
A common thread: The pairing interaction for unconventional

superconductors

D. J. Scalapino*

Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

(published 8 October 2012)

The structures, the phase diagrams, and the appearance of a neutron resonance signaling an

unconventional superconducting state provide phenomenological evidence relating the cuprates,

the Fe-pnictides and chalcogenides as well as some heavy-fermion and actinide materials.

Single-band and multiband Hubbard models have been found to describe a number of the observed

properties of these materials so that it is reasonable to examine the origin of the pairing interaction

in these models. In this review, based on the experimental phenomenology and studies of the pairing

interaction for Hubbard-like models, it is proposed that spin-fluctuation mediated pairing is the

common thread linking a broad class of superconducting materials.

DOI: 10.1103/RevModPhys.84.1383 PACS numbers: 74.10.+v, 74.20.Mn, 74.70.Xa

CONTENTS

I. Introduction 1383

II. Common Features of a Class of Unconventional

Superconductors 1384

A. Structures 1384

B. Phase diagrams 1386

C. Coexistence and interplay of antiferromagnetism

and superconductivity 1387

D. A neutron spin resonance 1390

III. Models 1391

A. The cuprates 1391

B. The Fe pnictides 1395

C. The heavy-fermion materials 1396

IV. The Pairing Interaction 1397

A. The single-band Hubbard model 1398

B. The bilayer Hubbard model 1403

C. Multiorbital models 1406

V. Summary and Outlook 1408

Appendix: The Structure of Two Pairing Interactions 1411

1. The electron-phonon screened Coulomb

pairing interaction 1411

2. The spin-fluctuation exchange pairing interaction 1412

Acknowledgments 1411

References 1413

I. INTRODUCTION

Fisk, Ott, and Thompson (2009) noted that a striking
aspect of superconducting materials is the ‘‘remarkable
amount of phase space they inhabit: superconductivity is
everywhere but sparse. So the central question in supercon-
ductivity and the search for new superconducting materials is
whether there is anything common to the known supercon-
ductors.’’ This review addresses this question by examining
common features of the cuprate and iron superconductors as
well as some heavy-fermion and actinide superconductors to

see what they tell us about the pairing mechanism in these
materials.1

We begin in Sec. II by looking at the crystal structures, the
phase diagrams, the coexistence and interplay of antiferro-
magnetism and superconductivity, and a neutron scattering
spin resonance which is observed in the superconducting
phase. One finds that these materials come in families which
have quasi-2D layers containing square arrays of d- or
f-electron cations. Their temperature-doping and magnetic
field phase diagrams show antiferromagnetism in close prox-
imity, or in some cases coexisting, with superconductivity.
A variety of experiments show that the antiferromagnetism
and superconductivity are strongly coupled. A spin resonance
peak, which is observed in inelastic neutron scattering experi-
ments in the superconducting phase, provides evidence of
unconventional pairing. The similarity of the structures, the
phase diagrams, the interplay of antiferromagnetism and
superconductivity, and the unconventional nature of the
superconductivity seen in these materials suggest they share
a common underlying physics.

Section III contains a discussion of models that have been
used to describe these materials. These are minimal models in
which the cuprates are described by a single-band two-
dimensional Hubbard model while the heavy-fermion and
Fe materials involve orbital degenerate multiband models.
Various numerical calculations as well as approximate ana-
lytic calculations find that these models exhibit a number of
phenomena which are experimentally observed in these
materials. In particular, the close proximity of an antiferro-
magnetic or spin-density-wave (SDW) phase to an unconven-
tional d-wave or sign-changing s-wave superconducting
phase is found to be a common feature. A second important
common feature is the dual character of the 3d or 4f electrons
in these models. These electrons are involved in both the
magnetism and the superconductivity. The models can exhibit
behavior ranging from local moments and insulating anti-
ferromagnetic order to itinerant magnetism, stripes, and
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1A brief account of this was given in the Proceedings of the

M2S—IX Conference, Physica C 470, 51–54 (2010).
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superconductivity. Furthermore the models show the close
relationship between d-wave and s�-wave pairing.

Motivated by this, the momentum, frequency, and orbital
dependence of the interaction which is responsible for pairing
in these models is examined in Sec. IV. The ‘‘same electrons’’
that are associated with the magnetism and superconduc-
tivity are found to give rise to a spin-fluctuation mediated
pairing interaction. The short-range near-neighbor antiferro-
magnetic fluctuations give rise to a sign-changing gap
[Sgn�ðkþQÞ ¼ �Sgn�ðkÞ] for large momentum transfers.
The Appendix contains a comparison of the traditional
electron-phonon Coulomb pairing interaction with this inter-
action. Based on the experimental phenomenology and the
analysis of the models, it is proposed that this spin-fluctuation
pairing interaction is the common thread that links this class
of unconventional superconducting materials. Although the
organic Bechgaard salts (Bechgaard et al., 1980) will not be
discussed, they clearly are also part of this class of materials
(Bourbonnais and Jérome, 2008; Doiron-Leyraud et al.,
2009; Taillefer, 2010). Section V contains a brief summary
and an outlook regarding the guidance this brings to the
search for higher Tc materials.

II. COMMON FEATURES OF A CLASS OF

UNCONVENTIONAL SUPERCONDUCTORS

In this section we begin by looking at similarities in the
structures and the phase diagrams of some heavy-fermion,
cuprate, and iron-based superconductors. Following this, ex-
perimental evidence of the interplay of antiferromagnetism
and superconducting and the dominant role of spin-fluctuation
scattering in these materials will be discussed. The section
concludes with an experimental definition of what wewill call
‘‘unconventional superconductors’’ in this review.

A. Structures

As illustrated2 in Figs. 1–4, these materials come in fam-
ilies and the common structural element is a quasi-two-
dimensional layer with metallic d or f cations arranged on
a nominally square planar set of lattice sites. Surrounding
these sites are an array of ligand anions which provide a local
crystal field and a hybridization network. Three members
of the heavy-fermion CeIn3 family are shown in Fig. 1. On
the left is the unit cell of the so-called infinite layered
(Tc � 0:2 K) material in which CeIn3 layers are stacked
one on top of another (Shishido et al., 2010b). The middle
structure consists of a similar stack of CeIn3 layers in which a
CoIn2 layer is inserted after every two CeIn3 layers. This is
called a 218 structure corresponding to ðCeIn3Þ2ðCoIn2Þ1 ¼
Ce2Co1In8 and has a superconducting transition temperature
(Chen et al., 2002) Tc � 1 K. On the right is the 115 structure
which consists of alternating CeIn3 and CoIn2 layers giving
ðCeIn3ÞðCoIn2Þ ¼ CeCoIn5 (Tc � 2:3 K) (Petrovic, Pagliuso
et al., 2001). In addition, there are materials (Hegger et al.,
2000; Petrovic, Movshovich et al., 2001) in which Co is

replaced by Rh or Ir, or Cd is substituted for In. The heavy-
fermion actinide PuMGa5 materials have a similar structure
to the 115 CeCoIn5 with Pu replacing Ce and Ga replacing In.
In this case one has PuCoGa5 with a superconducting
transition temperature (Sarrao et al., 2002) Tc ¼ 18:5 K,
PuRhGa5 with Tc ¼ 8:7 K (Wastin et al., 2003), as well as
mixtures such as PuðCo1�xRhxÞGa5. Recently it has been
reported (Zhu et al., 2012) that PuCoIn5 becomes super-
conducting with Tc ¼ 2:5 K.

For the cuprates there are the well-known Hg, Tl, and Bi
families with different numbers of CuO2 layers. The one, two,
and three layer members of the Hg family are shown in Fig. 2.
In this case the naming scheme involves four numbers.

Ce In Co

CeIn

Ce  CoIn CeCoIn

3

2 8 5

FIG. 1 (color online). Some members of the Ce family of heavy-

fermion superconductors. The key structural element is the quasi-

two-dimensional layer of Ce3þ ions which sit at the center of a

tetragon formed by 12 near-neighbor In� anions. (Tc � 0:2 K
CeIn3, from Shishido et al., 2010b; 1.0 K Ce2CoIn8, from Chen

et al., 2002; 2.3 K CeCoIn5, from Petrovic, Pagliuso et al., 2001.

Cu O Hg

Hg(1201)

Hg(1212)

Hg(1223)Ba Ca

FIG. 2 (color online). The key element of the Hg-cuprate super-

conductors is the CuO2 layer. The 1201 structure on the left has

apical O’s above and below the Cu sites while the inner CuO2 layer

of the 1223 structure on the right has no apex oxygen ions

[optimally doped Tc � 94 K Hg(1201), 127 K Hg(1212), and

135 K Hg(1223)]. From Wagner et al., 1995.

2These illustrations were made by N. Ghimire using a

CRYSTALMAKER 8.5 software package. Harshman, Fiory, and Dow

(2011) provided a useful tabulation of Tc values.
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For example, for the three CuO2 layer Hg 1223 compound
(Chu et al., 1993; Wagner et al., 1995) with Tc � 135 K
shown on the right, the first index denotes the number
of HgO planes, the second the number of spacing BaO
layers, the third is the number of separating Ca atom
layers, and the final the number of CuO2 layers. Thus one
has the ðHgOÞ1ðBaOÞ2ðCaÞ2ðCuO2Þ3 ¼ HgBa2Ca2Cu3O9

‘‘1223’’ three layer material on the right and the
ðHgOÞ1ðBaOÞ2ðCuO2Þ1 ¼ HgBa2 CuO5 ‘‘1201’’ structure
(Goutenoire et al., 1993) with Tc � 94 K (Wagner et al.,
1995) on the left. Some of the O sites in the Hg layer are only
partially occupied giving the usual chemical formulas
HgBa2CuO4þ� and HgBa2Ca2Cu3O8þ�. A Cu in the CuO2

layer of the single layer 1201 material has two apical O, while

a Cu in the middle layer of the 1223 material has none. There

are also the so-called 214 families such as La2CuO4 which

can be hole doped La2�xMxCuO4 with M ¼ Sr or Ba and

Nd2�xCuO4 which can be electron doped Nd2�xCexCuO4.

These latter electron-doped cuprates have structures in which

the apical O is absent (see Fig. 3). There are also the so-called

infinite layer electron-doped cuprates (Jorgensen et al., 1993)

in which the CuO2 planes are separated by Sr1�xLnx layers

with Ln a lanthanide such as La, Sm, or Nd.
Figure 4 shows some examples of the recently discovered

(Kamihara et al., 2006, 2008) Fe-superconducting families

which are built up from Fe/pnictide or chalcogen layers. In

these layers the Fe ions sit on a planar two-dimensional

square lattice and the pnictide or chalcogen sit at the centers

of the squares, alternatively above or below the plane formed

by the Fe ions. Again these layers can be stacked in a variety

of ways leading to the LaOFeAs, BaðFeAsÞ2, and FeSe

structures illustrated in Fig. 4. These are called the (1111),

(122), and (11) Fe-based materials, respectively. The

alternating arrangement of the pnictides or chalcogens leads

to a doubling of the unit cell compared with the square Fe

lattice. In LaOFeAs, the Fe is tetrahedrally coordinated with

four As forming square pyramids. The LaO layer has the

same type of structure but with the O forming the square

planar array. There are many equiatomic quaternary pnictide

oxides of this type (Ozawa and Kauzlarich, 2008). The

phosphorus version of this material (Kamihara et al., 2006)

LaOFeP has a superconducting transition of 6 K. When

the As version is electron doped by replacing some of the

O with F giving LaO1�xFxFeAs, it can become superconduct-

ing with a Tc ¼ 26 K (Kamihara et al., 2008) and replacing

La with Sm has given Tc ¼ 55 K (Ren et al., 2008). In the

BaFe2As2 (122) compound, the Fe2As2 layers are separated

by Ba2þ ions. In this case the system can be hole doped (Sefat

et al., 2008) Ba1�xKxFe2As2 with an optimal Tc � 38 K or

electron doped (Sefat et al., 2008) BaðFe1�xCoxÞ2As2 with

Tc � 22 K. The third Fe(Se,Te) family shown on the right-

hand side of Fig. 4 is essentially the infinite layer member of

the family and has a Tc � 13:6–37 K depending upon the

Se=Te composition and the pressure (Mizuguchi et al., 2010;

Okabe et al., 2010).
The active layers of these Ce, Cu, and Fe families are

illustrated in Fig. 5. For the actinide Pu family, the active

layer is similar to the Ce layer with Pu replacing Ce and Ga

replacing In or as recently found for the PuCoIn5 115 com-

pound, one can simply replace Ce with Pu. In each case, these

layers contain a square sheet of metallic d or f cations

surrounded by ligand anions. However, the spacing of the

metallic ions in these compounds is significantly different

with the Ce3þ ions separated by approximately 4:6 �A, the
Cu2þ ions by 3:8 �A and the Fe2þ ions by 2:7 �A. The Fe2þ
ions are close enough that there is a direct Fe-Fe hopping

which along with the d-p hybridization through the pnictogen

or chalcogen anions leads to a metallic ground state with the

possibility of itinerate striped SDW antiferromagnetism and/

or superconductivity. Observations of quantum oscillations

originating from the Shubnikov–de Haas effect (Coldea

et al., 2008; Sebastian, Gillett et al., 2008; Coldea, 2010)

provide clear evidence of well-defined Fermi surfaces

La  CuO2 4 Nd  CuO2 4

Cu O NdLa

FIG. 3 (color online). The 214 cuprate structures La2CuO4 and

Nd2CuO4. The former can be hole doped and the latter structure

which is missing the apex oxygen ions can be electron doped.

(Tc � 38 K La1:85Sr0:15CuO4, from Takagi et al., 1992; 25 K

Nd1:85Ce0:15CuO4, from Takagi et al., 1992).

Fe As La

LaOFeAs BaFe  As FeSe

O Ba

2 2

Se

FIG. 4 (color online). Examples of the Fe-based superconductors.

Here the key element is the Fe pnictide or chalcogen layer.

[Tc � 26 K LaðO0:92F0:08ÞFeAs, from de la Cruz et al., 2008;

22 K BaðFe0:92Co0:08Þ2As2, from Delaire et al., 2010; 38 K

ðBa0:6K0:4ÞFe2As2, from Rotter, Tegel, and Johrendt, 2008; and

13.6–37 K (4.5 GPa) FeSe, from Okabe et al., 2010].
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in the parent Fe-based compounds as well as the doped

materials.
In contrast to this itinerant electron behavior, the undoped

cuprate materials are Mott charge-transfer antiferromagnetic

insulators. In the undoped CuO2 layer, one has Cu2þ in a

ð3dÞ9 configuration. The crystal field is such that the dx2�y2

orbital has the highest energy and is half filled. The on-site Cu

Coulomb interaction energy is large leading to the formation

of local moments. The O orbital mediates an exchange

interaction (Anderson, 1950) between the Cu spins and the

ground state has long-range antiferromagnetic order. In the

three-dimensional crystal, the interlayer exchange coupling

leads to a finite Néel temperature. The undoped system is a

charge-transfer insulator with a gap set by the difference in

energy between the 2p state of the O and the dx2�y2 state of

the Cu. In order to have metallic behavior and the possibility

of superconductivity, the CuO2 planes need to be doped. The

occupancy of the oxygen site in the Hg layer typically con-

trols the hole doping of the CuO2 in the Hg cuprates while

cation substitution or O doping excess or depletion can

provide hole or electron doping for the 214 cuprates.
In the heavy-fermion materials one has the largest ion

separation but in this case the conduction band of the ligands

gives rise to a metallic state. The 14-fold degenerate f
electronic states of the ð4fÞ1 configuration of Ce3þ are split

by a large spin-orbit coupling into a low-lying j ¼ 5=2 sextet
and a higher energy j ¼ 7=2 octet. The one-electron states of

the j ¼ 5=2 sextet are further split by the crystalline electric

field of the In ligand anions into three sets of Kramer’s

doublets (Hotta and Ueda, 2003). Then, depending upon the

strength of the hybridization, these states are localized or

delocalized. For example, CeRhIn5 has an antiferromagnetic

ground state in which the 4f electron of Ce is localized with a

magnetic moment only slightly reduced from its full atomic

value (Hegger et al., 2000). The system is metallic due to the

conduction band associated with the ligands. Under sufficient
pressure, 1.7 GPa, the 4f electron takes on some itinerant
character and the system becomes superconducting (Park,
Bauer, and Thompson, 2008). In CeCoIn5 and CeIrIn5, at
low temperatures the 4f electrons are delocalized through
their coupling with the ligand conduction band and these
systems become superconducting at atmospheric pressure
(Hegger et al., 2000; Petrovic, Pagliuso et al., 2001).
Replacing a small amount of In with a few percent of Cd
leads to a metallic antiferromagnetic state (Pham et al., 2006;
Nicklas et al., 2007). The two-dimensional character of the
Ce ion layers leads to nearly cylindrical Fermi surfaces which
are seen in de Haas and van Alphen measurements. The
cyclotron masses are large consistent with the fact that the
4f electrons make a contribution to the Fermi-surface states
(Shishido et al., 2002).

B. Phase diagrams

These materials exhibit a range of different phases. There
are tetragonal and orthorhombic lattice phases, nematic elec-
tronic phases, charge density wave and striped magnetic
phases, charge-transfer antiferromagnetic Mott insulating as
well as metallic spin-density-wave phases, and of course
superconductivity. Via temperature, doping, chemical or
hydrostatic pressure, or the application of a magnetic field,
one can change the phase of these materials. However, the
feature that is striking in the phase diagrams for all of these
materials is the proximity of the antiferromagnetic or spin-
density-wave and superconducting phases. These phases may
in some cases coexist or alternatively there may be a first
order transition from the antiferromagnetic (AF) state to the
superconducting state. Then as noted by Emery, Kivelson,
and Tranquada (1999), Coulomb frustrated phase separation
can lead to a mesoscopic phase in which a lightly doped
locally AF and a more heavily hole-doped region are in close
contact. It has been suggested that this type of inhomogeneity
may in fact lead to an optimal superconducting transition
temperature (Kivelson and Fradkin, 2007).

