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Station 12, 1015 Lausanne, Switzerland

Arash A. Mostofi

Departments of Materials and Physics, and the Thomas Young Centre for Theory
and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom

Jonathan R. Yates

Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH,
United Kingdom

Ivo Souza

Centro de Fı́sica de Materiales (CSIC) and DIPC, Universidad del Paı́s Vasco,
20018 San Sebastián, Spain and Ikerbasque Foundation, 48011 Bilbao, Spain

David Vanderbilt

Department of Physics and Astronomy, Rutgers University, Piscataway,
New Jersey 08854-8019, USA

(published 10 October 2012)

The electronic ground state of a periodic system is usually described in terms of extended Bloch

orbitals, but an alternative representation in terms of localized ‘‘Wannier functions’’ was

introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier

representations is realized by families of transformations in a continuous space of unitary

matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed

that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation

into a unique set of maximally localized Wannier functions, accomplishing the solid-state

equivalent of constructing localized molecular orbitals, or ‘‘Boys orbitals’’ as previously known

from the chemistry literature. These developments are reviewed here, and a survey of the

applications of these methods is presented. This latter includes a description of their use in

analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric

polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which

quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer

meshes at low cost, and applications in which Wannier functions are used as efficient basis

functions are discussed. Finally the construction and use of Wannier functions outside the context

of electronic-structure theory is presented, for cases that include phonon excitations, photonic

crystals, and cold-atom optical lattices.
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I. INTRODUCTION

In the independent-particle approximation, the electronic
ground state of a system is determined by specifying a set of
one-particle orbitals and their occupations. For the case of a
periodic system, these one-particle orbitals are normally
taken to be the Bloch functions c nkðrÞ that are labeled,

according to Bloch’s theorem, by a crystal momentum k
lying inside the Brillouin zone (BZ) and a band index n.
Although this choice is by far the most widely used in

electronic-structure calculations, alternative representations

are possible. In particular, to arrive at the Wannier represen-

tation (Wannier, 1937; Kohn, 1959; des Cloizeaux, 1963),

one carries out a unitary transformation from the Bloch

functions to a set of localized ‘‘Wannier functions’’ (WFs)

labeled by a cell indexR and a bandlike index n, such that in

a crystal the WFs at different R are translational images of

one another. Unlike Bloch functions, WFs are not eigenstates

of the Hamiltonian; in selecting them, one trades off local-

ization in energy for localization in space.
In the earlier solid-state theory literature, WFs were typi-

cally introduced in order to carry out some formal derivation,

for example, of the effective-mass treatment of electron

dynamics, or of an effective spin Hamiltonian, but actual

calculations of the WFs were rarely performed. The history

is rather different in the chemistry literature, where ‘‘localized

molecular orbitals’’ (LMOs) (Boys, 1960, 1966; Foster and

Boys, 1960a, 1960b; Edmiston and Ruedenberg, 1963) have

played a significant role in computational chemistry since its

early days. Chemists have emphasized that such a representa-

tion can provide an insightful picture of the nature of the

chemical bond in a material, otherwise missing from the

picture of extended eigenstates, or can serve as a compact

basis set for high-accuracy calculations.
The actual implementation of Wannier’s vision in the con-

text of first-principles electronic-structure calculations, such as

those carried out in the Kohn-Sham framework of density-

functional theory (DFT) (Kohn and Sham, 1965), has instead

been slower to unfold. A major reason for this is that WFs are

strongly nonunique. This is a consequence of the phase in-

determinacy that Bloch orbitals c nk have at every wave vector

k, or, more generally, the ‘‘gauge’’ indeterminacy associated

with the freedom to apply any arbitrary unitary transformation

to the occupied Bloch states at each k. This second indetermi-

nacy is all the more troublesome in the common case of

degeneracy of the occupied bands at certain high-symmetry

points in the Brillouin zone, making a partition into separate

‘‘bands,’’ that could separately be transformed into Wannier

functions, problematic. Therefore, even before one could at-

tempt to compute the WFs for a given material, one has first to

resolve the question of which states to use to compute WFs.
An important development in this regard was the introduc-

tion by Marzari and Vanderbilt (1997) of a ‘‘maximal-

localization’’ criterion for identifying a unique set of WFs

for a given crystalline insulator. The approach is similar in

spirit to the construction of LMOs in chemistry, but its imple-

mentation in the solid-state context required significant devel-

opments, due to the ill-conditioned nature of the position

operator in periodic systems (Nenciu, 1991), that was clarified

in the context of the ‘‘modern theory’’ of polarization (King-

Smith and Vanderbilt, 1993; Resta, 1994). Marzari and

Vanderbilt showed that the minimization of a localization

functional corresponding to the sum of the second-moment

spread of each Wannier charge density about its own center of

charge was both formally attractive and computationally

tractable. In a related development, Souza, Marzari, and

Vanderbilt (2001) generalized the method to handle the
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case in which one wants to construct a set of WFs that spans a

subspace containing, e.g., the partially occupied bands of

a metal.
These developments touched off a transformational shift in

which the computational electronic-structure community

started constructing maximally localized WFs (MLWFs) ex-

plicitly and using these for different purposes. The reasons

are manifold: WFs, akin to LMOs in molecules, provide an

insightful chemical analysis of the nature of bonding, and its

evolution during, say, a chemical reaction. As such, they

have become an established tool in the postprocessing of

electronic-structure calculations. More interestingly, there

are formal connections between the centers of charge of the

WFs and the Berry phases of the Bloch functions as they are

carried around the Brillouin zone. This connection is

embodied in the microscopic modern theory of polarization,

alluded to above, and has led to important advances in the

characterization and understanding of dielectric response and

polarization in materials. Of broader interest to the entire

condensed-matter community is the use of WFs in the con-

struction of model Hamiltonians for, e.g., correlated-electron

and magnetic systems. An alternative use of WFs as local-

ized, transferable building blocks has taken place in the

theory of ballistic (Landauer) transport, where Green’s func-

tions and self-energies can be constructed effectively in a

Wannier basis, or that of first-principles tight-binding (TB)

Hamiltonians, where chemically accurate Hamiltonians are

constructed directly on the Wannier basis, rather than fitted

or inferred from macroscopic considerations. Finally, the

ideas that were developed for electronic WFs have also

seen application in very different contexts. For example,

MLWFs have been used in the theoretical analysis of pho-

nons, photonic crystals, cold-atom lattices, and the local

dielectric responses of insulators.
Here we review these developments. We first introduce the

transformation from Bloch functions to WFs in Sec. II, dis-

cussing their gauge freedom and the methods developed for

constructing WFs through projection or maximal localiza-

tion. A ‘‘disentangling procedure’’ for constructing WFs for a

nonisolated set of bands (e.g., in metals) is also described. In

Sec. III we discuss variants of these procedures in which

different localization criteria or different algorithms are used,

and discuss the relationship to ‘‘downfolding’’ and linear-

scaling methods. Section IV describes how the calculation of

WFs has proved to be a useful tool for analyzing the nature of

the chemical bonding in crystalline, amorphous, and defec-

tive systems. Of particular importance is the ability to use

WFs as a local probe of electric polarization, as described in

Sec. V. There we also discuss how the Wannier representation

has been useful in describing orbital magnetization, NMR

chemical shifts, orbital magnetoelectric responses, and

topological insulators (TIs). Section VI describes Wannier

interpolation schemes, by which quantities computed on a

relatively coarse k-space mesh can be used to interpolate

faithfully onto an arbitrarily fine k-space mesh at relatively

low cost. In Sec. VII we discuss applications in which the

WFs are used as an efficient basis for the calculations of

quantum-transport properties, the derivation of semiempirical

potentials, and for describing strongly correlated systems.

Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR� ¼ 0 ) c nkðrÞ ¼ unkðrÞeik�r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik�r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose

w0(x)

Wannier functions

w1(x)

w2(x)

ψk0
(x)

Bloch functions

ψk1
(x)

ψk2
(x)

FIG. 1 (color online). Transformation from Bloch functions to

Wannier functions (WFs). Left: Real-space representation of three

of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate

lattice vectors, and thin lines indicate the eikx envelopes of each

Bloch function. Right: WFs associated with the same band, forming

periodic images of one another. The two sets of Bloch functions at

every k in the Brillouin zone and WFs at every lattice vector span

the same Hilbert space.
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equal amplitudes all across the Brillouin zone. Thus, we can
construct

w0ðrÞ ¼ V

ð2�Þ3
Z
BZ

dkc nkðrÞ; (2)

where V is the real-space primitive cell volume and the
integral is carried over the BZ. (See Sec. II.A.3 for normal-
ization conventions.) Equation (2) can be interpreted as the
WF located in the home unit cell, as sketched in the top-right
panel of Fig. 1.

More generally, we can insert a phase factor e�ik�R into the
integrand of Eq. (2), where R is a real-space lattice vector;
this has the effect of translating the real-space WF by R,
generating additional WFs such as w1 and w2 sketched in
Fig. 1. Switching to the Dirac bra-ket notation and introduc-
ing the notation that Rn refers to the WF wnR in cell R
associated with band n, WFs can be constructed according to
(Wannier, 1937)

jRni ¼ V

ð2�Þ3
Z
BZ

dke�ik�Rjc nki: (3)

It is easily shown that the jRni form an orthonormal set (see
Sec. II.A.3) and that two WFs jRni and jR0ni transform into
each other under translation by the lattice vector R�R0
(Blount, 1962). Equation (3) takes the form of a Fourier
transform, and its inverse transform is

jc nki ¼
X
R

eik�RjRni (4)

(see Sec. II.A.3). Any of the Bloch functions on the left side
of Fig. 1 can thus be built up by linearly superposing the
WFs shown on the right side, when the appropriate phases
eik�R are used.

The transformations of Eqs. (3) and (4) constitute a unitary
transformation between Bloch and Wannier states. Thus, both
sets of states provide an equally valid description of the band
subspace, even if the WFs are not Hamiltonian eigenstates.
For example, the charge density obtained by summing the
squares of the Bloch functions jc nki or the WFs jRni is
identical; a similar reasoning applies to the trace of any
one-particle operator. The equivalence between the Bloch
and Wannier representations can also be made manifest by
expressing the band projection operator P in both represen-
tations, i.e., as

P ¼ V

ð2�Þ3
Z
BZ

dkjc nkihc nkj ¼
X
R

jRnihRnj: (5)

WFs thus provide an attractive option for representing the
space spanned by a Bloch band in a crystal, being localized
while still carrying the same information contained in the
Bloch functions.

1. Gauge freedom

The theory of WFs is made more complex by the presence
of a ‘‘gauge freedom’’ that exists in the definition of the c nk.
In fact, we can replace

j ~c nki ¼ ei’nðkÞjc nki; (6)

or, equivalently,

j~unki ¼ ei’nðkÞjunki; (7)

without changing the physical description of the system, with
’nðkÞ being any real function that is periodic in reciprocal
space.1 A smooth gauge could, e.g., be defined such that
rkjunki is well defined at all k. Henceforth we assume that
the Bloch functions on the right-hand side of Eq. (3) belong to
a smooth gauge, since we would not get well-localized WFs
on the left-hand side otherwise. This is typical of Fourier
transforms: the smoother the reciprocal-space object, the
more localized the resulting real-space object, and vice versa.

One way to see this explicitly is to consider the R ¼ 0
home cell wn0ðrÞ evaluated at a distant point r; using Eq. (1)
in Eq. (3), this is given by

R
BZ unkðrÞeik�rdk, which will be

small due to cancellations arising from the rapid variation of
the exponential factor, provided that unk is a smooth function
of k (Blount, 1962).

It is important to realize that the gauge freedom of
Eqs. (6) and (7) propagates into the WFs. That is, different
choices of smooth gauge correspond to different sets of WFs
having in general different shapes and spreads. In this sense,
the WFs are ‘‘more nonunique’’ than the Bloch functions,
which acquire only a phase change. We also emphasize that
there is no ‘‘preferred gauge’’ assigned by the Schrödinger
equation to the Bloch orbitals. Thus, the nonuniqueness of the
WFs resulting from Eq. (3) is unavoidable.

2. Multiband case

Before discussing how this nonuniqueness might be re-
solved, we first relax the condition that band n be a single
isolated band, and consider instead a manifold of J bands that
remain separated with respect to any lower or higher bands
outside the manifold. Internal degeneracies and crossings
among the J bands may occur in general. In the simplest
case this manifold corresponds to the occupied bands of an
insulator, but more generally it consists of any set of bands that
is separated by a gap from both lower and higher bands
everywhere in the Brillouin zone. Traces over this band mani-
fold are invariant with respect to any unitary transformation
among the J Bloch orbitals at a given wave vector, so it is
natural to generalize the notion of a ‘‘gauge transformation’’ to

j ~c nki ¼
XJ
m¼1

UðkÞ
mnjc mki: (8)

Here UðkÞ
mn is a unitary matrix of dimension J that is periodic in

k, with Eq. (6) corresponding to the special case of a diagonal
U matrix. It follows that the projection operator onto this band
manifold at wave vector k

Pk ¼ XJ
n¼1

jc nkihc nkj ¼
XJ
n¼1

j ~c nkih ~c nkj (9)

1More precisely, the condition is that ’nðkþGÞ¼’nðkÞþG��R
for any reciprocal-lattice translation G, where �R is a real-space

lattice vector. This allows for the possibility that ’n may shift by 2�
times an integer upon translation by G; the vector �R expresses the

corresponding shift in the position of the resulting WF.

1422 Marzari et al.: Maximally localized Wannier functions: Theory . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



is invariant, even though the j ~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4� 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center � as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of �. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j ~c nki of Eq. (8) obey
the smoothness condition that rkj ~c nki remains regular at all
k. Then, when these j ~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2�Þ3
Z
BZ

dke�ik�R XJ
m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f�g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2�Þ3
V

�nm�
3ðk� k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
�RR0�nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions

(MLWFs) constructed from the four valence bands of Si (a) and

GaAs [(b); Ga at upper right, As at lower left], displaying the

character of �-bonded combinations of sp3 hybrids. Isosurfaces of

different shades of gray correspond to two opposite values for the

amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)

or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic

boundary conditions on the Bloch wave functions over a supercell in

real space. Thus, it should be kept in mind that the WFs given by

Eqs. (12) and (14) are not truly localized, as they also display the

supercell periodicity (and are normalized to a supercell volume).

Under these circumstances the notion of ‘‘Wannier localization’’

refers to localization within one supercell, which is meaningful for

supercells chosen large enough to ensure negligible overlap between

a WF and its periodic images.
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jc nki ¼
X
R

eik�RjRni

m
jRni ¼ 1

N

X
k

e�ik�Rjc nki

(12)

with hc nkjc mk0 i ¼ N�nm�kk0 , so that Eq. (5) becomes, after
generalizing to the multiband case,

P ¼ 1

N

X
nk

jc nkihc nkj ¼
X
nR

jRnihRnj: (13)

Another commonly used convention is to write

jc nki ¼ 1ffiffiffiffi
N

p X
R

eik�RjRni

m
jRni ¼ 1ffiffiffiffi

N
p X

k

e�ik�Rjc nki;

(14)

with hc nkjc mk0 i ¼ �nm�kk0 and Eq. (13) replaced by

P ¼ X
nk

jc nkihc nkj ¼
X
nR

jRnihRnj: (15)

In either case, it is convenient to keep the junki func-
tions normalized to the unit cell, with inner products involv-
ing them, such as humkjunki, understood as integrals over
one unit cell. In the case of Eq. (14), this means that
unkðrÞ ¼

ffiffiffiffi
N

p
e�ik�rc nkðrÞ.

B. Wannier functions via projection

A simple yet often effective approach for constructing a
smooth gauge in k, and a corresponding set of well-localized
WFs, is by projection, an approach that finds its roots in the
analysis of des Cloizeaux (1964a). Here, as discussed, e.g., in
Sec. IV.G.1 of Marzari and Vanderbilt (1997), one starts from
a set of J localized trial orbitals gnðrÞ corresponding to some
rough guess for the WFs in the home unit cell. Returning to
the continuous-k formulation, these gnðrÞ are projected onto
the Bloch manifold at wave vector k to obtain

j�nki ¼
XJ
m¼1

jc mkihc mkjgni; (16)

which are typically smooth in k space, albeit not orthonor-
mal. (The integral in hc mkjgni is over all space as usual.) We
note that in actual practice such projection is achieved by first
computing a matrix of inner products ðAkÞmn ¼ hc mkjgni
and then using these in Eq. (16). The overlap matrix ðSkÞmn ¼
h�mkj�nkiV ¼ ðAy

kAkÞmn (where subscript V denotes an in-

tegral over one cell) is then computed and used to construct
the Löwdin-orthonormalized Bloch-like states

j ~c nki ¼
XJ
m¼1

j�mkiðS�1=2
k Þmn: (17)

These j ~c nki have now a smooth gauge in k, are related to the
original jc nki by a unitary transformation,3 and when

substituted into Eq. (3) in place of the jc nki result in a set
of well-localized WFs. We note that the j ~c nki are uniquely
defined by the trial orbitals gnðrÞ and the chosen (isolated)
manifold, since any arbitrary unitary rotation among the
jc nki orbitals cancels out exactly and does not affect the
outcome of Eq. (16), thus eliminating any gauge freedom.

We emphasize that the trial functions do not need to
resemble the target WFs closely; it is often sufficient to
choose simple analytic functions (e.g., spherical harmonics
times Gaussians) provided they are roughly located on sites
where WFs are expected to be centered and have appropriate
angular character. The method is successful as long as the
inner-product matrix Ak does not become singular (or nearly
so) for any k, which can be ensured by checking that the ratio
of maximum and minimum values of det Sk in the Brillouin
zone does not become too large. For example, spherical
(s-like) Gaussians located at the bond centers will suffice
for the construction of well-localized WFs, akin to those
shown in Fig. 2, spanning the four occupied valence bands
of semiconductors such as Si and GaAs.

C. Maximally localized Wannier functions

The projection method described in Sec. II.B has been used
by many (Stephan, Martin, and Drabold, 2000; Ku et al.,
2002; Lu et al., 2004; Qian et al., 2008), as has a related
method involving downfolding of the band structure onto a
minimal basis (Andersen and Saha-Dasgupta, 2000; Zurek,
Jepsen, and Andersen, 2005); some of these approaches will
also be discussed in Sec. III.B. Others made use of symmetry
considerations, analyticity requirements, and variational pro-
cedures (Sporkmann and Bross, 1994, 1997; Smirnov and
Usvyat, 2001). Avery general and now widely used approach,
however, has been that developed by Marzari and Vanderbilt
(1997) in which localization is enforced by introducing a

well-defined localization criterion, and then refining the UðkÞ
mn

in order to satisfy that criterion. We first give an overview
of this approach and then provide details in the following
sections.

First, the localization functional

� ¼ X
n

½h0njr2j0ni � h0njrj0ni2� ¼ X
n

½hr2in � �r2n�

(18)

is defined, measuring the sum of the quadratic spreads of the
J WFs in the home unit cell around their centers. This turns
out to be the solid-state equivalent of the Foster-Boys crite-
rion of quantum chemistry (Boys, 1960, 1966; Foster and
Boys, 1960a, 1960b). The next step is to express � in terms
of the Bloch functions. This requires some care, since expec-
tation values of the position operator are not well defined in
the Bloch representation. The needed formalism will be
discussed briefly in Sec. II.C.1 and more extensively in
Sec. V.A.1, with much of the conceptual work stemming
from the earlier development of the modern theory of polar-
ization (Blount, 1962; Resta, 1992, 1994; King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993).

Once a k-space expression for � has been derived, maxi-
mally localized WFs are obtained by minimizing it with

respect to the UðkÞ
mn appearing in Eq. (10). This is done as a

3One can prove that this transformation is unitary by performing

the singular value decomposition A ¼ ZDWy, with Z andW unitary

and D real and diagonal. It follows that AðAyAÞ�1=2 is equal to

ZWy, and thus unitary.
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postprocessing step after a conventional electronic-structure
calculation has been self-consistently converged and a set of
ground-state Bloch orbitals jc mki has been chosen once and

for all. The UðkÞ
mn are then iteratively refined in a direct

minimization procedure of the localization functional that is
outlined in Sec. II.D. This procedure also provides the ex-
pectation values hr2in and �rn; the latter, in particular, are the
primary quantities needed to compute many of the properties,
such as the electronic polarization, discussed in Sec. V. If

desired, the resulting UðkÞ
mn can also be used to explicitly

construct the maximally localized WFs via Eq. (10). This
step is typically only necessary, however, if one wants to
visualize the resulting WFs or to use them as basis functions
for some subsequent analysis.

1. Real-space representation

An interesting consequence stemming from the choice of
Eq. (18) as the localization functional is that it allows a
natural decomposition of the functional into gauge-invariant
and gauge-dependent parts. That is, we can write

� ¼ �I þ ~�; (19)

where

�I ¼
X
n

�
h0njr2j0ni �X

Rm

jhRmjrj0nij2
�

(20)

and

~� ¼ X
n

X
Rm�0n

jhRmjrj0nij2: (21)

It can be shown that not only ~� but also �I is positive
definite, and moreover that �I is gauge invariant, i.e., invari-
ant under any arbitrary unitary transformation (8) of the
Bloch orbitals (Marzari and Vanderbilt, 1997). This follows
straightforwardly from recasting Eq. (20) in terms of the
band-group projection operator P, as defined in Eq. (15),
and its complement Q ¼ 1� P:

�I ¼
X
n�

h0njr�Qr�j0ni ¼
X
�

Trc½Pr�Qr��: (22)

The subscript ‘‘c’’ indicates trace per unit cell. Clearly �I is
gauge invariant, since it is expressed in terms of projection
operators that are unaffected by any gauge transformation. It
can also be seen to be positive definite by using the idempo-
tency of P and Q to write �I ¼

P
�Trc½ðPr�QÞðPr�QÞy� ¼P

�jjPr�Qjj2c .
The minimization procedure of � thus actually corre-

sponds to the minimization of the noninvariant part ~� only.
At the minimum, the off-diagonal elements jhRmjrj0nij2 are
as small as possible, realizing the best compromise in the
simultaneous diagonalization, within the subspace of the
Bloch bands considered, of the three position operators x,
y, and z, which do not in general commute when projected
onto this space.

2. Reciprocal-space representation

As shown by Blount (1962), matrix elements of the posi-
tion operator between WFs take the form

hRnjrj0mi ¼ i
V

ð2�Þ3
Z

dkeik�Rhunkjrkjumki (23)

and

hRnjr2j0mi ¼ � V

ð2�Þ3
Z

dkeik�Rhunkjr2
kjumki: (24)

These expressions provide the needed connection with our
underlying Bloch formalism, since they allow one to express
the localization functional � in terms of the matrix elements
of rk and r2

k. In addition, they allow one to calculate the

effects on the localization of any unitary transformation of the
junki without having to recalculate expensive (especially
when plane-wave basis sets are used) scalar products. We
thus determine the Bloch orbitals jumki on a regular mesh of
k points and use finite differences to evaluate the above
derivatives. In particular, we make the assumption that the
BZ has been discretized into a uniform Monkhorst-Pack
mesh, and the Bloch orbitals have been determined on that
mesh.4

For any fðkÞ that is a smooth function of k, it can be shown
that its gradient can be expressed by finite differences as

rfðkÞ ¼ X
b

wbb½fðkþ bÞ � fðkÞ� þOðb2Þ (25)

calculated on stars (‘‘shells’’) of near-neighbor k points; here
b is a vector connecting a k point to one of its neighbors and
wb is an appropriate geometric factor that depends on the
number of points in the star and its geometry [see Appendix B
in Marzari and Vanderbilt (1997) and Mostofi et al. (2008)
for a detailed description]. In a similar way,

jrfðkÞj2 ¼ X
b

wb½fðkþ bÞ � fðkÞ�2 þOðb3Þ: (26)

It now becomes straightforward to calculate the matrix
elements in Eqs. (23) and (24). All the information needed
for the reciprocal-space derivatives is encoded in the overlaps
between Bloch orbitals at neighboring k points:

Mðk;bÞ
mn ¼ humkjun;kþbi: (27)

These overlaps play a central role in the formalism, since all
contributions to the localization functional can be expressed

in terms of them. Thus, once the Mðk;bÞ
mn have been calculated,

no further interaction with the electronic-structure code that
calculated the ground-state wave functions is necessary, mak-
ing the entire Wannierization procedure a code-independent
postprocessing step.5 There is no unique form for the local-
ization functional in terms of the overlap elements, as it is

4Even the case of � sampling, where the Brillouin zone is

sampled with a single k point, is encompassed by the above

formulation. In this case the neighboring k points are given by

reciprocal-lattice vectors G and the Bloch orbitals differ only by

phase factors expðiG�rÞ from their counterparts at �. The algebra

does become simpler, though, as discussed in Sec. II.F.2.
5In particular, see Ferretti et al. (2007) for the extension to

ultrasoft pseudopotentials and the projector-augmented wave

method, and Posternak et al. (2002), Freimuth et al. (2008), and

Kuneš et al. (2010) for the full-potential linearized augmented

plane-wave method.
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possible to write down many alternative finite-difference
expressions for �rn and hr2in which agree numerically to
leading order in the mesh spacing b (first and second order
for �rn and hr2in, respectively). We give here the expressions
of Marzari and Vanderbilt (1997), which have the desirable
property of transforming correctly under gauge transforma-
tions that shift j0ni by a lattice vector. They are

�rn ¼ � 1

N

X
k;b

wbb Im lnMðk;bÞ
nn (28)

[where we use, as outlined in Sec. II.A.3, the convention of
Eq. (14)] and

hr2in ¼ 1

N

X
k;b

wbf½1� jMðk;bÞ
nn j2� þ ½Im lnMðk;bÞ

nn �2g:

(29)

The corresponding expressions for the gauge-invariant and
gauge-dependent parts of the spread functional are

�I ¼ 1

N

X
k;b

wb

�
J �X

mn

jMðk;bÞ
mn j2

�
(30)

and

~� ¼ 1

N

X
k;b

wb

X
m�n

jMðk;bÞ
mn j2

þ 1

N

X
k;b

wb

X
n

ð�Im lnMðk;bÞ
nn � b � �rnÞ2: (31)

As mentioned, it is possible to write down alternative
discretized expressions which agree numerically with
Eqs. (28)–(31) up to the orders indicated in the mesh spacing
b; at the same time, one needs to be careful in realizing
that certain quantities, such as the spreads, will display slow
convergence with respect to the BZ sampling (see Sec. II.F.2
for a discussion), or that some exact results (e.g., that the sum
of the centers of the Wannier functions is invariant with
respect to unitary transformations) might acquire some nu-
merical noise. In particular, Stengel and Spaldin (2006a)
showed how to modify the above expressions in a way that
renders the spread functional strictly invariant under BZ
folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
� arising from an infinitesimal gauge transformation

UðkÞ
mn ¼ �mn þ dWðkÞ

mn , where dW is an infinitesimal anti-

Hermitian matrix, dWy¼�dW, so that junki!junkiþP
mdW

ðkÞ
mn jumki. We use the convention�
d�

dW

�
nm

¼ d�

dWmn

(32)

(note the reversal of indices) and introduce A and S
as the superoperators A½B� ¼ ðB� ByÞ=2 and S½B� ¼
ðBþ ByÞ=2i. Defining

qðk;bÞn ¼ Im lnMðk;bÞ
nn þ b � �rn; (33)

Rðk;bÞ
mn ¼ Mðk;bÞ

mn Mðk;bÞ�
nn ; (34)

Tðk;bÞ
mn ¼ Mðk;bÞ

mn

Mðk;bÞ
nn

qðk;bÞn ; (35)

and referring to Marzari and Vanderbilt (1997) for the
details, we arrive at the explicit expression for the gradient
GðkÞ ¼ d�=dWðkÞ of the spread functional � as

GðkÞ ¼ 4
X
b

wbðA½Rðk;bÞ� � S½Tðk;bÞ�Þ: (36)

This gradient is used to drive the evolution of the UðkÞ
mn [and,

implicitly, of the jRni of Eq. (10)] toward the minimum of�.
A simple steepest-descent implementation, for example,
takes small finite steps in the direction opposite to the gra-
dient G until a minimum is reached.

For details of the minimization strategies and the enforce-
ment of unitarity during the search, the interested reader is
referred to Mostofi et al. (2008). We point out here, however,
thatmost of the operations can be performed using inexpensive
matrix algebra on small matrices. The most computationally
demanding parts of the procedure are typically the calculation

of the self-consistent Bloch orbitals juð0Þnki in the first place, and
then the computation of a set of overlap matrices

Mð0Þðk;bÞ
mn ¼ huð0Þmkjuð0Þn;kþbi (37)

that are constructed once and for all from the juð0Þnki. After every
update of the unitary matrices UðkÞ, the overlap matrices are
updated with inexpensive matrix algebra

Mðk;bÞ ¼ UðkÞyMð0Þðk;bÞUðkþbÞ (38)

without any need to access the Bloch wave functions them-
selves. This not onlymakes the algorithm computationally fast
and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2� in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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severe than the topological problem. The most straightfor-
ward way to avoid local minima altogether is to initialize the

minimization procedure with a gauge choice that is already
fairly smooth. For this purpose, the projection method de-
scribed in Sec. II.B has been found to be extremely effective.

Therefore, minimization is usually preceded by a projection
step, to generate a set of analytic Bloch orbitals to be further

optimized, as discussed more fully by Marzari and Vanderbilt
(1997) and Mostofi et al. (2008).

F. The limit of isolated systems or large supercells

The formulation introduced above can be significantly

simplified in two important and related cases, which merit a
separate discussion. The first is the case of open boundary
conditions: this is the most appropriate choice for treating

finite, isolated systems (e.g., molecules and clusters) using
localized basis sets, and is a common approach in quantum
chemistry. The localization procedure can then be entirely

recast in real space and corresponds exactly to determining
Foster-Boys localized orbitals. The second is the case of
systems that can be described using very large periodic

supercells. This is the most appropriate strategy for non-
periodic bulk systems, such as amorphous solids or liquids

(see Fig. 4 for a paradigmatic example), but obviously in-
cludes also periodic systems with large unit cells. In this
approach, the Brillouin zone is considered to be sufficiently

small such that integrations over k vectors can be approxi-
mated with a single k point (usually at the � point, i.e., the
origin in reciprocal space). The localization procedure in this

second case is based on the procedure for periodic boundary
conditions described above, but with some notable simplifi-
cations. Isolated systems can also be artificially repeated and

treated using the supercell approach, although care may be
needed in dealing with the long-range electrostatics if

the isolated entities are charged or have significant dipole
or multipolar character (Makov and Payne, 1995; Dabo
et al., 2008).

1. Real-space formulation for isolated systems

For an isolated system, described with open boundary

conditions, all orbitals are localized to begin with, and further
localization is achieved via unitary transformations within

this set. We adopt a simplified notation jRni ! jwii to refer

to the localized orbitals of the isolated system that will
become maximally localized. We decompose again the
localization functional � ¼ P

i½hr2ii � �r2i � into a term

�I ¼
P

�tr½Pr�Qr�� (where P ¼ P
ijwiihwij, Q ¼ 1� P,

and ‘‘tr’’ refers to a sum over all the states wi) that is

invariant under unitary rotations, and a remainder ~� ¼P
�

P
i�j jhwijr�jwjij2 that needs to be minimized. Defining

the matrices Xij ¼ hwijxjwji, XD;ij ¼ Xij�ij, X
0 ¼ X � XD

(and similarly for Y and Z), ~� can be rewritten as

~� ¼ tr½X02 þ Y02 þ Z02�: (39)

If X, Y, and Z could be simultaneously diagonalized, then ~�
would be minimized to zero (leaving only the invariant part).
This is straightforward in one dimension, but is not generally
possible in higher dimensions. The general solution to the
three-dimensional problem consists instead in the optimal,
but approximate, simultaneous codiagonalization of the three
Hermitian matrices X, Y, and Z by a single unitary trans-
formation that minimizes the numerical value of the local-
ization functional. Although a formal solution to this problem
is missing, implementing a numerical procedure (e.g., by
steepest-descent or conjugate-gradients minimization) is
fairly straightforward. It should be noted that the problem
of simultaneous codiagonalization arises also in the context
of multivariate analysis (Flury and Gautschi, 1986) and signal
processing (Cardoso and Soulomiac, 1996), and has been
recently revisited in relation to the present localization
approach (Gygi, Fattebert, and Schwegler, 2003) [see also
Sec. III.A in Berghold et al. (2000)].

