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One of the best signatures of nonclassicality in a quantum system is the existence of correlations

that have no classical counterpart. Different methods for quantifying the quantum and classical parts

of correlations are among the more actively studied topics of quantum-information theory over the

past decade. Entanglement is the most prominent of these correlations, but in many cases

unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations

other than entanglement provides a better division between the quantum and classical worlds,

especially when considering mixed states. Here different notions of classical and quantum

correlations quantified by quantum discord and other related measures are reviewed. In the first

half, the mathematical properties of the measures of quantum correlations are reviewed, related to

each other, and the classical-quantum division that is common among them is discussed. In the

second half, it is shown that the measures identify and quantify the deviation from classicality in

various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics,

and many-body physics. It is shown that in many cases quantum correlations indicate an advantage

of quantum methods over classical ones.American Physical Society
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I. INTRODUCTION

In the early days of quantum information, entanglement
was viewed as the main feature that gives quantum computers
an advantage over their classical counterparts. Superpositions
without entanglement were seen as insufficient, especially
given the fact that the concept of superposition exists in the
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classical physics of waves, as it does in the classical theory of

electromagnetism, for instance. The view that entanglement

is crucial is also supported by foundational considerations,

for it is known that Bell’s inequalities cannot be violated by

either classical or quantum superpositions and require genu-

ine entanglement to exceed the classically determined limit

for correlations. Schrödinger (1935) captured all this in his

highly influential ‘‘cat paper,’’ saying entanglement is ‘‘not

just one of many traits, but the characteristic trait of quantum

physics.’’ However, this straightforward and simple view

about the efficiency of quantum-information processing

changed dramatically about ten years ago, when several

developments took place.
First Knill and Laflamme (1998) showed that quantum

computation in which only one qubit is not in a maximally

mixed state, while the rest are, can achieve an exponential

improvement in efficiency over classical computers for a

limited set of tasks (see Sec. VI). This started to throw doubt

on entanglement being responsible for all quantum speedups,

since a computer register which is so mixed as to have only

one nonmaximally mixed qubit is unlikely to be entangled.

The Knill-Laflamme model is experimentally motivated by

(liquid-state) nuclear-magnetic-resonance (NMR) informa-

tion processing, at room temperature, and is therefore

important for resolving the question of whether NMR can

provide a genuine implementation of a quantum computer.
Another development came in 2001 while analyzing differ-

ent measures of information in quantum theory. Zurek (2000),

Henderson and Vedral (2001), and Ollivier and Zurek (2001)

concluded that entanglement does not account for all non-

classical correlations and that even separable states usually

contain correlations that are not entirely classical. These

correlations are aptly named quantum discord. Soon after

its inception Laflamme et al. (2002) gave an intuitive argu-

ment that quantum discord may be connected to the perform-

ance of certain quantum computers. In a seminal paper Datta,

Shaji, and Caves (2008) put this on a firm quantitative basis.

They calculated discord in the Knill-Laflamme algorithm and

showed that it scales with the quantum efficiency, unlike

entanglement which remains vanishingly small throughout

the computation [see Merali (2011) for a popular account].

This triggered a flurry of activity in applying discord to many

different protocols and problems in quantum information.
About the same time another form of quantum correlations

different from entanglement emerged in an information-

theoretic approach to thermodynamics: Oppenheim et al.

(2002) showed that the advantage of using nonlocal operation

to extract work from a correlated system coupled to a heat

bath is related to entanglement only in the case of pure states.

In the general case, the advantage is related to more general

forms of quantum correlations. This work was followed by a

series of results which we review in Secs. II.B and VII.B.

Other results linking discord to various areas of physics

involved open systems, which provided Zurek’s original

motivation for introducing quantum discord (Zurek, 2000).

While Zurek’s main interest was decoherence (see

Sec. VII.A), Rodrı́guez-Rosario et al. (2008) linked discord

to open-system dynamics and their description via dynamical

maps (see Sec. VIII). At the same time, Dillenschneider

(2008) studied the relation between discord and quantum

phase transitions opening the way for further studies on
discord in many-body systems (see Sec. IX).

Nowadays,1 there are many ways of understanding the gap
in correlations, that is to say that classical correlations and
entanglement do not exhaust all possible correlations in
quantum systems. The widely used measures of quantum
correlations are quantum discord, quantum deficit,
measurement-induced disturbance, and relative entropy of
discord. In the first half of this review we introduce these
different measures and show the fundamental differences and
similarities between them. In the second half of the review we
identify and discuss the major directions of research that
make use of measures of quantum correlations. They are
quantum information, quantum algorithms, quantum thermo-
dynamics, dynamics of open systems, and many-body
physics.

II. DIFFERENT MEASURES OF QUANTUM

CORRELATIONS

Quantum systems can be correlated in ways inaccessible to
classical objects and the existence of nonclassical correla-
tions in a system can be seen as a signature that subsystems
are genuinely quantum. Various notions of classicality exist
and give rise to the hierarchy of states and correlations
considered to be genuinely quantum (Céleri, Maziero, and
Serra, 2011). It is not our aim to discuss all notions of
classicality present in the literature; rather we focus on
some of those directly related to correlations. For example,
one may regard as classical the local-realistic world view put
forward in the famous Einstein-Podolsky-Rosen (EPR) paper
(Einstein, Podolsky, and Rosen, 1935). Using modern lan-
guage this is the world in which the results of experiments can
be calculated by local algorithms supplied with data trans-
mitted no faster than the speed of light. Bell (1964) showed
that correlations between outcomes of such local programs
are bounded, and there exists entangled quantum states with
correlations violating this bound. Interestingly, Werner
(1989) proved that there are entangled quantum states that
generate outcomes in perfect agreement with a local-realistic
view. Therefore according to local realism even correlations
generated by some entangled states are classical.

Clearly one can object to the notion that local realism is all
there is to the classical world. The set of states admitting a
local-realistic model is reduced if another notion of classi-
cality is introduced. One may regard as classical those states
which can be prepared with the help of local operations and
classical communication (LOCC). According to this notion,
the set of classical states is exactly the set of separable
(not entangled) quantum states (Horodecki et al., 2009),
and quantum correlations correspond exactly to entangle-
ment. However, one may object to this notion of classicality
too, having in mind the nature of the operations allowed
in the framework of LOCC. For example, local operations
here allow for the preparation of indistinguishable pure
quantum states, whereas it is impossible to prepare pure-

1The application of entropic measures to quantum correlations

dates back to the works of Everett, Lindblad, and Holevo (Everett-

III, 1973; Holevo, 1973a, 1973b; Lindblad, 1973).
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indistinguishable states of a classical bit: a classical bit about
which we have full knowledge (in a pure state) can be either
in state ‘‘0’’ or in state ‘‘1,’’ i.e., in one of two fully distin-
guishable states. General quantum states which satisfy this
final classicality constraint form a subset of the separable
quantum states and accordingly define some separable states
as quantum correlated. This is the spirit of this section, in
which certain notions and measures of classicality are dis-
cussed, according to which the classical states form a subset
of the separable states.

A. Quantum discord

The notion of classicality related to quantum discord
revolves around information theory (Zurek, 2000;
Henderson and Vedral, 2001; Ollivier and Zurek, 2001).
Two systems are correlated if together they contain more
information than taken separately. If we measure the lack
of information by entropy, this definition of correlations is
captured by the mutual information

IðA:BÞ � SðAÞ þ SðBÞ � SðABÞ; (1)

where SðXÞ is the Shannon entropy SðXÞ ¼ �Pxpx logpx if X
is a classical variable with values x occurring with probability
px, or SðXÞ is the von Neumann entropy SðXÞ ¼
�trð�X log�XÞ if �X is a quantum state of system X (all
logarithms are base two). For classical variables, Bayes’ rule
defines a conditional probability as pxjy ¼ pxy=py. This im-

plies an equivalent form for the classical mutual information

JclðBjAÞ ¼ SðBÞ � SðBjAÞ; (2)

where the conditional entropy SðBjAÞ ¼ P
apaSðBjaÞ is the

average of entropies SðBjaÞ ¼ �Pbpbja logpbja. The classi-

cal correlations can therefore be interpreted as information
gain about one subsystem as a result of a measurement
on the other.

In contradistinction to the classical case, in the quantum
analog there are many different measurements that can be
performed on a system, and measurements generally disturb
the quantum state. A measurement on subsystem A is de-
scribed by a positive-operator-valued measure (POVM) with

elements Ea ¼ MyaMa, where Ma is the measurement opera-
tor and a is the classical outcome. The initial state �AB is
transformed under the measurement (with unknown result) to

�AB ! �0AB ¼
X
a

Ma�ABM
y
a ; (3)

where party A observes outcome a with probability pa ¼
trðEa�ABÞ and B has the conditional state �Bja ¼
trAðEa�ABÞ=pa. This allows us to define a classical-quantum
version of the conditional entropy SðBjfEagÞ �

P
apaSð�BjaÞ

and introduce classical correlations of the state �AB in anal-
ogy with Eq. (2) (Henderson and Vedral, 2001):

JðBjfEagÞ � SðBÞ � SðBjfEagÞ: (4)

To quantify the classical correlations of the state indepen-
dently of a measurement JðBjfEagÞ is maximized over all
measurements,

JðBjAÞ � max
fEag

JðBjfEagÞ: (5)

When the measurement is carried out by a set of rank-one
orthogonal projections f�ag, the state on the right-hand side
of Eq. (3) has the form

�aB ¼
X
a

pa�a � �Bja; (6)

which involves only fully distinguishable states for A and
some indistinguishable states for B. Such states are often
called classical-quantum (CQ) states, or quantum-classical
(QC) when one exchanges the roles of A and B. Note that for
a CQ state there exists a von Neumann measurement of A
which does not perturb the state.

The quantum discord of a state �AB under a measurement
fEag is defined as a difference between total correlations, as
given by the quantum mutual information in Eq. (1), and the
classical correlations Eq. (4) (Ollivier and Zurek, 2001):

DðBjAÞ � IðA:BÞ � JðBjAÞ
¼ min
fEag

X
a

paSð�BjaÞ þ SðAÞ � SðABÞ: (7)

Note that the minimization here is equivalent to maximization
in Eq. (5). This is just a difference between two classically
equivalent versions of conditional entropy DðBjAÞ¼
minfEagSðBjfEagÞ�SðBjAÞ, where SðBjAÞ¼SðABÞ�SðAÞ is
the usual conditional entropy (Nielsen and Chuang, 2000).
This equivalence holds for rank-one POVM measurements
which in classical theory correspond to questions about a
value of a classical random variable. One could imagine
classical coarse-grained measurements with outcomes which
merge several values of the random variable (a given value
may be present in several coarse-grained outcomes). Such
measurements can be regarded as higher-rank classical
POVMs, and conditional entropy under such measurements
can be strictly bigger than the usual conditional entropy as the
POVMs do not provide as much information as fine-grained
measurements. This would not be satisfactory as the correla-
tions are obtained with classical measurements on a classical
random variable. In agreement with this conceptual point, it
turns out that rank-one POVM measurements minimize the
discord (see Sec. II.I).

1. Properties of discord

Quantum discord has the following properties: (a) It is not
symmetric, i.e., in general DðBjAÞ � DðAjBÞ, which may be
expected because conditional entropy is not symmetric. This
can be interpreted in terms of the probability of confusing
certain quantum states; see Sec. III.B.1. (b) Discord is non-
negative, D � 0, which is a direct consequence of the con-
cavity of conditional entropy (Wehrl, 1978). (c) Discord is
invariant under local-unitary transformations, i.e., it is the
same for state �AB and state ðUA �UBÞ�ABðUA �UBÞy. This
follows from the fact that discord is defined via entropies, and
the value obtained for measurement fEag on the state �AB can

also be achieved with measurement fUAEaU
y
Ag on the trans-

formed state. Note that discord is not contractive under
general local operations and therefore should not be regarded
as a strict measure of correlations satisfying postulates of
Bennett et al. (2011). However, JðBjAÞ is contractive under
general local operations. (d) Discord DðBjAÞ vanishes if and
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only if the state is classical quantum (Ollivier and Zurek,
2001; Datta, 2008). (e) Discord is bounded from above
as DðBjAÞ � SðAÞ, while JðBjAÞ � minfSðAÞ; SðBÞg (Li and
Luo, 2011).

2. Thermal discord

Zurek (2003b) presented a slightly different version of
quantum discord:

~DthðBjAÞ ¼ min
f�ag
½SðA0Þ þ SðBjf�agÞ� � SðABÞ: (8)

Here SðA0Þ is the entropy of outcomes of A after the orthogo-
nal measurement f�ag.2 The term being minimized above is
exactly the entropy of the state �aB in Eq. (6). Compared to
the discord of Eq. (7), Dth involves minimization of a sum
of local entropy and the conditional entropy and therefore
additionally takes into account the entropic cost of perform-
ing local measurements. This is relevant when discussing
thermodynamics of correlated systems (see Sec. VII); we
therefore call Dth the thermal discord.

We note that this quantity may be further optimized by
considering rank-one POVM measurements:

DthðBjAÞ � min
fEag
½SðfpagÞ þ SðBjfEagÞ� � SðABÞ: (9)

However, in much of the literature only rank-one orthogonal
projections are used when dealing with it. See Sec. II.I for a
discussion on projective measurements versus POVM for
thermal discord.

3. Measurement-dependent discords

The two discords above are defined to be independent of
external constraints by requiring the optimization over all
measurements. There are, however, some circumstances
where only a particular measurement (or a set of measure-
ments) is relevant, for example, when considering a particular
measuring device. One can define the measurement-
dependent discord as

DðBjfEagÞ ¼ IðA:BÞ � JðBjfEagÞ; (10)

with fixed fEag. Note that since it involves no optimization it
is not a particularly good measure of correlations (Brodutch
and Modi, 2012). In general DðBjfEagÞ � DthðBjfEagÞ for the
same measurement with equality if �A ¼

P
aMa�AM

y
a

(Brodutch and Terno, 2010), i.e., fMag ¼ f�Eig
a g, where �A ¼P

apa�
Eig
a . The quantity DðBjf�Eig

a gÞ is related to
measurement-induced disturbance in Sec. II.D.

B. Quantum deficit

This measure of quantum correlations originates in ques-
tions regarding work extraction from quantum systems
coupled to a heat bath (Oppenheim et al., 2002; Horodecki
et al., 2003). Their operational approach links quantum-
correlations theory and quantum thermodynamics. Zurek
(2003b) used a similar approach to justify a physical

interpretation of the optimized thermal discord in terms of
Maxwell’s demon (see Sec. VII.B). The corresponding notion
of classicality is in the spirit of LOCC (Horodecki et al.,
2003). A system is classical (only has classical correlations) if
the same amount of work that can be extracted from the total
system as one Wt can also be extracted from the subsystems
after suitable LOCC operations Wl. This motivates the defi-
nition of quantum deficit as a work deficit

� � Wt �Wl: (11)

von Neumann (1932) and Oppenheim et al. (2002) related
the work extractable from the total system described by
density operator �AB to its entropy:

Wt ¼ logdAB � Sð�ABÞ; (12)

where dAB is the dimension of the Hilbert spaceH AB, and we
set the units such that the work is measured in bits, i.e., the
Boltzmann constant times the temperature of the bath is set to
kBT ¼ 1. In essence, the purer the state the more work can be
extracted from it. In keeping with this, a subclass of LOCC
operations should be allowed for the process of extracting
work from the subsystems as adding ancillary systems in pure
states, allowed in LOCC, would artificially increase the
amount of extractable work. In order to make statements
about the system of interest alone, it is considered closed
and the only nonunitary operation allowed is sending a
subsystem down the dephasing channel, which models clas-
sical communication. The resulting subclass of LOCC opera-
tions is called closed LOCC (CLOCC). CLOCC does not
allow a change in the total number of particles and contains
the following members: (a) local-unitary operations and
(b) sending a system down a dephasing channel (which can
also be applied locally). The action of a dephasing channel on
a state � is to remove all of its off-diagonal elements in a
specified basis �! P

j�j��j, where the projectors �j

define the basis of dephasing. It is allowed to change the
basis of the dephasing channel from one use of it to another.
Note that dephasing is equivalent to a local projective mea-
surement with an unknown result, and general POVMs are
not allowed within a CLOCC paradigm (see Sec. II.I.5 for a
general treatment).

Since entropy is a measure of ignorance, Eq. (12) estab-
lishes an equivalence between the extractable work and
information in a state. These two notions are interchangeable
and the quantum deficit � ¼ It � Il is the difference between
information contained in the whole system It � Wt and the
localizable information Il � Wl (Horodecki, Horodecki, and
Oppenheim, 2003; Horodecki et al., 2005).

In the process of information localization, the initial state
�AB is transformed via CLOCC operations to a state �0AB.
Since CLOCC operations keep the number of particles con-
stant, for the final state the particles are just relocated, i.e.,
d0AB ¼ dAB. By definition, the work that can be extracted

locally from the subsystems is the sum of work extracted
from subsystem A in the state �0A and work extracted from

subsystem B in the state �0B:

Wl ¼ ½logd0A � Sð�0AÞ� þ ½logd0B � Sð�0BÞ�: (13)

In this way the following expression is obtained for the
quantum deficit:

2In general, the tilde above a quantity means that it is optimized

over rank-one orthogonal-projective measurements.
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� ¼ min½Sð�0AÞ þ Sð�0BÞ� � Sð�ABÞ; (14)

where the minimum is over CLOCC operations. This is also
called two-way deficit. For pure states this quantity measures
entanglement (Horodecki et al., 2003). In general, the tools
from entanglement theory can be adopted here in order to
distill local pure states and obtain bounds for the quantum
deficit (Horodecki et al., 2003). Similar techniques show
that, for Werner and isotropic states, the deficit is lower
bounded by the (regularized) relative entropy of entangle-
ment, in agreement with the intuition that it captures more
quantum correlations than entanglement (Synak-Radtke,
Horodecki, and Horodecki, 2005).

1. Zero-way deficit

Various simpler forms of deficit differ in the type of com-
munication allowed between parts A and B. There are zero-
way, one-way, and two-way quantumdeficits. For the zero-way
deficit, A and B are required to first fully dephase their local
states before communicating, and only then to send the result-
ing states to use the obtained classical correlations. Therefore,
the minimization in Eq. (14) is now over local dephasings.
Because of subadditivity Sð�0ABÞ � Sð�0AÞ þ Sð�0BÞ, it is best
to transmit one of the subsystems to the other party and the
zero-way deficit reads

~�; ¼ min
f�a��bg

Sð�0ABÞ � Sð�ABÞ: (15)

Now the state after the dephasing is

�AB ! �0AB ¼
X
a;b

�a ��b�AB�a ��b; (16)

and is therefore of a general form

�ab ¼
X
a;b

pab�a ��b: (17)

Such a state is called a classical-classical (CC) state
(Oppenheim et al., 2002; Piani, Horodecki, and Horodecki,
2008).3 Since all projectors in this decomposition correspond to
fully distinguishable states, the probabilitypab can be regarded
as a classical joint probability of random variables a and b.

Zero-way deficit equals minimal relative entropy between
�AB and a state belonging to the set of CC states (Horodecki
et al., 2005).

2. One-way deficit

In the one-way deficit A can communicate (via a dephasing
channel) to B. In this way they produce a state in the from of
Eq. (6). If another state is obtained, A can always dephase �0A
in its eigenbasis without changing local entropy and bring it
to the zero-discord state. Therefore, the one-way deficit reads

~�! ¼ min
f�ag

Sð�0ABÞ � Sð�ABÞ: (18)

This quantity is equal to the thermal discord ~Dth (Zurek,
2003b). It is also given by the relative entropy to the set of
CQ states (Horodecki et al., 2005).

3. Two-way deficit

We finish this survey of different types of deficit by noting
that the two-way quantum deficit � can be strictly smaller

than the one-way deficit ~�! (Horodecki et al., 2005). Let
�! �

P
apa�a � �Bja and � �

P
bpb�Ajb ��b, and con-

sider the mixture

� � p!�! ��a0¼0 þ p � ��a0¼1: (19)

Here A holds the additional system A0. This state has vanishing
� because once A0 is measured A and B can use suitable one-
way communication to localize all its information. However,

the one-way deficit is strictly positive, e.g., ~�!>0, because

with probabilityp the state� has positive ~�!. IfA observes
A0 to be in ‘‘0’’ thenAB have aCQ state and if she observes ‘‘1’’
then they have a QC state.

4. Classical deficit

In a similar manner the classical deficit is introduced as

�cl � Il � ILO; (20)

which captures how much more information can be obtained
from �AB by exploiting classical correlations with the help of
the dephasing channel. Here ILO � logdAB � Sð�AÞ � Sð�BÞ
stands for local information of the initial state. Surprisingly,
the one-way version of this quantity �!cl � I!l � ILO,
although similar to classical correlations Eq. (4), is not a
proper measure because it can increase under local operations
(Synak-Radtke and Horodecki, 2004).

C. Distillable common randomness

What is the amount of classical correlations in a bipartite
quantum state? Devetak and Winter (2004) took yet another
information-theoretic approach to this question.

A natural amount of classical correlations is present in a
perfectly correlated pair of classical binary variables each
having a full bit of entropy:

�cr ¼ 1
2j00ih00j þ 1

2j11ih11j: (21)

This state is referred to as common randomness. Roughly
speaking, the measure of classical correlations we describe
below gives the number of states �cr into which the initial
state can be converted asymptotically. More rigorously, one
first considers many copies of a bipartite state �AB and a fixed
amount m of classical communication from A to B in order to
optimize the amount of common randomness CðmÞ per copy.
The one-way distillable common randomness is defined as

D!cr � lim
m!1½CðmÞ �m�; (22)

and therefore quantifies obtainable common randomness in
excess of the invested classical communication.

It turns out that this quantity is equivalent to a regularized
version of the classical correlations JðBjAÞ of Sec. II.A,
giving it operational meaning (Devetak and Winter, 2004);
see Sec. V.E. It is also equal to the regularized version of one-
way classical deficit (Devetak and Winter, 2005). Note the
subtlety here: It follows that the regularized one-way classical
deficit is equivalent to the regularized classical correlations

3When it does not lead to confusion we use the generic name

classical states to denote CQ, QC, or CC states.
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JðBjAÞ but, as mentioned in Sec. II.B.4, the equivalence no
longer holds in a single-copy scenario where the one-way
classical deficit is not monotonic (may increase) under local
operations. Therefore, regularization here regains monotonic-
ity of the one-way classical deficit (Synak-Radtke and
Horodecki, 2004).

D. Measurement-induced disturbance

At the heart of classical physics lies realism: in principle,
measurements can reveal properties of a classical system
without modifying the system. Luo (2008b) formalized this
notion of classicality with the measurement-induced distur-
bance (MID). Mathematically the same quantity as that given
in Eq. (24) is also introduced in Rajagopal and Rendell (2002)
under the name deficit, although not to be confused with the
deficit from Sec. II.B.

When a bipartite state is measured by local projective mea-
surements, the postmeasurement state is given in Eq. (16). A
state �AB is classical if local measurements exist which do not
perturb it, i.e., �AB ¼ �0AB. MID is defined as the difference

M ¼ Ið�ABÞ � Ið�0ABÞ; (23)

where Ið�Þ denotes quantum mutual information and �0AB is

given by Eq. (17) with local measurements induced by the
spectral decomposition of the reduced states �A ¼

P
apa�a

and �B ¼
P

bpb�b. Since the reduced states are not affected
by this measurement, MID is just the entropic cost of a mea-
surement in this basis:

M ¼ Sð�0ABÞ � Sð�ABÞ: (24)

On the other hand, depending on the context, we can choose
any local measurements to define a fixed-measurement mea-
sure similar toMID.Because of the concavity of vonNeumann
entropy, this is a non-negative quantity with the advantage that
it is simple to calculate. An asymmetric version ofMID relates
to the work deficit within Maxwell’s demon paradigm
(Brodutch and Terno, 2010); see Sec. II.A.3. Another asym-
metric measure in the spirit of MID is the so-called
measurement-induced nonlocality quantifying a change of
the whole system under a measurement on its subsystem
only (Fu and Luo, 2011; Luo and Fu, 2011).

E. Symmetric discord

The fact that MID does not involve any optimization has
been criticized as this results in overestimation of the amount
of nonclassical correlations. Moreover, for states whose re-
duced operators have degenerated spectrum,M is not uniquely
defined. This leads to positive (even maximal) values of M
even for classical states, e.g., if their reduced operators are
completely mixed (Girolami, Paternostro, and Adesso, 2011).
In this case MID is also discontinuous (Wu, Poulsen, and
Mølmer, 2009; Brodutch and Modi, 2012). To circumvent
these problems, an optimized version of MID is proposed

DS � Ið�ABÞ � max
fEa�Ebg

Ið�0ABÞ; (25)

where optimization is over general local measurements. We
call this optimized quantity symmetric discord, but it is also

known as WPM discord, after Wu, Poulsen, and Mølmer
(2009), and ameliorated MID. See Partovi (2009) for an
argument for symmetric classical correlations.

Piani, Horodecki, and Horodecki (2008) and Wu, Poulsen,
and Mølmer (2009) introduced and studied symmetric dis-
cord with POVMs, while Girolami, Paternostro, and Adesso
(2011)) studied it with projective measurements. Wu,
Poulsen, and Mølmer (2009), Luo, Fu, and Li (2010), and
Zhang and Wu (2012) showed that for one- or two-sided
measurements the classical part of correlations, i.e.,
maxIð�0ABÞ, is greater than min½Sð�AÞ; Sð�BÞ�. Luo, Fu, and
Li (2010) conjectured the same bound for quantum discord,
and Li and Luo (2011) and Zhang and Wu (2012) showed the
conjecture to be true. Luo and Zhang (2009), Maziero, Celeri,
and Serra (2010), and Mišta et al. (2011) also discussed
symmetric discord. Mišta et al. traced its origins as far back
as Lindblad (1973, 1991).

F. Relative entropy of discord and dissonance

The Kullback-Leibler divergence or relative entropy is a
frequently used tool to distinguish two probability distribu-
tions or density operators. It resembles a distance measure,
however, it is not symmetric. Modi et al. (2010) laid out a
unifying approach to various correlations based on the idea
that a distance from a given state to the closest state without
the desired property (e.g., entanglement or discord) is a
measure of that property. For example, the shortest distance
to the set of separable states (belonging to set S) is a mean-
ingful measure of entanglement called relative entropy of
entanglement (Vedral, Plenio, Rippin, and Knight, 1997;
Vedral and Plenio, 1998; Bravyi, 2003). Similarly, one de-
fines the shortest distances to the set of classical states (states
belonging to set C) or product states (states belonging to set
P ). If all the distances are measured with relative entropy
SðX k YÞ � �trðX logYÞ � SðXÞ, the resulting measures are
(Modi et al., 2010)

ER¼min
�2S

Sð�k�Þ ðrelative entropy of entanglementÞ;
DR¼min

�2C
Sð�k�Þ ðrelative entropy of discordÞ;

QR¼min
�2C

Sð�k�Þ ðrelative entropy of dissonanceÞ:

The state � in these expressions belongs to the set of en-
tangled states E, � is in the set of separable states S, � is in
the set of classical states C, and� is in the set of product states
P . In this way quantum dissonance is defined as nonclassical
correlations which exclude entanglement. Interestingly, rela-
tive entropy of dissonance is not present in pure bipartite
states, but can appear in pure multipartite states. For example,

the jWi state of three qubits jWi ¼ ð1= ffiffiffi
3
p Þðj100i þ j010i þ

j001iÞ admits almost 1 bit of dissonance (Modi et al., 2010).
It is conjectured that N-partite jWi states contain logN bits of
relative entropy of discord and it is unknown which part of it
is the dissonance (Parashar and Rana, 2011). An advantage of
using distancelike measures is that everything can be defined
for multipartite states; see Sec. III.C. It also turns out that DR

and QR are optimized by an orthogonal-projective measure-
ment (Modi et al., 2010).
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Various relations between these measures are presented in
Fig. 1. It turns out that most of the quantities are given by the
entropic cost (difference of entropies) of performing opera-
tions bringing the initial state to the closest state without the
desired property. In particular, if the set of classical states is
considered to be the set of states of Eq. (17), the relative
entropy of discord is just a zero-way quantum deficit

DR ¼ ~�; (Horodecki et al., 2005). If the set of classical
states is considered as the set of classical-quantum states,
Eq. (6), the corresponding relative entropy of discord under
one-sided measurements D!R is just thermal discord and one-

way deficit D!R ¼ ~Dth ¼ ~�! (Horodecki et al., 2005). For a

given measurement f�ag, DR is related to discord as D ¼
D!R � L� (Modi et al., 2010). However, the optimizations of

the two are not the same. Some of the entropic costs form
closed loops in Fig. 1 giving rise to the additivity relations

T� þ L� ¼ DR þ C�: (26)

The same relation holds for dissonance.

G. Geometric measures

Relative entropy is technically not a metric, e.g., it is not
symmetric. We now discuss a measure based on a proper
distance metric, the Hilbert-Schmidt distance (Dakić, Vedral,
and Brukner, 2010):

DG � min
�2C
k�� �k2 ¼ min

�2C
tr½ð�� �Þ2�: (27)

If C is the set of classical-quantum states, Eq. (6), this
measure is known as geometric quantum discord. Similar to
the relative entropy of discord, the geometric measure gives
the Hilbert-Schmidt distance to the state after the (optimal)
measurement (Luo, Fu, and Li, 2010):

DG ¼ min
f�ag
k�� �0k2; (28)

where �0 ¼ P
a�a��a. We prove it in a simple way. Assume

�� is the closest classical state to �, i.e., k�� �k2 � k��
��k2 � 0 for any classical �. We show that the closest state is

given by � dephased in the eigenbasis of the closest state
�� ¼

P
k�kjkihkj. To this end, consider � ¼

P
kjkihkj�jkihkj,

and note that this form implies trð��Þ ¼ trð�2Þ and similarly
trð���Þ ¼ trð���Þ. This gives k�� � �k2 � 0, which must

vanish for �� ¼
P

kjkihkj�jkihkj. The same argument applies

to measurements of the form �a � 1 and therefore to
classical-quantum states.

Recently Bellomo et al. (2012) studied a unified version of
geometric discord in a manner similar to the study of Modi
et al. (2010). They found that the closest product state to a
given quantum state is not the product of the marginal states,
which makes computing the total correlations with a geomet-
ric measure nontrivial. On the other hand, the result above
shows that the closest classical state is obtained by dephasing
the quantum state. Putting it all together, they find that unlike
for the relative-entropy measures, geometric measures of
correlations are not additive. They give an additivity expres-
sion for correlations as a function of the original state for
X states, given in Eq. (45).

1. Analytic formulas

The advantage of the geometric measure is that the mini-
mization present in the definition can be performed explicitly.
Consider first general two-qubit states. They admit the rep-
resentation

�AB ¼ 1

4

X3
�¼0

X3
�¼0

T���� � ��; (29)

where �� ¼ f1; �x; �y; �zg is the �th Pauli operator and the

reals T�� 2 ½�1; 1� are experimentally accessible averages

T�� ¼ trð��� � ��Þ. The geometric discord of a quantum

state �AB is given by

DG ¼ 1

4

X3
k¼1

X3
�¼0

T2
k� � �max; (30)

where �max is the largest eigenvalue of the matrix L ¼ ~a ~aT þ
T̂T̂T , built from the local Bloch vector ~a ¼ ðT10; T20; T30Þ and
correlation matrix T̂ having as entries Tkl for k, l ¼ 1, 2, and
3 (Dakić, Vedral, and Brukner, 2010). For an explicit form of
�max, see Girolami and Adesso (2012). This reveals, for
example, that separable Bell-diagonal states with maximal
discord have a simple symmetric form

�j1j2j3 �
1

4

�
1 � 1þ 1

3

X3
k¼1
ð�1Þjk�k � �k

�
; (31)

with jk ¼ 0, 1; see Fig. 2. Intuitively this should be the case as
they are evenly weighted mixtures of ‘‘maximally nonorthog-
onal’’ states.

