
overlap fermions that was first observed by Fodor, Katz,
and Szabo (2004). The nonanalyticity of Eq. (85) implies a
divergence of the fermionic force term (39) at certain points
in configuration space. Specifically, such a divergence occurs
at topological sector boundaries where the number of zero
modes changes. These points have to be treated separately in
the HMC integration (Fodor, Katz, and Szabo, 2004; Egri,
2006; Cundy et al., 2009), specifically at fine lattices, as the
simulation can get stuck in one topological sector.6

Alternatively, one can artificially constrain the simulation to
a single topological sector via the addition of extra Wilson
fermions with large negative mass (Izubuchi and Dawson,
2002; Fukaya et al., 2006; Vranas, 2006) and treat this
constraint as an additional finite-volume effect.

Historically, overlap fermions were first formulated in five
dimensions based on the realization that one may have chiral
domain wall defects in a (2nþ 1)-dimensional vectorlike
gauge theory (Callan, Curtis, and Harvey, 1985; Kaplan,
1992; Frolov and Slavnov, 1993). This five-dimensional

6Note that while the nonanalyticity problem is particularly ap-

parent for overlap quarks, its origin is physical. Upon removing the

cutoff, every fermion formulation ultimately develops nonanalytic-

ities at the topological sector boundaries.
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form of chiral fermions was further developed by Shamir

(1993) and is known as domain wall fermions. Domain wall

fermions have an exact chiral symmetry only in the limit that

the fifth dimension is large. Of course, on the lattice this

cannot be realized and there is a remnant breaking of chiral

symmetry (Blum and Soni, 1997) [for a recent update on the

size of this effect see, e.g., Aoki et al. (2011)].
On a technical level, domain wall fermions are realized by

five-dimensional Wilson fermions at a negative bare massM.

The gauge field is four dimensional only and identical for

each slice in the fifth dimension. Along the fifth dimension s,
gauge links are set to U5ðx; sÞ ¼ 1 for s � 0 except at the

defect location s ¼ 0, where they are set to U5ðx; 0Þ ¼ 1m.

According to Shamir (1993), a left-, respectively, a right-

handed chiral mode will form at the positive, respectively,

negative side of the defect in the limit of an infinite fifth

dimension and these modes couple with the mass term m. A

remnant coupling of the chiral modes through the bulk will

appear for a finite fifth dimension that will be suppressed

exponentially in the size of the fifth dimension N5.
Because of the residual chiral symmetry breaking, domain

wall fermions suffer a small additive mass renormalization

known as residual mass mres. As in the case of Wilson

fermions it is therefore necessary in principle to take negative

bare mass values for reaching arbitrarily small but positive

renormalized quark masses. One could therefore encounter

exceptional configurations, but due to the smallness of mres

this is not a problem in current simulations. The extent of the

fifth dimension is typically around N5 ¼ 16 in present day

calculations rendering domain wall fermions numerically

more expensive than Wilson fermions by about an order of

magnitude.
Another variant of chirally symmetric lattice fermion op-

erators is known as perfect action or fixed point fermions

(Hasenfratz and Niedermayer, 1994; DeGrand et al., 1995;

Bietenholz and Wiese, 1996). Perfect actions are obtained by

following the renormalization group flow of a blocking trans-

formation to the renormalized trajectory that ends in a fixed

point. Therefore, their form is not explicitly given but needs

to be determined by following the renormalization group

flow. Up to truncation errors, the action so obtained is clas-

sically perfect in the sense that it has no remaining cutoff

effects in the classical theory (see Sec. II.E.2 for a more

detailed discussion).
From a numerical perspective, fixed point actions are

expensive to simulate. In principle, fixed point fermion op-

erators are not sparse matrices and neither can they be

explicitly constructed out of a sparse matrix as is the case

for overlap fermions. Consequently, one needs to truncate the

operator to a finite range and the chiral symmetry is only

approximate. The resulting additive mass renormalization is

small, however, and no problems with exceptional configu-

rations have been seen (Gattringer et al., 2004). The same

paper also reports that the numerical cost is increased be-

tween 1 and 2 orders of magnitude compared to Wilson

fermions. For a review of truncated perfect action fermions,

see Bietenholz (2008).
Yet another variant of approximately chiral lattice fermi-

ons is obtained by inserting a truncated expansion of a general

fermion operator into the Ginsparg-Wilson relation (81) and

explicitly solving for the expansion coefficients (Gattringer,
2001). Numerical properties and cost of this variant of ap-
proximately chiral fermions are roughly comparable to those
of the truncated perfect action as demonstrated by Gattringer
et al. (2004).

E. Constructing efficient regularizations

As mentioned in Sec. II.B, lattice discretizations of con-
tinuum actions are not unique. The essential step in discretiz-
ing a continuum action is the replacement of derivative terms
by lattice finite difference operators. Disregarding quantum
effects, it is easy to see how the discretization of derivative
operators can be systematically improved by adding finite
difference operators with increasing distances. For the simple
case of one-dimensional symmetric difference operators

�1fðxÞ ¼ fðxþ aÞ � fðx� aÞ
2a

¼ f0ðxÞ þ a2

6
f000ðxÞ þOða4Þ;

�2fðxÞ ¼ fðxþ 2aÞ � fðx� 2aÞ
4a

¼ f0ðxÞ þ 4a2

6
f000ðxÞ þOða4Þ; (87)

we find discretization errors of Oða2Þ. In the linear combina-
tion

�i ¼ 4�1 ��2

3
; (88)

however the Oða2Þ terms cancel and therefore

�ifðxÞ ¼ f0ðxÞ þOða4Þ: (89)

Generally speaking, one can systematically improve discre-
tized continuum operators by taking liner combinations of
lattice operators and imposing conditions on the coefficients
such that the continuum limit is correct and leading order
discretization effects are canceled.

Finding the proper coefficients in the linear combination is
of course not always as trivial as in the example above.
Specifically, one needs to keep in mind that when computing
observables in a quantum theory, the classically computed
coefficients can receive radiative corrections. One can then
look at a certain set of observables and try to cancel higher
order effects in them on a quantum level. Such a strategy was
first suggested by Symanzik (1983a, 1983b) who realized that
a lattice Lagrangian in general is equivalent order by order in
a and g2 to a continuum local effective Lagrangian.

Other strategies of finding improved discretizations are
based on the mean field approximation or the renormalization
group as detailed below. One common feature that all of the
methods share is that they use the freedom in defining a lattice
regularization of a continuum operator in order to suppress
unphysical UV fluctuations in the lattice action. There is no
a priori guide for determining which specific improvement
out of the rather large number of possibilities is optimal. It is
therefore essential to consider the potential benefits of a
specific improvement in relation to its computational cost.
In the end, the optimal action will be the one that provides the
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smallest error (including all systematics) on the physical
observables (i.e., the hadron masses) for a given amount of
available computer time. To find a good improvement strat-
egy one therefore needs to find the right balance of different
improvements such that the overall error is minimized.

1. Gauge field improvement

The simple Wilson gauge action (20) contains only the
elementary plaquette and has discretization errors of Oða2Þ.
As demonstrated by Weisz (1983) and Luscher and Weisz
(1985b, 1985c), one can improve the scaling by taking proper
linear combinations of the elementary Wilson plaquette and
more extended gauge loops. The coefficients must of course
be chosen such that in the continuum limit one still obtains
the correct continuum gauge action (21). In addition, how-
ever, one can demand that all corrections that are of Oða2Þ
vanish classically. The desired continuum action has the form

O0 ¼ TrðF��F��Þ: (90)

All together, there are three different terms that represent
possible Oða2Þ corrections to this form

O1 ¼ TrðD�F��D�F��Þ;
O2 ¼ TrðD�F��D�F��Þ;
O3 ¼ TrðD�F��D�F��Þ;

(91)

where the covariant derivativeD� is given by Eq. (5). In order

to reach classical improvement, we have to demand that these
additional terms vanish.

On the lattice, a gauge action can generically be written as
a sum of terms of the form

Si ¼ �
X
P2Ci

�
1� 1

3
ReTr½UðP Þ�

�
; (92)

where the UðP Þ are path ordered products of gauge links
along a closed path P . For the simple Wilson gauge action
(20), which we refer to as S0 in this context, the set of closed
gauge loops C0 consists of all elementary plaquettes. Going
1 order higher, we see that there are also three possible forms
of six-link loops that are the minimal extensions of the
elementary plaquette. The first one of them is the planar
2� 1 loop while the other ones extend into the elementary
hypercube (see Fig. 4). Not distinguishing between loops
that differ only by rotation, we label the sets of loops of
these different forms C1, C2, and C3. The expansion of the
corresponding gauge actions (92) in terms of continuum
operators (91) up to next-to-leading order (NLO) reads
(Luscher and Weisz, 1985b, 1985c)

S0 ¼ �1
4O0 þ 1

24O1 þ � � � ;
S1 ¼ �2O0 þ 5

6O1 þ � � � ;
S2 ¼ �2O0 � 1

6O1 þ 1
6O2 þ 1

6O3 þ � � � ;
S3 ¼ �4O0 þ 1

6O1 þ 1
2O3 þ � � � ;

(93)

where volume sums are implied. For a general linear
combination

S ¼ X4
i¼0

ciSi; (94)

the correct continuum limit is therefore imposed by the
condition

c0 þ 8c1 þ 8c2 þ 16c3 ¼ 1: (95)

The cancellation of all the higher order operators (91) may
be achieved by imposing

c0 þ 20c1 ¼ 0; c2 ¼ c3 ¼ 0; (96)

which leads to a choice of coefficients c0 ¼ 5=3 and c1 ¼
�1=12. The resulting action is known as the tree level
Lüscher-Weisz action. It realizes the tree level (i.e., classi-
cal) Oða2Þ improvement of the Wilson plaquette gauge
action (20). Even before the work of Lüscher and Weisz
these coefficients were found by Curci, Menotti, and Paffuti
(1983) with a different matching procedure.

As mentioned, in a quantum theory radiative corrections
can in general reintroduce Oða2Þ terms into observables.
Generically, these corrections are proportional to g2 such
that the tree level Lüscher-Weisz action is correct up to
Oðg2a2Þ terms as opposed to Oða4Þ in the classical theory.
In order to correct for these radiative effects, one may look at
different on-shell observables. Looking at the scattering am-
plitudes of massive gluons one can construct an action with
Oðg4a2Þ scaling by modifying c0, c1, and c2 withOðg2Þ terms
(Luscher and Weisz, 1985a). The resulting coefficients
read c0 ¼ 5=3þ 0:237g2, c1 ¼ �1=12� 0:025 21g2, and
c2 ¼ �0:004 41g2. Note that the one-loop coefficients are
explicitly scale dependent via g2.

It is of course possible to go beyond perturbative Symanzik
improvement and concentrate on specific discretization terms
that are found to be important in nonperturbative calculations.
One case of particular relevance was found by Parisi (1980)
and Lepage and Mackenzie (1993). As the gauge field is
represented on the lattice in exponentiated form

U�ðxÞ ¼ eigaA�ðxÞ

¼ 1þ igaA�ðxÞ � g2a2

2
A2
�ðxÞ þ � � � ; (97)

the theory contains vertices with an arbitrary number of
gluons that give rise to tadpole diagrams. Although these
are formally suppressed by powers of a, UV divergences in
the tadpole loops appear and these terms are in fact scaling as
powers of g2 instead.

This problem may be addressed in mean field theory by
redefining the relation between the lattice U� and the

FIG. 4. The four possible forms of closed gauge loops on a

hypercubic lattice with six or less gauge links corresponding to

the members of the sets C0; . . . ; C3 as described in the text.
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continuum A�. Formally writing the gauge field U� as a

product of an IR and an UV part

U� ¼ UðUVÞ
� UðIRÞ

� ; (98)

and replacing the UV part by its mean field value u0, one

can now identify the physically relevant IR part UðIRÞ
� of the

lattice gauge field with the continuum field obtaining a
relation

U� ¼ u0e
igaA�ðxÞ (99)

between the lattice gauge field U� and the continuum A�.

One can therefore implement tadpole improvement by re-
placing all gauge links U� in lattice operators by U�=u0.

Because UV fluctuations are dominant, one can obtain a
good estimate of u0 by simply taking the expectation value
of the trace of a gauge link in a fixed gauge or, alterna-
tively, defining

u0 ¼ h13 Re TrðU��Þi1=4: (100)

In both cases u0 can be determined either in perturbation
theory or by measuring it directly as part of a nonpertur-
bative calculation. In the latter case, care has to be taken to
determine u0 self-consistently because it is both a parame-
ter in the action and an observable.

There is a third, independent strategy of improving the
gauge action that is based on the renormalization group. As
mentioned in Sec. II.D.4, one may try to follow the renor-
malization group flow of a blocking transformation in the
space of all possible actions toward the renormalized trajec-
tory. The renormalized trajectory is the trajectory of the
renormalization group flow that starts from a fixed point at
the critical surface where the correlation length diverges. Any
point along the renormalized trajectory therefore corresponds
to the action at a certain finite correlation length that has
vanishing irrelevant operator contributions and therefore re-
produces continuum physics without cutoff effects. Actions
along the renormalized trajectory are thus called perfect
actions.

The exact position of the renormalized trajectory is elusive
since the renormalization flow is not known analytically.
Strategies of finding approximations are based on the fact
that the renormalized trajectory is attractive under blocking
transformations as they reduce irrelevant operators. One
should also keep in mind that a perfect action generally lives
in an infinite dimensional space of couplings that has to be
truncated for practical purposes and that a thus truncated
perfect action is not guaranteed to exhibit the smallest scaling
violations possible among actions living in that subspace.

Studying the repeated application of a blocking transfor-
mation in a truncated subspace of gauge loops, Iwasaki
(1983) suggested an action of the Lüscher-Weisz form (94)
but with a set of coefficients c0 ¼ 3:648, c1 ¼ �0:331, and
c2 ¼ c3 ¼ 0. Also within the same truncation scheme, the
doubly blocked Wilson (DBW2) action (Takaishi, 1996; de
Forcrand et al., 2000) was obtained by double blocking from
Wilson configurations. It has the coefficients c0 ¼ 12:2704,
c1 ¼ �1:4088, and c2 ¼ c3 ¼ 0. Note that these coefficients

do not have an explicit scale dependence and therefore can
cancel quantum effects only at the scale where they are
computed.

A different strategy was followed by Hasenfratz and
Niedermayer (1994) and DeGrand et al. (1995) who obtained
a classically perfect action by a saddle point integration
around g ¼ 0 followed by a truncation to a rather large set
of couplings.

2. Fermion field improvement

In the case of lattice gauge actions, the Wilson plaquette
action (20) provided a unique starting point for all improve-
ment efforts. In the case of fermion actions the range of
unimproved actions is quite diverse and so are their major
discretization effects. There are some common improvements
that positively affect all fermion actions, but the improvement
strategies are sufficiently distinct for different discretizations
so we will discuss them separately. We start by first discussing
the improvement of Wilson fermions.

The Wilson fermion action (68) has leading discretization
effects ofOðaÞ. These can be canceled classically by adding a
two-hop term to the action (Hamber and Wu, 1983)

SHW ¼ ��

�
��ð2D� � D̂�Þ þ r

2
ð2h� ĥÞ þm

�
�;

(101)

with ĥ ¼ P
�Ĉ� and the covariant two-hop operators from

Eq. (65). One could in principle compute the coefficients of
the one-hop and two-hop terms in perturbation theory or
nonperturbatively to achieve further improvement. This
was not further pursued in practice, however, since
Sheikholeslami and Wohlert (1985) discovered that one
can remove OðaÞ discretization terms with a more local
operator. This additional term is the discretized magnetic
moment operator and the corresponding action reads

SSW ¼ SW � rcSW
2

X
�<�

�����F���; (102)

where the field strength F��ðxÞ is usually obtained by

taking an average of the imaginary parts of all the pla-
quettes around the point x. Because of the arrangement of
the four plaquettes involved in the average, the additional
term and the resulting action are commonly referred to as
the clover term and the clover action. Tree level improve-
ment is achieved by setting the coefficient cSW ¼ 1. The
resulting action has discretization effects of Oðg2aÞ and
Oða2Þ. Numerically, the Oðg2aÞ and Oða2Þ corrections are
competing and it is not possible to say a priori which of
these effects are dominant for a specific observable at a
specific lattice spacing. Further improvement is possible by
perturbation theory (Wohlert, 1987; Luscher and Weisz,
1996), mean field tadpole improvement, or nonperturbative
methods (Luscher et al., 1997). It turns out that the clover
action (102) is equivalent to the Hamber-Wu action (101)
up to Oða2Þ terms in terms of rotated fermion fields
(Heatlie et al., 1991; Martinelli, Sachrajda, and Vladikas,
1991).
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Although suggestions exist for further improving the
Wilson operator by adding more extended terms (Alford,
Klassen, and Lepage, 1997; DeGrand, 1998; Durr and
Koutsou, 2011), they are not often pursued due to the com-
putational overhead.