Examples of phase diagrams for the heavy-fermion,
cuprate, and Fe-based materials are shown in Figs. 6–8. The
phase diagram for the 115 heavy-fermion system (Pham
et al., 2006) CeCoðIn1�xCdxÞ5 is shown in Fig. 6(a). For

FIG. 5 (color online). The active layers of the Ce, Cu, and Fe

families. The antiferromagnetic spin orders of the undoped ground

states are shown.

(a)

SC+AFM

(b)

FIG. 6. Phase diagrams for two heavy-fermion Ce-115 systems.

(a) CeCoðIn1�xCdxÞ5, from Nicklas et al., 2007, and

(b) CeIrðIn1�xCdxÞ5, from Pham et al., 2006. Note that Tc is

multiplied by a factor of 10 for CeIrðIn1�xCdxÞ5. In both cases

one sees the close proximity of superconductivity and antiferro-

magnetism. For the Co compound there is a region of coexistence.
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x ¼ 0, CeCoIn5 becomes superconducting at temperatures
below approximately 2.3 K. Then as the Cd concentration
increases, one enters a region where the system first becomes
antiferromagnetic and then below the superconducting Tc

there is a coexistence regime. Finally, for Cd concentration
x * 0:15, superconductivity is absent and the Néel tempera-
ture TN continues to increase. A similar phase diagram for the
case in which Co is replaced by Ir is shown in Fig. 6(b). In this
case, while the Néel temperatures are comparable to those
of the Co material, the superconducting Tc is significantly
smaller.

Figure 7 shows the phase diagrams of La2�xSrxCuO4 and
Nd2�xCexCuO4 (Armitage, Fournier, and Green, 2010).
Undoped La2CuO4 and Nd2CuO4 are charge-transfer insula-
tors which undergo antiferromagnetic Néel transitions as the
temperature drops below 300 K. Replacing a small amount of
La with Sr leads to a hole doping of the CuO2 layer, while
replacing Nd with Ce leads to an electron-doped CuO2 layer.

As the hole doping x increases, the Néel temperature is

suppressed and at low temperatures the system passes through

a spin glass phase in which local charge and spin ordered
regions may be pinned. In the hole-doped case, the doping for

optimal superconductivity is well separated from the onset of

antiferromagnetism. The antiferromagnetic order extends

much farther out for the electron-doped system and appears
adjacent to the superconducting phase.

The phase diagram for one of the Fe-based superconduc-

tors (Fernandes et al., 2010) BaðFe1�xCoxÞAs2 is shown in

Fig. 8. The parent compound BaFe2As2 is metallic and under-
goes a structural tetragonal to orthorhombic transition and at

the same temperature an antiferromagnetic SDW transition.

In the SDW phase the moments are oriented antiferro-

magnetically along the longer a0 axis of the orthorhombic
2Fe/cell and ferromagnetically along the b0 axis giving a

stripelike structure. As Co is added, the system is electron

doped and the structural and SDW transitions are suppressed.

The structural transition is found to occur at temperatures
slightly above the SDW transition. For dopings x * 0:07, the
structural and SDW transitions are completely suppressed

and the system goes into a superconducting state below Tc.

However, for a range of smaller dopings 0:03 & x & 0:06 the
system enters a region in which there is microscopic coex-

istence of superconductivity, SDW, and orthorhombic order.

As will be discussed, evidence for this is seen in the tem-

perature dependence of the SDW Bragg peak intensity and
the orthorhombic distortion. It is also possible to hole dope

this compound (Rotter et al., 2008) by substituting K for Ba,

Ba1�xKxFe2As2. Here again, as x increases the structural and
SDW transition are suppressed and superconductivity onsets
(Paglione and Greene, 2010).

C. Coexistence and interplay of antiferromagnetism and

superconductivity

NMR as well as neutron scattering measurements has

provided evidence that the observed coexistence regions in
some systems represent microscopic coexistence in which

the same electrons are involved with both the superconduc-

tivity and the antiferromagnetism. For example, elastic

neutron scattering measurements (Pham et al., 2006) on
CeCoðIn0:9Cd0:1Þ5 find the integrated magnetic intensity at

the antiferromagnetic wave vector QAF versus temperature

shown in Fig. 9(a). This intensity is a measure of the square of

the ordered magnetic moment and onsets at the Néel tem-
perature TN . As seen in Fig. 9(a),M2ðTÞ initially increases as

T decreases below TN , but then as T drops below the super-

conducting transition temperature Tc, it saturates. Similar

data for BaðFe1�xCoxÞAs2 at three different dopings are
shown in Fig. 9(b). In this case, below Tc the ordered moment

is reduced as the superconducting order increases. Both these

examples reflect the competition of superconductivity and

antiferromagnetism (Vorontsov, Vavilov, and Chubukov,
2009; Fernandes et al., 2010). This competition is also

believed to be responsible for the anomalous suppression of

the orthorhombic distortion in BaðFe1�xCoxÞAs2 as the

temperature decreases below Tc (Nandi et al., 2010).
Evidence for atomic scale coexistence of superconductivity

and antiferromagnetism for BaðFe1�xCoxÞ2As2 with x ¼ 0:06

FIG. 8 (color online). The phase diagram for BaðFe1�xCoxÞAs2.
There appears a coexistence region similar to CeCoðIn1�xCdxÞ5
shown in Fig. 6. From Fernandes et al., 2010.

FIG. 7 (color online). Schematic phase diagrams for hole-doped

La2�xSrxCuO4 and electron-doped RE2�xCexCuO4 (RE ¼ La, Pr,

Nd) cuprates (adapted from R. L. Greene and Kui Jin). In the

electron-doped case, the AF region extends to the superconducting

region, while in the hole-doped case a pseudogap region intervenes.
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was reported by LaPlace et al. (2009). Here volume suscep-
tibility measurements showed a superconducting fraction
greater than 95%. Then measurements of the homogeneous
broadening of the 75As NMR spectrum showed that frozen
moments remained on all of the Fe atoms for T less than Tc

while at the same time, the spin-lattice relaxation rate T�1
1 of

75As showed that the Fe electrons also exhibited supercon-
ductivity. Since the As nuclei are coupled to only the four
near-neighbor Fe sites, this experiment provided evidence of
homogeneous coexistence on a unit cell scale.

In addition to the ordered antiferromagnetic (Néel) phase,
there are a variety of incommensurate spin-density-wave
striped phases that compete and interact with the supercon-
ducting phase. Evidence of this is seen in neutron scattering
experiments onLa2�xSrxCuO4 which reveal a strong enhance-
ment of spin-stripe order at low energies produced by modest
magnetic fields (Lake et al., 2002; Khaykovich et al., 2005).
This behavior was modeled by Landau-Ginzburg theories in
which the incommensurate antiferromagnetic order is coupled
to the d-wave superconducting order (Demler, Sachdev, and
Zhang, 2001; Kivelson et al., 2002). This mutual coupling of
SDW and d-wave scattering processes was also found in
renormalization group calculations (Halboth and Metzner,
2000; Honerkamp et al., 2001; Platt, Honerkamp, and
Hanke, 2009; Zhai, Wang, and Lee, 2009).

A particularly striking example of the coexistence and
interplay of antiferromagnetism and d-wave superconductiv-
ity is seen in La2�xBaxCuO4 near a doping x� 1=8 (Li et al.,
2007; Tranquada et al., 2008). Here a combination of
tunneling and photoemission measurements along with trans-
port studies provides evidence that two-dimensional d-wave
superconducting correlations coexist with �-phase shifted
antiferromagnetic stripes at temperatures below 40 K. The
observation that macroscopic 2D superconductivity persists
at temperatures well above the 3D transition temperature
suggests that the pairing correlations form a pair density
wave with a wave vector which is the same as that of the
spin-density wave (Himeda, Kato, and Ogata, 2002; Berg
et al., 2007). That is, the amplitude of the d-wave super-
conducting order parameter is enhanced in the hole-rich

regions of the striped system and the phase of the adjacent
superconducting stripes are opposite in sign (antiphase). In
this case, the structurally driven orthogonal orientation of the
stripes in neighboring planes leads to a frustration of the
Josephson coupling between planes allowing for the possi-
bility of a Berezinskii-Kosterlitz-Thouless transition in the
3D crystal.

The interplay between the antiferromagnetic spin fluctua-
tions and the superconducting pairs is also seen in the change
in the exchange energy �Eex between the superconducting
and normal states (Scalapino andWhite, 1998). For a material
with a near-neighbor exchange coupling J, the change in
exchange energy �EexðTÞ is given by

�EexðTÞ ¼ 2JðhSiþx � SiiN � hSiþx � SiiSÞ; (1)

with

hSiþx � SiiSðNÞ ¼ 1

g2�2
�

Z 1

0

d!

�
½nð!Þ þ 1�

� hcosðqxaÞ�00
SðNÞðq;!ÞiBZ: (2)

Here nð!Þ is the usual Bose factor, the momentum q is
summed over the Brillouin zone, and �00

SðNÞðq;!Þ is the

imaginary part of the wave vector and frequency dependent
spin susceptibility in the superconducting (S) and normal (N)
phases, respectively, measured at temperature T. Additional
next-near-neighbor exchange terms appropriate to a given
material can be added to Eq. (1). In initial studies of
YBa2Cu3O6:95 (Tc ¼ 92:5 K), a low temperature value of
�Eex was estimated from measurements of �00

s ðq;!Þ at
T ¼ 15 K and �00

Nðq;!Þ taken at 100 K. This estimate gave

a change in the exchange energy which was approximately
15 times larger than the superconducting condensation energy
(Woo et al., 2006). Recent measurements of the heavy-
fermion superconductor CeCu2Si2 found a change of the
exchange energy which was of the order of 20 times larger
than its low temperature superconducting condensation
energy (Stockert et al., 2011). In this case, the lower
Tc � 0:6 K of this heavy-fermion system allowed direct
access at this same temperature to the putative normal state

FIG. 9 (color online). The interplay of antiferromagnetism and superconductivity is seen in the temperature dependence of the Bragg

scattering. (a) The integrated Bragg scattering intensity for the 115 heavy-fermion superconductor CeCoðIn0:99Cd0:01Þ5 at QAF vs temperature.

From Nicklas et al., 2007. (b) The integrated Bragg scattering intensity for BaðFe1�xCoxÞAs2 at QSDW vs the temperature for various values

of x. From Fernandes et al., 2010. In both cases, the strength of the Bragg scattering from the magnetic order is clearly altered by the onset of

the superconductivity.

1388 D. J. Scalapino: A common thread: The pairing interaction for . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



using a 2.5 T magnetic field. While the superconducting

condensation energy Uc arises from a cancellation between

this change in the exchange energy �Eex and other electronic

energies, the important point is that �Eex is large compared

with Uc so that antiferromagnetic fluctuations clearly have

the strength to drive the superconducting pairing. In addition,

we note that�Eex=Uc is similar in size for YBa2Cu3O6:95 and

CeCu2Si2.
The similarities of the suppression of the Bragg scattering

intensity M2 in the coexisting antiferromagnetic and super-

conducting state, the magnetic field induced SDW in the

superconducting state, and the change of the exchange energy

between the superconducting and normal paramagnetic states

not only serve to establish a relationship between these differ-

ent materials but in addition provide evidence that the antifer-

romagnetism and superconductivity in these materials are

strongly coupled. Further evidence of this is also clearly

seen in NMR studies of the spin-lattice relaxation time T1 of

FeSe (Imai et al., 2009) and inelastic neutron scattering

measurements of overdoped La2�xSrxCuO4 (LSCO)

(Wakimoto et al., 2004). Measurements of ðT1TÞ�1 probe

the Brillouin zone average of Im�ðq;!0Þ=!0 weighted with

the square of the hyperfine form factor. Here !0 is a low

frequency set by the nuclear Zeeman energy. As the pressure

is increased on FeSe, ðT1TÞ�1 and Tc are both enhanced.

Similarly, the strength of the low-energy incommensurate

antiferromagnetic spin fluctuations in overdoped LSCO is

observed to decrease (Wakimoto et al., 2004) as the doping

increases and Tc is reduced.
While neutron scattering measurements provide evidence

of the q-! spin-fluctuation spectral weight for the under-

doped materials (Woo et al., 2006), one is of course also

interested in the optimally as well as the overdoped materials.

Recently, resonant inelastic x-ray scattering (RIXS)

experiments (Tacon et al., 2011), provided such information

over a wide energy-momentum region for YBa2Cu4O8,

YBa2Cu3O6þx, and Nd1:2Ba1:8Cu3O6þx. These experiments

clearly show, for a range of dopings covering underdoped,

optimal as well as overdoped materials, the existence

of damped, dispersive magnetic excitations, which have

significant spectral weight in an appropriate spectral range

to produce pairing.
There is also resistivity data which provide evidence of the

strong coupling of the spin fluctuations and quasiparticles in

the regions of the phase diagram where superconductivity

appears. Taillefer emphasized a similar behavior of the

temperature dependent part of the in-plane normal state

resistivity of the cuprate Nd-LSCO, the organic Bechgaard

salt ðTMTSFÞ2PF6, and the Fe-pnictide BaðFe1�xCoxÞAs2
shown in Fig. 10. Here the linear T dependence of the

resistivity of Nd-LSCO is associated with a hole doping

0.24 at which the stripe-ordered antiferromagnetic phase

ends (Daou et al., 2009). Likewise, a Co concentration

�0:10 for Co-Ba122 and a pressure * 10 kbar for

ðTMTSFÞ2PF6 mark the ends of the SDW phases for these

materials. As the doping (or pressure for the Bechgaard salt)

is increased, the anomalous T dependence is replaced by a

Fermi-liquid T2 dependence and the superconducting Tc goes

to zero. At low doping or under pressure, the upturn in ��
shows evidence of a Fermi-surface reconstruction due to the

occurrence of an ordered phase. Based on transport and NMR

measurements on the ðTMTSFÞ2X materials as a function of

pressure, Doiron-Leyraud et al. (2009, 2010) argued that the

linear T dependence of the resistivity is associated with

scattering from antiferromagnetic spin fluctuations at the

border of antiferromagnetic order and that this scattering is

directly linked to Tc. Hartnoll et al. (2011) argued that a

quantum-critical response arises from spin-fluctuation scat-

tering and umklapp processes as the spin-density-wave phase

of a 2D metal is approached.
A similar connection between spin-fluctuation scattering of

the carriers and the basal plane resistivity of La2�xCexCuO4

films was reported by Jin et al. (2011). They carried out low

temperature resistivity experiments as a function of doping

and magnetic field. They found a correlation between the

strength of the low temperature linear-in-T resistivity and

the superconducting Tc as a function of doping. They noted

that this electron-doped cuprate provided a particularly inter-

esting case since there is no pseudogap phase in the under-

doped region of its phase diagram, leaving the spin fluctuations

as the dominant link to the temperature dependence of the

resistivity.
A magnetic field-tuned quantum-critical response is also

seen in the heavy-fermion CeCoIn5 system (Paglione et al.,

2003) as well as other heavy-fermion materials. Of particular

interest, as Si and Steglich (2010) discussed for CaCu2Si2
and CePddSi2, are the antiferromagnetic to paramagnetic

quantum-critical transitions. Here the critical degrees of

FIG. 10 (color online). The temperature dependent part ��ðTÞ of the in-plane resistivity vs T on a log-log scale for the cuprate Nd-LSCO,

the organic Bechgaard salt ðTMTSFÞ2PF6, and the Fe pnictide BaðFe1�xCoxÞ2As2. As a relevant tuning parameter, doping or pressure, is

changed, the temperature dependence of ��ðTÞ for all three systems passes from a T2 dependence to an approximately linear T dependence

and then to an upturn associated with a Fermi-surface reconstruction. From Taillefer, 2010.
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freedom are the SDW fluctuations. The role of the quantum-
critical point and the interplay between antiferromagnetism
and the resulting temperature, carrier concentration, and
magnetic field phase diagram were discussed by Sachdev
(2010). To summarize, the possible coexistence of antiferro-
magnetism and d-wave superconductivity, the change in the
exchange energy upon entering the superconducting phase,
and the importance of spin-fluctuation scattering are charac-
teristic of the class of materials being discussed.

D. A neutron spin resonance

Another important experimental observation linking these
materials is the appearance of a neutron scattering spin
resonance in the superconducting phase at the antiferromag-
netic or spin-density-wave vector Q. This resonance, first
observed in the cuprates (Rossat-Mignod et al., 1991;
Mook et al., 1993; Fong et al., 1995, 1999) and then
discovered in the heavy-fermion materials (Stock et al.,
2008), was also recently observed in various Fe superconduc-
tors (Christiansen et al., 2008; Inosov et al., 2010; Lumsden
and Christiansen, 2010; Park et al., 2011). The spin-flip
inelastic scattering rate is proportional to the imaginary
part of the spin susceptibility. Experimental results for
�00ðQ;!Þ obtained for CeCoIn5, Bi2Sr2CaCu2O8þ�, and
BaFe1:85Co0:15As2 are shown in Figs. 11–13. While the
energy of the resonant peak in YBCO is relatively insensitive
to T=Tc, the peak in BaðFe0:975Co0:125Þ2As2 was found to
follow the temperature dependence of the superconducting
gap obtained from angle resolved photoemission spectros-
copy (ARPES) (Inosov et al., 2009; Terashima et al., 2009).

Although the detailed behavior of the resonance requires a
calculation of the spin susceptibility, the occurrence of the
resonance is directly related to the BCS coherence factor that

enters the neutron spin-flip scattering process. This coherence
factor for flipping the spin of a quasiparticle scattered from k
to kþQ is

1

2

�
1� �ðkÞ�ðkþQÞ

EðkÞEðkþQÞ
�
; (3)

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k þ �2ðkÞ

q
is the quasiparticle energy. The

occurrence of a resonance requires that the gap changes sign
between regions on the Fermi surface or surfaces separated by
momentum Q which contribute significantly to the spin
scattering (Bulut, Scalapino, and Scalettar, 1992; Monthoux
and Scalapino, 1994a)

sgnð�ðkþQÞÞ ¼ �sgnð�ðkÞÞ: (4)

In this case the coherence factor Eq. (3) goes to 1 near
threshold while if there were a plus sign in Eq. (4), it would
vanish.