Hassan, Lari, and Joag (2012) and Vinjanampathy and Rau
(2012) claimed similar results for more general bipartite
states. Shi, Jiang, and Du (2011b) gave an analytic formula
for symmetric geometric discord for two-qubit systems.

FIG. 1. Relative entropy of discord and dissonance. The diagram

shows the relationships between various states used in constructing

correlation measures based on relative entropy. An arrow X ! Y
indicates that Y is the closest state to X as measured by the relative

entropy SðX k YÞ. The relevant states Y belong to different subsets

as follows: � 2 E (the set of entangled states), � 2 S (the set of

separable states), � 2 C (the set of classical states), and � 2 P (the

set of product states). The resulting measures are relative entropy of

entanglement ER, relative entropy of discord DR, relative entropy of

dissonance QR, total mutual information T� and T�, classical

correlations C� and C�, and the local-entropic cost of dephasing

channels L� and L�. All relative entropies, except for ER (dotted

line), reduce to the differences in entropies of Y and X, SðX k YÞ ¼
SðYÞ � SðXÞ, leading to additivity relations across closed paths.

From Modi et al., 2010.

1662 Modi et al.: The classical-quantum boundary for . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



Geometric discord can be established directly from experi-
mental data measured on up to six copies of a quantum state
(Jin et al., 2012). The idea is to rephrase the discord in terms
of functions of powers of density operators and use known
circuits for their implementation (Horodecki and Ekert,
2002). The methods utilized in the above articles are highly
technical and we therefore forego the details here.

2. Bounds on geometric discord

Girolami and Adesso (2012) introduced a remarkably tight
lower bound on geometric discord DG of two qubits:

Q ¼ 1
12½2 trðLÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 trðL2Þ � 2 trðLÞ2

q
�; (32)

where L is defined below Eq. (30). A similar bound exists for
systems in 2� d dimensions. The value of Q (numerically)
upper bounds the negativity of two-qubit states squared, i.e.,
N 2 � Q � DG, with equalities for pure states (Girolami and
Adesso, 2011a). In terms of quantum discord, the geometric
discord of two-qubits admits the bound DG � 1

2D
2 (Luo and

Fu, 2010). Girolami and Adesso (2011b) gave another lower
bound on geometric discord, in terms of the correlation tensor
of a general bipartite state.

H. Continuous-variable discord

A wide class of infinite-dimensional physical systems, of
considerable experimental relevance, are describable using
Gaussian states and Gaussian operations: A state is defined as
Gaussian if its Wigner function (or equivalently characteristic

function) is Gaussian. Gaussian operations are those opera-
tions which map Gaussian states to Gaussian states (Simon,
Sudarshan, and Mukunda, 1987; Simon, Mukunda, and Dutta,
1994).

Gaussian quantum discord is defined as in Eq. (7) with the
restriction that the measurement of A is a general single-mode
Gaussian POVM (Adesso and Datta, 2010; Giorda and Paris,
2010). These measurements are all executable using linear
optics and homodyne detection (Giedke and Cirac, 2002).

A general form of Gaussian quantum discord is obtained
for two-mode Gaussian states, i.e., both measurements and
states are Gaussian (Adesso and Datta, 2010; Giorda and
Paris, 2010). Such states �AB are fully specified, up to local
displacements, by covariance matrix � with entries �kl ¼
tr½�ABðRkRl þ RlRkÞ�, where ~R ¼ ðxA; pA; xB; pBÞ is the vec-
tor of phase-space operators (Adesso and Illuminati, 2007).
Local-unitary operations correspond to local symplectic op-
erations of the covariance matrix and since quantum discord
is not affected by them it is sufficient to study two-mode
states in the standard form with diagonal sub-blocks

� ¼ A C

C B

 !
; (33)

where A ¼ a1, B ¼ b1, and C ¼ diagðc; dÞ. In these terms
the Gaussian quantum discord reads

D!CVð�Þ ¼ fð ffiffiffiffiffiffiffiffiffiffi
detA
p Þ � fð��Þ � fð�þÞ þmin

�0

fð ffiffiffiffiffiffiffiffiffiffi
det	

p Þ;
(34)

where �	 are symplectic eigenvalues defined by 2�2	 ¼
S	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 � 4 det�
p

with S ¼ Aþ Bþ 2C, and 	 ¼
B� CðA� �0Þ�1CT is the single-mode covariance matrix
of B after the measurement on A, and

fðxÞ ¼ xþ 1

2
log

�
xþ 1

2

�
� x� 1

2
log

�
x� 1

2

�
:

Minimization is over all covariance matrices �0 correspond-
ing to pure single-mode Gaussian states. Given a two-mode
covariance matrix � a closed formula is known for Gaussian
quantum discord (Adesso and Datta, 2010).

1. Properties of Gaussian discord

A remarkable conclusion from these studies is that all
nonproduct Gaussian states have nonclassical correlations
according to Gaussian discord. This is somewhat ironic given
the history of the Gaussian states. All Gaussian states were at
first considered classical because of the non-negativity of
their Wigner function. On the other hand, if classical states
are defined as having non-negative-regular Sudarshan-
Glauber functions, then almost all two-mode Gaussian states
are nonclassical, as found in numeric studies (Slater, 2000).
Finally, according to Gaussian discord all nonproduct states
are nonclassical.

Other properties of Gaussian discord include (a) separable
Gaussian states admit the bound D!CV � 1; (b) Gaussian en-

tanglement of formation ECV tightly bounds Gaussian discord
F#ðECVÞ � D!CV � F"ðECVÞ, for exact functions of the bounds
see Adesso and Datta (2010); and (c) let Dmax

CV �
maxfD!CV; D CVg and similarly Dmin

CV � minfD!CV; D CVg, then

FIG. 2 (color online). Geometric discord. The set of two-qubit

states with maximally mixed marginals, the so-called Bell-diagonal

states: On the axes we plot T11, T22, and T33 of decomposition in

Eq. (29). Physical states belong to the tetrahedron, among which the

separable ones are confined to the octahedron (Horodecki and

Horodecki, 1996). The states with vanishing geometric discord

are labeled by the lines. It is therefore clear that almost all states

have finite discord (Ferraro et al., 2010). The states with maximal

DG are the four Bell states corresponding to vertices of the

tetrahedron. Among the set of separable states, those which max-

imize geometric discord correspond to the centers of octahedron

faces and are given by Eq. (31). From Dakić, Vedral, and Brukner,

2010.
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the asymmetry propertyDmax
CV �Dmin

CV �Dmin
CV =½expðDmin

CV Þ�1�
is numerically given in Adesso and Datta (2010)).

Other quantum-correlation measures are adapted to
continuous-variable systems. Adesso and Girolami (2011)
discussed geometric discord for Gaussian states and Mišta
et al. (2011) and Tatham et al. (2012) studied symmetric
discord in detail. The latter reveals that non-Gaussian mea-
surements such as photocounting can minimize quantum
correlations for both Gaussian and non-Gaussian states.
This raises the question of whether Gaussian discord over-
estimates quantum correlations.

I. Generalized measurements

Many of our discussions up to now involved projective
measurements when optimization is required for defining
measures. Naturally, one would like to know if projective
measurements are optimal. We now present results for
different measures showing that extremal rank-one POVM
measurements are optimal, and orthogonal-projective mea-
surements are sometimes not enough.

1. Positive-operator-valued measure

A POVM, denoted as fEag, is a set of positive operators Ea

called POVM elements that sum to identity, reflecting pos-
itivity and normalization conditions for probabilities. As
positive operators, each Ea can be diagonalized and the
number of its nonzero eigenvalues gives the rank of the
POVM element. Rank-one POVMs are of special interest
and they are defined to be POVMs with only rank-one
elements. These elements are proportional to projectors, but
these projectors need not be orthogonal. The set of POVMs is

convex, i.e., if Eð1Þa and Eð0Þa are elements of a POVM, then the

convex combination of elements Ea � pEð1Þa þ ð1� pÞEð0Þa
defines a valid POVM. This structure reflects an experimen-
talist’s freedom to randomly choose one of many measuring
apparatuses. A POVM is called extremal if it cannot be
represented as a convex combination of other POVMs. A
rank-one POVM is extremal if and only if its elements Ea are
linearly independent (D’Ariano, Presti, and Perinotti, 2005).

Every POVM element can be written as Ea ¼ MyaMa

where Ma is called a measurement operator. This decompo-
sition is not unique and therefore knowledge of POVM
elements is not sufficient to describe postmeasurement states.
The full physical evolution is codified by the measurement
operators. The postmeasurement state, ignoring the measure-

ment outcome, is given by the map �0 ¼ Eð�Þ ¼ P
aMa�M

y
a .

Because of the nonuniqueness it happens that, e.g., a nonex-
tremal POVM can admit an extremal map (D’Ariano,
Perinotti, and Sedlák, 2011).

2. Symmetric discord

Consider measures based on mutual information such as
DS of Eq. (25). The goal is to maximize classical mutual
information of the results of general local measurements.
Here we show that coarse-grained measurements reveal less
mutual information than fine-grained measurements (Lang,
Caves, and Shaji, 2011). Consider coarse-grained POVM
elements of A: Ea ¼ P

kEak, where Eak are the fine-grained

elements. The coarse-grained element can always be fine
grained to the rank-one level by writing it in terms of its
spectral decomposition. The coarse-grained measurement has
outcome a, whereas the fine-grained outcomes are a and k.
Similarly for B, the fine-grained measurement gives out-
comes b and l. Since mutual information cannot increase
when dropping local variables Iða; k: b; lÞ � Iða: bÞ, it is
optimal to choose a rank-one POVM.

The optimal POVM has to be extremal due to the joint
convexity property of relative entropy. Classical relative
entropy Sðpab k papbÞ is equal to mutual information, and
joint convexity means that

S½ppð1Þabþð1�pÞpð0Þab kppð1Þa pbþð1�pÞpð0Þa pb�
�pSðpð1Þab kpð1Þa pbÞþð1þpÞSðpð0Þab kpð0Þa pbÞ; (35)

where it is presented for A’s convex POVM Ea � pEð1Þa þ
ð1� pÞEð0Þa that yields probabilities of measurement results

pa ¼ ppð1Þa þ ð1� pÞpð0Þa . The same reasoning applies to B’s
measurement and we conclude that mutual information of
measurement results is maximized by an extremal POVM.

Wu, Poulsen, and Mølmer (2009) and Lang, Caves, and
Shaji (2011) gave an explicit example using a qubit-qutrit
system for which the maximum of classical correlations is
attained by a genuine rank-one POVM, and not a projective
measurement onto orthogonal states. The example is related
to studies of maximal accessible information and reads

�AB ¼ 1

3

X3
a¼1

�a � �Bja; (36)

where �a are orthogonal projectors spanning the qutrit
Hilbert space and �Bja are three states of a qubit with

corresponding Bloch vectors forming an equilateral triangle.
It turns out that the optimal measurement of A is in the basis
of �a ’s, in which case B has an even mixture of �Bja states.

Holevo (1973a, 1973b) studied this exact situation showing
that a certain three-outcome POVM strictly extracts more
information than any two-outcome projective measurement
on B’s qubit. Note that it is not known whether for two qubits
orthogonal-projective measurements maximize the classical
correlations.

3. Quantum discord

The following argument that quantum discord is optimized
by a rank-one POVM is due to Datta (2008). The quantity to
be minimized is the classical-quantum version of conditional
entropy SðBjfEagÞ ¼

P
apaSð�BjaÞ. If instead of Ea one con-

siders its fine graining Ea ¼
P

kEak, the corresponding
classical-quantum conditional entropy is SðBjfEakgÞ ¼P

a;kpakSð�BjakÞ with the state of B after the measurement

of A being �Bjak ¼ trAðEak�ABÞ=pak. Since

�Bja ¼ trAðEa�ABÞ=pa ¼
X
k

trAðEak�ABÞ=pa

¼X
k

pkja�Bjak; (37)

where we used pkja ¼ pak=pa, and due to concavity

of entropy we have SðBjfEagÞ � SðBjfEakgÞ. It is therefore
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optimal to choose a rank-one POVM. Note that the POVM
formalism is perfectly suited here, because to calculate the
discord we do not need the postmeasurement states of A: only
the probabilities pa are important and the postmeasurement
states of B.

A similar line of reasoning shows that the optimal rank-one
POVM has to be extremal (Hamieh, Kobes, and Zaraket,

2004). We denote by �ðjÞ
Bja ¼ trAðEðjÞa �ABÞ=pðjÞa where we

also abbreviated pðjÞa ¼ trABðEðjÞa �ABÞ for j ¼ 0, 1. In this
notation

pa ¼ ppð1Þa þ ð1� pÞpð0Þa ;

�Bja ¼ p
pð1Þa
pa

�ð1Þ
Bja þ ð1� pÞp

ð0Þ
a

pa

�ð0Þ
Bja:

(38)

Note that �Bja is now represented as a convex mixture.

Plugging this into SðBjfEagÞ and using concavity of the
entropy we find

SðBjfEagÞ � pSðBjfEð1Þa gÞ þ ð1� pÞSðBjfEð2Þa gÞ: (39)

It is therefore optimal to choose an extremal POVM giving
the smaller of the classical-quantum conditional entropies on
the right-hand side. As an application, note that any POVM
with more than four elements acting on a two-dimensional
Hilbert space is not extremal (D’Ariano, Presti, and Perinotti,
2005) and therefore cannot optimize the discord.

The example of Eq. (36) can be adopted to show that
discord is optimized by a rank-one POVM which is not a
set of projectors onto orthogonal states (Lang, Caves, and
Shaji, 2011). Furthermore, quantum discord is optimized by a
genuine rank-one POVM already for some two-qubit ex-
amples (Synak-Radtke and Horodecki, 2004; Q. Chen
et al., 2011; Galve, Giorgi, and Zambrini, 2011a; Shi
et al., 2012). However, orthogonal-projective measurements
give a pretty tight upper bound on discord, and there is only a
small set of states for which numerics shows the difference
(Galve, Giorgi, and Zambrini, 2011a). They also show that
for rank-two states (with only two nonzero eigenvalues)
orthogonal-projective measurements are optimal.

4. Demons

Maxwell’s demons and goblins are discussed later in
Sec. VII.B. Here we take up the matter of demons and goblins
making generalized measurements. Demon discord is defined
as the difference in work extractable by a demon having access
to the whole system versus the work that can be extracted by
local goblins, having access only to subsystems, under
various communication scenarios (Oppenheim et al., 2002).
Discussions about general measurements in this context are
quite rare in the literature and therefore we first briefly explain
the physical picture corresponding to work extraction via a
general measurement. We then focus on thermal discord being
a particular instance of demon discord, for which the total
communication between the goblins is constrained to the
measurement outcome of one of them. A similar reasoning
holds for other demon discords (Lang, Caves, and Shaji, 2011).
It turns out that rank-one extremal measurements are optimal,
but it is not known whether the goblins can extract more work
using nonorthogonal projectors.

Consider a demon that has access to the whole state �AB of
dimension dAB. In order to allow for general measurements
on AB and keep track of the entropy flow, we allow the demon
to introduce an ancillary system M, of arbitrary dimension
dM, initially in the state j0i. A general measurement on AB
can now be implemented as a unitary evolution of the
principal system and ancilla followed by a projective mea-
surement on the ancilla (Nielsen and Chuang, 2000). The
postmeasurement state is �0ABM ¼

P
mpm�ABjm ��m, where

�ABjm ¼ Mm�ABM
y
m is described using general measurement

operators Mm. The work extracted from the postmeasure-
ment state reads Wþ ¼ logdAB þ logdM �

P
mpmSð�ABjmÞ,

whereas the work that has to be performed in order to erase
the ancillary system and the demon’s record of the measure-
ment outcomes isW� ¼ logdM þ SðfpmgÞ. Therefore, the net
work gain from the total state Wt ¼ Wþ �W� is given by

Wt ¼ logdAB �
X
m

pmSð�ABjmÞ � SðfpmgÞ: (40)

Note that this expression is exactly the same if we ignore the
need for an ancillary system and, regardless of whether Mm

are orthogonal projectors or not, say that the work extracted
after a measurement is logdAB �P

mpmSð�ABjmÞ, and erasure
of the demon’s knowledge about the measurement outcomes
consumes SðfpmgÞ bits of work. In conclusion, it is perfectly
legitimate to allow general measurements for demons and
goblins.

Another question is whether general measurements can do
better than orthogonal-projective measurements. For demons
having access to the whole system AB, the latter are optimal.
To see this, consider a measurement scenario with an ancil-
lary system, and note that the terms subtracted in Eq. (40) are
given by the entropy of the postmeasurement state Sð�0ABMÞ.
Since (local) projective measurements do not decrease en-
tropy Sð�0ABMÞ � Sð�ABMÞ ¼ Sð�ABÞ, where �ABM is the state

before the measurement, i.e., after unitary evolution of �AB �
�0. Therefore, the maximal work Wt ¼ logdAB � Sð�ABÞ is
attained by the measurement in the eigenbasis of �AB.

This may be different for the work extractable by the local
goblins. We focus now on the thermal discord, but the same
argument applies to other discords as well (Lang, Caves, and
Shaji, 2011). If goblin A performs a general measurement on
its system, with measurement probabilities pa, the work
extracted locally is WþA ¼ logdA �

P
apaSð�AjaÞ. By com-

municating the measurement results a, the state of goblin B
becomes �Bja and the work extracted by him is WþB ¼
logdB �P

apaSð�BjaÞ. Since only goblin A made a measure-

ment, to erase its record one performs W� ¼ SðfpagÞ bits of
work. The net effect under a general measurement Wl ¼
WþA þWþB �W� reads

Wl ¼ logdAB �
X
a

paSð�AjaÞ �
X
a

paSð�BjaÞ � SðfpagÞ:

(41)

Thermal discord is given by the difference Dth ¼ Wt �Wl

and we now show that in order to maximize Wl goblin A
should use rank-one extremal POVM.

Following Lang, Caves, and Shaji (2011), we first proved
that the work of Eq. (41) can be extracted using rank-one
local POVM. After performing a general measurement,
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instead of extracting work goblin A conducts a further pro-
jective measurement with elements f�kjag, the eigenbasis of

�Aja. The overall measurement operators are given by the

productNka � �kjaMa, whereMa describe the initial general

measurement, and the corresponding POVM elements

NykaNka are of rank one. Since the postmeasurement states

of A are pure, the work extracted by A and B is WþA þWþB ¼
logdAB �

P
apaSð�BjaÞ. However, the goblin has a more

detailed measurement record whose erasure consumesW� ¼
SðfpkagÞ ¼ SðfpagÞ þP

apaSðfpkjagÞ bits of work. Since�kja
form the eigenbasis of �Aja, the overall rank-one POVM gives

the same network gain as Eq. (41).
This work is optimized by an extremal POVM. To this end,

consider a nonextremal POVM with elements Ea ¼ pEð1Þa þ
ð1� pÞEð0Þa . We denote the maps corresponding to Eð1Þa and

Eð0Þa as Eð1Þa and Eð0Þa , respectively, and therefore the map

of the nonextremal POVM can be written as Ea ¼ pEð1Þa þ
ð1� pÞEð0Þa . The same reasoning as that which leads to
Eq. (39) shows now that SðAjfEagÞ�

P
apaSð�AjaÞ is concave

in fEag. This, together with concavity of classical-quantum
conditional entropy SðBjfEagÞ of Eq. (39) and concavity of
SðfpagÞ, gives

WlðfEagÞ � pWlðfEð1Þa gÞ þ ð1� pÞWlðfEð2Þa gÞ; (42)

where WlðfEagÞ is the work extracted using measurement
fEag. It is therefore optimal to choose extremal POVM.

5. Quantum deficit

The types of measurements that are permitted for optimi-
zation of quantum deficit are specified by the operations local
parties are allowed to perform. Under CLOCC no particles
can be added or removed. The local parties are restricted to
local-unitary transformations and sending particles via a
dephasing channel. This is equivalent to allowing, in addition
to local-unitary transformations, only orthogonal local pro-
jective measurements and sending particles via perfect quan-
tum channels.

A broader class of operations allows local pure ancillas to be
borrowed under the constraint that they must be returned in
pure states at the end of the protocol (Oppenheim et al., 2002;
Devetak, 2005). In this way an effective general local mea-
surement on the principal system can be performed by an
orthogonal-projective measurement on an ancillary system
after a suitable local-unitary evolution. The orthogonal-
projective measurement on the ancilla can be seen as classical
communication via a dephasing channel, giving one party
information about the distant measurement result. Under this
class of operations, a one-way quantum deficit becomes
equivalent to the thermal discord described above, and in
this case Eq. (41) gives the localizable information of Sec. II.B.

With this broader class of operations it is possible to define a
measure similar to the deficit, based on the distillable local
purity (Devetak, 2005). The amount of purity that can be
distilled from a system of entropy Sð�Þ is, in the many-copy
limit, Kð�Þ ¼ logd� Sð�Þ. If one is to distill local purity
from a bipartite system using one-way communication, the
distillable (local) purity reads K!ðABÞ ¼ logdAdB � SðAÞ �
SðBÞ � JðBjAÞ. The difference is givenby the quantumdiscord
(Brodutch and Terno, 2010), KðABÞ � K!ðABÞ ¼ DðBjAÞ.

The zero-way quantum deficit also admits a corresponding
demon discord. The localizable information is obtained by
two independent goblins who communicate with each other
only when erasing their classical records. The work goblins
extract locally under general measurement is now given by
WþA þWþB ¼ logdA�PapaSð�AjaÞþ logdB�PbpbSð�BjbÞ,
whereas the work required to erase their records using clas-
sical communication is W� ¼ SðfpabgÞ. Therefore, the cor-
responding demon discord or equivalently zero-way quantum
deficit under general measurements reads

�;¼X
a

paSð�AjaÞþSðfpabgÞþ
X
b

pbSð�BjbÞ�Sð�ABÞ;

(43)

where one should minimize the first three terms over inde-
pendent general local measurements. Clearly, under projec-
tive measurement we recover Eq. (15) of Sec. II.B.

The protocols allowed for calculation of two-way quantum
deficit lead to the following minimization problem. Along
with the initial state �AB, consider some ancillary systems of
total dimension dM, all initialized in the j0i state. At the end
of the protocol, A ðBÞ has access to state �0A (�0B), which may

contain both the principal and ancillary systems. After both
parties draw their work locally, the ancillas end up in a
completely mixed state, and therefore their erasure consumes
logdM bits of work. Taking this into account, the two-way
quantum deficit is

�PC ¼ min½Sð�0AÞ þ Sð�0BÞ� � Sð�ABÞ; (44)

and differs from the CLOCC two-way deficit of Eq. (14) in
that now one minimizes over local-unitary transformations
and dephasing-channel entropies for the principal system and
ancillas together. This class of operations allows for many
intermediate effective POVM measurements on the principal
system.

6. Distance-based measures

If the set of classical states in the diagrammatic approach,
described in Sec. II.F, is chosen as a set of CC or CQ states,
the proofs of Modi et al. (2010) show that it is optimal to
perform orthogonal-projective measurements in order to
minimize relative entropy of discord and dissonance. This
is because the closest classical state, in terms of relative
entropy, to an arbitrary state � is shown to be � itself
dephased in the eigenbasis of a classical state, which is
equivalent to orthogonal-projective measurements.

In Sec. II.G we proved the same result for geometric
discord (Luo, Fu, and Li, 2010). Therefore, geometric discord
is also optimized by orthogonal-projective measurements.

One could consider states that after the measurement are
classical in a larger space (e.g., the Neumark-extended
space). This then leads to the notion of generalized-classical
states; see Sec. IV. In this case, it may happen that POVMs
optimize the corresponding relative entropy or Hilbert-
Schmidt distance.

7. Gaussian discord

There are only a few analytic results concerning
optimization over general measurements in the definition of
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quantum correlations. Gaussian discord, described in
Sec. II.H, is a rare example having a closed-form expression
for discord (Adesso and Datta, 2010; Giorda and Paris, 2010).
It is optimized over generalized local Gaussian POVMs. It
turns out that in many cases the optimum is achieved for
projections onto coherent states, i.e., not an orthogonal-
projective measurement (Mišta et al., 2011).

J. Evaluation of quantum discord for two qubits

The optimization involved in computing discord poses a
challenge in evaluating the quantity for general states, similar
to that for entanglement of formation, for example. Analytical
results have been obtained only for a few specific cases, and
many studies of discord rely on numerical optimization for
determining the measurement basis that maximizes the clas-
sical correlations. In general, an attempt to derive a formula
for discord in a specific case proceeds in three steps: sim-
plification of the family of states to a normal form equivalent
up to local-unitary transformations, an efficient parametriza-
tion of the postmeasurement states, and an optimization over
the measurement variables including careful considerations
of all constraints and symmetries.

For bipartite mixed states, the first analytic results are
obtained for the three-parameter family of Bell-diagonal

states, arbitrary mixtures of j�	i ¼ ð1= ffiffiffi
2
p Þðj00i 	 j11iÞ,

j�	i ¼ ð1= ffiffiffi
2
p Þðj01i 	 j10iÞ, which is also the family of

two-qubit states having maximally mixed marginals
(Luo, 2008a). These states have the general form �BD ¼
1
4 ð1þ

P3
j¼1 cj�j � �jÞ up to local-unitary transformations.

Luo (2008a) parametrized projective measurements on one
party as B0 ¼ Vj0ih0jVy and B1 ¼ Vj1ih1jVy, where the
rotation V ¼ tI þ iðy � �Þ is subject to the constraint t2 þ
y21 þ y22 þ y23 ¼ 1 from unitarity. Denoting a general post-

measurement ensemble by fpk; �kg, it can be shown that p0 ¼
p1 ¼ 1=2, and optimization of the conditional entropy
quickly reduces to that over one parameter leading to the
result, J ¼ ½ð1� cÞ=2�log2ð1� cÞ þ ½ð1þ cÞ=2�log2ð1þ cÞ,
where c ¼ maxfjc1j; jc2j; jc3jg. The mutual information
and discord are computed from the eigenvalues of �BD:
f14ð1�c1�c2�c3Þ, 1

4ð1�c1þc2þc3Þ, 1
4ð1þc1�c2þc3Þ,

and 1
4 ð1þ c1 þ c2 � c3Þg. If c ¼ jc1j, the optimal projections

are given by the x basis, for example. The same result was
found for the symmetric discord when optimizing over pro-
jective measurements (Luo and Zhang, 2009).

The next family of states tackled in the literature are the two-
qubitX states, which include the Bell-diagonal states as special
cases. Labeling the basis elements as j1i ¼ j00i, j2i ¼ j01i,
j3i ¼ j10i, and j4i ¼ j11i, an X state is defined as having
nonzero elements only on the diagonal and antidiagonal:

�X ¼

�11 0 0 �14

0 �22 �23 0

0 �32 �33 0

�41 0 0 �44

0
BBBBB@

1
CCCCCA: (45)

The conditions
P

i�ii ¼ 1 and �22�33 � j�23j2, �11�44 �
j�14j2 must be satisfied for �X to be a density matrix.
The X states are described by seven parameters before simpli-
fication by local-unitary transformations. Terms on the

antidiagonal can always be made real, and hence only five

parameters suffice (Q. Chen et al., 2011).
The first attempt to evaluate the discord for the two-qubit

X states in a closed form was reported by Ali, Rau, and Alber

(2010), extending the method of Luo (2008a). Simplifying the

extremizing procedure, they argue that it is sufficient to check a

few specific measurements for optimality. However, the speci-

fied algorithm turns out not to be reliable in every case. In fact,

Lu et al. (2011) proved that no finite set of orthogonal-

projective measurements can be universal for the full

family of X states: Arbitrary rotations expði’A�A
z =2Þ �

expði’B�B
z =2Þ maintain the X-state form. If a finite set of

optimal measurements existed, the measurements would have

to be of the form ðI 	 �A
z Þ=2, but this is already contradicted by

the Bell-diagonal states. Specific counterexamples to the algo-

rithm have been given by Q. Chen et al. (2011) and Lu et al.

(2011). On the other hand, Q. Chen et al. (2011) confirmed the

algorithm for specific situations: for a real X state rearranged

such that j�23 þ �14j � j�23 � �14j, the optimalmeasurement

(for measurements on A) is (a) z basis if ðj�23j þ j�14jÞ2 �
ð�11 � �22Þð�44 � �33Þ or (b) x basis if j ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�11�44
p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�22�33
p j � j�23j þ j�14j. The reason for the discrepancy

with the work of Ali, Rau, and Alber (2010) is disputed, and

arguments have been put forth concerning the treatment of all

constraints, as well as the complete identification of extrema.
The family ofX states represents a small subfamilyof the full

set of two-qubit states, which in general can be parametrized by

nine variables after simplification by local-unitary transforma-

tions. So far, the most compact formulation of the problem of

evaluating discord for the general case has been given by

Girolami and Adesso (2011b), optimizing over orthogonal-

projective measurements. This formulation simplifies the

problem by using a normal Bloch form, a Bloch sphere

parametrization for a general measurement, and careful con-

sideration of all symmetries and constraints. Extremization of

the conditional entropy leads to a pair of transcendental equa-

tions, providing strong evidence that no general closed form is

achievable, and demanding numerical treatment.
An alternative approach is statistical and attempts to iden-

tify whether a fixed set of measurements can be optimal for

computing discord with high probability. Lu et al. (2011)

statistically studied the usefulness of a measurement termed

the maximal-correlations-direction measurement (MCDM).

This is defined as the x basis after the state � in question

has been cast in a form (by local-unitary transformations) for

which the matrix Tkl � trð��k � �lÞ is diagonal and ordered

according to trð��x � �xÞ � trð��y � �yÞ � jtrð��z � �zÞj.
Sampling two-qubit states randomly according to the Hilbert-

Schmidt measure suggests that the optimal measurements

tend to be either the MCDM, or close to it, and the upper

bound to discord obtained with MCDM tends to be very close

to the real value. For the specific case of X states, the states

are generated from randomly sampled two-qubits states, for

which the off-diagonal components are set to zero. These

numerical studies show the MCDM to be optimal 99.4% of

time, validating the procedure of Ali, Rau, and Alber (2010)

in a statistical sense. Conclusions along similar lines were

reported by Vinjanampathy and Rau (2012). However, it

should be emphasized that the X states in these studies

were not generated truly randomly, and direct sampling
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seems to find the MCDM to be optimal in a much lower
proportion of cases (Vinjanampathy, 2011).

