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Experimental advances with laser intensities above 1 TW=cm2, with pulse durations between roughly

50 and 5 fs, have led to the discovery of new atomic effects that include examples of startlingly high

electron correlation. These phenomena have presented an unexpected theoretical challenge as they lie

outside the domains of both of the nominally applicable theories, namely, straightforward perturbative

radiation theory and quasistatic tunneling theory. The two liberated electrons present a new few-body

collective effect. When they are not released independently, one by one, the term nonsequential double

ionization has been adopted. Theoretical avenues of attack have emerged in two categories, which are

strikingly different. They can be labeled as ‘‘all-at-once’’ and ‘‘step-by-step’’ approaches. Although

different, even conceptually opposite in some ways, both approaches have been successful in

confronting substantial parts of the experimental data. These approaches are examined and compared

with their results in addressing key experimental data obtained over the past decade.
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I. INTRODUCTION TO NONSEQUENTIAL DOUBLE

IONIZATION

Photoelectron dynamics is a fascinating and challenging

research topic in atomic and molecular physics. This has

been true formore than 100 years. Indeed, Einstein’s resolution

of the puzzle of the photoelectric effect required him to invent

the first quantum treatment of the light-matter interaction

(Einstein, 1905). Modern studies of the atomic photoeffect

were prompted in the 1960s with the unexpected observation

of sparks generated by laser pulses focused in air. The realiza-

tion that photoionization of air molecules could be produced

with optical photons having individual energies far short of the

molecular ionization potential was sufficient to initiate optical

multiphoton physics as an intriguing research arena.
Since those early observations the light intensity available

from pulsed lasers has grown by 10 orders of magnitude,
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pulse durations have decreased as far as into the 2–3 cycle
range, and pulse repetition rates now reach the megahertz
regime. A consequence has been the ability to investigate
previously inaccessible multiphoton domains, and a promi-
nent one of these has been the ionization of more than one
electron.

An important result, motivating this review, has been the
discovery of surprising new phenomena associated with
exceptional, even unprecedented, consequences of atomic-
electron correlation, signaled by the failure of standard
optical ionization theory, well established for one-electron
phenomena in high laser fields. This failure can, without
undue dramatization, be called catastrophic because the ob-
served double-ionization yields can be 6 or more orders of
magnitude greater than the standard theory predicts.

These extremely large double-ionization yields are appar-
ent in Fig. 1, showing experimental data obtained with line-
arly polarized 100 fs, 780 nm laser pulses as functions of the
intensity. Such data are found in a wide range of laser
intensities (roughly 1013–1016 W=cm2) with pulses in the
5–50 fs regime. The observed yields cannot be explained
by the assumption that electrons are emitted one by one,
with the second ionization independent of the previous one.
Such a scenario is called ‘‘sequential double ionization’’
(SDI). Therefore, the observed high-field phenomena are
grouped under the label nonsequential double (or multiple,
meaning triple and higher) ionization or NSDI (NSMI). The
term nonsequential still allows that the electrons are emitted
in a temporal sequence but implies that the two ionization
processes are correlated. NSDI has been observed in all
inert-gas atoms from xenon to helium (l’Huillier et al.,

1983; Fittinghoff et al., 1992; Kondo et al., 1993; Walker

et al., 1994; Talebpour et al., 1997) and in a number

of molecules (Talebpour, Larochelle, and Chin, 1997;

Cornaggia and Hering, 1998). Similar nonsequential foot-

prints have also been observed in multielectron ionization.

The very first observation of nonsequential double ionization

occurred earlier for alkaline-earth metals (Aleksakhin,

Zapesochnyi, and Suran, 1977).
The absence of NSDI-type correlation and the return to

normal SDI behavior, i.e., ionization of two electrons inde-

pendently, at intensities exceeding about 4� 1015 W=cm2 in

Fig. 1 can be loosely attributed to a time lag needed for any

high electron-electron correlation to be established. A suffi-

ciently high intensity pulse will remove one or both electrons

before correlation can set in. Hence, NSDI is observed only

for intensities low enough.
In this overview our interest is to explain and compare the

theoretical interpretations that have been developed for the

anomalously high He2þ counting rates shown in Fig. 1, along

with other related phenomena, in a wide array of atoms. The

central element of our review is signaled by the choice of the

word ‘‘interpretations.’’ This is used because for the past

10–15 years the work of both the experimenters and their

theoretical counterparts has been mainly phenomenological,

that is, a cooperative effort to obtain a reliable semiquantita-

tive understanding of the phenomenology emerging to

characterize this new physical domain. Fresh phenomena

continue to be predicted and/or observed, and neither calcu-

lations nor experimental records have yet reached a level

of high precision. Different and in some respects conflicting

interpretations of the nature of NSDI effects have been

advanced. Remarkably, more than one can be called

successful.
Some elements of high-field ionization are built into es-

sentially all theories of both SDI and NSDI and constitute

universally accepted approximations:
� So many photons are contained in a typical laser pulse

that the effects of field quantization can be safely

ignored, so the laser field can be taken as purely

classical.
� The typical laser wavelength is so long compared to

atomic dimensions that the dipole approximation is

completely acceptable, and the electric field can be

taken as independent of position, which we indicate in

writing it as EðtÞ.
� Nonrelativistic theory is suitable to capture all aspects

identified in experiments to date (except for multiple

ionization at intensities exceeding some hundreds

PW=cm2).

All three of these approximations have been adopted gener-

ally. They will not be mentioned further. A further assump-

tion, commonly called the single-active electron (SAE)

approximation [see Kulander, Schafer, and Krause (1992)],

is that core electrons play only static roles in a high-field

multi-ionization event. Adapting this to NSDI, SAE implies

two independently active electrons, while the inactive core

comprises the remaining electrons. Except when we discuss

single ionization, it is in this sense that we employ SAE in this

review. This is, of course, perfectly justified only in helium,

FIG. 1. Dots and crosses show measured total ion yields of Heþ

and He2þ (the measured intensities are multiplied by 1.15). Solid

and dashed lines with the data represent the results of single-active-

electron and tunneling calculations. The solid line to the right shows

the result expected on the basis of sequential ionization. The

experimental results display the NSDI ‘‘knee’’ signature of the

ion-count data. From Walker et al., 1994.
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where there is no core. The majority of experimental results
have been obtained for atoms other than helium, and we will
see that different theories approach the influence of a static
core in different ways.

Two final points rarely mentioned are that (a) in NSDI
theories electrons are treated as spinless bosons, and (b) the
three-body Coulomb interaction has no known solution. A
consequence of the latter is that there is no known way to
specify conditions on the two outgoing electrons in NSDI that
will guarantee a double ionization. That is, one of the elec-
trons may always return to the core and push the other one
away faster. To be more pedantic, there are no known two-
electron state vectors that are outgoing and have zero overlap
on all bound states. Thus all theories share the need to adopt
an arbitrary criterion for ionization. Fortunately a wide vari-
ety of ‘‘reasonable’’ specifications, such as sufficiently great
energy or distance from the nucleus, all give closely similar
results.

Earlier reviews of nonsequential double ionization were
given by Dörner et al. (2002), several chapters in the book by
Ullrich and Shevelko (2003), and also by Becker and Faisal
(2005), Becker, Dörner, and Moshammer (2005), and Becker
and Rottke (2008). A recent review by Figueira de Morisson
Faria and Liu (2011) focuses on quantum-mechanical ap-
proaches. We also list some reviews of related topics that
may be helpful. Early work on multiphoton ionization is
reviewed by Mainfray and Manus (1991) and Delone and
Krainov (1998). The theory of laser-atom interaction before
the advent of ultrashort pulses has been covered by Faisal
(1987), Fedorov (1997), and Joachain, Dörr, and Kylstra
(2000).

There are two one-electron high-field effects, high-order
harmonic generation (HHG) and high-order above-threshold
ionization (ATI), whose mechanisms have much in common
with NSDI. They are surveyed by Salières et al. (1999), on
the one hand, and by DiMauro and Agostini (1995), Becker
et al. (2002), and Agostini and DiMauro (2008), on the other
hand. The transition, for laser-atom processes in general,
from the nonrelativistic to the relativistic regime is reviewed
by Salamin et al. (2006).

II. AVENUES OF THEORETICAL STUDY

A. Basic concepts

High-field ionization theory had its origin in the 1960s
with attempts to calculate multiphoton ionization rates for
single-electron ejection. The N-photon generalization of
Einstein’s famous photoelectric equation of energy conserva-
tion clearly expresses the reaction to be addressed:

Nℏ!� IP ¼ K:E:þ UP: (1)

Here K.E. is the observed drift kinetic energy of the liberated
electron and UP is a new energy term described below. N is
the number of photons needed to match or exceed the ion-
ization potential IP of the atom targets. It is typically in the
range 10–15 at optical wavelengths.

The UP term was not originally associated with the
photoelectric effect, but is now significant. It is the
cycle-averaged energy of free-electron oscillation in the laser

field EðtÞ and is referred to as the ‘‘ponderomotive energy’’
(Boot, Self, and Shersby-Harvie, 1958; Kibble, 1966; Eberly,
1969). It is adiabatically returned to the field at the end of a
short pulse (now the standard situation), while for an electron
leaving a long pulse it is converted into directional kinetic
energy (Bucksbaum, Bashkansky, and McIlrath, 1987). It is
given by

UP ¼ e2hE2i
2m!2

¼ 9:3� 10�20�2I; (2)

which evaluatesUP in eV for an atomic electron when � and I
are expressed in nm and W=cm2. At common NSDI inten-
sities, with I in the range 3� 1013–3� 1015 W=cm2, the
ponderomotive energy will become significant. For a mid-
range intensity and the most common laser wavelengths
� � 800 nm, we have UP � 40 eV. And for a rare-gas
atom ionized by an infrared CO2 laser (Chin, Yergeau, and
Lavigne, 1985), UP can be large enough to raise the photon
number threshold to as much as 10 times the nominal N based
on IP alone.

It was quickly realized that traditional expressions for
ionization rates are essentially useless in the multiphoton
domain of interest for two reasons. The first reason is that
the radiative interaction is not weak for the laser intensities
employed, making perturbative convergence nontrivial. For
reference, the effective coupling constant is not � ’ 1=137
but the much larger dimensionless ratio that appears N times
in an Nth-order bound-state perturbation calculation. This is
the not-small quantity�������� dij �EðtÞ

ℏð!ij �!Þ
��������� 1:7; (3)

where we have used ea0 to estimate jdijj and have taken an

‘‘average’’ energy mismatch to be 1
2 eV, and have used a laser

intensity of 1014 W=cm2 to calculate the cycle-averaged
magnitude of EðtÞ.

The second reason is sheer calculational complexity; given
the vast number of angular momentum channels available, the
number of intermediate states required to be included in even
a lowest-order calculation is completely impractical when
more than five laser photons (and more than 20 in some
atoms) are required to reach the continuum final state from
the ground state. Early partial-summation theories and other
systematic methods designed to avoid order-by-order calcu-
lation did not achieve useful results (Bebb and Gold, 1966;
Gontier and Trahin, 1989), so a different theoretical treatment
was needed. In the following sections, we introduce the few
that have been most highly developed to date.

Every theoretical approach must recognize five relevant
NSDI interactions, all strong and roughly equal in impor-
tance: two interactions of the laser field with the two elec-
trons, and three Coulomb interactions—both electrons with
the doubly charged ion, and the two electrons with each other.
If we fix the nucleus to the origin of our coordinate system,
the two-electron Hamiltonian is

H ¼ p2
1

2m
þ p2

2

2m
þ Vn;1ðr1Þ þ Vn;2ðr2Þ

þ Veeðr12Þ � eðr1 þ r2Þ � EðtÞ; (4)
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where Vn;1 and Vn;2 are the nuclear binding potentials expe-

rienced by the two electrons, Veeðr12Þ is the electron-electron
repulsion, and e ¼ �jej is the electron’s charge. Guidelines
have never been found that allow these five interactions to be

ordered on the basis of increasing strength or importance, so
ideally they must be treated on an equal basis. However,

approximations have been based on the rationale that differ-
ent subsets can be identified as dominant at different stages of

the double-ionization process.
Therefore, methods fall into two camps, which we call

the ‘‘step-by-step’’ camp and the ‘‘all-at-once’’ camp. The
step-by-step approach uses stepwise calculations, usually

based on a sequence of stages supposed to be taking place
in the NSDI process, in this way obtaining predictions for

specific observations. Different atoms or different experi-
mental conditions may force one to consider different

stages. Also, different authors may highlight different physi-
cal stages as key and take slightly different calculational

steps. The all-at-once approach takes the set of fundamental
interactions of the electrons and approximately solves their

basic equations of motion without predetermined ideas
about an underlying sequence of stages. The resulting

global solutions are then used for comparison with specific
experimental data.

An all-at-once attack on a complicated problem has only

become feasible due to today’s computing facilities.
Historically, necessity always enforced some sort of step-

by-step approach. However, it is interesting to note that
conceptual clarity derives more easily from a step-by-step

approach, even though this might come at the expense of
closeness to physical reality. For example, the all-at-once

approach does not impose the clean-cut separation between
sequential and nonsequential mechanisms that accompanies

the step-by-step approach. Experimental data are, of course,
always obtained in an all-at-once fashion.

B. Step by step: Tunneling and recollision

In 1964, working with the basic concepts mentioned in

Sec. I, Keldysh (1964) made an inspired nonperturbative
innovation by proposing an ad hoc scenario for high-field

one-electron ionization. This was the first use of the
step-by-step approach. He combined the fact that a strong

laser field lowers the binding potential into a finite barrier
with the fact that a laser’s oscillations are essentially static

on the time scale of the Bohr-frequency oscillations
of an electron in a bound orbit. This boldly exported the

traditional static view of tunneling ionization into the optical
domain.

Thirty years later Corkum (1993) proposed adopting the

same view for double ionization. He noted that an electron,
after tunneling, could in the next half cycle be returned by the

laser field to the ion core, where it could have acquired
enough energy from the field to knock out a second electron.

Qualitatively, this had already been proposed by Kuchiev
(1987). Double ionization of this form would not be a simple

succession of independent ionization events. Instead, after
tunneling free the first electron is considered to initiate

double ionization by a laser-driven collision (in the literature
usually called a recollision or a rescattering). The recollision

scenario, sketched in Fig. 2, is obviously highly correlating
and fits the NSDI label perfectly.

Further theoretical development, and acceptance, of the
step-by-step approach based on the tunneling-recollision
scenario came gradually. The early stage focused on the
one-electron transition amplitude that Keldysh wrote, as if
the ionization transition were caused by a first-order dipole
interaction of the electron with the laser field EðtÞ. It took the
form

Mp0 ¼ �i
Z 1

�1
dthc V

p ðtÞj½�er � EðtÞ�jc 0ðtÞi; (5)

where the usual dipole-interaction Hamiltonian has been
taken in the length gauge, HIðtÞ ¼ �er � EðtÞ, and jc 0ðtÞi
is the electron’s initial (bound) state. Keldysh’s second in-
novation was, in the final continuum state, to replace the
customary plane wave by a Volkov state jc V

p ðtÞi (Wolkow,

1935):

c V
p ðr; tÞ ¼ ð2�ℏÞ�3=2 exp

�
i

ℏ
½p� eAðtÞ� � r

�

� exp

�
� i

2mℏ

Z t
d�½p� eAð�Þ�2

�
; (6)

where p is the average (drift) momentum of the electron in
the laser field E ¼ �dA=dt. The importance of the second
innovation by Keldysh is the nonperturbative ‘‘all-orders’’
character obtained from the exponentiated vector potential in
Eq. (6). Volkov states were first utilized by Reiss (1962) in
external-field problems in quantum electrodynamics, such as
laser-induced electron-positron pair creation.

From the square of the matrix element (5), a total transition
rate was calculated by integrating over the final momenta p.
In the limit where the ponderomotive energy exceeds

(c)

(a)

(b)

FIG. 2 (color online). An artist’s sketch of a recollision process

leading from tunneling emission of one electron (a), through its

laser guidance back onto the ion (b), to recollision and double

ejection (c).
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the ionization potential, i.e., where the so-called Keldysh
parameter

� �
ffiffiffiffiffiffiffiffiffi
IP
2Up

s
(7)

is small compared with unity (� 	 1), the transition rate can
be approximated by a form familiar from static tunneling
theory (Landau and Lifishitz, 1977),

wðt0Þ � 1

jEðt0Þj exp

�
� 2

3

ð2IPÞ3=2
jEðt0Þj

�
: (8)

Here Eðt0Þ is the value of the laser field at the moment of
tunneling (Yudin and Ivanov, 2001b). In the rate (8), the
exponential is a very general feature, while prefactors can
depend on Coulomb or other corrections.

The Keldysh scenario, reformulated by Perelomov et al.
(1966), applied by Faisal (1973), and extensively developed by
Reiss (1980), has been very widely used and further extended
to the two-electron theme. Along with small variations this
approach is often indicated by the initials KFR of Keldysh,
Faisal, and Reiss and has become also known as the strong-
field approximation, often abbreviated SFA. Reiss (2008)
showed that the SFA suggests some restrictions on applicabil-
ity of tunneling theory to photoionization. Depending on
wavelength and intensity, these restrictions identify a ‘‘safe’’
zone where the concept of static tunneling can be applied for a
nonstatic field. Most near-optical wavelength experiments fall
within it. One should add that despite its successes it is very
hard to say exactly in which sense the SFA is an approxima-
tion. For example, a systematically ordered sequence of suc-
cessive higher order corrections has never been agreed on.
Nevertheless, we describe below the way it has been extended
to include the second electron’s ejection by various collision
interactions, following the Corkum proposal. This later exten-
sion to double ionization describes what is often called a three-
step process.