Equation (4) defines the class of unconventional super-
conductors which are the subject of this review.3 Materials in
this class have a gap that changes sign on different parts of the
Fermi surface or surfaces separated by a momentum Q which
connects regions which play an important role in the scatter-
ing of the electrons. Thus unconventional as used in this
review is not related to the symmetry of the gap, nor is it
determined by whether the gap has nodes or is nodeless. For
example, the gap may have A1g (s-wave) symmetry but

changes sign between two different pieces of the Fermi
surface, as the so-called s� gap proposed for the Fe-pnictides
(Mazin et al., 2008). As discussed in Sec. IV, such an A1g gap
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FIG. 11. The neutron scattering spin resonance in the normal

(dashed) and superconducting (solid) phases observed for the 115

Ce heavy-fermion material CeCoIn5 (Tc ¼ 2:3 K). From Stock

et al., 2008.

FIG. 12. Difference spectrum of the neutron scattering intensities

from Bi2Sr2CaCu2O8þ� (Tc ¼ 91 K) at T ¼ 10 and 100 K at wave

vector Q ¼ ð�=a;�=aÞ showing the spin resonance at �43 meV.
The horizontal bar represents the instrumental energy resolution and

the solid curve is a guide to the eye. From Fong et al., 1999.

3There have been proposals that the ‘‘resonance’’ structure in the

Fe-based superconductors is consistent with a conventional sþþ gap

driven by an electron-phonon pairing mechanism enhanced by

orbital fluctuations (Onari, Kontari, and Sato, 2010). In this case,

Eq. (5) would have a plus sign and the Fe-based superconductors

would not be ‘‘unconventional’’ according to the criterion that we

are using. It would, of course, be interesting to find such an orbitally

enhanced pairing mechanism.
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can also have nodes (Hirschfeld, Korshunov, and Mazin,

2011). Alternatively, one could have a B1g (d-wave) nodeless

gap on multiple Fermi surfaces.

III. MODELS

In this section we introduce the basic models that will be

discussed. While these are certainly minimal models, we

argue that they exhibit a number of the important physical

properties which are observed in the actual materials. On this

basis, it is reasonable to examine the structure of the pairing

interaction in these models as will be done in Sec. IV.
As illustrated in Fig. 5, these materials have crystal struc-

tures consisting of layers containing square planar arrays of

d- or f-electron cations embedded in an anion lattice. Here

we take a minimal approach which focuses on the d or f
electrons and treats the anion lattice as providing a crystalline

electric field and a hybridization network. This misses the

charge-transfer character (Zaanen, Sawatzky, and Allen,

1985) of the CuO2 planes, the dynamic polarization effects

of anions such as As, and the spd conduction bands of the

heavy-fermion and actinide anions. However, we believe that

this approach captures the essential physics that leads to

pairing in these materials.
This approach begins with the selection of local d or f

atomic states for the (Cu, Fe, Ce, Pu) ions which takes

account of the appropriate crystal-field and spin-orbit cou-

plings. Then these states are hybridized through the (O, As,

In, Ga) anion states, or directly, leading to a tight-binding

band or bands. The tight-binding hopping parameters are

typically adjusted so that the low-energy states fit the results

of band structure calculations. For the heavy-fermion and

actinide systems, one includes a further phenomenological

renormalization. Here one has the Kondo physics to deal with

and the approximation is based on the assumption that just as

in the single-ion case, the system renormalizes to a heavy

Fermi liquid. Then an on-site Coulomb interaction and, if

there are multiple orbitals, additional interorbital Coulomb

and exchange interactions are added. Even at this level there

are various parametrizations which involve the choice of

basis states for the band structure calculation, and the

Wannier projection of the bands in the vicinity of the Fermi

energy onto the local orbital basis (Gunnarsson et al., 1989;
Vildosola et al., 2008; Miyake et al., 2010).

Then, of course, when a model is selected, one needs to
determine its properties. There have been a number of differ-
ent theoretical approaches used to determine the properties of
Hubbard models. Analytic or semianalytic methods included
random phase approximations (RPA) (Miyake, Schmitt-Rink,
and Varma, 1986; Scalapino, Loh, Jr., and Hirsch, 1986;
Monthoux, Balatsky, and Pines, 1991; Graser et al., 2009),
renormalized mean-field theory (Anderson, 1987; Kotliar and
Liu, 1988a; Anderson et al., 2004), conserving fluctuation
exchange (FLEX) (Bickers, Scalapino, and White, 1989;
Dahm and Tewordt, 1995; Kuroki, Arita, and Aoki, 1999),
self-consistent renormalization (Moriya and Ueda, 2003),
two-particle-self-consistent (Tremblay, 2011), and slave-
boson approximations (Coleman, 1984; Ruckenstein,
Hirschfeld, and Appel, 1987; Kotliar and Liu, 1988b).
Numerical approaches include determinant quantum
Monte Carlo (DQMC) (Blankenbecker, Scalapino, and
Sugar, 1981; Hirsch, 1985; Paiva et al., 2001), variational
Monte Carlo (VMC) (Gros, 1988; Paramekanti, Randeria,
and Trivedi, 2004; Ogata and Fukuyama, 2008), a variety
of cluster Monte Carlo [cellular dynamic mean-field theory
(CDMFT) (Kotliar et al., 2001), dynamic cluster approx-
imation (DCA) (Jarrell et al., 2001), variational cluster-
perturbation theory (VCPT) (Potthoff, Aichhorn, and
Dahnken, 2003)] methods, density matrix renormalization
group (DMRG) (White, 1993) calculations as well as func-
tional renormalization group (FRG) (Halboth and Metzner,
2000; Honerkamp et al., 2001; Platt, Honerkamp, and Hanke,
2009; Zhai, Wang, and Lee, 2009) studies. Our goal in this
section is to introduce the Hubbard models that have been
used to describe the unconventional superconductors and
illustrate some of the results for their physical properties
which have been found from numerical calculations.

A. The cuprates

To illustrate the type of models that we have in mind, and
discuss some of their properties, we begin with the cuprates.
At the Cu site, the crystal-field splitting pushes the Cu dx2�y2

orbit up in energy so that it contains the last ð3dÞ9 electron
of Cu2þ. The undoped system with one hole per Cu is a

FIG. 13 (color online). (Left) The neutron scattering spin resonance for BaFe1:85Co0:15As2 (Tc ¼ 26 K). (Right) The energy of the

resonance vs temperature follows a BCS-like curve. From Inosov et al., 2010.
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charge-transfer antiferromagnetic insulator with a gap set by
the energy to move the hole from a Cu to a neighboring O.
The large on-site Cu Coulomb interaction leads to well-
formed S ¼ 1=2 moments on the Cu which are coupled by
a Cu-O-Cu superexchange interaction (Anderson, 1950). A
weak interlayer exchange coupling leads to a Néel transition
with a checkerboard antiferromagnetic spin arrangement in
the CuO2 plane. When a material such as La2�xSrxCuO4 is
hole doped by adding Sr, the antiferromagnetism is rapidly
suppressed and below a temperature T� one enters a pseudo-
gap phase. This phase is believed to reflect the approach to the
Mott state and provides a medium in which a variety of
instabilities can appear as the temperature is lowered. These
continue to be studied and among other correlations are
believed to contain fluctuating charge and �-phase shifted
antiferromagnetic stripes (Emery, Kivelson, and Tranquada,
1999) which at low temperatures may order leading to a
reconstruction of the Fermi surface (Moon and Sachdev,
2010; Norman, Lin, and Millis, 2010; Yao, Lee, and
Kivelson, 2011) or if disordered form a spin glass
(Tranquada, Ichikawa, and Uchida, 1999). While evidence
of superlattice order appears in some underdoped cuprates
[La1:875Ba0:125CuO4 (Li et al., 2007)], there are others,
including ordered stoichiometric crystals [YBa2Cu4O8

(Tomeno et al., 1994)] in which a pseudogap appears in
the apparent absence of a translational broken symmetry.
This has led to various interesting theoretical proposals of
Fermi-surface reconstruction without translational symmetry
breaking (Yang, Rice, and Zhang, 2006; Sachdev, 2010). In
the overdoped regime the system is metallic with a large
Fermi surface and spin fluctuations.

Early on Anderson suggested that a minimal model which
contained the essential cuprate physics was the single-band
Hubbard model. In this case, one focuses on the Cu dx2�y2

orbital and hybridizes it through the O anion network leading
to a single dx2�y2 band. Then adding an on-site Coulomb

interaction U, one has the well-known 2D single-band
Hubbard model (Hubbard, 1963)

H ¼ �X
ijs

tijðdyisdjs þ dyjsdisÞ þ U
X
i

ni"ni#: (5)

Here tij are tight-binding one-electron hopping parameters

between sites i and j which are adjusted to fit the band
structure and U is an on-site Coulomb interaction. In

Eq. (5), dyis creates an electron with spin s in a dx2�y2 orbital

on the ith site, djs destroys one on the jth site, and ni" ¼ dyi"di"
is the occupation number for a spin up electron on the ith site.

Although the single-band Hubbard model, Eq. (5), is
certainly a minimal model, it exhibits a number of the basic
phenomena which are seen in the cuprate materials. At half
filling, in the strong-coupling limit it maps to the 2D spin 1=2
Heisenberg model on a square lattice. Numerical studies of
the Heisenberg model (Oitmaa and Betts, 1978) found evi-
dence of long-range antiferromagnetic order at T ¼ 0. In
addition, analytic calculations (Arovas and Auerbach, 1988;
Chakravarty, Halperin, and Nelson, 1988) provided the basis
for understanding a range of experimental results for the
undoped cuprates. Alternatively in weak coupling, it was
shown (Raghu, Kivelson, and Scalapino, 2010) that the doped
Hubbard model has a transition to a dx2�y2 superconducting

phase. While this result was obtained in the limit U=t ! 0, it
establishes the fact that this simple model can exhibit a dx2�y2

superconducting phase.
As noted there have been a variety of numerical ap-

proaches used to study the Hubbard model.4 At half filling,
the particle-hole symmetry eliminates the so-called ‘‘fermion
sign’’ problem for a Hubbard model with a near-neighbor
one-electron hopping. In this case, DQMC (Blankenbecker,
Scalapino, and Sugar, 1981) calculations can be carried out
on large lattices down to low temperatures. These calcula-
tions find that the half-filled 2D Hubbard model with a near-
neighbor hopping t and an on-site Coulomb interaction U of
the order of the bandwidth 8t is a Mott insulator and has a
ground state with long-range antiferromagnetic order (Hirsch,
1985). In addition, in this intermediate coupling regime
where U is of the order of the bandwidth, one sees both the
local and itinerant characters of the magnetism. Figure 14
shows Monte Carlo results for the square of the z component
of the local moment mzð‘Þ ¼ n‘" � n‘# versus temperature

for a range of U=t values (Paiva et al., 2001). As expected,
when the temperature decreases below a scale set by U, hm2

zi
increases. However, at a lower temperature scale hm2

zi is
found to increase further for weak coupling, while it de-
creases for strong coupling. In the weak-coupling itinerant
case, this increase is associated with the formation of short-
range particle-hole magnetic correlations. In this case, the
energy gain at low temperatures is proportional to hm2

zi so that
hm2

zi increases further as T decreases. Alternately, in the
strong-coupling case, below an energy scale U one has
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FIG. 14 (color online). The temperature dependence of the square

of the local moment of a half-filled Hubbard model for different

values of the on-site Coulomb repulsion U (in units where t ¼ 1).
As the temperature decreases below �U=2, local on-site correla-

tions lead to an increase in hm2
zi. Then on a lower temperature scale,

nonlocal spin correlations develop and for weak coupling hm2
zi

increases, while for strong coupling it decreases. This crossover

marks a change from an itinerant to a more local magnetic behavior.

From Paiva et al., 2001.

4Here we focus on Hubbard-like models, but it is important to

note that the strong coupling t-J limit of the Hubbard model exhibits

similar basic phenomena. See, for example, Sorella et al. (2002)

and Spanu et al. (2008).
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well-defined local moments. In this case, as the temperature

decreases further and drops below the exchange energy
J � 4t2=U, virtual electron transfer associated with J reduces
the degree of localization and hm2

zi decreases. As seen in

Fig. 14 the crossover between this local moment and itinerant
behavior occurs for a value of U of the order of the band-

width. As we will see, it is in this intermediate coupling
parameter regime, where the system has both local and
itinerant characteristics, that the doped system has its

highest Tc.
For the doped Hubbard model the fermion sign problem

limits the temperatures that are accessible using the DQMC

approach and alternative numerical approximations have

been developed. Using a Gutzwiller projected d-wave BCS

wave function (Anderson, 1987), VMC calculations have

been used to explore the T ¼ 0 phase diagram of the doped

x ¼ 1� hni Hubbard model (Paramekanti, Randeria, and

Trivedi, 2004; Tocchio et al., 2008). The ground state is

found to be a d-wave superconductor for 0< x < xc with

xc � 0:35. For x > xc, the ground state is a Landau-Fermi

liquid. At low doping (x & 0:1) Gutzwiller projected wave

functions with both d-wave and antiferromagnetic variational

parameters have been found to have a lower energy than the

d wave alone, providing evidence for a coexisting antiferro-

magnetic and d-wave superconducting phase (Ogata and

Fukuyama, 2008). These VMC calculations find results

for the doping dependence of the coherence length, the

penetration depth, as well as the momentum distribution in

agreement with experimental observations.
An alternative approach to dealing with the doped case is

represented by various cluster methods. Here the basic idea is

to treat the degrees of freedom within a cluster exactly and

take into account the correlations beyond the cluster by

introducing a self-consistent dynamic mean field. The result-

ing problem of a cluster embedded in a dynamic mean field is

then solved by means of exact diagonalization for small

clusters or by various Monte Carlo approaches such as the

Hirsch-Fye algorithm (Hirsch and Fye, 1986) for larger

clusters. The coupling of the cluster to the self-consistent

dynamic mean field significantly reduces the fermion sign

problem. In the so-called CDMFT (Kotliar et al., 2001) and

the VCPT (Potthoff, Aichhorn, and Dahnken, 2003) methods,

the system is mapped onto an embedded cluster in real

space while in the DCA (Jarrell et al., 2001) the cluster is

embedded in reciprocal space. This latter scheme keeps the

periodic boundary conditions and coarse grains the Brillouin

zone, making it a convenient approach for studying the

momentum dependence of the pairing interaction.
There are also FRG approaches (Salmhofer and

Honerkamp, 2001), so named because they follow the flow

of the four-point vertex function �ðk1; k2; k3; k4Þ for scattering
between states on the Fermi surface as the states outside an

energy �E of the Fermi energy are integrated out. Here the

degrees of freedom are reduced to states in a �E shell around

the Fermi surface. This shell is then discretized into a finite

number of Fermi-surface patches which allows one to take

into account the tangential momentum dependence of the

effective interaction. In practice, the renormalization group

equations are typically carried out at the one-loop level. The

resulting coupled renormalization group equations are then

numerically integrated to determine the functional renormal-

ization group flow of the scattering vertex as the energy cutoff

�E or temperature is reduced. Although the one-loop ap-

proximation means that it is necessary to start the system off

with appropriate bare interactions and stop the calculations

when the renormalized interaction grows too large, this

approach can provide an unbiased treatment of competing

instabilities and can indicate which instability or combination

of instabilities are important. There have also been proposals

in which the FRG is used down to a given cutoff where

the most divergent parts of �ðk1; k2; k3; k4Þ are then taken

to construct a low-energy reduced Hamiltonian (Lauchli,

Honerkamp, and Rice, 2004), which can then be solved using

exact diagonalization.
The DMRG (White, 1993) was also used to study these

models. This approach was primarily implemented as a real

space renormalization procedure in which degrees of freedom

are iteratively added, for example, by increasing the size of

the lattice system. Then the less important degrees of freedom

are truncated from the Hilbert space by keeping only a finite

number of the most probable eigenstates of a reduced density

matrix. This iterative, variational method is designed to
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FIG. 15 (color online). dx2�y2 pairing and stripes have been found

in various numerical calculations for the doped Hubbard model.

(a) DCA results for the inverse of the dx2�y2 -wave pair field

susceptibility vs T=t for various sized (Betts, Lin, and Flynn,

1999) clusters. Here U=t ¼ 4 and hni ¼ 0:9. From Maier et al.,

2005. (b) The charge hnholeð‘Þi and spin hSzð‘Þi structure seen in a

DMRG calculation of a cylindrical six-leg Hubbard model with

U=t ¼ 12. From White and Scalapino, 2003 and Hager et al., 2005.
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reduce the degrees of freedom to those which play the
dominant role in the ground state. It has proved particularly
effective for ladder models.