In contrast to Wilson fermions the staggered action has
leading discretization effects of Oða2Þ. These can be elimi-
nated on a classical level by replacing the one-hop derivative
of the staggered action (57) with a suitable combination of
one-hop and three-hop derivative operators such that Oða2Þ
terms cancel (Naik, 1989). The three-hop term is used rather
than the two-hop term in order not to interfere with the
staggered flavor structure.

The main concern for staggered fermions, however, is not
the Symanzik improvement but rather the minimization of
taste breaking effects. Since the different fermion compo-
nents sit at the edges of the Brillouin zone, they interact via
the exchange of hard gluons with momenta on the order of the
cutoff scale. Suppressing these interactions, i.e., reducing the
unphysical UV fluctuations, is therefore especially important
for staggered fermions.

The primary method in use today for reducing unphysical
UV noise is link smearing (also known as UV filtering or
fattening). Since link smearing is used for Wilson-type and
chirally symmetric fermion actions as well, we discuss it in a
more general context. Although on a technical level it can be
implemented by modifying the gauge fields only, it is impor-
tant to remember that it strictly is a modification of the
fermion action only. The original suggestion, put forward
by the APE Collaboration (Albanese et al., 1987), is com-
monly known as APE smearing. The basic idea is that one can
use the freedom in defining the parallel transport in the
covariant one-hop term (15) of any fermion operator to
suppress UV fluctuations. It is not necessary that one takes
the same gauge link as used in the gauge action but instead a
linear combination of various paths that have the correct
starting and end points. In the case of APE smearing these
paths are, in addition to the original gauge link, all three-link
connections of the same two points (see Fig. 5) usually
referred to as staples.7

One can define an APE smeared gauge link UðAPEÞ
� ðxÞ from

the original gauge links U�ðxÞ in d dimensions via

UðAPEÞ
� ðxÞ ¼ ð1� �ÞU�ðxÞ þ �

2ðd� 1Þ��ðxÞ; (103)

where we used the staple sum

��ðxÞ ¼
X

	���

U�ðxÞU�ðxþ �̂ÞUy
� ðxþ �̂Þ (104)

with the identity U��ðxÞ ¼ Uy
�ðx� �̂Þ. The smearing pa-

rameter � determines the relative weight of the staple versus
the original link and is typically set to a value �� 0:6. The

resulting gauge links UðAPEÞ
� ðxÞ are no more an element of the

gauge group and it is therefore customary to backproject
them onto the gauge group via

U0 ¼ UðAPEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðAPEÞyUðAPEÞp ; Û ¼ U0

ðdetU0Þ1=3 ; (105)

where U0 is unitary and Û also has unit determinant.8

As the backprojection (105) is not analytic, the fermionic
force term (39) in the pseudofermion field integration may
exhibit singularities. Although there are suggestions to rem-
edy this situation by leaving out the second step of the back-
projection (105) and use U0 only (Hasenfratz, Hoffmann, and
Schaefer, 2007), it is customary in dynamical simulations to
use the analytic link smearing suggested by Morningstar and
Peardon (2004). They define the so-called stout link as9

V�ðxÞ ¼ e�S�ðxÞU�ðxÞ; (106)

where

S�ðxÞ ¼ 1

2

�
A�ðxÞ � 1

N
TrA�ðxÞ

�
; (107)

with

A�ðxÞ ¼ ��ðxÞUy
�ðxÞ �U�ðxÞ�y

�ðxÞ: (108)

The parameter � is a smearing parameter that, similar to � in
the case of APE smearing, determines the relative weights
of the original link and the staple. For small smearing pa-
rameters, APE and stout link smearing are equivalent if one
sets � ¼ 2ðd� 1Þ� (Capitani, Durr, and Hoelbling, 2006).
With a proper matching of the smearing parameters one can
find a close correspondence even if their values are large
(Hasenfratz, Hoffmann, and Schaefer, 2007).

Both APE and stout smearing, as in general all link smear-
ing techniques, generate a smeared gauge field from the
original one, which is usually called a thin link. It is therefore
straightforward to apply the smearing prescription repeatedly
on the already smeared links and use this multiply smeared
gauge link field for constructing the fermionic operator. As
long as the smearing parameter and the number of smearing
steps is held constant, it amounts to an ultralocal redefinition
of the fermion operator and does not affect the continuum
limit. In fact, the locality range of an ultralocal fermion
operator itself is not at all affected by smearing the gauge
links. Gauge link smearing does not introduce any new
couplings into the fermion operator. What is affected by
gauge link smearing is the fermion to gauge field coupling
which becomes more extended. For smeared gauge links the

FIG. 5. The principle of APE smearing displayed in the two-

dimensional case. The ‘‘thin’’ gauge link is replaced by a weighted

average over the gauge link and the staples, which is then usually

backprojected onto the gauge group.

7Note that in the literature the sum over all three-link connections

is also sometimes referred to as the staple.

8For an alternative suggestion on doing the backprojection see

Durr and Koutsou (2011).
9We use the term stout link as is commonly done in the literature.

Note, however, that in the original paper the term stout link was

used in a slightly different way.
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fermion matrix elements are affected by changes of the
original gauge field at further distances. If one keeps the
number of smearing steps constant when going to the con-
tinuum limit, however, this redefinition is still ultralocal. In
addition, if the smearing parameter is not excessive, one
expects an exponential decrease of the gauge field to fermion
coupling within the ultralocality range with an exponent that
is proportional to the cutoff. This has been numerically
demonstrated for a 6-times stout link smeared tree level
improved Wilson operator in Durr et al. (2008) (see Fig. 6).

A variant of APE link smearing where one tries to max-
imize the smearing while only taking into account links that
have a distance of at most one single lattice unit to the
original link is known as hypercubic (HYP) smearing
(Hasenfratz and Knechtli, 2001). One step of HYP smearing
combines three steps of APE smearing where in the first two
APE steps all dimensions that would give distance two con-
tributions in any one direction are disregarded in forming the
staple sum. The analytic version of HYP smearing along the
lines of Morningstar and Peardon (2004) is known as hyper-
cubic exponential (HEX) smearing (Capitani, Durr, and
Hoelbling, 2006).

In the context of Wilson-type fermions smearing has been
found to drastically reduce the additive mass renormalization,
especially in combination with OðaÞ improvement (Capitani,
Durr, and Hoelbling, 2006). Furthermore, renormalization
constants and the value of the improvement coefficient cSW
from Eq. (102) are much closer to their tree level values and
the normality of the operator is improved (Durr, Hoelbling,
and Wenger, 2005; Hoffmann, Hasenfratz, and Schaefer,
2007; Horsley et al., 2008; Durr et al., 2009). Most im-
portantly, gauge link smearing reduces the fluctuations in the

real modes that lead to exceptional configurations (DeGrand,
Hasenfratz, and Kovacs, 1999; Stephenson et al., 2000).
Thus it is possible with smeared link Wilson-type fermions
to reach physical quark masses (Durr et al., 2011c), which
has proven to be difficult without link smearing. These are
clear indications that gauge link smearing efficiently sup-
presses UV fluctuations and ameliorates the chiral symmetry
breaking that is inherent in Wilson-type fermions.

One can combine nonperturbative improvement of the
Wilson action with smearing as is done, e.g., in the stout
link improved nonperturbative clover (SLINC) action
(Horsley et al., 2008).

It is also possible to use different gauge link definitions for
different parts of the fermion operator. An operator of this
form, the so-called fat link irrelevant clover (FLIC) fermions
suggested by Zanotti et al. (2002), uses an OðaÞ improved
Wilson operator with smeared links in the continuum irrele-
vant terms and original thin links for the rest.

The improvements of Wilson-type fermions carry over to
their use as kernel operators for the overlap construction.
Overlap operators with smeared Wilson kernels are generally
cheaper computationally, have renormalization constants
closer to their tree level values, and require less fine-tuning
of the negative mass parameter � (DeGrand, Hasenfratz, and
Kovacs, 2003; Kovacs, 2003; Durr, Hoelbling, and Wenger,
2005; Durr and Hoelbling, 2005a).

In the context of staggered fermions the main advantage of
smeared links is the suppression of taste violation (Blum
et al., 1997; Lepage, 1998, 1999; Lagae and Sinclair, 1998;
Orginos and Toussaint, 1998; Orginos, Toussaint, and Sugar,
1999).10 In the context of staggered fermions, the staples used
in APE smearing are referred to as fat3 staples. Adding to
these staples ones that extend in a second lattice direction and
consist of five links one arrives at the so-called fat5 links.
Adding staples that extend in all three other lattice directions
and consist of seven links each one obtains smeared gauge
links referred to as fat7. Finally, staples that consist of five
links and extend two lattice spacings in one direction are
referred to as the Lepage term (Lepage, 1999). Adding a Naik
term to the staggered action, replacing the gauge links with
fat7 gauge links plus a Lepage term and tadpole improving
the action one obtains the so-called ‘‘asqtad’’ action that is
frequently used in current staggered fermion calculations and
has scaling corrections of Oðg2a2Þ. More recently, two steps
of fat7 link smearing, the first one without the second one
with the Lepage term, with a gauge group projection after the
first smearing step were suggested by Follana et al. (2007).
Staggered fermions with this variant of link smearing are
known as ‘‘highly improved staggered quarks’’ or HISQ.

Besides these smearing terms that were specifically de-
signed to reduce taste splitting, simple stout link smearing
has also been applied to the staggered fermion operator.
Depending on the quark mass, the level of taste splitting
was found to be generally comparable to that of the HISQ
action or slightly less than for the specially designed asqtad
action (Aoki et al., 2009; Borsanyi et al., 2010).
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FIG. 6 (color online). Locality of a fermion operator coupling to a

6-times stout smeared gauge field. The stout smearing parameter is

set to � ¼ 0:11. At small distances the coupling decreases expo-

nentially with an effective mass of �2:2a�1 that is proportional to

the lattice cutoff. At Euclidean distances larger than
ffiffiffiffiffiffi
50

p
a couplings

are zero due to the ultralocality of the smearing procedure. From

Durr et al., 2008.

10For a study of reduced taste violation with an improved, un-

smeared action see Bernard et al. (1998b).
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F. Anisotropic discretizations

As we will discuss in Sec. III, information about excited
states can be extracted from correlation functions at short
Euclidean distances. It is therefore desirable for excited
hadron spectroscopy to have a fine resolution in the time
direction while keeping the resolution in the space direction
coarser in order to keep the overall computational effort
small.

Choosing an anisotropic discretization explicitly breaks
the hypercubic lattice remnant of the Lorentz symmetry
down to the subgroup of spatial cubic rotations.
Consequently spatial and temporal lattice extents receive
different normalization and the renormalized anisotropy gen-
erally differs from the input bare one.

Generalizing the simple case of the Wilson plaquette
action (20) to include an anisotropy one obtains

SAW ¼ ��0

X
x;i>j

�
1� 1

3
ReTr½UijðxÞ�

�

þ �

�0

X
x;i

�
1� 1

3
ReTr½Ui0ðxÞ�

�
; (109)

where �0 ¼ as0=a
t
0 is the bare anisotropy factor for the gauge

action, i.e., the ratio of bare spatial to temporal lattice spac-
ings. Similarly one can define an anisotropic Wilson fermion
operator as a generalization of the isotropic case (70)

Maniso ¼ mþ �s

�
�iDi þ r

2

X
i

Ci

�
þ �t

�
�0D0 þ r

2
C0

�
;

(110)

with C� defined in Eq. (69) and �s=t the speed of light in the

spatial or temporal direction. In order to obtain the same
renormalized aspect ratio for both fermion and gauge actions
one needs to tune �s and �t. An additional tuning of the gauge
action anisotropy is required only if one wants to tune to a
specific renormalized aspect ratio.

The improvement program for gauge and fermion fields as
outlined in Sec. II.E can be carried over to anisotropic lattices
if one keeps in mind the separation between spatial and
temporal split and ultimate tuning of both gauge and fermion
field anisotropies. Since spatial and temporal directions are in
any case treated differently for anisotropic lattices, one may
even use different improvements on spatial and temporal field
components that are specifically suited for either coarse or
fine lattices. For further details on implementation and
parameter tuning of anisotropic scalar, gauge, and fermion
actions, see, e.g., Burgers et al. (1988), Karsch and
Stamatescu (1989), Csikor, Fodor, and Heitger (1998),
Klassen (1998), Engels, Karsch, and Scheideler (2000),
Alford et al. (2001), Chen (2001), Harada et al. (2001),
Umeda et al. (2003), Morrin et al. (2006), and Edwards, Joo,
and Lin (2008).

III. EXTRACTION OF HADRON MASSES

In Sec. II we set up the framework for regularizing QCD on
a discrete spacetime lattice. In this section we discuss how to
extract the observables of interest, the hadron masses and
energy levels, from lattice QCD. The emphasis in this section

is on the technical details of extracting hadron masses in a
nonperturbative lattice QCD calculation. The question of how
these measured hadron masses can be turned into physical
predictions is discussed in Sec. IV.

We start by discussing the basic concept of extracting
energy levels in lattice QCD in Sec. III.A with an emphasis
on the extraction of the ground state. The efficiency of this
extraction of energy levels depends on the choice of source
and sink operators, which is reviewed in Sec. III.B. Finally,
we discuss the particular challenges involved in extracting
excited states in Sec. III.C.

A. Extraction of energy levels in lattice QCD

The principle of extracting energy levels of hadrons from
lattice QCD is relatively straightforward. Given a specific
fermion matrix MðUÞ on a gauge field background U, the
Feynman propagator SUðx; yÞ of the fermion field on this
given gauge field background is

SUðy; xÞ ¼ ðM�1
U Þy;x; (111)

where we suppressed additional color and spinor indices that
bothM and S carry. These quark propagators on a fixed gauge
field background are the basic building blocks from which
hadronic observables may be built. Note that for every action
that fulfills the �5-Hermiticity condition (72) one can write

SUðx; yÞ ¼ �5S
y
Uðy; xÞ�5 (112)

to exchange source and sink points of the propagator. For
staggered fermions an equivalent relation is provided by the
-Hermiticity (60) that implies

SUðx; yÞ ¼ SyUðy; xÞ: (113)

Having constructed a hadronic observable, one can simply
average it over the configurations that were produced using an
importance sampling technique (see Sec. II.C) to obtain the
path integral expectation value (24) up to a statistical preci-
sion which is limited by the size of the ensemble of
configurations.

We assume that we are interested in the mass of a certain
hadronic state jhi that we do not know how to construct
explicitly. We choose two (not necessarily different) interpo-
lating operators Oi=f that have a nonvanishing overlap with

jhi:
h0jOi=fjhi � 0 (114)

and compute the expectation value of the correlation function

Gðt; 0Þ ¼ h0jOfðtÞOy
i ð0Þj0i

¼ h0jeH tOfð0Þe�H tOy
i ð0Þj0i (115)

between times 0 and t. Inserting a complete set of eigenstates
of the Hamiltonian H in the standard fashion we find

Gðt; 0Þ ¼ X
n

h0jOfjnihnjOy
i j0i

2En

e�Ent; (116)

where En is the energy of the nth eigenstate of H above the
vacuum energy. If the state jhiwe are interested in happens to
be the lowest energy state with the quantum numbers ofOi=f,
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one simply needs to go to asymptotic times for all other states
to die out in the correlation function (114)

Gðt; 0Þ ���!t!1 h0jOfjhihhjOy
i j0i

2Mh

e�Mht (117)

and to extract the massMh and the product of matrix elements

h0jOfjhihhjOy
i j0i from it.

It is of course not possible to go to asymptotic times on a
finite lattice. However, since the higher energy states are
dying off exponentially in Euclidean time with an exponent
that is their energy difference to the ground state, it is often
possible to reach a distance that is effectively asymptotic for
limited lattice time extents. The time interval that starts from
where one cannot see the effect of higher energy states and
ends at a possible loss of signal is called the plateau region.
For ground state spectroscopy it is desirable to extend this
plateau region in order to get a statistically clean signal. This
is often achieved by choosing the operators Oi=f in such a

way that they have a large overlap with the ground state and
small overlap with all other states. This will be detailed
further in Sec. III.B.

Another common strategy to extend the plateau range is to
take eitherOi orOf to be a sum of local operatorsOl over an

entire time slice

Oi=fðtÞ ¼
X
~x

Olðt; ~xÞ: (118)

With this choice either the initial or the final state is projected
to zero spatial momentum and consequently all higher mo-
mentum excitations that may appear in the sum over states
(116) are canceled.

