
The properties of hydrogen and helium under extreme conditions

Jeffrey M. McMahon

Department of Physics, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801, USA

Miguel A. Morales

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Carlo Pierleoni

Department of Physical and Chemical Sciences, University of L’Aquila and CNISM UdR
L’Aquila,
Via Vetoio 10, I-67010 L’Aquila, Italy

David M. Ceperley*

Department of Physics, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801, USA
and NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(published 13 November 2012)

Hydrogen and helium are the most abundant elements in the Universe. They are also, in principle,

the most simple. Nonetheless, they display remarkable properties under extreme conditions of

pressure and temperature that have fascinated theoreticians and experimentalists for over a century.

Advances in computational methods have made it possible to elucidate ever more of their properties.

Some of these methods that have been applied in recent years, in particular, those that perform

simulations directly from the physical picture of electrons and ions, such as density functional

theory and quantum Monte Carlo are reviewed. The predictions from such methods as applied to the

phase diagram of hydrogen, with particular focus on the solid phases and the liquid-liquid transition

are discussed. The predictions of ordered quantum states, including the possibilities of a low- or

zero-temperature quantum fluid and high-temperature superconductivity are also considered.

Finally, pure helium and hydrogen-helium mixtures, the latter which has particular relevance to

planetary physics, are discussed.
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I. INTRODUCTION

Hydrogen (H), being the first element, is correspondingly

referred to as the most simple. The equations of quantum
mechanics can be solved exactly for a single atom, which thus
forms the mainstay problem of elementary quantum mechan-
ics. The helium (He) atom, with only two electrons, is no
longer analytically solvable, but still relatively simple.
Despite their atomic simplicities, however, bulk hydrogen
and helium are surprisingly complex. In this review, we
describe what has been learned from experiments, theory,
and computation about bulk hydrogen and helium under a
variety of thermodynamic conditions of pressure and tem-
perature, with particular focus on extreme conditions that are

hard to achieve in the laboratory.
The primary motivation to study dense hydrogen and

helium comes from the fact that they are the most abundant

elements in the Universe. For example, they form
�70%–95% of the mass of Jupiter and Saturn in our Solar
System, and are also the principle components of a large
number of recently discovered exoplanets (Baraffe, Chabrier,
and Barman, 2010). What is needed to model such planets is
the equilibrium equation of state (EOS), the pressure as a
function of temperature, density, and composition. Errors in
the EOS lead to unreliable estimates of what is inside a
planet, whether there are elements other than hydrogen and
helium, their past history, and the process of their formation
(Fortney, 2004; Fortney and Nettelmann, 2010). A long-

standing puzzle, for example, is to understand why Saturn
is �50% more luminous than existing models. One possible
explanation is additional energy sources that could come
from H-He demixing (Fortney and Hubbard, 2003), as pro-
posed by Smoluchowski (1967). In addition, the abundance
in Saturn’s atmosphere shows depletion of helium. Working
backward from such astronomical observations though is a
very indirect and uncertain way of learning about the phase
diagram of H-He mixtures. Going the other way, it is
estimated that the EOS needs to be accurate to �1% to
answer such fundamental questions about or make models

regarding the composition and formation of planets
(Stevenson, 2010).

Figure 1 shows the part of the phase diagram accessible to
experiment along with the conditions needed to understand
the planets. The isentropes of some of the well-characterized
giant planets, including Jupiter and Saturn (Saumon and
Guillot, 2004), the exoplanet HD 209458b (Guillot and
Showman, 2002; Nellis, 2006b), and a representative brown
dwarf G1 229B (Burrows et al., 2001), are all shown. As
seen, the isentropes lie outside the realm of static diamond

anvil cell (DAC) experiments, since these reliably only ex-

tend to pressures of �320 GPa (Goncharov et al., 2001;

Loubeyre, Occelli, and LeToullec, 2002) and at relatively low

temperatures, such as 1115 K at 73 GPa (Gregoryanz et al.,

2003). The experimental range of static measurements is

depicted in Fig. 1. Dynamic shock compression (Nellis,

2006b), on the other hand, thus far can access similar

temperature and pressure conditions as well as those that

are much more extreme. The conditions do not overlap

completely, but such experiments can be problematic because

they suffer from great uncertainties [e.g., likely far greater

than the aforementioned �1% required accuracy (Stevenson,

2010)].
While we have thus far discussed only planetary impor-

tance, another motivation for studying hydrogen and helium

is simply to understand and predict the properties of the

‘‘simplest’’ elements of the periodic table. Even for hydrogen

though, much is still unknown. The longest outstanding issue

concerns a possible insulator-to-metal (IM) transition; the

observation of metallic hydrogen being referred to as the

‘‘holy grail’’ of high-pressure research. Early predictions

suggested that hydrogen would become atomic and transform

to a simple metal at a pressure of 25 GPa (Wigner and

Huntington, 1935). Although as experimental pressures

steadily increased beyond 300 GPa, the IM transition has

not yet been seen, at least not at or below room temperature.

This discrepancy arises because early predictions were based

on the assumption that metallic hydrogen would be a simple

metal with nondirectional metallic bonding. Recent work

suggests that this is not the case, and that hydrogen will go

through a sequence of phase transitions, first in the molecular

phase and then in the atomic phase. One can view either the
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FIG. 1 (color online). A partial phase diagram of hydrogen. The

principal Hugoniot (the pressures and temperatures that can be

reached by shocking solid hydrogen initially at atmospheric pres-

sure) is shown as a solid line and the secondary Hugoniot (i.e.,

points reached with a double shock) is shown branching from it. The

isentropes of three giant planets (Jupiter, Saturn, and HD 209458b)

and a representative brown dwarf (G1 229B) are shown using

dashed lines. The estimated melting temperature of H2 is shown

as a solid line as well. Static DAC experiments, shown using a

dashed line, are able to probe pressures less than �300 GPa and

temperatures less than 1100 K.
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IM transition as a change that occurs as one goes from
molecules to atoms or simply as one that occurs directly in
the molecular phase. Either is plausible, and according to
Wigner’s scaling argument (Wigner and Huntington, 1935)
inevitable, but the question is which one is correct?

Figure 2 shows on an expanded scale the estimated physi-
cal regimes of hydrogen under discussion, as currently under-
stood. It is seen that hydrogen transforms from a molecular
crystal at low density to an atomic crystal at high density.
Further, upon increasing temperature, it first melts, and then
transforms into a plasma state.

While metallic hydrogen has not yet been observed in the
low-temperature solid, metallization has been achieved in the
fluid state in the range of 100–200 GPa and 2000–3000 K.
But important questions regarding the characterization of this
transition remain. For example, is it a first-order transition or
a simple crossover? Landau and Zeldovich (1943) speculated
that the IM transition at increasing density in liquid mercury
would be a genuine phase transition. Since then, there has
been recurring controversy concerning whether this transition
in hydrogen, the so-called ‘‘plasma phase transition’’ (PPT), a
second liquid-liquid transition (LLT) on the phase diagram,
exists, and what its relation is to the molecular dissociation
process. See Redmer and Holst (2010) for a recent overview.
If the PPT exists at high enough temperatures, then there
could be a surface inside the giant planets separating a
conducting core from an insulating mantle. What is clear is
that at least two different physical phenomena come together

in the middle of the phase diagram caused by a combination

of temperature and pressure, the IM and/or molecular-to-

atomic transitions.
Perhaps even more interesting is that the zero-point motion

(ZPM) of the protons in hydrogen can play an important role.

At high pressures and as the temperature is lowered, the

liquid will freeze. It has been suggested (Mon, Chester, and

Ashcroft, 1980) that because of electronic screening, the

effective proton-proton interaction is greatly reduced, and

the liquid may remain stable. In fact, a large depression of

the melting temperature is seen in other alkali metals, such as

sodium and lithium. Further, if hydrogen is a liquid at suffi-

ciently low temperatures, the effects of quantum statistics of

the light protons could be important and lead to ordered

quantum phases, such as those that occur in liquid 3He and
4He. Another possibility is that since electron-phonon cou-

pling should be very large due to the bare Coulomb interac-

tion as should ZPM, atomic hydrogen may be a room

temperature superconductor (Ashcroft, 1968).
Another motivation for studying hydrogen, which is a

major focus of this work, is to develop and test computer

simulation methods. While hydrogen and helium are some-

what simpler than other elements, they pose unique difficul-

ties. On the one hand, since they have no core electrons, their

atomic structures are simple and the errors from the pseudo-

potential approximation, often employed to increase compu-

tational efficiency, are rather small or absent. Furthermore,

relativistic effects are small, and hence spin orbit coupling

can be ignored. On the other hand, because the protons,

deuterons, and alpha particles that constitute the nuclei are

so light, they too behave as quantum particles. This effect has

such a strong influence that even the most basic properties

of hydrogen are affected, such as relative stabilities of

atomic structures (Natoli, Martin, and Ceperley, 1993).

Unfortunately, simple approximations to account for ZPM

do not always work. Thus, both electrons and ions should be

treated using rigorous quantum mechanics in order to make

definitive predictions. The availability of experimental data

and the intense physical interest have made the study of high-

pressure hydrogen and helium into test beds for theory and

simulations. Considering that if the modern computational

techniques, such as those based on density functional theory

(DFT) and quantumMonte Carlo (QMC) calculations, are not

accurate for hydrogen and helium, then there may be serious

problems in trusting them for heavier elements.
There are even further motivations for studying dense

hydrogen, such as technological applications, including iner-

tial confinement fusion (ICF), where hydrogen gas is com-

pressed with a laser-driven shock into the region where

deuterium-tritium (D-T) fusion could occur. Such physical

conditions are close to those of HD 209458b in Fig. 1. Such

aspects will not be directly addressed in this review; the

reader is instead referred to Lindl et al. (2004), for example.
This review concerns the thermodynamic properties of

hydrogen and helium at pressures above 10 GPa and tem-

peratures less than 100 000 K, focusing on advanced simula-

tion methods and the comparison of their results with

experiment. We start by describing the theoretical and nu-

merical tools that are currently being used in Sec. II. We then

provide a brief discussion of experimental techniques in
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FIG. 2. Hydrogen phase diagram. Solid lines show the boundaries

between the gas, liquid, and solid phases. The solid circles show the

(approximate) location of critical or triple points. The dashed lines

on the left estimate where fluid hydrogen changes from H2 to H to a

classical two-component plasma (TCP). The dotted lines at extreme

temperatures estimate where the electrons become degenerate (i.e.,

the temperatures TF corresponding to the noninteracting Fermi

energy EF and 0:1EF). The precise pressure mechanism by which

hydrogen changes from solid H2 to solid H is not well established,

so it is shown as a shaded box. The line going vertically away from

this shows the separation between the mostly insulating molecular

fluid and the mostly conducting atomic fluid; the first-order

LLT ends at a critical point, and what is shown at higher tempera-

tures is a crossover. The almost vertical transition line at the extreme

right indicates the quantum melting of the protons due to lattice

compression.
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Sec. III, in order to facilitate the understanding of compari-
sons that follow. In Sec. IV, we describe the current under-
standing of the phase diagram of hydrogen under extreme
conditions, as well as interesting predictions that have been
made regarding it, such as metallization, superconductivity,
and the possibility of a low- or zero-temperature quantum
fluid. In Sec. V, we provide a discussion of helium as well as
H-He mixtures important to planetary physics. Section VI
concludes by discussing some of the open questions that
remain.

II. PREDICTING THE PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section, we review some of the computational
methods to model hydrogen and helium at high pressures.
Their properties, at the conditions of interest, are described to
a high degree of accuracy by the nonrelativistic Hamiltonian
for a collection of electrons and ions:

Ĥ¼ T̂nþ Ĥel ¼ T̂þ V̂;

Ĥel ¼ T̂eþ V̂n�nþ V̂e�eþ V̂e�n; T̂¼ T̂nþ T̂e;

T̂n ¼
XNn

I¼1

��I5̂2
I ; T̂e ¼��e

XNe

i¼1

5̂2
i ;

V̂ ¼ V̂n�nþ V̂e�eþ V̂e�n; V̂n�n ¼
X
I<J

zIzJ

j ~RI � ~RJj
;

V̂e�e ¼
X
i<j

1

j ~ri� ~rjj ; V̂e�n ¼�X
i;I

zI

j~ri� ~RIj
; (1)

where Nn and Ne are the number of ions and electrons,
respectively, �e ¼ 1=2, �I ¼ 1=ð2MIÞ, and MI and zI
are the mass and charge (in units of the electron mass
me and charge e) of the nucleus I.1 Note that we implicitly
assume charge neutrality of the system

P
IzI ¼ Ne; hence, for

hydrogen, the number of electrons is also Nn and for helium it
is 2Nn. Note also that ~r with lower case indices (i; j; . . . ) is

used to denote the position of electrons and ~R with upper case
indices (I; J; . . . ) is used for the nuclei. When no indices are

used, ~r and ~R represent the full 3Ne and 3Nn dimensional
vectors. The electronic Hamiltonian Ĥel corresponds to the
solution of the problem in the clamped-nuclei approximation,
where the ions produce a fixed external potential for the
electrons. We always treat electrically neutral systems.
Another quantity that is of interest is the electron number
density given by �, and parametrized with rs ¼ a=a0, where
4�a3=3 ¼ ��1. Given Eq. (1), we only need to add the
temperature, particle statistics, and boundary conditions to
completely specify the physical and numerical problem to be
solved.

Finding the eigenvalues and eigenfunctions of the
Hamiltonian in Eq. (1) is a formidable task, impossible to
do analytically except for the single hydrogen atom or the
H2

þ molecular ion. In practice, numerical or approximate

theoretical methods must be used. Two of the most widely
applicable methods are based on either imaginary-time path
integrals or DFT, as discussed in the following sections. In
what follows, we also briefly discuss semiempirical methods.

A. The formalism of imaginary-time path integrals

Path integrals provide a theoretical and computational
framework to discuss the many-body problem. The partition
function of a quantum system at an inverse temperature � ¼
1=kBT is the trace of the many-body density matrix:

Z ¼
Z

d ~Rd~r�ð ~R; ~r; ~R; ~r;�Þ; (2)

where �ð ~R; ~r; ~R0; ~r0;�Þ is the density matrix in the position
basis for the appropriate ensemble.2 In the thermal ensemble,
it has the form

�ð ~R; ~r; ~R0; ~r0;�Þ ¼ h ~R; ~rje��Ĥj ~R0; ~r0i: (3)

The equilibrium average of an operator Ô can then be com-
puted as

hÔi� ¼ Z�1hÔ �̂i
¼ Z�1

Z
d ~Rd~rd ~R0d~r0�ð ~R; ~r; ~R0; ~r0;�Þh ~R0; ~r0jÔj ~R; ~ri:

(4)

The product property of the exponential of commuting
operators,

e�ð�1þ�2ÞĤ ¼ e��1Ĥe��2Ĥ; (5)

repeatedly applied, gives the path-integral expression for the
partition function:

Z ¼
Z YP�1

t¼0

d ~Rtd~rth ~Rt; ~rtje��Ĥj ~Rtþ1; ~rtþ1i; (6)

where � ¼ �=P and periodic boundary conditions in the

index t applies: ~R0 ¼ ~RP, ~r0 ¼ ~rP. To account for Bose or
Fermi statistics, a permutation of identical particles can also
be applied, as we note below.

We define3 the path as ~R ¼ f ~R0; ~r0; . . . ; ~RP; ~rPg; it consists
of 3PðNe þ NnÞ variables. This expression, exact for any
value of P (the number of time slices or beads), allows us
to compute properties of a quantum system at inverse tem-
perature �, using a density matrix evaluated at a smaller
inverse temperature � ¼ �=P. At small enough �, accurate
and computationally simple approximations exist for the
thermal density matrix which becomes exact as � ! 0. The
best known example is the Trotter formula (Trotter, 1959):

1In this section, we use atomic units, where Planck’s constant ℏ ¼
me ¼ kB ¼ e ¼ 1 with kB being Boltzmann’s constant, and the

energy is measured in Hartrees Eh ¼ 315 775 K, K ¼
27:2114 eV. Note that, in these units, the energy of a hydrogen

atom is 0:5Eh, the binding energy of a hydrogen molecule is 0:17Eh,

the unit of length is the Bohr radius a0 ¼ 0:0529 nm, and the

equilibrium bond length is 1:4a0.

2For simplicity, we limit our discussion to the canonical en-

semble; it is straightforward to extend the discussion to other

ensembles.
3Superscripts label imaginary-time indices, in order to avoid

confusion.
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e��Ĥ ¼ lim
P!1

YP�1

P¼0

e��T̂e��V̂ ; (7)

one can ignore the commutator of the kinetic and potential
operators in writing an integral expression for the density
matrix at large P. Using the Trotter formula, the density
matrix becomes (Feynman, 1972; Ceperley, 1992, 1996)

�ð ~R0; ~r0; ~R0; ~r0;�Þ ¼ 1

N!

X
P

ð�1ÞP
Z

~R0!P ~R0
d ~Re�Sð ~RÞ;

(8)

where we included particle statistics (Bose or Fermi), by
summing over permutations when the path is closed. P labels
the permutation of the particles and ð�1ÞP is its signature for
bosons (þ ) or fermions (� ). The ‘‘action’’ of the path

Sð ~RÞ (the logarithm of its probability density) is given
(neglecting a constant term) by

Sð ~RÞ ¼
Z �

0
dt

�
Mn

2

��������d ~RðtÞ
dt

��������2þ 1

2

��������d~rðtÞ
dt

��������2

þ Vð ~RðtÞ; ~rðtÞÞ
�

(9)

’ XP�1

t¼0

�
Mnj ~Rt � ~Rtþ1j2

2�
þ j ~rt � ~rtþ1j2

2�
þ �Vð ~Rt; ~rtÞ

�
:

(10)

Equation (9) represents the exact expression in the continuous
path limit (P ! 1, � ! 0, and P� ¼ �). Note that to sim-
plify the notation, above we considered a system with a single
nuclear component of mass Mn; nuclei, being heavier, are
represented by paths of much smaller size. For bosons (posi-
tive sign), or Boltzmannons (no sum over permutations), the
integrand in Eq. (8) is positive, and the partition function
becomes identical to the Boltzmann distribution of a classical
system consisting of ðNe � NnÞ � P particles interacting with
an effective classical ‘‘potential’’ kBTSðRÞ.

The electronic integral can be formally performed, pro-

ducing the influence functional Zel½ ~Rn�:

Z ¼
I

D ~R
I

D ~r exp

�
�

Z �

0
dt½Tnð ~RtÞ þ Selð ~Rt; ~rtÞ�

�

¼
I

D ~R exp

�
�

Z �

0
dtTnð ~RtÞ

�
Zelð ~RnðtÞ; ½ ~Rn�Þ;

Zelð ~RnðtÞ; ½ ~Rn�Þ ¼
I

D ~r exp

�
�

Z �

0
dtSelð ~Rt; ~rtÞ

�
;

(11)

where
H
D ~R (

H
D ~r) is a shorthand notation for the func-

tional integral over all paths of length �, ~Rn represents the

nuclear coordinates of the path ~R, and the meanings of both
Tn (related to the nuclear kinetic energy operator in the
Hamiltonian) and Sel should be clear from Eqs. (1) and (9).
Equation (11) is just a formal manipulation of the partition
function but it provides a useful framework to understand the
Born-Oppenheimer (BO) approximation introduced below.

Note that Zelð ~RnðtÞ; ½ ~Rn�Þ is a functional of the nuclear

path ~Rn, a fact which becomes important below, as well as
a function of imaginary time, through its explicit dependence
on the nuclear path coordinates.

Equation (10) is the simplest approximation to the high-
temperature density matrix, commonly employed in numeri-
cal calculations. In principle, any approximation correct to
first order in imaginary time will give the same result as
� ! 0. But for computational efficiency and stability for
path-integral simulations, one can use improved actions,
some of which include semiclassical expressions, higher
order expansions (De Raedt and De Raedt, 1983; Takahashi
and Imada, 1984), cumulant expansions (Ceperley, 1995),
and pair-product actions (Barker, 1979; Ceperley, 1995). In
most cases, improved actions lead to dramatic reductions in
the numerical effort required to solve quantum problems. Of
particular importance is the divergence in the potential as two
charged particles approach one another.

Consider now the effect of incorporating the quantum
statistics of the nuclei. The temperature TQ when

quantum statistics becomes relevant can be estimated by
setting the thermal de Broglie wavelength [proportional to
ðkBTQMnÞ�1=2] to the average spacing between the ions given

by rs. One can show that for ideal fermions this corresponds
to the Fermi energy up to a factor of the order of unity. For 3D
protons we have TQ ¼ ðme=MpÞr�2

s 5:84 Ry ¼ 504 K=r2s . At

the metal-insulator transition (rs ’ 1:4), TQ ’ 250 K. In fact,

the effects of quantum statistics for the protons are smaller
than this estimate because the correlation between protons
makes their exchange less probable than for noninteracting
protons. Above the temperature TQ we can safely ignore the

quantum statistics of the nuclei (Fermi-Dirac for hydrogen,
Bose-Einstein for deuterium) and treat them as distinguish-
able particles.

To turn the path-integral expression into a numerical
procedure, generalizations of classical simulation methods
developed to perform high dimensional integrals and based
on the Monte Carlo method are used. In the following
sections, we describe the three main QMC methods that
have been used to treat dense hydrogen and helium: path-
integral Monte Carlo (MC) approaches for simulations at
nonzero temperature; zero-temperature wavefunction-based
approaches including variational, reptation, and diffusion
Monte Carlo; and a method that explicitly separates electron
and ionic degrees of freedom, the coupled electron-ion
Monte Carlo (CEIMC). However, before discussing the nu-
merical methods we discuss the BO approximation which is
used in one of the quantum Monte Carlo methods to be
discussed next, and in the first-principle molecular dynamics
methods based on density functional theory which we review
in some detail in Sec. II.E.

B. The Born-Oppenheimer approximation

Electronic motion is much faster than that of the nuclei.
The implications of the resulting separation in time scale
were recognized in the early years of quantum mechanics,
and led to the development of the BO approximation
(Born and Oppenheimer, 1927). It is based on the fact that
the proton is considerably heavier than the electron:
Mp=me � 1836; all other nuclei are much heavier. Since the

McMahon et al.: The properties of hydrogen and helium under . . . 1611
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velocity of electrons is much higher than that of ions, we can
assume that electrons relax instantaneously and adiabatically
to their equilibrium state as the ions move, neglecting any
coupling between different electronic states, and also retarda-
tion effects in the electron-ion interaction. This leads to a
partial decoupling of the electronic and ionic problems: the
ions move in an effective potential defined by the solutions of
the electronic Hamiltonian for fixed ionic positions.

In the BO approximation, the partition function can be
expressed in path-integral notation (Feynman and Hibbs,
1965)

ZBO ¼ X
q

I
D ~R exp

�
�

Z �

0
dt½Tnð ~RðtÞÞþ Eqð ~RðtÞÞ�

�
;

(12)

where the sum is over a complete set of electronic states of

Ĥel for a fixed set of ionic positions with eigenvalues Eqð ~RÞ:
Ĥelð~r; ~RÞ�qð~r; ~RÞ ¼ Eqð ~RÞ�qð~r; ~RÞ: (13)

If the temperature is low enough to neglect excited electronic
states in Eq. (12), the standard form of the BO approximation
is obtained, where the ions move in the potential energy

surface defined by the electronic ground-state energy E0ð ~RÞ.
For metals and systems at high temperatures, we must take
into account the sum over electronic states. In that case,
Eq. (12) requires a diagonalization of Ĥel for every position
of the ions, including all relevant electronic eigenstates.
Following the work of Cao and Berne (1993), a simpler
expression can be obtained by factorizing the exponential
terms and performing the sum over electronic eigenstates,
with the added complication that, in general, Tn and Eq do not

commute. This leads to the following approximation to the
partition function:

ZFEBO ¼
I

D ~R exp

�
�

Z �

0
dt½Tð ~RÞ þ Felð ~RðtÞÞ�

�
;

(14)

where we neglected terms of order Oðme=MIÞ; see Cao and
Berne (1993) for additional details. Equation (14) is known as
the free-energy Born-Oppenheimer (FEBO) approximation

since the electronic free energy along the nuclear path Felð ~RÞ
at temperature � appears. Note that in this approximation
the influence functional has become a simple function of
the nuclear path, losing the nonlocal (in imaginary time)
dependence.

Equation (14) is the main result on this section; we man-
aged to replace the potential energy operator with a local
function of the ionic coordinates: the BO free-energy surface.
By employing the BO approximation, we decoupled the
problem into two parts, making a great simplification at the
expense of a good approximation. The electronic problem has
been completely encapsulated in the potential energy surface
(PES) and can be solved with any suitable approximate
method such as DFT or QMC. Once the PES has been
defined, the ionic problem can be solved using path integrals
for quantum ions or classical Monte Carlo or molecular
dynamics for classical ions.

Note that the FEBO formulation provides a unifying
framework to interpret several apparently different

approximations routinely used in first-principle simulation
methods. Consider thermodynamic conditions at which pro-

tons can be treated as classical particles. In the atomic phase,
these conditions are realized for T larger than TQ defined

above. For example, at rs ’ 1:4, nuclear quantum effects are
negligible for T * 1000–2000 K. However, in the molecular

phase, the bonding potential is much stronger than the inter-
molecular interaction and produces much larger quantum
effects which results in a vibrational temperature of

�6000 K in the isolated hydrogen molecule, and even higher
values at finite density. However, the rotational temperature
of a molecule is only �100 K. Therefore, in the molecular
phase, quantum effects are important even at relatively high

temperature, a fact often neglected in the applications.
When nuclear quantum effects can be neglected, nuclear
‘‘imaginary-time paths’’ in Eq. (12) shrink to a single point

and the electronic term appearing in the partition function is
simply the exponential of the electronic free-energy function
of the nuclear configuration. If, furthermore, thermal occu-

pation of the electronic states can be neglected, the electronic
free energy reduces to the ground-state electronic energy, and
we recover the standard BO approximation. Conversely, if the
temperature is low enough that neglecting thermal occupation

of the electronic states is an accurate approximation, and
nuclear quantum effects need to be taken into account, the
sum over electronic states in Eq. (12) drops out and the action

for the ionic paths depends only on the electronic ground-
state PES. This is the BO approximation for quantum ions.
Note that in the implementation of the numerical methods
discussed below, in particular, in the DFT-based methods

applied to metals, thermal occupation of the electronic states
is necessary to ensure the stability of the self-consistent
procedure. In view of our discussion, this fact seems to be

more fundamental than simply a technical tool.