Using these approaches, further evidence was found that
the Hubbard models exhibit many of the basic physical
properties which characterize the unconventional supercon-
ductors. Specifically, for the doped systems there is evidence
for antiferromagnetic spin fluctuations, pseudogap behavior,
nematic correlations, d-wave or more generally unconven-
tional pairing, as well as stripes. Real space CDMFT
(Senechal et al., 2005) and VCPT (Aichhorn et al., 2006)
cluster calculations find clear signatures of antiferromagnetic,
pseudogap, and d-wave behavior in the Hubbard model.
Including longer range one-electron hopping, these calcula-
tions find ground state phase diagrams and single-particle
spectral weights for electron and hole doping that are similar
to the overall behavior observed in these materials. A small
orthorhombic distortion of the one-electron hopping is found
to lead to a large nematic response (Okamoto et al., 2010).
Similarly, momentum space DCA calculations found evi-
dence for pseudogap behavior in the spin susceptibility and
the single-particle spectral weight (Macridin et al., 2006)
as well as nematic correlations (Su and Maier, 2011). Using
the DCA and a sequence of different clusters (Betts, Lin,
and Flynn, 1999), Maier et al. (2005) found evidence shown
in Fig. 15(a) for the divergence of the d-wave pair field
susceptibility

PdðTÞ ¼
Z 1=T

0
h�dð�Þ�y

d ð0Þid� (6)

for a doped Hubbard model. Here �y
d ¼

ð1=2 ffiffiffiffi
N

p ÞP‘;�ð�1Þ‘dy‘"dy‘þ�# with � summed over the four

near-neighbor sites of ‘.
FRG studies of the single-band Hubbard model with a

next-near-neighbor hopping t0 found dopings for which

the interaction vertex flows to antiferromagnetic or d-wave
dominated regimes as well as a region of intermediate doping

in which the forward scattering Pomeranchuck Fermi-surface

instabilities and charge density waves (CDW) as well as

nematic fluctuations grew (Halboth and Metzner, 2000;

Honerkamp et al., 2001; Zhai, Wang, and Lee, 2009). In

this latter region, umklapp processes are found to play an

important role linking the instabilities in various channels. In

the underdoped regime, Lauchli, Honerkamp, and Rice

(2004) used the FRG to construct a low-energy effective

Hamiltonian and argued that umklapp processes truncate

Fermi-surface segments leading to a psedogap phase. FRG

calculations have also been carried out for the multiorbital

Hubbard models (Platt, Honerkamp, and Hanke, 2009; Zhai,

Wang, and Lee, 2009). Here the geometry of the electron and

hole Fermi surfaces (see Fig. 16) leads to SDW ð�; 0Þ and s�
pair field dominated flow regimes along with other umklapp

mediated scattering processes (Maiti and Chubukov, 2010;

Fernandes et al., 2012).
Calculations using the DMRG to study the two-leg

Hubbard ladder find a spin gapped state at half filling and

power law d-wave-like pair field correlations for the doped

system (Noack, Scalapino, and White, 1996). As discussed in

Sec. IV.B, a twisted version of this same two-leg ladder

mimics the SDW stripe structure and s� pairing correlations

seen in the Fe-based superconductors (Berg, Kivelson, and

Scalapino, 2009). Calculations for a doped six-leg Hubbard

ladder (White and Scalapino, 2003; Hager et al., 2005) found

striped charge-density-�-phase-shifted-antiferromagnetic

states similar to those shown in Fig. 15(b). While short-range

dx2�y2 pair field correlations along the stripes were also

observed there were no long-range d-wave pairing correla-

tions. In this case, periodic boundary conditions were used for

the six-site direction and open end boundary conditions along

the direction of the legs forming a cylindrical tube. On an

FIG. 16 (color online). The Fermi surfaces and orbital weight distributions for a five-orbital model of the 1111 Fe-based superconductors.

(a) The Fermi-surface sheets of a five-orbital tight-binding model of the 1111 Fe-based superconductors. The symbols denote the orbital

which has the largest orbital weight, with the dxz (solid circles), dyz (open circles), and dxy (open diamonds). (b) The orbital weights as a

function of winding angle � on the various Fermi-surface sheets with dxz (solid curves), dyz (dashed curves), dxy (dash-dotted curves), and

dx2�y2 (short dashed curves). The d3z2�r2 orbital weight is negligible. Here the dxz and dyz orbitals are aligned along the Fe-Fe directions.

From Graser et al., 2009.
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eight-leg t-J system (White and Scalapino, 1998) the favored

filling was 0.875 and the �-phase shifted antiferromagnetic
striped structure was similar to that shown in Fig. 15(b) with

each cylindrical stripe containing four holes corresponding to

a half-filled stripe. This is the same pattern which is observed
in La1:875Ba0:125CuO4 (Fujita et al., 2004). In these calcu-

lations, the tubelike boundary conditions favor the formation
of cylindrical stripes. The short length of the circumference of

the tube suppresses pair fluctuations between the stripes and

leaves only short-range d-wave pairing correlations along a
stripe. With open boundary conditions and applied fields to

orient the stripes along the long direction of the six- and
eight-leg ladders that have been studied, pair fluctuations

between the stripes become possible and a stronger d-wave
pairing response is observed. While present DMRG calcula-
tions found that the antiphase d-wave state is slightly higher

in energy than that of the in-phase state, VMC calculations

found parameter ranges in which the antiphase state was
stabilized (Himeda, Kato, and Ogata, 2002). There are also

calculations for a coupled ladder model that exhibit stripes
with antiphase pairing (Berg et al., 2007).

Finally, along with the observations of d-wave and

stripe correlations, there is numerical evidence of pseudogap

behavior in the underdoped Hubbard model. A variety of
dynamic cluster Monte Carlo calculations of the single-

particle spectral weight (Kyung et al., 2006; Macridin
et al., 2006; Aichhorn et al., 2007) show the emergence of

pseudogap behavior in the underdoped t-t0-U Hubbard model.

A phenomenological theory of the pseudogap phase by Yang,
Rice, and Zhang (2006) has had success in reproducing many

of the observed properties of the pseudogap regime.
The important point for the present discussion is that while

the choice of the variational wave function in the VMC and

finite size effects for the cluster calculations can influence

what one finds, there is overall agreement among these
various approaches that Hubbard models exhibit many of

the basic physical properties which characterize the uncon-
ventional superconductors (Scalapino, 2007a; Kancharla

et al., 2008). There are, of course, phenomena such as the

unusual ordered magnetic phase in the underdoped cuprates
observed in polarized neutron scattering experiments (Fauque

et al., 2006) and dichroic angular resolved photoemission

measurements (Kaminski et al., 2002) which have not yet
been found in these basic Hubbard models. Here we take the

view that these phenomena are peripheral to the pairing
mechanism.

B. The Fe pnictides

The undoped Fe-pnictide materials have partially filled 3d
shells and are antiferromagnetic metals below TN . Their

magnetic moments alternate in alignment row to row creating
a stripelike antiferromagnetic pattern different from the

checkerboard pattern of the cuprates. Just above, or in some

cases coinciding with, TN there is a tetragonal to orthorhom-
bic lattice transition. As the system is doped, both the

structural and the Néel transitions are suppressed and super-

conductivity occurs (Johnston, 2010).
For the Fe-pnictide superconductors, photoemission

(Malaeb et al., 2008) as well as band structure calculations

(Lebègue, 2007; Cao, Hirschfeld, and Cheng, 2008; Singh
and Du, 2008) found that the states associated with the
pnictide 4p orbitals are located some 2 eV or more below
the Fermi level. Thus an effective tight-binding model based
on the five Fe 3d orbitals can provide a reasonable descrip-
tion of the electronic states near the Fermi surface. Since the
crystal-field splitting as well as the exchange and spin-orbit
splittings of the iron 3d orbitals are small relative to the
bandwidth, all five 3d orbitals need to be taken into account.
For the 1111 materials the 3D coupling between the Fe
layers is relatively weak and 2D models have proved useful.
Because of the tetrahedral coordination of the pnictide, the
unit cell contains two Fe sites. However, the Fe-pnictide
plane is invariant under a reflection and a translation since
each Fe has the same local arrangement of the surrounding
atoms. Thus for the 2D Fe-pnictide layer one can unfold the
Brillouin zone and work with an effective five-orbital model
on a square lattice with one Fe per unit cell (Lee and Wen,
2008). Including one-electron hopping parameters to de-
scribe both the direct Fe-Fe hopping and the hybridized
hopping through the pnictide or chalcogen 4p orbits, one
arrives at a five-band model with the one electron part of the
Hamiltonian given by (Kuroki et al., 2008; Graser et al.,
2009)

H0 ¼
X
ij

X
‘n	

t‘nij c
y
i‘	cjn	 þX

i

X
‘	

"‘ni‘	: (7)

Here ‘ ¼ ð1; 2; . . . ; 5Þ denotes the Fe-d orbitals

ðdxz; dyz; dxy; dx2�y2 ; d3z2�r2Þ and cyi‘	 creates an electron

on site i in the ‘th orbit with spin 	. The tight-binding
parameters t‘nij describe the one-electron hopping from the

‘th orbit on site i to the nth orbit on site j and "‘ is the site
energy of the ‘th orbit. The on-site Coulomb and exchange
interaction part of the Hamiltonian is

H1 ¼
X
i

 X
‘

Uni‘"ni‘# þU0X
‘0<‘

ni‘ni‘0 � J
X
‘�‘0

Si‘ � Si‘0

þ J0
X
‘�‘0

cyi‘"c
y
i‘#ci‘0#ci‘0"

!
; (8)

with ni‘ ¼ ni‘" þ ni‘# and Si‘ ¼ 1
2 c

y
i‘	�		0ci‘	0 . Here U and

U0 are the intraorbital and interorbital Coulomb interactions,
J is the Hund’s rule exchange, and J0 is the so-called pair
hopping term. If these interactions are generated from a
two-body term with spin rotational invariance, U0¼U�2J
and J0 ¼ J. However, many body interactions can renormal-
ize these couplings altering these relations. In addition, the
dressed interaction terms can in general depend on the
orbital indices.

The Feþ2 ion separation �2:7 �A is significantly smaller
than the Cuþ2 separation of �3:8 �A and the direct Fe-Fe
hopping along with the d-p hybridization through the pnic-
togen or chalcogen anions leads to a metallic ground
state. Observation of quantum oscillations provides clear
evidence of well-defined small Fermi surfaces consistent
with a semimetallic band structure (Sebastian, Gillett
et al., 2008). The basic structure of the Fermi surfaces
of the Fe-based superconductors consists of two electron
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cylinders at the zone corner of the 2Fe per unit cell Brillouin
zone compensated by two or three hole sections around the
zone center. The Fermi-surface sheets for a two-dimensional
five-orbital tight-binding fit (Graser et al., 2009) of the
density-functional theory (DFT) band structure (Cao,
Hirschfeld, and Cheng, 2008) of LaOFeAs are shown in
Fig. 16(a). Here and in the following an unfolded 1Fe per
unit cell Brillouin zone is used. Diagonalizing the five-orbital
tight-binding Hamiltonian of Eq. (8), one has for the Bloch
states of the 
th band,

�
	ðkÞ ¼
X
‘

h
kj‘ic‘	ðkÞ; (9)

where, again, ‘ sums over the Fe orbitals (dxz; dyz; . . . ) and

c‘	ðkÞ ¼ P
ici‘	e

iðk�iÞ=
ffiffiffiffi
N

p
. The main orbital weight contri-

butions jh
kj‘ij2 to the band states that lie on the various
Fermi surfaces are indicated by the colors in Fig. 16(a). A
more detailed look at the orbital weights is shown in
Fig. 16(b), where they are plotted as a function of the winding
angle on the different Fermi surfaces. Here one sees, for
example, that the dyz and dxy orbitals contribute the dominant

weights on the �1 electron pocket while it is the dxz and dyz
that mainly contribute to the � pockets. These orbital weights
play an important role in determining the strength and struc-
ture of the pairing interaction.

While the 1111 materials can be reasonably treated as
two dimensional, the structure of the 122 systems is such
that one needs to take their three dimensionality into account.
The loss of the reflection-translation invariance of the 2D
layer leads to more complex 10-orbital models (Suzuki, Usui,
and Kuroki, 2011).

C. The heavy-fermion materials

The heavy-fermion materials have incomplete f shells
and there is a balance between the strong on-site Coulomb
interactions which tend to localize the f electrons and the
hybridization with extended band states of the ligand anions
which delocalize them. At high temperatures the system
exhibits local moment behavior with magnetic moments of
order atomic values while at low temperatures the system
resembles a Fermi liquid with large quasiparticle masses
associated with the hybridized f electrons. In the coexisting
state where one has both SDW antiferromagnetism and
superconductivity, the magnitude of the ordered moments
determined from neutron scattering and the effective mass
of the paired electrons, determined from the specific heat
jump at Tc, are large. Thus the f electrons play an impor-
tant role in both the antiferromagnetism and the supercon-
ductivity (Gegenwart, Si, and Steglich, 2008; Nair et al.,
2010).

Hotta and Ueda (2003) introduced a minimal model for
such an f-electron system based on a j-j coupling scheme
since the spin-orbit interaction is large. In addition, they
noted that this provided a convenient way to define the one-
electron states that make up the pairs. The resulting
Hamiltonian for the 115 Ce heavy-fermion superconductors
has a form similar to Eqs. (7) and (8) but with the one-
electron operators describing Kramer’s doublets and with 	
a pseudospin quantum number. The 14-fold degenerate f

electronic states are split by the spin-orbit coupling into a
low-lying j ¼ 5=2 sextet and a higher energy j ¼ 7=2 octet.
For Ce3þ with a ð4fÞ1 configuration, only the j ¼ 5=2 sextet
contributes to the electronic states near the Fermi energy. The
one-electron states of the j ¼ 5=2 sextet are further split by
the crystalline electric field of the In ligand anions, separating
the six j ¼ 5=2 states into three sets of Kramer’s doublets.
For a tetragonal crystal field one has

cyin	 ¼ pfyi�5=2 þ qfyi	3=2 n ¼ 1;

� qfyi�5=2 þ pfyi	3=4 n ¼ 2;

fyi�1=2 n ¼ 3:

(10)

Here fyim creates an electron on the ith lattice site in a j ¼ 5=2
orbital with a z component of total angular momentum m.
The ‘‘orbital’’ index n ¼ 1, 2, and 3 denotes the f�7;�

0
7;�6g

tetragonal field Kramer’s doublets, the q and p coefficients in
Eq. (10) depend on the tetragonal crystalline field, and
	 ¼ �1 is the pseudospin quantum number.

As schematically illustrated in Fig. 5, the spacing �4:6 �A
of the Ce3� ions is the largest of the three systems and the 4f
electrons of Ce3� tend to be localized. Thus as opposed to the
itinerant 3d electrons of the Fe-based materials and the doped
cuprates, the f electrons of the heavy-fermion 115 materials
are nearly localized. The materials are metallic because of the
4p states of the anions and the dispersion of the 4f electrons
arises from their hybridization with these 4p conduction
electrons. As in both the Fe pnictide and the doped cuprates,
quasi-two-dimensional Fermi surfaces have been observed in
de Haas–van Alphen experiments (Elgazzar et al., 2005) for
the Ce compounds. Similar to the Fe-based superconductors,
the heavy-fermion materials have multiple Fermi surfaces
and there are orbital weight factors associated with the �7,
�0
7, and �6 orbital states.

As discussed, the plutonium intermetallic compounds
PuMGa5 have the same tetragonal structure as the cerium-
based heavy-fermion 115 superconductors. Electronic struc-
ture calculations (Maehira et al., 2003) for PuCoGa5 show a
similarity between the main Fermi surfaces of CeCoIn5 and
PuCoGa5. In particular, there are f-electron dominated
cylindrical Fermi-surface hole sheets centered at the � point,
and cylindrical electron sheets centered at the M point of the
1Fe per unit cell Brillouin zone. Using the j-j coupling
scheme to construct a low-energy model for this actinide
superconductor, Maehira et al. (2003) noted that the
Pu-115 compound is the hole version of Ce-115. That is,
the low-lying j ¼ 5=2 sextet accommodates the one (4f)
electron of Ce3þ for CeCoIn5, while it has one hole for the
ð5fÞ5 Pu3þ ion in PuCoGa5. This picture of the Pu-115
compound being a hole version of the Ce-115 compound is
particularly striking for PuCoIn5 and CeCoIn5.

Finally, while the existence and, to a reasonable degree, the
structure of Fermi surfaces of the heavy-fermion (Hall et al.,
2001) and the Fe-based (Shishido et al., 2010a; Terashima
et al., 2010) superconductors are well established, the situ-
ation for the cuprates is still debated (Norman, 2010). In the
overdoped single layer cuprate Tl2Ba2CuO6þ� (Tl2201) both
angle-dependent magnetoresistance (Hussey et al., 2003)
and ARPES measurements (Platé et al., 2005) provide
evidence for a large quasi-two-dimensional Fermi surface
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in reasonable agreement with band structure calculations.
More recently (Vignolle et al., 2008), the observation of
quantum oscillations in the magnetoresistance and the mag-
netization of Tl2201 provided direct evidence of this large
holelike Fermi surface and coherent fermionic excitations.
Here the observation of quantum oscillations is important in
determining the fact that coherent excitations are present.
Following the development of highly ordered YBa2Cu3O6:5

(ortho-II) crystals (Liang, Bonn, and Hardy, 2000), quantum
oscillations were also observed in the underdoped regime,
both in the Hall resistance (Doiron-Leyraud et al., 2007)
and in the magnetization (Jaudet et al., 2008; Sebastian,
Harrison et al., 2008). This showed that the doped cuprates,
just as the heavy-fermion and Fe-superconducting materials,
can have a Fermi surface with low-lying fermionic excita-
tions, even in the underdoped regime. The fact that the Hall
and Seebeck coefficients are negative indicates that the
observed small Fermi-surface pockets are electronlike
(LeBoeuf et al., 2007; Chang et al., 2010). The large
Fermi surface of the overdoped cuprates must therefore
undergo a reconstruction as the doping level decreases
(Taillefer, 2009). One mechanism for such a reconstruction
is the occurrence of some new periodicity associated with an
ordered phase such as a spin striped phase (Millis and
Norman, 2007; Moon and Sachdev, 2009) or a unidirectional
charge density wave (Yao, Lee, and Kivelson, 2011). NMR
measurements show that high magnetic fields induce charge
order without spin order (Wu et al., 2011) which would be
consistent with a unidirectional charge density wave. Some
studies (Laliberté et al., 2011; LeBoeuf et al., 2011; Wu
et al., 2011) attribute the Fermi-surface reconstruction in
YBa2Cu3Oy to a form of stripe order similar to that observed

in La2CuO4-based cuprates (Tranquada et al., 1995) and
there is evidence for a phase transition at T� associated with
some form of density wave (Chang et al., 2010) or nematic
(Daou et al., 2010) order leading to a pseudogap phase (He
et al., 2011). Resonant soft x-ray scattering from
YBa2Cu3O6þ� suggests that density wave order is an intrin-
sic feature of the underdoped cuprates (Achkar et al., 2012).
A recent compilation (Sebastian, Longarich, and Harrison,
2011) of ARPES measurements, high magnetic field quan-
tum oscillation studies, and transport experiments suggests
that a small Q wave-vector bidirectional charge density
wave provides an explanation for the nodal Fermi surfaces
which is consistent with a wide variety of complementary
measurements.

