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Domains in ferroelectrics were considered to be well understood by the middle of the last century:

They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark

contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and

with the introduction of atomic-resolution studies via transmission electron microscopy, electron

holography, and atomic force microscopy with polarization sensitivity has their real complexity

been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric

materials, where functional properties inside domain walls are being directly measured. In this

paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making

comparisons where possible with magnetic domains and domain walls. An important part of this

review will concern device applications, with the spotlight on a new paradigm of ferroic devices

where the domain walls, rather than the domains, are the active element. Here magnetic wall

microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and

their colleagues. These devices exploit the high domain wall mobilities in magnets and their

resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years

ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have

slower domain wall speeds, but may exploit their smaller size as well as their different functional

properties. These include domain wall conductivity (metallic or even superconducting in bulk

insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the

surrounding domains are not.
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I. INTRODUCTION

Ferroic materials (ferroelectrics, ferromagnets, ferroelas-
tics) are defined by having an order parameter that can point
in two or more directions (polarities), and be switched be-
tween them by application of an external field. The different
polarities are energetically equivalent, so in principle they all
have the same probability of appearing as the sample is
cooled down from the paraphase. Thus, zero-field-cooled
ferroics can, and often do, spontaneously divide into small
regions of different polarity. Such regions are called
‘‘domains,’’ and the boundaries between adjacent domains
are called ‘‘domain walls’’ or ‘‘domain boundaries.’’ The
ordered phase has a lower symmetry compared to the parent
phase, but the domains (and consequently domain walls)
capture the symmetry of both the ferroic phase and the para-
phase. For example, a cubic phase undergoing a phase tran-
sition into a rhombohedral ferroelectric phase will exhibit
polar order along the eight equivalent 111-type crystallo-
graphic directions, and domain walls in such a system sepa-
rate regions with diagonal long axes that are 71�, 109�, and
180� apart. We begin our description with a general discus-
sion of the causes of domain formation, approaches to under-
standing the energetics of domain size, factors that influence
the domain wall energy and thickness, and a taxonomy of the
different domain topologies (stripes, vertices, vortices, etc.).
As the article unfolds, we endeavor to highlight the common-
alities and critical differences between various types of fer-
roic systems.

Although metastable domain configurations or defect-
induced domains can and often do occur in bulk samples,

an ideal (defect-free) infinite crystal of the ferroic phase is
expected to be most stable in a single-domain state (Landau
and Lifshitz). Domain formation can thus be regarded in
some respect as a finite size effect, driven by the need to
minimize surface energy. Self-induced demagnetization or
depolarization fields cannot be perfectly screened and always
exist when the magnetization or polarization has a component
perpendicular to the surface. Likewise, residual stresses due
to epitaxy, surface tension, shape anisotropy, or structural
defects induce twinning in all ferroelastics and most ferro-
electrics. In general, then, the need to minimize the energy
associated with the surface fields overcomes the barrier for
the formation of domain walls and hence domains appear.
Against this background, there are two observations and a
corollary that constitutes the core of this review:

(1) The surface-to-volume ratio grows with decreasing
size; consequently, small devices such as thin films,
which are the basis of modern electronics, can have
small domains and a high volume concentration of
domain walls.

(2) Domain walls have different symmetry, and hence
different properties, from those of the domains they
separate.

The corollary is that the overall behavior of the films may
be influenced, or even dominated, by the properties of the

FIG. 1. Schematic of logic circuits where the active element is not

charge, as in current complementary metal oxide semiconductor

(CMOS) technology, but domain wall magnetism. From Allwood

et al., 2005.
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walls, which are different from those of the bulk material.
Moreover, not only do domain walls have their own proper-

ties but, in contrast to other types of interface, they are
mobile. One can therefore envisage new technologies where
mobile domain walls are the ‘‘active ingredient’’ of the

device, as highlighted by Salje (2010). A prominent example
of this idea is the magnetic ‘‘racetrack memory’’ where the
domain walls are pushed by a current and read by a magnetic

head (Parkin, Hayashi, and Thomas, 2008); in fact, the entire
logic of an electronic circuit can be reproduced using mag-

netic domain walls (Allwood et al., 2005) (see Fig. 1).
Herbert Kroemer, Physics Nobel Laureate in 2000 for his

work on semiconductor heterostructures, is often quoted for
his dictum ‘‘the interface is the device.’’ He was, of course,
referring to the interfaces between different semiconductor

layers. His ideas were later extrapolated, successfully, to
oxide materials, where the variety of new interface properties
seems to be virtually inexhaustible (Mannhart and Schlom,

2010; Zubko et al., 2011). However, this review is about a
different type of interface: not between different materials,

but between different domains in the same material.
Paraphrasing Kroemer, then, our aim is to show that ‘‘the
wall is the device.’’

II. DOMAINS

A. Boundary conditions and the formation of domains

The presence and size of domains (and therefore the

concentration of domain walls) in any ferroic depends on
its boundary conditions. Consider, for example, ferroelec-
trics. The surfaces of a ferroelectric material perpendicular

to its polar direction have a charge density equal to the
dipolar moment per unit volume. This charge generates an
electric field of sign opposite to the polarization and magni-

tude E ¼ P=" (where " is the dielectric constant). For a
typical ferroelectric (P ¼ 10 �C=cm2, "r ¼ 100–1000), this
depolarization field is c.a. 10–100 kV=cm, which is about an

order of magnitude larger than typical coercive fields. So, if
nothing compensates the surface charge, the depolarization
will in fact cancel the ferroelectricity. Charge supplied by

electrodes can partly screen this depolarization field and,
although the screening is never perfect (Batra and
Silverman, 1972; Dawber, Jung, and Scott, 2003; Dawber

et al., 2003; Stengel and Spaldin, 2006), good electrodes can
stabilize ferroelectricity down to films just a few unit cells
thick (Junquera and Ghosez, 2003). But a material can also

reduce the self-field by dividing the polar ground state into
smaller regions (domains) with alternating polarity, so that

the average polarization (or spin, or stress, depending on the
type of ferroic material considered) is zero. Although this
does not completely get rid of the depolarization (locally,

each individual domain still has a small stray field), the
mechanism is effective enough to allow ferroelectricity to
survive down to films of only a few unit cells thick (Streiffer

et al., 2002; Fong et al., 2004). The same samples (e.g.,
epitaxial PbTiO3 on SrTiO3 substrates) can in fact show
either extremely small (a few angstroms) domains or an

infinitely large monodomain configuration just by changing
the boundary condition (Fong et al., 2006), i.e., by allowing

free charges to screen the electric field so that the formation
of domains is no longer necessary (and it is noteworthy that
such effective charge screening can be achieved just by
adsorbates from the atmosphere).

An important boundary condition is the presence or other-
wise of interfacial ‘‘dead layers’’ that do not undergo the
ferroic transition. Dead layers have been discussed in the
context of ferroelectrics, where they are often proposed as
explanations for the worsening of the dielectric constant of
thin films, although the exact nature, thickness, and even
location of the dead layer, which might be inside the elec-
trode, is still a subject of debate (Sinnamon, Bowman, and
Gregg, 2001; Stengel and Spaldin, 2006; Chang et al., 2009).
In ferroelectrics, dead layers prevent screening causing do-
mains to appear (Bjorkstam and Oettel, 1967; Kopal et al.,
1999; Bratkovsky and Levanyuk, 2000). More recently,
Luk’yanchuk et al. (2009) proposed that an analogous
phenomenon may take place in ferroelastics, so that ‘‘ferroe-
lastic dead layers’’ can cause the formation of twins (Fig. 2).
Surfaces have broken symmetries and are thus intrinsically
uncompensated, so interfacial layers are likely to be a general
property of all ferroics, including, of course, multiferroics
(Marti et al., 2011).

B. Kittel’s law

For the sake of simplicity, most of this discussion will
assume ideal open boundary conditions and no screening of
surface fields. The geometry of the simplest domain morphol-
ogy, namely, stripe domains, is depicted in Fig. 3. Although a

FIG. 2. Surface ‘‘dead’’ layers that do not undergo the ferroic

transition can cause the appearance of ferroelastic twins in other-

wise stress-free films. Dead layers also exist in other ferroics such as

ferroelectrics and ferromagnets. From Luk’yanchuk et al., 2009.
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FIG. 3 (color online). Schematic of the geometry of 180� stripe

domains in a ferroelectric or a ferromagnet with out-of-plane

polarity.
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stripe domain is by no means the only possible domain
structure, it is the most common (Edlund and Jacobi, 2010)
and conceptually the simplest. It also captures the physics of
domains that is common to all types of ferroic materials. For
more specialized analyses, the reader is referred to mono-
graphs about domains in different ferroics: ferromagnets
(Hubert and Schafer, 1998), ferroelectrics (Tagantsev,
Cross, and Fousek, 2010), and ferroelastics or martensites
(Khachaturyan, 1983).

Domain size is determined by the competition between the
energy of the domains (itself dependent on the boundary
conditions, as emphasized above) and the energy of the
domain walls. The energy density of the domains is propor-
tional to the domain size: E ¼ Uw, where U is the volume
energy density of the domain and w is the domain width.
Smaller domains therefore have smaller depolarization, de-
magnetization, and elastic energies. But the energy gained by
reducing domain size is balanced by the fact that this requires
increasing the number of domain walls, which are themselves
energetically costly.

The energy cost of the domain walls increases linearly
with the number of domain walls in the sample, and there-
fore it is inversely proportional to the domain size
(n ¼ 1=w). Meanwhile, the energy of each domain wall is
proportional to its area and, thus, to its vertical dimension. If
an individual domain wall stopped halfway through the
sample, the polarity beyond the end point of the wall would
be undefined, so, topologically, a domain wall cannot do
this; it must either end in another wall (as it does for needle
domains) or else cross the entire thickness of the sample. For
walls that cross the sample, the energy is proportional to the
sample thickness. Thus, the walls’ energy density per unit
area of thin film is E ¼ �d=w, where � is the energy density
per unit area of the wall. Adding up the energy costs of
domains and domain walls, and minimizing the total with
respect to the domain size, leads to the famous square root
dependence:

w ¼
ffiffiffiffiffiffiffiffi
�

U
d

r
: (1)

Landau and Lifshitz (1935) and Kittel (1946) proposed
this pleasingly simple model within the context of
ferromagnetism, where the domain energy was provided
by the demagnetization field (assuming spins pointing out
of plane). It is nevertheless interesting to notice that Kittel’s
classic article predicted that pure stripes were in fact ener-
getically unfavorable compared to other magnetic domain
configurations (see Fig. 4); this is because his calculations
were performed for magnets with relatively small magnetic
anisotropy. Where the anisotropy is large, as in cobalt,
stripes are favored, and this is also the case for uniaxial
ferroelectrics or for perovskite ferroelectrics under in-plane
compressive strain (which strongly favors out-of-plane po-
larization). Closure domains are common in ferromagnets
(where anisotropy is intrinsically smaller than in ferroelec-
trics), but the width of the ‘‘closure stripes’’ also scales as
the square root of the thickness (Kittel, 1946). We return
again to the subject of closure domains toward the end of

this section, as it has become a hot topic in the area of
ferroelectrics and multiferroics.

Kittel’s law was extended by Mitsui and Furuichi (1953)
for ferroelectrics with 180� domain walls, by Roitburd
(1976) for ferroelastic thin films under epitaxial strain,
by Pompe et al. (1993) and Pertsev and Zembilgotov
(1995) for epitaxial films that are simultaneously ferroelec-
tric and ferroelastic, and, more recently, by Daraktchiev,
Catalan, and Scott (2008) for magnetoelectric multifer-
roics. The square root dependence of stripe domain width
on film thickness is therefore a general property of all
ferroics, and it also holds for other periodic domain
patterns (Kinase and Takahashi, 1957; Craik and Cooper,
1970; Thiele, 1970).

C. Wall thickness and universality of Kittel’s law

The exact mathematical treatment of the ‘‘perfect stripes’’
model assumes that the domain walls have zero or at least
negligible thickness compared to the width of the domains. In
reality, however, domain walls do have a finite thickness �,
which depends on material constants (Zhirnov, 1959). Scott
(2006) observed that for each given material one could
rewrite the square root dependence as

w2

�d
¼ G; (2)

where G is an adimensional parameter. This equation is also
useful in that it can be used in reverse in order to estimate the
domain wall thickness of any ferroic with well-defined
boundary conditions (Catalan et al., 2007a). Indirect versions
of it have been calculated for the specific case of ferroelec-
trics (Lines and Glass, 2004; De Guerville et al., 2005), but in
fact Eq. (2) is independent of the type of ferroic and allows
comparisons between different material classes. Schilling
et al. (2006a) did such a comparison and showed explicitly
that, while all ferroics scaled with a square root law, ferro-
magnetic domains were wider than ferroelectric domains.
Meanwhile, the walls of ferromagnets are also much thicker
than those of ferroelectrics (Zhirnov, 1959), so that when the
square of the domain size is divided by the wall thickness as
per Eq. (2), all ferroics look the same (see Fig. 5), meaning

FIG. 4. Kittel’s classic study of the minimum energy of different

domain configurations: I are ‘‘closure stripes’’ with no demagneti-

zation; II are conventional stripes; and III is a monodomain with the

polar direction in plane. Note that in the early calculations for

magnetic domains, the conventional stripes were not stable at any

finite thickness, due to the small anisotropy assumed. From Kittel,

1946.
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that G is the same for all the different ferroics. The value of G
has been calculated (De Guerville et al., 2005; Catalan et al.,
2007a, 2009)1 as

G ¼ 1:765

ffiffiffiffiffiffi
�x

�z

s
; (3)

where G depends on the anisotropy between in-plane (�x)
and out-of-plane (�z) susceptibilities, but in practice the
dependence on material properties is weak because they
are inside a square root.

Equation (2) is useful in several ways. First, it allows one
to estimate domain wall thicknesses just by measuring do-
main sizes, and it is easier to measure wide domains than it is
to measure narrow domain walls. As we discuss in the
following sections, domain wall thicknesses have tradition-
ally been difficult to determine precisely due to their narrow-
ness (see Sec. III.B). Second, Eq. (2) is also a useful guide as

to what the optimum crystal thickness should be in order to
stabilize a given domain period, and this may be useful, for
example, in the fabrication of periodically poled ferroelec-
trics for enhancement of the second-harmonic generation.
Specific examples of this are discussed in detail in Sec. V
of this review.

Although Eq. (2) may appear slightly ‘‘miraculous’’ in that
it links in a simple and useful way some quantities that are not
at first sight related, closer inspection removes the mystery. A
direct comparison between Eqs. (1) and (2) shows that at
heart, the domain wall renormalization of Kittel’s law is a
consequence of the fact that the domain wall surface energy
density � is of the order of the volume energy density U
integrated over the thickness of the domain wall �, i.e.,
�� U�, which one could have guessed just from a
dimensional analysis. We emphasize also that these equa-
tions are derived assuming open boundary conditions and
are not valid when the surface fields are screened.

D. Domains in nonplanar structures

Kittel’s simple arguments can be adapted to describe more
complex geometries. For instance, one can extend them to
calculate domain size in nonplanar structures such as nano-
wires and nanocrystals or nanodots. The interest in these
three-dimensional structures stems originally from the fact
that they allow the reduction of the on-chip footprint of
memory devices. The size of the domains in simple three-
dimensional shapes such as, say, a parallelepiped (cuboid)
can be readily rationalized by adding up the energy of the
domain walls plus the surface energy of the six faces of the
parallelepiped with lateral dimensions dx, dy, and dz.

Minimizing this with respect to domain width w leads to
(Catalan et al., 2007b)

w2 ¼
ffiffiffi
2

p
2

�

ðUx=dxÞ þ ðUy=dyÞ þ ðUz=dzÞ ; (4)

where � is the energy per unit area of the domain walls, and
Ux, Uy, and Uz are the contributions to the volume energy

density coming from the x, y, and z facets of the domains.
Equation (4) becomes the standard Kittel law when two of the
dimensions are infinite (thin-film approximation). It can also
be seen that domains become progressively smaller as the
sample goes from thin film (one finite dimension) to column
(two finite dimensions) to nanocrystal (three finite dimen-
sions) (Schilling et al., 2009).

These arguments also work for the grains of a polycrystal-
line sample (ceramic or nonepitaxial film), which are gener-
ally found to have small domains that scale as the square root
of the grain size rather than the overall size dimensions (Arlt,
1990). Arlt also observed and rationalized the appearance of
bands of correlated stripe domains, called ‘‘herringbone’’
domains (see Fig. 6) (Arlt and Sasko, 1980; Arlt, 1990).
The concept of correlated clusters of domains was later
generalized for more complex structures as ‘‘metadomains’’
or ‘‘bundle domains’’ (Ivry, Chu, and Durkan, 2010), and
their local functional response was studied using piezores-
ponse force microscopy (PFM) (Anbusathaiah et al., 2009;
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FIG. 5 (color online). Comparisons between stripe domains of

different ferroic materials show (i) that all of them scale with the

same square root dependence of domain width on film thickness;

(ii) that Kittel’s law holds true for ferroelectrics down to small

thickness; (iii) that when the square of the domain size is normal-

ized by the domain wall thickness, the different ferroics fall on

pretty much the same master curve. Adapted from Catalan et al.,

2009.

1We note that different values have been given for the exact

numerical coefficient. The discrepancies are typically factors of 2

and are due to the different conventions regarding whether � is the

domain wall thickness or the correlation length, and whether w is

the domain width or the domain period. It is therefore important to

carefully define the parameters: Here � is twice the correlation

length (which is a good approximation to the wall thickness),

whereas w is the domain size (half the domain period).

G. Catalan et al.: Domain wall nanoelectronics 123

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



Ivry, Chu, and Durkan, 2010). Herringbone domains appear

only above a certain critical diameter, above which the

domain size dependence gets modified: The stripes scale as

the square root of the herringbone width, while the herring-

bone width scales as r2=3 (where r is the grain radius), so that

the stripe width ends up scaling as r1=3 (Arlt, 1990).
Randall and co-workers also studied in close detail the

domain size dependence within ceramic grains (Cao and

Randall, 1996; Randall et al., 1998) and concluded that the

square root dependence is valid only within a certain range of

grain sizes, with the scaling exponent being smaller than 1
2 for

grains larger than 10 �m, and bigger than 1
2 for grains smaller

than 1 �m. The same authors observed cooperative switching

of domains across grain boundaries, as did Gruverman et al.

(1995a, 1995b, 1996), evidence that the elastic fields associ-

ated with ferroelastic twinning are not easily screened and

can therefore couple across boundaries.
Similar ideas underpin the description of domains in nano-

columns and nanowires, where domain size is found to be

well described by Eq. (4) with one dimension set to infinity

(Schilling et al., 2006b). An interesting twist is that the

competition between domain energy and domain wall energy

can be used not just to rationalize domain size, but to actually

modulate the orientation of the domains just by changing the

relative sample dimensions (Schilling et al., 2007) (see

Fig. 7).
These are a few examples, but there is still work to be done.