We note that the Keldysh ansatz fits with the step-by-step
approach in a rather straightforward fashion. It neglects the
electron-field interaction �er � EðtÞ before ionization, and
the binding potential VðrÞ after ionization. In this sense, the
integral over time t in the matrix element (5) is an integral
over an ionization time. The SFA as formulated in Eq. (5) can
readily be extended to include a recollision (Becker et al.,
1994; Lewenstein et al., 1995), and this has become the basis
for the development of a two-electron SFA formalism (see
Sec. IV.C).

C. Step by step: ‘‘Simpleman’’ kinematics

Obviously, the recollision picture imposes a specific view
of NSDI as a process that develops as a train of separate
events: At some time t0 in the laser field, one electron is
considered to tunnel to freedom, emerging on the slope of the
down-turned Coulomb potential with zero velocity in the
direction of the laser polarization as shown in Fig. 2(a).
The second electron is temporarily entirely ignored, implic-
itly invoking the SAE approximation, as is the effect of the
Coulomb field of the ion on the tunneled electron, whose
motion under the laser influence alone is supposed to follow a

completely classical trajectory with velocity vðtÞ. This view
has been known as the simpleman picture of one-electron
ionization since early studies of above-threshold ionization
(van Linden van den Heuvell and Muller, 1988) and this
picture remains quite useful.

Depending on the field phase at the ionization time t0, the
electron’s simpleman velocity along its laser-driven classical
trajectory is

mvðtÞ ¼ mvðt0Þ þ e
Z t

t0

Eðt0Þdt0

¼ mvðt0Þ þ e½Aðt0Þ �AðtÞ�: (9)

Assuming that at t ¼ t0, at the end of the tunnel, the electron
emerges with zero velocity [vðt0Þ ¼ 0] and that the vector
potential outside the laser pulse vanishes, we infer that at the
detector the electron’s momentum (its drift momentum) is
eAðt0Þ, reflecting its time of birth t0. Now, at a later time
trec > t0 the electron may return to the position of the ion with
sufficient energy to induce ejection of the second electron,
producing a double-ionization ‘‘recollision’’ as illustrated in
Figs. 2(b) and 2(c). A quick calculation based on Eq. (9) then
shows that the returning kinetic energy Eret has the maximum
value (Corkum, 1993; Kulander, Schafer, and Krause, 1993;
Schafer et al., 1993)

Eretjmax ¼ 3:17 UP; (10)

and this occurs for electrons that are set free shortly after the
electric-field peak ( 1

20 of the period). The corresponding time

trec of recollision is very close to the second-to-next zero
crossing of the field.

Provided the kinetic energy of the recolliding electron
exceeds the second ionization potential IP2, the second elec-
tron (assumed quiescent in the meantime) may be released
into the continuum. Having shared the overshoot of the
return energy Eret over the second ionization potential IP2,
both electrons are then again treated as free of Coulomb
forces, responding to the laser field alone, and acquiring
additional drift momenta eAðtrecÞ [cf. Eq. (9)] that carry
them to the detector. From this simpleman ‘‘recollision–
impact-ionization’’ (RII) scenario, we then expect that the
electrons are ejected side by side with their momenta distrib-
uted about the common drift momentum in the direction of
the (linearly polarized) field

jpj ¼ jeAðtrecÞj � maxjeAðtÞj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
mUP

p
: (11)

The width of the distribution is given by the aforementioned
overshoot energy.

By momentum conservation, the ion will have a momen-
tum opposite to the total momentum of all electrons. So it will
be distributed around the value Pk ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
mUP

p
for NSDI and

around 2N
ffiffiffiffiffiffiffiffiffiffiffi
mUP

p
for N-fold nonsequential ionization. This

simple prediction can be compared with Fig. 3, which shows
the measured yield of doubly and triply ionized neon plotted
versus the final ion momentum. The nominal intensities yield
Pk ¼ 6:7 a:u: (N ¼ 2) and Pk ¼ 10:8 a:u: (N ¼ 3), which
are above the measured values of Pk � 4 and �7 a:u:, re-
spectively. Still, given the uncertainty of the experimental
intensities, the distribution of the yield is well compatible
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with the simple picture presented above. We return to the

discussion of these data in Sec. V.D.
Looking ahead, we find that the simpleman picture pro-

vides steady points of reference in the remainder of our

discussion. We see that classical simulations can support

the recollision element fully while discarding tunneling com-

pletely. We remark, however, that the model, based on the

one-electron tunneling postulate dating from Keldysh, has

become so ingrained that one tends to ignore that it is still

basically a speculative conjecture and strongly reliant on the

validity of the SAE approximation. Two simultaneously

active and interacting electrons could, in principle, tunnel

out at the same time, and ‘‘collective tunneling’’ by two

electrons was considered (Zon, 1999; Eichmann et al.,

2000). Currently available data provide no basis for its oc-

currence in NSDI. However, collective tunneling is predicted

to contribute to tenfold and higher ionization of rubidium

(Kornev, Tulenko, and Zon, 2009).
The relevance of the recollision process is not restricted to

NSDI. Since attosecond pulses are generated in a recollision,

it is at the core of the emerging field of attosecond physics.

Recollision is also becoming an important framework for

conceptual understanding of new forms of electron scattering

with unprecedented spatial and temporal precision; see

Niikura and Corkum (2006), Krausz and Ivanov (2009), and

Corkum (2011).

D. All-at-once double-ionization theory

A complete theoretical description of an ionization event,
free of any ansatz and intuitive picture, is obtained by an
exact solution of the time-dependent Schrödinger equation
(TDSE):

iℏ
@

@t
�ðr1;r2;tÞ¼

�
� ℏ2

2m
�1� ℏ2

2m
�2þVn;1ðr1Þ

þVn;2ðr2ÞþVeeðr12Þ
�eðr1þr2Þ �EðtÞ

�
�ðr1;r2;tÞ: (12)

The solution to Eq. (12) represents the ideal conclusion to an
all-at-once kind of theoretical approach as well as the opti-
mum target for experimental comparison. An analytic solu-
tion is beyond reach but the steady development of computer
technology has made limited numerical work feasible. Time-
dependent Hartree-Fock and density-functional methods are
not very satisfactory for high-order ionization in strong
fields, which requires highly accurate representation of
states far from the ground state. For single ionization, the
development of grid-based integration schemes with careful
implementation of the SAE approximation made ab initio
numerical solutions of the TDSE feasible beginning about
1985 (Kulander, 1987); for a review, see Kulander, Schafer,
and Krause (1991).

Two-electron TDSE numerical wave functions present a
challenge even now, because of computer speed and memory
requirements. For NSDI there is only a narrow range of
results, obtained from calculations with a low number of
active dimensions or restricted to wavelengths shorter than
those commonly used experimentally. A second numerical
all-at-once approach to high-field two-electron physics is
based on the use of the time-dependent Newton equations
(TDNE) to obtain classical NSDI electron trajectories. Such
calculations are motivated by striking similarities (see Fig. 4)
between classical TDNE and quantum TDSE probability
distributions. This qualitative agreement, together with the
ease of solving ordinary versus partial differential equations,
motivated extensive TDNE explorations of NSDI leading,
even though completely classical, to a number of predictions

(c)

(a)

(b)

FIG. 3 (color online). Two-dimensional momentum distributions

ðPk; P?Þ of NeNþ ions (N ¼ 1, 2, 3) at peak intensities of

1:3 PW=cm2 (N ¼ 1, 2) and 1:5 PW=cm2 (N ¼ 3) and a wave-

length of 795 nm [(a)–(c), respectively]. The distributions are

integrated over the third Cartesian ion-momentum coordinate.

Note how the distribution dramatically widens in the transition

from single to multiple ionization. From Moshammer et al., 2000.

FIG. 4 (color online). Quantum TDSE (left) and classical TDNE

(right) spatial distributions of positions of electrons undergoing

NSDI midway through a laser pulse. The aligned-electron approxi-

mation (AEA; see Sec. IV.A) and the same model potentials, laser

wavelength, pulse shape, and intensity were employed for both

calculations. Particularly notable is the common emergence of

NSDI ‘‘jets’’ of electron pairs into the upper right quadrants.

From Panfili, Eberly, and Haan, 2001.
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with at least semiquantitative agreement with a relatively
wide variety of experimental data.

III. BASIC EXPERIMENTAL FACTS

Experiments have exposed several different aspects of
NSDI electron behavior. Initial ion-count results provided
the first evidence that unusual e� e correlation effects are
involved. Characteristic double-ionization data were shown
in Fig. 1. NSDI events are clearly orders of magnitude
stronger than sequential tunneling theory predicts at inten-
sities below the onset of the conspicuous knee in the curve.
This shape of the doubly charged ion curve has been found in
all species of atoms tested to date. Early clues to the physics
of NSDI were provided by the fact that no knee was observed
at a laser wavelength of 248 nm (Kondo et al., 1993) and that
the knee quickly disappeared with increasing ellipticity of the
driving laser field (Fittinghoff et al., 1992; Dietrich et al.,
1994).

Later experiments using the cold-target recoil-ion-
momentum spectroscopy (COLTRIMS) technique (Dörner
et al., 2000) or, more generally, the so-called reaction micro-
scope, added end-of-pulse momentum distribution data. A
cold atomic-gas target is a prerequisite for the recoil-ion-
momentum measurements, since the thermal momentum
spread (i.e., the initial momentum spread) of the target
must be smaller than the recoil-ion momenta during the
interaction of the atoms with the strong laser field. As coin-
cidence experiments, they faced and overcame several chal-
lenges. For example, no more than one ionization event
should be allowed to occur per laser shot, in order that all
the resulting electrons can be traced to the same event. This
mandates low target density. It means that each laser shot
provides a (at most) one-atom experiment, and so puts a high
premium on the laser repetition rate and stability of wave-
length and intensity over the course of a run. Current Ti:
sapphire lasers reached repetition rates of about 6 MHz at
sufficient energy per pulse (Liu et al., 2008).

If we neglect the momentum of the laser photons, which is
an excellent approximation in the present context, then owing
to momentum conservation double ionization is fully charac-
terized by six momentum components, the momenta either
of the two electrons or of one electron and the ion. In most
COLTRIMS experiments, not all of the momentum compo-
nents are actually observed. This means that the remaining
components are in fact summed over (or, sometimes, re-
stricted to some finite intervals). The very first NSDI
COLTRIMS experiments (Moshammer et al., 2000; Weber
et al., 2000b) focused on the ion momentum and presented
just its longitudinal component (the one parallel to the axis of
the laser polarization) or, in addition, one transverse compo-
nent, with all remaining components summed over. We
showed an example in Fig. 3.

An important role was played by the analysis of the
electron-electron momentum correlation, the first example
of which (Weber et al., 2000a) is reproduced in Fig. 5. The
figure shows the yield of NSDI versus the end-of-pulse
longitudinal momentum components of the two electrons,
again with the other components completely integrated over
or confined to certain ranges. Since the ion momentum is the

opposite of the sum of the two-electron momenta, the ion-

momentum distribution in the fashion of Fig. 3 can be
obtained by projecting the momentum-momentum distribu-

tion on the kx1 ¼ kx2 diagonal. Since the two electrons cannot
be distinguished, the distributions should be symmetrical
with respect to the main diagonal and, provided the laser

pulse is sufficiently long, also with respect to the off-diagonal

(p1 $ p2 and p1 ! �p1, p2 ! �p2, respectively). These
expected symmetries allow experiments to be concentrated in

a restricted range of momenta, and plots such as in Fig. 5

exploit these symmetries to fold limited data into all four
quadrants, as its perfect symmetries make evident.

Almost any NSDI report has presented the data in the form

of one of these three plots: the ion yield as a function of

intensity as in Fig. 1, the ion yield for fixed intensity as a
function of the ion’s momentum components as in Fig. 3, and

the ion yield for fixed intensity as a function of the longitu-

dinal momenta of the two electrons as in Fig. 5. The total ion
yield as a function of intensity tells immediately whether

ionization proceeds sequentially or not: The sequential pro-

cess, when interpreted as two independent tunneling events,
can be calculated in a straightforward fashion (represented by

the solid line in Fig. 1). Any significant deviation from this

scenario then points to the presence of a nonsequential
pathway.

In contrast, the ion yield as a function of the ion momen-

tum does not have an unambiguous signature of nonsequen-
tiality. However, it affords important clues for the mechanism

of a nonsequential process. For example, the double-humped

ion-momentum distribution, a representative of which is
exhibited in Fig. 3(b), strongly points to recollision as the

responsible mechanism. Recall that if both electron momenta

have distributions centered about the value (11), then the
ion momentum will be centered about the values Pxion ¼

2px ¼ 
4

ffiffiffiffiffiffiffiffiffiffiffi
mUP

p
. Indeed, this can be observed in

Fig. 3(b).
The e-e momentum correlation, as shown in Fig. 5, gives

the most detailed information about the mechanism of the

FIG. 5 (color online). Momentum-momentum correlation of the

two electrons emitted in NSDI of argon below saturation by a Ti:

sapphire laser with a peak intensity of 3:8� 1014 W=cm2. From

Weber et al., 2000a.
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nonsequential process. Figure 5 clearly shows the footprint of

a recollision pathway in the strong population maxima cen-

tered about px1 ¼ px2 � 
2
ffiffiffiffiffiffiffiffiffiffiffi
mUP

p
. However, there is also

significant population in the second and fourth quadrants

representing electrons that are emitted back to back, which

is incompatible with the recollision–impact-ionization sce-

nario. Up to fourfold differential cross sections have been

measured by now with the help of the reaction microscope

(Weckenbrock et al., 2004), but most of the interpretation has

been based on the 2D e-e correlation.
The data observed vary from atom to atom, but in a rather

narrow sense, as shown in Fig. 6. For example, the ion-

momentum distributions may or may not display a dip or a

reduced population density, respectively, around zero mo-

mentum. This depends on the atomic species, but also on

the laser intensity and frequency (Alnaser et al., 2008;

Herrwerth et al., 2008), and plays an important role in the

interpretation of the data.

IV. DESCRIPTION OF THEORETICAL MODELS

This is the central section of our overview. Here we present

the principal theoretical approaches to high-field double ion-

ization. There are two that use the all-at-once approach:

(A) the direct quantum-numerical approach, i.e., the solution

of the two-electron TDSE numerically, and (B) its completely

classical analog TDNE, i.e., the use of large collections of

numerical solutions of the corresponding classical Newtonian

equations. In contrast, two others use the step-by-step ap-

proach: (C) a quantum recollision theory in a Feynman

diagram (FD) setting, a two-electron modification of the

Keldysh-SFA ansatz that makes quantum-mechanical calcu-

lations in the three-step recollision sequence of events, and

(D) a flexible tunneling-classical (TC) blend of approaches

that takes quantum tunneling as the initiator of ionization and

then uses Newtonian theory to make classical calculations in

the step-by-step recollision sequence. These four will be

described in the following. In Sec. V we compare the results

of the various approaches with selected experimental data for
illustration.

All four approaches (with the single exception of the TDSE
treatment of atomic helium) need to incorporate an approxi-
mate or modeled treatment of the ion core. This typically
involves some kind of shielding of the ion’s Coulomb poten-
tial and may also include ad hoc modifications of the e-e
potential, which is then considered an effective potential.
These modifications can and typically do depend on the
species, and in the FD approach can also depend on the
specific recollision sequence being calculated.

A. Quantum-numerical solutions for helium and other atoms

In high-field atomic theory a solution of Eq. (12), the TDSE,
can be taken as the ultimate goal. Numerically exact
two-electron solutions of the TDSE require well-developed
computational methods and resources. A number of approx-
imations and shortcuts characterized the first TDSE attacks on
NSDI. The simplest case (recall Fig. 4), using only one di-
mension, is partially justified by the so-called ‘‘aligned-
electron approximation’’ (AEA) [see Javanainen, Eberly, and
Su (1988)], which is prompted by the assumption that in NSDI
experiments the electrons are mainly driven linearly, along the
polarization axis of the field, given the almost exclusive ex-
perimental use of linear polarization. An artificial transverse
degree of freedom was introduced by using for the Coulombic
e-e repulsion a ‘‘soft-core’’ potential [see Eq. (16)] and this
allows two electrons to pass each other in one dimension.
The early attempts by Grobe and Eberly (1992) to solve for
numerical wave functions for two-electron ejection were re-
stricted in this way. A number of groups pursued variants of
this approach (Bauer, 1997; Liu et al., 1999; Haan et al.,
2000, 2002; Popov, Tikhonova, and Volkova, 2001; Prauzner-
Bechcicki et al., 2007). The results showed features
recognizably similar to experimental findings, but without
consistent quantitative agreement as to absolute ionization
yields or intensity dependences.

