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Developments in the physics of 2D electron systems during the last decade revealed a new class of

nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of

these phenomena is magnetoresistance oscillations generated by the external forces that drive the

electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in

high-mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced

resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations

and associated zero-differential resistance states. The experimental manifestations of these phe-

nomena and the unified theoretical framework for describing them in terms of a quantum kinetic

equation are reviewed. This survey also contains a thorough discussion of the magnetotransport

properties of 2D electrons in the linear-response regime, as well as an outlook on future directions,

including related nonequilibrium phenomena in other 2D electron systems.
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I. INTRODUCTION

Fundamental research on two-dimensional electron gases
(2DEGs), as well as on quantum wires and quantum dots made
on the base of 2D structures, has largely determined the devel-
opment of condensed-matter physics in the last half century
(Beenakker and vanHouten, 1991; Ferry andGoodnick, 1997).
Continuous advances in the fabrication of semiconductor struc-
tures and the development of experimental techniques and

theoretical approaches keep bringing up fascinating new areas
of research. On the side of applications, these structures, serv-
ing as a basis for the planar semiconductor technology, are
of enormous importance for modern nanoelectronics and
optoelectronics (Alferov, 2001; Kroemer, 2001).

A large body of research findings concerning the character
of electronic states, mechanisms of scattering, activated trans-
port in the insulating regime, the cyclotron resonance, quan-
tum magneto-oscillations, and many other properties of a
2DEG has been summarized by Ando, Fowler, and Stern
(1982). The discovery of the integer and fractional quantum
Hall (QH) effects in 1980–1982 largely shifted the focus of
research toward the range of strong magnetic fields B where
the QH physics is observed (von Klitzing, 1986; Laughlin,
1999; Stormer, 1999; Tsui, 1999). More recently, the behavior
of very-low-density 2DEGs at zero B attracted a great deal of
attention: the physics of these systems is governed by the
interplay of quantum localization and strong interactions,
which leads to a metal-insulator transition (Abrahams,
Kravchenko, and Sarachik, 2001).

During the last two decades evidence has accumulated that
the range of moderately strong B, where the cyclotron dy-
namics already sets in whereas the quantum localization
effects and thus the Hall quantization are not developed
yet, also reveals a rich variety of important physical phe-
nomena. These include geometric resonances in periodically
modulated structures (Weiss et al., 1989, 1991) and magne-
toresistance due to quasiclassical memory effects and to
interaction-induced quantum corrections to the conductivity
[for a review, see Dmitriev et al. (2008)].

A particularly prominent research arena was opened by the
experimental discovery of the microwave-induced resistance
oscillations (MIRO) (Ye et al., 2001; Zudov, Du et al., 2001)
and the zero-resistance states (ZRS) (Mani et al., 2002; Zudov
et al., 2003). It became clear soon after these discoveries that a
new field of nonequilibrium physics in high Landau levels
(LLs) emerged. Most importantly, the observed phenomena
demonstrated that the combined effect of the weak Landau
quantization and the relatively weak microwave radiation can
give rise to very strong changes of the transport properties of a
2DEG. These novel nonequilibrium phenomena revealed un-
expected and conceptually interesting physics which has
proven to be of interest in many areas of condensed-matter
physics. In addition to MIRO and ZRS, a number of other
closely related phenomena have been observed, such as the
Hall field-induced resistance oscillations (HIRO) (Yang, Zhang
et al., 2002), thephonon-induced resistance oscillations (PIRO)
(Zudov, Ponomarev et al., 2001), in particular, under nonequi-
librium conditions created by a dc field (Zhang et al., 2008b),
the microwave-induced B-periodic oscillations in stronger
magnetic fields (Kukushkin et al., 2004), the zero-differential
resistance states (ZdRS) (Bykov et al., 2007; Zhang et al.,
2008b), as well as the fractional MIRO (Dorozhkin, 2003;
Zudov et al., 2003; Willett, Pfeiffer, and West, 2004).

In the decade that has passed since the above discoveries,
intensive experimental and theoretical work by many re-
searchers has greatly advanced the understanding of the
physics of nonequilibrium phenomena in high LLs. These
advances have motivated us to write this review. While several
short reviews are available (mainly written on a much earlier
stage of development of the research field) (Fitzgerald, 2003;
Durst and Girvin, 2004; Lyapilin and Patrakov, 2004;
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Durst, 2006; Dmitriev et al., 2008; Vitkalov, 2009; Lei, 2010),
there is a clear need for a full-scale review article on the subject.
In addition to summarizing past achievements, we also review
important open questions as well as perspectives for further
developments (including related nonequilibrium phenomena in
other 2D systems). Particularly interesting in this respect is the
recent discovery of photoinduced dissipationless transport in a
2Delectron systemon liquidHe (KonstantinovandKono, 2009,
2010).

II. LINEAR TRANSPORT OF 2D ELECTRONS IN A

MODERATELY STRONG MAGNETIC FIELD

Webegin by reviewing the transport properties of a 2DEG in
the linear-response regime, with emphasis on the effects that
are qualitatively sensitive to the specific nature of disorder.

A. 2D electron gas: Types of disorder

Almost all work on the novel nonequilibrium magnetotran-
sport phenomena at low magnetic field B has relied on
ultrahigh mobility selectively doped GaAs=AlGaAs hetero-
structures, with the electron mobility � at the level of ��
107 cm2=V s (the mean free path l� 102 �m). Therefore, we
focus on the scattering mechanisms that are specific to these
realizations of a 2DEG. Note that it is on the structures of this
very design and this sample quality that the most spectacular
advances in the study of the fractional QH effect have been
made in the opposite limit of strong B. Typically, the 2DEG in
high-mobility structures is confined to a single quantum well
(QW) in undoped (‘‘pure’’) GaAs. In the single-interface
setup, a triangular-shaped QW is created by the conduction
band offset at the interface between AlGaAs and GaAs on one
side and by the electric field produced by the charge of dopants,
and of the 2DEG itself, on the other. The stability of the 2DEG
charge confinement near the interface is supported by the
chemical potential fixed by the overall distribution of charges.
The double-interface design with a GaAs QW squeezed be-
tween AlGaAs layers is also frequently employed.

1. Remote donors

The key idea behind the suppression of impurity scattering in
the heterostructures is a spatial separation of the layer to which
the 2DEG is confined and the ionized donor impurities by an
undoped ‘‘spacer’’ with a typical width d� 102 nm. Since the
first experiments on the modulation-doped heterostructures
(Dingle et al., 1978), the optimization of the structure design
has led to the growth of achieved mobilities from about
104 cm2=Vs to the values in excess of 3� 107 cm2=V s
(Pfeiffer and West, 2003; Umansky et al., 2009). Much of
this progress has been related to the strong dependence of the
momentum relaxation rate 1=� ¼ e=m� on d for scattering off
remote charged impurities (here and below ℏ ¼ 1):

1=� ¼ �ni=8mðkFdÞ3; (1)

where m is the electron mass, kF is the Fermi wave vector of
the 2DEG, ni ¼

R
dzcRðzÞðd=jzjÞ3, and cRðzÞ is the three-

dimensional density of remote charged impurities located at
jzj> d (z is counted from the interface).

The transport scattering rate at zero temperature is ob-
tained as an integral over the scattering angle �:

1

�
¼ m

Z 2�

0

d�

2�
ð1� cos�ÞWq¼2kF sinð�=2Þ; (2)

where Wq is the Fourier component of the correlation

function of the screened impurity potential in the plane of
the 2DEG

WðrÞ ¼ hVð0ÞVðrÞi; r ¼ ðx; yÞ (3)

at the transferred in-plane momentum q. In the limit kFd � 1
(typically kFd� 10), scattering is predominantly on small
angles and Eq. (2) reduces to

1

�
¼ m

k3F

Z 1

0

dq

2�
q2Wq: (4)

The function Wq that describes remote charged impurities

and upon substitution in Eq. (4) yields Eq. (1) is

Wq ¼ ð�=mÞ2nie�2qd: (5)

Equation (5) assumes that (i) q�1 is much larger than the
2DEG thickness w (typically w� 10 nm); (ii) the only source
of screening of the impurity potential is the 2DEG and the
dielectric function �ðqÞ is given by the 2D random phase
approximation (RPA): �ðqÞ ¼ �0ð1þ 2=qaBÞ, where �0 is
the lattice dielectric constant at the interface and aB ¼
�0=me2 is the Bohr radius; and (iii) q�1 is much larger than
aB ’ 10 nm. Conditions (i) and (iii) for the characteristic
values of q�1 � d are reasonably well satisfied in the high-
mobility structures. The use of the RPA in (ii) relies on the
smallness of the Wigner-Seitz parameter rs ¼ ð�nea2BÞ�1=2,

where ne ¼ k2F=2� is the density of the 2DEG. For the typical

value of ne ¼ 3� 1011 cm�2, rs ’ 1 and the conventional
use of the RPA is only marginally justified. However, devia-
tions from the RPA in Eq. (5) lead only to the parameter m=�
being replaced by the exact compressibility, so that at rs � 1
Eq. (5) remains valid up to a factor of order unity. We also note
that fluctuations of the random potential created by remote
impurities are accurately described by Gaussian statistics (i.e.,
higher cumulants can be neglected) in view of the typically
large parameter nid

2 � 1, independently of the value of rs.
Note that the total scattering rate

1

�q
¼ m

Z 2�

0

d�

2�
Wq¼2kF sinð�=2Þ (6)

(which determines, e.g., the LL broadening induced by dis-
order, see Sec. II.C) is, in the case of remote impurities, much
larger than 1=�. In the limit kFd � 1, 1=�q is rewritten,

similarly to Eq. (4), as

1

�q
¼ 2m

kF

Z 1

0

dq

2�
Wq; (7)

which for Wq from Eq. (5) gives �=�q ¼ ð2kFdÞ2. The para-

metrically large, for kFd � 1, difference between � and �q
reflects a diffusive character of electron dynamics on the
Fermi surface: the ratio �=�q is a characteristic number of

small-angle scattering events that is needed to change the
direction of momentum by an angle of order �.

In an important case of ‘‘delta doping,’’ charged impurities
are concentrated in a thin layer whose thickness is much
smaller than d (down to a few lattice constants), so that
cRðzÞ can be approximated as ni�ðzþ dÞ with ni the sheet
density of these impurities. The � layer is grown either by
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directly adding impurities in AlGaAs or by doping into a
short-period AlAs/GaAs superlattice embedded in the alloy
(Friedland et al., 1996; Umansky et al., 2009). In the latter
case, X-valley electrons in AlAs yield additional screening of
disorder and a further reduction of 1=�. In modern high-
mobility GaAs/AlGaAs structures, the growth sequence
design typically includes one or two Si-doped � layers (these
may be followed by other layers with Si dopants which
compensate for surface states at the boundary with the vac-
uum), which are the main supply of electrons to the 2DEG
and are thought to be the main source of scattering in the
2DEG as far as the intentionally doped layers are concerned.
A setup with two �-doped layers, one on each side of the
2DEG, has the advantage that it yields larger ne for given d.
The effect of the increase of ne on 1=� is stronger than the
enhancement of the strength of disorder. In the case of remote
impurities with ne ¼ ni, the time � for a QW symmetrically

doped from both sides is, according to Eq. (1), a factor of
ffiffiffi
2

p
larger than for the single-side doping. Moreover, the double-
side doping has been instrumental in attaining the highest
reported mobilities for which the scattering off remote impu-
rities is likely to be of little importance; see Sec. II.A.2.

Equation (1) implies that charged impurities are randomly
distributed in the 2D plane. This assumption appears to
overestimate 1=� (Heiblum, Mendez, and Stern, 1984; Buks
et al., 1994; Buks, Heiblum, and Shtrikman, 1994; Coleridge,
1997) and 1=�q (Coleridge, 1991, 1997) measured in some

heterostructures with d & 50 nm. The reason why the mea-
suredmobility is higher than expectedwas argued (Buks et al.,
1994; Buks, Heiblum, and Shtrikman, 1994) to be related to the
fact that the Si dopants in AlGaAs (in a range of Al content
which includes the typical values of 30%–40%) may exist in
two configurations: as shallow donors (which become posi-
tively charged after having supplied electrons for the 2DEG)
and as DX centers (whose energies lie deeper in the forbidden
gap and which can be negatively charged). Buks et al. (1994)
and Buks, Heiblum, and Shtrikman (1994) interpreted their
experimental results to prove that theDXcenters are negatively
charged in the ground state and demonstrated that correlations
in the spatial distribution of the positively and negatively
charged impurities may lead to a strong reduction of the
scattering rate, similar to the correlations considered earlier
(Efros, Pikus, and Samsonidze, 1990) for the case when not all
donor impurities are ionized and some remain neutral. Control
of the ratio of the impurity densities in the shallow and DX
configurations indeed provided experimental evidence (Buks
et al., 1994; Buks, Heiblum, and Shtrikman, 1994; Coleridge,
1997) for the correlations capable of substantially reducing 1=�
(by a factor of up to about 6), depending on the parameters of
the technological process, and a similar behavior was also
demonstrated in the measurements of 1=�q (Coleridge, 1997;

Shikler, Heiblum, and Umansky, 1997).

2. Background impurities

Electrostatics of the heterostructure (Stern, 1983) dictates
that ne is lowered with increasing d (Heiblum, Mendez, and
Stern, 1984; Umansky, de Picciotto, and Heiblum, 1997).
Details of the relation betweenne andd depend on the concrete
doping design of the heterostructure; however, as long as the
electric field in the spacer layer is mainly determined by the

2DEG charge, ne scales as 1=d, which gives for ne ¼ ni,
according to Eq. (1), � / d5=2 (Lee et al., 1983). The growth
of � with increasing spacer thickness, observed at smaller d,
typically stops in the ultrahigh mobility samples at d ’
60–70 nm (Umansky, de Picciotto, and Heiblum, 1997). This
behavior is usually argued to be associated with a competition
between scattering off remote charged impurities [Eq. (1)] and
scattering off ‘‘background impurities’’ which are present in a
small concentration in the spacer layer and also in the GaAs
layer. Being distributed in close vicinity of the 2DEG, the
background impurities can lead to large-angle scattering, thus
giving the main contribution to 1=� at sufficiently large d.

The momentum relaxation rate due to scattering off
background impurities uniformly distributed with the three-
dimensional densities c<B on one side of the interface and c>B
on the other is obtained as

1=� ¼ ð�cB=mk3Fa
2
BÞ lnðminfkF; w�1gaBÞ; (8)

where cB ¼ c<B þ c>B and the corresponding correlation func-

tion Wq for qw � 1 is given by

Wq ¼ ðcB=2qÞ½2�e2=�ðqÞq�2: (9)

Equation (8) is accurate provided both k�1
F and w are much

smaller than aB. In reality, both spatial scales in high-mobility
GaAs/AlGaAs structures are about aB ’ 10 nm, so that 1=�
due to scattering off background impurities should then be
sensitive to the exact shape of the electron density profile in
the direction across the 2DEG plane. A comparison of
Eqs. (1) and (8) shows that at ni=d

3 � cB=a
2
B (up to the

logarithmic factor) the two mechanisms of scattering give
equal contributions to the total scattering rate and at larger d
the scattering on background impurities dominates.

The dependence of � on ne varied in situ by a controlled
illumination in structures with d larger than 85 and up to
200 nm, exhibited, when fitted to a power law over about one
decade in ne within the interval between 1010 and 2�
1011 cm�2, the relation � / nxe with x in the range 0.6–0.7
(Shayegan et al., 1988; Pfeiffer et al., 1989; Umansky, de
Picciotto, and Heiblum, 1997). Pfeiffer and West (2003) also
emphasized that the power law with x ’ 0:7 holds over two
decades in ne for a series of samples with different ne for�>
106 cm2=V s. These values of x are substantially smaller than
3
2 expected for scattering off remote impurities [Eq. (1)],

which is commonly regarded as evidence pointing toward
the dominant role of background impurities. Note that Eq. (8)
for background impurities also predicts the exponent 3

2 for

sufficiently large ne. However, in the low-density case ne &
1011 cm�2, the dependence of � on ne, according to the
numerical calculations (Ando, 1982; Gold, 1989) using varia-
tional electron wave functions to treat the effect of a finite
thickness of the 2DEG, is indeed substantially weaker for

background impurities than � / n3=2e [the results by Ando
(1982) for background impurities are obtainable from those
for remote impurities by putting d ! 0]. On the other hand,
the numerical variational calculation by Walukiewicz et al.
(1984) for ne > 1011 cm�2 gave similar dependences of � on
ne for remote and background impurities.

A systematic experimental study (Umansky, de Picciotto,
and Heiblum, 1997) of the relative contributions of the
scattering mechanisms was performed in single-interface
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heterostructures grown in a wide range of d and ni and
mobilities as high as � ’ 1:4� 107 cm2=V s. By measuring
the mobility at given d and ne as a function of ni [see also
Umansky et al. (2009)], experimental evidence was pre-
sented that for d larger than 70 nm the contribution of remote
impurities to the total 1=�was smaller (in the ‘‘best samples,’’
about 10%–15%) than that of background charges. These
results indicate that � in the presently available ultrahigh
mobility structures of various designs is likely to be mainly,
or to a large extent, limited by background impurities.

In both Eqs. (1) and (8), 1=� was obtained within the Born
approximation. While this level of approximation is well
justified for remote impurities, for kFaB � 1 background
impurities that are within the distance aB from the 2DEG
and give the main contribution (as far as the background
charges are concerned) to the scattering rate are not really
weak scatterers. The momentum relaxation time � for the
background impurities sitting effectively right at the interface
is given simply by the time of flight 1=vFcBa

2
B (where vF is

the Fermi velocity) between two of them along the straight
line. The presence of the strong scatterers at the interface has
important ramifications in the subsequent sections.

3. Surface roughness

Interface roughness is also an important source of disorder in
high-mobility GaAs/AlGaAs structures and is argued (Markus
et al., 1994; Saku, Horikoshi, and Tokura, 1996; Umansky, de
Picciotto, and Heiblum, 1997) to be probed by the anisotropy
displayed by � when the current is measured along different
directions in the 2D plane. The anisotropy of interface rough-
ness is viewed as an inherent property of the kinetics of growth
of GaAs-based structures. Grown, as usual in high-mobility
structures, on the (001) plane, they exhibit atomic-scale terrac-
ing at the interface, with randomly shaped terraces being
typically elongated in the [�110] direction. Anisotropy of �
was reported to be in some high-mobility samples as large as
40% (Tokura et al., 1992; Markus et al., 1994; Saku,
Horikoshi, and Tokura, 1996; Umansky, de Picciotto, and
Heiblum, 1997), increasing with electron density. The experi-
mental results indicate that the strength of interface roughness
varies depending on the growth conditions: for two ultrahigh
mobility samples in Tokura et al. (1992) and Saku, Horikoshi,
and Tokura (1996), both having almost the same � ’
107 cm2=V s along the ½�110� direction, the anisotropy was
about 40% in one of them and about 10% in the other. In the
‘‘best structures’’ studied by Umansky, de Picciotto, and
Heiblum (1997) the anisotropy was also reported to be reduced
to 5%–10%. The experiments suggest that the characteristic
correlation radius of the interface inhomogeneities1 that are
relevant to the mobility is 10 nm (Tokura et al., 1992; Markus
et al., 1994; Saku, Horikoshi, and Tokura, 1996).

Modeling the interface as a hard wall, the problem of
scattering by surface roughness reduces to that of a perturba-
tion imposed on the boundary condition. Spatial fluctuations
of the height of the surface hðrÞ along the z axis create then a
2D random potential whose correlation function at the trans-
ferred momentum q is (Prange and Nee, 1968; Ando, Fowler,
and Stern, 1982)

Wq ¼ F2hhhiq; (10)

where F¼R
dzð@U=@zÞ�DðzÞ¼ð@�=@zÞ2jz¼þ0=2m, UðzÞ is

the unperturbed confining potential, �DðzÞ, nonzero for
z>0, is the unperturbed electron density profile (normalized

to unity) in the direction normal to the 2DEG plane, �ðzÞ ¼
�1=2
D ðzÞ, and hhhiq is the correlation function of the surface

corrugations. Equation (10) is valid for the characteristic
amplitude of hðrÞ much smaller than the 2DEG thickness.
Estimates based on Eq. (10) (Ando, 1982; Tokura et al.,
1992; Markus et al., 1994; Saku, Horikoshi, and Tokura,
1996) show that the experimentally observed strong anisot-
ropy can be explained in terms of scattering by interface
roughness for realistic parameters of the latter. If the charge
of the depletion layer can be neglected compared to the
2DEG charge, then F / ne and the dependence of the mo-
bility on ne, as it follows from Eq. (10), is � / n�2

e , i.e., with
increasing ne this mechanism of scattering becomes stronger,
in contrast to scattering off charged impurities. The calcula-
tion by Markus et al. (1994) shows that the n�2

e scaling of �

(for F / ne) changes to n
�1=2
e if scattering by interface rough-

ness is predominately on small angles.
Although the term ‘‘interface roughness’’ commonly refers

to the long-range fluctuations of hðrÞ, there are also inherent
imperfections in the interface related to alloy disorder in the
AlGaAs part of the heterostructure. These are correlated on
the scale of the lattice constant a0 and are described for
qa0 � 1 by

Wq ¼ �2
ca

3
0I; (11)

where �c is the energy scale of the fluctuations and the
integral I ¼ R

dz�2ðzÞ, with �ðzÞ the electron density profile

(normalized to unity) across the 2DEG, is taken over the
region where alloy scattering is present (Ando, 1982).
The integral is estimated as I � 	5=w6, where 	� a0 is the
tunneling length under the barrier on the AlGaAs side of the
interface and w is the total thickness of the 2DEG. Although
the values of �c and I can be calculated only numerically,
early estimates (Ando, 1982) show that for ne ¼
3� 1011 cm�2 and the Al fraction in the range 30%–40%
alloy scattering at the interface establishes the mobility limit
at the level of about 107 cm2=V s. This suggests that alloy
scattering, commonly deemed irrelevant at the GaAs/AlGaAs
interface, may in fact be important in the modern ultrahigh
mobility heterostructures.

B. Magnetotransport beyond the Drude theory

At the most basic level, dc transport in a magnetic field B is
described by the Drude formula according to which the
resistivity tensor �̂ðBÞ in two dimensions reads

1The issue of anisotropic interface roughness in ultrahigh mobil-

ity GaAs/AlGaAs structures has also attracted attention in the

context of cooperative effects in electron transport at half filling

of high LLs (Cooper et al., 2001; Willett et al., 2001). These

experiments probed surface roughness at the interface with the

vacuum and were focused on long-range statistically anisotropic

fluctuations of the surface height with a much larger correlation

radius on the scale of 1 �m.
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�̂ðBÞ ¼ m

e2ne

1=� !c

�!c 1=�

� �
; (12)

where!c ¼ eB=mc is the cyclotron frequency. Equation (12)
can also be derived within the formalism of the Boltzmann
kinetic equation which has been very successful in explaining
the magnetotransport properties of metals (Lifshits, Azbel,
and Kaganov, 1973; Pippard, 1989), the behavior of �̂ðBÞ in
which is known to depend in an essential way on the shape
and topology of the Fermi surface. For an isotropic 2DEG,
which is a virtually perfect approximation for the 2DEG in
GaAs as far as the band structure is concerned (note, however,
the possible importance of anisotropic disorder discussed at
the end of Sec. II.A), this theory predicts the simple Drude
result (12). A striking feature of Eq. (12) is that the longitu-
dinal resistivity �xxðBÞ ¼ �D � m=e2ne� is independent of
B, so that the deviation

��xx ¼ �xxðBÞ � �xxð0Þ; (13)

termed a positive or negative magnetoresistance (MR), de-
pending on the sign of ��xx, is exactly zero.

1. Quantum magnetoresistance

The MR in 2D systems has been studied extensively, in the
last three decades particularly in regard to T-dependent con-
tributions coming from the influence of a magnetic field on
the quantum corrections, small in the parameter 1=kFl & 1, to
the transport coefficients (Altshuler and Aronov, 1985). One
quantum contribution to the MR is related to the suppression
of the weak-localization correction to �D, which occurs in a
‘‘classically weak’’ (in the sense of !c� � 1) magnetic field
and results in a small sharp spike of �xxðBÞ at B ¼ 0. Another
quantum contribution is due to the interaction between
degenerate electrons multiply scattered by disorder. In the
diffusive regime (where the temperature T � 1=�), the
Coulomb interaction-induced MR obeys (for rs � 1 and
!c� � 1) ��xx=�D ¼ �ð!2

c�
2=�kFlÞ lnð1=T�Þ, irrespective

of the nature of disorder (Girvin, Jonson, and Lee, 1982;
Houghton, Senna, and Ying, 1982; Altshuler and Aronov,
1985). The theory of this MR was extended to arbitrary T�
by Gornyi and Mirlin (2003, 2004). In the ballistic regime
(T� � 1), particularly relevant to high-mobility structures,
the MR caused by electron-electron interactions depends
in an essential way on the type of disorder, especially for
!c � T, where it is strongly suppressed for smooth disorder.
For !c � T, if 1=� is limited by smooth disorder, the
Coulomb interaction-induced MR for rs � 1 reads (Gornyi
and Mirlin, 2003, 2004)

��xx

�D

¼ � 3
ð3=2Þ
32�3=2

1

kFl

ð!c�Þ2
ðT�Þ1=2 (14)

for T� � r�2
s , while for T� � r�2

s it retains the same am-
plitude as in Eq. (14) but changes sign. If, by contrast, 1=� is
limited by white-noise disorder but the smooth component of
disorder is still strong enough to produce a contribution to the
momentum relaxation rate 1=�L � !3

c=k
2
Fv

2
F, the MR is

enhanced compared to Eq. (14) by a factor of 4ð�L=�Þ1=2
(Gornyi and Mirlin, 2004).

A crossover in the temperature behavior of the quadratic-
in-B MR between the diffusive and ballistic regimes was

observed in the intermediate range of T�� 1 in moderate-
mobility GaAs/AlGaAs structures by Li et al. (2003) [see
also Paalanen, Tsui, and Hwang (1983) and Choi, Tsui, and
Palmateer (1986)], in close agreement with the theory for
smooth disorder. The behavior of the MR in the crossover
region was also studied in Si/SiGe structures by Olshanetsky
et al. (2005). The suppression of the MR as T increases,
observed by Galaktionov, Savchenko, and Ritchie (2006) in
samples similar to those in Li et al. (2003) in a wider range of
T� * 1, agrees favorably with the T�1=2 scaling character-
istic of the ballistic regime. The enhancement of the MR
compared to Eq. (14), which can be largely attributed to the
interplay of the short- and long-range components of disor-
der, was reported in a number of experiments (Olshanetsky
et al., 2005; Galaktionov, Savchenko, and Ritchie, 2006;
Bockhorn et al., 2011), with a particularly strong enhance-
ment observed by Bockhorn et al. (2011) in ultrahigh
mobility GaAs/AlGaAs structures.

2. Classical magnetoresistance

Quite apart from the quantumMR, it was half a century ago
that it was realized that long-range inhomogeneities can have a
profound effect on magnetotransport; specifically, that even
weak inhomogeneities with a spatial scale larger than themean
free path l can yield a strong MR (Herring, 1960; Dreizin and
Dykhne, 1973; Isichenko, 1992). In fact, even in macroscopi-
cally homogeneous (on the scale of l) electron systems, dis-
order with the correlation radius d � k�1

F can produce a strong
quasiclassical MR (QCMR). The QCMR was discussed in a
variety of systems: in the 3D Coulomb plasma (Murzin, 1984;
Polyakov, 1986), in the 2D Lorentz-gas model (Baskin,
Magarill, and Entin, 1978; Bobylev et al., 1995), and in the
2DEG with smooth (Mirlin et al., 1999) and ‘‘mixed’’ (Mirlin
et al., 2001; Polyakov et al., 2001) disorder. The essence of
this phenomenon is that transport retains signatures of the
underlying quasiclassical dynamics of electrons, which are
not captured by the Boltzmann-Drude kinetic theory.
Specifically, the QCMR is due to correlations in the otherwise
random multiple scattering process at the points where the
quasiclassical paths self intersect. The strength of these
‘‘memory effects,’’ neglected in the collision-integral formal-
ism, grows as a power of d=l. Below we briefly discuss the
results for the QCMR in a 2DEG.

The QCMR depends in an essential manner (even its sign
does) on the correlation properties of disorder. We first review
the case of Gaussian (in the sense of fluctuation statistics)
disorderwith the correlation radiusd � k�1

F . TheMR is in fact

nonzero (Khveshchenko, 1996; Mirlin, Polyakov, and Wölfle,
1998) within the collision-integral formalism because of the
cyclotron bending of electron paths on the scale of d. This
gives a small negative MR, ��xx=�D ��ðd=RcÞ2, where
Rc ¼ vF=!c is the cyclotron radius. Correlations of diffusive
paths at the points of self-intersection give rise to a much
stronger positive MR: for Wq from Eq. (5) and !c� � 1

(Mirlin et al., 1999),

��xx

�D

¼ 2
ð3=2Þ
�

�
d

l

�
3ð!c�Þ9=2: (15)

The characteristic momentum transfer q in the scattering
processes leading to Eq. (15) is q� 1=� � 1=d, where
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� ¼ 2�1=2vF�=ð!c�Þ3=2 (16)

is the mean-square shift of the guiding center of a cyclotron
orbit after one revolution. The ratio ��xx=�D in Eq. (15) is
much larger than that related to the effect of B on the collision
integral for !c� � ðl=dÞ2=5 (note that l=d� 103 in ultrahigh
mobility structures) and becomes of order unity at !c��
ðl=dÞ2=3. The latter condition corresponds to �� d. As B is
increased further, the strong positive MR is followed by an
exponential falloff of �xx (Fogler et al., 1997):

lnð�xx=�DÞ � �ðd=�Þ2=3; (17)

which is due to the increasing adiabaticity of the electron
dynamics and the related classical localization. The MR in
Eq. (15), induced by rare (� � d) self-intersections of diffu-
sive trajectories, may be considered as a precursor of the strong
(adiabatic) localization. Numerical simulations (Mirlin et al.,
1999) confirm the strong QCMR for the case of smooth dis-
order. The QCMR of composite fermions scattered by effec-
tive random magnetic field was argued (Evers et al., 1999) to
explain the dependence of �xxðBÞ around a half filling of LLs
[see, e.g., Smet (1998)].

Rare strong scatterers randomly distributed on top of
smooth weak potential fluctuations can profoundly change
the magnetotransport properties of a 2DEG (Mirlin et al.,
2001; Polyakov et al., 2001). As discussed in Sec. II.A, the
combination of these two types of disorder, of comparable
strength in what concerns the momentum relaxation rate, is
likely to be an adequate description of a random potential in
high-mobility structures. The Drude formula (12) totally fails
at B � 0 when only strong short-range scatterers are present:
Baskin, Magarill, and Entin (1978) showed a strong negative
MR in the classical 2D Lorentz-gas model. In this model,
electrons are scattered by impenetrable hard disks (‘‘voids’’).
In the limit of the density of the voids nS ! 1 with the
momentum relaxation time �S held fixed, the model is exactly
solvable (Bobylev et al., 1995) for the resistivity tensor �̂ðBÞ;
in particular, �xx=�D ’ 9�=8!c�S for!c�S � 1 and the MR
is exponentially small in the opposite limit. At finite nS, the
model shows a classical metal-insulator transition at a critical

value of Rc � n�1=2
S (Baskin, Magarill, and Entin, 1978;

Bobylev et al., 1995) and a quadratic MR in the low-B limit
(Cheianov, Dmitriev, and Kachorovskii, 2004).

When both types of disorder are present, the momentum
relaxation rate at zero B is 1=� ’ 1=�L þ 1=�S, where 1=�L;S
stands for the contributions of smooth disorder (L) and strong
scatterers (S). Consider the relevant case of �S � �L but
smooth disorder being strong enough to produce �
[Eq. (16) with � ! �L] larger than both correlation radii of
disorder d and a, where a is the effective radius of strong
scatterers. Then (Mirlin et al., 2001)

��xx=�D ¼ �ð!c=!0Þ2 (18)

for !c � !0, where

!0 ¼ ð2�nSÞ1=2vFð2�2S=�L�0SÞ1=4; (19)

with �0S � �S the total scattering time for strong scatterers.
The ratio ð!c=!0Þ2 gives the fraction of the area ‘‘explored’’
twice because of the self-intersections of electron paths, which
reduces the exploration rate and leads to a longer time between

collisions with different strong scatterers, hence the negative
sign of the MR. This should be contrasted with the positive
MR (15) for one-scale smooth disorder, where the passages
through the same area increase the scattering rate. For
!c � !0, the scattering rate is strongly suppressed by the
memory effects, which gives the B�4 falloff as B increases for
nSR

2
c � 1 (Mirlin et al., 2001; Polyakov et al., 2001),

�xx=�D � ð�S=�LÞðnSR2
cÞ2; (20)

and a plateau of �xx for nSR
2
c � 1 with

�xx=�D ¼ �S=�L; (21)

i.e., the magnetic field ‘‘switches off’’ short-range scatterers
which give the main contribution to 1=� at B ¼ 0. This
behavior of the QCMR has been observed in numerical
simulations (Mirlin et al., 2001).