The geometry of domains in noncompact nanoshapes such as

nanorings or nanotubes, for example, remains to be rational-

ized. The interest in such structures goes beyond purely

academic curiosity, as ferroelectric nanotubes may have

real life applications in nanoscopic fluid-delivery devices

such as ink-jet printers and medical drug delivery implants.
Another important question that is only beginning to be

studied concerns the switching of the ferroelectric domains

in such nonplanar structures: Spanier et al. (2006) showed

that it was possible to switch the transverse polarization even
in ultrathin nanowires (3 nm diameter), while Gregg and co-

workers have shown that the longitudinal coercive field can

be modified by introducing notches or antinotches along the

wires (McMillen et al., 2010; McQuaid, Chang, and Gregg,
2010). The same group of authors are also pioneering re-

search on the static and dynamic response of correlated

bundles of nanodomains, showing that such metadomains

can, to all intents and purposes, be treated as if they were
domains in their own right (McQuaid et al., 2011).

E. The limits of the square root law: Surface effects, critical

thickness, and domains in superlattices

In spite of its simplicity, the square root law holds over a
remarkable range of sizes and shapes. It is natural to ask when

or whether this law breaks down. For large film thickness

there is no theoretical threshold beyond which the law should

break down, and, experimentally, Mitsui and Furuichi (1953)
observed conformance to Kittel’s law in crystals of millimeter

thickness. In epitaxial thin films, however, screening effects

and/or defects have been reported to induce randomness and

even stabilize monodomain configurations in PbTiO3 films
thicker than 100 unit cells (Takahashi et al., 2008). As for the

existence of a lower thickness limit, Kittel’s derivation makes

a number of assumptions that are size dependent. One of them

is that the domain wall thickness is negligible in comparison
with the domain size. Domain walls are sharp in ferroelastics

and even more so in ferroelectrics (Merz, 1954; Kinase and

Takahashi, 1957; Zhirnov, 1959; Padilla, Zhong, and

Vanderbilt, 1996; Meyer and Vanderbilt, 2002), so that this
assumption is robust all the way down to an almost atomic

scale (Fong et al., 2004), but this is not the case for

ferromagnets, where domain walls are thicker (10–100 nm).

For ferromagnets, Kittel’s law breaks down at film thick-
nesses of several tens of nanometers (Hehn et al., 1996).

A second assumption of Kittel’s law is that the two sur-

faces of the ferroic material do not ‘‘see’’ each other. That is

to say, the stray field lines connecting one domain to its

neighbors are much denser than the field lines connecting
one face of the domain to the opposite one. However, if and/

or when the size of the domains becomes comparable to the

thickness of the film, the electrostatic interaction with the

opposite surface starts to take over (Kopal, Bahnik, and
Fousek, 1997). Takahashi et al. (2008) recently suggested

that the square root law breaks down at a precise threshold

value of the depolarization field. Below that critical thickness,

the domain size no longer decreases but it increases again,
and diverges as the film thickness approaches zero.

Neglecting numerical factors of order unity and also neglect-

ing dielectric anisotropy, the critical thickness for a ferro-

electric is (Kopal, Bahnik, and Fousek, 1997; Streiffer et al.,
2002) dC � �ð"=P2Þ (where " ¼ "0"r is the average dielec-
tric constant), while for ferroelastic twins in an epitaxial

FIG. 6. (Left) Classic herringbone twin domain structure in large

grains of ferroelastic ceramics, and (right) bundles of correlated

stripes in smaller grains. From Arlt, 1990.
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FIG. 7. Ferroelastic and ferroelectric 90� domains in single-

crystal nanocolumns of BaTiO3. The domains arrange themselves

so as to have the depolarizing fields only on the narrowest dimen-

sion of the column, thus minimizing the overall surface energy.

Adapted from Schilling et al., 2007.
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structure it is (Pertsev and Zembilgotov, 1995) dC ¼
½�=Gðsa � scÞ2�, where G is the shear modulus and sa and
sc are the spontaneous tetragonal strains (along a and c axes,
respectively). The theoretical divergence from the square root
law for ferroelastic twins in epitaxial films is shown in Fig. 8.

Notice that, as a rule of thumb, these critical thicknesses
for domain formation are reached when the size of the
domains becomes comparable to the size of the interfacial
dead layers (Luk’yanchuk et al., 2009). They are typically
in the 1–10 nm range, and therefore ferroelectric and
ferroelastic domains persist even for extremely thin layers,
as shown by Fong et al. (2004) for single films and by Zubko
et al. (2010) in fine-period superlattices.

In the particular case of epitaxial ferroelastics there are
further geometrical constraints on the domain size that are not
readily captured by continuum theories. Ferroelastic twinning
introduces a canting angle between the atomic planes of
adjacent domains. The canting angle � is, for the particular
case of 90� twins in tetragonal materials (e.g., BaTiO3 or

PbTiO3), � ¼ 90� � 2tan�1ða=cÞ. The existence of this cant-
ing angle, combined with the tendency of the bigger domains

to be coplanar with the substrate, introduces a geometrical
lower limit to domain size (Vlooswijk et al., 2007): in order

to ensure coplanarity between Bragg planes across the small-

est domain, the minimum domain size must be wmin
a ¼

c= sinð�Þ (see Fig. 9). For the particular case of PbTiO3,
wmin

a ¼ 7 nm. This geometrical minimum domain size ap-

plies only to films that are epitaxial (Ivry, Chu, and Durkan,

2009; Vlooswijk, Catalan, and Noheda, 2010).

F. Beyond stripes: Vertices, vortices, quadrupoles, and other

topological defects

A final question regarding the domain scaling issue con-

cerns what happens to domains beyond the square root range?

Other domain morphologies are possible that can be reached
in extreme cases of confinement, or when the polarization is

coupled to other order parameters. In the ultrathin-film re-

gime, for example, atomistic simulations predict that the

perfect 180� domains of ferroelectrics should become akin
to the closure configuration of ferromagnets (Kornev, Fu, and

Bellaiche, 2004; Aguado-Fuente and Junquera, 2008) (see

Fig. 10). It may seem preposterous to care about a domain

structure that takes place only in films that are barely a few
unit cells thick, but with the advent of ferroelectric super-

lattices these domains become accessible, as the thickness of

each individual layer in the superlattice can be as thin as one

single unit cell (Dawber et al., 2005; Zubko et al., 2010). In
the weak-coupling regime, the ferroelectric slabs within the

superlattice act as almost separate ultrathin entities

(Stephanovich, Luk’yanchuk, and Karkut, 2005), so that it

is quite possible that these closure stripes are achieved. It is
worth noticing that the orientation of the in-plane component

of the polarization is such that, if the domain walls were

pushed toward each other, there would be a head-to-head

collision of polarizations; the electrostatic repulsion between
these in-plane components might explain why it seems to be

almost impossible to eliminate the domain walls in ferroelec-

tric superlattices (Zubko et al., 2010).
On a related note, while the 180� domain walls of ferro-

electrics have traditionally been considered nonchiral (i.e.,
the polarization just decreases, goes through zero, and in-

creases again, but does not change orientation through the

wall), recent calculations challenge this view and show that

they do have some chirality, i.e., the polarization rotates
within them as in a magnetic Bloch wall (Lee et al., 2009).

Therefore, when the domains are sufficiently small to be

comparable to the thickness of the walls, the end result will

be indeed something resembling the closure stripe configu-
ration of Fig. 10. The existence of this domain wall chirality

might seem surprising, but it was explained two decades

ago by Houchmandzadeh, Lajzerowicz, and Salje (1991): If

there is more than one order parameter involved in a
ferroic (and perovskite ferroelectrics are always ferroelastic

as well as ferroelectric), then the coupling introduces chi-

rality. This, of course, is also true of magnetoelectric multi-

ferroics (Seidel et al., 2009; Daraktchiev, Catalan, and Scott,
2010). The theoretical prediction of ferroelectric closurelike

structures where domain walls meet an interface has been

FIG. 9 (color online). Schematic of the geometrical minimum

domain size in a tetragonal twin structure such that wider

c domains are coplanar with the substrate while the narrow

a domains are tilted with the inherent twinning angle �. From
Vlooswijk, Catalan, and Noheda, 2010.

FIG. 8. Calculated domain size for 90� ferroelastic domains in an

epitaxial film as a function of film thickness. Below a certain critical

thickness the domain size stops following the square root depen-

dence and begins to diverge. This critical thickness is of the order of

the domain wall thickness. From Pertsev and Zembilgotov, 1995.
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experimentally confirmed by two different groups (Jia et al.,
2011; Nelson et al., 2011) (see Fig. 11).

It is worth noticing here that the arrangements in Fig. 11
are not a classic fourfold closure structure, with four walls at
90� converging in a central vertex. Instead, these domain
structures should be seen as half of a closure quadrant. The
bifurcation of a quadrant into two threefold vertices, with
walls converging at angles of 90� and 135�, was predicted by
Srolovitz and Scott (1986); their schematic depiction of the
bifurcation process is reproduced in Fig. 12. The reverse
process of coalescence of two threefold vertices to form

one fourfold vertex, also predicted by Srolovitz and Scott,
was recently observed in BaTiO3 by Gregg et al. (private
communication). Vertices are a topological singularity
closely related to vortices, the main difference being that a
vortex implies flux closure, whereas a vertex is just a con-
fluence of domain walls; some vertices are also vortices (e.g.,
the vertices of 90� closure quadrants in ferromagnets and
ferroelectrics), but others are not.

Vortices are frequently observed in ferromagnetic nanodots
(Shinjo et al., 2000). At the vortex core, the spin must
necessarily point out of the plane of the nanodot: This out-
of-plane magnetic singularity is extremely small, yet stable,
and could therefore be useful for memories. Ferroelectric
vortices are also theoretically possible (Naumov, Bellaiche,
and Fu, 2004), and Naumov and co-workers predicted that
such structures are switchable and should yield an unusually
high density of ‘‘bits’’ for memory applications (Naumov
et al., 2008).

So far, there is tantalizing experimental evidence for vor-
tices in ferroelectrics (Gruverman et al., 2008; Rodriguez
et al., 2009; Schilling et al., 2009). However, although
vortices almost certainly appear as transients during switch-
ing (Naumov and Fu, 2007; Gruverman et al., 2008; Sene
et al., 2009), it is difficult to observe static ferroelectric
vortices, or even just closure structures, in conventional
tetragonal ferroelectrics. This is because a simple quadrant
arrangement generates enormous disclination strain (Arlt and
Sasko, 1980) (see Fig. 13); for dots above a certain critical

FIG. 11 (color online). Observation of closurelike polar arrange-

ments at the junction between ferroelectric domain walls and an

interface, for thin films of BiFeO3 (left) and PbTiO3 (right). Note

that the wall angles are 135�, 90�, 135� , as in the Srolovitz-Scott

model, not 120�. Adapted from Nelson et al., 2011 (left) and Jia

et al., 2011 (right).

FIG. 12. A fourfold vertex in a 90� quadrant is predicted by a

Pott’s model to bifurcate into two threefold vertices. From Srolovitz

and Scott, 1986.

Above Tc Below Tc

FIG. 13. (Left) Schematic illustration of the disclination stresses

that are generated in the center of a closure structure of a tetragonal

ferroelectric or ferroelastic; (right) experimental observation that

ferroelastic stripes appear within the quadrants, probably in order to

alleviate the stress. Adapted from Schilling et al., 2009.

FIG. 10 (color online). Ferroelectric ‘‘closure stripes’’ predicted by atomistic simulations of ultrathin films. From Kornev, Fu, and

Bellaiche, 2004 and Aguado-Fuente and Junquera, 2008.
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size, alleviation of associated stresses will be provided by the
formation of ferroelastic stripe domains within each quadrant.
A back-of-the-envelope calculation allows us to estimate the
size at which the stripes will break the quadrant configuration.
We do so by comparing the elastic energy stored within a
single quadrant domain with the energy cost of a domain
wall. The dimensions of the nanodot are L� L� d, G is the
elastic shear modulus, and " is the disclination strain, which
is of the same order of magnitude as the spontaneous strain.
The elastic energy density stored in a quadrant of volume
L2d=4 is given by

Eelastic ¼ 1

2
Gs2

L2d

4
: (5)

The energy cost of the first wall to divide the quadrant is the
surface energy density of the wall (�) times the area of the
new domain wall:

Ewall ¼ �

ffiffiffi
2

p
2

Ld: (6)

When these two quantities are equal, the quadrant configura-
tion stops being energetically favorable. By making Eelastic ¼
Ewall we therefore obtain an approximate critical size

L ¼ 4
ffiffiffi
2

p �

Gs2
; (7)

which, for the case of BaTiO3 (G ¼ 55 GPa, � ¼
3� 10�3 J=m2, and s ¼ 0:01), gives a critical size of only
3 nm. That small size explains why in larger ferroelectric
nanocubes one observes a quadrantlike structure split by
multiple ferroelastic stripes (Schilling et al., 2009) (see
Fig. 13). More recently, ferroelectric flux closure has been
confirmed in metadomain formations consisting of finely
twinned quadrants (McQuaid et al., 2011).

Equation (7) shows that, in order to find a ‘‘pure’’ (non-
twinned) ferroelectric quadrant structure, one will have to
look for ferroelectrics with small spontaneous strain and high
domain wall energy. BiFeO3 has a large domain wall energy
(Catalan et al., 2008; Lubk, Gemming, and Spaldin, 2009)
due to the coupling of polarization to antiferrodistortive and
magnetic order parameters (BiFeO3 is simultaneously ferro-
electric, ferroelastic, ferrodistortive, and antiferromagnetic),
while at the same time its piezoelectric deformation is small.
That helps stabilize closure structures in this material (Balke
et al., 2009; Nelson et al., 2011).

In purely magnetic materials, of course, vortex domains
are well known and even their switching dynamics are now
being studied, as illustrated in Fig. 14: Note that this figure
shows that one can create magnetic vortex domains by re-
petitive application of demagnetizing fields to single-domain
soft magnets. Similarly, Ivry et al. (2010) observed that
application of depolarizing electric fields has a similar effect
in ferroelectrics.

As mentioned earlier, a close relative of vortices and
closure domains is what we call ‘‘vertex’’ domains. A vertex
is the intersection between two or more domain walls in a
ferroic. In the classic quadrant structure, the vertex is a four-
fold intersection between 90� domains, while in a needle
domain the vertex is a twofold intersection. It is important to
note that each of the domain walls intersecting the vertex is

equivalent through symmetry; that is, they cannot be different

walls, such as (011) and (031), a point to which we return

below. Using topological arguments, Janovec (1983) showed

that the numberN of domain walls intersecting at the vertex is

equal to the dimensionality of the order parameter. Janovec

and Dvorak further developed the theory in a longer review in

1986. However, complicating the general theory of Janovec is

the fact that several order parameters might coexist (as in

multiferroic materials), and that the domains do not neces-

sarily have the same energy.
The energetics and stability of vertex domains were ana-

lyzed by Srolovitz and Scott (1986) using Potts and clock

models. They showed that fourfold vertices, such as are found

in Ba2NaNb5O15 (Pan et al., 1985) can, in some materials,

spontaneously separate into pairs of adjacent threefold verti-

ces. There is an apparent paradox regarding closure domains

between the group theoretic predictions of Janovec (1983)

and Janovec and Dvorak (1986), and the clock-model calcu-

lations of Srolovitz and Scott (1986). In particular, Janovec

states that threefold closure vertices are forbidden, whereas

Srolovitz and Scott show that they may be energetically

favored over fourfold vertices. The paradox is reconciled as

follows: What Janovec specifically forbids are isolated three-

fold vertices with three 120� angles between the domain

walls. What Scott and Srolovitz predict is a separation of

energetically metastable fourfold vertices into closely spaced

pairs of threefold vertices; but these pairs each consist of one

original 90� angle between domain walls, and two 135�
angles along the line between the vertex pairs. Hence this

FIG. 14. Dynamic response of magnetic vortices, from the work

of Cowburn’s and co-workers: (a)–(e) Hysteresis curves showing the

decay of a single-domain state into a vortex state via a series of

minor hysteresis cycles. The entire decay process is shown in (a).

The arrowed solid line indicates the direction of the transition from

single domain to vortex state. The dashed line outlines the Kerr

signal corresponding to the positive and negative applied saturation

fields. The first three and the last demagnetizing cycles are dis-

played in separate panels; (b) first cycle, (c) second cycle, (d) third

cycle, and (e) 18th cycle. From Ana-Vanessa, Xiong, and Cowburn,

2006.
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should properly be regarded as not a threefold domain vertex
but rather a fourfold vertex that has separated slightly at its
center. This phenomenon is analogous to the separation of the
fourfold closure domains in BaTiO3.

Another example of vertex structures that does not satisfy
the basic model of Janovec is that in thiourea inclusion
compounds (Brown and Hollingsworth, 1995). In this case
inclusions in a thiourea matrix result in large strains (strain
coupling is not directly included in the Janovec model). The
result, illustrated in Fig. 15, is a beautiful 12-fold vertex
structure. Note that this is despite the fact that the order
parameter is of N ¼ 2 dimensions in thiourea (Toledano
and Toledano, 1987). The reason is strain. The domain cluster
shown in thiourea is of domain walls of different symmetry,
notably f130g and f110g. Yet another example of domain wall
vertices is provided by the charge density wave domains
observed by Chen, Gibson, and Fleming (1982) in
2H-TaSe2 (see Fig. 15); this system, with three spatial in-
plane orientations and þ and � out-of-plane distortions, is
equivalent to ferroelectric YMnO3. Both violate the simpler
requirement described by Janovec (1983) that the number of
domains N at a vertex must equal the dimensionality n of the
order parameter and require incorporation of coupling terms
plus energy considerations to determine the equilibrium
structure, as done by Janovec et al. (1985, 1986). On a
more general level, Saint-Gregoire et al. (1992) showed
that domain wall vertex structure classifications consist of
36 twofold vertices with five equivalence classes, 96 fourfold

vertices of ten classes, and 63 sixfold vertices of nine classes.
It is notable that, even where walls carrying oppositeþPz and
�Pz polarizations meet, the vertex can still have a polar point
group (rod) symmetry, which is not intuitively obvious, but
can be useful as these rods are analogous in this respect to the
polar singularity at the core of a vortex. Note also that the so-
called layer groups, such as 2z

0, keep the central plane of a

wall invariant, whereas the other groups do not. Rod groups
can be chiral; for example, a regular sixfold vertex with
symmetry 6z

0 has a helical structure with polarization along
z. There are two equivalent sixfold vertices with the same
helicity by opposite polarization; the chirality does not dictate
the polarization.

