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This work reports on an extended research endeavor focused on the theoretical and experimental

realization of a macroscopic quantum superposition (MQS) made up of photons. This intriguing,

fundamental quantum condition is at the core of a famous argument conceived by Schrödinger in

1935. The main experimental challenge to the actual realization of this object resides generally in

unavoidable and uncontrolled interactions with the environment, i.e., ‘‘decoherence,’’ leading to

the cancellation of any evidence of the quantum features associated with the macroscopic system.

The present scheme is based on a nonlinear process, ‘‘quantum-injected optical parametric

amplification,’’which, by a linearized cloning process maps the quantum coherence of a single-

particle state, i.e., a microqubit, onto a macroqubit consisting of a large number M of photons in

quantum superposition. Since the adopted scheme was found resilient to decoherence, a MQS

demonstration was carried out experimentally at room temperature with M � 104. The result led

to an extended study of quantum cloning, quantum amplification, and quantum decoherence. The

related theory is outlined and several experiments are reviewed, such as the test of the ‘‘no-

signaling theorem’’ and the dynamical interaction of the photon MQS with a Bose-Einstein

condensate. In addition, the consideration of the microqubit-macroqubit entanglement regime is

extended to macroqubit-macroqubit conditions. The MQS interference patterns for large M are

revealed in the experiment and bipartite microqubit-macroqubit entanglement was also demon-

strated for a limited number of generated particles: M≾12. Finally, the perspectives opened by

this new method for further studies on quantum foundations and quantum measurement are

considered.

DOI: 10.1103/RevModPhys.84.1765 PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.�a, 42.50.�p

CONTENTS

I. Introduction 1766

II. Optical Parametric Amplification 1768

A. Noncollinear amplifier 1768

B. Collinear amplifier 1769

III. Optimal Quantum Machines via Parametric

Amplification 1769

A. Universal optimal quantum cloning 1770

B. Universal optimal NOT gate 1771

C. Optimal machines by symmetrization 1772

D. Phase-covariant optimal quantum cloning 1772

IV. Parametric Amplification and the No-signaling

Theorem 1773

V. Experimental Macroscopic Quantum Superposition

by Multiple Cloning of Single-photon States 1774

A. Generation and detection of multiparticle

quantum superpositions 1774

VI. Micro-macro System: How to Demonstrate

Entanglement 1776

A. Extracted two-photon density matrices 1776

B. Pseudospin operators 1776

C. Correlation measurements via orthogonality filter 1777

D. Effects of coarse-grained measurement 1777

E. Hybrid criteria 1778

VII. Resilience to Decoherence of the Amplified

Multiparticle State 1778

A. Phase-covariant optimal quantum-cloning

machine 1779

B. Universal optimal quantum-cloning machine 1779

C. Effective size of the multiparticle superposition 1779

VIII. Wigner-function Theory 1780

IX. Generation of Macro-macro Entangled States 1781

A. Macroscopic quantum state based on high-gain

spontaneous parametric downconversion 1781

1. Nonseparable Werner states 1782

2. Quantum-to-classical transition by

dichotomic measurement 1782

B. Macroscopic quantum state by dual amplification

of two-photon entangled state 1784

X. Interaction with a Bose-Einstein Condensate 1784

XI. Applications: From Sensing to Radiometry 1785

A. Quantum sensing 1785

B. Quantum radiometry 1786

XII. Conclusions and Perspectives 1786

Acknowledgments 1786

References 1786
*francesco.demartini@uniroma1.it
†fabio.sciarrino@uniroma1.it

REVIEWS OF MODERN PHYSICS, VOLUME 84, OCTOBER–DECEMBER 2012

17650034-6861=2012=84(4)=1765(25) � 2012 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.84.1765


I. INTRODUCTION

Since the golden years of quantum mechanics
(Schrödinger, 1935) the possibility of observing the quantum
features of physical systems at the macroscopic level has been
the object of extensive theoretical studies and recognized
as a major conceptual paradigm of physics. However, in
general there are severe problems preventing the observation
of these features. The most important one is the unavoidable
interaction with the surrounding environment, which causes
the loss of any quantum coherence effect by corruption of the
phase implied by any correlation of the quantum states
(Zurek, 2003). Such effects are commonly believed to
become increasingly severe with increase of the size
of the system being studied (Raimond, Brune, and Haroche,
2001).

In the last several years many experimental attempts have
been undertaken to create a superposition of multiparticle
quantum states. Different experimental approaches have
been pursued based on atom-photon interaction in a cavity
(Raimond, Brune, and Haroche, 2001; Haroche, 2003), super-
conducting quantum circuits (Leggett, 2002), ions (Leibfried
et al., 2003, 2005; Blinov et al., 2004), micromechanical
sytems (Marshall et al., 2003), and optical systems (Zhao
et al., 2004; Ourjoumtsev, 2006, 2007; Lu et al., 2007). In
particular, in the last few years a significant advance toward
generating superposition states of large objects using optome-
chanical systems has been achieved (Groblacher et al., 2009;
Rocheleau, 2010; Teufel, 2011). When dealing with a super-
position of multiparticle quantum states, there are two funda-
mental issues to be considered: the effective size of the
superpositions and how the state behaves under decoherence
(Leggett, 2002). Several criteria have been developed to estab-
lish the effective size of macroscopic superpositions
in an interacting or imperfect scenario, as well as their appli-
cations to real systems (Dur, Simon, and Cirac, 2002; Leggett,
2002; Korsbakken et al., 2007). A large effective size of the
state usually conflicts with the robustness of the quantum
superposition under interaction with the environment.
Moreover, the observation of macroscopic interference
phenomena requires one to conceive proper measurement
strategies. In particular, one faces the problem of achieving
a measurement precision that enables the observation
of quantum effects at such macroscales (Kofler and Brukner,
2007).

In this paper we discuss how the amplification of quantum
states can be adopted to generate multiphoton superpositions
and to investigate the quantum-to-classical transition. By the
present method a quantum superposition state is first gen-
erated in the microscopic (micro) world of a single-photon
particle. Then, this system is mapped into the macroscopic
(macro) realm by generating quantum superpositions via the
well-known photon stimulation process of quantum electro-
dynamics (QED) in the regime of high-gain parametric
amplification (De Martini, 1998a, 1998b). This approach is
a natural platform for the investigation of the quantum-to-
classical transition, linking quantum and classical descriptions
of matter. We review the properties of the generated states in
the regimes of both low and high numbers of photons. The
experimental methods are outlined and the corresponding
results reported and briefly described. The open question of

devising a method able to experimentally demonstrate the

micro-macro entanglement is finally addressed.
We first consider the regime in which a few particles are

created by optical amplification of a single photon in the

generic polarization state j�i ¼ �jHi þ �jVi, where H and

V stand for horizontal and vertical polarization, respectively.

This process can be related to several fundamental tasks of

quantum information processing. While classical information

is represented in terms of bits which can be either 0 or 1,

quantum information theory is rooted in the generation and

transformation of quantum bits, or qubits, which are two-

dimensional quantum systems, each epitomized by a spin 1
2

(Nielsen and Chuang, 2000). A qubit, unlike a classical bit,

can exist in a state j�i that is a superposition of any two

orthogonal basis states fj0i; j1ig, i.e., j�i ¼ �j0i þ �j1i. The
fact that qubits can exist in superposition states gives unusual

properties to quantum information. For instance, a fundamen-

tal issue refers to the basic limitations imposed by quantum

mechanics on the set of realizable physical transformations

available to the state of any quantum system. The common

denominator of these bounds is that all realizable transforma-

tions have to be represented by completely positive maps,

which in turn impose a constraint on the fidelity, i.e., the

quantum efficiency, of the quantum measurements. For in-

stance, the fact that an unknown qubit cannot be precisely

determined (or reconstructed) by a measurement performed

on a finite ensemble of identically prepared qubits implies

that this state cannot be cloned, viz., copied exactly by a

general transformation. In other words, the universal exact

cloning map of the form j�i ! j�ij�i, or more generally

where N are cloned into M>N copies, is not allowed by the

rules of quantum mechanics (Wootters and Zurek, 1982).

Indeed, if this were possible then one would be able to violate

the bound on the fidelity of estimation, and this in turn would

trigger the most dramatic changes in the present picture of the

physical world. For instance, it would become possible to

exploit the nonlocal quantum correlations for the superlumi-

nal exchange of meaningful information by violating the

causality principle (Herbert, 1982; De Angelis et al.,

2007). Another map which cannot be performed exactly on

an unknown qubit is the spin flip, generally dubbed universal-

NOT (U-NOT) transformation. This corresponds to the opera-

tion j�i ! j�?i, where the state j�?i is orthogonal to the

original j�i (Bechmann-Pasquinucci and Gisin, 1999; De

Martini et al., 2002). The quantum cloning and the NOT

maps are just two among a large variety of examples realizing

the effects of the essential limitations imposed by quantum

mechanics on measurements and estimations.
In spite of the fact that these quantum-mechanical trans-

formations on unknown qubits cannot be performed exactly,

one may still ask what are the best possible, i.e., optimal,

approximations of these maps within the given structure of

quantum theory (De Martini and Sciarrino, 2005; Scarani

et al., 2005; Cerf and Fiurasek, 2006). In the last few years,

it was found possible to associate an optimal cloning machine

with a photon amplification process, e.g., by use of inverted

atoms in a laser amplifier, or a nonlinear medium in a

quantum-injected (QI) optical parametric amplifier (OPA)

apparatus. In the case of the mode-nondegenerate QI-OPA,

N photons, prepared identically in an arbitrary quantum state
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j�i of polarization, are injected into the amplifier. By stimu-
lated emission M� N pairs of photons are created. In the
output the amplifier generates, in the cloning mode,M>N
copies or clones of the input qubit j�i (De Martini et al.,
2002; Lamas-Linares et al., 2002; De Martini, Pelliccia,
and Sciarrino, 2004). Correspondingly, the amplifier gener-
ates in the output anticloning mode M� N states j�?i, thus
realizing a universal quantum NOT gate (De Martini et al.,
2002).

We now address the regime in which a large number
of particles is generated by the amplification of a single
photon in a quantum superposition state of polarization.
Conceptually, the method consists of transferring the
easily accessible condition of quantum superposition of a

one-photon qubit to a mesoscopic, i.e., multiphoton, ampli-

fied state M> 1, here referred to as a mesoscopic qubit or

macroqubit. This can be done by the one-photon qubit

�jHi þ �jVi into the QI-OPA (De Martini, 1998a; De

Martini, Sciarrino, and Secondi, 2005, 2009a). This process

is represented in Fig. 1 which shows three possible schematic

applications of the method. By virtue of the information-

preserving (albeit noisy) property of the amplifier, the gen-

erated state is found to retain the same superposition charac-

ter and interference properties of the injected qubit. Since the

adopted scheme realizes the optimal quantum-cloning ma-

chine, able to copywith optimal fidelity any unknown input

qubit , the output state will be necessarily affected by

squeezed-vacuum noise arising from the input vacuum field.

We now review the properties of such macrostates obtained

by the quantum-injected amplification process and indicate

how they can be exploited to investigate entanglement in the

microscopic-macroscopic (micro-macro) regime. Precisely,

an entangled photon pair is created by a nonlinear optical

process; then one photon of the pair is injected into an optical

parametric amplifier operating for any input polarization state

(De Martini, Sciarrino, and Vitelli, 2008, 2009a). Such a

transformation establishes a connection between the single-

photon and the multiparticle fields. The results of a thorough

theoretical analysis undertaken of this process are outlined.

The results of a series of related experiments are reported. We

show that, while clear experimental evidence of macroscopic

quantum superposition (MQS) interference, in the absence of

bipartite micro-macro entanglement, has been attained with a

fairly large associated number M of particles, the micro-

macro entanglement could be consistently demonstrated by

an attenuation technique only for a small number of particles:

M � 12. Indeed, as suggested by Sekatski et al. (2009) and

Spagnolo et al. (2010) a novel detection loophole for largeM
and the need of very high measurement resolution impose

severe limitations on the detection of quantum entanglement

in the micro-macro regime, i.e., on the prerequisite condition

for the full realization of the Schrödinger cat program.

In addition, we briefly summarize the potential applications

of the QI-OPA technique in different contexts, such as the

realization of a nonlocality test, quantum metrology, and

quantum sensing.
Finally, we consider a further approach to investigate the

quantum-to-classical transition based on nonlinear paramet-

ric interactions, i.e., one that exploits the process of sponta-

neous parametric downconversion (SPDC) in the high-gain

regime. In this framework the investigation of multiphoton

states is of fundamental importance, on both the conceptual

and practical levels, e.g., for nonlocality tests or for other

quantum information applications. The number of photons

generated depends exponentially on the nonlinear gain g of

the parametric process; g can be increased by the adoption of

high-power pumping lasers and high-efficiency nonlinear

crystals. Different experimental approaches to generate

macro-macro entangled states and to observe nonlocal corre-

lations are reviewed (Eisenberg et al., 2004; Caminati et al.,

2006a; De Martini, 2011; Vitelli et al., 2010b). Again, the

issue of high-resolution measurements arises as a fundamen-

tal ingredient for direct observation of quantum correlations

in the macroscopic regime.