C. Path-integral Monte Carlo approach

Path-integral methods for bosons and distinguishable par-
ticles are quite well developed (Ceperley, 1995) since there is
no fermion minus sign. There are two main computational

problems: choice of the action and sampling of the paths. As
mentioned in Sec. II.A, there are several options for the path-
integral action with varying degrees of efficiency and con-

vergence properties. For hydrogen and helium, the optimal
strategy has been the use of pair density matrices, where the
two-body problem is solved exactly at very high temperature
and the matrix squaring method is used to produce a density

matrix at the desired temperature. Using the ‘‘pair action’’
instead of the bare potential reduces the number of time
slices, and eliminates the instability that would otherwise

occur in the primitive approximation to the path integral for
the hydrogen atom caused by the potential going to�1 as an
electron approaches a proton. The sampling of the paths is
performed using a generalized Metropolis (Markov chain

Monte Carlo) procedure. This is the only effective algorithm
when the paths become very long, e.g., for electrons or at
low temperatures. Special methods are used to change

the permutation variables; see Ceperley (1995). As mentioned
in Sec. II.B, as long as the temperature is high
enough (T > 100 K for hydrogen in the metallization region,
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P ’ 100 GPa), nuclear exchange is irrelevant and only the
identity permutation has a significant contribution to the
partition function. In this case, ionic paths are isomorphic
to ring polymers. When the path-integral representation is
used for the ions and the electrons are treated with other
methods (ground-state QMC or DFT), nuclear paths can also
be sampled by molecular dynamics (MD); see Sec. II.E.5 for
more details.

For electronic systems, it is possible to perform path-
integral Monte Carlo (PIMC) simulations without invoking
to the BO approximation. Both electrons and ions are repre-
sented in the path-integral expression, Eq. (8). Note that
this is probably the only way to simulate directly electron-
ion systems at finite temperature without approximations.
In practice, the integration is complicated due to the
cancellation of positive and negative contributions from the
negative sign of the permutation, the fermion sign problem.
The efficiency (inverse of computer time needed to reach
a given precision) of treating this exactly scales as
exp½�2�ðFF � FBÞ�, where FF � FB is the free-energy dif-
ference between the Fermi and Bose systems; the exponent is
extensive in the size of the system (Ceperley, 1996). Because
of this, in the direct approach, one cannot treat systems where
the number of electrons is large or the temperature is com-
parable with the Fermi energy.

However, it was shown (Ceperley, 1992, 1996) that one can
evaluate the path integral by restricting the path to only

positive contributions. One introduces a reference point ~R�

on the path that specifies the nodes of the fermion density

matrix �ð ~R; ~R�; tÞ ¼ 0 with respect to the reference point ~R�.
A node-avoiding path for 0< t � � never crosses a node:

�ð ~RðtÞ; ~R�; tÞ � 0. By restricting the integral to these paths,

�Fð ~R�; ~R
�;�Þ ¼

Z
d ~R0�Fð ~R0; ~R

�; 0Þ

�
I

~R0! ~R�2�ð ~R�Þ
d ~Rte

�S½ ~Rt� (15)

[�ð ~R�Þ denotes the restriction] the contributions to the parti-
tion function are strictly positive. This, therefore represents,
in principle, a solution to the sign problem, but only if the
exact fermionic density matrix is used for the restriction. In
practice, one must approximate the density matrix. The sim-
plest approximation is to use a determinant of single particle
density matrices:

�ð ~R; ~R0;�Þ ¼

����������������
�1ð~r1; ~r01;�Þ 	 	 	 �1ð~rN; ~r01;�Þ

	 	 	 	 	 	 	 	 	
�1ð~r1; ~r0N;�Þ 	 	 	 �1ð~rN; ~r0N;�Þ

����������������
:

(16)

It can be shown that for temperatures larger than the Fermi
energy, the interacting nodal surface approaches the free-
particle (FP) nodal surface, i.e., the nodes of the determinant
in Eq. (16) when FP single particle density matrices are used

�1ð~r; ~r0; �Þ ¼ ð2��Þ�3=2 expf�ð ~r� ~r0Þ2=2�g: (17)

At low density, exchange effects are unimportant, for ex-
ample, in the molecular phase, when electrons are localized
in a molecule in a nodeless spin singlet state. However, in

general, at temperatures much less than the Fermi energy,

interactions could have a significant effect on the nodal
surfaces and hence on which paths are allowed. Several

methods have been developed to go beyond the FP restriction.
Militzer and Ceperley (2000) used the nodal surface of a

density matrix derived from a variational principle that in-
cludes interparticle interactions and electronic bound states.

Also recently Khairallah, Shumway, and Draeger (2011)
implemented a modified nodal restriction, the so-called

antinodal-slice constraint. This method has the advantage of

eliminating the reference point and thereby allowing the paths
to be much more easily sampled than those that have a

reference point; however, it introduces a systematic approxi-
mation which does not become exact even if exact nodes

would be employed. Note that in these methods, the trial
density matrix is used only to determine the nodal constraint;

the complete potential is taken into account in the path-
integral action (Ceperley, 1995). Although the PIMC fermion

methods have not been extensively used, they show great

promise for the study of more complex materials at high
temperature [see, for instance, a recent application to water

and carbon by Driver and Militzer (2012)].
An alternative simulation method based on path integrals

for electron-ion systems, called the direct path-integral

Monte Carlo (DPIMC) method, has been developed over
the last decade by Filinov et al. (2005). At variance with

the restricted PIMC (RPIMC), Fermi statistics for electrons is
accounted by inserting a Slater determinant of single particle

propagators in the last link of the electronic paths. The
sampling of the fermionic loops is based on the absolute

value of the determinant and the sign of the determinant

is used for the estimator. This method is adequate in the
semiclassical regime where the effect of Fermi statistics is

marginal. However, it has a sign problem which will become
more and more serious when approaching the quantum

regime. For a given Hamiltonian, the probable phase space
for fermions is very different from that of bosons; sampling

by a bosonic density matrix will produce paths irrelevant for
the fermions. This might be at the origin of formation of large

density inhomogeneities observed by this method when low-

ering the temperature (Filinov et al., 2003). Moreover, the
systematic effect of finite imaginary-time step seems to not

have been considered adequately in the original publications
(Filinov et al., 2005).

D. QMC-based first-principles simulations

Once the BO approximation is employed, the electronic

calculation can be solved with any appropriate electronic
structure method. The most common approach is to use

density functional theory; this leads to methods typically

known as ab initio molecular dynamics or first-principles
molecular dynamics. Section II.E gives a detailed description

of DFT-based approaches. A more advanced approach con-
sists of using QMC methods to solve the electronic problem.

QMC, although more accurate than DFT in general, is also
more expensive. As a consequence, only a small number of

first-principles studies using QMC have been reported in the
literature, all of them on high-pressure hydrogen and helium

(Ceperley, Dewing, and Pierleoni, 2002; Pierleoni, Ceperley,
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and Holzmann, 2004; Pierleoni and Ceperley, 2005; Delaney,
Pierleoni, and Ceperley, 2006; Pierleoni and Ceperley, 2006;

Attaccalite and Sorella, 2008; Pierleoni et al., 2008; Morales,
Pierleoni, and Ceperley, 2010a). This should be compared

with the thousands of DFT-based FP simulations published so
far (Marx and Hutter, 2000). In the framework of QMC-based
simulations at nonzero temperature, only two approaches

have been tried. In the CEIMC method, discussed below,
QMCmethods are used to calculate energy differences during
a Metropolis MC simulation of the nuclei. This method was

recently used to study the equation of state and the liquid-
liquid transition in hydrogen (Morales et al., 2010b); it has

also been used to study hydrogen-helium mixtures (Morales,
2009) and to perform free-energy calculations (Morales,
2009; Morales, Pierleoni, and Ceperley, 2010a; Liberatore

et al., 2011). An alternative MD approach based on a ‘‘noisy’’
Langevin dynamics scheme, with ionic forces from QMC,
has also been developed (Attaccalite and Sorella, 2008) and

applied to high-pressure hydrogen.
Before discussing QMC-based first-principle methods to

simulate finite-temperature systems, we provide a detailed
description of ground-state QMC methods. These methods

can be either used to obtain accurate solutions of the ground-
state electronic problem in the finite-temperature QMC-based

FP methods in the framework of the BO approximation or can
be used, without resorting to the BO approximation, to obtain
accurate solutions for electron-ion systems in their ground

state.

1. Ground-state quantum Monte Carlo methods

Ground-state QMC methods were the first calculations that
applied quantum simulation techniques to a many-body crys-

tal including both the electronic and ionic degrees of freedom
(Ceperley and Alder, 1981, 1987). The ultimate goal of QMC
is to provide an exact stochastic solution to the Schrödinger

equation, similar to the way Monte Carlo methods can be
used to solve classical many-body problems. In practice,

approximations must be used to treat fermions. The main
advantage of QMC over alternative methods for electronic
structure calculations is the balance that it provides between

accuracy and computational cost. Currently, QMC can pro-
vide results that are more accurate than DFT for about an
order of magnitude additional computational cost and QMC

scales approximately as N2 to N3 with the number of elec-
trons. Traditional chemistry methods, while providing a

higher degree of accuracy in general, have an unfavorable
scaling and as a consequence can be applied only to few
electron systems. QMC, on the other hand, can be applied to

systems with up to several thousand electrons with currently
available computational resources.

a. Variational Monte Carlo methods

The simplest quantum simulation, variational Monte Carlo

(VMC), was first introduced by McMillan (1965) for liquid
helium (modeled as a single composite particle) and gener-
alized to fermions by Ceperley, Chester, and Kalos (1977).

VMC allows us to optimize the trial function needed in the

projector methods, described below. Let c Tð ~RÞ be an as-
sumed trial function with adjustable parameters fag. Using

the Metropolis Monte Carlo technique (Metropolis et al.,

1953), one samples the un-normalized distribution jc Tð ~RÞj2
and calculates an upper bound to the ground-state energy,

E � EVðaÞ ¼
R
d ~R��

Tð ~RÞĤ�Tð ~RÞR
d ~R��

Tð ~RÞ�Tð ~RÞ

¼
R
d ~Rj�Tð ~RÞj2ELð ~RÞR

d ~Rj�Tð ~RÞj2
: (18)

The fluctuations in the energy estimator, the local energy

ELð ~RÞ ¼ ½Ĥ�T�=�T , are entirely due to inaccuracies of the
trial function: as the trial wave function approaches the exact
eigenfunction, the fluctuations, which control how quickly
the energy converges, decrease to zero. At the same time, the
estimate converges to the exact energy.

b. The trial function

The strategy in VMC is to pick a form for the trial wave
function that incorporates as many properties of the exact
many-body wave function as possible, while maintaining
enough flexibility to allow for its efficient optimization.
The pair-product trial wave function is the simplest extension
of the Slater determinant of single particle orbitals used in
mean field treatment of electronic systems:

�SJð~rj ~RÞ ¼ exp

�
�X

i<j

uðrijÞ
�
det½�kð~ri; �ij ~RÞ�; (19)

where �kð~r; �j ~RÞ is the kth spin orbital for a given configu-
ration of the protons. The term uðrijÞ, the (Jastrow) correla-

tion factor, introduces two-body correlations into the
many-body wave function. It is symmetric under particle
exchange; antisymmetry is given by the determinant only.
In the above trial function, we assumed that the Jastrow factor
uðrÞ depends only on the distance between two electrons;
more generally it can also depend on the positions of the
nuclei and their spin states. Often either or both of �k and u
are derived from an approximate theory such as the random-
phase approximation (for u) or DFT (for �).

The spin orbitals are quite important because they provide
the nodal structure of the trial function crucial in the
fixed-node approximation described below. The choice of
orbitals for hydrogen has evolved over the years. The first
QMC calculation of metallic hydrogen (Ceperley and

Alder, 1981, 1987) used plane waves �~kð~r; �Þ ¼ exp½i ~k 	 ~r�.
Although they are qualitatively correct in the metallic phase,
since the electron-proton ‘‘cusp’’ can be taken into account in
the correlation factor uðrÞ, quantitatively accurate results
require better orbitals that include information about the
positions of the ions.

The next step in development came from the work of Wang
et al. (1990) and Natoli, Martin, and Ceperley (1993, 1995),
where orbitals obtained from band-structure calculations
were employed. Natoli and Ceperley (1995) established the
fact that energies from plane-wave determinants in metallic
hydrogen are higher than the values using DFT-LDA (local
density approximation) orbitals by 0:05 eV=atom at the den-
sity at which the transition between molecular and metallic
hydrogen is expected (rs ¼ 1:31).
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Turning now to the correlation factors uðrijÞ, optimal

factors will obey the cusp condition at short distances

duij
dr

��������0
¼ ��ij; (20)

where �ij ¼ 1=2 if i and j have antiparallel spins, otherwise

�ij ¼ 1=4. Within the random-phase approximation (RPA)

and neglecting antisymmetry, the correlation factors for the
charged particles have the Fourier transforms

uk ¼ � 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12rs

k4

s
: (21)

This form has the exact behavior at both small and large
distances for a metallic system. It is important to reproduce
the correct 1=r behavior at large distances since that controls
the dielectric properties. In practice, these RPA functions are
typically augmented with flexible forms that preserve the
asymptotic behaviors, e.g., Gaussians, but contain free pa-
rameters which can be tuned to improve the trial function.

The first corrections to the pair-product trial function are a
three-body correlation term which modifies the correlation
part of the trial function (Jastrow) and a ‘‘backflow’’ trans-
formation which changes the orbitals and therefore the nodal
structure (or the phase) of the trial function (Kwon, Ceperley,
and Martin, 1993; Holzmann et al., 2003; Pierleoni et al.,
2008). This transformation introduces correlation effects into
the Slater determinant; the energy and the nodal surfaces of
the trial function are improved. The modified trial function
has the form

�Tð~rj ~RÞ ¼ det½�kð ~xi; �iÞ�e�U2�U3 ; (22)

where U2 ¼
P

i<j ~uðrijÞ is the two-body correlation factor

discussed previously [the~indicates that it can differ from the
original one, see Holzmann et al. (2003) for details], U3 is a
three-body term of the form

U3 ¼ �XNe

i¼1

�XN
j¼1

	ðrijÞ~rij
�
2
; (23)

and finally the ‘‘quasiparticle’’ coordinates appearing in the
plane wave orbitals are given by

~xi ¼ ~ri þ
XN
j¼1


ðrijÞ~rij ði ¼ 1; . . . ; NeÞ: (24)

The RPA approximation was used (Holzmann et al., 2003)
to provide a general form for the functions 	ðrÞ, 
ðrÞ in
Eqs. (23) and (24), satisfying the correct limiting behavior
at small and large distances. These functions can also be
augmented with flexible functional forms and optimized
with VMC.

As discussed, the trial wave function generally has varia-
tional parameters that need to be optimized at the VMC level.
The optimization not only improves the quality of the final
results in projector Monte Carlo methods, but also improves
the efficiency of QMC calculations, which is directly related
to the error of the trial wave function. Optimization methods
in QMC have a long history (Umrigar, Wilson, and Wilkins,
1988; Drummond and Needs, 2005; Toulouse and Umrigar,
2007), with methods ranging from variance minimization and

energy optimization to a combination of both. They received
considerable attention over the last decade leading to the
development of fairly robust and efficient approaches, such
as the linear method of Umrigar et al. (2007), which are
capable not only of optimizing all the parameters in the wave
function, but also of handling extremely flexible wave func-
tions with thousands of variational parameters (Attaccalite
and Sorella, 2008; Clark et al., 2011). Several forms of trial
wave functions beyond the Slater-Jastrow backflow have
been explored in recent years with some success, including
Pfaffians (Bajdich et al., 2006) and correlated geminals
(Casula, Attaccalite, and Sorella, 2004).

c. Projector Monte Carlo methods

We now describe how to go beyond VMC by applying a
function of the Hamiltonian to project out the ground state.
Because the diffusion Monte Carlo (DMC) method has been
extensively reviewed elsewhere [see, e.g., Foulkes et al.
(2001)], here we discuss a more recent technique, ground-
state path-integral Monte Carlo (GSPI), also known as repta-
tion quantum Monte Carlo (RQMC). We define the following
quantity, formally similar to a partition function:

ZðtÞ ¼ h�Tje�tĤj�Ti ¼ h�Tðt=2Þj�Tðt=2Þi: (25)

Here the projection time t plays the role of the inverse
temperature. The variational energy of �Tðt=2Þ at time t is
the derivative of the logarithm of ZðtÞ:

EðtÞ ¼ � @

@t
lnZðtÞ ¼ h�ðt=2ÞjĤj�ðt=2Þi

h�ðt=2Þj�ðt=2Þi (26)

and the ‘‘variance’’ of �Tðt=2Þ given as

�2
EðtÞ ¼ � @

@t
EðtÞ ¼ h½Ĥ � EðtÞ�2i 
 0; (27)

is non-negative implying that the energy decreases monotoni-
cally with time. The exact ground state is reached at large
time

lim
t!1EðtÞ ¼ E0; (28)

lim
t!1�

2ðtÞ ¼ 0; (29)

as long as the trial wave function has a nonzero overlap with
the ground-state wave function. Writing ZðtÞ in coordinate
space

ZðtÞ ¼
Z

d~r1d~r2�
�
Tð~r1Þ�ð~r1; ~r2; tÞ�Tð~r2Þ; (30)

where �ð~r1; ~r2; tÞ ¼ h~r1j expð�tĤÞj~r2i is the many-body ther-
mal density matrix in coordinate space.

Thus, in order to compute any average over the ground
state we need to know the thermal density matrix at large
enough projection time. As we did earlier with path integrals,
this is accomplished by breaking the projection into many
small steps expð�tHÞ ¼ expð��HÞn, writing an explicit
form for expð��HÞ and performing the needed integrals
with Monte Carlo methods. The difference with PIMC is in
the boundary conditions of the paths; instead of the paths
closing on themselves, the paths are open and projected onto
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a trial function at both ends. If the trial wave function �T is
accurate, GSPI computationally is a much more efficient way
of computing ground-state properties than is PIMC.

As usual, the main difficulty is the fermion sign problem.
For electrons, the trial wave function must be antisymmetric
if two electrons with the same spin are exchanged. In general,
the trial function is complexed valued. Hence the integrand of
Eq. (30) is not necessarily positive. One could carry along the
phases of the trial functions at the two ends as part of the
calculated average, however, this becomes statistically very
noisy and thus inefficient at large projection time and for
many electrons. This is the ’’sign problem’’ for projector
Monte Carlo methods. The solution to this problem is the
fixed-node (for real �T) or fixed-phase (for complex �T)
approximation: one requires that the unknown solution have
the same phase as the trial function (Pierleoni and Ceperley,
2006). The resulting solutions, although approximate and
dependent on the quality of the nodes of the trial wave
function, are typically very good. The efficiency of the
method is also reasonable for many-particle systems. The
approximate results give an upper bound to the exact energy,
the best upper bound with the assumed phase, and hence, the
exact result if the assumed phase (or nodes) is exact.

The main advantage of GSPI is the fact that observables
other than the energy are readily available from the simula-
tion, as opposed to other projector methods such as DMC
where further work is needed to obtain most observables. A
crucial aspect of the GSPI method is the way the paths are
sampled; sampling can become extremely inefficient. An
important step forward was made with the development of
the bounce algorithm (Pierleoni and Ceperley, 2005, 2006)
which, with respect to the standard reptation algorithm pre-
viously used, allows for the efficient exploration of phase
space, and significantly reduces the probability of obtaining
persistent configurations.

2. Coupled electron-ion Monte Carlo method

TheCEIMCmethod is based on the BO approximation. The
nuclei are treated at finite temperature T, using a Metropolis
MC algorithm and the electrons are treated at zero temperature
using a ground-state QMCmethod. Themethod can be applied
to both classical and quantum ions in the path-integral repre-
sentation, by sampling the ionic paths from the appropriate
distributions (Pierleoni, Ceperley, and Holzmann, 2004;
Pierleoni and Ceperley, 2006). The acceptance probability in
the Metropolis method is given by

Að ~R ! ~R0Þ ¼ min½1; expð���EBOÞ�; (31)

where ~R represent here the set of nuclear coordinates. For
simplicity, we assume a uniform a priori transition matrix and

�EBO ¼ EBOð ~R0Þ � EBOð ~RÞ is the difference in BO energy

between nuclear states ~R and ~R0. In the case of quantum ions,
�EBO is the change in the action of the associated classical
system; see Eq. (10). In CEIMC, the estimate of �EBO for a
given trial function is computed by QMC and is therefore
affected by statistical noise, which, if ignored, will bias the
Metropolis random walk. Since the noise in the energy differ-
ence decreaseswith the number ofMonteCarlo steps as 1=

ffiffiffiffi
N

p
,

reducing the noise level by direct simulation to the point where

the bias is negligible is time consuming. To solve this problem
the penalty method is used (Ceperley and Dewing, 1999).

The basic idea of the penalty method is to relax the
requirement of detailed balance for every step in the simula-
tion and instead require detailed balance to hold only when
we average over the noise distribution. Consider two ionic

states ð ~R; ~R0Þ and call �ð ~R; ~R0Þ the ‘‘instantaneous’’ energy
difference multiplied by � ¼ ðkBTÞ�1. Further assume that

the average and the variance of �ð ~R; ~R0Þ over the noise

distribution Pð�j ~R ! ~R0Þ exist: Since the noise is normally
distributed because of the central limit theorem [assuming the

variance of �ð ~R; ~R0Þ is finite] (Feller, 1968), it can be shown
(Ceperley and Dewing, 1999) that accepting the moves
according to

að�; �2; nÞ ¼ min

�
1; expð��� uBÞ

�
(32)

will lead to an exact sampling of the Boltzmann distribution
even with noise. Here uB is a correction because the variance
is also estimated from the data:

uB ¼ �2

2
þ �4

4ðnþ 1Þ þ
�6

3ðnþ 1Þðnþ 3Þ þ 	 	 	 ; (33)

where �2 ¼ ½1=nðn� 1Þ�Pn
i¼1ðyi � �Þ2 is an estimate of the

variance of the energy difference from the sample data, and n
is the number of statistically uncorrelated estimates of

�ð ~R; ~R0Þ. We also require that �2=n � 1=4 for the asymptotic
expansion in Eq. (33) to converge.

Equation (32) is similar to the standard Metropolis accep-
tance/rejection rule, with an extra rejection term uBð>0Þ
which is related to the level of noise in the electronic energy
difference between the two protonic configurations R and R0.
Since we only need to compute an energy difference from
QMC, we can use a correlated sampling, a much more
efficient method than performing two independent calcula-
tions (Ceperley, Dewing, and Pierleoni, 2002). The efficiency
of the method is sensitive to the noise level; it depends on the
size of the ionic steps and on the length of the sampling of the
electronic configuration space. If the noise level is too low
(because either we move ions very little or we run very long
electronic calculations), the extra rejections are significantly
reduced but the computer time required will be very large.
On the other hand, if the noise level is too high, all moves
will be rejected from the penalty term. The optimal noise
level depends on the temperature and is well approximated
by �2 � 1.

One could get the impression that the penalty method
causes a large decrease in the efficiency of CEIMC when
decreasing the temperature, since the noise level in the energy
would need to be at least as low as the temperature. However,
at low temperatures, the nuclei need to be represented by their
own path integrals and the relevant ‘‘temperature’’ is now
the inverse of the imaginary-time step �, rather then the
inverse physical temperature �, and the optimal noise level
is �� ¼ 1, where � is now the noise on the energy difference
at each time slice of the nuclear path. For a more detailed
discussion on the implementation of nuclear path integrals in
CEIMC, see Pierleoni and Ceperley (2006).

We can improve the efficiency of the CEIMC method by
using a multilevel sampling approach. Trial ionic moves are

1616 McMahon et al.: The properties of hydrogen and helium under . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



‘‘screened’’ by first accepting or rejecting them using a

simple effective potential Veffð ~RÞ:
A1ð ~R ! ~R0Þ ¼ minf1; exp½���Veff�g; (34)

where �Veff ¼ Veffð ~R0Þ � Veffð ~RÞ. If the move is accepted,
the energy difference is calculated using QMC and the step
accepted or rejected based on

A2ð ~R ! ~R0Þ ¼ minf1; exp½�ð�� ��VeffÞ � uB�g:
(35)

Since the evaluation of the effective potential is orders of
magnitude faster than the evaluation of the QMC energy
difference, the overhead produced by the prerejection is
negligible. On the other hand, it can significantly increase
the efficiency of the method by eliminating QMC calculations
for ‘‘bad’’ steps and increasing the effective acceptance rate.

Another promising approach for QMC-based FP simula-
tions is that of Attaccalite and Sorella (2008). In this ap-
proach, Langevin dynamics is used to perform a simulation
with forces coming from QMC calculations. Similar to
CEIMC, the forces contain a statistical uncertainty that will
lead to a biased ionic sampling if used in Newtonian dynam-
ics. Instead, they use a modified Langevin algorithm, robust
to noise. They show that it is possible to add Gaussian
correlated noise to the QMC forces, as long as the covariant
matrix of the forces is finite and known. With this method,
they are able to simulate liquid hydrogen close to the disso-
ciation transition and predict a stable molecular liquid at
room temperature at 300 GPa. While this calculation used
VMC forces and did not include twist average boundary
conditions (see the discussion on size effects below), the
method shows great promise as a general purpose QMC-
based first-principle method for arbitrary chemical systems.
Along with CEIMC, this method represents one of the fron-
tiers in the development of next-generation (beyond DFT)
first-principles simulation methods.4

E. DFT-based first-principles simulations

Almost all first-principles simulation methods using a DFT
energy surface are performed with MD, although attempts
have been reported using Monte Carlo methods (McGrath
et al., 2006). There are two general ways to use potential
energy surfaces from DFT in a MD simulation: either a fully
converged calculation for the electrons is performed for every
nuclear position or a unified dynamical approach is used to
propagate both electrons and ions simultaneously. Both ap-
proaches are described below. Before describing the solution
of the ionic problem, we give a brief description of DFT
methods, which form the basis of the first-principles molecu-
lar dynamics (FPMD) approach. For a more detailed discus-
sion of DFT and FPMD methods, see Parr and Weitao (1994),
Fiolhais, Nogueira, and Marques (2003), Martin (2004),
Dykstra (2005), Mattsson et al. (2005), Hafner (2008), and
Marx and Hutter (2009).

