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Tokamaks have demonstrated excellent plasma confinement capability because of their symmetry

but has an intrinsic drawback because of their pulsed inductive operation. Efforts have been made in

the past 20 years to realize steady-state operation, the most successful utilizing a bootstrap current.

In this review, progress in understanding tokamak physics related to steady-state operation is

described to investigate the scientific feasibility of a steady-state tokamak fusion power system.
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I. INTRODUCTION

The tokamak (Artsimovich, 1972) is a front runner in
fusion research. The tokamak has geometrical symmetry in
the toroidal direction, which makes the nested flux surface
robust against various changes of parameters, and good
confinement, leading to the achievement of equivalent
break-even conditions in large tokamaks such as JT-60U*kikuchi.mitsuru@jaea.go.jp
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(Kishimoto et al., 2005) and JET (Keilhacker et al., 2001),
and significant deuterium-tritium (D-T) fusion power produc-

tion (Hawryluk et al., 1998). While the tokamak shows
superiority in plasma confinement, its symmetry is created

by inducing a current in the high-temperature plasma through
transformer action. Therefore, the operation of the reactor
becomes pulsed if we cannot develop efficient noninductive

methods to sustain the plasma current. Since present power
sources such as oil-, coal-, and natural-gas-fired and fission

plants operate continuously, it is highly desirable for the
tokamak reactor to be a steady-state power station.

The intriguing physical process called the bootstrap cur-
rent can be utilized for steady-state operation of the tokamak

(Bickerton et al., 1971). Use of the bootstrap current is a
fundamental requirement for the efficient steady-state opera-

tion of a tokamak reactor (Kikuchi, 1990a) and an operational
scenario with a hollow current has been proposed (Ozeki
et al., 1993a; Kessel et al., 1994). Since then, extensive

research initiatives to advance the tokamak physics relevant
for steady-state operation have been started in tokamak

facilities such as JT-60U (Kikuchi et al., 1995a), DIII-D
(Stambaugh et al., 1995), JET (Hugon et al., 1992), and
TFTR (Levinton et al., 1995). Much experimental and

theoretical work has appeared over the last two decades.
Experiments at JET using D-T fuel also used an advanced

scenario (JET team, 1997).
After a brief introduction to magnetic confinement in

Sec. II, the steady-state tokamak reactor and advanced toka-
mak operating regimes are introduced in Sec. III. Section IV

summarizes the parallel transport in a tokamak critical for
steady-state operation. Ideal, resistive, and kinetic magneto-

hydrodynamic (MHD) instabilities related to a high bootstrap
current fraction are described in Sec. V. The perpendicular
transport in advanced tokamak (AT) regimes is described in

Sec. VI and control issues for the AT operation in Sec. VII.
Section VIII gives a summary. To keep the length of the

article reasonable, we do not discuss divertor physics, which
becomes more and more important in moving toward fusion
energy production. The Appendix gives the normalized fric-

tion and viscosity matrices.

II. MAGNETIC CONFINEMENT FUSION

A. Magnetic confinement topology

In the natural fusion reactor the Sun, dense and hot plasma
is confined by the gravitational field. This is a central force

field and the force acts in the direction of the field line. For
this reason, the confinement closed surface has the topology
of a sphere. In a man-made fusion reactor, high-temperature

plasma is confined by trapping charged particles with the
Lorentz force in a magnetic field to sustain reaction in a

volume of small dimension of 100 millionth of that of the
Sun. This force acts in the direction perpendicular to the field

line. For this reason, the confinement closed surface has the
topology of a torus.

The French mathematician Henri Poincaré proved the
theorem that a closed surface that can be covered with a

vector field without a fixed point is restricted to a torus, which
is called the ‘‘Poincaré theorem’’ (Poincaré, 1885) [see

Kikuchi (2011b) for details]. The meaning of the Poincaré
theorem is important. Consider the boundary surface of a
magnetically confined plasma; the plasma will leak from the
zero point of the magnetic field vector. The surface must be
covered by a nonzero magnetic field to confine the hot
plasma. This is why we use toroidal geometry for the mag-
netic confinement.

B. Integrability and symmetry

The magnetic field is characterized by its incompressibility
(r � B ¼ 0). This leads to the existence of the vector poten-
tial A (r�A ¼ B) given by A ¼ �r�� cr� þrG (�
and � are arbitrary poloidal and toroidal angles, and G is a
gauge term). This leads to the Hamiltonian structure for the
magnetic field evolution in the toroidal direction � . The
magnetic field line trajectory is given by d�=d� ¼ @c =@�,
d�=d� ¼ �@c =@� and can be regarded as a Hamilton
equation if we regard c as the Hamiltonian, � as the canoni-
cal coordinate, � as the canonical angular momentum, and �
as time (Cary et al., 1983).

A variational principle of the field line is given by the
analogy to the Hamiltonian action integral S ¼ R

Ldt ¼R½p � dx=dt�H�dt. By substituting the relationships p !
�, dx=dt ! d�=d� , H ! c , and t ! � , we have S ¼R½�d�=d� � c �d� . So the Lagrangian of the magnetic field

line becomes L ¼ �d�=d� � c if we regard � as ‘‘time.’’
In plasma equilibrium, the plasma’s expansion force

(�rP) is balanced by the Lorentz force (J� B). In this
case, the magnetic field B lies on the constant-pressure
surface (B � rP ¼ 0) and the surface is called the ‘‘flux
surface.’’ This means thatB is a linear combination of tangent
vectors @x=@� and @x=@� on the flux surface. The incom-
pressibility condition of B leads to the existence of the flow
function, and the coordinate transformation of � by which B
becomes a straight line gives a Clebsch form for the magnetic
field B ¼ rc �r�, where � ¼ q�� � and q ¼ d�=dc is
the safety factor (Boozer et al., 2005). Then� and c become
½1=2�� of the toroidal and poloidal fluxes inside the
constant-P surface and P ¼ Pðc Þ. The coordinates ð�; �; �Þ
and ðc ; �; �Þ are called flux coordinates. The Lagrangian of
the magnetic field line becomes L ¼ �ðd�=d�Þ � c ð�Þ. The
Lagrangian has no explicit dependence on the canonical
coordinate � nor on time � and they are ignorable coordi-
nates. The existence of such ignorable coordinates is essential
for plasma equilibrium.

The tokamak has geometrical symmetry in the toroidal
direction, ensuring the existence of a flux surface under a
wide range of operating conditions, whose poloidal cross
section is shown in Fig. 1. The force balance equation in an
axisymmetric torus leads to the so-called Grad-Shafranov
equation (Shafranov, 1958) as follows:

@2c

@R2
� 1

R

@c

@R
þ @2c

@2Z
¼ ��0R

2 dP

dc
� F

dF

dc
: (1)

Here F ¼ RB� where B� is the toroidal component of the

magnetic field, and Pðc Þ and Fðc Þ are functions of c and are
called flux functions.
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III. STEADY-STATE TOKAMAK REGIME

A. Steady-state tokamak reactors

The observation of the large bootstrap current fraction up to
80% in JT-60 high-�p discharges (Kikuchi, 1990b) in 1990

immediately stimulated the development of the concept of the
steady-state tokamak reactor (SSTR) (Kikuchi, 1990a) and its
design (Seki et al., 1991a) to clarify the scientific and technical
capabilities of electric power generation by a tokamak with
minimum extrapolation from the knowledge at that time.
Conn et al. (1991) also developed another power reactor study
with more aggressive technical provisions, ARIES-I. The
SSTR design whose layout is given in Fig. 2 was made with
strong involvement of industry (Seki et al., 1991b).

A major feature of the SSTR is the maximum utilization of
the bootstrap current for efficient steady-state operation. Since
the bootstrap current fraction is proportional to the poloidal
beta �p ¼ 4

R
PdV=�0I

2
pRp [or fboot � ða=RÞ0:5�p], the re-

actor should operate in the high-�p regime. An important

constraint comes from the so-called Troyon scaling �t½%� ¼
100�NIp½MA�=ap½m�Bt½T� (Troyon et al., 1984), where

�t ¼ hPi=ðB2
t =2�0Þ is the volume-averaged toroidal beta, Ip

is the plasma current, ap is the plasma horizontal minor radius,

Bt is the toroidal magnetic field, and�N is a constant called the

normalized beta. The combination of Troyon scaling with the

definition of the poloidal beta �p ¼ 4
R
PdV=�0I

2
pRp gives

the relation between�t and�p as�t�p ¼ ��2
N=4, where � is

the vertical plasma elongation. This scaling is confirmed in

DIII-D (Stambaugh et al., 1985).
Figure 3 shows the ð�t; �pÞ diagram. The curve corre-

sponds to �N ¼ 3:5 and � ¼ 1:8, in which the steady-state

fusion power concepts SSTR and ARIES-I (�p ¼ 2–2:1) as

well as the current ITER steady-state design (�p � 1:5) adopt

high-�p operation to increase the bootstrap current fraction.

Since �p � 1=�t for fixed �N and �, the steady-state toka-

mak reactor should sacrifice �t to achieve high �p and hence

a high bootstrap current fraction.
When the SSTR and ARIES-I concepts were proposed in

1990,world fusion researchwas directed toward increasing the

plasma current to improve energy confinement, an effort typi-

cally represented by the design change from the International

Tokamak Reactor to the ITER-CDA (where CDA indicates

conceptual design activity). Also the research frontier was

directed toward achieving a high-�t value close to 10% with

high normalized current Ip=apBt in DIII-D (Ferron et al.,

1990). If we are searching for a steady-state tokamak reactor, it

is evident that we have to change our research direction from

low-q and high-�t to high-q and high-�p research.

This change in the research direction was proposed

(Kikuchi et al., 1991) as joint work between SSTR and

ARIES-I design activities. The SSTR design is based on

current profile control with elevated central q (q0) to suppress
sawtooth oscillations and improve stability against ballooning

modes and wall stabilization against kink modes, while

ARIES-I optimizes the current profile without wall stabiliza-

tion, resulting in modest enhancement of q0. This is called the
weak-shear (WS) scenario. Here shear is given by s ¼
Rðdq=drÞ=q.

Ozeki et al. (1993a) proposed to utilize a hollow current

profile which is a natural current profile with a bootstrap

FIG. 2 (color online). Layout of steady-state tokamak reactor.

FIG. 3. (�t, �p) diagram and operating points of ITER, SSTR,

and ARIES-I. ITER-Q10 stands for an inductive operation, and

ITER-ss stands for a steady-state operation.

FIG. 1 (color online). Poloidal cross section of a tokamak with

divertor. The plasma is vertically elongated and is also triangular.
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current and is now called the negative-shear (NS) scenario.
The effectiveness of the NS scenario was also investigated
by Kessel et al. (1994). Later, tokamak reactor concepts
based on NS scenarios were developed in the United States,
ARIES-RS (Najmabadi et al., 1998), and in Japan, CREST
(Okano et al., 1998).

Reactor power balance is an important aspect in the steady-
state tokamak reactor. The useful-energy flow diagram is
shown in Fig. 4. Here Pf is the fusion power from plasma,

PCD is the heating and current drive (CD) power, Q is the
energy gain of the confined plasma, Q ¼ Pf=PCD, 	BD is the

energy multiplication factor in the blanket-divertor system,
PGe is the gross electric power, Pnet is the net electric power to
the grid, rPGe is the recirculating power (r is the recirculating
power fraction),	CD is the overall efficiency of the CD system,
and
auxPth is the power required for auxiliary equipment. The
thermal conversion efficiency
th is 0.345 for water cooling in
the fission light-water reactor, while it is 0.49 for the advanced
high-temperature He cooling system. 
aux is the reduction of
plant efficiency due to auxiliary equipment and is in the range
0.03–0.06 depending on the coolant.

The ð
plant; QÞ diagram is shown in Fig. 5 for pressurized-

water cooling and high-temperature helium gas cooling. It
must be noted that 
plant depends weakly on Q around Q ¼
30–50; 
plant � 0:3 for pressurized water, and 
plant � 0:4 for

high-temperature helium. It is difficult to achieve the required
Q level of Q ¼ 30–50 by using only a noninductive current
drive by external means. This is a fundamental reason why we
have to utilize a bootstrap current to realize efficient steady-
state operation of the tokamak reactor.

Current drive by noninductive means such as neutral beam
CD (NBCD), electron cyclotron CD (ECCD), lower hybrid

CD (LHCD), and fast-wave CD (FWCD) has been developed

(Fisch et al., 1987). The efficiency of the noninductive CD is
expressed by the CD efficiency 
CD defined as 
CD ¼
ICDp Rphnei=PCD and has certain limits, 
CD � 5�
1019 A=Wm2 for N-NBI (negative-ion-based NBI) at hTei ¼
17 keV and Ebeam ¼ 2 MeV, which is much lower than that

of inductive CD.

B. Advanced tokamak research

After the development of the basic concepts of the WS and

NS operational scenarios during 1990–1992, a reviews of the
prospects for steady-state tokamak reactors were given by

Kikuchi (1993) with an emphasis on the importance of current
profile control and by Goldston et al. (1994) on the require-

ments of a superconducting advanced tokamak device, which

was later built in Korea as the KSTAR tokamak (Kwon et al.,
2011) and in China as the EAST tokamak (Li et al., 2011). The

first systematic experimental studies addressing steady-state
tokamak regimes were reported in 1994 from JT-60U (Kikuchi

et al., 1995a) and fromDIII-D (Stambaugh et al., 1995). Since

then, steady-state tokamak research has been called advanced
tokamak research. Reviews of advanced tokamak research

have been given by Taylor et al. (1997), Gormezano et al.
(2004), and Kishimoto et al. (2005).

1. Weak-shear operation

To compensate the hollow bootstrap current profile [Jbs �ffiffiffiffiffiffiffiffiffi
r=R

p ðdP=drÞ=Bp], an active central current drive is essential

to achieve a monotonically increasing q profile. An active

central current drive can be produced by either NBCD,

ECCD, or FWCD.
Figure 6 shows a WS profile using central NBCD for the

SSTR (Kikuchi, 1993). The ballooning mode becomes stable

when qð0Þ becomes higher than 2. While global magnetic
shear is weak in such a case, local shear has a stabilizing

effect (Seki et al., 1987). Ideal MHD stability calculations
using the ERATO-J code show that n ¼ 1, 2, and 3. Ideal MHD

modes also become stable with increasing qð0Þ above 2 if the
wall stabilization is effective at rwall=a ¼ 1:2, as shown in

Fig. 6. The effectiveness of this wall stabilization for the

steady-state tokamak operation is discussed in Sec. V.
While the WS scenario with qð0Þ> 2 is effective in en-

hancing the beta limit with wall stabilization, the ideal MHD

stability limit without wall stabilization is reduced with
increasing qð0Þ [�N � 1=qð0Þ] (Ramos, 1991). So it is rea-

sonable to stay at qð0Þ � 1 to ensure stability in the case
of the loss of wall stabilization, as shown in Fig. 7. While

�N � 4 is stable with wall stabilization, the bootstrap current

fraction stays at 0.4. Without wall stabilization, the stability
limit is �N � 3:5. All these scenarios are based on smooth

pressure profiles without a local transport barrier. The for-
mation of edge and internal transport barriers brings other

issues associated with excitation of localized bootstrap cur-
rents, which will be discussed in Sec. V.

This WS regime has been investigated in many tokamaks

and called by different names, such as the high-�p regime

(Ishida et al., 1992) and the high-�p H-mode regime (Koide

et al., 1994) at JT-60, the supershot regime at TFTR (Strachan
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Pf +PCD

Generator ( th)
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CD system ( CD)
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FIG. 4. Energy flow diagram of steady-state tokamak reactor.

The plant efficiency 
plant ¼ Pnet=Pth, and the ratio of net

electric power output to thermal power output is given by 
plant ¼

th � 
aux � 1=	CD	BDð1þQÞ.
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et al., 1987), the improved H mode in the ASDEX Upgrade
(Sips et al., 2002), the optimized shear regime at JET
(Gormezano et al., 1999; Pietrzyk et al., 2001), and the
hybrid regime at DIII-D (Luce et al., 2003). In these regimes,
improved core confinement is observed with sawtooth sup-
pression and an internal transport barrier (ITB).

2. Negative-shear operation

Ozeki et al. (1993a) showed, for the first time, that a

hollow current profile with a reduced pressure gradient near

qmin can be stable to ideal MHD modes; this is called NS

operation. Since the bootstrap current profile is hollow, it is

much easier to use a hollow current profile to minimize active

current drive. Since shear plays an important role in stabiliz-

ing pressure-driven ideal MHD modes, a reduced pressure

gradient near qmin is important for the NS scenario. A low-

pressure gradient near qmin means that the bootstrap current is

low. So it becomes essential to drive the plasma current

noninductively near the pitch minimum location. These au-

thors proposed to use off-axis NBCD to realize a negative-

shear profile, as shown in Fig. 8.
Manickam et al. (1994) showed that the beta limit in NS is

fairly low, �N ¼ 2, without wall stabilization and quite high,

�N ¼ 5, with wall stabilization, as shown in Fig. 9. The

reason for this is quite simple: wall stabilization is easier if

the current is closer to the wall, but such a surface current is

unstable if the wall is not effective. This result implies that

wall stabilization should be securely maintained in the reactor

by a combination of rotational stabilization and feedback

stabilization.
This NS regime has been investigated in many tokamaks

such as the enhanced reversed shear (ERS) regime in TFTR

(Levinton et al., 1995) and the negative central shear regime

in DIII-D (Strait et al., 1995), the reversed shear regime in

JT-60 (Fujita et al., 1997a, 1997b), and the stationary

magnetic shear reversal regime in Tore-Supra (Litaudon

et al., 1996). In these regimes, very high confinement is

observed with strong ITB. The key issue is control of the

transport to match the optimum stable pressure profile to the

FIG. 7. WS profile and ideal �N limits with and without wall

stabilization. From Manickam et al., 1994.

FIG. 8. Negative-shear scenario for the SSTR, where off-axis

NBCD is used. From Ozeki et al., 1993a.
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high-�N operation. A large-radius ITB is sustained by LHCD
in the JET optimized shear (Mailloux et al., 2002). Access to
stable high �N in the current ramp-up phase is also an
important issue, especially when qmin changes above to below
a low m=n rational value in avoiding kink ballooning and
double tearing modes (TMs) (see Sec. V.B.3). At low �,
stationary long-pulse operation (van Houtte et al., 2004) is
achieved and a stationary oscillating mode, called theOmode
(Giruzzi et al., 2003), is observed at the Tore-Supra tokamak.

3. Current-hole operation

An extreme situation in NS configuration, equilibrium with
zero plasma current in the central regime called the current
hole (CH) (see Fig. 10), was formed at JT-60U (Fujita et al.,
2001) and JET (Hawkes et al., 2001). Although the core
confinement inside the CH is poor (almost no confinement),

an ITB is formed just outside the CH, showing good confine-
ment close to ion neoclassical transport (Hayashi et al., 2005;
Takizuka et al., 2002). The whole global energy confinement
is quite good, HHy2 ¼ 1:16–1:45 at JT-60U (Fujita et al.,

2001). Here HHy2 is defined as the enhancement factor of the

plasma energy confinement time over that of the ITER
H-mode scaling law, called IPB98ðy; 2Þ (ITER Physics
Expert Group, 1999) and HHy2 ¼ 1 corresponds to the

ITER standard operation based on the H mode (Wagner
et al., 1982). This CH regime can be stably sustained for
several seconds. This regime is interesting from the control
viewpoint because it has low li and makes it easier to obtain a
positionally stable elongated plasma and also to obtain a high
bootstrap current fraction. On the other hand, the CH regime
will be subject to higher ripple loss of � particles in future
reactors and sets severe constraints on maximum toroidal
field ripple as well as a low no-wall beta limit similar to
that in the reversed shear regime. The CH operation was
extensively reviewed by Fujita et al. (2010).

IV. PARALLEL TRANSPORT IN TOKAMAKS

Collisional parallel-transport physics plays an essential
role in current and rotation drives for the steady-state toka-
mak reactor. Reviews of neoclassical transport have been
given by Hinton et al. (1976) and Hirshman et al. (1981).
Noninductive current drive theory and ideas are reviewed by
Fisch et al. (1987). Since then, experimental demonstration
of neoclassical parallel-transport theories has been made,
notably on bootstrap current, as reviewed by Kikuchi et al.
(1995b). Many experiments followed to validate neoclassical
parallel transport. With the recent increased interest in intrin-
sic toroidal rotation (Rice et al., 2007), an explanation of the
hidden torque source has been developed by identifying
symmetry breaking in turbulent momentum transport as
well as neoclassical effects on toroidal rotation.

A. Collisional moment equation

1. Moment equation

The high-temperature plasma in present-day and future
tokamak reactors consists of a Maxwellian electron, ion,
and impurity, and a fast ion from NB heating and fusion �.
Hirshman et al. (1981) developed moment equations for the
thermal species, while Azumi et al. (1990) and Wang et al.
(1994) investigated the fast-ion effect in the moment
equations. The flux surface-averaged parallel-momentum
and heat-flux balance equations for the thermal electron (e),
ion (i), impurity (I), and fast ion (f) are given as follows:

hB �r��ai¼ hB �Fa1iþeanahB �EiþhB �Mai; (2)

hB � r ��ai ¼ hB � Fa2i þ hB �Qai: (3)

Here�a,Fa1, ea, na,E,Ma,�a,Fa2, andQa are the viscosity
tensor, friction force, electric charge, density, electric field,
momentum source, heat viscosity tensor, heat friction force,
and heat source, respectively, and a stands for species a ¼ e, i,
I, and f. The heat-flow balance equation (3) is not considered
for the fast ion (Kikuchi et al., 1995b). The viscosity and heatFIG. 10 (color online). Current hole equilibrium.

FIG. 9. Negative-shear plasma profile and ideal MHD stability

limit with and without wall stabilization. From Manickam et al.,

1994.
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viscosity tensors are related to the pressure anisotropy in a
Chew-Goldberger-Low form (Chew et al., 1956) as �a ¼
ðPka � P?aÞðbb� 1

3 IÞ and �a ¼ ð�ka ��?aÞðbb� 1
3 IÞ.

Here Pka, P?a, �ka, and �?a are the parallel pressure,

perpendicular pressure, parallel and perpendicular compo-
nents of heat viscosity, respectively. Also, b and I are a unit
vector along the magnetic field and a unit tensor, respectively.