(a)
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θθθθ = 45°
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k2
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|0>2h ⊗⊗⊗⊗|0>2v

kT
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UV

Z

(b)

(c)

FIG. 1 (color online). Three different configurations for the ampli-

fication of quantum states. (a) Schematic diagram of a noncollinear

quantum-injected optical parametric amplifier (OPA). The injection is

provided by an external spontaneous parametric downconversion

source of polarization-entangled photon states. From De Martini,

1998a. (b) Double injection of the optical parametric amplifier. From

Bovino,DeMartini, andMussi, 1999). (c)Collinear quantum-injected

optical parametric amplifier. From De Martini, 1998b.
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II. OPTICAL PARAMETRIC AMPLIFICATION

We now introduce the nondegenerate optical parametric
amplifier which lies at the core of the present analysis.
Consider Fig. 1(a). Three different modes of the electromag-
netic radiation field, say the signal â1, the idler â2, and the
pump âP, are coupled by a nonlinear (NL)medium, generally a
crystal, characterized by a high third-order tensor expressing
the nonlinear second-order susceptibility �ð2Þ (Yariv, 1989;
Walls and Milburn, 1995; Boyd, 2008). A typical NL medium
adopted in the experiments dealt with in this paper consists of a
suitably cut slab of crystalline beta barium borate (BBO). Two
phase-matching conditions must be satisfied during coherent
three-wave interaction, viz., a scalar one, energy conservation,
and a vectorial one, momentum conservation:

�P ¼ �1 þ �2; (1)

~kP ¼ ~k1 þ ~k2; (2)

where the labels fP; 1; 2g refer to the pump, the signal, and the
idler field modes, respectively. The Hamiltonian of the ampli-
fier under the phase-matched condition (2) can bewritten in the
rotating wave approximation as follows:

Ĥ ¼ ikℏðây1 ây2 âP þ â1â2â
y
PÞ: (3)

The first term of the Hamiltonian (3) describes the physical
process in which a photon is annihilated at frequency �P and
twin photons are generated at frequencies �1 and �2. The
second term corresponds to the inverse process. In the exact
phase-matching condition the parameter k is proportional
to the crystal’s �ð2Þ and to the effective crystal length lcryst
(Yariv, 1989; Boyd, 2008).

The Hamiltonian in Eq. (3) also describes the frequency-
degenerate case, in which the frequencies associated with the
modes â1 and â2 are equal but the respective wave vectors
and/or polarizations are different. The quantum dynamics
determined by the Hamiltonian (3) leads to a rich variety of
phenomena, such as the generation of strongly correlated
photon pairs by parametric downconversion (Ou and Mandel,
1988; Shih and Alley, 1988; Rarity and Tapster, 1990),
quantum-injected optical parametric amplification (De
Martini, 1998a), phase-insensitive amplification (Mollow and
Glauber, 1967), or the generation of polarization entanglement
(Kwiat et al., 1995a). The unitary evolution operator associ-

ated with Ĥ in the interaction picture is expressed as

Û ¼ exp½�ðây1 ây2 âP þ â1â2â
y
PÞ�; (4)

where � ¼ kt, and t is the interaction time.
The pump field âP is well described by a coherent state (the

quasiclassical Glauber � state), generally taken as undepleted
because of the small number of converted photons compared
with the very large total number of photons, typically larger
than 1015, associatedwith each pump pulse. A preciseManley-
Rowe theory accounting for the pump depletion could possibly
be adopted, if necessary. Hence, in the generally adopted
parametric approximation the pump mode âP is replaced by
the complex amplitude of the corresponding coherent state. In
that case the interaction Hamiltonian leads to the two-mode
squeezing operator (Walls and Milburn, 1995)

Ŝ ¼ exp½�ð�Pâ
y
1 â

y
2 þ ��

Pâ1â2Þ�: (5)

The operator Ŝ acting on the vacuum state j0i1j0i2 creates,
via the process of SPDC a twin-beam state over the two
spatial output modes ki (i ¼ 1, 2) with wavelength �i:

Ŝj0i1j0i2 ¼ 1

cosh�

X1
n¼0

�njni1jni2: (6)

The average photon numbers �n in the two modes are related
to the gain g ¼ j�j as �n ¼ sinh2g. We provide some numeri-
cal estimate by considering a commonly adopted apparatus.
With a BBO crystal, 1 mm thick, �P ¼ 400 nm, and �1 ¼
�2 ¼ 800 nm, the efficiency of the SPDC process is very low,
typically around 10�15.

In general, the pump field can be either a continuous or a
pulsed beam (De Martini and Sciarrino, 2005). Pulsed lasers
are used when a high interaction gain and/or exact knowledge
of the creation time of a photon pair (a biphoton) is needed.
When this is the case, mode-locked laser beams are adopted
with a typical pulse duration of hundreds of femtoseconds. In
SPDC two different types of phase matching (either I or II)
are used, depending on the polarization of the three interact-
ing fields, i.e., on the character of the corresponding electro-
magnetic waves in the birefringent nonlinear crystal, whether
ordinary (o) or extraordinary (e) waves. Hereafter we con-
sider only type-II phase matching in which the signal and
idler are, respectively, o and e polarized. The spatial distri-
bution of the emitted SPDC radiation consists of two k-vector
cones, one for each type of wave, having common vertices
coinciding with the excited spot on the NL crystal slab, which
is considered very thin. We restrict our consideration for
simplicity to the frequency-degenerate case only, i.e., �1 ¼
�2 ¼ �p=2. In the case of type-II phase matching two differ-

ent k-vector cones are emitted, the o cone and the e cone,
having the same vertex and different axes, and intersecting
along two straight lines. The two k vectors, correlated with
different polarizations by the type-II parametric interaction,
are parallel to these intersection lines and belong to different
cones. The angle between the axes of these polarization cones
can be changed by a convenient tilting of the NL slab with
respect to the direction of the pump beam. When this angle is
zero the two k vectors overlap, each one retaining its own
polarization. This condition corresponds to the collinear
interaction we consider shortly.

A. Noncollinear amplifier

The interaction Hamiltonian for the type-II amplifier in the

noncollinear regime is given by Ĥ U ¼ {ℏ�ðây1c ây2c? �
ây1c? â

y
2c Þ þ H:c:: see Fig. 1(a). Since this system possesses

a complete SU(2) symmetry, the Hamiltonian maintains the
same form for any simultaneous rotation of the Bloch sphere
of the polarization basis for both output modes k1 and k2. We
now analyze the features of this device when adopted in
stimulated emission by a single photon with polarization
jc i, i.e., in the single-injection QI-OPA regime. The output
state of the amplifier reads
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j�1c ;0c?
U i ¼ ÛUj1c i1

¼ 1

C3

X1
n;m¼0

�nþmð�1Þm

� ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jðnþ 1Þc ;mc?i1� jmc ;nc?i2;
(7)

where C ¼ coshg, � ¼ tanhg, and jpc ; qc?ii stands for a
Fock state with p photons ~�c polarized and q photons ~�c?
polarized on spatial mode ki. Note that the multiparticle

states j�1c
U i, j�1c?

U i are orthonormal.

We note that the previous expression involves superposi-
tions of quantum states with different photon numbers.
Clearly the number of photons in the pump beam will change
slightly; however, the pumping beam is in a coherent state
with a large number of photons. Hence this variation is
negligible and the pumping beam state can be factorized.

We analyze the output field k1 over the polarization modes
~�� when the state j’i1 ¼ 2�ð1=2ÞðjHi1 þ ei’jVi1Þ is injected.
The average photon numberMi� over ki with polarization ~��
is found to depend on the phase ’ as follows:

M1�ð’Þ ¼ �mþ 1
2ð �mþ 1Þð1� cos’Þsinh2g; (8)

M2�ð’Þ ¼ �mþ 1
2
�mð1	 cos’Þ; (9)

with �m ¼ sinh2g. The conditions ’ ¼ 0 and ’ ¼ � corre-
spond to single-photon injection and no injection in the mode
~��, respectively. The average photon numbers related to both
cases are M1þð0Þ ¼ 2 �mþ 1 and M1þð�Þ ¼ �m. The average
number of photons emitted over the two polarizations over k1

is found to beM ¼ 3 �mþ 1. The output state in mode k1 with
polarization ~�� exhibits a sinusoidal fringe pattern of the
field intensity depending on ’, with a gain-dependent visi-
bility V th

U ¼ ð �mþ 1Þ=ð3 �mþ 1Þ (De Martini, 1998b). Note
that for g ! 1, viz., M ! 1, the fringe visibility attains the
asymptotic values V th

U ¼ 1
3 . The former considerations are

valid for any quantum state injected in the amplifier j�i when
analyzed in the polarization basis f ~��; ~��?g.

A more sophisticated extension of the above scheme
is the condition of QI-OPA double injection represented by
Fig. 1(b) (Bovino, De Martini, and Mussi, 1999). Two sepa-
rate SPDC sources of polarization-entangled photons are
adopted to cause excitation simultaneously over the modes
k1 and k2 of the QI-OPA amplifier. Meanwhile, the two
photons emitted over the external modes k3 and k0

3 generate,

by a coincidence circuit, the overall trigger pulse for the
experiment when opposite polarizations are realized simulta-
neously. Owing to the NL dynamics realized by the main NL
crystal, the corresponding qubits injected in the two input
QI-OPA modes k1 and k2 with different polarizations give
rise to various dynamical processes within the QI-OPA am-
plification. For instance, they can lead to an enhanced
interference-fringe visibility: V th�2

U ¼ 2
3 .

B. Collinear amplifier

We now consider the results obtained for a collinear optical
configuration in which the two modes k1 and k2 are made to
overlap: see Fig. 1(c). The interaction Hamiltonian of this

process is Ĥ PC ¼ {ℏ�âyHâ
y
V þ H:c: in the f ~�H; ~�Vg polar-

ization basis. The same Hamiltonian is expressed as Ĥ PC ¼
ðiℏ�=2Þe�i�ðây2� � ây2�?Þ þ H:c: for any equatorial basis

f ~��; ~��?g on the Poincaré sphere having as poles the states

~�H and ~�V . The amplified state for an injected equatorial
qubit j’i1 is

j��
PCi¼ ÛPCj1’;0’?i1¼

X1
i;j¼0

	ijjð2iþ1Þ’;ð2jÞ’?i1;

(10)

where

	ij ¼ 1

C2

�
e�{’ �

2

�
i
�
�e�{’ �

2

�
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2iþ 1Þ!p ffiffiffiffiffiffiffiffiffiffið2jÞ!p
i!j!

;

C ¼ coshg, and � ¼ tanhg.
The average photon number M� over k1 with polarization

~�� is found to depend on the phase ’ as M�ð’Þ ¼ �mþ 1
2 �

ð2 �mþ 1Þð1� cos’Þ with �m ¼ sinh2g. The average photon
number related to both cases is Mþð0Þ ¼ 3 �mþ 1 and
Mþð�Þ ¼ �m. The average number of photons emitted over
the two polarizations over k1 is found to be M ¼ 4 �mþ 1.
The sinusoidal fringe pattern of the field intensity has visi-
bility of V th

PC ¼ ð2 �mþ 1Þ=ð4 �mþ 1Þ (De Martini, 1998b).

Note that for g ! 1, the fringe visibility attains the asymp-
totic value V th

PC ¼ 1
2 .

III. OPTIMAL QUANTUM MACHINES VIA PARAMETRIC

AMPLIFICATION

In the early 1980s Ghirardi (1981), Dieks (1982), and
Wootters and Zurek (1982) demonstrated the impossibility
of perfectly copying an unknown arbitrary quantum state. In
other words, a universal machine mapping j�i ! j�ij�i for
every j�i cannot be physically realized. More generally, an
exact, universal cloner of N qubits into M>N qubits cannot
exist. Of course perfect cloning can be provided by a nonun-
iversal cloning machine, i.e., one made for one or a restricted
class of states. Consider the following scenario: In order to
copy the quantum state of qubit C, we couple it with another
ancilla T in the state j0i by adopting a two-qubit logical gate: a
control-NOT (C-NOT) gate. By this approach it is possible to
perfectly copy the state j0iC or j1iC using the qubit to be
copied as a control qubit and an ancilla qubit in the state j0iT
as the target (Nielsen and Chuang, 2000). However, starting
from any general state j�iC ¼ �j0iC þ �j1iC, the output
state generated by the C-NOT gate is �j0iCj0iT þ �j1iCj1iT
with 
C ¼ 
T ¼ j�j2j0ih0j þ j�j2j1ih1j, which is clearly dif-
ferent from the initial state j�ih�j. Hence the quantum C-NOT

gate realizes a perfect cloning machine only for the two input
qubits belonging to the set fj0i; j1ig: Of course these limita-
tions are effective within the quantum world, i.e., whenever
the quantum superposition character of the state dynamics is a
necessary property of the system, as in an interferometer or,
more generally, in a quantum computer.

The no-cloning theorem has also interesting connections
with the impossibility of superluminal communication
(generally called the no-signaling condition) (Simon,
Bužek, and Gisin, 2001). That condition will be discussed
in detail in Sec. IV.
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We shall see that an approximate optimal solution for
cloning as well as for other quantum processes which are
impossible in their exact form is possible. By definition, the
optimal solutions correspond to the best maps realizable
by nature, i.e., the ones that work just on the boundaries
corresponding to the limitations imposed by the principles of
quantum mechanics.