Taylor’s Belfast group has made a long-running and suc-
cessful attack on NSDI theory of helium via the TDSE
approach in all three space dimensions (Parker et al., 2001,
2003, 2006, 2007). This is the one TDSE calculation for
which no questions can arise about core electron effects,
since there is no core. The demands on computational tech-
nique are extreme. The reasons for this are easily seen when
one takes into account the need for spatial resolution on the
atomic scale, well below 1 Å inside the atom while outside a
larger grid may be adopted, along with the need to allow for a
spatial grid as large as the excursion amplitude �L of an
electron oscillating under control of the laser field. This
amplitude, as a multiple of the Bohr radius, is given by

�L ¼ jejE0=m!2 ¼ ðjejE0=mÞð�=2�cÞ2
¼ 2:6� 10�12

ffiffiffi
I

p
�2; (13)

when I is given in W=cm2 and � is in nm.
At an intensity of 4� 1014 W=cm2 (which is a typical

value, although intensities 10 times higher have been used for
helium) and for � ¼ 800 nm we have �L ¼ 330 �A. (Recall
that this oscillation is transverse to the propagation direction
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FIG. 6. Longitudinal ion-momentum distribution for double ion-

ization of (a)–(c) Ar and (d) Ne at 1300 nm (solid lines) and 800 nm

(open circles). Intensities in PW=cm2 are given in the panels. From

Herrwerth et al., 2008.
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of the laser field, so even an order of magnitude greater

excursion, requiring 2 extra orders in intensity, would not

seriously compromise the dipole approximation.) For two

electrons this then implies a computational field that may

need to hold 103 grid points in active memory for each

dimension, or possibly 1015–1016 points in total, and to

change rapidly enough to resolve fractions of an optical cycle

accurately. Since �L is proportional to the square of the laser

wavelength, these requirements are reduced for shorter wave-

length light, but there are little data for comparison.
Despite the obvious difficulties, the Belfast group has

made significant progress. Their HELIUM code (Smyth,

Parker, and Taylor, 1998; Moore et al., 2008) is designed

to run with high efficiency on distributed-memory massively

parallel computers. It is capable of dealing with arbitrary

polarization, although linear polarization, which reduces the

degrees of freedom by 1, is normally used. In all cases, the

two radial variables r1 and r2 are modeled on a finite-

difference grid, while the angular variables �1, �2, �1, and

�2 are handled by a basis set of coupled spherical harmonics

(partial waves).
One must add, however, that important information com-

ing from both the helium fundamental TDSE work and the

fully dimensioned classical simulations to be mentioned

below, encourages continued TDSE attacks of intermediate

rigor. For example, one knows that the laser-atom interaction

energy �d �E ¼ �eðr1 þ r2Þ � E couples the field only to

the electron pair’s center of mass. This suggests that little

harm will be done by allowing the AEA to be applied to their

center-of-mass coordinate, while permitting the relative co-

ordinate r1–r2 to evolve full dimensionally under the local

Coulomb forces. Such an approach was pioneered by Ruiz

et al. (2006) and successfully applied in situations where the

full solution is not feasible.
We note for all-at-once theories that quantum TDSE solu-

tions will automatically preserve all proper symmetries of the

initial conditions. In contrast, distributions made from col-

lections of classical TDNE solutions will not, because a

random initial microcanonical TDNE distribution of a finite

number of electron pairs can only approximately obey an

exact symmetry condition. Thus the quantum TDSE wave

function in Fig. 4 was started with a properly symmetric

initial state and remains perfectly symmetric at the later

time of the snapshot, whereas the TDNE distribution in the

figure shows very slight asymmetries, reflecting the imperfect

symmetry obtained from a random microcanonical initial

assignment of momenta and positions among only 25 000

electron pairs.
Obviously, even when a numerical solution of the TDSE is

accomplished, this usually does not easily afford the kind of

understanding that is based on analytical formulas. However,

numerical time-dependent wave functions do afford interpre-

tive capabilities not shared by other numerical methods. For

example, one can perform a quantum analog of the classical

‘‘back analysis’’ described in Sec. IV.B. That is, the part of

a TDSE wave function showing two-electron release (i.e.,

the portion where both electrons have traveled far from

the nucleus at the end of the pulse) can, in principle, be

numerically selected by masking out the remainder and

then propagated separately backward toward t ¼ 0. Such

backpropagation allows close insight into the history of a

successful NSDI event, almost the same as having true

quantum trajectories of two-electron motion leading to

NSDI. Such backpropagated trajectories have already been

calculated in limited cases. This was under dimensional

restrictions (Haan et al., 2002; Panfili, Haan, and Eberly,

2002), while still providing additional insight into the char-

acter of NSDI events, particularly about the formation of

correlated two-electron ‘‘jets’’ of probability en route to

double ionization.
Another example is provided by the intriguing question

whether NSDI is an intrinsically quantum process or perhaps

partly or even mostly classical in character. An intrinsically

quantum character can be associated with the extent to which

the two-electron function is nonseparable, i.e., entangled, and

the question is open to answer by the Schmidt analysis; see

Grobe, Rza̧żewski, and Eberly (1994) and Liu et al. (1999).

Numerical reorganization of an NSDI wave function can

recast it in Schmidt format. Such a wave function is a sum

of canonical eigenpairs, products of orthogonal single-

particle states. The effective number of the pairs signifies

the quantum entanglement of the two electrons and thus gives

a quantitative measure of the true ‘‘quantumness’’ of the

NSDI state. One such test made under a dimensional restric-

tion (Liu et al., 1999) suggests that NSDI may have a

surprisingly small quantum character.
Another opportunity afforded by any TDSE approach is the

ability, in principle, to perform a quantum analog of classical

back analysis described in Sec. IV.B. The usually small

portions of any outgoing numerical TDSE wave function

that represent double ionization can, in principle, be numeri-

cally masked and propagated backward in time. Such back-

propagation allows unusual insight into the origin of a

successful NSDI event, almost the same as having true

quantum trajectories of two-electron motion leading to

NSDI. These backpropagated trajectories can also be com-

pared to fully classical trajectories, providing additional in-

sight into the quantum character of NSDI events. Such

comparisons have been made, but so far with dimensional

restrictions (Haan et al., 2002; Panfili, Haan, and Eberly,

2002).
Short of the ab initio numerical solution of the two-

electron TDSE without any simplifying assumptions, there

have been numerous other attempts, with the intention to

make the problem more feasible and/or to allow one to treat

atoms other than helium. We are content with mentioning

time-dependent density-functional methods (Bauer and

Ceccherini, 2001; de Wijn, Lein, and Kuemmel, 2008), and

methods that are built on using certain basis sets for the

coupled quantum equations, such as the coupled-coherent-

states method (Shalashinin, Child, and Kirrander, 2008;

Guo, Liu, and Chu, 2010), the time-dependent multiconfigu-

ration Hartree method (Sukiasyan et al., 2009), and the

time-dependent configuration-interaction singles method

(Greenman et al., 2010). Recently the numerical methods

(finite-difference representation, Arnoldi time propagator) of

the HELIUM code mentioned above have been combined with

R-matrix techniques to construct the RMT code (R-matrix

incorporating time) (Nikolopoulos, Parker, and Taylor,

2008; Moore et al., 2011). RMT makes possible accurate
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calculations of a multielectron response leading to single
ionization in complex multielectron atoms in intense-laser
fields. However, thus far none of these approaches has pro-
duced results that allow for a direct comparison with experi-
mental NSDI data.

B. Completely classical trajectories

The approach that is conceptually closest to the TDSE
approach is the TDNE approach, in which one numerically
solves Newton’s equations for the electrons rather than
Schrödinger’s equation. The ease of solving ordinary, as
opposed to partial, differential equations makes the TDNE
approach much easier to implement in practice, and TDNE
calculations can be carried out over the wide range of wave-
lengths, pulse lengths, and laser intensities where most ex-
periments have been done. As with the TDSE approach, it has
no need at any stage for perturbation theory. It shares the
central advantage with TDSE that it is also based on a fully
holistic or all-at-once view of the complicated multiple inter-
actions that the electrons undergo.

TDNE analysis has a long history, and in the high-field
domain of atomic physics dates at least to a calculation of He
and Be double ionization, in advance of the wide recognition
of definitive ion-count knees, by Wasson and Koonin (1989).
Strong motivation for further work was provided by the
striking similarity found by Panfili, Eberly, and Haan
(2001) between TDNE and TDSE probability distributions
made under identical AEA conditions, already shown in
Fig. 4. In the most recent decade the wide variety of classical
ensemble calculations made for atomic and molecular double
ionization can be divided into two categories: those allowing
a random microcanonical position-momentum ensemble to
determine initial conditions, and those imposing a quantum-
style tunneling startup in the middle of the laser pulse. We
focus here on the former and explain the latter in Sec. IV.D.

The Newtonian equations to be solved, written in atomic
units (ℏ ¼ m ¼ jej ¼ 4��0 ¼ 1), which we use consistently
from now on, are completely ordinary:

d2ri
dt2

¼ �EðtÞ � rri ðVn;i þ VeeÞ; (14)

for i ¼ 1, 2, which follow from the Hamiltonian (4) with the
potentials defined in a way to model the effect of core
electrons, as described below. The initial conditions on posi-
tion and velocity are selected randomly from an ensemble,
which can be determined in one of several practically equiva-
lent microcanonical ways, such that the total energy, kinetic
plus potential, is the atom’s actual two-electron ground-state
energy.

In usual TDNE practice one takes a linearly polarized laser
field:

EðtÞ ¼ E0fðtÞx̂ sinð!tþ�Þ; (15)

where fðtÞ is an envelope slow enough to be treated adiabati-
cally, and whose time dependence can frequently be ignored
completely. An example can be found in the uppermost row
of Fig. 7. In each numerical experiment, the phase � of the
laser field is given a random value at t ¼ 0 when the field
envelope function fðtÞ smoothly turns on. Smooth turnons

have been modeled mostly by pulses with trapezoidal or sine-
square envelopes.

From one point of view, the TDNE approach is a way
to make experiments in the same way as in the laboratory,
i.e., one atom (two electrons) at a time, in a very long
sequence of laser shots. The outcomes of these numerical
experiments can be collected into distributions displaying
counts of singly, doubly, and multiply ionized ions, as well
as electron and ion momenta and energies, just as is done
with data of the same type recovered in the laboratory.
Laboratory outcomes obviously depend on laser intensity,
wavelength, and pulse duration as well as polarization, and
on atomic species. All of these are available for adjustment
from one numerical TDNE experiment to the next, just as in
laboratory work.

An important feature of both TDSE and TDNE simulations
is that they are independent of the recollision conjecture and
obtain results on the basis of dynamical equations alone.
Nevertheless, they support that conjecture in a number of
ways. Two examples are given in Fig. 7. From the TDNE
electron trajectories depicted, the existence of a recollision
time is eye catching and its value precisely defined. The
trajectories also show that one electron is ionized at some
time while the other one remains bound, even though the
precise value of the ionization time depends on its definition.
The existence of a small delay between rescattering and the
final departure time, when both electrons leave the vicinity of
their parent ion, is also suggested. These TDNE results
support the three-step model and lend credibility to the
FD method, and the statistical model derived from it

FIG. 7 (color online). Time evolution of the total energy of each

NSDI electron during the first five laser cycles. The top panel of

each column plots the time evolution of the laser electric field EðtÞ
with the peak amplitude E0. The remaining panels of each column

display the energy E and the transverse displacement x of the two

NSDI electrons of a trajectory. The second and third rows depict

typical NSDI events with comparatively long (trec � t0 > 0:5T) and
short (trec � t0 < 0:5T) ‘‘travel’’ time intervals, respectively. The

horizontal axes are labeled by multiples of the laser period T. The

plots are obtained with the soft-core Coulombic e-e repulsion

potential (16). The light and dark curves refer to the recolliding

and the bound electron, respectively. From Ho, 2007.
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(see Sec. VI.G), as well as the TC method’s assumption of a
definite ionization time.

The obvious TDNE disadvantage is the abandonment of
quantum mechanics, which is certainly the correct underlying
theory of atomic phenomena. However, the ability of the
TDNE method to deal with experimental results is surpris-
ingly strong, and what really matters is whether contradic-
tions of principle play a role in practice. Given the
comparison in Fig. 4, it is perhaps not surprising that the
TDNE approach has achieved a substantial degree of validity,
to accompany its ease of implementation. TDNE results
provide unique opportunities to decide if specific features
of NSDI are in fact quantum mechanical in character, or
possibly not (Ho and Eberly, 2005). Of course, the most
fundamental quantum-classical distinction is the possibility
of particle-wave interferences in quantum theory, but so far
these have played no role in NSDI experiments.

TDNE theory has several options regarding energy levels
and ionization potentials, which must be treated phenomeno-
logically. The binding energy is easily established as the
negative sum of the first and second ionization potentials,
typically taken from tables. For example, for Kr these are
13.999 and 24.359 eV, which together yield a binding energy
of 38:358 eV ¼ 1:41 a:u: The Hamiltonian is the same as the
fundamental form in Eq. (4), but the nuclear and e� e
potentials may be expressed functionally in a variety of
ways: e.g., Coulombic with a soft core (Javanainen, Eberly,
and Su, 1988; Su and Eberly, 1991), short-range Yukawa (Ho,
2007; Ho and Eberly, 2007), or Fermi molecular dynamics
(Wasson and Koonin, 1989; Lerner, LaGattuta, and Cohen,
1994; LaGattuta and Cohen, 1998). Most of the recent TDNE
work has adopted the soft-core form, where Vn;iðriÞ and

Veeðr12Þ are replaced with soft-core truncations at shortest
range (Javanainen, Eberly, and Su, 1988; Su and Eberly,
1991):

Vn;iðriÞ¼� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þa2

q ; Veeðr12Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r212þb2

q ; (16)

identical for each electron.
The numerical value of a is chosen to prevent autoioniza-

tion, and a typical value is in the range 0.8–2.0, whereas
normally b � 0:1 or smaller. The quantity r12 ¼ jr1 � r2j
denotes the distance between the two electrons. The
Hamiltonian with the soft-core potentials defines the TDNE
model atom. Manipulation of the two shielding parameters a
and b can be regarded as the TDNE approach to core theory
for different atomic species. The value of b has a significant
effect on the electron trajectories and the electron spectra.
Haan and Smith (2007) and Haan, Van Dyke, and Smith
(2008) examined a hybrid TDNE model in which the a
parameter was manipulated dynamically. One could also
investigate the effect of the magnitude of the shielding pa-
rameter b or entirely different potential forms, such as a
Yukawa potential, which allows one to consider the transition
to a short-range potential (Ho, 2007).

Because of the simplified model potentials used, in its most
common application the TDNE approach is intended as a
generic rather than specific theory. This is the reason that in a
number of applications the zero-field energy of each 2-e
member of the ensemble is initially set to be �1:3 a:u: as a

way to approximately model the binding energies of both

xenon (�1:23 a:u:) and krypton (�1:41 a:u:). Thus, if sharp
differences between experimental NSDI results for Xe and Kr

were to appear, significant modifications to the smooth-core

potentials of the TDNE approach would be mandated.
A TDNE advantage over laboratory experiments comes

from the ability to accumulate a numerical record of every

trajectory in the ensemble from beginning to end. This per-

mits selection of interesting end results, for example, those

that lead to NSDI versus those leading to single ionization or

to SDI, and then to trace just those trajectories through all

stages of evolution back to their initiations (Panfili, Eberly,

and Haan, 2001; Haan et al., 2002). This so-called back

analysis is invaluable in building explanations for momentum

distributions, for example, the distinctions corresponding to

direct first-pass knockout of the inner electron versus a one-

cycle or few-cycle delay before a successful collision occurs.

Other distinctions arise between ionizations early or late in

the pulse turn-on, and so on. This capability is most useful for

TDNE analysis, and to an extent for TC analysis as well, but

is not available in the FD approach.
Every classical NSDI event must start with an overbarrier

escape of the first electron, since tunneling is classically

forbidden. The laser field periodically and strongly sup-

presses the atomic potential such that one of the electrons

may escape over the barrier easily. However, the smoothing

parameter a of the shielded potential Vn;i [cf. Eq. (16)] puts a

lower limit on the quasi-Coulomb potential well and this

prevents autoionization. Given the pair of actively interacting

bound electrons, it is not difficult for one of them to steal a bit

of energy from the other and promote itself out of the atom, as

is evident in Fig. 7.
A series of snapshots of a completely classical NSDI event

is shown in Fig. 8, taken at several times before and after a

recollision has liberated the second one. Note the substantial

localized distortions in the tilted potentials, one at the posi-

tion of each electron, indicating the repulsive contribution

each can make to the other’s escape.
Positive attributes nearly exceptional to TDNE in addition

to back analysis include the ability to treat triple and higher

multiple ionizations. These are open to direct experimental

examination, but cannot be treated by any FD or TDSE

approaches. In Sec. VI.G, we compare the TDNE results

for double and triple ionization of argon with experimental

data. Also, general elliptical polarization can readily be dealt

with nonperturbatively by TDNE, and in agreement with

initial experimental reports (see Sec. VI.C). This is currently

not feasible via the TDSE in any dimensionality.

C. SFA extension via Feynman-diagram modeling

While the TDSE wave function or the ensemble of TDNE

trajectories is similar to a catalog containing all possible

outcomes from a given initial state, the S matrix allows one

to select any particular item from the catalog without having

to order the whole book. That is to say, an S-matrix element is

the transition amplitude into a given final state, which for

NSDI is characterized by the laser vector potential AðtÞ and
the momenta p1 and p2 of the two final electrons, and it

can be calculated by itself. This is a significant advantage
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whenever the corresponding transition amplitude is very

small so that the wave function would have to be evaluated

with very high accuracy or the ensemble of TDNE trajecto-

ries would have to be very large in order to contain a few

representatives of the process.
An exact evaluation of the S matrix, which amounts to an

exact solution of the quantum-mechanical two (or more)

particle breakup problem with an external time-dependent

force, is, of course, completely out of reach. Next we review a

quantum-mechanical step-by-step approach to approximate

the S matrix, which extends the SFA of Sec. II.B to double

ionization.