Since our lattices have a torus topology with a period T in
time direction, there is a backward contribution that is domi-
nant for T � t > t. It has a similar form than Eq. (117) with
the difference that the complete set of states has now been
inserted on the other side

Gðt; 0Þ ¼ ���!T�t!1
b
h0jOy

i j �hih �hjOfj0i
2M �h

e�M �hðT�tÞ: (119)

Note the appearance of the ground state �h. It coincides with h
except for cases where the lowest state that couples to bothOi

and Of is different from the lowest state that couples to both

Oy
i and Oy

f . The factor b ¼ 	1 has been inserted to account

for a sign flip that occurs for interpolating operators with an
odd number of quark fields when the time slice is crossed that
incorporates antiperiodic boundary conditions in the time
direction. Without loss of generality, we assume here that
this time slice is traversed in the backward contribution.

In addition one also has in principle contributions from
propagators that wrap 1 or more times around the lattice in
the time direction. These contributions are small, however;
each additional wrapping gives a suppression factor e�TMh or
e�TM �h , and the resulting geometric series can be summed up.
Putting all this together, we find that in the plateau range the
correlation function (115) is given by

Gðt;0Þ¼Af

e�Mht

2Mhð1�be�TMhÞþAb

e�M �hðT�tÞ

2M �hð1�be�TM �hÞ
(120)

with the matrix elements

Af ¼ h0jOfjhihhjOy
i j0i;

Ab ¼ bh0jOy
i j �hih �hjOfj0i:

(121)

One undesirable feature of Eq. (120) is the exponential
decay of the signal with Euclidean time. For large time
separations t or T � t, the signal exponentially vanishes.

In order to check for the existence and extent of the plateau
region, one can define an effective mass

Meffðtþ a=2Þ ¼ ln
Gðtþ a; 0Þ
Gðt; 0Þ ; (122)

which will be Mh or�Mh0 in the region where either the first
or the second exponential dominates in Eq. (120).11 As one
can see in Fig. 7, the effective mass plot is very useful for
identifying the plateau region of a correlation function. One
should, however, keep in mind that the time t for which the
asymptotic regime (117) is reached may vary widely. It is
possible that the coupling of an operator to the lowest energy
state of the same quantum numbers is nonzero but so small
that the ground state is not reachable.

We now turn to the explicit form of the interpolating
operators Oi=f. For Wilson fermions the simplest form they

can assume is that of a local operator with the correct
quantum number. For pseudoscalar mesons composed of
two different quark flavors one can, e.g., take
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FIG. 7 (color online). The effective mass Meffðtþ a=2Þ vs t=a
Eq. (142) of a decuplet baryon from a recent lattice calculation

(Aoki et al., 2011). One can see clearly the onset of the plateau and

the eventual loss of signal. The plateau region is indicated together

with the value of the mass obtained from a fit to the correlation

function. Figure courtesy of the RBC-UKQCD Collaboration.

11In the case where Gðt; 0Þ is either symmetric or antisymmetric,

one can modify Eq. (122) such that it gives Meff ¼ Mh throughout

the entire plateau region. See Fleming et al. (2009) for a more

thorough discussion of effective masses.
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P lðxÞ ¼ ��1ðxÞ�5�2ðxÞ (123)

or

A0lðxÞ ¼ ��1ðxÞ�0�5�2ðxÞ: (124)

In order to demonstrate how to construct a proper lattice
observable, we take as an example OfðtÞ ¼ P lðt; ~xÞ and

Oið0Þ ¼ P lð0; ~0Þ and plug these operators into Eq. (115).
Using x ¼ ðt; ~xÞ, the resulting Green’s function is

where in the last line the expectation value h� � �i denotes the
(properly weighted) average over all gauge configurations
and Si denote the Feynman propagator of the quark flavor i
on a given gauge field background. A graphical representa-
tion of this Green’s function in terms of quark propagators is
displayed in Fig. 8(a). Using the �5-Hermiticity relation
(112), Eq. (125) can be cast in the form

GPPðx; 0Þ ¼ �hTr½Sy1 ðx; 0ÞS2ðx; 0Þ�i; (126)

which can be obtained in practice by computing the inverse of
the fermion matrix on just one source point 0. Note that this is

true for an arbitrary sink point x so that, in particular, one
does not need to perform more inversions when either sum-
ming over all sink points ~x in a given time slice or computing
the Green’s function from 0 to a different sink point in an
arbitrary time slice.

In the case of flavor singlet interpolating operators

P ðxÞ ¼ ��ðxÞ�5�ðxÞ; (127)

the Green’s function contains one more Wick contraction

that leads to a quark line disconnected contribution to the
Green’s function that is displayed in Fig. 8(c) in addition to
the connected piece [Fig. 8(b)] that is also present in the
flavor nonsinglet case (126). Since the source and sink points
coincide in the disconnected piece, the �5-Hermiticity rela-
tion (112) does not provide any further simplification as in the
case of the connected piece.

For twisted mass, chiral, and clover fermions the construc-
tion of operators has to be done in the properly transformed
basis [see Eqs. (76) and (84) for the case of twisted mass and
chiral fermions, respectively], but it is identical to the Wilson
case otherwise.

For staggered fermions the construction of interpolating
operators is complicated by the presence of four interacting
tastes for each fermion flavor. Roughly speaking, when using
the spin-flavor basis introduced in Sec. II.D.1 as a guide, one
can construct mesonic interpolating operators along the same
lines as for Wilson-type fermions [the rigorous construction
can be found in Kluberg-Stern et al. (1983), Golterman and
Smit (1984b), and Kilcup and Sharpe (1987)]. One should
note however that due to the distribution of spin degrees of
freedom within an elementary hypercube all operators that
have a taste structure different from their spin structure are
not necessarily localized to a single lattice point. One relevant
example of an operator that is local and also leads to a
correlation function that is positive on every gauge configu-
ration is

P 5
l ðyÞ ¼ �X1ðyÞð�5 � �5ÞX2ðyÞ (129)

for which the Goldstone pion is the ground state.
The simplest baryon operators for Wilson quarks that have

the nucleon as a ground state are the local

N ð1Þ
l ¼ abcðuTaC�5dbÞuc (130)

and

N ð2Þ
l ¼ abcðuTaCdbÞ�5uc; (131)

where a, b, and c are color indices and the charge conjugation
operator C ¼ �0�2 s. We suppressed explicit spin indices
and coordinates. The difference between Eqs. (130) and
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FIG. 8 (color online). Graphical representation of the contraction

for a flavor nonsinglet (a) Green’s function (125) and (126) and of

the (b) connected and (c) disconnected contributions to a flavor

singlet mesonic Green’s function (128).
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(131) is that in the first case one starts off with a pseudoscalar
‘‘diquark’’ (the bracketed expression), whereas in the second
case the diquark is scalar and the �5 enters only when
combining the diquark with the remaining u. This difference
in spin structure leads to a very different nonrelativistic limit
of the two operators, Oð1Þ for N ð1Þ vs Oðp2=E2Þ for N ð2Þ,
which in turn implies that the relative overlap of N ð1Þ with
the ground state as compared to the excited states is much
larger than that of N ð2Þ (Bowler et al., 1984; Leinweber,
1995). For decuplet baryons, one can construct an interpolat-
ing operator by replacing the pseudoscalar diquark in
Eq. (130) with a vector one (Chung et al., 1982; Leinweber,
Draper, and Woloshyn, 1992). An interpolating operator cou-
pling to the �þþ can, for example, be obtained by

D� ¼ abcðuTaC��ubÞuc: (132)

Green’s functionsG�� that arise from using Eq. (132) for both

source and sink are, however, not pure spin 3
2 (Leinweber,

Draper, and Woloshyn, 1992). A spin projection to a pure
spin 3

2 state may be performed using the projection operator

(Van Nieuwenhuizen, 1981; Benmerrouche, Davidson, and
Mukhopadhyay, 1989)

P3=2
�� ¼ ��� � 1

3
���� � 1

3p2
ð�
p
��p� þ p����
p
Þ:

(133)

Numerical evidence suggests that even the unprojected corre-
lator couples almost exclusively to the spin 3

2 state (Leinweber,

Draper, and Woloshyn, 1992).
For staggered fermions, zero momentum baryon operators

were constructed by Golterman and Smit (1985). This con-
struction does not rely on the spin-flavor interpretation of
baryons but instead is based on analyzing the discrete space-
time symmetry group of staggered fermions. One interesting
feature of this construction is that there exists an operator that
couples to the � but does not couple to the nucleon, while, on
the other hand, every operator that couples to the nucleon also
couples to the �. Since the mass difference �M of these two
states is rather small, the � dies off slowly in Euclidean time t
as / e��Mt and it is challenging to find a plateau region.
Effects of different quark flavors have recently been added to
this formulation by Bailey (2007).

An alternative approach to extracting hadron masses via
measuring the free energy of a system with a finite baryon
density has been suggested by Fodor, Szabo, and Toth (2007).
This method however requires the introduction of a chemical
potential and its practical use is severely limited due to the
sign problem.

B. The role of operators

As seen in Sec. III.A, the choice of operators determines
the relative strength of the coupling to different states with the
same quantum numbers and therefore potentially has a large
influence on the quality of signal. We first consider the case of
the simple method of improving a local operator by summing
it over either a source or a sink time slice to obtain a
projection to zero spatial momentum.

When writing the hadron correlation function (115) in
terms of Wick contractions of the quark fields, it is often
possible to use the Eqs. (112) or (113) in order to obtain an
expression where the quark field sources are restricted to time
slice 0 [an explicit example for the flavor nonsinglet pseudo-
scalar propagator was given in Eq. (126)]. In these cases, if
one needs only to do the momentum projection at the sink
time slice t, it is a trivial summation. Performing the momen-
tum zero projection on the source side in principle requires
computing the inverse of the fermion matrix for every point in
the source time slice t ¼ 0. Since this would involve a
prohibitively large number of fermion matrix inversions, a
range of methods has been developed to deal with this prob-
lem and related ones where one needs information of the
fermion propagator from every source point to every sink
point on the lattice (Bitar et al., 1989; Bernardson, McCarty,
and Thron, 1994; Kuramashi et al., 1993; Dong and Liu,
1994; Eicker et al., 1996; de Divitiis et al., 1996; Michael
and Peisa, 1998; Wilcox, 1999; McNeile and Michael, 2001;
Neff et al., 2001; DeGrand and Heller, 2002; Duncan and
Eichten, 2002; Bali et al., 2005; Foley et al., 2005; Boucaud
et al., 2008; Bali, Collins, and Schafer, 2010). These meth-
ods, commonly known as all-to-all techniques, are based on
either stochastic estimates or eigenmode approximations of
the full propagator or a combination of both.

The basic idea behind a stochastic estimate of the all-to-all
propagator is to compute the inverse of the fermion matrix on
a number of source vectors �ðiÞ:

�ðiÞ
U ¼ M�1

U �ðiÞ: (134)

Provided that the �ðiÞ fulfill the conditionX
i

�ðiÞyðyÞ�ðiÞðxÞ ¼ �x;y1; (135)

one can obtain the propagator between any two lattice points
on a fixed gauge background U as

SUðy; xÞ ¼
X
i

�ðiÞyðyÞ�ðiÞ
U ðxÞ: (136)

It is often useful to restrict the vectors �ðiÞ to a subspace of the
lattice, i.e., to modify the Eq. (135) so that it is zero outside a
certain subspace. If one wants to obtain full all-to-all propa-
gators it is then of course necessary to have more than one set
of source vectors �ðiÞ so that all sets together cover the entire
space desired. This method is sometimes referred to as
partitioning or dilution and commonly used subspaces in-
clude individual spin components and individual time slices.

We are interested in the case where the source vectors �ðiÞ
are random vectors and the Eq. (135) is fulfilled stochasti-
cally. Examples of sets of stochastic source vectors that fulfill
Eq. (135) are Z2 noise where every component of �ðiÞ is
randomly chosen to be either of 	1, or Uð1Þ noise where
every element is a complex random number with unit modu-
lus. The question of how many source vectors are necessary
to get an optimal signal for a specific observable at minimum
computational cost has to be answered numerically. It is
important to note, however, that since one is usually not
interested in the propagator on a specific gauge configuration
U and the path integral sum commutes with the sum over all
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source vectors �ðiÞ, the optimal number of sources per con-
figuration might even turn out to be 1.

Eigenmode approximations generally assume that the in-
verse of the fermion operator is well approximated by re-
stricting it to a subspace that is spanned by a number of its
lowest eigenmodes. These eigenmodes are then computed
and an approximation of the full matrix inverse can be found.
This truncation represents an uncontrolled approximation, but
it may easily be supplemented with a stochastic estimate of
the effect of the higher eigenmodes. One needs only to project
out the components of the original source vector that lie in the
space of low eigenmodes, treat them exactly, and use sto-
chastic estimators on the orthogonal compliment.

Until now we have discussed only (sums of) local opera-
tors, i.e., operators where all the quarks originate from a
single lattice point. Hadrons, however, are extended objects
with quark distributions that have finite widths and different
shapes. One strategy to improve the overlap between an
interpolating field operator and a specific hadronic state
therefore consists of trying to model its quark distribution.
One possibility that is often used is to replace the quark point
sources �ðt; ~xÞ by a sum over quark sources at neighboring
sites. In its simplest form, one can take

�0ðt; ~yÞ ¼ X
~x

Gð ~y; ~xÞ�ðt; ~xÞ; (137)

where Gð ~y; ~xÞ is the smearing kernel that determines the
relative weight of the source points. A computationally con-
venient restriction of the smearing kernel is the factorization
ansatz (Bacilieri et al., 1988; DeGrand and Loft, 1991)

Gð ~y; ~xÞ ¼ gð ~xÞgð ~yÞ; (138)

where effectively the quark fields are independently smeared.
Typical choices for the form of gð ~xÞ include a wall (Bitar
et al., 1990a), a hard sphere or box (Bacilieri et al., 1988), a
Gaussian (DeGrand, 1998; DeGrand, Hasenfratz, and
Kovacs, 1998), or a radial exponential (Ali Khan et al.,
2002) of different size. Note that in general �0ðt; ~yÞ in
Eq. (137) is not gauge invariant and one therefore needs to
work in a fixed gauge on the source time slice. A more
sophisticated method of smearing the quark source that is
gauge invariant is known as Wuppertal smearing (or gauge
invariant Gaussian smearing) (Gusken, 1990), where a cova-
riant Laplacian is added to the unit operator and repeatedly
applied N times

G ¼
�
1þX3

i¼1

�ðVi þ Vy
i Þ
�
N
: (139)

The one-hop term Vi is given by Eq. (15) and the smearing
parameters � and N determine the form and width of the
source that is approximately Gaussian for large N on a trivial
gauge field.12 In order to suppress gauge noise, one can
use smeared links (see Sec. II.E.2) for the gauge field in
Eq. (139). A variant of this method is the Laplace-
Heaviside (LapH) smearing (Peardon et al., 2009), where

the smearing kernel is defined as a Heaviside step function on
the lowest eigenmodes of the covariant Laplacian. This
method requires the explicit inversion of the fermion matrix
on a number of lowest eigenmodes of the covariant Laplacian
that grows with the volume of the system. This growth with
the volume of the number of required fermion matrix inver-
sions can be countered by not computing propagators on all
eigenmodes exactly but instead using stochastic techniques,
similar to the ones described above, in the eigenspace of low
modes to estimate them (Morningstar et al., 2010, 2011).

Replacing the original quark sources in local hadron op-
erators such as Eqs. (123), (124), (130), and (131) with
smeared ones usually improves the overlap with the desired
state. Especially in the case of excited states, it is often useful
to go further. When trying to find an operator that has
maximal overlap with a certain state, one can use its quantum
numbers and expected wave function to model a lattice
operator. The two quantum numbers of interest are spin and
parity. Parity is not broken by the lattice regularization and
therefore one can construct operators that couple only to
states of a given parity exclusively. Note however that the
backward contribution in Eq. (120) will be of opposite parity
from the forward one. For interpolating operators with an odd
number of quark fields, it is possible to use the relative sign
flip in the backward amplitude Ab Eq. (121) between peri-
odic and antiperiodic boundary conditions to eliminate these
(Sasaki, Blum, and Ohta, 2002; Csikor et al., 2003;
Leinweber et al., 2005; Sasaki and Sasaki, 2005).