The concept of an optimal cloning process was first worked
out by Buzek and Hillery (1996). A transformation which
produces two copies (M ¼ 2) in the same mixed state 
Cl out
of an arbitrary input qubit j�i (N ¼ 1) was introduced with a
fidelity equal to

F 1!2ðj�i; 
ClÞ ¼ h�j
Clj�i ¼ 5
6: (11)

This map was demonstrated to be optimal in the sense that it
maximizes the average fidelity between the input state and
output qubits by Gisin and Massar (1997), Bruß et al. (1998),
Bruss, Ekert, and Macchiavello (1998), and Werner (1998).
More generally, Gisin and Massar (1997) investigated
quantum-cloning machine which transforms N identical
qubits into M identical copies with an optimal fidelity. In
summary, the universal quantum-cloning machine, which
transforms N identical qubits j�i into M identical copies

Cl, achieves as optimal fidelity

F N!Mðj�i; 
ClÞ ¼ N þ 1þ �

N þ 2
; (12)

with � 
 N=M � 1 (Gisin and Massar, 1997; Bruss, Ekert,
and Macchiavello, 1998; Buzek and Hillery, 1998). It is useful
to compare the previous approach with the process of state
estimation. Suppose that we have N copies of the same
quantum state j’i and we wish to determine all the parameters
which characterize j’i. The optimal estimation procedure
leads to a fidelity between the input and the estimated states
equal to F est ¼ ðN þ 1Þ=ðN þ 2Þ. As we can see,
F N!Mðj�i; 
ClÞ is larger than the fidelity obtained by the N
estimation approach and reduces to the result for � ! 0, i.e.,
for an infinite number of copies M ! 1. The extra positive
term � in the above expression accounts for the excess of
quantum information which, originally stored in N states, is
optimally redistributed by entanglement among the M� N
remaining blank ancilla qubits (Buzek and Hillery, 1996).

In addition to the above results, less universal cloning
machines have been investigated (Buzek et al., 1997;
Bruss, Ekert, and Macchiavello, 1998), where the state-
dependent cloner is optimal with respect to a given ensemble
of states. As discussed later, this process, generally referred to
as covariant cloning, operates with a higher fidelity than for
the universal cloning since there is a partial a priori knowl-
edge of the state (11).

The study of optimal quantum cloning is interesting since
it implies an insightful understanding of the critical bounda-
ries existing between classical and quantum information
processing. In the quantum information perspective, the opti-
mal cloning process may be viewed as providing a distribu-
tion of quantum information over a larger system in the most
efficient way (Ricci et al., 2005). More details on the general
cloning process can be found in De Martini and Sciarrino
(2005), Scarani et al. (2005), and Cerf and Fiurasek (2006).

A. Universal optimal quantum cloning

Since the first articles on the no-cloning theorem were
published, it has been proposed that the QED stimulated
emission process be exploited in order to make imperfect
copies of the polarization state of single photons (Milonni and
Hardies, 1982; Mandel, 1983). De Martini (1998a), De
Martini, Mussi, and Bovino (2000), and Simon, Weihs, and
Zeilinger (2000) showed that the optimal universal quantum
cloning can indeed be realized by this method. If polarization
encoding is adopted, the universality of this scheme is
achieved by choosing systems that have appropriate symme-
tries, i.e., having a stimulated emission gain g which is
polarization independent. This condition can be achieved by
adopting a laser medium or a QI-OPA amplifier working in
the noncollinear configuration. This section deals explicitly
with this scheme.

For the first scenario we consider 1 ! 2 universal cloning.
Precisely the action of the cloner can be described by the
following covariant transformation (Buzek and Hillery,
1996):

j�iC1j0iC2j0iAC ) ffiffiffiffiffiffiffiffi
2=3

p j�iC1j�iC2j�?iAC
� ffiffiffiffiffiffiffiffi

1=3
p jf�;�?giC1;C2j�iAC; (13)

where the first state vector, on the left-hand side of Eq. (13),
corresponds to the system to be cloned, the second state
vector describes the system on which the information is to
be copied (blank qubit), represented by the cloning channel
(C), the mode k1, while the third state vector represents the
cloner machine. The blank qubit and the cloner are initially in
the known state j0i. The state jf�;�?gi is the symmetrized
state of the two qubits: 2�1=2ðj�ij�?i þ j�?ij�iÞ.

At the outputs of the cloners C1 and C2, we find two
qubits, the original and the copy, each one with the following
density matrix:


C1 ¼ 
C2 ¼ 5
6j�ih�j þ 1

6j�?ih�?j: (14)

The density operators 
C1 and 
C2 describe the best pos-
sible approximation of the perfect universal cloning process.
The fidelity of this transformation does not depend on the
state of the input and is equal to Eq. (12). The cloner
itself after the cloning transformation is in the state 
AC ¼
1
3 j�?ih�?j þ 1

3 � I, where I is the unity operator and is

related to the universal-NOT gate, as we see later (see Fig. 2).
We now establish a close connection of the above cloning

results with the noncollinear QI-OPA system. The photon
injected in the mode k1 has a generic polarization state
corresponding to the unknown input qubit j�i. We describe

this polarization state as ây�j0; 0i1 ¼ j1; 0i1, where jm; ni1
represents a state with m photons having the polarization �,
and n photons with polarization �? on the mode k1. We
assume that the mode k2 is initially in the vacuum state. The
initial polarization state is hence expressed as j�iin ¼
j1; 0i1 � j0; 0i2 and evolves according to the unitary operator
ÛU 
 expð�iĤUt=ℏÞ (see Sec. II.A):

ÛUj�iin ’ j1; 0i1 � j0; 0i2 þ gð ffiffiffi
2

p j2; 0i1 � j0; 1i2
� j1; 1i1 � j1; 0i2Þ: (15)
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The linearization procedure implying the above approxima-
tion is justified in the present scenario by the small value of
the amplification gain g � 0:1 (De Martini et al., 2002; De
Martini, Pelliccia, and Sciarrino, 2004). The zero-order term
in Eq. (15) corresponds to the process when the input photon
in the mode k1 did not interact in the nonlinear medium,
while the second term describes the first-order amplification
process. Here the state j2; 0i1 describing two photons of
the mode k1 in the polarization state � corresponds to the
state j��i.

To see that the stimulated emission is indeed responsible
for creation of the cloned qubit, we compare the state Eq. (15)
with the output of the optical parametric amplifier when the
vacuum is injected into the crystal in both input modes ki

(i ¼ 1, 2). In this SPDC case the input state is j0iin ¼
j0; 0i1 � j0; 0i2, and we obtain to the same order of approxi-
mation as above

ÛUj0iin ’ j0; 0i1 � j0; 0i2 þ gðj1; 0i1 � j0; 1i2
� j0; 1i1 � j1; 0i2Þ: (16)

We see that the cloned qubits described by the state vector
j1; 0i1 on the right-hand sides of Eqs. (15) and (16), appear
with different amplitudes, corresponding to the ratio of the
probabilities R ¼ 2. It is easy to show that the fidelity of the
output clone is ð2Rþ 1Þ=ð2Rþ 2Þ ¼ 5=6 and is optimal.

A more general analysis can be undertaken by extending
the isomorphism discussed above to a larger number of input
and output particles N and M. In this case it is found that
the QI-OPA amplification process ÛU in each order of the
decomposition into the parameter g corresponds to the
N ! M cloning process. Precisely, in this caseM � N output
particles are detected over the output cloning mode k1.
Correspondingly, M� N particles are detected over the out-
put anticloning mode k2. The cloning transformation is
realized a posteriori in the sense that the output number M
of copies is a random variable that is selected as the result of
the measurement of the photon number in the anticloning
beam (Simon, Weihs, and Zeilinger, 2000).

It appears clear, from the above analysis, that the effect of
the input vacuum field which is necessarily injected in any
universal optical amplifier is indeed responsible to reduce the
fidelity of the quantum-cloning machines at hand. More
generally, the vacuum field is in precise correspondence

with, and must be interpreted as, the amount of QED vacuum
fluctuations that determines the upper bounds to the fidelity
determined by the structure of quantum mechanics.

The universal cloning was realized by exploiting the stimu-
lated emission induced by a single photon by De Martini
et al. (2002), Pelliccia et al. (2003), and De Martini,
Pelliccia, and Sciarrino (2004) as shown in Fig. 3. There a
spontaneous parametric downconversion process excited by
the �kp pump mode created single pairs of photons with

equal wavelengths in entangled singlet states of linear polar-
ization. One photon of each pair, emitted over �k1, was
reflected by a spherical mirror into the crystal where it
provided the N ¼ 1 single-photon injection into the optical
parametric amplifier excited by the pump beam associated
with the backreflected mode kp. Hence the optimal cloning

process was realized along the mode k1. A similar experi-
ment has been reported by Lamas-Linares et al. (2002) where
the single-photon initial qubit was implemented by a highly
attenuated coherent-state beam.

B. Universal optimal NOT gate

The NOT gate, the transformation that maps any qubit
onto the orthogonal qubit, i.e., onto its antipode on the
Bloch sphere, has been recognized to be impossible to carry
out according to the principles of quantum mechanics
(Bechmann-Pasquinucci and Gisin, 1999). In fact, if
j�i ¼ �j0i þ �j1i is a generic qubit, its antipode is gener-
ated by the time-reversal transformation Tj�i ¼ j�?i ¼
��j0i � ��j1i such that h� j �?i ¼ 0. As is well known
T, being an antiunitary transformation, is not allowed by
quantum mechanics: it may be expressed as T ¼ �yK with

K being the transposition or phase conjugation map (Nielsen
and Chuang, 2000). All this is at variance with the notion of
classical information theory by which the NOT gate is the
simplest operation to be performed exactly on any classical
bit. The optimal approximation of the U-NOT gate maps N
identical input qubits j�i intoM optimally flipped ones in the
state �out and achieves the fidelity

FIG. 2 (color online). Scheme of the optimal cloning process.

The input and output qubits are represented on the Bloch sphere.

The vectors associated with the output states are shrunk compared to

the input state j�i. FIG. 3 (color online). Schematic diagram of the universal optimal

cloning machine realized on the cloning (C) channel (mode k1) of a

self-injected OPA and of the universal-NOT gate realized on the

anticloning (AC) channel, k2. From De Martini, Pelliccia, and

Sciarrino, 2004.
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F �
N!Mðj�?i; �outÞ ¼ h�?j�outj�?i ¼ N þ 1

N þ 2
: (17)

We note that F �
N!M depends only on the number of the input

qubits (Buzek, Hillery, and Werner, 1999; Gisin and Popescu,
1999; Bužek and Hillery, 2000). Indeed, the fidelity of the
U-NOT gate is exactly the same as the optimal quantum

estimation fidelity (Massar and Popescu, 1995). This means
that the realization of this process is equivalent to a classical
preparation of M identical flipped qubits following an ap-
proximate quantum estimation of N input states. Only this
last operation is affected by noise, and in the limit N ! 1 a
perfect estimation of the input state is achieved, leading to the
realization of an exact flipping operation.

We consider again the expression (15) of the output state of
the optical parametric amplifier. The vector j0; 1i2 describes
the state of the mode k2 with a single photon in the polar-
ization state j�?i. This state vector represents the flipped
version of the input qubit on mode k1 and then the QI-OPA
acts on the output mode k2 as a universal-NOT gate (De
Martini et al., 2002). We see that the flipped qubits described
by the state vector j0; 1i2 on the right-hand sides of Eqs. (15)
and (16) appear with different amplitudes corresponding to
the ratio of probabilities R� ¼ 2:1. Note in Eqs. (15) and (16)
that, by indicating by R the ratio of the probabilities of
detecting two and one photon(s) in mode k1 only, we obtain
R ¼ R�. In other words, the same value of the signal-to-noise
ratio affects both cloning and U-NOT processes realized si-
multaneously in the two different output modes k1 and k2.
The corresponding value of the U-NOT fidelity reads F � ¼
2=3 and is equal to the optimal one allowed by quantum
mechanics (De Martini et al., 2002).

A remarkable and somewhat intriguing aspect of the
present process is that both processes of quantum cloning
and the U-NOT gate are realized contextually by the same
physical apparatus, by the same unitary transformation,
and correspondingly by the same quantum logic network
(De Martini, Pelliccia, and Sciarrino, 2004).

The relation between the cloning and the NOT operations
has been discussed according to the conservation laws alone
(van Enk, 2005). It was suggested that the close link existing
between the limitations on cloning and NOT operations could
express an as yet unexplored natural law. The results dis-
cussed above are general and hold in both the classical and
quantum-mechanical worlds, for both optimal and suboptimal
operations, and for bosons as well as fermions.

C. Optimal machines by symmetrization

Optimal quantum-cloning machines, although working
probabilistically, have been demonstrated experimentally by
a symmetrization technique (Irvine et al., 2004; Ricci et al.,
2004; Sciarrino et al., 2004a, 2004b). This approach to the
probabilistic implementation of the N-to-M cloning process
was first proposed by Werner (1998). It is based on the action
of a projective operation on the symmetric subspace of the N
input qubits and M� N blank ancillas. This transformation
assures the uniform distribution of the initial information in
the overall system and guarantees that all output qubits are
indistinguishable. To achieve the projection over the sym-
metric subspace we exploit the bosonic nature of photons,

viz., the exchange symmetry of their overall wave function.
In particular, we use a two-photon Hong-Ou-Mandel
coalescence effect (Hong, Ou, and Mandel, 1987). In this
process, two photons impinging simultaneously on a beam
splitter (BS) from two different input modes have an enhanced
probability of emerging along the same output mode (that is,
coalescing), as long as they are indistinguishable. If the two
photons are made distinguishable, e.g., by different encoding
of their polarization or of any other degree of freedom, the
coalescence effect vanishes. Now, if one of the two photons
involved in the process is in a known input state to be cloned
and the other is in a random one, the coalescence effect will
enhance the probability that the two photons emerge from the
beam splitter with the same quantum state. In other words, the
symmetrization enhances the probability of a successful clon-
ing detected at the output of the beam splitter.