The first-order flows of species a are given by

uð1Þa ¼ ukabþ uð1Þ?a; qð1Þa ¼ qkabþ qð1Þ?a; (4)

where ukab and qkab are the parallel flows and uð1Þ?a and qð1Þ?a

are the perpendicular flows as given by

uð1Þ?a ¼
BV1a

F

rc � b

B
; (5)

qð1Þ?a ¼ 5Pa

2

BV2a

F

rc � b

B
: (6)

Here BV1a ¼ �F½d�=dc þ ð1=eanaÞdPa=dc � and BV2a ¼
�ðF=eaÞdTa=dc are thermodynamic forces and Fðc Þ ¼
RB� . Considering the poloidal flow in the unit flux tube, we

find that the poloidal components of flows over the poloidal
magnetic field are the flux functions,

ûa�ðc Þ ¼ uð1Þa � r�

B � r�
; q̂a�ðc Þ ¼ qð1Þa � r�

B � r�
: (7)

From the scalar product of Eq. (4) with r�, we obtain
relations among poloidal, parallel, and diamagnetic flows as

B2ûa�ðc Þ ¼ Buka � BV1a; (8)

B2 2q̂a�ðc Þ
5Pa

¼ B
2qka
5Pa

� BV2a: (9)

Substituting the axisymmetric relation b�rc ¼
Fb� R2Br� into Eq. (6), the first-order flow relation (4) is
transformed into the following form by using Eqs. (8) and (9):

uð1Þa ¼ ûa�ðc ÞBþ BV1a

F
R2r�; (10)

qð1Þa ¼ q̂a�ðc ÞBþ 5Pa

2

BV2a

F
R2r�: (11)

Taking the toroidal (�) component of Eqs. (10) and (11) and
using the flux surface average of Eqs. (8) and (9), we obtain
the following equations for the toroidal flows:

uð1Þa� ¼ B�

hB2i hBukai þ
�
1� B2

�

hB2i
�
BV1a

B�

; (12)

qð1Þa� ¼ B�

hB2i hBqkai þ
5Pa

2

�
1� B2

�

hB2i
�
BV2a

B�

: (13)

Here the second terms on the right-hand side are called the
Pfirsch-Schlüter terms.

2. Friction and viscous forces

The flux surface-averaged parallel viscous forces
hB � r ��ai and hB � r ��ai and the friction forces

hB � Fa1i and hB � Fa2i are related to the first-order flows.
The friction forces are given as follows:

hB �Fa1i
hB �Fa2i

" #
¼mana

�aa

X
b

l̂ab11 �l̂ab12

�l̂ab21 l̂ab22

" # hBukai
2hBqkai
5Pa

2
4

3
5: (14)

Here l̂abij ¼ ð�aa=manaÞlabij is the normalized friction coeffi-

cient. The labij for thermal species and those between the fast-

ion and thermal species are given in the Appendix.
The parallel viscous force is related to the poloidal flow

since viscous force operates when the particle moves poloi-
dally in response to the variation of the toroidal magnetic field,

hB � r ��ai
hB � r ��ai

" #
¼ manahB2i

�aa

�̂a1 �̂a2

�̂a2 �̂a3

" #
ûa�
2q̂a�
5Pa

2
4

3
5:

(15)

Here �̂ai ¼ ð�aa=manaÞ�ai is the normalized viscosity coef-
ficient. While early neoclassical transport theory is based on
the variational method to obtain transport coefficients numeri-
cally (Hinton et al., 1976), a novel method to obtain an
analytical transport coefficient (such as that for the parallel
viscosity) is developed by Tsang et al. (1976) using a model
Coulomb collision operator. The basic idea is to dividevelocity
space into Pfirsh-Schlüter, plateau, banana, and boundary
layers to obtain the transport coefficients so that the transport
coefficients are given by a velocity space integral. Thismethod
was further improved by Hirshman et al. (1977) utilizing an
analytically tractable approximate Coulomb collision opera-
tor, which conserves energy and momentum (Hirshman et al.,
1976). Later Shaing et al. (1996) gave an improved viscosity
coefficient, which is implemented in the NCLASS package
(Houlberg et al., 1997).

Substituting these formulas for the viscosity and friction
coefficients into Eqs. (2) and (3) and using Eqs. (8) and (9) the
following balance equations for the friction and viscous
forces are obtained:

�̂a1 �̂a2

�̂a2 �̂a3

" # hBukbi�BV1a�
B

2qkb
5Pb

�
�BV2a

2
64

3
75

¼ �aa
mana

hBMkai
hBQkai

" #
þX

b

l̂ab11 �l̂ab12

�l̂ab21 l̂ab22

" # hBukbi�
B

2qkb
5Pb

�
2
64

3
75

þea�aa
ma

hBEki
0

" #
: (16)

Here Mka and Qka are the parallel momentum source and

parallel heat source, respectively. If we write Eq. (16) for the
electron, ion, impurity, and fast ion (only momentum balance
is considered for the fast ion since heat flow by the fast ion is
comparatively small), we obtain the following system of
linear equations:

M̂ðUk � V?Þ ¼ L̂Uk þ Êþ Ŝk; (17)

where M̂ is the normalized viscosity matrix, L̂ is the nor-
malized friction matrix, Uk is the parallel flow vector, V? is

the thermodynamic force vector, Ê is the electric field accel-

eration vector, and Ŝk is the parallel source vector.
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The normalized friction and viscosity matrices are given in
the Appendix. Using Eq. (17), we obtain the following ex-
pressions for parallel flow:

hB � uai ¼
X4
b¼1

eb�bbĉab
mb

hB �Ei

þ X7
b¼1

�
�̂abV?b þ �bbĉab

mbnb
Ŝkb

�
; (18)

�̂ ¼ ðM̂� L̂Þ�1M̂; (19)

ĉ ¼ ðM̂� L̂Þ�1: (20)

Equation (18) is important to obtain the generalized Ohm’s
law in the next section and also the relation between poloidal
and toroidal rotations.

Here we explain the physical picture of the parallel viscous
force. Distortion of the velocity distribution function occurs
in collisionless plasma. The origin of this velocity space
anisotropy is explained in the case of the electron in Fig. 11
(Kikuchi et al., 1995b). The magnetic moment � is con-
served in high-temperature plasma when the electron moves
along the magnetic field. So the orbit of the electrons satisfy-
ing Bmax � E=� is trapped in the weak-magnetic-field re-
gime reflected by the magnetic mirror (the trapped-particle
orbit, also called the banana orbit because of its shape). When
density is decreasing toward the outside (dn=dr < 0) con-
sider the velocity distribution function on a magnetic surface.
There are fewer vk > 0 trapped electrons since this trapped

electron comes from radially outside, while there are more
vk < 0 trapped electrons since this trapped electron comes

from radially inside. Meanwhile, the orbit of untrapped elec-
trons stays much closer to the magnetic surface and the
number of electrons for vk > 0 is roughly equal to that for

vk < 0. Then there appears a discontinuity in the trapped-

untrapped boundary of the velocity distribution function.
Small Coulomb collisions smooth this gap and cause the
particle diffusion in the velocity space. This collisional
diffusion in velocity space acts as a viscous force in the
magnetic field direction. In Fig. 11, the electron distribution
function is drifting in the direction of vk < 0, while the ion

velocity distribution function is drifting in the direction of
vk > 0. This change in drift direction can be understood from
the conservation of canonical angular momentum P�a ¼
eZaRA� þmaRva� since the field momentum changes sign

for electrons and ions. This produces a noninductive plasma
current, which is called the bootstrap current.

B. Current drive physics

1. Generalized Ohm’s law

Using Eq. (18), we can calculate the flux surface-averaged
parallel current density as follows:

hB � Ji ¼ X
a

eanahB � uai

¼ hB � JiOh þ hB � Jibs þ hB � Jini; (21)

where ‘‘Oh,’’ ‘‘bs,’’ and ‘‘ni’’ are abbreviations for the Ohmic
current, the bootstrap current, and the noninductive current,
respectively,

hB � JiOh ¼
X4

a;b¼1

naeaeb�bb
mb

ĉabhB �Ei; (22)

hB � Jibs ¼
X4
a¼1

eana
X7
b¼1

�̂abV?b; (23)

hB � Jini ¼
X4
a¼1

X7
b¼1

naea�bb
mbnb

ĉabŜkb: (24)

Equation (21) is called the generalized Ohm’s law. Using
Eq. (12), the local toroidal current density is given by

J� ¼
B�

hB2i hBJki þ
�
1� B2

�

hB2i
�
R
dP

dc
: (25)

Then the flux surface-averaged toroidal current density
J� ð�Þ ¼ hJ�=Ri=h1=Ri is given by

J� ð�Þ ¼ J�Oh þ J�bs þ J�ni þ J�rP; (26)

J�s ¼
hB�=Ri

hB2ih1=Ri hB � Jis ðs ¼ Oh; bs; niÞ; (27)

J�rP ¼ �hB2
�idP=dc

hB2ih1=Ri : (28)

Here we used B2 ¼ B2
� þ B2

�. The new term J�rP comes from

the Pfirsch-Schlüter term [the last term on the right-hand side
of Eq. (25)] and is important for low-aspect-ratio tokamaks
where the poloidal field becomes comparable to the toroidal
field.

FIG. 11. Distortion of velocity distribution function in collision-

less tokamak. From Kikuchi et al., 1995b.
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2. Electrical conductivity

The generalized Ohm’s law (21) includes current induced
by the parallel electric field (22). A theoretical expression for
the electrical conductivity in fully ionized plasma has been
obtained by Spitzer (1962) and is called the ‘‘Spitzer
conductivity.’’ A key observation is the importance of
electron-electron collisions as well as electron-ion collisions,
which almost double the electrical conductivity. In a high-
temperature plasma such as a tokamak, there is an important
modification to the electrical conductivity due to the parallel
viscosity (trapped-particle effect), called neoclassical (NC)
conductivity. From Eq. (22), we obtain the following form of
the electrical conductivity in tokamak geometry:


NC
k ¼ X4

a;b¼1

naeaeb�bb
mb

ðM̂� L̂Þ�1
ab : (29)

Here L̂ represents the collisional friction forces among vari-

ous species, and M̂ represents the effect of trapped particles.
This summation is dominated by the electron term due to the
1=

ffiffiffiffiffiffiffi
mb

p
mass dependence of �bb=mb. If there are no trapped

particles, the viscosity matrix M̂ ¼ 0 and conductivity 
 are
given in this case as follows:



Spitzer
k ¼ � X4

a;b¼1

naeaeb�bb
mb

L̂�1
ab : (30)

Equation (30) corresponds to the Spitzer conductivity. The

electrical conductivity (29) is reduced due to the viscosity M̂,
which becomes significant in the collisionless regime. In
large tokamaks such as JT-60 (Kishimoto et al., 2005),
JET (Keilhacker et al., 2001), and TFTR (Hawryluk et al.,
1998), it is possible to produce collisionless plasma even in
Ohmically heated plasma.

The experimental resistive loop voltage and surface
voltage are consistent with electrical conductivity including
the trapped-particle correction as shown by Kikuchi (1990b)
and Zarnstorff et al. (1990). A typical experimental result
from TFTR is shown in Fig. 12.

Further verification of the electrical conductivity in toka-
maks was obtained at the TFTR (Batha et al., 1997) and at
the JET (Kelliher et al., 2005) showing that the time variation
of the local poloidal field measured by motional Stark effect

(MSE) spectroscopy is better described by a time-dependent
simulation using the neoclassical conductivity as shown in
Fig. 13. The trapped particle does not contribute to the
current. It creates a frictional force because of its velocity
relative to the circulating particles. If the plasma is not
sufficiently collisionless, the difference in loop voltages cal-
culated with the NC and the Spitzer conductivity is small. So
small and medium-sized tokamak experiments are controver-
sial in identifying the viscosity effect (trapped-particle cor-
rection) to the electrical conductivity.

3. Bootstrap current

The bootstrap current was predicted theoretically by
Galeev et al. (1971) and its importance for the steady-state
operation of tokamaks was first noted by Bickerton et al.
(1971). The generalized Ohm’s law in Eq. (21) includes
current driven by the thermodynamic forces V1a and V2a as
hB � Jibs ¼

P
4
a¼1

P
7
b¼1 eana�̂abV?b. Here �̂ab is the matrix

element of �̂ ¼ ðM̂� L̂Þ�1M̂. Substituting expressions for
the thermodynamic forces V1a and V2a into Eq. (23), we
obtain the following form for the bootstrap current:

hB � Jibs ¼ � X4
a¼1

Fne
jZaj

�
La
31

1

na

dPa

dc
þ La

32

dTa

dc

�
; (31)

La
31 ¼

X4
b¼1

jZaj
Za

Zbnb
ne

�̂ab;

La
32 ¼

X3
b¼1

jZaj
Za

Zbnb
ne

�̂a;bþ4:

(32)

Although V1a includes an electrostatic potential term, this
term vanishes for an axisymmetric plasma due to charge
neutrality. Sauter et al. (1999) gave a more accurate fitted
formula for the electrical conductivity and bootstrap current
coefficients using a full Fokker-Planck operator since both
Hirshman et al. (1981) and Shaing et al. (1996) used an
approximate Coulomb collision operator.

The first observation of the bootstrap current was made in a
multipole (Zarnstorff et al., 1984) and subsequently in a
tokamak (Zarnstorff et al., 1988) by driving �1=3 of the
plasma current with the bootstrap current. Later, up to 80% of

FIG. 12. Comparison of experimental and simulated surface

voltages with and without trapped-particle correction. �, �,

and d correspond to different analysis methods and plasma species.

From Zarnstorff et al., 1990.

FIG. 13. Comparison of experimental and simulated local poloidal

fields with and without trapped-particle correction in TFTR. Better

agreement with experiment is obtained using the neoclassical

resistivity. From Batha et al., 1997.
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the plasma current was driven by the bootstrap current at
JT-60 (Kikuchi, 1990b) as shown in Fig. 14. Figure 15 shows
the experimental and numerical bootstrap current fractions as
functions of poloidal beta (Kikuchi et al., 1995b). This shows
that the bootstrap current fraction is proportional to the
poloidal beta, fboot � �p. This result opened good prospects

toward efficient steady-state operation of the tokamak reactor.
In theH mode, a steep pressure gradient is formed near the

plasma edge, called the edge transport barrier (ETB). This
ETB induces an edge bootstrap current if the edge is deeply
collisionless. The excitation of the edge bootstrap current

sensitively affects the time evolution of the parallel electric

field at the ETB, Ek ¼ hB2
�ið@c =@�Þ=F. In the H mode, a

comparison of the measured surface voltage with simulation

results including the bootstrap current was made by the

JET team (1989); and a more detailed comparison of the

time evolution of the edge parallel electric field with

the theoretical prediction was made by Wade et al. (2004)

and was consistent with the existence of the edge bootstrap

current.
A direct comparison of measured and numerical local

bootstrap current densities was made by using the

bootstrap-current-dominated discharges at JT-60U

(Sakamoto et al., 2005) as shown in Fig. 16. The measured

current profile is consistent with the prediction of collisional

transport theory including the edge region (0:8< �=a < 1).
Conventional neoclassical theory predicts zero bootstrap

current density at the plasma center and requires a seed

current to sustain the bootstrap current there (Hirshman

et al., 1981). Shaing et al. (1997) showed that the bootstrap

current can be sustained without the seed current since the so-

called potato particle can drive a viscous force to a passing

particle at the plasma center providing a finite source current

to form a poloidal magnetic field. Actually, a plasma dis-

charge fully driven by the bootstrap current was produced at

JT-60U (Takase et al., 2006) as shown by Fig. 17 and more

recently for a longer time scale of several current diffusion

times at the TCV tokamak (Coda et al., 2008).

FIG. 14. (a) Time evolution of surface voltage, (b) bootstrap

fraction, and (c) internal inductance from measurement and calcu-

lation. High-power NB is injected perpendicularly so that the NB

does not drive significant current. The measured surface loop

voltage is consistent with the 80% bootstrap current fraction.

From Kikuchi et al., 1995b.

FIG. 15. Comparison of experimental and numerical bootstrap

current fractions as a function of poloidal beta. From Kikuchi

et al., 1995b.
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FIG. 16. Comparison of measured and calculated current-profiles

in bootstrap-current-dominated JT-60U discharge. From Sakamoto

et al., 2005.

FIG. 17 (color online). Composition of current profile in full

bootstrap discharge in JT-60U. From Takase et al., 2006.
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4. Neutral beam current drive

Fisch et al. (1987) reviewed early NBCD results of the
DITE tokamak (Clark et al., 1980) [Teð0Þ � 0:6 keV, Eb ¼
24 keV], noting that trapped electrons play a negligible role.
The key parameters of NBCD are the beam energy Eb and the
electron temperature Te. Since then, both the central electron
temperature and the beam energy have been extended to a
reactor-relevant regime, especially at JT-60 [Teð0Þ � 15 keV,
Eb ¼ 350 keV] by use of N-NBI (Oikawa et al., 2000,
2001).

When a fast neutral beam is injected tangentially to the
torus, a circulating fast ion produces a fast-ion current (Jfast)
by multiple circulations around the torus. Collision with bulk
electrons produces a shielding current (Jshield) by the induced
drift in the same direction as the fast ion. This shielding is not
perfect due to the existence of trapped electrons and impuri-
ties. The sum of fast-ion and shielding currents is called a
beam-driven current Jbd ( ¼ Jfast þ Jshield).

The flux surface-averaged fast-ion current hB � Jifast is
obtained from the velocity distribution function of fast ions
f as a solution of the Fokker-Planck equation valid for vTi �
v � vTe (Cordey et al., 1976),

�se
@f

@t
¼ 1

v2

@

@v
½ðv3

c þ v3Þf� þ �v3
c

v3
hv=vki
@

@


�
�
1� 
2




�
vk
v

�
@f

@


�
þ �seSðv; 
Þ; (33)

�se¼
3ð2�Þ2=3�20MfT

2=3
e

e4Z2
fnem

1=2
e ln�

¼ 0:20AfTe½keV�2=3
Z2
fne½1020=m3� ln�ðsÞ; (34)

�¼ Zeff

2Af
�Z
; Zeff ¼

X
j¼i;I

njZ
2
j

ne
; �Z¼ X

j¼i;I

njZ
2
j

neAj

; (35)

vc ¼
�
2Ec

mf

�
1=2

; Ec ¼
�
9�mp

16me

�
1=3

�Z2=3AfTe; (36)

�
v

vk

�
¼ 2

�
K

��

t




�
2
�
;

�
vk
v

�
¼ 2

�
E

��

t




�
2
�
; (37)

where Sðv; 
Þ is the bounce-averaged fast-ion source rate per
unit volume, �se is the electron beam slowing down time, vc

is the critical velocity, Zeff is the effective charge, and K and
E are complete elliptic integrals of the first and second kind,
respectively.

In the framework of the moment equation, we use only the

momentum source term from the fast ion Ŝkf for the neutral

beam current drive. The flux surface-averaged beam-driven
current may be decomposed as (Kikuchi et al., 1995b)

hB � Jibd ¼ hB � Jifast þ hB � Jishield; (38)

hB � Jifast ¼ efnfðM̂� L̂Þ�1
ff Skf; (39)

hB � Jishield ¼
X

a¼e;i;I

eanaðM̂� L̂Þ�1
af Skf: (40)

Here Skf ¼ �eeŜkf=mene. While the expression for the fast-

ion current (39) is not accurate enough, the ratio of the beam-
driven current Jbd to the fast-ion current Jfast, the shielding
factor F ¼ Jbd=Jfast, can be calculated as follows:

F ¼ hB � Jibd
hB � Jifast ¼ 1þ X

a¼e;i;I

Zana
Zfnf

ðM̂� L̂Þ�1
af

ðM̂� L̂Þ�1
ff

: (41)

Equation (41) is valid for all aspect ratios, multiple species,
and all collisionalities. Start et al. (1980) calculated this
shielding factor F assuming zero collisionalities to find the
parametric dependences on Zeff and � at arbitrary aspect ratio
(0 	 � 	 1). Lin-Liu et al. (1997) found that this shielding
factor is related to the bootstrap coefficient Le

31 and gave an

analytic expression in the collisionless limit. Results of a
calculation by Eq. (41) with �


a ¼ 0 agree well with the results
of the Start et al. (1980) calculation [see Fig. 18(a)]. Honda
et al. (2012) showed recently that finite collisionality has an
important effect on the shielding factor by use of Eq. (41) as
well as Sauter’sLe

31 formula, valid for all collisionality regimes

[see Fig. 18(b)]. Deviation from the collisionless limit starts at
�
e � 10�2 depending on the model, indicating the need for
reassessment of some comparisons between measured and
calculated NBCD efficiencies (Suzuki et al., 2011).

Beam ionization by various atomic processes is one im-
portant factor in determining the neutral-beam-driven current
profile. Since the historical review of atomic data by Riviere
et al. (1971), significant effort has been put forth to compile
ionization cross section and rate coefficients especially under
the auspices of the International Atomic Energy Agency
(IAEA) (Janev et al., 1993). Those from the ground state
are refined for charge exchange with a bulk ion (Janev et al.,
1993, p. 78), ionization by ion impact (Janev et al., 1993,

FIG. 18. (a) Comparison of shielding factors between the Start-

Cordey theory and magnetic island (MI) methods with �

a ¼ 0.

From Kikuchi et al., 1995b. (b) Collisionality dependence of the

shielding factor from Eq. (41) and Sauter’s L31 compared with the

Lin-Liu model. From Honda et al., 2012.
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p. 68), ionization by impurity [Janev et al., 1989, Eq. (15)],
and ionization by electron impact (Janev, 1987, reaction 2.1.5
of p. 258). But there are a number of processes from excited
states. Thus the process has multiple steps including ioniza-
tion from excited states, and is called multistep ionization
(MSI) as noted by Janev et al. (1989). Details of the MSI
processes were refined by Suzuki et al. (1998); enhancement
of the stopping cross section due to MSI was found to be as
much as 20%–40% for the beam energy Eb ¼ 0:1–1 MeV
and a good agreement between experiments and calculation
was obtained for the shine-through rate at JT-60. This MSI
process is important for the evaluation of local driven current
density since the deposition profile of fast ions is changed
significantly. Various numerical codes such as ACCOME (Tani
et al., 1992), ASTRA (Pereverzev et al., 1991), NFREYA

(Fowler, 1979), and NUBEAM (Pankin et al., 2004) have
been developed to calculate the beam-driven current.

For a quantitative comparison of driven current density
with calculations, an important improvement in ‘‘measuring’’
noninductive local current density was developed by Forest
et al. (1994). From the generalized Ohm’s law (21), the
inductive electric field is given by

hE � Bi ¼ hB2
� i
F

@c

@t

���������
: (42)

Here a partial time derivative is taken with fixed toroidal
flux�. The time evolution of the poloidal flux c ð�; tÞ and the
total local current density hB � Ji can be measured by the
MSE diagnostics. With a profile measurement of density,
temperature, and effective charge, we can calculate the
electrical conductivity 
NC

k and the noninductive current

profile hB � Jini can be measured from hB � Jini ¼ hB � Ji �

NC

k hE � Bi.
Figure 19 shows an experimentally measured NBCD

current profile compared to calculations with and without
the MSI process (Gormezano et al., 2007). It shows that
the calculation with MSI agrees with the measurement. In
addition to such local measurements, a systematic compari-
son between theory and experiments was carried out in
JT-60 (see Fig. 20) and shows good agreement if there

are no significant MHD activities. The dependence of the

neutral beam current drive efficiency 
CD ¼ �neRI
CD
p =PCD

on the central electron temperature Teð0Þ is also verified,

showing that efficiency increases with Teð0Þ as shown in

Fig. 20 (Oikawa et al., 2001). These results, with their

excellent predictability, are quite encouraging for future

application . An efficient current drive via NBCD needs

operation at high electron temperature, leading to a long

slowing down time and accumulation of fast ion and �
pressures. This leads to possible excitation of Alfvén eigen-

modes (AEs), which will be discussed later.

5. Electron cyclotron current drive

After the comprehensive review by Fisch et al. (1987),

significant progress was made in various rf fields. In this

review, recent progress in ECCD is described due to its better

accessibility to reactor plasma and its importance in stabili-

zation of neoclassical TMs. A review by Prater et al. (2004)

provides a good summary of recent progress.
There are some advantages of the electron cyclotron range

of frequency (ECRF) application in the reactor environment.