The contributions to a perturbative expansion of the S
matrix can be efficiently represented by Feynman diagrams.
Feynman-diagram modeling is based on separating the
Hamiltonian (4) into a part that is, at least in principle, treated
exactly while the remainder is completely neglected or dealt
with perturbatively to lowest order. We write

H ¼ H0 þHAðtÞ þHBðtÞ; (17)

where H0 is the free two-electron Hamiltonian, and the five
interaction terms of the full Hamiltonian are arranged into
HAðtÞ and HBðtÞ. The two interactions with the laser field are
explicitly time dependent. The exact time-evolution operator
Uðt; t0Þ of the complete Hamiltonian H satisfies the integral
equation

Uðt; t0Þ ¼ U0Aðt; t0Þ � i
Z t

t0
dt00Uðt; t00ÞHBðt00ÞU0Aðt00; t0Þ;

(18)

where U0Aðt; t0Þ is the time-evolution operator of the
Hamiltonian H0AðtÞ ¼ H0 þHAðtÞ. The second term on the
right-hand side can also be written in the opposite order
U0Aðt; t00ÞHBðt00ÞUðt00; t0Þ. Iteration of the integral equation
(18) allows us to follow the time evolution generated by
H0AðtÞ exactly while taking account of HBðtÞ perturbatively.
At different stages of the double-ionization process, different
partitions are taken as appropriate.

This partition method has been dubbed ‘‘intense-field
many-body S-matrix theory’’; see Becker and Faisal (2005)
for a review. It does not itself suggest one unique expansion of
the S matrix. Rather, it requires that one have in mind a
particular scenario of how double ionization proceeds.
Figure 9 exhibits the two examples that we discuss in this
review, namely, the RII scenario laid out above in Sec. II.C as
well as recollision excitation with subsequent ionization

FIG. 8. Snapshots showing two-electron dynamics near the end of

a double-ionization scenario, calculated in the aligned-electron

approximation. In the first panel one electron (solid dot) is still

deeply bound to the core, and the other has already been ejected and

is returning from a far-left excursion under laser control, after it has

been accelerated by the laser field during the preceding half cycle. It

approaches, slowing down as it is now moving against the field and

the laser potential rises, and collides in the fourth row with enough

energy to liberate the other one, so that both exit together to the left

in the last panel. The horizontal axis shows position and the vertical

axis shows total energy, both in atomic units, while the arrow

indicates the direction and strength of the laser field. The dashed

and solid curves indicate the combined potential of nucleus, e-e
repulsion, and laser field felt by the electrons, i.e., Vn;iðxiÞ þ
Veeðx12Þ þ xiEðtÞ as a function of xi, with the other electron being

in the position indicated. The plots extend over slightly more than a

quarter cycle. Time increases from left to right and from top to

bottom, as illustrated by the arrow that specifies the electric field.

From Panfili, Haan, and Eberly, 2002.
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FIG. 9 (color online). (a) The Feynman diagram proposed by

Kuchiev (1995) and by Becker and Faisal (1996) that describes

the quantum SFA amplitude (20), which implements the

recollision–impact-ionization (RII) pathway, which is the Corkum

recollision scenario. Time goes from left to right. The single lines

represent the two electrons in their initial field-free bound states.

Double lines represent electrons interacting with the field but not

with the ion or each other (Volkov states). The vertical wavy line

stands for the e-e interaction Vee (labeled V12). (b) Diagram that

describes the recollision-excitation and subsequent ionization

(RESI) pathway: in the e-e interaction, the second electron is

promoted into an excited bound state jc ð2Þ
e i, from which it tunnels

out at the later time t1. From Figueira de Morisson Faria and Liu,

2011.
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(RESI). These two scenarios appear to be the most important
under the conditions of current experiments. The Feynman
diagram for a shake-off process was also identified and
evaluated and deemed to be irrelevant under current
Ti:sapphire laser conditions (Becker and Faisal, 2002).
These remarks also recall to mind the main conceptual dis-
tinction between the FD approach and the previously de-
scribed TDSE and TDNE approaches, since neither of the
latter alter their calculations depending on imagined inter-
action sequences.

The partitions that implement the RII scenario are the
following. The initial state is the field-free two-electron
atom, so H0 þHAðtÞ describes the two-electron atom in the
absence of the laser field while the interaction with the laser
field is relegated to HBðtÞ. In the final state, both electrons
predominantly interact with the laser field so that HAðtÞ ¼
H0 þ ðr1 þ r2Þ � EðtÞ, and the final state is the product of two
Volkov states (6), one for each electron. In the intermediate
stage, the two electrons are considered on unequal footing
such that one (electron 2) propagates bound to the nucleus
while the other (electron 1) is free and only interacts with the
laser field. In this case, we take HAðtÞ ¼ Vn;2ðr2Þ þ r1 � EðtÞ,
while the remaining interactions are included into HBðtÞ ¼
Vn;1 þ r2 � EðtÞ þ Vee. The propagation of electron 1 is gov-

erned by the Volkov propagator

UVðt; t0Þ ¼
Z

d3kjc V
kðtÞihc V

kðt0Þj; (19)

which can be constructed from the Volkov functions (6) as
shown. With time going from left to right, these three stages
are reflected in the Feynman diagram depicted in Fig. 9.

The procedure just outlined gives rise to the formal
expression

Sp1p2
¼ �

Z 1

�1
dt

Z t

�1
dt0fhc V

p1
ðtÞj � hc V

p2
ðtÞjg

� VeeUV1ðt; t0ÞVn;1fjc ð1Þ
0 ðt0Þi � jc ð2Þ

0 ðtÞig; (20)

where UV1ðt; t0Þ indicates the Volkov time-evolution operator
for electron 1. For further details of the derivation of the
amplitude (20) see Becker and Faisal (2005). Differently
motivated derivations of essentially the same result were
given by Kuchiev (1995, 1996) and by Kopold et al.
(2000). Note that Eq. (20) and the same with Vn;1 replaced

by r1 � Eðt0Þ are equivalent, as can be shown by an integration
by parts [see, e.g., Becker et al. (2002)]. Both forms have
been used.

The physical content of the amplitude (20) becomes espe-
cially clear from the Feynman diagram of Fig. 9, which is
similar to a graphical representation of the recollision model.
We note that the electron-electron interaction Vee is crucial,
because it is via this interaction that the returning electron is
able to dislodge the bound one. In general, the amplitude (20)
shares with the single-ionization SFA its defining properties:
neglect of the effect of the laser field on the initial state as
well as that of the binding potential on the final state, by using
the Volkov state jc V

p ðtÞi in Eq. (6) for the latter, and neglect of
the laser force on the second electron before the recollision.

In principle, the S-matrix element (20) should start from
the fully correlated ground state hr1; r2j�0ðtÞi (for helium)

instead of the product jc ð1Þ
0 ðtÞi � jc ð2Þ

0 ðtÞi of the one-electron
ground states of the neutral and the singly ionized atom. In

principle, it should also allow the singly ionized atom to be in

an excited state after the first electron has tunneled into the

continuum. However, both of these complications were as-

sessed only to have a minor quantitative effect (Becker and

Faisal, 1996) and have been dropped since. The single-

electron ground states jc ðiÞ
0 i have been approximated differ-

ently in different calculations (Figueira de Morisson Faria

and Lewenstein, 2005).
Equation (20) formalizes the RII scenario. There are many

other possible scenarios that contribute to the given S-matrix

element, which proceed via collective tunneling (cf. the end

of Sec. II.C), via shakeup (the first electron on its way out

distorts the ion so that a second electron is ejected), or via

other scenarios. In principle, all of these would appear in a

systematic expansion of the S-matrix element. The most

important additional scenario that has been developed exten-

sively is the RESI pathway, illustrated in Fig. 9(b), which

requires one additional iteration of the integral equation (18).

The result has three temporal integrations: one over the time

when the first electron is ionized, the second over the time
when it recollides and promotes the still-bound electron 2 to

an excited state, and the third over the time when this electron

leaves the excited state via tunneling. We refrain from writing

down the formal expression (Kopold et al., 2000; Shaaran,

Nygren, and Figueira de Morisson Faria, 2010) and just

exhibit the Feynman diagram in Fig. 9(b).
The FD amplitude (20) as it stands involves two temporal

integrations and two over space (each three dimensional).

Straightforward integration requires Monte Carlo techniques

and is very time consuming. A different procedure has proved

advantageous: first one expands the Volkov time-evolution

operator UV1ðt; t0Þ in terms of the Volkov wave functions (6)

as shown in Eq. (19), which introduces an additional integra-

tion over the drift momenta k of the latter. Since the Volkov

wave functions are (time-dependent) plane waves, the spatial
integrations now yield Fourier transforms of the interaction

and the binding potentials, that is, ‘‘form factors.’’ The

potentials are chosen (in effect by making an ad hoc modi-

fication of the ionic core) such that these can be carried out

analytically. For strong laser fields, the rapid exponential time

dependence of the Volkov wave functions (6) calls for an

evaluation of the remaining integrals over k, t, and t0 by the

method of steepest descent (Lewenstein et al., 1994). The

procedure has been laid out in detail by Figueira de Morisson

Faria, Liu, Schomerus, and Becker (2004); Figueira de

Morisson Faria, Schomerus, Liu, and Becker (2004); see

also Figueira de Morisson Faria and Liu (2011).
The saddle points ðts; t0s;ksÞ ðs ¼ 1; 2; . . .Þ, which depend

on the final momenta p1 and p2, define classical electron

trajectories: an electron is set free at time t0 at the position of
the ion with zero velocity, acquires the drift momentum k,
revisits its parent ion at the time t, and dislodges the second

bound electron, whereupon both continue to travel in the laser

field with drift momenta (final momenta) p1 and p2. We

mention that the saddle points, especially the tunneling

time t0, and in turn the corresponding trajectories involve a

subtlety: they have nonzero imaginary parts. This reflects

their quantum-mechanical origin through tunneling and is
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well known in the description of tunneling processes (Hauge
and Støvneng, 1989). These so-called ‘‘quantum orbits’’ have
become a powerful tool in the theory of intense-laser-atom
processes (Salières et al., 2001), which conveys an intuitive
picture of how the processes develop in time. Their applica-
tion to NSDI has been demonstrated by Figueira de Morisson
Faria and Becker (2003). Even though the orbits are much
simpler, they can be compared with the TDNE trajectories.
Compare, for example, Fig. 7 with the rescattering quantum
orbits of Fig. 6 of Kopold, Becker, and Kleber (2000).

Interference effects between different orbits provide a
significant fundamental difference between the FD and the
TDNE results; see Figueira de Morisson Faria and Becker
(2003) and, for a very intriguing manifestation involving
many orbits, see Popruzhenko et al. (2002). However, inter-
ference effects have not yet been observed in experiments,
except possibly in NSDI of molecules (see Sec. VI.E). One
reason is that the experimental yield of NSDI data is not high
enough to allow for a fully differential analysis so that some
components of the six-dimensional space of the final mo-
menta p1 and p2 are always integrated over, which tends to
smear out interference effects. The fact that experiments
always imply some focal averaging has the same conse-
quence. Another purely quantum feature is tunneling, but it
does not appear to leave a clear signature. This can be
concluded from comparison with TDNE results (Ho, Liu,
and Becker, 2007).

The quantum elements in the amplitude (20) then are
(i) tunneling as expressed in the fact that the ionization
time is complex, (ii) interference of the various solutions of
the steepest-descent equations, and (iii) quantum spreading of
the electronic wave packet between ionization at time t0 and
recollision at time t, which is accounted for by the time-
evolution operator UVðt; t0Þ.

A modification of FD theory has been proposed in which
the quantum features (ii) and (iii) are dropped. The resulting
expression for the transition rate is (Figueira de Morisson
Faria, Liu, Schomerus, and Becker, 2004; Figueira de
Morisson Faria, Schomerus, Liu, and Becker, 2004)

Fðp1;p2Þ ¼
Z

dt0wðt0Þ	
�X2
i¼1

1

2
½pi þAðtÞ�2

þ IP2 � EretðtÞ
�
jVp�kj2: (21)

Similar to the quantum-mechanical amplitude (20), this is an
integral over the ionization time t0, but here the recollision
time t is a function of t0 and is calculated via classical
simpleman mechanics (Corkum, 1993; Kulander, Schafer,
and Krause, 1993), assuming that the first electron is set
free with zero velocity at the time t0; cf. Sec. II.C.

The distribution function (21) incorporates the three steps
of the RII scenario incoherently (multiplicatively). Tunneling
is specified by the rate wðt0Þ, and propagation from the
ionization time t0 to the recollision time t determines the
kinetic energy EretðtÞ of the returning electron. Finally,
inelastic recollision is subject to energy conservation
(expressed by the 	 function) and the momenta are distributed
according to the square of the form factor Vp�k, which is

the Fourier transform of the e-e interaction Vee where
p ¼ ðp1;p2Þ and k is the drift momentum of the returning

electron, also to be calculated from classical mechanics
(Figueira de Morisson Faria, Liu, Schomerus, and Becker,
2004; Figueira de Morisson Faria, Schomerus, Liu, and
Becker, 2004). The classical boundaries of the ion-momentum
distribution and the electron momentum-momentum correla-
tion have been estimated by Pohl, Ebeling, and Romanovsky
(2003) and Milošević and Becker (2003).

Even though the transition rate (21) combines only classi-
cal ingredients except for the initial tunneling stage, it is still
similar to an S matrix, because first the initial state and the
final electron momenta p1 and p2 are specified and then the
corresponding transition rate is calculated.

A crucial ingredient of the recollision scenario is the
electron-electron interaction potential Vee by which the re-
turning electron kicks out the second electron. In the FD
calculation, this potential enters only in first-order Born
approximation. Of course, the standard Coulomb repulsion
potential

Veeðr1; r2Þ ¼ 1

jr1 � r2j (22)

appears as the natural choice (Becker and Faisal, 1996,
1999a, 2000, 2002; Goreslavski and Popruzhenko, 2001;
Goreslavskii et al., 2001; Popruzhenko and Goreslavskii,
2001; Weckenbrock et al., 2003), but the contact potential

Veeðr1; r2Þ ¼ V0	ðr1 � r2Þ	ðr2Þ (23)

has been frequently used (Kopold et al., 2000; Goreslavskii
et al., 2001; Figueira de Morisson Faria, Liu, Sanpera, and
Lewensein, 2004; Figueira de Morisson Faria, Liu,
Schomerus, and Becker, 2004; Figueira de Morisson Faria,
Schomerus, Liu, and Becker, 2004). It is, actually, a three-
body potential since for this potential to act it is not sufficient
that the two electrons are at the same position, but this
position must be the position of the ion (which is located at
the origin). Recalling the various approximations and limita-
tions inherent in the SFA and built into the amplitude (20) one
need not hesitate to consider the e-e interaction Vee as an
effective interaction.

It is a major challenge to improve the SFA-FD method by
including more of the many interactions that are unaccounted
for and this is typically done on an ad hoc basis. The
Coulomb repulsion between the two electrons in the final
state can comparatively easily be taken care of with the help
of the two-electron Volkov solution developed by Faisal
(1994). However, the results do not really lead to better
agreement with the data (Figueira de Morisson Faria, Liu,
Schomerus, and Becker, 2004; Figueira de Morisson Faria,
Schomerus, Liu, and Becker, 2004). It is much more difficult
to accomplish a better description of the electron-ion inter-
action. This was attempted by utilizing the strong-field eiko-
nal Volkov approach (Smirnova, Spanner, and Ivanov, 2008)
by Bondar, Liu, and Ivanov (2009) for intensities below the
recollision threshold (cf. Sec. VI.A), but the resulting mo-
mentum distributions are much narrower than in the data.

D. Tunneling-classical trajectory methods

In contrast to the fully classical TDNE approach, the TC
trajectory approach retains electron tunneling as the initiator
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of the NSDI process, which is then followed by classical

electron trajectory propagation. In this way it is similar in

spirit to the Corkum (1993) recollision model of NSDI.

However, it goes beyond that in the sense that all interactions

are engaged after the first step of tunneling, just as in the

TDNE approach. Conceptually, the model envisions NSDI to

be generated by two important processes, which are treated

separately and sequentially: quantum-mechanical tunneling

followed by a classical trajectory propagation (we refer to this

model by the tunneling-classical acronym TC). This is, of

course, a model assumption. There is no known way to tell at

which exact instant tunneling is completed and classical

propagation starts.
The TC approach shares with the TDNE model all of those

features that are relevant, but only after the tunneling event.

All five of the participating interactions that we mentioned

are considered fully and equally. TC calculations can be

performed for a broad range of laser parameters, such as

wavelength, intensity, pulse shape, and polarization, always

under the provision that the picture of tunneling ionization

still holds. The TC model also allows one to identify those

individual NSDI trajectories that lead to NSDI and to back

analyze the pertinent dynamics in all details.
The acronym TC may also be used to subsume a step-

by-step approach that models the various steps separately,

trying to incorporate the available field-free cross sections

and paying constant attention to the significance of the

Coulomb interaction (Yudin and Ivanov, 2001a). The model

especially predicts (Bhardwaj et al., 2001) that the ratio of

doubly to singly charged helium increases with pulse length

and produces good agreement with corresponding data of

Walker et al. (1994).
The TC as well as the FD approach needs to introduce IP

values by hand. It is only via the TDSE, and only for helium,

that one has been able to deal with target atoms from first

principles. The FD and the TC approaches, on the one hand,

and the TDNE, on the other hand, differ in the amount of

atom-specific input that enters them. For example, for double

ionization the TDNE approach requires one only to specify

the total ionization potential IP1 þ IP2. In contrast, in the FD

and in the TC approach one separately has to specify both the

first and second ionization potentials. Results will be very

different depending on specific IP values. Excited states do

not directly enter either the TDNE or TC models.
The TC approach was initially used to explore the effect of

Coulomb refocusing on the double-ionization yield (Brabec,

Ivanov, and Corkum, 1996). Extensive investigations of the

NSDI dynamics with the TC method (Chen et al., 2000; Fu

et al., 2001; Chen and Nam, 2002; Fu, Liu, and Chen, 2002)

were carried out after the differential data measured with

COLTRIMS had become available in the early 2000s. The

laser pulse is assumed to be at full strength at the time of

tunneling, so the envelope function E0ðtÞ is usually taken to

have a constant amplitude for the first several cycles and then

to turn off with a cos2 envelope within the last few cycles.
In order to perform the electron trajectory propagation

according to Newton’s equation of motion (14), the initial

phase-space distribution of both electrons must be set up as in

the TDNE model. The first electron is assumed to tunnel

through the field-lowered Coulomb barrier and its initial

conditions are determined by its wave function at the tunnel-
ing time t0 (Landau and Lifishitz, 1977; Ammosov, Delone,
and Kra��nov, 1986). With the laser polarization in the x
direction, the initial positions for the first electron are yðt0Þ ¼
zðt0Þ ¼ 0 while xðt0Þ is determined by the solution of
xEðt0Þ � Vn1 ¼ IP1, where Vn1 denotes the potential between
the first-ionized electron and the singly charged ion, which is
the same as employed in the FD approach [Eq. (20)], but not
necessarily as the potential in TDNE [Eq. (16)]. The initial
velocities of the first electron are set to vx ¼ 0, vy ¼
v? cos�, and vz ¼ v? sin�. For the tunneling rate wðt0Þ
one usually uses the quasistatic tunneling rate (8)
(Ammosov, Delone, and Kra��nov, 1986).

