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Bayesian inference provides a consistent method for the extraction of information from physics

experiments even in ill-conditioned circumstances. The approach provides a unified rationale for

data analysis, which both justifies many of the commonly used analysis procedures and reveals

some of the implicit underlying assumptions. This review summarizes the general ideas of the

Bayesian probability theory with emphasis on the application to the evaluation of experimental data.

As case studies for Bayesian parameter estimation techniques examples ranging from extra-solar

planet detection to the deconvolution of the apparatus functions for improving the energy resolution

and change point estimation in time series are discussed. Special attention is paid to the numerical

techniques suited for Bayesian analysis, with a focus on recent developments of Markov chain

Monte Carlo algorithms for high-dimensional integration problems. Bayesian model comparison,

the quantitative ranking of models for the explanation of a given data set, is illustrated with

examples collected from cosmology, mass spectroscopy, and surface physics, covering problems

such as background subtraction and automated outlier detection. Additionally the Bayesian

inference techniques for the design and optimization of future experiments are introduced.

Experiments, instead of being merely passive recording devices, can now be designed to adapt

to measured data and to change the measurement strategy on the fly to maximize the information of

an experiment. The applied key concepts and necessary numerical tools which provide the means

of designing such inference chains and the crucial aspects of data fusion are summarized and some

of the expected implications are highlighted.
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I. INTRODUCTION

In physics one is constantly faced with the task of having to
draw conclusions from imperfect information. Physics ex-
periments are always affected by instrumental restrictions and
limited measurement time. Therefore, the typical problems
encountered in the analysis of physics measurements involve
incomplete and noisy data. In addition, the reasoning about
the interesting quantities is often hampered by the ill-
conditioned nature of the underlying inversion problem.

Bayesian methods have been developed as a tool for
reasoning quantitatively in situations where arguments cannot
be made with certainty. Historically, the connections between
physics and Bayesian inference had been strong, with con-
tributions, e.g., from de Laplace (1812), already in the early
19th century. Later on the frequentist interpretation was
dominating the field of data analysis, especially over large
periods of the 20th century. One main reason for this develop-
ment was the significantly smaller numerical effort of the
frequentist approach (requiring the optimization of model
parameters) compared to the Bayesian approach (requiring
the integration of model parameters) in many problems of
interest. However, the situation is about to change: The
application of Bayesian inference in physics has flourished
over the past two decades, driven by the rapid increase of
computer power and theoretical progress.

In addition, the landscape of data analysis problems is
broadening, in many respects favoring the use of Bayesian
approaches. Although classical parameter estimation still
dominates the field, model comparison is increasingly com-
ing into focus. Here the Bayesian method provides a con-
ceptual simple and transparent approach which allows for a
quantitative ranking of competing physical models.

A further data analysis challenge is raised by the increasing
number of complex, multidiagnostic experiments [see, e.g.,
Wendelstein 7-X (Dinklage et al., 2004)]. The interrelated
measurements of different diagnostics have to be evaluated in
a coherent way. For this problem of data fusion with poten-
tially many nuisance parameters, boundary conditions, and
different noise statistics, Bayes’ theorem provides a consis-
tent and scalable approach.

New approaches for data analysis are also required for
next-generation experiments, providing several terabyte of
data per day [see, e.g., Large Synoptic Survey Telescope
(Loredo et al., 2009)]. This amount of data requires auto-
mated analysis systems that can both act and react with
minimal human intervention. Data driven experiment forecast
and optimization will therefore become increasingly impor-
tant to identify optimal measurements and strategies that are
likely to give the highest scientific return. One such vision is
based on a cycle of hypothesis building, inquiry, and infer-
ence. However, since the accessible information is almost
always incomplete and noisy, the inference has to process
uncertain knowledge. Bayesian probability theory provides a

consistent conceptual basis for this problem of induction in
the presence of uncertainty.

The remainder of the paper is structured as follows: In
Sec. II the basics of Bayesian inference are introduced and
Bayes’ theorem is derived from the sum and product rule.
Next various ways are considered how to encode a given state
of information into the form of a probability distribution.
Section III applies the concept to several parameter estima-
tion examples, covering extra-solar planet detection, climate
time-series analysis, experiments with very low counting
statistic, and deconvolution of broadened spectra in
Rutherford backscattering analysis. Starting from Bayes’
theorem the solution to a problem is often very simple in
principle. However, many calculations, e.g., the marginaliza-
tion of parameters, require integrals over the model parameter
space which can be very time consuming. An overview of the
available numerical methods to perform these high-
dimensional integrations is given in Sec. IV. The focus is
on recent developments of Markov chain Monte Carlo
(MCMC) algorithms, in many situations the only way to
integrate over the parameter space. Methods to suppress
random-walk behavior of standard-MCMC algorithms are
presented. Several new approaches to compute model prob-
abilities are discussed in more detail. The Bayesian approach
to model comparison is illustrated in Sec. V with examples
from cosmology and the analysis of mass spectrometer data
with limited information about the cracking matrix. Further
case studies are about the joint analysis of discordant data sets
from plasma experiments and signal-background separation
in electron spectroscopy using mixture models. The analysis
of data from large experiments such as the stellarator
Wendelstein 7-X (Dinklage et al., 2004) requires new,
integrated data analysis approaches. How to combine data
from several different diagnostic systems in a coherent way is
discussed in Sec. VI and applied to examples from fusion
research. Bayesian graphical networks as a tool to handle
complex interdependencies are introduced and approximation
methods are discussed. The simultaneous localization and
mapping problem (SLAM), one of the key problems in
robotics, is used as another example of joint data analysis.
In Sec. VII the common way of using experimental diagnos-
tics as passive recording devices is challenged. Using
Bayesian experimental design techniques the measurement
strategy can be adapted on the fly, in many situations with a
tremendous increase in performance. In addition, experimen-
tal designs can be optimized with respect to different
measurement scenarios using a quantitative measure of per-
formance. Although these techniques are still in an early state
and their potential still needs to be explored, first applications
already yielded very promising results. The main concepts
underlying all these diverse data analysis problems are in-
troduced in the next section.

II. BAYESIAN CONCEPT

Bayesian probability theory provides a simple and
straightforward recipe to data analysis problems in physics,
as will be detailed with several examples. Although this
review tried to be as self-contained as possible, for brevity
several technical details had to be omitted and the interested
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reader is encouraged to consult the available literature. Two
highly recommended textbooks on the subject written by
physicists are Gregory (2005a) and Sivia (2006). Bayesian
inference from a statisticians and mathematicians point of
view is presented by Berger (1985), Bernardo and Smith
(2000), and Harney (2003). Bernardo and Smith also provide
a good overview of the statistics literature. The use of
Bayesian inference in the field of artificial intelligence is
presented by Russell and Norvig (2003), the connection of
inference and information theory is made by MacKay (2003),
and state-of-the-art applications of Bayesian algorithms are
presented in the book by Bishop (2006) about machine
learning. The work of E. T. Jaynes has inspired many phys-
icists to use Bayesian methods; his recommended book
(Jaynes and Bretthorst, 2003) still reflects the fierce debates
between frequentist and Bayesian statisticians up to the
1980s. Eloquent introductions to Bayesian inference and
illustrative examples can be found in Loredo (1990, 1992,
1994). The applied statisticians point of view is given by Box
and Tiao (1992) and O’Hagan (1994) and more recently by
Robert (1994) and Leonard and Hsu (1999), while Carlin and
Louis (1998) and especially Gelman et al. (2004) put em-
phasis on Markov chain Monte Carlo methods for Bayesian
inference. Furthermore, there are several read-worthy reviews
of Bayesian methods applied in various areas of physics, see,
e.g., D’Agostini (2003), Dose (2003a), and Trotta (2008). An
overview of applied Bayesian analysis in areas outside of
physics is given by O’Hagan and West (2010). The latest
developments in Bayesian inference are topics of several
conference series, e.g., the annual conference on ‘‘Bayesian
Inference and Maximum Entropy Methods in Science and
Engineering,’’ the ‘‘Valencia International Meetings on
Bayesian Statistics’’ every 4 years, and the biannual ‘‘ISBA
meetings.’’

A. Basics

In Bayesian probability theory (BPT), the viability of a
hypothesis H is assessed by calculating the probability of the
hypothesis given the observed data D and any background
information I. Following Jeffreys (1961) such a probability is
written as pðHjD; IÞ. In the Bayesian framework the frequent-
ist interpretation of probability as long-run relative frequency
of occurrence of an event in an ensemble of identically
prepared systems is generalized. In BPT, probability is com-
monly regarded as a measure of the degree of belief about a
proposition (Bernardo and Smith, 2000; Jaynes and Bretthorst,
2003). This definition has the advantage that systematic and
statistical uncertainty can be treated with the same formalism
and also situations where identical ensembles are hard to
imagine, e.g., ‘‘What is the age of the Universe?,’’ thus
significantly extending the range of application.

The BPT rests on two rules (Cox, 1946) for manipulating
conditional probabilities. The sum rule states that the proba-
bilities of a proposition H and the proposition for not H
(denoted by �H) add up to unity:

pðHjIÞ þ pð �HjIÞ ¼ 1: (1)

Throughout this work, only exclusive and exhaustive hypoth-
eses will be considered, so that if one particular hypothesis is

true, all the others are false. For such hypotheses the normal-
ization ruleX

i

pðHijIÞ ¼ 1 (2)

applies. The second rule is the product rule which states that a
joint probability or probability density function pðH;DjIÞ can
be factorized such that one of the propositions becomes part
of the condition (i.e., moves right of the vertical bar). Because
of the symmetry with respect to H and D, this can be done in
two ways

pðH;DjIÞ ¼ pðHjIÞpðDjH; IÞ ¼ pðDjIÞpðHjD; IÞ: (3)

Comparison of the two equivalent decompositions in Eq. (3)
yields Bayes’ theorem

pðHjD; IÞ ¼ pðHjIÞpðDjH; IÞ=pðDjIÞ: (4)

Bayes’ theorem relates the product of prior pðHjIÞ and like-
lihood pðDjH; IÞ to the posterior probability pðHjD; IÞ. The
prior distribution represents the state of knowledge before
seeing the data. The normalization constant in the denomi-
nator is the marginal likelihood or evidence. The evidence
will be crucial for model comparison but is usually of less
importance in parameter estimation problems. The posterior
probability distributions provide the full description of the
state of knowledge about H. In most cases the hypothesis H
will be a combination of parameters (�1; �2; . . . ; �N) and
possible models (M1; . . . ;MK) which depend on the problem
to be analyzed.

Equation (4) also reveals that the maximum-likelihood
(ML) estimate is usually different from the posterior estimate
except for the special case of a constant prior. The maximum-
likelihood estimate obtained by maximizing the likelihood
function is often mistaken as the most probable estimate
given the data. This is not so: The obtained hypothesis is
the one that would make the observed data most probable.
This is logically quite different. An example taken from Sivia
and David (1994) highlights this distinction. The probability
of rain given that there are clouds overhead and the proba-
bility of clouds overhead given that it is raining are clearly not
the same. The quantity that is required (the most probable
estimate given the data) is instead given by the posterior
probability pðHjD; IÞ. It is related to the likelihood function
through the prior probability pðHjIÞ. From a different point of
view Bayes’ theorem is a recipe for learning. Initially avail-
able prior knowledge about the hypothesis H coded in the
distribution pðHjIÞ is modified by the new information pro-
vided by the measured data D to its posterior distribution
pðHjD; IÞ.

It is often necessary to summarize the posterior distribution
of a parameter pð�jD; IÞ in terms of a few numbers.
A convenient description is given by the moments of the
posterior

h�ni ¼
Z

d��npð�jD; IÞ; (5)

where the mean h�i is obtained with n ¼ 1. Other possible
choices are the position of the most probable value of the
posterior [also termed maximum a posteriori (MAP) esti-
mate] or the median of the posterior distribution. For a
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symmetric distribution the mean value and the median coin-
cide. However, all those numbers may be strongly misleading
in the case of skew or multimodal distributions. Furthermore,
the moments and the MAP estimate depend on the chosen
parametrization.

The Bayesian analog of a frequentist confidence interval is
usually referred to as a credible region or also simply as a
(Bayesian) confidence interval. The credible region R corre-
sponding to some probability mass C (typically C ¼ 68% or
C ¼ 95%) is defined as the part of the parameter space such
that

Z
R
d�pð�jD; IÞ ¼ C; (6)

with the posterior density inside R everywhere greater than
outside it. This definition enables direct statements about the
likelihood of � falling in R, i.e., ‘‘The probability that � lies in
R given the observed data D is at least C,’’ in accord with
common practice in physics (Carlin and Louis, 1998). In
contrast the corresponding statement of the frequentist con-
fidence interval could be phrased as ‘‘If we could recompute
R for a large number of data sets collected in the same way as
ours, about C would contain the true value of �.’’ However,
only the measured data set is available; therefore the com-
puted confidence interval R will either contain � or it will not.
This may lead to the problem of recognizable subclasses
(Cornfield, 1969): A statistic that is good in the long run
may be poor in cases that can be identified from the measured
data. Loredo (1992) provided the following example: The
probability density that an event (e.g., photon) will arrive at
time t is given by a truncated exponential distribution,

pðtj�; t0; IÞ ¼
�
0; if t < t0;
1
� expð� t�t0

� Þ; if t � t0;
(7)

with � ¼ 1 known. The time t0 is to be estimated from three
observed events t1 ¼ 12, t2 ¼ 14, and t3 ¼ 16. Using an
unbiased (frequentist) estimator t̂ of t0:

t̂ ¼ 1

N

XN
i¼1

ðti � �Þ; (8)

the shortest 90% confidence interval for t0 can be calculated
to be 12:15< t0 < 13:83 [cf. Jaynes (1983), p. 173].
However, as the first recorded event was observed at
t1 ¼ 12 it is certain that t0 was earlier and that the confidence
interval is centered around a value where it is impossible for
t0 to lie. Using a uniform prior for t0 the Bayesian 90%
credible region for the same problem is 11:23 � t0 � 12:0
which is entirely in the allowed range and about one-half the
size of the confidence interval. For the details of the straight-
forward calculation and a further discussion about recogniz-
able subclasses see Loredo (1992). As pointed out by Jaynes
(1976): The value of an inference lies in its usefulness in the
individual case and not in its long-run frequency of success;
they are not necessarily even positively correlated.

B. An example

The concepts presented in the previous section are best
illustrated by an example. The mass of a new elementary

particle has to be determined. From previous measurements
and theory it is known that the mass has to be non-negative
and is not larger than an upper limit 0 � m � mupper. This

defines the prior information. The prior distribution has to
encode the existing knowledge about the restricted range of
the possible mass of the particle. A sensible suggestion is

pðmjIÞ ¼
�
1=mupper; if 0 � m � mupper;
0; otherwise;

(9)

which assigns zero probability to the mass parameter values
excluded a priori and otherwise does not prefer any value
within the allowed range. Furthermore, the experiment mea-
sures the mass distorted by Gaussian noise of known variance
�2. The physical model, relating the parameter of interest and
the ideal undistorted signal, is in this example the identity,
because the parameter (mass) and signal (mass) are identical.
The likelihood for measuring d is then given by

pðdjm;�; IÞ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2

ðd�mÞ2
�2

�
: (10)

Once likelihood and prior distributions are specified, the
problem is reduced to computing the posterior. The posterior
distribution pðmjd; �; IÞ follows from Bayes’ theorem

pðmjd; �; IÞ ¼ pðmjIÞQN
i¼1 pðdijm;�; IÞ

Z
(11)

for N independent measurements (bold typeface such as d is
used throughout the review to indicate vectors and matrices).
The variable Z (called evidence) normalizes the posterior
distribution pðmjd; �; IÞ and is of importance in model com-
parison problems. The computation of the evidence Z is
treated next [cf. Eq. (18)]. In Fig. 1 the data points of three
measurements fd1 ¼ 0:09� 0:15, d2 ¼ �0:2� 0:15, d3 ¼
0:05� 0:15g are shown. Using the maximum-likelihood
method to estimate the most likely mass would result in
m ¼ �0:02, an estimate outside of the physically sensible
range of 0 � m � 0:2. Also the confidence interval would
cover to a large extent negative (impossible) mass values.
Simply discarding the negative data point (on what grounds)

1 2 3

Measurement

-0.4

-0.2

0

0.2

0.4

M
as

s 
(a

rb
. u

ni
ts

)

Measurements

FIG. 1. Three measurements of a physical quantity (e.g., mass)

with Gaussian uncertainty, the allowed range being limited

to [0; 0.2].
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would neglect the information gained by this measurement
and lead to a biased (wrong) estimate. A more sensible result
is obtained when the available prior information is incorpo-
rated. Figure 2 shows the Bayesian solution calculated by
Eq. (11). The posterior distribution is positive only within the
allowed range and has a maximum for m ¼ 0. The mean
value hm0i is given by

hm0i ¼
Z

dmmpðmjd; �; IÞ ¼ 0:06 (12)

and the smallest 95% interval (credibility region) for the mass
is [0, 0.145]. The interested reader is invited to compare this
straightforward incorporation of prior knowledge with the
complexity of frequentist based approaches to the problem
of parameter estimation in truncated parameter spaces
(Katz, 1961; Bickel, 1981; van Eeden, 1995; Marchand and
Strawderman, 2004). A slight change in the example, e.g.,
that the experiment providing d3 suffers from noise given by a
Cauchy-(Lorentzian) distribution,

pðdjm;�; IÞ ¼ �

�½�2 þ ðd�mÞ2� ; (13)

with full width at half maximum (FWHM) of 2� ¼ 0:1 is
easily accommodated in the Bayesian approach by updating
the corresponding likelihood term in Eq. (11). The effect on
the posterior estimate of the mass is shown as a dashed line in
Fig. 2 which now exhibits a maximum around m ¼ 0:04 and
the 95% credibility interval for the mass can easily be deter-
mined using the shortest interval ½mmin; mmax� which fulfills

Z mmax

mmin

dmpðmjd; �; IÞ ¼ 0:95: (14)

However, within the frequentist framework the design of
appropriate confidence intervals for the altered estimation
problem is still an active research area.

C. Marginalization and evidence

The last quantity to be explained in Eq. (4) in more detail is
the term pðDjIÞ. As a consequence of the sum and product
rules it follows that for mutually exclusive and exhaustive
hypothesis Hi

pðDjIÞ ¼ X
i

pðHijIÞpðDjHi; IÞ ¼
X
i

pðHi;DjIÞ (15)

holds. Summations of this kind are often applied in Bayesian
inference and are called marginalizations. The important
marginalization rule, Eq. (15), provides a recipe how to
remove unwanted nuisance variables from a Bayesian calcu-
lation. In the continuum limit the summation of Eq. (15) is
replaced by integration over the nuisance variable (here y),

pðxjIÞ ¼
Z

dypðx; yjIÞ ¼
Z

dypðyjIÞpðxjy; IÞ: (16)

Comparing Eq. (15) and Bayes’ theorem Eq. (4) it follows
that the denominator of Bayes’ theorem pðDjIÞ (which does
not depend on H) plays the role of a normalization constant,
which ensuresX

i

pðHijD; IÞ ¼ 1: (17)

This denominator, obtained by marginalization of all varia-
bles (hypotheses) is an uninteresting normalization constant
from the perspective of parameter estimation. However, it is
of vital importance for model comparison. For this reason, it
is often referred to as the evidence for a model, but also other
names, such as prior-predictive value or marginal likelihood
are common. For the example in the previous section the
evidence is easily obtained by integration of the nominator of
Eq. (11) with respect to the one-dimensional parameter m
according to Eq. (16):

Z¼pðdj;�;IÞ¼
Z
dmpðmjIÞY3

i¼1

pðdijm;�;IÞ�69; (18)

but in general integrations over large (multidimensional)
parameter spaces are required. The evidence value on its
own is of no particular relevance and is just normalizing
the posterior distribution. Therefore, its computation is often
omitted in parameter estimation problems. However, com-
parison of evidence values of competing models for a given
data set is the basis of Bayesian model comparison and is
further discussed in Sec. V.

D. Prior probability distributions

All of the rules written down so far show how to manipu-
late known probabilities to find the values of other probabil-
ities, and they skipped the problem of how to formulate a
distribution given certain prior knowledge. But to be useful in
applications, rules are needed that assign numerical values or
functions to the initial (prior) probabilities that will be ma-
nipulated. Bayesian methods are sometimes said to be espe-
cially subjective because they depend on prior distributions.
However, in most physical problems scientific judgment is
required to decide on a model, to specify the likelihood,
and to take into account further available information

0 0.1 0.2
mass (arb. units)

0

5

10

15

pr
ob

(m
 | 

d,
σ,

I)
3 Gaussians
2 Gaussians, 1 Lorentzian<m

0
>

95%

FIG. 2 (color online). Posterior distribution pðmjd; �; IÞ for three
measurements with Gaussian uncertainty. The mean value hm0i is
denoted by a vertical bar and the extent of the smallest 95%

credibility region is indicated by the shaded area underneath the

posterior distribution. Additionally the posterior distribution for the

case of one measurement with a Cauchy (Lorentzian-) error distri-

bution instead of a Gaussian distribution is given by a dashed line.
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(e.g., positivity of parameters). Indeed, one of the advantages

of Bayesian analysis is that it not only explicitly admits the

existence of prior information but also tries to exploit it as

much as possible. In other types of analysis it is often not easy

to recognize the specific assumptions made by the analyst and

(even worse) the implicit assumptions of the method (the

latter assumptions are often unknown to the average practi-

tioner). Prior information can consist of numerical values for

the maximum, width, or moments as mean or variance.

Alternatively prior information can consist of properties

which are expected for the posterior distribution of a problem.

The prior probability distribution should reflect the state of

knowledge about the relevant parameters before the current

experiment is analyzed. This prior distribution is modified by

the new experimental data through the likelihood function

and yields the posterior distribution, thus representing the

state of knowledge in light of the new data. This posterior

distribution can (and should) be used as prior distribution for

further measurements. It may be tempting to use this modified

prior distribution for a reanalysis of the same data. This will

lead to a wrong (too narrow) posterior distribution (Sivia,

2006). The most promising approach in physical data analysis

problems is the comprehensive elicitation of available expert

knowledge as basis for prior distributions [see Oakley and

O’Hagan (2007) and references therein on methods of how to

construct prior distributions that represent the expert’s be-

lief]. In addition there are several guiding principles to derive

a prior distribution.

1. Transformation invariance

E. T. Jaynes, 1968 [but also others, see, e.g., Kendall and

Moran (1963) and Harney (2003)] applied group-theoretical

methods to the problem of assigning priors. He demonstrated

for a number of simple but practically important cases that,

even if one is completely ignorant about the numerical values

of the estimated parameters, the symmetry of the problem

often determines the prior unambiguously. Prominent ex-

amples are priors for scale parameters, location parameters,

or even priors for hyperplanes which are essential for

Bayesian neural networks (Dose, 2003b; von Toussaint,

Gori, and Dose, 2004b). However, in most cases these priors

are not proper probability distributions and the derivation

requires care to avoid pitfalls [see, e.g., Harney (2003),
Chap. 12].

For concreteness the specific case of a prior for straight
lines through the origin y ¼ ax is considered in more detail.
A possible, naive prior for the slope of the straight lines
would be pðajIÞ ¼ const. On the other hand, the only sensible
transformation of the coordinate system is in our specific case
a rotation. pðajIÞda is then an element of probability mass
which must be independent of the system of coordinates that
is used to evaluate its numerical value. Hence, for a different
system of coordinates a0 it must be required that

pðajIÞda ¼ pða0jIÞda0; (19)

yielding the functional equation

pðajIÞ ¼ pða0jIÞ
��������@a

0

@a

��������; (20)

where the determinant on the right-hand side is the Jacobian
of the transformation a ! a0. Since any finite transformation
a ! a0 can be constructed from an appropriate sequence of
infinitesimal transformations it is sufficient to consider
those. Denoting the infinitesimal transformation which
maps a onto a0 as T�ðaÞ it is possible to rewrite the functional
equation (20) as a partial differential equation (Dose, 2003b):

@

@�

�
p½T�ðaÞ�

��������@T�ðaÞ
@a

��������
�
�¼0

¼ 0: (21)

In the case of the linear relation y ¼ ax and invariance under
rotation of the coordinate system this differential equation is
solved by

pðajIÞ ¼ 1

�

1

1þ a2
; (22)

which is not an obvious prior for the slope. But a visualization
of both priors (Fig. 3) shows that the prior Eq. (22) is in
agreement with our intuition: The angles of the straight lines
with the x axis are equally distributed (Fig. 3, right-hand
panel), whereas the constant slope prior strongly favors large
angles (Fig. 3, left-hand panel) (Dose, 2002).

If a location parameter is to be estimated, for instance, the
mean � of a Gaussian, the prior must be invariant under a
shift b of the location. The solution of Eq. (21) is in this case
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FIG. 3. Left panel: The density of the slope is constant. This results in a nonuniform distribution for the angle between the straight lines and

the x axis. Right panel: The angular density is kept constant. Adapted from Dose, 2002.
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a constant prior pð�jIÞ ¼ const. If we are ignorant about a
scale parameter � such as the decay length of an exponential
or the width of a Gaussian, the appropriate prior satisfying
transformation invariance is Jeffreys’s prior (Jeffreys, 1961)

pð�jIÞ / 1=�: (23)

Both priors pð�jIÞ ¼ const and pð�jIÞ / 1=� are called
improper because they are not normalizable on their respec-
tive supports�1<�<1 and 0 � �<1. Improper priors
can lead to paradoxes and should not be used. In addition,
Bayesian model comparison depends on the use of proper
priors in almost all cases. However, in some situations im-
proper priors simplify equations and allow for analytical
solutions. Therefore, the common procedure in most physical
applications is to consider, e.g., Jeffreys’s prior as the limit of
properly normalized priors on the support 1=B � � � B:

pð�jB; IÞ ¼ 1

2 lnB

1

�
: (24)

Inferences from the posterior are then considered for B ! 1.
If the inference depends on B in this limit, the improper prior
Eq. (23) can lead to inconsistencies (indicating that the
information provided by the data is insufficient to enforce a
proper posterior) and the whole problem must be reassessed.
For other approaches to handle improper priors see, e.g.,
Harney (2003) (cf. Sec. II.E).

2. The maximum entropy principle

A principle-based approach for coding numerical informa-
tion into prior probability densities is the maximum entropy
(ME) principle (Jaynes, 1957a, 1957b; Kapur and Kesavan,
1992). It is a rule for converting certain types of information,
called testable information, to a probability assignment. The
information Qð�Þ is testable if, given a probability distribu-
tion pð�jM; IÞ, it can be determined unambiguously whether
or not the distribution pð�jM; IÞ is consistent with the infor-
mation Qð�Þ. Q may be the already mentioned maximum or
mean of a distribution. But, in general, there may be many
distributions consistent with the given testable informationQ.
For example, it may be known that the mean value of many
rolls of a (biased) die was 2.5 and we want to use this
knowledge to assign probabilities to the six possible out-
comes of the next role of the die. This information is testable;
one can calculate the mean value of any probability distribu-
tion for the six possible outcomes of a roll and see if it is 2.5
or not, but it does not single out one distribution. The basic
idea is to choose the prior probability distribution that is
compatible with the given information yet has minimal in-
formation content otherwise. A function satisfying this re-
quirement is the entropy

S ¼ �X
i

pi lnpi; (25)

subject to the constraining information. For continuous
probability distributions the entropy is given by

S ¼ �
Z

dxpðxjIÞ lnpðxjIÞ
mðxjIÞ ; (26)

where mðxjIÞ represents the invariant measure required
for a proper transformation property of the entropy under

coordinate transformations. mðxjIÞ is sometimes used as a
‘‘default distribution’’ and is often chosen to be uniform
mðxjIÞ ¼ const (Harney, 2003; Jaynes and Bretthorst,
2003). If the only information at hand is that the probability
distribution is normalized to 1 in an interval [a, b] then the
ME principle provides a uniform distribution over the
interval,

pð�jQ0 ¼ 1;M; IÞ ¼ 1=ðb� aÞ: (27)

If additionally the expectation value �0 of the distribution is
given, then the most uninformative distribution for positive
variables 0 � � <1 compatible with those constraints is

pð�jQ0 ¼ 1; Q1 ¼ �0;M; IÞ ¼ 1

�0
exp

�
� �

�0

�
: (28)

As a final example assume that the point estimate �0 of � and
also its variance h��2i ¼ �2 are known. In this case maxi-
mum entropy selects as the least informative distribution a
Gaussian in �1< �<1:

pð�jQ0 ¼ 1; Q1 ¼ �0; Q2 ¼ �2;M; IÞ

¼ 1

�
ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2�2
ð�� �0Þ2

�
: (29)

For recent research on the connections between Bayesian
inference and the maximum entropy principle see, e.g.,
Caticha (2008).

3. Reference priors

A different approach for deriving priors has been pursued
by Bernardo (1979b). He defined a reference prior in such a
way that the contribution of the data to the resulting posterior
is maximized, i.e., the prior is designed as noninfluential as
possible (Bernardo, 2005). For a formal definition of refer-
ence priors in terms of a limiting process see, e.g., Bernardo
and Smith (2000), p. 307. There are, however, mathematical
and philosophical difficulties with this approach (Cox, 2006),
e.g., the reference prior may depend on the order in which a
set of nuisance parameters is considered or which a parameter
is of primary interest (Berger and Bernardo, 1992). As de-
tailed by Bernardo and Smith (2000), reference priors should
be considered as a mathematical tool. However, within the
statistics community the use of reference priors is common
(Bernardo, 2005). To a certain extent the reference prior
approach is disposing one of the main features of the
Bayesian probability theory, the possibility to incorporate
available information. Therefore, the unreflected use of ref-
erence priors in the statistics community has been criticized
(D’Agostini, 1999; O’Hagan, 2006).

E. Research on foundations of Bayesian inference

Cox (1946, 1961) proved in 1946 that the rules of proba-
bility constitute the only consistent extension of ordinary
logic in which degrees of belief are represented by real
numbers (Bernardo and Smith, 2000). As a consequence all
conditional distributions must be proper and normalized
(Harney, 2003)
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Z
dxpðxjy; IÞ ¼ 1: (30)

Therefore, Jaynes and Bretthorst (2003) recommended that
one approach non-normalizable priors only as a well-defined
limit of a sequence of proper priors. This advice is strongly
supported by several others, e.g., Dose, 2003a; MacKay,
2003; P. Gregory, 2005; Sivia, 2006). However, given the
fact that generally priors based on group invariance argu-
ments as well as most reference priors are improper, one of
the current research areas is the extension of Bayesian infer-
ence to handle improper priors [see, e.g., Harney (2003) and
Bernardo (2005)], which typically requires a measure theo-
retic approach.