Spin, on the other hand, is the quantum number corre-
sponding to the continuum rotational symmetry group SU(2)
that is broken down to the symmetry group of cubic lattice
rotations. This group, the octahedral group O, has been
studied by Johnson (1982) and it was found that there are
five irreducible representations corresponding to integer spin
and three corresponding to half-integer spin, all of them
containing a whole tower of partially overlapping continuum
spin representations. One can construct lattice operators that
transform irreducibly under the octahedral group O (Basak
et al., 2005a, 2005b, 2007) and are especially beneficial for
the extraction of highly excited baryon resonances. In addi-
tion to the quark source smearing, these operators generally
involve quark sources that can each be covariantly displaced
from a reference point by one lattice unit in any direction. The
general form of such a baryon operator is an appropriate
linear combination of terms of the form

B ¼ abcðD0
i�ÞaðD0

j�ÞbðD0
k�Þc; (140)

where abc is color and we have suppressed spin and flavor
indices. The operators D0

i are gauge covariant displacement

operators by one step in direction i (or the unit operator if i ¼
0). For more detailed reviews on the construction of operators
for excited state baryon spectroscopy see, e.g., Leinweber
et al. (2005), Basak et al. (2006), and Lang (2008).

A different approach of finding an operator that has opti-
mal overlap with the ground state was developed13 by Babich
et al. (2006, 2007). They considered at the sink side a general
meson operator of the form

12See Allton et al. (1993), Lacock et al. (1995), and Burch et al.

(2004) for different constructions of nonlocal gauge invariant

operators.

13See Draper and McNeile (1994) for a similar approach for

heavy-light systems.
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Mðt; rÞ ¼ ��1ðt; ~xÞ��2ðt; ~yÞ�ðj ~y� ~xj � rÞ (141)

and studied the profile in r of the resulting correlation func-
tion as a function of t. Once a plateau is reached, the profile
was found to settle into an asymptotic form 	ðrÞ which can
then be used to construct an optimal sink operator

OðtÞ ¼ X
r

	ðrÞMðt; rÞ: (142)

A special problem occurs when one tries to extract the
energy level of a scattering state or a bound state of hadrons
with a nonminimal number of valence quarks. As repeatedly
noted in the literature [see, e.g., Bulava et al. (2010) and
Engel et al. (2010)], the coupling of single hadron operators
to multihadron states is extremely small. A prominent ex-
ample is the � resonance which has a �� � scattering state
as a ground state in infinite volume. A closely related phe-
nomenon occurs in heavy quark physics where string break-
ing between static quarks can be observed only when one
explicitly introduces a ‘‘broken string’’ operator that consists
of two separated static-light mesons (Knechtli and Sommer,
1998; Bali et al., 2005).

Both phenomena suggest that it is difficult to produce a
pair of appropriate sea quarks from the vacuum that allows
for the propagation of an intermediate multihadron state.
Intuitively this is understandable as the occurrence of large
sea quark loops is suppressed in the path integral (24).

For spectroscopy in channels where there is a scattering
state below the relevant resonance or for the spectroscopy of
exotic objects that consist of a nonminimal number of valence
quarks, such as tetraquarks or pentaquarks, one therefore
needs to use appropriate interpolating operators that correctly
reflect the valence quark structure of the desired object.

When constructing interpolating operators one usually
tries to avoid situations where a quark line may start and
terminate at the same time slice, since these operators are
known to be much noisier than operators where all the quark
lines run from the source to the sink time slice. In some cases,
however, e.g., for isoscalar mesons or generally for the multi-
hadron operators mentioned above, quark propagators that
attach to one time slice with both ends are unavoidable. As an
example of how a combination of the above mentioned
techniques can lead to a decent signal in these notoriously

difficult channels, Fig. 9 displays one current determination
of the correlation function and mass plateau in the � channel
that was obtained using the stochastic LapH technique de-
scribed above. [For similar results with a different mix of
techniques, see also Alexandrou et al. (2010)].

Finally, there are also suggestions to completely avoid the
problem of computing disconnected diagrams by finding
relations between them and disconnected diagrams in par-
tially quenched chiral perturbation theory (Della Morte and
Juttner, 2010).

C. Extracting multiple energy levels

In Sec. III.A we saw how to extract the ground state of a
channel by going to asymptotic Euclidean time. In order to
extract excited state masses, one can in principle fit the
correlation function to a multiexponential form

Gðt; 0Þ ¼ X
n

Ane
�Mnt; (143)

where we ignored backward contributions. A fit of the form
(143) with free parameters An and Mn cannot typically be
stabilized numerically for more than two states and even
extracting reliable first excited state masses with this tech-
nique is challenging.

One can overcome these problem by using a variational
method (Michael, 1985; Luscher and Wolff, 1990; Blossier
et al., 2009). The basic idea is to expand the basis to include
N initial and final state operators Oik and Ofk with the same

quantum numbers that ideally couple to different energy
states preferentially and then construct the complete cross-
correlator matrix

Glmðt; 0Þ ¼ h0jOfl ðtÞOy
im
ð0Þj0i: (144)

One can then define a matrix Mðt; t0Þ from
Gðt; 0Þ ¼ Mðt; t0ÞGðt0; 0Þ (145)

and analyze its eigenvalues �nðt; t0Þ and eigenvectors
vnðt; t0Þ. At large Euclidean times t and t0 the eigenbasis of
the matrix M will then align with the eigenbasis of the
Hamiltonian and the eigenvectors will behave as
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FIG. 9 (color online). Correlation function (left panel) and effective mass (right panel) in the � channel using a stochastic LapH source.

Connected (fwd) and in the left panel disconnected (smt) contributions are plotted additionally. From Morningstar et al., 2011, with

permission of K. J. Juge.
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�n ¼ e�Enðt�t0Þ (146)

from which one can extract an effective mass for each of the
energy levels similar to Eq. (122). The energies of a number
of lowest lying states in a given channel can thus be deter-
mined provided that the operator basis chosen has sufficient
overlap with all of these states and the quality of the data is
good enough to determine all the elements of the transfer
matrix with sufficient accuracy.

A robust variant of the variational method was suggested
by Mahbub et al. (2009a).14 Instead of extracting the energies
from the eigenvalues directly one can use the elements of the
eigenbasis to project out effective single state components
from the matrix valued propagator and analyze them with
standard single channel methods.

Figure 10 displays masses of the ground state and the first
three excited states of the nucleon channel extracted with the
variational projection method.

IV. PHYSICAL PREDICTIONS

Having extracted hadron masses from nonperturbative
lattice QCD calculations, we now need to turn them into
physical predictions. QCD, and also lattice QCD, is a theory
without any intrinsic scale; it is formulated in terms of
dimensionless quantities entirely. In order to extract dimen-
sionful quantities such as hadron masses from it, we need to
supply it with a scale. We can do this in general by picking a
scale setting observable, a quantity that is dimensionful in the
continuum theory. In the lattice theory we can then measure
the appropriate dimensionless combination of any target ob-
servable we wish to extract with the scale setting observable
and get a dimensionful prediction for the target observable by
fixing the scale setting observable to its dimensionful input

value. One such target observable would be the lattice spacing

a itself.
The scale setting procedure outlined above is not entirely

sufficient for making physical predictions. Once we have

supplied lattice QCD with a scale we still need to fix its

remaining parameters, the bare quark masses. For Nf non-

degenerate quark flavors we can generally do so by fixing Nf

linearly independent dimensionless observables in the lattice
theory to their desired input value. What one would ideally

like to do then is to fix the Nf þ 1 dimensionless bare

parameters of the lattice theory, the bare quark masses and

the gauge coupling, such that the Nf dimensionless observ-

ables on the lattice assume their physical values exactly and
the lattice spacing a is of the desired size. One could then

measure any observable on the lattice for a range of lattice

spacings a and, with the appropriate functional form that is

given by the discretization effects of the specific action used,
extrapolate them into the continuum a ¼ 0.

There are a few obstacles toward implementing this ideal

procedure in nonperturbative lattice calculations. The first

one is that one cannot simply go to the physical point by

setting the bare coupling and input quark masses in a lattice
calculation to their physically observed values since these

physical values cannot directly be measured in experiment.

Quantities that are accessible experimentally, such as hadron

masses or decay widths, have relations to the bare parameters
that need to be determined on the lattice themselves. One is

therefore left with the choice of either tuning the bare pa-

rameters or computing both target observables and those

used for scale setting and parameter fixing at various un-
physical points followed by an interpolation to the physical

point.
When trying to implement either of the two procedures,

tuning or interpolating to the physical point, one faces the

more technical problem that it is difficult to reach the physical
point for light quarks. As discussed in Sec. II.D there is a

variety of different fermion discretizations but each one has a

specific problem when making the quark mass light. In the

case of Wilson fermions one is faced with exceptional con-
figurations: staggered and twisted mass fermions have the

problem of flavor and taste splitting and chiral fermions are

simply expensive in terms of computer time needed. None of

these problems is insurmountable but they turn out to be

sufficiently severe so that an extrapolation in the light quark
mass to the physical point is still the rule rather than the

exception in hadron spectroscopy calculations.
A third problem that is less severe in practice but still has to

be considered is that nature is not QCD alone, even for the
light hadron spectrum. Quarks are electrically charged and

there are QED corrections to hadron masses. Similarly, iso-

spin symmetry is usually assumed in lattice calculations but

broken in nature. Both of these effects are relatively small as

can be seen from the isospin splitting of the experimentally
observed hadron spectrum, but they still need to be

considered.
We start in Sec. IV.A by reviewing the problem of reaching

the physical point. In Sec. IV.B we discuss how to remove the
cutoff, i.e., how to reach the continuum limit for the various

lattice discretizations. Finally, in Sec. IV.C, we consider

finite-volume corrections that are especially relevant for

FIG. 10 (color online). Plot of the masses of the ground and

excited states in the nucleon channel. The extraction has been

performed by fitting single state correlators that were obtained by

projection of a 4� 4 matrix correlator onto the elements of the

eigenbasis of the transfer matrix Mðt; t0Þ for different t and t0. From
Mahbub et al., 2010b, with permission of D. Leinweber.

14See Draper, McNeile, and Nenkov (1995) for a similar method

for heavy-light systems.
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resonant states and we conclude with the discussion of sub-
leading effects from QED and isospin breaking in Sec. IV.D.

A. Reaching the physical point

Having extracted hadron masses from simulations we now

need to turn them into physical predictions. As discussed in
the beginning of Sec. IV, we need to go or extrapolate to the
physical point and we need to set the scale.

On a technical level tuning to the physical or any other
target point is achieved through tuning the bare parameters of

the lattice theory, the coupling � and the bare quark masses in
the lattice Lagrangian. Defining the physical or any other
target point, on the other hand, is generally done by compar-
ing dimensionless combinations of continuum observables

with the corresponding lattice observables and the scale can
be set by comparing any one dimensionful continuum ob-
servable. Provided that all effects beyond QCD with the given

number of flavors are correctly accounted for and provided
also that the chosen lattice discretization of QCD has the
correct continuum limit, all possible choices of finding the
physical point are equivalent in the continuum limit. If any of

the above assumptions is violated, such as is the case, e.g., in
quenched QCD, continuum predictions are not unique and
depend on the specific choice of defining the physical point.

It is usual to treat the two light quark flavors u and d as
degenerate and to include isospin breaking as well as elec-

tromagnetic effects as corrections. One can then define a light
quark mass m̂ ¼ ðmu þmdÞ=2. In order to tune to the correct
light quark mass one combination that is often used is the
ratio of the pion mass, the square of which is proportional to

the light quark mass at leading order, to an observable that
depends less on the light quark mass. In early quenched work
on lattice hadron spectroscopy the QCD string tension was
often used for this purpose (Creutz, 1980a; Hamber and

Parisi, 1981; Marinari, Parisi, and Rebbi, 1981a; Pietarinen,
1981; Weingarten, 1982; Bernard, Draper, and Olynyk, 1983;
Creutz, Jacobs, and Rebbi, 1983) as was M� later on (Fucito

et al., 1982) or M� (Lipps et al., 1983). In full QCD these

choices are not optimal. The vector meson � is a broad
resonance and not the ground state in its channel, the singlet
	 contains disconnected diagrams, and the string tension is ill
defined with dynamical quarks. Even in the quenched ap-

proximation any resonant state mass is not an ideal choice for
a scale setting observable as the connection of the measured
ground state mass to the experimentally measured mass

above decay threshold is not obvious. Quantities that are
frequently used today are either baryon masses that are stable
in QCD (MN , M	, and M�) (Durr et al., 2008; Alexandrou
et al., 2009; Aoki et al., 2009, 2010; Lin et al., 2009; Brandt

et al., 2010; Bulava et al., 2010; Engel et al., 2010), average
masses of baryon multiplets (Bietenholz et al., 2010b), or
distance measures (r0, r1) in the heavy quark potential
(Sommer, 1994) that are in turn determined from 
 spectros-

copy (Bernard et al., 2001; Bazavov et al., 2010a; Davies
et al., 2010). The use of matrix elements, such as the pseu-
doscalar decay constants, although common in other areas

(Giusti, Hoelbling, and Rebbi, 2001; Blossier et al., 2009;
Noaki et al., 2009; Borsanyi et al., 2010) is less often seen in
lattice hadron spectroscopy.

At the physical point the scale can then be set by compar-
ing a dimensionful continuum observable with the corre-
sponding lattice observable. At any other nonphysical point
the scale setting is conceptually ill defined. It is nonetheless
usual either to use the scale defined at the physical point for
all theories with the same coupling � and arbitrary quark
masses (mass independent scale setting) or to obtain the scale
by comparing a dimensionful continuum observable with its
lattice counterpart at any nonphysical point (mass dependent
scale setting).

In computations with a dynamical strange quark its mass
also has to be set. In analogy to the light quark case, this is
usually done via the kaon mass, the combination M2

K �
M2

�=2, which is proportional to the strange quark mass to
leading order, or the mass of the fictitious �s, the pseudosca-
lar meson that is composed of two strange valence quarks.

As for the specific functional form of an extrapolation or
interpolation to the physical point the most straightforward
form is one that is linear in the quark mass. Since M2

� / m̂
and �M2

K ¼ M2
K �M2

�=2 / ms to leading order (Gell-Mann,

Oakes, and Renner, 1968), one can fit any other hadron mass
MX to a form

MX ¼ aþ bM2
� þ c �M2

K: (147)

Going beyond this leading order one can perform system-
atic expansions around either a point with two or three
massless quark flavors or a general, massive point. For the
first case, chiral perturbation theory (�PT), an effective field
theory based upon the chiral symmetry pattern of QCD has
been developed (Weinberg, 1979; Gasser and Leutwyler,
1984, 1985). It provides an asymptotic expansion around
either the two- or three-flavor massless point. As it is built
around the assumption of spontaneous chiral symmetry
breaking in the massless theory, it is particularly suited for
treating properties of the pseudo-Goldstone bosons of this
symmetry, i.e., the pions and, to a somewhat lesser extent, the
kaons.

For masses other than the pseudoscalars, �PT generically
predicts a leading nonanalytic term of the form M3

�

(Langacker and Pagels, 1974). More formally, one can in-
clude baryons in �PT (Gasser, Sainio, and Svarc, 1988), but
the resulting series is only slowly converging. An alternative
formulation with better convergence properties is heavy
baryon �PT (Jenkins and Manohar, 1991; Bernard et al.,
1992) which treats baryons as nonrelativistic particles and
currently is most commonly used to fit lattice baryon data. An
extension of heavy baryon �PT for staggered fermions was
developed by Bailey (2008). Recently, the covariant approach
(Becher and Leutwyler, 1999) that promises better conver-
gence behavior for heavier pion masses was revived (Dorati,
Gail, and Hemmert, 2008; Durr et al., 2010, 2012) and used
for chiral fits of the baryon octet.

Partially quenched heavy baryon �PT is an extension of
heavy baryon �PT, where the sea and valence quark masses
may have different values (Labrenz and Sharpe, 1996; Beane
and Savage, 2002; Chen and Savage, 2002; Savage, 2002). It
is useful to describe lattice data with multiple valence quark
masses for each sea quark mass and for describing ‘‘hybrid’’
calculations where the sea quarks are regularized differently
than the valence quarks. This technique is sometimes
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employed to keep the computational costs of dynamical
ensembles small by using a fast fermion discretization such
as the staggered one while having the advantages of a more
computationally demanding regularization, such as domain
wall fermions or overlap fermions, in the valence sector.

An alternative to the chiral expansion for describing the
pion mass dependence of any hadronic observable is a Taylor
expansion around a finite pion mass. In contrast to the chiral
expansion, the Taylor expansion is performed around a non-
singular point and has a finite radius of convergence.
Typically this convergence radius is given by the distance
of the expansion point M�0 to the chiral limit. Usually, the
expansion is performed in powers of the pseudoscalar mass
square M2

� �M2
�0

resulting in

MX ¼ aþ bðM2
� �M2

�0
Þ þ c �M2

K þ dðM2
� �M2

�0
Þ2;
(148)

but the chiral behavior of baryon masses has also been fairly
successfully described, at least within the statistical accuracy
of current data sets, by a linear expansion in M� (Walker-
Loud et al., 2009). Optimal convergence is achieved in
principle by placing the expansion point at the middle of
the interval spanned by all simulation points and the physical
point (Durr et al., 2008; Lellouch, 2009). Note, however, that
from a practical perspective the choice of the expansion point
M2

�0
does not play a role in the fit itself as a redefinition of

M2
�0

may be absorbed by redefining the lower order fit

coefficients a and b of Eq. (148).
One may also try to fit ratios (Durr et al., 2008) or

differences (Bietenholz et al., 2010b) of baryon masses in
order to cancel common contributions and obtain a more
regular chiral behavior. Further it is possible to study SU(3)
breaking effects in baryon multiplets in the 1=Nc expansion
(Jenkins et al., 2010), which offers an alternative way of
describing the chiral behavior of baryon mass multiplets.