Universal optimal quantum cloning based on the symmet-
rization technique was first demonstrated for the polarization-
encoded qubit (Irvine et al., 2004; Ricci et al., 2004;
Sciarrino et al., 2004a, 2004b) and later reported for orbital
angular-momentum-encoded qubits (Nagali et al., 2009).
Finally Nagali et al. (2010) reported the experimental real-
ization of the optimal quantum cloning of four-dimensional
quantum states, or ququarts, encoded in the (polarizationþ
orbital angular momentum) degrees of freedom of photons
(Marrucci et al., 2011).

D. Phase-covariant optimal quantum cloning

In addition to the impossibility of universally cloning
unknown qubits, there exists the impossibility of cloning
subsets of qubits containing nonorthogonal states. This
no-go theorem has been adopted to provide the security
of cryptographic protocols such as the Bennett-Brassard
1984 (BB84) protocol (Gisin et al., 2002). Recently state-
dependent, nonuniversal, optimal cloning machines have
been investigated where the cloner is optimal with respect
to a given ensemble (Bruß et al., 2000). This partial a priori
knowledge of the state allows one to reach a larger fidelity
than for universal cloning.

The simplest and most relevant case is represented by the
covariant cloning under the Abelian group U(1) of phase
rotations, the so-called phase-covariant cloning. There the
information is encoded in the phase �i of the input qubit
belonging to the equatorial plane i of the corresponding
Bloch sphere. In this context the general state to be cloned
may be expressed as j�ii ¼ ðjc ii þ ei�i jc?

i iÞ and

fjc ii; jc?
i ig is a convenient orthonormal basis (Bruß et al.,

2000). The values of the optimal fidelities F N!M
cov for the

phase-covariant cloning machine were found by D’Ariano
and Macchiavello (2003). Restricting the analysis to a single
input qubit to be cloned, N ¼ 1, into M> 1 copies, the
cloning fidelity is found

F 1!M
cov ¼ 1

2

�
1þMþ 1

2M

�

for M assuming odd values, or

F 1!M
cov ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðMþ 2Þp

2M

�
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for M even. In particular, we have F 1!2
cov ¼ 0:854

and F 1!3
cov ¼ 0:833 to be compared with the corresponding

figures valid for universal cloning: F 1!2
univ ¼ 0:833 and

F 1!3
univ ¼ 0:778. It is worth noting the deep connection linking

the phase-covariant cloning and the estimation of an equato-
rial qubit, that is, with the problem of finding the optimal
strategy to estimate the value of the phase � (Derka, Buzek,
and Ekert, 1998). In general, for M ! 1, F N!M

cov ! F N
phase.

In particular, we have F 1!M
cov ¼ F 1

phase þ 1=4M with

F 1
phase ¼ 3=4.

We briefly review different schemes which can be realized
through the methods of quantum optics outlined above
(Sciarrino and De Martini, 2007). We restrict our attention
to the 1 ! 3 phase-covariant quantum-cloning machine as
the corresponding scheme can be easily extended to the
general case 1 ! M for odd values ofM. The phase-covariant
cloner can be realized by adopting a QI-OPA working in a
collinear configuration: see Fig. 1(c) (De Martini, 1998b). In

this case the interaction Hamiltonian Ĥ PC ¼ i�ℏðâyHâyVÞ þ
H:c: acts on a single output spatial mode k. A fundamental

physical property of Ĥ PC consists of its rotational invariance
under U(1) transformations, that is, under any arbitrary
rotation around the z axis. Consider an injected single photon
with polarization state j�iin ¼ 2�1=2ðjHi þ ei�jViÞ ¼ j1; 0ik,
where jm; nik represents a product state with m photons
of the mode k with polarization �, and n photons with
polarization �?. The first contribution to the amplified state,ffiffiffi
6

p j3; 0ik �
ffiffiffi
2

p
ei2�j1; 2ik, is identical to the output state

obtained from a 1 ! 3 phase-covariant cloning. Indeed, the
fidelity is found to be the optimal one F1!3 ¼ 5

6 (Sciarrino and

De Martini, 2007). Notice the effect of the input vacuum field
over the single k mode with polarization �? coupled to the
phase-covariant optical amplifier. This vacuum contribution is
indeed responsible for reducing the fidelity of the quantum-
cloning machine.

Interestingly, the same overall state evolution can also be
obtained at the output of a noncollinear QI-OPA together with
a Pauli �Y operation and the projection of the three output
photons over the symmetric subspace [see Fig. 4(a)]. This
scheme was experimentally realized by the following
method: the flipping operation on the output mode kAC was
realized by means of two wave plates, while the physical
implementation of the symmetrization projector on the three
photon states was carried out by linearly superimposing the
modes kC and kAC on a BS and then by selecting the case in
which the three photons emerged from the BS all in the same
output mode kPC (Sciarrino and De Martini, 2005).

IV. PARAMETRIC AMPLIFICATION AND THE

NO-SIGNALING THEOREM

Here we review the connections between the cloning pro-
cess and the special theory of relativity according to which
any signal carrying information cannot travel at a speed larger
than the velocity of light in vacuum c. Even though quantum
physics has marked nonlocal features due to the existence of
entanglement, it has been found that a no-signaling theorem
exists according to which one cannot exploit quantum entan-
glement between two spacelike-separated parties for faster-
than-light communication (Maudlin, 2002). Several attempts
to break this peaceful coexistence have been proposed, the
most renowned one by Herbert in 1981 by the first laser-
amplified superluminal hookup (FLASH) machine (Herbert,
1982). The publication of this proposal, based on a cloner
machine applied to an entangled state of two spacelike-
distant particles A and B, was followed by a debate that
eventually stimulated the formulation of the no-cloning theo-
rem (Wootters and Zurek, 1982).

The setup proposed by Herbert is shown in Fig. 5. If one
observer Bob, by measuring the particle B could distinguish
between different state mixtures that have been prepared by
the distant observer Alice by measuring the particle A, then
quantum nonlocality could be used for signaling. Precisely,
consider the following: Alice and Bob share two polarization-
entangled photons A and B generated by a common source.
Alice detects her photon polarization with the detectors DA

’

and DA
’? in either the basis f ~�� ¼ 2�1=2ð ~�V � ~�HÞg or

f ~�R ¼ 2�1=2ð ~�H þ i ~�VÞ; ~�L ¼ 2�1=2ð ~�V � i ~�HÞg, where
~�H and ~�V are linear horizontal and vertical polarization,
respectively. If Bob could guess with a probability larger than
1
2 the basis chosen by Alice, superluminal signaling would be

established. It was recognized that this is impossible if the
experiment involves two single particles. However, Herbert
thought that Bob could make a new kind of measurement
involving the amplification of the received signal B through a
nonselective laser gain tube, viz., a universal (polarization-
independent) amplifier. The amplified photon beam is split by
an optical BS, so Bob can perform on one of the two output

Linear methods 

flipping

(A) (B)

“0”“0” “0”

BS BS BS

Non-Linear methods 

(A) (B)

Type II crystal
collinear

“0”
flipping

Type II crystal
non collinear

BS

FIG. 4 (color online). Linear methods: (a) schematic diagram of

the linear optics multiqubit symmetrization apparatus realized

by a chain of interconnected Hong-Ou-Mandel interferometers;

(b) symmetrization of the input photon and the ancilla

polarization-entangled pairs. Nonlinear methods: (a) universal quan-

tum cloning machine by optical parametric amplification, flipping

by two wave plates and projection over the symmetric subspace;

(b) collinear optical parametric amplification. From Sciarrino and

De Martini, 2007.
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channels of the BS a measurement on half of the cloned
particles by an apparatus tuned on the basis f ~��g which
records the signal IB�. Simultaneously, he could record on
the other BS output channel the signals IBR=L by an apparatus

tuned on the basis f ~�R; ~�Lg. In that way he could guess the
right preparation basis carried out by Alice on particle A.

In order to test Herbert’s scheme a careful theoretical and
experimental analysis of the output field was carried out with
an emphasis on fluctuations and correlations (De Angelis
et al., 2007). Precisely, Herbert’s scheme was reproduced
by the optical parametric amplification of a single photon
of an entangled pair into an output field involving 5� 103

photons (see Fig. 5). Unexpected and peculiar field correla-
tions among the cloned particles preventing any violation of
the no-signaling conditions have been found. Precisely, it was
found that the limitations implied by a complete quantum-
cloning theory are not restricted to the bounds on the cloning
fidelity but also greatly affect the high-order correlations
existing among the different clones. In fact, in spite of a
reduced fidelity, noisy but separable, i.e., noncorrelated, cop-
ies would lead to a perfect state estimation for g ! 1 and
hence to a real possibility of superluminal communication.
However, surprisingly enough particles produced by any
optimal cloning machine are highly interconnected and the
high-order correlations are actually responsible for prevent-
ing any possibility of faster-than-light communication
(Demkowicz-Dobrzanski, 2005; Bae and Acı́n, 2006; De
Angelis et al., 2007). Recently Zhang (2011) investigated
the wave packet propagation of a single photon and showed
experimentally in a conclusive way that the single-photon
speed is limited by c.

V. EXPERIMENTAL MACROSCOPIC QUANTUM

SUPERPOSITION BY MULTIPLE CLONING OF

SINGLE-PHOTON STATES

A. Generation and detection of multiparticle quantum

superpositions

This section describes the optical parametric amplification
of a single photon in the high-gain regime to experimentally
investigate how the information initially contained in its

polarization state is distributed over a large number of
particles. In particular, we analyze how the coherence prop-
erties of the input state are transferred to the mesoscopic
output field.

We consider the scenario in which a single-particle qubit
jc iB ¼ �j�iB þ �j�?iB, with j�j2 þ j�j2 ¼ 1, injected in
a three-wave optical parametric amplifier (Yariv, 1989), is
transformed by the unitary QI-OPA operation into a corre-
sponding MQS:

j�iB ¼ �j��iB þ �j��?iB: (18)

The multiparticle states, or macrostates, whose detailed ex-
pression is reported in Eq. (10), bear peculiar properties that
deserve some comments. The macrostates j��iB and j��?iB
are orthonormal and exhibit observables bearing macroscopi-
cally distinct average values. Precisely, the average number
of photons associated with the polarization mode ~�� is �m ¼
sinh2g for j��?iB, and (3 �mþ 1) for j��iB. For the � mode
~��?, orthogonal to ~��, these values are interchanged be-

tween the two states. On the other hand, as shown by De
Martini (1998a), by changing the representation basis from
f ~��; ~��?g to f ~�H; ~�Vg, the same macrostates j��iB and

j��?iB are found to be again quantum superpositions of
two orthonormal states j�HiB and j�ViB, differing by a
single quantum. This unexpected and quite peculiar combi-
nation, i.e., a large difference of a measured observable when
the states are expressed in one basis and a small Hilbert-
Schmidt distance of the same states when expressed in
another basis, turned out to be a fundamental property that
renders the coherence properties of the system robust toward
the coupling with the environment. This is discussed later in
Sec. VII.

We first briefly review the adopted optical system, making
reference to the experimental layout shown by the sketch in
Fig. 1(c), or by the equivalent, more detailed Fig. 6
(Caminati, De Martini, and Sciarrino, 2006; Nagali et al.,
2007; De Martini, Sciarrino, and Vitelli, 2008). An entangled
pair of two photons in the singlet state jc�iA;B¼
2�1=2ðjHiAjViB�jViAjHiBÞ was produced through SPDC
by the BBO crystal 1 (C1) pumped by a (weak) pulsed
ultraviolet pump beam (see Fig. 6). There the labels A and
B refer to particles associated, respectively, with the two
output spatial modes kA and kB of the SPDC generated by
C1. In the experiment the three spatial modes involved in the
injected parametric interaction were carefully selected by
adopting single-mode fibers. Consequently, by virtue of
Eqs. (1) and (2), a three-wave, collinear phase-matching
condition was realized leading to a lossless amplification
process.

The single-photon qubit on mode kA of Fig. 6 [i.e., k2 in
Fig. 1(c)] was sent to a polarizing beam splitter (PBS) whose
output modes were coupled to two single-photon detectors. In
the first experiment, these two detectors were simply con-
nected as to merely identify the emission of A (and of B)
without any effective polarization measurement on A. In other
words, the two detectors acted as the single detector unit D2

of the simplified Fig. 1(c) by supplying a single electronic
trigger signal for the overall experiment in correspondence
with the emission of any entangled couple A and B emitted by
C1. By virtue of this trigger signal the overall measurement

FIG. 5 (color online). Configuration of the quantum-injected

optical parametric amplifier. The SPDC quantum injector (crystal 1)

is provided by a type-II generator of polarization-entangled photon

pairs. From De Angelis et al., 2007.
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of the MQS j�iB could be considered heralded by, i.e.,

measured in coincidence with, any photon A measured on
mode kA. Accordingly, no bipartite micro-macro entangle-

ment was detectable (De Martini, 1998b; De Martini,
Sciarrino, and Vitelli, 2008).

The single-particle qubit jc iB ¼ 2�1=2ðjHiB � jViBÞ as-

sociated with particle B prepared in the superposition state of
the polarization state was then injected, together with a very

intense laser pulsed pump beam into the main optical para-
metric amplifier consisting of a second BBO crystal 2 (C2):

Fig. 8. The crystal C2 was oriented for collinear operation,
i.e., emitting pairs of amplified photons over the same output

spatial mode supporting two orthogonal polarization, respec-
tively horizontal and vertical modes. The high-gain para-

metric amplification provided by the crystal C2 transformed
the single-particle qubit jc iB into the corresponding multi-

particle MQS j�iB ¼ 2�1=2ðj��iB � j��?iBÞ. This MQS,
composed of M � 5� 104 photons, was analyzed by a

polarization analyzer [Að’Þ] coupled through a PBS to two
high-gain photomultipliers with detection efficiency ’ 5%.