Next we note a series of papers (Shi, Jiang, and Du, 2011a;
Shi, Jiang et al., 2011; Shi et al., 2012), which aim to interpret
and augment results on two-qubit discord using a geometric
interpretation based on the concept of a quantum steering
ellipsoid (Verstraete, 2002). For a given state �AB, a quantum
steering ellipsoid is a visual representation of all possible
postmeasurement states of B due to (POVM) measurements
by A. It turns out, that for postmeasurement ensembles mini-
mizing the average entropy, the ensemble elementsmust all live
on the surface of the corresponding ellipsoid. This provides a
route to developing a geometric picture for the maximization
step for evaluating classical correlations. To finish, we note that
little progress has been made with evaluating discord beyond
the case of two qubits. Some results are available for families
of qubit-qudit states (with measurements on the qubit), where
the optimization process can be simplified (Ali, 2010;
Vinjanampathy and Rau, 2012), as well as for the highly
symmetric Werner and isotropic states in d� d dimensional
bipartite systems (Chitambar, 2012).

In Sec. III.D.2 a formula relating quantum discord to
entanglement of formation is given by Eq. (60). The imme-
diate consequence of this formula is that computing discord
of DðAjBÞ is equivalent to computing entanglement of for-
mation EFðA:CÞ, where C purifies the density operator of AB
having dimension dimðCÞ ¼ dimðABÞ. This implies that com-
puting discord of two-qubit states is the same as computing
the entanglement of formation of a qubit-quartit state, which
is an open problem.

1. Examples

To illustrate different optimization strategies we give dis-
cord, thermal discord, and asymmetric MID for two simple
bipartite states (Ollivier and Zurek, 2001; Brodutch and
Terno, 2010).

We begin with the Werner state, defined as �W¼
½ð1�qÞ=4�1þqj��ih��j, where j��i¼ð1= ffiffiffi

2
p Þðj01i�j10iÞ.

The classical correlations of this state are the same for all
measurements of A and therefore the maximization is
straightforward. If A measures along the standard basis,
then conditional states for B are �Bja ¼ ½ð1� qÞ=4�1þ
ðq=2Þj1� aih1� aj with pa ¼ 1=2 for a ¼ 0, 1. The discord
and classical correlations are

JðBjAÞ ¼ 1� hðqþÞ � hðq�Þ; (46)

DðBjAÞ ¼ 1þ hðqþÞ þ hðq�Þ � hðqþ=2þ q=2Þ
� 3hðq�=2Þ; (47)

where hðxÞ ¼ �x logðxÞ and q	 ¼ ð1	 qÞ=2.
Since �A is completely mixed, the measurement is always

in its eigenbasis and therefore discord and thermal discord are
the same. The discord vanishes only when the state is com-
pletely mixed, q ¼ 0. The MID for this state is not well
defined since the local states do not have a well-defined basis,
i.e., the local states are fully mixed. The discord, classical
correlations, and half of the mutual information for the two-
qubit Werner state are plotted in Fig. 3.

We now look at a state that is separable but not classical:

�AB ¼ 1
4ðj00ih00j þ j11ih11j þ 2jþihþj � 1

2Þ (48)

where jþi ¼ ð1= ffiffiffi
2
p Þðj0i þ j1iÞ and therefore �A ¼ 1

2 ðjþi�
hþj þ 1

21Þ and �B ¼ 1
21.

The discords for a measurement on A are

DðBjAÞ ¼ 0:05; DthðBjAÞ ¼ 0:20;

DðBjf�Eig
a gÞ ¼ 0:21;

(49)

and the discords for a measurement on B are zero.
For the last example we mention that for pure states the

discord is symmetric and is equivalent to the uniquemeasure of
entanglement

Dðjc iÞ ¼ Dthðjc iÞ ¼ Mðjc iÞ ¼ Eðjc iÞ ¼ 1
2Iðjc iÞ

¼ S½trAðjc ihc jÞ� ¼ S½trBðjc ihc jÞ�: (50)

Note that for pure states the conditional entropy
minfEagSðBjfEagÞ vanishes (Hall, Andersson, and Brougham,

2006).

III. UNIFICATION OF DIFFERENT MEASURES

In Sec. II we described the measures of quantum correla-
tions other than entanglement most often discussed in the
literature. This section presents known relations between
them and discusses a framework for their unification.

A. Entropic classification

We begin with the classification due to Lang, Caves, and
Shaji (2011). It deals with the bipartite scenario and measures
that are of the form of a difference between a quantityQ for a
quantum state and its classical counterpart C which is maxi-
mized over various measurement strategies applied to the
quantum state. In other words, using probabilities of mea-
surement results allows C to be calculated, whileQ is chosen
among the following information-theoretic candidates:
(1) mutual information, (2) conditional entropy, and (3) joint
entropy. Each of these is then studied for three types of
measurements: (a) in the eigenbases of reduced operators,
(b) unconditional local measurements, and (c) conditional

0.0 0.2 0.4 0.6 0.8 1.0
q0.0
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FIG. 3 (color online). Werner state correlations. Mutual informa-

tion (halved), discord, and classical correlations for the Werner state

½ð1� qÞ=4�1þ qj��ih��j with j��i ¼ ð1= ffiffiffi
2
p Þðj10i � j01iÞ.

Entanglement vanishes when q � 1
3 but all other correlations remain

nonzero for q > 0.
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local measurements, i.e., measurement of B may depend on
the outcome of A. Since these strategies satisfy the hierarchy
ðaÞ 
 ðbÞ 
 ðcÞ, the value of C increases with every set, or
equivalently there are less quantum correlations if more
general measurements are allowed.

This classification enumerates different measures of
quantum correlations by the choice of Q and measurement
strategy. For example, a measure denoted as Mð1aÞ is a

difference between quantum mutual information and mutual
information given the probabilities of local eigenstates and
therefore is just MID given in Eq. (23). In this notation the
measures discussed before are (Lang, Caves, and Shaji, 2011)

M ¼Mð1aÞ ¼Mð2aÞ ¼Mð3aÞ; (51)

DS ¼Mð1bÞ; D ¼Mð2cÞ; ~Dth ¼Mð3cÞ: (52)

Discord appears here as a consequence of measurement
strategy (c). If for every measurement outcome of A, B mea-
sures in the eigenbasis of �Bja, the measure depends only on

themeasurements ofA: Mð2cÞ ¼ minfEagSðBjfEagÞ � SðBjAÞ,
which is exactly quantum discord as discussed below Eq. (7).

The relations established by this classification and Piani,
Horodecki, and Horodecki (2008) and Girolami, Paternostro,
and Adesso (2011) allow formulation of the following
hierarchy:

I � M � DR ¼ ~�; � DS � D: (53)

It is also demonstrated that DR �Mð3bÞ �Mð2bÞ � DS,

where the two measures Mð2bÞ and Mð3bÞ are not known yet

to be reducible to any of those presented inSec. II (Lang,Caves,
and Shaji, 2011). Finally, it is interesting whether relation

M � D!R ¼ ~Dth � D (54)

can be incorporated into the hierarchy (Brodutch and Terno,
2010).

B. Diagrammatic unification

In many cases it is desirable to compare various kinds of
correlations present in a quantum state. Since different mea-
sures are often based on different concepts and use different
mathematical entities, their direct comparison may be mean-
ingless. For example, comparing concurrence (Hill and
Wootters, 1997; Wootters, 1998) with quantum discord has
to be additionally motivated to make sense out of the resulting
numbers. For this reason a unified approach is presented for
which all themeasures are defined by the same entity—relative
entropy (Modi et al., 2010). The resulting measures and their
mutual relations are described in Sec. II.F and in Fig. 1. Note
that this unification also incorporates entanglement.

This approach admits other unifying features. All the
relations of Fig. 1 stay unchanged independently of whether,
for classical, we assume the CC states of Eq. (17) or the CQ
states of Eq. (6). In the theorems of Modi et al. (2010), one
just replaces one-sided measurements with two-sided mea-
surements and all the steps are unchanged. One can think of
the diagram of Fig. 1 as a template: Once the meaning
of classicality is chosen, it gives the relations for suitable
measures accordingly. Furthermore, it is independent of the
number of particles in the correlated state.

Extension of the diagrammatic approach to other measures
is presented by Modi and Vedral (2011). As seen from
Fig. 1, there are four fundamental states involved in the
studies of quantum correlations. These are the initial state
�, its marginals ��, the classical state �� obtained by de-

phasing � in some basis, and the marginals of �� denoted

FIG. 4. Diagrammatic unification. Various possibilities to con-

struct measures of quantum correlations. (a) The fundamental ele-

ments needed in defining a measure of correlations, namely, the

discord D, classical correlations C, total correlations T, and a forth

quantity L. In each case, the distance is measured using relative

entropy, and the closest state is given by maximizing or minimizing

one distance as seen in (b)–(i). The relationship between � and �� is

fixed, so the total correlations are in all cases given by the mutual

information. (b) Quantum discord is obtained when classical corre-

lations are maximized. (c) Measurement-induced disturbance (MID)

is obtained when the distance between the marginal states is mini-

mized. (d) Relative entropy of discord (RED) is obtained by

minimizing the distance between � and its classical state �.

(e) This measure is not well defined. (f) Deleting local information

by local measurements, however, some correlations may survive.

(g) Information as defined in Sec. II.B. (h) Measurement-induced

disturbance (MID). (i) This can be well defined, but has not been

used previously. Adapted from Modi and Vedral, 2011.
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as ��. They are presented in Fig. 4(a). It turns out that

different measures of quantum correlations put different con-
straints on the relations between these states. The relative-
entropy distance is minimized between state � and the clas-
sical states. In this way relative entropy of discord DR (or D!R
depending on the notion of classicality) is obtained as pre-
sented in Fig. 4(d). By replacing � with its closest separable
state � we obtain relative entropy of dissonance.

For D one maximizes the classical correlations SðBÞ �P
apaSð�BjaÞ; see Eq. (4). This can also be regarded as

the relative-entropy distance. Indeed, since Sð�BjaÞ ¼
Sð�a � �BjaÞ and using

X
a

paSð�a��BjaÞ¼S

�X
a

pa�a��Bja
�
�S

�X
a

pa�a

�

¼Sð�Þ�SðtrBð��ÞÞ;
we find that classical correlations are given by maximizing
the mutual information Ið�Þ ¼ Sð��Þ � Sð�Þ ¼ Sð� k ��Þ.
This is illustrated in Fig. 4(b). Finally, for MID we dephase
the state in the eigenbasis of the reduced operators, i.e., �� ¼
�� and effectivelyMminimizes the distance of � from ��, as

shown in Figs. 4(c) and 4(h).
One advantage of this unification scheme is that it allows

us to define all of these quantities for multipartite states; see
Sec. III.C for details. Other diagrams may also be interesting
and are given in Figs. 4(e)–4(i). Some of these quantities are
not well defined and others have not been explored. For
instance, the quantity in Fig. 4(f) is interesting as it attempts
to delete all local coherence while maintaining some corre-
lations, which means that all information in the multipartite
state is stored in the correlations only. Figure 4(e) is ambig-
uous as one can always completely decohere � to get � ¼
�A � �B � � � � , achieving the said minimization with vanish-
ing minimized quantity. Finally, the quantities given in
Figs. 4(g) and 4(h) are known quantities: the information
content from Sec. II.B and MID, respectively. In Fig. 4(g)
maximization is achieved always by dephasing in a way that
gives � ¼ 1=d so Sð�Þ ¼ logðdÞ.

1. Interpreting relative entropy

The operational meaning of relative entropy known from
statistical inference extends to the quantum domain and gives
meaning to measures based on this quantity (Vedral, Plenio,
Jacobs, and Knight, 1997; Vedral and Plenio, 1998; Vedral,
2002;Modi and Vedral, 2011). In the classical scenario, say, of
two different coins with a probability of heads being p and q,
respectively, relative entropy quantifies how easy it is to
confuse these coins. It answers the question: What is the
probability that when coin p is tossed n times, the experi-
menter says it is coin q? For large n this probability is given by
Pnðp! qÞ ¼ 2�nSðqkpÞ, where Sðq k pÞ is the classical rela-
tive entropy. It is now clear why relative entropy is asymmet-
ric: it makes a difference which coin is being tossed. This is
illustrated by the example of p ¼ 1 and q ¼ 1=2, i.e.,
Sðq k pÞ ¼ 1 and Sðp k qÞ ¼ 1: The experimenter estimates
that coin p is tossed if all n outcomes are heads; otherwise she
estimates it is coin q. If coin p is tossed, she always sees heads
and therefore correctly estimates coin p from the first toss on,
and indeed the probability of confusion Pnðp! qÞ ¼ 0. If

coin q is tossed, there is a nonzero probability that a string of n
heads is observed which would be the case of wrongly esti-
mating that p is tossed. This happens with probability 1=2n

which is exactly Pnðq! pÞ.
These ideas generalize to the quantum domain where

quantum relative entropy Sð� k �Þ determines the probability
of confusing state � for state �. Accordingly, relative entropy
of entanglement tells us how easy it is to confuse a separable
� with an entangled �. This naturally generalizes to the other
measures. For example, relative entropy of dissonance QR ¼
minSð� k �Þ quantifies how easy it is to pretend we have a
nonclassical � when in fact we possess classical �.

2. Tsallis entropy

Clearly, relative-entropy distance is not the only possible
choice for the distance measure. In Sec. II.G we discussed the
geometric measure of discord given by the Hilbert-Schmidt
distance. One may wonder whether this measure relates to the
diagrams and information approach. This task was partly
accomplished by Rossignoli, Canosa, and Ciliberti (2010,
2011) who essentially showed that the geometric discord is
given by the deficit related to the information measure intro-
duced by Brukner and Zeilinger (1999) and Luo (2007). We
confirm this in a different way. According to Luo and Fu
(2010) geometric discord is given by DG ¼ trð�� ��Þ2,
where �� ¼

P
kjkihkj�jkihkj is the closest classical state.

(Note that this form is exactly the same as that obtained for
relative entropy in the diagrammatic approach.) This implies

DG ¼ trð�2 � �2
�Þ: (55)

One can also introduce the quantum Tsallis entropy (Tsallis,
1988):

S
ð�Þ � logðdÞ 1� trð�
Þ
1� d1�


; 
 > 1; (56)

normalized such that the completely mixed state of a d-level
system admits logd bits of entropy for every 
, and this is the
maximum of the entropy. The information content of a
quantum state � is then defined as I
 � logd� S
ð�Þ. It
reduces to the von Neumann information for 
! 1 and for

 ¼ 2 it gives the information measure discussed in Brukner
and Zeilinger (1999). In analogy to the information deficit of
Sec. II.B, one can now study the information deficit according
to this measure. For 
 ¼ 2, the one-way and zero-way def-
icits read

~�2 ¼ d logðdÞ
d� 1

min trð�2 � �02Þ; (57)

where the minimum is over one-sided or two-sided projective
measurements, respectively, and �0 is the postmeasurement
state. The minimum is, up to a constant, given by the geo-
metric discord Eq. (55). The problem with generalizing the
diagrammatic approach to different entropic measures, and
making it an even broader template, is the lack of a satisfying
definition generalizing quantum relative entropy, which
would reduce to suitable differences of entropies for a wide
range of parameter 
.
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C. Multipartite generalizations

1. Distance-based measures

The measures discussed in Secs. II.F, II.G, and III.B have
obvious multipartite generalization. These measures of cor-
relations are based on (pseudo) distance measures, and as
such do not discriminate between bipartite and multipartite
states. The only caveat is to define the multipartite state in an
unambiguous manner (Modi et al., 2010). Once the classical
state is defined, there are several proposals defining the
multipartite quantum correlations (Modi and Vedral, 2011;
Okrasa and Walczak, 2011; Rulli and Sarandy, 2011).

However, measures discussed in Sec. III.A, including dis-
cord, MID, and other measures defined using mutual infor-
mation, do not have unique generalizations to the multipartite
case. Essential properties of mutual information, i.e., its non-
negativity and the fact that it operationally captures all of the
correlations in the bipartite state, are naturally generalized by
the total information (Groisman, Popescu, and Winter, 2005):

TðA1 � � �ANÞ �
XN
j¼1

SðAjÞ � SðA1 � � �ANÞ; (58)

being just relative entropy Sð� k ��Þ between the initial

N-partite state and its marginals.
To see this consider first a bipartite system. By operations

of A alone, it is possible to bring any initial state to a product
state. The erasure of correlations consumes an amount of
randomness, in the form of choices A makes between differ-
ent decorrelating operations that is equal to mutual informa-
tion. Similarly for an N-partite system, first A1 decorrelates
herself from the rest of the parties, this consumes
IðA1: A2 � � �ANÞ bits of randomness, next decorrelating A2

from the rest consumes IðA2: A3 � � �ANÞ bits of randomness,
and so on. The sum of all these mutual informations gives the
right-hand side of the total information. Since this is just
relative entropy, Fig. 1 gives relations also between multi-
partite measures of quantum correlations.

2. Quantum dissension

Chakrabarty, Agrawal, and Pati (2011) gave another route
to multipartite discord. They argued that multipartite quan-
tum correlations are too complex to be captured by a single
number, and there should rather be a set of numbers, a
vectorlike quantity. Their example is the generalization of
quantum discord to the tripartite setting which is called
quantum dissension. The starting point is the classical
three-variable mutual information:

IðA:B:CÞ � IðA:BÞ � IðA:BjCÞ: (59)

This quantity can be negative because knowledge of C may
enhance correlations between A and B. However, since we
understand the meaning of this negativity, it should not be
regarded as a drawback of this definition. There are different
ways to generalize this quantity to a quantum domain, which
gives rise to a vectorlike quantity for quantum correlations.
For details see Chakrabarty, Agrawal, and Pati (2011).

D. Entanglement and discord

Entanglement is one of the most fascinating phenomena in
nature. For pure states it has a well-defined measure given by
the entropy of a subsystem. For mixed states, however, there
are several measures for entanglement, each relating to a
different task. The various measures of quantum correlations
discussed in Sec. II are sometimes considered the natural
extension of entanglement into domain of mixed states. As
seen in the remainder of this review, this notion is justified for
some tasks. On the other hand, for some tasks quantum discord
has been related to various measures of entanglement. This
relation is often derived from the Koashi-Winter relation and
the purification process (any mixed state comes from a partial
trace of a pure state). In this reviewwe assume that the reader is
at least familiar with the different measures of entanglement
for mixed states, such as the entanglement of formation EF,
distillable entanglementED, etc.We refer the interested reader
to the thorough review by Horodecki et al. (2009).

1. Purification

Any system in a mixed state can be seen as part of a larger
pure state, and constructing a pure state from a given mixed
state is called purification. This is an important feature of
quantum mechanics, which can be used to distinguish quan-
tum mechanics from other theories (Chiribella, D’Ariano,
and Perinotti, 2011). Consider the spectral decomposition
of a mixed state �A ¼

P
apajaihaj. A pure state can be

constructed as jc ABi ¼
P

a
ffiffiffiffiffiffi
pa
p jai � jbai, where fjbaig are

orthonormal: this is called the Schmidt decomposition.

2. Koashi-Winter relation

Quantum conditional entropy is defined following the
classical definition as SðBjAÞ¼SðABÞ�SðAÞ or SðBjfEagÞ ¼P

apaSð�BjaÞ. As noted in Sec. II.A, quantum discord is the

difference in these two definitions of conditional entropies:
DðBjAÞ ¼ minfEagSðBjfEagÞ � SðBjAÞ.

While the classical conditional entropy is always a positive
quantity, its quantum version SðBjAÞ can become negative. A
typical example is when the total system is pure and entangled,
in which case SðABÞ ¼ 0 and SðAÞ> 0. Nevertheless, this
quantity has proven to be very useful, for instance, the nega-
tivity is an entanglement witness (Horodecki and Horodecki,
1994; Schumacher and Nielsen, 1996), and yet for a long time
it lacked an operational interpretation. The key breakthrough
came in the form of a task known as quantum state merging
(Horodecki, Oppenheim, and Winter, 2005).

The second definition of quantum conditional entropy
suffers from classicalization; that is, there must be a mea-
surement on the state in order to determine its outcome
(Henderson and Vedral, 2001). This quantity is always posi-
tive and it is related to entanglement of formation due to the
monogamy relation (Koashi and Winter, 2004):

EFðB:CÞ þ JðBjAÞ ¼ SðBÞ (60)

for any tripartite pure state jc ABCi. We can see this as
follows: Let A make a complete measurement on her state.
For the ath measurement outcome the BC state collapses to a
pure state j�BCjaiwith probability pa. The entropy of B of the
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collapsed state is the entanglement of formation of that state
(Bennett et al., 1996): SðtrC½j�BCjaih�BCjaj�Þ ¼ EFðj�BCjaiÞ.
Since A is making a complete measurement, the minimum
average entanglement in all such ensembles of BC is the
entanglement of formation of BC:

EFðB:CÞ � min
fpa;j�BCjaig

X
a

paEFðj�BCjaiÞ: (61)

This means that minfEagSðBjfEagÞ ¼ EFðB:CÞ. These two

facts can be used to give discord an operational meaning
(see Sec. V.B).

3. Conservation law

The Koashi-Winter monogamy is related to the asymmetry
of quantum discord. Fanchini et al. 2011 made use of this
relation to give

EFðA:BÞ þ EFðA:CÞ ¼ DðAjBÞ þDðAjCÞ: (62)

They call it a quantum conservation law:

‘‘Given an arbitrary tripartite pure system, the

sum of all possible bipartite entanglement shared

with a particular subsystem, as given by the EF,

cannot be increased without increasing, by the

same amount, the sum of all discord shared with

this same subsystem.’’

Similarly, the difference in discord as measured by a single
party can be understood as the difference in entropies of the
unmeasured parties:

DðBjAÞ �DðCjAÞ ¼ SðBÞ � SðCÞ: (63)

Finally, Fanchini et al. (2012) gave the discord chain rule,
which expresses entanglement of formation in terms of differ-
ent discords:

EFðA:BÞ ¼ DðAjBÞ þDðBjCÞ �DðCjBÞ: (64)

4. General bounds for discord

Datta (2008) and Xi et al. (2011) proved a very general
bound relating discord to the von Neumann entropy of the
measured subsystem DðBjAÞ � SðAÞ. Determining which
states saturate this bound is more demanding and was done
by Xi et al. (2012). The inequality is saturated if and only if
there is a decomposition of the Hilbert space for B, HB ¼
HBL �HBR for which �AB ¼ jc ABL ihc ABL j � �BR . In this
case, DðAjBÞ ¼ DðBjAÞ ¼ EFð�ABÞ, where EF denotes the
entanglement of formation (generalizing the result for pure
states). Furthermore, for a purification c ABC, it must also
hold that �AC ¼ �A � �C: the maximal quantum correlations
of the measured system precludes any further correlations
with C. For a two-qubit system, the equality case is immedi-
ately excluded other than when �AB is pure. Proof of all these
results rests largely on the strong-subadditivity inequality for
the von Neumann entropy, and the form of the states which
saturate the inequality (Hayden et al., 2004), as well as on the
Koashi-Winter relation and the quantum conservation law
discussed above.

Next we note two papers that present much-stricter bounds
on discord. First, Yu et al. (2011b) presented computable
bounds for discord DðBjAÞ for 2� d dimensional states �AB.
A key observation is that for a purification jc ABCi of �AB in a
2� d� 2d dimensional system, �BC is rank two (as can be
seen from the Schmidt decomposition), and there are closed
expressions for the corresponding concurrence and tangle.
Furthermore, the entanglement of formation, concurrence,
and tangle are all defined by optimizing a scalar quantity
over all ensemble decompositions of �BC. A lower bound for
the discord is therefore achieved using the Koashi-Winter
relation by bounding the entanglement of formation for �BC

by a function of the concurrence. An upper bound is obtained
using the measurement on A which induces the optimal
decomposition of �BC with respect to the tangle. For the
full mathematical expressions see Yu et al. (2011b). The
bounds hold for both POVM and orthogonal-projective mea-
surements on A, and coincide for special cases; they can be
considered to be tight, but are slightly weaker for d > 2.
Second, Zhang et al. (2011b) presented bounds for discord
that apply to arbitrary finite dimensional �AB. These bounds
are much weaker than the previous type, but are experimen-
tally accessible and can be measured by joint measurements
on twofold copies of an unknown state. Lower and upper
bounds are derived using the Koashi-Winter relation and
bounds on the entanglement of formation which follow
from bounding the concurrence. Again these results hold
for optimization of the discord with respect to both POVM
and orthogonal-projective measurements.

5. Rank-two states of qubit-qudit system

The Koashi-Winter relation and the relation between con-
currence and EF (Wootters, 1998) gave an explicit algorithm
for calculating the quantum discord of rank-two states of
2� dB dimensional systems (Cen et al., 2011; Galve,
Giorgi, and Zambrini, 2011a; Fanchini et al., 2012; Lastra
et al., 2012). Because of the Koashi-Winter relation, the
discord of a state �AB reads

DðBjAÞ ¼ EFðB:CÞ � SðBjAÞ; (65)

where system C purifies AB. For rank-two states �AB¼P
2
ab¼1�abjc abihc abj the purification reads jc ABCi¼P
2
ab¼1

ffiffiffiffiffiffiffiffi
�ab

p jc abijc ci, where fjc cig is any orthonormal basis

of C and accordingly C is a qubit. Therefore, BC is a state of
two qubits and Wootters’ formula can be applied for a
calculation of discord.

The final algorithm is as follows: Find the eigenvectors
and eigenvalues of the state �AB and construct �BC ¼
trAðjc ABCihc ABCjÞ. Entanglement of formation, and therefore
discord, is given by (Wootters, 1998)

EFðB:CÞ ¼ h½12ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Þ�; (66)

where hðxÞ ¼ �x logx� ð1� xÞ logð1� xÞ is the binary
entropy and C is the concurrence of state �BC: C is given
by maxð0; �1 � �2 � �3 � �4Þ, where �i’s are the eigenval-
ues in decreasing order of the Hermitian matrixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�BC
p

~�BC
ffiffiffiffiffiffiffiffiffi
�BC
pp

, and ~�BC ¼ ð�y � �yÞ��BCð�y � �yÞ, with
�y the Pauli matrix and ��BC denoting complex-conjugated

�BC (when the latter is written in the standard basis).
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6. Monogamy of discord

One of the most important properties of entanglement is its
monogamy. The monogamy of entanglement reads ‘‘If A and
B are maximally entangled then neither A nor B is entangled
with any other party C.’’ A quantitative formulation of en-
tanglement monogamy,

Xn
i¼1

EðA:BiÞ � EðA:B1; B2; . . . ; BnÞ; (67)

does not hold for all entanglement monotones E. For n ¼ 2
the square of concurrence satisfies the monogamy relation
above (Coffman, Kundu, and Wootters, 2000), and some
entanglement monotones satisfy the monogamy for n > 2
(Osborne and Verstraete, 2006). However, entanglement of
formation does not. Prabhu et al. (2012) investigated the
same relationship for quantum discord. They showed that for
any tripartite state �ABC, the inequality

DðAjBÞ þDðAjCÞ � DðAjBCÞ (68)

holds if and only if IðA:B:CÞ � JðAjBCÞ ¼ JðAjBÞ �
JðA: BjCÞ. The formula for tripartite mutual information
IðA:B:CÞ is given in Eq. (59) and JðAjBCÞ is given by
Eq. (5), where now BC make their measurements together.
This formula is related to quantum dissension (Chakrabarty,
Agrawal, and Pati, 2011). Interestingly, they find evidence
that Greenberger-Horne-Zeilinger (GHZ)-type states are mo-
nogamous whileW-type states are polygamous. Sudha, Devi,
and Rajagopal (2012) gave a similar result for monogamy of
MID. Giorgi (2011) showed that entanglement monogamy
and discord monogamy are the same for pure states. For
tripartite pure states, Prabhu et al. (2011) showed light-
cone-like behavior for monogamy of quantum deficit. Ren
and Fan (2011) showed that for tripartite pure states monog-
amy for the same measuring party, DðBjAÞ þDðCjAÞ �
DðBCjAÞ, is equivalent to EFðB:CÞ � IðB:CÞ=2 using the
Koashi-Winter relation.

A general theorem due to Streltsov et al. (2012) showed
that monogamy relations cannot hold for quantum measures
that do not vanish for separable states. They worked with
quantum-correlation measures that satisfied the following
criteria: (a) positivity, (b) invariance under local-unitary
transformations, and (c) nonincreasing when an ancilla is
introduced. All correlation measures discussed in this review
satisfy these conditions. We now sketch their theorem.

Consider a generic separable state �AB ¼
P

cpcj
cih
cj �
j	cih	cj. This state could be seen as coming from �ABC ¼P

cpcj
cih
cj � j	cih	cj � jcihcj, where fjcig form an ortho-
normal basis. With local-unitary operations on BC, �ABC can
be turned into �ABC ¼

P
cpcj
cih
cj � j0ih0j � jcihcj. By

condition (c) we have the inequality Qð�A:CÞ � Qð�A:BCÞ ¼
Qð�A:BCÞ, and the last equality is due to condition (b). Now if
we additionally assume monogamy Qð�A:BCÞ � Qð�A:BÞ þ
Qð�A:CÞ, this impliesQð�A:CÞ�Qð�A:BÞþQð�A:CÞ. However,
Qð�A:CÞ ¼ Qð�A:CÞ since �AC ¼ �AC, and therefore due
to condition (a) we must have Qð�A:BÞ ¼ 0. Note that
Streltsov et al. (2012) do not make any assumption about
measurements.

This theorem proves that under some minimal assumptions
quantum correlations in separable states are not monogamous.
A way to deal with this might involve a hybrid approach to

monogamy of correlations, when both quantum and classical
correlations are present, as Luo and Sun (2009) suggested.
Finally, Fanchini et al. (2011) argued that the relationship
between quantum and classical correlations is at the heart of
why entanglement of formation is not monogamous.

7. State ordering under different discords

Another property of various quantum-correlation measures
that is related to entanglement measures is the lack of the
same ordering (Virmani and Plenio, 2000) of states under
different measures of quantum correlations. Virmani and
Plenio (2000) proved that for all measures of entanglement
that are equivalent for pure states they must have different
ordering for mixed states. Their proof is easily extended to
the case of discord.

First note that all bipartite entropic measures of discord are
equivalent forpure states (Lang,Caves, andShaji, 2011).Consider
two measures of discord D1 and D2 such that D1ðjc ihc jÞ¼
D2ðjc ihc jÞ for all pure states. Next take the following ordering:
D1ðjc ihc jÞ � 
 ¼ D1ð�Þ ¼ D1ðj�ih�jÞ þ 
. Now suppose
we have

D2ðjc ihc jÞ � D2ð�Þ � D2ðj�ih�jÞ;
D1ðjc ihc jÞ � D2ð�Þ � D1ðj�ih�jÞ;
D1ð�Þ þ 
 � D2ð�Þ � D1ð�Þ � 
:

(69)

Letting 
! 0 tells us thatD1 is the same measure of discord as
D2. In other words, in general we haveD1ð�1Þ<D1ð�2Þ and
D2ð�1Þ>D2ð�2Þ. This statement is implicitly present in many
works on discords and is explicitly addressed by Sen De and Sen
(2003), Yeo, An, andOh (2010), andOkrasa andWalczak (2012).
One has to be careful in using this result, as it will not apply when
comparing an entropic measure of discord to the geometric
discord.