An alternative to extrapolating or interpolating results to
the physical point is tuning the bare parameters of the lattice
theory such that the physical point is directly reached, i.e.,
that the dimensionless combinations of continuum variables
mentioned above assume their physical value on the lattice.
While recent advances in lattice discretizations, algorithms,
and computer technology have made such an approach pos-
sible in principle, the computational overhead that is associ-
ated with the parameter tuning is still large and the physical
point is generally only reached within the precision of the
tuning procedure.

In order to avoid these problems, reweighting techniques
were recently applied to this problem. In Aoki et al. (2010),
the PACS-CS Collaboration reweighted one ensemble
to the physical point directly while the RBC-UKQCD
Collaboration (Aoki et al., 2011) followed a mixed strategy
where the ensembles were first reweighted to the physical
strange quark mass and a subsequent extrapolation to the
physical pion mass was performed.

The general idea behind reweighting (Ferrenberg and
Swendsen, 1988) is to reuse an ensemble produced with a
certain set of parameters p0 ¼ f�0; mi0g to obtain predictions
with a different set p ¼ f�;mig. As discussed in Sec. II.C,
gauge configurations U 2 U with the original set of parame-
ters p0 in the action are produced according to the weight

wðp0;UÞ / Y
i

detMðmi0;UÞe�SGð�0;UÞ; (149)

such that expectation values of observables (24) may be
formed by just summing them over gauge configurations

hOip0
¼

P
U2U

OðUÞP
U2U

1
: (150)

For a new set of parameters p, one may in principle circum-
vent the generation of a new ensemble with the weight

wðp;UÞ / Y
i

detMðmi;UÞe�SGð�;UÞ (151)

by reusing the old ensemble generated with the weight
wðp0;UÞ from Eq. (149) and putting the ratio of weights
into the observable

hOip ¼
P

U2U
OðUÞwðp;UÞ=wðp0;UÞP

U2U
wðp;UÞ=wðp0;UÞ : (152)

Although Eq. (152) would in principle allow for a com-
bined reweighting in both the coupling and the masses, a
reweighting was carried out in the quark masses only by Aoki
et al. (2010, 2011). For this purpose it is necessary to compute
ratios of fermion determinants at different quark masses. As it
is prohibitively expensive to compute them exactly, stochastic
methods were applied.

Of course the reweighting method has its limitations. As
one can see from Eq. (152), reweighting exponentially en-
hances or suppresses the weight of individual configurations
in an ensemble with an exponent that is extrinsic, i.e., con-
tains an explicit volume factor. As it is crucial for any
observable to be computed on the relevant subset of configu-
rations for the specific parameters used, these exponential
factors should not be so large as to allow for one configuration
to dominate the expectation value entirely. This in turn limits
the allowed range in parameter space that one may reach
safely with reweighting depending on the original set of
parameters p0 and the volume. Within this safe range, the
relative suppression of some configurations is that of effec-
tively decreasing the statistics. As the relative weight factors
are explicitly computed (Csikor et al., 2004), one has a good
handle on these effects. Note also that one could in principle
bypass some of the negative effects with a multihistogram
technique (Ferrenberg and Swendsen, 1989).

Figure 11 provides an overview of currently used lattice
QCD ensembles with respect to their position in theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K �M2
�

q
vs M� plane. Note that in leading order of the

chiral expansion the axes are proportional to
ffiffiffiffi
m̂

p
and

ffiffiffiffiffiffi
ms

p
.

The location of the physical point is also indicated. As Fig. 11
indicates, the physical point has already been reached.

B. Continuum extrapolation

The removal of the cutoff, also known as continuum
extrapolation, is an unavoidable part of any lattice calculation
that wants to make a statement about the underlying funda-
mental continuum theory. The severity of the continuum
extrapolation, however, depends strongly on both the action
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used and the combination of scale setting observable and

measured observable.
As discussed in Sec. II.E, the simplest gluonic action

already has cutoff effects of Oða2Þ that can be improved to

at least Oðg2a2Þ through various techniques. In contrast, the

scaling behavior of the various fermion actions is typically

not as good. Formally, staggered fermions and twisted mass

fermions at maximal twist as well as exactly chiral fermions

show Oða2Þ continuum scaling while Wilson-type fermions

generically start with OðaÞ scaling. Only improved staggered

fermions such as asqtad have a leading scaling behavior of

Oðg2a2Þ. There are several caveats to this statement however.
For twisted mass fermions, Oða2Þ scaling is realized at

maximal renormalized twist (Aoki and Bar, 2004; Frezzotti

and Rossi, 2004a), which requires the tuning of one addi-

tional parameter. This tuning is routinely done as part of any

twisted mass calculation [see, e.g., Baron et al. (2010a)].

Since this tuning has a typical accuracy on the few percent

level, it is expected that the Oða2Þ terms are numerically

dominant. In addition, twisted mass calculations often em-

ploy a doublet of valence fermions with an opposite Wilson

parameter to cancel remnant OðaÞ effects.
Similarly Oða2Þ scaling is only strictly realized for chirally

symmetric fermions if the chiral symmetry is exact. Fermion

formulations that incorporate an inexact chiral symmetry,

such as domain wall fermions at a finite fifth dimension,

formally have a remaining Oðg2naÞ scaling behavior. The

smallness of the residual mass and other numerical evidence

(Aoki et al., 2011), however, suggests that, similar to the

twisted mass case, the Oða2Þ term is dominant although it is

formally subleading.
Wilson-type fermions, on the other hand, are typically

Symanzik improved by the addition of a Sheikholeslami-

Wohlert (clover) term (102). At tree level (cSW ¼ 1), this
results in an Oðg2aÞ scaling of on-shell observables while

with a suitable nonperturbative tuning one can in principle

obtain Oða2Þ scaling. In addition, there is numerical evidence

(Hoffmann, Hasenfratz, and Schaefer, 2007; Durr et al.,
2009, 2011c; Kurth et al., 2010) that the scaling behavior
of clover fermions is substantially improved by gauge link
smearing, which is commonly used today.

Apart from the action used, the continuum scaling is also
largely dependent on the observables considered. As discussed
in Sec. IV.A, all observables in lattice QCD are dimensionless
quantities and in order to extract dimensionful quantities such as
baryonmasses a scale setting observable is needed. The scaling
is of course affected by the choice of scale setting variable. For
baryons and vector mesons good scaling is observed when
choosing a stable light baryon mass as the scale setting observ-
able (Durr et al., 2008; Alexandrou et al., 2009).

Some care has to be taken about the size of the scaling
window. While generally scaling is not expected to set in for
lattice spacings coarser than a� 0:1–0:15 fm, it has been
observed (Del Debbio, Panagopoulos, and Vicari, 2002;
Antonio et al., 2008; Bazavov et al., 2010c; Luscher,
2010; Schaefer, Sommer, and Virotta, 2011) that for fine
lattices the autocorrelation time of the topological charge is
rapidly growing. It therefore seems to be prohibitively ex-
pensive with current algorithms to obtain a sufficiently large
and statistically independent ensemble of configurations for
lattice spacings finer than a� 0:05 fm.

Generally, for the observables considered in this review
continuum scaling is rather mild and not a leading source of
systematic error. Figure 12 gives an overview of the lattice
spacing a vs M� for currently used lattice ensembles.

C. Finite-volume effects

Besides reaching the physical point and removing the cut-
off, the third step that generically has to be taken in order to
make physical predictions is the extrapolation to infinite
volume. As is the case for the continuum limit, the infinite
volume limit can never be reached and an extrapolation in
the volume is in principle unavoidable. For most observables,
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FIG. 11 (color online). The landscape of recent dynamical fermion simulations projected to the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K �M2
�

q
vsM� plane. The cross marks

the physical point while shaded areas with increasingly light shade indicate physically more desirable regions of parameter space. Data points

are taken from the following references: ETMC’10ð2þ 1þ 1Þ (Baron et al., 2010a); MILC’10 (Bazavov et al., 2010a); QCDSF-

UKQCD’10 (Bietenholz et al., 2010a); BMWc’08 (Durr et al., 2008); BMWc’10 (Durr et al., 2011c); PACS-CS’09 (Aoki et al., 2009,

2010); RBC-UKQCD’10 (Mawhinney, 2010; Aoki et al., 2011); JLQCD/TWQCD’09 (Noaki et al., 2009); and HSC’10 (Lin et al., 2009).

All ensembles are from Nf ¼ 2þ 1 simulations except explicitly noted otherwise. For staggered, respectively, twisted mass ensembles, the

Goldstone, respectively, charged pion masses are plotted.

Zoltan Fodor and Christian Hoelbling: Light hadron masses from lattice QCD 475

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



however, the leading finite-volume corrections are exponen-
tially small in the box size and not polynomially and can
therefore be made sufficiently small in practice by increasing
the volume (Luscher, 1986a). These finite-volume effects are
discussed in Sec. IV.C.1. Resonant states, on the other hand,
are embedded into a continuum of scattering states at infinite
volume. In finite volume these levels become discrete and
carry a strong volume dependence. Consequently the leading
finite-volume effects on resonant states are of a different
origin and are discussed separately in Sec. IV.C.2.

Finally we mention that fixing the global topological
charge in QCD is a restriction that becomes irrelevant in
the infinite volume limit, too. For this reason lattice QCD
calculations in a fixed topological sector may be viewed as
introducing an additional third type of finite-volume correc-
tions (Brower et al., 2003; Aoki et al., 2007). Since currently
this technique has not been used in any work on light hadron
spectroscopy, we will not discuss it any further.

1. Finite-volume effects for stable particles

In an interacting field theory, the properties of a particle in
a finite box are affected by mirror charge effects. For hadron
spectroscopy this entails that all hadron masses in a finite box
deviate from their infinite volume value with a leading
contribution originating from the pion warping around one
spatial lattice dimension.15 A generic expectation for the
finite-volume correction to any hadron mass M in an L3 � T
box is therefore16

1� ML

M1
/ e�M�L: (153)

As Luscher (1986a) demonstrated, there is a relation be-
tween the Euclidean finite-volume mass correction of a had-
ron P and the forward �P scattering amplitude in Minkowski
space. Concentrating on the case where a single propagator
receives finite-volume corrections, he obtained an explicit
expression for the leading term in an expansion for asymptoti-
cally large L. Using an alternative approach, Gasser and
Leutwyler (1987a, 1987b, 1988) incorporated finite-volume
effects into chiral perturbation theory. They demonstrated
that the finite volume affects only the propagators and that
it can be accounted for by simply replacing the momentum
integration by a summation over the allowed discrete mo-
menta pi ¼ 2�ni=L.

Expanding the relation of Luscher (1986a) to include
subleading terms in asymptotic L and using �PT input for
the scattering amplitudes, Colangelo and Durr (2004) and
Colangelo, Durr, and Haefeli (2005) combined the two ap-
proaches mentioned above for the case of pseudoscalar me-
sons. A similar expansion for baryons was also pioneered
(Colangelo, Fuhrer, and Lanz, 2010).

From a practical point of view these results imply that there
is a safe asymptotic region of relatively large lattice volumes
where these finite size effects are exponentially small and in
addition can be systematically corrected for. As a rule of
thumb for lattice computations with pion masses above
�300 MeV, lattices withM�L > 4 are considered safe while
those with m�L< 3 are widely affected by finite-volume
corrections. For a more quantitative statement, Fig. 13 shows
a plot of box size L vs pion mass M� where regions are
identified that according to Colangelo, Durr, and Haefeli
(2005) imply the finite-volume effect on the pion mass to
be <1%, <0:3%, and <0:1%, respectively. On top of these
regions parameters of current or recent lattice computations
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FIG. 12 (color online). The landscape of recent dynamical fermion simulations projected to the M� vs a plane. The cross marks the

physical point while shaded areas with increasingly light shade indicate physically more desirable regions of parameter space. Data points are

taken from the following references: ETMC’09(2) (Blossier et al., 2009); ETMC’10ð2þ 1þ 1Þ (Baron et al., 2010a); MILC’10 (Bazavov

et al., 2010a); QCDSF’10(2) (Schierholz, 2010); QCDSF-UKQCD’10 (Bietenholz et al., 2010a); BMWc’08 (Durr et al., 2008); BMWc’10

(Durr et al., 2011c); PACS-CS’09 (Aoki et al., 2009, 2010); RBC-UKQCD’10 (Mawhinney, 2010; Aoki et al., 2011); JLQCD/TWQCD’09

(Noaki et al., 2009); HSC’10 (Lin et al., 2009); BGR’10(2) (Engel et al., 2010); and CLS’10(2) (Brandt et al., 2010). All ensembles are

from Nf ¼ 2þ 1 simulations except explicitly noted otherwise. For staggered, respectively, twisted mass ensembles, the Goldstone,

respectively, charged pion masses are plotted.

15Alternatively in the momentum space view these effects may be

considered as consequences of the discreteness of the momenta in a

finite box.
16For the case of smaller volumes, see also Fukugita et al. (1992).

They argue that the dominant (polynomial) finite size effect is due

to the truncation of a hadrons wave function.
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are superimposed. As one can see current lattices are typi-
cally large enough to have percent level or smaller finite-
volume corrections on the pion mass. Note, however, that
corrections to baryon masses can be substantially larger
(Colangelo, Fuhrer, and Lanz, 2010).

2. Finite-volume effects for unstable particles

Finite-volume corrections are not always just exponen-
tially small at large L as discussed in Sec. IV.C.1. In the
case where one is interested in extracting the mass of a
resonant state that in infinite volume is embedded into a
continuous spectrum of scattering states finite-volume effects
are more complicated. For illustration we start by considering
the hypothetical case where there is no coupling between the
resonance (which we refer to as a ‘‘heavy state’’ in this
paragraph) and the scattering states. In a finite box of size
L, the spectrum in the center of mass frame consists of two
particle states with energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 þ ~k2
q

; (154)

where ki ¼ 2ni�=L andM1,M2 are the finite-volume masses
of the lighter particles (cf. Sec. IV.C.1) and, in addition, of the
state of the heavy particle with finite-volume massMX . As we
increase L, the energy of any one of the two particle states
decreases and eventually becomes smaller than the energy
MX of X. An analogous phenomenon can occur when we fix L
but reduce the quark mass since the energy of the two light
particles changes more than MX. In the presence of interac-
tions, this level crossing disappears and, due to the mixing of
the heavy state and the scattering state, an avoided level
crossing phenomenon is observed. Such mass shifts due to
avoided level crossing can distort the chiral extrapolation of
hadron masses to the physical pion mass.

The literature (Luscher, 1986b, 1991a, 1991b;
Rummukainen and Gottlieb, 1995; Durr et al., 2008) pro-
vides a conceptually satisfactory basis to study resonances in
lattice QCD: each measured energy corresponds to a momen-
tum jkj which is a solution of a complicated nonlinear
equation. We follow Luscher (1991a), where the
� resonance was taken as an example and it was pointed
out that other resonances can be treated in the same way
without additional difficulties. The � resonance decays al-
most exclusively into two pions. The absolute value of the
pion momentum is denoted by k ¼ jkj. The total energy of
the scattered particles is

W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

� þ k2
q

(155)

in the center of mass frame. The �� scattering phase �11ðkÞ
in the isospin I ¼ 1, spin J ¼ 1 channel passes through �=2
at the resonance energy, which corresponds to a pion mo-
mentum k equal to

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

�

4
�M2

�

s
: (156)

In the effective range formula

ðk3=WÞ cot�11 ¼ aþ bk2; (157)

this behavior implies

a ¼ �bk2� ¼ 4k5�

M2
���

; (158)

where �� is the decay width of the resonance (which can be

parametrized by an effective coupling between the pions and
the �). The basic result of Luscher (1991b) is that the finite-
volume energy spectrum is still given by Eq. (155) but with k
being a solution of a complicated nonlinear equation, which
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involves the �� scattering phase �11ðkÞ in the isospin I ¼ 1,
spin J ¼ 1 channel and reads

n�� �11ðkÞ ¼ 	ðqÞ: (159)

Here k is in the range 0< k <
ffiffiffi
3

p
M�, n is an integer, q ¼

kL=ð2�Þ, and 	ðqÞ is a known kinematical function which
can be evaluated numerically. In the limit of small q, 	ðqÞ /
q3, and 	ðqÞ 
 �q2 for q � 0:1 to a good approximation.
Solving the above equation leads to energy levels for different
volumes and pion masses. Figure 14 illustrates these solutions
as a function of the box size.