The weight of each classical trajectory in the ensemble is
evaluated by wðt0; v?Þ ¼ wðt0Þgðv?; t0Þ. The quantum-
mechanical transverse velocity distribution is

gðv?; t0Þ ¼ ð1=�	v2
?Þ exp½�ðv2

?=	v
2
?Þ�; (24)

where 	v? ¼ ½jE0ðt0Þj=
ffiffiffiffiffiffiffiffiffi
2IP1

p �1=2 (Delone and Krainov,
1998). For the simulation, values of v? up to several times
	v? are typically chosen. The time t0 is varied over the first
optical half cycle. The initial conditions of the second elec-
tron are determined by assuming that the electron is in the
ground state of the singly charged ion and its initial phase
space is modeled by a microcanonical distribution.

To find double-ionization events, Eq. (14) is solved in a
time interval from t0 until the end of the pulse. If both
electron energies are greater than zero at the end of the laser
pulse, a double-ionization event has taken place.

It should be noted that, while the initiation by tunneling
ionization in the TC method has not yet resulted in any
qualitatively distinct NSDI features compared with the
TDNE results, it may give rise to some nontrivial aspects in
the calculation procedure, which deserve to be mentioned.
For example, autoionization, which in the TDNE model has
to be prevented by adopting the softened potentials (16), is of
no concern, in principle, in the TC model owing to the
tunneling initiation of the trajectories. Therefore, the poten-
tials can be exactly taken as

Vn;i ¼ �Zeff

ri
; (25)

where Zeff is the effective charge of the singly charged ion.
Only for helium does its value equal 2, while for the other
atomic species it can be derived from the ionization potential
IP2 of the singly charged ion. For the e-e potential, the
unscreened Coulomb potential (22) is adopted.

If one intends to extend the TC model to multiple (triple or
higher) ionization, one needs to set up an initial phase space
for the two (or more) bound electrons by a microcanonical
distribution, as is commonly done for NSDI in the TDNE
model. The problem of autoionization, as encountered in the
TDNE model, then has to be considered and one is forced to
employ softened potentials; see Sec. VI.G.

In the TC model, usually only the tunneled electrons
produced in the first half cycle of the pulse are traced to
obtain the results. Also, the depletion of the ground state has
not been considered. Regarding the many-cycle pulses em-
ployed in experiments, one might ask whether this simplifi-
cation may lead to some deviation of the TC results from the
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data. In fact, this does not seem to be a problem when the
laser field intensity is not too high and the concept of tunnel-
ing ionization can still be justified. However, ground-state
depletion must be considered if the laser intensity increases
further such that the over-barrier-ionization regime is
reached. Also, the assumption of tunneling to initiate NSDI
becomes questionable in the over-the-barrier regime. Note
that the sudden turn-on of the field, which has been assumed
in the TC model, rules out effects to be discussed for elliptical
polarization in Sec. VI.C.

The model underlying Eq. (21) of Sec. IV.C conceptually
resembles the TC model, in the sense that it involves quantum
tunneling followed by completely classical simpleman propa-
gation. Otherwise, however, it is so similar to the spirit and
the assumptions of the quantum FD model that we have
considered it in that context.

As a final example of the TC approach, we mention the
classical analysis by Sacha and Eckhardt (2001a) of two
electrons, which are driven by the laser field through the
saddle in phase space on the equipotential surface formed
by the three Coulomb potentials. The subspace of symmetri-
cally escaping electrons generates the double-hump distribu-
tion of the doubly charged ion. Only the last step of NSDI is
investigated: the process of electron excitation to the excited
state that precedes this classical motion is taken for granted
and not analyzed. The model has been extended to triple
ionization (Sacha and Eckhardt, 2001b). The motion across
the saddle was also formulated quantum mechanically
(Prauzner-Bechcicki et al., 2008).

V. COMPARISONS OF THEORY WITH EXPERIMENT

Comparison of data with theoretical predictions serves to
identify successes and failures in theoretical modeling when
fundamental theoretical principles cannot be followed to the
end, as is ultimately almost always the case.

A. Doubly charged ion-yield measurements: The knee

To begin, one sees in Fig. 10 that several different ap-
proaches can capture the signature element of NSDI, the knee
feature, in their ion-count predictions. This is a strong in-
dication of the fundamental character of the new physics
evident in the knee, i.e., the existence of strong two-electron
correlation effects in this high-field ionization domain.

Referring to Fig. 10, and taking each row in turn, a knee
showing the same form as the data of Fittinghoff et al. (1992)
is shown in the top left as calculated by Corkum (1993) and
included in his seminal paper that proposed the rescattering
model. Corkum’s calculation utilized as input the Ammosov-
Delone-Kra��nov (ADK) ionization rate (Ammosov, Delone,
and Kra��nov, 1986), the known (e, 2e) cross section for Heþ,
and an estimate of the width of the recolliding electron’s wave
packet. Next are shown excellent fits to data resulting from an
ad hoc approach to the TDSE that allowed the outer electron
to interact with the inner one, but not vice versa (Watson
et al., 1997). This was essentially a formal implementation of
inelastic rescattering. In the second row of Fig. 10 we show
that the yield versus intensity curves for the whole gamut of
data available for helium in the late 1990s was remarkably

well reproduced by a model formula for the nonsequential-
double-ionization rate (Faisal and Becker, 1997; Becker and
Faisal, 1999a) that was motivated by the Feynman diagram of
Fig. 9, but drastically simplified in order to allow for evalu-
ation within a reasonable amount of computer time and
adaptation to atoms other than helium. These first four graphs
can all be understood as results from the step-by-step
approach.

Knees have also been calculated using the all-at-once
approach, as shown in the last row of Fig. 10. Here a different
goal is to be understood: one is not so much interested to
show how to match experimental data closely, but rather to
determine whether or not such a novel feature as a knee can
actually emerge under steady action of the full combination
of forces at work on the two electrons from the laser, the
nucleus, and each other, without ad hoc timing sequences or
equation modifications. The answer is again positive and
positive from several points of view. First, the TDNE and
TC calculations show knees based on the full two-electron
theories described. Second, the same is true of a quite differ-
ent all-at-once approach coming from classical phase-space

FIG. 10 (color online). The ability of a wide variety of NSDI

theories demonstrated to recover the signature knee effect. From the

top left they are taken from Corkum (1993), Watson et al. (1997),

Becker and Faisal (1999a), Mauger, Chandre, and Uzer (2009), and

Ho and Eberly (2006) as discussed in the text.
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analysis (to be elaborated on in Sec. VI.D). Third, the last
graph (Ho and Eberly, 2006) shows a theoretical knee that is
more realistic than any others completed so far in the sense
that the calculation included three electrons, all three equally
active. Without imposing any ordering of ionization events on
the electrons, this TDNE calculation produced a knee not
only in double ionization but simultaneously in the triple-
ionization data as well. We discuss nonsequential multiple
ionization further in Sec. VI.G.

The all-at-once approach can be adjusted to any particular
laser pulse shape desired, at least in principle, provided the
pulse is not prohibitively long, and the result can immediately
be compared with the experiment to which the calculation
was tailored. In contrast, FD calculations are mostly carried
out for an infinitely long monochromatic pulse and will,
therefore, produce a double-ionization rate. Rate equations
must then be used to obtain the yield of doubly charged ions
for the pulse in question. They involve, as functions of time,
the number of neutral atoms and singly and doubly charged
ions and depend on the double-ionization rate as well as the
single-ionization rates from the neutral atom to the singly
charged ion and from the latter to the doubly charged species.
It is useful to remark that there is no such thing as a double-
ionization rate for sequential ionization. The yield for a
sequential process can be obtained only from the single-
ionization rates via solution of the rate equations.

B. Ab initio (TDSE) theory and experiment: Helium

Helium provides the only conceivable meeting ground
between ab initio theory and experiment. The ultimate goal,
comparison near the wavelength of 800 nm most frequently
used in experiments, has not been accomplished yet.
However, in Figs. 11 and 12 we present results from the
Belfast group for the shorter frequency-doubled wavelength
of 390 nm (Parker et al., 2006). The intensities I are just
below the nominal threshold intensity for the classical re-
scattering scenario (that is, for 3:17UP < IP2). For helium
IP2 ¼ 54:4 eV, which means I < 1:2 PW=cm2.

There are no arbitrarily adjustable parameters nor any
input values in the Belfast calculations. All spectroscopic

features of helium are implicitly calculated. The accuracy
depends on the spacing of finite-difference grid points 	r. In
practice, with standard settings (e.g., 	r ¼ 0:25 a:u:), ener-
gies of bound states, energies of doubly excited states, and
lifetimes of autoionizing states show agreement with theo-
retical values to better than 0.01%, 0.1%, and 1%, respec-
tively. The time propagator of the HELIUM code was designed
to meet a requirement for unusually small integration trunca-
tion errors. A typical integration (Parker et al., 2006) might,
for example, find total relative NSDI yields of the order 10�8

or even 10�12, constraining local truncation errors to consid-
erably less than 1 part in 1012. To achieve this, HELIUM uses
an arbitrary-order Arnoldi propagator (Smyth, Parker, and
Taylor, 1998). Arnoldi propagators have often demonstrated
improved integration efficiency in the limit of high order even
if small truncation errors are not a requirement.

For comparison with experimental helium data from the
DiMauro group see the two panels of Fig. 11, which exhibit
measured and calculated electron-momentum distributions in
coincidence with single as compared with double ionization.
The agreement between theory and experiment is remarkable.
The electron spectrum in single ionization is compatible with
the cutoff at 2UP, which is expected from the simplest
classical estimate (11), while the cutoff energy for an electron
emitted in double ionization is substantially higher.

It is not currently feasible to obtain sufficient numerical
data to permit detailed electron-ion and electron-electron
momentum distributions for comparison with experimental
data from helium, such as obtained via COLTRIMS. The
running times for the numerical programs are simply too
long. Additionally, there is no hope to extend this TDSE
work to more complex atoms than helium, eliminating the
chance to compare results with the richer data available
particularly from the heavier noble-gas elements neon and
argon. For the same reason, TDSE progress to more than two
active electrons, mandatory for triple and higher nonsequen-
tial ionization, now repeatedly observed in the laboratory,
is out of the question barring conceptual breakthroughs in
computation.

FIG. 11. Electron-momentum distribution for singly and doubly

ionized helium at 390 nm and 0:8 PW=cm2 (upper panel) and

1:1 PW=cm2 (lower panel), experimental results (dashed curves)

and TDSE (solid curves). For double ionization, the momentum of

just one electron is plotted. From Parker et al., 2006.

FIG. 12 (color online). TDSE calculation of the distribution of the

momenta pi ¼
ffiffiffiffiffiffiffiffi
2Ei

p
(i ¼ 1, 2) of the two electrons emitted in

double ionization at the end of a 7-period pulse with 1:0 PW=cm2.

The straight lines correspond to an apparent cutoff energy of 1:9UP

of the electrons coincident with single ionization. The circular arc is

drawn at a total kinetic energy of 5:3UP in order to serve as a cutoff

for the total energy. From Parker et al., 2006.
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Figure 12 shows a calculated TDSE momentum-
momentum correlation. Notice that this is for the absolute

values jp1j � p1 ¼
ffiffiffiffiffiffiffiffi
2E1

p
and jp2j � p2 ¼

ffiffiffiffiffiffiffiffi
2E2

p
of the two

electrons, in contrast to the correlation in Fig. 5, which is for
the longitudinal momentum components p1k and p2k. Hence,
the plot in Fig. 12 provides no information about the direction
in which the electrons are emitted. The figure displays several
features worth mentioning. First, the population is concen-

trated on arcs, which correspond to the number N of
photons absorbed from the laser field, cf. Eq. (1), so
that E1 þE2 ¼ ðp2

1 þp2
2Þ=2¼ N!� IP1 � IP2 � 2UP. The

dominance of the arcs confirms that the electrons really

stem from NSDI events (sequential double ionization would
not generate arcs but a distribution of grid points). Moreover,
the discreteness of the arcs betrays integer photon numbers, a

quantum feature. Second, the distribution appears to be well
contained within the white circular arc at an energy of 5:3UP.
For intensities above the aforementioned threshold intensity,

this cutoff rises to about 7UP. [Remarkably, such a cutoff was
observed at 800 nm in early TC calculations by Chen, Liu,

and Zheng (2002)]. Third, the clear notch along the diagonal
can be attributed to Coulomb repulsion between the two
electrons, which disfavors equal momenta.

Longitudinal and transverse ion-momentum distributions
in helium were first measured by Weber et al. (2000b) at

the Ti:sapphire wavelength of 800 nm; see also de Jesus,
Rudenko et al. (2004). They are rather well reproduced by
FD calculations based on the Feynman diagram of Fig. 9(a)

(Becker and Faisal, 2000; Popruzhenko and Goreslavskii,
2001). Only the dip in the longitudinal ion-momentum dis-

tribution is somewhat exaggerated. This suggests a contribu-
tion of the RESI diagram of Fig. 9(b), which was not included
in the calculation.

A related process of fundamental interest, although outside
the scope of this review, is two-photon double ionization

of helium. For a frequency below the second ionization
potential (i.e. !< 54:4 eV) only the nonsequential (often
called direct) pathway is open. Interest in this system has

been renewed by the development of bright tunable short-
wavelength sources, such as the free-electron laser facility

FLASH; for recent results, see Kurka et al. (2010). The
system is also eminently suitable for ab initio TDSE simula-
tion; recent examples, which provide a listing of earlier

references, include Palacios, Rescigno, and McCurdy
(2009) and Pazourek et al. (2011).

C. Fingerlike structures

In the momentum-momentum correlation data, a striking
‘‘fingerlike’’ structure containing higher-energy electrons was

reported by two groups in 2007 in their correlated electron
momenta spectra from high-resolution COLTRIMS measure-

ments (Rudenko et al., 2007; Staudte et al., 2007) of NSDI
of helium. As shown in Fig. 13, it displays a characteristic
notch or V-shaped suppression on the diagonal, which sug-

gests Coulomb repulsion between the two electrons as its
origin. This was confirmed in TC calculations by Ye, Liu, and
Liu (2008), which we reproduce in Fig. 14, to be compared

with Fig. 1 of Staudte et al. (2007). While Fig. 14(a) displays
the complete result, in the other three panels various

interactions are turned off or modified. In Fig. 14(b) the laser
field is switched off and, indeed, the laser-induced drift (11) is
absent; in Fig. 14(c) the e-e Coulomb interaction is replaced
by a Yukawa interaction and, indeed, the V-shaped pattern is
no longer present; and in Fig. 14(d) the electron-ion inter-
action is shielded, which greatly reduces the number of high-
energy electrons.

Staudte et al. (2007) also exhibit TDSE calculations using
the (2þ 1)-dimensional approach of Ruiz et al. (2006),
which also agree well with the data. Emmanouilidou

FIG. 13 (color online). First quadrant of the electron momentum-

momentum correlation for NSDI of helium at 4:5� 1014 W=cm2

and 800 nm. The lines specify momenta of 2
ffiffiffiffiffiffiffi
UP

p
. The triangles and

circles present the kinematical boundaries obtained from a simple

classical ðe; 2eÞ model. Namely, the recolliding first-liberated elec-

tron donates the energy corresponding to the second ionization

potential to the second electron, which appears in the continuum

with zero kinetic energy and is then accelerated by the field. In the

process, the first electron either backscatters (dots) or forwardscat-

ters (triangles). From Staudte et al., 2007.

FIG. 14 (color online). Electron-electron correlations calculated

from the TC model by Ye, Liu, and Liu (2008), intended to model

the experiments of Rudenko et al. (2007) and Staudte et al. (2007).

The laser intensity is 4:5� 1014 W=cm2 at 800 nm. See the text for

further explanation and interpretation. From Ye, Liu, and Liu, 2008.
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(2008), Haan, Van Dyke, and Smith (2008), and Ye, Liu, and

Liu (2008) noticed that in order to obtain the fingerlike
structure it may be imperative to take unscreened Coulomb

potentials. With the softened electron-ion potential (16), the

occurrence of hard electron-ion collisions is reduced. Since
these generate the most energetic electrons, the yield of high-

energy electrons may be to some extent weakened. Using

unscreened Coulomb potentials within the TC approach, Xin,
Ye, and Liu (2010) reproduced the fingerlike structure and

investigated its dependence on the carrier-envelope phase

(cf. Sec. VI.F). In principle, the V-shaped notch of Fig. 14
has the same origin as the one calculated ab initio by Parker

et al. (2006) (see Fig. 12).
The data of Staudte et al. (2007) were also described in the

context of a so-called quantitative rescattering theory

(Morishita et al., 2008), which is a phenomenological modi-

fication, designed to be more closely adaptable to specific
atoms, of the quantum-mechanical rescattering theory [for a

review of the latter, see Becker et al. (2002)]. The V-shaped

notch is well reproduced if all three Coulomb interactions are
taken into account (Chen, Liang, and Lin, 2010).

