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This Colloquium addresses the issue of the shape of hadrons and, in particular, that of the proton.

The concept of shape in the microcosm is critically examined. Special attention is devoted

to properly define the meaning of shape for bound-state systems of near massless quarks. The

ideas that lead to the expectation of nonsphericity in the shape of hadrons, the calculations that

predict it, and the experimental information obtained from recent high-precision measurements are

examined. Particular emphasis is given to the study of the electromagnetic transition between the

nucleon and its first excited state, the �ð1232Þ resonance. The experimental evidence is critically

examined and compared with lattice calculations, as well as with effective-field theories and

phenomenological models.
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I. INTRODUCTION

Hadrons are the smallest material objects in the Universe

known to be of finite size. The building blocks of the standard

model, including leptons and quarks, are not known to have

finite size with the smallest scale set by the experimental limit

on the size of the electron, which is smaller than 10�18 m in

diameter (Gabrielse et al., 2006). Hadrons are distinguished

in two families: mesons, which are made out of a quark and

an antiquark pair, and baryons, which are made out of three

quarks. Quantum chromodynamics (QCD) does not exclude

the possibility of other forms of hadronic matter such as

dibaryons or pentaquarks, but none of these have been found

thus far. The typical scale of a hadron radius is set by the well

known charge radius of the proton, which is equal to

0:8768ð69Þ � 10�15 m (Mohr, Taylor, and Newell, 2008).

The very concept of size, both classically and quantum

mechanically, raises the issue of shape and it is therefore

natural to inquire about the shape of hadrons. The shape of

hadrons concerns microscopic objects at the scale of a

femtometer (10�15 m).
Inquiring about the shape of a subatomic particle is equiva-

lent to raising the question whether the distribution of its

constituents or some of the extensive and therefore distributed

properties, such as mass or charge, deviate from a spherical

distribution, which is assumed to be the default distribution.

However, hadrons are objects which are understood only

within a quantum mechanical, relativistic framework. It is

thus necessary to reexamine critically the concept of size and

shape in the context of quantum mechanics and relativity

before we address the question of the shape of hadrons. In
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parallel, we also address the issue of how sizes and shapes are

determined for particles of the microcosm.
Knowledge of the shape of the fundamental building

blocks of the Universe is not a curiosity, although it certainly

comes close to being an example of the Aristotelian claim of
the intrinsic human need to ‘‘know.’’ Experience from the

determination and subsequent understanding of shapes of
other objects in the microcosm, such as those of atoms and

nuclei, shows that this line of investigation is particularly
fertile for the understanding of the interactions of their con-

stituents amongst themselves and the surrounding medium.

For hadrons, this means the interquark interaction and the
quark-gluon dynamics.

While the theoretical foundations describing hadrons as

the smallest objects in the Universe to which size and shape
can be attributed are solid, the empirical knowledge concern-

ing shape is limited and derives only from the detailed study
of the transition to the first excited state of the proton, the

�þð1232Þ resonance (Papanicolas and Bernstein, 2007). It is
interesting to observe that while the determination that had-

rons have size emerged early on, through the seminal work of
Hofstadter and collaborators (Hofstadter, 1956; Hofstadter,

Bumiller, and Yearian, 1958) and played a leading role in

guiding hadron research ever since, the determination of
shape has been elusive and continues to be very limited.

In the rest of this section, we review the development of the

concepts of size and shape in classical and quantum mechan-
ics with and without relativity, so as to establish the appro-

priate language needed to discuss the topic of the ‘‘shape of
hadrons.’’ This is necessary as hadrons are systems requiring

a relativistic quantum-mechanical description. In doing so,
we provide some historical background on how these con-

cepts have developed.

A. Historical development

The issue of the shape of subatomic particles arose most

acutely in the case of nuclear physics. It is interesting to observe
that historically the issue concerning the shape of atoms being

nonspherical never caused much surprise, perhaps because of
the planetary (Rutherford) model, which intrinsically invokes

nonspherical shapes. The discovery by Rabi and collaborators
(Kellogg et al., 1939) that the deuteron had a static quadrupole

moment and therefore its shapewas not spherical was regarded

as a major surprise. The discovery of deformation in the
deuteron, and nuclei in general, was interpreted correctly as

arising due to the existence of noncentral (tensor) forces among
nucleons. Shortly afterwards,Gerjuoy andSchwinger proposed

that trinucleon deformation (e.g., 3H) could resolve some
peculiarities in the spectroscopy of those systems (Gerjuoy

and Schwinger, 1942). This conjecture proved to be wrong:
the effects were eventually understood to be due to mesonic

degrees of freedom. The deuteron and trinucleon cases dra-

matically showed that understanding the shape of a subatomic
particle requires a detailed knowledge of its constituents and it

provides important information for their dynamics. Following
the success of Rabi, the establishment and quantification of

deformation through the measurement of the electric quadru-
pole moment of a particle was widely employed to map the

systematics of deformation in atomic nuclei.

Unfortunately, a number of misconceptions arose as a

result of the successful use of the determination of quadru-

pole moments in inferring deviations from spherical shapes

for atomic nuclei. The fact that the measurement of a

quadrupole moment is possible only for systems (particles)

possessing spin equal to 1 or larger led incorrectly to the

belief that the shape of particles possessing spin 0 or 1=2
cannot be determined. The impossibility to measure a quad-

rupole moment of such particles was mistakenly interpreted

as signifying a spherical shape. It took more than two decades

before this issue was clarified, primarily through the work of

Brix and collaborators (1977). The realization that the deter-

mination of the intrinsic shape of a system is quite distinct

from the ability to measure its quadrupole moment helped the

field develop. Nuclear physicists developed new techniques to

measure shapes that were also applicable to nuclei of spin 0 or

1=2. In cases where the rigid rotor (shape) approximation

could be made, their excitation spectrum could be used to

reconstruct the density (Hersman et al., 1986).
In the 1970s and 1980s, high resolution electron scattering

was used to map the shapes of the deformed nuclei in the rare

earth and actinide regions of the periodic table. A superb

example of the finesse of this tool is shown in Figs. 1 and 2.

The reconstructed ground state charge density of the 154Gd
spin zero nucleus (Hersman et al., 1986) is mapped with high

precision and the isodensity contours reveal vividly its defor-

mation, as is seen in Fig. 1. Similarly, the transition densities

of 154Gd, shown in Fig. 2, provide a vivid geometric repre-

sentation of the shape oscillations of the system along the

long and short axes of symmetry again revealing its non-

spherical charge distribution (Hersman et al., 1986).
The understanding of the shape of nuclei led to a better

understanding of nuclear structure and an appropriate lan-

guage to describe a number of important nuclear phenomena.

FIG. 1. Tomographic view of the deformed nucleus 154Gd derived

from the study of the rotational bands of this nucleus using electron

scattering. The plot shows the contours of equal charge density

revealing its shape. This spin zero nucleus has a vanishing quadru-

pole moment and therefore what is revealed through this recon-

struction is its intrinsic shape (From Hersman et al., 1986).
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The development of the formalism of shape oscillations

viewed as normal modes of the oscillating quantum liquid,

nuclear matter, was a crucial milestone in the field of nuclear

physics and indeed of physics. Modes of shape oscillations

such as the ‘‘giant dipole oscillation,’’ the ‘‘breathing mode,’’

or the ‘‘scissor’s mode’’ (Bohle et al., 1984) yielded valuable

knowledge on a number of parameters characterizing nuclear

matter. For instance, its compressibility, a parameter of criti-

cal importance in the understanding of supernova explosions,

is derived from the study of the breathing mode of nuclei.

Nuclear shapes and shape oscillations also led to paradigms,

which are driving the development in other fields of physics,
such as the observation of a scissor’s mode in Bose-Einstein

condensates in low temperature physics (Guéry-Odelin and

Stringari, 1999; Maragò et al., 2000).
It may appear from the preceding introductory comments

that to inquire about the shape of an object possessing size is

an obvious undertaking. However, it took more than 25 years

from the indication of the finite size of the proton to the

inquiry about its shape. The conjecture that hadrons would

have nonspherical amplitudes was first made by Glashow in

1979 on the basis of noncentral (tensor) interactions between

quarks (Glashow, 1979). Glashow argued that this would

resolve a number of inconsistencies that QCD was facing at

the time if the constrain of sphericity of the shape of hadrons

was relaxed. The conjecture of nonspherical hadrons origi-

nally was based on the premise that there is a color spin-spin
interaction between the quarks (De Rujula, Georgi, and

Glashow, 1975), which is modeled after the interaction

between magnetic dipoles in electromagnetism, the so-called

‘‘Fermi-Breit’’ interaction (Heisenberg, 1926; Breit, 1930;

Fermi, 1930). A few years later Isgur, Karl, and Koniuk wrote

a seminal paper (Isgur, Karl, and Koniuk, 1982), which

offered an impressive list of indirect empirical evidence for
this hypothesis. However, in a remarkable similarity to the
flawed trinucleon deformation hypothesis of Schwinger, due
to the oversimplified description of the system, the nonrela-
tivistic shell model description of baryons (‘‘triquarks’’) is
now also found to be unable to quantitatively describe the
deformation when solely invoking the color magnetic tensor
interaction. The inadequacy of the nonrelativistic description
and of the phenomenological description of the constituents
used (lack of mesonic degrees of freedom) are understood to
be the principal deficiencies of this model.

In their paper, Isgur, Karl, and Koniuk singled out the
quadrupole amplitude in the � ! N� transition as being a
most sensitive test of this hypothesis. Of additional interest
are the quark-model calculations, which showed that the
D-state admixtures caused by the color hyperfine interaction
predict a nonzero neutron charge distribution and root-mean-
square (rms) charge radius (Carlitz, Ellis, and Savit, 1977;
Isgur, 1977; Isgur, Karl, and Sprung, 1981). These theoretical
speculations induced concerted experimental and theoretical
efforts to measure and calculate deviations from spherical
symmetry (nonspherical amplitudes) in hadrons.

B. Size and shape in classical and nonrelativistic

quantum mechanics

The concepts of both size and shape, because of their
familiarity in everyday language, are often taken to be in-
tuitively apparent, at least in classical physics. However, a
careful examination reveals that this is not at all the case
except for rigid objects with uniform density and sharp
boundaries. The size of a hurricane or the size and the shape
of nebula (e.g., the crab nebula) are not easy to quantify.
However, the distribution in space and time of some extensive
property of an object such as its mass or charge can uniquely
and unambiguously be defined. Its mass density �ðrÞ is
uniquely defined and so is its variation in time �ðr; tÞ. In
classical physics, densities can be precisely defined and mea-
sured and their knowledge allows one to define a ‘‘size’’ and a
‘‘shape.’’Moments of the density distribution are often quoted,
which, in simple geometrical limiting cases, have the expected
correspondence to the naive concept of size or shape. For
instance, the second moment of the density distribution

hr2i ¼
Z

dr r2�ðrÞ (1)

corresponds to the radius of a spherical body with uniform
distribution �ðrÞ ¼ �0�ðR� rÞ.

For objects whose density distribution deviates from
spherical symmetry, it is obvious that higher moments will
assume nonvanishing values. The first such moment whose
nonvanishing value indicates nonsphericity is the quadrupole
moment Qij:

Qij ¼ hQiji ¼
Z

dr ð3rirj � r2�ijÞ�ðrÞ; (2)

with i, j ¼ 1, 2, 3 denoting the spatial directions. It is worth
noting that it is possible to have nonspherical distributions
that have vanishing quadrupole moments.