A negative MR with a pronounced resistance minimum at
about 0.5 kG was observed in early works on ultrahigh
mobility structures (Smet, 1997; Umansky, de Picciotto,
and Heiblum, 1997). Recently, a strong negative MR in the
same range of B was reported in similar structures by Dai
et al. (2010), Hatke et al. (2011a), and Hatke, Zudov, Reno
et al. (2012). In particular, in one of the samples studied by
Dai et al. (2010), namely, sample A in Fig. 1(a), the
resistivity was shown to decrease by a factor of about 50
between B ¼ 0 and 0.5 kG and exhibit a wide plateau for
larger B before the onset of magneto-oscillations, in qualita-
tive agreement with the picture of the QCMR for the model
of two-component disorder. With decreasing mobility
[samples B and C in Fig. 1(a)], the plateau disappears but
the negative MR persists. Analysis of the measured depen-
dence of �xxðBÞ led Dai et al. (2010) to conclude that the
observed phenomenon can be consistently described in terms
of the QCMR theorized by Mirlin et al. (2001) and Polyakov
et al. (2001). A large negative MR, with �xxðBÞ at the
minimum of the B dependence being at T ’ 0:3–0:5 K (for
samples with different mobilities) several times smaller than
at B ¼ 0, was reported by Hatke, Zudov, Reno et al. (2012)
to be suppressed as temperature increases and disappear at
about 2 K. The T dependence for one of the samples is shown

xx
xx
(B

B (kG)

T K

B (kG)

T K

T K

(

(b)

B

C
(a)

A

FIG. 1 (color online). (a) Magnetic-field dependence of the resis-

tivity�xx (in units of�xx atB ¼ 0) of three different samplesA,B, and

C with the mobility of (A) 3� 107 cm2=V s, (B) 1:2� 107 cm2=V s,

and (C) 8:6� 106 cm2=V s at T ¼ 0:3 K and the electron density of

(A) 2:9� 1011 cm�2, (B) 4:5� 1011 cm�2, and (C) 6� 1011 cm�2.

Adapted from Dai et al., 2010. (b) Magnetic-field dependence of the

resistivity for different temperatures from 0.5 to 1.75 K in steps of

0.25 K in a sample with � ’ 5:4� 106 cm2=V s and ne ’
1:6� 1011 cm�2. Adapted from Hatke, Zudov, Reno et al., 2012.
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in Fig. 1(b). According to the analysis performed by Hatke,
Zudov, Reno et al. (2012), the observed T dependence is too
strong to be described in terms of the theory of the quantum
MR discussed in Sec. II.B.1.

The behavior of �xxðBÞ in the model of two-component
disorder proves to be substantially more intricate when, as B
increases, � becomes smaller than 2d (in high-mobility
structures d � a) and scattering by the smooth random
potential acquires the character of an adiabatic drift
(Polyakov et al., 2001). Although the adiabaticity of scat-
tering suppresses �xx when only smooth disorder is present
[Eq. (17)], it can also give rise to the growth of �xx with
increasing B in the presence of short-range disorder. This
behavior can be most clearly seen in the ‘‘hydrodynamic’’
model where short-range disorder is characterized by white-
noise correlations and the problem is mapped onto that of
advection-diffusion transport (Isichenko, 1992). In the limit
of large B, the hydrodynamic model predicts �xx=�D �
ð�2SvFd=�LR

2
cÞ5=13. Note that for realistic parameters the

full-fledged QCMR in the adiabatic regime competes with
the effects of Landau quantization (see Sec. II.C). A growth
of �xx with increasing B in the experiments by Dai et al.
(2010) and Hatke et al. (2011b) was observed in a range of B
well before the onset of oscillations [see also the earlier
results, e.g., Galaktionov, Savchenko, and Ritchie (2006) on
a positive MR observed at sufficiently high T in moderate-
mobility structures]. The large negative MR observed by Dai
et al. (2010), Hatke et al. (2011a), and Hatke, Zudov, Reno
et al. (2012), as well as the growth of �xx at higher B,
warrants further study. In this respect, it is interesting to
note that, experimentally, there appears to be a connection
between the large negative MR and a pronounced anomaly in
the photoresponse; for details see Sec. VII.A.2.

3. Classical magneto-oscillations of the ac conductivity

Within the Boltzmann kinetic theory, the dissipative
diagonal ac conductivity �ð!Þ ¼ �þð!Þ þ ��ð!Þ, which
determines the absorption rate for linearly polarized electro-
magnetic waves, is given by the Drude formula

�D;�ð!Þ ¼ e2ne�

2m

1

1þ ð!c �!Þ2�2 : (22)

The quasiclassical correlations in the dynamics of multiple
scattering, which lead to the MR discussed in Sec. II.B.2, can
also strongly modify the ac response of a 2DEG at B � 0. In
particular, they yield periodic-in-!=!c oscillations in �ð!Þ
which are of essentially a classical nature. For the model of
two-component disorder (see Sec. II.B.2), the oscillatory
classical correction ��ðcÞð!Þ ¼ �ðcÞð!Þ � �Dð!Þ in units
of the Drude conductivity �Dð!Þ takes, in the large-B limit,
the form of sharp resonant features at the harmonics of the
cyclotron resonance (CR) at ! ¼ M!c with jMj ¼ 1; 2; . . . ,
the amplitude of which is given (Dmitriev, Mirlin, and
Polyakov, 2004) by

��ðcÞðM!cÞ=�DðM!cÞ ¼ �að!c�LÞ1=2=
ffiffiffiffiffiffiffi
3�

p jMj�;

(23)

where a ¼ 1=nSvF�S and the width �M ¼ 3M2=2�L þ
1=�0S. Equation (23) is valid for �M � !c. In the opposite

limit of strongly damped oscillations, ��ðcÞð!Þ reads
(Dmitriev, Mirlin, and Polyakov, 2004)

��ðcÞð!Þ
�Dð!Þ ¼ � a

�1=2�
cos

2�!

!c

exp

�
� 3�!2

!3
c�L

�
: (24)

The behavior of �ðcÞð!Þ is illustrated in Fig. 2, where also the
quantum oscillations related to Landau quantization (see
Sec. II.C.3) are shown. One sees that the classical oscillations
can be much more pronounced than the quantum ones for
�q � �L (which is the case in high-mobility structures).

Resonant features, of similar origin, at the harmonics of the
CR were also discussed for the case of a random antidot array
(Polyakov, Evers, and Gornyi, 2002). The CR in the opposite
limit of a smooth random potential was considered by Fogler
and Shklovskii (1998) who found, in particular, a sharp jump,
as B is increased, in the CR broadening from the Drude width
1=� to the width of separated LLs ð!c=�Þ1=2 at the crossover
to the adiabatic localization regime.

It is also worth noting that the ac conductivity exhibits
magneto-oscillations that are not associated with either
the long-time correlations in disorder-induced scattering
[Eq. (24)] or Landau quantization but are entirely due to
electron-electron interactions (Sedrakyan and Raikh, 2008).
Namely, they are related to the sensitivity of screening of the
impurity potential to the cyclotron bending of quasiclassical
electron paths. However, in contrast to the oscillations in
Fig. 2, the period of the interaction-induced oscillations
in 1=!c is much larger [by a factor of the order of
ð�F=j!jÞ1=2 � 1Þ] than 1=j!j, so that for given ! these
oscillations might only develop for much smaller B and
much smaller T.

C. Quantum magneto-oscillations

In our discussion so far, we neglected the effects related to
Landau quantization by assuming that the electron density of
states (DOS) �ð"Þ at " equal to the Fermi energy "F does
not depend on B. In this section, we review the oscillatory
behavior of the transport coefficients of a 2DEG with
varying "F=!c and !=!c, which arises from Landau

c

c

q

D

FIG. 2 (color online). Classical ðcÞ and quantum ðqÞ oscillatory ac

conductivity [normalized to the Drude conductivity �Dð!Þ] vs

!c=! for !=2� ¼ 100 GHz, �L ¼ 0:6 ns, �L=�q ¼ 50, �S=�L ¼
0:1, and a=� ¼ 0:25 at !c=! ¼ 1=2. From Dmitriev, Mirlin, and

Polyakov, 2004.
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quantization and is collectively known as ‘‘quantum
magneto-oscillations,’’ in the linear-response regime [see
Shoenberg (1984) for a review of the basic concepts and of
the results for magneto-oscillations in 3D metals, and Ando,
Fowler, and Stern (1982) for an early review of magneto-
oscillations in a 2DEG].

1. Magneto-oscillations of the density of states

In a clean noninteracting 2DEG the DOS per spin is a sum
of delta functions at energies equal to those of LLs:

�ð"Þ ¼ ð2�
2
BÞ�1

X
N

�ð"� "NÞ; (25)

where 
B ¼ ðm!cÞ�1=2 is the magnetic length and "N ¼
ðN þ 1=2Þ!c. Throughout the review, we concentrate on
the limit of moderately strong magnetic fields in which the
number of occupied LLs is large. For N � 1, the broadening
of the Nth peak in Eq. (25) by disorder changes only weakly
when N changes by unity. The DOS of the Nth LL �ðNÞð"Þ is
then written as

�ðNÞð"Þ ¼ � 1

2�2
2
B

Im
1

"� "N � �ð"Þ ; (26)

where �ð"Þ is the self-energy of the disorder-averaged
retarded Green’s function in the LL representation. The
approximation is that �ð"Þ is treated as independent of N.
The singular character of Eq. (25) implies that�ð"Þ cannot be
calculated at the level of the Born approximation when
LLs are separated, i.e., when disorder is so weak that
�Im�ð"NÞ & !c.

The mathematically simplest scheme to calculate �ð"Þ is
the self-consistent Born approximation (SCBA) (Ando and
Uemura, 1974; Raikh and Shahbazyan, 1993; Laikhtman and
Altshuler, 1994) in which �ð"Þ obeys

�ð"Þ ¼ !c

2��q

X
N

1

"� "N ��ð"Þ ; (27)

where 1=�q is the total (quantum) scattering rate [Eq. (6)] at

B ¼ 0. The SCBA gives in the limit !c�q � 1, where LLs

are well separated:

�ðNÞð"Þ ¼ �0�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!c=��q � ð"� "NÞ2

q
(28)

if the argument of the square root is positive and zero other-
wise, with �0 ¼ m=2� the DOS per spin at B ¼ 0. Benedict
and Chalker (1986) and Carra, Chalker, and Benedict (1989)
showed that the SCBA, and thus the semicircle shape of the
broadened LLs in Eq. (28), are exact for white-noise disorder
in the limit N ! 1. For a nonzero correlation length d of
Gaussian (in the sense of fluctuation statistics) disorder, it was
recognized by Raikh and Shahbazyan (1993) that the SCBA
is a parametrically accurate approximation for N � 1 pro-
vided d � 
B. The hard gaps in between are an artifact of
the SCBA, but the exponential tails of the DOS which fill the
gaps smear only slightly (for N � 1) the boundaries of the
semicircles (Benedict, 1987; Efetov and Marikhin, 1989).
The gaps predicted by the SCBA close at !c�q ¼ �=2

(Ando, 1974b; Laikhtman and Altshuler, 1994).

Apart from the conditions N � 1 and d � 
B, the SCBA
also assumes that disorder is weak; specifically, that at zero B
the conventional Born approximation is valid, which for
Gaussian disorder means2 d � vF�q. Moreover, the SCBA

crucially assumes that the non-Gaussian component of
fluctuations of the random potential can be neglected.
The Gaussian character of disorder implies that individual
impurities are weak and their concentration ni obeys
ni maxfd2; Sg � 1, where S is the area over which disorder
is averaged because of the quantum uncertainty of electron
paths. For separated LLs, the characteristic S is given by the
area 2�
2

B occupied by one electronic state, which is assumed

within the SCBA to be much larger than d2. The DOS for
disorder with non-Gaussian statistics of fluctuations was
considered beyond the SCBA by Ando (1974a, 1974b), by
Brézin, Gross, and Itzykson (1984) for N ¼ 0, and by
Benedict and Chalker (1986) for separated LLs in the limit
N � 1. In particular, it was found in these works that within a
model of delta-function impurities there develops a singular-
ity in the DOS at " ¼ "N for 2�ni


2
B < 1, independently of

the strength of the impurities.
If !c�q � 1, Landau quantization only leads to a weak

modulation of the DOS and the SCBA predicts that �ðNÞð"Þ in
this limit is described by a Lorentzian with Im�ð"Þ¼
�1=2�q. The DOS is then represented, by means of the

Poisson summation formula, as a sum over harmonics in
the following form3:

�ð"Þ ¼ �0

�
1þ 2

X1
k¼1

ð��Þk cos2�k"
!c

�
; (29)

where the Dingle factor (Shoenberg, 1984)

� ¼ expð��=!c�qÞ: (30)

The first harmonic, the least damped, yields the leading
oscillatory correction ��ð"Þ to the DOS:

��ð"Þ ¼ �2�0� cosð2�"=!cÞ: (31)

For d � 
B, the SCBA fails and instead the quasiclassical
approximation in which the DOS is represented as

�ðNÞð"Þ ¼ ð2�
2
BÞ�1h�½"� "N � �VðrÞ�i (32)

is valid (Raikh and Shahbazyan, 1993). Here

�VðrÞ ¼
Z 2�

0

d�

2�
Vðxþ Rc cos�; yþ Rc sin�Þ (33)

is the effective random potential acting on the guiding center
of the cyclotron orbit. For the case of Gaussian statistics of
fluctuations of VðrÞ, the shape of �ðNÞð"Þ is also Gaussian and

2According to Eq. (7) with Wq from Eq. (5) and ne ¼ ni, this
condition can only be marginally satisfied for randomly distributed

remote impurities.
3Equation (29) describes the asymptotic behavior of the ampli-

tude of the kth harmonic in the limit !c�q � 1 (with exponential

accuracy). In the exact SCBA formula, valid for arbitrary !c�q
(Vavilov and Aleiner, 2004), each harmonic contains an extra factor

gk ¼ k�1L1
k�1ð2�k=!c�qÞ, where L1

k�1 is the generalized Laguerre

polynomial.
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is given (Raikh and Shahbazyan, 1993; Mirlin, Altshuler, and
Wölfle, 1996) by4

�ðNÞð"Þ ¼ 1

2�
2
B

�
�q
!c

�
1=2

exp

�
���q

!c

ð"� "NÞ2
�

(34)

for 
B � d � Rc and by

�ðNÞð"Þ¼ 1

2�
2
B

½2�Wð0Þ��1=2 exp

�
�ð"�"NÞ2

2Wð0Þ
�

(35)

for d � Rc [in which limit �VðrÞ ’ VðrÞ]. In Eq. (35),Wð0Þ is
the variance of VðrÞ [Eq. (3)]. Note that the broadening grows
with increasing B and saturates at d � Rc. Equations (34)
and (35) describe in effect inhomogeneous broadening and
are valid for both separated and overlapping LLs.

The sum of �ðNÞð"Þ from Eq. (34) over N gives the sum
over harmonics

�ð"Þ ¼ �0

�
1þ 2

X1
k¼1

ð�1Þk�k2 cos
2�k"

!c

�
: (36)

Note that the only difference between Eqs. (29) and (36) is in
the power of the factor �: it is k in the former case and k2 in
the latter. It follows that the damping of the leading (k ¼ 1)
oscillatory correction in the limit of overlapping LLs is given
by Eq. (31) in both cases, despite the shape of LLs being quite
different (Lorentzian versus Gaussian). If d � Rc, the expo-
nent of the damping factor for the kth harmonic is propor-
tional to k2, similarly to Eq. (36), with the k ¼ 1 term in �ð"Þ
given by

��ð"Þ¼�2�0 exp½�2�2Wð0Þ=!2
c�cosð2�"=!cÞ: (37)

The Dingle plot [the term conventionally used to describe
the behavior of ln��ð"Þ plotted in the low-T limit as a
function of 1=B] is seen to be quadratic in Eq. (37), in
contrast to Eq. (31) where it is linear. The quadratic
Dingle plot5 in the DOS can thus be used to probe the
presence of long-range (with the correlation radius d*Rc)
inhomogeneities in the sample.

2. Shubnikov–de Haas oscillations

The magneto-oscillations of the DOS give rise to the
oscillatory behavior of the dc transport coefficients as
"F=!c is varied: the Shubnikov–de Haas (SdH) effect.
Within the SCBA (Ando and Uemura, 1974), the conductivity

tensor for N�1 was obtained for short-range (d � k�1
F )

disorder by Ando (1974b) for the diagonal conductivity �xx

and by Ando, Matsumoto, and Uemura (1975) for the Hall
conductivity �xy. Note that the use of the SCBA to treat

also long-range disorder with d � 
B in the early works
(Ando, Fowler, and Stern, 1982) is not justified since this
condition violates the applicability of the SCBA (Raikh and
Shahbazyan, 1993). A generalization of the SCBA approach
which provides a framework for studying transport in the case
of disorder with an arbitrary correlation length d � 
B was
developed by Dmitriev, Mirlin, and Polyakov (2003). An
essential ingredient of the theory describing long-range dis-
order (d * k�1

F ) is the inclusion of vertex corrections in

averaging over disorder. The result is that the theory for all
d � 
 can be formulated solely in terms of the oscillatory
DOS �ð"Þ and the transport scattering rate �Bð"Þ which is
renormalized by Landau quantization as follows:

1

�Bð"Þ ¼
1

�

�ð"Þ
�0

: (38)

Expressed in terms of �ð"Þ and �Bð"Þ, �xx (neglecting the
Zeeman splitting) reads (Dmitriev, Mirlin, and Polyakov,
2003)

�xx ¼ e2v2
F

Z
d"

�
� @fT"

@"

�
�ð"Þ�Bð"Þ

1þ!2
c�

2
Bð"Þ

; (39)

where fT" is the thermal distribution function. Equation (39)
describes both separated and overlapping LLs and is valid
also in the crossover in between. Note that, compared to the
Drude formula �D ¼ ðe2ne�=mÞ=ð1þ!2

c�
2Þ, Landau quan-

tization manifests itself in Eq. (39) in two ways: in the
renormalization � ! �Bð"Þ and in the appearance of the
additional factor �ð"Þ=�0 in the numerator [where, in view
of Eq. (38), the DOS oscillations cancel out]. As B is varied,
�xx at zero T is represented in the limit of separated LLs as a
series of peaks the height of which is given by �max

xx ’
�Dð2!c�q=�Þ � �D. For overlapping LLs, the oscillatory

correction �� to �D reads

��

�D

’ 2!2
c�

2

1þ!2
c�

2

��ð"FÞ
�0

F
�
2�2T

!c

�
; (40)

where ��ð"Þ is given by Eq. (31) and the factor F ðxÞ ¼
x= sinhx describes the thermal averaging of the oscillations.
Importantly, in the case of long-range disorder (kFd � 1), the
magnetic field may be ‘‘classically strong’’ in the sense of
!c� � 1 and at the same time, if !c�q � 1, lead to only

weak SdH oscillations even at T ¼ 0. Note also that for T �
!c � ��1

q , ��1 the thermal averaging over the contributions

of separated LLs in Eq. (39) leads to a nonoscillatory con-
tribution to the MR

�xx=�D ¼ ð8=3�Þð2!c�q=�Þ1=2: (41)

Extending Eq. (38) to the Hall conductivity yields

�xy¼�enec

B
þe2v2

F

!c

Z
d"

�
�@fT"

@"

�
�ð"Þ

1þ!2
c�

2
Bð"Þ

; (42)

4The Gaussian shape of LLs was also obtained in an early work by

Gerhardts (1975) within the cumulant expansion of the self-energy in

the time domain to first order inWq. However, the control parameters

of the approximation were not correctly specified there. In particular,

Eq. (34) was argued by Gerhardts (1975) to be valid for disorder with

the correlation length d ! 0 (i.e., in the limit d � 
), whereas the
actual condition is d � 
.

5If the damping of the oscillations in the DOS is solely due to

remote impurities, a finite range of B within which LLs are not

separated and the Dingle plot is quadratic exists provided disorder is

sufficiently strong; specifically, if the ‘‘out-scattering length’’

vF�q � d. In ultrahigh mobility samples, vF�q is typically of the

order of d.
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where the first term describes a collisionless drift of electrons
in crossed electric and magnetic fields. The oscillatory MR
for overlapping LLs is then given by6

��

�D

’ 2
��ð"FÞ

�0

F
�
2�2T

!c

�
(43)

for arbitrary !c� � �=�q. It is worth noting that the main

contribution to the oscillatory MR (43) comes from the
oscillations of �xx for !c� � 1 and from the oscillations
of �xy for !c� � 1. In the limit of white-noise disorder

(� ¼ �q), Eqs. (39) and (42) agree with those derived by

Ando (1974b), Eq. (2.12) and by Ando, Matsumoto, and
Uemura (1975), Eq. (3.26), respectively.7 In the case
of long-range disorder, they confirm the form of SdH oscil-
lations hypothesized by Coleridge, Stoner, and Fletcher
(1989).

It is worth noting that the Fermi energy "F for a fixed
electron density ne also exhibits magneto-oscillations.
These are qualitatively important for the dependence of
the MR on B in the case of separated LLs at zero T: it
is because of the oscillations of "F that �xx as a function of
B does not have gaps similar to those in the dependence of
�ð"Þ. For overlapping LLs, the oscillations of "F yield only
a subleading (in !c="F � 1) oscillatory term in the MR.
The thermal averaging for T � !c suppresses the oscilla-
tions of "F exponentially, similarly to Eq. (40).

As discussed in Sec. II.A, disorder in high-mobility
heterostructures is a mix of long- and short-range compo-
nents characterized by vastly different correlation radii.
Because of the large ratio �=�q for scattering off the

long-range component of disorder, it is possible that the
mobility � and the Dingle factor � are determined by
different sources of disorder. Specifically, it is likely that,
in ultrahigh mobility samples, � is limited by background
impurities and interface roughness, whereas the damping of
the magneto-oscillations is mainly due to scattering off
remote impurities.

Note also that, in real samples, there may exist ultralong
range inhomogeneities with a correlation radius larger than
Rc in the regime of SdH oscillations. These inhomogeneities
may not affect the mobility but will provide an additional
damping of the oscillations of ��=� in Eq. (43), which is
described by the exponential factor in Eq. (37). If Wð0Þ �
!c=�q, the damping of the SdH oscillations will be mainly

determined by these macroscopic inhomogeneities and
the Dingle plot for the MR will be quadratic in 1=B, as
reported for some SdH measurements [see, e.g., Coleridge
(1991, 1997)].

So far, the magneto-oscillations of the MR and the DOS
have been directly related to each other, being characterized

by the same Dingle factors. One important reason why this is
not true in general is the suppression of the transport coef-
ficients by localization effects. These come in two varieties:
classical and quantum. An example of classical localization is
the adiabatic drift along equipotential lines of a smooth
random potential, which results in the exponential suppres-
sion (Fogler et al., 1997) of �xx with increasing B [Eq. (17)].
Oscillations of the MR are then associated with the oscilla-
tory DOS for only a subset of electron paths, specifically, for
those giving the main contribution to �xx. The statistical
properties of disorder present along the ‘‘conducting’’ paths
do not necessarily coincide with those on average, which
leads in general to different Dingle factors for the DOS
and the MR. The difference was shown (Evers et al., 1999)
to be very pronounced for the case of a spatially random
magnetic field.

Quantum localization becomes strong when �xx drops
with increasing B to a value of the order of the conductance
quantum e2=2�, at which field the QH effect sets in.8

Importantly, if remote impurities, distributed randomly
with the density ni ¼ ne, are the only source of disorder,
the cyclotron frequency for the crossover field Bloc obeys
!c�q � ðkFdÞ�1=2 � 1, i.e., strong localization develops

when LLs are still well overlapped and the DOS does not
exhibit any gaps. If, however, the short-range component of
disorder substantially decreases � while not affecting �q
(which is the likely situation in ultrahigh mobility structures,
see above), Bloc shifts upward. It follows that it is only
because of the admixture of sufficiently strong short-range
disorder that developed SdH oscillations can be observed
in high-mobility samples before the crossover to the QH
regime.

At this point, it is also worth emphasizing that quantum
magneto-oscillations of the MR may not be related to those
of the DOS at all. Even if the latter are neglected, the
quantum interference of diffusive waves for �xx � e2=2�
gives rise to the QH oscillations ��xx / cosð2�gxyÞ�
expð�2�gxxÞ, where gxx;xy is �xx;xy in units of e2=2�

(Pruisken, 1990). These are the oscillations into which the
QH effect transforms as B is decreased, not into the SdH
oscillations, contrary to the common belief. Note that the
period of the QH oscillations corresponds to one flux quan-
tum through the area minfl2; R2

cg. That is, the B-dependent
interference occurs within the area the size of which is not
related to (and is smaller than) the localization length, so
that the observation of these oscillations for �xx � e2=2�
does not require exponentially low T, in contrast to the
QH plateaus. See Mirlin, Polyakov, and Wölfle (1998) and
Evers et al. (1999) for a discussion of the interplay of the
SdH and QH oscillations in the case of a random magnetic
field.

6Inelastic electron-electron scattering (or any scattering whose

strength is proportional to "2 þ �2T2) does not lead to an additional

exponential damping of the SdH oscillations for T � !c (Martin,

Maslov, and Reizer, 2003; Adamov, Gornyi, and Mirlin, 2006).
7The expansion of �xy to first order in � obtained by Ando,

Matsumoto, and Uemura (1975) was also derived by means of a

different representation of the Kubo formula for Hall transport by

Isihara and Smrčka (1986).

8Strictly speaking, single-particle states of a 2DEG at B � 0 are

localized except those at a discrete set of critical energies; this

localization constitutes the essence of the QH effect. However, the

temperature needed to observe localization is exponentially small if

�xx � e2=2� in the absence of localization, so that in reality the

QH effect becomes pronounced only when �xx per spin drops down

to the values of a few conductance quanta.
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3. Quantum magneto-oscillations of the ac conductivity

The oscillations of the DOS induced by Landau quantiza-
tion have important consequences also for ac transport.
Specifically, the Drude formula in Eq. (22) for ��ð!Þ, which
describes a single peak of the CR, and Eq. (39) for the
oscillatory �xx at ! ¼ 0 generalize9 to (Dmitriev, Mirlin,
and Polyakov, 2003)

��ð!Þ¼e2v2
F

2!

Z
d"

ðfT"�fT"þ!Þ�ð"Þ��1
B ð"þ!Þ

½��2
B ð"Þþ��2

B ð"þ!Þ�=2þð!�!cÞ2
:

(44)

At zero T, for the Fermi energy lying between two separated
LLs, Eq. (44) gives a CR peak whose height10

��ð!cÞ ¼ ðe2ne�=mÞð2=�!c�qÞ1=2 (45)

is much smaller than that following from the Drude theory
[Eq. (22)]. In the case of long-range disorder (� � �q), the

CR line shape from Eq. (44) is given by

��ð!Þ=��ð!cÞ ¼ fðð!�!cÞ=�CRÞ; (46)

where

fðxÞ ¼ 1� x2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� 1
(47)

and

�CR ¼ ð2!c�q=�Þ1=2=�: (48)

The width of the CR for separated LLs �CR is seen to be
much larger than 1=�. At the same time, in the case of long-
range disorder, the CR as a function of ! is much narrower
than the peaks in the DOS.

Landau quantization in combination with disorder leads to
the emergence of CR harmonics at ! ¼ M!c with jMj ¼
2; 3; . . . (Ando, 1975). For separated LLs, Eq. (44) gives for
the height of the Mth peak

�ðM!cÞ ¼ 4

3�

e2ne
m!c

�
2

�!c�q

�
1=2 �q

�

M2 þ 1

ðM2 � 1Þ2 ; (49)

which is seen to be smaller by the factor of �q=� than the result

(Ando, 1975) for the case of short-range disorder. In contrast to
the CR peak, the width of the higher-harmonic peaks is given

by thewidth of the peaks in theDOS. Thus, if one imagines that
the correlation radius of disorder is increased at fixed �, the CR
peak becomes higher and narrower, while the tendency for the
higher-harmonic peaks is the opposite.

For strongly overlapping LLs, the dynamic response of the
2DEG is given by the CR, which is described for !c�q � 1

by the Drude formula (22), and by the !-dependent analog of
the SdH oscillations (40). To first order in �, the oscillatory
correction ���ð!Þ to the Drude conductivity reads
(Dmitriev, Mirlin, and Polyakov, 2003)

���ð!Þ
�D;�ð!Þ ’

��ð"FÞ
�0

F
�
2�2T

!c

�
�1; (50)

where

�1¼ �2�
1þ�2�

!c

�!

�
sin

2�!

!c

þ1þ3�2�
�3�

sin2
�!

!c

�
(51)

and �� ¼ ð!�!cÞ�. In the dc limit, Eq. (50) reduces to
Eq. (40). If T is much larger than the Dingle temperature
TD ¼ 1=2��q, the main source of damping of the oscillations

with varying "F=!c is the thermal averaging. In ultrahigh
mobility heterostructures, TD � 102 mK and for the typical
measurement temperature T � 1 K the linear-in-� oscilla-
tions (50) are completely washed out.

Unlike the oscillations with "F=!c, which constitute the
essence of the SdH effect in the dc case, the oscillations with
!=!c survive the thermal averaging. Specifically, they survive
in the even-order terms in the expansion of��ð!Þ in powers of
�, in which the intermodulation of the DOS oscillations at
energies separated by! does not go away upon averaging over
energy. For strongly overlapping LLs, the oscillatory behavior
of ��ð!Þ as !=!c is varied at T � TD comes from the
correction ���ð!Þ of order �2, which in the high-T limit is
given by (Dmitriev, Mirlin, and Polyakov, 2003)

���ð!Þ=�D;�ð!Þ ’ 2�2�2; (52)

with

�2¼ �2�
ð1þ�2�Þ2

�
ð�2��3Þcos2�!

!c

þ3�2��1

��
sin

2�!

!c

�
:

(53)

As noted already in the discussion of the SdH effect, in the case
of long-range disorder, for a classically strong magnetic field
with!c� � 1, themodulation of the DOS is still small as long
as!c�q�1. Then, away from the CR (for j��j�1) Eq. (52)

reduces to the simple form

���ð!Þ=�D;�ð!Þ ’ 2�2 cosð2�!=!cÞ: (54)

The overall behavior of theT-independent oscillations of�ð!Þ
is illustrated in Fig. 3.

Intimately related to the independence of Eqs. (52)–(54) on
T is the fact that the oscillations with !=!c are not sensitive
to the presence of macroscopic inhomogeneities (which may
complicate the determination of �q from SdH experiments, as

discussed at the end of Sec. II.C.2). The measurement of the
damping of the !=!c oscillations as a function of B in the

9Note that Eq. (44) differs in an essential way from the expression

for ��ð!Þ obtained by Ando (1975) (for the case of short-range

disorder). In particular, the "-dependent factors in the integrand

of Eq. (44) do not reduce near the CR to the simple product

ðfT" � fT"þ!Þ�ð"Þ�ð"þ!Þ in the limit of separated LLs, as sug-

gested by Ando (1975) for the CR line shape.
10The peak height found by Ando (1975) for short-range disorder

is larger than that given by Eq. (45) at � ¼ �q by a factor of 4
3 .
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high-T regime may thus be the most reliable means of

extracting �q from the magneto-oscillatory behavior of the

transport coefficients. Note, however, that the CR harmonics,

and the related periodic modulation of ��ð!Þ with !=!c,

may be associated not only with Landau quantization but

also with the quasiclassical memory effects discussed in

Sec. II.B.3. In fact, the latter can produce strong oscillations

of ��ð!Þ with an amplitude comparable to the Drude

conductivity �D;�ð!Þ [see Fig. 2; for more details of the

comparison between these two sources of the magneto-

oscillations in the ac conductivity and the dc photoconduc-

tivity see Dmitriev, Mirlin, and Polyakov (2004)].
The oscillations of ��ð!Þ as !=!c is varied on the low-B

side of the CR, as well as the oscillations of the dynamic

conductivity with "F=!c, have been observed in the early

studies by Abstreiter et al. (1976) in the far-infrared light

transmission experiments on a low-mobility 2DEG in Si

inversion layers. However, only recently both these types

of magneto-oscillations have also been observed in micro-

wave absorption experiments on high-mobility GaAs/

AlGaAs heterostructures (Fedorych et al., 2010). One rea-

son why the measurements of ��ð!Þ in the absorption and

transmission experiments may be substantially complicated

is that the conductivity expresses the current as a response to

the total (screened) electric field whereas what is probed in

this type of experiments is a response to the (unscreened)

field of the incident electromagnetic wave. As a result, the

behavior of ��ð!Þ in the absorption or transmission may be

masked by the excitation of magnetoplasmons (Studenikin

et al., 2007; Wirthmann et al., 2007; Fedorych et al., 2010).
One more point, specific to a high-mobility 2DEG with

j�xxð!Þ � i�xyð!Þj � cnr, where c is the speed of light in

the vacuum and nr is the refractive index of the medium on

the sides of the 2DEG, is a strong reflection of the electro-

magnetic wave caused by the dynamical screening inside

the 2DEG (Chiu, Lee, and Quinn, 1976; Fal’ko and

Khmel’nitskii, 1989). In a magnetic field, the enhanced re-

flection leads to a suppression and an additional broadening

of the CR (Chiu, Lee, and Quinn, 1976; Mikhailov, 2004)

in the absorption and transmission coefficients. For a

linearly polarized wave normally incident on the 2DEG, the
absorption coefficient A ¼ Aþ þ A� and the transmission
coefficient T ¼ Tþ þ T� are given by11

A�¼Reg�=j1þg�j2; T�¼1=2j1þg�j2; (55)

where g� ¼ 2�ð�xx � i�xyÞ=cnr (neglecting the difference

in the dielectric properties of GaAs and AlGaAs).12 In the
limit where the Drude formula for g� can be applied,

AD;� ¼ 2��

1þ�2�
TD;� ¼ ��

ð1þ ��Þ2 þ�2�
(56)

and the dynamical-screening-induced broadening

� ¼ 2�e2ne=mcnr: (57)
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d
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FIG. 4 (color online). Absorption coefficient A, differentiated

twice with respect to B, as a function of !c=! for fixed !. The

three lower curves, marked by different radiation frequencies!=2�,
were taken at T ¼ 2 K in a sample with ne ’ 3:6� 1011 cm�2

and � ’ 5� 106 cm2=V s. The upper curve is the calculated

dependence of �d2A=dB2 on !c=! at fixed ! according to

Eqs. (54) and (55) with �q ¼ 9:1 ps determined from the

oscillatory-photoconductivity experiment. The curves are offset

for clarity. From Fedorych et al., 2010.

c

c

B

q

FIG. 3 (color online). Magneto-oscillations of the ac conductivity

of a 2DEG with smooth disorder (�=�q ¼ 10) in the limit T � TD,

in units of the dc conductivity, as a function of !=!c for fixed

!c�q=� ¼ 3:25 (solid line) and 1 (dashed line). Inset: The con-

ductivity vs !c=! for fixed !�q=2� ¼ 1 in units of the ac con-

ductivity at B ¼ 0. From Dmitriev, Mirlin, and Polyakov, 2003.