Progress is also made with respect to the extension of
Cox’s technique to other algebras, which emphasizes as a
common concept partially ordered sets (Knuth, 2004;
Skilling, 2010), generalizing the concept of inference.

Another active research topic within the statistics com-
munity is the (re-)analysis of frequentist procedures from a
Bayesian point of view, which sometimes reveals interesting
relationships and insights [see, e.g., Berger et al. (1994) for a
comparison of posterior probabilities and conditional type I
frequentist error probability or Berger et al. (1997) for
hypothesis testing].

Also in focus is research about the robustness of model
comparison results to model (mis-)specifications. In the
Bayesian framework model comparison is conceptually sim-
ple. However, the assumption that the correct model is a
member of the compared models need not be correct. Here
ideas from frequentist significance tests are scrutinized. Along
the same lines, there is active research about the effect of prior
or likelihood (mis-)specifications on the derived posterior,
especially in many dimensions (O’Hagan and Berger, 1988;
Hagan and Le, 1994; Bernardo and Smith, 2000).

III. PARAMETER ESTIMATION

A. Introduction

The Bayesian formalism has been known for more than
two centuries and it is extensively used in many fields such
as robotics (Russell and Norvig, 2003), astronomy (Gregory,
1999), and geology (Malinverno and Briggs, 2004; Tarantola,
2005; Gallagher et al., 2009). The routine use of Bayesian
methods in the analysis of physics data, however, is still to
come (Fröhner, 2000; Dose, 2003a). The formalism
is simple and matches common sense, only the application
is sometimes computationally demanding. The general prob-
lem of Bayesian parameter inference can be decomposed in
several well-defined tasks. First, a model equation fð�Þ is
needed which relates the parameters � to the ideal (undis-
turbed) signal s ¼ fð�Þ. This model equation incorporates
the physical knowledge about the system and is assumed to be
correct. The next step is to construct the likelihood function
for the measurement. If the true parameters are known for a
deterministic model, then the difference between the mea-
sured data d and the signal s would be just noise. The noise
distribution depends on the experiment. For example, mea-
surements with Gaussian noise will result in a normal distri-
bution, while counting experiments will have a Poisson

distribution as likelihood. Finally the prior distribution for
the parameters has to made explicit and should summarize the
state of knowledge about the parameters before considering
the result of the new measurement. The posterior distribution
of the parameters is subsequently obtained by applying
Bayes’ theorem [Eq. (4)]. This well-defined way of tackling
parameter estimation problems is illustrated in the following
by recent examples chosen from different areas of physics.

B. Case studies

The case studies have been selected to cover several typical
data analysis problems. Arguably the most common task in
physical data analysis is the estimation of parameters in
nonlinear models (Dose, 2003a). A prototypical example is
given by the analysis of radial velocity data in extra-solar
planet search, which is often also constrained by limited
observation time. The following example outlines a possible
approach to detect change points in data sets, a common topic
in time-series analysis. The use of a non-Gaussian (i.e.,
Poisson) likelihood is demonstrated in an example based on
a study of neutrino-antineutrino oscillations. Finally, the
results of Bayesian inference applied to ill-conditioned linear
and nonlinear deconvolution problems are given.

1. Extra-solar planet search

About 15 years ago the first confirmed discovery of a planet
orbiting a main-sequence star outside of the solar system was
made (Mayor and Queloz, 1995). Since then spectroscopic
high-precision radial velocity measurements of small velocity
fluctuations in the movement of stars have led to the detection
of many new exoplanets. However, the properties of a system
with exoplanets are still an area of active research (Baraffe
et al., 2010; Gregory and Fischer, 2010). One of the debated
issues is the mass distribution of extra-solar planets
(Chambers, 2010) because the radial-velocity method is
most sensitive to large planets on small orbits resulting in a
severe observation bias. The detection of small planets is
much more challenging and severely affected by the low
signal-to-noise ratio. Therefore, besides the technological
advances in present and future missions [e.g., KEPLER
(Koch et al., 2010)], improved detection algorithms are of
central importance. P. C. Gregory (2005) analyzed radial
velocimetry data of the extra-solar planet HD 73526 (Tinney
et al., 2003) using a Bayesian parameter estimation. The data
set is displayed in Fig. 4. Note the sparse, nonuniform sam-
pling of the data, with a minimum sample interval of� 1 day
and an average sample interval of 73 days.

The starting point is the model equation for the radial
velocity fi, which involves six unknowns:

fi ¼ V0 þ Kfe cos!þ cos½�ðti þ 	PÞ þ!�g; (31)

where V0 is a constant velocity, K is the velocity amplitude, P
is the orbital period, e is the orbital eccentricity, ! is the
longitude of the periastron, and 	 is the fraction of an orbit,
prior to the start of data taking, at which periastron occurred.
The conservation of angular momentum allows one to express
� as function of the other parameters

d�=dt¼2�½1þecos�ðtiþ	PÞ�2=Pð1�e2Þ3=2: (32)
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The measured velocities vi are related to the model prediction
fi by

vi ¼ fi þ �i þ �0i; (33)

where the measurement errors �i have been assumed to be
Gaussian with known but unequal standard deviation �i. The
term �0i accounts for additional measurement errors such as
‘‘jitter,’’ which is due in part to flows and inhomogeneities
on the stellar surface (Wright, 2005). The distribution of
�0i is again assumed to be Gaussian but with a common
variance s for all data points D ¼ v1; . . . ; vN . With � ¼
fV0; K; P; e; !; 	; sg the likelihood distribution is given by
the product of N Gaussian, one for each data point

pðDj�;IÞ¼ ð2�Þ�N=2

�YN
i¼1

ð�2
i þs2Þ�1=2

�

�exp

�
�1

2

XN
i¼1

ðvi�fiÞ2
�2

i þs2

�
: (34)

Bounded, independent, and normalized priors were chosen
for the parameters, for example, the prior for the longitude of
the periastron was chosen to be uniform in ½0; 2��: pð!jIÞ ¼
1=ð2�Þ. The joint prior is then given by the product of the
individual prior distributions

pð�jIÞ ¼ pðV0jIÞpðKjIÞpðPjIÞpðejIÞpð!jIÞpð	jIÞpðsjIÞ:
(35)

The posterior distribution for � is obtained using Bayes’
theorem

pð�jD; IÞ ¼ pðDj�; IÞpð�jIÞ=Z; (36)

where Z is a normalization constant which can be neglected
for parameter estimation purposes. However, this posterior
distribution [Eq. (36)] still depends on the additional parame-
ter s, which accommodates additional noise. Application of
the marginalization rule finally yields the estimation of the
physical model parameters

pðV0; K; P; e;!; 	jD; IÞ ¼
Z

dspð�jD; IÞ: (37)

In the work of Gregory (2005b) the integration of the parame-
ter space was performed using a parallel tempering Markov

chain Monte Carlo algorithm, which is superior to the stan-

dard Metropolis-Hastings MCMC algorithm in situations with

multimodal distributions (cf. IV.E.3.b) because transitions
between different modes are facilitated (Liu, 2001). The

best-fit result for a 128-day orbit is shown in Fig. 5, in

reasonable agreement with the data. A detailed analysis re-

vealed that three different periods of 128, 190, and 376 days
are compatible with the measured data and that the longest

period of 376 days has the highest evidence. This conclusion

differed from the original result of an orbital period of

190.5 days derived by Tinney et al. (2003) and resulted in
further investigations of the system. Eventually, with addi-

tional data at hand it was discovered that two planets orbit

HD 73526 in a 2:1 resonant orbit, one with an orbital period of
377 days and a second one with 188 days (Tinney et al.,

2006). The search for extra-solar planets is revisited in

Sec. VII.C, where the optimization of observational resources

is discussed in the framework of Bayesian experimental
design.

2. Change point analysis

The identification of changes in measured data and the
extraction of the underlying parameter changes are at the core

of many physical investigations. Very often sudden changes

indicate the presence of an unknown effect or a transition in

the properties of the system of interest. The problem of
detecting and locating abrupt changes in data sequences has

been studied under the name change point detection for

decades, and a large number of methods have been developed
for this problem; see, e.g., Carlin et al. (1992), Muller

(1992), Basseville and Nikiforov (1993), Stephens (1994),

Chen and Gupta (2000), and Garnett et al. (2009). Common

applications are time-series prediction (Garnett et al., 2009),
investigation of stock-market trends (Hsu, 1982; Loschi

et al., 2008), or analysis of environmental changes (Bradley

et al., 1999; Perreault et al., 2000; Zhao and Chu, 2010). But

also in areas as diverse as material science (Rudoy et al.,
2010), surface physics (von der Linden et al., 1998), and

plasma physics (Preuss et al., 2003) the identification of

change points is a recurring theme.
The following example from Dose and Menzel (2004)

addresses the question if there are indications for changes

in the blossom time series collected for several species over
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FIG. 4. HD 73526 radial velocity measurement plotted from data

given by Tinney et al. (2003).

FIG. 5. HD 73526 radial velocity measurement data superimposed

with the best-fit model radial velocity. Adapted from Gregory,

2005b.
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the last century. The observations on cherry blossoms at a
specific location (Geisenheim, Germany) are shown in Fig. 6.
The cherry blossom (Prunus avium L.) is known to flower in
midspring and Fig. 6 shows the occurrence of cherry blos-
soms in terms of days after the beginning of the year. The first
impression is that the observations suffer from a considerable
scatter and no obvious trend is visible. A possible continuous
change-point model consists of piecewise linear sections, the
simplest case would be one change point separating two
linear sections. This model contains four parameters: the
design values at the boundaries and at the change point, and
in addition, the parameter that specifies the position of the
change point. The model equation for the general case is
given by (Dose and Menzel, 2004)

yi ¼
�
xkþ1 � 
i

xkþ1 � xk
fk þ 
i � xk

xkþ1 � xk
fkþ1

�
; (38)

xk � 
 < xkþ1, which can be expressed in matrix notation as

y ¼ AðEÞf; (39)

where the matrix A depends on the K change-point positions
E ¼ fxkg; k ¼ 1; . . . ; K. Using the maximum entropy princi-
ple a Gaussian distribution is derived as an appropriate like-
lihood for the data d (Dose and Menzel, 2004):

pðdj
; �; f;E; IÞ ¼
�

1

�
ffiffiffiffiffiffiffi
2�

p
�
N
exp

�
� 1

2�2
½d�AðEÞf�T

� ½d�AðEÞf�
�
: (40)

The prior distribution for � was chosen as a normalized form
of Jeffreys’s prior

pð�j�; IÞ ¼ 1

2 ln�

1

�
;

1

�
< �< � (41)

and a constant bounded prior pðfjIÞ for the design values f.
The prior for the change-point positions pðEjIÞ was chosen to
be uniform. For the one change point model the probability
distribution of the change point location is given by Bayes’
theorem

pðEjd; 
; IÞ ¼ pðdj
; E; IÞpðEjIÞ=Z: (42)

The required distribution pðdj
; E; IÞ is computed from
Eq. (40) using the marginalization rule

pðdj
; E; IÞ ¼
Z

dfd�pðdj
; �; f;E; IÞpð�j�; IÞpðfjIÞ:
(43)

The normalized probability distribution of E is represented in
Fig. 7 by solid squares. The maximum probability for a change
point is reached near 1985 and has a value of about 0.07. This
result is in good agreement with change point positions com-
puted for several other species (Dose and Menzel, 2004).
However, the distribution is very broad, so that every change
point position has to be taken into account for subsequent
predictions, thus requiringmodel averaging. For further details
about the comparison with other models (no trend, no change
point, several change points, etc.) and the estimation of change
rates, see Dose and Menzel (2004, 2006).

It should be pointed out that multiple change point esti-
mations usually require extensive use of Markov chain
Monte Carlo methods due to the combinatorial increase of
possibilities to position the change points (Green, 1995; Zhao
and Chu, 2010), rendering an exact summation impossible.
However, for a class of problems with certain independence
properties between the posterior distributions of individual
segments recursive algorithms have been developed with a
much better scaling of the computational complexity
(Fearnhead, 2006). For the related problem of sequential
change point detection see, e.g., Adams and MacKay
(2007) and Garnett et al. (2009).

3. Counting experiments

In many areas of physics, notably high-energy and ele-
mentary particle physics, experiments with small numbers of
events are common. If the events obey a Poisson distribution
with rate r, the probability of n events in a time interval t is
given by

pðnjr; t; IÞ ¼ ðrtÞn
n!

expð�rtÞ: (44)

Please note that, although the likelihood contains only
the product of r and t, the incorporation of prior knowledge
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FIG. 6. Observations of the onset of cherry blossoms at

Geisenheim, Germany from 1900 to 2002 in terms of days after

the beginning of the year. Two observations (1946 and 1949) are

missing. Adapted from Dose and Menzel, 2004.
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FIG. 7. Data of cherry blossom onset with normalized change

point probability (full squares) superimposed (see right vertical

scale). Adapted from Dose and Menzel, 2004.
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(e.g., precise knowledge of the measurement time t) allows a
separate estimate of r and t using the marginalization rule. In
a study of neutrino-antineutrino oscillations (Prosper, 1984,
2007) an on-off experiment was performed. A beam of cold
neutrons with effective temperature of 1.5 K was impinging
on a 100 �m thick graphite target. By modulating an external
magnetic field the amplitude of the putative oscillation effect
could be influenced. When the magnetic field was turned on,
the oscillation should be suppressed by a factor of a million
compared to field-off conditions. By switching back and forth
between the different field conditions the background events
noff and independently the number of signal plus background
events non could be recorded. For a large number of events the
Gaussian approximation for the Poisson distribution is com-
monly used, yielding a rate for the sum of signal and back-
ground r̂ ¼ non=t with standard deviation �r ¼ ffiffiffiffiffiffiffi

non
p

=t. The

values for the background measurement are b̂ ¼ noff=t and
�b ¼ noff=t. The signal s can then be estimated as

ŝ ¼ r̂� b̂ with variance �2
s ¼ �2

r þ �2
b: (45)

However, in the present case the number of background
events was noff ¼ 7, exceeding the number of signal and
background events non ¼ 3, thus leading to negative results
for the signal rate s if Eq. (45) is applied. For such a low
number of events the Gaussian approximation fails. Prosper
(1985, 1988), and Loredo (1992) used a Bayesian approach to
estimate the signal rate without Gaussian approximation. In
the first step the probability distribution for the background
rate is inferred. The likelihood is given by Eq. (44). As a prior
distribution for the background rate a uniform prior pðbjIÞ ¼
const is chosen. Using Bayes’ theorem, Eq. (4), the posterior
distribution is given by

pðbjnoff ; t; IÞ ¼ pðnoff jb; t; IÞpðbjIÞR
dbpðnoff jb; t; IÞpðbjIÞ

¼ tðbtÞnoff expð�btÞ
noff!

: (46)

For the on measurement, the joint probability of source and
background rate is

pðs; bjnon; t; IÞ ¼ pðnonjs; b; t; IÞpðs; bjIÞ
pðnonjt; IÞ

¼ pðnonjs; b; t; IÞpðsjb; IÞpðbjIÞ
pðnonjt; IÞ : (47)

As prior for the signal rate, similar to the background rate, a
uniform prior pðsjb; IÞ ¼ const is chosen. The term pðbjIÞ
encodes our knowledge about the distribution of the back-
ground rate. Here the knowledge gained from the background
measurement enters [Eq. (46)]. The likelihood is the Poisson
distribution for a source with strength sþ b:

pðnonjs;b;t;IÞ¼ ½ðsþbÞt�non exp½�ðsþbÞt�=non!: (48)

With these assignments the joint probability distribution
pðs; bjnon; noff ; t; IÞ can be computed. The marginalization
with respect to b

pðsjnon; noff ; t; IÞ ¼
Z

dbpðs; bjnon; noff ; t; IÞ (49)

yields the posterior distribution for the signal s, without
explicit dependence on the background rate. Nevertheless,
the uncertainty of the background estimation is taken into
account. The integration of Eq. (49) is given in detail by
P. Gregory (2005) and results in

pðsjnon; noff ; t; IÞ ¼
Xnon
i¼0

Ci

tðstÞi expð�stÞ
i!

: (50)

The posterior probability density of Eq. (50) is shown for the
cases of noff ¼ 7, non ¼ 3, and t ¼ 1 s in Fig. 8. Although the
number of background events is higher than the number of
on events, the low counting statistics does not fully exclude
the possibility of a signal. The highest probability of the
signal rate is at zero; however, the 95% posterior density
region for the signal rate extends up to 4 s�1. Using Eq. (50)
the possible gains of measurement extensions can be studied
(P. Gregory, 2005). A discussion of various approaches (fre-
quentist and Bayesian) to the background subtraction prob-
lem can be found by Loredo (1992).

The related question of source detection in the case of on-
off measurements is addressed by P. Gregory (2005). In
passing it should be noted that the Poisson distribution does
not belong to the class of stable distributions (Feller, 1991):
Although the sum of independent Poisson random variables
follows again a Poisson distribution [in Eq. (48) advantage
was taken of this well-known property], the distribution of the
difference is given by a Skellam distribution (Skellam, 1946).
Therefore, the use of Eq. (45) for estimation of the difference
of independent Poisson distributed measurements may also
lead to inferior results. Various approaches to detect and
analyze periodic signals are given by Bretthorst (1990a,
1990b, 1990c, 1991), Gregory and Loredo (1993, 1996),
Bretthorst (2001), and Gregory (2002).

4. Rutherford backscattering

In the following sections the BPTwill be applied to various
ill-conditioned inverse problems, encountered in analyzing
experimental data from surface physics experiments. The first
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FIG. 8. Posterior density for the signal rate s for Non ¼ 3,
Noff ¼ 7, and t ¼ 1 s and uniform priors. The maximum is for

s ¼ 0, corresponding to a vanishing signal rate, but the gray shaded

95% credible interval extends up to s ¼ 4 s�1.
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example is the deconvolution of Rutherford backscattering
(RBS) data which is also of importance for the improved
depth resolution of RBS measurements in the subsequent
paragraph. Rutherford backscattering is a surface analytical
technique which is routinely used to determine surface com-
positions and depth profiles (Tesmer and Nastasi, 1995). Its
importance is derived from its quantitative nature. In RBS,
the energy distribution dðEÞ of backscattered ions is mea-
sured for a fixed scattering angle �. In the lower MeV range
an elastic Coulomb collision model can be employed, in
which the energy of the backscattered ions, usually either
protons or helium nuclei, is determined by the incident energy
E0, the scattering angle �, and the mass ratio ri ¼ m0=mi of
projectile ion m0 and target atoms mi. Since the projectile-
target interaction is based on Coulomb interaction, the scat-
tering cross section is the quantitatively known Rutherford
scattering cross section and only the mass ratio is unknown.
The energy E of the backscattered ions is given by

E ¼ E0

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i sin

2�
q

þ ri cos�

1þ ri

1
CA

2

: (51)

From Eq. (51) it follows that ions undergoing a collision with
a heavy target atom lose less energy than ions colliding with
target atoms of lower atomic mass, as long as the projectile is
lighter than the target atom (m0 <mi). In an ideal RBS
experiment the energy distribution of an infinitely thin film
sample ~dðEÞ would be composed of delta peaks for the
different masses. However, the resolution is limited due to
the apparatus function and finite sample size. In a thick
sample both primary ions and scattered ions lose energy on
their way through the sample, depending on the stopping
power. This enables RBS to be depth sensitive but may also
give rise to overlapping peaks in the spectrum.

a. Deconvolution of apparatus functions

Small, cheap, and easy-to-use semiconductor based detec-
tors are used in most RBS experiments for the energy analysis
of the backscattered particles. Their performance is hampered
by the energy loss straggling in the Au entrance electrode of
the detector and in the dead layer of the detector and by the
statistics of the electron-hole pair creation. Together with
additional contributions to the energy broadening, namely,
energy spread of the incident beam, electronic noise of the
detector-preamplifier system and, for higher fluxes, pileup the
achievable resolution is limited. Therefore, the energy distri-
bution for fixed target mass is rather broad. As long as the
masses, or rather the respective backscattering energy distri-
butions, are well separated, it is straightforward to extract the
mass composition from the bare experimental data. If, how-
ever, the masses are similar, particularly in the case of iso-
topes, the information is not readily accessible. The different
contributions to the energy broadening can be summarized in
a transfer function of the whole system, the apparatus function
AðEÞ. The measured spectrum dðEÞ is given by the convolu-
tion of the ideal spectrum ~dðEÞ with the apparatus function

dðEiÞ ¼
Z 1

�1
dE0 ~dðE0ÞAðEi � E0Þ � XNd

j¼1

Aij
~dðEjÞ: (52)

The matrix Aij represents the discretized apparatus function,

taking into account that the measured spectrum is binned. The
convoluted spectrum dðEÞ can be calculated easily if ~dðEÞ and
A are known. The inversion of Eq. (52) yields the ideal
spectrum. Unfortunately, the inversion is frequently utterly
ill conditioned if the eigenvalue spectrum of Aij varies over

orders of magnitude (von der Linden, 1995). This is generally
the case for Gaussian apparatus functions and entails a strong
amplification of experimental errors. Dose (2003a) gave an
example where a spectrum distortion of the order of 10�5 led
to reconstruction errors of several 100%. To overcome this
problem the statistical nature of the error has to be taken into
account properly in conjunction with the intrinsic properties
of the objective solution. The goal is to determine the poste-
rior probability density pðfjd;�; IÞ for the RBS spectrum fj
at the N energies Ej, given Nd experimental data di and the

respective errors �i. Prior knowledge to be incorporated is
that signal intensity of neighboring channels is usually related:
A random permutation of the energy channels results in a
spectrum not accepted as RBS spectrum by any expert.
However, this does not imply a (statistical) correlation via
the likelihood: The noise is independent for each channel. The
correlations are imposed on f through a convolution of a
hidden density h with a smoothing kernel B with spatially
varying widths. The image f is then obtained from

fðx; h; bÞ ¼
Z

dyB

�
x� y

bðyÞ
�
hðyÞ: (53)

Fischer et al. (1997) used a Gaussian kernel

B

�
x� y

bðyÞ
�
¼ 1

bðyÞ ffiffiffiffiffiffiffi
2�

p exp

�
� 1

2

�
x� y

bðyÞ
�
2
�
: (54)

In the Bayesian approach, since the interest is in f, the
nuisance parameters h and b have to be marginalized,

pðfjd;�; IÞ ¼
Z

dNhdNbpðf;h;bjd;�; IÞ: (55)

Bayes theorem relates the yet unknown pðf;h;bjd;�; IÞ to
known quantities, namely, the likelihood pðdjf;�; IÞ and the
prior probability densities pðhjIÞ and pðbjIÞ via

pðf;h;bjd;�; IÞ / pðdjf;�; IÞpðfjh;b; IÞpðhjIÞpðbjIÞ:
(56)

An uninformative prior pðhjIÞ for a positive and additive
distribution is the entropic prior (Skilling, 1991)

pðhjm;�;IÞ/ 1Q
i

ffiffiffiffiffi
hi

p exp

�
�
X
i

hi�mi�hi ln
hi
mi

�
: (57)

The default model m is chosen to be flat and � is a
scale parameter for which Jeffreys’s prior is used. The prior
pðbjIÞ constrains the kernel widths to a sensible range.
Finally, the probability density pðfjh;b; IÞ is given by
�ðfðxÞ � fðx;h;bÞÞ, because the knowledge of h and b
uniquely determines the value of f. The application of the
adaptive deconvolution method is shown in Fig. 9. The spec-
trum was measured with 2.6 MeV 4He at a scattering angle of
165�. The apparatus function (left peak) was determined by
measuring an RBS spectrum of a thin cobalt layer of about
0.75 nm thickness on a silicon substrate (cobalt is isotopically
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pure). The width of the Co peak is about 19 keV FWHM
which reflects the limited resolution since the intrinsic energy
spread due to energy loss and energy-loss straggling in the
thin Co layer is only about 3 keV. The apparatus function is
slightly asymmetric. Using this measured apparatus function
A with its pointwise uncertainty �A due to the counting
statistics, the likelihood function pðdjf;�; IÞ of counting
experiments obeys the Poisson statistics. In the case of a large
number of counts the Poisson distribution is well approxi-
mated by a Gaussian distribution

pðdjf;IÞ¼ 1QNd

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

eff;i

q exp

2
4�1

2

XNd

i¼1

ðdi�
P

N
j¼1AijfjÞ2
�2

eff;i

3
5

(58)

with �2
eff;i ¼ �2

i þ
P

N
j¼1 �

2
A;ijf

2
j (Dose et al., 1998). Using

Eq. (55) and the measured apparatus function for cobalt the
copper signal on the right-hand side was deconvolved (Fischer
et al., 1998). After deconvolution, the two isotopes 63Cu and
65Cu are clearly resolved. The FWHM of the dominant 63Cu
peak after deconvolution is 3.0 keV, which is about 6 times
better than the achieved experimental resolution and far be-
yond any conceivable experimental resolution with the avail-
able setup. The measured abundances of the isotopes are
70.1% 63Cu and 29.9% 65Cu. This compares favorably to
the natural abundance of 69.2 % 63Cu and 30.8% 65Cu.

A different nonparametric approach to ill-conditioned in-
verse problems, such as Fredholm integral equations with
smooth kernels, has been investigated by Wolpert and
Ickstadt (2004). Mixtures of Lévy random fields have been
used to design prior distributions on functions (Clyde and
Wolpert, 2007), leading to increased numerical complexity.
However, the large flexibility of Lévy random fields makes up
for the computational effort. The approach has been applied

to derive molecular weight distributions of polymers from
rheological measurements.

b. Depth profiles

Backscattering spectroscopy using ion beams with energies
in the MeV range is used extensively to determine the distri-
bution of target elements in the sample as a function of depth
below the surface. The ideal RBS spectrum f is a linear
superposition of the spectra of the individual elemental depth
profiles ciðxÞ. But the energy of the penetrating and back-
scattered particles depends in a complicated, nonlinear way on
the sample composition and morphology. Therefore simula-
tion codes [such as SIMNRA (Mayer, 1999)] are required to
simulate an RBS spectrum for a given sample. The depth
profiles are then obtained by varying the sample parameters
until a minimum quadratic misfit is achieved (maximum-
likelihood solution). Although this approach, guided by the
experimentalist’s experience, often succeeds it has the severe
shortcoming that it does not solve the inverse problem (Mayer
et al., 2005). A good fit is a necessary but not sufficient
condition: Different depth profiles can result in very similar
fits. The posterior expectation (the mean) for the concentration
c is

hci ¼
Z

dccpðcjd; IÞ (59)

and the variance is

h�c2i ¼
Z

dcðc� hciÞ2pðcjd; IÞ: (60)

The analysis is completely analogous to the one in
Sec. III.B.4.a. Only the linear relationship given by Eq. (52)
is now replaced by the forward calculation of the simulation
codes

d0ðEiÞ ¼ gðcðxÞÞ (61)

given a depth profile cðxÞ. A prior which incorporates the
knowledge of the concentrations being larger than 0 and
allows in addition for the inclusion of a default model is given
by the entropic prior (Skilling, 1991).

An example is provided by a study of first-wall materials
for fusion experiments. Carbon is considered as a first-wall
material for fusion reactors, in particular, for plasma-facing
components subject to exceptionally high thermal heat loads.
Apart from the lifetime of a material under such conditions, a
critical issue in the case of carbon is the possible formation of
significant tritium inventories by codeposition with redepos-
ited carbon atoms (Brooks et al., 1999). Both issues are
mainly determined by the carbon erosion rate resulting from
physical sputtering and chemical erosion (Krieger et al.,
1999). To estimate the carbon erosion rates in the divertor
of the fusion experiment ASDEX Upgrade graphite probes
were covered with a 150 nm layer of 13C and exposed to a
single plasma discharge. The RBS spectrum of the sample
before exposure is shown in Fig. 10 as the solid line. The right
peak indicates the 13C layer on top of the 12C sample. After
exposure the high-energy edge is shifted toward lower ener-
gies, indicating the absence of 13C at the surface. The in-
creased intensity in the channels at 500 keV indicates a
mixture of 12C and 13C, but no further information is easily

FIG. 9. RBS spectra of thin Co and Cu films on a Si substrate,

measured with 2.6 MeV He. The Cu spectrum (right-hand side) is

deconvolved with the apparatus function obtained from the Co

spectrum (left-hand side). The two Cu isotopes are clearly resolved

with measured abundances close to the natural abundances. Adapted

from Fischer et al., 1998.
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extracted from the spectrum. The results of the Bayesian
depth profile reconstruction are given in Fig. 11 (von
Toussaint, Krieger et al., 1999). Before exposure a 13C layer
can be seen, � 2:2� 1018 atoms=cm2 thick, but with an
average contribution of 20% 12C. After exposure most of
the 13C is still present but there is an additional layer of
12C deposited on top of it. The surprising result is the coex-
istence of erosion and deposition at the area where the out-
ermost closed magnetic surface intersects the divertor
(von Toussaint, Fischer et al., 1999). This so-called
‘‘strike-point’’ area experiences extremely high thermal loads

and was considered as erosion dominated. At the same time
this measurement shows that conclusions based on net
changes in sample thickness may strongly underestimate
the dynamical modifications. For further applications of
Bayesian parameter estimation in physics see, e.g.,
Bretthorst (1988, 2001), Dose (2003a), and Meier et al.
(2003).

IV. NUMERICAL METHODS

A. Overview

Once the likelihood and prior distributions are specified
Bayes’ theorem, Eq. (4), allows one to derive the posterior
probability for every specified parameter vector. However, in
most situations the posterior distribution is required primarily
for the purpose of evaluating expectation values of a function
of interest fð�Þ with respect to the posterior,

hfð�Þi¼
Z
d�fð�Þpð�jD;IÞ¼

Z
d�fð�ÞpðDj�;IÞpð�jIÞ

Z

¼
Z
d�fð�Þp

	ð�Þ
Z

¼
Z
d�gð�Þ: (62)

The normalization constant of the unnormalized distribution
p	ð�Þ is given by

Z ¼
Z

d�p	ð�Þ: (63)

These integrals over the parameter space are commonly high
dimensional and analytically intractable, except in very rare
circumstances, so that typically neither the expectation value
nor the normalization constant are at hand—the latter is the
key quantity for Bayesian model comparison, which will be
discussed in Sec. V. Also the important marginalization of
parameters requires integration in often high-dimensional
spaces. There are two different ways to proceed. Either the
integrant of Eq. (62) is approximated by a different, more
easily accessible function or the integral itself is approximated
by numerical integration or by sampling techniques. A note on
notation: Throughout this review all probabilities are consid-
ered as conditional probabilities (there is always some, how-
ever vague, background information). However, in this section
the focus is on integration techniques instead of probabilistic
inference. Therefore, to keep the notation uncluttered, the I
denoting background information is omitted at several places.