FIG. 2. The transition densities characterizing the moving charges

involved in excitations in the deformed nucleus 154Gd, derived from

the study of this nucleus using electron scattering, demonstrate that

vibrations along the two axes of the ellipsoidal shape have different

spatial extent From Hersman et al., 1986.
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The introduction of nonrelativistic quantum mechanics and
the implications of the uncertainty principle have influenced
profoundly our understanding of the concept of size. Early
on, with the aid of the ‘‘correspondence principle’’ it was
realized that size could be expressed in terms of the rms
radius given by Eq. (1) where �ðrÞ ¼ c �ðrÞc ðrÞ is the
probability density expressed in terms of the wave function
c ðrÞ of the object. Likewise, the quadrupole moment of a
system hQiji manifests deviation of its probability density

from spherical symmetry.

C. Size and shape in relativistic systems

The introduction of relativity does complicate matters. It is
well understood that both the size and the shape of an object
are not relativistically invariant quantities: observers in differ-
ent frames will infer different magnitudes for these quantities.
Furthermore, when special relativity is written in a covariant
formulation, the density appears as the time (zeroth) compo-
nent of a four-current density J� ¼ ð�; JÞ (in units where the
speed of light c ¼ 1).

Besides the relativistic kinematical effects, e.g., due to
length contraction, the concept of size and shape in relativ-
istic quantum systems, such as hadrons, is also profoundly
modified as the number of constituents is not constant as a
result of virtual pair production. Consider, as an example, a
hadron such as the proton, which is probed by a spacelike
virtual photon, as shown in Fig. 3. A relativistic bound state is
made up of almost massless quarks. The three valence quarks,
which make up for the proton quantum numbers, constitute
only a few percent of the total proton mass. In such a system,
the wave function contains besides the three valence quark
Fock component jqqqi, also components where additional
q �q pairs, so-called sea quarks, or (transverse) gluons g are
excited, leading to an infinite tower of jqqqq �qi; jqqqgi; . . .
components. When probing such a system using electron
scattering, the exchanged virtual photon will couple to any
quark, both valence and sea in the proton as shown in Fig. 3
(upper panel). In addition, the virtual photon can also produce
a q �q pair, giving rise, e.g., to a transition from a 3q state in the
initial wave function to a 5q state in the final wave function,
as shown in Fig. 3 (lower panel). Such processes, leading to

nondiagonal overlaps between initial and final wave func-
tions, are not positive definite, and do not allow for a simple
probability interpretation of the density � anymore. Only the
processes shown in the upper panel of Fig. 3 with the same
initial and final wave function yield a positive definite particle
density, allowing for a probability interpretation.

This relativistic dynamical effect of pair creation or anni-
hilation fundamentally hampers the interpretation of density
and any discussion of size and shape of a relativistic quantum
system. An interpretation in terms of the concept of a density
requires suppressing the contributions shown in the lower
panel of Fig. 3. This is possible when viewing the hadron
from a light front, which allows one to describe the hadron
state by an infinite tower of light front wave functions.
Consider the electromagnetic (EM) transition from an initial
hadron (with four-momentum p) to a final hadron (with four-
momentum p0) when viewed from a light front moving
towards the hadron. Equivalently, this corresponds with a
frame where the hadrons have a large momentum component
along the z axis chosen along the direction of the hadrons
average momentum P ¼ ðpþ p0Þ=2. One then defines the
light front plus (þ ) component by a� � a0 � a3, which is
always a positive quantity for the quark or antiquark four-
momenta in the hadron. When we now view the hadron in a
so-called Drell-Yan frame (Drell and Yan, 1970), where the
virtual photon four-momentum q satisfies qþ ¼ 0, energy-
momentum conservation will forbid processes where this
virtual photon splits into a q �q pair. Such a choice is possible
for a spacelike virtual photon, and its virtuality is then given
by q2 ¼ � ~q2? � �Q2 < 0, where ~q? is the transverse pho-

ton momentum (lying in the x-y plane). In such a frame, the
virtual photon only couples to forward moving partons, i.e.,
only processes such as those shown in the upper panel in
Fig. 3 are allowed. We can then define a proper density
operator through the þ component of the four-current by
Jþ ¼ J0 þ J3 (Susskind, 1968). For quarks it is given by

Jþ¼ �q�þq¼2qyþqþ; with qþ�ð1=4Þ���þq; (3)

where the qþ fields are related with the quark fields q through
a field redefinition, involving the � components of the Dirac
� matrices. The relativistic density operator Jþ, defined in
Eq. (3), is a positive definite quantity. For systems consisting
of u and d quarks, multiplying this current with the
quark charges yields a quark charge density operator given
by Jþð0Þ ¼ þ 2

3
�uð0Þ�þuð0Þ � 1

3
�dð0Þ�þð0Þdð0Þ. Using such

quark charge density operator, one can then define quark
(transverse) charge densities in a hadron as (Burkardt,
2000; 2003; Miller, 2007)

��ðbÞ �
Z d2 ~q?

ð2�Þ2 e
�i ~q?� ~b 1

2Pþ

�
�
Pþ;

~q?
2

; �jJþð0ÞjPþ;� ~q?
2

; �

�
; (4)

with � the hadron (light front) helicity. In the two-
dimensional Fourier transform of Eq. (4), the two-

dimensional vector ~b denotes the quark position (in the x-y
plane) from the transverse center of momentum (c.m.) of the
hadron. It is the position variable conjugate to the hadron
relative transverse momentum ~q?. The quantity ��ðbÞ has the

FIG. 3. Coupling of a spacelike virtual photon to a relativistic

many-body system, as a proton. Upper panel: Diagonal transition

where the photon couples to a quark, in the leading 3q Fock

component (left), or in a higher 5q Fock component (right).

Lower panel: Process where the photon creates a q �q pair leading

to a nondiagonal transition between an initial 3q state and a final 5q
state in the proton.
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interpretation of the two-dimensional (transverse) charge

density at distance b ¼ j ~bj from the transverse c.m. of the
hadron with helicity �. In the light front frame, it corresponds
with the projection of the charge density along the line
of sight.

The quark charge densities in Eq. (4) do not fully describe
the EM structure of the hadron, e.g., for spin 1=2 the densities
with � ¼ �1=2 yield the same information. We do know,
however, that there are two independent EM form factors (FFs)
describing the structure of the nucleon. In general, a particle of
spin S is described by 2Sþ 1 EM moments. To fully describe
the structure of a hadron, one also needs to consider the charge
densities in a transversely polarized hadron state, denoting the

transverse polarization direction by ~S?. The transverse charge
densities can be defined throughmatrix elements of the density
operator Jþ in eigenstates of transverse spin (Carlson and
Vanderhaeghen, 2008; 2009; Lorce, 2009) as

�Ts?ð ~bÞ �
Z d2 ~q?

ð2�Þ2 e
�i ~q?� ~b 1

2Pþ

�
�
Pþ;

~q?
2

; s?jJþjPþ;
� ~q?
2

; s?
�
; (5)

where s? is the hadron spin projection along the direction

of ~S?.Whereas, the density�� for a hadron in a state of definite
helicity is circularly symmetric for all spins, the density �Ts?
depends also on the orientation of the positionvector ~b, relative

to the transverse spin vector ~S?, as illustrated in Fig. 4.
Therefore, it contains information on the hadron shape, pro-
jected on a plane perpendicular to the line of sight. The matrix
elements of the density operator can be written in terms of
helicity amplitudes, which in turn can be expressed in terms of
the form factors. From �Ts? , one can then straightforwardly

define EM moments quantifying the shape. As an example,
for a hadron with spin S > 1=2, and with transverse spin

orientation ~S? ¼ êx, the electric quadrupole moment is
given by

Qs? � e
Z

d2 ~bðb2x � b2yÞ�Ts?ð ~bÞ: (6)

These light-front densities require us to develop some
new intuition, as they are defined at equal light-front time
(xþ ¼ 0) of their constituents. When constituents move non-
relativistically, it does not make a difference whether they
are observed at equal time (t ¼ 0) or equal light-front time
(xþ ¼ 0), since the constituents can only move a negligible
small distance during the small time interval that a light ray
needs to connect them. This is not the case, however, for

bound systems of relativistic constituents such as hadrons

(Jarvinen, 2005; Hoyer, 2009). For the latter, the transverse

density at equal light-front time can be interpreted as a

two-dimensional photograph of a three-dimensional object,

reflecting the position of charged constituents at different

times, which can be (causally) connected by a light ray.

II. MEASURING AND CALCULATING THE SHAPE

OF HADRONS

The determination of the shape of hadrons, interesting as it

may be, presents a particularly difficult situation both theo-

retically and experimentally. The challenge lies in identifying

the observables that can provide a characteristic signal, which

can be experimentally accessed with sufficient accuracy and

can be interpreted reliably to extract the information about

shape. This has proved to be a particularly hard task for a

number of reasons, which are discussed in this section.
It has been possible in the last decade to reach the appro-

priate sensitivity and technical maturity to obtain and analyze

the data that can provide the first convincing information

on the shape of hadrons. To interpret the data in terms of

hadronic structure quantities requires a reliable reaction

framework. Such a reaction framework, as well as the inter-

pretation and its connection to QCD, primarily through lattice

gauge calculations, have advanced to maturity in recent years.
In this section, we review and present these advances, the

experimental methods, and the theoretical framework, which

have allowed the first determination on the shape of hadrons.

A. Empirical information for spin-1 particles:

W boson and deuteron

We start by discussing the empirical information on the

EM moments of spin-1 particles, which are the particles with

the smallest spin where a quadrupole moment can be mea-

sured. In nature, charged spin-1 particles include theW gauge

bosons in the standard model of particle physics, the vector

mesons in hadronic physics and the deuteron in nuclear

physics. For a spin-1 system, it is customary to denote the

three elastic EM FFs as measured in elastic electron scatter-

ing by GC (Coulomb monopole), GM (magnetic dipole), and

GQ (Coulomb quadrupole), where the multipole nomencla-

ture refers to a Breit frame interpretation.
From the empirical knowledge of the spin-1 FFs, one can

map out the charge densities in a spin-1 particle of transverse

polarization by working out the Fourier transform in Eq. (5),

which yields monopole, dipole, and quadrupole field patterns

in the charge density (Carlson and Vanderhaeghen, 2009).

The monopole field pattern corresponds to a circularly sym-

metric two-dimensional distribution for a spin-1 particle of

fixed helicity. The dipole field pattern in the charge distribu-

tion is specific for a relativistic theory. Indeed, a magnetic

dipole moment in a rest frame manifests itself as an electric

dipole moment when seen by a moving observer, proportional

to the vector product ðvelocityÞ � ðmagnetic momentÞ. The
induced electric dipole moment (EDM) corresponding to the

transverse charge densities �Ts? of Eq. (5) for transverse spin

projections s? ¼ 0, �1 is given by

FIG. 4 (color online). Schematic view of the projection of the

charge density along the line of sight (perpendicular to the figure),

for a hadron polarized along the direction of ~S?. The position of the

(quark) charge inside the hadron is denoted by ~b.
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~ds? � e
Z

d2 ~b ~b �Ts?ð ~bÞ: (7)

For example, when the transverse spin projection s? ¼ 1, the
expression for the electric dipole moment is (Carlson and
Vanderhaeghen, 2009)

~d1 ¼ �ð ~S? � êzÞ½GMð0Þ � 2�e=ð2MÞ; (8)

where M is the mass of the particle. Expressing the spin-1
magnetic moment in terms of the g factor, i.e., GMð0Þ ¼ g,

one sees that the induced EDM ~d1 is proportional to g� 2.
The same result was found for the case of a spin-1=2 particle
(Carlson and Vanderhaeghen, 2008). One thus observes that
for a particle without internal structure, corresponding with
g ¼ 2 at tree level (Ferrara, Porrati, and Telegdi, 1992), there
is no induced EDM.