1. Density functional theory

Although theories based on functionals of the electron
density have a long history in physics and chemistry, with
the Thomas-Fermi theory as one of the earliest and better
known examples (Fermi, 1927; Thomas, 1927), the term
density functional theory (Parr and Weitao, 1994; Martin,
2004; Kohanoff, 2006) refers to the formulation based on
Hohenberg-Kohn (HK) theorems (Hohenberg and Kohn,
1964) and the Kohn-Sham (KS) ansatz (Kohn and Sham,
1965).5 The first HK theorem states that there is a one-to-
one correspondence between the external potential (in this
case the potential produced by the nuclei) and the ground-
state electronic density. This means that for every wave
function that is the ground state of some Hamiltonian, the
external potential giving rise to it is unique up to an additive
constant. Notice that while the wave function for the many
electron system lives in a 3Ne dimensional space, the electron
density is a function of only the three spatial coordinates.
Thus, in principle, knowledge of the density implies knowl-
edge of the wave function and, in turn, of all the properties of
the system. The second HK theorem states that there exists a
universal energy functional of the density E½n� defined for
any external potential, such that the global minima of this
functional represents the ground-state energy of the system.
The density at the minimum gives the ground-state electronic
density.

One might hope that the HK theorems could simplify the
description of the many electron problem since it uses the
density rather than the full wave function as the fundamental
variable, but, in practice, the universal energy functional is
unknown and there is currently no known accurate way of
extracting properties of electronic systems from the density
alone. The approach of Kohn and Sham (1965) was to replace
the original interacting problem by an auxiliary system de-
fined in terms of noninteracting electrons that is more trac-
table and easier to solve. In their formulation of DFT, which
is the implementation commonly used today, the auxiliary
system is defined such that its ground-state electron density is
the same as the density of the interacting system. This allows
us to write down an explicit form for the energy functional
in terms of the single-body orbitals of the noninteracting
system:

EKS½n� ¼ � 1

2

XN
i¼1

j ~rc ið~rÞj2 þ
Z

d3 ~rnð~rÞVextð~rÞ

þ EH½n� þ Enn þ Exc½n�;

EH½n� ¼ 1

2

Z
d3 ~rd3 ~r0

nð~rÞnð~r0Þ
j ~r� ~r0j ; (36)

where c ið~rÞ are the eigenstates of the noninteracting
Hamiltonian, EH is the Hartree energy (the classical electro-
static interaction of the density), Enn is the nuclei-nuclei
interaction energy, and Exc accounts for exchange and
correlation energy. The density of the noninteracting system
is defined by nð~rÞ ¼ PN

i¼1 jc ið~rÞj2.
4Note that in what is called quantum molecular dynamics in the

literature, classical dynamics of the ions is performed with forces

computed with density functional theory.

5We do not describe earlier band theory methods on hydrogen

since those methods have been generally superseded by DFT.
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In the KS formulation all the many-body effects are en-
capsulated in the exchange-correlation functional Exc½n�,
which accounts not only for exchange and correlation effects,
but also for many-body corrections to the kinetic energy.
Although the existence and uniqueness of this functional
are guaranteed by the HK theorem, its form is unknown
and probably too complicated to be computed exactly.
Nonetheless, it is much easier to find reasonable approxima-
tions for Exc since this term typically represents a small
contribution to the total energy.

The ground-state HK theorems were extended to finite
temperature by Mermin (1965). Although the study of the
finite-temperature functional has not received as much atten-
tion over the years, its independent particle formulation is
used frequently in FPMD with a form FKS½n� ¼ EKS½n� �
TS½n�, where EKS½n� is the usual KS energy functional. The
density is a weighted average over excited states nð~rÞ ¼P1

i¼1 fijc ið~rÞj2, fi defines the occupation of state i (e.g.,

using the Fermi-Dirac formula) and the entropy has the form

S ¼ �X
i

fi logfi þ
X
i

ð1� fiÞ logð1� fiÞ: (37)

The free-energy functional plays a crucial role in the study of
metals and is the basis of the FEBO method discussed above.
It is found that using a small but finite temperature often leads
to much faster and robust convergence for certain systems at
low temperatures.

The accuracy of DFT depends on the exchange-correlation
functional. The simplest possible form, known as the LDA,
assumes that the functional is a local function of the density

ELDA
xc ¼

Z
d3 ~rxcðnð~rÞÞnð~rÞ; (38)

where xcðnÞ is the exchange-correlation energy density of
the homogeneous electron gas with density n, calculated
using QMC methods by Ceperley and Alder (1980) and
subsequently parametrized by Perdew and Zunger (1981)
and others. While the LDA generally produces reasonable
results, in particular, for weakly inhomogeneous systems,
current calculations typically include information about
the density variation, producing better approximations. In
the next level of accuracy, the generalized gradient approxi-
mation (GGA), a semilocal expansion of the exchange-
correlation density, is used including also the density
gradient, typically expressed in terms of the dimensionless

combination s ¼ j ~rnj=ð2kFnÞ. There are various implemen-
tations of GGA functionals, e.g., variational forms fitted to
reproduce experimental results in molecular systems
and condensed phases, and implementations based on pertur-
bation treatments. The Perdew-Burke-Ernzerhof (PBE)
(Perdew, Burke, and Ernzerhof, 1996) exchange-correlation
functional is the most used choice for dense hydrogen, and, as
we show, produces a good description at high pressure.

Beyond the GGA approximation, in the metaGGA formu-
lation (Perdew and Schmidt, 2001) the noninteracting kinetic

energy density �ð~rÞ ¼ 1
2

P
ij ~rc ið~rÞj2 is used in the construc-

tion of the exchange-correlation energy density. In the orbital
dependent formulations (Kümmel and Kronik, 2008), the
Kohn-Sham orbitals are used in the construction of the
exchange-correlation functional. In this case, a generalized

KS formulation must be used because the resulting potential
becomes orbital dependent; this invalidates the original for-
mulation by HK. Nonetheless, the use of orbitals still allows
for a rigorous formulation of DFT and, in general, produces a
large increase in accuracy and has become the standard for
quantum chemistry calculations. The best example of orbital
dependent DFT is the hybrid functional approach, where the
exchange-correlation functional includes a fraction of exact
exchange from Hartree-Fock theory (Becke, 1993). The best
known hybrid functionals in the condensed matter community
are PBE0 (Perdew, Ernzerhof, and Burke, 1996), which uses a
mixture of 25% of Hartree-Fock exchangewith 75% PBE, and
the HSE (Heyd, Scuseria, and Ernzerhof, 2003) functional,
which uses a combination of range separation and the same
mixing fractions as in PBE0; the Hartree-Fock calculation is
done only on the short-range part of the potential.

The KS band gap differs from the true one by a disconti-
nuity in the derivative of the exchange-correlation potential
rxc (Perdew and Levy, 1983) with respect to density. Since
rxc ¼ 0 for standard DFs, the width of the gap at a given
density (pressure) as well as the density at which it actually
closes are both underestimated (Johnson and Ashcroft, 2000;
Städele and Martin, 2000). However, the exact-exchange
method (Städele et al., 1997, 1999) provides an approxima-
tion to rxc ¼ 0; the resulting nonlocality in exchange causes
an overestimation of the width of the gap. One can partially
cancel these errors by mixing a fraction of exact exchange
with a standard DF, such as is done by Heyd, Scuseria, and
Ernzerhof (2003): relatively accurate band gaps are obtained
(Brothers et al., 2008). Exact-exchange functionals, e.g.,
HSE, require significantly more computational effort com-
pared to a standard DF. An alternative to hybrid functionals
are many-body Green’s function techniques, e.g., the GW
approximation (Onida, Reining, and Rubio, 2002; Fiolhais,
Nogueira, and Marques, 2003), which has been applied to
hydrogen with encouraging results (Chacham and Louie,
1991; Chacham, Zhu, and Louie, 1992).

In another problem, most DFs (i.e., those which treat
electron correlations at a local or semilocal level) cannot
describe van der Waals (vdW) interactions (dispersion inter-
actions), giving rise to errors in the application of DFT to the
low-pressure region of the hydrogen phase diagram, where
weak vdW interactions between molecules are important
(Silvera, 1980). Recent progress in DFT has been made,
however, with the advent of so-called vdW DFs (Dion
et al., 2004; Lee et al., 2010) and semiempirical density-
dependent vdW corrections (Tkatchenko and Scheffler, 2009).

Once an approximate exchange-correlation functional is
chosen, the DFT energy functional is well defined. For cal-
culations, we must first choose the representation of the
orbitals, i.e., the basis set. The most common bases are
plane waves and linear combinations of localized functions,
e.g., Gaussian functions. For calculations with periodic
boundary conditions, plane waves are natural since they
represent extended, delocalized states and they do not suffer
from superposition errors of localized bases: the orbitals are
written as

c ið~rÞ ¼
X
~G

ci~Ge
i ~G	~r; (39)
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where ~G belong to the reciprocal space of the simulation cell

and the sum extends over all vectors such that j ~Gj2=2<Ecut.
Ecut is a cutoff parameter that controls the accuracy of the
expansion. The value of the Ecut needed to achieve a given
accuracy depends on details such as the pseudopotential (see
below), and the nature of the electronic states. While the

kinetic and Coulomb energies are given by sums over ~G, the
exchange-correlation energy is most easily evaluated as a sum
over a real space grid. The fast Fourier transform method is
used to transform between real and reciprocal space during
the solution.

However, plane waves require a dense grid to represent
localized or highly oscillatory orbitals. This creates a problem
for core states that are localized in the core region. In the
majority of systems, core states are chemically inert so we
should be able to remove them from the calculation without
affecting the chemical properties which are determined by the
valence states. Pseudopotentials are renormalized electron-
nuclei potentials for the valence states that include both the
Coulomb attraction of the nuclei and the screening effects
resulting from the presence of core electrons. By employing
pseudopotentials, not only do we remove core states from the
calculation, but we also obtain valence states which are
smooth in the core region; this greatly reduces the computa-
tional demands. There are many different types of pseudopo-
tentials with different levels of transferability (the ability to
reproduce the properties of the atom under different environ-
ments) and complexity. For additional details, see Martin
(2004).

In DFT calculations, pseudopotentials are used for both
hydrogen and helium even though neither of them possesses
core electrons, but because the Coulomb potential 1=r
requires a large plane wave cutoff greatly increasing the
computational demands of the calculations. Since the pseu-
dopotentials are built to reproduce the scattering properties of
the atom, valence states should not be significantly affected
outside of the core region.

2. Treatment of proton zero-point motion

Within the normal framework of DFT, the treatment of
nuclear quantum effects poses challenges. These are espe-
cially important in hydrogen, due to the light proton mass.
Often, the treatment of ZPM is perturbative, adding correc-
tions to the ground-state DFT results. Perhaps the simplest
approximation is obtained by considering the ZPM to be
harmonic, by neglecting anharmonic terms. The harmonic
approximation gives the zero-point energy (ZPE) as an in-
tegral over the phonon density of states Fð!Þ:

EZPE ¼
Z

d!Fð!Þℏ!=2: (40)

While this approximation is widely employed, it has long
been known that this approximation can easily fail for light
elements. For example, early calculations by Straus and
Ashcroft (1977) showed that the harmonic approximation
can incorrectly predict the relative stabilities of atomic crystal
structures (see Sec. IV.A.6). In particular, only by treating
coupling between the phonons self-consistently (i.e., includ-
ing anharmonicity) are some structures energetically stabi-
lized. In fact, anharmonic terms can be roughly equal in

magnitude to the harmonic ones (Natoli, Martin, and
Ceperley, 1993). While methods for approximating anharmo-
nicity in ZPE estimates, such as the self-consistent ab initio
lattice dynamics method (Souvatzis et al., 2008) exist, these
are still approximate, considering protons as classical parti-
cles. Rigorous inclusion of proton ZPM can be obtained by
QMC calculations treating both the nuclei and electrons
quantum mechanically at T ¼ 0 K (Ceperley and Alder,
1987; Natoli, Martin, and Ceperley, 1993) or by using path-
integral methods at a sufficiently low temperature as dis-
cussed elsewhere in this section.

3. Born-Oppenheimer molecular dynamics

The simplest and more computationally time consuming
way to perform FPMD simulations with DFT is to evaluate
the forces on the nuclei at each MD step from a fully
converged DFT calculation. This approach is known as
Born-Oppenheimer molecular dynamics (BOMD) (Payne
et al., 1992; Marx and Hutter, 2009). The forces on the ions
are calculated by the Hellman-Feynman theorem (Hellmann,
1937; Feynman, 1939), valid for the orbitals and density that
minimize the KS energy functional. Since the Hellmann-
Feynman theorem is applicable only at the variational mini-
mum of the KS energy functional, the DFT calculation must
be well converged. This makes the approach more expensive
than the alternative method described below. Almost all DFT
calculations employ iterative schemes to minimize the KS
energy functional. The number of iterations needed to reach
convergence depends crucially on the initial guess for the
orbitals and electronic density. In order to make the calcu-
lations fast enough to make the BOMD approach practical for
large systems, the orbitals at time tþ dt are estimated from
the results at times ðt; t� dt; t� 2dt; . . .Þ, thus saving large
factors of computer time, especially for systems with many
electrons.

In the case of free-energy Born-Oppenheimer simulations,
which includes thermal electronic excitations, the forces are
calculated as the gradients of the electronic free-energy func-

tional ~Fi ¼ � ~riF
KS
BO, corresponding to the approximation

described in Sec. II.B.

4. Car-Parrinello molecular dynamics

The Car-Parrinello molecular dynamics (CPMD) method
(Car and Parrinello, 1985; Vuilleumier, 2006) started the field
of first-principles simulations; it represented a major break-
through in our ability to use computers to study the properties
of materials. The approach enabled the direct study of the
thermodynamic, optical, and transport properties of materials
using much more realistic interatomic forces since the forces
were calculated ‘‘on the fly’’ using DFT. CPMD is the main
alternative to BOMD, appropriate if there is a gap in the
excitation spectrum of the electrons. In the CPMD approach,
instead of treating the electron and nuclear problems inde-
pendently, the dynamics of both the ions and electronic KS
orbitals are done simultaneously, but still within the BO
approximation. The Lagrangian, used to define the dynamics,
depends on the potential energy surface, regarded as a
function, not only of the nuclear positions, but also of

the electronic degrees of freedom: EKS ¼ EKSð ~R; fc igÞ. The
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orthogonality between KS orbitals is enforced using
Lagrangian multipliers. The resulting Lagrangian is given by

L ¼ XNe

i¼1

�
Z

d~rj _c ið~rÞj2 þ
XNn

I¼1

1

2
MI

_~R
2
I � EKSðc ; ~RÞ

þX
i;j

�ij½hc ijc ji � �ij�; (41)

where� is a fictitious mass assigned to the electronic degrees
of freedom. This leads to the following set of equations of
motion for the orbitals and nuclear positions:

� €�ið~r; tÞ ¼ �ĤKS�ið~rÞ þ
X
k

�ik�kð~r; tÞ;

MI
€~RI ¼ ~FKS

I ¼ � @EKS

@ ~RI

: (42)

In addition, thermostats and barostats are added to produce
constant temperature or variable cell algorithms (Martyna,
Tobias, and Klein, 1994; Tuckerman and Parrinello, 1994a,
1994b; Hutter, Tuckerman, and Parrinello, 1995).

A simulation is begun using orbitals that minimize the
KS energy functional. During the simulation, both nuclear
positions and electronic orbitals are evolved in time
simultaneously. The fictitious mass is adjusted so that the
electronic subsystem remains sufficiently close to the Born-
Oppenheimer energy surface, while the nuclei are kept at the
physical temperature T. In a successful application of the
method, the electronic degrees of freedom oscillate around
the instantaneous BO energy surface throughout the entire
simulation. This can be achieved only if the flow of energy
between the electronic and nuclear degrees of freedom is
eliminated, or reduced to a point where long enough simula-
tions are possible before heating effects of the electronic
degrees of freedom are seen. For the orbitals to follow the
nuclei adiabatically and energy transfer not take place, the
power spectra in the frequency domain of the two subsystems
should not overlap (Marx and Hutter, 2000). This can be
achieved for a system with an electronic gap and for a careful
choice of the (fictitious) mass of the electronic orbitals. But
for metals, the flow of energy between the two subsystems is
hard to control. In practice, a separate thermostat can be
applied to the electronic degrees of freedom to maintain
them at low temperature. With the development of faster
and more robust algorithms for DFT calculations, BOMD
simulations have slowly gained popularity over CPMD, since
they are easier to control and offer smaller chances of failure
compared to CPMD. Nonetheless, CPMD is still a widely
used and applicable method for FPMD simulations.

5. Path-integral molecular dynamics

As mentioned in Sec. II.B, it is possible to introduce
nuclear quantum effects within a BO framework with path-
integral methods. The ionic quantum problem at finite tem-
perature is mapped to a classical problem where each ion is
represented by a ring polymer system; see Sec. II.B. If DFT is
used to determine the forces arising from the electrons with
either of the methods presented above, (CPMD or BOMD),
the usual approach is to simulate ionic degrees of freedom
(the ring polymers) also with molecular dynamics:

path-integral molecular dynamics (PIMD). To achieve ade-
quate sampling of the phase space of the ionic polymers,
well-designed thermostats need to be used (Tuckerman et al.,
1993; Marx and Parrinello, 1996). Recent developments by
Ceriotti et al. (2010) and Ceriotti, Manolopoulos, and
Parrinello (2011) represent a promising alternative to ther-
malize PIMD simulations efficiently using generalized
Langevin equations. Note that much more computer time is
needed to include quantum effects of the nuclei, typically by
1 to 2 orders of magnitude, depending on the temperature and
mass of the nuclei.

F. Size effects

No discussion of simulation methods is complete without
discussing the problem of size effects. Simulation methods
try to reproduce the properties of bulk materials by studying a
finite number of atoms in periodic boundary conditions. Since
the particles interact with their (artificial) periodic images,
the resulting calculations depend on the number of atoms used
in the primitive cell. In principle, themost straightforwardway
to eliminate these effects is to study larger systems until the
computed properties are independent of the number of atoms.
While this is possible in simulations with semiempirical po-
tentials, first-principles simulations are limited to systems of
up to �1000 electrons. Hence, great care must be taken to
ensure that results are close to the thermodynamic limit.

Size effects come in various forms and affect results in
different ways; they can be divided into electronic and struc-
tural origin. Electronic size effects come about because elec-
tronic wave functions can be sensitive to the size and shape of
the simulation cell and the Coulomb interaction between
particles that are far apart must be correctly taken into
account. This is particularly important in metallic systems
where electronic states are delocalized over extended regions
of the material. In electronic structure methods based on the
single-body picture such as DFT, size effects are handled by
integrating over the Brillouin zone of the unit cell, often
called k-point integration (Martin, 2004). In this case it is
possible to remove all electronic size effects from a unit cell
of arbitrary size by considering sufficiently dense grids in the
Brillouin zone; smaller unit cells require denser grids.
Calculations at the so-called � point, where Brillouin zone
integration is not performed, are thus susceptible to finite-size
errors. For all many-body methods such as QMC and PIMC
there is, in principle, no way to obtain fully converged results
using small unit cells exclusively; it is always necessary to
consider progressively larger cells until results can be safely
extrapolated to the infinite cell limit.

The understanding of size effects in many-body systems
has progressed considerably over the last decade. The first
step came with the introduction of twist averages boundary
conditions (TABC) in QMC simulations (Lin, Zong, and
Ceperley, 2001). TABC is the generalization of Brillouin
zone integration to many-body quantum systems and is
used to eliminate shell effects in the kinetic energy of metallic
systems. By twisted boundary conditions, we mean

��ð~r1; . . . ; ~rj þ ~L; . . . ; ~rNÞ ¼ ei���ð~r1; . . . ; ~rj; . . . ; ~rNÞ;
(43)
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where �� is the many-body wave function of the system and
~L is the size of the periodic cell. Observables are then
averaged over all twist vectors, similar to the procedure in
single-body theories:

hÂi ¼
Z �

��

d ~�

ð2�Þ3 h��jÂj��i: (44)

Chiesa et al. (2006) showed that most of the remaining finite-
size errors in the energy come from discretization errors
induced by the use of PBC, in particular, in the incorrect
treatment of charge-charge interactions at wavelengths
greater than the simulation cell. This work led to explicit
formulas for the finite-size corrections to the energy and the
pressure that are quite accurate in practice (Chiesa et al.,
2006; Drummond et al., 2008). The method was extended to
the Fermi-liquid parameters in the homogeneous electron gas
(Holzmann, Bernu, and Ceperley, 2011), and the renormal-
ization factor of sodium (Huotari et al., 2010).

Size effects can also affect structural properties of the ions
as the following two examples illustrate. First, for a finite
simulation cell, only density fluctuations smaller than the
length of the simulation are nonzero. This can be important
near phase transitions, in particular, near critical points in the
phase diagram, since there fluctuations have a longer wave-
length. Second, in simulations of solids, only structures com-
mensurate with the chosen simulation cell can be reached in a
simulation causing a possible bias in structural predictions.

G. Other theoretical methods

Here we briefly review other theoretical methods applied to
hydrogen and helium at high pressure, focusing on the type
of approximations employed and their expected range of
applicability. With the rapid development and widespread
use of first-principles methods over the last two decades,
the use of semiempirical methods has become less important.
Nonetheless, they can produce reliable and accurate results,
and can be combined with first-principles methods, for ex-
ample, by using FPMD results to determine intermolecular
forces (Ercolessi and Adams, 1994).

1. One-component and screened Coulomb plasma models

For temperatures and densities where the atoms are fully
ionized, the electrons can be integrated out, and the proton-
proton pair interaction treated using linear-response theory. In
the limit of very high density, the electrons behave as a rigid
background and the system can be modeled as the one-
component plasma. This model, with classical protons, has
been extensively studied since the early days of simulation
(Brush, Sahlin, and Teller, 1966) to compute thermodynam-
ics, structural and dynamical properties (Hansen, 1973;
Pollock and Hansen, 1973; Hansen, McDonald, and
Pollock, 1975; Vieillefosse and Hansen, 1975). The effect
of quantum zero-point motion on the melting line has also
been studied (Jones and Ceperley, 1996) by path-integral
Monte Carlo methods.

At lower densities, the electrons cannot be treated as a
uniform, nonresponding background. However, if the density
is high enough (rs < 0:6) for the electron-proton coupling to

be a small perturbation to the electron system, the electronic
screening can be computed by linear-response theory, and the
electron-proton system mapped onto a system of protons
interacting through an effective pair potential; the bare
Coulomb potential screened by the electrons: the screened
Coulomb plasma model (Galam and Hansen, 1976; Ashcroft
and Stroud, 1978; Hansen and McDonald, 1981). This model
was studied in the 1970s by Monte Carlo and thermodynamic
perturbation methods in the high temperature regime (low
Coulomb coupling) relevant to stellar interiors (Hubbard and
Slattery, 1971; Hubbard, 1972; Ross and Seale, 1974;
Ichimaru, 1982; Totsuji and Tokami, 1984; Dharma-wardana
and Perrot, 2002), and, recently, at much lower temperatures
to compute the melting line (Liberatore, Pierleoni, and
Ceperley, 2011) of metallic hydrogen and deuterium at ultra-
high pressure. The electronic response function, the property
of the many-body electron system that determines the effec-
tive proton’s interaction, has been the subject of many inves-
tigations: many-body techniques, perturbation theory and
diagrammatic theory, and numerical work using DFT and
QMC (Giuliani and Vignale, 2005). Note that these are
ab initio models; however, the range of validity of the de-
scription in terms of an effective interaction is limited to very
high density or pressure. At lower density, nonlinear response
theory needs to be used and the interaction between protons is
no longer pairwise additive, complicating the description as
an effective interaction (Nagao et al., 2003).

2. Semiempirical methods and chemical models

At low density, hydrogen forms molecules and an accurate
description can be obtained by semiempirical models. At
densities where the bond length of H2 is less than the distance
between molecules, it is accurate to assume that H2 is a
spherical particle interacting with other molecules through
pair potentials, in particular, for parahydrogen and orthodeu-
terium. The effective potential has been optimized to repre-
sent the EOS of solid and liquid hydrogen at low pressure by
Silvera and Goldman (1978) (SG). The SG potential repro-
duces the fluid isotherms of hydrogen from 75 to 300 K up to
2.0 GPa and the melting curve to 5.7 GPa, but cannot predict
the Hugoniot curves. To remedy this Ross, Ree, and Young
(1983) proposed a modified effective potential, the Ross, Ree,
and Young (RRY) potential, by softening the SG potential at
short range. Further improvements to match experimental
data at higher pressures and temperatures in the liquid phase
were proposed by Ross, Ree, and Young and tested by
Matsuishi et al. (2003). Unfortunately, the transferability
of effective potentials (i.e., the ability of a given potential
fit in one set of conditions to adequately represent data for
different conditions) is quite limited even when the system
remains in the same thermodynamic phase.

More difficult is to extend the semiempirical approach to
higher temperatures and/or higher densities under conditions
where hydrogen is changing from molecular, to atomic and,
ultimately, to the plasma state. Both pressure and temperature
play roles in the transformation. In order to model this
complex system, free-energy models based on the chemical
picture were developed. One assumes a fixed set of chemical
species, using pair interactions typically taken from empirical
data, calculations, or from perturbation theory. The free
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energy of the system is typically calculated assuming that

the partition function factorizes into internal (vibrational-
rotational and electronic excitations) and external (interaction

between centers of mass) degrees of freedom. The resulting

model is solved using some form of thermodynamic pertur-
bation theory, integral equations from the theory of liquids, or

classical simulations.
Several chemical models for hydrogen and hydrogen-

helium mixtures have been proposed in the astrophysical

community over the last 40 years (Ross, Ree, and Young,
1983; Ebeling and Richert, 1985; Saumon, Chabrier, and

Horn, 1995; Juranek and Redmer, 2000; Juranek, Schwarz,

and Redmer, 2003). An elaborate chemical model, known as
the SCVH model, has been developed by Saumon, Chabrier,

and van Horn (1995) by assuming a mixture of H2, H, e
�, and

pþ and suitable pair potentials. This model reproduces most
of the experimental data available, at both low temperature

and high pressure (before crystallization) and high tempera-
ture and high pressure. The hydrogen EOS provided by this

model is a standard for the planetary physics community.