B. Approximation methods

First approximation methods are addressed since they
provide in many circumstances a fast and convenient way
to obtain approximations to the expectation values. If the
underlying assumptions hold (which has to be verified), the
computations are often fast enough for use in monitoring or
even real-time applications.

1. Laplace approximation

The Laplace approximation (also known as saddle-point
approximation) substitutes the distribution gð�Þ by its asymp-
totic normal form around its mode �0, i.e., the value of �

FIG. 10. RBS data of the sample before and after plasma expo-

sition. The signal edge position at around 550 keV is shifted toward

lower energies due to the plasma exposition. At the same time the

peak intensity increases relative to the bulk signal. From von

Toussaint and Dose, 2005.

FIG. 11. Reconstructed depth profiles and asymmetric confidence

intervals from the RBS spectra shown in Fig. 10. (a) The sample

composition before exposure (lines are added to guide the eye), and

(b) the sample composition after exposure. From von Toussaint

et al., 1999b.
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maximizing gð�Þ. Expanding the logarithm of gð�Þ around
this point yields

lngð�Þ � lngð�0Þ � 1
2ð� � �0ÞTAð� � �0Þ; (64)

where the elements of the N � N Hessian matrix A are
defined by

Aij ¼ @2

@�i@�j
lngð�Þ

���������¼�0

: (65)

Taking the exponential of Eq. (64) provides an
N-dimensional Gaussian function

gð�Þ � gð�0Þ exp½�1
2ð� � �0ÞTAð� � �0Þ� (66)

and the analytical integration of Eq. (62) finally yields

hfð�Þi � gð�0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞN
jAj

s
: (67)

In order to apply the Laplace approximation the mode has
to be localized, typically using a gradient-based numerical
optimization algorithm [e.g., the conjugate gradient method
(Press et al., 1996)], followed by the evaluation of the
Hessian matrix at the mode. The Laplace approximation
will be accurate if the data vector consists of a suitably large
number of observations such that the central limit theorem
applies. However, especially in problems of medium to high
dimensionality this is rarely the case and the dependence of
the approximation on a single point (the mode) of the distri-
bution may be fatal as generic properties of the distribution
may be completely missed. On the other hand, an approxi-
mate value of the evidence is easily accessible with the
Laplace approximation, a difference to most sampling meth-
ods. Extensions to higher order approximations and estimates
of the asymptotic accuracy are given by Lindley et al. (1980),
Tierney and Kadane (1986), and Kass et al. (1988). Several
special geometries, e.g., spheres are considered by Bagchi
and Kadane (1991).

2. Variational methods

Only recently variational methods have been used to ap-
proximate complex posterior distributions. The basic idea is
to introduce a tractable and flexible parametric test distribu-
tion qð�;wÞ and to optimize the parameter vector w to provide
the best possible approximation to the true posterior distri-
bution. The most commonly used objective function to mea-
sure the quality of the approximation is the relative entropy
between the test distribution and the (unnormalized) posterior
distribution as target distribution

FðwÞ ¼
Z

d�qð�;wÞ ln qð�;wÞ
pðDj�; IÞpð�jIÞ

¼
Z

d�qð�;wÞ ln qð�;wÞ
pð�jD; IÞ � lnpðDjIÞ: (68)

Since the relative entropy is never negative the objective
function is bounded below by � lnpðDjIÞ and the minimum
occurs when the test function equals the posterior distribution
pð�jD; IÞ. Although the test function may be of arbitrary

complexity (the problem of overfitting does not exist), often
factorized distributions are used as test functions (Jordan
et al., 1999; Jaakkola and Jordan, 2000; Jaakkola, 2001) to
allow for an efficient (convex) optimization of the parameters
w. A convenient software package (VIBES) for variational
inference in Bayesian networks exists (Bishop et al.,
2003). It may be tempting to use an optimized test function
as a proposal function for importance sampling. However, the
optimized test function is usually more compact than the
target distribution which is a severe disadvantage for a pro-
posal function.

C. Quadrature

In many problems the dimension of the parameter space is
small, i.e., of the order of 1 to 10. In this situation the classical
numerical integration, also called quadrature, is often the
method of choice for Bayesian computations. This holds
especially for the computation of the evidence [cf. Eq. (63)]
which is very challenging to estimate with MCMC methods.
For the quadrature an extensive literature exists [see, e.g.,
Davis and Rabinowitz (1984) and Press et al. (1996) and
references therein]. The one-dimensional integral

I ¼
Z

d�gð�Þ (69)

is approximated by a weighted average of the function g
evaluated at a number of design points �i¼1;...;n

I � Xn
i¼1

wigð�iÞ; (70)

where the different quadrature schemes are distinguished by
using different sets of design points and weights wi¼1;...;n.

Commonly Gauss-Hermite quadrature rules are especially
advantageous for integrals of probability distributions, since
often gð�Þ is approximately normal and therefore closely
approximated by hð�Þ expð�2=2Þ, where hð�Þ is a polynomial
in � and the design points and weights of the Gauss-Hermite
quadrature are now such that Eq. (70) yields the exact integral
if expð�2=2Þgð�Þ is a polynomial up to order 2n� 1 on the
support of � � 1;1½. Tables of design points and weights for
different quadrature rules can be found in Abramowitz and
Stegun (1965). In one-dimensional cases the efficiency of
quadrature rules is unsurpassed. The situation changes if the
number of dimensions increases. Assuming an integration
scheme with n design points in one dimension, the same
coverage in m dimensions requires nm design points, which
will be impractically large unless m is sufficiently small
(m & 10). This exponential increase in the number of func-
tion evaluations with the dimensionality of the problem is
often called the curse of dimensions and is the driving force
toward Monte Carlo methods. Nevertheless, quadrature, de-
spite suffering from the curse of dimension, is indispensable
for several reasons: Well-tested implementations of the
various algorithms exist [see, e.g., Press et al. (1996), GSL
(2008), and NAG (2008)] and reliable error estimates are
available. Furthermore, the quadrature algorithms are very
robust and can be used to validate MCMC codes.
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D. Monte Carlo methods

The idea of Monte Carlo simulation is to obtain (by various
means described below) a set of samples f�rgRr¼1, where the

samples are distributed according to pð�Þ. (The process of
generating a random sample according to a probability dis-
tribution is commonly called a ‘‘draw.’’ Therefore the aim of
Monte Carlo simulations is a set of samples drawn from the
target distribution.) This allows the expectation value

hfð�Þi ¼
Z

d�fð�Þpð�Þ (71)

to be approximated by an estimator

f̂ ¼ 1

R

XR
r¼1

fð�rÞ: (72)

The estimator is unbiased and generally hf̂i ¼ hfi. Using the
standard definition of the variance �2 of fð�Þ under the
distribution pð�Þ

�2 ¼
Z

d�pð�Þ½fð�Þ � hfi�2; (73)

the variance of the estimator is given by

varðf̂Þ ¼ �2=R: (74)

Equation (74) is the corner stone of all sampling methods:
The accuracy of the Monte Carlo estimate, Eq. (72), does not
depend on the dimensionality of � (Chen et al., 2001).
Therefore, several tens of independent samples may be suffi-
cient to estimate expectation values of a high-dimensional
problem with reasonable accuracy. The problem, however, is
to get independent samples from pð�Þ.

1. Standard distributions

If pð�Þ is of a standard form then it is straightforward to
sample from it using available algorithms [see, e.g., Devroye
(1986)1 or Ripley (1987) for an extensive overview], most of
which are based on nonlinear transformations of uniformly
distributed random numbers (Press et al., 1996). These
methods of generating independent random samples from
nonuniform distributions such as Cauchy distribution,
student-t, or the famous Gaussian distribution are often
used as building blocks in more general strategies as, e.g.,
rejection sampling or MCMC. However, for the generation of
random samples from nonstandard, arbitrary distributions
(such as the one in Fig. 12), no algorithms are available.

2. Rejection sampling

Rejection sampling is a conceptually simple method to
compute independent samples from a target distribution
ptð�Þ ¼ p	

t ð�Þ=Zpt, where p	
t can readily be evaluated and

Zpt is unknown. First a proposal density ppð�Þ has to be

selected from which independent samples can be generated,
the simplest choice being a uniform distribution. For this
probability density a constant k has to be determined such

that kppð�Þ � p	
t ð�Þ for all values of � thus forming an

envelope to p	
t ð�Þ. This may be difficult for multimodal

and/or multidimensional distributions ptð�Þ. A schematic
picture of the scaled proposal function and the target distri-
bution is shown in Fig. 13 for the univariate case. Then a
random sample �ð0Þ is generated from the proposal density
ppð�Þ. Next a random number u is generated from the uniform

distribution [0, 1]. If ukppð�ð0ÞÞ> ptð�ð0ÞÞ, then the sample

�ð0Þ is rejected; otherwise it is accepted, which means that �ð0Þ
is added to the set of samples f�rg. Rejection sampling has the
invaluable advantage to yield independent samples, a feature
lacking the various methods introduced below.

A typical sample obtained by rejection sampling is shown
in Fig. 14. The density of the sample points matches nicely
the shape of the underlying probability density function,
shown in Fig. 12.

However, the requirement of kppð�Þ being an envelope

for p	
t ð�Þ will generally lead to exponentially decreasing

FIG. 12. Example of a two-dimensional probability distribution

with properties complicating the sampling: More than one maxi-

mum, regions of high probability are separated, non-Gaussian

shape, no alignment with the coordinate system.

x

t(x)
p(x)
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(0)

~p(x)

k p(x
(0)
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FIG. 13 (color online). Rejection sampling: First, sample a can-

didate xð0Þ from pðxÞ and a uniform variable u. Then accept this

candidate if tðxð0ÞÞ � ukpðxð0ÞÞ (as in the situation shown here);

otherwise reject the candidate.

1Available online at http://cg.scs.carleton.ca/~luc/rnbookindex

.html.
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acceptance probabilities with increasing dimensionality of
the problem. As an example consider the problem of gener-
ating random samples according to the hypersphere distribu-
tion p	

t ð�Þ ¼ kr2 � �2k, for k�k< r and the enclosing
hypercube as a proposal distribution. Then the acceptance
probability is given by the ratio of the hypersphere volume Vs

and the hypercube volume Vc. As a function of the dimension
of the problem this ratio

r ¼ Vs=Vc ¼ 2ð ffiffiffiffi
�

p
rÞd

d�ðd=2Þ
	
ð2rÞd (75)

decays exponentially, e.g., from �=4 for d ¼ 2 to 2:5� 10�8

for d ¼ 20. To improve the match of the envelope function
to the target distribution and therefore the acceptance ratio
several adaptive methods have been suggested (Gilks and
Wild, 1992; Gilks et al., 1995). In the adaptive rejection
sampling method (Gilks and Wild, 1992) piecewise exponen-
tial distributions are adapted to log-concave target distribu-
tions on the fly. In later work the restriction to log-concave
distributions was removed (Gilks et al., 1995). Nevertheless,
the exponential decrease of the acceptance with the dimen-
sionality of the problem, although alleviated, still persists.

3. Importance sampling

Importance sampling is a useful technique to approximate
expectation values [see Eq. (71)] without being able to sample
from ptð�Þ. As in the case of rejection sampling, importance
sampling rests on the availability of a proposal distribution
ppð�Þ from which it is easy to sample. Then the expectation

value can be approximated by a finite set of R samples

hfð�Þi ¼
Z

d�fð�Þptð�Þ ¼
Z

d�fð�Þ ptð�Þ
ppð�Þppð�Þ

� 1

R

XR
r¼1

fð�ðrÞÞ ptð�ðrÞÞ
ppð�ðrÞÞ (76)

¼ 1

R

XR
r¼1

fð�ðrÞÞwr; (77)

where the quantitieswr are the importance weights, which are
used to correct the bias introduced by sampling from ppð�Þ
instead of ptð�Þ. If ptð�Þ can only be evaluated except for a
normalization constant, so that ptð�Þ ¼ p	

t ð�Þ=Zt, and, as is
commonly the case, p	

t ð�Þ can be evaluated easily, then it is
also possible to evaluate Zt by

Zt ¼ 1

R

XR
r¼1

p	
t ð�Þ

ppð�Þ : (78)

Similar to rejection sampling importance sampling suffers in
high dimensions from any mismatch of the proposal and the
target distribution. Then the set of importance weights wr are
dominated by a few weights, thus reducing the sample size
(R) effectively to a very small number. Furthermore, there
may be the problem that none of the samples generated from
ppð�Þ are in regions where fð�Þptð�Þ is large. Then the

estimate of the expectation value may be severely wrong
without any visible indication. On the other hand, the concept
of importance sampling has the advantage of being extremely
flexible: In principle the proposal distribution pp can be

continuously adapted based on the samples obtained thus
far and still the method yields an unbiased estimator of the
expectation value (Cappé et al., 2004). This has been ex-
ploited by a number of algorithms as, e.g., sampling-
importance resampling or sequential-importance sampling
(Doucet et al., 2001; Moral et al., 2006; Cappé et al.,
2008; Cornebise et al., 2008). A convenient implementation
of the importance sampling method for general integration is
the computer code VEGAS (Lepage, 1980; Press et al., 1996).

However, all methods presented thus far are not suited
for problems of high dimensionality. Although in principle
Eq. (74) guarantees that a small number of independent
samples are sufficient to estimate the expectation value with
a reasonable accuracy, the generation of these samples by
rejection sampling is impractical for all but modest problems.
A way around this problem is offered by MCMC methods.

E. Markov chain Monte Carlo

The first MCMC algorithm was introduced by Metropolis
et al. (1953) as a method for the simulation of fluids. The
physics community immediately noticed the potential of
the new algorithm. However, it took about 35 years until
the MCMC methods were rediscovered by (Bayesian) statis-
ticians (Hitchcock, 2003) in a series of publications (Tanner
and Wong, 1987; Gelfand et al., 1990; Gelfand and Smith,
1990). MCMC techniques immediately enabled the use of
complicated (i.e., realistic) models and the estimation of
posterior distributions and arbitrary functions of the model
parameters without the need for approximations. Since then
MCMC methods became the main computational tools in
Bayesian inference because of their unique potential in eval-
uating the multidimensional integrals required in a Bayesian
analysis of models with many parameters.

The main difference of MCMC algorithms to the
Monte Carlo methods described above is that each generated
point depends on its predecessor instead of being indepen-
dent. Abandoning the independence requirement allows a
wide variety of algorithms to be designed with the only
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FIG. 14. Sample of 2000 independent samples drawn by rejection

sampling from the 2D test distribution shown in Fig. 12.
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requirement that the distribution the samples are generated
from converges to the target distribution. The individual
algorithms differ widely in complexity, efficiency, and num-
ber of parameters to be adjusted.

1. MCMC basics

a. Markov chains

First the key concepts underlying the MCMC approach are
sketched. A first-order Markov chain is a series of random
variables xð0Þ; . . . ; xðTÞ with the property

pðxðtþ1Þjxð0Þ; . . . ; xðtÞÞ ¼ pðxðtþ1ÞjxðtÞÞ; (79)

in which the influence of the values xð0Þ; . . . ; xðtÞ on the
distribution of xðtþ1Þ is mediated entirely by the value of xðtÞ
(Neal, 1993) A homogenous Markov chain can be specified
by giving the probability distribution for the initial variable
pðxð0ÞÞ together with the transition probabilities Tðx0; xÞ ¼
pðx0jxÞ for one state x0 to follow another state x. An invariant
distribution p̂ðxÞ with respect to a Markov chain persists
forever once it is reached

p̂ðx0Þ ¼ X
x

Tðx0; xÞp̂ðxÞ: (80)

The Markov chain is said to be ergodic, i.e., it converges to its
invariant distribution if

pðtÞðxÞ ! p̂ðxÞ as t ! 1 (81)

holds regardless of the initial probabilities pð0ÞðxÞ. Necessary
conditions for ergodicity are irreducibility and aperiodicity.
Irreducibility guarantees that from any state there is a positive
probability of visiting all other states of the Markov chain.
The second condition ensures that the Markov chain is not
trapped in periodic cycles. MCMC algorithms are based on
irreducible and aperiodic Markov chains that have the target
distribution ptð�Þ as the invariant distribution. The task of
designing such a Markov chain is greatly simplified if the
transition probabilities satisfy the detailed balance property
for the target distribution

Tðx; x0Þp̂ðx0Þ ¼ Tðx0; xÞp̂ðxÞ: (82)

It is easily seen that such a transition probability will leave
the distribution invariant, becauseX

x0
Tðx;x0Þp̂ðx0Þ¼X

x0
Tðx0;xÞp̂ðxÞ¼ p̂ðxÞX

x0
pðx0jxÞ¼ p̂ðxÞ;

(83)

which is a necessary condition for the convergence of the
Markov chain toward the target distribution.

The Metropolis algorithm (Metropolis et al., 1953) and its
generalization, the Metropolis-Hastings (Hastings, 1970) al-
gorithm, are the most popular MCMC methods. Most of the
later presented algorithms can be considered special cases
or extensions of these algorithms. In the basic Metropolis
algorithm the proposal function is symmetric ppðx0jxðtÞÞ ¼
ppðxðtÞjx0Þ, quite often a Gaussian (or student-t) distribution

centered on the present state of the Markov chain. The
candidate sample x0 is then accepted with probability

Aðx0; xðtÞÞ ¼ minð1; pðx0Þ=pðxðtÞÞÞ: (84)

If the step is accepted the Markov chain is updated by
setting xðtþ1Þ ¼ x0, or else by xðtþ1Þ ¼ xðtÞ. Note that if the
step from xðtÞ to x0 increases the value of pðxÞ, the candidate
sample is always accepted. The target distribution is indeed
an invariant distribution of the Markov chain defined by the
Metropolis algorithm since the detailed balance criterion is
satisfied,

Tðx; x0Þptðx0Þ ¼ Aðx; x0Þptðx0Þ ¼ minðptðx0Þ; pðx0ÞÞ
¼ minðpðx0Þ; ptðx0ÞÞ ¼ Aðx0; xÞptðxÞ
¼ Tðx0; xÞptðxÞ: (85)

Metropolis sampling is illustrated for the two-dimensional
case in Fig. 15. On each iteration we start from the current
state xðtÞ and a tentative new state x0 ¼ ðx1; x2Þ is generated
from a two-dimensional random distribution (in this example
a 2D Gaussian distribution was used). All samples which
are accepted are indicated by a sphere and connected
by a solid line, visualizing the exploration of the parameter
space. Rejected samples are connected by a dashed line
with the state the Markov chain was in when the rejection
happened.

The Metropolis-Hastings algorithm uses the generalization

Aðx0; xðtÞÞ ¼ min

�
1;

pðx0ÞppðxðtÞjx0Þ
pðxðtÞÞppðx0jxðtÞÞ

�
(86)

of the acceptance criterion, Eq. (84), to accommodate also
asymmetric proposal functions, giving even more flexibility
in the design of the Markov chain. Although the asymptotic
convergence of the probability distribution of the samples to
the target distribution is guaranteed the rate of convergence
depends crucially on the proposal function and the underlying
structure of the problem. For more information on the theory
of MCMC a wealth of information can be found in, e.g., Neal
(1993), Gilks et al. (1996), Gamerman (1997), Robert and
Casella (1999), and Liu (2001).
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FIG. 15 (color online). Example of a typical MCMC sample,

showing indication of random-walk behavior. Solid lines indicate

accepted proposals, dashed lines rejected proposals. The underlying

potential is the one displayed in Fig. 12, upper right part, and

represented by ellipsoidal contour lines.
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b. Efficiency

Generally the most crucial choice for the efficiency of
MCMC samples is the proposal function. However, some
theoretical considerations and experience is available to act
as a guideline. A narrow proposal function, suggesting only
very small changes of the actual position in the parameter
space, has a high acceptance ratio since the ratio of the
function values will be close to 1. However, the position of
the Markov chain hardly changes, the parameter space is not
explored, and the obtained samples are highly correlated. On
the other hand, a very broad proposal function will yield an
extremely high rejection rate especially in higher dimensions
since it is very unlikely to select a suitable position by chance.
In both cases the autocorrelation 
 of the samples, defined as


ðjÞ ¼
P

t½ðxðtÞ � hxiÞðxðtþjÞ � hxiÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tðxðtÞ � hxiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tðxðtþjÞ � hxiÞ2

q ; (87)

decays (much) slower with increasing lag j than for better
adapted settings. An example is given in Fig. 16 where the
logarithm of the autocorrelation is plotted as a function of the
lag for MCMC runs with a Gaussian proposal distribution
with three different standard deviations. Typically 
j decays

exponentially and is therefore well approximated by


ðjÞ / expð�j=�expÞ: (88)

A small autocorrelation time constant �exp indicates a fast

mixing MCMC sampler which also reduces the variance of

the expectation value f̂ [Eq. (72)] which is given by

varðf̂Þ ¼ �2

R

�
1þ 2

X1
j¼1


ðjÞ
�

(89)

for a converged Markov chain (Tierney, 1994; Liu, 2001).
Please note how the correlation of the samples increases the

variance of the expectation value compared to the case of
independent samples [Eq. (74)]. Peskun (1973) conducted a
comparison of the asymptotic variance of Eq. (89) for a finite
state space and found that the Metropolis acceptance rate has
the smallest asymptotic variance of the estimates for a given
proposal rate. Although this result is reassuring, it does not
answer the question about the choice of good proposal func-
tions. Unfortunately those distributions depend very strongly
on the problem at hand, so that only very general recommen-
dations are possible: The proposal function should be chosen
in such a way that the acceptance rate is between 25% for
high-dimensional models and about 50% for models of di-
mension 1 or 2 (Gelman et al., 1997; Roberts and Rosenthal,
2001). Furthermore, in the case of multimodal target distri-
butions the proposal distribution should exhibit heavy tails
(such as a student-t distribution) to facilitate the exploration
of the parameter space. There are two fundamental difficul-
ties of designing an effective MCMC sampler.

The first challenge is due to target distributions with widely
varying properties, e.g., localized structures (maxima, ridges)
in some regions of the parameter space and broad features in
others. In those situations it is unlikely that a fixed proposal
distribution is efficiently exploring the parameter space.
Unfortunately, adaptive proposal distributions easily destroy
the Markov property. In this case the convergence to the
desired target distribution is not guaranteed (Gelfand and
Sahu, 1994). Nevertheless, several converging adaptive
MCMC methods have been developed, including slice sam-
pling (Neal, 2003) (see Sec. IV.E.3.c), parallel chains (Gilks
et al., 1996), regeneration (Gilks et al., 1998), delayed
rejection (Tierney and Mira, 1999; Haario et al., 2006),
and differential evolution Markov chain (Ter Braak and
Vrugt, 2008). Overviews of recent developments are given
by Andrieu and Thoms (2008) and Roberts and Rosenthal
(2009). So far only limited experience with adaptive methods
is available. Issues such as robustness or the choice of the
adaption strategy for particular contexts still have to be
investigated in more detail.

The second reason for inefficiency is the inherent random-
walk property of standard-MCMC samplers, which causes
a slow exploration of the parameter space [although in
some cases properly chosen proposal distributions may pro-
vide significant gains efficiency (Wu et al., 2007)]. Here
Hamiltonian Monte Carlo (see Sec. IV.E.3.d) and multistate
methods are possible remedies.

c. Convergence diagnostic

The estimate of the variance of the expectation value given
by Eq. (89) is valid only if the Markov chain has achieved
stationarity; that is, if it samples from the target distribution.
Unfortunately, for realistic problems no fail-safe convergence
diagnostics exist. For that reason it is wise to have several
complementary diagnostics on hand to decrease the chances
to be fooled. Reviews of more than one dozen different
convergence diagnostics are given by Brooks and Roberts
(1999), Cowles and Carlin (1996), Mengersen et al. (1999),
and Robert and Casella (1999). Among the most revealing
diagnostics are trace plots: plots of some function of the state
of the Markov chain (e.g., one of the parameters) against the
iteration number. In Fig. 17 two typical traces are displayed.

0 50 100

Lag

0.1

1

lo
g 10

(A
ut

oc
or

re
la

tio
n)

σ=0.05
σ=0.3
σ=20

FIG. 16 (color online). Influence of the width � of a Gaussian

proposal function on the autocorrelation of the samples. Too small

and too large widths result in a very slow decay of the autocorre-

lation. If the width of the proposal function is too small then the

chain hardly explores the parameter space. If instead the width of

the proposal function is too large then almost all proposed changes

are rejected again causing insufficient exploration.
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The dashed line indicates a chain which appears to have

reached stationarity after 5000 iterations (which is confirmed

by the result of a much longer simulation run). The other

Markov chain (solid black line) is slowly increasing up to

10 000 iterations, indicating a long burn-in time which is a

consequence of the narrow width of the proposal distribution.

In practice a number of different chains are run starting at

different initial values which increases the probability to

cover relevant regions of the stationary distribution and to

detect insufficient mixing of the chains. In the latter case one

(or more) of the chains often displays a different behavior

compared to the other chains, although seemingly having

achieved stationarity given the properties of this chain alone.

This may be the case if there are several well-separated local

modes of the target distribution. Based on this observation,

Gelman and Rubin (1992) proposed a popular and simple

convergence diagnostic which compares the variance within

each chain and the interchain variance, often referred to as the

R̂ statistic (Gelman et al., 2004). However, if the exploration

of the parameter space is insufficient, false results of the

convergence diagnostic routines are inevitable [see, e.g.,

Sollom et al. (2009) for a recent example]. Early criticism

of the multiple chain approach (Geyer, 1992), advocating the

advantages of a single, very long MC run, no longer seem

compelling in view of today’s parallel computing capabilities.

2. MCMC methods I: Standard-MCMC algorithms

a. Gibbs sampling

In the statistical community the Gibbs sampler (Geman

and Geman, 1984; Gelfand et al., 1990), a special case of the

Metropolis-Hastings sampler, is the most widely used

method. It is only applicable if sampling from all the one-

dimensional conditional distributions of the target distribu-

tion is feasible or can be emulated by rejection sampling

methods (Gilks, 1992). The algorithm starts in an

N-dimensional parameter space with an arbitrary starting

point xð0Þ ¼ ðxð0Þ1 ; xð0Þ2 ; . . . ; xð0ÞN Þ and the sequence of random

points is generated by repeated cycling through the steps

xðtþ1Þ
1 / pcðx1jxðtÞ2 ; xðtÞ3 ; . . . ; xðtÞN Þ;
xðtþ1Þ
2 / pcðx2jxðtþ1Þ

1 ; xðtÞ3 ; . . . ; xðtÞN Þ;
..
. ..

.

xðtþ1Þ
N / pcðxNjxðtÞ1 ; xðtþ1Þ

2 ; . . . ; xðtþ1Þ
N�1 Þ; (90)

where pcðxijx1; . . . ; xi�1; xiþ1; . . . ; xNÞ denotes the one-
dimensional conditional distribution of xi conditioned on
the actual values of all the other variables. The Gibbs sam-
pling method has several advantages: First, every sample is
accepted as there is no rejection step. More important is the
fact that no adjustable parameters are present. This allows the
design of multipurpose computer packages for Gibbs sam-
pling such as BUGS (Bayesian inference using Gibbs sam-
pling) (Thomas et al., 1992), where only the conditional
distributions have to be specified to get started. Special care
with respect to the ergodicity of the Gibbs sampler is in order
if one or more of the conditional distributions are somewhere
zero. O’Hagan (1994) gave a simple example where the
Gibbs sampler fails to explore the parameter space in that
case. Figure 18 illustrates the random-walk behavior of a
Gibbs sampler for a two-dimensional correlated Gaussian
distribution. As each update of a variable corresponds to a
movement parallel to the corresponding coordinate axes only
small steps are accepted if the individual variables are
strongly correlated, thus yielding a target distribution which
is elongated and rotated (misaligned) with respect to the
coordinate system of the parameters. This may cause ex-
tremely long correlation times of the samples (Matthews,
1993; Belisle, 1998). Sometimes a possible remedy is the
introduction of auxiliary variables (Polsen, 1996) or a joint
update (‘‘blocking’’) of highly correlated variables (Jensen
et al., 1995). An approach to reduce the random-walk
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FIG. 17 (color online). Influence of the width of the proposal

function on the burn-in and convergence of the Markov chains. The

simulation with a narrow proposal function (solid black line)

exhibits a larger autocorrelation length of an arbitrarily chosen

parameter x1 and a slower convergence to the stationary distribution

compared to the simulation with a 5 times larger proposal width.
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FIG. 18 (color online). Gibbs sampling of a correlated two-

dimensional probability distribution. The alternating updates of

the two variables are responsible for the ‘‘rectangular’’ movement

of the chain. The step size is governed by the respective conditional

distributions. Unlike in standard-MCMC methods all proposals are

accepted. The underlying potential is the one displayed in Fig. 12,
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behavior in order to speed up the exploration of the distribu-
tion was suggested by Neal (1999b) with his ordered over-
relaxation method. The practical applicability of Gibbs
sampling depends on the ease with which samples can be
drawn from the conditional distributions. In many settings
with likelihoods given by physical models the conditional
distributions will be more or less intractable, thus excluding
the use of Gibbs sampling.

b. Particle filters: Sequential Monte Carlo

Sequential Monte Carlo methods are algorithms optimized
for sampling from a sequence of probability distributions. A
typical example is tracking of dynamical systems, where new
measurements should be included in the inference process as
soon as the data are available. Since the pioneering paper of
Gordon et al. (1993) introducing particle filters as a first
instance of sequential Monte Carlo methods, these techniques
are now commonly applied in signal processing, robotics, and
Bayesian dynamical models. Sequential Monte Carlo meth-
ods approximate the sequence of probability distributions of
interest using a large set of random samples, named particles.
These particles are propagated over time using various im-
portance sampling and resampling mechanisms. The basic
scheme proceeds as follows: Initially, at time 0 a population
of N samples is created by sampling from a prior distribution,

xi;0 
 pðxj0Þ; i ¼ 1; . . . ; N: (91)

Using a transition model pðxtþ1jxtÞ each sample is propa-
gated by one step

xi;tþ1 
 pðxjxi;tÞ; i ¼ 1; . . . ; N; (92)

where the particle parameters are updated probabilistically
according to the transition model. Then all samples are
weighted proportional to the likelihood wi ¼ pðdtþ1jxi;tþ1Þ
and the new population is selected: Each new sample is
selected from the existing population. The probability of a
sample to be selected is proportional to its weight.