This situation is also encountered in multiferroic YMnO3.
Although the sixfold vertices of YMnO3 were observed long
ago by Safrankova, Fousek, and Kizhaev (1967), interest has
been rekindled by more recent studies studying these forma-
tions in detail (Choi et al., 2010; Jungk et al., 2010) (see
Fig. 16). The correct domain analysis requires the tripled unit
cell of Fennie and Rabe (2005) for proper description, and not
the simpler primitive cell proposed by Van Aken et al.
(2004). The coupling of ferroelectricity to the other order
parameters (antiferromagnetic and antiferrodistortive) yields
the required dimensionality for the sixfold vertices to
form. YMnO3 is also interesting because its domain walls
are less conducting than the domains (Choi et al., 2010),
which is the exact opposite of what happens in the other
popular multiferroic, BiFeO3 (Seidel et al., 2009). The issue
of domain wall conductivity is extensively discussed in later
sections.

Recently, the functional properties of vertices and vortices
are also starting to be studied. In the case of BiFeO3, for
example, it has been found that the conductivity of ferroelec-
tric vortices is considerably higher than that of the domain
walls, which are in turn more conductive than the domains
(Balke et al., 2011).

G. Nanodomains in bulk

Kittel’s law implies that small domains can appear in small
or thin samples, but nanodomains occur in some bulk com-
positions. Trivially, any material with a first-order phase
transition will experience the nucleation of small nonperco-
lating domains above the nominal Tc. In the case of BaTiO3,
these can occur more than 100� above Tc (Burns and Dacol,
1982). This, however, has little implication for the functional

FIG. 15 (color online). (Left) Twelvefold ferroelectric domain

vertex in thiourea. From Brown and Hollingsworth, 1995. (Right)

Sixfold vertex intersection between charge density wave domains in

2H-TaSe2 (Chen, Gibson, and Fleming, 1982). Schematic in (a) and

actual microscopy image in (b). These formations are topologically

equivalent to the vertex domains YMnO3.

FIG. 16 (color online). Observation of sixfold vertices in domain ensembles of multiferroic YMnO3: (left) from Safrankova, Fousek, and

Kizhaev, 1967; (middle) from Choi et al., 2010, and (right) from Jungk et al., 2010.
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properties because the volume fraction occupied by such
nanodomains is small. But there are other material families
where nanodomains are inherent. These are nearly always
linked to systems with competing phases and frustration, and
the functional properties of nanoscopically disordered mate-
rials are often striking: colossal magnetoresistance in man-
ganites, superelasticity in tweedlike martensites, and giant
electrostriction in relaxors, to name a few.

Relaxors combine chemical segregation at the nanoscale
and nanoscopic polar domains (Cross, 1987; Bokov and Ye,
2006). The key technological impact of these materials lies in
their large extension under applied fields for piezoelectric
actuators and transducers (Park and Shrout, 1997). Despite
many papers on the basic physics of relaxor domains, a
holistic theory is still missing. The presence of polar domains
in the cubic phases of relaxors, where they are nominally
forbidden, may be caused by flexoelectricity and internal
strains due to local nonstoichiometry (Ahn et al., 2003).
When mixed with ordinary ferroelectrics such as PbTiO3, or
subjected to applied fields E, these nanodomains increase in
size to become macroscopic (Mulvihill, Cross, and Uchino,
1995; Xu et al., 2006). As for the shape of the domains, in
pure PbZn1=3Nb2=3O3 (PZN), the domain walls may be

spindlelike (Mulvihill, Cross, and Uchino, 1995) or dendritic
(Liu, 2004) but become increasing lamellar with increasing
additions of PbTiO3. The condensed h110i domain structure
is stable in perovskites and rather unresponsive to fields E
along [111] (Xu et al., 2006), and the polar nanoregions arise
from a condensation of a dynamic soft mode along [110], as
shown via neutron spin-echo techniques (Matsuura et al.,
2010). Multiferroic (magnetoelectric) relaxors also exist
(Levstik et al., 2007; Kumar et al., 2009), but little is yet
known about their domains.

From the perspective of this review, the key point about
relaxors is that, since they are formed by nanodomains, they
must have a large concentration of domain walls. It is there-
fore reasonable to expect that the domain walls contribute to
the extraordinary electromechanical properties of these ma-
terials. Rao and Yu (2007) show that indeed there is an
inverse correlation between domain size and piezoelectric
behavior, and suggest that the linking mechanism is a field-
induced broadening of the domain walls. On the other hand,
domain walls may contribute not only by their static proper-
ties or broadening, but also by their dynamic response

(motion) under applied electric fields, as suggested by the
Rayleigh-type analyses of Davis, Damjanovic, and Setter
(2006) and Zhang et al. (2010).

Polar nanodomains also exist in another nonpolar material,
SrTiO3, which is important as it is the most common substrate
for growing epitaxial films of other perovskites. SrTiO3 is
cubic at room temperature, but tetragonal and ferroelastic
below 105–110 K (Fleury, Scott, and Worlock, 1968). It is
also an incipient ferroelectric whose transition to a macro-
scopic ferroelectric state is frustrated by quantum fluctuations
of the soft phonon at low temperature; hence, the material is
also called a ‘‘quantum paraelectric’’ (Muller and Burkard,
1979). By substituting the oxygen in the lattice for a heavier
isotope, 18O, the lattice becomes heavier, and the phonon
slows down and freezes at a higher temperature, causing a
ferroelectric transition (Itoh et al., 1999). However, polar
nanodomains have been detected even in the normal 16O
composition of SrTiO3 (Uesu et al., 2004; Blinc et al.,
2005), and their local symmetry is triclinic and not tetragonal
(Blinc et al., 2005). The ferroelectric phase of the heavy-
isotope composition is also poorly understood, but it has
finely structured nanodomains reminiscent of those observed
in relaxors (Uesu et al., 2004; Shigenari et al., 2006), while
relaxorlike behavior has also been observed in SrTiO3 thin
films (Jang et al., 2010). Again, the high concentration of
domain walls concomitant with this fine domain structure
shows important implications for functionality, since the
domain walls of SrTiO3 are thought to be polar (Tagantsev,
Courtens, and Arzel, 2001; Zubko et al., 2007). We also note
that SrTiO3 at low temperatures has giant electrostriction
comparable to that observed in relaxor ferroelectrics (Grupp
and Goldman, 1997).

The above are examples of nanodomains that appear spon-
taneously in some special materials. But nanodomains can
also be made to appear in conventional ferroelectrics by
clever use of poling. Fouskova, Fousek, and Janoušek estab-
lished that domain wall motion enhanced the electric-field
response of ferroelectric material (Fouskova, 1965; Fousek
and Janoušek, 1966), and domain engineering of crystals
yields a piezoelectric performance far superior to that of
normal ferroelectrics (Zhang et al., 1994; Eng, 1999;
Bassiri-Gharb et al., 2007). However, a newer and more
relevant twist is that even static domain walls may signifi-
cantly enhance the properties of a crystal, due to the superior

FIG. 17 (color online). Measurements and calculations relating decreased domain size (and thus increased domain wall concentration) to

enhancement of piezoelectricity in BaTiO3 single crystals. The results suggest that the increased piezoelectric coefficient is due to the internal

piezoelectricity of the domain walls. From Hlinka, Ondrejkovic, and Marton, 2009.
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piezoelectric properties of the domain wall itself (see
Fig. 17). The concept of ‘‘domain wall engineering’’ was
introduced by Wada and co-workers as a way to enhance the
piezoelectric performance of ferroelectric crystals (Wada
et al., 2006). At present, however, the size or even the exact
mechanism whereby domain walls contribute to the piezo-
electric enhancement is still a subject of debate (Hlinka,
Ondrejkovic, and Marton, 2009; Jin, He, and Damjanovic,
2009).

H. Why does domain size matter?

The above is a fairly comprehensive discussion of the
scaling of domains with device size and morphology. The
main take-home message is that, as device size is reduced,
domain size decreases in a way that can often be described by
Kittel’s law in any of its guises. Thus, the concentration of
domain walls will increase. We can quantify this domain wall
concentration fairly easily: Let us just rearrange the terms of
the ‘‘universal’’ Kittel’s law, [Eq. (2)]:

�

w
¼

ffiffiffiffiffiffiffi
�

Gd

s
: (8)

This equation shows that, as the film thickness d decreases,

the fraction �=w (i.e., the fraction of the material that is made
of domain walls) increases. Taking standard values for the

domain wall thickness � (typically 1–10 nm), we can see that,
for 100-nm-thick films, between 6% and 20% of the film’s

volume will be domain walls. Of course, as mentioned before,

this percentage assumes that the surface energy is
unscreened, so a correction factor must be applied when there

is partial screening (the most general case). However, Eq. (8)
is not completely unrealistic: Strain, for example, cannot be

screened at all, and therefore ferroelastic domains (which in

perovskite multiferroics tend to be ferroelectric and/or mag-
netic as well) can indeed be small. By way of illustration,

consider the extremely dense ferroelastic domain structure in
Fig. 18.

The high concentration of domain walls is important be-

cause domain walls not only have different properties from
domains but, for specific applications, they can in fact be

better (Wada et al., 2006). A sufficiently large number
density of walls can therefore lead to useful emergent behav-

ior in samples with nanodomains. This idea is barely in its

infancy, but already there are hints that it could work.
Daumont and co-workers, for example, report a strong corre-

lation beween the macroscopic magnetization of a nominally
antiferromagnetic thin film, and its concentration of domain

walls (see Fig. 18).
The rest of this review will discuss the properties of

domain walls, the experimental tools used to characterize

them, and their possible technological applications.

III. DOMAIN WALLS

A. Permissible domain walls: Symmetry and compatibility

conditions

Polar ferroics are those for which an inversion symmetry is

broken: space inversion for ferrroelectrics or time inversion
for ferromagnets. In these cases, domain walls separating

regions of opposite polarity are possible, and they are called
180� walls (in reference to the angle between the polar

vectors on either side of the wall). 180� walls tend to be

parallel to the polar axis, so as to avoid head-to-head con-
vergence of the spins or dipoles at the wall, as these are

energetically costly due to the magnetic or electrostatic re-
pulsion of the spins or dipoles. It is nevertheless worth

mentioning that, although energetically costly, head-to-head

180� walls are by no means impossible. 180� head-to-head
domains have been studied for decades in ferroelectrics.

When they annihilate each other, large voltage pulses are
emitted, called ‘‘Barkhausen pulses’’ (Newton, Ahearn, and

McKay, 1949; Little, 1955); these voltage spikes are orders of
magnitude larger than thermal noise. Most recently, head-to-

head (charged) 180� walls have been directly visualized

using high-resolution transmission electron microscopy and
found to be about 10 times thicker than neutral walls (Jia

et al., 2008) (see Fig. 19). The difference in thickness be-
tween neutral and charged walls was historically first ob-

served by Bursill, who noted the bigger thickness of the

latter (Lin and Bursill, 1982; Bursill, Peng, and Feng, 1983;
Bursill and Peng, 1986). According to Tagantsev (2010), this

FIG. 18 (color online). (Top) The ferroelastic domains of ortho-

rhombic TbMnO3 film grown on cubic SrTiO3 are so small

(� 5 nm) as to be comparable to the domain wall thickness, so

that approximately 50% of the material is domain wall. (Bottom)

The same authors report a strong correlation between inverse

domain size (and thus domain wall concentration) and remnant

magnetization in the films. From Daumont et al., 2009, 2010.
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increased thickness is due to the aggregation of charge car-
riers at the wall in order to screen the strong depolarizing field
of the head-to-head dipoles. An interesting corollary to this
observation is that the thickness of charged domain walls in
semiconducting ferroelectrics will be different depending on

whether they are head to head or tail to tail, due to the
different availability of majority carriers; for example, in an
n-type semiconductor, there is an abundance of electrons, and
so head-to-head domain walls can be efficiently screened,
while tail-to-tail cannot, meaning that the latter will be
broader (Eliseev et al., 2011). Domain wall thickness is
further discussed in Sec III.B.

The order parameter in ferroelastic materials is the sponta-
neous strain, which is not a vector but a second-rank tensor.
Since the spontaneous strain tensor does not break inversion

symmetry, purely ferroelastic materials do not have 180�
domains. Instead, a typical example of ferroelastic domains
(also called twins) is the 90� twins in tetragonal materials,
where the spontaneous lattice strains in adjacent domains are
perpendicular. In the case of 90� domains, the locus of the
wall is the bisector plane at 45� with respect to the f001g
planes, because along these planes the difference between the

spontaneous strains of the adjacent domains is zero, and thus
the elastic energy cost of the wall is minimized (also known
as the invariant plane). In the case of multiferroics that are
simultaneously ferroelectric and ferroelastic, the polar com-
patibility conditions (e.g., no head-to-head polarization) must
be added to the elastic ones. Fousek and Janovec did precisely

that and compiled a table of permissible domain walls in

ferroelectric and ferroelastic materials (Fousek and Janovec,
1969; Fousek, 1971). Whenever the domains are in an epi-

taxial thin film, there are further elastic constraints imposed
by the substrate, as analyzed in the paper by Speck and

Pompe (1994). A case study of permissible walls in epitaxial

thin films of rhombohedral ferroelectricis was done by
Streiffer et al. (1998), and this is relevant for BiFeO3 (space

group R3c). In this case, the polar axis is the pseudocubic
diagonal h111i, and domain walls separating inversions of

one, two, or all three of the Cartesian components of the

polarization are possible (these are called, respectively, 71�,
109�, and 180� walls).

More generally, Aizu (1970) explained that the number of

ferroic domain states, and thus of possible domain walls, is
given by the ratio of the point group orders of the high- and

low-symmetry phases, although Shuvalov, Dudnik, and
Wagin (1985) argued that a higher number of domains

(‘‘superorientational states’’) may be permissible than given
by the Aizu rule, as indeed observed in ferroelastic

YBa2Cu3O7�� (Schmid et al., 1988). Another important

rule is given by Toledano (1974): It is necessary and sufficient
for ferroelastic phase transitions that the crystal undergoes a

change in crystal class (trigonal and hexagonal is regarded as
a single superclass in this argument). The converse of that

rule is that if there is no change in crystal class, then the

material is not ferroelastic, and thus naturally there will not be
any ferroelastic twin walls. Further restrictions apply to the

type of domain walls that can exist in magnetoelectric mate-
rials (Litvin, Janovec, and Litvin, 1994).

Because these rules place strict conditions on what types

of walls can exist in a ferroic, domain wall taxonomy can
help clarify not only the true symmetry of the ferroic phase

in a material, but also its relationship with the paraphase. An

illustrative example is yet again BiFeO3: The classification
of its domain walls allowed the determination that the high-

temperature � phase (above 825 �C) was orthorhombic
(Palai et al., 2008). The existence of orthorhombic twins

was also used by Arnold et al. (2010) to argue that the

highest-symmetry phase of BiFeO3 should be cubic, even
though this cubic phase may be ‘‘virtual,’’ as it probably

occurs above the (also orthorhombic) � phase and beyond
the melting temperature in most samples; however, Palai

et al. (2010) found Raman evidence that a reversible
orthorhombic-cubic transition exists in some specimens.

The determination of this ‘‘virtual paraphase’’ is not trivial,

since previously other authors had argued that the ultimate
paraphase of BiFeO3 should be hexagonal R3c, as in

LiNbO3 (Ederer and Fennie, 2008), which is likely incorrect.
The correct determination of the paraphase symmetry is of

utmost importance because polar displacements are mea-

sured with respect to it.

B. Domain wall thickness and domain wall profile

Experimentally, domain wall thicknesses can be measured
accurately only by using atomic-resolution electron micros-

copy techniques. Theoretical estimates can be obtained using

a variety of methods, ranging from ab initio calculations
to phenomenological treatments or pseudospin models. We

FIG. 19 (color online). High-resolution transmission electron mi-

croscopy image of a head-to-head charged domain wall in ferro-

electric PbðZr;TiÞO3. The domain wall is found to be approximately

10 unit cells thick, which is about 10 times thicker than for normal

(noncharged) ferroelectric domain walls. From Jia et al., 2008,

Nature Publishing Group.
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begin this section by offering a simple physical model that
captures the essential physics of domain wall thickness.

The volume energy density of any ferroic material has at
least two components: one from the ordering of the ferroic
order parameter, and one from its gradient. Inside the do-
mains, there is no gradient, and so only the homogeneous part
of the energy has to be considered. The leading term in this
energy is quadratic: U ¼ 1

2�
�1P0

2 for ferroelectrics,
1
2�

�1M0
2 for ferromagnets, and 1

2Ks0
2, where K is the elastic

constant and s0 is the spontaneous strain. Meanwhile, inside
the domain walls there is a strong gradient whose energy
contribution is also quadratic, since it obviously cannot de-
pend on whether you cross the wall from left to right or
vice versa. Although the exact shape of the gradient is best
described as a hyperbolic tangent, as a first approximation
one can linearize the polarization profile across the wall as
PðxÞ ¼ P0½x=ð�=2Þ� (� �=2< x<��=2). In this linearized
approximation, the gradient is simply the switched polariza-
tion (or magnetization, or strain) divided by the wall thick-
ness, and hence the gradient energy can be approximated as
1
2 kð2P0=�Þ2 (where k is the gradient coefficient or ‘‘ex-

change’’ constant, since it measures the energy cost of locally
changing the order parameter with respect to its nearest
neighbors). Although in this discussion we use polarization
as an example, all the equations and conclusions are valid for
any other type of ferroic material.

The wall also has a contribution from the ferroic ordering,
which changes across the wall: It is zero exactly at the center
of the wall and it grows to reach the saturation value at the
beginning and end of the wall. The energy density per unit
area of the wall is obtained by integrating the two energy
terms across its thickness. Hence,

� ¼
Z �=2

��=2

�
1

2
k

�
2P0

�

�
2 þ 1

2
��1PðxÞ2

�
dx

¼ 2k
P0

2

�
þ 1

6
��1P0

2�: (9)

The actual domain wall thickness will be that which mini-
mizes this domain wall energy density; hence

@�

@�
¼ 0 ¼ �2k

P0
2

�2
þ 1

6
��1P0

2; (10)

which leads to

� ¼ 2
ffiffiffi
3

p ffiffiffiffiffiffi
k�

p
: (11)

More elaborate phenomenological treatments are based on
Landau theory (Zhirnov, 1959), the simplest potential being

G ¼ a

2
P2 þ b

2
P4 þ k

2

�
@P

@x

�
2
: (12)

Variational minimization of the order parameter across a
domain wall at x ¼ 0 yields tanhðx=�Þ, with the correlation

length � ¼ 2P�1
0

ffiffiffiffiffiffiffiffiffiffiffi
2k=b

p
. Using P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi�a=b
p

and � ¼
�1=2a and defining the domain wall thickness as � ¼ 2�,
we get

� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
� 2k

a

s
¼ 4

ffiffiffiffiffiffi
�k

p
: (13)

Note the remarkable similarity between Eqs. (11) and (13),
despite the linear simplification assumed in the former.