First is the absence of the accessibility problem and robust

coupling irrespective of plasma conditions. Second is the high

power density, enabling a smaller port penetration with low

neutron backstreaming and tritium. Third is good controll-

ability of local power deposition and parallel n index with a

steerable launcher. Fourth is the recent availability of an

efficient high-power gyrotron (Sakamoto et al., 2007).
There are two mechanisms responsible for EC current

drive. One is the Fisch-Boozer mechanism (Fisch et al.,

1980) creating asymmetry in parallel resistivity via wave-

induced velocity space diffusion. The other is the Ohkawa

mechanism (Ohkawa, 1976) creating an untrapped-trapped

transition since the trapped electron cannot contribute to the

toroidal current (see Fig. 21).
Momentum input to the electron is primarily perpendicular

to the magnetic field because of electron cyclotron damping

[a resonance condition given by ð!� l�eÞ=kk ¼ vk of the

first- or second-order harmonic electron cyclotron waves (l ¼
1; 2)]. There are two types of ECRF waves for CD, O modes

and X modes, where ~E is parallel and perpendicular to the

FIG. 19 (color online). Comparison of experimentally measured

NBCD current profile with calculations with and without MSI. From

Gormezano et al., 2007.

FIG. 20. Neutral-beam-current drive efficiency
CD¼ �neRI
CD
p =PCD

at central electron temperature Teð0Þ. From Oikawa et al., 2001.
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magnetic field B, respectively (Stix, 1962). The wave propa-
gation is governed by the Hamilton (or ray-tracing) equation

dx

dt
¼ @�

@k

��������x
;

dk

dt
¼ � @�

@x

��������k
: (43)

Here ! ¼ �ðk; x; tÞ is the local dispersion relation. We
expand the electron velocity distribution function as fe ¼
feM þ fe1 (feM is Maxwellian) and its drift kinetic equation
in the toroidal geometry for a given wave amplitude is
given by

uk
	
b � @fe1

@x
� Cðfe1Þ ¼ � @

@u
� Sw: (44)

Here b is the unit vector along the magnetic field,
u ¼ p=me ¼ 	v is momentum per unit mass, 	 ¼
ð1þ u2=c2Þ1=2, Cðfe1Þ is the linearized electron collision
term, and Sw ¼ DQL � @fe1=@u is the wave-induced flux in

velocity space due to quasilinear diffusion via wave-particle
interaction. The wave-induced flux (Sw) is given by Kennel
et al. (1966) for Landau damping (l ¼ 0) and electron cyclo-
tron damping (l � 0) as follows:

DQL ¼ X1
n¼�1

�

2

�
e

me

�
2
�ð	!� kkvk � l�eÞa


nan; (45)

an ¼ �n

��
1� kkuk

	!

�
û? þ kku?

	!
ûk
�
; (46)

�n ¼ EwþJn�1 þ Ew�Jnþ1ffiffiffi
2

p þ uk
u?

JnEwk: (47)

Here�e ¼ �eB=me, 
means complex conjugate, ûk and û?
are unit vectors in perpendicular and parallel directions, and
Jn is the nth-order Bessel function with its argument
k?v?=�e. Ewþ and Ew� are the left- and right-handed
components of Ew. Instead of solving Eq. (44), Antonsen
et al. (1982) and Taguchi (1983) realized that the rf-induced
current can be obtained by using a solution of the following
adjoint equation originally used by Spitzer-Härm to obtain
electrical conductivity:

uk
	
b � @�

@x
þ 1

feM
Cð�feMÞ ¼ � eukB

	hB2i : (48)

It is easy to prove the following formulas for the generated
current and the dissipated power by using Eqs. (44) and (48),
and partial integration:

hJ �Bi ¼ hB2i
�Z

d3uSw � @�
@u

�
; (49)

Pd ¼
�Z

d3uSw � @�
@u

�
: (50)

Here � ¼ 	mec
2 is the electron energy, and @�=@u ¼

meu=	. The solution of the adjoint equation (48) is � ¼ 0
for � > �c and that for � < �c is given by Taguchi et al.
(1989) as

�ðu; �Þ ¼ hB2i
2fc


KðuÞ
Z �c

�

d�

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �Bip : (51)

Here � ¼ ðu?=ukÞ2=B, �c ¼ 1=Bmax, 
 ¼ uk=jukj, and K is

a solution of the one-dimensional integro-differential equa-
tion, which can be obtained using the Sonine expansion
(Taguchi et al., 1989) or numerically using an exact relativ-
istic collision term (Hamamatsu et al., 2001).

A comparison of experimental and theoretical expectations
of the ECCD was done at DIII-D (Petty et al., 2002) (see
Fig. 22) and also at JT-60U (Suzuki et al., 2004a). An ECCD
of 0.74 MA is demonstrated in high-electron-temperature
[Teð0Þ ¼ 23 keV] plasma at JT-60U by taking the Ek effect

(Dnestrovski et al., 1988) into account (Suzuki et al.,
2004b). The existence of a trapped electron reduces the net
driven current and its effect is more significant for outboard
EC injection (Cohen et al., 1987) as confirmed experimen-
tally at DIII-D by Petty et al. (2003) and at JT-60U by Suzuki
et al. (2004a). Figure 23 shows the calculated and experi-
mental results. Here � ¼ e3
CD=�

2
0kTe is the normalized EC

current drive efficiency (Lin-Liu et al., 2003). A transformer
recharging by ECCD was also demonstrated at TCV by
Sauter et al. (2000).

FIG. 21 (color online). Schematic explanation of Fisch-Boozer

and Ohkawa mechanisms. From Prater et al., 2004.
FIG. 22. Comparison of measured and calculated EC-driven cur-

rent. From Petty et al., 2002.
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C. Rotation physics

Toroidal rotation physics is now important in the effect of
rotation shear on confinement improvement, rotational stabi-
lization of MHD modes, and also observation of intrinsic
toroidal rotation. All these elements are important and some-
times essential to realize the steady-state tokamak reactor.

1. Neoclassical rotations

Equation (18) governs the parallel flows in the tokamak.
Kim et al. (1991) derived an analytic expression for the
poloidal and toroidal rotations assuming that the impurity is
in the Pfirsh-Schlüter regime and has large mass ratio
(mi=mI � 1), while Kikuchi (1991) solved the moment
equation numerically to analyze toroidal and poloidal rota-
tions at JT-60U. The general flow balance equation (16)
allows us to derive an expression for the toroidal flows of
electrons, ions, and impurities. Here we concentrate on the
effect of the thermodynamic force on toroidal rotation,

assuming Ek ¼ Ŝk ¼ 0, and neglect the fast-ion component,

for simplicity. From Eq. (12), the local toroidal flow for
species a is the summation of the flux surface-averaged
parallel flow and the Pfirsch-Schlüter flow as follows:

uð1Þa� ¼ B� hBukai
hB2i �

�
1� B2

�

hB2i
�
R

�
�0 þ P0

a

eana

�
: (52)

Here the prime denotes the derivative with respect to c . From
Eq. (16), we obtain the following expression for the flux
surface-averaged parallel flows:

hBukai¼�F
X3
b¼1

�
�ab

�
�0 þ P0

b

ebnb

�
þ�a;bþ3

eb
T0
b

�
: (53)

The impurity (e.g., carbon) toroidal rotation can be measured
by charge-exchange recombination spectroscopy, which can
be used to determine the radial electric field using Eq. (52), if
density and temperature profiles are known, as follows:

d�

dc
¼�hB2iu�I=RB2

�þ
P3

b¼1ð�

IbP

0
b=ebnbþ�I;bþ3T

0
b=ebÞP

b�


Ib

:

(54)

Here �

Ib¼�IbþðhB2i=B2

� �1Þ�ab. This radial electric field

profile can be used to discuss the effect of radial electric field
shear on transport reduction as in Sec. VI. Once the radial
electric field is known, we can calculate parallel flows of
electron, ion, and impurity from Eq. (52). If we calculate

these flows for a typical high-temperature plasma, we find
significant differences between ion and impurity toroidal
rotations of several 10 km=s in high-�p plasma (Kikuchi,

1991).
According to Kim et al. (1991), the electron contribution

to the momentum balance can be neglected since electron
inertia is small, and the flow relations of ions and impurities
are given as follows:

�̂I � uI� ¼ L̂II � uIk þ L̂Ii � uik; (55)

�̂i � ui� ¼ L̂iI � uIk þ L̂ii � uik; (56)

ûa� ¼ uak � Va; (57)

where the last equation for ûa� is obtained from Eq. (8) and ûa�,

uak , V
a, �̂a, and L̂ab are defined as

ûa�¼
hB2iûa�
2hB2iq̂a�

5Pa

2
4

3
5; uak ¼

hBukai
2hBqkai
5Pa

2
4

3
5; Va¼ BV1a

BV2a

" #
;

(58)

�̂a¼ �̂a1 �̂a2

�̂a2 �̂a3

" #
; L̂ab¼

l̂ab11 �l̂ab12

�l̂ab21 l̂ab22

" #
: (59)

Since the impurity collisionality is given by �

I ¼

ðnIZ4
I =niZ

4
i Þ�


i considering fast equipartition between ion

and impurity (Ti � TI), the impurity may be in the
Pfirsh-Schlüter regime (negligible impurity viscous force
�̂I � uI� � 0) while the bulk ion is in a deeply collisionless

regime �

I � �


i . Therefore, the impurity parallel flow can be

given as uIk ¼ �L̂�1
II L̂Ii � uik. Using the large-impurity-mass

approximation mI � mi, substitution into Eq. (56) gives the
following ion momentum balance equation:

�̂i � ûi� ¼ � 0 0
0 	

� �
� uik: (60)

Here 	 ¼ ffiffiffi
2

p þ �, and � ¼ nIZ
2
I =niZ

2
i . [The � ¼

Oððmi=mIÞ2Þ term of Kim et al. (1991) is neglected.]
Using uik ¼ ûi� þ Vi, we obtain the following expression:

�̂i1 �̂i2

�̂i2 �̂i3 þ 	

� �
ûi� ¼ � 0 0

0 	

� �
Vi: (61)

This equation indicates that the û�-driven ion viscous force is
balanced against the q̂�-driven ion viscous force so that the
total parallel ion viscous force becomes zero. Equation (61)
leads to the following analytic expressions for ûi�, u

i
k, u

I
k,

and ûI�:

ûi� ¼
0 K1

0 � �̂i1

�̂i2
K1

2
4

3
5Vi; uik ¼

1 K1

0 K2

" #
Vi; (62)

uIk ¼
1 K1 þ 1:5K2

0 0

" #
Vi; ûI� ¼ uIk � VI; (63)

K1 ¼ 	�̂i2

D
; K2 ¼ �̂i1�̂i3 � �̂2

i2

D
; (64)

FIG. 23. (a) Effect of inboard and outboard injection on ECCD

efficiency. From Cohen et al., 1987. (b) Experimental result.

From Suzuki et al., 2004a.
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D ¼ �̂i1ð�̂i3 þ 	Þ � �̂2
i2: (65)

If we use tokamak ordering B � B� and ûa� � u�=B� by

neglecting poloidal variation, we obtain the following form of
uki, ukI, u�i, and u�I:

uki � �1

B�

�
d�

dr
þ 1

eZini

dPi

dr
þ K1

eZi

dTi

dr

�
; (66)

ukI � �1

B�

�
d�

dr
þ 1

eZini

dPi

dr
þ K1 þ 1:5K2

eZi

dTi

dr

�
; (67)

u�i � � K1

eZiB�

dTi

dr
; (68)

u�I � �K1 þ 1:5K2

eZiB�

dTi

dr
� 1

eZInIB�

dPI

dr

þ 1

eZiniB�

dPi

dr
: (69)

All terms proportional to dTi=dr in the above four equations
originate from the heat-flow balance equation.

If we neglect these terms, we see that u�i � 0 due to strong
viscous damping of poloidal rotation. The term uki is deter-
mined to satisfy u�i � 0 (the poloidal component of parallel
flow must compensate the poloidal component of Er � B and
ion diamagnetic flows). Also uki � ukI because there is negli-
gible impurity parallel viscous force. Then the impurity parallel
flow cancels the poloidal component of Er � B and ion (not
impurity) diamagnetic flows. Therefore, the impurity poloidal
flow becomes the difference between impurity and ion diamag-
netic flows [u�I � ½ðdPi=drÞ=Zini � ðdPI=drÞ=ZInI�=eB� ].

Retaining the dTi=dr terms, we see ion and impurity
toroidal rotation proportional to dTi=dr and 1=B� (large at
high �p),

�uk ¼ ukI � uki ¼ � 1:5K2

eZiB�

dTi

dr
: (70)

If the total toroidal momentum is zero (nimiukiþnImIukI¼
0), this equation together with Eq. (70) implies positive
toroidal rotation for ions and negative toroidal rotation for
impurities as follows:

ukI ¼ � nimi

nImI

uki ¼ �nimi

nimi þ nImI

1:5K2

eZiB�

dTi

dr
: (71)

Since nimi=nImI � 1 holds in most cases, the impurity
rotates strongly in the counter direction and the bulk ion
rotates weakly in the cocurrent direction (jukIj � jukij) if

the total toroidal momentum is zero. Since there is expected
to be very little momentum, an Ohmically heated plasma is
ideal to test strong counter impurity rotation. At the
Sherwood conference, Kim (1991) discussed the impurity
toroidal rotation (nearly parallel flow) in Ohmically heated
plasma at JFT-2M, implying that its value of �12:5 km=s is
consistent with this temperature gradient-driven counter im-
purity toroidal rotation from Eq. (71). This suggests that there
is no significant hidden torque drive in Ohmically heated
plasma. But later many experiments showed strong intrinsic
rotation driven by hidden torque.

2. Neoclassical toroidal viscosity

One important property of the axisymmetric system is the
conservation of total toroidal momentum. The total toroidal
angular momentum balance equation is as follows:

X
a

ma

�
naR

dua�
dt

�
¼ X

a

hR2r� � ðr ��a þMaÞi: (72)

Noting that the viscosity tensor �a is symmetric for
axisymmetric plasma and rðR2r�Þ is an antisymmetric ten-
sor (Hirshman, 1978), the flux surface average of the toroidal
viscous force can be shown to be zero, hR2r� � r ��ai ¼ 0.
This means that the toroidal drag force caused by magnetic
field variation is zero for the axisymmetric system. When
symmetry is broken by the application of a nonaxisymmetric
field, hR2r� � r ��ai � 0. This drag is called the neoclas-
sical toroidal viscosity (NTV) and has been observed at
NSTX (Zhu et al., 2006); see Fig. 24.

The zeroth-order ion force balance is given by

0 ¼ eZiniðEþ ui � BÞ � rPi: (73)

In the flux coordinates ðc ; �; �Þ, the magnetic field is ex-
pressed as B ¼ rc �rðq�� �Þ. The radial component of
the above equation can be obtained by taking the inner
product with the tangent vector @x=@c and using the identity
@x=@c � rc ¼ 1, where x is the position vector,

ui � r� ¼ �
�
d�

dc
þ 1

eZini

dPi

dc

�
þ qui � r�: (74)

In a tokamak plasma with symmetry breaking, the electro-
static potential � is determined so that nonambipolar flux
h�na � rVi becomes zero. In Hamada coordinates, the non-
ambipolar flux h�na � rVi is related to the toroidal viscous
force as h�na � rVi ¼ ½V 0ðc Þ2=eaq�hBt � r ��ai (Shaing
et al., 1983). In the collisionless regime, the ion viscous force
is larger than that for the electron by a factor of ðmi=meÞ1=2.
The zero-nonambipolar-flux condition is then given by
hBt � r ��ii ¼ 0 for electron-ion plasma, from which
Shaing et al. (2003) derived the following relation for the
ion in the collisionless regime:

d�

dc
þ 1

eZini

dPi

dc
¼ � �2

eZi�1

dTi

dc
: (75)

FIG. 24 (color online). Observation of neoclassical toroidal

viscosity (NTV) at NSTX. From Zhu et al., 2006.
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Here �1 and �2 are numerical constants given by Shaing
et al. (2003). Even if we include an impurity, we may be
able to assume the impurity is in the Pfirsh-Schlüter regime
(namely, the impurity toroidal viscosity is small) while the
ion is deeply in the collisionless regime as in Sec. IV.C.1.
Then Eq. (75) is still a zero-nonambipolar-flux condition.
Substituting Eq. (75) into Eq. (74), we obtain the following
expressions for offset rotations (Kikuchi, 2011a):

ui0 � r� ¼ �2

eZi�1

dTi

dc
þ qui0 � r�; (76)

ui0 � r� ¼ �K1FðB � r�Þ
eZihB2i

dTi

dc
: (77)

Since measurement of the toroidal rotation is made using
the impurity toroidal rotation, the offset toroidal rotation of
the impurity has to be obtained. In cylindrical coordinates, the
offset toroidal rotations of ion and impurity are given as
follows:

ui�0 ¼ 3:54� K1

eZiB�

dTi

dr
; (78)

uI�0 ¼ 3:54� 1:5K2 � K1

eZiB�

dTi

dr
: (79)

The offset rotation has been confirmed experimentally at
DIII-D (Garofalo et al., 2008); see Fig. 25. Since K1 and
K2 are of the order of 0.3–1.2 in the collisionless tokamak
plasma as given by Kim et al. (1991), agreement with the
collisionless ion (1=�) regime becomes better when we in-
clude finite poloidal flow correction and the impurity effect.
Physically,the NTV is caused by a nonambipolar particle flux.
Evans et al. (2008) indicated that application of a resonant
magnetic perturbation (RMP) induces cotoroidal rotation,
which implies selective electron loss.

3. Intrinsic rotation

Momentum transport has long been a subject of interest.
The existence of a nondiffusive toroidal momentum flux was
observed for the first time by Nagashima et al. (1994) at JT-
60U using the modulation technique. The off-diagonal con-
tribution to the momentum flux was clarified at JFT-2M as
shown in Fig. 26 (Ida et al., 1995).

The observation of intrinsic rotation by Rice et al. (1997) at
Alcator C-Mod, and intermachine comparison by Rice et al.
(2007), clarified the parametric dependence of intrinsic rota-
tion �v� � �W=Ip and had a significant impact on the

momentum transport studies searching for hidden torque in-
put. Scarabosio et al. (2006) found slightly different scaling
�v� � Ti=Ip. The existence of intrinsic torque has been

shown at DIII-D (Solomon et al., 2007). The parametric
dependence of intrinsic rotation was investigated by Yoshida
et al. (2008) (v� / dP=dr), Rice et al. (2011) (v� / dT=dr),

and Angioni et al. (2011) (dv�=dr / dn=dr).

On the theoretical front, Dominguez et al. (1993) first
calculated the residual stress for intrinsic rotation. Garbet
et al. (2001) gave the first numerical gyrofluid ion tempera-
ture gradient (ITG) simulation to show toroidal flow genera-
tion by the Reynolds stress �rk ¼ hvErvEki (see Fig. 27). A

gyrokinetic full-f Vlasov simulation of toroidal ITG turbu-
lent momentum transport with consistent momentum conser-
vation properties [see Scott et al. (2010)] by Idomura et al.
(2009) showed the buildup of intrinsic co- and counterrota-
tions on a time scale of �ii.

Wang et al. (2010) studied the parametric dependence of
intrinsic rotation by a gyrokinetic simulation of ITG and

FIG. 25. Observation of offset toroidal rotation due to NTV at

DIII-D. From Garofalo et al., 2008.

FIG. 26 (color online). Gradient-flux relation in toroidal momen-

tum showing a clear offset in flux as evidence of nondiffusive (off-

diagonal) transport of toroidal momentum. From Ida et al., 1995.

FIG. 27. Intrinsic rotation by Reynolds stress in ITG turbulence.

From Garbet et al., 2001.
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trapped electron mode (TEM) turbulences and reported that
intrinsic rotation by ITG is proportional to dTi=dr, while
intrinsic rotation by a collisionless TEM increases with both
dTe=dr and dne=dr (Wang et al., 2011). Angioni et al.
(2011) reported that the reversal of intrinsic rotation from
corotation to counterrotation correlates with the large density
gradient in the TEM-dominant regime or at the ITG-TEM
transition. Wang et al. also reported that enhanced kk sym-

metry breaking due to larger q variation at a lower plasma
current is consistent with the Ip part of the Rice scaling,

�v� � 1=Ip.

The boundary condition at the separatrix is important since
the so-called no-slip condition is usually used for turbulent
simulation studies. Concerning these topics, La Bombard
et al. (2004) showed at C-Mod that the strong ballooning
character of transport leads to a net scrape-off layer (SOL)
toroidal momentum whose sign is dependent on the X-point
location. When B�rB is toward (away from) the X point, a
positive (negative) increment in cocurrent rotation is ob-
served (see Fig. 28). Bortolon et al. (2006) showed that the
direction of the intrinsic toroidal rotation can be reversed at a
critical density.

Diamond et al. (2009) clarified the basic mechanism of
turbulent momentum transport. The mean-field momentum
flux driven by electrostatic turbulence �r;� is given by the

Reynolds stress h~vr~v�i as �r;� ¼ hnih~vr~v�i by neglecting

convective flux h~vr~nihv�i and third-order flux h~n~vr~v�i, and
h~vr~v�i can be further decomposed as follows:

h~vr~v�i ¼ ���

@hv�i
@r

þ Vhv�i þ�R
r;�: (80)

Here �� is the turbulent viscosity, V is the convective veloc-

ity, and �R
r;� is called the residual stress. The turbulent

viscosity is closely related to the turbulent ion thermal diffu-
sivity and the ratio is called the Prandtl number (Pr ¼
��=�i). The residual stress �

R
r;� is defined as all momentum

flux other than diffusive and convective fluxes (Gurcan et al.,
2008) and is proportional to @hni=@r and/or @hTi=@r.
Residual stress originating from resonant and nonresonant
wave-particle interaction is given by �wave

r;� ¼ R
dkvgrkk�N.

Using the solution of the wave kinetic equation, the quasi-
particle density is given by �N ¼ �c½k�V 0

E@hNi=@kr �
vgr@hNi=@r�. Here V 0

E and �c are the electric field shear

and the correlation time of the �N response, respectively.
The first and second terms of �N are related to kk symmetry

breaking and radial inhomogeneity of the turbulent ampli-

tude, respectively (Gurcan et al., 2007). Peeters et al. (2007)

showed that Coriolis drift can drive a momentum pinch for

long-wavelength ITG (k?�i � 1) and Hahm et al. (2007)

gave a more general theory of the momentum pinch due to

symmetry breaking caused by magnetic curvature. Camenen

et al. (2009) showed the existence of momentum pinch due to

up-down asymmetry theoretically and Camenen et al. (2010)

also confirmed it experimentally. Important questions con-

cern the effect of the intrinsic torque on the generalized

Ohm’s law as well as its relation to experimental

observations.

V. MAGNETOHYDRODYNAMICS IN THE ADVANCED

TOKAMAK REGIME

Magnetohydrodynamics has played an important role in

magnetic confinement fusion research since its beginning.

Many efforts have been made to overcome MHD instabilities.