The electric quadrupole field pattern in the transverse
charge density �Ts? yields a quadrupole moment, which is

obtained, for s? ¼ 1, from Eq. (6) as (Carlson and
Vanderhaeghen, 2009)

Q1 ¼ ð1=2Þf½GMð0Þ � 2� þ ½GQð0Þ þ 1�ge=M2: (9)

For a charged spin-1 particle without internal structure,
exemplified by the W gauge bosons of the standard electro-
weak theory, it is required that at tree level GMð0Þ ¼ 2 and
GQð0Þ ¼ �1. For elementary particles, any deviations at tree

level from these values would indicate new, beyond standard
model, physics, and will show up in the presence of
anomalous WW� couplings, usually parametrized in terms
of two new couplings �� and ��, appearing in an effective

Lagrangian. In terms of those parameters, the W magnetic
dipole and quadrupole moments take on the values (Hagiwara
et al., 1987)

�W ¼ ðe=2MWÞ½2þ ð�� � 1Þ þ ���; (10)

QW ¼ �ðe=M2
WÞ½1þ ð�� � 1Þ � ���; (11)

with MW the W-boson mass. The standard model values
GMð0Þ ¼ 2 and GQð0Þ ¼ �1 equivalently correspond with

�� ¼ 1, �� ¼ 0 at tree level. The measurement of the gauge

boson couplings and the search for possible anomalous con-
tributions due to the effects of new, beyond standard model,
physics have been among the principal physics aims at the
Large Electron-Positron Collider (LEP-II). They have been
prominently studied in the eþe� ! WþW� process through
an s-channel virtual photon exchange mechanism. The most
recent Particle Data Group (PDG) fit for the anomalousWW�
couplings based on an analysis of all LEP data is given by
(Nakamura et al., 2010)

�� ¼ 0:973þ0:044
�0:045; �� ¼ �0:028þ0:020

�0:021: (12)

One thus sees that present day information shows no evidence
for anomalous WW� couplings, confirming the point particle
valuesGMð0Þ ¼ 2 andGQð0Þ ¼ �1 for theW bosons, leading

to vanishing induced electric dipole and quadrupole moments
according to Eqs. (8) and (9). It is thus interesting to observe
fromEq. (9) thatQs? is only sensitive to the anomalous parts of

the spin-1 magnetic dipole and electric quadrupole moments,
and vanishes for a particle without internal structure.

For composite particles, it is the deviation from these

benchmark values that indicate deformations of the states.

A well studied example of a nuclear state is the deuteron. Its

magnetic dipole moment is given by Gd
Mð0Þ ¼ 1:71 (Mohr,

Taylor, and Newell, 2008), close to a spin-1 particle’s natural

(i.e, pointlike) value. However, in contrast to the W gauge

bosons, the deuteron has a large anomalous quadrupole mo-

ment. Its measured value is Gd
Qð0Þ ¼ 25:84� 0:03 (Ericson

and Rosa-Clot, 1983). Its large value was interpreted to arise

from the prominent role of the one-pion exchange tensor

interaction. One also sees from Eq. (9) that the natural value

GQð0Þ ¼ �1, arising in a relativistic quantum field theory for a

spin-1 point particle, only amounts to a few percent of the

deuteron’s total quadrupole moment. For an understanding of

its static properties, the deuteron can therefore be considered, to

a good approximation, as a nonrelativistic bound-state system.
In the case of the deuteron, its three EM FFs have been

separated experimentally (Abbott et al., 2000), and it has

been possible to determine the empirical charge densities. A

pictorial result for the transverse charge density with trans-

verse deuteron polarization s? ¼ 1 is shown in Fig. 5. The

quadrupole field pattern clearly displays a deformation along

the axis of the spin (x axis) together with a small overall shift

of the charge distribution along the y axis.

B. Measuring the shape of hadrons

After the discussion of these two extreme cases, namely, on

the one hand, of a spin-1 point particle within relativistic

quantum field theory, and, on the other hand, of a nonrelativ-

istic two-body system, we now turn our discussion to had-

rons, such as mesons and baryons composed of light quarks.
Experimentally, accessing information that reveals hadron

shape, even at the rudimentary level that attempts only to

check deviations from spherical symmetry, has proved very

difficult for a number of reasons. There is only one stable

hadron, the proton, and for this reason it is the only hadron

that can provide a thick target for high luminosity precision

measurements. The relatively long lived neutron either free or

FIG. 5 (color). Two-dimensional charge density �T1, according to

Eq. (5), for a deuteron polarized along the positive x axis. The light

(dark) regions correspond with largest (smallest) densities. The

density is calculated from empirical information for the deuteron

EM FFs (Abbott et al., 2000). From Carlson and Vanderhaeghen,

2009.
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inside nuclei could provide a possible, but technologically far
more difficult alternative. Its shape has not been explored so

far. Both the proton and the neutron are unfortunately spin-1=2
systems and therefore cannot provide information about
their intrinsic shape through the measurement of a static
quadrupole or higher multipole moments. From the decuplet

spin-3=2 baryons, only in the case of the � and the �� it is
possible, in principle, to measure their quadrupole moments
or the transition quadrupole moments to some other state.

The �þð1232Þ offers the most accessible case; however, its
exceedingly short lifetime prevents a viable, yet experimental
way to access its quadrupole moment. Nevertheless, the
magnetic moments of the �þ (Kotulla, 2003) and �þþ
(Nakamura et al., 2010) have been measured, albeit with
very large errors. New experiments at Mainz Mikrotron
(MAMI) are expected to yield a more precise measurement

for the �þ dipole moment. The dipole moment of the �� is
more precisely measured and provides a benchmark for
lattice QCD calculations (Alexandrou et al., 2010), which
in turn can predict its quadrupole moment. Vector mesons

have a static quadrupole moment, which, if different from its
natural value of �1, is a clear indication of a deviation from
spherical symmetry. The � meson is the lowest-lying spin-1

resonance to test the deviation from spherical symmetry.
However, experimentally it is again not feasible to measure.
An example of what information lattice QCD can yield on
hadron shapes is given in Fig. 6, which shows lattice calcu-

lations for the density-density correlator of the �meson in the
laboratory frame (Alexandrou and Koutsou, 2008). In the
spin projection zero case, the � meson displays a prolate

(cigarlike) deformation in its rest frame. This conclusion is

corroborated by a calculation of the �-meson quadrupole

moment in quenched lattice QCD (Hedditch et al., 2007).
Thus, to measure the shape of hadrons, none of the

‘‘standard’’ and tested methods used in atomic and nuclear

physics can be employed. The only viable path to study the

nucleon shape remains the one originally proposed by Isgur

and Karl, i.e., to measure the presence of resonant quadrupole

admixtures in the ��N ! � transition, which amounts

to determining the off-diagonal (transition) quadrupole

moment. The theoretical framework of interpreting these

measurements has matured in recent years, as reviewed be-

low. The precision measurements of this transition provide

the most reliable information we have today for deviation

from the spherical shape for the proton and/or the �þð1232Þ
(Papanicolas and Bernstein, 2007).

The experimental technique employed in the determination

of the deviation from sphericity in the study of the deexcita-

tion of the �þð1232Þ resonance is different than those dis-

cussed earlier. It involves the detection of the radiation

pattern of the emitted radiation in the deexcitation of the

excited state. The concept behind the technique derives from

classical electromagnetism. The observed radiation pattern,

its multipole content to be precise, reveals information about

the shape of the radiating antenna. The radiation emitted in

the deexcitation of the the �þð1232Þ is primarily in the form

of pions but a small (0.7%) branch of � rays is also present.

This technique of measuring shape rarely has been used in

nuclear physics, principally due to the experimental complex-

ity it presents. An important exemption is the study of the 15N
excited states using this technique in an ðe; e0�Þ experiment,

which demonstrated both the feasibility and accuracy of this

method. The 6.33 MeV JP ¼ 3=2� excited state of 15N, a
JP ¼ 1=2� nucleus, presents a case where a transition to it

from the ground state with the same quantum numbers as the

FIG. 6 (color). Three-dimensional contour plot of the � meson, of

spin projection sz ¼ 0, density-density correlator (red surface),

showing all positions where the correlator is reduced to half its

value at the origin. As can be seen by comparing to a sphere (green

transparent surface) of radius of approximately 0.5 fm, the � meson

surface extends outside the sphere at the poles whereas at the

equator is inside the sphere, showing the cigarlike �-meson shape.

Adapted from Alexandrou and Koutsou, 2008.

FIG. 7. The detection of the deexcitation radiation pattern from a

system allows one to isolate the contributing multipoles. The

isolation of the multipole FFs was achieved for the first time in

the 12Cðe; e0�Þ and 15Nðe; e0�Þ reactions where the E2 and M1 FFs

were isolated through the tagging of the decay radiation. The

radiation pattern and the isolated FFs for this transition in 15N.

From Papanicolas et al., 1985.
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��N ! � can be studied. The experiment, where the C2
(Coulomb quadrupole), E2 (electric quadrupole), and M1
(magnetic dipole) FFs were isolated through the tagging of

the decay radiation (Papanicolas et al., 1985), offers a clear

demonstration of the power of the technique. The experimen-

tal arrangement used is shown in Fig. 7, which clearly

portrays the concept of this experimental technique. The

virtual photon causes the excitation of the target nucleus

and due to angular momentum and parity selection rules

only magnetic dipole and electric quadrupole transitions are

allowed; the decay radiation pattern allows one to identify

each admixture.
In the excitation spectrum of the nucleon the only isolated

state is the �þð1232Þ, which thus allows us to employ the

same type of measurement as in the 6.33 MeV isolated

excited state of 15N. The ��N ! � transition from J ¼ 1=2
to 3=2 with no change in parity allows us to observe quadru-

pole E2 and C2 transition moments. It is, however, a mixed

transition, which, in addition to the quadrupole amplitudes,

involves the M1 (spin flip) amplitude that is the dominant

one. The presence of resonant quadrupole strength signifies

deviation from sphericity of the proton and/or the �þð1232Þ.
Using the same experimental technique as in the case of 15N,
it is possible to isolate and measure the weak but important

quadrupole amplitudes in the presence of the dominant M1
transition. Through the extensive study of the N ! � tran-

sition, pursued during the last 30 years using real or virtual

photon probes, an extensive body of data has emerged that

convincingly demonstrates that the quadrupole amplitudes

are substantial and far larger than can be accommodated by

a ‘‘spherical’’ proton.