To proceed further, we write

d� ¼ 2 tr½X0dX þ Y0dY þ Z0dZ�; (40)

exploiting the fact that tr½X0XD� ¼ 0, and similarly for Y and
Z. We then consider an infinitesimal unitary transformation
jwii ! jwii þ

P
jdWjijwji (where dW is anti-Hermitian),

from which dX ¼ ½X; dW�, and similarly for Y and Z.
Inserting in Eq. (40) and using tr½A½B;C�� ¼ tr½C½A; B��
and ½X0; X� ¼ ½X0; XD�, we obtain d� ¼ tr½dWG� where the
gradient of the spread functional G ¼ d�=dW is given by

G ¼ 2f½X0; XD� þ ½Y0; YD� þ ½Z0; ZD�g: (41)

The minimization can then be carried out using a
procedure similar to that outlined above for periodic bound-

ary conditions. Last, we note that minimizing ~� is equivalent
to maximizing tr½X2

D þ Y2
D þ Z2

D�, since tr½X0XD� ¼
tr½Y0YD� ¼ tr½Y0YD� ¼ 0.

2. �-point formulation for large supercells

A similar formulation applies in reciprocal space when
dealing with isolated or very large systems in periodic bound-
ary conditions, i.e., whenever it becomes appropriate to
sample the wave functions only at the � point of the
Brillouin zone. For simplicity, we start with the case of a
simple cubic lattice of spacing L, and define the matrix

Xmn ¼ hwmje�2�ix=Ljwni (42)

FIG. 4 (color online). MLWFs in amorphous Si, either around

distorted but fourfold-coordinated atoms or in the presence of a

fivefold defect. Adapted from Fornari et al., 2001.
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and similarly for Y, and Z [the extension to supercells of
arbitrary symmetry has been derived by Silvestrelli (1999)].6

The coordinate xn of the nth WF center (WFC) can then be
obtained from

xn ¼ � L

2�
Im lnhwnje�ið2�=LÞxjwni ¼ � L

2�
Im lnXnn;

(43)

and similarly for yn and zn. Equation (43) has been shown by
Resta (1998) to be the correct definition of the expectation
value of the position operator for a system with periodic
boundary conditions, and had been introduced several years
ago to deal with the problem of determining the average
position of a single electronic orbital in a periodic supercell
(Selloni et al., 1987) (the above definition becomes self-
evident in the limit where wn tends to a Dirac delta function).

Following the derivation of Sec. II.F.1, or of Silvestrelli
et al. (1998), it can be shown that the maximum-localization
criterion is equivalent to maximizing the functional

� ¼ XJ
n¼1

ðjXnnj2 þ jYnnj2 þ jZnnj2Þ: (44)

The first term of the gradient d�=dAmn is given by
XnmðX�

nn �X�
mmÞ �X�

mnðXmm �XnnÞ, and similarly for
the second and third terms. Again, once the gradient is
determined, minimization can be performed using a
steepest-descent or conjugate-gradients algorithm; as always,
the computational cost of the localization procedure is small,
given that it involves only small matrices of dimension J � J,
once the scalar products needed to construct the initial Xð0Þ,
Yð0Þ, and Zð0Þ have been calculated, which takes an effort of
order J2 � Nbasis. We note that in the limit of a single k point
the distinction between Bloch orbitals and WFs becomes
irrelevant, since no Fourier transform from k toR is involved
in the transformation Eq. (10); rather, we want to find the
optimal unitary matrix that rotates the ground-state self-
consistent orbitals into their maximally localized representa-
tion, making this problem exactly equivalent to the one of the
isolated systems. Interestingly, it should also be mentioned
that the local minima alluded to in Sec. II.E are typically not
found when using � sampling in large supercells.

Before concluding, we note that care should be taken when
comparing the spreads of MLWFs calculated in supercells of
different sizes. The Wannier centers and the general shape of
the MLWFs often converge rapidly as the cell size is in-
creased, but even for the ideal case of an isolated molecule,
the total spread � often displays much slower convergence.
This behavior derives from the finite-difference representa-
tion of the invariant part �I of the localization functional
(essentially, a second derivative); while�I does not enter into
the localization procedure, it does contribute to the spread,
and, in fact, usually represents the largest term. This slow

convergence was noted by Marzari and Vanderbilt (1997)
when commenting on the convergence properties of � with
respect to the spacing of the Monkhorst-Pack mesh and has
been studied in detail by others (Umari and Pasquarello,
2003; Stengel and Spaldin, 2006a). For isolated systems in
a supercell, this problem can be avoided simply by using a
very large L in Eq. (43), since in practice the integrals only
need to be calculated in the small region where the orbitals
are nonzero (Wu, 2004). For extended bulk systems, this
convergence problem can be ameliorated significantly by
calculating the position operator using real-space integrals
(Lee, Nardelli, and Marzari, 2005; Lee, 2006; Stengel and
Spaldin, 2006a).

G. Exponential localization

The existence of exponentially localized WFs, i.e., WFs
whose tails decay exponentially fast, is a famous problem in
the band theory of solids, with close ties to the general
properties of the insulating state (Kohn, 1964). While the
asymptotic decay of a Fourier transform can be related to the
analyticity of the function and its derivatives [see, e.g., Duffin
(1953) and Duffin and Shaffer (1960) and references therein],
proofs of exponential localization for the Wannier transform
were obtained over the years only for limited cases, starting
with the work of Kohn (1959), who considered a one-
dimensional crystal with inversion symmetry. Other mile-
stones include the work of des Cloizeaux (1964b), who
established the exponential localization in 1D crystals with-
out inversion symmetry and in the centrosymmetric 3D case,
and the subsequent removal of the requirement of inversion
symmetry in the latter case by Nenciu (1983). The asymptotic
behavior of WFs was further clarified by He and Vanderbilt
(2001), who found that the exponential decay is modulated by
a power law. In dimensions d > 1 the problem is further
complicated by the possible existence of band degeneracies,
while the proofs of des Cloizeaux and Nenciu were restricted
to isolated bands. The early work on composite bands in 3D
established only the exponential localization of the projection
operator P, Eq. (13), not of the WFs themselves (des
Cloizeaux, 1964a).

The question of exponential decay in 2D and 3D was
finally settled by Brouder et al. (2007) who showed, as a
corollary to a theorem by Panati (2007), that a necessary
and sufficient condition for the existence of exponentially
localized WFs in 2D and 3D is that the so-called ‘‘Chern
invariants’’ for the composite set of bands vanish identically.
Panati (2007) demonstrated that this condition ensures the
possibility of carrying out the gauge transformation of Eq. (8)
in such a way that the resulting cell-periodic states j~unki are
analytic functions of k across the entire BZ;7 this in turn
implies the exponential falloff of the WFs given by Eq. (10).

It is natural to ask whether the MLWFs obtained by
minimizing the quadratic spread functional � are also
exponentially localized. Marzari and Vanderbilt (1997)
established this in 1D by simply noting that the MLWF

6We point out that the definition of the X, Y, and Z matrices for

extended systems, now common in the literature, is different from

the one used in Sec. II.F.1 for the X, Y, and Z matrices for the

isolated system. We preserved these two notations for consistency

with published work, at the cost of making less evident the close

similarities that exist between the two minimization algorithms.

7Conversely, nonzero Chern numbers pose an obstruction to

finding a globally smooth gauge in k space. The mathematical

definition of a Chern number is given in Sec. V.C.4.
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construction then reduces to finding the eigenstates of the
projected position operator PxP, a case for which exponential
localization had already been proven (Niu, 1991). The more
complex problem of demonstrating the exponential localiza-
tion of MLWFs for composite bands in 2D and 3D was finally
solved by Panati and Pisante (2011).

H. Hybrid Wannier functions

It is sometimes useful to carry out the Wannier transform in
one spatial dimension only, leaving wave functions that are
still delocalized and Bloch periodic in the remaining direc-
tions (Sgiarovello, Peressi, and Resta, 2001). Such orbitals
are usually denoted as ‘‘hermaphrodite’’ or ‘‘hybrid’’ WFs.
Explicitly, Eq. (10) is replaced by the hybrid WF definition

jl; nkki ¼ c

2�

Z 2�=c

0
jc nkie�ilk?cdk?; (45)

where kk is the wave vector in the plane (delocalized direc-

tions) and k?, l, and c are the wave vector, cell index, and cell
dimension in the direction of localization. The 1D Wannier
construction can be done independently for each kk using

direct (i.e., noniterative) methods as described in Sec. IV.C.1
of Marzari and Vanderbilt (1997).

Such a construction proved useful for a variety of purposes,
from verifying numerically exponential localization in one
dimension, to treating electric polarization or applied electric
fields along a specific spatial direction (Giustino, Umari, and
Pasquarello, 2003; Giustino and Pasquarello, 2005; Stengel
and Spaldin, 2006a; Wu et al., 2006; Murray and Vanderbilt,
2009) or for analyzing aspects of topological insulators (Coh
and Vanderbilt, 2009; Soluyanov and Vanderbilt, 2011a,
2011b). Examples will be discussed in Secs. V.B.2 and VI.A.4.

I. Entangled bands

The methods described in the previous sections were de-
signed with isolated groups of bands in mind, separated from
all other bands by finite gaps throughout the entire Brillouin
zone. However, in many applications the bands of interest are
not isolated. This can happen, for example, when studying
electron transport, which is governed by the partially filled
bands close to the Fermi level, or when dealing with empty
bands, such as the four low-lying antibonding bands of
tetrahedral semiconductors, which are attached to higher
conduction bands. Another case of interest is when a partially
filled manifold is to be downfolded into a basis of WFs, e.g.,
to construct model Hamiltonians. In all these examples the
desired bands lie within a limited energy range but overlap
and hybridize with other bands which extend further out in
energy. We refer to them as entangled bands.

The difficulty in treating entangled bands stems from the
fact that it is unclear exactly which states to choose to form J
WFs, particularly in those regions of k space where the bands
of interest are hybridized with other unwanted bands. Before
a Wannier localization procedure can be applied, some pre-
scription is needed for constructing J states per k point from a
linear combination of the states in this larger manifold. Once
a suitable J-dimensional Bloch manifold has been identified
at each k, the same procedure described earlier for an isolated

group of bands can be used to generate localized WFs span-
ning that manifold.

The problem of computing well-localized WFs starting
from entangled bands is thus broken down into two distinct
steps, subspace selection and gauge selection. As we see, the
same guiding principle can be used for both steps, namely, to
achieve ‘‘smoothness’’ in k space. In the subspace selection
step a J-dimensional Bloch manifold which varies smoothly
as a function of k is constructed. In the gauge-selection step
that subspace is represented using a set of J Bloch functions
which are themselves smooth functions of k, such that the
corresponding WFs are well localized.

1. Subspace selection via projection

The projection technique discussed in Sec. II.B can be
easily adapted to produce J smoothly varying Bloch-like
states starting from a larger set of Bloch bands (Souza,
Marzari, and Vanderbilt, 2001). The latter can be chosen,
for example, as the bands lying within a given energy win-
dow, or within a specified range of band indices. Their
number J k � J is not required to be constant throughout
the BZ.

We start from a set of J localized trial orbitals gnðrÞ and
project each of them onto the space spanned by the chosen
eigenstates at each k,

j�nki ¼
XJ k

m¼1

jc mkihc mkjgni: (46)

This is identical to Eq. (16), except for the fact that the
overlap matrix ðAkÞmn ¼ hc mkjgni has become rectangular
with dimensions J k � J. We then orthonormalize the result-
ing J orbitals using Eq. (17), to produce a set of J smoothly
varying Bloch-like states across the BZ,

j ~c nki ¼
XJ
m¼1

j�mkiðS�1=2
k Þmn: (47)

As in Eq. (17), ðSkÞmn ¼ h�mkj�nkiV ¼ ðAy
kAkÞmn, but with

rectangular Ak matrices.
The above procedure simultaneously achieves the two

goals of subspace selection and gauge selection, although
neither of them is performed optimally. The gauge selection

can be further refined by minimizing ~� within the projected
subspace. It is also possible to refine iteratively the subspace
selection itself, as will be described in Sec. II.I.2. However,
for many applications this one-shot procedure is perfectly
adequate, and in some cases it may even be preferable to
more sophisticated iterative approaches (see also Sec. III.C).
For example, it often results in ‘‘symmetry-adapted’’ WFs
which inherit the symmetry properties of the trial orbitals
(Ku et al., 2002).

As an example, we plot in Fig. 5 the eight disentangled
bands obtained by projecting the band structure of silicon,
taken within an energy window that coincides with the entire
energy axis shown, onto eight atomic-like sp3 hybrids. The
disentangled bands, generated using Wannier interpolation
(see Sec. VI.A), are shown as triangles, along with the
original first-principle bands (solid lines). While the overall
agreement is quite good, significant deviations can be seen
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wherever higher unoccupied and unwanted states possessing

some significant sp3 character are admixed into the projected

manifold. This behavior can be avoided by forcing certain

Bloch states to be preserved identically in the projected

manifold; we refer to those as belonging to a frozen ‘‘inner’’

window, since this is often the simplest procedure for select-

ing them. The placement and range of this frozen window

will depend on the problem at hand. For example, in order to

describe the low-energy physics for, e.g., transport calcula-

tions, the frozen window would typically include all states in

a desired range around the Fermi level.
We show as circles in Fig. 5 the results obtained by forcing

the entire valence manifold to be preserved, leading to a set of

eight projected bands that reproduce exactly the four valence

bands, and follow quite closely the four low-lying conduction

bands. For the modifications to the projection algorithm

required to enforce a frozen window, we refer to Sec. III.G

of Souza, Marzari, and Vanderbilt (2001).
Projection techniques can work very well, and an applica-

tion of this approach to graphene is shown in Fig. 6, where the

�=�? manifold is disentangled with great accuracy by a

simple projection onto atomic pz orbitals, or the entire occu-

pied manifold together with the �=�? manifold is obtained

by projection onto atomic pz and sp2 orbitals (one every

other atom, for the case of the sp2 orbitals, although bond-

centered s orbitals would work equally well).
Projection methods have been extensively used to study

strongly correlated systems (Ku et al., 2002; Anisimov et al.,

2005), in particular, to identify a ‘‘correlated subspace’’ for

LDAþU or dynamical mean-field theory (DMFT) calcula-

tions, as will be discussed in more detail in Sec. VII. It has

also been argued (Ku, Berlijn, and Lee, 2010) that projected

WFs provide a more appropriate basis for the study of

defects, as the pursuit of better localization in a MLWF

scheme risks defining the gauge differently for the defect

WF as compared to the bulk. Instead, a straightforward

projection approach ensures the similarity between the WF

in the defect (supercell) and in the pristine (primitive cell)
calculations, and this has been exploited to develop a scheme
to unfold the band structure of disordered supercells into the
Brillouin zone of the underlying primitive cell, allowing a
direct comparison with angle-resolved photoemission spec-
troscopy (ARPES) experiments (Ku, Berlijn, and Lee, 2010).

2. Subspace selection via optimal smoothness

The projection onto trial orbitals provides a simple and
effective way of extracting a smooth Bloch subspace starting
from a larger set of entangled bands. The reason for its

success is easily understood: the localization of the trial
orbitals in real space leads to smoothness in k space. In order
to further refine the subspace selection procedure, it is useful
to introduce a precise measure of the smoothness in k space
of a manifold of Bloch states. The search for an optimally
smooth subspace can then be formulated as a minimization
problem, similar to the search for an optimally smooth gauge.

As it turns out, smoothness in k of a Bloch space is
precisely what is measured by the functional �I introduced
in Sec. II.C.1. We know from Eq. (19) that the quadratic
spread � of the WFs spanning a Bloch space of dimension J
comprises two positive-definite contributions, one gauge in-

variant (�I), and the other gauge dependent ( ~�). Given such
a Bloch space (e.g., an isolated group of bands, or a group of
bands previously disentangled via projection), we have
seen that the optimally smooth gauge can be found by

minimizing ~� with respect to the unitary mixing of states
within that space.
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FIG. 5 (color online). Band structure of bulk crystalline Si. Solid

lines: Original bands generated directly from a DFT calculation.

Triangles: Wannier-interpolated bands obtained from the subspace

selected by an unconstrained projection onto atomic sp3 orbitals.

Circles: Wannier-interpolated bands obtained with the same proce-

dure and the additional constraint of reproducing exactly the

original valence manifold and parts of the conduction manifold,

using a frozen energy window (see text).

FIG. 6 (color online). Band structure of graphene. Solid lines:

Original bands generated directly from a DFT calculation.

Triangles: Wannier-interpolated bands obtained from the subspace

selected by an unconstrained projection onto atomic pz orbitals.

Circles: Wannier-interpolated bands obtained from the subspace

selected by projecting onto atomic pz orbitals on each atom and

sp2 orbitals on every other atom, and using a frozen energy window.

The lower panels shows the MLWFs obtained from the standard

localization procedure applied to the first or second projected

manifolds (a pz-like MLWF, or a pz-like MLWF and a bond

MLWF, respectively).
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From this perspective, the gauge invariance of �I means
that this quantity is insensitive to the smoothness of the
individual Bloch states j~unki chosen to represent the Hilbert
space. But considering that �I is a part of the spread func-
tional, it must describe smoothness in some other sense. What
�I manages to capture is the intrinsic smoothness of the
underlying Hilbert space. This can be seen starting from the
discretized k-space expression for �I, Eq. (30), and noting
that it can be written as

�I ¼ 1

N

X
k;b

wbTk;b (48)

with

Tk;b ¼ Tr½PkQkþb�; (49)

where Pk ¼ P
J
n¼1 j~unkih~unkj is the gauge-invariant projector

onto the Bloch subspace at k, Qk ¼ 1� Pk, and ‘‘Tr’’
denotes the electronic trace over the full Hilbert space. It is
now evident that Tk;b measures the degree of mismatch

(or ‘‘spillage’’) between the neighboring Bloch subspaces at
k and kþ b, vanishing when they are identical, and that �I

provides a BZ average of the local subspace mismatch.
The optimized subspace selection procedure can now be

formulated as follows (Souza, Marzari, and Vanderbilt,
2001). A set of J k � J Bloch states is identified at each
point on a uniform BZ grid, using, for example, a range of
energies or bands. We refer to this range, which in general can
be k dependent, as the ‘‘disentanglement window.’’ An iter-
ative procedure is then used to extract self-consistently at
each k -point the J-dimensional subspace that, when inte-
grated across the BZ, will give the smallest possible value of
�I. Viewed as a function of k, the Bloch subspace obtained at
the end of this iterative minimization is ‘‘optimally smooth’’
in that it changes as little as possible with k. Typically the
minimization starts from an initial guess for the target
subspace given, e.g., by projection onto trial orbitals. The
algorithm is also easily modified to preserve identically a
chosen subset of the Bloch eigenstates inside the disentan-
glement window, e.g., those spanning a narrower range of
energies or bands; we refer to these as comprising a ‘‘frozen
energy window.’’

As in the case of the one-shot projection, the outcome of
this iterative procedure is a set of J Bloch-like states at each k
which are linear combinations of the initial J k eigenstates.
One important difference is that the resulting states are not
guaranteed to be individually smooth, and the minimization
of �I must therefore be followed by a gauge-selection step,
which is in every way identical to the one described earlier for
isolated groups of bands. Alternatively, it is possible to

combine the two steps, and minimize � ¼ �I þ ~� simulta-
neously with respect to the choice of Hilbert subspace and the
choice of gauge (Thygesen, Hansen, and Jacobsen, 2005a,
2005b); this should lead to the most-localized set of J WFs
that can be constructed from the initial J k Bloch states.
In all three cases, the entire process amounts to a linear
transformation taking from J k initial eigenstates to J smooth
Bloch-like states,

j ~c nki ¼
XJ k

m¼1

jc mkiVk;mn: (50)

In the case of the projection procedure, the explicit
expression for the J k � J matrix Vk can be surmised from
Eqs. (46) and (47).

We now compare the one-shot projection and iterative
procedures for subspace selection, using crystalline copper
as an example. Suppose we want to disentangle the five
narrow d bands from the wide s band that crosses and hybrid-
izes with them, to construct a set of well-localized d-like
WFs. The bands that result from projecting onto five d-type
atomic orbitals (AOs) are shown as triangles in Fig. 7. They
follow very closely the first-principle bands away from the
s-d hybridization regions, where the interpolated bands
remain narrow.

The circles show the results obtained using the iterative
scheme to extract an optimally smooth five-dimensional
manifold. The maximal ‘‘global smoothness of connection’’
is achieved by keeping the five d-like states and excluding the
s-like state. This happens because the smoothness criterion
embodied by Eqs. (48) and (49) implies that the orbital
character is preserved as much as possible while traversing
the BZ. Inspection of the resulting MLWFs confirms their
atomic d-like character. They are also significantly more
localized than the ones obtained by projection and the corre-
sponding disentangled bands are somewhat better behaved,
displaying less spurious oscillations in the hybridization
regions.

In addition, there are cases where the flexibility of the
minimization algorithm leads to surprising optimal states
whose symmetries would not have been self-evident in ad-
vance. One case is shown in Fig. 8. Here we want to construct
a minimal Wannier basis for copper, describing both the
narrow d-like bands and the wide free-electron-like band
with which they hybridize. By choosing different dimensions
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FIG. 7 (color online). (Energy bands of fcc Cu around the d
manifold. Solid lines: Original bands generated directly from a

DFT calculation. Triangles: Wannier-interpolated bands obtained

from the subspace selected by projection onto atomic 3d orbitals.

Circles: Wannier-interpolated bands obtained from a subspace

derived from the previous one, after the criterion of optimal smooth-

ness has been applied. The zero of energy is the Fermi level.
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for the disentangled subspace, it was found that the composite
set of bands is faithfully represented by seven MLWFs, of
which five are the standard d-like orbitals, and the remaining
two are s-like orbitals centered at the tetrahedral interstitial
sites of the fcc structure. The latter arise from the constructive
interference between sp3 orbitals that would be part of the
ideal sp3d5 basis set; in this case, bands up to 20 eVabove the
Fermi energy can be meaningfully described with a minimal
basis set of seven orbitals that would have been difficult to
identify using only educated guesses for the projections.

The concept of a natural dimension for the disentangled
manifold was explored further by Thygesen, Hansen, and
Jacobsen (2005a, 2005b). As illustrated in Fig. 9, they

showed that by minimizing � ¼ �I þ ~� for different
choices of J, one can find an optimal J such that the resulting
‘‘partially occupied’’ Wannier functions are most localized

(provided enough bands are used to capture the bonding and
antibonding combinations of those atomic-like WFs).

3. Iterative minimization of �I

The minimization of �I inside an energy window
is conveniently done using an algebraic algorithm (Souza,
Marzari, and Vanderbilt, 2001). The stationarity condition
��Iðf~unkgÞ ¼ 0, subject to orthonormality constraints, is
equivalent to solving the set of eigenvalue equations�X

b

wbPkþb

�
j~unki ¼ �nkj~unki: (51)

Clearly these equations, one for each k point, are coupled, so
that the problem has to be solved self-consistently throughout
the Brillouin zone. This can be done using an iterative
procedure: on the ith iteration go through all the k points
in the grid, and for each of them find J orthonormal states

j~uðiÞnki, defining a subspace whose spillage over the neighbor-

ing subspaces from the previous iteration is as small as
possible. At each step the set of equations�X

b

wbP
ði�1Þ
kþb

�
j~uðiÞnki ¼ �ðiÞ

nkj~uðiÞnki (52)

is solved, and the J eigenvectors with largest eigenvalues are
selected. That choice ensures that at self-consistency the
stationary point corresponds to the absolute minimum of �I.

In practice Eq. (52) is solved in the basis of the original J k

Bloch eigenstates junki inside the energy window. Each
iteration then amounts to diagonalizing the following
J k � J k Hermitian matrix at every k:

ZðiÞ
mnðkÞ ¼ humkj

X
b

wb½Pði�1Þ
kþb �injunki: (53)

Since these are small matrices, each step of the iterative
procedure is computationally inexpensive.

As a final comment, we mention that in the case of
degeneracies or quasidegeneracies in the spreads of orbitals
centered on the same site, the localization algorithm will
perform a rather arbitrary mixing of these (as can be the
case, e.g., for the d or f electrons of a transition-metal ion, or
for its t2g or eg groups). A solution to this problem is to

diagonalize an operator with the desired symmetry in the
basis of the Wannier functions that have been obtained [see
Posternak et al. (2002) for the example of the d orbitals in
MnO].

4. Localization and local minima

Empirical evidence and experience suggests that localized
Wannier functions can be readily constructed also in the case
of an entangled manifold of bands: Even for metals, smooth
manifolds can be disentangled and ‘‘Wannierized’’ to give
MLWFs. Such disentangled MLWFs, e.g., the pz MLWFs
describing the �=�� manifold of graphene shown in Fig. 6,
are found to be strongly localized. While exponential local-
ization has not been proven, both numerical evidence and the
analogy with the isolated composite case suggest this might
be the case.

FIG. 8 (color online). Energy bands of fcc Cu over a wide energy

range. Solid lines: Original bands generated directly from a DFT

calculation. Lines: Wannier-interpolated bands obtained using a

disentanglement window corresponding to the entire band manifold

shown, and a target dimensionality of seven. This gives rise to five

atom-centered d-like MLWFs and two s-like MLWFs located in the

tetrahedral interstitial sites, as shown in the lower panel. The color

coding of the disentangled bands reflects their projection onto the

seven MLWFs, smoothly varying from light s-like interstitial

MLWFs to dark atom-centered d-like MLWFs. The zero of energy

is the Fermi level.
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Adapted from Thygesen, Hansen, and Jacobsen, 2005a.
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Problems associated with reaching local minima of the
spread functional, and with obtaining Wannier functions
that are not real valued, are more pronounced in the case of
entangled bands. They are usually alleviated by careful re-
consideration of the energy windows used, in order to include
higher energy states of the appropriate symmetry, and/or by
using a better initial guess for the projections. We infer,
therefore, that such problems are associated not with the
Wannierization part of the procedure, but rather with the
initial selection of the smooth subspace from the full mani-
fold of entangled bands.

It is worth noting that the �-point formulation (see
Sec. II.F.2) appears to be less affected by these problems.
In cases where it is not intuitive or obvious what the MLWFs
should be, therefore, it can often be a fruitful strategy to use
the �-point formulation to obtain approximate MLWFs that
may then be used to inform the initial guess for a subsequent
calculation with a full k-point mesh.

J. Many-body generalizations

The concept of WFs is closely tied to the framework of
single-particle Hamiltonians. Only in this case can we define
J occupied single-particle Bloch functions at each wave
vector k and treat all J of them on an equal footing, allowing
for invariance with respect to unitary mixing among them.
Once the two-particle electron-electron interaction is for-
mally included in the Hamiltonian, the many-body wave
function cannot be reduced to any simple form allowing for
the construction of WFs in the usual sense.

One approach is to consider the reduced one-particle
density matrix

nðr; r0Þ ¼
Z

��ðr; r2; . . .Þ�ðr0; r2; . . .Þdr2dr3 . . . (54)

for a many-body insulator. Since nðr; r0Þ is periodic in the
sense of nðrþR; r0 þRÞ ¼ nðr; r0Þ, its eigenvectors, the so-
called ‘‘natural orbitals,’’ have the form of Bloch functions
carrying a label n, k. If the insulator is essentially a correlated
version of a band insulator having J bands, then at each k
there will typically be J occupation eigenvalues �nk that are
close to unity, as well as some small ones that correspond to
the quantum fluctuations into conduction-band states. If one
focuses just on the subspace of one-particle states spanned by
the J valencelike natural orbitals, one can use them to construct
one-particle WFs following the methods described earlier, as
suggested by Koch and Goedecker (2001). However, while
such an approach may provide useful qualitative information,
it cannot provide the basis for any exact theory. For example,
the charge density, or expectation value of any other one-
particle operator, obtained by tracing over these WFs will
not match their exact many-body counterparts.

A somewhat related approach, adopted by Hamann
and Vanderbilt (2009), is to construct WFs out of the quasi-
particle (QP) states that appear in the GW approximation
(Aryasetiawan and Gunnarsson, 1998). Such an approach will
be described more fully in Sec. VI.A.3. Here again, this
approach may give useful physical and chemical intuition,
but the one-electron quasiparticle wave functions do not have
the physical interpretation of occupied states, and charge

densities and other ground-state properties cannot be com-
puted quantitatively from them.

Finally, a more fundamentally exact framework for a
many-body generalization of the WF concept, introduced
by Souza, Wilkens, and Martin (2000), is to consider a
many-body system with twisted boundary conditions applied
to the many-body wave function in a supercell. For
example, consider M electrons in a supercell consisting of
M1 �M2 �M3 primitive cells and impose the periodic
boundary condition

�qð. . . ; rj þR; . . .Þ ¼ eiq�R�qð. . . ; rj; . . .Þ (55)

for j ¼ 1; . . . ;M, where R is a lattice vector of the superlat-
tice. One can then construct a single ‘‘many-body WF’’ in a
manner similar to Eq. (3), but with k ! q and jc nki ! j�qi
on the right side. The resulting many-body WF is a complex
function of 3M electron coordinates, and as such it is
unwieldy to use in practice. However, it is closely related to
Kohn’s theory of the insulating state (Kohn, 1964), and in
principle it can be used to formulate many-body versions of
the theory of electric polarization and related quantities, as
mentioned in Sec. V.A.4.

III. RELATION TO OTHER LOCALIZED ORBITALS

A. Alternative localization criteria

As we have seen, WFs are inherently nonunique and, in
practice, some strategy is needed to determine the gauge. Two
possible approaches were already discussed in Sec. II,
namely, projection and maximal localization. The latter ap-
proach is conceptually more satisfactory, as it does not
depend on a particular choice of trial orbitals. However, it
still does not uniquely solve the problem of choosing a gauge,
as different localization criteria are possible and there is,
a priori, no reason to choose one over another.

While MLWFs for extended systems have been generated
for the most part by minimizing the sum of quadratic spreads,
Eq. (17), a variety of other localization criteria have been
used over the years for molecular systems. We briefly survey
and compare some of the best known schemes. What they all
have in common is that the resulting LMOs �iðrÞ can be
expressed as linear combinations of a set of molecular eigen-
states c iðrÞ (the ‘‘canonical’’ MOs), typically chosen to be
the occupied ones,

�iðrÞ ¼
XJ
j¼1

Ujic jðrÞ: (56)

The choice of gauge then arises from minimizing or max-
imizing some appropriate functional of the LMOs with
respect to the coefficients Uij, under the constraint that the

transformation (56) is unitary, which ensures the ortho-
normality of the resulting LMOs.

The Foster-Boys (FB) criterion (Boys, 1960, 1966; Foster
and Boys, 1960a): This is essentially the same as the Marzari-
Vanderbilt criterion of minimizing the sum of the quadratic
spreads, except that the sum runs over the orbitals in the
molecule, rather than in one crystal cell,
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�FB ¼ XJ
i¼1

½h�ijr2j�ii � h�ijrj�ii2�: (57)

Interestingly, this criterion is equivalent to minimizing the
‘‘self-extension’’ of the orbitals (Boys, 1966),

XJ
i¼1

Z
dr1dr2j�iðr1Þj2ðr1 � r2Þ2j�iðr1Þj2 (58)

and also to maximizing the sum of the squares of the distance
between the charge centers of the orbitals

XJ
i;j¼1

jh�ijrj�ii � h�jjrj�jij2; (59)

which is closely related to Eq. (44) of Sec. II.F.2. The relation
between Eqs. (57) and (59) is discussed by Boys (1966).

The Edmiston-Ruedenberg (ER) criterion: Here localiza-
tion is achieved by maximizing the Coulomb self-interaction
of the orbitals (Edmiston and Ruedenberg, 1963)

�ER¼
XJ
i¼1

Z
dr1dr2j�iðr1Þj2ðr1�r2Þ�1j�iðr2Þj2: (60)

From a computational point of view, the ER approach is more
demanding (it scales as J4 versus J2 for FB), but recently
more efficient implementations have been developed
(Subotnik, Sodt, and Head-Gordon, 2007).

The von Niessen (VN) criterion: The goal here is to
maximize the density overlap of the orbitals (von Niessen,
1972)

�VN ¼ XJ
i¼1

Z
dr1dr2j�iðr1Þj2�ðr1 � r2Þj�iðr2Þj2: (61)

The Pipek-Mezey (PM) criterion (Pipek and Mezey, 1989):
This approach differs from the ones above in that it makes
reference to some extrinsic objects. The idea is to maximize
the sum of the squares of the Mulliken atomic charges
(Mulliken, 1955). These are obtained with respect to a set
of atomic orbitals �	 centered on atomic sites A. We define

PA ¼ X
	2A

X
�

D	�S	�; (62)

where the sum over 	 involves all of the atomic states on
atom site A,D	� is the density matrix in the atomic basis, and

S	� ¼ h�	j��i is the overlap operator. The functional to be

maximized is given by

�PM ¼ XJ
i¼1

XNA

A¼1

jh�ijPAj�iij2: (63)

This is somewhat similar in spirit to the projection scheme
discussed in Sec. II.B, except that it is not a one-shot
procedure.