IV. THE PAIRING INTERACTION

In this section, we examine the structure of the pairing
interaction for the models discussed in Sec. III. The pairing
interaction is given by the irreducible particle-particle four-
point vertex. As discussed in the Appendix, for the conven-
tional superconductors this interaction is well described by a
phonon exchange and screened Coulomb interaction. In
general, for spin rotationally invariant models, the irreduc-
ible particle-particle vertex can be separated into a fully
irreducible vertex and S ¼ 1 spin and S ¼ 0 charge
(particle-hole) exchange channels. For the 2D Hubbard
model near half filling, DCA calculations find that the

S ¼ 1 spin channel gives the dominant contribution to the

pairing. Similarly, for the two-layer Hubbard model intro-

duced in this section, it is the S ¼ 1 spin-fluctuation channel

that leads to pairing. However, as discussed, it can lead to

B1g (d-wave) or A1g (s-wave) pairing depending upon the

structure of the Fermi surface. This bilayer Hubbard model,

as well as a ‘‘twisted ladder’’ model discussed in this

section, illustrates the link between the cuprate and Fe-based

superconductors. For the multiband Fe-based superconduc-

tors one has only weak-coupling results, but here the result-

ing phenomenology provides evidence that the pairing is

driven by the spin fluctuations and similarly for the heavy-

fermion models where it is the pseudospin fluctuations. The

conclusion is that the pairing in the models of Sec. III is

mediated by spin fluctuations.
As discussed in the Appendix, the momentum and fre-

quency dependence of the superconducting gap provide

information on the space-time structure of the pairing inter-

action (Scalapino, 1994). For the conventional superconduc-

tors such as Pb or Hg, the gap is weakly dependent upon

momentum but strongly frequency dependent, implying that

the pairing interaction is short range and has a retarded part.

As is well known, electron tunneling (McMillan and Rowell,

1965) and optical absorption (Farnworth and Timusk, 1971)

measurements of the frequency dependence of the gap for the

low Tc materials identify the pairing interaction as arising

from a retarded phonon-mediated contribution and an

‘‘instantaneous’’ repulsive screened Coulomb term. For the

unconventional superconductors, a determination of both the

momentum and frequency dependence of the gap is impor-

tant. Here a wide variety of experiments have been used to

probe the momentum dependence of the gap. These include

ARPES (Damascelli, Hussain, and Shen, 2003; Campuzano,

Norman, and Randeria, 2004; Valla et al., 2007; Kordyuk

et al., 2010; Yun et al., 2011), phase sensitive tunneling

experiments (Van Harlingen, 1995; Tsuei and Kirtley, 2000;

Hanaguri et al., 2010), Raman scattering (Muschler et al.,

2010; Caprara et al., 2011), low temperature thermal

conductivity (Sutherland et al., 2003), and directional mag-

netic field specific heat measurements (Park, Bauer, and

Thompson, 2008). There have also been various tunneling

(Lee et al., 2006; Pasupathy et al., 2008; Jenkins et al.,

2009; Ahmadi et al., 2011) and optical studies of the

frequency dependence of the gap (Basov and Timusk, 2005;

van Heumen et al., 2009; Carbotte, Timusk, and Hwang,

2011). Thus, at present, there are a range of experimental

results and interpretations. From many of these it appears that

for the unconventional superconductors one is dealing with a

pairing interaction that peaks at a large momentum transfer

characteristic of the near-neighbor antiferromagnetic or SDW

correlations and which has a frequency response character-

istic of the spectrum of the antiferromagnetic spin fluctua-

tions. However, there are questions and controversies

regarding this (Zhou et al., 2007; Bok et al., 2010; Li

et al., 2010; Giannetti et al., 2011) and it remains a challenge

to obtain the close interplay between experiment and theory

that was the hallmark for the traditional superconductors.

Furthermore, a complete range of measurements for the

heavy-fermion and Fe-based materials, comparable to the

results for the cuprates, is not yet available.
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With this in mind, this review has the more limited goal of

understanding the momentum, frequency, and orbital struc-
ture of the interaction that is responsible for pairing in the

models discussed in Sec. III. To the extent that these models
exhibit the basic low-energy properties which are found in

these materials, one can argue that the interaction responsible

for pairing in the models will reflect the pairing interaction in
the real materials.

In this section, we show DCA results for the pairing inter-

action. The basic assumption of the DCA is that the self-
energy and irreducible vertex functions are short ranged and

can be well represented by a finite size cluster. Under this
assumption, one sets up an effective cluster problem as an

approximation for the bulk thermodynamic limit in order to

calculate these quantities. This is done by representing the
bulk lattice by an effective cluster embedded in a mean-field

bath, which is designed to represent the remaining degrees of
freedom and is determined self-consistently. In contrast to

other finite size methods, in which one carries out calculations
on finite size lattices and then tries to scale up in size, the

DCA, for a given cluster size, gives approximate results for the

bulk thermodynamic limit.
The DCA treats spatial correlations on length scales within

the cluster accurately and nonperturbatively and describes

longer-ranged correlations on a mean-field level. It becomes
exact in both the weak-coupling (U=t ¼ 0) and strong-

coupling (t=U ¼ 0) limits. For finiteU=t, one can in principle
obtain exact results by carrying out calculations for different

size clusters and then extrapolating to infinite cluster size.

Convergence with cluster size depends on the specific prob-
lem, but is usually faster than with finite size methods,

because of the inclusion of the remaining degrees of freedom
in terms of a mean field. This was discussed for the 3D half-

filled Hubbard model in Kent et al. (2005) and Fuchs et al.

(2011), where the accuracy of the DCA was benchmarked
against finite size methods for several different quantities. In

particular, it was shown that well-converged results for the
antiferromagnetic TN vs U phase diagram can be obtained

from relatively small clusters. As noted, in this approach the

cluster is embedded in reciprocal space and one obtains
momentum space results on a coarse-grained Brillouin

zone. It is convenient to work in momentum space and since
the pairing interaction is expected to be short ranged it is

actually more amenable to cluster calculations than the
long-range pair field correlations. Like the FRG calculations,

the DCA provides an unbiased treatment of the competing

instabilities. In addition, it takes account of self-energy
and interaction effects within the cluster while treat-

ing the remaining degrees of freedom within a dynamic
meanfield.

A. The single-band Hubbard model

For the single-band Hubbard model DCA numerical simu-
lations have been used to determine the momentum and

frequency dependence of the pairing interaction (Maier,
Jarrell, and Scalapino, 2006a). Formally, this interaction is

given by the irreducible particle-particle scattering vertex

�ppðk; k0Þ shown on the left-hand side of Fig. 17. It consists
of all Feynman diagrams that cannot be separated into two

parts by cutting just two particle lines. Here k ¼ ðk; i!nÞwith
!n ¼ ð2nþ 1Þ�T a fermion Matsubara frequency and one is
interested in the scattering of a pair in a singlet, zero center-
of-mass momentum and energy state with relative momentum
and Matsubara frequency k ¼ ðk; i!nÞ to a final state with
k0 ¼ ðk0; i!n0 Þ. Results obtained from a 64-site 8� 8 numeri-
cal DCA for �ppðk; k0Þ with !n ¼ !n0 ¼ �T at a filling
hni ¼ 0:85 and U ¼ 4t are shown on the right-hand side
of Fig. 18.5 Here one sees that as the temperature is lowered,
the singlet pairing interaction increases for large momentum
transfers. This is a reflection of the growth of the short-range
antiferromagnetic spin fluctuations as seen in a similar plot of
the spin susceptibility �ðqÞ shown on the left-hand side of
Fig. 18. Taking the Fourier transform of �ppðk; k0Þ,

�ppð‘x; ‘yÞ ¼ 1

N

X
kk0

eik�‘�ppðk; k0Þeik0�‘; (11)

leads to the real space picture of the pairing interaction
illustrated in Fig. 19. Here �ppð‘x; ‘yÞ is the strength of the

!n ¼ !n0 ¼ �T pairing interaction between a singlet formed
with one electron at the origin and the other at site ð‘x; ‘yÞ. It
is large and repulsive if the electrons occupy the same site but
attractive if they are on near-neighbor sites reflecting the
peaking of �ppðk; k0Þ for k� k0 � ð�;�Þ.

As shown in Fig. 17, the pairing interaction �ppðk; k0Þ can
be separated into a fully irreducible two-fermion vertex �irr

and partially reducible particle-hole exchange contributions.
Here the fully irreducible part �irr is defined as the sum of all
diagrams that cannot be separated into two pieces by cutting
any combination of two lines (particle or hole). For a spin
rotationally invariant system, the particle-hole exchange con-
tributions appearing on the right-hand side of Fig. 17 can be
combined into an S ¼ 1magnetic spin-fluctuation piece 3

2�m

and a spin S ¼ 0 charge density fluctuation contribution 1
2�d,

FIG. 17. The pairing interaction is given by the irreducible

particle-particle vertex �pp. Here �pp is decomposed into a fully

irreducible two-fermion vertex �irr plus contributions from the

S ¼ 1 and S ¼ 0 particle-hole channels. �ph are irreducible

particle-hole vertices, � is the full vertex, and the solid lines are

fully dressed single-particle propagators.

5Just as the electron-phonon interaction strength is characterized

by
Rðd!=�Þjgqj2½ImDðq;!Þ=!�¼jgqj2ReDðq;0Þ¼�2jgqj2=!q

and a cutoff frequency of order !D, the pairing interaction strength

for the Hubbard model is given by �ðk; k0Þ with !n ¼ !n0 ¼ �T.
The cutoff in the Matsubara frequency is set by the spin-fluctuation

spectrum as shown in Fig. 22.
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�ppðk; k0Þ ¼ �irrðk; k0Þ þ 3
2�mðk; k0Þ þ 1

2�dðk; k0Þ: (12)

Carrying out a DCA calculation, one can evaluate the indi-
vidual terms that enter Eq. (12). The upper left panel of

Fig. 20 shows the pairing interaction �ðk; k0Þ versus momen-
tum transfers along the diagonal ðkx � k0x; ky � k0yÞ of Fig. 18
for hni ¼ 0:85 and U=t ¼ 4 as the temperature is reduced.
The remaining panels of Fig. 20 show the contributions of the

FIG. 18 (color online). The spin susceptibility �ðqÞ and the pairing interaction �ppðK;K0Þ for U ¼ 4t and hni ¼ 0:85 are compared at

various temperatures. As the temperature is reduced a peak develops in �pp reflecting the peak in �. This peak is the origin of the

unconventional superconductivity discussed in this review.
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fully irreducible vertex �irr, the S ¼ 0 charge fluctuations
1
2�d, and the S ¼ 1 spin fluctuations 3

2�m. As noted, it is the

increase of � with momentum transfer that gives rise to the
attractive near-neighbor pairing and it is clear from Fig. 20

that this comes from the S ¼ 1 part of the interaction.
The fully irreducible vertex is essentially independent of
momentum transfer and so it contributes only to the on-site
repulsion, while the S ¼ 0 charge part decreases at large
momentum giving rise to a small repulsive near-neighbor
interaction.

In these numerical calculations, one also obtains the
dressed single-particle Green’s function Gðk; i!nÞ. Given G
and �pp, one can determine the Bethe-Salpeter eigenvalues
and eigenfunction in the particle-particle channel by solving

�T

N

X
k0
�PPðk;k0ÞG"ðk0ÞG#ð�k0Þ��ðk0Þ¼����ðkÞ: (13)

This is basically the fully dressed BCS gap equation and
when the leading eigenvalue goes to 1 the system becomes
superconducting. One can also construct similar Bethe-
Salpeter equations for the charge and magnetic particle-hole
channels. Figure 21 shows a plot of the leading eigenvalues
associated with the particle-particle pairing channel and the
particle-hole charge S ¼ 0 and spin S ¼ 1 channels for
U=t ¼ 4 and a filling hni ¼ 0:85. As the temperature is
lowered, the particle-hole S ¼ 1 antiferromagnetic channel
with center-of-mass momentum Q ¼ ð�;�Þ is initially domi-
nant. However, at low temperatures the Q ¼ 0 pairing chan-
nel rises rapidly and the divergence of the antiferromagnetic
channel saturates. The charge channel eigenvalue remains

FIG. 19 (color online). The real space structure of the pairing

interaction obtained from the Fourier transform Eq. (11) of

�ppðk; k0Þ at a temperature T ¼ 0:125t for U ¼ 4t and hni ¼
0:85. Here there is an attractive pairing interaction for a singlet

formed between an electron at the origin and a near-neighbor site.

The peak in �pp shown in Fig. 18 leads to a pairing interaction

which oscillates in space.

FIG. 20 (color online). The momentum dependence of the various contributions that make up the irreducible particle-particle pairing vertex

�pp. (a) The irreducible particle-particle vertex �pp vs q ¼ K � K0 for various temperatures with !n ¼ !n0 ¼ �T. Here K ¼ ð�; 0Þ and K0

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 21. Note that the interaction

increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q dependence of the fully irreducible two-fermion

vertex �irr. (c) The q dependence of the charge density (S ¼ 0) channel 1
2�d for the same set of temperatures. (d) The q dependence of

the magnetic (S ¼ 1) channel 3
2�m. Here one sees that the increase in �pp with momentum transfer arises from the S ¼ 1 particle-hole

channel. From Maier, Jarrell, and Scalapino, 2006b.
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’�ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2�y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter

equation in various channels for U=t ¼ 4 and a site occupation

hni ¼ 0:85. The Q ¼ ð�;�Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue

is seen to saturate at low temperatures. The leading eigenvalue in the

singletQ ¼ ð0; 0Þ,!m ¼ 0 particle-particle channel has dx2�y2 sym-

metry and increases toward 1 at low temperatures. The largest charge

density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and

saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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FIG. 22 (color online). The Matsubara frequency dependence of

the eigenfunction �d
x2�y2

ðK;!nÞ of the leading particle-particle

eigenvalue of Fig. 21 for K ¼ ð�; 0Þ normalized to �ðK;�TÞ (solid
curve). Here !n ¼ ð2nþ 1Þ�T with T ¼ 0:125t. The Matsubara

frequency dependence of the normalized magnetic spin susceptibil-

ity 2�ðQ;!mÞ=½�ðQ; 0Þ þ �ðQ; 2�TÞ� for Q ¼ ð�;�Þ vs !m ¼
2m�T (dashed curve). The Matsubara frequency dependence of

�d
x2�y2

and the normalized spin Q ¼ ð�;�Þ susceptibility are

similar. Inset: The momentum dependence of the eigenfunction

�d
x2�y2

ðK;�TÞ normalized to �d
x2�y2

ðð0; �Þ; �TÞ shows its dx2�y2

symmetry. Here !n ¼ �T and the momentum values correspond to

values of K which lie along the dashed line shown in the inset of

Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.

FIG. 23 (color online). This figure provides evidence linking the

frequency dependence of the imaginary part of the gap function

�dð!; kFÞ, which is called �00
anð!; kFÞ in this figure, to the frequency

dependence of the spin-fluctuation spectral weight �00ð!Þ. (a) The
imaginary part of the gap function �00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1� �.
(b) The imaginary part �00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify

peaks. The positions of the peaks of �00
an in (a) are shown as the

shaded dots in (b) at the same height as the corresponding �00 to
illustrate their correspondence. One can see that the upward fre-

quency shift of the �00
an peaks relative to the �

00 peaks decreases with
the doping reflecting the decrease in the single-particle gap. The

lower five curves, for � values between 0.29 and 0.37, are for the

normal state. Here U ¼ 8t, t0 ¼ �0:3t0, t00 ¼ �0:08t, and a

Lorentzian broadening of 0:125t was used for an embedded 2� 2
plaquette. From Kyung, Senechal, and Tremblay, 2009.
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frequency excitations. All of these dynamic calculations are
for small clusters so that it will be useful to have further work
on the dynamics for larger clusters since it provides an
important fingerprint of the pairing interaction.

At low temperatures where the leading eigenvalue �� of
Eq. (13) approaches 1, the pairing interaction �ppðk; k0Þ can
be approximated by

�ppðk; k0Þ ffi ’�ðkÞV�’�ðk0Þ; (14)

with a pairing strength V�

V� ¼
P

k;k0 ’�ðkÞ�ppðk; k0Þ’�ðk0Þ
½Pk ’

2
�ðkÞ�2

: (15)

Using Eq. (14), the inverse of the pair field susceptibility is
approximately given by

P�1
� ffi P�1

0� þ V�; (16)

with

P0� ¼ T

N

X
k

GðkÞGð�kÞ’2
�ðkÞ: (17)

Here GðkÞ is the dressed single-particle Green’s function. For
dx2�y2-wave pairing one has ��ðkÞ � coskx � cosky with a

Matsubara frequency cutoff as seen in Fig. 22. As seen in
Fig. 18, �ppðk; k0Þ peaks for k� k0 � ð�;�Þ so that Vd given
by Eq. (15) is negative. One can think of P0� as the
‘‘intrinsic’’ �-pair field susceptibility of the interacting
system.