An issue that appears to have been neglected by most [but
not all, see Tagantsev, Courtens, and Arzel (2001)] phenome-
nological analyses of ferroelectric and ferroelastic domain
walls is that the existence of large strain gradients at the walls
must necessarily lead to considerable flexoelectricity inside
them. Zubko (2008) performed some preliminary calculations
for the gradients inside the ferroelastic domain walls of
SrTiO3, using the strain profile calculated by Cao and
Barsch (1990). The results are shown in Fig. 20. Assuming
a ferroelastic correlation length 	� 4 �A (one unit cell) and a
flexoelectric coefficient of 10�8 (Zubko et al., 2007) (mea-
sured at room temperature and therefore smaller than the low-
temperature value), the flexoelectric polarization in the
middle of the domain wall is of the order of 5 mC=m2

(0:5 �C=cm2), which is not negligible. This is only an
approximate result, however, because the flexoelectric inter-
action must be incorporated into the domain wall structure
calculations in a self-consistent manner, rather than
a posteriori. We parenthetically note that strain gradients
are significant at the nanoscale, and therefore flexoelectric
effects are expected to be important. The large flexoelectric
effects associated with nanodomains in ferroelectric thin

(a)

(b)

FIG. 20 (color online). (a) Ferroelastic strain components in the

low-temperature domain walls of SrTiO3 and (b) flexoelectric polar-

izations caused by the strain gradients in the walls. From Zubko,

2008.
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films are currently being studied by several groups (Catalan

et al., 2011; Lee et al., 2011; Lu et al., 2011).
At any rate, putting typical values into Eq. (13), it is found

that ferroelectrics and ferroelastics have typical domain wall

thicknesses in the range of 1–10 nm, whereas ferromagnets

have typically thicker walls in the range 10–100 nm. This

difference in thickness is not entirely surprising: Wall thick-

ness is given by the competition between exchange and

anisotropy (in ferromagnets) with the corresponding terms

being dipolar energy and elastic anisotropy energy (in ferro-

electrics). The exchange constant measures the energy cost of

locally changing a spin, a dipole, or an atomic displacement

(depending on the type of ferroic) with respect to its neigh-

bors; in phenomenological treatments this was introduced as

the energy cost of creating a gradient in the ferroic order

parameter, exchange ¼ ðk=2ÞðrPÞ2. If this energy is big, the

ferroic will try to reduce the size of the gradient by increasing

the thickness of the domain wall.
Likewise, the softness of the order parameter (its suscep-

tibility) will also tend to broaden the walls: A material that

has high susceptibility, dielectric, magnetic, or elastic, allows

its order parameter to fluctuate more easily, meaning that

broad domain walls, with a large number of unit cells de-

parted from the equilibrium value, are still relatively cheap.

Zhirnov (1959) offered a similar argument: The anisotropy

measures the energy cost of misaligning the order parameter

with respect to the crystallographic polar axes; if this energy

is big, the ferroic will try to minimize the number of mis-

aligned spins, dipoles, and strains by making the wall as thin

as possible. Because both ferroelectricity and ferroelasticity

are, at heart, structural properties, their anisotropy (arising

from structural anisotropy such as, e.g., the tetragonality of a

perovskite ferroelectric) will normally be larger than that of

ferromagnets, and thus their wall thickness will be smaller.

Hlinka (2008) and Hlinka and Marton (2008) have recently

discussed the role of anisotropy on the domain wall thickness

of the different phases of ferroelectric BaTiO3. The anisot-

ropy argument is completely analogous to the susceptibility

one, just by realizing that susceptibility is inversely propor-

tional to anisotropy. It follows from the above that materials

that are uniaxial and have small susceptibility should have far

narrower domain walls than ferroics with several easy axes

(so that they are more isotropic) and large permittivity; in

particular, one may expect morphotropic phase boundary

ferroelectrics to have anomalously thick domain walls, so

that a significant volume fraction of the material may be made

of domain walls. This is also the case for ultrasoft magnetic

materials such as permalloys, or structurally soft materials

such as some martensites and shape-memory alloys (Ren

et al., 2009).
Domain wall thickness has traditionally been a contentious

issue for ferroelectrics, where it has been hard to measure

experimentally. The earliest electron microscopy measure-

ments were reported by Blank and Amelinckx (1963), and

they placed an upper bound of 10 nm on the 90� wall

thickness of barium titanate. Bursill and co-workers (Lin

and Bursill, 1982; Bursill, Peng, and Feng, 1983, Bursill

and Lin, 1986) used high-resolution electron microscopy to

confirm that the domain walls of LiTaO3 and KNbO3 are

indeed thin and atomically sharp in the case of 180� walls.

Meanwhile, Floquet et al. (1997) combined high-resolution
transmission electron microscopy with x-ray diffraction to
measure a width of 5 nm for the 90� walls of BaTiO3. Shilo,
Ravichandran, and Bhattacharya (2004) used atomic force
microscopy (AFM) to measure the same type of walls in
PbTiO3; although the tip radius of scanning probe micro-
scopes (AFM, PFM) is typically 10 nm, a careful statistical
analysis allowed the intrinsic domain widths of ferroelectric
and ferroelastic 90� walls to be extracted; a wide range of
thicknesses between 1 and 5 nm were recorded. They sug-
gested that the intrinsic width is less than 1 nm, and that the
broadening observed in some measurements is due to the
accumulation of point defects at the wall. The thickness of
ferroelectric 180� walls is harder to measure experimentally
and is discussed in more detail in Sec. IV, but reliable
theoretical predictions (Merz, 1954; Kinase and Takahashi,
1957; Padilla, Zhong, and Vanderbilt, 1996; Meyer and
Vanderbilt, 2002) and recent measurements by Jia et al.
(2008) indicated that they are atomically sharp, confirming
the measurements of Bursill.

An interesting and still not fully resolved problem is that of
the domain wall thickness in multiferroics. In materials with
weak coupling, it is assumed that the two ferroic parameters
have essentially independent correlation lengths and thus
different thicknesses for the two ferroic parameters, even if
the middle of the wall is shared (Fiebig et al., 2004). In the
converse situation of one order parameter being completely
subordinated to the other, e.g., a proper ferroelectric and an
improper ferroelastic such as BaTiO3, or a proper magnet and
an improper ferroelectric such as TbMnO3, it seems that the
principal order parameter dictates a unique thickness of the
shared domain wall, so that the ferroelectric domain walls of
TbMnO3 are predicted to be as thick as those of ferromagnets
(Cano and Levanyuk, 2010). In the intermediate case of two
proper order parameters with moderate coupling, it seems
that there will still be two correlation lengths for each order
parameter, but each will be affected by the coupling;
Daraktchiev, Catalan, and Scott (2010) have shown that the
ferroelectric wall thickness in a magnetoelectric material with
biquadratic coupling is

�MP � 21=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�b


2��a� ��2 � ��b

�s

ffi �P

�
1þ �

a

b�
þOð�2Þ

�
; (14)

where �MP is the ferroelectric wall thickness in the magneto-
electric material, and �P is the ferroelectric wall thickness in
the absence of magnetoelectricity. This is thicker than the
walls of normal ferroelectrics and thus more magnetlike,
which also agrees with the bigger width of the ferroelectric
domains of BFO compared to those of normal ferroelectrics
(Catalan et al., 2008).

C. Domain wall chirality

In magnetism, the spin is quantized, so it cannot change its
magnitude across the wall. Instead, then, the magnetization
reverses through rigid rotation of the spins. The rotation plane
may be contained within the plane of the domain wall (Néel

G. Catalan et al.: Domain wall nanoelectronics 133

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



walls), or it may be perpendicular to it (Bloch walls). Néel
and Bloch walls are generically termed as Heisenberg-like, or
chiral. Ferroelectric polarization, on the other hand, is not
quantized, so it is allowed to vary in magnitude. This can
produce domain walls where the polarization axis does not
change orientation but simply decreases in size, changes sign,
and increases again. Such nonchiral domain walls are called
Ising-like (see schematic of different types of walls in
Fig. 21). In ferroelectrics, 180� Ising walls should be favored
against chiral walls for two reasons: First, the piezoelectric
coupling between polarization and spontaneous strain means
that rotating the polarization away from the easy axis has a
big elastic cost. Second, there is also a large electrostatic cost,
as any change in the polarization perpendicular to the domain
wall will cause, via Poisson’s equation, an accumulation of
charge at the walls: �D ¼ "�P ¼ �. It is worth mentioning
that the above assumes that the dielectric constant is constant;
when it is not, then the correct form of Poisson’s equation is
�D ¼ "�Pþ E 	 r" ¼ �. The permittivity gradient can be
important in thin films (Scott, 2000), and must be important
also for the domain wall, where large structural changes take
place within a narrow region.

For the above reasons, 180� domain walls in ferroelectrics
have been traditionally viewed as Ising-like. This common
assumption, however, has recently been challenged by Lee
et al. (2009) and Marton, Rychetsky, and Hlinka (2010), who
show that ferroelectric 180� domain walls of perovskite
ferroelectrics can be at least partially chiral. The fact that
chirality can appear in a system where none would be ex-
pected was examined by Houchmandzadeh, Lajzerowicz, and
Salje (1991). They showed that, whenever there are two order
parameters involved (as in any multiferroic system), the
coupling between them can induce chirality at the domain
walls. Perovskite ferroelectrics are multiferroic, because they
are both ferroelectric and ferroelastic. While their 180� walls
tend to be seen as purely ferroelectric, they nevertheless have
an elastic component, because the suppression of the polar-
ization inside the wall affects its internal strain (Zhirnov,
1959).

Domain walls in BiFeO3 are also multiferroic, and in a big
way, ferroelectricity, ferroelasticity, antiferromagnetism, and

antiferrodistortive octahedral rotations all occur in this mate-
rial. It is therefore not surprising that the domain walls of this

material are found to be chiral (Seidel et al., 2009). Unlike in

normal ferroelectrics, the rotation of the polar vector is quite
rigid, meaning that the component of the polarization per-

pendicular to the domain wall is not constant. This polar
discontinuity means that there is charge density at the walls

(see Poisson’s equation above). In order to screen this charge

density, charge carriers aggregate to the wall, and this carrier
increase has been hypothesized to be a cause for the increased

conductivity at the domain walls of BiFeO3 (Seidel et al.,

2009; Lubk, Gemming, and Spaldin, 2009). The issue of
domain wall conductivity is discussed in greater detail in

Secs. III.F and V.F.1.
Chirality has important consequences for magnetoelectric

materials. Magnetic spin spirals can by themselves cause

ferroelectricity: indeed, a spin spiral arrangement is known

to cause weak ferroelectricity in some multiferroics
(Newnham et al., 1978; Mostovoy, 2006; Cheong and

Mostovoy, 2007). The relationship between spin helicity
and polarization is valid not just for bulk but also for the

local spin arrangement inside a domain wall; thus, ferromag-

netic Néel walls are expected to be electrically polarized.
Experimental evidence for this was provided by Logginov

et al. (2008), who applied a voltage to an AFM tip placed near

the ferromagnetic domain wall of a garnet, and observed the
domain wall to shift its position in response to the voltage

(see Fig. 22). Since the garnet is itself centrosymmetric, the

piezoelectric response of the domain wall was attributed to its
spin spiral.

D. Domain wall roughness and fractal dimensions

Irregular domain walls have been studied in thin films of

ferromagnets (Lemerle et al., 1998), ferroelectrics (Tybell

et al., 2002; Paruch, Giamarchi, and Triscone, 2005), and
multiferroics (Catalan et al., 2008). Quantitatively, the ir-

regular morphology can be characterized by a roughness
coefficient (see Fig. 23), which describes the deviations (u)
from a straight line (the ideal domain wall) as the length of

FIG. 22 (color online). (a) Logginov et al. applied voltage pulses

to a sharp tip in the vicinity of a ferromagnetic Néel wall in a

magnetic garnet. (b) The wall was observed to move toward or away

from the tip depending on the polarity of the voltage, suggesting that

the domain wall is electrically polarized even though the garnet

itself is a nonpolar material. The domain wall polarization is caused

by the spin spiral inherent to the Néel wall. From Logginov et al.,

2008.

FIG. 21 (color online). (a) Ising wall, (b) Bloch wall, (c) Néel

wall, and (d) mixed Ising-Néel wall. Recent calculations show that

domain walls in perovskite ferroelectrics tend to be of mixed

character. From Lee et al., 2009.
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wall is increased (Lemerle et al., 1998; Paruch, Giamarchi,
and Triscone, 2005). The wandering deviation u increases
with the distance traveled along the wall, resulting in a power

law dependence of the correlation coefficient, BðLÞ �
h½uðxþ LÞ � uðxÞ�2i / L2� , where � is the roughness
exponent.

If the domain wall closes in on itself, forming a ‘‘bubble’’
domain, the roughness coefficient of the wall becomes a
direct proxy for the Hausdorff dimension, which relates the
area contained within the domain (A) to the domain wall
perimeter (see Fig. 23); thus, films with rough walls have
fractal domains in the sense that the perimeter does not scale
as the square root of the area, but as the square root of the
area to the power of the Hausdorff dimension, P / AH=2

(Rodriguez et al., 2007a; Catalan et al., 2008).
Since domain size is dictated by the competition between

the domain energy (proportional to the area of the domain)
and wall energy (proportional to the domain perimeter) it is
quite natural that the scaling of the domain size should reflect
the Hausdorff dimension of the domains, or, equivalently, the
roughness coefficient of the walls. Catalan et al. (2008)
showed that, when the domains are fractal, the Kittel law
must be modified asw ¼ A0tH?=ð3�HllÞ, where A0 is a constant,
t is the film’s thickness, and H? and Hk are the perpendicular
and parallel (out-of-plane and in-plane with respect to the
film’s surface) Hausdorff dimensions of the walls. When both
these dimensions are 1 (i.e., smooth walls), the classic Kittel
exponent ( 12 ) is recovered. In the particular case of BFO

films, the dimension was found to be 1.5 in the in-plane

direction, and 2.5 in total, consistent with domain walls that

meander in the horizontal direction but are completely

straight vertically, much like hanging curtains. This is fully

expected in ferroelectric 180� walls, as any vertical bend

would incur in a strong electrostatic cost due to Poisson’s

equation. The fractional dimensionality has also been ob-

served in studies of switching dynamics (Scott, 2007), as

discussed later in this section.
In a perfect system, the domain wall energy cost is mini-

mized by minimizing the wall area, i.e., by making the wall as

smooth as possible. Whenever domain walls are rough, then,

it is because they are being pinned by defects in the lattice.

The upshot of this is that the roughness of a domain wall

contains information about the type of defects present in the

sample (Natterman, 1983). Specifically, the theoretical rough-

ness coefficient in a random bond system is � ¼ 2=3 for a

linelike domain wall (Huse, Henley, and Fisher, 1985; Kardar

and Nelson, 1985), and this has been experimentally verified

for ultrathin ferromagnetic films (Lemerle et al., 1998). In

the more general case, it is � ¼ 4�D=5 (Lemerle et al.,

1998). Random bond systems can be viewed as systems with

a variable depth of the double well. If the asymmetry of the

double well changes, then one speaks of random field sys-

tems, for which the roughness coefficient is � ¼ 4�D=3
(Fisher, 1986; Tybell et al., 2002), where D is the dimen-

sionality of the wall, which can be fractional. For ferro-

electric thin films the roughness coefficient was found to

be 0.26, consistent with the random bond system of di-

mensionality D ¼ 2:7 (Paruch, Giamarchi, and Triscone,

L

u

A

P

(a) 

  (b) 

(c)

(d) 

FIG. 23 (color online). (a) The probability of having a deviation (u) from the straight line increases with the distance d between two points

of the wall, resulting in a power law relationship between the size of the wall and its horizontal length. By the same token, if the domain wall

closes in on itself (b), the perimeter will not increase as the square root of the area (as would be the case for a smooth circular domain), but as

P / AH=2, where H is the Hausdorff dimension. (c) Measurement of domain wall roughness in PFM-written ferroelectric domain walls of

BiFeO3 thin films and (d) measurement of the Hausdorff dimension in spontaneous domains of the same BiFeO3 films. Panels (c) and (d)

partially adapted from Catalan et al., 2008.
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2005). In multiferroic BiFeO3, the roughness was larger,
� ¼ 0:56 (Catalan et al., 2008).

Since the roughness of the walls arises directly from the
local pinning by defects, and pinning slows down the motion
of the domain walls, it is natural to relate the roughness of the
domain walls to their dynamics. This has been done both for
ferromagnetic films (Lemerle et al., 1998) and for ferroelec-
tric films (Tybell et al., 2002; Paruch, Giamarchi, and
Triscone, 2005). The domain wall velocity is characterized
by an exponent that, similar to the roughness exponent, is also
directly related to the type of pinning defects in the samples.
Specifically, the velocity of the wall is

v ¼ v0 exp

�
� U

kT

�
Fcrit

F

�
�
�
;

where F and Fcrit are the applied and critical fields (magnetic
or ferroelectric) of the sample, U is an activation energy, and
� is the critical exponent, which is related to the roughness
exponent by � ¼ ðDþ 2� � 2Þ=ð2� &Þ (Lemerle et al.,
1998). The value of � depends on whether the domain wall
motion proceeds by creep or by viscous flow; in ferroelectric
thin films � ¼ 1 was measured, consistent with a creep
process (see Fig. 24).

The study of the switching dynamics in ferroelectric thin
films generally yields an effective dimensionality that is not
integer but fractional. In early switching studies Scott et al.
(1988) found from fits to the Ishibashi theory that dimension-
ality of the domain kinetics was often D ¼ 2:5 (approxi-
mately). At the time it was not clear whether this was a
physical result or an artifact of the Ishibashi approximations
(especially the simplifying assumption that wall velocities v
were independent of domain radius r—actually v varies as
1=r). However, more recent studies (Scott, 2007) indicate that
D ¼ 2:5 is physically correct; Scott also calculated by inter-
polation the critical exponents in mean field for D ¼ 2:5 and
found, for example, that the order parameter exponent � ¼ 1

4

for a second-order transition, compared with � ¼ 1
2 for bulk

D ¼ 3. Since this is the same 1
4 exponent as in a bulk tricritical

transition, second-order transitions for D ¼ 2:5 may be mis-
taken as tricritical.

E. Multiferroic walls and phase transitions inside

domain walls

The idea that domain walls have their own symmetry and
properties is not new. Shortly after Néel hypothesized the
existence of antiferromagnetic domains (Néel, 1954), Li
(1956) showed that such walls would have uncompensated
spins that could account for the weak ferromagnetism mea-
sured in �-Fe2O3. An important and often overlooked aspect
of Li’s classic model is that the size of the uncompensated
moment at the wall is inversely proportional to the wall
thickness. This, to some extent, is trivial: An atomically sharp
antiphase boundary should have a fully uncompensated pair
of moments (see Fig. 25), whereas in a broad domain wall the
gradual change means that only the fractional difference
between nearest neighbors is uncompensated. Although it
has not been explicitly stated anywhere, a natural corollary
is that the domain walls of antiferroelectrics should be ferro-
electric, or at least pyroelectric. One must bear in mind that
the walls of ferroelectrics are atomically sharp, as discussed
above, so antiferroelectric domain walls are expected to be
close to perfect antiphase boundaries, although we know of
no studies of domain wall thickness in antiferroelectrics.