As indicated in Eq. (56), all of these schemes amount to
unitary transformations among the canonical MOs and, as
such, they give rise to representations of the electronic struc-
ture of the system that are equivalent to those provided by the
original set of eigenstates. For the purpose of providing

chemical intuition, the usefulness of a given scheme depends
on how well it matches a particular viewpoint of bonding.
There have been few studies of the VN scheme, but the FB,
ER, and PM schemes have been extensively compared. In
many cases all three approaches lead to similar localized
orbitals which agree with the simple Lewis picture of bond-
ing. A notable exception is for systems that exhibit both �
and � bonding. For a double bond, both the FB and ER
schemes mix the � and � orbitals, giving rise to two bent
‘‘banana bond’’ (or 
) orbitals (Pauling, 1960) as shown in
Fig. 10. When applied to benzene, both schemes give alter-
nating � and 
 orbitals. Trivially, there are two equivalent sets
of these orbitals, reminiscent of the two Kekulé structures for
benzene. In contrast to the FB and ER schemes, PM provides
a clear separation of � and � orbitals. For example, in
benzene PM gives a framework of six � orbitals and three
� orbitals around the ring.

In some situations the FB and ER orbitals have been found
to be quite different. This has been observed when the bond-
ing in a molecule can be represented as two distinct resonant
structures. The ER scheme generally gives orbitals corre-
sponding to one of the possible structures, while the FB
orbitals correspond to a hybrid of the structures. An extreme
example is CO2 (Brown, Kleier, and Lipscomb, 1977). In
agreement with the O ¼ C ¼ O Lewis picture, ER gives two
lone pairs on each oxygen and two 
 orbitals between each
carbon and oxygen. In contrast, the FB scheme gives a single
lone pair on each oxygen and three highly polarized 
 orbitals
between the carbon and each oxygen, as shown in Fig. 10.

MLWFs, which may be thought of as the solid-state
equivalent of FB orbitals, have been widely used to examine
chemical bonding, as discussed in detail in Sec. IV. The ER
scheme has not been extensively examined, an isolated ex-
ception being the work of Miyake and Aryasetiawan (2008)
who proposed a method to maximize the Coulomb self-
interaction of the orbitals in periodic systems (see also
Sec. VII.B.1). They examined a range of bulk transition
metals and SrVO3 and in each case found that the resulting
WFs were essentially identical to MLWFs.

FIG. 10 (color online). Ethane (left panels) and CO2 (right pan-

els), showing one of the 
-type (‘‘banana’’) MLWFs (top panels)

and a full set of valence Wannier centers (bottom panels). The

Wannier centers are shown as small dark spheres. The MLWFs are

calculated in a large supercell with �-point sampling of the

Brillouin zone, as described in Sec. II.F.2, and are equivalent to

Foster-Boys orbitals.
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B. Minimal-basis orbitals

In the same way as was described for the Marzari-
Vanderbilt scheme of Sec. II.C, the alternative localization
criteria described above can be applied in a solid-state context
to isolated groups of bands. One is often interested in the
more general situation where the bands of interest are not
isolated. The challenge then is to generate a ‘‘disentangled’’
set of J localized WFs starting from some larger set of bands.
Two procedures for doing so were discussed in Sec. II.I,
namely, projection and iterative minimization of the spread
functional�, not only with respect to the choice of gauge, but
also with respect to the choice of Hilbert space.

Here we discuss two further procedures which achieve the
same goal by different means. They have in common the fact
that the resulting orbitals constitute a minimal basis of
atomic-like orbitals.

1. Quasiatomic orbitals

The quasiatomic orbitals (QOs) scheme (Lu et al., 2004;
Chan et al., 2007; Qian et al., 2008) is a projection-based
approach that has the aim of extracting a minimal tight-
binding basis from an initial first-principles calculation. In
this regard it is similar in spirit to the Wannier interpolation
techniques discussion in Sec. VI. Unlike WFs, however, the
quasiatomic orbitals form a nonorthogonal basis of atom-
centered functions, each with a specified angular character.
Their radial part, and hence their detailed local shape,
depends on the bonding environment.

As in the Wannier scheme, the first step is to construct
a suitable J-dimensional subspace f�ng starting from a
larger set of J Bloch eigenstates fc ng. For simplicity, we
consider a �-point only sampling of the BZ and hence omit
the k index. The goal is to identify a disentangled subspace
with the desired atomic-orbital character, as specified by a
given set of J AOs jAii, where i is a composite site and
angular-character index. One possible strategy would be to
employ the one-shot projection approach of Sec. II.I.1, using
the AOs as trial orbitals. Lu et al. (2004) proposed a more
optimized procedure, based on maximizing the similarity
measure8

L ¼ XJ
i¼1

XJ
n¼1

jh�njAiij2 (64)

with respect to the orthonormal set f�ng, expressed as linear
combinations of the original set fc ng. It is usually required
that a subset of N � J of the original eigenstates are identi-
cally preserved (‘‘frozen in’’) in the disentangled subspace, in
which case the optimization is performed with respect to the
remaining J-N states �n. J must be of sufficient size to
capture all of the antibonding character of the AOs.

In later work it was realized (Qian et al., 2008) that the
QOs can be constructed without explicit calculation of the
eigenstates outside the frozen window. The key insight is to
realize that the QOs will only have a contribution from the
finite subset of this basis spanned by the AOs [see Eq. (67)].

The component of the AOs projected onto the N states within

the frozen window jAk
i i is given by

jAk
i i ¼

XN
n¼1

jc nihc njAii: (65)

The component of jAii projected onto the states outside the
frozen window can hence be constructed directly using only
the AOs and the states within the frozen window as

jA?
i i ¼ jAii � jAk

i i: (66)

Using jA?
i i as a basis, the set of f�ng which maximize L can

be obtained using linear algebra as reported by Qian et al.
(2008).

Once a subspace with the correct orbital character has been
identified, a basis of quasiatomic orbitals can be obtained by
retaining the portion of the original AOs that ‘‘lives’’ on that
subspace,

jQii ¼
XJ
n¼1

j�nih�njAii: (67)

In general the angular dependence of the resulting QOs is no
longer that of pure spherical harmonics, but only approxi-
mately so. Qian et al. (2008) obtained QOs for simple metals
and semiconductors. Later applications used the orbitals for
the study of quantum transport in nanostructures (Qian, Li,
and Yip, 2010).

2. The Nth-order muffin-tin-orbital (NMTO) approach and

downfolding

An alternative scheme for obtaining a minimal-basis rep-
resentation is the perturbation approach introduced by
Löwdin (1951). Here the general strategy is to partition a
set of orbitals into an ‘‘active’’ set that is intended to describe
the states of interest, and a ‘‘passive’’ set that will be inte-
grated out. We write the Hamiltonian for the system in a block
representation,

H ¼ H00 0

0 H11

 !
þ 0 V01

V10 0

 !
; (68)

where H00 (H11) is the projection onto the active (passive)
subspace, and V01 is the coupling between the two subspaces.
An eigenfunction can be written as the sum of its projections
onto the two subspaces jc i ¼ jc 0i þ jc 1i. This leads to

ðH00 � "Þjc 0i þ V01jc 1i ¼ 0; (69)

V10jc 0i þ ðH11 � "Þjc 1i ¼ 0; (70)

where " is the eigenvalue corresponding to jc i. Elimination
of jc 1i gives an effective Hamiltonian for the system which
acts only on the active subspace:

Heff
00 ð"Þ ¼ H00 � V01ðH11 � "Þ�1V10: (71)

This apparent simplification introduced an energy depen-
dence into the Hamiltonian. One practical way forward is
to approximate this as an energy-independent Hamiltonian
Heff

00 ð"0Þ, choosing the reference energy "0 to be the average

energy of the states of interest. This approach has been used

8This is similar in spirit to the Pipek-Mazey procedure, Eq. (62),

but applied to subspace selection rather than gauge selection.
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to construct tight-binding Hamiltonians from full electronic-
structure calculations (Solovyev, 2004).

A form of Löwdin partitioning has been widely used
in connection with the linear-muffin-tin-orbital (LMTO)
method, particularly in its most recent formulation, the
Nth-order muffin-tin-orbital (NMTO) approach (Andersen
and Saha-Dasgupta, 2000; Zurek, Jepsen, and Andersen,
2005). In this context it is usually referred to as downfolding,
although we note that some use this term to refer to any
scheme to produce a minimal basis-set representation.

In studies of complex materials there may be a significant
number of MTOs, typically one for each angular-momentum
state ðs; p; dÞ on every atomic site. One may wish to construct
a minimal basis to describe states within a particular energy
region, e.g., the occupied states, or those crossing the Fermi
level. Assume we have basis orbitals (MTOs in this case)
which we wish to partition into active and passive sets. Using
the notation of Eq. (68), Löwdin partitioning gives a set
of energy-dependent orbitals �0ð"; rÞ for the active space
according to (Zurek, Jepsen, and Andersen, 2005)

�0ð"; rÞ ¼ �0ðrÞ ��1ðrÞðH11 � "Þ�1V10: (72)

Taking into account the energy dependence, this reduced set
of orbitals spans the same space as the original full set of
orbitals and can be seen to be the original orbitals of
the active set dressed by an energy-dependent linear combi-
nation of orbitals from the passive set. In the NMTO
scheme, the next step is to form an energy-independent set

of orbitals through an nth-order polynomial fit to the energy
dependence.

To give a specific example, accurate calculations on tetra-
hedral semiconductors will require the inclusion of d states in
the MTO basis, i.e., nine states ðs; p; dÞ per site. However, it
would be desirable to construct a minimal basis to describe
the valence and lower conduction states with only four states
ðs; pÞ on each site (Lambrecht and Andersen, 1986). We
therefore designate s and p as active channels and d as
passive. Downfolding will result in an MTO with either s
or p character on a given site, with the inclusion of d
character on neighboring sites. In other words, the tail of
the MTO is modified to ‘‘fold in’’ the character of the passive
orbitals.

In Fig. 11, the band structure of graphite calculated using a
full s, p, and d basis on each carbon atom is shown (Zurek,
Jepsen, and Andersen, 2005), and compared to the bands
obtained by choosing s, px, and py states on every second

carbon atom as the active channels and downfolding all other
states. The energy mesh spans the energy range of the sp2

bonding states (shown on the right-hand side of the band-
structure plot in Fig. 11). For these bands the agreement with
the full calculation is perfect to within the resolution of the
figure. Symmetric orthonormalization of the three NMTOs
gives the familiar set of three symmetry related �-bonding
orbitals (compare with the MLWF of graphene in Fig. 6).
Lechermann et al. (2006) compared MLWFs and NMTO
orbitals for a set of t2g states located around the Fermi level

SrVO3. It was found that both schemes gave essentially
identical orbitals.

Carbon s-orbital Carbon px-orbital Carbon py-orbital

Carbon sp2-bond orbital
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FIG. 11 (color online). Bottom left panel: The band structure of graphite as calculated with a full Nth-order muffin-tin orbital (NMTO) s, p,
d basis, or with an s, px, and py orbital on every second carbon atom (lighter bands). Bottom right panel: One of the sp2 bond orbitals which

arise by symmetrical orthonormalization of the s, px, and py orbitals (top panels). The energy meshes used for each calculation are given to

the right of the band structure. From Zurek, Jepsen, and Andersen, 2005.

1436 Marzari et al.: Maximally localized Wannier functions: Theory . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



C. Comparative discussion

At this point it is worth commenting briefly on some of the
advantages and disadvantages of various choices of WFs. We
emphasize again that no choice of WFs, whether according to
maximal localization or other criteria, can be regarded as
‘‘more correct’’ than another. Because WFs are intrinsically
gauge dependent, it is impossible, even in principle, to
determine the WFs experimentally. By the same token, cer-
tain properties obtained from the WFs, such as the dipole
moments of molecules in condensed phases (see Sec. V.B.3),
must be interpreted with caution. The measure of a WF
construction procedure is, instead, its usefulness in connec-
tion with theoretical or computational manipulations.

Whether or not the WFs are to be used as basis functions
for Wannier interpolation (see Sec. VI) or other purposes (see
Sec. VII), some variety of maximally localized WFs are
probably most natural both because the real-space matrix
elements can be restricted to relatively near neighbors, and
because Fourier-transformed quantities become relatively
smooth in k space. However, in cases in which the set of
MLWFs does not preserve the space-group symmetry, it may
be better to insist on symmetry-preserving WFs even at the
expense of some delocalization (see also the discussion in
Sec. II.I.1). In this way, properties computed from the WFs,
such as interpolated band structures, will have the correct
symmetry properties. When using WFs to interpret the nature
of chemical bonds, as in Sec. IV, the results may depend to
some degree on the choice of WF construction method, and
the optimal choice may in the end be a matter of taste.

D. Nonorthogonal orbitals and linear scaling

In recent years there has been much progress in the
development of practical linear-scaling methods for
electronic-structure calculations, that is, methods in which
the computational cost of the calculation grows only linearly
with the size of the system. The fundamental principle behind
such approaches is the fact that electronic structure is inher-
ently local (Heine, 1980), or ‘‘nearsighted’’ (Kohn, 1996). This
manifests itself in the exponential localization of the WFs in
insulators (discussed in Sec. II.G) and, more generally, in the
localization properties of the single-particle density matrix

�ðr; r0Þ ¼ hrjPjr0i
¼ V

ð2�Þ3
Z
BZ

dk
X
n

fnkc nkðrÞc �
nkðr0Þ; (73)

where, following Janak (1978), the projection operator P of
Eq. (5) has been generalized to the case of fractional eigenstate
occupancies fnk. The quantity �ðr; r0Þ has been shown to
decay exponentially as expð��jr� r0jÞ in insulators and
semiconductors, where the exponent � can be heuristically
related to the direct band gap of the system (des Cloizeaux,
1964a; Ismail-Beigi and Arias, 1999; Taraskin, Drabold, and
Elliott, 2002). It has also been shown to take the same form in
metals at finite temperature,9 but with � determined by the

ratio between the thermal energy kBT and the Fermi velocity
(Goedecker, 1998).

Exponential localization may seem a surprising result
given that the Bloch eigenstates extend across the entire
system. Expressing the density matrix in terms of WFs using
Eq. (10), we find

�ðr; r0Þ ¼ X
ij

X
RR0

wiRðrÞKijðR0 �RÞw�
jR0 ðr0Þ; (74)

where we have defined the density kernel10

KijðRÞ¼ V

ð2�Þ3
Z
BZ

dke�ik�RX
n

½UðkÞy�infnk½UðkÞ�nj;

(75)

which reduces to �ij�R0 in the case of a set of fully occupied

bands. We now see that the spatial localization of the density
matrix is closely linked to that of the Wannier functions
themselves. This locality is exploited in linear-scaling meth-
ods by retaining an amount of information in the density
matrix that scales only linearly with system size.

Many different linear-scaling DFT approaches exist; for
comprehensive reviews, see Galli (1996), Goedecker (1999),
and Bowler and Miyazaki (2012). Many of them are based on
the variational minimization of an energy functional ex-
pressed either in terms of localized Wannier-like orbitals or
the density operator itself. The common point between these
variational methods is that the idempotency of the density
operator or the orthogonality of the Wannier orbitals is not
imposed explicitly during the minimization procedure.
Instead, the energy functionals are constructed such that these
properties are satisfied automatically at the minimum, which
coincides with the true ground state of the system.

Many of these methods also make use of nonorthogonal
localized orbitals, referred to as ‘‘support functions’’
(Hernández and Gillan, 1995) or ‘‘nonorthogonal generalized
Wannier functions’’ (NGWFs) (Skylaris et al., 2002), in
contrast to canonical WFs, which are orthogonal. The density
matrix in Eq. (74) can be generalized so as to be represented
in terms of a set of nonorthogonal localized orbitals f��RðrÞg
and a corresponding nonunitary (and, in general, nonsquare)
transformation matrix MðkÞ, which take the place of fwiRðrÞg
and UðkÞ, respectively. Two main benefits arise from allowing
nonorthogonality. First, it is no longer necessary to enforce
explicit orthogonality constraints on the orbitals during the
energy minimization procedure (Galli and Parrinello, 1992;
Mauri, Galli, and Car, 1993; Ordejón et al., 1993; Hierse
and Stechel, 1994; Hernández, Gillan, and Goringe, 1996).
Second, a nonorthogonal representation can be more local-
ized than an essentially equivalent orthogonal one (Anderson,
1968; He and Vanderbilt, 2001). In practice, linear-scaling
methods target large systems, which means that �-point only
sampling of the BZ is usually sufficient. In this case, the
separable form for the density matrix simplifies to

�ðr; r0Þ ¼ X
�


��ðrÞK�
��

ðr0Þ; (76)

9For metals at zero temperature, the discontinuity in occupancies

as a function of k results in the well-known algebraic decay of the

density matrix. 10This term was, to our knowledge, first used by McWeeny (1960).
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where the density kernel is11

K�
 ¼ X
n

½My��nfn½M�
n : (77)

Minimization of an appropriate energy functional with
respect to the degrees of freedom present in the density matrix
leads to ground-state nonorthogonal orbitals that are very
similar in appearance to (orthogonal) MLWFs. Figure 12
shows, for example, NGWFs on a Ni atom in bulk
NiO, obtained using the ONETEP linear-scaling DFT code
(Skylaris et al., 2005). A recent comparison of static polar-
izabilities for molecules, calculated using Eq. (89) with both
MLWFs and NGWFs, demonstrates remarkable agreement
between the two (O’Regan, Payne, and Mostofi, 2012).

E. Other local representations

Over the years, a number of other computational schemes
have been devised to provide a local analysis of the electronic
structure in molecules and solids. Here we briefly mention
those most commonly used in solid-state studies. The first
choice is whether to work with the electronic wave function
or with the charge density.

One of the earliest and still most widely used wave func-
tion based schemes is the ‘‘Mulliken population analysis’’
(Mulliken, 1955). This starts from a representation of the
density operator in a linear combination of atomic orbitals
(LCAO) basis. If an extended basis, such as plane waves, has
been used, this can be obtained after first performing a
projection onto a suitable set of atomic orbitals (Sánchez-
Portal, Artacho, and Soler, 1995). Using the quantity PA

introduced in Eq. (62) the Mulliken charge on an atomic
site A is given by

QA ¼ XJ
i¼1

h�ijPAj�ii: (78)

The Mulliken scheme also provides a projection into local
angular-momentum eigenstates and an overlap (or bond)
population between atom pairs. The major disadvantage of
the scheme is the fact that the absolute values obtained have a
marked dependence on the LCAO basis. In fact, the results tend
to become less meaningful as the basis is expanded, as orbitals
on one atomic site contribute to the wave function on neighbor-
ing atoms. However, it is generally accepted that so long as
calculations using the same set of local orbitals are compared,
trends in the values can provide some chemical intuition (Segall
et al., 1996). An early application was to the study of bonding at
grain boundaries of TiO2 (Dawson et al., 1996).

An alternative approach is to work directly with the charge
density. The scheme of Hirshfeld (1977) attempted to parti-
tion the charge density by first defining a so-called prodensity
for the system, typically a superposition of free-atom charge
densities �iðrÞ. The ground-state charge density is then
partitioned between atoms according to the proportions of
the procharge at each point in space. This can easily be
integrated to give, for example, a total charge

Qi
H ¼

Z
dr�ðrÞ �iðrÞ

�i�
iðrÞ (79)

for each atomic site. Hirschfield charges have recently been
used to parametrize dispersion corrections to local-density
functionals (Tkatchenko and Scheffler, 2009).

Partitioning schemes generally make reference to some
arbitrary auxiliary system; in the case of Hirschfield charges,
this is the free-atom charge density, which must be obtained
within some approximation. In contrast, the atoms in mole-
cules (AIM) approach developed by Bader (1991) provides a
uniquely defined way to partition the charge density. It uses
the vector field corresponding to the gradient of the charge
density. In many cases the only maxima in the charge density
occur at the atomic sites. As all field lines must terminate on
one of these atomic ‘‘attractors,’’ each point in space can be
assigned to a particular atom according to the basin of
attraction that is reached by following the density gradient.
Atomic regions are now separated by zero-flux surfaces SðrsÞ
defined by the set of points ðrsÞ at which

r�ðrsÞ � nðrsÞ ¼ 0; (80)

where nðrsÞ is the unit normal to SðrsÞ. Having made such a
division it is straightforward to obtain values for the atomic
charges (and also dipoles, quadrupoles, and higher moments).
The AIM scheme has been widely used to analyze bonding in
both molecular and solid-state systems, as well as to give a
localized description of response properties such as infrared
absorption intensities (Matta, Boyd, and Becke, 2007).

A rather different scheme is the electron localization func-
tion (ELF) introduced by Becke and Edgecombe (1990) as a
simple measure of electron localization in physical systems.
Their original definition is based on the same-spin pair
probability density Pðr; r0Þ, i.e., the probability to find two
like-spin electrons at positions r and r0. Savin et al. (1992)
introduced a form for the ELF �ðrÞ which can be applied to an
independent-particle model:

FIG. 12 (color online). Isosurfaces of the set of nine nonorthog-

onal generalized Wannier functions (NGWFs) on a nickel atom in

NiO (shown centered on different, symmetrically equivalent, Ni

atoms in the lattice). The isosurface is set to half of the maximum

for the s and p-like NGWFs and 10�3 times the maximum for the

d-like NGWFs. Adapted from O’Regan, Payne, and Mostofi, 2011.

11It is worth noting that the nonorthogonality of the orbitals results

in an important distinction between covariant and contravariant

quantities, as denoted by raised and lowered Greek indices

(Artacho and Miláns del Bosch, 1991; O’Regan, Payne, and

Mostofi, 2011).
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�ðrÞ ¼ 1

1þ ðD=DhÞ2
; (81)

D ¼ 1

2

XJ
i¼1

jrc ij2 � 1

8

jr�j2
�

; (82)

Dh ¼ 3

10
ð3�2Þ2=3�5=3; � ¼ XJ

i¼1

jc ij2; (83)

where the sum is over all occupied orbitals. D represents the
difference between the noninteracting kinetic energy and the
kinetic energy of an ideal Bose gas. Dh is the kinetic energy
of a homogeneous electron gas with a density equal to the
local density. As defined, �ðrÞ is a scalar function which
ranges from 0 to 1. Regions of large kinetic energy (i.e.,
electron delocalization) have ELF values close to zero while
larger values correspond to paired electrons in a shared
covalent bond or in a lone pair. In a uniform electron gas of
any density, �ðrÞ will take the value of 1

2 . Early application of

the ELF in condensed phases provided insight into the nature
of the bonding at surfaces of Al (Santis and Resta, 2000) and
Al2O3 (Jarvis and Carter, 2001), and a large number of other
applications have appeared since.

IV. ANALYSIS OF CHEMICAL BONDING

As discussed in Sec. III.A, there is a long tradition in the
chemistry literature of using localized molecular orbitals
(Boys, 1960, 1966; Foster and Boys, 1960a, 1960b;
Edmiston and Ruedenberg, 1963) as an appealing and intui-
tive avenue for investigating the nature of chemical bonding
in molecular systems. MLWFs provide the natural general-
ization of this concept to the case of extended or

solid-state systems. Since MLWFs are uniquely defined for
the case of insulators and semiconductors, they are particu-
larly suited to discuss hybridization, covalency, and ionicity
in both crystalline and disordered systems. In addition, in the
supercell approximation they can be used to describe any
disordered bulk, amorphous, or liquid system (Payne et al.,
1992), providing a compact description of electronic states in
terms of their Wannier centers, their coordination with other
atoms, and the spatial distribution and symmetry of the
MLWFs. As such, they are often very useful for extracting
chemical trends and for allowing for statistics to be gathered
on the nature of bonds (e.g., covalent bonds versus lone
pairs), be it in the presence of structural complexity, as is
the case of an amorphous solid, or following the intrinsic
dynamics of a liquid or an unfolding chemical reaction. They
also share the same strengths and weaknesses alluded to in
Sec. III.A, whereby different localization criteria can provide
qualitatively different representations of chemical bonds. This
arbitrariness seems less common in an extended system, and
often some of the most chemically meaningful information
comes from the statistics of bonds as obtained in large-scale
simulations, or in long first-principles molecular-dynamics
runs. Finally, localized orbitals can embody the chemical
concept of transferable functional groups, and thus be used
to construct a good approximation for the electronic structure
of complex systems starting from the orbitals for the different
fragments (Hierse and Stechel, 1994; Benoit, Sebastiani,
and Parrinello, 2001; Lee, Nardelli, and Marzari, 2005), as
discussed in Sec. VII.

A. Crystalline solids

One of the most notable, albeit qualitative, characteristics
of MLWFs is their ability to highlight the chemical signatures
of different band manifolds. This was realized early on, as is
apparent from Fig. 2, showing the isosurfaces for one of the
four MLWFs in crystalline silicon and gallium arsenide,
respectively. These are obtained from the closed manifold
of four valence bands, yielding four equivalent MLWFs that
map into one another under the space-group symmetry
operations of the crystal.12 It is clearly apparent that these
MLWFs represent the intuitive chemical concept of a cova-
lent bond, with each MLWF representing the bonding orbital
created by the constructive interference of two atomic sp3

orbitals centered on neighboring atoms. In addition, it can be
seen that in gallium arsenide this covalent bond and its WFC
are shifted toward the more electronegative arsenic atom.
This was explored further by Abu-Farsakh and Qteish
(2007) to introduce a formal definition of electronegativity,
or rather of a bond-ionicity scale, based on the deviation of
WFCs from their geometrical bond centers. It is worth men-
tioning that these qualitative features of Wannier functions
tend to be robust and often independent of the details of the
method used to obtained them, maximally localized or not.

FIG. 13 (color online). Band structure of crystalline Si and cor-

responding conduction MLWFs. Top: Circles indicate a four-

dimensional manifold which has been disentangled from the full

band structure (solid lines). The frozen window is also indicated.

Bottom: One of the four antibonding MLWFs obtained from this

manifold (the other three are equivalent under space-group symme-

try operations).

12It should be noted that the maximal-localization procedure does

not necessarily lead to WFs that respect the space-group symmetry.

If desired, symmetries can be enforced by imposing codiagonaliza-

tion of appropriate operators (Posternak et al., 2002) or by using

projection methods (Ku et al., 2002; Qian et al., 2008).
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For example, similar results are obtained for covalent con-
ductors whether one makes use of symmetry considerations

(Satpathy and Pawlowska, 1988; Smirnov and Usvyat, 2001;
Smirnov, Evarestov, and Usvyat, 2002; Usvyat, Evarestov,
and Smirnov, 2004), finite-support regions in linear-scaling

methods (Fernandez et al., 1997; Skylaris et al., 2002), or
projection approaches (Stephan, Martin, and Drabold, 2000),
or even if the MLWF algorithm is applied within Hartree-

Fock (Zicovich-Wilson, Dovesi, and Saunders, 2001) rather
than DFT.

Once conduction bands are included via the disentangle-
ment procedure, results depend both on the target dimensions

of the disentangled manifold and on the states considered in
the procedure (e.g., the disentanglement window). In this
case, it becomes riskier to draw conclusions from the quali-

tative features of the MLWFs. Still, it is easy to see how
MLWFs can make the connection between atomic constitu-
ents and solid-state bands, representing a formal derivation of

‘‘atoms in solids.’’ That is, it can reveal the atomic-like
orbitals that conceptually lie behind any tight-binding for-
mulation, but that can now be obtained directly from first

principles according to a well-defined procedure. For crys-
talline silicon, the four-dimensional manifold disentangled
from the lowest part of the conduction bands gives rise to four

identical antibonding orbitals (see Fig. 13) originating from
the destructive interference of two atomic sp3 orbitals cen-
tered on neighboring atoms, to be contrasted with the con-

structive interference shown in Fig. 2 for the valence WFs. In
addition, an eight-dimensional manifold disentangled from

an energy window including both the valence bands and the
lowest part of the conduction bands gives rise to the atomic
sp3 tight-binding orbitals of crystalline silicon (see Fig. 14).

These can form the basis of the construction of Hamiltonians

for model systems (e.g., strongly correlated) or large-scale

nanostructures, as discussed in Sec. VII.
These considerations also extend to more complex sys-

tems. The case of ferroelectric perovskites was studied rela-

tively early by Marzari and Vanderbilt (1998), Baranek et al.

(2001), and Evarestov, Smirnov, and Usvyat (2003), thanks

to the presence of well-separated manifolds of bands

(King-Smith and Vanderbilt, 1994). A classic example is

shown in Fig. 15, showing for BaTiO3 the three MLWFs

per oxygen derived from the nine oxygen 2p bands. While in

the classical ionic picture of perovskites the B-cation (here

Ti) is completely ionized in a 4+ state, the covalent nature of

the bond becomes clearly apparent here, with the MLWFs

showing a clear hybridization in the form of mixed p-d
orbitals. Such hybridization is at the origin of the ferroelectric

instability, as argued by Posternak, Resta, and Baldereschi

(1994). The analysis of the MLWF building blocks can also

extend to quite different crystal types. For example, Cangiani

et al. (2004) discussed the case of TiO2 polytypes, where

bonding MLWFs associated with the O 2s=2p valence mani-

fold are seen to be similar in the rutile and anatase form, with

the third polytype (brookite) an average between the two

(Posternak et al., 2006). Applications to other complex

systems can be found, e.g., for antiferromagnetic MnO

(Posternak et al., 2002) or for silver halides (Evarestov,

Smirnov, and Usvyat, 2004).

B. Complex and amorphous phases

Once the electronic ground state has been decomposed into

well-localized orbitals, it becomes possible and meaningful

to study their spatial distribution or the distribution of their

centers of charge (the WFCs). Silvestrelli et al. (1998) were

the first to argue that the WFCs can be a powerful tool for

understanding bonding in low-symmetry cases, representing

an insightful and an economical mapping of the continuous

electronic degrees of freedom into a set of classical descriptors,

i.e., the center positions and spreads of the WFs.
The benefits of this approach become apparent when

studying the properties of disordered systems. In amorphous

FIG. 14 (color online). Band structure of crystalline Si and cor-

responding valence and conduction MLWFs. Top: Circles indicate

an eight-dimensional manifold which has been disentangled from

the full band structure (solid lines). The frozen window is also

indicated. Bottom: Two of the eight off-bond atom-centered sp3

MLWFs obtained from this manifold (the other six are equivalent

under space-group symmetry operations; for the discussion of

on-bond vs off-bond MLWFs, see Sec. IV.D).

FIG. 15 (color online). The three MLWFs derived from the O 2p
bands of BaTiO3 in the centrosymmetric structure, showing cova-

lent hybridization with the nominally empty Ti 3d orbitals. The left

panel shows the O½2pz� � Ti½3dz2 � MLWF, the central panel adds

the O½2py� � Ti½3dyz� MLWF, and the right panel adds to these the

O½2px� � Ti½3dxz�MLWF. For the locations of the ions, see Fig. 22.
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solids the analysis of the microscopic properties is usually

based on the coordination number, i.e., on the number of

atoms lying inside a sphere of a chosen radius rc centered on

the selected atom (rc is typically inferred from the first

minimum in the pair-correlation function). This purely geo-

metrical analysis is completely blind to the actual electronic

charge distribution, which ought to be important in any

description of chemical bonding. An analysis of the full

charge distribution and bonding in terms of the Wannier

functions, as, for example, in Fig. 4 for the distorted tetrahe-

dral network of amorphous silicon, would be rather complex,

albeit useful to characterize the most common defects

(Fornari et al., 2001).
Instead, just the knowledge of the positions of the WFCs

and their spreads can capture most of the chemistry in the

system and can identify the defects present. In this approach,

the WFCs are treated as a second species of ‘‘classical

particles’’ (representing electrons), and the amorphous solid

is treated as a statistical assembly of the two kinds of particles

(ions and WFCs). Pair-correlation functions can thus be

constructed for ions and classical electrons, leading to the

definition of novel bonding criteria based on the locations of

the WFCs. For the case of amorphous silicon, for example,

the existence of a bond between two ions can be defined by

their sharing a common WFC within a distance that is smaller

than the first minimum of the silicon-WFC pair-correlation

function. Following this definition, one can provide a more

meaningful definition of atomic coordination number, argue

for the presence (or absence) of bonds in defective configu-

rations, and propose specific electronic signatures for identi-

fying different defects (Silvestrelli et al., 1998).
The ability of Wannier functions to capture the electronic

structure of complex materials has also been demonstrated in

the study of boron allotropes. Boron is almost unique among

the elements in having at least four major crystalline phases,

all stable or metastable at room temperature and with com-

plex unit cells of up to 320 atoms, together with an amor-

phous phase. In their study of 
-rhombohedral boron, Ogitsu

et al. (2009) were able to identify and study the relation

between two-center and three-center bonds and boron vacan-

cies, identifying the most electron-deficient bonds as the most

chemically active. Examples are shown in Fig. 16. Tang and

Ismail-Beigi (2009) were also able to study the evolution of

2D boron sheets as they were made more compact (from

hexagonal to triangular), and showed that the in-plane bond-

ing pattern of the hexagonal system was preserved, with only

minor changes in the shape and position of the MLWFs.
Besides its application to the study of disordered networks

(Meregalli and Parrinello, 2001; Lim et al., 2002; Fitzhenry

et al., 2003), the above analysis can also be effectively

employed to elucidate the chemical and electronic properties

accompanying structural transformations. In work on

silicon nanoclusters under pressure (Martonak, Molteni, and

Parrinello, 2000, 2001; Molteni, Martonak, and Parrinello,

2001), the location of the WFCs was monitored during

compressive loading (up to 35 GPa) and unloading. Some

resulting configurations are shown in Fig. 17. The analysis of

the ‘‘bond angles’’ formed by two WFCs and their common

Si atom shows considerable departure from the tetrahedral

rule at the transition pressure. The MLWFs also become

significantly more delocalized at that pressure, hinting at a

metallization transition similar to the one that occurs in Si in

going from the diamond to the 
-tin structure.

