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Numerous correlated electron systems exhibit a strongly scale-dependent behavior. Upon lowering

the energy scale, collective phenomena, bound states, and new effective degrees of freedom emerge.

Typical examples include (i) competing magnetic, charge, and pairing instabilities in two-

dimensional electron systems; (ii) the interplay of electronic excitations and order parameter

fluctuations near thermal and quantum phase transitions in metals; and (iii) correlation effects

such as Luttinger liquid behavior and the Kondo effect showing up in linear and nonequilibrium

transport through quantum wires and quantum dots. The functional renormalization group is a

flexible and unbiased tool for dealing with such scale-dependent behavior. Its starting point is an

exact functional flow equation, which yields the gradual evolution from a microscopic model action

to the final effective action as a function of a continuously decreasing energy scale. Expanding in

powers of the fields one obtains an exact hierarchy of flow equations for vertex functions.

Truncations of this hierarchy have led to powerful new approximation schemes. This review is a

comprehensive introduction to the functional renormalization group method for interacting Fermi

systems. A self-contained derivation of the exact flow equations is presented and frequently used

truncation schemes are described. Reviewing selected applications it is shown how approximations

based on the functional renormalization group can be fruitfully used to improve our understanding

of correlated fermion systems.
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I. INTRODUCTION

A. Motivation

The Coulomb interaction between electrons in solids leads
to a virtually unlimited variety of phenomena, such as mag-
netic correlations and magnetic order, high-temperature
superconductivity, metal-insulator transitions, phase separa-
tion and stripes, and the formation of exotic quantum liquid
phases. The latter include Luttinger liquids, quantum critical
points, and fractional quantum Hall states.

Interacting electron systems usually exhibit very distinct
behavior on different energy scales. Composite objects and
collective phenomena emerge at scales far below the bare
energy scales of the microscopic Hamiltonian. For example,

in cuprate high-temperature superconductors one bridges
3 orders of magnitude from the highest scale, the bare
Coulomb interaction, via the intermediate scale of short-
range magnetic correlations, down to the lowest scale of
d-wave superconductivity (SC) and other ordering phe-
nomena (see Fig. 1).

This diversity of scales is a major obstacle to a straightfor-
ward numerical solution of microscopic models, since the
most interesting phenomena emerge only at low temperatures
and in systems with a large size. It is also hard to deal with by
conventional many-body methods, if one tries to treat all
scales at once and within the same approximation, for ex-
ample, by summing a subclass of Feynman diagrams.
Perturbative approaches which do not separate different
scales are plagued by infrared divergences and are therefore
often inapplicable even at weak coupling, especially in low
dimensions.

It is thus natural to treat degrees of freedom with different
energy scales successively, descending step by step from
higher to lower scales. This is the main idea behind the
renormalization group (RG).

B. RG for interacting Fermi systems

Renormalization group methods have a long tradition in
the theory of interacting Fermi systems. Already in the 1970s,
various versions of the RG have been used to deal with
infrared singularities arising in one-dimensional Fermi sys-
tems (Sólyom, 1979). Naturally, the RG was also applied to
(mostly bosonic) effective field theories describing critical
phenomena at continuous classical or quantum phase transi-
tions in interacting Fermi systems (Fradkin, 1991; Sachdev,
1999).

Renormalization group approaches dealing with interact-
ing fermions in arbitrary dimensions d were developed much
later. Because of the extended (not pointlike) geometry of the
Fermi surface singularity in dimensions d > 1, the renormal-
ization group flow cannot be reduced to a finite number of
running couplings. However, the main reason for the delayed
development of a comprehensive RG approach for interacting
Fermi systems in higher dimensions was probably not this
difficulty, but rather a lack of motivation. The few infrared
singularities appearing in three-dimensional Fermi systems
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FIG. 1 (color online). Important energy scales in high-temperature

superconductors of the cuprate family. Magnetic interactions and

superconductivity are generated from the kinetic energy (hopping)

and the Coulomb repulsion.
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could usually be handled by simple resummations of pertur-

bation theory (Abrikosov, Gorkov, and Dzyaloshinski, 1963;
Nozières, 1964). Triggered by the issue of non-Fermi-liquid

behavior in two-dimensional systems, and the related discus-

sion on the validity of perturbation theory, systematic RG
approaches to interacting Fermi systems in arbitrary dimen-

sions were developed by various groups in the early 1990s.
Aiming at mathematical control of interacting Fermi sys-

tems, Feldman and Trubowitz (1990, 1991), and indepen-

dently Benfatto and Gallavotti (1990a, 1990b) formulated a

rigorous fermionic version of Wilson’s momentum-shell RG
(Wilson and Kogut, 1974). Important rigorous results have

indeed been obtained in one-dimensional (Benfatto et al.,

1994) and two-dimensional (Feldman et al., 1992, Feldman,
Salmhofer, and Trubowitz, 1996; Disertori and Rivasseau,

2000; Feldman, Knörrer, and Trubowitz, 2003, 2004;

Benfatto, Giuliani, and Mastropietro, 2006) systems. The
essential message from these results is that no hitherto un-

known instabilities or nonperturbative effects occur in Fermi

systems with sufficiently weak short-range interactions, at
least in the absence of special features such as van Hove

singularities at the Fermi level.
The Wilsonian RG for interacting Fermi systems was

popularized among (nonmathematical) physicists by

Shankar (1991, 1994) and Polchinski (1993), who presented

some of the main ideas in a pedagogical style. In particular,
they provided an intuitive RG perspective of Fermi-liquid

theory. Subtleties associated with the singularities of the

interaction vertex for forward scattering were clarified a bit
later (Chitov and Sénéchal, 1995; Metzner, Castellani, and Di

Castro, 1998). A Hamiltonian-based RG interpretation of

Fermi-liquid theory was presented by Hewson (1994), who
discussed not only translation-invariant systems but also

models for magnetic impurities in metals.
As an alternative to the Wilsonian RG one can also use

flow equations for Hamiltonians based on infinitesimal uni-
tary transformations, which make the Hamiltonian succes-

sively more diagonal (Wegner, 1994). This approach has been
used successfully for quantum impurity models and other

systems (Kehrein, 2006). A weak-coupling truncation of the

flow equations has been applied to identify instabilities of the
two-dimensional Hubbard model (Grote, Körding, and

Wegner, 2002).
There is much current interest in RG methods for corre-

lated fermions in nonequilibrium. The perturbative RG
(Rosch, Kroha, and Wölfle, 2001; Mitra et al., 2006),

Wilson’s numerical RG (Anders and Schiller, 2005), as well

as Wegner’s flow-equation approach (Kehrein, 2006) were
extended to nonequilibrium, and real-time RG methods were

developed (Schoeller, 2000, 2009; Schoeller and König,

2000).

C. Functional renormalization group

The Wilsonian RG is not only useful for a deeper and
partially even rigorous understanding of interacting fermion

systems. A specific version of Wilson’s RG known as exact or

functional RG turned out to provide a valuable framework
for computational purposes. Approximations derived from

exact functional flow equations have played an increasingly

important role in the last decade. These developments are

the central topic of this review.
Exact flow equations describe the evolution of a generating

functional for all many-particle Green or vertex functions as a
function of a flow parameter �, usually an infrared cutoff.

They can be derived relatively easily from a functional
integral representation of the generating functional. Exact

flow equations have been known since the early years of

the RG, starting with the work of Wegner and Houghton
(1973). Polchinski (1984) employed an exact flow equation

to formulate a relatively simple proof of renormalizability of
the �4 theory in four dimensions. Renormalizability proofs

can be further simplified by using a Wick-ordered variant of
Polchinski’s equation (Wieczerkowski, 1988).

For computational purposes the exact flow equation for the
effective action, first derived in the context of bosonic field

theories by Wetterich (1993), turned out to be most conve-

nient. The effective action ��½�� is the generating functional
for one-particle irreducible vertex functions. The latter are

obtained by taking derivatives with respect to the source field
�. The flow parameter � describes a regularization of the

underlying bare action, which regularizes infrared divergen-
cies in perturbation theory. The regularization is removed at

the end of the flow, say for � ! 0. The initial regulator (for
� ¼ �0) can be chosen such that �

�0½�� is given by the bare
action. The flow of ��½�� then provides a smooth interpola-
tion between the bare action of the system and the final

effective action �½��, from which any desired information
can be extracted. This flow is determined by an exact func-

tional differential equation (Wetterich, 1993; Ellwanger and
Wetterich, 1994; Morris, 1994). Expanding in the fields one

obtains a hierarchy of flow equations for the one-particle
irreducible vertex functions. The advantage of that hierarchy

compared to others, obtained, for example, from Polchinski’s
equation, is that self-energy feedback is included automati-

cally and no one-particle reducible terms appear.
The expression functional RG stems from the feature in

which the exact flow equations describe the flow of a func-

tional or (equivalently) of a hierarchy of functions. An im-
portant difference compared to Wilson’s original formulation

is that a complete set of source fields is kept in the flowing
generating functionals, not only those corresponding to scales

below �. Hence, the full information on the properties of the
system remains accessible, not only the low energy or long

wavelength behavior.
Exact flow equations can be solved exactly only in special

cases, where the underlying model can also be solved exactly,

and more easily, by other means.1 However, the functional
RG is a valuable source for devising powerful new approxi-

mation schemes, which can be obtained by truncating the
hierarchy and/or by a simplified parametrization of the Green

or vertex functions. These approximations have several dis-
tinctive advantages: (i) they have a renormalization group

structure built in, that is, scales are handled successively and
infrared singularities are thus treated properly; (ii) they can be

applied directly to microscopic models, not only to effective

1An instructive example is provided by the exact solution of the

Tomonaga-Luttinger model via functional RG flow equations

(Schütz, Bartosch, and Kopietz, 2005).
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field theories which capture only some asymptotic behavior;

(iii) they are physically transparent, for example, one can see
directly how and why new correlations form upon lowering

the scale; and (iv) one can use different approximations at

different scales. Small steps from a scale � to a slightly
smaller scale�0 are much easier to control than an integration

over all degrees of freedom in one shot, and one can take
advantage of the flexibility provided by the choice of a

suitable flow parameter.
Approximations derived from exact flow equations have

been applied in many areas of quantum field theory and

statistical physics (Berges, Tetradis, and Wetterich, 2002).

In the context of interacting Fermi systems, functional RG
methods were first used for an unbiased stability analysis of

the two-dimensional Hubbard model (Zanchi and Schulz,

1998, 2000; Halboth and Metzner, 2000a; Honerkamp
et al., 2001). Since then, approximations derived within the

functional RG framework have been applied to numerous
interacting fermion systems.

D. Scope of the review

This review provides a thorough introduction to the func-
tional RG in the context of interacting Fermi systems. It

serves as a manual and reference for many-body theorists
who want to apply approximations based on the functional

RG to their own problem of interest. We first describe the

functional RG framework and derive, in particular, the exact
flow equations, which are the starting point for approxima-

tions. We discuss general aspects related to the flow equations

such as the choice of cutoffs, power counting, and truncations.
Links to the use of flow equations in the mathematical litera-

ture are pointed out along the way. We then review some of
the most interesting applications of truncated functional RG

equations. Our aim is not to deliver an exhaustive overview of

all applications, but rather to show via selected applications
how the functional RG method can be fruitfully used.

The functional RG was recently extended to Fermi systems

out of equilibrium (Jakobs, 2003; Gezzi, Pruschke, and
Meden, 2007; Jakobs, Meden, and Schoeller, 2007; Jakobs,

Pletyukhov, and Schoeller, 2010a, 2010b; Karrasch et al.,

2010; Karrasch, Pletyukhov et al., 2010). In the derivation of
the flow equations in Sec. II we restrict ourselves to the

equilibrium formalism. Functional RG flow equations for
nonequilibrium Keldysh Green and vertex functions can be

derived in close analogy (Jakobs, 2003, 2010; Gezzi,

Pruschke, and Meden, 2007; Karrasch, 2010). The necessary
extensions are briefly mentioned when discussing the appli-

cation of this method to finite bias steady-state transport

through correlated quantum wires and quantum dots in
Sec. VI.

A number of reviews with a focus on the functional RG are

already available. Mathematically rigorous developments un-
til the end of the last millenium were summarized by

Salmhofer (1999), who dedicated a large portion to interact-

ing Fermi systems. Examples of approximations derived from
the exact flow equation for the effective action with many

applications in quantum field theory and statistical physics
were presented by Berges, Tetradis, and Wetterich (2002). A

detailed introduction to the functional RG in a textbook style

supplemented by selected applications (including Fermi sys-
tems) can be found in Kopietz, Bartosch, and Schütz (2010).

II. FUNCTIONAL FLOW EQUATIONS

In this section we present the general functional RG frame-
work. The reader should be familiar with the functional
integral formalism for quantum many-body systems, as de-
scribed by Negele and Orland (1987). After introducing the
generating functionals for Green and vertex functions in
Sec. II.A, we derive the exact functional flow equations in
Sec. II.B. The flow equation (35) for the effective action �� is
the central equation of this review. Expanding in the fields we
derive the hierarchy of flow equations for vertex functions in
Sec. II.C, which is the starting point for approximations.
Possible choices of flow parameters are reviewed in
Sec. II.D. The general structure of the RG hierarchy and
power counting are discussed in Sec. II.E, with various
references to the closely related mathematical literature.
Section II.F is dedicated to flow equations for observables
and correlation functions. Coupled flow equations for fermi-
ons and bosons, which are useful for studies of spontaneous
symmetry breaking and quantum criticality, are derived in
Sec. II.G.

A. Generating functionals

We consider a system of interacting fermions which can be
described by Grassmann fields c , �c , and an action of the
form

S½c ; �c � ¼ �ð �c ; G�1
0 c Þ þ V½c ; �c �; (1)

where V½c ; �c � is an arbitrary many-body interaction, and G0

is the propagator of the noninteracting system. The bracket
(.,.) is a shorthand notation for the sum

P
x
�c ðxÞðG�1

0 c ÞðxÞ,
where ðG�1

0 c ÞðxÞ ¼ P
x0G

�1
0 ðx; x0Þc ðx0Þ. The Grassmann

field index x collects the quantum numbers of a suitable
single-particle basis set and imaginary time or frequency. In
case of continuous variables, the sum over x includes the
appropriate integrals. Prefactors such as temperature or vol-
ume factors depend on the representation (e.g., real or mo-
mentum space) and are therefore not written in this general
part. A two-particle interaction has the general form

V½c ; �c � ¼ 1

4

X
x1 ;x2
x0
1
;x0
2

Vðx01; x02; x1; x2Þ �c ðx01Þ �c ðx02Þc ðx2Þc ðx1Þ:

(2)

In particular, for spin- 12 fermions with a single-particle

basis labeled by momentum k and spin orientation �, one
has x ¼ ðk0;k; �Þ, where k0 is the fermionic Matsubara
frequency. If the bare part of the action is translation
and spin-rotation invariant, the bare propagator has the
diagonal and spin-independent form G0ðx; x0Þ ¼
�k0k

0
0
�kk0���0G0ðk0;kÞ with

G0ðk0;kÞ ¼ 1

ik0 � �k

; (3)
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where �k ¼ �k �� is the single-particle energy relative to
the chemical potential.

Connected Green functions can be obtained from the gen-
erating functional (Negele and Orland, 1987)

G½�; ��� ¼ � ln
Z

DcD �c e�S½c ; �c �eð ��;c Þþð �c ;�Þ; (4)

where
R
DcD �c � � � ¼ RQ

xdc ðxÞd �c ðxÞ � � � . Completing

squares yields the identity

Z
DcD �c eð �c ;G�1

0
c Þeð ��;c Þþð �c ;�Þ ¼ Z0e

ð� ��;G0�Þ; (5)

where Z0 ¼
R
DcD �c eð �c ;G�1

0
c Þ is the partition function of

the noninteracting system. Hence G½�; ��� ¼ � lnZ0 þ
ð ��;G0�Þ in the noninteracting case V½c ; �c � ¼ 0. For vanish-
ing source fields, G½0; 0� ¼ � lnZ, where

Z ¼
Z

DcD �c e�S½c ; �c � (6)

is the partition function of the interacting system. The con-
nected m-particle Green functions are given by

Gð2mÞðx1; . . . ;xm;x01; . . . ;x0mÞ
¼�hc ðx1Þ���c ðxmÞ �c ðx0mÞ��� �c ðx01Þic
¼ð�1Þm @2mG½�; ���

@ ��ðx1Þ���@ ��ðxmÞ@�ðx0mÞ���@�ðx01Þ
���������; ��¼0

;

(7)

where h� � �ic is the connected average of the product of
Grassmann variables between the brackets. The one-particle
Green function Gð2Þ is the propagator of the interacting
system, which we usually denote without the superscript by
G. Expanding G½�; ��� in the fields yields a formal power
series with the connected Green functions as coefficients,

G½�; ���
¼� lnZþð ��;G�Þþ 1

ð2!Þ2
X

x1;x2;x
0
1
;x0

2

Gð4Þðx1; x2;x01; x02Þ

� ��ðx1Þ ��ðx2Þ�ðx02Þ�ðx01Þþ �� � : (8)

Renormalization group equations are most conveniently
formulated for the Legendre transform of G½�; ���, the
so-called effective action

�½c ; �c � ¼ ð ��; c Þ þ ð �c ; �Þ þ G½�; ���; (9)

with c ¼ �@G=@ �� and �c ¼ @G=@�, which generates
one-particle irreducible vertex functions (Negele and
Orland, 1987)

�ð2mÞðx01; . . . ; x0m; x1; . . . ; xmÞ

¼ @2m�½c ; �c �
@ �c ðx01Þ � � � @ �c ðx0mÞ@c ðxmÞ � � � @c ðx1Þ

��������c ; �c¼0
:

(10)

In the noninteracting case one obtains �½c ; �c � ¼ � lnZ0 �
ð �c ; G�1

0 c Þ. The Legendre correspondence between the

functionals G and � yields relations between the connected
Green functions Gð2mÞ and the vertex functions �ð2mÞ. In
particular,

�ð2Þ ¼ G�1 ¼ G�1
0 ��; (11)

where � is the self-energy. The connected two-particle Green
function is related to the two-particle vertex by

Gð4Þðx1; x2; x01; x02Þ
¼ X

y1;y2;y
0
1
;y0

2

Gðx1; y01ÞGðx2; y02Þ�ð4Þðy01; y02; y1; y2Þ

� Gðy1; x01ÞGðy2; x02Þ; (12)

while the three-particle Green function Gð6Þ ¼ G3�ð6ÞG3 þ
G3�ð4ÞG�ð4ÞG3 involves �ð4Þ and �ð6Þ. More generally, the
connected m-particle Green functions are obtained by adding
all possible trees that can be formed with vertex functions of
equal or lower order and G lines (Negele and Orland, 1987).

The effective action obeys the reciprocity relations

@�

@c
¼ � ��;

@�

@ �c
¼ �: (13)

The second functional derivatives of G and � with respect to
the fields are also reciprocal (Negele and Orland, 1987). We
define the matrices of second derivatives at finite fields as

Gð2Þ½�; ��� ¼ �
@2G

@ ��ðxÞ@�ðx0Þ � @2G
@ ��ðxÞ@ ��ðx0Þ

� @2G
@�ðxÞ@�ðx0Þ

@2G
@�ðxÞ@ ��ðx0Þ

0
B@

1
CA

¼ � hc ðxÞ �c ðx0Þi hc ðxÞc ðx0Þi
h �c ðxÞ �c ðx0Þi h �c ðxÞc ðx0Þi

 !
(14)

and

�ð2Þ½c ; �c � ¼
@2�

@ �c ðx0Þ@c ðxÞ
@2�

@ �c ðx0Þ@ �c ðxÞ
@2�

@c ðx0Þ@c ðxÞ
@2�

@c ðx0Þ@ �c ðxÞ

0
@

1
A

¼
�@@�½c ; �c �ðx0; xÞ �@ �@�½c ; �c �ðx0; xÞ
@@�½c ; �c �ðx0; xÞ @ �@�½c ; �c �ðx0; xÞ

 !
;

(15)

where the matrix elements in the second matrix of the last
equation are just a more convenient notation for those in the
first matrix. The reciprocity relation for the second deriva-
tives reads

�ð2Þ½c ; �c � ¼ ðGð2Þ½�; ���Þ�1: (16)

Note that anomalous components are involved as long as the
source fields are finite. Only at � ¼ �� ¼ 0 and c ¼ �c ¼ 0,
and in the absence of Uð1Þ charge symmetry breaking one has
the simple relation �ð2Þ ¼ ðGð2ÞÞ�1.

Another useful generating functional is the effective inter-
action (Salmhofer, 1999)

V ½�; ��� ¼ � ln

�
1

Z0

Z
DcD �c eð �c ;G�1

0
c Þe�V½cþ�; �cþ ���

�
:

(17)

A simple substitution of variables yields
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V ½�; ��� ¼ G½�; ��� þ lnZ0 � ð ��;G0�Þ; (18)

where � ¼ G0� and �� ¼ Gt
0 ��. Here Gt

0 is the transposed

bare propagator, that is, Gt
0ðx; x0Þ ¼ G0ðx0; xÞ. Hence, func-

tional derivatives of V ½�; ��� with respect to � and �� gen-
erate connected Green functions with bare propagators
amputated from external legs in the corresponding
Feynman diagrams. The term lnZ0 � ð ��;G0�Þ cancels the
noninteracting part of G½ ��;�� such that V ½�; ��� ¼ 0 for
V½c ; �c � ¼ 0. The effective interaction V can also be ex-
pressed via functional derivatives, instead of a functional
integral:

e�V ½�; ��� ¼ 1

Z0

Z
DcD �c eð �c ;G�1

0
c Þe�V½cþ�; �cþ ���

¼ 1

Z0

e�V½@ ��;@��
Z

DcD �c eð �c ;G�1
0

c Þ

� eð ��;cþ�Þþð�; �cþ ��Þ
���������; ��¼0

¼ e�V½@ ��;@��eð ��;G0�Þeð ��;�Þþð�; ��Þ
���������; ��¼0

¼ e�V½@ ��;@��eð@�;G0@ ��Þeð ��;�Þþð�; ��Þ
���������; ��¼0

¼ e�G0 e�V½�; ���; (19)

with the functional Laplacian

�G0
¼ ð@�;G0@ ��Þ ¼

X
x;x0

@

@�ðxÞG0ðx; x0Þ @

@ ��ðx0Þ : (20)

It is sometimes convenient (see Sec. II.G) to combine the
fields c and �c in a Nambu-type field

�ðxÞ ¼ c ðxÞ
�c ðxÞ

 !
; (21)

and similarly for the source fields � and ��,

HðxÞ ¼ �ðxÞ
� ��ðxÞ

 !
: (22)

The minus sign in the definition of H makes sure that the
source term ð ��; c Þ þ ð �c ; �Þ appearing in the definition of G,
and also in the Legendre transform relating G and �, can be
written concisely as ð �H;�Þ. In Nambu notation, the matrices
of second derivatives of G and � have the compact form

Gð2Þ½H� ¼ � @2G
@ �HðxÞ@Hðx0Þ (23)

and

�ð2Þ½�� ¼ @2�

@ ��ðx0Þ@�ðxÞ ; (24)

respectively.

B. Exact fermionic flow equations

In this section we derive exact flow equations describing
the evolution of the generating functionals defined above,
as a function of a flow parameter � which parametrizes a

modification of the bare propagator G0. Usually � is an
infrared cutoff or another scale dependence. For example,
in a translation-invariant system one may impose a momen-
tum cutoff, modifying G0 to

G�
0 ðk0;kÞ ¼

	�ðkÞ
ik0 � �k

; (25)

where 	�ðkÞ is a function that vanishes for j�kj � � and
tends to one for j�kj � �. In this way the infrared singularity
of the propagator at k0 ¼ 0 and �k ¼ 0 (corresponding to
the noninteracting Fermi surface in k space) is cut off at the
scale �. A simple choice for 	�ðkÞ, which was often used in
numerical solutions of truncated flow equations, is

	�ðkÞ ¼ �ðj�kj ��Þ; (26)

where � is the step function. With this choice momenta
close to the Fermi surface are strictly excluded, as illustrated
in Fig. 2 for a two-dimensional lattice fermion system.

Alternatively, one may also use a smooth cutoff function.
In the absence of translation invariance it is more convenient
to use a frequency cutoff instead of a momentum cutoff. The
cutoff excludes ’’soft modes’’ below the scale � from the
functional integral. Instead of a cutoff one can also choose
other flow parameters such as temperature. The various pos-
sibilities will be discussed more extensively in Sec. II.D. For
the derivation of the flow equations it does not matter howG�

0

depends on �.
The bare action constructed with G�

0 (instead of G0) is

denoted by S�½c ; �c �, and the generating functionals intro-
duced in Sec. II.A by G�½�; ���, V�½�; ���, and ��½c ; �c �,
respectively. The original functionals G,V , and � are recov-
ered in the limit � ! 0.

In the presence of a cutoff, Eq. (19) becomes

e�V� ¼ e
�

G�
0 e�V: (27)

At the highest energy scale �0 one has G
�0

0 ¼ 0, and thus

V�0 ¼ V. Hence, V� interpolates smoothly between the
bare interaction V and the generating functional V .
Introducing the soft mode propagator

�G�
0 ¼ G0 � G�

0 ; (28)

which has support on scales below �, we write

−π
−π 0 π

0

k y

k x

π

FIG. 2 (color online). Momentum space region around the Fermi

surface excluded by a sharp momentum cutoff for fermions with a

tight-binding dispersion on a two-dimensional square lattice

(lattice constant ¼ 1).
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e�V ¼ e�G0 e�V ¼ e
� �G�

0

þ�
G�
0 e�V ¼ e

� �G�
0 e�V�

: (29)

V� obviously plays a dual role: It is the generating func-
tional for (amputated) Green functions of a system with a
cutoff �, and at the same time the interaction for the remain-
ing low-energy degrees of freedom (Morris, 1994; Salmhofer,
1999).

The effective interaction satisfies the following exact re-
normalization group equation (Brydges and Wright, 1988;
Salmhofer, 1999):

d

d�
V�½�; ��� ¼ �

�
@V�

@�
; _G�

0

@V�

@ ��

�
� tr

�
_G�
0

@2V�

@ ��@�

�
;

(30)

where _G�
0 ¼ d

d�G
�
0 and tr denotes the trace trA ¼ P

xAðx; xÞ.
Its derivation is simple:

d

d�
V� ¼ �eV

� d

d�
e�V�

¼ �eV
� d

d�
ðe�G�

0 e�VÞ
¼ �eV

�
� _G�

0
e�V�

¼ right-hand side of Eq. ð30Þ:
In the second step we used Eq. (27). With the initial condition

V�0½�; ��� ¼ V½�; ���; (31)

the RG equation determines the flow of V� uniquely for all

�<�0. The initial value �0 must be chosen such that G
�0

0

vanishes. For a sharp momentum cutoff, �0 can be chosen as
the maximal value of j�kj; for a frequency cutoff �0 ¼ 1.

An expansion of the functional V�½�; ��� in the renormal-
ization group equation (30) in powers of � and �� leads to the
fermionic analog of Polchinski’s flow equations for ampu-
tated connected m-particle Green functions Vð2mÞ�
(Polchinski, 1984).

From the flow equation for V�, Eq. (30), and Eq. (18)
applied to V� and G�, one obtains an exact flow equation
for G�:

d

d�
G�½�; ��� ¼

�
@G�

@�
; _Q�

0

@G�

@ ��

�
þ tr

�
_Q�
0

@2G�

@ ��@�

�
;

(32)

where Q�
0 ¼ ðG�

0 Þ�1 and the dot denotes a � derivative.

This flow equation can also be derived more directly by
applying a � derivative to the functional integral represen-
tation of G�.

The flow equations for Gð2mÞ� and Vð2mÞ� generate, among
others, one-particle reducible terms, which require some
special care. In this respect the flow equations for one-particle
irreducible vertex functions �ð2mÞ�, obtained from the scale-
dependent effective action,

��½c ; �c � ¼ ð ���; c Þ þ ð �c ; ��Þ þ G�½��; ����; (33)

are easier to handle. Note that �� and ��� are �-dependent
functions of c and �c , as they are determined by the
�-dependent equations c ¼ �@G�=@ �� and �c ¼ @G�=@�.
Since the � dependence does not change the structure of the

action as a function of the fields, all standard relations
between the connected Green functions Gð2mÞ and the vertex
functions �ð2mÞ carry over to the ones for Gð2mÞ� and �ð2mÞ�.

The � derivative of �� can be written as

d

d�
��½c ; �c � ¼

�
d

d�
���; c

�
þ
�
�c ;

d

d�
��

�

þ d

d�
G�½��; ����;

where the derivative in front of G� acts also on the
� dependence of �� and ���. Because of the relations
@G�=@� ¼ �c and @G�=@ �� ¼ �c , most terms cancel and
one obtains

d

d�
��½c ; �c � ¼ d

d�
G�½��; ����

���������� ; ��� fixed
: (34)

Inserting the flow equation (32) for G� and using the reci-
procity relations (13) and (16), one obtains the exact func-
tional flow equation for the effective action

d

d�
��½c ; �c � ¼�ð �c ; _Q�

0 c Þ� 1

2
trf _Q�

0 ð�ð2Þ�½c ; �c �Þ�1g:
(35)

Here �ð2Þ�½c ; �c � is the matrix of second functional deriva-
tives defined in Eq. (15), and

Q�
0 ¼ Q�

0 0

0 �Q�t
0

 !
¼ diagðQ�

0 ;�Q�t
0 Þ; (36)

where Q�t
0 ðx; x0Þ ¼ Q�

0 ðx0; xÞ.
Alternative definitions of the effective action ��, differing

by interaction-independent terms, have also been used. One
variant is to normalize the functional integral defining G� at
V ¼ 0, dividing byZ�

0 . This yields an additional contribution

lnZ�
0 to G� and to its Legendre transform ��. In the flow

equation for �� this leads to an additional term trð _Q�
0 G

�
0 Þ,

which is field independent and therefore does not couple to
the other contributions (Salmhofer and Honerkamp, 2001).
Another variant is (Ellwanger and Wetterich, 1994; Berges,
Tetradis, and Wetterich, 2002)

��
R ½c ; �c � ¼ ��½c ; �c � þ ð �c ; R�c Þ; (37)

where R� ¼ Q�
0 �Q0. The additional quadratic term cancels

the first (trivial) term in the flow equation (35) for ��, and one
obtains the equivalent flow equation

d

d�
��
R ½c ; �c � ¼ � 1

2
trf _R�ð�ð2Þ�

R ½c ; �c � þR�Þ�1g;
(38)

where R� ¼ diagðR�;�R�tÞ. The functional ��
R and its

anolog for bosonic fields is known as effective average action
in the literature (Berges, Tetradis, and Wetterich, 2002). Both
��
R and �� tend to the same effective action � in the limit

� ! 0, where R� vanishes. At the initial scale �0, one has

�
�0

R ½c ; �c � ¼ S½c ; �c �, while
��0½c ; �c � ¼ �ð �c ; Q

�0

0 c Þ þ V½c ; �c � ¼ S�0½c ; �c �
¼ S½c ; �c � � ð �c ; R�0c Þ: (39)
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Hence, ��
R has the attractive feature that it interpolates

smoothly between the (unregularized) bare action S and the
final effective action �, while �� interpolates between
the regularized bare action S�0 and �. On the other hand,
the functional �� has the advantage that its second functional
derivative directly yields the inverse propagator ðG�Þ�1 with-
out the need to add R�.

In Appendix A we present another version of exact flow
equations, based on aWick-ordered effective interaction. That
version also contains one-particle reducible contributions, but
it has the distinct advantage that the vertices are connected by
propagators with an energy scale at or below �. This facil-
itates a systematic power counting (Salmhofer, 1999), and
also a numerical evaluation of flow equations, since the
integration regions shrink upon lowering �.

It is instructive to compare the functional RG flow equa-
tions with the traditional Wilsonian momentum-shell RG
(Wilson and Kogut, 1974), which was applied to Fermi
systems by Shankar (1991, 1994) and Polchinski (1993). In
the commonly used version of Wilson’s RG, the flow of the
effective action is computed only for soft fields, that is, for
fields with energy or momentum variables below the scale �,
while in the functional RG the effective action with unre-
stricted source fields is computed. This allows for a direct
calculation of correlation functions with arbitrary external
variables such as momenta or Matsubara frequencies.
Furthermore, in the traditional implementations of Wilson’s
RG the integration of degrees of freedom is combined with a
rescaling of momenta and fields, which is chosen such that
the momentum space and certain terms in the quadratic part
of the action remain invariant during the flow. This facilitates
the classification of interactions as relevant, marginal, or
irrelevant, and helps to identify fixed points of the flow.
The functional RG flow equations derived above do not
involve any rescaling. Rescaling momentum space in a shell
around the Fermi surface requires a nonlinear transformation
in dimensions d > 1, which spoils the simple linear form of
momentum conservation (Shankar, 1994; Metzner,
Castellani, and Di Castro, 1998; Kopietz and Busche,
2001), and is therefore of questionable value. Power counting
can be done also without rescaling, as shown in Sec. II.E.
Rescaling of the fields can be implemented easily by a simple
substitution of variables (Shankar, 1994; Kopietz and Busche,
2001). However, in many applications of the functional RG,
quantitative results including power laws with anomalous
scaling dimensions are obtained simply by direct calculation
of the (unscaled) physical quantities.