In the traditional phonon-mediated case, the pairing
strength V� is essentially independent of temperature
once the ionic lattice is formed. Then the Nð0Þ logð!D=TÞ
divergence of P0� gives a transition temperature Tc �
!De

�1=Nð0ÞjV�j, where P�1
� ðTcÞ ¼ 0. For a strongly interacting

system, both P0� and V� are functions of temperature. As
seen from the temperature dependence of �ppðk; k0Þ in
Fig. 18, the strength jVdðTÞj of the interaction will increase
as the temperature is lowered and �ðQ; TÞ increases. For the
doped system, away from the antiferromagnetic instability,
jVdðTÞj will saturate to a constant value at low temperatures.
However, as the doping x goes to zero, it will continue to
increase as the temperature decreases. This increase in the
pairing strength as hni goes to 1 is also seen in projector
Monte Carol studies of the t-J model (Plekhanov, Becca, and
Sorella, 2005). In this case for hni ¼ 1, P0dðTÞ, Fig. 24, will
be suppressed at low temperatures due to the vanishing of the
quasiparticle weight as well as phase fluctuations (Emery,
Kivelson, and Tranquada, 1999) and Tc will go to zero
(Maier, Jarrell, and Scalapino, 2006b). The interplay of the
pairing strength V�, as hni goes to 1, and the intrinsic pair
field susceptibility P0d, which is suppressed as hni goes to 1,
leads to a dome-shaped Tc versus doping behavior. Thus
while the strength of the pairing interaction can increase,
the increased scattering leads to a reduction of the quasipar-
ticle weight. In addition, it is important to remember that the
pairing interaction is short range, of the order of the near-
neighbor spacing. This is reflected in the coskx � cosky
structure of the gap. Thus it is not the correlation length
of the antiferromagnetic correlations but rather having the

spectral weight of the interaction in the right momentum and
energy regime that determines the pairing strength.

The interplay of P0d and the pairing interaction strength
is of particular interest near a quantum-critical point (Metlitski
and Sachdev, 2010a; Sachdev, 2010; Si and Steglich, 2010).
Abanov, Chubukov, and Finkel’stein (2001) argued that the
pseudogap phase reflects aspects of the pairing in the quantum-
critical regime near the antiferromagnetic quantum-critical
point (QCP). Recently, Metlitski and Sachdev (2010a) dis-
cussed the special role played by the competition among the
spin density wave, Fermi-surface structure, and superconduct-
ing order in the two-dimensional system. In this case, while the
quasiparticle spectral weight is suppressed at ‘‘hot spots’’ on
the Fermi surface where "kþQ ¼ "k, they found that the pair-

ing interaction slightly away from the hot spots is strong and
combinedwith a finite quasiparticle spectral weight can lead to
high Tc superconductivity.

Based on the similarity of the momentum and frequency
dependence of �pp to that of the spin susceptibility �,
approximate pairing interactions have been used in which

�ppðk; k0Þ ’ 3
2
�U2�ðk� k0Þ: (18)

Here �U is treated as an adjustable parameter and � is nu-
merically calculated (Maier, Jarrell, and Scalapino, 2007),
approximated by a phenomenological RPA-like function
(Monthoux, Balatsky, and Pines, 1991) or determined experi-
mentally from neutron scattering (Dahm et al., 2009) or
RIXS data (Tacon et al., 2011). These calculations found that
with reasonable coupling strengths the spin-fluctuation inter-
action given by Eq. (18) can account for the scale of the
observed transition temperatures. Note that when one speaks
of pairing mediated by spin fluctuations one is not thinking of
an exchange of some boson with a sharp well-defined !ðqÞ
dispersion. Rather what is meant is that the dominant pairing

FIG. 24 (color online). The intrinsic pair field susceptibility

P0dðTÞ for U ¼ 8t and hni ¼ 1 is suppressed as T goes to zero.

From Maier, Jarrell, and Scalapino, 2006b.
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interaction arises from the S ¼ 1 part of the particle-hole
exchange contributions to �pp. While this particle-hole
exchange has some of the characteristics of a spin 1 boson,
its spectral weight is spread out in momentum and frequency.
This is clearly seen in the numerical calculations of �pp and
to the extent that the spin susceptibility provides an approxi-
mation for the �pp, it is seen directly in experimental mea-
surements of �00ðq;!Þ. Finally, it is important to keep in mind
that low-frequency spin fluctuations are pair breaking (Millis,
Sachdev, and Varma, 1988) and the optimal spin-fluctuation
spectral weight for pairing occurs in a frequency range larger
than twice the maximum value of the gap (Monthoux and
Scalapino, 1994b).

This aspect of the dynamics of the pairing interaction is
reflected in the rapid increase in �maxðTÞ as T decreases
below Tc as well as large 2�maxð0Þ=kTc ratios (Monthoux
and Scalapino, 1994a, 1994b; Pao and Bickers, 1994). As the
gap opens the low-frequency pair breaking spin-fluctuation
spectral weight is shifted to higher energies where it contrib-
utes to the pairing, increasing the gap. The increase in the gap
in turn leads to a further suppression of the low-frequency
interaction spectral weight producing a positive feedback and
a rapid increase of �maxðTÞ as T drops below Tc. Finally, at
low temperatures one finds a large 2�maxð0Þ=kTc ratio. This is
due to the altered spin-fluctuation spectral weight in the
superconducting state which gives rise to a stronger pairing
interaction than the normal state. In principle, if one could
create a spin-fluctuation spectral weight in the normal state
which had the same structure that it has deep in the super-
conducting state, one would find a significant increase in Tc.

B. The bilayer Hubbard model

Another variation of the Hubbard model, the bilayer
Hubbard model, provides an interesting link between the
single-orbital and multiorbital models. It shows how the
structure of the Fermi surface or surfaces can alter the spin

fluctuations and change the gap symmetry from B1g (d wave)

to A1g (s� wave). It is an example which illustrates how the

spin-fluctuation interaction can give rise to the different gap
structures seen in the cuprate and iron-based superconduc-
tors. As shown in Fig. 25(a) in the bilayer Hubbard model,
two 2D Hubbard layers are coupled by a one-electron inter-
layer hopping t?. For a doping near half filling, the topologi-
cal character of the noninteracting Fermi surface changes as
t?=t is turned on. For example, for hni ¼ 0:95 and t?=t &
0:07, the system has two electron Fermi surfaces around
the origin. Then when t?=t * 0:07, the Fermi-surface topol-
ogy changes to one in which there is one electron and one
holelike Fermi surface as shown for t?=t ¼ 0:5 and 2.0 in
Figs. 25(b) and 25(c), respectively. This Fermi-surface struc-
ture is a simplified version of the multi-Fermi surfaces found
from band structure calculations for the Fe-based supercon-
ductors shown in Fig. 16(a).

This model, originally studied using DQMC (Bulut,
Scalapino, and Scalettar, 1992; Hetzel, Linden, and Hanke,
1994; Scalettar et al., 1994; Bouadim et al., 2008) has also
been studied using FLEX (Kuroki, Kimura, and Arita, 2002),
phenomenological spin-fluctuation approximations
(Liechtenstein, Mazin, and Andersen, 1995), FRG (Zhai,
Wang, and Lee, 2009), and DCA (Maier and Scalapino,
2011) methods. One finds that for t?=t less than of the order
of 1, the most divergent pair field correlations occur in the
dx2�y2 channel while for t?=t larger they occur in an A1g

channel in which the gap has one sign on the antibonding
Fermi surface and the opposite sign on the bonding Fermi
surface, as schematically illustrated in Fig. 25. This gap,
which changes sign between the two Fermi surfaces, is an
s�-like gap.

At half filling, DQMC calculations showed that the ground
state for U ¼ 6 had AF long-range order for t?=t & 2. For
larger values of t?=t, the system enters a disordered valence
bond phase with singlet correlations between electrons on
opposite sites of the two layers. In the doped system, there is a

FIG. 25 (color online). The bilayer Hubbard model illustrates the close connection between the d- and s�-wave states. (a) The bilayer

Hubbard lattice with a near-neighbor intralayer hopping t and an interlayer hopping t?. (b) The bonding (kz ¼ 0) and antibonding (kz ¼ �)
Fermi surfaces for t? ¼ 0:5 (upper) and 2.0 (lower) for a filling hni ¼ 0:95. A dx2�y2 gap structure is illustrated for the t? ¼ 0:5 Fermi

surface and an s� gap is shown for t?=t ¼ 2:0. Here a solid line denotes a positive gap and a dashed line denotes a negative gap. The intensity
of the line denotes the d-wave-like coskx � cosky variation of the gap.
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crossover in which the intralayer AF fluctuations decrease
and the interlayer spin fluctuations increase as t?=t is initially
increased. Then at still larger values of t?=t the low-energy
interlayer spin fluctuations become gapped and the super-
conducting pairing is suppressed.

For the two-layer system, the two pair field susceptibilities
that are of interest are given by

P�ðTÞ ¼
Z �

0
d�h��ðTÞ�y

�ð0Þi; (19)

with

�x2�y2 ¼
1ffiffiffiffi
N

p X
k

ðcoskx � coskyÞcyk"cy�k# (20)

and

�s� ¼ 1ffiffiffiffi
N

p X
k

coskzc
y
k"c

y
�k#: (21)

Here for the two-layer model, kz ¼ 0 (bonding) and kz ¼ �
(antibonding). For U ¼ 6 and hni ¼ 0:95, Fig. 26 shows
DCA results for P�ðTÞ for both the dx2�y2 case and the s�

case. For t?=t ¼ 0:5 where there are strong AF planar
spin fluctuations, the dominant pairing occurs in the dx2�y2

channel. However, as t?=t increases, the s� response in-
creases and for t?=t * 1, it becomes dominant with the
response peaking for t?=t 6 2. At half filling with U=t ¼ 6,
DQMC calculations (Bouadim et al., 2008) found a QCP for
t?=t � 2 which separates an antiferromagnetic phase from a
valence bond phase (Sachdev and Keimer, 2011). Finally, for
t?=t ¼ 3 one finds that the pairing becomes weaker as the
interlayer valence bonds become stronger.

Just as the pairing interaction �PPðk; k0Þ was analyzed for
the single layer Hubbard model, one can examine how the

bilayer pairing interaction is related to the underlying spin
correlations of the system. A useful measure of the strength of
the pairing interaction for a given channel is jV�j given by
Eq. (15). Results for jV�j vs t? for � ¼ dx2�y2 and s� are

shown in Fig. 27. Also plotted in this figure are the integrated
spectral weights for the intralayer and interlayer near-
neighbor spin fluctuations

I
 ¼ 1

N

X
k

Z d!

�

Im�ðk;!Þ
!

cosk


¼ 1

N

X
k

Re�ðk; 0Þ cosk
; (22)

with k
 ¼ kx and kz for the intralayer and interlayer spin-
fluctuation weights, respectively. In Fig. 27, one sees that the
dx2�y2 pairing strength is correlated with the near-neighbor

planar spin fluctuations while the s� pairing strength reflects
the interlayer spin-fluctuation strength.

The bilayer Hubbard model is clearly simpler than the five-
orbital Fe models. However, it has the advantage that one can
carry out numerical calculations and examine the relationship
between the pair field structure, the pairing interaction
strengths, and the spin correlations. The fact that one can
change a one-electron hopping parameter t? and observe that
the system evolves from a dx2�y2 to an s� pairing phase

provides further evidence supporting the notion of a com-
monality between the cuprate and Fe-based superconductors.

A similar relationship between d-wave and s� pairing is
seen in DMRG studies of a two-leg ladder (Berg, Kivelson,
and Scalapino, 2009). In this case, the DMRG method has
been used to study a caricature of the Fe-pnictide problem
which focuses on the dxz orbital pair scattering process
associated with the ky ¼ 0 and ky ¼ � states near the �1

FIG. 26 (color online). The dx2�y2 and s� pair field susceptibilities P� vs temperature T for various values of the interlayer hopping t?.
These DCA results are for a ð4� 4Þ � 2 cluster and we have set the intralayer hopping t ¼ 1. One sees that as t?=t increases there is a

crossover from dx2�y2 pairing to s� pairing. From Maier and Scalapino, 2011.
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and �2 Fermi surfaces shown in Fig. 16(a). These scattering
processes can be described by the Hamiltonian for a two-leg
ladder

H ¼ �t1
X
i‘	

cyi‘	ciþ1‘	 � 2t2
X
i	

cyi1	ci2	

� 2t3
X
i	

ðcyi1	ciþ12	 þ cyiþ12	ci1	Þ þ U
X
i‘	

ni‘"ni‘#;

(23)

with the tight-binding parameters illustrated on the left-hand
side of Fig. 28(a). Here ‘ ¼ 1, 2 is the leg index, there are leg
t1, rung t2, and diagonal t3 one-electron hopping matrix

elements and an on-site Coulomb interaction U. The factors
of 2 in front of t2 and t3 take into account the periodic
boundary conditions which have been used in the transverse
direction. As discussed by Berg, Kivelson, and Scalapino
(2009), the hopping parameters t1 ¼ �0:32 and t3 ¼ �0:57
measured in units of t2 ¼ 1 were taken to fit the Fe-pnictide
(1111) DFT band structure near the �1 and �2 Fermi surfaces
for kx cuts through ky ¼ 0 and ky ¼ �, respectively. As seen

in Fig. 16(a), at these points the Bloch wave functions have
dxz character.

With U ¼ 3, DMRG calculations for the half-filled case
with an external magnetic field applied to the first site of the
lower leg gave the spin pattern shown on the left-hand side of
Fig. 28(b). This spin pattern has a striped-like SDW structure
similar to the magnetic structure seen in the Fe pnictides. The
two-leg system was found to have a spin gap �s ¼ 0:14
corresponding to a spin correlation length of approximately
four sites. For the doped system with hni ¼ 0:94, a pair field
boundary term

H1 ¼ �1ðPþ
1 þ H:c:Þ

with �1 ¼ 1 and

Pþ
1 ¼ ðdþ11"dþ12# � dþ11#d

þ
12"Þ

was added. This term acts as a proximity coupling to the rung
at the left-hand end of the ladder. Then the expectation values
of the resulting induced singlet pair field were measured on
the rung as well as the diagonal and the leg near-neighbor
sites at positions farther down the ladder. The values of this
induced pair field 10 sites away from site ‘ ¼ 1 are shown on
the left-hand side of Fig. 28(c).

This result is directly related to the two-leg ladder cuprate
model shown on the right-hand side of Fig. 28. Here every
other rung of the left-hand ladder has been twisted by 180�
and the phase of the dxz orbit has been changed by � on each
of the open sites of the twisted rungs. In this way, the rung
hopping matrix element remains t2, but the leg and diagonal
hoppings are changed to�t3 and�t1, respectively. Then with
the parameters that have been used, the dominant hoppings on

FIG. 27 (color online). The pairing interaction strength in the d and s� channels reflects the spatial structure of the local spin fluctuations.

(a) The strength of the pairing interactions V� and (b) the integrated spectral weights I
 vs t? for k
 ¼ kx and kz. The strength jV�j of the
pairing interaction for dx2�y2 pairing is correlated with the intralayer near-neighbor spin-fluctuation spectral weight, while the s� pairing

strength reflects that of the interlayer spin fluctuations. From Maier and Scalapino, 2011.

FIG. 28 (color online). An ‘‘Fe ladder’’ is simply a unitary trans-

formation of a ‘‘Cu ladder.’’ The left-hand side shows (a) a two-leg

Fe ladder, (b) a schematic illustration of the spin structure

hSzð‘x; ‘yÞi induced by applying an external magnetic field to the

lower left-hand site, and (c) the singlet pair field h�iji induced at a

distance of 10 sites removed from the end of a 32� 2 ladder with a

unit external pair field applied to the end rung. On the right-hand

side, every other rung has been twisted by 180� and the phases of

the orbitals denoted by the open circles have been changed by �. As
discussed in the text, this ‘‘twisted Fe ladder’’ corresponds to the

well-studied cuprate ladder. From Berg, Kivelson, and Scalapino,

2009.
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this twisted Fe ladder are along the legs and rungs with only a
weak diagonal hopping. These are typical parameters for a
cuprate ladder. Furthermore, as shown on the right-hand side
of Figs. 28(b) and 28(c), the resulting spin and pair field
correlations of the original Fe ladder have turned into the spin
gapped ð�;�Þ antiferromagnetic and the familiar d-wave-like
pairing correlations (Noack, Scalapino, and White, 1996).
Thus, similar to the two-layer Hubbard model, the two-leg
ladder illustrates the close connection that exists between the
cuprates and the Fe-based materials.

C. Multiorbital models

In general, for the multiorbital models, the orbital structure
of the pairing interaction is important and one introduces an
orbital dependent pairing interaction �‘1‘2‘3‘4 illustrated in

Fig. 29, which describes the irreducible particle-particle scat-
tering of electrons in orbitals ‘1, ‘4 with momentum k, and
�k into orbitals ‘2, ‘3 with momentum k0 and �k0. In terms
of this vertex, the effective pairing interaction for scattering a
ðk0 ";�k0 #Þ pair on the 
j Fermi surface to a ðk ";�k #Þ pair
on the 
i Fermi surface is

�ijðk; k0Þ ¼
X

‘1‘2‘3‘4

a
‘�
2

i ðkÞa‘

�
3

i ð�kÞ�‘1‘2‘3‘4 ðk; k0Þ

� a‘1
j ðk0Þa‘4
j
ð�k0Þ; (24)

with a
‘1

j ðkÞ the orbital matrix element h
jkj‘1i given

in Eq. (9).
Besides the numerical calculations for the two-layer

(effective two-obital) Hubbard model discussed above, there
have been some quantum Monte Carlo (White et al., 1989;
Dopf, Muramatsu, and Hanke, 1990) and cluster studies
(Hanke et al., 2010) for the three-orbital CuO2 model.
These calculations show that the undoped state is a
charge-transfer antiferromagnetic insulator rather than a
Mott-Hubbard antiferromagnetic insulator. However, the
antiferromagnetic and dx2�y2 -pairing correlations in the

doped state of these models are remarkably similar to those
found for the doped single-band Hubbard model.