Experimentally, the measurement of the small value of the

electric or Coulomb quadrupole multipole becomes possible
through its interference with the dominant magnetic dipole

transition. This is shown in Fig. 8, which depicts the angular
dependence of the longitudinal-transverse (LT) interference

cross section (	LT) for the pðe; e0pÞ�0 reaction on top of the
�þð1232Þ resonance. The cross section 	LT is overwhelm-

ingly driven by the interference of the dominant transverse
M1 amplitude with the longitudinal C2 amplitude. The ex-

perimentally constrained region, by the Bates and MAMI

data (Kunz et al., 2003; Sparveris et al., 2005, 2007;
Stave et al., 2006, 2008), is compared with phenomenologi-

cal model predictions that attempt to describe the experimen-
tal data. It is evident that themodel predictions (dotted curves)

with resonant quadrupole amplitudes set to zero, which
amounts to spherical solutions, are excluded with high con-

fidence. The ‘‘deformed’’ model predictions, assuming negli-
gible model error, are in agreement at the 2	 level, with the

empirical results. This comparison demonstrates that compel-

ling experimental evidence nowadays exists supporting the
conjecture of deformed hadrons. In particular, the above data

demonstrate with very high confidence that spherical symme-
try for both the nucleon and the �þð1232Þ is experimentally

excluded. The experimental results for hadron deformation in
the ��N ! � transition will be discussed in more detail in

Sec. III.

C. Calculating the shape of hadrons: Lattice QCD

Having seen clear experimental evidence for a nonspher-

ical charge distribution in the N ! � transition, we next
examine whether this can be calculated and understood

from QCD, the underlying theory of strong interactions.
QCD requires a new methodology in order to evaluate

quantities related to hadron structure, the reason being that

hadrons are bound-state systems having a mass that is mostly
generated by the interaction rather than by the sum of the

mass of their constituents. Perturbative QCD has been very
successful in describing high energy processes. On the other

end of very low energy, chiral perturbation theory has
provided the appropriate effective-field theory framework

for precise calculations of observables in terms of a small

expansion parameter, such as an external momentum or pion
mass. This framework provides a systematic expansion in-

volving an increasingly large number of low-energy con-
stants. The latter are free parameters, which are beyond the

predictive power of the effective-field theory. Some of these
have been determined from phenomenological information,

however, the vast majority remains unknown limiting the
predictive power of chiral effective-field theory. To calculate

low-energy constants from the underlying theory of QCD as

well as to make predictions beyond a regime where a pertur-
bative or small scale expansion is applicable requires an

inherently nonperturbative technique. Such an approach that
enables us to solve the theory in the nonperturbative domain

starting from the underlyingQCDLagrangian is latticeQCD, a
discretized version of QCD formulated in terms of Feynman’s

path integrals on a space-time lattice preserving gauge
symmetry (Wilson, 1974). Like the continuum theory, the

only parameters are the bare quark masses and the coupling

FIG. 8 (color online). The precise range of uncertainty that is

allowed by the Bates and MAMI data (Kunz et al., 2003; Sparveris

et al., 2005, 2007; Stave et al., 2006, 2008) for the 	LT response of

the pðe; e0pÞ�0 reaction, at Q2 ¼ 0:127 GeV2 and at the position of

the �þð1232Þ resonance, is shown as a function of the c.m. angle

between the proton and virtual photon ��pq. Current phenomeno-

logical models [MAID (Drechsel, Kamalov, and Tiator, 2007), Sato-

Lee (SL) (Sato and Lee, 1996, 2001), and DMT (Kamalov and

Yang, 1999; Kamalov et al., 2001), continuous curves] predict this

satisfactorily within a 2	 confidence level. The corresponding

calculations for ‘‘spherical’’ nucleon and � (dashed curves using

same color coding for the various models) cannot describe the data;

they are excluded to 2	 confidence level.
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constant. One recovers continuum physics by extrapolating

results obtained at finite lattice spacing a to a ¼ 0.
A crucial step, that enables one to numerically evaluate the

path integrals needed, is rotation to imaginary time, t ! �it,
resulting in the replacement of the time evolution operator

expð�iH t=ℏÞ by expð�H t=ℏÞ. Within the Feynman path

integral formulation, observables are calculated by a weighted

sum over all possible trajectories. In imaginary time it becomes

possible to generate a representative ensemble of trajectories by

using stochastic methods analogous to those applied in the

evaluation of observables in statistical mechanics.
Calculations in lattice QCD started in the early 1980s, and

during the first two decades were performed mostly in the

quenched approximation, which neglects pair creation. This

enormously simplifies the generation of the gauge fields via

Monte Carlo methods since one is left with a local gauge

action. During the past ten years, theoretical progress in

combination with terascale computers have made simulation

of the full theory with light pions and large enough volumes

feasible using several different discretization schemes. The

simplest lattice QCD action is due to Wilson (1974).

Nowadays, one uses improved discretized versions of the

Dirac operator with reduced finite lattice spacing artifacts

and better chiral properties, all of which are expected to yield

the same results in the continuum limit (Jansen, 2008). Using

these improved fermion discretization schemes, simulations

with pion masses within 100 MeV of the physical pion mass

are currently available with simulations using improved

Wilson fermions even reaching the physical pion mass

(Durr et al., 2008; 2011). A benchmark calculation for lattice

QCD is the evaluation of the low-lying hadron spectrum,

where a systematic study of the hadron masses using different

discretization schemes has been performed and the contin-

uum and infinite volume limits have been examined. The

agreement with experiment observed from such systematic

lattice studies (Durr et al., 2008; 2011; Alexandrou et al.,

2009) provides a validation of the lattice QCD approach,

paving the way to use lattice QCD to provide predictions

for quantities, which are very difficult to access experimen-

tally, as, for example, the EM FFs of an excited hadronic

state, such as the �ð1232Þ resonance (Alexandrou, 2010). It

furthermore allows one to study how the physics is affected

when varying fundamental parameters such as quark masses

outside their values realized in nature.
Information on hadron shapes can be extracted from FFs

and generalized parton distributions. The evaluation of these

quantities is more involved than the computation of hadron

masses. FFs are connected to hadron matrix elements of the

type hh0ðp0ÞjOjhðpÞi and one needs, in general, to compute

the diagrams shown in Fig. 9, where the solid lines denote

fully dressed quark propagators. The diagram where the

operator couples to a sea quark, shown in the upper panel

of Fig. 9, is particularly difficult to calculate since it involves

a disconnected quark loop. For the evaluation of transition

FFs where the final hadron state h0 has different quantum

numbers from the initial h, the disconnected diagram van-

ishes. For diagonal matrix elements, assuming isospin sym-

metry, the disconnected contribution vanishes for isovector

operators and therefore isovector FFs can be calculated from

the connected diagram alone. Although recent efforts to

calculate such disconnected contributions have intensified,

up to now lattice computations of FFs generally neglect

disconnected contributions. The standard procedure to evalu-

ate the connected three-point function shown in the lower

panel of Fig. 9 is to compute the so-called sequential propa-

gator, a convolution of fixed source quark propagators, which

are technically straight forward to calculate. In most recent

studies of the EM FFs the fixed sink method is used. Its name

comes from the fact that we consider a given final state h0 is at a
fixed time t2 from the initial state h created at time zero.Within

this approach, any operator can be inserted at any intermediate

time slice t1, as seen in Fig. 9, carrying anypossiblevalue of the
lattice momentum. For a recent review, which includes com-

parison of nucleon electromagnetic FFs within a number of

different discretization schemes, see Hagler (2010).
To probe hadron deformation, the EM current is used for

the operator O in Fig. 9. Lower moments of transverse spin

densities of quarks in the nucleon (Göckeler et al., 2007)

or pion (Brommel et al., 2008) as well as the transverse

momentum-dependent parton distribution functions (Hagler,

2010) can also be evaluated using these techniques.
As an example of the predictive power of lattice QCD, we

show in Fig. 10 the transverse charge density of Eq. (5) for a

�þð1232Þ that has a transverse spin projection s? ¼ þ3=2.
This charge density is obtained from the � EM FFs, calcu-

lated within lattice QCD in Alexandrou et al. (2009a; 2009b),

as described in more detail in Sec. IV. As can be seen from

Fig. 10, the quark charge density in a �þ in a state of

transverse spin projection s? ¼ þ3=2 is elongated along

the axis of the spin (prolate deformation) when observed

from a light front.
Although lattice QCD provides an ab initial calculation

of fundamental quantities such as FFs or moments of

FIG. 9 (color online). Upper panel: disconnected. Lower panel:

connected diagrams. With h and h0 we denote hadronic states and

with O the operator of interest.
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generalized parton distributions, a careful analysis of statis-

tical and systematic errors must be performed before one can

reliably compare to experiment. The systematic errors arise

because lattice calculations necessarily are performed for a

finite lattice size and spacing a due to the discretization of

space-time, which breaks continuous rotational invariance to

a discrete one. These systematic errors need to be investigated

by repeating the calculation for various volumes and lattice

spacings. Except for hadron masses, where both the infinite

volume and zero lattice spacing limits are taken, for other

quantities like FFs such an analysis has just began. Another

source of systematic error is the fact that FFs calculations still

utilize dynamical quarks of larger mass than the physical one.

Whereas finite a, lattice size L, and magnitude of the quark

masses are amenable to systematic improvements, rotation to

Euclidean space selects a set of observables, determined from

the properties of the discrete low-lying states, which can be

studied within this framework. Nucleon FFs and moments

of parton distributions are examples of such observables.

Excited states are more difficult to compute since they are

exponentially suppressed as compared to the ground state due

to the Euclidean time evolution. Techniques have been

developed to extract the low-lying excited states, however,

most calculations are still done in quenched QCD and without

an analysis of systematic errors, although some recent results

on the excited states of the nucleon using two dynamical

quarks have been presented. The study of resonances in

lattice QCD is a recent activity. One of the reasons is that

up to very recently the quark masses that could be simulated

were too large to allow decays. Although extraction of the

spectral function from lattice correlators is not feasible since the

low-energy continuum scattering states dominate, there are

theoretical techniques to study the width of resonances

(Luscher, 1991a; 1991b) that make use of the dependence

of the energy on the finite lattice length. These techniques,

combined with the background field method, can yield the

magnetic and electric quadrupole moments of resonant states

(Aubin et al., 2009). However, to go beyond the calculation of
the decaywidth and the lowermoments to the calculation of FFs
for resonances such as the� is still an open theoretical problem.

In Sec. IV, we present results showing the state of the art
of the lattice calculations for the EM FFs of the �ð1232Þ
resonance, as well as for the EM FFs describing the ��N ! �
transition, and discuss the resulting theoretical predictions for
hadron deformation.

III. EXPERIMENTAL EVIDENCE

The experimental landscape concerning the investigation
of the shape of hadrons has been dominated by the quest for
resonant quadrupole amplitudes in the ��N ! � transition in
the proton. Recently, other reactions have been suggested,
e.g., the study of the ��N ! � transition in neutrons or in
nuclei, and they may become technically feasible in the near
future. In addition, it is understood that the detailed and
precise understanding of form factors can bring new comple-
mentary information on the issue of the shape of hadrons. In
addition to the formidable technical difficulties of accessing
new reaction channels to the required precision, the theoreti-
cal framework to extract the important physical conclusions
needs to be further developed.

The experimental investigation of the ��N ! � transition
can be classified according to the reaction channel probed.
The �þð1232Þ can be excited by real or virtual photons ��
and decays through pion or photon emission

��p ! �þð1232Þ ! p�0 ð66%Þ;
��p ! �þð1232Þ ! n�þ ð33%Þ;
��p ! �þð1232Þ ! p� ð0:56%Þ:

The pion decay channels have been extensively explored
while the third, involving the gamma decay branch, has
been studied with real Compton scattering. Virtual
Compton scattering (VCS) measurements are beginning to
emerge with the aim of mapping the polarizabilities at high
missing mass (Bensafa et al., 2007) and/or investigating the
issue of deformation (Sparveris et al., 2008).