C. Expansion in the fields

1. Hierarchy of flow equations

The functional flow equation for the effective action can be
expanded in powers of the fields. To this end we expand the
effective action as

��½c ; �c � ¼ X1
m¼0

Að2mÞ�½c ; �c �; (40)

where Að2mÞ�½c ; �c � is homogeneous of degree 2m in the
fields,

Að2mÞ�½c ; �c �¼ ð�1Þm
ðm!Þ2
� X

x1 ;...;xm
x0
1
;...;x0m

�ð2mÞ�ðx01; . . . ;x0m;x1; . . . ;xmÞ

� �c ðx01Þ��� �c ðx0mÞc ðxmÞ���c ðx1Þ;
(41)

for m � 1. The field-independent constant Að0Þ� yields the
grand canonical potential:

Að0Þ� ¼ T�1	�: (42)

Here we restored the explicit temperature factor, since it is
independent of the representation of the fields. To expand the
inverse of �ð2Þ� on the right-hand side of the flow equation,
we isolate the field-independent part of �ð2Þ� as

�ð2Þ�½c ; �c � ¼ ðG�Þ�1 � ~��½c ; �c �; (43)

where

G� ¼ ð�ð2Þ�½c ; �c �jc ; �c¼0Þ�1 ¼ diagðG�;�G�tÞ (44)

is the full propagator, and [cf. Eq. (15)]

~��½c ; �c � ¼�
�@@��½c ; �c � �@ �@��½c ; �c �
@@��½c ; �c � @ �@��½c ; �c �

 !
þðG�Þ�1:

(45)

Note that ~��½c ; �c � contains all contributions to �ð2Þ�½c ; �c �
which are at least quadratic in the fields. We now expand

ð�ð2Þ�Þ�1 ¼ ð1�G� ~��Þ�1G� as a geometric series.
Inserted into Eq. (35), this yields

d

d�
��½c ; �c � ¼ �trð _Q�

0 G
�Þ � ð �c ; _Q�

0 c Þ

þ 1

2
trfS�ð~��½c ; �c �

þ ~��½c ; �c �G� ~��½c ; �c � þ � � �Þg;
(46)

where

S� ¼ diagðS�;�S�tÞ ¼ �G� _Q�
0 G

�: (47)

Using the Dyson equation ðG�Þ�1 ¼ Q�
0 � ��, the so-called

single-scale propagator S� can also be written as a
� derivative of the propagator at fixed self-energy,

S� ¼ d

d�
G�

���������� fixed
: (48)

The expansion of the flow equation in powers of c , �c is now
straightforward and leads to a hierarchy of flow equations for
��, the two-particle vertex �ð4Þ�, and the higher-order verti-
ces �ð6Þ�, �ð8Þ�, etc. The first three equations in this hierarchy
are shown diagrammatically in Fig. 3. Note that only one-
particle irreducible one-loop diagrams contribute, and inter-
nal lines are dressed by self-energy corrections. The
hierarchy does not close at any finite order, since the flow
of each vertex �ð2mÞ� receives a contribution from a tadpole
diagram involving �ð2mþ2Þ�, and m-particle vertices with
arbitrary m are generated by the flow, irrespective of their
presence in the bare action.
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We now derive explicitly the first two flow equations from
the hierarchy. Comparing coefficients of quadratic contribu-
tions (proportional to �c c ) to the exact flow equation yields

d

d�
Að2Þ� ¼ �ð �c ; _Q�

0 c Þ � trðS� �@@Að4Þ�Þ: (49)

Inserting Eq. (41), and using �ð2Þ� ¼ Q�
0 ���, one obtains

the flow equation for the self-energy,

d

d�
��ðx0; xÞ ¼ X

y;y0
S�ðy; y0Þ�ð4Þ�ðx0; y0; x; yÞ: (50)

Comparing coefficients of quartic contributions [proportional
to ð �c c Þ2] yields

d

d�
Að4Þ� ¼ 1

2
trðS� �@@Að4Þ�G� �@@Að4Þ�

þ S�t@ �@Að4Þ�G�t@ �@Að4Þ�Þ

� 1

2
trðS� �@ �@Að4Þ�G�t@@Að4Þ�

þ S�t@@Að4Þ�G� �@ �@Að4Þ�Þ
� trðS� �@@Að6Þ�Þ: (51)

Inserting Eq. (41), one obtains the flow equation for the
two-particle vertex,

d

d�
�ð4Þ�ðx01; x02; x1; x2Þ

¼ X
y1;y

0
1

X
y2;y

0
2

G�ðy1; y01ÞS�ðy2; y02Þ

� f�ð4Þ�ðx01; x02; y1; y2Þ�ð4Þ�ðy01; y02; x1; x2Þ
� ½�ð4Þ�ðx01; y02; x1; y1Þ�ð4Þ�ðy01; x02; y2; x2Þ
þ ðy1 $ y2; y

0
1 $ y02Þ� þ ½�ð4Þ�ðx02; y02; x1; y1Þ

� �ð4Þ�ðy01; x01; y2; x2Þ þ ðy1 $ y2; y
0
1 $ y02Þ�g

�X
y;y0

S�ðy; y0Þ�ð6Þ�ðx01; x02; y0; x1; x2; yÞ: (52)

Note that there are several distinct contributions involving
two two-particle vertices, corresponding to the familiar

particle-particle, direct particle-hole, and crossed particle-
hole channels, respectively, as shown diagrammatically in
Fig. 4. Similarly, one can obtain the flow equation for �ð6Þ
and all higher vertices.

Since �½c ; �c � at c ¼ �c ¼ 0 is essentially (up to a factor
T) the grand canonical potential 	, the flow equation (35),
evaluated at vanishing fields, yields also a flow equation for
the grand canonical potential:

d

d�
	� ¼ �T trð _Q�

0 G
�Þ: (53)

The flow equation (35) and the ensuing equations for the
vertex functions can be easily generalized to cases with U(1)-
symmetry breaking by allowing for off-diagonal elements in
the matrices Q�

0 , G
�, and S�.

2. Truncations

The exact hierarchy of flow equations for the vertex func-
tions can be solved only for systems which can also be solved
more directly, that is, without using flow equations. Usually
truncations are unavoidable. A natural truncation is to neglect
the flow of all vertices �ð2mÞ� beyond a certain order m0. We
call this the level-m0 truncation. The structure of the resulting
equations and general properties of their solution will be
discussed in Sec. II.E. Note that the level-m0 truncation
contains all perturbative contributions to order m0 in the
bare two-particle interaction.

In practice, in applications to physically interesting sys-
tems, vertices �ð2mÞ� with m> 3 have so far been neglected,
and the contributions from �ð6Þ� to the flow of �ð4Þ� are
usually restricted to self-energy corrections (see below) or
discarded completely. In particular, the analysis of competing
instabilities (see Sec. III) is based entirely on a level-2
truncation given by the flow equation (52) for the two-particle
vertex, with �ð6Þ� replaced by zero, where the self-energy
feedback is also neglected. This seemingly simple approxi-
mation captures the complex interplay of fluctuations in the
particle-particle and particle-hole channel, which leads to
interesting effects such as the generation of d-wave super-
conductivity from antiferromagnetic fluctuations. In the
quantum transport phenomena reviewed in Sec. VI, the
self-energy as given by the flow equation (50) plays a crucial

ΓΛd
d

2

1 1’

2’

1

1

2 2

2 2

1’

2’ 2’1

1’

2’ 2’

1’ 1’

1

(4)Λ =

ph

ph’

pp

FIG. 4. Contributions to the flow of the two-particle vertex with

particle-particle and particle-hole channels written explicitly, with-

out the contribution from �ð6Þ�.

d
ΣΛ

d Λ

dΛ
d Γ(4)Λ

dΛ
d Γ(6)Λ

= Γ

SΛ

(4)Λ

S

GΛ

+

Λ

Γ(6)ΛΓΓ(4)Λ

=
(4)Λ

+

SΛ

+

Γ(6)Λ

=

Γ(4)Λ

Γ(4)Λ

Γ(4)Λ

SΛ

SΛ

Γ(8)Λ
GΛΓ(4)Λ

GΛ

SΛ
GΛ

FIG. 3 (color online). Diagrammatic representation of the flow

equations for the self-energy ��, the two-particle vertex �ð4Þ�, and
the three-particle vertex �ð6Þ� in the one-particle irreducible version

of the functional RG. Lines with a dash correspond to the single-

scale propagator S�, and the other lines to the full propagator G�.
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role. Some of the phenomena described there are already

obtained by a level-1 approximation where the flowing two-

particle vertex in Eq. (50) is approximated by the bare one.

That truncation might look like a Hartree-Fock approxima-

tion, but it is, in fact, different, and it works well in cases

where Hartree-Fock fails completely.
The truncated flow equations are still rather complicated.

They involve the flow of functions, not just a limited number

of running couplings. For example, the effective two-particle

interaction in a translation-invariant system is a function of

three independent momentum and energy variables. Hence, a

simplified parametrization of effective interactions is neces-

sary even for a numerical solution. A useful strategy is to

neglect dependences which become irrelevant in the low-

energy limit, that is, whose contributions to the flow scale

to zero.
Contributions to the effective action are called ‘‘relevant,’’

‘‘marginal,’’ and ‘‘irrelevant,’’ if their importance increases,

stays fixed, or decreases, respectively, upon lowering the

scale �. This classification can be obtained from power

counting. To this end, one traditionally considers a renormal-

ization group transformation where one rescales momenta

and fields after the integration over fields in a momentum

shell of width d� such that a certain quadratic part of the

action (the Gaussian fixed point) remains invariant (Wilson

and Kogut, 1974). From the behavior of the other terms of the

action under this transformation one can directly assess

whether they increase, remain invariant, or decrease com-

pared to the quadratic part.
For Fermi systems in dimensions d > 1 the conventional

RG transformation is not applicable, since the reduction of

momentum space by the mode elimination cannot be com-

pensated by a linear rescaling of momenta (Shankar, 1991,

1994). However, one can perform the power counting more

directly by estimating the scale dependences of Feynman

diagrams on the right-hand side of the flow equations. As

described in Sec. II.E.3, this can be done rigorously and to all

orders. At the crudest level the power counting is independent

of dimensionality and corresponds to what one would get

from the above-mentioned RG transformation applied to

one-dimensional systems (Shankar, 1994), that is, (i) the

self-energy has a relevant piece describing a Fermi surface

shift, while linear dependences on frequency and momentum

perpendicular to the Fermi surface are marginal; (ii) a regular

two-particle interaction is marginal; its dependences on fre-

quencies and momenta perpendicular to the Fermi surface are

irrelevant, such that one can parametrize it by its static value

on the Fermi surface; and (iii) regular m-particle interactions

with m � 3 are irrelevant. This basic classification does not

depend on dimensionality because the bare propagator G0,

Eq. (3), is singular on a (d� 1)-dimensional surface, such

that the codimension of the singularity in the (dþ 1)-
dimensional space spanned by momentum and frequency is

always two.
One should, however, not jump to the conclusion that the

m � 3 terms can simply be discarded from the RG hierarchy

in general. This is because effective interactions with m � 3
may diverge for small� even in the case of finite two-particle

interactions. For example, the first contribution to the flow of

�ð6Þ� in Fig. 3 generates a three-particle interaction of order

��1 if the external momenta add up to zero at each vertex.
When inserted into the equation for �ð4Þ� in Fig. 3, this may
give rise to a marginal term of third order in �ð4Þ�. For d ¼ 1,
this term is indeed marginal. However, if d � 2 and the Fermi
surface is curved, this and other contributions are suppressed
below the basic power-counting estimate due to geometri-
cally reduced integration volumes (Feldman and Trubowitz,
1990; Shankar, 1994). This improved power counting is
described in Appendix B.3. It can also be used to give a
precise, scale-dependent meaning to nesting of the Fermi
surface.

A less obvious effect is that this improvement becomes
uniform, that is, independent of the external momenta, in
graphs with overlapping loops (Feldman, Salmhofer, and
Trubowitz, 1996; Salmhofer, 1998a), so that their contribu-
tion gets further suppressed (see also Appendix B.3). It is this
effect which implies that the derivative of the self-energy is
not marginal, but irrelevant for curved Fermi surfaces in
dimension d � 2. Moreover, it justifies truncated flows be-
yond the weak-coupling regime, as follows. Consider
again the first contribution to the flow of �ð6Þ�, shown also
in Fig. 5(a). When this term is inserted into the equation for
�ð4Þ�, the two lines can be joined in two ways, shown in
Figs. 5(b) and 5(c). Figure 5(b) gets no extra small factor, but
Fig. 5(c) has overlapping loops and for positively curved
Fermi surfaces in d ¼ 2, its contribution gets suppressed by
an additional small factor �ð�=�IÞ logð�I=�Þ at scales
below a scale �I, which depends only on the geometry of
the constant energy surfaces of the initial dispersion �k
(Feldman, Salmhofer, and Trubowitz, 1998). This suppres-
sion holds uniformly for all values of the external momenta.
For d ¼ 3, a similar bound holds, without the logarithm.
Similar (in general, weaker) estimates are shown in
Feldman, Salmhofer, and Trubowitz (1996) for general
non-nested regular Fermi surfaces in d � 2 and for
Fermi surfaces with van Hove singularities in Feldman
and Salmhofer (2008a, 2008b). The contribution from
Fig. 5(c) remains small compared to the second-order
term if j�ð4Þ�jð�=�IÞ logð�I=�Þ is small. Note that this
condition does not require j�ð4Þ�j itself to be small: curvature
effects justify dropping these terms beyond the weak-
coupling regime, provided that the above condition is satis-
fied. This will be used in Sec. III. The detailed argument and a
discussion of the consequences for the functional RG flow are
given in Secs. 1 and 5 of Salmhofer and Honerkamp (2001).

In the theory of interacting Fermi systems, one is not only
interested in low-energy fixed points and scaling, but also in
the behavior at intermediate scales, and formally irrelevant
terms may play an important role. There are cases where one
wants to know the full temperature, momentum, or frequency
dependence of physical quantities, because a low-energy

a b c

FIG. 5. (a) Third order graph contributing to �ð6Þ�. (b) Tadpole

contraction. (c) Contraction to form a graph with overlapping loops.
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expansion contains insufficient information. One of the ad-
vantages of the functional RG framework is that such depen-
dences can be computed directly.

In many situations, a comparison to standard resumma-
tions of the perturbation expansion is desirable, and it is also
an interesting question to what extent such resummations can
be reproduced by truncations of the functional RG flow
equations. An important observation regarding this was
made by Katanin (2004), who showed that a partial inclusion
of the six-point vertex in the flow allows one to recover
approximations of the type Hartree-plus-ladder summations
(in cases where these approximations are a good starting
point). This also allows one to continue fermionic flows
into symmetry-broken phases (see Sec. IV). If we drop the
eight-point vertex from the equation for �ð6Þ�, it is deter-
mined by a Feynman graph containing three four-point ver-
tices, depicted in Fig. 5(a). When backsubstituted into the
equation for the four-point vertex, two external legs get
contracted in all possible ways. We have just discussed that
the contribution from Fig. 5(c) is suppressed by improved
power counting. When two legs of a single-four-point vertex
are contracted to form a tadpole [see Fig. 5(b)], the value of

the thus obtained subgraph is _��, by the flow equation for the

self-energy. Thus a factor G� _��G� appears in the integral
for the value of the graph. By Dyson’s equation,

_G� ¼ G� _��G� þ S�; (54)

and this can be combined with the second-order contribution
to replace S� by _G�. If all other effects of the six-point
function, corresponding to graphs of the type shown in
Fig. 5(c) are dropped, the equation for the four-point function
gets changed to one where the product G�ðkÞS�ðk0Þ þ
S�ðkÞG�ðk0Þ is replaced with G�ðkÞ _G�ðk0Þþ
_G�ðkÞG�ðk0Þ ¼ ðd=d�Þ½G�ðkÞG�ðk0Þ�. If one now restricts
further to a single channel in the four-point equation, it
becomes explicitly solvable by a ladder summation in that
channel. Backsubstitution into the equation for the self-
energy gives the corresponding Hartree-type term. This was
explained by Katanin (2004), and, also in its extension to
flows with symmetry breaking, by Salmhofer et al. (2004).

D. Flow parameters

In the derivation of the exact functional flow equation, the
scale dependence of the bare propagator G�

0 was not speci-

fied. The derivation holds for any choice of G�
0 , provided all

functions involved are indeed differentiable with respect to�,
and provided that the resulting flow equation is well defined.
These conditions are not trivial; in fact, badly chosen flow
parameters may lead to divergences on the right-hand side of
the flow equation. On the other hand, one can exploit the
flexibility provided by the choice of the� dependence to ones
own advantage. Besides regularity issues, the scale depen-
dence of G�

0 is constrained only by the initial condition

G
�0

0 ¼ 0; (55)

and the final condition

G�!0
0 ¼ G0: (56)

The functional � ¼ ��!0 reached at the end of the exact flow
is independent of the choice of G�

0 . However, in most prac-

tical calculations, where approximations are unavoidable, a
judicious choice of G�

0 is mandatory. Important aspects

related to the choice of G�
0 are as follows: regularization of

infrared singularities, minimization of truncation errors, re-
specting symmetries, and technical convenience. In the fol-
lowing we review the most frequently used cutoff schemes
along with their merits and drawbacks.

1. Momentum and frequency cutoffs

For conciseness, we focus on translation and spin-rotation
invariant one-band systems, such that the bare propagator G0

can be written as a simple function of frequency and momen-
tum as in Eq. (3). The scale dependence can then be intro-
duced by multiplying G0 with a suitable cutoff function 	�:

G�
0 ðk0;kÞ ¼ 	�ðk0;kÞG0ðk0;kÞ; (57)

with 	�0 ¼ 0 and 	�!0 ¼ 1. To regularize the infrared di-
vergence of G0 at zero frequency and for momenta on the
Fermi surface (�k ¼ 0), the cutoff function 	�ðk0;kÞ has to
vanish sufficiently quickly for k0 ! 0, �k ! 0 at fixed
�> 0. The most frequently used cutoff functions are either
pure momentum cutoffs of the form 	�ðkÞ ¼ #ðj�kj=�Þ or
frequency cutoffs 	�ðk0Þ ¼ #ðjk0j=�Þ, where #ðxÞ is a func-
tion that vanishes for x � 1 and tends to 1 for x � 1. Mixed
momentum and frequency cutoffs of the form 	�ðk0;kÞ ¼
#½ðk20 þ �2

kÞ=�2� are preferred in the mathematical literature,

as they facilitate power counting and rigorous estimates.
A technical advantage of momentum cutoffs compared to

frequency cutoffs is that Matsubara sums on the right-hand
side of the flow equations can often be performed analyti-
cally. Furthermore, a momentum cutoff does not spoil the
analytic structure of propagators and vertex functions in the
complex frequency plane. However, there are also serious
drawbacks, which are specific to Fermi systems. Once self-
energy effects are taken into account, the Fermi surface is
usually deformed in the course of the flow, such that the
momentum cutoff has to be continuously adapted to the new
Fermi surface, which complicates the flow equations consid-
erably. Second, particle-hole excitations with a small mo-
mentum transfer q are suppressed by the momentum cutoff
for j�kþq � �kj< 2�. As a consequence, the limit of van-

ishing momentum transfer q ! 0 in interaction vertices and
response functions does not commute with the limit � ! 0
(Metzner, Castellani, and Di Castro, 1998). In other words,
forward scattering interactions and the response to homoge-
neous fields can be obtained only by taking the limit q ! 0 at
the end of the flow, at � ¼ 0 (Honerkamp and Salmhofer,
2001a). This is a serious drawback in stability analyses (see
Sec. III), where one compares the increase of the effective
interaction in different momentum channels (including for-
ward scattering), or different susceptibilities, upon lowering
� until a divergence occurs in at least one channel at a finite
scale �c > 0.

A frequency cutoff has the advantage that it does not
interfere with Fermi surface shifts, and that particle-hole
processes with small momentum transfers are captured
smoothly by the flow (Husemann and Salmhofer, 2009). It
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can also be used in systems without translation invariance
(Andergassen et al., 2004), where a momentum cutoff is less
useful since the propagator is not diagonal in momentum
space. However, a frequency cutoff affects the analytic prop-
erties of propagators and vertex functions in the complex
frequency plane. Depending on the sort of truncation used,
this may pose a serious problem if one likes to continue
results to real frequency. For a frequency cutoff the initial
cutoff is �0 ¼ 1. Since the contributions to the self-energy
flow are of order ��1 at large �, one has to retain a

convergence factor eik00
þ
on the right-hand side of the flow

equation (Andergassen et al., 2004), analogously to the
convergence factor in the perturbation expansion of the
self-energy (Negele and Orland, 1987); for a rigorous justi-
fication, see Pedra and Salmhofer (2008).

For a bare propagator G0ðk0;kÞ ¼ ðik0 � �kÞ�1 and a
multiplicative cutoff as in Eq. (57), the full propagator has
the form

G�ðk0;kÞ ¼ 	�ðk0;kÞ
ik0 � �k � 	�ðk0;kÞ��ðk0;kÞ

; (58)

and the single-scale propagator S� ¼ �G� _Q�
0 G

�, see

Eq. (47), reads

S�ðk0;kÞ ¼ ðik0 � �kÞ@�	�ðk0;kÞ
½ik0 � �k � 	�ðk0;kÞ��ðk0;kÞ�2

: (59)

For a sharp cutoff function such as 	�ðk0Þ ¼ �ðjk0j ��Þ,
the single-scale propagator seems ill defined, since
@��ðjk0j ��Þ ¼ ��ðjk0j ��Þ, so that a delta peak in the
numerator of Eq. (59) coincides with a discontinuity (due to
the step function) in the denominator. However, this ambigu-
ity can be easily removed by viewing the step function �ðxÞ
as a limit of increasingly sharp regularized step functions
��ðxÞ, where the discontinuity is smeared over a width �
(Morris, 1994). With ��ðxÞ ¼ @x��ðxÞ, a simple substitution
of variables yields

��ðxÞfðx;��ðxÞÞ!�!0
�ðxÞ

Z 1

0
dufð0; uÞ; (60)

for any continuous function f. Note that the right-hand side is
unique; that is, it does not depend on the shape of the smeared
step function ��ðxÞ for � > 0. For a sharp frequency cutoff
	�ðk0Þ ¼ �ðjk0j ��Þ, for example, the single-scale propa-
gator thus simplifies to

S�ðk0;kÞ ¼ � �ðjk0j ��Þ
ik0 � �k ���ðk0;kÞ

; (61)

as long as it does not appear in products where other factors
are also discontinuous at jk0j ¼ �. Otherwise, for example,
in products of the form S�ðk0;kÞ½G�ðk0;kÞ�m, one has to
apply Eq. (60) to the entire product.

A sharp cutoff has the obvious technical advantage that the
integration over the cutoff variable (k0 or �k) can be carried
out analytically, thanks to the delta function in the numerator
of S�. On the other hand, a sharp cutoff generates disconti-
nuities in the momentum or frequency dependences of the
vertex functions, corresponding to a pronounced nonlocality
of the effective action (Morris, 1994), which is often not
amenable to a simple parametrization. At finite temperature

the flow equations are ill defined for a sharp frequency cutoff,
since the Matsubara frequencies are discrete: k0 ¼
ð2nþ 1Þ
T with integer n. Continuous cutoff functions at
T > 0 are conveniently chosen such that the � derivative is
nonzero only in a frequency range of width 2
T, since then
only two frequencies contribute to the Matsubara sum on the
right-hand side of the flow equation (Enss et al., 2005).

There are useful cutoff schemes which are formulated
more naturally by adding a regulator function R� to the
inverse propagator (instead of multiplying):

Q�
0 ðk0;kÞ ¼ ½G�

0 ðk0;kÞ��1 ¼ Q0ðk0;kÞ þ R�ðk0;kÞ;
(62)

with R�0 ¼ 1 and R�!0 ¼ 0. In particular, regulator func-
tions of the form (Litim, 2001)

R�ðkÞ ¼ �Z�½sgnð�kÞ�� �k��ð�� j�kjÞ; (63)

or its frequency-dependent analog, R�ðk0Þ ¼
iZ�½sgnðk0Þ�� k0��ð�� jk0jÞ, have some distinct advan-
tages. The prefactor Z� is initially 1 and is then determined
by a momentum (or frequency) derivative of the flowing self-
energy ��ðk0;kÞ. The Litim cutoff satisfies a criterion of
’’optimal’’ regularization of the infrared singularity of the
propagator (Litim, 2001). For simple truncations it also leads
to a convenient form of the integrands, facilitating the
integrations.

It is easy to choose the cutoff function in a way that does
not affect the global symmetries of the system, such as global
charge conservation or global spin rotatation invariance.
However, local conservation laws are typically spoiled. The
corresponding Ward identities are modified by cutoff depen-
dent additional terms, which vanish only in the limit � ! 0
(Enss, 2005). It is hard to devise truncations which satisfy the
modified Ward identities at each scale �, and hence truncated
flows often violate Ward identities also in the limit � ! 0
(Katanin, 2004). In these cases it is better to compute only
independent quantities from the flow, and determine the
remaining quantities, which are fixed by local conservation
laws, via the Ward identity.

2. Temperature and interaction flows

For fermion systems the infrared singularity of the bare
propagator can also be regularized by temperature, instead of
a cutoff, since the fermionic Matsubara frequencies stay away
from zero at a distance 
T. A flow equation with temperature
as a flow parameter can be obtained from the general flow
equation derived in Sec. II.B, if one manages to shift all
temperature dependences of the bare action to the quadratic
part. This is indeed possible by a simple rescaling of the fields
(Honerkamp and Salmhofer, 2001a). Consider a translation-
invariant system of spin- 12 fermions for definiteness, where

the fields depend on a momentum k, a spin index �, and a
Matsubara frequency !n ¼ ð2nþ 1Þ
T. Rescaling the
fields as c 0

�ðn;kÞ ¼ T3=4c �ð!n;kÞ and �c 0
�ðn;kÞ ¼

T3=4 �c �ð!n;kÞ removes all explicit T factors from the
(quartic) interaction in the bare action. The temperature
dependence is thereby shifted entirely to the quadratic part
of the action, given by the inverse bare propagator for the
rescaled fields,
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QT
0 ðn;kÞ ¼

T1=2

i!n � �k

: (64)

The effective action �T½c 0; �c 0� for the rescaled fields obeys
the exact flow equation (35), with temperature as the flow
parameter. The unscaled vertex functions �ð2mÞ are recovered
from the vertex functions �ð2mÞT by multiplying with T3m=2.
The temperature flow has several advantageous features.
First, it directly generates a temperature scan of the computed
quantities. In cutoff schemes one has to run a full flow for
each temperature separately. Second, the temperature flow
includes particle-hole excitations with small momentum
transfers uniformly at each scale. Third, local symmetries
and the corresponding Ward identities are respected at each
step at least for the exact flow, which makes the still difficult
issue of Ward identities in truncated flows at least more
transparent.

A particularly simple choice of a flow parameter is pro-
vided by a uniform factor � scaling the bare propagator
(Honerkamp et al., 2004),

G�
0 ¼ �G0; (65)

with �0 ¼ 0, and � ! 1 at the end of the flow. By a simple
rescaling of the fields one can see that this is equivalent to
multiplying the bare quartic interaction with a factor �2,
which means that the interaction is scaled up continuously
from 0 to its full strength in the course of the flow. Hence the
name ’’interaction flow’’ for this scheme. In the absence of
self-energy feedback the interaction flow has the technical
advantage that the propagator has the same form at each
scale, such that certain loop integrals need to be done only
once. However, the global scaling of the propagator does not
regularize the infrared singularities, such that one easily runs
into infrared divergences. Nevertheless, for suitable problems
and simple truncations the interaction flow has been shown to
yield results similar to flows with a cutoff, and with less
computational effort (Honerkamp et al., 2004).

E. General properties of the RG equations

In this section we discuss the general structure of the RG
hierarchy of equations and provide power-counting bounds
for its solution. These bounds are simple, but mathematically
exact, and they provide a strict sense of the notion of relevant
and irrelevant terms. We also briefly discuss improved power-
counting bounds, which provide sharper estimates for bulk
Fermi systems in d � 2 and exhibit the role of Fermi surface
geometry.

The generating functionals were introduced to obtain the
Green functions and vertex functions of the model by differ-
entiation, cf. Eqs. (7) and (10). In the framework of the RG as
an iterated convolution, they acquire an independent impor-
tance. Indeed, in many situations in bosonic field theory, an
expansion in the fields is avoided in favor of a gradient
expansion (Berges, Tetradis, and Wetterich, 2002) or other
types of parametrization (see also Sec. V), and the flow may
lead to a nonanalytic function of the fields. Functions of
Grassmann variables are, however, defined only by power
series expansions in these variables, so in this case the mean-
ing of the RG is strictly that of the infinite hierarchy. This is

only a seeming disadvantage because by the anticommutation
properties of Grassmann variables, the fully regularized func-
tionals (as they appear in the flow equations) have convergent
expansions in the fields (Gawedzki and Kupiainen, 1985;
Feldman et al., 1986; Lesniewski, 1987; Abdesselam and
Rivasseau, 1998; Feldman, Knörrer, and Trubowitz, 1998,
2002; Salmhofer and Wieczerkowski, 2000). In contrast, the
expansion in the fields of bosonic functionals is almost al-
ways divergent, even in the regularized theory. Convergent
expansions then take the form of cluster expansions that
distinguish between regions of small and large fields [see,
e.g., Balaban et al. (2010) and references therein].

1. Inductive structure of the RG hierarchy

The functional ~��½c ; �c � appearing in Eq. (46) has an

expansion similar to Eq. (40), namely, ~��½c ; �c �ðx0; xÞ ¼P
m�1

~�ð2mÞ�½c ; �c �ðx0; xÞ, where ~�ð2mÞ�
is homogeneous of

degree 2m in the fields, and hence has a representation with

coefficient functions ~�ð2mÞ�
similar to Eq. (41). By definition,

Eq. (45) of ~�, the ~�ð2mÞ�
are determined by �ð2mþ2Þ�, for

example,

ð~�ð2mÞ�ðx0; xÞÞ11ðx01; . . . ; x0m; x1; . . . ; xmÞ
¼ ��ð2mþ2Þ�ðx0; x01; . . . ; x0m; x1; ; . . . ; xm; xÞ: (66)

Here the indices refer to the matrix structure of Eq. (45). The
other matrix elements are given by similar expressions.

We use this to expand Eq. (46) in homogeneous parts in c
and �c and compare coefficients. This gives

d

d�
Að2mÞ�½c ; �c �

¼ 1

2
trðS� ~�ð2mÞ�½c ; �c �Þ

þ 1

2
trðS� ~�ð2Þ�½c ; �c �G� ~�ð2m�2Þ�½c ; �c �Þ

þ 1

2

X
p�2

X
m0 ;...;mp�1

m0þ���þmp¼m

tr

�
S� ~�ð2m0Þ�½c ; �c �

� Yp
q¼1

G� ~�ð2mqÞ�½c ; �c �
�
: (67)

In the sum over p, each of m0; . . . ; mp is at least 1 because ~�

contains only field-dependent terms, and m0 þ � � � þmp ¼
m must hold since Að2mÞ� is homogeneous of degree 2m in
the fields ½c ; �c �. These two conditions imply that p 	 m
and that mq 	 m� p for all 0 	 q 	 p, so that for every

given m, the sum runs only over finitely many terms. Since

the coefficient in Að2mÞ� is �ð2mÞ� and ~�ð2mÞ� � �ð2mþ2Þ�,
comparing coefficients of powers of c and �c in Eq. (67)
gives a hierarchy of differential equations for the �ð2mÞ�,
labeled by m. We rewrite Eq. (67) as

d

d�
�ð2mÞ� ¼ H ��ð2mþ2Þ� þK�ð�ð4Þ�Þ�ð2mÞ�

þ Xm
p¼2

L�
p ð�ð<2mÞ�Þ: (68)
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The three summands on the right-hand side are obtained from
the three terms in Eq. (67), and it is understood that both sides

are functions of 2m variables x1; . . . ; x2m. The action of the
operatorH � on �ð2mþ2Þ� is linear, as is that ofK�ð�ð4Þ�Þ on
�ð2mÞ�, whileL�

p is nonlinear in the lower-m vertex functions

�ð<2mÞ� ¼ �ð4Þ�; . . . ;�ð2m�2Þ�. Specifically, the action of
H � is given by a tadpole-type contraction and summation,

the action of K�ð�ð4Þ�Þ is given by the evaluation of a one-
loop diagram formed from �ð2mÞ� and the four-point function

�ð4Þ�, and L�
p is given by a sum over one-loop diagrams

involving pþ 1 vertex functions, each of which has mq <m.