Preserving a sufficient coverage of the probability distri-
bution with a reasonable number of particles is a key issue in
sequential Monte Carlo algorithms. Good coverage of se-
quential Monte Carlo methods and applications is given in
several recent review papers (Cappé et al., 2007; Doucet and
Johansen, 2008).

3. MCMC methods II: Specialized algorithms

The methods presented in the previous section are efficient
general purpose methods (Gilks et al., 1996). However, they
exhibit some weaknesses which can be addressed by more
specialized methods. The key issues are as follows: multi-
modality of distributions, variable dimension of the parame-
ter space, adaptive proposal distributions, and faster
exploration of the distribution. The most common and severe
problem is multimodality of the sampling distribution, i.e.,
several maxima well separated by regions of low probability.
The probability to cross such low-probability regions decays
exponentially with their extension. Furthermore, such incom-
plete sampling of the parameter space is often hard to recog-
nize. If the Markov chains are trapped in an extended but
isolated maximum all the convergence diagnostics indicate

proper sampling. Only by chance, e.g., by a Markov chain
sampling a different maximum or by prior knowledge (e.g.,
symmetries of the problem), can such problematic behavior
be recognized. A (partial) solution of that problem is the use
of auxiliary tempered distributions, which facilitate the cross-
ing between different modes of the target distribution.
Mainly, there are two different approaches: In the simulated
tempering approach the parameter space is augmented by an
additional tempering parameter �, whereas in the parallel
tempering algorithm the joint parameter space of a set of
temperature altered distributions is used as sample space.

a. Simulated tempering

In order to explore the parameter space more freely than in
the standard-MCMC scheme, Marinari and Parisi (1992) and
Geyer and Thompson (1995) proposed using a discrete set of
progressively flatter versions of the target distribution by
varying an additional single parameter, the tempering pa-
rameter �, in the target distribution. If exact samples can
be generated from the prior distribution then the tempering
parameter is commonly applied to the likelihood only:

pð�jD;�m; IÞ ¼ pðDj�; IÞ�mpð�jIÞ; (93)

for �m 2 f0 ¼ �0; �1; �2; . . . ; �M ¼ 1g. For � values close
to zero the target distribution is nearly flat, allowing the
sampler to escape local modes and therefore increasing its
chance of reaching other modes of the distribution. The actual
algorithm alternates between a standard-MCMC step in the �
space with constant �m and moves in the � direction, where
m0 ¼ m� 1 is proposed with equal probability and accepted
with probability

minf1; cm0pð�jD;�m0 ; IÞ=cmpð�jD;�m; IÞg; (94)

otherwise, m0 is set equal to m. The relative frequency
between the temperature changing moves and the standard-
MCMC steps can be adjusted using an additional parameter
�0. The ci and �0 are constants that can be controlled by the
user and should be tuned so that each of the �i distributions
has roughly equal chance to be visited (Geyer and Thompson,
1995). A special case arises for m0 ¼ 0: In this case an
independent sample can be generated from pð�jIÞ. The time
for one exact sample is therefore given by the time needed by
the Markov chain to migrate through the set of tempered
distribution from �0 to �M and back again. The expectation
values for the target distribution pð�jD; IÞ are calculated from
all the (correlated and uncorrelated) samples with � ¼ 1,
where the correlated samples are from Markov sequences
which repeatedly reach � ¼ 1 before drawing a new and
independent sample from the � ¼ 0 distribution. The inde-
pendent samples provide an expedient method to compute
reliable error estimates (Geyer and Thompson, 1995;
Daghofer et al., 2004) of the expectation values. However,
the expected waiting time for an independent sample is of the
order of M2 even for the ideal situation of a symmetric
random walk in temperature space. Therefore, the number
of temperature levels should be kept low while still ensuring a
sufficient overlap between two adjacent distributions. The
choice of the coefficients cm is crucial for a reasonable
performance of simulated tempering. Ideally, the coefficients
cm should be proportional to the reciprocal of the respective
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(unknown) partition function Zm (Marinari and Parisi, 1992).
Since the Zm often vary over orders of magnitude, appropriate
adjustment is mandatory. Use of parallel tempering (see
Sec. IV.E.3.b) preruns is often advocated (Geyer and
Thompson, 1995; Daghofer et al., 2004) but also iterative
schemes have been suggested [see, e.g., Kerler and Rehberg
(1994)]. Fiore and da Luz (2010) used the simulated temper-
ing approach to simulate the behavior of a Blume-Emery-
Griffiths model near a first-order phase-transition state.

b. Parallel tempering

The parallel tempering technique (Geyer, 1991), rein-
vented later under the name ‘‘exchange Monte Carlo’’
(Hukushima et al., 1996), is a very efficient method to tackle
multimodal probability distributions.

In the parallel tempering method several Monte Carlo
simulations (‘‘replicas’’) are run in parallel in which the
posterior distribution [Eq. (93)] is tempered with a series of
different temperatures �m 2 f0 ¼ �0; �1; �2; . . . ; �M ¼ 1g.
As in simulated tempering the simulation with � ¼ 1 is the
desired target distribution; the other distributions for lower
values of � are auxiliary distributions to facilitate an effective
exploration of the configuration space. The parallel tempering
algorithm alternates between parallel updates of the individ-
ual replicas using their respective MCMC scheme, commonly
the standard Metropolis-Hasting algorithm, and swap moves.
Here a pair of adjacent simulations is chosen at random and a
proposal is made to swap their parameter states. Suppose the
replicas m and m0 are chosen. Then the swap is accepted with
probability

min

�
1;
pð�mjD;�m0 ; IÞpð�m0 jD;�m; IÞ
pð�mjD;�m; IÞpð�m0 jD;�m0 ; IÞ

�
: (95)

For a visualization of the swapping process, see Fig. 19.
These swaps allow for a propagation of information across
the simulation chains. The continued suggestion of new
configurations from the more freely moving chains with

low � allows the chains with larger � values to sample

configurations much more efficiently than with local

Metropolis updates only.
Contrary to simulated tempering only the number of tem-

perature levels and spacings but no weighting coefficients cm
need to be adjusted: In simulated tempering the weighting

coefficients were needed to prevent the chain from getting

stuck in a state with intermediate �. In parallel tempering,

however, there is a fixed number of chains, one for each �
value; thus the system cannot ‘‘collapse’’ toward the most

likely value of �. Several suggestions for the number of

temperature levels M and the temperature levels �m are

offered in the literature: Rathore et al. (2005) found in their

case studies that adjusting the number of temperature levels

such that an acceptance ratio of 20% is achieved was optimal.

Maximizing the mean square displacement of the random

walk between the temperature levels Kone and Kofke (2005)

arrived at a very similar recommendation of 23%. However,

as Katzgraber et al. (2006) subsequently pointed out the rate

of round trips between low and high � values should be

optimized instead.
Parallel tempering has meanwhile proven to be an efficient

method for multimodal problems and it is widely acknowl-

edged that the additional workload of running M chains in

parallel is more than compensated by the increased sampling

efficiency. Parallel tempering can be considered a workhorse

in physical chemistry (Earl and Deem, 2005) and data analy-

sis (Habeck et al. (2004, 2005) while still being continuously

improved (Coluzza and Frenkel, 2005; Bittner et al., 2008).

c. Slice sampling

Slice sampling is a recently proposed Markov chain

Monte Carlo method (Higdon, 1998; Neal, 2003) which

circumvents the strong dependence of the efficiency of the

Metropolis algorithm on the step size providing an adaptive

step size adjustment. In Fig. 20 the basic idea is sketched.

For a given value xðtÞ a uniform random value u is sampled
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FIG. 19 (color online). Example of a typical parallel tempering

run with five replicas at different temperatures 0 ¼ �0<

�1 < � � �<�4 ¼ 1. The average time of the replicas to swap

from � ¼ 0 to � ¼ 1 and back is a measure of the efficiency of

a parallel tempering scheme.
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FIG. 20. Schematics of one-dimensional slice sampling: For a

given location xðtÞ a uniform random number u is sampled from

[0, pðxðtÞÞ] and an interval [xmin, xmax] is determined such that at

both locations fxmin; xmaxg the probability distribution is smaller than

u. In this interval a position x0 is accepted as a new location if

pðx0Þ> u.
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between 0 and pðxðtÞÞ, the value of u defining a horizontal

slice which is extended to both sides until pðxminÞ< pðxðtÞÞ
and pðxmaxÞ< pðxðtÞÞ. Then a new point x0 is drawn from

[xmin, xmax]. If pðx0Þ< u then the slice is shrunk in such a way

that x0 forms an end point and the original point xðtÞ is still in
the slice. Then another proposal point x0 is drawn from this

reduced region until a value x0 is found for which pðx0Þ> ¼ u
and which is therefore accepted as xðtþ1Þ. Slice sampling can

also be applied to multivariate distributions (Neal, 2003) but

loses some of its appeal. A different approach suggested by

Skilling and MacKay (2003) may therefore be advantageous:

mapping the (discretized)N-dimensional parameter space RN

on R1 using Hilbert curves allows one to apply the 1D slice

sampler to problems of arbitrary dimension. A low-order

example (162) of a two-dimensional Hilbert curve is shown

in Fig. 21. Using a higher resolution version with (2562)
points the two-dimensional probability distribution of

Fig. 12 has been mapped into a one-dimensional probability

(Fig. 22). Hilbert curves are as neighborhood preserving as

possible but some distortion is unavoidable. A function which

is smooth in several dimensions will look jagged when

mapped into one dimension. However, if the function is

already multimodal and twisted in several dimensions, the

mapping does not make it look appreciably worse and the

unavoidable discontinuities are no obstacle for most

Monte Carlo methods. Several algorithms taking advantage

of this fact in combination with adaptive step sizes are given

by Skilling (2004b). Slice sampling was used for inference in

a geospatial context by Agarwal and Gelfand (2005) and is

implemented, e.g., in a software package for Bayesian infer-

ence of phylogenies from DNA sequences2.

d. Hamiltonian Monte Carlo method

Hamiltonian Monte Carlo or hybrid Monte Carlo methods

(Duane et al., 1987; Toussaint, 1989; Kennedy et al., 1990;

Neal, 1996; Neal, 2011) are Markov chain Monte Carlo

methods designed to suppress the random-walk nature of

standard Markov chain algorithms by taking into account
not only the function value at a given point x but also its
gradient.

Any probability density that is nowhere zero can be written
in the form

ptðxÞ / exp½�EðxÞ�; (96)

which yields the gradient

gðxÞ ¼ r logptðxÞ ¼ �EðxÞ=@x: (97)

After introducing an auxiliary ‘‘momentum’’ variable q of the
same dimension as x a Hamiltonian can be defined by

Hðx;qÞ ¼ EðxÞ þ KðqÞ ¼ EðxÞ þ qTq=2: (98)

Then an extended target distribution ptðx;qÞ ¼
ptðxÞpNðqÞ is introduced. This density is separable, so
simply discarding the momentum variables from the
obtained samples yields the desired distribution ptðxÞ. The
Hamiltonian Monte Carlo algorithm proceeds by an alternat-
ing sequence of Gibbs sampling updates of the momentum
from a multivariate Gaussian distribution and a dynamical
evolution of the system for a finite time. Starting with the
previous value of x the momentum variable q is generated
from a multivariate Gaussian distribution. Then the dynami-
cal evolution of the system is followed for L time steps of
duration � using the leapfrog scheme (which is known to
preserve the phase space) for the numerical integration:

qð�þ �=2Þ ¼ qð�Þ þ �

2
gðxð�ÞÞ;

x0ð�þ �Þ ¼ xð�Þ þ �qð�þ �=2Þ;
q0ð�þ �Þ ¼ qð�þ �=2Þ þ �

2
gðxð�þ �ÞÞ:

(99)

The final candidate state is then accepted with probability

Aððx0;q0Þ; ðx;qÞÞ ¼ minð1; exp½Hðx;qÞ �Hðx0;q0Þ�Þ:
(100)

x
1

x 2

FIG. 21. Example of a two-dimensional Hilbert curve on a 322

grid. The space-filling curve can be used to map distributions into a

lower-dimensional space with arbitrary precision.
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0.008
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FIG. 22. Part of the two-dimensional probability distribution of

Fig. 12 being mapped by a 2562 Hilbert curve (similar to the one in

Fig. 21) into one dimension. The index i labels the points of the

discretized 2D Hilbert curve in consecutive order, and pðiÞ gives the
probability at the corresponding location [x1ðiÞ, x2ðiÞ]. The mapping

results in a ragged shape of the distribution; however, this is no

obstacle for most MCMC algorithms.

2http://www.phycas.org.
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Rejections can occur only if there are numerical errors;
otherwise Hðx;qÞ is an invariant quantity. In order that the
discrete leapfrog integration introduces only a reasonably
small error, it is necessary for the step width � to be smaller
than the shortest length scale over which the potential is
varying significantly. An efficient exploration can therefore
be achieved by a reasonably large L. The momentum term
within a cycle ensures that a substantial distance is covered,
thus suppressing random-walk behavior. A detailed compari-
son of hybrid Monte Carlo methods with other methods can
be found in Neal (1996). See, e.g., Hansmann et al. (1996)
for the use of Hamiltonian Monte Carlo methods for the
problem of protein folding with multiple energy minima. A
noteworthy variation of hybrid Monte Carlo methods is based
on a suggestion by Horowitz (1991) that partially keeps the
momentum variables instead of a full replacement by a
Gibbs sampling step will further reduce random-walk
behavior (Neal, 1996). For recent attempts to incorporate
geometric information of the target density into the
Hamiltonian Monte Carlo algorithm see Girolami and
Calderhead (2011).

e. Reversible jump Markov chain Monte Carlo (RJMCMC) methods

All the Monte Carlo methods considered so far keep the
number of parameters constant and update only the parameter
values. In a number of settings, most notably in model
selection problems, the number of parameters is unknown.
Green (1995) introduced an extension of the conventional
Metropolis-Hastings acceptance criterion which allows
one to apply the Metropolis algorithm also to parameter
spaces of varying dimension or to a set of different
models simultaneously (Sisson, 2005). This coupling of dif-
ferent models using RJMCMC has the additional benefit of
automatically incorporating Occam’s razor (cf. Sec. V.A), a
natural preference for ‘‘simpler’’ models (all else being
equal).

Given a set of different models Mk, k ¼ 1; . . . ; K with
parameter vectors xk of dimension dk the straightforward
comparison of densities as in the Metropolis-Hastings case
is no longer possible, since the dimensionality of the models
varies. The key aspect of the reversible jump approach is the
introduction of additional random variables u that enable the
matching of the parameter space dimensions across models.
The transition probability is generalized from Tðx1;x2Þ to
Tððx1;u1Þ; ðx2;u2ÞÞ with the requirement of dimension
matching d1 þ dimðu1Þ ¼ d2 þ dimðu2Þ. An example is
given in Fig. 23. The one-dimensional probability density is
augmented by an additional random variable u to match the
dimension of the two-dimensional model displayed in the
upper right part of Fig. 23, so that both models have a
common measure.

The key steps of the model changing part of a reversible
jump Markov chain are as follows:

(1) Starting from model Mi with parameter vector xi with
probability Jj;i a jump to a new model class Mj is

proposed (with still undetermined parameter vector),
and an augmenting random variable vector u is gen-
erated from a proposal density Jðuijxi; j; iÞ.

(2) With that expanded parameter vector (xi, ui) a parame-
ter vector for Mj is proposed ðxj;ujÞ ¼ gðj;iÞðxi;uiÞ.

(3) The proposal is accepted with the probability

� ¼ min

�
1;
pðyjxj;MjÞpðxjjMjÞpðMjjIÞ
pðyjxi;MiÞpðxijMiÞpðMijIÞ

� Jj;iJðuijxi; j; iÞ
Ji;jJðujjxj; j; iÞ

��������@ðxj;ujÞ
@ðxi;uiÞ

��������
�
; (101)

where the final term in the ratio is the Jacobian arising
from the change of variables from (xi, ui) to (xj, uj).

A good exploration of the individual models is possible only
if the Markov chain mixes well between the models. This
requires well-chosen jump proposals between the different
parameter spaces in addition to the conventional update
proposals of the parameter vector of each model. This in-
dicates one of the major difficulties for RJMCMC methods:
An efficient construction of reversible jump proposal distri-
butions may be challenging and is complicated by the fact
that sometimes a natural neighborhood structure (e.g.,
Euclidean space) between different models does not exist
(Brooks et al., 2003). Nevertheless, especially for nested
models RJMCMC is often the most straightforward approach
and the application of RJMCMC to mixtures of Gaussians
(Richardson and Green, 1997) has been widely adopted.
Andrieu and Doucet (1999) presented an interesting applica-
tion of the RJMCMC algorithm to the detection of an un-
known number of sinusoids with low signal-to-noise ratio.
Also in inverse problems commonly occurring in geophysics
(e.g., profile estimation) RJMCMC is often used (Jasra et al.,
2006; Charvin et al., 2009; Gallagher et al., 2009). However,
the construction of the proposal densities may sometimes be
subtle as a subsequent correction (Richardson and Green,
1998) of the original paper highlights. Another complication
is convergence assessment for multimodal Markov chains. As
with the unimodal case, useful a priori convergence bounds
do not exist and most convergence diagnostics assess only
necessary indicators of chain convergence (Cowles and
Carlin, 1996). Furthermore, even if all the subchains (i.e.,
the individual models) have converged this does not imply
that the full density has converged. Even one result given in

FIG. 23 (color online). Illustration of the dimension matching in

RJMCMC. The lower-dimensional parameter spaces are padded

with additional dimensions to allow a comparison with the

higher-dimensional models.
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the ground-breaking paper of Green (1995), the change point
estimates of the coal-mining time series, was based on simu-
lations which had failed to converge (Green, 2003).
Sometimes the symmetry of the posterior distribution pro-
vides the possibility of basic control checks. Consider one of
the typical applications of RJMCMC: a mixture distribution
with an unknown number of components K,

pðxj�Þ ¼ XK
k¼1

wkfðxj�kÞ; (102)

where � ¼ ð�1; . . . ;�K; w1; . . . ; wKÞ and the non-negative
weights satisfy w1 þ � � � þ wK ¼ 1 and the fðxj�kÞ’s are
from some parametric family, e.g., the normal distribution
with mean �k and variance �k: �k ¼ ð�k; �kÞ. Since the
mixture distribution Eq. (102) is invariant under permutation
of the indices k, monitoring of the MCMC samples should
reveal a uniform exploration of the K! equivalent modes. As
this is rarely the case even for moderate values of K, Celeux
et al. (2000) concluded ‘‘. . .that almost the entirety of MCMC
samplers implemented for mixture models has failed to
converge.’’ In addition, the invariance of the posterior distri-
bution under relabeling of some parameters results in the
so-called label-switching problem (Redner and Walker,
1984), even for a fully converged Markov chain: The usual
practice of summarizing the results by marginal posterior
distributions of the individual parameters is often inappro-
priate due to the multimodality of the joint posterior distri-
bution. The obvious approach to introduce artificial
identifiability constraints (Dieboldt and Robert, 1994)
on the parameter space � such as partial ordering
(�1 < � � �<�K) or relabeling may affect the estimates
(Celeux et al., 2000; Stephens, 2000). A review of various
approaches to the label-switching problem is given by Jasra
et al. (2005). Nevertheless, despite these technical challenges
RJMCMC is in many instances (i.e., with an unknown
number of model parameters) the method of choice.

4. MCMC methods III: Evaluating the marginal likelihood

In Sec. IV.D several algorithms for the computation of
expectation values of the form

hfð�Þi ¼
Z

d�fð�Þpð�jIÞ (103)

were introduced. These algorithms are adequate for the situ-
ation shown in Fig. 24(a), which is commonly the case. A
prominent exception is the computation of the evidence, also
called prior-predictive value [cf. Eq. (15)]

Z ¼ pðdjM; IÞ ¼
Z

d�pðdj�; M; IÞpð�jM; IÞ (104)

which is often the single most important number in a prob-
lem. It represents the probability of the observed data d given
a model M and is the key quantity for model comparison.
Comparison of Eqs. (103) and (104) reveals that here the
expectation value of the likelihood with respect to the prior
has to be computed. Typically the likelihood is much more
structured than the prior, so that here the situation shown
in Fig. 24(b) applies. Straightforward sampling from
the prior ppð�jM; IÞ is ineligible since the huge variations

in the likelihood lead to large variances [cf. Eq. (74)] and
correspondingly to an extremely large number of required
MCMC samples. See Fig. 24, lower panel, for a visualization
of that case. von der Linden, Preuss, and Dose (1999) dis-
cussed a realistic test case which would require 10138 inde-
pendent samples from the prior distribution for an accuracy of
10%. Below several methods are presented which represent
different approaches to cope with this problem. It should be
noted that sometimes the ratio of the evidence, the Bayes
factor, is easier to compute than the individual evidence
values. For example, the ratio of the residence time of a
RJMCMC run in the different models provides a direct
estimation of the Bayes factors. The drawback of this ap-
proach is the insufficient exploration of less likely models
leading to large uncertainties in the ratio. Recent overviews of
methods for the computation of Bayes factors are given, e.g.,
by DiCiccio et al. (1997), Gelman and Meng (1998), and Han
and Carlin (2001). In the following a thermodynamic inte-
gration is presented as an example for a well-established
technique, a nested sampling as a technique using a quite
different approach, and finally a promising nonequilibrium
technique, highlighting the ongoing development.

a. Thermodynamic integration

In the thermodynamic integration (Frenkel, 1986; Ogata,
1989) [or thin MCMC (Neal, 1993)] an auxiliary quantity
Zð�Þ

Zð�Þ ¼
Z

d�pðdj�;M; IÞ�pð�jM; IÞ (105)

is introduced with Zð1Þ ¼ pðdjMÞ and Zð0Þ ¼ 1 due to the
normalization of the prior. The derivative of lnZð�Þ yields
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FIG. 24 (color online). Example of the two different cases for

expectation value computation as discussed. (a) The probability

distribution pðxÞ displays more structure than the function fðxÞ of
which the expectation value is taken. This is the easier case. (b) The

expectation value is computed from a function which is not well

matched to the probability distribution, often the case in the

evaluation of the marginal likelihood, requiring the use of advanced

methods (see Sec. IV.E.3).
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@

@�
lnðZð�ÞÞ

¼ 1

Zð�Þ
Z

d� ln½pðdj�;M; IÞ�pðdj�; M; IÞ�pð�jM; IÞ
¼ hln½plðdj�; M; IÞ�i�; (106)

where hln½pðdj�;M; IÞ�i� is the expectation value of

ln½pðdj�; M; IÞ� with respect to the distribution of

p�ð�Þ ¼ 1

Zð�Þpðdj�;M; IÞ�pð�jM; IÞ: (107)

The reformulation with auxiliary parameter � made the
problem more tractable since now only the expectation value
of the logarithm of the likelihood has to be computed and
additionally the probability density p�ð�Þ contains some

structure of likelihood as well. From Eq. (107) it follows
that the evidence can be obtained by integration over �

ln½pðdjM; IÞ� ¼ ln½Zð1Þ� � ln½Zð0Þ�
¼
Z 1

0
d�

@

@�
ln½Zð�Þ�

¼
Z 1

0
d�hln½pðdj�;M; IÞ�i�: (108)

This integral can be approximated by a sequence of
hln½pðdj�;M;IÞ�i�i

values for 0¼�1<�2< ���<�I ¼1,

where all expectation values are computed by individual
MCMC runs. In the example considered by von der Linden,
Preuss, and Dose (1999) the required sample size for an
estimate of the evidence with 10% accuracy was estimated
to be around 106 using thermodynamic integration compared
to 10138 for straight sampling from the prior.

b. Nested sampling

The nested sampling algorithm (Skilling, 2004a, 2006) was
developed specifically to compute evidence integrals. The
first idea underlying nested sampling is shown in Fig. 25.
The multidimensional integral over the parameter space is

transformed to a simple one-dimensional integration over the
normalized prior mass 
:

Z ¼
Z 1

0
d
Lð
Þ; (109)

where Lð
	Þ is the likelihood value such that the volume of
the prior where L � Lð
	Þ is 
	. However, the sorted like-
lihood function Lð
Þ is usually not accessible since the
information about the enclosed prior mass 
 of a given
sample point � with its associated Lð�Þ is unknown. Nested
sampling circumvents this difficulty by replacing the exact
values of 
 by estimates of 
 using an iterative random
mechanism.

The method is to start with an initial set of N samples
uniformly sampled from the full prior mass range [0, 
0 ¼ 1],
corresponding to no restriction on the likelihood values L 2
½0;1½. The samples are ordered in terms of likelihood and the
sample with the smallest likelihood is discarded and its like-
lihood value L1 is used as a new lower threshold for the
replacement sample, again uniformly sampled from the prior
distribution subject to L � L1 and thus implying a reduced
prior mass range [0, 
1]. The updated set is ordered again and
the new threshold and the sample to be replaced are deter-
mined for the next cycle. Since the distribution of the sorted
samples is given by order statistics of order N of a uniform
distribution, the probability distribution of the shrinkage ratio
ti of each cycle is given by the � distribution

pðtiÞ ¼ pð
i=
i�1Þ ¼ Bðti;N; 1Þ (110)

with

hpðtiÞi ¼ N=ðN þ 1Þ (111)

thus implying geometric shrinkage of the 
i with increasing i.
Then the evidence can be approximated by the sum

Z ¼ 1

2

XM
i¼1

Lið
iþ1 � 
i�1Þ: (112)

The probabilistic estimation of the 
i values used for the
summation in Eq. (112) initially raised some concerns about
the convergence properties of the method (Chopin and
Robert, 2007); in subsequent papers, however, convergence
was proven (Evans, 2007; Chopin and Robert, 2008, 2010).
Since the introduction of nested sampling, it has found
widespread use especially in astrophysics [see, e.g.,
Mukherjee, Parkinson, and Liddle (2006)] and cosmology
(Shaw et al., 2007).

c. Nonequilibrium MC

A recently proposed method (Ahlers and Engel, 2008)
based on nonequilibrium equality for free energy differences
(Jarzynski, 1997) highlights the continuing fruitful exchange
of ideas and concepts between statistical physics and statis-
tics. The method can be considered as interpolation between
the simple but inefficient sampling from the prior distribution
and thermodynamic integration. It is similar to thermody-
namic integration in which a sequence of temperature values
�m is used to bridge from the prior distribution to the
posterior distribution. However, the (time-consuming) equi-
librium requirements for the Monte Carlo chains at the
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FIG. 25. Nested sampling: (a) The sample points are uniformly

sampled from the prior distribution. (b) The sample points are sorted

with respect to prior volume enclosing likelihood mass � Lð
Þ.
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various temperatures in the thermodynamic integration
method are avoided by building on recent progress in the
understanding of nonequilibrium processes (Jarzynski, 1997;
Seifert, 2005).

For the nonstationary Markov process a time interval
t ¼ 1; . . . ; N is chosen with M � N intermediate time points
tm, where � changes by ��m ¼ �mþ1 � �m such that �
changes from 0 to 1 within the time interval. Defining the
�-tempered distribution as

p�ð�Þ ¼ 1

Zð�Þpðdj�;M; IÞ�pð�jM; IÞ (113)

and the transition probability Tð�0;�;�mÞ

p̂�m
ð�0Þ ¼

Z
d�Tð�0;�;�mÞp̂�m

ð�Þ; (114)

the probability for a trajectory is given by

pðf�tgÞ ¼ pð�jM; IÞ YN�1

t¼1

Tð�tþ1;�t;�mÞ: (115)

Ahlers and Engel (2008) showed that the exponential average
of the trajectory dependent functional

Rðf�tgÞ ¼
XM�1

m¼1

��m lnpðdj�tm ; IÞ (116)

with respect to the trajectory probability yields the evidence

Z ¼ pðdjM; IÞ ¼ hexpðRÞi ¼
Z XN

t¼1

d�tpðf�tgÞeRðf�tgÞ:

(117)

Although the exponential average may be dominated by rare
events (Jarzynski, 2006) a comparison with thermodynamic
integration in bimodal test cases turned out in favor of the
nonequilibrium method. It is obvious that further research is
needed to fully explore the potential of this (and potentially
other) nonequilibrium technique(s). However, the flexibility
in the choice of the � sequences offers promising optimiza-
tion potential.

5. Concluding remarks

The enormous potential of Markov chain Monte Carlo
methods to compute high-dimensional integrals has led to
the development of a wide variety of different algorithms.
Combined with today’s increasing (parallel) computing capa-
bilities the researcher has a well-equipped toolbox available
even for difficult integration problems. Several well-
developed MCMC program packages are available for
Bayesian inference. The most well-known software package
for Bayesian inference is BUGS (Thomas et al., 1992), which
is also available as WINBUGS

3 for the Windows operating
system (Lunn et al., 2000) and as an open-source version
OPENBUGS

4. Several books provide worked examples of sta-

tistical inference using BUGS, see, e.g., Gelman et al. (2004)
and Gamerman and Lopes (2006). A variety of different

MCMC algorithms have been implemented and the source
code is available on the Web.5 As a general purpose high-
level language for statistical inference and postprocessing R6

is in widespread use. It is an open source and is developed
under the GNU license7. Manuals and FAQs are available on
the R project Web site. Examples of the use of R can also be
found by Gelman et al. (2004), Albert (2009), and Robert and
Casella (2010).

The crucial question remains of the convergence of the
Markov chains. Essentially all algorithms rely on conver-
gence diagnostics which only supply necessary criteria for
convergence and may be misled by a very slowly converging
algorithm (which misses an isolated peak).

The best chance to detect such a failure is provided by the
complementary use of several MCMC algorithms with differ-
ent properties (Clyde et al., 2007; Preuss and von Toussaint,
2007). Unlike the case of convergence diagnostics where
several quantities are routinely monitored, this is, unfortu-
nately, still not common.