Another well-known model for hydrogen was developed by
Kerley (1972, 2003). Its latest version produces results in very

good agreement with first-principles simulations after a sim-

ple correction is made (Morales et al., 2012). A similar
strategy was developed to model high-pressure helium and

to predict its EOS by Winisdoerfer and Chabrier (2005);
however, existing models for H-He mixtures are still based

on the EOS for the two pure systems and the linear mixing

hypothesis. We show in Sec. V.B the limitations of this
assumption.

H. Comparison of simulation methods

To conclude our discussion of computational methods for

dense hydrogen and helium we briefly summarize some of the

strengths and weaknesses of the two most well-developed
simulation methods: methods based on DFT and those based

on QMC. Both methods are reliable ab initio methods

and have been made feasible by the computer hardware
available today.

Although DFT is, in principle, an exact theory, in practice

only approximations to the density functional (DF) are
known. This results in a number of challenges associated

with the application of DFT to the study of dense hydrogen
and helium. At present, many DFs exist (Burke, 2012).

Moreover, it is not a priori known which is the most accurate

for a given problem without experimental data or explicitly
correlated calculations (e.g., QMC) to compare to. In other

words, for any given problem, there is no internal measure of

error within DFT with respect to the choice of the DF.
DFT in general shows serious deficiencies describing non-

equilibrium geometries, such as reaction barriers and con-

figurations with competing bonding patterns (Foulkes et al.,
2001; Martin, 2004). The simplest example, also particularly

pertinent to our focus, is the molecular-to-atomic transition in

hydrogen H2 ! 2H as two protons are pulled apart. The
quality of the DFT description of each state (H2 and 2H) is

likely not equivalent, and so the physics associated with
molecular dissociation will be poorly described. A much

related problem, discussed already in Sec. II.D.1, is the

accurate description of the band gap. Clearly one needs a
reliable method for the band gap to describe well the metal-
insulator transition in hydrogen.

QMC methods, are able to get around some of the prob-
lems that DFT methods have. For hydrogen, perhaps the
biggest advantage is that QMC is able to treat molecular
dissociation rather simply, while DFT methods have diffi-
culty. In addition, no assumption is made about the density
functional, and QMC does not need either pseudopotentials
or basis sets. Another advantage of QMC methods is their
ability to treat the zero-point motion of the protons in the
same formalism, i.e., without making the Born-Oppenheimer
approximation: at zero temperature by using projector meth-
ods for both electrons and nuclei, or using RPIMC for non-
zero temperatures.

However, QMC methods typically take more computer
resources than DFT methods and they come with different
types of errors, both statistical and systematic. QMC methods
face a difficulty arising from the mass difference of the proton
and electron: since Mp=me ’ 1836, the electrons move much

faster than the protons in the DMC dynamics, resulting in a
significant computational cost. At finite temperature, the
mass ratio requires electronic paths to be much longer than
nuclear paths causing difficulty in sampling the path space.
The major conceptual bottleneck in QMC calculations is the
‘‘fermion sign problem’’: a direct QMC calculation is very
inefficient; one has to resort to the fixed-node or fixed-phase
approximation for calculations of extended systems, requir-
ing an ansatz for when the wave function or density matrix
changes sign. In most cases, fixed-node QMC methods have
proved to be much more accurate than mean field methods. In
contrast to DFT, the variational principle provides a rigorous
way of deciding which ansatz is superior. RPIMC remains the
only method to test (Militzer and Ceperley, 2001) predictions
of chemical models (Saumon, Chabrier, and Horn, 1995) in
the low density region of the phase diagram (P � 1 GPa)
where molecules are well formed and nuclear motion occurs
in the electronic ground state. In this situation the detailed
structure of the nodes becomes irrelevant since electrons are
paired in the bonding singlet state inside each molecule while
molecules interact with the dipole-induced-dipole mecha-
nism. Conventional DFT methods will be inaccurate and
also very expensive unless localized basis sets are used.

In the past, QMC simulations have been limited in their
ability to do simulations of sufficiently large systems.
However, because QMC can be more easily adapted to a
highly parallel environment, the computational limitations
have lessened. As we show below, DFT and QMC, in fact,
are giving similar results in many cases, providing confidence
in their predictions.

III. EXPERIMENTAL METHODS

The two primary experimental methods that have been
used in the last decades to study hydrogen at high pressures
are dynamic-compression methods based on shock experi-
ments (Nellis, 2006b) and static-compression methods based
on DACs (Mao and Hemley, 1994; Goncharov and Hemley,
2006). These two techniques are complementary, being
applicable in different pressure and temperature conditions,
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as discussed in Sec. I. In this section, we outline them, in
order to facilitate the understanding of results that follow.

A. Dynamic compression

Dynamic-compression techniques apply a very strong
force to a small sample and then measure the properties of
the resulting shock wave and its aftermath with specialized
techniques. These methods can achieve higher pressures and
temperatures than static methods, for example, �500 GPa in
hydrogen and temperatures of 50 000 K. However, such
measurements typically have large uncertainties in the result-
ing pressures and temperatures, or in the measured properties,
since they must be done very rapidly. In addition, there are
limitations in the accessible values of pressure and tempera-
ture, as discussed below.

Traditional dynamic methods apply one or more shocks to
a system, producing a sharp increase in pressure over a short
time (e.g., �100 GPa over 1 ps). Because the shock process
is adiabatic, large increases in temperature also occur with the
increases in pressure. A number of techniques have been
developed to produce shocks, including gas guns (Nellis,
Mitchell et al., 1983), laser-driven compression (Da Silva
et al., 1997; Collins, Da Silva et al., 1998; Collins et al.,
1998; Hicks et al., 2009; Sano et al., 2011b), magnetically
driven flyers (Knudson et al., 2001, 2004; Knudson and
Desjarlais, 2009), and hemispherically converging explosives
(Boriskov et al., 2005).

If the applied force is strong enough, a shock wave prop-
agates into the sample. One measures the velocity of the
material at the surface of the sample and that of the resulting
shock wave. Assuming that the shock is a plane, the conser-
vation laws of mass, momentum, and energy lead to the
Rankine-Hugoniot equations. In principle, this gives the pres-
sure, energy, and density of the postshocked material in terms
of the measured velocities and the values of the initial energy,
pressure, and density. The locus of states reachable from a
given initial state using different amounts of applied force is
called the Hugoniot curve, which satisfies (Zeldovich and
Raizer, 1967)

E� E0 ¼ pþ p0

2
ðv0 � vÞ; (45)

where E, p, and v are specific internal energy, pressure, and
specific volume, respectively, and the subscript 0 refers to the
state of the sample prior to the shock. One can explore
different regions in phase space by either shocking precom-
pressed samples or measuring properties after the shock wave
reflects from a boundary. As can be seen, shock compression
cannot access all values of temperature and pressure.

Hugoniot states for deuterium up to �100 GPa are shown
in Fig. 1. Many shock measurements have been performed on
deuterium rather than hydrogen, because its initial density is
higher (the larger mass of deuterium reduces its ZPM, and
thus the molecular bond length and spacing between mole-
cules as well) and has a lower shock impedance. Thus, the
same shock applied to both hydrogen and deuterium will
achieve higher pressures in the latter. In passing, we mention
that the principle Hugoniot for hydrogen has in fact recently
been measured up to 55 GPa using laser-driven shock

compression (Sano et al., 2011b). See Sec. IV.B.1 for a

detailed discussion of the measured (and calculated)
Hugoniots of both isotopes.

Dynamic-compression methods other than single shock

exist to reach off-Hugoniot states, the simplest being a double
shock (Nellis, Mitchell et al., 1983; Fortov et al., 2003).

Such data for deuterium (Nellis, Mitchell et al., 1983) are

also shown in Fig. 1. Other methods, for example, include
explosive-driven generators (Fortov et al., 2007), shock

reverberation (Weir, Mitchell, and Nellis, 1996), and isen-

tropic compression (Nellis, 2006b). The latter are capable of
achieving lower temperatures than the single-shock method,

due to the fact that compression occurs over much longer time

scales. Furthermore, these can tune independently between
states on the Hugoniot and those obtained by isentropic

compression, allowing many pressure and temperature points

to be reached. Although, because of their complexity relative
to single shocks, it is more difficult to assess errors in the

measurements.
If the data obtainable from dynamic measurements were

highly accurate, besides being useful for planetary modeling,
they would constitute an excellent benchmark for simulation

methods. However, the shock velocities need to be measured
very precisely and accurately to get reliable EOS points. Even

then, there are many assumptions that must be made to

analyze the measurements. For a single shock, one assumes
that the material in front of the shock is not preheated, that the

material after the shock passes through is in equilibrium, that

the shock remains one dimensional and parallel to the camera
angle, and that there are no other shock waves reflected from

the boundaries of the sample. Note that the temperature is not

directly measured either, but is usually estimated by fitting
the spectrum of the emitted radiation to a gray-body formula.

Hence, a further assumption is that the radiation is predom-

inately coming from the material after it has been shocked
and not from other parts of the apparatus.

As can be seen, there are advantages and disadvantages to

dynamic-compression techniques; while they can reach rela-
tively high pressures and temperatures, the conditions are

transient (the time of the shock) and reaching general ther-

modynamic point is difficult, and there are therefore large
uncertainties in measured properties.

B. Static compression

Static-compression techniques, produced by DACs, can
also realize extreme thermodynamic conditions (Mao and

Hemley, 1994; Goncharov and Hemley, 2006). Because

they are static (or nearly so), they are more precise and
accurate than their dynamic counterparts. At the same time

though, the pressures and temperatures are more limited.

Recent advancements allow pressures to be reached near
the limit of mechanical strength of the DACs and tempera-

tures of thousands in Kelvin. The scope of these conditions is

outlined in Fig. 1.
In general, static-compression methods are based on com-

pressing a sample between diamond anvils (used for their

large mechanical strength) and heating it using external
resistive couplers or lasers. Note that metal gaskets are placed

along the sides of the system to prevent the escape of the
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sample. Optical measurements, such as Raman and/or IR

spectroscopy, or x-ray scattering is then used to monitor
and analyze the sample.

At high pressures, the chemical reactivity of a material

often increases greatly, and hydrogen is no exception. This
causes challenges for static techniques, since chemical reac-

tions can occur with both the diamond anvils of the gasket

material. Such a reaction can then contaminate the sample.
Also, hydrogen can penetrate into small cracks and escape, or

catalyze the growth of fractures in the diamonds; and because

hydrogen is so compressible, stresses in the diamond are
more of a problem than with other materials. These issues

limit achievable pressures to lower values than otherwise

obtainable. However, the recent advancement of using liners,
such as gold (Datchi, Loubeyre, and LeToullec, 2000), al-

lowed pressures near the limit of mechanical strength of the

diamond, �320 GPa (Goncharov et al., 2001; Loubeyre,
Occelli, and LeToullec, 2002), as remarked above.

Creating high temperatures has also been a challenge for

static methods, since these cause the diamonds to become less

stable. Two types of heating methods exist, external resistive
heating and that by laser, as also mentioned above. The

former provides uniform temperatures, but limits those ac-
cessible to less than �1000 K. Laser heating of a small part

of the sample is capable of producing higher temperatures,

but also can result in large thermal gradients; although, recent
advancements now allow relatively uniform heating (Lin

et al., 2004) and temperatures up to �1500 K have been

achieved (Subramanian et al., 2011).
Measuring the precise pressures and temperatures that are

achieved is challenging. Pressure sensors often rely on the

optical properties of materials, such as the fluorescent prop-

erties of small ruby crystals embedded in the sample, the
signals of which decrease and broaden with temperature.

Furthermore, both temperature and pressure sensors measure

only local conditions, and gradients may be important, as
mentioned above. Additional challenges exist, such as tem-

peratures affecting pressures, drift of the diamond anvil cells,
etc. It is important to note though that many of these issues

have been minimized to a large extent, as outlined by

Goncharov and Hemley (2006).
The major advantage of static-compression methods is that

they allow long, accurate, and repeatable measurements at

precise thermodynamic conditions. As discussed, these in-

clude optical properties, such as IR and Raman spectra
(Goncharov et al., 2001; Loubeyre, Occelli, and LeToullec,

2002), as well as structural properties using x-ray diffraction

(Akahama et al., 2010). It is measurements such as these that
have proven most vital for understanding the low-temperature

properties of hydrogen, as discussed in Sec. IV.

C. Coupling static and dynamic compressions

Recently, techniques that combine static and dynamic

compressions have been proposed that hold promise to ex-
plore the phase diagram of hydrogen and other systems over a

broader range of conditions than either type of compression

alone. Since the Hugoniot is entirely determined by the initial
state of the sample, precompression allows one to explore a

range of final states. The feasibility of such experiments has

in fact been demonstrated on hydrogen. Loubeyre et al.
(2004), for example, used DACs to precompress hydrogen,
which was then shocked using a focused laser. This method
was found to provide consistent results for thermodynamic
points between the principal Hugoniot of cryogenic hydrogen
subjected to a single shock and those generated by a rever-
berating shock wave experiment (Weir, Mitchell, and Nellis,
1996). In a similar study by Grishechkin et al. (2004b),
precompressed gaseous targets were shocked. In passing,
we note that this technique was also applied to other systems,
such as high-pressure helium (Eggert et al., 2008) and water
(Jeanloz et al., 2007).

IV. HYDROGEN UNDER EXTREME CONDITIONS

In this section, we discuss the properties of pure hydrogen
under extreme conditions. Because experimental studies
under such conditions pose many challenges, much of our
understanding comes from theoretical predictions and simu-
lations. Efforts to understand the low-temperature properties
are first discussed, namely, the solid phases. Properties of the
liquid phase follow, with a particular focus on the LLT. A
discussion of some novel theoretically predicted phases, in-
cluding superconducting and low- or zero-temperature fluid
states, concludes.

A. Solid phases

Experimental measurements revealed the existence of at
least three low-temperature solid phases, with the possibility
of two more at elevated temperatures. What is currently
known about the phase diagram from both experiments and
simulations is shown in Fig. 3; this is discussed further below.
Theoretical calculations greatly contributed to its understand-
ing, predicting the existence and qualitative properties of
several phases prior to experimental discoveries. In this
section, we first discuss the low-temperature (ground-state)
solid phases, and then those at elevated temperatures that
have been experimentally observed. Following this, we dis-
cuss theoretical and computational predictions of the exis-
tence of additional phases at pressures beyond those currently
accessible experimentally. We then consider the melting of
the molecular crystals. Finally in this section, we consider
metallization and molecular dissociation to an atomic state,
effects that may or may not occur simultaneously.

1. Solid molecular hydrogen at low temperatures

DAC experiments have made many important discoveries
concerning the phase diagram of solid molecular hydrogen at
high pressures (Mao and Hemley, 1994). Figure 3 shows a
detailed view of the experimental phase diagram of solid
hydrogen at high pressure and low temperatures. The three
low-temperature phases firmly established experimentally are
labeled as phases I, II, and III. Note that in the literature, the
latter two phases are also known as the broken symmetry
phase (BSP) and the hydrogen-A (H-A) phase, respectively.

At low pressures, anisotropic intermolecular interactions
between hydrogen molecules are weak. Because of this,
the angular momentum of an individual molecule (J) remains
a good quantum number. Further, since there is a large
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separation of the rotational energy levels, only either the J ¼
0 (parahydrogen or para-H2) or J ¼ 1 (orthohydrogen or

ortho-H2) states are thermally populated at low temperatures.

p-H2 molecules freely rotate about their centers of mass (i.e.,

each has essentially a spherically symmetric wave function,

and the molecular bond angles are completely disordered,

even at T ¼ 0 K), whereas o-H2 aligns even at very low

temperatures. At the low pressures under discussion, the

interconversion between o- and p-H2- is very slow, and the

phase diagram is thus sensitive to their concentration (this is

also because they interact differently). For example, it has

been found that p-H2 at low pressures crystallizes in the

close-packed hcp structure (Keesom, de Smedt, and Mooy,

1930; Hazen et al., 1987), referred to as phase I, whereas

molecules in o-H2 orient along the body diagonals of a fcc

structure with Pa3 symmetry (Clouter and Gush, 1965; Mills

and Schuch, 1965; Mills, Yarnell, and Schuch, 1973; Yarnell,

Mills, and Schuch, 1975). An extensive review and discussion

of the low-pressure theory and experiment for solid molecular

hydrogen can be found in Silvera (1980).
As the pressure is increased, while at temperatures lower

than �140 K, the rotational symmetry of phase I is broken,

and hydrogen transforms into phase II (hence the designation

as the BSP). Thus, the structure of phase II is determined by

the zero-point rotational energy of the molecules, and there-

fore the boundary between the two phases is sensitive to

isotope. It is sensitive to the temperature as well, but when

this is very low, it occurs near 27.8 GPa in o-D2 (Silvera and

Wijngaarden, 1981), 70 GPa in HD (Moshary, Chen, and

Silvera, 1993), and 110 GPa in p-H2 (Lorenzana, Silvera,

and Goettel, 1990).
As the pressure is increased to �150 GPa, molecular

hydrogen undergoes another phase transition (Hemley and

Mao, 1988; Lorenzana, Silvera, and Goettel, 1989) to
phase III. The thermodynamic stability range of this phase
has recently been experimentally demonstrated to extend to
pressures beyond 300 GPa and temperatures up to 300 K (Zha,
Liu, and Hemley, 2012). This transition is more robust than
that between phases I and II, with the pressure being relatively
insensitive to the isotope. This suggests that phase III is mainly
determined by the Born-Oppenheimer energy of interacting
static molecules (i.e., classical ordering).

Experimental measurements have only been able to pro-
vide limited information about the molecular orientations in
the higher pressure phases (II and III) of hydrogen. The small
sample sizes and low x-ray scattering efficiency (proportional
to the atomic number squared) pose challenges to structural
identifications (the primary method to determine such infor-
mation). Although recent measurements (Akahama et al.,
2010) up to 183 GPa indicate that the center of each
molecule remains close to the hcp lattice sites of phase I in
all phases. The basic hexagonal symmetry was also seen in
neutron scattering measurements of phase II of deuterium
(Goncharenko and Loubeyre, 2005), which is furthermore
evidence for partial orientational ordering.

The most important experimental constraints come from
spectroscopy. Three IR modes and one Raman mode are
observed for phase II (Cui, Chen, and Silvera, 1995). Then,
at the phase II ! III transition, a jump in the intermolecular
vibron (Hemley and Mao, 1988; Lorenzana, Silvera, and
Goettel, 1989) and a large increase in absorbance of the IR-
active vibron are observed. The number of low-frequency
Raman-active modes and possible second Raman vibron in-
dicate that, in phase III, the primitive cell should contain at
least four molecules (Goncharov et al., 1998). Furthermore,
the fact that the IR and Raman vibrons and phonons have
different frequencies implies a center of symmetry. Finally,
the presence of Raman-active phonons means that any center
of inversion is between molecules.

There have been many, and varied, attempts to identify the
structures of phases II and III via simulations. As we dem-
onstrate however, a consensus has not yet been reached.

At relatively low pressures, thus pertinent to both o-H2 in
phases I and II, an appropriate simplified model has found
extensive use (Freiman et al., 2003); this model consists of
quantum rotors fixed on a lattice which interact via a quad-
rupolar interaction (Nakamura, 1955; Felsteiner, 1965):

H ¼ XN
i¼1

BL2
i þ

X
i<j

Vð�i;�j;RijÞ; (46)

where B is the rotational constant (the presence of which
highlights the expected differences between isotopes), Li is
the angular momentum operator of rotor i, and V is the
interaction energy between two quadrupoles, where �i

(�j) is the orientation of rotor i (j) and Rij is the vector

between rotors. Equation (46) provides immediate physical
insight into hydrogen. For example, an array of classically
ordered electric quadrupoles has a lower energy in a fcc
lattice than in hcp, which explains the observed structure
and ordering in phase I of o-H2. While this model assumes
classical rotors, its use was early on supported with a more
rigorous treatment involving a quantum mechanical model
(Raich and James, 1966). Although the model is not perfect,
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lecular hydrogen. Open and filled circles are Raman measurements
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as, for example, the observed lattice of p-H2 is hcp, presum-

ably effects not described in the above Hamiltonian favor its

formation in this case.
There have been several adaptations of the quantum rotor

model. For example, PIMC simulations by Runge et al.

(1992) on phase II used a more accurate pairwise intermo-

lecular potential derived from LDA calculations. It was found

that o-D2 would indeed order first into the Pa3 structure, but

then transform to an ordered hcp structure, whereas p-H2

would order directly into the latter. Unfortunately, while

providing results qualitatively consistent with what one

would expect for both the isotope effect of the transition

and finite-temperature features, a group theoretical analysis

(Cui, Chen, and Silvera, 1995) showed that both structures are

quantitatively incompatible with the constraints imposed by

the observed number of IR (3) and Raman (1) modes. Later

calculations expanded these ideas even further. PIMC cal-

culations by Surh et al. (1997) considered both fcc and hcp

lattices of rotors, finding a structure with P63=m symmetry,

which is hexagonal with some molecules in plane and some

perpendicular to it. Unfortunately, the group theoretical

analysis by Cui, Chen, and Silvera (1995) also rules out

this structure, due to an insufficient number of IR vibrons.

One such calculation that has not yet been ruled out are the

PIMC calculations by Cui et al. (1997), where Pa3-type
ordering (i.e., molecules along the body diagonals) on a hcp

lattice was suggested. This prediction has recently been

suggested to be qualitatively consistent with neutron dif-

fraction of deuterium (Goncharenko and Loubeyre, 2005).

Confusing these predictions, however, are the facts that

those experiments suggest that the structure of phase II

may be isotope dependent and those from more recent

simulations suggest that phase II cannot be described in

terms of a single classical structure (Geneste et al., 2012).

As can be seen, quantitative predictions (for phase II) are

still lacking.
Other approaches to predict molecular orientations are

based on fully ab initio calculations, including DFT or

QMC. Typically, these have been based on evaluating BO

energies for static lattices, which as discussed below, neglect

important contributions to the energetics from proton ZPM

and thermal effects. A number of candidate structures have

been proposed for phase II (and III) based on such calcula-

tions, some of the most well-studied structures including

Cmc21 (Kitamura et al., 2000), P21=c (Johnson and

Ashcroft, 2000; Zhang et al., 2007), and Pca21 (Kohanoff

et al., 1997; Nagao, Takezawa, and Nagara, 1999; Städele and

Martin, 2000). These lattices and molecular orderings are

shown in Fig. 4. As can be seen, besides differing molecular

orientation, they are all similar, consisting of orthorhombic

primitive cells with lattice sites close to hcp.
Among the structures shown in Fig. 4, Pca21 has been one

of the most thoroughly studied and considered a strong

candidate for phase II. This structure was first suggested

as the ground state of a classical quadrupolar system

(Kitaigorodskii and Mirskaya, 1965), and then later

proposed as the ground state of hydrogen based on DFT

calculations (Nagara and Nakamura, 1992). Further DFT

calculations employing an exact-exchange functional

(Städele and Martin, 2000) also supported the stability of

Pca21. However, the correctness of Pca21 is called into
question by the Raman experiments; a single mode is ob-
served, while Pca21 should exhibit four. An explanation
though might be found in either a relatively small signal-to-
noise ratio or cancellations between various vibrational
modes in the experiments (Cui, Chen, and Silvera, 1995;
Kohanoff et al., 1997).

Recently, more sophisticated methods to determine crystal
structures have been proposed (Woodley and Catlow, 2008),
and some of these have been applied to hydrogen. These
methods attempt to find the most stable crystal structure
without necessarily imposing any constraints on the unit
cell. In the ab initio random structure searching (AIRSS)
method (Pickard and Needs, 2006), for example, one relaxes
a number of randomly produced structures by minimizing the
BO energy. After a large number of trials, one assumes that
the correct structure has been found. Such calculations have
been applied to hydrogen by Pickard and Needs (2007),
which in fact again revealed the Pca21 and P63=m structures,
or possibly a similar structure with 24 atoms, P21=c-24
(Pickard and Needs, 2009). As indicated, many of the
searches to date have been based on determining molecular
orderings with classical protons, and adding an approximate
ZPE as a second step. Dynamical lattice calculations using
DFT linear-response theory (Zhang et al., 2006), for ex-
ample, suggested that Pca21 remains stable if ZPE is taken
into account in the pressure range 110 � P � 150 GPa.
Furthermore, even though this approach lacks rotational mo-
tion (relevant to phase II, for example), an examination of the
rotational energies of a set of candidate structures further
suggests that Pca21 is the least energetic (Moraldi, 2009).

FIG. 4. Possible molecular orientations (indicated via arrows) for

dense hydrogen (phases II and III), assuming four molecules per unit

cell. The solid (empty) arrows represent molecules at c (c=2) lattice
positions. Molecules are tilted with respect to the c axis at an angle �
of �55�, and � indicates the distance of each molecular center (of

mass) from an ideal hcp lattice. From Städele and Martin, 2000.
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Early on, Barbee, III et al. (1989) used DFT to focus

exclusively on structures for phase III, finding a structure

with molecular bonds aligned along the c axis of a hcp lattice.
However, later DFT calculations found more stable structures
with molecules oriented in the ða; bÞ plane (Kaxiras,

Broughton, and Hemley, 1991; Kaxiras and Broughton,

1992). QMC calculations by Natoli, Martin, and Ceperley

(1995) agreed with this assessment, finding the orientation

angle to be roughly 60� (as are the structures shown in

Fig. 4). Note that this is consistent with the experimental

data, as molecular orientation along the c axis will not exhibit
IR activity. By considering larger unit cells, Nagara and

Nakamura (1992) found the hexagonal Pca21 structure.

However, this structure is inconsistent with phase III (Cui,

Chen, and Silvera, 1995), and is a more likely candidate for

phase II, as discussed above. Most promising is the AIRSS

study by Pickard and Needs (2007), which revealed a structure

with 12 molecules per unit cell with molecular centers close to
distorted hcp lattice sites and overallC2=c symmetry, as shown

in Fig. 5. This prediction agrees qualitativelywell with both the

limited diffraction data (Akahama et al., 2010) and the spec-

troscopic data for phase III, such as the intense IR activity.
As can be seen, the use of computational methods to

predict the structures of phases II and III of hydrogen has

resulted in unexpected complexity. While qualitative insight
has been provided, suggesting Pca21 and C2=c as plausible

candidates for phases II and III, respectively, many open

questions remain; and although methods to find systemati-

cally the lowest energy structure have made impressive

advances recently (Woodley and Catlow, 2008) (albeit at a

greatly increased computational cost), challenges remain.