MHD instabilities are categorized into ideal MHD, neglecting

resistive dissipation and wave-particle interaction, resistive

MHD, with resistive dissipation, and kinetic MHD, with

wave-particle interaction. MHD instabilities in tokamaks

are also characterized by global MHD with lower toroidal

mode number n and localized MHD with higher n.
Since the beginning of steady-state tokamak research in

1990, important progress in understanding MHD modes re-

lated to steady-state tokamaks has been made. In Sec. V.A, we

introduce the progress made in ideal MHD stability theory:

Spectral properties in Sec. V.A.1, the 1D and 2D Newcomb

equations in Sec. V.A.2. In Sec. V.B, we introduce the

progress in resistive MHD such as the classical TM in

Sec. V.B.1, the neoclassical tearing mode (NTM) in

Sec. V.B.2, the double tearing mode (DTM) in Sec. V.B.3,

and the resistive wall mode (RWM) in Sec. V.B.4. In Sec. V.C,

we describe the progress in the understanding of localized

modes such as the infernal mode in Sec. V.C.1, the peeling-

ballooning modes in Sec. V.C.2, and the barrier localized

mode (BLM) in Sec. V.C.3. In Sec. V.D, we introduce

the advances in understanding kinetic MHD focused on the

so-called AE to explain the shear Alfvén gap in Sec. V.D.1,

various types of AEs in Sec. V.D.2, and nonlinear AE

characteristics in Sec. V.D.3. In Sec. V.E, we introduce

the stability of CH by showing equilibrium bifurcation

in Sec. V.E.1 and resistive stability and the � limit in

Sec. V.E.2.
Global ideal MHD modes have a large growth time pro-

portional to the poloidal Alfvén transit time, while resistive

MHD modes have a growth time proportional to the resistive

diffusion time. Kinetic MHD modes such as AEs may cause

selective loss of fast ions such as � particles in the fusion

reactor.

A. Progress in linear ideal magnetohydrodynamics

Ideal MHD stability theory has progressed since the estab-

lishment of the energy principle by Bernstein et al. (1958).

An important breakthrough was the ballooning mode theory

by Connor et al. (1978) which satisfies the double periodic

boundary condition using quasimode expansion. Here we

FIG. 28 (color online). Excitation of toroidal flow by different

divertor geometries. From La Bombard et al., 2004.
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focus on the progress in the spectral properties of MHD, the
2D Newcomb equation, and the flow effect on MHD.

1. Spectral properties in magnetohydrodynamics

The continuous spectrum of ideal MHD has significant
importance not only in ideal MHD stability but also in
stabilizing the RWM and as a damping mechanism of the
AEs. The linearized ideal MHD equation is given by

½��!2 � F�� ¼ 0; (81)

where F is the self-adjoint linear force operator given by
Bernstein et al. (1958), and �, !, and � are the mass density,
eigenfrequency, and plasma displacement vector, respec-
tively. Because of this self-adjointness, the spectrum of F is
either a point or a continuous spectrum and there is no
resolvent spectrum in the linear MHD equation (81)
(Kikuchi, 2011b). If some !2 gives nontrivial � to satisfy
Eq. (81), the spectrum is called a point spectrum (in this case,
½��!2 � F��1 does not exist). The continuous spectrum is
characterized by the existence of the inverse operator
½��!2 � F��1 and an unbounded nonsquare integrable
eigenfunction.

A well-known linear operator having a continuous spec-
trum is ðx� �Þf ¼ 0, whose unbounded (nonsquare inte-
grable) eigenfunction is the delta function f ¼ c�ðx� �Þ,
which appears in the linearized Vlasov equation and produces
Landau damping. In the linear ideal MHD equation, the linear
force operator has a logarithmic singular local eigenfunction
u ¼ lnðr� rsÞ [ ¼

R
dr=ðr� rsÞ], which is also nonsquare

integrable. This type of eigenfunction to produce a continu-
ous spectrum was found for the first time in the electrostatic
wave in a nonuniform plasma by Barston et al. (1964),
analyzed by Sedlacek (1971), and applied to MHD modes
by Uberoi et al. (1972).

The eigenmode equation in a cylindrical plasma is reduced
to first-order ordinary differential equations for the radial
displacement u ¼ r�r and the perturbed total pressure
P1 ¼ p1 þ B1 � B=�0 as Ddu=dr ¼ C1u� rC2P1 and
DdP1=dr ¼ C3u=r� C1P1 (Appert et al., 1974). Here

D ¼
�
�!2 � F2

�0

��
�!2

�
	pþ B2

�0

�
� 	pF2

�0

�
; (82)

and F ¼ ðm� nqÞB�=r, while other quantities are defined
by Appert et al. (1974). Radial positions satisfying D ¼ 0
are called singular points. Because of this singularity, the
solution of uðrÞ includes the nonsquare integrable solution
[u� lnðr� rsÞ] divergent at this singular point. The zeros of
the first and second brackets of D are called the shear Alfvén
continuum and the sound wave continuum, respectively.

Cheng et al. (1986) derived corresponding first-order
differential equations in axisymmetric toroidal geometry as
follows:

rc � r P1

�c

" #
¼ C

P1

�c

" #
þD

�s

r � �
� �

; (83)

E
�s

r � �
� �

¼ F
P1

�c

" #
; (84)

where

E11 ¼ !2�jrc j2
B2

þ B � r
�jrc j2B � r

B2

�
; (85)

E12 ¼ 2	p�s; E21 ¼ 2�s; (86)

E22 ¼ 	pþ B2

B2
þ 	p

!2�
B � r

�
B � r
B2

�
; (87)

where �c ¼ � � rc , P1 ¼ p1 þ B1 �B=�0, �s ¼
� � B�rc =jrc j2, and other quantities are defined by
Cheng et al. (1986).

We can solve �s and r � � in terms of P1 and �c from

Eq. (84). If the inverse operator E�1 does not exist, only a
nonsquare integrable solution is possible as an eigenfunction
of Eq. (83). Such a situation can be found from

E
�s

r � �

" #
¼ 0: (88)

Then the corresponding set of eigenvalues !2 forms a
continuous spectrum, which is the toroidal generalization of
D ¼ 0 in Eq. (82). The typical solution of Eq. (88) will be
shown in Sec. V.D.1.

2. Two-dimensional Newcomb equation

It is important to identify the stability boundary (or mar-
ginal stability point) of the tokamak operation. The marginal
stability is described by the Newcomb equation which mini-
mizes Bernstein’s energy integral. It is called the 1D
Newcomb equation in cylindrical plasma (Newcomb et al.,
1960) and the 2D Newcomb equation for axisymmetric
plasma (Tokuda et al., 1999). In the Newcomb equation, a
singular surface is always a rational surface for the concerned
mode, while the singular surface changes with ! in the linear
MHD equation and is different from the rational surface, in
general.

The existence of a continuous spectrum makes it difficult
to accurately calculate !2 from the linear MHD equation in
1D or 2D [see Eqs. (83) and (84)] near the marginal stability.
The marginal stability calculation is improved in the PEST-2

code (Grimm et al., 1983), and similarly in the KINX code
(Degtyarev et al., 1997) but is limited to the positive Mercier
index case. So it is essential to separate out the nonsquare
integrable eigenfunction from the eigenmode equation
to evaluate the point spectrum. Pletzer et al. (1991) intro-
duced the bell-shaped localization function HðrÞ (H ¼ 1 for
jr� r0j< � and H ¼ 0 for jr� r0j> �) to eliminate the big
solution part of the eigenfunction. For marginal stability, the
1D Newcomb equation with a single regular singular point in
r 2 ½0; a� is given by (Newcomb et al., 1960)

Lð�Þ ¼ d

dr

�
fðrÞ d�

dr

�
� gðrÞ� ¼ 0; (89)

where fðrÞ ¼ f0ðr� r0Þ2 þ � � � , f0 > 0, gðrÞ ¼ g0 þ � � � ,
and g0 � 0. r ¼ r0 is a regular singular point. The solution
comprises ‘‘small’’ (square integrable with power of r�0:5þ�)
and ‘‘big’’ (nonsquare integrable with power of r�0:5��)

solutions, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ g0=f0

p
and 1=4þ g0=f0 > 0

is the Suydam stability criterion. Tokuda et al. (1997)
converted this marginal stability problem to the eigenvalue
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problem by keeping the behavior of the eigenfunction near
the regular singular point as follows:

Lð�Þ ¼ ����; � ¼ �0ðr� r0Þ2: (90)

This equation is similar to the Sturm-Liouville equation for
string vibration [fð�elastic modulusÞ> 0] (Courant, 1953).
But f can be zero or positive in our case. As such this
equation is not the Sturm-Liouville equation in the exact
sense. The choice of this functional form for � does not
change the leading singularity of the eigenfunction near the
regular singular point [� does not change since �ðr0Þ ¼ 0]
and this equation coincides with the Newcomb equation at
marginal stability (� ¼ 0).

As in the case of a cylindrical plasma, the energy integral
inside the plasma is minimized under the incompressibility
condition r � � ¼ 0 in the case of an axisymmetric torus. By
using X ¼ � � rr and V ¼ r� � rð�� �=qÞ in the flux coor-

dinates ðr; �; �Þ with r ¼ ½2R0

Rc
0 ðq=FÞdc �1=2, the energy

integral Wp can be expressed in the following form

(Tokuda et al., 1999):

Wp ¼ �

2�0

Z 1

0
dx

Z 2�

0
d�L

�
X;

@X

@�
;
@X

@x
; V;

@V

@�

�
: (91)

Here x ¼ r=a ¼ 1 is the plasma surface and L is the
Lagrangian as given by Tokuda et al. (1999). The absence
of the @V=@x term in L leads to the following Euler-Lagrange
equation for V:

@

@�

�
@L

@ð@V=@�Þ
�
� @L

@V
¼ 0: (92)

Integration of the above equation in � ¼ ½0; 2�� leads to
the following solvable condition:Z 2�

0

@L

@V
d� ¼ 0: (93)

Fourier expansions of X and V for � are defined as
Xðx; �Þ ¼ P

XmðxÞeim�, and Vðx; �Þ ¼ �i
P

VmðxÞeim�

Substitution of these equations into Eqs. (92) and (93) gives
linear equations for Vm. The solution is substituted into the
energy integral. The energy integral is now given by Y ¼ xX,
X ¼ ð. . . ; X�2; X�1; X0; X1; X2; . . .Þt (t indicates transposed)
in the following form:

Wp½Y� ¼
Z 1

0
L̂

�
Y;

dY

dx

�
dx: (94)

This leads to the following Euler-Lagrange equation to mini-
mize the energy integral:

d

dx

@L̂

@ðdY=dxÞ �
@L̂

@Y
¼ 0: (95)

Since L̂ is given by a quadratic form of Y and dY=dx, the
Euler-Lagrange equation is reduced to the following form of
second-order ordinary differential equation:

NðYÞ 
 d

dx
f
dY

dx
þ g

dY

dx
þ hY ¼ 0; (96)

where f , g, and h are constant ð2Mþ 1Þ � ð2Mþ 1Þ matri-
ces. Here M is the number of Fourier harmonics. This is
called the two-dimensional Newcomb equation. Diagonal

elements of f have ðn=m� 1=qÞ2 dependence similar to
that in the one-dimensional Newcomb equation, and the
radius of q ¼ m=n is the regular singular point. Small and
big solutions exist near the singular point and the Mercier
condition is derived as the local stability condition. Once the
Mercier condition is met, kink and peeling modes can be
studied using this two-dimensional Newcomb equation.
Tokuda et al. (1999) converted this 2D Newcomb equation
into an eigenvalue equation by adding an artificial kinetic
energy integral term as follows:

W½Y� ¼ Wp � �Wk; (97)

Wk ¼ 2�2
Z X

m

�mðr̂ÞjYlðr̂Þj2dx; (98)

�mðxÞ ¼
	
F2ðmq � nÞ; m ¼ nqðr0Þ;
F2; m � nqðr0Þ:

(99)

This choice of �m conserves the leading singularity of the
eigenfunction at the singular radius. The Euler-Lagrange
equation to minimize the energy integral W½Y� is given as

N�Y ¼ ½Nþ � diagð�mðxÞÞ�Y ¼ 0: (100)

The linear operator N� is related to the 2D Newcomb opera-
tor as N� ¼ Nþ � diagð�mðxÞÞ. Here diagð�mðxÞÞ is the
diagonal matrix having �mðxÞ as its ðm;mÞ component. This
equation is a quasi-Sturm-Liouville equation as in the 1D
case.

MARG2D (Tokuda et al., 1999) solves Eq. (100) to identify

the stability boundary. The code is extended to the free-
boundary mode by inclusion of a vacuum solution by Aiba
et al. (2006). Figure 29 shows a comparison of MARG2D and
ERATO-J (Azumi et al., 1981) in identifying the critical �p

value for stability. While the stability boundary is not quite
sharp in ERATO-J, MARG2D can determine a sharp stability
boundary.

3. Flow effect on ideal magnetohydrodynamics

Active use of plasma flow to stabilize global MHD modes
(especially the RWM in Sec. V.B.4) is important for all
advanced tokamak regimes (WS, NS, and CH). But the

FIG. 29. Comparison of ERATO-J and MARG2D simulations for

identifying the stability boundary. From Aiba et al., 2006.
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inclusion of flow brings quite rich physics to ideal MHD
stability theory.

The effect of flow on toroidal equilibrium was investigated
by Zehrfeld et al. (1972). Since poloidal rotation is small due
to viscous damping, only toroidal rotation can be of the order
of the sound velocity. Plasma pressure is no longer a flux
function [P ¼ Pðc ; RÞ] and the Grad-Shafravov equation (1)
is modified (Hameiri et al., 1983) as

@2c

@R2
� 1

R

@c

@R
þ @2c

@Z2
¼ ��0R

2 @P

@c

��������R
�F

dF

dc
: (101)

The linearized equation of motion with mass flow was
given by Frieman et al. (1960) and is called the Frieman-
Rotenberg (FR) equation:

�
@2�

@t2
þ 2�ðu � rÞ @�

@t
¼ Fð�Þ; (102)

F ¼ Fsð�Þ þ Fdð�Þ; (103)

Fsð�Þ ¼ r½� � rPþ 	Pr � �� þ ðr � B1Þ
� Bþ J� B1; (104)

Fdð�Þ ¼ r � ½��ðu � rÞu� �uðu � rÞ��; (105)

B1 ¼ r� ð� � BÞ: (106)

BothFs andFd are Hermite operators but the convective term
2�ðu � rÞ@�=@t is an anti-Hermitian operator, and the system
as a whole is not self-adjoint. While the ! spectrum of the
Hermite MHD operator lies on a real or imaginary axis, the
spectrum of the FR equation spreads in the complex plane,
causing some difficulty in searching for the eigenvalue.
Moreover, the eigenvalue analysis may fail to identify the
most unstable solution when the time evolution of this solu-
tion is no longer expð�tÞ. MHD stability codes treating
toroidal flow have been developed during the 1990s including
MARS by Chu et al. (1999) and more recently MINERVA by

Aiba et al. (2011) and CASTOR-FLOW by Chapman et al.

(2011). If we can assume � ¼ �̂ expð�tÞ, the eigenvalue � ¼
	þ in! (	 is the growth rate, ! is the real frequency, and n
is the toroidal mode number) including toroidal and poloidal
flows can be expressed as (Chu et al., 1999; Aiba et al.,
2011)

	2 ¼ �Wg1

�K
� n2!2; in! ¼ ��Wc

�K
; (107)

�K ¼ h�̂j�j�̂i; (108)

�Wg1 ¼ �h�̂jFð�̂Þi þ h�̂j�ðu � rÞðu � rÞj�̂i; (109)

�Wc ¼ h�̂j�ðu � rÞj�̂i: (110)

The spectral and singular structures of this equation have
been investigated in depth by Hirota et al. (2008). They
extended the definition of wave energy in a bounded plasma
including a continuous spectrum using the action-angle for-
mulation, where the wave energy is given by !n�n for the
discrete mode and by

R
!�ð!Þd! for the continuous mode.

The energy integral in the ideal MHD theory is represented by
the sum of these wave energies. In a flowing plasma, the wave
energy can be negative and its interaction with positive
dissipation at the wall may destabilize the mode. Also, reso-
nance causes continuum damping if the wave energies of
continuous and discrete modes have the same sign, while
resonant instability occurs if they have different signs.

B. Resistive magnetohydrodynamics

1. Classical tearing mode

The TM is an important resistive instability associated with
the reconnection of the magnetic field at the resonant rational
surface r ¼ rs. This mode is destabilized by changing the
topology of the magnetic field, while it is stable within the
ideal MHD context. The linear growth rate of this mode is
given by Furth et al. (1963) as 	� 
3=5 (or 	� S�3=5,
where S ¼ �0avA=
 ¼ �R=�A is the Lundquist number,
�R ¼ �0a

2=
 the resistive diffusion time, �A ¼ a=vA the
Alfvén transit time, and vA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0nimi

p
the Alfvén

velocity).
But it soon goes into the nonlinear region, called the

Rutherford regime (Rutherford et al., 1973), where the

time evolution of the magnetic island width w ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 1ðrsÞ=c 00

0 ðrsÞ
p

is governed by the Rutherford equation
under the approximation of constant c [i.e., first-order per-
turbed flux function c 1ðrsÞ � 0] and improved by Biskamp
(1993) as follows:

dw

dt
¼ 1:22


�0

�0ðwÞ (111)

with �0ðwÞ ¼ ½c 0
1ðrs þ w=2Þ � c 0

1ðrs � w=2Þ�=c 1ðrsÞ.
The island structure of the TM was observed using tomog-

raphy by Sauthoff et al. (1978) and radial phase inversion of
the TM structure was measured by Robinson et al. (1979).
This mode is important for all tokamak regimes including
advanced tokamak operation.

Stabilization of the tearing mode by electron cyclotron
heating.—Suppression of the m=n ¼ 2=1 TM using direct
island heating was shown for the first time in 1992 by
Hoshino et al. (1992) and followed by its observation at
many other tokamaks (TEXT, WT-3, T-10, FTU, TEXTOR,
HL-2A, and TCV). Since magnetic island formation produces
temperature flattening by its shortcircuit effect, heating near
the magnetic island, especially at the O point, has a stabiliz-
ing effect as shown by Yoshioka et al. (1984) and shown in a
reduced resistive MHD simulation by Kurita et al. (1994).
The heating effect on the Rutherford equation is expressed by
adding an additional term to Eq. (118) as follows:

dw

dt
¼ 1:22


�0

�0ðwÞ þ C2

J0
~c m

Z w=2

�w=2
~
mdr; (112)

where C2, J0, ~
m, and ~c m are a constant of the order of 1, the
equilibrium current density, the perturbed resistivity, and the
perturbed poloidal flux function, respectively. Since ~
m < 0
with ECH, the second term on the right-hand side is
stabilizing.
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2. Neoclassical tearing mode

Efficient steady-state operation of the tokamak relies on
the maximum utilization of the bootstrap current. But this
leads to an important new instability, called the neoclassical
tearing mode (Carrera et al., 1986).

Since the bootstrap current is proportional to the pressure
gradient (Jbs � dP=dr), local flattening of the pressure gra-
dient near the magnetic island produces a negative perturbed
helical current, which enhances the magnetic island and
destabilizes the TM in the positive-shear regime, while this
negative perturbed helical current reduces the magnetic island
size and is stabilizing in the negative-shear regime (Kikuchi,
2011b). Therefore, this NTM is important for all advanced
tokamak operating regimes (WS, NS, and CH) except in
regions of negative shear.

This NTM was observed for the first time in TFTR by
Chang et al. (1995) (see Fig. 30) and explained well by the
Rutherford equation including the bootstrap destabilization
term but it cannot be explained without including the boot-
strap destabilization term.

The Rutherford equation including this bootstrap destabi-
lization effect with polarization effect (or finite Larmor radius
effect wpol � �pi) (Waelbloeck et al., 2001) and finite per-

pendicular transport [wd � ð�?=�kÞ1=4] (Fitzpatrick et al.,

1995) is given by (La Haye et al., 2006)

dw

dt
¼ 1:22


�0

�
�0ðwÞ þ �1=2

Lq

Lp

�p

w

�
w2

w2 þ w2
d

� w2
pol

w2

��
;

(113)

where � ¼ r=R, Lq ¼ q=ðdq=drÞ, Lp ¼ p=ðdp=drÞ, and �p

is the poloidal beta value. The characteristic transport effect
island width is given by wd ¼ 5:1ðqLq=�k�Þ1=2ð�?=�kÞ1=4
(Fitzpatrick et al., 1995), where the poloidal wave number
k� ¼ m=r, and �? and �k are perpendicular and parallel heat
diffusivities, respectively. The characteristic threshold island
width wpol ¼ ðLq=LpÞ1=2�1=2��i .

A more sophisticated formula with nondivergent polariza-
tion term at w ¼ 0 and other terms was given by Sauter et al.
(2002). Even if the equilibrium is stable to the classical TM
�0ð0Þ 	 0, the NTM can be destabilized at finite island width
w � wcrit. As such we need a seed island to destabilize NTM.

The loss of the bootstrap current inside the magnetic island
is essential for the NTM. Direct measurement of this loss of
bootstrap current inside the magnetic island was made using
MSE diagnostics at JT-60U by Oikawa et al. (2005).

a. Stabilization of the neoclassical tearing mode

by electron cyclotron current drive

Localized ECCD inside a magnetic island can compensate
the lost bootstrap current to stabilize NTM. First complete
NTM stabilization was demonstrated at ASDEX-U using the
second-order harmonic X-mode ECCD by Gantenbein et al.
(2000) and at JT-60U using the fundamental O-mode ECCD
by Isayama et al. (2000) as shown in Fig. 31.

Benchmarking of the modified Rutherford equation for
ECCD stabilization of NTM is important for its extrapolation
to ITER control (Sauter et al., 1997). Efforts have been
successful in calibrating the coefficients (Hayashi et al.,
2004a) and the result was successfully applied to radial
scanning experiments (Isayama et al., 2007) (see Fig. 32)

FIG. 30. Observation of m=n ¼ 3=2 NTM at TFTR. (a) Measured

evolution of island width, (b) calculated island width using modified

Rutherford equation, and (c) calculated island width with fixed

parameters (
;wc 
 �1=2Lq�p=Lp;�
0). From Chang et al., 1995.

FIG. 31. Stabilization of NTM for fundamental O-mode ECCD.

From Isayama et al., 2000.

FIG. 32 (color online). Comparison of experimental measurement

and numerical calculation based on the modified Rutherford equa-

tion. From Isayama et al., 2007.
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and provided the power requirement (Hayashi et al., 2004b)
at ITER. The effect of EC power on achievable Q was
discussed by Sauter et al. (2010).

b. Flow effect on the neoclassical tearing mode

The magnetic island can be distorted by the viscous drag of
flow shear as shown in Fig. 33 and has a stabilizing effect on
the classical TM and the NTM (Smolyakov et al., 2001).
Therefore not only flow shear but also perpendicular viscosity
� is important in stabilizing the TM and NTM in the high-
temperature tokamak regime. A systematic simulation by
Goelho et al. (2007) showed that the magnetic Prandtl
number � ¼ �R=�V � 1 is a necessary condition and the
Lundquist number S ¼ �R=�A � 1 is also important to
enhance stabilization by flow shear, where the viscous time
is given by �V ¼ minia

2=�.
Except for JT-60U, most medium to large tokamaks use

tangential neutral beam injection, which drives cotoroidal
rotation. After the reorientation of tangential NBI, Buttery
et al. (2008) and La Haye et al. (2009) showed that NTM is
‘‘destabilized’’ with reduced toroidal rotation using a combi-
nation of corotation or counterrotation NB injection capa-
bility at DIII-D. The NTM onset �N is reduced with reduced
corotation associated with weaker absolute negative rotation
shear (d��=dr < 0), where �� ¼ ui0 � r� . The 2=1 NTM

onset �N data including NSTX results show better correlation
with normalized flow shear nFS ¼ �Ls�Ad��=dr, where

Ls ¼ qLq=� (La Haye et al., 2010).