11Note that Eqs. (55) describe scattering by the 2DEG itself. To

relate them to the absorption and transmission coefficients of the

electromagnetic wave incident on the sample, one should take into

account multiple Fresnel reflections from the boundaries of the

latter. Changes of the refractive index on scales smaller than the

wavelength of the radiation are averaged. If the wavelength inside

the sample 2�c=!nr is much larger than the thickness of the

sample, one can neglect the polarization of the medium around

the 2DEG and put nr ! 1 in g� and �. When the distance from the

2DEG to the top surface of the heterostructure is much smaller than

the wavelength (which is a typical situation), scattering by the

2DEG and the top surface (Fedorych et al., 2010) is described

by Eqs. (55) with the change nr ! ð1þ nrÞ=2 in g� with a

simultaneous multiplication of A� and T� by 2nr=ð1þ nrÞ and

4nr=ð1þ nrÞ2, respectively.
12To avoid notational confusion: the abbreviation �� is used in

this review to denote Reð�xx � i�yxÞ=2 [as, e.g., in Dmitriev,

Mirlin, and Polyakov (2003)], whereas in a number of relevant

papers [see, e.g., Fedorych et al. (2010)] �� denotes �xx � i�yx.
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In ultrahigh mobility GaAs/AlGaAs heterostructures,
the product �� may be as large as a few tens. A substanti-
ally enhanced, compared to the transport scattering rate,
broadening of the CR in the absorption (for magnetic fields
in which the LLs were not much separated) was reported in a
high-mobility structure by Studenikin et al. (2005), similar to
the very strong broadening of the CR in the transmission
through ultrahigh mobility structures (Smet et al., 2005;
Tung et al., 2009). The oscillatory behavior of the absorption
coefficient as a function of !=!c, observed by Fedorych
et al. (2010), was related therein to the oscillations of the
conductivity tensor through Eq. (55). The low-B portion of
the data shows good agreement with the simple asymptotic
behavior resulting from Eq. (54); see Fig. 4.

4. Intersubband magneto-oscillations

The mechanism in Sec. II.C.3 that relates the
!=!c oscillations of �ð!Þ, which survive the thermal
averaging [Eq. (52)], to the intermodulation of the DOS
oscillations at energies separated by ! can also lead to
T-independent magneto-oscillations in dc transport. For
that, one needs two (or more) parallel 2D electron gases,
allowing for the exchange of electrons between them, with
the bottoms of their energy bands located at different ener-
gies. One system of this type is a QW with the two lowest
subbands occupied by electrons, for which Polyanovsky
(1988) and Leadley et al. (1992) pointed out that there should
exist oscillations of the MR periodic in �=!c, where � is the
subband spacing, not suppressed by the thermal averaging.
The SCBA approach to describe SdH oscillations in �xx was
generalized for short-range disorder to the case of two sub-
bands by Raikh and Shahbazyan (1994) (see, however, foot-
note 14 below). The SCBA theory of SdH oscillations in the
two-subband conductivity tensor for an arbitrary type of
disorder was developed by Raichev (2008).

The correction ��MISO to the dissipative Drude conduc-
tivity, which describes the magnetointersubband oscillations
(MISO), is a sum of two terms ��MISO;� with � ¼ 1, 2
coming from electrons in the �th subband. For !c�� � 1,
the partial contributions ��MISO;� are given for white-noise

disorder by (Averkiev et al., 2001; Raichev, 2008)

��MISO;� ¼ 2e2n��
2
�

m�12

�
1� 2��

�12

�
�1�2 cos

2��

!c

; (58)

where n� and 1=�� are the electron density and the zero-B
scattering rate in the �th subband, 1=�� includes both intra-
subband and intersubband scattering, 1=�12 is the zero-B
intersubband scattering rate, and �� is given by Eq. (30)
with �� substituted for �q. Equation (58) follows13 directly

from Eq. (39). Importantly, Eq. (38) does not hold for the
relation between the oscillatory DOS ��ð"Þ and the oscilla-
tory scattering rate �B;�ð"Þ in the �th subband, since

1=�B;�ð"Þ contains the rate of intersubband scattering,

whereas ��ð"Þ does not (in the leading approximation in

1="F;��12, where "F;� is the Fermi energy in the �th subband
counted from its bottom).14 This is the reason why the pre-
exponential factor in Eq. (58) does not vanish at B ! 0, in
contrast to Eq. (52) at!¼0. As a result, theMISOcontribution
to the MR��MISO=�D ’ ���MISO�D at!c���1 is mainly
given by the oscillatory dissipative component of the conduc-
tivity tensor (in contrast to the oscillatory dc MR in the single-
subband case, see Sec. II.C.2).

Within the SCBA, Eqs. (39) and (42) allow one to describe
MISO for long-range disorder as well. Similar to Sec. II.C.2,
the scattering rate in the exponent of �� remains then the
quantum scattering rate, while 1=�B;�ð"Þ becomes the mo-

mentum relaxation rate. However, in general, if scattering is
not isotropic, the zero-Bmomentum relaxation rate in the �th
subband 1=�� is related to the intrasubband and intersubband
scattering rates in a nonlinear manner (Ando, Fowler, and
Stern, 1982; Zaremba, 1992; Raichev, 2008; Mamani, Gusev,
da Silva et al., 2009). It is only in one simple case, when the
intersubband scattering is isotropic, that 1=�� is still given by
a sum of the momentum relaxation rate for (not necessarily
isotropic) scattering within the subband and the intersubband
scattering rate 1=�12. In this case,

15 Eq. (58) for !c�� � 1 is
reproduced also for long-range disorder.

The cumbersome expressions for the MISO amplitudes in
�xx;xy for the general case of anisotropic scattering (Raichev,

2008) simplify significantly in the limit of a classically strong
magnetic field (!c�� � 1) but overlapping LLs (�� � 1),
which conditions are compatible only in the case of
long-range disorder. In this limit (Mamani, Gusev, da Silva
et al., 2009),

��MISO ¼ 2e2ðn1 þ n2Þ
m!2

c ��12
�1�2 cos

2��

!c

; (59)

and, correspondingly, the MISO term16 in the MR

��MISO

�D

¼ 2

��12

n1�1 þ n2�2
n1 þ n2

�1�2 cos
2��

!c

; (60)

where 1= ��12 is given by an integral over the scattering angle
� [cf. Eq. (2)]:

1

��12
¼ m

Z 2�

0

d�

2�

�
1� 2

ffiffiffiffiffiffiffiffiffiffi
n1n2

p
n1 þ n2

cos�

�
Wð12Þ

q ; (61)

13The MISO amplitude resulting from Eq. (39) and the one

obtained by Raichev (2008) agree with each other for arbitrary

!c��, whereas the one obtained by Averkiev et al. (2001) coincides

with them only for !c�� ! 0.

14At order Oð�1�2Þ, there are two contributions to MISO for

!c�� � 1: one comes from the thermal averaging of the cross

term between the oscillations in ��ð"Þ and those in �B;�ð"Þ, and the

other, from the averaging of �B;�ð"Þ alone. In Eq. (58), the former

brings �1 to the expression in the brackets, the latter brings

2ð1� ��=�12Þ. In the early work by Raikh and Shahbazyan

(1994) [see also an extension of the theory to essentially similar

oscillations in biased bilayer graphene (Mkhitaryan and Raikh,

2011)], only the former contribution was taken into account.
15The isotropy condition for intersubband transitions requires that

the Fermi wavelength in each of the subbands be much larger than

minfw; dg. As discussed in Sec. II.A, this condition is only margin-

ally satisfied in high-mobility GaAs/AlGaAs structures.
16The expression for ��MISO in terms of the thermally averaged

product �ð"Þ�ð"þ �Þ yielding Eq. (60) was proposed by Coleridge

(1990), although it was erroneously also suggested there that MISO

are suppressed by the thermal averaging if T � !c.
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with Wð12Þ
q the Fourier component of the correlation func-

tion of the intersubband matrix element of the random
potential at the transferred in-plane momentum q ¼
½2mð"F;1 þ "F;2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"F;1"F;2

p
cos�Þ�1=2.

Oscillations similar to MISO occur also in a double QW
with the lowest subband states split by tunneling or, for that
matter, in any other system whose energy spectrum exhibits
two or more series of LLs, which are offset with respect to
each other, in the presence of scattering between the series.
Experimentally, MISO were studied in two-subband single
QWs (Leadley et al., 1989, 1992; Coleridge, 1990; Sander
et al., 1998; Rowe et al., 2001; Goran et al., 2009; Bykov,
Goran, and Vitkalov, 2010), in double (Bykov, 2008b;
Mamani et al., 2008) and triple (Wiedmann, Mamani
et al., 2009) QWs, and in wide QWs split in two layers
electrostatically (Wiedmann et al., 2010a). MISO were
also studied theoretically in 2D layers with electron states
split by spin-orbit interaction (Langenbuch, Suhrke, and
Rössler, 2004). The behavior of MISO in nonequilibrium
conditions is discussed in Secs. III.C.4 and V.C.

III. MICROWAVE-INDUCED RESISTANCE OSCILLATIONS

A. MIRO: Experimental discovery and basic properties

When a sufficiently high-mobility 2DEG is subject to a
weak magnetic field and illuminated by microwave radiation,
the longitudinal magnetoresistivity �ðBÞ exhibits giant oscil-
lations (Zudov et al., 1997; Zudov, Du et al., 2001), termed
MIRO; see Fig. 5. In a Corbino-disk-shaped 2DEG, experi-
ments revealed corresponding microwave-induced conduc-
tance oscillations (Yang et al., 2003). Most commonly,
MIRO are observed in dc measurements, with radiation being
delivered to the 2DEG via oversize wave guides [although
other means, such as planar microwave transmission lines
patterned on top of the 2DEG (Ye et al., 2001) and dipole

antennas (Willett, Pfeiffer, and West, 2004), have also been
successfully implemented]. Recently, they were also ob-
served by Bykov et al. (2010) and Andreev et al. (2011)
in contactless measurements in a capacitively coupled 2DEG.
MIRO have been studied not only in high-mobility single-
subband 2DEGs but in a variety of other 2D systems, includ-
ing 2DEGs patterned with a triangular antidot lattice
(Yuan et al., 2006), see Sec. III.C.5; two-subband 2DEGs
(Wiedmann et al., 2008; Bykov, Mozulev, and Kalagin,
2010), see Sec. III.C.5; and hole systems based on C-doped
GaAs/AlGaAs QWs (Du et al., 2004). Phenomenologically
similar oscillations were recently discovered in a nondegen-
erate electron system on the surface of liquid 3He
(Konstantinov and Kono, 2009); see Sec. VII.B.1.

Period and phase.—The radiation-induced part ��! of the
resistivity �! at a radiation frequency ! oscillates with the
ratio

�ac � !=!c; (62)

see Fig. 6(b). In contrast to PIRO and HIRO (see Sec. V), the
MIRO period is not sensitive to the carrier density ne. MIRO
maxima (�þac) and minima (��ac) are roughly symmetrically
offset from the harmonics of the CR at �ac ¼ n17 and occur at

��ac ’ n	 ’ac; n ¼ 1; 2; 3; . . . : (63)

In accordance with theoretical predictions for the regime
of overlapping LLs (see Sec. III.B.1.a), the observations

GHzf

72 GHz

94 GHz

T K

2.0

1.0

1.5

0.5

2.5

(B

B (kG)

FIG. 5 (color online). Magnetoresistivity with (solid lines) and

without (dashed line) microwave irradiation for different frequen-

cies f ¼ 45, 72, and 94 GHz, normalized to its value at B ¼ 0. The

traces for different f are vertically offset for clarity. Integers show

the order of MIRO peaks. The arrows mark the magnetoplasmon

resonance. The data were obtained at T ’ 1:7 K in a 200 �m wide

Hall-bar sample with ne ’ 2:0� 1011 cm�2 and � ’ 3:0�
106 cm2=V s. Adapted from Zudov, Du et al., 2001.
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B (kG)

)
)

ac
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(b)

FIG. 6 (color online). (a)Magnetoresistivity oscillationswith vary-

ingB at fixed f ¼ 81 GHz. (b)Microwave-induced correction��! to

the resistivity as a function of �ac, obtained by subtracting the slowly

varying background. The data were obtained at T ’ 1:5 K in a

100 �m wide Hall-bar sample with ne ’ 3:0� 1011 cm�2 and � ’
1:2� 107 cm2=V s.

17Early experiments (Zudov et al., 1997; Ye et al., 2001; Zudov, Du

et al., 2001) loosely associated the low-order oscillation maximawith

integer �ac ¼ n. Now it is established that at �ac ¼ n there are zero-

response nodes where the photoresistivity ��! ¼ 0.
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suggest that ��! / � sin2��ac for �ac * 2, i.e., the phase
’ac in Eq. (63) is 1

4 . This value of the phase was reported as

universal in many experiments (Mani, 2004a, 2005, 2007a,
2007b, 2008; Mani et al., 2002, 2004a, 2004b, 2004c, 2004d,
2009, 2010). Other experiments (Zudov, 2004; Studenikin
et al., 2005, 2007; Zudov et al., 2006a, 2006b; J. Q. Zhang
et al., 2007; Hatke et al., 2008a, 2008b; 2011a, 2011b,
2011e; Dai et al., 2010) found that the lower-order maxima
and minima are pushed toward the harmonics of the CR and
are best described by ’ac which is considerably smaller than
1
4 . Such a phase reduction is expected in the regime of

separated LLs (Vavilov and Aleiner, 2004; Zudov, 2004;
Dmitriev et al., 2005; Studenikin et al., 2005); see
Sec. III.B.1.a. Moreover, the phase decreases with increasing
radiation power, as discussed next.

Power dependence.—At sufficiently low microwave power
P, one expects that the amplitude A! [as defined in Eq. (64)]
of the oscillatory photoresistivity ��! is linear in P. While
the linear dependence of A! on P was clearly observed by
Zudov et al. (2003) and Hatke et al. (2011a), a number
of experiments found a strongly sublinear dependence (Ye
et al., 2001; Mani et al., 2004b, 2010; Studenikin et al.,
2004; Willett, Pfeiffer, and West, 2004). The apparently
conflicting experimental reports can be reconciled by the
existence of two distinct regimes of weak and strong power,
characterized by the linear and sublinear scaling of A! with
P, respectively. The experimental data in Fig. 7 show that the
linear dependence of A! / P crosses over with increasing P
into A! / P1=2, accompanied by a strong reduction of the
phase ’ac compared to its value ’ac ¼ 1=4 in the linear
regime. Such behavior is expected for the inelastic
mechanism of MIRO; see Sec. III.B.2. For the displacement

mechanism, a similar effect is expected at the crossover
to the multiphoton regime of the photoresponse; see
Sec. VI.

Temperature dependence.—Most experiments show that
MIRO are best observed at temperature T � 0:5–1 K, get
strongly suppressed with increasing T, and become almost
invisible at T � 4–7 K. The overall behavior in the regime of
weak oscillations, illustrated in Fig. 8, is consistent with the
theoretical predictions [see Figs. 13(b) and 13(c) and the
discussion in Secs. III.B.1.e, III.B.1.f, and III.B.1.g] (the T
dependence of MIRO in the regime of ZRS is discussed in
Sec. IV.A). At low B and P, the B dependence of MIRO
almost perfectly follows

��! ¼ �A!�ac sinð2��acÞ expð�2�=!c�


qÞ; (64)

where A! is nearly B independent for �ac * 2; see, e.g.,
Fig. 8(a). Such fits of the B traces of MIRO at different T
generally reveal that both �
q in the factor e�2�=!c�



q and A!

depend on T. Specifically, the exponential factor in Eq. (64)
is well described by a quadratic-in-T dependence of
1=�
qðTÞ¼1=�qþ�T2, see Fig. 8(b), which is attributed to

the LL broadening induced by electron-electron interactions
(see Sec. III.B.1.f). A similar exponential dependence on T
was also reported for HIRO (Hatke et al., 2009b), PIRO
(Hatke et al., 2009a), and MISO (Mamani et al., 2008).
Studenikin et al. (2005, 2007) and Wiedmann et al. (2010b)
found A! / T�2 at T < 3 K, see Figs. 8(c) and 8(d), consis-
tent with the inelastic mechanism of MIRO (see
Sec. III.B.1.e). The saturation of the dependence of A! on T
observed byWiedmann et al. (2010b) at T>3K, see Fig. 8(d),
and the results of Hatke et al. (2009c), where A!

almost independent of T was reported, indicate that the
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FIG. 7 (color online). (a) Amplitude A! and (b) phase ’ac mea-

sured at the second MIRO maximum vs microwave power P.
Straight lines in (a) represent, on the log-log scale, the linear and

square-root dependences on P. (c)–(e) Photoresistivity ��! as a

function of !c at fixed !=2� ¼ 33 GHz for different P. The traces
are labeled according to the attenuation levels. The data were

obtained at T ’ 1:5 K in a 200 �m wide Hall-bar sample with ne ’
2:9� 1011 cm�2 and � ’ 2:4� 107 cm2=V s. Adapted from Hatke,

Khodas et al., 2011.
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FIG. 8 (color online). (a) Evolution of MIRO with varying T and

(b) the T dependence of 2�=!�
q extracted from these data by fitting

them to Eq. (64) (Hatke et al., 2009c). (c), (d) The T dependence of

A! [Eq. (64)] obtained by (c) Studenikin et al. (2007) and (d)

Wiedmann et al. (2010b).
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displacement contribution to MIRO [which produces
A! ¼ constðTÞ and strongly depends on the correlation prop-
erties of disorder, see Sec. III.B.1.d] may remain relevant
down to low T.

Frequency dependence.—Over the past decade MIRO have
been observed in a wide range of radiation frequencies, from
3 GHz (Willett, Pfeiffer, and West, 2004) to 1.5 THz
(Wirthmann et al., 2007). However, the majority of experi-
ments employed frequencies from 30 to 150 GHz, which
appears to be the optimum range for a typical 2DEG. At lower
frequencies, MIRO are shifted toward weaker B and are there-
fore suppressed by theDingle factor.At higher frequencies, the
oscillation amplitude decays as well (Yang et al., 2003;
Studenikin et al., 2007; Tung et al., 2009), as illustrated in
Fig. 9 for the photoconductance measured in a Corbino disk
(Yang et al., 2003). At fixed both �ac � 2 and the microwave
intensity, the observed decay is consistent with ��! / !�4, in
agreement with Eqs. (74), (75), (92), and (99).

B. Microscopic mechanisms of MIRO

Most experimental findings concerning MIRO can be
explained as a combined effect of Landau quantization
and external fields either on the momentum relaxation
(displacement mechanism) or on the energy distribution
of electrons within disorder-broadened LLs (inelastic
mechanism). Section III.B.1 describes both effects in terms
of quasiclassical kinetics of the guiding centers of cyclotron
orbits. Section III.B.2 deals with the main mechanism of
MIRO saturation which establishes the conditions for the
observation of ZRS and fixes the amplitude of a dc electric
field in spontaneously formed domains. A quantum kinetic
equation formalism is described in Sec. III.B.3. This for-
malism provides a solid foundation for the approach used in
Secs. III.B.1 and III.B.2 and serves as a basic tool for the
theoretical description of other nonequilibrium phenomena
throughout the review. Additional quadrupole and photovol-
taic contributions to MIRO (these govern, in particular,
magneto-oscillations of the Hall part of the conductivity)
are discussed in Sec. III.B.4. Alternative mechanisms of
MIRO, not related to the Landau quantization, are discussed
in Sec. III.B.5.

1. Inelastic and displacement mechanisms

Initially MIRO were attributed (Durst et al., 2003; Vavilov

and Aleiner, 2004) to the displacement mechanism which

accounts for spatial displacements of quasiclassical electron

orbits due to radiation-assisted scattering off disorder.

Because of Landau quantization, which leads to a periodic

modulation in the DOS �ð"Þ ’ �ð"þ!cÞ (see Sec. II.C.1),

the preferred direction of these displacements with respect to

the symmetry-breaking dc field oscillates with !=!c. This

results in MIRO with a phase and a period which agree with

those observed in experiment. Photoconductivity oscillations

governed by the displacement mechanism were in fact

predicted long ago (Ryzhii, 1970; Ryzhii, Suris, and

Shchamkhalova, 1986) in the limit of separated LLs and a

strong dc field. This mechanism was further studied using

various approaches and approximations in a number of theo-

retical works (Anderson and Brinkman, 2003; Durst et al.,

2003; Lei and Liu, 2003; Ryzhii and Suris, 2003; Shi and Xie,

2003; Lee and Leinaas, 2004; Park, 2004; Ryzhii, Chaplik,

and Suris, 2004; Vavilov and Aleiner, 2004; Torres and

Kunold, 2005; Kashuba, 2006a, 2006b; Auerbach and Pai,

2007; Dmitriev, Mirlin, and Polyakov, 2007a; Volkov and

Takhtamirov, 2007; Khodas and Vavilov, 2008; Dmitriev

et al., 2009). Soon after the experimental observations of

MIRO, Dmitriev, Mirlin, and Polyakov (2003) proposed

that the dominant contribution to MIRO was due to the

inelastic mechanism associated with radiation-induced

changes in the occupation numbers of electron states.

Similar ideas were discussed by Dorozhkin (2003); however,

the calculation there was not directly applicable to the ex-

perimentally relevant systems, in particular, due to an unre-

alistic model of inelastic relaxation. Later studies confirmed

that the inelastic mechanism generally dominates the ob-

served MIRO (Dmitriev et al., 2005) at low T, while the

displacement mechanism can be relevant at higher T and only

if a sufficient amount of short-range impurities is present in

the system (Khodas and Vavilov, 2008; Dmitriev et al.,

2009), or else, in the limit of a strong dc field (Khodas and

Vavilov, 2008) or high microwave power (Dmitriev, Mirlin,

and Polyakov, 2007a).

G
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FIG. 9 (color online). Conductance Gxx of a Corbino sample

(ne ¼ 3:55� 1011 cm�2, � ¼ 1:28� 107 cm2=V s) as a function

of !=!c for different fixed !. The traces, labeled according to f ¼
2�!, are offset in steps of 0.25 mS. Adapted from Yang et al., 2003.
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FIG. 10 (color online). (a) Shift of the guiding center of a

cyclotron orbit due to quasielastic scattering off disorder.

(b) Schematics of the correlations between the direction of the

cyclotron-orbit shifts �X in the process of photon absorption and

the sign of the detuning �! ¼ !=!c � 2 for the second harmonic

of the CR. The stripes mark the DOS maxima "n ¼ ðnþ 1=2Þ!c in

LLs tilted by a dc field.
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In this section, we formulate a description of both mecha-
nisms in terms of migration of the guiding centers of cyclotron
orbits. A systematic way to obtain the same results within
the quantum kinetic approach is sketched in Sec. III.B.3.
Quasiclassically, each scattering event leads to a shift of
the guiding center �R’1’2

¼ Rcez � ðn’1
� n’2

Þ, where

n’k
¼ ðcos’k; sin’kÞ with k ¼ 1, 2 are the unit vectors in

the direction of motion before and after the collision; see
Fig. 10.

For a macroscopically homogeneous 2DEG subjected to a
dc electric field E ¼ exE, the dissipative current

jd ¼ 2�0e
Z x

�1
dx1

Z 1

x
dx2ðWx1!x2 �Wx2!x1 Þ (65)

is expressed in terms of the probabilities Wx1!x2 of the

guiding-center shifts x1 ! x2 along the ex axis �X’1’2
¼

ex � �R’1’2
¼ Rcðsin’1 � sin’2Þ. The probabilities are

given by the integrals over the initial and final energies in
the scattering event

Wx1!x2 ¼
�Z

d"1
Z
d"2M"1"2�ðx1�x2þ�X’1’2

Þ

�
�
�ðelÞ
’1’2

�ð�"tot12Þþ�
ðphÞ
’1’2

X
�
�ð�"tot12�!Þ

��
’1’2

;

(66)

where the angular brackets denote averaging over the initial
and final angles ’1;2. The delta functions in the square

brackets express conservation of the total electron energy
�"tot12 ¼"1�"2þeE�X’1’2

¼0 in the elastic channel

(/�ðelÞ
’1’2

) and its change by �! in the photon-assisted

scattering channel (/ �
ðphÞ
’1’2

). Quantum magneto-oscillations
originate from the factor

M""0 ¼ ~�"~�"0f"ð1� f"0 Þ; (67)

where ~�" ¼ �ð"Þ=�0 with �0 ¼ m=2� is the dimensionless
DOS in disorder-broadened LLs and f" is the nonequilibrium
distribution function in the steady state. In the homogeneous
case, both ~�" and f" are functions of the local kinetic energy
". Since the disorder-induced broadening of LLs is deter-
mined by �q � � (see Sec. II.C.1), the effect of the external

fields on ~�" is negligible in the relevant range of the dc and
microwave field strength. By contrast, the modification of the
distribution function is crucially important. The nonequilib-
rium occupation of electron states is governed by the kinetic
equation

�
~��1
" �

ðphÞ
’’0

X
�
ðM""0�! �M"0�!"Þ

�
’’0

þ h~��1
" �ðelÞ

’’0 ðM""0 �M"0"Þi’’0 ¼ Stinff"g; (68)

where "0 ¼ "þ eE�X’’0 . To close the set of equations, the

type of inelastic scattering and the expressions for the rates
�ðelÞ and �ðphÞ need to be specified. The calculation in
Sec. III.B.1.e shows that the inelastic scattering integral can
be approximated in the form

Stinff"g ¼ ðfT" � f"Þ=�in; (69)

which describes thermalization to the local Fermi distribution

fT" with the effective rate 1=�in. The scattering rates �
ðphÞ
’’0 and

�ðelÞ
’’0 for transitions ’ ! ’0 are given by (Khodas and

Vavilov, 2008)

�
ðphÞ
’’0 ¼ P’þ’0

2�’�’0
sin2

’�’0

2
; �ðelÞ

’’0 ¼ 1

�’�’0
�2�

ðphÞ
’’0 : (70)

The last term in �ðelÞ
’’0 describes the microwave-induced modi-

fication of the elastic scattering. For the isotropic 2DEG, the
disorder-induced scattering rate ��1

’1�’2
is expressible in the

most general case as a series in angular harmonics

��1
’1�’2

¼ X1
n¼�1

��1
n einð’1�’2Þ; �n ¼ ��n: (71)

For the two-component disorder model, the coefficients �n
are discussed in Sec. III.B.1.d. For the microwave field
(screened by the 2DEG, see Sec. III.B.1.c) of the form

E!ðtÞ ¼ E!

X
�
Reðs�e�ei!tÞ; (72)

where 21=2e� ¼ ex � iey and ðsþ; s�Þ is the complex

vector of unit length which determines the polarization
of the field, the dimensionless power P� in Eq. (70) is
written as

P� ¼ P � 2ReðEþE
�ei�Þ; (73)

P ¼ jEþj2 þ jE�j2; (74)

E� ¼ s�evFE!!
�1ð!�!cÞ�1: (75)

The golden-rule approach formulated above describes a
rich variety of phenomena in strong dc and microwave fields.
We first discuss it in the case of MIRO and calculate the
linear direct current at high temperature, namely, for
2�2T=!c � 1, to order EE2

!. The current reads

jd ¼ �Dh~�2
"i"Eþ �disEþ �inE: (76)

Here the first term, describing the linear dark conductivity,
follows directly from Eq. (39) and h� � �i" denotes the energy
averaging over the period !c. The two other terms are
microwave-induced corrections, at this order in the external
fields completely independent of each other. The displace-
ment contribution, proportional to �dis, originates from the
photon-assisted displacements in Eqs. (65) and (66) if one

substitutes the equilibrium function fðTÞ" for f". In the limit
2�2T=!c � 1, a straightforward calculation yields

�dis ¼ �D

�

4�?
½P � ReðEþE
�Þ�ðR1 �R3Þ; (77)

R1 ¼ !@!h~�"~�"þ!i"; (78)
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R3 ¼ h~�2
" � ~�"~�"þ!i"; (79)

where ��1
? is expressed in terms of the partial contributions

(71) to the disorder-induced scattering rate as follows (the
angle brackets denote averaging over �):

��1
? ¼2h��1

� ð1�cos�Þ2i�¼3��1
0 �4��1

1 þ��1
2 : (80)

The inelastic contribution to jd, proportional to �in, accounts
for the microwave-induced change �f" ¼ f" � fT" of the
distribution function. For E ! 0, the last term in Eq. (68)
vanishes and " ¼ "0. To first order in E2

!,

�f" ¼ P
�in
4�

X
�
ðfT"�! � fT" Þ~�"�!

’ P
!�in
4�

ð~�"þ! � ~�"�!Þ@"fT" : (81)

The approximation in the last line is valid for T � !.
At order EE2

! in jd, the correction (81) of order E2
! should

be substituted into Eqs. (65)–(67) taken at first order in E,
which gives

�in ¼ ��D

Z
d"~�2

"@"�f" ¼ �D

�in
4�

PR2; (82)

R2 ¼ !@!h~�2
"ð~�"þ! þ ~�"�!Þi": (83)

Next we summarize the most important properties of
MIRO that follow from the above results.

a. Period and phase

These are determined by the factors Ri defined in
Eqs. (78), (79), and (83). In the limit of overlapping LLs,
the DOS is given by Eq. (31), ~�ð"Þ ¼ 1� 2� cosð2�"=!cÞ
with � ¼ expð��=!c�qÞ � 1, so that

R1 ¼ R2=4 ¼ �4�2 �!

!c

sin
2�!

!c

;

R3 ¼ 4�2sin2
�!

!c

:
(84)

We see that, for both the displacement and inelastic mecha-
nisms, MIRO are proportional to sinð2�!=!cÞ with a nega-
tive coefficient in front of it in accord with the experimental
findings (for the displacement mechanism, the phase of
MIRO also agrees with the observed one for large �!=!c,
when R3 can be neglected compared to R1).

The phase of the oscillations can be qualitatively under-
stood as follows. Owing to the oscillatory behavior of
~�"~�"�!þeE�X, which enters Eq. (66) via the factor (67), the
average displacement of a cyclotron orbit �X [see Fig. 10(b)]
is positive (negative) for a small positive (negative) detuning
�! ¼ !=!c � N from the Nth harmonic of the CR. The
uphill drift for �! > 0 produces a contribution to the dis-
sipative current (65) which is directed against the electric
field, i.e., �dis < 0. For the inelastic mechanism, a small
positive detuning �! increases (decreases) the occupation
of states lying right above (below) the maxima of ~�ð"Þ
compared to equilibrium (see Fig. 11), while the negative
detuning leads to the opposite sign of the nonequlibirum
correction to the distribution function. The phase difference
between the oscillations of �ð"Þ and those of @"�f" in
Eq. (82) is such that the sign of �@"�f" at the maxima of

~�ð"Þ coincides with the sign of �in (see Fig. 11), i.e., �! > 0
yields �in < 0.

In the limit of separated LLs, !c�q � 1, the DOS

is a sequence of semicircles (28) of width 2� ¼
2ð2!c=��qÞ1=2 � !c, i.e., ~�ð"Þ¼�qRe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�ð�"Þ2p

, where

�" is the detuning from the center of the nearest LL. In this
limit, one has

R1 ¼ R0

!

�

X
n

sgnð�nÞH 2ðj�njÞ; (85)

R2 ¼ �R0

4!!c

�2

X
n

sgnð�nÞ�2ðj�njÞ; (86)

R3 ¼ R0

�
1�X

n

H 1ðj�njÞ
�
; (87)

where R0 [which also enters Eq. (76)] reads

R0 � h~�2
"i" ¼ 16!c=3�

2�: (88)

The parameterless functions of �n ¼ ð!� n!cÞ=� are non-
zero at 0< j�nj< 2, where they are given by

H 1ðxÞ ¼ ð2þ xÞ½ð4þ x2ÞEðYÞ � 4xKðYÞ�=8; (89)

H 2ðxÞ ¼ 3x½ð2þ xÞEðYÞ � 4KðYÞ�=8; (90)

4��2ðxÞ¼3xarccosðx�1Þ�xð1þxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2�xÞ

p
: (91)

Here Y ¼ ð2� xÞ2=ð2þ xÞ2 and the functions E and K are
the complete elliptic integrals of the first and second kind,
respectively [see Dmitriev, Mirlin, and Polyakov (2007b) for
a graphical representation of the functions (89)–(91)]. A
distinctive feature of the photoresponse in separated LLs is
the presence of windows in!c within which j!� n!cj> 2�
for any integer n and hence both intra-LL and inter-LL single-
photon transitions are impossible, i.e., ~�"~�"þ! ¼ 0 for any ".
The resulting gaps in the dependence of the photoresponse
on B for a given radiation frequency were observed by
Dorozhkin et al. (2005); see Fig. 12. At sufficiently high
microwave power, the photoresponse in the gaps becomes
visible due to multiphoton effects (see Sec. VI).