The V-shaped fingerlike suppression, evidently related to

Coulomb repulsion, was already prominent in AEA TDSE
simulations by Lein, Gross, and Engel (2000). A similar

pattern can also be observed in ðx1; x2Þ position space and

clearly is also to be attributed to the same origin [Panfili,
Eberly, and Haan (2001); recall Fig. 4].

D. Recollision–impact-ionization scenario: Neon

The COLTRIMS measurement of the momentum of the
doubly charged neon ion reproduced in Fig. 3, whose distri-

bution exhibits the typical double-humped shape, exhibited

the footprint of the RII scenario. In Sec. III we confirmed that
the positions of the centers of the two humps agree reasonably

well with the simpleman estimate (11). The FD calculation of

the distribution of ion momentum (negative sum of the two-
electron momenta), carried out at an intensity lower than

given in the experiment, is presented in Fig. 15. Both

electron-ion interactions were described by contact poten-
tials, and for the e-e interaction the three-body contact po-

tential (23) was adopted. Comparison of Figs. 3 and 15 shows
fair agreement in the distribution of the longitudinal ion-

momentum component while the transverse widths of the

distribution are considerably overestimated by the simulation,
probably due to the fact that Coulomb refocusing is not

included.
Figure 16(a) reproduces the electron-momentum correla-

tion function for NSDI measured for neon (Moshammer
et al., 2003) replotted on the scale of

ffiffiffiffiffiffiffi
UP

p
. All plots display

the double-ionization yield as a function of the momentum

components parallel to the laser polarization direction, while
the transverse components were not detected in the experi-

ment and integrated over in the theory.
We first look at the experiment. The distribution of mo-

menta is largely confined to the first and third quadrants. Each

quadrant houses a roughly circular distribution with their

centers at about 1:5
ffiffiffiffiffiffiffi
UP

p
, somewhat below the simpleman

value (11). There are very few events with momenta near zero

or in the second or fourth quadrant. This is precisely what is

expected from RII, which was already discussed in some

detail in Sec. II.C.
Figures 16(b) and 16(c) present the results of TDNE

calculations obtained in two or three spatial dimensions.

The differences are minor (which can be invoked to justify

restricting TDNE simulations to two dimensions). The cen-

ters of the distributions agree quite well with the experimental

values. The TDNE distributions exhibit a slight minimum

along the diagonal, which one is inclined to attribute to

Coulomb repulsion between the two final electrons, which

is not visible in the data of Fig. 16(a). Recall, however, that

such a minimum was experimentally observed by Rudenko

et al. (2007) and Staudte et al. (2007) for helium. It is also

visible in the TC calculations shown in Fig. 14.
Figures 16(d) and 16(e) show results of pertinent FD

calculations. Figure 16(d) reproduces the experimental result

quite well, except for the positions of the two centers of the

distribution, which correspond exactly to the simpleman

value (11) rather than to the data. Figure 16(d) was obtained

taking for the e-e interaction potential the three-body contact

potential (23). The more reasonable Coulomb potential (22)

leads to a distribution [Fig. 16(e)] that agrees less well with

the experimental data. It is interesting to note that in the

current case of rather high laser intensity, it makes practically

no difference whether the calculation is based on the full

quantum-mechanical amplitude (20) or on the classical ex-

pression (21) [the latter result is not shown here; cf. Figueira

de Morisson Faria, Liu, Schomerus, and Becker (2004)].

This underlines the fact that the very simple physics that

has entered the classical expression (21) is sufficient to

explain the shape of the observed momentum-momentum

correlation.

FIG. 15. Distribution of the ion momentum P in NSDI of neon at

795 nm calculated from the FD approach with zero-range interac-

tion for all potentials, to be compared with Fig. 3. For a better

simulation of the experiment, for the intensity the lower value

8� 1014 W=cm2 was taken. (a) Linear-scale density plot with ten

equidistant contour lines. The horizontal line at P? ¼ 0 and the four
vertical lines at various values of Pk mark the positions of cuts along

which the distribution is plotted in (b) and (c). From Kopold et al.,

2000.
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Figure 17 exhibits the momentum distribution of the dou-
bly charged neon ion as measured [panel (c)] by Zrost et al.

(2006) and compares it with the results of three-dimensional
(left-hand column) and two-dimensional (middle column)

TDNE computations. The second and third rows display the
distributions of the longitudinal and one component of the

transverse momentum, respectively. The experimental distri-
bution is what one expects from Figs. 16(b) and 16(c): two

well-separated humps, which are related to the momentum

correlation being centered in the first and third quadrants.
Note that the experimental data and the TDNE simulations

are obtained at substantially different intensities; however,
the results are scaled by

ffiffiffiffiffiffiffi
UP

p
. We notice that the results

of the 2D and the 3D simulations differ mostly in the shape

(cusp versus round top) and in the width of the transverse
ion-momentum distribution. The two-dimensional distribu-

tion is wider. The reason is that the energy available for
the transverse motion is the same in both cases. However,

in the 3D case it is distributed over 2 rather than just 1 degrees

of freedom. The 3D results agree quite well with the data.
Especially, the position of the maxima is perfectly repro-

duced. Only the longitudinal width is slightly wider in the
data.

E. The species dependence of NSDI

Already the first differential NSDI measurements revealed

significant differences between different atomic species, es-

pecially between neon (Moshammer et al., 2000, 2003), on
the one hand, and helium (Weber et al., 2000b) and argon

(Weber et al., 2000a, 2000c; Weckenbrock et al., 2001;
Moshammer et al., 2002), on the other hand; cf. Figs. 3 and 5.

For neon, under all conditions investigated below saturation,

the ion-momentum distributions exhibit two well-separated
humps and, correspondingly, the momentum-momentum cor-

relations display predominantly side-by-side emission (popu-
lation in the first and third quadrants) and a largely depleted

region around zero momenta. In marked contrast, for helium

and argon these features are less distinct or completely
absent. The features just mentioned are the footprints of the

RII scenario reviewed in Sec. IV.C. Hence, one cannot expect
to see them if the conditions for this mechanism are not

fulfilled. Especially, the maximal return energy 3:17UP

[Eq. (10)] of the recolliding electron must exceed the second
ionization potential of the species. The first ionization poten-

tial for argon (15.8 eV) is substantially lower than for neon
(21.6 eV). Therefore the saturation intensity is lower as well,

and a sufficient return energy is harder to achieve.
However, these rather obvious considerations do not fully

account for all of the NSDI data, in particular, for the

differences existing between helium and neon, of which the
former possesses a higher ionization potential (24.6 eV) than

the latter (21.6 eV). Indeed, in addition to the RII mechanism,

the contribution of the RESI mechanism [see Sec. IV.C and
Fig. 9(b)] has been proposed to play a significant role in the

species dependence of NSDI. This mechanism favors low-
energy electrons, including also electrons emitted back to

back. For argon at intensities below the RII threshold, such

‘‘anticorrelated’’ electrons actually become dominant (Liu
et al., 2010). It has also been argued that the ratio of the

(e; 2e) cross sections for ionization and for excitation is
higher for neon than for argon (Feuerstein et al., 2001;

de Jesus, Feuerstein et al., 2004; Herrwerth et al., 2008)

thereby favoring the RII pathway in the case of neon.
One-dimensional FD calculations were carried out for

RESI, which indeed exhibited an increasing number of

low-energy electrons (Kopold et al., 2000) filling the gap
that is left by the RII scenario. Recent three-dimensional

FIG. 16. Correlation function of the electron-momentum compo-

nents parallel to the laser field for NSDI, plotted on the scale offfiffiffiffiffiffiffi
UP

p
, with the transverse components not measured (in the data)

or integrated over (in the theory). (a) Measurements for neon at

1:0 PW=cm2 and 800 nm [rescaled from Moshammer et al.

(2003)]. Middle panels: three-dimensional (b) and two-dimensional

(c) TDNE results for a two-electron ‘‘neon’’ atom exposed to a

780-nm 8-cycle trapezoidal laser pulse with an intensity of

0:3 PW=cm2. The TDNE calculation is based on the analysis of

more than 10� 106 two-electron trajectories with the e-e smooth-

ing parameter b ¼ 0:1 in the Hamiltonian (4) [from Ho (2007)].

Lower panels: FD results computed from the S-matrix theory

of Sec. IV.C for ! ¼ 1:55 eV, I ¼ 5:5� 1014 W=cm2 (UP ¼
32:6 eV), and the ionization potentials IP1 ¼ 21:5 eV and IP2 ¼
41 eV corresponding to neon. The electron-electron interaction is

modeled by the contact interaction (23) (d) or by the Coulomb

interaction (22) (e). From Goreslavski et al., 2001.
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computations (Shaaran, Nygren, and Figueira de Morisson

Faria, 2010) showed that all four quadrants of the

momentum-momentum correlation become populated, as

expected.
Recently the TC approach was extended to account for the

RESI pathway with a Wentzel-Kramers-Brillouin approxima-

tion employed to allow tunneling of the second electron
(Ye and Liu, 2010). We return to this issue in Sec. VI.A.

This extension sharpens the distinction between TC and

TDNE approaches, since the latter only allows one to specify

the sum of the first and second (for NSDI) ionization poten-

tials, while the TC method depends on both. The interpreta-

tion of events as RESI events carries the implication that

excitation is in fact happening prior to second ionization. A

fully classical treatment has no excited states so a classical

RESI interpretation has not been advanced in connection with

TDNE calculations. However, approximately the same elec-

tron behavior could be obtained classically. This is based on

the dual observation that (a) nothing in the dynamic multi-

force TDNE calculations prevents excitation of the second

electron while the first is ejected, and (b) even a quantum

treatment should expect that under short-pulse wide-

bandwidth pulses the second electron, when excited, is likely

to find itself in a superposition of many closely spaced excited

states, in close correspondence to a classical-like wave packet

state, and not in an atomic bare state.
Finally, some TDNE results suggest a qualitatively attrac-

tive interpretation of momentum data based on striking fea-

tures in energy trajectories of the type already shown in

Fig. 7. In Fig. 18 one sees the stages of double ionization:

(i) initiation, while the laser pulse is turning on and both

electrons remain bound and are interacting strongly with each

other, (ii) one electron has escaped but returns to the core one
or several times, where various strong or weak interactions
with the second still-bound electron take place, (iii) a strong
enough collision occurs to cause a second ionization, and
(iv) both ionized electrons oscillate widely in the laser field as
they drift away from the core. Note that after ionization the
electrons oscillate either in phase or exactly out of phase with
each other, i.e., departing together to the same side of the
ion or to opposite sides. These two possibilities correlate
well with the delivery of momentum to the ion as noted by
Ho and Eberly (2003). Essentially zero ion momentum (Z) is

FIG. 17 (color online). Momentum distributions of the doubly charged neon ion from three-dimensional (left column) and two-dimensional

(middle column) TDNE calculations and from the measurements of Zrost et al. (2006) (right column). The data were collected for a peak

intensity of 1:5 PW=cm2 at 795 nm, the intensity used for the simulations was 0:3 PW=cm2. The uppermost row exhibits the two-dimensional

ion-momentum distributions with one component not observed (in the data) or integrated over (in the 3D simulations). The middle row

displays the distribution of the longitudinal momentum, and the lowermost row the distribution of the pertinent transverse component. From

Ho, 2007.
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FIG. 18 (color online). Time evolution of the total energy, includ-

ing dipole-interaction energy, of each NSDI electron during the first

eight laser cycles. There are four clear stages of an NSDI process, as

described in the text. From Ho et al., 2005.
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associated with oppositely directed departure trajectories, as
in the lower panel of Fig. 18, and substantially nonzero ion
momentum (NZ) is associated with codirected departures as
in the upper panel.

The existence of two distinct momentum-production ion-
ization events in these scenarios correlates surprisingly well
with what appears experimentally as two distinct momen-
tum distributions—those with two well-separated peaks and
those with a central peak alone. An intermediate case,
showing a filled-in center between two peaks, is also found.
Examples of these three experimental results were given in
Fig. 6. The TDNE interpretation of such data is shown in
Fig. 19, where the Z and NZ scenarios are used to contrib-
ute as much of a two-peak or single-peak distribution as is
needed to match the data. Thus what can be called a
question about species dependence is turned into a question
that asks what parameters of an atom and a laser pulse
(e.g., pulse height and shape) are the ones that determine if
ionization proceeds mostly as a Z or NZ process, or a
combination. The TDNE approach has not addressed this
question.

VI. CURRENT FRONTIERS OF NSDI

The wealth of new atomic features revealed by experimen-
tal high-field work on nonsequential double ionization has
captured the attention of atomic, molecular, and optical
physicists around the world. New questions have been raised
and are beginning to be investigated. In this section we
provide a short overview of some of them to highlight routes
that have been opened for exploration. One clear path of
experimental activity has been the demonstration that NSDI
phenomenology is applicable to triple and multiple as well as
to double ionization and to molecules as well as to atoms.
Another development has been an extension to different
wavelength regions, most notably substantially longer wave-
lengths. On the theoretical side, the question of dimension-
ality has been addressed in a new way by the development of
double-ionization theory for elliptically polarized strong

fields, with new insights already in focus. Applicability of
classical chaos theory is natural to expect any time when
strong periodic excitation of a nonlinear system is under-
taken, but only recently have results begun to appear that are
connected to NSDI. The following sections illustrate all of
these, the new frontiers opened by NSDI.

A. Nonsequential double ionization below the recollision

threshold intensity

If the maximal return energy of 3:17UP [cf. Eq. (10)]
drops below the second ionization potential then the classi-
cal recollision model in its simplest (RII) version predicts
that the yield of NSDI should immediately vanish. Quantum
mechanics does not obey such a sharp cutoff, since it allows,
in principle, the electron to absorb an arbitrary number of
photons from the field. However, the more photons are
absorbed above the classical limit, the less likely such a
process becomes. Hence, one still calculates an extremely
fast decrease of the yield for low intensity (Kopold et al.,
2000). In marked contrast, experimental doubly charged-
ion-count data show no such behavior at all and, indeed,
the complete absence of any such threshold intensity af-
forded early arguments against the validity of the recollision
model. We see that now this is rather interpreted as an
indication of the presence of pathways other than the sim-
plest RII.

COLTRIMS data for the doubly charged-ion momentum
and the e-e correlation also did not exhibit any qualitative
change when the laser intensity was reduced below the RII
threshold (Eremina et al., 2003; Weckenbrock et al., 2004).
These data could be explained by taking into account that the
bound electron actually only has to overcome the second

ionization potential lowered by the energy of the saddle of
the combined potentials of the ion and the laser field

(cf. Fig. 2): I�P2 ¼ IP2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jEðtÞjp

, where EðtÞ denotes the

laser field at the time of escape (van der Hart and Burnett,
2000).

More recent experiments (Liu et al., 2008, 2010) were
carried out at intensities below this limit and even so low that
the classical energy of the returning electron is below that of
the lowest excited state. At such intensities a qualitative
change was observed: for argon, the correlation of the
outgoing-electron momenta (their propensity to leaving side
by side) changed into an anticorrelation (leaving back to

back). This is shown in Fig. 20(a) by the momentum distri-
bution of argon being concentrated in the second and fourth
quadrants. An explanation of the mechanism responsible for
the anticorrelation was given in the TC framework, which
was augmented to allow for tunneling of the second (bound)
electron, as a combination of RESI and direct multiple re-
scattering (Liu et al., 2010; Ye and Liu, 2010). Multiple
recollisions, made possible by the presence of the Coulomb
potential, are crucial in the latter. No such anticorrelation was
observed for neon; the characteristic differences between
argon and neon [cf. Figs. 20(a) and 20(c)] were attributed
to the low-lying excited states of Arþ and its large electron-
impact cross section. Anticorrelation below the RII threshold
was also found in TDNE calculations (Haan et al., 2008,
2010).
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FIG. 19 (color online). COLTRIMS data from neon and argon are

‘‘matched’’ to TDNE results by hand, while full-blown TDNE

calculations at two different laser intensities give similar results

to the two helium panels, with an exaggeration of the Z contribu-

tion. From Ho et al., 2005.
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There are still many unresolved issues, especially for neon
and in the distribution of the transverse momenta [Figs. 20(b)
and 20(d)], which is much wider in the data than in the TC
simulation (Liu et al., 2010). Generally, the longitudinal
momenta exhibit larger (field-dominated and largely classi-
cal) effects and, therefore, have received more attention, but it
is the transverse momenta that are expected to reveal imprints
of the quantum mechanics involved, since their distribution is
determined by the width of the tunneling exit via the uncer-
tainty relation. A comprehensive quantum-mechanical treat-
ment is still lacking (Bondar, Liu, and Ivanov, 2009; Bondar
et al., 2011).

B. Other wavelengths producing NSDI

Our current understanding of NSDI is mainly based on the
experimental data collected with Ti:sapphire lasers at a center
wavelength close to 800 nm. There are several motives that
promote studies within a wider wavelength regime.