C. Defects

Interestingly, the MLWFs analysis can also point to struc-

tural defects that do not otherwise exhibit any significant

electronic signature. Goedecker, Deutsch, and Billard

(2002) predicted, entirely from first principles, the existence

of a new fourfold-coordinated defect that is stable inside the

Si lattice (see Fig. 18). This defect had not been considered

before, but displays by far the lowest formation energy, at the

DFT level, among all native defects in silicon. Inspection of

the relevant ‘‘defective’’ MLWFs reveals that their spreads

actually remain very close to those typical of crystalline

silicon, and that the WFCs remain equally shared between

the atoms in a typical covalent arrangement. These consid-

erations suggest that the electronic configuration is locally

almost indistinguishable from that of the perfect lattice,

making this defect difficult to detect with standard electronic

probes. Moreover, a low activation energy is required for the

self-annihilation of this defect; this consideration, in combi-

nation with the ‘‘stealth’’ electronic signature, hints at the

reason why such a defect could have eluded experimental

discovery despite the fact that Si is one of the best studied

materials in the history of technology.

FIG. 16 (color online). Charge densities for the MLWFs in


-rhombohedral boron. Darker isosurfaces correspond to electron-

deficient bonds; lighter ones correspond to fully occupied bonds.

From Ogitsu et al., 2009.

FIG. 17 (color online). Collapse and amorphization of a hydro-

genated Si cluster under pressure, (a) first at 25 GPa, (b) then at

35 GPa, and (c) back to 5 GPa. Small dark spheres indicate the

Wannier centers. From Martonak, Molteni, and Parrinello, 2001.
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For the case of the silicon vacancy, MLWFs were studied
for all the charge states by Corsetti and Mostofi (2011),
validating the canonical Watkins model (Watkins and
Messmer, 1974). This work also demonstrated the importance
of including the occupied defect levels in the gap when
constructing the relevant WFs, which are shown in the first
two panels of Fig. 19. For the doubly charged split-vacancy
configuration, the ionic relaxation is such that one of the
nearest neighbors of the vacancy site moves halfway toward
the vacancy, relocating to the center of an octahedral cage of
silicon atoms. This gives rise to six defect WFs, each corre-
sponding to a bond between sp3d2 hybrids on the central
atom and dangling sp3 orbitals on the neighbors, as shown in
the last panel of Fig. 19.

D. Chemical interpretation

It should be stressed that a ‘‘chemical’’ interpretation of the
MLWFs is most appropriate when they are formed from a
unitary transformation of the occupied subspace. Whenever
unoccupied states are included, MLWFs are more properly
understood as forming a minimal tight-binding basis, and not
necessarily as descriptors of the bonding. Nevertheless, these
tight-binding states sometimes conform to our chemical
intuition. For example, referring back to Fig. 6 we recall

that the band structure of graphene can be described accu-

rately by disentangling the partially occupied � manifold
from the higher free-electron parabolic bands and the anti-

bonding sp2 bands. One can then construct either a minimal
basis of one pz MLWF per carbon, if interested only in the

�=�? manifold around the Fermi energy, or a slightly larger

set with an additional MLWF per covalent bond, if interested
in describing both the partially occupied �=�? and the fully

occupied � manifolds. In this latter case, the bond-centered
MLWFs come from the constructive superposition of two sp2

orbitals pointing toward each other from adjacent carbons
(Lee, Nardelli, and Marzari, 2005).

On the contrary, as discussed in Sec. II.I.2 and shown in

Fig. 8, a very good tight-binding basis for 3d metals such as
Cu can be constructed (Souza, Marzari, and Vanderbilt, 2001)

with five atom-centered d-like orbitals and two s-like orbitals
in the interstitial positions. Rather than reflecting a ‘‘true’’

chemical entity, these represent linear combinations of sp3

orbitals that interfere constructively at the interstitial sites,

thus providing the additional variational freedom needed to

describe the entire occupied space. Somewhere in between, it
is worth pointing out that the atom-centered sp3 orbitals

typical of group-IV or III-V semiconductors, that can be
obtained in the diamond and zinc blende structure by disen-

tangling the lowest four conduction bands, can have a major
lobe pointing either to the center of the bond or in the

opposite direction (Lee, 2006; Wahn and Neugebauer,
2006). For a given spatial cutoff on the tight-binding

Hamiltonian constructed from these MLWFs, it is found

that the former give a qualitatively much better description
of the DFT band structure than the latter, despite the counter-

intuitive result that the ‘‘off-bond’’ MLWFs are slightly more
localized. The reason is that the ‘‘on-bond’’ MLWFs have a

single dominant nearest-neighbor interaction along a bond,
whereas for the off-bond MLWFs there are a larger number of

weaker nearest-neighbor interactions that are not directed
along the bonds (Corsetti, 2012).

E. MLWFs in first-principles molecular dynamics

The use of MLWFs to characterize electronic bonding in a
complex system has been greatly aided by the implementa-

tion of efficient and robust algorithms for maximal localiza-
tion of the orbitals in the case of large, and often disordered,

supercells in which the Brillouin zone can be sampled at a
single point, usually the zone-center � point (Silvestrelli

et al., 1998; Silvestrelli, 1999; Berghold et al., 2000;

Bernasconi and Madden, 2001). Such efforts and the imple-
mentation in widely available computer codes have given rise

to an extensive literature dedicated to understanding and
monitoring the nature of bonding in complex and realistic

systems under varying thermodynamical conditions or during
a chemical reaction. Such approaches are particularly useful

when combined with molecular-dynamics simulations, and
most applications have taken place within the framework first

proposed by Car and Parrinello (1985). In fact, specialized

algorithms have been developed to perform on-the-fly
Car-Parrinello molecular dynamics in a Wannier representa-

tion (Sharma, Wu, and Car, 2003; Iftimie, Thomas, and
Tuckerman, 2004; Wu, Selloni, and Car, 2009).

FIG. 18 (color online). The fourfold-coordinated defect in Si.

Dark and intermediate spheres denote Si atoms (the former being

the two displaced ones), light spheres are vacancies, and the small

spheres indicate the centers of the MLWFs. Adapted from

Goedecker, Deutsch, and Billard, 2002.

FIG. 19 (color online). Contour-surface plots of the MLWFs most

strongly associated with a silicon vacancy in bulk silicon, for

different charge states of the vacancy (from left to right: neutral

unrelaxed, neutral relaxed, and doubly negative relaxed). Adapted

from Corsetti and Mostofi, 2011.
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First applications were to systems as diverse as high-

pressure ice (Bernasconi, Silvestrelli, and Parrinello, 1998),

doped fullerenes (Billas et al., 1999), adsorbed organic

molecules (Silvestrelli, Ancilotto, and Toigo, 2000), ionic

solids (Bernasconi, Madden, and Wilson, 2002; Posternak

et al., 2002), and the Ziegler-Natta polymerization (Boero,

Parrinello et al., 2000). This latter case is a paradigmatic

example of the chemical insight that can be gleaned by

following the WFCs in the course of a first-principles simu-

lation. In the Ziegler-Natta reaction we have an interconver-

sion of a double carbon bond into a single bond, and a

characteristic agostic interaction between the C-H bond and

the activated metal center. Both become immediately visible

once the WFCs are monitored, greatly aiding the interpreta-

tion of the complex chemical pathways.
Car-Parrinello molecular dynamics is particularly suited to

the study of liquid systems, and applications have been

numerous in all areas of physical chemistry. Examples in-

clude the work of Raugei, Cardini, and Schettino (1999),

Sullivan et al. (1999), Boero, Morikawa et al. (2000),

Boero, Parrinello et al. (2000), Lightstone et al. (2001,

2005), Schwegler, Galli, and Gygi (2001), Tobias, Jungwirth,

and Parrinello (2001), Vuilleumier and Sprik (2001), Bako,

Hutter, and Palinkas (2002), Jungwirth and Tobias (2002),

Raugei and Klein (2002), Kreitmeir et al. (2003), van Erp

and Meijer (2003), Bernasconi et al. (2004), Blumberger

et al. (2004), Kirchner and Hutter (2004), Leung and Rempe

(2004), Odelius, Kirchner, and Hutter (2004), Saharay and

Balasubramanian (2004), Heuft and Meijer (2005), Ikeda,

Hirata, and Kimura (2005), Faralli et al. (2006), Krekeler,

Hess, and Delle Site (2006), Bucher and Kuyucak (2008),

Costanzo and Della Valle (2008), D’Auria, Kuo, and Tobias

(2008), Salanne et al. (2008), Suzuki (2008), and Todorova,

Hunenberger, and Hutter (2008).
Water, in particular, has been studied extensively, both at

normal conditions (Grossman et al., 2004; Sit et al., 2007)

and in high- and low-pressure phases at high temperature

(Silvestrelli and Parrinello, 1999a, 1999b; Boero et al.,

2000a, 2000b, 2001; Romero, Silvestrelli, and Parrinello,

2001; Schwegler et al., 2001) (a fast dissociation event

from one of these simulations is shown in Fig. 20).

Behavior in the presence of solvated ions (Lightstone

et al., 2001; Schwegler, Galli, and Gygi, 2001; Tobias,

Jungwirth, and Parrinello, 2001; Bako, Hutter, and Palinkas,

2002; Raugei and Klein, 2002) or a hydrated electron (Boero

et al., 2003; Boero, 2007), or at surfaces and interfaces

(Salvador et al., 2003; Kuo and Mundy, 2004; Kuo et al.,
2006, 2008; Mundy and Kuo, 2006; Kudin and Car, 2008),
has also been studied. Moreover, MLWFs have been used to
calculate the electronic momentum density that can be mea-
sured in Compton scattering (Romero, Silvestrelli, and
Parrinello, 2000). This work elucidated the relation between
the anisotropy of the Compton profiles for water and the
nature of hydrogen bonding (Romero, Silvestrelli, and
Parrinello, 2001), and led to the suggestion that the number
of hydrogen bonds present can be directly extracted from the
Compton profiles (Sit et al., 2007). The population of
covalent bond pairs in liquid silicon and the Compton sig-
nature of covalent bonding has also recently been studied
using MLWFs (Okada et al., 2012).

Even more complex biochemical systems have been
investigated, including wet DNA (Gervasio, Carloni, and
Parrinello, 2002), HIV-1 protease (Piana et al., 2001), reverse
transcriptase (Sulpizi and Carloni, 2000), phosphate groups
(ATP, GTP, and ribosomal units) in different environments
(Alber, Folkers, and Carloni, 1999; Minehardt et al., 2002;
Spiegel and Carloni, 2003), drug-DNA complexes (Spiegel
and Magistrato, 2006), and caspases and kinases (Sulpizi
et al., 2001, 2003). Extensive reviews of first-principles
quantum simulations and molecular dynamics, with discus-
sions of MLWFs in these contexts, have appeared in papers
by Tuckerman and Martyna (2000), Tse (2002), Tuckerman
(2002), Dovesi et al. (2005), Vuilleumier (2006), and
Kirchner (2007), with Marx and Hutter (2009) providing a
comprehensive methodological overview.

Further applications of first-principles molecular dynamics
oriented specifically to extracting information about dipolar
properties and dielectric responses are discussed later in
Sec. V.B.3.

V. ELECTRIC POLARIZATION AND ORBITAL

MAGNETIZATION

First-principles calculations of electric dipoles and orbital
magnetic moments of molecular systems are straightforward.
The electric dipole is

d ¼ �e
X
j

hc jjrjc ji (84)

and the orbital moment is

m ¼ � e

2c

X
j

hc jjr� vjc ji; (85)

where the sum is over occupied Hamiltonian eigenstates jc ji,
r is the position operator, v ¼ ði=ℏÞ½H; r� is the velocity
operator, and Gaussian units are used. However, these for-
mulas cannot easily be generalized to the case of crystalline
systems, because the Hamiltonian eigenstates take the form
of Bloch functions jc nki that extend over all space. The
problem is that matrix elements such as hc nkjrjc nki and
hc nkjr� vjc nki are ill defined for such extended states
(Nenciu, 1991).

To deal with this problem, the so-called ‘‘modern theory
of polarization’’ (Resta, 1992, 1994; King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993) was
developed in the 1990s, and a corresponding ‘‘modern theory

FIG. 20 (color online). Snapshots of a rapid water-molecule dis-

sociation under high-temperature (1390 K) and high-pressure

(27 GPa) conditions. Two of the MLWFs are highlighted, the darker

and lighter ones being located on proton donor and acceptor

molecules, respectively. From Schwegler et al., 2001.
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of magnetization’’ in the 2000s (Thonhauser et al., 2005;
Xiao, Shi, and Niu, 2005; Ceresoli et al., 2006; Shi et al.,
2007; Souza and Vanderbilt, 2008). Useful reviews of these
topics have appeared (Resta, 2000, 2010; Vanderbilt and
Resta, 2006; Resta and Vanderbilt, 2007).

These theories can be formulated either in terms of Berry
phases and curvatures or, equivalently, by working in the
Wannier representation. The basic idea of the latter is to
consider a large but finite sample surrounded by vacuum and
carry out a unitary transformation from the set of delocalized
Hamiltonian eigenstates c j to a set of Wannier-like localized

molecular orbitals �j. Then one can use Eq. (84) or Eq. (85),

with c j replaced by �j, to evaluate the electric or orbital

magnetic dipole moment per unit volume in the thermody-
namic limit. In doing so, care must be taken to consider
whether any surface contributions survive in this limit.

In this section, we briefly review the modern theories of
electric polarization and orbital magnetization and related
topics. The results given in this section are valid for any set
of localized WFs; maximally localized ones do not play any
special role. Nevertheless, the close connection to the theory
of polarization has been one of the major factors behind the
resurgence of interest in WFs. Furthermore, we see that the
use of MLWFs can provide a very useful, if heuristic, local
decomposition of polar properties in an extended system. For
these reasons, it is appropriate to review the subject here.

A. Wannier functions, electric polarization, and localization

1. Relation to Berry-phase theory of polarization

Here we briefly review the connection between the
Wannier representation and the Berry-phase theory of polar-
ization (King-Smith and Vanderbilt, 1993; Vanderbilt and
King-Smith, 1993; Resta, 1994). Suppose that we have con-
structed via Eq. (8) a set of Bloch-like functions j ~c nki that
are smooth functions of k. Inserting these in place of jc nki
on the right side of Eq. (3), the WFs in the home unit cell
R ¼ 0 are simply

j0ni ¼ V

ð2�Þ3
Z
BZ

dkj ~c nki: (86)

To find their centers of charge, we note that

rj0ni ¼ V

ð2�Þ3
Z
BZ

dkð�irke
ik�rÞj~unki: (87)

Performing an integration by parts and applying h0nj on the
left, the center of charge is given by

rn ¼ h0njrj0ni ¼ V

ð2�Þ3
Z
BZ

dkh~unkjirkj~unki; (88)

which is a special case of Eq. (23). Then, in the home unit
cell, in addition to the ionic chargesþeZ
 located at positions
r
, we can imagine electronic charges�e located at positions
rn.

13 Taking the dipole moment of this imaginary cell and
dividing by the cell volume, we obtain, heuristically

P ¼ e

V

�X



Z
r
 �
X
n

rn

�
(89)

for the polarization.
This argument can be put on somewhat firmer ground by

imagining a large but finite crystallite cut from the insulator
of interest, surrounded by vacuum. The crystallite is divided
into an ‘‘interior’’ bulklike region and a ‘‘skin’’ whose vol-
ume fraction vanishes in the thermodynamic limit. The dipole
moment is computed from Eq. (84), by using LMOs �j in

place of the Hamiltonian eigenfunctions c j on the right-hand

side. Arguing that the contribution of the skin to d is negli-
gible in the thermodynamic limit and that the interior LMOs
become bulk WFs, one can construct an argument that arrives
again at Eq. (89).

If these arguments still seem sketchy, Eq. (89) can be
rigorously justified by noting that its second term,

Pel ¼ � e

ð2�Þ3
X
n

Z
BZ

dkh~unkjirkj~unki; (90)

is precisely the expression for the electronic contribution to
the polarization in the Berry-phase theory (King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993; Resta,
1994), which was derived by considering the flow of charge
during an arbitrary adiabatic change of the crystalline
Hamiltonian.

The Berry-phase theory can be regarded as providing a
mapping of the distributed quantum-mechanical electronic
charge density onto a lattice of negative point charges of
charge �e, as illustrated in Fig. 21. Then the change of
polarization resulting from any physical change, such as the
displacement of one atomic sublattice or the application of an
electric field, can be related in a simple way to the displace-
ments of the Wannier centers rn occurring as a result of this
change.

Awell-known feature of the Berry-phase theory is that the
polarization is only well defined modulo a quantum eR=V,
where R is a real-space lattice vector. Such an indeterminacy
is immediately obvious from Eq. (89), since the choice of
which WFs are assigned to the home unit cell (R ¼ 0), or, for
that matter, which ions are assigned to it, is arbitrary. Shifting
one of these objects by a lattice vector R merely changes P
by the quantum. Correspondingly, it can be shown that an

(a) (b)

FIG. 21. Illustration of mapping from physical crystal onto

equivalent point-charge system with correct dipolar properties.

(a) True system composed of point ions (þ) and charge cloud

(contours). (b) Mapped system in which the charge cloud is replaced

by quantized electronic charges (�). In the illustrated model there

are two occupied bands, i.e., two Wannier functions per cell.

13In these formulas, the sum over n includes a sum over spin.

Alternatively a factor of 2 can be inserted to account explicitly for

spin.
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arbitrary change of gauge can shift individual Wannier cen-
ters rn in arbitrary ways, except that the sum

P
nrn is guar-

anteed to remain invariant (modulo a lattice vector). The
same eR=V describes the quantization of charge transport
under an adiabatic cycle (Thouless, 1983), and indeed the
shifts of Wannier charge centers under such a cycle were
recently proposed as a signature of formal oxidation state in
crystalline solids (Jiang, Levchenko, and Rappe, 2012).

2. Insulators in finite electric field

The theory of crystalline insulators in finite electric field E
is a subtle one; the electric potential�E � r does not obey the
conditions of Bloch’s theorem, and moreover is unbounded
from below, so that there is no well-defined ground state. In
practice one wants to solve for a long-lived resonance in
which the charge density and other properties of the insulator
remain periodic, corresponding to what is meant experimen-
tally by an insulator in a finite field. This is done by searching
for local minima of the electric enthalpy per cell

F ¼ EKS � VE � P (91)

with respect to both the electronic and the ionic degrees of
freedom. EKS is the ordinary Kohn-Sham energy as it would
be calculated at zero field, and the second term is the coupling
of the field to the polarization as given in Eq. (89) (Nunes
and Vanderbilt, 1994) or via the equivalent Berry-phase
expression (Nunes and Gonze, 2001; Souza, Íñiguez, and
Vanderbilt, 2002; Umari and Pasquarello, 2002). This ap-
proach is now standard for treating periodic insulators in
finite electric fields in DFT.

3. Wannier spread and localization in insulators

We briefly touch here on another interesting connection to
the theory of polarization. Resta and co-workers defined a
measure of localization (Resta and Sorella, 1999; Sgiarovello,
Peressi, and Resta, 2001; Resta, 2002, 2006) that distin-
guishes insulators from metals quite generally and showed
that this localization measure reduces, in the absence of two-
particle interactions or disorder, to the invariant part of the
spread functional �I given in Eq. (20). Moreover, Souza,
Wilkens, and Martin (2000) showed that this same quantity
characterizes the root-mean-square quantum fluctuations of
the macroscopic polarization. Thus, while theWannier charge
centers are related to the mean value of P under quantum
fluctuations, their invariant quadratic spread �I is related to
the corresponding variance of P.

4. Many-body generalizations

In the same spirit as for the many-body WFs discussed at
the end of Sec. II.J, it is possible to generalize the formulation
of electric polarization and electron localization to the many-
body context. One again considers N electrons in a supercell;
for the present discussion we work in 1D and let the supercell
have size L. The many-body theory of electric polarization
was formulated in this context by Ortiz and Martin (1994),
and later reformulated by Resta (1998), who introduced a
‘‘many-body position operator’’ X̂ ¼ expði2�x̂=LÞ defined in
terms of the ordinary position operator x̂ ¼ P

N
i¼1 x̂i. While

h�jx̂j�i is ill defined in the extended many-body ground

state j�i, the matrix element h�jX̂j�i is well defined and can
be used to obtain the electric polarization, up to the usual
quantum. These considerations were extended to the local-
ization functional, and the relation between localization and
polarization fluctuations, by Souza, Wilkens, and Martin
(2000). The variation of the many-body localization length
near an insulator-to-metal transition in 1D and 2D model
systems was studied using quantum Monte Carlo (QMC)
methods by Hine and Foulkes (2007). Finally, the concept
of electric enthalpy was generalized to the many-body case
by Umari et al. (2005), allowing one to calculate for the first
time dielectric properties with quantum Monte Carlo meth-
ods, and applied to the case of the polarizabilities (Umari
et al., 2005) and hyperpolarizabilities (Umari and Marzari,
2009) of periodic hydrogen chains.

B. Local polar properties and dielectric response

Is Sec. V.A.1 we emphasized the equivalence of the
k-space Berry-phase expression for the electric polarization,
Eq. (90), and the expression written in terms of the locations
of the Wannier centers rn, Eq. (89). The latter has the
advantage of being a real-space expression, thereby opening
up opportunities for localized descriptions and decomposi-
tions of polar properties and dielectric responses. We empha-
size again that MLWFs have no privileged role in Eq. (89);
the expression remains correct for any WFs that are suffi-
ciently well localized that the centers rn are well defined.
Nevertheless, one may argue heuristically that MLWFs pro-
vide the most natural local real-space description of dipolar
properties in crystals and other condensed phases.

1. Polar properties and dynamical charges of crystals

Many dielectric properties of crystalline solids are most
easily computed directly in the k-space Bloch representation.
Even before it was understood how to compute the polariza-
tion P via the Berry-phase theory of Eq. (90), it was well
known how to compute derivatives of P using linear-response
methods (de Gironcoli, Baroni, and Resta, 1989; Resta, 1992;
Baroni et al., 2001). Useful derivatives include the electric
susceptibility �ij ¼ dPi=dEj and the Born (or dynamical)

effective charges Z�
i;
j ¼ VdPi=dR
j, where i and j are

Cartesian labels and R
j is the displacement of sublattice 


in direction j. With the development of the Berry-phase
theory, it also became possible to compute effective charges
by finite differences. Similarly, with the electric-enthalpy
approach of Eq. (91) it became possible to compute electric
susceptibilities by finite differences as well (Souza, Íñiguez,
and Vanderbilt, 2002; Umari and Pasquarello, 2002).

The Wannier representation provides an alternative method
for computing such dielectric quantities by finite differences.
One computes the derivatives drn;i=dEj or drn;i=dR
j of the

Wannier centers by finite differences, then sums these to get
the desired �ij or Z

�
i;
j. An example of such a calculation for

Z� in GaAs was presented already in Sec. 7 of Marzari
and Vanderbilt (1997), and an application of the Wannier
approach of Nunes and Vanderbilt (1994) in the density-
functional context was used to compute � by finite
differences for Si and GaAs (Fernandez, Dal Corso, and
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Baldereschi, 1998). Dynamical charges were computed for

several TiO2 phases by Cangiani et al. (2004) and Posternak

et al. (2006), and, as mentioned in Sec. IV.A, observed

differences between polymorphs were correlated with

changes in the chemical nature of the WFs associated with

OTi3 structural units. Piezoelectric coefficients, which are

derivatives of P with respect to strain, have also been carried

out in the Wannier representation for ZnO and BeO by Noel

et al. (2002).
Some of the most extensive applications of this kind have

been to ferroelectric perovskites, for which the dynamical

charges have been computed in density-functional and/or

Hartree-Fock contexts for BaTiO3, KNbO3, SrTiO3, and

PbTiO3 (Marzari and Vanderbilt, 1998; Baranek et al.,

2001; Evarestov, Smirnov, and Usvyat, 2003; Usvyat,

Evarestov, and Smirnov, 2004). In these materials, partially

covalent bonding associated with hybridization between O 2p
and Ti 3d states plays a crucial role in stabilizing the ferro-

electric state and generating anomalous dynamical effective

charges (Posternak, Resta, and Baldereschi, 1994; Zhong,

Vanderbilt, and Rabe, 1994). Recall that the dynamical, or

Born, effective charge Z� is defined as Z�
i;
j ¼ VdPi=dR
j

and carries units of charge. Naively, one might expect values

around þ4e for Ti ions and �2e for oxygen ions in BaTiO3

based on nominal oxidation states, but instead one finds

‘‘anomalous’’ values that are much larger. For example,

Zhong, Vanderbilt, and Rabe (1994)reported values of

þ7:2e for Ti displacements, and �5:7e for O displacements

along the Ti-O-Ti chains.
This behavior can be understood (Posternak, Resta, and

Baldereschi, 1994; Zhong, Vanderbilt, and Rabe, 1994) as

arising from hybridization between neighboring O 2p and Ti

3d orbitals that dominate the valence and conduction bands,

respectively. This hybridization, and the manner in which it

contributes to an anomalous Z�, can be visualized by inspect-
ing the changes in the MLWFs induced by the atomic dis-

placements. Figure 22(a) shows an O½2pz� � Ti½3dz2 �MLWF

in centrosymmetric BaTiO3 (Marzari and Vanderbilt, 1998).
The hybridization to Ti 3dz2 states appears in the form of the

‘‘donuts’’ surrounding the neighboring Ti atoms. When the O
atom moves upward relative to the geometric center of the
two neighboring Ti atoms as shown in Fig. 22(b), as it does in
ferroelectrically distorted BaTiO3, the hybridization strength-
ens for the upper O-Ti bond and weakens for the lower one,
endowing the WF with more Ti 3d character on the top than
on the bottom. As a result, the center of charge of the WF
shifts upward, and since electrons carry negative charge,
this results in a negative anomalous contribution to the Z�
of the oxygen atom. The figure illustrates this process for
�-oriented oxygen WFs, but a similar effect occurs for the
�-oriented oxygen WFs, and the total anomalous dynamical
charge can be accounted for quantitatively on the basis of the
distortion-induced changes of each kind of WF in the crystal
(Marzari and Vanderbilt, 1998).

The above illustrates the utility of the MLWFs in providing
a local description of dielectric and polar responses in crys-
tals. This strategy can be carried further in many ways. For
example, it is possible to decompose the Z� value for a given
atom in a crystal into contributions coming from various
different neighboring WFs, as was done for GaAs in Sec. 7
of Marzari and Vanderbilt (1997) and for BaTiO3 by Marzari
and Vanderbilt (1998). Some chemical intuition is already
gained by carrying out a band-by-band decomposition of
the Z� contributions (Ghosez et al., 1995; Ghosez and
Gonze, 2000), but the WF analysis allows a further spatial
decomposition into individual WF contributions within a
band. A deeper analysis that also involves the decomposition
of the WFs into atomic orbitals has been shown to provide
further insight into the anomalous Z� values in perovskites
(Bhattacharjee and Waghmare, 2010).

Some insightful studies of the polar properties of polymer
systems in terms of MLWFs have also been carried out.
Figure 23, for example, shows the WF centers and characters
for the 
 conformation of polyvinylidene fluoride (
-PVDF)
(Nakhmanson, Nardelli, and Bernholc, 2005), one of the
more promising ferroelectric polymer systems. An inspection
of WF centers has also been invoked to explain the polar
properties of the so-called ‘‘push-pull’’ polymers by Kudin,
Car, and Resta (2007) and of H2O ice by Lu, Gygi, and Galli
(2008). Finally, we note an interesting recent study in which

FIG. 22 (color online). Amplitude isosurface plots of the maxi-

mally localized O½2pz� � Ti½3dz2 � Wannier functions in BaTiO3. O

is at the center, surrounded by a plaquette of four light Ba atoms;

above and below are Ti atoms, almost hidden. (a) Centrosymmetric

structure. (b) Ferroelectric structure in which the central O is

displaced upward relative to the neighboring Ti atoms. Adapted

from Marzari and Vanderbilt, 1998.

FIG. 23 (color online). MLWFs for a 
-PVDF polymer chain.

(a) MLWF charge centers, indicated by diamonds. (b)–(d) MLWFs

localized on C-C, C-F, and C-H bonds, respectively. From

Nakhmanson, Nardelli, and Bernholc, 2005.
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changes in polarization induced by corrugations in BN sheets
were analyzed in terms of WFs (Naumov, Bratkovsky, and
Ranjan, 2009).

2. Local dielectric response in layered systems

In a similar way, the theoretical study of dielectric prop-
erties of ultrathin films and superlattices can also be enriched
by a local analysis. Two approaches have been introduced in
the literature. In one, the local x-y-averaged electric field
�EzðzÞ is calculated along the stacking direction z, and then the
local dielectric permittivity profile "ðzÞ ¼ �EzðzÞ= �Dz or in-
verse permittivity profile "�1ðzÞ ¼ �Dz= �EzðzÞ is plotted, where
�Dz is the x-y-averaged electric displacement field (constant
along z in the absence of free charge) determined via a Berry-
phase calculation of Pz or by inspection of �Ez in a vacuum
region. Such an approach has been applied to study dielectric
materials such as SiO2 and HfO2 interfaced to Si (Giustino,
Umari, and Pasquarello, 2003; Giustino and Pasquarello,
2005; Shi and Ramprasad, 2006, 2007) and perovskite films
and superlattices (Stengel and Spaldin, 2006a, 2006b).

The second approach is to use a Wannier analysis to assign
a dipole moment to each layer. This approach, based on the
concept of hybrid WFs discussed in Sec. II.H, was pioneered
by Giustino, Umari, and Pasquarello (2003) and Giustino and
Pasquarello (2005) and used by them to study Si=SiO2 inter-
faces and related systems. Later applications to perovskite
oxide films and superlattices have been fairly extensive. The
essential observation is that, when studying a system that is
layered or stacked along the z direction, one can still work
with Bloch functions labeled by kx and ky while carrying out

a Wannier construction or analysis only along z. Since the
extraction of Wannier centers in 1D is rather trivial,
even in the multiband case (Marzari and Vanderbilt, 1997;
Sgiarovello, Peressi, and Resta, 2001; Bhattacharjee and
Waghmare, 2005), it is not difficult to construct a ‘‘Wannier
center band structure’’ �zðkx; kyÞ, and use the planar-averaged

values to assign dipole moments to layers. This approach was
demonstrated by Wu et al. (2006), as shown in Fig. 24, and
has since been used to study perovskite superlattices
and artificial nanostructures (Wu et al., 2008; Murray and

Vanderbilt, 2009). In a related development, Stengel and
Spaldin (2006a) introduced a Wannier-based method for
computing polarizations along z and studying electric fields
along z that work even in the case in which the stacking
includes metallic layers, as long as the system is effectively
insulating along z (Stengel and Spaldin, 2007). This allows
for first-principles calculations of the nonlinear dielectric
response of ultrathin capacitors and related structures under
finite bias, providing an insightful avenue to the study of
finite-size and dead-layer effects in such systems (Stengel,
Spaldin, and Vanderbilt, 2009a, 2009b; Stengel, Vanderbilt,
and Spaldin, 2009).

3. Condensed molecular phases and solvation

Wannier-function methods have also played a prominent
role in the analysis of polar and dielectric properties of
dipolar liquids, mainly H2O and other H-bonded liquids.
While the dipole moment of an isolated H2O molecule is
obviously well defined, a corresponding definition is not easy
to arrive at in the liquid phase where molecules are in close
contact with each other. An influential development was the
proposal made by Silvestrelli and Parrinello (1999a, 1999b)
that the dipole moment of a solvated molecule could be
defined in terms of positive charges on ionic cores and
negative charges located at the centers of the MLWFs.
Using this definition, they found that the water-molecule
dipole is somewhat broadly distributed, but has an average
value of about 3.0 D, about 60% higher than in the gas phase.
These features were shown to be in conflict with the behavior
of widely used empirical models.