One of the most significant problems is how to accurately

estimate the effect of proton ZPM. For example, by estimat-
ing the ZPE using frozen-phonon calculations, Surh, Barbee,
III, and Mailhiot (1993) suggested that c-oriented molecules
in an hcp lattice were actually more stable than Pca21,
directly in contrast with the static-lattice predictions. Of
course, more accurate estimates of ZPM could be made via
a PIMD, PIMC, or QMC (Ceperley and Alder, 1987) simu-
lations, at a much increased computational cost. We return to
the issue of ZPM in Sec. IV.A.6. It is important to keep in
mind that since the ZPE of the protons can be larger than the
difference in energy between various candidate structures,
structure searching, even including an approximate ZPE
should be approached with caution. Also, the structure-
searching results discussed above have relied primarily on
DFT, the accuracy of which depends on the assumed DF.
Many calculations have employed LDA or GGA DFs, which
do not adequately describe vdW interactions at low pressures
and severely underestimate the band gap at higher ones
(Städele and Martin, 2000). As discussed in Sec. II.H though,
recent advancements have been made to improve DFs so that
one may hope for much more reliable predictions in the near
future. In any case, it is clear that more work needs to be done
both theoretically and experimentally to understand solid
molecular hydrogen at low temperature.

2. Solid molecular hydrogen at finite temperature

Goncharov et al. (1995) noticed a change in the slope of
the I–III phase line of deuterium, along with a subtle dis-
continuity of the intramolecular vibron as a function of
pressure. In addition, the observed discontinuity in the vibron
frequency across the I–III transition line became vanishingly
small above 254 K. These observations suggest that there may
be another phase, denoted by I’, located at higher temperature
than phase I ðT 
 170 KÞ. Those results suggest that this
phase is isostructural with phase III with a critical (or tricrit-
ical) point where the vibron discontinuity vanishes [see, e.g.,
Fig. 5 of Goncharov et al. (1995)].

Further support in favor of phase I’ was provided by PIMC
calculations based on the quantum rotor model (see
Sec. IV.A.1) by Surh et al. (1997). However, the accuracy
of the used effective intermolecular potentials is unknown.

Recent experimental support for phase I’ was provided by
Baer, Evans, and Yoo (2007, 2009) using coherent anti-Stokes
Raman spectroscopy on deuterium samples. Comparing the
pressure dependence of the Raman shift of the deuterium
vibron along two isotherms, at 77 and at 300 K, they observed
a change of slope around 140 GPa which they ascribed to the
signature of the phase transition from phase I to I’ along the
300 K isotherm, in agreement with Surh et al. (1997), and in
qualitative agreement with the early experimental results.
However, to reconcile the two different experiments, the
I–I’ phase line would need to have a negative slope (see
Fig. 3), thus exhibiting a strong temperature dependence not
observed in the early experiments (Goncharov et al., 1995).

Most recently, Goncharov, Hemley, and Mao (2011) per-
formed a more refined study and concluded that the new data
and analysis do not support the existence of phase I’. As can
be seen, uncertainties still remain surrounding the existence
and the details of phase I’, and further systematic investiga-
tions are necessary.

FIG. 5 (color online). The most likely candidate for phase III of

hydrogen, the C2=c structure, as predicted by Pickard and Needs

(2007). This structure essentially consists of rings of three mole-

cules, which are responsible for its strong optical activity.
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Recently Raman and visible transmission spectroscopy
measurements at room temperature (T � 300 K) (Eremets
and Troyan, 2011; Howie et al., 2012) suggest yet a further
phase transition, an entropically driven (and reversible) one to
phase IV.6 After compressing to phase III, Howie et al. (2012)
observed three spectroscopic signals near 220 GPa, indicative
of this transition: (i) the appearance of the second fundamental
vibrational mode, (ii) a dramatic softening and broadening of
the first fundamental vibrationalmode, and (iii) the appearance
of new low-frequency phonon excitations.

The Raman spectra suggest that two distinct local environ-
ments exist in phase IV. By comparing these data to the
previously predicted ground-state structures of solid hydrogen
(Pickard and Needs, 2007), Howie et al. (2012) suggested that
phase IV could be a mixture of graphenelike layers and un-
bound hydrogen molecules, such as is shown in Fig. 6. Note
that the graphenelike layers are shown with equal distances
between protons [corresponding to the Ibam structure of
Pickard and Needs (2007)]. However, experiments suggest
that equal bond distances occur only at higher pressures; at
lower pressures, hydrogen dimers undergo pairing fluctua-
tions (Howie et al., 2012), possibly resulting in a lower-
symmetry structure, such as Pbcn (Pickard and Needs, 2007).

Immediately following the experimental evidence for
phase IV (Eremets and Troyan, 2011; Howie et al., 2012),
AIRSS was reapplied to the problem of high-pressure mo-
lecular hydrogen (Pickard, Martinez-Canales, and Needs,
2012a, 2012b), this time using larger unit cells. A number
of consistent mixed phases were found with space groups Pc.
These results are consistent with even more recent metady-
namics calculations (Liu et al., 2012) based on DFT which

suggest the finite-temperature structure is partially disordered,
with hydrogenmolecules ordering in one layer and disordering
in the next. Particularly interesting about these calculations is
that by estimating the ZPE and its entropic contribution to the
free energy within the quasiharmonic approximation, they
have lower free energies relative to the presumed structure
for phase III,C2=c (Pickard and Needs, 2007), consistent with
experiment (Howie et al., 2012). Although, one must keep in
mind that the errors involved in this approximation and the
used DF could possibly be larger than the differences in
energies of the various proposed structures.

Around the same time of these measurements and calcu-
lations, however, Zha, Liu, and Hemley (2012) performed IR
and optical absorption measurements using DACs at similar
thermodynamic points that were studied by both Eremets
and Troyan (2011) and Howie et al. (2012). Their measure-
ment did not reveal strong evidence for, or even suggest, a
transition to a new phase. However, the temperatures were
slightly lower, and from their results such a transition could
not be completely ruled out.

3. Additional solid molecular phases

DAC measurements indicate that the thermodynamic
stability range of phase III is quite large; the strong IR
absorption of the vibron (Goncharov et al., 1998) was early
on demonstrated to persist up to at least 320 GPa, at relatively
low temperatures (Goncharov et al., 2001; Loubeyre,
Occelli, and LeToullec, 2002). Measurements (Zha, Liu,
and Hemley, 2012) recently extended this range even further,
to 360 GPa (at low temperatures) and up to 300 K (at low
pressures). Calculations support this large stability range and
also suggest that additional solid phases may exist at elevated
pressures.

The recent AIRSS studies by Pickard and Needs (2007)
and Pickard, Martinez-Canales, and Needs (2012a) (see
Sec. IV.A.1), for example, predicted not only a plethora of
structures for phases II and III, but also suggested two further
phase transitions at higher pressures. Above 285 GPa, they
suggested that phase III will transform to a structure with
Cmca symmetry and 12 atoms in the unit cell, which is thus
referred to as Cmca-12, as shown in Fig. 7. Cmca-12 is rather
similar to the (presumed) structure of phase III (C2=c, Fig. 5);
for example, consisting of three-molecule rings, except the
layering in Cmca-12 has the form 	 	 	ABA 	 	 	 , the mole-
cules lie flat within each layer, and the distortion of the
molecular centers from hcp packing is larger.

Considering ZPM in the quasiharmonic approximation,
these studies also suggested that the transition from
phase III should be primarily pressure driven (i.e., tempera-
ture independent), occurring near 240–285 GPa, which is
indicated in the phase diagram in Fig. 3. One might wonder
why the transition to Cmca-12 has not been directly observed
in the DAC experiments (Goncharov et al., 2001; Loubeyre,
Occelli, and LeToullec, 2002; Zha, Liu, and Hemley, 2012).
Of course, it is plausible that there are inaccuracies in the
calculations that affect these predictions, such as the DF
employed in theDFT calculations or the perturbative treatment
of proton ZPM, errors which are expected to become increas-
ingly important with increasing pressure, and which we have
iterated numerous times already. Further calculations and

FIG. 6 (color online). The candidate structure of phase IV of

hydrogen, suggested by Howie et al. (2012) and Pickard,

Martinez-Canales, and Needs (2012a). The structure consists of

alternating atomic graphenelike and molecular layers.

6A transition to a high-pressure and high-temperature phase was

already reported by Mao and Hemley (1989), but not characterized.
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experiments are necessary to assess the accuracy of these
predictions.

The other phase transition predicted by the AIRSS study of
Pickard and Needs (2007) occurs near 385 GPa, from
Cmca-12 to Cmca, the structure originally proposed by
Edwards, Ashcroft, and Lenosky (1996); see Sec. IV.A.1
and recall that its structure is shown in Fig. 4. The recent
metadynamics calculation by Liu et al. (2012) supports the
transition to Cmca, and further suggests that at finite tem-
perature, phase III may transform directly to it without pass-
ing through Cmca-12.

Labet et al. (2012) and Labet, Hoffmann, and Ashcroft
(2012a, 2012b, 2012c) recently considered this process of
molecular dissociation more in-depth, by focusing on the
relationship between and variations of intramolecular and
intermolecular bond lengths with pressure, or more precisely,
the shortest (rH-H) and second-shortest (RH2-H2

) proton dis-

tances, respectively. To quantify their results, they introduced
an equalization function 	ðPÞ at pressure P introduced as

	ðPÞ ¼ 1� RH2-H2
ðPÞ � rH-HðPÞ

RH2-H2
ðP1 atmÞ � rH-HðP1 atmÞ : (47)

	 is an order parameter, evolving from 	 ¼ 0 (free-space
molecules) to 1 (an atomic state, where all proton distances
are equal), during dissociation. Focusing on the structures
predicted in the AIRSS study by Pickard and Needs (2007),
Labet et al. (2012), and Labet, Hoffmann, and Ashcroft
(2012a, 2012b, 2012c) found a discontinuous shift at the
transition from Cmca to the atomic phase, leading them
to propose an intermediate phase that would allow for
continuous dissociation. While the proposed static lattices
have higher energies than Cmca (Edwards, Ashcroft, and
Lenosky, 1996; Pickard and Needs, 2007) and C2=cð2Þ
(Liu, Wang, and Ma, 2012) (see below), such continuous
structures could be stabilized by proton ZPM, which was
not included in their calculations.

Recently, an alternative to AIRSS, the particle-swarm
optimization (PSO) method for structure prediction (Wang
et al., 2010), was applied to dense hydrogen (Liu, Wang, and

Ma, 2012). These calculations revealed a stable hydrogen

phase beyond Cmca (� 470–590 GPa). What is particularly

interesting about this structure is that it possesses two differ-

ent nearest-neighbor proton separations (which we refer to at

these high pressures as intramolecular bonds), in a space

group C2=cð2Þ [note that we added the designation (2) to

distinguish it from the C2=c structure predicted for phase III].
This structure is also shown in Fig. 7. Furthermore, both bond

distances are larger than the intramolecular separations in the

Cmca structure, showing indication of molecular dissocia-

tion, and suggesting one structure (perhaps of others) that

allows for the continuous dissociation mechanism suggested

by Labet et al. (2012) and Labet, Hoffmann, and Ashcroft

(2012a, 2012b, 2012c).

4. Melting of the molecular crystal

Significant progress was made both experimentally and

computationally in determining the melting line of hydrogen,

as reviewed by Silvera and Deemyad (2009). At ambient

pressure, both hydrogen and deuterium crystallize in a hcp

lattice at temperatures of 14 and 19 K, respectively (Silvera,

1980). Before the development of DAC techniques, measure-

ments of the melting line (of hydrogen) were limited to

pressures below �2 GPa (Liebenberg, Mills, and Bronson,

1978). Such techniques though extended the melting line

to pressures above 7 GPa (Diatschenko and Chu, 1981;

Diatschenko et al., 1985), and the results fit well to a

modified Simon equation. With improvements in static-

compression techniques (see Sec. III.B), Datchi, Loubeyre,

and LeToullec (2000) and Gregoryanz et al. (2003) were

able, by monitoring the shift in the Raman-active vibron, to

measure the melting line up to 15 and 44 GPa, respectively,

results which are shown in Fig. 8. The latter measurements

interestingly also found a decrease in the slope of the melting

line with respect to pressure, suggesting a maximum in the

curve. This was, in fact, indicated in earlier work by Datchi,

Loubeyre, and LeToullec (2000), on the basis of an extrapo-

lation of the Kechin melting curve, which has a maximum

near 128 GPa and 1100 K.
Using constant-pressure CPMD simulations (neglecting

ZPM), Scandolo (2003) predicted that the melting line at

high pressures will have a negative slope, as a consequence

of the LLT (see Sec. IV.B.2). Following that prediction,

two-phase (solid and liquid) CPMD simulations were per-

formed to trace the melting line to even higher pressures

(Bonev et al., 2004). A maximum in the melting line below

1000 K was found, as well as a negative slope that extrapo-

lates to 0 K near 400 GPa. Of course, such extrapolations do

not take into account possible phase changes in either the

liquid or solid at higher pressures. These calculations were

recently corroborated by Morales et al. (2010b) up to a

pressure of 200 GPa, where the melting line of hydrogen

was calculated by comparing the (DFT) Gibbs free energy of

the liquid and solid molecular phases (using phase I, rota-

tionally disordered). Recent measurements using laser heat-

ing of hydrogen in a DAC (Deemyad and Silvera, 2008)

observed a maximum and subsequent decrease of the melting

temperature with increasing pressure. These measurements

are consistent with those reported by Eremets and Trojan

FIG. 7 (color online). A single layer of the Cmca-12 structure

(Pickard and Needs, 2007) at 300 GPa (left) and the C2=cð2Þ
structure (Liu, Wang, and Ma, 2012) at 500 GPa (right). Note

that due to the higher compression, C2=cð2Þ has been enlarged

relative to Cmca-12. Note also that the other predicted high-

pressure molecular phase Cmca, occurring at pressures intermediate

between Cmca-12 and C2=cð2Þ, is shown in Fig. 4.
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(2009) and Subramanian et al. (2011). The various measure-

ments and theoretical predictions are shown in Fig. 8.
Comparison of the experimental data to the DFT predic-

tions of melting for pressures between 10 and 140 GPa is a

gratifying confirmation of their accuracy. However, we note

that at pressures when metallization is occurring (estimated to

be at about 250 GPa and 500–600 K), one expects LDA or

GGA DFs in DFT to bias the results, causing the predictions

to be much less accurate. Also, we note that the effect of the

ZPM of the protons on the melting line tends to cancel out

only if the crystal and liquid phase are both molecular or

atomic. Otherwise, ZPM of the protons needs to be taken into

account in determining the melting temperature. We also

point out that extrapolations based on the low-pressure crystal

structures are highly susceptible to error. Despite these ex-

pected inaccuracies, the Kechin equation (Kechin, 2004a,

2004b) TmðKÞ ¼ 14:025ð1þ Pm=aÞb expð�P=cÞ was used

to extrapolate the low-pressure data to higher pressures, and

in Fig. 8 two such extrapolations are reported. The first one,

represented by the dashed line at lower temperature, consid-

ers experimental points from Datchi, Loubeyre, and

LeToullec (2000) and Gregoryanz et al. (2003) as well as

FPMD points from Bonev et al. (2004), suggesting a ¼
0:030 355, b ¼ 0:599 91, and c ¼ 137, while the second

one, represented by the dashed line at higher temperature,

considers only simulation results from free-energy calcula-

tions (Morales et al., 2010b), which suggests a ¼ 0:1129,

b ¼ 0:7155, and c ¼ 149. What is particularly interesting
about these extrapolations is that they suggest that at higher
pressures, the molecular crystal phase might vanish in favor
of a low- or zero-temperature fluid phase with unusual prop-
erties (see Sec. IV.C.2).

5. Metallization of solid molecular hydrogen

Wigner and Huntington (1935) predicted that hydrogen
would undergo an IM transition at sufficiently high pressure.
For the general Hamiltonian in Eq. (1), one can easily show
that the potential energy scales as r�1

s while the kinetic
energy does so as r�2

s . Hence, as the density (and pressure)
increases (rs ! 0), the latter will dominate. Since the free-
particle wave function minimizes the kinetic energy, this
implies that any electronic system will go to an uncorrelated
wave function (a simple metal). We note that at finite tem-
perature, there is always some thermal excitation of carriers,
and thus some conductivity. A precise definition of the IM
transition is therefore only possible at 0 K. In a later section,
we discuss the shock experiments of Weir, Mitchell,
and Nellis (1996) and Nellis, Weir, and Mitchell (1999),
where the IM transition was observed at high temperature
(� 2600 K) and relatively low pressure (� 140 GPa) in the
liquid phase; see also Maksimov and Shilov (1999) and
Robitaille (2011). To determine precisely how and when
hydrogen at low temperature becomes a metal has been a
long-outstanding question of high-pressure physics.

The early assumption was that the IM transition would
occur simultaneously with molecular dissociation (Wigner
and Huntington, 1935; Abrikosov, 1954). However, Hartree-
Fock calculations using the exact-exchange operator (Ramaker,
Kumar, and Harris, 1975) and later band-structure calculations
(Friedli and Ashcroft, 1977) suggested that metallization may
instead occur directly in the molecular phase. This is because a
change in density causes the molecular bands to shift, which
can lead to a direct and/or indirect band-gap closure (Mazin and
Cohen, 1995). This can occur when the widths of the 1�g and

1�u bands (of the molecular orbitals) become larger than their
splitting, causing them to overlap. Such early predictions sug-
gested that metallization should occur near 150 GPa, and so it
was originally thought that the phase II ! III transition could
be the onset of it (Hanfland, Hemley, and Mao, 1993). But this
is not the case, and finding it (both theoretically and computa-
tionally) remains an open problem.

Metallization of solid molecular hydrogen was reported in
some experiments, such as those by Maksimov and Shilov
(1999) and more recently by Eremets and Troyan (2011), the
latter from DAC experiments near 300 K and 265 GPa.
However, it is difficult for DAC experiments to achieve
the pressures and/or temperatures required for metallization,
and opinions concerning these latter results have been mixed
(Jephcoat, 2011; Nellis, Ruoff, and Silvera, 2012). Moreover,
near-simultaneous DAC experiments around the same ther-
modynamic conditions by Zha, Liu, and Hemley (2012)
reported a semimetallic state, rather than a metal. At lower
temperatures, however, the experimental results agree that
insulating molecular hydrogen exists up to some of the high-
est pressure currently achievable, �320 GPa (Goncharov
et al., 2001; Loubeyre, Occelli, and LeToullec, 2002).
Extrapolations of optical measurements of the band gap
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FIG. 8 (color online). Reentrant melting line of phase I of hydro-

gen. Experimental data: crosses (Datchi, Loubeyre, and LeToullec,

2000), left triangles (Gregoryanz et al., 2003), crosses (Deemyad

and Silvera, 2008), up triangles (Eremets and Trojan, 2009), and

dashed circles (Subramanian et al., 2011). Theoretical predictions:

BOMD (triangles) (Bonev et al., 2004) and free-energy calculations

(solid line) (Morales et al., 2010b). The dashed line at lower

temperature is a fit of the Datchi, Gregoryanz and Bonev data to a

Kechin equation, while the dashed line at higher temperature is a fit

to the Morales data using the same functional form. A stable fluid

point predicted by MD using QMC forces (square) (Attaccalite and

Sorella, 2008) is also shown. Below the melting lines are the

experimental solid phases (identical to Fig. 3) as well as the recently

reported IM transition (Eremets and Troyan, 2011).

1630 McMahon et al.: The properties of hydrogen and helium under . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



provide an estimate that closure should occur between 325
and 450 GPa (Goncharov et al., 2001; Loubeyre, Occelli, and

LeToullec, 2002). This of course assumes that there are no
further crystal structure changes above 320 GPa and also that

the band gap closes smoothly as a function of pressure.
Predicting the IM transition also remains challenging theo-

retically and computationally. The first problem arises from

the ignorance of the high-pressure crystal structure, as dis-
cussed in Sec. IV.A.1. Since each structure has a much differ-

ent arrangement of bands, without this knowledge, one cannot
easily say much about metallization (Barbee, III et al., 1989).

Transition-pressure predictions have thus varied greatly, rang-
ing, for example, from 200 to 450 GPa. Since the most recent

predictions essentially agree on the Cmca phase (see Fig. 4) as
the most likely candidate at very high pressures (Johnson and
Ashcroft, 2000; Pickard and Needs, 2007; McMahon and

Ceperley, 2011a), its electronic structure has been the most
thoroughly examined (suggesting �400 GPa, see below).

There are also difficulties in calculating the effects of the

electron correlation and ZPM of the protons. Further, most
calculations used either the LDA or GGA DFT DF, which are

known to underestimate band gaps (Perdew and Levy, 1983;
Sham and Schlüter, 1983) implying that the IM transition

density will be underestimated (Oliva and Ashcroft, 1981a,
1981b). As discussed in Sec. II.E.1, this error is related to

both the lack of the derivative discontinuity of the exchange-
correlation energy and the self-interaction error. Fortunately,
these errors can be reduced by using much more computa-

tionally expensive quasiparticle methods (Chacham and
Louie, 1991), methods that include exact exchange (Städele

and Martin, 2000), or calculations based on the many-body
GW method (Johnson and Ashcroft, 2000). Such calculations

showed that the band gaps in hydrogen are indeed under-
estimated by �1–2 eV, as seen in Fig. 9. Note that even the

exact-exchange calculations slightly underestimate the band
gap (Jones and Gunnarsson, 1989). With these more precise

estimates, the IM transition is predicted to occur near pres-
sures of at least 400 GPa (� 0:4 mol=cm3), in agreement

with experimental extrapolations (Goncharov et al., 2001;
Loubeyre, Occelli, and LeToullec, 2002).

Another issue which has received much less attention is the
effect of ZPM of the protons. If one assumes that the mo-
lecular phase has the protons confined near lattice sites, then
the ZPM can be treated essentially as electron-phonon cou-
pling. It is known that this can affect both the magnitude of
the band gap and its dependence on pressure and temperature
(Allen and Cardona, 1981a, 1981b). However, treating this
self-consistently within the framework of DFT is currently
not straightforward. One can, however, envision the possibil-
ity of such calculations using QMC and the full Hamiltonian
calculations (Ceperley and Alder, 1987; Natoli, Martin, and
Ceperley, 1995), which also would not suffer the band-gap
problems discussed above.

6. Solid atomic hydrogen at low temperatures

In a landmark publication, Wigner and Huntington (1935)
suggested that molecular hydrogen would dissociate to an
atomic state at high pressures, and further, that any Bravais
lattice of such a state would be metallic. These early
predictions were that this phase would become energetically
favorable at �25 GPa. Of course, this was long before the
availability of numerical methods or sophisticated high-
pressure experimental techniques. Ever since this prediction,
the pressure required to dissociate molecular hydrogen has
been pushed ever upward, and the transition to the atomic
lattice is yet to be observed. Recent predictions (Pickard and
Needs, 2007; McMahon and Ceperley, 2011a; Liu, Wang, and
Ma, 2012) suggest that at least �500 GPa will be necessary.

The most fundamental property, that one must know to
base further predictions on, is the crystal structure. Naively,
one might expect hydrogen to assume a relatively simple
structure, because at high pressures, as discussed in
Sec. IV.A.5, the system will become a free-electron metal
(Ashcroft and Mermin, 1976). At sufficiently high pressures,
the lattice of protons will interact with the bare, unscreened
Coulomb potential; and, as is well known, the structure
minimizing the Coulomb potential is the body-centered cubic
(bcc) lattice, which was thus the primary structure considered
by Wigner and Huntington (1935).

However, it has turned out that the alkali metals, such as
lithium and sodium, that are free electronlike already at
ambient conditions, and should become even more so under
pressure, exhibit rather exotic and complex pressure-induced
structural transitions (Rousseau et al., 2011). The simple
scaling argument in fact fails, because even a small amount of
electronic screening of the proton-proton interaction is
enough to destabilize the bcc lattice. It is thus reasonable to
expect that atomic hydrogen will undergo an analogous and
complex sequence of phase transitions as a function of both
pressure and temperature.

Many studies considered anisotropic structures, such as
layered ones (Brovman, Kagan, and Kholas, 1972a; Kagan,
Pushkarev, and Kholas, 1977), reminiscent of the graphite-
type structure also considered by Wigner and Huntington
(1935), or filamentary ones (Ebina and Miyagi, 1989;
Nagara, 1989). Anisotropic structures were also considered
by Barbee, III et al. (1989) and Barbee, III and Cohen (1991),
the latter study drawing a structural analogy with the
9R ground-state structure of ambient-pressure lithium
(Overhauser, 1984). Many other studies, however, focused

FIG. 9. Electronic band gaps for molecular hydrogen in a hcp

lattice with molecules oriented along the c axis. No ZPM was

included in these calculations. From Städele and Martin, 2000.
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primarily on isotropic structures (Straus and Ashcroft, 1977;

Ceperley and Alder, 1987; Natoli, Martin, and Ceperley,

1993; Nagao, Nagara, and Matsubara, 1997).
As discussed in Sec. II.E.2 and emphasized in previous

sections, a central challenge to modeling hydrogen is the

accurate treatment of proton ZPM. While the simple har-

monic approximation, Eq. (40), continues to be used to study

atomic hydrogen (Pickard and Needs, 2007; McMahon and

Ceperley, 2011a; Liu, Wang, and Ma, 2012), Straus and

Ashcroft (1977) demonstrated, using a family of face-

centered tetragonal structures, similar, in fact, to those con-

sidered again in a later study by Nagao, Nagara, and

Matsubara (1997), that this can easily fail. Only by including

anharmonicity, for example, were some structures found to be

energetically stabilized, such as the isotropic fcc structure.