Thus H �, K�ð�ð4Þ�Þ, and L�
p also depend on � and on the

self-energy�� via the propagators S� andG�. TheH � term
couples the higher vertex function �ð2mþ2Þ� into the equation
for �ð2mÞ�. Thus the hierarchy does not close among finitely

many m, and therefore truncations need to be employed to
obtain solutions.

2. Truncated hierarchies and their iterative solution

If for some m0 � 1, the initial vertex functions �ð2mÞ�0

vanish for all m>m0 þ 1, one can employ the approxima-
tion of setting �ð2mÞ� ¼ �ð2mÞ�0 for all m � m0 þ 1. That is,
all vertices with m>m0 þ 1 remain zero, and the (m0 þ 1)-
particle vertex is kept fixed at its initial value. This level-m0

truncation reduces the infinite hierarchy to a system of finitely
many differential equations for ð�ð2mÞ�Þm	m0

. The vertex

�ð2m0þ2Þ�0 enters in the equation for �ð2m0Þ�. Specifically, in
the level-1 truncation, the two-particle vertex �ð4Þ� is fixed to
its bare value �ð4Þ�0 , and the self-energy is the solution of

Eq. (50). The level-2 truncation is given by Eq. (52), with
�ð6Þ� fixed to its initial value �ð6Þ�0 (which may vanish),

together with Eq. (50). The term K�ð�ð4Þ�Þ�ð4Þ� is quadratic
in �ð4Þ�.

In the level-m0 truncation of the hierarchy, with m0 > 2,
and at given �� and ð�ð2m0Þ�Þm0<m0

, Eq. (68) for �ð2m0Þ�

becomes a linear inhomogeneous differential equation for
�ð2m0Þ�, which can be solved by an operator version of the
standard method of variation of the constant: when all sums

and integrals corresponding to the traces in Eq. (67) are
written out, it takes the form of a linear integro-differential

equation which is, viewed more abstractly, a linear ordinary
differential equation in a suitable space of functions, to which

standard techniques apply. Together with the initial condition
�ð2mÞ�0 , this determines �ð2mÞ� uniquely in terms of

ð�ð2m0Þ�Þm0<m0
. Backsubstitution of this solution into the

H � term for the equation for �ð2m0�2Þ� then yields an
equation for �ð2m0�2Þ�, which can be solved in terms of the

not yet determined lower vertex functions ð�ð2m0Þ�Þm0<m0�1.

Proceeding downward in m in this way, one can formally
solve the truncated hierarchy, with the final equation deter-

mining ��. We write ‘‘formally’’ here because after at most
two steps of this iteration, the differential equations become

nonlinear, so that existence of the solution is typically known
only for short flow times, and because the question of blowup
of solutions is rather nontrivial. Indeed, we see below that

blowup generically occurs in RG equations if relevant terms
have not been taken into account. This phenomenon is related

to the infrared divergences of unrenormalized perturbation
theory. The major advantage of the RG method is that the

growing terms can be identified and studied long before they
get singular and then removed by taking into account appro-
priately chosen relevant parts in the flowing action.

Increasing m0 to improve the accuracy is then a natural
strategy for approximation of the true solution; however,
explicit and numerical calculations can be done only for small
m0, because the number of variables increases rapidly withm.
Nevertheless, one can get useful information in the form of
bounds for the maximal possible value of the vertex functions
(or other norms that measure their size). This is done in the
following section.

3. Running coupling expansion and power counting

We turn to the standard situation of a model with two-body
interactions, where the initial interaction of the fermion
system is quartic, i.e., �ð2mÞ�0 ¼ 0 for all m � 3. We also
assume that this interaction is short range so that its Fourier
transform is bounded (e.g., an unscreened Coulomb interac-
tion is long range). In a perturbative expansion in powers of
the initial four-point interaction V�0 ¼ �ð4Þ�0 , the vertices are
given by sums over irreducible graphs. An irreducible
Feynman graph formed with r four-legged vertices can
have at most 2r external legs, so that in order r in that
expansion, all vertex functions with m> r vanish.

As we now explain, one can solve the RG hierarchy in
terms of a similar expansion in the scale-dependent four-
point function V� ¼ �ð4Þ�, again by integrating the RG
hierarchy downward in scale, but keeping the 2m-point func-
tions for m> 2 only to a fixed order in V�. The equation for
V� itself then becomes an integro-differential equation with a
power r nonlinearity on the right-hand side (the equation for
�� remains unchanged). This leads in a natural way to
power-counting estimates for the higher 2m-point functions
in terms of the maximal value of the four-point vertex that
occurs in the flow.

We denote the OððV�ÞrÞ contribution to �ð2mÞ� by �ð2mÞ�
r .

Its scale derivative equals

d

d�
�ð2mÞ�
r ¼ H ��ð2mþ2Þ�

r þK�ðV�Þ�ð2mÞ�
r�1

þ X
p�2

X0
L�

p ð�ð2m0Þ�
r0 ; . . . ;�

ð2mpÞ�
rp Þ: (69)

The primed sum runs over all sequences (m0; . . . ; mp) and all

sequences (r0; . . . ; rp) with mq � 1 and rq � 1 for all 1 	
q 	 p, m0 þ � � � þmp ¼ mþ p and r0 þ � � � þ rp ¼ r.

The solution of the RG hierarchy for an initial quartic inter-

action has the property that �ð2mÞ�
r ¼ 0 for all m> r.

Therefore, for m ¼ r, the H� term drops out of Eq. (68),
and all remaining terms contain only V� or terms of order at

most r� 1 in V�. Thus, given these lower-order �’s, �ð2rÞ�
r

can be obtained by integration. Then the right-hand side of

the equation for m ¼ r� 1 is determined, so �ð2r�2Þ�
r can be

determined, and so on. Successive backsubstitution then leads

to a system of equations where d�ð2mÞ�
r =d� gets contribu-

tions from a sum of graphs with r vertices of type V�0
, where

�0 � �0 � �, and propagators G�00
and S�

000
, all the inter-

mediate scales �0, etc. are integrated. Thus the equation
becomes nonlocal in the flow parameter �, but the right-
hand side is known once V� and �� are known. V� is given

312 Walter Metzner et al.: Functional renormalization group approach to . . .

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



by a degree r nonlinear equation, with a similar graphical
background as discussed above, and �� by the standard self-
energy equation (50). While more restricted than the level-m
truncation, the running coupling scheme also captures effects
that cannot be seen in any fixed order of bare perturbation
theory, such as screening or asymptotic freedom of certain
coupling functions.

We use this inductive structure to derive basic power-
counting bounds for the vertex functions in terms of the
flowing four-point function, for a d-dimensional bulk fermion
system (d � 1). For simplicity, we focus on spin- 12 fermions

with translation-invariant action, so that we can use xi ¼
ðki; �iÞ ¼ ðk0;i;ki; �iÞ, as discussed at the beginning of

Sec. II.A. We also assume that the symmetries of the action
remain unbroken. These specific assumptions are for presen-
tation only; power counting can be done without them. By
translation invariance,

�ð2mÞ�
r ½ðk1; �1Þ; . . . ; ðk2m; �2mÞ� ¼ �

�X
i

ki

�
�̂ð2mÞ�
r ðk; �Þ;

where the delta function forces conservation of the spatial
momentum k (up to reciprocal lattice vectors) and conserva-
tion of the frequency variable k0, and we have introduced the
abbreviations � ¼ ð�1; . . . ; �2mÞ and k ¼ ðk1; . . . ; k2m�1Þ.
For � ¼ �0, the function �̂ð2mÞ�

r is smooth and bounded
because the initial interaction is short range, and this stays
so during the flow above critical scales.

Consider the maximal size of the vertex functions,

k�ð2mÞ�
r k ¼ supk;�j�̂ð2mÞ�

r ðk; �Þj. Then, for m � 3,

k�ð2mÞ�
r k 	 �ð2mÞ

r sr�mþ1
� fr��

2�m; (70)

where �ð2mÞ
r is independent of � and 
,

f� ¼ sup
�	‘	�0

kV‘k (71)

is the maximal value of the four-point coupling on all scales
between � and �0, and

s� ¼ max
�

X
�0

Z
}kjŜ��;�0 ðkÞj; (72)

with
R
}k � � � ¼ T

P
k0

R
ddk=ð2
Þd � � � (for the general

power counting, we do not need to assume that the propagator

is diagonal in the spin indices �, �0, so Ŝ� also carries these
indices). The dependence of s� on � is determined by the
shape of the Fermi surface. As shown in Appendix B.1, s� is
of the order of 1 for regular Fermi surfaces. If the Fermi
surface contains van Hove points, s� grows logarithmically in
� for � ! 0.

At first sight, one may worry about the factor �2�m, which
diverges for m � 3 as � ! 0. For the maximum value of
the vertex functions, it is indeed true, and easily verified in
examples, that there are always particular values of the
external momenta where these vertex functions become large
in 
 ¼ 1=T (and diverge at zero temperature). However,
this happens only on a ‘‘small’’ set of momenta. For a
general m-point function, it is involved to determine this
set, but this is not necessary for power counting. One can

use the L1 norm instead, i.e., consider k�ð2mÞ�
r k1 ¼P

�

R
}k1 � � � }kmj�ð2mÞ�

r ðk; �Þj. Using generalizations of

Eq. (70), one can then show that if f� remains finite

k�ð2mÞ�
r k1 	 cð2mÞ

r fr� (73)

with constants cð2mÞ
r that are independent of �, 
, and the

system size L [see Salmhofer (1999), Sec. 4.4.3]. This implies
that, even in the limit 
 ! 1, the 2m-point vertices can
become singular only on a set of zero Lebesgue measure in
momentum space. In general, this set can be rather compli-
cated, but, loosely speaking, it will have a codimension of at
least 1.

It is one of the appealing features of the flow-equation RG
that exact statements such as Eq. (70) can be proven in a few
lines; see Appendix B. The argument given there also implies
an at-most logarithmic growth of the coefficients in the
equation for f� itself. The self-energy then comes out of
order f�, provided that renormalization is done correctly; see
Sec. II.E.4. At small f�, the size of the vertices �ð2mÞ� with
m � 3 is thus determined by f�. The terms with m � 3 are
the RG-irrelevant ones, m ¼ 2 is marginal, and m ¼ 1 is
relevant. This classification is explained in detail in
Appendix B. In a Taylor expansion of the vertex functions
in the Matsubara frequency around zero, and in momentum
around the Fermi surface, additional small factors arise,
which cancel the small denominators of the propagators; at
the same time, the vertex function is replaced by a differ-
entiated one. Hence, the flow obtained by projecting the
frequencies to zero and the momenta to the Fermi surface
gives the dominant contribution for small �. This is expected
from a simple counting of bare scaling dimensions and can be
established more rigorously by power-counting arguments
similar to those used above and in Appendix B.

In the case of a curved Fermi surface in d � 2, f� indeed
stays small in a weakly interacting system above a BCS-like
temperature [see, e.g., Salmhofer (1998b)], indicating the
absence of symmetry breaking. At zero temperature, f�
grows as � decreases, and the four-point function has singu-
larities at points corresponding to nesting vectors of the Fermi
surface; for details, see Appendix B.3. This growth of f� with
decreasing scale � is usually called the ‘‘flow to strong
coupling’’ in RG studies and is described in more detail in
Sec. III. A singularity of the two-particle vertex in momentum
space means that the interaction becomes long range in
position space. This is associated with the formation of
critical fluctuations, and in case of spontaneous breaking of
a continuous symmetry, with the appearance of Goldstone
bosons (see Sec. IV).

4. Self-energy and Fermi surface shift

The self-energy is important for all effective one-particle
properties of the system, and it can cause drastic effects, as
compared to the noninteracting fermions. Accordingly, in the
RG flow, the self-energy is a relevant term. In the absence of
symmetry breaking, it modifies the inverse propagator to
ik0 � �k � �ðk0;kÞ. The long-distance behavior of the fer-
mionic propagator is determined by the behavior of this
function around its zero set. A Taylor expansion around
k0 ¼ 0 gives
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ik0 � �k � �ðk0;kÞ ¼ ik0 � ek
Zk

þ �ðk0;kÞ (74)

with Z�1
k ¼ 1þ ið@0�Þð0;kÞ, Z�1

k ek ¼ �k þ �ð0;kÞ, and a

Taylor remainder �. If � vanishes faster than linearly in k0 as
k0 ! 0, we thus obtain an effective description in terms of
quasiparticles with dispersion relation ek, hence ‘‘interact-
ing’’ Fermi surface fk:�k þ�ð0;kÞ ¼ 0g, Fermi velocity
rek, and quasiparticle weight Zk. If Zk is bounded and
nonvanishing for all k, the long-distance decay of the fermion
propagator in position space is the same as for the free theory.

The question whether � is smooth enough for the above to
hold is nontrivial. In the one-dimensional Luttinger model,
@0�ð0; kFÞ diverges, and the small-k0 behavior of the self-
energy, �ðk0; kFÞ � jk0j� with � < 1 depending on the inter-
action strength, implies that the self-energy effects dominate
at small k0 and the decay in position space becomes more
rapid, so that the occupation number density nðkÞ becomes a
continuous function of k even at zero temperature
(Giamarchi, 2004). An even more drastic change is sponta-
neous symmetry breaking, where the propagator cannot be
written any more in the simple form given above (see
Sec. IV).

In the RG flow, � is replaced by the �-dependent self-
energy �� ¼ ðG�

0 Þ�1 � ðG�Þ�1. An important phenomenon

in this context is the shift in the Fermi surface entailed by ��.
In terms of power counting, this shift is the most relevant
term. Cutting off the propagator around the free Fermi surface
then fails to regularize the propagator, which leads to spu-
rious singularities in the RG flow. A convenient method to
avoid this is to introduce a counterterm. In the context of the
bare perturbation expansion, the counterterm method was
already described by Nozières (1964). The main idea is to
anticipate the form that the propagator takes at the end of the
flow and to rearrange the flow such that this form, not the bare
one, is used as the starting point for the RG analysis, hence
the Fermi surface is fixed to that of the interacting system in
the flow. The difference between the two dispersion functions
appears as a (finite) counterterm. To obtain a one-to-one
relation between the model given by the Hamiltonian and
the one with fixed interacting Fermi surface, one has to solve
a self-consistency equation. Feldman and Trubowitz (1990)
used the counterterm method for the radius shift of a circular
Fermi surface in a RG flow. Feldman, Salmhofer, and
Trubowitz (1996, 1998b, 1999, 2000) generalized this to
the case of noncircular curved Fermi surfaces, solved the
self-consistency equation, and showed that Zk remains finite
for d � 2 to all orders. The corresponding fixed-point prob-
lem for the Fermi surface was also considered by Ledowski
and Kopietz (2003). The role of van Hove singularities was
analyzed by Feldman and Salmhofer (2008a, 2008b).
Feldman and Trubowitz (1991) also used the counterterm
method to derive the equation for the superconducting gap
from an RG flow; for further work in that direction, see also
Sec. IV. Alternatively to counterterms, one can try to avoid a
momentum space cutoff altogether (Honerkamp and
Salmhofer, 2001a, 2001b; Husemann and Salmhofer, 2009),
or to use an adaptive scheme [see the appendix in Honerkamp
et al. (2001), Benfatto, Giuliani, and Mastropietro (2006),
and Salmhofer (2007)].

F. Flow equations for observables and correlation functions

All observables of the fermionic system are given by
polynomials in the fields, so they can be calculated from
the connected Green functions Gð2mÞ�, hence by the above-
mentioned tree relations also from the irreducible vertex
functions �ð2mÞ�. It is nevertheless convenient, and due to
the limitations of approximations often mandatory, to calcu-
late the flow of observables and their correlation (or response)
functions by separate flow equations, which we derive and
discuss now.

For simplicity we restrict the presentation to the particu-
larly important class of observables that are correlations of
fermionic bilinears. Charge-invariant bilinears are of the form

BðxÞ ¼ X
y;y0

�c ðyÞBðx; y; y0Þc ðy0Þ: (75)

Charge-noninvariant bilinears are of the form

BðxÞ ¼ X
y;y0

½c ðyÞBðx; y; y0Þc ðy0Þ

þ �c ðyÞ ~Bðx; y; y0Þ �c ðy0Þ�: (76)

The functions B and ~B determine the spatial and spin struc-
tures of these bilinears. For translation-invariant systems, we
choose a momentum representation where x ¼ ðk0;kÞ and
y ¼ ðp0;p; �Þ, as explained above Eq. (3). With the notations
p ¼ ðp0;pÞ and

R
}p ¼ T

P
p0

R
dp, a charge-invariant bi-

linear is of the form

BðkÞ ¼
Z

}p �c �ðpÞb�;�0 ðp; kÞc �0 ðpþ kÞ: (77)

The frequency k0 is an integer multiple of 2
T. The case
k ¼ 0 and b ¼ �i, where �i denotes the ith Pauli matrix,
corresponds to a uniform spin density. The case k0 ¼ 0,
k ¼ ð
;
; . . . ; 
Þ, and b ¼ �i corresponds to a staggered
spin density. Similarly, the same choices of k but with
b�;�0 ¼ ��;�0 correspond to charge densities. Other choices

of k can be used to test tendencies toward noncommensurate
magnetic or charge ordering. Cooper pair fields correspond to
the noncharge-invariant combinations

BðkÞ ¼
Z

}p½ �c �ðpÞ��;�0 ðp; kÞ �c �0 ð�pþ kÞ

þ c �ðpÞ ���0;�ð�pþ k; kÞc �0 ð�pþ kÞ�:
(78)

Again, the simplest choice is uniform singlet pairing, where
k ¼ 0 and ��;�0 ðp; kÞ ¼ �ðpÞ"�;�0 . In this case �ðpÞ is the
gap function. Triplet pairing, extended Cooper pairs, and
spatially nonuniform gaps are described by suitable
generalizations.

A convenient way of generating correlation functions of
the bilinears B is to couple the BðxÞ to external source fields
JðxÞ, i.e., to add a term ðJ;BÞ ¼ P

xJðxÞBðxÞ to the action.
The external field J is not an integration variable, so it can be
regarded as a (functional) parameter on which G depends.
Writing G ¼ GðJ; �; ��Þ, we then have
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hBðxÞBðyÞi � hBðxÞihBðyÞi ¼ � @2GðJ; �; ��Þ
@JðxÞ@JðyÞ

�������� J¼0
�; ��¼0

:

(79)

In the presence of J, the effective action � ¼ �ðJ; c ; �c Þ, as
well as all other quantities appearing in the fermionic
Legendre transform (9), depends on J as well. Since relations
such as ð@�=@ �c ÞðJ; c ; �c Þ ¼ �ðJ; c ; �c Þ remain valid for any
J, straightforward differentiation yields

@2GðJ; �; ��Þ
@JðxÞ@JðyÞ

�������� J¼0
�; ��¼0

¼ @2�ðJ; c ; �c Þ
@JðxÞ@JðyÞ

�������� J¼0
c ; �c¼0

: (80)

Graphically, this relation is intuitive in that the bilinears
always couple to the (effective) vertices by two lines, and
the fermionic vertices are all even, so that the graphs that
contribute are automatically irreducible.

Again, because J plays the role of a parameter, the flow
equation (35) is unchanged. Flow equations for the response
functions are then obtained simply by expanding � in the
fields J and comparing coefficients. This again leads to a
hierarchy of equations for the vertex functions �ð2m;nÞ that
have 2m fermionic and n external bosonic lines. The
J-independent term corresponds to the standard fermionic
hierarchy for the �ð2m;0Þ ¼ �ð2mÞ, which therefore remains
unchanged. When counting powers in the fermionic fields,
each J corresponds to a bilinear, so that the truncation
�ð2mÞ ¼ 0 for m � m0 for the fermionic vertices corresponds
to a truncation �ð2m;nÞ ¼ 0 for mþ n � m0. The flow equa-
tions remaining after a truncation for m0 ¼ 3 are shown
diagrammatically in Fig. 6.

The two-point correlation hBðxÞBðyÞi � hBðxÞihBðyÞi of
any fermionic bilinear B involves only the fermionic two-
and four-point functions, and hence could simply be calcu-
lated from the knowledge of �ð2Þ and �ð4Þ by the reciprocity
relation and Eq. (12). Equation (80) shows that the route via
external fields in the one-particle irreducible equations is
strictly equivalent to this if the hierarchy is treated exactly.
When making truncations to the hierarchy and other approx-
imations, the two are no longer the same. Anomalous scaling
dimensions of fermionic bilinears (or other composite ob-
jects) are captured easily by separate flow equations for these
quantities, while they are hard to obtain from �ð2Þ and �ð4Þ, if
the latter are computed from a truncated flow equation. An
instructive example is given by the calculation of the density

profile near a static impurity in a Luttinger liquid in
Andergassen et al. (2004).

G. Flow equations for coupled boson-fermion systems

The focus of this review is on fermion systems. However,
even if the bare action involves only fermionic fields, bosonic
degrees of freedom are frequently generated as fermion
composites and order parameter fields. For example,
Cooper pairs and the order parameter in a superconductor
are bosons. Technically, bosonic fields are introduced
in an originally purely fermionic theory by a Hubbard-
Stratonovich decoupling of an interaction between fermions
(Popov, 1987). Often the fermionic fields are subsequently
intregrated out, such that an effective action involving only
bosons remains. Otherwise one has to deal with a coupled
theory of fermions and bosons. In this section we generalize
the flow equations derived in Sec. II.B to interacting boson-
fermion systems. Flow equations for coupled boson-fermions
systems have been derived by various groups, with slight
differences in the notation (Berges, Tetradis, and Wetterich,
2002; Kopietz, Bartosch, and Schütz, 2010).

We first introduce some notation for bosons and write
down the bosonic analogs of some of the most important
equations from Sec. II.B. Bosonic particles are described by
complex fields �. It is convenient to combine � and its
complex conjugate �
 in a bosonic Nambu field

�ðxÞ ¼ �ðxÞ
�
ðxÞ

� �
: (81)

The generating functional for connected Green functions can
be written as (Negele and Orland, 1987)

G½H� ¼ � ln
Z

D�e�S½��eðH
;�Þ; (82)

where S½�� is the bare action, and

HðxÞ ¼ hðxÞ
h
ðxÞ

� �
(83)

is the source field. Connected Green functions are obtained as
functional derivatives

Gð2mÞðx1; . . . ; xm; x01; . . . ; x0mÞ
¼ h�ðx1Þ � � ��ðxmÞ�
ðx0mÞ � � ��
ðx01Þic
¼ � @2mG½H�

@h
ðx1Þ � � � @h
ðxmÞ@hðx0mÞ � � � @hðx01Þ
��������H¼0

:

(84)

The effective action is defined as Legendre transform

�½�� ¼ ðH
;�Þ þ G½H�; (85)

with � ¼ �@G=@H
. Functional derivatives of �½�� yield
the bosonic m-particle vertex functions

�ð2mÞðx1; . . . ; xm; x01; . . . ; x0mÞ

¼ @2m�½��
@�
ðx1Þ � � � @�
ðxmÞ@�ðx0mÞ � � � @�ðx01Þ

���������¼0
:

(86)

FIG. 6. The truncation of the hierarchy for the response function

that corresponds to keeping only the irreducible two-particle vertex

in the fermionic hierarchy.
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The matrices of second derivatives at finite fields

Gð2Þ½H� ¼ � @2G
@H
ðxÞ@Hðx0Þ

¼ h�ðxÞ�
ðx0Þi h�ðxÞ�ðx0Þi
h�
ðxÞ�
ðx0Þi h�
ðxÞ�ðx0Þi

� �
(87)

and

�ð2Þ½�� ¼ @2�

@�
ðxÞ@�ðx0Þ (88)

obey the reciprocity relation �ð2Þ½�� ¼ ðGð2Þ½H�Þ�1.
Endowing the bare propagator G0 with a cutoff or another

scale dependence, one can derive exact flow equations for the
generating functionals in complete analogy to the fermionic
case. In particular, the flow equation for the effective action
��½�� has the form

d

d�
��½�� ¼ 1

2
ð�
; _Q�

0 �Þ þ 1

2
trf _Q�

0 ð�ð2Þ�½��Þ�1g;
(89)

where Q�
0 ¼ diagðQ�

0 ; Q
�t
0 Þ with Q�

0 ¼ ðG�
0 Þ�1. Note that

the first term on the right-hand side can also be written as
ð�
; _Q�

0 �Þ. The above flow equation is equivalent to the

frequently used flow equation for the effective average action
(Berges, Tetradis, and Wetterich, 2002)

��
R ½�� ¼ ��½�� � 1

2ð�
;R��Þ; (90)

with R� ¼ Q�
0 �Q0, which reads (Wetterich, 1993)

d

d�
��
R ½�� ¼ 1

2
trf _R�ð�ð2Þ�

R ½�� þR�Þ�1g: (91)

Order parameters are often associated with real (not complex)
bosonic fields. In that simpler case the above equations are
still valid if one replaces the complex Nambu fields � and H
by the real fields � and h.

A generalization to coupled fermion-boson systems is now
straightforward. Bosonic and fermionic fields are conven-
tiently collected in a ’’superfield’’


 ¼ �
�

� �
; (92)

where � and � are the bosonic and fermionic Nambu fields
defined above (see Sec. II.A). The conjugate superfield is
given by

�
 ¼ �

��

� �
: (93)

The generating functional for connected Green functions
involving both bosons and fermions reads

G½Hb;Hf� ¼ � ln
Z

D�D�e�S½�;��eðH

b
;�Þþð �Hf;�Þ;

(94)

where S½�;�� is the bare action, and Hb and Hf are the

Nambu source fields for bosons and fermions, respectively.
Functional derivatives with respect to the source fields gen-
erate connected Green functions with an arbitrary number of
bosonic and fermionic fields, the only general constraint
being that the number of fermion fields is always even.

The effective action �½�;�� is given by the Legendre
transform

�½�;�� ¼ ðH

b;�Þ þ ð �Hf;�Þ þ GðHb;HfÞ; (95)

where � ¼ �@G=@H

b and � ¼ �@G=@ �Hf. The source

fields may also be collected in a superfield

H ¼ Hb

Hf

� �
: (96)

The Legendre transform can then be written more concisely

as �½
� ¼ ð �H ;
Þ þ GðH Þ.
The matrix of second functional derivatives of G at finite

fields

Gð2Þ½H � ¼ � @2G

@ �H ðxÞ@H ðx0Þ

¼ h�ðxÞ�
ðx0Þi �h�ðxÞ ��ðx0Þi
h�ðxÞ�
ðx0Þi �h�ðxÞ ��ðx0Þi

 !
(97)

involves also mixed boson-fermion propagators, which van-
ish only for H ¼ 0. The matrix of second derivatives of the
effective action

�ð2Þ½
� ¼ @2�

@ �
ðxÞ
ðx0Þ ¼
@2�

@�
ðxÞ@�ðx0Þ
@2�

@�
ðxÞ@�ðx0Þ
@2�

@ ��ðxÞ@�ðx0Þ
@2�

@ ��ðxÞ@�ðx0Þ

0
@

1
A
(98)

is related to Gð2Þ½H � by the reciprocity relation �ð2Þ½
� ¼
ðGð2Þ½H �Þ�1.

A flow of the generating functionals is generated by mod-
ifying the bare propagators for bosons and fermions Gb0 and
Gf0 such that they depend on some scale parameter �. We

denote the scale-dependent bare propagators by G�
b0 and G

�
f0,

and their inverse by Q�
b0 and Q�

f0. The generalization of the

exact flow equations for the effective action in purely bosonic
or fermionic systems to coupled boson-fermion systems reads

d

d�
��½�;�� ¼ 1

2
ð�
; _Q�

b0�Þ � 1

2
ð ��; _Q�

f0�Þ

þ 1

2
Strf _Q�

0 ð�ð2Þ�½�;��Þ�1g; (99)

where

Q�
0 ¼ Q�

b0 0
0 Q�

f0

 !
: (100)

The supertrace Str incorporates a minus sign in the fermionic
sector. The flow equation (99) is equivalent to the flow
equation (Berges, Tetradis, and Wetterich, 2002)

d

d�
��
R ½�;��¼1

2
Strf _R�ð�ð2Þ�

R ½�;��þR�Þ�1g; (101)

with R� ¼ Q�
0 �Q0, for the effective average action

��
R ½�;�� ¼ ��½�;�� � 1

2ð�
;R�
b�Þ þ 1

2ð ��;R�
f �Þ:

(102)

The expansion of the exact functional flow equation (99)
proceeds in complete analogy to the purely fermionic case.
Inserting
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�ð2Þ�½�;�� ¼ ðG�Þ�1 � ~��½�;��; (103)

with

G� ¼ ð�ð2Þ�½�;��j�¼�¼0Þ�1 ¼ diagðG�
b ;G

�
f Þ (104)

into the functional flow equation (99), one obtains

d

d�
��½�;�� ¼ 1

2
Strð _Q�

0 G
�Þ

þ 1

2
ð�
; _Q�

b0�Þ � 1

2
ð ��; _Q�

f0�Þ

� 1

2
StrfS�ð~��½�;��

þ ~��½�;��G� ~��½�;�� þ � � �Þg;
(105)

with the single-scale propagator

S� ¼ �G� _Q�
0 G

� ¼ diagðS�
b ;S

�
f Þ: (106)

The expansion in powers of the fields is now straightforward
and leads to a hierarchy of flow equations for all vertex
functions. The first few terms are shown diagrammatically
in Fig. 7.

The flow equations derived above are also valid in the case
of U(1) symmetry breaking, if one allows for off-diagonal
elements in the matrices Q�

b0, Q
�
f0, G

�
b , G

�
f , etc. (Berges,

Tetradis, and Wetterich, 2002; Schütz and Kopietz, 2006).
Coupled flow equations for fermions and bosonic

Hubbard-Stratonovich fields are particularly convenient to
treat fluctuations associated with spontaneous symmetry
breaking (see Sec. IV) and quantum criticality (see Sec. V),
but they may also be used to study Luttinger liquids and other
symmetric states in interacting Fermi systems (Schütz,
Bartosch, and Kopietz, 2005; Ledowski and Kopietz, 2007a,
2007b; Bartosch et al., 2009).

III. COMPETING INSTABILITIES

In this section we describe how one can apply the level-2
truncation of the fermionic RG, mainly without self-energy
corrections, to two-dimensional fermion systems, and study
the interplay of ordering tendencies. In resummations of
perturbation theory, their manifestation are singularities in
the four-point function and in certain susceptibilities. In the
RG, the precursor to a singularity is the growth of some parts
of the vertex function (often termed flow to strong coupling).
Since singularities in the vertex function change the power
counting drastically, this truncated flow then has to be
stopped before a singularity happens, at a scale �
 > 0,
where one can read off the dominant interactions and infer
a tentative phase diagram (in this, susceptibilities are used to
compare the strength of different ordering tendencies and to
determine �
). As discussed in Sec. II.C.2, curvature effects
of the Fermi surface imply that the truncations discussed here
can be used also when the interaction is no longer small,
provided that the power-counting improvement factor times
the interaction strength remains small. To obtain a true phase
diagram, however, one needs to integrate over all degrees of
freedom, also those with scales below �
. This has been
achieved in some cases (see Sec. IV), but much remains to
be done.

This first step of monitoring the flow to strong coupling
above �
, as described in this section, is important for the
following reasons: (1) It allows one to determine the effective
interaction just above transition scales from the given micro-
scopic model without any additional a priori assumptions
about the nature of symmetry breaking, and thereby provides
an initial condition for the integration at scales below �
.
(2) It exhibits how the interplay of the scale-dependent
scattering processes on different parts of the Fermi surface
gradually builds up the effective interaction. (3) It has by now
become a versatile tool for analyzing models with an elabo-
rate microscopic structure, such as multiple bands.