In the case of multiferroics, the interplay between the
symmetries of all the phases involved is more complex and
can lead to rich behavior. Privratska, Janovec, and others
made a theoretical survey of which properties are allowed
inside the domain walls as a function of the space group of the
ferroic material. Based on this, they predicted that the domain
walls of ferroelastics can be polar (Janovec, Richterová, and
Privratska, 1999), as confirmed by atomistic calculations for
CaTiO3 (Gonçalves-Ferreira et al., 2008) and experimentally
inferred for SrTiO3 (Zubko et al., 2007). Privratska and
Janovec (1997, 1999), and Privratska (2007) also predicted
that there can be net magnetization inside the ferroelectric

FIG. 24. Ferroelectric domain wall speed as a function of applied

electric field for films of various thicknesses. The critical exponent

was found to be � ¼ 1, characteristic of creep. From Tybell et al.,

2002.

FIG. 25 (color online). The relative heights of the boxes illustrate

how a sharp antiphase boundary must have a net magnetization and

polarization in its center that is bigger than that of a broad domain

wall such as a chiral wall. Adapted from Li, 1956.
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domain walls of multiferroics. Among the symmetries where

this domain wall magnetization is allowed is the space group

R3c (Privratska and Janovec, 1999) (i.e., that of BiFeO3).
Symmetry analyses are not quantitative. The knowledge

that a property is symmetry allowed is essential, but one still

needs to know how big that property is. This quantitative

analysis can be achieved using phenomenological approaches

such as those pioneered by Lajzerowicz and Niez (1979), who

were the first to realize that it was possible for domain walls

to undergo their own internal phase transitions. This is pos-

sible because the free energy inside the wall is different from

that inside the domains: Inside the domains the order parame-

ter is homogeneous and there are no gradients, whereas inside

the domain walls the order parameter is suppressed and there

are strong gradients. Since the free energy of the wall is

different, its thermodynamic properties must also be differ-

ent, and hence its thermal evolution and phase transitions may

also be different.
This idea becomes, of course, more interesting when sev-

eral order parameters are involved. These order parameters

may be present at finite temperature (as in multiferroic

materials), or they may be suppressed or ‘‘latent’’ (have

low or ‘‘negative’’ critical temperatures) but still may be

able to manifest inside the domain walls. The phenomenon

of emerging order parameters inside a wall was first explained

by Houchmandzadeh, Lajzerowicz, and Salje (1991) in the

context of ferroelastic materials. They realized that if a

secondary ferroic order is latent (suppressed) due to a positive

coupling energy to the primary order parameter, it will be

able to emerge wherever the primary order parameter is zero,

i.e., in the middle of the domain wall. For example, it is

known that, in perovskites, rotations of the oxygen octahedra

are normally opposed to ferroelectric polarization. Hence,

where such rotations are suppressed, polarization may be

able to emerge, as was theoretically calculated for the anti-

ferrodistortive antiphase boundaries of SrTiO3 (Tagantsev,

Courtens, and Arzel, 2001). Given that BiFeO3 is known to

also have strong octahedral rotations (Megaw and Darlington,

1975) that oppose the polarization (Dupé et al., 2010), it

seems eminently plausible that the ferrodistortive antiphase

boundaries of this material also have a polar enhancement.
Daraktchiev, Catalan, and Scott (2010) studied in some

detail the analytical solutions for domain walls in multifer-

roics with biquadratic coupling between the order parameters,

�P2M2; the biquadratic coupling was chosen because (i) it is

the smallest power that is symmetry allowed for all materials

(the coupling term places no constraint on inversion of either

order parameter), and (ii) an effective biquadratic interaction

will always be present when strain mediates the coupling,

since electrostriction couples strain to the square of polariza-

tion while magnetostriction couples strain to the square of

magnetization. Strain coupling terms are of course large in

ferroelectrics, and therefore they will always be important for

multiferroics. Another important aspect of this biquadratic

coupling that perhaps has not been emphasized enough is

that, because it is even, the solutions must also be even,

meaning that any emerging parameter inside the wall will

have at least two equally stable polarities and may be switch-

able between them. This can be seen, for example, in Fig. 26,

which shows that there are two equivalent least-energy

trajectories connecting the ferroelectric double well through
two saddle points at þM and �M, and thus there are two
possible magnetic polarities for the wall. Experimentally,

Pyatakov et al. (2011) demonstrated the converse situation
by showing switching of the ferroelectric polarity inside a
magnetic domain wall. The exact phenomenology, of course,

depends on the sign and symmetry of the coupling elements,
and the possibilities are far too numerous to be described
here, but the basic principle is always the same: Start with the

Landau expansion of the free energy and examine the con-
sequence of forcing one of the order parameters to be zero, as
in the middle of the domain wall. In this context, it is useful to

also look at the recent work of Marton, Rychetsky, and Hlinka
(2010), who found new phases with enhanced electrome-
chanical properties inside the domain walls of a typical

perovskite ferroelectric such as BaTiO3.
So far group-symmetry arguments and phenomenological

(thermodynamic) models have been mentioned, but there are
also microscopic calculations for some systems. For example,

Goltsev and others calculated the profile of the magnetization
across the domain walls of YMnO3 (Goltsev et al., 2003;
Fiebig et al., 2004). Meanwhile, Lubk, Gemming, and

Spaldin (2009) calculated the octahedral rotations, polariza-
tion profile, and band gap across the domain walls of BiFeO3,
and Gonçalves-Ferreira et al. (2008) calculated the polar

displacements inside the ferroelastic walls of CaTiO3.
Generally, the reduced thickness of ferroelectric and ferroe-
lastic walls means that they are computationally affordable

for first-principles calculations, whereas the broader magnetic
walls tend to require analytical approaches or finite-element

FIG. 26 (color online). (a) Ferroelectric polarization profile across

the wall, (b) magnetization profile across the wall, (c) relationship

between the order parameters across the wall, showing that the

magnetization can be either positive or negative, and (d) free-energy

landscape, showing one of the two least-energy trajectories con-

necting the two ferroelectric polarities through one of the saddle

points at M � 0. Adapted from Daraktchiev, Catalan, and Scott,

2010.
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and molecular dynamics calculations. Multiferroic walls

fall somewhere in between in terms of thickness, although
we suspect that the magnetic part of their behavior will

always be more difficult to compute using first-principles
approaches.

F. Domain wall conductivity

The changes in structure (and as a consequence electronic
structure) that occur at ferroelectric (multiferroic) domain

walls can thus lead to changes in transport behavior.
Indeed, domain wall (super)conductivity was studied by

Aird and Salje (1998). Reducing WO3 with sodium vapor,

they observed preferential doping along the ferroelastic do-
main walls. Transport measurements showed superconduc-

tivity, while magnetic measurements did not; this suggested
that the superconductivity was located only at the domain

walls, which provided a percolating superconductive path
while occupying a small volume fraction of the crystal.

Later, Bartels et al. (2003) used a conducting-tip scanning

probe microscope to show the converse behavior: The domain
walls of a calcium-doped lead orthophosphate crystal were

found to be more resistive than the domains.
The above effects relied on preferential doping along

domain walls, but the differential domain wall conductivity

was reproduced also in undoped multiferrroics, although with
different transport behavior: The domain walls of BiFeO3

were found to be more conductive than the domains (Seidel

et al., 2009), while those of YMnO3 were found to be more
insulating (Choi et al., 2010a). Multiferroic YMnO3, a so-

called improper ferroelectric multiferroic, in which ferroelec-
tricity is induced by structural trimerization coexisting with

magnetism, domain walls are found to be insulating (Choi

et al., 2010). The increase of the Y-O bond distance at domain
walls may be responsible for the reduction of local conduc-

tion. The observed conduction suppression at domain walls at
high voltages (still much less than the electric coercivity) is in

striking contrast with what was reported on BiFeO3.
A useful clue for interpreting these results is perhaps the

analysis of the paraphase. Whereas the high-temperature,

high-symmetry phase of BiFeO3 is more conducting than

the ferroelectric phase (Palai et al., 2008), the converse is
true for YMnO3 (Choi et al., 2010). This illustrates an

important point: In some respects the internal structure of
the walls can be considered to be in the paraelectric state; by

way of trivial example, the 180� domain walls of a ferroic are

nonpolar, just like its paraphase. The examples of BiFeO3 and
YMnO3 suggest that the paraphaselike behavior can be ap-

plied to domain wall properties other than just the polariza-
tion: The insulating paraelectric state of YMnO3 is consistent

with the insulating nature of its domain walls, and conversely
the conducting state of the paraphase of BiFeO3 is consistent

with its domain wall conductivity. Nevertheless, in the con-

ductivity of the BiFeO3 walls at least there are several other
considerations: octahedral rotations, electrostatic steps aris-

ing from rigid rotation of the polar vector, and increased
carrier density at the wall are all thought to play a role in

the domain wall conductivity of BiFeO3 and potentially also

of other perovskites. A more detailed discussion of these
factors is provided in Sec. V.F.1 .

The resistive behavior of purely magnetic domain
walls has also been studied. The domain walls of metallic
ferromagnets were found to be more resistive than the do-
mains due to spin scattering (Viret et al., 2000; Danneau
et al., 2002). On the other hand, the domain walls of man-
ganites (which are ferromagnetic and ferroelastic) have been
predicted to be more conducting than the domains, due to
strain coupling: The Jahn Teller distortion is smaller and the
octahedral rotation angle is straighter inside the domain wall
than outside (Salafranca, Yu, and Dagotto, 2010), leading to
increased orbital overlap and thus bigger bandwidth. The
same interplay between octahedral rotation straightening
and increased conductivity has been postulated for the do-
main walls of bismuth ferrite (Catalan and Scott, 2009), and
the straightening of the octahedral rotation angle inside the
walls of this material has been confirmed by electron micros-
copy (Borisevich et al., 2010). To complete the picture, it
should be mentioned that enhanced domain wall conductivity
has also been observed in standard ferroelectrics such as
PbðZr;TiÞO3 (Guyonnet et al., 2011), suggesting that this
may be a more general property than previously thought.

The challenge is now to make a resistive switching device
based on domain walls. Two approaches may be pursued
here. One was suggested by Lee and Salje (2005), who
observed that the percolation of a zigzag configuration of
ferroelastic walls between the two surfaces of a crystal could
be controlled by bending. The other approach pursued is
selective doping. The experimental study of domain wall
conductivity and the electronic devices that can be made
using wall properties will be the subject of the following
sections.

IV. EXPERIMENTAL METHODS FOR THE

INVESTIGATION OF DOMAIN WALLS

Avariety of structural and near-field probes are available to
probe both the macroscopic and microscopic details of do-
main walls. Atomic-scale imaging of the domain wall struc-
ture is now possible with transmission electron microscopy,
but of particular emphasis in this review is scanning probe
(scanning tunneling microscopy, atomic force microscopy,
conducting AFM (c-AFM), and the related piezoforce micro-
socopy) techniques, which allow the probing of actual func-
tional properties of the domain walls. Readers interested in
the details of all of these structural probe techniques are
referred to several reviews on this subject; here we give an
overview of the information pertinent to domain walls.

A. High-resolution electron microscopy and spectroscopy

Among the methods available for the investigation of
domain walls is high-resolution electron microscopy (Goo
et al., 1981; Bursill, Peng, and Feng, 1983; Bursill and Lin,
1986; Stemmer et al., 1995; Hytch, 1998; Lichte, 2002; Jia,
2003). This method allows direct visualization of the lattice
distortion across the domain wall by measuring the continu-
ous deviation of a set of planes with respect to the undistorted
lattice (exit-wave reconstruction) (Foeth et al., 1999).
Current, state-of-the-art techniques permit atomic-scale
resolution at 0:5 �A through aberration-corrected imaging
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(Figs. 27 and 28). The exit-wave reconstruction approach
eliminates the effects of objective-lens spherical aberrations,
and images can be directly interpreted in terms of the pro-
jection of the atomic columns (Allen et al., 2004). Weak-
beam transmission electron microscopy has been used for a
quantitative analysis of the thickness fringes that appear on
weak-beam images of inclined domain walls. By fitting
simulated fringe profiles to experimental ones, it is possible
to extract the thickness of the domain walls in a quantitative
way. Regarding high-resolution transmission electron micros-
copy (HRTEM) images of domain walls, it has to be taken
into account that the samples in these kinds of experiments
are thin (typically a few nanometers) so that surface pinning
of the domain walls could play an important role (Meyer and
Vanderbilt, 2002). The atomic displacements across a typical
wall are on the order of 0.02 nm, which still makes direct
imaging and interpretation a challenge (Gopalan, Dierolf, and
Scrymgeour, 2007). HRTEM also offers the possibility of
imaging the local polarization dipoles at atomic resolution,
thus quantitatively measuring the local polarization and in-
vestigating the domain structure (Jia et al., 2008).

Using the negative spherical-aberration imaging technique
in an aberration-corrected transmission electron microscope,
large differences in atomic details between charged and un-
charged domain walls have been reported, and cation-oxygen
dipoles near 180� domain walls in epitaxial PbZr0:2Ti0:8O3

thin films have been resolved on the atomic scale (Jia et al.,
2008).

Elemental and electronic structure analysis by electron-
energy-loss spectroscopy has also been applied to the study of
domain walls (Jia and Urban, 2004; Urban et al., 2008).
Using high-resolution imaging in an aberration-corrected
TEM, the concentration of oxygen in BaTiO3 twin bounda-
ries was measured at atomic resolution. These measurements
provide quantitative evidence for a substantial reduction of
the oxygen occupancy, i.e., the presence of oxygen vacancies
at the boundaries. It was also found that the modified Ti2O9

group unit formed reduces the grain boundary energy and
provides a way of accommodating oxygen vacancies occur-
ring in oxygen-deficient materials. This type of atomically
resolved measurement technique offers the potential to study
oxide materials in which the electronic properties sensitively
depend on the local oxygen content (important in view of
current work on LaAlO3=SrTiO3 superconducting interfa-
ces). The attraction between domain walls and vacancies is
further discussed in Sec. V.

B. Scanning probe microscopy

Atomic force microscopy and its variations (e.g., c-AFM,
PFM) are well suited for direct writing (‘‘ferroelectric lithog-
raphy’’) and characterization of prototype ferroelectric struc-
tures (Fig. 29), including domain walls (Eng, 1999). These
methods provide the tools to get information about local
mechanisms of twin-wall broadening that cannot be obtained
by existing experimental methods (Shilo, Ravichandran, and
Bhattacharya, 2004). With conductive AFM (c-AFM) one can
artificially modify the domain structure as a function of pulse
width and amplitude (Tybell et al., 2002). PFM is also under
continuous development and is currently undergoing a shift of
focus from imaging static domains to (i) dynamic character-
ization of the switching process (with developments such as
stroboscopic PFM and PFM spectroscopy) and (ii) the struc-
ture of domain walls (Gruverman et al., 2005; Jungk,
Hoffmann, and Soergel, 2006; Rodriguez et al., 2007a,
2007b; Morozovska et al., 2008; Kalinin et al., 2010) (see
also Fig. 30).

Let us take a closer look at the relationship between
domain walls and the effect of electric fields on ferroelectrics.
When the applied field is higher than the coercive field, the
walls will move; however, the threshold field at which pre-
existing domain walls begin to move can be much lower than

FIG. 29 (color online). (a) PFM amplitude and (b) PFM

phase images of a BFO sample with 109� stripe domains;

(c) simultaneously acquired c-AFM image of the same area showing

that each 109� domain wall is electrically conductive. From Seidel

et al., 2010.
FIG. 28 (color online). (a) 71� and (b) 109� domain walls in

bismuth ferrite.

FIG. 27 (color online). Atomic-scale TEM image of the electric

dipoles formed by the relative displacements of the Zr/Ti cation

columns and the O anion columns in PbZr0:2Ti0:8O3. Adapted from

Jia et al., 2008.
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the coercive field required for nucleation (Gopalan, Dierolf,
and Scrymgeour, 2007; Choudhury et al., 2008). From
preliminary theory and experiments, Gopalan, Dierolf, and
Scrymgeour (2007) argued that the thickness of the domain
wall is different when an external electric field is applied
because of changes in its Landau energy potential. This
prediction is also supported by the calculations of Rao and
Yu (2007) and Hlinka, Ondrejkovic, and Marton (2009). For
PbTiO3, the effect of an applied electric field leads to an
increase in the wall thickness of 2 to 4 times and for LiNbO3

the thickness increases up to 10%–30%, but this phenomenon
is expected to be general for all compositions. At the same
time, a thicker (or diffuse) domain wall has a lower threshold
field (Choudhury et al., 2008) for lateral movement, as it is
not narrow enough to drag against the washboardlike Peierls
potential. This effect was used to explain low threshold
fields for domain reversal in ferroelectrics. However, the
same authors predict that an increase in wall thickness at
surfaces will be of influence only when the crystal thickness
is 1–10 nm and that, in general, the region with the lowest
wall thickness will dominate the threshold field for the mo-
tion of the entire wall.

Analysis of both complete area images and individual line-
scan profiles provides essential information about local
mechanisms of twin-wall broadening, which cannot be ob-
tained by other experimental methods (Shilo, Ravichandran,
and Bhattacharya, 2004). Surface topography measured using

atomic force microscopy is compared with candidate dis-

placement fields, and this allows for the determination of

the twin-wall thickness and other structural features. Closed-

form analytical expressions for vertical and lateral PFM

profiles of a single ferroelectric domain wall for the conical

and disk models of the tip, beyond point charge and sphere

approximations have been investigated (Morozovska et al.,

2008). Here the analysis takes into account the finite intrinsic

width of the domain wall and dielectric anisotropy of the

material. The analytical expressions provide insight into the

mechanisms of PFM image formation and can be used for a

quantitative analysis of the PFM domain wall profiles.
Ferroelectric thin films typically contain various structural

defects such as cationic and/or anionic point defects, dislo-

cations, and grain boundaries. Since the electric and stress

fields around such defects in a ferroelectric thin film are

likely to be inhomogeneous, it is expected that the switching

behavior near a structural defect will be different from

the one found in a single-domain state. The role of a single

ferroelastic twin boundary has been studied in tetragonal

PbZr0:2Ti0:8O3 ferroelectric thin film (Choudhury et al.,

2008). It was shown that the potential required to nucleate

a 180� domain is lower near ferroelastic twin walls

(� 1:6 V) compared with �2:6 V away from the twin walls.
A recently increased interest in combined PFM and con-

ductivity measurements arises from both nonvolatile memory

application perspective and a potential for electroresitive

memory devices (Yang et al., 2009). The work of

Gruverman, Isobe, and Tanaka (2001) explored the interplay

of domain dynamics and conductivity at interfaces in thin

ferroelectric films. The combination of local electromechani-

cal and conductivity measurements revealed a connection

between local current and pinning at bicrystal grain bounda-

ries in bismuth ferrite (Rodriguez et al., 2008).