First, since UP / I�2, long wavelengths allow one to in-
crease the ponderomotive energy at constant intensity.
Wavelength, as opposed to intensity, offers a more effective
experimental knob to tune the ionization regime into the
tunneling regime, which is realized when the Keldysh
parameter (7) is small compared with unity. At shorter wave-
lengths, the intensity required will quickly lead into single-
ionization saturation. Longer wavelengths therefore enable
one to study a broader category of atomic or molecular
targets, which usually possess lower saturation intensities as
compared with noble-gas atoms. Also, novel experimental
features, characteristic of the long-wavelength NSDI and
NSMI dynamics, may be envisioned. Indeed, recent
experimental studies of the single-ionization electron
spectrum of noble-gas atoms with midinfrared laser pulses
have already uncovered qualitatively new aspects (Blaga

et al., 2009; Quan et al., 2009), which are under intense
discussion.

Second, resonances are strongly wavelength dependent
and signal the presence of discrete bound states. Despite
the frequent reference to occupancy of excited bound states
by the second electron as an intermediate stage toward ion-
ization (e.g., the RESI pathway), there has been little ab initio
examination of bound-state involvement under NSDI condi-
tions. However, an early step in the direction of understanding
bound-state involvement was taken via the TDSE solution by
Panfili and Liu (2003). In wavelength scans they found clear
resonance effects, i.e., the NSDI engagement of specific
bound states (Panfili et al., 2000; Panfili and Liu, 2003).
To do this they calculated two-electron wave functions in the
1D AEA approximation, for a model atom whose bound
states were accurately calculated. A range of laser wave-
lengths (in the neighborhood of frequency-doubled 800 nm
pulses) was explored and NSDI knee enhancements were
clearly associated with bound-state resonances. A different
approach to wavelength dependence was taken by Chen, Kim,
and Nam (2003), by means of a TC calculation of the double-
to-single ionization ratio for a model neon atom. They found
that the ratio falls nearly monotonically over a wide range,
from 250 to more than 1000 nm.

Experimentally, for short wavelengths no knee was ob-
served for double ionization of helium at 248 nm (Kondo
et al., 1993). So far, only very few experimental attempts
have been made to explore the NSDI and NSMI dynamics at
long wavelengths, which were confined to ion-yield and ion-
momentum measurements. For NSDI of xenon, Kaminski
et al. (2006) found a pronounced wavelength dependence,
implying that a resonance mechanism, normally neglected in
the studies at the single wavelength of 800 nm, may play a
role. Gingras, Tripathi, and Witzel (2009) extended this in-
vestigation to an almost continuous scan of wavelengths
between 500 and 2300 nm over 2 orders of magnitude in
intensity. The differential ion-momentum distributions in
NSDI of argon and neon at wavelengths up to 2000 and
1300 nm have recently been measured, respectively, by
Alnaser et al. (2008) and by Herrwerth et al. (2008). The
longer wavelength made it possible to explore NSDI of argon
deep into the recollision regime and, indeed, the imprints of
recollision and impact ionization were distinctly observed
(cf. Sec. V.E). Many more detailed studies, e.g., kinematically
complete measurements with the COLTRIMS technique, are
expected to appear in the near future, advancing a compre-
hensive understanding of the NSDI and NSMI dynamics over
a larger range of wavelengths.

C. Strong-field ionization with elliptical polarization

Almost all NSDI experiments have been carried out with
linearly polarized laser pulses. The recollision model, as
usually understood, naturally argues against successful
NSDI with any substantial amount of ellipticity, because
electronic orbits that start at the position of the ion with
zero velocity experience a sideward push so that they are
not able to revisit the ion. Early experiments (Fittinghoff
et al., 1992; Dietrich et al., 1994) confirmed that NSDI
production drops rapidly as a function of ellipticity " and
was not detectable beyond " � 0:25. This was supported by

FIG. 20 (color online). Parallel-momentum correlation of the two

electrons emitted in NSDI of argon (a) (3� 1013 W=cm2) and neon

(c) (1:5� 1014 W=cm2). (b) Transverse-momentum distributions in

coincidence with Ar1þ (dotted line) and Ar2þ at 3� 1013 W=cm2

(solid line) and 7� 1013 W=cm2 (dashed solid line) as well as (d) for

Ne1þ and Ne2þ at 1:5� 1014 W=cm2. From Liu et al. , 2010.
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an early TDNE calculation with circular polarization for
helium by Lerner, LaGattuta, and Cohen (1996) and inter-
preted as strong support for the recollision model. However,
in clear conflict with the recollision scenario, several later
observations of NSDI were reported under circular polariza-
tion (Gillen, Walker, and Van Woerkom, 2001; Guo and
Gibson, 2001). These observations have not been fully ex-
plained to date, and development of the theory of high-field
double ionization with other than linear polarization has be-
gun only recently.

Observable consequences of high-field elliptical polariza-
tion have begun to be reported in the SDI regime (Maharjan
et al., 2005; Pfeiffer, Cirelli, Smolarski, Dörner, and Keller,
2011), and also in large-molecule fragmentation and ioniza-
tion (Hertel et al., 2009).

For elliptical polarization the SFA approach has been ex-
plored by Shvetsov-Shilovski et al. (2008), the TC approach
by Hao et al. (2009), and the TDNE approach by Wang and
Eberly (2009a, 2009b, 2010a, 2010b). An elliptically polar-
ized field has major and minor axes, which we take to be in
the x and y directions, respectively, and write as follows, for
ellipticity ":

EðtÞ ¼ E0fðtÞ½x̂ sinð!tþ�Þ þ ŷ" cosð!tþ�Þ�; (26)

where fðtÞ is the field’s smooth several-cycle envelope func-
tion. The simpleman view of this elliptically polarized case
gives the velocities along the x and y directions as (having put
f ¼ 1)

vxðtÞ ¼ 1

!
E0½cosð!tþ�Þ � cosð!t0 þ�Þ�; (27)

vyðtÞ¼v0y� "

!
E0½sinð!tþ�Þ� sinð!t0þ�Þ�: (28)

Although the elementary theory of tunnel ionization has
zero longitudinal electron velocity, v0x ¼ 0 at t0, the moment
of tunneling release, there is a significant transverse velocity
distribution whose width, by the uncertainty relation, is asso-
ciated with the width of the tunnel exit; see, e.g., Delone and
Krainov (1998) and the discussion in Sec. IV.D. A distribu-
tion of values of this transverse component allows completely
elliptical returns to the nucleus for every ellipticity value
(Kopold, Milošević, and Becker, 2000). Two examples of
such trajectories taken from TDNE calculations are shown
in Fig. 21. One possible consequence is an explanation for the
circular polarization NSDI data mentioned above (Wang and
Eberly, 2010a).

If compensation and recollision do not occur, but the
intensity is sufficient, the second electron may still be ionized
in an independent SDI event. This type of SDI also has an
elliptical signature (Wang and Eberly, 2009a, 2009b) and it is
easy to describe. When at t ¼ t0 the major-axis field first
satisfies the over-barrier value we can take sinð!t0 þ�Þ �

1, and drop the cosine term cosð!t0 þ�Þ in Eq. (27). Thus
vxðtÞ is purely oscillatory and v0y contains all of the drift

velocity away from the ion, so momentum is transferred
through recoil to the ion only along the minor axis. The effect
is known for single ionization (Goreslavski et al., 1996) and
has been dubbed the ‘‘dodging’’ effect: the electron dodges

the major component of the elliptically polarized field

(Paulus et al., 1998).
For double ionization, this is a new observable aspect

originating in nonzero ellipticity. Because of the 
 dichot-

omy arising from phase ambiguity there will be two trans-

verse recoil peaks predicted for the first electron, four peaks

for the first two electrons (the SDI case), and 2n peaks for

n-electron ionization, if accessible. Exactly the four peaks for
double ionization were seen in TDNE calculations (Wang and

Eberly, 2009b), and subsequently found in SDI momentum

data (see Fig. 22) reported by Maharjan et al. (2005) and later

by Pfeiffer, Cirelli, Smolarski, Dörner, and Keller (2011).
A related feature of elliptical polarization appears to prove

useful in pursuing the possible breakdown of the SAE approxi-

mation. For values of E0 too high to be compensated by any

available initial v0y value, recollisions can be avoided with

certainty. This opens to view the effects of so-called ‘‘precol-

lisions,’’ i.e., the energy exchanges between the two electrons

before either one is ionized. Many such precollision events are

easily seen in both TDNE and phase-space simulations, as

shown in Figs. 7 and 19.
The unexpected and highly anomalous effect of this is an

SDI knee in the ion-count data, i.e., a knee in the absence of

any recollisions (Wang and Eberly, 2011). The knee can be

interpreted as a consequence of the precollisions. A series of

recent SDI observations (Pfeiffer, Cirelli, Smolarski, Dörner,

FIG. 21 (color online). Recollision events under elliptical polar-

ization. Top: A nearly perfectly elliptical trajectory by one electron

makes a recollision in the first postionization cycle, and both

electrons are freed. Bottom: A sequence of near-elliptical circula-

tions is pulled by nuclear attraction into a double-ionizing recol-

lision after several near misses. From Wang and Eberly, 2010b.

1034 Becker et al.: Theories of photoelectron correlation in . . .

Rev. Mod. Phys., Vol. 84, No. 3, July–September 2012



and Keller, 2011; Pfeiffer, Cirelli, Smolarski, Wang et al.,
2011) on neon and argon, challenging the SAE with ellipti-
cally polarized irradiation, are consistent with this TDNE
modeling. A challenge to the SAE approximation in the
high-field domain has not previously been feasible and would
be important to all of the step-by-step theoretical approaches,
with implications for Keldysh’s near-optical static tunneling
theory.

D. Phase-space perspective and classical chaos

Periodically driven nonlinear systems of high enough
dimension are always susceptible to classically chaotic
evolution if the driving force is strong enough; see, for
example, the discussion by Milonni, Shih, and Ackerhalt
(1987). Studies of quantum chaos have been well known
for decades, using microwave ionization of Rydberg
atoms as the experimental test bed; see, for example, first
reports by Bayfield and Koch (1974) and early analyses
by Leopold and Percival (1978, 1979). Two-electron NSDI
is certainly an example of a multidimensional physical
system excited periodically, and the laser excitation is
obviously very strong, so chaotic dynamics should be
evident.

Surprisingly, the analytical techniques familiar in classical
chaos theory have only recently begun to be applied to NSDI
by the Uzer group (Mauger, Chandre, and Uzer, 2009, 2010a).
So far, results are based on calculations for an artificial atom
with two electrons built from the Rochester soft-core poten-
tials (16) using the AEA mentioned in the Introduction. A
principal result is a new interpretation of the famous knee
shape, which the classical phase-space calculations nicely

reproduce (see Fig. 10). It is ascribed (Mauger, Chandre,

and Uzer, 2010a) to a superposition of a monotonic rapid
increase in ion counts versus I at high intensities with a bell-

shaped distribution of ion counts at lower intensities, between

the intensities that are too low for ionization and those that are
too high for effective recollision where sequential ionization

takes over.
Results from the phase-space analysis can, in principle, be

compared with those obtained via both TDSE solutions

(Panfili, Eberly, and Haan, 2001; Haan et al., 2002) and

classical ensemble calculations (Panfili, Haan, and Eberly,
2002) for the same atom under the same laser pulse. An

example of this appears in Mauger, Chandre, and Uzer

(2009). The two electrons are identified with distinct ‘‘inner’’
and ‘‘outer’’ labels during their bound evolution, but quick

switches of label occur between them. This is exactly what

one sees prior to ionization in classical two-electron energy
versus time plots such as Figs. 7 and 18.

The phase-space approach is also able to analyze circular

polarization by employing a rotating frame transformation,

and the results are striking. Mauger, Chandre, and Uzer
(2010b) report calculations showing that an NSDI knee is

predicted for a model magnesium atom, but not for the
corresponding model helium atom. Under circular polariza-

tion the knee’s absence in helium conforms to both experi-

mental data and the early TDNE result of Lerner, LaGattuta,
and Cohen (1996), but the contrary prediction of the knee’s

presence for magnesium is the first theoretical report in

agreement with the long-standing data of Gillen, Walker,
and Van Woerkom (2001).

Given the long-known effectiveness of chaos-dominated

analyses of microwave ionization of single electrons in

Coulombic potentials, it is very likely that similarly produc-
tive insights may come from further work on NSDI from the

standpoint of a phase-space perspective.

E. NSDI of molecules

Soon after the discovery of the pronounced knee structure

in the double-ionization yield of helium as a function of laser
intensity, experiments revealed that this knee structure, the

footprint of a nonsequential channel, also appears in double

ionization of small molecules (Talebpour, Larochelle, and
Chin, 1997; Cornaggia and Hering, 1998, 2000). The first

evidence that electron recollision is also responsible for non-

sequential double ionization of the simplest molecule, mo-
lecular hydrogen, came from the ellipticity dependence of

the yields of the charged ionic fragments, emitted after

molecular double ionization (Niikura et al., 2002; Alnaser
et al., 2003). This was confirmed later by differential

COLTRIMS measurements, which found that the correlated

electron-momentum distribution in NSDI of diatomic mole-
cules (e.g., N2) peaks at nonzero parallel momenta (Eremina

et al., 2004; Zeidler et al., 2005). These findings provide

solid evidence that electron recollision plays a major role in
molecular NSDI.

Novel aspects of the NSDI dynamics of molecules are

related to the structural complexity and the extra nuclear
degrees of freedom of molecular systems. For example,

the correlated electron-momentum distribution in NSDI of

FIG. 22 (color online). Top panels: Predicted longitudinal and

transverse ion-momentum distributions from Wang and Eberly

(2009b) for " ¼ 0:5. Bottom panels: Experimental results from

Maharjan et al. (2005) for Ne and Ar atoms and "� 0:8. The

experimental distributions have only a single broad peak along the

Px axis, consistent with the theoretical curve in the top left panel.

The arrows indicate four transverse Py peak positions of the type

predicted in the top right panel.
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diatomic molecules exhibits strong dependence on the

ground-state orbital symmetries (Eremina et al., 2004) and
on the alignment of the internuclear axis with respect to the

laser polarization axis (Zeidler et al., 2005).
These NSDI features pose a challenge to theory. A full-

dimensional TDSE solution is out of the question for this

more-than-three-body problem. An advance via the TC
approach (Liu et al., 2007) succeeded in reproducing the

experimental results, especially the knee, for NSDI of N2

(Cornaggia and Hering, 2000). However, TC theories and
TDNE theories as well will be confronted with the follow-

ing problem: The multicenter nature of molecules is likely
to lead to structural interference effects. Structural symme-

tries are classical effects, but quantum interferences arising

from them are not. Such structural interference has been
shown to play a significant role in the closely related one-

electron strong-field phenomena induced by electron recol-
lision, such as HHG of molecules (Lein et al., 2002) and

ATI of molecules (Muth-Böhm, Becker, and Faisal, 2000;
Okunishi et al., 2009; Kang et al., 2010). The FD method,

being an intrinsically quantum-mechanical model, can in

principle account for this interference effect and has been
recently employed to address the dependence of NSDI on

molecular structure and alignment (Figueira de Morisson
Faria et al., 2008, 2009; Jia et al., 2008, 2009). Neverthe-

less, owing to its complexity, more theoretical efforts are

required to achieve a deeper understanding of NSDI of
molecules.

F. NSDI with few-cycle pulses

The essential NSDI dynamics in the context of the rescat-

tering scenario unfold within one optical cycle. Simple as it

may appear, its comprehensive verification is still frustrated
by the experimental fact that usually the effects of many field

cycles are superimposed. It is therefore desirable to apply a
laser pulse that is so short that it allows only one reencounter

of the first-ionized electron with its parent ion. Such a few-

cycle pulse, in addition to its duration, carrier frequency,
amplitude, and polarization, depends on one more parameter,

the carrier-envelope (CE) phase �, which specifies the phase
offset between the maximum of the envelope and the nearest

maximum of the carrier wave. The field then can be written in
the form EðtÞ ¼ E0fðtÞ sinð!tþ�Þ, where the envelope fðtÞ
is assumed to be maximal at t ¼ 0 (Brabec and Krausz,

2000). Then, for a very short pulse, different values of �
give rise to different electric-field forms with, correspond-

ingly, different manifestations in physical processes induced
by the pulse, for example, in the above-threshold ionization

spectra (Paulus et al., 2001); for a review, see Milošević

et al. (2006).
The first experimental attempt along this direction was

performed by Liu et al. (2004). They employed a few-cycle

laser pulse with a duration of 5 fs at a center wavelength of
760 nm and measured the momentum distribution of the

doubly charged Ar2þ ion. The experiment showed that the
ion-momentum distribution reacts sensitively to the CE

phase. It also showed a strongly suppressed contribution of

the RESI channel, indicated by a more pronounced dip at zero
momentum.

More information about the NSDI dynamics is revealed by
a study of the electron-electron momentum correlation with a
laser pulse approaching the single-cycle limit. Theoretically
this was addressed by Liu and Figueira de Morisson Faria
(2004) within the classical analog (21) of the quantum-
mechanical S-matrix treatment of NSDI, by Xin, Ye, and
Liu (2010) with the TC method, and by Shaaran, Figueira
de Morisson Faria, and Schomerus (2011) with fully
quantum-mechanical S-matrix simulations. Simulations for
NSDI by a polarization-gated pulse, represented by two
counterpropagating circularly polarized phase-stabilized
few-cycle pulses with a finite delay, were carried out by
Quan, Liu, and Figueira de Morisson Faria (2009), using
the classical analog (21) of the quantum-mechanical
S-matrix formulation. Pertinent experiments will be made
possible by a new technique, which eliminates the need to
stabilize the CE phase throughout the experimental runs. As
proposed by Johnson et al. (2011), the CE phase of few-cycle
laser pulses operating in a nonstabilized mode can be tagged
on a shot-by-shot basis. The results can be sorted and coor-
dinated later using the phase-value tags. Such experiments are
underway on Ar2þ by Bergues et al. Observation of a char-
acteristic cross shape with its center at zero momenta in
the CE-phase-averaged momentum-momentum correlation
(Shaaran, Figueira de Morisson Faria, and Schomerus,
2011) would add important weight to the RESI route as the
dominant pathway for NSDI of argon. Further electron-
electron correlation spectra, recorded with COLTRIMS for
few-cycle pulses at specified CE phase, will certainly be
available soon and provide the most detailed information
yet about the NSDI dynamics.