A. Hubbard model and N-patch RG schemes

The Hubbard model and its extensions have become stan-
dard in correlated fermion systems: on the square lattice as a
candidate model for high-temperature superconducting cup-
rates (Fulde, 1991; Anderson, 1997), in a multiband general-
ization, for the newly discovered iron superconductors
(Miyake et al., 2010), on triangular lattices for organic
crystals (Kino and Fukuyama, 1996; McKenzie, 1997), and
on the honeycomb lattice for graphene (Herbut, 2006; Lopez-
Sancho, de Juan, and Vozmediano, 2009). The Hamiltonian
for the simplest one-band Hubbard model reads

H ¼ �X
i;j;s

ti�jc
y
i;scj;s þU

X
i

ni;"ni;#; (107)

where ti�j ¼ tj�i is the hopping amplitude between sites i

and j and U is the Hubbard on-site repulsion. We consider
here mainly the case with only nearest-neighbor hopping t
and next-to-nearest-neighbor hopping t0 on a square lattice.
Additional hopping terms can be added if a more detailed
description of the band structure is required, and other inter-
action terms may be added. The chemical potential � and t
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FIG. 7 (color online). Diagrammatic representation of the flow

equations for the (fermionic and bosonic) self-energies and some of

the interaction vertices in a coupled boson-fermion theory. Solid

lines denote fermionic, and dashed lines denote bosonic propaga-

tors. Propagators with a dash are single-scale propagators.
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and t0 determine the band structure �k ¼ �2tðcoskx þ
coskyÞ � 4t0 coskx cosky ��, and hence the shape of the

Fermi surface.
Resummations of perturbation theory in U suggest singu-

larities in different channels, arising from Fermi surface
nesting and van Hove singularities (Schulz, 1987), hence
competing effects, which are best treated by RG methods.
After two-patch studies, which provided a crude approxima-
tion to the momentum dependence of the four-point vertex
(Dzyaloshinskii, 1987; Lederer, Montambaux, and Poilblanc,
1987; Schulz, 1987; Gonzalez, Guinea, and Vozmediano,
1996; Furukawa, Rice, and Salmhofer, 1998), more careful
analyses with momentum-dependent vertices were done us-
ing the Polchinski (Zanchi and Schulz, 1997, 1998, 2000), the
Wick-ordered (Halboth and Metzner, 2000a, 2000b), and the
one-particle irreducible flow equations (Honerkamp et al.,
2001), all with a momentum space regulator. To include
ferromagnetism, the temperature flow was introduced by
Honerkamp and Salmhofer (2001a, 2001b) and further de-
veloped by Honerkamp (2001) and Katanin and Kampf
(2003). The results of these studies at van Hove filling were
confirmed using a refined parametrization of the wave vector
dependence (Husemann and Salmhofer, 2009). The decou-
pling of the various ordering tendencies in the limit of small
U very close to the instability and the influence of nonlocal
interactions were discussed by Binz, Baeriswyl, and Douçot
(2002, 2003).

In the general RG setup of Sec. II, the fermion fields now
carry a spin index s and a multiindex K consisting of
Matsubara frequencies !, wave vectors k, and possibly a
band index b. To avoid bias, the action is required to retain all
symmetries of the initial action. This implies [see Honerkamp
et al. (2001) and Salmhofer and Honerkamp (2001)] that

�ð4Þ�
s1s2s3s4ðK1;K2;K3;K4Þ¼V�ðK1;K2;K3;K4Þ�s1s3�s2s4

�V�ðK2;K1;K3;K4Þ�s1s4�s2s3

(108)

for a spin-rotation invariant system. By lattice- and time-
translation invariance, K4 is fixed by K1, K2, and K3 in the
one-band model (in multiband models, the fourth band index
b4 still remains free). We therefore abbreviate the notation to
V�ðK1; K2; K3Þ. In the truncation �ð6Þ� ¼ 0, the flow equa-
tions for the self-energy and for the coupling function become

d

d�
��ðKÞ ¼ �

Z
dK0½2V�ðK;K0; KÞ

� V�ðK;K0; K0Þ�S�ðK0Þ;
d

d�
V� ¼ T �

PP þT �
PH;d þT �

PH;cr (109)

with the particle-particle termT �
PP and the direct and crossed

particle-hole terms T �
PH;d and T �

PH;cr:

T �
PPðK1; K2;K3; K4Þ
¼
Z

dK V�ðK1; K2; KÞL�ðK;�K þ K1 þ K2Þ
� V�ðK;�K þ K1 þ K2; K3Þ; (110)

T �
PH;dðK1;K2;K3;K4Þ
¼
Z
dK½�2V�ðK1;K;K3ÞL�ðK;KþK1�K3Þ

�V�ðKþK1�K3;K2;KÞþV�ðK1;K;KþK1�K3Þ
�L�ðK;KþK1�K3ÞV�ðKþK1�K3;K2;KÞ
þV�ðK1;K;K3ÞL�ðK;KþK1�K3Þ
�V�ðK2;KþK1�K3;KÞ�; (111)

T �
PH;crðK1; K2;K3; K4Þ
¼
Z

dK V�ðK1; K þ K2 � K3; KÞ
� L�ðK;K þ K2 � K3ÞV�ðK;K2; K3Þ: (112)

Here L�ðK;K0Þ ¼ S�ðKÞG�ðK0Þ þ G�ðKÞS�ðK0Þ is the
product of single-scale propagators S� and full propagators
G� with momentum assignments corresponding to the dia-
grams in Fig. 8.

For the Hubbard Hamiltonian (107), the initial condition is
V�0 ðK1; K2; K3Þ ¼ U. Other interactions can be dealt with by
modifying this initial condition. The truncation �ð6Þ� ¼ 0 is
justified only for a sufficiently small bare coupling, since a
contribution to �ð6Þ� is generated at third order in the two-
particle interaction, which leads to third-order contributions
to the flow of V� (see Sec. II). In most studies the self-energy
feedback into the flow of V� was also neglected, since it also
affects the flow only at third order in V�.

The coupling function V�ðK1; K2; K3Þ depends on three
wave vectors and three Matsubara frequencies, so that the RG

FIG. 8. Top row: The coupling function V�ðK1; K2; K3Þ with the

spin convention, and the diagrams entering in the flow equation for

the self-energy (middle and right diagrams). Middle and bottom

rows: The diagrams for the flow of the coupling function. The

internal lines are either full propagators G� or single-scale propa-

gators S�.
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equation for a two-dimensional system is a differential equa-
tion in a nine-dimensional space. As discussed in Sec. II.E, its
most singular part sits at zero Matsubara frequency. Hence
one may neglect the frequency dependence. Then V� defines
an effective Hamiltonian. Similarly, the k dependence is most
important in the angular direction along the Fermi surface.
This dependence can then be taken into account by a discre-
tization, i.e., by devising patches in the Brillouin zone in
which the coupling function is kept constant. Feldman et al.
(1992) showed that using N patches leads to a natural
N-vector model in two dimensions. Zanchi and Schulz
(1998, 2000) were the first to use it in studies of the
Hubbard model.

Usually one forms elongated patches that extend roughly
perpendicular to the Fermi surface but are rather narrow
parallel to the Fermi surface (see Fig. 9). The coupling
function is then computed for wave vectors k1 to k3 at the
Fermi surface in the center of the patches. We label the
patches by �i ¼ 1; . . . ; N. The function V� is thus approxi-
mated by OðN3Þ interpatch couplings V�ð�1; �2; �3Þ. Even if
k1, k2, and k3 are on the Fermi surface, k4 can be anywhere.
In the calculation of the loop integrals it is however necessary
to assign a patch number �4 to k4, which amounts to an
approximation of projecting k4 on the Fermi surface. Note
that this projected N-patch discretized coupling function
V�ð�1; �2; �3Þ then has fewer symmetries; for instance,
V�ð�1; �2; �3Þ � V�ð�2; �1; �4Þ in general, as in the latter
object k3 is not necessarily on the Fermi surface. For suffi-
ciently large N, this discretization captures the angular varia-
tion of the coupling function along the Fermi surface with
good precision.

The results obtained within this approximation, described
in the following, have been found to be robust when the
dependence on frequencies !i (Klironomos and Tsai, 2006;
Honerkamp, Fu, and Lee, 2007) and the component of ki

transversal to the Fermi surface (Halboth and Metzner,
2000a; Honerkamp, 2001; Honerkamp et al., 2004) are
included. Katanin (2009) performed a flow to third order in

the scale-dependent four-point vertex (see Sec. II.E.3), with

the frequency dependence in the same approximation as

Honerkamp and Salmhofer (2003).

B. Results for the two-dimensional Hubbard model

Starting from the initial condition given by the Hubbard

model, the flow is run from �0 down to a characteristic scale

�
, where the largest coupling reaches some multiple � of the

bandwidth. The choice of � varies widely in the literature;

the discussion here is based on the comparably cautious

choice � ¼ 2 or 3, as well as on the consistency check that

the results do not change drastically as � is changed. The

characteristic scale �
 corresponds to a temperature T
. If T
is clearly above T
, the flow can be integrated to scale zero

without any instabilities. T
 is only an upper bound for the

temperature where ordering can set in because of order

parameter fluctuations at scales below �
. In two dimensions

they are so strong that long-range order that breaks continu-

ous symmetries does not occur at any T > 0, thus ‘‘ordering’’
means either short-range order with a large correlation length,

or ordering in a related system with a small coupling in the

third direction, as is present in most materials.

1. Antiferromagnetism and superconductivity

The results discussed here are obtained with a slightly

smeared-out step function as cutoff on k (no cutoff on the

frequencies) and by dropping the self-energy.

a. Antiferromagnetism

For t0 ¼ 0 and � ¼ 0, the band is half filled, and the Fermi

surface is a perfect square. Every vector connecting parallel

sides of the Fermi surface is a nesting vector, and r�k ¼ 0 at
ð
; 0Þ and ð0; 
Þ. This strongly enhances particle-hole terms

at wave vector Q ¼ ð
;
Þ. A random-phase approximation

summation of these bubbles results in a divergent static spin

susceptibility at Q for any U > 0 at sufficiently low T,
indicating the formation of an antiferromagnetic (AF) spin-

density wave (SDW), in accordance with mean-field studies

(Fulde, 1991). The basic RG results at low T are shown for

U ¼ 2t in Fig. 10. The labeling of the N ¼ 32 patches along

the Fermi surface can be read off Fig. 10(a). Figure 10(b)

shows V� as a function of the patch indices �1 and �2, at

�
 � 0:16t and with �3 ¼ 1 [i.e., k3 near ð�
; 0Þ]. Strongly
enhanced repulsive interactions appear as a vertical line at

�2 ¼ 24 (i.e., for k2 � k3 ¼ Q), almost �1 independent, and

as a horizontal line at �1 ¼ 24 (corresponding to k1 � k3 ¼
Q) with only a weak dependence on �2, roughly half as large

as the vertical feature. In an extrapolation where the regular

profiles are narrowed down to delta functions with an appro-

priate prefactor J, V�ð�1; �2; �3Þ ¼ ðJ=4Þð2�k2�k3;Q þ
�k1�k3;QÞ, corresponding to a mean-field AF-spin interaction

Hamiltonian J
P

hi;jieiQ�ðRi�RjÞSi � Sj, with Si ¼ 1
2 c

þ
i �ci. The

effective Hamiltonian consisting of the low-scale hopping

term and this interaction exhibits AF long-range order at

sufficiently low T. An analysis of the flow of susceptibilities

(Halboth and Metzner, 2000a; Honerkamp et al., 2001) as

described in Sec. II.F confirms this picture.

FIG. 9 (color online). N-patch discretization of the Brillouin zone

for the one-band Hubbard model on the 2D square lattice. The

colored region is a patch in which the coupling function is approxi-

mated as a constant.
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The extrapolation to a mean-field Hamiltonian is a drastic
oversimplification, in which the spin fluctuations are lost, but
they are retained in the V� obtained by the RG flow. As the
leading instability is clearly exposed by this analysis, one can
also resort to a bosonized description that treats the collective
infrared physics (Baier, Bick, and Wetterich, 2004).

b. d-wave Cooper pairing

For t0 ¼ �0:3t and � ¼ �1:2t, the Fermi surface still
contains the saddle points ð
; 0Þ and ð0; 
Þ but is curved
away from these points [Fig. 10(c)]. Now Cooper pair scat-
tering dominates, well visible in Fig. 10(d) on the diagonal
lines k1 þ k2 ¼ 0 (j�1 � �2j ¼ N=2 in terms of patch in-
dices). It is attractive when the incoming pair k1;�k1 is near
the same saddle point ð�
; 0Þ as the outgoing pair k3, �k3,
and repulsive when incoming and outgoing pairs are at differ-
ent saddle points. This is the symmetry of the form factor
dðkÞ ¼ d0ðcoskx � coskyÞ for dx2�y2 Cooper pairing. In an

extrapolation as above, V�ðk1;k2;k3Þ gives rise to the mean-
field Hamiltonian

H�
dSC ¼ VdSC

X
k;k0

dðkÞdðk0Þcy
k0;"c

y
�k0 ;#c�k;#ck;";

which has a d-wave singlet-paired ground state. This d-wave
pairing instability was found in a number of studies using
different functional RG schemes (Zanchi and Schulz, 1998,
2000; Halboth and Metzner, 2000a, 2000b; Honerkamp,
2001; Honerkamp et al., 2001; Honerkamp and Salmhofer,
2001a, 2001b; Tsai and Marston, 2001), in a rather large
parameter region. This constitutes convincing evidence that

the weakly coupled Hubbard model possesses a d-wave
superconducting ground state.

c. Interplay of AF and SC

In Fig. 10(d), the sign structure of the d-wave term goes

together, and fits perfectly with, enhanced repulsive interac-
tions near �1 ¼ 8 and �2 ¼ 24, which are the remnants of the
SDW feature in Fig. 10(b). Their larger width is due to the

Fermi surface curvature. As � is decreased, these SDW
features appear first, due to approximate nesting at high
scales, and then create an attractive component in the

dx2�y2-pairing channel, which then grows as � is lowered

further, while the SDW is cut off by Fermi surface curvature,
as discussed also in Appendix B.3. When the SDW-enhancing
terms are removed by hand from the right-hand side of the

RG equation, the d-wave terms are suppressed as well. Thus
the d-wave pairing interaction is induced by AF-spin fluctua-
tions that appear on higher scales.

At fixed U, t, and t0, there is a sizable interval of � for
which the Fermi surface remains close to the saddle points.

Since both AF-SDW and d-wave SC are driven by repulsive
scattering between ð
; 0Þ and ð0; 
Þ, both grow and reinforce
one another. In the saddle point regime, it becomes impossible

to single out one over the other in the truncation used here. By
analogy with the quasi-one-dimensional ladder systems, it has
been argued that in this regime the Fermi surface gets trun-

cated (Furukawa, Rice, and Salmhofer, 1998; Honerkamp
et al., 2001; Läuchli, Honerkamp, and Rice, 2004).

2. Ferromagnetism versus superconductivity

At the van Hove filling, ferromagnetic (FM) tendencies are

enhanced by the logarithmic divergence of the density of
states, and the Stoner criterion for the bare interaction sug-
gests an FM ordered state at arbitrarily smallU. However, the

van Hove singularities also make the OðU2Þ Cooper pair
scattering log2 divergent, hence putting the two terms into
direct competition.

As discussed in Sec. II.D.1, the momentum-shell cutoff
artificially suppresses FM. For this reason, the T flow (see

Sec. II.D.2) was invented (Honerkamp and Salmhofer, 2001a,
2001b), and we discuss results obtained by T flow here. The
main difference to the AF and SC scenario discussed above is

that at zero transfer momentum, scattering processes driving
FM must have the opposite sign from those driving singlet
SC, hence mutually suppressing one another. This simple

picture is confirmed by the RG with momentum-dependent
vertices, in a study where t0 and � are varied at fixed U and t,
such that the Fermi surface always contains the saddle points:

near to t0 ¼ �t=3, T
 gets strongly suppressed, hinting at a
quantum critical point between the d-wave SC and FM
phases (lower left plot in Fig. 11). These results were later

confirmed by a two-particle self-consistent approach
(Hankyevych, Kyung, and Termblay, 2003) and in the so-
called 	 scheme, which employs a soft infrared regulator on

the Matsubara frequencies (Husemann and Salmhofer, 2009);
see the lower right plot in Fig. 11. In the latter study, the
N-patch scheme was replaced by a parametrization of the

vertex functions in terms of exchange bosons. The much
higher value of �
 in the transitional regime near t0 ¼�t=3
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FIG. 10 (color online). N-patch functional RG data obtained with

the momentum-shell functional RG for the repulsive Hubbard

model on the 2D square lattice. Upper plots: � ¼ 0, t0 ¼ 0, and
initial U ¼ 2t; lower plots: � ¼ 1:2t, t0 ¼ �0:3t, and U ¼ 3t. Left:

Fermi surfaces for the two cases and the N ¼ 32 discretization

points for the two incoming k1, k2 and the first outgoing wave

vector k3. Right: The coupling function V�
 ð�1; �2; �3Þ with

�3 ¼ 1 and �1 and �2 moving around the Fermi surface. The color

bars on the right indicate the values of the interactions.
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is believed to be due to a form factor that was not fully
resolved there.

3. Charge instabilities

The effective interaction develops a pronounced momen-
tum dependence also in the charge sector. In the forward
scattering channel, this amounts to the formation of nonuni-
form contributions to the Landau interaction. If strong
enough, the latter can lead to a Pomeranchuk instability
(Pomeranchuk, 1959), that is, a symmetry-breaking deforma-
tion of the Fermi surface.

In particular, the antiferromagnetic peak drives the combi-
nation of couplings V�

c ð�1; �2; �3Þ ¼ 2V�ð�1; �2; �3Þ �
V�ð�2; �1; �3Þ at certain Q ¼ k3 � k1. Near to Q � 0 and
Q � ð
;
Þ,

V�
c ð�1; �2; �3Þ � �fdðk1Þfdðk2ÞVdðk3 � k1Þ; (113)

where fdðkÞ has the same symmetries as dðkÞ ¼ coskx �
cosky, but is more strongly peaked near the saddle points. For

Q ¼ ð
;
Þ the corresponding mean-field state is the
d-density wave state, which breaks time-reversal invariance
(Chakravarty et al., 2001) and gaps the single-particle states,

except at nodal points on the Brillouin zone diagonal. For
forward scattering, Q ¼ 0, the mean-field state breaks only
the lattice rotational symmetry of the electronic dispersion
and hence of the Fermi surface. This tendency to form a
nematic state (Fradkin et al., 2010) via a d-wave
Pomeranchuk instability driven by forward scattering inter-
actions was discovered using functional RG (Halboth and
Metzner, 2000b). Although the Pomeranchuk instability is
not leading in the flow for the Hubbard model (Honerkamp,
Salmhofer, and Rice, 2002), a nematic state can coexist with
the superconducting state (Neumayr and Metzner, 2003;
Yamase and Metzner, 2007), and it may get less suppressed
by fluctuations since it breaks no continuous symmetry. The
d-wave Pomeranchuk instability has been investigated as a
possible source of nematicity of the electronic state in relation
with experiments on various correlated electron systems
(Honerkamp, 2005; Yamase and Metzner, 2006; Yamase,
2009; Metlitski and Sachdev, 2010c; Okamoto et al., 2010).

4. Flows with self-energy effects

We briefly summarize functional RG studies where the
self-energy has been included. If a frequency-independent
vertex function V� is directly inserted in the right-hand side
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 vs � for
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Walter Metzner et al.: Functional renormalization group approach to . . . 321

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



of Eq. (50), then �� is real and independent of the frequency,

and hence only changes the dispersion. This was taken into

account in the appendix of Honerkamp et al. (2001), where

the adaptive scale decomposition method later detailed by

Salmhofer (2007) was used. To keep the density fixed, � is

adjusted as a function of �. Since the interaction grows in the

flow, it is a nontrivial check of the validity of the truncation in

which the feedback from the interaction does not lift the low-

kinetic-energy modes to high energies, which would drasti-

cally shift the Fermi surface and lead to spurious divergences.

The first study by Honerkamp et al. (2001) showed that the

Fermi surface tends to become flatter as � decreases, but that

it indeed shifts very little before the flow is stopped at �
.
Thus, including the real part of the self-energy does not lead

to any essential changes in the AF and SC scenario described

above. However, correlations that feed only on the immediate

vicinity of the saddle points, such as FM, are affected more

strongly, and a full analysis of the coupled flow of self-energy

and vertex directly at the saddle points remains an open

problem, in spite of partial results (Feldman and Salmhofer,

2008b).
The imaginary part and the frequency dependence of the

self-energy can be approximated by inserting the integrated

flow of the interaction vertex in the self-energy equation

(Honerkamp, 2001). This effectively includes two-loop

frequency-dependence effects, and captures the

T2 dependence of the quasiparticle scattering rate in a

Fermi-liquid situation and the exponent of the vanishing

quasiparticle weight in the Luttinger liquid up to second order

in the bare couplings (Honerkamp and Salmhofer, 2003). For

the 2D Hubbard model, the quasiparticle lifetime and renor-

malization factor were calculated by Honerkamp (2001) and

Honerkamp and Salmhofer (2003), exhibiting a strongly

k-dependent quasiparticle degradation as �
 is approached.

This trend was also found by Zanchi (2001) in a slightly

different approximation for the self-energy and is also robust

in a more elaborate treatment (Katanin, 2009), where the six-

point vertex was partially included. The anisotropy of the

quasiparticle lifetime was found to have a non-Fermi-liquid

temperature dependence and to correlate with the strength of

the generated d-wave pairing interaction (Ossadnik et al.,

2008), similar to what is observed experimentally in over-

doped cuprates. More refined studies of the frequency depen-

dence revealed, however, that a simple parametrization in

terms of a quasiparticle weight is insufficient (Katanin and
Kampf, 2004; Rohe and Metzner, 2005). It was shown that
near �
 the small-j!j behavior of ��ð!;kÞ leads to a splitup
of the quasiparticle peak. All these findings are consistent

with an anisotropic breakup of the Fermi surface that one
would like to connect with the phenomenology of the high-Tc

cuprates (Honerkamp et al., 2001; Lee, Nagaosa, and Wen,
2006), but a quantitative comparison is difficult due to the
strongly coupled nature of the cuprates.

C. Pnictide superconductors

The functional RG has been useful in the study of the
newly discovered iron-pnictide superconductors (Norman,

2008; Ishida, Nakai, and Hosono, 2009; Hirschfeld and
Scalapino, 2010). Here the functional RG may work even
better, as the pnictides are less strongly correlated than the
high-Tc cuprates. This can already be inferred from the
experimental phase diagram, where one finds only metallic
antiferromagnetic phases (if at all), but never Mott insulating
antiferromagnetism. Theoretical works that try to assess the
iron d-orbital onsite-interaction strengths find values that put

the materials into the range of weak to moderate correlations
(Anisimov et al., 2009; Miyake et al., 2010). Regarding the
electronic structure, the pnictides are more complex than the
cuprates. At least three of the five iron d orbitals have non-
negligible weight near the Fermi level (Mazin et al., 2008;
Daghofer et al., 2010). Therefore, even if one is interested
only in the vicinity of the Fermi surface, the multiband
character has to be kept. The Fermi surface [see Fig. 12(b)]

is divided into two hole pockets, centered around the origin of
the Brillouin zone at k ¼ 0, and two electron pockets around
k ¼ ð
; 0Þ and k ¼ ð0; 
Þ in the unfolded zone correspond-
ing to the small unit cell with one iron atom [or k ¼ ð
;
Þ in
the folded zone corresponding to the large unit cell with two
iron atoms]. As pointed out earlier (Kuroki et al., 2008;
Mazin et al., 2008), there is approximate nesting of electron

and hole pockets which enhances particle-hole susceptibili-
ties with the wave vector connecting these pockets. In addi-
tion, depending on the parameters and approximations
(Ikeda, Arita, and Kunes, 2010), there can be a third hole
pocket at ð
;
Þ in the unfolded zone.

The first N-patch studies of the pnictides were performed
by Wang et al. (2009) and further elaborated in Wang, Zhai,

FIG. 12 (color online). Functional renormalization group results for the iron-pnictide compound LaFeAsO at moderate hole doping.

(a) Superconducting form factor as the outcome of functional RG, plotted versus the position on the hole pockets at � and M and electron

pockets at X, numbered as depicted in (b). The competing fluctuations manifest themselves in diverging ordering susceptibilities at low RG

scales as shown in (c), including, in particular, spin-density wave (SDW), superconductivity (SC), Pomeranchuk (PI), and charge-density-

wave (CDW) instabilities. From Thomale, Platt, Hanke, Bernevig, 2011a.
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and Lee (2009, 2010) for a five-band model. They obtained a
sign-changing s-wave pairing instability driven by AF fluc-
tuations as the dominant pairing instability. Further they
found strongly anisotropic gaps around the electron pockets,
with the possibility of node formation. The basic structure of
the phase diagram with the sign-changing pairing gap be-
tween electron and hole pockets can be understood already
from simplified few-patch RG approaches (Chubukov,
Efremov, and Eremin, 2008). However, this would predict
isotropic gaps around these pockets (Platt, Honerkamp, and
Hanke, 2009). To understand the gap anisotropy one has to
take into account the multiorbital nature of the electronic
spectrum in the iron pnictides, as done in the initial studies
(Wang, Zhai, and Lee, 2009, 2010; Wang et al., 2009). In
order to understand this point, we start with a single-particle
Hamiltonian in wave vector-Fe-d-orbital space

H ¼ X
k;s;o

hðkÞoo0cyk;o;sck;o0 ;s; (114)

where the matrices hðkÞoo0 take into account intraorbital and
interorbital terms for orbital index o ¼ o0 or o � o0, respec-
tively. s is the spin quantum number. The energy bands are
obtained by a unitary transformation from orbital to band
operators (index b), ck;b;s ¼ P

ouboðkÞck;o;s. The standard

choice for the interaction between the electrons is to intro-
duce orbital-dependent intraorbital and interorbital on-site
repulsions, plus Hund’s rule and pair hopping terms. While
these local terms lead to k-independent interactions in the
orbital basis, parametrized by a tensor Vo1;o2;o3;o4, after the

transformation to bands one arrives at a k-dependent inter-
action function

Vb1;b2;b3;b4ðk1;k2;k3;k4Þ
¼ X

o1;o2;o3;o4

Vo1;o2;o3;o4ub1;o1ðk1Þub2;o2ðk2Þ

� u
b3;o3ðk3Þu
b4;o4ðk4Þ: (115)

The combination of ubos behind the interaction tensor is
sometimes called the ‘‘orbital makeup’’ (Graser et al.,
2009; Maier et al., 2009). These prefactors cause a marked
k structure already in the initial interaction which is then
renormalized during the functional RG flow. It turns out that
this orbital makeup has an essential influence on the com-
petition between different channels in the flow and is respon-
sible for the gap anisotropies found in the multiband
functional RG studies by Wang, Zhai, and Lee (2009, 2010)
and Wang et al. (2009), and in subsequent functional RG
studies (Platt, Thomale, and Hanke, 2011a; Thomale, Platt,
Hanke, and Bernevig, 2011a). A typical result for the pre-
dicted pairing gaps is shown in Fig. 12(a). Note that, accord-
ing to the functional RG analysis, the pairing state should be
strongly doping dependent (Thomale et al., 2009, 2011b;
Thomale, Platt, Hanke, and Bernevig, 2011a).

Summarizing, the iron superconductors pose an interesting
problem where the functional RG has been instrumental in
obtaining the main ordering tendencies in good agreement
with current experiments. For future research, one goal
should be to make the functional RG a useful bridge between
ab initio descriptions providing the effective model at

intermediate energy scales and the many-body effects seen

in the experiments at low scales. In particular, it will be
interesting to relate experimentally observed material trends

in, e.g., the gap structure or the energy scales of the different

systems, to changes in the microscopic Hamiltonian taken
from ab initio descriptions. Furthermore, the functional RG

studies may have to be extended to include the dispersion
orthogonal to the iron-pnictide planes, as this would yield

additional possibilities for nodes in the gap function

(Norman, 2008; Ishida, Nakai, and Hosono, 2009;
Hirschfeld and Scalapino, 2010; Platt, Thomale, and Hanke,

2011b).

D. Other systems

Besides the above-described two larger fields of applica-

tion, the functional RG truncations described in this section
have also been employed in a number of other models in

strongly correlated electron physics. Here we briefly list some

of these activities.
In relation to possible unconventional superconductivity in

organic crystals and layered cobaltates, Hubbard-type models

on the triangular lattice have been studied (Tsai and Marston,
2001; Honerkamp, 2003). At large U, the spin exchange

interaction between the sites of the triangular lattice is geo-
metrically frustrated, leading to a much weaker appearance of

antiferromagnetism and a possible nonmagnetic insulating

phase (Morita, Watanabe, and Imada, 2002; Sahebsara and
Sénéchal, 2008; Yoshioka, Koga, and Kawakami, 2009). At

weak coupling and for nearest-neighbor hopping, Fermi sur-

face nesting is absent, so that near to or at half band filling
only low-scale Kohn-Luttinger-like superconducting instabil-

ities occur out of an innocuous Fermi liquid. However, there
appears to be a strong dependence on details of the micro-

scopic modeling.
To study interaction effects in graphene, the N-patch func-

tional RG has been applied to the extended Hubbard model on
the honeycomb lattice. In nominally undoped graphene, the

Fermi surface becomes a set of Dirac points where the
density of states vanishes, and no instabilities are found for

sufficiently small interactions. If the interaction strength ex-

ceeds a certain value, various instabilities driven by particle-
hole fluctuations between the two Dirac points (Honerkamp,

2008) are found. Interestingly, for larger second-nearest-
neighbor interactions, there is the possibility of an instability

toward a quantum spin Hall phase (Raghu et al., 2008).

However, a spin-liquid phase for intermediate strength of the
Hubbard on-site repulsion that was recently found in quantum

Monte Carlo calculations (Meng et al., 2010) is not reflected

in the functional RG results on this level of approximation.
When the Fermi level is moved away from the Dirac

points, the functional RG again detects pairing instabilities.
In the case of dominant nearest-neighbor repulsion, the lead-

ing pairing tendency is in the f-wave triplet channel

(Honerkamp, 2008).
The unbiasedness of the functional RG, and the access it

gives to k and ! dependences of vertex functions, is also of

great use in (quasi-)one-dimensional models. The half-filled
extended Hubbard model in one dimension has been studied

in the search for bond-order-wave phases, which could indeed
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be found with a refined patching of the k dependence of the
interaction away from the Fermi points (Tam, Tsai, and
Campbell, 2006). For quasi-1D models with a small trans-
verse hopping in a second direction the change from a gapless
Luttinger liquid in a strictly one-dimensional situation to
Fermi-liquid instabilities toward ordering can be monitored
as a function of the transverse hopping (Honerkamp and
Salmhofer, 2003). The Fermi surface in coupled metallic
chains was studied by Ledowski, Kopietz, and Ferraz
(2005) and Ledowski and Kopietz (2007a, 2007b). The pos-
sibility of triplet pairing driven by density wave fluctuations
was explored in such situations (Nickel et al., 2005, 2006). In
these quasi-one-dimensional systems, including the fre-
quency dependence of the interaction vertex is numerically
more feasible than in two dimensions. This was used to study
the interplay of phonon-mediated and direct electron-electron
interactions for chains (Tam et al., 2007a), ladders (Tam
et al., 2007b), and systems with small transverse hopping
(Bakrim and Bourbonnais, 2010).

Many-fermion lattice Hamiltonians can also be realized
with ultracold atoms in optical lattices, opening up new
directions. For example, mixtures of more than two hyperfine
states (Honerkamp and Hofstetter, 2004) and boson-mediated
pairing on two-dimensional lattices (Mathey, Tsai, and Castro
Neto, 2006, 2007; Klironomos and Tsai, 2007) have been
investigated using fermionic N-patch methods.

Another promising development is the application of the
functional RG to quantum spin systems (Reuther and Wölfle,
2010). Here, an auxiliary-fermion representation is used for
the spins in generalized Heisenberg models, and the func-
tional RG can be formulated in terms of these fermions. An
important difference to systems of itinerant electrons, in the
quantum spin system the kinetic energy for the pseudofer-
mions is zero and the interactions depend only on one spatial
or wave vector variable. This allows one to keep the full
frequency dependence of the self-energy and interaction
vertex on the imaginary axis, in the usual truncation where
the six-point vertex is neglected. The Katanin modification
(Katanin, 2004, see also Sec. II.C.2) of the flow hierarchy
turns out to be crucial here. If it is employed, the auxiliary-
fermion functional RG describes the transitions from Néel
order to collinear order through an intermediate paramagnetic
phase in the J1-J2 spin-1=2 model on the square lattice as a
function of J1=J2 in good agreement with numerical ap-
proaches. Furthermore, similar systems on the triangular
lattice (Reuther and Thomale, 2011) and with longer-ranged
couplings (Reuther et al., 2011) were studied. The success of
a relatively simple truncation in such an intrinsically strongly
coupled system is explained by these authors in that the
diagrams summed in this flow contain the leading contribu-
tions in both 1=N and 1=S expansions plus particle-particle
diagrams, hence those contributions that are believed to be
most important.