The first generation ��N ! � and in general nucleon
resonance experiments were conducted in the late 1960s
and early 1970s, before the issue of deformation was even
raised, at Deutsches Elektronen -Synchrotron (DESY),
National Institute Northern Accelerator (NINA), and
Cornell Electron Accelerator (CEA) with low quality beams
and experimental equipment not designed to address such
refined questions. The data that emerged were characterized
by limited accuracy, but they did provide valuable guidance
on the design of future experiments (Papanicolas, 1988). The
second generation experiments were obtained by a newer
generation of accelerators at Brookhaven, Bates, MAMI, and
Continuous Electron Beam Accelerator Facility (CEBAF)
with optimized equipment and in general with polarized
beams. Third generation experiments are now beginning to
emerge; they have been conducted primarily with polarized
and tagged real photons, impinging on polarized targets.
Electroproduction experiments with polarized targets are par-
ticularly difficult with only one measurement reported in the
literature using the internal target facility at Nationaal Instituut
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FIG. 10 (color). Lattice QCD results for the quark transverse

charge density ��
Tð3=2Þ in a �þð1232Þ which is polarized along the

positive x axis. The light (dark) regions correspond to the largest

(smallest) values of the density. In order to see the deformation

more clearly, a circle of radius 0.5 fm is drawn for comparison.

The density is obtained from quenched lattice QCD results at

m� ¼ 410 MeV for the � EM FFs (Alexandrou et al., 2009a;

Alexandrou et al., 2009b).
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voor Kernfysica and Hoge-Energiefysica (NIKHEF) (van
Buuren et al., 2002) and having low statistical accuracy. The
Jefferson Laboratory (JLab) Hall A experiment (Kelly et al.,
2005), which presented high quality extensive recoil polariza-
tion measurements using polarized beams, is a truly third
generation experiment, which both demonstrated the feasibil-
ity of the technique, the precision that can be achieved, and the
rich physics output that can emerge.

In general, in the real-photon sector, the ‘‘second genera-
tion’’ experiments are completed and analyzed and the era of
‘‘third generation’’ experiments is about to begin in earnest,
in view of the important instrumentation initiatives (Kotulla,
2005) at Mainz and at Bonn. JLab and MAMI C have optimal
beams and detection systems for the pursuit of this program,
which is far from being exhausted.

The ‘‘deformation’’ signal in the real-photon sector comes

from the study of the transverse electric quadrupole (E3=2
1þ also

denoted by E2) multipole. If virtual photons are used, the

longitudinal quadrupole (L3=2
1þ or C2) is also accessed. The

superscript indicates the total isospin 3=2, whereas the
subscript denotes the l ¼ 1 angular momentum in the �N
system, and the ‘‘þ’’ refers to the total angular momentum J¼
lþ1=2¼3=2. In a quark-model picture, the�N ! � transition
is described by a spin flip of a quark in an S-wave state in the

nucleon, resulting in amagnetic dipole (M3=2
þ1 orM1) transition.

AnyD-wave admixture in the nucleon or the�wave functions
also allows nonzero values for the electric quadrupole (C2
and E2) transition. This is depicted graphically in Fig. 11.

It has become standard practice in the field to measure the
resonant quadrupole strengths relatively to the resonant

dipole by introducing the ratios EMR ¼ ImE3=2
1þ =ImM3=2

1þ
and CMR ¼ ImL3=2

1þ =ImM3=2
1þ . E2/M1 ratio (EMR) and C2/

M1 ratio (CMR) have thus become the signal of deformation.

A. Real-photon measurements

In photoproduction, the presence of a resonant quadrupole
amplitude is particularly hard to isolate because the trans-
verse channel is overwhelmed by the magnetic dipole
(M1) amplitudes and contaminated with other ‘‘background’’
(nonresonant) processes of similar magnitude. In this sense,

the E3=2
1þ appears in next to leading order in photoproduction.

Precision measurements with polarized tagged photons per-
formed at Mainz (MAMI) and Brookhaven (LEGS) in the
late 1990s represent a tour de force of experimental finesse.
The small quadrupole amplitude has been detected in the
measurement of the polarization asymmetry �¼ð	k�	?Þ=
ð	kþ	?Þ shown in the right panel of Fig. 12. The asymmetry

� is measured with reduced systematic error by flipping the
polarization of the tagged photon beam parallel (k) and
perpendicular (?) to the scattering plane. Analysis of the
MAMI ð�;�þÞ and ð�;�0Þ data yields the impressive
results shown in the left panel of Fig. 12. It is obvious
from this figure that the derived results heavily depend on

the W dependence of the cross section. The E3=2
1þ multipoles

have a striking nonresonant shape, a manifestation of the
complicated processes that contribute to this channel. The
measurements from MAMI (Beck et al., 1997) and LEGS
(Blanpied et al., 1997; 2001) converged as far as the deter-
mination of the asymmetries are concerned. The resulting
EMR values are

LEGS: EMR ¼ �ð3:07� 0:26statþsyst � 0:24modÞ%;

MAMI: EMR ¼ �ð2:5� 0:1stat � 0:2systÞ%:

A number of theoretical calculations are in good agreement
with the experimentally derived EMR value. Both the
ð�;�0Þ and ð�;�þÞ channels have been studied extensively.
The ð�; �Þ channel (real Compton scattering) has also
been studied (Galler et al., 2001), where the resonance
pion-photoproduction amplitudes were evaluated leading
to the multipole EMRð340 MeVÞ ¼ ð�1:6� 0:4ðstatþsystÞ �
0:2ðmodelÞÞ%, in reasonable agreement with the photopion

measurements.
The situation concerning the �N ! � transition in the

real-photon sector has remained stable, without experimental
results reported to change this picture in the last five years. A
subsequent analysis (Arndt et al., 2001) and new data
(Kotulla, 2007) give EMR¼ð�2:74�0:03ðstatÞ�0:3ðsystÞÞ%,

confirming the EMR values of Beck et al. (1997) and
Blanpied et al., (1997, 2001). In the closely related areas
of threshold pion production (Merkel, 2006) and in the
measurement of the magnetic dipole (Kotulla et al., 2002;
Kotulla, 2003) of the �þð1232Þ, the precise results that
emerged provide both a test and valuable guidance to theory
and phenomenology that is common to both. The installation
of the Crystal Ball at MAMI and of the Crystal Barrel at
ELektronen-Stretcher Anlage (ELSA) have brought new very
powerful tools, which are expected to yield even more precise
data and results.

B. Electroproduction measurements

In electron scattering experiments, in addition to the trans-
verse responses, the longitudinal responses are also acces-
sible, which are sensitive to leading order to the longitudinal

quadrupole multipole, L3=2
1þ or C2. Furthermore, the Q2 evo-

lution of the various responses offers the ability to distinguish
between different processes. This is of particular value for the
understanding of the distinctive roles played by the mesonic
cloud as compared with the quark core. These advantages are
technically challenging and time consuming to realize due,

1 , 2 , C2

1+ , 1+ , S1+   

*

o

p(938)      +(1232)
I = 1

2
, J = 1

2 I=
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FIG. 11 (color online). Quark-model picture of M1, E2, and C2
amplitudes in the N ! � transition induced by the interaction of a

photon (real or virtual) with a single quark in the nucleon. Presence

of quadrupole amplitudes in the transition requires N and/or � wave

functions to have a D-wave component (indicated by a nonspherical

shape).
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primarily, to the numerous measurements needed to cover the
widest possible range of momentum transfers.

Consistent results have been reported from several
groups (Kalleicher et al., 1997; Warren et al., 1998;
Frolov et al., 1999; Mertz et al., 2001; Pospischil et al.,
2001; Joo et al., 2002; Kunz et al., 2003; Kelly et al., 2005;
Sparveris et al., 2005, 2007; Elsner et al., 2006; Stave et al.,
2006, 2008; Ungaro et al., 2006; Kirkpatrick et al., 2011) at
Bates, ELSA, MAMI, and JLab mapping the momentum
transfer range from Q2 ¼ 0:06 to 6:0 GeV2 with high preci-
sion in a limited number of observables sensitive to the issue
of deformation. However, there are still discrepancies on the
extracted EMR and CMR values, which are not directly
measurable due to the methodology used in extracting multi-
poles, an issue discussed in the next section.

Starting from the experimental observables, two methods
have been used for extracting multipole amplitudes: (a) The
truncated multipole expansion approximation in which most
or all of the nonresonant multipoles are neglected [see e.g.,
Kalleicher et al. (1997) and Frolov et al. (1999)] assuming
that, at resonance, only the resonant terms contribute signifi-
cantly and are fitted to the data, and (b) the model dependent
extraction (MDE) method where a phenomenological reac-
tion framework with adjustable quadrupole amplitudes is used
[see, e.g., Frolov et al. (1999), Mertz et al. (2001), and Stave
et al. (2006)]. It is assumed that the reaction is controlled at
the level of precision required for the disentanglement of the
background from the resonance amplitudes. Clearly, the MDE
method is superior, given the sophistication that phenomeno-
logical models have achieved in describing the data.

In the recent electroproduction experiments, which
almost invariably are carried out with polarized beams,
the transverse-longitudinal (TL) response functions 	TL and
	TL0 are measured. Their simultaneous measurement allows
the extraction of the real and imaginary parts of the same
combination of multipole amplitudes. Knowledge of both re-
sponses is particularly valuable because	TL ismost sensitive to

the presence of a resonant longitudinal quadrupole amplitude,
while 	TL0 is particularly sensitive to the background contri-
butions, thus providing information on the two aspects of the
problem that need to be controlled independently (Mandeville
et al., 1994). The importance of background is clearly seen in
the W behavior of the responses (Mertz et al., 2001) and the
nonvanishing recoil polarization Pn (Warren et al., 1998;
Pospischil et al., 2001), which bears close resemblance to
	TL0 . The transverse-transverse (TT) response 	TT, which is
sensitive to the electric quadrupole amplitude, was only re-
cently isolated for the first time at nonzero Q2, with experi-
ments pursued at Bates, JLab, and MAMI (Cole, 2007;
Sparveris, 2007).

Figure 13 offers a compilation of CMR and EMR as a
function of Q2. Both EMR and CMR are small and negative
in the region where they have been measured. From the
accuracy of the present data one immediately recognizes
that the quark-model predictions, which historically provided
the motivation for these measurements, do not agree with the
data. In particular, the dominant M1 matrix element is found
to be ’ 30% stronger and the E2 and C2 amplitudes at least
an order of magnitude larger and often of a different sign than
the predictions of quark models. This failure is to be expected
since the quark model does not respect chiral symmetry
whose dynamic breaking leads to a strong, nonspherical,
pion cloud surrounding hadrons (Bernstein, 2003). As dis-
cussed in detail in Sec. IV, it was realized that the pion cloud
was a necessary ingredient to be added to quark models. This
is demonstrated by the calculations of Sato and Lee (1996,
2001) and Dubna-Mainz-Taipei model (DMT) (Kamalov and
Yang, 1999; Kamalov et al., 2001) models, which describe
the data adequately, and which show that most of the strength
of the responses (and the EMR and CMR values) at very low
Q2 values, below ’ 0:25 GeV2=c2, arises on account of the
mesonic degrees of freedom. The recent results from MAMI
along with the earlier ones from Bates (Sparveris, 2007) and
the recent low Q2 measurements from CEBAF Large

FIG. 12 (color online). Results from MAMI (left) and LEGS (right) have yielded precise measurements of the resonant quadrupole

amplitude at the photon point. A most sensitive probe is the polarization asymmetry �, which has been measured precisely at both MAMI and

LEGS. The derived multipoles from the MAMI cross sections yield an accurate measurement of EMR.
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Acceptance Spectrometer (CLAS) (Cole, 2007) give strong

support to this interpretation. At asymptotic values of Q2

helicity conservation (Carlson, 1986) requires that EMR ! 1
and that CMR ! const. Clearly, this regime has not been

reached. The upgrade of CEBAF to 12 GeV will allow one to

extend the measurements to higher Q2, although this will

pose significant challenges in isolating the relevant partial

cross sections and even bigger ones in extracting the relevant

amplitudes.
Finally, the Hð ~e; e0pÞ� channel (VCS), which only recently

has been accessed, allows the extraction of the quadrupole

amplitudes through a purely electromagnetic reaction channel

providing an important cross check to the derived results from
the pionic channel. The dispersion theory of Pasquini et al.