3. Double tearing mode

While the NS operation showed excellent plasma confine-
ment exceeding Qeq

DT ¼ 1 at JT-60U (Ishida et al., 1997), the

plasma is disrupted by ideal and resistive MHD modes. While
NS can be stable to ideal MHD if the pressure profile is
optimized, strong ITB near qmin may destabilize ideal MHD
instabilities, as discussed in Sec. V.C.1. This mode of opera-
tion can also be unstable to the DTM where there are two
rational surfaces in the plasma.

The stability of the DTM was analyzed for the cylindrical
tokamak by Furth et al. (1973). The DTM is a possible cause
of rapid current penetration and disruptive instability during
the current ramp (Stix et al., 1976). Formation of the hollow
current profile and its rapid relaxation associated with the
m=n ¼ 4=1 mode was observed by Hutchinson et al. (1976).

The radial proximity of two rational surfaces �rs=2a is an
important parameter for the DTM, where eigenfunctions of

the inner and outer TMs are coupled to form a
DTM if �rs=2a is sufficiently small. In this case, the linear
growth rate follows m ¼ 1 internal resistive TM scaling, 	�

1=3. If the radial separation�rs=2a is large, the modes at the
two rational surfaces are decoupled and the linear growth rate
of the mode follows TM scaling, 	� 
3=5.

Pritchett et al. (1980) derived the dispersion relation for
the DTM in sheet pinch as

FIG. 33. Distortion of the tearing island due to viscous drag. From

La Haye et al., 2009.

FIG. 34 (color online). Comparison of linear radial eigenmode

structures among small (strong coupling), intermediate, and large

(weak coupling) �r (left panel) and nonlinear time evolution of

kinetic energies of m=n ¼ 3=1; 6=2; 9=3; . . . (right panel). From

Ishii et al., 2000.

FIG. 35. (a) Time evolution of disruptive TM in NS discharge;

(b) Te, ~Te, and q profiles just before collapse. From Takeji et al.,

2002a.
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�̂5=4�̂h�½ð�̂3=2 � 1Þ=4�
�½ð�̂3=2 þ 5Þ=4� ¼ 8; (114)

where the scaled resistive growth rate �̂ and the ideal MHD

driving energy �̂h are given as

�̂ ¼ 	�h½S=�2ðdB0=dxÞ2�1=3; (115)

�̂h ¼ 	h�h½S=�2ðdB0=dxÞ2�1=3: (116)

Pritchett et al. (1980) also derived a coupling condition for
the DTM and it may be given for a cylindrical plasma as
�rs=2a < ðma=rsÞ�7=9S�1=9, where S is the Lundquist
number.

Ishii et al. (2000) analyzed linear and nonlinear behaviors
of the DTM to understand characteristics of JT-60U NS
plasmas. In the case �r < 0:15, a strong mode coupling
occurs and the growth rate 	� 
1=3, while in the case
�r > 0:32, a weak mode coupling occurs and the growth
rate 	� 
3=5. The regime 0:15< �r < 0:32 is called the
intermediate regime.

Figure 34 (left panel) shows a radial linear eigenmode
structure of the DTM for the small-�r, intermediate-�r,
and large-�r cases. It is clear that the radial eigenmode is
not always coupled between two rational surfaces and can
have weak coupling if the separation is large enough.
Figure 34 (right panel) shows the nonlinear DTM time
evolution of the kinetic energies of various m=n modes. In
the case of small �r, the mode grows exponentially until the
collapse. In the case of large �r, the mode goes into the
Rutherford regime and saturates. On the other hand, nonlinear
destabilization of the DTM is found in the intermediate
regime, which is attributed to a new type of reconnection
discussed later.

Takeji et al. (2002a) identified two types of resistive
instabilities in JT-60U NS plasma. One is a nondisruptive
resistive interchange mode and the other is a disruptive TM
shown in Fig. 35. In the former case, temperature fluctuation
was observed only near the inner rational surface (typically
q ¼ 3) showing no phase inversion across the rational

surface, and the stability criterion of the resistive inter-
change mode DR (Glasser et al., 1975) is violated
(DR > 0). These observations are consistent with the resistive
interchange mode. The observation of the resistive inter-
change mode was first reported in DIII-D by Chu et al.
(1996) at �N ¼ 1:5, resulting in disruption and showing the
importance of a pressure peaking factor, while this resistive
interchange mode in JT-60U at �N < 1 does not lead to
disruption.

For the latter case, precursor oscillation is observed before
thermal collapse. The temperature perturbation ~Te just before
the first thermal collapse shows clear phase inversion near the
outer q ¼ 3 surface with a growth time of 	�1 � 0:5 ms,
indicating a TM, and no fluctuation near the inner q ¼ 3
surface (Takeji et al., 2002a).

Ishii et al. (2003) investigated the resistive instability in a
toroidal geometry under the condition of DR > 0 near the
inner q ¼ 3 surface, showing that the mode structure is not
interchangeable but is a DTM, and they concluded that the
existence of the Rutherford regime may cause precursor
oscillation and that nonlinearly destabilized DTMs later
may go to a thermal quench by an the explosive instability.
Ishii et al. (2009) further investigated the effect of toroidal
flow and external magnetic perturbation, showing that an
inner magnetic island may disappear. Another important
effect is the loss of the bootstrap current inside the magnetic
island (NTM effect on the DTM) since the loss of the boot-
strap current has a stabilizing effect on the negative-shear

FIG. 36 (color online). Time evolution of nonlinear DTM for

intermediate �r for different resistivity 
. ME and KE are the

magnetic and kinetic energy, respectively. From Ishii et al., 2000.

FIG. 37 (color online). (a) Time evolution of the 3
1 magnetic

energy in nonlinearly destabilized DTM for various plasma resis-

tivities 
; (b) current distributions for various plasma resistivities.

From Ishii et al., 2002.

FIG. 38 (color online). Contour plot of current distribution for

(a) nonlinearly destabilized DTM (point current) and (b) standard

DTM (sheet current). From Ishii et al., 2002.
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(s < 0) regime and a destabilizing effect on the positive-shear

(s > 0) regime (Kikuchi, 2011b), which may lead to a single

TM at rational surfaces in the positive-shear region. This is

left for future study. Experimental analysis of the O mode at

TCV (Turri et al., 2008) showed that the O mode is a cyclic

phenomenon due to magnetic-island-induced transport

enhancement.

a. New fast-reconnection paradigm

Magnetic reconnection is one of the most important sub-

jects in plasma physics. Fast reconnection observed in a solar

flare has been a mystery since the usual Sweet-Parker sheet

reconnection does not have a fast reconnection time

(Biskamp, 2000).
As shown in Fig. 36, for sufficiently low resistivity 
, a

slowly growing Rutherford-regime-like phase is seen after the

initial linear growth, and it changes to an explosive growth

phase. The period of the Rutherford regime increases with

lower resistivity 
. The magnetic reconnection process in this

nonlinearly destabilized DTM has marked differences from

the usual Sweet-Parker sheet reconnection. The growth rate

of the above nonlinearly destabilized DTM does not have any

dependence on plasma resistivity 
 in the final stage [see

Fig. 37(a)]. The peak current associated with the magnetic

island increases with reduced plasma resistivity so that 
j ¼
const [see Fig. 37(b)]. Ishii et al. (2002) showed that the

magnetic island becomes more triangular shaped and the

current distribution associated with the magnetic island is

concentrated both poloidally and radially (point current) [see

Fig. 38(a)] in the case of the nonlinearly destabilized DTM.

On the other hand, the standard strongly coupled DTM [see

Fig. 38(b)] has a sheet current distribution during explosive

growth similar to the Sweet-Parker reconnection. Wang et al.

(2007) showed this fast reconnection can occur in slab ge-

ometry with 
1=5 dependence. Janvier et al. (2011) explained

this as a secondary instability.

4. Resistive wall modes

All advanced tokamak operating regimes (WS, NS, and

CH) for steady-state tokamak operation require wall stabili-

zation or are benefitted by an increase in the operating plasma

beta value by wall stabilization.
When the steady-state tokamak reactor was proposed

in 1990, most people believed that wall stabilization would

not work for realistic tokamak circumstances since the

wall necessarily had finite resistance and penetration of

the magnetic field would nullify wall stabilization. Even if

the plasma were rotating in the toroidal direction, it was

pointed out that the mode (called the RWM) is attached to

the wall and the mode will slip with respect to the plasma

rotation; hence wall stabilization will not work for a long time

as shown by Gimblett et al. (1986) and Hender et al. (1989).

But, the existence of the continuous spectrum provided a

collisionless damping mechanism for the RWM.
Recently, Chu et al. (2010) gave a comprehensive review

of RWMs. Splitting of the rational and singular surfaces in

flowing plasma brings some difficulty to RWM theory and

Shiraishi et al. (2011) developed an accurate analytical

dispersion relation.

a. Shear Alfvén wave continuous damping

The shear Alfvén wave has a continuous spectrum in the
inhomogeneous plasma and provides strong collisionless
damping as shown by Hasegawa et al. (1974) due to phase
mixing or through mode conversion to the kinetic Alfvén
wave (KAW) (Hasegawa et al., 1976). A basic diagram of the
shear Alfvén resonance (SAR) is shown in Fig. 39.

The ideal MHD equation has a singularity [see Eq. (82)]
for the SAR ! ¼ kkVA at r ¼ rA, where kkB ¼ nB�=R�
mB�=r. Since the density has a radial variation, SAR occurs
for a range of!, which constitutes a continuous spectrum and
provides a collisionless wave absorption mechanism, where
the eigenfunction of the displacement is given by � ¼
c lnðr� rAÞ (r > rA) and � ¼ cð lnðrA � rÞ þ i�Þ (r < rA).

FIG. 39. (a) Density profile, (b) shear Alfvén wave, and (c) shear

Alfvén wave modified to KAW.

RWM is fixed to wall

Particle

Plasma rotation

FIG. 40 (color online). Relation among rotating plasma, resistive

wall mode, and wall.
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This imaginary part of the eigenfunction appears from the

analytical continuation of the solution in r > rA.
Damping of the KAW occurs mainly through electron

Landau damping for a low-beta plasma (Hasegawa et al.,

1976). Mode conversion of the shear Alfvén wave to the

KAW and its damping was confirmed by Weisen et al.

(1989) by excitation of the shear Alfvén wave using the

external antenna structure in the TCA tokamak.

b. Stabilization of the resistive wall mode in tokamaks

In a rotating tokamak, the RWM is fixed to the wall and the

rotating plasma will slip with respect to the mode (see

Fig. 40). The plasma in the rotating frame experiences the

RWM as a traveling wave and undergoes resonant wave-

particle interaction to damp this traveling wave by phase

mixing of the continuum modes (or by Landau damping of

the KAW produced by the mode conversion of the shear

Alfvén wave).
Reimerdes et al. (2007) at DIII-D and Takechi et al.

(2007) at JT-60U showed that the RWM is stabilized with a

small toroidal rotation. Both machines showed that the criti-

cal rotation speed is rather small at �20 km=s, which is

�0:3% of the Alfvén velocity (see Fig. 41). This critical

velocity to stabilize the RWM is close to the value expected

from the continuous damping of the Alfvén wave (Reimerdes

et al., 2007). Such low toroidal rotation may be driven by so-

called intrinsic rotation. While small toroidal rotation may

stabilize RWM in ITER and the demonstration power

reactor (DEMO), such rotation may be decelerated due to

mode locking. In this case, rotational wall stabilization

may be ineffective. To ensure wall stabilization, active

feedback control of the RWM using sector coils is

important. Stabilization of the RWM in a high-�, low-

toroidal-rotation plasma was successfully demonstrated by

Sabbagh et al. (2006).

c. Energetic particle driven wall mode

While the RWM can be stabilized with toroidal rotation of

>0:3% of Alfvén velocity, a different bursting MHD insta-

bility was observed by Matsunaga et al. (2009) in the beta

regime between the no-wall and wall beta limits. This mode
was excited by the interaction of trapped energetic particles
with a marginally stable mode in the wall-stabilized high-�N

regime. This observation is explained as a fishbonelike
bursting mode with threshold energetic particle beta �


c ¼
0:141 (�
 ¼ �h=�) by Hao et al. (2011). For a review of
energetic particle modes, see Chen et al. (2007).

d. Ferromagnetic wall effect on resistive wall modes

The use of ferritic material in fusion DEMO and beyond is
closely related to the choice of blanket structural material.
Since reduced activation ferritic (RAF) steel is a primary
candidate for the blanket structural material, the effect of
magnetization on the RWM is an important subject.
Ferromagnetism attracts the perturbed magnetic field to the
wall and may destabilize the RWM. Kurita et al. (2006)
found that on the order of 8% reduction in the beta limit is
expected for effective relative permeability �r ¼ �=�0 ¼ 2.

C. Localized magnetohydrodynamics

A plasma pressure profile does not always follow the
optimum profile to achieve high beta. Improved confinement
in tokamaks is frequently associated with local steep im-
proved confinement layers such as an ETB in the H mode
and ITB in WS (Koide et al., 1994) and NS (Fujita et al.,
1997b). These local transport barriers are useful to achieve
reactor relevant confinement but are not favorable to achieve
a plasma pressure sufficient for the large bootstrap current
fraction and high fusion power density as required from the
reactor design (Kikuchi, 1993).

In the case of WS, the so-called ballooning formulation
breaks down and intermediate-nmodes [called infernal modes
(Manickam et al., 1987)] may play an important role in the
central MHD activity and sometimes lead to �p collapse.

With the development of ETB, the so-called edge localized
mode (ELM) becomes unstable, which is effective in reduc-
ing impurity accumulation in the core but becomes serious for
the power handling of divertor plates in ITER and beyond due
to its excessive heat flux. The edge plasma becomes more
collisionless in ITER and beyond and the localized bootstrap
current is driven in the edge region. This edge bootstrap
current as well as the steep pressure gradient destabilizes
ideal MHDmodes localized at the edge region, called peeling
modes (Manickam et al., 1992). In the case of ITB, the BLM
is destabilized when the pressure gradient of ITB exceeds the
stability limit (Takeji et al., 1997; Manickam et al., 1999).

1. Infernal mode in advanced tokamak operation

Advanced tokamak operations in WS and NS plasmas are
associated with core improved confinement. Large pressure
gradients in the core weak-shear regime in WS and the pitch
minimum regime in NS lead to the loss of magnetic shear
stabilization of pressure-driven ideal MHD modes. In these
regimes, both n ¼ 1 and intermediate-n modes become very
unstable in some cases.

a. Infernal mode in tokamaks

The ballooning mode theory including finite-n correction
was developed using the WKB formalism by Dewar et al.
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DIII-DJT-60U C =( - NW)/( W- NW)
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t
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FIG. 41 (color online). Discharge trajectories of DIII-D and JT-

60U in the (Vtjq¼2, C�) plane. The X’s and boxes show onsets of

RWM. From Garofalo et al., 2007 and Takechi et al., 2007.
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(1979) and it agreed with the PEST calculation down to n ¼ 5
as shown by Dewar et al. (1981). This theory predicts that the

largest-n modes are most unstable within the ballooning

formalism. But the PEST calculation also showed interesting

oscillatory behavior of the beta limit in the intermediate-n
regime as a function of 1=n if it is treated as a continuous

variable (see Fig. 42).
Hastie et al. (1981) showed that this oscillatory behavior

can be expected from the breakdown of the radial densely

coupled ballooning mode structure. If the magnetic shear

is finite, radial coupling of various resonant MHD modes

(m, m� 1, m� 2, m� 3, etc.) becomes strong for high-n
modes since the radial separation between modes is small.

However, if the magnetic shear is very low, s� 0, the radial
mode separation becomes larger and the standard ballooning

mode theory by Connor et al. (1978) based on dense radial

mode coupling breaks down.
Manickam et al. (1987) showed that when the magnetic

shear is sufficiently weak, this oscillation can result in bands

of unstable n values, where the ballooning mode theory

predicts complete stability. This mode is called the

‘‘infernal’’ mode.

b. Infernal mode as cause of �p collapse

Improved core confinement regimes at TFTR (Hawryluk

et al., 1998) and JT-60U (Kishimoto et al., 2005) are

associated with fast internal disruption or major disruption,

where the beta limit deviates from Troyon scaling and is

limited by ��p (McGuire et al., 1988). This is called �p

collapse (Ishida et al., 1992).
Figure 43 shows the stability diagram in (��p, �N) for

various pressure profiles (A–D) in a WS plasma (magnetic

shear �0 in the central region) without wall stabilization and

slightly high internal inductance li ¼ 1:2 with qs=q0 ¼ 4
(Ozeki et al., 1995). Intensive central heating produces a

peaked pressure profile and the observed �p collapse is

consistent with the region of ��p ¼ 0:2–0:6 for pressure

profile C. The region of ��p ¼ 0:2–0:4 is characterized by

low q0 and intermediate n ¼ 2–5 infernal modes become

most unstable. While a broader pressure profile gives rise to

much higher stable �N � 5 (li � 1:2) without wall stabiliza-
tion (Ozeki et al., 1995), or �N � 5:8 (li � 1) with a mod-
erately distant wall rwall=a ¼ 1:5 (Howl et al., 1992), the
resultant broader bootstrap current seems not to be consistent
with moderately high internal inductance for the steady-state
tokamak operation.

Ozeki et al. (1993b) analyzed the ideal MHD stability of a
circular weakly negative-shear (WNS) plasma R=a ¼ 3,
showing that significant improvement in the ��p limit can

be obtained by modification of the pressure profile (see
Fig. 44). Pressure profile B has a much higher ��p limit

than that for pressure profile A. While the experimentally
achievable ��p is�0:6, tailoring of the pressure profile in the

negative-shear regime and reduction of the pressure gradient
near qmin improve stability against low n ¼ 1–5 internal
modes. Again, the importance of the relative location of the
ITB and qmin radius is stressed. Bonderson et al. (1997)
clarified characteristics of the NS stability regime with the
high bootstrap current fraction without wall stabilization.

FIG. 42. n dependence of the beta limit showing agreement

between WKB theory (dashed line) and PEST (solid line) in

high-n regime and unique oscillatory behavior at low to intermedi-

ate n obtained by treating n as a continuous variable. From Dewar

et al., 1981.

FIG. 43 (color online). Stability boundaries in ð��p; gÞ for

various pressure profiles [A:dp=dc � 0:3ð1� c Þ0:5 þ 0:7, to

C: dp=dc � ð1� c Þ2, D: dp=dc � ð1� c Þ5], where g is the

normalized beta �N . The circle shows the region of observed �p

collapses in high-�p experiments in JT-60U. From Ozeki et al.,

1995.

(a) (b)

FIG. 44 (color online). (a) Pressure profiles (A) and (B) in weak-

negative-shear plasma and (b) ��p stability improvement from (A)

to (B) in (qmin, ��p). From Ozeki et al., 1993b.
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Turnbull et al. (1998) addressed synergism between the cross

section and profile shaping and sensitivity to wall location in

beta optimization for NS.
Improved confinement regimes at NS plasma have

been explored since their discovery by Strait et al. (1995)

at DIII-D, by Levinton et al. (1995) at TFTR, and by Fujita

et al. (1997b) at JT-60U as well as early experiments at JET

(Hugon et al., 1992). The NS plasma terminated mostly with

the ideal n ¼ 1 kink-ballooning mode and sometimes with

the infernal mode near the ideal beta limit as discussed by

Taylor et al. (1997) and Ishii et al. (1998). But it sometimes

terminated with precursor oscillation possibly due to the

Rutherford regime in the DTM as discussed in Sec. V.B.3.

Turri et al. (2008) discussed the role of ideal (infernal)

and resistive modes in electron-ITB discharges at TCV in

detail.

2. Peeling, ballooning, and edge localized modes

The steady-state tokamak reactor will operate in the high-q
(safety factor) and high-�p (poloidal beta) regimes.

Exploration of small or minute ELMs in this regime is crucial

for the feasibility of divertor power handling. The high

pressure gradient at ETB produces ELMs. The physics of

ELMs has been well investigated since theH mode with ELM

is a standard operation scenario for ITER.
The ballooning mode is a pressure-driven local ideal MHD

mode with long wavelength along B and short wavelength

perpendicular to B (Connor et al., 1978). The peeling mode

is an external mode localized near the plasma edge driven by

the finite edge current (Manickam et al., 1992). This mode

can be coupled to the ballooning mode and is thought to be a

cause of ELMs in tokamaks.
Since the growth rate of the medium-n peeling mode is

rather low compared with the violent low-n kink instability,

care must be taken to identify the stability boundary as dis-

cussed in Sec. V.A.2 and special codes have been developed

such as MARG2D (Tokuda et al., 1999; Aiba et al., 2006) and

ELITE (Wilson et al., 2002). While the ELITE code was spe-

cifically developed for n � 5 using the 1=n expansion, the

MARG2D code can analyze the stability boundary for any

toroidal mode number n efficiently, due to its special eigen-
value treatment. These codes have been applied to tokamak
experiments by Snyder et al. (2002) andHayashi et al. (2009),
among others. The effect of a separatrix on edge MHD is an
important subject and linear and nonlinear behaviors are ad-
dressed by the KINX code (Medvedev et al., 2006) and the
JOREK code (Huysmans et al., 2007), respectively.

The stability of the peeling mode is well characterized by
the pedestal current density jped and the normalized pressure

gradient � ¼ �2�0q
2RðdP=drÞ=B2. Figure 45 shows the

stability of the ideal MHD modes (n ¼ 1; 2; 3; . . . ; 18) for
high-q (q95 ¼ 7:3) operation in the (�; jped) diagram including

the weak destabilizing effect of toroidal plasma rotation
(Aiba et al., 2009). Because of the low growth rate of the
peeling-ballooning mode, the diamagnetic drift and finite-
Larmor-radius effect become important as discussed by
Azumi et al. (1981) and later by Tang et al. (1982). A key
point is the replacement of �	2 with !ð!þ!
Þ, which
implies that	 <!
=2may be stabilized (Snyder et al., 2002).

The stable region against ideal MHD modes in the high-q
regime is much wider than in the low-q (q95 � 3) regime. The
edge ballooning mode becomes stabilized with small jped >

0:1 in high-q operation, but not in low-q operation. Finite-n
(n ¼ 3–18) peeling-ballooning modes become most unstable
when � reaches a critical value (�c � 6–8) for jped �
0:4–0:7. When the pedestal current density jped > 0:8, the

plasma becomes unstable to the n ¼ 1 mode. Excitation of a
large edge bootstrap current in a collisionless edge plasma
with jped > 0:8 will lead to n ¼ 1 or a low-n global mode

FIG. 45 (color online). Stability diagram of the high-q (q95 ¼ 7:3)

equilibria in the (jped, �96) plane. Toroidal rotation weakly desta-

bilizes the peeling-ballooning modes. From Aiba et al., 2009.

FIG. 46. The effect of triangularity and high-q operation for ELM

stability. From Takeji et al., 2002b.