F c

f

f T

(a) (b)

FIG. 11 (color online). (a) Emission and absorption of microwave

quanta for the detuning �! ¼ !=!c � 2 ¼ 1=4 and (b) the DOS

�ð"Þ and the resulting oscillatory distribution function f" for T ¼
!c, compared to the thermal distribution fT" . Adapted from

Dmitriev et al., 2005.
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b. Polarization dependence

While the phase of MIRO in �dis and �in is essentially the
same, their polarization and temperature dependences are

qualitatively different. For linear polarization with s� ¼
e	ic =

ffiffiffi
2

p
characterized by the angle c between the directions

of the microwave and dc fields, �dis contains the anisotropic
term ReðEþE
�Þ / 2Res2þ ¼ cos2c , while �in / P does not
depend on c . The polarization dependence of �dis is illus-
trated in Fig. 13 in Vavilov and Aleiner (2004). Experimental
results on the polarization dependence are discussed in
Sec. VII.A.6.

c. Screening of the microwave field

The dimensionless field E� and the polarization parameters
s� in Eq. (75) represent the strength and the polarization of the
total (screened) microwave field. As discussed in Sec. II.C.3
(see also Sec. VII.A.6), in high-mobility samples the active
circular component of the incoming electromagnetic wave is
strongly suppressed near the CR due to a nearly complete

reflection. Expressed in terms of the field Eð0Þ
! and the polar-

ization sð0Þ� of the incoming wave, Eq. (75) acquires the form

E� ¼ sð0Þ� evFE
ð0Þ
!

!ð!�!c þ i�Þ ; (92)

where � [Eq. (57), see also footnote 11] is assumed to be
much larger than ��1. Since in typical experiments � is of
order ! � ��1, the CR in P [Eq. (74)] is strongly broadened
by the screening.Note also that the polarization of the screened
field is generally different from that of the field in the incident
wave and depends on B.

d. Sensitivity to different types of disorder

The displacement contribution �dis is highly sensitive to
the details of the disorder potential (Auerbach and Pai, 2007;
Khodas and Vavilov, 2008), which are difficult to extract from
standard transport measurements. In the mixed-disorder
model (see Sec. II.A), believed to provide an adequate de-
scription of high-mobility 2DEGs, the partial contributions
(71) to the scattering rate are given by

1

�n
¼ �n0

�sh
þ 1

�q;sm

1

1þ �n2
; (93)

where the first term describes scattering off the short-range
component of the random potential (modeled here as white-
noise disorder) and the second term describes small-angle
scattering off the smooth random potential created by remote
donors. The characteristic scattering angle in the latter case isffiffiffiffi
�

p ¼ ð2kFdÞ�1 � 1. Since in high-mobility structures the

quantum scattering rate ��1
q , given by ��1

0 , is much larger

than the transport scattering rate ��1 ¼ ��1
0 � ��1

1 , the quan-

tum scattering rate is dominated by the contribution of the
long-range component: ��1

q;sm � ��1
sh . That is, the LL broad-

ening is largely determined by the smooth disorder, whereas
the relative weight of the short- and long-range components
in 1=� ’ 1=�sh þ �=�q;sm may be arbitrary. Moreover, the

displacement contribution �dis is proportional to the rate
��1
? given by Eq. (80) (Khodas and Vavilov, 2008),

1=�? ’ 3=�sh þ 12�2=�q;sm; (94)

which contains one more power of the small parameter � in
front of ��1

q;sm compared to ��1 (Vavilov and Aleiner, 2004).

As a result, even a small amount of short-range scatterers
may give the main contribution to �dis, as illustrated in
Fig. 13(a).

e. Temperature dependence

The displacement contribution [Eq. (77)] is T independent
(apart from the T dependence of the DOS, which becomes
relevant at high T for both mechanisms, see Sec. III.B.1.f ),
while the inelastic contribution [Eq. (82)], proportional to the
inelastic scattering time �in, grows with lowering T. A de-
tailed analysis of the inelastic relaxation was performed by
Dmitriev et al. (2005). It was found that, for relevant T, the
amplitude of the oscillations in the distribution function is
controlled by electron-electron collisions. In overlapping
LLs, the ansatz f ¼ fT" þ ’ð"Þ@"fT" with periodic ’ð"Þ ¼
’ð"þ!cÞ reduces the linearized collision integral (68) to

FIG. 13 (color online). (a) Dependence of �=�? on the relative

weight �=�sh of the short-range component of disorder in the transport

scattering rate for fixed �=�q ¼ 100, 30, and 10. (b), (c) Dependence

of �in and �dis (in arbitrary units) on T for (b) Tq ¼ 10 K and

(c) Tq ¼ 3 K. The curves for �in are calculated for �in ¼ 2� at T ¼
1 K; the dashed curves for �dis, for strong short-range disorder with

�=2�? ¼ 1, �=�sh ¼ 0:6, and T? ¼ 2 K; the dash-dotted curves for

�dis, for purely long-range disorder with �=2�? ¼ 0:1, �=�q ¼ 50,

and T? ’ 6 K. Adapted from Dmitriev et al., 2009.

f GHz

f GHz

B (T)

c/2

c /2(a)

(b)

xx
xx

FIG. 12 (color online). Magnetoresistivity at a radiation frequency

of (a) 40 GHz and (b) 121 GHz as a function of B, compared to the

magnetoresistivity in the absence of radiation. The shaded boxes

around the points at which (a) ! ¼ !c=2 and (b) ! ¼ 3!c=2 mark

the range of B within which the magnetoresistivity with and without

radiation coincide. Adapted from Dorozhkin et al., 2005.
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Stinffg¼��2T2þ"2

2

@fT"
@"

hAðEÞ½’ð"Þ�’ð"þEÞ
þ’ð"0Þ�’ð"0 �EÞ�i"0E; (95)

where the angular brackets denote averaging over "0
and E within the period !c. For a harmonic modulation of
the distribution function with ’ð"Þ / cosð2�"=!c þ �Þ,
the collision integral then acquires the form Stin /
hAðEÞ½1� cosð2�E=!cÞ�iE, where the last factor strongly
suppresses the relevant energy-relaxation rate compared to
the outscattering rate. As shown by Dmitriev et al. (2005),
the relaxation time approximation is justified for this collision
integral and the inelastic scattering time that enters Eq. (82) is
given in the relevant domain !c � T � !cð!c�Þ1=2 by

�in ¼
Z d"

2!
�eeð"; TÞðfT"�! � fT"þ!Þ; (96)

where

��1
ee ð"; TÞ ¼ �2T2 þ "2

4�"F
ln

2vF=aB

!cð!c�Þ1=2
: (97)

For T � !, Eq. (96) gives �in ’ 0:822�eeð0; TÞ / T�2

[Figs. 13(b) and 13(c)], while for T � ! the result is �in ¼
ð�2T=2!Þ�eeð0; TÞ. It follows that the T�2 scaling of �in for
T � ! crosses over to a T�1 scaling for T � !. In separated
LLs, the relaxation time approximation is not accurate para-
metrically; still, for an estimate, up to a factor of order unity,
one can use Eq. (82) with �in � ð�=!cÞ�eeð0; TÞ.

f. Exponential B and T damping

According to Eqs. (77), (82), and (84), the Dingle factor
squared, �2 ¼ expð�2�=!c�qÞ, determines the damping of

the MIRO in the limit of overlapping LLs for both the
displacement and inelastic mechanisms. This same damping
factor also describes the oscillations of the absorption coef-
ficient for T � !c (see Sec. II.C.3) and, as seen in Sec. V,
HIRO and PIRO. Experimental data for these types of oscil-
lations measured in the same sample support this prediction.
On the other hand, the SdH measurements, if the data are
fitted by the damping factor �, systematically yield shorter

�ðSdHÞq < �q. As discussed in Sec. II.C.2, the reason for the

enhanced damping is that the SdH oscillations are sensitive to
small, with an amplitude of the order of !c, macroscopic
inhomogeneities of the chemical potential, whereas the
magneto-oscillations that survive at T � !c are robust
with respect to them.

The experimentally observed MIRO (see Sec. III.A) show
at sufficiently high T an exponential suppression of the
oscillation amplitude as T is increased (Hatke et al.,
2009c; Wiedmann et al., 2010b). This effect can be explained
in terms of a T-dependent renormalization of the DOS
by electron-electron interactions (Chaplik, 1971; Ryzhii,
Chaplik, and Suris, 2004; Dmitriev et al., 2009).
Specifically, the quantum scattering rate ��1

q that enters the

DOS ~�ð"Þ ¼ 1� 2� cosð2�"=!cÞ via the Dingle factor �
should be substituted by

~��1
q ¼ ��1

q þ ��1
ee ð"; TÞ; (98)

where ��1
ee is given by Eq. (97). Substitution of the modified

DOS into Eqs. (66)–(68) yields an additional factor

expð�T2=T2
qÞ in the amplitude of MIRO for T above the

temperature Tq defined by 2�=!c�eeð0; TqÞ ¼ 1 [which gives

Tq � ð!c"FÞ1=2 up to a logarithmic factor]; see Figs. 8, 13(b),

and 13(c). It is worth recalling that electron-electron scatter-
ing produces no additional exponential damping for the SdH
oscillations; see footnote 6. The difference in the manifesta-
tion of electron-electron interactions in the damping factor
for SdH oscillations and in the damping factor for MIRO is
related to the fact that the former oscillations emerge at linear
order in �, while the latter—at order �2.

g. Relative weight of the inelastic and displacement contributions

The discussion in Secs. III.B.1.d, III.B.1.e, and III.B.1.f
shows that the relative weight of �dis and �in in the amplitude
of MIRO strongly depends on T and the correlation properties
of disorder. For an estimate of their relative importance, we
omit the anisotropic part [Eq. (77)] and the subleading for
! � !c term proportional to R3 [Eq. (84)] in �dis, and
combine Eqs. (77)–(79) and (82)–(84) into

�in þ �dis

�D

��
�
2�in
�

þ �

2�?

�
4�2P

�!

!c

sin
2�!

!c

: (99)

Since �in � "F=T
2 (see Sec. III.B.1.e), Eq. (99) defines the

temperature T? � ð"F�?Þ1=2=� at which �dis ¼ �in. In the
case of smooth disorder [when ��1

? is given by the second
term in Eq. (94)], Eq. (99) yields

�in

�dis
¼ 4�inðTÞ�?

�2
’ �inðTÞ

3�q
;

�

�sh
<

4�q
�

: (100)

For overlapping LLs, Eq. (100) gives T?�ð"F=�qÞ1=2�
Tq�ð!c"FÞ1=2, i.e., in the case of smooth disorder, the

inelastic contribution dominates in the whole temperature
range T & Tq where MIRO can be observed [Figs. 13(b)

and 13(c)]. By contrast, for the case of a strong short-range
component of disorder (�sh � �� �?), one has T? �
Tqð�?=!c�

2Þ1=2, much smaller than Tq for !c� � 1. As a

result, the �in-dominated T�2 dependence of the MIRO
amplitude for T < T? crosses over as T is increased to a
plateau (whose height is given by �dis) in the interval T? <

T < Tq [see Fig. 13(b)] before starting to fall off exponen-

tially for T > Tq. In the intermediate case of T? � Tq, the

range of T in which MIRO are T independent shrinks to zero
[see Fig. 13(c)].

The experimental results, presented in Fig. 8, are in overall
agreement with the above theory. Apart from the T depen-
dence, the two mechanisms are different in the photoresponse
at the ‘‘odd nodes’’ !=!c ¼ nþ 1=2, where �in ¼ 0
while �ðdisÞ / R3 � 0; see Eqs. (77), (79), and (84).
Moreover, their polarization dependence is different (see
Sec. III.B.1.b). Experimental studies of these features [omit-
ted in the estimate (99)] can serve as an additional tool to
quantify the relative magnitude of �dis and �in.

2. Saturation of the inelastic contribution at high radiation

power and/or in a strong dc field

When the inelastic contribution dominates the oscillatory
photoresponse (see Sec. III.B.1.g), the leading correction to
�in linear in P and independent of E [Eq. (82)] is given by the
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terms of higher order in P and E2 in the distribution function.
These are governed by the kinetic equation (68), a general-
ized, to include higher powers of P and E2, solution of which
in the regime of overlapping LLs reads (Dmitriev et al.,
2005)

�f ¼ �
!c

2�

@fT"
@"

sin
2�"

!c

F ð�in;P ; 
Þ; (101)

F ð�in;P ;
Þ¼P ð2�!=!cÞsinð2�!=!cÞþ2
2

�=�inþP sin2ð�!=!cÞþ
2=2
; (102)

where the dimensionless parameter


 � ��dc ¼ 2�eERc=!c (103)

characterizes the strength of the dc field. The current induced
by the inelastic mechanism is then given by

jd ¼ �DE½1þ 2�2 � 2�2F ð�in;P ; 
Þ�: (104)

The dependence of the resulting magnetoresistivity on P and
E is illustrated in Fig. 14.

Consider first the limit E ! 0. At fixed !=!c, MIRO
saturate with increasing microwave power:

F ð�in;P ;0Þ!4�!

!c

cot
�!

!c

; P sin2
�!

!c

� �

�in
: (105)

In the limit of high power P � �=�in, the maxima and
minima of MIRO at �ac ¼ ��ac [Eq. (63)] shift toward the
nearest nodes at �ac ¼ n, with the amplitude of MIRO at the
extrema proportional to ð�inP=�Þ1=2:

��ac¼n	 1

�

�
�

�inP

�
1=2

; F j�ac¼��ac ¼	2�

�
�inP
�

�
1=2

:

(106)

Note that the T dependence changes in the nonlinear regime.
As follows from Eq. (102), there remains, for arbitrarily

strong P , a range of �ac around the nodes within which the
photoresponse is linear in P (apart from heating by micro-
waves which can modify �in); however, this range shrinks
with increasing P . In a broader vicinity of !=!c ¼ n which
includes the nearest maxima and minima of MIRO, the result
(104) applies, under the conditions �q � !�1

c � � & �in,

which are met in typical experiments (Dmitriev et al.,
2005; Dmitriev, Mirlin, and Polyakov, 2007a; Khodas and
Vavilov, 2008; Hatke, Khodas et al., 2011), for arbitrary
microwave power and for arbitrary relation between the
components of mixed disorder (93). The resulting behavior
with P reproduces the observations in Fig. 7 and is also in
agreement with other experimental results (Ye et al., 2001;
Mani et al., 2010).

For �sh � �, i.e., in the presence of a strong short-range
component of disorder, one should for �in & � take into
account the displacement contribution and also multiphoton
processes (the latter are important at P sin2�!=!c * 1, see
Sec. VI.B.4). This results in Eq. (106) with a factor of order
unity substituted for �in=� (Khodas and Vavilov, 2008; Hatke,
Khodas et al., 2011). If only the smooth component of
disorder is present, Eqs. (104) and (102) are applicable and
give the main contribution to jd in a broader range
P sin2�!=!c < �=�q; at higher P , both the excitation of

higher angular and temporal harmonics of the distribution
function and the multiphoton processes become important,
which results in the emergence of a series of distinct strongly
nonequilibrium regimes as !=!c is varied [for more details
see Dmitriev, Mirlin, and Polyakov (2007a)]. The higher
harmonics of the distribution function also determine the
Hall photoresponse (see Sec. III.B.4).

The above consideration of the nonlinear-in-P effects
[Eqs. (102) and (106)] shows that the linear-response con-
ductivity [Eq. (104) at E ! 0] can become negative despite
� � 1; see Fig. 14. As discussed in Sec. IV.B, this causes an
electric instability leading to the formation of domains. The
electric field E
 in the domains can be obtained from the
current-voltage characteristics (104), as illustrated in the inset
of Fig. 14; see Sec. IV.C for details. The behavior of the
magneto-oscillations at high microwave power and in a
strong dc field is further discussed in Secs. V and VI.

3. General approach: Quantum kinetic equation

A comprehensive approach to nonequilibrium transport in
high LLs was initially formulated for the case of smooth
disorder (Vavilov and Aleiner, 2004; Dmitriev et al., 2005;
Dmitriev, Mirlin, and Polyakov, 2007a) and later generalized
to the case of generic [Eq. (71)] disorder (Vavilov, Aleiner,
and Glazman, 2007; Khodas and Vavilov, 2008; Dmitriev
et al., 2009). The key steps of the derivation are highlighted
as follows:

(1) Transformation r ! r� �ðtÞ to a moving coordinate
frame, where �ðtÞ obeys

@t�ðtÞ ¼
�
@t �!c"̂

@2t þ!2
c

�
e

m
½Edc þE!ðtÞ� (107)

with "̂xy ¼ �"̂yx ¼ 1, is similar to the transformation to

Floquet states, used in a number of works (Lee and
Leinaas, 2004; Park, 2004; Torres and Kunold, 2005;
Kashuba, 2006b; Lyapilin and Patrakov, 2006; Auerbach

jd
D

E

E E/

j d
D

E

c

FIG. 14 (color online). Conductivity normalized to the dark Drude

value (given, as we assume !c� � 1, by jd=�DE) as a function of

!c=! at fixed !�q ¼ 2� for different levels of microwave power

ð�in=�ÞP j!c¼0 ¼ 0:24 (bottom), 0.8, 2.4 (top). Inset: I-V character-

istics at the minima (marked by the dots) of the !=!c dependence

of the resistivity. The arrows show the value of the dc field E
 in

domains in units of E0 ¼ �!c�=2�ineRc. Adapted from Dmitriev

et al., 2005.
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and Pai, 2007; Volkov and Takhtamirov, 2007) on the
displacement mechanism of MIRO. This transformation
(unambiguously defined for ! � !c) eliminates homo-
geneous electric fields in the Hamiltonian of a clean
electron systemat the expense that the impuritypotential,
‘‘dressed by the electric fields,’’ becomes time depen-
dent. Scattering off the moving impurities can then
change the energy of electrons.

(2) Keldysh equations within the SCBA: In the moving

frame, the Green’s functions Ĝ� and the self-energies

�̂
�
(� ¼ R, A, K refer to the retarded, advanced, and

Keldysh components) are related within the SCBA (see
Sec. II.C.1) as

�̂
�
21 ¼

Z d2q

ð2�Þ2 Wqe
�iq�21ðeiqr̂Ĝ�e�iqr̂Þ21; (108)

where Wq is the correlation function of the bare dis-

order potential, the subscript (21) denotes times t2 and
t1 on the Keldysh contour, and �21 ¼ �ðt2Þ � �ðt1Þ.

(3) Quasiclassical approximation: For a degenerate
2DEG in high LLs, Eq. (108) can be reduced to a
simpler quasiclassical equation in the ‘‘action-angle’’
representation:

��
21ð’Þ ¼ �iK̂21g

�
21ð’Þ; (109)

g�21ð’Þ � i!c

X
k

Ĝ�
21ðn̂þ k; ’̂Þ; (110)

where the operators n̂ and ’̂ are canonically conju-
gated, ½n̂; ’̂� ¼ �i. The eigenvalues of n̂ and ’̂ are the
LL index and the angle coordinate of the momentum,
respectively. The effects of disorder and external fields

are encoded in the integral operator K̂,

K̂21Fð’Þ ¼
Z d’0

2�

eikFðn’�n’0 Þ�21

�’�’0
Fð’0Þ: (111)

The distribution function f̂, defined by ĜR � ĜA � ĜK ¼
2ðĜRf̂� f̂ĜAÞ, commutes with ’̂. Accordingly, the operator
’̂, which enters Eq. (109) and the impurity collision integral,

iStimffg ¼ �̂
R
f̂� f̂�̂

A þ ð�̂K þ �̂
A � �̂

RÞ=2; (112)

can be treated as a c number. The result is the quantum kinetic
equation

ð@t þ!c@’Þf21 � Stinffg21 ¼ Stimffg21; (113)

Stimffg21 ¼
Z

dt3½K̂21ðgR23f31 � f23g
A
31Þ

� f31K̂23g
R
23 þ f23K̂31g

A
31�: (114)

Here t¼ðt1þ t2Þ=2 is the ‘‘center-of-mass’’ time. The inelas-
tic collision integral Stinffg21 accounts for electron-electron
scattering and for the coupling to a thermal (phonon) bath.

Except for specific cases (see Sec. VI.A.3) in the regime of
separated LLs, the effect of external fields on the spectrum
can be neglected, meaning gRt1�t2 in the moving frame re-

mains the same as in the static frame and does not depend on t
and �. It follows that the direct current,

j¼2evF

Z
d"�ð"Þhn’fð";’;tÞi�2e�0"F@t�ðtÞ; (115)

is determined by the first angular harmonic of the Wigner-
transformed distribution function fð";’; tÞ. The bar denotes
time averaging over the period of the microwave field in the
steady state.

The approach formulated above [Eqs. (111) and (113)–(115)]
validates the description of the inelastic and displacement
mechanisms of MIRO in Sec. III.B.1. It has been applied to a
wealth of nonequilibrium phenomena that we address in the
remaining part of the review.

4. Quadrupole and photovoltaic contributions

to the photoconductivity

Careful study of the quantum kinetic equation (113) shows
(Dmitriev, Mirlin, and Polyakov, 2007a) that there are in total
four different contributions to the photocurrent at the leading
order EE2

!. Figures 15(a)–15(d) represent four ways to obtain
perturbatively the first angular harmonic f10 of the distribution
function fð";’; tÞ � P

f�ne
i�’þin!t, which defines the

current (115), starting from the isotropic dark distribution
fT" . In the displacement contribution [Fig. 15(a)], f10 /
ð!c@’Þ�1StimffT" g results directly from the action of the

collision operator Stim / EE2
!. In the inelastic contribution

[Fig. 15(b)], f10 / ð!c@’Þ�1Stimf�f00g, where Stim / E and

�f00 / �inE
2
! is the microwave-induced correction to the

isotropic part of f. Apart from �f00, the action of Stim / E2
!

on fT" results in excitation of the second angular harmonics
f20. The linear dc response in the resulting state, f10 /
ð!c@’Þ�1Stimff20g with Stim / E, produces the ‘‘quadrupole’’

contribution [Fig. 15(c)] to the direct current. Finally, in the
‘‘photovoltaic’’ mechanism [Fig. 15(d)], a combined action of
the microwave and dc fields Stim / EE! produces nonzero
temporal harmonics f10 and f12. The ac response in
the resulting state, f10 / ð@t þ!c@’Þ�1Stimff10; f12g with

Stim / E!, also gives rise to the direct current.
Calculations performed by Dmitriev, Mirlin, and

Polyakov (2007a) (for smooth disorder) and Dmitriev et al.
(2009) (for generic disorder) show that all four mechanisms
[Figs. 15(a)–15(d)] produce microwave-induced corrections
to the direct current j� jdark ¼ �̂phE. The full photoconduc-

tivity tensor �̂ðphÞ / E2
! consists of components of different

symmetry

(a) (b) (c)

(d)

FIG. 15 (color online). Diagrams representing four distinct quan-

tum contributions (a)–(d) to the photocurrent at order EE2
!. Adapted

from Dmitriev, Mirlin, and Polyakov, 2007a.
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�̂ðphÞ ¼ �2�2�D

ds þ da hs þ ha

hs � ha ds � da

 !
(116)

oscillating with !=!c. The Hall part is solely due to mecha-
nisms Figs. 15(c) and 15(d). In particular, the quadrupole
mechanism [Fig. 15(c)] yields an unusual symmetric
off-diagonal term hs violating the Onsager symmetry, while
the antisymmetric ha is produced by the photovoltaic mecha-
nism [Fig. 15(d)]. The photovoltaic mechanism also yields
corrections to both isotropic (ds) and anisotropic (da) diago-
nal components. It is worth mentioning that, unlike contribu-
tions Figs. 15(a)–15(c), the photovoltaic contribution
[Fig. 15(d)] cannot be described in terms of the scattering
rates similar to Eq. (66). In particular, it involves not only the
DOS given by the imaginary part of GR but also quantum
corrections to the real part of the Green’s function which do
not appear in the golden-rule approximation.

In the case of smooth disorder, the largest contribution
comes from the inelastic mechanism [Fig. 15(b)], which
contributes only to ds. In this case, ds � da � hs � ha,
meaning the contributions of subleading mechanisms
Figs. 15(a), 15(c), and 15(d) are comparable in magnitude.
A sufficiently large amount of short-range scatterers enhances
contribution Fig. 15(a), see Sec. III.B.1.d, while the magni-
tude of contributions Figs. 15(c) and 15(d) remains essen-
tially the same, ds � da � hs � ha. Thus, the description of
MIRO in Sec. III.B.1, which accounts only for the inelastic
and displacement contributions, is justified as long as the
diagonal part of �̂ðphÞ is concerned. Figures 15(c) and 15(d)
yield oscillations in the Hall component (in the terms ha
and hs). Upon tensor inversion, the terms da and da also
contribute to the Hall components of the resistivity tensor.
Although these contributions are suppressed by an additional
small factor 1=!c�, they may compete with those originating
from hs;a, since ds;a may be much larger than hs;a.
Microwave-induced oscillations in the Hall resistivity were
observed experimentally (Mani et al., 2004a; Studenikin
et al., 2004; Wiedmann et al., 2011b). While the amplitude
of the oscillations in the Hall component observed by
Wiedmann et al. (2011b) is in good agreement with theory,
Mani et al. (2004a) and Studenikin et al. (2004) reported
considerably stronger oscillations. In fact, a similar issue is
known for SdH oscillations whose measured amplitude in the
Hall component of the resistivity often considerably exceeds
the theoretical predictions. It is likely that the physical
mechanism of the enhancement of the Hall component is
the same in both cases.

5. Classical mechanisms of MIRO

Most experimental results on MIRO reported so far have
been consistently explained within the quantum kinetic ap-
proach described above. These quantum effects are directly
linked (Dmitriev, Mirlin, and Polyakov, 2003; Fedorych
et al., 2010) to quantum magneto-oscillations �ðqÞð!Þ in the
dynamic conductivity (see Sec. II.C.3). On the other hand, the
quasiclassical memory effects, discussed in Sec. II.B.3, also
produce large !=!c oscillations in the ac conductivity,
�ðcÞð!Þ [Eqs. (23) and (24)]; see the comparison of the
classical and quantum contributions in Fig. 2. In turn,
the oscillatory �ðcÞð!Þ translates into !=!c oscillations of

the electronic temperature Te, while the oscillating Te mani-
fests itself in dc transport via the renormalization of the
elastic scattering rate by electron-electron interactions. The
resulting oscillatory contribution to the photoconductivity has
the form (Dmitriev, Mirlin, and Polyakov, 2004)

��ðcÞ
ph ð0Þ
�D

�� �
e-ph
in

�
P

!2

"FT

��ðcÞð!Þ
�Dð!Þ ; (117)

where �
e-ph
in is the electron-phonon inelastic relaxation time

(which controls the heating of the 2DEG) and ��ðcÞ is given
by Eqs. (23) and (24). The phase of the magneto-oscillations

in ��ðcÞ
ph ð0Þ is opposite to the phase in the dynamical

conductivity ��ðcÞð!Þ and is shifted by �=4 with respect
to the quantum oscillations [Eqs. (77) and (82)]. At low T, the
magnitude of the oscillations in Eq. (117) may become
comparable to that in Eq. (82) since the ratio
��ðcÞð!Þ=�Dð!Þ can be of the order of unity (see Fig. 2),
while the small parameter !="F � 10�1–10�2 is easily com-

pensated by the large ratio �
e-ph
in =�in of the electron-phonon

and electron-electron inelastic relaxation times [electron-
electron scattering provides for relaxation of the fast oscil-
lations in the energy distribution of electrons in Eq. (82) but
conserves the total energy of the electron gas]. However,
unlike the quantum oscillations of the photoconductivity,
the oscillations described by Eq. (117) saturate with increas-

ing P well before ��ðcÞ
ph ð0Þ=�D becomes of order unity, and

therefore, cannot cause ZRS. Namely, in the regime of strong

heating (Te � T * T), ��ðcÞ
ph ð0Þ=�D does not exceed

Te="F � 1.
It is important to mention that all classical corrections to

the Drude formula induced by the homogeneous external ac
and dc fields vanish to zero in the Boltzmann equation frame-
work in the case of a parabolic dispersion relation and
"-independent � (Dmitriev, Mirlin, and Polyakov, 2004).
Apart from the interaction-induced effects discussed above,
finite nonlinear corrections may result either from the energy
dependence of � [which typically occurs on the scale of "F,
thus yielding an additional small factor T="F compared to
Eq. (117) (Dmitriev, Mirlin, and Polyakov, 2004)] or from a
weak nonparabolicity [which leads to the appearance of an
even larger energy scale of the order of the band gap in the
denominator (Koulakov and Raikh, 2003; Joas, Raikh, and
von Oppen, 2004)]. By contrast, the Landau quantization
provides the much smaller scale !c in the dependence on "
[Eqs. (78) and (83)], which explains the leading role of the
quantum mechanisms of MIRO.

Two recent works addressed classical effects close to the
boundary of a 2DEG. Chepelianskii and Shepelyansky (2009)
studied the influence of the microwave field on the phase
space portrait of electron dynamics near the sample edge. The
conclusion was that at !=!c ¼ nþ 1=4 the microwave ra-
diation tends to trap electrons in trajectories propagating near
the edge, while at!=!c ¼ n the particles are more efficiently
kicked out into the bulk. Mikhailov (2011) discussed an
effective electrostatic (ponderomotive) potential for electrons
(whose cyclotron dynamics is modeled using Newton’s equa-
tion with a friction term), created by a strong inhomogeneity
(Mikhailov and Savostianova, 2006) of the microwave field in
the near-contact region. Depending on the ratio !=!c, the
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ponderomotive force repels electrons from or attracts them to

the near-contact area. Since the above works did not develop

a systematic theoretical analysis of the contributions of the
boundary effects to the resistance of the 2D system, it is

difficult to compare these contributions to those predicted by

the bulk theory (see Sec. III.B.1). In any case, in the systems

in which MIRO are observed transport is dominated by the

bulk contribution, so that even a strong modification of edge

transport may modify the total current only weakly. Indeed,
experimentally, no dependence of the MIRO amplitude on the

sample dimension or geometry, characteristic of the edge

effects, has been reported so far. Moreover, edge transport

obviously plays no role in Corbino geometry. Furthermore,

recent observations of MIRO using various contactless tech-
niques (Bykov et al., 2010; Andreev et al., 2011) ruled out

the contact-related phenomena as a generic cause of MIRO.

C. Related microwave-induced phenomena

1. Microwave-induced photovoltaic effects

Recent experiments (Bykov, 2008a; Dorozhkin et al.,

2009), performed using an asymmetric contact configuration,

discovered that microwaves can induce oscillatory current and

voltage signals very similar to MIRO even in the absence of
external dc driving; see Fig. 16. These photovoltaic effects

were attributed (Dmitriev, Dorozhkin, and Mirlin, 2009)

to the violation of the Einstein relation between the conduc-

tivity and the diffusion coefficient, induced by the micro-

wave illumination. Consider an inhomogeneous system

characterized by the electrostatic potential �ðrÞ and the elec-
tron density neðrÞ, both smoothly varying in space. In equilib-

rium, the electron system is characterized by the constant

electrochemical potential �¼e�ðrÞþneðrÞ=�ðdarkÞ, while a

generic weak perturbation leads to the current jðdarkÞ ¼
��ðdarkÞr�� eDðdarkÞrne � �eDðdarkÞ�ðdarkÞr�. At 2�2T=
!c � 1, the dark compressibility �ðdarkÞ ¼ 2�0, so that the

Einstein relation in equilibrium reads �ðdarkÞ ¼ 2e2�0D
ðdarkÞ,

where DðdarkÞ ¼ h~�2ð"Þi"R2
c=2�; see Eq. (76).

Analysis of Eqs. (65)–(68), adapted to the inhomogeneous

conditions, shows (Dmitriev, Dorozhkin, and Mirlin, 2009)

that the direct current under microwave illumination,

j ¼ ���r�� 2e�0Dr�; (118)

necessarily contains an extra ‘‘anomalous term’’ ���r�

which violates the Einstein law. The term �� ¼ �in þ �dis
1

includes the inelastic contribution to MIRO (82) and the most
important part �dis

1 / R1 of the displacement contribution

(77). The other part �dis
3 / R3 enters the nonequilibrium

diffusion coefficient, D ¼ DðdarkÞ þ �dis
3 =2e2�0. The total

conductivity �, which defines the direct current j ¼ �E in
a homogeneous system, is given by � ¼ �� þ 2e2�0D.

The current (118) is nonzero even at r� ¼ 0, provided
there is a nonzero built-in electric field (created, e.g., by an
asymmetric contact configuration or by local gates), as ob-
served by Willett, Pfeiffer, and West (2004), Bykov (2008a,
2010), and Dorozhkin et al. (2009, 2011). The simplest
model, proposed by Dmitriev, Dorozhkin, and Mirlin
(2009), assumes that the built-in field Uc=L is provided by
two contacts with the difference of work functions Uc,
attached to a 2DEG stripe of width L. The I-V characteristic
for this setup reads

j ¼ ��Uc=Lþ �V=L; (119)

where the voltage between the contacts eV � �jx¼0 � �jx¼L.
As seen from Eq. (119), there is a finite oscillatory photo-
current j at zero bias voltage V¼0, as well as a finite photo-
voltage V (asymmetric with respect to V ¼ 0) at j ¼ 0, as
shown in Fig. 16. The corresponding field and density dis-
tributions are calculated by Dorozhkin, Dmitriev, and Mirlin
(2011).

2. Microwave-induced compressibility oscillations

The violation of the Einstein relation under microwave
illumination has a number of other important consequences.

In particular, the generalized compressibility �ð�Þ
q �

nq=ð�e�qÞ, defined as a static density response nqe
iqr to a

weak local perturbation �qe
iqr of the screened electrostatic

potential, strongly deviates from its equilibrium value

mV

A

GHz

GHz

f GHz

GHz

GHz

GHz

c

I p
ho

to V
photo

(b)(a)

FIG. 16. (a) Photovoltaic current and (b) voltage at a fixed radia-

tion frequency f ¼ 50, 112, and 168 GHz vs !c=! in the absence

of dc bias applied to the sample. The curves are offset for clarity.