V. MODEL COMPARISON

So far the Bayesian approach to the parametric estimation
has been demonstrated (cf. Sec. III) which is essentially
centered around the computation of the posterior distribution
which in most cases provides an easy access to all desired
quantities, e.g., mean, variance, or median of the parameters
of a given model. A more complex situation arises when there
are several models Mi, each of which might depend on
several, possibly different parameters (Bretthorst, 1996). A
cautionary note about the use of improper priors in model
comparison: In many cases of parameter estimation the (con-
venient) use of improper priors is good natured and reduces
Bayesian estimation problems to a maximum-likelihood
problem in the case of an unbounded uniform prior. By
contrast, the use of improper priors is inappropriate in prob-
lems of model comparison where the range and volume of the
prior is of decisive importance [cf. Eq. (120)].

A. Basics

The formal Bayesian approach to model comparison is
very similar to the one of parameter estimation,

pðMjD; IÞ ¼ pðDjM; IÞpðMjIÞ=pðDjIÞ
/ pðDjM; IÞpðMjIÞ: (118)

The term pðDjM; IÞ can be computed with the help of the
marginalization rule Eq. (15) [see Eq. (120)]. If there is no
reason to prefer a model, equal prior probabilities can be
assigned to all models pðMijIÞ ¼ const. This is a frequently
arising situation, but it should be kept in mind that more
precise prior knowledge can be incorporated and should be
used if available. With an ignorant state of knowledge about
the prior model probability pðMijIÞ the ratio of the posterior
model probabilities pðMijD; IÞ and pðMjjD; IÞ reduces to the

3http://www.mrc-bsu.cam.ac.uk/bugs/
4http://www.openbugs.info/.

5http://www.cs.toronto.edu/~radford/software-online.html.
6http://www.r-project.org.
7http://www.gnu.org.
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ratio of the evidences, the so-called Bayes factor (Kass and
Raftery, 1995)

Bij ¼ pðDjMj; IÞ=pðDjMi; IÞ: (119)

A simple interpretation of the evidence and the way
Ockham’s razor (avoiding unnecessarily complex models)
is incorporated in the model comparison can be given
(Jaynes, 1979; Gregory and Loredo, 1992; MacKay,
1992a): first, the marginal likelihood pðDjM; IÞ is written in
the form

pðDjM; IÞ ¼
Z

d�pðDjM;�; IÞpð�jIÞ: (120)

Under the assumption that the prior is much more diffuse than
the likelihood its variations over the range where the like-
lihood peaks can be neglected. Therefore the prior term can
be taken at �ML, the point where the likelihood attains its
maximum value, outside the integral

pðDjM; IÞ � pð�MLjIÞ
Z

d�pðDjM;�; IÞ: (121)

The remaining � integral over the likelihood may be further
approximated by

pðDjM;IÞ�pðDjM;�ML;IÞpð�MLjIÞð��likeÞN� ; (122)

where N� is the number of model parameters and ð��likeÞN� is
the approximate likelihood volume. Taking advantage of the
fact that the prior is approximately uniform over some inter-
val ��prior larger than the posterior peak and that the prior is

normalized to 1, an approximation is given by pð�MLjIÞ �
1=ð��priorÞN� . Equation (122) becomes

pðDjM; IÞ � pðDjM;�ML; IÞð��like=��priorÞN� : (123)

Under these assumptions the evidence is approximately equal
to the maximum-likelihood solution penalized by the second
term, which is referred to as an Ockham factor. Since by
assumption ��like � ��prior, the Ockham factor is � 1.

With an increasing number of model parameters N� the
improvements in the likelihood will eventually be counter-
balanced by the decreasing second term in Eq. (123) thus
defining an optimal model complexity.

A particular property of the evidence is that it does not
penalize parameters which are unconstrained by the data
(Spiegelhalter, 2002; Liddle, 2007), essentially penalizing
only relevant parameters. If the likelihood is not affected by
a parameter, the evidence integral is unchanged since the
prior distribution is normalized. Liddle (2007) provided fur-
ther comments on this property.

1. Other measures of model complexity

The necessary integrations to compute the evidence can be
very demanding, even with state-of-the art equipment and
algorithms. For that reason many simpler surrogates for the
evidence are in use which try to balance between fit quality
and model complexity. The most common ones are (Stoica
and Selén, 2004) as follows:


 Akaike information criterion (AIC): the AIC is
defined as

AIC ¼ �2 lnpðdj�ML; IÞ þ 2k; (124)

where k is the number of adjustable parameters of the
model (Akaike, 1974; Smith and Spiegelhalter, 1980)
and pðdj�ML; IÞ the maximum-likelihood value.


 Bayesian information criterion (BIC): the BIC, also
known as Schwarz criterion (Schwarz, 1978) is
defined as

BIC ¼ �2 lnpðdj�ML; IÞ þ k lnN; (125)

where k is the number of parameters of the model and N
is the number of data points. The data points are
assumed to be independent and identically distributed.
Note that, compared to AIC, this penalizes model com-
plexity more heavily for a moderate number of data
points.

These local criteria do not take account of the uncertainty
(and possible degeneracy) in the model parameters. In prac-
tice the performance varies (Stoica and Selén, 2004).
Spiegelhalter (2002) introduced a measure for the effective
number of parameters in a model and developed another
criterion, the deviance information criterion. Liddle (2007)
used this and several other information criteria for the ranking
of cosmological models and got significantly different con-
clusions from the data. In practice the (asymptotic) assump-
tions underlying the different information criteria are nearly
always violated (Berger et al., 2003) and this may influence
the results. For that reason, model comparison should be
based on Bayesian evidence whenever possible.

2. A note on significance tests

Bayesian model comparison is always based on the com-
parison of different (at least two) proposed models. There is
no counterpart to the frequentist significance tests which
evaluate a model based on only a single model. However,
from a Bayesian point of view the frequentist significance test
(i.e., the use of p values for model evaluation) has weak-
nesses; one deficit is the violation of the likelihood principle
(Birnbaum, 1962; Berger and Wolpert, 1988). The likelihood
principle is implied by the generally accepted sufficiency
principle (Huzurbazar, 1976) conditionally on the acceptance
of a second principle, the conditionality principle: If two
experiments on the parameter �, E1 and E2 are available
and if one of these two experiments is selected with proba-
bility 0.5, the resulting inference on � should depend only on
the selected measurement. This principle seems difficult to
reject (Robert, 1994). The violation of the likelihood principle
introduces a dependence of the significance test result on
unobserved data or stopping rules, which is strongly criticized
by Bayesian proponents (Jeffreys, 1939; Berger and Sellke,
1987; Berger and Berry, 1988; Loredo, 1992; Jaynes and
Bretthorst, 2003). The Bayesian model selection is considered
to be far more flexible with respect to multiple hypothesis
testing, nonstandard distributions, consistency, and overfitting
(Berger and Pericchi, 1988). Furthermore, as pointed out by
Berger and Sellke (1987) and also observed in practice
(Davidoff, 1999; Goodman, 1999a, 1999b), frequentist sig-
nificance levels (P values) can be a highly misleading measure
of the evidence provided by the data against a null hypothesis.
For recent attempts to reconcile Bayesian evidence measures
and frequentist hypothesis test, see Sellke et al. (2001).
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B. Model averaging

In many situations the focus is less on singling out a specific
model but to make predictions. A common approach in this
situation is the following one: A model is selected from some
class of models on the basis of available data and then this
model is used for predictions. However, proceeding this way
ignores the uncertainty in the model selection, leading to
overconfident estimates of uncertainty about the quantities
of interest (Draper, 1995). Basing inferences on a single model
alone is risky; ambiguity about the correct model should affect
the predictions (Miller, 1984; Hoeting et al., 1999). In
principle, the Bayesian approach can handle this difficulty
simply by replacing the model choice with model averaging.
Suppose there are K models (M1; . . . ;MK), and prior proba-
bilities for the models pðMkjIÞ and for the respective parame-
ters pð�kjMk; IÞ are given. Then the posterior distribution for a
quantity of interest ! is computable as (Leamer, 1978;
Stewart, 1987)

pð!jd; IÞ ¼ XK
k¼1

pð!jd;Mk; IÞpðMkjd; IÞ; (126)

where pð!jd;Mk;IÞ is the posterior for! under the kth model.
Each term is weighted by the posterior model probability,

pðMkjd; IÞ ¼ pðdjMk; IÞpðMkjIÞP
k pðdjMk; IÞpðMkjIÞ ; (127)

where

pðdjMk; IÞ ¼
Z

d�pðdj�;Mk; IÞpð�kjMk; IÞ (128)

is the evidence (marginal likelihood) ofMk. pðdjMk; IÞ can be
considered as the probability that the data are generated from
model Mk (Clyde and George, 2004). If one model is over-
whelmingly more probable than the others, the model-
averaged posterior distribution pð!jd; IÞ is close to the
model-specific distribution pð!jd; Mk; IÞ, but otherwise the
distributions can be significantly different. Madigan and
Raftery (1994) showed that averaging over all models results
in a better (log) predictive score than using any one of the
models individually. A major difficulty in implementing this
approach is that the number of models to be considered are
often large and the computation of the evidence is in many
cases very time consuming. For nonlinear models it is only
now becoming feasible, by virtue of recent computational
advances and approximations (Raftery et al., 1997). Often
the RJMCMC algorithm (Green, 1995, 2003) is the most
convenient one to compute the model evidence (Clyde and
George, 2004). The model averaging approach is widely used
for variable selection (George, 2000), mixture modeling
(Richardson and Green, 1997, 1998), and nonparametric re-
gression [see, e.g., Denison et al. (1998), DiMatteo et al.
(2001), and Clyde and George (2004) for additional
references].

C. Case studies

1. The primordial power spectrum

The cosmic microwave background (CMB) was discov-
ered by Penzias and Wilson and explained by Dicke and

collaborators in 1965. The derived big-bang model is able
to explain the primordial abundances of light elements and
the origin of the cosmic microwave background (Kolb and
Turner, 1990; Durrer, 2008). The measured CMB spectrum
precisely matches the spectrum of a blackbody with a tem-
perature of 2.725 K and has the same temperature to high
precision in all directions of the CMB sky. However, this
homogenous temperature cannot be explained within the big-
bang model. Regions which have been causally connected at
the time of decoupling of matter and radiation (about 380 000
years after the big bang) correspond nowadays to an angle of
order 1�. But if areas which are farther apart than 1� had no
causal contact before the last scattering then there is no way
to establish thermal equilibrium (Bassett et al., 2006).
Theoretical considerations suggested the existence of relative
amplitudes near 10�4. These predicted fluctuations, however,
were not observed, although cosmologists kept searching
increasingly desperate for decades after 1965 (Uson and
Wilkinson, 1984). In the early 1980s Peebles (1982) sug-
gested that the reduced CMB fluctuation level could be
explained if a kind of ‘‘dark matter,’’ not interacting with
light, is present. Other problems of standard big-bang cos-
mology [e.g., the relic density problem (Bassett et al., 2006)]
then led to the introduction of an inflationary model
(Starobinsky, 1982; Linde, 1994): Quantum fluctuations of
the field responsible for inflation, called the inflation, are
stretched on macroscopic scales by the accelerated expansion
(Linde, 1983). The COBE mission (Mather, 2007) then dis-
covered the primordial density fluctuations in the CMB and
subsequent precise measurements of cosmic microwave
background fluctuations by various experiments [e.g., the
Wilkinson microwave anisotropy probe (WMAP) (Bennett
et al., 2003)] have helped to establish a standard cosmology,
the hot-big-bang model followed by an inflationary phase
(Bartelmann, 2010). It is therefore not exaggerated to state
that the measurement and analysis of CMB data led to a
revolution in our understanding of the Universe. Since the
detailed shape of the CMB power spectrum depends sensi-
tively on the cosmological models and parameters, these
models can be in turn constrained by high-precision measure-
ments. In the following an example of a Bayesian model
comparison on different possible cosmological models is
presented. A recently published map of fluctuations of the
cosmic microwave background based on 5-year WMAP data
(Hinshaw et al., 2009) is shown in Fig. 26. The fluctuations
of the temperature around the mean value of T0 ¼ 2:725 K
are on the order of 200 �K. It is convenient to express these
temperature fluctuations �T in spherical harmonics,

�Tð#;�Þ
T0

¼ X1
l¼2

Xl
m¼�l

almYlmð#;�Þ; (129)

where the monopole and dipole terms have been subtracted
out (Lidsay et al., 1997).

Inflation theory predicts that the alm are Gaussian random
variables. In a rotationally invariant case this translates to a
simplified representation of the angular correlation function
of the temperature fluctuations ha	l0m0 ; almi ¼ Cl�l0l�mm0 , in

terms of multipole moments Cl. For Gaussian fluctuations,
the set of Cl ’s completely characterizes the temperature
anisotropy. If the fluctuations are non-Gaussian, higher order
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correlation functions are necessary to fully characterize the
anisotropy (Kinney, 2001; Komatsu et al., 2009). The radia-
tion power spectrum is defined to be lðlþ 1ÞCl. Accurate
calculations of the power spectrum from cosmological mod-
els require the numerical solution of the coupled Einstein-
Boltzmann equations [e.g., CAMB

8 (Lewis et al., 2000) or
CMBFAST

9], usually coupled with MCMC codes such as

COSMOMC
10 or COSMONEST

11 for parameter estimation. The

computation of Clð�Þ as a function of the cosmological
parameters � can now be done with high accuracy of around
1% precision or better but is very time consuming. The power
of the CMB in constraining cosmological parameters comes
from the fact that a large number of data (the Cl spectrum) is
used to constrain about a dozen cosmological parameters
(such as total matter density or cosmological constant) and
a set of parameters to describe the inflaton potential (Lidsay
et al., 1997). The primordial power density spectra (not to be
confused with the radiation power spectrum) predicted by
many inflationary models is often written as (Kosowsky and
Turner, 1995; Leach et al., 2002; Bassett et al., 2006)

PðkÞ / ðk=k0Þns�1þð1=2Þ lnðk=k0Þnrunþ���: (130)

This parametrization encompasses the most commonly tested
power spectra, namely, the scale-invariant spectrum (nrun ¼
ns � 1 ¼ 0), the tilted spectrum (nrun ¼ 0), and a running
spectrum in which the tilt becomes a function of scale
(nrun ¼ dns=d lnk � 0).

Spergel et al. (2007) fitted a large variety of power spectra
models to the data of the 3-year WMAP mission. The refer-
ence model was the �-cold dark matter model (�CDM),
which predicts a tilted power spectrum

PðkÞ / kns�1; (131)

with ns < 1. The best-fit tilt parameter is ns ¼ 0:958� 0:016
based on the 3-year WMAP data. This is in good agreement

with the inflationary paradigm (Spergel et al., 2007). The
comparison of the different models was based on the relative
goodness of fit

�	2
eff ¼ 2 lnLð�CDMÞ � 2 lnLðmodelÞ; (132)

where L denotes the respective likelihood functions. The
differences in the likelihood values were relatively small
[j�	2

eff j 
Oð1Þ], except for the model without dark matter

(�	2
eff ¼ 248), which was clearly ruled out.

The best-fitting model was a form-free one with 15 loga-
rithmically spaced support points (see Fig. 27) which im-
proved the likelihood by �	2

eff ¼ �22 compared to the

�-cold dark matter model. However, it is not immediately
obvious if the model is fully adequate (Liddle, 2004; Trotta,
2007a) or if it is missing some structure which is supported
by measurements or if it is already overfitting the noisy data.
For that reason Bridges et al. (2009) used Bayesian model
selection to reconstruct the optimal structure in the spectrum.
Similar to the approach of Spergel et al. (2007) the spectrum
was modeled as piecewise linear between the support points
in k space whose amplitudes are allowed to vary. The number
of support points and their k-space positions were chosen
by Bayesian evidence. If there is initially no reason to
prefer model Mj over M1 the Bayes factor is given by

[cf. Eq. (119)]

B1j¼
pðDjMj;IÞ
pðDjM1;IÞ¼

R
d�jpðDj�j;Mj;IÞpð�jjIÞR
d�1pðDj�1;M1;IÞpð�1jIÞ : (133)

The evaluation of the multidimensional integrals is not trivial.
Several possible integration methods are suggested in
Sec. IV.E.4. Bridges et al. (2009) applied the method of
nested sampling (Skilling, 2006; Feroz et al., 2009). The
considered data included the 5-year release from WMAP
(Hinshaw et al., 2009) and results from the arcminute

FIG. 26 (color online). Sky map of the cosmic microwave tem-

perature fluctuations around the mean value of 2.725 K in galactic

coordinates (Mollweide projection) after subtraction of foreground

sources. The foreground-reduced internal linear combination map is

based on the 5-yr WMAP data. From Hinshaw et al., 2009.

FIG. 27 (color online). Linear interpolated reconstruction of the

primordial curvature fluctuation spectrum. The bins are logarithmi-

cally spaced. The errors show the 68% and 95% constraints and the

black diamonds show the mode of the likelihood. The dashed

vertical line on the left-hand side shows the values for k ¼ 0.
Only the amplitude was allowed to vary at each of the nodes.

From Spergel et al., 2007.

8http://www.camb.info.
9http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm.
10http://cosmologist.info/cosmomc/.
11http://www.cosmonest.org.
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cosmology bolometer array (ACBAR) (Reichardt et al.,
2009). For the full list of included data, see Bridges et al.
(2009).

In Fig. 28 the measured Cl values at low-l multipoles and
1� error bars from three releases of WMAP data (1 year,
3 years, and 5 years) are displayed. Especially at the low-l
side the measured values are at the edge of the 1� limit of the
best-fit model of the WMAP5 data. Please note the shift of the
octupole moment (second data column from the left) between
the first year data and the 3-year data.

To determine the degree of structure that can be usefully
constrained by the measured data Bridges et al. (2009) first
computed the evidence for the constant power spectrum, which
corresponds to the scale-invariant spectrum (ns � 1 ¼ 0). In
the next step, two support points at the edges of the k space
emulated a tilted spectrum. The next model had three nodes,
the new node added between two existing nodes. This process
was continued up to six support points. The evidence of each
model was computed by marginalizing the model parameters,
i.e., the amplitude parameters. In Fig. 29 the results for one up
to three support points are shown. The mean amplitude values
at the support points are indicated by symbols. A comparison
of the Bayes factors Bj1 [cf. Eq. (133)] of the different models

reveals that all models with more than three support points are
less likely than the constant model since the increased number
of parameters is not compensated by a significantly better fit.
The power spectrum structure shown in Fig. 27 is therefore
highly susceptible to overfitting resulting in artificial struc-
tures. The models with two and three support points are the
most likely ones, with Bayes factors of B21 ¼ 2 and B31 ¼ 3,
dominating the scale-invariant model and instead slightly
favoring a tilted primordial power spectrum. For the latest
results on the cosmic microwave background see, e.g., Jarosik
et al. (2011).

Bayesian model selection techniques have also been ap-
plied to estimate the discriminative power of planned experi-
ments (Mukherje, Parkinson et al., 2006; Pahud et al., 2007;
Trotta, 2007b), the first step toward Bayesian experimental
design (cf. Sec. VII) of future missions. Bayesian techniques

are also extensively used in the analysis of cosmological data;

see, e.g., Dickinson et al. (2009) and Dunkley et al. (2009).

For a recent review of Bayesian inference in cosmology, see

Trotta (2008).

2. Mass spectroscopy

Plasma-based surface processing is widely used in the

microchip and display industry, where many manufacturing

processes occur in plasma reactors. The identification and

quantification of plasma products for processing control

have become one of the urgent topics for plasma physicists.

Detailed knowledge of concentrations of reactive particles

such as free radicals is needed to understand the underlying

microprocesses (von Keudell, 2002). Mass spectroscopy is a

convenient technique to directly monitor the particle fluxes at

the substrate sites. Traditional quadrupole spectrometers are

widely used due to high sensitivity, reasonable stability, and

low costs. To be filtered in the quadrupole field, neutral gases

have to be ionized, most commonly by electron impact. At a

typical electron energy of 50–100 eV (used to achieve a high

ionization efficiency) stable molecules decompose in a vari-

ety of fragment ions leading to the so-called cracking pattern.

For overlapping cracking patterns subtraction methods

have been devised to disentangle the measured spectra

(Dobrozemsky and Schwarzinger, 1992). These methods suf-

fer from excessive error buildup and are not applicable, when

unstable constituents such as radicals are assessed, due to the

lack of knowledge of cracking patterns. Furthermore, the

fragmentation is also an instrument-specific property and

thus requires an instrument-specific calibration. A rigorous

analysis of composite mass spectra employs BPT which also
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FIG. 28 (color online). Low-l multipoles and 1� error bars from

three releases of WMAPWMAP data. The best-fitting fiducial

power spectrum based on WMAP5 inferences is indicated together

with the associated cosmic variance limits. The multipol values are

slightly shifted for clarity. From Bridges et al., 2009.
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FIG. 29 (color online). Piecewise linear interpolated reconstruc-

tion of the primordial spectrum with different degrees of flexibility.

Only the amplitude was allowed to vary at each of the support points

(indicated by filled symbols). In model 1 only the amplitude of a flat

spectrum could be varied (shown as a dashed line in both graphs), in

model 2 the slope could also be adjusted (two support points, solid

line, upper graph), and model 3 corresponds to a piecewise linear

model with two segments (corresponding to three support points,

solid line, lower graph). The Bayes factors are B21 ¼ 2 and B31 ¼ 3

in favor of the more complex models compared to the flat model 1.

Adapted from Bridges et al., 2009.
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succeeds without exact cracking patterns (Schwarz-Selinger
et al., 2001; Preuss et al., 2002).

Assuming a linear response of the mass spectrometer the
mass signal vector of measurement j, dj is the sum of the

contributions of all species in the mixture

dj ¼ Cxj þ �j (134)

with Gaussian noise �. The goal is to determine the posterior
distribution of the cracking matrix elements C, the vector xj

of species concentrations in measurement j, and also the
number of species E. �j is the vector of measurement errors

associated with the signal vector dj. The cracking column

vectors are normalized to sum up to 1. The likelihood is
given as

pðDjC;X;fSg;E;IÞ¼Y
j

1Q
i

ffiffiffiffiffiffiffi
2�

p
sij

exp

�
�1

2
ðdj�CxjÞT

�S�1
j ðdj�CxjÞ

�
: (135)

fSg denotes the ensemble of diagonal matrices Sj with com-

ponents ðSjÞii ¼ s2ij, given by the measurement error of the

jth measurement in the ith mass channel. The only compo-
nents which still need to be specified to start the Bayesian
inference are the prior distributions for the number of com-
ponents pðEjIÞ, the concentration matrix pðXjE; IÞ, and fi-
nally the cracking matrix elements pðCjE; IÞ. For the prior
probability of E a constant prior is chosen pðEjIÞ ¼ 1=Emax.
Cracking patterns of stable molecules are listed as point
estimates, e.g., in the tables of Cornu and Massot (1979),
with the dominant component being normalized to 1000.
Together with the requirement that the cracking coefficients
are confined to the interval [0, 1] this allows the computation
of an exponential prior for the cracking coefficients
pðCjE; IÞ. Note, however, that this prior, though still expo-
nential, is more complicated than Eq. (28) since the support
of the cracking coefficients is not infinite but rather confined
to the interval [0, 1] (Schwarz-Selinger et al., 2001). Prior
knowledge about the components of a CH4 plasma is chosen
from experimental experience. Common knowledge is that
H2 and CH4 are the main neutral constituents and all other
species remain below a few percent with declining intensity
as the carbon content of a species rises. This allows again the
assignment of exponential prior distributions for the concen-
trations. The probability for a particular set of E species in the
model is given in terms of the data D and variances fSg by
Bayes theorem,

pðEjD;fSg;IÞ¼pðEjIÞpðDjfSg;E;IÞ=pðDjfSg;IÞ: (136)

The marginal likelihood pðDjfSg; IÞ is obtained from

pðDjfS; Eg; IÞ ¼
Z

dCdXpðCjE; IÞpðXjE; IÞ
� pðDjC;X; fSg; E; IÞ: (137)

The dimension of the integral is high and increases with the
number of data sets represented by D and the number of
species chosen to model the observations. Such high-
dimensional integrals (for interpretation of the spectrum
shown in Fig. 30 the dimension exceeds 400) can be tackled

either by Markov chain Monte Carlo techniques (using

thermodynamic integration for a faster convergence) or by

saddle-point approximations which may not always exist in

the analysis of mass spectra. A low temperature methane

plasma was analyzed with respect to H atoms and H2 and

CnHx, n ¼ 1; . . . ; 4molecules. In particular, the identification

of the relevant radicals and their concentrations was of

interest.
As can be seen from Fig. 31 a model taking into account

only nonradical molecules cannot describe the measured data

well. The misfit decreases monotonously as more radicals are

incorporated into the model. By contrast, the evidence attains

a maximum for inclusion of three radicals (C2H5, CH3) and H

and decays slowly for more complicated models. This result

is rather reasonable since these radicals are produced by

FIG. 30 (color online). Comparison of data computed by two

different models (but with the same number of radicals) with

measured mass spectrometer data. Model 6 additionally incorpo-

rates the species C4H2 and C4H6 compared to model 1 which

contains only up to C3Hx species. The former model provides a

near perfect fit to the measured data even at high masses.
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FIG. 31 (color online). The natural logarithm of pðEjD;S; IÞ is

displayed using full dots; the scale is given on the left ordinate

(indicated by the upper arrow). The misfit between data and model

for different combinations of six free radicals (C2H5, CH3, H, C2H3,

CH, and CH2) (while keeping the set of nonradical species constant)

is indicated with open symbols, the corresponding scale is given on

the right ordinate as the averaged 	2 normalized by the number of

data points, indicated by the lower arrow. The abscissa shows the

number of radicals involved in the model, which were taken in the

given order. Lines are to guide the eye. From Kang and Dose, 2003.
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breaking just one atomic bond from the stable and abundant
molecules H2, CH4, and C2H6. The next step after the iden-
tification of the number of species contributing to the set of
measurements is the estimation of the concentrations and
the cracking coefficients. The required posterior probability
distribution is given by

pðX;CjD;S;E;IÞ¼pðXjE;IÞpðCjE;IÞpðDjC;X;S;E;IÞ
pðDjS;E;IÞ :

(138)

Detection and quantification of radicals is one attractive result
of the Bayesian analysis of a beam shutter (on or off) experi-
ment in the diagnostic of a low temperature plasma. Equally
important and equally demanding is the analysis of the neutral
gas mass spectra, in particular, for plasmas with hydrocarbon
fuel gases. Figure 30 shows a result from a comprehensive
data set from 34 mass channels for 27 different plasma con-
ditions of an inductively coupled pulsed plasma discharge,
together with calibration measurements for 11 species. Two
models with a different number of hydrocarbon molecules are
compared. The modeled data agree extremely well with the
measurements for masses below 35. For higher masses there is
a discrepancy between model 1 and the data, whereas model 6
gives a nearly perfect match, indicating the presence of C4H2

and C4H6 in the plasma. The large number of different species
possibly present in the plasma lead to a large number of
different models to be compared. A detailed discussion of
the results is beyond the scope of this paper and has been given
elsewhere. Nevertheless, the algorithmic implementation of
the Bayesian method is so efficient that CPU time is no longer
a valid argument to digress to less-reliable methods, except for
monitoring purposes (von Toussaint, Does, and Golan, 2004).

3. Discordant data sets

Experimental data from different sources may suffer from
discordant calibrations and possibly cover different regions of
the independent variables. Here an example is given of how to
treat unknown scale factors of different data sets.

Chemical erosion due to hydrogen ion bombardment is the
dominant erosion process for carbon-based plasma-facing
materials in fusion experiments. In the low flux regime, i.e.,
� < 1019=m2s, the mechanism of chemical erosion is reason-
ably well understood. At high fluxes �, such as experienced in
fusion devices, there was indication from various data that the
chemical sputtering yield decreases with ion flux above a
certain threshold (Roth and Garcia-Rosales, 1996). Weight
loss measurements are available for the low flux regime
(Balden and Roth, 2000). Those measurements are the most
reliable ones, since these data require no further calibration
factors. The function for the chemical erosion yield is taken
from Roth (1999). For the weight loss measurements it is
assumed that the erosion yield �ð�; �0Þ depends on flux �
through

�ð�; �0Þ ¼ Ychem

1

1þ �=�0
; (139)

with the threshold determined by the parameter �0. In con-
trast, calibration factors are necessary for mass spectroscopy
and optical emission spectroscopy. For the high flux data the

eroded molecule flux was determined spectroscopically from
the CH band intensity. The reduction of the CH band emission
to a total erosion yield requires accurate knowledge of the CH
optical transition rates. To allow here for an uncertainty of the
measured erosion data an unknown calibration factor � is
introduced. However, with erosion data collected in fusion
machines the situation may also be different. The optical
system used to record hydrogen and CH band emissions
may suffer from a calibration error which translates into a
common recalibration factor � for both the hydrogen flux �
and the erosion yield. In this case the appropriate description
is given by

�ð�; �0; �Þ ¼ Ychem � 1

1þ ��=�0
: (140)

The first term Ychem varies very weakly with flux � and is
considered constant. In the end it has to be distinguished
between a data set from weight loss measurements � consid-
ered to be scaled correctly

�i ¼ c�ð�i; �0Þ þ ei (141)

and the data sets from optical measurements �j with a

possible scale factor � either only for the erosion yield

��j ¼ c�ð�j; �0Þ þ Ej (142)

or also for the incoming flux

��j ¼ c�ð�j; �0; �Þ þ Ej: (143)

In the following only the two models Eqs. (141) and (143) for
the high flux regime are considered. Assuming the expectation
value of the errors hei and hEi to be zero and the variance
given by s2i and S2i , respectively, the likelihood functions for
the two data sets read

pð�j�;s;�0;c;IÞ¼
Y
i

1

si
ffiffiffiffiffiffiffi
2�

p

�exp

�
�1

2

�
�i�c�ð�i;�0Þ

si

�
2
�
; (144)

pð�j;S;�0;�;c;IÞ¼
Y
j

�

Sj
ffiffiffiffiffiffiffi
2�

p

�exp

�
�1

2

�
��j�c�ð�j;�0;�Þ

Sj

�
2
�
:

(145)

Unfortunately, the experimental error estimates for the avail-
able data sets are not compatible with the observed scatter of
the data (so-called outliers are present). Outlier tolerance may
be obtained in the following way (Dose and von der Linden,
1999). Assume that the probability density for the true error �
is given by a distribution which allows for large discrepancies
between scattered data and specified errors,

pð�ijsi; IÞ ¼ ð2=�Þðsi=�iÞ2 expðs2i =�2
i Þ; (146)

but with mean h�i ¼ s of the error estimate. Marginalization
of � yields a modified likelihood [cf. Eq. (146)]
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pð�j�;s;�0;c;IÞ¼
Y
i

1

si2�
ffiffiffi
2

p
�
1

�
þ1

2
½�i�c�ð�i;�0Þ�

��3=2

(147)

and similarly for Eq. (145). First the expectation value of the
scale parameter � is of interest. It is obtained by

h�i ¼
R
d�d�0�pð�; �0j�;�;�;�; s;S; c; IÞR
d�d�0pð�; �0j�;�;�;�; s;S; c; IÞ (148)

and can be rewritten using Bayes’ theorem

pð�; �0j�;�;�;�; s;S; c; IÞ

¼ pð�; �0; cjIÞ
pð�;�j�;�; s;S; c; IÞpð�;�j�; �0;�;�; s;S; c; IÞ:

(149)

The denominator in Eq. (148) equals 1 (as normalized proba-
bility distribution) and could be omitted. However, using
MCMC the estimate h�i is computed from the samples ob-
tained from the distribution ð�;�j�; �0;�;�; s;S; c; IÞ using
Eq. (148), where the integrals over � and �0 are replaced by a
summation over the MCMC samples.