(2001) allows one to address the physics of deformation

and of nucleon polarizabilities in the region above pion thresh-
old simultaneously. Recent results from MAMI report the

extraction of polarizabilities (Bensafa et al., 2007) and the
first observation of VCS data sensitive to the resonant quad-

rupole amplitudes (Sparveris et al., 2008). The results are in

excellent agreement with those derived from the pion channel.

C. Sensitivity, precision, and estimation of uncertainties

The ��N ! � data up to Q2 ¼ 6:0 GeV2 are, in general,
characterized by small systematic errors and high statistical

precision. The interpretation of the data in terms of the

deformation has been demonstrated, and, as a result, the
research thrust shifted from the investigation of whether

the conjecture for deformation is valid to the exploration of

the mechanisms that cause it. Investigating the physical origin
of deformation requires the measurement of new responses

and the comparison of the theoretical results with the experi-
mentally derived quantities, at a level of precision far superior

to the one feasible today. This detailed comparison necessi-

tates a reliable determination of the uncertainties of both the
experimental results and the theoretical calculations.

The need for a critical and precise comparison of data and

theory when extracting multipoles in nucleon resonance
studies is reminiscent of the ‘‘crisis’’ in the analysis of

electron scattering data in the early 1970s, where the very

precise data could not be meaningfully compared with the
theoretical calculations in order to derive nuclear charge

densities. This was primarily due to the lack of an appropriate
methodology that could enable one to quantify the uncertain-

ties in the extracted densities, which, like multipole ampli-

tudes, are not experimental observables. The resolution of the
crisis through the introduction of a ‘‘model independent’’

extraction of charge densities led to a revolution in the field

and to the outstanding achievements in electron scattering.
The leading method of extraction of multipole amplitudes,

the MDE, produces extracted values that are biased by the

model and characterized by a model error, which is hard to
estimate, especially if a single model is employed (Frolov

et al., 1999; Pospischil et al., 2001; Joo et al., 2002;
Elsner et al., 2006; Ungaro et al., 2006). An ansatz for

estimating the model uncertainties in the extracted multipoles

has been proposed (Papanicolas, 2003; Stave, Bernstein, and
Nakagawa, 2007) and used in a few cases (Sparveris et al.,

2005; Stave et al., 2006). In this method, the same data are

analyzed employing different models, which describe the
data adequately, and attributing the resulting spread in

the extracted quantities to model uncertainty. Even though
the phenomenological models available are of considerable

sophistication, the small nonresonant amplitudes collectively

could induce large correlations and error in the extraction of
the resonant amplitudes, resulting in the unsatisfactory situ-

ation that the uncertainty is only approximately known.
A novel model independent method, the Athens model

independent analysis scheme (AMIAS), for extracting multi-

pole information from experimental nucleon resonance

FIG. 13 (color online). The experimentally derived values for

M3=2
1þ (M1) (top panel), CMR (middle panel), and EMR (lower

panel) compared to phenomenological model results for M1, and to

lattice for EMR and CMR. The derived multipole ratios are shown

without the model error that is of the order or larger than the

depicted experimental error From Alexandrou et al., 2011.
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(Stiliaris and Papanicolas, 2007) and for analyzing lattice
QCD simulation data has been presented (Alexandrou,
Papanicolas, and Stiliaris, 2008). The method quantifies the
uncertainty of the extracted multipoles and yields new infor-
mation on background amplitudes, which MDE is incapable
of accessing (Stave, Bernstein, and Nakagawa, 2007). Results
from AMIAS are shown in Fig. 8 for the CMR sensitive
	LT partial cross section with the precisely defined 1	
uncertainty. The experimentally allowed 	LT partial cross
section, as constrained by the Bates and MAMI data (Kunz
et al., 2003; Sparveris et al., 2005, 2007; Stave et al., 2006,
2008) at Q2 ¼ 0:127 GeV2, are shown as a function of ��pq.
They are compared with theoretical model predictions that
account for them. It is evident that the model predictions
(dotted curves) with resonant quadrupole amplitudes set to
zero, which amounts to spherical solutions, are excluded with
high confidence. On the contrary, model predictions from
models that allow mesonic degrees of freedom allowing for
deformation are in reasonable agreement with the experimen-
tal results at the 2	 level. Differences among the curves
predicted by the various phenomenological models are vis-
ible, but no inference can be drawn as their model error is not
known. Nevertheless, the comparison demonstrates with ex-
tremely high confidence, with experimental errors precisely
defined, that the assumption of sphericity for both the nucleon
and the �þð1232Þ is incompatible with the data.

IV. THE SHAPE OF NUCLEON AND � RESONANCE:

THEORETICAL UNDERSTANDING

Having seen first experimental evidence for a nonspherical
shape of the nucleon and � resonance, we next discuss its
theoretical understanding. For the � resonance, its EM FFs
are not accessible experimentally. They are, therefore, an
ideal example of observables where lattice QCD can make
predictions. The state of the art of these calculations as well
as their implication on the shape of the � resonance are
discussed. Subsequently, our current theoretical understand-
ing of the ��N ! � transition is summarized including an
interpretation of the data presented in Sec. III.

A. � charge densities: Lattice QCD

As the nucleon is a spin-1=2 particle, its transverse charge
densities do not exhibit a quadrupole pattern, nor do they
encode any information on its shape. For spin-3=2 baryons,
such information can, however, be obtained from the charge
densities.

The matrix element of the EM current operator J� between
spin-3=2 states, such as the �ð1232Þ resonance, can be
decomposed into four multipole transitions: Coulomb mono-
pole (E0), magnetic dipole (M1), Coulomb quadrupole (E2),
and magnetic octupole (M3), described by the corresponding
FFs GE0, GM1, GE2, and GM3 (Nozawa and Leinweber, 1990;
Pascalutsa, Vanderhaeghen, and Yang, 2007). Their values at
Q2 ¼ 0 define, e.g., the magnetic dipole moment �� ¼
GM1ð0Þe=ð2M�Þ, or the electric quadrupole moment Q� ¼
GE2ð0Þe=M2

�.

Empirical knowledge of the � electromagnetic moments is
scarce, even though there were several attempts to measure its

magnetic dipole moment. The current PDG value of the �þ
magnetic dipole moment is (Nakamura et al., 2010)

��þ ¼ ½2:7þ1:0
�1:3ðstatÞ � 1:5ðsystÞ � 3ðtheorÞ��N: (13)

This result was obtained from radiative photoproduction
(�N ! �N�0) of neutral pions in the �ð1232Þ region by
the TAPS Collaboration at MAMI (Kotulla et al., 2002),
using a phenomenological model of the �p ! �0p�0 reac-
tion. For the �þ, Eq. (13) implies

GM1ð0Þ ¼ 3:5þ1:3
�1:7ðstatÞ � 2:0ðsystÞ � 3:9ðtheorÞ: (14)

The size of the error bar is rather large due to both experi-
mental and theoretical uncertainties.

For the � electric quadrupole moment or magnetic octu-
pole moments, no direct measurements exist, nor do we have
any empirical information on the Q2 behavior of the � EM
FFs. We thus rely on recent lattice QCD calculations
(Alexandrou et al., 2009a, 2009b) that can predict these FFs.

Calculation of the EM FFs within lattice QCD requires the
evaluation of a three-point function, as depicted in Fig. 9. We
only consider here the connected diagram. Its evaluation
involves two spatial sums: one over the spatial coordinates
of the operator and one over the spatial coordinates of the
final state. In the so-called fixed sink method, the sum over ~x2
is done automatically by generating a sequential (backward)
propagator from the sink to the operator. Inserting the opera-
tor, which can be done at all values of ~x1, and summing over
~x1 with the appropriate Fourier phase and propagator starting
at t ¼ 0 and ending at t ¼ t1 yields the connected three-point
function, for all momentum transfers ~q. To extract the matrix
element hh0ðp0ÞjOjhðpÞi one studies the large t1 Euclidean
time behavior of an appropriately defined ratio of the three-
point function and two-point functions, yielding a time
independent quantity (plateau). Such a behavior signals iden-
tification of the lowest hadron states h and h0 from the tower
of QCD states with the same quantum numbers as h and h0.
Fitting to this plateau value, we extract the matrix element
hh0ðp0ÞjOjhðpÞi and from this, depending on the choice of O,
the FFs or moments of parton distributions.

To probe hadron deformation we use in the following the
EM current as the operator O. Since the connected diagram
for the � EM FFs is calculated by performing sequential
inversions through the sink, the initial and final � states need
to be fixed. The � is described by a Rarita-Schwinger spinor
and therefore there is some freedom in the vector indices
that can be chosen. Alexandrou et al. (2009a, 2009b) con-
centrated on a few carefully chosen combinations that best
determine the three FFs paying particular attention in con-
structing a combination that isolates the electric quadrupole
FF. In order to efficiently check the lattice setup, a quenched
calculation is carried out using Wilson fermions and the
standard Wilson plaquette gauge action (Alexandrou et al.,
2009a, 2009b) for which statistical fluctuations are small.
Quenched results are then compared to a calculation using
two dynamical degenerate flavors of Wilson fermions
(NF ¼ 2) and the standard Wilson plaquette gauge action as
well as using a hybrid action (Alexandrou et al., 2009a,
2009b). The latter case uses two degenerate flavors of light
staggered sea quarks and a strange staggered sea quark (NF ¼
2þ 1) simulated using the Asqtad MILC action (Bernard
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et al., 2001). The strange quark mass is fixed to its physical
value. These gauge configurations are among the best simu-
lations of the QCD vacuum available. The valence quarks
are domain wall fermions (DWF) that preserve a form of
chiral symmetry on the lattice. A comparison between results
obtained with these two different lattice formulations for the
quarks (i.e., dynamical Wilson and staggered sea with DWF)
provides a nontrivial check of lattice artifacts. In both
dynamical simulations, the � is a stable particle.

We show the results for the � FFs GM1 and GE2 in Fig. 14.
For the pion masses considered, there is agreement among
results using the different actions, with statistical errors being
smallest in the quenched theory, as expected. For the �
magnetic dipole moment, first dynamical results, using a
background field method, with NF ¼ 2þ 1 quark flavors
were presented in Aubin et al. (2009). The magnetic moment
can also be extracted by fitting the Q2 dependence of the
magnetic dipole form factor GM1 to determine its value at
Q2 ¼ 0. The values obtained in these two approaches are in
agreement (Alexandrou et al., 2009a, 2009b).