Adapted from Dorozhkin et al., 2009.

ZRS

c

E E/

FIG. 17 (color online). Microwave-induced oscillations of the

compressibility as a function of !c=! at fixed !�q ¼ 2� and

ð�in=�ÞP j!c¼0 ¼ 1. In ZRS, the electric field inside domains E


fixes the compressibility at the level shown by the dashed line. Inset:

The dependence of the compressibility on the electric field E inside

the domain wall. Adapted from Vavilov et al., 2004.
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�ðdarkÞ ¼ 2�0. Assuming a stationary nonequilibrium state
with the homogeneous component of the current j ¼ 0, one
obtains from Eq. (118)

�ð�Þ
q!0 ¼ 2�0 þ ��=e

2D ¼ �=e2D: (120)

Note that, in contrast, the quantity �
ð�Þ
q � nq=�q is not

modified: �
ð�Þ
q ¼ 2�0. Using the generalized compressibility,

one can define the nonequlibrium screening length
(Dorozhkin, Dmitriev, and Mirlin, 2011)


 ¼ �D=2�� � �=2�e2�ð�Þ
q ; (121)

which replaces the equilibrium Thomas-Fermi screening
length 
0 ¼ �=2�e2�ðdarkÞ in all electrostatic problems.

At q�1 � lin � ðD�inÞ1=2 but qRc � 1, the local approxi-
mation for the current (118) is still justified. At the same time,
the effect of spatial variations of the electric field on the
distribution function becomes essential (Vavilov et al.,
2004). Summarizing the results of Vavilov et al. (2004)
and Dmitriev, Dorozhkin, and Mirlin (2009) for the leading
inelastic contribution, the generalized compressibility at
qRc � 1 is given by

�ð�Þ
q

2�0

¼ 1� �2F ð�in;P ; 
Þ 2þ q2l2in
1þ q2l2in

; (122)

meaning the amplitude of the oscillations in �ð�Þ
q reduces by a

factor of 2 at qlin � 1 compared to the limit q ! 0 [function
F is defined in Eq. (102)]. These results suggest that ZRS
corresponds to a plateau in the compressibility, as illustrated in
Fig. 17 for the case qlin�1. Therefore, local measurements of
the compressibility [e.g., using the techniques that utilize
single-electron transistors (Ilani et al., 2000, 2001)] may
provide a real space snapshot of the domain structure in
ZRS. Experimental work in this direction is currently
underway.

3. Effects of a parallel magnetic field

Yang et al. (2006) observed the effect of a parallel
magnetic field Bk on MIRO: the oscillations were suppressed

as Bk is increased and virtually disappeared at Bk � 0:5 T.
This observation came as a surprise because, according to the
theory presented above, MIRO is an orbital effect and should
not be essentially sensitive to the spin degree of freedom.
Moreover, the transverse motion of 2D electrons (that would
be affected by the parallel field) is frozen. In Mani (2005),
MIRO were indeed practically independent of Bk up to about

1 T, i.e., in the same range of Bk as in Yang et al. (2006). The

most likely explanation of the experimental data of Yang
et al. (2006) is the effect of Bk on the quantum scattering

rate 1=�q. Indeed, the parallel magnetic field does affect the

structure of the wave function across the 2DEG plane, which
can in general modify the impurity scattering rate. This is a
nonuniversal effect, as it depends on microscopic details of
the nanostructure in which the 2DEG is formed, as well as on
the character of imperfections. It is plausible that in the QW
used by Yang et al. (2006) this effect may be stronger than in
a typical single-interface structure. In fact, a closer inspection
of the experimental data of Yang et al. (2006) shows that the
dark resistivity (and thus the transport scattering rate 1=�)

was enhanced by the parallel field by a factor of about 3.
While in general the enhancement factors for 1=� and 1=�q
may be different (because 1=� and 1=�q may be controlled by

different components of disorder), this clearly shows that Bk
strongly enhanced disorder-induced scattering. The effects of
Bk were also studied by Hatke et al. (2011d) in the nonlinear

(with respect to the dc field) transport regime; see Sec. V.A. It
was demonstrated that Bk suppresses quantum oscillations via

the enhancement of 1=�q.

4. MIRO in multisubband structures

The microwave-induced effects in magnetotransport have
also been intensively studied in structures with several occu-
pied subbands, both experimentally (Bykov et al., 2008;
Wiedmann et al., 2008, 2010b, 2010c, 2011b; Wiedmann,
Mamani et al., 2009; Bykov, Mozulev, and Vitkalov, 2010;
Gusev et al., 2011) and theoretically (Raichev, 2008;
Wiedmann et al., 2008, 2010b; Wiedmann, Mamani et al.,
2009). Already the first experiments in a double QW in the
Hall-bar geometry (Wiedmann et al., 2008) as well as in
van der Pauw and Corbino geometries (Bykov et al., 2008)
demonstrated strong interference between MIRO and MISO
(the latter are discussed in Sec. II.C.4). Specifically, it was
observed that (i) MIRO are strongly enhanced (suppressed) in
the maxima (minima) of MISO and that (ii) MISO in the
minima of MIRO are inverted by sufficiently strong micro-
wave radiation. Similar effects were recently observed also in
triple QWs (Wiedmann, Mamani et al., 2009).

Wiedmann et al. (2008) performed a direct comparison of
the experimental results with theory that combines the in-
elastic mechanism of MIRO (Dmitriev et al., 2005) and the
intersubband scattering effects (Raichev, 2008). The theory
reproduced with good accuracy the complicated interference
pattern, as well as the nontrivial dependence of the combined
oscillations on the microwave power, frequency, and tem-
perature, observed in the experiment. In all cases (Wiedmann,

theory

ZRS

no mw

AS

S

W

T K
f GHz

B (T)

R
B

R
)0(

/)
(

FIG. 18 (color online). Measured resistance (solid lines) of a two-

subband electron system without (no mw) and under microwave

irradiation at f ¼ 143 GHz as a function of B. The inverted by

microwaves MISO peak at B ’ 0:27 T exhibits vanishing resistance.

Dashed line: theory. Inset: Symmetric (S) and antisymmetric (AS)

wave functions for the two lowest subbands in a wide QW. From

Wiedmann et al., 2010c.
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Mamani et al., 2009; Wiedmann et al., 2008, 2010b), the
comparison confirmed the T�2 dependence of MIRO ampli-
tude (Dmitriev et al., 2005) up to T � 4 K. Similar
T�2 dependence of the inelastic scattering time was extracted
from the exponential high-T damping of MISO (Mamani
et al., 2008). This damping, governed by the interaction-
induced broadening of LLs, has the same origin as the
high-T damping of MIRO discussed in Sec. III.B.1.e.

In the case of a balanced double QW, with negligible
interlayer correlations of the scattering potential and identical
scattering rates, the theoretical result of Raichev (2008) reads
[cf. Eqs. (58)–(60) and (104)]

jd
�DE

�1¼�2½1�F ð�in;P ;
Þ�
�
1þcos

2��

!c

�
; (123)

whereF is given by Eq. (102). This expression clearly shows
features (i) and (ii) mentioned above. Indeed, MISO are
inverted for F > 1. Further, if 2�2ðF � 1Þ exceeds unity,
the conductivity (and, therefore, resistivity) at the MISO
maximum becomes negative, which leads to the emergence
of ZRS (see Sec. IV). ZRS of this kind have been observed by
Wiedmann et al. (2010c); see Fig. 18.

5. MIRO in spatially modulated systems

The discussion in Secs. III.C.1 and III.C.2 shows that the
violation of the Einstein relation strongly modifies the trans-
port and thermodynamic properties of the microwave-
illuminated 2DEG already in the presence of a weak smooth
inhomogeneity. The opposite limit of a strong short-period
spatial modulation was studied by Robinson et al. (2004),
Dietel et al. (2005), Joas, Dietel, and von Oppen (2005),
Kennett et al. (2005), Dietel (2006), and Torres and Kunold
(2006).

Dietel et al. (2005), Joas, Dietel, and vonOppen (2005), and
Dietel (2006) examined the transport properties of the 2DEG
with a unidirectional static modulation [this system has been
intensively studied before in the context of Weiss oscillations
and transport anisotropies (Beenakker, 1989; Gerhardts,
Weiss, and Klitzing, 1989; Weiss et al., 1989; Zhang and
Gerhardts, 1990; Mirlin andWölfle, 1998)]. In the presence of
a periodic potential VðxÞ ¼ ~V cosQx the degeneracy of LLs is
lifted and LL bands appear with the dispersion relation

"nk ¼ !cðnþ 1=2Þ þ ~VJ0ðQRcÞ cosðQkl2BÞ; (124)

where the Bessel function J0 is an approximation that is valid
for high LLs. The DOS of the clean modulated system has
square-root singularities at the band edges. In the x direction,
the photoconductivity can be calculated using the golden-rule
approach formulated in Sec. III.B.1. The results for the dis-
placement and inelasticmechanisms are given byEqs. (77) and
(82) with the oscillating factors (78), (79), and (83) calculated
using the DOS corresponding to Eq. (124). The oscillating
factors acquire additional sign changes, related to singular
DOS, which can be detected in the experiment. In the perpen-
dicular direction, the linear (in the dc field) photoresponse
diverges for the displacement mechanism. The divergence is
cut off by inelastic processes. As a result, both the displace-
ment and inelastic contributions to the transverse photores-
ponse are proportional to �in and have a similar magnitude.

Robinson et al. (2004) and Kennett et al. (2005) studied the
magnetoresistivity in the presence of surface acoustic waves
(SAW). This perturbation combines (Levinson et al., 1998)
both the unidirectional spatialmodulationwith thewavevector
Q and the ac excitation at frequency ! ¼ sQ, where s is the
sound velocity. Apart from an ac analog of the Weiss oscil-
lations, which results in an anisotropic positiveMR oscillating
with bothQRc and!=!c, Robinson et al. (2004) and Kennett
et al. (2005) calculated the associated quantum contribution
for the inelastic mechanism of MIRO, which potentially gives
rise to SAW-induced ZRS. The quantum contribution is given
by Eqs. (104) and (102), where the microwave power P is
replaced by properly normalized SAW power absorbed by the
2DEG. Since the absorbed SAW power is proportional to the
dynamic conductivity of the classical system at the wave

vector Q, �ðcÞ
!Q, which oscillates with QRc, �xx (see Fig. 19)

shows additional QRc oscillations on top of relatively slow
!=!c oscillations identical to MIRO.

Yuan et al. (2006) investigated experimentally the micro-
wave photoresistance in the presence of a triangular antidot
superlattice. This study revealed the conventional MIRO with
a superimposed magnetoplasmon peak on top of a series of
narrow geometrical resonances positioned at 2Rc ¼ �na,
where a is the lattice period and �n are numbers of order
unity corresponding to various commensurate orbits.
Essentially no interference between MIRO and the commen-
surability oscillations was observed. Note, however, that a
strong interplay of the two types of oscillations was predicted
(Torres and Kunold, 2006) for a short-period superlattice with
a of the order of lB � Rc.

6. Microwave-induced B-periodic oscillations

Kukushkin et al. (2004) discovered a different kind of
photoresistance and photovoltage magneto-oscillations in the
region !<!c; see Fig. 20. These B-periodic oscillations
were attributed to the interference of edge magnetoplasmons
(EMP) emitted from different potential probes along the Hall-
bar edge. The condition for constructive interference of the
EMP injected from two contacts separated by the distance L
reads qL ¼ !L=v ¼ 2�N, where the EMP velocity v is
proportional to the Hall conductivity �xy / ns=B. This inter-

pretation explains the period �B / ns=!L found in the

/vF s

/vF s

c

xx
/

D

FIG. 19 (color online). Calculated resistivity magneto-oscillations

in the presence of a surface acoustic wave for !� ¼ 7 and vF=s ¼
63 (solid line) and !� ¼ 60 and vF=s ¼ 84 (dashed line), both

curves for !�q ¼ 6 and !�in ¼ 302. From Kennett et al., 2005.
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experiment. Kukushkin et al. (2004) established the fol-

lowing properties of the B-periodic oscillations: (i) the
amplitude of the resistivity oscillations shows a threshold
behavior as a function of P , (ii) the photovoltage scales
linearly with P in the limit of small P and saturates with
increasing P , (iii) the saturation power for the photovolt-
age is close to the threshold power for the resistivity
oscillations, (iv) the resistivity and photovoltage oscilla-
tions are phase shifted by �=4 with respect to each other,
and (v) the threshold P for the resistivity oscillations is an
order of magnitude lower for the microwave electric field

perpendicular to the Hall-bar edge (which supports the
EMP scenario). The phenomenon showed only a weak
dependence on T in the broad interval T � 1–10 K. The
photovoltage reduced only by 1 order of magnitude at T as
high as 70 K. Systematic theory of the B-periodic oscil-
lations remains to be developed.

Kukushkin et al. (2005) also reported a successful operation
of the microwave spectrometer based on the B-periodic pho-
tovoltaic oscillations. The B-tunable selective detection was
demonstrated in the frequency range 20< f < 150 GHz and
for temperatures up toT � 80 K (with a foreseen possibility of
extension to the THz frequency range). Implementation of
plasmon resonances in such a device allows one to overcome

the temperature limitation T < ! of the conventional selective
detectors based on electronic transitions. The major advantage
of magnetoplasmons is that they can be exploited at arbitrary
!� provided!c� � 1, while the operation of the conventional
plasmonic B ¼ 0 detectors in field-effect transistors is limited
to the region !� > 1.

In a recent experiment (Stone et al., 2007), where
MIRO, ZRS, and B-periodic oscillations were observed
simultaneously, the period �B of the B-periodic oscillations
was reported to scale as �B / ns=! and be independent of
the distance L between the contacts. This result is in contra-
diction to that by Kukushkin et al. (2004): the controversy
has remained unresolved. Several other experiments, in par-
ticular, by Yuan et al. (2006) and Dorozhkin, Bykov et al.

(2007), reported no interference of the magnetoplasmon ef-
fects and MIRO with each other. This agrees with the calcu-
lation by Volkov and Takhtamirov (2007), according to which
the magnetoplasmons can strongly affect MIRO only in
the limit of well-separated LLs, which is out of the range
explored in the above experiments.

IV. RADIATION-INDUCED ZERO-RESISTANCE STATES

A. ZRS: Experimental discovery and basic properties

Zero resistance is a rare occurrence in condensed-matter
physics, usually signaling a novel state of matter, such as
superconductivity and QH effects (von Klitzing, Dorda, and
Pepper, 1980; Tsui, Stormer, and Gossard, 1982); see
Sec. IV.B.2 for further examples. Experiments by Mani
et al. (2002) and by Zudov et al. (2003) on microwave-
irradiated very-high mobility (� * 107 cm2=V s) 2DEG re-
vealed that the lower-order minima of MIRO (see Sec. III.A)
can extend all the way to zero forming the ZRS; see Fig. 21.
With appropriate microwave intensity, temperature, and sam-
ple quality, ZRS can span magnetic-field ranges correspond-
ing to several tens in filling factors. However, unlike the QH
effect, vanishing of diagonal resistance in microwave-
irradiated 2DEG is not accompanied by Hall quantization.

Over the past decade ZRS were observed over a wide
frequency range, from as low as 9 GHz (Willett, Pfeiffer,
and West, 2004) to as high as 254 GHz (Smet et al., 2005).
Experiments in ultrahigh mobility (� * 2� 107 cm2=V s)
2DEG also revealed ZRS stemming from the minima
of fractional MIRO (see Sec. VI.A.1), namely, near
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FIG. 20 (color online). B-periodic magnetoresistance (solid line)

and photovoltage (dashed line) oscillations at f ¼ 40 GHz mea-

sured in a Hall bar with potential probes separated by 0.5 mm. From

Kukushkin et al., 2004.
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FIG. 21 (color online). Longitudinal [R!ðBÞ, left axis] and Hall

[RHðBÞ, right axis] magnetoresistance under microwave irradiation.

Longitudinal magnetoresistance RðBÞ without irradiation is also

shown. Parameters: (a) microwave frequency f ¼ 103:5 GHz, tem-

perature T ¼ 1:3 K, electron density ne ’ 3� 1011 cm�2, and

mobility � ’ 1:5� 107 cm2=V s; (b) f ¼ 57 GHz, T ’ 1:0 K, ne ’
3:5� 1011 cm�2, and � ’ 2:5� 107 cm2=V s. (a) Adapted from

Mani et al., 2002. (b) From Zudov et al., 2003.
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�ac ¼ 3
2 ,

1
2 , and

2
3 (Zudov et al., 2006b), as well as a ZRS

presumably appearing due to a frequency mixing under bi-
chromatic microwave irradiation (Zudov et al., 2006b).
Recently, ZRS were also observed to emerge from the
MISO maxima in double QWs (Wiedmann et al., 2010c);
see Fig. 18. Shortly after the discovery of ZRS, experiments
by Yang et al. (2003) in Corbino-disk-shaped 2DEG dem-
onstrated the existence of corresponding zero-conductance
states (ZCS) (see Fig. 22). Later studies by Bykov et al.
(2010) reported observation of ZCS in capacitively coupled
2DEG. As discussed in Sec. VII.B.1, ZCS were also realized
in a nondegenerate 2D electron system on a liquid 3He
surface (Konstantinov and Kono, 2010).

The temperature dependence of the ZRS has been exam-
ined by several groups (Mani et al., 2002; Zudov et al.,
2003; Willett, Pfeiffer, and West, 2004). All studies found
that ZRS disappear with increasing temperature (see Fig. 23),
transforming into MIRO minima where the resistance ap-
proximately followed the Arrhenius law �! / expð��=TÞ.
The ‘‘energy gaps’’ � / B extracted in this way exceed
relevant T �! by an order of magnitude.

As discussed in Sec. IV.B, a homogeneous state with
negative resistivity is electrically unstable and is expected
to break into domains with local current density at which the
nonlinear resistance is zero (Andreev, Aleiner, and Millis,

2003; Auerbach et al., 2005; Finkler and Halperin, 2009).
To date direct confirmation of absolute negative resistivity
and the domain model has been limited. First experimental
support of the domain picture was provided by Willett,
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FIG. 23 (color online). Temperature evolution of ZRS and MIRO

obtained under f ¼ 85 GHz illumination on the same sample as in

Fig. 21(a). Adapted from Mani et al., 2002.
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FIG. 24 (color online). Magnetoresistances (a) R1ðBÞ at f1 ¼
31 GHz, (b) R2ðBÞ at f2 ¼ 47 GHz, and (c) R1þ2 at both f1 and

f2. Maximum-maximum, minimum-minimum, and maximum-

minimum overlaps are marked by " , # , and l , respectively. The
upper boundary of the shaded area represents the average of

monochromatic resistances R1 and R2. Dotted lines in (b) and (c)

represent reconstructed negative resistance. These data were ob-

tained on a 2DEG (� 5 mm� 5 mm) with density ne ’
3:6� 1011 cm�2 and mobility � ’ 2:0� 107 cm2=V s. Adapted

from Zudov et al., 2006a.
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FIG. 22 (color online). Magnetoconductance GxxðBÞ under micro-

wave irradiation of frequency f ¼ 57 GHz. These data were ob-

tained at T ¼ 0:65 K on a Corbino-shaped 2DEG with inner (outer)

diameter 0.5 (3.0) mm, density ne ’ 3:55� 1011 cm�2, and mobil-

ity � ’ 1:28� 107 cm2=V s. Adapted from Yang et al., 2003.
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FIG. 25 (color online). Photovoltages (for B ¼ 95 mT, T ¼
0:5 K, and f ¼ 48:1 GHz) across different pairs of adjacent con-

tacts shown in the inset (middle column). The voltages at t > 0 (no

radiation) correspond to the zero reference level. Closed loops in the

insets indicate the Hall current flow between the contacts in two

different configurations. From Dorozhkin et al., 2011.
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Pfeiffer, andWest (2004)who observed largevoltages between
an internal and an external contact to 2DEG in the ZRS regime;
see Sec. IV.C. Experiments by Zudov et al. (2006a) employing
radiation of two distinct frequencies found that, away from
ZRS, the bichromatic photoresistance can be approximated by
a simple superposition of monochromatic photoresistances;
e.g., ��!1!2

’�1��!1
þ�2��!2

. Theoretically the bichro-

matic photoresponse was addressed by Lei (2006) and Lei
and Liu (2006a). Assuming that such a superposition also
holds in the regime where one of the frequencies gives rise
to ZRS, e.g., underlying microscopic resistance is negative
�þ ��!1

< 0, but �þ ��!1!2
> 0, one can reconstruct

negative resistance which is otherwise masked by instability
(see Fig. 24). In other words, the experiment uses one of the
frequencies to probe the absolute negative resistance corre-
sponding to a ZRS induced by another frequency.

Dorozhkin et al. (2011) performed time-resolved mea-
surements of Hall voltages between internal probes and
observed random telegraph signals in the ZRS regime.
These signals were interpreted in terms of spontaneous
switching between two nearly degenerate configurations of
spontaneously formed domains (see Fig. 25).

B. Instabilities of a nonequilibrium 2D electron

gas and the emergence of domains in a strong

magnetic field: Phenomenological approach

As discussed in Sec. III, for a sufficiently strong radiation
power (and other parameters in the appropriate range), the
linear resistivity of themicrowave-illuminated 2DEG becomes
negative. Such a state is unstable, which results in the formation
of a spontaneous current and voltage breaking rotational sym-
metry (Andreev, Aleiner, and Millis, 2003); the corresponding
theory is presented in Sec. IV.B.1. In Sec. IV.B.2 we review
some previously obtained results on related systems.

1. ZRS effective theory: Spontaneous symmetry breaking

The starting point of the theory of Andreev, Aleiner, and
Millis (2003) is a model with a constant Hall resistivity �H

and a nonlinear current dependence of the dissipative com-
ponent Ed of the electric field:

E ¼ �Hj� ẑþ ðj=jjjÞEdðjjjÞ: (125)

It is assumed that the function EdðjÞ has a negative derivative
at j ¼ 0 and a zero at j ¼ jc. The theory is phenomenologi-
cal, i.e., it assumes that there is a certain microscopic mecha-
nism that provides such current-voltage characteristics.
A distinct feature of the considered strong magnetic-field
regime is a duality between current and voltage.
Specifically, Eq. (125) is appropriate in the Hall-bar geometry,
when only one (say, jx) component of the current is present;
the two terms in Eq. (125) then give the Hall (Ey) and the

longitudinal (Ex) fields, respectively. In contrast, for the
Corbino-disk geometry one field component is zero (say,
Ex ¼ 0) and one is interested in jðEyÞ. Since the Hall compo-

nent is the dominant one in the conductivity tensor, the
dependence of the field dependence of the dissipative compo-
nent jdðEÞ is obtained from EdðjÞ in Eq. (125) by exchanging
current and voltage (Bergeret, Huckestein, and Volkov, 2003),

j ¼ �H ẑ� Eþ ðE=jEjÞjdðjEjÞ; (126)

with �H ’ ð�HÞ�1 and jdðEÞ ¼ �HEdð�HEÞ. In other words,
the dissipative current-voltage characteristics are S shaped in
the first case and N shaped in the second case; see Fig. 26.

Equation (125) is supplemented by the continuity equation

@ne=@tþr � j ¼ 0: (127)

Further,

E ¼ �r�ðrÞ; (128)

where �ðrÞ is the electrostatic potential; its variations are
related to those of density according to

��ðrÞ ¼
Z

d2r0Uðr; r0Þ�neðr0Þ; (129)

where Uðr; r0Þ is the Coulomb interaction (that may be
screened in the presence of an external gate). To explore
the stability of the system, one considers a small deviation
in density �neðr; tÞ. Using Eqs. (126)–(129) and linearizing in
�ne, one gets

@�ne=@t ¼ r�̂drÛ�ne; (130)

where �̂d is the dissipative differential conductivity ð�dÞ��¼
@ðjdÞ�=@E� satisfying ð�dÞ�� ¼ ð�dÞ��. Note that the Hall

component of the conductivity dropped out of Eq. (130)
because of its antisymmetric character. The stability requires
that the real part of all eigenvalues of the operator on the right-
hand side (rhs) of Eq. (130) is nonpositive. Transforming it into
the momentum space and using UðqÞ> 0, the stability condi-
tion reduces to the requirement that eigenvalues of �̂d are
positive, which yields

djd=dE � 0; (131)

jd=E � 0: (132)

In other words, the stability requires that both absolute and
differential conductivity are non-negative. As is clear from the
above derivation, Eqs. (131) and (132) represent the stability to
longitudinal and transverse fluctuations of the electric field
with respect to its direction in the state under consideration.

Therefore, when the linear-response conductivity is nega-
tive the system is unstable near j ¼ E ¼ 0: fluctuations will
grow until the stability point with current jc and electric field
Ec ¼ �Hjc is reached; see Fig. 26. This implies that the
system will break into domains with spontaneous currents
and fields of these magnitudes. The simplest possible domain
structure consists of two domains as shown in Fig. 27 for the
case of Hall-bar and Corbino-disk setups (see Sec. IV.D for a

jc

jc

j

Ed EEcEc

jd(b)(a)

FIG. 26 (color online). (a) S-shaped [Hall-bar setup, Eq. (125)]

and (b) N-shaped [Corbino setup, Eq. (126)] current-voltage char-

acteristics.
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discussion of more complicated domain structures). The
values of spontaneous current and field correspond to dis-

sipative current jd ¼ 0 (i.e., zero absolute dissipative con-
ductivity) in the Corbino-disk setup and to dissipative field
Ed ¼ 0 (and thus zero absolute dissipative resistivity) in the

Hall-bar geometry. When a finite current (for the Hall bar) or
voltage (Corbino disk) is applied, the domain wall shifts to
accommodate it. The system remains in the ZRS (or ZCS

in the Corbino geometry) until the applied current (field)
exceeds jc (respectively, Ec).

A further step forward in the study of the ZRS was done by
Bergeret, Huckestein, and Volkov (2003) and Volkov and

Pavlovskii (2004) who included on the rhs of Eq. (126) the
diffusive term �eD̂rne and assumed that, contrary to the
conductivity, the diffusion tensor is not affected by microwave

radiation. [This assumption was later justified by Dmitriev,
Dorozhkin, andMirlin (2009).] This introduces in the problem
the nonequilibrium screening length that governs the width of

domain walls; see Sec. III.C.2. Volkov and Pavlovskii (2004)
assumed, however, a 3D relation between the potential and the
density [i.e., they assumed VðqÞ � 1=q2 momentum depen-

dence of the Coulomb interaction rather than VðqÞ � 1=q
appropriate for 2D geometry, see Dorozhkin, Dmitriev, and
Mirlin (2011)] and, as a consequence, obtained the 3D screen-

ing length 
3D ¼ ð�D=4�j�ð3DÞ
d jÞ1=2. The resulting equations

are used to find the spatial profile of the domain wall.
The central result of Volkov and Pavlovskii (2004) is the
residual resistivity of a finite sample in the ZRS phase (with a

single domainwall assumed), which is found to be negative and
exponentially small: �res / � expð�L=
3DÞ. Here L is the
sample size in the direction transverse to the domain wall.

Dorozhkin, Dmitriev, and Mirlin (2011) established the

electrical stability condition in a finite sample with realistic
2D Coulomb interaction. Instead of conditions (131) and
(132) (which in the linear regime read �d > 0), one gets

�d >��D=2L, or 
�1 >�=L in terms of the 2D nonequi-
librium screening length (121). In the diffusion-stabilized
regime of negative conductivity, ��D=2L < �d < 0, the

theory of Dorozhkin, Dmitriev, and Mirlin (2011) predicts
the emergence of two regions with opposite directions of
electric field (this requires broken inversion symmetry, for

instance, due to asymmetric contact configuration). The am-
plitude of these fields increases when the system approaches

the instability threshold. This effect is a precursor of the
domain structure in the regime �d <��D=2L.

2. Earlier results on related problems

The instability of a semiconductor with dc negative con-
ductivity was first pointed out by Zakharov (1960).
Subsequently many performed detailed analyses of such in-
stabilities in various systems with negative differential or
absolute conductivity. The corresponding literature is exten-
sive, and we restrict ourselves to quoting several early articles
(Ridley, 1963; Bonch-Bruevich and Kogan, 1965; Elesin and
Manykin, 1967; Volkov and Kogan, 1967), a review by
Volkov and Kogan (1969), and the books by Bonch-
Bruevich, Zvyagin, and Mironov (1975), Pozhela (1981),
and Schöll (2001). The interested reader can find an overview
of various mechanisms of emergence of negative conductivity
(characterized by N-shaped or S-shaped current-voltage char-
acteristics), derivation of stability conditions, and an analysis
of domain formation as a result of instabilities. In this context,
particularly well known is the Gunn effect (Gunn, 1963): an
N-type current-voltage characteristic leads to an instability
resulting in the formation of moving domains and in micro-
wave generation. The corresponding semiconductor device
(Gunn diode) has found various application in high-frequency
electronics.

The absolute negative conductivity was observed by Banis,
Parshelyunas, and Pozhela (1972) [see also Sec. VI.3 in
Pozhela (1981)]. This was achieved by exposing GaAs
samples exhibiting a negative differential conductance to a
microwave radiation. The explanation given by Banis,
Parshelyunas, and Pozhela (1972) and Pozhela (1981) as-
sumes that the microwave field can be treated adiabatically
and simply leads to an (oscillating in time) shift of the
operation point of the device. After the time averaging of
the corresponding differential conductivity this leads to a
negative dc conductivity. It seems, however, that this expla-
nation (that would be perfectly correct for a low-frequency
field) does not fully catch the physics of the experiment.
Indeed, the frequency of the microwave field (of the order
of 10 GHz) does not seem to be small compared to inverse
characteristic times in the device, so that the adiabaticity
assumption is not met. Furthermore, they report that, in the
absence of an external circuit, a large spontaneous dc voltage
developed on the sample (whose polarity could be stabilized
by a small symmetry-breaking perturbation). The amplitude
of the voltage was determined by the zero of the current-
voltage characteristics IðVÞ ¼ 0. This spontaneous formation
of dc field domains resulting from the microwave-induced
absolute negative conductivity indicates certain analogy be-
tween the experiment of Banis, Parshelyunas, and Pozhela
(1972) and the systems constituting the subject of this review.

It was experimentally discovered (Liao, Glass, and
Humphrey, 1980; Basun, Kaplyanskii, and Feofilov, 1983)
that intense laser illumination generates strong electric fields
(detected via the splitting of luminescence lines) in ruby
crystals. A phenomenological theory of this phenomenon
was developed by Dyakonov (1984) and Dyakonov and
Furman (1984). It is based on an assumption that the absolute
conductivity in ruby becomes negative for a sufficiently
strong illumination power. The resulting instability leads to

(b)(a)

Ec

Ec
Ec

Ec
jc

jc

L2

L1

L2

L1jc
jc

FIG. 27 (color online). Simplest domain structures for (a) Hall-bar

and (b) Corbino-disk geometries. The current density jc and the

electric field Ec ¼ �Hjc in the domains are fixed by the condition

(a) Ed ¼ 0 or (b) jd ¼ 0; see Fig. 26. Corbino-disk (Hall-bar)

system adapts to an applied bias V ¼ EcðL1 � L2Þ [applied current

I ¼ jcðL1 � L2Þ] remaining in the ZCS (ZRS). Adapted from

Andreev, Aleiner, and Millis, 2003 and Vavilov and Aleiner, 2004.

Dmitriev et al.: Nonequilibrium phenomena in high Landau levels 1739

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



the formation of electric-field domains, thus explaining the

experimental observations. There is a clear analogy between

the theory of ZRS as resulting from regions of negative

resistivity in MIRO and the theory of ruby domains. There

are, however, also essential differences. First, is the presence

of a strong magnetic field in the MIRO problem. Second,

contrary to an isotropic 2DEG, ruby is anisotropic: the elec-

tric field and the current are directed along the C3 axis. This

modifies the analysis of the stability (only longitudinal fluc-

tuations need to be considered) and renders the part of the

current-voltage characteristics with I=V < 0 but dI=dV > 0
stable. To our knowledge, no microscopic theory of negative

conductivity in ruby has been developed.
The impact of a strong transverse magnetic field on this

class of phenomena was also appreciated approximately half

a century ago. Kazarinov and Skobov (1963) showed that a

quantizing transverse magnetic field may lead under nonequi-

librium conditions to strong nonlinearities in current-voltage

characteristics, in particular, to a negative differential resist-

ance. The fact that in the case of large Hall angle (!c� � 1)
current-voltage charactertics have a dual shape in the Hall-bar

(jy ¼ 0) and Corbino-disk (Ey ¼ 0) geometries (in particular,

an S-shaped characteristic of the Hall-bar device gives rise to

an N-shaped characteristic for the Corbino disk) was pointed

out by Bass (1965) and Bogomolov et al. (1967). Kogan

(1968) studied an instability in a system with negative dif-

ferential resistance at intermediate Hall angles (!c�� 1).
Elesin (1969) and Gladun and Ryzhii (1970) and particularly

Ryzhii (1970) and Ryzhii, Suris, and Shchamkhalova (1986)

discussed the photoconductivity of a 2D gas in a quantizing

magnetic field and strong electric field (see Sec. III.B) and

concluded that it is possible to reach an absolute negative

conductivity in this class of systems.
Another broad class of semiconductor systems in which

similar phenomena have been intensively studied are single

and multiple QW heterostructures. In particular, much work

was devoted to resonant transmission via double-barrier

structures, where a negative differential resistance was found

(Tsu and Esaki, 1973; Sollner et al., 1983). More recently, it

was predicted that under laser illumination the system may

show absolute negative resistance (Dakhnovskii and Metiu,

1995). Further, the absolute negative conductivity was theo-

retically predicted (Pavlovich and Epshtein, 1976; Ignatov

et al., 1995) and experimentally observed (Keay et al., 1995)

in semiconductor superlattices under THz radiation; another

theoretical work considers a superlattice in a magnetic field

(Cannon et al., 2000). The theoretical predictions include the

generation of spontaneous voltages and currents resulting

from instabilities. A negative absolute conductivity was

also found in a related model (Hartmann, Grifoni, and

Hänggi, 1997) of a particle in a periodic lattice driven by

an ac field and coupled to a dissipative bath.
Absolute negative conductance under strongly nonequilib-

rium conditions emerges also in other types of systems. In

particular, Aronov and Spivak (1975) predicted this effect to

happen in a Josephson junction of two superconductors with

different gaps, one of which is subjected to light illumination.