The number of photons M and the relative uncertainty have
been estimated via the parametric gain g experimentally

derived by measuring how the number of emitted photons
increases with the pumping power (Caminati et al., 2006b;

Nagali et al., 2007). The device Að’Þ composed of an optical
rotator and a birefringent plate analyzed the MQS j�iB in a

rotating base characterized by a single ’ phase. More details

are given by De Martini (1998b).
The sinusoidal behavior shown by the detected experimen-

tal interference-fringe pattern reported in Fig. 7 as a function

of ’ offers a visual realization of the original 1935 pictorial

argument by Schrödinger (1935). These interference-fringe

patterns show how the coherent quantum superposition prop-

erties of the one photon input state can be transferred to the

mesoscopic output, involving a very large number of photon

particles. There the minima and the maxima of the patterns,

e.g., shown by Fig. 7, can be attributed to the dead or alive

conditions of the celebrated Schrödinger cat, i.e., of the

macrosystem. Similar MQS interference-fringe patterns aris-

ing in different experiments have been obtained, e.g., as

shown by Fig. 9 and by Fig. 4 of De Angelis et al. (2007).

As mentioned, all MQS results were obtained at room tem-

perature, thus defying the phase-disrupting decoherence pro-

cess that generally affects this kind of experiment. However,

we see that the observation of other sophisticated quantum

effects such as the entanglement correlations within micro-

macro systems requires not only a system well protected

against environmental decoherence, but also a sufficient mea-

surement resolution. We show also that, in spite of the

reported successful evidence of the MQS realization, the

FIG. 6 (color online). Scheme of the experimental setup. The main ultraviolet laser beam provides the excitation field beam at �P ¼
397:5 nm. A type-II BBO crystal (crystal 1: C1) generates a pair of photons with � ¼ 795 nm. The photon belonging to kB, together with the

pump laser beam k0
p, is fed into a high-gain optical parametric amplifier consisting of a crystal 2 (C2), cut for collinear type-II phase

matching. The residual UV pump beam and the amplified quantum states are spectrally separated by exploiting a dichroic mirror (DM).

Measurement apparatus: the field is analyzed by two photomultipliers (PM1 and PM2) and then discriminated through an O-filter device (OF),

whose action is described in the text. From De Martini, Sciarrino, and Vitelli, 2008.
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FIG. 7 (color online). Average signal vs the phase of the input

qubit. From Nagali et al., 2007.

FIG. 8 (color online). The experimental apparatus adopted for the

amplification of entangled pairs of photons (Quantum Optics Group,

Dipartimento di Fisica, Sapienza Universita di Roma).
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measurement of bipartite micro-macro entanglement with
very large M meets severe experimental problems, owing to
a newly discovered multiparticle efficiency loophole
(Sekatski et al., 2009). However, by a different quantum
tomographic test within a deliberate attenuation experiment
carried out in a noncollinear configuration, the achievement
of bipartite micro-macro entanglement was demonstrated for
a limited number of QI-OPA-generated particles: M � 12
(De Martini, Sciarrino, and Secondi, 2005) The last experi-
ment, demonstrating the achievement of bipartite micro-
macro entanglement as well as of the MQS condition, is
discussed in Secs. VI and IX.

VI. MICRO-MACRO SYSTEM: HOW TO DEMONSTRATE

ENTANGLEMENT

Owing to the close similarity existing between the QI-OPA
scheme shown in Fig. 1(c) and the well-known Einstein-
Podolsky-Rosen (EPR) scheme it may be argued that the
nonlocal separability between the single-photon qubit
jc�iA;B ¼ 2�1=2ðjHiAjViB � jViAjHiBÞ emitted over the

output mode kB and the macrostate emitted over kA could
be demonstrated experimentally (Caminati, De Martini, and
Sciarrino, 2006). Formally, this endeavor consists of a dem-
onstration of the existence of the entangled state connecting
the two micro-macro systems A and B:

j��iAB ¼ 1ffiffiffi
2

p ðj�iAj��?iB � j�?iAj��iBÞ: (19)

There the output macrostate is expressed by j��i ¼ ÛPCj�i,
where j�i labels the injection of a single-photon state as in
Eq. (7).

Such a demonstration consists of a complete physical
achievement of the 1935 Schrödinger cat program. In the
following sections different theoretical and experimental ap-
proaches are briefly discussed. In particular, an ambitious
attempt in this direction was undertaken with a high-gain
QI-OPA method generating a macrostate consisting of nearly
M ¼ 104 photons. The experimental layout was similar to the
one described in Sec. V but adopted a different, sophisticated
processing of the signals generated by the particle detectors
(De Martini, Sciarrino, and Vitelli, 2008). However, it was

soon realized that a conclusive test of micro-macro entangle-
ment for a very large number of particles could be achieved
successfully only by adoption of linear photomultipliers fea-
turing a large detection efficiency � & 1, a condition not
made available by the present technology (Sekatski et al.,
2009). This is but the effect of a new form of the well-known
detection loophole which affects in general all nonlocality
tests and is found to worsen for an increasing number M
of detected particles. However, as stated, in spite of all
these problems a conclusive experimental demonstration of
micro-macro entanglement has been realized by a quantum
tomographic method for a limited number of multiparticle
quantum superpositions M & 12, as we describe in the next
section.

A. Extracted two-photon density matrices

A feasible approach for the analysis of multiphoton fields
is based on the deliberate attenuation of the analyzed system
up to the single-photon level (Eisenberg et al., 2004). In this
way, standard single-photon techniques and criteria can be
used to investigate the properties of the field. The verification
of the bipartite entanglement in the high-loss regime is
evidence of the presence of entanglement before attenuation,
on the premise that no entanglement can be generated by any
local operations, including lossy attenuation. The attenuation
method has been applied to the micro-macro system, realiz-
ing by a quantum tomographic method the experimental
proof of the presence of entanglement between the single-
photon state of mode kA and the multiphoton state with M &
12 of mode kB generated through the process of parametric
amplification in a universal cloning configuration (see Fig. 6).
The theory of this experiment is considered once again in
more detail in Sec. IX (De Martini, Sciarrino, and Secondi,
2005; Caminati et al., 2006a). Unfortunately, such an ap-
proach could be applied only for a very limited number M,
since in practice unavoidable experimental imperfections
quickly wash out any evidence of entanglement (Spagnolo
et al., 2010).

B. Pseudospin operators

We now address a different criterion to verify the bipartite
entanglement between modes kA and kB. We adopt the
standard Pauli operators for the single-photon polarization
state of mode kA. We introduce a formalism useful to asso-
ciate the amplified multiparticle field in mode kB to a macro-
qubit. Through the amplification process the spin operators �̂i

of the single photon evolve into the macrospin operators �̂i

for the many-particle system �̂i ¼ Û�̂iÛ
y ¼ j�c iih�c ij �

j�c i?ih�c i?j. The operators f�̂ig satisfy the same commu-

tation rules as the single-particle 1
2 -spin ½�̂i; �̂j� ¼ "ijk2i�̂k,

where "ijk is the Levi-Cività tensor density. Hence the generic

state �j�HiB þ �j�ViB can be handled as a qubit in the
Hilbert space HB spanned by fj�HiB; j�ViBg. To test whether
the output state is entangled, one should measure the corre-
lation between the single-photon spin operator �̂A

i on mode

kA and the macrospin operator �̂
B
i on mode kB. We then

adopt the criteria for two-qubit bipartite systems based on the

spin correlation. We define the visibility Vi ¼ jh�̂B
i � �̂A

i ij, a

50

100

150

200

250
Basis {R,L}
Basis {+, -} 

C
oi

nc
id

en
ce

 c
ou

nt
s 

in
 3

00
 s

Phase value ( )
0

FIG. 9 (color online). Coincidence counts ½LB;DA� vs the phase

of the injected qubit for the diagonal (circles) and circular (squares)

polarization bases. From De Martini, Sciarrino, and Vitelli, 2008.
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parameter which quantifies the correlation between the
systems A and B. The value Vi ¼ 1 corresponds to perfect
anticorrelation, while Vi ¼ 0 expresses the absence of corre-
lation. The following upper bound criterion for a separable
state holds (Eisenberg et al., 2004): S ¼ P

iVi � 1. In order

to measure the expectation value of �̂
B
i , a discrimination

among the pairs of states fj�c ii; j�c i?ig for the three differ-
ent polarization bases 1, 2, and 3 is required. Consider the two
macrostates j�þi and j��i. Perfect discrimination can be
achieved by identifying whether the number of photons in the
kB mode with polarization ~�þ is even or odd. Asnoted, this
requires the detection of the mesoscopic field by a photon-
number-resolving detector operating with an overall quantum
efficiency � � 1, a device not yet made available by the
present technology. Here we face the problem of detecting
correlations by performing a coarse-grained measurement
process.

C. Correlation measurements via orthogonality filter

In order to implement a measurement with high discrimi-
nation, a new method has been adopted, viz., the O-filter
(OF)-based strategy. This method is based on a probabilistic
discrimination of the macrostates j��i and j��?i, which
exploits the macroscopic features present in their photon-
number distributions (Nagali et al., 2007). This measurement
is implemented by an intensity measurement carried out with
multiphoton linear detectors in the f ~�i; ~�

?
i g basis, followed

by an electronic processing of the recorded signal. If n� �
m�? > k, the (þ 1) outcome is assigned to the event, if

m�? � n� > k the (� 1) outcome is assigned to the event.

If jn� �m�?j< k, an inconclusive outcome (0) is assigned

to the event.
Experimentally the photon is detected in mode kA adopt-

ing single-photon detectors and the multiphoton field of mode
kB with photomultipliers and an O filter. The experimental
fringe patterns shown in Fig. 9 were obtained by adopting the
common analysis basis f ~�R; ~�Lg with a filtering probability
’ 10�4. In this case the average visibility was found to be
V2 ¼ ð54:0� 0:7Þ%. A similar oscillation pattern was ob-
tained in the basis f ~�þ; ~��g, leading to V3 ¼ ð55� 1Þ%.
Since V1 > 0 always, the experimental result S ¼ V2 þ V3 ¼
ð109:0� 1:2Þ% implies the violation of the separability cri-
terion introduced above. However, a careful analysis of the
implications of discarding part of the data obtained via the OF
measurement should be addressed.

The state after losses is no longer a macroqubit existing in
a two-dimensional Hilbert space, but in general it is repre-

sented by a density matrix 
̂�
� . A detailed discussion of the

properties of the macrostates after losses in both the Fock
space and the phase space was reported by De Martini,
Sciarrino, and Spagnolo (2009a) and Spagnolo et al.
(2009, 2010). In general, the probabilistic detection method
described above can be adopted to infer the active generation
before losses of a macrostate j��i or j��?i, by exploiting the
information encoded in the imbalance of the number of

particles present in the state after losses 
̂�
� . Hence the

adopted entanglement criterion allows one to infer the pres-
ence of bipartite micro-macro entanglement present before
losses, under a specific assumption (De Martini, Sciarrino,

and Vitelli, 2008). This point was discussed extensively by

Sekatski et al. (2009, 2010), who showed that any loss of data
allows the formulation of a kind of detection loophole that

impairs the success of the entanglement demonstration. We
recall that it has been known for at least four decades that a

general detection loophole exists in the refutation of local
realistic theories and is the source of skepticism about the

definitiveness of all experiments dealing with single-particle
Bell inequality violations. In fact, as claimed repeatedly by

himself, because of the absence of an experimental confirma-

tion of the fair-sampling assumption or of a plausible equiva-
lent one, all experimental tests of Bell’s inequality can today

be interpreted in large areas of the scientific community as
merely good indications of the real existence of quantum

nonlocality (Greenberger, 1986; Bell, 1987; Maudlin, 2002).
However, it is also well known that the detection loophole can

be closed for single-particle Bell’s inequality experiments by
the adoption of detectors with efficiency as large as � � 85%
(Eberhard, 1993). Unfortunately, our results show that an

even larger value of � is required to demonstrate micro-
macro entanglement in multiparticle systems. A thorough

analysis of the micro-macro entanglement was carried out
by Spagnolo et al. (2010), demonstrating that a priori

knowledge of the system that generates the micro-macro
pair is necessary to exclude a class of separable states that

can reproduce the obtained experimental results (Pomarico
et al., 2011). In conclusion, the genuine unbiased demonstra-

tion of bipartite micro-macro entanglement, i.e., in the ab-

sence of any a priori assumption, is still an open experimental
challenge when a very large number M of particles are

involved.

D. Effects of coarse-grained measurement

Recently Raeisi, Sekatski, and Simon (2011) analyzed the
effects of coarse graining in photon-number measurements on

the observability of micro-macro entanglement that is created

by greatly amplifying one photon from an entangled pair.
They compared the results obtained for a unitary quantum

cloner, which generates micro-macro entanglement, and for
a measure-and-prepare cloner, which produces a separable

micro-macro state. Their approach demonstrates that the
distance between the probability distributions of results for

the two cloners approaches zero for a fixed moderate amount
of coarse graining. Once again, this proves that the detection

of micro-macro entanglement becomes progressively harder

as the system’s size increases (Raeisi, Sekatski, and Simon,
2011).