Of course, such a definition in terms of the dipole of the
molecular WF-center configuration remains heuristic at some
level. For example, this local measure of the dipole does not
appear to be experimentally measurable even in principle,
and clearly the use of one of the alternative measures of
maximal localization discussed in Sec. III.A would give rise
to slightly different values. Nevertheless, the approach has
been widely adopted. For example, subsequent work elabo-
rated (Sagui et al., 2004; Dyer and Cummings, 2006) and
extended this analysis to water in supercritical conditions
(Boero et al., 2000a, 2000b), confined geometries (Dellago
and Naor, 2005; Coudert, Vuilleumier, and Boutin, 2006), and
with solvated ions present (Scipioni, Schmidt, and Boero,
2009), and compared the results obtained with different
exchange-correlation functionals (Todorova et al., 2006).

It should be noted that the decomposition into Wannier
dipoles is closer to the decomposition of the charge density
into static (Szigeti) charges than to a decomposition into
dynamical (Born) charges. The first one corresponds to a
spatial decomposition of the total electronic charge density,
while the second is connected to the force that appears on an
atom in response to an applied electric field. As a counter-
point to the WF-based definition, therefore, Pasquarello and
Resta (2003) argued that a definition based on these forces
provides a more fundamental basis for inspecting molecular
dipoles in liquids. In particular, they define a second-rank
tensor as the derivative of the torque on the molecule with
respect to an applied electric field, and finding that this is
typically dominated by its antisymmetric part, they identify
the latter (rewritten as an axial vector) as the molecular
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FIG. 24 (color online). Dispersion of hybrid WF-center positions

along z as a function of ðkx; kyÞ for a superlattice composed of
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(sublayers 2A and 2B). From Wu et al., 2006.
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dipole. Surprisingly, they find that the magnitude of this

dipole vector is typically only about 2.1 D in liquid water,

much less than the value obtained from the WF analysis.
Clearly the WF-based and force-based approaches to

defining molecular dipoles provide complementary perspec-

tives, and a more complete reconciliation of these viewpoints

is the subject of ongoing work.
Finally, we note that there is extensive literature in which

Car-Parrinello molecular-dynamics simulations are carried

out for H2O and other liquids, as mentioned in Sec. IV.E and

surveyed in several reviews (Tuckerman and Martyna, 2000;

Tse, 2002; Tuckerman, 2002; Kirchner, 2007). Using such

approaches, it is possible to compute the dynamical dipole-

dipole correlations of polar liquids and compare the results

with experimental infrared absorption spectra. While it is

possible to extract the needed information from the time-

time correlation function of the total polarization PðtÞ of the
entire supercell as calculated using the Berry-phase ap-

proach, methods which follow the time evolution of local

dipoles, as defined via WF-based methods, provide addi-

tional insight and efficiency (Bernasconi, Silvestrelli, and

Parrinello, 1998; Pasquarello and Resta, 2003; Sharma,

Resta, and Car, 2005, 2007; McGrath et al., 2007; Chen

et al., 2008) and can easily be extended to other kinds of

molecular systems (Gaigeot and Sprik, 2003; Gaigeot et al.,

2005; Gaigeot, Martinez, and Vuilleumier, 2007; Pagliai

et al., 2008). The applicability of this kind of approach has

benefited greatly from the development of methods for

computing WFs and their centers ‘‘on the fly’’ during

Car-Parrinello molecular-dynamics simulations (Sharma,

Wu, and Car, 2003; Iftimie, Thomas, and Tuckerman,

2004; Wu, Selloni, and Car, 2009).

C. Magnetism and orbital currents

1. Magnetic insulators

Just as an analysis in terms of WFs can help clarify the

chemical nature of the occupied states in an ordinary insula-

tor, they can also help describe the orbital and magnetic

ordering in a magnetic insulator.
In the magnetic case, the maximal localization proceeds in

the same way as outlined in Sec. II, with trivial extensions

needed to handle the magnetic degrees of freedom. In

the case of the local (or gradient-corrected) spin-density

approximation, in which spin-up and spin-down electrons

are treated independently, one simply carries out the

maximal-localization procedure independently for each

manifold. In the case of a spinor calculation in the presence

of spin-orbit interaction, one instead implements the formal-

ism of Sec. II treating all wave functions as spinors. For

example, each matrix element on the right-hand side of

Eq. (27) is computed as an inner product between spinors,

and the dimension of the resulting matrix is the number of

occupied spin bands in the insulator.
Several examples of such an analysis have appeared in the

literature. For example, applications to simple antiferromag-

nets such as MnO (Posternak et al., 2002), novel insulating

ferromagnets and antiferromagnets (Ku et al., 2002, 2003),

and complex magnetic ordering in rare-earth manganates

(Picozzi et al., 2008; Yamauchi et al., 2008) have proven
to be illuminating.

2. Orbital magnetization and NMR

In a ferromagnetic (or ferrimagnetic) material, the total
magnetization has two components. One arises from electron
spin and is proportional to the excess population of spin-up
over spin-down electrons; a second corresponds to circulating
orbital currents. The spin contribution is typically dominant
over the orbital one [e.g., by a factor of 10 or more in simple
ferromagnets such as Fe, Ni, and Co (Ceresoli, Gerstmann
et al., 2010)], but the orbital component is also of interest,
especially in unusual cases in which it can dominate, or in the
context of experimental probes, such as the anomalous Hall
conductivity (AHC), that depend on orbital effects. Note that
inclusion of the spin-orbit interaction is essential for any
description of orbital magnetic effects.

Naively one might imagine computing the orbital magne-
tization Morb as the thermodynamic limit of Eq. (85) per unit
volume for a large crystallite. However, as discussed at the
beginning of Sec. V, Bloch matrix elements of the position
operator r and the circulation operator r� v are ill defined.
Therefore, such an approach is not suitable. Unlike for the
case of electric polarization, however, there is a simple and
fairly accurate approximation that has long been used to
compute Morb: one divides space into muffin-tin spheres
and interstitial regions, computes the orbital circulation inside
each sphere as a spatial integral of r� J, and sums these
contributions. Since most magnetic moments are fairly local,
such an approach is generally expected to be reasonably
accurate.

Nevertheless, it is clearly of interest to have available an
exact expression for Morb that can be used to test the ap-
proximate muffin-tin approach and to treat cases in which
itinerant contributions are not small. The solution to this
problem has been developed recently, leading to a closed-
form expression for Morb as a bulk Brillouin-zone integral.
Derivations of this formula via a semiclassical (Xiao, Shi, and
Niu, 2005) or long-wave quantum (Shi et al., 2007) approach
are possible, but here we emphasize the derivation carried out
in the Wannier representation (Thonhauser et al., 2005;
Ceresoli et al., 2006; Souza and Vanderbilt, 2008). For this
purpose,we restrict our interest to insulating ferromagnets. For
the case of electric polarization, the solution to the problem of
r matrix elements was sketched in Sec. V.A.1, and a heuristic
derivation ofEq. (89)was given in the paragraph following that
equation. A similar analysis was given in the above references
for the case of orbital magnetization, as follows.

Briefly, one again considers a large but finite crystallite cut
from the insulator of interest, divides it into interior and skin
regions, and transforms from extended eigenstates to LMOs
�j. For simplicity, we consider the case of a two-dimensional

insulator with a single occupied band. The interior gives a
rather intuitive local circulation (LC) contribution to the
orbital magnetization of the form

MLC ¼ � e

2A0c
h0jr� vj0i; (92)

where A0 is the unit cell area, since in the interior the LMOs
�j are really just bulk WFs. This time, however, the skin
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contribution does not vanish. The problem is that h�jjvj�ji is
nonzero for LMOs in the skin region, and the pattern of these
velocity vectors is such as to describe a current circulating
around the boundary of the sample, giving a second ‘‘itinerant
circulation’’ (IC) contribution that can, after some manipula-
tions, be written in terms of bulk WFs as

MIC ¼ � e

2A0cℏ

X
R

½RxhRjyj0i � RyhRjxj0i�: (93)

When these contributions are converted back to the Bloch
representation and added together, one finally obtains

Morb ¼ e

2ℏc
Im

Z d2k

ð2�Þ2 h@kukj � ðHk þ EkÞj@kuki;
(94)

which is the desired k-space bulk expression for the orbital
magnetization (Thonhauser et al., 2005).14 The correspond-
ing argument for multiple occupied bands in three dimensions
follows similar lines (Ceresoli et al., 2006; Souza and
Vanderbilt, 2008), and the resulting formula has recently
been implemented in the context of pseudopotential plane-
wave calculations (Ceresoli, Gerstmann et al., 2010).
Interestingly, it was found that the interstitial contribution,
defined as the difference between the total orbital magnetiza-
tion, Eq. (94), and the muffin-tin result, is not always negli-
gible. In bcc Fe, for example, it amounts to more than 30%
of the spontaneous orbital magnetization, and its inclusion
improves the agreement with gyromagnetic measurements.

The ability to compute the orbital magnetization is also of
use in obtaining the magnetic shielding of nuclei. This is
responsible for the chemical shift effect observed in nuclear
magnetic resonance (NMR) experiments. A first-principles
theory for magnetic shielding in solids was established by
examining the perturbative response to a periodic magnetic
field in the long wavelength limit (Mauri, Pfrommer, and
Louie, 1996; Pickard and Mauri, 2001). An alternative
perturbative approach used a WF representation of the elec-
tronic structure together with a periodic position operator
(Sebastiani and Parrinello, 2001; Sebastiani et al., 2002;
Sebastiani, 2003). However, magnetic shieldings can also
be computed using a ‘‘converse’’ approach in which one
uses Eq. (94) to compute the orbital magnetization induced
by a fictitious point magnetic dipole on the nucleus of interest
(Thonhauser et al., 2009; Ceresoli, Marzari et al., 2010). The
advantage of such approach is that it does not require linear-
response theory, and so it is amenable to large-scale calcu-
lations or complex exchange-correlation functionals (e.g.,
including HubbardU corrections, or Hartree-Fock exchange),
albeit at the cost of typically one self-consistent iteration for
every nucleus considered. Such converse approach has then
been extended also to the calculation of the EPR g tensor by
Ceresoli, Gerstmann et al. (2010).

3. Berry connection and curvature

Some of the concepts touched on in the previous section
can be expressed in terms of the k-space Berry connection

Ank ¼ hunkjirkjunki (95)

and Berry curvature

F nk ¼ rk �Ank (96)

of band n. In particular, the contributions of this band to the
electric polarization of Eq. (90), and to the second term in the
orbital magnetization expression of Eq. (94), are proportional
to the Brillouin-zone integrals of Ank and EnkF nk, respec-
tively. These quantities also play a role in Sec. V.C.4 and in
the discussion of the anomalous Hall conductivity and related
issues in Sec. VI.C.

4. Topological insulators and orbital magnetoelectric response

There has recently been a blossoming of interest in
so-called topological insulators, i.e., insulators that cannot
be adiabatically connected to ordinary insulators without a
gap closure. Hasan and Kane (2010) and Hasan and Moore
(2011) provided excellent reviews of the background, current
status of this field, and references into the literature.

One can distinguish two kinds of topological insulators.
First, insulators having broken time-reversal (T) symmetry
(e.g., insulating ferromagnets and ferrimagnets) can be clas-
sified by an integer Chern invariant that is proportional to the
Brillouin-zone integral of the Berry curvature F nk summed
over occupied bands n. Ordinary insulators are characterized
by a zero value of the invariant. An insulator with a nonzero
value would behave like an integer quantum Hall system, but
without the need for an external magnetic field; such systems
are usually denoted as ‘‘quantum anomalous Hall’’ (QAH)
insulators. While no examples are known to occur in nature,
tight-binding models exhibiting such a behavior are not hard
to construct (Haldane, 1988). It can be shown that a Wannier
representation is not possible for a QAH insulator, and
Thonhauser and Vanderbilt (2006) explored the way in which
the usual Wannier construction breaks down for model
systems.

Second, depending on how their Bloch functions wrap the
Brillouin zone, nonmagnetic (T-invariant) insulators can be
sorted into two classes denoted as ‘‘Z2 even’’ and ‘‘Z2 odd’’
(after the name Z2 of the group f0; 1g under addition mod-
ulo 2). Most (i.e., ‘‘normal’’) insulators are Z2 even, but
strong spin-orbit effects can lead to the Z2-odd state, for
which the surface-state dispersions are topologically required
to display characteristic features that are amenable to experi-
mental verification. Several material realizations of Z2-odd
insulators have now been confirmed both theoretically
and experimentally (Hasan and Kane, 2010; Hasan and
Moore, 2011).

In a related development, the orbital magnetoelectric co-
efficient �ij ¼ @Morb;j=@Ei was found to contain an isotropic

contribution having a topological character (the ‘‘axion’’
contribution, corresponding to an E � B term in the effective
Lagrangian). This term can be written as a Brillouin-zone
integral of the Chern-Simons three-form, defined in terms of
multiband generalizations of the Berry connection Ak and

14In the case of metals Eq. (94) must be modified by adding a�2	
term inside the parenthesis, with 	 the chemical potential (Xiao,

Shi, and Niu, 2005; Ceresoli et al., 2006). Furthermore, the

integration is now restricted to the occupied portions of the

Brillouin zone.
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curvature F k introduced in Sec. V.C.3 (Qi, Hughes, and
Zhang, 2008; Essin, Moore, and Vanderbilt, 2009). The
Chern-Simons magnetoelectric coupling has been evaluated
from first principles with the help of WFs for both topological
and ordinary insulators (Coh et al., 2011).

A careful generalization of Eq. (94) to the case in which a
finite electric field is present has been carried out by
Malashevich et al. (2010) in the Wannier representation
using arguments similar to those in Secs. V.A.1 and
V.A.2and used to derive a complete expression for the orbital
magnetoelectric response, of which the topological Chern-
Simons term is only one contribution (Essin et al., 2010;
Malashevich et al., 2010).

VI. WANNIER INTERPOLATION

Localized Wannier functions are often introduced in text-
books as a formally exact localized basis spanning a band, or
a group of bands, and their existence provides a rigorous
justification for the TB interpolation method (Ashcroft and
Mermin, 1976; Harrison, 1980).

In this section we explore the ways in which WFs can be
used as an exact or very accurate TB basis, allowing one to
perform, very efficiently and accurately, a number of opera-
tions on top of a conventional first-principles calculation. The
applications of this ‘‘Wannier interpolation’’ technique range
from simple band-structure plots to the evaluation of various
physical quantities as BZ integrals. The method is particu-
larly useful in situations where a fine sampling of the BZ is
required to converge the quantity of interest. This is often the
case for metals, as the presence of a Fermi surface introduces
sharp discontinuities in k space.

The Wannier interpolation procedure is depicted schemati-
cally in Fig. 25. The actual first-principles calculation is
carried out on a relatively coarse uniform reciprocal-space
mesh q (left panel), where the quantity of interest fðqÞ is
calculated from the Bloch eigenstates. The states in the
selected bands are then transformed into WFs, and fðqÞ is
transformed accordingly into FðRÞ in the Wannier represen-
tation (middle panel). By virtue of the spatial localization of
the WFs, FðRÞ decays rapidly with jRj. Starting from this
short-range real-space representation, the quantity f can now
be accurately interpolated onto an arbitrary point k in recip-
rocal space by carrying out an inverse transformation (right
panel). This procedure will succeed in capturing variations
in fðkÞ over reciprocal lengths smaller than the first-principles
mesh spacing �q, provided that the linear dimensions

L ¼ 2�=�q of the equivalent supercell are large compared
to the decay length of the WFs.

A. Band-structure interpolation

The simplest application of Wannier interpolation is to
generate band-structure plots. We describe the procedure in
some detail, as the same concepts and notations reappear in
the more advanced applications to follow.

From the WFs spanning a group of J bands, a set of Bloch-
like states can be constructed using Eq. (4), repeated here
with a slightly different notation,

jcW
nki ¼

X
R

eik�RjRni ðn ¼ 1; . . . ; JÞ; (97)

where the conventions of Eqs. (12) and (13) have been
adopted. This has the same form as the Bloch-sum formula
in tight-binding theory, with the WFs playing the role of the
atomic orbitals. The superscript W serves as a reminder
that the states jcW

nki are generally not eigenstates of the

Hamiltonian.15 We say that they belong to theWannier gauge.
At a given k, the Hamiltonian matrix elements in the space

of the J bands is represented in the Wannier gauge by the
matrix

HW
k;nm ¼ hcW

knjHjcW
kmi ¼

X
R

eik�Rh0njHjRmi: (98)

In general this is a nondiagonal matrix in the bandlike indices,
and the interpolated eigenenergies are obtained by diagonal-
ization,

HH
k;nm ¼ ½Uy

kH
W
k Uk�nm ¼ �nm ��nk: (99)

In the following, it is useful to view the unitary matrices
Uk as transforming between the Wannier gauge on the one
hand, and the Hamiltonian (H) gauge (in which the projected
Hamiltonian is diagonal), on the otherhand.16 From this point

FIG. 25 (color online). Schematic overview of the Wannier interpolation procedure. The left panel shows the BZ mesh q used in the first-

principles calculation, where the quantity of interest fðqÞ is explicitly calculated. The Wannier-transformed quantity FðRÞ is strongly

localized near the origin of the equivalent supercell, shown in the middle panel with WFs at the lattice points. The right panel shows a dense

mesh of interpolation points k in the BZ, where the quantity fðkÞ is evaluated at low cost starting from FðRÞ.

15In Sec. II the rotated Bloch states jcW
nki were denoted by j ~c nki;

see Eq. (8).
16The unitary matrices Uk are related to, but not the same as, the

matrices UðkÞ introduced in Eq. (8). The latter are obtained as

described in Secs. II.B and II.C. In the present terminology, they

transform from the Hamiltonian to the Wannier gauge on the mesh

used in the first-principles calculation. Instead, Uk transforms from

the Wannier to the Hamiltonian gauge on the interpolation mesh.

That is, the matrix Uk is essentially an interpolation of the matrix

½UðkÞ�y.
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forward we adopt a condensed notation in which band indices
are no longer written explicitly, so that, for example,HH

k;nm ¼
hc H

knjHjc H
kmi is now written as HH

k ¼ hc H
k jHjc H

ki, and

matrix multiplications are implicit. Then Eq. (99) implies
that the transformation law for the Bloch states is

jc H
ki ¼ jcW

k iUk: (100)

If we insert into Eqs. (98) and (99) a wave vector belonging
to the first-principles grid, we simply recover the first-
principles eigenvalues �nk, while for arbitrary k the resulting
��nk interpolate smoothly between the values on the grid.
(This is strictly true only for an isolated group of bands.
When using disentanglement, the interpolated bands can
deviate from the first-principles ones outside the frozen
energy window, as discussed in Sec. II.I in connection with
Fig. 5.)

Once the matrices h0jHjRi have been tabulated, the band
structure can be calculated very inexpensively by Fourier
transforming [Eq. (98)] and diagonalizing [Eq. (99)] matrices
of rank J. Note that J, the number of WFs per cell, is typically
much smaller than the number of basis functions (e.g., plane
waves) used in the first-principles calculation.

In practice the required matrix elements are obtained by
inverting Eq. (98) over the first-principles grid,

h0jHjRi ¼ 1

N

X
q

e�iq�RhcW
q jHjcW

q i

¼ 1

N

X
q

e�iq�RVy
qEqVq: (101)

Here N is the number of grid points, Eq is the diagonal matrix

of first-principles eigenenergies, and Vq is the matrix defined

in Eq. (50), which converts the J q ab initio eigenstates into

the J � J q Wannier-gauge Bloch states,

jcW
q i ¼ jc qiVq: (102)

The strategy outlined above (Souza, Marzari, and
Vanderbilt, 2001) is essentially the Slater-Koster interpola-
tion method. However, while the Hamiltonian matrix ele-
ments in the localized basis are treated as adjustable
parameters in empirical TB, they are calculated from first
principles here. A similar interpolation strategy is widely
used to obtain phonon dispersions starting from the inter-
atomic force constants calculated with density-functional
perturbation theory (Baroni et al., 2001). We return to this
analogy between phonons and tight-binding electrons
(Martin, 2004) when describing the interpolation of the
electron-phonon matrix elements in Sec. VI.D.

Wannier band-structure interpolation is extremely accu-
rate. By virtue of the exponential localization of the WFs
within the periodic supercell (see footnote 2), the magnitude
of the matrix elements h0jHjRi decreases rapidly with jRj,
and this exponential localization is preserved even in the case
of metals, provided a smooth subspace has been disentangled.
As the number of lattice vectors included in the summation in
Eq. (98) equals the number of first-principles mesh points,
beyond a certain mesh density the error incurred decreases
exponentially (Yates et al., 2007). In the following we
illustrate the method with a few representative examples
selected from the literature.

1. Spin-orbit-coupled bands of bcc Fe

As a first application, we consider the relativistic band
structure of bcc Fe. Because of the spin-orbit interaction, the
spin density is not perfectly collinear, and the Bloch eigen-
states are spinors. As mentioned in Sec. V.C.1, spinor WFs
can be constructed via a trivial extension of the procedure
described in Sec. II for the nonmagnetic (spinless) case. It is
also possible to further modify the Wannierization procedure
so as to produce two separate subsets of spinor WFs: one with
a predominantly spin-up character, and the other with a
predominantly spin-down character (Wang et al., 2006).

Using this modified procedure, a set of nine disentangled
WFs per spin channel was obtained for bcc Fe by Wang et al.
(2006), consisting of three t2g d-like atom-centered WFs and

six sp3d2-like hybrids pointing along the cubic directions.
A frozen energy window was chosen as indicated in Fig. 26,
so that these 18WFs describe exactly all the occupied valence
states, as well as the empty states up to approximately 18 eV
above the Fermi level.

The interpolated bands obtained using an 8� 8� 8 q grid
in the full BZ are shown as dashed lines in Fig. 26. The
comparison with the first-principles bands (solid lines) re-
veals essentially perfect agreement within the frozen energy
window. This is even more evident in Fig. 27, where we zoom
in on the interpolated band structure near the Fermi level
along �-H, and color code it according to the spin projection
along the quantization axis. The vertical dotted lines indicate
points on the q mesh. For comparison, we show as open
circles the eigenvalues calculated directly from first prin-
ciples around a weak spin-orbit-induced avoided crossing
between two bands of opposite spin. It is apparent that the
interpolation procedure succeeds in resolving details of the
true band structure on a scale much smaller than the spacing
between q points.

2. Band structure of a metallic carbon nanotube

As a second example, we consider Wannier interpolation in
large systems (such as nanostructures) that are often sampled
only at the zone center. We consider here a (5,5) carbon
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FIG. 26. Band structure of ferromagnetic bcc Fe with spin-orbit

coupling included. Solid lines: Original band structure from a

conventional first-principles calculation. Dotted lines: Wannier-

interpolated band structure. The zero of energy is the Fermi level.

From Wang et al., 2006.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1451

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



nanotube, studied in a 100-atom supercell (i.e., 5 times the
primitive unit cell) and with �-point sampling (Lee, Nardelli,
and Marzari, 2005). The system is metallic, and the disen-
tanglement procedure is used to generate well-localized WFs,
resulting in either bond-centered combinations of sp2 atomic
orbitals or atom-centered pz orbitals. The energy bands at any
other k points are calculated by diagonalizing Eq. (98),
noting that the size of the supercell has been chosen so that
the Hamiltonian matrix elements on the right-hand side of
this equation are non-negligible only for WFs up to neighbor-
ing supercells Rð�Þ on either side of R ¼ 0. Figure 28 shows
as solid lines the interpolated bands, unfolded onto the
20-atom primitive cell. Even if with this sampling the system
has a pseudogap of 2 eV, the metallic character of the bands is
perfectly reproduced, and these are in excellent agreement

with the bands calculated directly on the primitive cell by
direct diagonalization of the Kohn-Sham Hamiltonian in the
full plane-wave basis set (open circles). The vertical dashed
lines indicate the equivalent first-principles mesh obtained by
unfolding the � point.17

3. GW quasiparticle bands

In the two examples above the WFs were generated from
Kohn-Sham Bloch functions, and the eigenvalues used in
Eq. (101) were the corresponding Kohn-Sham eigenvalues.
Many of the deficiencies of the Kohn-Sham energy bands,
such as the underestimation of the energy gaps of insulators
and semiconductors, can be corrected using many-body per-
turbation theory in the form of the GW approximation [for a
review, see Aryasetiawan and Gunnarsson (1998)].

One practical difficulty in generating GW band-structure
plots is that the evaluation of the QP corrections to the
eigenenergies along different symmetry lines in the BZ is
computationally very demanding. At variance with the DFT
formalism, where the eigenenergies at an arbitrary k can be
found starting from the self-consistent charge density, the
evaluation of the QP corrections at a given k requires a
knowledge of the Kohn-Sham eigenenergies and wave func-
tions on a homogeneous grid of points containing the wave
vector of interest. What is often done instead is to perform the
GW calculation at selected k points only, and then deduce a
‘‘scissors correction,’’ i.e., a constant shift to be applied to the
conduction-band Kohn-Sham eigenvalues elsewhere in the
Brillouin zone.

As mentioned in Sec. II.J, Hamann and Vanderbilt (2009)
proposed using Wannier interpolation to determine the GW
QP bands very efficiently and accurately at arbitrary points in
the BZ. The Wannierization and interpolation procedures are
identical to the DFT case. The only difference is that the
starting eigenenergies and overlap matrices over the uniform
first-principles mesh are now calculated at the GW level. (In
the simplest G0W0 approximation, where only the eigenener-
gies, not the eigenfunctions, are corrected, the Wannierization
is done at the DFT level, and the resulting transformation
matrices are then applied to the corrected QP eigenenergies.)

Figure 29 shows a comparison between the interpolated
GW (dashed lines) and DFT-LDA (solid lines) bands of
SrTiO3 (Hamann and Vanderbilt, 2009). Note that the dashed
lines pass through the open circles at the symmetry points,
which denote exact (noninterpolated) GW results.

Among the recent applications of the GW þWannier
method, we mention the study of the energy bands of zircon
and hafnon (Shaltaf et al., 2009), and a detailed comparative
study between the DFT-LDA, scissors-shifted, and QP G0W0

bands of Si and Ge nanowires (Peelaers et al., 2011). In the
latter study they found that the simple scissors correction to
the DFT-LDA bands is accurate near the � point only, and
only for bands close to the highest valence and lowest

FIG. 27 (color online). Detail of the Wannier-interpolated relativ-

istic band structure of ferromagnetic bcc Fe along �-H. The bands

are color coded according to the expectation value of Sz: lighter for
spin up and darker for spin down. The energies in eV are referred to

the Fermi level. The vertical dashed lines indicate k points on the

mesh used in the first-principles calculation for constructing the

WFs. For comparison, points from a full ab initio calculation are

shown as open circles. From Yates et al., 2007.
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FIG. 28. Electronic properties of a (5,5) carbon nanotube calcu-

lated using WFs. Left panel: Band structure by Wannier interpola-

tion (solid lines), or from a full diagonalization in a plane-wave

basis set (circles). The vertical dashed lines indicate the five

k points corresponding to the � point in a 100-atom supercell.

The middle and right panels show the Wannier-based calculation of

the quantum conductance and the density of states, with a perfect

match of steps and peaks with respect to the exact band structure.

From Lee, Nardelli, and Marzari, 2005.

17When � sampling is used, special care should be used in

calculating matrix elements between WFs, since the center of a

periodic image of, e.g., the ket could be closer to the bra that the

actual state considered. Similar considerations apply for transport

calculations and might require calculation of the matrix elements in

real space (Lee, 2006).
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conduction band. Kioupakis et al. (2010) used the method to
elucidate the mechanisms responsible for free-carrier absorp-
tion in GaN and in the In0:25Ga0:75N alloy. Yazyev et al.
(2012) investigated the quasiparticle effects on the band
structure of the topological insulators Bi2Se3 and Bi2Te3,
and Åberg, Sadigh, and Erhart (2012) studied in detail the
electronic structure of LaBr3.

4. Surface bands of topological insulators

TIs were briefly discussed in Sec. V.C.4 [see Hasan and
Kane (2010) and Hasan andMoore (2011) for useful reviews].
Here we focus on the nonmagnetic variety, the Z2-odd TIs.
The recent flurry of activity on this class of materials has been
sustained in part by the experimental confirmation of the
Z2-odd character of certain quantum-well structures and of
a rapidly increasing number of bulk crystals.

In the case of 3D TIs, the clearest experimental signature
of the Z2-odd character is at present provided by ARPES
measurements of the surface electron bands. If time-reversal
symmetry is preserved at the surface, Z2-odd materials pos-
sess topologically protected surface states which straddle
the bulk gap, crossing the Fermi level an odd number of
times. These surface states are doubly degenerate at the time-
reversal-invariant momenta of the surface BZ, and in the
vicinity thereof they disperse linearly, forming Dirac cones.

First-principles calculations of the surface states for known
and candidate TI materials are obviously of great interest for
comparing with ARPES measurements. While it is possible
to carry out a direct first-principles calculation for a thick slab
in order to study the topologically protected surface states, as
done by Yazyev, Moore, and Louie (2010), such an approach
is computationally expensive. Zhang et al. (2010) used a
simplified Wannier-based approach which succeeds in cap-
turing the essential features of the topological surface states at
a greatly reduced computational cost. Their procedure is as
follows. First, an inexpensive calculation is done for the bulk
crystal without spin-orbit interaction. Next, disentangled
WFs spanning the upper valence and low-lying conduction
bands are generated, and the corresponding TB Hamiltonian

matrix is constructed. The TB Hamiltonian is then augmented

with spin-orbit couplings �L � S, where � is taken from

atomic data; this is possible because the WFs have been

constructed so as to have specified p-like characters. The

augmented TB parameters are then used to construct suffi-

ciently thick freestanding ‘‘tight-binding slabs’’ by a simple

truncation of the effective TB model, and the dispersion

relation is efficiently calculated by interpolation as a function

of the wave vector kk in the surface BZ.

It should be noted that this approach contains no surface-

specific information, being based exclusively on the bulk

WFs. Even if its accuracy is questionable, however, this

method is useful for illustrating the ‘‘topologically protected’’

surface states that arise as a manifestation of the bulk elec-

tronic structure (Hasan and Kane, 2010).
Instead of applying the naive truncation, it is possible to

refine the procedure so as to incorporate the changes to the

TB parameters near the surface. To do so, the bulk calculation

must now be complemented by a calculation on a thin slab,

again followed by Wannierization. Upon aligning the on-site

energies in the interior of this slab to the bulk values, the

changes to the TB parameters near the surface can be in-

ferred. However, H.-J. Zhang et al. (2011) found that the

topological surface states are essentially the same with and

without this surface correction.
The truncated-slab approach was applied by Zhang et al.

(2010) to the stoichiometric three-dimensional TIs Sb2Te3,
Bi2Se3, and Bi2Te3. The calculations on Bi2Se3 revealed the

existence of a single Dirac cone at the �� point as shown in

Fig. 30, in agreement with ARPES measurements (Xia et al.,

2009).
An alternative strategy for calculating the surface bands

was used earlier also by Zhang, Liu, Qi, Dai et al., (2009).

Instead of explicitly diagonalizing the Wannier-based

Hamiltonian HðkkÞ of a thick slab, the Green’s function for

the semi-infinite crystal as a function of the atomic plane is

obtained via iterative methods (López Sancho, López Sancho,

and Rubio, 1984; López Sancho et al., 1985), using the

approach of Lee, Nardelli, and Marzari (2005). Here the

FIG. 29 (color online). Wannier-interpolated upper valence and

lower conduction bands of SrTiO3 from local-density approxima-

tion (solid lines) and GW (dashed line) calculations. The open

circles at the symmetry points denote the exact GW results taken

directly from the first-principles calculation. From Hamann and

Vanderbilt, 2009.
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FIG. 30. Wannier-interpolated energy bands of a freestanding

(111)-oriented slab containing 25 quintuple layers of Bi2Se3 plotted

along the ��- �K line in the surface Brillouin zone. A pair of

topologically protected surface bands can be seen emerging from

the dense set of projected valence and conduction bulklike bands

and crossing at the time-reversal-invariant point ��. Adapted from

Zhang et al., 2010.
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localized Wannier representation is used to break down the
semi-infinite crystal into a stack of ‘‘principal layers’’ con-
sisting of a number of atomic planes, such that only nearest-
neighbor interactions between principal layers exist (see
Sec. VII for more details).