This prediction was experimentally confirmed by Gershenzon

and Falei (1986). In view of the spatially local character of the

junction, the negative conductance does not lead in this case

to an instability (contrary to extended systems that tend to
break into domains in such situations). Finally, an absolutely
negative mobility was obtained in a purely classical model of
a Brownian particle subjected to nonequilibrium noise
(Eichhorn, Reimann, and Hänggi, 2002).

It is clear from the above discussion thatmany of the aspects
of the ZRS problem have appeared earlier in related problems.
On the other hand, to our knowledge, the combination of the
key features of the ZRS problem, namely, (i) a strongmagnetic
field (large Hall angle), (ii) instability induced by an absolute
negative dissipative conductivity, and (iii) 2D isotropy of the
problem, has not appeared in any other context.

C. Microscopic theory: Determination of currents

and fields in domains

We combine now the phenomenological ZRS theory of
Sec. IV.B.1 with microscopic calculations of photoresistivity.
As discussed in Sec. III, the linear resistivity in the presence of
microwaves may become negative around its minima.
Specifically, consider the inelasticmechanism that is dominant
for sufficiently low temperatures and assume first the regime of
overlapping LLs. According to Sec. III.B.2, the linear resis-
tivity is negative when the dimensionless microwave power
satisfies P > P 
 > 0, with the threshold value given by
(Dmitriev, Mirlin, and Polyakov, 2004; Dmitriev et al., 2005)

P 
 ¼ �

�in

�
4�2 �!

!c

sin
2�!

!c

� sin2
�!

!c

��1
; (133)

see Fig. 14. The spontaneous field in the ZRS domains is found
to be

Ec ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=P 
 � 1

p
; E0 ¼ ð!c=�eRcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2�in

q
:

(134)

For the marked MIRO minima in Fig. 14, the corresponding
values E
=E0 are shown by arrows in the inset.

In the regime of separated LLs with width 2� ¼
2ð2!c=��qÞ1=2 and assuming a small-angle impurity scatter-

ing, the threshold power is

P 
 � �2�=!!c�in; (135)

and the spontaneous field is of the order of

Ec � ð�=�qÞ1=2!c=eRc: (136)

Within the displacement mechanism (relevant for higher
temperatures) and for a small-angle impurity scattering the
corresponding results were obtained by Vavilov and Aleiner
(2004). In this case the characteristic value of the spontaneous
field is given by Eq. (136) in limits of both overlapping and
separated LLs.

We point out that the form ð�=�qÞ1=2 of the factor in front

of !c=eRc in Eq. (136) depends on the character of disorder.
For a model of mixed disorder (93) and for overlapping LLs
this factor is reduced and becomes of order unity when the
weight of the short-range component becomes sufficiently
large; see Khodas and Vavilov (2008) and Dmitriev et al.
(2009) and Sec. III.B. A related result was obtained by
Auerbach and Pai (2007), who studied the displacement
mechanism for mixed disorder (with a short-range component
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determining the transport rate) in the regime of separated LLs
and found E


dc � �=eRc (if one sets the correlation length of

short-range disorder to be �k�1
F ). To our knowledge, the

inelastic mechanism has not been studied for the case of
separated LLs and mixed disorder.

These predictions can be confronted with the experiment.
Focusing on the inelastic mechanism and on the regime of
overlapping LLs and assuming characteristic values of pa-
rameters !=2� ’ 50 GHz, T � 1 K, and ��1

in � 10 mK,
��1
q � 0:3 K, ��1 ¼ 10 mK, and vF ¼ 2� 107 cm=s, one

gets (Dmitriev, Mirlin, and Polyakov, 2004; Dmitriev
et al., 2005) the threshold microwave intensity required for
the emergence of the ZRS P
 & 1 mW=cm2, in conformity
with the experiments. Further, for these parameter values and
for P � P 
 ’ P 
 (i.e., for the microwave power exceeding
its threshold by roughly a factor of 2) the estimated dc electric
field in the domains, Eq. (134), is found to be Ec � 1 V=cm.
In the experiment of Willett, Pfeiffer, and West (2004) the
voltage drop between an internal and an external contact
(separated by 200 �m) generated by the radiation in the
absence of the drive current was of the order of 5 mV for
!c=2� ’ 20 GHz. Assuming the simplest domain geometry
(i.e., no additional domain walls between the contacts), this
yields Ec � 0:25 V=cm. On the other hand, the above theo-
retical estimate yields Ec � 0:15V=cm [taking into account
the !2

c dependence of Ec following from Eq. (134)], so that
the experimental value is somewhat larger. In a recent ex-
periment (Dorozhkin et al., 2011) spontaneous fields of the
order of Ec � 0:15 V=cm were reported for !c=2�’50GHz,
which is in this case several times smaller than the theoretical
estimate. In general, the agreement between theory and ex-
periment appears to be reasonable if one takes into account
some deviations of parameters (relaxation rates, ratio of the
microwave power to its threshold value) from those used in
the theoretical estimate.

D. Effective theories of the phase transition into

ZRS and of ZRS dynamics

The transition into ZRS belongs to the class of dynamical
phase transitions (Hohenberg and Halperin, 1977). These
phenomena are in general governed by nonlinear differential
equations (of hydrodynamic type) with stochastic (noise)
terms and encompass spontaneous pattern formation in a
variety of systems driven away from equilibrium (Cross and
Hohenberg, 1993). Contrary to conventional (thermody-
namic) phase transitions, such phenomena in general are
not characterized by a free energy functional. This invalid-
ates, in particular, the Mermin-Wagner theorem, opening the
way to spontaneous breaking of a continuous symmetry in 2D
systems, which is of direct relevance to the ZRS problem.

Auerbach et al. (2005) and Finkler et al. (2006) performed
an analysis of possible domain patterns in the ZRS phase. In
the spirit of Sec. IV.B, they started with a model with a
constant Hall conductivity �H and a nonlinear field depen-
dence of the dissipative current jd, Eqs. (126)–(129). Their
crucial observation is that for this problem one can define a
Lyapunov functional

G½��¼
Z
d2rgðEðrÞÞ; gðEÞ¼

Z E

0
dE0jdðE0Þ; (137)

with the key property dG=dt 
 0. This implies that minima
of the Lyapunov functional are stable steady states. To ex-
plore the ZRS phase (negative linear dissipative conductiv-
ity), Auerbach et al. (2005) and Finkler et al. (2006)
expanded gðEÞ near the zero Ec of the current-voltage char-
acteristics jdðEÞ:

gðEÞ ¼ gðEcÞ þ �c

2
ðE� EcÞ2 þ �jr � Ej2: (138)

The last term here [penalizing large field gradients and
determining the width of domain walls, ldw � ð�=�cÞ1=2] is
added on phenomenological grounds. On the microscopic
level, a finite domain wall width emerges when one takes
into account the diffusive contribution �eD̂rne to the cur-
rent j. However, the local form of the corresponding term in
Eq. (138) corresponds to the relation between E and ne
characteristic for 3D rather than for 2D systems; see the
discussion in Sec. IV.B.1. It remains to be seen to what extent
this may affect the results.

Minimization of the Lyapunov functional yields the simple
domain structures in the Corbino and Hall-bar geometries;
see Figs. 27 and 28(a). Introducing further a weak and smooth
disorder field EdisðrÞ, with jEdisj � Ec, Auerbach et al.
(2005) and Finkler et al. (2006) generalized Eq. (138)
[denoted below as g0ðEÞ] to

gðE;EdisÞ ¼ g0ðEÞ � �1ðEÞEEdis þOðE2
disÞ: (139)

The term proportional to Edis induces a correction to the
stability condition, with the result that the current density at
a domain wall is j ¼ ��1ðEcÞEdis þOðE2

disÞ. For a short

correlation length of the disorder a comparison of the domain
wall and bulk contribution to the Lyapunov functional in the
spirit of Imry and Ma (1975) shows (Auerbach et al., 2005)
that no new domains are formed. On the other hand, disorder
with a sufficiently large correlation length 	dis favors the
breakdown of the system in multiple domains with a size
set by 	dis. Further, Auerbach et al. (2005) and Finkler et al.
(2006) used this approach to estimate the effect of the poten-
tial �disðrÞ (regular or random) that induces multiple
domain walls on the ZRS conductivity. They obtained
� ¼ C�1ðhjEdisjiÞ=Ec, with a numerical prefactor C� 1
depending on the specific form (or statistics) of the potential.

Finkler and Halperin (2009) found that even in a homoge-
neous system creating additional domains may be favorable.
They pointed out that the Lyapunov ‘‘energy’’ �dw of the
domain wall depends on the angle � between the wall and

the field in the domains. If �dwð�=4Þ=�dwð�=2Þ 
 1=2
ffiffiffi
2

p
,

additional domains as shown in Fig. 28(b) will emerge. The

FIG. 28 (color online). (a) Proposed domain structure near metal-

lic contacts (shaded regions) in a rectangular sample; (b) possible

structure with an additional pair of domains. Arrows show the

direction of the electric field Ec; see also Fig. 27. Adapted from

Finkler et al., 2006 and Finkler and Halperin, 2009.
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dependence �dwð�Þ is determined by the precise form of the
Lyapunov function gðEÞ. Remarkably, for the simplest choice
of this function Finkler and Halperin (2009) obtain for the

ratio �dwð�=4Þ=�dwð�=2Þ exactly the value 1=2
ffiffiffi
2

p
, which

implies degeneracy between the states with and without addi-
tional domains with �=4 domain walls. They conjecture that
a more realistic Lyapunov function might yield a smaller
value of this ratio, thus favoring additional domains.
Finkler and Halperin (2009) consider further the effect of
spatial variation of the Hall conductivity �H and show that in
this situation nonstationary (periodic) solutions may emerge.
The simplest example is the Corbino geometry with Hall
conductivity changing linearly along the y axis (radial coor-
dinate), d�H=dy ¼ �. Then r � jH ¼ �Ex. Combining this
with jd ¼ 0 (characteristic for a homogeneous system away
from domain walls), we get @n=@t ¼ �r � j ¼ ��ExðrÞ. In
the simplest domain geometry (two domains with electric
field in the radial direction, Fig. 27) Ex ¼ 0 and we do not get
any time dependence. However, in the presence of additional
�=4 domains, Fig. 28(b), the field there is along the x axis,
which implies that such domains should move. Finkler and
Halperin (2009) also performed a numerical modeling of the
problem in the torus geometry and with a spatially varying
Hall conductivity and indeed found nonstationary, time-
periodic solutions, in a certain range of the parameter �
controlling a typical gradient of �H .

What is the character of the transition into the ZRS phase?
For equilibrium phase transitions the answer to such a ques-
tion is usually based on the Landau (mean-field) theory of
phase transitions complemented by a renormalization group
(RG) analysis. A counterpart of this approach applicable to
dynamical critical phenomena (including those in strongly
nonequilibrium systems) is known as the dynamical renor-
malization group (Forster, Nelson, and Stephen, 1977;
Hohenberg and Halperin, 1977). A powerful framework for
its technical implementation is the Martin-Siggia-Rose for-
malism (Martin, Siggia, and Rose, 1973; De Dominicis,
1976; Janssen, 1976; De Dominicis and Peliti, 1978) closely
related to the Keldysh formalism. This approach allows one
to cast the evolution governed by a stochastic nonlinear
equation into a Lagrangian form convenient for the imple-
mentation of the RG procedure.

Alicea et al. (2005) made a first step in application of these
ideas to the problem of ZRS transition. They started with
formulating a general equation describing the long-scale,
long-time dynamics of a microwave-driven system:

@tjþ!�1
0 @2t j

¼��r�þ!cẑ�j�rj�ujjj2jþ�1r2j

þ�2rðr�jÞ��3r4j��4r3ðr�jÞ
��1ðj�rÞj��2rðj2Þ��3ðr�jÞj
þ�1�r�þ�2�jþ�3�ẑ�jþ�þ���: (140)

Here the � and !c terms represent the electric-field and
Lorentz forces, the r and u terms describe the nonlinear
resistivity, the term with @2t (on the left-hand side) originates
from the frequency dispersion of the resistivity, the �i

terms characterize its momentum dispersion, the �i terms
are convective nonlinear contributions, and the �i terms

account for the density dependence of transport coefficients.
Finally, 
 is the Langevin noise source with a correlation
function

h
�ðr; tÞ
�ðr0; t0Þi ¼ 2g����ðr� r0Þ�ðt� t0Þ: (141)

Equation (140) is supplemented by the continuity equation
(127) and the relation (129) between the potential and the
density. Alicea et al. (2005) postulate Eq. (140) on symmetry
grounds: it includes leading terms of the expansion in gra-
dients, time derivative, and amplitudes of the current and the
potential. It should be pointed out that the assumption (Alicea
et al., 2005) of local relation between j and� appears to be an
oversimplification, since there are contributions to @tjðr; tÞ
that depend in a local way on the density neðrÞ and since
Eq. (129) linking the density to the potential is nonlocal. It
remains to be seen how sensitive is the result to this
assumption.

Equation (140) describes a transition from a conventional
resistive state at r > 0 to the ZRS at r < 0. Within the
transition picture of Sec. IV.B, the transition is continuous
(second order), and the spontaneous current in the symmetry-

broken phase is j ¼ ffiffiffiffiffiffiffiffiffiffiffijrj=up
, i.e., j� jrj� with the critical

index � ¼ 1=2. Clearly, this is just the Landau mean-field
description of the transition, and one needs to find out how
fluctuations affect these results. This is what Alicea et al.
(2005) do; their main findings are as follows:

(i) The symmetry-broken state is stable with respect to
current-density fluctuations (there is no infrared diver-
gence contrary to usual thermodynamic transitions
where the Mermin-Wagner theorem implies a logarith-
mic divergence in 2D leading to destruction of the long-
range order).

(ii) For the model with short-range interaction, Uðr�r0Þ¼
C�1�ðr�r0Þ (that corresponds to a system with a
screening gate) and with a symmetry with respect to
� ! �þ const the Gaussian fixed point of the mean-
field theory is stable, with nonlinear terms being
marginally irrelevant. As a result, the mean-field ex-
ponents hold, implying the scaling j� jrj� with � ¼
1=2 on the ZRS side of the transition, as well as j�
jEj� with � ¼ 1=3 and the overdamped ‘‘diffusion
mode’’ �1=ð�i!þDq4Þ at criticality, with logarith-
mic corrections to scaling. The invariance with respect
to � ! �þ const forbids in Eq. (140) those terms
that explicitly depend on the value of �ðrÞ (rather than
on its gradients). In the physical system such invari-
ance approximately holds; however, it gets violated
when variations of density [linked to those of � via
Eq. (129)] become comparable to the total density of
the electron gas.

(iii) The long-range Coulomb interaction drives the system
away from the Gaussian fixed point. Alicea et al.
(2005) analyze the RG equations in the model with
1=k� interaction (in momentum space) that has the
upper critical dimension d ¼ 2þ � and find no stable
fixed points in 2D. This leads them to the conclusion
that the transition becomes first order in the presence
of long-range interaction. Presumably, this should also
hold in the physical case of 1=k interaction, i.e., � ¼ 1.
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(iv) The terms not included in the � ! �þ const model
drive the transition first order as well (whether with
short-range or with long-range interaction). These
results are obtained by the analysis of the RG flow
dUC � � dimensions, where the upper critical dimen-
sion dUC is found to be dUC ¼ 4 and dUC ¼ 7 for
short- and long-range interactions, respectively. In
both cases no stable fixed points are found, implying
that the transition gets first order. This conclusion is
then extrapolated to the physical dimension d ¼ 2.

(v) Alicea et al. (2005) also point out a similarity between
the ZRS problem and a phase transition in the 2D bird-
flocking model. The latter is essentially a dynamical
generalization of the 2D XY model: birds move with a
constant velocity and at each time step everyone of
them picks up a new direction governed by the average
velocity of the surrounding birds, with some level of
noise (Toner and Tu, 1995, 1998; Vicsek et al., 1995;
Grégoire and Chaté, 2004). For a sufficiently weak
noise the rotational symmetry gets spontaneously bro-
ken: the bird flock acquires a macroscopic collective
velocity. While Vicsek et al. (1995) found a second-
order phase transition, recent work (Grégoire and
Chaté, 2004) obtains a first-order transition. Alicea
et al. (2005) found that the ZRS and the bird-flocking
model are almost equivalent, up to the Lorentz-force
term (present in the former but not in the latter), so that
the first-order transitions in both of them would be
mutually consistent.

V. HALL FIELD- AND PHONON-INDUCED RESISTANCE

OSCILLATIONS

A. HIRO: Experimental discovery and basic properties

A decade ago Yang, Zhang et al. (2002) discovered
prominent 1=B oscillations of the differential resistivity
r � �þ Iðd�=dIÞ in a 2DEG with moderate mobility
�� 106 cm2=Vs subject to a constant direct current I; see
Fig. 29(a). These oscillations, termed the Hall field-induced
resistance oscillations (HIRO), can alternatively be observed
at fixed B and varying I. The latter approach allows one to
observe more oscillations since the amplitude of the DOS
modulation (fixed by the value !c�q) does not change during

the measurement. Examples of both realizations of HIRO in a
high-mobility (�� 107 cm2=Vs) 2DEG are shown in
Figs. 29(b) and 29(c). Yang, Zhang et al. (2002) proposed
that HIRO stem from the commensurability between the
cyclotron diameter 2Rc and the spatial separation �y ¼
!c=eE between the Hall field-tilted LLs. Here E ¼ �Hj is
the Hall electric field, j ¼ I=w is the current density, and w is
the Hall-bar width. This yields oscillations with �dc ¼
2Rc=�y ¼ 2eERc=!c with a characteristic dependence

�dc / n�1=2
e on the electron density, confirmed by Yang,

Zhang et al. (2002). In addition to single-layer 2D electron
systems, HIRO were also observed in double QWs (Bykov,
2008c; Mamani, Gusev, Raichev et al., 2009; Wiedmann
et al., 2011a) and in 2D hole systems based on carbon-doped
GaAs/AlGaAs QWs (Dai et al., 2009). HIRO were reported
to retain their dc character under ac excitation with frequen-
cies up to 100 kHz (Bykov et al., 2005). Very recently HIRO

were also observed in a Corbino ring-shaped 2DEG
(Bykov et al., 2012).

At 2��dc * 1, the oscillatory part �r of HIRO in Fig. 29 is
well described (Zhang, Chiang et al., 2007) by

�r=� ’ a�2 cosð2��dcÞ: (142)

In agreement with other experiments (Hatke et al., 2009b,
2010, 2011d), the HIRO maxima and minima in Fig. 29 occur
at integer and half-integer values of �dc, respectively. The
amplitude a, obtained by Vavilov, Aleiner, and Glazman
(2007) for �dc � 1 in the form

a ¼ 16�=���; (143)

is proportional to the backscattering rate 1=��; see Eq. (150).
HIRO can thus be understood in terms of resonant inter-LL
transitions resulting from backscattering off impurities, i.e.,
HIRO require a sufficient amount of short-range scatterers
for their observation. Dingle-plot analysis using Eqs. (142)
and (143) allows one to extract both the quantum lifetime
�q and the backscattering time �� ’ �sh. For a 2DEG

with �� 107 cm2=V s, such analysis at low T produced
�q ’ 20 ps and �� ’ 5� (Hatke et al., 2009b).

Hatke et al. (2009b) demonstrated that, similar to MIRO,
the decay of HIRO at high T is primarily due to the LL
broadening induced by electron-electron interactions, which
gives �2¼e�2�=!c�



q in Eq. (142) with 1=�
qðTÞ � 1=�q / T2;

see Secs. III.A and III.B.1.f. At low T, the experimentally
observed T dependence of 1=�
qðTÞ deviates from the T2 law,

which can be related to the heating of 2DEG by the direct
current. The heating may also explain the decay of HIRO with
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FIG. 29 (color online). (a) Differential magnetoresistance r ðBÞ
measured at different dc current I, as marked, in a Hall-bar sample

of width w ¼ 50 �m with � ’ 3:0� 106 cm2=V s and ne ’ 2:0�
1011 cm�2. Adapted from Yang, Zhang et al., 2002. (b) Differential

magnetoresistivity r showing four HIRO maxima marked by inte-

gers measured by sweeping B at fixed I ¼ 80 �A. (c) Correction
to the differential resistivity �r vs �dc obtained by sweeping

I at fixed B ¼ 557 G. The data were obtained at T ’ 1:5 K in a

100 �m wide Hall-bar sample with ne ’ 3:7� 1011 cm�2 and � ’
1:2� 107 cm2=V s. Adapted from Zhang, Chiang et al., 2007.
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�dc at constant B; see Fig. 29(b). According to Eq. (142), the
decay likely results from a suppression of � as I increases.

Hatke et al. (2011d) found that the HIRO amplitude is
strongly suppressed [similar to MIRO (Yang et al., 2006) (see
Sec. III.C.3)] by the in-plane magnetic field Bk � 1 T, while
the HIRO period depends only on the perpendicular compo-
nent. The experiment demonstrates that the suppression should
be attributed to a Bk-induced enhancement of the quantum

scattering rate 1=�
q � 1=�
qjBk¼0 / B2
k. In the regime of

strongly developed SdH oscillations, Bk starts to manifest

itself also via the Zeeman splitting; see Sec. VII.A.5.

B. Theory of nonlinear dc transport

Similar to the mechanisms of MIRO (see Sec. III.B),
the two most important contributions to the nonlinear electric
current in the absence of microwaves come from the direct
effect of the dc field on impurity scattering (displacement
mechanism) and from nonequilibrium changes of the isotropic
part of the distribution function (inelastic mechanism). For
smooth disorder, these effects were systematically studied by
Vavilov and Aleiner (2004) (displacement mechanism) and by
Dmitriev et al. (2005) (inelastic). A comprehensive analysis
for a generic model of disorder [Eq. (71)] for high T � !c

and overlapping LLs was performed by Vavilov, Aleiner, and
Glazman (2007).

Next we provide an overview of the main results of these
works using the formulation of Sec. III.B.1 (which, in turn,
follows from the general quantum kinetic approach outlined
in Sec. III.B.3). In the absence of the microwave field,
Eqs. (65)–(68) reduce to

jd¼2�0e
Z
d"h�X’’0��1

’�’0 ~�"~�"0 ðf"�f"0 Þi’’0 ; (144)

where "0 ¼"þeE�X’’0 and the angle brackets denote aver-

aging over ’ and ’0. The isotropic part f of the distribution
function obeys

ðf" � fT" Þ=�in ¼ h��1
’�’0 ~�"0 ðf" � f"0 Þi’’0 : (145)

We restrict further analysis to 2�2T=!c � 1 (thermally
suppressed SdH oscillations) and !c�q � 1 (overlapping

LLs). In this limit, Eqs. (144) and (145) yield the main result
of (Vavilov, Aleiner, and Glazman, 2007)

jd
�DE

¼ 1� 2�2��00ð
Þ þ 2�2�
�0ð
Þ



F ð�in; 
Þ; (146)

where �ð
Þ, for ��1
’�’0 parametrized by Eq. (71), reads

�ð
Þ ¼ X
n

��1
n J2nð
Þ; 
 � ��dc ¼ 2�eERc

!c

; (147)

with Jnð
Þ the Bessel functions. The second (displacement)
term in Eq. (146) comes from Eq. (144) when substituting the
equilibrium distribution fT" for f". The last (inelastic) term is
proportional to the amplitude

F ð�in; 
Þ ¼ �2
�0ð
Þ=½��1
in þ ��1

0 � �ð
Þ� (148)

of the oscillations of f" in Eq. (145),

f" ¼ fT" þ � sin

�
2�"

!c

�
F ð�in; 
Þ!c

2�
@"f

T
" : (149)

In the large-
 limit, Eq. (146) is significantly simplified:

jd ! �DEþ �DEð8�2�tr=���
Þ sin2
; (150)

where the backscattering rate ��1
� ¼ P

n�
�1
n expðin�Þ (the

actual condition on 
 depends on the type of disorder, see
below). The nonlinear current is then dominated by the
displacement term and shows oscillations proportional to
sin2
 , which yields the cos2
 dependence of the differential
resistivity observed in the experiment; cf. Eq. (142).

To explain the HIRO phase, we return to Eq. (144) for T �
!c
 � eERc and neglect the oscillations of f" by assuming
f" ¼ fT" . Then, Eq. (144) is expressible as an energy averag-
ing over the period !c:

jd
2�0e

2E
¼
�ð�X’’0 Þ2

�’�’0
h~�"~�"þeE�X’’0 i"

�
’’0

: (151)

In overlapping LLs, h~�"~�"þ!i" ¼ 1þ 2�2 cosð2�!=!cÞ.
The angular integrations in Eq. (151) within the stationary-
phase approximation in the limit E ! 1 yield Eq. (150). The
main contribution to HIRO comes from the backscattering
processes with ’ ’ ��=2 and j’� ’0j ’ �. These corre-
spond to the maximum possible shift �X’’0 ’ 2Rc along the

electric field. The average h~�"~�"þ2eERc
i" is maximized at

integer �dc ¼ 2eERc=!c, which results in HIRO maxima in
the differential resistivity at integer �dc; cf. Eq. (142).

The amplitude of the resistivity oscillations in Eq. (150)
does not depend on E and T, while experiments show
considerable suppression for strong current and/or high T.
As discussed in Sec. V.A, this suppression can be explained
as a result of additional broadening of LLs by electron-
electron interactions, combined with the effect of heating
of the 2DEG by the dc field which is controlled by electron-
phonon interactions.

To analyze the obtained results, Vavilov, Aleiner, and
Glazman (2007) introduced the mixed-disorder model
(93) (used in Sec. III.B to describe MIRO). The smooth
(characterized by ��1

q;sm) and sharp (��1
sh ) components of dis-

order yield two separate contributions to

�ð
Þ ¼ J20ð
Þ=�sh þ 1=�q;sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �
2

q
: (152)

The contribution of the sharp component changes on a scale
of 
 � 1 and shows strong oscillations for 
 * 1. The second
term describes the nonlinear effects, studied by Vavilov and
Aleiner (2004), that result from small-angle scattering by the
long-range component (�1=2 � 1 gives a typical value of the
scattering angle, see Sec. III.B). These become relevant in a
much stronger dc field 
 � ��1=2 � 1 and do not contribute
to HIRO.

At 
 � 1, Eqs. (146) and (148) reduce to

jd
�DE

¼ 1þ 2�2 � 3�

4�?
�2
2 � 2�2F ð�in; 
Þ; (153)

F ð�in; 
Þ ¼ 2�in

2=�

1þ �in

2=2�

; (154)

where 1=�?’3=�shþ12�2=�q;sm and 1=� ’ 1=�sh þ �=�q;sm.

Note that the nonlinear terms / 
2 in Eqs. (153) and (154)
can be equivalently obtained by taking the limit of
! ! 0 in the MIRO terms in Eqs. (77), (82), and (84). At
order E3 in jd, the ratio of the inelastic and displacement
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contributions in the case of smooth disorder is of the order of
�in�?=�

2 � �in=�q � 1 [similar to MIRO, Eq. (100)]. That is,

the inelastic term, obtained for smooth disorder by Dmitriev
et al. (2005), dominates and Eqs. (153) and (154) are valid for
all 
 � ��1=2. The suppression of jd=E in a relatively weak
dc field at 
 � ð�=�inÞ1=2 is the strongest effect in the non-
linear dc response for the case of smooth disorder.

It is important to note the dual role that the electric field
plays in Eqs. (148) and (154). On the one hand, it creates the
oscillations (149) in the energy distribution of electrons; on
the other hand, it also opens an additional channel of inelastic
relaxation, thus controlling the magnitude of the oscillations.
Indeed, in the presence of the dc field, an electron can change
its kinetic energy via elastic collisions with impurities. At

 � ð�=�inÞ1=2, the resulting ‘‘spectral diffusion’’ becomes
more efficient than the inelastic relaxation due to electron-
electron collisions. This leads to the saturation of the oscil-
lations in Eqs. (149) and (154) and makes the nonlinear
response independent of T for 
 � ð�=�inÞ1=2. Because of
the spectral diffusion, F ð�in; 
Þ remains smaller than or of
the order of unity for arbitrary 
 . Note that the oscillatory
term in Eq. (149) contains additionally two small factors �
and !c@"f

T
" ��!c=T and, therefore, remains small at any


 , which makes the expansion (149) legitimate. Unlike
Eq. (153), which contains the pure displacement and inelastic
contributions, the last term in Eq. (146) is, strictly speaking, a
result of the interplay of the inelastic and displacement
mechanisms in the strongly nonlinear response.

We now consider the case ��sh � �q;sm � �sh and 
 �
��1=2, when the short-range component of disorder deter-
mines the transport scattering rate, i.e., �sh ’ �, while the
nonlinear corrections generated by the smooth component are
negligible. Equations (146) and (148) then reduce to

jd
�DE

’ 1� 2�2½J20ð
Þ�00 �
16�2J20ð
ÞJ21ð
Þ

�=�in þ 1� J20ð
Þ
: (155)

In this limit, �q;sm ’ �q enters jd only via theDingle factor� ¼
expð��=!c�qÞ. The above expression captures both the high-
field limit (150) for HIRO and its essential modifications at

intermediate ð
 � 1Þ and small ð
 � ffiffiffiffiffiffiffiffiffiffiffi
�=�in

p Þ electric fields.
Unless �in � � (which may occur at elevated T), the inelastic
and displacement terms in Eq. (155) are equally important at

 � 1. Provided �sh � �, the smooth component only slightly
modifies Eq. (155) in the relevant range of 
 � ��1=2; see
Eq. 3.8 and Figs. 2 and 3 in Vavilov, Aleiner, and Glazman
(2007).

C. Nonlinear resistivity: Inelastic effects

In accordance with the theoretical predictions, the most
pronounced inelastic effects in the nonlinear resistivity were
observed in 2DEGs with high density ne � 1012 cm�2 and
moderate mobility �� 106 cm2=Vs (Bykov et al., 2005,
2007; J. Q. Zhang et al., 2007; Kalmanovitz et al., 2008;
Mamani, Gusev, Raichev et al., 2009; Vitkalov, 2009; Zhang,
Vitkalov, and Bykov, 2009). Indeed, according to Eqs. (153)
and (154), the differential resistivity at order 
2 reads

r ¼ �Dð1þ 2�2Þ � 12�2�D

�
3�

16�?
þ �in

�

�

2: (156)

Themaximumvalue of the factor 3�=16�? in the displacement
term is 9

16 [which corresponds to � ¼ �sh, see Fig. 13(a)],

while the factor �in=� in the inelastic contribution can be
estimated as "F=T

2� ’ 130ð1 K=TÞ2 (for � ¼ 106 cm2=Vs
and ne ¼ 1012 cm�2). This gives 16�?�in=3�

2 * ð15 K=TÞ2
for the relative magnitude meaning the inelastic contribution
dominates up to high T * 15 K. This justifies the analysis of
the low-field nonlinear resistivity performed by J. Q. Zhang
et al. (2007), Mamani, Gusev, Raichev et al. (2009), Vitkalov
(2009), and Zhang, Vitkalov, and Bykov (2009) solely in
terms of the inelastic mechanism [and also justifies retaining
the higher-order terms in Eq. (154)]. These experiments

reproduced the theoretical predictions in the range of appli-
cability of the theory18 and reported values of �in / T�2 close
to those calculated by Dmitriev et al. (2005). In particular,
Mamani, Gusev, Raichev et al. (2009) generalized the theory
(Dmitriev et al., 2005) to the two-subband case and found
that the MISO peaks in the nonlinear response are inverted at

 ¼ ð2�=3�inÞ1=2, which was used to accurately determine
�in. The effect is similar to the interplay of MISO and MIRO
discussed in Sec. III.C.4. In the nonlinear dc response, inter-
action of MISO and MIRO was observed by Wiedmann et al.

(2011a) and explained therein in terms of the inelastic mecha-
nism. The data (Wiedmann et al., 2011a) also indicate a two-
subband counterpart of the nonlinear mixing of HIRO and
MIRO described in Sec. VI.B.

In the ultrahigh mobility 2DEG with ne ’ 3:95�
1011 cm�2 and � ’ 8:9� 106 cm2=Vs used by Hatke
et al. (2012b), the estimated ratio �in=� ’ "F=T

2� ’
ð2 K=TÞ2 is much smaller than in the samples discussed
above and, as a result, both contributions in Eq. (156) are
relevant. In this case, the Dingle analysis of the low-field
differential resistivity at fixed T ¼ 1:5 K yielded a value of
2.25 for the expression in the brackets in the nonlinear term of

Eq. (156). Using Eq. (94), for � ¼ 20�q and �sh ’ 5� (Hatke

et al., 2009b) one obtains 3�=16�? ’ 0:23 which divides
almost equally between the sharp and smooth components
of disorder; see Fig. 13(a). It follows that the inelastic term

�in=� ’ 2 at T ¼ 1:5 K, which agrees well with the estimate
above. This example shows that measurements of the non-
linear magnetoresistivity in high LLs in both limits 
 � 1
(HIRO) and 
 � 1 [Eq. (156)] provide a method to determine
various scattering rates, in particular, T-dependent �q and �in,

as well as �? and ��, which provide valuable information on
disorder and interactions in 2D electron systems.