Having a determination of the � EM FFs in lattice
QCD one can calculate its transverse light-front charge den-
sity ��

Ts? (Alexandrou et al., 2009a, 2009b), as shown in

Fig. 10. Choosing the transverse spin vector ~S? ¼ êx, the
electric quadrupole moment in a state of s? ¼ þ3=2 for such
charge distribution is then obtained from Eq. (6) as

Qþ3
2
¼ 1

2
f2½GM1ð0Þ � 3e�� þ ½GE2ð0Þ þ 3e��g

�
e

M2
�

�
:

(15)

Note that for a spin-3=2 particle without internal structure, for
which GM1ð0Þ ¼ 3e� and GE2ð0Þ ¼ �3e�, the quadrupole
moment of its transverse light-front charge density vanishes.
This is in contrast with the nonrelativistic case, where a
nonzero value of GE2 is usually interpreted as a nonzero
quadrupole moment in the laboratory frame. It is thus inter-
esting to observe from Eq. (15) that, as for the case of a spin-1
particle discussed in Sec. II, Qs? is only sensitive to the

anomalous parts of the spin-3=2 magnetic dipole and electric
quadrupole moments, and vanishes for a particle without
internal structure. Extrapolating the � EM FFs to Q2 ¼ 0,
and using the extracted values in Eq. (15), yields a quadrupole
moment Qþð3=2Þ, of (0:73� 0:16)e=M2

� for the quenched and

(0:51� 0:22)e=M2
� for the hybrid cases. Both calculations

therefore show a (small) prolate deformation of the two-
dimensional light-front charge density along the axis of the
� spin (for the case of spin projection þ3=2).

B. The electromagnetic N ! � transition in QCD

1. Electromagnetic moments and densities

Direct experimental evidence for a deformation ofN and�
states can be obtained from the ��N� transition, which is
usually characterized in terms of three Jones-Scadron FFs
(Jones and Scadron, 1973): G�

M1, G
�
E2, and G�

C2, denoting the

magnetic dipole, electric quadrupole, and Coulomb quadru-
pole transitions, respectively. For a review and more details,
see Pascalutsa, Vanderhaeghen, and Yang (2007). In the
following, we discuss the ratios EMR and CMR, which are
expressed in terms of the Jones-Scadron FFs as

EMR ¼ � G�
E2

G�
M1

; CMR ¼ �QþQ�
4M2

�

G�
C2

G�
M1

; (16)

with Q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM� �MNÞ2 þQ2
p

.
From the experimental information on the ��N� transi-

tion, discussed in Sec. III, one can extract the transition
magnetic dipole and electric quadrupole moments from the
values of the FFs at Q2 ¼ 0 (Tiator et al., 2003)

�N!� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�=MN

q
G�

M1ð0Þ ½�N�; (17)

QN!� ¼ �6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�=MN

q 2M�

MNðM2
� �M2

NÞ
G�

E2ð0Þ: (18)

Using the experimental information, this yields (Tiator et al.,
2003)

�p!�þ ¼ ½3:46� 0:03��N; (19)

Qp!�þ ¼ �ð0:0846� 0:0033Þ fm2: (20)

One often uses an equivalent parameterization for the �N�
transition at the real-photon point (Q2 ¼ 0) through two
helicity amplitudes A1=2 and A3=2, where the subscript denotes

the total �þ N helicity in the � rest frame. Furthermore,
one can generalize the considerations for the nucleon and �
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FIG. 14 (color online). Lattice results for the �þð1232Þ form

factor GM1 (upper panel) and GE2 (lower panel) at the smallest

pion mass in three simulations. The lines show the fits to an

exponential form of the quenched lattice results and to the results

obtained using the hybrid action. The error band is calculated using

a jackknife analysis on the fitted parameters From Alexandrou

et al., 2009a.
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FFs to extract from the empirical information on the Q2

dependence of the M1, E2, and C2 transition FFs, the quark
transition charge densities in the transverse plane, which induce
the EM N ! � excitation (Carlson and Vanderhaeghen,
2008). The transition density in a transversely polarized N
and � shows both monopole, dipole, and quadrupole patterns.
The latter, shown in Fig. 15, maps the spatial dependence in the
deformation of the transition charge distribution.

2. Model descriptions of the ��N� transition

As discussed, the EM N ! � transition is predominantly
of the magnetic dipole (M1) type. A first understanding of the
��N� transition can be obtained based on symmetries of
QCD and its large number of color (Nc) limit. In this limit, the
baryon sector composed of up, down, and strange quark
flavors of QCD displays an SU(6) spin-flavor symmetry.
This spin-flavor global symmetry of QCD is at the basis of
many quark models, in which baryons are described as
(nonrelativistic) quantum-mechanical three-quark systems
moving in a confining potential. In such a quark-model
picture, the N ! � transition is described by an M1 spin
flip of a quark in the S-wave state, illustrated in Fig. 11. The
SU(6) symmetry allows one to relate the magnetic dipole
moments of the proton and the p ! �þ transition as

�p!�þ ¼ 2
ffiffiffi
2

p
=3�p ¼ 2:63�N , which is about 25% lower

than the experimental number of Eq. (19). Any D-wave
admixture in the nucleon or the � wave functions allows
nonzero values for the E2 and C2 quadrupole transitions, as
illustrated in Fig. 11.

The prototype quark model is the Isgur-Karl model (Isgur
and Karl, 1978, 1979a, 1979b), where the constituent quarks
move in a harmonic oscillator type long-range confining
potential, which is supplemented by an interquark force
corresponding with one-gluon exchange. The one-gluon
exchange leads to a color hyperfine interaction, which was
found to predict well the mass splittings between octet and
decuplet baryons (De Rujula, Georgi, and Glashow, 1975).
This hyperfine interaction contains a tensor force which
produces a D-state admixture in the N and � ground states,

around 1% (Koniuk and Isgur, 1980; Isgur, Karl, and Koniuk,

1982). As a result of such D-wave components, the N and �
charge densities become nonspherical, yielding small negative

EMR values, in the range �0:8%< EMR<�0:3% within

nonrelativistic quark models (Gershtein and Jikia, 1981; Isgur,

Karl, and Koniuk, 1982; Bourdeau and Mukhopadhyay, 1987;

Gogilidze, Surovtsev, and Tkebuchava, 1987). The small value

for EMR already indicates that any effect of deformation in the

nucleon and/or�ground state is rather small and very sensitive

to details of the wave function, as well as truncation in the

quark-model basis (Drechsel and Giannini, 1984; Giannini,

1991). The error induced due to the truncation in the quark-

model basis has been further investigated in the relativized

quark model (Capstick and Karl, 1990; Capstick, 1992), typi-

cally resulting in an even smaller negative value, namely

EMR ’ �0:2%.
Even though the constituent quark model, despite its sim-

plicity, is relatively successful in predicting the structure and

spectrum of low-lying baryons, it under predicts �N!� by

more than 25% and leads to values for EMR, which are

typically smaller than experiment. More generally, constitu-

ent quark models do not satisfy the symmetry properties of

the QCD Lagrangian. In the limit of massless up and down

(current) quarks, the QCD Lagrangian is invariant under

SUð2ÞL � SUð2ÞR rotations of left (L) and right (R) handed
quarks in flavor space. This chiral symmetry is spontaneously

broken in nature leading to the appearance of massless

Goldstone modes, pions, which acquire a mass due to the

explicit breaking of chiral symmetry. Since pions are the

lightest hadrons, they dominate the long-distance behavior

of hadron wave functions. As the �ð1232Þ resonance nearly

entirely decays into �N, the pions are of particular relevance

to the ��N� transition. Therefore, a natural way to qualita-

tively improve on the above-mentioned constituent quark

models is to include the pionic degrees of freedom.
Early investigations of the ��N� transition including

pionic effects were performed within the chiral bag

model (Kaelbermann and Eisenberg, 1983; Bermuth et al.,

1988), which was developed as an improvement to the

Massachusetts Institute of Technology (MIT) bag model

(Donoghue, Golowich, and Holstein, 1975) by introducing

an elementary pion, which couples to quarks in the bag in

such a way that chiral symmetry is restored (Thomas, 1984).

Calculations within the chiral bag model (Lu, Thomas, and

Williams, 1997) found that with a bag radius R around 0.8 fm

one is able to obtain a reasonably good description for the

helicity amplitudes, as can be seen from the values given in

Table I. For such a small bag radius, the pionic effects are

crucial as they account for around 75% of the total strength of

the amplitude A3=2. The same calculation, however, yields

EMR ’ �0:03%, in disagreement with experiment.
The role of the pion-cloud contributions is also highlighted

in Skyrme models (Wirzba and Weise, 1987; Abada, Weigel,

and Reinhardt, 1996; Walliser and Holzwarth, 1997), in

which the nucleon appears as a soliton solution of an effective

nonlinear meson field theory. The inclusion of rotational

corrections in such models leads to a quadrupole distortion

of the classical soliton solution, yielding a value for EMR ¼
�2:3% (Walliser and Holzwarth, 1997), consistent with

experiment.
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FIG. 15 (color). Quadrupole contribution to the transverse charge

density for the p ! �þ transition, when N and � are polarized

along the x axis with spin projectionþ1=2. For the N ! � EM FFs,

the phenomenological MAID2007 (Drechsel, Kamalov, and Tiator,
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2008.
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The EMR ratio has also been calculated in models, with
both quarks and pion degrees of freedom such as the chiral
quark soliton model (
QSM), which interpolates between a
constituent quark model and the Skyrme model (Watabe,
Christov, and Goeke, 1995). For the two flavor case, one
finds EMR ¼ �2:1% (Silva et al., 2000; Ledwig, Silva,
and Vanderhaeghen, 2009) fairly close to experiment, con-
sidering that in the 
QSM calculation no parameterization
adjustment has been made to the N ! � transition. However,
the magnitudes of the photocouplings, which are given in
Table I, are largely under predicted in the 
QSM.

A number of subsequent works have revisited quark
models, restoring chiral symmetry by including two-body
exchange currents between the quarks. These exchange cur-
rents lead to nonvanishing ��N� quadrupole amplitudes
(Buchmann, Hernandez, and Faessler, 1997), even if the
quark wave functions have no D-state admixture. Such a
picture (Buchmann, Hernandez, and Faessler, 1997), in which
the � is excited by flipping the spins of two quarks, yields
EMR ’ �3:5%, and relates the N ! � and �þ quadrupole
moments to the neutron charge radius as

Qp!�þ ¼ r2n=
ffiffiffi
2

p
; Q�þ ¼ r2n: (21)

Using the experimental neutron charge radius, r2n ¼
�0:113ð3Þ fm2, Eq. (21) yields Qp!�þ ¼ �0:08 fm2 and

Q�þ ¼ �0:113 fm2. This value of Qp!�þ is close to the

empirical determination given in Eq. (20). In such hybrid
(quark and pion cloud) models (Faessler et al., 2006), the
pion cloud is fully responsible for the nonzero values of the
intrinsic quadrupole moments and hence for the nonspherical
shape of these particles. As a summary, we list in Table I the
�N� photocouplings A1=2 and A3=2 as well as the ratio EMR

in various models.