As an alternative approach to demonstrate the micro-macro
entanglement, Raeisi, Tittel, and Simon (2012) proposed a

scheme where a photon is first cloned using stimulated para-

metric downconversion, making many optimal copies, and
then the cloning transformation is inverted, regenerating the

original photon while destroying the copies. Focusing on the
case where the initial photon is entangled with another pho-

ton, Raeisi, Tittel, and Simon (2012) studied the conditions
under which entanglement can be proven in the final state.

This proposed experiment provides a clear demonstration that
quantum information is preserved in phase-covariant quan-

tum cloning, but again one photon should be lost between the
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cloning trasformation and the following inversion process.
The experimental reversion of the optimal quantum cloning
and flipping processes was reported by Sciarrino, Secondi,
and De Martini (2006). There, the combination of linear and
nonlinear optical methods was exploited to implement a
scheme that, after the cloning transformation, restores the
original input qubit in one of the output channels, by using
local measurements, classical communication, and feedfor-
ward. This nonlocal method demonstrated how the informa-
tion on the input qubit can be restored after the cloning process.

E. Hybrid criteria

Recently Spagnolo et al. (2011) analyzed a hybrid ap-
proach to the experimental assessment of the genuine quan-
tum features of a general system consisting of microscopic
and macroscopic parts (see Fig. 10). They inferred the pres-
ence of entanglement by combining dichotomic measure-
ments on a bidimensional system and phase-space inference
through the Wigner distribution associated with the macro-
scopic component of the state. As a benchmark, the method
was adopted to investigate the feasibility of the entanglement
demonstration in a bipartite-entangled state composed of a
single-photon and a multiphoton field. This analysis shows
that, under ideal conditions, maximal violation of a Clauser-
Horne-Shimony-Holt inequality is achievable regardless of
the number of photonsM in the macroscopic part of the state.
The problems arising in the detection of entanglement when
losses and detection inefficiency are included can be over-
come by the use of a hybrid entanglement witness that allows
efficient correction for losses in the few-photon regime. This
analysis elicits further interest in the identification of a
suitable test in the high-loss and large-photon-number region
and paves the way toward an experimentally feasible dem-
onstration of the properties of entanglement affecting a quite
interesting class of states lying at the very border between the
quantum and classical domains.

VII. RESILIENCE TO DECOHERENCE OF THE

AMPLIFIED MULTIPARTICLE STATE

In this section we discuss the resilience to decoherence
of the quantum states generated by optical parametric

amplification of a single-photon qubit. The basic tools of this
investigation are provided by two coherence criteria expressed
by DeMartini, Sciarrino, and Spagnolo (2009a, 2009b). There
the Bures distance (Bures, 1969; Hubner, 1992; Jozsa, 1994),

Dð
̂; �̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ð
̂; �̂Þ

qr
; (20)

whereF is a quantum fidelity, has been adopted as a measure
to quantify (I) the distinguishability’’ between two quantum
states fj�1i; j�2ig and (II) the degree of coherence, i.e., the
superposition visibility, of their MQS j�þi ¼ 2�1=2ðj�1i �
j�2iÞ. These criteria were chosen according to the following
considerations: (I) The distinguishability, i.e., the degree of
orthogonality, represents the maximum discrimination be-
tween two quantum states achievable within a measurement.
(II) The visibility between the superpositions j�þi and j��i
depends exclusively on the relative phase of the component
states j�1i and j�2i. Consider two orthogonal super-
positions j��i: Dðj�þi; j��iÞ ¼ 1. In the presence of
decoherence the state evolves according to a phase-damping
channel E, the relative phase between j�1i and j�2i progres-
sively randomizes, and the superpositions j�þi and j��i
approach an identical fully mixed state leading to
DðEðj�þiÞ; Eðj��iÞÞ ¼ 0. The physical interpretation of
DðEðj�þiÞ; Eðj��iÞÞ as visibility is legitimate insofar as the
component states of the corresponding superposition j�1i and
j�2imay be defined, at least approximately, as pointer states or
einselected states (Zurek, 2003). Within the set of eigenstates
characterizing the system under investigation, the pointer
states are defined as those that are less affected by the external
noise and that are highly resilient to decoherence.

We now compare the resilience properties of the different
classes of quantum states after propagation over a lossy
channel E. This one is modeled by a linear BS with trans-
mittivity T and reflectivity R ¼ 1� T, acting on a state 
̂
associated with a single BS input mode. We first analyze the
behavior of the coherent states and their superpositions. The
investigation of Glauber’s states leading to the �-MQS case
(Schleich, Pernigo, and Le Kien, 1991) j���i ¼
N �1=2ðj�i � j � �iÞ in terms of the pointer states j � �i
leads to the closed-form result DðEðj��þiÞ;Eðj���iÞÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e�4Rj�j2

pq
. This is plotted in Fig. 11 (dashed line)

as a function of the average number of lost photons x 
 Rhni.
Note that the value of DðEðj��þiÞ; Eðj���iÞÞ drops from 1
to 0.095 upon loss of only one photon x ¼ 1, in other words,
any superposition of � states. j���i ¼ N �1=2ðj�i � j �
�iÞ exhibits a fast decrease in its coherence, i.e., in its
visibility and distinguishability, while the related components
j � �i, i.e., the pointer states (Zurek, 2003), remain distin-
guishable until all photons of the state are depleted by the BS.

We now analyze the behavior of the amplified multiphoton
states by the QI-OPA apparatus described in the previous
sections. An EPR pair jc�i ¼ 2�1=2ðjHiAjViB � jViAjHiBÞ
is generated in the first nonlinear crystal (see Fig. 6). By
analyzing and measuring the polarization of the photon
associated with the mode kA, the photon in mode kB is
prepared in the polarization qubit jc iB ¼ cosð=2ÞjHiB þ
e{� sinð=2ÞjVi1. Then, the single photon is injected into the
amplifier simultaneously with the strong UV pump beam k0

P.
We analyze the two configurations of the apparatus leading,

FIG. 10 (color online). Hybrid nonlocality and entanglement test

on an optical microscopic-macroscopic state generated by a black

box. The single-photon mode kA is measured by a polarization

detection apparatus, while the multiphoton mode kB undergoes both

polarization and homodyne measurements.
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as noted, to two different regimes of quantum cloning: the
phase covariant and the universal.

A. Phase-covariant optimal quantum-cloning machine

We numerically evaluated the distinguishability of
fj�þ;�

PC ig through the distance DðEðj�þ
PCiÞ; Eðj��

PCiÞÞ (see

Fig. 11). Consider the MQS of the macrostates j�þ
PCi,

j��
PCi: j�R=L

PC i ¼ ðN �=
ffiffiffi
2

p Þðj�þ
PCi � ij��

PCiÞ. Because of

the linearity of the amplification process and by virtue of
the phase covariance of the process (De Martini, Sciarrino,
and Spagnolo, 2009a, 2009b),

Dðj�R
PCi; j�L

PCiÞ ¼ Dðj�þ
PCi; j��

PCiÞ: (21)

These equations can be assumed as the theoretical conditions
assuring the same behavior for any quantum MQS state
generated by the QI-OPA in the collinear configuration:
they identify the equatorial set of the Bloch sphere as a
privileged set resilient to losses of Hilbert subspace. The

visibility of the state j�R=L
PC i was evaluated numerically by

analyzing the Bures distance as a function of x (see Fig. 11).
Note that for small values of x the decay ofDðxÞ is far slower
than for the coherent �-MQS case.

B. Universal optimal quantum-cloning machine

We now investigate the resilience to decoherence of the
MQS generated by the universal optimal quantum-cloning
machine (Spagnolo, Sciarrino, and De Martini, 2010). At
variance with the phase-covariant amplifier, the output states
do not exhibit a comb structure in their photon-number
distributions. In agreement with the universality property
of the source, the Bures distance between the MQS states

j�1c
U i ¼ cosð=2Þj�1H

U i þ e{� sinð=2Þj�1V
U i and j�1c?

U i is

independent of the choice of ð;�Þ:
Dð
̂1c

U ; 
̂1c?
U Þ ¼ Dð
̂1c 0

U ; 
̂
1c 0

?
U Þ (22)

for any basis f ~�c ; ~�c 0 g. The larger symmetry of the latter

identifies a larger Hilbert space of macroscopic quantum
superpositions resilient to decoherence, corresponding to

the complete polarization Bloch sphere. The cost of this
larger symmetry is a lower Bures distance in the universal
with respect to the phase-covariant case. This represents an

expected tradeoff in similar cases, e.g., it parallels the well-
known increase of cloning fidelity due to the reduced size of
the Hilbert subspace in the case of phase covariance.

C. Effective size of the multiparticle superposition

Recent experiments on the formation of quantum superpo-

sition states in near-macroscopic systems raise the question of
quantification of the sizes of general quantum superposition
states (Leggett, 2002). The first method to quantify the cat-

size measure was introduced by Leggett (1980): the so-called
disconnectivity. However, a closer analysis of the disconnec-
tivity shows that for indistinguishable particles this quantity

is large even for no-superposition states, such as single-
branch Fock states, due to the particle correlations induced
by symmetrization.

In the last few years, several criteria have been developed
to establish the effective size of macroscopic superpositions.

Dur, Simon, and Cirac (2002) investigated a state having the
form j�1i�M þ j�2i�M, where the number of subsystems M
is very large, but the states of the individual subsystems have

large overlap equal to 1� �2. They proposed two different
methods for assigning an effective particle number to such
states, using ideal Greenberger-Horne-Zeilinger states of the

form j0i�M þ j1i�M as a standard of comparison. The two
methods, based on decoherence and on a distillation protocol,
lead to an effective size n of the order of M�2. The adoption
of this criterion to superconducting flux states provides a
situation where counting the number of electrons that are
involved in the two current-carrying states gives a large

estimate for the size of the superposition, while a detailed
analysis of how many electrons are actually behaving differ-
ently in the two branches gives a very different and much

smaller value. The Dur, Simon, and Cirac criterion was later
generalized by Marquardt, Abel, and von Delft (2008), who
proposed a size measure based on counting how many single-

particle operations are needed to map one state component
(the ‘‘live cat’’) into the other one (the ‘‘dead cat’’).

A different approach was introduced by Korsbakken et al.
(2007) who proposed a measure of size for such superposition
states that are based on which measurements can be per-

formed to probe and distinguish the different branches of the
macroscopic superposition. This approach allows a compari-
son of the effective size for superposition states in very

different physical systems. Comparison with the measure
based on the analysis of coherence between branches
(Leggett, 1980) indicates that this measurement-based mea-

sure provides significantly smaller effective superposition
sizes. This criterion has been applied to macroscopic super-
position states in flux qubits, revealing the effective size to be

bounded by values in the range of 42–6000 (Korsbakken,
Whaley, and Cirac, 2010).

While the Dur, Simon, and Cirac (2002) approach could
not be applied to the present amplification scheme, the

FIG. 11 (color online). Bures distance for various classes of

MQSs for hni ¼ 12:5. The lower dash-dotted curve corresponds

to DðEðj�þiÞ; Eðj��iÞÞ, while the upper dotted curve is relative

to the distinguishability DðEðj�þiÞ; Eðj��iÞÞ. The solid curve

corresponds to the MQS generated by phase-covariant cloning

DðEðj�þ
PCiÞ; Eðj��

PCiÞÞ. From De Martini, Sciarrino, and

Spagnolo, 2009a, 2009b. The dashed curve corresponds to the

universal-cloning-based MQS DðEðj�þ
U iÞ; Eðj��

U iÞÞ. From

Spagnolo, Sciarrino, and De Martini, 2010.
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Korsbakken et al. (2007) criterion for the effective size can
be estimated by exploiting the previous results on the Bures
distance between the macrostates. The problem of determin-
ing quantum states that can be deterministically discriminated
can be directly related to the Bures distance between
the involved states (Markham et al., 2008). There it was
shown that the probability of success of the discrimination
pdisc between two states 
1 and 
2 fulfills the bound
pdiscð
1; 
2Þ � Dð
1; 
2Þ. According to Fig. 11, the Bures
distanceDðEðj�þ

PCiÞ; Eðj��
PCiÞÞ between two states decreases

from 1 to 0.8 as soon as an average of one photon is lost.
Accordingly, the close to perfect discrimination between
the states j�þ

PCi and j��
PCi requires one to detect almost

all particles. This result suggests that according to the
Korsbakken et al.(2007) criterion the effective size of the
macroscopic quantum superposition is rather limited, analo-
gously to superconducting macrosuperposition. On the other
hand, we note that the macrostates j��iB and j��?iB exhibit
observables bearing macroscopically distinct average values
even in the lossy regime with transmittivity T. Precisely, the
average number of photons associated with the polarization
mode ~�� is T �m for j��?iB and Tð3 �mþ 1Þ for j��iB. For
the � mode ~��?, orthogonal to ~��, these values are inter-

changed between the two states. Hence we tend to agree with
Korsbakken et al. (2007) that more general measurement
strategy in order to compare the effective size of superposi-
tion states in different kinds of physical systems is at the
present an open problem.

Other approaches have been proposed to quantify macro-
scopic quantum superposition. First, Bjork and Mana (2004)

proposed an operational approach. Their size criterion for
macroscopic superposition states is based on the fact that a
superposition presents greater sensitivity in interferometric
applications than its superposed constituent states. Lee and
Jeong (2011) proposed to quantify the degree of quantum
coherence and the effective size of the physical system that
involves the superposition by exploiting quantum interfer-
ence in phase space. Finally, Shimizu and Miyadera (2002,
2005) proposed an index of macroscopic entanglement based
on correlation of local observables on many sites in macro-
scopic quantum systems.