FIG. 23 (color online). Experimental (circles) Neþ to Ne8þ (left

to right) yields and the corresponding ADK yields (dashed lines) as

well as a calculation including the relativistic drift (solid lines).

Knee signatures are clearly visible for Ne2þ to Ne5þ. From

Palaniyappan et al., 2005.
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G. Nonsequential multiple ionization

In total ion-yield measurements of high-field multiple

ionization ðN 
 3Þ, a significant contribution of one or sev-

eral nonsequential channels has frequently been identified

(Augst et al., 1995; Larochelle, Talebpour, and Chin, 1998;

Maeda et al., 2000; Palaniyappan et al., 2005, 2006); see

Fig. 23 for an example.
The full description of NSMI processes poses an obvious

challenge to theory. There is no currently realistic prospect

for extending the full TDSE treatment of irradiation at laser

wavelengths around 800 nm to include the electron-electron

interactions between more than one pair of electrons. At

much higher photon energy, for ℏ! � 80 eV, Ruiz, Plaja,
and Roso (2005) calculated the time dependences of single,

double, and triple ionization of lithium by solving the TDSE

in the AEA limit, and briefly explored the role of wave

function symmetry, an issue in need of extended attention

in high-field multielectron contexts.
In the basic case of ion-count data, N-fold rate equations

can be used (Becker and Faisal, 1999b) for systematic calcu-

lation. These must include all N ionic charge states and all

sequences of single and nonsequential multiple ionization

processes. The results reproduce the ion-count data in xenon

(up to Xe6þ) very well. Note that the ADK rates (Ammosov,

Delone, and Kra��nov, 1986) strongly depend on the magnetic

quantum number m, so different m channels must be distin-

guished in the rate equations. This also raises the question of

how fast relaxation between different m states occurs (Taı̈eb,

Véniard, and Maquet, 2001). For krypton, it appears to be

sufficiently fast to erase any transient core polarization

(Gubbini et al., 2005a).
High charge states require for their production fields in

excess of some 1016 W=cm2. For such fields, the Lorentz

force v� B can no longer be ignored. The resultant E� B
drift more and more prevents the electron from recolliding

with its parent ion and begins to invalidate the dominance of

the recollision mechanism. Indeed, the highest charge states

of xenon observed at 1:57� 1018 W=cm2 (Xe19þ to Xe21þ)
showed no evidence of a nonsequential contribution

(Dammasch et al., 2001). Absence of nonsequential ioniza-

tion was also observed for the highest charge states (7þ and

8þ) in neon starting at 1017 W=cm2 (Palaniyappan et al.,

2005); cf. Fig. 23, and for krypton (up to 11þ) between 1017

and 1018 W=cm2 (Gubbini et al., 2005b).
Differential measurements become necessary in order to

achieve more physical insight, and with the help of the

COLTRIMS technique, first steps have been made in the

study of nonsequential triple and quadruple ionization

(NSTI and NSQI) of neon and argon (Moshammer et al.,

2000; Rudenko et al., 2004; Zrost et al., 2006). In neon, a

well-pronounced double-hump structure, the trademark of the

RII mechanism, was observed in the ion-momentum distri-

bution along the laser polarization. In contrast, for argon a

considerable fraction of ions with small momenta was found.

This difference between neon and argon, which bears much

similarity with NSDI data, has been explained as due to the

additional contribution of the RESI mechanism. These dif-

ferential ion-momentum measurements provided evidence

that the physical mechanism behind NSMI (at least up to

quadruple ionization) is to a great extent similar to its NSDI
counterpart.

In the S-matrix framework, the single Feynman diagram,
which considers only the simplest RII pathway (as shown in
Fig. 9), will be replaced by a large number of more compli-
cated diagrams. Hence, any straightforward extension of the
FD approach appears to be all but impossible. At present, this
leaves two routes for theoretical attack on NSMI, as follows.

The first route is the extension of both TDNE and TC
models to NSMI. This is conceptually simple and feasible,
but requires a large expansion of the trajectory ensemble and
thus significant computational resources. Nevertheless, the
TDNE method has been pursued up to fourfold ionization
(Ho, 2007), and employed to calculate three-electron trajec-
tories in NSTI (Ho and Eberly, 2006), although in a reduced
2D fashion. The knee structure in the ion yield was repro-
duced, and back-analysis of the triply ionizing trajectories
provided straightforward evidence that the recollision mecha-
nism plays a major role in NSTI.

Figure 24 presents a comparison of TDNE model calcu-
lations and experimental data for double and triple ionization
of argon. The agreement is surprisingly good. At an intensity
of 0:8 PW=cm2, single ionization is saturated and double
ionization proceeds sequentially. Hence, the doubly charged
ion-momentum distribution is rather narrow with a maximum
at zero momentum. However, the triply charged ion momen-
tum exhibits a double hump, indicating that it is caused by a
nonsequential process. Indeed, an NSDI process can start
from the singly charged ion. The maximum of the ion-
momentum distribution occurs at about 2

ffiffiffiffiffiffiffi
UP

p
in both the

data and the TDNE simulation. This is much below the
simpleman estimate of 6

ffiffiffiffiffiffiffi
UP

p
for the Ar ! Ar3þ nonsequen-

tial channel, which rather seems to act as a cutoff. It is also
below the 4

ffiffiffiffiffiffiffi
UP

p
simpleman estimate for the sequential–

nonsequential Ar ! Arþ ! Ar3þ process, where the non-
sequential process starts from the singly charged ion.
Further efforts to extract the differential ion and electron-
momentum distributions and to compare them with the avail-
able data can be expected.

The second route follows a straightforward generalization
of the classical-kinematics model (21) from NSDI to multiple
nonsequential ionization. Two modifications are imple-
mented: First, the available energy now is EretðtÞ � IPðNÞ,
where IPðNÞ ¼ P

N
n¼2 IPn denotes the sum of the second to the

Nth ionization potential. Second, the process of distributing
this energy over the final N free electrons is allowed to take
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FIG. 24 (color online). Two-electron and three-electron longitu-

dinal ion-momentum distributions for double (DI) and triple (TI)

ionization of argon by 780 nm laser pulses at 0:8 PW=cm2. The left-

hand panel shows the results of TDNE calculations, the right-hand

panel the data of Zrost et al. (2006). From Ho and Eberly, 2007.
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some time �t (Liu et al., 2006; Liu, Figueira de Morisson
Faria, and Becker, 2008), which is referred to as a thermal-
ization time. The N-electron distribution is then given by

Fðp1; . . . ;pNÞ ¼
Z

dt0wðt0Þ	
�
1

2

XN
i¼1

½pi þAðtþ�tÞ�2

þ IPðNÞ � EretðtÞ
�
: (29)

The form factor jVp�kj2, which contained the dynamics of

the electron-electron interaction in Eq. (21), has just been
dropped. The distribution (29) provides the simplest descrip-
tion of NSMI conceivable as it relies on nothing but energy
conservation and the recollision kinematics. All of the com-
plicated dynamics of the process has been lumped into the
thermalization time �t.

With the recollision occurring at time t, the delay �t
determines the time tþ �t at which the N electrons will be
set free. Since the recollision takes place approximately at a
zero crossing of the laser field [when AðtÞ is maximal], a
value of �t � T=4 will delay the release of the electrons until
the next extremum of the field [when Aðtþ �tÞ � 0] when
the subsequent acceleration of the released electron is near
zero. This can be seen in Fig. 25, which compares the data of
Zrost et al. (2006) for NSQI of argon with results from the
statistical model (29) with no delay (�t ¼ 0) and with a delay
of about a quarter cycle (�t ¼ 0:265T), which was chosen to
yield an optimal fit. For �t � T=4 the model condensed in
Eq. (25) has much in common with the RESI scenario dis-
cussed above, except that here all N electrons are delayed,
while for RESI it is N � 1; the returning electron scatters
without the delay. However, the model (29) was also modified
(Liu, Figueira de Morisson Faria, and Becker, 2008) to
simulate the latter case, referred to as a ‘‘glancing recolli-
sion.’’ For N > 2, the differences between such glancing

recollisions and the standard ‘‘hard recollision’’ were found
to be not very pronounced. Regarding Fig. 25 we conclude
that while the distribution obtained in the absence of a delay
shows no similarity with the data, the one with the best-fit
delay displays excellent agreement. This suggests that the
simple assumption of a delay (modeling the concept of
thermalization) sometimes can parametrize and capture the
complicated dynamics quite well.

The argument for a thermalization process obtains some
support from a TDNE report (Ho and Eberly, 2006), which
displays in snapshot fashion a three-way energy sharing event
during a recollision. This can be interpreted as a thermaliza-
tion process, although only 20–30 attoseconds in duration.
Time delays between rescattering and double ionization were
also observed and commented in TDNE simulations by Ho
and Eberly (2005) and Haan et al. (2006). The distribution
(29) can also be seen as an attempt to make a virtue out of
necessity since accounting for the various electron-electron
and electron-ion interactions is a hopeless task for quantum
theory. The result then is a statistical model of the type that
has been employed before in similar cases in molecular or
high-energy physics when the underlying dynamics were
unknown or just too complicated [see, e.g., Hagedorn
(1965) and Forst (1973)].

The 3e TDNE calculations (Ho and Eberly, 2006, 2007)
deserve mention on another ground as well. They were the
first and possibly still are the only calculations with more than
two electrons that are simultaneously fully active. In this
respect they go beyond other existing calculations to corrobo-
rate the integrity of the recollision picture. They do this by
confirming that the double-ionization features (knee, etc.) are
still reproduced even when more than two electrons are
allowed to participate.

VII. SYNOPSIS AND OUTLOOK

In summary, we reviewed the unusual situation existing in
atomic physics in which four approaches to multiphoton
double-ionization theory are conceptually as well as calcula-
tionally distinct and, at the same time, successful. All have
been productive in increasing understanding of the new phe-
nomena uncovered by short-pulse high-field optical or near-
infrared irradiation of atoms and molecules. We first identified
them within two categories, the all-at-once category including
the TDSE and the TDNE approaches, and the step-by-step
category including the FD and the TC approaches.

Figure 10 displays the evidence that both categories are
represented by theories capable of reproducing the key ex-
perimental signature of nonsequential double ionization,
which is the presence of a prominent knee in an ion-count
versus intensity plot. However, it has been made clear that
none of the four approaches is perfect or even complete. The
physical reason is the congruence of several nearly equally
strong forces acting on the active atomic electrons, making a
challenge too great to be fully overcome by any one of the
approaches. It is not hard to summarize the flaws in each
approach. This provides one way to assess what can be
accomplished with each.

The main flaw in the step-by-step approach is that there are
no truly fundamental guides that determine which step to

FIG. 25 (color online). Distribution of the longitudinal ion mo-

mentum for NSQI of argon at 1:2 PW=cm2 (upper panel) and

1:5 PW=cm2 (lower panel). The curves (squares) are the experi-

mental data from Fig. 1 of Zrost et al. (2006). The remaining curves

are calculated from Eq. (29) for �t ¼ 0 and �t ¼ 0:265. From Liu,

Figueira de Morisson Faria, and Becker, 2008.
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take, i.e., which physical process to attend to at any given

time, nor in what sequence. The practical impossibility of

designing a systematically consistent perturbation-based se-

quence of steps is then overcome by adopting a certain

scenario for how an NSDI event takes place. Especially,

two such scenarios have been considered, which are shown

in Feynman-diagram form in Fig. 9. For the rescattering with

the RII scenario, one asserts that the first electron is released

at an unknown time by tunneling, and that subsequently the

second is ejected by collision with the first. We showed that

substantial agreements with experimental facts are achieved

when the step-by-step approach is guided by these two

assertions. Other scenarios may also contribute or even be

dominant in some situations, such as the RESI scenario for

some atoms and/or below the threshold for rescattering-

impact ionization. In some cases, agreement is improved if

the nature of the electron-electron collisional force is mod-

eled with a contact potential rather than the fundamental

Coulomb form. As explained, this can be taken as a way to

account for the otherwise unmentioned behavior of core

electrons.
The weak point in the all-at-once approach is its near

impossibility of execution. However, it has been implemented

many times, similar to the step-by-step approach, by reliance

on assertions that have not been fundamentally justified.

These assertions have a degree of intuitive rationale. Their

basis is one or more of several simplifications that stop short

of solving the two-electron TDSE in all details. One simpli-

fication has been to reduce the dimensionality of the space in

which the electrons are allowed to move. This is the AEA,

based on the intuitive notion that the electrons’ motion will be

closely aligned with the laser polarization, usually linear.
A different simplification has been to replace the

Schrödinger equation with the analogous time-dependent

Newton equation and apply it to a large microcanonically

random ensemble of pairs of electrons. This appears out-

rageously wrong headed at first, but has shown unexpected

value in matching key features of experimental data. It is

based on the hint provided in Fig. 4, which displays a mid-

pulse snapshot of one-dimensional calculations that show

strong similarity of two spatial probability distributions ob-

tained from a quantum TDSE wave function and a TDNE

ensemble of classical electron pairs, under identical condi-

tions of wavelength, intensity, pulse shape, etc. One excep-

tion to these simplifications is the solution of the TDSE for

two electrons in full dimensionality in the case of helium.

Here the weak point is that results are fully available only for

wavelengths shorter than the regime where most NSDI data

exist and, in all likelihood, will remain restricted to the case

of helium.
Interestingly, both all-at-once and step-by-step approaches

have quantum and classical variants. Also, one should say

that the two approaches are cooperative as much as competi-

tive. For example, the classical all-at-once TDNE approach

uses only classical electrons moving on definite trajectories

starting from a random microcanonical distribution of posi-

tions and momenta. There is no built-in assumption about

a possible later collision of one electron with the other.

Nevertheless, examination of its successful NSDI trajectories

shows that under high-field laser forces recollision is exactly

what happens. Thus its successes validate the main assertion

of the step-by-step approach. Similarly, the variability among

the best choices for electron-electron scattering potential in

implementing FD calculations can be seen as support for

choices made for the soft core of the potentials adopted for

the TDNE equations.
On the very positive side, each of the approaches has

strong points that deserve to be highlighted. The all-at-once

approaches of TDSE and TDNE are unique in allowing all

terms in the two-electron Hamiltonian to participate without

interruption throughout the NSDI process, from the time the

laser field starts with zero strength until it turns off. The

TDSE results of the Taylor group are alone in achieving

striking matches to experimental data without mathematical

compromises. There is no other approach that can claim this,

even if it applies only to data from helium and wavelengths

shorter than those of main interest. The TDNE approaches,

carried out in detail by the Haan and Eberly groups, empha-

sized the interpretive value of classical two-electron trajecto-

ries en route to NSDI. The TDNE approaches are so flexible

that they have successfully entered all experimental NSDI

domains of wavelength and intensity and have been able to

provide results for topics such as elliptical polarization and

triple and quadruple ionization in advance of detailed

experiments.
The step-by-step approaches also have significant success

to their credit, such as the quantitative reproduction within the

quantum-mechanical FD approach of the knees for a variety

of atoms and laser parameters or of the electron momentum-

momentum correlation for neon. The TC approach produced

good agreement with experimental data since its inception.

As a recent success, we mention the calculation of the finger-

like structure in the electron momentum-momentum correla-

tion in helium, shown in Fig. 14.
The greatest strength of the FD approach may be the proper

description of genuine quantum features, such as interference

and tunneling. Analysis of the results of the FD approach has

not identified any distinct footprints of tunneling (Ho, Liu,

and Becker, 2007), but very pronounced interference effects

are predicted by FD theory. They are most visible in fully

differential results where ideally all electron-momentum

components are observed. Because of poor statistics, such

data are not yet available. Focal averaging also tends to smear

out the imprints of interference. However, two-center struc-

tural interference effects may become accessible in aligned

molecules in the near future.
Given the practical and conceptual limitations of the all-

at-once and the step-by-step avenues, a combined route

may turn out to be most efficient for the foreseeable future

when it comes to simulating particular experimental results:

the TC approach, which combines step-by-step and all-at-

once features, will serve well whenever the atomic state

initiating a true tunneling event must be specified. The

subsequent TC dynamics are described classically all at

once by the TDNE procedure. The TC approach allows

one to introduce atom-specific parameters, such as individ-

ual first and second ionization potentials. As it stands, the

conceptual shortcomings of the TC approach—no quantum

interference in the final state and no coherent interplay

between tunneling and subsequent evolution—seem to
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have little practical significance. Currently, the TC ap-
proach appears to be the only one that allows for better-
than-qualitative atom-specific results for a broad range of
atoms. As one can expect, its few drawbacks arise from
those strengths. The assumption of tunneling as an abrupt
midpulse event without antecedents is powerfully useful,
but when this assumption fails and antecedent events have
consequences, only the TDNE and TDSE approaches can
be employed, despite their shortcomings already noted.

Besides explaining and describing the rich phenomenology
that is exhibited experimentally, the theories of NSDI (and
NSMI) draw their interest and significance from the fact that
very different theories allow views from very different per-
spectives but ultimately provide convergent insights. This is
possible because the few-particle systems of interest are still
within the grasp of all-at-once methods, so that step-by-step
models can be tested not only by comparison with physical
reality, but also with the much more detailed and controlled
reality of all-at-once calculations. A fascinating side effect is
the rare chance to assess the quantumness of a few-particle
system in an external field.
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