8. Separable states versus classical states

Devi and Rajagopal (2008) and Li and Luo (2008) de-
scribed a unifying feature of certain classical and separable
states. Separable states can be seen as shadows of classical
states. A state �AB is separable, i.e., can be represented as

�AB ¼
X
i

pi�
i
A � �i

B; (70)

if and only if there exists a state on a larger Hilbert space
�AA0BB0 , that is classical-classical state in the cut AA0 vs BB0,
and has �AB as a subsystem. For a proof note that classical
states have separable subsystems: tracing out A0 and B0 from
the state �AA0BB0 ¼

P
ipi�

i
AA0 ��i

BB0 gives a separable state

in general. Conversely, starting with a separable state �AB two
ancillary systems A0 and B0 can be added each with Hilbert
space dimension equal to the highest value of index i in the
decomposition of �AB. Now the state �AA0BB0 ¼

P
ipi�

i
A �

�i
A0 � �i

B ��i
B0 has �AB as a subsystem and by decomposing

each �i
A and �i

B in their eigenbases it becomes clear the state

is CC between the AA0 and BB0 divisions.
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E. Criteria for correlations

The correlation measures described above are based on a
number of fundamental concepts: the information gain from a
measurement, the effects of measurements on a system, the
notion of classical states, and the lack of correlations in
product states. These concepts are used in various ways and
are sometimes defined in different ways to give measures of
correlations. However, there have been a few attempts at
defining a stricter set of criteria for measures of correlations,
similar to those for entanglement described by Plenio and
Virmani (2007) and references therein.

1. Criteria for classical correlations

Henderson and Vedral (2001) specified a set of four criteria
they expected a measure of classical correlations to satisfy.
Based on the criteria for entanglement measures, these
criteria are (a) product states are uncorrelated, (b) classical
correlations are invariant under local-unitary operations,
(c) classical correlations are nonincreasing under local op-
erations, and (d) for pure states the classical correlations, just
like the quantum, are given by the entropy of the reduced
states. They show that their measure JðAjBÞ satisfies these
axioms. A fifth property, symmetry under the interchange of
the subsystems, is conjectured but later found to be incon-
sistent in general, JðAjBÞ � JðBjAÞ.

While the criteria are motivated by those for entanglement,
the general method is based on classical information-theoretic
ideas, mainly that of conditional entropy, and the information
gain from a measurement. While they give a very strong foun-
dation for measures of correlations they are, as we have already
seen, not the only way to construct correlation measures.

2. Criteria for generalized discord

Brodutch and Modi (2012) presented a more general
method for constructing correlation measures (for bipartite
and multipartite systems) based on the diagrammatic ap-
proach. This method leads to a set of criteria for measures of
correlationswhich canbedivided into three categories: (1) nec-
essary conditions, (2) reasonable properties, and (3) debatable
criteria. The correlations are measured using a generalized
discord functionK½�; �� and a set of measurements fMg. For
each state � one can associate a classical state �� ¼M�ð�Þ,
where the measurement is chosen according to some strategy.
The quantum correlations are then given by Qð�Þ ¼
K½�;M�ð�Þ�, the classical correlations Cð�Þ¼K½M�ð�Þ;
M�ð��Þ�, and the total correlationsT ð�Þ¼K½�;���, where
�� is the product of the marginals of �,�� ¼ �A � �B � � � � .

The five necessary conditions for any measure of correla-
tions are then (1a) product states have no correlations, (1b) all
correlations are invariant under local-unitary operations,
(1c) all correlations are non-negative, (1d) total correlations
are nonincreasing under local operations, and (1e) classical
states have no quantum correlations. The correlation mea-
sures presented in this review are all consistent with these
requirements.

The next three criteria involving continuity, described
as reasonable, are (2a) continuity, (2b) strong continuity of
the measurement basis, and (2c) weak continuity of the
measurement basis. Strong continuity here means that the

measurement which minimizes discord is changed continu-
ously for small changes in the state, and weak continuity
means that the measurement is not necessarily continuous but
using the basis which optimizes a nearby state results in a
small error for calculating the correlations. The measures
based on measurements which do not affect the marginals
(MID) are found to fail all of the above continuity require-
ments. No measure of correlations is found to obey the
strong-continuity property. This indicates that the classical
states associated with two nearby quantum states may be very
different. However, all forms of discord with an optimization
process, either maximizing classical correlations or minimiz-
ing quantum correlations, are proved to be continuous. This
includes all measures reviewed here except MID.

Finally a set of criteria based on entanglement measures
and information-theoretic ideas are presented as debatable:
(3a) for pure bipartite states the correlations can be defined by
the marginals, (3b) correlations are additive T ¼ CþQ or
superadditive T < CþQ, (3c) classical and/or quantum
correlations are nonincreasing under local operations, and
(3d) symmetry under the interchange of subsystems.

3. Genuine multipartite correlations

Generalizations of bipartite correlations to multipartite
systems are not only computationally more complex but
also involve conceptual difficulties when one attempts to
characterize the correlations as genuine multipartite. One
would sometimes like to distinguish between the amount of
correlations in an n-partite system and the part of the corre-
lations that is genuinely n partite.

Zhou et al. (2006) formulated a set of postulates in which
every measure of genuine n-party correlations G should
satisfy (a) G � 0 for all quantum states, (b) G ¼ 0 for all
biproduct states �1 � �2, (c) invariant under local-unitary

operations, i.e., Gð�Þ ¼ GðUa � � � � �Uz�U
y
a � � � � �Uyz Þ,

(d) Gð�Þ ¼ Gð� � �Þ where � ¼ �a � � � ��z is a state of
fully uncorrelated auxiliary systems, and (e) nonincreasing
under general local operations GðEð�ÞÞ � Gð�Þ with local
trace-preserving quantum operations E ¼ Ea � � � � � Ez. An
example of a measure satisfying these postulates is

G2
cumð�Þ ¼ 1

4 trðCyCÞ; (71)

where C is the cumulant of state �, i.e., a particular linear
combination of state � and its reduced operators (Zhou et al.,
2006). They calculated it for various states which illustrates
postulate (b) particularly nicely. It turns out that for pure three-
qubit statesGcumð�Þ ¼ 0 implies that � is a biproduct, but this
is not the case for general mixed states. For example, Gcumð�Þ
vanishes for 12j000ih000jþ1

2j111ih111j, implying that this state

does not have any genuine three-party correlations.
An example provided by Kaszlikowski et al. (2008) [see

alsoKaszlikowski et al. (2010) and Walczak (2010)] stimu-
lated further study of the axioms that genuine multipartite-
correlation measures or indicators should satisfy, and give
rise to additional postulates presented in Bennett et al.
(2011). The example consists of a mixed state

� ¼ 1
2jWihWj þ 1

2j �Wih �Wj; (72)

where jWi¼ð1= ffiffiffi
n
p Þðj10���0iþj01���0iþ���þj00���1iÞ and

j �Wi exchanged roles of zeros and ones. For an odd number of
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particles this state is genuinely n-party entangled, i.e., it

cannot be represented as a mixture of biproduct states,

and simultaneously its covariances hðM1 � hM1iÞ � � � ðMn �
hMniÞi vanish for all local measurements M1; . . . ; Mn. This is

considered an indicator of the lack of genuine n-party clas-

sical correlations. One of the arguments supporting this view

is that if all the covariances vanish for three-qubit states with

completely mixed marginals, then the cumulant also van-

ishes, i.e., at least in this case the covariance criterion implies

the cumulant criterion. They concluded that, contrary to the

bipartite case, in multipartite states genuine quantum corre-

lations can exist without genuine classical correlations.
This conclusion is questioned by Bennett et al. (2011),

where postulates (a) and (b) are replaced with the following

postulates: (f) Gð�Þ ¼ 0! Gð�ð�ÞÞ ¼ 0, with local trace-

nonincreasing operations � ¼ �a � � � � ��z containing

general local quantum operations and unanimous postselec-

tion; and (g) Gð�Þ ¼ 0! Gð�spÞ ¼ 0, where �sp is the same

density operator as � but with the systems of some parties

split into more parties. In essence it should not be possible to

create genuine multipartite correlations by splitting subsys-

tems. It turns out that covariance does not satisfy these new

postulates, and therefore cannot be regarded as an indicator of

any genuine correlations. For example, if additionally to the

state in Eq. (72) each party has a local ancilla in state j0i and
performs a c-not gate on it and the initial system as the

control qubit, the resulting 2n-particle state has nonvanishing
covariance along local z measurements. Another argument

shows that starting with the state in Eq. (72), it is possible by

operations allowed in postulate (f) to bring it to the state with

arbitrary weights. In particular, in the limit of infinitely many

particles, the operations effectively project the initial state

onto the jWi state with finite probability. Therefore, any

indicator of genuine multiparty correlations which reveals

that the state in Eq. (72) is not correlated should also reveal

that jWi is not correlated to be in agreement with

postulate (f). This is not the case both for the covariance

indicator and for the cumulant measure due to the theorem

mentioned below Eq. (71).
Bennett et al. (2011) proposed a new candidate for a

measure of genuine multipartite-classical correlations. The

idea uses concepts from the section on quantum deficit (see

Sec. II.B). If parties can extract more work with CLOCC

operations and classical communication across any bipartite

cut than with CLOCC operations, and without sending classi-

cal information across at least one cut, then the state has

genuine multipartite-classical correlations. Initial calculations

with this measure suggest the existence of genuine tripartite

classical correlations in the state defined by Eq. (72) for n ¼ 3.
A route toward quantification of genuine multipartite-

classical and quantum correlations based on relative entropy

is taken by Giorgi (2011). They define genuine tripartite

correlations as Tð3Þ � T � Tð2Þ, where T is the total mutual

information (see Sec. III.C) and Tð2Þ is the maximum among

bipartite correlations, i.e., Tð2Þ¼max½IðA:BÞ;IðA:CÞ;IðB:CÞ�.
Defined in this way, Tð3Þ is equal to the lowest bipartite

mutual information in a state, e.g., IðAB:CÞ, or equivalently
it is the shortest relative-entropy distance to a state with

no tripartite correlations. Since the genuine correlations are

of the form of mutual information, measures of genuine

classical Jð3Þ and quantum Dð3Þ correlations follow from the
standard way of defining them using the difference between
two versions of mutual information. On the other hand, we
expect that Jð3Þ ¼ J � Jð2Þ and Dð3Þ ¼ D�Dð2Þ, where J
gives the classical correlations of the total state, i.e., the
smallest distance between the closest classical state and its
reduced density operators, and Jð2Þ is the largest bipartite
classical correlation. They prove that these two definitions
indeed coincide, at least for pure states of three qubits.
Generally, any genuine n-partite correlations measure TðnÞ
can similarly be phrased as a suitable mutual information
while satisfying JðnÞ ¼ DðnÞ ¼ TðnÞ=2 for pure multipartite
states, which nicely generalizes the bipartite case. Note,
however, that so-defined genuine quantum correlations may
increase under general local operations. In fact, any discord-
like measure does not follow the postulates of Bennett et al.
(2011) and Li and Luo (2011), since classical states can be
transformed to nonclassical states using general local
operations.

F. Quantum correlations without classical correlations

The intriguing question of whether quantum correlations
can exist without underlying classical correlations depends on
how the correlations are measured. Here we briefly review the
status of this phenomenon for various measures and bipartite
systems.

1. Symmetric discord

There can be no quantum correlations without classical
correlations if the latter are characterized by the mutual
information of measurement results maximized over local
measurements on A and B. The reason is that for every
correlated state there is a local measurement of A and B
with correlated outcomes, and therefore all correlated states
possess some classical correlations.

To see this consider first a tomographically complete
POVM measurement of A. It can be chosen as a set of
projectors on nonorthogonal states, i.e., with POVM elements
Ea ¼ �a�a. By assumption, the probability distribution
pa ¼ trð�AEaÞ uniquely identifies a quantum state �A.
Similarly, the probability distribution pb ¼ trð�BEbÞ
uniquely identifies a quantum state �B. Therefore, a joint
probability distribution pab ¼ trð�ABEa � EbÞ uniquely iden-
tifies the joint state �AB, and we conclude that pab ¼ papb if
and only if �AB ¼ �A � �B. Furthermore, if �AB is not a
product state, then there exist particular outcomes 
 and 	
for which p
	 � p
p	. Plugging in the formulas for prob-

abilities shows that q
	 � q
q	 where, e.g., q
 ¼ trð�A�aÞ,
and therefore there also exist local projective measurements
with correlated outcomes.

We end on a historical note: Lindblad conjectured that the
correlations in every state are at least half classical, i.e., the
mutual information of the postmeasurement state is at least
half the mutual information of the state before the measure-
ment (Lindblad, 1973, 1991). Recently, Luo and Zhang
(2009) and Xu et al. (2010) disproved this conjecture.

2. Quantum discord

For the reason stated in the beginning of Sec. III.F.1, there
can be no quantum correlations without classical correlations
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if the latter are characterized by JðBjAÞ of Eq. (4). Note that
JðBjAÞ is given by the mutual information of the postmea-

surement state. Since the measurement is performed on A
only, the data-processing inequality gives JðBjAÞ � IðA0:B0Þ,
where IðA0:B0Þ is the mutual information for a state after

measurements by both A and B. For correlated initial states,

we proved in Sec. III.F.1 that IðA0:B0Þ> 0, and therefore also

JðBjAÞ> 0. The Lindblad conjecture also does not hold for

the asymmetric discord; that is, there are states with more

quantum correlations than classical correlations (Li and Luo,

2011).

3. Quantum deficit

Surprisingly, for the zero-way quantum deficit there exist

quantum states, both separable and entangled, for which this

quantity is equal to mutual information (Pankowski and

Synak-Radtke, 2008). Therefore, they solely contain quantum

correlations. For such states it is found that the optimal local

dephasing is in the eigenbases of local density operators of

the initial state (see Sec. III.F.4).
For two-way quantum deficit, the question of whether

quantum correlations can be greater than classical correla-

tions is posed in Horodecki et al. (2005). It is an open

problem whether states exist for which two-way deficit is

greater than half of the mutual information �> 1
2 I.

4. Diagrammatic approach

If a set of CC states is chosen to be the relevant set of

classical states, the relative entropy of discord is known to be

equal to zero-way deficit. As mentioned, for zero-way quan-

tum deficit there are states with only quantum correlations

(Pankowski and Synak-Radtke, 2008). The diagrammatic

approach gives an intuitive understanding why the optimal

dephasing for such states is in the eigenbases of the reduced

operators. Namely, the lack of classical correlations means

that the closest classical state � is a product state ��. Since

the closest product state to � is just a tensor product of

reduced operators, we expect dephasing in their bases to be

optimal. Otherwise the relative entropy of discord would be

larger than mutual information of the state.

G. Maximally discordant mixed states

The maximally discordant mixed states (MDMS) are de-

fined in analogy to maximally entangled mixed states (Munro

et al., 2001; Wei et al., 2003). They have the highest-possible

discord for a given value of a mixedness parameter, usually

von Neumann (Girolami, Paternostro, and Adesso, 2011) or

linear (Al-Qasimi and James, 2011) entropy of the state. The

boundary of physically allowed states is pimpled and multi-

branched in both cases. These features persist even if mixed-

ness is replaced with classical correlations (Galve, Giorgi,

and Zambrini, 2011b). It turns out that the set of MDMS, at a

fixed value of von Neumann entropy, coincides for symmetric

discord DS and quantum discord D. These states are sub-

classes of X states, given in Eq. (45), and are experimentally

realized in Chiuri et al. (2011) and to some extent in Fedrizzi

et al. (2011).

H. Other measures

The measures discussed above do not exhaust all possibil-
ities to address classicality. For example, there are various
ways to define conditional density operators (Cerf and
Adami, 1997; Fu, 2006; Li and Luo, 2007; Li, Luo, and
Zhang, 2007; Leifer and Spekkens, 2011), which naturally
lead to various new definitions of quantum discords. These
measures are not easily merged with discordlike measures.
The relations between alternative definitions of conditional
states and quantum correlations have not been explored much
so far. An all encompassing theory of classical correlations as
a singular concept within the quantum framework is missing
or not possible.

IV. CLASSICAL STATES

The set of multipartite-classical states, having zero discord
with respect to one or more parties, is important for several
reasons: Vanishing discord corresponds to a key notion of
classicality, for which maximal information about a subsystem
can be obtained by some specific local measurement without
altering correlations with the rest of the system. Zero-discord
states have application to the theory of decoherence where
they describe the classical correlations, between the pointer
states of some measurement apparatus and the internal quan-
tum states, which results from interaction with the environ-
ment; see Sec. VII.A. The dynamics of an open system is
completely positive when the discord of the initial system-
environment correlations is vanishing; see Sec. VIII. The set
of classical states can be used to define discord measures using
a notion of minimum distance, as is the case for the relative
entropy of discord and the geometric quantum discord. In
practical terms, it is often necessary only to ascertain whether
or not nonclassical correlations are present, and the precise
values given by the various discord measures are less impor-
tant. Therefore several nullity conditions have been proposed
which avoid optimization. In what follows, we first summarize
the key features of classical states before describing several
nullity tests and experimental discord witnesses.

A. Features of the set of classical states

We begin by stating a theorem which characterizes the
zero-discord states: A state �AB satisfies DðBjAÞ ¼ 0 if and
only if there exists a complete set of rank-one orthogonal
projectors �a on A, satisfying

P
a�a ¼ 1 and �a�a0 ¼

�aa0�a, such that

�AB ¼
X
a

pa�a � �Bja: (73)

The set of states classical with respect to A is denoted as CA.
Restating the theorem in the language of dephasing channels,
DðBjAÞ ¼ 0 if and only if there exists a quantum channel
such that � ¼ P

a�a��a. Equation (73) gives rise to a
physical interpretation for zero-discord states: for any state
in CA there exists a basis for A for which the locally accessible
information is maximal and, from the perspective of an
external observer, this information can be obtained without
disturbance to the combined system.

Proof of the backward implication of the theorem is an
immediate consequence of the definition of DðBjAÞ: Given
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that �AB has the block-diagonal decomposition Eq. (73),
it follows for the joint entropy that SðABÞ ¼ SðAÞ þP

apaSð�BjaÞ, and hence that f�ag defines a measurement

on A for which IðA:BÞ ¼ JðB:f�agÞ.
However, proof of the forward statement is rather more

involved. The approach given by Datta (2010) is to relate
the problem to the strong-subadditivity property of the
von Neumann entropy. Note that the postmeasurement state

�0AB ¼
P

aMa�ABM
y
a , for a given measurement with Ea ¼

MyaMa being rank-one-POVM elements, is related by a par-
tial trace to a tripartite state:

�0~ABC ¼
X
~a~a0
h~aj�ABj~a0ij~ai ~Ah~a0j � j~aiCh~a0j; (74)

where orthogonal projectors fj~aig form Neumark extensions
of POVM elements fEag. Discord in �AB is

DðBjfEagÞ¼ IðA:BÞ�JðBjfEagÞ
¼Sð�0~ACÞþSð�0~ABÞ�Sð�0~ABCÞ�Sð�0~AÞ: (75)

The right-hand side of Eq. (75) is the conditional mutual
information. If the measurement sets the discord to zero, then
�0ABC saturates the strong-subadditivity inequality, and

Eq. (73) follows from the structure of �0ABC in this case

(Hayden et al., 2004). For details, see Datta (2010) and
references therein. One implication of the above proof is
that when discord is zero the measurement that minimizes
it is a complete set of projections in the space of the system.

1. Classical states and classical theories

An important aspect of classical states is given by their role
in the classical limit. Matzkin (2011) studied such a limit with
ℏ! 0. Using a model of interacting (colliding) spinning
balls, he examined entanglement at the classical limit using
an effective Planck constant ℏeff . At the classical limit the
states describing the balls are well approximated by a corre-
sponding classical state.

Classical states are also the only states which are allowed
in a classical probability theory. Perinotti (2012) examined
the role of discord in generalized probabilistic theories
(Chiribella, D’Ariano, and Perinotti, 2011). He defined
zero-discord states as those that are (a) not entangled and
(b) can be objectively measured with complete information
on one subsystem. An objective measurement is defined as
one that is repeatable and which does not induce a loss of
information about the probability distribution; it is also com-
plete if the resulting states are pure. This definition is a
generalization of Eq. (73) or equivalently � ¼ P

i�a��a

to other possible theories.
Null discord states are the only states allowed by a classical

probability theory, i.e., one where all pure states are perfectly
distinguishable. More importantly, if in a given theory all
separable states have null discord, then all pure states are
perfectly distinguishable. One may conclude that discord is
not only a signature of ‘‘quantumness,’’ rather it is also a
signature of nonclassicality.

2. Generality of classical states

We now consider whether alternative definitions of discord
yield the same null set, as defined by the block-diagonal

decomposition Eq. (73). Recalling the definition of ~Dth in
Sec. II.A.2, which differs from D by including the entropic

cost for A of measurement, we haveDðBjAÞ ¼ 0 if and only if
~DthðBjAÞ ¼ 0. To prove this note that if �AB is of the form of

Eq. (73), the reduced state �A ¼
P

apa�a has the same form
before and after measurement in a basis f�ag, and hence
~DthðBjAÞ ¼ 0. The converse follows because ~DthðBjAÞ �
DðBjAÞ (the entropic cost of measurement for A is always

non-negative). Brodutch and Terno (2010) andXu (2011) gave
alternative definitions that yield the same zero-discord states.

However, not all formulations of discord define the same

null set as D. Coles (2011) considered how the properties of
D change when the von Neumann entropy is replaced by one

of several alternative (concave) entropy functions. In fact,
none of the alternatives discussed yields the null set CA
characterized by Eq. (73). As an example, the quadratic

entropy function SQð�Þ ¼ 1� trð�2Þ is proven to define a

non-negative discord measure; however, if we consider the

completely mixed state �AB ¼ ð1=dABÞ1, which is clearly of
the form Eq. (73), the modified discord is nonzero (except in

the trivial cases that dA ¼ 1 or dB ¼ 1).

3. Zero measure of classical states

Ferraro et al. (2010) proved some important facts about
the set of classical states. They are consequences of the

sufficient condition for vanishing discord presented in
Sec. IV.C.1. First, by parametrizing the set of all density

matrices �AB for parties A and B using the Bloch representa-
tion (for arbitrary finite dimensions), it is shown that states

which satisfy the sufficient condition are parametrized by
strictly less independent parameters than the full Hilbert
space. This subset, which includes the set of classical states,

must therefore have volume zero (as defined by the Lebesgue
measure). In particular, this implies that the probability for

picking a zero-discord state at random from all possible states
is zero. Second, it is proven in topological terminology that

the set of states satisfying the sufficient condition for vanish-
ing discord is closed and nowhere dense, and therefore has

no interior points. As a result, within any arbitrarily small
‘‘distance’’ of a state �AB in CA, there is a state ~�AB for which

discord does not vanish. Taken together, these two results for
the classical states present a fundamental difficulty with

defining the notion of vanishing discord in an operational
manner: Any measurement procedure is subject to errors and

cannot by itself prove a complete absence of nonclassical
correlations. Any attempt to implement a discord witness
must (implicitly) make additional assumptions about the

form of the state being investigated. Several such witnesses
are described in Sec. IV.D. As an aside, we also point out that

CA is topologically path connected, i.e., one can move in a
continuous fashion between any two states in CA without

going outside this set. This follows from the fact that any
density operator in CA can be mixed with the maximally

mixed state (normalized identity) with arbitrary weights to
yield another density operator in CA.

B. Generalized-classical states

Next, we summarize a generalized notion of classicality
introduced by L. Chen et al. (2011), motivated by the task
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of unambiguous state discrimination. The aim of unambig-
uous state discrimination for pure states is to identify one
candidate out of a set of (possibly nonorthongonal) states
j�1i; . . . ; j�di, using a POVM which makes no misidentifi-
cations but which can fail. This is possible if and only if
fj�jig are linearly independent, and in general a strategy

using only projective von Neumann measurements is subop-
timal. The following definition is given by L. Chen et al.
(2011) to extend the notion of classicality for multipartite
states to allow for unambiguous state discrimination for the
zero-discord parties: �AB is generalized classical (or is said to
allow for nondisruptive local state identification) with respect
to A if there exists a decomposition �AB ¼

P
apaj�aih�aj �

�Bja where the set fj�aig is linearly independent, and a local

measurement Ma with
P

aM
y
aMa � 1A such that

Maj�a0 ih�a0 jMya ¼ ��aa0 j�aih�aj; (76)

where 0< � � 1. The case � ¼ 1 reduces to the case defined
by Eq. (73), and so classical states are also generalized
classical. As an example, the state �AB ¼ �j0þi�
h0þ j þ ð1��Þj11ih11j is generalized classical but not clas-
sical with respect to party B. A local measurement optimal
here with respect to nondisruptive local state identification
would be given by

Mþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q jþih0j and M1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q j1ih�j;

and there is also an outcome for failure. Note, however, that the
discord computed with respect to this POVM is nonzero. It is
pointed out that all states �AB which are generalized classical
with respect to either party are minimum-length states; that is
to say�AB can bewritten as a convex combination of a number
of pure-product states equal to the rank of the density operator.
The set of minimum-length states has measure zero and hence
the probability of picking a generalized-classical state at ran-
dom is zero, leading to the problem of detection mentioned for
the set CA defined by Eq. (73). A nullity condition for gener-
alized classicality is given next.

C. Nullity conditions

1. Sufficient condition

The form of Eq. (73) immediately suggests some tests of
the condition DðBjAÞ ¼ 0 for �AB. If DðBjAÞ ¼ 0 and the
spectrum of the reduced state �A is nondegenerate, then the
eigenbasis of �A defines a measurement which is minimizing
and it is sufficient to check this case. If the spectrum of �AB is
nondegenerate, then in principle one could check whether the
eigenvectors of �AB have a tree product form consistent with
Eq. (73); that is to say; the eigenvectors must be of the form
�a ��bja, where the set of projectors f�bjag diagonalizes
�Bja. However, these methods fail in the case of degeneracy

and are inefficient. For example, mixtures of orthogonal
product states can have vanishing or finite discord depending
on the relative weighting of the components (Brodutch and
Terno, 2010). A simpler test for nonzero discord, which
follows directly from Eq. (73), is (Ferraro et al., 2010)

DðBjAÞ ¼ 0) ½�A � 1B; �AB� ¼ 0: (77)

For a simple example consider the density operator �AB¼
�j0þih0þjþð1��Þj11ih11j (where jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

and 0<�< 1). By comparison with Eq. (73) we see that
DðBjAÞ¼0. In addition,DðAjBÞ�0 since ½1A��B;�AB��0.
However, if we take any Bell state, we note that it commutes
with its marginals which are maximally mixed, but it does
have nonclassical correlations in the form of entanglement.
The test of Eq. (77) therefore constitutes a necessary but not
sufficient condition for vanishing discord. The states satisfy-
ing Eq. (77) are dubbed lazy states by Rodrı́guez-Rosario
et al. (2011) and a local discord witness based on this
equation is discussed in Sec. VIII.C. Alternative nullity con-
ditions are presented below which overcome this problem.

2. Commutator based

We already introduced a necessary nullity condition in
Eq. (77). We now present a simple necessary-and-sufficient
nullity condition for a state to have discord zero with respect
to one party, first presented by L. Chen et al. (2011). The
same condition is also presented by Huang, Wang, and Zhu
(2011), and applied to two-qudit circulant states by Bylicka
and Chruściński (2011). The condition can be applied for any
finite number of parties and dimensionality, but for simplicity
we assume a bipartite state �AB. Then, taking an arbitrary
orthonormal basis fjbig for party B,DðBjAÞ ¼ 0 if and only if
there exists a complete-orthonormal basis fjaig which simul-
taneously diagonalizes all the operators �Ajbb0 � hbj�ABjb0i;
that is if and only if the operators �Ajbb0 commute. To check

for classicality therefore, it is necessary to verify a number
Oðd4BÞ of commutation relations.

The proof of the first equivalence follows immediately
from comparing Eq. (73) with the expansion

�AB¼
X
bb0
hbj�ABjb0i�jbihb0j¼

X
abb0

cabb0 jaihaj�jbihb0j:

(78)

The semipositivity of the operators �Bja ¼
P

bb0cabb0 jbihb0j
follows from that of �AB. To prove the second equivalence,
we note that the conditions ½�Ajbb0 ; �Ajb0b� ¼ 0 establish that

the operators �Ajbb0 are normal and can therefore be diago-

nalized individually using a unitary transform. The full set
of operators �Ajbb0 are then simultaneously diagonalizable

(using the same unitary matrix) if and only if each operator
commutes with every other one.

The nullity theorem can be modified to test for generalized
classicality: �AB is generalized classical with respect to party
A if and only if there exists a linearly independent (but not
necessarily orthogonal) basis fjaig which simultaneously di-
agonalizes all the operators �Ajbb0 ¼ hbj�ABjb0i. L. Chen

et al. (2011) provided an efficient semidefinite programming
algorithm to implement this test.

3. Singular-value-decomposition based

An alternative nullity condition is proposed by Dakić,
Vedral, and Brukner (2010) and makes use of the singular-
value decomposition. The idea is as follows: Given a state
�AB, of arbitrary finite dimensions, one first obtains the (real-
valued) correlation matrix R ¼ ðRnmÞ by making the expan-
sion � ¼ P

nmRnmAn � Bm, where fAng (fBng) defines a basis
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of Hermitian operators for party A ðBÞ. By the singular-value
decomposition, R can be diagonalized as R ¼ UTrW, where
matrices U and W are orthogonal, and the diagonal entries of
r are the non-negative singular values of R. Then �AB¼P

prppSp�Tp, where Sp¼
P

nUpnAn and Tp ¼
P

mWpmBm.

The existence of the block diagonalization of Eq. (73) is
equivalent to the simultaneous diagonalizability of the opera-
tors fSng. This gives the nullity condition DðBjAÞ ¼ 0 if and
only if the operators Sn commute. The number of commuta-
tion relations to check is given by ð1=2Þ�rankðRÞ�
ðrankðRÞ�1Þ, a number which has been substantially reduced
by the singular-value decomposition. If rankðRÞ is greater
than the dimension of A, then �AB cannot be classical with
respect to A.

4. Other conditions

An entirely different approach to the issue of nullity con-
ditions is proposed by Bylicka and Chruściński (2010). This
nullity condition is based on the Cholesky decomposition and
provides a necessary condition for vanishing discord for qubit-
qudit states. (The test fails for arbitrary bipartite dimensions.)
Since all states with vanishing discord must be separable, and
have a positive partial transpose (PPT), they term their crite-
rion as a requirement for strong PPT, in analogy to the Peres-
Horodecki criterion for separability. We refer the interested
reader to Bylicka and Chruściński (2010).

D. Discord witnesses

In this section we discuss proposals for experimentally
practical witnesses for nonclassical correlations. The essen-
tial motivation comes from the concept of an entanglement
witness, defined mathematically as a Hermitian operator W,
satisfying trðW�Þ�0 for all separable states �, and for which
there exists an entangled state � such that trðW�Þ< 0.
Repeated (or ensemble) measurements then yield an average
value for � which might distinguish it from the class of
separable states. There are no such witnesses which are
universal, that is to say able to detect all entangled states.
Witnesses provide an operational characterization of entan-
glement, and an alternative to a full state tomography. To
modify the definition of an entanglement witness for the
purposes of detecting nonclassical correlations, one might
try simply replacing the set of separable states with a set of
zero-discord states, and suppose there exists a state of non-
zero discord � for which trðW�Þ< 0. However, as first
pointed out by Rahimi and SaiToh (2010) and SaiToh,
Rahimi, and Nakahara (2012), the mathematical properties
ofW must change. In particular, since any separable state is a
convex combination of product states having no correlations,
any linear W gives a non-negative value for it and cannot
detect any nonclassical correlations.