IV. SPONTANEOUS SYMMETRY BREAKING

In many interacting Fermi systems a symmetry of the bare
action is spontaneously broken at sufficiently low tempera-
tures and, in particular, in the ground state. In the fermionic
flow equations, the common types of spontaneous symmetry

breaking such as magnetic order or superconductivity are

associated with a divergence of the effective two-particle
interaction at a finite scale �c > 0, in a specific momentum

channel. In Sec. III we discussed several examples for such

divergences. The truncation for the effective two-particle
vertex leading to the N-patch scheme described and used in

Sec. III is insufficient to describe the symmetry-broken phase.
To continue the flow below the scale �c, an appropriate order

parameter has to be introduced.
There are two distinct ways of implementing spontaneous

symmetry breaking in the functional RG. In one approach the

fermionic flow is computed in the presence of a small (ideally

infinitesimal) symmetry-breaking term added to the bare
action, which is promoted to a finite order parameter below

the scale �c (Salmhofer et al., 2004). A relatively simple

truncation of the exact flow equation captures spontaneous
symmetry breaking in mean-field models such as the reduced

BCS model exactly, although the effective two-particle
interactions diverge. Another possibility is to decouple the

interaction by a bosonic order parameter field, via a

Hubbard-Stratonovich transformation, and to study the
coupled flow of the fermionic and order parameter fields

(Baier, Bick, and Wetterich, 2004).
In the case of competing instabilities a reliable calculation

based on either of the above-mentioned routes to symmetry

breaking is quite involved. For a rough estimate of order

parameters and phase diagrams, one may also neglect low-
energy fluctuations and combine flow equations at high scales

with a mean-field treatment at low scales. In this functional
RGþmean-field approach, one stops the flow of the effective

two-particle interaction at a scale �MF >�c, that is, before it

diverges. The remaining low-energy degrees of freedom are
treated in mean-field approximation, with a reduced effective

interaction extracted from the effective two-particle vertex

�ð4Þ�MF . In the first application of this ‘‘poor man’s’’ approach
to symmetry breaking the interplay and possible coexistence

of antiferromagnetism and d-wave superconductivity in the
(repulsive) two-dimensional Hubbard model were studied

(Reiss, Rohe, and Metzner, 2007). As in any hybrid method,

the results depend quantitatively on the choice of the inter-
mediate scale �MF (except for mean-field models), and there

is no unique criterion for this choice.
We now review the purely fermionic and the Hubbard-

Stratonovich approaches to spontaneous symmetry breaking

in the functional RG. The methods will be explained for the

case of a superconductor as a prototype for continuous sym-
metry breaking, and the interested reader is referred to the

literature on applications involving other order parameters.

A. Fermionic flows

The effective action �� obtained from the exact flow

equation or from symmetry-conserving truncations thereof
exhibits the same symmetries as the bare action S. To analyze
spontaneous symmetry breaking, one therefore has to add a

symmetry-breaking term �S to the bare action and compute
the flow of �� in the presence of this term. In the case of

spontaneous symmetry breaking an arbitrarily small
symmetry-breaking term is promoted to a finite order pa-

rameter at a scale�c, which survives until the end of the flow.
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A crucial issue is then to find a manageable truncation of
the exact flow equation which captures the essential features
of the flow into the symmetry-broken phase. This is nontrivial
since the effective two-particle interactions driving the sym-
metry breaking become large. Indeed, truncations based on
neglecting vertices �ð2mÞ� withm> 2 in the hierarchy of flow
equations fail miserably. A benchmark for truncations is the
requirement that they should at least provide a decent solution
for mean-field models. This requirement is met by an ap-
proximation introduced by Katanin (2004) to implement
Ward identities in truncated flow equations. Katanin’s trun-
cation, which was described already in Sec. II.C, consists of
two coupled flow equations for the self-energy �� and the
two-particle vertex �ð4Þ�; see Fig. 13.

They are almost identical to the first two equations in the
hierarchy described in Sec. II.C, with �ð6Þ� ¼ 0, but in the
flow equation for �ð4Þ� the single-scale propagator S� is
replaced by @�G

� ¼ S� þG�@��
�G�. This modification

takes tadpole contributions obtained from contractions of the
three-particle vertex �ð6Þ� into account.

It is easy to see that the Katanin truncation solves mean-
field models for symmetry breaking such as the Stoner model
for ferromagnetism or the reduced BCS model exactly
(Salmhofer et al., 2004). The exact self-energy in such
models is given by the Hartree-Fock term � ¼ VG
(schematically), where V is the bare interaction, and the
two-particle vertex by a ladder sum of the form �ð4Þ ¼ Vð1�
GGVÞ�1. These equations hold also in the presence of a
cutoff �. Applying � derivatives one immediately finds
that �� and �ð4Þ� obey flow equations of the (schematic)
form @��

� ¼ �ð4Þ�S� and @��
ð4Þ� ¼ �ð4Þ�@�ðG�G�Þ�ð4Þ�,

which corresponds exactly to Katanin’s truncation.
To be more specific, we consider the case of singlet super-

conductivity, where the continuous U(1) symmetry associated
with charge conservation is spontaneously broken, while
spin-rotation invariance remains conserved. Super-
conductivity can be induced by adding a term of the form

�S ¼ X
k

½�0ðkÞ �c "ðkÞ �c #ð�kÞ þ �

0ðkÞc #ð�kÞc "ðkÞ�;

(116)

with a (generally complex) external pairing field �0ðkÞ, to the
bare action. It is convenient to use Nambu spinors ��ðkÞ and
���ðkÞ with ��þðkÞ ¼ �c "ðkÞ, �þðkÞ ¼ c "ðkÞ, ���ðkÞ ¼
c #ð�kÞ, and ��ðkÞ ¼ �c #ð�kÞ. The effective action as a

functional of the Nambu fields, truncated beyond two-particle
terms, has the form

��½�; ��� ¼ �ð0Þ� �X
k

X
�1;�2

�ð2Þ�
�1�2

ðkÞ ���1
ðkÞ��2

ðkÞ

þ 1

4

X
k1;...;k4

X
�1;...;�4

�ð4Þ�
�1�2�3�4

ðk1; k2; k3; k4Þ

� ���1
ðk1Þ ���2

ðk2Þ��3
ðk3Þ��4

ðk4Þ: (117)

Because of spin-rotation invariance only terms with an equal
number of� and �� fields contribute. The Nambu propagator
G� ¼ ð�ð2Þ�Þ�1 can be written as a 2� 2 matrix of the form

G�ðkÞ ¼ G�þþðkÞ G�þ�ðkÞ
G��þðkÞ G���ðkÞ

� �

¼ G�ðkÞ F�ðkÞ
F
�ðkÞ �G�ð�kÞ

� �
: (118)

It is instructive to discuss the flow of the superconducting
gap and the two-particle vertex for the reduced BCS model
(Salmhofer et al., 2004), which is defined by an action of the
form

S½c ; �c � ¼ X
k;�

ð�ik0 þ �kÞ �c �ðkÞc �ðkÞ

þX
k;k0

Vðk; k0Þ �c "ðkÞ �c #ð�kÞc #ð�k0Þc "ðk0Þ:

(119)

Note that the interaction is restricted to particles with strictly
opposite momenta and spins. It is well known that mean-field
theory solves this model exactly in the thermodynamical limit
(Haag, 1962; Mühlschlegel, 1962). The restricted momentum
dependence of the bare interaction carries over to similar
restrictions for the effective two-particle vertex �ð4Þ� in
Eq. (117). Only two independent components appear, namely,

V�ðk; k0Þ ¼ �ð4Þ�
þ�þ�ðk; k0; k0; kÞ; (120)

W�ðk; k0Þ ¼ �ð4Þ�
þþ��ðk; k0; k0; kÞ: (121)

The first component is a normal interaction between two
particles, and its initial value V�0ðk; k0Þ is the bare interaction.
The second component is an anomalous term describing the
creation of four particles. It is initially zero, but is generated
by charge symmetry-breaking terms in the course of the flow.
Another anomalous term describing the destruction of four
particles is given by the complex conjugate ofW�ðk; k0Þ. The
diagonal element of the Nambu self-energy vanishes for the
reduced BCS model, while the off-diagonal element is given
by the gap function ��ðkÞ.

For the special case of a momentum-independent s-wave
interaction V, the flow equations obtained from the procedure
described above are particularly simple. Choosing a
momentum-independent and real bare gap �0 > 0, the flow-
ing quantities ��, V�, and W� are real and momentum
independent, too. Their (exact) flow is given by

d

d�
�� ¼ �ðV� þW�ÞX

k

d

d�
F�

���������� fixed
; (122)

where d
d�F

�j�� fixed is the anomalous Nambu single-scale

propagator, and

d
dΛ

d
dΛ

Σ

==

Γ ΓΓΓ

S

G

G
.

FIG. 13. Coupled flow equations for the self-energy and the two-

particle vertex determining the fermionic flow with symmetry

breaking.
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d

d�
ðV��W�Þ¼�ðV��W�Þ2

�X
k

d

d�
½jG�ðkÞj2
jF�ðkÞj2�: (123)

A typical flow for an attractive bare interaction V < 0 is
shown in Fig. 14, for two different choices of the bare gap
�0. The gap increases monotonically from the initial value�0

upon lowering �, and reaches a finite value � � �0 for
� ! 0. A finite �0 regularizes the square-root singularity
in the gap flow at � ¼ �c. The normal vertex V� reaches a
large negative value at the critical scale �c, while the anoma-
lous vertex W� becomes large and positive. The linear com-
bination V� þW�, which drives the gap flow, is also strongly
negative at �c, but it saturates at a moderately negative value
for � below �c. By contrast, V� �W� decreases monotoni-
cally and reaches a final value of order 1=�0 for � ! 0,
which diverges for �0 ! 0. This divergence is the mean-field
remnant of the Goldstone mode associated with the broken
continuous symmetry.

In the case of a discrete broken symmetry, the effective
interaction becomes large only at the critical scale, while no
large components remain for � ! 0. This has been exempli-
fied in a study of the RG flow of a mean-field model for a
commensurate charge-density wave (Gersch et al., 2005).

The performance of the Katanin truncation for models with
full (not reduced) interactions has not yet been fully explored,
since an accurate parametrization of the flowing vertex is
quite demanding. However, the results obtained so far are
encouraging. Staying with superconductivity as an example,
the Nambu vertex contains 16 components, most of them
corresponding to anomalous interactions. In addition to the
anomalous terms appearing already in the reduced BCS
model, there are anomalous interactions corresponding to
the creation of three particles and the destruction of one
particle, and vice versa (Salmhofer et al., 2004; Gersch,
Honerkamp, and Metzner, 2008). Making full use of spin-
rotation invariance, all the Nambu components can be ac-
tually expressed by only three independent functions of
momenta and frequencies (Eberlein and Metzner, 2010).
The main challenge is an adequate parametrization of the
(threefold) momentum and frequency dependence, since sin-
gularities associated with symmetry breaking and the

Goldstone mode appear in the course of the flow.

Surprisingly, in a test case study for the weakly attractive
Hubbard model, a rather crude parametrization using the

N-patch discretization described in Sec. III turned out to
yield a reasonable flow into the superconducting phase,

with results for the gap in good agreement with results

obtained earlier by other means (Gersch, Honerkamp, and
Metzner, 2008). This is encouraging, but the low-energy

fluctuations are clearly not well described in such a parame-
trization. To deal with the singular momentum and frequency

dependence in the Cooper channel (and possibly also in the

forward scattering channel), the channel decomposition de-
vised by Husemann and Salmhofer (2009) seems useful, since

it allows one to isolate singular dependences in functions of
only one momentum and frequency variable, similar to a

description of singular interactions by exchange bosons.
The channel decomposition has been formally extended al-

ready to the superconducting state (Eberlein and Metzner,

2010), but a concrete calculation beyond mean-field models
has not yet been performed.

In systems with a first order phase transition one may miss

the symmetry-broken phase if one tests only for local stability
of the symmetric phase by offering a small symmetry-

breaking field, since the latter may be metastable. However,
one can escape from the metastable state by adding a scale-

dependent symmetry-breaking counterterm R� to the effec-

tive action, which has to be chosen sufficiently large at the
beginning of the flow and fades out for � ! 0, such that the

system is ultimately not modified. Formally this is just an-
other choice of regularization within the general framework

described in Sec. II.B. The counterterm method has been

implemented for the exactly soluble test case of a charge-
density wave mean-field model by Gersch, Reiss, and

Honerkamp (2006).
Popular approximations also beyond mean-field theory can

be retrieved from the functional RG by keeping a suitable

subset of contributions. In particular, the Eliashberg theory
for frequency-dependent (usually phonon-induced) pairing

interactions can be obtained as an approximation to the exact

flow equations both in the symmetric (Tsai et al., 2005) and
in the symmetry-broken state (Honerkamp and Salmhofer,

2005). This is achieved by keeping the Cooper channel for
zero total momentum and frequency and the crossed particle-

hole channel for zero transfer in the flow of the interaction,
and the Fock term for the self-energy.

B. Flows with Hubbard-Stratonovich fields

Collective order parameter fluctuations associated with
spontaneous symmetry breaking in interacting many-body

systems are often treated by introducing an auxiliary order
parameter field via a Hubbard-Stratonovich transformation

(Popov, 1987). A combination of the functional RG with the

Hubbard-Stratonovich route to spontaneous symmetry break-
ing in an interacting Fermi system was first used by Baier,

Bick, and Wetterich (2004). They studied the formation of an
antiferromagnetic state in the repulsive two-dimensional

Hubbard model at half filling and managed to recover the

low-energy collective behavior (described by a nonlinear
sigma model) from a truncated set of coupled flow equations
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FIG. 14 (color online). Flow for a reduced BCS model with a

constant density of states at zero temperature; the bandwidth is 1

and the bare interaction V ¼ �0:3. Left: Flow of the gap ��; the

thick line is for a bare gap �0 ¼ 2:4� 10�4 and the thin line for

�0 ¼ 6� 10�8, in units of the bandwidth. Right: Flow of the linear

combinations V� þW� (solid lines) and V� �W� (dashed lines)

of normal and anomalous vertices. Thick lines are again for �0 ¼
2:4� 10�4 and thin lines for �0 ¼ 6� 10�8.
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for the fermions and the order parameter field. In the follow-
ing we describe the method for the case of a superfluid phase,
summarizing the work of several groups.

We consider an interacting continuum or lattice Fermi
system with a local attraction V < 0. For continuum systems
a suitable ultraviolet regularization is necessary. A local
attraction can act only between particles with opposite spin
and leads to singlet pairing. It is thus natural to decouple this
interaction by a Hubbard-Stratonovich transformation with a
complex bosonic field �ðqÞ corresponding to the bilinear
composite of fermionic fields V

P
kc #ð�kÞc "ðkþ qÞ. This

leads to an action of the form

S½�;c ; �c �¼�X
k;�

�c �ðkÞðik0��kÞc �ðkÞ

þmb

2

X
q

�
ðqÞ�ðqÞ

þX
k;q

½ �c "ðkþqÞ �c #ð�kÞ�ðqÞþH:c:�; (124)

where �
 is the complex conjugate of � and mb ¼
�1=V > 0.

Spontaneous symmetry breaking can now be studied by
using the flow equation for the effective action ��½�; c ; �c �
for coupled bosonic and fermionic fields derived in Sec. II.G.
Relatively simple truncations capture several nontrivial fluc-
tuation effects. Effective interactions beyond quartic order in
the fields are generally neglected. Also boson-fermion verti-
ces beyond the order appearing already in the bare action are
discarded. The truncations are usually formulated as an an-
satz for the effective average action

��
R ½�; c ; �c � ¼ ��½�; c ; �c � � regulator term

¼ ��
b ½�� þ ��

f ½c ; �c � þ ��
bf½�; c ; �c �;

(125)

which obeys the initial condition �
�0

R ¼ S; see Sec. II.G.

The ansatz used for the bosonic part is guided by the usual
strategy of a double expansion in � and gradients [see, e.g.,
Tetradis and Wetterich (1994)]:

��
b ½�� ¼ X

x

U�
loc½�ðxÞ� þ gradient terms; (126)

where x ¼ ðx0; x1; . . . ; xdÞ collects imaginary time and real
space coordinates. Note that we use the same letter � for the
real space and momentum space representations of the bo-
sonic field. The shape of the local potential U�

locð�Þ depends
on the scale. For � above a critical scale �c it has the convex
form

U�
locð�Þ ¼ m�

b j�j2 þ u�j�j4; (127)

with a minimum at � ¼ 0. For �<�c the potential assumes
a Mexican hat shape

U�
locð�Þ ¼ u�½j�j2 � j��j2�2; (128)

with a circle of minima at j�j ¼ j��j, where �� is the
(flowing) bosonic order parameter. The regime �>�c is
called the symmetric regime. At� ¼ �c the bosonic massmb

vanishes. In the symmetry-broken regime, for �<�c, the
order parameter �� rises continuously from zero to a finite

value. Its flow can be computed by tracing the minimum of
the flowing potential U�

loc or, equivalently, by the condition

that the bosonic one-point vertex �ð1Þ�
b vanishes.

For the gradient terms in ��
b ½�� various choices have been

made. The simplest one (Birse et al., 2005; Diehl et al.,
2007; Krippa, 2007) compatible with the U(1) symmetry has
the form of an inverse bare propagator for free bosons,X

x

½Z�
b �


ðxÞ@x0�ðxÞ � A�
b �


ðxÞr2�ðxÞ�

¼ X
q

�
ðqÞ½�iZ�
b q0 þ A�

b q
2��ðqÞ; (129)

where r ¼ ð@x1 ; . . . ; @xdÞ. For lattice fermions one may re-

place q2 by a periodic dispersion !q which is proportional to

q2 only at small q (Strack, Gersch, and Metzner, 2008). The
term linear in q0 is absent in particle-hole symmetric systems
(Strack, Gersch, and Metzner, 2008), such that contributions
of order q20 become important. Additional gradient terms have

to be taken into account to fully capture the effects of the
Goldstone mode, as discussed below.

The normal fermionic part of the effective action is usually
kept in its bare form, sometimes adjusted by renormalization
factors for the frequency and momentum dependences. In the
symmetry-broken regime, an anomalous term is generated,
such that ��

f becomes

��
f ½c ; �c � ¼ �X

k;�

�c �ðkÞðiZ�
f k0 � A�

f �kÞc �ðkÞ

þX
k

½��ðkÞ �c "ðkÞ �c #ð�kÞ þ H:c:�: (130)

For a local interaction the k dependence of the gap function
��ðkÞ is weak and in simple truncations fully absent. Quartic
terms corresponding to effective two-fermion interactions are
absent in the bare action by virtue of the Hubbard-
Stratonovich decoupling, but are generated again in the
course of the flow. These generated terms are neglected in
lowest-order truncations, and sometimes they are treated by a
dynamical decoupling procedure called dynamical bosoniza-
tion, see below.

For the effective boson-fermion interaction one also main-
tains the bare form of a local three-point function,

��
bf½�; c ; �c � ¼ X

k;q

g�½ �c "ðkþ qÞ �c #ð�kÞ�ðqÞ þ H:c:�

þ anomalous terms; (131)

with anomalous terms of the form c c� and �c �c �
 con-
tributing only in the symmetry-broken regime. The coupling
g� is frequently referred to as ‘‘Yukawa coupling.’’ The
anomalous terms in the boson-fermion interaction are usually
neglected. If taken into account, they remain indeed rather
small (Strack, Gersch, and Metzner, 2008).

Instead of using a U(1)-symmetric ansatz for the effective
action, one may also start from the hierarchy of flow equa-
tions for the vertex functions and implement the U(1) sym-
metry by Ward identities (Bartosch, Kopietz, and Ferraz,
2009).

Even with the simple ansatz (129) for the bosonic gradient
terms, the effective action described above yields sensible
results not only at weak coupling, but actually in the
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entire regime from BCS superfluidity to Bose-Einstein

condensation of tightly bound pairs (Diehl et al., 2007). In

particular, the transition temperature Tc increases exponen-
tially with the interaction in the weak-coupling regime,

reaches a maximum, and finally saturates in the strong cou-

pling limit, as it should.
The bosonic interaction u� and also the bosonic renormal-

ization factors A�
b and Z�

b vanish in the limit � ! 0 (Birse

et al., 2005; Krippa, 2007). This fluctuation effect reflects the

drastic renormalization of longitudinal order parameter cor-

relations, which are well known from the interacting Bose gas

in dimensions d 	 3 [see, e.g., Pistolesi et al. (2004)]. Note

that for a nodeless gap function the low-energy behavior of a
fermionic superfluid is equivalent to that of an interacting

Bose gas, since fermionic excitations are fully gapped.

However, with the simple ansatz (129) the transverse order

parameter fluctuations corresponding to the Goldstone mode

are also strongly renormalized, which is not correct. To
distinguish between longitudinal and transverse fluctuations,

one can fix the phase of the order parameter �� such that ��

is real, decompose the complex order parameter field in real

and imaginary parts �ðqÞ ¼ �ðqÞ þ i
ðqÞ with �ð�qÞ ¼
�
ðqÞ and 
ð�qÞ ¼ 

ðqÞ, and introduce different renormal-

ization factors for � and 
 fields (Pistolesi et al., 2004).

Using this decomposition, the correct infrared behavior was

obtained by Strack, Gersch, and Metzner (2008) where,

however, the cancellation of singular contributions to the
renormalization factors for the transverse 
 fields was im-

plemented by hand. To capture this cancellation intrinsically,

one has to include an additional U(1) symmetric gradient

term of the form ½�ð@x0 ;rÞ�þ 
ð@x0 ;rÞ
�2 (Tetradis and

Wetterich, 1994; Strack, 2009).
The fermionic flow based on the Katanin truncation de-

scribed in Sec. IV.A reproduces the exact solution of the

reduced BCS model (and other mean-field models). Within

the truncation described above, the bosonized flow yields a
reasonable solution without artificial features, but the gap

comes out a bit too small. The reason for this is the truncation

of U�
locð�Þ at quartic order. To recover the exact solution, one

has to keep all orders in � (Strack, Gersch, and Metzner,

2008).
The ansatz (130) for ��

f ½c ; �c � neglects the generation of

fermionic interactions by the flow. In particular, quartic (two-

fermion) interactions are generated by box diagrams with

four boson-fermion vertices. These terms contain contribu-

tions from particle-hole fluctuations which, among other

effects, lead to a significant reduction of the transition tem-
perature. The (re)generated two-fermion interaction can be

decoupled at each step in the flow by a procedure called

dynamical bosonization (Gies and Wetterich, 2002, 2004;

Floerchinger and Wetterich, 2009). A general two-fermion

interaction cannot be decoupled exactly by a single Hubbard-
Stratonovich field, such that several fields may be needed to

obtain accurate results. Dynamical bosonization was used to

include effects from particle-hole fluctuations in attractively

interacting Fermi systems by Floerchinger et al. (2008).
Following the work of Baier, Bick, and Wetterich (2004)

on the repulsive Hubbard model at half filling, functional RG

flow equations with Hubbard-Stratonovich fields were also

applied to the Hubbard model away from half filling.

Commensurate and incommensurate antiferromagnetic fluc-
tuations were investigated (Krahl, Friederich, and Wetterich,
2009). More importantly, it was clarified how the generation
of d-wave pairing from antiferromagnetic fluctuations can be
captured by a bosonized flow (Krahl, Müller, and Wetterich,
2009), and the flow was continued into the symmetry-broken
phase, with coupled order parameter fields describing anti-
ferromagnetism and d-wave superconductivity (Friederich,
Krahl, and Wetterich, 2010, 2011).

Compared to the purely fermionic RG described in
Sec. IV.A, the treatment of order parameter fluctuations is
facilitated considerably by the Hubbard-Stratonovich field.
On the other hand, fluctuation effects associated with other
channels (the particle-hole channel in case of superfluidity)
look more complicated. For systems with competing insta-
bilities the choice of an adequate Hubbard-Stratonovich field
becomes problematic, since the fermionic interaction can be
decoupled in different ways, which, in combination with
truncations, may lead to ambiguities in the results. In general,
several Hubbard-Stratonovich fields must be used, and the
analysis done in Sec. III indicates which ones are the most
important. The decomposition of the interaction by
Husemann and Salmhofer (2009) allows one to switch to
Hubbard-Stratonovich fields after the fermionic flow has
been performed down to a certain scale, and may thus be
used to combine the two flow representations.

V. QUANTUM CRITICALITY

Instabilities of the normal metallic state lead to a rich
variety of quantum phase transitions (Sachdev, 1999) in the
ground state of interacting electron systems, which can be
tuned by a control parameter such as pressure, doping, or a
magnetic field. Most interesting are continuous transitions
which lead to quantum critical fluctuations (Belitz,
Kirkpatrick, and Vojta, 2005). Near a quantum critical point
(QCP) electronic excitations are strongly scattered by order
parameter fluctuations such that Fermi-liquid theory breaks
down (Vojta, 2003; von Loehneysen et al., 2007). Quantum
critical fluctuations are therefore frequently invoked as a
mechanism for non-Fermi-liquid behavior observed in
strongly correlated electron compounds.

Quantum phase transitions in interacting Fermi systems are
traditionally described by an effective order parameter theory
pioneered by Hertz (1976) and Millis (1993). An order
parameter field � is introduced by a Hubbard-Stratonovich
decoupling of the fermionic interaction, and the fermionic
fields are subsequently integrated out. The resulting effective
action for the order parameter is truncated at quartic order and
analyzed by standard scaling and RG techniques. However,
more recent studies revealed that the Hertz-Millis approach is
not always applicable, especially in low-dimensional systems
(Belitz, Kirkpatrick, and Vojta, 2005; von Loehneysen et al.,
2007). Since electronic excitations in a metal are gapless,
integrating out the electrons can lead to singular interactions
in the effective order parameter action which cannot be
approximated by a local quartic term. The nature of the
problem was identified and essential aspects of its solution
were presented first for disordered ferromagnets by
Kirkpatrick and Belitz (1996), and later elaborated on by
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Belitz et al. (2001a, 2001b). For clean ferromagnets, Belitz,
Kirkpatrick, and Vojta (1997) showed that Hertz-Millis the-
ory breaks down, and no continuous quantum phase transition
can exist, in any dimension d 	 3; the transition is generi-
cally of first order (Belitz, Kirkpatrick, and Vojta, 1999). The
Hertz-Millis approach was also shown to be invalid for the
quantum antiferromagnetic transition in two dimensions
(Abanov, Chubukov, and Schmalian, 2003; Abanov and
Chubukov, 2004; Metlitski and Sachdev, 2010a). In that
case a continuous transition survives, but the QCP becomes
non-Gaussian.

Applications of the functional RG to quantum phase tran-
sitions and quantum criticality in interacting Fermi systems
have appeared only recently. In Sec. V.A we explain how the
Hertz-Millis theory fits into the functional RG framework and
we review some extensions relying on an effective order
parameter action truncated at quartic or hexatic order. An
application of a nonperturbative truncation, where all orders
in � are (and must be) kept, is discussed in Sec. V.B. Finally,
in Sec. V.C we briefly discuss the possibility of studying
coupled flow equations for fermions and their critical order
parameter fluctuations in the functional RG framework, and
we refer to first steps in this direction.

A. Hertz-Millis theory

In his seminal work on quantum phase transitions in
metallic electron systems, Hertz (1976) proposed to decouple
the electron-electron interaction by introducing an order
parameter field � via a Hubbard-Stratonovich transforma-
tion. The resulting action is quadratic in the fermionic vari-
ables c and �c , which can therefore be integrated out. One
thus obtains an effective action which depends only on �.
Truncating at quartic order in �, and discarding irrelevant
momentum and frequency dependences (in the sense of
standard power counting), leads to the Hertz action,

S½�� ¼ Sð0Þ þX
q

�ð�qÞ
�
Aq2 þ Z

jq0j
jqjz�2

�
�ðqÞ

þX
x

Uloc½�ðxÞ�; (132)

where Sð0Þ is a field-independent term, and

Ulocð�Þ ¼ r�2 þ u�4: (133)

We write our equations for the case of a real scalar order
parameter for simplicity, using again the same letter � for the
real and momentum space representations of the field. Except
for the frequency dependence, the action has the form of
a �4 theory for thermal phase transitions. The frequency-
dependent term stems from low-energy particle-hole excita-
tions. Here the dynamical exponent z is an integer number
� 2 depending on the type of transition. Tuning the parame-
ter r one can approach the phase transition, in particular, the
quantum phase transition at T ¼ 0.

The action (132) has been analyzed by standard scaling
and RG techniques. Because of the frequency dependence,
the scaling behavior at the QCP corresponds to a system with
an effective dimensionality deff ¼ dþ z, where d is the
spatial dimension (Hertz, 1976). As a consequence, the

QCP appears to be Gaussian in three- and even in two-
dimensional systems. An important insight by Millis (1993)
was that the �4 term in the action is nevertheless crucial to
obtain the correct temperature dependences near the QCP. He
derived the temperature dependence of the correlation length
� and other quantities by using a perturbative RG with a
mixed momentum and frequency cutoff. From a functional
RG perspective, Millis’s scaling theory can be viewed as a
simple truncation of the effective average action ��

R ½��
evolving from S½��, namely,

��
R ½�� ¼ �ð0Þ� þX

q

�ð�qÞ
�
A�q2 þ Z� jq0j

jqjz�2

�
�ðqÞ

þX
x

U�
loc½�ðxÞ�; (134)

where

U�
locð�Þ ¼ r��2 þ u��4; (135)

and � parametrizes a mixed momentum and frequency cut-
off. The flow equations for the parameters in Eq. (134) are
obtained by inserting ��

R ½�� in the exact functional flow
equation (91) and comparing coefficients. Because of the
local form of the�4 interaction, the self-energy is momentum
and frequency independent such that the parameters A� and
Z� remain invariant. The flow of u�, which is driven by a
contribution of order ðu�Þ2, is important only in the marginal
case dþ z ¼ 4 and near the thermal phase transition at
Tc > 0. Hence, most of Millis’s results on the region around
the QCP in the phase diagram are based on an analysis of the
flow of r� and the thermodynamic potential 	� ¼ T�ð0Þ�
[for a review, see von Loehneysen et al. (2007)].

Various extensions of Millis’s analysis were derived within
the functional RG framework. In particular, an extension
to the symmetry-broken phase was formulated, for cases
where the broken symmetry is discrete and does not gap
out the fermionic excitations (Jakubczyk et al., 2008). One
such case is a nematic transition driven by a Pomeranchuk
instability of interacting electrons on a lattice, where the
discrete point-group symmetry of the lattice is spontaneously
broken (Fradkin et al., 2010). The symmetry-broken regime
was described by the ansatz (134) for ��

R ½��, with a quartic
local potential which has a minimum away from zero:

U�
locð�Þ ¼ u�½�2 � ð��

0 Þ2�2: (136)

The resulting flow equations were used to compute Tc and the
Ginzburg temperature T<

G below Tc as a function of the

control parameter r. To access the non-Gaussian thermal
critical regime near Tc, it is crucial to take the flow of the
quartic coupling u� into account. The parameters A� and Z�

are now scale dependent, too. While Z� remains almost
invariant, the flow of A� is important near Tc and gives rise
to an anomalous scaling dimension. A main result of the
calculation was that the leading r dependence of Tc is the
same as that of the Ginzburg temperatures below and above
Tc (the latter was calculated by Millis, 1993), but a fairly
large Ginzburg region opens in two dimensions (Jakubczyk
et al., 2008; Bauer, Jakubczyk, and Metzner, 2011).

In another extension a �6 interaction was included in U�
loc

to study a possible change of the order of the transition by
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fluctuations (Jakubczyk, 2009), as well as quantum tricritical
points in metals (Jakubczyk, Bauer, and Metzner, 2010).

Note that the extensions mentioned above are based on
perturbative truncations resulting in flow equations with few
running couplings, which could also have been obtained by
more conventional RG methods.

B. Full potential flow

We now review an application to a problem where the
effective action cannot be truncated at any finite order in �,
such that the possibility to make nonperturbative truncations
becomes crucial (Jakubczyk, Metzner, and Yamase, 2009).

The problem arises when asking how a nematic transition
caused by a d-wave Pomeranchuk instability in two dimen-
sions is affected by fluctuations. Such a transition can be
modeled by tight-binding electrons on a square lattice with an
attractive d-wave forward scattering interaction (Metzner,
Rohe, and Andergassen, 2003):

H ¼ X
k

�knk þ 1

2L

X
k;k0 ;q

fkk0 ðqÞnkðqÞnk0 ð�qÞ; (137)

where nkðqÞ ¼
P

�c
y
k�q=2;�ckþq=2;� and L is the number of

lattice sites. The interaction has the form

fkk0 ðqÞ ¼ �gðqÞdkdk0 ; (138)

where dk ¼ coskx � cosky is a form factor with dx2�y2 sym-

metry. The coupling function gðqÞ � 0 has a maximum at
q ¼ 0 and is restricted to small momentum transfers by a
cutoff �0. For sufficiently large g ¼ gð0Þ the interaction
drives a d-wave Pomeranchuk instability leading to a nematic
state with broken orientation symmetry, which can be de-
scribed by the order parameter

� ¼ g

L

X
k

dkhnki: (139)

In the plane spanned by the chemical potential and tempera-
ture a nematic phase is formed below a dome-shaped tran-
sition line Tcð�Þ with a maximal transition temperature near
van Hove filling. In mean-field theory, the phase transition is
usually first order near the edges of the transition line, that is,
where Tc is relatively low, and second order at the roof of the
dome (Kee, Kim, and Chung, 2003; Khavkine et al., 2004;
Yamase, Oganesyan, and Metzner, 2005).