VIII. WIGNER-FUNCTION THEORY

We now address the problem of providing a complete
quantum phase-space analysis able to recognize the persis-
tence of the QI-OPA properties in a decohering environment.
Among the different representations of quantum states in the
continuous-variable space (Cahill and Glauber, 1969), the
Wigner quasiprobability representation has been widely
exploited to investigate nonclassical properties, such as
squeezing (Walls and Milburn, 1995) and EPR nonlocality
(Banaszek andWódkiewicz, 1998). In particular, the presence
of negative quasiprobability regions has been considered as a
consequence of the quantum superposition of distinct physi-
cal states (Bartlett, 1944). Note that, the negativity of the
Wigner function is not the only parameter that allows one to
estimate the nonclassicality of a certain state. For instance,
the squeezed-vacuum state (Walls and Milburn, 1995)
presents a positive W representation, while its properties

FIG. 12 (color online). Wigner function of a single-photon amplified state in a single-mode degenerate OPA for g ¼ 3. (a) (R ¼ 0.)

Unperturbed case. (b) (R ¼ 0:005.) For small reflectivity, the Wigner function remains negative in the central region. (c) (R ¼ 0:1.) The
Wigner function progressively evolves as a positive function in all the phase space. (d) (R ¼ 0:5.) Transition from a nonpositive to a

completely positive Wigner function. From Spagnolo et al., 2009.
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cannot be described by the laws of classical physics.
Furthermore, recently it was shown that the Wigner function
of an EPR state provides direct evidence of its nonlocal
character (Cohen, 1997; Banaszek and Wódkiewicz, 1998),
while being completely positive in all of the phase space.

In order to investigate the properties of the output field of
the QI-OPA device in detail, we analyze the quasiprobability
distribution introduced by Wigner, (1932) for the amplified
field. The Wigner function is defined as the Fourier transform
of the symmetrically ordered characteristic function �ð�Þ of
the state described by the general density matrix 
̂,

�ð�Þ ¼ Tr½
̂ expð�ây � ��âÞ�: (23)

The associated Wigner function

Wð�Þ ¼ 1

�2

Z
expð���� ���Þ�ð�Þd2� (24)

exists for any 
̂ but is not always positive definite and,
consequently, cannot be considered as a genuine probability
distribution.

The properties of a multiphoton system have been inves-
tigated (Spagnolo et al., 2009) in phase space by a Wigner
quasiprobability function analysis when the fields propagate
over a lossy channel. Figure 12(a) reports the ideal case, in
the absence of losses, showing the presence of peculiar
quantum properties such as squeezing and a nonpositive
W representation. Then by investigating the resilience to
losses of QI-OPA-amplified states in a lossy configuration,
the persistence of the nonpositivity of the Wigner function
was demonstrated in a certain range of the system-
environment interaction parameter R. This behavior can be
compared to the one shown by the j�i states, MQS, which
features a nonpositive W representation in the same interval
of R. The more resilient structure of the QI-OPA-amplified
states is shown by their slower decoherence rate, represented
by both the slower decrease in the negative part of the Wigner
function and by the behavior of the Bures distance between
orthogonal macrostates (Spagnolo et al., 2009). Since the
negativity of the W representation is a sufficient but not a
necessary condition for the nonclassicality of any physical
system, future investigations should be aimed at the regime of
decoherence in cases in which the Wigner function is com-
pletely positive, analyzing by different criteria the presence of
the related quantum properties of the system.

IX. GENERATION OF MACRO-MACRO ENTANGLED

STATES

One of the main challenges for an experimental test of
entanglement in systems of large size is the realization of
suitable criteria for the detection of entanglement in bipartite
macroscopic systems. Great effort has been devoted in the last
few years in this direction (Horodecki et al., 2009). Some
criteria, such as the partial transpose criterion developed by
Horodecki, Horodecki, and Horodecki (1996) and Peres
(1996), require the tomographic reconstruction of the density
matrix, which from an experimental viewpoint is generally
highly demanding for a system composed of a large number
M of particles. However, the complete reconstruction of the

state can be avoided by the entanglement witness method
consisting of a class of tests where only a few significant local
measurements are performed. For bipartite systems with large
M, this approach was applied via collective measurements on
the state. Within this context, Duan et al. proposed a general
criterion based on measurements on continuous-variable ob-
servables (Duan et al., 2000; Braunstein and van Loock,
2005). This general criterion was subsequently applied to the
quantum extension of the Stokes parameters in order to obtain
an entanglement bound for such variables (Korolkova et al.,
2002; Schnabel et al., 2003; Korolkova and Loudon, 2005).
Other approaches have been developed based on spin varia-
bles (Simon and Bouwmeester, 2003) or pseudo-Pauli opera-
tors (Chen et al., 2002). An experimental application of this
criterion based on collective spin measurements was per-
formed in a bipartite system consisting of two separate gas
samples (Julsgaard, Kozhekin, and Polzik, 2001).

The main experimental problem for such observations
arises from the requirement of attaining a sufficient isolation
of the quantum system from its environment, i.e., from the
decoherence process (Zurek, 2003). An alternative approach
to explain the quantum-to-classical transition was recently
proposed by Kofler and Brukner, similar to an idea earlier
discussed by Bell, Peres, and Mermin (Peres, 1993). They
considered the emergence of classical physics in systems of
increasing size within the domain of quantum theory (Kofler
and Brukner, 2007). Precisely, they focused on the limits of
the observability of quantum effects in macroscopic objects,
showing that, for large systems, macrorealism arises under
coarse-grained measurements. However, some counterexam-
ples to such modelization were found later by Kofler and
Brukner: some nonclassical Hamiltonians violate macroreal-
ism in spite of coarse-grained measurements (Kofler and
Brukner, 2008). Therefore the problem of the resolution
within the measurement process appears to be a key ingre-
dient in understanding the limits of the quantum behavior of
macroscopic physical systems and the quantum-to-classical
transition. Recently Jeong et al. contributed to the investiga-
tion of the possibility of observing the quantum features of a
system under fuzzy measurement, by finding that extremely
coarse-grained measurements can still be useful to reveal the
quantum world where local realism fails (Jeong, Paternostro,
and Ralph, 2009).

A. Macroscopic quantum state based on high-gain spontaneous

parametric downconversion

We consider, once again, an optical parametric amplifier
working in a high-gain regime: see Fig. 13. The radiation
field under investigation is the quantum state obtained
by SPDC (Kwiat et al., 1995b; Eisenberg et al., 2004), whose

interaction Hamiltonian is H U¼ {ℏ�ðây�b̂y�? � ây�? b̂
y
�Þþ

H:c:
The output state reads (Simon and Bouwmeester, 2003;

Eisenberg et al., 2004; Caminati et al., 2006b)

j��i ¼ 1

C2

X1
n¼0

�n
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jjc�
n i (25)

with
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jc�
n i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p Xn

m¼0

ð�1Þmjðn�mÞ�;m�?iA

� jm�; ðn�mÞ�?iB: (26)

The output state can be written as the weighted coherent
superposition of singlet spin-n=2 states jc�

n i.
This source has been adopted in many experiments, for

different gain regimes. First, Kwiat et al. (1995b) exploited
the polarization single state emitted in the single-pair regime
to test the violation of Bell’s inequalities (Genovese, 2005).
Further work demonstrated experimentally four-photon en-
tanglement in the second-order emission state of the SPDC
source, by detecting the fourfold coincidences after the two
output modes of the source were coupled to two 50:50 BS
(Eibl et al., 2003). Moreover, a generalized nonlocality test
was also successfully performed with this configuration
(Weinfurter and Zukowski, 2001). Later, a similar scheme
was adopted by Wieczorek et al. (2008) to experimentally
generate an entire family of four-photon entangled states.

1. Nonseparable Werner states

As mentioned, the presence of polarization entanglement
in multiphoton states up to M ¼ 12 photons was experimen-
tally proved by investigating the high-loss regime in which at
most one photon per branch was detected (Eisenberg et al.,
2004; Caminati et al., 2006a). This approach consisted of the
generation of a multiphoton state followed by a strong at-
tenuation of both output branches of the SPDC scheme, in
order to extract a correlated pair of photons, one for each
branch (see Fig. 13). The method presents several advantages:
First, the techniques for single-photon detection and charac-
terization can be adopted. Second, it models the effect of loss
associated with any communication process on a multiphoton
entangled state.

The density matrix of the two-photon state was investi-
gated by theory and experiment (Caminati et al., 2006b). The
state given by Eq. (25) is stochastically attenuated by a
conventional beam-splitter model that simulates the propaga-
tion over a lossy channel. Then the density matrix of the
two-photon state generated by postselection is expressed by


HG
SPDC ¼

1�p
4 0 0 0

0 1þp
4 � p

2 0

0 � p
2

1þp
4 0

0 0 0 1�p
4

0
BBBBBBB@

1
CCCCCCCA

(27)

with singlet weight p ¼ 1=ð2~�2 þ 1Þ and ~� ¼ ð1� �Þ tanhg.
Note that the density matrix 
HG

SPDC is a Werner state, i.e., a

weighted superposition of a maximally entangled singlet state
and a fully mixed state (Werner, 1989). It is well known that
the Werner states play a paradigmatic role in quantum infor-
mation as they determine a family of mixed states including
both entangled and separable states (Barbieri et al., 2004).
They model the decoherence process occurring in a singlet
state traveling along a noisy channel, and hence they are
adopted to investigate the distillation and concentration pro-
cesses. Furthermore, depending on the singlet weight they
can exhibit either entanglement and violation of Bell inequal-
ities, or only entanglement, or separability. In the limit � ! 0

the above equation gives ~� ¼ tanhg � 1, for large g. With
the hypothesis of very high losses, the singlet weight p � 1

3

approaches the minimum value 1
3 . Since the condition p > 1

3

implies the nonseparability condition for a general Werner
state, the two-photon state is entangled for any large value
of g. Figure 14 shows the result of the theory together with
the experimental demonstration of bipartite entanglement for
M � 12.

2. Quantum-to-classical transition by dichotomic measurement

We are now interested in analyzing the behavior of the
system considered previously when the number of generated
photons is increased and the system undergoes a fuzzy di-
chotomic measurement on the overall state, in which the
generated particles cannot be addressed singularly. As shown
by Chen et al. (2002), the demonstration of nonlocality in a
multiphoton state produced by a nondegenerate optical para-
metric amplifier requires the experimental application of
parity operators, with a detector efficiency � ¼ 1. On the
other hand, the estimation of a coarse-grained quantity
through collective measurements as suggested by Portolan
et al. (2006) misses the underlying quantum structure of the

FIG. 13 (color online). Setup for the generation and detection of a bipartite macroscopic field. The high laser pulse in mode kP excites a

type-II noncollinear source in the high-gain regime (g ¼ 3:5). The two spatial modes kA and kB are spectrally and spatially selected by

interference filters (IFs) and single-mode fibers. After fiber compensation ðCÞ, the two modes are analyzed in polarization and detected by

four photomultipliers. From Vitelli et al., 2010b.
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generated state, introducing elements of local realism even in

the presence of strong entanglement and in the absence of

decoherence. A theoretical investigation on a multiphoton

system generated by parametric downconversion was carried

out by Reid, Munro, and De Martini (2002). They analyzed

the possibility of testing the violation of Bell’s inequality by

performing a dichotomic measurement on the multiparticle

quantum state. Precisely, in analogy with the spin formalism

and the O-filter discrimination, they proposed to compare the

number of photons polarized up with the number of photons

polarized down at the exit of the amplifier: a dichotomic

measurement on the multiphoton state. In such a way a small

violation of the multiparticle Bell inequality can be revealed

even in the presence of losses and of the quantum inefficiency

of detectors. Once again, the violation decreases very rapidly

for an increasing number M of the generated photons.

Recently Bancal et al. (2008) discussed different techniques

for testing the Bell inequality violation in multipair scenarios

by performing a global measurement, in either Alice’s or

Bob’s sites. According to their theory, the photon pairs

were classified as distinguishable, i.e., independent, or indis-

tinguishable, meaning that they belong to the same spatial

and temporal mode. They found that while the state of

indistinguishable pairs is more entangled, the state of inde-

pendent pairs appears to be more nonlocal.
The possibility of observing quantum correlations in

macroscopic systems through dichotomic measurement, by

addressing two different measurement schemes, based on

different dichotomization processes, was recently addressed

by Vitelli et al. (2010b). More specifically, the persistence of

nonlocality in a spin-n=2 singlet state with increasing size

was investigated by studying the change in the correlation

form as n increases, both in the ideal case and in the presence

of losses. Two different types of dichotomic measurement on
multiphoton states were considered: orthogonality filtering
and threshold detection. Numerical simulation showed that
interference-fringe patterns for singlet-n=2 states exhibit a
transition from the sinusoidal pattern of the spin- 12 state into a

quasilinear pattern by increasing the number of photons
associated with the spin state. According to this behavior a
progressive decrease of the amount of violation is observed,
as earlier predicted by Reid, Munro, and De Martini (2002)

FIG. 14 (color online). Theoretical (left plots) and experimental (right plots) density matrices 
HG
SPDC for different gain values. The

experimental density matrices have been reconstructed by measuring 16 two-qubit observables. From Caminati et al., 2006a.
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and Bancal et al. (2008). All these results show that the

dichotomic fuzzy measurements lack the necessary resolution

to characterize such states. They also show, once again, how

problematic is the experimental demonstration of quantum

nonlocality of states with very large M.