1. Sufficient discord witness

Examples of nonlinear witnesses for nonclassical correla-
tions have been given by several. Rahimi and SaiToh (2010)
proposed the following general form for a witness W on
bipartite states �AB for identifying any nonclassical correla-
tions [i.e., DðBjAÞ � 0 or DðAjBÞ � 0]:

W: � � c� trð�w1Þtrð�w2Þ � � � trð�wmÞ (79)

for m � 2, where the wi are positive Hermitian operators and
c is a proper constant. A witness of this form is suitable for
implementation using NMR, which can implement global
unitary operations and magnetization measurements of the
nuclear spins. This allows values for the trð�wiÞ to be esti-
mated in an experimental single run.

For example, for the state �AB ¼ 1
2 ðj0þih0þ j þ j11ih11jÞ

they suggest the witness

W:�AB�0:18� trð�ABj0þih0þjÞtrð�ABj11ih11jÞ; (80)

which assigns to it a value of�0:07. Recalling the discussion
in Sec. IV.A, �AB is generalized classical but not classical
with respect to B.

2. Sufficient classicality witness

A different type of nonlinear witness is presented by
Maziero and Serra (2012), for which the input is restricted
to two-qubit states with Bloch representation

�AB¼1

4

X3
i¼1
ð1�1þxi�i�1þ1�yi�iþTii�i��iÞ;

(81)

where contributions from the off-diagonal components of the
correlation tensor Tij are assumed to be 0. (Any two-qubit

state admits this form for a suitable choice of local x, y, and z
directions.) The witness is taken to be

W: � �
X3
i¼1

X4
j¼iþ1

jtrðÔi�ÞtrðÔj�Þj; (82)

where Ôi ¼ �i � �i and Ô4 ¼ r � � � 1þ 1 � s � �, where
r and s are arbitrary unit vectors. An outcome 0 forW implies
either that Tii ¼ 0 for all i, or that exactly one component Tii

is nonzero and the local Bloch vectors x ¼ y ¼ 0. In both the
cases DðBjAÞ ¼ DðAjBÞ ¼ 0, and W serves as a witness for
classical-only correlations. This witness has been demon-
strated experimentally using NMR (Auccaise, Maziero
et al., 2011) in agreement with earlier NMR studies
(Soares-Pinto et al., 2010).

3. Necessary-and-sufficient discord witness

A different approach to achieving the nonlinearity required
for a discord witness was proposed by Yu et al. (2011c) and
Zhang et al. (2011a), who used a Hermitian observable
acting on multiple copies of the input state ��kAB. This ap-

proach is similar in spirit to entanglement estimation using a
few copies of a quantum state (Walborn et al., 2006; Mintert
and Buchleitner, 2007). To construct witnesses that are
invariant under local unitaries, they used the invariants
trðUA �UB�

�k
ABÞ, where UAðBÞ are permutation operators for

party A (B). The witness introduced by Yu et al. (2011c) is
universal and works for bipartite states of arbitrary finite
dimension: it requires k ¼ 4 and is defined by

W ¼ 1
2ðXA þ XyAÞ � ðV13

B V24
B � V12

B V34
B Þ; (83)

where XA denotes the cyclic permutation operator with cycle

(1234) and Vij
B is the swap operator for input states i and j.
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A quantum circuit implementing W is illustrated in Fig. 5.
To prove that DðBjAÞ ¼ 0 if and only if

trðW��kABÞ ¼ 0; (84)

Yu et al. (2011c) provided the following argument: Define a
complete set of d2B observables fG�g for party B by

Gm ¼ jmihmj;
Gþmn ¼ 1ffiffiffi

2
p ðjmihnj þ jnihmjÞ; and

G�mn ¼ 1

i
ffiffiffi
2
p ðjmihnj � jnihmjÞ;

(85)

and make the expansion �AB¼
P

��Aj��G� using

Hermitian operators �Aj� ¼ trBð�ABG�Þ. Then

trðW��kABÞ ¼
1

2

X
�;�

trð½�Aj�; �Aj��2Þ; (86)

and trðW��kABÞ ¼ 0 if and only if the �Aj� all commute, or

equivalently �AB has a block-diagonal representation with
respect to party A. This looks very similar to the nullity
condition presented in Sec. IV.C.3.

V. QUANTUM CORRELATIONS IN QUANTUM

INFORMATION

Since quantum discord has its roots in quantum-
information theory, it is desirable to see what role it plays
in information-theoretic tasks. There are several major ex-
amples of how quantum correlations play a role in quantum
communication tasks. Here its role comes in different guises
such as a condition for a no-go theorem, a resource for
locking of classical correlations, determining entanglement
consumption and creation, and differences in coding capaci-
ties. What this shows is that the role of quantum correlations
is not singular but rather varied. This hints at the fundamental

nature of quantum correlations of mixed states, very similar
to entanglement for pure states. We begin with an important
no-go theorem which generalizes the celebrated no-cloning
theorem.

A. No local broadcasting

The task of quantum cloning (Dieks, 1982; Wootters and
Zurek, 1982) is achieved by a unitary operation that makes a
copy of an unknown state from a given set fjc iig: Ujc ii �
j0i ¼ jc ii � jc ii. This is an impossible task in the quantum
formalism unless the set fjc iig is a set of orthonormal states.
A generalization of quantum cloning is quantum broadcasting
(Barnum et al., 1996) where, instead of unitary operations,
linear operations are allowed to copy a set of density opera-
tors f�ig: �ð�i �!0Þ ¼ �i, where !0 is the initial ‘‘blank’’
state. The goal is to achieve a final state such that tr1ð�iÞ ¼
tr2ð�iÞ ¼ �i. Barnum et al. (1996) showed that broadcasting
is possible if and only if the operators f�ig commute with each
other.

Piani, Horodecki, and Horodecki (2008) considered an
even more general version of this problem that they call local
broadcasting. They consider A, B, C, etc., sharing a
multipartite-correlated state �. Their task is to broadcast �
using local operations (but no communication is allowed).
That is, letting ! ¼ !A �!B � � � � be the multipartite blank
state, their task is to act with local operations � ¼ �A � �B �
� � � onto the state � �!, and produce � such that tr1ð�Þ ¼
tr2ð�Þ ¼ �. This is a more complicated task, as each party not
only has to broadcast his or her local state, but also has to act
collectively to broadcast the correlations. Piani, Horodecki,
and Horodecki (2008) demonstrated that local broadcasting is
possible if and only if � is a fully classical state:

� ¼ X
abc���

pabc����a ��b ��c � � � �
X
z

pz�z; (87)

where f�ag forms a rank-one orthonormal basis on the space
of A, and similarly for the other parties, z ¼ ða; b; c; . . .Þ, and
�z ¼ �a ��b ��c � � � � .

They begin by making the observation that, under gener-
alized local operations, the quantum mutual information is a
decreasing function Ið�Þ � Ið�Þ. Since � comprises two
copies of �, Ið�Þ � Ið�Þ. Therefore we must have Ið�Þ ¼
Ið�Þ. Next they make use of Petz’s theorem (Petz, 2003),
which says that Ið�Þ ¼ Ið�ð�ÞÞ if and only if the action of �
can be inverted, i.e., there exists a � such that �ð�ð�ÞÞ ¼ �.
Putting it all together, they show that a state � can be locally
broadcasted if and only if it is fully classically correlated
or Ið�Þ ¼ Iðtr1ð�ÞÞ ¼ Iðtr2ð�ÞÞ. Furthermore, this result
encapsulates the standard no-broadcasting theorem as a con-
sequence. Consider a bipartite CQ state Eq. (6), �AB ¼P

apa�a � �Bja, and assume that the set f�Bjag can be broad-
cast. Then by virtue of the no-local-broadcasting theorem we
have � that must be a fully classical state, i.e., the elements of
the set f�Bjag must commute.

1. Unilocal and probabilistic broadcasting

Luo (2010) considered the scenario that lies between
broadcasting and local broadcasting, dubbing it unilocal
broadcasting. In unilocal broadcasting only one party acts,

FIG. 5. Discord witness. A quantum circuit implementing the

universal discord witness for bipartite states, using two ancillas,

a series of controlled-swap gates, and four copies of the input

state. The witness can be evaluated using trðW��kABÞ ¼ h�2
zi � h�1

zi.
A zero value corresponds to DðBjAÞð�ABÞ ¼ 0. Adapted from Yu

et al., 2011c.
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aiming to broadcast the correlations in a bipartite state. A
bipartite state is shown to be unilocal broadcastable if and
only if it is a CQ state, classical with respect to the broad-
casting party. Going further, Luo, Li, and Sun (2010) and Luo
and Sun (2010) show that no-broadcasting, no-unilocal
broadcasting, and the no-local-broadcasting theorems are all
equivalent to each other, i.e., one implies the others under
appropriate settings.

2. Discrimination

Note that the no-local-broadcasting theorem is strictly about
deterministic local broadcasting. L. Chen et al. (2011) defined
generalized-classical states (see Sec. IV.B) as those states that
can be identified under nondisruptive local state identification
(defined in terms of the well-known task of unambiguous state
discrimination.) They pointed out that these generalized-
classical states can be probabilistically broadcast. However,
whether the converse statement holds, that is to say that
only-generalized-classical states can be probabilistically
broadcast, remains an open question, as does the question
of the efficiency of probabilistic broadcasting. Recently,
Invernizzi, Paris, and Pirandola (2011) studied quantum dis-
cord in the context of channel discrimination and state dis-
crimination (Roa, Retamal, and Alid-Vaccarezza, 2011; Li
et al., 2012). These studies found that entanglement is unnec-
essary for discrimination, while discord (or dissonance) is
conjectured to be the necessary ingredient.

The no-cloning theorem is considered to be one of the most
fundamental statements of quantum-information theory. It is
one of the earliest examples of a task that differentiates the
quantum world from the classical world. It is striking that
when the no-cloning theorem is considered in its most general
form, the notion of quantum correlations different from en-
tanglement arises naturally (one can locally broadcast only
fully classical states). We note that the no-local-broadcasting
theorem does not strictly make use of quantum discord; rather
it straddles the same quantum-classical boundary as quantum
discord. On the other hand, we want an operational meaning
of quantum discord, rather than just the quantum-classical
divide. Next we show that quantum discord measures the
entanglement consumption in a process called extended state
merging and other protocols which follow.

B. Discord and entanglement

Discord and entanglement are closely related as they both
measure quantum correlations. Here we show explicit links
between several different discords and entanglement. In this
section we use the results of Sec. III.D extensively.

1. Entanglement consumption in state merging

Quantum state merging is defined in the following manner:
Consider a known pure state of parties ABC. The task is for A
to transfer her state to B using LOCC and shared entangle-
ment without disturbing the coherence with B or C:
jc ABCi ! j�B0BCi, i.e., the density operator for ABC should
be the same as B0BC (see Fig. 6). One easy way to do this is
by teleportation, but that turns out to be overkill if shared
entanglement is a precious resource. The protocol laid out by

Horodecki, Oppenheim, and Winter (2005) proves that (in the
many-copy limit) SðAjBÞ is the number of ebits required for A
and B to complete quantum state merging. If SðAjBÞ is a
positive number, A and B must consume that many ebits, and
if SðAjBÞ is negative, they can perform state merging with
LOCC with �SðAjBÞ ebits left over. Before we interpret
discord in terms of state merging we need to look at the other
definition of conditional entropy.

Cavalcanti et al. (2011) derived the following expression
for discord using Eq. (65):

DðAjCÞ ¼ EFðA:BÞ þ SðAjBÞ � �ðAjBÞ; (88)

where SðAjBÞ ¼ �SðAjCÞ due to the fact that for a tripartite
pure state SðACÞ ¼ SðBÞ and SðCÞ ¼ SðABÞ. The same equa-
tion is first noted by Cornelio, de Oliveira, and Fanchini
(2011) and Fanchini et al. (2011) in different contexts (see
Secs. V.E and VI.B.3). The first term quantifies the amount of
entanglement needed to construct the state of AB, while the
second term quantifies the amount of entanglement needed to
perform state merging from A to B. Together, �ðAjBÞ quan-
tifies the total amount of entanglement consumed in a proto-
col called extended state merging (state formation plus state
merging). This relationship between discord and entangle-
ment shows that discord records the resources in state merg-
ing from a distance, due to monogamy of correlations. That is
to say, state merging from A to B is related to the discord in
the state of AC as measured by C. This is one of the first task-
oriented operational interpretations of quantum discord.

One of the seemingly troubling features of quantum dis-
cord is its asymmetry under party exchange, i.e., DðAjBÞ �
DðBjAÞ. This is because it implies that A is more correlated to
B than B is to A. This is really not the case, since the total
correlations are determined by mutual information, a sym-
metric quantity under party exchange (the correlations be-
tween A and B are the same). However, the proportion of
quantum and classical correlations in each differ, i.e.,
DðBjAÞ � DðAjBÞ and JðBjAÞ � JðAjBÞ, while DðBjAÞ þ
JðBjAÞ ¼ DðAjBÞ þ JðAjBÞ.

FIG. 6 (color online). State merging. Quantum state merging. A

state jc ABCi is shared by A, B, and C. The task is to transfer the

state of A to B using LOCC and possibly extra entanglement.

Extended state merging takes into account the resources required

to build the initial state between A and B. Quantum discord between

A and C, as measured by C, is equal to the entanglement consumed

in extended state merging with the state of A going to B0, Eq. (88).
The dotted line represents possible leftover entanglement between A
and B after state merging. From Cavalcanti et al., 2011.
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Cavalcanti et al. (2011) also gave an interpretation for the
asymmetry of quantum discord. DðAjCÞ quantifies the total
entanglement consumption in extended state merging from A
to B. The difference in discords as measured by A and as
measured by C is the difference in consumption of entangle-
ment in extended state merging from A to B and from C to B
[see Eq. (88)]:

DðAjCÞ �DðCjAÞ ¼ �ðAjBÞ � �ðCjBÞ: (89)

Similarly, one can work out the difference in discords as onto
a single party, say C, as measured by A and B in terms of
extended state merging

DðCjAÞ �DðCjBÞ ¼ �ðCjBÞ � �ðCjAÞ: (90)

Above, the consumption of entanglement when C merges
with B versus when C merges with A is given by the differ-
ence in discord between AC and BC as measured by A and B,
respectively.

2. Entanglement generation in measurements

Now we show that quantum discord and one-way deficit
are related to the entanglement generation between a bipartite
system and a measuring apparatus.

Streltsov, Kampermann, and Bruß (2011b) considered
rank-one POVMs on one part of a bipartite system. Any
bipartite state can be written as �AB ¼ P

bb0�Ajbb0 � jbihb0j.
A measurement on system B, in the Neumark-extended

basis fjbig, can be written as �ABE¼�AB�j0ih0j! ~�ABE¼
UBE�AB�j0ih0jUyBE¼

P
bb0�Ajbb0 � jbebihb0eb0 j, where fjebig

forms an orthonormal basis on E. System E describes a
measuring device and the unitary operation potentially
entangling B and E is sometimes called a premeasurement.
Taking the trace of the last equation with respect to system E
gives ~�AB ¼

P
b�Ajb ��b. Note that this state is the same

as the postmeasurement state, �0AB ¼ ~�AB. Furthermore,

Sð�ABÞ ¼ Sð�ABEÞ ¼ Sð~�ABEÞ.
Consider the state corresponding to a complete measure-

ment in basis fjebig on system E: �ABE ¼
P

bjebi�
hebj~�ABEjebihebj ¼

P
b�Ajb � jbebihbebj, this is a separable

state for any split. The relative entropy of entanglement of
~�ABE can be bounded from above as

ERð~�AB:EÞ � Sð~�ABE k �ABEÞ
¼ Sð�0ABÞ � Sð~�ABEÞ
� EDð~�AB:EÞ; (91)

where the last inequality comes from Devetak and Winter
(2005). Here ED and ER are the entanglement of distillation
and relative entropy of entanglement, respectively. We also
used �tr½~�ABE logð�ABEÞ� ¼ Sð�ABEÞ ¼ Sð�0ABÞ. But in gen-

eral we have ER � ED; therefore we must have

ERð~�AB:EÞ ¼ EDð~�AB:EÞ ¼ Sð�0ABÞ � Sð~�ABEÞ: (92)

This shows that the premeasurement process creates en-
tanglement between the measuring apparatus E and the whole
system AB. If we minimize the entropy of the AB system after
the measurement, then we have

min
fjbig

ED;Rð~�AB:EÞ ¼ min
fjbig

Sð�0ABÞ � Sð�ABÞ ¼ � ð�ABÞ:
(93)

The measurement is a function of the Neumark-extended
basis fjbig. This means that distillable entanglement between
the system and the measurement apparatus is created only
when the quantum deficit is nonzero. On the other hand, the
quantum deficit quantifies the minimum distillable entangle-
ment generated between the whole system and the measure-
ment apparatus in measuring one subpart of the total system.

In fact, different types of quantum discords quantify differ-
ent types of entanglement that are generated in the division
AB:E. The same argument can be carried out with partial
entanglement defined as

PEð~�AjB:EÞ ¼ EDð~�AB:EÞ � EDð~�B:EÞ: (94)

It is the amount of entanglement left between B and Ewhen A
is traced out. In this way quantum discord quantifies the
minimum partial entanglement generated between the system
and the measurement apparatus in measuring subsystem B:

DðAjBÞ ¼ min
fjbig

PEð~�AjB:EÞ: (95)

3. Entanglement activation and discord

Using similar tools as in Sec. V.B.2 an interpretation
for relative entropy of discord can be attained (Piani et al.,
2011). Consider an n-partite mixed state �A and an ancillary
state �A0 of n pure qubits in state j0i ¼ j000 � � �i. An adver-
sary is allowed to perform local-unitary transformations fUig
on each of the qubits of A. After the adversary has performed
these local unitaries, c-NOT gates are performed, each gate
acting on an ith qubit of A and the corresponding ith qubit of
A0; see Fig. 7. The challenge to the adversary is to minimize
the entanglement (any monotone) between A and A0 at the end
of the game. He knows the state of A and therefore he can
plan an optimal strategy. A measure of quantum correlations
is defined as Qxð�AÞ ¼ minfUigExðA:A0Þ, where x denotes the

type of entanglement monotone considered.

FIG. 7 (color online). Entanglement activation. The

entanglement-activation game. �A is the initial state and A0 is in

pure state j0i. The adversary performs local-unitary transformations

on subparts of A. Systems A and A0 are then correlated via c-NOT

gates to yield ~�A:A0 . The adversary tries to minimize the entangle-

ment between A and A0 at the end of the process by choosing the

right unitary operations fU1; U2; U3; . . .g. Success of this task is

related to the relative entropy of discord. From Piani et al., 2011.
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It is now shown that the entanglement is vanishing if and
only if the initial state of A is fully classical. For ‘‘only if,’’
express the state of AA0 after the adversary has implemented
the unitary operations in the basis of the c-NOT gates: �A �
�A0 ¼

P
zz0qzz0 jzihz0j � j0ih0j. Applying the c-NOT gates

yields ~�A:A0 ¼
P

zz0qzz0 jzihz0j � jzihz0j, and a state of this
form is called a maximally correlated state. Next, using the
result of Hiroshima and Hayashi (2004), the entanglement of
distillation of the maximally correlated state is EDð~�A:A0 Þ ¼
minjaiSð

P
ajaihaj�AjaihajÞ � Sð~�A:A0 Þ, which is the same as

the relative entropy of entanglement (Vedral and Plenio,
1998) and the relative entropy of discord of A (Modi et al.,
2010).

Now we show that ~�A:A0 is classical in the A and A0 division
if and only if �A is fully classical. Note that the reduced states
of A and A0 are the same ~�A0 ¼ ~�A ¼

P
zqzzjzihzj. Therefore

~�A:A0 under measurement in basis jzz0i is invariant if and only
if ~�A:A0 is classical (Brodutch and Terno, 2010). This implies
qzz0 ¼ qzz0�zz0 and �AB is classical if and only if �A is fully
classical. The proof presented here is different from the one in
Piani et al. (2011).

The measure of quantum correlations defined by entangle-
ment of distillation

QDð�AÞ � min
fUig

EDð~�A:A0 Þ ¼ min
fUig

ERð~�A:A0 Þ ¼ DRð�AÞ
(96)

gives the relative entropy of discord an operational interpre-
tation in terms of entanglement activation.

Other measures of quantum correlations can be defined
using the game above by choosing different entanglement
monotones. An example given by Piani et al. (2011) using
negativity is

QNð�AÞ � min
fUig

ENðA:A0Þ ¼ min
fjaig

X
a�a0

jqaa0 j
2

: (97)

Another example using entanglement of formation and MID
may be worked out using the result of Cavalcanti et al. (2011)
in Eq. (88):

QFð�AÞ � min
fUig

EFðA:A0Þ ¼ DðAjPÞ �Mð~�A:A0 Þ; (98)

where the first term is the discord in ~�A:P, with P the
purification of �A. We also used the fact that Mð~�A:A0 Þ ¼
Sð~�AÞ � Sð~�A:A0 Þ, which is MID from Sec. II.D. Once again,
the relationships between a variety of entanglement measures
and discord measures, and knowledge of entanglement the-
ory, give nice tools to compute various properties for quantum
discord (Gharibian et al., 2011) and vice versa.

Mazzola and Paternostro (2011) made use of the protocol
of Piani et al. (2011) in a realistic system (considering losses
due to the environment) of cavity quantum optomechanics
(Marquardt and Girvin, 2009) in order to convert the available
mechanical quantum correlations into optomechanical entan-
glement. They point out that mechanical quantum correla-
tions may be very difficult to measure, but this prescription
allows for an indirect detection. Finally, we point out that the
scheme outlined in Mazzola and Paternostro (2011) falls in
the continuous-variable regime.

A hybrid approach of the last two sections is taken in Piani
and Adesso (2012). They showed a hierarchy of quantum
correlations in a measurement chain, linking the microscopic
object being measured to the macroscopic observer.

C. Discord as communication cost

1. State merging

A different approach to understanding discord operationally
in termsof statemerging is taken byMadhok andDatta (2011a).
They noticed that the general quantum operation (including a
measurement) on party A can be implemented using a unitary
transformation between A and a party E in state j0i:

�AB ! �0AB ¼
X
a

Ma�ABM
y
a

¼ trE½UAE�AB � j0ih0jUyAE�: (99)

Therefore, SðABÞ ¼ SðA0BE0Þ since E is in a pure state
and similarly the conditional entropy SðBjAÞ ¼ SðBjA0E0Þ.
Discarding the ancillary system we have SðBjA0E0Þ �
SðBjA0Þ. To minimize SðBjA0Þ without any ambiguity, the
quantum measurement must be restricted to be rank-one
POVM. This restriction is important, otherwise it would be
best to use the identity operation (a trivial full-rank POVM)
for UAE so SðBjA0Þ ¼ SðBjAÞ, i.e., nothing changes; see Lang,
Caves, and Shaji (2011) for discussion.

The minimization over rank-one POVM gives the relation
minfUAEgSðBjA0Þ ¼ minfEagSðBjfEagÞ. The conditional entropy
SðBjAÞ quantifies the entanglement required for state merging
(see Sec. V.B.1 and Fig. 6) from B to A in the initial state �AB,
while the conditional entropy minfEagSðBjfEagÞ quantifies the
entanglement required for state merging from B to A in the
postmeasurement state �0AB. The difference in the conditional
entropy is the increase in the cost of state merging due to the
measurement on A and is equal to quantum discord DðBjAÞ.

2. Dense-coding capacity

Conditional entropy SðAjBÞ also describes the usefulness
of a quantum state �AB as a resource for dense coding
(Bennett and Wiesner, 1992). Dense coding is a procedure
where A sends her subsystem to B, and by doing so she is able
to transmit more classical information than she could if the
system is classical. In the most general dense-coding scenario
(Horodecki et al., 2001; Winter, 2002; Horodecki and Piani,
2012), A encodes her message by means of general quantum
operations ð�A � IBÞ½�AB� ¼ �A0B, and the quantum opera-
tion changes the dimension of A from dA to dA0 � d2A. If the
encoding is applied to single copies of �AB, then the single-
copy dense-coding capacity is

�ðAjBÞ ¼ log2dA0 �min
f�Ag

SðA0jBÞ; (100)

where the minimization is over all quantum operations with
output dimension d0A and SðA0jBÞ is the conditional entropy

of �A0B.
If we let B make an optimized rank-one POVM then

the dense-coding capacity becomes �ðAjB0Þ ¼ log2dA0 �
minf�A;EbgSðA0jfEbgÞ. The difference in the two capacities is

the quantum discord of the state �A0B:
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�ðAjBÞ ��ðAjB0Þ ¼ min
f�Ag
½min
fEbg

SðA0jfEbgÞ � SðA0jBÞ�

¼ DðA0jBÞ: (101)

Again note that B is restricted to rank-one POVM. In fact,
consider any protocol that has a cost of the type SðAjBÞ þ
CfEbg, where CfEbg is a term that is invariant under measure-

ments on B. After an optimized rank-one POVM by B the cost
becomes SðAjB0Þ þ CfEbg. The increase in the cost is then

given by DðAjBÞ. An analysis of such a protocol, called a
mother protocol, is given by Madhok and Datta 2011b).

3. Dense-coding capacity and asymmetry

Now we go back to the purification scenario considered in
Sec. V.B.1 with jc ABCi. Consider C sending a message, via
dense coding, to either A or B. The difference in the quantum
part of the dense-coding capacity, from C to A versus from C
to B, is related to the difference of two discords. The dense-
coding capacity in Eq. (100) depends on the output dimension
dA0 , but logðdA0 Þ can be considered as the classical contri-
bution, while the quantum advantage of dense coding
is �QðAjBÞ ¼ �min�A

SðA0jBÞ. Cavalcanti et al. (2011)

showed that if C sends the message to A versus B, the
difference in capacity is captured by discord between AC
and BC both measured by C:

DðAjCÞ �DðBjCÞ ¼ �QðCjAÞ ��QðCjBÞ: (102)

All possible asymmetries in quantum discord are captured
and expressed operationally here and in Sec. V.B.1. Since
state merging and dense coding are not symmetric tasks, it is
reasonable to have asymmetric quantifiers for the resource.
The asymmetry of quantum discord captures this notion and
quantifies the differences in the resource needed due to the
asymmetry.

D. Quantum locking of classical correlations

Quantum locking of classical correlations (DiVincenzo
et al., 2004) is a remarkable effect of quantum mechanics.
Here A and B share a large amount of classical correlations

�AB ¼ ð1=2mÞP2m�1
a¼0 �a ��a. The classical correlations in

this state are given by the mutual information IðA:BÞ ¼ m
bits. Next, a random key K ¼ f0; . . . ; d� 1g is generated and
a control unitary on B is applied based on the value of the key:

�ABK ¼ 1

d2m
X2m�1
a¼0

Xd�1
k¼0

�a �Uk�aU
y
k � jkihkj: (103)

The value of K is known to A but not to B.
The set of unitary transformations fUkg can contain as

few as two elements: U0 being identity and U1 satisfying
hajU1ja0i ¼ 1=2m. In this case the mutual information
IðAK:BÞ � m=2, which is the accessible information of B
(the information B can gain by simply measuring his system),
while the total mutual information IðAK:BKÞ ¼ mþ 1. This
means that the classical correlations between A and B are
locked away due to the presence of K. If A reveals the value
of K to B, one bit of information, the classical correlations
become m once again. Hence, by using one bit of communi-
cation A can unlock m=2 bits of classical correlations, with m

being arbitrarily large. More generally, we say that there are
K unitary transformations. Then the amount of information
available to B with the knowledge of the key minus the
amount of information available to B plus the size of the
key is the amount of correlations locked:

DL ¼ IaccðAK:BKÞ � ½IaccðAK:BÞ þ jKj�: (104)

In classical locking schemes, e.g., a one-time pad, the size of
the key is equivalent to the size of the message jKclj � m.
However, for quantum locking jKj 
 m, a remarkable fea-
ture of quantum locking of classical correlations.

This problem, just by construction, looks related to quan-
tum discord and the classical correlations therein. It is ana-
lyzed in terms of MID in Datta and Gharibian (2009) and
symmetric discord in Wu, Poulsen, and Mølmer (2009). More
recently, a complete proof of the equality of the locked
correlations with quantum discord is given in Boixo et al.
(2011). There, the CQ states �AB ¼

P
apa�a � �Bja are

considered, and the asymptotic regime is assumed as the
quantities are achievable only in a many-copy limit.

After the key is revealed to B, the information accessible to
B is equal to the total mutual information IaccðAK:BKÞ ¼
IðAK:BKÞ ¼ mþ jKj. Again, the accessible information is
the information B can gain by measuring his system, in this
case with the knowledge of the value of K. On the other hand,
IðAK:BKÞ � IðAK:BÞ þ jKj � mþ jKj. The first inequality
comes from the no-signaling condition which means that the
mutual information should not increase more than jKj bits
when jKj bits are sent from A to B (Pawlowski et al., 2009).
Therefore, we have IaccðAK:BKÞ ¼ IðAK:BKÞ ¼ IðAK:BÞ þ
jKj. The amount of correlations locked is then given by

DL ¼ IðAK:BÞ � IaccðAK:BÞ; (105)

which is quantum discord DðAKjBÞ.

E. Regularization and entanglement irreversibility

Most of the tasks discussed above are defined asymptoti-
cally and therefore the quantities involved, e.g., discords,
entanglements, and entropies, should be considered in their
regularized form, i.e.,

	regð�Þ � lim
n!1

1

n
	ð��nÞ: (106)

For instance, an operational measure of quantum correlations
based on the notion of regularized broadcasting along with
mutual information is proposed by Piani et al. (2009).
Cavalcanti et al. (2011) gave a regularized form of entangle-
ment consumption and quantum discord for extended state
merging as well as dense-coding capacities. Madhok and
Datta (2011a) gave a regularized cost of quantum communi-
cation and quantum discord and the discords considered by
Piani et al. (2011) and Streltsov, Kampermann, and Bruß
(2011b) are related to entanglement and are therefore easy to
regularize. In our opinion, the regularized forms of discords
and related quantities do not lead to any significant clarifica-
tion of the subject at hand, with one exception.

Using the Koashi-Winter relationship in Eq. (60), and the
definition of quantum discord in Eq. (7), an equation relating
quantum discord, conditional entropy, and entanglement of
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formation is given by (Cornelio, de Oliveira, and Fanchini,
2011) DðAjCÞ ¼ EFðA:BÞ þ SðAjBÞ. Here once again the
three parties ABC together share a pure state. Note that this
equation is the same as the one used for the operational
interpretation in terms of extended state merging in
Eq. (88). When considering the regularized version of this
equation, the entanglement of formation is replaced by the
entanglement cost, while the conditional entropy gives the
lower bound of the negative of entanglement of distillation in
a protocol called hashing (Devetak and Winter, 2005).

The entanglement cost of a bipartite state � is the optimal
rate for converting n ebits into m copies of � under LOCC.
Entanglement of distillation is the reverse process: it is the
optimal rate for converting m copies of � into n0 ebits via
LOCC. Here m, n, and n0 are large numbers (Horodecki
et al., 2009). The difference in entanglement cost and dis-
tillation is called the irreversibility of entanglement;
see Fig. 8. It is apparent that the regularized version of
quantum discord with a purification C, i.e., DregðAjCÞ ¼
limn!1 1

nDðA�njC�nÞ quantifies the entanglement irreversi-

bility in hashing (Cornelio, de Oliveira, and Fanchini, 2011):

DregðAjCÞ ¼ ECðA:BÞ � EH
DðAjBÞ; (107)

where the superscript H denotes that this is the distillable
entanglement in the hashing protocol, which may not be
optimal.