Introducing an order parameter field via a Hubbard-
Stratonovich transformation, integrating out the fermions,
and keeping only the leading momentum and frequency
dependences for small q and small q0=jqj leads to a Hertz-
type action S½�� of the form (132), with z ¼ 3 and a local
potential given by the mean-field potential

Ulocð�Þ ¼ �2

2g
� 2T

L

X
k

lnð1þ e�ð�k��dk��Þ=TÞ: (140)

At low temperatures, the coefficients of a Landau expansion
of Ulocð�Þ in powers of the field, Uð�Þ ¼
a0 þ a2�

2 þ a4�
4 þ � � � , are typically negative for all ex-

ponents 2m � 4. Hence, S½�� and consequently also the
effective action ��

R ½�� cannot be truncated at any finite order

in �. Fortunately, for bosonic fields the functional RG allows
also for nonperturbative approximations, where one expands
only in gradients, and not in powers of � (Berges, Tetradis,

and Wetterich, 2002). In particular, one can use the ansatz
(134) for ��

R ½�� without expanding the local potential

U�
locð�Þ. The flow of U�

locð�Þ is then determined by a partial

differential equation which contains a second derivative of

the potential with respect to �.
In Fig. 15 an exemplary plot of the evolution of the flowing

effective potential U�
locð�Þ is shown for � ranging from the

ultraviolet cutoff �0 ¼ e�1 � 0:37 to the final value � ¼ 0.
The flow has been computed for electrons on a square lattice
with nearest-neighbor hopping t ¼ 1, next-to-nearest-

neighbor hopping t0 ¼ � 1
6 , and a coupling strength g ¼

0:8. The initial (mean-field) potential has a minimum at�0 ¼
0:112. The final potential exhibits spontaneous symmetry

breaking with an order parameter �0 ¼ 0:102. Fluctuations
shift �0 toward a slightly smaller value compared to the

mean-field solutions. The flat shape of U�
locð�Þ for � 	 �0

at � ¼ 0 is imposed by the convexity property of the grand

canonical potential.
The transition line between normal and symmetry-broken

phases is shown in Fig. 16 for two choices of �0. Compared
to the corresponding mean-field result, the transition
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temperature is suppressed, with a larger reduction for larger
�0 (corresponding to a larger phase space for fluctuations).
For �0 ¼ 1 the transition is continuous down to T ¼ 0,
leading to quantum critical points at the edges of the nematic
dome. Increasing �0 further (or reducing g), one may even
eliminate the nematic phase completely from the phase dia-
gram (Yamase, Jakubczyk, and Metzner, 2011).

C. Coupled flow of fermions and order parameter fluctuations

There are various systems where integrating out the elec-
trons leads to an effective order parameter action with sin-
gular interactions which cannot be approximated by a local
coupling (Belitz, Kirkpatrick, and Vojta, 2005; von
Loehneysen et al., 2007). In such cases it can be advanta-
geous to keep the electrons in the action, treating the coupled
system consisting of electrons and their order parameter
fluctuations. Several coupled boson-fermion systems exhib-
iting quantum criticality have already been analyzed by
various methods; see, e.g., Vojta, Zhang, and Sachdev
(2000), Belitz et al. (2001a, 2001b), Abanov, Chubukov,
and Schmalian (2003), Rech, Pepin, and Chubukov (2006),
Huh and Sachdev (2008), Kaul and Sachdev (2008), and
Metlitski and Sachdev (2010a, 2010b). The interplay of
bosonic and fermionic infrared singularities at the quantum
critical point poses an interesting problem.

The functional RG for coupled bosons and fermions de-
scribed in Sec. II.G provides a suitable framework to study
such problems. So far, it has not been applied to quantum
phase transitions in metallic electron systems. However, en-
couraging works on relativistic field-theoretic models with
gapless bosons and fermions have already appeared. For
example, functional RG flow equations have been used to
study the Gross-Neveu model (Rosa, Vitale, and Wetterich,
2001), quantum electrodynamics (Gies and Jaeckel, 2004),
and supersymmetric Wess-Zumino models (Gies,
Synatschke, and Wipf, 2009). In the context of condensed
matter physics, a toy model for a semimetal-to-superfluid
quantum phase transition has been studied by coupled flow
equations for the electrons and the superfluid order parameter
(Strack, Takei, and Metzner, 2010; Obert, Takei, and
Metzner, 2011). In dimensions d < 3 the fermions and the
order parameter fluctuations acquire anomalous scaling di-
mensions at the QCP of that model, leading to non-Fermi-
liquid behavior and non-Gaussian criticality.

It will be interesting to devise suitable truncations of the
coupled boson-fermion flow equations for magnetic and ne-
matic quantum phase transitions in low-dimensional metallic
systems, where many open questions need to be clarified.

VI. CORRELATION EFFECTS IN QUANTUM WIRES AND

QUANTUM DOTS

As our last application of the functional RG to correlated
fermion systems we discuss many-body effects in quantum
wires and dots. The focus is on transport through such
systems which are coupled to two or more semi-infinite leads.
While in many of the above applications it was crucial to
devise an approximation scheme in which the flow of the
two-particle vertex (the effective two-particle interaction)

was properly described, in the ones reviewed in this section
the physics is dominated by the flow of the self-energy. We
start out with a brief discussion of quantum transport through
a region containing correlations in Sec. VI.A. To study
transport beyond the linear response regime the functional
RG was recently extended to Fermi systems out of equilib-
rium. In Sec. VI.B we review the main steps of this general-
ization. After discussing the most elementary example of
linear transport through an inhomogeneous correlated quan-
tum wire, a chain with a single local impurity, in
Secs. VI.C.1–VI.C.4, we show how the functional RG can
be used (i) to describe transport on all energy scales for more
complex setups (Sec. VI.C.5), (ii) to identify unconventional
low-energy fixed points of such systems (Sec. VI.C.6), and
(iii) to study finite bias nonequilibrium transport
(Sec. VI.C.7). As an example of the application of the func-
tional RG to quantum dots, in Sec. VI.D.2 we consider an
interacting chain of only three lattice sites corresponding to a
dot.

A. Quantum transport

Experimental progress has made it possible to measure
transport through mesoscopic regions such as one-
dimensional (1D) quantum wires of up to micrometer length
and ‘‘zero-dimensional’’ quantum dots. The experiments pro-
vide evidence for correlation effects (Hanson et al., 2007;
Deshpande et al., 2010).2 It is a theoretical challenge to
describe transport when correlations in the mesoscopic sys-
tem are important. Usually the leads to which this correlated
region is connected are modeled as noninteracting. A general
formal expression in terms of Keldysh Green functions for the
current I through an interacting system coupled to two leads
(indices L, R) in the stationary state was presented by Meir
and Wingreen (1992). For either specific models or applying
certain approximations to the two-particle interaction for
each channel � it can be brought into a Landauer-Büttiker
type form (Landauer, 1957; Büttiker, 1986)

I� ¼ 1

2


Z
T� ð�; T; VbÞ½fLð�Þ � fRð�Þ�d�; (141)

where we set e ¼ 1 ¼ ℏ such that the conductance quantum
per channel is given by 1=ð2
Þ. Here T� is an effective

transmission probability, Vb ¼ �L ��R is the bias voltage,
and fL=R are Fermi functions with the chemical potentials of

the left and right leads �L=R. For the transport through a

noninteracting system T� is the single-particle transmission

probability. The goal is to compute T� in the presence of

correlations. Here truncations of the functional RG flow
equations which lead to frequency-independent self-energies
are considered. In this case using Eq. (141), with T� being

proportional to the ‘‘contact-to-contact’’ matrix element of
the (retarded) one-particle Green function does not present an
additional approximation as current vertex corrections
vanish (Oguri, 2001; Enss, 2005). In this approximation the

2Correlation effects in effectively 1D electronic systems are also

studied using photoemission. For a recent review, see Grioni, Pons,

and Frantzeskakis (2009).
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two-particle interaction affects the transport only via the
renormalized self-energy which acts as an additional, T and
Vb dependent scattering potential on noninteracting electrons
(Langer and Ambegaokar, 1961; Oguri, 2001). For the linear
conductance g� ðTÞ the transmission probability enters only at

zero bias Vb ¼ 0,

g� ðTÞ ¼ 1

2


Z
T� ð�; T; 0Þ

�
� @f

@�

�
d�; (142)

i.e., T� ð�; T; 0Þ is an equilibrium property. At zero

temperature Eq. (142) simplifies further to g� ð0Þ ¼
T� ð�; 0; 0Þ=ð2
Þ.

B. Functional RG in nonequilibrium

Recently, the functional RG approach was extended to
study steady-state nonequilibrium transport through quantum
wires and dots in the presence of a finite bias voltage given by
the difference of the chemical potentials of the left and right
leads Vb ¼ �L ��R (Jakobs, 2003, 2010; Gezzi, Pruschke,
and Meden, 2007; Jakobs, Meden, and Schoeller, 2007;
Jakobs, Pletyukhov, and Schoeller, 2010a; Karrasch, 2010;
Karrasch, Pletyukhov et al., 2010). The basic idea behind this
extension is the use of real-time or real frequency Green
functions on the Keldysh contour (Rammer and Smith,
1986) instead of Matsubara Green functions. As usual in
diagrammatic approaches based on Keldysh Green functions
one assumes that the initial statistical operator does not
contain any correlations (Rammer and Smith, 1986). One
can then use either a functional integral formulation
(Kamenev, 2004) of the nonequilibrium many-body problem
(Gezzi, Pruschke, and Meden, 2007) or a purely diagram-
matic approach (Jakobs, 2003; Jakobs, Meden, and Schoeller,
2007) to derive the same flow equations for the self-energy
and higher-order vertex functions. Although the method al-
lows one to work with two-time Green functions and to study
transient dynamics, in the current implementation of the
functional RG in nonequilibrium for fermions the system is
assumed to be in the steady state. For interacting bosons
functional RG was also used to study dynamics (Gasenzer
and Pawlowski, 2008; Kloss and Kopietz, 2011). On a tech-
nical level and compared to the equilibrium Matsubara func-
tional RG in the steady state the Keldysh structure only leads
to an additional index (the so-called Keldysh index � refer-
ring to the upper and lower branches of the Keldysh contour)
to be added to the set of quantum numbers.

One of the main challenges of the nonequilibrium func-
tional RG is to devise cutoff schemes which do not violate
causality and general Kubo-Martin-Schwinger (KMS) rela-
tions (Jakobs, 2010; Jakobs, Pletyukhov, and Schoeller,
2010b) after truncation of the infinite hierarchy of flow
equations. For a general cutoff fulfilling the requirements
discussed in Sec. II.D it is guaranteed only that causality
and KMS relations hold up to the truncation order, e.g., first
order for the level-1 truncation. In fact, an infrared (real)
frequency cutoff similar to Eq. (143) violates causality in
second order (Jakobs, 2003; Gezzi, Pruschke, and Meden,
2007). Its breaking constitutes a severe problem as relations
connecting the Keldysh contour matrix elements of the Green
function cannot be used. In particular, one cannot rotate from

the Ga;b Green function, with Keldysh indices a; b ¼ �, to
retarded, advanced, and Keldysh Green functions as it is
usually done (Rammer and Smith, 1986). The momentum
cutoff scheme used in other sections of this review avoids this
problem but is not suitable for models with broken transla-
tional invariance. We return to this issue and discuss appro-
priate cutoff schemes when reviewing applications of
nonequilibrium functional RG to transport through wires in
Sec. VI.C.7 and dots in Sec. VI.D.2.

Besides its ability to be applied to nonequilibrium prob-
lems the real-time (or real frequency) Keldysh functional RG
has a distinct advantage even in equilibrium: The analytic
continuation from Matsubara to real frequencies can be
avoided. In fact, computing the real frequency dependence
of observables obtained by a numerical solution of the
Matsubara RG flow equations truncated on a level which
includes a flowing two-particle vertex and self-energy of
initially unknown frequency structure presents a formidable
task (Karrasch et al., 2008; Karrasch, Meden, and
Schönhammer, 2010) as it is known from other imaginary
time quantum many-body methods such as the quantum
Monte Carlo technique. This advantage was utilized in the
real-time functional RG study of the single-impurity
Anderson model (Jakobs, 2010; Jakobs, Pletyukhov, and
Schoeller, 2010a) in which a frequency-dependent two-
particle vertex and self-energy (complete level-2 truncation)
were kept [for the imaginary time analog of this study, see
Sec. VI.D.1, Hedden et al. (2004), and Karrasch et al.
(2008)], and can be expected to be useful also in functional
RG studies of other models.

C. Impurities in Luttinger liquids

The metallic state of correlated fermions in one dimension
is a non-Fermi liquid. It falls into the Luttinger liquid (LL)
class (Haldane, 1980). This state of matter is characterized by
a power-law decay of space-time correlation functions with
interaction dependent exponents (Luttinger, 1963; Mattis and
Lieb, 1965; Luther and Peschel, 1974; Mattis, 1974;
Giamarchi, 2004; Schönhammer, 2005) and spin-charge
separation (Dzyaloshinskii and Larkin, 1974; Meden and
Schönhammer, 1992; Voit, 1993). In particular, after
Fourier transforming, the 2kF component of the density-
density response function shows a power-law divergence
(Mattis, 1974; Apel and Rice, 1982) for repulsive interac-
tions, instead of a logarithmic one for noninteracting elec-
trons (Lindhard function in 1D). This indicates that any local
inhomogeneity with a nonvanishing 2kF component strongly
affects the low-energy physics and thus the transport charac-
teristics of a LL at low temperatures.

Perturbation theory is insufficient to describe the interac-
tion effects as it fails to capture the RG flow of the inhomo-
geneity appearing even to first order in the interaction and
higher-order diagrams diverge. As will become clear below
the functional RG approach captures the impurity flow and
does not require a simplified modeling of the inhomogeneity.

1. A single local impurity: The local sine-Gordon model

To understand the effect of a single impurity on the
low-energy physics of a spinless, infinite LL (absence of
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noninteracting leads), bosonization was used first [for a review

of this method, see, e.g., von Delft and Schoeller (1998),

Giamarchi (2004), and Schönhammer (2005)]. Within this

approach the Fourier components of fermionic density opera-

tors are split into their chiral parts which obey Bose commu-

tation relations in the low-energy subspace (Tomonaga, 1950).

In this limit the kinetic energy and the two-particle interaction

can be written as bilinears in these operators (Tomonaga,

1950), while a single-particle scattering impurity term gen-

erally takes a complicated form in the bosonic degrees of

freedom. It simplifies if only the pure forward scattering
~Vð0Þ and backward scattering ~Vð2kFÞ contributions are kept.

Using bosonization to obtain results beyond this approximate

modeling of the impurity is rather involved.
The forward scattering term is linear in the bosons and can

easily be treated leading to a phase shift. This is irrelevant for

the physics described in the following. The backward scat-

tering term consists of the cosine of a local bosonic field and

the resulting Hamiltonian is known from field theory as the

local sine-Gordon (LSG) model. One can use either the exact

Bethe ansatz solution (Fendley, Ludwig, and Saleur, 1995) of

this model or a bosonic RG which is perturbative in ~Vð2kFÞ
(Kane and Fisher, 1992; Furusaki and Nagaosa, 1993a) to

obtain analytical results. Alternatively numerical methods

can be applied to the LSG model (Moon et al., 1993;

Egger and Grabert, 1995). This led to a complete picture of

the RG scaling of ~Vð2kFÞ which has direct consequences

for the linear conductance. The RG flow connects two fixed

points, the perfect chain fixed point with conductance g ¼
K=ð2
Þ and the open chain fixed point with g ¼ 0. In 1D

spinless fermion systems only a single transport channel

exists and we thus suppress the channel index � from now

on. Here K > 0 denotes the so-called LL parameter which

depends on the underlying model of the quantum wire and its

parameters such as the strength and range of the two-particle

interaction as well as the band filling. Independently of the

model considered K < 1 for repulsive interactions and K > 1
for attractive ones, while the noninteracting case corresponds

to K ¼ 1. The corrections to the fixed-point conductances are
power laws s�p=o with the infrared energy scale s (e.g., the

temperature T or the energy cutoff� in a RG procedure). The

exponents are independent of the bare impurity strength and

given by �p ¼ 2ðK � 1Þ and �o ¼ 2ð1=K � 1Þ, respectively.
The sign of the scaling exponents implies that the open chain

fixed point is stable for repulsive interactions and unstable for

attractive ones. The opposite holds for the perfect chain fixed

point. These insights confirmed earlier indications that im-

purities with a backscattering component strongly alter the

low-energy physics of LLs with repulsive interactions

(Mattis, 1974; Apel and Rice, 1982). The behavior can be

summarized by saying that even a weak single impurity

grows and eventually cuts the chain into two parts with

open boundary conditions at the end points.
The exponent �o characterizing (for repulsive two-particle

interactions) the suppression of g on small scales is twice the

scaling exponent of the local single-particle spectral function

of a LL close to an open boundary. This can be understood by

viewing transport across the impurity as an end-to-end tun-

neling between two semi-infinite LLs [see, e.g., Kane and

Fisher (1992)].

Bosonization was not only used for an infinite LL wire but

also for the experimentally more relevant case in which an

interacting wire containing a single impurity is contacted to

two semi-infinite noninteracting leads. Contacts generically

lead to single-particle backscattering and thus have an effect

similar to the impurity. To disentangle the effect of the

contacts and the impurity one often models the contacts

such that they do not lead to any backscattering. In this

case and in the absence of the impurity the conductance takes

the maximal value 1=ð2
Þ [instead of K=ð2
Þ for an infinite

LL]. Using bosonization this can be achieved either within

the so-called local Luttinger liquid picture (Maslov and

Stone, 1995; Ponomarenko, 1995; Safi and Schulz, 1995;

Janzen, Meden, and Schönhammer, 2006) or by appropriate

boundary conditions for the bosonic fields (Egger and

Grabert, 1997; Egger et al., 2000). The fixed points and

scaling exponents turned out to be the same as in the LSG

model.
For weak two-particle interactions the problem of a single

impurity in a LL was also studied using a fermionic RG

(Matveev, Yue, and Glazman, 1993; Yue, Glazman, and

Matveev, 1994). In this approach a flow equation for the

transmission coefficient at kF is derived using poor man’s

RG. An extension of this method to interactions of arbitrary

strength was presented by Aristov and Wölfle (2008, 2009).
Remarkably, no intermediate fixed points appear within the

LSG model and the crossover between the perfect and open

chain is characterized by a one-parameter scaling function

(Kane and Fisher, 1992; Moon et al., 1993; Fendley, Ludwig,

and Saleur, 1995; Egger et al., 2000). In one spatial dimen-

sion a general impurity can be described by matrix elements

Vk;k0 [only VkF;�kF ¼ ~Vð2kFÞ is kept in the LSG model]. The

RG analysis for such an impurity involves the coupling of all

matrix elements Vk;k0 in the flow and one might wonder if this

leads to an intermediate fixed point absent in the LSG model.

To lowest order in the impurity strength the flow of VkF;�kF

upon lowering the cutoff � is driven by VkF;�kF itself (see the

next section). For repulsive two-particle interactions VkF;�kF

increases and the perturbative RG breaks down. Now the

other couplings, absent in the LSG model, might become

relevant and eventually cut off the flow of VkF;�kF to large

values, that is toward the open chain fixed point. That this

does not happen can nicely be revealed within a functional

RG approach. Before reviewing how this question was ap-

proached (see Sec. VI.C.4) we first present the most elemen-

tary functional RG flow equation to tackle inhomogeneous

LLs and analytically show that it leads to the scaling behavior

known from bosonization in the limit of weak impurities.

2. The functional RG approach to the single-impurity problem

As in the previous applications because of the necessary

truncations the functional RG can be used only for small

to intermediate two-particle interactions. For the application

to inhomogeneous LLs it is crucial that it is nonperturbative

in the single-particle inhomogeneity. Here the focus is on a

description in which the RG flow and the interaction depen-

dent exponents characterizing the physics close to fixed

points are kept at least to leading order in the interaction.

Following the discussion in the last paragraph of the
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preceding section the feedback of the impurity into the flow
of the self-energy dominates the physics to be studied. It is
thus advantageous to use the one-particle irreducible func-
tional RG scheme in which the full propagator including the
self-energy appears on the right-hand side of the flow equa-
tions. For spinless fermions in a homogeneous wire the
electron-electron interaction is renormalized only by a finite
amount of order interaction squared (Sólyom, 1979). A single
impurity does not alter this. To obtain the fixed-point value of
the effective interaction to leading order one can therefore
replace the flowing two-particle vertex by the antisymme-
trized bare interaction corresponding to the level-1 truncation
introduced in Sec. II.C.2. An improvement which includes
the flow of the static two-particle vertex is reviewed in
Sec. VI.C.4. After presenting the most elementary functional
RG flow equation for the self-energy we show that it leads to
the correct scaling properties for a weak impurity.

As one deals with systems in which translational invari-
ance is broken it is advantageous to introduce the infrared
cutoff � in frequency space. To set up the functional RG flow
equations for the self-energy the propagator G0 of the non-
interacting Hamiltonian H0 containing only the kinetic en-
ergy is replaced by G�

0 ði!nÞ ¼ ��ð!nÞG0ði!nÞ with a

function �� which is unity for j!nj � � and vanishes for
j!nj � �. More specifically,

��ð!nÞ ¼

8>>><
>>>:
0; j!nj 	 �� 
T;

1
2 þ j!nj��

2
T ; �� 
T 	 j!nj 	 �þ 
T;

1; j!nj � �þ 
T;

(143)

was used (Enss et al., 2005), where � starts at 1 and goes
down to 0.3 For T ! 0, �� becomes a sharp � function and
Matsubara frequencies with j!j<� are suppressed.

In this section a general continuum or lattice model of
spinless fermions is considered with one-particle states j�i,
which in the following will be either local states jxi, where
x ¼ j is the site index for the lattice model, with lattice
constant a ¼ 1, or momentum states jkni with kn ¼
2
n=L. A general two-particle interaction Eq. (2) is assumed

and an impurity term Vimp ¼
P

�;
V�;
c
y
�c 
. The flow for

the self-energy Eq. (50) in the level-1 truncation reads
(Meden et al., 2002)

d

d�
��

�;


¼ T
X
!l

ei!l0
þX
�;�

�
½1� G�

0 ði!lÞ����1

� dG�
0 ði!lÞ
d�

½1� ��G�
0 ði!lÞ��1

�
�;�

U�;�;
;�;

(144)

where G�
0 and �� are matrices. The initial condition is given

by ��¼1
�;
 ¼ V�;
 and U�;
;�;� denotes the antisymmetrized

bare two-particle vertex.

At temperature T ¼ 0 and applying Eq. (60) to products
of � and � functions, Eq. (144) simplifies to

d

d�
��

�;
 ¼ � 1

2


X
!¼��

X
�;�

U�;�;
;�
~G�
�;�ði!Þei!0þ ;

(145)

where

~G�ði!Þ ¼ ½Q0ði!Þ � ����1 (146)

is the full propagator for the cutoff dependent self-energy

andQ0 ¼ ðG0Þ�1. The convergence factor ei!0þ in Eq. (145) is
relevant only for determining the flow from � ¼ 1 down to
some arbitrarily large �0. For �0 much larger than the band-
width this high energy part of the flow can be computed

analytically leading to the initial condition �
�0

�;
 ¼
V�;
 þP

�U�;�;
;�=2.

Within the present scheme ��
�;
 is frequency independent

and can be considered as a flowing effective impurity poten-
tial. To obtain an approximation for the Green function of the
original cutoff free problem for arbitrary impurity parameters
one has to determine the self-energy ��

�;
 at � ¼ 0 by

numerically solving the set of differential equations (144) or
(145). To compute the right-hand side of the flow equations
one has to invert the matrix Eq. (146), i.e., to solve the
problem of a single particle moving in the effective scattering
potential ��

�;
.

Because of the matrix inversion involved in calculating the
right-hand side of Eq. (145) the flow equations can be solved
analytically only in limiting cases, one being the situation of a
weak impurity. One then works in momentum space and
considers ��

k;k0 for k � k0. The term linear in �� presents

the leading approximation in the expansion of ~G� on the
right-hand side of Eq. (145) and one obtains (Meden et al.,
2002)

d

d�
��

k;k0 ¼ � 1

2


X
k1;k2

Uk;k1;k
0;k2

�
1

i�� �k2

��
k2;k1

1

i�� �k1

þ ð� ! ��Þ
�
; (147)

where �k ¼ �k �� with the one-particle dispersion �k. The
antisymmetrized two-body matrix element Uk;k1;k

0;k2 contains

a momentum conserving Kronecker delta, where kþ k1 ¼
k0 þ k2 modulo the reciprocal lattice vector 2
n for the
lattice model with n ¼ 0, �1, when the four momenta are
in the first Brillouin zone. The umklapp processes n ¼ �1
involve low-energy excitations only for special fillings: half
filling for the nearest-neighbor hopping model discussed
later.

First models are considered for which umklapp processes
are absent. To determine the backscattering properties of the
self-energy one can put k ¼ kF and k0 ¼ �kF � q with
jqj � kF. In order to read off the dominant behavior for
small � the remaining summation variable is shifted
k1 ¼ �kF þ ~k1

3A significant speedup of the numerical solution of the differen-

tial flow equations can be achieved using the alternative cutoff

scheme discussed in the appendix of Andergassen et al. (2006).
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EQ-TARGET ;temp:intralink-;d148;76;727

d

d�
��

kF;�kF�q

¼ � 1

2


X
~k1

UkF;�kFþ~k1;�kF�q;kFþqþ~k1

�
�

1

i�� �kFþqþ~k1

��
kFþqþ~k1;�kFþ~k1

1

i�� ��kFþ~k1

þ ð� ! ��Þ
�
: (148)

For j~k1j � kF one can linearize the dispersion ��kFþ~k1
�

�vF
~k1 and �kFþqþ~k1

� vFð~k1 þ qÞ, where vF denotes the

Fermi velocity. In the thermodynamic limit the two G0

factors for q ¼ 0 and � ! 0 are proportional to �ð~k1Þ. If
only the singular contributions are kept, the differential
equation for ��

kF;�kF
reads

EQ-TARGET ;temp:intralink-;d149;76;534

d

d�
��

kF;�kF
¼ � ÛkF;�kF;kF;�kF

2
vF

1

�
��

kF;�kF
; (149)

where ÛkF;�kF;kF;�kF ¼ LUkF;�kF;kF;�kF is independent of the

system size. For the continuum model ÛkF;�kF;kF;�kF ¼
~Uð0Þ � ~Uð2kFÞ, where ~UðkÞ is the Fourier transform of the
two-particle potential Uðx�x0Þ. This leads to the scaling
relation

EQ-TARGET ;temp:intralink-;d150;76;435��
kF;�kF

�
�
1

�

�
ÛkF;�kF;kF;�kF

=ð2
vFÞ
: (150)

As Eq. (149) was derived by expanding the Green function
G� in powers of the self-energy, the scaling behavior
Eq. (150) can be trusted only as long as�� stays small. Thus
a single-particle backscattering term is a relevant perturba-
tion for repulsive interactions and an irrelevant one for
attractive ones consistent with the bosonization result.

Equation (149) holds even in the half-filled band case for
the nearest-neighbor hopping lattice model. The additional
singular contribution due to umklapp scattering is propor-
tional to ÛkF;kF;�kF;�kF which vanishes because of the anti-

symmetry of the matrix element (Meden et al., 2002).
Neglecting all interaction effects beyond the renormaliza-

tion of the impurity potential and using the Born approxima-
tion the correction to the perfect chain conductance is given
by the self-energy squared. The corresponding exponent
ÛkF;�kF;kF;�kF=
vF agrees to leading order in the interaction

(Schönhammer, 2005) with �p ¼ 2ðK � 1Þ obtained within

bosonization.
The opposite limit of a weak link can be treated analyti-

cally as well leading to results consistent to those of the
bosonization approach with an exponent characterizing the
deviation from the open chain fixed-point conductance
g ¼ 0 which agrees to leading order in the interaction with
�o ¼ 2ð1=K � 1Þ (Meden et al., 2002).

Next the numerical solution of the RG flow for a specific
lattice model with arbitrary impurity strength is discussed.
This allows us to address the question of additional fixed
points.

3. Basic wire model

In the following the tight-binding model of spinless fermi-
ons with nearest-neighbor interaction supplemented by an
impurity is considered. The Hamiltonian is given by H ¼
Hkin þHint þHimp with kinetic energy

Hkin ¼ � X1
j¼�1

ðcyjþ1cj þ cyj cjþ1Þ; (151)

where cyj and cj are the creation and annihilation operators on
site j, respectively. The corresponding noninteracting disper-
sion is �k ¼ �2 cosk. The interaction is restricted to electrons
on N neighboring sites (Enss et al., 2005)

Hint ¼
XN�1

j¼1

Uj;jþ1½nj � �ðn;UÞ�½njþ1 � �ðn;UÞ�;

(152)

with the local density operator nj ¼ cyj cj. The two regions of
the lattice with j < 1 and j > N constitute the semi-infinite
noninteracting leads. To model contacts which do not lead to
single-particle backscattering the interaction Uj;jþ1 between

electrons on sites j and jþ 1 is allowed to depend on the
position. A conductance g ¼ 1=ð2
Þ in the absence of single-
particle impurities is only achieved if Uj;jþ1 is taken as a

smoothly increasing function of j starting form zero at the
bond (1, 2) and approaching a constant bulk value U over a
sufficiently large number of bonds. Equally, the Uj;jþ1 are

switched off close to the bond ðN � 1; NÞ. The results are
independent of the shape of the envelope function as long as it
is sufficiently smooth. An abrupt two-particle inhomogeneity
acts similarly to a single-particle impurity. A detailed dis-
cussion on the effect of the spatial variation of the two-
particle interaction was presented by Meden and
Schollwöck (2003a) and Janzen, Meden, and Schönhammer
(2006).

In Eq. (152) the density nj is shifted by a parameter

�ðn;UÞ, which depends on the filling factor n and the bulk
interaction U. This is equivalent to introducing an additional
one-particle potential which can compensate the Hartree
potential in the bulk of the interacting wire. In the half-filled
band case �ð1=2; UÞ ¼ 1=2 Enss et al., 2005.

The general form of the impurity part of the Hamiltonian is

Himp ¼
X
j;j0

Vj;j0c
y
j cj0 ; (153)

where Vj;j0 is a static potential. Site impurities are given by

Vj;j0 ¼ Vj�j;j0 . For a single site impurity Vj ¼ V�j;j0 , j0 is

chosen to be far away from both leads. Impurities close to the
contacts were discussed by Furusaki and Nagaosa (1996) and
Enss et al. (2005). Resonant tunneling can be studied con-
sidering two site impurities of strengths Vl and Vr on the sites
~jl ¼ jl � 1 and ~jr ¼ jr þ 1. The ND sites between jl and jr
define a quantum dot. The effect of a gate voltage restricted to
the dot region is described by a constant Vg on sites jl to jr.

This situation is sketched in Fig. 17. Hopping impurities are
achieved setting Vj;j0 ¼ Vj0;j ¼ �tj;jþ1�j0 ;jþ1. For the special

case of a single hopping impurity, tj;jþ1 ¼ ðt0 � 1Þ�j;j0 , the

unit hopping amplitude is replaced by t0 on the bond linking
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the sites j0 and j0 þ 1. In the double-barrier problem a
hopping tl across the bond ð~jl; jlÞ and tr across ðjr; ~jrÞ is
considered.

The homogeneous model H ¼ Hkin þHint with a constant
interaction U across all bonds, not only the ones within
½1; N�, can be solved exactly by the Bethe ansatz and K is
determined by a system of coupled integral equations
(Haldane, 1980). In the half-filled case they can be solved
analytically leading to

K ¼
�
2



arccos

�
�U

2

���1
(154)

for jUj 	 2. At other fillings the integral equations can be
solved numerically. The model shows LL behavior for all
particle densities n and any interaction strength except at half
filling for jUj> 2 where either phase separation sets in (for
U <�2) or the system orders into a charge-density-wave
state (for U > 2).

Because of the presence of the semi-infinite leads the direct
calculation of the noninteracting propagator related to Hkin þ
Himp requires the inversion of an infinite matrix. Using a

standard projection technique (Taylor, 2000) it can be re-
duced to the inversion of an N � N matrix. The leads then
provide an additional !n-dependent diagonal one-particle
potential on sites 1 and N (Enss et al., 2005):

V lead
j;j0 ði!nÞ ¼ i!n þ�

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

ði!n þ�Þ2
s 1

A
� �j;j0 ð�1;j þ �N;jÞ: (155)

Since the interaction is only nonvanishing on the bonds
between sites 1 and N, the problem including the semi-
infinite leads is this way reduced to the problem of an
N-site chain. In the functional RG it is then advantageous to
replace the projected noninteracting propagator G0 including
the impurity by a cutoff dependent one (Enss et al., 2005).