Within each principal layer one forms, starting from the
fully localized WFs, a set of hybrid WFs which are extended
(Bloch-like) along the surface but remain localized (Wannier-
like) in the surface-normal direction (see Secs. II.H and
V.B.2). This is achieved by carrying out a partial Bloch
sum over the in-plane lattice vectors,

jl; nkki ¼
X
Rk

eikk�Rk jRni; (103)

where l labels the principal layer, kk is the in-plane wave

vector, and Rk is the in-plane component of R. The matrix

elements of the Green’s function in this basis are

Gnn0
ll0 ðkk; �Þ ¼ hkklnjð��HÞ�1jkkl0n0i: (104)

The nearest-neighbor coupling between principal layers
means that for each kk the Hamiltonian has a block tridiag-

onal form (the dependence of the Hamiltonian matrix on kk is
given by the usual Fourier sum expression). This feature can
be exploited to calculate the diagonal elements of the Green’s
function matrix very efficiently using iterative schemes
(López Sancho, López Sancho, and Rubio, 1984; López
Sancho et al., 1985).18 From these, the density of states
(DOS) projected onto a given atomic plane P can be obtained
(Grosso and Parravicini, 2000) as

NP
l ðkk; �Þ ¼ � 1

�
Im

X
n2P

Gnn
ll ðkk; �þ i�Þ; (105)

where the sum over n is restricted to the orbitals ascribed to
the chosen plane and � is a positive infinitesimal.

The projection of the DOS onto the outermost atomic plane
is shown in Fig. 31 as a function of energy � and momentum
kk for the (111) surface of Sb2Te3. The same method has

been used to find the dispersion of the surface bands in the TI
alloy Bi1�xSbx (Zhang, Liu, Qi, Deng et al., 2009) and in
ternary compounds with a honeycomb lattice (H.-J. Zhang
et al., 2011).

B. Band derivatives

The first and second derivatives of the energy eigenvalues
with respect to k (band velocities and inverse effective
masses) appear in a variety of contexts, such as the calcu-
lation of transport coefficients (Ashcroft and Mermin, 1976;
Grosso and Parravicini, 2000). There is therefore consider-
able interest in developing simple and accurate procedures for
extracting these parameters from a first-principles band-
structure calculation.

A direct numerical differentiation of the eigenenergies
calculated on a grid is cumbersome and becomes unreliable

near band crossings. It is also very expensive if a Brillouin-
zone integration is to be carried out, as in transport calcu-
lations. A number of efficient interpolation schemes, such as
the method implemented in the BOLTZTRAP package (Madsen
and Singh, 2006), have been developed for this purpose, but
they are still prone to numerical instabilities near band de-
generacies (Uehara and Tse, 2000). Such instabilities can be
avoided by using a tight-binding parametrization to fit the
first-principles band structure (Schulz, Allen, and Trivedi,
1992; Mazin, Papaconstantopoulos, and Singh, 2000). As
shown by Graf and Vogl (1992) and Boykin (1995), both
the first and second derivatives are easily computed within
tight-binding methods, even in the presence of band degen-
eracies, and the same can be done in a first-principles context
using WFs.

We illustrate the procedure by calculating the band gra-
dient away from points of degeneracy; the treatment of
degeneracies and second derivatives is given by Yates
et al. (2007). The first step is to analytically take the deriva-
tive @� ¼ @=@k� of Eq. (98),

HW
k;� 	 @�H

W
k ¼ X

R

eik�RiR�h0jHjRi: (106)

The actual band gradients are given by the diagonal elements
of the rotated matrix,

@� ��nk ¼ ½Uy
kH

W
k;�Uk�nn; (107)

where Uk is the same unitary matrix as in Eq. (99).
It is instructive to view the columns of Uk as orthonormal

state vectors in the J-dimensional tight-binding space defined
by the WFs. According to Eq. (99) the nth column vector,
which we denote by k�nkii, satisfies the eigenvalue equation
HW

k k�nkii ¼ ��nkk�nkii. Armed with this insight, we now

recognize in Eq. (107) the Hellmann-Feynman result
@� ��nk ¼ hh�nkk@�HW

k k�nkii.
Within the semiclassical theory of transport, the electrical

and thermal conductivities of metals and doped semiconduc-
tors can be calculated from a knowledge of the band deriva-
tives and relaxation times 
nk on the Fermi surface. An
example is the low-field Hall conductivity �xy of nonmag-

netic cubic metals, which in the constant relaxation-time
approximation is independent of 
 and takes the form of a

FIG. 31 (color online). Surface density of states (DOS) of a semi-

infinite crystal of Sb2Te3 terminated with a (111) surface. Lighter

(warmer) colors represent a higher SDOS. The surface states can be

seen around �� as lines crossing at E ¼ 0. From Zhang, Liu, Qi, Dai

et al., 2009.

18A pedagogical discussion, where a continued-fractions expan-

sion is used to evaluate the Green’s function of a semi-infinite linear

chain with nearest-neighbor interactions, is given by Grosso and

Parravicini (2000).
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Fermi surface integral containing the first and second band
derivatives (Hurd, 1972).

Previous first-principles calculations of �xy using various

interpolation schemes encountered difficulties for materials
such as Pd, where band crossings occur at the Fermi level
(Uehara and Tse, 2000). A Wannier-based calculation free
from such numerical instabilities was carried out by Yates
et al. (2007), who obtained carefully converged values for�xy

in Pd and other cubic metals.
A more general formalism to calculate the electrical con-

ductivity tensor in the presence of a uniform magnetic field
involves integrating the equations of motion of a wave packet
under the field to find its trajectory on the Fermi surface
(Ashcroft and Mermin, 1976). A numerical implementation
of this approach starting from the Wannier-interpolated first-
principles bands was carried out by Liu, Zhang, and Yao
(2009). This formalism is not restricted to cubic crystals, and
they used it to calculate the Hall conductivity of hcp Mg (Liu,
Zhang, and Yao, 2009) and the magnetoconductivity ofMgB2

(Yang et al., 2008).
Wannier interpolation has also been used to determine the

Seebeck coefficient in hole-doped LaRhO3 and CuRhO2

(Usui, Arita, and Kuroki, 2009), in electron-doped SrTiO3

(Usui, Shibata, and Kuroki, 2010), in SiGe nanowires
(Shelley and Mostofi, 2011), and in ternary skutterudites
(Volja et al., 2012).

C. Berry curvature and anomalous Hall conductivity

The velocity matrix elements between Bloch eigenstates
take the form (Blount, 1962)

hc nkjℏv�jc mki ¼ �nm@��nk � ið�mk � �nkÞ½Ak;��nm;
(108)

where

½Ak;��nm ¼ ihunkj@�umki (109)

is the matrix generalization of the Berry connection of
Eq. (95).

In the examples discussed in Sec. VI.B the static transport
coefficients could be calculated from the first term in
Eq. (108), the intraband velocity. The second term describes
vertical interband transitions, which dominate the optical
spectrum of crystals over a wide frequency range.
Interestingly, under certain conditions, virtual interband tran-
sitions also contribute to the dc Hall conductivity. This so-
called anomalous Hall effect occurs in ferromagnets from the
combination of exchange splitting and spin-orbit interaction.
For a recent review, see Nagaosa et al. (2010).

In the same way that WFs proved helpful for evaluating
@k�nk, they can be useful for calculating quantities contain-
ing k derivatives of the cell-periodic Bloch states, such as the
Berry connection of Eq. (109). A number of properties are
naturally expressed in this form. In addition to the interband
optical conductivity and the AHC, other examples include the
electric polarization (see Sec. V.A) as well as the orbital
magnetization and magnetoelectric coupling (see Sec. V.C).

We focus now on the Berry curvature F nk [Eq. (96)], a
quantity with profound effects on the dynamics of electrons in
crystals (Xiao, Chang, and Niu, 2010). F nk can be nonzero if

either spatial inversion or time-reversal symmetries are
broken in the crystal, and when present acts as a kind of
‘‘magnetic field’’ in k space, with the Berry connection Ank

playing the role of the vector potential. This effective field
gives rise to a Hall effect in ferromagnets even in the absence
of an actual applied B field (hence the name anomalous). The
AHC is given by19

�AH
�
 ¼ � e2

ℏ

Z
BZ

dk

ð2�Þ3 F
tot
k;�
; (110)

where F tot
k;�
 ¼ P

nfnkF nk;�
 (fnk is the Fermi-Dirac dis-

tribution function), and we have rewritten the pseudovector
F nk as an antisymmetric tensor.

The interband character of the intrinsic AHC can be seen
by using k � p perturbation theory to write the k derivatives in
Eq. (96), leading to the ‘‘sum-over-states’’ formula

F tot
�
¼ i

X
n;m

ðfn�fmÞ
hc njℏv�jc mihc mjℏv
jc ni

ð�m��nÞ2
:

(111)

The AHC of bcc Fe and SrRuO3 was evaluated from the
previous two equations by Fang et al. (2003) and Yao et al.
(2004), respectively. These pioneering first-principles calcu-
lations revealed that in ferromagnetic metals the Berry
curvature displays strong and rapid variations in k space
(see Fig. 32). As a result, an ultradense BZ mesh containing
millions of k points is often needed in order to converge the
calculation. This is the kind of situation where the use of
Wannier interpolation can be most beneficial.

The strategy for interpolating the Berry curvature is similar
to that used in Sec. VI.B for the band gradient. One first
evaluates certain objects in the Wannier gauge using Bloch
sums and then transforms to the Hamiltonian gauge. Because
the gauge transformation mixes the bands, it is convenient to
introduce a generalization of Eq. (96) having two band
indices instead of one. To this end we start from Eq. (109)
and define the matrices

F �
 ¼ @�A
 � @
A� ¼ ih@�uj@
ui � ih@
uj@�ui;
(112)

where every object in this expression should consistently
carry either an H or W label. Provided that the chosen WFs
correctly span all occupied states, the integrand of Eq. (110)
can now be expressed as F tot

�
 ¼ P
J
n¼1 fnF

H
�
;nn.

A useful expression for F H
�
 can be obtained with the

help of the gauge-transformation law for the Bloch states,
juHki ¼ juWk iUk [Eq. (100)]. Differentiating both sides with

respect to k� and then inserting into Eq. (112) yields, after a
few manipulations,

F H
�
¼ �F �
�½D�; �A
�þ½D
; �A��� i½D�;D
�; (113)

where D� ¼ Uy@�U, and �A�,
�F �
 are related to the con-

nection and curvature matrices in the Wannier gauge through

19Equation (110) gives the so-called ‘‘intrinsic’’ contribution to the

AHC, while the measured effect also contains ‘‘extrinsic’’ contri-

butions associated with scattering from impurities (Nagaosa et al.,

2010).
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the definition �Ok ¼ Uy
kO

W
k Uk. Using the band-diagonal

elements of Eq. (113) in the expression for F tot
�
 eventually

leads to

F tot
�
 ¼ XJ

n

fn
�F �
;nn þ

XJ
mn

ðfm � fnÞðD�;nm
�A
;mn

�D
;nm
�A�;mn þ iD�;nmD
;mnÞ: (114)

This is the desired expression, which in the Wannier inter-
polation scheme takes the place of the sum-over-states for-
mula. In contrast to Eq. (111), note that the summations over
bands now run over the small set of Wannier-projected bands.
[Alternatively, it is possible to recast Eq. (114) in a manifestly
gauge-invariant form such that the trace can be carried out
directly in the Wannier gauge; this formulation was used by
Lopez et al. (2012) to compute both the AHC and the orbital
magnetization of ferromagnets.]

The basic ingredients going into Eq. (114) are the Wannier
matrix elements of the Hamiltonian and of the position
operator. From a knowledge of h0jHjRi the energy eigenval-
ues and occupation factors, as well as the matrices U and D�,
can be found using band-structure interpolation (see
Sec. VI.A). The information about AW

� and FW
�
 is instead

encoded in the matrix elements h0jrjRi, as can be seen by
inverting Eq. (23),

AW
� ¼ X

R

eik�Rh0jr�jRi: (115)

As for FW
�
, according to Eq. (112) it is given by the curl of

this expression, which can be taken analytically.
The strategy outlined above was demonstrated by Wang

et al. (2006) in calculating the AHC of bcc Fe, using the
spinor WFs of Sec. VI.A.1. Both the k-space distribution of

the Berry curvature and the integrated AHC were found to be

in excellent agreement with the sum-over-states calculation

of Yao et al. (2004).
Table I lists the AHC of the ferromagnetic transition-metal

elements, calculated with the magnetization along the respec-

tive easy axes. The magnetic anisotropy of the AHC was

investigated by Roman, Mokrousov, and Souza (2009). While

the AHC of the cubic metals Fe and Ni is fairly isotropic,

that of hcp Co was found to decrease by a factor of 4 as the

magnetization is rotated from the c axis to the basal plane.

The Wannier method has also been used to calculate the

AHC in FePt and FePd ordered alloys (Seeman et al.,

2009; H. Zhang et al., 2011), and the spin-Hall conductivity

in a number of metals (Freimuth, Blügel, and Mokrousov,

2010).
As mentioned, for certain applications the Berry connec-

tion matrix [Eq. (109)] is the object of direct interest. The

interpolation procedure described above can be directly

applied to the off-diagonal elements describing vertical inter-

band transitions, and the magnetic circular dichroism spec-

trum of bcc Fe has been determined in this way (Yates et al.,

2007).
The treatment of the diagonal elements of the Berry con-

nection matrix is more subtle, as they are locally gauge

dependent. Nevertheless, the Berry phase obtained by inte-

grating over a closed loop in k space, ’n ¼ H
Ank � dl, is

gauge invariant (Xiao, Chang, and Niu, 2010). Recalling that

F nk ¼ rk �Ank [Eq. (96)] and using Stokes’ theorem,

Eq. (110) for the AHC can be recast in terms of the Berry

phases of Fermi loops on planar slices of the Fermi surface.

This approach was implemented by Wang et al. (2007),

using Wannier interpolation to sample efficiently the orbits

with the very high density required near band crossings.

Table I lists values for the AHC calculated using both the

Berry curvature (‘‘Fermi sea’’) and Berry-phase (‘‘Fermi

surface’’) approaches.
It should be possible to devise similar Wannier interpola-

tion strategies for other properties requiring dense BZ sam-

pling, such as the magnetic shielding tensors of metals

(d’Avezac, Marzari, and Mauri, 2007). In the following we

discuss electron-phonon coupling, for which Wannier-based

methods have already proven to be of great utility.
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FIG. 32. Energy bands and k-space Berry curvature in bcc Fe,

with the ferromagnetic moment along ẑ. Upper panel: Band struc-

ture near the Fermi level. Lower panel: Berry curvature summed

over the occupied bands [Eq. (111)]. The sharp spikes occur when

two spin-orbit-coupled bands are separated by a small energy across

the Fermi level, producing a resonance enhancement. The symbol�
here corresponds to F in the main text. Adapted from Yao et al.,

2004.

TABLE I. Anomalous Hall conductivity in S=cm of the ferromag-
netic transition metals, calculated from first principles with the
magnetization along the respective easy axes. The first two rows
show values obtained using the Wannier interpolation scheme either
to integrate the Berry curvature over the Fermi sea or to evaluate the
Berry phases of planar loops around the Fermi surface (see main
text). Results obtained using the sum-over-states formula, Eq. (111),
are included for comparison, as well as representative experimental
values. Adapted from Wang et al. (2007).

bcc Fe fcc Ni hcp Co

Berry curvature 753 �2203 477

Berry phase 750 �2275 478

Sum over states 751a �2073b 492b

Experiment 1032 �646 480

aYao et al. (2004).
bY. Yao (private communication).
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D. Electron-phonon coupling

The electron-phonon interaction (Grimvall, 1981) plays a
key role in a number of phenomena, from superconductivity
to the resistivity of metals and the temperature dependence of
the optical spectra of semiconductors. The matrix element for
scattering an electron from state c nk to state c m;kþq while

absorbing a phonon q� is proportional to the electron-phonon
vertex

g�;mnðk;qÞ ¼ hc m;kþqj@q�Vjc nki: (116)

Here @q�V is the derivative of the self-consistent potential

with respect to the amplitude of the phonon with branch index
� and momentum q. Evaluating this vertex is a key task for a
first-principles treatment of electron-phonon couplings.

State-of-the-art calculations using first-principles linear-
response techniques (Baroni et al., 2001) have been success-
fully applied to a number of problems, starting with the works
of Savrasov, Savrasov, and Andersen (1994) and Mauri et al.
(1996), who used, respectively, the LMTO and plane-wave
pseudopotential methods. The cost of evaluating Eq. (116)
from first principles over a large number of ðk;qÞ points is
quite high, however, and this has placed a serious limitation
on the scope and accuracy of first-principles techniques for
electron-phonon problems.

The similarity between the Wannier interpolation of energy
bands and the Fourier interpolation of phonon dispersions
was already noted. It suggests the possibility of interpolating
the electron-phonon vertex in both the electron and the
phonon momenta, once Eq. (116) has been calculated on a
relatively coarse uniform ðk;qÞ mesh. Different electron-
phonon interpolation schemes have been put forth in the
literature (Giustino et al., 2007; Eiguren and Ambrosch-
Draxl, 2008; Calandra, Profeta, and Mauri, 2010). In the
following we describe the approach first developed by
Giustino, Cohen, and Louie (2007) and implemented in the
software package EPW (Noffsinger et al., 2010). To begin, we
set the notation for lattice dynamics (Maradudin and Vosko,
1968). We write the instantaneous nuclear positions as
Rþ �s þ uRsðtÞ, where R is the lattice vector, �s is the
equilibrium intracell coordinate of ion s ¼ 1; . . . ; S, and
uRsðtÞ denotes the instantaneous displacement. The normal
modes of vibration take the form

uq�
RsðtÞ ¼ uq�

s eiðq�R�!q�tÞ: (117)

The eigenfrequencies !q� and mode amplitudes uq�
s are

obtained by diagonalizing the dynamical matrix ½Dph
q ��
st ,

where � and 
 denote spatial directions. It is expedient to
introduce composite indices 	 ¼ ðs; �Þ and � ¼ ðt; 
Þ, and
write D

ph
q;	� for the dynamical matrix. With this notation, the

eigenvalue equation becomes

½eyqDph
q eq�	� ¼ �	�!

2
q�; (118)

where eq is a 3S� 3S unitary matrix. In analogy with the

tight-binding eigenvectors k�nkii of Sec. VI.B, we can view
the columns of eq;	� as orthonormal phonon eigenvectors

eq�s . They are related to the complex phonon amplitudes by
uq�
s ¼ ðm0=msÞ1=2eq�s (m0 is a reference mass), which we

write in matrix form as U
ph
q;	�.

Returning to the electron-phonon vertex, Eq. (116), we can
now write explicitly the quantity @q�V therein as

@q�VðrÞ ¼ @

@�
Vðr; fRþ �s þ �uq�

RsgÞ

¼ X
R;	

eiq�R@R	VðrÞUph
q;	�; (119)

where @R	VðrÞ is the derivative of the self-consistent poten-
tial with respect to uRs;�. As discussed in Sec. VIII, it is

possible to view these single-atom displacements as maxi-
mally localized ‘‘lattice Wannier functions’’ (LWFs). With
this interpretation in mind we define the Wannier-gauge
counterpart of @q�VðrÞ as

@Wq	VðrÞ ¼
X
R

eiq�R@R	VðrÞ; (120)

related to the ‘‘eigenmode-gauge’’ quantity @q�VðrÞ by
@q�VðrÞ ¼

X
	

@Wq	VðrÞUph
q;	�: (121)

Next we introduce the Wannier-gauge vertex gW	 ðk;qÞ ¼
hcW

kþqj@Wq	VjcW
k i, which can be readily interpolated onto

an arbitrary point ðk0;q0Þ using Eqs. (97) and (120),

gW	 ðk0;q0Þ ¼ X
Re;Rp

eiðk0�Reþq0�RpÞh0ej@Rp	VjRei; (122)

where the subscripts e and p denote electron and phonon,
respectively. The object h0ej@Rp	VjRei, the electron-phonon
vertex in the Wannier representation, is depicted schemati-
cally in Fig. 33. Its localization in real space ensures that
Eq. (122) smoothly interpolates gW in the electron and
phonon momenta. Finally, we transform the interpolated
vertex back to the Hamiltonian and eigenmode gauge,

gH� ðk0;q0Þ ¼ hc H
k0þq0 j@q0�Vjc H

k0 i

¼ Uy
k0þq0

�X
	

gW	 ðk0;q0ÞUph
q0 ;	�

�
Uk0 ; (123)

where we used Eqs. (100) and (121).
Once the matrix elements h0ej@Rp	VjRei are known, the

electron-phonon vertex can be evaluated at arbitrary ðk0;q0Þ
from the previous two equations. The procedure for evaluat-
ing those matrix elements is similar to that leading up to
Eq. (101) for h0jHjRi: invert Eq. (122) over the first-
principles mesh and then use Eqs. (102) and (121).

The above interpolation scheme has been applied to a
number of problems, including the estimation of Tc in super-
conductors (Giustino et al., 2007; Noffsinger et al., 2008,
2009), the phonon renormalization of energy bands near the
Fermi level in graphene (Park et al., 2007) and copper oxide
superconductors (Giustino, Cohen, and Louie, 2008); the
phonon renormalization of the band gap of diamond
(Giustino, Louie, and Cohen, 2010), the vibrational lifetimes
(Park et al., 2008) and electron linewidths (Park et al., 2009)
arising from electron-phonon interactions in graphene, and
the phonon-assisted optical absorption in silicon (Noffsinger
et al., 2012) (in this last application both the velocity and the
electron-phonon matrix elements were treated by Wannier
interpolation).
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We mention in closing the work of Calandra, Profeta, and
Mauri (2010), where the linear-response calculation of the
deformation potential @q�V is carried out taking into account

nonadiabatic effects (that is, going beyond the usual approxi-
mation of static ionic displacements). Using the electron-
phonon interpolation scheme of Giustino, Cohen, and Louie
(2007) to perform the BZ integrations, and a Wannier inter-
polation of the dynamical matrix to capture Kohn anomalies,
they found significant nonadiabatic corrections to the phonon
frequencies and electron-phonon coupling matrix elements in
MgB2 and CaC6.

VII. WANNIER FUNCTIONS AS BASIS FUNCTIONS

In Sec. VI, we described the use of Wannier functions as a
compact tight-binding basis that represents a given set of
energy bands exactly, and that can be used to calculate a
variety of properties efficiently, and with very high accuracy.
This is possible because (a) WFs and bands are related by
unitary transformations, and (b) WFs are sufficiently local-
ized that any resulting tight-binding representation may be
truncated with little loss of accuracy. In this section, we
review two further general approaches to the use of WFs as
optimal and compact basis functions for electronic-structure
calculations that exploit their localization and transferability.

The first category includes methods in which WFs are used
to go up in the length scale of the simulations, using the
results of electronic-structure calculations on small systems
in order to construct accurate models of larger, often meso-
scale, systems. Examples include using WFs to construct
tight-binding Hamiltonians for large, structurally complex
nanostructures (in particular, for studying quantum-transport
properties), to parametrize semiempirical force fields, and to
improve the system-size scaling of QMC and GW calcula-
tions, and the evaluation of exact-exchange integrals.

The second category includes methods in which WFs are
used to identify and focus on a desired, physically relevant
subspace of the electronic degrees of freedom that is singled
out (downfolded) for further detailed analysis or special
treatment with a more accurate level of electronic-structure
theory, an approach that is particularly suited to the study of

strongly correlated electron systems, such as materials con-
taining transition metal, lanthanoid, or even actinoid ions.

A. WFs as a basis for large-scale calculations

Some of the first works on linear-scaling electronic-
structure algorithms (Yang, 1991; Baroni and Giannozzi,
1992; Galli and Parrinello, 1992; Hierse and Stechel, 1994)
highlighted the connection between locality in electronic
structure, which underpins linear-scaling algorithms (see
Sec. III.D), and the transferability of information across
length scales. In particular, Hierse and Stechel (1994) con-
sidered explicitly two large systems A and B, different glob-
ally but which have a certain similar local feature, such as a
particular chemical functionalization and its associated local
environment, which we call C. They argued that the local
electronic-structure information associated with C should
be similar whether calculated from system A or system
B and, therefore, that it should be possible to transfer this
information from a calculation on A in order to construct a
very good approximation to the electronic structure in the
locality of feature C in system B. In this way, large computa-
tional savings could be made on the self-consistency cycle,
enabling larger-scale calculations.

The units of electronic-structure information that Hierse
and Stechel (1994) used were localized nonorthogonal orbi-
tals, optimized in order to variationally minimize the total
energy of the system. These orbitals are also referred to in the
literature as support functions (Hernández and Gillan, 1995)
or nonorthogonal generalized Wannier functions (Skylaris
et al., 2002).

1. WFs as electronic-structure building blocks

Since WFs encode chemically accurate, local (and thus
transferable) information, they can act as building blocks to
construct the electronic structure of very large-scale systems
(Lee, Nardelli, and Marzari, 2005). In this approach the
Hamiltonian matrix of a large nanostructure, for which a
full, conventional DFT calculation would be intractable, is
built using first-principles calculations performed on smaller,
typically periodic fragments. The matrix elements in the basis
of WFs that are obtained from the calculations on the frag-
ments can be used to construct the entire Hamiltonian matrix
of the desired system, with the size of the fragments a sys-
tematically controllable determinant of the accuracy of the
method (Shelley et al., 2011). Such an approach has been
applied to complex systems containing tens of thousands of
atoms (Lee and Marzari, 2006; Cantele et al., 2009; Li and
Marzari, 2011; Li, Poilvert, and Marzari, 2011; Shelley and
Mostofi, 2011; Shelley et al., 2011). In a similar vein, Berlijn,
Volja, and Ku (2011) developed a method for building low-
energy disordered Hamiltonians for crystals with point de-
fects. The influence of a single impurity is extracted in the
Wannier basis as the difference between two Hamiltonian
matrices, with and without one impurity added to the crystal.
This information is then used to assemble the Hamiltonian for
a given distribution of point defects over a large supercell.

An issue that arises when combining matrix elements from
more than one DFT calculation into a single tight-binding
Hamiltonian is that a common reference potential must be

FIG. 33 (color online). Real-space representation of

h0ej@Rp	VjRei, the electron-phonon vertex in the Wannier basis.

The squares denote the crystal lattice, the bottom lines denote the

electron Wannier functions j0ei and jRei, and the top line denotes

the phonon perturbation in the lattice Wannier representation,

@Rp	VðrÞ. Whenever two of these functions are centered on distant

unit cells, the vertex becomes vanishingly small. From Giustino,

Cohen, and Louie, 2007.
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defined. For example, consider combining the results of a
calculation on a perfect bulk material and one on the same
material with an isolated structural defect. In the latter case,
the diagonal (on-site) matrix elements hwnjHjwni in the
system with the defect should converge to the same value
as those in the pristine system as one goes farther away from
the location of the defect. With periodic boundary conditions,
however, this is not guaranteed: the difference between the
matrix elements in the respective calculations will, in general,
tend to a nonzero constant, this being the difference in
reference potential between the two calculations. In other
words, the difference in value between the on-site matrix
elements from the bulk calculation and those from the calcu-
lation with the defect, but far away from the location of the
defect, give a direct measure of the potential offset between
the two calculations. This offset can then be used to align all
of the diagonal matrix elements from one calculation with
those of the other, prior to them being combined in a tight-
binding Hamiltonian for a larger nanostructure. The potential
alignment approach described above has been used for trans-
port calculations (see Sec. VII.A.2), and for the determination
of band offsets and Schottky barriers (Singh-Miller, 2009),
for calculating formation energies of point defects (Corsetti
and Mostofi, 2011), and for developing tight-binding models
of the surfaces of topological insulators (Zhang et al., 2010)
(see Sec. VI.A.4).

It should be noted that charge self-consistency could play an
important role when trying to build the electronic structure of
large or complex nanostructures, and one might have to resort
to more sophisticated approaches. As a suggestion, electro-
static consistency could be attained solving the Poisson equa-
tion for the entire system (Léonard and Tersoff, 1999), then
using the updated electrostatic potential to shift appropriately
the diagonal elements of the Hamiltonian. In a more general
fashion, the electronic charge density and the Hartree and
exchange-correlation potentials could be updated and opti-
mized self-consistently in a basis of disentangled, frozen
WFs, using a generalized occupation matrix (Marzari,
Vanderbilt, and Payne, 1997).

2. Quantum transport

A local representation of electronic structure is particularly
suited to the study of quantum transport, as illustrated here in
the case of quasi-one-dimensional systems. We consider a
system composed of a conductor C connected to two semi-
infinite leads R and L as shown in Fig. 34. The conductance G
through a region of interacting electrons is related to the

scattering properties of the region itself via the Landauer
formula (Landauer, 1970)

GðEÞ ¼ 2e2

h
T ðEÞ; (124)

where the transmission function T ðEÞ is the probability that
an electron with energy E injected at one end of the conductor
will transmit to the other end. This transmission function can
be expressed in terms of the Green’s functions of the con-
ductors and the coupling of the conductor to the leads (Fisher
and Lee, 1981; Datta, 1995),

T ðEÞ ¼ Trð�LG
r
C�RG

a
CÞ; (125)

where Gfr;ag
C are the retarded (r) and advanced (a) Green’s

functions of the conductor, and �fL;Rg are functions that

describe the coupling of the conductor to the left (L) and
right (R) leads. Since Ga ¼ ðGrÞy, we consider Gr only and
drop the superscript.

Expressing the Hamiltonian H of the system in terms of a
localized, real-space basis set enables it to be partitioned
without ambiguity into submatrices that correspond to the
individual subsystems. A concept that is particularly useful is
that of a principal layer (PL) (Lee and Joannopoulos, 1981),
which is a section of lead that is sufficiently long such that
h�n

i jHj�m
j i ’ 0 if jm� nj � 2, where H is the Hamiltonian

operator of the entire system and j�n
i i is the ith basis function

in the nth PL. Truncating the matrix elements of the
Hamiltonian in this way incurs a small error which is sys-
tematically controlled by increasing the size of the PL. The
Hamiltonian matrix in this basis then takes the block diagonal
form (see also Fig. 34)

H ¼

. .
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � H
�0 �0
L H

�1 �0
L 0 0 0 � � �

� � � H
�1 �0y
L H

�0 �0
L hLC 0 0 � � �

� � � 0 hyLC HC hCR 0 � � �
� � � 0 0 hyCR H00

R H01
R � � �

� � � 0 0 0 H01y
R H00

R � � �
..
. ..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;

(126)

whereHC represents the Hamiltonian matrix of the conductor

region, H
�0 �0
L and H00

R are those of each PL of the left and right

FIG. 34 (color online). Illustration of the lead-conductor-lead geometry used in quantum-transport calculations. The conductor (C), left lead
(L), and right lead (R) are described by Hamiltonians HC, HL, and HR, respectively. The coupling between adjacent regions is described by

matrices hLC and hCR. The leads are split into principal layers corresponding to the submatrices in Eq. (126). From Shelley et al., 2011.
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leads, respectively, H
�1 �0
L and H01

R are couplings between

adjacent PLs of lead, and hLC and hCR give the coupling
between the conductor and the leads.

In order to compute the Green’s function of the conductor
one starts from the equation satisfied by the Green’s function
G of the whole system,

ð��HÞG ¼ I; (127)

where I is the identity matrix, and � ¼ Eþ i�, where � is an
arbitrarily small, real constant.

From Eqs. (126) and (127), it can be shown that the Green’s
function of the conductor is then given by (Datta, 1995)

GC ¼ ð��HC � �L � �RÞ�1; (128)

where we define �L ¼ hyLCgLhLC and �R ¼ hRCgRh
y
RC, the

self-energy terms due to the semi-infinite leads, and gfL;Rg ¼
ð��HfL;RgÞ�1, the surface Green’s functions of the leads.

The self-energy terms can be viewed as effective
Hamiltonians that arise from the coupling of the conductor
with the leads. Once the Green’s functions of the leads are
known, the coupling functions �fL;Rg can be easily obtained as
(Datta, 1995)

�fL;Rg ¼ i½�r
fL;Rg � �a

fL;Rg�; (129)

where �a
fL;Rg ¼ ð�r

fL;RgÞy.
As for the surface Green’s functions gfL;Rg of the semi-

infinite leads, it is well known that any solid (or surface) can
be viewed as an infinite (semi-infinite in the case of surfaces)
stack of principal layers with nearest-neighbor interactions
(Lee and Joannopoulos, 1981). This corresponds to trans-
forming the original system into a linear chain of PLs.
Within this approach, the matrix elements of Eq. (127)
between layer orbitals yield a set of coupled equations for
the Green’s functions which can be solved using an efficient
iterative scheme due to López Sancho, López Sancho, and
Rubio (1984) and López Sancho et al. (1985). Knowledge of
the finite Hamiltonian submatrices in Eq. (126), therefore, is
sufficient to calculate the conductance of the open lead-
conductor-lead system given by Eq. (124).