This is a powerful result which has some immediate
applications. Cornelio, de Oliveira, and Fanchini (2011)
proved that if a mixed-entangled state has additive entangle-
ment of formation for some finite number of copies, and if it
is possible to attain the best distillation rate ED, operating
only on a finite number of copies before performing hashing,
then the entanglement is irreversible. They further showed
that, for an entangled state �AB with purification party C
such that �AC is separable, entanglement between AB is
irreversible.

Another application of Eq. (107), given by Cornelio, de
Oliveira, and Fanchini (2011), considers the tripartite pure
state

j�i ¼X
b


bjab; b; cbi; (108)

where fjbig forms an orthonormal basis. The resulting
reduced state of AB is called a one-way maximally correlated
state. It is shown that entanglement for such states is irre-
versible and the following holds:

ECðA:BÞ � EDðA:BÞ ¼ DðAjBÞ
¼ DregðAjBÞ ¼ �SðAjBÞ: (109)

This implies that DðAjBÞ ¼ 0 for a one-way maximally
correlated state if and only if it is separable. A more recent
similar study is Wu (2012).

VI. CORRELATIONS IN QUANTUM ALGORITHMS

The advantage associated with quantum algorithms is often
believed to be related to the ability to create and manipulate
quantum correlations. In general, classically correlated states
are zero measure in the set of all states and should require less
resources to be simulated on a classical computer. In the case
of pure states, the total correlations are proportional to
entanglement, and the set of unentangled pure states is zero
measure in the set of all states. Jozsa and Linden (2003)
showed, using a rigorous analysis, that a classical algorithm
can in fact efficiently simulate all quantum computations
using pure states for which the entanglement remains
bounded throughout. The sense of simulation here refers to
the ability to reproduce the measurement statistics efficiently
to an arbitrary precision using a classical algorithm.

More specifically, they use the notion of a p-blocked form,
which can be applied for both pure and mixed states: a state �
is said to be p blocked if it can be written as % ¼N

k
i¼1 �i,

where each �i is a state of at most p qubits. They prove that if
a computational register retains a p-blocked structure
throughout the computation (and p does not scale with the
problem), then the computation can be efficiently simulated.
For pure states, the p-blocked structure puts a limit on
entanglement, since at most p qubits can be entangled within
each block. Therefore, it can be concluded that the amount of
entanglement at some point in the computation has to scale
with the size of the problem in order to achieve an exponen-
tial speedup. A similar conclusion is drawn by Vidal (2003),
where it is shown that any algorithm where the bipartite
entanglement (over all possible bipartitions) remains low
throughout the computation can be efficiently simulated clas-
sically. However unbounded entanglement is not sufficient
for a speedup as demonstrated by the Gottesman-Knill theo-
rem (Nielsen and Chuang, 2000).

For mixed states, the p-blocked form forbids any correla-
tions (quantum or classical) between the blocks. Thus the
result for mixed states is not as clear cut, but some kind of
correlations must scale with the size of the problem to yield
a quantum advantage. Jozsa and Linden (2003) and Vidal
(2003) suggested that the large volume of separable mixed
states might allow efficient quantum computation without
entanglement.

A. Mixed-state quantum computation

The ability to simulate pure-state quantum computation
with no entanglement, and the idea that entanglement may

FIG. 8 (color online). Entanglement irreversibility. The entangle-

ment cost of a bipartite state � is the optimal rate for converting n
ebits into m copies of � under LOCC, while entanglement of

distillation is the optimal rate for converting m copies of � into

n0 ebits via LOCC. Entanglement irreversibility is the difference in

these two quantities given by �, which is equal to regularized

discord when a hashing protocol is used for distillation. From

Cornelio, de Oliveira, and Fanchini, 2011.
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not be necessary for an advantage in mixed-state quantum
computation, leads to two natural questions. First: what is the
natural extension of entanglement for mixed states? Second:
what are the restrictions on (mixed) states if one wants to
classically simulate the computation? As we see in this
section, a possible candidate for the first question is discord.
The first step in exploring the role of discord in simulating
quantum computation is to explore the computational resour-

ces required to simulate computations without discord.

1. Simulating concordant computation

A computation (in the circuit model) is termed concordant
if the state is fully classical, as in Eq. (87), before and after the
operation of each quantum gate. Eastin (2010) showed that
concordant quantum computation can be efficiently simulated
classically assuming a product input state diagonal in the
computational basis, only one- and two-qubit gates, and
terminal measurements on each qubit. Concordant computa-
tion is more general than classical computation since the local
product basis is not restricted to the computational basis and
can change at any point during the computation. The essential
idea of Eastin’s simulation method is that each step of the
computation is equivalent to a permutation of the eigenvalues
and a change of local basis: thus it is enough to keep track of
the permutation and the change of eigenbasis at each step.

Eastin outlines an algorithm for calculating these permuta-
tions and rotations, showing that operations that manipulate
discord are necessary to achieve a quantum advantage in this
specific instance of mixed-state quantum computation.

The method above is only the first step in simulating states
with little or no discord. Its extension to gates operating on
more than two qubits (e.g., Toffoli gates) is subject to fun-
damental difficulties. This restriction confines the types of
concordant computation which can be simulated, at least
using the ideas presented so far. Moreover, there is evidence
that a computation involving many-qubit gates can achieve a
nontrivial speedup over classical computation even when the
computation is concordant. An example is the case where the
deterministic quantum computation with one qubit (DQC1)
algorithm generates no discord (Dakić, Vedral, and Brukner,
2010), discussed in detail in Sec. VI.A.2.

Datta and Shaji (2011) outlined a geometric approach to
understanding the role of discord in quantum computation.
They used this approach to illustrate the idea that since the set
of concordant states is zero measure and nowhere dense in the
space of all states, it is probably not useful for gaining a
significant advantage over classical computation. The set of
classical states is path connected, since any classical state �
has an adjacent classical state ð1� 
Þ�þ 
=d1 which is

closer to the center of the Bloch hypersphere. Thus one can
go from any classical state to any other via the center of
the hypersphere. However, if we allow finite-discord states
in an intermediate step, we can take a ‘‘shortcut.’’ This gives
an idea of why discordant states may help speed up the
computation.

2. Distributed algorithms and restricted gates

One feature of quantum gates is the ability to create
entanglement. Entangling gates are an essential resource in

the circuit model of quantum computation, however, their
ability to entangle is not always evident in mixed-state algo-
rithms. Brodutch and Terno (2011) suggested a way of iden-
tifying the entanglement resources in quantum computation
with separable states using a paradigm of distributed quantum
gates, where the input (and output) states are distributed
between two separate parties A and B. Some entanglement
resources are required in order to implement a unitary gate
operation U even if the input (and output) states are
separable.

They require A and B to implement a map Gð�ABÞ ¼
U�ABU

y for a limited predetermined set of separable states

� 2 L, using LOCC: Gð%Þ ¼ P
jKj%K

y
j for any state % withP

jKj�K
y
j ¼ U�Uy, when � 2 L. It is not possible to imple-

ment the gate without entanglement for certain sets of
separable inputs (and outputs).

Implementing the c-NOT gate on the set of four separable
nonorthogonal states in Table I, which remain separable at the
end, requires some entanglement. An implementation without
entanglement allows A and B to distinguish between these
nonorthogonal states in a deterministic way and is therefore
impossible.

More generally, for qubits, a set including at least one
separable pure state, the completely mixed state, and a
quantum-quantum state requires some shared entanglement
for the implementation of a generic unitary operation which
can change the discord. For any set of separable pure states,
entanglement is required if the operation changes the discord
of any mixture associated with these states (Brodutch and
Terno, 2011).

3. Almost-completely mixed states

The role of discord is especially interesting when analyz-
ing algorithms involving states which are very close to the
completely mixed state such as the pseudopure states used in
liquid-state NMR. In NMR quantum computation, a spin
system at temperature T is described by the density matrix
� ¼ Z�1e�H=kBT . At room temperature these states can be
very close to the completely mixed state

� ¼ 1� 


2n
1þ 
� (110)

with 

 1 and � an arbitrary state. Entanglement in these
states is vanishingly small throughout any computation and
vanishes for 
< 2=4n for a large ensemble size n (Braunstein
et al., 1999). However, one can see that the number of

TABLE I. A distributed implementation of the above four
input! output states is impossible without shared entanglement.
A and B each hold one unknown qubit randomly selected from the
set fa; b; c; dg. They can implement only the desired operation, i.e.,
achieve the output state above, if they share entanglement. jx	i,
jy	i, and jz	i are the	1 eigenstates of the Pauli matrix �x, �y, and

�z, respectively.

No. state

a jz�ijyþi ! ijz�ijy�i
b jzþijyþi ! jzþijyþi
c jyþijx�i ! jy�ijx�i
d jyþijxþi ! jyþijxþi
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parameters required to specify such a state is the same as the
number of parameters that specify �.

Some algorithms exploit the smallest amount of purity in
these states to provide an advantage over known classical
algorithms. Laflamme et al. (2002) were the first to consider
the role of correlations other than entanglement and they
identify quantum discord as a possible indicator of quantum
advantage. More recently, Vedral (2010) presented a similar
line of thought, where he presented results concerning differ-
ent algorithms (the Deutch-Jozsa algorithm, Grover’s search
algorithm, and DQC1), discussed in detail below. More gen-
erally, quantum correlations other than entanglement and
indistinguishable quantum states are found to be closely
related to the efficiency of various algorithms using highly
mixed states.

B. Deterministic quantum computation with one qubit

The discovery by Datta, Shaji, and Caves (2008) that the
DQC1 algorithm, which estimates the normalized trace of a
unitary operator, produces bounded amounts of entangle-
ment, on the one hand, and discordant states, on the other
hand, is the first real evidence that mixed-state quantum
computation may have an advantage over classical computa-
tion even when entanglement is absent (or at most bounded),
as predicted by Laflamme et al. (2002) and Jozsa and Linden
(2003). The algorithm provides an exponential speedup over
any known classical algorithm. Lanyon et al. (2008) and
Passante et al. (2011) experimentally demonstrated the
algorithm in optics and liquid-state NMR, respectively.

1. The DQC1 model

Knill and Laflamme (1998) introduced DQC1 in the fol-
lowing fashion: A nþ 1 qubit system is prepared in the state
	, with n qubits called the target (T) in the completely mixed
state ð1=2nÞ1, and one qubit called the control (C) in the
(pseudo) pure state �. The system then undergoes some
unitary evolution W which can be efficiently implemented
using the standard quantum circuit model (a set of one- and
two-qubit unitary gates), to yield the final state	f. At the end

an expectation value for an observableO is determined on the
‘‘(pseudo) pure’’ C qubit. Repeating this procedure gives an
estimate of

hOi	 ¼ trðO	fÞ ¼ tr

�
O
�
W

�
� � 1

2n

�
Wy

��
(111)

and its variance. There is no known classical algorithm for
calculating this trace efficiently. The DQC1 model is not as
powerful as a model with p pure qubits (sometimes called
DQCp) and cannot be used to simulate an arbitrary quantum
process.

The standard DQC1 model yields the normalized trace of
an n-qubit unitary matrix ð1=2nÞ trðUÞ using a completely
mixed state of n T qubits, and a single C qubit in the state
� ¼ ½ð1� 
Þ=2�1þ 
j0ih0j. We now limit our discussion to

 ¼ 1, but most works deal with all values 1 � 
> 0. The
trace-estimation algorithm is described in the following fash-
ion (Laflamme et al., 2002): The initial total system is in a
product state	 ¼ � � ð1=2nÞ1. A Hadamard is applied to the

C qubit, followed by a controlled-unitary operation between
the C and T qubits; see Fig. 9. The state of the system is

	f ¼ 1

2

�
1 � 1

2n
þ j0ih1j �Uy

2n
þ j1ih0j � U

2n

�
: (112)

Tracing out the mixed n qubits we get the final state of C

�f ¼ 1

2

1 trðUyÞ
2n

trðUÞ
2n 1

 !
: (113)

The expectation values of �x and �y are determined on �:

trð�x�fÞ ¼ 


2n
Re½trðUÞ�; trð�y�fÞ ¼ 


2n
Im½trðUÞ�;

(114)

where Re and Im are the real and imaginary parts of the trace,
respectively. The last results hold provided 
> 0. Note that
when 
 is sufficiently small there is no possibility of the state
being entangled at any point of the computation (however,
this requires 1=
 to scale exponentially with the problem
making the algorithm inefficient).

The estimate is independent of the input size n and the
number of runs required for reaching a given accuracy 
 is a
quadratic function of the accuracy (Datta, Flammia, and
Caves, 2005). Since we assume that the controlled-unitary
operation can be efficiently implemented using a number of
one- or two-qubit gates, which is at most a polynomial
function of n, the number of resources required to achieve
an accuracy 
 scales at most polynomially with the number of
qubits. On the other hand, the best-known classical algorithm
for estimating the trace of a unitary requires resources that are
an exponential function of n. This is intuitively related to the
fact that the normalized trace is the average of all 2n terms,
although this intuition may fail since we are interested only in
estimating the normalized trace.

There is no guarantee that no efficient (classical) algorithm
exists for estimating the normalized trace. Datta, Flammia,
and Caves (2005) argued why it is unlikely that a classical
algorithm can efficiently solve this problem. There are a
number of equivalent problems which seem to have no
efficient classical solutions and can be used as a technological
motivation for implementing DQC1. A popular example is
the estimation of Jones polynomials in knot theory [for a

FIG. 9. DQC1. The deterministic quantum computation with one

qubit (DQC1) algorithm for estimating the trace of an n-qubit
unitary. The control qubit (top) is used to implement a controlled-

unitary transformation on the target (fully mixed) register (bottom).

This circuit provides an exponential speedup over any known

classical algorithm despite the fact that the input is highly mixed.

The state just before the measurement is discordant, DðTjCÞ> 0 but

separable EðT:CÞ ¼ 0 for the T-C bipartition.
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more complete list and an overview of these protocols, see
Datta (2008) and references therein]. More generally DQC1
represents its own complexity class which is believed to be
more powerful than the one associated with classical comput-
ing. Its place in the hierarchy of complexity classes as well as
a number of problems associated with this class is discussed
by Datta and Shaji (2011). Datta and Vidal (2007) showed
that standard methods for classically simulating quantum
processes are inefficient for simulating the trace-estimation
algorithm.

2. Correlations in DQC1

To study the entanglement in the algorithm we start by
expanding the unitary U ¼ P

je
i�j jujihujj, where fjujig is the

eigenbasis ofU and ei�j are the eigenvalues. The final state in
Eq. (112) is

	f ¼ 1

2nþ1
X
j

jajihajj � jujihujj; (115)

where jaji ¼ j0i þ ei�j j1i. It is easy to see that there is no

entanglement between C and T (Poulin et al., 2004). For a
more general bipartite cut, the situation ismore difficult. Datta,
Flammia, and Caves (2005) used a measure based on the
Peres-Horodecki partial-transpose criteria and calculated the
entanglement for any bipartition. They found that for any other
bipartite cut there is some entanglement, however, it is
bounded from above by a constant. Thus for large n, there is
vanishingly small (genuinely n-partite) entanglement with
respect to the maximal entanglement possible. Since entangle-
ment is usually present in all but one bipartition, these results
suggest that the speedup may be related to the distribution of
entanglement rather than the amount of entanglement.

In a seminal paper, Datta (2008) discussed the role of
discord in DQC1. At the output of the computation C has
some discord with respect to T. The main difficulty in
calculating the discord is finding the optimal measurement
on C. Different unitary operations, in general, give different
bases for making the optimal measurement. For a typical
unitary, chosen according to the Haar measure, the measure-
ment basis plays a minor role in calculating the discord, and it
is possible to estimate the discord using any measurement on
the x-y plane. The x-basis measurement is chosen to calculate
discord for a typical random unitary. For any unitary the
entropy of the system does not change and is given by
Sð	Þ ¼ n. For a typical unitary the trace is very small
jtrðUÞj 
 1 and the local entropy is Sð�fÞ � 1. The condi-

tional entropy for large nwith a measurement on the x basis is
given by SðTjf�xgÞ � nþ 1� logðeÞ, so the discord is
DðTjCÞ ¼ 2� logðeÞ, a constant fraction of the maximum
possible (Dmax ¼ 1). Therefore discord scales similar to the
efficiency. This is the first quantitative evidence that quantum
correlations other than entanglement play a part in the
speedup associated with a quantum algorithm.

The work above was followed by an attempt to quantify the
correlations between C and T qubits using other forms of
quantum correlations (Datta and Gharibian, 2009), namely,
MID and locally noneffective unitary (LNU) operations. The
latter is a measure of correlations based on the disturbance of
a state due to a local-unitary operation which does not change

the marginals (Fu, 2006). LNU is ineffective in quantifying

the quantum correlations in DQC1. In general LNU behaves

differently from discord, and most notably vanishing discord

does not imply vanishing LNU. On the other hand, they found

that MID is a good measure of quantum correlations in the

trace-estimation algorithm. For a typical unitary the expres-

sion reduces toM ¼ 1 which is the maximum value for MID.

However, we can see that this numerical result is slightly

ambiguous due to the degeneracy of �f (the final state of the

register). Using the fact that the discord vanishes for mea-

surements on T rather than C (with the optimal measurement

basis being the eigenbasis of U), MID can be made to match

discord to a good approximation.
Dakić, Vedral, and Brukner (2010) analyzed the role of

discord in the speedup of DQC1 using geometric discord.

Rather than calculating the correlations for a random (typical)

unitary, they found the class of unitary matrices which do not

produce discord in DQC1. These unitary operations are of the

form U ¼ ei�V with V2 ¼ 1, where fVg is a set of Hermitian

unitary operations. Since V has 	1 eigenvalues, jaji ¼ j	i
in Eq. (115), which is then clearly classical. They suggested

that an efficient classical algorithm for calculating the trace of

these unitary operations cannot be found. However, this is a

simpler problem than the more general one and it may be

possible that an efficient algorithm exists.
We note that the fact that discord vanishes at the end of the

algorithm does not necessarily diminish the role of discord in

quantum algorithms. A quantum circuit implementation of

the DQC1 algorithm may generate discord at some points

along the circuit and these may vanish at some later point. As

an example we take a unitary composed of a phase gate u� on

one qubit of T followed by a Hermitian unitary operation UH

on T followed by a final reverse phase gate so U ¼ u�Vu
y
�

with V2 ¼ 1. After the phase gate the state has nonvanishing
discord but discord vanishes at the end of the operation. This

reminds us that discussions of the role of correlations in

quantum algorithms make sense only when referred to speci-

fied gate sets.

3. Purification of DQC1

Fanchini, Cornelio et al. (2011) analyzed the purification

of the DQC1 system. Purifying the mixed target state T puts it

in an entangled state with the environment E so that the state

j�iECT is pure. Using their monogamy relation for pure

states, Eq. (62), they showed how entanglement and discord

get redistributed in the system. An alternative way of finding

the entanglement between C and TE is to note that the

entropy of C gives the entanglement, i.e., EFðC:TEÞ ¼
SðCÞ. They used their result to suggest that the power behind

the DQC1 model is derived from the power to redistribute

entanglement in the purified system. Note that at the end of

the process SðCÞ is dependent only on trðUÞ.
The idea of purification has one further implication which

has so far not been discussed. Purification of an n-qubit
system requires at most 2n qubits. One may use the standard

methods for simulating pure quantum computation on this

purified 2n-qubit system. Thus the computation only has an

exponential advantage over a classical algorithm if entangle-

ment in the purified system remains unbounded.
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4. Experiments

Of the experimental implementations of DQC1 two are of
particular interest, since they involve an explicit measurement
of the correlations between C and T at the end of the compu-
tation. In an optical implementation of DQC1, Lanyon et al.
(2008) used two initially pure qubits. They add noise (inde-
pendently) to both qubits and follow this by a rotation with
phase �. They calculated the trace of the rotation matrix for
various values of � and various degrees of mixedness for C.
Then they calculated discord and entanglement after perform-
ing complete tomography on the two-qubit state and found
agreement with the theoretical predictions.

In an NMR implementation of DQC1, Passante et al.
(2011) detected discord using the witness given in Dakić,
Vedral, and Brukner (2010), both before and after the
controlled-unitary operation; see Sec. IV.C.3. They estimate
the trace of a three-qubit unitary operation which is useful for
the calculation of the Jones polynomial. Before the compu-
tation discord is zero, while after the computation it is non-
zero for all values of 
 (the initial purity of C).

5. Other partitions

So far discord in DQC1 has been calculated only for the
C:T bipartition. The importance of this particular cut lies in
the view that the unknown unitary U acts on T while the
information about trðUÞ is encoded in C. However, entangle-
ment exists in other bipartitions and it would be interesting to
investigate how discord fares along those cuts and, perhaps
more importantly, how multipartite quantum correlations
behave in DQC1.

C. Metrology

Apart from its role in speeding up computation, correlations
play a role in improving the precision of some measurements.
Again, for pure states the necessity of entanglement is well
understood since the optimal strategies always involve entan-
glement (Giovannetti, Lloyd, and Maccone, 2004). Other
forms of correlations come into play only in the presence of
noise. This is closer to the realistic scenario but far from the
optimal scenario. The results regarding discord in quantum-
metrology protocols with noisy states are quite surprising and
especially relevant in the light of experimental constraints. In
this respect, it is appropriate to compare the quantum strategy
to other strategies with the same amount of noise.

We now describe quantum metrology using the following
paradigm (Giovannetti, Lloyd, and Maccone, 2006). A qubit
undergoes unitary evolution

j0i ! 1ffiffiffi
2
p ðj0i þ j1iÞ ! 1ffiffiffi

2
p ðj0i þ ei�j1iÞ

with some unknown phase �; see Fig. 10(a). We want to get
the best estimate of this phase using a large but limited
number N of initial (probe) states.4 We can estimate the phase
by measuring the output state and the precision increases with

the number of states as 1=
ffiffiffiffi
N
p

. This limit comes from the
central limit theorem and is usually referred to as the shot
noise or standard quantum limit. However, this limit can be
broken using quantum effects such as entanglement, giving a
new limit to the precision which increases to 1=N. This is the
Heisenberg limit, an improvement of

ffiffiffiffi
N
p

over the shot-noise-
limited classical strategies.

1. Quantum enhancement

Modi et al. (2011) compared four different strategies for
estimating �. Rather than assuming pure states at the input,
mixed states of the form

� ¼ 1þ p

2
j0ih0j þ 1� p

2
j1ih1j (116)

are assumed for every qubit. They compared and analyzed the
correlations and precision as functions of the (mixedness)
parameter p for 0 � p � 1. � is pure when p ¼ 1. Of the
four strategies (see Fig. 10), two are classical, S and Cl, and
two are quantum, Q1 and Q2. In every case, the input is an
(uncorrelated) product state, for which each qubit is assigned
the same value for the mixedness parameter above. In the
standard strategy S the input is sent through a Hadamard gate
first, then through the unitary where the phase is acquired. For

FIG. 10. Metrology with noisy states. Four protocols for estimat-

ing the phase �. All input qubits are of the same form [see

Eq. (116)]. (a) The standard protocol S where the probes are

independent. (b) The classically correlated protocol Cl, for which
the first c-NOT gate puts the qubits in a classically correlated state.

(c), (d) The quantum protocols Q1 and Q2, for which the Hadamard

on the control qubit followed by a c-NOT quantum correlates the

probe states. The quantum protocol Q2 is the most efficient, giving

quadratic enhancement over S even past the point where entangle-

ment vanishes. It is also the only protocol which remains signi-

ficantly discordant in the high-noise limit. From Modi et al.,

2011.

4To be more precise, we take into account all resources used, i.e.,

space (number of qubits) and time (number of gates). However,

these reduce to only the number of initial qubits for this example.
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the Cl strategy, they apply c-NOT gates between the first and

every other qubit with the first qubit as the control. This

generates classically correlated states. For strategy Q1, the
Hadamard gate comes before the c-NOT which produces

quantum-correlated probes, and entanglement is finite for

p > 1=N. In strategy Q2, the states are first classically corre-

lated via c-NOT gates, and then quantum correlated via a

Hadamard followed by another set of c-NOT gates. This

also produces states that are entangled when p > 1=N. This

strategy is used in a recent experiment (Simmons et al.,

2010).
Comparing the precision of each strategy, the quantum

strategy Q2 is found to scale 1=
ffiffiffiffi
N
p

better than the standard

strategy S for all p. The precision for the classical strategies is
approximately the same and scales as 1=p

ffiffiffiffi
N
p

for large N and

small p. However, the main point lies in the comparison of

correlations in all strategies. The classical correlations of Cl
do not seem to have a significant effect, while the quantum

correlations are associated with a quantum advantage. The

strategy Q2 has more quantum correlations for noisy states

and fares much better thanQ1. However, for low-noise states,
both Q1 and Q2 have a very large discord and both give

similar results for the precision. The advantage of
ffiffiffiffi
N
p

of Q2
over S is maintained even after the loss of all entanglement.

D. The role of correlations in other algorithms

While the results for DQC1 and metrology indicate that

correlations other than entanglement are at least partly re-

sponsible for the quantum advantage in some schemes, their

exact role as well as the role of entanglement is not fully

understood. The Gottesman-Knill theorem (Nielsen and

Chuang, 2000) tells us that some algorithms involving highly

entangled states can be efficiently simulated classically. So

even where entanglement is necessary for some advantage, it

is not sufficient. We next review results regarding the relation

between some types of correlations and some quantum

scenarios.

1. One-way quantum computation

Chaves and de Melo (2011) analyzed the correlations in

a noisy implementation of one-way (measurement-based)

quantum computation due to Briegel et al. (2009). This

model involves a sequence of single-qubit measurements on

a graph state and feedforward. The initial state of the com-

putation should be highly entangled, as this is clearly the

main resource for this model, although a large amount of

entanglement does not guarantee that a resource state is

useful for achieving algorithmic speedups (Gross, Flamia,

and Eisert, 2009). However, certain kinds of noise that reduce

entanglement are sometimes less disruptive than other kinds

of noise that do not strongly affect entanglement. The same is

true for quantum discord. The effects of two kinds of noise on

the performance of some algorithms are analyzed. These are

compared to their effects on entanglement and discord. The

noise models are in the form of a phase flip, where with some

probability a �z operation is applied, or white noise, where

with some probability �x, �y, or �z is applied. Entanglement

is strongly affected by white noise and is less sensitive to

phase flips, while discord is only slightly more sensitive to
phase flips than to white noise.

A simple one-way algorithm for remote state preparation is
described as follows: Starting with a two-qubit graph state
jGi ¼ 1

2 ðj00i þ j01i þ j10i � j11iÞ the challenge is to pre-

pare the second qubit in the state jc i ¼ cosð�=2Þj0i �
i sinð�=2Þj1i. This is accomplished by making an
orthogonal-projective measurement on the first qubit in the

eigenbasis jM	i ¼ ð1=
ffiffiffi
2
p Þðj0i 	 e�i�j1iÞ. The result gives

the required state up to an application of a Pauli�x depending
on the measurement result. Chaves and de Melo (2011)
studied this protocol with noise applied to the first qubit.
The fidelity of the outcome is, for some parameters, better for
less entangled or discordant states. When entanglement van-
ishes, the protocol still gives better fidelity than a random
state (the worst case scenario). As is often the case, discord
does not vanish up to the point where the noise is maximal
and fidelity drops to its lowest value of 1

2 . For this example, a

different measure of quantum correlations Eq. (95), called
minimum entanglement potential (Piani et al., 2011), is
directly proportional to the fidelity.

They also investigate the implementation of a general
rotation and a c-NOT gate. This protocol involves more qubits
in the cluster state. They apply noise to all qubits that are
measured in the protocol. The different kinds of noise have
the same effect on fidelity despite their very different effects
on different types of correlations. Both examples imply that
correlations are not the best indicator for efficiency in these
protocols.

Measurement-based quantum computation provides an
interesting platform for studying stronger-than-classical
correlations. Anders and Browne (2009) used the following
description of a measurement-based quantum computer
to study the computational power of correlations: A
measurement-based quantum computer consists of ‘‘two
components, a correlated multipartite resource and a classical
control computer.’’ They noted that the control computer has
less computational power than a universal classical computer.
Next they showed that various types of correlations in the
multipartite state can be used to increase the computational
power of the classical control. For example, a single GHZ
state is not enough to promote the control computer to a
universal classical computer, however, a polynomial supply
of these three-qubit states is sufficient. It would be interesting
to study the role of discord in this model.

2. Algorithms with highly mixed states

Implementation of the Deutsch-Jozsa and Grover algo-
rithms using highly mixed (NMR-type) states is discussed in
Vedral (2010). Implementing these in the case where entan-
glement vanishes requires large resources. The number of runs
required for a good estimate of the outcome is exponentially
large if we require no entanglement. However, for a single run
of the Deutsch-Jozsa and Simon algorithms, a quantum com-
puter reveals more information about the function than a
classical one even in the limit of vanishing entanglement
(Biham et al., 2004). This again indicates that entanglement
does not account fully for the quantum advantage although it
still plays a role in getting a polynomial or an exponential
advantage in many algorithms.

1690 Modi et al.: The classical-quantum boundary for . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



The reason behind the quantum advantage is presently
unknown. Neither discord nor entanglement fully explains
all phenomena. Another option is distinguishability (Vedral,
2010). These features are interrelated but not synonymous
and it seems that all three of them and potentially other
concepts play a role in the advantage of quantum algorithms
over classical ones.

VII. INTERPRETATION OF QUANTUM CORRELATIONS

Some measures of correlations are motivated by the
possibility to interpret them as the ‘‘quantumness’’ or
‘‘classicality’’ of a system; see Sec. II. The foremost of these
are quantum discord (Ollivier and Zurek, 2001), classical
correlations (Henderson and Vedral, 2001), and MID (Luo,
2008b). Discord captures the idea of superposition in a
system: in terms of quantum discord, a system is classical
if and only if it can be written as an eigenbasis of pointer
states which are orthogonal; see Eq. (6). Thus if some pointer
states must be described as superpositions of others, the state
is discordant. Correlations and superposition play a large role
in various distinctly quantum phenomena. Most prominent of
these are the role of correlations in measurement and deco-
herence (Zurek, 2000; Zwolak, Quan, and Zurek, 2010;
Streltsov, Kampermann, and Bruß, 2011b; Coles, 2012),
and the role of correlations in thermodynamics regarding
the difference between local and nonlocal operations
(Oppenheim et al., 2002; Zurek, 2003b; Dillenschneider
and Lutz, 2009; Brodutch and Terno, 2010; Lang, Caves,
and Shaji, 2011).

We refer the interested reader to Sec. V, devoted to quan-
tum information, for descriptions of tasks such as state
merging (Cavalcanti et al., 2011; Madhok and Datta,
2011a), entanglement activation (Piani et al., 2011,) and
dense coding, whose performance is linked to discord and
gives it operational meaning.