B. Macroscopic quantum state by dual amplification of

two-photon entangled state

The amplification schemes illustrated in Figs. 1(a)–1(c)

could be upgraded in order to achieve an entangled macro-

macro system showing nonlocality features (De Martini,

2011). Such a scheme could even exploit an entanglement

swapping protocol as shown in Fig. 15(a) (Żukowski et al.,

1993; Pan et al., 1998). There the final entangled state is

achieved through a standard intermediate Bell measurement

carried out on the single-photon states. A similar process has

been suggested in several different contexts, e.g., to entangle

micromechanical oscillators (Pirandola et al., 2006). As

an alternative approach, the single-photon states in modes

kA and kB could be amplified by two independent QI-OPA’s

(see Fig. 15(b)). The resulting macro-macro scenario would

be an interesting platform to perform loophole-free Bell

inequalities.
It is an open question how to perform an entanglement and/

or nonlocality test on the macro-macro states. Indeed, anal-

ogously to the micro-macro scenario, a coarse-grained

measurement resolution would be needed. To overcome this

challenge, it has been proposed to manipulate multiphoton

quantum states obtained through optical parametric amplifi-

cation by performing a measurement on a small portion of the

output light field. Vitelli, Spagnolo, Sciarrino, and De Martini

(2010) analyzed in detail the modifications of the quantum

features of the macrostates by variation of the amount of

extracted information and considered the best strategy to be

adopted at the final measurement stage. Finally, it was found

that the scheme does not allow one to violate any multiphoton
Bell’s inequality in the absence of auxiliary assumptions.

A similar investigation of the preprocessing of quantum

macroscopic states of light generated by optimal quantum

cloners in the presence of classical detection was carried out

by Stobinska, Sekatski et al. (2011). They proposed a filter

that selects two-mode high-number Fock states whose

photon-number difference exceeds a certain value. This filter

improves the distinguishability of some states by preserving

the quantum macroscopic superposition (Stobinska, Toppel

et al., 2011). It is still an open question whether this filter

can be efficiently implemented and whether it can lead to a
genuine nonlocality test.

X. INTERACTION WITH A BOSE-EINSTEIN

CONDENSATE

In recent years much interest has been attracted by the

ambitious challenge of creating a macroscopic quantum su-

perposition of a massive object by an entangled optomechan-
ical interaction of a tiny mirror with a single photon trapped

within a Michelson interferometer (Marshall et al., 2003).

This led to another realization of the well-known argument by

Schrödinger (1935). A similar scheme could be considered

which is based on the nonresonant scattering by a properly

shaped multiatom Bose-Einstein condensate (BEC) of the
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FIG. 16 (color online). Layout of the QI-OPA and mirror-BEC experimental apparatus. The upper left inset shows the interference patterns

detected at the output of the PBS shown in the upper right inset for two different measurement bases fþ;�g and fL; Rg. Alternating slabs of

condensate and vacuum are shown in the lower left inset. From De Martini et al., 2010.
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multiphoton state j�i generated by a high-gain QI-OPA as
described in Sec. II. Light scattering from BEC structures has
been adopted so far to enhance their nonlinear macroscopic
properties in superradiance experiments (Inouye, 1999), to
show the possibility of matter-wave amplification (Kozume
et al., 1999), and nonlinear wave mixing (Deng et al., 1999).
The new scheme, represented by Fig. 16, results in a joint
atom-photon micro-macro state entangled by momentum con-
servation. The resulting physical effect consists of the me-
chanical motion of a high-reflectivity optical multilayered
Bragg-shaped mirror, referred to as a ‘‘mirror BEC,’’ driven
by the exchange of linear momentum with a photonic macro-
state j�i.

The layout in Fig. 16 shows a QI-OPA system identical to
the one represented in Fig. 1(c). The interfering polarization
macrostates belonging to the quantum superposition (MQS)
j�i ¼ 2�1=2ðj��i þ j��?iÞ generated over mode k2 are
selected by a polarizing beam splitter and drive the mechani-
cal motion of the mirror BEC along the X axis. Precisely, the
displacements along the two opposite directions parallel to
the X axis are driven, respectively, by the orthogonal polar-
izations j��i and j��?i. Since these states are found to be
entangled with the distant single photon emitted over the
mode k2, the same entanglement property can be transferred
to the position macrostate of the optically driven mirror BEC.
The discussion in Sec. V dealing with the entanglement
processes can be extended to the present more complex
optomechanical configuration.

XI. APPLICATIONS: FROM SENSING TO RADIOMETRY

A. Quantum sensing

The aim of quantum sensing is to develop strategies able to
extract from a system the maximum amount of information
with minimal disturbance. The possibility of performing
precision measurements by adopting quantum resources can
increase the achievable precision beyond the semiclassical
regime of operation (Helstrom, 1976; Giovannetti, Lloyd, and
Maccone, 2004, 2006). In the case of interferometry, this can
be achieved by the use of the so-called N00N states or

squeezed states (Dur, 2002; Dur and Burnett, 2004), which

are quantum-mechanical superpositions of just two terms,

corresponding to all the available photons N being in either

the signal arm or the reference arm of the interferometer. The

use of N00N states can enhance the precision in phase

estimation to 1=N, thus improving the scaling of the achiev-

able precision with respect to the employed resources (Boto

et al., 2000; Dowling, 2008). This approach can have wide

applications for minimally invasive sensing methods acting

on quantum states. Nevertheless, these states are extremely

fragile under unavoidable losses and decoherence (Gilbert

and Weinstein, 2008). For instance, a sample whose phase

shift is to be measured generally introduces attenuation. Since

the quantum-enhanced modes of operations are generally

very fragile, the impact of environmental effects can be

much more harmful than in semiclassical schemes, com-

pletely destroying the quantum benefits (Rubin and

Kaushik, 2007; Shaji and Caves, 2007). This scenario ex-

plains why overcoming the negative effects of realistic envi-

ronments is the main challenge of the technology of quantum

sensing. Recently the theoretical and experimental engineer-

ing of quantum states of light has attracted much attention,

leading to the best possible precision in optical two-mode

interferometry, even in the presence of experimental imper-

fections (Huver, Wildfeuer, and Dowling, 2008; Demkowicz-

Dobrzanski et al., 2009; Dorner et al., 2009; Kacprowicz

et al., 2010; Lee, Jeong, and Jaksch, 2009; Maccone and De

Cillis, 2009).
Recently Vitelli et al. (2010a) reported a hybrid approach

based on a high-gain optical parametric amplifier operating

for any polarization state in order to transfer quantum prop-

erties of different microscopic quantum states in the macro-

scopic regime: see Fig. 17. By performing the amplification

of the microscopic probe after the interaction with the sam-

ple, it is possible to overcome the detrimental effects of losses

on the phase measurement on the single-photon state follow-

ing the test on the sample. This approach may be adopted in a

minimally invasive scenario where a fragile sample, such as a

biological system, requires a minimum amount of test pho-

tons in order to prevent damages. The action of the amplifier,

i.e., the process of optimal phase-covariant quantum cloning,

is to amplify the phase information which is codified in a

single photon into a large number of particles. Such multi-

photon states exhibit a high resilience to losses, as shown by

De Martini, Sciarrino, and Vitelli (2008, 2009a, 2009b), and

can be manipulated by exploiting a detection scheme which

combines features of discrete and continuous variables. The

effect of losses on the macroscopic field consists in the

reduction of the detected signal and not in the complete

cancellation of the phase information as in the single-photon

probe case, thus improving the achievable sensitivity. This

improvement consists of a constant enhancement KðgÞ of the
sensitivity, depending on the amplifier gain g. Hence, the
sensitivity scales as

ffiffiffiffi
N

p
, where N is the number of photons

testing the sample, but the effect of the amplification process

reduces the detrimental effect of losses by a factor propor-

tional to the number of generated photons. Within this frame-

work recently Escher, de Matos Filho, and Davidovich (2011)

derived the general bounds on the adoption of quantum

metrology in the presence of decoherence.

FIG. 17 (color online). Scheme for phase measurement.

(a) Interferometric scheme adopted to estimate the phase (�)

introduced in the mode k2. (b) Interferometric scheme using a

single photon and the optical parametric amplifier: the amplification

of the single-photon state is performed before dominant losses.

From Vitelli et al., 2010a.
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B. Quantum radiometry

Radiometry is the science of measuring the electromag-
netic radiation. The available technologies in this field oper-

ate either in the relatively high-power regime or in the
photon-counting regime based on the correlations of quantum
fields. Recently a sophisticated radiometer apparatus was

devised that works over a broad range of powers: from the
single-photon level up to several tens of nanowatts, i.e., from

the quantum to the classical regime (Sanguinetti et al., 2010).
In fact, such a system exploits the process of optimal quantum
cloning and is able to provide an absolute measure of spectral

radiance by relying on a particular aspect of the quantum-to-
classical transition: as the number of information carriers
(photons) grows, so does the cloning fidelity. Sanguinetti

et al. showed that the fidelity of cloning can be used to
produce an absolute power measurement with an uncertainty
limited only by the uncertainty of a relative power measure-

ment. They provided a convincing demonstration of this
scheme by an all-fiber experiment at telecommunication
wavelengths, by achieving an accuracy of 4%, a figure that

can be easily improved by a dedicated metrology laboratory
(Fasel et al., 2002).

XII. CONCLUSIONS AND PERSPECTIVES

In this paper we reviewed several protocols and related
experiments centered on the process of nonlinear amplifica-

tion of single-photon quantum states. A large part of the
investigation focused on a new protocol of quantum informa-
tion, viz., the quantum-injected version of the OPA, by which

a single photon, encoded as a microqubit, triggers’’ by a QED
process the generation of an in-principle unlimited numberM
of photons, i.e., a macroqubit, carrying a large portion of the

information associated with the trigger particle. The seminal
character of this protocol opened the way to the discovery, the
realization, and the development of novel scientific methods

and applications of fundamental and technical relevance. The
quantum information protocols today generally referred to as

quantum cloning, the quantum U-NOT gate, MQS, micro-
macro entanglement, quantum reversion, or the quantum-to-
classical transition were among the paradigmatic outcomes of

the overall endeavor reported in this article, lasting more than
one decade. In particular, the QI-OPA method was instru-
mental in the first experimental realization of the quantum-

cloning process in several multiparticle regimes. This process
was further thoroughly investigated, leading to the discovery
of the U-NOT theorem and of the quantum reversion protocol

and to the first experimental test of the no-signaling theorem.
In this connection, the unexpected result of the experiment
was that the impossibility of faster-than-light communication,

i.e., the ‘‘peaceful coexistence’’ (according to Shimony)
between special relativity and quantum mechanics, rests on
the high-order correlations affecting the particles generated

by a cloning machine.
A large part of the investigation focused on the realization

via quantum cloning of the MQS process, which is related
to the quantum-to-classical transition paradigm implied by

the celebrated Schrödinger’s cat argument (Schrödinger,
1935). Realization of the MQS process consisting of a large

number of particles M � 104 was experimentally demon-

strated, in a nonentangled configuration, by detection of the

sinusoidal phase dependence of the interference-fringe pat-

terns generated at the output of the apparatus. However, the

bipartite micro-macro entanglement could be demonstrated

only for a reduced number of particles,M � 12, owing to the
existence of a detection loophole whose detrimental effect

increases with M. A most interesting feature of the adopted

MQS scheme was found to consist of its resilience to any

externally driven decoherence process: this allowed the entire

research to be carried out at T ¼ 300 K. Accordingly, em-

phasis was given to extended theoretical analysis aimed at the

understanding of this phase-impairing process affecting all

multiparticle systems. The extension of the quantum-cloning

argument to a novel macro-macro regime and the mechanical

coherent interaction of a multiphoton MQS system with a

multiatom BEC condensate were considered as proposals

toward further research into the foundations of quantum

mechanics.
Concerning the investigation of the quantum-to-classical

transition, a set of entanglement criteria for bipartite systems

of a large number of particles were introduced and analyzed

in detail. In particular, a specific joint microscopic and mac-

roscopic system based on optical parametric amplification of

an entangled photon pair was addressed. The potential appli-

cations of these criteria of fundamental and technical rele-

vance in different contexts were analyzed, e.g., the realization

of nonlocality tests, quantum metrology, quantum sensing,

and, as an open challenge for future research, the process of

‘‘preselection, i.e., the establishment of efficient strategies

able to generate and manipulate multiphoton states by

performing measurements on a small portion of the output

field (Vitelli, Spagnolo, Sciarrino, and De Martini, 2010).

Precisely, within the macro-macro nonlocality test, the aim

was to understand how the features of the macroqubit in the

high-loss and large-photon-number regime are modified by

varying the amount of extracted information and then to

devise the best strategy to be adopted at the final measure-

ment stage. In fact, the proposed preselection method, the

simplest one based on the dichotomic measurement of the

reflected part of the wave function in two different bases, did

not allow violation of Bell’s inequality. Finally, a more

general approach to the micro-macro entanglement problem,

based on single-photon–continuous- variable hybrid methods,

was introduced (Spagnolo et al., 2011). All these novel

criteria and methods were considered and compared in the

context of the existing literature in the field.
In summary, we believe that the extended theoretical and

experimental investigation outlined by this Colloquium can

contribute to open new paths of research either by stimulating

the discovery of efficient theorems and protocols of quantum

information processing, or, on the more fundamental

side, by shedding additional light on the still uncertain border

existing between the ‘‘classical’’ and the ‘‘quantum’’ aspects

of nature.
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