4. Numerical solution of improved flow equations

With a minor increase in the numerical effort one can go
beyond Eq. (144) for the flow of the self-energy and include a
�-dependent static interaction U� (Andergassen et al.,
2004). Its flow equation is derived from the general one for
the two-particle vertex Eq. (52) applying the following ap-
proximations: (i) The three-particle vertex is set to zero.
(ii) All frequencies are set to zero. (iii) The feedback of the
inhomogeneity on the flow of the interaction is neglected.
(iv) The interaction is assumed to remain of nearest-neighbor
form. Then U� obeys a simple differential equation
(Andergassen et al., 2004),

d

d�
U� ¼ hð�ÞðU�Þ2; (156)

where the function hð�Þ depends only on the cutoff� and the
Fermi momentum kF. The solution of the flow equation is
lengthy for arbitrary fillings (Andergassen et al., 2004) but
has a simple form for half filling

U� ¼ U

1þ ½�� ð2þ�2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ�2

p
�U=ð2
Þ : (157)

These approximations are sufficient to correctly describe the
RG flow of the two-particle vertex on the Fermi surface of the
homogeneous system (Andergassen et al., 2004) to second
order, as it is usually done in the so-called g-ology method
(Sólyom, 1979). For the inhomogeneous LLs the flow of the
effective interaction leads to improved results for the scaling
exponents.

Within these approximations and using the projection of
the leads, the self-energy at T � 0 is a frequency-independent
tridiagonal matrix in real space determined by the flow
equation ðj; j� 1 2 ½1; N�Þ

@

@�
��

j;j ¼ � 1

2


X
j!nj��

X
r¼�1

U�
j;jþr

�
�

1

Q0ði!nÞ ���ð!nÞ��
Q0ði!nÞ

� 1

Q0ði!nÞ ���ð!nÞ��

�
jþr;jþr

;

@

@�
��

j;j�1 ¼
1

2


X
j!nj��

U�
j;j�1

�
�

1

Q0ði!nÞ ���ð!nÞ��
Q0ði!nÞ

� 1

Q0ði!nÞ ���ð!nÞ��

�
j;j�1

; (158)

where the matrix Q0 ¼ ðG0Þ�1 is the inverse of the projected
noninteracting propagator with impurity. The symbol j!nj �
� stands for taking the positive as well as negative frequency
with absolute value closest to �.4 The initial conditions for �
at � ¼ �0 ! 1 are independent of the precise realization of

the inhomogeneity and read �
�0

j;j ¼ ½1=2� �ðn;UÞ��
ðUj�1;j þ Uj;jþ1Þ and �

�0

j;j�1 ¼ 0. The frequency dependence

of the self-energy which appears in the exact solution in order
U2 is not captured by this scheme. Thus only the leading
order is completely kept in the flow of �.

The coupled flow equations can be solved numerically by
an algorithm which approximately scales as N (Andergassen
et al., 2004). Typically systems of 104 lattice sites were
considered, roughly corresponding to the length of quantum
wires accessible to transport experiments. For the interacting
wire of finite length the energy scale �N ¼ vF=N forms a
cutoff for any RG flow. The flowing self-energy Eq. (158)
depends on the three scales T, �N , and �. Saturation of ��

l
r

j j j jl rl r N1

g

ND

V
V

V

~ ~
lead lead

{

FIG. 17. Schematic plot of the quantum dot situation, where the

barriers are modeled by two site impurities. From Enss et al., 2005.

4To achieve this result the cutoff scheme discussed in the

appendix of Andergassen et al. (2006) was used.
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for � & T or � & �N sets in ‘‘automatically’’ in contrast to

more intuitive RG schemes in which the flowing couplings

depend on � only and the flow is stopped ‘‘by hand’’ by

replacing � ! T or � ! �N , respectively (Kane and Fisher,

1992; Yue, Glazman, and Matveev, 1994).
Figure 18 shows the self-energy � at the end of the RG

flow, for T ¼ 0 in the vicinity of a site impurity of inter-

mediate strength. Both the on-site energy �j;j as well as the

hopping �j;jþ1 become oscillatory functions with wave num-

ber 2kF and a decaying amplitude. The asymptotic value of

�j;jþ1 away from the impurity leads to a broadening of the

band due to the interaction. A more detailed analysis of the

oscillatory part j��j;jþ1j ¼ j�j;jþ1 � ��off j, with the spatial

average ��off , for different T > 0 is presented in Fig. 19. The

left panel shows that for jj� j0j * 10 it decays as 1=jj� j0j
up to a thermal length scale�1=T (provided T > �N) beyond

which the decay becomes exponential; see the right panel. For

U > 0 this is the generic behavior for large bare impurities or

on asymptotical large length scales. It is the scattering off

such a long-ranged oscillatory potential, so-called Wigner–

von Neumann potential (Reed and Simon, 1975), which leads

to the power-law suppression of the conductance and the local

spectral weight. One can analytically show that the amplitude

of the asymptotic 1=jj� j0j decay determines the exponent

(Barnabé-Thériault et al., 2005a). By virtue of the RG flow

this amplitude, and thus the exponent, becomes independent

of the impurity strength. For this reason first order perturba-

tion theory fails. It also leads to an oscillatory self-energy

which decays as 1=jj� j0j but with an amplitude which

depends on the bare impurity strength (Meden et al., 2002)

incorrectly leading to a power law with an impurity depen-

dent exponent. The idea of an oscillatory decaying potential

is similarly inherent to a poor man’s fermionic RG approach

(Yue, Glazman, and Matveev, 1994). Often these oscillations

of the effective renormalized potential are referred to as

Friedel oscillations. This is misleading as this term is reserved

to the spatial oscillations of the electron density. In particular,

in an inhomogeneous LL the effective potential decays as

jj� j0j�1, while the density oscillations asymptotically de-

cay as jj� j0j�K (Egger and Grabert, 1995). The latter can

also be shown within the functional RG formalism presented

here (Andergassen et al., 2004). The application of the self-

consistent Hartree-Fock approximation leads to an oscillatory

self-energy with a constant amplitude and thus to a charge-

density-wave state (Meden et al., 2002). This is an unphys-

ical artifact of the approximation.
Using scattering theory (Enss et al., 2005) one can show

that the effective transmission T ð�; TÞ is given by the ð1; NÞ
matrix element of the single-particle Green function

T ð�k; TÞ ¼ 4sin2kjhNjGð�k þ i0Þj1ij2. Via the T-dependent
self-energy (see Fig. 19) G and thus T carries a temperature

dependence. A typical example for the T dependence of the

linear conductance gðTÞ for a strong local impurity is shown

as the solid line in Fig. 21. It clearly follows the expected

power-law behavior for �N & T � B with the bandwidth

B ¼ 4. The T�1 scaling at larger T is a band effect. For

�0:5 	 U 	 1:5 and fillings n ¼ 1=2 as well as 1=4, the
exponent extracted (see lower panel of Fig. 21) agrees well

with the one of the LSG model �o ¼ 2ð1=K � 1Þ, with K
taken from the Bethe ansatz. Even for U ¼ 1:5 the relative

error is less than 5% [see Fig. 5 of Enss et al. (2005)].

Higher-order corrections in U present in the numerical solu-

tion of the flow equations (157) and (158) clearly improve the

result over the one of the perturbative (in the impurity

strength) analytical solution of Sec. VI.C.2 which yields a

purely linear exponent. We emphasize that this improvement

is not systematic as second- and higher-order terms are only

partly kept in the RG. A similar agreement can be found for

�p (Enss et al., 2005).

Within the LSG model no intermediate fixed points appear

which is reflected by one-parameter scaling g ¼ ~gKðxÞ=2

with x ¼ ðT=T0ÞK�1 and a nonuniversal scale T0 (Kane and

Fisher, 1992; Moon et al., 1993; Fendley, Ludwig, and

Saleur, 1995; Egger et al., 2000). For appropriately chosen

T0 data for different T and ~Vð2kFÞ but fixed K can be

collapsed onto the K-dependent scaling function ~gKðxÞ. It
has the limiting behavior ~gKðxÞ / 1� x2 for x ! 0 and
~gKðxÞ / x�2=K for x ! 1. One can perform a similar scaling

with data from the numerical solution of the flow equations

for the microscopic lattice model considering different V and

T as well as two sets of ðU; nÞ leading to the same LL

parameter (Enss et al., 2005). The perfect collapse of the
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FIG. 18. Self-energy near a site impurity of strength V ¼ 1:5
filling n ¼ 1=4, and interaction U ¼ 1; the impurity is located at

j0 ¼ 513 with N ¼ 1025 sites. From Andergassen et al., 2004.
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FIG. 19. Decay of the oscillatory part of the off-diagonal matrix

element of the self-energy away from a single hopping impurity at

bond j0, j0 þ 1. Results for t0 ¼ 0:1, j0 ¼ 5000, N ¼ 104, U ¼ 1,

n ¼ 1=2, and different temperatures T ¼ 10�1 (solid line), T ¼
10�2 (dotted line), T ¼ 10�3 (dashed line), and T ¼ 10�4 (dash-

dotted line) are presented. The left panel shows the data on a log-log

scale, and the right panel on a linear-log scale. For comparison the

left panel contains a power law ðj� j0Þ�1 (thin solid line). From

Enss et al., 2005.
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data of Fig. 20 shows that the improved description of the

impurity flow beyond the single amplitude approximation

inherent to the LSG model does not lead to additional fixed

points. The functional RG scaling function shows a sensible

K dependence. The exponent of the large x power-law decay

is smaller than the noninteracting one �2 (solid line at large

x) and close to the LSG model exponent �2=K shown as the

dashed line in Fig. 20. This has to be contrasted to the K
independent (noninteracting) scaling function ~g ¼
ð1þ x2Þ�1 resulting from the poor man’s fermionic RG

(Yue, Glazman, and Matveev, 1994), shown as the solid

line in Fig. 20.
The functional RG results for a single local impurity in a

LL show that the LSG model describes the physics (two fixed

points, exponents, one-parameter scaling) of a broader class

of models. The same approach was also used to study the

persistent current through a LL ring with a local impurity

pierced by a magnetic flux (Meden and Schollwöck, 2003a,

2003b; Gendiar, Krcmar, and Weyrauch, 2009). Aspects

resulting from the spin degree of freedom of electrons were

discussed by Andergassen, Enss, and Meden (2006) and

Andergassen et al. (2006).

5. Resonant tunneling

We next review the results on resonant transport through a

double barrier, defining an interacting quantum dot embedded

in a LL (Enss et al., 2005; Meden et al., 2005). The setup is

sketched in Fig. 17. The linear conductance g is characterized

by a hierarchy of energy scales. The functional RG is a

unique tool to access this problem as it provides reliable

results on all scales. For a fixed dot size ND and fixed barriers

Vl=r (or tl=r) the dot can be tuned to resonance varying Vg.

Only for symmetric dots with Vl ¼ Vr (or tl ¼ tr) the peak

conductance becomes ‘‘perfect’’ gp ¼ 1=ð2
Þ. For asymmet-

ric barriers a backscattering component of the single-particle

inhomogeneity remains, leading to a reduced gp. Because of

the interaction backscattering grows during a RG procedure

and on asymptotic scales the conductance vanishes with
scaling exponent �o. The same holds away from resonance
regardless of the ratio Vl=Vr (or tl=tr). Thus the noninteract-
ing resonance of finite width either disappears (asymmetric
barriers) or turns into a resonance of zero width (symmetric
barriers). A rich T dependence is found on resonance and for
symmetric barriers on which we now focus. Without loss of
generality only site impurities are considered as barriers.

The functional RG procedure can directly be applied to the
double-barrier problem. The dot parameters enter only via the
noninteracting propagator. Figure 21 shows the peak conduc-
tance gpðTÞ for a dot with high barriers and two different dot

sizes. The relevant energy scales B, �ND
¼ vF=ND, T



ND

(see

below), and �N are indicated by the arrows. For �ND
& T the

two barriers behave as independent impurities. Using scatter-
ing theory one can show that in this case gp is obtained by

adding the resistances of the two barriers (Enss et al., 2005;
Jakobs et al., 2007). This explains why for ND ¼ 100, for
which this temperature regime is clearly developed, gpðTÞ
agrees to the solid line obtained by taking gðTÞ=2 of a single
site impurity of equal height as used for the double barrier.
Note that it is a nontrivial fact that in this temperature regime
the individual resistances can be added to give the total
resistance. In the presence of inelastic processes one would,
of course, expect this result (resistors in series) but they are
absent in the mesoscopic setup, the ones resulting from the
electron-electron interaction are suppressed by the approx-
imations. In fact, the case of three barriers constitutes an
example for which adding resistances no longer holds (Jakobs
et al., 2007). For T & �ND

the width of �@f=@� is smaller

than �ND
and only the resonance peak around � ¼ 0 of

T ð�; TÞ contributes to the integral in Eq. (142). The width
w of this peak vanishes as T�o=2=ND (Enss et al., 2005)
leading to gpðTÞ / T�o=2�1. The lower bound of this scaling

regime, first discussed using bosonization (Furusaki and
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FIG. 21. Upper panel: gpðTÞ for U ¼ 0:5, N ¼ 104, Vl=r ¼ 10,

n ¼ 1=2, and N ¼ 6 (squares), 100 (diamonds). The arrows indicate

the relevant energy scales B, �ND
, T
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, and �N . The solid curve

shows gðTÞ=2 for a single barrier with V ¼ 10 and U ¼ 0:5,
N ¼ 104. Lower panel: Logarithmic derivative of the conductance.

Dashed line: �o; dash-dotted line: �o=2� 1. From Enss et al.,

2005.
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FIG. 20. One-parameter scaling plot of the conductance. Open

symbols represent results obtained for U ¼ 0:5, n ¼ 1=2, and

different T and V, while filled symbols were calculated for

U ¼ 0:851 and n ¼ 1=4. Both pairs of U and n lead to the same

K ¼ 0:85 (within the present approximation). The solid line indi-

cates the noninteracting scaling function ð1þ x2Þ�1 and the dashed

one the LSG model power-law decay with exponent �2=K. From
Enss et al., 2005.
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Nagaosa, 1993b; Furusaki, 1998), is reached when T ¼ w,

i.e., at T

ND

/ N�1=ð1��o=2Þ
D . For T < T


ND
, 2
gp approaches 1.

For T reaching �N any power-law scaling in T with an
interaction dependent exponent is cut off by the finite size
of the interacting part of the quantum wire. In addition to
identifying the different temperature regimes the functional
RG approach allows one to (i) quantify the size of the cross-
over regime, typically half an order of magnitude, and to
(ii) obtain results for ‘‘nonuniversal’’ regimes as, e.g., real-
ized for ND ¼ 6 and �ND

< T � B. For dots with weak

barriers and sufficiently large ND only the regime with scal-
ing exponent �o=2� 1 is realized and for weak barriers and
small ND none of the above power-law regimes emerges
(Enss et al., 2005; Meden et al., 2005). Resonant transport
in LLs was also studied by bosonization (Furusaki and
Nagaosa, 1993b; Furusaki, 1998), poor man’s fermionic RG
(Nazarov and Glazman, 2003; Polyakov and Gornyi, 2003),
and numerically (Hügle and Egger, 2004).

The temperature dependence of the peak conductance of
resonant tunneling nicely exemplifies the fact that the func-
tional RG approach provides sensible results on all energy
scales even for problems with a hierarchy of scales. Other
examples from this class are situations in which the wire-lead
contacts are not modeled as being perfect (Jakobs et al.,
2007) and models in which the leads and contacts are de-
scribed in a more realistic way (Wächter, Meden, and
Schönhammer, 2009).

6. Y junctions

The power of the functional RG approach to uncover
unconventional fixed points and the related interesting phys-
ics was exemplified by discussing a specific junction of three
1D wires, a so-called Y junction. The three LL wires (index
� ¼ 1, 2, and 3) each of length N and coupled to a non-
interacting semi-infinite lead via a perfect contact are de-
scribed by the basic model discussed in Sec. VI.C.3. The
symmetric junction pierced by a magnetic flux � is sketched
in Fig. 22 and given by

HY ¼ �tY
X3
�¼1

ðcy1;�c0;� þ H:c:Þ þ V
X3
�¼1

n0;�

� t�
X3
�¼1

ðei�=3cy0;�c0;�þ1 þ H:c:Þ; (159)

where the wire indices 4 and 1 are identified. The junction is
characterized by the three parameters tY, V, and t�. Using
scattering theory (Barnabé-Thériault et al., 2005a, 2005b;
Enss et al., 2005), the U ¼ 0 conductance from wire � to
wire �0 can be written as

2
g�;�0 ¼ 4ðIm�Þ2je�i� � �j2
j�3 � 3�þ 2 cos�j2 ; (160)

with a single complex parameter � ¼ ð�V � t2YĜ
0
1;1Þ=jt�j.

The Green function Ĝ0 is obtained for one of the equivalent

disconnected (tY ¼ 0) wires and Ĝ0
1;1 2 C denotes its diago-

nal matrix element taken at the first site j ¼ 1. It is evaluated
at energy �þ i0 with � ! 0. Equation (160) holds if � and �0
are in cyclic order and is independent of the wire pair
considered; g�0 ;� follows by replacing � ! ��. If � does

not correspond to an integer multiple of 
 and for generic
junction parameters, the conductance from � to �0 differs
from the one with reversed indices indicating the breaking of
time-reversal symmetry. This constitutes the most interesting
situation and we focus on such fluxes. In Fig. 23 the con-
ductance from wire � to �0 (cyclic) for� ¼ 0:4
 is shown for
the upper half of the complex � plane. For restored time-
reversal symmetry the largest conductance allowed by the
unitarity of the scattering matrix is 2
g�;�0 ¼ 4=9 (denoted

the perfect junction value in the following); even for opti-
mized parameters a reflection of 1=9 is unavoidable.

For U � 0 the Y junction can straightforwardly be treated
within the functional RG based approximation scheme
(Barnabé-Thériault et al., 2005b). Here we focus on

T ¼ 0. To compute the conductance from Eq. (160), Ĝ0

must be replaced by the auxiliary Green function Ĝ obtained
by considering � (at the end of the RG flow for the full
system) as an effective potential for a single disconnected
wire setting tY ¼ 0 (Barnabé-Thériault et al., 2005b). Via the

RG flow of �, Ĝ develops a dependence on (tY, t�, and V) U
and �N ¼ vF=N. The latter energy scale is a natural infrared
cutoff, in contrast to the flow parameter � which is artificial
and sent to 0. A comprehensive picture of the low-energy
physics is obtained from the dependence of � on �N . In
Fig. 24 each line is for a fixed set of junction parameters
and �N as a variable. The flux is chosen as � ¼ 0:4
 and the
arrows indicate the direction of decreasing �N . As Im� has

the opposite sign of ImĜ1;1 < 0 it is restricted to positive

values.
Equation (160) allows for four distinguished conductance

situations (see Fig. 23): (i) on the line Im� ¼ 0, g�;�0 ¼
g�0 ;� ¼ 0 for almost all Re�; (ii) it is interrupted by three

points having flux-dependent positions with the conductance
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1

FIG. 22. Sketch of the symmetric Y-junction of three quantum

wires Barnabé-Thériault et al., 2005b.
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FIG. 23 (color online). The noninteracting conductance 2
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(cyclic indices) as a function of the complex parameter � which in

turn is a function of the junction parameters tY, V, and t�. The flux
is � ¼ 0:4
.
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2
g�;�0 ¼ 2
g�0;� ¼ 4=9; (iii) for a specific flux-dependent

� one finds 2
g�;�0 ¼ 1 and 2
g�0;� ¼ 0; and

(iv) g�;�0 ¼ g�0 ;� ¼ 0 is also reached for j�j ! 1. These

are the fixed points of the RG flow as evident from Fig. 24.

Situation (i) is an interrupted line of decoupled chain fixed
points with vanishing conductances which is stable for U > 0
and unstable in the opposite case. Analyzing the dependence
of g�;�0 on �N in its vicinity for different U one finds that the

scaling exponent is independent of � given by �o as obtained
for the single impurity. Situation (ii) constitutes three perfect

junction fixed points (circles in Fig. 24). For U > 0 each of
the three fixed points has a basin of attraction given by

one of the three parts of the curve Cð�Þ (thick curved line
in Fig. 24 interrupted by the square) on which the reflection

1� 2
g�;�0 � 2
g�0 ;� takes a local minimum. The

U dependence of the scaling exponent when approaching
one of the fixed points along its corresponding line is shown
in Fig. 25 (circles). It is independent of � and for small jUj it
can be fitted by U=3
. These fixed points have not been
found by any method which is based on bosonization and the

exact dependence of their scaling exponent on K is presently
unknown. Because of the factor 1

3 in the leading order it must

be different from the K dependence of any of the exponents
discussed so far. (iii) The basins of attraction are separated by

the maximal asymmetry fixed point (maximal breaking of
time-reversal symmetry; square in Fig. 24). For� ¼ 
=2 this
fixed point was identified by a bosonization based approach
(Chamon, Oshikawa, and Affleck, 2003), and it was conjec-

tured that the behavior found holds for all fluxes different
from integer multiples of 
. The functional RG results indeed
confirm this, at least for small to intermediate jUj, as one

finds this fixed point for all such � and obtains a flux-
independent scaling exponent which to leading order agrees

with the bosonization result �Y ¼ 2ð�� 1Þ with � ¼
4K=ð3þ K2Þ (see Fig. 25). The bosonization exponent shows
a nonmonotonic dependence on K and thus U, which the
approximate functional RG approach does not capture. This
implies that the maximal asymmetry fixed point is unstable

for repulsive interactions, and stable for sufficiently small
attractive ones but turns unstable again for larger attractive

interactions. (iv) In the mapping of the complex plane onto
the Riemann sphere the g ¼ 1 fixed point (north pole) is part

of the projected line of decoupled chain fixed points and
shows the same stability properties and scaling dimension.

The most interesting physics is associated with the perfect
junction fixed points which for U > 0 each have one stable

direction. If the junction parameters of a noninteracting
system at fixed � � m
, m 2 N0 are chosen such that the
resulting � lies on Cð�Þ, but not on one of the three special
points (ii), g�;�0 � g�0;� and the conductance indicates the

breaking of time-reversal symmetry as expected. Turning on
an interaction U > 0 the ‘‘fine-tuned’’ system flows to one of

the perfect chain fixed points with equal perfect conductances
2
g�;�0 ¼ 4=9 and 2
g�0 ;� ¼ 4=9. Therefore, at small energy

scales the junction conductance no longer indicates the ex-
plicit breaking of time-reversal symmetry. For generic junc-
tion parameters away from Cð�Þ one finds related behavior.
Close to the line of decoupled chain fixed points the relative

difference jg�;�0 � g�0 ;�j=ðg�;�0 þ g�0 ;�Þ scales as a power law
in �N with an exponent given by �o=2 and thus vanishes if

U > 0. This implies that g�;�0 and g�0;� become equal faster

than they go to zero. In that sense for U > 0 and up to the

unstable maximal asymmetry fixed point, on small scales the
conductance does not show the breaking of time-reversal
symmetry, time-reversal symmetry is ‘‘restored’’ by the
interaction.

Other types of junctions of an arbitrary number of LL wires
were studied using functional RG (Barnabé-Thériault et al.,

2005a) as well as by the poor man’s fermionic RG (Lal, Rao,
and Sen, 2002; Aristov et al., 2010) and bosonization based
approaches (Nayak et al., 1999; Chen, Trauzettel, and Egger,
2002).

7. Nonequilibrium transport through a contacted wire

Nonequilibrium functional RG was used to study a finite

bias transport geometry with an impurity-free N site interact-
ing wire contacted to two noninteracting semi-infinite leads
by tunnel barriers modeled by reduced hopping matrix ele-
ments as introduced in Sec. VI.C.3: t0;1 ¼ ðtL � 1Þ and

tN;Nþ1 ¼ ðtR � 1Þ (Jakobs, Meden, and Schoeller, 2007). In

equilibrium this model features a local single-particle spectral
function �jð!Þ which close to the chemical potential, in the

vicinity of the contacts, and for repulsive interactions is
suppressed: �jð!Þ �!�o (Enss et al., 2005). The linear

conductance behaves as gðTÞ � T�o which can be understood
from viewing transport as an end-to-end tunneling between a
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LL and a Fermi-liquid lead and using the sum of two resis-
tances as discussed in Sec. VI.C.5.

A cutoff scheme which conserves causality to any trunca-
tion order (Jakobs, 2010) is given by an imaginary frequency
cutoff. The Fermi function of the two leads which can be
written as a Matsubara sum

fL=Rð!Þ ¼ ½e
ð!��L=RÞ þ 1��1

¼ 
�1
X
!n

ei!n0
þ

i!n �!þ�L=R

(161)

is replaced by

f�L=Rð!Þ ¼ 
�1
X
!n

�ðj!nj ��Þei!n0
þ

i!n �!þ�L=R

: (162)

Details of this procedure including a discussion of the initial
conditions and its relation to the temperature flow scheme
(Honerkamp and Salmhofer, 2001a) are presented by Jakobs
(2010). Within the lowest-order truncation and after taking
the equilibrium limit this cutoff implemented for Keldysh
Green functions yields the same flow equations as the
Matsubara functional RG with the frequency cutoff
Eq. (143) (Jakobs, Meden, and Schoeller, 2007; Jakobs,
2010; Jakobs, Pletyukhov, and Schoeller, 2010b).

In the presence of a finite bias voltage the level-1 trunca-
tion scheme (bare two-particle vertex) with the cutoff proce-
dure (162) was applied. As discussed in Sec. VI.C.2, in
equilibrium this is sufficient to obtain scaling exponents
correctly to leading order in U. For weak tunneling �L=R ¼

t2L=R�0 � 1, with �0 the density of states of the discon-

nected, noninteracting leads taken at the last lattice site, the
flow of the retarded nonequilibrium self-energy matrix �ret;�

is given by a weighted sum of two equilibrium flows

d

d�
�ret;� ¼ X

�¼L;R

��

�L þ �R

�
d

d�
�eq;�

�
�¼��

; (163)

where the terms inside the brackets on the right-hand side are
given by Eq. (158) with the chemical potential set to �L or
�R, respectively (and U� ! U). As discussed in Sec. VI.C.4
each such term leads to an oscillatory slowly decaying self-
energy originating at the inhomogeneity, the tunnel barriers in
the present case, and extending into the interacting part of the
wire. The two chemical potentials �L=R imply two different

wave numbers 2kðL=RÞF . Because of the weighting factor

��=ð�L þ �RÞ the amplitudes of the two superimposed de-
caying oscillations are generically different and depend on
the strength of the bare inhomogeneity. The resulting non-
equilibrium effect of two different and ��-dependent expo-
nents characterizing the scaling of the spectral function close
to �L and �R goes beyond the naive expectation that the bias
voltage plays the role of an infrared cutoff scale only [see,
e.g., Schoeller (2009)]. In Fig. 26 the local spectral function
near the left contact and for a restricted energy range around
�L=R is shown. Because of the finite temperature (T ¼ 10�4)

and the finite size of the interacting wire (N ¼ 2� 104) the
suppression at �L=R is incomplete (cut off by maxfT; �Ng),
but the difference in the exponent is still apparent. A detailed
analysis shows that the exponents at �L=R are given by

�L=R ¼ �L=R�oð�L=RÞ=ð�L þ �RÞ, where the argument in

the open boundary exponent �o indicates that it depends on
the band filling and thus the chemical potential. After adding
a third probe lead these nonuniversal exponents can be
measured in a transport experiment (Jakobs, Meden, and
Schoeller, 2007; Jakobs, 2010).

D. Quantum dots

A spatially confined system featuring a few energy levels is
called a quantum dot. In a transport geometry the dot is
coupled to at least two leads. Quantum dots show interesting
physics if all relevant energy scales (e.g., level-lead couplings
and T) are smaller than the level spacing of the isolated
system. Because of the strong confinement the two-particle
interaction on the dot cannot be neglected and leads to
phenomena such as Coulomb blockade and the Kondo effect.

1. Spin fluctuations

In the Kondo regime the physics is dominated by spin
fluctuations. The virtues and limitations of the functional RG
approach to describe aspects of Kondo physics in and out of
equilibrium were extensively studied within the single-
impurity Anderson model and more complex variants of the
latter (Hedden et al., 2004; Andergassen, Enss, and Meden,
2006; Karrasch, Enss, and Meden, 2006; Meden and
Marquardt, 2006; Gezzi, Pruschke, and Meden, 2007;
Karrasch, Hecht, Weichselbaum, von Delft, et al.,
2007; Karrasch, Hecht, Weichselbaum, Oreg, et al., 2007;
Karrasch, Oguri, and Meden, 2008; Karrasch et al., 2008;
Weyrauch and Sibold, 2008; Xu, Gao, and Xiong, 2008,
2010; Bartosch et al., 2009; Eichler et al., 2009; Goldstein
et al., 2009; Karrasch and Meden, 2009; Kashcheyevs et al.,
2009; Isidori et al., 2010; Jakobs, 2010; Jakobs, Pletyukhov,
and Schoeller, 2010a; Karrasch, 2010; Schmidt and Wölfle,
2010). As the number of correlated degrees of freedom in
quantum dots is small the static truncation used for LLs was
extended to contain all second-order processes including a
frequency-dependent two-particle vertex and self-energy,
capturing the full real space as well as spin structure
(Hedden et al., 2004; Karrasch et al., 2008; Jakobs, 2010;
Jakobs, Pletyukhov, and Schoeller, 2010a; Karrasch, 2010;
Karrasch, Pletyukhov et al., 2010). In fact, the studies of the
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FIG. 26. Suppression of the local one-particle spectral weight as a

function of energy near the left contact (at site 5) of an interacting

wire driven out of equilibrium by a finite bias current. The parame-

ters are T ¼ 10�4, N ¼ 24, U ¼ 0:5, tL ¼ 0:075, tR ¼ 0:15, and
�L=R ¼ �0:05. From Jakobs, Meden, and Schoeller, 2007.
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single-impurity Anderson model constitute one of the rare

examples of the functional RG approach to correlated Fermi

systems using a complete level-2 truncation (even supple-

mented by parts of the six-point vertex through the replace-

ment discussed in the second part of Sec. II.C.2). Including

the frequency dependence clearly improves the results be-

yond bare perturbation theory of the same (that is second)

order but it is presently not possible to reach the strong

coupling regime in a controlled way. A discussion of the

problems yet to be solved was presented by Karrasch et al.

(2008), Karrasch, Pletyukhov et al. (2010), Karrasch (2010),

Jakobs, Pletyukhov, and Schoeller (2010a), and Jakobs

(2010). An alternative way to include the full frequency

dependence was recently introduced for another impurity

model by Schmidt and Enss (2011). In the following a simple

quantum dot model dominated by charge fluctuations is

discussed.

2. Charge fluctuations in nonequilibrium

The quantum dot model belongs to the class of spinless

models introduced in Sec. VI.C.3. For a three site interacting

chain (N ¼ 3) with U1;2 ¼ UL and U2;3 ¼ UR two hopping

impurities are located at bonds (1, 2) and (2, 3): t1;2 ¼ tL � 1,
and t2;3 ¼ tR � 1. Lattice site 2 constitutes a single-level dot

which can be adjusted in energy by a gate voltage Vg (see

Fig. 17). An electron on this site interacts with lead electrons

via a nearest-neighbor coupling UL=R which are otherwise

noninteracting. Choosing � ¼ 1=2 in Eq. (152), Vg ¼ 0 cor-

responds to the particle-hole symmetric point with dot occu-

pation hn2i ¼ 1=2. This model is a lattice realization of the

interacting resonant level model (IRLM). The use of a variety

of analytical as well as numerical methods led to a rather

complete understanding of the physics of this model in

equilibrium [see, e.g., Borda, Vladár, and Zawadowski

(2007), and references therein]. In addition, the current under

a finite bias voltage �L ¼ Vb=2 and �R ¼ �Vb=2 was in-

vestigated (Borda, Vladár, and Zawadowski, 2007; Doyon,

2007; Boulat, Saleur, and Schmitteckert, 2008). Field theo-

retical methods were applied in the scaling limit in which all

energy scales are much smaller than the bandwidth B. In the

following the focus is on this limit. Functional RG results for

the equilibrium and nonequilibrium properties beyond the

scaling limit including a favorable comparison with recent

numerical time-dependent density-matrix renormalization

group data (Boulat, Saleur, and Schmitteckert, 2008) are

presented by Karrasch (2010), Karrasch, Pletyukhov et al.

(2010), and Karrasch et al. (2010).
First order perturbation theory in UL=R leads to logarithmic

terms in the self-energy of the form UL=R lnðtL=R=BÞ which in
the scaling limit become large. They indicate the appearance
of power laws in tL=R with UL=R dependent exponents. To

uncover them requires a treatment which goes beyond per-

turbation theory. In the limit of weak to intermediate two-

particle interactions a Keldysh functional RG approach to the

IRLM in the level-1 truncation leads to a comprehensive

picture of the physics in and out of equilibrium. In particular,

it allows one to identify the relevant energy scales.
For the present model instead of Eq. (162) another cutoff

scheme suitable for nonequilibrium (Jakobs, 2010; Jakobs,

Pletyukhov, and Schoeller, 2010a) was implemented and
tested (Karrasch, 2010; Karrasch, Pletyukhov et al., 2010).
In this approach each of the three interacting sites is coupled
to its own auxiliary lead, in addition to the coupling of sites 1
and 3 to the physical leads. The local density of states at the
contact points of the auxiliary leads is assumed to be energy
independent (wide band limit) such that the hybridization is
energy independent and forms an additional on-site ‘‘energy’’
i� on each of the three sites. The auxiliary couplings are then
considered as the cutoff and flow from � ¼ 1, at which
regularization is achieved, down to � ¼ 0, at which the
auxiliary leads are decoupled and the original problem is
restored. One can show that in the lowest-order truncation
and in the equilibrium limit the Keldysh contour flow equa-
tions become equal to the equilibrium ones obtained using the
Matsubara formalism with the (at T ¼ 0) sharp energy cutoff
Eq. (143). Similarly to the imaginary frequency cutoff of
Sec. VI.C.7 it conserves causality even after truncation of
the functional RG flow-equation hierarchy. In addition, in the
equilibrium limit this so-called reservoir cutoff scheme obeys
the KMS relation in any truncation order (Jakobs, 2010;
Jakobs, Pletyukhov, and Schoeller, 2010a, 2010b).