A. Einselection

Zurek’s original motivation for defining quantum discord
was an information-theoretic approach to decoherence
mechanisms such as environmentally induced superselection
(einselection) (Zurek, 2000, 2003a). Discord is related to the
information loss due to a quantum measurement process
(Ollivier and Zurek, 2001). The most-classical basis is the
one which minimizes discord (Zurek, 2000), and vanishing
quantum discord is a sign of classicality. The classical corre-
lations between a measurement device and the system can
also be used as a measure of how much the measurement
disturbs the system if we also take into account the loss of
coherence (decay of entanglement) with a purifying environ-
ment (Luo and Li, 2011; Coles, 2012).

Einselection [see Zurek (2003a) and references therein] is
introduced to explain how systems made up of quantum parts
can ‘‘become’’ classical after interaction with the environ-
ment. The notion of classicality here is the inability to
observe superpositions (of quantum states) in the classical
world. Einselection is the process whereby the environment
picks out a preferred measurement basis, effectively imposing
a superselection rule which forbids quantum superposition of

pointers of measuring devices. During a measurement the

environment interacts with the measuring apparatus leading
to decoherence in the preferred pointer basis (for example,

that of a live or dead cat) and this is an effective loss of
information. If einselection is effective, the system-apparatus

state �SA is decohered into a new state with vanishing discord

DðSjAÞ ¼ 0 (Reznik, Retzker, and Silman, 2005). The pointer
basis is the basis which minimizes discord (to zero). It

corresponds to the superselection sectors of the apparatus.
At this point the measurement apparatus can be observed only

in one of the pointer states. The value of discord can generally

be used to measure the efficiency of einselection (Ollivier and
Zurek, 2001) and classically correlated states are seen as an

indicator of a superselection rule. They calculate discord over
orthogonal measurements since only those are of interest for

the ideal einselection process.
Following decoherence, the records of the measurement

are stored in some classical memory of the environment by

being cloned into multiple copies which can be accounted for
by the redundancy ratio (Zurek, 2000). The observer reads

out the results of a measurement by collecting information

from the environment (for example, by interacting with
photons). However, although he usually only sees a fragment

of the environment, this fragment contains enough informa-
tion to identify the result of the measurement and allows other

observers to objectively record the same result. This process

is known as quantum Darwinism (Zwolak, Quan, and Zurek,
2010). It is intimately related to einselection, which is suc-

cessful if the fragment of the environment contains the result
of the measurement but no other information about the

system. Zwolak, Quan, and Zurek (2010) calculated the

discord between the system and the fragment of the environ-
ment in the pointer basis. This is related to the information

about the initial coherence between the pointer states that is
recorded in the given fragment. In the case of perfect deco-

herence in the chosen pointer basis the discord is zero. For a

good decoherence mechanism the size of the fragment and
the initial state of the environment play only a minor role.

Note that since information is only effectively lost, the whole
of the environment still contains information about the

superposition.

B. Maxwell’s demon

The amount of extractable work from a quantum version of

Szilard’s engine (Szilard, 1929) depends on how we imple-
ment the engine. Maxwell’s demons attempted to break the

second law of thermodynamics by extracting the maximal
amount of work from an engine regardless of the entropy.

An information-theoretic approach to taming Maxwell’s de-

mon has far-reaching implications in different branches of
physics such as general relativity and quantum mechanics

(Maruyama, Nori, and Vedral, 2009).
For a d-dimensional system in a state � in contact with a

heat reservoir of temperature T, the amount of work that a

demon can extract from the system in one run is kBT logðdÞ,
where kB is Boltzmann’s constant in the relevant units. For

simplicity we set kBT ¼ 1 and measure the work in bits. The

scheme to perform this work is to measure the state of the
system and use this information to extract logðdÞ bits of work
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from the now known pure state. The demon can repeat this
process until the bath temperature goes to zero, effectively
creating a perpetual motion machine of the second kind
(extracting work from a heat bath without any loss).

Quantum exorcism reminds us that the demons must keep
some record of their measurement results. Erasing this record
would cost them some work, enough to balance the books.
The amount of work, given by Landauer’s principle, is pro-
portional to the entropy of the measurement device. The total
work extracted from the system after erasure is given by

Wdemon ¼ logðdÞ � SðfpagÞ; (117)

where fpag are the probabilities of the results of the demon’s
measurement. This entropy is minimized when the measure-
ment is made in the eigenbasis of the system giving an
entropy SðfpagÞ ¼ Sð�Þ. To perform the maximal amount of
work the demon should know the state of the system and be
able to perform the optimal measurement. However, if our
demon is unable to perform some operations, in particular, if
he is restricted to local measurements, he can perform less
work. These less powerful local beings are sometimes called
local goblins (Brodutch and Terno, 2010). The difference in
the amount of work performed by demons and goblins is a
measure of correlations. If we allow the goblins to commu-
nicate classically, the difference in work is a measure of
nonclassical correlations. Following Lang, Caves, and Shaji
(2011) we call this measure demon discord. Various scenarios
for communication and local knowledge give a different
demon discord. Regardless of the physical picture the demon
discord involves some (possibly complex) measurement strat-
egy M which the goblins implement. The demon discord is
given by

Ddemon ¼ SðfpagÞ � Sð�Þ; (118)

where fpag are the probabilities of the measurement out-
comes for strategyM and state �. We assume that the goblins
can communicate when they erase their records (Lang, Caves,
and Shaji, 2011). The demon discord depends on the mea-
surement strategyM, and different approaches give different
results. The two main paradigms used to describe the demon
discord scenario are the demon approach described above,
and the CLOCC approach described in Sec. II.B. In the latter
the demon discord is work deficit; see also Sec. II.I.5. Here we
follow the demon approach.

Zurek (2003b) described the following scenario: A mea-
surement apparatus A is correlated with the system B. We
want to extract work from the system-apparatus state by using
a classical strategy. First we make an orthogonal-projective
measurement f�ag on the apparatus, use the resulting state to
extract work logðdAÞ � SðfpagÞ from A, and then we use the
measurement result to update the state of B. Finally, we use
this state to extract logðdBÞ � SðBjf�agÞ bits of work from B.
The total amount of work extracted using this classical
strategy is

Wgoblin ¼ logðdABÞ � SðfpagÞ � SðBjf�agÞ: (119)

Comparing with the optimal quantum strategy, we get the
one-way work deficit which is the same as the thermal

discord Ddemon ¼ ~�! ¼ ~Dth. The thermal discord is also
used by Janzing and Beth (2003) to quantify the entropic

cost associated with resetting synchronized clocks. We note
that the assumption that the classical strategy involves
orthogonal-projective measurement can be generalized to
POVMs; see Sec. II.I.4.

In another scenario, Brodutch and Terno (2010) described
nonlocal versus local strategies with one-way communica-
tion. Here the goblins A and B have only local information
about their own states, but B’s knowledge of his state
increases once he knows the outcome of A’s measurement.
A’s best strategy is to get the maximum amount of work
from her system by making a measurement in the eigenbasis
of her local state. The work extracted is logðdAÞ � Sð�AÞ.
After B gets A’s measurement result, he extracts logðdBÞ �
SðBjf�Eig

a gÞ bits of work from his system. Comparing with
the nonlocal demon, the resulting demon discord is the

discord measured in the local eigenbasis of A, Ddemon ¼
DðBjf�Eig

a gÞ, given in Sec. II.A.3.
The work extracted using a Szilard engine is strongly

related to the work required to erase information.
Groisman, Popescu, and Winter (2005) used a similar idea
to define quantum, classical, and total correlations through
the amount of work required to delete each. The scheme for
removing correlations is the application of a random local
unitary from some given set. This does not change the
correlations of the system until the relevant party ‘‘forgets’’
which unitary they applied. Forgetting is directly related to
work through the erasure principle. The mutual information is
the minimum amount of work required to remove all corre-
lations using this process, giving it an operational interpreta-
tion. Jennings and Rudolph (2010) examined the work due to
correlations in a closed system with energy conservation,
which corresponds to only allowing global unitary operations
that change the mutual information and not the eigenvalues of
the density operator. Modi and Gu (2012) showed that any
multipartite state is unitarily connected to a classically corre-
lated state, but not necessarily to a product state. The impli-
cation is that in general the lowest amount of mutual
information due to global unitary operations is not zero.
Jevtic, Jennings, and Rudolph (2012) showed that the states
with maximum mutual information, for a fixed spectrum, are
the generalized Bell-diagonal states (which have maximally
mixed reduced states). The states with minimum mutual
information, again for a fixed spectrum, turn out to be clas-
sical states, however in a nontrival manner; see Jevtic,
Jennings, and Rudolph (2012).

Dillenschneider and Lutz (2009) considered the role of
correlations in a quantum photo-Carnot engine. They consid-
ered various scenarios where correlated two-level atoms are
the quantum heat reservoir. They compared this efficiency to
the efficiency where the atoms are not correlated. The corre-
lated (quantum) reservoir is found to be more efficient, and
they related the improvement to the total correlations given
by mutual information.

C. Superselection

In principle, it is possible to engineer in a laboratory an
arbitrary quantum operation, and therefore a state modeled by
an arbitrary vector in a Hilbert space. States of many natural
systems, however, do not explore the whole Hilbert space.
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Superselection rules constrain physically admissible states
and operations in quantum theory. They arise from fundamen-
tal restrictions such as conservation laws or relativistic invari-
ance (Wick, Wightman, andWigner, 1952, 1970; Strocchi and
Wightman, 1974), as well as for more pragmatic reasons such
as the lack of suitable reference frames or detailed knowledge
about underlying interactions (Aharonov and Susskind, 1967;
Bartlett, Rudolph, and Spekkens, 2007).

In its traditional form, a superselection rule (SSR) is
specified by a Hermitian operator N, commuting with all
observables of the theory, and the requirement that no
observed states of the theory are nontrivial superpositions
of the eigenstates ofN belonging to different eigenvalues. For
example, a particle-number SSR forbids coherent superposi-
tions of states with different numbers of particles, i.e., all
states and operations have to commute with the particle-
number operator. Accordingly, the most general density
matrix under this SSR is block diagonal in the basis of total
particle-number states. For example, an entangled state

j�i ¼ ð1= ffiffiffi
2
p Þðj12i þ j21iÞ contains three particles in total

and can be prepared via joint operations of A and B, whereas

state ð1= ffiffiffi
2
p Þðj12i þ j34iÞ is forbidden.

If A and B are restricted to local operations respecting SSR
and classical communication (SSR-LOCC), all they can pre-
pare are fully classically correlated states of Eq. (87), as now
they have to commute with local particle-number operators
(Vidal, 2003). The converse statement does not hold, e.g.,

state jþi � jþi with jþi ¼ ð1= ffiffiffi
2
p Þðj0i þ j1iÞ is classical but

it is not compliant with local SSR. Therefore, the set of states
that can be prepared via SSR-LOCC is different from the
set of separable states. This is quantified by so-called
superselection-induced variance; see Schuch, Verstraete,
and Cirac (2004a, 2004b). Finally, only states that cannot
be prepared via SSR-LOCC are useful reference frames that
allow violation of a Bell inequality (Paterek et al., 2011).

The permissible types of correlations that A and B can
generate by joint operations are also altered under SSR. We
now show that under particle-number SSR there are no
classical-quantum states: we only have fully classical or fully
quantum (with discord both sides) states. A general CQ state
is of the form � ¼ P

apa�a � �Bja. Consider this state

rotated to the particle-number basis of A:

�0 � UA�U
y
A ¼

X
n

pn�n � �Bjn (120)

¼ X
n;m;n0 ;m0

�0nm;n0m0 jnmihn0m0j; (121)

where UAjai ¼ jni, due to the block-diagonal form we have
n ¼ n0, and jmi is the particle-number basis for B. Since the
total number of particles must be fixed nþm ¼ n0 þm0, it
follows that m has to be equal to m0 and therefore �0 is fully
classical. Any such state remains fully classical under local-
unitary operations and therefore � is fully classical too.
Furthermore, since the state of B satisfies the SSR locally,
it follows that the only way to write down a fully classical
state under the SSR is to write it using local particle-number
bases, i.e., a set of f�ag has to be equivalent to the set
of f�ng.

We finish this section by noting that in studies of super-
selection it is important to keep fixed the number of modes
accessible to A and B. Namely, the SSR is effectively lifted if
one allows adding locally new modes. For example, all
quantum operations of a d-level system can be realized on
two modes jk; d� kþ 1i, with k ¼ 1; . . . ; d under particle-
number SSR (Verstraete and Cirac, 2003).

D. Nonlocality without entanglement

Bennett et al. (1999) coined the term quantum nonlocality
without entanglement with the following example: A and B
share a system initially prepared in one of nine orthogonal
states

j0	 1i � j2i; j1	 2i � j0i; j2i � j1	 2i;
j0i � j0	 1i; j1i � j1i: (122)

A and B need to discover which state they are given.
However, as it turns out, it is impossible to deterministically
distinguish these states using LOCC, even though the states
are orthogonal product states in the AB space.

The term nonlocality without entanglement suggests some
relation with discord. Sen De and Sen (2003) first studied this
in terms of quantum deficit. Brodutch and Terno (2010)
explored this idea and found that the discord approach, and
any other approach based on the density matrix, is not
effective in identifying such nonlocality. For example, an
equal mixture of these nine states gives a completely mixed
state, a classical state.

However, following Luo, Li, and Sun (2010), if we assume
that a third party C is handing out these states to A and B with
a record, then the total state is

�ABC ¼ 1

9

X9
c¼1
j
cih
cj � j	cih	cj � jcihcj; (123)

where j
c	ci is a state from Eq. (122) and fjcig forms an
orthonormal basis in C. The last state clearly has finite
discord: DðCjAÞ> 0, DðCjBÞ> 0, but DðCjABÞ ¼ 0 and
DðABjCÞ ¼ 0. On the other hand, consider the equal mixture
of four Bell states, which also has a fully mixed density
operator and is not distinguishable by LOCC (Ghosh et al.,
2001). In this case, when we bring in C as the classical flag,
just as above, all quantum correlations are vanishing:
DðCjAÞ ¼ 0, DðCjBÞ ¼ 0, DðCjABÞ ¼ 0, and DðABjCÞ ¼
0. Other versions of this approach give similar results where
either distinguishable entangled states give discord or non-
distinguishable entangled states give no discord (depending
on which bipartition is studied). These kinds of methods may,
however, be valid if we restrict our discussion to sets of
product states as in (Brodutch and Terno (2011).

Returning to DðAjBÞ, the other extreme is a discordant

state mixing two orthogonal entangled states, say ð1= ffiffiffi
2
p Þ�

ðj00i þ j11iÞ and ð1= ffiffiffi
2
p Þðj01i þ j10iÞ. These states could be

locally distinguished but give a discordant (even entangled)
density matrix.

Local distinguishability is not something that can be easily
deduced from the density matrix. While there is a relationship
between local distinguishability of an ensemble and quan-
tumness (Luo and Fu, 2010), the density matrix of the
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ensemble does not capture this simply, especially in the case
of orthogonal states.

VIII. DYNAMICS OF CORRELATIONS

In this section we explore a variety of studies of discord in
different dynamical systems. In Sec. VIII.A, we summarize
various studies looking at various (generic) features of the
evolution of discord for multipartite systems (typically two
qubits) subject to different types of decoherence processes.
These features include robustness to sudden death, sudden-
change behavior, dependence on the initial state, and freezing
of correlations for finite periods. Comparative studies of
discord and other correlation measures such as entanglement
or quantum mutual information can reveal similar or highly
dissimilar behavior. One application is identifying whether
discord can serve as a relevant indicator of quantum correla-
tions, or the onset of particular dynamical changes, for
example: classicalization of quantum walks (Srikanth,
Banerjee, and Chandrashekar, 2010; Rao et al., 2011), mutual
synchronization of dissipative quantum harmonic oscillators
(Giorgi et al., 2012), and efficient energy transfer in the
Fenna-Matthews-Olson protein photosynthetic complex
(Brádler et al., 2010). Next we proceed to the general theory
of open quantum systems. In Sec. VIII.C we outline how the
concept of lazy states leads to a simple test for the presence of
nonclassical system-environment correlations in terms of the
rate of change of the entropy for the system. Then in
Sec. VIII.D we review the connections between the classes
of initial system-environment correlations, and the possibility
for describing the open-system dynamics using completely
positive maps. Finally, in Sec. VIII.E we describe studies of
the degradation of entanglement shared between an inertial
party and a party undergoing constant acceleration, arising
from the Unruh effect in the accelerated frame.

A. Decoherence, dephasing, and dissipation

A number of works investigate the dynamics of discord in
open quantum systems by comparing the evolution of differ-
ent types of correlations in specific models, typically two
qubits coupled to two local baths or one common bath.
Several factors can affect the evolution, namely, the initial
state for the system and environment, the types of system-
environment interaction, and the structure of the reservoir.

One important distinction is between dissipative and non-
dissipative decoherence. The former describes processes of
spontaneous emission for which energy is lost from the
system. In the latter case, the system-environment interaction
is described by a quantum-nondemolition Hamiltonian which
commutes with the system Hamiltonian, and decoherence
(such as dephasing) occurs without transfer of energy.

Another distinction is the form of the spectral function
which describes the coupling of the system to reservoir modes
of different frequencies. In the Markovian (memoryless or
white-noise) limit the spectrum is flat. However, when the
spectral density changes significantly for frequencies close to
the characteristic system frequency, the reservoir acquires
finite temporal correlations and non-Markovian evolution
results. Non-Markovianity typically leads to phenomena

such as oscillations, revivals or sudden birth, as coherence
lost to the environment returns to the system.

In all models considered, one should note that different
measures of discord can sometimes record different behavior,
as is the case for the examples given by Lu et al. (2010) and
Bellomo, Franco, and Compagno (2012). Also higher-
dimensional models might exhibit very different features
from those for pairs of qubits, an area where few studies
have been reported so far: particular exceptions include works
which address the question of when local decoherence chan-
nels can increase as well as decrease quantum correlations,
discussed in Sec. VIII.B.

1. No death for discord

A question about the robustness of discord is inspired by
studies of entanglement sudden death (ESD) for two qubits
having no direct interaction but subject to a process of
spontaneous emission. ESD [see Yu and Eberly (2009) for a
review] occurs when the initial entanglement, as quantified
by the concurrence or the entanglement of formation, falls to
and remains at zero after a finite period of evolution for some
choices of the initial state. Does discord present similar
behavior? In the first study addressing this question,
Werlang et al. (2009) compared the evolution of concurrence
and discord for two qubits, each subject to independent
Markovian decoherence (dephasing, depolarizing, and ampli-
tude damping). Looking at initial states such as Werner states
and partially entangled pure states, they found no sudden
death of discord even when ESD does occur; the discord
decays exponentially and vanishes asymptotically in all
cases.

An intuitive explanation for this outcome is given by a
simple example: mixing a state having finite discord with the
identity, as corresponds to a simple process of depolarization,
can never make the discord vanish other than when the
identity itself is reached (Ferraro et al., 2010). In contrast
entangled states become separable when sufficiently mixed
with the maximally mixed states. More generally, sudden
death of discord might not be expected to occur even in
more complicated models on the account of the set of clas-
sical states having zero measure. (This is in contrast to the
case of separable states which have finite volume in the full
set of states, leading to a common occurrence of ESD.) In
fact, a large number of other studies looking at the dynamics
of discord for specific models, discussed next, also failed to
find sudden death phenomena.

Cole (2010) examined the fundamental difference in the
behavior of discord and entanglement from a different angle.
ESD is shown to result from the manner in which the total
system is partitioned: that is to say, multipartite entanglement
between all interacting components does not vanish when the
bipartite entanglement of the reduced state for the qubit
subsystem becomes zero. Discord captures all classes of
nonclassical correlations, not just nonseparability, and con-
sequently does not exhibit sudden death.

Ferraro et al. (2010) gave a formal proof that interaction
with any (local or common) Markovian bath can never lead to
a sudden and permanent vanishing of discord (unless the
infinite-time limit is reached). The proof uses the nullity
condition (77), and argues that the occurrence of sudden
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death would imply an infinite set of linearly independent

equations which can never be satisfied. Note, however, that

although sudden death is not possible in a strict sense, discord

can be exponentially suppressed for finite periods, and it can

vanish at discrete times and periodically (Fanchini et al.,

2010), e.g., in dissipative atom-cavity systems in the disper-

sive limit (Li, Yi, and Ficek, 2011; Zhang et al., 2012).

Furthermore, discord need not decay to zero in the asymptotic

limit (Fanchini, Castelano, and Caldeira, 2010), since an

environment sometimes preserves certain types of correla-

tions. Y.-J. Zhang et al. (2011) gave an example of this by

considering two atoms coupled to a common-dissipative

cavity mode: the evolution is strongly dependent on the initial

correlations, and when the initial state includes a contribution

from the subradient state the discord tends to a finite value.

The choice of initial state can have other effects too: a model

for which two atoms subject to independent and collective

spontaneous emission, as well as the dipole-dipole interaction

is explored by Hu and Fan (2012), and it is shown that the

speed of decay of several types of quantum correlations can

be simultaneously and strongly enhanced by local-unitary

transformations of the initial state.
For completeness we point out that our main conclusion so

far, that sudden death of discord cannot occur for systems

subject to Markovian decoherence, also holds for models

where the Markovianity assumption is relaxed or explicit

non-Markovian assumptions are made. Maziero, Werlang

et al. (2010) took a model of two noninteracting qubits

subject to independent noise channels, and considered the

evolution and transfer of classical and quantum correlations

across different partitions of the system (intrasystem, system

environment, and environment environment). Many quanti-

tative differences are present for the case of dissipative

(amplitude damping) versus nondissipative (phase-damping,

bit-flip, bit-phase flip, and phase-flip) decoherence. Fanchini

et al. (2010) and Wang et al. (2010) compared the evolution

of entanglement and discord for two noninteracting qubits

subject to dissipative decoherence induced by reservoirs

having a Lorentzian spectral distribution. Wang et al.

(2010) assumed independent reservoirs, while Fanchini

et al. (2010) considered the cases of independent reservoirs

and a common reservoir. Again discord exhibits a combina-

tion of asymptotic decay and discrete points of disappearance

and revival, while ESD is sometimes observed across the

same parameter range. A common reservoir leads to espe-

cially complex behavior with many sudden changes in the

discord evolution (Fanchini et al., 2010). Fanchini,

Castelano, and Caldeira (2010) looked at a pair of double

quantum dots having two excess electrons which interact via

tunneling and the Coulomb interaction. They used two inde-

pendent or a common reservoir(s) with an Ohmic spectral

density to incorporate phonon-induced decoherence and in-

vestigated the effects of changing temperature. Franco et al.

(2012) showed that discord and entanglement have revivals

even when the environment is classical.
The lack of discord sudden death raises the question

of whether it is possible to establish a hierarchy of correla-

tions according to robustness under decoherence (suitably

interpreted as direct quantitative comparisons of different

measures is not meaningful in general). Studies along these

lines reach mixed conclusions. Vasile et al. (2010) examined
a model involving two-mode Gaussian states which are
coupled to a common or two independent Ohmic bath(s).
They compared the persistence of intensity correlations
below the shot-noise limit, entanglement, and discord for
initial squeezed-thermal states. Altintas and Eryigit (2010)
examined a system of three uncoupled qubits, for which the
qubit level spacings are subject to stochastic time-dependent
perturbations (Ornstein-Uhlenbeck noise), and an initial state
which is chosen to be a mixture of the identity and the W
state. Again discord is immune to sudden death, with Bell
nonlocality, bipartite, and tripartite entanglements all dem-
onstrating sudden death for some choices of parameters.
Non-Markovianity delays occurrences of sudden death, or
slows the decay of correlations. Discord, entanglement, and
Bell nonlocality [quantified in terms of violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality] are also
compared in Altintas and Eryigit (2011) for an atom-cavity
system, for which two two-level atoms couple to a single
cavity mode, subject to dissipation. The cases of identical and
nonidentical detunings for each atom are compared. It is
found that, depending on the choice of initial state and
detuning, discord is readily induced, whereas entanglement
and nonlocality are often not. Bell nonlocality is certainly the
most fragile of the three types of quantum correlations across
all cases considered. Chakrabarty, Banerjee, and Siddharth
(2011) compared concurrence, Bell nonlocality, teleportation
fidelity, and discord for two qubits subject to independent or
collective decoherence in both dissipative and nondissipative
models. Fanchini et al. (2012) looked at ESD using the
Koashi-Winter formula in Eq. (60), which has discord on
one side and entanglement on the other side. To use the
Koashi-Winter formula they restrict their study to the unitary
dynamics of a tripartite pure state and study the ESD of a
bipartition. They found that if EFðA:BÞ goes to zero then
DðAjCÞ ¼ SðAjBÞ and DðBjCÞ ¼ SðBjAÞ, where C is the
purification of AB (at all times).

ESD is an artifact of the rise in entropy of the system and
the finite volume occupied by separable states. In some
respects it represents a weak point in using entanglement
measures as a sign of quantum correlations. The lack of
this somewhat-artificial phenomenon makes discord a better
indicator of quantum correlations than entanglement in many
situations.

2. Frozen discord

Studies of nondissipative decoherence for two qubits in
Bell-diagonal states yield important insights into the persis-
tence of nonclassical correlations for this family of states.
These states are parametrized by three parameters in the
Bloch representation 1

4 ð1 � 1þP
ici�i � �iÞ (discussed in

Secs. II.J and II.G.1). Maziero et al. (2009) looked at a model
for which each qubit is subject to independent phase-
damping, phase-flip, bit-flip, and bit-phase flip channels.
The different channels yield equivalent behavior, and the
three types of evolution are determined by the initial state:
(a) the amount of classical correlations remains constant
while discord decays monotonically; (b) the amount of clas-
sical correlations decays monotonically until it freezes at
a transition point, discord decays monotonically with an
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increase in the decay rate at the same transition point; (c) both
classical and quantum correlations decay monotonically
throughout. Mazzola, Piilo, and Maniscalco (2010) presented
a similar freezing phenomenon to (b), also under the
nondissipative-independent-Markovian reservoirs assump-
tion. In this case, for special choices of the initial state, a
transition is observed from a period of classical decoherence
(for which the discord remains constant while the amount of
classical correlations decays) to a period of quantum deco-
herence (for which the discord decays and the amount of
classical correlations remains constant). (ESD occurs at a
different point in the evolution.) Before the transition, the
distance (as captured byDR) between the system state and the
closest classical state remains constant, while the amount of
correlations of that classical state decays. At the transition
point, the closest classical state becomes constant, and the
system state approaches it asymptotically.

Lang and Caves (2010) provided a complete picture for the
frozen-discord phenomenon. They explored the geometry of
the Bell-diagonal states in terms of level surfaces for discord
as illustrated in Fig. 11. In this geometric picture, the diagonal

entries of the correlation tensor c1, c2, and c3 define a three-
dimensional Cartesian coordinate system. The (physical)

Bell-diagonal states define a tetrahedron in this space, with

the separable subset defining an octahedron within, centered

on the origin (illustrated in Fig. 2). Entanglement of forma-

tion, quantum mutual information, and classical correlations

increase with distance away from the origin; however, the

surfaces of constant discord define intersecting tubes centered

on the Cartesian axes. The effect of the phase-flip channel in

the model of Mazzola, Piilo, and Maniscalco (2010) is to

define straight-line trajectories through the Bell-diagonal

tetrahedron, starting toward the faces and terminating at a

Cartesian axis. Each trajectory follows a discord level surface

until the point at which the tubes along different axes inter-

sect; this intersection corresponds to the change from classi-

cal to quantum decoherence.
The phenomenon of frozen correlations appears in a

number of other models which also assume nondissipative

decoherence and initial Bell-diagonal states. The model of

Mazzola, Piilo, and Maniscalco (2010) has been extended to

local non-Markovian dephasing noise (Mazzola, Piilo, and

Maniscalco, 2011). For the non-Markovian case, the study

found similar occurrences of frozen discord to the Markovian

case, as well as transitions between classical and quantum

decoherence. However, for the non-Markovian model there

are typically multiple transitions and complicated (damped)

oscillatory behavior due to memory effects. Similar phe-

nomena have been seen in the model of Yuan, Liao, and

Kuang (2010), which assumes a nondissipative coupling to a

common-Ohmic environment; more specifically, certain

choices of initial-state and reservoir parameters lead to a

critical time at which there is a sudden change in the evolu-

tion of the classical and nonclassical correlations. Discord is

amplified or preserved up to the critical time. Xu, Yang, and

Feng (2010) looked at a quantum chaos model with two

qubits, with one qubit coupled to a quantum-kicked top which

induces strong dephasing effects. In a chaotic regime and

large-spin limit of the quantum-kicked top, there are similar

dynamical features as are found for the Markovian models

discussed above, i.e., a period of classical decoherence fol-

lowed by a period of quantum decoherence. The regular

regime for the quantum-kicked top has some similarities to

the non-Markovian models previously mentioned, although

the non-Markovian effects have a different origin. Finally,

Pal and Bose (2012a, 2012b) investigated the connections

between the discontinuous behavior of discord in dynamics to

similar behavior in quantum phase transitions; see Sec. IX.

They found that this common behavior in both types of study

comes from the same mathematics. It would be interesting to

give physical arguments that unify the two.
In conclusion, freezing phenomena have been found to be a

robust feature of a family of two-qubit models subject to

nondissipative decoherence. Different measures of discord

record only minor differences (Luo, 2010; Xu et al., 2011)

[see Bellomo, Franco, and Compagno (2012) for a different

conclusion]. These dynamical features seem to be specific to

the nondissipative case and are not found for the model of

dissipative decoherence discussed by Chakrabarty, Banerjee,

and Siddharth (2011), for example. An experimental demon-

stration of the dynamics under phase damping is reported by

FIG. 11 (color online). Freezing of correlations. A geometric view

of the phenomenon of frozen discord, for two qubits evolving within

the space of Bell-diagonal states due to nondissipative decoherence,

typified by (Markovian) phase-flip channels acting independently on

the qubits. The representation of the space of Bell-diagonal states is

explained in Fig. 2,with one octant shown.Here theCartesian axes are

parametrized by the entries ci of the (diagonalized) correlation tensor
for theBell-diagonal states in theBloch representation. Entanglement

of formation, quantummutual information, and classical correlations

increase with greater distance from the origin. In contrast, discord

grows with distance from each axis, and the level surfaces of discord

define intersecting tubes centered around the axes. The straight-line

trajectory shows a typical evolution under decoherence, for which c3
is constant and c1, c2 decay exponentially while maintaining a

constant ratio. The trajectory lies initially in a surface of constant

discord, crosses the intersection of the tubes in correspondence to the

transition from classical to quantum decoherence, and terminates at

the c3 axis. From Lang and Caves, 2010.
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Xu et al. (2010), who used a parametric downconversion
source and simulated a noise channel on one of the qubits
using birefringent quartz plates of variable length. Auccaise,
Celeri et al. (2011) demonstrated sudden-change behavior
using NMR, and it is found to be robust in the presence of an
additional energy relaxation process. Céleri, Maziero, and
Serra (2011) recently reviewed these and many other aspects
of quantum discord. Finally we note some theoretical exten-
sions: A study of a qubit-qutrit system subject to independent
and common Markovian dephasing noise is presented by
Karpat and Gedik (2011). Negativity, classical correlations,
discord, and geometric discord are compared for two families
of initial states and a range of sudden transition, freezing,
and amplification behavior is observed. Li, Wang, and Fei
(2011) and Song et al. (2011) explored extensions to a
larger family of initial two-qubit X states in Eq. (45), for
which, in the Bloch representation, the Bloch vectors are
aligned in the z direction and the correlation tensor is
diagonal.