FIG. 47 (color online). Comparison of peeling-balooning eigen-

modes for small and large ELMs. From Doyle et al., 2007.
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(depending on the proximity of the stabilizing wall) and
control of the edge bootstrap current to the stable region is
important.

Kamada et al. (2000) and Lao et al. (2001) identified
ELM regimes of type I and grassy ELM (or type-II ELM) by
varying the plasma triangularity and safety factors and the
results are shown in Fig. 46. The grassy ELM has been found
at high q95 ¼ 6 and high triangularity � ¼ 0:5, which is
relevant for steady-state tokamak reactors. Stability analysis
by Lao et al. (2001) and Takeji et al. (2002b) showed the
disappearance of type-I ELM at q95 ¼ 6, high triangularity
� ¼ 0:5, and high �p ¼ 1:9, corresponding to entering into

the second stability regime as shown in Fig. 46. It is also
found that small and large ELMs correspond to small and
larger radial extensions of eigenfunctions of peeling-
ballooning modes, respectively, as shown in Fig. 47.

Significant modification of ELM characteristics by cotor-
oidal and countertoroidal rotation was reported by Oyama
et al. (2007) as shown in Fig. 48. With more countertoroidal
rotation, the discharges exhibit high-frequency grassy ELMs
with comparable pedestal pressure to that in type-I ELMs.
This observation is qualitatively consistent with the peeling
mode stability including the effect of toroidal and poloidal
rotations as shown by Aiba et al. (2011).

The steep pressure gradient near the plasma edge drives the
edge bootstrap current (pedestal current) if the edge plasma is
collisionless enough as shown in Fig. 49 (Snyder et al.,
2009). This pedestal current destabilizes the peeling-
ballooning mode. Experimentally, ELM energy loss increases
with decreasing edge collisionality as shown by Loarte et al.
(2003).

These characteristics are analyzed using a combination
of MARG2D and a time-dependent 1.5D transport code
(TOPICS-IB) by Hayashi et al. (2009). Reduction in edge
collisionality lowers the edge magnetic shear by excitation
of the bootstrap current. This reduction of magnetic shear
enlarges the radial extent of the peeling eigenfunction leading
to a larger energy loss by the ELM (see Fig. 50).

Since this ELMheat fluxmay become a serious problemand
shorten the divertor lifetime of ITER (Hawryluk et al., 2009),
mitigation of ELMs becomes an important issue for the reli-
able operation of ITER. Evans et al. (2005) reported success-
ful mitigation of type-I ELM in an ITER-like discharge with
reduced pressure gradient by the RMP technique as shown in

FIG. 48. ELM frequency variation with toroidal rotation at the

pedestal top. From Oyama et al., 2007.

FIG. 49 (color online). Edge pedestal and edge bootstrap current

in collisionless plasma. From Snyder et al., 2009.

FIG. 50 (color online). ELM energy loss as a function of pedestal

collisionality and time evolution of ELM for different powers. From

Hayashi et al., 2009.

FIG. 51 (color online). Suppression of type-I ELM by n ¼ 3
RMP. From Evans et al., 2005.
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Fig. 51. Snyder et al. (2007) explained this suppression of

type-I ELM as due to lowering of the pressure gradient below
the peeling-ballooning limit through field line stochastization.

While Evans et al. (2005) used n ¼ 3magnetic perturbation,

Liang et al. (2007) and Suttrop et al. (2011) stabilize ELMs by
using n ¼ 1 and n ¼ 2, respectively.

3. Barrier localized mode

The BLM is an ideal MHD instability driven by the large
local pressure gradient at the ITB, in both WS (Koide et al.,

1994; Takeji et al., 1997) and NS (Manickam et al., 1999)

plasmas, and leads to relaxation of ITB without major
disruption.

Figure 52 shows the time evolution of high-performance

WS discharges at JT-60U (Koide et al., 1994). After the

formation of an ITB, the BLM became unstable and the ITB
relaxation led to the formation of anH-mode edge. This BLM

is estimated as m=n ¼ 3=1 associated with a steep ITB near

the q ¼ 3 surface. If the ITB is recoverable after the BLM, a
quasi-steady-state ITB is possible but the ITB may terminate

as shown byKoide et al. (1996). Concerning the appearance of

them=n ¼ 3=1mode, Takeji et al. (1997) showed that then ¼
1 mode is most unstable under the situation in which the
bootstrap current driven by the steep pressure gradient reduces

the localmagnetic shear (s� 0), while the n ¼ 2mode ismost

unstable if the local shear is not weak. While intermediate-n
peeling modes are responsible for the ELM, n ¼ 1 or n ¼ 2
semiglobal modes are responsible for the BLM.

The BLM in the NS plasma was analyzed by Manickam

et al. (1999) for both JT-60U and TFTR. The JT-60U
achieved a wider ITB radius; a steeper ITB was formed for

balanced or perpendicular neutral beam injection and more

frequently observed at JT-60U than other tokamaks such as
TFTR. The softening of the BLM and the long-sustained

quasi-steady-state improved confinement with ITB requires

further investigation.

D. Alfvén eigenmodes

1. Shear Alfvén gap

In toroidal geometry where in-out inhomogeneity B�
B0=ð1þ � cos�Þ exists, the SAR condition is given by a
coupling of the m½kkm ¼ ðn�m=qÞ=R� and mþ 1fkkmþ1 ¼
½n� ðmþ 1Þ=q�=Rg modes with mode coupling constant ��������������

k2km � !2

v2
A

�� !2

v2
A

�� !2

v2
A

k2kmþ1
� !2

v2
A

������������� ¼ 0: (117)

This gives a forbidden band of! for the SAR (see Fig. 53),
since sinðm�Þ þ sin½ðmþ 1Þ�� ¼ sin½ðmþ 0:5Þ�� cosð0:5�Þ,
which implies periodicity after two circulations similar to
the Mobius band. In this situation, it is difficult to have
Alfvén resonance, which provides an explanation for the
gap in the SAR.

Cheng et al. (1986) found this breakup of the continuous
spectrum in the toroidal geometry by solving Eq. (88) through
its conversion to a variational principle and application of the
Galerkin method (see Fig. 54). The most important finding by
Cheng et al. (1986) is the existence of a point (or discrete)
spectrum in this gap with a frequency !¼kkmvA¼
�kkmþ1vA¼vA=2qR at r¼rm, where qðrmÞ¼ ðmþ1=2Þ=n.
Near qðrmÞ, the eigenmode in y ¼ Oð�0:5Þ can be expressed

FIG. 52. Time evolution of high-�p discharge showing the for-

mation of ITB and subsequent BLM (observed by ECE) leading to

H-mode edge pedestal formation. (1)–(4) correspond to different

times between 5.6 and 6 s. From Koide et al., 1994.

FIG. 53. SAR and gap structure due to toroidal coupling of m ¼ 1
and m ¼ 2 modes in the ðq;!Þ plane.

FIG. 54. Shear Alfvén resonance and gap spectrum due to toroidal

coupling of m ¼ 1 and m ¼ 2 modes. From Cheng et al., 1986.
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as um ¼ a1ðlnjyj þ b1Þ; umþ1 ¼ a2ðlnjyj þ b2Þ, where y ¼
sðr� rmÞ=rm and s ¼ rmðdq=drÞ=qðrmÞ. While the AE

with the SAR is singular at resonance, the AE in the gap is

regular and radially extended. This AE due to toroidal

mode coupling is called a toroidal Alfvén eigenmode

(TAE). Since this mode does not experience continuum

damping by the SAR, it can be destabilized through the

wave-particle interaction.
An Alfvén resonance gap is also possible through other

coupling mechanisms such as elongation of the plasma shape

or more shaping; these modes are called elliptic Alfvén

eigenmodes (EAEs) (Betti et al., 1991) and noncircular

Alfvén eigenmodes (NAEs) (Betti et al., 1992), respectively.

Elimination of the Alfvén resonance is also possible for a

frequency! slightly lower thanminðkkvAÞ (shown in Fig. 39)
in the plasma but a shear Alfvén cutoff (rs) still exists in the

plasma, and a shear Alfvén wave exists without strong damp-

ing; this is called a global Alfvén eigenmode (GAE) (Appert

et al., 1982). This GAE has been observed by Evans et al.

(1984). Sound (acoustic) wave resonance can also have a gap

through a coupling with the low-frequency Alfvén contin-

uum; this is called a beta-induced Alfvén acoustic eigenmode

(Gorelenkov et al., 2007).

2. Stability of Alfvén eigenmodes

Cheng et al. (1985) showed that this TAE may be desta-

bilized when the magnetic drift frequency of the energetic

particles roughly equals the eigenfrequency of the TAE. Since

energetic particles such as fusion-created � particles have

comparable speed with the Alfvén velocities in ITER and

DEMO, this has been an important subject since the 1990s.

TAEs were first observed in a neutral-beam-heated plasma at

TFTR by Wong et al. (1991).
The instability drive of these AEs is the pressure gradient

of fast particles, d�fast=dr. There are several damping mecha-

nisms, such as electron Landau damping (Fu et al., 1989), ion

Landau damping (Betti et al., 1992), collisional damping of

trapped electrons (Fu et al., 1992), continuum damping (Berk

et al., 1992; Zonca et al., 1992), and radiative damping (Mett

et al., 1992). The damping rate was directly measured by

Fasoli et al. (1995). Both EAEs and NAEs were observed by

Kramer et al. (1998) at JT-60U. The balance between the

instability drive and damping gives the threshold d�fast=dr,
discussed for burning plasma experiments by Gorelenkov

et al. (2003). There are interim reviews of AEs by Wong

et al. (1999), Chen et al. (2007), and Heidbrink et al. (2008).
Not only � particles but also MeV-class N-NBI fast ions

can drive AEs, and the beam deposition profile should be

carefully considered for steady-state operation. And as a

result Ozeki’s off-axis injection scenario is favorable for

reduction of the central d�fast=dr. Actually tilting of

N-NBI is thought to avoid TAEs at ITER (Polevoi et al.,

2010).
In the WNS operation, the TAE is more stable than in the

case of positive-shear plasmas. In particular, the TAE be-

comes stable when a density ITB is formed inside qmin

(Kimura et al., 1998). This is because the TAE gap frequency

!� 1=neðrÞ0:5qðrÞ2 becomes lower in the central region,

prohibiting the formation of the TAE gap there. Thus the

presence of a density ITB for tokamak steady-state operation
seems good for AE stability.

On the other hand, the NS operation produces a new type
of AE, observed as the chirping mode (Kusama et al., 1998)
when the density ITB is not strong enough for TAE forma-
tion. This is called the reversed shear Alfvén eigenmode
(RSAE) and was explained as a special case of the GAE
mode by Fukuyama et al. (1997). Berk et al. (2001)
developed a theory of the RSAE. Nazikian et al. (2003)
also demonstrated an �-particle-driven AE in a TFTR WNS
plasma (Nazikian et al., 1997) is RSAE.

Takechi et al. (2005) studied further the time evolution
and structure of RSAEs. As qmin decreases in the range
of ðmþ1=2þ�Þ=n<qmin<ðmþ1Þ=n, there are two
RSAEs, the higher-frequency RSAEs (HRSAE) and the
lower-frequency RSAEs (LRSAE) whose frequencies
are given by fHRSAE � ðn�m=qminÞvA=2�R and fLRSAE�
½ðmþ 1Þ=qmin � n�vA=2�R. When qmin decreases further
in the range of m=n < qmin < ðmþ 1=2þ �Þ=n, the
TAE gap is formed and the TAE frequency is given by
fTAE�vA=4�qTAER, where qTAE¼ðm�1=2Þ=n. Figure 55
shows a schematic diagram of AE evolution. It is important to
note that the AE amplitude becomes bigger during the tran-
sition from the RSAE to the TAE mode. The RSAE mode is
used to determine qmin (Sharapov et al., 2001).

A unique n ¼ 0 chirping mode was observed in the JET
ion cyclotron resonance frequency experiment, where an
energetically inverted ion distribution function was formed
in the high-field side. Berk et al. (2006) explained it as a
global geodesic acoustic mode.

3. Nonlinear Alfvén eigenmodes

Interaction of AEs with energetic particles produces radial
transport or loss of fast ions (Duong et al., 1993), damage to
the first wall (White et al., 1995), and reduction of the fusion

FIG. 55 (color online). Amplification of AE amplitude by

RSAE-TAE interaction and the RSAE-TAE diagram. From

Takechi et al., 2005.
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reaction (Shinohara et al., 2001; Ishikawa et al., 2007).

These processes may become strongly nonlinear. There are

typically four nonlinear behaviors: (1) saturation, (2) limit

cycle oscillation, (3) formation of a chaotic nonlinear state,
and (4) explosive growth with mode frequency sweeping.

Type 4 was observed by Shinohara et al. (2001); see Fig. 56.
The so-called Berk-Breizman (BB) model provides a clear

view of the nonlinear behavior of AEs, which naturally ex-

plains type -4 instability (Berk et al., 1999). Berk et al. (1995)

gave a simplified Lagrangian formalism for wave-particle
interaction. The Lagrangian for charged particles in an elec-

tromagnetic (EM) field is given by L ¼ Lw þ LEP, where Lw

andLEP are the Lagrangians for plasma particles and energetic

particles, respectively. Each Lagrangian is a summation of

free-particle, field-particle, and field Lagrangians. A simpli-

fied Lagrangian is obtained by assuming an adiabatic response
for the background plasma. Lw is approximated by the qua-

dratic form of the wave amplitude and its contribution can be
regarded as a part of the electric field ~E.

The nonlinear behavior of AEs is determined by a com-
petition among drive by resonant particles, external damping,

particle relaxation to recover positive df=dv, and particle
trapping to smooth it. Chirping solutions occur in the rare
collision regime when a hole and clump structure is formed in

phase space (Berk et al., 1999). Lesur et al. (2009) devel-
oped a code to solve the corresponding full-f and delta-f
Vlasov equations numerically and explained the frequency

sweeping (FS) as shown in Fig. 57. This shows the effective-
ness of the BB model and also the importance of collisional
drag and diffusion in velocity space (Lilley et al., 2009;

Lesur et al., 2010).

E. Stability of the current hole

The CH is an interesting structure formation in the toka-
mak magnetic configuration, which is robust against pertur-

bation. We briefly describe its equilibrium, ideal, and resistive
MHD stabilities.

1. Equilibrium bifurcation

Takizuka (2002) described the dynamics of equilibrium

bifurcation to a CH. CH operation is created by strong heating
during the current ramp, leading to the buildup of a large
bootstrap current (Fujita et al., 2001) or noninductive CD

(Hawkes et al., 2001) associated with a negative Ohmic
current with negative E� . This negative E� penetrates to the

plasma center, and the central J� becomes very low but

cannot be negative due to the loss of equilibrium with the
nested flux surface. However, an axisymmetric multimagnetic
island (AMMI) equilibrium with the slightly negative J� can

exist in CH operation (see Fig. 58).
A number of investigations of AMMI equilibrium have been

published since then, such as those by Martynov et al. (2003),
Wang et al. (2004), and Rodrigues et al. (2005). Rodrigues

et al. (2007), in particular, gave a theoretical calculation show-
ing excellent agreement with the JT-60U result.

2. Resistive stability and the � limit

One of the important CH characteristics is a current clamp

to J� � 0 (Fujita et al., 2005). Huysmans et al. (2001)

FIG. 56. Fast frequency sweeping (FS) mode observed at JT-60U.

From Shinohara et al., 2001.

FIG. 57 (color online). Comparison of fast FS mode in JT-60U

and simulation using the BB model. From Lesur et al., 2010.

FIG. 58 (color online). Axisymmetric trimagnetic island equilib-

rium. From Takizuka, 2002.
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calculated the time-dependent current diffusion using the
reduced MHD equation. It was found that the central current
density is clamped to nearly zero because of the n ¼ 0 low-m
resistive instabilities when negative current density is ex-
pected, without taking into account any of these modes, as
shown in Fig. 59. The growth rate is largest for m ¼ 1 and
scales as 	� 
1=3 (as for the internal kink mode), while 	�

3=5 for the m ¼ 2 mode (as for the TM).

While there is no confinement inside the CH, it is
possible to sustain high plasma pressure via dP=dr outside
the CH. In fact, it was found that the stability limit is not
very different between the strong-reversed-shear case with
qð0Þ=qmin ¼ 20 [the model equilibrium for the CH since
there is no equilibrium solution for qð0Þ ¼ 1] and the
moderate-reversed-shear case with qð0Þ=qmin ¼ 2 (Ozeki
et al., 2003a). The standard ideal MHD stability calcula-
tion for the CH by Ozeki et al. (2003b) showed that the
beta limit could be �N � 5.

Chu et al. (2004) showed using the ideal MHD potential
energy that the plasma behaves as if it were bordered by an
extra internal vacuum region.

F. Magnetohydrodynamics summary

The control of ideal, resistive, and kinetic MHD is an
essential element of fusion research. For three types of ad-
vanced tokamak operation (WS, NS, and CH) to realize
efficient steady-state operation, ideal MHD modes such as
peeling and ballooning modes for edge plasma, infernal
modes for core plasma and BLMs for ITB, resistive MHD
modes such as NTMs, DTMs, and RWMs, and kinetic MHD
modes such as TAEs and RSAEs are well understood, includ-
ing the control knob, while some kinetic MHD modes are not
yet completely understood. The key issue is that the plasma
profile does not match the optimum profile for high-beta
advanced tokamak operation since the profile is determined
by the turbulent transport. Hence, the understanding of tur-
bulent transport is essential for optimization of the operation
steady-state tokamaks.

VI. PERPENDICULAR TRANSPORT IN TOKAMAKS

The MHD stability physics of advanced tokamaks de-
scribed above tells us that the plasma pressure profile must

be controlled to avoid MHD modes and hence to realize a
SSTR. Control of the temperature and density profiles re-
quires a basic understanding of transport processes across the
flux surface and identification of key parameters.

Energy and particle transport across a magnetic surface is
governed by microinstabilities (Tang et al., 1978). Drift
waves (Horton et al., 1999; Yoshizawa et al., 2001) are the
most likely candidates for turbulent transport in tokamaks and
flow shear (Terry et al., 2000) is the key to reduction of
turbulent transport. The zonal flow (Diamond et al., 2005;
Fujisawa, 2009) plays an essential role in realizing fusion burn
at ITER (Lin et al., 1998). We now review recent progress.

A. Turbulent transport

1. Self-organized criticality

Heat and particle transport in tokamaks is governed by
turbulent transport. Stiffness of the temperature profile is
observed in the L mode, which is closely related to the
existence of a critical temperature gradient in the toroidal
ITG, TEM, and electron temperature gradient (ETG) modes,
and turbulent heat transport is produced by avalanches, analo-
gous to sand avalanches in a sand pile as discussed by Bak
et al. (1987) as a typical example of self-organized criticality
(SOC).

Diamond et al. (1995) clarified the dynamics of the
turbulent plasma transport near marginal stability. If the
initial dT0=dr profile (shown by the dotted line in Fig. 60)
is close to the critical temperature gradient dT=drjc, the
superposition of a void (�T < 0) causes strong destabilization
of the critical temperature gradient and the instabilities in the
inner front lead to the inward propagation of the void. If a
bump (�T > 0) is superposed, dT=dr in the outer front
becomes larger, leading to an outward propagation of the
bump. Diamond et al. noted that the heat flux q must be
invariant under the dual transformations x ! �x and �T !
��T; this was called ‘‘joint reflection symmetry’’ by Hwa
et al. (1992). This symmetry leads to a symmetric probability
distribution of the void and bump.

Garbet et al. (1998) clarified the importance of heat-flux-
driven simulation for SOC, showing the existence of an
avalanche, while Candy et al. (2003) indicated the avalanche
in a gyrokinetic fixed profile simulation. A gyrokinetic full-f
Vlasov simulation of heat-flux-driven toroidal ITG turbu-
lence by Idomura et al. (2009) clarified an important feature
of self-organized criticality.

While sand collapses in a sand pile exhibiting equal
probabilities of bump and void propagation, the relative

FIG. 60 (color online). Bump and void avalanches near marginal

stability.

FIG. 59. Time evolution of central current density with and

without resistive m=n ¼ 1=0 modes. From Huysmans et al., 2001.
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occurrence of bump and void propagation varies in plasma
turbulence through the change in dEr=dr. The zeroth-order
force balance equation (74) using the neoclassical expression
for residual poloidal flow is shown to be still valid on average
even under plasma turbulence (Idomura et al., 2009), and is

u�i ¼ 1

B�

�
Er � 1

eZini

dPi

dr
� K1

eZi

dTi

dr

�
(118)

in the cylindrical approximation, where K1 is given by
Eq. (64). This radial force balance means that Er will balance
the other two terms on the right-hand side as long as there is
no toroidal rotation drive (u�i is determined by the toroidal

momentum balance equation). Therefore, an important addi-
tional constraint for plasma turbulence is that Er shear should
build up in proportion to temperature curvature during void or
bump formation, namely, dEr=dr� cd2Ti=dr

2, where c > 0
is constant.

The void has positive temperature curvature (d2Ti=dr
2 > 0)

and the bump has negative temperature curvature
(d2Ti=dr

2<0), so that the Er shear structures with voids and
bumps for the cases of positive and negative background
dEr0=dr become as shown schematically in Fig. 61. Selective
avalanche occurs in caseswhere jdEr=drj is weakened by voids
and bumps.

In Fig. 62, two kinds of heat flux propagation are identi-
fied; one is an outward-propagating bump and the other is an
inward-propagating void. When there is no Er shear, outgoing
bumps and incoming voids occur equally and cross each other
during their radial propagation, which is a manifestation of
joint reflection symmetry. But this symmetry breaks down
when there is a gradient dEr=dr in the plasma as described
above, and selective avalanches occur. Even in a linear
device, an avalanche or streamer (state of bunching of drift
waves) is formed through nonlinear phase locking of the
major triplet modes as shown by Yamada et al. (2008).

2. Ion temperature gradient turbulence

While earlier experimental work by Artsimovich (1972)
and Murakami et al. (1979) indicated that ion thermal
transport is close to neoclassical, anomalous ion thermal
transport has been observed in DIII by Groebner et al.
(1986) and was followed by large tokamak experiments like
the TFTR supershot by Zarnstorff et al. (1989). Recent JET
experiments by Mantica et al. (2009, 2011) showed clear
evidence of a critical temperature gradient in ion transport
(see Fig. 63).

a. Critical dTi=dr and linear mode structure

The ITG is a drift wave rotating in the ion diamagnetic
direction and is a primary candidate for anomalous ion
thermal conduction and SOC, with its critical temperature
gradient dTic=dr for destabilization. Romanelli et al. (1989)
solved the ion-drift kinetic equation using a ballooning trans-
formation and derived an approximate expression for dTic=dr
in terms of LTi

¼ Ti=ðdTic=drÞ in the flat density regime:

R=Ln < 2ð1þ Ti=TeÞ [Ln ¼ n=ðdn=drÞ] in a circular
plasma. They also showed that the dTi=dr observed by
Groebner et al. (1986) is close to the theoretical dTic=dr
given by R=LTi

¼ 4
3 ð1þ Ti=TeÞ. Guo et al. (1993) proposed

a combined formula including the Hahm et al. (1989) slab
ITG threshold, which does not quite reproduce the numerical
slab ITG threshold. A more refined formula for the critical
temperature gradient can be obtained by just adding two
terms including the impurity effect implied by the ETG
formula (128) as

FIG. 61 (color online). Symmetry breaking of void and bump

avalanches by dEr shear.