Later T ¼ 0 K QMC calculations by Natoli, Martin, and

Ceperley (1993) confirmed the basic idea behind these find-

ings, demonstrating that a full account of ZPM indeed favors

isotropic structures.
Following more recent advancements in structure predic-

tion methods (Woodley and Catlow, 2008), as discussed,

McMahon and Ceperley (2011a) considered atomic hydro-

gen, predicting a large number of previously unidentified

structures. Their work suggested that after molecular disso-

ciation, hydrogen should adopt a structure similar to the

fourth phase of cesium, a body-centered tetragonal structure

with space group I41=amd and a c=a ratio greater than unity,

consistent with earlier predictions (Nagao, Nagara, and

Matsubara, 1997; Pickard and Needs, 2007) and structure-

searching calculations that followed based on the PSO

method (Geng et al., 2012). This structure was found to be

stable at least up to �1 TPa, when including a harmonic

estimation of ZPE.
Recently, Liu, Wang, and Ma (2012) also applied the PSO

method to the atomic phase of hydrogen, predicting two

structures not found in the earlier searches at very high

pressures (i.e., beyond the stability range of I41=amd).
Above 2.1 TPa, atomic hydrogen was found to likely adopt

a structure consisting of planar H3 clusters and space group

Cmcm, as shown in Fig. 10. This structure is in fact analogous

to the enthalpically favored static-lattice structure R3m pre-

dicted by McMahon and Ceperley (2011a) at such pressures,

but allows for a more efficient packing. Liu, Wang, and Ma

(2012) also suggested that above 3.5 TPa, a structure similar

to a distorted bcc lattice with space group I-43d, also shown
in Fig. 10, would become stabilized by proton ZPM (albeit,
within the harmonic approximation).

At very, very high pressures (and relatively low tempera-
tures), it is expected that atomic hydrogen will adopt a close-
packed lattice, such as fcc or hcp (Kohanoff and Hansen,
1996). In this regime, one can ‘‘integrate out’’ the electrons
and use a screened pair potential between the protons, as
discussed in Sec. II.G.1. The validity of this screened
Coulomb plasma (SCP) model in this regime (rs � 0:6, P 

20 TPa) was established by comparing against both CPMD
predictions (Kohanoff and Hansen, 1996) and more accurate
CEIMC calculations (Pierleoni et al., 2008; Liberatore,
Pierleoni, and Ceperley, 2011).

We note that free-energy calculations (Liberatore,
Pierleoni, and Ceperley, 2011) of the SCP at �24 TPa give
an estimated melting temperature of 1670 K. This is quite
interesting, because if the melting temperature is low enough,
an interesting quantum fluid could be stable. We return to this
in Sec. IV.C.2.

B. The normal fluid phase

While an understanding of the low-temperature region of
the phase diagram of hydrogen is certainly important for
fundamental reasons, the major fraction of hydrogen in the
Universe is in the fluid phase at higher temperatures. What is
necessary under these conditions is an accurate EOS that can
be used for both planetary models and to validate computa-
tional assumptions and experimental procedures. Theoretical
and computational methods progressed to the point where
sufficient accuracy can now be obtained to resolve such
issues. In this section, we first discuss first-principles calcu-
lations applied to the fluid phase of hydrogen, with particular
focus on predicting the principal Hugoniots of hydrogen and
deuterium, and then focus on the LLT.

1. The equation of state and principal Hugoniot of hydrogen

The EOS of hydrogen in the fluid phase is particularly
relevant for planetary and ICF physics (see Fig. 1). As dis-
cussed in Sec. III, experimental information for the liquid
phase of hydrogen comes mainly from dynamic-compression
experiments, with the exception of the low-temperature liquid
near the melting line which can be studied using static-
compression techniques. Particularly useful properties such
as the electrical conductivity or reflectance can be measured
during the experiment and are difficult to compute with
simulations. However, dynamic-compression methods have
large uncertainties in determining the pressure, and, particu-
larly, the temperature of the sample after the shock, and,
therefore, obtaining precise thermodynamic data. Also, since
the experiments are difficult and rather expensive, the reached
set of temperature-density points is rather sparse. Because of
this, first-principles simulation methods are useful to comple-
ment the experimental data.

Early shock wave experiments on hydrogen and deuterium
samples were done with a gas-gun compression method (van
Thiel and Alder, 1966; van Thiel et al., 1973) up to pressure
of 20 GPa in the first shock and 90 GPa in the reflected shock,
and by laser-driven compression methods (van Kessel and

FIG. 10 (color online). Predicted ground-state structures of

atomic metallic hydrogen: (left) I41=amd at 500 GPa (Nagao,

Nagara, and Matsubara, 1997; Pickard and Needs, 2007;

McMahon and Ceperley, 2011a), (middle) Cmcm at 2.5 TPa (Liu,

Wang, and Ma, 2012a), and (right) I-43d at 3.5 TPa (Liu, Wang, and

Ma, 2012). Fictitious bonds are drawn between nearest neighbors.
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Sigel, 1974) up to pressures of �200 GPa in a single-shock

experiment. Soon after, the first measurements of electrical

conductivity in isentropically compressed hydrogen in a

magnetic-flux compression device appeared (Hawke et al.,

1978) which reported a measured drop of electrical resistivity

below 1:0 �cm at a density of 1:06 g=cm3 and an estimated

pressure of 200 GPa. Continuous progress in the experimental

techniques provided better data for the first (single-shock)

Hugoniot up to 20 GPa and the second (reflected-shock)

Hugoniot (Nellis, Mitchell et al., 1983; Nellis, Ross et al.,

1983) up to 76 GPa; see Fig. 11. However, the temperature

was not measured; the estimated temperature was based on a

phenomenological chemical model of fluid hydrogen (Kerley,

1972; Ross, Ree, and Young, 1983). By measuring the elec-

trical conductivity in the deuterium and hydrogen shocked

samples (Nellis et al., 1992), it was inferred that, below

20 GPa, shocked fluid deuterium behaves as a hot semicon-

ductor with a band gap of �12 eV.
After the introduction of FPMD methods (Car and

Parrinello, 1985) for studying s-p bond materials, application

to high-pressure hydrogen with an orbital-free method was

made by Zerah, Clerouin, and Pollock (1992) and by a

ground-state DFT-LDA Car-Parrinello calculation (Hohl

et al., 1993). This was subsequently followed by several

studies including thermal effects on the electrons using the

Mermin functional (Alavi et al., 1994; Kwon et al., 1994,

1995; Kwon, Kress, and Collins, 1994; Collins et al., 1995;

Kohanoff and Hansen, 1995, 1996) and an inclusion of

excited states within the time dependent density functional

theory LDA framework by Theilhaber (1992). These calcu-

lations were plagued by systematic errors due to limitations

of the LDA energy functional and of small system sizes, in

particular, in the metallic phase. Almost in parallel, the first

RPIMC calculations of the EOS and the liquid-liquid phase

transition (see Sec. IV.B.2) in high-pressure hydrogen ap-

peared (Pierleoni et al., 1994, 1996; Magro et al., 1996).

While FPMD studies concentrated on a density range above

the density of the principal Hugoniot, RPIMC results, limited

to temperature above 5000 K, also probed the region of phase

space of the principal Hugoniot. RPIMC found a nonmonot-

onous behavior of the pressure versus density along the

Hugoniot which was interpreted as the signature of a first-

order phase transition between a molecular fluid and an

atomic fluid. Unfortunately, in this first implementation of

RPIMC, systematic effects due to system size and imaginary-

time step errors limited the accuracy of the results. Wave-

packet MD was also applied to high-pressure hydrogen

(Klakow, Toepffer, and Reinhard, 1994a, 1994b). In this

method, electrons are represented by single-electron

Gaussian wave packets; Ehrenfest dynamics is used to simu-

late the electronic dynamics and to extract the forces acting

on the protons. The approach is, however, limited to the

semiclassical regime since Fermi statistics is only accounted

for approximately and its applicability to the phenomena of

molecular dissociation and metallization is only qualitative.
Holmes, Ross, and Nellis (1995) and Nellis, Weir, and

Mitchell (1996) directly measured the temperature along

the Hugoniot by fitting the radiance of the light emitted

from the shocked sample to a gray-body Plank spectrum;

see Fig. 12. They found temperatures substantially lower

than predicted by the employed chemical model, with an

increasing discrepancy with increasing pressure. This was

interpreted as an indication of a substantial molecular disso-

ciation above 20 GPa.
Principal Hugoniot pressures up to �340 GPa were later

achieved with a pulsed laser-produced shock compression

(Da Silva et al., 1997; Collins, Da Silva et al., 1998;

Celliers et al., 2000); see Fig. 11. Those experiments re-

ported a much higher compressibility, and therefore, higher

shock density, up to a sixfold compression (�=�0 � 6), higher
than expected by the standard EOS (Kerley, 1972) which does

not include molecular dissociation. Such a high compression

would have a dramatic effect on the efficiency of inertial

confined fusion. The unexpected compression was not in-

compatible with some existing theoretical predictions and

models which allowed for molecular dissociation. Note that

at sufficiently high pressure, the compression on the principal

Hugoniot must attain the ideal gas value of 4 (Nellis, 2006a).

Along the Hugoniot the system was observed, by optical

reflectivity measurements (Celliers et al., 2000), to undergo

a continuous insulator-to-metal transition in the region from

17 to 50 GPa as inferred by a continuous increase in the

reflectance signal (from 10% to 50%) and a saturation at

higher pressures. Temperature was determined by pyrometric
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FIG. 11 (color online). Comparison between the measured and

calculated principal Hugoniot for deuterium. The experimental data

are plotted as symbols with error bars: Z machine (triangles)

(Knudson et al., 2004), gas gun (crosses) (Nellis, Ross et al.,

1983), explosives (dark squares) (Belov et al., 2002), (large circles)

(Boriskov et al., 2003), (diamonds) (Grishechkin et al., 2004a),

and laser (open circles) (Hicks et al., 2009), (filled small circles)

(Knudson and Desjarlais, 2009), and (light squares) (Da Silva et al.,

1997; Collins, Da Silva et al., 1998). The continuous line is the

Hugoniot from Caillabet, Mazevet, and Loubeyre, 2011. Predictions

of various chemical models are reported as dashed lines (from

left to right): Kerley (Kerley, 2003), FVT (Juranek and Redmer,

2000), Saumon–Chabrier–van Horn (Saumon, Chabrier, and Horn,

1995), and Ross (Ross, 1998). From Caillabet, Mazevet, and

Loubeyre, 2011.
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measurements (Collins, Celliers et al., 2001) and was found

to increase from 0.47 to 4.4 eV (5000–50 000 K) in the

pressure range from 31 to 230 GPa (see Fig. 12). This

temperature is smaller than the Fermi temperature of the me-

tallic fluid (� 16 eV), and the samples are a degenerate metal.

Improvement in compression (up to�12-fold), with pressures
up to 600GPa, has been reported in reflected-shock experiments

where the second shock occurs at�100 GPa along the primary

Hugoniot line (Mostovych et al., 2000, 2001). However, the

temperature was not measured during these experiments. The

results were again in close agreement with phenomenological

models including molecular dissociation.
These experiments stimulated new first-principle simula-

tion studies. Attempts to compute the electrical conductivity

appeared (Pfaffenzeller and Hohl, 1997). This study found a

more pronounced metallicity and atomic character than re-

ported in the experiments probably attributable to the use of

LDA. Further tight-binding MD found a principal Hugoniot

in substantial agreement with the gas-gun data below 20 GPa

but could not reproduce the laser-driven data at higher pres-

sure (Lenosky, Kress, and Collins, 1997; Lenosky et al.,

1997a, 1997b, 1999). Two independent ab initio MD studies

using DFT with gradient corrected exchange-correlation

functional (GGA) were performed (Galli et al., 2000;

Lenosky et al., 2000; Collins, Bickham et al., 2001). A

further study which exploited the LSDA in the FPMD was

also performed (Bagnier, Blottiau, and Clérouin, 2000). The

results of the three studies were all in agreement and sup-

ported a maximum compression of �4:4 in the region of

50 GPa, with a limiting compression for higher pressure

around 4 in substantial disagreement with the laser-driven

Hugoniot. On the other hand, the computed optical reflectiv-

ity was in good agreement with the measurements performed

during the laser-driven runs up to 70 GPa (Collins, Bickham

et al., 2001). The system was found to smoothly dissociate

along the Hugoniot reaching a value of the electrical conduc-

tivity of 4000 ð�cmÞ�1 at maximum compression. Improved

RPIMC simulation was also performed with smaller time step

and finite-size errors and a better nodal restriction taking into

account bound states (Militzer and Ceperley, 2000). As seen in

Fig. 13, this calculation provided an almost vertical Hugoniot

with maximum compression of 4:3� 0:1 also in disagreement

with laser-driven shock experiments. In a subsequent

study combining RPIMC (T > 105 K) and first-principles

MD (T < 105 K) simulation techniques (Militzer et al.,

2001), the secondary Hugoniot was investigated and results

compared with the experimental data of Mostovych et al.

(2000, 2001). Even in this case it was found that RPIMC and

AIMD were in essential agreement but both at variance with

the secondary Hugoniot from laser-driven experiments.
Magnetic implosions at the Z pinch were then used to

create shock waves in much larger samples of liquid deute-

rium (Knudson et al., 2001). Pressures of �70 GPa were
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Ross, and Nellis, 1995)], Nova laser [diamonds (Collins, Celliers
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RPIMC [closed circles (Militzer and Ceperley, 2000), light shaded
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achieved with a 4.0–4.5-fold compression, in contrast to the

6-fold compression observed in the laser-driven experiments;

see Fig. 11. These data are in much closer agreement with the

first-principle predictions of RPIMC and FPMD. Finally, a

new technique based on spherically converging shock waves

generated by explosives (Belov et al., 2002) (data reported in

Fig. 11) also produces lower compressions.
A subsequent refinement of the detection technique of the

magnetic pressure apparatus (Knudson et al., 2003) and

further experiments (Knudson et al., 2004) measured the

principal Hugoniot up to 100 GPa confirming a maximum

compression of �4:3 (see Fig. 11) and provided data along

the second-shock Hugoniot up to 400 GPa and final density of

deuterium of 1:34 g=cm3. In those experiments, temperature

was not measured but later experiments using reflectivity and

emissivity, to infer the temperature (Bailey et al., 2008), are

shown in Fig. 12, and found to be in good agreement with

previous data. Also, second-shock data up to 900 GPa have

been measured with laser-driven shocks at the OMEGA laser

in Rochester (Boehly et al., 2004). These data are consistent

with a stiff EOS with 4.3- to 4.4-fold maximum compression

along the principal Hugoniot. A further experimental con-

firmation of a stiff EOS along the principal Hugoniot came

from converging explosive-driven shock waves (Grishechkin

et al., 2004a; Boriskov et al., 2005); see Fig. 11.
Recently, new laser-driven experiments using impedance

matching to an aluminum standard were performed (Hicks

et al., 2009). At variance with previous experiments, they

found 4.2-fold compression for pressures near 100 GPa, in

agreement with other experiments based on the impedance

matching method. However, just above 100 GPa and up to the

highest reached pressure (220 GPa), a sudden jump to higher

compression (� 5) was observed, but soon after (Knudson

and Desjarlais, 2009), it was shown that this behavior was

caused by an erroneous calibration of the quartz impedance

matching standard used to infer the principal Hugoniot above

100 GPa. At present, after 20 years of effort, a consensus is

emerging on the principal Hugoniot of deuterium obtained by

several different experimental methods and teams.
While most previous experimental work has been on deu-

terium samples, a recent experiment using laser-driven shock

waves (Sano et al., 2011a) measured shocked hydrogen in

the pressure range between 25 and 55 GPa. The lower

pressure data are in agreement with previous experiments

(Dick and Kerley, 1980; Nellis, Mitchell et al., 1983) and at

higher pressures they show a compression of �5, which

suggest that hydrogen is more compressible than deuterium.

However, the measured temperature is higher in hydrogen by

a factor of �1:3.
In parallel with advances in experimental methods and

results, first-principle methods have also been improved and

extended. At the turn of the century, two FPMD studies

investigated some of the systematic errors: the first

used Born-Oppenheimer dynamics with thermal electrons

(Desjarlais, 2003) while the second used Car-Parrinello dy-

namics with ground-state electrons (Bonev, Militzer, and

Galli, 2004). As seen in Fig. 13 consistent results were

obtained. The computed Hugoniot was slightly stiffer than

in a previous work (Lenosky et al., 2000) but still had a

maximum compression of about 4.5 at �40 GPa, and in

agreement with the gas-gun Z-pinch experiment up to

20 GPa (Knudson et al., 2001). Above this pressure, the

new theoretical Hugoniot was slightly stiffer than the experi-

mental data. Also, the predicted temperature along the

Hugoniot for P � 20 GPa was found to be in very good

agreement with the experimental gas-gun data (see Fig. 12).

In contrast, previous first-principle studies predicted tempera-

tures smaller by as much as 30% (Lenosky et al., 2000).

Several later BOMD simulations using DFT-GGA confirmed

these results: Vorberger, Tamblyn, Militzer, and Bonev

(2007) were limited to lower temperatures, used ground-state

electrons, and investigated the hydrogen-helium mixture (see

Sec. V), and Holst, Redmer, and Desjarlais (2008) used

thermal electrons and computed optical properties such as

reflectivity and conductivity (see below).
We also mention a number of theoretical investigations

which predicted a soft principal Hugoniot. The first study was

performed by wave-packet molecular dynamics (WPMD)

(Knaup et al., 2003) and reported a principal Hugoniot

with a maximum compression of �6 in agreement with the

Nova laser data (see Fig. 13). The accuracy of the WPMD is,

however, limited to the semiclassical regime and should not

be applied at these temperatures. Also, the predicted tem-

perature was considerably lower than in the experiments and

in the first-principle methods. The second study employed the

DPIMC method (Filinov et al., 2005) and reported a maxi-

mum compression of �5 at P ¼ 111 GPa, providing a softer

EOS with respect to the RPIMC predictions of Militzer and

Ceperley (2000); see Fig. 13. Also in this method, the tem-

perature along the Hugoniot was substantially lower than in

experiments and in other first-principle methods (see Fig. 12).

Finally, we mention a recent investigation of the principal

Hugoniot by the antinodal-slice RPIMC method (Khairallah,

Shumway, and Draeger, 2011) (see Sec. II.C). They obtain

good agreement with the previous RPIMC Hugoniot at high

pressure (P 
 200 GPa) and a stiffer Hugoniot at lower

pressure, but still compatible with the experimental data

within their large uncertainty (see Fig. 13). However, these

results do not agree well with the low-pressure gas-gun data.

Also, as seen in Fig. 12, the predicted temperature along the

Hugoniot is somewhat higher than the experimental measure-

ments and the predictions from RPIMC and FPMD.
As seen in Fig. 11, the uncertainty on the experimental data

is large, which makes it difficult to discriminate between

different calculations. On the other hand, the most recent

FPMD calculations of the principal Hugoniot give similar

results and are in agreement with the experimental data,

reinforcing the consensus on the experimental Hugoniot.
Validation of the FPMD predictions can be obtained either

by comparing with experimental data or by comparing

to results from a more fundamental method such as

CEIMC. The two methods solve the electronic problem in

very different ways and with different approximations:

CEIMC is based on the variational principle (with respect

to the nodes of the trial wave function) and can be system-

atically improved. CEIMC is a relatively recent method,

rather more demanding than FPMD, and therefore its appli-

cations have been limited so far. Moreover, earlier implemen-

tations were plagued by insufficient accuracy of the trial

wave function and gave results in disagreement with CPMD
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(LDA) predictions at higher density around the melting tran-

sition of the atomic metallic crystal (0:8 � rs � 1:2, 500 �
T � 10 000 K) (Pierleoni, Ceperley, and Holzmann, 2004).

Recent methodological progress, in particular, the implemen-

tation of LDA-KS orbitals in the Slater determinant of the

trial wave function, considerably improves the accuracy and

the flexibility of the method (Pierleoni et al., 2008) and

provides results for the hydrogen EOS which are in good

agreement with the predictions of FPMD (Pierleoni et al.,

2008; Morales, Pierleoni, and Ceperley, 2010a). Morales,

Pierleoni, and Ceperley (2010a) compared the EOS from

both methods in the region 2000 � T � 10 000 K and

0:724 � � � 2:329 g=cm3 (1:55 
 rs 
 1:05), correspond-
ing to 100 � P � 2000 GPa, a small region slightly to the

right of the first Hugoniot (see Fig. 1) and relevant in model-

ing the Jovian planets. The pressure difference between the

two methods was at most 5% at the lowest density (approach-

ing the molecular dissociation regime) and decreases with

increasing density. The difference in the internal energy

(� 0:8%) appears to be uniform with density. Also, predic-

tions for the local structure of the proton fluid are in very good

agreement. As seen in Sec. IV.B.2, this agreement is not

observed at the metal-insulator transition underlying again

the nontrivial character of this finding. Our present under-

standing is that DFT-based FPMD is quite accurate in com-

parison to CEIMC, both at high pressure and at low pressure

in regions away from the metal-insulator transition. In the

region where the system becomes metallic the local and

semilocal functionals have a well-known problem of under-

estimating the band gap and FPMD provides wrong predic-

tions: see below.
Most of the theoretical studies discussed so far concen-

trated on computing the first and second Hugoniots. Recently,

first-principle calculations have been performed over a

much wider region in thermodynamic space (Caillabet,

Mazevet, and Loubeyre, 2011; Hu et al., 2011; Morales

et al., 2012) to build a thermodynamically consistent EOS

for conditions appropriate to planetary models and ICF

applications. Morales et al. (2012) used both FPMD and

CEIMC to study the EOS in the range 10 � P � 1000 GPa,
3000 � T � 35 000 K. It was found that the Kerley

(2003) EOS works well after a pressure dependent, but

temperature independent, correction is applied. Hu et al.

(2011) employed RPIMC to map the EOS in the range

0:002 � � � 1596 g=cm3, 104 � T � 108 K. The RPIMC-

based EOS is in good agreement with the Kerley (2003) table.

We note that an earlier PIMC calculation of the low density

phase diagram of hydrogen (Militzer and Ceperley, 2001)

reported a substantial agreement between PIMC data

for the EOS and the Saumon-Chabrier chemical model pre-

dictions. On the other hand, in the higher pressure range

investigated by Morales, Pierleoni, and Ceperley (2010a)

(100 � p � 2000 GPa) the modified SCVH EOS (Saumon,

Chabrier, and Horn, 1995) was found to deviate from the

CEIMC data by as much as �25% at the edge of the

dissociation region, the region in which chemical models

are essentially based on interpolations. Because planetary

models are sensitive to details in this regime and at lower

pressures during dissociation, a deviation from SCVH will

produce a much larger change; e.g., it is found using a less

compressible EOS that Jupiter has a core mass of 14–18 Earth

masses, much larger than the SCVH value of 0–7 Earth

masses (Guillot, 2005; Militzer et al., 2008). However, a

consensus on the interior model for Jupiter and the EOS has

yet to be reached.

2. Liquid-liquid phase transition (LLPT)

Fluid hydrogen at low pressure is H2; molecular dissocia-

tion will occur both with increasing temperature or with

pressure. At moderate pressures (� 102–104 bar), molecular

dissociation happens when the temperature is approximately

equal to the molecular bonding energy (� 4:5 eV). The

dissociation temperature depends mildly on pressure since

internal degrees of freedom (either molecular or atomic) are

largely independent of pressure as shown in Fig. 2. This

prediction is based on chemical models which are expected

to be accurate at low density (Saumon, Chabrier, and Horn,

1995; Hu et al., 2011). On the other hand, with increasing

pressure at moderate temperature (T � 1000 K), the physics

becomes more complex because the separation between in-

ternal degrees of freedom and many particle interactions

disappears; the internal states of the molecules are strongly

influenced by molecule-molecule interactions, and, for high

enough pressure, molecules dissociate and the system be-

comes metallic.
Whether dissociation and metallization occur at the same

time and whether the processes are continuous are open

questions with recent experimental and theoretical findings.

The occurrence of metallization induced by pressure was

discussed by Wigner and Huntington (1935) for atomic

hydrogen at T ¼ 0 K, by Landau and Zeldovich (1943) for

liquid mercury as a first-order phase transition, and by

Norman and Starostin (1970) for a dense atomic plasma. In

high-pressure fluid hydrogen, molecular dissociation and

ionization was discussed by Ebeling and Richert (1985,

1985) and later by Marley and Hubbard (1988), Saumon

and Chabrier (1989, 1991, 1992), Kitamura and Ichimaru

(1998), Beule et al. (1999), Fortov et al. (2003), Edwards

et al. (2010), and Redmer and Holst (2010) at several levels of

sophistication in the framework of chemical models. These

models exhibit a clear first-order LLT that persists for tem-

peratures well above 10 000 K. However, approaches with

separate free-energy functionals in different regions of phase

space have great difficulty in having a continuous crossover

from one behavior to another. The presence of a first-order

phase transition in the chemical models is now recognized to

be an artifact of the method (Chabrier, Saumon, and

Winisdoerffer, 2007). Recent EOS tables now smooth the

pressure in the transition region to ensure positive compressi-

bility (Saumon, 2007).
Nellis, Weir, and Mitchell (1996) and Weir, Mitchell, and

Nellis (1996) [see also Nellis, Weir, and Mitchell (1999)],

using reverberating shocks to achieve quasi-isoentropic com-

pression up to 180 GPa, found that the resistivity decreased

by almost 4 orders of magnitude in a continuous manner

(Nellis et al., 1998) between 93 and 140 GPa, and then

saturated to roughly 500 ��cm between 140 and 180 GPa, a

typical resistivity value for liquid metals. They estimated the

temperature from a model at 140 GPa to be �3000 K as
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shown in Fig. 14. They estimated the molecular dissociation
to be �5%: the system is still largely molecular.

Recently, Fortov et al. (2007), using reverberating shocks,

ramp compressed hydrogen with high explosives and found a
discontinuous behavior at the metal-insulator transition.