The main studies of the multiple-orbital models which
have been carried out for the heavy-fermion and Fe-based
materials have been based upon weak-coupling RPA (Kuroki
et al., 2008, 2009; Graser et al., 2009; Chubukov, 2012),
FLEX (Ikeda, Arita, and Kuneš, 2010), or FRG methods
(Platt, Honerkamp, and Hanke, 2009; Wang, Wan, and
Wang, 2009; Zhai, Wang, and Lee, 2009; Uebelacker and
Honerkamp, 2012). Just as the Monte Carlo calculations
(Maier, Jarrell, and Scalapino, 2006b) of the four-point vertex
allow one to study the interplay of the various spin, charge,
and pairing correlations on an equal footing as the tempera-
ture is reduced (see, for example, Fig. 21), the FRG provides
an unbiased approach for monitoring the strength of the
various scattering processes as an energy cutoff is reduced.
Of course, the FRG calculations are typically one-loop
approximations, suitable for weaker coupled systems.
Nevertheless, the FRG calculations for the multiband
Hubbard models find that SDW scattering processes grow
in strength as the renormalization energy cutoff is reduced,
driving an increase in the pair scattering strength. In addition,
just as for the single-band Hubbard model, strong SDW
fluctuations also drive other pairing, Pomeranchuk, and
CDW channels. The same electrons are involved in both the
spin fluctuation and these channels.

In the RPA and FLEX approaches, the orbital dependent
vertex is given by

�‘1‘2‘3‘4ðk;k0; !Þ ¼ ½32US�RPA
1 ðk� k0; !ÞUS

� 1
2U

C�RPA
0 ðk� k0; !ÞUC

þ 1
2ðUS þUCÞ�‘1‘2‘3‘4 ; (25)

with

�RPA
1 ðqÞ ¼ �0ðqÞ½1� US�0ðqÞ��1 (26)

and

�RPA
0 ðqÞ ¼ �0ðqÞ½1þ UC�0ðqÞ��1: (27)

Here the quantities US, UC, and the one-loop susceptibility
�0 are represented by matrices in the orbital space. Details of
this can be found in Takimoto, Hotta, and Ueda (2003). Here
we note that the basic structure of the pairing interaction is
similar to Eq. (12) with

�irr � 1
2ðUS þUCÞ; �m � US�RPA

1 US;

�d ¼ �UC�RPA
0 UC:

(28)

While this represents a weak-coupling approximation, we
know from numerical studies (Maier, Jarrell, and Scalapino,
2007) of the single-band Hubbard model that by treating the
interaction parameters phenomenologically, RPA and FLEX
approximations can provide reasonable descriptions of the
pairing interaction for intermediate coupling.

From Eq. (24) one sees that the effective pairing interac-
tion �ijðk; k0Þ for a multiorbital system depends upon the

number of Fermi surfaces and their shapes as well as the
orbital matrix elements. In general, these matrix elements act
to suppress the mixed pair orbital vertex contributions in
which ‘1 � ‘4 and ‘2 � ‘3 (lower right-hand diagram shown
in Fig. 29). For spin rotational interaction parameters the
dominant contributions to the pairing interaction �ijðk; k0Þ

Intra MixedInter

Γ
1111

Γ
1221

Γ
1122

Γ l1 2 3 4lll

l4

2

l3

l1 l

1

1

1

1 1 1

1 22

2

2

1

FIG. 29 (color online). The orbital dependent pairing interaction

�ðk;k0 Þ
‘1‘2‘3‘4

defined in terms of orbital states ‘i of incoming and outgoing

electrons. The lower diagrams illustrate intraorbital, interorbital, and

mixed orbital scattering processes. From Kemper et al., 2010.
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come from intraorbital (‘1 ¼ ‘2 ¼ ‘3 ¼ ‘4) scattering

processes with weaker contributions from the interorbital

processes (‘1 ¼ ‘4 � ‘2 ¼ ‘3). The number, the shape, and

the location of the various Fermi surfaces also play a key role

in determining the strength of the pairing interaction and the

structure of the gap �ðkÞ.
As noted by Kuroki et al. (2009) for the 1111 Fe material,

depending upon the height of the pnictide and the doping, an

additional hole Fermi surface with dxy orbital character may

be present around the ð�;�Þ point of the unfolded Brillouin

zone. Figure 30 shows the Fermi surfaces at two different

fillings for a tight-binding parametrization of the 1111 Fe

material. In this case, for a filling hni ¼ 6:01, there are two

hole Fermi surfaces around the � point and two electron

Fermi surfaces around ð�; 0Þ and ð0; �Þ in the unfolded

1 Fe/cell Brillouin zone. However, for the hole-doped system

with hni ¼ 5:95, an additional hole Fermi surface appears

around the ð�;�Þ point. The dominant orbital weight along

the Fermi surfaces are also indicated along with various

intraorbital pair scattering processes. The left-hand panel

shows a pair scattering from the �1 hole Fermi surface around

the � point to a pair on the electron Fermi surface �1 centered

at ð�; 0Þ. Here electrons in states k and �k on the �1 Fermi

surface are scattered to states k0 and �k0 on the �1 Fermi

surface. This process is illustrated in Fig. 30 using an ex-

tended Brillouin zone in which �k0 is replaced by �k0 þ
ð2�; 0Þ. The orbital weight on both Fermi surfaces is

dominantly dyzð‘ ¼ 2Þ over the regions in which there is a

reasonable nesting giving rise to a peak in �2222 for a mo-
mentum transfer q� ð�; 0Þ. There are similar intraorbital dxz
scattering processes between �1 and the electron �2 Fermi
surface which give rise to a peak in �1111 for q� ð0; �Þ.
These processes lead to a �ijðk; k0Þ interaction which favors

an A1g s� gap which switches sign between the �1 and the

ð�1; �2Þ Fermi surface. However, as shown in the middle
panel of Fig. 30, there are interorbital dxz � dxy pair scatter-

ing processes between �2 and �1. These act to frustrate a
uniform s� state. This same behavior is seen in the FRG
calculations (Zhai, Wang, and Lee, 2009; Thomale, Platt,
Hanke, and Bernevig, 2011). In addition, unless the Fermi-
surface areas weighted by v�1

F ðkÞ are such that the electron

and hole regions exactly balance, the short-range Coulomb
interaction can be reduced by an anisotropic A1g gap. As a

consequence, for a filling hni ¼ 6:01 and a typical set of
interaction parameters, one finds the A1g gap structure shown

on the left of Fig. 31 and as the dashed curve in Fig. 32. Here
the gap has nodes on the � electron Fermi surfaces. The
possibility of such accidental nodes in the A1g state is con-

sistent with the linear low temperature T dependence seen in
the penetration depth of LaFePO (Hicks et al., 2009).

The gap �ðkÞ for hni ¼ 6:01 and hni ¼ 5:95 is shown in

Fig. 31. For hni ¼ 6:01, the ð�;�Þ Fermi surface is absent

while for a doping hni ¼ 5:95, there is an additional hole

Fermi surface around the ð�;�Þ point of the 1 Fe/cell

0

0

kx

k y

n 6.01

1 2 1

2

dxz dyz dxy

0

0

kx

k y

n 6.01

1 2 1

2

dxz dyz dxy

0

0

kx

k y

n 5.95

1 2 1

2

dxz dyz dxy

FIG. 30 (color online). For a filling n ¼ 6:01, the scattering of a pair from the �1 hole Fermi surface to the �1 electron Fermi surface shown

in the left-hand panel favors pairing in which there is a sign change of the gap between �1 and �1. A similar pair scattering process between

�1 and �2 leads to a gap which has the same sign on �1 and �2. However, the �2 � �1 pair scattering shown in the middle panel tends to

frustrate this, since they favor a gap which has opposite signs on the �2 and �1 Fermi surfaces. As shown in the right-hand panel, for a filling

hni ¼ 5:95, an additional hole pocket 
 appears and �2 � 
, as well as �1 � 
, pair scattering processes stabilize the s� gap.

FIG. 31 (color online). The gap eigenfunctions gðkÞ for a spin rotationally invariant parameter set �U ¼ 1:3, �U0 ¼ 0:9, �J ¼ �J0 ¼ 0:2, for
dopings n ¼ 6:01 (left) and n ¼ 5:95 (right). Here one sees how the s� gap is stabilized by the �1 � 
 and �2 � 
 pair scattering processes

shown in the right-hand panel of Fig. 30. From Kemper et al., 2010.

D. J. Scalapino: A common thread: The pairing interaction for . . . 1407

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012



Brillouin zone. In this latter case, intraorbital dxy pair scat-

tering processes such as the one shown in the right panel of

Fig. 30 favor a more uniform s�A1g state and as shown on the

right-hand side of Fig. 31 and the solid curve in Fig. 32,

the nodes on the � Fermi surfaces are lifted. In addition, the

overall pairing strength is larger when the extra hole ð�;�Þ
Fermi surface is present. In similar calculations in which the

band structure parameters were changed so that the ð�;�Þ
Fermi surface had dominant d3z2�r2 weight, the nodes of the

gap were not lifted. Thus the orbital weights as well as the

Fermi-surface topology play an important role in determining

the gap structure as well as Tc (Kuroki et al., 2009; Kemper

et al., 2010; Platt, Thomale, and Hanke, 2011; Thomale,

Platt, Hanke, and Bernevig, 2011; Uebelacker and

Honerkamp, 2012).

V. SUMMARY AND OUTLOOK

Here it was proposed that the interaction which is respon-

sible for pairing in some families of heavy-fermion materials,

the 115 Pu actinides, the high Tc cuprates, and the Fe-based

superconductors, arises from the exchange of spin fluctua-

tions. Just as different materials ranging from Hg and Pb to

Nb3Sn and MgB2 have a phonon-mediated pairing interac-

tion, the suggestion is that this class of unconventional super-

conducting materials, though clearly different from each

other, shares a common pairing mechanism. As noted , one

should also include the organic Bechgaard salts (Bechgaard

et al., 1980; Bourbonnais and Jérome, 2008; Doiron-Leyraud

et al., 2009; Taillefer, 2010) in this group.6 Looking

back with this perspective, one would say that this class of

antiferromagnetic spin-fluctuation mediated superconductors

began with the seminal discoveries of superconductivity in

the heavy-fermion material CeCu2Si2 by Steglich et al.

(1979) and in the organic material ðTMTSFÞ2PF6 by Jérome

et al. (1980).
Theoretical proposals that spin fluctuations near a spin-

density-wave instability could give rise to unconventional

pairing in some organic Bechgaard salts and some heavy-

fermion materials were made in 1986 (Cyrot, 1986; Emery,

1986; Miyake, Schmitt-Rink, and Varma, 1986; Scalapino,

Loh, Jr., and Hirsch, 1986). Then following the discovery of

the cuprate superconductors various suggestions were made

to also include the cuprates in this group (Scalapino, 1995;

Moriya and Ueda, 2003; Monthoux, Pines, and Longarich,

2007). However, while the antiferromagnetism and d-wave
superconductivity appeared in close proximity in the phase

diagrams of the electron-doped cuprates, in the hole-doped

cuprates, a pseudogap phase appears adjacent to the super-

conducting phase. Furthermore, the undoped cuprates are

antiferromagnetic charge-transfer Mott insulators. Thus there

were arguments made that superconductivity in the high Tc

cuprates arose from a different underlying mechanism, and

that it was inappropriate to speak of a spin-fluctuation pairing

glue (Anderson, 2007). Now the question of whether there is

a pairing glue is basically a question regarding the dynamics

of the pairing interaction (Scalapino, 2007b). As discussed in

Sec. IV, numerical calculations of the pairing interaction for

the Hubbard model provide evidence which supports the view

that its dynamics dominantly reflects that of the dynamic spin

susceptibility (Maier, Poilblanc, and Scalapino, 2008; Kyung,

Senechal, and Tremblay, 2009; Hanke et al., 2010). Thus

there is pairing glue in the Hubbard models and the question

becomes:‘‘Should one speak of a spin-fluctuation pairing glue

for this class of real materials?’’
The discovery of the Fe-based superconductors (Kamihara

et al., 2006, 2008) provided renewed support for the idea that

indeed there exists a class of materials in which supercon-

ductivity does not arise from the traditional phonon-exchange

mechanism (Norman, 2011). In addition, as noted in Sec. II,

a variety of measurements show that antiferromagnetic

spin-density-wave-like fluctuations are ubiquitous in these

materials and are the primary excitations which scatter the

electrons. Now, in principle, one would like to determine the

k and ! dependence of the normal and anomalous (gap) self-

energies and from these infer the structure and origin of the

pairing interaction. In particular, the k dependence of the gap
on the multi-Fermi surfaces of the Fe-based superconductors

can provide a more detailed probe of the k dependence of the
pairing interaction providing a test of different pairing

mechanisms. For example, the spin-fluctuation theory finds

that there can be a near degeneracy between an anisotropic

sign-changing s-wave (A1g) state and a dx2�y2 (B1g) state due

to the near nesting of Fermi-surface sheets (Graser et al.,

2009; Thomale, Platt, Hanke, Hu, and Bernevig, 2011). This

is also clearly seen in the DCA results for the bilayer model

discussed in Sec. IV. Thus the k dependence of the gap on the
multi-Fermi surfaces of the Fe-based superconductors can

provide a test of the theory. In addition, as dicussed in Sec. IV,

there are a number of experiments which are exploring the !
dependence of the gap. The recent progress in material
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FIG. 32 (color online). The gap function gðkÞ on the �1 pocket for

n ¼ 5:95 (solid curve) and n ¼ 6:01 (dashed curve) from Fig. 31.

Here the angle � is measured from the kx axis. From Kemper et al.,

2010.

6Spin fluctuations are also believed to give rise to pairing in

Sr2RuO4 (Maeno et al., 1994). Rice and Sigrist (1995) proposed

that the pairing is associated with small momentum transfer ferro-

magnetic fluctuations while Raghu, Kapitulnik, and Kivelson (2010)

suggested that the pairing is driven by large momentum spin

fluctuations associated with the quasi-1D band structure of

Sr2RuO4.
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quality, the increase in the frequency and momentum reso-

lution of ARPES, neutron scattering and RIXS, along with

tunneling and scanning tunneling microscopy hold the

promise of providing the kind of detailed information that

will be needed. There will also be support for these ideas if

they can provide guidance in the search for new and

possibly higher Tc superconductors. We conclude by sum-

marizing some of the ideas which have been discussed that

may help in this search.
The numerical calculations for the doped single-band

Hubbard model with a near-neighbor hopping t and an on-

site Coulomb interaction U show that Tc is maximized for U
of the order of the bandwidth 8t. As U increases beyond the

bandwidth, the characteristic energy of the spin fluctuations is

suppressed and Tc decreases. In addition, Tc is found to

decrease in the underdoped regime. Here the superfluid stiff-

ness tends to zero as the Mott state is approached (Emery and

Kivelson, 1995). In addition, there is the reduction of the

quasiparticle weight due to the Mott correlations which sup-

press the intrinsic pair field susceptibility P0d. Thus optimal

superconductivity is obtained by doping the single layer

Hubbard model away from half filling. In the doped bilayer

case, Tc is enhanced when t?=t is increased and in this way

the system is again moved away from the Mott regime to a

semimetallic state. Thus optimal superconductivity in these

models is expected to be found at intermediate coupling away

from the Mott regime. In this regime, the FLEX approxima-

tion (Bickers, Scalapino, and White, 1989) gives results in

reasonable agreement with the numerical calculations and it

has been used to address further issues.
The phase diagram obtained for a two-dimensional

Hubbard model with U=t ¼ 4 using FLEX is shown in

Fig. 33. Here one sees that as the system is doped, the

SDW antiferromagnetic phase is suppressed and

dx2�y2-wave superconductivity appears. As discussed by

Vorontsov, Vavilov, and Chubukov (2009) and Fernandes

et al. (2010) there can be a coexistence region near the

intersection of the antiferromagnetic and superconducting

transitions. As the doping increases, in the absence of the
superconducting transition, the antiferromagnetic transition
is suppressed toward T ¼ 0 giving rise to a QCP (Si and
Steglich, 2010; Sachdev and Keimer, 2011). The shape of
the phase boundaries as well as the temperature dependence
of the transport properties reflects the antiferromagnetic
spin fluctuations associated with the QCP (Abanov,
Chubukov, and Schmalian, 2003; Daou et al., 2009;
Metlitski and Sachdev, 2010b). The precise role of the
QCP remains under study. Within the framework of
FLEX calculations, the characteristic antiferromagnetic
energy at zero doping TNðx ¼ 0Þ is large compared with
Tc. In this case, to optimize Tc one changes the doping x so
as to reduce the frequency of the antiferromagnetic fluctua-
tions to some multiple of Tc in order to optimize the
pairing. Then since TN � Tc, this means that one will
indeed have to tune the doping x close to the critical
concentration xc where TNðxcÞ would vanish in the absence
of superconductivity.

With a near-neighbor hopping t, a nominal filling
hni � 0:85 and U=t fixed, the size of the transition tem-
perature Tc scales with the energy scale t. In this frame-
work then, the range of Tc values found between the heavy-
fermion materials and the cuprates is seen as a reflection of
their electronic energy scales. This notion, that the variation
of Tc depended on a basic electronic energy scale of the
material, was considered within a fluctuation-exchange
treatment of the single-band Hubbard model by Moriya
and Ueda (2003) who related this scale to a spin-fluctuation
energy TSF. In their approach TSF ’ 1:25� 104=
 with the
specific heat 
 measured in mJ=mol K2 and the spin-
fluctuation cutoff wave vector taken to be of the order of
the zone boundary wave vector. Based on these results, they
proposed a unified picture in which Tc varied as TSF.
Alternatively, Uemura (2009) used an effective Fermi en-
ergy obtained from the penetration depth in place of TSF.
The basic idea is similar to what one finds in the Hubbard
model where with U and hni optimized, Tc is set by the
energy scale t. Figure 34 shows this type of Moriya-Ueda
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FIG. 33. Phase diagram for a two-dimensional Hubbard model

with U=t ¼ 4 calculated within the fluctuation-exchange approxi-

mation. As the system is doped away from half filling, the Néel

temperature is suppressed and a dx2�y2 superconducting phase

appears. From Bickers, Scalapino, and White, 1989.