Thus, the spectrum is determined by the box length L, the
infinite volume masses of the resonance MX, and the two
decay products M1 and M2 and one parameter, gX, which
describes the effective coupling of the resonance to the two
decay products and is thus directly related to the width of the
resonance.

In infinite volume the resonance manifests itself as an
increased state density in a continuous spectrum.
Identifying the infinite volume resonance on a lattice at a
given finite volume is therefore not straightforward; generi-
cally it is not possible to identify the resonance with a single
energy level. Scanning over different system lengths it is,
however, possible to identify energies with an increased
probability of finding a state17 as seen in Fig. 14. This
property may in principle be used to identify a resonance in
a lattice calculation (Bernard et al., 2008, 2011; Giudice,
McManus, and Peardon, 2010). An alternative method based
on finite time correlators was also recently suggested by
Meissner, Polejaeva, and Rusetsky (2011).

Although conceptually clear, the treatment of resonant
states in a region where they are not the ground state faces
the large challenge of reliably extracting the ground state as
well as a number of excited states. One therefore often uses
the assumption that an operator which does not mirror the
valence quark structure of a scattering state will almost
exclusively couple to the resonance for directly extracting
the desired resonance level. Recent studies (Lin et al., 2009;

Engel et al., 2010) provide some evidence for the validity of
this assumption.

D. Electromagnetic effects and isospin breaking

Including dynamical fermions into a lattice QCD calcula-
tion is numerically expensive due to the occurrence of the
fermion determinant in Eq. (24). For this reason, early lattice
calculations were performed ignoring the effect of dynamical
fermions all together (quenched approximation). With im-
proved algorithmic understanding and the increase in avail-
able computer power the inclusion of some dynamical
fermion effects has become possible. The first step is usually
the inclusion of a degenerate pair of light quarks followed by
the inclusion of a single strange quark.

Although the physical u and d quarks are far from degen-
erate mu=md � 0:56 (Nakamura et al., 2010), both masses
are much smaller than the QCD scale �QCD and therefore can

be treated as a pair of degenerate light quarks with mass
m̂ ¼ ðmu þmdÞ=2 to a very good approximation. In addi-
tion, quarks are electrically charged and a full understanding
of the experimentally observed hadron spectrum therefore
necessarily includes QED effects, too. For most observables
related to hadron spectroscopy, these are, however, subdo-
minant as can be readily seen by the smallness of the
coupling constant �EM relative to the QCD coupling con-
stant �. Effects of other interactions or of heavier quarks are
negligible for light hadron spectroscopy within the currently
attainable precision.

The relatively largest electromagnetic and isospin breaking
effects can be observed in the pions, and also for kaons the
effect is still at the percent level. Since both pion and kaon
masses are often used to define the physical point, it is
necessary to define a properly isospin averaged pion and
kaon mass as an input to lattice QCD calculations with a
degenerate pair of light quarks. We denote the physical mass
splittings in the pion and kaon sectors as �� ¼ M2

�	 �M2
�0

and �K ¼ M2
K	 �M2

K0 . Calling the pion and kaon masses in

pure, isospin averaged QCD M� and MK, respectively, we
can write the pion and kaon masses in full QCDþ QED as

M2
� þ

8<
: I�þ þ ��þ ¼ M2

�þ ;

I�0 þ ��0 ¼ M2
�0 ;

(160)

and

M2
K þ

8<
: IKþ þ �Kþ ¼ M2

Kþ ;

IK0 þ �K0 ¼ M2
K0 ;

(161)

where the Ix are the isospin and the �x are the QED correc-
tions to the squared mass of the particle x. In order to obtain
these, we start by noting that upon interchanging u and d in
the pion sector �þ and �� are interchanged while for kaons a
Kþ goes over into a K0 and vice versa. Disregarding QED
effects, we therefore see that both M2

�þ and ðM2
Kþ þM2

K0 Þ=2
may contain only even powers when expanding in the isospin
breaking parameter (mu �md) and are therefore I�þ /
ðmu �mdÞ2 and IK0 þ IKþ / ðmu �mdÞ2 are free of leading
(linear) isospin breaking effects. Moreover, as Gasser and
Leutwyler (1984) demonstrated, I�þ / ðmu�mdÞ2ðmuþmdÞ

L

E

FIG. 14 (color online). The finite-volume energy levels vs box

size L according to Luscher (1991b). The solid lines roughly

correspond to the �� �� system, while the dashed lines show

the behavior in the case of a much smaller coupling g�.

17Note that depending on the specific volume this might be either

the ground state or any of the excited states (cf. Fig. 14).
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leading to an even stronger suppression. Within currently
attainable precision, isospin breaking corrections to both
M2

�þ and ðM2
Kþ þM2

K0Þ=2 are therefore negligible and we

can assume I�þ ¼ IK0 þ IKþ ¼ 0.
Regarding the isospin correction to the charged pion,

I�0 � I�þ / ðmu �mdÞ2 itself and Gasser and Leutwyler
(1985) found a parameter-free expression at NLO in terms
of physical meson masses that yields

m � I�þ � I�0

��

’ 0:04 (162)

indicating that the bulk of the pion mass splitting is due to
electromagnetic effects.

Regarding electromagnetic effects, according to Dashen
(1969) the picture in the leading order of the SU(3) chiral
expansion is that while neutral pseudo-Goldstone masses
stay unaffected by electromagnetic corrections, i.e., ��0 ¼
�K0 ¼ 0, the difference of the square of the charged masses
receives the same correction ��þ ¼ �Kþ . The absence of
electromagnetic corrections in the �0 and to a lesser extent
the K0 mass is further justified by Das et al. (1967) who
demonstrated that these corrections vanish in the massless
limit mu ¼ md ¼ 0, respectively, mu ¼ md ¼ ms ¼ 0. On
the other hand, a range of model calculations (Bijnens and
Prades, 1997; Donoghue and Perez, 1997) that are partly
based on the inclusion of QED effects into chiral perturba-
tion theory (Urech, 1995) and dispersive calculations based
on the � ! 3� decay (Anisovich and Leutwyler, 1996;
Kambor, Wiesendanger, and Wyler, 1996; Leutwyler,
1996; Bijnens and Ghorbani, 2007; Colangelo, Lanz, and
Passemar, 2009; Ditsche, Kubis, and Meissner, 2009) sug-
gest that there are noticeable corrections to the other parts
of Dashen’s theorem. A recent world average of these
corrections was given by Colangelo et al. (2011) as

 � ��0 � ��þ � ð�K0 � �KþÞ
��

¼ 0:7ð5Þ: (163)

Assuming Dashen’s theorem holds, we would thus get for
the QED corrected, isospin averaged pion and kaon masses
M� ’ 134:8 MeV and MK ’ 495 MeV. Including the cor-
rection (163) while keeping the reasonable assumption
��0 ¼ �K0 ¼ 0, the kaon mass is shifted by less than 1%
to MK ’ 494:6 MeV while the pion mass is unaffected.

In order to go beyond these results, we need to treat QED
and isospin breaking effects on the lattice. Since it has been
difficult to reach the physical point even in the isospin limit
with two degenerate light quarks and since at least for the
pion QED effects are substantially larger, it is these QED
effects that have received the most attention in the literature
to date.

Regularizing QED on the lattice poses a very different set
of problems than regularizing QCD. There is a straightfor-
ward way of including the leading QED corrections into QCD
calculations that was first employed by Duncan, Eichten, and
Thacker (1996) to obtain an estimate for the pion mass
splitting. Since QED is an Abelian gauge theory, the electro-
magnetic gauge field is trivial when ignoring the electrical
charge of the sea quarks. In this partially quenched approxi-
mation one can therefore sample free QED U(1) fields inde-
pendently of the QCD SU(3) fields. This is most conveniently

achieved by not sampling the parallel transports U�ðxÞ ¼
eieA�ðxÞa directly but by instead fixing the gauge and sampling
the underlying gauge fields A�ðxÞ in which the Maxwell

equations are linear. The corresponding action

SQED ¼ 1

4e2

X
x

½@�A�ðxÞ � @�A�ðxÞ�2 (164)

with the forward difference operator @� decouples in Fourier

space and gauge field configuration with the proper weight
e�SQED may thus be produced by simply producing each
Fourier component with a proper random weight. The only
further restriction is the vanishing of the p ¼ 0 component
due to the compact space provided by the finite lattice.

In a calculation with dynamical sea quarks, the electro-
magnetic correction to the light quark masses that is intro-
duced in the valence sector leads to a mismatch of sea and
valence quark masses. In order to minimize these unitarity
violating effects, one can retune the valence light quark
masses such that after the inclusion of quenched QED effects
both mu and md have the same value as they had in pure QCD
(Portelli et al., 2010).

In the quenched approximation calculation of Duncan,
Eichten, and Thacker (1996), a large violation of Dashen’s
theorem was found corresponding to � 0:5. In later work
with Nf ¼ 2 dynamical flavors of domain wall fermions,

Blum et al. (2007) reported a somewhat larger value while
in the most recent update Nf ¼ 2þ 1, Blum et al. (2010)

found a value compatible with the original estimate of
Duncan, Eichten, and Thacker (1996). Preliminary results
are also available from the MILC Collaboration using Nf ¼
2þ 1 flavors of staggered fermions (Basak et al., 2008)
and the Budapest-Marseille-Wuppertal Collaboration with
Nf ¼ 2þ 1 Wilson fermions (Portelli et al., 2010).

The general picture that emerges is that the corrections to
Dashen’s theorem that are parametrized in  are in agreement
with the phenomenological determinations. Taking lattice
determinations into account, Colangelo et al. (2011) com-
bined recent results on QED and isospin splitting effects into
a world average of the QED corrected, isospin averaged pion
and kaon masses. For the individual symmetry breaking
parameters they found

 ¼ 0:7ð5Þ; m ¼ 0:04ð2Þ;
��0 ¼ 0:07ð7Þ��; �K0 ¼ 0:3ð3Þ��;

(165)

and consequently M� ¼ 134:8ð3Þ MeV and MK ¼
494:2ð5Þ MeV, which agree within error with the values
quoted above that were obtained under the assumption that
Dashen’s theorem holds.

Isospin splitting effects in the baryon spectrum are less
dramatic than for the pseudoscalar mesons. As an example,
the mass splitting in the nucleon system is Mn �Mp ¼
1:293 332 1ð4Þ MeV (Nakamura et al., 2010) and an effective
theory estimate of the electromagnetic contribution turns out
to be negative ðMn �MpÞQED ¼ �0:76ð30Þ MeV (Gasser

and Leutwyler, 1982). If one is interested in isospin averaged
baryon masses only, a straight isospin average is therefore
sufficient for the accuracies that are presently obtainable in
lattice calculations.
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The first dedicated lattice study of the nucleon mass split-
ting was carried out by Beane, Orginos, and Savage (2007).
They used a hybrid setup with domain wall valence on Nf ¼
2þ 1 staggered sea quarks with pion masses in the range of
�290–350 MeV. A single lattice spacing a� 0:125 fm was
used and an extrapolation to the physical point was carried
out in the framework of NLO partially quenched heavy
baryon �PT. Using the experimental value of M� �MN as
an input they obtain for the isospin part of the mass splitting
ðMn �MpÞQCD ¼ 2:26ð57Þð43Þ MeV.

In addition to the isospin part of the nucleon mass difer-
ence, Blum et al. (2010) also calculated the QED part. They
used Nf ¼ 2þ 1 partially quenched domain wall fermions

with pion masses in the range of �250–400 MeV at a single
lattice spacing a� 0:11 fm. Two volumes were used to
estimate finite size effects in the final result and an extrapo-
lation to the physical point was performed using NLO par-
tially quenched heavy baryon �PT. They quoted the final
results ðMn �MpÞQCD ¼ 2:24ð12Þ MeV, ðMn �MpÞQED ¼
�0:383ð68Þ MeV, and Mn �Mp ¼ 1:86ð14Þð47Þ MeV,

where the first error is statistical and the second is part of
the systematic error.

V. LATTICE RESULTS

In this section we discuss lattice results on the light hadron
spectrum. Historically, the first results were from the
quenched approximation that is discussed in Sec. V.A. The
inclusion of dynamical fermions was pioneered with heavy,
degenerate quarks (see Sec. V.B) before it developed into the
study of theories with nondegenerate light and strange quarks
that we review in Sec. V.C. While Secs. V.A and V.B are now
of mainly historical interest, the three-flavor (and coming
four-flavor) dynamical calculations are the definitive modern
calculations.

Our review of lattice results does not include glueballs. For
recent reviews on this topic see, e.g., Teper (1998), Klempt
and Zaitsev (2007), Mathieu, Kochelev, and Vento (2009),
and McNeile (2009).

A. Results in the quenched approximation

Although the quantitative understanding of the light had-
ron spectrum is an obvious and essential check for any
candidate theory of the strong interaction, it took several
years from the original proposal of Wilson (1974) that con-
tained the lattice discretization of gauge theories and the
strong coupling picture of quark confinement to the first
numerical studies of the hadron spectrum (Hamber and
Parisi, 1981, 1983; Marinari, Parisi, and Rebbi, 1981a;
Fucito et al., 1982; Hasenfratz et al., 1982; Martinelli
et al., 1982; Weingarten, 1983; Fukugita, Kaneko, and
Ukawa, 1984). Because of the lack of viable dynamical
fermion algorithms and computer power, these pioneering
studies were carried out in the quenched approximation
sometimes with an SU(2) gauge group and even further
discrete truncations. Lattices had a typical size of 63 � 12
and O(10) gauge configurations were generated with the
Wilson gauge action. Naive or plain Wilson fermion actions
were typically used to extract hadron masses and physical

point predictions were obtained by linear extrapolation of
either squares of meson masses or baryon masses. A first
world average of these pioneering results was given by
Creutz, Jacobs, and Rebbi (1983)

m� ¼ 800ð100Þ MeV; ma0 ¼ 950ð150Þ MeV;

ma1 ¼ 1100ð150Þ MeV; mp ¼ 1000ð150Þ MeV;

m� ¼ 1300ð150Þ MeV: (166)

From a modern perspective, these results should be viewed
with some caution as these calculations were clearly explor-
atory and pioneering. The computer power of the times was
not sufficient to properly clarify many systematic effects. As
an example, the inverse lattice spacing of SU(3) gauge theory
with the Wilson gauge action at � ¼ 6:0 used by Marinari,
Parisi, and Rebbi (1981a) was a�1 ¼ 1:12 GeV, whereas
modern determinations from various observables agree that
it is a�1 ’ 2:1–2:3 GeV (Gutbrod et al., 1983; Lipps et al.,
1983; Otto and Stack, 1984; Aoki et al., 2000; Giusti,
Hoelbling, and Rebbi, 2001; Necco and Sommer, 2002;
Durr et al., 2007).

It was quickly realized (Bernard, Draper, and Olynyk,
1983; Bowler et al., 1983; Gupta and Patel, 1983;
Hasenfratz and Montvay, 1983; Politzer, 1984) that physical
volumes were not big enough and that one should use larger
time extents in order to safely extract a ground state signal. In
the following years, quenched calculations with unimproved
Wilson and staggered fermions on Wilson gauge action were
pushed to larger lattice volumes and higher statistics (Lipps
et al., 1983; Billoire et al., 1984; Bowler et al., 1984, 1985;
Gilchrist et al., 1984; Konig, Mutter, and Schilling, 1984;
Kunszt and Montvay, 1984; Billoire, Marinari, and Petronzio,
1985; Itoh et al., 1986; Itoh, Iwasaki, and Yoshie, 1986),
where lattices were often doubled in the time direction in
order to obtain a clean signal. With gauge couplings typically
�� 5:7–6 and spatial lattice extents typically 10–16 lattice
units and time extents typically twice as much, a qualitatively
consistent picture of the hadron masses started to emerge,
although large systematic effects were present that could not
clearly be identified yet. [For reviews of this generation of
results, see Hasenfratz and Hasenfratz (1985) and Montvay
(1987)]. In particular, the ratio of the nucleon mass to the �
mass, which experimentally is MN=M� ’ 1:21, turned out to

be consistently too high MN=M� > 1:6, which is even larger

than the static quark limitMN=M� ¼ 1:5. Another stumbling

block for these early calculations was the absence of suffi-
cient splitting between the masses of the nucleon and the �.