The last term in Eq. (149) is the product of the two like-
lihoods. Assuming the independence of the two data sets �
and �:

pð�;�j�; �0;�;�; s;S; c; IÞ
¼ pð�j�; s; �0; IÞpð�j�;S; �0; �; c; IÞ: (150)

The prior distributions of

pð�; �0; cjIÞ ¼ pð�jIÞpð�0jIÞpðcjIÞ (151)

are taken to be flat for c, and a Jeffreys’s prior is used for �0.
For pð�jIÞ one can assume an expectation value for the scale
factor h�i ¼ 1. Any other choice would imply a deliberately
introduced bias in the calibrations used to obtain data set �.
By virtue of the principle of maximum entropy this results in
an exponential prior

pð�jIÞ ¼ expð��Þ: (152)

The Bayes factor for model M1 [see Eq. (139) for the
description of the low flux data combined with Eq. (142)
for the high flux data] versus model M2 [Eq. (139) with
Eq. (143)] is given by the ratio of the marginalized like-
lihoods

pð�;�jMk;�;�; s;S; IÞ
¼
Z

d�d�0dcpð�;�jMk; �; �0;�;�; s;S; c; IÞ
� pð�; �0; cjIÞ (153)

when no model is preferred a priori.
Computing the odds ratio reveals that the model given in

Eq. (139) for the low flux data (< 1020=m2 s) and Eq. (142)
for the high flux data is to be preferred by a factor of 10 over
model M2 for the data sets shown in Fig. 32. This does not
give any reason for deferring from the statement of the
experimentalists that the calibration for the incident hydrogen
flux is quite reliable and that the correction factor should be
applied to the eroded atom flux only, rather than to the

incident hydrogen flux and eroded atom flux (Dose et al.,
2001; Preuss et al., 2001). Therefore, the results shown in
Fig. 32 refer to the first model. The mean of the threshold
value is �0 ¼ 28:8� 10�23 m2 s with scale factors of
� ¼ 0:72 and 0.32 for the data from Grote et al. (1999)
and Tynan (1998), respectively. The values for � have been
derived using Eq. (148).

4. Mixture modeling

A mixture distribution gðxjIÞ is given by any convex
combination,

gðxjIÞ ¼ XK
k¼1

pkfkðxjIÞ;
XK
k¼1

pk ¼ 1k > 1; (154)

of other probability distributions (Marin et al., 2005). In most
cases, the fkðxjIÞ distributions are from the same parametric
family (e.g., Gaussian distributions with different means and
variances), leading to a parametric mixture model

XK
k¼1

pkfðxj�k; IÞ: (155)

Because of their flexibility mixture models (Marin et al.,
2005; Bishop, 2006) are an ideal tool to solve the ubiquitous
problem of background and source separation. Examples are
particle induced x-ray emission measurements (Padayachee
et al., 1999) and Auger data (Fischer et al., 2000), but also
x-ray images in high-energy astrophysics (Guglielmetti
et al., 2004, 2009). The basic idea is simple. The background

FIG. 32. Flux dependence of the chemical erosion yield of graph-

ite under hydrogen irradiation. The abscissa shows the flux of

deuterium, and the ordinate shows the carbon erosion yield in

eroded carbon atoms per impinging deuterium ion. The data set �
is represented by circles. Filled circles correspond to the subset for

which the fitting curve (solid line) is valid (E0 ¼ 30 eV, T ¼
600 K). Open triangles and squares represent data from the experi-

ments PSI-I (Grote et al., 1999) and PISCES (Whyte et al., 2001),

respectively, while the full symbols show the data sets after multi-

plication with the corresponding scale factors (0.72 and 0.32). Error

bars show the assigned experimental error. The gray shaded area is

the confidence range. From (Preuss et al., 2001.
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is relatively slowly varying compared to the signal.
Therefore, the background is represented by a smooth func-
tion. Data points that are significantly separated from the
background here are considered as outliers (i.e., coming
from a different distribution), as data points containing back-
ground and signal contributions. Given an observed data set
d ¼ fdig two complementary hypotheses can be formulated

Bi: di ¼ bi þ �i (156)

and

�Bi: di ¼ bi þ si þ �i: (157)

Hypothesis Bi specifies that di consists only of background bi
and noise �i and hypothesis �Bi that an additional source
contribution is present. For counting experiments (and only
positive signal contributions) the likelihood for the two dis-
tributions is given by the Poisson distribution,

pðdijBi; bi; IÞ ¼ ðbdii =di!Þ expð�biÞ; (158)

and

pðdijBi;bi;IÞ¼ ½ðbiþsiÞdi=di!�exp½�ðbiþsiÞ�: (159)

Since the signal intensities are unknown, they are marginal-
ized (integrated out). The average signal intensity s0 of the
data set can be used as a reasonable expectation value of the
prior distribution of the signal (von der Linden, Dose et al.,
1999)

pðsijs0; IÞ ¼ expð�si=s0Þ=s0: (160)

Then the marginal Poisson likelihood for the hypothesis �Bi is
given by

pðdij �Bi; bi; s0; IÞ ¼ expðbi=s0Þ
s0ð1þ 1=s0Þðdiþ1Þ

� �½ðdi þ 1Þ; bið1þ 1=s0Þ�
�ðdi þ 1Þ : (161)

The two different likelihoods for the propositions Bi and �Bi

are combined in the likelihood for the mixture model

pðdjb; s0; �; IÞ ¼
Y
i

½�pðdijBi; biÞ

þ ð1� �Þpðdij �Bi; bi; s0Þ�; (162)

where � is the probability that a data point contains no signal
contribution.� ¼ 0:5 is a noncommittal but unrealistic value,
stating whether or not each datum is equally likely to contain
a signal contribution. So far the appropriate basic functions
for the background model have not been specified. An ob-
vious choice in one dimension is to use cubic splines. Fischer
et al. (2000) trepresented he background by a cubic spline
together with a smoothness prior for the background,

pðbj�; IÞ ¼ 1

Z
exp

�
��

Z
dxjb00j2

�
; (163)

and applied to an Auger spectrum obtained with four-grid
low-energy electron-diffraction optics in the retarding field
mode. Such spectra constitute the superposition of the energy
derivative of the sum of the Auger electron energy distribu-
tion, the signal, and the much larger secondary electron

energy distribution, the background. The latter is known to

be rapidly varying in the low-energy region, as seen in
Fig. 33(a). The peaks at 47 eV come from an M2;3VV
Auger transition. While the background may be smooth, it

varies quite rapidly at low energies. The variation of the data

can be reduced by a logarithmic transformation of the signal
y0 ¼ logða� yÞ. The estimated background is given in

Fig. 33(b) as a solid line together with the transformed

data. After plotting the difference between the original spec-

trum and its estimated background shown in Fig. 33(c), a

possible secondary peak is observed at ð47þ 39Þ eV, which
is further substantiated by the autocorrelation of the back-

ground subtracted spectrum. The peak at 86 eV with an

amplitude of about 2% of the main signal corresponds to

the M1VV Auger transition for iron. In this case a proper

background subtraction reveals the presence of less apparent

signals in the Auger spectrum.

VI. INTEGRATED DATA ANALYSIS

A. Introduction

Technological progress has had a tremendous impact on

the setup of most physics experiments. Not only has the data

acquisition rate increased but also the number of diagnostics.

However, when there is a multiplicity of diagnostics, the

problem of combining their information arises. Typically, a

wide variety of diagnostics is employed simultaneously
to collect data covering complementary aspects of the

system under investigation. Therefore, many different,

FIG. 33. (a) An MVV Auger spectrum for iron. The estimated

background shown is obtained for the transformed spectrum shown

in (b). A logarithmic transformation of the Auger spectrum reduces

the curvature of the background. The estimated background is

shown as a solid line. The eight support points of the spline are

indicated by filled circles. (c) The signal obtained by subtracting the

data and the background. A secondary peak is present at an energy

of 86, 39 eV above the M2;3VV Auger transition, substantiated by

the autocorrelation of the signal vs energy difference (see inset).

Adapted from Fischer et al., 2000.
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heterogeneous information sources have to be linked and
often the amount of data requires automated analysis.

Essentially there are two main approaches used to integrate
information: data fusion in data space and data fusion in
parameter space. Both approaches will be addressed in the
following.

1. Data fusion in data space

The combination of data directly in data space is most
often applied in the field of image fusion. Here images
recorded by different sensors or at different times are fused
using algorithms operating on pixel or feature level. Typical
operations are rescaling of images to a common pixel spacing
or co-registering of images using extracted features. A review
of various techniques used in remote sensing is given by Pohl
and Van Genderen (1998). Although data integration in data
space may be computationally very efficient, the range of
applicability is restricted to data sets of sufficient homoge-
neity. In all other cases a second approach has to be used.

2. Data fusion in parameter space

In the case of simultaneous recording of data using het-
erogeneous diagnostics the linkage between the measured
data is provided by the state � of the observed physical
system. This is exploited by several data fusion techniques
operating in data space. Assuming that K diagnostics with
corresponding individual measurements dðkÞ, k ¼ 1; . . . ; K,
likelihoods pðkÞðdðkÞj�Þ, and posterior distributions

pðkÞð�jdðkÞÞ, as well as prior distributions pðkÞð�jIÞ are avail-

able, several methods for fusing the information have been
proposed:

a. Linear opinion pool

In the linear opinion pool approach (Manyika and Durrant-
Whyte, 1995; Punska, 1999), weights wk are assigned to the
posterior distribution of each information source, reflecting
the reliability and relevance of each diagnostic, yielding

pð�jdð1Þ; . . . ;dðKÞ; IÞ ¼ XK
k¼1

wkpðkÞð�jdðkÞ; IÞ; (164)

with 0 � wk � 1 and
P

K
k¼1 wk ¼ 1 (Stone, 1961). This ap-

proach to sensor fusion is often used to combine sensors using
simple rules [‘‘in the near field rely on sensor A or else use
sensorB’’; see, e.g.,Flynn (1988)]. However, the linear opinion
pool may assign a high probability to parameters which are
fully excluded by some of the diagnostics pðjÞð�jdðjÞ; IÞ ¼ 0.

This drawback naturally leads to the next approach.

b. Independent opinion pool

In the independent opinion pool (Manyika and Durrant-
Whyte, 1995) the posterior distributions from the different
sources are multiplied,

pð�jdð1Þ; . . . ;dðKÞ; IÞ / YK
k¼1

pðkÞð�jdðkÞ; IÞ

/ YK
k¼1

pðkÞðdðkÞj�; IÞpðkÞð�jIÞ: (165)

This overcomes the problem in linear opinion pooling of

accidentally assigning a large probability to a parameter

vector � which is contradicted by one or more sensor record-

ings. On the other hand, the simple multiplication of posterior

distributions gives undue credence to the prior distribution in

the standard case when there is common prior information

about the physical object under investigation pðkÞð�jIÞ ¼
pð�jIÞ, since it enters K times.

c. Pragmatic approach

In traditional diagnostic data analysis, physical parameters

are evaluated using separate models tied to the individual

diagnostics. Interdependencies between the diagnostic

models are then treated in an iterative fashion, where the

output from one diagnostic model is used as the input for the

other models in the next iteration (see Fig. 34) after taking

into account additional constraints (e.g., positivity). This

cycle is repeated until convergence (i.e., consistency) is

achieved. However, this common approach has several

drawbacks:

 The same data set may lead to different results depend-

ing on the ordering of the parameter updates.

 When many diagnostic models are interdependent

through common physical parameters, those diagnostic

models all provide information about (and thus

modify) parameters that in the traditional approach

are merely used as fixed inputs from the previous

iteration.

 Reliable uncertainties (and correlations) of the parame-

ter estimates are hardly accessible due to the lack of a

common model.

 The iteration cycle is very time consuming and often

requires repeated human input.

Especially the last point leads to a growing mismatch be-

tween data collection and data evaluation.

FIG. 34. Traditional approach to data fusion; based on some initial

guess of the required parameters the respective data of each

diagnostic are evaluated to yield individual best-fit parameters.

These are combined, and additional constraints (e.g., positive

density) are taken into account and used as starting parameters

for the next iteration cycle. This process is repeated until a self-

consistent solution is obtained.
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d. Independent likelihood pool

From a Bayesian point of view the data fusion problem can
be addressed using Bayes’ theorem (Manyika and Durrant-
Whyte, 1995; Fischer et al., 2003). The likelihoods of the
individual diagnostics depend on the state of the physical
object to be investigated pðkÞðdðkÞj�; IÞ; therefore, the prior

information about the physical object is the same for
all diagnostics pðkÞð�jIÞ ¼ pð�jIÞ yielding as posterior

distribution

pð�jdð1Þ; . . . ;dðKÞ; IÞ / pð�jIÞYK
k¼1

pðkÞðdðkÞj�; IÞ (166)

For the independent likelihood pool to be valid the condi-
tional independence of the observations has to be verified,
i.e., no hidden shared parameter dependences should exist.
This requires careful specification of the likelihood models.

The difficulties of proper integration of data within the
iterative approach increase tremendously with the number of
heterogeneous diagnostics to be combined. Starting around
1985 in many areas [e.g., astrophysics (Obric et al., 2006),
geophysics or remote sensing (Pohl and Van Genderen,
1998; Wald, 1998; Quartulli and Datcu, 2003), robotics
(Thomopoulos, 1990; Manyika and Durrant-Whyte, 1995),
and defense (Hall, 2004)], the requirement of combining
multisensor data was recognized as vital and became a strong
focus of research. Also the fusion physics community with
the requirement of linking on the order of 100 widely differ-
ent diagnostic instruments was experiencing a strong need to
develop a systematic approach for joint data evaluation.
Similar to earlier experiences in the robotics community it
soon emerged that the combination of heterogeneous diag-
nostics within a Bayesian framework was often conceptually
the easiest one, although the actual computations can be
demanding. In the following, two applications of Bayesian
data integration to fusion research are presented.

B. Application in fusion research

Starting around 2000 a Bayesian framework named inte-
grated data analysis (IDA) for magnetic confinement fusion
experiments (such as ASDEX-Upgrade or W7-X) was devel-
oped (Fischer et al., 2003; Dinklage et al., 2004; Fischer and
Dinklage, 2004) which several years later was also extended
to JET (Arshad et al., 2007; Svensson and Werner, 2007).
The key idea of the IDA framework is to reformulate the set
of individual inference problems of each diagnostic as a
single (Bayesian) inference problem on the unknown state
of the plasma being investigated, therefore essentially imple-
menting the independent likelihood pool concept. This ap-
proach is schematically visualized in Fig. 35: Starting with a
prior distribution of the unknown physics parameters the
posterior distribution is computed using the combined data
of the available different diagnostics taking advantage of all
interdependencies. A stringent prerequisite of this approach is
a careful assessment of all systematic and statistical errors
which have to be incorporated into the model, often leading to
non-Gaussian likelihoods. But, in turn, the combination of
different diagnostics has the potential to validate measure-
ments or detect insufficient or incomplete models.

1. Thomson scattering and soft x ray at W7-AS

A striking example with a, at first glance, counterintuitive
result is provided by the combination of the soft x ray and the
Thomson scattering diagnostics of the stellarator W7-AS
(Fischer et al., 2002, 2003). Two of the key quantities in
the description of confined plasmas are the electron tempera-
ture Te and the electron density ne. Both are accessible using
Thomson scattering of intense laser light (Sheffield, 1975).
The forward model is given by

dTh ¼ cgeomPne�Th

Z
d��ð�ÞSð�; Te; �Þ; (167)

where P is the laser power and �Th ¼ ð8�=3Þr2e is the total
Thomson scattering cross section for a single electron and re
corresponds to the classical electron radius. The geometry
factor cgeom considers both imaging effects and the overall

sensitivity of the detection system. �ð�Þ is the wavelength
dependent spectral transmission of the interference filters,
and Sð�; Te; �Þ is the scattering function of the scattered light
(Fischer et al., 2002) approximated by the analytical formula
of Matoba et al. (1979). In Fig. 36 a typical posterior
distribution of the electron density derived from Thomson
scattering data is displayed as a dashed line. For the case at
hand the electron density is asymmetric with a mode at ne ¼
15� 1019 m3 and a pronounced tail toward higher densities.
A joint evaluation with the soft x-ray diagnostic which
provides (in first approximation) only information about the
electron temperature (represented by the dotted line in
Fig. 36) results in a reduction of the uncertainty of the
electron density by 30% due to the strong suppression of
the high density part of the distribution. The explanation of
this surprising result is based on the correlation between
electron density and electron temperature. A closer inspection
of Eq. (167) reveals that the data are determined by the
product of electron density and the spectral distribution S,
which depends on electron temperature. This correlation
is clearly displayed in the 2D posterior distribution
pðne; TejdÞ (Fig. 37) derived from Thomson scattering data
of a Wendelstein 7-AS plasma discharge. The hyperbolic
shape of the posterior distribution explains the empirical

FIG. 35. Bayesian approach to data fusion; based on the prior

distribution of the required parameters the respective likelihood

distribution of each diagnostic is evaluated. Then, using Bayes

theorem the posterior distribution of the parameters is computed,

automatically taking into account all interdependencies of the

diagnostics.
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observation that the plasma pressure pe ¼ neTe is often well
reflected in the Thomson data despite displaying large un-
certainties in both electron temperature and electron
density. At low electron temperatures of around 100 eV the
electron density is highly uncertain and extends beyond
ne ¼ 60� 1019 m3, yielding the heavy tail in the marginal
electron density distribution shown in Fig. 36 as a dashed
line. Figure 38 shows the two-dimensional posterior distribu-
tion from soft x-ray measurements, where the electron tem-
perature is determined by comparing the soft x-ray continuum
emissivity measured with two different spectral edge filters
(Fischer et al., 2003). The temperature is determined to be
0:25� 0:02 keV ð2�Þ. Since the soft x-ray measurement
does not provide any information about ne, the probability
density in Fig. 38 is a vertical bar which is invariant in the
ne direction. Combining the Thomson scattering results and
the soft x-ray data using the independent likelihood pool

(or IDA) approach of multiplying the likelihood distributions

yields the two-dimensional posterior distribution displayed in
Fig. 39. As expected, the uncertainty of the electron tempera-
ture estimate is reduced by the inclusion of the precise soft

x-ray data. However, the density estimation is also affected by
the temperature measurement of the soft x-ray diagnostic

since the additional Te data lead to the suppression of the
low-Te, high-ne part of the probability density function. In
this example the low dimensionality of the parameter space

provides easy access to the benefits of a proper consideration
of parameter correlations. In problems with more parameters

the implications of the correlation structure are harder to
grasp, but are automatically taken into account by the IDA
approach.

2. Bayesian graphical models for diagnostics

When attempting to integrate large sets of diagnostics, the
number of interdependencies between the parameters in-
creases rapidly. Here the representation of the system by

Bayesian graphical models can be very helpful and also
provide some insight into less obvious interrelations,

FIG. 36. Posterior distribution of electron density at the position

z ¼ 6 cm for a plasma discharge derived from combined evaluation

of Thomson scattering data and x-ray diagnostic.

FIG. 37. Posterior distribution of electron temperature and elec-

tron density at the position z ¼ 6 cm for a plasma discharge derived

from Thomson scattering data.

FIG. 38. Posterior distribution of electron temperature given by a

soft-x-ray diagnostic. The constant values along the vertical direc-

tion indicate that the measurement provides no information about

the electron density ne.

FIG. 39. Two-dimensional posterior distribution of electron tem-

perature and electron density at the position z ¼ 6 cm for a plasma

discharge derived from Thomson scattering data.
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although all inference on proper probability distributions
in Bayesian probability theory, no matter how complex,
amounts to repeated application of the sum rule and the
product rule. Therefore, purely algebraic manipulation is
sufficient to solve complicated probabilistic models
(Bishop, 2006). However, Bayesian graphical models
(Pearl, 1988; Lauritzen, 1996; Cowell et al., 1999; Pearl,
2000; Jensen, 2001; Jordan, 2004; Darwiche, 2009) (also
called Bayesian networks) provide an efficient language to
visualize the dependencies in complex models and may be
used to express complex computations in terms of intuitive
graphical manipulations of the graph structure. Bayesian
networks consist of nodes connected by directed links, where
each node represents a random variable and the directed links
(arrows) express the probabilistic relationship between these
variables. If there is an arrow from node x to node y, x is said
to be a parent of y. Each node xi has a conditional probability
distribution pðxijqiÞ that quantifies the effect of the parents on
the node qi representing the set of parents of xi. Bayesian
graphical models are restricted to directed acyclic graphs
(DAG). A directed graph is called acyclic if there is no
directed path between the nodes Ai such that A1 ! � � � !
An subject to A1 ¼ An (Jensen, 2001). In this case the joint
distribution defined by a graph is given by the product over all
of the nodes of the graph

pðxÞ ¼ YN
i¼1

pðxijqiÞ; (168)

where x ¼ fx1; . . . ;xNg. A simple Bayesian graphical model
(DAG) with 4 nodes is shown in Fig. 40. In general the joint
probability distribution pðx1; x2; x3; x4Þ can be expressed as

pðxÞ ¼ pðx4jx1; x2; x3Þpðx3jx1; x2Þpðx2jx1Þpðx1Þ (169)

using the chain rule of probability. By using the conditional
independence relationships encoded in the network shown in
Fig. 40 a slightly simpler representation of the joint proba-
bility distribution is obtained with the help of Eq. (168).

pðxÞ ¼ pðx4jx2; x3Þpðx3jx1Þpðx2jx1Þpðx1Þ; (170)

a slightly simpler representation of the joint probability
distribution. However, for large sparse network huge savings
may be realized.

In most physics based data analysis problems the specifi-
cation of the topology of the corresponding Bayesian network
is straightforward: The intuitive meaning of an arrow in a

properly constructed network is usually that the parent node

has a direct influence on the successor nodes (Russell and

Norvig, 2003). Therefore, the natural sequence of building a

graphical model is to add the root causes (the underlying

physical quantities such as, e.g., electron density) first, then

the parameters they influence until the last nodes (the mea-

sured data) are reached, which have no direct causal influence

on the other variables. Once the network has been formulated

conditional independence (Dawid, 1979) between parts

of the network can be determined using concepts such as

d separation (Pearl, 1988) or Markov blankets. In favorable

circumstances the exploitation of conditional independence

may reduce the numerical effort of inference in Bayesian

networks by orders of magnitude. The most common algo-

rithm used for exact inference in general DAGs is the junction

tree algorithm (Lauritzen and Spiegelhalter, 1988; Aji and

McEliece, 2000; Kschischang et al., 2001), which is based on

a conversion of the DAG into an undirected graph with tree-

like topology (Huang and Darwiche, 1996; Cowell et al.,

1999) by clustering nodes together.
However, exact inference in Bayesian networks can have

exponential complexity. It can be shown that exact inference

in Bayesian networks is NP hard (Dagum and Luby, 1993) or

even number P hard, (number P hard, strictly harder than NP-

complete problems) (Cooper, 1990; Mertens, 2002; Russell

and Norvig, 2003). For many problems of practical interest, it

is therefore necessary to exploit various approximation meth-

ods as follows:

 Loopy belief propagation. For treelike graphs effective

and exact local message-passing algorithms for infer-

ence exist (belief propagation) (Pearl, 1988; Peot and

Shachter, 1991). The idea of loopy belief propagation is

simply to apply the belief propagation algorithm also to

networks which are not treelike. In some applications

this approach has empirically proven to be very effective

(McEliece et al., 1998; Murphy et al., 1999), which

was subsequently partly made transparent by theoretical

analysis (Weiss, 2000).

 Variational methods. The true probability distributions

p are replaced by (factorized) variational distributions q
and the Kullback-Leibler (KL) divergence ðp k qÞ is

minimized (Jordan, 1999). The variational framework

may be applied on a global level (approximating the full

posterior distribution over all random variables) or on

the conditional distributions of individual nodes or

groups of nodes until a tractable approximation is ob-

tained. For more details see Sec. IV.B.2 or Jordan et al.

(1999), Jaakkola and Jordan (2000), Jaakkola (2001),

and Wainwright and Jordan (2003).

 Sampling (Monte Carlo) methods. The simplest kind is

importance sampling, where random samples are gen-

erated from the distribution of the ‘‘root nodes,’’ and

then weighted by their likelihood (Shachter and Peot,

1989; Cheng and Druzdzel, 2000). Other approaches are

based on various MCMC techniques (cf. Sec. IV.D)

(Pearl, 1987), especially Gibbs sampling (Gilks et al.,

1994, 1996) has been widely used.

The graphical framework provides a way to view many

different algorithms (e.g., mixture models, factor analysis,

x x

x

x

2

1

3

4

FIG. 40. Representation of a Bayesian network as a directed

acyclic graph (DAG), the causal directions indicated by arrows.
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Kalman filters, hidden Markov models) and inference

problems as special instances of a common underlying formal-

ism (Jordan, 1999; Roweis and Ghahramani, 1999) and to take

advantage of the specialized techniques developed for graph

structures. However, so far the use of graph-theoretical algo-

rithms (besides simple visualization of the problem as a

Bayesian network) in physics based problems is very limited.

On the one hand, this is due to a good understanding of the

problems [the causal structure is very often known, in contrast

to other areas such as sociology (Pearl, 2000; Spirtes et al.,

2000)] thus ‘‘automatically’’ leading to a very good represen-

tation with very little room for improvement. On the other

hand, many problems of interest were simply too large to be

handled. Here the increase of computing capabilities is pro-

viding some perspective, where especially the demanding

problem of learning the underlying graph structure from ob-

servations (Murphy, 2001; Friedman and Koller, 2003) may

benefit. One of the few examples of the application of a

Bayesian graphical model on a larger scale is given by

Dinklage, Fischer, and Svensson (2003). There the directed

acyclic Bayesian graphical model for several diagnostics at the

W7-AS stellarator is derived. The model includes the

Thomson scattering diagnostic, a microwave interferometer,

and diamagnetic energy measurements. Despite the relatively

small number of diagnostics, the derived graphical model

covers a whole page in Dinklage, Fischer, and Svensson

(2003) and is of surprising complexity. A fundamental cause

of the complexity of the acyclic graph is the required mapping

of different diagnostic signals to a common magnetic coordi-

nate system. This mapping is obtained from plasma equilib-

rium calculations which in turn depend on the measured data.

The mapping will therefore be uncertain and increase the

uncertainty of the parameter estimation. Thus to obtain a

self-consistent solution the integrated model must include a

module for calculating the magnetic coordinate system from

estimated profiles (which themselves rely on the estimated

mapping). It is worth noting that despite the seemingly circular

reasoning the actual computation is going straight from the

values for electron density, electron temperature, and ion

pressure along the directed edges to the terminal nodes of

the diagnostics without any feedback loops. The outcome

of the graphical model is the joint probability distribution of

model parameters and measured data. Inference of specific

parameters has been done using standard-MCMC techniques.

Figure 41 shows the closed flux surfaces together with their

uncertainty (represented by the width of the flux surface)

derived from a large number of posterior samples (Dinklage,

Fischer, and Svensson, 2003; Svensson et al., 2004) based on

the analysis of the graphical model of the W7-AS diagnostics.

Neglect of the position and angle dependent uncertainty of the

flux surfaces results in a strong underestimation of the total

uncertainty of the free parameters (electron density, electron

temperature, and ion pressure).
Since the integration of different diagnostics within the

independent likelihood approach is straightforward, once

adequate (forward) models exist an increasing number of

fusion experiments [e.g., ASDEX-UG (Fischer et al.,

2008), W7-X (Dinklage et al., 2003), JET (Arshad et al.,

2007; Svensson and Werner, 2007), and MAST (Hole

et al., 2009)] are developing frameworks for Bayesian

integrated data analysis. Additional challenges arise if real-
time or monitoring requirements are present. Especially for
superconducting tokamaks with longer pulse lengths or stell-
erators with quasicontinuous operation offline processing is
not sufficient (Dinklage et al., 2003). Here suited simplifi-
cations (e.g., Laplace approximation) have to be considered
because in most cases the evaluation of the exact joint
posterior distribution takes too long.