D. Zero-differential resistance states

Experiments by Bykov et al. (2007) and Zhang et al.
(2008b) revealed that the differential resistance can drop all
the way to zero (see Fig. 30), leading to the formation of the

ZdRS. Bykov et al. (2007) and Kalmanovitz et al. (2008)

18The analytical results by Dmitriev et al. (2005) and Mamani,

Gusev, Raichev et al. (2009) are applicable for 2�2T=!c � 1 and

overlapping LLs. In the regime of SdH oscillations (2�2T=!c & 1),
which was also studied experimentally by Bykov et al. (2007), J. Q.

Zhang et al. (2007) and Kalmanovitz et al. (2008), such a

description is not parametrically justified and additional theoretical

analysis is required; see Dmitriev (2011).
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(in samples with ne’8�1011 cm�2 and �’8�105 cm2=Vs)
observed ZdRS emerging from the maxima of SdH oscilla-

tions. The transition to ZdRS was accompanied by a repro-

ducible negative spike [see Fig. 30(a)] and by temporal

fluctuations at higher dc bias.
By contrast, Zhang et al. (2008b) (in samples with ne ’

4:8� 1011 cm�2 and � ’ 4:4� 106 cm2=V s) and Hatke

et al. (2010) (in samples with ne ’ 3:8� 1011 cm�2 and

� ’ 1:0� 107 cm2=V s) demonstrated the possibility of

ZdRS evolving from the principal minimum of HIRO in the

regime of suppressed SdH oscillations. Neither overshoot to

negative values nor temporal fluctuations were detected

[see Fig. 30(b)]. Hatke et al. (2010) reported ZdRS over a

continuous range of currents and in magnetic fields extending

well below the onset of SdH oscillations. Similar to ZRS,

ZdRS were found to disappear with increasing temperature

(T * 2 K) and with increasing overlap between LLs

(B & 1 kG). Theminimum current I1 [see Fig. 30(b)] required
to support ZdRS was found to be roughly B independent. The

maximum current I2 was found to increase roughly linearly

withB, tracing the fundamental HIROpeak [cf. " in Fig. 30(b)].
ZdRS were also observed to develop from the maxima of

MIRO (Zhang, Zudov et al., 2007) and MISO (Bykov,

Mozulev, and Vitkalov, 2010; Gusev et al., 2011; Wiedmann

et al., 2011a).
On the theoretical side, ZdRS originate from the parts of

(local) I-V characteristics where the differential resistivity is

negative, which violates the stability condition (131). Similar

to the case of ZRS (see Sec. IV), this results in an instability

leading to the formation of current and field domains. Unlike

ZRS, however, the absolute resistivity remains positive,

which leads to an essential difference between the Corbino

(N-shaped I-V characteristics) and Hall-bar (S-shaped I-V
characteristics) geometries. While in the Hall-bar geometry a
stationary domain configuration with the current flowing
along the domain walls is expected (Bykov et al., 2007), in
the Corbino geometry nonstationary (moving) domains are
predicted (Vavilov and Aleiner, 2004) similar to the Gunn
effect (Gunn, 1963).

E. PIRO: Experimental discovery and basic properties

Resonant interaction of 2D electrons with longitudinal
optical (LO) phonons was predicted (Gurevich and Firsov,
1961) and confirmed in magnetotransport measurements in
GaAs/AlGaAs heterostructures (Tsui et al., 1980) a long time
ago. This interaction manifests itself as an enhancement of the
longitudinal resistivity whenever the LO-phonon frequency
!LO ’ n!c, n ¼ 1; 2; 3; . . . . In GaAs, !LO � 1013 s�1 and
observation of the LO-phonon-induced oscillations requires
high T * 102 K and strong B * 102 kG (Tsui et al., 1980).

A decade ago, another class of phonon-induced oscilla-
tions, termed the phonon-induced resistance oscillations
(PIRO), was discovered in the linear-response resistivity of
a 2DEG with mobility �� 106 cm2=Vs (Zudov, Ponomarev
et al., 2001). PIRO emerged at much lower T � 1–10 K and
much lower B� 1–10 kG and are understood in terms of
resonant interaction of 2D electrons in high LLs with acoustic
phonons which carry momentum 2kF and have a character-
istic frequency !� ¼ 2kFs. Here s is the speed of sound and
the out-of-plane component of the phonon momentum is
neglected. Such interaction causes a correction to the resis-
tivity ��ph which oscillates with the ratio

�ph ¼ !�=!c / n1=2e : (157)

The n1=2e dependence was confirmed experimentally (Zudov,
Ponomarev et al., 2001).

Electron backscattering by an acoustic phonon is most
effective when !� ¼ n!c, n ¼ 1; 2; . . . , which maximizes
the (thermally averaged) product of the initial and final den-
sities of states. In the simplest model of 2D isotropic phonons,
the oscillatory part of the resistivity for �ph * 1 and T � !c,

!� reads (Dmitriev, Gellmann, and Vavilov, 2010)

��ph

�D

’ 2g2T�

�
ffiffiffiffiffiffiffi
�ph

p �2 cosð2��ph � �=4Þ (158)

[see also Eq. (161)]. The phase ��=4 was confirmed experi-
mentally by Hatke et al. (2011c) in a variety of high-mobility
samples. Many other experiments (Zudov, Ponomarev et al.,
2001; Yang, Zudov et al., 2002; Bykov, Kalagin, and Bakarov,
2005; Zhang et al., 2008b; Bykov and Goran, 2009; Hatke
et al., 2009a; Zudov et al., 2009) reported PIRO maxima at
integer �ph. As discussed in Sec. V.G, the phase of PIRO

(unlike that for MIRO and HIRO) is not expected to be
universal and is sensitive to the anisotropy of relevant phonon
modes, crystallographic orientation of the sample, width of the
QW, etc. (Raichev, 2009; Dmitriev, Gellmann, and Vavilov,
2010).

In contrast to other low-B magnetoresistance oscillations
(SdH oscillations, MIRO, MISO, and HIRO), which are
observed at low T, PIRO are best resolved at T �!� and

B kG
T K

T K
T K

r T K

I

B kG

B kG

I II

T K

r

(a)

(b)

I

FIG. 30 (color online). (a) Differential resistivity r vs current I for

several values of T at fixed B ¼ 7:64 kG, measured in a 50 �m
wide Hall-bar sample. Adapted from Bykov et al., 2007. (b) Similar

dependence at B ¼ 1:7 and 2.5 kG, measured at T ’ 1:5 K in a

100 �m wide Hall-bar sample. The first HIRO maximum is marked

by " . The curve for B ¼ 1:7 kG is shifted by 2 � upward. Adapted

from Hatke et al., 2010.
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get strongly suppressed at both low and high T (Zudov,

Ponomarev et al., 2001; Yang, Zudov et al., 2002;

Bykov and Goran, 2009; Hatke et al., 2009a). At low T,
both emission and absorption of 2kF phonons is exponen-

tially suppressed by the thermal factors for electron
and phonon states; see Sec. V.G. On the other hand, similar

to MIRO, MISO, and HIRO, PIRO are insensitive to the

temperature smearing of the Fermi surface which suppresses
SdH oscillations at 2�2T=!c � 1. A detailed study of the T
dependence of PIRO revealed that higher-B (lower-�ph) os-

cillations are best developed at progressively higher T: the
temperature at which a given oscillation reaches its maximum
amplitude was found to scale with

ffiffiffiffi
B

p
(Bykov and Goran,

2009; Hatke et al., 2009a). This suggests that, at high T, the
suppression of PIRO (similar to MIRO and HIRO, see
Secs. III.A, III.B.1.f, and V.A, but unlike the SdH oscilla-

tions) is due to interaction-induced broadening of LLs.
Similar to HIRO and MIRO, PIRO are most pronounced in

high-quality 2DEGs. Early experiments in moderate-mobility

samples (�� 106 cm2=V s) required temperatures in the
range about 5–20 K and revealed only a few oscillations

(Zudov, Ponomarev et al., 2001; Bykov, Kalagin, and

Bakarov, 2005). Recent experiments in high-mobility
samples (�� 107 cm2=V s) showed up to eight oscillations

(see Fig. 31) which remained visible down to T ’ 2 K (Hatke
et al., 2009a).

Related phonon-induced oscillations in the magnetother-

mopower were observed by Zhang et al. (2004). Interplay of
PIRO and MISO was investigated by Bykov, Goran, and

Vitkalov (2010) in a single GaAs QW with two populated

subbands.

F. PIRO in a strong Hall field

Recent studies (Zhang et al., 2008b) of PIRO in a
strong Hall field established that the dc field leads to the

evolution of the PIRO maxima into minima and back; see

Fig. 32. It was also found that the strong dc field enables
detection of PIRO at low T where the linear-response PIRO

are exponentially suppressed. One additional experimental
finding was the observation of a pronounced resistance maxi-

mum at �dc ¼ �ph, where the Hall velocity equals the speed of

sound. All these results are reproduced within the theoretical
model of Dmitriev, Gellmann, and Vavilov (2010); see
Sec. V.G.

G. Microscopic theory of PIRO

In the case of MIRO (see Sec. III.B) or nonlinear dc
transport (see Sec. V.B), the inelastic effects that lead to
oscillations in the energy distribution of electrons play an
essential and often dominant role. By contrast, PIRO are
observed at elevated T, where a fast inelastic relaxation
makes effects of this type much less important. Therefore,
one can consider only effects that are similar to the displace-
ment contribution to HIRO and MIRO. In terms of migration
of the guiding centers of cyclotron orbits [Eqs. (65)–(67)],

the phonon-assisted dissipative current jðpÞd has the form of

Eq. (65) with

Wx1!x2 ¼
�Z

d"1
Z
d"2M"1"2�ðx1�x2þ�X’1’2

Þ

�X
�
�
ðspÞ
’1’2

ðN !12
þ�1;�1Þ�ð�"tot12	!12Þ

�
’1’2

;

(159)

where �
ðspÞ
’1’2

denotes the probability of spontaneous emission
of a phonon with frequency !12 and N ! is the Planck
distribution function. In the factor M""0 [Eq. (67)], one can
substitute, in accordance with the above, fT" for f". Similar to
Eq. (66), the delta function containing �"tot12 ensures energy

conservation.
We start with a simplified single-mode model which as-

sumes interaction with 2D isotropic acoustic phonons via a
deformation potential. We also assume that the out-of-plane

B (kG) B (kG )

)

n

n
T K

(b)(a)

FIG. 31 (color online). (a) Magnetoresistivity � as a function of B,

showing eight PIRO maxima, four of which are marked by integers.

(b) PIRO order n vs B�1. The linear fit yields s ’ 3:4 km=s. The
data were obtained at T ¼ 3:5 K in a 100 �m wide Hall-bar sample

with ne ’ 3:8� 1011 cm�2 and � ’ 1:2� 107 cm2=V s. Adapted
from Hatke et al., 2009a.
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FIG. 32 (color online). Differential magnetoresistivity r as a

function of B, normalized to the resistivity at B ¼ 0, for different
I (a) from 2 to 50 �A in steps of 4 �A at T ¼ 10 K and (b) from 30

to 150 �A in steps of 10 �A at T ¼ 6 K. The traces are offset for

clarity. Integers I, II, and III at the top traces mark the order of the

HIRO peaks. The vertical lines correspond to integer �ph ¼ 1, 2, and

3. The curves labeled by (A), (B), and (C) in (a) are discussed in

Fig. 33. The data were obtained in a 50 �m wide Hall-bar sample

with ne ’ 4:8� 1011 cm�2 and � ’ 4:4� 106 cm2=V s. Adapted
from Zhang et al., 2008b.
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component of the phonon momentum is negligible, i.e., the
width b of the QW to which the 2DEG is confined is large,
b � k�1

F . In this case,

�
ðspÞ
’1’2

¼ g2!12=2; g2 ¼ mD2=�bs2; (160)

where phonon frequency for quasielastic scattering is given
by !12 ¼ 2kFs sinjð’1 � ’2Þ=2j, � is the mass density, and
D is the deformation-potential constant. In overlapping LLs
and at high T � !c, !�, Eqs. (65), (159), and (160) yield
(Dmitriev, Gellmann, and Vavilov, 2010)

jðpÞd ¼�DE�g
2Tf1þ2�2½J0ð2��phÞ�J2ð2��phÞ�g: (161)

The linear-in-T dependence of jðpÞd is due to the fact that atT �
!� the occupation number for relevant phononmodes is large,

so that �
ðspÞ
’1’2

N !12
’ g2T=2, while the contribution of sponta-

neous emission is negligible. The current shows oscillations
with �ph ¼ !�=!c, controlled by commensurability between

the cyclotron energy and themaximumpossible, in the process
of scattering, phonon energy. That is, in accord with the
original interpretation (Zudov, Ponomarev et al., 2001),
PIRO originate from resonant inter-LL transitions caused by
the backscattering of electrons by acoustic phonons. The
position of higher-ordermaxima of PIRO inEq. (161) at �ph �
1 is given by Eq. (158). In narrow QWs (kFb� 1) or in wide
QWs for �ph � ðkFbÞ2, one should take into account the 3D

character of acoustic phonons. Still in the isotropic approxi-
mation, the cosð2��ph � �=4Þ behavior of PIRO [Eq. (158)]

changes then to cosð2��phÞ, while the amplitude of PIRO

reduces by a factor of ��1=2ph =2bkF (Raichev, 2009).

While the isotropic single-branch model captures the es-
sential physics of PIRO, in real structures the electron-
phonon interaction is more complicated. In bulk GaAs, there
are three anisotropic phonon branches and two mechanisms
(via the deformation and piezoelectric potentials) of electron-
phonon interaction. A comprehensive study of PIRO, using
the general form of interaction with bulk acoustic phonons,
was performed by Raichev (2009). For higher harmonics of
PIRO, the effects of anisotropy were treated there analyti-
cally, producing three distinct contributions with different
phases and periods (Raichev, 2009). Additional contributions
can arise from interaction with interface phonon modes
(Zudov, Ponomarev et al., 2001).

The analysis by Raichev (2009) shows that PIRO in the
ultrahigh mobility and moderate electron density sample used
by Hatke et al. (2009a) are dominated by the bulk transverse
acoustic mode propagating along the 2D plane and polarized
perpendicular to the plane. The sound velocity of this mode
sTO ¼ 3:40 km=s is indeed very close to s ¼ 3:44 km=s ex-
tracted from the period of PIRO by Hatke et al. (2009a). A
subleading contribution of the longitudinal mode with a no-
ticeably higher velocity produces an extra peak observed by
Hatke et al. (2009a) at sufficiently high B, and also explains
the beating pattern at lower B, caused by the interference of
these two contributions to PIRO [see Fig. 1 in Raichev (2009)].
By contrast, in themoderatemobility and high electron density
sample studied by Bykov, Kalagin, and Bakarov (2005), PIRO
are dominated by the higher-energy longitudinal mode. In
another recent experiment (Zhang et al., 2008b), which
studied the effects of a strong dc field on PIRO (discussed

below), the longitudinal mode also prevailed, which explains
the good agreement between experiment (Zhang et al., 2008b)
and theory (Dmitriev, Gellmann, and Vavilov, 2010) based on
the single-mode approximation (160).

The Hall field tilts LLs and changes the commensurability
condition for electron-phonon scattering. This results in
oscillations with �� � �dc � �ph, where �dc is the parameter

that controls HIRO (see Sec. V.B). The change of the oscil-
lations period by the dc field can be viewed as a Doppler shift
of the phonon modes in the frame moving with the Hall
velocity vH ¼ cE=B across the field. In the moving frame,
the electric field is absent while the phonon dispersion
becomes anisotropic, s ! s� vH cos½ð’1 þ ’2Þ=2� (this for-
mulation is particularly useful in the case of a complicated
dispersion relation of phonons). For 1 � �dc < �ph and

1 � �ph � �dc, Eqs. (65), (159), and (160) yield the follow-

ing for the oscillating part of jðpÞd :

jðp;oscÞd

�DE
¼ 4�2

�2
g2T�

�
sin2��þffiffiffiffiffiffiffiffiffiffiffiffiffi
�dc�þ

p þ cos2���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dcj��j

p �
: (162)

The evolution of the differential resistivity r ¼ @E=@jd
with varying �dc in this regime was studied experimentally
by Zhang et al. (2008b). The results of calculations accord-
ing to Eqs. (159) and (160), illustrated in Fig. 33, quantita-
tively reproduce the experimental data in Fig. 32 without
fitting parameters. Note that the theoretical plot does not
include HIRO which become relevant at higher dc bias, see
Fig. 32(b), but are negligible in the region of interest,
B > 2 kG and I < 40 �A. In qualitative agreement with
the experimental results of Zhang et al. (2008b), similar
oscillations with �ph � �dc were also obtained numerically,

using the balance-equation approach by Lei (2008).
In a stronger dc field, �dc > �ph, corresponding to a super-

sonic Hall velocity vH > s, the theory of Dmitriev, Gellmann,
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FIG. 33 (color online). Calculated oscillatory part rðoscÞ of the

differential resistivity @E=@jd vs B, in units of �Dg
2T�, for several

values of current I from 0 to 50 �A in steps of 5 �A. The traces are

offset for clarity. The vertical lines correspond to integer �ph. The

traces for (A) 10 �A, (B) 15 �A, and (C) 30 �A correspond

approximately to the values of I at which the third, second, and

first PIRO peaks, respectively, disappear before evolving into

minima as I increases. The curves are very similar to those

measured in the experiment: cf. the curves in Fig. 32 labeled as

(A) (10 �A), (B) (14 �A), and (C) (28 �A). From Dmitriev,

Gellmann, and Vavilov, 2010.
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and Vavilov (2010) predicts that the phase of the oscillations
changes in the second term of Eq. (162) from cos2��� to
sin2��� for �dc > �ph. Note that at vH > s, the effective

sound velocity s� vH cos½ð’1 þ ’2Þ=2� in the moving
frame becomes negative for certain transitions. Emission of
a phonon with energy ! in such transitions increases the
electron kinetic energy by �> 0 at the expense of the
electrostatic energy which is decreased by �þ!.

The physical meaning of the ‘‘sound barrier’’ is clear from
the low-temperature behavior of the phonon-assisted trans-
port. At T � !�, stimulated emission and absorption of
phonons are exponentially suppressed by the Planck factor
N !�

’ expð�!�=TÞ in Eq. (159). On the other hand, spon-

taneous emission in the scattering processes reducing the
kinetic energy is also strongly suppressed by the factor
M"1"2 . However, in the spontaneous emission processes

that increase the kinetic energy, the constraint imposed by
the factor M"1"2 is not effective. As a result, at �dc > �ph the

phonon-assisted transport due to spontaneous phonon emis-
sion survives even at T ¼ 0. Specifically, for 1 � �� � �dc
the phonon-induced oscillations at T � !� are described by

jðp;oscÞd =�DE� ¼ ð2�2�ph�
1=2� =�2�3=2dc Þg2!c sin2���:

(163)

The evolution of the oscillations with temperature is illus-
trated in Fig. 34 (where the smooth part of the phonon-
assisted current at T ¼ 0 is also shown).

Nonlinear mixing of PIRO and MIRO was investigated
by Raichev (2010b). This study predicted oscillations with
!� �! and discussed the feasibility of their experimental
observation. Further, the analysis by Raichev (2010b)
showed that heating of the 2DEG leads to additional
!�=!c oscillations with a phase shift with respect to the
equilibrium PIRO. Separately, nonlinear mixing of PIRO and
MISO in two-subband systems was shown by Bykov, Goran,
and Vitkalov (2010) and Raichev (2010a) to lead to oscilla-
tions at frequencies determined by !� and the subband
splitting energy. A further example of frequency mixing for
the case of MIRO and HIRO is discussed in Sec. VI.B.2.

VI. TRANSPORT IN STRONG ac AND dc FIELDS

In the preceding sections, we discussed two types of
nonequilibrium magneto-oscillations, MIRO (see Sec. III)
and HIRO (see Sec. V). The nature of MIRO has so far
been considered at the level of single-photon processes. We
now turn to mode-mixing phenomena, specifically, to multi-
photon processes in MIRO and to nonlinear mixing of MIRO
and HIRO.

A. Fractional MIRO

1. Experiments at high microwave power levels

In addition to MIRO, whose extrema in the vicinity of
integer �ac values are described by Eq. (63) and the oscillatory
structure is shown in Fig. 6, similar oscillatory features have
been observed near �ac given by certain rational fractions,
with maxima ðþÞ and minima ð�Þ of the photoresistance at

��ac ¼ n=m	 ’�
ac; (164)

where n and m are integers (with noninteger n=m) and
’�

ac > 0 is, in typical experiments, considerably smaller than
1
4 (see Fig. 35). The oscillatory feature at �ac ¼ 1

2was observed

by Dorozhkin (2003), Willett, Pfeiffer, and West (2004),

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

20

0

20

2

0

2

2

0

2

0

0.2

0.4

(b)(a)

(d)(c)
ph ph

ph ph

dc
dc

dc
dc

FIG. 34. (a)–(c) Oscillatory part of the phonon-assisted current

jðp;oscÞd in units of 2�2g2!c��DE, calculated for (a) T ¼ 5!c,

(b) T ¼ 0:7!c, and (c) T ¼ 0:25!c. (d) Smooth part of the

phonon-assisted current at T ¼ 0. From Dmitriev, Gellmann, and

Vavilov, 2010.

FIG. 35 (color online). (a) Magnetoresistance under microwave

illumination at f ¼ 27 GHz for different radiation intensities.

The traces, offset vertically for clarity, are labeled according to

the attenuation levels. The downward arrows mark the minima

near �ac ¼ 3
2 ,

2
3 , and 1

2 , which develop into fractional ZRS at

higher radiation intensities. The inset illustrates multiphoton

processes responsible for these features. The data were obtained

at T ’ 1:0 K in a sample with ne ’ 3:6� 1011 cm�2 and � ’ 2�
107 cm2=V s. From Zudov et al., 2006b. (b) Similar data

for f ¼ 17 GHz at T ’ 1:4 K in a sample with ne ’ 2:7�
1011 cm�2 and � ’ 1:7� 107 cm2=V s. From Dorozhkin,

Smet et al., 2007.
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Dorozhkin et al. (2005), Dorozhkin, Smet et al. (2007), and

Wiedmann, Gusev et al. (2009) [in retrospective, the first

signature of the half-integer MIRO can be recognized already

in early experiments on moderate-mobility samples (Zudov,

Du et al., 2001), see a weak oscillation at B ’ 2 kG in the

f ¼ 45 GHz trace there]. Similar fractional MIRO (fMIRO)

for other fractions in the n ¼ 1 series �ac ¼ 1=m were

reported for m ¼ 3, 4 (Dorozhkin, Smet et al., 2007;

Wiedmann, Gusev et al., 2009) and m ¼ 5, 6, 7, 8

(Wiedmann, Gusev et al., 2009). Fractions that have been

observed in the fMIRO series with n ¼ 2 (apart from the even

denominator fractions coinciding with the members of the

n ¼ 1 series) are represented by m ¼ 3 (Zudov, 2004; Zudov

et al., 2006a; Dorozhkin, Smet et al., 2007; Wiedmann,

Gusev et al., 2009) and m ¼ 5, 7 (Wiedmann, Gusev

et al., 2009). Note that the fMIRO series with n ¼ 1, 2 belong
to the high-B side of the CR and thus do not overlap with the

integer MIROwhich occur at �ac > 1. A third series of fMIRO

among those observed is, in contrast to the variable-

denominator series above, characterized by fixed m ¼ 2 and

variable n. The reported oscillatory features in the �ac ¼ n=2
series that fall in the intervals between integer �ac are (apart

from �ac ¼ 1
2 mentioned above) those with n ¼ 3 and 5

(Zudov, 2004; Zudov et al., 2003, 2006a). The half-integer

fMIRO with n � 3 lie on the low-B side of the CR and

therefore require for their observation (other experimental

conditions being equal) higher mobilities compared to the

fMIRO series with n ¼ 1.
Similar to MIRO, the most prominent minima from all

three fMIRO series, namely, those in the vicinity of �ac ¼ 1
2 ,

2
3 , and

3
2 , were shown to evolve into ZRS with increasing

microwave power in ultrahigh mobility samples (Zudov

et al., 2006a). As seen in Fig. 35(a), the formation of these

fractional ZRS was accompanied by the diminishing and

narrowing of the neighboring photoresistance peaks, as

well as by the overall suppression of the photoresistance at

�ac <
1
2 . A similar strong suppression of the resistance by

radiation on the high-B side of the CR was examined by

Dorozhkin et al. (2005).

2. Multiphoton absorption via virtual states

The theoretical framework developed to describe fMIRO

relates them to multiphoton processes in whichm photons are

absorbed in transitions between electron states separated in

energy by n!c (Lei and Liu, 2003; Torres and Kunold, 2005;

Lei and Liu, 2006b; Dmitriev, Mirlin, and Polyakov, 2007b;

Pechenezhskii, Dorozhkin, and Dmitriev, 2007), as illustrated

in the inset of Fig. 35(a). One can distinguish two (generally,

interfering with each other) scattering channels for multi-

photon transitions: sequential absorption of single photons

via real (resonant) intermediate electron states and multi-

photon absorption via virtual intermediate states. For over-

lapping LLs, both types of multiphoton transitions yield in the

limit of a strong ac field oscillatory features in the vicinity of

�ac ¼ n=m, with an amplitude proportional at T � m! to

�2m, which, for given �, are damped by disorder much more

strongly than the integer MIRO (Pechenezhskii, Dorozhkin,

and Dmitriev, 2007). For separated LLs, however, single-

photon real transitions are forbidden if ! is not sufficiently

large to bridge the gap between the LLs (see Fig. 12), so that
microwave absorption occurs then by means of multiphoton
transitions via virtual states. This is, in particular, the case
for two-photon transitions between neighboring LLs at
! ¼ !c=2 � 1=�q.

In the limit of well-separated LLs, the mechanism of
multiphoton absorption via virtual intermediate states is
much similar to that of multiphoton ionization in atomic or
semiconductor systems (Keldysh, 1965). In particular, a per-
turbative expansion in the radiation power is justified if ! is
large compared to the transition rate between LLs the slope of
which oscillates in phase with the ac field. The parameter that
governs the validity of perturbation theory is ð�q=�ÞP � 1,

where P is given by Eq. (72) (Dmitriev, Mirlin, and
Polyakov, 2007a). Here and in the remainder of Sec. VI.A,
we overview the approach developed by Dmitriev, Mirlin, and
Polyakov (2007b) and Pechenezhskii, Dorozhkin, and
Dmitriev (2007) to describe fMIRO for the case of smooth
disorder. We expect that the picture that results from this
approach remains qualitatively correct for more general
models of disorder. Similar to the integer MIRO, fMIRO
induced by the inelastic mechanism (Dmitriev, Mirlin, and
Polyakov, 2007b) are much stronger than those induced by
the displacement mechanism19 (Lei and Liu, 2003, 2006b;
Torres and Kunold, 2005; Dmitriev, Mirlin, and Polyakov,
2007b) provided �in=�q � 1. Under this condition, the

half-integer fMIRO near �ac ¼ n=2 with n ¼ 1; 3; 5; . . . are
described at order P 2 for well-separated LLs (Dmitriev,
Mirlin, and Polyakov, 2007b) by

�ph=�D ¼ ð3�in�q=32�2ÞP 2R2ð2!Þð1þ #Þ; (165)

where the function R2ð!Þ, odd in the detuning 2!� n!c, is
defined in Eq. (85), and # ¼ 2jEþE�j2=P 2 depends on the
polarization of microwaves; specifically, # ¼ ½ð!2 �!2

cÞ=
ð!2 þ!2

cÞ�2=2 and # ¼ 0 for the cases of linear and circular
polarization, respectively. For n ¼ 1, Eq. (165) describes the
two-photon CR in the photoresistivity.

The two-photon contribution of the displacement mecha-
nism is smaller (in the parameter �q=�in � 1) but possesses,

for linear polarization, anisotropy with respect to the mutual
orientation of the dc and ac fields. At orderP 2, the depth of the
modulation, as the orientation is changed, between the princi-
pal values of the photoresistivity tensor induced by the

displacement mechanism is given by the factor 1� ffiffiffiffiffiffiffi
2#

p
=

ð1þ #Þ [for the full analytical expression, see Dmitriev,
Mirlin, and Polyakov (2007b)]. The orientation dependence
thus provides ameasure of the role of the displacementmecha-
nism in fMIRO.

19The method of ‘‘force- and energy-balance equations’’ (Lei and

Liu, 2003, 2006b; Lei, 2010) tacitly assumes an instant thermal

equilibration in the frame moving with the drift velocity, i.e., the

inelastic mechanism of photoconductivity is lost within this formal-

ism ‘‘by construction.’’ Similarly, the argument by Torres and

Kunold (2005) that the ‘‘inelastic processes can be safely ignored’’

if they are slower than the elastic ones is in contradiction with the

fact that without them the stationary regime of photoconductivity

cannot be established: in effect, Torres and Kunold (2005) also

implicitly assume an infinitely fast equilibration of the same kind.
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3. Multiphoton absorption via sidebands

The multiphoton absorption via virtual states [Eq. (165)] is
the main mechanism of fMIRO in the limit of well-separated
LLs. A subleading (in the parameter 1=!c�q � 1) contribu-

tion to fMIRO comes from single-photon transitions via
radiation-induced ‘‘sidebands’’ formed in the gaps of the
DOS between the LLs (Dmitriev, Mirlin, and Polyakov,
2007b). The sideband mechanism can be viewed as resulting
from disorder-induced transitions between the quasienergy
levels (Zeldovich, 1967) that characterize the stationary states
of a homogeneous electron system under the action of a
periodic-in-time perturbation. A systematic approach to
studying the spectral properties of a 2DEG driven by the ac
field in the presence of disorder is formalized in terms of a
time-dependent self-energy of the Wigner-transformed re-
tarded Green’s function (Vavilov and Aleiner, 2004;
Dmitriev, Mirlin, and Polyakov, 2007a, 2007b). The notion
of a time-dependent DOS was also introduced to describe
sidebands in a closely related problem of the dynamical
Franz-Keldysh effect (Yacoby, 1968) by Jauho and Johnsen
(1996) and Johnsen and Jauho (1998). In the fMIRO problem,
the nonequilibrium DOS of each LL acquires, to first order in
1=!c�q, two static satellite peaks

�sb�ð�Þ ¼ ð�P=8!c�Þ�ðNÞð��!Þ; (166)

where �ðNÞð�Þ is given by Eq. (27), centered for ! ¼ !c=2
in the middle between LLs, and also satellites centered at the
same energies and oscillating in time with a period 2�=!
(Dmitriev, Mirlin, and Polyakov, 2007b). Note that the DOS
peaks (166) can be probed by resonant spectroscopy in the
same way as if they were present at equilibrium. For the
half-integer fMIRO, single-photon transitions to and from
the static sidebands yield a contribution which, at order P 2,
has the same shape as in Eq. (165) and is of order !c�q
times smaller (Dmitriev, Mirlin, and Polyakov, 2007b). On
the other hand, the time-dependent sidebands give a contri-
bution which is smaller than that in Eq. (165) by only a
factor of order ð!c�qÞ1=2 and has a distinctly different shape;

in particular, it is even in the detuning from the fMIRO
resonance [for details, see Dmitriev, Mirlin, and Polyakov
(2007b)].

4. Multiphoton absorption via real states

Multiphoton absorption via virtual states or sidebands
provides the mechanisms of fMIRO in the case of well-
separated LLs. If, however, gaps between LLs are opened
(i.e., !c�q > �=2, Sec. II.C.1), but the width of the gaps

�g < !c=2, then for any given ! in the interval �g < !<

!c � �g real single-photon transitions are possible both

between neighboring LLs and within the same LL. For !
from the above interval, an electron can thus be transferred
between neighboring LLs via two sequential single-photon
transitions. More generally, for ðn� 1Þ!c þ �g < !<

n!c � �g, single-photon real transitions are possible with a

change of the LL index by both n� 1 and n, where
n ¼ 1; 2; 3; . . . . For given n, therefore, there exists a finite
range of ! and !c within which m � n photons can bridge
the gap between n LLs via real intermediate states, which

leads to the emergence of an additional mechanism of fMIRO
(Dorozhkin, Smet et al., 2007; Pechenezhskii, Dorozhkin,
and Dmitriev, 2007). fMIRO induced by this mechanism of
sequential single-photon absorption are specific to the cross-
over between the regimes of overlapping and well-separated
LLs and disappear altogether for 2�g > !c. At the crossover,

however, they are the main fMIRO channel at order P 2 if
�in=�q � 1, with an amplitude proportional to ð�inP=�Þ2,
similar to the second-order expansion in P of the integer
MIRO contribution in Eq. (97).

B. Nonlinear mixing of MIRO and HIRO

The physics of high LLs out of equilibrium is further
enriched by the possibility of simultaneously applying both
ac and strong dc fields to make MIRO and HIRO superimpose
onto each other. A nonlinear response of the 2DEG to the
fields provides a way of mixing the ‘‘frequencies’’ �ac and �dc
of the two types of magneto-oscillations.