During the following years, the focus shifted slightly
toward inclusion of sea quark effects with steady progress
in quenched spectroscopy (Gupta et al., 1987; Bacilieri
et al., 1988, 1989; Fukugita, Oyanagi, and Ukawa, 1988)
until the first precision calculations of the quenched light
hadron spectrum emerged in the early 1990s (Bacilieri et al.,
1990; Cabasino et al., 1991a, 1991b; Gupta et al., 1991;
Allton et al., 1992, 1994; Bitar et al., 1992; Daniel et al.,
1992; Guagnelli et al., 1992; Butler et al., 1993, 1994; Kim
and Sinclair, 1993).

Among these, the first landmark precision calculation of
the quenched light hadron spectrum was carried out by the
GF11 Collaboration (Butler et al., 1993, 1994). Wilson
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fermions were used on a Wilson gauge action at three differ-

ent values of the lattice spacing in the range a�
0:07–0:14 fm. Propagators were extracted using point and

Gaussian smeared sources at different quark masses corre-

sponding to M�=M� > 0:5, i.e., with pion masses

M� * 400 MeV. Lattice volumes in the range 163 � 32 to

302 � 32� 40 were used corresponding to a spatial lattice

extent of�2:3 fm at all three lattice spacings. At the coarsest

lattice spacing, dedicated runs at larger and smaller volumes

were performed in order to extract the finite-volume depen-

dence of the result. They were used in the end to correct the

physical predictions to infinite volume.18 Considering degen-

erate quarks only, a linear relation was established between

the degenerate quark masses mq and M2
�, while for all other

hadrons a fit of the form M ¼ aþ bmq described the data.

Assuming that these linear relations extend to the nondegen-

erate case with two quarks of mass m1 and m2, i.e., M
2
� /

ðm1 þm2Þ2 and M ¼ aþ b1m1 þ b2m2, the physical point

was found usingM�,MK, andM� input with the latter used as

a scale setting observable. A continuum extrapolation linear

in a was performed that turned out to be rather mild.
Table I shows the resulting spectrum obtained by Butler

et al. (1993, 1994). Despite the many approximations used,

the overall agreement with experiment is rather remarkable

and at the <10% level.
Similarly sophisticated quenched analyses were soon after

performed for the �� �0 system (Kuramashi et al., 1994)

and for excited state mesons (Lacock and Michael, 1995;

Lacock et al., 1996). These calculations and detailed studies

of systematic effects such as finite size (Aoki et al., 1994),

excited state contaminations (Iwasaki et al., 1996), or

quenched chiral logarithms and SU(3) splittings (Kim and

Sinclair, 1995; Bhattacharya et al., 1996) revealed potential

inconsistencies of the quenched approximation of up to 20%.

On the other hand, results with improved Wilson actions

(Collins et al., 1997; Gockeler et al., 1997, 1998b;

Edwards, Heller, and Klassen, 1998) and for staggered fer-

mions that reached finer lattice spacings and smaller quark

masses (Bernard et al., 1998a; Kim and Ohta, 2000) indi-

cated quenching effects that were less dramatic at Oð5%Þ. In
the case of the latter two results it was especially noted that a

simple linear extrapolation in the light quark mass was no

more sufficient. Several �PT motivated fit forms were found

to describe the chiral behavior of the � and nucleon masses

but the coefficients were not found to be in agreement with

quenched �PT expectations at all.
The accuracy of the quenched approximation was ad-

dressed in the large scale calculation by the CP-PACS

Collaboration (Aoki et al., 2000, 2003a). They used lattices

of�3 fm spatial extent at four values of the lattice spacing in

the range a� 0:05–0:1 fm with quark masses corresponding

to M�=M� � 0:4–0:75. Both fermion and gauge action used

were plain Wilson, and nondegenerate quark masses were

used to investigate splittings in the SU(3) multiplets. While

pseudoscalar meson masses were found to have a chiral

behavior compatible with the quenched �PT expectations,

the discrepancy in the vector meson and baryon sector found
in the staggered results of Bernard et al. (1998a) and Kim and
Ohta (2000) was confirmed. For these masses, �PTmotivated
fits were used to extrapolate to the physical point. The
physical point in the light quark mass was defined using
M� and M� and either MK or M	 were used to define the

physical strange mass.19 The final result that has a precision
of �1–3% is displayed in Fig. 15.

A statistically significant deviation from the experimen-
tally observed spectrum was noted with discrepancies up to
�10%. These discrepancies, however, are particularly pro-
nounced due to the choice ofM� as a scale setting observable.

Since the � does not decay in the quenched approximation
and therefore represents the ground state in the vector chan-
nel, it is in principle a viable scale setting variable from a pure
lattice perspective. Nonetheless, the identification of the
stable quenched ground state energy with the mass of a
resonance with �150 MeV experimental width is not opti-
mal. On top of that, an accurate determination of � meson
properties is a challenging experimental task. This is high-
lighted by the fact that the experimental value ofM� itself has

moved by �1% or more than 10 standard deviations over the
last two decades (Hikasa et al., 1992; Nakamura et al.,
2010).

As Garden et al. (2000) noted, one can derive from the
CP-PACS results predictions for hadron masses with the
scale set by the nucleon mass instead of M�. In this case,

the maximum deviation from experiment turns out to be
significantly lower at �4% indicating that indeed the
quenched approximation is substantially worse for resonance
masses than for masses of hadrons that are stable within
QCD. A confirmation of these results with somewhat lower
statistical accuracy was reported by Bowler et al. (2000).

The CP-PACS calculation was one of the last large scale
calculations aimed at a precision determination of the

TABLE I. Quenched lattice QCD prediction of the light hadron
spectrum according to Butler et al. (1993, 1994). The ratio of
various hadron masses and the QCD scale �ð0Þ

MS
to the mass of the �

that was used to set the scale are given. The label �m refers to the
combination �m ¼ m	 þm� �mN . Observed values are experi-
mental results from Hikasa et al. (1992) except for the case of
the QCD scale �ð0Þ

MS
, where they refer to two previous results from

the literature (El-Khadra et al., 1992; Bali and Schilling, 1993a,
1993b). Note that some experimental values, notably the mass of the
�, have been updated since (Nakamura et al., 2010).

Ratio Finite volume Infinite volume Observed

mK�=m� 1:149	 0:010 1:167	 0:016 1.164
m�=m� 1:297	 0:019 1:333	 0:032 1.327
mN=m� 1:285	 0:070 1:219	 0:105 1.222
�m=m� 1:867	 0:046 1:930	 0:073 2.047
m�=m� 1:628	 0:075 1:595	 0:111 1.604
m��=m� 1:813	 0:051 1:821	 0:075 1.803
m	�=m� 2:013	 0:052 2:063	 0:067 1.996
m�=m� 2:206	 0:058 2:298	 0:098 2.177
� ð0Þ

MS =m� 0:305	 0:008 0:319	 0:012 0:305	 0:018
0:320	 0:007

18See Gottlieb (1997) for a detailed discussion of the finite-volume

effects.

19Note that although the 	 is a singlet meson, its disconnected part

is usually disregarded in lattice studies.
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quenched ground state light hadron spectrum. As quenching
effects became statistically significant, the focus of efforts to
get a quantitative confirmation of QCD reproducing the
experimentally observed ground state light hadron spectrum
moved toward inclusion of dynamical fermion effects.
Nonetheless, due to its relatively low numerical cost, the
quenched approximation continues to be used to this day as
a test bed for new numerical approaches and as a first step in
studying computationally demanding observables. In the fol-
lowing years, the quenched ground state hadron spectrum was
used to check various variants of chirally symmetric fermion
actions (Gattringer et al., 2004; Babich et al., 2006; Galletly
et al., 2007) or to develop improved (Melnitchouk et al.,
2003) or anisotropic (Nemoto et al., 2003) actions that were
intended for studying excited hadrons.

Following the CP-PACS determination of the ground state
quenched hadron spectrum the attention in quenched hadron
spectroscopy turned toward resonant and singlet states (Lee
and Weingarten, 1999; McNeile and Michael, 2001; Gockeler
et al., 2002; Sasaki, Blum, and Ohta, 2002; Melnitchouk
et al., 2003; Nemoto et al., 2003; Brommel et al., 2004;
Gattringer et al., 2004; Mathur et al., 2005, 2007; Sasaki,
Sasaki, and Hatsuda, 2005; Burch et al., 2006a, 2006b;
Basak et al., 2007; Lasscock et al., 2007; Wada et al.,
2007; Fleming et al., 2009; Engel et al., 2010). In particular,
many groups reported on the splitting between the nucleon
and its lightest negative parity partner, the N�ð1535Þ. In all
cases, a clear signal of the mass splitting between the nucleon
ground state and the N�ð1535Þ could be seen on the lattice.
The splitting is increasing as one lowers the light quark
masses toward the physical point and in all cases is roughly
consistent with the experimentally observed mass splitting. It
is an interesting peculiarity, however, that the lightest experi-
mentally observed nucleon excited state is not the nucleon
parity partner N�ð1535Þ but, in fact, the N�ð1440Þ, the

so-called Roper resonance which carries positive parity
and J ¼ 1=2 as the nucleon. With the exception of
Mathur et al. (2005) and Sasaki, Sasaki, and Hatsuda
(2005), who employed Bayesian techniques to extract
excited state information from a single channel,20 however,
the first positive parity excitation of the nucleon turned out
to lie above the first negative nucleon state in all lattice
calculations. A possible solution to this discrepancy was
recently proposed by Mahbub et al. (2009b) and Mahbub,
Cais et al. (2010) who demonstrated that a mix of excited
states enters typical interpolating operators. By using a
large operator basis they could explicitly disentangle up
to eight states and demonstrate a level crossing between
the negative parity ground state and the first positive parity
excitation for light quark masses that is consistent with the
finding of Mathur et al. (2005) and Sasaki, Sasaki, and
Hatsuda (2005) and the experimentally observed level
ordering between the N�ð1535Þ and N�ð1440Þ states.

Another interesting case in excited state baryon spectros-
copy is the �ð1405Þ. In the quark model picture, it is the
lightest negative parity partner of the � with a valence quark
structure uds. It is, however, the lightest negative octet
baryon, more than 100 MeV lighter than the lightest negative
parity nucleon, the N�ð1520Þ, even though it contains a
strange quark. This is the most striking of many peculiar
features that have given rise to a number of suggestions for a
nontrivial structure of the �ð1405Þ such as that of a N �K
hadronic molecule or a pentaquark state [for a recent review,
see Klempt and Richard (2010)]. Melnitchouk et al. (2003)
and Nemoto et al. (2003) studied the negative parity � states
in the quenched approximation with standard interpolating
operators and found it impossible to reproduce the �ð1405Þ
which they interpret as an indication for a nontrivial structure
of the �ð1405Þ that might not be properly reflected in the
quenched approximation. In contrast, Burch et al. (2006a)
found the �ð1405Þ to be consistent with the negative parity
octet state.

With the exception of the N�ð1440Þ and the �ð1405Þ that
were discussed above, no qualitative tension between
experiment and the above-mentioned quenched excited
baryon studies was found. For a more detailed review, see
Leinweber et al. (2005).

B. Results with degenerate dynamical quarks

The spectrum calculation of the CP-PACS Collaboration
(Aoki et al., 2000, 2003a) reached a numerical precision such
that quenching effects could clearly be seen. In order to
obtain a quantitative understanding of the ground state light
hadron spectrum on the few percent level it is therefore
necessary to include dynamical fermion effects into the
lattice calculation. From the six fermion flavors in nature,
the charm, bottom, and top each have masses much larger
than the QCD scale �QCD. Their contribution to light hadron

masses through quark loop effects is therefore believed to be
negligible. Among the remaining three flavors mu=d�QCD,

while ms ��QCD. Consequently, and because an even
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spectrum according to Aoki et al. (2000, 2003a). For both data sets

plotted M� and M� were used to set the scale and the light quark
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20See Sasaki and Sasaki (2005) for a discussion of possibly large

finite size effects for this technique.
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number of quark flavors is usually easier to implement

(cf. Sec. II.C), the first attempts at unquenching lattice

QCD calculations were performed with two degenerate

quark flavors. In the case of staggered fermions, calcula-

tions with four dynamical quark flavors are even easier due

to the remnant doubling (cf. Sec. II.D.1). In this section we

review results obtained with (a usually even number of)

degenerate21 dynamical fermions. While this still represents

an approximation that is necessitated by the lack of proper

computational resources, it is still a very significant step

forward from the quenched approximation.
Pioneering work on lattice hadron spectroscopy with dy-

namical fermions was done by Langguth and Montvay (1984)

where dynamical fermions were implemented using a strong

coupling expansion of the determinant ratio. During the

following years unquenching via the inclusion of Nf ¼ 2

and 4 dynamical Wilson fermions and Nf ¼ 2, 3, and 4 stag-

gered fermions was investigated by several groups (Fucito

et al., 1986; Fukugita, Oyanagi, and Ukawa, 1986, 1987;

Billoire and Marinari, 1987; Campostrini et al., 1987;

Detar and Kogut, 1987a, 1987b; Fukugita et al., 1987;

Gottlieb et al., 1987a; Hamber, 1987; Grady, Sinclair, and

Kogut, 1988). These early works demonstrated that the main

effect of including dynamical fermions was a change in

dependence of the lattice spacing on bare coupling constant

�. Apart from this effect, no clear sign of unquenching could

be observed. In particular, the M�=MN ratio tended to stay

constant or even increase. In studies with staggered fermions,

the taste breaking effects were also observed to be rather

severe. For a comprehensive review of these early studies, see

Fukugita (1988).
During the following years it became clear that with

staggered fermions one could go to substantially lighter quark

masses than with Wilson fermions (Patel et al., 1989; Bitar

et al., 1990a, 1990b, 1992; Brown et al., 1991; Gupta et al.,

1991; Altmeyer et al., 1993; Fukugita et al., 1993) in the

sense that the M�=M� ratio attainable with Wilson fermions

was limited toM�=M� * 0:7, while if taking the lightest pion

one could go down to about half this number in the staggered

case. Since reducing the mass of the valence quarks only was

substantially easier, some of these studies started exploring

partially quenched setups, where the valence quark masses

are varied independently of the sea quark masses and even

hybrid calculations with valence Wilson quarks on a dynami-

cal staggered sea. None of these calculations, however, gave a

clear signal for a M�=MN ratio that was substantially better

than the ones obtained in contemporary quenched calcula-

tions. Although there was steady progress over the following

few years (Bitar et al., 1994; Allton et al., 1999; Eicker

et al., 1998), the focus of large scale calculations shifted more

toward precision computations in the quenched approxima-

tion. This was in large part due to the tremendous computa-

tional effort that was needed for dynamical fermion

computations which exceeded the computer capabilities of

that time. A first unquenched study of the �� �0 mixing was

performed by McNeile and Michael (2000) which found a

mixing angle of ���10� albeit without continuum and

chiral extrapolation.22

These efforts culminated in the first large scale project to

compute the light hadron spectrum in Nf ¼ 2 QCD by the

CP-PACS Collaboration (Ali Khan et al., 2002). They used

two degenerate flavors of mean field improved clover fermi-

ons on an Iwasaki gauge action. The strange valence quark

was included in a quenched setup. Three relatively coarse

lattice spacings in the range a� 0:11–0:22 fm were used

with an approximately constant physical volume L�
2:5 fm and T ¼ 2L. Four sea and valence quark masses in

a range corresponding to M�=MN � 0:6–0:8 and an addi-

tional valence quark mass at M�=MN � 0:5 were investi-

gated. Point sources and exponentially smeared quark

sources on a gauge fixed background were chosen for optimal

plateau onset. Chiral extrapolation was performed by a com-

bined fit to all partially quenched masses for each channel on

a given sea quark mass. Vector meson and baryon masses

were extrapolated to the physical point using quadratic func-

tions in the valence and sea M2
� with certain restrictions on

the quadratic terms. In the case of vector mesons, �PT
motivated nonanalytic M3

�-type terms were also used instead

of M4
�-type terms to estimate the systematic error. Following

the example of the quenched CP-PACS calculation discussed

in Sec. V.A, the physical light quark masses and the scale are

defined via M� and M�, while two options MK or M	 were

used to set the strange quark mass. The continuum limit is

obtained by linear extrapolation in a.
The resulting light hadron spectrum is plotted in Fig. 16.