C. Application in robotics: SLAM

Simultaneous localization and mapping (SLAM) is one of
the most fundamental problems in mobile, autonomous ro-
botics and has been the subject of extensive research in the
past decades (Leonard and Durrant-Whyte, 1992; Borenstein
et al., 1996; Bailey and Durrant-Whyte, 2006; Durrant-
Whyte and Bailey, 2006). In the SLAM setting the robot is
required to derive a map from its (noisy) perceptions and
simultaneously determine its own position in the map. Since
robot motion (or the perception) is inaccurate, the general
problem of map building is an example of a chicken-and-egg
problem: To determine the location of the landmarks, the
robot needs to know where it is. To determine where it is, the
robot needs to know the location of the landmarks (Thrun
et al., 1998). In the key paper by Smith et al. (1990) the
SLAM problem was reformulated as a probabilistic state-
estimation problem and it was shown that as the robot moves
through an unknown environment taking relative measure-
ments of points of interests, the estimates are correlated
because of the common error in the estimated robot location.
Subsequently it was derived that the structure of the SLAM
problem critically depends on those cross correlations be-
tween landmark estimates (Dissanayake et al., 2001), giving
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FIG. 41 (color online). Uncertainty of the magnetic flux surfaces

represented by posterior samples. Adapted from Dinklage et al.,

2003b.
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rise to a structure which may be paraphrased as certainty of
relations despite uncertainty of positions (Frese, 2006).
Figure 42 shows this behavior. Starting in the upper right
hallway (indicated by an open circle) the trajectory recorded
by a mobile robot using odometric measurements is displayed
as a continuous line superimposed on a map of the building.
Since the measurement uncertainties (i.e., the orientation of
the robot) add up, the global map shows a very large mis-
match although the local relations are well preserved. From a
statistical perspective the SLAM problem can be viewed as a
temporal Bayesian inference problem, estimating the joint
posterior

pðXtþ1;Mjz1:tþ1; a1:tÞ (171)

for the actual positionXtþ1 and the mapM from sequences of
actions a (robot movements) and the tþ 1 measurements
z1:tþ1.

Often the model of the robot movement is simplified to two
dimensions. Then the pose Xt ¼ ðxt; yt; �tÞ of the robot is
defined by its two Cartesian coordinates (x, y) and its heading
with value � at instant t. An action a (a motion command)
consists of a combination of rotational and translational
motion. Since the robot’s motion is inaccurate, the effect of
a control signal a on the robot’s location X is given by a
probability density

pðXtþ1jXt; atÞ; (172)

which is commonly modeled by triangular (Thrun et al.,
1998) or Gaussian distributions (Russell and Norvig, 2003).
In Fig. 43, the probability density of the robot’s location after
some actions a is visualized using 2D projections onto the
x-y plane. The particular shape of the distribution results from
accumulated translational and rotational uncertainties as the
robot moves.

As a model for the robot’s perception it is assumed that the
robot can observe and identify landmarks, and the sensors
report the range and bearing of the landmarks. It is also
assumed that the perceptual component suffers from
Gaussian noise. Then the model of the robot’s perception
can be described by

pðztjxt;MÞ ¼ Nðẑt;�zÞ; (173)

where ẑt ¼ ð r
��Þ is given by the column vector of the distance

r between the robot and the landmark and the relative
angle ��

ẑt ¼ hðxtÞ ¼ r
��

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxt � xiÞ2 þ ðyt � yiÞ2

p
arctan½ðyi � ytÞ=ðxi � xtÞ� � �t

 !
(174)

for a robot at xt ¼ ðxt; yt; �tÞT and a landmark at (xi, yi). The
new estimate pðXtþ1;Mjz1:tþ1; a1:tÞ can then be computed
from the current state pðXt; Mjz1:t; a1:t�1Þ and the observa-
tion ztþ1 using

pðXtþ1; Mjz1:tþ1; a1:tÞ
/ pðztþ1jXtþ1;MÞ

Z
dxtpðXtþ1jxt; atÞ

� pðxt;Mjz1:t; a1:t�1Þ: (175)

Equation (175) provides a straightforward recursive recipe
for updating. However, the dimensionality of the state space
is large: The number of landmarks (n) and robot poses (p)
may be of the order of thousands yielding N ¼ 2nþ 3p
unknown parameters. Furthermore, n and p may depend on
the unknown size of the environment to be explored. Thus,
although Eq. (175) provides a formal solution to the SLAM
problem, the search for efficient algorithms suited for au-
tonomous robots is still ongoing.

Several methods have been proposed for approximate
solutions of Eq. (175), most notably the extended Kalman
filter (EKF) and Monte Carlo particle filter.

In the extended Kalman filter technique the joint probabil-
ity density is approximated by a single (high-dimensional)
Gaussian distribution and the nonlinear motion and sensor

FIG. 42 (color online). Internal representation of the trajectory

(continuous line) derived from odometer data of a robot exploring a

building superimposed onto a map of the building (dark areas

represent walls). The starting point is in the upper right corridor

of the building, indicated by an open circle. The mismatch is

continuously increasing due to accumulation of orientation angle

uncertainties. Adapted from Fox et al., 1999.

FIG. 43 (color online). 2D projection of the 3D-probability dis-

tribution visualizing the accumulated localization uncertainty after

moving from a precisely known initial position with several 90�

turns. The robot is more likely to be in darker areas. The line

describes the ideal trajectory of the robot. Adapted from Fox et al.,

1999.
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models are linearized using Taylor expansion. Using this first-
order approximation the integration in Eq. (175) can be done
analytically, yielding a Gaussian probability distribution with
modified mean and covariance for the map and position
estimates in each step. This approach maintains all depen-
dencies between the variables requiring updates of an
N � N-covariance matrix and resulting in computing times
of OðN2Þ. To avoid the quadratic complexity other ap-
proaches exploit, e.g., the limited field of view due to ob-
stacles or sensor range. Thus, at any point in the environment
only a few landmarks in the vicinity of the robot are observ-
able. This number (k) depends on the environment and the
sensor, but it does not grow when the maps get larger. An
overview of different recent algorithms has been given by
Frese (2006).

An example of the EKF in a SLAM setting is shown in
Fig. 44: It shows an environment with eight landmarks,
arranged in two rows. The robot starts at a well-defined
location, its own positional uncertainty indicated by the
shaded error ellipses. As the robot moves it gradually loses
certainty as to where it is. This uncertainty is also transferred
to the position of the detected landmarks (open error ellipses).
When the first landmark is detected again, the position un-
certainty of all landmarks decreases since the estimates of
robot and landmark positions are highly correlated
(cf. Fig. 45). Another algorithmic approach to a computa-
tional efficient estimate of Eq. (175) is based on particle
filters (cf. Sec. IV.E.2.b). The insight that the landmark
estimates are conditionally independent given the robot’s
pose was used by Montemerlo et al. (2002) to derive an
algorithm called fastSLAM. The conditional independence
allows the representation of the probability distribution by
particles where each particle represents a sampled robot
trajectory and associated Gaussian distributions of the
landmark positions without requiring a full-system-size

covariance matrix. This reduces the dimensionality of the
probability space to be covered by the particles. The time
to integrate a new measurement scales as M logn, with M the
number of particles used to represent the probability distri-
bution. Additionally, the fastSLAM algorithm can accommo-
date nonlinear sensor and motion models. However, it may
suffer from a loss of particle diversity (Bailey and Durrant-
Whyte, 2006): The particle filter is working in the space of
the robot trajectory and the number of particles required to
maintain a certain coverage of this space is therefore expo-
nential in the length of the trajectory. A smaller number of
particles may no longer represent the probability distribution
with sufficient accuracy and may become inconsistent.
Therefore, hybrid approaches have been suggested to com-
bine the strengths of EKF (long-term memory) and the
flexibility of the particle filter approach (Brooks and Bailey,
2008), enabling the mapping also in complex environments
with a large number of landmarks. Other work focuses on
the integration of the Global Positioning System based data
into the SLAM inference problem using a sparse graphical
network (Golfarelli et al., 1998) representation, generating
maps with up to Oð108Þ features (Thrun and Montemerlo,
2006). Proper handling of dynamic environments (e.g.,
crowded places) is still an active research topic although
some progress has been made (Fox et al., 1999; Thrun and
Fox, 2005). Finally, there are quite recent attempts to use
decision-theory based reasoning when active loop closing is
beneficial for improved mapping (Ji et al., 2009), a special
case of experimental design which will be discussed in the
next section.

VII. BAYESIAN EXPERIMENTAL DESIGN

In the previous sections about parameter estimation and
model comparison many examples demonstrated how
Bayesian probability theory can be used for quantitative
inference based on prior knowledge and measured data.
However, Bayesian probability theory is not a magic black
box guaranteed to compensate for badly designed experi-
ments. Information absent in the data cannot be revealed by

FIG. 44 (color online). The extended Kalman filter (EKF) applied

to the robot mapping problem. The robot’s path is indicated by the

dotted line, and its estimations of its own position are shown as

shaded ellipses which may deviate from the true position (indicated

by crosses). Eight distinguishable landmarks of unknown location

are indicated by small squares, and their location estimates by the

robot are shown as open ellipses. During the path the robot’s

positional uncertainty is increasing, as is its uncertainty about the

landmarks it encounters. Adapted from Russell and Norvig, 2003.

FIG. 45 (color online). Once the robot senses again the first

landmark (indicated by an arrow) the uncertainty of all landmark

estimates decreases (indicated by the reduced size of the unfilled

ellipses), thanks to the fact that all the estimates are correlated. In

addition the new position estimate of the robot itself is also much

more precise. Adapted from Russell and Norvig, 2003.
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any kind of data analysis. This immediately raises the
question of how the information provided by a measurement
can be quantified and, in the next step, how to optimize
experiments to maximize the information gain. Here one of
the very recent areas of applied Bayesian data analysis is
entered: Bayesian experimental design is an increasingly
important topic driven by progress in computer power and
algorithmic improvements (Loredo and Chernoff, 2003a).

So far it has been implicitly assumed that there is little
choice in the actual execution of the experiment; in other
words, the data to be analyzed were assumed to be given.
While this is the most widespread use of data analysis, the
active selection of data is holding great promise to improve
the measurement process. There are several scenarios in
which an active selection of the data to be collected or
evaluated is obviously very advantageous, e.g., expensive
and/or time-consuming measurements; thus one wants to
know where to look next to learn as much as possible, or
when to stop performing further experiments; design of a
future experiment to obtain the best performance (informa-
tion gain) within the scheduled experimental scenarios; se-
lection of the most useful data points from a large amount of
data; and an optimal (most informative) combination of
different experiments for the quantity of interest.

A. Overview of the Bayesian approach

The theory of frequentist experimental design dates
back to the 1970s (Chernoff, 1972; Fedorov, 1972). About
the same time the Bayesian approach was put forward by the
influential review of Lindley (1972). Lindley’s decision-
theoretic approach involves the specification of a suitable
utility function UðD; �Þ which depends on the result (data)
of an experiment and the design parameters �. Design pa-
rameters are understood as parameters of an experiment
which are accessible and adjustable. Examples are the
point in time for the next measurement or the analysis
beam energy. The utility function has to be defined with
respect to the goals of the experiment and cannot be derived
from first principles. It may contain considerations about the
cost of an experiment or the value of a reduced uncertainty of
a parameter estimation. For a discussion about the formal
requirements for utility functions, see Bernardo and Smith
(2000). The experimental design decision �	 (e.g., where to
measure next) which maximizes the chosen utility function
UðD; �Þ is the optimal design. However, the data D are
uncertain before the actual measurement due to statistical
or systematic uncertainties and an incomplete knowledge
about the parameters of the physical system. Therefore, the
Bayesian experimental design has to take into account all
possible data sets and the utility function has to be marginal-
ized over the data space, which results in the expected
utility (EU)

EUð�Þ ¼
Z

dDpðDj�; IÞUðD; �Þ: (176)

As can be seen from Eq. (176) the expected utility is the
integral over all possible data weighted by the probability of
the data under the design decision � and the utility of the
corresponding data. The required predictive distribution

pðDj�; IÞ is not immediately accessible but can be expressed
in terms of likelihood and prior, both are depending on the
parameter vector �

pðDj�; IÞ ¼
Z

d�pðDj�; �; IÞpð�jIÞ: (177)

Substituting pðDj�; IÞ into Eq. (176) by Eq. (177) yields

EUð�	Þ ¼ max
�

Z
dD

Z
d�pðDj�; �; IÞpð�jIÞUðD; �Þ

(178)

for the best experimental design decision. Therefore, the
expected utility can be expressed in terms of likelihood and
prior distributions combined with a suitable utility func-
tion UðD; �Þ. The evaluation, however, requires nested
integrations. Only for very few cases (almost always
involving Gaussian likelihoods and linear models) can the
integration over parameter space and data space be performed
analytically.

B. Optimality criteria and utility functions

The most widely used optimality criteria for experimental
design are derived from various desirable properties of pa-
rameter estimates of linear models: Minimizing the average
variance of the best estimates of the regression coefficients by
minimizing the trace of the variance-covariance matrix is
called A optimality (Fedorov, 1972; Steinerg and Hunter,
1984). The sometimes harmful neglect of the parameter
covariances in A optimality motivates D optimality, where
the determinant of the variance-covariance matrix is mini-
mized (Steinerg and Hunter, 1984). Other optimality criteria
focus on the variance of predictions instead of the variance
of the parameter estimates. For an overview of the various
optimality criteria see, e.g., Pukelsheim (1993) and Atkinson
et al. (2007) and the relationship between frequentist and
Bayesian optimality criteria is discussed by Chaloner and
Verdinelli (1995) and DasGupta (1996). However, the focus
on the best estimate �	 only as a basis for experimental design
does not take into account the full information content of
the probability distribution of the parameters in nonlinear
settings. The suggestion of Lindley (1956) to use the infor-
mation gain of an experiment as a utility function has been
followed by several (Stone, 1959; DeGroot, 1962; Bernardo,
1979a; Luttrell, 1985; DeGroot, 1986; Loredo and Chernoff,
2003a). The information gain is given by the expected
Kullback-Leibler divergence between the posterior distribu-
tion pð�jD; �; IÞ and the prior distribution pð�jIÞ:

UKLðD; �Þ ¼
Z

d�pð�jD; �; IÞ logpð�jD; �; IÞ
pð�jIÞ : (179)

For the standard Gaussian linear regression model this utility
function yields the same results as using a Bayes
D-optimality criteria for design (Chaloner and Verdinelli,
1995). A discussion of some of the properties of the
Kullback-Leibler divergence as a utility function in experi-
mental design has been given by MacKay (1992b). From a
theoretical point of view the decision-theoretic formulation of
experimental design is well understood. Nevertheless, non-
linear experimental design methods received only little
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attention within and outside the physics community [see, e.g.,
statements about lack of real applications by Goldstein
(1992), Chaloner and Verdinelli (1995), and Toman (1999)],
until Loredo and Chernoff (2003b) published an illustrative
example about optimization of observation times in astron-
omy highlighting the potential and feasibility of nonlinear
Bayesian experimental design,

C. Adaptive exploration for extra-solar planets

The search for extra-solar planets is one of the foci of
astrophysical research programs, supported by space based
missions such as Kepler (Koch et al. (2010)) or by ground
instruments such as HARPS (high-accuracy radial velocity
planet searcher). But the necessary high-accuracy measure-
ments are time consuming, seriously restricting the number of
stars that can be examined in search of extra-solar planets.
Observation time is thus a precious resource that must be
carefully allocated. Therefore, observations of stars with com-
panions should be scheduled optimally to determine the orbi-
tal parameters with the fewest number of observations. Loredo
and Chernoff (2003a) addressed the problem of determining
the best time for the next measurement of the radial velocity of
a star known to have a single planetary companion. The time-
dependent radial velocity is a nonlinear function given by

vðtÞ ¼ v0 þ Kfe cos!þ cos½!þ �ðtÞ�g; (180)

where the true anomaly �ðtÞ can be computed by the joint
solution of two nonlinear equations for the eccentric anomaly
[an angular parameter that defines the position of a body that
is moving along an elliptic Kepler orbit (Murray and Dermott,
1999; Wright and Howard, 2009)],

EðtÞ � e sin½EðtÞ� ¼ 2�t=��M0; (181)

and

tan
�ðtÞ
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

s
tan

EðtÞ
2

: (182)

The six parameters of the model are the orbital period �, the
orbital eccentricity e, the velocity amplitude K, the center-of-
mass velocity of the system v0, the mean anomaly at t ¼ 0,
M0, and the argument of the pericenter!. Please note that the
parametrization differs slightly from the one used in the
parameter estimation example (see Sec. III.B.1). Loredo and
Chernoff (2003a) simplified the treatment, taking into account
only three of the six parameters and assuming Gaussian
additive noise � with a standard deviation �, so that the
measured datum di at time ti is given by

di ¼ vðti; �; e; KÞ þ �i: (183)

For parameter values of � ¼ 800 d, e ¼ 0:5, K ¼ 50 m=s,
and � ¼ 8 m=s a vector d of ten simulated observations was
computed. In Fig. 46 the ten data points with error bars are
displayed together with the true velocity curve. The posterior
distribution of the parameters is given by Bayes’ theorem as

pð�; e; Kjd; IÞ / pðdj�; e; K; IÞpð�; e; KjIÞ; (184)

where pð�; e; KjIÞ is the prior probability density for the
orbital parameters and ðdj�; e; K; IÞ is the Gaussian likelihood
function. For the data set shown in Fig. 46 rejection sampling

was used to obtain independent samples from the posterior
distribution. Figure 47 shows the � and e coordinates of N ¼
100 such samples, displaying the two-dimensional marginal
distribution pð�; ejd; IÞ. The distribution is roughly located at
the true values of ð�; eÞ ¼ ð800; 0:5Þ but with an asymmetric
shape and still significant uncertainty. Based on the posterior
distribution the predictive distribution pðDjt;d; IÞ for a datum
D at a future time t can be computed. For given values of (�, e,
and K) the predictive probability density for D is a Gaussian
centered at vðt; �; e; KÞ. The predictive distribution
pðDjt; �; e; K;d; IÞ is thus given by the product of the
Gaussian likelihood for D and the posterior distribution
pð�; e; Kjd; IÞ. To account for the parameter uncertainty the
model parameters have to be marginalized. Use of the poste-
rior samples circumvents the time-consuming integration over
the parameter space, since pðDjt;d; IÞ can be expressed as

FIG. 46 (color online). The true velocity curve used for the

generation of mock data is displayed as a dashed line. From this

velocity curve ten simulated observations distorted with Gaussian

noise were generated. These observations are given as points with

error bars. From Loredo and Chernoff, 2003b.

FIG. 47. Posterior samples from the probability distribution for

two velocity curve parameters, the spread indicating the uncertainty

in the marginalized parameters. The time for an orbital period is

given by �. The orbital eccentricity e describes the amount by which

an orbit deviates from a perfect circle: e ¼ 0 is a perfectly circular

orbit and e ¼ 1 corresponds to an open parabolic orbit. From

Loredo and Chernoff, 2003b.
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pðDjt;d;IÞ¼
Z
d�
Z
de
Z
dKpð�;e;Kjd;IÞ

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

p exp

�
�1

2

½D�vðt;�;e;KÞ�2
�2

�

� 1

N

X
�i;ei;Ki

1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

p exp

�
�1

2

½D�vðt;�i;ei;KiÞ�2
�2

�
:

The last line gives a Monte Carlo integration estimate of the
predictive distribution using the independent samples from the
posterior distribution. In Fig. 48 the velocity vðt; �; e; KÞ is
shown for the first 15 sampled parameter values (t; �i, ei, and
Ki) as thin solid lines. The spread of the velocity functions
represents the uncertainty in the predictive distribution. The
uncertainty is largest where the velocity changes most quickly
and is slowly increasing with time since predictions with
different periods fall increasingly out of synchronization.
Once the predictive distribution is available the expected
utility can be computed as a function of time using
Eq. (176),

EUðtÞ ¼
Z

dDpðDjt;d; IÞUðD; tÞ: (185)

For the present problem where the width of the noise distri-
bution does not depend on the underlying signal, it can be
shown that the expected information gain is equal to the
entropy of the predictive distribution (Sebastiani and Wynn,
2000)

EUðtÞ ¼
Z

dDpðDjt;d; IÞ log½pðDjt;d; IÞ�: (186)

This equality is saving one (possibly high-dimensional) inte-
gration over the parameter space otherwise needed for the

computation of the information-based utility function. Thus
the best sampling time is the time at which the entropy
(uncertainty) of the predictive distribution is largest. The thick
line in Fig. 48 shows the estimate of EUðtÞ using base-2
logarithms so that the relative information gain is measured
in bits (ordinate on the right-hand side). It is largest near the
periastron crossings, thus recommending an additional obser-
vation at the maximum at t ¼ 1925 d. Incorporating the new
noisy datum measured at t ¼ 1925 d into the posterior yields
a significantly reduced uncertainty in the period estimate as a
comparison of the posterior distributions without (see Fig. 47)
and with the new data point (Fig. 49) reveals. The optimiza-
tion procedure can be repeated and the well-chosen data points
yield an increase in precision exceeding the rule-of-thumb

ffiffiffi
n

p
dependence often seen for random sampling (Loredo and
Chernoff, 2003a).

D. Optimizing NRA measurement protocols

Nuclear reaction analysis (NRA) is a well-known tech-
nique for depth profiling of light elements in the near-surface
region of solids (up to depths of several�m) using ion beams
with energies in the MeV range. NRA measurements yield
quantitative information on the isotopic depth distribution
within the target and are highly sensitive. For an introduction
to NRA for material analysis see, e.g.. Amsel and Lanford
(1984) and Tesmer and Nastasi (1995).

The basic principle of NRA is straightforward: The sample
is subjected to an energetic ion beam with an initial energy E0

i

and an angle of incidence �, which reacts with the species of
interest. The products of the reaction are measured under a
specified angle �. Given the total number of impinging ions
Ni, the energy dependent cross section of the reaction �ðEÞ,
the efficiency of the detection, and the geometry of the setup
�, the measured total signal counts di depend (in the limit of

FIG. 48 (color online). The true velocity curve used for the

simulation of the data is given as a dashed line. A posterior sample

of 15 predicted velocity curves based on the observations is given

by thin solid lines; their spread is a measure of the uncertainty of the

predicted velocity. The expected information gain for a further

measurement at each time is indicated by a thick solid curve; the

information gain is given on the right axis.Note that the positions of

largest uncertainty and largest information gain coincide. From

Loredo and Chernoff, 2003b.

FIG. 49. Samples from the probability distribution for two veloc-

ity curve parameters after one additional measurement at the best

time. Comparison with Fig. 47 reveals that the parameters have a

significantly increased precision, the samples are less disperse. The

time for an orbital period is given by �. The orbital eccentricity e
describes the amount by which an orbit deviates from a perfect

circle: e ¼ 0 is a perfectly circular orbit and e ¼ 1 corresponds to

an open parabolic orbit. From Loredo and Chernoff, 2003b.
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small concentrations) linearly on the concentration profile
cðxÞ of the species in depth x:

di ¼ dðE0
i Þ ¼ �Ni

Z xðE0
i
Þ

0
dx�ðEÞcðxÞ þ �i

¼ �Ni

Z xðE0
i
Þ

0
dx�ðEðx; E0

i ÞÞcðxÞ þ �i: (187)

The measurement uncertainty �i is approximated by a
Gaussian distribution �i / Nð0; �iÞ. Repeated measurements
with different initial energies E0

i provide increasing informa-

tion about the depth profile of the species of interest. The
optimization of NRA measurements of deuterium profiles for
the weakly resonant nuclear reaction Dþ 3He ! pþ 4Heþ
18:352 MeV (Amsel and Lanford, 1984) has been studied by
von Toussaint et al. (2008). The high Q value of 18.352 MeV
provides an analysis depth for deuterium of several �m even
in high-Z materials such as tungsten. Therefore, the reaction
is commonly used to study the hydrogen isotope retention in
plasma-facing components of fusion experiments (Skinner
et al., 2008). However, measurements are time consuming
and the extraction of the concentration depth profile from the
measured data is an ill-conditioned inversion problem due to
the very broad cross section of the Dð3He; pÞ4He reaction
(Möller and Besenbacher, 1980). Therefore, the experimental
setup (i.e., the choice of the analysis energies) should be
optimized to provide a maximum of information about the
depth profile. To evaluate Eq. (187) the energy EðxÞ of the
incident particle on its path through the sample for a given
initial energy E0 is required. The energy loss of the impinging
3He ion in the sample is determined by the stopping power
SðEÞ of the sample

dE=dx ¼ �SðEÞ; (188)

which can be solved to get the depth-dependent energy EiðxÞ
for different initial energies E0

i . Parametrizations and tables

of S for different elements are given by Tesmer and Nastasi
(1995). Since the amount of hydrogen in the sample is usually
well below 1% (with the exception of a very thin surface
layer), the influence of the hydrogen concentration on the
stopping power can be neglected in most cases. A parametri-
zation for the cross section �ðEÞ (Alimov et al., 2005) is
provided by von Toussaint et al. (2008).

A tungsten sample (
 ¼ 19:3 g=cm3) with a (high) surface
concentration of 12% deuterium, followed by an exponen-
tially decaying deuterium concentration profile down to a
constant background level, described by

cðxÞ ¼ a0 expð�x=a1Þ þ a2 (189)

has been used. The parameter values are a0 ¼ 0:1, a1 ¼
395 nm, and a2 ¼ 0:02. The corresponding mock data for a
set of initial energies E0 ¼ f500, 700, 1000, 1300, 1600,
2000, 2500, 3000g keV is shown in Fig. 50. The variations
in the detected yields reflect the interplay of the increasing
range of the ions with increasing energy and the reduced cross
section at higher energies modulated with the decreasing
deuterium concentration at larger depths. The increase of
the signal by raising the initial energy from 2500 to
3000 keV is caused by the constant deuterium background
of 2%. The time needed to obtain the eight data points is
around one working day taking into account necessary

calibration measurements. The uncertainty of the measure-

ment is given by Poisson statistics. However, fluctuations in

the beam current measurements are very often the dominating

factor, affecting the prefactor Ni in Eq. (187). An accuracy of

up to 3% can be achieved in favorable circumstances (e.g., by

using the number of Rutherford-scattered 3He ions on a thin

gold coating on top of the sample as reference). Therefore, a

realistic estimate of the measurement uncertainty was as-

sumed to be �i ¼ maxð5%di;
ffiffiffiffiffi
di

p Þ. von Toussaint et al.

(2008) favorably compared the best experimental design for

a linear setting (assuming a piecewise linear concentration

profile) with the established experimental technique of an

equidistant choice of the beam energies. For the nonlinear

design the Kullback-Leibler divergence was optimized. In the

experimental design approach for the Kepler orbit measure-

ments, the computational effort could be reduced exploiting

the maximum entropy sampling. Instead, in the present case

the data dependent uncertainty �i ¼ maxð5%di;
ffiffiffiffiffi
di

p Þ re-

quires an additional parameter space integration to compute

the information gain of a measurement using the Kullback-

Leibler divergence [Eq. (179)], increasing computation time.

However, the optimal next accelerator energy can be com-

puted only after the result of the previous measurement is

available. Therefore, long computing times are not compat-

ible with an efficient operation. To circumvent this problem

the posterior sampling method (Loredo, 1999) was used,

reducing the computation of the next measurement energy

to less than 5 minutes using a standard PC with 2 GHz CPU

(von Toussaint et al., 2008). In Fig. 51 three cycles of

nonlinear Bayesian experimental design are shown: After

the first measurement at 500 keV the posterior distribution

of fa1; a2g can be seen in the upper left graph by the posterior

sample. The single measurement does not allow one to dis-

tinguish between a large decay constant a1 and low constant

offset a2 or vice versa. The EU, plotted in the upper right

graph, now favors a measurement at the other end of the

energy range (the maximum of the utility function is en-

circled). After a measurement with 3 MeV 3He the ‘‘area’’
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FIG. 50. Simulated yield data of a Dð3He; pÞ4He nuclear reaction

analysis of a tungsten sample with an exponentially decaying

deuterium concentration profile. The varying intensity reflects the

interplay of an energy dependent cross section, ion beam range, and

concentration profile. Adapted from von Toussaint et al., 2008.
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of the posterior distribution is significantly reduced (middle
row, left graph): The background concentration is below 3%
but the decay length is still quite undetermined. The EU
has a maximum at 1500 keV, still with a pretty high EU.
Performing a measurement with 1500 keV localizes the
posterior distribution around the true, but unknown, value
of a1 ¼ 395 nm and a2 ¼ 0:02. The next measurement
should be performed at 1200 keV but the EU is significantly
lower than before; subsequent measurements are predomi-
nantly improving the statistics. A second measurement at
3 MeV provides nearly the same information.

E. Autonomous exploration

Most present day advanced remote science operations use
semiautomated systems that can carry out basic tasks such as
locomotion and directed data collection, but require human
intervention when it comes to deciding where to go or which
experiment to perform. However, for many applications in-
struments that can both act and react with minimal human
intervention would be advantageous. Knuth et al. (2007)
described a simple robot that collects data in an automated
fashion, and based on what it learns, decides which new
measurement to take, thus, pursuing the learning cycle of
observation, inference, and hypothesis refinement.