Using highly resolved flash x-ray diagnostics, they were
able to measure the compressibility of the liquid and found

a 20% increase in density in the regime where the conduc-
tivity increases by �5 orders of magnitude. The temperature
was not measured directly but inferred from a chemical

model EOS to be in the range of 3000–8000 K. The two
data points around the density discontinuity [using the EOS

from a recent FPMD study (Tamblyn and Bonev, 2010a)] are
shown in Fig. 14. However, the measurements from this

experiment were sparse in density and a rapid, yet continu-
ous, change in conductivity with increasing pressure could

not be ruled out from the data.
The first ab initio evidence of a first-order phase transition

came from a restricted PIMC calculation (with free-particle
trial nodes) showing an abrupt pressure change along

isotherms (Magro et al., 1996) with a critical point at Tc ’
11 000 K, Pc ’ 48 GPa in qualitative agreement with predic-

tion by chemical models. However, the RPIMC method has

major problems with convergence at temperatures

below 10 000 K and that calculation was plagued by finite

imaginary-time step errors.
The next step toward the present understanding of liquid-

liquid phase transition in hydrogen came from a CPMD

(using DFT-GGA energy functional) and classical protons

(Scandolo, 2003) in the constant-pressure ensemble. A first-

order phase transition was signaled by large density fluctua-

tions at T ¼ 1500 K and P ¼ 125 GPa with a 6% change of

specific volume. At the transition, a rapid molecular disso-

ciation was observed and the system became metallic with the

gap at the Fermi level closing, both molecular dissociation

and metallization of hydrogen occurring together with a first-

order phase transition. This result is not in contradiction with

the dynamical compression experiments of Nellis, Weir, and

Mitchell (1996) and Weir, Mitchell, and Nellis (1996) but

requires the existence of a critical temperature between 1500

and 3000 K. Note that the temperature in the shock experi-

ments was estimated by an indirect method. Also, the tran-

sition pressure of first-principle DFT-GGA simulations is

somehow lower than measured in the experiments; see

Fig. 14. Evidence of a first-order liquid-liquid phase transition

was also found by Bonev et al. (2004) and Bonev, Militzer,

and Galli (2004) using the CPMD method with the GGA

functional in the NVT ensemble at pressures of 200 GPa and

temperatures between 900 and 1000 K. But a smooth disso-

ciation process under pressure was found in subsequent

BOMD investigations (Vorberger, Tamblyn, Bonev, and

Militzer, 2007; Vorberger, Tamblyn, Militzer, and Bonev,

2007; Holst, Redmer, and Desjarlais, 2008). A region with

ð@P=@TÞ� < 0 along isochores inside the dissociation region

(P ’ 200 GPa, 1000 � T � 4000 K) was reported without a

density discontinuity but a continuous crossover from an

insulating to a conducting state.
Similarly, a CEIMC simulation (Delaney, Pierleoni, and

Ceperley, 2006) reported no evidence for a first-order phase

transition at T ¼ 1500 and 2000 K in the pressure range from

135 to 290 GPa. In this work, the trial wave function

had a Slater determinant using the orbitals from a band-

structure solution with an effective electron-proton potential.

Employing VMC energies along the isotherm at T ¼ 2000 K,
a jump in the molecular fraction was observed when increas-

ing density around 220 GPa with an hysteresis when releasing

the density. However, when using RQMC energies at the

same conditions, the molecular fraction presented a much

smoother behavior with density, suggesting a continuous

dissociation process.
Finally, a convincing demonstration of the first-order

liquid-liquid phase transition was found by Morales et al.

(2010b) and Liberatore et al. (2011) exploiting both BOMD

and CEIMC (see Fig. 14). The signature of the first-order

character of the transition is a plateau in P vs � along

isotherms for temperatures below � 2000 K. Both methods

saw a density discontinuity at the transition of � 2%,

sufficiently small that a quick scan of this region, as done

in previous simulations and experiments, could miss the

discontinuity. However, the determined transition pressures

with BOMD are� 20% smaller than with CEIMC because of

the band-gap problem of local or semilocal density func-

tionals. Inclusions of quantum proton effects within the
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FIG. 14 (color online). Liquid-liquid transition line and pressure

dissociation region. Experimental data for metallic hydrogen:

[square (Nellis, Weir, and Mitchell, 1996; Weir, 1998), diamonds

(Fortov et al., 2007), triangles (Loubeyre et al., 2004)]. Theoretical

predictions for the LLPT: [downward triangle BOMD) (Morales

et al., 2010b) and (squares CEIMC (Morales et al., 2010b;

Liberatore et al., 2011)]. The lines are a guide to the eye through

BOMD and CEIMC simulation data, respectively. [Circle

(Scandolo, 2003), dotted line (Lorenzen, Holst, and Redmer,

2010)]. Molecular dissociation region according to BOMD: shaded

area (Tamblyn and Bonev, 2010a). Primary Hugoniot: thick double-

dot-dashed line. QMC prediction of stable fluid state: star

(Attaccalite and Sorella, 2008). Melting curve of the molecular

solid (phase I) is represented by two possible curves as discussed in

Sec. IV.A.4: solid (upper dashed) line (Morales et al., 2010b), lower

dashed line (Bonev et al., 2004a). The expected boundary between

phase I and phase IV is also reported (Howie et al., 2012).
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DFT-GGA method, as obtained by PIMD, produce a further

25% decrease of the transition pressure at the same tempera-

ture, because of the importance of nuclear zero-point motion

at the transition; the kinetic energy of protons is higher in the

molecular-rich phase than in the atomic-rich phase causing a

shift in the transition pressure.
The dc electrical conductivity, as computed by the Kubo-

Greenwood relation within DFT, undergoes a discontinuous

jump across the transition, showing that it is an insulator-

metal transition. Using the computed dc conductivity as an

order parameter, a critical point was estimated at Tc ¼
2000 K. The transition corresponds to a sharp change from

semiconducting to metallic behavior caused by the sudden

collapse of the molecular state. Even though strong short-

range correlations persist after the transition is crossed, the

resulting atomic liquid is metallic.
In Fig. 14 we show the LLPT from BOMD and CEIMC

together with two different Kechin fits to the melting line data

from BOMD for phase I (see Sec. IV.A.4). At low tempera-

tures, the predicted LLT is expected to meet the melting line

at 700 K and 220 GPa (using the BOMD estimates) and

should result in a liquid-liquid-solid multiphase coexistence

point. This point could be either a triple point if the two liquid

phases coexist with a single solid phase or a quadruple point

if the metal-insulator transition extends below freezing.

Unfortunately, the use of DFT to extend the melting curve

to higher pressures has difficulties in the neighborhood of the

insulator-metal transition. Moreover beyond 200 GPa the

stable crystal phase at melting is expected to be phase IV,

rather than phase I; a study of the melting line for phase IV

has not been done. Also note that CEIMC simulations along

the isotherm at T ¼ 600 K in the pressure interval 220 �
P � 330 GPa did not show any tendency to freeze, but finite-

size effects biased the result. Further evidence in favor of a

lower melting temperature at P ’ 300 GPa was given by an

alternative QMC-based ab initio method (Attaccalite and

Sorella, 2008) which observed a disordered state at

� 400 K, shown in Fig. 14 as a star.
An independent determination (Lorenzen, Holst, and

Redmer, 2010) of the LLPT line by FPMD based on DFT

with finite-temperature electrons, shown in Fig. 14, gives

general agreement, although the exact location of the LLPT

line and critical point varies. The existence of the transition

(continuous or first order) is sensitive to size effects since small

systems at the � point do not exhibit a discontinuous behavior.

Morales et al. (2010b) employed ground-state DFT-GGA

with 432 atoms at the � point. Lorenzen, Holst, and Redmer

(2010) considered finite-temperature DFT-GGA and systems

of 512 atoms computed at the Baldereschi point in the

Brillouin zone. These system sizes are comparable to the one

used by Scandolo (2003) and Bonev et al. (2004) with CPMD,

and considerably larger than the one used by Vorberger,

Tamblyn, Militzer, and Bonev (2007) and Holst, Redmer, and

Desjarlais (2008)withBOMD.Note that inCEIMC, a systemof

54 atoms is used but with twist averaged boundary conditions,

the many-body analog of the Brillouin zone integration.
Bonev et al. (2004) ascribed the reentrant nature of the

melting of the insulating molecular phase I reported in Fig. 14

to an increased softening of the repulsive intermolecular

interactions with pressure, more pronounced in the liquid

than in the solid phase due to the presence of the disorder.
The nature of the insulating molecular liquid near the melting
line was further investigated by Tamblyn and Bonev (2010a,
2010b). It was found that the liquid develops a short-range
orientational order for pressures beyond the maximum of the
melting line, and, in general, in the region between the
melting and the LLPT lines. The orientational order is pre-
served, although changing its nature, when molecules disso-
ciate. Using a criterium of survival time, the region of
dissociation (from 67% to 33% molecular fraction), reported
in Fig. 14 as a shaded area, has been traced up to T ¼
4000 K, close to the primary Hugoniot. Since pressure dis-
sociation and metallization are seen to occur at the same time,
the shaded region also indicates metallization. This simula-
tion is in agreement with some estimates of metallization
obtained by laser shocking a precompressed sample
(Loubeyre et al., 2004) as shown in Fig. 14.

3. Optical and transport properties

Along with EOS studies, first-principles simulation meth-
ods have been used extensively to study the optical and
transport properties of hydrogen at high pressure, particu-
larly in the liquid state (Pfaffenzeller, Hohl, and Ballone,
1995; Collins et al., 1998; Collins, Bickham et al., 2001;
Holst, Redmer, and Desjarlais, 2008; Lin et al., 2009;
Holst, French, and Redmer, 2011; Lambert et al., 2011).
Optical properties are most often calculated using the
Kubo-Greenwood formula within linear-response theory
(Kubo, 1957; Greenwood, 1958) and DFT. Diffusion, vis-
cosity, and other transport properties can be calculated from
the dynamical correlation functions of the ionic trajectories.
The thermal conductivity in the liquid atomic regime is
typically calculated with the Wiedemann-Franz law (Franz
and Wiedemann, 1853). A detailed description of the for-
mulation is given in Holst, French, and Redmer (2011)
along with its application to dense hydrogen, in particular,
the electrical and thermal conductivity, thermopower, and
Lorentz number as a function of density for temperatures
between 10 000 and 50 000 K. Figure 15 shows the electri-
cal conductivity, for various densities, as a function of
temperature. These calculations were extended (Lambert
et al., 2011) using orbital-free MD as well as DFT to
densities up to 160 g=cm3 and temperatures up to 800 eV
( � 10 000 000 K), well within the plasma phase. They
compare their results with plasma models and discuss the
implications of their results for the simulation of capsule
implosions for ICF experiments.

As discussed semilocal functionals in DFT underestimate
the band gap, and as a consequence overestimate the con-
ductivity, particularly near the metal-insulator transition, i.e.,
close to the predicted liquid-liquid phase transition or to the
continuous dissociation region at higher temperatures. See
Kowalski et al. (2007) for a discussion of this error in dense
helium. Calculations of the conductivity near dissociation
have been performed (Lin et al., 2009) with QMC methods,
using CEIMC simulations to sample ionic configurations
at finite temperature, combined with correlation function
quantum Monte Carlo calculations (Ceperley and Bernu,
1988; Bernu, Ceperley, and Lester, 1990) to calculate the
low energy many-body excitation spectrum of the liquid.
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Combining the excitation energies with the Green-Kubo
formula, they calculated the electrical conductivity of hydro-
gen based entirely on QMC; these calculations do not suffer
from self-interaction errors but suffer from other limitations,
notably the numerical difficulty in obtaining accurate prop-
erties of excited states because of the QMC sign problem, and
large finite cell size effects. However, good agreement with
the limited data from shock experiments measurements was
obtained (Weir, Mitchell, and Nellis, 1996).

C. Quantum phases of high-pressure hydrogen

Because of the light proton mass, dense hydrogen
may exhibit coherent quantum protonic phases at low
temperatures. Two interesting possibilities that have been
theoretically predicted are superconductivity and a low- or
zero-temperature quantum fluid.

1. Superconductivity

Ashcroft (1968) predicted that high-pressure hydrogen
would be a high-temperature superconductor. Within the
framework of the Bardeen-Cooper-Schrieffer (BCS) theory
(Bardeen, Cooper, and Schrieffer, 1957), three key arguments
support this prediction: (i) the light proton mass causes the
vibrational energy scale of the phonons to be remarkably high
(e.g., h!i=kB � 2100 K near 500 GPa), where h!i is the
average phonon frequency, and thus is the prefactor in the
expression for the critical temperature Tc (see below);
(ii) since the electron-ion interaction is simply the bare
Coulomb attraction, electron-phonon coupling should be
strong; and (iii) at high pressures, the electronic density of
states at the Fermi surface should be large and the Coulomb
repulsion between electrons should be relatively low, typical
of high-density systems.

These essential ideas are highlighted in McMillan’s esti-
mate for Tc (McMillan, 1968), which including the correction
by Dynes (1972) can be written as

kBTc ¼ h!i
1:2

exp

�
� 1:04ð1þ �Þ

����ð1þ 0:62�Þ
�
; (48)

where � is the electron-phonon-induced interaction and �� is
the renormalized Coulomb repulsion. It is easy to see that if

h!i and � are both high, while �� is low, then Tc will be high

as well.
Within standard ab initio methods, such as DFT, one can

calculate both h!i and � (Savrasov and Savrasov, 1996), and

further �� can be safely approximated as 0.1 in the atomic

phase of high-pressure hydrogen (Richardson and Ashcroft,

1997). Note that this latter approximation does not work

within the molecular phase, as will be discussed below.

Note also that important corrections to Eq. (48) should be

included (Carbotte, 1990) for strong-coupling superconduc-

tors using the Allen-Dynes equation (Allen and Dynes, 1975);
see also a recent reparametrization for hydrogen (Szczesniak

and Jarosik, 2009).
Ever since the original prediction (Ashcroft, 1968) of

high-Tc superconductivity, there have been several such

efforts to predict Tc. However, since Tc is sensitive to the

presumed crystal structure (Whitmore, Carbotte, and Shukla,

1979), these have varied widely. We limit the discussion to

some of the most promising structures for the molecular and

atomic phases, as discussed in Secs. IV.A.1 and IV.A.6, the
Cmca, I41=amd, and R-3m structures; for a discussion

of the older and other predictions, see McMahon and

Ceperley (2011b).
Recently, McMahon and Ceperley (2011b, 2012) applied

these techniques to investigate superconductivity in the

atomic I41=amd and R-3m structures from 500 GPa

to 3.5 TPa. Calculated values of Tc from this work are

shown in Fig. 16. As can be seen, the Tc values are indeed
remarkably high. Near the molecular-to-atomic transition

(� 500 GPa), Tc � 311 K. With increasing pressure, � in-

creases, and together with the increase in phonon frequencies

causes Tc to increase to �360 K near 0.8–1 TPa. After the

first (predicted) atomic-atomic structural phase transforma-

tion (i.e., I41=amd ! R-3m), a large jump in � occurs due to

the high phonon density of states at low frequencies in the

ensuing structure, which causes Tc to increase beyond 400 K.
In the (metallic) molecular phase, the situation becomes

especially interesting (but also more complex), as described
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FIG. 16 (color online). Values of Tc for atomic metallic hydrogen

calculated using various formulas, as discussed by McMahon

and Ceperley (2011b, 2012). Adapted from McMahon and

Ceperley, 2012.

FIG. 15 (color online). Electrical conductivity of hydrogen as a

function of temperature and density. From Holst, French, and

Redmer, 2011.
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by Richardson and Ashcroft (1997). The assumption that ��
adopts a fixed value becomes invalid. Lüders et al. (2005)
developed a multicomponent DFT method for superconduc-
tivity, termed SCDFT, which involves solving a set of Kohn-
Sham equations for wave functions that represent particle and
hole amplitudes ’iðrÞ as well as protonic amplitudes �lðRÞ:

�
�r2

2
þ ve

s½n; �;��ðrÞ ��

�
’iðrÞ ¼ i’iðrÞ; (49)

�
�X

�

r2
�

2M
þ vn

s ðRÞ
�
�lðRÞ ¼ "l�lðRÞ; (50)

where n is the electronic density, � is an ‘‘anomalous’’
density representing the order parameter that characterizes
a singlet superconducting state, � is the diagonal part of the
N-particle density matrix, ve

sðrÞ and vn
s ðRÞ are Kohn-Sham

potentials for the electrons and nuclei, respectively, and � is
the chemical potential. For a comparison of those equations to
the standard formulation of DFT, see Sec. II.E.1.

Following the development of SCDFT, Cudazzo et al.
(2008, 2010a, 2010b) modeled the high-pressure metallic
molecular phase of hydrogen, Cmca. Calculated Tc values
are shown in Fig. 17, where it can be seen that, much like in
the atomic phase, they are remarkably high, increasing up to
242 K near 450 GPa.

As can be seen, and consistent with original predictions
(Ashcroft, 1968), Tc values in hydrogen are remarkably high,
in both the molecular and atomic phases. It is intriguing to
note that the high values of Tc combined with the low values
of Tm (see Sec. IV.A.4) suggest that solid atomic hydrogen
may exist entirely in a superconducting state. There have also
been predictions (Jaffe and Ashcroft, 1981) that liquid
metallic hydrogen (i.e., above the melting temperature) will
itself be superconducting. These observations set the stage for
the discussion that is to follow in the next section, where it
will be demonstrated that superconductivity and quantum
fluidity in hydrogen are rich areas of exploration awaiting
experimental confirmations.

2. A quantum fluid

Brovman, Kagan, and Kholas (1972b) noted that there are
many atomic hydrogen structures with similar energies, such
as the anisotropic layered ones. This suggests that the tran-
sition from the molecular state to the atomic one might also
involve a transition from the solid phase to a low-temperature
liquid. There are two effects that favor such a state. First, the
bare p-p interaction is screened by the electrons, causing the
effective interaction near rs ¼ 1:3 to be weak and short
ranged.7 Friedel oscillations in the effective interaction can
then frustrate many crystal structures. Second, the large
proton ZPM favors a disordered liquid state versus an ordered
solid. Hohl et al. (1993) demonstrated that the kinetic energy
of the protons in various crystal structures at 0 K (and at the
lowest pressures that atomic hydrogen may exist) can be as
large as 7000 K=atom. An analogous physical system is 3He,
which indeed has a liquid ground state for pressures less than
0.003 44 GPa.

In passing, we point out that at sufficiently high pressures,
it is almost certain that hydrogen will be in a liquid state at
0 K. Under such conditions, one can ignore the electrons,
since they become uncorrelated with the protons. Hence, the
proton system becomes the quantum one-component plasma
(OCP) (i.e., jellium). Extensive QMC calculations (Ceperley
and Alder, 1980) (using an electron mass or rs ¼ 0:058 times
the proton mass) of the quantum OCP established that the
Wigner crystal melts to a Fermi liquid near rs ¼ 106. This
high-pressure transition is shown in Fig. 2, corresponding to
the extremely high pressure of 1013 GPa. While these results
are interesting, it is unlikely that there are conditions any-
where where hydrogen is this dense and this cold.

The complete absence of an atomic solid phase (at any
pressure) was suggested by Kechin (2004a, 2004b) again due
to the large atomic ZPM. However, many approximations
were made to arise at this prediction. Moreover, the results do
not appear consistent with ab initio calculations.

Such simulations of the melting line of atomic hydrogen
(Xu, Hansen, and Chandler, 1994; Kohanoff and Hansen,
1995, 1996) indicate that at somewhat lower pressures (e.g.,
the TPa range), the bcc lattice may melt at surprisingly low
temperatures and become even less stable with decreasing
pressure. Even though these simulations neglected ZPM,
recent calculations by Liberatore, Pierleoni, and Ceperley
(2011) found that ZPM is similar in both the solid and liquid
phases at these conditions (because of similarities in local
structures), and thus, its overall impact is not large.

Now considering the molecular phase, in Sec. IV.A.4 we
discussed that the melting temperature reaches a maximum at
a pressure of �100 GPa, but then decreases. Extrapolations
of the melting curve from ab initio calculations (Bonev et al.,
2004), combined with the atomic melting results discussed
above, suggest the possibility of an intermediate range where
a low- or zero-temperature liquid phase could exist (Ashcroft,
2000, 2003).
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FIG. 17 (color online). Values of Tc for metallic molecular hydro-

gen calculated using SCDFT. See Cudazzo et al. (2010b) for a

discussion of the differences between anisotropic and isotropic

SCDFT. Adapted from Cudazzo et al., 2010b.

7At a certain pressure, electrons become bound to protons, and

the total interaction of the system becomes essentially that between

neutral atoms.
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Despite these indications, there have been simulations that

in fact disagree with such a scenario. For example, early

QMC calculations by Mon, Chester, and Ashcroft (1980,

1983) using an effective screened Coulomb interaction found

that the solid has lower energy than the liquid for densities

appropriate to atomic hydrogen [0:8 � rs � 1:36, a range

partially based on the VMC calculations by Ceperley,

Chester, and Kalos (1978) for the Yukawa phase diagram].

As another example, a DMC calculation by Ceperley (1988),

again using the screened Coulomb interaction, found solid

phases to be stable for rs � 1:6. Even if the crystal structures
used in these calculations were incorrect, the results seem to

exclude the existence of a ground-state liquid. These simu-

lations did, however, invoke serious approximations through

the use of effective (proton) interactions. Chakravarty and

Ashcroft (1978) showed that the assumption of a pair proton

interaction in this range of densities is likely to cause much

greater errors than the difference in energies between the two

phases. Nonetheless, DMC simulations involving electrons

and protons (Ceperley, 1988), and with the proper masses,

found stable solid fcc and bcc phases for densities above rs ¼
1:6. These calculations also supported the perturbation esti-

mates (Chakravarty and Ashcroft, 1978) that solid-liquid

energy differences with the bare Coulomb interaction are

much different (5 times larger) than when it is screened. On

the other hand, use of the more recent crystal structures (see

Sec. IV.A.6) would even further stabilize the solid. However,

the fixed-node approximation and time-scale separation is-

sues in QMC both favor a solid phase. It is clear that there is

some uncertainty in these predictions.
More recent QMC-based MD simulations (Attaccalite

and Sorella, 2008) of the e-p system using forces computed

from VMC with a resonating valence bond trial wave

function (albeit, without ZPM) again support the existence

of a low-temperature liquid. These simulations indicated

that a molecular liquid should be more stable than a simple

hexagonal or bcc atomic solid, at least at �400 K and

300 GPa. To make this claim with certainty though, one

needs to explore more stable crystal structures, different

trial wave functions, include proton ZPM, and perform a

better treatment of finite-size effects. The predictions of a

low- or zero-temperature quantum fluid combined with the

prediction of high-Tc superconductivity (see Sec. IV.C.1),

led Jaffe and Ashcroft (1981) to predict that hydrogen

could become a new state of matter altogether, a super-

conducting superfluid. Jaffe and Ashcroft (1983) analyzed

the properties of such a state, demonstrating that it would

likely pass from a type-II to a type-I superconductor with

decreasing temperature. Furthermore, at low temperatures,

Moulopoulos and Ashcroft (1999) and Ashcroft (2000)

suggested further that not only should electrons form

Cooper pairs, but protons could also. A topological analysis

of such a two-component system by Babaev, Sudbø, and

Ashcroft (2004) revealed that, because of these features, the

presence of a magnetic field could cause hydrogen to

exhibit several novel ordered states, ranging from metallic

to superconducting superfluids.
The predictions of a low- or zero-temperature quantum

fluid and its properties represent intriguing possibilities. As

indicated above, however, its existence is still an open

question. Further experiments and calculations are thus
needed to settle this issue.

V. HELIUM AND HELIUM-HYDROGEN MIXTURES

Thermodynamic properties of He-H mixtures have a spe-
cial significance in the modeling of many giant planets, for
example, Jupiter and Saturn. These planets, generally be-
lieved to have been formed approximately at the same time
as the Sun, are made primarily of hydrogen and helium, with
a mass fraction of the latter at the surface of Y ¼ 0:234�
0:005 for Jupiter (von Zahn, Hunten, and Lehmacher, 1998)
and Y ¼ 0:18� 0:25 for Saturn (Conrath and Gautier, 2000).
Note that the estimated protosolar helium mass fraction is
Y � 0:27 (Bahcall, Pinsonneault, and Wasserburg, 1995).
Possible interior models for these planets, which define their
composition as a function of depth, are constrained by ex-
perimental observations, such as the total mass, radius, rota-
tional rate, gravitational moments, and surface temperatures,
among others.

Most models built so far are based on a three-layer struc-
ture, with a solid core made of heavy elements and ices, an
intermediate layer made up mostly of metallic hydrogen and
helium, and an upper layer rich in molecular hydrogen,
helium, and small traces of other molecules such as methane,
water, and ammonia; see Fig. 18. Such models typically
assume solid body rotation, hydrostatic equilibrium, a fully
convective and isentropic interior, and a homogeneous and
constant mixture of helium in the metallic and molecular
layers. These assumptions lead to a set of hydrostatic equa-
tions for the pressure, density, and entropy as a function of a
planet’s radius (Stevenson, 1982). In order to close this set of
equations, the EOS of the mixture is needed, specifically P ¼
Pð�; T; xiÞ, where the addition of xi indicates the molar
fractions of the mixture. Most current models of Jupiter and
Saturn are based on the SCVH EOS (Guillot, Chabrier et al.,
1994; Guillot, Gautier et al., 1994; Guillot, Gautier, and
Hubbard, 1997; Guillot, 1999). Recently, however, models
for Jupiter used EOS derived from first-principles simulations
(Militzer et al., 2008; Nettelmann et al., 2008). Currently,

FIG. 18 (color online). Standard three-layer model of Jupiter.

From Stevenson, 2008.
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the largest uncertainty in the models comes from the limited

knowledge of the equation of state of He-H mixtures at high

pressures, the uncertainty associated with possible transitions

in the dense liquid (e.g., the LLT), and the immiscibility of

helium in metallic hydrogen (Fortney, 2004; Guillot, 2005),

the latter which will be discussed below.
In this section, we review the current understanding of

helium and He-H mixtures based on first-principle calcula-

tions. We first review work on pure helium, with an emphasis

on the phase diagram, the EOS, and optical properties at high

pressure. We then discuss recent work on mixtures, with an

emphasis on the calculation of the EOS as well as the

solubility of helium in metallic hydrogen.

A. Helium

At ambient conditions helium is an inert gas with a large

band gap. Because of its low mass and weak interatomic

interactions, it has fascinating properties at low temperatures

and displays a wide array of exotic phenomena such as

superfluidity. In this review, we focus only on the high-

pressure properties of the isotope 4He.

1. Equilibrium properties: Equation of state and structure

At pressures above 25 bar (2.5 MPa) at zero temperature,
4He crystallizes into the hcp phase. Thermodynamic mea-

surements show the existence of an hcp-fcc phase transition at

P� 1:1 GPa, with a hcp-fcc-liquid triple point located ap-

proximately at 0.1 GPa and 15 K (Dugdale and Simon, 1953).