FIG. 34 (color online). A Moriya-Ueda-like plot of the transition

temperatures of various unconventional superconductors plotted vs

TSF, a characteristic temperature indicating the energy spread of the

wave-vector-dependent part of the spin fluctuations. From Curro

et al., 2005.
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plot with the addition of the 115 Pu actinides. Curro et al.
(2005) noted that the 115 Pu actinides could be added to
this group of materials providing a natural bridge between
the heavy fermions and the high Tc cuprates. In this case,
the larger Tc values of the 115 Pu compounds relative to
the 115 Ce systems is a reflection of the larger hybridiza-
tion among the 5f electrons of the 115 Pu compounds and
hence to a larger value of the basic energy scale (Takimoto
et al., 2002; Hotta and Ueda, 2003). In a similar way, the
unit cell volume of PuCoIn5 is nearly 28% larger than that
of PuCoGa5 (Zhu et al., 2012), leading to a weaker
hybridization and a reduced Tc.

In addition to the intermediate coupling requirement and
the size of a basic energy scale, the topology of the Fermi
surface as well as the orbital weights on the Fermi surface
plays an important role in determining Tc. As noted in
Sec. IV, the lattice structure and/or doping can alter the
number of Fermi surfaces of the Fe-pnictide materials.
Kuroki et al. (2009) suggested that the pnictogen height hpn
above the Fe layer controls the appearance of a dxy hole pocket

around the ð�;�Þ point of the unfolded 1 Fe/cell Brillouin
zone. They noted that when hpn is such that the pnictogen

ions form a nearly regular tetrahedron as in NdFeAsO
(Tc � 50 K), the nearest-neighbor hopping for the dxy orbital

(here x, y, and z refer to the single Fe/cell lattice) decreases
and an additional dxyð�;�Þ hole pocket appears. Spin-

fluctuation mediated scattering of pairs between this pocket
and the dxy regions of the �1 and �2 electron pockets at ð�; 0Þ
and ð0; �Þ leads to a nodeless A1g gap. However, for LaFePO,

the pnictide P is closer to the Fe plane and the Fe-pnictogen-
Fe angle is considerably larger than that of a regular tetrahe-
dron. In this case, the ð�;�Þ hole Fermi pocket is absent and
as discussed in Sec. IV, the spin fluctuation and the Coulomb
interaction favor a nodal A1g gap which has a lower Tc.

Similarly, as discussed by Usui and Kuroki (2011), for the
1111 Fe-pnictide structure, if the Fe-pnictogen-Fe angle
becomes small relative to the regular tetrahedron, the �1

hole Fermi surface disappears and Tc decreases.
Multiorbital effects also appear to play a role in the

relative Tc values of the cuprates. Based on electronic
structure calculations, Pavarini et al. (2001) observed
that the Tc of the hole cuprate materials was related to
the energy of a hybrid orbital formed between the apical-
oxygen and the planar Cooper pairs. They noted that the
axial orbital controlled the range r of the intralayer hop-
pings and Tc was found to increase with r. This range
parameter r was found to increase as the apical O moved
away from the CuO2 plane. It was also suggested by Ohta,
Tohyama, and Maekawa (1991) that Tc of the hole-doped
cuprates was correlated with the energy difference between
the apical O pz and planar O p	 orbitals. Recently,
Sakakibara et al. (2010) argued that these correlations
could be understood in terms of a two orbital Hubbard
model that included in addition to the dx2�y2 Cu orbit of the

standard one-band Hubbard model an additional d3z2�r2

orbit. They focused on the question of why the supercon-
ducting transition temperature of the single layer
HgBa2CuO4þ� (Tc � 90 K) is significantly higher than the
single layer La2�xðSr=BaÞxCuO4 (Tc � 40 K). Within
the fluctuation-exchange approximation, they found that

the eigenvalue of the Bethe-Salpeter equation (13) de-

creased when the dx2�y2 orbital weight on the Fermi surface

was reduced by an admixture of d3z2�r2 orbital weight.

They noted that the d3z2�r2 orbital weight was controlled

by the height of the apex oxygen and the Madelung poten-

tial difference between the planar and apical oxygen ions,

in agreement with the earlier proposals. The reduction of

the pairing strength arising from the admixture of other

orbitals was also found in FRG calculations (Uebelacker

and Honerkamp, 2012). Similarly, the level splitting of a

two orbital model of the 115 CeCoIn5 and CeRhIn5 heavy-

fermion materials has also been used to discuss their Tc

differences (Takimoto, Hotta, and Ueda, 2003). Here the ��

levels are split by the tetragonal crystal field and Tc was

found to increase with this splitting.
With respect to guidance in the search for new and

possibly higher temperature superconductors, these results

suggest that one is looking for materials containing quasi-

2D layers of 3d ions. One wants magnetic ions to boost the

amplitude of the spin fluctuations and 3d ions rather than

4d or 5d ions which have a smaller effective Coulomb

interaction or 4f or 5f ions which have a narrower band-

width and hence a smaller basic energy scale. One wants

2D layers so that the antiferromagnetic order is suppressed

and the spectral weight of the spin fluctuations is in a

frequency range several times the maximum gap where it

is most effective in pairing. In addition, in 2D it is possible

that a larger fraction of a cylindrical Fermi surface or

surfaces can simultaneously be ‘‘optimized’’ with respect

to the pairing (Monthoux and Lonzarich, 2001). The Fe

pnictides suggest a further optimization scheme in which

adding an additional Fermi surface (Kuroki et al., 2009;

Usui and Kuroki, 2011) with a particular orbital character

allows for additional scattering processes leading to a

higher Tc. Here, as discussed, not only the presence of

the additional Fermi surface is important but it must have

the right orbital character. It is generally better with respect

to both the pairing strength and Tc to have a nodeless gap

instead of a nodal gap, and therefore a multi-Fermi surface

system is favored.
Finally, it may be possible to find structures which have

spatial or dynamic properties which enhance Tc. Here one

has the idea of optimal inhomogeneity in which a com-

posite material consisting of a ‘‘pairing region’’ with a

large gap scale is coupled to a ‘‘metallic region’’ which

provides phase stiffness (Kivelson and Fradkin, 2007).

Examples of this range from weakly coupled two-leg

ladder systems (Arrigoni, Fradkin, and Kivelson, 2004)

which could have a period four bond-centered stripe struc-

ture to layered materials (Berg, Orgad, and Kivelson,

2008). As noted in Sec. IV, one might also wonder

whether it is possible to alter the dynamic structure of

the spin-fluctuation spectrum in a manner that would

increase Tc. Here the idea would be to move the low-

frequency spin fluctuations to higher frequency in the

normal system so as to obtain the increase in the pairing

strength that is ultimately available in the usual super-

conducting state in which the pairing gap has opened.

Here, of course, one would need to do this without

suppressing the intrinsic pair field susceptibility.
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We end this review as it began by noting that while, in
principle, the momentum and frequency dependence of the
superconducting gap can provide a fingerprint to identify the
pairing interaction, it will be the material record (Fisk, Ott,
and Thompson, 2009) that will tell us whether these ideas
proved useful in providing guidance in the search for new
superconductors.
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APPENDIX: THE STRUCTURE OF TWO PAIRING

INTERACTIONS

As discussed in Sec. IV, the Coulomb interaction U
gives rise to short-range antiferromagnetic spin fluctuations
which produce a pairing interaction that is nonlocal in
space and retarded. In particular, as illustrated in Fig. 19,
this pairing interaction is repulsive for two electrons on
the same site but attractive if the electrons are on near-
neighbor sites. Thus if the paired electrons are spatially
correlated so as to avoid occupying the same site, they can
take advantage of the nonlocal near-neighbor attractive
part of the interaction. This spatial nonlocal nature of
the Hubbard model pairing interaction has an analogy
with the temporal, retarded nature of the familiar
electron-phonon screened Coulomb pairing interaction. In
this Appendix, the structure of the traditional electron-
phonon screened Coulomb interaction is compared with
the structure of the spin-fluctuation interaction. Here to
ease the notation, we drop the superscript index pp and �
will denote the irreducible particle-particle vertex which
we call the pairing vertex.

1. The electron-phonon screened Coulomb pairing interaction

To begin, consider the well-known approximation of
the pairing vertex for the traditional electron-phonon

screened Coulomb model (Schrieffer, 1964) illustrated in
Fig. 35:

�ðq;!mÞ ¼ � jgqj22!q

!2
m þ!2

q

þ 4�e2

q2 þ �2
: (A1)

Here q ¼ k0 � k and !m ¼ !n0 �!n are the momentum and
Matsubara energy transferred in the scattering, and we have
omitted a sum over the phonon polarizations. The first term in
Eq. (A1) is the phonon-exchange term with gq the electron-

phonon coupling constant and !q the phonon energy. The

second term is the screened Coulomb interaction with � the
Thomas-Fermi screening wave vector. This form of the ver-
tex, with the phonon frequencies and the electron-phonon
coupling determined from band structure and linear response
calculations, has provided a useful approximation for the
conventional superconductors (Marsiglio and Carbotte,
2008). In this case, as discussed by Migdal (1958) and
Eliashberg (1960), vertex corrections to the electron-phonon
term are of the order of the ratio of the Debye energy to the
Fermi energy and can be neglected. Furthermore, for materi-
als with negligible magnetic correlations, the screened
Coulomb term which ultimately is replaced by a Coulomb
pseudopotential �� (Bogolinkov, Tolmachev, and Shirkov,
1959; Morel and Anderson, 1962) has proved an adequate
representation of the Coulomb interaction.

Continuing with the traditional approach, we note that the
important pair scattering processes take place on the Fermi
surface and the dominant part of the phase space is associated
with large momentum transfers of order 2pF. For these large
momentum transfers, gq and !q are slowly varying functions

of q, as is the screened Coulomb interaction. This means that
the interaction is local in space but retarded in time.
Averaging the momentum transfer over the Fermi surface,
and taking an Einstein spectrum!q ¼ 	 for the phonons, the

pairing interaction becomes

�ð!mÞ 6 � 2jgj2	
!2

m þ	2
þ Vc: (A2)

Here

Vc ¼ h4�e2=ðq2 þ �2ÞiFS
Nð0Þ (A3)

with Nð0Þ the single spin density of states at the Fermi
surface.

A plot of �ð!mÞ is shown in Fig. 36(a) for a typical set of
parameters for which �2jgj2=	þ Vc > 0. In this case, the
effective pairing interaction is positive for all Matsubara

FIG. 35. The traditional approximation to the pairing vertex

�ðk; k0Þ for the electron-phonon screened Coulomb model. Here

the wavy line represents the dressed phonon propagator, the dots

represent the dressed electron-phonon couplings, and the dashed

line represents a screened Coulomb interaction.
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frequencies !m and might naively appear to be repulsive.7

Nevertheless, at a critical temperature Tc one finds that there
is a solution �ð!nÞ of the linearized BCS gap equation

� Tc

X
n0

�Nð0Þ�ð!n �!n0 Þ
j!n0 j �ð!n0 Þ ¼ �ð!nÞ: (A4)

This is because, while �ð!mÞ is a positive function of !m, it
increases over an energy scale set by the characteristic pho-
non frequency 	. In this case, the pair scattering strength is
large and positive for processes in which a pair is scattered
from a smaller Matsubara frequency !n0 to a larger one !n

such that j!n �!n0 j>	. Then if �ð!n0 Þ is positive, the gap
equation (A4) can be satisfied provided �ð!nÞ is negative as
shown in Fig. 36(b). This ‘‘sign-changing’’ frequency struc-
ture of the gap reflects the internal structure of a pair in which
the electrons are dynamically correlated to avoid the ‘‘instan-
taneous’’ screened Coulomb interaction while taking advan-
tage of the retarded phonon-mediated attraction.

Another way to see that �ð!mÞ describes an attractive
pairing interaction is to replace i!m by !þ i� and take
the Fourier transform to determine the time dependence of
the pairing interaction (Scalapino, 1994)

�ðtÞ ¼
Z d!

2�
e�i!t

�
2jgj2	

ð!þ i�Þ2 �	2
þ Vc

�
; (A5)

then

Re�ðtÞ ¼ �jgj2 sin	te��t þ Vc�ðtÞ; (A6)

with �ðtÞ a broadened � function of width ��1
F . For a more

general phonon spectrum peaked at 	 with a width �	, the
first term decays for times larger than ��	�1. Taking these
features into account, Fig. 37 shows a schematic plot of
Re�ðtÞ in which one sees that the repulsive Coulomb inter-
action lasts for only a brief time of the order of the inverse of
the Fermi energy while the attractive part of the interaction
lasts for a much longer time set by the phonon spectral
weight.

2. The spin-fluctuation exchange pairing interaction

In weak coupling, the leading RPA diagrams for the irre-
ducible singlet particle-particle scattering vertex � are shown
in Fig. 38. These give

�ðk; k0Þ ¼ U

1� U2�2
0ðk0 þ kÞ þ

U2�0ðk0 � kÞ
1� U�0ðk0 � kÞ :

(A7)

Here k ¼ ðk; i!nÞ and k0 ¼ ðk0; i!n0 Þ and

�0ðq; i!mÞ ¼ 1

N

X
k

fð"kþqÞ � fð"kÞ
i!m � "kþq þ "k

: (A8)

For a single, even frequency pair, the gap function is even
under k and goes to �k, so that one can replace k0 þ k by
k0 � k in the first term of Eq. (A7). Then, rearranging the
terms in Eq. (A7) gives

�ðk;k0Þ¼3

2
U2 �0ðk0 �kÞ

1�U�0ðk0 �kÞþ
U2

2

�0ðk0 �kÞ
1þU�0ðk0 �kÞþU:

(A9)

The first term is the contribution of the spin fluctuations with
�0ð1� U�0Þ�1 the RPA spin susceptibility. The second term
represents the charge fluctuations and U is the on-site
Coulomb interaction. This interaction was first used by
Berk and Schrieffer (1966) to describe the depression of Tc

due to spin fluctuations for s-wave superconductivity in Pd.
For the 2D Hubbard model doped near half filling, the

dominant contribution to � comes from the first term which
peaks near ð�;�Þ reflecting the short-range antiferromagnetic

FIG. 36. (a) The vertex �ð!mÞ multiplied by the single-particle

density of states Nð0Þ vs !m ¼ 2m�T. (b) The resulting gap �ð!nÞ
associated with �ð!mÞ vs !n ¼ ð2nþ 1Þ�T. The change in sign of

�ð!nÞ is such that the gap Eq. (A4) can be satisfied even though

Nð0Þ�ð!mÞ is positive for all !m.

Ω 1

ReΓ(t)

µ 1
F t

FIG. 37. Schematic plot of Re�ðtÞ vs t. The interaction is repulsive
for times less than the order of ��1

F and then attractive for times

between ��1
F and the inverse of a typical phonon frequency 	�1.

7In numerical solutions of the Eliashberg equations it is convenient

to cut off the frequency integrals at a frequency!c of order 5 times the

Debye frequency and replace� ¼ Nð0ÞVs by a renormalized pseudo-

potential �� ¼ �½1þ� lnð�F=!cÞ��1 (Bogolinkov, Tolmachev,

and Shirkov, 1959;Morel and Anderson, 1962). This renormalization

takes into account the fact that by decreasing the energy cutoff from

�F to !c one has eliminated Coulomb scattering processes which

keep the electrons apart. The phonon-mediated part of the interaction

is unchanged since !c is well above the dynamic range of the

phonons. From a renormalization point of view, as the cutoff fre-

quency is reduced �2jgj2Nð0Þ=	þ�� becomes negative and one

has an effective low-energy theory with an attractive pairing interac-

tion. In this Appendix, we are looking at the dynamics that underlies

this renormalization.
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correlations. A plot of �ðq; 0Þ versus momentum transfer q
is given in Fig. 39 for q along a path in the Brillouin zone
shown in the inset. This interaction is positive for all
momentum transfers. Therefore, for there to be a transition
to a superconducting state, the gap function �ðkÞ must have a
change of sign on the Fermi surface in order to satisfy the
BCS equation.

�ðkÞ ¼ � 1

N

X
k0

�ðk� k0Þ�ðk0Þ
2"k

tanhð�c"k=2Þ: (A10)

For the nearly half-filled 2D Hubbard model, Eq. (A10) leads
to the well-known �ðkÞ ¼ �0ðcoskx � coskyÞ dx2�y2 gap. In

this case, ðk ";�k #Þ pairs with k near ð�; 0Þ which have a
negative gap are strongly scattered by the antiferromagnetic
spin fluctuations to ðk0 ";�k0 #Þ pairs with k0 near ð0; �Þwhich
have a positive gap, satisfying Eq. (A10). This sign change in
the momentum dependence of �ðkÞ reflects an internal struc-
ture of a pair in which the electrons are spatially correlated
such that they avoid occupying the same site while taking
advantage of the nonlocal attractive regions of the interaction.
It is a dx2�y2 pair rather than an extended s-wave coskx þ
cosky pair because it is made up from states near the nearly

half-filled Fermi surface. This structure of the interaction
is illustrated in Fig. 40, which shows the spatial Fourier

transform of �ðqÞ. Here one member of the pair is located
at the origin and another at site ð‘x; 0Þ.

Thus both the conventional and unconventional supercon-
ductors have ‘‘sign-changing gaps.’’ For the conventional case
this sign change occurs in the frequency dependence of the
gap and reflects the dynamic correlations of the electrons
which form the Cooper pairs. In the case of the unconven-
tional superconductors, the sign change occurs in the momen-
tum dependence of the gap and reflects the spatial correlations
of the paired electrons. Naturally, there are also dynamic
correlations since the spin fluctuations are retarded and simi-
larly in the phonon case there are some spatial correlations
due to the momentum dependence of the electron-phonon
interaction. However, the characteristic feature of an antifer-
romagnetic spin-fluctuation interaction is its momentum de-
pendence which leads to a spatially nonlocal pairing
interaction, while the characteristic feature of the phonon-
mediated pairing interaction is its frequency dependence
which leads to a retarded pairing interaction.
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