FIG. 62 (color online). Gyrokinetic full-f simulation of toroidal

ITG turbulence, showing outward propagation of the bump where

dEr=dr > 0 and inward propagation of void where dEr=dr < 0.
From Idomura et al., 2009.

FIG. 63 (color online). Normalized ion heat flux as a function

of R=LTi for different toroidal rotations at JET. From Mantica

et al., 2011.
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R=LTi
¼ ð1þ �iÞð1:33þ 1:91s=qÞ; (119)

where �i ¼ Ti=TeZeff , and s and q are the magnetic shear and
safety factor, respectively.

Romanelli et al. (1993) further analyzed the radial struc-
ture of toroidal ITG showing that the ITG has a radially
elongated structure with a characteristic radial correlation
length Lr � ð�iLÞ1=2 due to toroidal coupling. So toroidicity
significantly influences the linear mode structure of the ITG.
Such a radially elongated semiglobal structure tilted in the
poloidal direction was also reported in the gyrokinetic simu-
lation by Parker et al. (1993). Kishimoto et al. (1996)
discussed this semiglobal structure of toroidal ITG related
to SOC. In order to treat accurate eigenmodes efficiently in
toroidal ITG modes, Idomura and co-workers developed a
quasiballooning representation for ITG turbulence (Idomura
et al., 2003) originally developed for the linear MHD solver
by Gruber et al. (1981). Figure 64 shows a typical example of
a recent gyrokinetic simulation by Idomura et al. (2003).

In an axisymmetric system, the electrostatic potential ~�
can be expressed as a summation of poloidal harmonics with

harmonic amplitude ~�lðqÞ constructed by the eigenfunction

for l ¼ 0, ~�0ðnq�mÞ peaked at q ¼ m=n, and assuming a
translational symmetry similar to the Bloch function in a
crystal lattice (Kittel, 1971; Zakharov et al., 1979),

~�ðr; �; �Þ ¼ Xþ1

l¼�1
~�lðqÞeiðmþlÞ�e�in� ; (120)

~�lðqÞ ¼ að�qÞ ~�0ðnq�m� lÞ; (121)

where each harmonic is located in the region with q ¼ ðmþ
lÞ=n. Here q is the safety factor used as a radial coordinate,
�q ¼ l=n, að�qÞ is the slowly varying amplitude corre-
sponding to the envelope of modes in Fig. 64. This is called
the ballooning eigenfunction, originally developed for the
ideal MHD ballooning mode. This translational symmetry
holds except at the mode edge. This translational symmetry
comes from the dense overlap of poloidal harmonics and
breaks down when magnetic shear is very weak, as in the
infernal mode discussed in Sec. V.C.1.

b. Zonal flow in toroidal ion temperature gradient turbulence

Zonal flow is E� B flow with toroidally (n ¼ 0) and
poloidally (m ¼ 0) symmetric but radially varying electric
potential fluctuation with nearly zero frequency and is im-
portant in regulating turbulence (Lin et al., 1998). Extensive
reviews of theories and experiments have been given by
Diamond et al. (2005) and Fujisawa (2009), respectively.
Zonal flow in drift wave turbulence was first predicted by
Hasegawa et al. (1979) from the energy cascade of the
Hasegawa-Mima equation (Hasegawa et al., 1977) and its
similarity to the geostrophic vortex equation (Charney
eqation) of the Jobian atmosphere, and was confirmed by
numerical simulation of the Hasegawa-Mima equation with
dissipation (Hasegawa-Wakatani equation) in the cylindrical
geometry (Hasegawa et al., 1987). Zonal flow does not
produce radial transport due to its symmetry and more im-
portantly can stabilize plasma turbulence via the E� B flow
shear.

Chen et al. (2000) clarified the dynamics of zonal flow
generation by use of the modulational instability in toroidal
ITG turbulence. Four waves (pump wave, zonal flow, and two
sideband waves) affect this modulational instability. As de-
scribed in Eq. (120), the toroidal ITG with a single n value
consists of a set of poloidal harmonics oscillating together
with a fixed phase relation. So the zonal flow, the pump wave,
and the sidebands can be expressed as follows [að�qÞ ¼ 1 is
assumed by Chen et al. (2000)]:

~�ZF ¼ ~�ZF
0 ðxÞeikrr�i�t; (122)

~�p ¼ Xþ1

m¼�1
~�p
0 ðxÞeiðm��n��!0tÞ; (123)

~�� ¼ Xþ1

m¼�1
~��
0 ðxÞei½m��ðn�þ!0Þþikrr��t�: (124)

Here x ¼ nq�m. Sideband modes with (radial wave num-
ber, toroidal mode number, frequency) ¼ ðþkr;þn;!0þ�Þ
and ðþkr;�n;�!0 þ�Þ interact to produce zonal flow
ðþkr; n ¼ 0;�Þ.

In the toroidal geometry, Rosenbluth et al. (1998) showed
that this zonal flow can have an undamped component due to
the neoclassical effect, which is found to be an important
mechanism in regulating the saturation level of turbulence
and associated radial heat transport,

up
upð0Þ ¼

1

1þ 1:6q2=�0:5
: (125)

FIG. 64. (a) Eigenmode structure in poloidal cross section.

(b) Radial harmonics of toroidal ITG with n ¼ 15 and a=�i ¼
324. From Idomura et al., 2003.
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The kinetic equilibrium of the tokamak may be character-
ized by a canonical Maxwellian distribution fCMðP�; �;�Þ ¼
CCMðP�Þ exp½��=TaðP�Þ�, where P�, �, and � are the

canonical angular momentum, kinetic energy, and magnetic
moment, respectively. Use of this canonical Maxwellian is
important in delta-f simulation to eliminate spurious growth
of the zonal flow (Idomura et al., 2003). The accurate
kinetic equilibrium is the neoclassical equilibrium with
self-consistent Er (Idomura et al., 2009).

The toroidal effect (especially at high q) sometimes inhib-
its this zero-frequency zonal flow (hereafter- called the zonal
flow) and produces the so-called geodesic acoustic mode
(GAM), which is an oscillating zonal flow through geodesic
coupling to the m ¼ 1, n ¼ 0 pressure perturbation, first
predicted by Winsor et al. (1968) and reconsidered by
Hallatschek et al. (2001). Zonal GAM flow vE is larger on
the outside of the torus and smaller on the inside because B /
1=R. This leads to a density perturbation ~n proportional to
�r � v? ¼ ðE�BÞ � rB2=B4, which produces parallel
pressure perturbation p. The coupled evolution equations
for vE (zonal GAM flow) and the perturbed pressure p in a
toroidal plasma with circular cross section are (Miyato et al.,
2004)

@hvEi
@t

¼ 1

r2
@

@r
r2h~vEr~vE�i þ�0�

neq

1

r2
@

@r
r2h ~Br

~B�i

� 2

neq

a

R
hp sin�i; (126)

@

@t
hp sin�i ¼ �h½ ~�; ~p� sin�i þ ð�þ �Þpeq

a

qR
hv cos�i

þ ð�þ �Þ a
R
peqhvEi: (127)

Here h�i is the flux surface average, hvEi ¼ @�0=@r is the
GAM flow, ~vEr ¼ �ð1=rÞ@ ~�=@� and ~vE� ¼ @ ~�=@r are tur-
bulent E� B drift velocities in the radial and poloidal direc-
tions, respectively, hp sin�i is the ðm; nÞ ¼ ð1; 0Þ pressure
perturbation, neq is the equilibrium density, � is the beta

value, ½f; g� is the Poisson bracket, � ¼ 5=3, � ¼ Te=Ti,
and peq is the equilibrium pressure. The three terms on the

right-hand side of Eq. (126) are the Reynolds stress, Maxwell
stress, and the geodesic transfer term, respectively. The three
terms on the right-hand side of Eq. (127) are the nonlinear
coupling of pressure perturbation to turbulence, sound wave,
and zonal flow terms, respectively. Scott (2003) showed that
while turbulent Reynolds stress always transfers energy from
small eddies to the larger-scale zonal flows, the geodesic
curvature couples the zonal flows to finite-kk pressure side-

bands, by which the nonlinear E� B pressure advection
(vE � r~pe) quickly delivers the free energy in the zonal
flow and sidebands back to the turbulence, and the growth
of the zonal flow amplitude is limited. This is called the
geodesic transfer effect.

A global electromagnetic Landau-fluid ITG simulation by
Miyato et al. (2005) clarified the basic properties of the
GAM. While strong zonal flow dominates in the low-q
regime, zonal flow is weak and the GAM is dominant in
the high-q regime [see Fig. 65(a)]. The zonal flow energy is
supplied mainly by the Reynolds stress drive (� h~vErr2 ~�i�

hvEi) at low �, and zonal flow energy is transferred to a (1,0)
pressure perturbation through geodesic transfer for both zonal
flow and GAM [see Fig. 65(b)]. The energy supply for
hp sin�i is from zonal and/or GAM flows and is transferred
mainly to the sound wave term hv cos�i in the case of zonal
flow, while it is transferred mainly to turbulence through
nonlinear coupling between electrostatic potential and pres-
sure perturbation in the case of the GAM.

FIG. 65. (a) Radial variation of normalized zonal flow, GAM, and

sound wave frequencies [f½vi=a�, fGAM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�þ �ÞTeq

q
ða=2�RÞ,

and fsound ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ �ÞTeq

q
ða=2�qRÞ]. (b) Radial variation of time-

averaged zonal flow drives. From Miyato et al., 2005.

FIG. 66. Equivalent ion thermal diffusivity vs R=LT from the

Lawrence Livermore National Laboratory (LLNL) gyrokinetic

simulation, showing the Dimits shift, as compared with the 1994

Institute of Fusion Study/Princeton Plasma Physics Laboratory

(IFS/PPPL) gyrofluid simulation. From Dimits et al., 2000.

M. Kikuchi and M. Azumi: Steady-state tokamak research . . . 1841

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



Direct numerical simulation of gyrokinetic ITG turbulence

showed that, near the linear stability boundary, the ITG mode

is completely stabilized. In the slightly unstable regime, the

ITG grows initially but is quenched by the induced zonal

flow. This zonal flow is strong enough to reduce ion thermal

transport to the neoclassical level (Dimits et al., 2000). The

dynamics between zonal flow and turbulence upshifts the

critical temperature gradient from that for linear stability,

R=LTclin, to R=LTclin þ�R=LTc as shown in Fig. 66, and

�R=LTc is called the Dimits shift (Dimits et al., 2000).

In the Dimits shift regime (R=LTclin < R=LT < R=LTclin þ
�R=LTc), free energy from dT=dr is transferred mainly to

zonal flow and not to ITG turbulence.
Miki et al. (2007) showed an interesting transient dynami-

cal interplay between GAM and zonal flows in the Dimits shift

regime and beyond by a Landau-fluid simulation with fixed

profiles as shown in Fig. 67, which produces intermittent

transport called GAM intermittency. In the Dimits shift re-

gime, the zonal flow energy increases with time while the

GAM and turbulence energies are reduced and quenched. On

the other hand, GAMoscillation persists above theDimits shift

regime, giving quasisteady intermittent transport driven by the

GAM. Ido et al. (2006) showed that the GAM-turbulence

interaction can produce intermittent transport. Conway et al.

(2011) showed that interplay between GAM and zonal flow is

also important for the L- to H-mode transition. Plasma elon-

gation has a stabilizing effect on the toroidal ITG mode both

linearly and nonlinearly, and both the zonal flow and GAMs

increase with elongation, which leads to a reduction of turbu-

lent transport (Angelino et al., 2008, 2009).

3. Electron temperature gradient turbulence

A significant departure of electron heat transport from

neoclassical theory has been observed since the early experi-

ments by Artsimovich (1972). Possible candidates for turbu-

lent electron transport are the TEM (Kadomtsev et al., 1971)
(k?�i � 1 in TEM) and the toroidal ETG mode (k?�e � 1 in
ETG). While ITG turbulence produces turbulent electron heat
transport as well as ion heat transport, it is too small to
explain the measured electron heat transport.

For the electron heat transport physics, important experi-
mental work has been done at Tore Supra. The first observa-
tion of the existence of a critical temperature gradient
dTe=drjc for electron transport was reported by Hoang
et al. (2001) and showed dependence of dTe=drjc on the
magnetic shear as R=LT ¼ 5þ 10jsj=q, where s ¼
rdq=dr=q is the magnetic shear (see Fig. 68).

Turbulent transport by ETG is thought to be much smaller
than that by ITG due to its small scale k��e � 1 until year
2000. Dorland et al. (2000) and Jenko et al. (2000a) showed
a large level of ETG turbulent transport (60 times gyro Bohm
transport) associated with a radially elongated streamer,
whose saturation mechanism is explained as a Kelvin-
Helmholtz instability, when the simulation is done with fixed
profiles. Jenko et al. (2002) showed that the following
theoretical critical temperature gradient dTec=dr in toroidal

FIG. 67 (color online). Transient GAM–zonal-flow interplay in

the Dimits shift regime R=LT ¼ 3:83 and above R=LT ¼ 4:47.

From Miki et al., 2007.

FIG. 68. Electron heat flux as a function of R=LT showing the

existence of critical electron temperature gradient. The open sym-

bols correspond to r=a ¼ 0:2, 0.4, and 0.6, respectively, and the full

symbols correspond to another series of discharges. From Hoang

et al., 2001.

FIG. 69. Comparison of radial profile of dTe=drjc between theory

and experiment. From Jenko et al., 2002.
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ETG is consistent with the measurement by Hoang et al.
(2001) as shown in Fig. 69:

ðR=LTeÞcrit ¼ ð1þ �eÞð1:33þ 1:91s=qÞ; (128)

where �e ¼ ZeffTe=Ti, and s and q are the magnetic shear and
safety factor, respectively.

An accurate simulation of ETG turbulence requires a large
number of particles and consistent profile evolution. Since the
scale length of toroidal ETG is much smaller than that of
toroidal ITG, gyrokinetic simulations of ETG turbulence
using the quasiballooning formalism by Idomura et al.
(2005) attain sufficient accuracy more efficiently and allow
consistent (but not flux-driven) profile evolution. The simu-
lations showed that the initial turbulence level is close to the
result of the flux tube simulation of Jenko, where neither
zonal flow nor n coupling has a significant effect. Saturation
of ETG turbulence is determined by the quasilinear modifi-
cation of dTe=dr close to dTe=drjc.

a. Linear mode structure of toroidal electron temperature gradient

modes

The ETG mode is characterized by a short wavelength,
k��te � 1 and k��ti � 1, where k� is the poloidal wave
number. In this mode, the kinetic ion response vanishes and
the ion response becomes adiabatic (Idomura et al., 2000;
Jenko et al., 2000b).

In the quasiballooning mode representation of Idomura
et al. (2005), � is expressed as

�ðr; �; �Þ ¼ X
n

�nðr; �Þe�in�þiSð�Þ; (129)

Sð�Þ ¼ nqðrsÞ�ð�Þ; (130)

�ð�Þ ¼ 1

qðrsÞ
Z �

0

B � r�

B � r�0

��������r¼rs

d�0: (131)

Here �nðr; �Þ becomes a slowly varying function, q is the
safety factor, � is a poloidal straight field line angle at r ¼ rs,
and rs is the radius of the reference magnetic surface where
the ETG may be most unstable (namely, the radius where
dTe=dr is largest). In order to satisfy the periodic boundary
condition in the poloidal direction, �nðr; �Þ is solved under
the boundary condition of �nðr; 0Þ ¼ �nðr; 2�ÞeiSð2�Þ.

Figure 70(a) shows a typical linear eigenmode structure of
toroidal ETG in poloidal cross section. The mode shows a
ballooning character, having a large amplitude in the outer
part, and has a radially elongated structure similar to the
eigenfunction of toroidal ITG but is much finer in the poloidal
direction with typical length �100�e, which is well ex-
pressed by the ballooning eigenfunction. As shown in
Fig. 70(b), poloidal harmonics densely overlap radially for
positive shear. In the case of the NS plasma, the ETG
eigenmode becomes almost a single mode if dT=dr is largest
near the qmin location.

b. Streamer and zonal flow in the electron temperature gradient

turbulence

In the NS configuration, the ETG shows two different
structures, streamer and zonal flow. Figure 71 shows a non-
linear toroidal ETG simulation with the profile evolution in a
NS plasma (Idomura et al., 2005). In the positive-shear

region, nonlinear toroidal ETG turbulence produces a
streamer through coupling among poloidal harmonics, which
exhibits a 3D turbulence. While zonal flow is excited in ITG
turbulence by the modulational instability in a positive-shear
tokamak, the zonal flow generation is weak for ETG turbu-
lence in the case of positive shear. However, near the qmin in
the NS plasma, nonlinear ETG turbulence is dominated by a
single poloidal mode, which produces zonal flow through an
inverse cascade in 2D turbulence.

c. Zonal flow in s� 0 electron temperature gradient turbulence

When the distance between neighboring-mode rational
surfaces is much larger than the electron gyroradius, �r�
�te=s � �te, the ETG turbulent structure becomes two di-
mensional. The electrostatic gyrokinetic Vlasov-Poisson sys-
tem with gyrokinetic electron and adiabatic ion in the limit of

FIG. 70 (color online). (a) Poloidal cross section and (b) radial

harmonics of the linear toroidal ETG eigenmode in positive shear.

From Idomura et al., 2005.

FIG. 71 (color online). ETG turbulence structures of zonal flow

and streamers in NS plasma. From Idomura et al., 2005.
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kk ! 0 gives a Hasegawa-Mima (HM) (Hasegawa et al.,

1977) type of equation for the electron dynamics (Idomura
et al., 2006),

@

@t
ð�2

sr2
?�� ��Þ þ b�r?� � ð�2

sr2
?�þ lnn0Þ ¼ 0;

(132)

where the normalizations x=�te ! x, t�e ! t, e�=Te ! �,
and n0=hn0i ! n0 are made and �2

s ¼ 1þ �2
De=�

2
te and � ¼

Te=Ti. Here it should be noted that the main nonlinearity in
the original HM equation comes from E� B convection of
the ion polarization drift. Nonlinearity for this electron HM
(eHM) equation comes from the effects of Debye shielding,
electron polarization, and finite electron Larmor radius.

This eHM equation conserves the energy E ¼ 1
2 �

h�2
sðr?�Þ2 þ ��2i and the potential enstrophy W ¼ 1

2 �
h�2

sðr2
?�Þ2 þ �ðr?�Þ2i. The nonlinear term b�r?� �

�2
sr2

?� leads to an inverse cascade. Balancing with the linear

dn0=dr term gives a critical radial wave number for energy
condensation, kr � k�, equivalent to the Rhines scale length

(Rhines, 1975), which is zonal flow in shearless ETG
turbulence.

4. Trapped-electron mode and multiscale turbulence

a. Trapped-electron mode

In collisionless ITG turbulence, a passing electron behaves
almost adiabatically while a trapped electron does not, as
shown by Dannert et al. (2005) using the GENE code. As a
result there is some modification of the ITG by the trapped
electron. This trapped electron has an important effect in
exciting TEMs, which is an ion-scale (k?�i � 1) instability.
The TEM is destabilized by the resonance between the wave
and the toroidal precessional drift of trapped electrons and
usually rotates in the electron diamagnetic direction.

Gyrokinetic module developments are successful in in-
cluding trapped-electron dynamics; examples are the linear
stability comparison (Rewoldt et al., 2007) between the GT3D

code (Idomura et al., 2003) and the GTC code (Lin et al.,
1998), quasilinear formulations related to particle transport
(Bourdelle et al., 2007; Fable et al., 2008), and small-scale
gyrokinetic turbulence simulation (Dannert et al., 2005).
Inclusion of trapped-electron dynamics in the gyrofluid
code TGLF (Staebler et al., 2005) has also been successful.

TEMs also have a critical temperature gradient R=LTe
,

which depends on R=Lne and the trapped-particle fraction

ft. For the flat density regime, the ITG is the most unstable
electrostatic mode. For large R=Lne (peaked density), the ITG
tends to be stabilized while the TEM is destabilized by the
density gradient. Depending on the local plasma parameters,
ITG modes and TEMs may coexist, especially at large R=LT

as shown by Garbet et al. (2004) (see Fig. 72). Ryter et al.
(2005) examined critical temperature gradient transport at
ASDEX-U showing that the ETG is stable [the critical tem-
perature gradient given by Eq. (128) is not exceeded in their
case] and can be explained by TEMs.

Since the TEM is destabilized by the resonant interaction
of the modes with the trapped electron in its toroidal pre-
cession, the TEM can be stabilized by modifying the toroidal
precession by the finite-beta (or Shafranov shift) effect

(Rosenbluth et al., 1971). Here the toroidal precession
frequency h _�i is given by

h _�i ¼ 1

ea

@J=@c

@J=@E
; (133)

where J ¼ R
mavkdlk, c , and E are the longitudinal adia-

batic invariant, poloidal flux, and particle kinetic energy,
respectively. Since NS also changes the trapped-electron
precession drift, Beer et al. (1997) tried to explain the ERS
improved confinement (Levinton et al., 1995) by a combi-
nation of NS and Shafranov shift effects.

Recently, Camenen et al. (2007) found a factor of 2
improved electron confinement in L-mode discharges at
TCV by negative triangularity. Marinoni et al. (2009) ana-
lyzed the effect of change in the trapped-electron precession
drift by negative triangularity on TEM turbulent transport to
explain this improved confinement.

b. Multiscale turbulence

In Secs. VI.A.2 and VI.A.3, we discussed the current
understanding of ITG and ETG turbulence simulations,
which assume an adiabatic electron for the ITG [�fe=FM ¼
e��ðx; tÞ=Te] and an adiabatic ion for the ETG [�fi=FM ¼
�Zie��ðx; tÞ=Ti].

Candy et al. (2007) made a GYRO flux tube simulation of
the whole spectrum of low-� instabilities (ITG, TEM, and
ETG) showing that the adiabatic ion approximation in ETG
turbulence is not always a good one. One of the important
kinetic effects is zonal flow generation by a kinetic ion
treatment. On the other hand, backreaction of the ETG on
ITG turbulence is insignificant as predicted by Holland et al.
(2004). Gorler et al. (2008a) showed scale separation be-
tween the electron and ion in their ITG-ETG multiscale
simulation using the GENE code, and Gorler et al. (2008b)
also showed the significance of kinetic ions in ETG turbulent
transport. Multiscale gyrokinetic simulation of ITG, TEM,
and ETG turbulence is an active field for further development.

FIG. 72 (color online). Stability diagram of ITG and TEM modes

for Te ¼ Ti, trapped-electron fraction of 0.3, and collisionless limit

(�
 ¼ 0). From Garbet et al., 2004.
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5. Electromagnetic turbulence

An efficient steady-state tokamak reactor necessarily oper-

ates at high normalized beta. The thermal energy confinement

time showed strong degradation of �Eth
with �, �Eth

/ ��7=12,

using a saturated-Ohmic and NB-heated L-mode database

from ASDEX and JT-60 (Kikuchi, 1993). While the � de-

pendence of empirical thermal H-mode confinement scaling

is still evolving (Takizuka et al., 2006; McDonald et al.,

2008), dedicated confinement scaling experiments on � by

Urano et al. (2006) at JT-60U and Vermale et al. (2007) at

ASDEX-U showed strong degradation of energy confinement

with � close to the IPB98ðy; 2Þ scaling of B�Eth
/ ��0:9

(ITER Physics Expert Group, 1999).
Thus it is important to clarify the variation of turbulent

transport with �. As the plasma � increases, the plasma

turbulence exhibits an EM feature, which modifies especially

the ITG turbulence. There are two candidates for EM turbu-

lence, the kinetic ballooning mode (KBM) of Tang et al.