There are a number of possibilities for the choice of
localized basis j�i. Early work used model tight-binding
Hamiltonians (Chico et al., 1996; Saito, Dresselhaus, and
Dresselhaus, 1996; Anantram and Govindan, 1998; Nardelli,
1999), but the increasing sophistication of computational
methods meant that more realistic first-principles approaches
could be adopted (Buongiorno Nardelli, Fattebert, and
Bernholc, 2001; Fattebert and Buongiorno Nardelli, 2003).
Maximally localized Wannier functions were first used in this
context by Calzolari et al. (2004), who studied Al and C
chains and a (5,0) carbon nanotube with a single Si substitu-
tional defect, and by Lee, Nardelli, and Marzari (2005), who
studied covalent functionalizations of metallic nanotubes,
capabilities now encoded in the open-source packages
WANNIER90 (Mostofi et al., 2008) and WanT (Ferretti,

Bonferroni, Calzolari, and Nardelli, 2005). This was quickly
followed by a number of applications to ever more realistic
systems, studying transport through molecular junctions
(Thygesen and Jacobsen, 2005; Strange et al., 2008), deco-
rated carbon nanotubes and nanoribbons (Lee and Marzari,

2006; Cantele et al., 2009; Rasuli, Rafii-Tabar, and Zad,
2010; Li, Poilvert, and Marzari, 2011), organic monolayers
(Bonferroni et al., 2008), and silicon nanowires (Shelley and
Mostofi, 2011), as well as more methodological work on
improving the description of electron correlations within
this formalism (Ferretti, Calzolari, Di Felice, and Manghi,
2005; Ferretti, Calzolari, Di Felice, Manghi, Caldas et al.,
2005; Calzolari, Ferretti, and Nardelli, 2007; Bonferroni
et al., 2008).

The formulation described above relies on a localized
description of the electronic-structure problem, and it should
be noted that several approaches for calculating electronic
transport properties have been developed using localized
basis sets rather than MLWFs, ranging from Gaussians
(Hod, Peralta, and Scuseria, 2006) to numerical atomic orbi-
tals (Brandbyge et al., 2002; Markussen et al., 2006; Rocha
et al., 2008).

In addition, in the Keldysh formalism one can add more
complex interaction terms to the self-energies, such as
electron-phonon or (for molecular conductors) electron-
vibration interactions (Frederiksen et al., 2007). These
latter can also be conveniently expressed in a MLWFs repre-
sentation, and a natural extension of the previous quantum-
transport formalism to the case of inelastic scattering
channels due to electron-vibration interactions has recently
been developed in a MLWFs basis (Kim and Marzari, 2012).

3. Semiempirical potentials

First-principles molecular-dynamics simulations of large-
scale (thousands of atoms) systems for long (nanoseconds)
time scales are computationally costly, if not intractable.
Molecular-dynamics simulations with empirical interatomic
potentials are a feasible alternative and there is an ongoing
effort in developing potentials that are more accurate, more
transferable, and, therefore, more predictive. One approach in
this direction is to fit the parameters that appear within
empirical potentials so that they reproduce target properties,
such as forces and stresses, obtained from accurate DFT
calculations on a large number of atomic configurations
(Ercolessi and Adams, 1994). In the particular class of ionic
condensed-matter systems, e.g., first and second row metal
oxides, it is well known that the electronic properties of an
ion can be significantly affected by its coordination environ-
ment and, therefore, that it is also important to include an
accurate description of polarization effects in any interatomic
potential. While simple potentials may attempt to account for
these many-body effects in an average manner, the result is
that the potential loses transferability and, hence, predictive
power. As a result, there has been some effort in developing
potentials such that they are also fitted to information from
DFT calculations regarding the electron distribution around
each ion, in particular, dipoles and quadrupoles.

In this vein, Aguado et al. (2003) introduced the use of
MLWFs in order to calculate dipole and quadrupole moments
in MgO and used these to construct an interatomic potential
based on the aspherical ion method potential (Rowley et al.,
1998). In an ionic system such as this, MLWFs are found to
be well localized close to the ions and each can therefore be
associated unambiguously with a particular ion. The dipole
moment �I of each ion I is then calculated as
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	I
� ¼ �2

X
n2I

�rn� þ ZIR
I
�; (130)

where � is a Cartesian component, ZI is the charge of ion I at
position RI, �rn� is the center of the nth MLWF and is given
by Eq. (28) or Eq. (43), and the factor of 2 accounts for spin
degeneracy.

For the quadrupole moments �I�
, the fact that the MLWFs

are localized within the simulation cell is exploited in order to
explicitly compute the real-space integral

�I�
 ¼ �2
X
n2I

Z
VI
c

drjwnðrÞj2½3rI�rI
 � ðrIÞ2��
�=2;

(131)

where rI ¼ r�RI, and the integral is performed over a
sphere VI

c, centered on R
I, such that the integral of the electron

density associated with the MLWFwithin this sphere is greater
than some threshold. The potential obtained exhibits good
transferability and the method has been used to parametrize
similar potentials for other alkaline earth oxides (Aguado,
Bernasconi, and Madden, 2003), Al2O3 (Jahn, Madden, and
Wilson, 2006), and the CaO-MgO-Al2O3-SiO2 (CMAS) min-
eral system (Jahn and Madden, 2007).

The use of MLWFs for attempting to obtain better inter-
atomic potentials has not been limited to the solid state. In
biomolecular simulations, an important factor in developing
accurate force fields is having an accurate description of the
electrostatic potential. Starting from DFT calculations on
isolated molecules, Sagui et al. (2004) partition the elec-
tronic charge density into contributions from individual
MLWFs and calculate the multipoles of each using an
order-by-order expansion of gauge-invariant cumulants
(Resta, 1998; Souza, Wilkens, and Martin, 2000) [see Sagui
et al. (2004) for full details]. Using fast particle mesh Ewald
and multigrid methods, these multipoles can then be used to
generate the electrostatic potential. Sagui et al. (2004)
showed that higher order multipoles, e.g., up to hexadecapole,
may be incorporated without computational or numerical
difficulty and that agreement with the ‘‘exact’’ potential
obtained from DFT is very good. The idea of partitioning
the charge density according to individual MLWFs was also
employed by Kirchner and Hutter (2004) in order to deter-
mine atomic charges in dimethyl sulfoxide, showing that
there can be significant deviations between the gaseous and
aqueous forms and, therefore, underlining the importance of
using polarizable force fields for describing solvated systems.

Finally, we note that recently Rotenberg et al. (2010)
proposed force fields whose parametrization is based entirely
on a partitioning of the electronic density in terms of MLWFs.
Their method was applied successfully to water and molten
salts. It remains to be seen whether the approach is extensible
to more complex or anisotropic systems.

4. Improving system-size scaling

The localized nature of MLWFs in real space makes them a
natural and appealing choice of basis for electronic-structure
calculations as the sparsity exhibited by operators that are
represented in a localized basis may be exploited in order to
achieve computational efficiencies and improved scaling of
numerical algorithms with respect to system size. Recently,

therefore, MLWFs have been used for this very purpose

in a number of contexts and we mention, in brief, some of

them here.
In QMC calculations (Foulkes et al., 2001), a significant

computational effort is expended in evaluating the Slater

determinant for a given electronic configuration of N elec-

trons. These Slater determinants are usually constructed from

a set of extended single-particle states, obtained from, e.g., a

DFTor Hartree-Fock calculation, represented in a basis set of,

e.g., extended plane waves. This gives rise to OðN3Þ scaling
of the computational cost of evaluating such a determinant.

Williamson, Hood, and Grossman (2001) suggested, instead,

to use MLWFs that were smoothly truncated to zero beyond a

certain cutoff radius that is independent of system size. This

ensures that each electron falls only within the localization

region of a fixed number of MLWFs, thus reducing the

asymptotic scaling by one factor of N. Furthermore, by

representing the MLWFs in a basis of localized spline func-

tions, rather than plane waves or even Gaussian functions, the

evaluation of each orbital is rendered independent of system

size, thereby reducing the overall cost of computing the

determinant of the given configuration to OðNÞ. More re-

cently, rather than truncated MLWFs, the use of nonorthog-

onal orbitals obtained by projection (Reboredo and

Williamson, 2005) or other localization criteria (Alfè and

Gillan, 2004) has also been suggested.
In another development, Wu, Selloni, and Car (2009)

used MLWFs in order to compute efficiently Hartree-

Fock exact-exchange integrals in extended systems. Hybrid

exchange-and-correlation functionals (Becke, 1993) for DFT

calculations, in which some proportion of Hartree-Fock ex-

change is included in order to alleviate the well-known prob-

lem of self-interaction that exists in local and semilocal

functionals such as the local-density approximation and its

generalized gradient-dependent variants, have been used rela-

tively little in extended systems. This is predominantly due to

the computational cost associated with evaluating the exchange

integrals between extended eigenstates that are represented in a

plane-wave basis set. Wu, Selloni, and Car (2009) showed that

by performing a unitary transformation of the eigenstates to a

basis of MLWFs, and working in real space in order to exploit

the fact that spatially distant MLWFs have exponentially

vanishing overlap, the number of such overlaps that needs to

be calculated scales linearly, in the limit of large system size,

with the number of orbitals (as opposed to quadratically),

which is a sufficient improvement to enable Car-Parrinello

molecular-dynamics simulations with hybrid functionals.
Similar ideas that exploit the locality of MLWFs have been

applied to many-body perturbation theory approaches for

going beyond DFT and Hartree-Fock calculations, for ex-

ample, in the contexts of the GW approximation (Umari,

Stenuit, and Baroni, 2009), the evaluation of local correlation

in extended systems (Buth et al., 2005; Pisani et al., 2005),

and the Bethe-Salpeter equation (Sasioglu et al., 2010). The

improved scaling and efficiency of these approaches open

the possibility of such calculations on larger systems than

previously accessible.
Finally, we note that MLWFs have been used recently

to compute van der Waals (vdW) interactions in an approxi-

mate but efficient manner (Silvestrelli, 2008, 2009b;
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Andrinopoulos, Hine, and Mostofi, 2011). The method is
based on an expression due to Andersson, Langreth, and
Lundqvist (1996) for the vdW energy in terms of pairwise
interactions between fragments of charge density. MLWFs
provide a localized decomposition of the electronic charge
density of a system and can be used as the basis for comput-
ing the vdW contribution to the total energy in a postprocess-
ing (i.e., non-self-consistent) fashion. In order to render
tractable the necessary multidimensional integrals, the true
MLWFs of the system are substituted by analytic hydrogenic
orbitals that have the same centers and spreads as the true
MLWFs. The approach has been applied to a variety of
systems, including molecular dimers, molecules physisorbed
on surfaces, water clusters, and weakly bound solids
(Silvestrelli, 2008, 2009a, 2009b; Silvestrelli et al., 2009;
Andrinopoulos, Hine, and Mostofi, 2011; Espejo et al.,
2012). Recently, Ambrosetti and Silvestrelli (2012) suggested
an alternative, simpler formulation that is based on London’s
expression for the van der Waals energy of two interacting
atoms (Eisenschitz and London, 1930).

B. WFs as a basis for strongly correlated systems

For many strongly correlated electron problems, the essen-
tial physics of the system can be explained by considering
only a subset of the electronic states. A recent example is
understanding the behavior of unconventional (high-Tc)
superconductors, in which a great deal of insight can be
gained by considering only the MLWFs of p and d character
on Cu and O, respectively, for cuprates (Sakakibara et al.,
2010), and those on As and Fe, respectively, for the iron
pnictides (Cao, Hirschfeld, and Cheng, 2008; Kuroki et al.,
2008; Hu and Hu, 2010; Suzuki, Usui, and Kuroki, 2011).
Other strongly correlated materials for which MLWFs have
been used to construct minimal models to help understand the
physics include manganites (Kovacik and Ederer, 2010), to-
pological insulators (Zhang, Liu, Qi, Dai et al., 2009; Zhang,
liu, Qi, Deng et al., 2009) (see also Sec. VI.A.4), and poly-
phenylene vinylene, in particular, relating to electron-hole
excitations (Karabunarliev and Bittner, 2003a, 2003b).

Below we outline some of the general principles behind the
construction and solution of such minimal models.

1. First-principles model Hamiltonians

Consider a strongly correlated electron system described
by a Hamiltonian of the form

Ĥ ¼ Ĥ0 þ Ĥint; (132)

where Ĥ0 contains the one-particle terms and Ĥint the inter-
action (e.g., Coulomb repulsion) terms. In second-quantized
notation and expressed in terms of a complete tight-binding
basis, this can be expressed as

Ĥ ¼ X
ij

X
R;R0

hRR0
ij ðĉyiRĉjR0 þ H:c:Þ

þ 1

2

X
ijkl

X
RR0R00R000

URR0R00R000
ijkl ĉyiRĉ

y
jR0 ĉkR00 ĉlR000 ;

(133)

where R labels the correlated site, lowercase indices (such as
i and j) refer to the orbital and spin degrees of freedom,

ĉyiR (ĉiR) creates (annihilates) an electron in the orbital

wiRðrÞ, and h and U contain the matrix elements of the
single-particle and (screened) interaction parts of the
Hamiltonian, respectively.

Usually, a complete tight-binding representation of all the
states of the system is not required, and the essential physics
can be described by a smaller set of physically relevant
orbitals. For example, those states close to the Fermi level,
or those of a particularly symmetry, or those localized on
specific sites, may be sufficient. In this way, the size of the
basis used to represent the many-body Hamiltonian is greatly
reduced, rendering Eq. (133) more amenable to solution [see,
e.g., Solovyev (2008)].

In this spirit, MLWFs obtained from DFT calculations
have been used as the orbital basis for these minimal mod-
els.20 Advantages of using MLWFs include the fact that they
can be chosen to span precisely the required energy range
(using the disentanglement procedure outlined in Sec. II.I.2),
and that they naturally incorporate hybridization and bonding
appropriate to their local environment.

The single-particle hopping parameters of the model
Hamiltonian are easily obtained from the matrix elements
of the DFT Hamiltonian represented in the basis of
MLWFs, using Eq. (101). The interaction parameters of the
model Hamiltonian can be calculated, for example, from
either constrained DFT (Dederichs et al., 1984; McMahan,
Annett, and Martin, 1990; Anisimov, Zaanen, and
Andersen, 1991; Nakamura et al., 2006), within the random
phase approximation (Springer and Aryasetiawan, 1998;
Aryasetiawan et al., 2004; Solovyev and Imada, 2005;
Miyake, Aryasetiawan, and Imada, 2009), or by direct cal-
culation of the matrix elements of a suitable screened
Coulomb interaction between, for example, MLWFs
(Miyake et al., 2006; Nakamura et al., 2006). It is interesting
to note that numerical evidence suggests that on-site
Coulomb interactions (both screened and bare) are maxi-
mized when calculated with a basis of MLWFs (Miyake
and Aryasetiawan, 2008) and, therefore, that MLWFs may
be an optimally localized basis for this purpose. This is
perhaps not surprising given the broad similarities between
MLWFs and WFs obtained via the Edmiston-Ruedenberg
localization scheme (Edmiston and Ruedenberg, 1963), dis-
cussed in Sec. III.A, which maximizes the electronic
Coulomb self-interaction of each orbital.

Once the parameters of the model have been determined,
the model Hamiltonian is then said to be ‘‘from first prin-
ciples,’’ in the sense that the parameters of the model are
determined from DFT rather than by fitting to experiments.
The many-body Hamiltonian in the minimal basis of MLWFs
may then be solved by direct diagonalization or by one of a
number of other approaches that are too numerous to review
here but which include, for example, the dynamical mean-
field theory approach. DMFT maps the many-body problem
on to an Anderson impurity model (Anderson, 1961) in
which on-site correlation is treated nonperturbatively and

20An alternative approach is to obtain the orbitals via the down-

folding method, discussed in Sec. III.
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the correlated sites are coupled to a self-consistent energy bath
that represents the rest of the system. The impurity sites, also
known as the correlated subspaces, are defined by localized
projector functions and MLWFs are a common choice
(Lechermann et al., 2006; Trimarchi et al., 2008; Weber,
Haule, and Kotliar, 2010). In particular, one would typically
choose orbitals of d or f character associated with transition
metal, lanthanoid, or actinoid ions. The Green’s function for
the impurity site is calculated self-consistently, for example, by
a numerical functional integration (which constitutes the bulk
of the computation). Further self-consistency with the DFT
ground state may also be attained by using the solution to the
impurity problem to update the electronic density that is then
used to construct an updated Kohn-Sham potential, which
determines a new set of eigenstates, MLWFs and, hence,
model Hamiltonian parameters that can then be fed back in
to the DMFT cycle. See Kotliar et al. (2006) and Held (2007)
for further details; other examples that use localized Wannier
functions or generalized tight-binding models to address cor-
related electrons problems can be found in Ku et al. (2002),
Anisimov et al. (2005), Korshunov et al. (2005), Amadon
et al. (2008), Held et al. (2008), and Korotin et al. (2008).

2. Self-interaction and DFTþHubbard U

In the approaches just described, the results of a DFT
calculation are used to parametrize the model Hamiltonian
of a strongly correlated electron system. In contrast, in a
DFTþ U formulation (Anisimov, Zaanen, and Andersen,
1991; Anisimov et al., 1993) the energy functional is ex-
plicitly augmented with a Hubbard term U (Hubbard, 1963)
aimed at improving the description of strong interactions,
such as those associated with localized d and f electronic
states, and at repairing the mean-field underestimation of
on-site Coulomb repulsions.

In DFTþ U the Hubbard manifold is defined by a set of
projectors that are typically atomic-like orbitals of d or f
character. Localization of this manifold plays a key role, since
DFTþU effectively corrects for the lack of piecewise linearity
in approximate energy functionals (Perdew et al., 1982;
Cococcioni and de Gironcoli, 2005) and thus greatly reduces
self-interaction errors (Perdew and Zunger, 1981; Kulik et al.,
2006; Mori-Sánchez, Cohen, and Yang, 2008). Since strongly
localized orbitals are those that suffer most from self-interaction,
MLWFs can become an appealing choice to define Hubbard
manifolds adapted to the chemistry of the local environment. In
fact, MLWFs have been successfully used as Hubbard projectors
(Fabris et al., 2005; Anisimov et al., 2007; Miyake and
Aryasetiawan, 2008), and it has been argued that their shape
can constitute an additional degree of freedom in the calcula-
tions (O’Regan et al., 2010), provided their localized, atomic
character is maintained. It should also be pointed out that the
value of U entering the calculations should not be considered
universal, as it depends stronglyon themanifold chosen [(e.g., for
pseudopotential calculations on the oxidation state of the refer-
ence atomic calculation (Kulik and Marzari, 2008), or on the
structure or electronic structure of the problem studied].

It should be pointed out that functionals that aim to correct
directly for some effects of self-interaction, such as the
Perdew-Zunger correction (Perdew and Zunger, 1981) or
Koopmans-compliant functionals (Dabo et al., 2010), can

lead naturally in a periodic system to Wannier-like localized
orbitals that minimize the total energy (Stengel and Spaldin,
2008; Park et al., 2011), while the canonical orbitals that
diagonalize the Hamiltonian still preserve Bloch periodicity.

VIII. WANNIER FUNCTIONS IN OTHER CONTEXTS

As described in Sec. II.A, Wannier functions provide an
alternative, localized, description of a manifold of states
spanned by the eigenstates (energy bands) of a single-particle
Hamiltonian that describes electrons in a periodic potential.
The equivalence of the Wannier representation and the eigen-
state representation may be expressed in terms of the band
projection operator P̂; see Eq. (15). This operator satisfies the
idempotency condition P2 ¼ P, which embodies simulta-
neously the requirements of orthogonality and Pauli exclusion.

From their conception, and until relatively recently,
Wannier functions have been used almost exclusively in
this context, namely, to represent a manifold of single-particle
orbitals for electrons. Furthermore, as discussed in Sec. II, we
need not restrict ourselves to an isolated group of states, such
as the occupied manifold: the disentanglement procedure
enables a subspace of a larger manifold, e.g., of occupied
and unoccupied states, to be selected which may then be
Wannierized. This has, for example, opened up areas of
application in which Wannier functions are used as tight-
binding basis functions for electronic structure and transport
calculations, as described in Secs. VI and VII.

From a general mathematical point of view, however, the
set of orthogonal eigenfunctions of any self-adjoint
(Hermitian) operator may be ‘‘rotated’’ by unitary transforma-
tion to another orthogonal basis that spans the same space. As
we have seen, the unitary transformation is arbitrary andmay be
chosen to render the new basis set maximally localized, which
has computational advantages when it comes to representing
physical quantities that are short ranged. When the operator in
question has translational symmetry, the maximally localized
functions thus obtained are reminiscent of the Wannier func-
tions familiar from electronic-structure theory. Often, such a
basis is also preferable to using another localized basis because
information regarding the symmetries of the self-adjoint opera-
tor from which the basis is derived is encoded within it.

These ideas have led to the appropriation of the MLWF
formalism described in Sec. II for contexts other than
the description of electrons: the single-particle electronic
Hamiltonian is replaced by another suitable periodic self-
adjoint operator, and the Bloch eigenstates are replaced by
the eigenfunctions of that operator, which may then be trans-
formed to give a MLWF-like representation that may be used
as an optimal and compact basis for the desired calculation,
for example, to analyze the eigenmodes of the static dielectric
matrix in ice and liquid water (Lu, Gygi, and Galli, 2008).

Next we review the three most prominent of these appli-
cations, namely, to the study of phonons, photonic crystals,
and cold-atom lattices.

A. Phonons

Lattice vibrations in periodic crystals are usually described
in terms of normal modes, which constitute a delocalized
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orthonormal basis for the space of vibrations of the lattice
such that an arbitrary displacement of the atoms in the crystal
may be expressed in terms of a linear combination of its
normal modes. By analogy with the electronic case, Kohn
(1973) first showed (for isolated phonon branches in one
dimension) that a similar approach could be used for con-
structing a localized orthonormal basis for lattice vibrations
that span the same space as the delocalized normal modes.
The approach was subsequently generalized to isolated mani-
folds in three dimensions by Tindemans-van Eijndhoven and
Kroese (1975). The localized modes are now generally re-
ferred to as lattice Wannier functions (LWFs) (Rabe and
Waghmare, 1995; Íñiguez, Garcia, and Pérez-Mato, 2000).

Following the notation of Sec. VI.D, we denote by q the
phonon wave vector, and by eq the matrix whose columns are

the eigenvectors of the dynamical matrix. As in the case of
electronic Wannier functions, the phases of these eigenvec-
tors are undetermined. A unitary transformation of the form

½~eq�	� ¼ ½Mqeq�	�; (134)

performed within a subspace of dispersion branches that is
invariant with respect to the space group of the crystal, results
in an equivalent representation of generalized extended
modes ½~eq�	� that are also orthonormal. LWFs may then be

defined by

½wR�	� ¼ 1

Np

X
q

e�iq�R½~eq�	�; (135)

with the associated inverse transform

½~eq�	� ¼ X
R

eiq�R½wR�	�: (136)

By construction, the LWFs are periodic according to wRþt ¼
wR, where t is a translation vector of the Born–von Kármán
supercell.

The freedom inherent in Eq. (134) allows very localized
LWFs to be constructed, by suitable choice of the trans-
formation matrix Mq. As noted by Kohn (1973), the proof

of exponential localization of LWFs follows the same reason-
ing as for electronic Wannier functions (see Sec. II.G).

The formal existence of LWFs was first invoked in order to
justify the construction of approximate so-called local modes
of vibration which were used in effective Hamiltonians for
the study of systems exhibiting strong coupling between
electronic states and lattice instabilities, such as perovskite
ferroelectrics (Thomas and Muller, 1968; Pytte and Feder,
1969).

Zhong, Vanderbilt, and Rabe (1994) used first-principles
methods in order to calculate the eigenvector associated with
a soft mode at q ¼ 0 in BaTiO3. A localized displacement
pattern, or local mode, of the atoms in the cell was then
parametrized, taking account of the symmetries associated
with the soft mode, and the parameters were fitted to repro-
duce the calculated soft mode eigenvector at q ¼ 0. The
degree of localization of the local mode was determined by
setting all displacement parameters to zero beyond the second
shell of atoms surrounding the central atom. Although this
spatial truncation results in the local modes being nonorthog-
onal, it does not hamper the accuracy of practical calcula-
tions. As the local modes are constructed using information

only from the eigenvector at q ¼ 0, they do not correspond to
a particular phonon branch in the Brillouin zone. Rabe and
Waghmare (1995) generalized the approach to allow fitting to
more than just q ¼ 0, but rather to a small set of, usually
high-symmetry, q points. The phase indeterminacy of the
eigenvectors is exploited in order to achieve optimally rapid
decay of the local modes. Another approach, introduced by
Íñiguez, Garcia, and Pérez-Mato (2000), constructs local
modes via a projection method that preserves the correct
symmetry. The procedure is initiated from simple atomic
displacements as trial functions. The quality of the local
modes thus obtained may be improved by systematically
densifying the q-point mesh that is used in Eq. (135).
Although there is no formal criterion of maximal localization
in the approach, it also results in nonorthogonal local modes
that decay exponentially.

These ideas for generating local modes from first-
principles calculations have been particularly successful for
the study of structural phase transitions in ferroelectrics such
as BaTiO3 (Zhong, Vanderbilt, and Rabe, 1994, 1995),
PbTiO3 (Waghmare and Rabe, 1997), KbNiO3 (Krakauer
et al., 1999), Pb3GeTe4 (Cockayne and Rabe, 1997), and
perovskite superlattices (Lee, Waghmare, and Yu, 2008).

The use of maximal localization as an exclusive criterion
for determining LWFs was first introduced by Giustino and
Pasquarello (2006). In this work, a real-space periodic posi-
tion operator for noninteracting phonons was defined by
analogy with the periodic position operator for noninteracting
electrons [Eq. (43)].

The problem of minimizing the total spread of a set of WFs
in real space is equivalent to the problem of simultaneously
diagonalizing the three noncommuting matrices correspond-
ing to the three components of the position operator repre-
sented in the WF basis, and Giustino and Pasquarello (2006)
used the method outlined by Gygi, Fattebert, and Schwegler
(2003) to achieve this. It is worth noting that Giustino and
Pasquarello (2006) furthermore defined a generalized spread
functional that, with a single parameter, allows a trade-off
between localization in energy (the eigenstate or Bloch limit)
and localization in space (the Wannier limit), resulting in so-
calledmixed Wannier-Bloch functions which may be obtained
for the electrons as well as the phonons.

Finally, as first pointed out by Kohn (1973), and subse-
quently by Giustino, Cohen, and Louie (2007), maximally
localized lattice Wannier functions correspond to displace-
ments of individual atoms. This may be seen by considering a
vibrational eigenmode, ê�qs 	 e�qse

iq�R, and noting that it may

be expressed as

ê�qs ¼
X
s0R0

eiq�R0
�RR0�ss0e

�
qs0 : (137)

Equation (137) stands in direct correspondence to the elec-
tronic analog given by the inverse of Eq. (10), from which we
conclude that the LWFs do indeed correspond to individual
atomic displacements �RR0�ss0 and, furthermore, that the
required unitary transformation is the matrix of eigenvectors
½eq�	�. As discussed in Sec. VI.D, Giustino, Cohen, and

Louie (2007) exploited this property for the efficient inter-
polation of dynamical matrices and calculation of electron-
phonon couplings.
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B. Photonic crystals

Photonic crystals are periodic arrangements of dielectric
materials that are designed and fabricated in order to control
the flow of light (John, 1987; Yablonovitch, 1987). They are
very much to light what semiconductors are to electrons and,
similar to semiconductors that exhibit an electronic band gap
in which an electron may not propagate, photonic crystals can
be engineered to exhibit photonic band gaps: ranges of
frequencies in which light is forbidden to propagate in the
crystal. In the electronic case, a band gap results from scat-
tering from the periodic potential due to the ions in the
crystal; in the photonic case, it arises from scattering from
the periodic dielectric interfaces of the crystal. Again by
analogy with electronic materials, localized defect states
can arise in the gap by the deliberate introduction of defects
into a perfect photonic crystal structure. The ability to control
the nature of these states promises to lead to entirely light-
based integrated circuits, which would have a number of
advantages over their electronic counterparts, including
greater speeds of propagation, greater bandwidth, and smaller
energy losses (Joannopoulos, Villeneuve, and Fan, 1997).

In SI units, Maxwell’s equations in source-free regions of
space are

r �E ¼ 0; r � B ¼ 0; (138)

r�E ¼ � @B

@t
; r�H ¼ @D

@t
; (139)

where the constitutive relations between the fields are

D ¼ �r�0E; B ¼ 	r	0H: (140)

Considering nonmagnetic materials (	r ¼ 1) with a position
dependent dielectric constant �rðrÞ, and fields that vary with a
sinusoidal dependence e�i!t, it is straightforward to derive
electromagnetic wave equations in terms of either the electric
field E or the magnetic field H,

r� ½r � EðrÞ� ¼ !2

c2
�rðrÞEðrÞ; (141)

r� ½��1
r ðrÞr �HðrÞ� ¼ !2

c2
HðrÞ; (142)

where c ¼ ð	0�0Þ�1=2 is the speed of light.
For a perfect periodic dielectric structure, �rðrÞ ¼

�rðrþRÞ, where R is a lattice vector. Application of
Bloch’s theorem leads to solutions that are indexed by wave
vector k, which may be chosen to lie in the first Brillouin
zone, and a band index n. For example,

HnkðrÞ ¼ eik�runkðrÞ;
where unkðrÞ ¼ unkðrþRÞ is the periodic part of the mag-
netic field Bloch function. The electromagnetic wave equa-
tions can be solved, and hence the Bloch functions obtained,
by a number of methods including a finite-difference time
domain (Yee, 1966; Taflove and Hagness, 2005), transfer
matrix (Pendry and Mackinnon, 1992; Pendry, 1996), empiri-
cal tight-binding methods (Lidorikis et al., 1998; Yariv et al.,
1999), and Galerkin techniques in which the field is expanded
in a set of orthogonal basis functions (Mogilevtsev, Birks, and

Russell, 1999). Within the latter class, use of a plane-wave
basis set is particularly common (Ho, Chan, and Soukoulis,
1990; Johnson and Joannopoulos, 2001).

The operators r�r and r� ��1
r ðrÞr are self-adjoint

and, therefore, the fields satisfy orthogonality relations
given by21Z

drH�
nkðrÞ �Hn0k0 ðrÞ ¼ �nn0�ðk� k0Þ; (143)

Z
dr�rðrÞE�

nkðrÞ � En0k0 ðrÞ ¼ �nn0�ðk� k0Þ: (144)

Leung (1993) first suggested that transforming to a basis of
Wannier functions localized in real space would be advanta-
geous for computational efficiency, especially when dealing
with defects in photonic crystals which, using conventional
methods, require very large supercells for convergence.
Although of great formal importance for justifying the exis-
tence of a suitable localized basis, and hence the tight-binding
approach, the nonuniqueness of the transformation between
Bloch states and Wannier functions caused difficulties. As a
result, early work was limited to the case of single, isolated
bands (Leung, 1993; Konotop, 1997) or composite bands in

which the matrix elements UðkÞ
mn were treated as parameters to

fit the tight-binding band structure to the plane-wave result.
The formalism for obtaining maximally localized Wannier

functions, however, removed this obstacle and several appli-
cations of MLWFs to calculating the properties of photonic
crystals have been reported since, in both two-dimensional
(Garcia-Martin et al., 2003; Whittaker and Croucher, 2003;
Jiao, Fan, and Miller, 2006) and three-dimensional (Takeda,
Chutinan, and John, 2006) photonic crystal structures, as well
as for the case of entangled bands (Hermann et al., 2008) [see
Busch et al. (2003) for an early review].

Typically one chooses to solve for either the electric field
Enk or the magnetic field Hnk. Once the Bloch states for the
periodic crystal are obtained, a basis of magnetic or electric
field Wannier functions may be constructed using the usual
definition, e.g., for the magnetic field

WðHÞ
nR ðrÞ ¼ V

ð2�Þ3
Z
BZ

dke�ik�RX
m

UðkÞ
mnHmkðrÞ; (145)

satisfying orthogonality relationsZ
drWðHÞ�

nR �WðHÞ
n0R0 ¼ �nn0�RR0 ; (146)

where the unitary transformation UðkÞ
mn is chosen in the same

way described in Sec. II such that the sum of the quadratic
spreads of the Wannier functions is minimized, i.e., such that
the Wannier functions are maximally localized.

Concentrating on the magnetic field, it can be expanded in
the basis of Wannier functions with some expansion coeffi-
cients cnR,

HðrÞ ¼ X
nR

cnRW
ðHÞ
nR ðrÞ; (147)

21The notation A � B ¼ P
3
i¼1 AiBi, and denotes the scalar product

of the vectors A and B, with Cartesian components fAig and fBig,
respectively.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1465

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



which on substitution into Eq. (142) gives the tight-binding
representation of the wave equation for the magnetic field in
the Wannier-function basis.