The experimental problem addressed is the localization
(x, y position) and characterization (radius) of a white disk
on a black plane using a robot arm equipped with a light
sensor capable of noisy point measurements only. This toy

problem can be considered as a crude representation of a land
mine search problem (Goggans and Chi, 2007). The parame-
ter vector of the disk consists of the disk center coordinates
(x0, y0) and the disk radius r0

C ¼ fðx0; y0Þ; r0g (190)

and the data vector is given by a set of N light measurements

d ¼ fd1; d2; . . . ; dNg (191)

recorded at positions

X ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN; yNÞg: (192)

When the positions are assumed to be known with certainty
the posterior probability for the disk parameters is given by

pðCjd;X; IÞ ¼ pðdjC;X; IÞpðCjIÞ=pðdjIÞ: (193)

A uniform prior probability is assigned for the disk
parameters

pðCjIÞ¼
�

1

xmax�xmin

��
1

ymax�ymin

��
1

rmax�rmin

�
(194)

with rmin ¼ 1 cm and rmax ¼ 15 cm. The likelihood function
for one measurement di taken at (xi, yi) can be written as

pðdijC;ðxi;yiÞ;IÞ
¼pðdijfðx0;y0Þ;r0g;ðxi;yiÞ;IÞ

¼
�
NðdW;�Þ; if ðxi�x0Þ2þðyi�y0Þ2� r20;

NðdB;�Þ; if ðxi�x0Þ2þðyi�y0Þ2>r20:
(195)

The expected value � of a light measurement on the white
disk is dW and dB is the expected value of a light measure-
ment on the black background. The uncertainty of the inten-
sity measurement is given by a Gaussian distribution Nð�;�Þ
with uncertainty �, centered around the expected value �.
The information gain (Shannon entropy) of a measurement
has been taken as a utility function. As the noise level is
independent from the sampling location the maximum en-
tropy sampling (Sebastiani and Wynn, 2000) can be used for
an efficient computation of the expected utility based on
posterior samples

ðx̂e; ŷeÞ ¼ argmax
ðxe;yeÞ

�
�
Z

ddepðdejd; ðxe; yeÞ; IÞ

� logpðdejd; ðxe; yeÞ; IÞ
�
: (196)

For an efficient computation of the posterior samples the
nested sampling algorithm has been used. To find the next
measurement position a grid on the space of possible mea-
surement locations is considered and Eq. (196) is only com-
puted at the grid points. The alignment of this grid is
randomly jittered so that a greater variety of points can be
considered during the measurement process. In Fig. 52(a) the
initial stage of the inference process is shown: The first
measurement has been taken [indicated by the black mark
in the upper right part of Fig. 52(a)]. The white disk has not
yet been located. For this reason there are large regions of the
measurement space that are potentially equally informative,
indicated by the homogeneous areas in Fig. 52(b), where the
entropy gain of a further measurement at that location is
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FIG. 51 (color online). Three cycles of the experimental design

process. On the left-hand side 1000 samples drawn from the

posterior distribution pða1; a2jd; �Þ are displayed. On the right-

hand side the expected utility is plotted and the maximum is

indicated by a circle. The corresponding abscissa value is the

suggested next measurement energy. Performing that measurement

yields the posterior samples (black dots) given in the second row,

left-hand side. The previous posterior samples are given in gray for

comparison. On the right-hand side the new expected utility as a

function of beam energy is given. Adding a new measurement with

the proposed energy results in the posterior sample displayed in the

lower left panel. The previous posterior samples are also given in

different colors. The posterior volume has already decreased sig-

nificantly. Therefore the best EU for the next measurement is lower

than before. Adapted from von Toussaint et al., 2008.
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displayed. Locations with a darker color provide less infor-
mation (e.g., already measured locations). After several iter-
ations, the robot will eventually find a white area belonging to
the disk, thus immediately constraining the possible parame-
ter space considerably. In Fig. 52(c) the set of circles in
agreement with all measurements is now already constrained
to the vicinity of the true disk location [Fig. 52(c)]. The
measurement with the highest expected utility [indicated by
two arrows in Fig. 52(d)] is in the region with the highest
scattering of the posterior samples. It is essentially asking a
binary question that rules out half of the models. This results
in a rapid convergence significantly reducing the number of
necessary measurements. These binary questions are not hard
wired into the system but are a natural consequence of the
selection of the most informative measurement (Knuth et al.,
2007).

F. Optimizing interferometric diagnostics

In a series of papers Dreier et al. (Fischer et al., 2005;
Dreier et al., 2006a, 2006b, 2008a, 2008b) studied the design

of a multichannel interferometer at the Wendelstein 7-X
stellarator with respect to beam-line configuration, the num-
ber of beam lines, and joint evaluation with other diagnostics.
Dreier et al. (2008b) investigated the impact of technical
boundary conditions on the measurement of plasma electron
density distributions using a four-channel two-color interfer-
ometer. For the interferometry system at W7-X three entrance
ports into the vacuum vessel are reserved, allowing different
beam-line configurations from vertical to horizontal optical
paths (Kornejew et al., 2006). Because no opposite ports are
available, the probing beams have to be reflected by corner
cube retroreflectors mounted on the opposite wall. These
reflectors have to fit the structure of the in-vessel components.
In combination with other constraints (e.g., limited port size)
the number of realizable beam lines is 101. One of the
physical questions to be addressed in the W7-X stellarator
is the variation of the plasma density profiles at various
confinement regimes (H mode and high density H mode).
Here especially the maximum density within the plasma, the
edge gradient, and the position of the edge are of interest (see
Fig. 53). Maximizing the expected utility using the informa-
tion gain of measurements (Kullback-Leibler divergence) as a
utility function yielded an optimal design (Fig. 54, right
panel) with an expected utility of EU ¼ 28:3� 0:2 bit. The
best design taking into account the technical boundary con-
ditions (Fig. 54, left panel) leads to an expected utility of only
EU ¼ 8:53� 0:01 bit. A comparison of the two different
designs reveals the reason for the large difference of the
expected information gains. In the unconstrained design
(Fig. 54, right panel) two lines of sight are localized at the
very edge of the plasma, additionally passing the plasma on a
very long path. This provides a good signal-to-noise ratio and
at the same time a high sensitivity to small shifts in the
position of the plasma edge. In both aspects the design where
the port system had to be taken into account is inferior.

FIG. 52 (color online). (A), (C) The area to be searched together

with the position of the white disk to be detected. In (A) a first

measurement has been taken (small filled black circle in the upper

right). Since at that location background only was detected, a

number of possible positions of the white disk can immediately

be excluded. This is visualized by 150 circles sampled from the

updated posterior. These represent possible disk positions and sizes

consistent with the measurement(s). (C) The situation after several

measurements: The algorithm is getting close to a solution. The

possible circle parameters are already narrowed down. The scatter

of possible disk positions is already pretty small. (B) and (D) The

selection algorithm for the location of the next measurement. The

panels display the information gain for each measurement location

(dark colors indicate uninformative locations) and the location with

the highest information gain is selected for the next measurement

(indicated by arrows). Further details are given in the text. From

Knuth et al., 2007.
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FIG. 53 (color online). Parameters of interest for the design of a

multichannel interferometer for W7-X. The parameters are varied

according to different high confinement regimes. The different lines

(solid, dashed, and dotted) represent different realizations of physi-

cal scenarios On the left-hand side the maximum density of the

plasma is varied, keeping the edge position constant. On the right-

hand side the maximum density and the maximum slope are kept

constant, varying the position of the plasma edge only. Adapted

from Dreier et al., 2008a.
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Therefore, the expected utility of modifications of the experi-
mental setup has been investigated yielding a different design
suggestion based on an out-of-plane setup (Dreier et al.,
2008b).

Other applications of (nonlinear) Bayesian experimental
design are optimized material testing schemes (Ryan, 2003),
filter design for Thomson scattering diagnostics (Fischer,
2004), optimized experiment proposals based on scaling
laws (Preuss et al., 2008), and the optimal design of heart
defibrillators (Clyde et al., 1993).

G. N-step ahead designs

All the design policies considered so far are greedy, select-
ing the best action using a one-step ahead approach, i.e., the
best action is chosen as if the next measurement would be
the last one. In practice, however, most experimental design
optimizations are used in a repetitive manner. This may lead
to less than optimal designs as can be demonstrated with a
simple example. The interval [1, 4] has to be segmented with
two support points such that the largest segment is minimized
(e.g., for efficient regression). A one-step ahead algorithm
selects x1 ¼ 2:5 as the best segmentation value for the first
support point but in the subsequent optimization no place-
ment of the second support point can reduce the size of the
largest segment below 1.5. A two-step ahead algorithm would
position the support points instead at x1 ¼ 2 and x2 ¼ 3
achieving an upper limit on the segment length of s ¼ 1.

N-step ahead designs, also known as full-sequential de-
signs, correspond to stochastic dynamic programming prob-
lems (SDP) (Bellman, 1957). The dependence of the later
experiments on previous actions and observations (here for a
two-step ahead design)

EUð�1Þ ¼ max
�1

�Z
dD1pðD1j�1; IÞ

�max
�2

�Z
dD2pðD2jD1; �1; �2; IÞ

� UðD1;D2; �1; �2Þ
��

(197)

introduces a feedback of information. This feedback, leading
to the repeated embedded maximizations and integrations
in Eq. (197), is the reason for the extreme difficulty of

full-sequential designs with N > 1. Approximate solution

methods of equations of similar structure are discussed in
the areas of feedback control (Gautier and Pronzato, 1998;

Pronzato, 2008) and partially observable Markov decision

processes (Kaelbling et al., 1996, 1998; Ng and Jordan,
2000). The computational complexity of the SDP problem

has so far mostly precluded the use of full-sequential designs
in experimental design [Kulcsar et al. (1994) provides one of

the few attempts in this direction]. On the other hand, there is

some evidence that in many cases the largest benefit is
already provided by the step from N ¼ 1 to N ¼ 2 [see

Pronzato (2008) and references therein (von Toussaint,
2011)]. The emerging computing power widens the range

of models for which this limited increase in the prediction

horizon is feasible.

H. Experimental design: Outlook

In the preceding sections the Bayesian approach to experi-

mental design was illustrated with several examples, all of
them focusing on the best strategy for parameter estimation

pð�jD;d;M1Þ for a given model M1. In contrast the closely
related approach of experimental design for model identifi-

cation (Toman, 2008), i.e., the selection of measurements

which best discriminates between a set of models Mk, k ¼
1; . . . ; K has so far only rarely been applied for nonlinear

models, most likely due to the increased numerical complex-
ity to compute pðMkjD;dÞ. Some further aspects of experi-

mental design which are the focus of current research are as

follows:

 The optimization procedure assumes that the model is

correct. This may (especially for linear models) lead to

design suggestions which appear strange and are not
robust with respect to minor deviations from the model.

This is reflected in optimized designs which suggest

measurements only at the end points of the design
interval (DasGupta, 1996) or repeated measurements

with the same settings (sometimes referred to as thinly

supported designs). Averaging the expected utility over
a set of plausible models (the mixture approach) may

provide more robust designs (Chaloner and Verdinelli,
1995).


 The majority of experimental design techniques focuses

either on the estimation of parameters of a given model
or on model identification. For both cases appropriate

utility functions are known (Pukelsheim, 1993).

Relatively little work has been done to develop experi-
mental design criteria to jointly improve parameter

estimates and model identification. Some ideas are

given by Borth (1975) and Chick and Ng (2002), but
these ideas still wait to be tested in physics applications.


 The applicability of Bayesian experimental design de-

pends on the feasibility of the necessary integrations.
Several efficient algorithms have already been proposed

(Müller and Parmigiani, 1995; Müller, 1999; Sebastiani

and Wynn, 2000; Müller et al., 2004), but the special
structure of (sequential) expected utility computation

still provides possibilities for further optimization.
This is an active area of research (Brockwell and

Kadane, 2003; Müller et al., 2007).

FIG. 54. Design result for four interferometry chords with respect

to the measurement of high confinement regimes: Four beam lines

in the interferometry plane (left) and optimal four beam configura-

tion without technical constraints (right) superimposed onto a cross

section of the W7-X plasma. Adapted from Dreier et al., 2008b.
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 Once a joint environment-sensor model is created, the
act of calibration becomes another potential experiment.
In such a system, the instrument can decide to interact
with either the environment via measurements or itself
via calibration giving rise to an instrument that actively
self-calibrates during an experiment (Thrun and Fox,
2005; Knuth et al., 2007). The potential of these and
similar ideas still waits to be explored.

Another noteworthy application of experimental design is the
optimization of computer experiments. Elaborate computer
models are progressively used in scientific research. As sur-
rogates for physical systems, computer models can be sub-
jected to experimentation, the goal being to predict how the
real system would behave or to validate the computer model.
Complex models often require long running times thus se-
verely limiting the size and scope of computer experiments. A
frequently used approach to circumvent these restrictions is
based on fitting a cheaper predictor [e.g., a response surface
model (Myers et al., 1989)] of the simulation code output yðtÞ
to the input data t. The predictor is then used for parametric
parameter studies instead of the original computer code. The
experimental design is concerned with the best prediction of
the simulation code output yðtÞ using an optimized selection of
sites ft1; t2; . . . ; tng (Sacks et al., 1989; Currin et al., 1991;
Kennedy and O’Hagan, 2001) and the efficient identification
of the most relevant input parameters (Saltelli et al., 2000).
Bayesian approaches based on Gaussian processes (Neal,
1999a) may require a far smaller number of model runs than
standard Monte Carlo approaches (Oakley and O’Hagan,
2004). A transfer of ideas from control theory for dynamic
model systems (Hjalmarsson, 2005) and correlated, multi-
dimensional response variables may provide further progress.

VIII. CONCLUSION AND OUTLOOK

It was demonstrated that Bayesian probability theory is a
powerful tool for inference from physical data and uncertain
information. It allows the extraction of the most convincing
conclusions implied by given data and any prior knowledge in
a systematic way.

This was first noticed in observational branches as in
biometrics and astronomy where the data sets cannot be
augmented at will and have to be exploited as far as possible.
Fortunately in other branches of physics the situation ex-
pressed by Mackenzie (2004): ‘‘We use fantastic telescopes,
the best physical models, and the best computers. The weak
link in this chain is interpreting our data using 100-year-old-
mathematics’’ is steadily improving. Thanks to the ongoing
increase of computing power, it now becomes possible to
handle problems using modern MCMC techniques which
were infeasible 10 years ago. This naturally broadens the
range of possible applications of Bayesian inference. The
areas most likely to benefit most are those where statistical
model building has so far been hampered by a lack of knowl-
edge or insight into the system, e.g., at the interface of
biophysics and biology. Here the increasing amount of avail-
able molecular (low level) data calls for methods and tools for
comprehensive, unsupervised model selection and model
design (Huelsenbeck et al., 2001) in large model spaces.

Within the area of physics, the increasing complexity of
simulation codes (e.g., climate simulation codes, plasma
simulations) suggests to compute and analyze the obtained
data in an optimized way, using Bayesian design and predic-
tion methods. So far, most approaches to this problem have
treated the simulation codes as black boxes. The challenge is
to find ways to take advantage of the available insight into the
complex system in the best possible way. The emerging
computational resources also provide, for the first time,
the possibility to implement nontrivial prediction-testing-
inference cycles. Although still limited to greedy algorithms,
automated exploration algorithms are now becoming fea-
sible. The exploitation of the full potential of these algorithms
is only just now beginning.

Given the steady development of Bayesian foundations,
the progress in variational and sampling algorithms and, most
importantly, the tremendous increase of complex information
gathered from physical experiments, Bayesian inference can
expect a bright future.
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Snowdon, and J.M. Charnes (IEEE, San Diego, CA), p. 400.

Chopin, N., and C. Robert, 2007, in Bayesian Statistics, edited by J.

Bernardo, M. J. Bayarri, J. Berger, A. Dawid, D. Heckermann, A.

Smith, and M. West (Oxford University Press, Oxford), Vol. 8,

p. 491.

Chopin, N., and C. Robert, 2008, arXiv:0801.3887.

Chopin, N., and C. Robert, 2010, Biometrika 97, 741.

Clyde, M., and E. I. George, 2004, Stat. Sci. 19, 81.

Clyde, M., P. Müller, and G. Parmigiani, 1993, in Case Studies in

Bayesian Statistics, II (Springer-Verlag, Berlin), p. 278.

Clyde, M.A., J. O. Berger, F. Bullard, E. B. Ford, W.H. Jefferys, R.

Luo, R. Paulo, and T. Loredo, 2007, in Statistical Challenges in

Modern Astronomy IV, edited by G. J. Babu and E.D. Feigelson

(ASP), Vol. 371, p. 224.

Clyde, M.A., and R. L. Wolpert, 2007, in Bayesian Statistics, edited

by J. Bernardo, M. J. Bayarri, J. Berger, A. Dawid, D.

Heckermann, A. Smith, and M. West (Oxford University Press,

Oxford), Vol. 8, p. 1.

Coluzza, I., and D. Frenkel, 2005, Chem. Phys. Chem. 6, 1779.

Cooper, G., 1990, Artif. Intell. 42, 393.

Cornebise, J., E. Moulines, and J. Olsson, 2008, Stat. Comput. 18,

461.

Cornfield, J., 1969, Biometrics 25, 617.

Udo von Toussaint: Bayesian inference in physics 993

Rev. Mod. Phys., Vol. 83, No. 3, July–September 2011

http://dx.doi.org/10.1016/S0022-3115(00)00031-3
http://dx.doi.org/10.1088/0034-4885/73/1/016901
http://dx.doi.org/10.1088/0034-4885/73/1/016901
http://dx.doi.org/10.1103/RevModPhys.82.331
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.2307/3315722
http://dx.doi.org/10.1086/345346
http://www.jstor.org/stable/27855070
http://www.jstor.org/stable/27855070
http://dx.doi.org/10.1214/ss/1030037904
http://dx.doi.org/10.1214/aos/1176325757
http://dx.doi.org/10.1214/aos/1176325757
http://dx.doi.org/10.1016/S0378-3758(02)00336-1
http://dx.doi.org/10.1016/S0378-3758(02)00336-1
http://dx.doi.org/10.2307/2289131
http://dx.doi.org/10.1214/aos/1176344689
http://www.jstor.org/stable/2985028
http://www.jstor.org/stable/2985028
http://dx.doi.org/10.1214/aos/1176345646
http://dx.doi.org/10.2307/2281640
http://dx.doi.org/10.1103/PhysRevLett.101.130603
http://dx.doi.org/10.1103/PhysRevLett.101.130603
http://www.jstor.org/stable/2984993
http://www.jstor.org/stable/2984993
http://dx.doi.org/10.1073/pnas.96.17.9701
http://dx.doi.org/10.1073/pnas.96.17.9701
http://dx.doi.org/10.1016/0022-2364(90)90287-J
http://dx.doi.org/10.1016/0022-2364(90)90288-K
http://dx.doi.org/10.1016/0022-2364(90)90289-L
http://dx.doi.org/10.1016/0022-2364(91)90013-J
http://dx.doi.org/10.1111/j.1365-2966.2009.15525.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15525.x
http://dx.doi.org/10.1198/1061860032274
http://dx.doi.org/10.1198/1061860032274
http://dx.doi.org/10.1016/S0022-3115(98)00822-8
http://dx.doi.org/10.1016/S0022-3115(98)00822-8
http://dx.doi.org/10.1111/1467-9868.03711
http://dx.doi.org/10.1111/1467-9868.03711
http://dx.doi.org/10.1093/biomet/86.3.710
http://dx.doi.org/10.1007/s11222-008-9059-x
http://dx.doi.org/10.1109/JPROC.2007.893250
http://dx.doi.org/10.1198/106186004X12803
http://dx.doi.org/10.1198/106186004X12803
http://www.jstor.org/stable/2347570
http://arxiv.org/pdf/0808.0012
http://dx.doi.org/10.2307/2669477
http://dx.doi.org/10.2307/2669477
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1038/467405a
http://dx.doi.org/10.1111/j.1365-2117.2008.00369.x
http://dx.doi.org/10.1613/jair.764
http://arXiv.org/abs/0801.3887
http://dx.doi.org/10.1093/biomet/asq021
http://dx.doi.org/10.1214/088342304000000035
http://dx.doi.org/10.1002/cphc.200400629
http://dx.doi.org/10.1016/0004-3702(90)90060-D
http://dx.doi.org/10.1007/s11222-008-9089-4
http://dx.doi.org/10.1007/s11222-008-9089-4
http://dx.doi.org/10.2307/2528565


Cornu, A., and R. Massot, 1979, Compilation of Mass Spectral Data

(Heyden, London).

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter,

1999, Probabilistic Networks and Expert Systems (Springer,

New York).

Cowles, M., and B. Carlin, 1996, J. Am. Stat. Assoc. 91, 883.

Cox, D. R., 2006, Principles of Statistical Inference (Cambridge

University Press, Cambridge).

Cox, R. T., 1946, Am. J. Phys. 14, 1.

Cox, R. T., 1961, The Algebra of Probable Inference (John Hopkins

Press, Baltimore, MD).

Currin, C., T. Mitchell, M. Moris, and D. Ylvisaker, 1991, J. Am.

Stat. Assoc. 86, 953.

Daghofer, M., and W. von der Linden, 2004, in Bayesian Inference

and Maximum Entropy Methods in Science and Engineering,

edited by R. Fischer, R. Preuss, and U. von Toussaint, AIP

Conf. Proc. No. 735 (AIP, Melville, NY), p. 355.

D’Agostini, G., 1999, in Bayesian Reasoning in High-Energy

Physics: Principles and Applications, CERN 99-03 (CERN,

Geneva).

D’Agostini, G., 2003, Rep. Prog. Phys. 66, 1383.

Dagum, P., and M. Luby, 1993, Artif. Intell. 60, 141.

Darwiche, A., 2009, Modeling and Reasoning with Bayesian

Networks (Cambridge University Press, Cambridge, UK).

DasGupta, A., 1996, in Handbook of Statistics 13: Design and

Analysis of Experiments, edited by S. Gosh and C. R. Rao

(Elsevier, Amsterdam).

Davidoff, F., 1999, Ann. Intern. Med. 130, 1019.

Davis, P., and P. Rabinowitz, 1984, Methods of Numerical

Integration (Academic Press, Orlando, FL).

Dawid, A., 1979, J. R. Stat. Soc. Ser. B 41, 1 [http://www.jstor.org/

stable/2984718].

DeGroot, M.H., 1962, Ann. Math. Stat. 33, 404.

DeGroot, M.H., 1986, in Recent Developments in the Foundations

of Utility and Risk Theory, edited by L. Daboni, A. Montesano,

and M. Lines (Reidel, Dordrecht), p. 265.

de Laplace, P. S., 1812, Theorie Analytique des Probabilites

(Courcier Imprimeur, Paris).

Denison, D. G. T., B. K. Mallick, and A. F.M. Smith, 1998, J. R.

Stat. Soc. Ser. B 60, 333.

Devroye, L., 1986, Non-uniform Random Variate Generation

(Springer, New York).

DiCiccio, T., R. Kass, A. Raftery, and L. Wassermann, 1997, J. Am.

Stat. Assoc. 92, 903.

Dickinson, C., H. K. Eriksen, A. J. Banday, J. B. Jewell, K.M.

Gorski, G. Huey, C. R. Lawrence, I. J. O’Dwyer, and B. D.

Wandelt, 2009, Astrophys. J. 705, 1607.

Dieboldt, J., and C. Robert, 1994, J. R. Stat. Soc. Ser. B 56, 363

[http://www.jstor.org/stable/2345907].

DiMatteo, I., C. R. Genovese, and R. E. Kass, 2001, Biometrika 88,

1055.

Dinklage, A., R. Fischer, J. Geiger, G. Kühner, H. Maassberg, J.

Svensson, and U. von Toussaint, 2003, in 30th EPS Conference on

Controlled Fusion and Plasma Physics, edited by R. Koch and S.

Lebedev (Europ. Phys. Soc., Geneva), Vol. ECA 27A, p. P-4.80.

Dinklage, A., R. Fischer, and J. Svensson, 2003, in Proceedings of

PLASMA 2003 ‘Research and Applications of Plasmas, p. I-1.1.

Dinklage, A., R. Fischer, and J. Svensson, 2004, Fusion Sci.

Technol. 46, 355.

Dissanayake, G., P. Newman, S. Clark, H. Durrant-Whyte, and M.

Csorba, 2001, IEEE Transactions on Robotics and Automation 17,

229.

Dobrozemsky, R., and G. Schwarzinger, 1992, J. Vac. Sci. Technol.

A 10, 2661.

Dose, V., 2002, Bayes in five days.

Dose, V., 2003a, Rep. Prog. Phys. 66, 1421 [stacks.iop.org/RoPP/

66/1421].

Dose, V., 2003b, in Bayesian Inference and Maximum Entropy

Methods in Science and Engineering, edited by C. J. Williams,

AIP Conf. Proc. No. 659 (AIP, Melville, NY), p. 350.

Dose, V., R. Fischer, and W. von der Linden, 1998, in Maximum

Entropy and Bayesian Methods, edited by G. Erickson (Kluwer

Academic, Dordrecht), p. 147.

Dose, V., and A. Menzel, 2004, Global Change Biology 10,

259.

Dose, V., and A. Menzel, 2006, Global Change Biology 12, 1451.

Dose, V., R. Preuss, and J. Roth, 2001, J. Nucl. Mater. 288, 153.

Dose, V., and W. von der Linden, 1999, in Maximum Entropy and

Bayesian Methods, edited by W. von der Linden, V. Dose, R.

Fischer, and R. Preuss (Kluwer Academic Publishers, Dordrecht).

Doucet, A., N. de Freitas, and N. Gordon, 2001, Eds., Sequential

Monte Carlo in Practice (Springer, New York).

Doucet, A., and A. Johansen, 2008, in Oxford Handbook of

Nonlinear Filtering, edited by D. Crisan and B. Rozovsky

(Oxford University Press) [www.cs.ubc.ca/~arnaud/doucet_

johansen_tutorialPF.pdf].

Draper, D., 1995, J. R. Stat. Soc. Ser. B 57, 45 [http://www.jstor.org/

stable/2346087].

Dreier, H., A. Dinklage, R. Fischer, M. Hirsch, and P. Kornejew,

2006a, Rev. Sci. Instrum. 77, 10F323.

Dreier, H., A. Dinklage, R. Fischer, M. Hirsch, and P. Kornejew,

2008a, Rev. Sci. Instrum. 79, 10E712.

Dreier, H., A. Dinklage, R. Fischer, M. Hirsch, and P. Kornejew,

2008b, in PLASMA 2007, edited by H. J. Hartfuss, M. Dudeck, J.

Musielok, and M. J. Sadowski, AIP Conf. Proc. No. 993 (AIP,

Melville, NY), p. 183.

Dreier, H., A. Dinklage, R. Fischer, M. Hirsch, P. Kornejew, and E.

Pasch, 2006b, Fusion Sci. Technol. 50, 262.

Duane, S., A. Kennedy, B. Pendleton, and D. Roweth, 1987, Phys.

Lett. B 195, 216.

Dunkley, J., et al., 2009, Astrophys. J. 701, 1804.

Durrant-Whyte, H., and T. Bailey, 2006, IEEE Robotics &

Automation Magazine 13, 99.

Durrer, R., 2008, The Cosmic Microwave Background (Cambridge

University Press, Cambridge, UK).

Earl, D., and M. Deem, 2005, Phys. Chem. Chem. Phys. 7, 3910.

Evans, M., 2007, in Bayesian Statistics, edited by J. Bernardo, M. J.

Bayarri, J. Berger, A. Dawid, D. Heckermann, A. Smith, and M.

West (Oxford University Press, Oxford), Vol. 8, p. 491.

Fearnhead, P., 2006, Stat. Comput. 16, 203.

Fedorov, V. V., 1972, Theory of Optimal Experiments (Academic,

New York).

Feller, W., 1991, An Introduction to Probability Theory and Its

Applications (Wiley, Chichester), Vol. 2.

Feroz, F., M. P. Hobson, and M. Bridges, 2009, Mon. Not. R.

Astron. Soc. 398, 1601.

Fiore, C. E., and M.G. E. da Luz, 2010, Phys. Rev. E 82, 031104.

Fischer, R., 2004, in Bayesian Inference and Maximum Entropy

Methods in Science and Engineering, edited by R. Fischer, R.

Preuss, and U. von Toussaint, AIP Conf. Proc. No. 735 (AIP,

Melville, NY), p. 76.

Fischer, R., and A. Dinklage, 2004, Rev. Sci. Instrum. 75, 4237.

Fischer, R., A. Dinklage, and E. Pasch, 2003, Plasma Phys.

Controlled Fusion 45, 1095.

Fischer, R., H. Dreier, A. Dinklage, B. Kurzan, and E. Pasch, 2005,

in Bayesian Inference and Maximum Entropy Methods in Science

and Engineering, edited by K. Knuth, A. Abbas, R. Morris, and

J. Castle, AIP Conf. Proc. No. 803 (AIP, Melville, NY), p. 440.

994 Udo von Toussaint: Bayesian inference in physics

Rev. Mod. Phys., Vol. 83, No. 3, July–September 2011

http://dx.doi.org/10.2307/2291683
http://dx.doi.org/10.1119/1.1990764
http://dx.doi.org/10.2307/2290511
http://dx.doi.org/10.2307/2290511
http://dx.doi.org/10.1088/0034-4885/66/9/201
http://dx.doi.org/10.1016/0004-3702(93)90036-B
http://www.jstor.org/stable/2984718
http://www.jstor.org/stable/2984718
http://dx.doi.org/10.1214/aoms/1177704567
http://dx.doi.org/10.1111/1467-9868.00128
http://dx.doi.org/10.1111/1467-9868.00128
http://dx.doi.org/10.2307/2965554
http://dx.doi.org/10.2307/2965554
http://dx.doi.org/10.1088/0004-637X/705/2/1607
http://www.jstor.org/stable/2345907
http://dx.doi.org/10.1093/biomet/88.4.1055
http://dx.doi.org/10.1093/biomet/88.4.1055
http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1116/1.577955
http://dx.doi.org/10.1116/1.577955
http://dx.doi.org/10.1088/0034-4885/66/9/202
stacks.iop.org/RoPP/66/1421
stacks.iop.org/RoPP/66/1421
http://dx.doi.org/10.1111/j.1529-8817.2003.00731.x
http://dx.doi.org/10.1111/j.1529-8817.2003.00731.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01160.x
http://dx.doi.org/10.1016/S0022-3115(00)00709-1
www.cs.ubc.ca/~arnaud/doucet_johansen_tutorialPF.pdf
www.cs.ubc.ca/~arnaud/doucet_johansen_tutorialPF.pdf
http://www.jstor.org/stable/2346087
http://www.jstor.org/stable/2346087
http://dx.doi.org/10.1063/1.2336457
http://dx.doi.org/10.1063/1.2956962
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1088/0004-637X/701/2/1804
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1039/b509983h
http://dx.doi.org/10.1007/s11222-006-8450-8
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1103/PhysRevE.82.031104
http://dx.doi.org/10.1063/1.1787607
http://dx.doi.org/10.1088/0741-3335/45/7/304
http://dx.doi.org/10.1088/0741-3335/45/7/304


Fischer, R., K.M. Hanson, V. Dose, and W. von der Linden, 2000,

Phys. Rev. E 61, 1152.

Fischer, R., M. Mayer, W. von der Linden, and V. Dose, 1997, Phys.

Rev. E 55, 6667.

Fischer, R., M. Mayer, W. von der Linden, and V. Dose, 1998, Nucl.

Instrum. Methods Phys. Res., Sect. B 136–138, 1140.

Fischer, R., C. Wendland, A. Dinklage, S. Gori, V. Dose, and The

W7-AS team, 2002, Plasma Phys. Controlled Fusion 44, 1501.

Fischer, R., E. Wolfrum, J. Schweinzer, and The ASDEX Upgrade

Team, 2008, Plasma Phys. Controlled Fusion 50, 085009.

Flynn, A.M., 1988, Int. J. Robotics Research 7, 5.

Fox, D., W. Burgard, and S. Thrun, 1999, J. Artif. Intell. Res. 11,

391.

Frenkel, D., 1986, in Molecular Dynamics Simulation of Statistical-

Mechanical Systems, edited by G. Ciccotti and W. Hoover (North-

Holland, Amsterdam), p. 151.

Frese, U., 2006, Autonomous Robots 20, 25.

Friedman, N., and D. Koller, 2003, Mach. Learn. 50, 95.
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