Electroresistance in ferroelectric structures was recently re-

viewed by Watanabe (2007). The presence of extended de-

fects and oxygen vacancy accumulation has been shown to

influence transport mechanisms at domain walls (Seidel

et al., 2010). Recently, direct probing of polarization-

controlled tunneling into a ferroelectric surface was shown

(Garcia et al., 2009; Maksymovych et al., 2009). Scanning-

near-field optical microscopy has been used to observe pin-

ning and bowing of a single 180� ferroelectric domain wall

under a uniform applied electric field (Yang, 1999; Kim

et al., 2005).
Typically the imaging resolution in PFM is about 5–30 nm.

The achievable resolution is ultimately limited by the tip-

sample contact area, which is nominally determined by the

radius of the tip apex. There are additional mechanisms for

resolution broadening such as electrostatic interactions and

the formation of a liquid neck under ambient conditions in the

tip-surface junction. The PFM amplitude typically provides

information on the magnitude of the local electromechanical

coupling under the tip, and the PFM phase gives information

about the ferroelectric domain orientation.
Scanning tunneling spectroscopy can be used to directly

probe the superconducting order parameter at nanometer

length scales. Scanning tunneling microscopy (STM) and

spectroscopy (STS) have been used to investigate the elec-

tronic structure of ferroelastic twin walls in YBa2Cu3O7��

FIG. 30 (color online). Schematic piezoresponse across a single

180� domain wall in lithium niobate crystal. (a) The surface

displacement (solid line) due to the electric field across the domain

wall displayed in (e). The dotted line is the original surface plane.

(b) The piezoresponse, both X and Y signals, across the domain

wall. X is the product of amplitude (R) and the sine of the phase, q,
and Y is the product of amplitude and cosine of the phase. (c) The

piezoresponse, both X signal and Y signals, on both þc and �c

surfaces plotted in a vectorial XY plane. (d) The amplitude and

phase of the piezoresponse across the domain wall. (e) Schematic

domain structure and electrical field. From Tian, 2006.
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(YBCO) (Maggio-Aprile et al., 1997). Twin boundaries

play an important role in pinning the vortices and thereby

enhancing the currents that YBCO can support while remain-

ing superconducting. An unexpectedly large pinning strength

for perpendicular vortex flux across such boundaries was

found, which implies that the critical current at the boundary

approaches the theoretical ‘‘depairing’’ limit.
In the case of insulators, STM and STS are by definition a

lot more difficult to implement, primarily because a reliable

tunneling current cannot be used to establish proximal con-

tact. The emergence of ferroelectrics with smaller band gaps

and the possibility of conduction at domain walls (see later)

has stimulated renewed interest in exploring STM as a probe

of the local electronic structure. The emergence of combined

AFM and STM or SEM (scanning electron microscopy) and

STM systems should be a boon in terms of exploring the

electronic properties of domain walls in such insulating

materials. Research using such combined tools is in its

infancy (Wiessner et al., 1997; Yang et al., 2005; Garcı́a,

Huey, and Blendell, 2006; Chiu et al., 2011).

C. X-ray diffraction and imaging

Diffuse x-ray scattering can also be used to investigate the

structure of domains and domain walls in densely twinned

ferroelastic crystals (Bruce, 1981; Andrews and Cowley,

1986; Locherer, Chrosch, and Salje, 1998). The scattering

is characterized by strong, well-defined Bragg peaks, with a

diffuse streak between these arising from the domain walls

(see Fig. 31). The streak typically is several orders of magni-

tude lower in intensity. Comparison with an analytical model

for the scattering allows one to extract the effective domain

wall width on the unit-cell level (Locherer, Chrosch, and

Salje, 1998). Critical fluctuations and domain walls of, for

example, KH2PO4 (KDP) and KD2PO4 (DKDP) were inves-

tigated (Andrews and Cowley, 1986). The intensity of the

critical scattering near two different reciprocal lattice points
was determined and used to find the atomic displacements in
the ferroelectric fluctuations. The x-ray scattering from the

domain walls was observed below Tc and enabled measure-
ments to be made of the width of the domain walls and the
atomic displacements in the walls. The width of the domain
walls was shown to increase with temperature toward Tc.

Synchrotron x-ray sources have also been used for direct
imaging of strain near ferroelectric 180� domain walls in
congruent LiNbO3 and LiTaO3 crystals and in BaTiO3 crys-
tals (Kim, 2000; Rogan, 2003; Jach, 2004). Direct evidence

for wide regions of strain on length scales of many micro-
meters associated with 180� domain walls in congruent
LiNbO3 and LiTaO3 crystals was found. The observed strain
contrast in symmetric high-resolution diffraction images in
Bragg geometry arises in part from curvature in the basal
planes across a domain wall as well as from lateral variation

in the lattice spacing of the basal planes extending across a
wall. In BaTiO3 local triaxial strain fields around 90� do-
mains were found. Specifically, residual strain maps in a
region surrounding an isolated, approximately 40-�m-wide,
90� domain were obtained, revealing significant residual
strains.

D. Optical characterization

Ferroelectrics offer the possibility of engineering their
domain structure down to the nanometer regime and therefore
allow for interesting optical functionality such as mode shap-
ing and frequency conversion, as well as the integration into
compact optical devices (Chen et al., 2001; Kurz, Xie, and
Fejer, 2002; Scrymgeour et al., 2002). Ferroelectric crystals

in general are anisotropic and show birefringence. Regions
with different orientations of the polar axis are, for example,
easily differentiated by polarization microscopy (Tarrach
et al., 2001). Because of the symmetry of the optical indica-
trix, regions of opposite polarization cannot be distinguished

by linear optics. Nonlinear effects, however, such as second-
harmonic generation (Dolino, 1973) or the electro-optic ef-
fect (Hubert and Levy, 1997; Otto et al., 2004) revealed the
eccentricity of the crystal. Regarding materials, lithium nio-
bate (LiNbO3) and lithium tantalate (LiTaO3) emerged as key
technological materials for photonic applications (se Fig. 32).

High quality of crystal growth, optical transparency over a

FIG. 32. Piezoelectric force microscopy phase contrast images of

domain shapes in LiNbO3 and LiTaO3. From Scrymgeour et al.,

2005.

FIG. 31 (color online). X-ray intensity profile of the ð400Þ=ð040Þ
peak along (110) in a WO3 crystal. The dashed line shows a

Gaussian fit to the contribution from the domain walls. The bold

solid line is the overall fit. Figure courtesy of Ekhard Salje, adapted

from Locherer, Chrosch, and Salje, 1998.
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wide frequency range (240 nm to 4:5 �m wavelength), and
their large electro-optic and nonlinear optical coefficients are

the main advantages of these materials. Emerging fields of
optical communication, optical data storage, optical displays,
biomedical device applications, and sensors all rely heavily

on such ferroelectric materials as a versatile solid-state pho-
tonic platform. The process of domain control is difficult and
has received tremendous attention over the past years. The

central focus of work has been set on developing a funda-
mental understanding of shaping and controlling domain
walls in ferroelectrics, specifically in lithium niobate and

lithium tantalate, for photonic applications.
An understanding of the domain wall phenomena has

been approached at the macroscale and the nanoscale.
Different electric-field poling techniques have been devel-

oped and used to create domain shapes of arbitrary and
controlled orientation. A theoretical framework based on
the Landau-Devonshire theory is typically used to determine

the preferred domain wall shapes in these materials (Lines
and Glass, 2004). Differences in the poling characteristics
and domain wall shapes between the materials as well as

differences in material composition have been identified to
be related to nonstoichiometric defects in these crystals.
(Shur, 2006).

V. APPLICATIONS OF DOMAINS AND DOMAIN WALLS

When applying an external field to a material with do-

mains, the walls will move so as to expand those domains that
are energetically favored by the field and contract those that
are not. Having a large density of mobile domain walls

facilitates this change in domain populations and can there-
fore dramatically enhance the susceptibility of any ferroic, be
it magnetic susceptibility, elastic compliance, dielectric con-

stant or piezoelectric coefficient. The contribution of domain
walls to the susceptibility of ferroelectrics was first studied in
Prague more than four decades ago (Fouskova, 1965; Fousek

and Janoušek, 1966), and presently there exist good articles
and reviews about the dynamic domain wall contribution to
susceptibility and piezoelectricity (Zhang et al., 1994;

Bassiri-Gharb et al., 2007) so we do not dwell on this
topic here. Instead, we focus on the applications of static

ferroelectric domain configurations (chiefly, electro-optical

devices) on one hand, and on the newer concept of devices

exploiting domain wall shift (the so-called racetrack

memories).

A. Periodically poled ferroelectrics

Prior to the recent flurry of activity on domain engineering,

the primary device application requiring control and manipu-

lation of ferroelectric domains involved periodic poling of

ferroelectrics. This application is for nonlinear optics, such as

second-harmonic generation: The efficiency of the wave-

length conversion is increased by having periodic antiparallel

domains, with the maximum theoretical efficiency being

achieved when the wavelength of the pump laser matches

the full repeat length of a pair ofþP and�P domains, as first

pointed out by Bloembergen in his Nobel prize-winning work

(Armstrong et al., 1962).
The production of highly efficient nonlinear electro-optic

devices via the technique of periodically poling ferroelectric

crystals (quasiphase matching) emphasized devices made

from lithium niobate (LiNbO3) and lithium tantalate

(LiTaO3), both congruent and stoichiometric, KTP

(KTiOPO4), and tungsten bronzes of the barium sodium

niobate family. Generally speaking, these have been success-

ful commercial devices, but a few problems remain that

prevent optimization of real products. First, the domain

widths are sometimes not stable with time; second, there is

a particular problem in achieving narrow (submicrometer)

widths. In this section we examine some real device parame-

ters and suggest that the crystal (or film) thicknesses have not

been optimized in a way that is compatible with the domain

widths, connected through the Landau-Lifshitz-Kittel law

(see Table I).
Since the original report of efficient nonlinear optics

from phase-matched periodically poled ferroelectrics by

Armstrong et al. (1962) there have been numerous develop-

ments and commercial production of such devices, starting

about two decades ago, first in Japan (Yamada et al., 1993),

and then in the USA (Myers et al., 1995). From the early

1990s interest was perhaps evenly divided between KTP

(KTiOPO4) (Chen and Risk, 1994; Karlsson, 1997; Reid,

TABLE I. Some device parameters for periodically poled ferroelectrics. Wall thicknesses t measured using PFM or optical methods
overestimate the true crystallographic wall thicknesses, as pointed out by Jungk, Hoffmann, and Soergel (2007). The quoted wall thickness
for KTP is therefore likely to be too high.

Sample thickness d Domain width w Wall thickness t Domain depth d0
(mm) (nm) (nm) (nm) Reference

KTiOPO4

0.5 mm 283–360 nm 20–80 (a face) � 100 nm Wittborn et al. (2002); Canalias,
Pasiskevicius, and Laurell (2005);
Laurell and Canalias (2009)

0.5 mm 65 (b face) Canalias, Pasiskevicius, and
Laurell (2006); Canalias et al. (2006)

LiNbO3

1 mm 150 nm–6 �m <3 nm <100 nm Shur et al. (2000); Rosenman et al.
(2003a, 2003b); Grilli et al. (2005);
Jungk, Hoffmann, and Soergel (2007)

LiTaO3

0.15 875 nm Mizuuchi, Yamamoto, and Kato (1997)
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1997; Wang, 1998; Rotermund, 1999) and lithium niobate
(Hu, Thomas, and Webjörn, 1996; Galvanauskas, 1997;
Penman, 1998). This mix of materials continued in more
recent studies (Rosenman et al., 2003a, 2003b; Tiihonen,
Pasiskevicius, and Laurell, 2006; Canalias, Pasiskevicius, and
Laurell, 2006; Canalias et al., 2006; Lagatsky et al., 2007;
Henriksson et al., 2006; Hirohashi et al., 2007), augmented
by results on the tungsten bronzes of the Ba2NaNb5O15

family (Jaque et al., 2006). Note that, as pulled from the
congruent melt, LiNbO3 is not stoichiometric; the spectro-
scopic differences between congruent and stoichiometric
LiNbO3 were first illuminated by Okamoto, Wang, and
Scott (1985). We also note parenthetically that
LiNbO3=LiTaO3 and KTiOPO4 are both nonferroelastic fer-
roelectrics since their crystal classes do not change at their
ferroelectric phase transitions (rhombohedral-rhombohedral
and orthorhombic-orthorhombic, respectively). This means
that only 180� domains are present, which simplifies switch-
ing dynamics, and it implies that there is no hysteretic stress
during switching, which minimizes energy cost in poling.

1. Application of Kittel’s law to electro-optic domain

engineering

As discussed in Sec. II, the domain width w is proportional
to the square root of the crystal (or film) thickness d (see
Fig. 1). The proportionality constant is material dependent
and not easily evaluated, and this was simplified by the group
of Luk’yanchuk (De Guerville et al., 2005) and by some of us
(Catalan et al., 2007a): By dividing the Landau-Lifshitz-
Kittel formula by the domain wall thickness �, a dimension-
less constant results [Eq. (2)]. Our basic hypothesis, already
advanced by Catalan et al. (2007a), is that periodically poled
electro-optic devices often have domain periodicities and
domain walls that are unstable with time because they are
fabricated at thicknesses and widths that do not satisfy the
Kittel equation [Eq. (2)]. We consider how to improve and
optimize this situation.

Note three things in Eq. (2): First, the domain wall thick-
ness � is assumed to be an intrinsic constant, whereas, in fact,
� can be manipulated experimentally to optimize stability.
Secondly, d is not necessarily the thickness of the crystal, but
the depth of the domains, which can be much less than
the total film thickness. And, finally, the material-specific
parameter in Eq. (2) is the square root of the ratio of in-plane
and out-of-plane electric susceptibilities. As shown, this ratio
is different for the three electro-optic materials recently ex-
plored for periodically poled devices. The devices are typi-
cally fabricated on specimens that are 0.15 to 1.0 mm in
thickness. The typical domain widths that one strives for
(in order to match visible or near-visible wavelengths) are
100–900 nm, and the typical wall thicknesses are 10 nm or
less. These numbers do not satisfy the Kittel law; in particu-
lar, for a domain wall thickness of 10 nm, a 500-nm domain
width would be thermodynamically stable in LiNbO3 or
KTiOPO4 only for a much thinner specimen of � 10 �m,
significantly less than the actual 1 mm.

It is not easy to circumvent thermodynamics or to fool
Mother Nature. If one constrains the domain widths to be
smaller than the equilibrium Kittel value via spatially abrupt
applied fields, thermodynamics ‘‘retaliates’’ by making the

stable domains not penetrate through the sample from anode to

cathode of the applied poling voltage, but instead only partially

to a few micrometers in depth (Batchko et al., 1999).
For Ba2NaNb5O15 the out-of-plane (polar-axis) dielectric

constant is 32. The in-plane is biaxial but nearly isotropic at

222 (x axis) and 227 (y axis) (Warner, Coquin, and Frank,

1969). So the square root of the ratio is 2.65. Hence for

excitation with 1:064-�m Nd:YAG (yttrium aluminum gar-

net) (doubling to the green at 532 nm), and remembering that

two ferroelectric stripes make up one full wavelength, we

calculate the optimum thickness d from Eq. (2): w2=ðd�Þ ¼
2:455� 2:65 ¼ 5:5. For � of 1.0 nm (more about this choice

below), this yields an optimum d ¼ 180 �m. For LiNbO3

(congruent) the out-of-plane dielectric constant is 27.9 and

the in-plane one is 85.2 (Smith and Welsh, 1971). Therefore

the ratio is 3.05 and w2=ðd�Þ ¼ 2:455� 1:75 ¼ 4:3. For

KTP, the dielectric constant is unusually low (average

13.0); the in-plane values are 11.3 and 11.9 (average 11.6),

and the out-of-plane one is frequency dependent but � 17:5
at low frequencies and 15.4 at high frequencies (Bierlein

and van Herzeele, 1989; Noda et al., 2000). Using the

high-frequency value, this gives a susceptibility ratio

of 1.2, for which the square root is 1.1. Hence, w2=ðd�Þ ¼
2:455� 1:1 ¼ 2:7. For the 1-nm domain wall thickness given

above as an example, this requires a crystal thickness two and

one-half times as great as that for LiNbO3, approximately

0.45 mm. These three materials thus require different thick-

nesses for optimum phase matching at 1 �m, as shown in

Fig. 33. As can be seen, the different dielectric anisotropy of

the three materials has a relatively small impact on the

optimum domain size, due to the fact that the crystal anisot-

ropy is inside a square root of a square root. A much bigger

variation of optimum domain size can be obtained by tuning

instead the domain wall thickness, as discussed in the next

section.

2. Manipulation of wall thickness

The wall thickness parameter � is not an intrinsic constant.

It can be increased by an order of magnitude by impurity
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FIG. 33 (color online). Domain size as a function of thickness for

three uniaxial ferroelectrics commonly used in electro-optical ap-

plications. The continuous lines are calculated assuming domain

wall thickness of 1 nm, while the dashed lines are for a wall

thickness of 10 nm.
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doping and it can also be increased via application of an
electric poling field orthogonal to the polar axis.

a. Doping

We see in Reznik et al. (1985) that impurity doping can
greatly increase the domain wall thickness in ferroelectrics.
This will decrease the stability thickness d for a given
wavelength, or alternatively permit longer-wavelength
electro-optic devices for a fixed film thickness. Similarly,
wall thicknesses in congruent lithium niobate are about
10 times thicker than in stoichiometric specimens. For
many years only LiNbO3 grown from a congruent melt was
available for study. These crystals have 1% (or 1021 cm�3)
defects. The spectroscopic difference between congruent and
stoichiometric LiNbO3 was first shown by Okamoto, Wang,
and Scott (1985) and Chowdhury (1978). Recent periodically
poled LiNbO3 devices favor stoichiometric samples because
their domain walls are more stable. See, for example, Chu
et al. (2008).

b. Photovoltaic tensor and off-axis poling

The theoretical model of Rao and Wang (2007) implies
that off-axis poling can significantly widen wall thicknesses.
This brings us into a more general discussion of photovoltaic
tensors. Over the years, perhaps misled by the standard text
by Lines and Glass (2004), which implies that photovoltaic
response in LiNbO3 is along the polar z axis, many scientists
failed to recognize that the photovoltaic tensor is neither
diagonal nor second rank, despite the correct theory of
Chen (1968, 1969). As a result, large voltages and fields
can arise perpendicular to the polar axis when illuminated.
In a 1-W beam at 514.5 nm wavelength, focused to� 50 �m
diameter, lithium niobate exhibits a field of approximately
40 kV=cm in the xy plane, due to the �15 photovoltaic tensor
component (Odulov, 1982, Anikiev et al., 1985; Reznik
et al., 1985; Chaib, Otto, and Eng, 2003) (note that we used
the reduced notation, the photovoltaic tensor is third rank).