(1980) and the microtearing mode of Drake et al. (1977).
The linear stability of the KBM with the ideal ballooning

mode was analyzed by Hong et al. (1989), and its gyrofluid

turbulence simulation was given by Snyder et al. (2001).

Pueschel et al. (2008) showed that, depending on the pa-

rameters, the growth rate of the ITG is reduced as the plasma

beta increases and the ITG-TEM transition occurs (say, at

�� 1%), and finally transition to the KBM occurs (say, at

�� 1:3%). Nonlinear turbulent simulation of finite-� ITG

turbulence was undertaken by Pueschel et al. (2010), show-

ing that the Dimits shift due to zonal flow becomes larger

with � and stabilizes the ITG mode over a wide range of �.
This tendency is opposite to the experimental observation of

strong transport enhancement with �.
The microtearing mode was first studied by Drake et al.

(1977); it is driven by dT=dr in the collisional or semicolli-

sional regime and can be a potential candidate for electron

anomalous transport due to a mechanism suggested by

Richester et al. (1978) with ~Bx=B0 � �e=LTe
(Drake

et al., 1980). The importance of the microtearing mode was

first noted by Kotschenreuther et al. (2000) in the spherical
tokamak (ST). Applegate et al. (2007) clarified the key
driving parameters as � and magnetic drift, which are not
unique to the ST. Guttenfelder et al. (2011) showed that
nonlinear gyrokinetic microtearing mode simulation gives
transport comparable to results from NSTX (see Fig. 73).

Doerk et al. (2011) also showed through gyrokinetic
microtearing mode simulation that electron heat transport
by the microtearing mode follows the formula by Richester
et al. (1978) and can be important in standard tokamaks.
Understanding electromagnetic turbulent transport has just
started and needs further development for the quantitative
understanding of � degradation in thermal confinement.

B. Transport barriers

1. Turbulence suppression

a. Flow shearing of turbulence

The turbulence can be affected by the flow shear and also
by the flow itself, the latter through the Coriolis and centrifu-
gal forces. Flow shear suppression of turbulent transport was
discovered by Biglari et al. (1990). Hahm et al. (1994, 1995)
gave a condition for flow-shear-induced fluctuation suppres-
sion as follows:

�!T 	 !E; (134)

!E ¼
���������c

��

d2�ðc Þ
dc 2

��������; (135)

where �!T and !E are the decorrelation rate of the ambient
turbulence and the shearing rate due to flow shear, respec-
tively. Here �r ¼ �c =RB� and R�� are radial and the
toroidal correlation lengths of turbulence, respectively.
The correlation length perpendicular to B, L?, is given as
L�1
? �m=r ¼ nq=R� B�=B���R. If the radial correlation

length of turbulence �r � L? (Waltz et al., 1994), the
shearing rate is given by !E ¼ ðR2B2

�=BÞd2�=dc 2 ¼
ðRB�=BÞd½ðd�=drÞ=RB��=dr.

There are two sources of flow shear in tokamaks, namely,
zonal flow driven by turbulence itself (Diamond et al., 2005)
and global Er shear determined by the radial force balance.
The zeroth-order radial force balance equation (74) [or
Eq. (118)], which is robust even in turbulent plasma
(Idomura et al., 2009), plays an important role in the shearing

FIG. 73 (color online). Normalized electron thermal diffusivity vs

a=LTe
from gyrokinetic simulation compared with experiment.

From Guttenfelder et al., 2011.

FIG. 74 (color online). Schematic diagram of positive feedback

effect on Er from dPi=dr, dTi=dr, and v� .
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rate !E in tokamaks as a positive feedback effect of turbulent
transport suppression by flow shear (see Fig. 74).

When the ITB builds up, both dPi=dc and dTi=dc in-
crease. If there is no change in external toroidal rotation drive,
the radial electric field d�=dc builds up in response to
dPi=dc and dTi=dc . Therefore, Er shear is enhanced
when pressure curvature d2Pi=dr

2 and/or temperature curva-
ture d2Ti=dr

2 is formed. Once Er shear is enhanced, further
turbulence decorrelation occurs to enhance the ITB. This
positive feedback effect may lead to a steep ITB unstable to
MHD instability.

Toroidal angular flow !t ¼ ui � r� driven by either exter-
nal or intrinsic torque (by residual turbulence and turbulence
spreading) further produces a radial electric field. The toroi-
dal angular flow shear d!t=dr enters into the dynamics of the
positive feedback loop in ITB formation.

b. Precession deresonance of trapped-electron modes

For trapped-particle instabilities, the Shafranov
shift measured by � ¼ �q2Rd�=dr, magnetic shear
[s ¼ Rðdq=drÞ=q]-and negative triangularity have important
effects on the precession drift and are effective in reducing
resonance between wave and trapped-electron precession.

Taylor et al. (1993) reported very high confinement (the
so-called VH mode) at DIII-D associated with strong E� B
flow shear. They also suggested that in this core improved
confinement local shear reversal in the unfavorable curvature
region, high �p, and strong shaping are favorable for drift

reversal of trapped particles and stabilization of trapped-
particle modes. Recent TCV negative triangularity results
(Camenen et al., 2007; Marinoni et al., 2009) support the
effects of trapped-electron-drift modification on suppression
of TEM turbulence.

2. Edge and internal transport barriers

The formation of an ETB is associated with the H mode.
There are a number of review papers on theH mode (ASDEX
team, 1989; Connor et al., 2000) and radial electric field (Itoh
et al., 1996; Ida et al., 1998). The ETB in the H mode is
discussed in detail in the ITER physics basis (ITER Physics
Expert Group, 1999; Doyle et al., 2007) and has common
features with the ITB. A larger ETB width is preferable to
support large plasma energywith its pedestal. Recently, Urano
et al. (2008) concluded that the scaling of ETB width follows
�ped / a� 
0:2pol �0:5

p , where �
pol ¼ �pol=a. This scaling also

supports the high-�p operation adopted in the SSTR design.

The ITB was first discovered by Koide et al. (1994)
associated with core improved confinement with positive
magnetic shear (see Fig. 52). Its characteristics have been
discussed at WS by Koide et al. (1996), in a comparison
between WS and NS by Koide et al. (1998a), and in a
comparison between JT-60U and DIII-D NS by Koide
et al. (1998b). Sometimes the improved confinement inside
the q ¼ 1 surface discussed by Kamada et al. (1992) and by
Hugon et al. (1992) is also called ITB. A review of the ITB
has been given by Wolf et al. (2003).

Figure 75 is a typical profile with an ITB in a NS plasma.
Using the radial electric field expression (54), the E� B
shearing rate calculated using measured profiles is of the

order of !E � 105 s�1 as compared with vti=R� 2:7�
105 s�1, the ion thermal diffusivity inside the ITB is close

to neoclassical, and electron thermal diffusivity is also sig-

nificantly reduced in the NS plasma (Shirai et al., 1999,

2000). Here ‘‘neoclassical’’ means the formula obtained from

the moment equation (8.134) in Kikuchi (2011b) since the

Chang-Hinton formula (Chang et al., 1986) overestimates

the impurity effect. This steep ITB is associated with a jump

in the Er shear [see also Sakamoto et al. (2004)] due to the

temperature curvature formation later discussed as a curva-

ture transition by Ida et al. (2008).
A radial correlation measurement using a correlation re-

flectometer in a NS plasma by Nazikian et al. (2005) showed

a long correlation length Lr � 20 cm in the L-mode phase

and Lr 	 4 mm in the ITB. These characteristics seem to be

consistent with theoretical understanding of the avalanche

and streamer in the L mode and the E� B flow shear

turbulence decorrelation discussed above.

FIG. 75. ITB profiles in NS shear plasma and Er, �i, and �e

profiles. From Shirai et al., 1999.

FIG. 76. Difference in �i of ITBs in balanced, co- and counter-NB

injection in NS plasma. From Sakamoto et al., 2001.
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In the NS plasma, a steep ITB tends to be formed in
balanced neutral injection, while a wider and weaker ITB is
formed in the co-NB and counter-NB injection cases shown
in Fig. 76 by Sakamoto et al. (2001). Since too strong ITB

tends to trigger plasma disruption, control of the ITB strength
through the toroidal rotation drive was pursued by Sakamoto
et al. (2005).

The magnetic shear dependence of ITG heat transport
studied by Waltz et al. (1995) showed no particular role of
qmin but showed reduced transport with negative shear.
Breakup of the eigenmode across the qmin surface was dis-
cussed as a possible cause of ITB formation in a NS plasma
by Kishimoto et al. (1999) and in flux-driven gyrofluid
simulations of ITG turbulence by Garbet et al. (2001,

2002), but it may not be relevant due to the omission of the
nonresonant mode (Candy et al., 2004; Miyato et al., 2007).
Miyato et al. (2007) indicated stronger zonal flow excitation
at low qmin as an alternative candidate for ITB formation. At
present, there is no quantitative explanation of ITB formation
by gyrofluid and gyrokinetic simulations.

The formation of ITB starts at the central negative-shear
region and propagates just before the qmin location shown by
Koide et al. (1996) for the WS plasma and by Fujita et al.
(1998) for the NS plasma. These observations may be con-

sistent with the prediction by Lebedev et al. (1997) of a
density ITB. Sauter et al. (2005) showed control of electron
ITB through perturbation of the current profile at TCV.

VII. CONTROL ISSUES OF ADVANCED TOKAMAK

OPERATION

A. Density profile control

Density profile control is an important subject for steady-

state tokamak operation since dn=dr also drives the bootstrap
current and the fusion power density Pf / n2. For a fusion

reactor such as the SSTR, the power and particle balance in
the SOL requires high density outside the separatrix nejSOL �
ð6–8Þ � 1019 m�3 (Ueda et al., 1992). But it is preferable to
have a moderately peaked density gradient including a den-
sity ITB toward the core region.

Jenko et al. (2000a) found particle pinch (thermodiffu-
sion) in a nonlinear simulation for a collisionless sheared slab
plasma. Yancov (1994) proposed another mechanism called
turbulent equipartition predicting a velocity proportional to
the curvature of the magnetic field. Garbet et al. (2003)
showed the existence of particle pinches in a gyrofluid simu-
lation of ITG and TEM turbulence.

Thermodiffusion (or off-diagonal particle flux driven by
dT=dr) was reported by Nagashima et al. (1995) using

electron cyclotron resonance heating, which is the key for
density peaking in the collisionless regime (Jenko et al.,
2000b). Hoang et al. (2003) reported the existence of particle
pinch in the full CD plasma, where the neoclassical Ware
pinch (Ware et al., 1970) vanishes. This density peaking was
found to be related to low collisionality (Angioni et al.,
2003) and has been confirmed in many tokamaks (see
Fig. 77).

The quasilinear particle flux �QL determined using the

gyrokinetic equation was given by Angioni et al. (2009),

R�QL=ne ¼ DR=Ln þDTR=LTe
þ RVp; (136)

where �QL, D, DT , and Vp are the quasilinear particle

flux, particle diffusion coefficient, thermodiffusion coeffi-
cient, and convective velocity, respectively. This gives the
stationary condition of the density profile as R=Ln ¼
�ðDT=DnÞR=LT � RVp=Dn.

Fable et al. (2006) observed strong coupling between the
ne and Te profiles related to a strong inward pinch of a
thermodiffusive type at TCV. A moderately peaked density
profile is expected for ITER (Pereverzev et al., 2005), which

FIG. 77 (color online). Density peaking factor as a function of

effective collisionality. From Angioni et al., 2009.

FIG. 78 (color online). (a) Extended high bootstrap current frac-

tion discharge duration obtained by rotation control. From

Sakamoto et al., 2005. (b) Attainment of reactor-relevant

moderate-q95 high bootstrap current fraction discharge with wall

stabilization. From Sakamoto et al., 2009.
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is a good sign for SSTRs but further understanding of density
profile physics and density ITB is required.

B. Control of internal transport barrier strength

An integrated demonstration of a fully noninductive op-
eration with a large bootstrap current fraction is of primary
importance in realizing the steady-state tokamak reactor.
Significant progress has been made in large tokamaks such
as JT-60U (Sakamoto et al., 2005, 2009), as shown in Fig. 78,
and DIII-D (Murakami et al., 2006; Holcomb et al., 2009)
toward this goal. ITB-induced disruption works against main-
tenance of the reactor-relevant q95 regime [see Fig. 78(b)]
(Sakamoto et al., 2009) and further understanding of ITB
transport physics and its control is required.

C. Edge bootstrap current

Excitation of the edge bootstrap current in a collisionless
plasma (see Fig. 49) is problematic for the edge MHD
stability. Active reduction of the edge bootstrap current is
an important subject for future tokamak research. Fisch
(1984) proposed a current drive by phased pellet injection,
which could be applied to edge bootstrap current control.
Helander et al. (2001, 2006) actually proposed control of the
edge bootstrap current by up-down asymmetric heating and
pellet injection. To improve edge stability, we have to control
the edge bootstrap current.

VIII. SUMMARY

During the past 20 years, operating regimes relevant to the
steady-state tokamak reactor have been extensively explored.
We reviewed here mainly the physical understanding behind
the experiments on parallel transport, MHD stability, and
perpendicular transport related to the steady-state operation
of the tokamak. Progress has been quite remarkable com-
pared to that in the years before the creation of the reactor
concepts.

In particular, collisional parallel transport such as the
generalized Ohm’s law and neoclassical rotation and ideal
MHD including the continuous spectrum are now understood
fairly well. Intrinsic rotation driven by the Reynolds stress is a
new subject in parallel transport. The resistive and kinetic
MHD modes are now generally well understood although
some problems are left for future development. Gyrokinetic
theory and simulations have led to great progress in under-
standing the physics of electrostatic turbulence. But further
development is still needed in the area of multiscale turbu-
lence. Also the investigation of electromagnetic turbulence
has just started and EM turbulence seems somewhat different
from electrostatic turbulence. Flow shear suppression of
turbulence and the zonal and GAM flow paradigm help
toward overall understanding. Great effort should be placed
on the development of gyrokinetic EM multiscale turbulence
simulations and on clarification of turbulent physics for test-
ing against advanced tokamak experiments.

Figure 79 shows the control flow for steady-state tokamak
operation. The plasma control knobs are CD, magnetic per-
turbation (MP), fueling, heating, and torque drive. These lead

to the formation of pressure and temperature profiles, mag-
netic field structure, and flow structure. The plasma profile
and field and flow structures lead to the excitation of macro-
fluctuations and microfluctuations and cause backreactions to
the field and flow structures as well as the plasma profiles.
These are closely related to each other and many processes
are interlinked. Some physics elements are still not well
known, such as electromagnetic turbulence and some kinetic
MHD modes. To realize steady-state tokamak operation,
further understanding of the physics of field and flow struc-
tures, microfluctuations, and macrofluctuations is necessary.
Furthermore, detailed knowledge of the response of each
element is necessary. Since advanced tokamak operation
has various autonomous features and some conflicts between
MHD and transport, resolution of the issues related to the ITB
and ETB has to be addressed in parallel with individual
understanding of the physics.

This review deals only with core physics due to our limited
knowledge of edge, divertor, and plasma-wall interaction
physics and also page limits. But steady-state operation
requires control of divertor power handling, fueling, recy-
cling, tritium inventory through SOL or divertor plasma
control, and development of materials for the first wall and
divertor. A review of these important issues should be under-
taken in the near future to summarize the current status of
physics behind magnetic fusion research in steady-state to-
kamak reactor concepts.

LIST OF SYMBOLS AND ABBREVIATIONS

ITER Fusion experimental reactor under
construction in France

JT-60U JAERI tokamak 60 at Japan
JET Joint European Torus at UK
TFTR Tokamak Fusion Test Reactor at US
DIII-D Advanced tokamak facility at US
ASDEX
Upgrade

Tokamak facility at Germany

SSTR Tokamak reactor design at Japan

FIG. 79 (color online). Control flow for steady-state tokamak

operation. Plasma profile, field, flow, macrofluctuations, and micro-

fluctuations are interlinked and complex, while control knobs are

not plentiful.
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ARIES-I Tokamak reactor design at US
WS Weak shear
NS Negative shear
CH Current hole
ETB Edge transport barrier
ITB Internal transport barrier
N-NBI Negative-ion based NBI
NBCD Neutral beam current drive
ECCD Electron cyclotron current drive
NTM Neoclassical tearing mode
DTM Double tearing mode
RWM Resistive wall mode
SAR Shear Alfvén resonance
KAW Kinetic Alfvén wave
RAF Reduced activation ferritic steel
ELM Edge localized mode
BLM Barrier localized mode
RMP Resonant magnetic perturbation
TAE Toroidal Alfvén eigenmode
GAE Global Alfvén eigenmode
RSAE Reversed shear Alfvén eigenmode
SOC Self-organized criticality
ITG Ion temperature gradient
ETG Electron temperature gradient
TEM Trapped electron mode
KBM Kinetic ballooning mode
GAM Geodesic acoustic mode
SOL Scrape off layer
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APPENDIX

1. Friction and viscosity matrix

The normalized friction matrix for electron, ion, impurity,
and fast ion is as follows:

L̂¼

l̂ee11 l̂ei11 l̂eI11 l̂ef11 �l̂ee11 �l̂ei11 �l̂eI11

l̂ie11 l̂ii11 l̂iI11 l̂if11 �l̂ie11 �l̂ii11 �l̂iI11

l̂Ie11 l̂Ii11 l̂II11 l̂If11 �l̂Ie11 �l̂Ii11 �l̂II11

l̂fe11 l̂fi11 l̂fI11 l̂ff11 0 0 0

�l̂ee21 �l̂ei21 �l̂eI21 �l̂ef21 l̂ee22 l̂ei22 l̂eI22

�l̂ie21 �l̂ii21 �l̂iI21 0 l̂ie22 l̂ii22 l̂iI22

�l̂Ie21 �l̂Ii21 �l̂II21 0 l̂Ie22 l̂Ii22 l̂II22

2
666666666666666664

3
777777777777777775

: (A1)

The normalized viscosity matrix for electron, ion, impurity,
and fast ion is as follows:

M̂¼

�̂e1 0 0 0 �̂e2 0 0

0 �̂i1 0 0 0 �̂i2 0

0 0 �̂I1 0 0 0 �̂I2

0 0 0 �̂f1 0 0 0

�̂e2 0 0 0 �̂e3 0 0

0 �̂i2 0 0 0 �̂i3 0

0 0 �̂I2 0 0 0 �̂I3

2
6666666666666664

3
7777777777777775
: (A2)

The friction coefficients between fast ions and thermal

species are given partially by Kikuchi (1990b) for laf11 and

lfa11 and full derivations of l
af
ij and lfaij are given by Wang et al.

(1994) and are summarized by Kikuchi et al. (1995b). The
viscosity coefficient for thermal species is given in a velocity
space partitioned form by Hirshman et al. (1977). Here the
coefficients are given in a slightly different form (Kikuchi
et al., 1995b). The viscosity coefficient is proportional to the
deflection frequency �a

D in the collisionless limit (�a
tot ! �a

D).

This is consistent with the physical explanation of the viscous
force in Sec. IV.A.2 and is important for an evaluation
including non-negligible impurity content. A slightly im-
proved viscosity formula is given by Shaing et al. (1996)
and used in the NCLASS package (Houlberg et al., 1997).
Since Hirshman’s approximate Coulomb collision operator
gives insufficient accuracy especially for the electron viscos-
ity, Sauter et al. (1999) and Angioni et al. (2000) used a full
Fokker-Planck collision operator to evaluate the approximate
neoclassical formula.

2. Viscosity coefficients for fast ions

A viscosity coefficient for a fast particle using the Stix
slowing down distribution function was obtained by Azumi
et al. (1990). The basic procedure for derivation of a viscosity
coefficient is to solve the drift kinetic equation (DKE)
ðvk þ vDÞ � rf ¼ CðfÞ þ S successively by gyroradius or-

dering as f ¼ f0 þ f1 þ � � � . The lowest-order DKE and its
solution are vk � rf0 ¼ Cðf0Þ þ Sðc Þ�ðv� vf0Þ and

f0ðc ; vÞ ¼ �s
�th

nf

4�ðv3 þ v3
cÞ
Hðvf0 � vÞ;
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respectively. The fast-ion density is given by nf ¼ 4�S�th.

Here H is the Heaviside function. This solution is called a
Stix solution (Stix et al., 1972).

By using

vD � rf0 ¼ vkb � r
�
Ivk
�

@f0

@c

�
;

the first-order DKE is given as

vkb � r
�
f1 þmfI

efB
vk

@f0

@c

�
¼ Cðf1Þ: (A3)

The solution of Eq. (A3) is also expanded as f1 ¼ f10 þ
f11 þ � � � in orders of �=�b and the lowest-and first-order

DKEs are given as

vkb � r
�
f10 þ

mfI

efB
vk

@f0

@c

�
¼ 0; (A4)

vkb � rf11 ¼ Cðf10Þ: (A5)

The general solution of Eq. (A4) is

f10 ¼ �mfI

efB
vk

@f0

@c
þ gðc ; v; �Þ

and Eq. (A5) gives the solvability condition for f10.
If we define vk ¼�v and introduce G by g ¼ ðmfIv=efÞ�
ð@f0=@c ÞG, we obtain the following
equation for G:

1

v2

@

@v

�
ðv3þv3

cÞ
��

B

�

�
G�Hð�c��Þ

�
v
@f0

@c

�

þ Ẑ
v3
c

v3
v
@f0

@c

@

@�

�
�

�
2h�i@G

@�
þHð�c��Þ

��
¼0: (A6)

The solution of Eq. (A6) is easily obtained in both the pitch-
angle scattering limit

G ¼ � 1

2

Z �c

�

d�

h�i ;
Ẑv3

c

v3
� 1;

and the slowing down limit

G ¼ 1


�
B

�

�
;

Ẑv3
c

v3
� 1:

The definition of the parallel viscous force is given by hB �
r � �i ¼ hBR

d3vmfv
2
kb � rfi. Using Eq. (A5), the parallel

viscous force is given by hB � r � �i ¼ hBR
d3vmfvkCðf1Þi.

Following the technique of Hirshman et al. (1981)
[Eq. (4.56)], we obtain the following expression for the
parallel viscous force:

hB �r��i¼�m2
fIhB2i

�seffc

Z
vdv

@f0

@c

Z
d�	

G �

�
ftẐv

3
c

�ðv3þv3
cÞ
�
@hj�ji
@�

Z �c

�

d�

hj�jiþfc

��
: (A7)

If we define G ¼ Ĝðc ; vÞR�c

� d�=hj�ji, the parallel viscous

force and poloidal flow are given in the pitch-angle-scatter-
ing-dominant regime as follows

hB � r � �i ¼ 4�m2
fI

3ef�s
ftẐv

3
c

Z
vĜ

@f0

@c
dv; (A8)

u� ¼ 4�mfI

3ef�s
fc

Z
v4Ĝ

@f0

@c
dv; (A9)

and their ratio gives the viscosity.
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