In the scaling limit and to lowest order in U only flow
equations for the hydridizations ��

� with initial values �ini
� ¼


�0t
2
� appear (� ¼ L=R); the flow of the level energies of

sites 1 to 3 is of order U2. The renormalized hybridizations
set the width of the resonance at Vg ¼ 0. For � being smaller

than the bandwidth the flow equations for the rates read
(�� ¼ ��

L þ ��
R )

d��
�

d�
¼ �2�0U��

�
�

�þ ��

ð�� � VgÞ2 þ ð�þ ��Þ2 : (164)

They have the approximate solutions

�� � �ini
�

�
�0

maxfj�� � Vgj;�=2g
�
2�0U�

: (165)

The scale �0 is of the order of the bandwidth. Within the
static approximation the current takes the form of the non-
interacting expression with the bare hybridizations �ini

� re-

placed by the renormalized ones

I ¼ 1




�L�R

�

�
arctan

Vb=2� Vg

�
þ arctan

Vb=2þ Vg

�

�
:

(166)

It turns out to be useful (Karrasch et al., 2010; Andergassen
et al., 2011) to introduce the two scales T�

u ¼ �ini
� �0=Tu, with

Tu ¼ TL
u þ TR

u , and the asymmetry parameter c2 ¼ TL
u =T

R
u .

The same flow equation can be derived using the so-called
real-time RG in frequency space (Schoeller, 2009; Karrasch
et al., 2010; Andergassen et al., 2011). Within this approach
also the relaxation into the steady state was analyzed in detail
(Karrasch et al., 2010; Andergassen et al., 2011).

We first review the results obtained for the left-right sym-
metric model with tL ¼ tR ¼ t0 and UL ¼ UR ¼ U as well as
particle-hole symmetry Vg ¼ 0 (Karrasch, 2010; Karrasch

et al., 2010; Andergassen et al., 2011). From Eq. (165) it
follows that in this case the maximum of either j��j ¼
jVbj=2 or � itself cuts off the RG flow. The charge suscepti-
bility � ¼ �dhn2i=dVgjVg¼0 is directly given by the
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renormalized width ��1 ¼ 
�, which at Vb ¼ 0 and to
leading order in U [�� ! �ini

� on the right-hand side of

Eq. (165)] gives the scaling relation

�� ð�iniÞ���1; �� ¼ 2�0UþOðU2Þ: (167)

In the noninteracting case �� ð�iniÞ�1 as expected. From
Eq. (166) it follows that the current for T�

u ¼ �� � Vb � B
is given by

I � �� V
��I

b ; �I ¼ 2�0UþOðU2Þ: (168)

Equations (167) and (168) were also obtained using other
approaches (Borda, Vladár, and Zawadowski, 2007; Doyon,
2007; Boulat, Saleur, and Schmitteckert, 2008) and suggest
that the bias voltage merely plays the role of an additional
infrared cutoff, besides, e.g., � or temperature (Borda and
Zawadowski, 2010). That this is in general not the case is
nicely shown by a functional RG treatment away from
particle-hole and/or left-right symmetry (Karrasch, 2010;
Karrasch et al., 2010; Andergassen et al., 2011).

The differential conductance g ¼ dI=dVb has a maximum
when Vg crosses the chemical potential at Vg ¼ �Vb=2

(Karrasch et al., 2010; Andergassen et al., 2011). In the
on-resonance case the current for V � � reads

IðVbÞ � �L�R

2�

¼ Tu

ðTu=�Þ2�0UL ðTu=VbÞ2�0UR

cðTu=�Þ2�0UL þ 1
c ðTu=VbÞ2�0UR

c

1þ c2
:

(169)

The bias voltage dependence is clearly more involved than in
Eq. (168). In particular, simple power-law scaling with ex-
ponent �2�0UR is recovered only in the extreme limits of
either Vb��Tu or c � 1 (Andergassen et al., 2011) as the
exponent of the second term in the denominator 2�0UR is
small. Off resonance (e.g., at Vg ¼ 0) and for Vb � � the

current is given by

IðVbÞ � Tu

ðTu=jVb=2� VgjÞ2�0ULðTb=jVb=2þ VgjÞ2�0UR

cðTu=jVb=2� VgjÞ2�0UL þ ð1=cÞðTu=jVb=2þ VgjÞ2�0UR

2c

1þ c2
: (170)

The more involved role of Vb is again apparent. A power
law is obtained in the above studied left-right symmetric
case or for strong left-right asymmtery (c � 1 or c � 1)
(Andergassen et al., 2011).

This concludes the analysis of the IRLM which shows that

the functional RG can be a tool to obtain a comprehensive

picture of the equilibrium and steady-state nonequilibrium

physics of a dot model dominated by charge fluctuations. The

approach allows for an unbiased analysis of the nonequilib-

rium rates and cutoff scales.

VII. CONCLUSION

A. Summary

The functional RG has proven to be a valuable source of

new approximation schemes for interacting fermion systems.

The heart of the method is an exact flow equation, which

describes the flow of the effective action as a function of a

suitable flow parameter. The flow provides a smooth evolu-

tion from the bare action to the final effective action from

which all properties of the systems can be obtained.

Approximations are obtained by truncating the effective ac-

tion. In many cases, rather simple truncations turned out to

capture rather complex many-body phenomena. Compared to

the traditional resummations of perturbation theory these

approximations have the advantage that infrared singularities

are treated properly due to the built-in RG structure.

Approximations derived in the functional RG framework

can be applied directly to microscopic models, not only to

renormalizable effective field theories. Remarkably, the func-

tional RG reviewed here as a computational tool is similar to

RG approaches used by mathematicians to derive general

rigorous results for interacting fermion systems.

We dedicated a large portion of this review to general
features of the functional RG method for interacting Fermi
systems (see Sec. II). After defining the relevant generating
functionals, we presented a self-contained derivation of the
exact functional flow equation and its expansion leading to an
exact hierarchy of flow equations for vertex functions. We
reviewed the different choices of flow parameters used so far,
along with their advantages and disadvantages. Truncations
and their justification by power counting have been discussed
in detail for translation-invariant bulk systems, with links to
the closely related mathematical literature.

In Secs. III, IV, V, and VI we reviewed applications of the
functional RG to specific systems. Most of the approxima-
tions used in these sections are based on relatively simple
truncations involving only the flow of the two-particle vertex
and/or the self-energy. Nevertheless a rich variety of phe-
nomena associated with low-energy singularities and insta-
bilities is captured. Instead of summarizing the content of
each section, we merely highlight some distinctive features.
Section III reviews functional RG work on the stability
analysis of two-dimensional electron systems with competing
instabilities. The main advantage of the functional RG based
one-loop computation of the two-particle vertex, compared to
other weak-coupling approximations, is that particle-particle
and particle-hole channels are treated on equal footing, such
that there is no artificial bias due to a selection or a different
treatment of channels. In the conventional many-body frame-
work a summation of all parquet diagrams would be required
to achieve this, but a solution of the parquet equations is
extremely difficult. Spontaneous symmetry breaking, the
topic of Sec. IV, can be treated either by a purely fermionic
flow or by coupled flow equations for the fermions and a
Hubbard-Stratonovich field for the order parameter. It seems
that a comprehensive treatment of all relevant fluctuation
effects related to symmetry breaking can be achieved.
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Applications of the functional RG to quantum criticality,

reviewed in Sec. V, have begun only recently.
Approximations beyond the Hertz-Millis theory can be ob-

tained from nonperturbative truncations of the effective order

parameter action, or by treating fermions and order parameter
fluctuations in a coupled flow instead of integrating the

fermionic degrees of freedom at once. While the applications
reviewed in Secs. III, IV, and V address translation-invariant

bulk systems, the purpose of Sec. VI is to show how the

functional RG can be fruitfully applied to inhomogeneous
systems such as quantum wires and quantum dots, in thermal

equilibrium and also in a nonequilibrium steady state. A
strikingly simple truncation of the flow-equation hierarchy

turned out to describe a wealth of nontrivial quantum trans-

port properties characterized by low-energy power laws and
complex crossover phenomena.

B. Future directions

The number of functional RG based works on interacting
Fermi systems has increased steadily over the last decade, but

the possibilities opened by this approach are far from being
exhausted. There are many opportunities and challenges

concerning both fundamental developments of the method

and the extension to a broader range of systems.
On the methodological side there are a number of open

issues. In systems with an instability of the normal metallic

state, the flow of the effective interactions is not yet fully
understood, even on the level of truncations involving only

the two-particle vertex and the self-energy, since a faithful

parametrization of singular momentum and frequency depen-
dences of the vertex is not easy.

The most outstanding challenge is probably to identify

accurate and computable truncations of the exact flow equa-
tion for strongly interacting systems such as systems close to

a Mott metal-insulator transition. It is clear that three-particle

and higher-order vertices cannot be discarded in a strongly
interacting system. However, they will usually not lead to

qualitative changes such as new singularities. Hence, there is
hope that the contribution from many-body vertices can be

absorbed in the structure appearing already on the two-

particle level. After all, many strong coupling phenomena,
including the Mott transition, consist essentially in the for-

mation of two-particle bound states. To capture effects
related to strong local correlations, such as the Mott tran-

sition, one may also try to treat higher-order vertices in a

local approximation. This would make a link to the dynami-
cal mean-field theory (DMFT), where all vertices, including

the self-energy, are approximated by local functions

(Georges et al., 1996).
For systems with strongly interacting order parameter

fluctuations there are already a number of nonperturbative

approximations for bosonic actions on the market. The local
potential approximation presented in Sec. V is only the

simplest one. It can be extended by taking nonlocal contri-

butions into account, either in a derivative expansion (Berges,
Tetradis, and Wetterich, 2002) or by including the full mo-

mentum or frequency dependence up to a certain level in the
hierarchy (Blaizot, Mendez-Galain, and Wschebor, 2006).

Such approximations may be useful for studying incommen-

surate density wave instabilities in cases where the modula-
tion vector of the density wave can be determined only after
taking fluctuations into account.

Recently, the functional RG was extended to a real-time (or
real frequency) Keldysh functional RG which can be used for
studying correlated Fermi systems in nonequilibrium (Jakobs,
2003, 2010; Gezzi, Pruschke, and Meden, 2007; Karrasch,
2010). First applications, partly reviewed in Sec. VI, indicate
that also for these type of problems the functional RG con-
stitutes a useful tool of outstanding flexibility. So far only
nonequilibrium steady states were studied. To investigate a
time evolution is technically straightforward but requires a
significantly increased computational effort or additional
approximations.

With few exceptions, applications of the functional RG to
interacting Fermi systems have so far been limited to purely
fermionic one-band systems. There are many extensions of
this restricted class of systems, where the flexibility of the
functional RG can be fruitfully used in the future. Multiband
models have been studied already for the pnictide super-
conductors, but there are many more and qualitatively differ-
ent models for transition metal oxides with orbital degrees of
freedom. One may include phonons and analyze the electron-
phonon interaction effects beyond the Eliashberg theory.
Allowing for disorder one may study the complex interplay
of interaction and disorder effects. It is not hard to generalize
the exact flow equations for the extensions listed above. The
interesting task is then to devise suitable truncations.

Last but not least, the functional RG is an ideal many-body
tool to be combined with ab initio band structure calculations.
A lot of work in the last 15 years has been dedicated to the
ab initio calculation of correlated electron materials with the
DMFT (Kotliar et al., 2006; Anisimov and Izyumov, 2010).
As in the DMFT, an arbitrary band structure can be used as
input for a functional RG calculation. Furthermore, one can
easily implement nonlocal potentials and nonlocal two-
particle interactions.
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APPENDIX A: WICK-ORDERED FLOW EQUATIONS

In this Appendix we present a derivation of Wick-ordered
flow equations for fermions, which have been used for cal-
culations of instabilities and symmetry breaking in the two-
dimensional Hubbard model.

Wick-ordered m-particle functions W�
m are generated from

the Wick-ordered effective interaction (Salmhofer, 1999)
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W �½�; ��� ¼ e
� �G�

0 V�½�; ���: (A1)

The exponent in the Wick-ordering factor is the functional
Laplacian � �G�

0
¼ ð@�; �G�

0 @ ��Þ with �G�
0 ¼ G0 � G�

0 . The

Wick-ordered interaction converges to V for � ! 0, since
�G�
0 vanishes in that limit. However, the flow equations for

W � and the corresponding m-particle functions differ from
those forV�. The flow equation for the generating functional
W � reads (Salmhofer, 1999)

d

d�
W � ¼ 1

2
e
�diff

�G�
0 �diff

_�G
�
0

W �W �; (A2)

where the superscript ’’diff’’ indicates that the Laplacian
takes one derivate on the first, and the other on the second
factor W � on the right-hand side. This equation is obtained
as follows. Using the definition ofW � and the flow equation
for V�, one can write

d

d�
W � ¼ d

d�
ðe� �G�

0 V�Þ

¼ � _�G
�
0
e
� �G�

0 V�

þ e
� �G�

0

�
�� _�G

�
0
V� þ 1

2
�diff

_�G
�
0

V�V�

�

¼ 1

2
e
� �G�

0 �diff
_�G
�
0

V�V�:

Using the decomposition � �G�
0
¼ �factor1

�G�
0

þ �factor2
�G�
0

þ�diff
�G�
0

(when acting on a product) yields

d

d�
W � ¼ e

�diff
�G�
0
1
2�

diff
_�G
�
0

ðe� �G�
0 V�Þðe� �G�

0 V�Þ

and thus Eq. (A2).
Expanding in powers of Grassmann fields and comparing

coefficients, one obtains a hierarchy of flow equations for the
m-particle functions Wð2mÞ�, which is illustrated in Fig. 27.
The line with the dash is due to contractions generated by
�diff

_�G
�
0

in Eq. (A2); the other lines are generated by the ex-

ponential of �diff
�G�
0

. Note that the right-hand side of the Wick-

ordered flow equations is bilinear in the effective interactions,
and no tadpole terms appear. Note also that the propagators
connecting the vertices have support for energies at and below
the cutoff scale �, such that the integration region shrinks as
� decreases. One might worry that the low-energy propaga-
tors lead to infrared divergences even for �> 0. This is not
the case, as can be seen from the general infrared power-
counting analysis presented by Salmhofer (1999).

APPENDIX B: DETAILS OF POWER COUNTING

1. Propagator bounds

Here we show, using properties of the dispersion function
and the Fermi surface, that

s� 	 aþ b log
�0

�
; and kG�k 	 c��1; (B1)

where a, b, and c are constants that do not depend on �. In
the absence of van Hove singularities, b ¼ 0. We first con-
sider the case where the self-energy effects are not taken into
account (they are discussed in Sec. II.E.4). Then one can
simply take ��ðkÞ ¼ �>ððk20 þ �2

kÞ=�2Þ, where �>ð�Þ is a

fixed (i.e., �-independent) increasing function that vanishes
at least linearly at � ¼ 0, tends to 1 as � ! 1, and
satisfies �0

>ð�Þ 	 ��2 for large �. We can then verify
Eq. (B1) by scaling as follows. The full propagator is
G�ðkÞ ¼ ðik0 � �kÞ�1��ðkÞ, so jG�ðkÞj 	 c=� where c ¼
maxf��1�>ð�2Þ:�> 0g is finite. The single-scale propagator
is

S�ðkÞ ¼ � 2

�3
ðik0 þ �kÞ�0

>

�
k20 þ �2

k

�2

�
: (B2)

Using the fact that the Matsubara sum is a Riemann sum for
the convergent integral of S� over k0 and introducing the
density of states NðEÞ ¼ R

ddk�ð�k � EÞ, we get

s� 	 4

�3

Z
dk0

Z
dENðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ E2

q
�0
>

�
k20 þ E2

�2

�
;

(B3)

where the 4 instead of 2 gives a crude bound for the change
from the Matsubara sum to the integral for large enough 
.
Changing variables to � ¼ ðk20 þ E2Þ1=2 and a polar angle ’,
we obtain

s� 	 4

�3

Z 1

0
�2d��0

>

�
�2

�2

�Z 2


0
d’Nð� cos’Þ: (B4)

If the density of states N is bounded, using NðEÞ 	 N0

and scaling out � implies s� 	 a, with a ¼
8
N0

R
�2�0

>ð�2Þd� <1. In the presence of a van Hove

point on the Fermi surface, N stays bounded in dimensions
d � 3, but diverges logarithmically for d ¼ 2. In this case,
the ’ integral contributes an additional factor log�.

Thus Eq. (B1) holds. The hypotheses on �> are satisfied, in
particular, for the standard strict cutoff functions that vanish
identically near � ¼ 0, and which are identically 1 for � � 1.
For such cutoffs, the single-scale propagator is nonvanishing
only in a ‘‘momentum shell’’ of thickness� around the Fermi
surface, and the above bounds can also be obtained by
estimating the k-space volume of this shell (see also
Appendix B.3).

2. Power counting

Here we prove Eq. (70) to all orders in the running
coupling expansion. All terms on the right-hand side of the

flow equation for �ð2mÞ�
r are of the form

....= Σ
n,j

W
(2m)Λ

W(2n)Λ W(2m−2n+2j)Λ
1

2

j

d
dΛ

FIG. 27. Diagrammatic representation of the flow equations for

the effective m-particle interactions Wð2mÞ� in the Wick-ordered

version of the functional RG; the internal line with a dash corre-

sponds to @� �G�
0 , the others to �G�

0 ; all possible pairings leaving m

ingoing and m outgoing external legs have to be summed.

Walter Metzner et al.: Functional renormalization group approach to . . . 345

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



1

2
trðS�P�Þðk; �Þ ¼ 1

2

Z
}l
X
�;�0

S��;�0 ðlÞP̂�
�;�0 ðk; �; l;�lÞ;

(B5)

where P̂� ¼ �̂ð2mþ2Þ�
r in the first term of Eq. (67) and given

by the other summands in Eq. (67) for the other terms, and

Z
}l ¼ 1




X
l0

Z ddl

ð2
Þd

contains both frequency and momentum summations. Taking
the absolute values inside the sum and estimating the factor
P̂� by its maximum kP�k, we obtain

k12 trðS�P�Þk 	 s�kP�k (B6)

with s� ¼ max�
P

�0
R
}kjŜ��;�0 ðkÞj. The second simple in-

equality that we use is that kP1 � � �Pnk 	 kP1k � � � kPnk. It
implies bounds for allL�

p contributions in terms of kG�k and
k�ð2mqÞ�

rq k, so that kðd=d�Þ�ð2mÞ�
r k is bounded by

s�

�
k�ð2mþ2Þ�

r k þ kV�k kG�k k�ð2mÞ�
r�1 k

þ X
p�2

kG�kp�1
X0k�ð2m1Þ�

r1 k � � � k�ð2mpÞ�
rp k

�
: (B7)

The power counting is now determined by s� and kG�k.
Given Eqs. (B1) and (B7), the proof of Eq. (70) is an effort-
less induction argument. The inductive scheme proceeds in
the standard way of Polchinski (1984), namely, upward in
r � 1 and at fixed r, downward inm, starting atm ¼ r, where

�ð2mþ2Þ�
r ¼ 0. The induction start r ¼ 1 is trivial. Let r � 2

and assume Eq. (70) to hold for all ðr0; m0Þ with r0 < r and for
r0 ¼ r,m0 >m. The right-hand side of Eq. (B7) contains only
terms to which the inductive hypothesis Eq. (70) applies.
Inserting it, using Eq. (B1), and collecting powers in the
form 1�pþP

qð2�mqÞ¼1�m and
Pp

q¼1ðrq�mqþ1Þ¼
r�m, we obtain					 d

d�
�ð2mÞ�
r

						 ~�ð2mÞ
r sr�mþ1

� fr��
1�m; (B8)

where the constant ~�ð2mÞ
r is a weighted sum of products of the

�
ð2mqÞ
rq . We now use the initial condition �ð2mÞ�

r ¼ 0 to write

�ð2mÞ�
r ¼ �

Z �0

�
d‘

d

d‘
�ð2mÞ‘
r ;

take the norm of this equation, and use Eq. (B8). This gives

k�ð2mÞ�
r k 	 ~�ð2mÞ

r

Z �0

�
d‘sr�mþ1

‘ fr‘‘
1�m: (B9)

By definition, f� � f�0 if� 	 �0, so f‘ 	 f� for all ‘ in the
integration interval. Thus the last integral is bounded by

~�ð2mÞ
r fr�

R�0

� d‘sr�mþ1
‘ ‘1�m. Because s‘ is at most logarith-

mic in ‘, and m � 3,
R�0

� d‘s�‘ ‘
1�m 	 K�2�ms�� with a

constant K that depends on � and m. This, together with an

appropriate choice of �ð2mÞ
r , completes the induction step.

For m ¼ 2, doing the last integral increases the power of
the logarithm by 1. This case is discussed in more detail in
Appendix B.3.

For m ¼ 1, the self-energy term, the same simple bound

gives kðd=d�Þ��k 	 s�f�, so the integral gives a contribu-
tion of order f�. When a counterterm is used to keep the

Fermi surface fixed, the initial condition for �� at � ¼ �0 is
given by the counterterm, which needs to be adjusted such

that at low scales �, ��ð0;kÞ ¼ Oð�Þ whenever �k ¼ 0.
This leads to the self-consistency relation mentioned in
Sec. II.E.4.

A similar proof can be given in the Wick-ordered scheme

(Salmhofer, 1998b); it is even simpler because the double
induction used here is replaced by single induction on r.

A crucial point in obtaining Eq. (B8) is that all the depen-

dence on p and on the mq drops out when the power of � is

collected. It is this property that makes many-fermion models
with short-range interactions renormalizable in the strict

quantum-field-theoretical sense. The classification in rele-

vant, marginal, and irrelevant terms now also becomes ap-

parent because for m � 3, the �ð2mÞ�
r grow as � decreases:

Suppose we add an additional (2m � 6)-point interaction

vertex ~Vð2mÞ�0 of order 1 to the initial interaction at �0. Its

insertion at a lower scale � is a factor ð�=�0Þm�2 smaller
than that of the effective 2m-point vertex created by the two-

particle interaction. Thus the influence of ~Vð2mÞ�0 wanes at
low scales; it is irrelevant. A simple adaptation of the above

inductive argument indeed shows that the inclusion of such

additional terms with m � 3 in the interaction at �0 changes
only prefactors in the power-counting bounds. For m ¼ 2,
this suppressing factor is absent, so that these terms are
marginal (the more detailed analysis of Appendix B.3 shows

how to separate the marginally relevant from the marginally
irrelevant terms). Moreover, it is clear that this power count-

ing breaks down when �ð4Þ� develops singularities as a

function of k and !, because then f� ¼ 1. Finally, for
m ¼ 1, the scale derivative of the self-energy obtained by

the above argument is of order�1�m, as in Eq. (B8), but since
m ¼ 1, this integrates to Oð1Þ instead of Oð�2�mÞ, and this

term is relevant. To get its size back to Oð�2�mÞ in the

momentum shell where j�ðkÞj ��, one needs a cancellation
by a counterterm, as described in Sec. II.E.4. In the Taylor

expansion required to do the cancellation, the derivative of
the self-energy appears. By the above power counting, this is

a marginal term. In the Luttinger model, it is really marginal

and causes the anomalous exponents. For curved Fermi sur-
faces in d � 2 dimensions, it is seen to be irrelevant by the

arguments discussed in Appendix B.3.b.
There is a hard problem hidden in the recursion of the

constants �ð2mÞ
r . In the recursion described above, the number

of terms that gets added corresponds to the number of

Feynman graphs with r vertices, which grows factorially in

r, so that the bound obtained in this way for �ð2mÞ
r and cð2mÞ

r is

of order r!. If saturated, it would lead to a convergence
problem. However, due to the fermionic antisymmetry, sign

cancellations in the sum over Feynman diagrams prevent this

factorial from arising. For proofs, we refer interested readers
to the literature [see Feldman et al. (1992), Feldman,

Knörrer, and Trubowitz (1998), Disertori and Rivasseau
(2000), Salmhofer and Wieczerkowski (2000), Feldman,

Knörrer, and Trubowitz (2002), and Pedra and Salmhofer

(2008), and references therein]. In their application to propa-
gators with Fermi surfaces, these proofs also provide a
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rigorous basis for the use of Fermi surface patches [first used
by Feldman et al. (1992) and there called ‘‘sectors’’].
Patching the Fermi surface has become an essential tool
also in applications; see Sec. III.

In a typical lattice model, the kinetic energy per particle is
bounded, so that the flow is usually started at the highest
value (the bandwidth) of the kinetic energy �0. The �� we
used here also cuts off large frequencies. Thus the starting
interaction is in this case one where the degrees of freedom
with frequencies jk0j above �0 have already been integrated
over. This starting action can be obtained by convergent
perturbation theory; see Pedra and Salmhofer (2008).

3. Improved power counting

This is a refinement of power counting, valid in a large
class of bulk fermion systems in d � 2 (Feldman and
Trubowitz, 1990; Shankar, 1994; Feldman, Salmhofer, and
Trubowitz, 1996, 1998b, 1999, 2000). It is the deeper reason
behind the emergence of Fermi-liquid behavior and of domi-
nant Cooper pairing tendencies in weakly coupled standard
fermion systems, and it provides a precise link between Fermi
surface geometry and scaling properties of the effective
m-particle vertices in general.

We discuss this in the absence of self-energy effects, to
bring out the main effects as clearly as possible. (The self-
energy changes the Fermi surface; if the interacting Fermi
surface is regular, the following analysis remains essentially
unchanged.) We also assume a strict cutoff function, i.e.,
�>ð�Þ ¼ 0 for � 	 ð1� �Þ2, where 0< �< 1=2 is fixed,
and �>ð�Þ ¼ 1 for � � 1. Again, this choice is not essential;
it just simplifies the discussion.

a. Effects of curvature on power counting

The integral I�ðkÞ ¼
R
dp0d

dpjS�ðpÞjjG�ð�pþ kÞj
arises from the trace on the right-hand side of the RG
equation when all effective vertices and all but one of the
propagatorsG� have been estimated by their maximal values.
It thus determines the maximal possible value of a term on the
right-hand side of the RG equation, where the dependence on
one external momentum is kept. In particular, I� is directly
relevant for the one-loop contributions to the flowing four-
point vertex. The power counting done above corresponds to
the estimate I�ðkÞ 	 kG�ks� 	 ��1s�, so that

R
� I�d�

grows logarithmically in � for small �.
Since �� ¼ 0, S�ðkÞ ¼ ðik0 � �kÞ�1@��

�ðkÞ, and

G�ðkÞ ¼ ��ðkÞ
ik0 � �k

¼ G�0ðkÞ �
Z �0

�
d�S�ðkÞ: (B10)

The term G�0 is nonvanishing at large frequencies, but not
important. [kG�0k 	 ��1

0 , hence a factor �=�0 smaller than

kG�k when � gets small. Thus
R
dp0d

dpjS�ðpÞjjG�0 ðpþ
kÞj 	 s��

�1
0 , hence its integral over � is bounded by a

constant.] The derivative of the strict cutoff function vanishes
unless�ð1� �Þ 	 jik0 � �kj 	 �, so S�ðpÞ vanishes unless
jp0j 	 � and p is in the momentum space shell F � ¼
fk:j�kj 	 �g, and there jS�ðpÞj 	 1=�2. The p0 sum in I�
gives at most 2�, and the p integral gives the d-dimensional

volume of the intersection F � \ ðk�F �Þ of two momen-
tum space shells, where one is shifted by k. It follows that

I�ðkÞ 	 Oð��1
0 Þ þ 2

�

Z �0

�

d�

�2
vold½F � \ ðk�F �Þ�:

(B11)

This links the scaling behavior of terms in the RG equation to
the geometric properties of the Fermi surface.

Obviously, the volume of the intersection is at most
as large as the volume of F � itself: vold½F � \ ðk�F �Þ� 	
voldF � 	 const��. Using this in Eq. (B11) gives the
general power-counting bound mentioned at the beginning
of this section, I�ðkÞ 	 const���1. Assuming that ��k ¼
�k, this bound is always saturated for k ¼ 0, and also for
those k for which the shift by k makes the two shells overlap
over a significant region of the Fermi surface, that is, when k
is a nesting vector of the Fermi surface.

For other values of k, the intersection volume can be much
smaller than that of F �. A general definition of non-nesting
was given, and power-counting bounds were derived when it
was satisfied, by Feldman, Salmhofer, and Trubowitz (1996),
and extended to the case with van Hove singularities in
Feldman and Salmhofer (2008a, 2008b). Here we cite only
the result for the case of a strictly convex and positively
curved Fermi surface without van Hove singularities, dis-
cussed also in the appendix of Salmhofer (1999). In that
case, and for � 	 � 	 vF;minjkj, one can show that the

volume ratio vold½F � \ ðk�F �Þ�=voldF � is proportional
to

�

jkjvF;min�
; if k =2 F ð2Þ

� ; (B12)

�
�

�

�ðd�1Þ=2
; if k 2 F ð2Þ

� : (B13)

Here vF;min is the smallest value of jrej on the

Fermi surface, F ð2Þ
� is a Oð�Þ neighborhood of the set

f2k:�k ¼ 0g (note that 2k is taken modulo reciprocal lattice
vectors), and � denotes the minimal curvature on the Fermi
surface. This is illustrated for � ¼ � in Fig. 28. In the first
case, the intersection is transversal, which decreases the
intersection volume by the factor in Eq. (B12). The second
case corresponds to a 2kF intersection, where the curvature in

a region of size
ffiffiffiffi
�

p
determines the intersection volume,

corresponding to Eq. (B13). In the third case, jkj is so small
that the volume of the intersection is essentially equal to that
of F �.

FIG. 28. Intersections of a momentum shell around the Fermi

surface with its translate, as arising in loop integrals on the right-

hand side of the RG equation. When the Fermi surface is curved, the

intersection volume decreases strongly unless the translating mo-

mentum is small.
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The scale in the flow where the improvements set in is
determined by the curvature of the Fermi surface, because
there is really only an improvement if the additional factors
are smaller than 1. In cases where the curvature is small on
large parts of the Fermi surface, as in the Hubbard model near
to half filling and at small next-to-nearest hopping, one thus
has an effective nesting at those scales and at those k, where
the quotients in Eqs. (B12) and (B13) are so large that they
give a bound that is larger than the trivial bound 1 for the
volume ratio.

Equations (B12) and (B13) imply that for small jkj,
Z �0

0
I�ðkÞd� 	 const� log

�0

jkjvF;min

(B14)

(where the constant depends on the curvature of the Fermi
surface) and that the function remains bounded for jkj not
close to zero [for details, see Feldman, Salmhofer, and
Trubowitz (1996) and Salmhofer (1998a, 1999). Thus, for
convex curved Fermi surfaces, the four-point function can
diverge only at k ¼ 0 and there, only logarithmically (by a
similar argument, one can see that it can diverge only at
k0 ¼ 0). The particle-particle correction to the vertex func-
tion has exactly this behavior. In the particle-hole term, there
is an additional sign cancellation that removes the logarithm.
The same argument shows that in general, divergences can
occur only at nesting vectors of the Fermi surface.

b. Uniform improvement from overlapping loops

An extension of these geometric estimates to two-loop
integrals of the type

R
dp

R
dqS�ðpÞS�0 ðqÞS�00 ðp� q� kÞ

is useful for d � 2: Feldman, Salmhofer, and Trubowitz
(1996) showed that in the absence of nesting and van Hove
singularities, such integrals contain a scaling improvement
independently of k. Such two-loop integrals associated with
graphs with overlapping loops arise when the RG equation
gets iterated; the graph classification of Feldman, Salmhofer,
and Trubowitz (1996, 1999) showed that in a precise sense,
the overwhelming majority of graphs in the Feynman graph
expansion contains one or even two such subintegrals, hence
becoming subleading at low scales. As is explained in detail
by Feldman, Salmhofer, and Trubowitz (1996), and
Salmhofer (1998a), in the absence of nesting and van Hove
singularities, this justifies the particle-particle-ladder ap-
proximation, it singles out the Hartree-Fock–type contribu-
tions to the self-energy by scaling arguments, and it allows
one to show that the derivative of the self-energy is RG
irrelevant instead of marginal.
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Barnabé-Thériault, X., A. Sedeki, V. Meden, and K. Schönhammer,

2005a, Phys. Rev. B 71, 205327.
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