These off-axis photovoltages can be mitigated via application
of a thermal gradient, which causes charge diffusion to
mitigate the photovoltaic effect via the Seebeck effect

(Kostritskii et al., 2007, 2008). Hence it would be useful to
more carefully examine the effects of off-axis poling and of
photovoltage normal to the polar axis. In particular, in the
presence of high-intensity laser light the symmetry of

LiNbO3 is actually lowered; the threefold symmetry axis is
lost.

B. Domains and electro-optic response of LiNbO3

In assessing the microscopic dynamics of domains in poled
lithium niobate, it is useful to point out that the local electric
field is not necessarily along the polar axis, and that for

electro-optic devices, in the presence of light there is a strong
electric polarization induced perpendicular to this threefold c
axis. This was first established by Chen (1969), and later
evaluated quantitatively by Anikiev et al. (1985) who found

an orthogonal electric field of� 40 kV=cm in the presence of
moderately focused 0.5 W power at 514.5 nm from an argon
laser. Most recently this result has been confirmed by Chaib,
Otto, and Eng (2003). We emphasized this point here because
it is contrary to the claims in the textbook by Lines and Glass

(2004) (its first edition was written two years before Chen’s
work). It can significantly influence domain widths. All of
these effects differ in congruent and stoichiometric LiNbO3,
as do the phonon spectra (Scott, 2002) and especially the
quasielastic scattering (Chowdhury, 1978; Okamoto, Wang,

and Scott, 1985).

C. Photovoltaic effects at domain walls

Recently it was reported that an anomalous photovoltaic
effect in BFO thin films arises from a unique, new mecha-
nism, namely, structurally driven steps of the electrostatic

potential at nanometer-scale domain walls (Yang et al., 2010;
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Seidel et al., 2011). In conventional solid-state photovoltaics,

electron-hole pairs are created by light absorption in a semi-
conductor and separated by the electric field spanning a

micrometer-thick depletion region. The maximum voltage
these devices can produce is equal to the semiconductor

electronic band gap, although in noncentric systems such as

ferroelectrics the photovoltage can be bigger than the band
gap (Sturman and Fridkin, 1992). Interestingly, domain walls

can give rise to a fundamentally different mechanism for
photovoltaic charge separation, which operates over a dis-

tance of 1–2 nm and produces voltages that are significantly

higher than the band gap (see Fig. 34). The separation
happens at previously unobserved nanoscale steps of the

electrostatic potential that naturally occur at ferroelectric
domain walls in the complex oxide BiFeO3. Electric-field

control over domain structure allows the photovoltaic effect
to be reversed in polarity or turned off.

Currently, the overall efficiency of those photovoltaic

devices is limited by the conductivity of the bulk bismuth
ferrite material. Methods to increase the carrier mobility as

well as inducing the spatially periodic potential in an adja-

cent material with a lower gap than BFO are possible routes
to achieve larger current densities under white light illumi-

nation, and more generally, they demonstrate what the
source of periodic potential and the PðVÞ current flow can

be in different materials. Low-band-gap semiconductors with

asymmetric electron and hole mobilities are possible candi-
dates to show such an effect. In addition, photoelectrochemic

effects at domain walls are a possible further interesting
route, e.g., for applications in water splitting (Kudo and

Miseki, 2009).

D. Switching of domains

Rather comprehensive reviews of ferroelectric domain

switching have been published elsewhere (Shur,
Gruverman, and Rumentsev, 1990; Scott, 2000), and so, after

a few brief remarks, we concentrate on what is new and

particularly pertinent to thin ferroelectric films with high
densities (volume fractions) of domain walls or twin

boundaries.
At present the best way to monitor domain wall switching

is probably via measurement of displacement current IðtÞ
versus time t. This gives a rapid rise followed by a roughly
Gaussian peak. Assuming that the rise is not current limited

from the drive voltage source and that the decay is not

limited by the RC time constant, such data are popularly
fitted to a model due to Ishibashi and Takagi (1971) and

based upon earlier work by Avrami (1939) for the analogous
problem of crystal growth. The fitting parameters used

involve a characteristic switching time tð0Þ and, importantly,
a dimensionality D. One of the important aspects of this

theory is that for a given dimensionality there is a precise

prediction of the dimensionless ratio iðmÞtðmÞ=P, where iðmÞ
is the maximum displacement current density during switch-

ing and occurs at time tðmÞ, and P is the spontaneous
polarization. In principle the dimension D is an integer,

but because of other approximations made in the model,

particularly that the domain wall speed v is independent of
domain radius r (it actually varies as 1=r), noninteger values

usually result from least-squares fitting to the data. Other

approximations are not so important, but Dalton, Jacobs, and

Silverman (1971) pointed out that the model fails mathe-
matically for finite dimensions. This model has been used

extensively to fit data as functions of field E, thickness d,
temperature T, and fatigue cycles n. An interesting obser-

vation is that domain dimensionality D often decreases from

� 3 to 2 or 1 with fatigue (Araujo et al., 1986).
Of particular interest is what happens in thin films of

highly twinned ferroelectrics and ferroelastics. This was first

described by Bornarel, Lajzerowicz, and Legrand (1974),

who found that in such cases ferroelectric polar domain walls

could strongly interact with nearby ferroelastic nonpolar

walls, tilting both walls and making the nonpolar walls

slightly polar. This was recently demonstrated rather spec-
tacularly in ferroelectric tris-sarcosine calcium chloride by

Jones et al. (2011). Of relevance here is also the fact that

ferroelectric domain walls are easily pinned by defects and

vacancies, so the switching properties and dielectric contri-

bution of the walls can be modified by manipulating the

dopant chemistry. Fujii et al. (2010) discussed this in some
detail and explicitly showed how defect dipoles are more

effective at domain wall pinning than are oxygen vacancies.

E. Domain wall motion: The advantage of magnetic

domain wall devices

The development of prototype devices based upon mag-
netic domain devices has been pioneered by Cowburn and co-

workers (Allwood et al., 2005; Allwood, Xiong, and

Cowburn, 2006a, 2006b; Atkinson et al., 2006) as listed

and shown schematically in Fig. 1. His devices are suitably

small for commercial production (typically 15F2, where F2 is

the square of the feature size F), and extremely fast. His
devices include NOT gates, AND gates, (Zeng et al., 2010)

shift registers (O’Brien et al., 2009), read/write memory

devices (Allwood, Xiong, and Cowburn, 2006a, 2006b),

signal fan-out devices, and data input and crossover structures

(Allwood et al., 2005). On the fundamental physics side, this

group also investigated vortex domain wall transitions, which
have a close relationship with the ferroelectric vortex do-

mains discussed in Sec. III. They also examined magnetic

comb structures (shown in Fig. 35) in detail (Lewis et al.,

2010).
It is not an exaggeration to say that microelectronic devices

based upon magnetic domain dynamics are a full decade
ahead of those based upon ferroelectric domains.

In some important respects, it is difficult for ferroelectrics

to catch up, literally. This is because magnetic domain walls

involve only flipping of spins (no mass) and can easily be

driven at near the speed of sound (km=s). In fact, they can

even be driven supersonically, with acoustic phonons being
produced in high magnetic fields by supersonic magnetic

domain walls at a phase angle related to that in the analogous

problems of bow waves in water or in Cerenkov radiation

(Demokritov et al., 1988, 1991). By comparison, ferroelec-

tric walls have real momentum and they cannot travel faster
than the theoretical limit set by the transverse acoustic pho-

non, the speed of sound, for otherwise the sonic boom would

shatter the crystal. Moreover, domain walls satisfy a ballistic

G. Catalan et al.: Domain wall nanoelectronics 145

Rev. Mod. Phys., Vol. 84, No. 1, January–March 2012



equation of motion with viscous damping (Dawber et al.,
2005) which causes a saturation or ‘‘terminal velocity’’ that is

often (but not always) below the speed of sound.
On the other hand, the terminal velocity, however, is

dependent on the sample and the technique used to deliver

the voltage pulse, and it can be significantly raised. Miller

measured ferroelectric domain wall velocities in LiNbO3 over

9 orders of magnitude from 10�9 mm=s upward and found
that they saturate near 1:0 m=s at high fields (Miller, 1998).

But more recent studies by Gruverman set a higher limit,

between 10 and 100 m=s (Gruverman, Wu, and Scott, 2008).

And much faster switching, with velocities approaching the

speed of sound, was achieved by Li and co-workers in direct

measurements of the switching dynamics using an ultrafast

photoconducting switch enabled electric pulse with a rise
time of tens of picoseconds (Li et al., 2004). They showed

intrinsic switching time scales of 50–70 psec in fully

integrated capacitors of 2� 3 �m2 in lateral dimensions,

fabricated with films of 150 nm thickness, suggesting veloc-

ities of 2000–3000 m=s. It should be noted that such mea-

surements are not routine: Indeed, it is quite likely that a

significant number of measurements in the literature are

compromised by either the rise time of the pulse generator,

the RC time constant of the measurement system, or the rise

time of the oscilloscope system. It is also worth mentioning

that ultrahigh fields can be achieved in sufficiently thin

single-crystal samples: Morrison et al. (2005) reported fields

of 1:3 GV=m in BaTiO3 lamellae, and nobody knows what

the domain wall speed is under such high fields.
As well as maximizing domain wall speed, the future

development of ferroelectric domain wall devices will proba-

bly require denser domain arrays, so that the walls travel a

shorter distance, or rely on device designs that do not require

high wall speeds, such as domain conduction devices. The

first criterion can be readily met, since ferroelectric domains

are known to be generally narrower than their magnetic

counterparts, as seen in previous sections. The second (con-

ductivity of domain walls) has also been discussed and will be

examined further in the next section.
Another important question, which is only now begin-

ning to be explored, is that of domain wall dynamics in

magnetoelectric multiferroics. The different response of the

magnetic and ferroelectric components of multiferroic

walls to external fields has been proposed by

Fontcuberta and co-workers as a new mechanism for

eliciting switchable control of exchange bias in hexagonal

multiferroics such as YMnO3 (Skumryev et al., 2011). On

the theoretical front, little is yet known about the dynam-

ics of coupled domain walls, so this line of work certainly

merits further attention.
Parkin and co-workers have made considerable progress

in memory devices based upon magnetic domain wall mo-

tion, introducing the concept of the racetrack memory

(Fig. 36). This design concept in principle offers storage

densities that are larger than conventional solid-state mem-

ory devices such as flash memory with a better read and

write performance. Key in these devices is the fact that

magnetic domain walls can exhibit considerable momentum,

moving about a micron after a current pulse is applied

(Thomas, Moriya, and Rettner, 2010). This is about an order

of magnitude less than the inertial travel distance of ferro-

electric domain walls subjected to large pulsed fields, but it

is not negligible. This is important for magnetic domain

memories because it implies that the spatial positioning of

walls can be precisely controlled by the current pulse length.

(This is somewhat surprising, since the magnetic domain

motion follows the Landau-Lifshitz-Gilbert equation, which

is first order in time, whereas ferroelectric domain walls

satisfy Newton’s equations, which are second order in time

and hence explicitly display momentum.)
The basic mechanism to ‘‘push’’ domain walls along the

racetrack using a current is the ‘‘spin torque.’’ The underlying

principle is that when spin-polarized electrons in a ferromag-

netic material pass through a magnetic domain wall, there is a

torque on the electrons that acts to reorient their spin mag-

netic moments along the magnetization direction (Fig. 37).

Angular momentum in this system is conserved by a reaction

torque, termed the spin transfer torque, which acts from the

FIG. 35. (a) Electron microscope images of a magnetic strip and

magnetic comb structures; the scale bar is 1 �m in all cases.

Magnetic comb structures are designed to speed up domain walls,

as experimentally demonstrated in (b). Note the high velocity of the

magnetic domain walls (in excess of 1500 m=s) that can be

achieved in the combed structures. From Lewis et al., 2010.
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electrons onto the material magnetization in a way such that it
displaces the domain wall in the direction of the electron flow
(Stiles and Miltat, 2006; Ralph and Stiles, 2008). Domain
wall motion can be achieved when the current density through
the device is sufficiently high.

Current designs of racetrack memories use a spin-coherent
electric current to move magnetic domains along a nano-
scopic permalloy wire with a cross section of 200� 100 nm2.
As a current is passed through the wire, the domain walls pass
by read and write heads. A memory device is made from

many such elements. Improvements in domain wall detection
capabilities, based on the development of new magnetoresis-
tive materials, allow the use of increasingly smaller magnetic
domains to reach higher storage densities. The basic opera-
tion of the racetrack magnetic domain wall memory system is
described by Parkin, Hayashi, and Thomas (2008), and recent
details concerning wall pinning discussed by Jiang et al.
(2010), although the basic idea that magnetic domain walls
could be moved into precise positions was developed a
decade earlier by Ono et al. (1999a, 1999b). A recent review
of this aspect of magnetic electronics (‘‘spintronics’’) has
been given by Bader and Parkin (2010), which follows an
earlier review on fundamentals and applications of nanomag-
netism by Bader (2006).

F. Emergent aspects of domain wall research

We focus on some emergent behavior at domain walls,
particularly in materials such as multiferroics, that exhibit
coupled order parameters, i.e., the charge and spin degree of
freedom are coupled. In order to focus the discussion on what
is understood and what remains to be explored, we use the
multiferroic BiFeO3 as our model system. The richness of
phase evolution and electronic properties in this system is
now well established, and we are beginning to understand the
manipulation of its electronic structure, correlation effects,
and order parameter evolution on the unit-cell level. What are
the consequences and the opportunities? This we discuss
next.

1. Conduction properties, charge, and electronic structure

By far one of the most fascinating aspects of research on a
bismuth ferrite as a multiferroic has to do with the changes in
electronic structure as a function of crystal chemistry and
particularly at domain walls. Rhombohedral BiFeO3 has been
shown to possess ferroelectric domains in thin films that are
insulatorlike, whereas conduction in its domain walls is
significant (Seidel et al., 2009) (Fig. 38). The observed
conductivity correlates with structurally driven changes in
both the electrostatic potential and the local electronic struc-
ture, which shows a decrease in the band gap at the domain
wall.

In light of the intriguing electrical conductivity, detailed
electronic properties of the domain walls have been inves-
tigated by Lubk, Gemming, and Spaldin (2009). The layer-
by-layer densities of states was calculated to see if the
structural deformations in the wall region lead to a closing
of the electronic band gap. In particular, the ideal cubic
structure, in which the 180� Fe-O-Fe bond angles maximize
the Fe 3d–O 2p hybridization and hence the bandwidth, has a
significantly reduced band gap compared to the R3c structure.
Figure 39 shows the local band gap extracted from the layer-
by-layer densities of states across the three wall types. In all
cases a reduction in the band gap in the wall can be seen, with
the 180� wall showing the largest effect. In no case, however,
does the band gap approach zero in the wall region. The same
first-principles calculations supporting the experimental
work of Seidel et al. also give insight into the changes in
the Fe-O-Fe bond angle in BiFeO3, in addition to the fact that
walls in which the rotations of the oxygen octahedra do not

FIG. 37 (color online). Schematic of spin scattering from an

interface with a ferromagnet in a simple limit of ideal spin-

dependent transmission and reflection. From http://www.nist.gov/

cnst/epg/spin_transfer_torque.cfm.

FIG. 36 (color online). The racetrack: a ferromagnetic nanowire.

Pulses of highly spin-polarized current move domain walls coher-

ently in either direction via spin torque. (a) A vertical-configuration

racetrack. Magnetic patterns in the racetrack before and after the

domain walls have moved down one branch of the U, past the read

and write elements, and then up the other branch. (b) A horizontal

configuration. (c) Reading data from the stored pattern by measur-

ing the tunnel magnetoresistance of a magnetic tunnel junction

element connected to the racetrack. (d) Writing data by the fringing

fields of a domain wall moved in a second ferromagnetic nanowire.

(e) Arrays of racetracks on a chip for high-density storage. From

Parkin, Hayashi, and Thomas, 2008.
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change their phase when the polarization reorients are sig-

nificantly more favorable than those with rotation disconti-

nuities, i.e., antiphase octahedral rotations are energetically

costly.
The analysis of the local polarization and electronic prop-

erties also revealed steps in the electrostatic potential for all

wall types, and these must also contribute to the conductivity.

Steps in the electrostatic potential at domain walls are corre-

lated with (and caused by) small changes in the component of

the polarization normal to the wall (Seidel et al., 2010).

These changes in normal polarization are a consequence of

the fair rotation of the polar vector across the domain wall and

are not exclusive of BiFeO3. Tetragonal PbTiO3, for example,

shows a similar effect for a 90� wall (Meyer and Vanderbilt,

2002) (Fig. 40). Extended phase-field calculations for tetrago-

nal BaTiO3 also allow calculating the intrinsic electrostatic

potential drop across the 90� domain wall, regardless of the

consideration of the ferroelectric as an n-type semiconductor

or dielectric (Hong et al., 2008). This potential change
creates a large electric field that promotes an asymmetric
charge distribution around the walls, where electrons and
oxygen vacancies concentrate on the opposite sides. The
increased charge density presumably promotes increased
conductivity.

As mentioned, the semirigid rotation of the polar vector
across a ferroelectric-ferroelastic wall leads to an electrostatic
potential that is screened by free charges which enhance the
local charge density and thus, presumably, the conductivity.
Since this polar rotation is not exclusive of BiFeO3, other
perovskite ferroelectrics should also be expected to display
enhanced conductivity, and perhaps this mechanism is behind
the enhanced conductivity recently reported also for the
domain walls of PbðZr;TiÞO3 (Guyonnet et al., 2011). In
BiFeO3, several other factors might be further helping the
conductivity enhancement: First, the magnetoelectric cou-
pling between polarization and spin lattice is such that the
magnetic sublattice rotates with the polarization (Zhao et al.,
2006; Lebeugle et al., 2008). Since spins rotate rigidly (see
Sec. III.B), they might favor a more rigid rotation of the
polarization and hence a bigger electrostatic step at the wall
(and, of course, the polarization of BiFeO3 is itself bigger
than that of other known perovskite ferroelectrics, which
means that all other things being equal a rigid polar rotation
in BiFeO3 will cause a bigger electrostatic step). Also, the
increased spin alignment at the wall should lower the mag-
netic contribution to the band gap (Dieguez and Iñiguez,
2011). But perhaps the most obvious consideration is the
fact that BiFeO3 has an intrinsically smaller band gap than
other prototypical perovskite ferroelectrics (� 2:7 eV instead
of 3.5–4 eV). This means that the screening charges accumu-
lated at the wall will be closer to the bottom of the conduction
band and hence will more easily contribute to the conductiv-
ity. It would be interesting to see if highly insulating

FIG. 40. 90� domain walls in lead titanate: (a) potential steps at

domainwalls; (b) theoretical conduction and valence band alignment;

(c) potential in equilibrium. From Meyer and Vanderbilt, 2002.