The utility of the approach becomes evident when consid-
ering the presence of a defect in the dielectric lattice such that
�rðrÞ ! �rðrÞ þ ��ðrÞ. The magnetic field wave equations
become

r� ð½��1
r ðrÞ þ ��1ðrÞ�r �HðrÞÞ ¼ !2

c2
HðrÞ; (148)

where

�ðrÞ ¼ ���ðrÞ
�rðrÞ½�rðrÞ þ ��ðrÞ� : (149)

Using the Wannier functions from the defect-free calculation
as a basis in which to expand HðrÞ, as in Eq. (147), the wave
equations may be written in matrix form

X
n0R0

ðARR0
nn0 þ BRR0

nn0 Þcn0R0 ¼ !2

c2
cnR; (150)

where

ARR0
nn0 ¼ V

ð2�Þ3
Z
BZ

dkeik�ðR�R0ÞX
m

UðkÞy
nm

�
!mk

c

�
2
UðkÞ

mn0

(151)

and

BRR0
nn0 ¼

Z
dr�ðrÞ½r �WnRðrÞ�� � ½r �Wn0R0 ðrÞ�:

(152)

Because of the localization and compactness of the basis,
these matrix equations may be solved efficiently to find
frequencies of localized cavity modes, dispersion relations
for waveguides, and the transmission and reflection properties
of complex waveguide structures. Figure 35, for example,
shows the photonic band structure for a three-dimensional
photonic crystal structure with a two-dimensional defect.

C. Cold atoms in optical lattices

A good 70 years after Albert Einstein predicted that a
system of noninteracting bosons would undergo a phase
transition to a new state of matter in which there is macro-
scopic occupation of the lowest energy quantum state, major
achievements in laser cooling and evaporative cooling of
atoms enabled the first experimental realizations of Bose-
Einstein condensation (BEC) (Anderson et al., 1995; Bradley
et al., 1995; Davis et al., 1995) and the award of Nobel prizes
in 1997 and 2001. Since then, the study of cold atoms trapped
in optical lattices has flourished. For reviews see Morsch and
Oberthaler (2006) and Bloch, Dalibard, and Zwerger (2008).

Ultracold atoms trapped in optical lattices provide a ver-
satile alternative to electrons in crystal lattices for the study of
quantum phenomena. Indeed, they have a number of advan-
tages over the solid state in this respect, such as the absence of
lattice defects, the absence of a counterpart to the electron-
phonon interaction, and the ability to control precisely both
the nature of the interatomic interactions and the depth and
periodicity of the optical lattice potential.

The second-quantized Hamiltonian for a system of N
weakly interacting bosons of zero spin and mass m in a
(periodic) external potential V0ðrÞ ¼ V0ðrþRÞ is given by
(Yukalov, 2009)

Ĥ ¼
Z

dr�̂yðrÞ
�
� ℏ2

2m
r2 þ V0ðrÞ

�
�̂ðrÞ

þ g

2

Z
dr�̂yðrÞ�̂yðrÞ�̂ðrÞ�̂ðrÞ; (153)

where g ¼ 4�asℏ2=m, it is assumed that the atoms interact
via a short-range pseudopotential with as as the s-wave

scattering length, and �̂ðrÞ and �̂yðrÞ are bosonic field
operators obeying canonical commutation relations (Fetter
and Walecka, 2003).

In a Bose-Einstein condensate, wherein the condensate
particle densities are typically of the order of 1014 cm�3 or
more, the mean-field limit of this Hamiltonian is usually
taken, which leads to the Gross-Pitaevskii equation, also
known as the nonlinear Schrödinger equation (NLSE),

iℏ
@

@t
’ðr; tÞ ¼

�
� ℏ2

2m
þ V0ðrÞ þ gj’ðr; tÞj2

�
’ðr; tÞ:

(154)

FIG. 35 (color online). Photonic band structure (bottom) of the 3D

Si woodpile structure intercalated with a 2D layer consisting of a

square lattice of square rods (top left). Solid lines indicate the

photonic band structure calculated by the plane-wave expansion

method, and points indicate that reproduced by the MLWFs.

Shaded regions indicate the photonic band structure of the woodpile

projected onto the 2D kk space. The square rods in the 2D layer are

chosen to structurally match the woodpile. The thickness of the

layer is 0:8a, where a is the lattice parameter of the woodpile

structure. Top right: Absolute value of the 17th MLWF of the

magnetic field in the y-z plane. Adapted from Takeda, Chutinan,

and John, 2006.
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’ðr; tÞ is the condensate wave function, the squared norm of
which gives the condensate density. The Gross-Pitaevskii
equation has been used with remarkable success in the study
of BEC (Leggett, 2001).

As shown, for example, by Alfimov et al. (2002), a basis of
Wannier functions, localized to each site � of the optical
lattice, may be used to expand the condensate wave function,

’ðx; tÞ ¼ X
n;�

cn�ðtÞwn�ðxÞ: (155)

The Wannier functions are related to the Bloch eigenstates
c nkðxÞ of the eigenvalue equation�

� d2

dx2
þ V0ðxÞ

�
c nkðxÞ ¼ �nkc nkðxÞ (156)

by the usual Wannier transformation

wn�ðxÞ ¼ L

2�

Z
BZ

dkei�nðkÞe�ik�Lc nkðxÞ: (157)

Substituting Eq. (155) into Eq. (154) leads to a tight-binding
formulation known as the discrete nonlinear Schrödinger
equation (DNLSE),

i
d

dt
cn� ¼ X




cn
~�n;��
 þ X

;�;�

X
i;j;k

c�i
cj�ck�U
�
��
nijk ;

(158)

where

~�n� ¼ L

2�

Z
BZ

dke�ik�L�nk; (159)

and the interaction matrix is given by

U
�
��
nijk ¼ g

Z
dxwn�ðxÞwi
ðxÞwj�ðxÞwk�ðxÞ: (160)

Truncating the first term on the right-hand side of Eq. (158)
to nearest neighbors only, and the second term to on-site (� ¼

 ¼ � ¼ �) terms within a single band (n ¼ i ¼ j ¼ k)
results in the usual tight-binding description (Chiofalo,
Polini, and Tosi, 2000; Trombettoni and Smerzi, 2001),

i
d

dt
cn� ¼ cn�~�n0 þ ~�n1ðcn;��1 þ cn;�þ1Þ

þ U����
nnnn jcn�j2cn�: (161)

As pointed out by Alfimov et al. (2002), using a WF basis
enables the range and type of interactions encapsulated in the
DNLSE to be systematically controlled and improved. For
the most part, however, WFs have been used in the context of
the NLSE in order to carry out formal derivations and to
justify the use of empirical or semiempirical tight-binding
models.

An interesting analogy with electrons in atomic lattices
manifests itself when the filling of sites in the optical lattice is
low and hence particle correlations need to be accounted for
more rigorously. This is done via the Bose-Hubbard model,
developed by Fisher et al. (1989) in the context of 4He, and
first applied to cold atoms in optical lattices by Jaksch et al.
(1998). The Bose-Hubbard Hamiltonian is derived from
Eq. (153) by expanding the boson field operator in terms of
WFs of a single band, localized at the lattice sites,

�̂ ¼ X
�

b̂�w�ðrÞ; (162)

where the bosonic particle creation and annihilation operators

b̂� and b̂y�, respectively, satisfy the usual commutation rules.
This, on approximation to nearest-neighbor coupling and on-
site-only interactions, results in the standard Bose-Hubbard
Hamiltonian (Jaksch et al., 1998)

ĤBH ¼ �J
X
h�;
i

b̂y�b̂
 þ U

2

X
�

n̂�ðn̂� � 1Þ; (163)

where n̂� ¼ b̂y�b̂� is the number operator for lattice site �,
and the nearest-neighbor hopping and on-site repulsion
parameters are given by

J ¼ �
Z

drw0ðrÞ
�
� ℏ2

2m
r2 þ V0ðrÞ

�
w1ðrÞ (164)

and

U ¼ g
Z

drjwðrÞj4; (165)

which may be calculated explicitly using WFs constructed
from Bloch eigenstates (Vaucher et al., 2007; Shotter,
Trypogeorgos, and Foot, 2008). The Bose-Hubbard model
is the bosonic analog to the Hubbard model for fermions. As
in the latter case, the behavior of the model depends on the
competition between hopping (J) and on-site (U) energies
which determines whether the system is in a superfluid or a
Mott insulator phase.

Finally, we note that in work that is closely related to, and
combines elements from ideas developed in both photonic
crystals and cold atoms, WFs have also been used to represent
polaritons in coupled cavity arrays, a class of systems that
serves as another experimental realization of the Bose-
Hubbard model (Hartmann, Brandão, and Plenio, 2006, 2008).

IX. SUMMARY AND PROSPECTS

In this review, we summarized methods for constructing
WFs to represent electrons in periodic solids or other ex-
tended systems. While several methods have been surveyed,
our emphasis has been on the one of Marzari and Vanderbilt
(1997), essentially the generalization of the approach of
Foster and Boys (Boys, 1960, 1966; Foster and Boys,
1960a, 1960b) to periodic systems, in which the gauge free-
dom is resolved by minimizing the sum of the quadratic
spreads of the WFs. The widespread adoption of this ap-
proach is reflected in the fact that it has been incorporated
as a feature into a large number of modern first-principles
electronic-structure code packages including QUANTUM

ESPRESSO (Giannozzi et al., 2009), ABINIT (Gonze et al.,

2009), FLEUR (Freimuth et al., 2008), WIEN2K (Schwarz,
Blaha, and Madsen, 2002; Kuneš et al., 2010), SIESTA

(Soler et al., 2002; Korytár et al., 2010), and VASP (Kresse
and Furthmüller, 1996; Franchini et al., 2012). In the above
cases this has been done by providing an interface to the
WANNIER90 package (Mostofi et al., 2008), an open-source

postprocessing code, offering most of the capabilities de-
scribed in this review. Other efforts have also seen the
implementation of MLWFs in CPMD (CPMD, 1990), GPAW
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(Enkovaara et al., 2010), OPENMX (OPENMX, 2011), and
WANT (Calzolari et al., 2004; Ferretti, Bonferroni, Calzolari,

and Nardelli, 2005), this latter, and WANNIER90, also allowing
for quantum-transport calculations.

After an initial wave of applications increased the visibility
of WFs in the community and demonstrated their utility for a
variety of applications, other methods for constructing WFs
were also developed, as discussed in Secs. II and III. For some
purposes, e.g., for many plane-wave based LDAþU and
DMFT calculations, methods based on simple projection onto
trial orbitals proved sufficient. Methods tuned specifically to
�-point sampling of the BZ for supercell calculations also
became popular. And, as surveyed briefly in Sec. VIII, the
construction and application of WFs was also extended to
periodic systems outside the electronic-structure context, e.g.,
to phonons, photonic crystals, and cold-atom optical lattices.

Still, the vast majority of applications of WF methods have
been to electronic-structure problems. The breadth of such
applications can be appreciated by reviewing the topics cov-
ered in Secs. IV, V, VI, and VII. Very broadly, these fall into
three categories: investigations into the nature of chemical
bonding (and, in complex systems such as liquids, the statis-
tics of chemical bonding), as discussed in Sec. IV; applica-
tions that take advantage of the natural ability of WFs andWF
charge centers to describe dipolar and orbital magnetization
phenomena in dielectric, ferroelectric, magnetic, and magne-
toelectric materials, as reviewed in Sec. V; and the use of WFs
as basis functions, as surveyed in Secs. VI and VII.

Today these methods find applications in many topical
areas including investigations into novel superconductors,
multiferroics, and topological insulators. The importance of
WFs is likely to grow in response to future trends in comput-
ing, which are clearly moving in the direction of more
massive parallelization based on algorithms that can take
advantage of real-space partitioning. This feature of WFs
should also facilitate their adoption in formulating new
beyond-DFT methods in which many-body interactions are
included in a real-space framework. Thus, the growing pres-
sures for increased efficiency and accuracy are likely to
elevate the importance of WF-based methods in coming
years. Overall, one can look forward to continued innovation
in the development and application of WF-based methods to a
wide variety of problems in modern condensed-matter theory.
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Íñiguez, J., A. Garcia, and J.M. Pérez-Mato, 2000, Phys. Rev. B 61,

3127.

Ismail-Beigi, S., and T. A. Arias, 1999, Phys. Rev. Lett. 82, 2127.

1470 Marzari et al.: Maximally localized Wannier functions: Theory . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

http://dx.doi.org/10.1126/science.1089408
http://dx.doi.org/10.1021/jp061230o
http://dx.doi.org/10.1021/jp061230o
http://dx.doi.org/10.1103/PhysRevB.58.R7480
http://dx.doi.org/10.1103/PhysRevB.58.R7480
http://dx.doi.org/10.1103/PhysRevB.55.R1909
http://www.wannier-transport.org
http://dx.doi.org/10.1088/0953-8984/19/3/036215
http://dx.doi.org/10.1103/PhysRevB.72.125114
http://dx.doi.org/10.1103/PhysRevB.72.125114
http://dx.doi.org/10.1103/PhysRevLett.94.116802
http://dx.doi.org/10.1103/PhysRevLett.94.116802
http://dx.doi.org/10.1103/PhysRevB.23.6851
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1088/0953-8984/15/2/316
http://dx.doi.org/10.1137/0907013
http://dx.doi.org/10.1137/0907013
http://dx.doi.org/10.1016/S0927-0256(00)00191-9
http://dx.doi.org/10.1103/RevModPhys.32.300
http://dx.doi.org/10.1103/RevModPhys.32.303
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1088/0953-8984/24/23/235602
http://dx.doi.org/10.1103/PhysRevB.75.205413
http://dx.doi.org/10.1103/PhysRevLett.105.246602
http://dx.doi.org/10.1103/PhysRevLett.105.246602
http://dx.doi.org/10.1103/PhysRevB.78.035120
http://dx.doi.org/10.1080/00268970701724974
http://dx.doi.org/10.1080/00268970701724974
http://dx.doi.org/10.1021/jp034788u
http://dx.doi.org/10.1021/ct050029z
http://dx.doi.org/10.1016/S1359-0286(96)80114-8
http://dx.doi.org/10.1103/PhysRevLett.69.3547
http://dx.doi.org/10.1088/0957-4484/14/2/315
http://dx.doi.org/10.1103/PhysRevLett.89.108102
http://dx.doi.org/10.1103/PhysRevLett.89.108102
http://dx.doi.org/10.1088/0953-8984/12/43/308
http://dx.doi.org/10.1103/PhysRevB.51.6765
http://dx.doi.org/10.1103/PhysRevB.51.6765
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.76.165108
http://dx.doi.org/10.1103/PhysRevB.76.165108
http://dx.doi.org/10.1038/nature06874
http://dx.doi.org/10.1038/nature06874
http://dx.doi.org/10.1103/PhysRevLett.105.265501
http://dx.doi.org/10.1103/PhysRevLett.105.265501
http://dx.doi.org/10.1103/PhysRevB.71.144104
http://dx.doi.org/10.1103/PhysRevLett.96.216403
http://dx.doi.org/10.1103/PhysRevLett.91.267601
http://dx.doi.org/10.1103/PhysRevLett.91.267601
http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1103/PhysRevB.58.3501
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1103/PhysRevLett.88.235501
http://dx.doi.org/10.1103/PhysRevLett.88.235501
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1103/PhysRevB.51.4940
http://dx.doi.org/10.1063/1.1630560
http://dx.doi.org/10.1016/S0010-4655(03)00315-1
http://dx.doi.org/10.1016/S0010-4655(03)00315-1
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevB.79.045109
http://dx.doi.org/10.1103/PhysRevB.79.045109
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140432
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140432
http://dx.doi.org/10.1103/PhysRevLett.86.5341
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1088/0953-8984/20/6/064202
http://dx.doi.org/10.1364/JOSAB.25.000202
http://dx.doi.org/10.1103/PhysRevB.51.10157
http://dx.doi.org/10.1103/PhysRevB.53.7147
http://dx.doi.org/10.1103/PhysRevB.53.7147
http://dx.doi.org/10.1063/1.1853352
http://dx.doi.org/10.1103/PhysRevB.50.17811
http://dx.doi.org/10.1088/0953-8984/19/50/506212
http://dx.doi.org/10.1088/0953-8984/19/50/506212
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1103/PhysRevLett.65.3152
http://dx.doi.org/10.1103/PhysRevLett.65.3152
http://dx.doi.org/10.1063/1.2349482
http://dx.doi.org/10.1063/1.2349482
http://dx.doi.org/10.1021/jp103328g
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1063/1.1636697
http://dx.doi.org/10.1063/1.1636697
http://dx.doi.org/10.1063/1.1832594
http://dx.doi.org/10.1063/1.1832594
http://dx.doi.org/10.1103/PhysRevB.61.3127
http://dx.doi.org/10.1103/PhysRevB.61.3127
http://dx.doi.org/10.1103/PhysRevLett.82.2127


Jahn, S., and P. A. Madden, 2007, Phys. Earth Planet. Inter. 162,

129.

Jahn, S., P. A. Madden, and M. Wilson, 2006, Phys. Rev. B 74,

024112.

Jaksch, D., C. Bruder, J. I. Cirac, C.W. Gardiner, and P. Zoller,

1998, Phys. Rev. Lett. 81, 3108.

Janak, J. F., 1978, Phys. Rev. B 18, 7165.

Jarvis, E. A.A., and E.A. Carter, 2001, J. Phys. Chem. B 105, 4045.

Jiang, L., S. Levchenko, and A. Rappe, 2012, Phys. Rev. Lett. 108,

166403.

Jiao, Y., S. H. Fan, and D.A. B. Miller, 2006, IEEE J. Quantum

Electron. 42, 266.

Joannopoulos, J. D., P. R. Villeneuve, and S. H. Fan, 1997, Nature

(London) 387, 830.

John, S., 1987, Phys. Rev. Lett. 58, 2486.

Johnson, S. G., and J. D. Joannopoulos, 2001, Opt. Express 8, 173.

Jungwirth, P., and D. J. Tobias, 2002, J. Phys. Chem. A 106, 379.

Karabunarliev, S., and E. R. Bittner, 2003a, J. Chem. Phys. 119,

3988.

Karabunarliev, S., and E. R. Bittner, 2003b, J. Chem. Phys. 118,

4291.

Kim, S., and N. Marzari, 2012, arXiv:1204.6369.

King-Smith, R. D., and D. Vanderbilt, 1993, Phys. Rev. B 47, 1651.

King-Smith, R. D., and D. Vanderbilt, 1994, Phys. Rev. B 49, 5828.

Kioupakis, E., P. Rinke, A. Schleife, F. Bechstedt, and C.G. Van de

Walle, 2010, Phys. Rev. B 81, 241201.

Kirchner, B., 2007, Phys. Rep. 440, 1.

Kirchner, B., and J. Hutter, 2004, J. Chem. Phys. 121, 5133.

Koch, E., and S. Goedecker, 2001, Solid State Commun. 119, 105.

Kohn, W., 1959, Phys. Rev. 115, 809.

Kohn, W., 1964, Phys. Rev. 133, A171.

Kohn, W., 1973, Phys. Rev. B 7, 2285.

Kohn, W., 1996, Phys. Rev. Lett. 76, 3168.

Kohn, W., and L. J. Sham, 1965, Phys. Rev. 140, A1133.

Konotop, V. V., 1997, J. Opt. Soc. Am. B 14, 364.

Korotin, D., A.V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N.

Binggeli, V. I. Anisimov, and G. Trimarchi, 2008, Eur. Phys. J. B

65, 91.

Korshunov, M.M., V. A. Gavrichkov, S. G. Ovchinnikov, I. A.

Nekrasov, Z. V. Pchelkina, and V. I. Anisimov, 2005, Phys. Rev.

B 72, 165104.

Korytár, R., M. Pruneda, J. Junquera, P. Ordejón, and N. Lorente,

2010, J. Phys. Condens. Matter 22, 385601.

Kotliar, G., S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,

and C. A. Marianetti, 2006, Rev. Mod. Phys. 78, 865.

Kovacik, R., and C. Ederer, 2010, Phys. Rev. B 81, 245108.

Krakauer, H., R. C. Yu, C. Z. Wang, K.M. Rabe, and U.V.

Waghmare, 1999, J. Phys. Condens. Matter 11, 3779.

Kreitmeir, M., H. Bertagnolli, J. J. Mortensen, and M. Parrinello,

2003, J. Chem. Phys. 118, 3639.

Krekeler, C., B. Hess, and L. Delle Site, 2006, J. Chem. Phys. 125,

054305.

Kresse, G., and J. Furthmüller, 1996, Phys. Rev. B 54, 11 169.

Ku, W., T. Berlijn, and C.-C. Lee, 2010, Phys. Rev. Lett. 104,

216401.

Ku, W., H. Rosner, W. E. Pickett, and R. T. Scalettar, 2002, Phys.

Rev. Lett. 89, 167204.

Ku, W., H. Rosner, W. E. Pickett, and R. T. Scalettar, 2003, J. Solid

State Chem. 171, 329.

Kudin, K. N., and R. Car, 2008, J. Am. Chem. Soc. 130, 3915.

Kudin, K. N., R. Car, and R. Resta, 2007, J. Chem. Phys. 127,

194902.

Kulik, H. J., M. Cococcioni, D.A. Scherlis, and N. Marzari, 2006,

Phys. Rev. Lett. 97, 103001.

Kulik, H. J., and N. Marzari, 2008, J. Chem. Phys. 129, 134314.
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Panati, G., and A. Pisante, 2011, arXiv:1112.6197.

Park, C. H., F. Giustino, M. L. Cohen, and S. G. Louie, 2007, Phys.

Rev. Lett. 99, 086804.

Park, C. H., F. Giustino, M. L. Cohen, and S. G. Louie, 2008, Nano

Lett. 8, 4229.

Park, C.-H., A. Ferretti, I. Dabo, N. Poilvert, and N. Marzari, 2011,

arXiv:1108.5726.

Park, C.-H., F. Giustino, C. D. Spataru, M. L. Cohen, and S. G.

Louie, 2009, Phys. Rev. Lett. 102, 076803.

Pasquarello, A., and R. Resta, 2003, Phys. Rev. B 68, 174302.

Pauling, L., 1960, The Nature of the Chemical Bond (Cornell

University Press, Ithaca), 3rd ed.

Payne, M. C., M. P. Teter, D. C. Allan, T. A. Arias, and J. D.

Joannopoulos, 1992, Rev. Mod. Phys. 64, 1045.

Peelaers, H., B. Partoens, M. Giantomassi, T. Rangel, E. Goossens,

G.-M. Rignanese, X. Gonze, and F.M. Peeters, 2011, Phys. Rev. B

83, 045306.

Pendry, J. B., 1996, J. Phys. Condens. Matter 8, 1085.

Pendry, J. B., and A. Mackinnon, 1992, Phys. Rev. Lett. 69, 2772.

Perdew, J. P., R. G. Parr, M. Levy, and J. J. L. Balduz, 1982, Phys.

Rev. Lett. 49, 1691.

Perdew, J. P., and A. Zunger, 1981, Phys. Rev. B 23, 5048.

Piana, S., D. Sebastiani, P. Carloni, and M. Parrinello, 2001, J. Am.

Chem. Soc. 123, 8730.

Pickard, C. J., and F. Mauri, 2001, Phys. Rev. B 63, 245101.

Picozzi, S., K. Yamauchi, I. A. Sergienko, C. Sen, B. Sanyal, and

E. Dagotto, 2008, J. Phys. Condens. Matter 20, 434208.

Pipek, J., and P. G. Mezey, 1989, J. Chem. Phys. 90, 4916.

Pisani, C., M. Busso, G. Capecchi, S. Casassa, R. Dovesi, L.

Maschio, C. Zicovich-Wilson, and M. Schutz, 2005, J. Chem.

Phys. 122, 094113.

Posternak, M., A. Baldereschi, S. Massidda, and N. Marzari, 2002,

Phys. Rev. B 65, 184422.

Posternak, M., A. Baldereschi, E. J. Walter, and H. Krakauer, 2006,

Phys. Rev. B 74, 125113.

Posternak, M., R. Resta, and A. Baldereschi, 1994, Phys. Rev. B 50,

8911.

Pytte, E., and J. Feder, 1969, Phys. Rev. 187, 1077.

Qi, X.-L., T. L. Hughes, and S.-C. Zhang, 2008, Phys. Rev. B 78,

195424.

1472 Marzari et al.: Maximally localized Wannier functions: Theory . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

http://dx.doi.org/10.1016/S0927-0256(00)00185-3
http://dx.doi.org/10.1016/S0927-0256(00)00185-3
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1063/1.56269
http://dx.doi.org/10.1103/PhysRevLett.79.1337
http://dx.doi.org/10.1103/PhysRevLett.79.1337
http://dx.doi.org/10.1103/PhysRevB.47.9973
http://dx.doi.org/10.1103/PhysRevLett.77.5300
http://dx.doi.org/10.1103/PhysRevLett.77.5300
http://dx.doi.org/10.1103/PhysRevLett.77.1151
http://dx.doi.org/10.1103/PhysRevB.61.5223
http://dx.doi.org/10.1103/PhysRevB.61.5223
http://dx.doi.org/10.1080/00268970701364938
http://dx.doi.org/10.1103/PhysRevB.42.6268
http://dx.doi.org/10.1103/PhysRevB.42.6268
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1016/S0038-1098(00)00473-7
http://dx.doi.org/10.1016/S0038-1098(00)00473-7
http://dx.doi.org/10.1016/S0006-3495(02)75429-5
http://dx.doi.org/10.1103/PhysRevB.77.085122
http://dx.doi.org/10.1103/PhysRevB.77.085122
http://dx.doi.org/10.1103/PhysRevB.80.155134
http://dx.doi.org/10.1103/PhysRevB.80.155134
http://dx.doi.org/10.1103/PhysRevB.74.245213
http://dx.doi.org/10.1103/PhysRevB.74.245213
http://dx.doi.org/10.1109/50.802997
http://dx.doi.org/10.1109/50.802997
http://dx.doi.org/10.1063/1.1345497
http://dx.doi.org/10.1063/1.1345497
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1063/1.1740588
http://dx.doi.org/10.1021/cr040375t
http://dx.doi.org/10.1103/PhysRevB.79.100102
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1103/PhysRevB.74.235113
http://dx.doi.org/10.1103/PhysRevB.72.115210
http://dx.doi.org/10.1103/PhysRevB.72.115210
http://dx.doi.org/10.1103/PhysRevB.60.7828
http://dx.doi.org/10.1103/PhysRevLett.102.217601
http://dx.doi.org/10.1103/PhysRevLett.102.217601
http://dx.doi.org/10.1007/BF01206052
http://dx.doi.org/10.1103/RevModPhys.63.91
http://dx.doi.org/10.1142/S0217984991001155
http://dx.doi.org/10.1103/PhysRevB.65.014111
http://dx.doi.org/10.1103/PhysRevB.77.180507
http://dx.doi.org/10.1103/PhysRevB.79.104511
http://dx.doi.org/10.1016/j.cpc.2010.08.027
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevB.63.155107
http://dx.doi.org/10.1103/PhysRevLett.73.712
http://dx.doi.org/10.1021/jp0368381
http://dx.doi.org/10.1021/jp0368381
http://dx.doi.org/10.1021/ja807622w
http://dx.doi.org/10.1103/PhysRevLett.108.067402
http://www.openmx-square.org
http://dx.doi.org/10.1103/PhysRevB.48.14646
http://dx.doi.org/10.1103/PhysRevB.82.081102
http://dx.doi.org/10.1103/PhysRevB.83.245124
http://dx.doi.org/10.1103/PhysRevB.83.245124
http://dx.doi.org/10.1103/PhysRevB.85.193101
http://dx.doi.org/10.1103/PhysRevB.85.193101
http://dx.doi.org/10.1103/PhysRevB.49.14202
http://dx.doi.org/10.1063/1.2936988
http://dx.doi.org/10.1007/s00023-007-0326-8
http://arXiv.org/abs/1112.6197
http://dx.doi.org/10.1103/PhysRevLett.99.086804
http://dx.doi.org/10.1103/PhysRevLett.99.086804
http://dx.doi.org/10.1021/nl801884n
http://dx.doi.org/10.1021/nl801884n
http://arXiv.org/abs/1108.5726
http://dx.doi.org/10.1103/PhysRevLett.102.076803
http://dx.doi.org/10.1103/PhysRevB.68.174302
http://dx.doi.org/10.1103/RevModPhys.64.1045
http://dx.doi.org/10.1103/PhysRevB.83.045306
http://dx.doi.org/10.1103/PhysRevB.83.045306
http://dx.doi.org/10.1088/0953-8984/8/9/003
http://dx.doi.org/10.1103/PhysRevLett.69.2772
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1021/ja003145e
http://dx.doi.org/10.1021/ja003145e
http://dx.doi.org/10.1103/PhysRevB.63.245101
http://dx.doi.org/10.1088/0953-8984/20/43/434208
http://dx.doi.org/10.1063/1.456588
http://dx.doi.org/10.1063/1.1857479
http://dx.doi.org/10.1063/1.1857479
http://dx.doi.org/10.1103/PhysRevB.65.184422
http://dx.doi.org/10.1103/PhysRevB.74.125113
http://dx.doi.org/10.1103/PhysRevB.50.8911
http://dx.doi.org/10.1103/PhysRevB.50.8911
http://dx.doi.org/10.1103/PhysRev.187.1077
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424


Qian, X., J. Li, and S. Yip, 2010, Phys. Rev. B 82, 195442.

Qian, X. F., J. Li, L. Qi, C. Z. Wang, T. L. Chan, Y. X. Yao, K.M.

Ho, and S. Yip, 2008, Phys. Rev. B 78, 245112.

Rabe, K.M., and U.V. Waghmare, 1995, Phys. Rev. B 52,

13 236.

Rasuli, R., H. Rafii-Tabar, and A. I. Zad, 2010, Phys. Rev. B 81,

125409.

Raugei, S., G. Cardini, and V. Schettino, 1999, J. Chem. Phys. 111,

10 887.

Raugei, S., and M. L. Klein, 2002, J. Chem. Phys. 116, 196.

Reboredo, F. A., and A. J. Williamson, 2005, Phys. Rev. B 71,

121105.

Resta, R., 1992, Ferroelectrics 136, 51.

Resta, R., 1994, Rev. Mod. Phys. 66, 899.

Resta, R., 1998, Phys. Rev. Lett. 80, 1800.

Resta, R., 2000, J. Phys. Condens. Matter 12, R107.

Resta, R., 2002, J. Phys. Condens. Matter 14, R625.

Resta, R., 2006, J. Chem. Phys. 124, 104104.

Resta, R., 2010, J. Phys. Condens. Matter 22, 123201.

Resta, R., and S. Sorella, 1999, Phys. Rev. Lett. 82, 370.

Resta, R., and D. Vanderbilt, 2007, in Physics of Ferroelectrics: A

Modern Perspective, edited by C. Ahn and K.M. Rabe, Topics in

Applied Physics Vol. 105 (Springer-Verlag, Berlin), p. 31.

Rocha, A. R., M. Rossi, A. Fazzio, and A. J. R. da Silva, 2008, Phys.

Rev. Lett. 100, 176803.

Roman, E., Y. Mokrousov, and I. Souza, 2009, Phys. Rev. Lett. 103,

097203.

Romero, A.H., P. L. Silvestrelli, and M. Parrinello, 2000, Phys.

Status Solidi B 220, 703.

Romero, A.H., P. L. Silvestrelli, and M. Parrinello, 2001, J. Chem.

Phys. 115, 115.

Rotenberg, B., M. Salanne, C. Simon, and R. Vuilleumier, 2010,

Phys. Rev. Lett. 104, 138301.

Rowley, A. J., P. Jemmer, M. Wilson, and P. A. Madden, 1998,

J. Chem. Phys. 108, 10 209.

Sagui, C., P. Pomorski, T. A. Darden, and C. Roland, 2004, J. Chem.

Phys. 120, 4530.

Saharay, M., and S. Balasubramanian, 2004, Chem. Phys. Chem. 5,

1442.

Saito, R., G. Dresselhaus, and M. S. Dresselhaus, 1996, Phys. Rev. B

53, 2044.

Sakakibara, H., H. Usui, K. Kuroki, R. Arita, and H. Aoki, 2010,

Phys. Rev. Lett. 105, 057003.

Salanne, M., R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and

B. Guillot, 2008, J. Phys. Condens. Matter 20, 494207.

Salvador, P., J. E. Curtis, D. J. Tobias, and P. Jungwirth, 2003, Phys.

Chem. Chem. Phys. 5, 3752.

Sánchez-Portal, D., E. Artacho, and J. Soler, 1995, Solid State

Commun. 95, 685.

Santis, L. D., and R. Resta, 2000, Surf. Sci. 450, 126.

Sasioglu, E., A. Schindlmayr, C. Friedrich, F. Freimuth, and S.
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