Clearly the heavier baryon states are in good agreement with

experiment while the lighter ones, especially the nucleon and

the �, seem to be systematically too high. This does not come

as a big surprise though since the extrapolation to the physical

point is substantially more severe for the baryons containing

more light valence quarks.
Similar efforts to that of the CP-PACS Collaboration were

reported by the UKQCD and JLQCD Collaborations in

Allton et al. (2002) and Aoki et al. (2003b). The UKQCD

Collaboration worked at a single lattice spacing a� 0:1 fm
that was set with r0. The range of sea quark masses was

chosen such that M�=M� � 0:55–0:9 and the spatial lattice

extent was L� 1:7 fm. The JLQCD Collaboration worked at

one single lattice spacing a� 0:09 fm at a spatial extent

L� 1:8 fm using clover fermions on a Wilson gauge action

and the same range of sea masses M�=M� � 0:6–0:8 than

CP-PACS. The findings of both collaborations on the light

hadron spectrum are in good agreement with the continuum

CP-PACS results.
The conclusion from these two large scale projects regard-

ing the feasibility of computations with light dynamical

quarks was summarized in a plot that became known as the

‘‘Berlin wall plot’’ by Ukawa (2002). He conjectured that

the cost of dynamical fermion simulations would rise toward

the chiral limit essentially as / M6
� effectively rendering any

dynamical calculations with Wilson-type fermions near the

physical point impossible in the foreseeable future without
21We use the term nondegenerate here in the sense that no explicit

term was added that breaks the flavor symmetry. In the case of

staggered quarks the unavoidable taste splitting is of course present. 22See also Lesk et al. (2003).
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substantial algorithmic improvements. Because of their lower
computational cost staggered fermions were able to push
farther toward the chiral limit and already did so with also
a dynamical strange quark (see Sec. V.C), but extracting
especially baryonic states is less straightforward in this for-
mulation (cf. Sec. III.A). For a more comprehensive review of
these results see McNeile (2003).

Because the inclusion of a nondegenerate sea quark incurs
little extra expense, from this point on, the main development
in light hadron spectroscopy continued with the inclusion of a
strange quark in addition to two degenerate light quarks. This
is usually referred to as Nf ¼ 2þ 1 and is discussed in

Sec. V.C. The question of how much two-flavor calculations
differ from experiment has not been answered as definitively
as it has been for the quenched calculations discussed earlier.
A number ofNf ¼ 2 calculations of light hadron masses were

still being performed, however, for a number of reasons such
as algorithmic tests (Del Debbio et al., 2007a, 2007b) or as a
first step for formulations that allow an even number of quark
flavors only (Alexandrou et al., 2009). Similarly, flavor
singlet spectroscopy that typically requires substantially
more statistical precision was still investigated in Nf ¼ 2

QCD (McNeile, Michael, and Sharkey, 2001; Allton et al.,
2004; Kunihiro et al., 2004; Prelovsek et al., 2004; Hart
et al., 2006; McNeile and Michael, 2006; McNeile, Michael,
and Urbach, 2009). For a recent comprehensive review of
these results, see McNeile (2007).

The ETM Collaboration (Alexandrou et al., 2009) pub-
lished results for the ground state light baryon spectrum with
Nf ¼ 2 twisted mass fermions.23 They used Nf ¼ 2 twisted

mass fermions at maximal renormalized twist on a tree level
Symanzik improved gauge action. Two lattice spacings (a�
0:07 and �0:09 fm) were used with charged pion masses in
the range 270–500 MeV.24 The lattice spacing was set via the

nucleon mass and chiral extrapolations were performed with
a variety of different Ansätze. The valence strange quark mass
is set by tuning the kaon mass to its physical value. The final
result employs two different heavy baryon �PT Ansätze

[Oðp3Þ, respectively, NLO SU(2)] for the extrapolation of
baryons without, respectively, with valence strange quarks to
the physical mass point. The continuum extrapolation was
performed using a constant which was demonstrated to be

sufficient at the given level of accuracy. Exponential finite-
volume corrections were taken into account in the final fit
form. Resonant state finite-volume corrections were not per-
formed but are believed to be irrelevant in the region of

parameter space covered by the simulations. Effects of the
twisted mass isospin breaking were observed to be negligible
except in the case of the 	 where they amounted to a 6%

correction. Their final result displayed in Fig. 17 shows good
agreement with experiment at the level of precision of the
calculation which is �5%. The ETM Collaboration also
investigated the ��! mass splitting and mixing (McNeile,

Michael, and Urbach, 2009) excluding electromagnetic ef-
fects. While a clear signal and qualitatively correct behavior
were found, the quantitative understanding of the experimen-
tally observed splitting remains a challenging task.

Turning to excited states, the BGR Collaboration com-
puted ground and excited state hadron spectra using Nf ¼ 2

single step stout smeared chirally improved fermions on a
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FIG. 16. Dynamical Nf ¼ 2 lattice QCD prediction of the light baryon spectrum according to Ali Khan et al. (2002). The continuum

extrapolation of the ground state light octet and decuplet baryon masses in the case where the strange mass was set viaMK are displayed. The

continuum extrapolation was performed using three lattice spacings that are displayed with solid circles. Open circles represent a fourth, finer

lattice which was not included in the analysis due to a too small volume. Figure courtesy of the CP-PACS Collaboration.

23Ses also Alexandrou et al. (2008) for some results with more

lattice spacings and different scale setting.

24The isospin splitting of the pions is M	2
� �M02

� �
ð150–220 MeVÞ2 (Baron et al., 2010b).
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tadpole improved Lüscher-Weisz gauge action at a singe
lattice spacing a� 0:15 fm (Engel et al., 2010; Prelovsek
et al., 2010). Three pion masses in the range 320–530 MeV
were used and the scale was set with r0. Gaussian smeared
quark sources were used in combination with a variational
method based on three interpolating operators to extract the
energy levels. A chiral extrapolation linear in M� was per-
formed and the strange quark was introduced in a partially
quenched setup. The results for positive and negative baryon
states are plotted in Fig. 18. A good signal for the ground state
was found but excited and scattering state signals were gen-
erally weak. Some evidence was also presented that the � and
� resonances contain a sizable exotic admixture of a tetra-
quark ( �q �qqq) state.

In an extension of the work of Melnitchouk et al. (2003)
and Nemoto et al. (2003) in the quenched approximation,
Takahashi and Oka (2010) studied the ��ð1405Þ on Nf ¼ 2

CP-PACS lattices and essentially reached the same conclu-
sion as Melnitchouk et al. (2003) and Nemoto et al. (2003)
that the ��ð1405Þ cannot be reproduced using standard
baryon octet and singlet interpolating operators.

C. Results with dynamical light and strange quarks

The first large scale computation of the light hadron spec-
trum with a pair of light and one strange sea quark was
performed by the MILC Collaboration (Bernard et al.,
2001; Aubin et al., 2004).25 With asqtad fermions on a
one-loop Symanzik improved gauge action, they reached
Goldstone (i.e., taste pseudoscalar) pion masses down to
M� � 260 MeV on lattices of spatial size L� 2:4 and
�3:4 fm at two values of the lattice spacing a� 0:09 and

�0:12 fm. Finite-volume effects were explicitly checked for
and found to be under control. The fermion update algorithm

used was the R algorithm and explicit checks for the absence
of step size dependent effects were performed. The scale was

set via b-meson spectroscopy, in particular, the
 1P-1Smass
splitting, and physical light and strange quark masses were

defined byM� andMK. Ground state meson and some baryon
masses were computed as well as the radially excited pseu-

doscalar meson state. The extrapolation to physical pion

masses was performed using various heavy baryon �PT
motivated fit functions and a continuum extrapolation was

done using g2a2 terms where possible. An update of these
results including data from finer lattices as well as a compre-

hensive review is available in Bazavov et al. (2010a). The
resulting light hadron spectrum is displayed in Fig. 19. Note

that due to the particular difficulties in extracting baryon
masses in the staggered formulation (cf. Sec. III) there are

only predictions for a subset of the ground state baryons.
Again, the numbers result in good agreement with

experiment.
A subset of the MILC ensembles with a� 0:12 fm and

with the smallest pion mass of �290 MeV was studied by

Walker-Loud et al. (2009) in a mixed action setup with
domain wall valence quarks. Comparing different chiral fit

forms for the nucleon mass it was demonstrated that a simple

linear fit in M� gives a good description of the given data set
and extrapolates to the correct value at the physical point. In

the same paper, this feature was also found in other collab-
orations data.

The PACS-CS Collaboration published results for the light

hadron spectrum using both a chiral extrapolation (Aoki
et al., 2009) and a direct reweighting to the physical point

(Aoki et al., 2010). In both cases Nf ¼ 2þ 1 nonperturba-

tively OðaÞ improved cover fermions on an Iwasaki gauge
action were used at a single lattice spacing a� 0:09 fm and a

spatial lattice extent of L� 2:9 fm. Pion masses down to
�150 MeV were directly simulated and a reweighting to the

physical point was carried out with the lightest ensemble. In

the extrapolated ensemble finite size effects on the pseudo-
scalar masses were corrected using SU(2) �PT at NLO. The

small chiral extrapolation was performed linearly in the light
quark mass and M� was used to set the scale. More involved
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25See also Davies et al. (2004), where the effects of unquenching

are discussed for observables beyond the light hadron spectrum.
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chiral forms were subsequently investigated by Ishikawa
et al. (2009). Similarly in the reweighted ensemble the
masses of the �, K, and � were used to tune to the physical
point. The final result from the extrapolation method is
plotted in Fig. 20. Similar results were found with the re-
weighting method as detailed by Aoki et al. (2010).

Full control over all systematic uncertainties at the
few percent level was achieved in the light hadron
spectrum calculation of the Budapest-Marseille-Wuppertal
Collaboration (Durr et al., 2008). They used tree level
improved six-step stout smeared Nf ¼ 2þ 1 clover fermions

on a tree level Symanzik improved gauge action on lattices of
spatial extent of L� 2:0–4:1 fm. Both the gauge and the
fermion action are known to be in the correct universality

classes and the updating algorithm is exact and free of
possible ergodicity problems. Pion masses down to
190 MeV and three lattice spacings a� 0:065, �0:85, and
�0:125 fm were used which allowed for a fully controlled
extrapolation to the continuum and the physical point with
various Ansätze for both. Possible contamination of the
propagators from excited states was accounted for by varying
the fit range. Finite-volume corrections were applied includ-
ing energy shifts for resonant states (as described in
Sec. IV.C.2) that allowed for a detailed treatment of resonant
states, too. The continuum extrapolation was performed with
a term linear in a or a2 and chiral fits were done with both
Taylor and NLO heavy baryon �PT with a free coefficient
(see Fig. 21 for an example extrapolation to the physical point
and continuum limit). The above procedure allowed for a
fully controlled calculation of the systematic uncertainty via

FIG. 19 (color online). Comparison of the Nf ¼ 2þ 1 light had-

ron spectrum results from the MILC Collaboration (Bazavov et al.,

2010a) with experiment. The diamonds are input quantities while

the circles are predictions. Experimental masses of hadrons from

Amsler et al. (2008) are indicated by squares. Note that charmo-

nium and bottomonium masses are also included with some of the

later ones used to set the scale. Figure courtesy of the MILC

Collaboration.
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the spread of the results of all analyses weighted by the fit
quality. The ground state light hadron spectrum was repro-
duced at the percent level (cf. Fig. 22).

The QCDSF-UKQCD Collaboration recently proposed a
different approach to the physical point starting from an
SU(3) symmetric theory and systematically expanding in
the SU(3) breaking parameter while keeping 2M2

K þM2
�

constant (Bietenholz et al., 2010a, 2010b, 2011).
Preliminary results at a single lattice spacing of a�
0:076 fm and a spatial lattice extent of L� 1:2–2:5 fm
are displayed in Fig. 23. They show a linear dependence
of the octet and decuplet masses considered and a good
agreement with the experimentally observed hadron spec-
trum. An Nf ¼ 2þ 1 nonperturbatively improved single

step stout smeared clover action on a tree level Symanzik

improved gauge action was used for this study. Finite size

corrections are not yet applied.
There is also an ongoing effort to compute ground state

baryons with twisted mass fermions including a dynamical

strange quark. As the twisted mass formalism necessitates an
even number of fermion flavors (cf. Sec. II.D.3), these calcu-

lations also include a charm quark (Nf ¼ 2þ 1þ 1). First

preliminary results of this effort are reported by Drach et al.

(2010).
The RBC-UKQCD Collaboration recently performed a

pioneering calculation of the � and �0 masses using Nf ¼
2þ 1 flavor domain wall ensembles on an Iwasaki gauge

action (Christ et al., 2010). Three pion masses in the range

400–700 MeV with a single lattice spacing a� 0:11 fm on

latices with a spatial extent of L� 1:8 fm were used. A two
operator basis with gauge fixed wall sources was used to

extract the correlation functions. A mixing angle of � ¼
�9:2ð4:7Þ� and masses M� ¼ 583ð15Þ MeV and M�0 ¼
853ð123Þ MeV were found.

The Hadron Spectrum Collaboration used anisotropic lat-

tices in order to obtain a fine time resolution of the propa-

gators. These ensembles are mainly used to extract the highly
excited baryon spectrum. The lattice spacing in the time

direction is tuned to be smaller by a factor of �� 3:5 than

the lattice spacing in the spatial directions (Edwards, Joo, and

Lin, 2008). In their excited state spectroscopy studies (Lin

et al., 2009; Bulava et al., 2010; Dudek et al., 2011), they

employed Nf ¼ 2þ 1 anisotropic clover fermions on a tree

level tadpole improved Symanzik gauge action. A single

spatial lattice spacing as � 0:12 fm and three pion masses

in the range 390–530 MeV are used. The scale is set with

M�. A variational method based on a large number (6–10) of

specifically tailored interpolating operators is used to extract

the tower of excited states in the different channels. Results

are reported at three different pion masses and show a nice

overall qualitative agreement with the experimentally ob-

served excited hadron spectrum (see Fig. 24). They empha-
size the need for multihadron interpolating operators in order

to reliably identify scattering states. More recently, also the

spins of nucleon and � excitations up to spin 7=2 were also

identified by Edwards et al. (2011).
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paper. From Bulava et al., 2010, with permission of the Hadron Spectrum Collaboration.
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Ground and excited state meson spectra are also being
studied with overlap valence on dynamical domain wall
fermions. Some preliminary results can be found in Mathur
et al. (2010).

The quenched studies of Mahbub et al. (2009b, 2010a) and
Mahbub, Cais et al. (2010a) on the excited baryon spectrum,
especially the excited states of the nucleon, were recently
extended to Nf ¼ 2þ 1 dynamical configurations by

Mahbub et al., 2010b; Mahbub et al., 2010c). FLIC valence
fermions were used on the PACS-CS dynamical ensembles
discussed above. Large operator bases of up to eight were
used and signals for up to three excited states were identified.
The chiral behavior of both positive and negative nucleon
excitations was studied and some evidence was found for the
correct ordering of the negative parity ground state and the
Roper resonance as one approaches physical pion masses.

VI. CONCLUDING REMARKS

Although it has taken over 30 years from the formulation
of QCD as the theory of the strong force and Wilson’s lattice
regularization, it is fair to say that today we have a firm,
quantitative understanding of the most relevant part of its
particle content. It has taken so long to reach this level of
understanding because low energy QCD is a very rich and
nonperturbative theory. The mechanism of permanent quark
confinement and the subsequent emergence of a particle
spectrum that does not at all reflect the fundamental degrees
of freedom required the development of an entirely new set of
techniques that have now matured to a point where the
experimentally observed spectrum of ground state, light non-
singlet hadrons can be reproduced to an accuracy of a few
percent.

This quantitative understanding was gained in a process
that spanned several decades. Although the fundamental
theory and the general strategy toward its nonperturbative
first-principles solution was clear from the beginning, it
required a substantial amount of conceptual development
and physical insight.

It is however still not a trivial task today to obtain a precise
prediction with fully controlled uncertainties from QCD in
the regime where it is a strongly coupled gauge theory. One
needs to be careful of optimizing all aspects of the calculation
to such a degree that no single one of them fully dominates
the total error, while at the same time keeping the formalism
simple and transparent enough that computations are man-
ageable in a reasonable amount of time. While ground state
nonsinglet hadron masses can be computed to a few percent
accuracy today, reaching the same level of precision for
excited states or singlet hadrons is still a challenging task.
There has been substantial progress regarding the extraction
of excited states and disconnected diagram contributions and
the current understanding is approaching the precision level.
A detailed treatment of resonant finite-volume effects, the
continuum extrapolation, and even reaching the physical
point is work currently in progress.

Lattice calculations of the ground state, nonsinglet hadron
masses are currently trying to enter the subpercent level
precision region. In order to reach this goal, the next chal-
lenges involve a first-principles treatment of electromagnetic

and isospin breaking effects as well as an improved treatment
of finite-volume effects in the case of resonant states.

In spite of these many open questions and future chal-
lenges, we believe, however, that the percent level under-
standing of relevant parts of the light hadron spectrum with
fully controlled systematic uncertainties that has been
achieved by lattice QCD is a milestone that marks the overall
maturity of the method. While many interesting problems
such as excited state spectroscopy still require substantial
work, lattice QCD today represents a reliable tool of extract-
ing from first-principles properties of a strongly coupled
quantum field theory.
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