FIG. 39 (color online). Local band gap at domain walls in bismuth

ferrite extracted from the layer-by-layer densities of states. From

Lubk, Gemming, and Spaldin, 2009.

FIG. 38 (color online). (a) The three different types of domain

walls in rhombohedral bismuth ferrite. Arrows indicate polarization

directions in adjacent domains. (b) In-plane PFM image of a written

domain pattern in a monodomain BFO (110) film showing all three

types of domain wall. (c) Corresponding c-AFM image showing

conduction at both 109� and 180� domain walls; note the absence of

conduction at the 71� domain walls. This stands in contrast with

recent results reporting enhanced conductivity in the 71� walls

(Farokhipoor and Noheda, 2011). Adapted from Seidel et al., 2009.
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single-crystal samples such as those studied by Chishima

et al. (2010) display the same domain wall conductivity as

do the thin-film samples studied so far. The current density of

these single-crystal samples can be as low as 10�9 A=cm2

even at electric fields in excess of 50 kV=cm, while typical

resistivities of thin films are in the region of 106–108 � cm,

comparable to the resistivity of good quality BiMnO3

(Eerenstein et al., 2005).
The role of defect accumulation at the walls also deserves

close scrutiny, because defects control the transport behavior,

as recently emphasized by Farokhipoor and Noheda (2011).

Localized states are found in the spectrum of ferroelectric

semiconductors, and states localized at the walls and inside

the domain but close to the wall split off from the bulk

continuum. These nondegenerate states have a high disper-

sion, in contrast with the ‘‘heavy-fermion’’ states at an iso-

lated domain wall (Idlis and Usmanov, 1992). Charged

double layers can be formed due to coupling between polar-

ization and space charges at ferroelectric-ferroelastic domain

walls (Xiao et al., 2005). Charged domain wall energies are

about 1 order larger than the uncharged domain wall energies

(Gureev, Tagantsev, and Setter, 2009), and phenomenological

calculations show decoration of walls by defects such as

oxygen vacancies. The presence of charge and defect layers

at the walls means that such walls promote electrical failure

by providing a high conductivity pathway from electrode to

electrode (Xiao et al., 2005). Eliseev et al. (2011) have also

shown how the relative sign between the wall charge and the

type of majority carriers also matters: positively charged

walls in an n-type ferroelectric are more easily screened

(and thus have smaller thickness and lower energy) than

negatively charged walls, due to the bigger abundance of

screening charges. Vice versa for negatively charged walls

in a p-type ferroelectric semiconductor.
The control of the electronic structure at walls by doping

and strain in ferroelectric and ferroeleastic oxides opens a way

to effectively engineer nanoscale functionality in such mate-

rials. For the case of BiFeO3 A-site doping with Ca, and

magnetic B-site substitution such as Co or Ni, might prove to

be a viable way to achieve new domain wall properties by

manipulating the electronic structure, spin structure, and di-

polar moment in this material (Yang et al., 2009). Of obvious

future interest is the question of what sets the limits to the

current transport behavior at walls: Can one ‘‘design’’ the

topological structure of the domainwall to controllably induce

electronic phase transitions within the wall arising from the

correlated electron nature? Is it possible to trigger anAnderson

transition by doping of domain walls or straining them?
Recently, some of us reported the observation of tunable

electronic conductivity at domain walls in La-doped BFO

linked to oxygen vacancy concentration (Seidel et al., 2010).

The conductivity at 109� walls is thermally activated with

activation energies of 0.24 to 0.5 eV. From a broader perspec-

tive, these results are the first step toward realizing the

tantalizing possibility of inducing an insulator-metal transi-

tion (Imada, Fujimori, and Tokura, 1998) locally within the

confines of the domain wall through careful design of the

electronic structure, the state of strain, and chemical effects at

the domain wall. For actual device applications the magni-

tude of the wall current needs to be increased. The choice of

the right shallow-level dopant and host material might prove
to be key factors in this respect. Further study of correlations

between local polarization and conductivity is an exciting
approach to understanding the conduction dynamics and
associated ferroelectric properties in the presence of strong
coupling between electronic conduction and polarization in
complex oxides.

2. Domain wall interaction with defects

Defect–domain wall interaction is an important area of
research that deserves increased attention (Robels and Arlt,
1993; Gopalan, Dierolf, and Scrymgeour, 2007). Point de-
fects can broaden the wall (Shilo, Ravichandran, and

Bhattacharya, 2004; Lee, Salje, and Bismayer, 2005). The
width of twin walls in PbTiO3, for example, can be strongly
modified by the presence of point defects within the wall. The
intrinsic wall width of PbTiO3 is about 0.5 nm, but clusters of

point defects can increase the size of the twin wall up to
15 nm (Salje and Zhang, 2009). Trapped defects at the
domain boundary play a significant role in the spatial varia-
tion of the antiparallel polarization width in the BaMgF4
single crystal as seen by PFM (Zeng et al., 2008), and
asymmetric charge distribution around 90� domain walls in
BaTiO3 have also been reported, where electrons and oxygen
vacancies concentrate on the opposite sides (Hong et al.,

2008).
Interaction between the order parameter and the point

defect concentration causes point defects to accumulate
within twin walls (Salje and Zhang, 2009); conversely such
defects contribute to the twin-wall kinetics and hysteresis, as
they tend to clamp the walls. Oxygen vacancies, in particular,

have been shown to have a smaller formation energy in the
domain wall than in the bulk, thereby confirming the ten-
dency of these defects to migrate to, and pin, the domain
walls (He and Vanderbilt, 2003). This leads to a mechanism

for the domain wall to have a memory of its location during
annealing (Xiao et al., 2005).

3. Magnetism and magnetoelectric properties of multiferroic

domain walls

An important question to ask at this point is what is
the true state of magnetism at a multiferroic domain wall.
Temperature-dependent transport measurements are a pos-

sible route to follow to understand the actual spin structure
and whether it exhibits a glasslike or ordered ferromagnetic
state. Of interest is the effect of extra carriers introduced into
the system, e.g., by doping or electric gating, on magnetism.
Is there a way to change the magnetic interaction from super-

exchange to double exchange? The strength of the coupling
between the ferroelectric and antiferromagnetic walls in
BiFeO3 is an issue that still needs to be resolved from both
a theoretical and an experimental perspective. The role of the

dimensionality on electrical and magnetoelectrical transport
needs to be elucidated and compared to known systems, such
as manganites (Dagotto, 2003; Salafranca, Yu, and Dagotto,
2010). We note that the interaction between ferroelectric and

antiferromagnetic domain walls has been studied in model
multiferroics such as YMnO3 (Goltsev et al., 2003) and
BiFeO3 (Gareeva and Zvezdin, 2011). In both cases it has
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been shown that the antiferromagnetic domain walls are
significantly wider (by �1–2 orders of magnitude) compared
to the ferroelectric walls. This is also in agreement with the
phenomenological predictions of Daraktchiev, Catalan, and
Scott (2010) for coupling-mediated wall broadening.

VI. FUTURE DIRECTIONS

It is safe to say that the phenomena and physics of domain
walls in ferroelectrics form an exciting and growing field of
interest. As device size is reduced, the number density of
domain walls grows, with consequences for functional
behavior. Based on the differences between domain wall
types, the inclusion of a ‘‘wrong’’ domain type could give
the system entirely different properties. With the current
developments surrounding the conductive properties there
are many remaining questions and some new ones.
Electronic conduction was predicted for ferroelectric domain
walls based on the fact that charged double layers may form
on either side of these walls (Hong et al., 2008). Since the
ferroelectric in which the conductive walls were found is a
multiferroic, the obvious next step is to verify that multi-
ferroics also have this double layer and determine whether it
is responsible for the conduction. If this double layer is
indeed present and responsible for the conduction, it should
be interesting to combine this with the idea that multiferroics
have broader walls compared to pure ferroelectrics. Is there a
maximum on the thickness of a domain wall to still have this
double layer and be conductive? In a more general sense one
could ask oneself whether the physics and assumptions based
on the findings in pure ferroelectrics are valid for the multi-
ferroic materials as well. Conversely, we need to also identify
the aspects of domain wall behavior that are exclusive to
multiferroics: Order parameter coupling and chirality are two
features of multiferroic walls that have unique roles.

Another front of research is the investigation of dynamic
conductivity at domain walls (Maksymovych et al., 2011).
This addresses important factors: a possible electric-field
induced distortion of the polarization structure at the domain
wall, the dependence of conductivity on the degree of dis-
tortion, and weak-pinning scenarios of the distorted wall. The
domain wall is likely not a rigid electronic conductor, instead
offering a quasicontinuous spectrum of voltage-tunable elec-
tronic states (Maksymovych et al., 2011). This is different
from ferroelectric domains, where switching may give rise to
discrete (often only two) conductance levels (Garcia et al.,
2009; Maksymovych et al., 2009). The intrinsic dynamics of
domain walls and other topological defects are expected not
only to influence future theoretical and experimental inter-
pretations of the electronic phenomena, but also to pose the
possibility of finding unique properties of multiferroic do-
main walls, e.g., magnetization and magnetoresistance within
an insulating antiferromagnetic matrix (He et al., 2011), also
due to order parameter coupling and localized secondary
order parameters (Salje and Zhang, 2009; Daraktchiev,
Catalan, and Scott, 2010). Of future interest is the question
of what sets the limits to the current transport behavior at
walls: Can one design the topological structure of the domain
wall to controllably induce electronic phase transitions within
the wall arising from the correlated electron nature? Is it

possible to trigger an Anderson transition by doping of

domain walls (Yang et al., 2009) or straining them? The

observation of superconductivity in ferroelastic walls ofWO3

certainly points to various exciting and unexplored areas of

domain boundary physics (Aird and Salje, 1998).
Another interesting direction for domain wall engineering

in ferroelectrics is by the size and design of the system, and

this includes not only the domains themselves but also their

hierarchical self-organization into bigger metastructures.

Recently, Schilling et al. (2009) presented work on nano-

ferroelectrics, which shows considerably more domain walls

per unit volume, thanks to the size constraints in two and

three dimensions, as opposed to the single finite dimension of

thin films. Yet another unique design feature of the samples of

Schilling et al. is that they are free-standing ferroelectrics,

unlike those that are grown on a substrate, and for which

intrinsic surface tension can play a bigger role (Luk’yanchuk

et al., 2009). Such nanostructures are also prone to new types

of topological defects beyond the classic domain walls; for

example, recent work by Hong et al. (2010) shows that arrays

of ferroelectric nanowires have switchable quadrupoles and

thus potential as nanodevices. Exotic topological defects in

nanostructures (vertices, vortices, quadrupoles, etc.) are cur-

rently an active area of research.
Another interesting feature that is being studied intensively

is the fact that the domains in nanocrystals clearly show

organization on several length scales, with correlation not

just between narrow stripe domains but also between packets

of stripes. Ivry et al. (2011) found a variety of mesoscopic-

scale domain packets or bundles with considerable cross-talk

across PbðZr;TiÞO3 (PZT) grain boundaries. More strikingly,

McQuaid et al. (2011) showed metadomains or superdo-

mains that are composed of thin stripes but reproduce on a

mesoscopic scale the exact shape and functional behavior of

closure domains such as those of Figs. 10 and 11. The physics

and functional engineering of mesoscopic metadomains or

bundles is a rapidly growing topic that will no doubt see more

activity in the near future.
Several applications have been suggested to make use of

domain walls in ferroelectric materials based on their addi-

tional functionalities as well as their affects on existing

devices. Uses that have been mentioned are as a local strain

sensor incorporated on an AFM probe or a multilevel

resistance-state device that is written by an electrical current

(Béa and Paruch, 2009). Other possibilities include nonvola-

tile memories, piezoelectric actuators, ultrasound trans-

ducers, surface acoustic wave devices, and optical

applications (Gopalan, Dierolf, and Scrymgeour, 2007). For

existing devices, the discovery of conducting domain walls

stimulates engineers to prevent their products from having the

wrong domain walls that could cause leakage and prevent its

use in ferroelectric memories. This use of ferroelectrics in

memory has recently been reviewed, and it has been argued

that conductivity may not be a detriment but an opportunity

for new memory reading mechanisms (Béa and Paruch, 2009;

Garcia et al., 2009; Maksymovych et al., 2009; Zubko and

Triscone, 2009; Jiang et al., 2011).
Experimental results and theoretical investigations in

recent years have convincingly demonstrated that certain

transition metal oxides and some other materials have
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dominant properties driven by spatial inhomogeneity.

Strongly correlated materials incorporate physical interac-

tions (spin, charge, lattice, and/or orbital hybridization), al-

lowing complex interactions between electric and magnetic

properties, resulting in ferromagnetic, or antiferromagnetic

phase transitions. Of even higher interest are the heterointer-

faces formed between correlated materials showing new state

properties. Domain walls are only one example of ‘‘natu-

rally’’ occurring interfaces in such materials. The challenge is

to determine whether such complex interactions can be

controlled in those materials or heterointerfaces at suffi-

ciently high speeds and densities to enable new logic device

functionality at the nanometer scale. Parameters such as

interface energy, switching speed and threshold, tunability,

dynamics of the states, and size dependencies need to be

quantified to determine if domain boundary materials could

be employed as a building block for information processing

systems.
In addition, there are some new phenomena associated

with ferroelectric domain walls that merit fundamental study:

As shown in Sec. III, 2D arrays of vertex domains on ferro-

electric surfaces often come in pairs of threefold vertices

(Srolovitz and Scott, 1986). Fourfold vertices of domains

exist in barium sodium niobate, and sixfold domains are

well known since 1967 in YMnO3 (Safrankova, Fousek,

and Kizhaev, 1967). And so one might ask whether these

arrays of vertex domains ‘‘melt’’ at temperatures below the

Curie temperature at which stripe domains disappear, i.e., do

ferroelectric vertex arrays undergo Kosterlitz-Thouless melt-

ing (Kosterlitz and Thouless, 1973) involving defect pair

production and annihilation? A second and rather deep phe-

nomenon has been recently discovered by Schilling et al.

(2011): Vertex domains in rectangular ferroelectrics have off-

centered vertices, whose position can be calculated according

to a Landau theory with aspect ratio replacing temperature;

the resulting novel shape-generated phase transition can

therefore occur at0 K (quantum criticality).
The ferromagnetic properties of ferroelectric walls in para-

magnetic and antiferromagnetic materials (Goltsev et al.

(2003); Daraktchiev, Catalan, and Scott (2008; 2010) suggest

that much more research and development should be done on

domain walls in multiferroics and also on the dynamics of

domain walls in these materials (Skumryev et al., 2011): We

note in this respect that BiFeO3 is no longer the only room-

temperature multiferroic, nor Cr2O3 the only good room-

temperature magnetoelectric, with the lead-iron-tantalate,

lead-iron-niobate, lead-iron-tungstate family now being

studied in various laboratories (Josef Stefan Institute,

University of Puerto Rico, University of Cambridge), and

new chromates being reported at Florida State, all of which

function at room temperature. Many of these are relaxorlike

systems and therefore have intrinsic nanodomains.
In summary, we have provided an overview on ferroelectric

and multiferroic nanodomain and domain wall electronics.

The state of understanding and especially of application lags

that for magnetic domains, with which comparisons are made;

the work of Cowburn et al. and Parkin et al. makes it hard for

ferroelectric domain electronics to compete with magnetic

devices based on spatial manipulation; this is simply because

the magnetic domains have greater mobilities. Thus it is

unlikely that ferroelectrics will provide the equivalent of race-
track memories, or fast AND or NOT gates, as developed by
those groups. Instead it is likely that they will provide com-
plementary devices that exploit the electrical conductivity
and/or ferromagnetisn of ferroelectric domain walls. Hence
these may involve fewer memory devices but more intercon-
nects, switches, and sensors and actuators. Domain wall elec-
tronics, particularly with ferroelectrics and multiferroics, may
also provide useful hybrid devices involving carbon nanotubes
(Kumar, Scott, and Katiyar, 2011).

It is always risky to predict the next generation of devices,
but it is likely that ferroelectric nanodomains and domain
walls may first find commercial application not in consumer
electronics but in high-end products. Medical physics (par-
ticularly implants), satellite physics (NASA reported in
August 2011 its test results of PZT 94. Ferroelectric random
access memories (FRAMs) in microsatellites), and military
applications all pay a premium for smaller size and lower
power. Nanoscience has yet to live up to the publicity and
hype it has received, but such initial applications, where cost
is less important than size and power consumption, will
surely lead the way as disruptive technologies.
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Béa, H., and P. Paruch, 2009, Nature Mater. 8, 168.

Bierlein, J. D., and H. van Herzeele, 1989, J. Opt. Soc. Am. B 6,

622.

Bjorkstam, J. L., and R. E. Oettel, 1967, Phys. Rev. 159, 427.

Blank, H., and S. Amelinckx, 1963, Appl. Phys. Lett. 2, 140.

Blinc, R., B. Zalar, V. V. Laguta, and M. Itoh, 2005, Phys. Rev. Lett.

94, 147601.

Bokov, A. A., and Z. -G. Ye, 2006, J. Mater. Sci. 41, 31.

Borisevich, A.Y., et al., 2010, ACS Nano 4, 6071.

Bornarel, J., J. Lajzerowicz, and J. F. Legrand, 1974, Ferroelectrics

7, 313.

Bratkovsky, A.M., and A. P. Levanyuk, 2000, Phys. Rev. Lett. 84,

3177.

Brown, M. E., and M.D. Hollingsworth, 1995, Nature (London)

376, 323.

Bruce, D. A., 1981, J. Phys. C 14, 5195.

Burns, G., and F. H. Dacol, 1982, Solid State Commun. 42, 9.

Bursill, L. A., and Peng Ju Lin, 1986, Ferroelectrics 70, 191.

Bursill, L. A., J. L. Peng, and D. Feng, 1983, Philos. Mag. A 48,

953.

Canalias, C., V. Pasiskevicius, and F. Laurell, 2005, Appl. Phys.

Lett. 86, 181105

Canalias, C., V. Pasiskevicius, and F. Laurell, 2006, Ferroelectrics

340, 27.

Canalias, C., S. Wang, V. Pasiskevicius, and F. Laurell, 2006, Appl.

Phys. Lett. 88, 032905

Cano, A., and A. P. Levanyuk, 2010, Phys. Rev. B 81, 172105.

Cao, W., and G. R. Barsch, 1990, Phys. Rev. B 41, 4334.

Cao, W., and C.A. Randall, 1996, J. Phys. Chem. Solids 57, 1499.
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