3. Large Nc predictions

Although the results obtained from the different QCD
inspired models reviewed may provide us with physical

insight on the ��N� transition and its relation to the nucleon
and � shape, they are not a rigorous consequence of QCD. In
the following subsections, we discuss what is known on the
��N� transition from approaches, which are directly related
with QCD in some limit, such as the 1=Nc expansion of QCD
(limit of large number of colors), chiral effective-field theory
(chiral limit of small pion masses or momentum transfers), or
lattice QCD simulations (continuum limit).

The 1=Nc expansion of QCD (’t Hooft, 1974; Witten,
1979) provides an expansion with a perturbative parameter
at all energy scales. This expansion has proved quite useful in
describing properties of baryons, such as ground state and
excited masses, magnetic moments, and electromagnetic de-
cays. For reviews, see Jenkins (1998) and Lebed (1999). For
example, the N ! � transition magnetic moment �N!� is
related to the isovector nucleon magnetic moment as (Jenkins

and Manohar, 1994) �p!�þ ¼ ð�p ��nÞ=
ffiffiffi
2

p ’ 3:23�N ,

within 10% of the experimental value of Eq. (19). The
EMR value was shown to be of order 1=N2

c (Jenkins, Ji,
and Manohar, 2002). Thus, its smallness is naturally
explained in the large Nc limit.

The largeNc limit also allows one to relate the� andN ! �
quadrupole moments via (Buchmann, Hester, and Lebed,

2002) Q�þ=Qp!�þ ¼ 2
ffiffiffi
2

p
=5þOð1=N2

cÞ. Using the phe-

nomenological value of Eq. (20) yields Q�þ ¼ �ð0:048�
0:002Þ fm2, which implies GE2ð0Þ ¼ �1:87� 0:08.

The relation between Qp!�þ and r2n of Eq. (21) was also

shown (Buchmann, Hester, and Lebed, 2002) to hold in the
large Nc limit. Furthermore, it was shown (Pascalutsa and
Vanderhaeghen, 2007) that in the large Nc limit

EMR ¼ CMR ¼ ð1=12ÞR3=2
N�ðM2

� �M2
NÞr2n=�V; (22)

with RN� � MN=M�, and �V ¼ �p � �n the isovector nu-

cleon anomalous magnetic moment. Numerically, Eq. (22)
yields EMR ¼ CMR ¼ �2:77%. For EMR, this prediction is
in an excellent agreement with experiment, Eq. (20). For
CMR, where a direct measurement at the real-photon point

TABLE I. Summary of the �N� photocouplings A1=2, A3=2, and EMR in different models compared with experiment.

A1=2 (10�3 GeV�1=2) A3=2 (10�3 GeV�1=2) EMR (%)

Experiment (Nakamura et al., 2010) �135� 6 �250� 8 �2:5� 0:5
SU(6) symmetry �107 �185 0
Quark models
Nonrelativistic a �103 �179 �2 to 0
Relativized b �108 �186 �0:2
Bag models
MIT (Donoghue, Golowich, and Holstein, 1975) �102 �176 0
Chiral bag (Bermuth et al., 1988) �106 �198 �1:8
Chiral bag (Lu, Thomas, and Williams, 1997) �134 �233 �0:03
Skyrme models c

(Walliser and Holzwarth, 1997) �136 �259 �2:3
Chiral quarks
Soliton d �70:5 �133 �2:1
�, 	 exchange e �91 �182 �3:5
(Faessler et al., 2006) �124:3 �244:7 �3:1

aThe results are from Koniuk and Isgur (1980); Gershtein and Jikia (1981); Isgur, Karl, and Koniuk (1982); Drechsel and Giannini
(1984); Bourdeau and Mukhopadhyay (1987); Gogilidze, Surovtsev, and Tkebuchava (1987).
bThe results are from Capstick and Karl (1990) and Capstick (1992).
cThe results are from Wirzba and Weise (1987) and Abada, Weigel, and Reinhardt (1996).
dThe results are from Silva et al. (2000) and Ledwig, Silva, and Vanderhaeghen (2009).
eThe results are from Buchmann, Hernandez, and Faessler (1997).
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is not possible, extending the large Nc relation to finite Q2

allows relations with the neutron electric FF, which agree well
with experiment (Grabmayr and Buchmann, 2001; Pascalutsa
and Vanderhaeghen, 2007).

4. Lattice QCD and chiral effective-field theory

Lattice QCD provides the possibility of calculating the N
to � EM FFs starting from the underlying theory of QCD.
The setup for the lattice calculation of the three transition FFs
is the same as that used for the extraction of the � FFs. The
advantage in this case is that the connected diagram yields the
full contribution. It is calculated by sequential inversion
through the sink for the same three simulations as described
in the case of the � FFs. In addition, recent calculations
using NF ¼ 2þ 1 dynamical DWF generated by the RBC
and UKQCD collaborations (Allton et al., 2008) provide a
unitary setup and a further check of the results (Alexandrou
et al., 2011). In all of these calculations, the pion mass is such
that the � is still stable. Figure 16 shows a comparison of the
lattice results forG?

M1 at the lightest pion mass in each type of

simulation. There is agreement among Wilson fermions and
results obtained using the hybrid action as well as dynamical
DWF. The agreement of results using dynamical fermions
with the quenched results indicate that pion-cloud contribu-
tions due to pair creation are still small at a pion mass of
about 330 MeV. As was also seen for the nucleon EM FFs,
lattice results underestimate G�

M1. Chiral dynamics is ex-

pected to induce large corrections at small Q2 and such
effects can be investigated as lattice simulations at smaller
pion masses become available.

The CMR and EMR are shown in Fig. 13 and have larger
statistical errors due to the fact that G?

E2 and G?
C2, being

subdominant, are harder to determine. We show quenched
results that have the smallest errors as well as results obtained
in the hybrid action approach and using NF ¼ 2þ 1 DWF

(Alexandrou et al., 2011). The conclusion that can be drawn
is that agreement of lattice results on EMR and CMR with
experiment is better as compared to that of G?

M1. Such an

agreement is seen also in other ratios, indicating that they are
less affected by lattice artifacts than each of the quantities
separately.

The present lattice QCD calculations are performed for
quark masses larger than their values in nature. To extrapolate
to the physical pion mass, one can use the 
EFT of QCD
(Weinberg, 1979; Gasser and Leutwyler, 1984; Bernard,
Kaiser, and Meissner, 1995). 
EFT provides a firm theoreti-
cal framework at low scales, with the relevant symmetries of
QCD built in consistently. The ��N� transition provides new
challenges for 
EFT as it involves the interplay of two light
mass scales: the pion mass and the N � � mass difference. A
first study, taking into account these two mass scales, was
performed within the framework of heavy-baryon chiral
perturbation theory (Butler, Savage, and Springer, 1993). A
more comprehensive study was subsequently carried out
(Gellas et al., 1999; Gail and Hemmert, 2006) using the
‘‘�-expansion’’ scheme. In that scheme, the two light scales
in the problem, the pion mass � � m�=�
SB, with �
SB �
1 GeV the chiral symmetry breaking (SB) scale, and the
�-resonance excitation energy � � ðM� �MNÞ=�
SB, are

counted as being of the same order, i.e., �� �. To allow for
an energy-dependent power-counting scheme designed to
take account of the large variation of the �-resonance con-
tributions with energy, the ‘‘�-expansion’’ scheme has been

FIG. 16 (color online). Q2 dependence of the N ! � FF G?
M1, at

the lightest pion mass for each type of simulation (Alexandrou,

2010). Quenched results are shown with the asterisks, results with

NF ¼ 2 Wilson with the open squares, results using the hybrid

action with the dotted squares and using DWF with the filled circles.

Experimental data from Bartel et al. (1968); Alder et al. (1972);

Baetzner et al. (1972); Stein et al. (1975); Beck et al. (1997);

Mertz et al. (2001); Joo et al. (2002); Stave et al. (2006); Sparveris

et al. (2007) are shown with the filled triangles. Lattice data are

from Alexandrou et al. (2008, 2011).
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FIG. 17 (color online). The m� dependence of EMR (upper panel)

and CMR (lower panel) atQ2 ¼ 0:1 GeV2. The data points are from

MAMI (Pospischil et al., 2001) (circle), and BATES (Mertz et al.,

2001; Sparveris et al., 2005) (squares). The filled diamonds are

quenched lattice results (Alexandrou et al., 2005). The open

diamond near m� ’ 0 represents their extrapolation assuming linear

dependence in m2
�. The solid squares at m� ¼ 0:36 GeV are hybrid

lattice results (Alexandrou et al., 2008) at Q2 ’ 0:04 GeV2 (upper

points) and at Q2 ’ 0:2 GeV2 (lower points). The solid curves are a


EFT result (Pascalutsa and Vanderhaeghen, 2005). The error bands

represent the estimate of theoretical uncertainty for the 
EFT
calculation.
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introduced (Pascalutsa and Phillips, 2003). It treats the two
light scales � and� on a different footing, counting �� �2, the
closest integer-power relation between these parameters in the
real world. It has been applied to the study of the ��N� FFs
(Pascalutsa and Vanderhaeghen, 2005), and has been used in
extrapolating the present lattice QCD calculations to the
physical pion mass. This is shown in Fig. 17 for the EMR
and CMR ratios, which shows that 
EFT predicts strong non-
analytic dependencies on the quarkmass form� <M� �MN ,
invalidating simple linear extrapolation in m2

�. In particular,
the 
EFT results reconcile the lattice results and the relatively
large negative experimental value for CMR.

For smaller pion masses, where the � becomes an
open channel, the lattice results will be able to provide
momentum-dependent phase shifts (Luscher, 1991a;
1991b). To extract resonance quantities from those will re-
quire a fitting procedure, e.g., Breit-Wigner or complex pole
fits, as done when extracting them from experimental
multipoles.

V. CONCLUSIONS

In this colloquium, we have presented the experimental
results and theoretical understanding on the shape of hadrons.
Although shapes of nuclei have been explored over many
decades, it is only in recent years that it became possible to
define this question in a theoretically rigorous way for had-
rons, and perform the experiments to answer it. The key
concept is to quantify size and shape of an extended object
through a quantum-mechanical density operator. For a rela-
tivistic bound-state system of near massless quarks, a proba-
bility interpretation is obtained by considering the system in a
light-front frame, and projecting its charge density along
the line of sight. We have argued that the resulting transverse
charge density encodes the information on hadron size
and shape.

On the experimental side, the most accessible and best
studied reaction to reveal hadron deformation is the N ! �
transition. We have reviewed the state of the art experimental
techniques, which have allowed one to accurately determine
the N ! � quadrupole amplitudes at low momentum trans-
fers, and establish a deformation in the N=� system. The
quadrupole transitions were pinned down on the order of a
few percent of the dominant magnetic dipole transition. A
quantitative understanding of the small, nonzero values of
these amplitudes from the underlying theory, QCD, is a
particular challenge. We provided the historical perspective
in which this question was addressed from QCD inspired
models, highlighting the role the pions play in these tran-
sitions. It is only very recently, however, that ab initio
calculations became possible, and state of the art full lattice
QCD simulations for both the N ! � and � quadrupole FFs
were able to quantify them. There is an ongoing effort by
many groups to perform such simulations at pion masses
approaching the physical value and reducing further lattice
artifacts.

The theoretical foundations, experimental techniques, and
lattice QCD simulation methods to access hadron deforma-
tion through the measurement of quadrupole FFs are well
established now. We can therefore expect in the near future

that a refinement of the lattice calculations, as well as new
high-precision experiments with polarized beams and polar-
ized targets, will allow us to further sharpen our understand-
ing of hadron shapes.
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