Early melting experiments using DAC techniques by

Loubeyre et al. (1982) showed the existence of a cusp in

the melting line at 11.65 GPa and 299 K, suggesting the

existence of a new phase at higher pressures. Single-crystal

x-ray diffraction measurements at 300 K with DACs and

synchrotron radiation showed that solid helium forms an

hcp phase in the pressure range 15.6–23.3 GPa (Mao et al.,

1988); the stability of the hcp phase up to 58 GPa was

subsequently confirmed (Loubeyre et al., 1993). The melting

line has been measured experimentally to pressures of 24 GPa

by Vos, van Hinsberg, and Schouten (1990), and up to 41 GPa

by Datchi, Loubeyre, and LeToullec (2000) with a resistively

heated DAC. Recent measurements using laser-heated DACs

extended the melting line to pressures up to 80 GPa

(Santamaria-Perez et al., 2010). There is good agreement

in the measured melting lines up to 20 GPa, but the measure-

ments of Santamaria-Perez et al. (2010) are in disagreement

with an extrapolation of the measurements of Datchi,

Loubeyre, and LeToullec (2000) to higher pressures. On the

other hand, the extrapolation of the melting line of Vos, van

Hinsberg, and Schouten (1990) is in reasonable agreement

with that of Santamaria-Perez et al. (2010). This disagree-

ment has led to some controversy regarding the high-pressure

phase diagram of helium. Classical MD simulations using

empirical potentials suggested the existence of a fcc-bcc

phase transition above 12 GPa (Koi et al., 2007), providing

an alternative explanation to the measured cusp in the melting

line. But since these results strongly depend on the empirical

interatomic potential used to describe He, they do not resolve

the discrepancy.

Various first-principles studies of the metallization

transition in helium have been reported. The most recent

calculations by Khairallah and Militzer (2008) predict a

zero-temperature band-gap closure at 25.7 TPa, using both

QMC andGW methods. As expected, DFT calculations using

semilocal functionals predict a transition pressure that is 40%

smaller. On the other hand, perfect agreement is found be-

tween GW and QMC predictions. First-principles calcula-

tions of the elastic properties of solid helium were reported by

Nabi et al. (2005), showing good agreement with experi-

mental results (Zha, Mao, and Hemley, 2004).
Liquid helium at high pressures and temperatures has been

the subject of numerous studies. The principal Hugoniot was

measured using a two-stage light-gas gun, liquid helium at

4.3 K and 1 bar was shocked to 16 GPa and 12 000 K and

double shocked to pressures of 56 GPa and 21 000 K (Nellis

et al., 1984). The Hugoniot was recently extended to pres-

sures over 100 GPa by combining DACs and laser-driven

shock wave techniques (Eggert et al., 2008). Several precom-

pressed states were shocked, enabling the exploration of an

enlarged region of phase space.
Several chemical models for helium have been developed

(Saumon, Chabrier, and Horn, 1995; Juranek, Schwarz, and

Redmer, 2003; Winisdoerfer and Chabrier, 2005; Chen et al.,

2007), most of them built from perturbative expansions of the

free energy using theoretical helium interatomic potentials,

such as the Aziz potential (Aziz and Slaman, 1991) or the

Ceperley-Partridge potential (Ceperley and Partridge, 1986).

These models, e.g., SCVH, have been extensively used in

planetary models of Jovian planets. At low pressures, good

agreement is found between experiments and these models.

As pressure increases, electronic and thermal effects become

important and perturbative treatments become less accurate.

Available experimental input is very limited.
There are several first-principles studies of the thermody-

namic properties of liquid helium (Militzer, 2005, 2006;

2009; Kietzmann et al., 2007; Kowalski et al., 2007;

Vorberger et al., 2007b; Lorenzen, Holst, and Redmer,

2009; Morales et al., 2009), most of them using DFT-based

MD with a semilocal functional, e.g., the PBE functional.

Figure 19 shows a comparison of several Hugoniots of helium

as measured and predicted by chemical models or first-

principles simulations (Eggert et al., 2008).
A recent study compared the EOS of helium between DFT-

based BOMD and RPIMC methods (Militzer, 2009); RPIMC

was used for temperatures above 60 000 K and DFT-MD for

temperatures between 500 and 125 000 K, in the density

range 0:38–5:35 g=cm3. This work is particularly interesting

because it establishes the importance of the electronic tem-

perature in DFT-MD calculations and, in addition, compares

predictions of both simulation methods for temperatures

around 100 000 K, where both methods should be applicable

and accurate. Good agreement between the methods was

found for temperatures above 80 000 K, as long as the

thermal occupation of the electrons is taken into account in

DFT. These results suggest that the Born-Oppenheimer

approximation is good for calculating the equilibrium prop-

erties at temperatures below 100 000 K. Its influence on

dynamical properties at such high temperatures is still not

well established.
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At intermediate temperatures and pressures between 160
and 1600 GPa, the EOS has been studied in detail using
the CEIMC method (Morales, 2009). Figure 20 shows the
pressure of helium as a function of density as given by several
chemical models: DFT-based BOMD and QMC-based
CEIMC simulations. Good agreement exists between DFT
and QMC-based simulation methods with these conditions.
The chemical model, SCVH (Saumon, Chabrier, and Horn,
1995), agrees reasonably well with first-principles simulation
results; however, the WC model (Winisdoerfer and Chabrier,
2005) shows marked differences in magnitude and overall

density dependence. This comparison is further evidence that
DFT and QMC simulation methods agree well and thus make
robust predictions of the equilibrium thermodynamic proper-
ties of helium at high pressure.

2. Dynamic properties: Optical and transport properties

Advances over the last decade in the field of dynamic
compression, particularly in their diagnostic tools, enabled
the direct measurement of optical properties of helium at
pressures above 100 GPa and temperatures up to 60 000 K
(Ternovoi et al., 2002; Celliers et al., 2010). Figure 21 shows
the measured reflectivity of helium as a function of tempera-
ture and density along several Hugoniots with different initial
densities. The experiments suggest that helium undergoes an
insulator-to-metal transition as either density or temperature
is increased. The exact nature of the transition is still not
clear, especially at low temperatures in the liquid.

There have been various first-principles studies of
the optical properties of liquid helium at high pressure
(Kietzmann et al., 2007; Kowalski et al., 2007; Stixrude
and Jeanloz, 2008; Hamel, Morales, and Schwegler, 2011;
Lorenzen, Holst, and Redmer, 2011). Using linear-response
theory within the Kubo-Greenwood formulation and DFT,
Kowalski et al. (2007) calculated the band gap, conductivity,
reflectivity, index of refraction, and absorption coefficient as
a function of density and temperature. They studied the
influence of the DFT exchange-correlation potential on the
band gap of the liquid, clearly demonstrating the strong
reduction in the gap due to self-interaction errors in semilocal
functionals such as PBE. Using the GW method and hybrid-
DFT calculations, they were able to devise a simple correc-
tion to the optical properties obtained from semilocal func-
tionals, improving the agreement with experiment. They also
showed that the self-interaction errors decrease with increas-
ing temperature. Stixrude and Jeanloz (2008) also calculated
the band gap and the conductivity of liquid helium, extending
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FIG. 20 (color online). Comparison of the pressure of liquid

helium as a function of density, along an isotherm at T ¼
6000 K, between CEIMC (Morales, 2009), DFT-based BOMD

(Morales et al., 2009), and the SCVH (Saumon, Chabrier, and

Horn, 1995) and WC (Winisdoerfer and Chabrier, 2005) chemical

models.

FIG. 19 (color online). Measurements of the principle helium

Hugoniots for various initial densities. Symbols indicate the mea-

sured data, with open and closed symbols indicating whether the

shocked state is reflecting or opaque, respectively. The solid line is

the SCVH model (Saumon, Chabrier, and Horn, 1995) and the

dashed line, ab initio calculations (Militzer, 2006). The initial

(precompressed) He density, measured relative to the zero-pressure

density of the cryogenic liquid and indicated by �0

�L
, increases from

right to left. From Eggert et al., 2008.

FIG. 21 (color online). Reflectivity measurements of helium using

laser-driven dynamic compression (Celliers et al., 2010). Solid

diamonds show the observed reflectivity as a function of tempera-

ture and final density indicated by the color scale. Curves show the

reflectivity obtained from a fit to the data using the semiconductor

Drude model for three final state densities, from bottom to top: 0.8,

1.1, and 1:4 g=cm3. Triangles are calculated reflectivities by

Kowalski et al. (2007) near 1 g=cm3 with aþ 3 eV gap correction.

From Celliers et al., 2010.
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to temperatures up to 50 000 K and densities up to 6 g=cm3.

Their work showed that the gap closure occurs at much lower
pressures in the liquid compared to the solid and depends

strongly on temperature.
The first detailed study of the optical properties of

hydrogen-helium mixtures using first-principles simulations

came with the recent work of Hamel, Morales, and Schwegler

(2011), where the conductivity and reflectivity of the mixture
were calculated as a function of pressure, temperature, and

composition at pressures above 300 GPa and temperatures
above 4000 K. This corresponds to the region of pressure and

temperature where helium becomes immiscible in metallic

hydrogen (Morales et al., 2009). They use the frequency
dependence of the reflectivity for both a mixed and a phase

separated sample to predict a possible signature of phase

separation in dynamic-compression experiments. The con-
ductivity and miscibility of hydrogen-helium mixtures across

the dissociation regime has also been studied by Lorenzen,
Holst, and Redmer (2011) using first-principles methods.

B. Phase separation of H and He

The EOS of hydrogen-helium mixtures is a key ingredient
for the interior models of Jupiter, Saturn, and other hydrogen-

rich planets. In fact, the solubility of helium in hydrogen at
high pressure plays a crucial role in the correct description of

these planets. The giant planets typically radiate more energy

than they take in from the Sun. The current luminosity of
Jupiter is well described with an evolution model for a

convective homogeneous planet radiating energy left over

from its formation 4:55� 109 years ago. But a similar model
for Saturn seriously underestimates its current luminosity

(Hubbard et al., 1999). Although solar heating prolongs
the cooling time of Saturn, its influence is not enough to

reconcile its age with the expected time of formation. Hence,

an additional energy source playing a more important role in
Saturn than in Jupiter needs to be found.

Helium condensation was proposed as a possible

explanation for the excess luminosity in Saturn and the
helium depletion in the atmosphere of both giant planets

(Smoluchowski, 1967; Stevenson, 1975, 1979; Stevenson

and Salpeter, 1977a, 1977b). Suppose that there is a region
in the planet’s interior where helium is insoluble; helium

droplets will form and thereby act as a source of energy,
both through the release of latent heat and by descending

deeper into the center of the planet. Figure 22 shows a

schematic representation of three different scenarios for the
interior structure of Saturn based on possiblemixing properties

of helium in metallic hydrogen. Because Jupiter and Saturn

have different total masses, the thermodynamic conditions in
the planetary interiors could be such that this condensation

process is more prevalent in Saturn than in Jupiter. Although
this mechanism could explain most of the experimental ob-

servations in Saturn, an accurate understanding of the misci-

bility properties of helium on metallic hydrogen was only
recently obtained using first-principles simulations.

This problem of helium solubility in metallic hydrogen has

received great attention over the past 30 years. Before the
development of first-principles simulations, calculations used

perturbative treatments (Hansen, Torrie, and Vieillefosse,

1977; Pollock and Alder, 1977; Stevenson and Salpeter,
1977a, 1977b; Straus, Ashcroft, and Beck, 1977; Stevenson,
1979; Hubbard and DeWitt, 1985) of the mixture free energy
with assumed interactions between chemical species
(e.g., He, Heþ, H, Hþ, H2, etc.). Almost all calculations
assumed a fully pressure-ionized mixture in order to facilitate

the perturbative treatment. For the temperature and pressures
relevant to planetary modeling, the assumption of complete
ionization is now believed to be inaccurate, limiting the
reliability of those calculations. Although the details of
each calculation varied in terms of approach and complexity,
most calculations found that the critical temperature for

immiscibility decreased with increasing pressure and was
generally too low to explain the observed discrepancy in
the luminosity of Saturn (Fortney and Hubbard, 2004).

The first application of first-principles methods (Klepeis
et al., 1991) used DFT calculations based on the LDA to
calculate the enthalpy of mixing of alloys of hydrogen and
helium at zero temperature as a function of composition.
Using the ideal mixing approximation, they obtained a dem-
ixing temperature of 15 000 K for xHe ¼ 0:07, suggesting that
there should be phase separation in both Jupiter and Saturn.
However, their work neglected both the relaxation of the ionic
crystal after the introduction of helium and the disorder
characteristic of a fluid. Using FPMD simulations with the
Car-Parrinello technique Pfaffenzeller, Hohl, and Ballone
(1995) estimated the free energies of a mixture by a reweight-
ing technique from the pure hydrogen liquid. They found a

negligible temperature effect on the mixing free energy up to
temperatures of 3000 K, disregarded thermal effects in the
enthalpy of mixing, using instead the ideal mixing entropy.
They obtained immiscibility temperatures too low to allow
for differentiation in either Jupiter or Saturn.

FIG. 22 (color online). Three views of the interior of Saturn.

Indicated are the protosolar He/H ratio where color shows less

He, and more He. The center is the ice/rock core. The hashed

regions indicate molecular hydrogen, while the unhashed regions

indicate atomic metallic hydrogen. (1) Saturn at an age of

1:5� 109 years, before the onset of He phase separation. (2) The

current Saturn according to a previously proposed H-He phase

diagram (Stevenson, 1975). (3) The current Saturn according to a

phase diagram derived from new evolutionary models (2). From

Fortney, 2004.
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The first proper ab initio treatment of the problem came
recently with the work of Morales et al. (2009). Using a

combination of DFT-based BOMD calculations and thermo-
dynamic integration, they calculated the Gibbs free energy of
mixing as a function of pressure, temperature, and composi-
tion without resorting to the ideal mixing approximation.

Independent DFT-based BOMD calculations, by Lorenzen,
Holst, and Redmer (2009), of the Gibbs free energy with the
ideal mixing approximation for the entropy were also done.

The two calculations agree very well in the regime where
ideal mixing is valid.

To determine when the H-He system is mixed, one needs
the Gibbs free energy as a function of pressure, temperature,
and composition. The free energy is important, not only to

calculate the critical concentrations, but also to produce
accurate equations of state for planetary modeling. In the
case of H-He mixtures, the ideal mixing approximation sig-
nificantly affects the resulting properties of planets and needs

to be removed by direct calculation of the free energy.
Simulation methods such as Monte Carlo and molecular

dynamics calculate ensemble averages of properties such as
energy, pressure, density, etc. Free energies, or any property
that directly involves the entropy, must be calculated by

integrating along a thermodynamic pathway from a many-
body system with known free energy (Frenkel and Smit,
2002). Until recently, this extra integration, in combination

with the high computational cost of first-principles simula-
tions, prevented the evaluation of the Gibbs free energy of
H-He mixtures. Morales et al. (2009) used a coupling
constant integration to determine the free-energy difference

between a DFT description of the mixtures and that of a pair-
potential model tuned to produce a reasonable description of
the DFT model. The pair-potential simulation is many orders

of magnitude faster than that of the first-principles model and
its free energy can be calculated by integrating from the limit
of zero density.8

Using energies and pressures from ab initio BOMD simu-
lations on a grid of temperatures and densities, Morales et al.

(2009) calculated free energies for pressures between 300 and
1800 GPa, and temperatures between 4000 and 10000 K. In
Fig. 23, the Gibbs free energy of mixing is shown as a
function of composition, as calculated by Lorenzen, Holst,

and Redmer (2009) and Morales et al. (2009), at a pressure of
400 GPa. The strong temperature dependences of the immis-
cibility properties of the mixture are apparent from these

results. A weak pressure dependence on the mixing free
energies at low helium compositions is found. This leads to
a weak dependence of critical mixing temperatures for com-
positions relevant to planetary interiors. Note how the Gibbs

free energies reported by the different calculations agree well
at low helium fractions, but disagree as the helium fraction
increases.

As shown in Morales et al. (2009), the structure of hydro-
gen is strongly influenced by the helium concentration. The

inert character of a helium atom makes it insensitive to
changes in the local environment, however, a proton is very
sensitive. While at low xHe hydrogen is in the monoatomic

fully ionized state, an effective proton-proton attraction remi-

niscent of the molecular bonding develops upon increasing

xHe, even at very high pressures and temperatures. Figure 24

shows the proton-proton radial distribution functions for

mixtures with various helium concentrations, at 8000 K for

the density rs ¼ 1:05. A molecularlike peak builds up

smoothly as xHe ! 1. The inert helium inhibits the delocal-

ization of the hydrogenic electrons, enhancing the formation

of weak molecular bonds with short lifetimes. A similar

stabilization of molecular hydrogen by helium, but at much

lower temperature and density, has been previously reported
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FIG. 24 (color online). The effect of increasing concentrations of

helium on the proton-proton radial distribution function (Morales

et al., 2009) for various compositions at a temperature of 8000 K

and an electronic density given by rs ¼ 1:05; helium fractions from

top to bottom: xHe ¼ 0:9, xHe ¼ 0:8, xHe ¼ 0:6, and xHe ¼ 0:0.
Inset: Excess entropic contribution of the Gibbs free energy of

mixing, in mHa/atom, for several temperatures at a pressure of

800 GPa: T ¼ 6000 K, T ¼ 8000 K, and T ¼ 10 000 K.

8Care must be taken to ensure that first-order phase transitions are

not crossed during the integration.
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close to the dissociation regime in pure hydrogen by
Vorberger, Tamblyn, Militzer,and Bonev (2007).

The change in the chemical properties of hydrogen pro-
duced by helium induces nonlinear effects in the mixing
functions. Figure 24 shows the excess nonideal entropic
contribution to the Helmholtz free energy, defined as
SexcessðxÞ ¼ SðxÞ þ ½x lnðxÞ þ ð1� xÞ lnð1� xÞ�, at a pres-
sure of 800 GPa. It is zero up to a helium fraction of xHe �
0:2, and increases after this point. As long as the fraction of
helium is not large enough to induce the pseudomolecular
state in hydrogen, the ideal mixing approximation for the
entropy is good. Once the pseudomolecular state emerges,
nonlinear corrections to the mixing entropy appear and the
full mixing free energy is needed to obtain an accurate de-
scription of the immiscibility process. The nonlinear mixing
entropy is roughly 3 mHa=atom at high helium fraction, com-
parable to the mixing Gibbs free energy. Calculations ignoring
the excess produce accurate results for xHe < 0:2, but non-
physical stable mixtures for xHe < 0:5; compare Fig. 23 with
the inset in Fig. 24. The difference between results of
Lorenzen, Holst, and Redmer (2009) and Morales et al.
(2009) is well explained by the presence of a minimum in
Lorenzen’s mixing Gibbs free energies at xHe � 0:8 leading to
demixing temperatures about 700 K higher. Otherwise the
agreement between the calculations is excellent.

Figure 25 shows a comparison of demixing temperatures as
a function of composition for several calculations described
above. A prominent feature of the recent first-principles
calculations is that pressure has only a moderate effect on
the immiscibility process. For a fixed helium fraction, the
demixing temperature changes by approximately 500 K in a
pressure range of 800 GPa for the relevant concentrations of
He (5%–10%). Immiscibility occurs at temperatures well
below those required to produce ionization in helium
(Stevenson, 2008); models with fully ionized He atoms are

not appropriate for describing the pressure dependence of the
demixing temperature. At pressures much higher than those
discussed here, metallization of helium will play an important
role and should produce significant changes to the pressure
dependence of the immiscibility temperature.

Recent estimates of the demixing temperature have impor-
tant implications for the study of the interior structure of
hydrogen-rich planets, especially Saturn. First-principles re-
sults support the scenario that He becomes partially miscible
in the intermediate layers of the planet, with the excess
helium falling toward the core through gravitational differ-
entiation. Whether the immiscible region is large enough to
account for all the observed properties of Saturn is yet to be
determined, but it is clear that planetarymodels should include
phase separation. In general, the new DFT-based EOS could
make a significant modification to interior models calculated
with the SCVH EOS (Saumon, Chabrier, and Horn, 1995).
While models of Jupiter based on first-principles EOS are
beginning to appear (Militzer et al., 2008; Nettelmann
et al., 2012), there is not yet a clear consensus on some of
the details of the models. Nonetheless, the use of the new EOS
is an important step forward which should help obtain more
accurate models of planetary interiors.

VI. CONCLUSIONS AND OUTLOOK

The last two decades have witnessed enormous progress in
our understanding of high-pressure hydrogen, helium, and
their mixtures, due in large part to the synergy between
experiment and theory. We focused primarily on what was
learned from numerical simulations, much of which occurred
only recently, now that such methods and computer hardware
have advanced to the point where important questions can be
reliably answered.

Unfortunately, uncertainties in experimental findings are
still rather large, and achievable pressures and temperatures
are limited. Thus, experiments alone cannot yet provide
enough definitive information. One outstanding constraint,
for example, is that DAC experiments at low temperatures
have not been able to reach pressures where hydrogen con-
clusively becomes an atomic metal. Even though the recent
experiment by Eremets and Troyan (2011) in fact claims to
have achieved this, this interpretation is both controversial
(Jephcoat, 2011; Nellis, Ruoff, and Silvera, 2012) and incon-
sistent with the semimetallic behavior seen by Howie et al.
(2012) and Zha, Liu, and Hemley (2012) under similar
thermodynamic conditions. Going forward, impressive ad-
vances may come from new laser shock facilities, but the
results will likely continue to have large uncertainties.
Nonetheless, we encourage such experiments to utilize any
advances to verify the predictions that have already been
made, such as those concerning the LLT and H-He demixing.

First-principles simulations will likely continue to play a
crucial role in our understanding of hydrogen, helium, and
othermaterials at both extreme and normal conditions. A small
selection of the recent successes of simulations have been
(i) the prediction of the reentrant nature of the melting line
of molecular hydrogen, validated by several experiments;
(ii) the prediction of a maximum compression (of �4–4:5)
along the principal Hugoniot of cryogenic deuterium, which
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first was at variancewith laser-induced shock experiments, but

then later confirmed by several others; (iii) the prediction of a

LLT using both CEIMC and FPMD, which, while it has

received some experimental support, still requires a systematic

experimental validation; and (iv) the prediction of the demix-

ing temperature in H-He mixtures, results which can account

for the differences in luminosity between Jupiter and Saturn.

Other predictions have been made as well, but most still

require experimental verification, such as the precise crystal

structures and superconductivity in dense solid hydrogen.
Considering differences among simulation methods, away

from metallization and molecular dissociation, FPMD and

DFT methods are very accurate when compared to experi-

ments and higher-level methods (e.g., CEIMC and RPIMC).

As an example of their utility, there are programs underway to

make a complete survey of the phase diagrams for all values

of pressure, temperature, and composition using FPMD, as

well as RPIMC. The metallization region though is of par-

ticular importance for planetary modeling, for fundamental

physics understanding at low temperature, and for ICF appli-

cations at high temperature. This region highlights an impor-

tant difference among simulation methods. Current FPMD

methods, based on the GGA functional within DFT, have

errors as a result of the limitations in treating excited states

and band gaps. Quantitative predictions in this region thus

require a more accurate description of electronic correlation,

such as via QMC methods or the use of more sophisticated

and complex functionals in DFT.
Considering QMC methods, in particular, one of the major

issues of past simulations has been a lack of convergence, in

terms of the number of particles, size of basis set(s), number

of reciprocal lattice vectors, length of time of dynamics, etc.

While it is true that the phases of hydrogen are very sensitive

to such issues, the systematic growth in the power of the

algorithms and computational resources means that it is now

becoming possible to routinely eliminate such errors, which

is refining our understanding of dense hydrogen. The funda-

mental bottleneck that remains in such methods though is the

fermion sign problem that was briefly discussed in Sec. II. If

this were solved, QMC methods could compute completely

reliable solutions to the many-body quantum equations.

Although such exact methods are either severely limited in

the number of electrons or only give an upper bound to the

internal energy. It is important to realize that progress can still

be made via QMC methods, even without solving the sign

problem. This is because, first, it is a scaling issue; it is

possible to calculate exact properties of smaller systems

(say dozens of atoms), a number which is expected to in-

crease in the future, and these systems can then act as bench-

marks for fixed-node QMC methods that scale to much larger

sizes. Second, the variational fixed-node principle gives an

absolute signal when one has improved the trial wave func-

tion (an upper bound principle is lacking in DFT); substantial

progress has been made in finding better trial wave functions.

Third, accumulated experience suggests that the fixed-node

errors using existing trial wave functions are quite small for

hydrogen and helium systems at high pressures, at least in the

normal liquid and solid phases.
An important issue is the effect of the ZPM of the nuclei.

Such effects are likely to be important, for example, on the

metallization transition below �1000 K, since they become

more relevant as the temperature is lowered. As another

example, the inclusion of these effects can change the relative

stability of the low-temperature solid phases altogether

(Natoli, Martin, and Ceperley, 1993). It is important to realize

that these effects cannot be described by approximate meth-

ods (e.g., the self-consistent harmonic approximations), and

to achieve definitive predictions of ordered quantum states,

such as a low- or zero-temperature quantum fluid or

superconductivity, complete and rigorous treatments of

hydrogen including ZPM will be needed.
Despite the successes of both simulations and experiments,

many properties of hydrogen remain unresolved. Some of the

most basic questions that need answering concern low-

temperature behavior: A number of structures have been

predicted for phases II, III, and IV of molecular hydrogen,

but the agreement with experiment is not perfect; are they

correct? And, are the predicted phases at pressures beyond III

and IV correct as well? How does the IM transition occur, and

is this related to the molecular-to-atomic transition? Are the

recently proposed atomic structures via studies employing the

harmonic approximation for ZPM correct? Or, does ZPM

destabilize the solid lattice, giving a low- or zero-temperature

quantum fluid? If not, at what pressure does the melting reach

a minimum, and what is its value?
The use of advanced simulation methods, in particular,

FPMD based on DFT, RPIMC, and CEIMC will play pivotal

roles in answering the above questions. Most of the problems

that have held back any progress have been solved to a large

extent, allowing important questions to be addressed. For

example, simulations can now calculate the EOS to the

accuracy needed for planetary modeling; EOS tables accurate

to a few percent are already available in certain regions of

phase space. We anticipate that in the next few years the

computation and testing of these will be completed, and that

accurate equilibrium properties for arbitrary H-He mixtures

may be available as well. As another example, advances in

correlated methods can now compute properties such as

electrical and thermal conductivity, viscosity, and opacity,

which are vital ingredients not only in planetary models but

also in many other applications of matter under extreme

conditions.
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