1. Experiments on MIRO in a strong dc field

The nonlinear mixing of MIRO and HIRO was demon-
strated in experiments on ultrahigh mobility structures by
Zhang, Zudov et al. (2007) and Hatke et al. (2008b).
Figure 36(a) shows the effect of a direct current I varied
under continuous microwave irradiation on the differential
resistivity r!: the MIRO maxima are seen to evolve into
minima, and vice versa, with increasing I. One of the most
remarkable features in Fig. 36(a) is the crossing points
(marked by arrows) of the curves measured at different

(kG)B

r

f GHz

T K

(a) (b)

dc

ac

FIG. 36 (color online). (a) Differential resistivity r! vs magnetic

field at a radiation frequency of 69 GHz for different levels of dc

excitation, from I ¼ 0 (thick curve) to 20 �A in steps of 1 �A.

Integers show the order of the MIRO peaks. The arrows mark the

zero-response nodes that remain largely immune to dc excitation.

(b) Part of the data in (a), represented as the dependence of r! on

�dc at different fixed �ac ranging from 2 to 3 in steps of 0.05. The

traces are offset in steps of 0:75 �. The data were obtained at

T ¼ 1:5 K in a 100 �m wide Hall-bar sample with ne ’ 3:7�
1011 cm�2 and � ’ 1:2� 107 cm2=V s. Adapted from Hatke et al.,

2008b.
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currents: the resistivity shows little change at �ac ¼ n and
nþ 1=2, where n is an integer.

More insight into this phenomenon is gained if one plots
r! as a function of �dc for different fixed �ac, as in Fig. 36(b).
The amplitude of the oscillations of r! in Fig. 36(b) is seen
to be much larger around �ac ¼ n� 1=4 (near which �ac the
extrema of MIRO are located) than around �ac ¼ n, nþ 1=2
(near which �ac MIRO exhibit zero response). Figure 36(b)
also reveals a substantial difference between integer and
half-integer �ac: while at �ac ¼ 2, 3 the oscillations are
suppressed but still clearly visible, they virtually disappear
at �ac ¼ 5

2 ,
7
2 . The phase of the oscillations of r! as a

function of �dc also shows a strong dependence on �ac.
Specifically, at integer �ac ¼ 2, 3, r! behaves very similar
to HIRO, with maxima occurring at �dc ’ n, Eq. (142). In
contrast, the oscillations of r! at the MIRO maximum for
�ac ’ 3� 1=4 and the MIRO minimum for �ac ’ 3þ 1=4
are phase shifted by about a quarter cycle in opposite
directions compared to HIRO.

As discussed in Sec. V.D, a minimum of HIRO may evolve
into a ZdRS (Hatke et al., 2010). The nonlinear mixing of
MIRO and HIRO gives rise to an interplay between ZRS
associated with MIRO and ZdRS. Namely, as �dc increases,
ZRS that are present at zero dc field transform into maxima of
r!, as shown in Fig. 36(a) for the case of ZRS near �ac ¼
2þ 1=4. In turn, a ‘‘strong maximum’’ of MIRO may be
converted by the strong dc field into a ZdRS. The ZdRS in a
microwave-driven 2DEG, originating from the maximum of
MIRO near �ac ¼ 2� 1=4, was observed by Zhang, Zudov
et al. (2007) and Zhang et al. (2008a). In fact, this observa-
tion appears to be an example of a more general (not relying
on the presence of microwaves) phenomenon which relates
ZdRS to the maxima of magneto-oscillations at zero dc field.
The vanishing of r! of a similar nature, with ZdRS evolving
from the maxima of oscillations, has also been observed in
the absence of radiation: in particular, the emergence of ZdRS
from the maxima of strongly developed SdH oscillations was
demonstrated by Bykov et al. (2007). The ZdRS was also
found to emerge from the maxima of MISO (Bykov, Mozulev,
and Vitkalov, 2010; Gusev et al., 2011; Wiedmann et al.,
2011a).

2. Frequency mixing for magneto-oscillations

Analysis of the experimental data in Fig. 36(b) led Hatke
et al. (2008b) to conclude that the local maxima of r! in the
�ac-�dc plane occur at the points given by

�ac þ �dc ’ n; �ac � �dc ’ m� 1=2; (167)

where n and m are integers [the first condition was estab-
lished in earlier work by Zhang, Zudov et al. (2007)]. Hatke
et al. (2008b) also argued that Eqs. (167) point to the key role
played by backscattering off disorder in shaping the oscilla-
tions in Fig. 36(b) (similar to HIRO in the limit of �dc � 1).
Within a qualitative picture proposed by Hatke et al. (2008b),
r! has a maximum when disorder-induced scattering, accom-
panied by shifts of the cyclotron orbit in real space by 2Rc, is
maximized for shifts in the direction of the dc field (first
condition) and minimized for shifts in the opposite direction
(second condition).

As the calculation by Khodas and Vavilov (2008) shows,
the above picture is qualitatively accurate (to first order in P
and for �ac > �dc) in describing the mechanism of ‘‘frequency
mixing’’ of MIRO and HIRO; however, it misses an important
microwave-induced correction to the amplitude of HIRO
which arises at the same order in P . Specifically, to order
OðP Þ and at �dc � 1, the oscillatory correction to the resis-
tivity �r! ¼ r! � �D for overlapping LLs reads (Khodas and
Vavilov, 2008)

�r!=�D ¼ ð16�2=��dcÞð�=��ÞðC0 þ Cþ þ C�Þ;
C0 ¼ ð1� 2P Þ�dc cos2��dc;
C� ¼ P ð�dc � �acÞ cos2�ð�dc � �acÞ:

(168)

The frequency-mixing terms C� are seen to be exactly
canceled by the linear-in-P correction to the amplitude of
HIRO in C0 at integer �ac (in which case the oscillatory
correction �r! reduces to the plain HIRO).

Moreover, Eqs. (167) can be obtained from Eqs. (168) only
if the modified HIRO, described by the term C0, are ne-
glected. In general, the location of the extrema of r! given
by Eqs. (168) and the whole picture of the oscillations for that
matter depend in an essential way on P . In particular, the
most characteristic feature in Fig. 36, the vanishing of
the oscillations at half-integer �ac, can be obtained, within
the theoretical framework on which Eqs. (168) are based, at
special values of P only. Specifically, Eqs. (168) yield the
following for half-integer �ac:

�r!=�D ¼ ð16�2=�Þð�=��Þð1� 4P Þ cos2��dc: (169)

The amplitude of the oscillations in Eq. (169) is seen to be
reduced by microwaves. In fact, extending the calculation of
�r! for �dc � 1 to arbitrary P (Khodas and Vavilov, 2008;
Khodas et al., 2010) gives for half-integer �ac Eq. (169) with

the factor 1–4P substituted by the Bessel function J0ð4
ffiffiffiffiffi
P

p Þ
[see Eq. (170)]. The nodes of the oscillations of r! as a
function of �dc at half-integer �ac are thus only reproduced

at zeros20 of J0ð4
ffiffiffiffiffi
P

p Þ. Given the accuracy of the reported
nodes at half-integer �ac, it appears that the data in Fig. 36
were likely obtained in the very close vicinity of a zero of

J0ð4
ffiffiffiffiffi
P

p Þ.

3. Fractional HIRO

The nonlinear response of a 2DEG to the dc field was also
investigated experimentally in the regime of fractional MIRO,
in the vicinity of the most prominent fraction �ac ¼ 1=2, by
Hatke et al. (2008a). Remarkably, the experiment revealed
the emergence of fractional HIRO at �ac ¼ 1=2, with
‘‘frequency doubling’’ for the oscillations of r! as a function
of �dc. As seen in Fig. 37, the overall behavior of r! at �ac ¼
1=2 in the interval 0< �dc < 1 closely replicates that at
the CR in the interval 0< �dc < 2, with the period of the
oscillations in �dc at �ac ¼ 1=2 being half that at �ac ¼ 1

20A reversal of the sign of the oscillations with �dc when P reaches

a certain threshold, reported by Zudov et al. (2009), may provide a

valuable calibration point for the microwave intensity seen by the

2DEG, which is difficult to obtain from other experiments.
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(which means that the period of the oscillations of r! as a
function of the direct current is the same).

A description of the fractional HIRO in a microwave-
excited 2DEG was suggested by Lei (2009) in terms of a
postulated ansatz which assumes an infinitely fast thermal
equilibration in the frame moving with the drift velocity (see
footnote 19). Lei (2009) argued that the maxima of r! should
obey the condition �dc þ n�ac ¼ m with integer n and m, and
the numerically obtained solution to the ansatz equation
yielded a picture similar to the one in Fig. 37; however, the
dependence of the strength and shape of the oscillations on
the major parameters, such as P or the degree of overlap of
LLs, remained unclarified.

On the other hand, the observed frequency doubling for
HIRO may be a signal of the inelastic mechanism of non-
equilibrium magneto-oscillations. Indeed, in overlapping
LLs, a controlled calculation by Khodas and Vavilov (2008)
at order �2 and at first order in P in the collision integral
showed that, while the displacement mechanism is dominant
in the limit of �dc � 1, the inelastic mechanism for �in=� * 1
is equally important at �dc � 1 (see also Sec. V.C) and
produces strong subharmonics in the dependence of r! on
�dc, in contrast to the displacement mechanism at this order in
�. Importantly, the strength of the subharmonics in the pres-
ence of radiation depends on P and oscillates with �ac
(Khodas and Vavilov, 2008). In particular, for overlapping
LLs, the subharmonic with a period in �dc equal to 1

2 is as

strong at �ac ¼ 1=2, �dc � 1, and P � 1 as the harmonic with
period 1. In the case of separated LLs, the half-integer MIRO
and half-integer HIRO are also likely to strengthen each other
in analogy with the theory of two-photon absorption (see
Sec. VI.A). Further theoretical work is necessary to study
the exact form of the interplay of the two types of fractional
oscillations.

4. ac field-periodic oscillations

In Sec. V.B.3 the focus was on the regime of a moderate
microwave power ðP & 1Þ. The nonlinearmixingofHIROand
MIRO in the case of high-power radiation ðP � 1Þ results
in the emergence of oscillations of r! as a function of P
(in addition to the oscillations in �dc and �ac). These were
observed (Khodas et al., 2010) as a series of oscillations

grouped around the CR and decaying away from it, with
much less pronounced but similar behavior also detected
around �ac ¼ 2. In contrast to the integer MIRO, which have
one maximum and one minimum per unit interval of �ac
[see Fig. 38(a)], or the fractional MIRO with their oscillatory
features around rational values of �ac, these oscillations exhibit
multiple maxima and minima around the CR (and its second
harmonic) with a period which depends on P , as shown in
Fig. 38(b).

A theoretical description by Khodas and Vavilov
(2008) and Khodas et al. (2010) of the reported oscillations
in P gives for the oscillatory correction �r! at order �2 for

�dc � maxf1; ffiffiffiffiffi
P

p g:
�r!
�D

¼16�2

��dc

�

��
½�dc cosð2��dcÞJ0ð4

ffiffiffiffiffi
P

p
sin��acÞ

�2�ac sinð2��dcÞcosð��acÞ
ffiffiffiffiffi
P

p
J1ð4

ffiffiffiffiffi
P

p
sin��acÞ�;

(170)

which generalizes Eqs. (168) to the case of large P , with
the Bessel functions J0;1 oscillating with a period which

depends on P and �ac. Oscillations in P of this form
are a characteristic signature of multiphoton transitions
between stationary states of a periodically (in time) driven
electron system. Namely, the absorption rate for N-photon
transitions between these states is proportional21 to

J2N½2
ffiffiffiffiffi
P

p
sinð�=2Þ�, where � is the angle between the initial

and final directions of the velocity (in the quasiclassical
formulation) (Lei, 2009; Khodas et al., 2010). In the limit
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FIG. 38 (color online). Differential resistivity r!ðBÞ (a) for zero
direct current I and (b) for I ¼ 64 �A. The vertical lines mark the

position of the CR and its second harmonic. Parameters of the

sample, frequency f ¼ 27 GHz, and temperature T ¼ 1:5 K are

the same as in Fig. 37. Adapted from Khodas et al., 2010.
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FIG. 37 (color online). Differential resistivity r! vs �dc (bottom

axis) and the direct current I (top axis) at (a) �ac ’ 1=2

and (b) �ac ’ 1. The data were obtained at f ¼ 27 GHz
and T ¼ 1:5 K in a 100 �m wide Hall-bar sample with

ne ’ 3:8� 1011 cm�2 and � ’ 1:3� 107 cm2=V s. From Hatke

et al., 2008b.

21A similar structure arises in a variety of closely related problems,

e.g., in studying the multiphoton CR in three dimensions (Seely,

1974) or the dynamical Franz-Keldysh effect (Johnsen and Jauho,

1998).
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�dc � 1, where the main contribution to HIRO comes from
� ’ �, summing over N (Khodas et al., 2010) reproduces
Eq. (170). The characteristic number of photons N in the

transitions that yield Eq. (170) for P � 1 is22 2
ffiffiffiffiffi
P

p
. This

conclusion is further corroborated by the observation that r!
from Eq. (170) in the limit P � 1 oscillates, as a function of

�ac in the vicinity of integer �ac, with a period 1=2
ffiffiffiffiffi
P

p
. The

experimental data (Khodas et al., 2010), shown in Fig. 39(a),
demonstrate that the oscillations of r! with �ac become more
rapid with increasing microwave power, in close agreement
with the result of Eq. (170), shown in Fig. 39(b).

VII. OUTLOOK

A. Perspectives

Here we briefly outline several particularly promising
directions of ongoing and future research in the field of
nonequilibrium magnetotransport phenomena in semicon-
ductor structures.

1. Domain structure of ZRS and ZdRS

The present status of research in this area has been re-
viewed in Sec. IV. The physics of the broken-symmetry states
with spontaneously formed domains remains one of the
central research directions in the field. Particularly important
open questions include the character of the transition into
ZRS, the corresponding critical behavior (in the case when

the transition is continuous) beyond the mean-field picture,
the residual resistance of a finite-size system, the origin of the
experimentally observed Arrhenius-like temperature depen-
dence of the ZRS resistivity, the effect of thermal and non-
equilibrium noise on ZRS, as well as dynamics of the domain
structure.

2. Giant photoresponse at the second harmonic

of the cyclotron resonance

Recent experiments on ultrahigh mobility structures re-
ported a narrow spike at ! ’ 2!c superposed on the n ¼ 2
maximum of MIRO (Dai et al., 2010; Hatke et al.,
2011a). The height of the spike was several times (up to
an order of magnitude) larger than the height of other
MIRO maxima. Dai et al. (2010) also observed an en-
hancement of higher-order even MIRO maxima (n ¼ 4, 6,
8); see Fig. 40. It is important to note that these effects
were observed in samples which also show a very strong
negative MR (also in the absence of microwaves) attributed
to the quasiclassical memory effects, see Sec. II.B.2, which
indicates a possible connection between these phenomena.
In fact, the memory effects that are responsible for the
QCMR may also produce spikes in the photoconductivity
at the CR harmonics; see Secs. II.B.2, II.B.3, and III.B.5.
However, it is unclear why only even harmonics (and, most
prominently, the one at n ¼ 2) are enhanced. Further theo-
retical work is thus needed.

3. Nonequilibrium phenomena in separated Landau levels

Nonequilibrium phenomena in the regime of fully sepa-
rated LLs deserve further study. On the theoretical side, the
theory for mixed disorder, which is the type of disorder
characteristic of most of the experimentally relevant samples
(see Secs. III and V), needs to be extended into this regime.
On the experimental side, this corresponds to studying the
nonequilibrium phenomena in stronger magnetic fields. It is
further interesting to see how the phenomena discussed in
this review evolve when entering the QH regime, see also
Sec. VII.A.7.

r
)stinu .bra(

dB

dB

dB

dB

dB

ac ac

(b)(a)

FIG. 39 (color online). (a) Measured and (b) calculated differen-

tial resistivity r! vs �ac for I ¼ 54 �A and different microwave

intensities. The traces are labeled according to (a) the attenuation

levels and (b) the value of P . Parameters of the sample, frequency

f ¼ 27 GHz, and temperature T ¼ 1:5 K are the same as in

Figs. 37 and 38. From Khodas et al., 2010.

FIG. 40 (color online). Magnetoresistivity measured at f ¼
121:45 GHz and T ¼ 0:3 K in a Hall-bar sample with ne ’ 2:9�
1011 cm�2 and � ’ 3:0� 107 cm2=V s. The dark resistivity, nor-

malized to its value at B ¼ 0, is shown in the inset. Adapted from

Dai et al., 2010.

22More specifically, for 1=P 1=2 � j ��acj, where ��ac ¼ �ac � n and

n is the nearest integer, the sum over N, which is of the typeP
NJ

2
Nð2

ffiffiffiffiffi
P

p Þð�dc þ N�acÞ cos½2�ð�dc þ N�acÞ� and contains the

factor oscillating in N with a period 1=j ��acj, is determined by a

close vicinity of the sharp peak in J2Nð2
ffiffiffiffiffi
P

p Þ at N ¼ 2
ffiffiffiffiffi
P

p
whose

width is of order P 1=6. The peak falls off exponentially on

the side of larger N and as ð2 ffiffiffiffiffi
P

p � NÞ�1=2 on the other side.

For 1=P 1=2 � j ��acj � 1=P 1=6, the main contribution to �r!
comes from a narrow interval of positive 2

ffiffiffiffiffi
P

p � N whose width

is of order 1=j ��acj.
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4. Nonequilibrium transport at low temperature

Most of the experiments and theories presented in this
review focussed on the temperature regime where SdH oscil-
lations are suppressed. The interplay of the nonequilibrium
physics and SdH oscillations at lower T is also of interest. A
remarkable phenomenon of this kind that was studied both
experimentally (Bykov et al., 2007; J. Q. Zhang et al., 2007;
Kalmanovitz et al., 2008; Zhang, Vitkalov, and Bykov, 2009;
Zudov et al., 2011; Studenikin et al., 2012) and theoretically
(Dmitriev, 2011) is the dc field-induced inversion of the phase
of SdH oscillations. In particular, Bykov et al. (2007)
reported the formation of ZdRS that arise, as the strength of
the dc field increases, from the maxima of SdH oscillations;
see Sec. V.D. A similar effect on the SdH oscillations by the
microwave field was observed by Mani (2004a).

5. Spin-related phenomena

In the regime of strongly developed SdH oscillations, the
spin degree of freedom starts to play an important role.
Romero et al. (2008) explored the effect of a parallel
magnetic field Bk on ZdRS in this regime (see Sec. IV.D)

and found that the ZdRS are destroyed for sufficiently strong
Bk. The result was explained (Romero et al., 2008) within the

kinetic equation formalism described in Secs. III and V in
terms of a Zeeman splitting-induced modification of the
oscillatory component of the DOS. Studenikin et al. (2012)
extended further the Zeeman splitting effect on nonlinear
magnetotransport to the regime of strong magnetic fields
normal to the 2DEG. Still, spin-related phenomena in non-
equilibrium magnetotransport remain largely unexplored.
This research direction overlaps with the investigations of
the regime of separated LLs (see Sec. VII.A.3) and of the QH
regime (see Sec. VII.A.7).

6. Polarization dependence of MIRO

As discussed in Sec. III.B.1.b, the relative orientation of
the dc field and the linearly polarized microwave field affects
considerably the MIRO amplitude within the framework of
the displacement mechanism, while the inelastic contribution
is insensitive to the direction of the linear polarization. Mani
(2004b), Mani et al. (2002), and Wiedmann et al. (2011a)
reported equal MIRO signal strength for the microwave field
polarized along and perpendicular to the current direction,
which is consistent with the dominance of the inelastic con-
tribution. On the other hand, a recent experimental study
(Mani, Ramanayaka, and Wegscheider, 2011) reported a
pronounced difference of the MIRO amplitude for two direc-
tions of the linear polarization, indicating the relevance of the
displacement contribution. Systematic experimental study of
the dependence of this effect on the temperature and micro-
wave power would permit a quantitative comparison with
theoretical predictions (see Sec. III.B.1.g).

Smet et al. (2005) used an optical setup in order to study
MIRO induced by circularly polarizedmicrowaves.According
to the theories presented in Sec. III, the amplitude of MIRO
depends on the direction of circular polarization through the
factor 1=½ð!�!cÞ2 þ 1=�2�, where the minus (plus) sign
corresponds to active (inactive) polarization. Surprisingly,
Smet et al. (2005) reported similar results for two directions

of circular polarization, with a difference being much smaller
than expected from this factor, see Fig. 41. To understand a
possible reason for the failure to see a large effect after
changing the direction of circular polarization of the incoming
radiation, it is important to take into account that the electric
field in Eqs. (74), (77), and (82), is the total electric field acting
on electrons in the sample.

The total field is different from the source field because of
screening by the 2DEG; see Secs. II.C.3 and III.B.1.c. This
leads to a strong broadening of the CR: the above factors are
modified to 1=½ð!�!cÞ2 þ �2�, where � ¼ 2�e2ne=mcnr

[Eq. (57)] for � � 1=�. For a typical concentration ne ¼
3� 1011 cm�2 and the effective refractive index nr ¼
ð ffiffiffiffiffiffiffiffiffi

12:4
p þ 1Þ=2 ’ 2:3 for the case of a GaAs-based structure
one finds �=2� ’ 17 GHz, which is comparable to character-
istic microwave frequencies.While this explains why no sharp
resonance features is experimentally observed near ! ¼ !c,
this is not sufficient to explain why the difference in the
amplitude of the MIRO harmonics with n ¼ 2, 3, 4 for two
directions of the circular polarization in Smet et al. (2005) was
within a few percent (Fig. 41). Indeed, since � is several times
smaller than the frequencies !=2� ¼ 100–250 GHz used in
this experiment, one would expect a much larger difference
(a factor of about 9 for n ¼ 2 and of about 4 for n ¼ 3, etc.).
This discrepancy can be most likely attributed to the fact that
the metallic electrodes and other elements of the sample setup
may strongly affect the polarization of the electric field. In
particular, Mikhailov and Savostianova (2006) showed, for a
simple geometry, that metallic contacts may strongly reduce
the degree of circular polarization of microwaves [the actual
geometry of the experiment (Smet et al., 2005) is much more
complex, and a quantitative evaluation of the polarization of
the actual electric field would require a numerical modeling of
the whole setup].

In fact, close inspection of the transmission data shown in
Fig. 41(a) [see also Fig. 1 of Smet et al. (2005)] provides
additional support to this explanation. While the data do
show, as expected, a CR dip around !c ¼ ! for the active
polarization, the �1=ð!�!cÞ2 tail of the Lorentzian for the
active polarization is not observed when j!cj becomes

CRI

CRI

CRA

CRA

B (T)

R
xx

(
)

P
snart

(a)

(b)

FIG. 41 (color online). (a) Transmitted power (arb. units) and

(b) magnetoresistivity measured at f ¼ 200 GHz and T ’ 1:7 K
in a van der Pauw sample with ne ’ 2:6� 1011 cm�2 and � ’
1:8� 107 cm2=V s for both active (CRA) and inactive (CRI) senses

of circular polarization. Adapted from Smet et al., 2005.
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smaller than ! by more than �. Instead, the data for both
polarizations of the incoming wave become practically iden-
tical, with the transmission amplitude for the active polariza-
tion being even slightly higher. This suggests that, in this
range of magnetic fields, the polarization of the incoming
radiation was essentially immaterial for the actual polariza-
tion of the electric field. Since this is exactly the range of
magnetic fields where MIRO are measured, this observation
is consistent with the fact that the MIRO signal was almost
identical for both directions of the circular polarization of the
incoming wave.

It appears that the presence of nearby metallic contacts
and, more generally, the effects of a finite sample geometry
may strongly affect the actual polarization of microwaves,
thus seriously complicating the study of the polarization
dependence of MIRO. Devising an experimental setup that
would be free from these drawbacks remains a challenge for
future work.

7. Nonequilibrium magnetotransport in the

integer and fractional quantum Hall regime

It is natural to ask whether the phenomena described in this
review have their counterparts in the QH regime, both on a
QH plateau and near a QH transition. In this respect, it is
worth recalling another nonequilibrium phenomenon, the
breakdown of the QH effect at a high current density, that
has been extensively studied; see Nachtwei (1999) for a
review. While this is an essentially different phenomenon,
certain aspects bear similarity with the MIRO and HIRO and,
especially, ZRS and ZdRS physics (the nonequilibrium phase
transition between states with zero and finite resistivity in a
transverse magnetic field, the inhomogeneous spatial distri-
bution of the electric field and current, the importance of
relaxation processes, etc.). Recent experiments (Stellmach
et al., 2007; Nachtwei et al., 2008) addressed the photo-
response of QH structures on both sides of the breakdown
bias. It remains to be seen whether there is a deeper connec-
tion between the two classes of phenomena.

It would be further interesting to observe phenomena
analogous to those reviewed here near half-filling of the
lowest LL, where transport is associated with composite
fermions (CFs) (Heinonen, 1998; Jain, 2007). A possibility
to observe MIRO of CFs was discussed by Park (2004). There
is, however, a serious difficulty related to the fact that CFs are
much more strongly scattered by disorder than electrons. The
dominant type of disorder for CFs is an effective random
magnetic field produced by the random scalar potential
through the flux attachment (Halperin, Lee, and Read,
1993). The damping of quantum magneto-oscillations in-
duced by the random magnetic field is much stronger than
the one ( / e��=!c�q ) characteristic of the regime of low
magnetic fields (Aronov et al., 1995; Mirlin, Altshuler, and
Wölfle, 1996; Mirlin, Polyakov, and Wölfle, 1998; Evers
et al., 1999). This appears to be an essential obstacle for
the observation of pronounced MIRO or HIRO in this regime.
On the other hand, while the DOS oscillations around � ¼
1=2 are strongly damped, one does observe conductivity
oscillations which are of a different origin: they are induced
by quantum localization of CFs, leading eventually to the
fractional QH effect (Mirlin, Polyakov, and Wölfle, 1998;

Evers et al., 1999). An intriguing question, deserving theo-
retical and experimental investigation, is whether these os-
cillations would be sufficient to induce MIRO or HIRO under
nonequilibrium conditions.

B. Nonequilibrium magnetotransport phenomena

in other 2D systems

1. Electrons on liquid helium

Electrons on a surface of liquid helium represent a remark-
able 2D electronic system with parameters strongly different
from those of 2DEGs in semiconductor structures; see
Grimes (1978), Andrei (1997), and Monarkha and Kono
(2004) for reviews. First, because of a very low density,
correlations play an essential role: in the zero-temperature
limit this system would be a Wigner crystal. Second, the
electron gas on helium becomes nondegenerate already for
very low temperatures. Finally, relaxation times at Kelvin
temperatures are several orders of magnitude longer than in
semiconductor 2DEGs. Quasiclassical magnetotransport in
this system has been studied both experimentally and theo-
retically during the last two decades (Dykman et al., 1993;
Dykman, Fang-Yen, and Lea, 1997; Lea and Dykman, 1998;
Dykman and Pryadko, 2003; Monarkha and Kono, 2004). The
focus of a more recent activity was on the photoresponse of
the electron fluid. A characteristic feature of the photores-
ponse is resonant absorption at a frequency of order 100 GHz
(Konstantinov et al., 2007, 2008, 2009, 2012; Konstantinov,
Kono, and Monarkha, 2008), corresponding to the transition
from the lowest to the first excited subband (i.e., the first
excited state for motion in the direction transverse to the
surface). It is worth noting that the conductivity of electrons
on the helium surface is measured in a contactless way, by
capacitively coupling the 2D electron system to electrodes
and measuring the complex conductance (admittance) of
the circuit.

In recent experiments (Konstantinov and Kono, 2009,
2010), the resonant intersubband excitation measurements
were performed in a transverse magnetic field. Remarkably,
the system showed 1=B-periodic magnetoconductance oscil-
lations and zero-conductance states (the experiments were
performed in the Corbino-disk geometry), similar to those
found in the semiconductor 2DEG (see Secs. III and IV). The
similarity includes the same periodicity and phase, as well as
a strong temperature dependence. Further, Konstantinov,
Chepelianskii, and Kono (2012) reported spontaneous cur-
rents (in the absence of driving voltage) in the regime of zero-
conductance states. An explanation of these oscillations put
forward by Konstantinov et al. (2009), Konstantinov and
Kono (2010), and Monarkha (2011a, 2011b) is analogous to
the MIRO theory (see Sec. III) and combines features of both
the inelastic and displacement mechanisms. Specifically, it
was proposed that the resonant microwave absorption leads to
a strongly nonequilibrium occupation of the first excited
subband, which is followed by a quasielastic transition from
the lowest LL of the first excited subband to one of higher
LLs of the lowest subband.

The above observations appear remarkable as they show
that the nonequilibrium phenomena in high LLs are
also relevant to strongly interacting and nondegenerate
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2D electron systems. On the other hand, a systematic
theory of the nonequilibrium magnetotransport phenomena
in the electron liquids on helium remains to be developed.
In particular, one has to clarify the role of resonant
absorption to the excited subband, the relative weight of
the contributions of different mechanisms, relevant relaxa-
tion processes, etc.

2. Graphene

The experimental breakthrough in fabrication of graphene
(Novoselov et al., 2004) has brought a new 2D system with
fascinating properties into condensed-matter physics (Geim
and Novoselov, 2007). The hallmark of graphene is the
massless Dirac-fermion character of charge carriers. It mani-
fests itself, in particular, in the unconventional QH effect in
both graphene (Novoselov et al., 2005; Zhang et al., 2005)
and graphene bilayers (McCann and Fal’ko, 2006; Novoselov
et al., 2006). The Dirac spectrum implies also a linearly
vanishing DOS at the neutrality point, i.e., the effective

mass vanishes as
ffiffiffiffiffiffiffiffijnej

p
as a function of the electron concen-

tration or, equivalently, of the gate voltage. As a result, the
LLs are not equidistant, with the distance between them
(cyclotron frequency) being strongly enhanced near the
Dirac point. One of the manifestations of this is the observa-
tion of the QH effect up to room temperature (Novoselov
et al., 2007). For a recent review of the electronic properties
of graphene see Castro Neto et al. (2009). One of the most
active directions in the graphene research is devoted to the
optoelectronic properties of graphene, including a variety of
prospective applications (photodetectors, light emitters, solar
cells, lasers, etc.) (Bonaccorso et al., 2010; Mueller, Xia, and
Avouris, 2010).

Spectroscopy studies of graphene in a transverse
magnetic field confirmed the Dirac-fermion LL spectrum
(Sadowski et al., 2006). Neugebauer et al. (2009) presented
a spectroscopic manifestation of the exceptionally high purity
of graphene samples: the LL quantization was observed atB as
low as 1mTand T up to 50 K. For a review of LL spectroscopy
of graphene see Orlita and Potemski (2010).

The properties of graphene make it an interesting and
promising system for studying nonequilibrium physics in
quantizing magnetic fields. Several differences compared to
the semiconductor systems may be foreseen. First, according
to the above discussion, one can expect that in high-quality
graphene samples with the chemical potential located near
the Dirac point the quantum phenomena will become pro-
nounced at relatively high T and relatively low B. Second, the
nonequidistant character of LLs may lead to a modification of
the functional dependence of magneto-oscillations on T and
the strength of disorder. In fact, a first experiment in this
direction appeared recently: Tan et al. (2011) studied SdH
oscillations in graphene under dc bias and observed a phase
inversion analogous to that found in semiconductor struc-
tures; see Sec. VII.A.4.
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Note added in proof.—Several important developments

occurred after the submission of this review. References to

some of them are added to the main text, others are listed

below.
� In a series of papers (Dmitriev et al., 2012; Dietrich,

Byrnes, Vitkalov, Dmitriev, and Bykov, 2012;

Dietrich, Byrnes, Vitkalov, Goran, and Bykov, 2012;

Dietrich, Vitkalov et al., 2012), the transport properties

of a 2DEG in a GaAs quantum well surrounded by

AlAs/GaAs superlattices were investigated. A peculiar

feature of these structures is a substantial concentration

of mobile (but highly resistive) X electrons in the AlAs

layers. These layers serve as additional screening gates

and induce a spatially inhomogeneous electron density

profile across the Hall bar when a direct current is driven

through the 2DEG. The obtained results include the

suppression of the transport and quantum scattering

rates (particularly strong for the latter) due to the screen-

ing by X electrons (Dmitriev et al., 2012), as well as the

observation of a current-induced modulation of SdH

oscillations (Dietrich, Byrnes, Vitkalov, Goran, and

Bykov, 2012) and MISO (Dietrich, Vitkalov et al.,

2012) in the nonlinear regime resulting from the elec-

tron density variation induced by the X-electron layer.

Unlike HIRO, the period of these oscillations is inde-

pendent of B.
� SdH oscillations in ultrahigh mobility quantum wells in

tilted magnetic fields were measured by Hatke et al.

(2012a) at very high tilt angles. The data were explained

in terms of the dependence of the effective mass on the

in-plane magnetic-field component Bk due to a finite

thickness of the quantum wells. Recall that the effect of

Bk on the scattering rates has also been observed; see

Secs. III.C.3 and V.A.
� A strong photoresistance peak that originates from the

magnetoplasmon resonance (MPR) superimposed on

ZRS was observed by Hatke, Zudov, Watson, and

Manfra (2012). The experiment suggests that the con-

tributions of MPR and MIRO to the resistivity sum up

and can be independently controlled by tuning the

magnetic field and microwave frequency. This makes

it possible to extract separately the MPR and MIRO

contributions. Similar to the bichromatic MIRO experi-

ments (see Sec. IV.A), the extrapolation of the extracted

individual contributions to the region where the ob-

served resistance is zero yields a negative resistivity.
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� For electrons on liquid helium (see Sec. VII.B.1), the
theory of microwave-induced magnetoconductance os-
cillations was further developed (Monarkha, 2012) to
include strong Coulomb interaction between electrons.
The theory demonstrates the dramatic effect that slow
thermal fluctuations of the electric field in the electron
liquid have on inter-LL scattering. The theoretical
results agree well with the experimental findings by
Konstantinov et al. (2009) and Konstantinov and
Kono (2010).
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