B. Local operations generating quantum correlations

Recently some have pointed out that (nonunitary) local
operations can generate quantum correlations. Campbell
et al. (2011) and Ciccarello and Giovannetti (2012a) showed
that the action of certain local channels can enhance quantum
correlations, including in continuous-variable systems
(Ciccarello and Giovannetti, 2012b). An intuitive example
of such a process is seen by taking a CC state �ab ¼
p00j00ih00j þ p11j11ih11j and acting on the side of A with
the channel that takes j0i� j0i and j1i� jþi. This yields
the QC state �Ab ¼ p00j00ih00j þ p11j þ 1ihþ1j.

Streltsov, Kampermann, and Bruß (2011a) proved that a
classical state of two qubits is preserved if and only if the
local channel acting is either unital, that is to say it maps the
maximally mixed state to itself Bunitalð1Þ ¼ 1, or a semiclas-
sical channel Bscð�Þ ¼ P

apa�a��a. They go on to prove
that any distance-based measure of quantum correlations
for two qubits is decreasing under the action of unital and
semiclassical channels. Hu et al. (2011) gave a similar result
in terms of mixing channels, a channel that increases the
entropy for all inputs S½Bmixingð�Þ� � Sð�Þ 8 �. They

showed that for qubits unital channels are mixing channels.
However, by an explicit construction, they showed that a
mixing channel on higher-dimensional systems can in fact
create quantum correlations.

Yu et al. (2011a) and Hu et al. (2012) gave the necessary-
and-sufficient condition for preserving a classical state. They
showed that the classicality of a state is preserved if and
only if a channel preserves vanishing commutators: i.e.,
½Bð�Þ;Bð�Þ� ¼ 0 for all ½�;�� ¼ 0.

Last, we remark on the interpretation of the original quan-
tum discord due to Streltsov, Kampermann, and Bruß (2011b)
given in Eq. (95); that is, discord as measured by B is equal to
the minimal partial entanglement, PEð~�AjB:EÞ ¼ EDð~�AB:EÞ �
EDð~�B:EÞ. This leads to the conclusion that local operations
made by A cannot increase the discord as measured by B.
This is due to the fact that the local operation can only lower
the positive quantity in PEð~�AjB:EÞ. A local operation of A can

increase DðBjAÞ but not DðAjBÞ.

C. Lazy states and decoherence

Rodrı́guez-Rosario et al. (2011) proposed a simple test to
detect the presence of nonclassical system-environment cor-
relations: If the time derivative of the entropy of the reduced
state of the system is nonzero at t ¼ �, then the system-
environment state is quantum correlated at that time. More
precisely they showed that the time derivative at t ¼ � is
vanishing if and only if ½�S � 1E ; �SE� ¼ 0. This is the same
condition as the one given in Eq. (77) for nullity of discord.
States satisfying the condition are called lazy states. The final
result of the paper is��������d

dt
Sð�SÞ

��������� kHintk k½ð logð�SÞ � 1EÞ; �SE�k1; (124)

where kxik1 ¼
P

ijxij and both sides are evaluated at t ¼ �.
The time derivative of the entropy of the system is bounded
by the interaction Hamiltonian, and a function of the state of
the system, as well as the state of the system plus the environ-
ment. This shows how quantum correlations between the
system and the environment provide bounds on the entropy
rate of the system.

We know that the set of lazy states is of zero measure, and
for Markovian dynamics the system never becomes lazy
(Ferraro et al., 2010). Therefore the rate of entropy change
never vanishes. On the other hand, recently Hutter and
Wehner (2012) reported that ‘‘almost all states are pretty
lazy’’ for sufficiently large environments, i.e., the entropy
rate is rather low. All of these results suggest that quantum
correlations play a nontrivial role for real open systems, as the
lack of laziness is a necessary feature of decoherence.

More recently, a measurement-based witness is put forth in
Gessner and Breuer (2011). The initial state of the system
is subjected to a measurement in its own basis �S ¼P

s�s�S�s. However, the total system-environment state
under this measurement is invariant if and only if discord
is zero, i.e., DðEjSÞ ¼ 0, �SE ¼ P

s�s � 1E�SE�s � 1E .
Next the measured system-environment state is allowed to
evolve and the final state of system is determined. In a
different experiment the system is not measured in its basis,
but rather simply allowed to evolve. If the final states of the
system are different for the two trials then one can conclude
that the initial system-environment correlations are quantum.

D. Complete positivity

The dynamics of an open quantum system can be thought
of as a contraction of the unitary dynamics of the system with
its environment Bð�SÞ � trEðU�S � �EU

yÞ, where Bð�Þ ¼P
ee0 hejU ffiffiffiffiffiffi

�E
p je0ið�Þhe0j ffiffiffiffiffiffi

�E
p

Uyjei is a completely positive dy-

namical map. The usual assumption that the dynamics of the
system is described by a completely positive map requires
that the system and the environment are initially uncorrelated.
When this assumption is relaxed the situation is much more
complicated. There is a rich history of investigations into the
initial correlations between a system and its environment and
the positivity of dynamics of the system (Rodrı́guez-Rosario,
Modi, and Aspuru-Guzik, 2010).

Rodrı́guez-Rosario et al. (2008) showed that when
the system is classically correlated to its environment
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�SE ¼
P

sps�s � �Ejs, for any combined unitary evolution

of that state, the open dynamics of the system can be
described by a completely positive dynamical map. The proof
is as follows: Using the linearity of the dynamics we have

Bð�SÞ ¼ trE

�
U

�X
s

ps�s � �Ejs
�
Uy

�

¼X
s

pstrEðU�s � �EjsUyÞ: (125)

We may consider the action of completely positive maps

Bsð�Þ � trEðU�s � �EjsUyÞ
�X

ee0
hejU ffiffiffiffiffiffiffiffiffi

�Ejs
p je0ið�Þhe0j ffiffiffiffiffiffiffiffiffi

�Ejs
p

Uyjei (126)

acting on pure states �s of the system Bð�SÞ ¼
P

spsBs�s.
Next we use the idempotent and orthonormality of projec-
tions �s to rewrite the action of the map as Bð�SÞ ¼
ðPsBs�sÞ

P
s0ps0�s0 , with �S ¼

P
s0ps0�s0 . Finally we

have B ¼ P
sBs�s.

The intuition here is that the dynamical map acts on the
probability vector ps, which defines the full state of the
system. Therefore the dynamics looks very much like a
classical stochastic map.5 Shabani and Lidar (2009) presented
a method for describing the dynamics (for a class of states)
for which nullity of discord is necessary and sufficient for
complete positivity. However, dynamical maps for initially
correlated system-environment states are not the same as
maps derived from quantum process tomography (Kuah
et al., 2007). When dealing with quantum process tomogra-
phy one needs to deal with any initial correlations carefully,
including classical (Brodutch et al., 2011).

Mathematically the connection between different classes
of initial system-environment correlations and the properties
of the resulting dynamical maps can be spelled out by break-
ing up the dynamical map as B ¼ T E �U �A, where T E
is the trace with respect to the environment and A is termed
an assignment map. The assignment map (Pechukas, 1994;
Rodrı́guez-Rosario, Modi, and Aspuru-Guzik, 2010) takes
the system state to a correlated state of the system environ-
ment. Since T E andU are completely positive, the positivity
of the dynamical map depends on the positivity of the assign-
ment map. Pechukas proved that an assignment is linear,
positive, and consistent (T E �A ¼ I) if and only if there
are no initial correlations. If we give up the consistency
requirement, however, we can define the following assign-
ment A: �S �

P
strð�S�sÞ�s � �Ejs, where �S is an arbi-

trary state for the system, f�sg is a (fixed) set of orthonormal
projectors for the system, and the �Ejs are operators for the

environment. Comparing with Eq. (73), we see that this
assignment leads to classical states with respect to the system.
A is linear here and positive by construction. Combining it
with T E �U, the dynamical mapB is linear and completely
positive too (Rodrı́guez-Rosario, Modi, and Aspuru-Guzik,
2010). However, a mathematical property which fails for
this choice of assignment map is consistency, namely,
trE½Að�SÞ� � �S in general. It is interesting to note that

the positivity of a general assignment map is related to the
no-broadcasting theorem (Rodrı́guez-Rosario, Modi, and
Aspuru-Guzik, 2010) discussed in Sec. V.A.

E. Relativity and cosmology

The effects of thermal noise on correlations are extended to
relativistic systems via the Unruh effect [see Takagi (1986)
and Peres and Terno (2004) and references therein]. This
effect is due to the horizon experienced by an accelerating
observer, as he does not have access to any information from
beyond the horizon. In quantum-information language, any
degree of freedom beyond this horizon is correspondingly
traced out. This leads to a thermal effect even in the vacuum
state associated with an inertial observer (the Minkowski
vacuum). The simplest models discuss only free fields and
neglect the properties of the detector.

In this type of model [see, for example, Bruschi et al.
(2010)], an inertial observer A shares an initially entangled
qubit with an accelerating R (for Rob, relativistic Bob)
following a world line

tRð�Þ ¼ a�1 sinhða�Þ and zRð�Þ ¼ a�1 coshða�Þ
(127)

with acceleration a and proper time �. R now experiences a
different space-time than A known as Rindler space-time,
which can be related to the Minkowski space-time by an
appropriate transformation. However, this transformation
produces two causally disconnected regions known as the
left and right Rindler wedges. R’s trajectory is confined to the
right wedge and he physically experiences an event horizon.

The initial entangled state prepared by A (in Minkowski

space) is a two-mode state jc iM ¼ ð1=
ffiffiffi
2
p Þðj00i þ j11iÞ.

However, A’s (Minkowski) Hilbert space is not the one R
experiences. In Rindler space-time the Fock states j0i and j1i
are expanded as an entangled state with modes in both
Rindler wedges (only the relevant modes are considered). R
is limited to his wedge and thus experiences a mixed state.
The technical details depend on the type of fields associated
with the states. We look at two distinct cases: Klein-Gordon
and Dirac fields. All these results can also be applied to black-
hole horizons.

1. Klein-Gordon fields

For Klein-Gordon fields the effective (mode-modulated)
Minkowski vacuum is

j0i ¼ 1

coshr

X1
n¼0
ðtanhrÞnjniRjniL; (128)

and the first occupied state is

j1i ¼ 1

coshr

X1
n¼0
ðtanhrÞn ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1iRjniL; (129)

where the subscripts R and L refer to the right and left
wedges, respectively, and tanhr ¼ expð��jkjc=aÞ, where k
is the wave number for the mode.

Now A has access to the same initial qubit state while R has
access only to his Rindler-wedge infinite-dimensional state.

5However, this dynamical map can change the basis of the

probability vector, differentiating it from a classical stochastic map.
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It is easy to see that the initial pure state jc iM is now mixed
and entanglement is somewhat degraded.

Datta (2009) compared the degradation of entanglement to
that of discord and MID. In a fashion similar to the dynamical
cases above, discord (as measured by A) does not vanish even
at the infinite-acceleration limit where entanglement van-

ishes. The same is true for MID which stays very close to
the maximal value of M ¼ 1.

Céleri et al. (2010) considered the case of entangled
detectors coupled to a scalar field which acts as a thermal
bath. To achieve a more realistic scenario, the detector is
switched on for a finite time. They compared discord, sym-
metric discord, classical correlations, and total correlations.
The results showed that the decay of quantum correlations is
not described by a smooth function. It is worth mentioning

that in this protocol some correlations are lost even in the
absence of acceleration due to dark counts.

2. Dirac fields

Dirac particles are limited in the occupation number for
each mode, and furthermore they are restricted by super-
selection rules (Streater and Wightman, 1964). However,
antiparticles give an added dimension and the Minkowski
vacuum is an entangled state of positive-frequency modes in

the right wedge and negative-frequency modes in the left
wedge. These differences from the Klein-Gordon case give
qualitatively different results, one of which is the degradation
of entanglement to a constant nonvanishing value in the
infinite-acceleration case for Dirac particles.

Wang, Deng, and Jing (2010) studied the effect of accel-
eration on quantum correlations in Dirac fields. Classical and
quantum correlations all decay to some constant positive
value at the limit of infinite acceleration. Looking at correla-

tions between other partitions (A and the left wedge, or the
left and right wedge) the correlations increase as a function of
acceleration. See Brádler (2011) for further discussion.

The parity superselection rule also gives rise to different
methods for classifying separability. Bañuls, Cirac, and Wolf
(2007) defined separability criteria based on physically mean-
ingful methods for representing the density matrix as a sum of
states following the superselection rule; see also Schuch,
Verstraete, and Cirac (2004a, 2004b). Westman and Terno
(2011) proposed an extension of this work to relativistic

fermions and measures of discord, giving more meaningful
measures of entanglement and discord degradation due to the
Unruh effect.

3. Cosmology

Vacuum entanglement is another field studied in the con-
text of relativistic quantum field theory. Reznik (2000) and
Reznik, Retzker, and Silman (2005) showed that a pair of

initially correlated two-level systems may become entangled
after an appropriate interaction with the vacuum state. Since
the vacuum entanglement decays rapidly with the distance,
the amount of entanglement generated using this process
decays very quickly as a function of the distance between
the two-level systems.

Steeg and Menicucci (2009) used vacuum entanglement to
study the entanglement of an exponentially expanding

(de Sitter) vacuum. Using the same method Nambu and
Ohsumi (2011) studied the classical and quantum correlations
(defined through symmetric discord and orthogonal projec-
tors) between two-level systems interacting with the vacuum
of scalar fields. They calculated the correlations in both the
Minkowski and de Sitter space-time and showed that they
decay less rapidly than entanglement. While entanglement
and the capacity for violating CHSH inequalities vanish past
the Hubble horizon, other correlations remain positive indef-
initely. The presence or lack of quantum correlations in
various types of fields beyond the Hubble horizon gives an
insight into the nature of the quantum fluctuations in the early
universe.

IX. MANY-BODY PHYSICS

One of the major applications of quantum discord has been
in the field of many-body physics. Many-body physics at-
tempts to understand the physics of a large number of quan-
tum particles interacting with each other. Correlations in such
systems play an important role because the macroscopic
physics does not simply come from microscopic degrees of
freedom (Anderson, 1972). Quantitative treatments of entan-
glement in such systems are fruitful (Amico et al., 2008;
Eisert, Cramer, and Plenio, 2010). We give a brief review of
several many-body systems and the studies of quantum dis-
cord within them. A great deal of the work on discord and
many-body physics is on quantum phase transitions (QPTs),
as discord identifies the critical points. Next we look at the
dynamics of discord in spin chains followed by the effects on
discord of system temperature.

A. Quantum phase transition

The ground state of a quantum system can be in different
quantum phases at zero temperature. When an external
parameter of the Hamiltonian, called the control parameter,
is varied the phase of the system can change. This phenome-
non is known as QPT. The quantum phases are different from
classical phases because they are strictly determined by the
properties of the ground state. The transition from one quan-
tum phase to another occurs at a critical point characterized
by certain nonanalytic behavior in the ground-state energy
(Sachdev, 2000; Wu et al., 2006).

In statistical mechanics QPTs are well studied (Sachdev,
2000), and recent studies of QPTs utilize entanglement
(Amico et al., 2008) and area laws (Eisert, Cramer, and
Plenio, 2010). Correlations play an important role in critical
systems, for instance, entanglement generally follows an area
law in noncritical systems. That is to say, in a spin system the
entanglement between two spins is inversely proportional to
the distance between the two spins. In critical systems the
area law is broken, which means that the entanglement is
genuinely multipartite and spread across the whole system. It
is known that the nonanalyticity of energy is manifested in
terms of entanglement between the nearest and the next-
nearest neighbors at a critical point (Osborne and Nielsen,
2002; Osterloh et al., 2002).

QPTs separate different phases of matter, which are
governed by the external control parameter (Wen, 2004).
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Over the last 20 years, it has been realized that not all phases
of matter are accounted for by the symmetry of the ground
state. Different patterns in correlations describe different
phases, e.g., high-temperature superconductors and fractional
quantum Hall liquids.

Several study quantum discord in critical systems in the
thermodynamic limit N ! 1. The most-studied systems are
1D systems, and there discord can indicate the critical points
of QPTs. The nonanalyticity of the energy at the critical point
can manifest itself in discontinuous behavior of the deriva-
tives of the energy. If the nth derivative shows nonanalytic
behavior then it is an nth order QPT. This has led researchers
to examine the behavior of different correlations near the
critical point, especially their analyticity properties as re-
vealed by differentiation. The evidence that quantum discord
plays an important role in QPTs comes from showing that it
leads to a scaling law, which is not the case for entanglement.

1. 1D lattice

A 1D spin chain has a general Hamiltonian of the form

H ¼X
i

ðJx�i
x�

iþ1
x þ Jy�

i
y�

iþ1
y þ Jz�

i
z�

iþ1
z þ h�i

zÞ;

(130)

where the last term is the external magnetic field. This
Hamiltonian has parity and translational symmetry, which
is also enjoyed by its ground state. In general, this
Hamiltonian is not exactly diagonalizable. However, there
are well-known special cases. The reduced states of two
qubits coming from such a chain typically have the form of
an X state, given in Eq. (45), for which analytic expressions
for quantum discord and classical correlations are known. We
begin by discussing the role of correlations in some of the
special cases.

One of the first studies on quantum discord in a spin chain
was given by Dillenschneider (2008) who analyzed QPT in a
transverse Ising chain. The Ising case is obtained from
Eq. (130) by setting Jx < 0, Jy ¼ Jz ¼ 0, and h ¼ �1. At
Jx ¼ 0 all spins are in z eigenstates and as Jx ! �1 all spins
are x eigenstates, with the critical point at Jx ¼ �1.
Dillenschneider found that at the critical point entanglement
between nearest neighbors is not maximal, but entanglement
between next-nearest neighbors is maximal. Quantum discord
is not maximal in both of these cases. He also considered a 1D
antiferromagnetic XXZ spin model by setting the parameters
in Eq. (130) to Jx ¼ Jy ¼ 1, h ¼ 0, and letting Jz vary. The

critical point in this model is at Jz ¼ 1, at which the con-
currence is maximal, classical correlations are minimal with a
discontinuity, and discord is maximal (with a discontinuity)
for nearest neighbors. In a different study, Sarandy (2009)
considered an Ising model and showed that the derivatives of
discord display the characteristic (logarithmic) divergence of
the critical Ising model. He also considered a symmetric XXZ
model, and a Lipkin-Meshkov-Glick (LMG) model, Jx ¼
Jy ¼ �J=2, Jz ¼ ��J=2, and h ¼ 0. Quantum and classical

correlations of the nearest neighbors are shown to be discon-
tinuous at � ¼ 	1. For the LMG model, QPT occurs at
� ¼ 1. Quantum and classical correlations are equal and
finite for h < 1 and vanish for h > 1. The derivative is

discontinuous at � ¼ 1. A special case of the LMG model
analyzed with mutual information was presented in Wilms
et al. (2012) (see also the references therein for analyses with
other correlations measures). Maziero, Guzman et al. (2010)
studied the XXZ model, the LMG model, and the anisotropic
XY spin chain with Jx ¼ �Jð1þ �Þ, Jy¼�Jð1��Þ, Jz ¼ 0,

and h ¼ �1. They showed that quantum discord is present
between neighbors farther than the next-nearest neighbors,
while entanglement may be absent for these neighbors.

Werlang et al. (2010) and Werlang, Ribeiro, and Rigolin
(2011) studied the behavior of various macroscopic quantities
and entanglement in the XXZ model at the critical point as
temperature goes above absolute zero. They showed that none
of these quantities can pick out the critical points, while
quantum discord is shown to be discontinuous at the critical
point at finite temperature. These first studies set a benchmark
for quantum correlations in many-body physics, and specifi-
cally QPTs. Other similar studies are molecular magnets
described by a symmetric spin trimer and a tetramer in Pal
and Bose (2011), a 1D lattice with Dzyaloshinskii-Moriya
interaction (Liu et al., 2011), long-range correlations
(Allegra, Giorda, and Montorsi, 2011; Maziero et al.,
2012), and finite-temperature QPTs with three-spin interac-
tions (Li and Lin, 2011).

2. Global discord

Based on the diagrammatic approach of Modi and Vedral
(2011) described in Sec. III.B, Rulli and Sarandy (2011)
derived a multipartite version of quantum discord, called
global discord. This is followed up by construction of a
multipartite quantum-correlation witness by Saguia et al.
(2011). Both tools are put to use in studying the Ashkin-Teller
model (Rulli and Sarandy, 2011). The multipartite discord
picks up the QPT points as before. Campbell, Mazzola, and
Paternostro (2011) studied global discord, along with other
measures of quantum correlations, in the Ising model. They
found that MID is not a good indicator for the critical point of
the QPT, while global discord scales linearly with the number
of qubits.

3. Factorization

Usually the ground state of the Hamiltonian is entangled;
however, for specific values of h the ground state is com-
pletely factorized (Kurmann, Thomas, and Müller, 1982).
This is the point where all correlations vanish, quantum and
classical. Finite discord then indicates the departure from the
factorization point. Tomasello et al. (2011, 2012) utilized
quantum discord in an XY model to study symmetry break-
ing, leading to states that are not of the X-state form. They
showed that quantum discord has exponential scaling near the
point, and based on that argued that discord has scaling
behavior. The factorization point is h � 0:7. Their study
also hints that the factorization phenomenon gives rise to
nontrivial correlations when the ground state is on either side
of the factorization-critical point. Last, to compute the opti-
mized discord in non-X states, Amico et al. (2012) made use
of tomographically complete POVMs introduced by Řeháček,
Englert, and Kaszlikowski (2004). Interestingly, four-element
POVMs are determined (in many cases) by the values of Jx,
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Jy, and Jz in the Hamiltonian in Eq. (130). Also see Ciliberti,

Rossignoli, and Canosa (2010), who analyzed discord near
the factorization point.

4. Topological phase transition

Chen and Li (2010) explored a 2D Castelnovo-Chamon
model. The Hamiltonian reads

H ¼ ��0

X
p

Bp � �1

X
s

As þ �1

X
s

e
�	P

i2s
�z
i

; (131)

where �0;1 > 1, As ¼ Q
i2s�x

i , and Bp ¼ Q
i2p�z

i . As is a star

operator with vertex s and Bp is a plaquette operator acting on

the four spins on the edges. The system has toric boundary
conditions. Such systems have a phase transition from a
topological phase to a magnetic phase. They found that
quantum correlations between any two sites are always zero
and are distributed globally. However, the mutual information
between any two neighbors is able to pick up the critical
point by discontinuous behavior. Therefore, it is the classical
correlations that detect the transition. Also entanglement
between any site and the rest picks up the critical point.
Since this is a bipartite pure state, discord is the same as
entanglement. Chen, Li, and Yin (2010) analyzed a 1D
clusterlike system with

H ¼ �JX
i

ðSi þ B�z
i Þ; (132)

J > 0, and Si ¼ �x
i�1�x

i �
x
iþ1. Such systems also admit a

topological phase transition. In contrast to the 2D case,
quantum discord is finite though suppressed here. However,
correlations measured by the mutual information and quan-
tum discord, near the critical point, show reversed power-law
decay as a function of the distance. They commented that it is
the richness of the 2D topology over the 1D topology that
leads to vanishing discord between neighbors in the former
and finite discord in the latter.

5. Scaling

While discord plays an important role in quantifying the
quantum correlations, often quantum mutual information is
sufficient to indicate critical behavior and is much easier to
compute. However, the scaling of quantum correlations is
important from a conceptual point of view. The scaling of
correlations is perhaps more interesting than the analytic
behavior studied above. By scaling we mean how discord
(or other correlation measures) fares as a function of distance
and the number of sites considered. Many of the studies above
show that discord scales linearly with the number of qubits,
while it scales logarithmically with distance, i.e., it decays
exponentially. Additionally, researchers found that discord
scales differently to entanglement. It would be fruitful to
compare the scaling of mutual information with the scaling
of discord.

B. Time and temperature

1. Discord and temperature

Similar to the studies of dynamics of discord in Sec. VIII,
several studies of discord (in comparison with entanglement)
as a function of temperature have been carried out. Werlang
and Rigolin (2010) analyzed the behavior of discord as a
function of temperature T in two-qubit XXZ [Jx ¼ Jy ¼ J

and Jz � 0 in Eq. (130)] and XXX [Jx ¼ Jy ¼ Jz ¼ J in

Eq. (130)] models. In the former entanglement is always
zero, while discord is zero for low T, but it increases with
T before asymptotically dying as T ! 1. In the latter,
entanglement sudden death is observed as a function of T,
while discord does not have sudden death. They also observed
regrowth of quantum discord, i.e., it decreases as T increases
and it begins to grow again. Entanglement sudden death
is contrasted with a lack of such an effect for discord as
a function of T in a two-qubit XXZ system with
Dzyaloshinskii-Moriya interaction in Chen and Yin (2010).
A similar study of discord in an XX model [Jx ¼ Jy in

Eq. (130)] with two qubits is presented by Hassan, Lari,
and Joag (2010), with different strengths of external magnetic
field [h in Eq. (130) is h1 and h2 for the two qubits, respec-
tively]; discord, classical correlations, and entanglement
are considered as functions of T and magnetic-field strength.
All of these works involve the discord of X states, given in
Eq. (45). Tian, Yan, and Qin (2011) studied three qubits in a
XXZmodel with the Dzyaloshinskii-Moriya interaction. They
found the discord and classical correlations to be discontinu-
ous. Last, a comparison between different measures of discord
was carried out by G.-F. Zhang et al. (2011), and discord was
analyzed by Yurischev (2011) based on the available experi-
mental data for both antiferromagnetic and ferromagnetic
interactions for CuðNO3Þ2 � 2:5H2O molecules, hydrated and
anhydrous copper acetates, and ferromagnetic binuclear cop-
per acetate complex ½Cu2LðOAcÞ� � 6H2O.

2. Dynamics in chains

Dhar et al. (2012) linked the dynamics of entanglement,
quantum discord, and zero-way work deficit. They studied an
infinite XY model with Jx ¼ �=2ð1þ �Þ, Jy¼��=2ð1��Þ,
and Jz ¼ 0 in Eq. (130). The dynamics is generated by
applying the external transverse field at time t ¼ 0, i.e.,
hðt < 0Þ ¼ 0 and hðt > 0Þ ¼ h. They found that quantum
entanglement suffers from sudden death and revival, but
discord and work deficit do not. However, the revival of
entanglement is shown to be related to the behavior of
quantum discord and work deficit. They showed that if for
some fixed time the entanglement in two nearest neighbors
vanishes around the critical field h ¼ hc, it revives for
h > hc if

@D

@h

���������hc>0: (133)

In a study of propagation of correlations in a XXZ [Jx ¼
Jy ¼ �2J, Jz ¼ 0, and h ¼ �2h in Eq. (130)] spin chain,

Campbell et al. (2011) showed that discord is better trans-
ported when compared to entanglement across 50 spins. The
dynamics of total, quantum, and classical correlations in two
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qubits coming from the ground state of a transverse Ising
model [Jx ¼ �J, Jy ¼ Jz ¼ 0, and h ¼ �1 in Eq. (130)]

subjected to dephasing and decohering Markovian channels
are analyzed in Pal and Bose (2012a, 2012b). For the bit-flip
and amplitude-damping channels at large times, only
classical correlations survive. In the latter case, quantum
correlations are higher than classical initially, and therefore
there is a crossing point. For the phase-flip channel there are
two crossing points for quantum and classical correlations,
and the classical correlations are frozen (Xu et al., 201a;
Mazzola and Paternostro, 2011). They analyzed the behavior
of these crossing points, their derivatives, and the difference
in crossing points (for the phase-flip case) as a function of J.
They found singular behavior in the derivatives at the critical
value of J ¼ Jc ¼ 1. Recently Liu et al. (2012) studied the
dynamics of atoms in a Bose-Einstein condensation in terms
of quantum discord and mutual information.

3. Ergodicity

Prabhu, Sen De, and Sen (2012) studied ergodicity of
quantum correlations versus entanglement in a similar system
as above. The specifics of this XY model are Jx¼�=2ð1þ�Þ,
Jy¼��=2ð1��Þ, and Jz ¼ 0 in Eq. (130), and hðt < 0Þ ¼ 0

and hðt > 0Þ ¼ h. An ergodic physical quantity has the prop-
erty that its time average is the same as its ensemble average.
They compared ergodicity of the concurrence and negativity
versus discord and deficit. They found that entanglement
measures are always ergodic, while discord and deficit are
not for specific values of the transverse field.

X. CONCLUSIONS

Quantum discord encapsulates the idea that two equivalent
ways of looking at correlations in classical information
theory give different results when generalized to quantum-
information theory. In quantum physics, we can have classi-
cal correlations, but we also have correlations that exceed
them. This excess is called quantum discord and is a more
general concept than quantum entanglement (in the sense that
all entangled states are also discordant, but not vice versa).
We have shown that discord features in a number of different
areas, not only in quantum-information theory and quantum
computation, but also in many-body physics, thermodynam-
ics, and open-system dynamics.

Despite intense and exciting research over the last 10 years,
there are still a number of challenging outstanding problems
that drive much effort in the field. We believe that among the
most exciting are the following.

Can any quantum computation be efficiently performed
with just discordant states and without any entanglement?
This has been an outstanding question for at least 20 years
and, although most results indicate that the answer is in the
negative, we still do not have any formal proofs either way.
The intuition supporting the negative conclusion is based on
the fact that a classically correlated state (i.e., the one that is
useless for quantum-information processing) can by local
operations be converted into a discordant one. Since this is
easy to do, so the argument goes, discord should not give us
any additional power. We know that this argument is not

entirely convincing since such operations might still be
hard to simulate classically.

Are there any useful information protocols involving just
discord and not entanglement? This question is similar to the
previous one and it is clear that protocols such as superdense
coding and teleportation require quantum entanglement, but
these are by no means the only useful ways of processing
quantum information. Cryptographic protocols such as BB84
are based on discord and require no entanglement (although
they could be said to not be as secure as the entanglement-
based quantum cryptography). Remote state preparation can
be shown to require discord, but we still await convincing
applications of this and related protocols.

Is discord a useful order parameter in many-body physics?
We are still searching for phase transitions that cannot be
characterized in any other way than by using discord. Perhaps
some forms of topological phase transitions will require
discord of many systems, since being topological implies
that no local operation can perturb the system out of the
ordered phase. Here, again, all evidence points to a battle
between discord and entanglement.

What is responsible for the quantum to classical transition
(if such a transition exists in the first place)? This question is
intimately related to the process of quantum measurement
and the hope is that discord might shed further light on this
intricate and deep problem.

No matter what the answers end up being to these ques-
tions, it is certain that understanding quantum correlations is
a subject that will preoccupy the minds of physicists, math-
ematicians, and computer scientists for a long time to come.
And, who knows, studying the nature of correlations in the
world around us might even help us catch a glimpse of the
theory that comes to supersede quantum physics.
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Maziero, J., L. C. Céleri, R.M. Serra, and V. Vedral, 2009, Phys.

Rev. A 80, 044102.

Maziero, J., H. C. Guzman, L. C. Celeri, M. S. Sarandy, and

R.M. Serra, 2010, Phys. Rev. A 82, 012106.

Maziero, J., and R.M. Serra, 2012, Int. J. Quantum. Inform. 10,

1250028.

Maziero, J., T. Werlang, F. F. Fanchini, L. C. Céleri, and R.M. Serra,
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